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Resumo

Nesta tese, calculamos os momentos duplamente truncados, ou seja, em um hiper-retângulo,

para uma classe geral de distribuições assimétricas denominada família de seleção elíptica

multivariada. Essa grande família de distribuições inclui versões assimétricas multivariadas

complexas de distribuições elípticas bem conhecidas como as distributições normal, t de

Student, exponencial potência, hiperbólica, Slash, Pearson tipo II, normal contaminada,

entre outras.

Em quatro capítulos baseados em artigos, apresentamos formulações recorrentes para os

momentos de distribuições multivariadas duplamente truncadas e dobradas, expressões

explícitas para casos particulares como momentos univariados de ordem inferior, condições

suficientes e necessárias para a existência dos momentos truncados, comparação da eficiência

computacional entre modelos, estudos de simulação, abordagens otimizadas e aproximações

numéricas para casos especiais como casos limites, e momentos quando uma partição tem

volume quase zero ou não é truncada. Métodos para realizar estimação em modelos de

regressão multivariados assimétricos censurados são apresentados e mostrados através de

três aplicações da vida real. Além disso, resultados gerais para distribuições da família

mistura de escala normal são apresentados.

Os métodos propostos foram implementados no pacote MomTrunc do software R, um pacote

altamente otimizado que inclui rotinas C++ por meio do Rcpp, que fornece momentos

teóricos truncados, momentos Monte Carlo e outras funções de interesse como funções

de densidade de probabilidade, distribuições acumuladas e funções geradoras de variáveis

aleatórias para várias distribuições multivariadas simétricas e assimétricas.

Palavras-chave: Distribuições elípticas, Distribuições dobradas, Distribuições de seleção,

Distribuições truncadas, Momentos truncados



Abstract

In this thesis, we calculate doubly truncated moments, that is, in a hyper-rectangle, for a

general class of asymmetric distributions called the selection elliptical family multivariate.

This large family of distributions includes complex multivariate asymmetric versions of

well-known elliptical distributions as the normal, Student’s t, exponential power, hyperbolic,

Slash, Pearson type II, contaminated normal, among others.

In four paper-based chapters, we present recurrent formulations for moments of doubly

truncated and folded multivariate distributions, explicit expressions for particular cases as

univariate lower order moments, sufficient and necessary conditions for the existence of

truncated moments, comparison of computational efficiency between models, simulation

studies, optimized approaches as well as numerical approximation for special cases such as

limiting cases, and moments when a partition has almost zero volume or no truncation.

Methods for performing estimation on censored skewed multivariate regression models are

presented and showed through three real-life applications. Furthermore, general results for

the scale-mixture of normal distributions are presented.

The methods proposed have been implemented in the MomTrunc package of the R software,

a highly optimized package including C++ routines through Rcpp, that offers theoretical,

Monte Carlo truncated moments and other functions of interest as probability density,

cumulative distribution, and random generator functions for various symmetric and

asymmetric multivariate distributions.

Keywords: Elliptical distributions, Folded distributions, Selection distributions, Trun-

cated distributions, Truncated moments
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Introduction

From a probabilistic point of view, doubly truncated expectations have been

a problem of interest for a long time. From the first two one-sided truncated moments

for the normal distribution, useful in Tobin’s model (Tobin, 1958), its evolution led to

its extension to the multivariate case (Tallis, 1961), double truncation (Manjunath &

Wilhelm, 2009), heavy tails when considering the Student’s t bivariate case in Nadarajah

(2007), and finally the first two moments for the multivariate Student’s t case in Ho et al.

(2012).

Truncated expectations are usually used for estimation models in environmental

areas, survival analysis, finance, among others. Doubly truncated moments are very

important not only to model responses restricted in some interval (for example, ratios,

grades, assets portfolio return, etc), but in the context of censored interval models.

Limited or censored data are collected in many studies. This occurs, in several

practical situations, for many reasons such as limitations in measuring equipment or from

an experimental design. In consequence, the extra true value is recorded only if it falls

within an interval range, so, the responses can be either left, interval or right censored.

Missing values can be seen just as a particular case.

In addition to censored models, from a frequentist framework, moments are

required in step E of the Expectation-Maximization (EM) Dempster et al. (1977) algorithm,

when we consider the response Yi, i ✏ 1, . . . , n, being an i.i.d. sample from a given distribu-

tion of interest. Knowing these expectations leads to closed EM algorithms, circumventing

Monte Carlo methods for estimating the E-step of the algorithm and consequently making

possible to fit complex models in a fraction of a time.

We center our attention to the selection elliptical (SE) family of distributions

(Arellano-Valle et al., 2006a), a wide class of multivariate asymmetric elliptical distributions.

Given the flexibility of this family, we can model features such as asymmetry, heavy tails

and multimodality, while interval censoring allows to consider additionally to interval-

censoring, missing values (at random) and left censoring for strictly positive responses

when considering intervals of the form ♣✁✽,✽q and ♣0, cs respectively. The general results

for the SE family, involve all the moments previously used in the literature of censored

models in a frequentist point of view. Evidence of applicability and importance of these

models, are the three articles already submitted and one more currently in progress. It

is worth noting that the CensMFM package from R (De Alencar et al., 2019b) uses our

moments to model finite mixtures of censored or missing multivariate data. We know of at

least two jobs that are currently being developed using our moments.
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A brief walk-through

This work has been organized in six chapters, where chapters from 2 to 5

are papers (see technical production subsection 6.1 for more details). These last are in

chronological order with the purpose of passing the idea of the evolution of the research to

the reader.

