UNICAMP

UNIVERSIDADE ESTADUAL DE
CAMPINAS

Instituto de Matematica, Estatistica e
Computacgao Cientifica

RODOLFO ANIBAL LOBO CARRASCO

Hypercomplex-Valued Recurrent Neural
Networks and their Applications for Image
Reconstruction and Pattern Classification

Redes Neurais Recorrentes Hipercomplexas e
suas Aplicacoes em Reconstrucao de
Imagens e Classificacao de Padroes

Campinas
2021

Rodolfo Anibal Lobo Carrasco

Hypercomplex-Valued Recurrent Neural Networks and
their Applications for Image Reconstruction and
Pattern Classification

Redes Neurais Recorrentes Hipercomplexas e suas
Aplicacoes em Reconstrucao de Imagens e
Classificacao de Padroes

Tese apresentada ao Instituto de Matemdtica,
Estatistica e Computacao Cientifica da Univer-
sidade Estadual de Campinas como parte dos
requisitos exigidos para a obtencao do titulo de
Doutor em Matemadtica Aplicada.

Thesis presented to the Institute of Mathematics,
Statistics and Scientific Computing of the Uni-
versity of Campinas in partial fulfillment of the
requirements for the degree of Doctor in Applied
Mathematics.

Supervisor: Marcos Eduardo Ribeiro do Valle Mesquita

Este trabalho corresponde a versdo final
da Tese defendida pelo aluno Rodolfo
Anibal Lobo Carrasco e orientada pelo
Prof. Dr. Marcos Eduardo Ribeiro do
Valle Mesquita.

Campinas
2021

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Lobo Carrasco, Rodolfo Anibal, 1989-

L786h Hypercomplex-valued recurrent neural networks and their applications for
image reconstruction and pattern classification / Rodolfo Anibal Lobo Carrasco.
— Campinas, SP : [s.n.], 2021.

Orientador: Marcos Eduardo Ribeiro do Valle Mesquita.
Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Matematica, Estatistica e Computacao Cientifica.

1. Redes neurais recorrentes. 2. Redes neurais de Hopfield. 3. Memoria
associativa. 4. Redes neurais hipercomplexas. |. Mesquita, Marcos Eduardo
Ribeiro do Valle, 1979-. Il. Universidade Estadual de Campinas. Instituto de
Matematica, Estatistica e Computacao Cientifica. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Redes neurais recorrentes hipercomplexas e suas aplicagdes em
reconstrucao de imagens e classificagao de padroes
Palavras-chave em inglés:

Recurrent neural networks

Hopfield neural networks

Associative memory

Hypercomplex-valued neural networks

Area de concentracdo: Matematica Aplicada
Titulacao: Doutor em Matematica Aplicada

Banca examinadora:

Marcos Eduardo Ribeiro do Valle Mesquita [Orientador]
Guilherme de Alencar Barreto

Peter Sussner

Carlile Campos Lavor

Fernando Maciano de Paula Neto

Data de defesa: 16-04-2021

Programa de Pés-Graduacao: Matematica Aplicada

Identificac@o e informacdes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-9600-8469
- Curriculo Lattes do autor: http:/lattes.cnpq.br/8527212680361762

Tese de Doutorado defendida em 16 de abril de 2021 e aprovada

pela banca examinadora composta pelos Profs. Drs.

Prof(a). Dr(a). MARCOS EDUARDO RIBEIRO DO VALLE MESQUITA

Prof(a). Dr(a). GUILHERME DE ALENCAR BARRETO

Prof(a). Dr(a). PETER SUSSNER

Prof(a). Dr(a). CARLILE CAMPOS LAVOR

Prof(a). Dr(a). FERNANDO MACIANO DE PAULA NETO

A Ata da Defesa, assinada pelos membros da Comissdo Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertacdo/Tese e na Secretaria de Pés-Graduacao do Instituto de
Matematica, Estatistica e Computacao Cientifica.

Acknowledgements

I want to thank my couple Paula, my family and friends, from all over the world,
that I made in these years, for the continuous support, love and company. I dedicate this work
especially to those who left us along this path, not only during this process in particular, but
rather, throughout the long journey in the world of science: Norma Cubillos, Jaime Alfaro, my
Kuky and my Panchita. We didn’t have a goodbye but they are in my thoughts and feelings. I
also want to deeply thank Professor Marcos Valle, for his patience, support and understanding.
I would like to emphasize that I greatly appreciate his human quality and the neatness of his
work, which never disappeared and which was incredibly delicate in difficult moments. This
work is also the result of his constant company as a counselor, being for me the greatest scientific
teacher with whom I have had the privilege of learning and whom I deeply admire. I hope there
are many opportunities for our other works "to shine" and other spaces so that we can talk
and say goodbye. Besides, I want to thank all the teachers of the Institute of Mathematics and
Scientific Computing, with whom I was formed and reformed in the science of mathematics.
In particular to Professor Jodo Meyer for his classes, advice and talks, and to Professor Sandra
Santos for helping me in my first contacts with the Institute, giving me the opportunity to take
this beautiful road. I hope that one day my country will provide free and quality education, so that
other young people can have the opportunity that you have given me. As I also expect diversity,
inclusion and respect for all people, in particular for those most discriminated and segregated.
I can’t help writing that to have seen Natives, Afro-descendants and many different cultural
expressions in the classrooms and patios of UNICAMP, enriched me and made me believe that
such a place is possible. As a consequence of the above, I thank all the study groups and teachers
of Mapudiingun, who have been and are a new company and a bridge to new ways of thinking,
to create new realities in our wounded country. Finally, this study was financed in part by the
Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior - Brazil (CAPES) - Finance
code 001.

Resumo

As redes neurais hipercomplexas, incluindo redes neurais complexas, quaternionicas e octonioni-
cas, podem tratar dados multidimensionais como uma tnica entidade. Em particular, as versoes
hipercomplexas do modelo de Hopfield foram extensivamente estudadas nos ultimos anos. Esses
modelos podem apresentar baixa capacidade de armazenamento e efeito de interferéncia cruzada
quando sdo implementados usando a regra de Hebb. As redes recorrentes por correlagcdo (RCNNs)
e suas generalizagOes para sistemas hipercomplexos sdo modelos alternativos, que podem ser
usados para implementar memdrias associativas de alta capacidade de armazenamento. Nesta
tese de doutorado, analisamos a estabilidade das redes recorrentes por correlacido, usando uma
ampla classe de sistemas numéricos hipercomplexos (HRCNNs). Em seguida, fornecemos as
condi¢des necessdrias para garantir que uma RCNN hipercomplexa sempre estabiliza-se em
um ponto de equilibrio usando os modos de atualizacdo sincrono ou assincrono. Exemplos
com RCNNs bipolares, complexas, hiperbélicas, quaternionicas e octonidnicas sdo dados para
ilustrar os resultados tedricos. Apresentamos também as redes neurais de projecdo recorrente
quaternionicas (QRPNNs). Resumidamente, as QRPNNs sdo obtidas combinando o aprendizado
por proje¢do (QHPNNs) com a rede recorrente por correlacdo quaternionica (QRCNNs). Mostra-
mos que as QRPNNSs superam o problema de interferéncia cruzada das QRCNNSs. Assim, elas
sdo apropriadas para implementar memdrias associativas. Para validar os resultados tedricos,
implementamos memorias associativas para realizar o armazenamento e recuperagcdo de padrdes
sintéticos, bem como imagens coloridas. Experimentos computacionais revelam que as QRPNNs
exibem maior capacidade de armazenamento e tolerancia a ruidos do que os modelos QRCNN
correspondentes. Também exploramos computacionalmente a extencdo dos modelos RPNNs para
serem utilizados em uma ampla classe de ntimeros hipercomplexos (HRPNNS). Implementamos
experimentos computacionais para analisar € comparar o comportamento da dindmica destes
novos modelos com os modelos HRCNNs. Finalmente, apresentamos um novo meta-algoritmo
utilizando RCNNs como instancia de votagdo em um ensemble de classificadores para resolver
problemas de classificagdo, fornecendo uma ponte entre as RCNNs e ensemble de classificadores,
mostrando com exemplos computacionais o poténcial de aplicagdo. Em particular, o modelo
exponencial RCNN superou aos classificadores tradicionais AdaBoost, gradient boosting e

random forest em problemas de classificacdo bindria.

Palavras-chave: Rede neural recorrente; rede Hopfield; memoria associativa; rede neural hiper-

complexa.

Abstract

Hypercomplex-valued neural networks, including complex, quaternion and octonion-valued
neural networks, can treat multi-dimensional data as a single entity. In particular, hypercomplex-
valued versions of the Hopfield model have been extensively studied in the past years. These
models might be affected by low storage capacity and cross-talk effect when they are implemented
using the Hebbian rule. Another important model is the recurrent correlation neural networks
(RCNNSs) and their generalizations to hypercomplex systems. They are alternative models,
which can be used to implement high capacity associative memories. In this doctoral thesis,
we study two discrete recurrent hypercomplex-valued models. First, we analyze the stability
of the recurrent correlation neural network defined on a broad class of hypercomplex number
systems. Then, we provide the necessary conditions which ensure that a hypercomplex-valued
RCNN (HRCNNG) always settles at an equilibrium using either synchronous or asynchronous
update modes. Examples with bipolar, complex, hyperbolic, quaternion and octonion-valued
RCNNSs are given to illustrate the theoretical results. Besides, we introduce the quaternion-valued
recurrent projection neural networks (QRPNNSs). Briefly, QRPNNSs are obtained by combining the
non-local projection learning with the quaternion-valued recurrent correlation neural networks
(QRCNNSs). We show that QRPNNs overcome the cross-talk problem of QRCNNSs. Thus, they
are appropriate to implement associative memories. To validate the theoretical results, we
implement associative memories for the storage and recall of synthetic patterns as well as real
color images. Computational experiments reveal that QRPNNs exhibit greater storage capacity
and noise tolerance than their corresponding QRCNNs. Besides, we explore the extension of
the RPNN models into a broad class of hypercomplex numbers (HRPNNs), implementing
computational experiments to analyze and compare the dynamical behavior of these new models
with the HRCNNs. Finally, we present a new meta-algorithm using the RCNNs as a voting
step for classification problems, providing a bridge between RCNNs and ensemble classifiers.
Computational experiment confirm the potential application of the new ensemble classifiers.
In particular, the exponential RCNN-based ensemble outperformed the traditional AdaBoost,

gradient boosting, and random forest classifiers for binary classification tasks.

Keywords: Recurrent neural network; Hopfield network; associative memory; hypercomplex-

valued neural network.

Figure 1 —
Figure 2 —
Figure 3 —
Figure 4 —
Figure 5 —

Figure 6 —

Figure 7 —

Figure 8 —
Figure 9 —

Figure 10 —

Figure 11 —

Figure 12 —

Figure 13 —

Figure 14 —

Figure 15 —

Figure 16 —

Figure 17 —

List of Figures

Diagram that outlines the organization of the thesis. 22
Main references and the contribution of our work. 24
Hopfield neural network diagram. 26
Geometrical example for the csgn function with X' =4. 30

The network topology of quaternionic recurrent correlation and projection
neural networks. Lo L oL L L 41
Recall probability of bipolar associative memories by the noise intensity
introduced in the input vector. For each level of noise the experiment is
repeated 100 times, and is calculated the probability of recalling a stored item. 47
Recall probability of exponential bipolar RPNN and RKAM by the noise
intensity introduced in the input vector.o 48
Histogram of the Lagrange multipliers of a RKAM model. 49
Recall probability of quaternion-valued associative memories by the noise
intensity introduced in the input vector. L. 50
Original color image, input image corrupted by Gaussian noise with standard
deviation 0.1, and the corresponding images retrieved by the quaternion-
valued associative memories.o e 52
Recall probability of quaternion-valued associative memories by the standard
deviation of the Gaussian noise introduced in the input. 53
Error between the desired output and the retrieved quaternion-valued vector
by the standard deviation of the Gaussian noise introduced in the input. . . . 54
Dynamic of the complex-valued multistate ECNN with & = 3 = 1 using a)
synchronous and b) asynchronous update modes. 63
Evolution of the energy of the complex-valued multistate ECNN designed
for the storage of P = 160 uniformly generated fundamental memories of
length N = 100 with a resolution factor K = 256. The curves marked by “e”
and “o”, “l” and “0”, as well as “v” and “V” refer to pairs of ECNNs that
differ only from the update mode. 64
Dynamic of the hyperbolic-valued multistate ECNN with @ = § = 1 using
a) synchronous and b) asynchronous update modes. 66
Evolution of the energy of the hyperbolic-valued multistate ECNN designed
for the storage of P = 160 uniformly generated fundamental memories of
length N = 100 with a resolution factor K = 256. 67
Dynamic of the hyperbolic-valued ECNN with & = 3 = 1 and the activation
function csgn(p) = csgn(p) using a) synchronous and b) asynchronous

update modes.l e e e e e e 68

Figure 18 —

Figure 19 —

Figure 20 —

Figure 21 —

Figure 22 —

Figure 23 —

Figure 24 —

Figure 25 —

Figure 26 —

Evolution of the energy of the quaternion-valued multistate ECNN designed
for the storage of P = 160 uniformly generated fundamental memories of
length N = 100 and K = 16. The curves marked by “e” and “o”, “Il” and
“o”, as well as “v” and “V” refer to pairs of ECNNs that differ only from the
update mode.l 70
Evolution of the energy of the octonion-valued ECNN with the split sign
function designed for the storage of P = 160 uniformly generated fundamen-

tal memories of length NV = 100. The curves marked by “e” and “o”, “I”

and “0”, as well as “v” and “V” refer to pairs of ECNNs that differ only from
theupdatemode. 73
a) Original (undistorted) gray-scale image, b) input image corrupted by
Gaussian noise with standard variation 100, images retrieved by c) bipolar
ECNN, d) complex-valued multistate ECNN with K = 246, e) quaternion-
valued multistate ECNN with K = 16, and split-sign octonion-valued ECNN

using asynchronous update. L. 75
Probability of successful recall by the standard variation of Gaussian noise
introduced into the inputimage. 76
Dynamic of the complex-valued multistate EPNN with o = 3 = 1 using a)
synchronous and b) asynchronous update modes. 77
Dynamic of the hyperbolic-valued multistate RPNN with o = § = 1 using

a) synchronous and b) asynchronous update modes. 77
Dynamic of the hyperbolic-valued EPNN with a = = 1 and the activation
function ¢sgn(p) = csgn(p) using a) synchronous and b) asynchronous
update modes. e e 78
Histogram of the numbers of iterations for complex-valued multi-state ECNN

and EPNN models in synchronous update mode, using N = 200 and P €

{25, 50, 100, 200}, using v = 1/N,2/N,5/N,10/N and 8 = e ', e 2 e, e,
and a resolution factor &' = 256. The corrupted input vector is obtained by
replacing, with probability pr € [0.2;0.9], a component of a fundamental
memory u' by an element from S taken at random with uniform probability. 79
Distribution of the numbers of iterations for the quaternion-valued multi-

state ECNN and EPNN models in synchronous update mode, using N =

200 and P € {25,50, 100,200}, using « = 1/N,2/N,5/N,10/N and =

et e e, e719 and resolution factor K = 16. The corrupted input vector

is obtained by replacing, with probability pr € [0.2;0.9], a component of a
fundamental memory u' by an element from S taken at random with uniform
probability. 80

Figure 27 — a) Original (undistorted) gray-scale image, b) input image corrupted by
Gaussian noise with standard variation 100, retrieved images by c) bipolar
EPNN, d) complex-valued multistate EPNN with K = 246, e) quaternion-
valued multistate EPNN with K = 16, and split-sign octonion-valued EPNN
using asynchronous update. Lo 81

Figure 28 — Probability of successful recall by the standard variation of Gaussian noise

introduced into the input image, using ECNN and EPNN models. 82
Figure 29 — Training for the RCNN ensemble method. 86
Figure 30 — Storing the output generated by the base classifiers over the training data 7

and the input samples X foreach hg with{ =1,..., P. 87

Figure 31 — Configuration of the fundamental memory matrix U and the input vector. The
colors green and cyan match with the corresponding dimensions between the
columns of U and the input vector z(0) and the outputy. 87
Figure 32 — Hasse diagram of Wilcoxon signed-rank test with a confidence level at 95%. 91
Figure 33 — Box-plot of the average time for prediction of batch of input samples. 91
Figure 34 — Box-plot of the normalized F-measures produced by the ensemble classifiers. 92
Figure 35 — Normalized box-plot of the kappa index for the multi-class ensemble classifiers. 95
Figure 36 — Hasse diagram of Wilcoxon signed-rank test with a confidence level at 95%

for the multi-class ensemble classifiers. 96

Table 1

Table 2
Table 3

Table 4

Table 5

List of Tables

Absolute error between the fundamental memory u' and either the input or
the quaternion-valued vector recalled by an associative memory model. . . . 53
Multiplication tables for complex numbers and quaternions. 56
Parameters of the hypercomplex-valued ECNN models designed for the stor-
age and recall of CIFAR images where IV, = 8192 and N, = N, = N, = 1024. 75
Mean and standard deviation of the F-measures produced by ensemble classi-
fiers using stratified 10-fold cross-validation. 90
Mean and standard deviation of the Kappa Index produced by multi-class

ensemble classifiers using stratified 10-fold cross-validation. 95

List of abbreviations and acronyms

ANN

AM

HNN
RCNN
RKAM
RPNN
CvRCNN
CHNN
QRCNN
CV-QHNN
QRPNN
QHNN
HRCNN
(H)ECNN
(H)EPNN
CvECNN
QVECNN
Re-AHN
VSLI
CIFAR
SVD

SVM

Artificial Neural Network

Associative Memory

Hopfield Neural Network

Recurrent Correlation Neural Network

Recurrent Kernel Associative Memory

Recurrent Projection Neural Network

Complex-Valued Recurrent Correlation Neural Network
Complex-Valued Hopfield Neural Network

Quaternion-Valued Recurrent Correlation Neural Network
Continuous-Valued Quaternionic Hopfield Neural Network
Quaternion-Valued Recurrent Projection Neural Network
Quaternion-Valued Hopfield Neural Network

Hypercomplex-Valued Recurrent Correlation Neural Network
(Hypercomplex-Valued) Exponential Correlation Neural Network
(Hypercomplex-Valued) Exponential Recurrent Projection Neural Network
Complex-Valued Exponential Recurrent Correlation Neural Network
Quaternion-Valued Exponential Recurrent Correlation Neural Network
Real Part Associative Hypercomplex Number System

Very Large Scale Integration

Canadian Institute For Advanced Research

Singular Value Decomposition

Support Vector Machines

List of symbols

Synaptic Weight Matrix
Activation potential of the sth neuron
Weight of the synaptic connection between the jth and the ith neurons

Weight of the synaptic connection between the jth and the ith neurons,

obtained by projection rule

Weight of the synaptic connection between the jth and the :th neurons,

obtained by correlation rule

Probability of ocurrence of an event X
Set of real numbers

Set of all hypercomplex numbers

Set of all non-null hypercomplex numbers
Transposed of vector x

Lyapunov energy function

Natural logarithm

Binary set {+1, —1}

Set of complex numbers

Set of hyperbolic numbers

Set of dual numbers

Set of quaternions

Set of unit quaternions or Set of unit complex numbers
Set of tessarines

Set of octonions

Generalized signum function

A family of parametric, continuous, monotone, and increasing functions

B Symmetric bilinear form

arg(z) Argument of a complex number z

sgn Generalized signum function

csgn Complex-valued signum function

csgn Complex-valued signum function applying to the natural conjugation to the
argument

tsgn Twin-multistate activation function

K Kernel function

D Subset of a hypercomplex number system H

S Subset of a hypercomplex number system [H

By 1th component of the vector 5" of Lagrange multipliers

List of Algorithms

Algorithm 1 — Quaternion-valued Recurrent Projection Neural Network

1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.3
1.4

2.1
2.2
2.2.1
2.2.2
2.3

2.3.1

2.3.1.1
2.3.1.2
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
24

3.1
3.2
3.3
3.4

Contents

Introduction e e 18
LITERATUREREVIEW @ . it i i et e e n 25
Hopfield Neural Networks 25
Discrete-time Hopfield Neural Networks with Hebbian Learning 25
Hopfield Neural Networks with ProjectionRule 28
Complex-Valued Hopfield Neural Networks 28
Recurrent Correlation Neural Networks 29
Bipolar Recurrent Correlation Neural Networks 29
Complex-Valued Recurrent Correlation Neural Network 32
Recurrent Kernel Associative Memories 32
Literature model conclusions 33

QUATERNION-VALUED RECURRENT PROJECTION NEURAL NET-

WORKS e e e e e e e e 35
Some Basic Concepts on Quaternions 35
Quaternion-Valued Models from the Literature 36
Continuous-Valued Quaternionic Hopfield Neural Networks 36
Quaternion-Valued Recurrent Correlation Neural Network 38
Quaternion-Valued Recurrent

Projection Neural Networks on Unit Quaternions 39
Real-valued recurrent projection neural networks (RPNNs) and their
relation with other models from the literature 42
Optimal storage capacity and generalization of bipolar QRPNNs 42
Bipolar RPNNs and their relation with Recurrent Kernel Associative Memories 44
Computational Experiments 46
Bipolar Associative Memorieso oL 46
Quaternion-Valued Associative Memories 48
Storage and Recall of Colorlmages 50
Conclusions 54
HYPERCOMPLEX-VALUEDMODELS 55
Background on Hypercomplex Numbers 55
A Review of the Hypercomplex-Valued Hopfield Neural Networks 57
Hypercomplex Recurrent Correlation Neural Networks 59

Hypercomplex Recurrent Projection Neural Networks 61

3.5
3.5.1
3.5.1.1
3.5.2
3.5.2.1
3522
3.5.3
3.5.3.1
3.5.4
3.5.5

4.1
4.2
4.2.1
4.3
4.3.1
4.4
4.4.1

Examples and Computational Experiments 62

HRCNNSs synthetic experiments 62
Complex-Valued Multistate RCNNs 63
Hyperbolic-Valued Multistate RCNNs 65
Quaternion-Valued Multistate RCNNs 68
Hypercomplex-valued RCNNs on Cayley-Dickson Algebras 71
HRCNNSs Image Experiments 74
Storage and Recall of Gray-Scale Images 74
HRPNNSs synthetic experiments 76
HRPNNs Image Experiments 79
ENSEMBLE OF CLASSIFIERS COMBINED USING RCNNS 83
Introduction 83
Ensemble of Binary Classifiers 84
Majority Voting Classifier 85
Ensemble Based on Bipolar Associative Memories 85
Computational Experiments 89
Multi-Class Ensemble Classifier 92
Computational Experiments L L. 94
CONCLUSIONS i e e e e e e et e e 97
Bibliography i e e 929

APPENDIX A- Remarks on the Computational Implementation of
HRCNNs e e e 112

18

Introduction

Artificial neural network models (ANNSs) have been developed and studied inten-
sively in the last decades. These computational models, partially based on biological neural
networks, can accomplish human-like or super-human like performance in different tasks. Com-
monly, these models are used in two general classes of problems: classification and regression.
This work aims to analyze a specific type of neural network called recurrent neural networks that
can implement associative memory models. In order to deepen the study of these networks, we
begin with a brief historical review of these models and the biological principles that motivate

their study.

In a very simplified way, a neuron is a cell specialized in receiving and transmitting
information to another objective cell. The electrical signal coming from another cell enters
into the neuron and an electrochemical process called synapse occurs. A synapse can be either
excitatory or inhibitory (Haykin, 2009). Transmission lines called axons and terminals called
dendrites transmit the electrical signal (Arbib, 1987). This signal is processed and re-transmitted
to another neuron(s) or cells when a particular voltage value, called the neuron threshold, is

reached.

Motivated by the high degree of complexity in which our brain works and solves
problems, the minimal information processing units, called neurons, have been mathematically
modeled (Haykin, 2009). The significant progress came from the work of McCulloch and Pitts
(1943), which managed to simplify neuronal behavior in five physical hypotheses to create a
propositional logic. The study of artificial intelligence begins in parts with the contribution of
McCulloch and Pitts (1943).

Mathematically, a weighted sum of the input components, called the activation
potential, must exceed the threshold value to activate a neuron. This represents the simplification
of neuron behavior by McCulloch and Pitts: The activity of the neuron is an "all-or-none" process
(McCulloch and Pitts, 1943). From this work, the advance in the study of neural networks has
been developed. An example is the perceptron of Rosenblatt (1958), taking an important course
in the early 80s-90s with the Hopfield (1982) neural network model, and the backpropagation
technique (Rumelhart et al., 1986; LeCun et al., 2015). In the 2000s, it became one of the most
important topics in science due to the parallel advance in computing power and their many

applications in the industry, medicine, and general scientific problems.

In general, it is possible to classify in many different ways the ANNs. One possible
description separates them into two broad classes: The feedforward neural networks and the
recurrent neural networks. Recurrent networks possess at least one feedback connection, where

some outputs are used as a new input for the neuron (Hassoun, 1995).

Introduction 19

We are mainly interested in recurrent models, specifically, in the Hopfield model
(Hopfield, 1982, 1984), which is one of the main references in this work. The Hopfield neural
network (HNN), developed in the early 1980s, is an important and widely-known recurrent
neural network which can be used to implement associative memories (AMs) (Hopfield, 1982;
Hopfield and Tank, 1985). Successful applications of the Hopfield network include control (Gan,
2017; Song et al., 2017), computer vision and image processing (Wang et al., 2015; Li et al.,
2016), classification (Pajares et al., 2010; Zhang et al., 2017), and optimization (Hopfield and
Tank, 1985; Serpen, 2008; Li et al., 2015).

A recurrent network defines a sequence of vectors that may eventually converge
to a stationary state. The existence of an energy function guarantees that the sequence defined
by the recurrent network converges to a local minima of F for any initial state (Hirsh, 1996).
This theoretical results may be used to implement an associative memory (AM). Associative
memories (AMs) refer to a broad class of mathematical models inspired by the human brain’s
ability to store and recall information by association (Hassoun and Watta, 1997). The Hopfield
(1982) neural network is a typical example of a recurrent neural network able to implement an
associative memory. AM models are capable of storing and recalling information. The main idea
is to store information in an N-dimensional vectorial form into a system. Then, if we present an
incomplete or corrupted version of an element of the memory set as an input, the AM model
retrieves the original information. Moreover, the AMs have been extended to fuzzy domains,

similarly to correlation recording (Sussner and Valle, 2006; Kosko, 1992).

The recovery process can be implemented using an iterative algorithm to generate
a sequence of vectors. In particular, the Hopfield model implementing AMs can be affected
by spurious memories (Hopfield and Tank, 1986; Kanter and Sompolinsky, 1987; Personnaz
et al., 1985). Briefly, a spurious memory is a stable stationary state that does not belong to
the fundamental memory set. In this sense, the Hopfield model suffers from a low storage
capacity when it is used to implement an AM. Precisely, due to the cross-talk between the stored
items, the Hebbian learning adopted by Hopfield in his original work allows for the storage of
approximately N /(21In N) items, where N denotes the length of the stored vectors (McEliece
et al., 1987). This issue motivated the development of several new models and learning rules
in the literature to increase the storage capacity and the noise tolerance of the original bipolar
Hopfield network. Firstly, Personnaz et al. (1985) as well as Kanter and Sompolinsky (1987)
proposed the projection rule to determine the synaptic weights of the Hopfield networks. The
projection rule increases the storage capacity of the Hopfield network to N — 1 items. Another
simple but effective improvement on the storage capacity of the original Hopfield networks was
achieved by Chiueh and Goodman (1991, 1993) with the recurrent correlation neural networks
(RCNNSs). Briefly, an RCNN is obtained by decomposing the Hopfield network with Hebbian
learning into a two-layer recurrent neural network. Alternatively, certain RCNNs can be viewed
as kernelized versions of the Hopfield network with Hebbian learning (Garcia and Moreno, 2004;

Perfetti and Ricci, 2008). The RCNNSs as well as the projection rule are part of the core elements

Introduction 20

for the new models proposed in this thesis: the recurrent projection neural networks (RPNNs).

It comes to light that the associative memory models described in the previous
paragraphs are all designed for the storage and recall of bipolar real-valued vectors. However, in
many applications, we have to process multivalued or multidimensional data (Hirose, 2012). In
view of this remark, the Hopfield neural network as well as the RCNNs have been extended to

hypercomplex systems such as complex numbers and quaternions.

Research on complex-valued Hopfield neural networks dates to the late 1980s (Noest,
1988a,b; Aizenberg and Aizenberg, 1992). In 1996, Jankowski et al. (1996) proposed a multistate
complex-valued Hopfield network with Hebbian learning that allowed to the development of
many other hypercomplex-valued networks. For instance, Lee (2006) developed the projection
rule for (multistate) complex-valued Hopfield networks. Based on the works of Jankowski et
al. and Lee, [sokawa et al. (2013) proposed a multistate quaternion-valued Hopfield neural
network using either Hebbian learning or projection rule. In 2014, Valle (2014a) proposed a
complex-valued version of the RCNNs. Recently, the RCNNs have been further extended to
quaternions (Valle, 2018).

