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Resumo

Nesta tese, calculamos os momentos duplamente truncados, ou seja, em um hiper-retangulo,
para uma classe geral de distribui¢des assimétricas denominada familia de sele¢ao eliptica
multivariada. Essa grande familia de distribui¢es inclui versdes assimétricas multivariadas
complexas de distribuigoes elipticas bem conhecidas como as distributi¢oes normal, ¢ de
Student, exponencial poténcia, hiperbélica, Slash, Pearson tipo II, normal contaminada,

entre outras.

Em quatro capitulos baseados em artigos, apresentamos formulagoes recorrentes para os
momentos de distribui¢bes multivariadas duplamente truncadas e dobradas, expressoes
explicitas para casos particulares como momentos univariados de ordem inferior, condigoes
suficientes e necessarias para a existéncia dos momentos truncados, comparagao da eficiéncia
computacional entre modelos, estudos de simulacao, abordagens otimizadas e aproximagoes
numeéricas para casos especiais como casos limites, e momentos quando uma particao tem
volume quase zero ou nao é truncada. Métodos para realizar estimacao em modelos de
regressao multivariados assimétricos censurados sao apresentados e mostrados através de
trés aplicagoes da vida real. Além disso, resultados gerais para distribuicoes da familia

mistura de escala normal sao apresentados.

Os métodos propostos foram implementados no pacote MomTrunc do software R, um pacote
altamente otimizado que inclui rotinas C++ por meio do Rcpp, que fornece momentos
tedricos truncados, momentos Monte Carlo e outras funcoes de interesse como fungoes
de densidade de probabilidade, distribui¢oes acumuladas e fungoes geradoras de variaveis

aleatorias para varias distribui¢oes multivariadas simétricas e assimétricas.

Palavras-chave: Distribuigoes elipticas, Distribui¢oes dobradas, Distribui¢oes de selecao,

Distribuic¢oes truncadas, Momentos truncados



Abstract

In this thesis, we calculate doubly truncated moments, that is, in a hyper-rectangle, for a
general class of asymmetric distributions called the selection elliptical family multivariate.
This large family of distributions includes complex multivariate asymmetric versions of
well-known elliptical distributions as the normal, Student’s ¢, exponential power, hyperbolic,

Slash, Pearson type II, contaminated normal, among others.

In four paper-based chapters, we present recurrent formulations for moments of doubly
truncated and folded multivariate distributions, explicit expressions for particular cases as
univariate lower order moments, sufficient and necessary conditions for the existence of
truncated moments, comparison of computational efficiency between models, simulation
studies, optimized approaches as well as numerical approximation for special cases such as
limiting cases, and moments when a partition has almost zero volume or no truncation.
Methods for performing estimation on censored skewed multivariate regression models are
presented and showed through three real-life applications. Furthermore, general results for

the scale-mixture of normal distributions are presented.

The methods proposed have been implemented in the MomTrunc package of the R software,
a highly optimized package including C++ routines through Rcpp, that offers theoretical,
Monte Carlo truncated moments and other functions of interest as probability density,
cumulative distribution, and random generator functions for various symmetric and

asymmetric multivariate distributions.

Keywords: Elliptical distributions, Folded distributions, Selection distributions, Trun-

cated distributions, Truncated moments
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Introduction

From a probabilistic point of view, doubly truncated expectations have been
a problem of interest for a long time. From the first two one-sided truncated moments
for the normal distribution, useful in Tobin’s model (Tobin, 1958), its evolution led to
its extension to the multivariate case (Tallis, 1961), double truncation (Manjunath &
Wilhelm, 2009), heavy tails when considering the Student’s ¢ bivariate case in Nadarajah
(2007), and finally the first two moments for the multivariate Student’s ¢ case in Ho et al.
(2012).

Truncated expectations are usually used for estimation models in environmental
areas, survival analysis, finance, among others. Doubly truncated moments are very
important not only to model responses restricted in some interval (for example, ratios,

grades, assets portfolio return, etc), but in the context of censored interval models.

Limited or censored data are collected in many studies. This occurs, in several
practical situations, for many reasons such as limitations in measuring equipment or from
an experimental design. In consequence, the extra true value is recorded only if it falls
within an interval range, so, the responses can be either left, interval or right censored.

Missing values can be seen just as a particular case.

In addition to censored models, from a frequentist framework, moments are
required in step E of the Expectation-Maximization (EM) Dempster et al. (1977) algorithm,
when we consider the response Y;, i = 1,...,n, being an i.i.d. sample from a given distribu-
tion of interest. Knowing these expectations leads to closed EM algorithms, circumventing
Monte Carlo methods for estimating the E-step of the algorithm and consequently making

possible to fit complex models in a fraction of a time.

We center our attention to the selection elliptical (SE) family of distributions
(Arellano-Valle et al., 2006a), a wide class of multivariate asymmetric elliptical distributions.
Given the flexibility of this family, we can model features such as asymmetry, heavy tails
and multimodality, while interval censoring allows to consider additionally to interval-
censoring, missing values (at random) and left censoring for strictly positive responses
when considering intervals of the form (—oo, o) and (0, ¢] respectively. The general results
for the SE family, involve all the moments previously used in the literature of censored
models in a frequentist point of view. Evidence of applicability and importance of these
models, are the three articles already submitted and one more currently in progress. It
is worth noting that the CensMFM package from R (De Alencar et al., 2019b) uses our
moments to model finite mixtures of censored or missing multivariate data. We know of at

least two jobs that are currently being developed using our moments.
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A brief walk-through

This work has been organized in six chapters, where chapters from 2 to 5
are papers (see technical production subsection 6.1 for more details). These last are in
chronological order with the purpose of passing the idea of the evolution of the research to

the reader.

A recursive approach: The main idea is to compute an arbitrary doubly truncated

product moment of a variable X, that is,
EX*|a<X<b]=E[X{",..., X" a1 < X1 <by,...,a, < X, < by,

using a recursive approach departing from the probability P(a < X < b) = P(a; <
X1 <b,...,a, < X, <b,) as initial condition. Depending of the distribution of X, the
probability above can be hard to compute. For the normal and Student’s ¢ distribution,
there exists efficient methods well implemented and available in most statistical softwares;
for instance, in R language, the mvtnorm (Genz & Bretz, 2009; Genz et al., 2020) and
tlrmvamvt (Cao et al., 2019a,b) packages, this last being released lately in November
2019.

Recursion is developed by establishing a differential equation that involves the
density of X in question (see Kan & Robotti (2017)). This recursion allows calculating
the moments for truncated distributions which may have a complex moment generating
function (MGF) and cannot be treated by differentiation. Based on this recursive approach
were written two articles for the doubly truncated Student’s t and the extended skew-
normal (ESN) distribution, which are resumed in chapters 2 and 3 respectively. Also,
interesting general results for the scale mixture of normal distribution family using this
recursion can be found in Chapter 1. Notice that the ESN distribution includes the
well-known skew-normal (SN) distribution as particular case. Both articles aforementioned
also considered the moments for the positive multivariate variable |X|, that is, its folded

version.

In Chapter 3, we additionally established a 1-1 relationship between the mo-
ments of a truncated ESN distribution and the moments of a truncated normal distribution.
This led to a more efficient (and faster) algorithm since the number of required integrals
is smaller. Chapter 4 proposed estimation on interval-censored models for skew-normal
responses based on this last approach. Naturally, next step was to move forward to the
extended skew-t (EST) distribution (Arellano-Valle & Genton, 2010) in order to incorpo-
rate heavy tails, however, since ESN distribution results to be a member of the SLCT-EC
family, it was possible to write a general result for this class, which contains the EST

distribution itself.

A 1-1 relation: Assume that Y follows a distribution belonging to the SE class. Then,

we are able to compute any arbitrary moment of Y | (a < Y < b), that is, a doubly
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truncated selection elliptical distribution just using an unique corresponding moment of a

doubly truncated elliptical distribution X | (¢ < X < ), its symmetric version.

For instance, consider Y following a unified skew-t (SUT) distribution, a
complex multivariate asymmetric heavy-tailed distribution which includes the EST and
the skew-t (ST) distribution (Azzalini & Capitanio, 2003). Then, the first and second
truncated moment of Y can be calculated only using the first and second truncated moment
of a symmetric Student’s ¢ distribution X, say, which moments were already proposed in
Chapter 2. It is worth mentioning that for any of the ¢ distributions above their normal
analogous versions (the unified skew-normal (SUN), ESN and the SN distribution) are

retrieved when v 1 c0.

This 1-1 relation is highly convenient since doubly truncated moments for some
members of the elliptical family of distributions are already available in the literature and
statistical softwares. For this reason, this thesis focuses mainly in complex asymmetric
versions of the normal and Student’s ¢ distributions which probabilities of the form
P(a < X < b) are available. Chapter 5 summarized this general results given some
emphasis to the doubly truncated SUT distribution, embedding all theoretical results in

chapters before.

Implementation: All methods described above have been coded in the R package
MomTrunc (Galarza et al., 2018). The package is able to calculate E[X* | a < X < b]
even for extreme cases as when the probability P(a < X < b) ~ 0 due to extreme
parameter settings, integration limits, or even the numerical precision of the machine.
For example, the only other package that calculates truncated moments for the normal
case, the tmvtnorm package (Wilhelm & Manjunath, 2015), under the extreme conditions
mentioned above, it returns values NaNs and even negative variances. In particular, in
contrast with the TTmoment package (Ho et al., 2015) for Student’s t case, the package
is capable of calculating the moments for degrees of freedom v < 5 and even decimals,
for example v = 2.17. It worth mentioning that moments for a double truncated variable
always exist (for Student ¢ case, for v > 0), since it is limited. In addition to the moments,
our package provides P(a < X < b) probabilities for different members of the multivariate
SE family, including the option of returning the logarithm in base 2, useful when true

probability is much less than the precision of the machine.

Algorithms for the normal case have been coded in R from their original versions
in Matlab available in Kan & Robotti (2017). To the best of our knowledge, until the
beginning of 2018, there were only one available package in R offering doubly truncated
moments for the normal distribution (tmvtnorm) and only one for the Student’s ¢ case
(TTmoment). Since its release in February 2018, the MomTrunc package has been downloaded

almost 9000 times, a significant number considering that this is a specialized package.
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Structure of the thesis

The organization of the thesis is as follows:

Chapter 1: We provide some background material. We review some definitions,

methodologies and we describe some datasets used throughout the thesis.

Chapter 2: This Chapter develops recurrence relations for integrals that
involve the density of multivariate Student’s ¢ distributions. The proposed techniques
allow for fast computation of arbitrary-order product moments of folded and truncated
multivariate Student’s ¢ distributions and offer explicit expressions of their low-order
moments. We propose an optimized algorithm that outperforms other methods in the
literature, which can deal with missing data in the response at not computational cost.
The usefulness and effectiveness of the proposed techniques are demonstrated through
both simulated and real data, where we show its usefulness on censored regression models

with missing data.

Chapter 3: We extend the recurrence approach to integrals related to asym-
metric multivariate densities. Specifically, we compute recurrence relations involving the
density of the ESN distribution, including the well-known SN distribution introduced by
Azzalini & Dalla-Valle (1996) and the popular multivariate normal distribution. These
recursions offer a fast computation of arbitrary order product moments of the multivari-
ate truncated ESN and multivariate folded ESN (FESN) distributions with the product
moments as a byproduct. In addition to the recurrence approach, we realized that any
arbitrary moment of the truncated multivariate extended skew-normal distribution can be
computed using a corresponding moment of a truncated multivariate normal distribution,
pointing the way to a faster algorithm since a less number of integrals is required for
its computation which result much simpler to evaluate. Since there are several methods
available to calculate the first two moments of a multivariate truncated normal distribution,
we propose an optimized method that offers a better performance in terms of time and

accuracy, in addition to consider extreme cases in which other methods fail.

Chapter 4: The need for asymmetric distributions for the random errors on
linear censored models, motivate us to develop a likelihood-based inference for linear
models with censored responses based on the multivariate SN distribution. Most linear
and nonlinear regression models used to analyze censored data are based on the normality
assumption for the error term. However, such analyses might not provide robust inference
when the normality assumption (or symmetry) is questionable. The proposed EM algorithm
for maximum likelihood estimation uses closed-form expressions at the E-step, that are
based on formulas for the mean and variance of a truncated multivariate skew-normal
distribution, computed in the Chapter before. Three datasets with censored and/or missing

observations are analyzed and discussed.
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Chapter 5: We generalize all results before to the class of asymmetric dis-
tributions called the selection elliptical (SE) family of distributions, a family including
complex multivariate asymmetric versions of well-known elliptical distributions as the
normal, Student’s ¢, among others. We address the moments for doubly truncated members
of this family, establishing neat formulation for high order moments as well as for its
first two moments. We establish sufficient and necessary conditions for the existence of
these truncated moments. Also, we propose optimized methods able to deal with extreme
setting of the parameters, partitions with almost zero volume or no truncation. A brief
numerical study is presented in order to validate the methodology. A direct application
of ST truncated moments is developed in the context of risk measurement in Finance.
Useful expressions in censored modeling are presented, which have been particularized to
the SUT distribution, a complex multivariate asymmetric heavy-tailed distribution which
includes the EST (ESN) and ST (SN) distribution as particular cases. Finally, we conclude
the chapter proposing estimation on interval-censored models for skew-t responses based

on this last expressions.

Chapter 6: We present some final remarks, technical production and further

researches related to this thesis.
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1 Preliminaries

We begin our exposition by defining the notation and presenting some basic
concepts and some useful results which are used throughout the development of this thesis.
As is usual in probability theory and its applications, we denote a random variable by
an upper-case letter and its realization by the correspondent lower case and use boldface
letters for vectors and matrices. Let I, represent a p x p identity matrix, AT be the
transpose of A, and |X| = (|Xi]....,|X,|)" denote the absolute value of each component

of the vector X. For multiple integrals, we use the shorthand notation
b b1 by
J f(x)dx:f | fley, o ap)de, . day.
a ai ap

where a = (ai,...,a,)" and b = (by,...,b,)". For two p-dimensional random vectors
x = (z1,...,3p) and & = (k1,..., k)", let x" stand for (zf*, 252, ..., 27). General results
to compute the probability of a random vector lying in a hyper-rectangle are summarized

in the following results.

Lemma 1.1. Let X be a p-variate random vector with joint probability density function
(pdf) fx(x;0) and cumulative density function (cdf) Fx(x;0). Let A be a Borel set in R?
of the form

A={(z1,...,2,) eRP: a3 <z <by,...,0, <z, <} ={xeRP:a<x<b}. (11)

Then P(X € A) = Z (—1)" Fx(s;0), where S(a,b) = {s : s = (s1,...,5,) with

seS(a,b)
p

si={a;,bi}, i =1,...,p} and ns = Z 1(s; = a;) with 1(-) being the indicator function.
i=1

Proof. Based on the inclusion-exclusion principle, the probability P(X € A) = P(a < X <

b) can be computed by summing the 27 terms corresponding to the s elements in the

solution space of S(a,b), where the term signs depend on the number of a’s elements in

the vector s, i.e., ng. O

Theorem 1.1. Let X be a p-variate random vector with joint pdf fx(x;0) and joint cdf
Fx(x;0). If Y = |X]|, then the joint pdf and cdf of Y that follows a folded distribution are
given, respectively, by

Z fX sy; 0 7 f0ry>0,

seS(p)

and Fy(y Z s Fx (Agy; 0), where S(p) = {s : s = (s1,...,5,), with s; = £1,1 =
seS(p)

1,...,p}, As = Diag(s) and 75 = HSZ
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Proof. The distribution function Fy(y) can be calculated as a particular case of Lemma
1.1, when a = —y and b =y. It follows that

Fy(y) =P(-y <X <Yy)
P( 1 < X1 <y, < Xo<yy...,—y, <X, <yp)
Fx(y) — ZFX(Y @) + ZFX Y-(i.j)) Z Fx(¥.jm) + -+ (1) Fx(-y),
) i<j i<j<k

(1.2)

where y_g;) denotes the y vector with its ith elements multiplied by —1. For instance,

we have that y_;y = (Y1, ¥2, .- - Yi—1, =¥, Yi+1, - - -, Yp)- 1t is easy to see that Fy(y) can be
P

written as Fy(y) = Z TsFx(Asy; 0), with the constant 7, = n s; providing the signs
(—1,1) correctly for Sciféﬁ) summand in (1.2). As a result, we havezgllle joint pdf of Y = |X]
given by
op
fly) = mFY(Y)
= fx(y) - (_1)ZfX(Y—(i fo zj) 1)3 Z fx(}’-(i,j,k))
i i<j i<j<k
ok (CD)Pfx (=)
= +fo Y_(i)) +fo )+ Z Ix(Yoigmy) + -+ [x(=Y)
i<j i<j<k
= >, fx(Ay: 6
seS(p)
Note that we have conveniently used fx(x) instead of fx(x; @) for simplicity. O

Corollary 1.1. If X ~ fx(x;&,¥) belongs to the location-scale family of distributions
with location and scale parameters & and W respectively, then the joint pdf and cdf of
Y = |X| are given by

) = D fx(yi AL ATA,),  fory >0,
seS(p)

and

FY(y) = Z 7T-SITX(IXsy; £a \Ij)
seS(p)

Proof. By using the change-of-variable method for Z; = A, X, then fz (y) = fx(Asy) since
A7'=A,, J = A, and |det(J)| = 1, where J is the Jacobian matrix of the transformation.
Additionally, if X ~ fx(-; &, ¥) belongs to the location-scale family of distributions with
location and scale parameters & and W, respectively, then Z; = A, X ~ fx(z; A&, A;PAy).
By Theorem 1.1, we obtain fy(y) and Fy(y) accordingly. O
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Corollary 1.1 generalizes the results of Chakraborty & Chatterjee (2013) for
the folded multivariate normal (FMVN) case to all distributions belong to the multivariate

location-scale family.
Corollary 1.2. Under the same conditions of Corollary 1.1, we have that

E[Y*] = | E[Z{*], where Xt =X 1(X > 0).
seS(p)

Proof. By the simple property of probability theory, we can deduce that

FW&M@==§]J“&%A£A%U

0 seS(p)
- ZJ"“ﬁ

seS(p)
= >, E[Z[7].

seS(p)

1.1 Moments of doubly truncated scale mixture of normal distribu-

tions

1.1.1 Scale mixture of normal distributions (SMN)

An element of the symmetrical class of scale mixture of multivariate normal
distributions (Andrews & Mallows, 1974; Lange & Sinsheimer, 1993) is defined as the

distribution of the p-variate random vector
y =p+C(U)"7Z, (1.3)

where p is a location vector, Z is a normal random vector with mean vector 0, variance—
covariance matrix X, U is a positive random variable with cumulative distribution function
(cdf) H(u;v) and probability density function (pdf) h(u;v), independent of Z, where v is
a scalar or parameter vector indexing the distribution of U and ((-) is the weight function.
Note that given U = u, y follows a multivariate normal distribution with mean vector u

and variance—covariance matrix ((u)X. Hence, the pdf of y is given by

SMN, (i Zv) = [ oyly St (1.4

where ¢,(; p, ) stands for the pdf of the p-variate normal distribution with mean vector
p and covariate matrix 3. We use the notation SMN,,(p, X; H) when Y has distribution
in the SMN class.

Three scale mixture of normal distributions are commonly used for robust

estimation which share same weight function ((u) = 1/u:
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o The multivariate Student-t distribution, t,(p, 3, v), where v is called the degrees of

freedom, can be derived from the mixture model (1.3), where U is distributed as

v v

Gammal(, %), with v > 0. The pdf of y takes the following hierarchical form

0¢]
G E0) = | oyl Syl (1.5
0
been equivalent to (2.1).

o The multivariate slash distribution, SL,(p, 3, v), arises when the distribution of U
is Beta(v, 1), with u € (0,1) and v > 0. Its pdf is given by

1

SL(y;u, B, v) = Vf W op(ys pouT E)du, y e R,
0

and can be evaluated through numerical method, for example, using the R function

integrate.

o The multivariate contaminated normal distribution, CN,(p, %, v, p), where v, p €
(0,1). Here, U is a discrete random variable taking one of two states and with

probability function given by
h(w;v) = vi{u = p} + (1 —v)1{u = 1},
where v = (v, p). The associated density is

CNy(y; p, Z,v) = vdp(y; o p ') + (1 = )y 1, 2).

The parameter v can be interpreted as the proportion of outliers while p may be

interpreted as a scale factor.

Now, let TSMN,, (i, 3, H; A) represent a p-variate truncated SMN (TSMN)
distribution for SMN,, (i, ¥; H) lying in the hyper-rectangle A as defined in (1.1). We may
also use the notation TSMN, (u, 3, v; (a, b)) for simplicity. Specifically, we say that the
p-dimensional vector X ~ TSMN,,(p, 3, H; A), if its density is given by:

SMNP(Y7IJ'727V)

TSMN,(x; u, 2, v;A) = ,
ol ) P SMN,(y; 1, 2, v)dy

a<x<b. (1.6)

1.1.2 A recursive approach for TSMN moments

Let suppose that Y ~ SMN,(u, ¥;H). From (1.4) we have that the density
function of Y, fy(y) = SMN,(y; u, 3, v) is given by

Fr(y) = Eu [6p(y; 1, CU)E)]- (1.7)
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Kan & Robotti (2017) proposed a recurrence relation for the moments of a multivariate
normal (MVN) distribution based on a differential equation of its pdf ¢,(y; p, X), that is

—quﬁp Y E) = Sy — Wy (i . D) (18)

which is obtained by multiplying both sides by y® and then integrating both sides from a
to b with respect to y. Following the same exercise for the pdf of Y, say fy(y), it follows

from the equation above that

_&\ény(y) = EU[%qﬁp (y; H, C(U)Z))]
= Sy — ) Eu[C(U) "¢y (v 1, ((U)D)]
= Sy — w Eu[<(U) fruly)], (1.9)

with Y|U = u ~ N,(p, ((u)X). Note that, the derivative and the expectation in the first
line of (1.9) can be interchanged due to the Leibniz rule. As seen, the right side depends
on the mixture variable U. Next, we compute Ey[¢(U) ™" fyj(y)] for particular cases of

interest.

1.1.2.1 Particular Cases

1. Multivariate normal distribution: This is trivial , since U is a degenerated random
variable in 1, that is, P(U = 1) = 1. Then ¢((u)™" fyjw(y) = fy(y) and consequently

we recover expression (1.8).

2. Multivariate Student-t distribution: For U ~ Gamma(, %) and a weight function
C(u) = u™, it follows from equation (1.9) that

0
— (v, B,v) = Ny — ) Ey[Ug, (y; n, U 'T)]

oy
= Sy —wt(yim 52, v+2). (1.10)

Proof. Setting ((u) = u™", with U ~ Gamma(%, %), it follows that,

B [Us, (v 0] = [ te 5, (') au

o I'(5)
_ (%)5 r (p+u+2 5(Y)+1/)
r(%)ferzz v 27 2 )

%)5 (VTH)TF (P+u+2 V42 (S(y)ﬂ/))
r

2 7 v 2



Chapter 1. Preliminaries 29

where §(y) = (y —p) " (y — p) is the Mahalanobis distance and I'(«v, \) represents

the two parameter Gamma function,

0
[, A) = J u® ! exp(—Au)du.
0

After some algebra we obtain,

s - [ M:M@wﬂ—ﬂ”u%é@»

- j (00,07 57 %) by ()
= (y“w+22 1/—1—2)

where V' ~ Gamma ("TQ, ’%2) This completes the proof. n

3. Multivariate Slash distribution: For this case, we have that U ~ Beta(v, 1) and same
weight function ¢(u) = u~*. Then,

BolUs, (i UD)] = [ ugy (v 0 S) hlu)du

1
=f u g, (yip, T E) du
0

1%
= Ly, 2, v). 1.11
o Leis 3, y) (1.11)
Hence,
Sy S v) = — Sy — ) SLy(y: S+ 1) (1.12)
ay pY7y’7 ) _l/+]_ y /J’ vay'7 ) . .

4. Multivariate Contaminated normal (CN) distribution: Since the pdf of Y is a finite

mixture of two normal densities, it follows directly that

—ijNp(y;u,E,V) = —ai,[vaﬁp(y;u,p1E)+(1—V)¢p(y;u, 3]

= Iy — ) [vpdp(yip, p7 ) + (1= 1)y (yi 1, B)] -

Note that Eg[Ud, (y; i, UT'E)] = vpo,(y; , p7' ) + (1 — 1), (y; 1, X), where this
last is not proportional to a CN density. This breaks the recurrence relation of CN
moments; however, it is easy to realize that any CN moment is a finite mixture of

normal moments as well.
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1.1.3 Mean and Covariance Matrix of Truncated Multivariate SMN distribu-
tions
Let Z ~ TN,(p, X;A) be a doubly truncated multivariate normal over the

truncation region A, that is with truncation limits a and b. Kan & Robotti (2017) showed
that

p
E[ZZ] =[Li+ I (a b M, jzzlo-z] le Qg5 g, ])Lp 1( () b( )’I‘L]’E')
_¢1( 55 Mg s ]) p— 1(a 7b 7/"’]’ )]7 i=1,....p, <1'13)
where
5 = po) + B (1.14)
J
= 1o+ 26~ (1.15)
J
- 1
Xj = 20 — 53 200 (1.16)
J

b
and L,(a,b;pu,X) = J op(x; p, B, v)dx.

Let W ~ TSMN,(p, 3, H; A) be a truncated multivariate SMN distribution

with density function as in 1.6. Then, its mean is given by

E[W] ! JWSMN (w: 1, 3, v)dw
S SMN,(x; p, X, v)dx
1
w; i, u ) hy (u)dudw
SSMN(X,u,Eude J Bl s 0 2o (1)
1

wo,(W; p, u ') dwhy (u)du,
SSMN(X;L,EVdXJJ BplW: o ™ 30) vlw)

where we have used expression (1.4) and Fubini’s rule.

b
Noting that, J x¢,(x; p, X)dx = Ly(a, b; u, X)E|Z], it follows from (1.13)

a

that .
f wo,(w; p,u” ' E)dw = pL,(a, by p,u™ ') + u~'Xd,

where the j-th element of d is given by
dj = ¢1(as; iy, w ' o7) Ly—1(ag), by A, u™'%;)
= 01(bss iy u”'0F) L1 (ag), by A5, u™'35).

It follows that

1
E[W] = u + (g - qf), 1.17
W= g e S ) (1.17)
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where the j-th element of g’ and q/ are

q(gj = ]EU[U_1¢1 (aj; My U_IU?)LP—l(a(j)v b(j); ﬂ?a U_lij)]v (118>
@ = By[U " ¢1(bj; 1y, U 0?) Ly (ags), by 5, U™35)]. (1.19)

Furthermore, let e; = [0;_1,1,0,_;], that is, a vector of zeros with a 1 in the
1th position. Hence,
1

E[W"te] = J WO SMN,(w; p, X, v)dw
S SMN,(x; p, 2, v)dx

1 J + J -
= whTe Op (W o, u” X)) hy (u)dudw
S:SMNp(X;[_L,E,I/)dX a 0 oW Jho ()

s, [t
= woT% ¢ (W, u” X)) dwhy (u)du.
S:SMNP(X; w, X v)dx Jo Ja ol ) ()

From Kan & Robotti (2017) (Theorem 1), we have

b b
J WG, (Wi, T B )dw = MJ Wy (Wi p, u”' E)dw + u e B,

where ¢, is an p-vector with j-th element

b —1
0 ; hX
Crj = —f w" Op(W; p, )dW
a é‘wj
_ k‘j ~a — 1
= kiF o, (a, by, u™ ' B) + ay’ ¢ (ag; g, w ' oF) FE - (ag), by a5, u™' X))
k; . L b=
_bj qbl(bja/'bjﬁ )Flg()( (j)7b(j)al-1’?7u Zj)a
Using the above equation, we obtain the following recurrence relation
IxdH
E[W™e] = jiB[W*] + = , (1.20)
§2 SMN,(x; p, 2, v)dx
where df = Ey[U 'c,]. Using these results and let D" = [d[,. .. ,dfi ], we can write
1
E[WW '] = pE[W]" + — ¥D¥, (1.21)
§o SMN,(x; p, 2, v)dx
1
cov[W] = 2(D" - (q; —q; )E[W]). (1.22)

S: SMN,(x; p, 2, v)dx

Using the recurrence formula in (1.20), we are able to compute any product
moment of W with the vector df depending on the mixture distribution H(u; v). Particular
expressions for expectations in terms g, g}’ and D, involved in the first two moments

of a TSMN distribution are presented next.



Chapter 1. Preliminaries 32

1.1.3.1 Student-t case

Lemma 1.2. Suppose U ~ G(%,%). For v > 2, we have that

_ _ v v
]E’U[U l¢p(W§NaU 12)] = ﬁtp(“ﬂﬂa mz,l/ - 2) ) (123>

and hence

Eu (U ¢p(w; p,u ' S) W) = a;] = B [U " ¢1(ay; pj,u"'03)dpr(wiyy, 15, u™ " 35)]
V o~ a
= U _ Qtl(ajhuw 7V_ 2)tP*1(W(j);l'l’j72j7V_ 1).

Note that last equation holds since the Student’s ¢ distribution is closed under conditioning.
Proof for lemma 1.2 is similar to proof of (1.10). Integrating both sides of (1.23) from a
to b, it is easy to see that

_ v v
IEU[I'J 1Lp(au b7 K, 2)] = ELP(a7 b7 K, Eza v—= 2)7

b
where Ly(a,b;pu, X, v) = J ty(W; p, B, v)dw

a

1.1.3.2 Slash case

For the truncated multivariate Slash distribution, we can propose the following

lemma.

Lemma 1.3. Suppose U ~ Beta(v,1). We have

1
Eu[U " (w; o, u ' 5] = L WD (v ') du

= %SLp(y;p,,E,y - 1), for v >1.
V_

Unfortunately, we can not derive analogous closed form expressions for the
Slash case as in lemma 1.2 since the lack of closure over conditioning property of the Slash
distribution. Hence, only the first summand of d,, ; can be simplified and consequently
we should appeal to numerical methods for the other two terms. This would lead to an

inefficient recurrence scheme so it will not be part of this work.

1.1.3.3 Contaminated normal case

Since the multivariate contaminated normal distribution is a finite mixture of
two MVN distributions, any arbitrary moment for its truncated version can be computed

as a mixture of TMVN moments as well. That is,

b b

X (o6; 1, p ) + (1 ) f X (x: 1, D),

a

b
J x"CNy(x; p, B, v)dx = yf

a a
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= vF(a,b;p, p7'E) + (1 —v)Fi(a, by p, B). (1.24)

For Xy ~ CN,(p, 3, v), it follows that

E[X%|la <X, <b] + (1 - )mE[X5a < X; <b
E[X:|a < X, < b] = /MEXTa s Xy bl + (1 - vjmE[Xjla < X <b] - o)
o

where 1y = P(a < Xy < b), m; = Pla < X; < b) and m, = P(a < X, < b), with
X; ~ Ny(p, p7'E) and Xy ~ Ny(p, ).

1.2 Case studies

In this section we present the motivating datasets, which will be analyzed in
this thesis.

1.2.1 Concentration levels data

This dataset consists of concentration levels of certain dissolved trace metals
in freshwater streams across the Commonwealth of Virginia. The data were provided
by the Virginia Department of Environment Quality (VDEQ). It is very important to
determine the quality of Virginia’s water resources across the state to guide their safe
use. The methodology adopted must neither underestimate nor overestimate the levels
of contamination, as otherwise the results can compromise public health, environmental

safety or can unfairly restrict local industry.

The data consist of the concentration levels of the dissolved trace metals copper
(Cu), lead (Pb), zinc (Zn), calcium (Ca) and magnesium (Mg) from 184 independent
randomly selected sites in freshwater streams across Virginia. The Cu, Pb, and Zn
concentrations are reported in pg/L of water, whereas Ca and Mg concentrations are
suitably reported in mg/L of water. Since the measurements are taken at different times,
the presence of multiple limit of detection values is possible for each trace metal (VDEQ),
2003). The limit of detection is 0.1ug/L for Cu and Pb, 1.0mg/L for Zn, 0.5mg/L for
Ca and 1.0mg/L for Mg. The percentages of left-censored values are 2.7% for Ca, 4.9%
for Cu, 9.8% for Mg, which are small in comparison to 78.3% for Pb and 38.6% for Zn.
Also note that 17.9% of the streams had 0 non-detected trace metals, 39.1% had 1, 37.0%
had 2, 3.8% had 3, 1.1% had 4, and 1.1% had 5. Figure 1 shows the histograms for the

concentration levels study.

1.2.2 Apple data

Apple data (Little & Rubin, 1987) is a small dataset frequently used in missing
data literature which contains partially observed measurements of hundreds of fruits y;;

and 100 times the percentage of wormy fruits 3,2 on 18 apple trees. In this dataset, the
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Figure 1 — VDEQ data. Histograms for the concentration levels study. Complete observed
points are represented in gray bins while censored observations are represented
by blue bins. Limits of detection are represented in dashed lines.

observations yy; and yo;, for ¢ = 1,...,12, are fully observed, while yy;, for ¢+ = 13,...,18,

are missing (see Table 1).

Table 1 — Apple data.

i, 8 6 11 22 14 17 18 24 19 23 26 40 4 4 5 6 8 10
Yo, 09 58 56 53 60 45 43 42 39 38 30 27 - - - - - -

1.2.3 Wine data

Wine data represent 27 chemical measurements on each of 178 wine specimens
belonging to three types of wine produced in the Piedmont region of Italy and is available
in the SN library at CRAN repository (Azzalini, 2020). The data have been presented and

examined by Forina et al. (1986) and were freely accessible until a few years ago.