A recursive approach: The main idea is to compute an arbitrary doubly truncated

product moment of a variable X, that is,

ErXk ⑤ a ↕ X ↕ bs ✏ ErXk1
1
, . . . , Xkp

p ⑤ a1 ↕ X1 ↕ b1, . . . , ap ↕ Xp ↕ bps,

using a recursive approach departing from the probability P♣a ↕ X ↕ bq ✏ P♣a1 ↕
X1 ↕ b1, . . . , ap ↕ Xp ↕ bpq as initial condition. Depending of the distribution of X, the

probability above can be hard to compute. For the normal and Student’s t distribution,

there exists efficient methods well implemented and available in most statistical softwares;

for instance, in R language, the mvtnorm (Genz & Bretz, 2009; Genz et al., 2020) and

tlrmvnmvt (Cao et al., 2019a,b) packages, this last being released lately in November

2019.

Recursion is developed by establishing a differential equation that involves the

density of X in question (see Kan & Robotti (2017)). This recursion allows calculating

the moments for truncated distributions which may have a complex moment generating

function (MGF) and cannot be treated by differentiation. Based on this recursive approach

were written two articles for the doubly truncated Student’s t and the extended skew-

normal (ESN) distribution, which are resumed in chapters 2 and 3 respectively. Also,

interesting general results for the scale mixture of normal distribution family using this

recursion can be found in Chapter 1. Notice that the ESN distribution includes the

well-known skew-normal (SN) distribution as particular case. Both articles aforementioned

also considered the moments for the positive multivariate variable ⑤X⑤, that is, its folded

version.

In Chapter 3, we additionally established a 1-1 relationship between the mo-

ments of a truncated ESN distribution and the moments of a truncated normal distribution.

This led to a more efficient (and faster) algorithm since the number of required integrals

is smaller. Chapter 4 proposed estimation on interval-censored models for skew-normal

responses based on this last approach. Naturally, next step was to move forward to the

extended skew-t (EST) distribution (Arellano-Valle & Genton, 2010) in order to incorpo-

rate heavy tails, however, since ESN distribution results to be a member of the SLCT-EC

family, it was possible to write a general result for this class, which contains the EST

distribution itself.

A 1-1 relation: Assume that Y follows a distribution belonging to the SE class. Then,

we are able to compute any arbitrary moment of Y ⑤ ♣a ↕ Y ↕ bq, that is, a doubly
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truncated selection elliptical distribution just using an unique corresponding moment of a

doubly truncated elliptical distribution X ⑤ ♣α ↕ X ↕ βq, its symmetric version.

For instance, consider Y following a unified skew-t (SUT) distribution, a

complex multivariate asymmetric heavy-tailed distribution which includes the EST and

the skew-t (ST) distribution (Azzalini & Capitanio, 2003). Then, the first and second

truncated moment of Y can be calculated only using the first and second truncated moment

of a symmetric Student’s t distribution X, say, which moments were already proposed in

Chapter 2. It is worth mentioning that for any of the t distributions above their normal

analogous versions (the unified skew-normal (SUN), ESN and the SN distribution) are

retrieved when ν Ò ✽.

This 1-1 relation is highly convenient since doubly truncated moments for some

members of the elliptical family of distributions are already available in the literature and

statistical softwares. For this reason, this thesis focuses mainly in complex asymmetric

versions of the normal and Student’s t distributions which probabilities of the form

P♣a ↕ X ↕ bq are available. Chapter 5 summarized this general results given some

emphasis to the doubly truncated SUT distribution, embedding all theoretical results in

chapters before.

Implementation: All methods described above have been coded in the R package

MomTrunc (Galarza et al., 2018). The package is able to calculate ErXk ⑤ a ↕ X ↕ bs
even for extreme cases as when the probability P♣a ↕ X ↕ bq ✓ 0 due to extreme

parameter settings, integration limits, or even the numerical precision of the machine.

For example, the only other package that calculates truncated moments for the normal

case, the tmvtnorm package (Wilhelm & Manjunath, 2015), under the extreme conditions

mentioned above, it returns values NaNs and even negative variances. In particular, in

contrast with the TTmoment package (Ho et al., 2015) for Student’s t case, the package

is capable of calculating the moments for degrees of freedom ν ➔ 5 and even decimals,

for example ν ✏ 2.17. It worth mentioning that moments for a double truncated variable

always exist (for Student t case, for ν → 0), since it is limited. In addition to the moments,

our package provides P♣a ↕ X ↕ bq probabilities for different members of the multivariate

SE family, including the option of returning the logarithm in base 2, useful when true

probability is much less than the precision of the machine.