A revealing behavior of hypercomplex-valued neural networks is that, interpreted
as dynamical systems, they are less susceptible to chaotic behavior than their corresponding
real-valued versions (de Castro and Valle, 2020). For example, hypercomplex-valued Hopfield
networks usually require fewer updates to settle down at an equilibrium state than their cor-
responding real-valued neural networks. Moreover, hypercomplex-valued versions of neural
networks combined with optimization techniques has been demonstrated useful learning represen-
tations of multidimensional inputs, obtaining state-of-art results in automatic speech recognition
tasks (Ravanelli et al., 2021). Because of this remark, we shall focus on hypercomplex-valued
recurrent neural networks that can be used to implement associative memories, proving their

stability for a broad class of hypercomplex numbers.

Although real, complex and quaternion-valued RCNNs can be used to implement
high-capacity associative memories, they require a sufficiently large parameter which can be
impossible in practical implementations (Chiueh and Goodman, 1993; Valle, 2018). In this
thesis we circumvent this problem proposing a new model that combines the projection rule and
the RCNNSs to obtain the new recurrent projection neural networks (RPNNs). We present the
quaternion valued recurrent projection neural networks (QRPNNs). As we will show, QRPNNs
always have optimal absolute storage capacity. Moreover, the noise tolerance of QRPNNSs are
usually higher than their corresponding QRCNNSs. Besides, we extend the RCNNSs to a broad
class of hypercomplex number system yielding the so-called hypercomplex-valued RCNNs
(HRCNNSs). The necessary conditions to ensure that the sequences produced by a HRCNN
converge, in both synchronous or asynchronous update mode, is given. Besides, we examine the
extension of the RPNN models for other hypercomplex algebras (HRPNNs) such as hyperbolic

numbers and octonions. Finally, providing a bridge between recurrent correlation neural networks

Introduction 21

and ensemble of classifiers, we present several computational experiments in which the HRCNN's
are used to combine base classifiers in an ensemble classifier. In particular, the exponential RCNN

outperformed several tradicional ensembles of binary classifiers.

Thesis Organization

This thesis contains five chapters. Chapter 1 is a brief review of associative memory
models, in particular, the Hopfield neural network in real and complex domains, the recurrent

correlation neural network, and recurrent kernel neural networks.

In chapter 2, we introduce the quaternionic recurrent projection neural networks on

unit quaternions. Precisely, Chapter 2 includes:

* A brief review on quaternion-valued Hopfield neural networks and quaternion-valued

recurrent correlation neural networks (QRCNNSs).
e The matrix-based formulation of QRCNNs and QRPNNS.

* A detailed algorithm describing the new QRPNN, which can also be used to implement
QRCNN:S.

* Formal results concerning the storage capacity of QRPNNs and their relationship with
HNN with projection rule and recurrent kernel associative memories (RKAMSs) in the

bipolar case.

» Computational experiments, including experiments concerning the storage and recall of

color images from the CIFAR dataset.

Chapter 3, explores the basic concepts on hypercomplex numbers. Here, we review
the hypercomplex-valued discrete-time Hopfield neural networks and introduce a broad class
of hypercomplex-valued RCNNs which include the complex-valued and quaternion-valued
RCNN models as particular instances, called hypercomplex-valued recurrent correlation neu-
ral network (HRCNNs). Moreover, we provide the necessary conditions which ensure that a
hypercomplex-valued RCNN always settles at an equilibrium using either synchronous or asyn-
chronous update mode. Finally, computational experiments confirm the potential application
of hypercomplex-valued RCNNs as associative memories designed for the storage and recall
of gray-scale images. Also, in Chapter 3, we study the extension of the QRPNNSs to a broad
class of hypercomplex number systems. Using multi-state activation functions to treat complex,
hyperbolic and quaternion numbers, we implement computational experiments to compare the
dynamics of the RPNN models and their corresponding RCNN models. Moreover, we design

associative memories for the storage and recall of gray-scale images.

Introduction 22

Introduction

[Chapter 1: Literature Models}

e AN

Chapter 3 - 3.3: HRCNNs Chapter 2: QRPNN |

[Chapter 4: RCNN—EnsembleJ [Chapter 3-3.4: HRPNNS]

Figure 1 — Diagram that outlines the organization of the thesis.

In chapter 4, we present a new meta-algorithm using the RCNNs as a voting step for
classification problems, providing a bridge between RCNNs and ensemble classifiers. Finally, in

chapter 5, we present the conclusions and the future works.

We present to the reader the diagram in Figure 1, in order to explain the chapter
organization. In particular, HRPNNSs is a generalized version of the QRPNNs. However, we

present first the QRPNNSs due to the direct connections with the literature review in Chapter 1 .

Contribution of the thesis

Our contribution are presented in the chapters 2, 3 and 4.

* In Chapter 2 we introduce the quaternion-valued recurrent projection neural networks
(QRPNNS5s) a new type of recurrent neural network obtained by combining the RCNNs
with the projection rule, in order to avoid some storage issues and reach a high capacity
associative memory model. Furthermore, this new model generalizes, in the bipolar case,
the Hopfield neural networks with the projection rule. We implement associative memories

to study the noise tolerance and storage capacity of QRPNNSs.

* In the first part of Chapter 3, we extend the quaternion-valued correlation neural networks
to a broad class of hypercomplex number systems. We prove that the hypercomplex
recurrent correlation neural networks (HRCNNSs) generate convergent sequences for any
initial input vector, when some particular conditions are satisfied. Consequently, we

implement associative memory models for the storage of synthetic and real color images.

* In the second part of Chapter 3, we perform some computational experiments extending
the QRPNNSs to a broad class of hypercomplex numbers. Here we compare the HRCNN's
with these extensions, in order to study of noise tolerance and storage capacity for these

new models.

Introduction 23

* Finally, in Chapter 4, we present an application of the recurrent correlation associative
memories as part of a new meta-algorithm, replacing the voting step in an ensemble

classifier to solve binary and multiclass classification problems.

In Figure 2, we present a diagram of the main references of this work. They are
organized bottom up chronologically. The blue nodes are the main bipolar models, the green
nodes are the main hypercomplex models, the pink nodes are theoretical works, and the yellow
nodes are our contributions, including the ensemble classifier application. Finally, the purple
node is the extension to hypercomplex numbers of the QRPNN model that we are studying. The

edges (arrows) can be interpreted as citation links between the different authors.

As a consequence of this work, we published two conference papers in proceedings
and two papers in journals. The author presented his work in the Brazilian Conference on
Intelligent Systems (BRACIS2019) (Valle and Lobo, 2019) and (BRACIS2020) (Lobo and Valle,
2020)". Also, the author presented the work in a seminary given by Universidad Tecnolégica
Metropolitana de Santiago, Chile, called Seminario Mat-Bio UTEM for the biomathematical
resarch group and in the Encontro cientifico dos pos-graduandos do IMECC (EncPos 2020). The
work on QRPNNs has been published in the Theoretical Computer Science journal (Valle and
Lobo, 2020). The second paper (Valle and Lobo, 2021) associated to the content of chapter 3, has
been published in the Neurocomputing journal. Finally, the models in chapter 3 are implemented

in Julia language and can be found in open source repositories (see appendix 5).

We would like to point out that, as another contributions within the applied mathe-
matics program, the author collaborated with Dr. Castro and Dr. Valle on incremental learning
rules to Hopfield type associative memories. The contribution should be published as a chapter in
a book on associative memories by Gate to Computer Science and Research (GCSR) publisher.

Implementation and experiments of this work can be found in github °.

Besides, exploring biomathematical modeling, the author collaborated with on the
group of linear parameter varying systems (LPV) of the UNICAMP School of Electrical and
Computer Engineering in (Lobo et al., 2019). Also, the author presented a work in CNMAC 2018
- XXXVIII (Morillo et al., 2018) , and collaborated in (Barros et al., 2019) and (Sanchez et al.,
2019). Finally, the author was part of the organization group for the XIV EncPos (Encontro de
Pos-graduandos do IMECC 2019).

1
2

You can find the video presentations and also the codes in https://fitolobo.github.io/
https://github.com/fitolobo/Learning—Rules-to-Hopfield-Type-Associative-Memories

24

Introduction

é‘ 8861 onag [
N ——
Al

1661 (NNO¥) Uewpoon pue yaniy)y .

. (NNY-AO)S10T IPA ‘TN

(NNJH) £86] o1y '] \“

(Kenc)9T0T “A010ny'(Q (V) 100T ‘B1orD
(VIR 800 ‘W

(B-NNJ¥O) 610C ‘0q0] pue [[eA

(G-NNJ¥O) 0T0T ‘0q0'T pue LA

\

(Q1qWasuz) OZ0¢ ‘40T pue AeA

7861 (NNH) proydoH f

(NNDH) 610T ‘040 pue A

800C “(NNH-SIN-AD) emeos] "L

9661 ‘(NNHO-SIN) &ysmoxuer 'S

(NNH-AH) €10T ‘Tysefeqoy

020 ‘onse)

Figure 2 — Main references and the contribution of our work.

25

1 Literature Review

In this chapter, we present a brief review of the literature. We begin by presenting
the Hopfield model and some theoretical aspects of it. In particular, we present the HNN with
correlation rule and projection rule. Then we present the complex extension of the HNN model.
Moreover, we present the recurrent correlation neural networks (RCNN) in the real-valued
and complex-valued cases (Chiueh and Goodman, 1993; Valle, 2014a). Finally, we present the
recurrent kernel associative memories. Note that these models have been developed for many
years, bringing with them a large number of analysis techniques (Goles-Chacc et al., 1985;
McEliece et al., 1987; Bruck, 1990). Moreover, the binary models (Kosko, 1988; Chiueh and
Goodman, 1993; Personnaz et al., 1985) have become structurally the basis of new models
nowadays (Valle, 2014a; Castro and Valle, 2017b; Isokawa et al., 2012).

1.1 Hopfield Neural Networks

1.1.1 Discrete-time Hopfield Neural Networks with Hebbian Learning

The famous discrete-time Hopfield neural network (HNN) can be thought as a single-
layer recurrent neural network. Consider a neural network with N neurons and denote the state
of the jth neuron at time ¢ by z;(¢) € B = {—1, +1}. Given the synaptic weights w;; € R and
an initial state x(0), the HNN model generates a sequence of vectors by using the activation

potential
N
j=1

and the update rule

xj(t 4 1) _ U(aj(t))7 0< |aj<t)‘7 (1.2)

z;(t), otherwise,
where o is the signum function for real numbers.

The topology of the HNN is shown in Figure 3. In order to explain in details the
operations involved, the unique layer of the HNN model is represented by using three colored
layers. The green circles are the input, the blue hidden circles represents the activation potential
given by (1.2) and, finally, the red circles represents the signum function applied in an entry-wise

manner.

The sequence defined by the HNNs can be generated by updating one neuron state for
iteration, called asynchronous update mode, or updating all neuron states in each iteration, called

synchronous update mode. The sequence produced by (1.2) and (1.1) in an asynchronous update

Chapter 1. Literature Review 26

W)
z1(t) —) x1(t+ 1)
xo(t) —) zo(t + 1)
To(t) — Z g‘ D 2, (t+1)

Figure 3 — Hopfield neural network diagram.

mode is convergent for any initial state x(0) € B" if the synaptic weights satisfies (Hopfield,
1982):
Wi = wj; wy =0, Vi,je{l,...,N}. (1.3)
Here, the inequality w;; > 0 means that w;; is a non-negative real number.
The convergence of the sequence generated by the HNN is crucial to implement
associative memories and other applications. For such purposes, the existence of a Lyapunov
energy function is a sufficient condition commonly used to prove the convergence of the sequence

generated by recurrent neural network models (Chiueh and Goodman, 1991; Valle, 2014a; Castro

and Valle, 2017b). An energy function must satisfy the following conditions:
1. Itis a real-valued function on the set of the states of the network.
2. It is bounded from below.
3. The inequality E(x(t + At)) < E(x(t)) is always true when x(t + At) # x(¢).
The existence of an energy function for the recurrent neural network proves that the
model yields a convergent sequence for any initial state vector. Depending on the initial state

x(0) the sequence will be attracted to a fixed point of the model. The discrete HNN model has

the energy function given by

N N
E(x) = —= Y > zawyz; YxeBY. (1.4)
i=1j=1

N |

The stability analysis allow us to apply the HNN model, for example, as an associa-
tive memory (AM). Precisely, if the HNN model always converges to a fixed point for any initial
state x(0), the network yields a mapping M defined by

M(x) = lim x(t), (1.5)

t—00

which can be used to implement an associative memory as follows: given the set of vectors

U = {u',...,u"}, called the set of fundamental memories, the map M is expected to satisfy

Chapter 1. Literature Review 27

M(u®) = u® forall ¢ = 1,..., P. Moreover it should exhibit some noise tolerance, that is,
given a corrupted version @1 of a fundamental memory key u® then M (@) = u® (Hassoun and
Watta, 1997; Haykin, 2009). We would like to point out that the previous statements refer to the
so-called auto-associative memories, the main application studied in this thesis. Apart from the
auto-associative, we also have the hetero-associative memories in which the input can differs
from the output (Hassoun and Watta, 1997; Kosko, 1988)

The correlation rule, also called Hebbian learning, is a local and incremental record-
ing recipe (Hassoun and Watta, 1997; Hebb, 1949) which has been adopted by Hopfield in his
seminal work for auto-associative memories (Hopfield, 1982). Given a set of real-valued vectors

= {u',...,u”}, where u® € B", the synaptic weights by using the Hebb rule are given by
A IR T
w; = NZuiuj, Vi,je{l1,2,...,N}. (1.6)
¢=1

Note that the synaptic weights given by (1.6) satisfy (1.3). Let us explain one issue associated to
the correlation rule using matrix notation. The equation (1.6) can be alternatively represented by
the sum of P matrices

We=u(u)’ ¢=1,....P (1.7)

Explicitly, W is given by
1
WzN(W1+W2+---+WP). (1.8)

Also, the potential activation of the HNN with correlation rule in matrix notation is
a=Wx. (1.9)

Thus, if we give as input a vector from the fundamental memory set, for example u” for
v €{l,..., P}, then, replacing W using (1.9) and (1.7) in (1.8), we obtain

a= %(W1+W2 o+ W (1.10)
%(T + ()T + -+ uf(@h)) w (1.11)
1< c
- — _ (1.12)
2 ()
§#7

In (1.12), we obtain as activation potential a vector which is the fundamental memory that we
want to recover plus an additional perturbation called cross-talk term. The network produces the
desire output when the cross-talk term is close to zero. Randomly selected vectors nearly orthog-
onals have less contribution to the cross-talk term. However, in the case of linear dependence,

the cross-talk term becomes large, causing the appearance of spurious memories (Rojas, 1996).

Chapter 1. Literature Review 28

1.1.2 Hopfield Neural Networks with Projection Rule

The projection rule, also known as the generalized-inverse recording recipe, is
another recording recipe which can be used in the storage phase of HNNs. Unlike the HNN
with Hebbian learning, the Hopfield neural network with projection rule uses a non-local storage
prescription that can suppress the cross-talk effect between u', ..., u” (Kanter and Sompolinsky,
1987). This model is constructed using linear algebra tools, maintaining the updating mode and
the o function given by (1.2). The aim is to find a better storage matrix W € RY*¥ that is

defined as the solution of the minimization problem

P
i Wu® —ut|f3. 1.13

min Z I 13 (1.13)

Formally, given the matrix U € B"*”, where each column is a fundamental memory element.

The solution of (1.13) yields the synaptic weights (Golub and van Loan, 1996)
= (UUYy, Vi, j=1,...,N, (1.14)

where UT € RP* denotes the pseudoinverse matrix of U. Changing the weight matrix in (1.1)

by (1.14), we obtain the HNN with projection rule. It is not hard to show that, if the memory
N

elements are linearly independent, then Z wwu] uf forall¢ =1,...,Pandz=1,...,N
j=1
(Personnaz et al., 1985). Thus, all memory elements are fixed points for the HNN with the

projection rule. If the matrix C' = U U is invertible, the w;; elements are alternatively given by
the equation
1 P P
M:NZZU% uS, Vi,je{l,...,N} (1.15)
n=1&=1
Accordingly, we define ¢, § as the (1,)-entry of the inverse of the real-valued matrix C' € R”*”

given by
1
Cpe = N<u€,u">, vn,Ee{l,..., P} (1.16)

On the downside, the projection rule requires the calculation of UT or C™'. Thus, it is computa-

tionally more expensive than the correlation rule.

1.1.3 Complex-Valued Hopfield Neural Networks

Complex-valued Hopfield neural networks (CvHNNS) are the extension of the real-
valued HNN into a complex domain. Let S denote the set of states of a complex-valued neuron
and D < C denotes the domain of the activation function ¢ : D — S. The construction of the
weight matrix is usually analogous to the real case. Given i = {u*,u?, ..., u”’} = SV, we can

store these elements by using the Hebbian learning or the projection rule (Noest, 1988a,b; Hirose,

Chapter 1. Literature Review 29

2012; Lee, 2006). Given an input vector z(0) € S”, we can define recursively a sequence of

complex-valued vectors by

¢ (a;(t)), a;t) €D,

zi(t+1) = (1.17)
(1), otherwise,
where N
j=1

In relation to the HNN, the main difference is the activation function ¢ which is
a complex-valued activation function with domain and co-domain in C. Using the complex-
valued multistate signum function of Aizenberg and Aizenberg (1992), Jankowski et al. (1996)
proposed a complex-valued Hopfield network which allowed to the development of many other
hypercomplex-valued recurrent neural networks including (Lee, 2006; Miiezzinoglu et al., 2003;
Tanaka and Aihara, 2009; Kobayashi, 2017c,d; Castro and Valle, 2018; Isokawa et al., 2018).
The complex-valued signum function, as described by de Castro and Valle (2020) and Kobayashi
(2017¢,d) 1s defined as follows: Given a positive integer ' > 1, referred to as the resolution
factor, define A9 = 7/K and the sets

D = {ze C\{0} : arg(z) # 2k — 1)AO,Vk =1,..., K}, (1.19)

and

S _ {1’ eZiA97 e4iA9 eZ(K—l)iAG}. (120)

g ey

Then, the complex-signum function csgn : D — S is given by the following expression for all
z e D:

(

1, 0 < arg(z) < Ad,
AR AP < arg(z) < 3A4,
csgn(z) = < ' (1.21)
L (2K — 1)Af0 < arg(z) < 2.

Figure 4 illustrates the csgn function for a resolution factor K = 4. Note that the
unit circle is divided in four circular sectors. Given a complex number z;, we calculate arg(z;).

Then, by using (1.21), we obtain an element of S given by (1.20).

1.2 Recurrent Correlation Neural Networks

1.2.1 Bipolar Recurrent Correlation Neural Networks

Recurrent correlation neural networks (RCNNs), formerly known as recurrent corre-

lation associative memories (RCAMs), have been introduced by Chiueh and Goodman (1991)

Chapter 1. Literature Review 30

Figure 4 — Geometrical example for the csgn function with K = 4.

for the storage and recall of /V-bit vectors. Precisely, in contrast to the original Hopfield neural
network which has a limited storage capacity, some RCNN models can reach the storage capacity
of an ideal associative memory (Hassoun and Youssef, 1988). In order to pave the way for the
development of the generalized models introduced in the next chapters, let us derive the RCNN's
from the correlation-based HNN described by (1.6), (1.1), and (1.2) .

Formally, consider a fundamental memory set/ = {u',...,u”} < B". Using the
synaptic weights w;; given by (1.6), we conclude from (1.1) that the activation potential of the

sth neuron at 1terat10n t of the correlation-based HNN satisfies

- - B3 4]0
[35sm0
<X(t),u5>] :

[
2y M
M~
I~
S
2\

I
D~
=l=

S
Il
it

In words, the activation potential a;(t) is given by a weighted sum of u}, ..., u’. Moreover, the
weights are proportional to the inner product between the current state x(¢) and the fundamental
memory u®.

In the RCNN, the activation potential a;(¢) is also given by a weighted sum of

ul u!’. The weights, however, are given by a function of the inner product <x(t), ut >

EN T
Precisely, let f : [—1,1] — R be a (real-valued) continuous and monotone non-decreasing
function. Analogously to the HNN, the activation potential of the ith output neuron at time ¢ is

defined by

M*u

we(t =1,....N, (1.22)
e=1

Chapter 1. Literature Review 31

with

we(t) = f (% <x(t),u€>>, véel,..., P (1.23)

In short, the first layer of the RCNN computes the inner product (correlation) between
the input and the memorized items followed by the evaluation of a non-decreasing continuous
activation function. The subsequent layer yields a weighted average of the stored items.

Alternatively, the dynamics of a RCNN can be described using a matrix-vector

notation. Let U = [u',..., u’]

e BY*" be the matrix whose columns correspond to the
fundamental memories, U’ denote the transpose of U. We assume the functions f and o are
applied in a component-wise manner. Given an initial state x(0), the dynamics of a RCNN is
described by the equations

w(t) = f(UTx(t)/N). (1.24)

and
x(t+1) = o(Uw(t)), (1.25)

where o is the signum function for real numbers. Examples of RCNNs include:

1. The correlation RCNN, or identity RCNN, obtained by considering in (1.23) the identity

function f;(z) = x.
2. The high-order RCNN, which is determined by considering in (1.23) the function

fulw;q) = (L+2)%, ¢>1 (1.26)

3. The potential-function RCNN, which is obtained by considering in (1.23) the function

1
(1—z+¢e,)t

folz; L) = L>1, (1.27)

where €, > 0 1s a small valued introduced to avoid a division by zero when z = 1.

4. The exponential RCNN, which is determined by considering in (1.23) an exponential
function
felz;a;8) = e, a>0 [>0. (1.28)

Here (3 is a normalization factor to modify the range of the function image.

Let us briefly turn our attention to the high-order, potential-function, and the expo-
nential functions. The functions fj,, f,, and f. are all exponential with respect to their parameters.
Precisely, these three excitation functions are strictly increasing in [—1, 1] and belong to the

following family of parametric functions:

F = {f(z;\): f(x;\) = [A(2)]" for A = 0 and a continuous function A (1.29)

[
such that 0 < A(z1) < A(x2) when — 1 < x; < 25 < 1}.

Chapter 1. Literature Review 32

The family F is particularly important for the implementation of associative memories (Valle,
2018). Precisely, if the excitation function belongs to the family F, then the RCNN can reach
the storage capacity of an ideal associative memory by choosing a sufficiently large parameter
A. On the downside, overflow imposes an upper bound on the parameter A\ of an excitation
function f € F, which may limit the application of a RCNN as an associative memory. Since
there is a vast literature on RCNN models based on the exponential function f, (Chiueh and
Goodman, 1991; Hancock and Pelillo, 1998; Perfetti and Ricci, 2008), in this work we shall
focus on exponential RCNNs and their extensions to other hypercomplex number systems, which

we also refer to as exponential correlation neural network (ECNN).

1.2.2 Complex-Valued Recurrent Correlation Neural Network

The complex-valued recurrent correlation neural network (CvVRCNN) (Valle, 2014a)
is a generalization in a complex domain of the bipolar RCNNs. The CvRCNNSs are obtained
by replacing the McCulloch—Pitts neuron by the continuous-valued neuron of Aizenberg et al.
(2005). Let S denote the set of states of a complex-valued neuron givenby S = {z € C : |z| = 1}.

The continuous valued activation function is defined by

o= i| Vz #0 (1.30)

z
Letid = {u',u? ...,u”} < S¥and f : [-1,1] — R be a continuous and monotone, non-
decreasing function. Given a complex-valued input vector z(0) = [21(0), ..., 25 (0)]" € S", the

CvRCNN defines recursively the following sequence for ¢ > 0:

P
zit+1) =0 (Z wg(t)u§> Vji=1,...,N (1.31)

=1
with

we(t) = f (%Re{<z(t),u5>}) . Yéel,..., P (1.32)

where the weights w’s can be given by the functions (1.26), (1.27), (1.28) or the identity function
applied to the real part of the inner product in (1.32).

The CvRCNN always produces a convergent sequence, for any initial input vector
(Valle, 2014a). As a consequence, the CvVRCNNSs are used to implement AMs. In particular, the
storage capacity of the exponential CVRCNN scales exponentially with the length of the stored
vectors (Valle, 2014a).

1.3 Recurrent Kernel Associative Memories

Recurrent kernel associative memories (RKAMs) has theoretical connections with

our proposal in next chapter as well as the RCNN . Let us briefly review the RKAMs.

Chapter 1. Literature Review 33

Support vector machines (SVM) are the main tool used to construct the RKAMs.
The SVM model were introduced by Cortes and Vapnik (1995) as a learning method for binary
classification. The main idea is to find a hyperplane which separates in two classes the training
data. Precisely, the objective is to find the maximum distance between the hyperplane and the
closest data points. Only a small amount of the total data defines the hyperplane, such data (or
vectors) are called support vectors. The distance between the support vectors and the hyperplane
is called margin. The method also allows using a kernel function s, which maps the input
data points into a higher dimensional feature space through a nonlinear function (Perfetti and
Ricci, 2008). The maximization problem of the margin is obtained solving an optimization
problem in dual form (Cristianini et al., 2000). Using the SVM approach, the RKAM proposed
by Garcia and Moreno (2004a,b) and further investigated by Perfetti and Ricci (2008) can
implement an associative memory model. The RKAM model is defined as follows: Let x denote
an inner-product kernel and p > 0 be a user-defined parameter. Given a fundamental memory
setU = {u',...,u”’} < BY, define the Lagrange multipliers vector 3; = [3:1, ..., Bip] as the

solution of the following quadratic problem for: = 1,..., N:

1 & P
minimize Q(8;) = 5 >, B Aluful(ut u’) — > 5,
subjectto 0 < /Bf <p, V¢E=1,...,P.

(1.33)

Given a bipolar initial state x(0) € B", a RKAM evolves according to the following equation
forall: =1,..., N:
P
x;i(t+1) = sgn (Z Bfuf&(uix(t))) . (1.34)
¢=1
In words, the next state z;(¢ + 1) of the ith neuron of a RKAM corresponds to the
output of a support vector machine (SVM) classifier without the bias term determined using the
training set 7; = {(uf,u$) : € = 1,..., P}. Therefore, the design of a RKAM requires, in some
sense, training /N independent support vector classifiers. Explicitly, one SVM for each neuron
of the RKAM. Furthermore, the user-defined parameter p controls the trade-off between the
training error and the separation margin (Scholkopf and Smola, 2002). In the associative memory
context, the larger the parameter p is, the larger the storage capacity of the RKAM. Conversely,

some fundamental memories may fail to be stationary states of the RKAM if p is small.

1.4 Literature model conclusions

In this first chapter, we have made a brief review of discrete-time recurrent neural
networks. All the reviewed models can implement associative memories. We presented real and
complex-valued models with the aim of progressively introducing the different extensions to
other hypercomplex-number systems. From the aforementioned models and architectures, it is

possible to observe at least two essential motivations for the study and continuous improvement

Chapter 1. Literature Review 34

of these models: their potential to store and recall information using explainable mathematical
processes, and their stability associated to energy functions. From a mathematical point of view,
both aspects are of extreme interest, and naturally encourage us to explore extensions of these

models based on other hypercomplex-number systems.

In the next chapter, we present two quaternion-valued models. First, we present
the quaternion-valued RCNN (QRCNN) which, in some sense, is based on the correlation rule
(Valle, 2018). Understanding the construction of the QRCNN, we introduce a new quaternion-
valued model called quaternion-valued recurrent projection neural network (QRPNN). The new
architecture is based on the projection rule and the quaternion-valued RCNN, and exhibits

optimal storage capacity and high noise tolerance.

35

2 Quaternion-Valued Recurrent Projec-
tion Neural Networks

In this chapter, we present the quaternion-valued recurrent projection neural networks
(QRPNN:G). First, we present some basic concepts on quaternions. Then, we briefly describe
two models from literature: the quaternion-valued Hopfield neural network (QHNNSs), and the
quaternion-valued recurrent correlation neural network (QRCNNs). Provided the aforementioned
definitions, it is possible to define the QRPNNs. We provide some theoretical results for QRPNNSs.
Also we perform some computational examples and compare the QRPNNSs with other models

from the literature.