The 28 variables are: wine, wine name (categorical variable, i.e. factor, with
levels Barbera, Barolo, Grignolino); alcohol, alcohol percentage (numeric); sugar, sugar-
free extract (numeric); acidity, fixed acidity (numeric); tartaric, tartaric acid (numeric);
malic, malic acid (numeric); uronic, uronic acids (numeric); pH, pH (numeric); ash,
ash (numeric); alcal_ash, alcalinity of ash (numeric); potassium, potassium (numeric);
calcium, calcium (numeric); magnesium, magnesium (numeric); phosphate, phosphate
(numeric); cloride, chloride (numeric); phenols, total phenols (numeric); flavanoids,
flavanoids (numeric); nonflavanoids, nonflavanoid phenols (numeric); proanthocyanins,
proanthocyanins (numeric); colour, colour intensity (numeric); hue, hue (numeric), 0D_dw
ODss0/O D315 of diluted wines (numeric); 0D_f1, ODagy/O D315 of flavanoids (numeric);
glycerol, glycerol (numeric); butanediol, 2,3-butanediol (numeric); nitrogen, total

nitrogen (numeric), proline, proline (numeric); and methanol, methanol (numeric).

This dataset avaiable in SN package does not contain the“sulphate” variable.
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2 On moments of folded and truncated mul-
tivariate Student's ¢ distributions via recur-

rence relations

2.1 Introduction

The multivariate Student’s ¢ (MVT) distribution has played over the past
decades a crucial role in statistical analysis because it offers a more viable alternative
with respect to real-world data, in particular due to its properties of having harmonizing
parameter (called the degrees of freedom) to control the thickness of tails and including the
multivariate normal (MVN) distribution as a limiting case. Both the MVT and the MVN
are members of the general family of elliptically symmetric distributions whose properties
have been widely studied (Fang et al., 1990). Some recent applications in the areas such as
spatial models (De Bastiani et al., 2015), linear mixed effects models (Pinheiro et al., 2001;
Savalli et al., 2006), multivariate linear mixed effects models (Wang & Fan, 2011; Wang &
Lin, 2014), mixture modelling (Peel & McLachlan, 2000), missing data imputation (Wang
et al., 2017) and Bayesian statistical modeling (Fonseca et al., 2008; Wang & Lin, 2015),
have been broadly studied.

On the other hand, for many applications on simulations or experimental
studies, the researches often generate a large number of datasets with values restricted to
fixed intervals. For example, variables such as pH, grades, viral load in HIV studies and
humidity in environmental studies, have upper and lower bounds due to detection limits,
and the support of their densities is restricted to some given intervals. Thus, the necessity
of studying the truncated distributions along with their properties arises naturally. In
this context, there has been a growing interest in evaluating the moments of truncated
distributions. For instance, Tallis (1961) provided the formulae for the first two moments
of truncated multivariate normal (TN) distributions. Lien (1985) gave the expressions for
the moments of truncated bivariate log-normal distributions with applications to testing
the Houthakker effect in future markets. Jawitz (2004) derived the truncated moments of
several continuous univariate distributions commonly applied to hydrologic problems. Kim
(2008) provided analytical formulae for moments of the truncated univariate Student’s ¢
distribution in a recursive form. Flecher et al. (2010) obtained expressions for the moments
of truncated skew-normal distributions (Azzalini, 1985) and applied the results to model
the relative humidity data. Geng (2013) studied the moments of a doubly truncated member

of the symmetrical class of normal/independent distributions and their applications to
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the actuarial data. Ho et al. (2012) presented a general formula to compute the first two
moments of the truncated multivariate Student’s ¢ (TMVT) distribution based on the
moment generating function (MGF) of the TMVN by expressing a TMVT random variable
as a TMVN scale mixture variable. Arismendi (2013) provided explicit expressions for
computing arbitrary-order product moments of the TMVN distribution by using the MGF'.
However, the calculation of this approach relies on differentiation of the MGF and can be

prohibitively time consuming.

Instead of differentiating the MGF of the TN distribution, Kan & Robotti
(2017) recently presented recurrence relations for integrals that involve directly the density
of the MVN distribution for computing arbitrary order product moments of the TMVN
distribution. These recursions offer fast computation of the moments of folded (FMVN)
and TMVN distributions, which require evaluating p-dimensional integrals that involve
the MVN density. Explicit expressions for some low order moments of FMVN and TMVN
distributions are presented. Although some proposals to calculate the moments of the
truncated Student’s ¢ distribution (Kim, 2008; Ho et al., 2012) have been recently published
so far, to the best of our knowledge, there is no attempt on studying the product moments
of folded (FMVT) and TMVT distributions. In this paper, we develop recurrence relations
for integrals involving the density of MVT distributions based on the idea of Kan & Robotti
(2017). The proposed recursions allow fast computation of the product moments of the
FMVT and TMVT distributions. The proposed new methodology has been implemented
in the R package MomTrunc (Galarza et al., 2018) available on CRAN repository.

The rest of this paper is organized as follows. In Section 2.2, we define the
notation and briefly discuss some preliminary results related to the MVT, TMVT and
FMVT distributions. Section 2.3 presents a recurrence formula of an integral for evaluating
product moments of the FMVT and TMV'T distributions. Explicit expressions for the
first two moments of the FMVT and TMVT distributions are also presented. Section 2.4
presents maximum likelihood (ML) estimation for the MVT distribution with the presence
interval censored responses. The proposed method is illustrated in Section 2.5 through a
simulation study and a real-data example concerning the concentration levels data. Some
concluding remarks and implications for future research are given in Section 2.6. Technical

details and additional information are sketched in the Appendix A.

2.2  Preliminaries

2.2.1 The MVT and FMVT distributions and main properties

A random variable X having a p-variate ¢ distribution with location vector

w, positive-definite scale-covariance matrix 3 and degrees of freedom v, denoted by
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X ~ t,(p, X, v), has the pdf:

resey - §(x) —(pt+v)/2
tp(x; p, B, v) = W;MV PRm (1 + V) ) (2.1)
2

where T'(-) is the standard gamma function and §(x) = (x — p) 7 (x — ) is the
b

Mahalanobis distance. Let L,(a,b;u,3,v) be Ly(a,b;u, X, v) = J tp(x; p, 3, v)dx,

a

where a = (a1,...,a,)" and b = (by,...,b,)". The cdf of X is denoted as
b
T(b: 1, 5, v) =J b o, 5, v)dx = Ly(—o0, b 1, 3, 1).

In light of Theorem 1.1, we have L,(a,b;u,3,v) = Z (—1)"T,(s; u, X2, v), where
seS(a,b)
S(a,b) and ng, are defined as in Theorem 1.1.

It is known that as v — o0, X converges in distribution to a multivariate normal
with mean p and variance-covariance matrix 3, denoted by N,(u,X). An important
property of the random vector X is that it can be written as a scale mixture of the MVN
random vector coupled with a independent positive random variable U ~ Gamma(v/2,v/2),

where its pdf can be obtained as in (1.5).

The following properties of the MVT distribution are useful for our theoretical
developments. We start with the marginal-conditional decomposition of a MVT random

vector. The proof of the following propositions can be found in Arellano-Valle & Bolfarine

(1995).

Proposition 2.1. Let X ~ t,(u, 2, v) partitioned as X = (X{,X;)" with dim(X;) =
X X

E21 222

p1, dim(Ys) = py, where py +py = p. Let u = (], puy)7 and T = be the

corresponding partitions of p and 3. Then, we have
(2) Xl ~ tpl (”17 Z11) V); and
(1) The conditional distribution of Xa | (X1 = x1) is given by

Xy | (X1 =x1) ~ 1), (Y2SM2.1,§~322.1,V ~|—p1),

v+ 0
V+nm

where po1 = po + Ton X7 (X1 — 1) and Egp 1 = (
p1) (X — ) and Bagy = Xgy — Iy XS0,

) 222.1 with (51 = (X1 —

Proposition 2.2. Let X ~ t,(u, %, v). Then for any fized vector b € R™ and matrix
A € R"™*P of full rank we get

V=b+AX ~t,(b+Au, ASAT ).
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We are interested in computing E [|X;[* ... |X,|*| and E[X{" .. .X£P|ai <
X; < bt = 1,...,p|] for any non-negative integer values k; = 0,1,2,..., where the
former is the moment of a FMVT distribution |X| = (|Xi,...,|X,|)7, and the later
is the moment of a TMV'T distribution, with X, truncated at the lower limit a; and
upper limit b;, i = 1,...,p. Remark that some of the a,s can be —oo and some of the b}s
can be 400 in the second expression. When all the b;’s are oo, the distribution is called
the lower TMV'T, and when all the a;’s are —o0, the distribution is called the upper TMV'T.

2.2.2 The TMVT distribution and main properties

A p-dimensional random vector Y is said to follow a doubly truncated Stu-
dent’s ¢ distribution with location vector p, scale-covariance matrix 3 and degrees of
freedom v over the truncation region A defined in (1.1), denoted by Y ~ T't,(p, X, v; A),
if it has the pdf:

tp(Ya IJ’7 27 V)

Ttp(yau’)anvA): L (a bﬂ/ 2 V)’
i )y My Yy )

a<y<hb. (2.2)

Note that equation above is a special case of equation (1.6). Besides, the cdf of Y evaluated

at the regiona <y < b is

TTP(Y? I’l’v 27 v; A) =

1 Y Ly(a,y;p, 3, v)
t(x; p, 2, v)dx = 22
Lp(a,b;p,,E,V)J p(X; p, 2, v)dx L,(a,b;u, X, v)

a

The following propositions are related to the marginal and conditional moments
of the first two moments of the TMVT distributions under a double truncation. The proof
is similar to those given in Matos et al. (2013). In what follows, we shall use the notation
YO =1, YD =Y, Y® =YY", and W ~ Tt,(1n, Z,v; (a,b)) stands for a p-variate
doubly truncated Student’s ¢ distribution on (a,b) € R”.

Proposition 2.3. If Y ~ Tt,(u, X, v; (a, b)) then it holds that

v+p \ v Ly(a,b;p,X* v+ 2r) *)
E|(-2FP ) y®| E[W
(7 550) Y] =t R

where

o 2 HERE)

*=v¥/(v+2r) and v+ 2r >0, with W ~ Tt,(u, X%, v + 2r; (a,b)).

Notice that Proposition 2.3 depends on formulas for E[W] and E[WW ],
where W ~ T't,(p, 3, v; (a, b)). Having established the formula on the k-order moment
of Y, we provide an explicit formula for the conditional moments with respect to a

two-component partition of Y.
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Proposition 2.4. Let Y ~ Tt,(u, X, v;(a,b)). Consider the partition Y' = (Y], Y,)
with dim(Y1) = p1, dim(Ys) = pa, p1 + p2 = p, and the corresponding partitions of a, b,
w, and 3. Then,

~

B [( v —(i;p )rng) | Y1:| _ dp(p1, v, T)T L,,(as, by; pra1, E%u” +p1t ZT)E[ng>],
v+4(Y) (v +46(Y1)) L,,(as,ba; o1, X901,V + p1)

forv+py +2r >0, with (Y1) = 6(Y1; p1, X11),

r()r (g

S vV + 51 T
o1 = () o1, and dp(pl,u, r) = (v +Dp) T (p1+1/) F(p+1/+27')7

2 2

~

where Xgy1 is defined as in proposition 2.1. Moreover, Wy ~ Tt,,(pa1,35, 1,V + p1 +
27‘; (827 bg))

2.3 The recurrence relation for the multivariate Student’s ¢ integral

Let a(;) be a vector a with its ith element being removed. For a matrix A, we
let Ay stand for the ith row of A with its jth element being removed. Similarly, A j
stands for the matrix A with its ¢th row and jth columns being removed. Besides, let e;

denote a p x 1 vector with its ith element equaling one and zero otherwise.

The integral that we are interested in evaluating is

b
Frabi g B0) = [ xS
The initial condition is obviously Ff(a, b; u, X,v) = L,(a,b; u, X, v). The recurrence
relation for the normal case has been recently presented by Kan & Robotti (2017). When
p = 1, the use of integration by parts straightforwardly leads to

2

F(lJ(aab§M7U7V) = Tl(b;u70-2vy)_Tl(a;/fbao-27y))

kvo?
(r=2)

b a0 g0 v — 2) — Vot (b, 0”0 — 2], (k> 0).
(2.3)

Fr(a,bip,0?v) = pFrla,bp, o v) + #%F (a,bp, 750% v —2)

When p > 1, we need a similar recurrence relation in order to compute F- (a, b; u, 3, v)

which we propose in the following Theorem:

Theorem 2.1. Forp>1andi=1,...,p,

F

P e (@D, B, v) = Y (a, by p, B, v) + e Sey, (2.4)
where ¢, 1S a p x 1 vector with the jth element being

Crj = ]{Ijprej(a,b; [J,,E*,V—2)

K
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+G‘I;jt1(aj;/vbjuo-;:2uy_2)ﬁ£()(a(]) b 7’“"’]75a2 V= 1)

—Bt(by; iy, 0 a3?,v = 2)Fi (ag), by 27, 078, v — 1), (2.5)
and
¥ = 2?})(])—?2?‘) O e B e R
o= po)+ RS B = g+ GRS B = R 0 = ol

When k; = 0, the first term in (2.5) vanishes. When a; = —o0 and k; < v — 2, the second

term vanishes, and when b; = +00 and k; < v — 2, the third term vanishes.

Proof. In light of equation (1.10), we have that

ot (Xﬂ';l, EV—2) v—2 -1
- P =— to(x; o, B, 0) 87 (x — ). (2.6)

Multiplying each element on both sides by x* and integrating x from a to b, we have

P _ P
Fn—i—el :uan
F? — kP
P, K+es 2tk
Cx = TZ . )
P P
FnJrep ILLPFH'

Using integration by parts, the jth element of the left-hand side is

b) b
Cr,j = —J X"t (x; p, B, v — 2)|% 2 —a, d%(j) + J kjx"~%t,(x; p, ¥, v — 2)dx.  (2.7)

ag) a

Using the fact that

tp(x;ua2*7y_2)|$j=aj = h (ajaujv ;277/_2) (X(j);/jl’?agai' v— 1) and
tp(x p, B v = 2oy, = ta(bys gy 032, v = 2)t_1 (X 17,00, v — 1),
we get

Coj = k;FY (abu,E*y—2)+a Tty (aj; g, ;2,1/—2)Fp (ag), b ,uj,éE v—1)

K—ey /@()

—bta (b 1y, 037, v — 2)F% ag), byy; i, 003, v — 1),

When k; = 0, the last integral in (2.7) is equal to zero, and the first term of ¢, ; vanishes.
When a; - —o0 and k; < v — 2, afjtl(a],,u], 03?,v —2) — 0, so the second term of ¢,
vanishes. Similarly when b; — oo the third term of ¢, ; vanishes. Finally, the desired result
is obtained by multiplying ~*53 on both sides of (2.4). O



41

Chapter 2.  On moments of folded and truncated multivariate Student’s t distributions

p
As a consequence, E[X"] always exists for Z k; < v. When all the a}s are —o0
=1

or all the b}s are +oo, the length of the recurrence relation is reduced to 2p + 1 rather

than the original 3p + 1. When all the as are —oo and all the bls are +c0, we have

FP(—o0, +o0; u, 3, v) = E[X"], X ~ t,(u, X, v)

and the recursive relation of length (p + 1) is

p
E[X*] = wE[X"] + Y o kB[Y*™], Y ~ t,(u, 5% v =2), i=1,...,p.
j=1
Another special case of interest occurs when a; = 0 and b; = 400, 7 =1,...,p.

In this scenario, we have If(p, X, v) = F£(0, +o0; u, 3, v). The recurrence relation for 7

can be written as

p
I e, (0, 2, v) = (i IE(p, X, v) + Z 05ideg, i =1,...,p,

=1
where
Q- kiIf o (p,%,v) for k; > 0,
o 6Ol 0 v = 212 (1, 0,55, v — 1) for k; =0,
with
2
» i 1 R v—2+ L
~ ) % _ % % * _ J
= 1G) — 2By B = B T iy and 0= —
J

J

2.3.1 The first two moments of the doubly TMVT distribution
Let X ~t,(p, X, v)and Z = X | (a < X < b) ~ T't,(pn, X, v; (a, b)). It follows

b
FP(a,b; u, 3, v)
K, B, v)dx = e DT E)
JX PO B ) = 3 0)

that
1

E|Z"| =
[ ] Lp(awb;/'l’azay)
Furthermore, let denote F£ = F? (a, b; u, ¥, v) and L = L,(a, b; p, X, v) for simplicity. In

a

light of Theorem 2.1, it is straightforward that to see that

E[Z] = £ _ [ + le»TE*co and E[Z;Z;] = % = w;E[Z;] + leTE*ce. (2.8)
L L™ / L I L7 v
where cg = ¢, — cp, with
ca = [ti(aj; 15,052, v = 2) Ly (ag), bgy 45, 058, v = D]7_ (2.9)
v —=2) Ly (ag), by A2, 0785, v = D)7 (2.10)

Cp = [tl(bjnu’]agj vV
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and
Co, = [eiij(a,b;p,, 3% v —2) + ajti(ay; py, 0f v —2)F0 (1)( () b(]),uj,é S v—1)
— byt (b g 02 v — 2)FL (8, by 22, 88, v 1)];. (2.11)
where
Ceiy = Lp(a,bypu, X", v—2)+ajca; — bjcn,,

7]
Ceij = aieaBl(Xg) | X; = a;) |ag) < X < by
—bjenB[(Xyy | Xj = b;) | agy < Xy < byl

This last equality is obtained by noting that

]P’(a( H < X( H <

J J

b X; = a;) = Lyp-1(ag), by 45 023 v — 1)

]’]

and ]P’(a(j) < X(J b(])|X =b; ) Lp 1(&( ),b b 5b2 SV — 1)

Fjs9;
Let C = (Ce,:Cey, - -»Ce,). From expressions in (2.8), we can note that for
E[Z;], co does not depend on i and, for E[Z;Z;], ce, does not depend on j. Then, it is easy
to establish that the mean vector & = E[Z] and variance-covariance matrix ¥ = cov|Z]

are given by

1

§=n+ X (2.12)
1

U= Z2*((3 —cot'), (2.13)

where E[ZZ'] = p&' + icz*.

Methods for computing the mean and variance-covariance matrix of Z are

summarized in algorithms 1 and 2. Note that, to calculate the variance-covariance matrix

Algorithm 1 — Mean vector for Z ~ Tt,(u, X, v; (a, b))

mean(a, b, 0)

L(_Lp(avb;l-l’7zay); Ca (_Oa Cp (_Oa

for j=1:pdo

07« (15,05%5,v = 1); 07 < (7, 07%,v = 1);

if a; # oo then )

| caly) « tilagipg, 072, v = 2)Lya(ag), by A3, 535, v — 1);
end
if b; # co then )

| enl() — ta(by; s, 03 v — 2) Ly 1 (g, beyy; 47,073, v — 1);
end

end

5‘—N+722( cw)/L;

return §;
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Algorithm 2 — Mean vector and variance-covariance matrix for Z ~
Ttp(l-'l’a 27 Vi (a7 b))
meanvar(a, b, )
L — Ly(a,b;pu,3,v); L* «— Ly(a,b;pu, X", v—2);
W, « 0p><p§ Wy, « Opxp;
for j=1:pdo
07 — (2,028, v —1); 67 « (>, 003, v — 1);
if a; # oo then
ca(7) < tilaji 1y, 072, v = 2) Lyma (ag), by: 15, 0535, v = 1);
Wa(—j,j) < mean(ag;), b(;), 07)));
Wa(j, ) < a(j);
end
f b; # o then
Cb(j)(_tl(b]auh ;27V_2)LP—1(a(j)’b ?75}32 V= 1)
Wi(—j, j) < mean(a), by, 0());
Wi (3, 7) < b(j);
end

=1y

end

E—p+3X(ca—cp)/L;

U « (L*diag(p) + Wadiag(ca) — Widiag(cy))X"/L;
return &, U,

W in Algorithm 2, it is necessary to compute 2p (p — 1)-variate mean vectors (lines 8 and
13) through Algorithm 1. This schema leads to only 1 + 2p necessary integrals to compute
the mean and additional 1 + 2p + 4p(p — 1) integrals for the variance-covariance matrix.
It is noteworthy to mention that i) probabilities between lines 7 and 12 in Algorithm 2,
can be recycled from the mean(a, b, ) function, and /) C is not symmetric, however
both of its (7, j)-th and (j,7)-th elements ce;, and ce,; depends on probabilities of the
form P (a; ;) < Xg.j5) < baj) | (Xi, X;) = (25,25)) , with (2, 2;) € {a;,b;} x {a;,b;}. This
leads to an optimal schema with a maximum total of 2(1 + p?) integrals to compute
the mean and the variance-covariance matrix in the case that the distribution is doubly
truncated. Lastly, we remark that this recurrence is limited to work for real degrees of
freedom greater than 3 due to the computation of ¥** = v*¥/(v* — 2) when v* = v — 1.
For v = 3, we approximate its value taking its right-hand limit, which showed a good
performance in terms of precision and stability. Finally, expressions for the mean vector

and variance-covariance matrix derived in subsection 1.1.3 are equivalent but less efficient.

2.3.2  The first two moments of the TMVT distribution when a non-truncated

partition exists

We describe a trick for fast computation of the first two moments of the TMVT
distribution when there are double infinite limits. Consider the partition X = (X|,X;)"
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such that dim(X;) = pi, dim(Xs3) = pg, where p; + p2 = p. Using the law of total
expectations, we have
E{X{|X

Xo

and

cov[X] = [ E[cov[X,|Xs]] + cov[E[X;|Xs]] cov[E[X;|Xs], X] ] |

COV[XQ, ]E[Xl |X2]] COV[XQ]

Let p; be the number of pairs in [a, b] that are both infinite. We consider the
partition X = (X],XJ)" in which the upper and lower truncation limits associated with
X are both infinite, but at least one of the truncation limits associated with Xy is finite.
Let

> >
b= (T D) z:(; 2) a = (al.a])" and b= (b]b])".
21 22

be the corresponding partitions of u, 32, a and b. Since a; = —o0 and by = oo, it follows
that XQ ~ Ttp2 ([LQ,EQQ,V; [ag,bQ]) and X1|X2 ~ tpl ([,Ll + 21222_21()(2 — “2), (211 —
319355 Bo1) (v + 6(x2; pa, T22))/(V + p2), v + po). This leads to

p1+ 135 (& — po)

E[X]=E Y

(2.14)

p+ B35y (Xo — po) |
X

On the other hand, we have that cov[Xy, E[X]|X3]] = cov[Xs, XoX5, 301 ] =
\1’2222_21221, COV[E[X1|X2]] = 21222_21\:[’2222_21221 and E[COV[X1|X2]] = W1.2(211—21222_21
221) with £2 = ]E[XQ] and \:[122 = COV[)(Q]7 and

Wi = E v+ 6(X2a M2, 222) _ 1% Lp(a%bQ;IJ’Qa Z]227 vV — 2)7 (215)
V+py—2 v—2 Lp(az, by; pra, Xoa, 1)

with 33, = v39,/(v — 2). This last expression follows from Proposition 2.3. Finally,

w1231 — 1225, (Wl.Qng — ‘1’222521)221 31235, Uy

cov|[X] = .
WooXip; 3oy W

: (2.16)

where & and Wqy are the mean vector and variance-covariance matrix of the
TMVT distribution, which can be computed by using (2.12) and (2.13), respectively.

Note that X; does not follow a non-truncated ¢ distribution, that is, X; %
tp, (ul, i, 1/), even though a; = —oo0 and b; = 0. In general, the marginal distributions
of a TMt distribution are not TM¢t, however this holds for X5 due to the particular case
a; = —oo and by = o0. Also note that obtaining (2.15) does not require the compu-
tation of additional integrals given that the probabilities L,(as, bo; pto, X5, v — 2) and
L, (ag, ba; pa, 9o, v) are involved in the calculation of & and Way (see Algorithm 2, Line
2).
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It is important to emphasize that E[X] and E[XX ] exist if and only if
v+ py > 1 and v + py > 2 respectively. This is equivalent to say that, (2.14) exists if at
least one dimension containing a finite limit exists. Besides, (2.16) exists if at least two

dimensions containing a finite limit exist.

As can be seen, we can use equations (2.14) and (2.16) to deal with double
infinite limits, where the truncated moments are computed only over a po-variate partition,

avoiding some unnecessary integrals and saving a significant computational cost.

2.3.3 Folded Multivariate Student’s ¢ distribution

Let X ~ ¢,(p, 3, v), we now turn our attention to discuss the computation of

any arbitrary order moment of |X|. First, we established the following corollary.

Corollary 2.1. If X ~ t,(p, X, v) then Zs = A X ~ t,(ps, X5, v) and consequently the
joint pdf, cdf and the kth raw moment of Y = |X| are, respectively, given by

) = ) byipaZSar), Fyy)= ) mhysmEv),

seS(p) seS(p)
and
E[Yn] = Z Iﬁ(u’& 28’ V)’
seS(p)
loe]
where ys = Agy, ps = Aspp, X = AEA and IE(ps, X5, v) = J Vot (y; s, Xs, V) dy.
0

Proof. The proof follows straightforwardly from the definition of probability theory and

basic matrix algebra and thus is omitted. O

Thus the product moments of Y can be calculated easily using IZ(ps, 3, v/)
terms as stated above. In particular, in light of Corollary 1.2, we have that the mean

vector £ and variance-covariance matrix W of Y can be calculated as

e~ Y wz:) 217

seS(p)
U= Y E[ZZ!"] - ¢, (2.18)

seS(p)
where Z! is the positive component of Z; = A; X ~ t,(ps, X, v) from Corollary 1.1. Note
that there are 2P times more integrals to be calculated as compared to the non-folded
case. Specifically, (1 + p)2P integrals are required for the mean vector, and additional

(14 2p + 2p*)2? integrals for the variance-covariance matrix. For the univariate case, the
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explicit expressions for the first four raw moments of Y = |X|, where X ~ t(u, 0%, v),
based on (2.3) and (2.5) can be obtained as

E[Y] = pl - 2T1(0 w, 0%, V)] + 202 (05 1, 0*% v — 2),

E[Y?] = u* + o*

E[Y?] = ”E[Y] + 3u0*2[1 — 213 (0; 1, 02, v — 2)] + 22 (0 p, 0% v — 4),
E[Y4] ,LL + 6,LL2 *2 3([}1/:42)0_*4'

[lustrative results via the implementation of R package MomTrunc are presented in the

Appendix B.

2.4 Inference for MVT with Interval Censored Responses

Let Y; = (Yi1,...,Y;,)" bea p x 1 response vector for the ith sample unit, for
i€ {l,...,n}, and consider the set of independent and identically distributed samples:

Yi,.... Y, ~t,(pu, 2, v), (2.19)

where the location vector g = (piy,...,p,)" and the dispersion matrix 3 = 3(a) depend
on an unknown and reduced parameter vector a. However, the response vector Y; may
not be fully observed due to censoring, so we define (V;, C;) the observed data for the ith
sample, where V,;= (V... ,Vip)T represents either an uncensored observation (Vi = V)
or the interval censoring level (V. € [Via, Vair]), and C; = (Cy, ..., Cyp) T is the vector of

censoring indicators, satisfying

1 if Vi < Y < Vo,
i { 1L Viik k 2ik (2'20)

Cit =
0 if Y, = Vo

forall i € {1,...,n} and k € {1,...,p}, i.e., Cy = 1 if Y is located within a specific
interval. In this case, (2.19) along with (2.20) defines the multivariate Student’s ¢ interval
censored model (hereafter, the MVT-IC model). Notice that a left censoring structure
causes truncation from the lower limit of the support of the distribution, since we only
know that the true observation Yj; is less than or equal to the observed quantity V5. This
situation has been studied by Lachos et al. (2017). Missing observations can be handled
by considering Vi, = —o0 and Va;, = 4-00.

2.4.1 The likelihood function

Lety = (y{,...,¥,), where y; = (yi1,...,¥;p) is a realization of Y; ~
ty(pe, 2, v). To obtain the likelihood function of the MVT-IC model, we firstly treat the
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observed and censored components of y;, separately, i.e., y; = (yZ-OT, yfT)T, where Cy, = 0
for all elements in the p;-dimensional vector y7, and C;;, = 1 for all elements in the
pi-dimensional vector y§. Accordingly, we write V; = vec(V?, V¢), where V{ = (V{, V3.)
with Sooxee
ol cT\T
i = (ud ', s d X=X
l'l’ (I‘II’L MZ ) an ( ) (200206)

Then, using Proposition 2.1, we have that Y7 ~ t,. (7, 3%, v) and Y; | Y] = y{ ~
tpe (i, S{%, v + pf), where

_ v+ 0(y?)
© =l + SR (yo - pd), 8 = LY e, 2.21

= meme - ), s - {7 (221

o0 3 BT IEE and 0(y) = () — ud) (S Uyl - ). (2.22)

Let V =vec(Vy,...,V,) and C = vec(Cy, ..., C,) denote the observed data. Therefore,

the log-likelihood function of @ = (u', ", v)", where a = vech(X), for the observed data
(V,C) is

(6 |V,C) ZlnLl, (2.23)

where L; represents the likelihood function of @ for the ¢th sample, given by

Li=Li(0 | Vi,Ci) = f(Vi| C;,0) = f(V5; <yi < V3 | 7, 0) f(y7 | 6)
= Lpf(vfljﬂvgz?p’z ’SCO V—i_p;))tpf(Yio;H’?’Eiooay)'

2.4.2 Parameter estimation via the EM algorithm

We describe how to carry out ML estimation for the MVT-IC model. The
EM algorithm, originally proposed by Dempster et al. (1977), is a very popular iterative
optimization strategy and commonly used to obtain ML estimates for incomplete-data
problems. This algorithm has many attractive features such as the numerical stability, the

simplicity of implementation and quite reasonable memory requirements (McLachlan &
Krishnan, 2008).

By the essential property of MVT distribution, we can write Y;|(U; = w;) ~
N,(p,u;'E) and u; ~ Gamma(v/2,v/2). The complete-data log-likelihood function of

0 = (u,X,v) is given by (.(0) = Z&C(G), where the individual complete-data log-
likelihood is

1 _
lie(6) = —§{ln 12+ iy — ) =y — )} + Inh(u;v) + ¢,

where ¢ is a constant irrelevant of @ and h(u;;v) is the pdf of Gamma(v/2,r/2). In
summary, the EM algorithm for the MVT-IC model can be adopted as follows:
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E-step: Given the current estimate k) = (), sk, »*)) at the kth step, the E-step

provides the conditional expectation of the complete data log-likelihood function
Q(816%) = E[£.(0) | V.C,0W | = Y 0i(0 | 8%),
i=1
where
0 1 Vo om® w7 sy T st T s
Qi(0[67) =—SIn[S] - Striquyl  —uy;p —py”) Fuppp B
with iy\¥ = E[U;Y; | Vi, C;,0W], uy? = E[U;Y,Y] | Vi, C;,6%] and &P =

E|U; | V4, C;, HA(k)] which are collected in Appendix A. Note that, since v is fixed,
the calculation of E[ln h(Uy; v) | V, C,0™)] is unnecessary.

M-step: Conditionally maximizing (6 | é(k)) with respect to each entry of 8, we update
the estimate 8% = (a®), B® L ®) 1y

pery = <Zn] ) Zuyz,

=1

~ 1 & ~ k
Skt _ 2{ ¥ 05007 _ G gy 4 ()u(k+1)u(k+1)'r}

3

Then we update the parameter v by maximizing the marginal log-likelihood function

for y, that is, D+l — = arg maXZlogf (Vi | Gy, p*+0 E(kﬂ) ).

=1

The algorithm is iterated until a suitable convergence rule is satisfied. In
the later analysis, the algorithm is terminated when the difference between two suc-
cessive evaluations of the log-likelihood defined in (2.23) is less than a tolerance, i.e.,
(6% | V,C) — £(8%) | V,C) < ¢, for example, € = 10°.

2.5 Numerical lllustrations

2.5.1 Simulation study

We conduct a simple simulation study to show how Monte Carlo (MC) estimates
for the mean vector and variance-covariance matrix elements converge to the real values
computed by our method. We consider a 5-variate ¢ distribution X ~ ¢5(0,3,4), where
3 is a positive-definite matrix with unit diagonal elements and off-diagonal elements
oy =005 fori#j=1,...,5where oy = —0.4, 09 = —0.7,03 =1, 04 = 0.7, and 05 = 0.4.
Let Y £ X | (a < X < b) be a TMVT random variable with lower and upper truncation
limits a = (—o0, —0, —00, —3,—3)" and b = (00,00, 1,1,0)", respectively. Note that the
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first two dimensions are not truncated, while the other three are upper, interval and
lower truncated, respectively. Hence, we can write a = (—00g,a5) and b = (009, by), with
ay = (—o0,—3,-3) and by = (1,1,). Consider the partitions X; = (X1, X;)" and
X, = (X3, X4, X5)". Since a non-truncated partition X, exists, we use relations (2.14)
and (2.16) given in Subsection 3.2 to compute & = E[Y] and € = cov[Y] and obtain the

true values:

0.167 1.355
0.292 0.224  1.137
&=\ -0.417 and Q=] —-0.321 -0.561 | 0.802
-0.397 —0.166 —0.290 | 0.414 0.698
-0.110 —0.101 —0.177 | 0.253 0.131 1.165

In this scenario, lower partitions of & and € (values in bold) correspond to
€2 = E[Xg | a; < Xg < b2] and QQQ = COV[X2 | a) < X2 < bg] due to P(a < X < b) =
P(as < X3 < by), which are computed using our recurrence-based formulae (2.12) and

(2.13), while the reminder are computed using basic algebra where no integrals are needed.

A total of 10,000 realizations of Y were generated, and then the sample mean
and the sample variance-covariance matrix are computed. Figures 2 and 3 shows the
evolution trace of the MC estimates for the distinct elements of & and €2, denoted by é
and w;; for 7,5 = 1,...,5 with 7 # j, along with true values depicted as blue dashed lines.
Note that even with 10000 MC simulations there exist slight variation in the chains for

some elements as depicted in Figure 3.