Algorithms for the normal case have been coded in R from their original versions

in Matlab available in Kan & Robotti (2017). To the best of our knowledge, until the

beginning of 2018, there were only one available package in R offering doubly truncated

moments for the normal distribution (tmvtnorm) and only one for the Student’s t case

(TTmoment). Since its release in February 2018, the MomTrunc package has been downloaded

almost 9000 times, a significant number considering that this is a specialized package.
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Structure of the thesis

The organization of the thesis is as follows:

Chapter 1: We provide some background material. We review some definitions,

methodologies and we describe some datasets used throughout the thesis.

Chapter 2: This Chapter develops recurrence relations for integrals that

involve the density of multivariate Student’s t distributions. The proposed techniques

allow for fast computation of arbitrary-order product moments of folded and truncated

multivariate Student’s t distributions and offer explicit expressions of their low-order

moments. We propose an optimized algorithm that outperforms other methods in the

literature, which can deal with missing data in the response at not computational cost.

The usefulness and effectiveness of the proposed techniques are demonstrated through

both simulated and real data, where we show its usefulness on censored regression models

with missing data.

Chapter 3: We extend the recurrence approach to integrals related to asym-

metric multivariate densities. Specifically, we compute recurrence relations involving the

density of the ESN distribution, including the well-known SN distribution introduced by

Azzalini & Dalla-Valle (1996) and the popular multivariate normal distribution. These

recursions offer a fast computation of arbitrary order product moments of the multivari-

ate truncated ESN and multivariate folded ESN (FESN) distributions with the product

moments as a byproduct. In addition to the recurrence approach, we realized that any

arbitrary moment of the truncated multivariate extended skew-normal distribution can be

computed using a corresponding moment of a truncated multivariate normal distribution,

pointing the way to a faster algorithm since a less number of integrals is required for

its computation which result much simpler to evaluate. Since there are several methods

available to calculate the first two moments of a multivariate truncated normal distribution,

we propose an optimized method that offers a better performance in terms of time and

accuracy, in addition to consider extreme cases in which other methods fail.

Chapter 4: The need for asymmetric distributions for the random errors on

linear censored models, motivate us to develop a likelihood-based inference for linear

models with censored responses based on the multivariate SN distribution. Most linear

and nonlinear regression models used to analyze censored data are based on the normality

assumption for the error term. However, such analyses might not provide robust inference

when the normality assumption (or symmetry) is questionable. The proposed EM algorithm

for maximum likelihood estimation uses closed-form expressions at the E-step, that are

based on formulas for the mean and variance of a truncated multivariate skew-normal

distribution, computed in the Chapter before. Three datasets with censored and/or missing

observations are analyzed and discussed.
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Chapter 5: We generalize all results before to the class of asymmetric dis-

tributions called the selection elliptical (SE) family of distributions, a family including

complex multivariate asymmetric versions of well-known elliptical distributions as the

normal, Student’s t, among others. We address the moments for doubly truncated members

of this family, establishing neat formulation for high order moments as well as for its

first two moments. We establish sufficient and necessary conditions for the existence of

these truncated moments. Also, we propose optimized methods able to deal with extreme

setting of the parameters, partitions with almost zero volume or no truncation. A brief

numerical study is presented in order to validate the methodology. A direct application

of ST truncated moments is developed in the context of risk measurement in Finance.

Useful expressions in censored modeling are presented, which have been particularized to

the SUT distribution, a complex multivariate asymmetric heavy-tailed distribution which

includes the EST (ESN) and ST (SN) distribution as particular cases. Finally, we conclude

the chapter proposing estimation on interval-censored models for skew-t responses based

on this last expressions.

Chapter 6: We present some final remarks, technical production and further

researches related to this thesis.
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1 Preliminaries

We begin our exposition by defining the notation and presenting some basic

concepts and some useful results which are used throughout the development of this thesis.

As is usual in probability theory and its applications, we denote a random variable by

an upper-case letter and its realization by the correspondent lower case and use boldface

letters for vectors and matrices. Let Ip represent a p ✂ p identity matrix, A❏ be the

transpose of A, and ⑤X⑤ ✏ ♣⑤X1⑤. . . . , ⑤Xp⑤q❏ denote the absolute value of each component

of the vector X. For multiple integrals, we use the shorthand notation➺ b

a

f♣xqdx ✏
➺ b1

a1

. . .

➺ bp

ap

f♣x1, . . . , xpqdxp . . . dx1.

where a ✏ ♣a1, . . . , apq❏ and b ✏ ♣b1, . . . , bpq❏. For two p-dimensional random vectors

x ✏ ♣x1, . . . , xpq❏ and κ ✏ ♣k1, . . . , kpq❏, let xκ stand for ♣xκ1
1
, xκ2

2
, . . . , xκp

p q. General results

to compute the probability of a random vector lying in a hyper-rectangle are summarized

in the following results.

Lemma 1.1. Let X be a p-variate random vector with joint probability density function

(pdf) fX♣x; θq and cumulative density function (cdf) FX♣x; θq. Let A be a Borel set in R
p

of the form

A ✏ t♣x1, . . . , xpq P R
p : a1 ↕ x1 ↕ b1, . . . , ap ↕ xp ↕ bp✉ ✏ tx P R

p : a ↕ x ↕ b✉. (1.1)

Then P♣X P Aq ✏
➳

sPS♣a,bq

♣✁1qnsFX♣s; θq, where S♣a,bq ✏ ts : s ✏ ♣s1, . . . , spq with

si ✏ tai, bi✉, i ✏ 1, . . . , p✉ and ns ✏
p➳

i✏1

✶♣si ✏ aiq with ✶♣☎q being the indicator function.