2.1 Some Basic Concepts on Quaternions

Quaternions constitute a four-dimensional associative but non-commutative hyper-
complex number system. Apart from representing three and four-dimensional data as a single
entity, quaternions are particularly useful to describe rotations in the three dimensional space
(Arena et al., 1998; Biilow, 1999; Kuiper, 1999). Quaternions are hypercomplex numbers that
extend the real and complex numbers systems. A quaternion may be regarded as a 4-tuple of real

numbers, i.e., ¢ = (qo, q1, ¢2, ¢3)- Alternatively, a quaternion ¢ can be written as follows
q=qo+ @i+ g+ gk, (2.1
where i, j, and k are imaginary numbers that satisfy the following identities:
iZ =3 =k?=ijk = —1. (2.2)

Note that 1,1, j, and k form a basis for the set of all quaternions, denoted by Q.

A quaternion ¢ = qy + ¢1i + ¢oj + g3k can also be written as ¢ = ¢y + ¢, where ¢
and ¢ = q1i + ¢oj + ¢zk are called respectively the real part and the vector part of ¢. The real
and the vector part of a quaternion ¢ are also denoted by Re {¢} := ¢y and Ve {¢} := ¢.

The sum p+ g of two quaternions p = py+p1i+paj+pskand ¢ = qo+q1i+qj+qsk

is the quaternion obtained by adding their components, that is,

p+q=(Po+aq)+ 1+ q)i+ (p2+q)j+ (ps+ g3)k. (2.3)

Furthermore, the product pq of two quaternions p = py + p and ¢ = qo + ¢ is the quaternion
given by
Pq="Dpogo — D 4+ poq+ qop + P xq, (2.4)

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 36

where p' - ¢'and p’ x ¢ denote respectively the scalar and cross products commonly defined in
vector algebra. Quaternion algebra are implemented in many programming languages, including
MATLAB, GNU Octave, Julia Language, and python. We would like to recall that the product of
quaternions is not commutative. Thus, special attention should be given to the order of the terms

in the quaternion product.

The natural conjugate and the norm of a quaternion ¢ = ¢y + ¢, denoted respectively

by ¢ and |¢|, are defined by

i=q—¢ and |q| =g =@+ +¢ + g (2.5)

We say that g is a unit quaternion if || = 1. We symbol S denotes the set of all unit quaternions,

ie.,S={qeQ:|q = 1|}. Note that S can be regarded as an hypersphere in R*.

Another important definition is the inner product of two quaternion-valued column

vectors. Given x = [z1,...,2,]" € Q"andy = [y1,...,yn]" € Q" the inner product is given
by
&, y) =) b (2.6)
i=1
The quaternion-valued function o : Q* — S given by
q
olq) = —, (2.7
W=y

maps the set of non-zero quaternions Q* = Q\{0} to the set of all unit quaternions S. The
function o can be interpreted as a generalization of the signal function to unit quaternions. We

explicitly have

n

Re {(x,y)} = Z(yioxio + YT + Yia%iz + YisTis), (2.8)
-1

which corresponds to the inner product of the real-valued vectors of length 4n obtained by

concatenating the 4-tuples (0, Z;1, T2, T;3) and (Yso, Y1, Yie, Yiz), fori = 1,... n.

Finally, given a quaternion-valued matrix U € Q" *% the transposed conjugated
matrix of U is defined by U*, where the conjugation is the natural conjugation (2.5) applied in

an entry-wise manner.

2.2 Quaternion-Valued Models from the Literature

2.2.1 Continuous-Valued Quaternionic Hopfield Neural Networks

Consider a quaternion-valued activation function ¢ = ¢/|q|, whose output is ob-
tained by normalizing a quaternion (Valle, 2014b; Kobayashi, 2016a). The continuous-valued
quaternionic Hopfield neural network (CV-QHNN) is defined as follows: Let w;; € Q denote the

jth quaternionic synaptic weight of the ith neuron of a network with /N neurons. Also, let the

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 37

state of the CV-QHNN at time ¢ be represented by a column quaternion-valued vector x(t) =
[21(1),...,zn(t)]" € S, that s, the unit quaternion z;(¢) = 0 (t) + i1 ()i + 22(1)j + zi3(Hk
corresponds to the state of the ¢th neuron at time ¢. Given an initial state (or input vector)
x(0) = [x1,...,2x]" € SV, the CV-QHNNS defines recursively the sequence of quaternion-

valued vectors x(0), x(1),x(2), ... by means of the equation

e {7 @) 0< i< o o
! x;(t), otherwise,

where N
a;(t) = > wia;(t), (2.10)
j=1

is the activation potential of the ith neuron at iteration ¢. The CV-QHNN can be implemented
and analyzed more easily than multistate quaternionic Hopfield neural network models (Isokawa
et al., 2013). Furthermore, as far as we know, it is the unique version of the Hopfield network
on unit quaternions that always yields a convergent sequence in the asynchronous update mode

under the usual conditions on the synaptic weights (Valle and Castro, 2018).

In analogy with the traditional real-valued bipolar Hopfield network, the sequence
produced by (2.9) and (2.10) in an asynchronous update mode is convergent for any initial state
x(0) € S if the synaptic weights satisfy (Valle, 2014b):

Wij = U_sz' and Wii = 0, VZ,j € {17 - ,N} (211)

Here, the inequality w; > 0 means that w;; is a non-negative real number. Moreover, the
synaptic weights of a QHNN are usually determined using either the correlation or projection
rule (Isokawa et al., 2013). Both correlation and projection rule yield synaptic weights that satisfy
(2.11).

Consider a fundamental memory set/ = {u',... u’}. Bach u® = [u},... u5]"

is a quaternion-valued column vector whose components us = ufo + ufli + quj + u§3k are

i =

unit quaternions. In the quaternionic version of the correlation rule (Isokawa et al., 2013), the

synaptic weights are given by
w§ = — Y uss, Vi je{l,2,... N} (2.12)

Unfortunately, such as the real-valued correlation recording recipe, the quaternionic correlation
rule is subject to the cross-talk between the original vectors u', ..., u’". In contrast, the projection
rule, analogously to the real case, avoids the cross-talk issue. Formally, in the projection rule the

synaptic weights are defined by

P P
1 uler s, (2.13)

n=1&=1

u).p. =

1
ij N

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 38

where ¢,/ denotes the (), £)-entry of the quaternion-valued inverse of the matrix C' ¢ Q”*”
given by
1

1 &
ue = 2t = - (ubuy, Vv (L. P (2.14)
j=1

Analogously to the real case, if the vectors u” are linearly independent, then all the fundamental
memories are fixed points of the CV-QHNN with the projection rule. Moreover, the projection

rule also requires the inversion of a P x P quaternion-valued matrix.

2.2.2 Quaternion-Valued Recurrent Correlation Neural Network

The RCNNSs have been generalized for the storage and recall of complex-valued and
quaternion-valued vectors (Valle, 2014a, 2018). In the QRCNN, the activation potential a;(t)
is also given by a weighted sum of v}, ..., u’. Analogously to the complex-valued case, the
weights are given by a function of the real part of the inner product <x(t), u§>. Precisely, let
f:[—1,1] — R be a (real-valued) continuous and monotone non-decreasing function. Given
a quaternionic input vector x(0) = [21(0),...,2x(0)]" € SV, a QRCNN defines recursively
a sequence {x(t)};>¢ of quaternion-valued vectors by means of the generalized version of the
signum function (2.7), where the activation potential of the ith output neuron at time ¢ is given
by

P
a;(t) = Y we(tyuf, Vi=1,...,N, (2.15)
£=1

with the same weight structure given by (1.32) and possible weight functions (1.26), (1.27),
(1.28), but in a quaternion-valued domain.

Note that QRCNNs generalize both bipolar and complex-valued RCNNs (Chiueh
and Goodman, 1991; Valle, 2014a). Precisely, the bipolar and the complex-valued models are
obtained by considering vectors x = [z1,...,zy]" € S whose components satisfy respectively
rj = xj, + 0i + 0j + Ok and x; = z;, + x5,i + 0j + Ok forall j = 1,..., N. Furthermore,
the correlation QRCNN generalizes the traditional bipolar correlation-based Hopfield neural
network but it does not generalize the correlation-based CV-QHNN. Indeed, in contrast to the

correlation-based CV-QHNN, the correlation QRCNN uses only the real part of the inner product
(x(t),u®).

Finally, we would like to point out that, independently of the initial state x(0) € SV,
a QRCNN model always yields a convergent sequence {x(¢)},~0 (Valle, 2018). Therefore,
QRCNN s are potential models to implement associative memories. Moreover, due to the non-
linearity of the activation functions of the hidden neurons, the high-order, potential-function, and
exponential QRCNNs may overcome the rotational invariance problem found on quaternionic
Hopfield neural network (Kobayashi, 2016a). On the downside, such as the correlation-based

quaternionic Hopfield network, QRCNNs may suffer from cross-talk between the fundamental

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 39

memories u', ..., u”. Inspired by the projection rule, the next chapter introduces improved
models which overcome the cross-talk problem of the RCNNs and QRCNNS.

2.3 Quaternion-Valued Recurrent
Projection Neural Networks on Unit Quaternions

The main motivation for the quaternion-valued recurrent projection neural networks
(QRPNN) is to combine the projection rule and the QRCNN models to yield high capacity
associative memories. Specifically, using the synaptic weights w}; given by (2.13), the activation
potential of the sth neuron at time ¢ of the projection-based QHNN is

In analogy to the QRCNN, we replace the term proportional to the inner product between x(¢)

and u” by the weight we(¢) given by (1.32). Accordingly, we define c;; as the (7, £)-entry of the

RPXP

inverse of the real-valued matrix C' € given by

e = f (%Re{<uf,u”>}), vn, e {l,...,P}. (2.16)

Furthermore, to simplify the computation, we define
P
vf = > uled, 2.17)
n=1

forall: =1,...,Nandn = 1,..., P. Thus, the activation potential of a QRPNN is given by

P
a;(t) = Y we(t);, Vi=1,...,N. (2.18)
é=1
Concluding, given a fundamental memory set/ = {u',... u?} = SV, define the

P x P real-valued matrix C' by means of (2.16) and compute the quaternion-valued vectors
vl ... ,'vP using (2.17). Like the QRCNN, given an input vector x(0) € S, a QRPNN yields
the sequence {x(%)};>o by means of the equation

! x(t), otherwise,

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 40

Algorithm 1 — Quaternion-valued Recurrent Projection Neural Network
Data:

1. A continuous and non-decreasing real-valued function f : R — R.
2. Matrices U = [u',...,u”]and V = [v},... v"].

3. The input vector x = [z1,...,zx].

4. Maximum number of iterations ?¢,,,, and a tolerance 7 > 0.

Result: Retrieved vector y.
Initialize t = 0and A = 7 + 1.

while ¢t < t,.c. and A > 7 do
1. Compute the weights

we = f (%Re{U*x}) |

y = o(Vw).

2. Compute the next state

| 3. Update respectively ¢ <t + 1, A — |y — x|, and x < y.

and o : Q* — S given by

o(q) = |— (2.20)

Alternatively, using a matrix-vector notation, a synchronous QRPNN can be de-

1 P]

scribed as follows: Let U = [u’,...,u’] € SN*P be the quaternion-valued matrix whose

columns corresponds to the fundamental memories. Define the real-valued matrix C' € R”*”

and the quaternion-valued matrix V' € Q"> by means of the equations
C = f(Re{U*U}/N) and V =UC, (2.21)

where the excitation function f is evaluated in an entry-wise manner. Note that the two equations
in (2.21) are equivalent to (2.16) and (2.17), respectively. Given the initial state x(0), analogously
to the QRCNN, the QRPNN defines recursively

w(t) = f(Re{U*x(t)} /N), (2.22)
and
x(t+1) =o(Vw(t)), (2.23)

where f : [—1,1] > Rand o : Q* — S are evaluated in a component-wise manner. Algorithm
1, formulated using matrix notation, summarizes the implementation of a QRPNN using syn-
chronous update. We would like to point out that a QRCNN is obtained by setting V' = U in
Algorithm 1.

Like the QRCNN, a QRPNN is also implemented by the fully connected two layer
neural network with P hidden neurons shown in Figure 5b). The difference between the QRCNN

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 41

and the QRPNN is the synaptic weight matrix of the output layer. In other words, they differ in

the way the real-valued vector w(t) is decoded to yield the next state x(¢).

a) Us f(R{}/N) U o()

$1(t)—>O\O/O—>$1(t+1)

z2(t) =0 O—x(t+1)
O

z3(t) = O O—uz3(t+1)

O
o) =0— =0 —ax(t+1)

b) v f(R{YN) Vo)

Figure 5 — The network topology of quaternionic recurrent correlation and projection neural
networks.

From the computational point of view, although the training phase of a QRPNN
requires O(P? + N P?) operations to compute the matrices C~! and V, they usually exhibit
better noise tolerance than the QRCNNs. Moreover, the following theorem shows that QRCNNs

overcome the cross-talk between the fundamental memories if the matrix C' is invertible.

Example 1. Consider the fundamental memory matrix U € S**?, given by:

0.08232 + 0.70631i + 0.65437j — 0.25716k —0.68329 + 0.03334i — 0.36696j — 0.63034k

0.47796 — 0.56512i + 0.65827j + 0.13731k —0.48995 + —0.74886i + 0.05784j — 0.44248k
U =
0.76771 + 0.28354i — 0.54316j — 0.18759k 0.01761 — 0.20041i — 0.36471j + 0.90912k

Then, we calculate C' using the exponential function with o = 2, obtaining:
O - 7.3890 1.0269
1.0269 7.3890
Following Algorithm 1, we calculate the matrix V = UC™" using (2.17),

0.02446 + 0.0968i + 0.09734j — 0.02339k —0.09587 — 0.00894i — 0.06319j — 0.08205k

0.07535 — 0.06362i + 0.08973j + 0.02743k —0.07678 — 0.09250i — 0.00464j — 0.06369k
V=
0.10560 + 0.04297i — 0.06796j — 0.04332k —0.01229 — 0.03309i — 0.03991j + 0.12905k

Given the input vector

0.07987 + 0.55354i — 0.79031j — 0.25022k
x(0) = [0.08232 + 0.70631i + 0.65437j — 0.25716k |,
0.76771 + 0.28354i + 0.28354j — 0.18759k

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 42

we obtain the weights
0) - <2.1825714127810736>

0.7093321157481525
and determine

0.36425 — 0.67707i + 0.63758j + 0.04867k
x(1) = o(Vw) = [—0.05092 + 0.71466i + 0.5844j — 0.38095k
0.75915 + 0.24070i — 0.60467j — 0.01031k

After seven steps we have

0.47788 — 0.56521i + 0.65826j + 0.13725k
x(7) = [0.08222 + 0.70633i + 0.65433j — 0.25726k
0.76771 + 0.28351i — 0.54322j — 0.18746k

Note that the distance d(x(7),u") = ||x(7) — u*||y = 0.0006. Indeed, the exponential QRPNN

is converging to the first column of matrix U.

2.3.1 Real-valued recurrent projection neural networks (RPNNs) and
their relation with other models from the literature

In the following, we present some theoretical results of the QRPNNs. We also present
some relations between the QRPNNSs restricted to the real number-system and other models in

the literature. We call bipolar QRPNN when the vectors in I/ € B" and the input vectors x € B,

2.3.1.1 Optimal storage capacity and generalization of bipolar QRPNNs

Let us begin by showing that all the fundamental memories are stationary states of a
QRPNN if the matrix C' is invertible.

Theorem 2.1. Given a fundamental memory set U = {u',... u’}, define the real-valued
P x P-matrix C by (2.16). If C is invertible, then all fundamental memories u', ... u" are
stationary states of a QRPNN defined by (2.19), (2.18), and (2.22).

Proof. Let us assume that the matrix C' given by (2.16) is invertible. Also, suppose a QRPNN is
initialized at a fundamental memory, that is, x(0) = u” for some v € {1,..., P}. From (2.16),
and (2.22), we conclude that

we(0) = f(Re{<u7,u5>} /N) =Cey, VE=1,...,P.

Furthermore, from (2.17) and (2.18), we obtain the following identities for any i € {1,..., N}:
P P /P
al0) - St = 32 (S)
e=1 =1 \n=1

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 43

where ¢,,, is the Kronecker delta, that is, 9,, = 1ifn» = v and ¢,, = 0 if # ~. From (2.19),
we conclude that the fundamental memory u” is a fixed point of the QRPNN if the matrix C'is

invertible. O

Theorem 2.1 shows that QRPNNs can be used to implement an associative memory
whenever the matrix C'is invertible. The following theorem shows that the matrix C' given by

(2.16) is invertible for an excitation function f € F with a sufficiently large parameter .

Theorem 2.2. Consider a fundamental memory setUd = {u', ..., u"’} = S and an excitation
function f € F, where F is the family of parameterized functions given by (1.29). The matrix C
given by (2.16) is strictly diagonally dominant and, thus invertible, for a parameter \ sufficiently

large.

Proof. First of all, recall that a matrix C' is strictly diagonally dominant if

Cng

Cmn

<1, Vp=1,...,P. (2.24)
§#n

Let us assume that C' is given by (2.16) for f € F. In other words, we have
A
cpe = [(Re{{u®,u”)} /N;A) = [A (Re {(u®,u”)} /N)]|" > 0. (2.25)
By taking the limit A\ — oo in (2.24), we obtain the following identities forn = 1,..., P:

e A (Re {<u5,u’7>} /N) A B
/\11_12057& { 10] —0, (2.26)

ng

Cmn

fin, 3

§#n

n

because Re {(u®,u”)} /N < 1for { # nand A(z) < A(1) for all < 1. Concluding, there
exists a sufficiently large parameter A such that (2.24) holds true forallnp = 1,..., P.]

Broadly speaking, the proof of Theorem 2.2 shows that C' approximates a multiple
of the identity matrix as the parameter \ of f € F increases. Borrowing the terminology from
Perfetti and Ricci (2008), we say that a QRCNN as well as a QRPNN are in saturated mode if
C' can be approximated by c!, for some ¢ > 0. In the saturated mode, QRCNNs and QRPNNs
coincide.

In fact, given an arbitrary state vector x € S”, let xp and x¢ denote respectively the
states of the QRPNN and QRCNN models after one single synchronous update, that is,

xp =0c(Vw) and x¢ =o(Uw), (2.27)

where w = f(Re {U*x} /N). In the saturated mode, C~* can be approximated by (1/c)I, for
¢ > 0, and the state vector of the QRPNN satisfies

xp=0(UC'w)~ 0o (%Uw) =o(Uw) = x¢. (2.28)

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 44

Let us investigate further the relationship between QRPNNS in the bipolar case and
HPNN:S . Precisely, we show that the bipolar QRPNN, called simply recurrent projection neural
network (RPNN), is closely related to the HPNN model.

Theorem 2.3. The bipolar QRPNN model generalizes the traditional bipolar projection-based

Hopfield neural network when the excitation function f is the identity function.

Proof. Replacing V = UC™" in (2.23) we obtain
x(t+1) =0 (UC'w(t)) . (2.29)
Taking f as the identity function, we have w(t) = U”x(t) and, thus,
x(t+1) =0 (UCT'UTx()) . (2.30)
Now, (2.30) is equivalent to
x(t+1)=o (UU*U/N)"'UTx(1)) . (2.31)
Simplifying the argument of o, we obtain
x(t+1) =0 (UU'x()) .

This implies that the RPNNs generalizes the HNN with projection rule. L]

The identity QRPNN, however, does not generalize the projection-based QHNN
because the former uses only the real part of the inner product between x(¢) and u®. In fact, in
contrast to the projection-based QHNN, the design of a QRPNN does not require the inversion
of a quarternion-valued matrix but only the inversion of a real-valued matrix.

2.3.1.2 Bipolar RPNNs and their relation with Recurrent Kernel Associative Memories

As pointed out previously, quaternion-valued RPNNs reduce to bipolar models when
the fundamental memories are all real-valued, that is, their vector part is zero. In this subsection,
we address the relationship between bipolar RPNNs and RKAMs.

Let us compare the RKAMs with bipolar RCNNs and RPNNs. To this end, let us
assume the excitation function f is a valid kernel. The exponential function f., for example,
yields a valid kernel, namely the Gaussian radial-basis function kernel (Perfetti and Ricci, 2008).
As pointed out by Perfetti and Ricci (2008), the main difference between a RKAM and a RCNN
is the presence of the Lagrange multipliers in the former. Precisely, the Lagrange multipliers are
/)’f = 1 in the RCNNs while, in the RKAM, they are obtained solving (1.33). Furthermore, the
RKAM is equivalent to the corresponding bipolar RCNN in the saturation mode, that is, when the
matrix C' given by (2.16) exhibits a diagonal dominance (Perfetti and Ricci, 2008). In a similar
fashion, we observe that a RKAM and a RPNN coincide if vf = ﬁf uf foralle=1,..., N and
¢ =1,..., P. The following theorem shows that this equation holds true if all the constraints

are inactive at the solution of the quadratic problem (1.33).

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 45

Theorem 2.4. Let f : [—1, +1] — R be a continuous and non-decreasing function such that the

following equation yields a valid kernel

k(x,y) = f (<X—Ny>) vx,y e {—1,+1}". (2.32)

Consider a fundamental memory setU = {u', ..., u”} < {—1, +1}" such that the matrix C
given by (2.16) is invertible. If the solutions of the quadratic problem defined by (1.33) satisfy
0< Bf <pforalli=1,... ., Nand& = 1,..., P, then the RKAM defined by (1.33) and (1.34)
coincide with the RPNN defined by (2.22) and (2.23). Alternatively, the RKAM and the bipolar
RPNN coincide if the vectors v*’s given by (2.17) satisfy 0 < vfuf <pforalli=1,..., N and
¢&E=1,...,P.

Proof. First of all, note that x(u, u”) = cg, given by (2.16).

Let us first show that the RKAM coincide with the bipolar RPNN if the inequalities
0< Bf < p hold true for all 7 and &. If there is no active constrains at the solution of (1.33), then

the Lagrange multiplier 3, are the solution of the unconstrained quadratic problem (1.33):

1 P P
minimize Q(8;) = - > BruSceulB! — > B, Vi=1,...,N. (2.33)

&n=1 §=1

It turns out that the minimum of (2.33), obtained by imposing Py 0, 1s the solution of the

B¢
linear system
P
Weegulfl =1, €=1,...,P. (2.34)
n=1
Multiplying (2.34) by u¢ and recalling that (u%)? = 1, we obtain
P
eulfl =ui, £=1,...,P. (2.35)

n=1
Since the matrix C'is invertible, the solution of the linear system of equations (2.35) is

P
up B = Y cgul, VE=1,...,P and i=1,... N, (2.36)

n=1
where cgnl denotes the (&, 7)-entry of C~*. We conclude the first part of the proof by noting that
the right-hand side of (2.36) and (2.17) coincide. Therefore, vf = ,Bfuf forallz =1,..., N and
¢ =1,..., Pand the RKAM coincides with the bipolar QRPNN.

On the other hand, if 0 < vfuf <pforallz =1,....,Nand & = 1,..., P, then
vf = Bfu§ is a solution of (2.36). Equivalently, 5§ = ufvf is the solution of the unconstrained
quadratic problem (2.33) as well as the quadratic problem with bounded constraints (1.33). As
a consequence, the RKAM defined by (1.33) and (1.34) coincides with the RPNN defined by
(2.23) using the RCNN evolution equation. L]

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 46

We would like to point out that the condition 0 < 5§ < p often occurs in the
saturation mode, that is, when the matrix C' exhibits a diagonal dominance. In particular, the
matrix C is diagonally dominant given a sufficiently large parameter A of an excitation function
f € F, where F is a family of continuous, non-decreasing functions given by (1.29). In fact,
given a parametric function f € F, the Lagrange multiplier /Bf approaches 1/f(1;\) as A
increases (Perfetti and Ricci, 2008). Concluding, in the saturation mode, the RKAM, RCNN,
and RPNN are all equivalent. We shall confirm this remark in the computational experiments

presented in the next section.

2.3.2 Computational Experiments

This section provides computational experiments comparing the performance of
QHNNSs, QRCNNSs, and the new QRPNN models as associative memory models. Let us begin
by addressing the noise tolerance and storage capacity of the recurrent neural networks for the
storage and recall of bipolar real-valued vectors. The bipolar case is an interesting case of study
because it is used to confirm the theoretical relation given by Theorem 2.4 between RKAMs
and RPNNs. We address the noise tolerance and storage capacity of quaternion-valued vectors

subsequently.

2.3.2.1 Bipolar Associative Memories

Let us compare the storage capacity and noise tolerance of the Hopfield neural
networks (HNNs), the original RCNNs, and the new RPNNs designed for the storage of P = 36
randomly generated bipolar (real-valued) vectors of length N = 100. Precisely, we consider
the correlation-based and projection-based Hopfield neural networks, the identity, high-order,
potential-function, and exponential RCNN and RPNN models with parameters ¢ = 5, L = 3,

and o = 4, respectively.

To evaluate the storage capacity and noise tolerance of the bipolar associative

memories, the following steps have been repeated 100 times for N = 100 and P = 36:

1. We synthesized associative memories designed for the storage and recall of a randomly
generated fundamental memory set / = {u',... u”’} ¢ {—1,+1}", where Pr[u} =
1] =Pr[u$ = —1] = 05foralli =1,...,nand € = 1,..., P.

2. We probed the associative memories with an input vector x(0) = [21(0),...,2,(0)]"
obtained by reversing some components of u' with probability 7, i.e., Pr[z;(0) = —u}] =

7 and Pr[z;(0) = u;] = 1 — 7, for all i and €.

3. The associative memories have been iterated until they reached a stationary state or
completed a maximum of 1000 iterations. A memory model succeeded to recall a stored

item if the output y satisfies ||[u’ — y|| < 7 where 7 = 10™*. We count the number of

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 47

1.0 A Projection HNN
Correlation HNN
Identity RPNN
0.8 1 Identity RCNN
High-order RPNN
- High-order RCNN
= Potential RPNN
8 0.6 Potential RCNN
o Exponential RPNN
> Exponential RCNN
S 0.4
2
0.2 -
0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
Noise Probability

Figure 6 — Recall probability of bipolar associative memories by the noise intensity introduced
in the input vector. For each level of noise the experiment is repeated 100 times, and
is calculated the probability of recalling a stored item.

succeeded recalls for each noise level and, finally, we divided by the total number of

simulations to calculate the recall probability.

Figure 6 shows the probability of an associative memory to recall a fundamental memory by
the probability of noise introduced in the initial state. Note that the projection-based HNN
coincides with the identity RPNN. Similarly, the correlation-based HNN coincides with the
identity RCNN. Also, note that the RPNNs always succeeded to recall undistorted fundamental
memories (zero noise probability). The high-order, potential-function, and exponential RCNNs
also succeeded to recall undistorted fundamental memories. Nevertheless, the recall probability
of the high-order and exponential RPNNSs are greater than or equal to the recall probability
of the corresponding RCNNSs. In other words, the RPNNs exhibit better noise tolerance than
the corresponding RCNNs. The potential-function RCNN and RPNN yielded similar recall
probabilities.

In a similar fashion, let us compare the storage capacity and noise tolerance of the
RCNN, RPNN, and the RKAM with kernel given by (2.32) with f = f,.. In this experiment,

we considered p = 1000 and o = 1 and o = 3. Figure 7 shows the recall probabilities of the

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 48

1.0 A == RCNN, alpha =1
=O= RPNN, alpha =1
=)= RKAM, alpha =1

0.8 - == RCNN, alpha =3
—8— RPNN, alpha = 3

. —9— RKAM, alpha = 3
£
S 0.6 -
©
Q0
o
o
T 0.4 -
[J]
o«
0.2 -
0.0 4 [

0.0 0.2 0.4 0.6 0.8 1.0
Noise Probability

Figure 7 — Recall probability of exponential bipolar RPNN and RKAM by the noise intensity
introduced in the input vector.

exponential bipolar RCNN and RKAM, with different parameter values, by the noise probability
introduced in the input. Note that both RPNN and RKAM outperformed the RCNN. Furthermore,
the exponential bipolar RPNN and the RKAM coincided for all the values of the parameter
a € {1, 3}. According to Theorem 2.4, an RKAM coincide with a bipolar RPNN if the Lagrange
multipliers satisfy 0 < Bf < pforalli =1,...,Nand £ = 1,..., P. Figure 8 shows the
histogram of the Lagrange multipliers obtained solving (1.33) for a random generated matrix U
and the exponential kernel with o = 1, 2, and 3. The vertical dotted lines correspond to the values
e, 72, and e~!. Note that 3¢ approaches 1/f(1) = e~ as « increases. More importantly, the

inequalities 0 < ﬁf < p are satisfied for &« > 1 and p > 2.