Remark that the computation of the first two moments of Y based on &5 and
295 using our method discussed in Subsection 3.2 results in 1.2 times faster than that
considering the full vector Y with the non-truncated partition. Even though the evaluation
of integrals involving infinite values are faster, the number of integrals required increases
exponentially as the dimension p increases. For instance, considering a vector of dimension
p = 20, where 15 (75%) of its dimensions are non-truncated, the computational time for
evaluating the first two moments based on (2.14) and (2.16) is 10 times faster than that

using the crude method. Our method indeed improves the computational efficiency.

04 =

02 §5
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-0.25
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2500 5000 7500 10000
sample size

Figure 2 — MC estimates for the elements of & = E[Y].
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Figure 3 — MC estimates for the distinct elements of Q = cov[Y].

2.5.2 Concentration levels study

In order to study the performance of our proposed model and algorithm, we
analyze the concentrations level dataset introduced before in subsection 1.2.1. Thus, we fit
the MVT-IC model to the data which contain p = 5 attributes, and thus we assume that
Y, = (Y, Y, ..., Yis) ~ ts(p, 3, v). For the sake of comparison, we also fit the MVN-IC
model which can be considered as a limiting case when v — oo. As the concentration
levels are strictly positive measures, to guarantee this, we consider an interval-censoring
analysis by setting all lower limit of detection to equal 0 for all trace metals. Due to the
different scales for each trace metal, we standardize the dataset to have zero mean and unit
variance as in Wang et al. (2019), which considered this study as a left-censoring problem
without taking in account the possibility of predicting negative concentration levels for

the trace metals. For instance, we can see from Figure 5 that Pb censored concentrations
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take values on the small interval [0, 0.1].

Table 2 — VDEQ data. Estimated mean and ML estimate for » and model criteria.

Model Cu Pb Zn Ca Mg v £O]Y) AIC
Normal  0.556 0.099 2314 12.083 3.814 - —1351.60 2743.19
Student’s ¢ 0.557 0.102 2.329 12.084 3.817 3 —1040.21 2122.42

The ML estimates of model parameters are obtained using the EM algorithm
described in Subsection 4.2. The estimated mean of the trace metals, degrees of freedom v
as well as the maximized log-likelihood and Akaike information criterion (AIC; Akaike,
1974) are shown in Table 2. Here, we can see that the estimated mean values are quite
similar for both models. The estimated value of v is fairly small, taking the minimum
possible value that our algorithm supports (see subsection 2.3.1). This indicates a lack of
adequacy of the normal assumption for the VDEQ data. This finding can be also confirmed
from Figure 4 where the profile log-likelihood values are depicted for a grid of values of v.
As expected, the AIC value for our MVT-IC model is lower than that for MVN-IC model.

-1050

log-likelihood
-1100

-1150

-1200

Figure 4 - VDEQ data. Plot of the profile log-likelihood of the degrees of freedom v.

Figure 5 shows the histograms on diagonal and pair-wise scatter plots for the
concentration levels study. From the histograms in diagonal of the matrix plot, we observe
how censored observations (taking values over the dashed lines) are distributed to the left
(blue bins) after fitting our proposed model, while gray bins represent complete observed
points. On the other hand, the scatter plots in off-diagonal of the matrix plot show complete
observed (black) points and the predicted observations using the multivariate SN-C model

(blue triangles).

With the aim of validating the proposed censored model approach, we compare
the correlation matrices of the data by considering 5 strategies: (a) Original: original data,

(b) Omitting: zeros are not considered, (¢) Manipulating: multiplying the limit of detection
by the factor 0.75, (d) MVN-IC model, and (e¢) MVT-IC model.
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Figure 5 — VDEQ data. Histograms (diagonal) and pair-wise scatter plots (lower-triangle)
for the concentration levels study. Complete observed points are represented
in black points (gray bins) and MVT predicted observations in blue triangles
(bins). Limit of detection are represented in dashed lines.

From the results depicted in Figure 6, we can find that the correlation matrices
for the MVN-IC and MVT-IC models are similar. Based on the AIC, we consider the
second one as a reference. We can get very decent results for this study by using the
original data (a) or even manipulating the data (c), with both tending to underestimate
the correlations. Omitting (b) is by far the worst strategy. For example, the correlation
between Pb and Cu is poorly estimated to the point that they have the sign changed.
Similar problems arise for the correlations between Zn and other three elements. Given the
large number of censored observations, the omitting method leads to loss of information
(say the case where the correlation between Ca and Pb and that between Ca and Mg are

estimated to be zero).
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Pb Zn Ca Mg Pb Zn Ca Mg Pb Zn Ca Mg Pb Zn Ca Mg Pb zZn Ca Mg 1

Cu 023 0.18 0.14 01 Cu —0.07—0.02. 0.38 Cu 025 0.19 0.14 041 Cu 028 0.2 0.14 0.11 Cu 0.28 0.19 0.14 0.11

0.5
Pb.—0.16—0.15 Pb. 0 -0.15 Pb.—0.17—0.16 Pb.—0.19—0.18 Pb.—0.2 -0.19
0

Zn -0.11 -0.04 Zn 0.09 0 Zn -0.1 -0.04 Zn -0.1 -0.03 Zn -0.11 -0.04
-0.5
-@ B E -E  -H
-1
(a) Original (b) Ommiting (c) Manipulating (d) MVN-IC (e) MVT-IC

Figure 6 — VDEQ data. Correlation matrices of the concentration levels for 5 different
strategies.

2.6 Conclusion

We have developed recurrence relations for integrals involving the density
of MVT distribution and provided explicit expressions for the first two moments of the
TMVT and FMVT distributions. These recursions allow fast computation of arbitrary-order
product moments of TMVT and FMVT distributions. As an illustration, we have shown the
practicability of our methods through a real-data example that contains positive censored
observations. Our methods can also be applied in the context of missing observations
(Lin et al., 2009). The proposed methodology has been implemented in the R MomTrunc
package, which is available on CRAN repository.
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3 Efficient computation of moments of
folded and doubly truncated multivariate

extended skew-normal distributions

3.1 Introduction

Many applications on simulations or experimental studies, the researches often
generate a large number of datasets with restricted values to fixed intervals. For example,
variables such as pH, grades, viral load in HIV studies and humidity in environmental stud-
ies, have upper and lower bounds due to detection limits, and the support of their densities
is restricted to some given intervals. Thus, the need to study truncated distributions along
with their properties naturally arises. In this context, there has been a growing interest in
evaluating the moments of truncated distributions. These variables are also often skewed,
departing from the traditional assumption of using symmetric distributions. For instance,
Tallis (1961) provided the formulae for the first two moments of truncated multivariate
normal (TMVN) distributions. Lien (1985) gave the expressions for the moments of trun-
cated bivariate log-normal distributions with applications to test the Houthakker effect
(Houthakker, 1959) in future markets. Jawitz (2004) derived the truncated moments of
several continuous univariate distributions commonly applied to hydrologic problems. Kim
(2008) provided analytical formulae for moments of the truncated univariate Student-t dis-
tribution in a recursive form. Flecher et al. (2010) obtained expressions for the moments of
truncated univariate skew-normal distributions (Azzalini, 1985) and applied the results to
model the relative humidity data. Geng (2013) studied the moments of a doubly truncated
member of the symmetrical class of univariate normal/independent distributions and their
applications to the actuarial data. Ho et al. (2012) presented a general formula based
on the slice sampling algorithm to approximate the first two moments of the truncated
multivariate Student-t (TMVT) distribution under the double truncation. Arismendi
(2013) provided explicit expressions for computing arbitrary order product moments of
the TMVN multivariate distribution by using the moment generating function (MGF).
However, the calculation of this approach relies on differentiation of the MGF and can be

somewhat time consuming.

Instead of differentiating the MGF of the TMVN distribution, Kan & Robotti
(2017) recently presented recurrence relations for integrals that are directly related to the
density of the multivariate normal distribution for computing arbitrary order product

moments of the TMVN distribution. These recursions offer a fast computation of the
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moments of folded (FN) and TMVN distributions, which require evaluating p-dimensional
integrals that involve the Normal (N) density. Explicit expressions for some low order
moments of FN and TMVN distributions are presented in a clever way, although some
proposals to calculate the moments of the univariate truncated skew-normal distribution
and truncated univariate skew-normal/independent distribution (Flecher et al., 2010)
has recently been published. So far, to the best of our knowledge, there has not been
attempt on studying neither moments nor product moments of the folded multivariate
extended skew-normal (FESN) and truncated multivariate extended skew-normal (TESN)
distributions. Moreover, our proposed methods allow to compute, as a by-product, the
product moments of folded and truncated distributions, of the N (Kan & Robotti, 2017),
SN (Azzalini & Dalla-Valle, 1996), and their respective univariate versions. The proposed

algorithm and methods are implemented in the new R package MomTrunc.

The rest of this paper is organized as follows. In Section 3.2 we briefly discuss
some preliminary results related to the multivariate SN, ESN and TESN distributions and
some of its key properties. The section 3.3 presents a recurrence formula of an integral
to be applied in the essential evaluation of moments of the TESN distribution as well
as explicit expressions for the first two moments of the TESN and TMVN distributions.
A direct relation between the moments of the TESN and TMVN distribution is also
presented which is used to improved the proposed methods. In section 3.4, by means of
approximations, we propose strategies to circumvent some numerical problems that arise
on limiting distributions and extreme cases. We compare our proposal with others popular
methods of the literature in Section 3.5. Finally, Section 3.6 is devoted to the moments
of the FESN distribution, several related results are discussed. Explicit expressions are
presented for high order moments for the univariate case and the mean vector and variance-
covariance matrix of the multivariate FESN distribution. Finally, some concluding remarks

are presented in Section 3.7.

3.2 Preliminaries

3.2.1 The multivariate skew-normal distribution

In this subsection we present the skew-normal distribution and some of its
properties. We say that a p x 1 random vector Y follows a multivariate SN distribution
with p x 1 location vector u, p x p positive definite dispersion matrix 3 and p x 1 skewness
parameter vector A € R, and we write Y ~ SN, (p, 3, X), if its joint probability density
function (pdf) is given by

SN (y; 1, 2, A) = 26, (y: 1, D) 01 (ATETA (y — p)), (3.1)
where @4 () represents the cumulative distribution function (cdf) of the standard univariate

normal distribution. If A = 0 then (3.1) reduces to the symmetric N,(p, ) pdf. Except
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by a straightforward difference in the parametrization considered in (3.1), this model
corresponds to the one introduced by Azzalini & Dalla-Valle (1996), whose properties
were extensively studied in Azzalini & Capitanio (1999). See also Arellano-Valle & Genton
(2005).

Proposition 3.1 (cdf of the SN). If Y ~ SN,(pu, X, X), then for any y € R?

Fy(y) =P(Y <y) = 20,.4((y",0) s ", ), (32)
¥ A
where p* = (u",0)" and Q = ( AT 1 ) , with A = T2 /(1 + ATA)Y2.

Proof of proposition 3.1 can be found in Azzalini & Dalla-Valle (1996). It is worth
mentioning that the multivariate skew-normal distribution is closed over marginalization
but not conditioning. Next we present its extended version which holds both properties,
called, the multivariate ESN distribution.

3.2.2 The extended multivariate skew-normal distribution

We say that a p x 1 random vector Y follows a ESN distribution with p x 1
location vector p, p x p positive definite dispersion matrix 3, a p x 1 skewness parameter
vector A € R?, and a shift or extension parameter 7 € R, denoted by Y ~ ESN,,(p, 3, X\, 7),
if its pdf is given by

ESN,(y; 1, B0, 7) = 0, (yi 1, )1 (7 + ATE T2 (y — ), (3.3)

with € = ®,(7/(1 + ATA)¥?). Note that when 7 = 0, we retrieve the skew-normal
distribution defined in (3.1), that is, ESN,(y; i, 2, X, 0) = SN,(y; i, 2, A). Here, we used
a slightly different parametrization of the ESN distribution than the one given in Arellano-
Valle & Azzalini (2006a) and Arellano-Valle & Genton (2010). Futhermore, Arellano-Valle
& Genton (2010) deals with the multivariate extended skew-t (EST) distribution, in which
the ESN is a particular case when the degrees of freedom v goes to infinity. From this last

work, it is straightforward to see that
ESNP(y’ H, 27 Aa T)—)pr(y, M, E), as 7T — —+00.

Also, letting Z = XY2(Y — p), it follows that Z ~ ESN,(0,I, A, 7), with mean vector

and variance-covariance matrix

E[Z] =nA  and  cov[Z] = I, — E[Z] <IE[Z] . 1+T>\T>\’\) ,

with 7 = ¢1(7;0,1 + AT A)/&. Then, the mean vector and variance-covariance matrix of Y
can be easily computed as E[Y] = p + BY?E[Z] and cov[Y] = =%cov[Z] V2.



Chapter 3. Moments of folded and doubly truncated multivariate extended skew-normal distributions 57

Next, we present some propositions that are crucial to develop our methods.
First, we propose the marginal and conditional distribution of the ESN with pdf as in (3.3)
(proof can be found in the Appendix B), while the second and third proposition comes
from Arellano-Valle & Azzalini (2006a) and Arellano-Valle & Genton (2010).

Proposition 3.2 (Marginal and conditional distribution of the ESN). LetY ~ ESN,(u, X,
X\, 7) and Y is partitioned as Y = (Y{,Y,)" of dimensions p1 and py (p1 + pa = p),

respectively. Let

Y Y
D cop=(ulpu), A=ALA)T and o= (p],p5)"
221 222

be the corresponding partitions of X, p, A and @ = S72X. Then,
Y, ~ ESN, 25 = 12
1~ o (1, 211, €220 P1, co7), Yol Y1 =y1 ~ ESN,, (o1, Xoo1, 25102, T2.1)

where c12 = (1 + CP;222.1802)71/2; P = p1+ X1 T0wr, Tog = T — BB i,
o1 = M2 + Z2121711(}’1 — 1) and 191 =T + 951T(Y1 — ).

Proposition 3.3 (Stochastic representation of the ESN). Let X ~ N1 (p*, Q) with X
part as X = (X1, Xy)". If
Y £ (Xy|X, < 7), (3.4)

it follows that Y ~ ESN,(p, 3, X, 7), with p* and Q as defined in Proposition 5.1, and
=71+ ATA)2

Proposition 3.4 (cdf of the ESN). If Y ~ ESN,(p, X, X\, 7), then for anyy € RP

@, ((y7,7) i 1%, Q)
o(7)

Fy(y) =P(Y <y) = : (3.5)
Proof is direct from proposition 3.3. Hereinafter, for Y ~ ESN,(u, 3, X, 7), we
will denote to its cdf as Fy(y) = @p(y; w, 3, A, 7) for simplicity.

Let A be a Borel set in R?. We say that the random vector Y has a truncated
extended skew-normal distribution on A when Y has the same distribution as Y|(Y € A).
In this case, the pdf of Y is given by

ESNP(Y7 /Jla 27 A7 T)
P(Y € A)

f(y | IME,WA) = ]-A(y)a

where 1, is the indicator function of A. We use the notation Y ~ TESN,(p, 3, X, 7; A).
If A has the form

A={(z1,...,2,) eRP: a3 <z1<by,...,a0, <z, <} ={xeR:a<x<b}, (3.6)
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then we use the notation {Y € A} = {a < Y < b}, where a = (a;,...,a,)" and
b= (by,..., bp)T. Here, we say that the distribution of Y is doubly truncated. Analogously
we define {Y > a} and {Y < b}. Thus, we say that the distribution of Y is truncated from

below and truncated from above, respectively. For convenience, we also use the notation
Y ~ TESN, (i, 2, A, 75 (a, b)).

3.3 On moments of the doubly truncated multivariate ESN distri-

bution

3.3.1 A recurrence relation

For two p-dimensional vectors x = (z1,...,7,) and & = (k;,..., k)", let x*
stand for (z7",...,2,7), and let ag) be a vector a with its ith element being removed. For

a matrix A, we let A, stand for the ith row of A with its jth element being removed.

Similarly, A ;) stands for the matrix A with its ith row and jth columns being removed.
Besides, let e; denote a p x 1 vector with its ¢th element equaling one and zero otherwise.

Let
b

L,(a,b;pu, XX\ 7)= J ESN,(y; b, 2, A, 7)dx.

a

We are interested in evaluating the integral

b
FP(a,b; pu, XA, T) = J x"ESN,(y; p, X, A, 7)dx. (3.7)

The initial condition is obviously g (a, b; p, X, X, 7) = L,(a,b; p, 3, X, 7). When A =0

and 7 = 0, we recover the multivariate normal case, and then

b
FP(a,b;u,%,0,0) = FP(a,b; u, X)) = J x" ¢, (x; p, ¥)dx, (3.8)

a

with initial condition

b
(e bi 0, .0,0) = Lyfabi D) = [ 6,x . D) (3.9)

Note that we use calligraphic style for the integrals of interest £ and £, when we work
with the skewed version. In both expressions (3.8) and (3.9), for the normal case, we are
using compatible notation with the one used by Kan & Robotti (2017).

3.3.1.1 Univariate case

Let @ = (p, 0% X\, 7)" be the set of parameters. When p = 1, it is straightforward

to use integration by parts to show that

Fola,;b;0) = & [@2((b—p,7)750,9) = P2 ((a— p,7)750,9Q)],
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Fir1(a,b;0) = pFi(a,b;0) + ko®F_(a,b;0) + AankFy (a,b; o — 1, 7%)
+0*(a"ESNi(a;0) — V" ESN; (b;6)); for k >0,
2

— 1
where 2 = < 0¢ (;w >,@/J=/\/\/1+)\2, ty = —Aty* and v = o/vV1 + A2,

When p > 1, we need a similar recurrence relation in order to compute

FP(a,b, pu, X, A, 7) which we propose in the next theorem.

3.3.1.2 Multivariate case

Theorem 3.1. Forp>1andi=1,...,p,
f£+e¢(aﬂb; H, E7A77-) = MZFS(a7ba o, 27 AJT) + 5ZF£(aub7lJ’ - [.Lb,F) + ez—'rzdna (310)

where § = (61,...,6,)" = nSY2N, py = 7A, T =X — AAT and d,, is a p-vector with jth

element

d"ivj = kjfgfej(a7b7“>27)‘a7-) (311)
k; ~ _ ~a 1/2 ~a
+0JjJESN1(aj;Nj;U?acjgj(Pj?CjT)ﬂ(j;(a(j)’b(j);/ij,2]',2./ (P(j)u )

K

k; ~ — ~ — —1/2 ~
_b]]ESNI(ijM]agfvcjajgpj7ch)fp l(a(])ab(])uu?72]72]/ c)0(3)7 b)?

k@) J

with 7 = 7+ @;(a; — p;) and 7> = 7+ 3;(b; — ;) where

~ a; — /,L "'b b J— lu/ B 1
A= ko) + B0 B = G T RG89 = 9t S Ei090)
J J J
! d X =X L DIy
C; = = , an . = Ny — — NS P
71+ cp(Tj)Ejgo(j))l/Q J (1,9 o7 (7).33,(9)

Proof. Taking the derivative of the ESN density, we have

0 0 o
—ESN,(x; pu, B, A, 7) = 5—1{¢p(x; I, 2)&@1(7 +ATE 2 (x — ) + 8—X¢p(x; %)

ox
AT ATE u))},
- 5—1{2—1/2)\¢1 (T + ATS 2 (x — p))p(x; 1, B) — B (x — )
X ¢p(x; p, B) Py (7 + )\T271/2(x — ,u,))}’

= — Y Y x— p)ESN,(x; 0, B, N, 7) + EInT2N Op(x; p, X0)

X o (T + ATE V2 (x — ). (3.12)
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On the other hand we have that

1|1/2
1))y (i 0, 5 = 12

(271') p+1

(T + AT (x —

{ 1
exXp —5

[(5()() + (7 + )\TE’W(X — ;1,))2]} ,

TT 1 72
— TR /2 o2 Mo _
| |"/< exp 5 X NGE: exp 5

1

5(X;M—ub,1“)}

X ——F———exp{ —
LIV p{ 2

(27)

T
= e {0 )0y ),

where we use the fact that,

o(x) + TPx = p) = (k- ) T (x

(T+ATT

—p) + 2 T (x

(3.13)

_l'l’) +7-2a

= (x— (=) T (x = (= o)) = py T gy + 77,
= 00— 5, T) = py 0 gy + 72,
and where §(x) = 6(x;u,2) = (x — p) "X (x — p) is the Mahalanobis distance and

with T = ST, + AA")7'2Y? =
I, — (1+ATA)TANT) and gy, = 7TTE72A = 7A

Plugging (3.13) in (3.12), we obtain
—;ESNP(X; XA T) =" (x —
X

where 8 = n2'2X and

=TS 12 x gblg—) exp {Mbr Nb}7

2

¥ — AA' (using the fact that, (

W) ESN, (x5, 2, A, 7)

L+ AN

- 5¢p(X, K — [y, F)] )

(3.14)

=L, + A\T|72 % ¢1£(T)exp{

AL, + )\AT)‘l)\}
2 )

_ 1 1 o 72 | AT

T VIEAA f\/27r AT T T AT [
1 1 72

TVIEAA 5\/27r P {_21 n )\TA} ’

(150, 1+ ATX)

- 3

with det(L, + AXT) =

1+ AT from the Sylvester’s determinant identity (Harville, 1997).

Multiplying both sides by x® and integrating from a to b, we have (after

suppressing the arguments of 72 and F?) that

‘F?z"rel Ml‘/—-z -
d. — 2_1 ]:g-i-ez MQ'FE -
-F£+ep :up‘/_-;f -

5, FP
5o FP

5,FP
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and the jth element of the left hand side is

b
dx(j) + J kjx""% ESN,(x; pb, 3, A, 7)dx

a

b(j) bj
dj = — J X"ESN,(x; pu, X, X, 7)

a(j)

Tj=a;

by using integration by parts. Using Proposition 3.2, we know that

ESN,(x; p, 3, A, 7)) _ESNl(aJ,uJ, ;0335 ¢GT)ES N, 1 (Xj); (13, 3, 5: ) T,

Tj=aj;

ESN,(x; p, 3, A, T)‘%:bj = ESN;(bj; py, 0]2, ;0 Pj, ¢;T)ESNp_1(X(j); ﬂ?, f]j, f];/QQo(j), %b),

and we obtain

d"ﬂ»]' = kjfg—ej (aab;”727}‘77_)

k; . = 1/2 ~a
+aj ESNl(aj,uj,a?,cjojgoj,cj )*Fp ( b(])a.u‘]azjaz / PG )77-‘)

F) J

k; . = 1/2
_bj ESNl(bjauﬁo']Z'achjgphcj )‘Fg( )( b(])7l"’]72J7 2 / 90(])7 )

Finally, multiplying both sides by X, we obtain (3.10). This completes the proof. O

This delivers a simple way to compute any arbitrary moments of multivariate
TSN distribution F? based on at most 3p + 1 lower order terms, with p + 1 of them being
p-dimensional integrals, the rest being (p — 1)-dimensional integrals, and a normal integral
F? that can be easily computed through our proposed R package MomTrunc available at
CRAN. When k; = 0, the first term in (3.11) vanishes. When a; = —o0, the second term
vanishes, and when b; = 400, the third term vanishes. When we have no truncation, that
is, all the ajs are —oo and all the bs are +00, for Y ~ ESN,(p, X, X, 7), we have that

FP (=00, +oo; pu, X, A, 7) = E[Y"],
and in this case the recursive relation is

p
E[Y™**] = B[Y"] + GE[W™] + 3 ok B[Y* ], i =1,....p,
j=1
with W ~ N, (1 — s, T).

It is worth to stress that any arbitrary truncated moment of Y, that is,

FP(a,b; p, 2, X, 7)

B a <Y <bl = s A
p\A, My U, ) Ny

(3.15)

can be computed using the recurrence relation given in Theorem 3.1. In the next section,
we proposed another approach to compute (3.15) using a unique corresponding arbitrary

moment to a truncated normal vector.
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3.3.2 Computing ESN moments based on normal moments

Next, we present a theorem establishing a 1-1 relation between the ESN integral

Fi and the normal integral Fj.

Theorem 3.2. It holds that

Fh(a, by, B, A, 7) = L (a*, bY; pt, Q), (3.16)
with p* and Q as defined in Proposition 3.1, and k* = (k",0)", a* = (a”, —0)" and
b* = (b",7)".

In particular, for & = 0, then
Ly(a,b;p, B, A, 7) = Ly (a*, b*; p*, Q). (3.17)
Proof. From the inclusion-exclusion principle, we have that
FP(a,b;p, X\, 7) = Z (=1)" J x"ESN,(x; p, X, X, 7)dx,
seS(a,b) —o
where S(a,b) = a x b is a cartesian product with 27 elements of the form s = (sq, ..., sp)T,

P
with s; € {a;,b;} for i =1,...,p and n, = Z I(s; = a;). For Y ~ ESN,(p, 3, A, 7) and
i—1

X =(X;", X5)" ~ N1 (p*, Q), it follows from its stochastic representation (3.4) that

FabuSAan= Y (-1 f X frc, (x1| Xz < 7)dx,
seS(a,b)

fy(x1,x
B f J 1PYX21 2))dmxl’

seS (a b)

— ¢! ffxfx

seSab)

et N 0 [ X g lnt @i,
seS(a,b) —©

= N (M (o s et )
seS(a,b)

wi 1= T i v i i . veni Wi Y
ith s s",7)T being a vector of dimension p 4+ 1. For convenience, we preserve the

index s in the summation due to s; is a one-to-one transformation. Similarly, we define
the vector sg = (s™, —0)'.
Let Uy and U; be the two sets Uy = U sp and U; = U s1, both with 27
seS(a,b) seS(a,b)
-

elements. Then, UyuU; contains the same 277! elements s* in S(a*, b*) fora* = (a7, —o0)'
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and b* = (b",7)". Since F21' (so; u*, Q) = 0 for all s € Uy and ngx = ng+ 1(s,1 = —0),

then

Z (_1)nSF£:1(_OO7 S1; “’*7 Q) = Z (_1)ns+1F£:1(_007 So; l*l'*a Q)
SES(a,b) Sero

+ Z (_1)nSF::1(_Oov S1; N*, Q)?

S1€U1

= Y (e F (oo, pt, ),
s*eS(a* b*)

— F,f:{l(a*,b*; pt, Q).
]

Equation (3.17) offers us in a very convenient manner to compute the probability
L,(a,b; p, 3, A, 7), since efficient algorithms already exist to calculate L,(a, b; u, ¥) (e.g.,
see Genz (1992)), which avoids performing 2P evaluations of cdf of the multivariate N

distribution.

Corollary 3.1. For Y ~ ESN,(pu, X, A, 7) and X ~ N,.1(p*,Q), it follows from Theo-
rem 3.2 that
E[Y*la <Y <b] = E[X*"|la* < X < b*],

with a*, b*, k*, u* and Q as defined in Theorem 3.2.

3.3.3 Mean and covariance matrix of multivariate TESN distributions

Let us consider Y ~ TESN,(u, X, A, 7, (a,b)). In light of Theorem 3.1, we
have that

1

p
18 oL + Z 0i;| ESNi(aj; pj, 05, ¢;0;@5, ¢;7) Lo1(ag, byy; i3, 55, X g, 77

7=1

E[Y]

— ESNy(bj; piy, 05, ¢;0535, ¢;7) Lomr (g, by 15, 55, 2000, T | + i,

fori=1,...,p, where L= L,(a,b; pu, X, X\, 7) and L = L,(a,b; p — p,,, T).
It follows that
1
EY]=p+ ;Lo + X — )], (3.18)

where the j-th element of q, and q, are

Qo = ESNi(aj; 1, 07, ¢;0585, ¢;7) Lp1(ag), by 15, 25, T e, 72, (3.19)

3
o <

@ = ESN1(bj; pj, 07, ¢;0;@5, ¢;7) Lp1(ag), byy; ﬂ}), 35, 2}/29%), ) (3.20)
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Denoting D = [de,, ..., de,]|, we can write
E[YY ] = pE[Y]" + Z[LEE[W]T +XD], (3.21)
cov[Y] = [ — E[Y]|E[Y]" + Z[Lé]E[W]T +XD], (3.22)

where W ~ TN, (. — iy, T', (a, b)), that is a p-variate truncated normal distribution on
(a,b).

Besides, from Corollary 3.1, we have that the first two moments of Y can be

also computed as
E[Y] = E[X]g) (3.23)
E[YY'] = E[XX 1141 (3.24)

with X ~ TN, (u*, ©; (a*,b*)). Note that cov[Y] = E[YY ] — E[Y]E[Y"]. Equations
(3.23) and (3.24) are more convenient for computing E[Y] and cov[Y] since all boils
down to compute the mean and the variance-covariance matrix for a p + 1-variate TMVN

distribution which integrals are less complex than the ESN ones.

3.3.4 Mean and covariance matrix of TMVN distributions

Some approaches exists to compute the moments of a TMVN distribution. For
instance, for doubly truncation, Manjunath & Wilhelm (2009) (method available through
the tmvtnorm R package) computed the mean and variance of X directly deriving the
MGF of the TMVN distribution. On the other hand, Kan & Robotti (2017) (method
available through the MomTrunc R package) is able to compute arbitrary higher order
TMVN moments using a recursive approach as a result of differentiating the multivariate
normal density. For right truncation, Vaida & Liu (2009) (see Appendix B) proposed a
method to compute the mean and variance of X also by differentiating the MGF, but
where the off-diagonal elements of the Hessian matrix are recycled in order to compute
its diagonal, leading to a faster algorithm. Next, we present an extension of Vaida & Liu
(2009) algorithm to handle doubly truncation.

3.3.5 Deriving the first two moments of a double truncated MVN distribution
through its MGF

Theorem 3.3. Let X ~ T'N,(0,R; (a,b)), with R being a correlation matriz of order
p x p. Then, the first two moments of X are given by

om(t) | 1
EX] = —— =——R
[X]=—% TR
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and consequently,

1
cov[X] =R + ER(LH —aq')R,

where L = L,(a,b;0,R), q = q, — qp, with the i-th element of q, and q; as

ai = $1(a;) Ly—1(agy, bay; iRy, Ri) and @i = 01(bi) Lp—1(ag), by bR, Ri),
H being a symmetric matriz of dimension p, with off-diagonal elements h;; given by

aa ba ab bb

hij = hij' — by — hij + Ry,
= ¢a(as, aj; pij) Lp—a(a( 5, brigy; iy Rig) — d2(bi, 4z pig) Lp—a(ag ), by ply Rag)
— d2(ai, by; pig) Lp—2(ag ), bajy; 1wy Rag) + 02(bi, bj; pi) Lp—2(a.j), beigy: mes, Rij),
(3.25)

and diagonal elements

hi; = aiqa; — biqy, — R () Hiy s, (3.26)
with R; = Ry — ReaRiay. #e = R g 8)" and Ri; = Ry gy — Rey i)
Riij1,6.9)-

Proof. See Appendix B.

The main difference of our proposal in Theorem 3.3 and other approaches
deriving the MGF relies on (3.26), where the diagonal elements are recycled using the

off-diagonal elements h;;, 1 < i # j < p. Furthermore, for W ~ T'N,(u, X; (é,f))), we

IRl

have that
E[W] = p — SE[X], (3.27)
cov[W] = S cov[X] S, (3.28)
where ¥ being a positive-definite matrix, S = diag(oy, 09, ...,0,), and truncation limits a

and b such that a = S™'(a — p) and b = S7™4(b — p).

3.4 Dealing with limiting and extreme cases

Let consider Y ~ ESN,(p, 3, X\, 7). As 7 — o0, we have that { = &(7) — 1.
Besides, as 7 — —oo, we have that £ — 0 and consequently FE(a,b;u,3 A7) =
§_IF£II(a*, b*; u*, Q) — oo. Thus, for negative 7 values small enough, we are not able to
compute E[Y"] due to computation precision. For instance, in R software, ®(7) = 0 for

7 < —37. The next proposition helps us to circumvent this problem.
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Proposition 3.5. (Limiting distribution for the ESN) As T — —o0,
ESNy(y; . B, A, 7)—¢p(yi pt — g, T'). (3.29)

Proof. Let Xy ~ N(0,1). As 7 — —oo, we have that P(X, < 7) = 0, E[X3| X, < 7] > 7
and var[Xs| Xy < 7] — 0 (i.e., Xo is (i.e., Xo is degenerated on 7). In light of Proposition
3.3, Y £ (X4]X, = 7), and by the conditional distribution of a multivariate normal, it
is straightforward to show that E[X;| Xy = 7] = p — pp and cov[X;|Xy = 7] = T, which

concludes the proof. O

3.4.1 Approximating the mean and variance-covariance of a TMVN distribu-

tion for extreme cases

While using the normal relation (3.23) and (3.24), we may also face numerical
problems for extreme settings of A and 7 due to the scale matrix €2 does depend on them.
Most common problem is that the normalizing constant L,(a*, b*; u*, ) is approximately
zero, because the probability density has been shifted far from the integration region. It is
worth mentioning that, for these cases, it is not even possible to estimate the moments
generating Monte Carlo (MC) samples due to the high rejection ratio when subsetting to

a small integration region.

For instance, consider a bivariate truncated normal vector X = (X1, X5)", with
X; and X5 having zero mean and unit variance, cov(Xy, X3) = —0.5 and truncation limits
a=(-20,—-10)" and b = (—9,10)". Then, we have that the limits of X; are far from the
density mass since P(—20 < X; < —9) =~ 0. For this case, both the mtmvnorm function
from the tmvtnorm R package and the Matlab codes provided in Kan & Robotti (2017)
return wrong mean values outside the truncation interval (a,b) and negative variances.
Values are quite high too, with mean values greater than 1 x 10'® and all the elements of
the variance-covariance matrix greater than 1 x 10**. When changing the first upper limit
from —9 to —13, that is b = (—13,10)", both routines return Inf and NaN values for all

the elements.