Proof. Based on the inclusion-exclusion principle, the probability P♣X P Aq ✏ P♣a ↕ X ↕
bq can be computed by summing the 2p terms corresponding to the s elements in the

solution space of S♣a,bq, where the term signs depend on the number of a’s elements in

the vector s, i.e., ns.

Theorem 1.1. Let X be a p-variate random vector with joint pdf fX♣x; θq and joint cdf

FX♣x; θq. If Y ✏ ⑤X⑤, then the joint pdf and cdf of Y that follows a folded distribution are

given, respectively, by

fY♣yq ✏
➳

sPS♣pq

fX♣Λsy; θq, for y ➙ 0,

and FY♣yq ✏
➳

sPS♣pq

πsFX♣Λsy; θq, where S♣pq ✏ ts : s ✏ ♣s1, . . . , spq, with si ✏ ✟1, i ✏

1, . . . , p✉, Λs ✏ Diag♣sq and πs ✏
p➵

i✏1

si.
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Proof. The distribution function FY♣yq can be calculated as a particular case of Lemma

1.1, when a ✏ ✁y and b ✏ y. It follows that

FY♣yq ✏ P♣✁y ↕ X ↕ yq
✏ P♣✁y1 ↕ X1 ↕ y1,✁y2 ↕ X2 ↕ y2, . . . ,✁yp ↕ Xp ↕ ypq
✏ FX♣yq ✁

➳
i

FX♣y-♣iqq �
➳
i➔j

FX♣y-♣i,jqq ✁
➳

i➔j➔k

FX♣y-♣i,j,kqq � . . .� ♣✁1qpFX♣✁yq,

(1.2)

where y✁♣iq denotes the y vector with its ith elements multiplied by ✁1. For instance,

we have that y-♣iq ✏ ♣y1, y2, . . . , yi✁1,✁yi, yi�1, . . . , ypq. It is easy to see that FY♣yq can be

written as FY♣yq ✏
➳

sPS♣pq

πsFX♣Λsy; θq, with the constant πs ✏
p➵

i✏1

si providing the signs

♣✁1, 1q correctly for each summand in (1.2). As a result, we have the joint pdf of Y ✏ ⑤X⑤
given by

fY♣yq ✏ ❇p

❇y1❇y2 . . . ❇yp

FY♣yq

✏ fX♣yq ✁ ♣✁1q
➳

i

fX♣y-♣iqq � ♣✁1q2
➳
i➔j

fX♣y-♣i,jqq ✁ ♣✁1q3
➳

i➔j➔k

fX♣y-♣i,j,kqq

� ☎ ☎ ☎ � ♣✁1q2pfX♣✁yq
✏ fX♣yq �

➳
i

fX♣y-♣iqq �
➳
i➔j

fX♣y-♣i,jqq �
➳

i➔j➔k

fX♣y-♣i,j,kqq � . . .� fX♣✁yq

✏
➳

sPS♣pq

fX♣Λsy; θq.

Note that we have conveniently used fX♣xq instead of fX♣x; θq for simplicity.

Corollary 1.1. If X ✒ fX♣x; ξ,Ψq belongs to the location-scale family of distributions

with location and scale parameters ξ and Ψ respectively, then the joint pdf and cdf of

Y ✏ ⑤X⑤ are given by

fY♣yq ✏
➳

sPS♣pq

fX♣y; Λsξ,ΛsΨΛsq, for y ➙ 0,

and

FY♣yq ✏
➳

sPS♣pq

πsFX♣Λsy; ξ,Ψq.

Proof. By using the change-of-variable method for Zs ✏ ΛsX, then fZs
♣yq ✏ fX♣Λsyq since

Λ✁1

s ✏ Λs, J ✏ Λs and ⑤ det♣Jq⑤ ✏ 1, where J is the Jacobian matrix of the transformation.

Additionally, if X ✒ fX♣☎; ξ,Ψq belongs to the location-scale family of distributions with

location and scale parameters ξ and Ψ, respectively, then Zs ✏ ΛsX ✒ fX♣z; Λsξ,ΛsΨΛsq.
By Theorem 1.1, we obtain fY♣yq and FY♣yq accordingly.
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Corollary 1.1 generalizes the results of Chakraborty & Chatterjee (2013) for

the folded multivariate normal (FMVN) case to all distributions belong to the multivariate

location-scale family.

Corollary 1.2. Under the same conditions of Corollary 1.1, we have that

ErYκs ✏
➳

sPS♣pq

ErZ�κ
s s, where X� ✏ X ☎ ✶♣X → 0q.

Proof. By the simple property of probability theory, we can deduce that➺ ✽

0

yκfY♣yqdy ✏
➳

sPS♣pq

➺ ✽

0

yκfX♣y; Λsξ,ΛsΨΛsqdy

✏
➳

sPS♣pq

➺ ✽

0

yκfZs
♣yqdy

✏
➳

sPS♣pq

ErZ�κ
s s.