2.3.2.2 Quaternion-Valued Associative Memories

Let us now investigate the storage capacity and noise tolerance of the asssociative
memory models for the storage and recall of P = 36 randomly generated quaternion-valued
vectors of length N = 100. In this example, we considered the projection-based and the
correlation-based quaternion-valued Hopfield neural network (QHNNs) as well as the identity,
high-order, potential-function, and exponential QRCNNs and QRPNNs with parameters ¢ = 20,
L = 3, and a = 15. These parameters have been determined so that the QRCNNSs have more

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks

49

800 A ; c _ Bl alpha=1.0
- B alpha=2.0
7004k R . T B alpha=3.0

600 -] I —

ool | o8 1— .
a0l § 1N
200l F N ________________________ __________________

200 i o E— 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Lagrange Multipliers

Figure 8 — Histogram of the Lagrange multipliers of a RKAM model.

than 50% probability to recall an undistorted fundamental memory. In analogy to the previous

example, the following steps have been performed 100 times:

1. We synthesized associative memories designed for the storage and recall of uniformly

distributed fundamental memories 2/ = {u®, ... u’}. Formally, we defined v = RandQ

foralli =1,...,Nand & =1,..., P where

RandQ = (cos ¢ + isen¢)(cos ¥ + ksentp)(cos 0 + jsend),

is a randomly generated unit quaternion obtained by sampling angles ¢ € [—m,7), ¢ €

[—7/4,7/4], and 0 € [—7 /2, 7/2) using an uniform distribution.

2. We probed the associative memories with an input vector x(0) = [21(0), ..., 2x(0)]" ob-

tained by replacing some components of u' with probability 7 by an uniformly distributed

component, i.e., Pr[z;(0) = RandQ] = 7 and Pr[x;(0) = u;] = 1 — 7, for all i and &.

3. The associative memories have been iterated until they reached a stationary state or

completed a maximum of 1000 iterations. The memory model succeeded if the output

equals the fundamental memory u'.

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 50

1.0 1
0.8 1 —¢= Projection QHNN
= Correlation QHNN
Fy —=p— Identity QRPNN
% 0.6 1 == Identity QRCNN
< —%¥— High-order QRPNN
a =~ High-order QRCNN
® 0.4 { =& Potential QRPNN
2 =/ Potential QRCNN
—@— Exponential QRPNN
0.2 4 =O= Exponential QRCNN
0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
Noise Probability

Figure 9 — Recall probability of quaternion-valued associative memories by the noise intensity
introduced in the input vector.

Figure 9 shows the probability of a quaternion-valued associative memory to recall a
fundamental memory by the probability of noise introduced in the initial state. As expected, the
QRPNNs always succeeded to recall undistorted fundamental memories. The potential-function
and exponential QRCNNS also succeeded to recall undistorted fundamental memories. Indeed,
the potential-function QRCNN and QRPNNSs yielded the same recall probability. The noise
tolerance of the exponential QRCNN and QRPNN also coincided. Nevertheless, the recall
probability of the high-order QRPNN is greater than the recall probability of the corresponding
QRCNNSs. Furthermore, in contrast to the real-valued case, the projection QHNN differs from
the identity QRPNN. In fact, the noise tolerance of the identity QRPNN is far greater than the

noise tolerance of the projection QHNN.

2.3.2.3 Storage and Recall of Color Images

In the previous subsection, we compared the performance of QHNN, QRCNN,
and QRPNN models designed for the storage and recall of uniformly distributed fundamental
memories. Let us now compare the performance of the quaternion-valued associative memories
for the storage and recall of color images. Specifically, let us compare the noise tolerance of
QHNN, QRCNN, and QRPNN models when the input is a color image corrupted by Gaussian

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 51

noise. Computationally, an image corrupted by Gaussian noise is obtained by adding a term
drawn from an Gaussian distribution with zero mean and a fixed standard variation to each

channel of a color image.

At this point, we would like to recall that an RGB color image I can be converted

to a unit quaternion-valued vector x = [zy,...,zx] € Sg , N = 1024, as follows (Castro and
Valle, 2017a): Let I € [0,1], IE € [0,1], and I € [0, 1] denote respectively the red, green, and
blue intensities at the 7th pixel of an RGB color image I. Forz = 1,..., N, we first compute the

phase-angles

¢; = (=1 +€) +2 (1 —€) IF, (2.37)
b= (~G+e)+ (5 -2 IF (238)
0, = (—721 + e) + (m — 2¢) I, (2.39)

where € > 0 is a small number such that ¢; € [—7, 7), ¢; € [—7/4, /4], and 6; € [—7/2,7/2)
(Biilow, 1999). In our computational experiments, we adopted ¢ = 10~*. Then, we define the
unit quaternion-valued vector x using the phase-angle representation z; = e?ie?i¥e% of its

components. Equivalently, we have
x; = (cos ¢;iseng;)(cos 1; + ksenw);)(cos 0; + jsend;), Vi=1,..., N. (2.40)

Conversely, given an unit quaternion-valued vector x, we first compute the phase-angles ¢;, ¥;,
and 0; of the component x; using Table 2.2 in Biilow (1999). Afterwards, we obtain the RGB
color image I by inverting (2.37)-(2.39), that is,

[R:¢i+7T—6 [G:wi—i-w/él—e and IB_@¢+7T/2—6

T T ERoe N S I

forallz =1,..., V.

In order to compare the performance of the quaternion-valued associative memories,
we used color images from the CIFAR dataset (Krizhevsky, 2009). Recall that the CIFAR
dataset contains 60.000 RGB color images of size 32 x 32. In this experiment, we randomly
selected P = 200 color images and converted them to unit quaternion-valued vectors u', ..., u”.
Similarly, we corrupted one of the P selected images with Gaussian noise and converted it to
a quaternion-valued vector x € Sg . The corrupted vector x have been presented to associative

memories designed for the storage of the fundamental memory set/ = {u',... ,u’} e Sg .

Figure 10 shows an original color image selected from the CIFAR dataset, a color
image corrupted by Gaussian noise with standard deviation 0.1, and the corresponding images
retrieved by the associative memory models. Note that the correlation-based QHNN as well as
the identity QRCNN failed to retrieve the original image due to the cross-talk between the stored
items. Although the projection-based QHNN yielded an image visually similar to the original
dog’s image, this memory model also failed to retrieve the original image due to the cyan pixels

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 52

a) Original image b) Corrupted image ©) Corrgllfiltll\;);;-based 9 Progg;);-based

wdl
15 “

| g
o

0 5 10 15 20 25 30 0 5 10 15 20 25 30

f) High-order QRCNN g) Potential-function h) Exponential QRCNN
(g="70) QRCNN (L = 5) (o = 40)

0 0 5 10 15 20 25 30

j) High-order QRPNN k) Potential-function 1) Exponential QRPNN
(g ="70) QRPNN (L = 5) (o = 40)

5 10 15 20 25 30

Figure 10 — Original color image, input image corrupted by Gaussian noise with standard devia-
tion 0.1, and the corresponding images retrieved by the quaternion-valued associative
memories.

near the dog’s nose. All the other associative memories succeed to retrieve the original image.
Quantitatively, we say that an associative memory manages to remember a stored image if the
error given by the Euclidean norm |u' — y||, where y denotes the retrieved quaternion-valued
vector, is less than or equal to a tolerance 7 = 10~*. Table 1 shows the error produced by the
QHNN, QRCNN, and QRPNN memory models. The table also contains the error between the

fundamental memory u' and the quaternion-valued vector corresponding to the corrupted image.

For a better comparison of the noise tolerance of the quaternion-valued associative
memories, we repeated the preceding experiment 100 times. We also considered images cor-
rupted by Gaussian noise with several different standard deviation values. Figure 11 shows the
probability of successful recall by the standard deviation of the Gaussian noise introduced in
the input image. In agreement with Theorem 2.1, the QRPNN always managed to remember
undistorted patterns (zero standard deviation). Furthermore, like the experiment described in
the previous subsection, the projection-based QHNN differs from the identity QRPNN. The

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 53

Table 1 — Absolute error between the fundamental memory u' and either the input or the
quaternion-valued vector recalled by an associative memory model.

Corrupted image: 19.69
Correlation-based QHNN: 29.87
Projection-based QHNN: 1.11

Identity QRCNN: 3.67 x 10"

High-order QRCNN: 5.82 x 107°

Potential-function QRCNN: | 3.17 x 101
Exponential QRCNN: 1.78 x 1071

Identity QRPNN: 1.31 x 107*
High-order QRPNN: 5.82 x 107
Potential-function QRPNN: | 4.08 x 1071
Exponential QRPNN: 1.78 x 1071

1.0 A

0.8 -

—<&— Projection QHNN
=< Correlation QHNN
=p—|dentity QRPNN
== |dentity QRCNN
=% High-order QRPNN
v
/=
—he—
==
——

°
(o))
1

High-order QRCNN
Potential QRCNN
Potential QRPNN
Exponential QRCNN
Exponential QRPNN

Recall Probability
©
N

0.2 1

0.0 -

0.0 0.1 0.2 0.3 0.4 0.5
Standard Variation

Figure 11 — Recall probability of quaternion-valued associative memories by the standard devia-
tion of the Gaussian noise introduced in the input.

latter, however, yielded larger recall probabilities because it circumvents the rotational invariance
present in the QHNN model (Kobayashi, 2016a).

Finally, we repeated the experiment used to generate Figure 11 considering only
the exponential QRPNN and QRCNN but with different values of the parameter . Moreover,
to better discriminate the QRPNN and the QRCNN models, instead of computing the recall
probability, we computed the Euclidean error between the desired output u' and the retrieved

vector y, that is, the error is given by |u' — y|. Figure 12 shows the mean error by the standard

Chapter 2. Quaternion-Valued Recurrent Projection Neural Networks 54

102 n
107" ~
1074 1
5 =—<&— QRPNN, alpha =10
utJ 10-7 - = QRCNN, alpha =10
=p— QRPNN, alpha = 20
== QRCNN, alpha = 20
= == = = e = e = T = o
" Y T~ —e— QRPNN, alpha = 40
1071 —O- QRCNN, alpha = 40
—li— QRPNN, alpha = 80
13 == QRCNN, alpha = 80
1071 —¥— QRPNN, alpha = 160
¥—%—y—0u =% QRCNN, alpha = 160

0.0 0.1 0.2 0.3 0.4 0.5
Standard Variation

Figure 12 — Error between the desired output and the retrieved quaternion-valued vector by the
standard deviation of the Gaussian noise introduced in the input.

deviation of the Gaussian noise introduced in the original color image. Note that the error
produced by the exponential QRPNNs from an undistorted input are all around the machine
precision, that is, around 10714, Equivalently, the QRPNNs succeeded to recall undistorted
images. Finally, note also that the error produced by both QRPNN and QRCNN associative
memories decreases as the parameter « increases. Nevertheless, the average error produced by
the QRPNN are always below the corresponding QRCNN models.

2.4 Conclusions

In this chapter we have proposed the quaternion-valued recurrent projection neural
network (QRPNN), a new associative memory model which combines the projection storing rule
with the QRCNN model. We showed that the new model presents optimal storage capacity and
higher noise tolerance than the QRCNN as well as the traditional Hopfield models. In the next
chapter, we extend the QRCNN and QRPNN models to a broad class of hypercomplex number
systems.

55

3 Hypercomplex-Valued Models

In this chapter, we extend the RCNNs and RPNNs to a broad class of hypercomplex
number systems. Initially, we present a background on hypercomplex numbers and some funda-
mental definitions necessary to define the extensions of QRCNNs and QRPNNS, including a brief
introduction to the Hypercomplex-Valued Discrete-Time Hopfield Neural Networks (HHNNS).
Then, we present the Hypercomplex Recurrent Correlation Neural Networks (HRCNNs) and
the Hypercomplex Recurrent Projection Neural Networks (HRPNNs). Besides, we study the
dynamics of HRCNNs and HRPNNs. Finally, we perform computational experiments in a broad

class of hypercomplex number systems, applying these models for pattern reconstruction.

3.1 Background on Hypercomplex Numbers

Hypercomplex numbers generalize the notion of complex and hyperbolic numbers as
well as quaternions, tessarines, octonions, and many other high-dimensional algebras including
Clifford and Cayley-Dickson algebras (Brown, 1967; Shenitzer et al., 1989; Delangue et al.,
1992; Ell and Sangwine, 2007; Hitzer et al., 2013; Vaz and da Rocha, 2016).

A hypercomplex number over the real field is written as

P = Do +p1i1 + ... +pnina (31)

where n is a non-negative integer, po, p1, - - - , P, are real numbers, and the symbols iy, iy, ..., i,
are the hyperimaginary units (Shenitzer et al., 1989; de Castro and Valle, 2020). The set of all
hypercomplex numbers given by (3.1) is denoted in this thesis by H. Examples of hypercomplex
numbers include the complex numbers C, hyperbolic numbers U, dual numbers D, quaternions

Q, tessarines (also called commutative quaternions) T, and octonions Q.

We would like to point out that a real number o € R can be identified with the
hypercomplex number « + 0i; + ... + 0i,, € H. Furthermore, the real-part of a hypercomplex

number p = po + p1i; + ... + p,i, is the real-number defined by Re {p} := py.

A hypercomplex number system is a set of hypercomplex numbers equipped with
an addition and a multiplication (or product). The addition of two hypercomplex numbers
p=po+pii1+...+ppi,and ¢ = qo + q1i; + . . . + g, 1, 1s defined in a component-wise manner

according to the expression

p+q=(po+q)+ 1+ @)+ ...+ (pn + ¢)in. (3.2)

The product between p and ¢, denoted by the juxtaposition of p and ¢, is defined using the

distributive law and a multiplication table. Precisely, the multiplication table specifies the product

Chapter 3. Hypercomplex-Valued Models 56

Table 2 — Multiplication tables for complex numbers and quaternions.

X 1 ig 13
X 17 1 —1 i3 —19
ip | —1 ip | —i3 —1 1§y
iz | iy —i; -1
of any two hyperimaginary units:
id, = auo+ auwiis + ..o+ aupl,, Yu,ve{l,.. .. n}. (3.3)

For example, Table 2 shows the multiplication table of complex numbers and quaternions. On the
left we show the table for complex numbers, and on the right for quaternions. A hypercomplex
number system is characterized by its multiplication table. Then, given two hypercomplex

numbers p and ¢, we use the distributive law and the corresponding multiplication table, obtaining

n n
pq = <P0(J0 + Z p,qu/Qul/,O) + (pOQI + P1go + Z p,uQVa,uu,l) i+

pr=1 pr=1

+ (poqn + Pno +) puqua,w,n> i (3.4)
=1

We would like to point out that we can identify a hypercomplex number p =
po + pii1 + ... + pui, with the (n + 1)-tuple (po, p1, . .., p,) of real numbers. Furthermore, a
hypercomplex number system can be embedded in a (n + 1)-dimensional vector space where the
vector addition and the scalar multiplication are obtained from (3.2) and (3.4), respectively. In
view of this fact, we write dim(H) = n + 1. Moreover, the set H of all hypercomplex numbers
inherits the topology from R"*! (de Castro and Valle, 2020). Borrowing the terminology of
linear algebra, we speak of a linear operator 7' : H — H if T'(ap + q) = oT'(p) + T'(q), for all
p,q € H and o € R. A linear operator that is an involution and also an antihomomorphism is

called a reverse-involution (Ell and Sangwine, 2007). Formally, we have the following definition:

Definition 1 (Reverse-involution (de Castro and Valle, 2020)). An operator 7 : H — H is a

reverse-involution if

m(7(p)) = p, 3.5
7(pq) = 7(q)7(p), (3.6)
m(ap +q) = at(p) + 7(q), (3.7)

forall p,q € Hand o € R.

The natural conjugate of a hypercomplex number p = py + p1i; +- - - + p,i,, denoted

by p, is defined by
P =po—piiy — - = Ppin. (3-8)

Chapter 3. Hypercomplex-Valued Models 57

The natural conjugation is an example of a reverse-involution in some hypercomplex number
systems such as the complex and quaternion number systems. The identity mapping 7(p) = p,
for all p € Hi, is also a reverse-involution if the multiplication is commutative. In this case, the
identity is referred to as the trivial reverse-involution. Other examples of reverse-involutions
include the guaternion anti-involutions in quaternion algebra and the Clifford conjugation in
Clifford algebras (Ell and Sangwine, 2007; Delangue et al., 1992; Vaz and da Rocha, 2016).

A reverse-involution allows us to define a symmetric bilinear form 5 : H x H — R

by means of the equation:

B(p.q) = Re{r(p)q}, Vp,qeH. (3.9)

Intuitively, B measures a relationship between p and ¢ by taking into account the algebraic
properties of the multiplication and the reverse-involution 7. For example, the symmetric bilinear
form B coincides with the usual inner product on complex numbers, quaternions, and octonions
with the natural conjugation. The symmetric bilinear form B plays an important role in the

definition of the hypercomplex-valued recurrent correlation neural networks.

Finally, let us also recall the following class of hypercomplex-valued functions:

Definition 2 (B function (de Castro and Valle, 2020)). Consider a hypercomplex number system
H equipped with a reverse-involution T and let D < H, S < H, and B : H x H — R be the
symmetric bilinear form defined by (3.9). A hypercomplex-valued function ¢ : D — S is called
a B function if

B(¢(q),q) > B(s,q), VYqeD,VseS\{é(q)}. (3.10)

In words, a B function ¢ : D — S projects a hypercomplex number ¢ € D onto
S with respect to the symmetric bilinear form B. Indeed, according to B, ¢(q) is more related
to ¢ than any other element s € S. Examples of B functions include the complex-valued
signum function for complex-valued Hopfield neural networks, the function that normalizes
its arguments to length one on Cayley-Dickson algebras with the natural conjugation, and the
split-sign functions for some real Clifford algebras with Clifford conjugation (de Castro and
Valle, 2020; Aizenberg and Aizenberg, 1992; Jankowski et al., 1996).

3.2 A Review of the Hypercomplex-Valued Hopfield Neural
Networks

Hypercomplex-valued versions of the Hopfield network have been extensively in-
vestigated in the past years using complex numbers (Jankowski et al., 1996; Lee, 2006), dual
numbers (Kuroe et al., 2011), hyperbolic numbers (Kobayashi, 2013), tessarines (Isokawa
et al., 2010; Kobayashi, 2018a), quaternions (Isokawa et al., 2008b; Valle and Castro, 2018),

octonions (Kuroe and Iima, 2016), and further hypercomplex number systems (Vallejo and

Chapter 3. Hypercomplex-Valued Models 58

Bayro-Corrochano, 2008; Kuroe, 2013; Popa, 2016). In this section, we briefly review the
broad class of hypercomplex-valued Hopfield neural networks (HCNNs), which includes the
complex-valued and quaternion-valued HCNN models as particular instances (Valle, 2014a,
2018).

In order to analyze the stability of the HCNNs, we use part of the theory present in
the work of de Castro and Valle (2020), which introduced the following class of hypercomplex

number systems:

Definition 3 (Real-Part Associative Hypercomplex Number Systems). A hypercomplex number
system equipped with a reverse-involution T is called a real-part associative hypercomplex

number system (Re-AHN) if the following identity holds true for any three of its elements p, q, r:

Re {(pg)r — p(gr)} = 0. (3.11)

In particular, we speak of a positive semi-definite (or non-negative definite) real-part associative
hypercomplex number system if the symmetric bilinear form B given by (3.9) satisfies B(p,p) = 0,
Vp € H.

Complex numbers, quaternions, and octonions are examples of real-part associative
hypercomplex number systems with the natural conjugation. Real-part associative hypercomplex
number systems also include the tessarines, Cayley-Dickson algebras, and real Clifford algebras
(de Castro and Valle, 2020).

Let [H be a real-part associative hypercomplex number system and ¢ : D — S be
a function. In analogy to the traditional discrete-time Hopfield network, let w;; € I denote
the jth hypercomplex-valued synaptic weight of the sth neuron of a network with /N neurons.
Also, let the state of the network at time ¢ be represented by a hypercomplex-valued column-
vector x(t) = [z1(1),...,2x(t)]" € SV, that is, z;(t) = zi(t) + ziu(D)iy + ... + T (D)in
corresponds to the state of the ith neuron at time ¢. Given an initial state (or input vector) x(0) =
[71(0),...,2x(0)]" € SV, the hypercomplex-valued Hopfield network defines recursively the

sequence {x(t)},;>0 by means of the equation

qﬁ(ai(t)), a;(t) e D,

x;(t), otherwise,

zi(t + At) = (3.12)

N

where a;(t) = Z w;;x;(t) is the hypercomplex-valued activation potential of the ith neuron at
j=1

time .

Like the traditional real-valued Hopfield network, the sequence produced by (3.12)
is convergent in asynchronous update mode if the synaptic weights satisfy w;; = 7(w;;) and one
of the two cases below holds true (de Castro and Valle, 2020):

Chapter 3. Hypercomplex-Valued Models 59

l. wy; =0foranyie{l,...,N}.

2. wy; is a nonnegative real number for any i € {1, ..., N} and H is a positive semi-definite

real-part associative hypercomplex number system.

These two conditions generalize the convergence stability criterion reviewed in
Chapter 1 for real and complex algebras as well as the stability criterion for the CV-QHNN in
Chapter 2.1. In the real case 7 is the identity reverse-involution. In the complex and quaternion

cases T is the natural conjugation.

3.3 Hypercomplex Recurrent Correlation Neural Networks

In the following, we generalize further the RCNNs for the storage and recall of
hypercomplex-valued vectors. Let H be a hypercomplex number system, ¢ : D — Sbe a B

function, and f : R — R be a real-valued continuous and monotonic non-decreasing function.

Given a fundamental memory setZ/ = {u',... u’’}, in which
ut =Sy + b+ +ub i eS, Vi=1,... NVE=1,..., P (3.13)

are hypercomplex numbers, a hypercomplex-valued RCNN (HRCNN) defines recursively the

following sequence of hypercomplex-valued vectors in S~ for¢ > 0andi = 1,..., N:

d(a;(t)), a;(t)eD,

xi(t + At) = (3.14)
z;(t), otherwise,
where the activation potential of the ¢th output neuron at time ¢ is given by
P
a;(t) = Y we(tyuf, Vi=1,...,N, (3.15)
e=1

with

N
we(t) = f (Z B(uf,xi(t))> , Y¢el,..., P (3.16)
=1

Examples of HRCNNS include the generalizations of the bipolar (real-valued) RC-
NNs of Chiueh and Goodman (1991), and its complex-valued and quaternion valued generaliza-

tions (Valle, 2014a, 2018) viewed in the previous chapters.

Analogously to the real case, we define the identity HRCNN, the high-order HRCNN,
the potential-function HRCNN, and the exponential HRCNN using the weights given in (3.16)
with the identity function, and the functions given by (1.26), (1.27) and (1.28) for the corre-

sponding hypercomplex number system domain.

Let us now study the stability of HRCNNs. The following theorem shows that a
HRCNN yields a convergent sequence {x(t)},;>o of hypercomplex-valued vectors independently

of the initial state vector x(0) € SV.

Chapter 3. Hypercomplex-Valued Models 60

Theorem 3.1. Let H be a hypercomplex number system, ¢ : D — S be a B function where S
is a compact set, and f : R — R be a real-valued continuous and monotonic non-decreasing
function. Given a fundamental memory setU = {u*,u?, ... u’} = S, the sequence {x(t)}=0
given by (3.14), (3.15), and (3.16) is convergent for any initial state x(0) € SN using either

asynchronous (sequential) or synchronous update mode.

Remark 1. In contrast to the hypercomplex-valued Hopfield networks, the stability analysis
of the hypercomplex-valued recurrent correlation neural networks does not require that H is a
real-part associative hypercomplex-number system. As a consequence, hypercomplex-valued

RCNNSs can be defined in more general class of hypercomplex number systems.

Remark 2. As usual, Theorem 3.1 is derived by showing that the function E : S™ — R given
by

P N
E(x) = — Z F (Z B(us, xz)> . vxeSY, (3.17)
¢=1 =1

where F' : R — R is a primitive of f, is an energy function of the HRCNN.

Proof. First of all, let /' : R — R be the primitive of the continuous function f given by

F(zx) = J fdt, zeR. (3.18)
0
From the mean value theorem and the monotonicity of f, we obtain:

F(y) = F(z) = f(z)(y —x), Vz,yeR (3.19)

Let us show that the function £ : SV — R given by (3.17) is an energy function
of the HRCNN, that is, £ is a real-valued bounded function whose values decrease along non-
stationary trajectories. Let us first show that F is a bounded function. Recall that the set of
hypercomplex numbers H inherits the topology from R"™! by identifying p = po + pii; +
... + ppi, with the (n + 1)-tuple (po, p1, - - ., pn)- A well-known generalization of the extreme
value theorem from calculus for continuous functions establishes that the continuous image of
a compact set is compact. Thus, as a symmetric bilinear form on a finite dimensional vector
space, B is continuous. Also, since f is continuous, its primitive F' exists and is continuous.
Therefore, the function £ given by (3.17) is continuous because it is the sum and the composition
of continuous functions. In addition, since S is compact, the Cartesian product S N_o8Sx...x8
is also compact. Hence, from the extreme value theorem, we conclude that the function £ given
by (3.17) is bounded.

Let us now show that F decreases along non-stationary trajectories. To simplify
notation, let x = x(¢) and x’ = x(t + At) for some ¢ > 0. Furthermore, let us suppose that a set

of neurons changed their state at time ¢. Formally, suppose that z; # z; if i € Z and z; = ; for

Chapter 3. Hypercomplex-Valued Models 61

alli ¢ 7, where Z < {1, ..., N} is a non-empty set of indexes. Using (3.19), we conclude that

the variation of E satisfies the following inequality:

l i) i)

From (3.16), recalling that B is a symmetric bilinear form, and using (3.15), we obtain

AE < =Y we(t) Y Bu§, o} — ;)

£=1 €L
-->.B (Z we (t)us, (@) — aa))
€L £=1
= —ZB(ai(tmi)
= —Z [B(a;(t), x) — Blas(t), ;)] = _Z A, (3.21)

Now, if the sth neuron changed its state at time ¢, then
xh =zt + At) = ¢(a;(t)) # x;(1). (3.22)
Since ¢ is a B function, we have

A = B(ai(t), qs(ai(t))) - B(ai(t),xi(t)) >0, Viel (3.23)

The latter inequality implies that AE < 0 if at least one neuron changes its state at time ¢, which

concludes the proof of the theorem. L]

3.4 Hypercomplex Recurrent Projection Neural Networks

In section 3.3, we extended the RCNN model to a broad class of hypercomplex
numbers. Following this reasoning, in this section, we extend the QRPNNs to hypercomplex
number systems. These new models are called hypercomplex-valued recurrent projection neural
networks (HRPNNs). As an initial work, we briefly study the dynamical behavior and the noise
tolerance of the HRPNNs. Analogously to the HRCNNS, let H be a hypercomplex number
system, ¢ : D — & be a B function, and f : R — R be a real-valued continuous and monotonic

non-decreasing function. Given a fundamental memory set i/ = {u',...,u”}, in which

ub =y +ubiy + .. +ubi,eS, Vi=1,... . NVE=1,... P, (3.24)

Chapter 3. Hypercomplex-Valued Models 62

are hypercomplex numbers, define

N
Coe = f (Z B(u;’,u§)> . Vn,Eefl,...,P}. (3.25)
=1

and

P
vf = > ule VE=1,...,P and i=1,... N, (3.26)
n=1

where c;g denotes the entries of the inverse of C' = (c¢) € RP*" given by (3.25). Then, a
hypercomplex-valued recurrent projection neural network (HRPNN) defines recursively the

following sequence of hypercomplex-valued vectors in S~ fort > 0andi = 1,..., N:

gb(ai(t)), a;(t) e D,

zi(t + At) = (3.27)
x;(t), otherwise,
where the activation potential of the sth output neuron at time ¢ is given by
P
a;(t) = Y we(t)f, Vi=1,... N, (3.28)
e=1

and

N
we(t) = f (Z B(uf,xi(t))> , Y¢el,..., P (3.29)
=1

Note that (3.28) is directly related with (3.15). The HRPNN model is a variation of
the HRCNN, in which the weights of the output layer are defined inspired by the projection rule.
The matrix C' in (3.26) and the weights in (3.29) are the core elements of the extended model.
The symmetric bilinear form generalizes the C' matrix and weights w given in equations (2.21)

and (2.22), respectively, in chapter 2.

3.5 Examples and Computational Experiments

3.5.1 HRCNNSs synthetic experiments

Let us now provide some examples and perform some computational experiments
with hypercomplex-valued exponential correlation neural networks (ECNN). See the appendix

for some details of our implementation of the hypercomplex-valued ECNNGs.