Although the above scenarios seem unusual, extreme situations that require
correction are more common than expected. For instance, this occurs when the elements of
the scale matrix 3 are small, even if the location parameter p is close to the integration
region. Furthermore, the development of this part was motivated as we identified this
problem when we fit censored regression models, with high asymmetry and presence of
outliers. Hence, we present correction method in order to approximate the mean and
the variance-covariance of a multivariate TMVN distribution even when the numerical

precision of the software is a limitation.
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Dealing with out-of-bounds limits

Consider the partition X = (X, X,)" such that dim(X,) = p1, dim(Xs) = pa,
where p; + po = p. It is well known that

Xo

and

cov[X] E[cov[X;|X2]] 4+ cov[E[X;]|X2]] cov[E[X:|Xs], Xs] ] |

cov|[ X, E[X;]X2]] cov|Xs]

Now, consider X ~ TN, (u, 3 (a, b)) to be partitioned as above. Also consider
the corresponding partitions of u, ¥, a = (a],a; )" and b = (b],b;)". We say that
the limits [ay, by] of Xy are out-of-bounds if P(a; < X3 < by) &~ 0. Let us consider
the case where we are not able to compute any moment of X, because there exists a
partition X5 of X of dimension p, that is out-of-bounds. Note this happens because
Ly(a,b;p,Y) < Pay < Xy < by) =~ 0. Also, we consider the partition X; such that
P(a; < X; < by) > 0. Since the limits of Xy are out-of-bounds (and ay < by), we have two
possible cases: by — —o0 or ay — 0. For convenience, let & = E[X;] and Wy = cov[X,].
For the first case, as by — —o0, we have that £& — by and W9y — 0,,«,,. Analogously, we

have that £ — ag and Wyy — 0,,4p, as az — 0.

Then X; ~ TN, (,ul, Y [al,bl])7 Xy ~ N, (52,0) (i.e., Xy is degenerated
on 52) and X1|X2 ~ TNpl ([,l,l + 21222_21 (52 — [,1,2), 211 — 21222_21221; [al, bl]) Given that
cov[E[X1]|X2]] = 0, xp, and cov[E[X;|Xs], Xa] = 0,,xp,, it follows that

E[X] = F“] and  cov[X] = [ P12 Opyps ] (3.30)

€2 0102 Xp1 Opz Xp2

with & o = E[X;|X3] and ¥y; 5 = cov[X;|X3] being the mean and variance-covariance
matrix of a TMVN distribution, which can be computed using (3.27) and (3.28).

In the event that there are double infinite limits, we can partition the vector

as well, in order to avoid unnecessary calculation of these integrals.

Dealing with double infinite limits

Let p; be the number of pairs in (a,b) that are both infinite. We consider the
partition X = (X[, XJ)", such that the upper and lower truncation limits associated
with X; are both infinite, but at least one of the truncation limits associated with Xy
is finite. Since a; = —oo and b; = oo, it follows that Xy ~ TN, (ug, 399, [ag,bg]) and
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XXy ~ Ny (1 + T12355 (Xo — p2), T11 — T1235;5 Boy ). This leads to

+ 33X, — + 33 (E —
E[X]zIE 251 12 22( 2 M2) _ 1231 122499 (52 H2) 7 (3'31>
Xy &
and
S =3I, — Uy )Y DIPPS ekl
COV[X] _ 11 124499 ( pjl 22 22) 21 124499 22 7 (332>
\1122222 2]21 ‘1122

with & and Wy, being the mean vector and variance-covariance matrix of a TMVN

distribution, which can be computed using (3.27) and (3.28) as well.

As can be seen, we can use equations (3.31) and (3.32) to deal with double
infinite limits, where the truncated moments are computed only over a po-variate partition,
avoiding some unnecessary integrals and saving some computational effort. On the other
hand, expression (3.30) let us to approximate the mean and the variance-covariance matrix

for cases where the computational precision is a limitation.

3.5 Comparison of our proposal with existent methods

Now, we compare different approaches to compute the mean vector and variance-
covariance matrix of a p-variate TESN distribution. We consider our proposal derived
from Theorem 3.1, as well as the normal relation given in Theorem 3.2 using different
(some existent) methods for computing the mean and variance-covariance of a TMVN

distribution. The methods that we compare are the following:

Proposal 1: Theorem 3.1, i.e., equations (3.18), and (3.24),

Proposal 2: Normal relation (NR) in Theorem 3.2 using Theorem 3.3,

K&R: NR in Theorem 3.2 using the Matlab routine from Kan & Robotti (2017),

tmvtnorm: NR in Theorem 3.2 using the tmvtnorm R function from Manjunath &
Wilhelm (2009).

Left panel of Figure 7 shows the number of integrals required to achieve this for different
dimensions p. We compare the proposal 1 for a p-variate TESN distribution and the

equivalent p + 1-variate normal approaches K&R and proposal 2.

It is clear that the importance of the new proposed method since it reduces the
number of integral involved almost to half, this compared to the TESN direct results from
proposal 1, when we consider the double truncation. In particular, for left /right truncation,
we have that the equivalent p + 1-variate normal approach along with Vaida & Liu (2009)

(now, a special case of proposal 2) requires up to 4 times less integrals than when we use
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Figure 7 — Number of integrals required and relative processing time for computing the
mean vector and variance-covariance matrix for a p-variate truncated ESN
and MVN distribution respectively, for 3 different approaches under double
truncation.

the method K&R. As seen before, the normal relation proposal 2 outperforms the proposal
1, that is, the equivalent normal approach always resulted faster even it considers one
more dimension, that is a p + 1-variate normal vector, due to its integrals are less complex
than for the ESN case.

Processing time when using the equivalent normal approach are depicted in
the right panel of Figure 7. Here, we compare the relative processing time of the mean
and variance-covariance of a TMVN distribution under the methods tmvtnorm, K&R and
our proposal 2, for different dimensions p. Note that a method with relative processing
time equal to 1 means this is the fastest one. In general, our proposal is the fastest one, as
expected. Method K&R resulted better only for p < 3, which confirms the necessity for
a faster algorithm, in order to deal with high dimensional problems. Method tmvtnorm
resulted to be the slowest one by far. Our MonTrunc R package computes the mean and
the variance of a TMVN distribution in an optimal way, such that it uses the method

proposed by K&R for p < 4 and otherwise proposal 2.

3.6 On moments of folded multivariate ESN distributions

First, we established some general results for the pdf, cdf and moments of a
folded multivariate distributions (FMD). These extend the results found in Chakraborty
& Chatterjee (2013) for a folded normal (FN) distribution to any multivariate distribution,

as well as the multivariate location-scale family. The proofs are given in Appendix B.

Theorem 3.4 (pdf and cdf of a MFD). Let X € R? be a p-variate random vector
with pdf fx(x;0) and cdf Fx(x;0) with @ being a set of parameters characterizing such
distribution. If Y = |X]|, then the joint pdf and cdf of Y that follows a folded distribution
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of X are given, respectively, by

= > fx(Ay;8)  and  Fy(y)= )| mFx(Ay;0), fory=0,
seS(p) seS(p)

where S(p) = {—=1,1} is a cartesz’an product with 2P elements, each of the form s =

(S1,---,8p), As = Diag(s) and s = HSZ

Corollary 3.2. If X ~ fx(x;&, W) belongs to the location-scale family of distributions with
location and scale parameters & and W respectively, then Zy = A X ~ fx(z; A&, A;TA,)
and consequently the joint pdf and cdf of Y = |X]| are given by

fY(Y) = Z fX(y; As£7As\I’As) and FY(Y) = Z 71—SFWX(IA\sy;ga ‘I’), fOT y=0.
seS(p) seS(p)

Hence, the k-th moment of Y follows as
E[Y"] = > E[(Z5)],
seS(p)
where X* denotes the positive component of the random vector X.
Let X ~ ESN,(p, X, X, 7), we now turn our attention to discuss the computa-

tion of any arbitrary order moment of |X|, a multivariate folded ESN (FESN) distribution.
Let define the Z2 = 72(u, ¥, A, 7) function as

0
TP (p, XA, T) = J Y ESN,(y; p, 2, X, 7)dy. (3.33)
0
Note that ZF is a special case of F¥ that occurs when a; = 0 and b; = +00, i = 1,...,p.

In this scenario we have
Ii(p, B, A, 1) = FL(0, +00; p, 3, A, 7).
When A = 0 and 7 = 0, that is, the normal case we write ZF(p, 2,0,0) = I2(pu, X).

Proposition 3.6. If X ~ ESN,(p, 3, X\, 7) then Zs = A X ~ ESN,(ps, X5, As, 7) and
consequently the joint pdf, cdf and the kth raw moment of Y = |X| are, respectively, given
by
f(y) = Z ESNy(yp; bs; Xs, As, T),
seS(p)
Fy(y) = Lp(=y,y: 1, 2, A, 7),

and

B = Y T2k B0 M)

seS(p)

where ys = Ay, ps = A, g = AEA and Ay = A
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Proof. Note that is suffices to show that if X ~ ESN,(u, 3, X, 7), then Zs = A X ~
ESN, (s, X5, A, 7) since the rest of the corollary is straightforward. We have that

= ESN,(x; ps, B, A, T)

= £ (% Agpt, ALZAL) X By (7 + (AN T(AZA) P (x — Ap))

= EAGA P (AT, B) % D1 (7 + ATAG(AZA) T2A(A x — )

= (A 1, B) x 1 (T + ATAL(AZA,) A (Ax — ) (3.34)
L 0p(Ax; 1, B) x Oy (7 + XTSI (Ax — ) (3.35)
= ESN,(Asx; p, 3.\, 7),

where {1 = @1 (7/4/1 + ATA,) due to A] Ay = ATA

In order to equalize (3.34) and (3.35), we see that it suffices to show that
> = AS(ASEAS)’I/QAS. This is equivalent to show that A = B for A = (ASEAS)I/2
and B = A,X2A,. We have that both matrices A and B are positive-definite matrices
since (ASZAS)I/ 2 and 32 are too, as a consequence that they are obtained using Singular
Value Decomposition (SVD). Finally, given that A*> = B?> = A,XA, and any positive-
definite matrix has an unique positive-definite square root, we conclude that A = B by

uniqueness, which concludes the proof. O

Observation 3.1. As a consequence of Proposition 3.6, we also have the new vectors

0s = AO, g = Aspiy, s = Asp, p5 = A, ﬁ;‘ls = As(j)ﬂ? and lj’?s = As(j)ﬂ?r and

matriz I's = AT A, while the constants &, n, ¢; ,3;, and 7; remain invariant with respect
to s.
A bivariate case

For instance, let us consider a bivariate case. We denote that X follows a
bivariate ESN distribution as X ~ ESNy(u1, pto, 03, 012,05, A, Ao, 7). For Y = |X|, it
follows that

fY(y1,y2) = fX(y17y2) + fx(—yl,y2) + fX(yb —y2) + fx(—yh —yz) (3-36)
= fX1 (ylayQ) + fX2 (ylva) + fXg(Z/l;yQ) + fX4(y17y2) (337>

4
= Z fx, (Y1, y2),
i=1
with

X1 ~ ESNy (1, +i2, 02, +012, 05, + A1, + Ao, T),
X2 ~ ESNZ(_Mb +ﬂ27 0%7 —012, 0%7 _)\17 +)\27 7—)7
X3 ~ ESN2(+M17 —H2, 0-%7 —012, 0-57 +)\17 _)\27 7—)7
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X4 ~ ESNQ(_M17 —H2, 0-%) +0127 0-57 _)‘17 _)‘27 T)'

Equation (3.36) stands from Theorem 3.4. Its four summands are respectively
equivalent to the four terms in (3.37). This can be seen through a briefly comparison of
the density regions at the points on Figure 8 above and the four points in the respective
densities in Figure 16 in the Appendix section B. As noted, to pass the signs to the
parameters, let us to fix the point (yi, y2) and then integrating in both sides, we can obtain

any arbitrary moment for |X| as a sum of other 2”7 moments.

Figure 8 — Density of X.

From Proposition 3.6, we can compute any arbitrary moment of a FESN
distribution as a sum of Z? integrals. In light of Theorem 3.1, the recurrence relation for

7IP can be written as
P
Live: (W B A7) = i Zi(p, BN, 7) + 6L (e — o, T) + Z ijdyg, i=1,...,p, (3.38)
j=1

where
Q. kiZh o (p, 25, X\, 7) ; for k; >0
ol ESNl(O, /Lj, O'JZ, Cjo-j@ja CjT)Ip_l(ﬂj, 2j7 S;-/ZCP(]'), 7:]) i fOI‘ k?j = 0

k()
. . g - -
with f1; = py) — g—;E(j)j and 7, = 7 — @,
J

It is also possible to use the normal relation in Theorem 3.2 to compute E[|X]|*]

in a simpler manner as in next proposition.

Proposition 3.7. Let Y = |X|, with X ~ ESN,(p, X, X, 7). In light of Theorem 3.4, It
follows that

E[Y*] = ¢ > I (el Q) (3.39)
seS(p)
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2s _As
—AT
Asp, B = ASA, Ay = AJA and Q2 standing for the block matriz Qg with all its

off-diagonal block elements signs changed.

where I2(p, 3) = FE(0,00; u, %), pi = (], 7)" and Q, = , with p =

Proof is direct from Theorem 3.2 as ZF is a special case of F£. From proposition
3.2, we have that the mean and variance-covariance matrix can be calculated as a sum of

2P terms as well, that is

E[Y]= ) E[Z:]. (3.40)
seS(p)

cov[Y] = > E[Z{Z{"] - E[Y]E[Y]", (3.41)
seS(p)

where Z7 is the positive component of Z; = A X ~ ESN,(ps, 35, As, 7). Note that
there are 2P times more integrals to be calculated as compared to the non-folded case,

representing a huge computational effort for high dimensional problems.

In order to circumvent this, we can use the fact that E[Y] = (E[Y1],...,E[Y,])"
and the elements of E[YY '] are given by the second moments E[Y;*] and E[Y;Y;], 1 <
1 # 7 < p. Thus, it is possible to calculate explicit expressions for the mean vector and
variance-covariance matrix of the FESN only based on the marginal univariate means and

variances of Y;, as well as the covariance terms cov(Y;,Y;).

Univariate case

Using the recurrence relation on Zj in (3.38), and following the notation in
Subsection 3.3.1.1, we can find explicit expressions for E[|X|*] for its first four raw
moments, as well as for others univariate folded distributions that are special cases of the
ESN distribution. For instance, setting 7 = 0, we obtain the moments for the univariate
folded skew-normal Y = |X|, with X ~ SNy (i, 0, \). Additionally, if we set the skewness
parameter as A = 0, we obtain the moments for the folded normal distribution where
X ~ N(u,0?). Furthermore, moments for the well-known half normal distribution can be
obtained when we set u = A = 7 = 0. Explicit expressions for all these special cases can
be found the Appendix B.

Next, we propose explicit expressions for the mean and the variance-covariance
of the multivariate FESN distribution.

3.6.1 Explicit expressions for mean and covariance matrix of multivariate
folded ESN distribution

Let X ~ ESN,(p, %, A, 7). To obtain the mean and covariance matrix of |X| boils down
to compute E[|X;|], E[|X?]] and E[|X;X;[]. Consider X; to be the i-th marginal partition
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of X distributed as X; ~ ESN(us, 02, Ai, 7). In light of proposition 3.6 it follows that
IEH‘X” ] Ik(:ulaa /\177—1) +Ik( Hi, O 17 >‘2le)

Thus, using the recurrence relation on Z in (3.38), and following the notation in Subsection
3.3.1.1, we can write explicit expressions for E[|X;|] and E[|X;[?]. High order moments for
the univariate FESN and others related distributions are detailed in Appendix B.

It remains to obtain E[|X;X;|] for ¢ # j, which can be obtained as

[|X X |] 1 1(:“17 :ujv Uz ) Jljv 037 >‘ )‘ T) + I%l(ﬂia _:u'ja (71 ) 01]’ U )‘17 >‘j7 T)
+ Il,l(_:uiv My, Uz y —045,0 _]7 /\17 )‘37 T) + Zl 1( iy — g, 01'27 Tijs 032'7 _)‘i7 _)‘j7 7—)7
(3.42)
as pointed in proposition 3.6, with (X, X;) denoting an arbitrary bivariate partition of X.
Without loss of generality, let’s consider the partition (X, X3) ~ ESNy(p, 3, A, 7) and
(Wi, W3) ~ No(m, T') with m = g — p,.. For simplicity, we denote Z7 | = I3, (1, 2, X, 7),
and the normalizing constants Lo = L£5(0,00; pu, ¥, A, 7) and Ly = Lo(0, 05 o — i, T).

Using the recurrence relation on Z?2

v e, in (3.38), we can obtain I, for k =
(1,0)" and ey = (0,1)"

I7 ) =(papz + 012) Lo + (Oapiz + 62(p1 — 1)) Lo + (p207 + 012)0M (1 — &C)
+ 02 [0 (a5 g1, 77 ) (1 — @(0;ma1,731)) + Y120 (12; o2, 73) (1 — B(0;ma2,77 )]
+ 1120120 (1 — 1Y) + 026D T] (11 9, 0% 5, 0110601, T1.2),4 (3.43)

where may = my — Y1211 /71, a2 = M1 —Y12m2/73, V51 = V5 — M2/ Ve = i — 12/
and in light of Proposition 3.2 we have that @21 = D1(0; o1, 05 1, 02,102, To.1), o112 =
él(o;M1.2,0%.2a01.2<,01,7'1.2), and QW) = ESNl(O;WMT?,CNe@e, Cﬂ) for £ = {1, 2}~

Using Remark 1 along with (3.42), we finally obtain an explicit expression for
E[|X’LX]|] as
= E[1X:X;]]
= (i + 1) (1 = 2080 + B9)) + By + 05 — pu)) (1 = 22 + @)
+ 205 [0700 (1 = 200 + 05509 (1 — 20D | + 2576V E[| Y]
+ 205 [72 b i, ) (1 = 2@(05 1m0, 735)) + i (153 g, 73 ) (1 = 28 (0315, 775)) |
(3.44)
with X; ; ~ ESN; (1, Uzj, 0i.ji, Tij). Furthermore,
&)(1) = ci)2(07 (_Mza ,uj)—ra 277 (_)\za Aj)Ta T)a i)@) = @2(0, (,LL” _/*Lj)—rv 277 (>\17 _)‘j)Ta 7—)7

oM = D, (0; (—mi,mj)T, ) and o2 = D4 (0; (my, —mj)T, ),
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with ¥~ (I'") denoting the ¥ = [0y;] (T’ = [74;]) matrix with all its signs of covariances
(off-diagonal elements) changed. Here, we have simplified the expressions above using that

Z L,(0,00,my, I'y) = 1, along the equivalences

seS(p)
L,(0,00; pu, 3, X, T) = @p(O; —s, X5, — A5, T), for s e S(p)
ESN,(0; pg, Xy, Ay, 7) = ESN,(0; o, 3B, Ay, 7)), for q,r e S(p)
P(YYy--Y, > 0) = > mLy(0,90 s, B, Ay, 7).
seS(p)
P

with 7y = H s; as in Theorem 3.4 and Z L,(0,0; ps, X5, As, 7) = 1. It is worth men-

i=1 s€S(r)

tioning that these expressions hold for the normal case, when A =0 and 7 = 0.

As expected, this approach is much faster than the one using equations (3.40)
and (3.41). For instance, when we consider a trivariate folded ESN distribution, we have
that it is approximately 56x times faster than using MC methods and 10x times faster
than using equations (3.40) and (3.41). Time comparison (summarized in Figure 15, right
panel) as well as sample codes of our MomTrunc R package are provided in the Appendices
B.3 and B.4, respectively. Contours of different FESN densities can be found in Figure 17
given in Appendix B.3 as well.

3.7 Conclusions

In this paper, we have developed a recurrence approach for computing order
product moments of TESN and FESN distributions as well as explicit expressions for the
first two moments as a byproduct, generalizing results obtained by Kan & Robotti (2017)
for the normal case. The proposed methids also includes the moments of the well-known
truncated multivariate SN distribution, introduced by Azzalini & Dalla-Valle (1996). For
the TESN, we have proposed an optimized robust algorithm based only in normal integrals,
which for the limiting normal case outperforms the existing popular method for computing
the first two moments, even computing these two moments for extreme cases where all
available algorithms fail. The proposed method (including its limiting and special cases)
has been coded and implemented in the R MomTrunc package, which is available for the

users on CRAN repository.

During the last decade or so, censored modeling approaches have been used
in various ways to accommodate increasingly complicated applications. Many of these
extensions involve using Normal (Vaida & Liu, 2009) and Student-t (Matos et al., 2013;
Lachos et al., 2017), however statistical models based on distributions to accommodate

censored and skewness, simultaneously, so far have remained relatively unexplored in
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the statistical literature. We hope that by making the codes available to the community,
we will encourage researchers of different fields to use our newly methods. For instance,
now it is possible to derive analytical expressions on the E-step of the EM algorithm for

multivariate SN responses with censored observation as in Matos et al. (2013).
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4 Likelihood-based inference for multivariate

skew-normal censored responses

4.1 Introduction

In many applications on simulations or on experimental studies, the researches
often generate a large number of datasets with values restricted to fixed intervals. For
example, variables such as pH, grades, viral load in HIV studies and humidity in environ-
mental studies, have upper and lower bounds due to detection limits, being the support of
their densities restricted to some given intervals. On the other hand, during the last decade
or so, censored modeling approaches have been used in several ways to accommodate
increasingly complicated applications. Many of these extensions involve using normal and
its symmetrical extension. For instance, Massuia et al. (2015) proposed the Student-t
censored regression model. Garay et al. (2017) (see also, Matos et al. (2013)) advocated
the use of the multivariate Student-t distribution in the context of censored regression
models, where a simple and efficient EM-type algorithm for iteratively computing ML
estimates of the parameters was also presented. More recently, Wang et al. (2018) proposed
a multivariate extension of the models of Garay et al. (2017) and Matos et al. (2013),
for analyzing multi-outcome longitudinal data with censored observations, where they
established a feasible EM algorithm that admits closed-form expressions at E-steps and
tractable solutions at M-steps. They demonstrated its robustness against outliers through
extensive simulations. A common drawback of these proposals is that they are not ap-
propriate when the observed data exhibit skewness, which might lead to bias estimates
(Azzalini & Capitanio, 1999).

In this paper, we propose to use the multivariate skew-normal distribution to
analyze censored data, so that the SN-C model is defined and a fully likelihood-based
approach is carried out, including the implementation of an exact EM-type algorithm for
the ML estimation. Like Garay et al. (2017), we show that the E-step reduces to computing
the first two moments of a truncated multivariate skew-normal distribution, which are
implemented in the R package MomTrunc (Galarza et al., 2018). The likelihood function is
easily computed as a byproduct of the E-step and it is used for monitoring convergence

and for model selection.

The rest of this paper is organized as follows. In Section 4.2 we briefly discuss
some preliminary results related to the multivariate SN, extended SN (ESN) and some of
its key properties. Moreover, the truncated extended skew-normal is presented along with

some sketch of the computation of its first two moments. Section 4.3 presents the EM
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algorithm for estimating the model parameters of multivariate SN responses as well as in
a regression SN setting. Section 4.4 implements the proposed algorithm to real datasets

and finally, some concluding remarks are presented in Section 4.5.

4.2 Preliminaries

In this section we present some properties of the multivariate skew-normal

distribution and its extended version, the extended skew-normal distribution.

4.2.1 The multivariate skew-normal distribution

We say that a p x 1 random vector Y follows a multivariate SN distribution
with p x 1 location vector u, p x p positive definite dispersion matrix 3 and p x 1 skewness
parameter vector A € R, and we write Y ~ SN, (p, 3, X), if its joint probability density
function (pdf) is given by

SN, (y; 1, B, A) = 26, (y; p, Z) & (ATE 2 (y — p)), (4.1)

where @ (-) represents the cumulative distribution function (cdf) of the standard univariate
normal distribution. If A = 0, then (4.1) reduces to the symmetric N,(p, X) pdf. Except
by a straightforward difference in the parametrization considered in (4.1), this model
corresponds to that introduced by Azzalini & Dalla-Valle (1996).

Proposition 4.1 (cdf of the SN). If Y ~ SN,(p, 2, A), then for any y € R,

Fy(y) = P(Y <y) =20,.1((y",0)"s n*, ), (4.2)
* _ (0,7 O _ % -A . _ y1/2 Ty)\1/2
where p* = (pn',0)" and Q = AT , with A = Z7AN/(1+ X))~

It is worth mentioning that the multivariate skew-normal distribution is closed
over marginalization but not conditioning. Next we present its extended version which
holds both properties, called, the multivariate ESN distribution.

4.2.2 The extended multivariate skew-normal distribution

We say that a p x 1 random vector Y follows a ESN distribution with p x 1
location vector w, p x p positive definite dispersion matrix 3, a p x 1 skewness parameter
vector A € R?, and a shift or extension parameter 7 € R, denoted by Y ~ ESN,,(p, 3, X, 7),
if its pdf is given by

ESNy(y; 1, B0, 7) = 0, (v, )1 (7 + ATE T2 (y — ), (4.3)
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with € = ®,(7/(1 + ATA)?). Note that, when 7 = 0, we retrieve the skew-normal
distribution defined in (4.1), that is, ESN,(y; s, 2, A, 0) = SN,(y; , 2, A). In this work,
we uses a slightly different parametrization of the ESN distribution found in Arellano-Valle
& Azzalini (2006a) and Arellano-Valle & Genton (2010). Furthermore, Arellano-Valle &
Genton (2010) deals with the multivariate extended skew-t (EST) distribution, in which the
ESN is a particular case when the degrees of freedom v go to infinity. From Arellano-Valle
& Genton (2010), it is straightforward to see that

ESNP(y’ H, E7 Aa T)—)pr(y, M, E), as 7T — +o0.

The following propositions will allow us to develop our methods.

Proposition 4.2 (Marginal and conditional distribution of the ESN). LetY ~ ESN,(u, X,
X\, 7) partitioned as Y = (Y|, Y3)" of dimensions p, and py (p1 + p2 = p), respectively.
Let

211 212
Y= y M= (I—”lTv/J’;)Tv A= ()‘1T’ }‘;)T and Y= (QolTv Qog)Tv
ZJ21 222

be the corresponding partitions of 3, pu, A and @ = 2N, Then,
Y, ~ ESNm (H1721170122}{2¢170127'), Y2|Y1 =Y~ ESNP2(/J'2.17222.172;5190277—2.1)

where c12 = (1 + CP;222.1802)71/2; P1 = p1+ X1 Tpr, Tog = T — B2 B,
Ho1 = M2 + Ezlzfll(Y1 — 1) and 191 =T + 951T(Y1 — ).

Proof. The proof can be found in Appendix section B. O

Proposition 4.3 (Stochastic representation by convolution). Assume that X and T are
independent variables with distribution N,(0,1,) and TN1(0,1;[—7,0]) (which represents

a truncated standard normal distribution on [—7,00)) respectively. Henceforth,
Y L p+TA +T2X, (4.4)

is distributed as Y ~ ESN,(p, 2, X, 7), where T = X — AAT with A as defined in
Proposition 4.1.

Proof. The proof can be found in Arellano-Valle & Azzalini (2006a). O

Proposition 4.4 (Stochastic representation by conditioning). Let X = (X;7, Xy)" ~
Np+1(.u‘*7 Q) [f

Y £ (X4]X, < 7), (4.5)

it follows that Y ~ ESN,(p, 3, X, 7), with p* and Q as defined in Proposition 4.1, and
F=1/(L+ AN
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The stochastic representation in Equation (4.5) can be derived from Proposition
1 in Arellano-Valle & Genton (2010).

Proposition 4.5 (cdf of the ESN). If Y ~ ESN,(p, X, X, 7), then for any y € R?,

D, ((y",7) s u*, Q)
d(7)

Fy(y) =P(Y <y) = : (4.6)

Proof. The proof comes from proposition 4.4. Hereinafter, for Y ~ ESN,(u, X, A, 7), we

will denote its cdf as Fy(y) = @,(y; p, 2, A, 7), for simplicity. a

4.2.3 The truncated extended skew-normal distribution

Let A be a Borel set in R?. We say that the random vector Y has a truncated
extended skew-normal distribution on A when Y has the same distribution as Y|(Y € A).
In this case, the pdf of Y is given by

ESN,(y; b, 3, X, 7)
P(Y € A)

f(y | [,L,E,V;A) = 1A(y)7

where 1, is the indicator function of A. We use the notation Y ~ TESN,(p, 3, X, 75 A).
If A has the form

A={(z1,...,2,) eRP: a3 <z1<by,...,a0, <z, <} ={xeR:a<x<b}, (4.7)

we use the notation {Y € A} = {a < Y < b}, where a = (aj,...,a,) and b =
(bi,...,b,) . In this case, we say that the distribution of Y is double truncated. Anal-
ogously, we define {Y > a} and {Y < b}, so, we say that the distribution of Y
is truncated from below and truncated from above, respectively. For convenience, we
also use the notation Y ~ TESN,(u,3, A, 7;[a,b]). In particular, for a truncated
p-variate skew-normal and normal distribution on [a,b], we use the notations X ~
TSN, (e, 3; [a,b]) and W ~ TN, (i, 3; [a, b]), respectively. We also define the normaliz-
ing constant £,(a,b;pu, X, X, 7) = Pla<Y <Db) as

b
Ly(a,b;p, X\, 7) = J ESN,(y; b, 2, A, 7)dy.

a

If all XA and 7 are equal to zero, we have a normal integral £,(a, b; u, %,0,0) = Ly(a,b; u, X) =
b
J dp(y; 1, B)dy.

Remark: Note that, we use calligraphic style £, to denote the skewed extended normal

integral and roman style L, for the symmetric one.

Let a(;) denote a vector a with its ith element being removed. For a matrix

A, we let A(; ;) stands for its ¢th row and jth column being removed. Then, for Y ~
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TESN, (i, 2, A, 75 [a, b]), it follows from corollary 3.1 that the first two moments of Y

can be computed from its corresponding Normal random variable, as

E[Y] = E[W]+1), (4.8)

E[YY] = E[WW i1 1) (4.9)

where W ~ TN, (p*, Q; [a*, b*]), with p* and Q as defined in Proposition 4.1, a* =
(a”,—o0)" and b* = (b",7)".

The first two moments of Y obtained from equations (4.8) and (4.9) are

available through the MomTrunc R package (Galarza et al., 2018), which so far, is the

unique method to compute the moments of the TESN and TSN. In the following, we

present some useful propositions and corollaries related to TESN random vectors.

Proposition 4.6. Let Y ~ TESN,(u, X, X\, 7, [a, b]). For any measurable function g(-),

we have that

G1(T + ATEAY - M))] _ g ow) (4.10)
) ’ |

E

[9( o ATSA(Y —

with 1 = ¢1(7;0,1 + ATN)/E, uy = FA, T = X — AAT, L = Ly(a,b;u — u, T),
L=Ly(a,b;p, XA, 7) and W ~ TN, (pp — iy, T', [a, b]).

Proof. Let X = (X;7, X5)" ~ N,y 1(p*, ) as in Proposition 4.4. From the conditional
distribution of a multivariate normal distribution , it is straightforward to show that
XXy ~ Ny(pp — XoAT) and Xo|X; ~ Ni(~A'S74(X, — p),1 — ATS7PA). Then, it
holds that

frox (F5%) fx, (%) = fx, (F )fx1|X2(X§%)
¢1(T; —ATE (x = p), 1 = ATE T A)g,(x; 1, B) = 61(7) (x5 — TA,T)
VI+ XA X G (1 + ATE 2 (x = p)gy(x; 1, T) = 61(7) (X p =, I')
G1(T + ATE T2 (x — )6, (%5 1, B) = 61(750, 1+ AT N) ¢y (x; 1 — iy, T),

(4.11)
where we have used that ATS7PA = —ATA. Thus,

(T HATET2(Y — ) | Jb () 2+ ATS 2 (y — ) ESN(y; 1, 2, A, 7)
(T ATE2(Y —p)) | Yo (r + A\T=12(y — p)) Lo(a, b; 1, B, A, 7)

f 1 (1 + XTE V2 (y — ) o, (y; 1, X)
ELp(a, b, 3, A, 7)

2 |o(v)% ay

9(y)dy
P1(1;0,1+A7X) (P
T (a,b;p, T, A, 7) 9(¥)p(y; 1 — pp, T)dy
p (e IR a
= T]Lp(a’ b’ K — Kb, F) Jb g(w) ¢P(W7 K — Kb, F)
Lp(a,b;pu, 3, A, 7) Ju Ly(a,b, g — 1, T)

= LRl (W)]

for W ~ T'N,(p — pp, T, [a, b]). O
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Corollary 4.1. Let Y ~ TESN,(p, 3, X, 7, |a,b]). As 7 —> —o0, we have from Proposi-
tion 4.6 that

P (T + ATET(Y — ) T
E([g(Y = ———E|g(W 4.12
T ety ) | = T AV (a2
where W ~ T'N,(n — p,, T', [, b]).
Proof. As 7 — —oo, we have
T+ ATy —p)) 0
Q1 (7/(1 + ATA)1/?) 0

Using L’Hospital,

. . o T+ ATy — )y, )

TLHPOO ESNy(y; 1, 2, A, 7) —Tlirfloo (L+ ATA) 12 x 1 (/(1 + ATA)I2)
(4.11) im Cbl (T; 0;1+ AT}‘) ¢p(y; K — My, F)

== (1 4+ ATX)12 x ¢1(7/(1 + ATA)Y?)

= lim ¢,(y;pu—m,T).