1.1 Moments of doubly truncated scale mixture of normal distribu-

tions

1.1.1 Scale mixture of normal distributions (SMN)

An element of the symmetrical class of scale mixture of multivariate normal

distributions (Andrews & Mallows, 1974; Lange & Sinsheimer, 1993) is defined as the

distribution of the p-variate random vector

y ✏ µ � ζ♣Uq1④2Z, (1.3)

where µ is a location vector, Z is a normal random vector with mean vector 0, variance–

covariance matrix Σ, U is a positive random variable with cumulative distribution function

(cdf) H♣u; νq and probability density function (pdf) h♣u; νq, independent of Z, where ν is

a scalar or parameter vector indexing the distribution of U and ζ♣☎q is the weight function.

Note that given U ✏ u, y follows a multivariate normal distribution with mean vector µ

and variance–covariance matrix ζ♣uqΣ. Hence, the pdf of y is given by

SMNp♣y; µ,Σ,νq ✏
➺ ✽

0

φp♣y; µ, ζ♣uqΣqdH♣u; νq, (1.4)

where φp♣☎; µ,Σq stands for the pdf of the p–variate normal distribution with mean vector

µ and covariate matrix Σ. We use the notation SMNp♣µ,Σ; Hq when Y has distribution

in the SMN class.

Three scale mixture of normal distributions are commonly used for robust

estimation which share same weight function ζ♣uq ✏ 1④u:
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✌ The multivariate Student–t distribution, tp♣µ,Σ, νq, where ν is called the degrees of

freedom, can be derived from the mixture model (1.3), where U is distributed as

Gamma♣ν
2
, ν

2
q, with ν → 0. The pdf of y takes the following hierarchical form

tp♣y; µ,Σ, νq ✏
➺ ✽

0

φp♣y; µ, u✁1ΣqhU♣uqdu. (1.5)

been equivalent to (2.1).

✌ The multivariate slash distribution, SLp♣µ,Σ, νq, arises when the distribution of U

is Beta♣ν, 1q, with u P ♣0, 1q and ν → 0. Its pdf is given by

SLp♣y; µ,Σ, νq ✏ ν

➺
1

0

uν✁1φp♣y; µ, u✁1Σqdu, y P R
p,

and can be evaluated through numerical method, for example, using the R function

integrate.

✌ The multivariate contaminated normal distribution, CNp♣µ,Σ, ν, ρq, where ν, ρ P
♣0, 1q. Here, U is a discrete random variable taking one of two states and with

probability function given by

h♣u; νq ✏ ν✶tu ✏ ρ✉ � ♣1 ✁ νq✶tu ✏ 1✉,

where ν ✏ ♣ν, ρq. The associated density is

CNp♣y; µ,Σ,νq ✏ νφp♣y; µ, ρ✁1Σq � ♣1 ✁ νqφp♣y; µ,Σq.

The parameter ν can be interpreted as the proportion of outliers while ρ may be

interpreted as a scale factor.

Now, let TSMNp♣µ,Σ,H;Aq represent a p-variate truncated SMN (TSMN)

distribution for SMNp♣µ,Σ; Hq lying in the hyper-rectangle A as defined in (1.1). We may

also use the notation TSMNp♣µ,Σ, ν; ♣a,bqq for simplicity. Specifically, we say that the

p-dimensional vector X ✒ TSMNp♣µ,Σ,H;Aq, if its density is given by:

TSMNp♣x; µ,Σ,ν;Aq ✏ SMNp♣y; µ,Σ,νq➩b

a
SMNp♣y; µ,Σ,νqdy

, a ↕ x ↕ b. (1.6)

1.1.2 A recursive approach for TSMN moments

Let suppose that Y ✒ SMNp♣µ,Σ; Hq. From (1.4) we have that the density

function of Y, fY♣yq △✏ SMNp♣y; µ,Σ,νq is given by

fY♣yq ✏ EU rφp♣y; µ, ζ♣UqΣqs . (1.7)
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Kan & Robotti (2017) proposed a recurrence relation for the moments of a multivariate

normal (MVN) distribution based on a differential equation of its pdf φp♣y; µ,Σq, that is

✁ ❇
❇y

φp ♣y⑤µ,Σq ✏ Σ✁1♣y ✁ µqφp ♣y; µ,Σq , (1.8)

which is obtained by multiplying both sides by yκ and then integrating both sides from a

to b with respect to y. Following the same exercise for the pdf of Y, say fY♣yq, it follows

from the equation above that

✁ ❇
❇y
fY♣yq ✏ EU

✑
❇
❇y

φp ♣y; µ, ζ♣UqΣq
✙

✏ Σ✁1♣y ✁ µqEU

✏
ζ♣Uq✁1φp ♣y; µ, ζ♣UqΣq✘

✏ Σ✁1♣y ✁ µqEU

✏
ζ♣Uq✁1fY⑤U♣yq

✘
, (1.9)

with Y⑤U ✏ u ✒ Np♣µ, ζ♣uqΣq. Note that, the derivative and the expectation in the first

line of (1.9) can be interchanged due to the Leibniz rule. As seen, the right side depends

on the mixture variable U . Next, we compute EU

✏
ζ♣Uq✁1fY⑤U♣yq

✘
for particular cases of

interest.