We would like to point out that we refrained to consider other HRCNNs besides
the exponential due to the following: First, there is a vast literature on real-valued RCNN
models based on the exponential function f. (Chiueh and Goodman, 1991; Hassoun and Watta,
1996; Hancock and Pelillo, 1998; Perfetti and Ricci, 2008). The exponential, high-order, and
potential-function are non-negative parametric functions continuous and strictly increasing on

the variable x and characterized by an exponential on their parameter (Valle, 2018). Therefore,

Chapter 3. Hypercomplex-Valued Models 63

a) Synchronous update mode

Figure 13 — Dynamic of the complex-valued multistate ECNN with & = [= 1 using a) syn-
chronous and b) asynchronous update modes.

the three functions f, f3,, and f, belong to the same family of functions. According to Chiueh
and Goodman (1991), the bipolar (real-valued) ECNN seems to be the RCNN most ameable to
VLSI implementation. In fact, the storage capacity and noise tolerance of the bipolar ECNN have
been extensively investigated (Chiueh and Goodman, 1991). In addition, the storage capacity of
the bipolar ECNN can reach the capacity of an ideal associative memory (Hassoun and Watta,
1996). Finally, besides being closely related to support vector machines and the kernel trick
(Perfetti and Ricci, 2008), the bipolar ECNN has a Bayesian interpretation (Hancock and Pelillo,
1998).

3.5.1.1 Complex-Valued Multistate RCNNs

As far as we know, the first hypercomplex-valued neural networks which have been
used to implement associative memories dates to the late 1980s (Noest, 1988a,b; Jankowski
et al., 1996). As was mentioned in section 1.1.3, the activation function that make difference
for complex models is the complex-signum function. Using the polar representation of complex
numbers, de Castro and Valle (2020) showed that the complex-valued signum function given by
(1.21) is a B-function in the system of complex numbers with the natural conjugation. Therefore,
from Theorem 3.1, we conclude that the complex-valued multistate RCNNs given by (3.14),
(3.15), and (3.16) with ¢ = csgn always yield a convergent sequence of complex-valued vectors.
We would like to point out that this remark is a new contribution to the field because the
complex-valued recurrent correlation neural network introduced in (Valle, 2014a) is based on the
continuous-valued function given by f(z) = z/|z| for all complex number z # 0. Now we are

using the csgn as a new proposal of activation function.

Chapter 3. Hypercomplex-Valued Models 64

Complex-valued Multistate ECNN

—8— Synchronous
== Asynchronous
—— Synchronous
—E- Asynchronous
—%¥— Synchronous
Asynchronous

Energy

10

Figure 14 — Evolution of the energy of the complex-valued multistate ECNN designed for the
storage of P = 160 uniformly generated fundamental memories of length N = 100

with a resolution factor K = 256. The curves marked by “e” and “o”, “I@” and “0”,
as well as “v” and “V” refer to pairs of ECNNs that differ only from the update
mode.

Example 1. Consider a resolution factor K = 4 and the fundamental memory set

U= {ul = [1,] u? = H ud = [_i]} - 82, (3.30)
—1i 1 1

where S = {1,i, —1, —i} is the set given by (1.20). Figure 13 portrays the entire dynamic of the
complex-valued multistate ECNN designed for the storage of the fundamental memory U given by
(3.30). In this example, we considered o = 1/2, 3 = 1, and both synchronous and asynchronous
updates. In these directed graph, a node corresponds to a state of the neural network while an
edge from node 1 to node j means that we can obtain the jth state from the ith state evolving
(3.14). Also, there are 16 possible states and the fundamental memories, which corresponds to
the 4th, 5th, and 13th states, correspond to gray nodes in Figure 13. In agreement with Theorem
3.1, the exponential complex-valued multistate RCNN always settled at an equilibrium using
either synchronous or asynchronous update. Moreover, both synchronous and asynchronous
multistate models have one spurious memory; the vector s* = [1,1] € 8%, which corresponds to
the st state.

Experiment 1. We synthesized complex-valued multistate ECNN models for the storage and

recall of fundamental memories U = {u',... ,u"}, where N = 100 and P = 160, using

Chapter 3. Hypercomplex-Valued Models 65

a = 10/N and 3 = e *°. Furthermore, we adopted a resolution factor K = 256 and randomly
generated the components of a fundamental memory, as well as the input patterns, using
uniform distribution (the elements of S given by (1.20) have all equal probability). Figure 14
shows the evolution of the energy of the complex-valued ECNNs operating synchronously and
asynchronously. In agreement with Theorem 3.1, the energy always decreases until the network
settles at an equilibrium. As in the bipolar case, although the ECNNs with asynchronous update
usually comes to rest at a stationary state earlier than the ECNN with synchronous update,
the computational implementation of the latter is usually faster than the asynchronous model.
Furthermore, since the set D given by (1.19) is dense on the complex-numbers C, we refrained to
check if the argument of csgn given by (1.21) belongs to D in the computational implementation
of the complex-valued multistate ECNNs.

3.5.2 Hyperbolic-Valued Multistate RCNNs

Neural networks based on hyperbolic numbers constitute an active topic of research
since the earlier 2000s (Buchholz and Sommer, 2000; Ontrup and Ritter, 2001; Nitta and
Kuroe, 2018). Hyperbolic-valued Hopfield neural networks, in particular, have been extensively
investigated in the last decade by Kobayashi, Kuroe, and collaborators (Kuroe et al., 2011;
Kobayashi, 2013, 2016b,c, 2018c, 2019). Hyperbolic-valued Hopfield neural networks are
usually synthesized using either Hebbian learning (Kobayashi, 2013, 2019) or the projection
rule (Kobayashi, 2019). On one hand, the hyperbolic-valued Hopfield neural network with the
Hebbian learning is very similar to the complex-valued model and, thus, they suffer from a
low storage capacity due to the cross-talk between the stored items (Jankowski et al., 1996;
Miiezzinoglu et al., 2003; Kobayashi, 2019). On the other hand, the projection rule may fails to
satisfy the stability conditions imposed on the synaptic weights (Kobayashi, 2019). Examples
of the activation function employed on hyperbolic-valued Hopfield neural networks include
the split-sign function (Kobayashi, 2016b) and the directional multistate activation function
(Kobayashi, 2018c). In the following, we address the stability of hyperbolic-valued RCNNs with
the directional multistate activation function, which corresponds to the csgn function given by
(1.21).

Such as the complex-numbers, hyperbolic numbers are 2-dimensional hypercomplex
numbers of the form p = py + p;i. In contrast to the complex imaginary unit, the hyperbolic unit
satisfies i” = 1. The set of all hyperbolic numbers is denoted by U. The (natural) conjugate of a
hyperbolic number p = py + pi1i is p = py — p1i. Using the natural conjugate, the symmetric
bilinear form given by (3.9) for hyperbolic numbers satisfies B(p, q) = pogo — p1q1, for all
p, ¢ € U. Unfortunately, the csgn function given by (1.21) is not a B-function. Thus, a hyperbolic-
valued RCNN may fail to settle at an equilibrium. The following example and computational

experiment confirm this remark.

Example 2. Consider the fundamental memory set U given by (3.30), where S = {1,i, —1, —i}

Chapter 3. Hypercomplex-Valued Models 66

a) Synchronous update mode

Figure 15 — Dynamic of the hyperbolic-valued multistate ECNN with « = [= 1 using a)
synchronous and b) asynchronous update modes.

is the set given by (1.20) and i denotes the hyperbolic unit, i.e., i* = 1. Using a = 1 and
B = 1, we synthesized hyperbolic-valued mustistate ECNN models designed for the storage of
the fundamental memory set U. Such as in the previous examples, Figure 15 depicts the entire
dynamic of the hyperbolic-valued ECNN models obtained using synchronous and asynchronous
update mode. Note that the network, using either synchronous or asynchronous update, may cycle
between the 5th and 13th states, which correspond respectively to the fundamental memories u*

and u®.

Experiment 2. Like in the previous experiments, we synthesized hyperbolic-valued ECNN
models using o = 10/N and 8 = e designed for the storage of uniformly distributed
fundamental memories u*, ..., u'" of length N = 100 with components in the multivalued set S
given by (1.20) with K = 256. The multistate ECNNs have been initialized with a random state
x(0) uniformly distributed in S~ . Figure 16 shows the evolution of the energy of a hyperbolic-
valued multistate model using synchronous and asynchronous update modes. In both cases, the

hypercomplex-valued ECNN failed to settle at an equilibrium.

We would like to point out that we can ensure the stability of hyperbolic-valued

multistate RCNNs by either considering a different reverse-involution or a different activation

Chapter 3. Hypercomplex-Valued Models 67

Hyperbolic Multistate ECNN

-@®- Synchronous
—0.09 1 —&— Asynchronous
—0.10 A
& 01 - BB AR AT =5
2 'vl
"” 1
—0.12 A ‘\ : 3 ; 1 ,
1 I 1t || 1 l'l Ty
THUTHI T ;:;s! izl
Aanianhtuntafingnluhy u"l" : '|'| 0 |l|lll|'l|'|ll"|l':
—0.13 A ‘”|l|'|||||l|l|||||l:lll |||"|,|||,|:I| |:|"|: |:l| 1: "l '::'.'l:' "",:'
'HH:H:'.:H"'””::,'“ il |." :"llll u"':l"': :u' iy '"'l"'|' |'| ‘“;'.u
vyhugdhu w g g Wiyl
Holyh M i w iy TH
onel R ;H? it i:m
0 20 40 100

Figure 16 — Evolution of the energy of the hyperbolic-valued multistate ECNN designed for the
storage of P = 160 uniformly generated fundamental memories of length N = 100
with a resolution factor K = 256.

function. In fact, by considering the trivial reverse involution 7(p) = p instead the natural
conjugation 7(p) = p, the hyperbolic-valued RCNNs coincide with the complex-valued RCNN
with the natural conjugation. Alternatively, (3.14) yields a convergent sequence of multivalued
vectors if we adopt the function @sgn : D — S defined by ¢sgn(p) = csgn(p) for all p € D. In

this case, however, the fundamental memories may fail to be stationary states.

Example 3. We synthesized a hyperbolic-valued ECNN designed for the storage of the fun-
damental memory set U given by (3.30) using o = [= 1 and the activation function TSgn.
Figure 17 depicts the entire dynamic of this hyperbolic-valued ECNN using synchronous and
asynchronous update mode. In contrast to the model in Example 2, this hyperbolic-valued ECNN
always settle at an equilibrium. However, the fundamental memory u', which corresponds to the

4th state, is not a stationary state.

Finally, we would like to recall that both complex and hyperbolic number systems
are isomorphic to instances of real Clifford algebras. Apart from complex and hyperbolic-valued
modes, Hopfield neural networks on Clifford algebras have been investigated by Vallejo and
Bayro-Corrochano (2008), Kuroe and collaborators (Kuroe et al., 2011; Kuroe, 2013), and
Kobayashi (2018b). A brief account on the stability of Hopfield neural networks on Clifford

algebras of dimension 2 with the so-called split-sign activation function can be found in de Castro

Chapter 3. Hypercomplex-Valued Models 68

a) Synchronous update mode
QEOE) @) () () ()
X:$ ololo

Figure 17 — Dynamic of the hyperbolic-valued ECNN with @« = 3 = 1 and the activation
function csgn(p) = csgn(p) using a) synchronous and b) asynchronous update
modes.

and Valle (2020). Following the reasoning presented in this section and in de Castro and Valle
(2020), we believe one can easily investigate the stability of complex-valued, hyperbolic-valued,

and dual number-valued RCNNs with the split-sign activation function.

3.5.2.1 Quaternion-Valued Multistate RCNNs

As a growing and active research area, quaternion-valued neural networks have
been successfully applied for signal processing and times series prediction (Arena et al., 1997;
Xia et al., 2015; Xu et al., 2016; Papa et al., 2017; Xiaodong et al., 2017; Greenblatt and
Agaian, 2018) as well as image processing and classification (Minemoto et al., 2016, 2017;
Castro and Valle, 2017a; Chen et al., 2017; Shang and Hirose, 2014). Furthermore, quaternion-
valued outperformed their corresponding real-valued models in many of the aforementioned

applications.

In the context of recurrent networks and associative memories, research on quaternion-
valued Hopfield neural network dates from late 2000s (Isokawa et al., 2007, 2008b,a). Precisely,
based on the works of Jankowski et al. (1996), Isokawa et al. introduced a quaternion-valued
multisate signum function using quantizations of the phase-angle representation of quaternions
(Isokawa et al., 2008a; Biilow, 1999). The quaternion-valued multisate signum function have
been used to define multistate Hopfield network which can be synthesized using the Hebbian
learning or the projection rule (Isokawa et al., 2008a, 2013). Unfortunately, the quaternion-valued
multistate signum function is not a B-function on the quaternions with the natural conjugation

de Castro and Valle (2020). Therefore, we cannot ensure the stability of a quaternion-valued

Chapter 3. Hypercomplex-Valued Models 69

Hopfield network based on the quaternion-valued multistate signum function. In fact, there are
simple examples in which this network does not come to rest at an equilibrium (Valle and Castro,
2018). The continuous-valued and the twin-multistate activation functions provide alternatives to
define stable quaternion-valued Hopfield neural networks (Valle, 2014b; Valle and Castro, 2018;
Kobayashi, 2016b, 2017b).

From the Cauchy-Schwartz inequality, one can show that the continuous-valued
activation function o defined in (2.7) is a B-function in the set of quaternions with the natural
conjugation. From Theorem 3.1, and in accordance with Valle (2018), the sequence produced by a
quaternion-valued RCNN with the continuous-valued activation function o is always convergent.
The storage capacity and noise tolerance of the continuous-valued quaternionic ECNN have
been investigated in Valle (2018). Let us now turn our attention to the new quaternion-valued

multistate RCNN obtained by considering the twin-multistate activation function.

The twin-multistate activation function, introduced by Kobayashi (2017a), is defined
using the complex-valued multistate signum function given by (1.21). Precisely, from the identity

ij = k, we can write a quaternion as

q = (g0 + @i) + (g2 + q3i)j = 20 + 21, (3.31)

where zp = gy + ¢1i and 2; = ¢y + ¢3i are complex numbers. Given a resolution factor K, the

twin-multistate activation function is defined by means of the equation

tsgn(q) = csgn(zp) + csgn(z1)j, (3.32)
for all ¢ = zp + 21j such that zp,2; € D, where D is the domain of the complex-valued

multistate signum function defined by (1.19). Note that the domain D, and codomain S; of the

twin-multistate activation function tsgn are respectively the subset of quaternions
D, ={q =20+ z1j : 20,21 € D}, (3.33)

and

S = {s = wo + wij : wy, w; € S}, (3.34)
where S is the set of complex numbers defined by (1.20). It is not hard to show that S, is compact.
Furthermore, tsgn is a B-function on the quaternions with the natural conjugation. In fact, using
(3.31), we can express the quaternion-valued symmetric bilinear form Bg as the sum of the
complex-valued symmetric bilinear form B¢ as follows for any quaternions ¢ = 2y + z1j and
p = wo + wij:

Bo(q,s) = Be(zo, wo) + Be(z1, wy). (3.35)
Since csgn is a B-function on the complex-numbers with the natural conjugation, we obatin the

following inequality for all ¢ = zy + z1j € D, and s = wy + wij € S;\{tsgn(q)}:
Bo(tsgn(q), q) = Be(esgn(zo), z0) + Be(csgn(z1), 21) (3.36)
> Be(wo, 20) + Be(ws, 21) (3.37)
= Bg(s, q). (3.38)

Chapter 3. Hypercomplex-Valued Models

70

From Theorem 3.1, we conclude that quaternion-valued RCNNs with twin-multistate activation

functions always settle at a stationary state. The following example and computational experiment
confirm this remark.

Example 4. Using a resolution factor K = 4, we obtain the set

Sy ={xl+j+l +k +it]j +i+k} (3.39)

Let us consider the fundamental memory set

U={u'=1-k, v'=i+j uv’=-i+j}. (3.40)

We synthesized the quaternion-valued multistate ECNN designed for the storage and recall of the

Sfundamental memory set U given by (3.40). Like the previous experiment, we used o = 1 and
B = 1. In this simple example the update mode is irrelevant because the network has a single

state neuron. Moreover, the dynamic of this quaternion-valued multistate ECNN is identical to
the sychronous complex-valued multistate neural network depicted on Figure 13a).

Quaternion-valued Multistate ECNN

0.0 1 g — —8— Synchronous
* -©- Asynchronous
—2.5 1 S —— Synchronous
\"‘ -E- Asynchronous
—5.0 A t‘, —¥— Synchronous
LY
i —¥- Asynchronous
_ By
-7.5 u;
iy
5)
5 —10.0 1 5
c
w ‘1
~12.5 5
[
—15.0 A1
—17.5 A
—20.0 A |
0 1 2 3 4 5 6

Figure 18 — Evolution of the energy of the quaternion-valued multistate ECNN designed for the

storage of P = 160 uniformly generated fundamental memories of length N = 100
and K = 16. The curves marked by “e”

° and 6‘1:79’ 46.” and “D”’ as Well aS [I3A)

v’ and
“V” refer to pairs of ECNNSs that differ only from the update mode.

Experiment 3. We synthesized a quaternion-valued multistate ECNN designed for the storage
and recall of randomly generated fundamental memory sets U = {u',u? } < DN, where

Chapter 3. Hypercomplex-Valued Models 71

N = 100 and P = 160. In this experiment, we considered o = 10/(2N), B = ¢, and
K = 16. Furthermore, since the set D; is dense on Q, we refrained to check the condition
a;(t) € Dy in our computational implementation. Figure 18 shows the evolution of the energy
of the quaternion-valued multistate ECNN using synchronous and asynchronous updates. Note
that the energy always decreases until the networks settle at a stationary state. Like the previous
hypercomplex-valued ECNN models, the computational implementation of the synchronous

quaternion-valued multistate ECNN is usually faster than the asynchronous version.

3.5.2.2 Hypercomplex-valued RCNNs on Cayley-Dickson Algebras

Complex numbers, quaternions, and octonions are instance of Cayley-Dickson
algebras. Cayley-Dickson algebras are hypercomplex number systems of dimension 2* in which
the product and the conjugation (reverse involution) are defined recursively as follows: First, let
Ag denote the real number system. Given a Cayley-Dickson algebra Ay, the next algebra A4
comprises all pairs (x,y) € Ay x Ay with the component-wise addition, the conjugation given
by

(z,y) = (&, —y), (3.41)

and the product defined by

(x1,y1)(22,92) = (2122 — Y2U1, T1Y2 + TaY1), (3.42)

for all (z1,y1), (z2,y2) € Ags1. The Cayley-Dickson algebras A;, Ay, and A3 coincide respec-
tively with the complex numbers, quaternions, and octonions. The symmetric bilinear form

B: A, x Ay — Ris given by
Bp,q) = Y, pia (3.43)
j=1

forall p = po + priy + ... + ppin € Ag and ¢ = qo + @iy + . . . + quin € Ay, Where n = 28 — 1.
Note that the symmetric bilinear form B given by (3.43) corresponds to the inner product between
p= (po,---,pn) and ¢ = (qo, - - -, ¢). As a consequence, Cayley-Dickson algebras enjoy many
properties from Euclidean spaces, including the Cauchy-Schwarz inequality. On the downside,
the Cayley-Dickson algebras are non-commutative for £ > 2. Thus, particular attention must
be given to the order of the terms in (3.42). Furthermore, Cayley-Dickson algebras are non-
associative for £ > 3. As a consequence, in contrast to complex numbers and quaternions, the

product defined by (3.42) cannot be represented by matrix operations for k£ > 3.

The continuous-valued function ¢ given by (2.7) is a B-function in any Cayley-

Dickson algebra Ay, with |p| = Zp? for all p = po + pris + ... + Ppin, n = 2¥ — 1. From
j=1
Theorem 3.1, hypercomplex-valued RCNNs with the continuous-valued function o always settle

at an equilibrium synchronously as well as asynchronously. This result generalizes the stability
analysis of the complex-valued and quaternion-valued RCNNSs introduced in Valle’s works (Valle,
2014a, 2018).

Chapter 3. Hypercomplex-Valued Models 72

Apart from the continuous-valued RCNN:Ss, the split sign function is also a B-function
in Cayley-Dickson algebras (de Castro and Valle, 2020). The split sign function sgn : Dy — S
is defined by means of the following equation for all p = py + p1i; + ... + p,i, € Ax:

sgn(p) = sgn(po) + sgn(p1)is + ... + sgn(p,)i, (3.44)
where
Dy ={pe A :pop1...pn # 0}, (3.45)
and
S;={pe Ay :pje{-1+1},Vji=0,1,... ,n}. (3.46)

From Theorem 3.1, the sequence produced by hypercomplex-valued RCNNs with ¢ = sgn are
all convergent using synchronous and asynchronous update mode. The following experiment

confirms this remark.

Experiment 4. As an illustrative example of a hypercomplex-valued RCNN on Cayley-Dickson
algebra, let us consider an octonion-valued ECNN with the split sign activation function. Pre-
cisely, we synthesized octonion-valued ECNNs designed for the storage and recall of fundamental
memory sets U = {u', ... u’"} € SN, where S, is given by (3.46), with N = 100 and P = 160.
In this experiment, we adopted the parameters o = 10/(8N) and = ¢~ *°. The fundamen-
tal memories as well as the initial states have been generated using an uniform distribution,
that is, the entries uf = u§0 + uflil +...+ u§7i7 of the fundamental memories are such that
Pr[uf;, = —1] = Pr[u§; = +1] = 1/2forall§ = 1,...,P,i=1,....N,and j = 0,1,...,T.
Figure 19 shows the evolution of the energy of some octonion-valued ECNN models using
both synchronous and asynchronous update. As expected, using both update modes, the energy

decreases until the network settles at a stationary state.

Chapter 3. Hypercomplex-Valued Models 73

Octonion-valued ECNN with split sign activation function

-10 \
_20 -
_30 .
P
2
5 —40 A
c
L
_50 .

—8— Synchronous
—60 1 =©= Asynchronous
—— Synchronous
—70 1 -H- Asynchronous
—%¥— Synchronous
—80 1 =¥~ Asynchronous

0 1 2

Figure 19 — Evolution of the energy of the octonion-valued ECNN with the split sign function
designed for the storage of P = 160 uniformly generated fundamental memories

of length NV = 100. The curves marked by “e” and “o”, “I” and “0”, as well as “v
and “V” refer to pairs of ECNNSs that differ only from the update mode.

Chapter 3. Hypercomplex-Valued Models 74

3.5.3 HRCNNs Image Experiments

In the previous section, we provided several examples of hypercomplex-valued
ECNNSs and, by means of simple computational experiments, we validated Theorem 3.1. Let us
now compare the noise tolerance of the hypercomplex-valued ECNNs designed for the storage

and recall of gray-scale images.

3.5.3.1 Storage and Recall of Gray-Scale Images

The CIFAR dataset contain thousands color images of size 32 x 32. We randomly
selected P = 200 images from the CIFAR dataset, converted them to gray-scale images, and
encoded them in an appropriate manner as hypercomplex-valued vectors. Precisely, we encoded
the gray-scale images into hypercomplex-valued vectors as follows where = € {0, 1,. .., 255}

denotes a gray-scale pixel value:

* Bipolar: Using the binary representation b, ...bg, a gray-scale pixel value x can be
associated to an array [2b; — 1,...,2bg—1] € {—1, +1}5. Therefore, a gray-scale image of
size 32 x 32 can be converted into a bipolar vector of length N, = 8192 by concatenating

all 8-dimensional bipolar arrays.

* Complex-valued multistate: Using a resolution factor KX = 256, a gray-scale value x €
{0,...,255} yields a complex number z € S, where S is the set given by (1.20), by
means of the equation z = > Asa consequence, a gray-scale image of size 32 x 32

corresponds to a complex-valued vector in S™¥°, where N, = 1024.

* Quaternion-valued multistate: The binary representation b; . ..bs of z € {0,1,...,255}
allow us to define integers 1 = 8by + 4b3 + 205 + by and w9 = 8bg + 4b;7 + 2bg + bs. Using
a resolution factor K = 16, the equation g = ¢*™1V/K 4 ¢2m@2V/Kj yields a quaternion in

the set S; given by (3.34). In this way, a gray-scale image of size 32 x 32 corresponds to a

quaternion-valued vector in StN ?, where N, = 1024.

* Octonion-valued: Using the binary representation b; . .. bg of an integer z € {0, ..., 255},
the equation p = (2by —1)+(2b; —1)i; +. ..+ (2bs—1)iy yields an octonion p € S, where
S is given by (3.46). As a consequence, a gray-scale image of size 32 x 32 corresponds

to an octonion-valued vector in S, where N, = 1024.

The P = 200 hypercomplex-valued vectors have been stored in bipolar, complex-
valued, quaternion-valued, and octonion-valued ECNN models. The parameters used in this
experiment can be found in Table 3. Furthermore, we introduced Gaussian noise into one of the
selected images and, in a similar fashion, we converted the corrupted image into a hypercomplex-
valued vector which have been fed as input to the hypercomplex-valued ECNNs. Figure 20

depicts a gray-scale image from the CIFAR dataset, its corresponding version corrupted by

Chapter 3. Hypercomplex-Valued Models 75

Table 3 — Parameters of the hypercomplex-valued ECNN models designed for the storage and
recall of CIFAR images where N, = 8192 and N, = N, = N, = 1024.

| | Bipolar | Complex | Quaternion | Octonion ||

a | 20/(Ny) | 20/N, 20/(2N,) | 20/(8N,)
3 o~ 20 o~ 20 o~ 20 020
K — 256 16 —
a) Original image b) Corrupted image ¢) Bipolar

-

d) Complex-valued e) Quaternion-valued f) Octonion-valued

[

10

154

20

254

30

Figure 20 — a) Original (undistorted) gray-scale image, b) input image corrupted by Gaussian
noise with standard variation 100, images retrieved by c¢) bipolar ECNN, d) complex-
valued multistate ECNN with K = 246, e) quaternion-valued multistate ECNN with
K = 16, and split-sign octonion-valued ECNN using asynchronous update.

Gaussian noise with standard variation 100, and the images retrieved by the hypercomplex-
valued ECNNS5 using asynchronous update. Note that the complex-valued and quaternion-valued
multistate ECNN succeeded in the retrieval of the original horse image. In contrast, the bipolar
and octonion-valued models produced a different image as output; they failed to retrieve the

undistorted horse image.

Let us now compare the noise tolerance of the four synchronous hypercomplex-
valued ECNNss designed for the storage and recall of images from the CIFAR dataset. To this
end, we randomly selected P = 200 images and corrupted one of them with Gaussian noise
with several different standard variation. We repeated the experiment 100 times and computed

the probability of successful recall of the original image. Figure 21 depicts the outcome of

Chapter 3. Hypercomplex-Valued Models 76

Hypercomplex-valued ECNNs

1.0 A
0.8 A
3
2 0.6 - \
i
o —A— Bipolar (Synchronous) 0
n =/A\= Bipolar (Asynchronous)
041 Complex (Synchronous)
Complex (Asynchronous)
=l Quaternion (Synchronous)
0.2 4+ —0O-= Quaternion (Asynchronous)
—%¥— Octonion (Synchronous)
=V~ Octonion (Asynchronous)

20 40 60 80 100 120 140
Standard Deviation of Gaussian Noise

Figure 21 — Probability of successful recall by the standard variation of Gaussian noise intro-
duced into the input image.

this experiment using both synchronous and asynchronous update. Note that the quaternion-
valued model yielded the largest noise tolerance among the four hypercomplex-valued ECNNs.
Furthermore, the asynchrounous update yielded a probability of successful recall larger than
the synchronous update. The second largest noise tolerance was produced by the complex-
valued ECNN model using asynchronous update. Finally, the bipolar and the octonion-valued
ECNN coincide using synchronous update. Also, there is no significant difference between the
bipolar and octonion-valued models synchronous and asynchronous update modes. Concluding,
this experiment reveals the potential application of the new hypercomplex-valued ECNNs as

associative memories designed for the storage and recall of gray-scale images.

3.5.4 HRPNNs synthetic experiments

Example 5. In Figure 22 we show the dynamical behavior of the complex-valued multistate
EPNN with o« = 3 = 1, considering the fundamental memory set U given by (3.30), where
S = {1,i,—1, —i} is the set given by (1.20). Note that, all the fundamental memories are fixed
points of the model, both in synchronous and asynchronous update mode. However, this model

has more spurious memories (9th and 16th states) than the complex-valued multistate RCNN

Chapter 3. Hypercomplex-Valued Models 77

under the same conditions (see Figure 13).
a) Synchronous update mode
O ORONORORONO,
b) Asynchronous update mode
g
OO © O®
Figure 22 — Dynamic of the complex-valued multistate EPNN with @ = 3 = 1 using a) syn-

chronous and b) asynchronous update modes.