Therefore, ESN,(y; pu, X, A, 7)—¢,(y; 0 — s, L), Lo(a,b;p, XA 7) —
Ly(a,b;p — my, T) and n — —7/(1 +ATA), as 7 —> —oo. This last holds from the
inverse Mill’s ratio, since ¢(z)/®(x) — —z as © —> —oo. It is enough to replace the

limiting terms in Proposition 4.6. O

Corollary 4.2. Setting 7 = 0 in Corollary 1, it follows that Y ~ TSN,(p, 3, A, [a,b])

and

SN )| L
B s g s ey | - el @

with Ly = Ly(a,b; u,T), Lo = Ly(a,b; p, X, A, 0) and Wy ~ TN, (e, T, [a, b]).

Proof. The proof is straightforward. Setting 7 = 0, it suffices to show that u, = 0 and
n=/2/1(1+ ATA). O

Proposition 4.7. Let Y ~ ESN,(u, X, X, 7). Also, let Y be partitioned as’Y = (Y|, Yy)"
of dimensions p1 and py (p1 + p2 = p), with corresponding partitions of a, b, u, 3, X and
. Then, for any measurable function g(-), we have that
B ( )¢1(7' +ATSVAY — ) v | = n2.1L21
A X 2 Y — )| | T Lo

where Loy = Lpz(aQJbQ;/J/Q.l - Iib2.1,I‘22.1); Loy = Lpg(aQJbQ;IJ’Q.l?222.17A2.177-2.1) and

Elg(W2)], (4.14)

Wy ~ T'Np(pa1 — pe21, Dao1, (a2, ba]), with Aoy = 2%?1602; Mo, o1 and Toq as in
Proposition 4.2; and n31, pye1 and Tayq can be computed as expressions n, py and T' in

Proposition 4.6 but using the new set of parameters po1, X901, A21 and o1 (instead of
w, X, X and ).
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Proof. From Proposition 2, it is known that 7+ AT S7Y2(Y — ) = 71 + }\;122_21_{2 (Y, —
W2.1), then it is enough to apply Proposition 4.6 by considering Y as Yo ~ TESN,, (t2.1,
3921, A21, To1, [A2, o). O

4.3 Multivariate SN censored responses

Let Y; = (Yi1,...,Y;)" be a p x 1 response vector for the ith sample unit,

for i e {1,...,n}, and consider the set of random samples (independent and identically
distributed):

Y., .. Y0 ~ SN, (1, S, ), (4.15)
with location vector o = (1, ...,p,) , dispersion matrix ¥ = 3(a) depending on an

unknown and reduced parameter vector o and skewness parameter A. However, the
response vector Y; may not be fully observed due to censoring, so we define (V;, C;) the
observed data for the ith sample, where V;= (Vi,...,V;,)" with elements being either an
uncensored observation (Vix = Vp;) or the interval censoring level (Vi € [Viik, Vair]), and

C,=(Cy,... ,C’ip)T is the vector of censoring indicators, satisfying

C = { 1 if Vige < Yi < Vo, (4.16)
0 if Vi = Vo,

for all i € {1,...,n} and k € {1,...,p}, i.e., Cy = 1 if Y};, is located within a specific

interval. In this case, (4.15) along with (4.16) defines the multivariate skew-normal interval

censored model (hereafter, the SN-C model). For instance, left censoring structure causes

truncation from the lower limit of the support of the distribution, since we only know that

the true observation Yj; is greater than or equal to the observed quantity V;;. Moreover,

missing observations can be handled by considering Vi;, = —oo and V5, = +o0.

4.3.1 The likelihood function

Let y = (y{,...,y,)", where y; = (yi1,...,%;)  is a realization of Y; ~

SN, (e, X, A). In order to obtain the likelihood function of the SN-C model, first we treat,

separately, the observed and censored components of y;, i.e., y; = (y?T,yfT)T, where

Cir = 0 for all elements in the p/-dimensional vector y7, and Cy; = 1 for all elements in

the pj-dimensional vector yi. On according to that, we write V; = vec(V?, VY), where
Vi =(V§, V) with

390320¢

pi= (") B =X(a) = (Efozgc

Then, using Proposition 4.2, we have that Y ~ SNyo(p7, 37, ¢7°%7” Y229) and Y | YO =

vy ~ BSN,e (u?, 20, 335120, 76%), where

HE = i DR - ), T = B - SO(S0)TIEE, @0 = o + T TIERG,
(4.17)

>, A= AT Tand ¢; = (07T, @l
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= (L4 TS0l and 700 = @7 (v7 — pe). (4.18)

Let V =vec(Vy,...,V,) and C = vec(Cy,...,C,) denote the observed data.
Therefore, the log-likelihood function of @ = (', ., AT)", where iy, denotes a minimal
set of parameters such that () is well defined (e.g. the upper triangular elements of
in the unstructured case), for the observed data (V, C) is

e | V,C) ZlnLl, (4.19)

where L; = L;(0 | V;, C;) represents the likelihood function of @ for the ith sample, say

L; = f(Vz | CZ,O) = f(Vi < ? ng | yZQ’g) (yio | 0)
= L (V5 Vi s, 5000, 535001208 760) SN (y?; g, 300, o530 2 9).

7,71 ’L”L

4.3.2 Parameter estimation via the EM algorithm

In this subsection, we describe how to carry out ML estimation for the SN-C
model. The EM algorithm, originally proposed by Dempster et al. (1977), is a very popular
iterative optimization strategy commonly used to obtain ML estimates for incomplete-data
problems. This algorithm has many attractive features such as the numerical stability, the
simplicity of implementation and quite reasonable memory requirements (McLachlan &
Krishnan, 2008).

From the stochastic representation of multivariate ESN distribution in Propo-
sition 4.3, setting 7 = 0, we can write Y,;|(T; = t;) ~ Ny(p + At;,T') and T; ~ HN(0, 1),
with HN referring to a Half normal distribution The complete data log-likelihood function

of an equivalent set of parameters @ = (u', AT, )", where ar = vech(T), is given by

0) = Z l;(0), where the individual complete data log-likelihood is

:.(0) =—7{1n|I‘|+( —p—AL) T (yi—p— AL} +o,

with ¢ being a constant that does not depend on 6. Subsequently, the EM algorithm for
the SN-C model can be summarized as follows:

E-step: Given the current estimate %) = (ﬂ("),ﬁ(’“),&(ﬁ)) at the kth step
of the algorithm, the E-step provides the conditional expectation of the complete data

log-likelihood function
Q(610%) = E[.(6) | V,C,07]| = > Qu(6 | 6Y),
i=1

where

7

- 1 1 ~ (k) (k) .
Qi(0 | 6%))or — o m[L| =t [{y2 fpp 2 AAT —2uy, BT oy VAT
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+2@<’“>A,ﬁ} r—l] ,
with y'') = Epy. [Y7| V), C,, 807, 8% = Bpy [17 Vi, Ci, 9] (for 7 = {1,2}, with

Y! =Y, and Y2 = Y,YT) and &3 = Ery. [T}, | Vs, Gy, 60)].

M-step: Conditionally maximizing Q(6 | ok Z Qi(0 | ok ) with respect

to each entry of @, we update the estimate 8% = (4®, A®), a(F’“)) by

1< ~(k) R
Sy L {Am _ gt >A<k>} 4.20
l"l' n ;1 yz ) ) ( ' )
now)
- ~ (k ~
s - (570} SE- o) o
i=1 =1
f(kH) _ 1 an {}/’\?(k) L AT 4 %(k)ﬁ(k+1)8(k+1)T _ 2ﬁ(k+1)y\i(k)T
n =1
W AGHDT | 9f, ) A o41) k1) T } (4.22)

Algorithm is iterated until a suitable convergence rule is satisfied. In the later
analysis, the algorithm stops when the relative distance between two successive evaluations
of the log-likelihood defined in (4.19) is less than a tolerance, i.e., (8¢ 6+ )|V, C)/ﬁ( )|
V,C) — 1| < ¢, for example, € = 107%. Once converged, we can recover Aand & using the
expressions R R

E2A
(1— AT§—1A)1/2’
It is important to stress that, from equations (4.20) and (4.22), the E-step reduces to the
computation of ¥, ﬁ(k) tAi(k) 2 and tyz(
note that for any measurable functlon of T; and Y, such that ¢(T;,Y;) = ¢1(T;)g2(Y5),

we have that

~

S—T+AAT  and A=

) To compute these expected values, first

ETiYi [g(Tia Yz) |Vz'a Cz] = EY@' [91 (YZ)]ETz [92 (Tl) |YZ] |Vi7 CZ] (423>
Then,

= Erv,[Y;| Vi, Ci] = Ev,[Y]|V;, Ci,
= ETiYi [THV“ Cl] = ]EYi [ETi [THYl] |V27 Cl]v
ty; = Eny, [TY:i| Vi, C] = By, [Y.E [T} Y] Vi, Cil.

From Cabral et al. (2012), we know that T;[Y; ~ TNy (M*(@)A T~ (Y;—u), M?(8), (0, 0)),
having that

Eq[T[Y:] =M*(0)A T (y, — p) + M(6) (4.24)

P (ATE Yy — )
I (ATE 2 (y; — )’
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{(ATE 2 (y; — )
HATE 2 (y; — p))
+ M?(9), (4.25)

£, [17]Y.] =[M(0)A Ty, — ) + MYO)AT y, — )

where M(0) = (1 + A'T7tA)™V2,

Subsequently, on according to expressions (4.23), (4.24) and (4.25), and Corol-

lary 4.2, we have the implementable expressions to the conditional expectations as follows:

1. If the ith subject has only non-censored components, then

yi =By [Y]|V,,C,,0%] =y,

K = ]ETz'Yi [7—’17"|'V“ Ci; é\(k)] = ETi [71T|Y17 é\(k)]7

t/}?i(k) = Ernv,[T)Y:| Vi, C;, é(k)] = viEr [T|Y, é(k)],

with y¢ = 1, y! =y, and y? = yiy] and Eq,[T7]Y;,0%] = Eq[T7[Y]lg_ge for
r={1,2}.

2. If the ¢th subject has only censored components, we have

= Ey, [YT|V1‘, Ci, é(k)] - @(k)v
/\ TR ™ k) ~ ~ ~ n
““) M2<e<k>> R ()
A(k) _ MA@ ABTE O 2Y oG e 4 Gmaemp T E A 4 a2 g®)

AN B@R) AW TP 1<’“>(A<.k> _ g<k>)

I

w0 —E[W, |6®], w =E[W,W] |6®] and w" = E[W,, | 6P)],

~

Wlth Wl ~ TSNP( 2 /)\\ [Vlia V2i]), W()i ~ TNp(ﬂ(k), f‘(k), [Vlia Vgi]) and

~ (k) 1 L,(V1ii, Vai, A, f(k))
Yi o= — — " - -~ '
\/g (1 + /\(k)TA(k)) L, (Vii, Vai, MU NON 0)

3. If the ith subject has both censored and uncensored components and given that
(Y: |V, Ci), (Y;]V;,Ci, YY), and (Y| V,;,C;, YY) are equivalent processes, we
have

59 = B(Y:| Y2, Vi, C;, 09) = vee(y?, %)

I

~(k) T yo g vyl oy
y; = E(Y’LYz | Yz 3 Vi7 Cia 0 ) = \/K\/c(k) ol ~ 2c(k) ’
Yi Wi
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yOz —vec( WOz )7

= M2(0F)AWTT

( 1(k)
(6

(5. = %) +37 (8",
A(k)

— MYOM)A AWTPHE )( () 25, T 4 ﬁ(k)ﬁ(k)T)fw_l(k)A(k) + MO
k) k)~ (k) ~
+ A MO ABTT T (g — ™),
iy = MO 9 OaOTHET T AG 130695,

wi® = E[W; [6W], & =E[WiW'[8W] and w5 = E[WG, | 6%],

K ? e (3 ? K3 Y

with W¢ ~ TESN ¢ (5", 5300 Xeo® 200 [y ve ), W, ~ TN, (g™, T®

[Vm V2i]> and

’\(k) 7750 L (Vlw V2’L’ ﬁlcg(k) FCC 0( ))

i co(k) Ecco )\co(k) Aco(k:))’

) » Ti

‘C (V1z7 V227 IJ"L
with A% = 360" ¢
expressions 7, pp, and I' in Proposition 4.6, but using the new set of parameters p;°,

o0 X and 77 (instead of w, ¥, A and 7).

m;° = p° — w7, where n7°, py? and I';° can be computed as

To compute the truncated moments E[W;], E[W,] and E[W; W] given in

items 2 and 3, we use the MomTrunc R package.

4.3.3 Regression setting

Suppose that we have observations on n independent individuals, Yq,...,Y,,
where Y; ~ SN, (p;, 3, A), @ = 1,...,n. Associated with individual ¢ we assume a known
p X q covariate matrix X;, which we use to specify the linear predictor u; = X;3, where 8
is a g-dimensional vector of unknown regression coefficients. In this case, the parameter
vector is @ = (B, a”,AT)". The E-Step of the EM algorithm updates B as follows

k+1 ZXTX Z XT A(k) A )A(k’)) (426)

and the necessary quantities of the E and M-steps found in Subsection 4.3.2 remain the

same once we plug-in ﬁ(k) by ﬁE’“) = Xz‘,é(k)-

4.4 Applications

To exemplify the method developed in this work, we considered all three
datasets introduced in chapter 1: (a) Apple data: a bivariate example with missing data,
(b) Concentration levels data: an interval-censoring data; and (¢) Wine data: a skew normal

censored regression.
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4.4.1 Apple data: A bivariate example with missing data

First, we apply our methodology to the apple data introduced in subsection
1.2.2. We consider our proposed SN-C model with p = 2 dimension to fit the data, that is,
Y, = (Y1, Yio) ~ SNo(p, X, A). In order to fit the models via the EM-based ML estimation
developed in Subsection 4.3.2, we employed different sets of initial values and chose the
fitting result with the largest maximized log-likelihood value to be the global maxima. For
the sake of comparison, we also fit a multivariate N-C model, which can be treated as a
reduced multivariate SN-C model for A = 0.

A graphical representation for these fitted models is displayed in Figure 9,
with the scatter for the observed data, predicted points using both models, and overlaid
contours of the fitted SN and N densities.

Results are summarized on Tables 3 and 4. In Table 3, we can see that the
estimates for the skewness parameter A are quite high (due to the small tolerance used for
the stopping rule of the algorithm) evidencing a significant departure from symmetry. From
Figure 9, note that these high values lead to a truncated effect for the response region.
As expected, the SN model outperforms the N model in terms of log-likelihood and AIC.
Predicted missing values are shown in Table 4, where we can see that not considering the
asymmetry in the model leads to underestimation. Comparing our results with Lin et al.
(2009), which studies the same dataset without considering any restriction (as censoring)
on the missing data, we have that our proposed model presents similar results in terms of
log-likelihood and AIC (¢(8]Y) = —98.47 and AIC = 208.94). It is worth to mention that
Lin et al. (2009) works with a different version of the SN distribution, the one introduced
by Sahu et al. (2003).

80

60

Y2

40

O complete observed points
A MVSN predicted points
X MVN predicted points

20

0 20 40
Y1

Figure 9 — Apple data. Scatter and predictive plot of the apple data, overlaid on the
contours of fitted SN model (solid lines) and N model (dashed lines). ESN
marginal densities are shown on borders.
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Table 3 — Apple data. Comparison of ML estimates between the two models

Model H1 M2 011 012 0929 )\1 )\2 €(0|Y) AIC
Normal 14.72 4933 89.53 —90.69 114.68 - - —101.79 213.57
Skew-normal 9.56 52.36 118.31 —111.09 135.70 1163.26 317.91 —98.23 210.45

Table 4 — Apple data. Comparisons of EM predictions of the six missing values

Model @13,2 3?14,2 ZQ15,2 3?16,2 3?17,2 3?18,2
Normal 60.19 60.19 59.18 5H&8.17 56.14 54.12
Skew-normal 63.88 63.88 62.59 61.32 58.79 56.29

4.4.2 Concentration levels data: interval-censoring to fit positive left-censored
data

In the second application, we consider the concentration levels data as in
Chapter 2. These data were previously analyzed by Hoffman & Johnson (2015), where
they proposed a pseudo-likelihood approach for estimating parameters of multivariate

normal and log-normal models.

Censored responses in addition to asymmetric behavior of the data, lead us
to propose a SN-C model to fit the data, now with dimension p = 5 | that is, Y; =
(Yir, Yio, ..., Yis) ~ SN5(u, X, A). For the sake of comparison, we also fit a multivariate

N-C model as in the previous application.

To guarantee strictly positive concentration levels, we consider an interval-
censoring analysis by setting all lower limit of detection equal to 0 for all trace metals.
Again, we standardize the dataset to have zero mean and variance equal to one as in
Wang et al. (2019). The ML estimates of the parameters were obtained using the EM
algorithm described in Subsection 4.3.2. The estimated skewness parameter X as well as
the log-likelihood and AIC are shown in Table 5. Here, we can see that the estimates of A
are quite different from zero, indicating a lack of adequacy of the symmetry assumption
for the VDEQ data. The AIC value is lower for our SN-C model as expected.

Table 5 — VDEQ data. ML estimates for the skewness parameter and model comparison.

Model A Ao A3 A As (0Y) AIC
Normal - - - - - —1351.596 2743.192
Skew-normal 5.693 16.442 28579 —1.382 0.488 —1269.078 2588.157

Figure 10 shows the histograms on diagonal and pair-wise scatter plots for the
concentration levels study. From the histograms we can see how censored observations

(taking values over the dashed lines) are distributed adequately to the left (blue bins)
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Figure 10 — VDEQ data. Histograms (diagonal) and pair-wise scatter plots (lower-triangle)
for the concentration levels study. Complete observed points are represented
in black points (gray bins) and SN predicted observations in blue points (bins).
Limits of detection are represented in dashed lines.

after fitting our proposed model, while gray bins represent complete observed points. On
the other hand, the scatter plots of the show complete observed (black) points and the

predicted observations using the multivariate SN-C model (blue points).

Finally, with the aim of validating the proposed censored model approach, we

compare the correlation matrices of the data by considering 5 strategies:

a) Original: original data

)
b) Omitting: zeros are not considered
¢) Manipulating: multiplying the limit of detection by the factor 0.75
d) N-C model

)

e) SN-C model
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Pb  zZn Ca Mg Pb Zn Ca Mg Pb Zn Ca Mg Pb Zn Ca Mg Pb Zn Ca Mg 1
Cu 0.23 0.18 0.14 0.1 Cu-0.07-0.02 0.51 0.38 Cu 025 0.19 0.14 01 Cu 028 0.2 0.14 0.11 Cu 027 0.19 0.14 0.11
0.5
Pb 10.59 -0.16 -0.15 Pb 059 0 -0.15 Pb 10.58 -0.17 -0.16 Pb 059 -0.19 -0.18 Pb [ 0.59 -0.19 -0.18
0
Zn -0.11 -0.04 Zn 0.09 0 Zn -0.1 -0.04 Zn -0.1 -0.03 Zn -0.1 -0.04
-0.5
-1
(a) Original (b) Ommiting (¢) Manipulating (d) MVN-IC (e) SN-IC

Figure 11 — VDEQ data. Correlation matrices of the concentration levels for 5 different
strategies.

The results are depicted in Figure 11. From this figure we can see that the
correlation matrices for the N and SN models are similar. Based on the AIC, we consider
the second one as a reference. We can get very decent results for this study by using the
original data (a) or even manipulating the data (c), with both tending to underestimate
the correlations. Omitting (b) is by far the worst strategy. For example, the correlation
between the Pb and Cu is poorly estimated to the point that they have the sign changed.
Similar problems arise for the correlations between Zn and other three elements. Given the
large number of censored observations, omitting leads to loss of information (as is the case
of the correlation between Ca and Pb, as well as between Ca and Mg, where correlation

was estimated to be zero).

4.4.3 Wine data: A skew normal censored regression with censored and missing

values

For this data, we propose the following simultaneous model:

acidity; = P10 + Prsugar; + Piaflavonoids; + PispH; + 14O Ddw; + €4;, (4.27)
alcohol; = Pag + Parsugar; + Pooflavonoids; + PospH; + 24O Ddw; + €94, (4.28)

where we consider a correlation structure between the acidity and alcohol, that is,
cov(er, ep) # 0, and Eleg;| = E|eg;] = 0. The proposed model can be written in a matrix
form as

yi = [L®x]8 + e, i=1,...,n, (4.29)

where for the object i, y; = (acidity, alcohol); is a bivariate response of interest, x; =
(1, sugar, flavanoids, pH,ODdw), is a covariate vector, 8 = (8,8, )" is a 10 x 1 vector,
with B; and Bs being a 5 x 1 vector of regression coefficient for acidity and alcohol,
respectively; and finally &; = (c1;,9;) ' is the zero mean error term considered to be 4.7.d.
as g; ~ SNQ(—\/2/7 A, X X), where X is a 2 x 2 dispersion matrix, A = (A, \2)' is the

skewness parameters and A as defined in Proposition 4.1.

Furthermore, flavonoids are complicated compounds responsible for the color

and flavor of grapes and consequently of the wine, while O Ddw is a measure of protein
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content. The units for the variables is not registered in the database, however they seem

to be positive quantities.

In order to validate our methodology, we alter the data by creating censoring
as well as missing values at random. Hence, we create 15% of right-censored values for
acidity, 15% of left-censored values for alcohol and an additionally 10% of missing values,

which were selected randomly along the remaining non-censored points.

This setting led to a total of 24.4% of censored/missing points. Note that,
only 57.3% of the measures had 0 missing/censored responses, 36.5% had exactly one
missing/censored characteristic and 6.2% observations with no information at all, that is,

both responses are missing/censored.

Furthermore, since quantities are strictly positive measures, to guarantee this,
we consider this feature by setting the lower limit of detection always greater than 0 for
both responses. This lead us to propose a skew-normal censored regression (SN-CR) model
defined in (4.29) to fit the data. For the sake of comparison, we also fit a multivariate
normal censored regression (N-CR) model and the skew-normal regression (SN-R) model

for the original non-disturbed data.

Table 6 — Wine data. Model comparison criteria for fitting the N-CR and SN-CR models
in the disturbed data.

Model Ay X L(O]Y)  AIC BIC

N-CR - - -726.68 1479.35 1529.73
SN-CR 296 -2.07 -718.16 1466.32 1524.44

Table 7 — Wine data. Estimated regression coefficients using the SN-CR model for the
original and disturbed data.

B Bu B2 Bz Pua Bao  Por Pa Ba3 B4 U1 Y2
Original 257.14 1.86 -5.97 -58.31 -5.21 10.01 0.13 0.26 -0.03 -0.29 85.64 13.00
Disturbed 259.38 2.17 -6.53 -60.72 -5.32 9.34 0.15 0.22 0.02 -0.23 86.25 12.95

For model selection, we consider the log-likelihood (¢£(8]Y)), Akaike information
criterion (AIC, Akaike, 1974) as well as the Bayesian Information Criterion (BIC, Schwarz
et al., 1978), displayed in Table 6. From this table, we can see that the estimates of A are
not near from zero, indicating a significant skewness and consequently a lack of adequacy
of the symmetry assumption for this dataset. All criteria point out to our SN-CR model,

as expected.

We also analyzed the parameter estimation when we have the original and
the disturbed (missing/censored) data, for both datasets we fitted the SN-CR model.

Estimated values for the regression coefficients 3, dispersion matrix 3, skewness parameter
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A can be found in Table 7, we can see that the estimated values are closer, showing that

it is reasonable to accommodate a mechanism for censoring/missing into the model.
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Figure 12 — Wine data. Scatter plots with marginal histograms (left panel) and estimated
densities (right panel) for the original data (in black) and disturbed data (in
blue) using our proposed SN-CR model.

Note from Figure 12 that the estimated densities for the original dataset (in
gray) and the estimated densities using our model (in blue) for the disturbed data are
almost indistinguishable, showing that our proposal offers a good performance in prediction,

even when the censoring/missing levels are high.

4.5 Conclusions

In this paper, a novel exact EM algorithm for skew-normal censored responses
has been developed. Our proposal uses closed-form expressions at the E-step, that rely on
formulas of the mean and variance of a multivariate truncated skew-normal distribution.
These formulas are available in closed form and have been derived recently (chapter 3).
Our approach includes some previously proposed solutions, such as, the skew-normal linear
regression model proposed by Lachos et al. (2007), the classic Tobit linear models in
which the error terms are assumed to follow a Gaussian distribution and the multivariate

skew-normal models with incomplete data proposed by Lin et al. (2009), among others.

We applied our methods to three real datasets containing missing and censored
components, where we demonstrate the superiority of the SN-C model by providing more
adequate results when the available data have asymmetric behavior. Furthermore, our
results reveal that our method has very competitive performance in terms of imputation
when the skew-normal model is imposed. Therefore, it is noteworthy that the use of the

SN-C model can offer a better fit and more precise inferences. It is important to remark
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that we assumed the dropout/censoring mechanism to be "missing at random" (MAR),
(see, Diggle et al., 2002, p 283). However, in the case where MAR with ignorability is not
realistic, the relationship between the unobserved measurements and censoring process
should be further investigated. The proposed method (including the limiting normal
symmetric case) has been coded and implemented in the R MomTrunc package, which is

available for the users on CRAN repository.
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5 Moments of the doubly truncated selection
elliptical distributions with emphasis on the

unified multivariate skew-t distribution

5.1 Introduction

Truncated moments have been a topic of high interest in the statistical literature,
whose possible applications are wide, from simple to complex statistical models as survival
analysis, censored data models, and in the most varied areas of applications such as
agronomy, insurance, finance, biology, among others. These areas have data whose inherent
characteristics lead to the use of methods that involve these truncated moments, such as
restricted responses to a certain interval, partial information such as censoring (which
may be left, right or interval), among others. The need to have more flexible models that
incorporate features such as asymmetry and robustness, has led to the exploration of
this area in last years. From the first two one-sided truncated moments for the normal
distribution, useful in Tobin’s model Tobin (1958), its evolution led to its extension to the
multivariate case Tallis (1961), double truncation Manjunath & Wilhelm (2009), heavy
tails when considering the Student’s ¢ bivariate case in Nadarajah (2007), and finally the
first two moments for the multivariate Student’s ¢ case in Ho et al. (2012). Besides the
interval-type truncation in cases before, Arismendi & Broda (2017) considers an interesting
non-centered ellipsoid elliptical truncation of the form a < (x — pa) A(x — pa) on well
known distributions as the multivariate normal, Student’s ¢, and generalized hyperbolic
distribution. On the other hand, Kan & Robotti (2017) recently proposed a recursive
approach that allows calculating arbitrary product moments for the normal multivariate
case. Based on the latter, Roozegar et al. (2020) proposes the calculation of doubly
truncated moments for the normal mean-variance mixture distributions which includes
several well-known complex asymmetric multivariate distributions as the generalized

hyperbolic distribution.

Unlike Roozegar et al. (2020), we focus our efforts to the general class of
asymmetric distributions called the selection elliptical family multivariate. This large
family of distributions includes complex multivariate asymmetric versions of well-known
elliptical distributions as the normal, Student’s ¢, exponential power, hyperbolic, Slash,
Pearson type II, contaminated normal, among others. We go further in details for the unified
skew-t (SUT) distribution, a complex multivariate asymmetric heavy-tailed distribution
which includes the extended skew-t (EST) distribution (Arellano-Valle & Genton, 2010),
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the skew-t (ST) distribution (Azzalini & Capitanio, 2003) and naturally its analogous

normal cases when v — oo.

The rest of the paper is organized as follows. In Section 5.2 we present some
preliminaries results, most of them being definitions of the class of distributions and its
special cases of interest along the document. Section 5.3, the addresses the moments for
the doubly truncated selection elliptical distributions. We establish formulas for high order
moments as well as its first two moments. We present a methodology to deal with some
limiting cases of interest and when a non-truncated partition exists, and we establish
sufficient and necessary conditions for the existence of these truncated moments. Section 5.4
bases results from Section 5.3 to the SUT case. In Section 5.5, a brief numerical study
is presented in order to validate the methodology. In Section 5.6, a direct application
of ST truncated moments is developed in the context of risk measurement in Finance.
Section 5.7 presents some lemmas and corollaries useful in censored modeling framework.
These are given for the SUT distribution and its particular cases EST (ESN) and ST
(SN) distributions. Finally, Section 5.8 proposes estimation on interval-censored models

for skew-t responses. We last conclude with some comments and future research.

5.2 Preliminaries

5.2.1 Selection distributions

First, we start our exposition defining a selection distribution as in Arellano-

Valle et al. (2006Db).

Definition 5.1 (selection distribution). Let X; € R? and X, € R? be two random
vectors, and denote by C' a measurable subset of R?. We define a selection distribution as
the conditional distribution of Xy given Xy € C, that is, as the distribution of (Xo | Xy € C).
We say that a random vector Y € R? has a selection distribution if Y £ (X, | X, € C).

We use the notation Y ~ SLCT, , with parameters depending on the char-
acteristics of Xy, X5, and C. Furthermore, for X, having a probability density function
(pdf) fx, say, then Y has a pdf fy given by
P(X1€C|X2:y)

P(Xl € C)

Fx(y) = fxa(y) (5.1)

Since selection distribution depends on the subset C' € RY, particular cases are

obtained. One of the most important case is when the selection subset has the form
C(C) = {Xl e RY | X1 > C}. (52)

In particular, when a = 0, the distribution of Y is called to be a simple selection

distribution.
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In this work, we are mainly interested in the case where (X;, X5) has a joint
density following an arbitrary symmetric multivariate distribution fx, x,. For Y 4 (Xa |
X € (), this setting leads to a Y p-variate random vector following a skewed version of
f, which its pdf can be computed in a simpler manner as

. Sc Ix1.x, (X1, y) dxq

fY(y) - SC le (Xl) dX1 : (53)

5.2.2 Selection elliptical (SE) distributions

A quite popular family of selection distributions arises when X; and Xy have

a joint multivariate elliptically contoured (EC) distribution, as follows:

x= (X ~EC,, €= & Q= i s  hlatn) | (5.4)
X5 & Qo1 Qo

where & € R? and &; € R? are location vectors, 2;; € R7*Y, Q5 € RP*? and
Oy, € RP*? are dispersion matrices, and, in addition to these parameters, hlatP) ig g
density generator function. We denote the selection distribution resulting from (5.4) by
SLCT-EC, (&, 9, hU*P) (). They typically result in skew-elliptical distributions, except
for two cases: 91 = 0,4, and C = C(&) (for more details, see Arellano-Valle et al.
(2006b)). Given that the elliptical family of distributions is closed under marginalization
and conditioning, the distribution of X5 and (X; | Xy = x) are also elliptical, where their

respective pdfs are given by

Xy ~ EC,(&, Qoo hP)), (5.5)
Xy | Xy = x ~ BECy(&1 + Q1205 (x — &), Qi1 — Q129255 Doy, ), (5.6)
with induced conditional generator

R (4 + 6,(x))
(2) — 2
hxq (U) - h(p)62 (X) 9

with 65(x) £ (x — &) Q55 (x — &). These last equations imply that the selection elliptical
distributions are also closed under marginalization and conditioning. Furthermore, it is
well-know that the SE family is closed under linear transformations. For A € R"™*? and
b € R" being a matrix of rank r» < p and a vector, respectively, it holds that the linear
transformation AY +b £ (AX, +b) | (X; > 0), where £ is an acronym that stands for
identically distributed, and then

Q QAT
AY +b ~ SLCT-EC,, | £ = & Q= 1 12 . NIGORN
A&+ b AQy AQ9A

(5.7)
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Notice from Equation (5.3), that alternatively we can write

_ So forn(x1,5; €, 2, h(a+P)) dx,
So fo(x15 &1, Qup, @) dxy

fx(y) (5.8)

5.2.3 Particular cases for the SE distribution

Some particular cases, useful for our purposes, are detailed next. For further
details, we refer to Arellano-Valle et al. (2006b).

Unified-skew elliptical (SUE) distribution

Let Y ~ SLCT-EC, ,(&, 2, R*P) (). Y is said to follow the unified skew-
elliptical distribution introduced by Arellano-Valle & Azzalini (2006b) when the truncation
subset C' = C(0). From (5.8), it follows that

Fq(& + Q1292_21 (y = &2);0,Q; — Q1292—219217 hgfq))
Fy(&1; 941, WD) 7

Fy(y) = fo(y; &2, Qao, BP)) (5.9)
where f,(y; &2, Qag, BP)) = Qo] 22 P (0x,(y)), and F,(z;0,0, ¢'?) denote the cumu-
lative distribution function (cdf) of the EC,(0,®,¢'?). Note that the density in (5.9)
extends the family of skew elliptical distributions proposed by Branco & Dey (2001) (see
also, Azzalini & Capitanio, 2003), which consider ¢ = 1 and & = 0.

Scale-mixture of unified-skew normal (SMSUN) distribution

Let W being a nonnegative random variable with cdf G. For a generator
e0)

function AP+ () = J (2n¢(w))~PHOR2em w2 G (w), several skewed and thick-tailed
0
distributions can be obtained from different specifications of the weight function ((-) and

G. It is said that Y follows a SMSUN distribution, if its probability density function (pdf)

takes the general form

&1+ Q0 (v — &2); C(w){ Q11 — Q1255 D })
Dy (&1; C(w)$21)

Fe) = [ 0ty )™ 1G(w),

(5.10)

where ®,.(+; 3) represents the cdf of a r-variate normal distribution with mean
vector 0 and variance-covariance matrix 3. Here Y | (W = w) follow a unified skew-normal

(SUN) distribution, where we write Y | (W = w) ~ SUN (&, ((w)$2).
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« Unified skew-normal (SUN) distribution

Setting T as a degenerated r.v. in 1 (P(W = 1) = 1) and ((w) = w, then A9 (1) =
(2m) =P+ D/2e=w/2 4y > 0, for which h®(u) = (27)7?%¢™%2. Then, Y follow a SUN
distribution, that is, Y ~ SUN, ,(&, €2), with pdf as

(&1 + 212959 (y — &); D11 — Q120255 Qay)
Dy (€15 211) .