1.1.2.1 Particular Cases

1. Multivariate normal distribution: This is trivial , since U is a degenerated random

variable in 1, that is, P♣U ✏ 1q ✏ 1. Then ζ♣uq✁1fY⑤U♣yq ✏ fY♣yq and consequently

we recover expression (1.8).

2. Multivariate Student-t distribution: For U ✒ Gamma♣ν
2
, ν

2
q and a weight function

ζ♣uq ✏ u✁1, it follows from equation (1.9) that

✁ ❇
❇y
tp ♣y; µ,Σ, νq ✏ Σ✁1♣y ✁ µqEUrUφp ♣y; µ, U✁1Σqs

✏ Σ✁1♣y ✁ µq tp
�
y; µ, ν

ν�2
Σ, ν � 2

✟
. (1.10)

Proof. Setting ζ♣uq ✏ u✁1, with U ✒ Gamma♣ν
2
, ν

2
q, it follows that,

EU

✏
Uφp

�
y; µ, U✁1Σ

✟✘ ✏
➺ ✽

0

�
ν
2

✟ ν
2

Γ
�

ν
2

✟u ν
2 e✁

ν
2

u φp

�
y; µ, u✁1Σ

✟
du

✏
�

ν
2

✟ ν
2

Γ
�

ν
2

✟ ⑤2πΣ⑤ 1
2

Γ
✁

p�ν�2

2
,

δ♣yq�ν

2

✠
,

✏
�

ν
2

✟ ν
2
�

ν�2

ν

✟ p�ν�2
2

Γ
�

ν
2

✟ ⑤2πΣ⑤ 1
2

Γ
✁

p�ν�2

2
, ν�2

ν

✁
δ♣yq�ν

2

✠✠
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where δ♣yq ✏ ♣y✁µq❏Σ✁1♣y✁µq is the Mahalanobis distance and Γ♣α, λq represents

the two parameter Gamma function,

Γ♣α, λq ✏
➺ ✽

0

uα✁1 exp♣✁λuqdu.

After some algebra we obtain,

EU

✏
Uφp

�
y; µ, U✁1Σ

✟✘ ✏
➺ ✽

0

1

♣2πq p

2

✞✞♣ ν
ν�2

qu✁1Σ
✞✞ 1

2

exp
✥✁u

2

�
ν�2

ν

✟
δ♣yq✭

✂
�

ν�2

2

✟ ν�2
2

Γ
�

ν
2

✟ u
ν�2

2
✁1 exp

✥✁ �
ν�2

2

✟
u
✭

du,

✏
➺ ✽

0

φp

�
y; µ, u✁1 ν

ν�2
Σ
✟
hV ♣uqdu,

✏ tp
�
y; µ, ν

ν�2
Σ, ν � 2

✟
,

where V ✒ Gamma
�

ν�2

2
, ν�2

2

✟
. This completes the proof.

3. Multivariate Slash distribution: For this case, we have that U ✒ Beta♣ν, 1q and same

weight function ζ♣uq ✏ u✁1. Then,

EUrUφp ♣y; µ, U✁1Σqs ✏
➺
uφp

�
y; µ, u✁1Σ

✟
h♣uqdu

✏
➺

1

0

νu♣ν�1q✁1φp

�
y; µ, u✁1Σ

✟
du

✏ ν

ν � 1
SL♣y; µ,Σ, νq. (1.11)

Hence,

✁ ❇
❇y
SLp♣y; µ,Σ, νq ✏ ν

ν � 1
Σ✁1♣y ✁ µqSLp♣y; µ,Σ, ν � 1q. (1.12)

4. Multivariate Contaminated normal (CN) distribution: Since the pdf of Y is a finite

mixture of two normal densities, it follows directly that

✁ ❇
❇y
CNp♣y; µ,Σ,νq ✏ ✁ ❇

❇y

✏
νφp♣y; µ, ρ✁1Σq � ♣1 ✁ νqφp♣y; µ,Σq✘

✏ Σ✁1♣y ✁ µq ✏νρφp♣y; µ, ρ✁1Σq � ♣1 ✁ νqφp♣y; µ,Σq✘ .
Note that EUrUφp ♣y; µ, U✁1Σqs ✏ νρφp♣y; µ, ρ✁1Σq�♣1✁νqφp♣y; µ,Σq, where this

last is not proportional to a CN density. This breaks the recurrence relation of CN

moments; however, it is easy to realize that any CN moment is a finite mixture of

normal moments as well.
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1.1.3 Mean and Covariance Matrix of Truncated Multivariate SMN distribu-

tions

Let Z ✒ TNp♣µ,Σ;Aq be a doubly truncated multivariate normal over the

truncation region A, that is with truncation limits a and b. Kan & Robotti (2017) showed

that

ErZis ✏ µi � 1
Lp♣a,b; µ,Σq

p➳
j✏1

σijrφ1♣aj;µj, σ
2

j qLp✁1♣a♣jq,b♣jq, µ̃a
j , Σ̃jq

✁ φ1♣bj;µj, σ
2

j qLp✁1♣a♣jq,b♣jq, µ̃b
j, Σ̃jqs, i ✏ 1, . . . , p, (1.13)

where

µ̃a
j ✏ µ♣jq � Σ♣jq,j

aj ✁ µj

σ2
j

, (1.14)

µ̃b
j ✏ µ♣jq � Σ♣jq,j

bj ✁ µj

σ2
j

, (1.15)

Σ̃j ✏ Σ♣jq,♣jq ✁ 1
σ2

j

Σ♣jq,jΣj,♣jq. (1.16)

and Lp♣a,b; µ,Σq ✏
➺ b

a

φp♣x; µ,Σ,νqdx.