Example 6. Considering the fundamental memory setU given by (3.30), where S = {1,i,—1, —i}
is the set given by (1.20) and i denotes the hyperbolic unit, i.e., i* = 1. We synthesized hyperbolic-
valued mustistate EPNN models designed for the storage of the fundamental memory set U, using
o = 1 and 8 = 1. In this case, using either synchronous or asynchronous update, the model does
not cycle between the 5th and 13th states, in comparison with the hyperbolic complex-valued
ECNN whose dynamics is shown in Figure 15. An initial explanation for this behavior is the

ONORO
b) Asynchronous update mode
OJOROROXOXO
® ® @ ©

Figure 23 — Dynamic of the hyperbolic-valued multistate RPNN with o = [= 1 using a)
synchronous and b) asynchronous update modes.

better choice of weights of the output layer of the EPNN model.

a) Synchronous update mode

Example 7. We synthesize a hyperbolic-valued EPNN designed for the storage of the fundamen-
tal memory set U given by (3.30) using o = [= 1 and the activation function csgn. Figure 24
depicts the entire dynamic of the hyperbolic-valued EPNN using synchronous and asynchronous

Chapter 3. Hypercomplex-Valued Models 78

update mode. In contrast to the model in Examples 2 and 6 , the hyperbolic-valued EPNN always
settle at an equilibrium state in asynchronous update mode, creating one spurious memory (9th
state). In the synchronous case, the model fails storing all the items and may also cycle between
the 5th and 13th states.

a) Synchronous update mode

b) Asynchronous update mode
Figure 24 — Dynamic of the hyperbolic-valued EPNN with & = = 1 and the activation function
csgn(p) = csgn(p) using a) synchronous and b) asynchronous update modes.

Moreover, we performed different ECNN and EPNN models storing the number of
iterations until they converge. We plot the number of iterations to observe the distributions of

convergence velocity for each model.

Example 8. We synthesize complex-valued multistate EPNN and ECNN models for the stor-
age and recall of fundamental memories U = {u’,...,u"}, where N = 200 and P €
{25, 50, 100, 200}, using o = 1/N,2/N,5/N,10/N and 3 = e *,e 2 e~ e ° correspond-
ingly to the o values. Furthermore, we adopt a resolution factor K = 256 and randomly
generate the components of a fundamental memory. The corrupted input vector is obtained by
replacing, with probability pr € [0.2;0.9], a component of a fundamental memory u* by an
element from S taken at random with uniform probability. We repeat the simulation 50 times for
each model. Figure 25 shows the histogram of the number of iterations performed by the models
until convergence is reached. The EPNN model has converged in an average of 7.59 iterations
and the ECNN an average of 10.52 iterations in this particular experiment. The distribution for
EPNN model is concentrated in lower values than the ECNN model, this means that EPNN tend

to converge faster than ECNN for different parameter conditions and dimensions.

Example 9. Analogously to the complex-valued case, we synthesize quaternion-valued mul-
tistate EPNN and ECNN models for the storage and recall of fundamental memories U =
{u',...,u”}, where N = 200 and P e {25,50, 100,200}, using o = 1/N,2/N,5/N,10/N
and B = e ', e, e7° e correspondingly to the o values. Besides, we adopt a resolution

factor K = 16 and randomly generate the components of a fundamental memory. The corrupted

Chapter 3. Hypercomplex-Valued Models 79

EPNN
600 A ECNN

500 A

400 A

300 4

Total of iterations

200 4

100 4

0 T T T T T
0 5 10 15 20 25 30

Number of iterations until convergence

Figure 25 — Histogram of the numbers of iterations for complex-valued multi-state ECNN
and EPNN models in synchronous update mode, using N = 200 and P €
{25,50, 100, 200}, using & = 1/N,2/N,5/N,10/N and 3 = e, e %, e7° e 1°,
and a resolution factor KX = 256. The corrupted input vector is obtained by replac-
ing, with probability pr € [0.2;0.9], a component of a fundamental memory u* by
an element from S taken at random with uniform probability.

input vector is obtained by replacing, with probability pr € [0.2;0.9], a component of a funda-
mental memory u' by an element from S taken at random with uniform probability. We repeat the
simulations totalizing 50 iteration numbers for each model. Figure 26 shows the distribution of
the number of iterations performed by the models until convergence is reached. The distribution
shows that the EPNN model tends to converge faster than the ECNN model under the same
parameter conditions. Moreover, the EPNN model has converged in an average of 3.63 iterations

and the ECNN converged in an average of 5.75 iterations in this particular experiment.

3.5.5 HRPNNs Image Experiments

In Section 3.5.3, we addressed the noise tolerance of the hypercomplex-valued
ECNNSs designed for the storage and recall of gray-scale images. Now, we repeat the same
experiment using the HRPNNs. Figure 27 depicts a gray-scale image from the CIFAR dataset,
its corresponding version corrupted by Gaussian noise with a standard variation of 100. For
each hypercomplex-valued EPNNs, we used asynchronous update mode. Note that the complex-
valued, quaternion-valued, and octonion multistate EPNN succeeded in retrieving the original
horse image. In contrast, the bipolar model produced a different image as output, failing to

retrieve the undistorted horse image.

Analogously to the ECNN, we store P = 200 hypercomplex-valued vectors in

Chapter 3. Hypercomplex-Valued Models 80

EPNN
ECNN

1600 -

1400 A

1200 A

1000 A

800 -

Total of iterations

600 -

400 A

200 4

0 T T T T T
0 5 10 15 20 25 30

Number of iterations until convergence

Figure 26 — Distribution of the numbers of iterations for the quaternion-valued multi-state
ECNN and EPNN models in synchronous update mode, using N = 200 and P €
{25,50, 100, 200}, using & = 1/N,2/N,5/N,10/N and 3 = e, e %, e7° e 1°,
and resolution factor &K = 16. The corrupted input vector is obtained by replacing,
with probability pr € [0.2;0.9], a component of a fundamental memory u' by an
element from S taken at random with uniform probability.

bipolar, complex-valued, quaternion-valued, and octonion-valued EPNN models. The parameters
used in this experiment can also be found in Table 3. Figure 28 depicts the outcome of this
experiment using only synchronous update mode. Note that the quaternion-valued model yielded
the most considerable noise tolerance among the four hypercomplex-valued EPNNSs. It also
outperformed the ECNN models in synchronous update mode. Moreover, the complex-valued
and the octonion-valued EPNN are superior to their corresponding ECNN. There is no signif-
icant difference between the bipolar model and the octonion-valued ECNN, all operating in
synchronous update mode. Concluding, this experiment reveals the potential application of the
new hypercomplex-valued EPNN as associative memories designed for the storage and recall of

gray-scale images.

Chapter 3. Hypercomplex-Valued Models 81

a) Original image b) Corrupted image ¢) Bipolar

104
15

204

25

30

0 5 10 15 20 25 30

d) Complex-valued e) Quaternion-valued f) Octonion-valued

Figure 27 — a) Original (undistorted) gray-scale image, b) input image corrupted by Gaussian
noise with standard variation 100, retrieved images by c) bipolar EPNN, d) complex-
valued multistate EPNN with K = 246, e) quaternion-valued multistate EPNN with
K = 16, and split-sign octonion-valued EPNN using asynchronous update.

Chapter 3. Hypercomplex-Valued Models 82

Hypercomplex-valued Synchronous Models

1.0 1
v Bo
o}
0.8
9
& 0.6
%))
0
(]
g —A— Bipolar ECNN
2 Complex ECNN
0.4 - Quaternion ECNN
=¥~ Octonion ECNN
-0O- Bipolar EPNN
0.2 - Complex EPNN
—=O- Quaternion EPNN
=0O= Octonion EPNN

0 20 40 60 80 100 120 140
Standard Deviation of Gaussian Noise

Figure 28 — Probability of successful recall by the standard variation of Gaussian noise intro-
duced into the input image, using ECNN and EPNN models.

83

4 Ensemble of Classifiers Combined
Using RCNNs

An ensemble method should cleverly combine a group of base classifiers to yield an
improved classifier. The majority vote is an example of a methodology used to combine classifiers
in an ensemble method. In this chapter, we propose a new way to combine classifiers using
an associative memory model. Precisely, we introduce ensemble methods based on recurrent
correlation associative memories (RCNNs) for binary and multi-class classification problems. For
the binary case, we show that an RCNN-based ensemble classifier can be viewed as a majority
vote classifier whose weights depend on the similarity between the base classifiers and the
resulting ensemble method. Moreover, the RCNN-based ensemble combines the classifiers using
a recurrent scheme. Computational experiments confirm the potential application of the RCNN-
based ensemble method for binary classification problems. Finally, for multi-class classification
problems, we use real, complex, and quaternion-valued RCNN models, obtaining comparable but
lower performance than the methods from the literature. We discuss the results and the possible

issues related to low performance of the HRCNN-based enemble classifier.

4.1 Introduction

Inspired by the idea that multiple opinions are crucial before making a final decision,
ensemble methods make predictions by consulting multiple different predictors (Ponti Jr, 2011).
Apart from their similarity with some natural decision-making methodologies, ensemble methods
have a strong statistical background. Namely, ensemble methods aim to reduce the variance —
thus increasing the accuracy — by combining multiple predictors. Due to their versatility and
effectiveness, ensemble methods have been successfully applied to a wide range of problems

including classification, regression, and feature selection.

Although there is no rigorous definition, an ensemble classifier can be conceived as
a group of base classifiers, also called weak classifiers (Kuncheva, 2014). As to the construction
of an ensemble classifier, we must take into account the diversity of the base classifiers and the
rule used to combine them (Kuncheva, 2014; Polikar, 2012). There are a plethora of ensemble
methods in the literature, including bagging, pasting, random subspace, boosting, and stacking
(Breiman, 1996; Ho, 1998; Zhang and Ma, 2012; Géron, 2019). For example, a bagging ensemble
classifier is obtained by training copies of a single base classifier using different subsets of the
training set (Breiman, 1996). Similarly, a random subspace classifier is obtained by training
copies of a classifier using different subsets of features (Ho, 1998). In both bagging and random

subspace ensembles, the base classifiers are then combined using a voting scheme. Random

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 84

forest is a successful example of an ensemble of decision tree classifiers trained using both

bagging and random subspace ensemble ideas (Breiman, 2001).

In contrast to the traditional majority voting, we propose to combine the base
classifiers using an associative memory. At this point, we would like to remark that associative
memories have previously been used by Kultur et al. (2009) to improve the performance of an
ensemble method. Apart from addressing a regression problem, Kultur et al. use an associative
memory in parallel to an ensemble of multi-layer perceptrons. The resulting model is called
ensemble of neural networks with associative memory (ENNA). Our approach, in contrast, uses
an associative memory to combine the base classifiers. Besides, Kultur et al. (2009) associate
patterns using the k-nearest neighbor algorithm which is formally a non-parametric method used
for classification or regression. Differently, we use recurrent correlation associative memories,

which are models conceived to implement associative memories.

4.2 Ensemble of Binary Classifiers

An ensemble classifier combines a group of single classifiers to provide better
classification accuracy than a single one (Ponti Jr, 2011; Zhang and Ma, 2012; Kuncheva,
2014). Although this approach is partially inspired by the idea that multiple opinions are crucial
before making a final decision, ensemble classifiers have a strong statistical background. In fact,
ensemble classifiers reduce the variance combining the base classifiers. Furthermore, when the
amount of training data available is too small compared to the size of the hypothesis space, the
ensemble classifier mixes the base classifiers reducing the risk of choosing the wrong single
classifier (Kittler and Roli, 2003).

Formally, let 7 = {(¢1,dy), ..., (ta, dar)} be a training set where t; € X and d; € C
are respectively the feature sample and the class label of the ith training pair. Here, X’ denotes
the feature space and C represents the set of all class labels. In a binary classification problem,
we can identify C with B = {—1, +1}. Moreover, let Ay, ho, . . ., hp : X — C be base classifiers

’ ’

trained using the whole or part of the training set 7.

Usually, the base classifiers are chosen according to their accuracy and diversity. On
the one hand, an accurate classifier is one that has a better error rate than random guessing on
new instances. On the other hand, two classifiers are diverse if they make different errors on new
instances (Hansen and Salamon, 1990; Kittler and Roli, 2003).

Bagging and random subspace ensembles are examples of techniques that can be
used to ensure the diversity of the base classifiers. The idea of bagging, an acronym for Bootstrap
AGGregatING, is to train copies of a certain classifier & on subsets of the training set 7 (Breiman,
1996). The subsets are obtained by sampling the training 7 with replacement, a methodology
known as bootstrap sampling (Kuncheva, 2014). In a similar fashion, random subspace ensembles

are obtained by training copies of a certain classifier /4 using different subsets of the feature space

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 85

(Ho, 1998). Random forest, which is defined as an ensemble of decision tree classifiers, is an
example of an ensemble classifier that combines both bagging and random subspace techniques
(Breiman, 2001).

Another important issue that must be addressed in the design of an ensemble clas-
sifier is how to combine the base classifiers. In the following, we review the majority voting
methodology — one of the oldest and widely used combination scheme. The methodology based

on associative memories is introduced and discussed subsequently.

4.2.1 Majority Voting Classifier

As remarked by Kuncheva (2014), majority voting is one of the oldest strategies
for decision making. In a wide sense, a majority voting classifier yields the class label with the

highest number of occurrences among the base classifiers (Van Erp et al., 2002; Géron, 2019).

Formally, let Ay, ho, ..., hp : X — C be the base classifiers. The majority voting
classifier, also called hard voting classifier and denoted by H,, : X — C, is defined by means of

the equation

P
H,(x) = argmax » weZ[he(x) =d], Vxe X, 4.1)
deC £=1
where wy, ..., wp are the weights of the base classifiers and Z is the indicator function, that is,
L, he(x) =d,
IThe(x) = d] = (4.2)

0, otherwise.

When C = {—1, +1}, the majority voting ensemble classifier given by (4.1) can be written
alternatively as

P
Hj(x) = sgn (Z wghg(x)> , VxedX, (4.3)
e=1

P
whenever Z wehe(x) # 0 (Ferreira and Figueiredo, 2012).
e=1

4.3 Ensemble Based on Bipolar Associative Memories

Now, let us introduce the ensemble classifiers based on the RCNNs models. In
analogy to the majority voting ensemble classifier, the RCNNs-based ensemble classifier is
formulated using only the base classifiers hy,...,hp : X — B. Precisely, consider a training
set T ={(t;,d;):i=1,...,M} c X xBandlet X = {x3,...,x.} < X be a batch of input
samples that we want to classify. We first define the fundamental memories as follows for all
E=1,...,P:

Ut = [he(ty), ... he(tar), he(x1), ..., he(x)]" € BMTE, (4.4)

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 86

In words, the £th fundamental memory is obtained by concatenating the outputs of the {th base

classifier evaluated at the M training samples and the L input samples. Bipolar RCNNs are

synthesized using the fundamental memory set f = {ul, . u? } and it is initialized at the state
vector
2(0) = [dy,ds, ... ,dy, 0,0,...,0 7. (4.5)
~—

L—components
Note that the first A/ components of the initial state z(0) correspond to the targets in the training
set 7. The last L components of z(0) are zero, a neutral element different from the class labels.
The inital state z(0) is presented as input to the associative memory and the last L components
of the recalled vector y yield the class label of the batch of input samples X = {xy,...,x.}.In
mathematical terms, the RCNN-based ensemble classifier /1, : X — B is defined by means of

the equation
Ho(%i) = ymrvi, V%€ X, (4.6)

where y = [y, ..., Yns, Ynsets - - - Yarsr]” is the limit of the sequence {z(t)},>0 given by (1.24)
and (1.25). In order to clarify the previous explanation, let us summarize the algorithm of the
RCNN-ensemble classifier using a diagram. In Figures 29 and 30 the red color indicates training
mode and the gray color a fixed classifier. Given a training set 7 = {(t,d;), ..., (tr, dyr)} and

a batch of inputs X = {xy,...,x,} we want to classify, we proceed as follows:

1. First, we train the base classifiers, as it is shown in Figure 29. Also, we keep the desired

outputs d;’s to construct the input vector for the RCNN model.

Figure 29 — Training for the RCNN ensemble method.

2. For each trained base classifier h¢, we concatenate the values he(ty),. .., he(t,) and
he(x1), ..., he(xy) obtaining a fundamental memory u®. In Figure 30, green and cyan
colors represent the trained base classifiers’ outputs over the train data set and the samples

correspondingly.

P

3. Using the vectors u', ..., u”’, we construct the fundamental memory matrix U as it is

shown in Figure 31. Besides, we construct the input vector for the RCNN model given by

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 87

hg hg hg h§ hg h§

he(b) hilts) he(tw) (Rela)het)) o (hexr)

Figure 30 — Storing the output generated by the base classifiers over the training data 7 and the
input samples X for each he with =1,..., P.

[Bt he(t) ... he(ty) | S))
dy Y1
- hl(tM) hg(tM) : hp(tM) Z(O) _ dM y = yiljvil
hl(xl) h2(X1) : hP(Xl) ¢
: :) : 0 YM+L
i hl(*XL) hg(XL) hp(XL) | - . - -

Figure 31 — Configuration of the fundamental memory matrix U and the input vector. The colors
green and cyan match with the corresponding dimensions between the columns of
U and the input vector z(0) and the output y.

(4.5). We preserve the same colors of Figure 31 to show explicitly the dimension relations

to construct U and z(0).

4. The output vector y contains the classes obtained by using the RCNN model. The last L

components 4,41, - - -, Ya+ are the output classes for the x; ..., x;, input examples.

There are two hyperparameters: the exponential parameter o and the maximum
iteration number for the RCNN model. The first parameter can be adjusted using an optimization
algorithm or set it as a fixed value. We set two different maximum number of iterations in the
computational experiments: 1 or 10 iterations. The stopping criterion is based on the number of
maximum iterations and the distance between consecutive state vectors z(¢) and z(¢ + 1) that is
impose ||z(t + 1) — z(t)|| < 7 with 7 = 1.e — 4.

In the following, we point out the relationship between the bipolar RCNN-based
ensemble classifier and the majority voting ensemble described by (4.3). Let y be the vector
recalled by the RCNN fed by the input z(0) given by (4.5), that is, y is a stationary state of
the RCNN. From (1.25), (1.24), and (4.4), the output of the RCNN-based ensemble classifier

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 88

satisfies
P
Ha(xi) = sgn <2 wfhf(xi)> ’ (47)
=1
where
| M+ .
— i N 5 - 1. ey P 4~
w f<M+LHyul> vE =1, (48)

From (4.7), the bipolar RCNN-based ensemble classifier can be viewed as a weighted majority
voting classifier. Furthermore, the weight w, depends on the similarity between the {th base
classifier h¢ and the ensemble classifier /. Precisely, let us define the similarity between two

binary classifiers /, h : X — B on a set of samples .S by means of the equation

Sim(H,h) = ﬁw) ;Sz[h(s) = H(s)]. (4.9)

Using (4.9), we can state the following theorem:

Theorem 4.1. The weights of the RCNN-based ensemble classifier given by (4.7) satisfies the
following identities for all ¢ = 1,..., P:

we = f(1—2-8im(H,, he)), (4.10)
where the similarity in (4.10) is evaluated on the union of all training and input samples, that is,

OI’ZSZXUTZ{tl,...,tM}U{Xl,...,XL}.

Proof. Since we are considering a binary classification problem, the similarity between the
ensemble H, and the base classifier he on S = X U T, with N = Card(S) = M + L, satisfies

the following identities:

Sin(H,h) = 1 3 Tlh(s) # Hols)] =1 103" (hls0) ~ Ha(s)’

Equivalently, we have

1
Card(S) ;H(s)h(s) —1—2-Sim(H, h). (4.11)

Now, from (2.22), (4.6), and (4.11), we obtain the following identities:

N
we = f (%Zyﬁ) = f(1—2-Sim(H,, he)),

=1

which concludes the proof. U

Theorem 4.1 shows that the RCNN-based ensemble classifier is a majority voting
classifier whose weights depend on the similarity between the base classifiers and the ensemble
itself. In fact, in view of the dynamic nature of the RCNN model, 7, is obtained by a recurrent
consult and vote scheme. Moreover, at the first step, the weights depend on the accuracy of the

base classifiers.

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 89

4.3.1 Computational Experiments

In this section, we perform some computational experiments to evaluate the perfor-
mance of the proposed RCNN-based ensemble classifiers for binary classification tasks. Precisely,
we considered the RCNN-based ensembles obtained using the identity and the exponential as the
activation function f. The parameter « of the exponential activation function has been either set
to o = 1 or it has been determined using a grid search on the set {10_2, 1071,0.5,1, 5,10, 20, 50}
with 10-fold cross-validation on the training set. The RCNN-based ensemble classifiers have
been compared with AdaBoost, gradient boosting, and random forest ensemble classifiers, all

available at the python’s scikit-learn API (sklearn) (Pedregosa et al., 2011).

First of all, we trained AdaBoost and gradient boosting ensemble classifiers using
the default parameters of sklearn. Recall that boosting ensemble classifiers are developed
incrementally by adding base classifiers to reduce the number of misclassified samples (Kuncheva,
2014). Also, we trained the random forest classifier with 30 base classifiers (P = 30) (Breiman,
2001). Recall that the base classifiers of the random forest are decision trees obtained using
bagging and random subspace techniques (Breiman, 1996; Ho, 1998). Then, we used the base
classifiers from the trained random forest ensemble to define the RCNN-based ensemble. In other
words, the same base classifiers hq, ..., hsg are used in the random forest and the RCNN-based
classifiers. The difference between the two ensemble classifiers resides in the combining rule.
Recall that the random forest combines the base classifiers using majority voting. From the
computational point of view, training the random forest and the RCNN-ensemble classifiers
required similar resources. Moreover, despite the consult and vote scheme of the RCNN-based
ensemble, they have not been significantly more expensive than the random forest classifier. The
grid search used to fine-tune the parameter « of the exponential RCNN-based ensemble is the

major computational burden in this computational experiment.

For the comparison of the ensemble classifiers, we considered 28 binary classification
problems from the OpenML repository (Vanschoren et al., 2013). These binary classification
problems can be obtained using the command fetch_openml from sklearn. We would
like to point out that missing data has been handled before splitting the data set into training
and test sets using the command SimpleImputer from sklearn. Also, we pre-processed
the data using the StandardScaler transform. Therefore, each feature is normalized by
subtracting the mean and dividing by the standard deviation, both computed using only the
training set. Furthermore, since some data sets are unbalanced, we used the F-measure to evaluate
quantitatively the performance of a certain classifier. Table 4 shows the mean and the standard
deviation of the F-measure obtained from the ensemble classifiers using stratified 10-fold cross-
validation. The largest F-measures for each data set have been typed using boldface. Note
that the exponential RCNN-based ensemble classifier with grid search produced the largest
F-measures in 11 of the 28 data sets. In particular, the exponential RCNN with grid search

produced outstanding F-measures on the “Monks-2” and “Egg-Eye-State” data sets. For a better

Chapter 4. Ensemble of Classifiers Combined Using RCNNs

90

Table 4 — Mean and standard deviation of the F-measures produced by ensemble classifiers using
stratified 10-fold cross-validation.

Gradient Random Identity Exponential | Exp. RCNN

Data set AdaBoost Boosting Forest RCNN RCNN + Grid Search
Arsene 84.0 £5.9 86.2+76 |81.5£89 |83.8+£84 |838£84 85.2 £10.2
Australian 82.1 £34 85.8+38 |[8.4+£34 |8.3+£29 |853+29 85.0+2.9
Banana 67.9 £2.1 88.1£1.6 88.0+13 |[882+1.2 |8.2+1.2 87.2+1.2
Banknote 996 +£04 |995+£09 99.3£0.7 [992£0.7 |99.2%+0.7 98.94+0.9
Blood Transfusion 43.0+131 |379£11.2 |323£104 |33.3£10.6 | 33.3+£10.6 | 32.5£8.2
Breast Cancer Wisconsin || 94.7 + 2.0 95.2+24 949+£34 [954+29 | 95.1+3.3 95.2+4.2
Chess 96.5 £ 1.1 97.9 £0.8 99.0£0.5 [99.0£0.6 |99.0+0.6 99.2+04
Colic 87.1£64 86.7+ 74 88.7+57 |88.6+54 |88.6+54 88.9+4.6
Credit Approval 86.4 £ 2.9 86.9 £ 3.2 88.4+28 |884+25|88.4+25 |8.3+23
Credit-g 82.3 £2.5 84.2 £28 83.7+24 | 843+22 |84.3+22 |839+18
Cylinder Bands 783 £48 84.0+4.38 83.0+6.6 |833+64 |833+64 87.0+4.2
Diabetes 63.1 £5.2 65.1 £6.5 63.9+88 |656+82|656+82 |624+78
Egg-Eye-State 70.1 +£1.3 78.0+£0.9 91.54+0.7 |91.8+08 |91.8+0.8 929+ 0.8
Haberman 354+95 [308£142 |274£134]306%£9.6 |30.6x9.6 349+ 129
Hill-Valley 40.9 £ 54 529473 54.9+£46 |56.6+£3.8 |56.6+4.0 59.1 £6.2
Internet Advertisements || 98.0 + 0.3 98.6 £ 0.3 988 +£04 | 98.7£04 |98.7+£04 98.7+£0.5
Ionosphere 943 £ 1.7 9444+ 2.0 942425 |940+£25 |94.0£25 94.7+2.7
MOFN-3-7-10 100.0£0.0 | 100.0+0.0 | 99.8+0.2 |99.7+0.3 |99.7+0.3 99.7 £ 0.5
Monks-2 0.0 £0.0 69.3 £ 8.7 93.1+£33 [935£33 |93.5+3.3 98.5 +2.7
Phoneme 68.3 £ 3.0 75.4+24 84.0+30 |84.1+27 |84.1+27 85.7+2.0
Pishing Websites 944 £ 04 95.3 £ 0.5 97.5+£06 [974£0.6 |97.4+0.6 97.5+0.5
Sick 783 +£64 88.8 £3.9 8§7.5£31 [8.6£39 |8.6%3.9 89.7+ 3.6
Sonar 839+80 |81.3+6.2 81.9+ 114 |83.3+11.1|833+11.1 |832+11.1
Spambase 91.8 £ 1.5 93.14+ 1.7 942+11 [940£12 |941+1.2 94.0+ 1.2
Steel Plates Fault 100.0£0.0 | 100.0+0.0 | 99.0£0.8 |[99.2+0.6 |99.2+0.6 99.4 £0.7
Tic-Tac-Toe 84.5 £ 2.6 94.8 £ 2.1 95.6+1.2 [955+£1.2 |95.5+1.2 965+ 1.5
Titanic 588 4.3 |538+44 53.6+42 |536+42 |53.6+42 53.8+44
ilpd 414+11.4 | 35.3+£15.1 |35.1+£15.8|375+16.6|37.5+16.6 |33.5+14.6

comparison of the ensemble classifiers, we followed DemsSar’s recommendations to compare
multiple classifier models using multiple data sets (DemsSar, 2006). The Friedman test rejected
the hypothesis that there is no difference between the ensemble classifiers. A visual interpretation
of the outcome of this computational experiment is provided in Figure 32 with the Hasse diagram
of the non-parametric Wilcoxon signed-rank test with a confidence level at 95% (Burda, 2013;
Weise and Chiong, 2015). In this diagram, an edge means that the classifier on the top statistically
outperformed the classifier on the bottom. The outcome of this analysis confirms that the RCNN-
based ensemble classifiers statistically outperformed the other ensemble methods: AdaBoost,

gradient boosting, and random forest.

As to the computational effort, Figure 33 shows the average time required by the
ensemble classifiers for the prediction of a batch of testing samples. Note that the most expensive
method is the identity RCNN-based ensemble classifier while the gradient boosting is the
cheapest. The exponential RCNN-based ensemble is less expensive than the AdaBoost and quite

comparable to the random forest classifier.

Finally, note from Table 4 that some problems such as the “Banknote” and the
“MOFN-3-7-10" data sets are quite easy while others such as the “Haberman” and “Hill Valey”

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 91

Exp. RCNN + Grid Search Identity RCNN Exponential RCNN
Gradient Boosting Random Forest
AdaBoost

Figure 32 — Hasse diagram of Wilcoxon signed-rank test with a confidence level at 95%.

10—1 4

>

H

" ol

Prediction Time (s)

i

10—3 .

AdaBoost 4
Gradient Boosting -
Random Forest 4
Identity RCNN -
Exponential RCNN -

Exp. RCNN + Grid Search

Figure 33 — Box-plot of the average time for prediction of batch of input samples.

are very hard. In order to circumvent the difficulties imposed by each data set, Figure 34 shows
a box-plot with the normalized F-measure values provided in Table 4. Precisely, for each data
set (i.e., each row in Table 4), we subtracted the mean and divided by the standard deviation of
the score values. The box-plot in Figure 34 confirms the good performance of the RCNN-based

ensemble classifiers, including the exponential RCNN-based ensemble classifier with a grid

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 92

2.0 A

1.5 1

1.0 1

0.5 1

_

Normalized F-score
o
o
1

AdaBoost -
Gradient Boosting -
Random Forest }_—==|_{
Identity RCNN -
Exponential RCNN -

Exp. RCNN + Grid Search - *o o }—=I—{

Figure 34 — Box-plot of the normalized F-measures produced by the ensemble classifiers.

search. Concluding, the boxplots shown on Figures 33 and 34 supports the potential application

of the RCNN models as an ensemble of classifiers for binary classification problems.