Fx(y) = op(y; Ez,sz)q)q (5.11)

« Unified skew-t (SUT) distribution

For W ~ G(v/2,v/2) and weight function ((w) = 1/w, we obtain A9 (u) =

%{1 + u} P2 and hence (5.10) becomes

T,(6 + Q1292721(}’ —&); M{Qll - 9129521921}, v+ p)

v+p

Tq(fl; Q117’/) (5 12;

fy(y) = t,(y; &2, Q0,v)

where T,.(+; 3, v) represents the cdf of a r-variate Student’s ¢ distribution with location
vector 0, scale matrix 3 and degrees of freedom v. For Y with pdf as in (5.12) is
said to follow a SUT distribution, which is denoted by Y ~ SUT, ,(&, 2, v) and was
introduced by Arellano-Valle & Azzalini (2006b). It is well-know that (5.12) reduces
to a SUN pdf (5.11) as ¥ — o and to an unified skew-Cauchy (SUC) distribution,

when v = 1.

Furthermore, using the following parametrization:

TLATA Q
e and Q= 2 (5.13)
24 Qg X

where Qs = Z2A, with 2 being the square root matrix of ¥ such that ¥ =
»12531/2 we use the notation Y ~ SUT, .(pn, X, A, T,v,¥), to stand for a p-variate
EST distribution with location parameter pu € RP positive-definite scale matrix
Y € RP*P, gshape matrix parameter XA € RP*Y, extension vector parameter 7 € R? and
positive-definite correlation matrix ¥ € R?*9. The pdf Y is now simplified to

T,((r + ATy —w)v(y), ;v +p)

T,(m; ¥ + ATA,v) ’
(5.14)

with 1%(x) = V& (x) £ (v + dim(x))/(v + §(x)) and §(x) = (x — px) 2" (x — px)
being the Mahalanobis distance. The pdf in (5.14) is equivalent to the one found
in Arellano-Valle & Genton (2010), with a different parametrization. Although the

unified skew-t distribution above is appealing from a theoretical point of view, the

SUT, (y; 0, 2, A, 7,0, W) =t,(y; 1, X, v)

particular case, when ¢ = 1, leads to simpler but flexible enough distribution of

interest for practical purposes.
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Extended skew-t (EST) distribution

For ¢ = 1, we have that ¥ = 1, A = X and T,,(x; ¥, v) = Ty (x/~/1), v), hence (5.14)
reduces to the pdf of a EST distribution, denoted by EST,(y; i, X, A, 7), that is,

Ti((r+ AT (y — pw))v(y);v + p)
Ty (7;v) ’

ESTP(Y7I~"’7E7A7 T) = tp(y;l“l’aE?V) (515>
with 7 = 7/v/1 + ATA .Here, A € R? is a shape parameter which regulates the
skewness of Y, and 7 € R is a scalar. Location and scale parameters g and X
remains as before. Here, we write Y ~ EST,(u, 3, X, 7) Notice that, SUT,; = EST,.

Besides, it is straightforward to see that
ESTp(y> 22 E? A? T, V)—’tp(y, M, 2, l/), as T — 00,

where t,(-; p, 3, ) corresponds to the pdf of a multivariate Student’s ¢ distribution
with location parameter u, scale parameter ¥ and degrees of freedom v. On the
other hand, when 7 = 0, we retrieve the skew-t distribution ST,(u, X, A, v) say,

which density function is given by
ST, (y; p, B, A, v) = 26, (y; 1, ) TL(ATS ™ (y — ) v(y);v +p),  (5.16)

that is, EST,(u, X, X,0,v) = ST,(m, X, A, v). Other properties are studied in
Arellano-Valle & Genton (2010), with a slightly different parametrization.

Six different densities for special cases of the truncated SUT distribution are shown in
Figure 13. Symmetrical cases normal and Student’s ¢ are shown at first row (A = 0),
skew cases: skew-normal (SN) and ST at second row (7 = 0) and extended skew
cases: extended skew-normal (ESN) and EST at the third row. Location vector p

and scale matrix X remains fixed for all cases.

« Others unified skewed distributions

Others unified members are given by different combinations of the weight function
¢(W) and the mixture cdf G. For instance, we obtain an unified skew-slash distribu-
tion when ((w) = 1/w and W ~ Beta(v, 1); an unified skew-contaminated-normal
distribution when ((W) = 1/W and W is a discrete r.v. with probability mass
function (pmf) g(w;v,v) = vl + (1 —v)Ig—1y, with I being the identity function.
Besides, Branco & Dey (2001) mentions some other distributions as the skew-logistic,
skew-stable, skew-exponential power, skew-Pearson type II and finite mixture of
skew-normal distribution. It is worth mentioning that even though Branco & Dey
(2001) works with a subclass of the SMSUN, when ¢ = 1 and &; = 0, unified versions
of these are readily computed by considering the same respective weight function
¢(-) and mixture distribution G.
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5.3 On moments of the doubly truncated selection elliptical distri-

bution

Let Y ~ SLCT-EC, (€, 9, h\9P) C) with pdf as in (5.8) and let also A be a
Borel set in RP. We say that a random vector W has a truncated selection elliptical (TSE)
distribution on A when W £ Y|(Y € A). In this case, the pdf of W is given by

fy(w)
fw(w) = mlA(W)a

where 1, is the indicator function of A. We use the notation W ~ TSLCT-EC, ,(&, Q, h{4+P),
C; A). If A has the form
A={(y1,....yp) eRP: a3 <y1 <by,...,0, <y, < by} ={yeRP:a<y<b}, (5.17)

hence we use the notation {Y € A} = {a <Y < b}, where a = (ay,...,a,)" and b =
(by, - .. ,bp)T, where a; and b; values may be infinite, by convention. Here, we say that the
distribution of W is doubly truncated. Analogously we define {Y > a} and {Y < b}. Thus,

(a) (b)

oF
fy)

Figure 13 — Densities for particular cases of Y being a truncated SUT distribution. (a)
Normal cases at left column (normal, SN and ESN from top to bottom) and
(b) Student’s-t cases at right (Student’s ¢, ST and EST from top to bottom).
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we say that the distribution of W is truncated from below and truncated from above, respec-
tively. For convenience, we also use the notation W ~ T'SLCT-EC, ,(§, €, h*P) C; (a, b))
with the last parameter indicating the truncation interval. Analogously, we do denote
TEC,(&, €, h®); (a, b)) to refer to a p-variate (doubly) truncated elliptical (TE) distribu-
tion on (a,b) € RP. Some characterizations of the doubly TE have been recently discussed
in Moran-Vésquez & Ferrari (2019).

5.3.1 Moments of a TSE distribution

For two p-dimensional vectors y = (yy,...,%,) and k = (ky,..., k)", let y*
stand for (y’fl, cee y}’;”), that is, we use a pointwise notation. Next, we present a formulation

to compute arbitrary product moments of a TSE distribution.

Theorem 5.1 (moments of a TSE). Let X ~ EC,,,(&,Q,h\ 9P as in (5.6.1). Let
C be a truncation subset of the form C(c,d) = {x; € R? | ¢ < x; < d}. For Y ~
SLCT-EC, (€, Q7P C(c,d)), it holds that E[Y*] = E[Y{"Y) ... Y] can be com-
puted as

E[Y* | a<Y <b]=E[X*|a<X<g], (5.18)

with k = (OJ,kT)T, a=(c,a") and B=(d",b")", where k = (ki,ka,... k)", with
kieN, fori=1,...,p.

Proof. Since Y £ X, | (¢ < X < d), the proof is direct by noting that

Y| (a<Y<b)£X,|(c<X; <

d na<X,<b)
iX2|(04<X<ﬂ).
[

Corollary 5.1 (first two moments of a TSE). Under the same conditions of Theorem
5.1, letm=E[X |a<X<B] and M = E[XX" | a < X < ], both partitioned as

M;; M
m = h and M = 1 12 ,
ms My My,
respectively. Then, the first two moments of Y | (a <Y < b) are given by

E[Y |a<Y <b|=m,, (5.19)
E[YY' |a <Y <b| =My, (5.20)

where my € RP and Moy € RP*P,

For the particular truncation subset C'(c) as in (5.2), theorem 5.1 and corollary

5.1 holds considering a = (c",a")" and B8 = (0", b")". Notice that, theorem 5.1 and
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corollary 5.1 state that we are able to compute any arbitrary moment of Y | (a <Y < b),

that is, a TSE distribution just using an unique corresponding moment of a doubly TE

distribution X | (a < X < B).

This is highly convenient since doubly truncated moments for some members
of the elliptical family of distributions are already available in the literature and statistical

softwares.

5.3.2 Dealing with limiting and extreme cases

Consider X ~ EC,;,(&,Q, b)) and Y ~ SLCT-EC, ,(€,Q,h9P O) as in
Theorem 5.1 with truncation subset C' = C(0). As & — o0, we have that P(X; > 0) — 1.
Besides, as & — —oo, we have that P(X; = 0) — 0 and consequently P(a <Y < b) =
Pla < X < 8)/P(X; = 0) — oo. Thus, for & containing high negative values small
enough, sometimes we are not able to compute E[Y¥] due to computation precision,
mainly when we work with distributions with lighter tails densities. For instance, for a
normal univariate case, ®1(£;) = 0 for & < —38 in R software. The next proposition helps

us to circumvent this problem.
Proposition 5.1 (limiting case of a SE). As & — —© (§; > —©0, i =1,...,q),

SLCT-EC, 4(&,Q, h7P) C(0))—EC, (& — Q105 €1, Qo — D01 Q51 Q10, hY). (5.21)

Proof. Let X = (X],XJ)" ~ EC, (&, Q,h9) and Y ~ TSLCT-EC, ,(&,Q, hl4+P),
C(0);(a,b)). As & — —oo, we have that P(X; > 0) — 0, E[X;|X; = 0] — 0 and
Var[X;|X; = 0] — 0, hence X;|X; = 0 becomes degenerated on 0. From Definition
51, Y -4 (X,|X; = 0), and by the conditional distribution in Equation (5.6), it is
straightforward to show that Xo|X; ~ EC,(&2+ Q0 Q5 (Xq — &), Qa2 — Q1 Q7 Qia, ).
Evaluating X; = 0 we achieve (5.21) concluding the proof. O

5.3.3 Approximating the mean and variance-covariance of a TE distribution

for extreme cases

While using the relation (5.19) and (5.20), we may face numerical problems
trying to compute m = E[X | a < X < 8] and M = E[XX | @ < X < 8] for extreme
settings of & and Q. Usually, it occurs when P(a < X < ) ~ 0 because the probability
density is far from the integration region (a, 8). It is worth mentioning that, for these
cases, it is not even possible to estimate the moments generating Monte Carlo (MC)
samples via rejection sample due to the high rejection ratio when subsetting to a small

integration region. Other methods as Gibbs sampling are preferable under this situation.
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Hence, we present correction method in order to approximate the mean and the
variance-covariance of a multivariate TE distribution even when the numerical precision

of the software is a limitation.

5.3.3.1 Dealing with out-of-bounds limits

Consider X ~ EC, (€, €, h(r)) to be partitioned as X = (X1, X, )" such that
dim(X,) = r1, dim(Xy) = ro, where r; + 7y = r. Also, consider &, Q, o = (o] , )7
and B = (B],B5)" partitioned as before. Suppose that we are not able to compute
E[X"|a < X < B], because there exists a partition X, of X of dimension r, that is out-of-
bounds, that is P(ap < X3 < B2) ~ 0. Notice that this happens because P(ae < X < ) <
Play < X3 < B2) =~ 0. Besides, we suppose that P(a; < X5 < 8;) > 0. Since the limits of
X are out-of-bounds (and as < Bs), we have two possible cases: B3 — —o0 or aiy — 0. For
convenience, let gy = E[Xs | ag < Xy < B2] and 3oy = cov[Xs | ay < Xy < Bs]. For the
first case, as B — —o0, we have that g — B3 and 39y — 0., «,,. Analogously, we have that
o — o and Yoy — 0,4, as s — 0. Hence, Xy | (e < Xy < B2) is degenerated on pg
and then X5 £ X, | (Xo = pt2) ~ ECy, (€1 + Q1203 (12 — €2), Qi1 — Q10055 oy, ATV,
Given that cov[E[X;|Xs]] = 0 and cov[E[X;|X2], X2] = 0, it follows that

M2

E[X|a<X<ﬁ]=[
M2

2 0T1><7”2
] and cov[X|a<X<ﬂ]=[ 2 ],

07”2><T‘1 07"2><7‘2
(5.22)
with p10 = E[X;2 | 1 < X2 < B41] and Xy15 = cov[ X o | a1 < X; 5 < B4] being the

mean and variance-covariance matrix of a ri-variate TE distribution.

In the event that there are double infinite limits, we can part the vector as

well, in order to avoid unnecessary calculation of these integrals.

5.3.3.2 Dealing with a non-truncated partition

Now, consider X = (X|,X, )" to be partitioned such that the upper and lower
truncation limits associated with X; are both infinite, but at least one of the truncation
limits associated with Xy is finite. Then 7 be the number of pairs in (e, B) that are both
infinite, that is, dim(X;) = r; and dim(Xy) = ry, by complement. Since a; = —o0 and
Bi = o , it follows that X, | (¢ < X < B) ~ TEC,, (&2, D22, h"); [z, Bo]) and X | X, ~
EC,, (51 + Q12025 (Xo — &), Q1 — 9129521921,h(xr;))- Let py = E[Xs | ap < Xy < (9]
and Xy = cov[Xy | ay < Xy < f]. Hence, it follows that E[X | a < X < 8] = E[E[X] |
Xs] | as < Xy < Bo], that is

E[X |a<X<8|-E [( €1+ Dol (Xs — @))

Xo

ar < Xy <B2]



Chapter 5. Moments of the doubly truncated selection elliptical distributions 105

&1+ Q1205 (12 — &)
1 2%)

(5.23)

On the other hand, we have that cov[Xs, E[X;[Xs]] = cov[Xs, X5, Q1] = 22005, Qa1
COV[]E[X1|X2]] = 91295212229521921 and E[COV[X1|X2]] = wl,g(ﬂn — 9129521921), with

w12 being a constant depending of the conditional generating function h§§;>. Finally,

w121 — Q1205 (w11, — 22292_21)921 01295, 3o,

cov X |la <X L =
X1 Al Z2292_21921 DI

)

(5.24)

where py and 3gs are the mean vector and variance-covariance matrix of a TE distribution,

so we can use (5.19) and (5.20) as well.

Note that X; | (a < X < 8) # EC,, (51,911, h(”)) even though —oo < X <
oo since X | (a < X < B) =X, | (aa < X3 < B2) . In general, the marginal distributions
of a TE distribution are not TE, however this holds for X5 due to the particular case

a; = —oo and B; = .

Particular cases

Notice that the constant wy o will vary depending of the elliptical distribution
we are using. For instance, if X ~ ¢, ,,,(&, €2, v) then it follows that Xy ~ t,, (52, Qso, y)
and X1 |Xy ~ ¢, (El + Q1505 (Xo — &), (Q11 — 212955 Q1) /12(Xy), v + 7“2). In this case,
it takes the form wyo = E[(v + 12)/(v + 12 — 2)1*(X2) | ap < X3y < Bs], which is given by

6(X
w1.2:E|:V+(2)|a2<X2</82]7

vV+ry—2
_ ( v ) LT‘Q(a27/82;£27V922/(V_2)7V_2) (5 25)
v—2 Lr2(a2752;€279227y) ’ .
where L,(a, B;&,9Q, ) denotes the integral
B
Liefi& 20 = [ (i Qr)dy. (5.26)

that is, L.(a, B;€,Q,v) =P(a <Y < B) for Y ~ t,.(§,Q,v). Probabilities in (5.25) are
involved in the calculation of py and 399 so they are recycled. For the normal case, it is

straightforward to see that wy o = 1, by taking v — 0.

As can be seen, we can use equations (5.23) and (5.24) to deal with double
infinite limits, where the truncated moments are computed only over a ro-variate partition,
avoiding some unnecessary integrals and saving significant computational effort. On the
other hand, expression (5.22) let us to approximate the mean and the variance-covariance

matrix for cases where the computational precision is a limitation.



Chapter 5. Moments of the doubly truncated selection elliptical distributions 106

5.3.4 Existence of the moments of a TE and TSE distribution

It is well know that for some members of EC family of distributions, their
moments do not exist, however, this could be different depending of the truncation limits.

Let X ~ EC,.(&, 9, h(r)) be partitioned as in Subsection 5.3.3.2, with r; being
the number of pairs in (c, B) that are both finite and 7, = 7 —7;. Similarly, & = (K], kg )"
is partitioned as well. If 1 = r, then the truncation limits a and B contains only
finite elements, and hence E[X" | o < X < ] exists for all K € N" because the
distribution is bounded. When ry > 1, there exists at least one pair in («, 3) containing
infinite values, and the expectation may not exist. Given that E[X" | a < X < 8] =
E[XTE[X5? | Xi, 00 < Xy < Bo] | a1 < Xy < B4], for any measurable function g,
E[lg(Xy) | an < Xy < B4] always exists, and (aa, B2) is not bounded, it is straightforward
to see that E[X" | a < X < B] exist if and only if (iff) the inner expectation E[X5? | X]

exists.

As seen, the existence only depends of the order of the moment k5 and the

distribution of X5|X;, this last depending on the conditional generating function hng).

IfY ~ SLCT-EC, ,(¢&,9Q, h9™P) ), with truncation subset of the form C(c, d)
and r = p+¢ say. It follows from Theorem 5.1, that E[Y* |a < Y < b] =E[X* |a < X <
B]. Hence, the same condition holds taking in account that k = (OqT, k)" a=(c"a")’

and B = (d',b")". Next, we present a result for a particular case.

5.4 The doubly truncated SUT distribution

For the rest of the paper we shall focus on the computation of the mo-
ments of the doubly truncated unified skew-t (TSUT) distribution, denoted by W ~
TSUT, (2, A, 7,1, %; (a,b)). Besides, we shall study some of its properties and for
its particular case (when ¢ = 1), the doubly truncated extended skew-t distribution, say
W ~ TEST,(p, X, X, 7,v; (a,b)). For the limiting symmetrical case, we shall use the nota-
tion W ~ T't,(u, X, v; (a, b)) to refer to a p-variate truncated Student-¢ (TT) distribution
on (a,b) € R?. Finally, W ~ T'N,(u, ¥; (a, b)) will stand for a p-variate truncated normal
distribution on the interval (a,b) . Hereinafter we shall omit the expression doubly due to

we only work with intervalar truncation.

Corollary 5.2 (moments of a TSUT). IfY ~ SUT, ,(pu, %, A, 7,0, %), it follows from
Theorem 5.1 that
E[Yf|a<Y <b]=E[X"|a<X<g],

where X ~ t,.,(&, Q,v) with & and Q as defined in expression (5.13) and k = (Og,kT)T,

a=(0,,a")" and B = (x,,b")".
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5.4.1 Mean and covariance matrix of the TSUT distribution

Let Y ~ TSUT,,(u, 2, A, 7,v,¥;(a,b)) and X ~ Tt,.,(& Q,v; (e, B)).

From Corollary 5.2, we have that the first two moments of Y can be computed as

E[Y] = m,, (5.27)
E[YYT] = My, (5.28)

where m = E[X] and M = E[XX'] are partitioned as in Corollary 5.1. Notice that
cov[Y] = E[YY '] - E[Y]E[Y].

Equations (5.27) and (5.28) are convenient for computing E[Y] and cov[Y]
since all boils down to compute the mean and the variance-covariance matrix for a

q + p-variate T'T distribution which can be calculated using the our MomTrunc R package
available on CRAN.

Existence of the moments of a TSUT

Let also p; be the number of pairs in (a,b) that are both finite. Without loss
of generality, we assume Y = (Y, ,Y,)", where the upper and lower truncation limits
associated with Yy are both finite, but at least one of the truncation limits associated
with Y5 is not finite, say dim(Y;) = p; and dim(Ys) = po, with p; + p2 = p. Consider the
partitionsof a = (a/,a,;)" ;b = (b/,b, )" andk = (k,k, )" as well. The next proposition

gives a sufficient condition for the existence of the moment of a TSUT distribution.

Proposition 5.2 (existence of the moments of a TSUT). Under the conditions
above, E[Y® | a <Y < b ewists iff sum(ky) < v+ p1.

Proof. From subsection 5.3.4, it is suffices to demonstrate that E[X%?|X;] exists. Since
a = (O(I,alT,aQT)T and B = (oo;,blT,b;)T, it follows that r1 = p1, 1o = ¢+ pa2, K1 = k4
and kg = (0,,ky)". It is casy to show that the distribution of X,|X; is a (g + p»)-variate
Student-¢ distribution with v + p; degrees of freedom. Hence, the above expectation exists
iff sum(ky) < v+ py. O

From Proposition 5.2, see that E[Y] and E[YY '] exist iff v +p; > 1 and
v + p1 > 2 respectively. Since v > 0, this is equivalent to say that, (5.23) exists if at
least one dimension containing a finite limit exists. Besides, (5.24) exists if at least two

dimensions containing a finite limit exist.

This sufficient condition for the existence of the first two moments of a trun-
cated SUT distribution holds for the truncated Student-t (¢ = 0) and for the truncated
EST distribution (¢ = 1) due to the condition does not depend on g.
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Corollary 5.3 (Proposition 1 for a SUT). As T — —© (1, > —w0,i=1,...,q),
SUT, (2, A, 7,0, O)—t, (v, w. T, v + q), (5.29)
with ¥ = p— Q7' 7, T = 2 — Q1 Q' Q1o and w, = v (0) = (v + 7 Q5'7)/(v + q)
with Q1 = ¥ + ATA.
In particular, for g =1,
EST,(pt, B, A, 7, v)—st, (v, (v + 72) /(v + V)T, v + 1), (5.30)

withy = p—7A, T =3 —AA", and A = ZY2X/V/1+ AT,

5.5 Numerical example

In order to illustrate our method, we performed a simple Monte Carlo (MC)
simulation study to show how MC estimators for the mean vector and variance-covariance

matrix elements converge to the real values computed by our method.

We consider a bivariate TSUT distribution Y ~ T'SUT, o(p, 2, A, 7, v, ¥; (a, b))
with lower and upper truncation limits a = (0.8, —0.6)" and b = (0.5,0.7)" respectively,

null location vector g = 0, degrees of freedom v = 4,

e -1 oy 1 02 A= 1 3 and W — 1 =05 '
2 02 4 -3 =2 —-0.5 1

25+ '
00 300+
005
0275+
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05 0o os 0 2500 5000 7500 10000 0 2500 5000 7500 10000
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& & & v
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0.10-
ooz 0075
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Figure 14 — Contour plot for the TSUT density (upper left corner) and trace plots of the
evolution of the MC estimates for the mean and variance-covariance elements
of Y. The solid line represent the true estimated value by our proposal.
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Figure 14 shows the contour plot for the TSUT density (upper left corner) as
well as the evolution trace of the MC estimates for the mean (first row) and variance-
covariance (last row) elements py, u2, 011, 012 and o9. Estimated true values for the

mean vector and the variance-covariance matrix were computed using equations (5.27)
and (5.28), being

—0.039 0.112  —0.007
EM:( 0.303 > and COV[Y]Z( 0.007  0.096 )

which are depicted as a blue solid line in Figure 14. Note that even with 1000 MC

simulations there exists a significant variation in the chains.

5.6 Application of SE truncated moments on tail conditional ex-

pectation

Let Y be a random variable representing in this context, the total loss in a
portfolio investment, a credit score, etc. Let y, be the (1 — a)th quantile of Y, that is,
P(Y > y,) = . Hence, the tail conditional expectation (TCE) (see, e.g., Denuit et al.
(2006)) is denoted by

TCEy(yo) =E[Y | Y > ya]. (5.31)

This can be interpreted as the expected value of the a% worse losses. The
quantile y, is usually chosen to be high in order to be pessimistic, for instance, o = 0.05.
Notice that, if we consider a variable Y which we are interested on maximizing, for example,
the pay-off of a portfolio, we simply compute TCE_y(—y,) = —E[Y | Y < —y,], being a

measure of worst expected income.

Main applications of TCE are in actuarial science and financial economics: mar-
ket risk, credit risk of a portfolio, insurance, capital requirements for financial institutions,
among others. TCE (also known as tail value at risk, TVaR) represents an alternative to
the traditional value at risk (VaR) that is more sensitive to the shape of the tail of the loss
distribution. Furthermore, if Y is a continuous r.v., TCE coincides with the well-known
risk measure expected shortfall (Acerbi & Tasche, 2002). In contrast with VaR, TCE is
said to be a coherent measure, holding desirable mathematical properties in the context of
risk measurement and and is a convex function of the selection weights (Artzner et al.,
1999; Pflug, 2000). A good reference to several risk measures and their properties can be
found in Sereda et al. (2010).

Multivariate framework

Let consider a set of p assets, business lines, credit scores, Y = (Y7, -- ,Yp)T.

In the multivariate case, the sum of risks arises as a natural and simple measure of total
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risk. Hence, the sum S =Y; + Y, + --- 4+ Y}, follows a univariate distribution and from
(5.31), we have that the TCE for S is given by

TCEs(sa) =E[S | S > sa]. (5.32)

Even though we may know the marginal distribution of S, it is preferable to compute the
total risk TC'E of S as a decomposed sum, that is

p
E[S | S > sa] = ) E[Y; | S > sa], (5.33)

i=1
where each term E[Y; | S > s,] represents the average amount of risk due to Y;. This
decomposed sum offers a way to study the individual impact of the elements of the set,

being an improvement to (5.32).

In order to model combinations of correlated risks, Landsman & Valdez (2003)
extended the TCE to the multivariate framework. The multivariate TCE (MTCE) is given
by

MTCEy(ya) =E[Y |Y > yo] =E[Y | Y1 > Y10y Y > Ypa, ) (5.34)
with e = (aq, ..., @) be a vector of quantiles of interest. Notice that the quantile-level
for the MTCE is fixed per each risk « = 1,...,p, in contrast with the TCE of the sum,

which is fixed over all the sum of risk S.

5.6.1 MTCE for selection elliptical distributions

Let consider Y ~ SLCT-EC, ,(&, €2, Rl*?) ). Without loss of generality, we
consider the selection subset C' = C'(0). It follows from Theorem 5.1 that

MTCEy(ya) = E[Xs | X > Xa, (5.35)

where X = (X|, X)) ~ EC,,(&,9Q,h9*P) and x, = (0,,y4)"- It is noteworthy that
the computation of the MTCE for Y following a SE distribution relies on the calculation

of truncated moments for its symmetrical elliptical multivariate case.

On the other hand, by noticing that S = 1"Y, it follows from (5.7) that S is
an univariate SE distribution given by S ~ SLCT-EC, (&5, Qs, Rt ), with

Q Q51
g = $1 7 and Qs = ) 11 i 12 '

Hence, its TCE in (5.32) can be easily computed as E[S | S > s,] = E[W, |
Wi > 0,W, > s.], W= (W], Wo)T ~ ECyi1(&s, Qs, h1HD), due to S £ Wy | (W > 0).
Next, we establish a general proposition for computing E[S | S > «,] in matrix form as a

decomposed sum.
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Proposition 5.3. Let Y ~ SLCT-EC, ,(&,Q, k9P C), with & and Q as in (5.4), and
W = (W] W) " ~ EC,.1(Es, Qs, K1) as before. It follows that

E[S|S > s.] =1Ts, (5.36)

with s = & + Qg Q' (Es — &s), where Qag = (Qa1, Nol) and Es = E[W | Wy >
0, WQ > Sa].

Proof. Let A = (1,1,)" be a real matrix of dimensions (p+ 1) x p. For V = AY, it follows
that

Vi Qs Qj
V= Y~ SLCT-ECy114 | §v = & L Qy = S 25 ) plattin) o)
Vs & (s

where V. = (S, Y")". It comes from the definition of selection distribution that V <
(X2, X3) |(X; > 0), where X = (X, X5,X3)" is a partitioned random vector with
elements of dimensions ¢, 1 and p respectively, where X ~ EC}+1(&v, Qy; h(q““’)).

Hence, it is straightforward to see that

S:E[Y|S>Sa] :E[X3|X1 >0,X2 >8a,—OO<X3<OO:|.
Since there exists a non-truncated partition, the result in (5.36) immediately follows from
equation (5.23), where W = (X, X5)". O

T

Observation 5.1. [t is noteworthy that, the ith element of vectors, say s; = e, s, is equal

to E[Y; | S > «s], representing the contribution to the total risk due to the ith risk.

Observation 5.2. Since S £ Wy | (W1 > 0), it follows that the last element of the vector
E; is equivalent to E|S | S > s, = E[Wy | W1 > 0, W5 > s5,].

5.6.2 Application of MTCE using a ST distribution

Suppose that a set of risks Y are distributed as Y ~ ST,(p, 3, A, v). Let y
represents a realization of Y. Based on y, the set of parameters 8 = (u, 3, A, V)T can be

estimated through maximum likelihood estimation. It follows that
MTCEy(ya) =E[Xy | X; > 0,X5 > yal, (5.37)

where X = (X1, X,)" ~ t14,(€,Q,v) with

0 1 AT
52(#) and QZ(A 2). (5.38)

Additionally, using simple algebraic manipulation, it follows from (5.7) that

Ag

P P P
S~ 8Ty | g =Y ps, 0% = Oijy Ag = ———, V), (5.39)

1=
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p
with Ag = Z A,;. Besides, the TCE of the sum is given by TCEs(s,) = E[W; | W; >
i=1

0, Wy > 54|, W = (W, W5)" ~ t5(€s, Qg, V), where

1 A
Es = 0 , and Qg = 25 .
Hs Ag og

We have from Proposition 5.3 that

E[Y; | S > o), =€ [n+ (A X1)Q5(Es —&9)],
= u; + (951 (AZO'?; + UiSAS) — (TOES(SQ) — ,us) (AZAS + O'is), (540)

p

with & = E[W; | W > 0, W, > s,] and 0,5 = Z 0;j. Besides, summing (5.40) over
=1

i =1,...,p, and after some straightforward algebra we obtain that TCEg(s,) = E[S |

S > s,] can be written as

p p
TCES(SOC) = us + 551 Z {Aldgv + UiSAS} — (TCES(SQ) — ,ug) Z {AlAS + UiS}
=1

i=1 i=

QASUgv

= ——&q1- 5.41
HS T T ALy 2% (5:41)

Finally, plugging (5.41) in (5.40), we obtain a explicit expression for E[Y; | S > «as] that

does not depends on T'C'Eg(s,), that is

2A g0
E[Y; | S > aS] == p; + (Azgg + UiSAS - 895 5 (AZAS + OiS)) 851. (542)

1+ A%+ 0%

5.7 Additional results related to interval censored mechanism

Under interval censoring mechanism the implementation of inferences depends
on the computation of certain marginal and conditional expectations (Matos et al., 2013).
For instance, for X = (X|,Xy)" ~ ¢1,,(£,Q,v), as in (5.13), with ¥ =1, A = X and
7 =0, it holds that fx, (0| X =Y) = ¢(ATE*(Y — p)) . Then,

fx,(0] X, =Y) | P(ATET2(Y — )
£ [Q(Y)Mxl = 01X, = Y)] = F [ M sarsry - u))] ’

(5.43)

where g(+) is a measurable function. The expectation in the right side of the expression (5.43)
is highly used to perform inferences under SN censored models from a likelihood-based
perspective, such as the E-Step of the EM-algorithm (Dempster et al., 1977).

Next, we derive general expressions that are involved in interval censored mod-
eling, specifically, in the E-step of the EM algorithm. These expressions arise, when we
consider the responses Y;, ¢ = 1,...,n, to be i.i.d. realizations from a selection elliptical
distribution or any of its particular cases. For instance, a SUT, EST or ST distribution or

any normal limiting case as the SUN, ESN or SN distribution as the example in (5.43).
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Lemma 5.1. Let X = (X[, X])" ~ EC,,,(&,Q,h9P)) and Y ~ TSLCT-EC, ,(£,Q,
h9*P) ' (a, b)) with truncation subset C = C(0). For any measurable function g(y) :
R? — R, we have that

fXI(O | X2 = Y) :| _ ]P)(a

b) E[g(W)]
E [g(Y)P(X1 ~0[X,=Y)| Pla

b) P(X; > 0)

W,
v (0. (G44)

< <
< <

where Xy ~ EC, (&1, 1, h?), Yy ~ SLCT EC,,(&,Q, 0P C(0)), Wy ~ EC,(&; —
921911 51, QQQ — leﬂ 921, h(p ) and W = Wo | (a < WQ b)

Proof. Using basic probability theory, we have

fXI(O | X2 = Y)
-k ["C’(Y)]P(X1 =0 X, = Y)]

_ 1 b fx. (0] Xz =y)

- Fa TV b f 1) i g 1k, Y

_ 1 ° fx,(0]Xo=y) PXi>0|Xs=y)fx(y)

- Pla<Yy<b) J g(y)IP’(X1 >0|X,=y) P(X; > 0) b
_ 1 P fx, (0] X2 =y)fx,(y)

~ Pa<Y,<b) L 9y) P(X, > 0) dy

%(0) j ) fraly | X1 = 0)dy,

where Wy £ X,|(X; = 0) and W £ W, | (a < W < b). O

Lemma 5.2. Consider X, Y and g as in Lemma 5.1. Now, consider Y to be partitioned
as Y = (Y],Y,)" of dimensions p, and py (p1 + p2 = p). For a given random variable
U, let U* stands for U* £ U | Y. It follows that

fxl (0 | X2 ]P)(aZ
E [g(YQ)IP(X1>O|X2 ‘Y]

fxx(0)  (5.45)
with X1, Yo, and Wy as defined in Lemma 5.1, and Wy £ W | (a, < Wi < by).