Let W ✒ TSMNp♣µ,Σ,H;Aq be a truncated multivariate SMN distribution

with density function as in 1.6. Then, its mean is given by

ErWs ✏ 1➩b

a
SMNp♣x; µ,Σ,νqdx

➺ b

a

wSMNp♣w; µ,Σ,νqdw

✏ 1➩b

a
SMNp♣x; µ,Σ,νqdx

➺ b

a

w

➺ ✽

0

φp♣w; µ, u✁1ΣqhU♣uqdudw

✏ 1➩b

a
SMNp♣x; µ,Σ,νqdx

➺ ✽

0

➺ b

a

wφp♣w; µ, u✁1ΣqdwhU♣uqdu,

where we have used expression (1.4) and Fubini’s rule.

Noting that,
➺ b

a

xφp♣x; µ,Σqdx ✏ Lp♣a,b; µ,ΣqErZs, it follows from (1.13)

that ➺ b

a

wφp♣w; µ, u✁1Σqdw ✏ µLp♣a,b; µ, u✁1Σq � u✁1Σd,

where the j-th element of d is given by

dj ✏ φ1♣aj;µj, u
✁1σ2

j qLp✁1♣a♣jq,b♣jq; µ̃a
j , u

✁1Σ̃jq
✁ φ1♣bj;µj, u

✁1σ2

j qLp✁1♣a♣jq,b♣jq; µ̃b
j, u

✁1Σ̃jq.

It follows that

ErWs ✏ µ � 1➩b

a
SMNp♣x; µ,Σ,νqdx

Σ♣qH
a ✁ qH

b q, (1.17)
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where the j-th element of qH
a and qH

b are

qH
a,j ✏ EU rU✁1φ1♣aj;µj, U

✁1σ2

j qLp✁1♣a♣jq,b♣jq; µ̃a
j , U

✁1Σ̃jqs, (1.18)

qH
b,j ✏ EU rU✁1φ1♣bj;µj, U

✁1σ2

j qLp✁1♣a♣jq,b♣jq; µ̃b
j, U

✁1Σ̃jqs. (1.19)

Furthermore, let ei ✏ r0i✁1, 1,0p✁is, that is, a vector of zeros with a 1 in the

ith position. Hence,

ErWκ�eis ✏ 1➩b

a
SMNp♣x; µ,Σ,νqdx

➺ b

a

wκ�eiSMNp♣w; µ,Σ,νqdw

✏ 1➩b

a
SMNp♣x; µ,Σ,νqdx

➺ b

a

wκ�ei

➺ ✽

0

φp♣w; µ, u✁1ΣqhU♣uqdudw

✏ 1➩b

a
SMNp♣x; µ,Σ,νqdx

➺ ✽

0

➺ b

a

wκ�eiφp♣w; µ, u✁1ΣqdwhU♣uqdu.

From Kan & Robotti (2017) (Theorem 1), we have➺ b

a

wκ�eiφp♣w; µ, u✁1Σqdw ✏ µi

➺ b

a

wκφp♣w; µ, u✁1Σqdw � u✁1e❏i Σcκ,

where cκ is an p-vector with j-th element

cκ,j ✏ ✁
➺ b

a

wκ❇φp♣w; µ, u✁1Σq
❇wj

dw

✏ kjF
p
κ✁ej

♣a,b; µ, u✁1Σq � a
kj

j φ1♣aj;µj, u
✁1σ2

j qF p✁1

κ♣jq
♣a♣jq,b♣jq; µ̃a

j , u
✁1Σ̃jq

✁ b
kj

j φ1♣bj;µj, u
✁1σ2

j qF p✁1

κ♣jq
♣a♣jq,b♣jq; µ̃b

j, u
✁1Σ̃jq,

Using the above equation, we obtain the following recurrence relation

ErWκ�eis ✏ µiErWκs � e❏i ΣdH
κ➩b

a
SMNp♣x; µ,Σ,νqdx

, (1.20)

where dH
κ ✏ EU rU✁1cκs. Using these results and let DH ✏ rdH

e1
, . . . ,dH

ep
s, we can write

ErWW❏s ✏ µErWs❏ � 1➩b

a
SMNp♣x; µ,Σ,νqdx

ΣDH , (1.21)

covrWs ✏ 1➩b

a
SMNp♣x; µ,Σ,νqdx

Σ♣DH ✁ ♣qH
a ✁ qH

b qErWs❏q. (1.22)