4.4 Multi-Class Ensemble Classifier

Let us extend the previous model in order to obtain a multi-class ensemble classifier.
Analogously to the RCNN-based ensemble, we study the complex-valued and quaternion-valued
extensions. We use the complex-valued multi-state ECNN, and the quaternion-valued multi-state
ECNN to extend the binary model.

Recall from Chapter 3 that the complex-valued and quaternion-valued multi-state
models yielded the best results in pattern reconstruction tasks. Despite not having a trivial
relation between the performance of AMs in pattern reconstruction context and the proposed
meta-learning voting step, we perform computational experiments to compare the multi-state

ECNN-based ensemble with two literature models: gradient boost and random forest classifiers.

On the one hand, for the complex case, we use the encoding given in Section 3.5.3
to transform the predicted classes to complex numbers, where the resolution factor K is equal

to the number of classes. Then, we implement the complex-valued multi-state ECNN using the

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 93

csgn activation function. On the other hand, for the quaternionic case, we encode the classes
de C,where C = {1,2,...,n.}, as follows:

K= [\/n*] 4.12)
Then, we compute the remainder and quotient such that
d; = quotient, - K + remainder;. (4.13)

Note that (4.13) transform the class index into two different integers with a unique representation.
The two integers, quotient, and remainder;, are transformed to complex numbers by using
the equations

Ziq = GQW(remainderi)i/K’ (414)

and
Zig = e27r(quotienti)i/K. (415)

Finally, taking the real and complex parts separately, we construct the quaternionic
representation ¢ = [Re {z;1}, Img(2;1), Re {22} , Img(2;2)] that yields a quaternion in the set S;
given by (3.34). Due to the nature of the transformation, note that we could have more class
representations than the number of classes for a given problem. For example, if we have 13
classes, then we have K = 4. The possible combinations of pairs (remainder, quotient) are
16, obtaining three new classes without representation. In the computational experiments section,

we explain how to deal with this problem.

Example 2. As an example for the quaternion-valued case, suppose that we have 9 classes.
Using (4.13) we obtain K = 3. Also, suppose that we have in the training step the following

real-valued fundamental memory matrix for three base classifiers:

1 47
U=12 5 8 (4.16)
3 6 9
Using (4.13), (4.14) and (4.15) we obtain the matrices of integers given by
1 11 0 1 1
R=12 2 2 and Q= |0 1 2 4.17)
0 00 1 20

where R and () are the matrices obtained from the remainder and quotients of the matrix U
module K. Then, we apply in an element-wise manner the complex transformation of section

3.5.3 obtaining

—0.5+0.866i —0.5+ 0.866i —0.5+ 0.866i
Zy=|-05-0.866i —0.5—0.866i —0.5— 0.866i |, (4.18)
1. + 0.000i 1. + 0.000i 1. + 0.000i

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 94

and
1 4 0.000i —0.5+0.8661 —0.5 — 0.8661

Ly = 1 + 0.000i —0.5+0.866i —0.5 — 0.866i |. (4.19)
—0.5+0.866i —0.5—0.866i 1.— 0.000i

Finally, we separate the real an imaginary parts of every component to create a quaternionic

matrix representation. In this example, we have the 3 x 3 quaternionic matrix

—0.5-0.866i +1j —0.5—0.866i — 0.5j + 0.866k —0.5 + 0.866i — 0.5j — 0.866k
U?=|-0.5-0.866i+1j —0.5—0.866i —0.5j + 0.866k —0.5 — 0.8661 — 0.5j — 0.866k

1—0.5j + 0.866k 1—0.5j — 0.866k 1+1j
(4.20)

4.4.1 Computational Experiments

We implement the complex-valued multi-state ECNN and quaternion-valued multi-
state ECNN to compare the classification capability against the gradient boost and random
forest ensemble classifiers, both available at the python’s scikit-learn API (sklearn)
(Pedregosa et al., 2011). Analogously, the parameter « has been determined using a grid search
on the set {107%,107*,0.5,1,5,10, 20,50} with 10-fold cross-validation on the training set.

Besides the fine-tuned «, we also used o = 1 or o« = 10.

We also used the random forest trained base classifiers to construct the HRCNN-
based ensemble classifier. We trained the random forest classifier with 30 base classifiers. For
the comparison of the multi-class ensemble classifiers, we use 24 data sets for multi-class
classification problems from the OpenML repository (Vanschoren et al., 2013). One essential
difference between the encoding in the binary case and in the multi-class case comes from the
representation space. In particular, for the quaternion-valued model, we need to handle in a
different manner the label encoding of categorical classes, due to the unseen classes that could
appear. In that case we obtain an unseen class, we transform the unseen value to a new one, that
we recognize as an unknown class. In our implementations, we used the label —1 to represent the
unknow class. When we evaluate the model, we do not consider the unknown class as a correct

classification. The complex-valued model does not suffer from this issue.

Table 5 shows the mean and the standard deviation of the kappa index obtained
from the ensemble classifiers using stratified 10-fold cross-validation. Analogously to the binary
RCNN ensemble-based model, missing data has been handled before splitting the data set into
training and test sets using the command SimpleImputer from sklearn. Also, we pre-
processed the data using the StandardScaler transform. The largest kappa index for each
data set have been typed using boldface. Note that the gradient boost and the quaternion-valued
multi-state ECNN (QvVECNN) produce the largest kappa index. Precisely, the gradient boost
method obtained 12 superior kappa index, some shared with the QVECNN with grid search. The
QVECNN obtained 11 superior results, sharing some numbers with the complex-valued ECNN,

Chapter 4. Ensemble of Classifiers Combined Using RCNNs

95

Table 5 — Mean and standard deviation of the Kappa Index produced by multi-class ensemble
classifiers using stratified 10-fold cross-validation.

CvECNN QVECNN
Data set H Gradient Boost | Random Forest | CvHNN ‘ CvECNN(1) ‘ CvECNN(10) | + Grid Search ‘ QVvECNN(1) ‘ QVvECNN(10) + Grid Search
Wine 0.975 +0.04 0.975 +0.04 0.975+0.04 | 0.975 +0.04 | 0.975 + 0.04 | 0.975 + 0.04 0.975 £ 0.04 | 0.967 £ 0.043 | 0.975 +0.04
iris 0.93 + 0.067 0.93 £ 0.067 0.93+0.067 | 0.94+0.07 |094+0.07 |094+0.07 0.93 +0.067 | 0.93 +0.082 0.93 + 0.082
DNA 0.913 +0.013 0.913 £ 0.013 0.91+0.014 | 0.91+0.013 | 0.894 +0.015 | 0.911 + 0.012 0.894 +0.015 | 0.921 +0.017 | 0.904 + 0.02
Steel Plates Fault || 0.706 + 0.037 | 0.706 + 0.037 0.623 +0.036 | 0.624 +0.036 | 0.693 +0.029 | 0.622 + 0.035 0.692 + 0.028 | 0.647 +0.034 | 0.697 + 0.034
Segment 0.967 + 0.008 0.967 + 0.008 0.945 +0.013 | 0.945 £+ 0.013 | 0.964 + 0.01 0.945 + 0.013 0.964 +0.01 | 0.951 +0.015 | 0.969 + 0.012
Synthetic control || 0.984 + 0.031 0.984 +0.031 0.952 +0.046 | 0.954 +0.045 | 0.982 £ 0.03 0.956 + 0.044 0.982+0.03 | 0.964 +0.034 | 0.988 +0.019
Cardiotocography || 1.0 + 0.0 1.0+0.0 0.997 +0.004 | 0.997 +0.004 | 1.0 + 0.0 0.997 + 0.004 1.0+0.0 0.999 +0.002 | 1.0+0.0
Balance Scale 0.695 £ 0.068 0.695 + 0.068 0.698 + 0.067 | 0.698 + 0.067 | 0.694 + 0.087 | 0.693 + 0.068 0.693 +0.088 | 0.667 + 0.055 | 0.659 + 0.058
Satimage 0.892 + 0.01 0.892 +0.01 0.837 +0.011 | 0.837 +0.012 | 0.885 + 0.012 | 0.837 + 0.012 0.885+0.012 | 0.851 + 0.007 | 0.893 + 0.008
CNAE-9 0.901 + 0.033 0.901 £ 0.033 0.83+0.038 | 0.83+0.038 | 0.895+0.033 | 0.831 + 0.04 0.897 +0.032 | 0.871 +0.047 | 0.914 + 0.029
Arrhythmia 0.522 + 0.108 0.522 + 0.108 0.383 +0.106 | 0.372 4+ 0.105 | 0.482 + 0.096 | 0.41 + 0.107 0.489 +0.108 | 0.418 £ 0.095 | 0.528 + 0.083
CIs 0.724 + 0.029 | 0.724 + 0.029 0.678 +0.024 | 0.677 +0.026 | 0.707 + 0.034 | 0.681 + 0.027 0.707 +0.032 | 0.692 + 0.026 | 0.722 + 0.028
Gesture 0.538 + 0.018 0.538 + 0.018 0.457 +0.022 | 0.457 + 0.023 | 0.511 + 0.018 | 0.456 + 0.022 0.511+0.018 | 0.503 £ 0.015 | 0.547 + 0.025
Anauthor 0.984 +0.01 0.984 +£0.01 0.979 +0.014 | 0.981 + 0.013 | 0.984 + 0.013 | 0.977 + 0.016 0.983 £ 0.012 | 0.977 £ 0.014 | 0.979 £ 0.016
Morphologic 0.664 +0.018 | 0.664 + 0.018 0.538 +0.035 | 0.542 +0.033 | 0.643 + 0.021 | 0.541 + 0.038 0.643 + 0.021 | 0.581 +0.027 | 0.645 + 0.028
Optdigits 0.977 £ 0.007 | 0.977 +0.007 | 0.916 +0.008 | 0.916 + 0.008 | 0.956 + 0.007 | 0.917 + 0.008 0.956 + 0.007 | 0.932 +0.012 | 0.966 + 0.009
Micro-Mass 0.858 +0.049 | 0.858 +0.049 | 0.583 + 0.083 | 0.583 + 0.084 | 0.755 + 0.045 | 0.581 + 0.075 0.753 £ 0.03 | 0.643 +0.07 0.819 + 0.038
Texture 0.802 +0.033 | 0.802 £ 0.033 | 0.079 £ 0.024 | 0.083 + 0.021 | 0.393 + 0.029 | 0.087 £ 0.022 0.397 +0.019 | 0.128 + 0.026 | 0.504 + 0.04
Miceprotein 0.996 + 0.005 | 0.996 +0.005 | 0.952 +0.029 | 0.952 + 0.029 | 0.978 + 0.015 | 0.957 + 0.027 0.98 +0.015 | 0.968 +0.007 | 0.99 + 0.006
Chess 0.62 +0.007 0.62 + 0.007 0.622 +0.008 | 0.621 +0.008 | 0.621 +0.009 | 0.622 + 0.008 0.621 +0.009 | 0.593 +0.008 | 0.591 + 0.008
Gas 0.993 +£0.002 | 0.993 +0.002 | 0.989 +0.002 | 0.99 +=0.002 | 0.992 £+ 0.002 | 0.99 + 0.002 0.992 + 0.002 | 0.992 + 0.003 | 0.993 + 0.002
Wave 0.772 £0.012 | 0.772£0.012 | 0.768 £ 0.014 | 0.769 + 0.013 | 0.763 + 0.011 | 0.769 + 0.013 0.762 + 0.011 | 0.771 £ 0.019 | 0.763 + 0.018
OVA-Breast 0.91+0.023 0.91+£0.023 0.906 +0.022 | 0.906 + 0.022 | 0.906 + 0.022 | 0.906 + 0.022 0.906 + 0.022 | 0.9 + 0.029 0.9 +0.029
Indian pines 0.867 + 0.015 0.867 + 0.015 0.852 +0.017 | 0.853 + 0.018 | 0.862 + 0.016 | 0.853 + 0.018 0.862 + 0.016 | 0.87 +0.015 0.877 + 0.015
+
+
! 4
= 04
-g “
£
m
2 + + +
2 1]
+
4 ' !
L]
-2
+
T T T T T T T T T
g i S 2 g = 2 g =
@ 5 = = = i = =z i
o} e Is] o = &] = W
< E e} o = o = o
5 3 a = 5 & = 5
@ € o Y & o
(U] =4 = =
= H
] i
= =
w (=

Figure 35 — Normalized box-plot of the kappa index for the multi-class ensemble classifiers.

gradient boost, and random forest. We can observe that gradient boost and the QVECNN obtained

the same performance in the Wine and Gas data sets. Nevertheless, the literature models obtain

an outstanding performance in the texture data set.

Concluding, the complex and quaternion-valued models do not achieved outstand-

ing performance; they did not statistically outperformed the literature methods. However, the

associative memory models were not created with that purpose, yet they are still competitive

in multiclass classification tasks. A visual interpretation of the outcome of this computational

experiment is provided in Figure 36 with the Hasse diagram of the non-parametric Wilcoxon

Chapter 4. Ensemble of Classifiers Combined Using RCNNs 96

Gradient Boost Random Forest

N S

QVECNN + Grid Search

/N

QVECNN(1) QVvECNN(10)

N

CvECNN + QGrid Search

/N

CvECNN(1) CvECNN(10)

N

CvHNN

Figure 36 — Hasse diagram of Wilcoxon signed-rank test with a confidence level at 95% for the
multi-class ensemble classifiers.

signed-rank test with a confidence level at 95%, and Figure 36 with the normalized box-plot
of the kappa index. In the diagram of Figure 36, an edge means that the classifier on the top
statistically outperformed the classifier on the bottom. The outcome of this analysis confirms
that the RCNN-based ensemble classifiers, using complex and quaternionic algebras, statistically
do not outperformed the gradient boosting and the random forest. Finally, we observe that the
relation between classes and the resolution factor does not has evident correlation with the
performance of the HRCNN-based ensemble. The box-plot in Figure 35 confirms the aforemen-
tioned performance of RCNN-based ensembles, the model with the best mean kappa index is the
QVvECNN+GridSearch, and the CvHNN has lower performance. In particular, the grid search
QVvECNN has more variance than the literature model and the best mean kappa index among the
other HRCNN-based ensemble.

97

5 Conclusions

In this thesis, we presented two new hypercomplex-valued recurrent neural networks:
the hypercomplex recurrent correlation neural networks (HRCNNs) and the hypercomplex recur-
rent projection neural networks (HRPNNSs). First, we extend the RCNN model to a broad class of
hypercomplex numbers. Hypercomplex-valued neural networks constitute an emerging research
area. Besides their natural capability to treat high-dimensional data as single entities, some
hypercomplex-valued neural networks can cope with phase or rotation information (Aizenberg,
2011; Hirose, 2012; Parcollet et al., 2019) while others exhibit fast learning rules (Nitta and
Kuroe, 2018). In particular, RCNNs have been introduced by Chiueh and Goodman (1991) as
an improved version of the famous correlation-based Hopfield neural network. In fact, some
RCNNSs can reach the storage capacity of an ideal associative memory (Hassoun and Watta,
1996). Furthermore, they are closely related to the dense associative memories of Krotov and
Hopfield (2016) as well as the support vector machines and the kernel trick (Garcia and Moreno,
2004a,b; Perfetti and Ricci, 2008). In particular, the exponential correlation neural network
(ECNN), besides been amiable for very-large-scale integration (VLSI) implementation, has
a Bayesian interpretation (Chiueh and Goodman, 1993; Hancock and Pelillo, 1998). Second,
HRPNNs are obtained by combining the projection rule with the HRCNN . This models general-
izes the bipolar Hopfield neural networks by projection rule when the excitation function f is
the identity function (see Theorem 2.3 from section 2). In contrast to the HRCNNs, however,
HRPNNSs always exhibit optimal storage capacity (see Theorem 2.1 from section 2). Moreover,
bipolar RPNN and the recurrent kernel associative memory (RKAM) models coincide under mild
conditions detailed in Theorem 2.4 from Section 2. The computational experiments provided in
Sections 2.3.2 and 3.5 show that the storage capacity and noise tolerance of HRPNNs (including
real-valued case) are greater than or equal to the storage capacity and noise tolerance of their
corresponding HRCNNSs.

Precisely, in this work, we reviewed the basic concepts on hypercomplex-number
systems. Briefly, the key notions for the stability analysis of hypercomplex-valued RCNNs
is the class of B-functions (see Definition 2) (de Castro and Valle, 2020). Theorem 3.1 from
section 3.3 shows that hypercomplex-valued RCNNs always settle at an equilibrium, using
either synchronous or asynchronous update modes, if the activation function in the output
layer is a B-function. Examples of the bipolar, complex, hyperbolic, quaternion, and octonion-
valued RCNNSs are given in Section 3.5 to illustrate the theoretical results. Furthermore, Section
3.5 presents a detailed experiment concerning the storage and recall of natural gray-scale
images. The quaternion-valued ECNN with the twin-multistate activation function exhibited the
largest noise tolerance in this experiment. Also, the asynchronous update yielded a probability

of successful recall larger than the synchronous update. Analogously, we implement some

Chapter 5. Conclusions 98

computational experiments to explore the HRPNN models to a broad class of hypercomplex
numbers. We compare the new models with their corresponding HRCNNS . In particular, we
implement hypercomplex-valued EPNNs to compare the noise tolerance in relation to the
hypercomplex-valued ECNNs. Also, we implement HRPNN models as associative memories.
In the hypercomplex-valued EPNN case we do not know an energy function to analyse the
dynamics of the model. However, we repeat the same examples given in section 3.5 to analyze
the dynamical behavior and storage capacity of the HEPNNs. We observe that the HRPNNs
usually have a better noise tolerance than their corresponding HRCNNSs. In particular, the
quaternion-valued EPNN with the twin-multistate activation function exhibited the largest noise

tolerance in the computational experiments.

Finally, we provide a bridge between ensemble methods and associative memories.
In general terms, an ensemble method reduces variance and improve the accuracy and robustness
by combining a group of base predictors (Zhang and Ma, 2012; Kuncheva, 2014). The rule used
to combine the base predictors is one important issue in the design of an ensemble method.
We proposed combining the base predictors using an associative memory. Associative memory
1s a model designed for the storage and recall of a set of vectors (Hassoun and Watta, 1997).
Furthermore, an associative memory should be able to retrieve a stored item from a corrupted
or partial version of it. In an ensemble method, the memory model is designed for the storage
of evaluations of the base classifiers. The associative memory is then fed by a vector with
the target of training data as well as the unknown predictions. The output of the ensemble
method is obtained from the vector retrieved by the memory. Specifically, we presented ensemble
methods based on the recurrent correlation associative memories for classifications. Theorem 4.1
shows that the RCNN-based ensemble model yields a majority voting classifier whose weights
are obtained by a recurrent consult and vote scheme. Moreover, the weights depend on the
similarity between the base classifiers and the resulting ensemble. Computational experiments
using decision tree as the base classifiers revealed an outstanding performance of the exponential
RCNN-based ensemble classifier combined with a grid search strategy to fine-tune its parameter.
The exponential RCNN-based ensemble, in particular, outperformed the traditional AdaBoost,
gradient boosting, and random forest classifiers for binary classification tasks. Also, we studied
the multi-class extension of RCNN-based ensemble models, by using complex and quaternions,

observing a comparable but lower performance than gradient boost and random forest classifiers.

In the future, we plan to study hypercomplex-valued RCNN defined on different
hypercomplex-number systems as well as models with alternative activation functions. Moreover,
we plan to deepen the study of the dynamics of the HRPNNs. In relation to the classification
application, we plan to study other possibilities to construct a space representation for multi-

classes and deepen in the issues related to this meta-algorithm.

99

Bibliography

I. Aizenberg, C. Moraga, and D. Paliy. A Feedforward Neural Network based on Multi-Valued
Neurons. In B. Reusch, editor, Computational Intelligence, Theory and Applications, vol-
ume 33 of Advances in Soft Computing, pages 599-612. Springer Berlin Heidelberg, 2005.
Cited in page 32.

I. N. Aizenberg. Complex-Valued Neural Networks with Multi-Valued Neurons, volume 353
of Studies in Computational Intelligence. Springer, 2011. doi: 10.1007/978-3-642-20353-4.
Cited in page 97.

N. N. Aizenberg and I. N. Aizenberg. CNN based on multivalued neuron as a model of associative
memory for gray-scale images. In Proceedings of the 2nd International Workshop on Cellular
Neural Networks and Their Applications, pages 36—42, 1992. Cited 3 times in page 20, 29,
and 57.

M. Arbib. Brains, Machines, and Mathematics. Springer-Verlag, New York, NY, 1987. Cited in
page 18.

P. Arena, L. Fortuna, G. Muscato, and M. Xibilia. Multilayer Perceptrons to Approximate Quater-
nion Valued Functions. Neural Networks, 10(2):335-342, 1997. doi: 10.1016/S0893-6080(96)
00048-2. Cited in page 68.

P. Arena, L. Fortuna, G. Muscato, and M. Xibilia. Quaternion algebra. In Neural Networks in
Multidimensional Domains, volume 234 of Lecture Notes in Control and Information Sciences,
pages 43—47. Springer London, 1998. Cited in page 35.

L. C. Barros, D. Sanchez, R. Lobo, and E. Esmi. Free mechanical vibrations models via p-fuzzy
systems. In 2019 Conference of the International Fuzzy Systems Association and the European
Society for Fuzzy Logic and Technology (EUSFLAT 2019). Atlantis Press, 2019. Cited in
page 23.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123—-140, 1996. doi: 10.1023/A:
1018054314350. Cited 3 times in page 83, 84, and 89.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, Oct 2001. doi: 10.1023/A:
1010933404324. Cited 3 times in page 84, 85, and 89.

R. B. Brown. On generalized Cayley-Dickson algebras. Pacific Journal of Mathematics, 20(3):
415422, 1967. Cited in page 55.

J. Bruck. On the convergence properties of the hopfield model. Proceedings of the IEEE, 78(10):
1579-1585, Oct 1990. ISSN 0018-9219. doi: 10.1109/5.58341. Cited in page 25.

Bibliography 100

S. Buchholz and G. Sommer. Hyperbolic multilayer perceptron. In Proceedings of the Interna-
tional Joint Conference on Neural Networks, volume 2, pages 129-133, 2000. Cited in page
65.

T. Biilow. Hypercomplex Spectral Signal Representations for Image Processing and
Analysis. Technical Report NR 9903, Kiel University, Aug. 1999. Available
at: http://www.informatik.uni-kiel.de/en/department-of-computer-science/technical-reports.
Cited 3 times in page 35, 51, and 68.

M. Burda. paircompviz: An R Package for Visualization of Multiple Pairwise Comparison Test
Results, 2013. Cited in page 90.

F. Z. Castro and M. E. Valle. Continuous-Valued Quaternionic Hopfield Neural Network for
Image Retrieval: A Color Space Study. In 2017 Brazilian Conference on Intelligent Systems
(BRACIS), pages 186191, Oct 2017a. doi: 10.1109/BRACIS.2017.52. Cited 2 times in page
51 and 68.

F. Z. Castro and M. E. Valle. Continuous-Valued Octonionic Hopfield Neural Network. In
Proceedings Series of the Brazilian Society of Computational and Applied Mathematics.
Sociedade Brasileira de Matemdtica Aplicada e Computacional., volume 6, Sdo José dos
Campos — Brazil, September 2017b. doi: 10.5540/03.2018.006.01.0344. Cited 2 times in
page 25 and 26.

F. Z. Castro and M. E. Valle. Some Remarks on the Stability of Discrete-Time Complex-Valued
Multistate Hopfield Neural Networks. In Proceedings Series of the Brazilian Society of
Computational and Applied Mathematics. Sociedade Brasileira de Matemdtica Aplicada e
Computacional., pages 010328—-1-010328-7, Campinas — Brazil, September 2018. Cited in
page 29.

B. Chen, X. Qi, X. Sun, and Y.-Q. Shi. Quaternion pseudo-Zernike moments combining both
of RGB information and depth information for color image splicing detection. Journal of
Visual Communication and Image Representation, 49:283-290, 2017. ISSN 1047-3203. doi:
10.1016/j.jveir.2017.08.011. Cited in page 68.

T. Chiueh and R. Goodman. Recurrent Correlation Associative Memories. IEEE Trans. on
Neural Networks, 2:275-284, Feb. 1991. Cited 9 times in page 19, 26, 29, 32, 38, 59, 62, 63,
and 97.

T. Chiueh and R. Goodman. Recurrent Correlation Associative Memories and their VLSI
Implementation, chapter 16, pages 276-287. Oxford University Press, Oxford, U.K., 1993.
Cited 4 times in page 19, 20, 25, and 97.

Bibliography 101

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, Sep
1995. ISSN 1573-0565. doi: 10.1023/A:1022627411411. URL https://doi.org/10.
1023/A:1022627411411. Cited in page 33.

N. Cristianini, J. Shawe-Taylor, et al. An introduction to support vector machines and other

kernel-based learning methods. Cambridge university press, 2000. Cited in page 33.

F. Z. de Castro and M. E. Valle. A broad class of discrete-time hypercomplex-valued hopfield
neural networks. Neural Networks, 122:54 — 67, 2020. doi: https://doi.org/10.1016/j.neunet.
2019.09.040. Cited 11 times in page 20, 29, 55, 56, 57, 58, 63, 67, 68, 72, and 97.

R. Delangue, F. Sommen, and V. Soucek. Clifford algebra and spinor-valued functions : a
function theory for the Dirac operator. Kluwer Academic Publishers, Dordrecht, Netherlands,
1992. ISBN 079230229X. Cited 2 times in page 55 and 57.

J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1-30, 2006. Cited in page 90.

T. A. Ell and S. J. Sangwine. Quaternion involutions and anti-involutions. Computers and
Mathematics with Applications, 53(1):137-143, 2007. ISSN 0898-1221. doi: 10.1016/j.
camwa.2006.10.029. Cited 3 times in page 55, 56, and 57.

A. Ferreira and M. Figueiredo. Boosting Algorithms: A Review of Methods, Theory, and
Applications. In C. Zhang and Y. Ma, editors, Ensemble Machine Learning: Methods and
Applications, pages 35-85. Springer, 2012. doi: 10.1007/978-1-4419-9326-7_2. Cited in
page 85.

J. Gan. Discrete Hopfield neural network approach for crane safety evaluation. In 2017
International Conference on Mechanical, System and Control Engineering (ICMSC), pages
40-43, May 2017. doi: 10.1109/ICMSC.2017.7959439. Cited in page 19.

C. Garcia and J. A. Moreno. The Hopfield Associative Memory Network: Improving Performance
with the Kernel “Trick”. In Lecture Notes in Artificial Inteligence - Proceedings of IBERAMIA
2004, volume 3315 of Advances in Artificial Intelligence — IBERAMIA 2004, pages 871-880.
Springer-Verlag, 2004a. Cited 2 times in page 33 and 97.

C. Garcia and J. A. Moreno. The Kernel Hopfield Memory Network. In P. M. A. Sloot,
B. Chopard, and A. G. Hoekstra, editors, Cellular Automata, pages 755-764, Berlin, Heidel-
berg, 2004b. Springer Berlin Heidelberg. Cited 2 times in page 33 and 97.

G. Garcia and J. A. Moreno. The Hopfield associative memory network: Improving performance
with kernel trick. In H. Springer, Berlin, editor, Advanced in Artificial Intelligence-IBERAMIA
2004, volume 3315 of Proc. 9th IBERAMIA, pages 871-880, July 2004. Cited in page 19.

Bibliography 102

A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2019. Cited 2 times in
page 83 and 85.

E. Goles-Chacc, F. Fogelman-Soulie, and D. Pellegrin. Decreasing Energy Functions as a tool
for studying threshold networks. Discrete Applied Mathematics, 12:261-277, 1985. Cited in
page 25.

G. Golub and C. van Loan. Matrix Computations. John Hopkins University Press, Baltimore,
MD, 3th edition, 1996. Cited in page 28.

A. B. Greenblatt and S. S. Agaian. Introducing quaternion multi-valued neural networks
with numerical examples. Information Sciences, 423:326-342, 2018. ISSN 0020-0255.
doi: 10.1016/j.ins.2017.09.057. URL http://www.sciencedirect.com/science/
article/pii/S0020025516316383. Cited in page 68.

E. R. Hancock and M. Pelillo. A Bayesian interpretation for the exponential correlation associa-
tive memory. Pattern Recognition Letters, 19(2):149—-159, Feb. 1998. Cited 4 times in page
32,62, 63, and 97.