Proof. Consider X, partitioned as X, = (X3,, X4,)" such that dim(Xs;) = dim(Y;) and
dim(Xg2) = dim(Y2). Since fv,(y2[Y1 =y1) = fv(y)/fv,(y1), it follows (in a similar

manner that the proof of Lemma 5.1) that

fX1 (O | X2 —
—E |g(Y Y
[9( 2)IP>(X1>O|X2 1
B 1 J‘bQ g(y2) fX1 (() | Xy = y) P(Xl >0 | Xy = y) Ix, (Y) dy
Plag < Y§ < by) Ja, P(X1>0[X; =y)P(Xs > 0| X1 = y1) fxaa(y1) 77
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g(yQ) dy27

as P(X: > 0| Xy = y1) fxo (y1)
fx,(0) JbQ fx,(y | X1 =0)

<by) P(Xy > 0| X9 =y1) Jay 9(v2) Jxo (Y1)

fb2 fX1 (0 | Xy = Y) fX2 (Y)
< by)

=

&

N
|

O

dy27

=

&

N
=

O*

1 fX1 (O|X =Yy ) b2
= Bl S Y3 S5 POK, > 0] Xon = y1) Jy Y002 [ Xt =31 X1 = 0y,
=< 0= - az
_ I[D(a2 < Wf)k < b2) E[Q(WQ)] f *(0)
P(ay < Y < by) P(X# > 0)" X7
where Wi £ Xo0[(Xo, = y1, X1 = 0) and Wy £ W | (ay < Wi < by). O

In the next corollaries we particularize the aforementioned lemmas to the

truncated SUT, EST, SUN and ESN distributions.

Corollary 5.4 (Lemma 5.1 for a SUT). Let Y ~ TSUT, ,(pn,. X, A, 7,0, ¥, (a,b)).

For any measurable function g(y) : R — R, we have that

tq((T + ATSTV2(Y — ) v(Y), T —|—p) _ Pla< W,
E [Q(Y)Tq((f—l—ATE—l/?(Y—p,))y(Y),\Il;V—i—p)] <

(5.46)
where n = t,(T; 0 + ATA V) /T (T;% + ATA,v), Yo ~ SUT, ,(u, 2, A, 7,0, ¥), Wy ~
ty(v,w,T,v + q) and W £ Wy | (a < Wy < b). When 7 = 0, we have that n =
2t,(T; ¥ + ATA ) and Wy ~ t,(u, vT/(v + q),v + q) .

In particular for g =1, Y ~ TEST,(p, 2, A\, 7,v; (a, b)), and

B((r+ ATSTE(Y — ) v(Y v + p) |- HosWosh
Ti((t + ATE12(Y — ) v(Y); v + p) b)

E [Q(Y)

withn = t1(1; 1+ AT\, v)/T1(F;v), Yo ~ EST,(p, , X, 7,v), Wy ~ t,(v, v +7)T/(v+
),v+1), and W £ W, | (a < Wy < b). Similarly, when 7 = 0, we have that
n=2t(0;1+X"X\v) and Wy ~ t,(u,vT/(v + 1), v + 1).

<
_ ~SInE[g(W), (5.47)

]P’(a < YO

Corollary 5.5 (Lemma 5.1 for a SUN). Takingv — o0, Y ~ TSUN, ,(p, 2, A, 7, ¥,
(a,b)) and hence from Lemma 5.1 it follows that

0o (T + ATET2(Y — ), U) ] _PlasWw,

E Q(Y)q)q(T_i_ATE*l/?(Y—IJf)r‘II)

Elg(W)]n, (5.48)

where n = ¢, (7;0, ¥ + ATA)/®,(1;0, ¥ + ATA), Yo ~ SUN, (11, 2, A, 7, %), W ~
N,(v,T), and W £ Wy | (a < Wy < b) . When T = 0, we have that = 2 ¢,(0; ¥ + ATA)
and Wy ~ N,(p,T).

In particular for g =1, Y ~ TESN,(p, 3, X; (a, b)), and
o(r + ATSVAY - ) ] P(a < W,

< b)
O(r+ATEV2(Y —p))| Pla<Y,

b)

E [s(v) SElEWL (5.49)
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with n = ¢(1;1 + ATA)/®(7), Yo ~ ESN, (1, 2, X, 7), Wy ~ Np(v,T), and W £ W, |
(a < Wq < b). Similarly, when 7 = 0, we have that n = A/2/7(1 + AXTA) and W ~
Np(l,l,,]_—‘)

5.8 Multivariate ST censored responses

Let Y; = (Yi1,...,Y;,)" be a p x 1 response vector for the ith sample unit,

for i € {1,...,n}, and consider the set of random samples (independent and identically
distributed):

Yi,..., Y, ~ST,(u, Z, A\, v), (5.50)
with location vector g = (1, ...,p,) , dispersion matrix ¥ = ¥(a) depending on an

unknown and reduced parameter vector o, skewness parameter XA and degrees of freedom
v. However, the response vector Y; may not be fully observed due to censoring, so we
define (V;,C;) the observed data for the ith sample, where V;= (Vj;,...,V;,)" with
elements being either an uncensored observation (V;; = Vp;) or the interval censoring level

(Vik. € [Vaik, Vair]), and C; = (Ci,y - . -, Cip)T is the vector of censoring indicators, satisfying

1 if Vig, < Vi < Vi,
C@'k:{ DUnk Stk s Bk (5.51)

0 if Vi, = Wi,

for all i € {1,...,n} and k € {1,...,p}, i.e., Cy = 1 if Yy is located within a specific
interval. In this case, (5.50) along with (5.51) defines the multivariate skew-¢ interval
censored model (hereafter, the ST-C model). For instance, left censoring structure causes
truncation from the lower limit of the support of the distribution, since we only know that
the true observation Yj; is greater than or equal to the observed quantity V;;. Moreover,

missing observations can be handled by considering Vi;, = —oo and Vo, = +00.

5.8.1 The likelihood function

Let y = (y{,...,¥,), where y; = (yi1,...,%;p) is a realization of Y; ~
ST,(w, X, A, v). In order to obtain the likelihood function of the ST-C model, first we
treat, separately, the observed and censored components of y;, i.e., y; = (yfT, yfT)T, where
Cir = 0 for all elements in the p{-dimensional vector y7, and Cj; = 1 for all elements in
the pf-dimensional vector y¢. On according to that, we write V; = vec(VY, V¢), where
V¢ = (Vy,,Vs5,) with
300 330¢

= (T, s’ Y =3(a)=
l’l‘ (l’l’z 7“‘1 ) ’ (a) 2@;0 Ezcc

), and i = (T, 7).

See that, we must rely on the marginal and conditional distribution of a ST variate. Next,
we propose a general result for the EST variate in a similar manner than Arellano-Valle &
Genton (2010).
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Proposition 5.4 (Marginal and conditional distribution of the EST). LetY ~ EST,(p, X,
X\, 7,v) and Y is partitioned as Y = (Y], Y,)" of dimensions p; and py (p1 +p2 = p),
respectively. Let

E11 212
3= com= (), and @ =(pl,p;)"
E21 222

be the corresponding partitions of £, p and ¢ = 72X, Then,

Yl ~ ESTPI (l’l’lu 2117 5\17 71, V)?
Y,|Y, =y1 ~ EST,,(p21, z~322.17 A21,T21,V + 1)

with 5\1 = 0122%2951;7'1 = C12T, A1 = 2%?1802; T21 = V(Yl)(T + 951T(}’1 - Ml)) where
cra = (14 @3 Bo0102) V2, @1 = @1 + 21181002, Bao1 = 01/ (y1), Baoq = Xag —
Yo X B, per = po + S X (y1 — 1) and VA (y1) = (v +p1)/(v + 5(y1)).

Proof. See Appendix section C. n

Then, from Proposition 5.4, we have that Y7 ~ ST, (p7, 377, A% ) and Y¢ |
(YO = ¥9) ~ BST,e(u®, 50, A, 72, 1), with A? = cgczf"m 50, ACY = meoV2e

360 = 30 /1% (y9) and vi® = v+ p;, where
p = pi+ BBy - ), B =X -X(E) IS, @F = of + 377 TN,
= (1+ @ E0f) ™2 and 77 = w(y?) &7 (y7 — mf)- (5.52)

Let V =vec(Vy,...,V,) and C = vec(Cy,...,C,) denote the observed data.
Therefore, the log-likelihood function of @ = (', ., A")", where ay, denotes a minimal
set of parameters such that () is well defined (e.g. the upper triangular elements of
in the unstructured case), for the observed data (V,C) is

(0 V,C) Zlan, (5.53)

where L; represents the likelihood function of 8 for the ith sample, given by

Li=Li(0 |V, Ci) = f(Vi|Ci,0) = f(vi; <y; < vy | ¥],0)f(y] | 0)
:E (V117V217u’z 72660 )‘CO 70 l/+pz)ST (yw/’l’wzoo >‘O )

where L, (e, B;&,2, X, 7,v) denotes the integral

B
Lo(c, B:6, QA 7 1) :J EST,(w: €, QA 7, v)dw, (5.54)
that is, L,.(a, B;&, QN 7,v) = Pla < W < B) for W ~ EST.(£,Q,\,7,v). For
the ST case (7 = 0), we simply omit the 7 parameter, that is, £,.(c,3;&,Q2, A, v) =
£T’(a7/8; 57 Q? A? 07 l/)'
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5.8.2 Parameter estimation via the EM algorithm

In this subsection, we describe how to carry out ML estimation for the ST-C
model. The EM algorithm, originally proposed by Dempster et al. (1977), is a very popular
iterative optimization strategy commonly used to obtain ML estimates for incomplete-data
problems. This algorithm has many attractive features such as the numerical stability, the
simplicity of implementation and quite reasonable memory requirements (McLachlan &
Krishnan, 2008).

From the stochastic representation of the multivariate ST distribution, it can

be hierarchical represented as,

Yi | (Ui = ui, T; = t;) ~ Ny(p + Aty u; 'T) (5.55)
U; ~ Gamma(v/2,v/2) (5.56)
T, ~ HT(v), (5.57)

with HT(v) referring to a Half standard Student’s ¢ distribution with degrees of freedom v,
with U; and T; being mutually independent, and A and I' as in proposition 5.3. The com-

plete data log-likelihood function of an equivalent set of parameters 8 = (u', A", o), )",

where a;. = vech(T"), is given by £.(0) = Z l;c(0), where the individual complete data
i=1

log-likelihood is

1 .

with ¢ being a constant that does not depend on 6. Subsequently, the EM algorithm for
the ST-C model can be summarized as follows:

E-step: Given the current estimate %) = (a™®, AP, a® p™) at the kth step
of the algorithm, the E-step provides the conditional expectation of the complete data
log-likelihood function

n

Q6| %) = E[EC(O) v, cﬁ(kz)] L)

i—1
where

~ 1 1 — (k) —~, (k) ~ —
Qi(0 | W) — B In || - St [{uyf + 0P pp w2 AAT— 20y, P — 2uty§k)AT

vout,VapT i,
k) r OIS r 9 (k) —
with uy; - EU;Tle[UZYz |VZ7CZa0 ]a Utz - EUszYz[UZ,I; |V17C170 ] (fOI‘ r =
(1,2}, with Y! = Y; and Y2 = Y,Y)), uly.” = Euoy.[UTY; | Vi, Cs, 8] and
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M-step: Conditionally maximizing Q(6 | ok Z Q:(0 | ok ) with respect

to each entry of 8, we update the estimate *) = (™, AP, a(r’“), ™) by

~ 1 < o~ - N
aven = 2% {uyiw — ™ A(k)}) (5.58)
i3
n (k) -1,
A=) _ {Zutg } > {uty - a0 (5.59)
i=1 i=1
f(k:+1) _ l Z {Jy\f(k) B 2@i(k)ﬁ(k+1)T _ 2@(k)3(k+1)T i 2@(k)3(k+l)ﬁ(k+lﬁ
n 4
n @(k)A(k-i-l)A(k-&-l) h M(k+1)u(k+1)T} (5.60)

Then we update the parameger v by maximizing the marginal log-likelihood function for
y, that is, 7**" = arg maleog f(V; | C;, 0%, 0,
|
Algorithm is iterated until a suitable convergence rule is satisfied. In the later

analysis, the algorithm stops when the relative distance between two successive evaluations
of the log-likelihood defined in (5.53) is less than a tolerance, i.c., [¢(8**) | V, C)/E( )]
V,C) — 1| < ¢, for example, € = 10 °. Once converged, we can recover Aand & using the
expressions R R

S12A
(1-ATS-1A)2
It is important to stress that, from equations (5.58) to (5.60), the E-step reduces to the

~ —_ /\(k) — (k) —(k _ )
computation of ui(k), uyi( ) uy? uti( ) ut?  and utyg ). Details of these expectations

f]zf‘—i—AAT and 3\2

can be found in Appendix C.

5.8.3 Regression setting

Suppose that we have observations on n independent individuals, Y1,...,Y,,
where Y; ~ ST,(pi, X, X, v), i = 1,...,n. Associated with individual ¢ we assume a known
p X q covariate matrix X;, which we use to specify the linear predictor u; = X;3, where 3
is a g-dimensional vector of unknown regression coefficients. In this case, the parameter
vector is @ = (B",a’,A")". The E-Step of the EM algorithm updates 8 as follows

By = ZXTX 7 IXT (@™ - at P a®), (5.61)
i=1

and the necessary quantities of the E and M-steps found in Subsection 5.8.2 remain the

same once we plug-in ¥ by ﬁE’“) = X,8%.
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5.9 Conclusions

In this paper, we proposed expressions to compute product moment of truncated
multivariate distributions belonging to the selection elliptical family, showing in a clever
way that their moments can be computed using an unique moment for their respective
elliptical symmetric case. In contrast with other works, we avoid cumbersome expressions,
having neat formulas for high-order truncated moments. To the best of our knowledge,
this is the first proposal discussing the conditions of existence of the truncated moments
for members of the selection elliptical family. Also, we propose optimized methods able
to deal with extreme setting of the parameters, partitions with almost zero volume or
no truncation. In order to show the applicability of this work, we have developed an
application of truncated ST moments in risk measurement in Finance context as well as
a ST censored model, a robust model capable to deal with missing data, outliers and

skewness.
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6 Concluding remarks

In this last chapter, we present the scientific production resulting from this
thesis: original articles and software. In addition to the articles of our authorship, we present
articles by other authors that have been based on the results of this thesis. A summary of
the main functions of the proposed MomTrunc package are presented in subsection 6.1.2.
Finally, we close the chapter with two sections concluding the results of this thesis, as well

as sketching some future research.

6.1 Technical production

6.1.1 Submitted papers

As result of the present work, we have written four articles with three of them
being already submitted to high impact journals. Resulting works presented in chapters

2-5 are respectively:

1. Galarza, C., Lachos V. Lin, T.-1., & Wang, W.-L. (2020+) “Moments of doubly
truncated multivariate student-t¢ distribution: A recurrence approach”. Submitted to

Statistica Sinica.

2. Galarza, C., Matos, L. Dey, D. & Lachos V. (2019+) “On moments of folded and
doubly truncated multivariate extended skew-normal distributions”. Submitted to

Journal of Computational and Graphical Statistics.

3. Galarza, C., Matos, L. & Lachos, V. (2020+) “Likelihood-based inference for

multivariate skew-normal censored regression models”. Submitted to METRON.

4. Galarza, C., Matos, L. & Lachos, V. (2020+) “Moments of the doubly truncated
selection elliptical distributions with emphasis on the unified multivariate skew-t
distribution”. To be submitted.

5. Galarza, C., Matos, L. & Lachos, V. (2020+) “Likelihood-based inference for mul-
tivariate skew-t censored regression models with missing data”. Under construction.

Other works based on the results in this document are:

6. Mattos, T.B., Matos, L. & Lachos, V. (2019) “A semiparametric mixed-effects
model for censored longitudinal data”. Technical report, RT-UConn 15, University

of Connecticut.
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7.  De Alencar, F., Galarza, C., Matos, L. & Lachos, V. (2019) “Finite mixture modeling
of censored and missing data using the multivariate skew-normal distribution”.

Technical report, RT-UConn 31, University of Connecticut.

6.1.2 R package implementation

MomTrunc: Moments of Folded and Doubly Truncated Multivariate Distributions

It computes arbitrary products moments (mean vector and variance-covariance
matrix), for some doubly truncated (and folded) multivariate distributions. These distribu-
tions belong to the family of selection elliptical distributions, which includes well known
skewed distributions as the unified skew-t distribution (SUT) and its particular cases as
the extended skew-t (EST), skew-t (ST) and the symmetric student-t (MVT) distribution.
Analogous normal cases unified skew-normal (SUN), extended skew-normal (ESN), skew-
normal (SN), and symmetric normal (MVN) are also included. Density, probabilities and

random deviates are also offered for these members.

Probabilities can be computed using the functions pmvSN() and pmvESN() for
the normal cases SN and ESN and, pmvST() and pmvEST() for the t cases ST and EST
respectively, which offer the option to return the logarithm in base 2 of the probability,
useful when the true probability is too small for the machine precision. These functions
above use methods in Genz & Bretz (2009) through the mvtnorm package (linked direclty
to our C++ functions) and Cao et al. (2019b) through the package tlrmvnmvt. For the
double truncated Student-t cases SUT, EST, ST and T, decimal degrees of freedom are
supported. Computation of arbitrary moments are based in this thesis. Reference for the
family of selection-elliptical distributions in this package can be found in Arellano-Valle &
Genton (2005).

Next, we show part of the MomTrunc R manual (also available on CRAN) for

the three most important functions.

meanvarTMD Mean and variance for doubly truncated multivariate dis-
tributions

Description

It computes the mean vector and variance-covariance matrix for some doubly truncated
skewelliptical distributions. It supports the p-variate Normal, Skew-normal (SN), Extended
Skew-normal (ESN) and Unified Skew-normal (SUN) as well as the Student’s-t, Skew-t
(ST), Extended Skew-t (EST) and Unified Skew-t (SUT) distribution.

Usage
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meanvarTMD (lower = rep(-Inf,length(mu)) ,upper = rep(Inf,length(mu)) ,mu,
Sigma,lambda = NULL,tau = NULL,Gamma = NULL,nu = NULL,dist)

Arguments

lower the vector of lower limits of length p
upper the vector of upper limits of length p
mu a numeric vector of length p representing the location parameter

Sigma a numeric positive definite matrix with dimension p x p representing the
scale parameter

lambda  a numeric matrix of dimension p x ¢ representing the skewness/shape matrix
parameter for the SUN and SUT distribution. For the ESN and EST distribu-
tions (¢ = 1), lambda is a numeric vector of dimension p (see examples at the
end of this help). If all(lambda == 0), the SUN/ESN/SN (SUT/EST/ST)

reduces to a normal () symmetric distribution.

tau a numeric vector of length ¢ representing the extension parameter for the
SUN and SUT distribution. For the ESN and EST distributions, tau is a
positive scalar (¢ = 1). Furthermore, if tau == 0, the ESN (EST) reduces
to a SN (ST) distribution.

Gamma a correlation matrix with dimension ¢ x ¢. It must be provided only for the
SUN and SUT cases. For particular cases SN, ESN, ST and EST, we have
that Gamma ==

nu It represents the degrees of freedom for the Student’s t-distribution

log2 a boolean variable, indicating if the log2 result should be returned. This is

useful when the true probability is too small for the machine precision.

Details

Univariate case is also considered, where Sigma will be the variance o. Normal case code
is an R adaptation of the Matlab available function dtmvnmom.m from Kan & Robotti
(2017) and it is used for p<=3. For higher dimensions we use the extension of the algorithm
in Vaida & Liu (2009) proposed in Chapter 3.

Value

It returns a list with three elements:

mean the mean vector of length p
EYY the second moment matrix of dimensions p x p

varcov  the variance-covariance matrix of dimensions p x p

Warning
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For the t cases, the algorithm supports degrees of freedom nu <= 2, however, it may take

more time than usual.

Note

If nu >= 300, Normal case is considered.

Examples

a c(-0.8,-0.7,-0.6)
b c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)

Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),

nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = ¢(-2,0,1)

# Theoretical value

valuel = meanvarTMD(a,b,mu,Sigma,dist="normal")

#MC estimates

MC11 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal") #by defalut n

MC12 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal",n = 1075) #more precision

# Now works for for any nu>0

value2 = meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 0.87)

value3 = meanvarTMD(a,b,mu,Sigma,,dist = "SN")

value4 = meanvarTMD(a,b,mu,Sigma,lambda,nu = 4,dist = "ST")

valueb = meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

value6 = meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,nu = 4,dist = "EST")

#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions
Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q
Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q

tau = c(-1,2) #A vector of extension parameters of dim q

value7 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,dist = "SUN")

value8

#The ESN and EST as particular cases of the SUN and SUT for q

Lambda = matrix(c(-2,0,1),3,1)

meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,nu = 4,dist = "SUT")

Il
Il
'_L
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Gamma = 1
tau = 1
value9 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,dist = "SUN")
valuel0 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,nu = 4,dist = "SUT")
round (valueb$varcov,2) == round(value9$varcov,2)
round (value6$varcov,2) == round(valuelO$varcov,?2)
momentsTMD Moments for doubly truncated multivariate distributions
Description

It computes kappa-th order moments for for some doubly truncated skew-elliptical distri-
butions. It supports the p-variate Normal, Skew-normal (SN) and Extended Skew-normal
(ESN), as well as the Student’s ¢, Skew-t (ST) and the Extended Skew-t (EST) distribution.

Usage

momentsTMD (kappa,lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),
mu,Sigma,lambda = NULL,tau = NULL,nu = NULL,dist)

Arguments
Details

Univariate case is also considered, where Sigma will be the variance o.

Value

A data frame containing p + 1 columns. The p first containing the set of combinations of
exponents summing up to sum(kappa) and the last column containing the the expected
value. Normal cases (ESN, SN and normal) return prod(kappa)+1 moments while the

Student’s ¢ cases return all moments of order up to kappa. See example section.

Note
If nu >= 300, the Normal case is considered.
Examples

c(-0.8,-0.7,-0.6)
c(0.5,0.6,0.7)

[\
I
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kappa moments vector of length p. All its elements must be integers greater or equal
to 0. For the Student’s-t case, kappa can be a scalar representing the order
of the moment.

lower the vector of lower limits of length p
upper the vector of upper limits of length p
mu a numeric vector of length p representing the location parameter

Sigma a numeric positive definite matrix with dimension p x p representing the
scale parameter

lambda  a numeric vector of length p representing the skewness parameter for ST
and EST cases. If lambda == 0, the EST/ST reduces to a ¢ (symmetric)
distribution.

tau It represents the extension parameter for the EST distribution. If tau == 0,
the EST reduces to a ST distribution.

nu It represents the degrees of freedom for the Student’s ¢-distribution.

dist represents the truncated distribution to be used. The values are normal,
SN and ESN for the doubly truncated Normal, Skew-normal and Extended
Skew-normal distributions and, t, ST and EST for the for the doubly truncated
Student-t, Skew-t and Extended Skew-t distributions.

mu = c(0.1,0.2,0.3)
Sigma = matrix(data = ¢(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)

kp = c(2,0,1)

lambda = c(-2,0,1)

valuel = momentsTMD(kp,a,b,mu,Sigma,dist="normal")

value2 = momentsTMD(kp,a,b,mu,Sigma,dist = "t",nu = 7)

value3 = momentsTMD(kp,a,b,mu,Sigma,lambda,dist = "SN")

value4 = momentsTMD(kp,a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

#T cases with kappa scalar (all moments up to 3)

valueb = momentsTMD(3,a,b,mu,Sigma,nu = 7,dist = "t")

value6 = momentsTMD(3,a,b,mu,Sigma,lambda,nu = 7,dist = "ST")

value7 = momentsTMD(3,a,b,mu,Sigma,lambda,tau = 1,nu = 7,dist = "EST")
dprmvEST Multivariate Extended-Skew ¢ Density, Probablilities and

Random Deviates Generator
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Description

These functions provide the density function, probabilities and a random number generator
for the multivariate extended-skew ¢ (EST) distribution with mean vector mu, scale matrix

Sigma, skewness parameter lambda, extension parameter tau and degrees of freedom nu.

Usage

dmvEST (x ,mu=rep(0,length(lambda)) ,Sigma=diag(length(lambda)) ,lambda,tau,nu)
pmvEST (lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),

mu = rep(0,length(lambda)),Sigma,lambda,tau,nu,log? = FALSE)

rmvEST (n,mu=rep(0,length(lambda)) ,Sigma=diag(length(lambda)) ,lambda,tau,nu)

Arguments
X vector or matrix of quantiles. If x is a matrix, each row is taken to be a
quantile.
n number of observations.
lower the vector of lower limits of length p

upper the vector of upper limits of length p
mu a numeric vector of length p representing the location parameter

Sigma a numeric positive definite matrix with dimension p x p representing the
scale parameter

lambda  a numeric vector of length p representing the skewness parameter for ST
and EST cases. If lambda == 0, the EST/ST reduces to a t (symmetric)
distribution.

tau It represents the extension parameter for the EST distribution. If tau == 0,
the EST reduces to a ST distribution.

nu It represents the degrees of freedom for the Student’s ¢ distribution

log2 a boolean variable, indicating if the log2 result should be returned. This is
useful when the true probability is too small for the machine precision.

Examples

#Univariate case
dmvEST (x
rmvEST (n
#Multivariate case

mu = c(0.1,0.2,0.3,0.4)

Sigma = matrix(c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,

-1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)
100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)
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1) ,nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)

tau = 2

#0ne observation

dmvEST(x = c(-2,-1,0,1) ,mu,Sigma,lambda,tau,nu=4)
rmvEST(n = 100,mu,Sigma,lambda,tau,nu=4)

#Many observations as matrix

x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvEST(x = x,mu,Sigma,lambda,tau,nu=4)

lower = rep(-Inf,4)

upper c(-1,0,2,5)

pmvEST (lower ,upper,mu,Sigma,lambda,tau,nu=4)

Other functions: MC estimates for the first two moments of a truncated
multivariate distribution (TMD) can be reach through the function MCmeanvarTMD().
Functions to compute the mean and variance-covariance matrix, as well as product
moments for folded multivariate distributions (FMDs) are also available through the
analogous meanvarFMD () and momentsFMD (), which arguments are the same for functions
meanvarFMD () and momentsFMD(), except for arguments lower and upper that are not
longer neeeded. Finally, A function cdfFMD() is provided to compute the cdf of several
FMDs.

Some R MomTrunc package output

# All moments up to 3 for an 5-variate folded Student-t distribution
> momentsFMD(3,mu,S,nu)

(k1] [k2] [k3] [k4] [k5] Moment

[1,] 0 0 0 0 0 1.0000
[2,] 0 0 0 0 1 0.9598
[3,] 0 0 0 0 2 1.5000
[4,] 0 0 0 0 3 3.1311
[5,] 0 0 0 1 0 0.9260
(6,1 0 0 0 1 1 1.1925
[7,] 0 0 0 1 2 2.3439
[8,] 0 0 0 2 0 1.4100
[9,] 0 0 0 2 1 2.2836
[10,] 0 0 0 3 0 2.8902
[11,] 0 0 1 0 0 0.8994
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[12,] 0 0 1 0 1 0.9001
[13,] 0 0 1 0 2 1.4851
[14,] 0 0 1 1 0 0.8878
[15,] 0 0 1 1 1 1.1914
[16,] 0 0 1 2 0 1.4502
[17,] 0 0 2 0 0 1.3400
[18,] 0 0 2 0 1 1.4142
[19,] 0 0 2 1 0 1.4188
[20,] 0 0 3 0 0 2.7055
[21,] 0 1 0 0 0 0.8803
[22,] 0 1 0 0 1 0.9144
[23,] 0 1 0 0 2 1.5559
[24,] 0 1 0 1 0 0.8585
[25,] 0 1 0 1 1 1.1785
[26,] 0 1 0 2 0 1.3919
[27,] 0 1 1 0 0 0.8831
[28,] 0 1 1 0 1 0.9604
[29,] 0 1 1 1 0 0.9207
[30,] 0 1 2 0 0 1.4725
[31,] 0 2 0 0 0 1.2900
[32,] 0 2 0 0 1 1.4584
[33,] 0 2 0 1 0 1.3388
[34,] 0 2 1 0 0 1.4483
[35,] 0 3 0 0 0 2.5749
[36,] 1 0 0 0 0 0.8686
[37,] 1 0 0 0 1 0.9191
[38,] 1 0 0 0 2 1.5934
[39,] 1 0 0 1 0 0.9570
[40,] 1 0 0 1 1 1.3782
[41,] 1 0 0 2 0 1.7208
[42,] 1 0 1 0 0 0.8392
[43,] 1 0 1 0 1 0.9340
[44,] 1 0 1 1 0 0.9739
[45,] 1 0 2 0 0 1.3567
[46,] 1 1 0 0 0 0.8224
[47,] 1 1 0 0 1 0.9552
[48,] 1 1 0 1 0 0.9576
[49,] 1 1 1 0 0 0.8830
[50,] 1 2 0 0 0 1.3073
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[51,] 2 0 0 0 0 1.2600
[52,] 2 0 0 0 1 1.4780
[53,] 2 0 0 1 0 1.6387
[54,] 2 0 1 0 0 1.3205
[55,] 2 1 0 0 0 1.2940
[56,] 3 0 0 0 0 2.4966

6.2 Conclusions

In this thesis, we proposed a methodology to calculate the truncated moments
of several elliptical distributions and its skewed extended versions belonging to the family
of SE distributions. High order moments are achieved using a recurrence approach, plus
a 1-1 relation which let us write in a neat manner, any product moment of a member
of the SE class as a moment of its respective symmetric case. Expressions for the first
two moments, conditions of existence and useful expectations in the context of censored
interval models, are presented in general. Various estimation and regression applications in
censored models are proposed in order to show the usefulness of our proposal, considering
Student’s £, SN and ST deviates as well as an application of ST truncated moments in
Finance. All proposed methodology has been implemented and is available in the MomTrunc
package of the R software, a highly optimized package that provides truncated moments

and other functions of interest for various symmetrical and asymmetric distributions.

6.3 Future research

A natural extension for this work is to calculate the moments other members
of the elliptical and consequently to the SE class of distributions, as their probabilities are
implemented efficiently. Multimodality can be easily handled by considering mixtures of
censored regression models, extending works as Lachos et al. (2017) and De Alencar et al.
(2019a) to the regression framework with interval-censored responses. Mixed effects models
with skewed heavy-tailed random effects or error terms are also a natural extension. For
all models above is also possible to include a semi-parametric structure for modeling the
any nonlinear behavior as in Mattos et al. (2019), or using a spatial covariance structure
for spatially correlated data. Experimental studies include covariates that often comes
with substantial measurement errors (Liu & Wu, 2007). How to incorporate measurement
error in covariates within our robust framework can also be part of future research. An
in-depth investigation of such extensions is beyond the scope of the present work, but

certainly an interesting topic for future research.
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APPENDIX A: Appendix for chapter 2

Appendix A.1: Details for the expectations in EM algorithm

To compute the required expected values of all latent data, we find that most
of them can be written in terms of E(U; | Y;), and thereby we write @; = E{E(U; |
Y;) | Vi, Ci,0M}, where E(U; | Y;) = (v + p)/(v + 6) with 6 = (Y; — ) TS Y, — p).

Subsequently, we discuss the closed-form expressions of conditional expectations as follows:
1. If the ith subject has only non-censored components, then

—
uy?  =aMyyl, wy? =iy, and 4

where 0®)(y;) = (i — g®)T(Z®) M (y; — a®).

2. If the ith subject has only censored components, from Proposition 3 with r = 1, we

have

— (k) . R .

uyz - E[U'Y'YT | Vi, C;, e(k)] = (k) (V')W2 (k);

ay? = E[UY, |V, C,, 00 = k)(Vz)AC(k)

i = E[U | V..C,8W] = gW(V,),
where k k
FR (V) = L,(Vii, Voi; gpt® BILCIyE 2)’
Ly(Vii, Vi i, 58), 1)

with W; ~ Ttp(ﬁ( ), sk ),V + 2 (Vli,VZi)) and $*® = _Y_$® T compute

v+ 2
E[W;] and E[W;W/] we use the results given in Subsection 3.1.

3. If the ith subject has both censored and uncensored components, then (Y; | V;, C;),
(Y: | Vi, Ci,y7), and (Y{ | V;, Cy,y?) are equivalent processes. We obtain

00T ~(k)  A(k) onclk)T
— (k) o A yoys ' U YW
uy?  =EU Y Y] | y), Vi, C;,60%) = ( A weyet g ’

" = E(UY, | y?, Vi, Ci, 00) = vee(y?al™, aMw5™),

Py Ly (V5 Vi ™ 87 b4 pe 1 92)

~(k) o A(k) —
u;’ =EU; |y, V;, Ci, 0) = 5 0 geeo
v+ 00 (y?) Lpf(v(fz‘av%ligo(k)as‘ ' (k)aV +17)

)

where

Sco(k v+ g(k) }’f wcc.o(k ~o(k <00(k)y\— o ~o(k
S = {MJr(po) S 0W(ye) = (vo — m )T v - ),
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i " and W are
defined in (A.1) with W; ~ Tt (ﬁfo(k), Sk L Py + 2;(VY,, Vs,)). Similarly, to

(2 2

compute E[W;] and E[W,;W/], we use the results given in Subsection 3.1.

Sheeolk) g defined as in equation (4.22) in the nunn,docu1nent,6§g A?dm

Appendix A.2: Some illustrations using the R MomTrunc package
> momentsTMD (kappa=c(2,2,2),lower,upper,mu,Sigma,nu,dist = "t")

Call:
momentsTMD (kappa = c(2, 2, 2), lower, upper, mu,Sigma, dist = "t", nu)

k1 k2 k3 F (k) E[k]

1 2 2 2 0.0002 0.0017

2 1 2 2 -0.0003 -0.0021

3 0 2 2 0.0021 0.0172

4 0 1 2 -0.0002 -0.0019

5 0 0 2 0.0161 0.1346

6 0 0 1 0.0089 0.0743

7 0 0 0 0.1194 1.0000

> meanvarTMD(lower,upper,mu,Sigma,nu,dist = "t") #Using 5000 MC sims
> means

meanl mean?2 mean3 mean4 meanb mean6
Proposed -0.3587 -0.0837 -0.0781 0.2745 0.8097 0.9313
MonteCarlo -0.3465 -0.0744 -0.0730 0.2912 0.8022 0.9327

> variances

varl var?2 var3 var4d varb var6
Proposed 0.0807 0.0863 0.1018 0.1340 0.0962 0.1459
MonteCarlo 0.0787 0.0888 0.0992 0.1393 0.0890 0.1464

> times
Proposed MonteCarlo
3.50 11.89 seconds
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Appendix B.1: Proofs of propositions and theorems

Proof of Proposition 3.2. Consider the partition Y = (Y], Y;)" and the correspond-

ing partitions of p, 3, A and ¢. We based our proof on the factorization of fy(y) =

fyixy.(Y1,¥2) as fy, v, (Y1, ¥2) = fy. (V1) fyo)yi—y, (¥2)- First, for the symmetric part, we
have that

Op(y; 1, ) = ¢p, (Y15 11, B11) Opy (Y23 2.1, X22.1). (B.2)

)

Let now c1o = (14 g Sa0102) Y2, @1 = 1 + X1 100 and 71 = 7 + @] (y1 —
By noting after some straightforward algebra that A" Y2(y — pu) = @' (y — p) =
Pi(y1— 1) + @3 (y2 — po1) and AT A = "X = @ 21141 + Py 392192, We obtain

- T2.1

Hence, using (B.2) and (B.3), we can rewrite the density of Y = (Y] ,Y,)" as

T TS -12(y —
H() = ol e E)®1EI)12;/>\(12-]|- AT(;,)l/z)u))

O (T + @1 (Y1 — 1) + 93 (y2 — p21))
&, (/1 + 97 Sp) )

031 (72.1 + @3 (Y2 — N2.1))

(14 QT 111 + @3 3020.192)"?)

d, (7'2.1 + @3 (y2 — M2.1)) Dy (cro7 + 1201 (Y1 — 1))
D1 (C1o7/(1 + P Z11p1)"2) @1 (2.1 /(1 + 3 Bz 14p2)'7?)
@1 (co7 + c20] T11 80, (y1 — )

Py (c1o7/(1 + clap] Z11p1)?)

Oy (121 + @351 550 (y2 — p2.1))
Dy (12.1/(1 + 03 Bo2.142)1?) ’
= ESNy, (1, 21170122142351,0127) X ESNp, (p2.1, X221, 254?1902,72.1)-

= ¢P(y; |2 2) o, (7_/

= ¢p1(Y1;N17211)

X ¢p2 (}’2; M1, 222.1)

Proof of Theorem 3.3. For X ~ T'N,(0,R; (a,b)), we have that its MGF is given by

1 (P 1 -
m(t) = Elexp{t"X}] = LJ GrPRIRTE exp {—L(x "R 'x — 2tTx)} dx,

b
= L 'exp{t'Rt/2} J op(x; Rt, R)dx,

= L 'exp{t'Rt/2} L,(a,b;Rt,R), (B.4)
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with normalizing constant L = L,(a,b;0,R). From Tallis (1961), we can compute the
first two moments of X differentiating (B.4). Hence,

a”;it) =m(t)t' R + L exp{t Rt/2} [;Lp(a,b;Rt,R)] ,

After a change of variable w = x — Rt,

8 o ow (P
= Lola, i RER) = a"t"J é,(w; R)dw = —q(t)"R. (B.5)

For t = 0, we denote q = q(0), which is given by q = q, — qp, with the i-th

element of q, and q, as

Gai = ¢1(Gi) Lpfl(a('i)a b(z‘); aiR(z’),i7 Rz),
@i = P1(bi) Lpfl(a(i)y biy; biRiy.is Ri)?

with R; = R, i) — Ryi),iRi). Additionally, it is straightforward that

*m(t) om(t) "
ototT ot

tR +m(t)R — L exp{t ' Rt/2} R(tq(t)" — H(t))R, (B.6)

0
—q, with off-diagonal

0
with H(t) = —ﬁq(t). For t = 0, we have that H = H(0) — 5
X

elements h;; given by

aa ba ab bb
= ¢2(ai7aj;pij) Lpf2(a(i,j)ab(z])nu’z] ’ ) ¢2(blva]7plj) L ( (l])ab(Zj)7l’l’z] 7R )

— ¢a(ai, bj; pij) Lp—2(ag ), b /J'iju Rij) + ¢2(bi, bj; pij) Lp—2(ag ), beijy; MWR )

with pg = Ry igp(aa )7 and Rij = Ry i) — Reg i) R )

Finally, following Vaida & Liu (2009), we can derive the diagonal elements h;;

as linear combinations of the elements h;; for ¢ # k. This can be achieved as

0 0

hu‘z—fafi‘ ;
8 Qa; oz, v,

= {¢1 a;) Ly-1(ag), b); aiRyi Ri) = 01(0:) Ly-1(ag), by; bRy Ri) }

0 .
= a;¢1(a;) Lp—1(ag, bu); iRy Ri) — ¢1(a;) - P —Lp—1(ag), buy; iR, Ri)

7

! 5
— b1 (bi) Ly—1(agy, bay; biReiyi, Ri) + ¢1(bi) - %Lp—l(a(i)a by bRy, Ri)
= iGa, — big, — Ry {01(a) [d1(a5]a:) Ly—2(agzy, bajy; mif, R Rij) — 1 (bjas)
X Lyp—a(a( ), by piy Ry )]’ iim1 — ¢1(b;) [91(ay)bs) p—Q(a(iJ’)ab(i,j);”’ij7Rij)
- ¢1(b |b) ( (i,5) b(”),[JJ”,R )];)#:1}
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aa ab ba bb
= QiGa; — bini - Rz,(z) [hZJ B hij o h h”]ﬁ’” 1

= a;qa; — bigy, — R,y Hy -

Finally, evaluating equations (B.5) and (B.6) on t = 0, we obtain the expressions
for E[X] and IE[XX"]. This ends the proof. O

Proof of Theorem 3.4. 1t follows that

=Py < Xi <y, -1 < Xo <y =Y < X, < yp)
= Ix(y) - ZFX Y-(y) + ZFX Y-(ig)) Z Fx(ygm) + -+ (1) Fx(-y),
i i<j i<j<k

(B.7)

where y_;) denotes the y vector with its ith elements multiplied by —1. For instance,

we have that y_;y = (Y1, %2, -+ Yi—1, =¥ Yi+1, - - -, Yp)- It is easy to see that Fy(y) can be
written as

FY(Y) = Z 71—sFX(—Asy; 0):
seS(p)

with the constant 7, = n s; providing the signs {—1, 1} correctly for each summand in

(B.7). -

By the other side, differentiating Fy(y) in expression (B.7), we have the joint
pdf of Y = |X] given by

op
= o F
:fX(y)_(_l)ZfX y(z) ZfX y(zg Z fX z]k)
7 i<j i<j<k

o+ (D)7 (=)

y>+ZfX(y (7) +ZfX y(lj) Z fX z]k) -+fX(_Y)

7 1<j i<j<k
= ) fx(Ay:0),
seS(p)
where we have conveniently used fx(x) instead of fx(x; @) for simplicity. O

Proof of Corollary 3.2. By the method of change-of-variable for Z; = A;X, then fz (y) =
fx(Ayy) since A;' = A,, J = A, and |det(J)| = 1, where J is the Jacobian matrix
of the transformation and det(A) is the determinat of the matrix A. Additionally, if
X ~ fx(-;&, %) belongs to the location-scale family of distributions with location and
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scale parameters & and W, respectively, then Z; ~ fx(; As&, AsWA,). The k-th moment

of Y can be obtained by the basic integration as

J y* fr(y dY—ZJ Y* fx(y; A& AT A)dy

seS(p)
Y f v fay)dy = Y B[z,
seS(p) seS(p)
This concludes the proof. O

Appendix B.2: Explicit expressions for moments of some folded uni-

variate distributions

Let X ~ ESN(u,0%, A\, 7), Y ~ SN(u, 0% )), Z ~ N(u,0%) and W follow a
univariate half normal distribution denoted by W ~ HN(¢?). The first four raw moments
for | X|, |Y|, |Z] and W are given by

E[|X[] = p(1 = 2p1) + 2a0® + Ana(1 — 201 (0;m,77)),
N =1+ 0%+ Mno(m + ),
1 = (1® + 3uc®)(1 — 2p1) + 2a(p?o® + 20%)
+ \no {27(m + o1 (m/y) + (m? + 4% + pu(m + p) + 20%) (1 — 28, (0; m,vz))} ,
E[|X]"] = p* + 6p%0” + 30 + Ano {m® + 3m~y* + m*p + v’ u +mp® + p° + (3m + 5p)0”},

E[[Y]] = (1 = 2p1) + 2a0® — Ano(1 = 281 (i/7)),
=y + o® + 2udno,
3= (4 + 3uc?®)(1 —2p1) + 2a(p?o? + 20%)
+ o {4y (/) — Bu® + 72 +20%) (1 = 281 (/7)) }
E[|Y["] = p* + 6p%0” + 30* + dpdno {i* + +* + 207},

E[[Z]] = =u(1 = 2®1(p/0)) + 2061 (/o)
E[|Z]] = p* + 0
E[|Z]] = —u(p® + 30%)(1 = 2®1(p1/0)) + 20 (1 + 20°) 61 (11/0)
E[|Z]"] = pu* + 6p%0% + 30
and
oV2 21 _ 2 31 _ 4o’ 41 _ a4
E[W] Nl E[W?] = o7, E[W?] = Ner and  E[W?] = 30",

with m = W=y, P1 = &)1(0;”7027)‘77-) and a = ESNl(O;M7U27>\77—)'
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Appendix B.3: Useful approximations.

Proposition B.1. As7 — —0 ,

T

_ - B8
14+ AT (B-8)

’)7—)

Proof. Let h denote the complimentary inverse Mill’s ratio (CIMR) of a random variable
X, given by h(z) & f(x)/F(x). For X ~ Ni(u,c?), it follows from L’Hopital that

h(x) _)_x—u7 as x — —o0.

o2
Setting X ~ Ni(0,1+4 ATA), it follows that h(7) = 7, ending the proof. O
Proposition B.2. As A - —o0,

ESNy(y; p, 0*, N\, 7)—T N1 (y; i1, 02, [11, 0)), (B.9)
and as A — +o0,

ESN (y; u, 0%, N\, 7)—T N, (y; i, 0%, (—0, u]). (B.10)

Proof. For \ - —oo, it is straightforward that

Ou(r AN —p)fo) WY <y
Oy (7/(1 + A2)172) /2 7

and for A — 400,
O(r+AY =)o) LY >pf
O (7/(1 + \2)1/?) /2 7

where 1{FE} represents the indicator function. This completes the proof. O

Corollary B.1. Let M and N be two large positive real numbers. If A = —M and T = £N,
then
ESNy(y; p,0* A, 7) = TNi(y; p, 0%, [ £ 0N /M, 0)),

and for A = M, then

ESNi(y; p, 0%\, 7) = TNy (y; 1, 0%, (=0, p — £o N /M]).

Appendix B.4: The MomTrunc R package

The methods proposed this work have been implemented in the package
MomTrunc, which is available on CRAN repository (version 4.51). It computes the first
two moments, as well as arbitrary moments for some multivariate truncated distributions
(TMD) using the functions meanvarTMD and momentsTMD, respectively. Another possible
distributions includes the Student-t and the ESN along with its limiting cases, say, the
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SN and N distribution. These moments can be accessed by setting the dist parameter
as "t", "ESN", "SN" and "N" respectively. For folded one can use the analogous functions
meanvarFMD and momentsFMD and their cdfs through the cdfFMD function. Densities,
probabilities and random generator functions are also offered for the multivariate ESN
distribution trough the functions dmvESN, pmvESN and rmvESN, respectively. In the following,

we present some sample codes useful for practitioners.

# Univariate ESN case

> dmvESN(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
> rmvESN(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
>

pmvESN(lower = -5,upper = 2,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)

=

Multivariate ESN case

>mu = ¢(0.1,0.2,0.3,0.4)

> Sigma = matrix(data = ¢(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,
-0.1,0.2,1) ,nrow = length(mu),ncol = length(mu),byrow = TRUE)

> lambda = c(-2,0,1,2)

> tau = 1

> dmvESN(x = c(-2,-1,0,1) ,mu,Sigma,lambda,tau) #0ne observation

> dmvESN(x = matrix(rnorm(4*10),ncol = 4),mu,Sigma,lambda,tau)

> rmvESN(n = 100,mu,Sigma,lambda,tau)

> pmvESN(lower = rep(-Inf,4),upper = c(-1,0,2,5),mu,Signa,lambda,tau)

Truncated case

First two moments

a =c¢c(-0.8,-0.7,-0.6) #lower bound

b = c(0.5,0.6,0.7) #upper bound

mu = c(0.1,0.2,0.3)

Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)

> lambda = c(-2,0,1)

meanvarTMD(a,b,mu,Sigma,dist="normal")

vV V V V H# H

>

> meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 4)

> meanvarTMD(a,b,mu,Sigma,lambda,dist = "SN")

> meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

+=*

Arbitrary moment (2,0,1)
> momentsTMD (kappa = c(2,0,1),a,b,mu,Sigma,dist="normal")
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c(2,0,1),a,b,mu,Sigma,dist = "t",nu = 7)
c(2,0,1),a,b,mu,Sigma,lambda,dist = "SN")

> momentsTMD (kappa

> momentsTMD (kappa

> momentsTMD (kappa = c(2,0,1),a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")
# Folded ESN case

> meanvarFMD(mu,Sigma,lambda,tau = 1,dist = "ESN")

> momentsFMD (kappa = c(2,0,1) ,mu,Sigma,lambda,tau = 1,dist = "ESN")

> cdfFMD(x = ¢(0.5,0.2,1.0,1.3) ,mu,Sigma,lambda,tau = 1,dist = "ESN")

Appendix B.5: Figures

Monte Carlo -
Monte Carlo -
Method 1 - &

Our approach-
Method 2 - [>:>—

300 500 1000 10 30 100 300
Time [milliseconds] Time [milliseconds]

Figure 15 — Simulation study. Violin plots for the processing time to compute the mean
and the variance for a 4-variate doubly TESN (left panel) and a 3-variate
FESN distribution (right panel). For the FESN case, Method 1 refers to the
approach in Subsection 3.6.1 and Method 2 when using equations (3.40) and
(3.41).
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(a) Density of X;

<o

(c) Density of X3

©

0 2
YI

4

(b) Density of X»

<o

<o

Figure 16 — Densities of X;, ¢ =1,...,4.
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Figure 17 — Contour plots of bivariate FESN densities with same location and scale param-
eters, and different skewness A = {(8,3), (3,8), (=3, —8), (=8, —3)} (from left
to right) and extension 7 = {—4,—2,0,2,4} (from top to bottom) parameters.
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APPENDIX C: Appendix for chapter 5

Appendix C.1: Details for the expectations in EM algorithm

To compute the expected values, first note that for any multiplicatively separable
measurable function of U;, T; and Y}, such that g(U;, T;,Y;) = ¢1(Y:)g2(Ui)g3(T;), we
have that

Ev. 1y, [9(Us, Ti, Y3)| Vi, Ci] = Ey, [91(Y:) Ev,1,[92(Us) 93(T3) | Y3] [ Vi, Ci
= Ev,[91(Y:) By, [92(Ui) Y] Eg, [93(T3)|Us, Y3l Vi, Ci.
Hence,
uy; = Eury, [UY![V,, Ci] = Ey,[Y/Ey,[Ui|Yi]| Vi, Cil,
ut; = By, [UT! Vi, Ci] = Ey, [Evr, [UT! Y] Vi, Cil,
uty? = Evury, [ULY!|Vi, Ci] = Ey,[Y!Ey,,[UTiY:][V,, Cil,

for r = {0, 1,2}. From Cabral et al. (2012), we know that T} | (Y;, U;) ~ TN, (*ATT (Y~
w),U; 0% (0,00)). Multiplying the first and second moment of T;|Y; by U; and taking

expectation with respect to this last, it follows that

EUiTi [Usz|Yz] = QQATFA(YZ‘ - .U)]EUi [Ui|Yi] + Q¢(9a y’i)7 (C-H)
Ev.r [UTE Y] = o’ [ATT Ny — p)Eur [UTY,] + 1], (C.12)

with 0 = (1+ ATT7!A)"Y2 and

925(07 yl) = EU’L

Y2 ¢1(Ui1/2AT271/2(y7; — 1)) Y,
Lo (UPATE 2y — )| ]

As noted, both expectations Ey, 7, [U;T;[Y;] and Ey,. [U;T?[Y;] depend on Ey, [U;]Y;] and
#(0,Y;). Lachos et al. (2010) states that

202 (y) ty(yis p, 2, v) v+p+2
E . UZ -Y-Z _ ) P (2 ) ) T 714“ 2
e RS B W7 R N T

50,y = 2bWEnSy) D+p+l)/2)  (vts)r
YT ST B ) VAL (v £ p)/2) (v + 5+ AR

where 6; = §(yi; p, 2), A = ATZ V2 (y; — ).

and

By using the fact that ¢,(yi; p, 3, v) = tp(yisp, 555, v + 2)/v2(yy), 6 =
Oy b 555, 6 + A2 = 50(yip, 44T), det (2)77 = V14 ATAdet (T)"? and

v+1



APPENDIX C: Appendix for chapter 5 149

equation (C.24), we can propose simplified versions of equations above in a neat manner.

After some straightforward algebra, we obtain

STP(Y’LJ K, %4,227 A7 v+ 2)

Ey |U;|Y;| = 1
UZ[U1| 1] STp(ylvl'Lan)‘a V) <C 3)
and
2 i (yza M, VLI‘a v+ 1)
8(0,y,) = _ L)1 i . (C.14)
7'['1/(1 + )\ )\) F(§) STp(yhu’aEa)‘?y)

Let us define the expectation of interest gyl = Ev,[Y!9(0,Y,;)|V;,C;], for
r = {0,1,2}. Next, we present two crucial propositions to compute these expectations.

Proofs can be found in next subsection C.2.

Proposition C.1. Let Z ~ N,(0,T), U ~ Gamma(r/2,v/2) and T ~ HT(v). Then
Y £ w+ AT +U Y%7 ~ ST, (p, X, X, v). For any measurable function g(y), it holds that

2 L)
(1 +ATA) I'(5)
L(a, B;p, ;55T v + 1)

Lo, B; 0,3\, v)

E[¢(0,Y)g(Y)la<Y <] =

Elg(W1)], (C.15)

and

ﬁ(a’IB;H7VL_~_227Aﬁl/+2)
C(a7ﬁ;u7E7A’U)

where A = NT2 " Y2(Y—p), Wy ~ Tt,(u, 4T, v+1 (a, B)) and Wy ~ T'ST,(p, ;553 A,

v+ 27 (av /3))

E[U g(Y)|la <Y < 8] = E[g(W2)], (C.16)

Proposition C.2. Consider Y, U and T as in Proposition C.1. Now, consider Y to be
partitioned as Y = (Y|, Y,)" of dimensions p; and py (p1 + ps = p), respectively. Let

', T
=P a=(ag, )", and B=(B].8))"
I'yy Ty

be the corresponding partitions of ', o and B. For a multiplicatively separable measurable

function g, it follows that

E[¢(8,Y)g(Y)| Y1, a2 < Y2 < Bo] (C.17)
to (Y15 1, 55T, v + 1)
:gl(Yl) 2 1 =
STy, (Y15 1, 11, A1, v)
2 D(¥) L(aw, Ba; po. 1,1,21“1-‘221,1/21 +1)
7ry(1 "‘)\T)\) F(%) 5(012,524@.1,222.1,)\2.1,72.1,V2.1)

Elg(WT)],  (C.18)

and

ST, (Y15 415 555211, AL v+2)

E[U g(Y)[Y1, a2 < Y3 < B2] = 91(Y1) ST, (3 11, S, A, )
p1\Y 1y F41, ~411, 7\,
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L(ca, B2; pai, o, 1+2222 1, A2.1, 721, Vo1 + 2)

E[g2(W3)],
E(a% 132a H2.1, 222.17 AQ.I; Tod, V2.1) [ 2( 2)]

(C.19)

where g(Y) = g1(Y1)g92(Y2), Wi ~ Ttp,(p21, Z,V2i1f‘22.1, Vo1 + 15 (g, B2)) and W35 ~
TEST,,(p21, 7245301, A1, Ta1, 21 42; (@, Ba)), with 21 = v(y1) (@] (y1—1)), va1 =
v+ p1, Taoq = (Tgo — Do T 10) /v (y1) and remaining parameters as in Proposition 5.4.

Subsequently, on according to expressions (C.11) - (C.19), we have the imple-

mentable expressions to the conditional expectations for three possible scenarios:

1. If the ith subject has only non-censored components, Ey.7.v,[Y;| Vi, C;] = y;; then

—~ (k) _ AR r
uy; i )yz,

a*) = By [U:[Y, 0P)]

" = By [UTT]Y, 07,

uty;f( ) = VB n [UTY,, 0],

with (g\yf =y.9(0,y;), where y,? =1, yi1 =y, and yf = yiyZT.

2. If the 7th subject has only censored components, we have

(k) _ i (k) (k)

Uy U™ "Wai
N Q)
ok — L(vis, vas; oV, ST E(k) }\(k) pk) 1 9)
Z /:(Vszi,N(k),Z( ), Ak ), (k) ’
@(k) = P2 A®TP-1R) (@Z_w) _ ﬂ(k)ﬁi(k)) N @(k)gy\?(k)7
(k) )

ut?

~ ( ) N
= X AWTP-1() [( uy? = 2ay; B aT® 4+ g * )a®) g TEN 10 AK)
+ oW1yl — pMoyy )] + ",

/\(k) 5 (k) (k) A Ay A N AT

with
i = . (R A (k) (k) N(K) 7 i
\/ﬂ'ﬁ(k)(l + A(k)TA(k)) F(Tk) E(Vlh Vi; Pl'(k)7 E(k)7 A(k)7 V(k))
(C.20)
where
W =E[W, | 6®], and &2 =E[W,W] |6V, (C21)

for s = {1, 2}, with Wli ~ Ttpl ([J,, VLHF’ v+ ].7 (Vh‘, VQZ‘)) and WQZ‘ ~ TSTpl ([J,, V+22
A v+ 25 (Vig, V).
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3. If the ith subject has both censored and uncensored components and given that
(Y: |V, Ci), (Y;|V;,Ci, YY), and (Y| V,;,C;, YY) are equivalent processes, we

have

@y = E[UY; | y?, Vi, Ci, 60] = 0 vee(y?, w51),

o 0T~ (k) ~(k) . onc(k)T
— (k) Y ~ ¥ yZT i P yogd
uy? = EUYY] | y), Vi, €, 6] = ( 20 e k) moe)|
u; yz Ui "W,
ok) ) gw0olk) Folk) ok
~(k) = E[U. ° V. C, é\(k) ST (lel’z V(k)+22‘ 7)\2‘ ,7/( )+2)
= [ 7 | Yi, Vi, L, ] o(k) moo(k) yo(k) ~
ST (yz X IJ,,L s 21 , AZ , V(k))
peo®) < o co ACO ~CO
£pf(vtlji>vgi;ﬁz?0(k)a Acg(k)_ﬂzi ) )\- (k) ,T; (k) , U (k) + 2)
x 3 )
£ (Vlm V2w ﬁfo(k’)’ EZ?C-O(k) )\Co(k)’ 7A_Zco(k)7 ﬁfO(k))

—~ (k) k) — (k
with uti( ), ut? ~ and utyl-( ) as in item 2, and

co(k) .

o . Aco(k) 121 cc.o(k) ~co(k)
T _ 9 D(21) Lye (Vi vai; It e L 1)
t - ~ ~ p(k) ¢ wc .nC cc.o(k co( o k) ~co(k
\/m;<k>(1 FAWTA®Y TG L (v, v ), oo A 4720 e
0. no(k)  5®) oo(k) A
tpf(Yz’/J’z( )7 lg(k)+1:[‘fi)0( )7 V(k) + ]-) ~r(k)
0. 2 o(k) $a00(k) Jo(k) oy i
STpf (yZ 1 LA Ez 7Az v )
where
B —E[W2 | 6W], and w2 = E[WELWE | 6], (C.22)

for s = {1,2}, where Wy}, ~ Tt, (uw(k) COHI‘“O v + 1; (v, vsy;)) and W3, ~
TEST,: (,uz 1 =200 1 Aoy, Togs Vog + 2 (Vh, vy;)), with T'; being partitioned like

v9.1+2

i, Teo = VYD(PET (v§ — ), vi° = v+ pf and 570 = (D¢ — DT T7) v2(y9).

(k)

To compute the truncated moments w,;

()

and w3,/ given in items 2 and 3, we

use our MomTrunc R package.

Appendix C.2: Proofs of propositions

Proof of Proposition 5.4. Consider the partition Y = (Y],Y3)" and the corresponding
partitions of g, 3 and ¢. We based our proof on the factorization of fy(y) = fv, v,(¥1,¥2)
as fy,,v.(¥Y1,¥2) = v, (Y1) fys/vi—y: (¥2). First, for the symmetric part, we have that

tp(Y? M, X, V) =1y, (Y1; M, 21, V)tm (Y2§ M2.1, 222.1, v+ p1); (C~23)

with po1 = pe + 22121711(}’1 — 1), Xogq = Mgy — )IFD IS PN oot = 222.1/V2(Y1) and
Vi(y1) = (v +p)/(v +6(y1)).
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Let now c1y = (1 + @3 Za0102) %, @1 = 1 + 511! Biagpa, 11 = v(y1) (7 +
&1 (y1 — m1)), and 151 = v + p;. By noting after some straightforward algebra that
AT Py —p) = @' (y— 1) = S{(y1 — ) + ¢3(y2 — p121) and ATA = ¢ T =
P12 11P1 + Py 2o 12, We obtain

T2.
T ((71 + AT (v — p))v(ya)iv + pl) =T ((1 - )‘;21;\2.1)1/2; ug_l), (C.24)

and

T 1
T ——; =T | ————; C.25
1<(1+ATA)1/Q’V) 1((1+A1|—A1)1/27V)7 ( )

where 5\1 = 0122}{%51, 71 = ¢197 and Agq = E;é?lcpg. Additionally, it is easy to see that

9 _v+Dp
vi(y) = Ty

_ vt h ( Vo1 + Do )
v+0(y1) \vo1 + d(y2; 2.1, X22.1)
= V2 (y)r3,, (y2). (C.26)

From this last equation, it holds that

T (A +T)v(y)iv +p) = T (7o + Mgy S 252 — 9.1))0vyy (V2); v2n + 1), (C.27)

with A = ATS7Y2(Y — ), Hence, using (C.23), (C.24) and (C.25), we can rewrite the
density of Y = (Y], Y;)"
(T + ATS 2y — p)v(y)iv + p)

Ti(r/(1 + XTA)2;0)

T (20 + A3 S0 (yo — b))y, (V2); v + p2)
T1 (7’1/(1 + ATAl)l/Q l/)
)
)

S (y) =t(y; . 2, v)

= t,(y; 1, Z,v)
Ty ((71 + )\Tzl ( — p1))v(y1
T1 (7'1/(1+>\1A1 1/2,V)

Tl((72.1 + )\2.1222.{ (Y2 — p21)) vy, (Y2); v + p2)
Ty (720 /(1 + Adqxe1) V2 v0,4)

= ESTm (Y1;ll/1, 2117;\177'1, V) X ESsz(YQ; 2.1, 222.1, A2.1,To1,V +p1)-

)i V+p1)

= tm(Yl;MhEu,V)

X Ty (Y23 M2.1, o1, V1)

]

Proof of Proposition C.1. First note that Y | (a <Y < B) ~ T'ST,(, E, A\, v; (e, B)).
By direct integration of the simplified expressions (C.13) and (C.14), it is readily that

E[6(6,Y)g (Y)I

Y <p
_ 2 2f y”’y+lry+1)ST(YM72Ay)
L'(%)

d
VALt AA) B A ) Ll i B VY
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2 L) ! fﬁ (y)t,( 2T v+ 1)d
; ) 71/
(1l +ATA) I'(5) Lo, B;p, 2, X,v) J, I\ B4 Y
vIDY Lo, By, =T v + 1
5) ( )E[g<wl>]
w1+ ATA) I'(5) Lo, B;p, X, v)

B STy, 7552 A v+ 2) ST (v, =, A, v)

(0% p 7 ) ) Y ) ) ) ) Y
! ’ S A

= T,(y; u, 25X 2
E(a,ﬂ;u,z,x,u)L 9(¥)STo(yi p, 7552 A v + 2)dy
L(a, B, 55, A, v +2)
. 2 E[Q(WQ)],
E(a,ﬁ,N,E,A,V)

Wi ~ Tty (p, 5T, v + 1 (@, B)) and Wy ~ TST, (1, 5555, A, v + 2; (, B)). O

Proof of Proposition C.2. 1t follows from the conditional distribution of a ST distribu-
tion that Yo | (Y1, a0 < Yy < B2) ~ TEST),(p21, X221, A1, To1, va1; (2, B2)), with

conditional parameters and in proposition 5.4 . It is straightforward that

E[¢(0,Y)g(Y)| Y1, a2 < Yy < (5]
2 L'(%5)
(1 +ATA) I'(5)
fﬂQ tp(Y?Na ,,_VHF v+ 1) ESTp2(Y2;H2.17 Z~322.1, A2.1,T2.1, 1/2.1) p (y )dy
= 2(Y2 2
as STp(ya,U»E,)\,V) Lpz(a27,32;N2.17222.17)\2.177_2.137/2.1)
2 T(2) ty, (v, 25T, v + 1)
T v 3 gl(Yl)
mv(L+ATX) T(5) ST, (yi; 1, a1, Ay, v)
" JﬁQ tpy (Y25 H2.1, uﬁilrﬂ-lv va1+1) EST,,(y2: 2.1, §~J22.1, Ao1, o1, Vo1) g(y)dy
= = 2
2 ESsz(YQ; 2.1, X221, Aoty Tod, Vo, 1) Epz(a% Ba; 2.1, X221, Ao.1, To1, Vo, 1)
2 F(V;rl) tpy (Y15 11, sl v+ 1) Ly, (ca, Ba; pa1, V21+1F22 1,21 + 1)
7TV(1 + )\T)\) F(%) STm (Y17 M1, 2117)\17 ) £p2(042>52,l£2.1, 222.1, A2.1,T2.1, 1/2.1)
x g1(Y1)E[g2(WT)]

and

Eury[Ug(Y)la <Y < ]
_ P2 STy(y; 1, TizE»)‘aV +2) ESTpQ(Y2SM2.1,222.1)\2‘1,7'2.1,1/2.1) d
Lg STy(y; p, B, A, v) Ly, (e, Bo; po.1, Soo1, Aoty Tt V2.1)g(y) V2
ST (v 1, 55 0, AL v+2)
- STm(yl;H’laEH?j\l? v)
XJ-B2 ESTPQ(y2JIJ’217V 2221,)\21,7'21,V21+2)
as ‘sz(a27/627l'l’2.17222‘17A2.177—2 1, V21)
_STpl(}ﬁ; K, I,%QEH,S\MV + 2) Lz, Ba; pa.1, ,,21+2222 1, A2.1, T2.1, Vo + 2)
- STy, (Y1§H17211,5\1,V) 5(042,,32,Mz.l,222.1)\2‘1,7'2.1,1/2.1)

9:1(Y1)

g2 (YQ ) dy»
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x g1(Y1)E[g2(W3)],

where g(Y) = g1(Y1)g2(Y2), Wi ~ Tt,,(p2.1, 222 Too1, 01 + 1; (az, B2)) and Wi ~

vo1+1

TESsz(Nzh ﬁimh Ao1, To1, Vo1 + 25 (g, Ba)). —~

Appendix C.3: ML estimation via the EM algorithm for ST responses

Let Y; = (Yi1,...,Y;,)" bea p x 1 response vector for the ith sample unit, for
i €{l,...,n}, considered to be a realization from Yi,...,Y, ~ ST,(u, X, A, v). In the
case that Y is fully observed, in order to estimate the vector of parameters 6 = (u, 3, A, v),
we can propose a EM algorithm for ML estimation as a special case of the one proposed
in subsection 5.8.2. For the equivalent set of parameters @ = (u, A, ar, v), the algorithm

can be summarized as follows:

E-step: Given the current estimate 8% = (4®, A®, &% ™) at the kth step

of the algorithm, compute the expectations

(®)

ut? " = By [UTT | Y, 0%,

for r = {0, 1, 2}, using expression (C.11) and (C.12).

M-step: Update the estimate 8 = (n™, AW, a® v™) by

~ 1 (~ (k) ~
plst = = {u(k)}’z‘ - uti(k)A(k)} :
n i=1
—1

A (B+1) N /\2(k) N — (k) ~(k+1)
A = Zuti Z{utZ (yi — b )},

i=1 i=1
~ 1 (. —~ A R
kD) _ - {ui(k) (y:i — ﬂ(ml))(yi _ ﬂ(k:Jrl))T _ 2uti(k) (yiA(kJrl)T _ A(k+1)ﬂ(k+1)T)

i=1

—~

+ut2(k)A(k+1)A(k:+1)T}

i

As before, we recover Aand & using the expressions in (5.8.2) and we update the parameter

v by maximizing the marginal log-likelihood function for y, that is,

n
D+ _ arg maXZ logf(yi | l’)‘(k+1)’ 2(k+1)’ )\(kﬂ); I/(k)).
v .
i=1

Algorithm is iterated until a suitable convergence rule is satisfied, i.e., |(@**1) |

Y)/Z(é(k) | Y) —1| <€ (for e small enough.
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