L. K. Hansen and P. Salamon. Neural network ensembles. /IEEE transactions on pattern analysis
and machine intelligence, 12(10):993—-1001, 1990. Cited in page 84.

M. H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge, MA, 1995.
Cited in page 18.

M. H. Hassoun and P. B. Watta. The hamming associative memory and its relation to the
exponential capacity dam. In Proceedings of International Conference on Neural Networks
(ICNN’96), volume 1, pages 583-587 vol.1, June 1996. doi: 10.1109/ICNN.1996.548960.
Cited 3 times in page 62, 63, and 97.

M. H. Hassoun and P. B. Watta. Associative Memory Networks. In E. Fiesler and R. Beale,
editors, Handbook of Neural Computation, pages C1.3:1-C1.3:14. Oxford University Press,
1997. Cited 3 times in page 19, 27, and 98.

M. H. Hassoun and A. M. Youssef. A New Recording Algorithm for Hopfield Model Associative
Memories. In Neural Network Models for Optical Computing, volume 882 of Proceedings of
SPIE, pages 62-70, 1988. Cited in page 30.

S. Haykin. Neural Networks and Learning Machines. Prentice-Hall, Upper Saddle River, NJ,
3rd edition edition, 2009. Cited 2 times in page 18 and 27.

D. Hebb. The Organization of Behavior. John Wiley & Sons, New York, 1949. Cited in page
217.

Bibliography 103

A. Hirose. Complex-Valued Neural Networks. Studies in Computational Intelligence. Springer,
Heidelberg, Germany, 2nd edition edition, 2012. Cited 3 times in page 20, 28, and 97.

M. W. Hirsh. Dynamical Systems. In P. Smolensky, M. Mozer, and D. Rumelhart, editors,
Mathematical Perspectives on Neural Networks. Lawrence Erlbaum Associates, Publishers,
Mahwah, NJ., 1996. Cited in page 19.

E. Hitzer, T. Nitta, and Y. Kuroe. Applications of clifford’s geometric algebra. Advances in
Applied Clifford Algebras, 23(2):377-404, Jun 2013. doi: 10.1007/s00006-013-0378-4. Cited
in page 55.

T. K. Ho. The random subspace method for constructing decision forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998. Cited 3 times in page 83,
85, and 89.

J. Hopfield and D. Tank. Neural computation of decisions in optimization problems. Biological
Cybernetics, 52:141-152, 1985. Cited in page 19.

J. Hopfield and D. Tank. Computing with neural circuits: A model. Proceedings of the National
Academy of Sciences, 233:625-633, August 1986. Cited in page 19.

J. J. Hopfield. Neural Networks and Physical Systems with Emergent Collective Computational
Abilities. Proceedings of the National Academy of Sciences, 79:2554-2558, Apr. 1982. Cited
4 times in page 18, 19, 26, and 27.

J. J. Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the National Academy of Sciences, 81:3088—-3092, May
1984. Cited in page 19.

T. Isokawa, H. Nishimura, N. Kamiura, and N. Matsui. Dynamics of Discrete-Time Quaternionic
Hopfield Neural Networks. In J. M. S4, L. A. Alexandre, W. Duch, and D. Mandic, editors,
Artificial Neural Networks — ICANN 2007, volume 4668 of Lecture Notes in Computer Science,
pages 848-857. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-74690-4_86.
Cited in page 68.

T. Isokawa, H. Hishimura, A. Saitoh, N. Kamiura, and N. Matsui. On the Scheme of Multistate
Quaternionic Hopfiels Neural Network. In Proceedings of Joint 4th International Conference
on Soft Computing and Intelligent Systems and 9th International Symposium on advanced
Intelligent Systems (SCIS and ISIS 2008), pages 809-813, Nagoya, Japan, Sept. 2008a. Cited
in page 68.

T. Isokawa, H. Hishimura, N. Kamiura, and N. Matsui. Associative Memory in Quaternionic
Hopfield Neural Network. International Journal of Neural Systems, 18(02):135-145, 2008b.
doi: 10.1142/S0129065708001440. Cited 2 times in page 57 and 68.

Bibliography 104

T. Isokawa, H. Nishimura, and N. Matsui. Commutative quaternion and multistate Hopfield
neural networks. In The 2010 International Joint Conference on Neural Networks (IJCNN),
pages 1-6, July 2010. doi: 10.1109/IJCNN.2010.5596736. Cited in page 57.

T. Isokawa, H. Nishimura, and N. Matsui. On the fundamental properties of fully quaternionic
hopfield network. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN), pages 1-4, Brisbane, Australia, June 2012. doi: 10.1109/IJCNN.2012.6252536.
Cited in page 25.

T. Isokawa, H. Nishimura, and N. Matsui. Quaternionic Neural Networks for Associative
Memories. In A. Hirose, editor, Complex-Valued Neural Networks, pages 103—131. Wiley-
IEEE Press, 2013. doi: 10.1002/9781118590072.chS. Cited 3 times in page 20, 37, and 68.

T. Isokawa, H. Yamamoto, H. Nishimura, T. Yumoto, N. Kamiura, and N. Matsui. Complex-
valued associative memories with projection and iterative learning rules. Journal of Artificial
Intelligence and Soft Computing Research, 8(3):237 — 249, 2018. Cited in page 29.

S. Jankowski, A. Lozowski, and J. Zurada. Complex-Valued Multi-State Neural Associative
Memory. IEEE Transactions on Neural Networks, 7:1491-1496, 1996. Cited 6 times in page
20, 29, 57, 63, 65, and 68.

I. Kanter and H. Sompolinsky. Associative Recall of Memory without Errors. Physical Review,
35:380-392, 1987. Cited 2 times in page 19 and 28.

J. Kittler and F. Roli. Multiple Classifier Systems: First International Workshop, MCS 2000
Cagliari, Italy, June 21-23, 2000 Proceedings. Springer, 2003. Cited in page 84.

M. Kobayashi. Hyperbolic Hopfield Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 24(2), Feb 2013. ISSN 2162-237X. doi: 10.1109/TNNLS.2012.
2230450. Cited 2 times in page 57 and 65.

M. Kobayashi. Rotational invariance of quaternionic hopfield neural networks. IEEJ Transactions
on Electrical and Electronic Engineering, 11(4):516-520, 2016a. ISSN 1931-4981. doi:
10.1002/tee.22269. Cited 3 times in page 36, 38, and 53.

M. Kobayashi. Hyperbolic Hopfield neural networks with four-state neurons. IEEJ Transactions
on Electrical and Electronic Engineering, 12(3):428-433, 2016b. doi: 10.1002/tee.22394.
Cited 2 times in page 65 and 69.

M. Kobayashi. Global hyperbolic Hopfield neural networks. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, E99.A(12):2511-2516, 2016c.
doi: 10.1587/transfun.E99.A.2511. Cited in page 65.

Bibliography 105

M. Kobayashi. Quaternionic Hopfield neural networks with twin-multistate activation function.
Neurocomputing, 267:304-310, 2017a. doi: 10.1016/j.neucom.2017.06.013. Cited in page
69.

M. Kobayashi. Fixed points of split quaternionic hopfield neural networks. Signal Processing,
136:38-42, 2017b. doi: 10.1016/j.sigpro.2016.11.020. Cited in page 69.

M. Kobayashi. Symmetric complex-valued Hopfield neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 28(4):1011-1015, April 2017c. ISSN 2162-237X.
doi: 10.1109/TNNLS.2016.2518672. Cited in page 29.

M. Kobayashi. Fast recall for complex-valued Hopfield neural networks with projection rules.
In Computational Intelligence and Neuroscience, volume 2017, pages 1-6, 05 2017d. Cited
in page 29.

M. Kobayashi. Twin-multistate commutative quaternion Hopfield neural networks. Neurocom-
puting, 320:150 — 156, 2018a. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2018.
09.023. Cited in page 57.

M. Kobayashi. Dual-numbered Hopfield neural networks. IEEJ Transactions on Electrical and
Electronic Engineering, 13(2):280-284, 2018b. doi: 10.1002/tee.22524. Cited in page 67.

M. Kobayashi. Hyperbolic Hopfield neural networks with directional multistate activation
function. Neurocomputing, 275:2217 — 2226, 2018c. ISSN 0925-2312. doi: https://doi.org/10.
1016/j.neucom.2017.10.053. Cited in page 65.

M. Kobayashi. Noise robust projection rule for hyperbolic hopfield neural networks. IEEE
Transactions on Neural Networks and Learning Systems, pages 1-5, 2019. doi: 10.1109/
TNNLS.2019.2899914. Cited in page 65.

M. Kobayashi. Storage capacity of hyperbolic hopfield neural networks. Neurocomputing, 369:
185 - 190, 2019. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2019.08.064. Cited
in page 65.

B. Kosko. Bidirectional Associative Memories. [EEE Transactions on Systems, Man, and
Cybernetics, 18:49-60, 1988. Cited 2 times in page 25 and 27.

B. Kosko. Fuzzy associative memory systems. Fuzzy expert systems, pages 135-162, 1992.
Cited in page 19.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. URL http://www.cs.toronto.edu/~kriz/cifar.
html. Cited in page 51.

Bibliography 106

D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition. In Proceedings
of the 30th International Conference on Neural Information Processing Systems, NIPS 16,
page 1180-1188, Red Hook, NY, USA, 2016. Curran Associates Inc. Cited in page 97.

J. Kuiper. Quaternions and Rotation Sequences: A primer with applications to robotics,

aerospace and virtual reality. Princeton University Press, 1999. Cited in page 35.

Y. Kultur, B. Turhan, and A. Bener. Ensemble of neural networks with associative memory
(enna) for estimating software development costs. Knowledge-Based Systems, 22(6):395-402,
2009. Cited in page 84.

L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John Wiley and Sons, 2
edition, 2014. Cited 5 times in page 83, 84, 85, 89, and 98.

Y. Kuroe. Models of Recurrent Clifford Neural Networks and Their Dynamics, chapter 6, pages
133-151. Wiley-Blackwell, 2013. doi: 10.1002/9781118590072.ch6. Cited 2 times in page
58 and 67.

Y. Kuroe and H. [ima. A model of Hopfield-type octonion neural networks and existing conditions
of energy functions. In 2016 International Joint Conference on Neural Networks (IJCNN),
pages 4426-4430, July 2016. doi: 10.1109/1JCNN.2016.7727778. Cited in page 57.

Y. Kuroe, S. Tanigawa, and H. Iima. Models of Hopfield-type Clifford neural networks and
their energy functions - hyperbolic and dual valued networks. In Proceedings of the 18th
International Conference on Neural Information Processing - Volume Part I, ICONIP 11,
pages 560-569, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-24954-9. doi:
10.1007/978-3-642-24955-6_67. Cited 3 times in page 57, 65, and 67.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436—444, 2015. Cited
in page 18.

D.-L. Lee. Improvements of complex-valued Hopfield associative memory by using generalized
projection rules. IEEE Transactions on Neural Networks, 17(5):1341-1347, September 2006.
Cited 3 times in page 20, 29, and 57.

C. Li, X. Yu, T. Huang, G. Chen, and X. He. A generalized Hopfield network for nonsmooth
constrained convex optimization: Lie derivative approach. [EEE Transactions on Neural
Networks and Learning Systems, 27:1-14, 11 2015. doi: 10.1109/TNNLS.2015.2496658.
Cited in page 19.

J. Li, X. Li, B. Huang, and L. Zhao. Hopfield neural network approach for supervised nonlinear
spectral unmixing. IEEE Geoscience and Remote Sensing Letters, 13(7):1002—1006, July
2016. ISSN 1545-598X. doi: 10.1109/LGRS.2016.2560222. Cited in page 19.

Bibliography 107

R. A. Lobo and M. E. Valle. Ensemble of binary classifiers combined using recurrent correla-
tion associative memories. In Brazilian Conference on Intelligent Systems, pages 442—455.

Springer, 2020. Cited in page 23.

R. A. Lobo, J. M. Palma, C. F. Morais, L. d. P. Carvalho, M. E. Valle, and C. L. F. Ricardo
Oliveira. A brief tutorial on quadratic stability of linear parameter-varying model for biomath-
ematical systems. In 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering,
Information and Communication Technologies (CHILECON), pages 1-6, Nov 2019. doi:
10.1109/CHILECON47746.2019.8988071. Cited in page 23.

W. McCulloch and W. Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity.
Bulletin of Mathematical Biophysics, 5:115-133, 1943. Cited in page 18.

R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. Venkatesh. The capacity of the Hopfield
associative memory. IEEE Transactions on Information Theory, 1:33-45, 1987. Cited 2
times in page 19 and 25.

T. Minemoto, T. Isokawa, H. Nishimura, and N. Matsui. Quaternionic multistate Hopfield neural
network with extended projection rule. Artificial Life and Robotics, 21(1):106-111, Mar 2016.
doi: 10.1007/s10015-015-0247-4. Cited in page 68.

T. Minemoto, T. Isokawa, H. Nishimura, and N. Matsui. Feed forward neural network with
random quaternionic neurons. Signal Processing, 136:59—-68, 2017. doi: 10.1016/j.sigpro.
2016.11.008. Cited in page 68.

C. C. E. Morillo, R. A. L. Carrasco, and J. F. da Costa Meyer. Dinamica de hiv e posterior aids.
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 6(2),
2018. Cited in page 23.

M. Miiezzinoglu, C. Giizelis, and J. Zurada. A New Design Method for the Complex-Valued
Multistate Hopfield Associative Memory. [EEE Transactions on Neural Networks, 14(4):
891-899, July 2003. Cited 2 times in page 29 and 65.

T. Nitta and Y. Kuroe. Hyperbolic gradient operator and hyperbolic back-propagation learning
algorithms. IEEE Transactions on Neural Networks and Learning Systems, 29(5):1689—-1702,
2018. doi: 10.1109/TNNLS.2017.2677446. Cited 2 times in page 65 and 97.

A. J. Noest. Associative memory in sparse phasor neural networks. EPL (Europhysics Letters),
6(5):469, 1988a. Cited 3 times in page 20, 28, and 63.

A. J. Noest. Discrete-state phasor neural networks. Physical Review A, 38:2196-2199, Aug
1988b. doi: 10.1103/PhysRevA.38.2196. Cited 3 times in page 20, 28, and 63.

J. Ontrup and H. Ritter. Text categorization and semantic browsing with self-organizing maps on

non-euclidean spaces. In L. De Raedt and A. Siebes, editors, Principles of Data Mining and

Bibliography 108

Knowledge Discovery, pages 338-349, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
Cited in page 65.

G. Pajares, M. Guijarro, and A. Ribeiro. A Hopfield neural network for combining classifiers
applied to textured images. Neural Networks, 23(1):144—153, Jan. 2010. ISSN 0893-6080.
doi: 10.1016/j.neunet.2009.07.019. Cited in page 19.

J. P. Papa, G. H. Rosa, D. R. Pereira, and X.-S. Yang. Quaternion-based Deep Belief Networks
fine-tuning. Applied Soft Computing, 60:328-335, 2017. ISSN 1568-4946. doi: 10.1016/j.
asoc.2017.06.046. Cited in page 68.

T. Parcollet, M. Morchid, and G. Linares. A survey of quaternion neural networks. Artificial
Intelligence Review, 2019. doi: 10.1007/s10462-019-09752-1. Cited in page 97.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011. Cited 2 times in page 89 and 94.

R. Perfetti and E. Ricci. Recurrent Correlation Associative Memories: A Feature Space
Perspective. IEEE Transactions on Neural Networks, 19(2):333-345, Feb 2008. doi:
10.1109/TNN.2007.909528. Cited 9 times in page 19, 32, 33, 43, 44, 46, 62, 63, and 97.

L. Personnaz, I. Guyon, and G. Dreyfus. Information storage and retrieval in spin glass like
neural networks. Journal of Physics Letter, 46:1.359-1.365, 1985. Cited 3 times in page 19,
25, and 28.

R. Polikar. Ensemble Learning. In C. Zhang and Y. Ma, editors, Ensemble Machine Learning:
Methods and Applications, pages 1-34. Springer, 2012. doi: 10.1007/978-1-4419-9326-7_1.
Cited in page 83.

M. P. Ponti Jr. Combining classifiers: from the creation of ensembles to the decision fusion. In
2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials, pages 1-10.
IEEE, 2011. Cited 2 times in page 83 and 84.

C.-A. Popa. Matrix-Valued Hopfield Neural Networks. In L. Cheng, Q. Liu, and A. Ronzhin,
editors, Advances in Neural Networks — ISNN 2016: 13th International Symposium on Neural
Networks, ISNN 2016, St. Petersburg, Russia, July 6-8, 2016, Proceedings, pages 127—134.
Springer International Publishing, Cham, 2016. doi: 10.1007/978-3-319-40663-3_15. Cited
in page 58.

M. Ravanelli, T. Parcollet, A. Rouhe, P. Plantinga, E. Rastorgueva, L. Lugosch, N. Dawalatabad,
C. Ju-Chieh, A. Heba, F. Grondin, W. Aris, C.-F. Liao, S. Cornell, S.-L. Yeh, H. Na, Y. Gao,
S.-W. Fu, C. Subakan, R. De Mori, and Y. Bengio. Speechbrain. https://github.com/
speechbrain/speechbrain, 2021. Cited in page 20.

Bibliography 109

R. Rojas. Neural networks: a systematic introduction. Springer, New York Edwards RE, New
J, Parker LE (2012) Predicting future hourly residential electrical consumption: a machine
learning case study. Energy Build, 49:591-603, 1996. Cited in page 27.

F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain. Psychological Review, 65:386—408, 1958. Cited in page 18.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533-536, 1986. Cited in page 18.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press,
Cambridge, MA, USA, 2002. URL http://mitpress.mit.edu/catalog/item/
default.asp?ttype=2&tid=8684. Cited in page 33.

G. Serpen. Hopfield Network as Static Optimizer: Learning the Weights and Eliminating the
Guesswork. Neural Processing Letters, 27(1):1-15, 2008. doi: 10.1007/s11063-007-9055-8.
Cited in page 19.

F. Shang and A. Hirose. Quaternion Neural-Network-Based PolSAR Land Classification in

Poincare-Sphere-Parameter Space. IEEE Transactions on Geoscience and Remote Sensing,
52:5693-5703, 2014. Cited in page 68.

A. Shenitzer, I. Kantor, and A. Solodovnikov. Hypercomplex Numbers: An Elementary Introduc-
tion to Algebras. Springer New York, 1989. Cited in page 55.

Y. Song, B. Xing, L. Guo, and X. Xu. System parameter identification experiment based on
Hopfield neural network for self balancing vehicle. In 2017 36th Chinese Control Conference
(CCC), pages 6887-6890, July 2017. doi: 10.23919/ChiCC.2017.8028442. Cited in page 19.

P. Sussner and M. E. Valle. Grayscale Morphological Associative Memories. IEEE Transactions
on Neural Networks, 17(3):559-570, May 2006. Cited in page 19.

D. E. Sanchez, J. M. Palma, R. A. Lobo, J. E. C. A. Meyer, C. F. Morais, A. Rojas-Palma, and R. C.
L. F. Oliveira. Modeling and stability analysis of salmon mortality due to microalgae bloom
using linear parameter-varying structure. In 2019 IEEE CHILEAN Conference on Electrical,

Electronics Engineering, Information and Communication Technologies (CHILECON), pages
1-6, Nov 2019. doi: 10.1109/CHILECON47746.2019.8987679. Cited in page 23.

G. Tanaka and K. Aihara. Complex-Valued Multistate Associative Memory With Nonlinear
Multilevel Functions for Gray-Level Image Reconstruction. IEEE Transactions on Neural
Networks, 20(9):1463-1473, Sept. 2009. doi: 10.1109/TNN.2009.2025500. Cited in page 29.

Bibliography 110

M. Valle. Complex-Valued Recurrent Correlation Neural Networks. IEEE Transactions on
Neural Networks and Learning Systems, 25(9):1600-1612, September 2014a. doi: 10.1109/
TNNLS.2014.2341013. Cited 9 times in page 20, 25, 26, 32, 38, 58, 59, 63, and 71.

M. E. Valle. A Novel Continuous-Valued Quaternionic Hopfield Neural Network. In Proceedings
of the Brazilian Conference on Intelligent Systems 2014 (BRACIS 2014), Sao Carlos, Brazil,
October 2014b. Cited 3 times in page 36, 37, and 69.

M. E. Valle. Quaternionic Recurrent Correlation Neural Networks. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1-8, July 2018. doi: 10.1109/IJCNN.2018.
8489714. Cited 9 times in page 20, 32, 34, 38, 58, 59, 62, 69, and 71.

M. E. Valle and F. Z. Castro. On the Dynamics of Hopfield Neural Networks on Unit Quaternions.
IEEE Transactions on Neural Networks and Learning Systems, 29(6):2464-2471, June 2018.
doi: 10.1109/TNNLS.2017.2691462. Cited 3 times in page 37, 57, and 69.

M. E. Valle and R. A. Lobo. An introduction to quaternion-valued recurrent projection neural
networks. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 848—853.
IEEE, 2019. Cited in page 23.

M. E. Valle and R. A. Lobo. Quaternion-valued recurrent projection neural networks on unit
quaternions. arXiv preprint arXiv:2001.11846, 2020. Cited in page 23.

M. E. Valle and R. A. Lobo. Hypercomplex-valued recurrent correlation neural networks. Neu-
rocomputing, 432:111 — 123, 2021. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2020.12.034. URL http://www.sciencedirect.com/science/article/pii/
50925231220319342. Cited in page 23.

J. R. Vallejo and E. Bayro-Corrochano. Clifford Hopfield Neural Networks. In 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), pages 3609-3612, June 2008. doi: 10.1109/1JCNN.2008.4634314. Cited 2
times in page 57 and 67.

M. Van Erp, L. Vuurpijl, and L. Schomaker. An overview and comparison of voting methods
for pattern recognition. In Proceedings Eighth International Workshop on Frontiers in
Handwriting Recognition, pages 195-200. IEEE, 2002. Cited in page 85.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science in machine
learning. SIGKDD Explorations, 15(2):49-60, 2013. doi: 10.1145/2641190.2641198. Cited
2 times in page 89 and 94.

J. Vaz and R. da Rocha. An Introduction to Clifford Algebras and Spinors. Oxford University
Press, 2016. Cited 2 times in page 55 and 57.

Bibliography 111

Q. Wang, W. Shi, P. M. Atkinson, and Z. Li. Land cover change detection at subpixel reso-
lution with a Hopfield neural network. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 8(3):1339—1352, March 2015. ISSN 1939-1404. doi:
10.1109/JSTARS.2014.2355832. Cited in page 19.

T. Weise and R. Chiong. An alternative way of presenting statistical test results when evaluating
the performance of stochastic approaches. Neurocomputing, 147:235-238, 2015. doi: 10.
1016/j.neucom.2014.06.071. Cited in page 90.

Y. Xia, C. Jahanchahi, and D. Mandic. Quaternion-Valued Echo State Networks. IEEE Transac-
tions on Neural Networks and Learning Systems, 26:663—-673, 2015. Cited in page 68.

L. Xiaodong, L. Aijun, Y. Changjun, and S. Fulin. Widely Linear Quaternion Unscented Kalman
Filter for Quaternion-Valued Feedforward Neural Network. /IEEE Signal Processing Letters,
24(9):1418-1422, Sept 2017. doi: 10.1109/LSP.2017.2734652. Cited in page 68.

D. Xu, Y. Xia, and D. P. Mandic. Optimization in Quaternion Dynamic Systems: Gradient,
Hessian, and Learning Algorithms. IEEE Transactions on Neural Networks and Learning
Systems, 27(2):249-261, Feb 2016. doi: 10.1109/TNNLS.2015.2440473. Cited in page 68.

C. Zhang and Y. Ma, editors. Ensemble Machine Learning: Methods and Applications. Springer,
2012. doi: 10.1007/978-1-4419-9326-7. Cited 3 times in page 83, 84, and 98.

H. Zhang, Y. Hou, J. Zhao, L. Wang, T. Xi, and Y. Li. Automatic welding quality classification
for the spot welding based on the Hopfield associative memory neural network and chernoff
face description of the electrode displacement signal features. Mechanical Systems and Signal
Processing, 85:1035 — 1043, 2017. ISSN 0888-3270. doi: https://doi.org/10.1016/j.ymssp.
2016.06.036. Cited in page 19.

112

APPENDIX A- Remarks on the
Computational Implementation of
HRCNNs

In our codes, a hypercomplex-valued vector x(t) = [z1(t),...,zxn(t)], where
xi(t) = Tio + xi1iy + ... + x,0, foralli = 1,... N, is represented by a (N, n + 1)-array of
real numbers:

T Tl .. Tip
LUQ() w?l . :I:Qn
X =
INO IN1 -.-- INn
Similarly, the fundamental memory setZ/ = {u’, ..., u’’} is represented by a (N, n + 1, P)-array

U such that U(:, :, €) corresponds to u®, for ¢ = 1,..., P. An arbitrary hypercomplex-valued
ECNN is implemented as a function which receives the following inputs and outputs the final

vector state as well as an array with the evolution of the function £ given by (3.17):

1. The symmetric bilinear form B and its parameters.

2. The activation function ¢ and its parameters.

3. The array U corresponding to the fundamental memory set.
4. The array x corresponding to the input vector x(0).

5. The optional parameters « and 3 as well as the maximum number of iterations.

Note that both hypercomplex-valued product, as well as the reverse-involution, are implicitly
defined in the symmetric bilinear form B which is passed as an argument to the hypercomplex-
valued ECNN model. Finally, we would like to point out that there is one code for the synchronous
hypercomplex-valued ECNN model and another code for the asynchronous version. To fasten
the implementation of the asynchronous hypercomplex-valued ECNN, instead of using (3.16),
we updated the weights w¢(t + 1) as follows for & = 1,..., P: Suppose only the ith neuron
have been updated at time ¢, that is, x;(¢ + 1) = x;(¢) for all j # 7. Then, the weight w¢(t + 1)
satisfies

we(t + 1) = we(t) exp {aB(uf,a:i(t—k 1) —J:Z(t))} (1)
Note that, in contrast to (3.16) which evaluates N-times the symmetric bilinear form 5, (1)
requires a single evaluation of 5. Recall that the jupyter notebook of this experiment, im-
plemented in Julia language, can be found in https://github.com/mevalle/

Hypercomplex—Valued—Recurrent—-Correlation—-Neural—-Networks.

	First page
	Title page
	Catalographic data
	Approval
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	List of Algorithms
	Contents
	Introduction
	Literature Review
	Hopfield Neural Networks
	Discrete-time Hopfield Neural Networks with Hebbian Learning
	Hopfield Neural Networks with Projection Rule
	Complex-Valued Hopfield Neural Networks

	Recurrent Correlation Neural Networks
	Bipolar Recurrent Correlation Neural Networks
	Complex-Valued Recurrent Correlation Neural Network

	Recurrent Kernel Associative Memories
	Literature model conclusions

	Quaternion-Valued Recurrent Projection Neural Networks
	Some Basic Concepts on Quaternions
	Quaternion-Valued Models from the Literature
	Continuous-Valued Quaternionic Hopfield Neural Networks
	Quaternion-Valued Recurrent Correlation Neural Network

	Quaternion-Valued Recurrent , Projection Neural Networks on Unit Quaternions
	Real-valued recurrent projection neural networks (RPNNs) and their relation with other models from the literature
	Optimal storage capacity and generalization of bipolar QRPNNs
	Bipolar RPNNs and their relation with Recurrent Kernel Associative Memories

	Computational Experiments
	Bipolar Associative Memories
	Quaternion-Valued Associative Memories
	Storage and Recall of Color Images

	Conclusions

	Hypercomplex-Valued Models
	Background on Hypercomplex Numbers
	A Review of the Hypercomplex-Valued Hopfield Neural Networks
	Hypercomplex Recurrent Correlation Neural Networks
	Hypercomplex Recurrent Projection Neural Networks
	Examples and Computational Experiments
	HRCNNs synthetic experiments
	Complex-Valued Multistate RCNNs

	Hyperbolic-Valued Multistate RCNNs
	Quaternion-Valued Multistate RCNNs
	Hypercomplex-valued RCNNs on Cayley-Dickson Algebras

	HRCNNs Image Experiments
	Storage and Recall of Gray-Scale Images

	HRPNNs synthetic experiments
	HRPNNs Image Experiments

	Ensemble of Classifiers Combined Using RCNNs
	Introduction
	Ensemble of Binary Classifiers
	Majority Voting Classifier

	Ensemble Based on Bipolar Associative Memories
	Computational Experiments

	Multi-Class Ensemble Classifier
	Computational Experiments

	Conclusions
	Bibliography
	APPENDIX A- Remarks on the Computational Implementation of HRCNNs