Using the recurrence formula in (1.20), we are able to compute any product

moment of W with the vector dH
κ depending on the mixture distribution H♣u; νq. Particular

expressions for expectations in terms qH
a , qH

b and DH , involved in the first two moments

of a TSMN distribution are presented next.
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1.1.3.1 Student-t case

Lemma 1.2. Suppose U ✒ G♣ν
2
, ν

2
q. For ν → 2, we have that

EU rU✁1φp♣w; µ, u✁1Σqs ✏ ν

ν ✁ 2
tp
�
w; µ, ν

ν✁2
Σ, ν ✁ 2

✟
, (1.23)

and hence

EU rU✁1φp♣w; µ, u✁1Σq⑤Wj ✏ ajs ✏ EU rU✁1φ1♣aj;µj, u
✁1σ2

j qφp✁1♣w♣jq, µ̃
a
j , u

✁1Σ̃jqs
✏ ν

ν ✁ 2
t1♣aj;µj, σ

✝2

j , ν ✁ 2qtp✁1♣w♣jq; µ̃a
j , Σ̃

a
j , ν ✁ 1q.

Note that last equation holds since the Student’s t distribution is closed under conditioning.

Proof for lemma 1.2 is similar to proof of (1.10). Integrating both sides of (1.23) from a

to b, it is easy to see that

EU rU✁1Lp♣a,b; µ,Σqs ✏ ν

ν ✁ 2
Lp♣a,b; µ, ν

ν✁2
Σ, ν ✁ 2q,

where Lp♣a,b; µ,Σ, νq ✏
➺ b

a

tp♣w; µ,Σ,νqdw.

1.1.3.2 Slash case

For the truncated multivariate Slash distribution, we can propose the following

lemma.

Lemma 1.3. Suppose U ✒ Beta♣ν, 1q. We have

EU rU✁1φp♣w; µ, u✁1Σqs ✏
➺

1

0

νu♣ν✁1q✁1φp

�
y; µ, u✁1Σ

✟
du

✏ ν

ν ✁ 1
SLp♣y; µ,Σ, ν ✁ 1q, for ν → 1.

Unfortunately, we can not derive analogous closed form expressions for the

Slash case as in lemma 1.2 since the lack of closure over conditioning property of the Slash

distribution. Hence, only the first summand of dκ,j can be simplified and consequently

we should appeal to numerical methods for the other two terms. This would lead to an

inefficient recurrence scheme so it will not be part of this work.

1.1.3.3 Contaminated normal case

Since the multivariate contaminated normal distribution is a finite mixture of

two MVN distributions, any arbitrary moment for its truncated version can be computed

as a mixture of TMVN moments as well. That is,➺ b

a

xκCNp♣x; µ,Σ,νqdx ✏ ν

➺ b

a

xκφp♣x; µ, ρ✁1Σqdx � ♣1 ✁ νq
➺ b

a

xκφp♣x; µ,Σqdx,
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✏ νF p
κ♣a,b; µ, ρ✁1Σq � ♣1 ✁ νqF p

κ♣a,b; µ,Σq. (1.24)

For X0 ✒ CNp♣µ,Σ,νq, it follows that

ErXκ
0
⑤a ↕ X0 ↕ bs ✏ νπ1ErXκ

1
⑤a ↕ X1 ↕ bs � ♣1 ✁ νqπ2ErXκ

2
⑤a ↕ X1 ↕ bs

π0

, (1.25)

where π0 ✏ P♣a ↕ X0 ↕ bq, π1 ✏ P♣a ↕ X1 ↕ bq and π2 ✏ P♣a ↕ X2 ↕ bq, with

X1 ✒ Np♣µ, ρ✁1Σq and X2 ✒ Np♣µ,Σq.

1.2 Case studies

In this section we present the motivating datasets, which will be analyzed in

this thesis.

1.2.1 Concentration levels data

This dataset consists of concentration levels of certain dissolved trace metals

in freshwater streams across the Commonwealth of Virginia. The data were provided

by the Virginia Department of Environment Quality (VDEQ). It is very important to

determine the quality of Virginia’s water resources across the state to guide their safe

use. The methodology adopted must neither underestimate nor overestimate the levels

of contamination, as otherwise the results can compromise public health, environmental

safety or can unfairly restrict local industry.

The data consist of the concentration levels of the dissolved trace metals copper

(Cu), lead (Pb), zinc (Zn), calcium (Ca) and magnesium (Mg) from 184 independent

randomly selected sites in freshwater streams across Virginia. The Cu, Pb, and Zn

concentrations are reported in µg/L of water, whereas Ca and Mg concentrations are

suitably reported in mg/L of water. Since the measurements are taken at different times,

the presence of multiple limit of detection values is possible for each trace metal (VDEQ,

2003). The limit of detection is 0.1µg/L for Cu and Pb, 1.0mg/L for Zn, 0.5mg/L for

Ca and 1.0mg/L for Mg. The percentages of left-censored values are 2.7% for Ca, 4.9%

for Cu, 9.8% for Mg, which are small in comparison to 78.3% for Pb and 38.6% for Zn.

Also note that 17.9% of the streams had 0 non-detected trace metals, 39.1% had 1, 37.0%

had 2, 3.8% had 3, 1.1% had 4, and 1.1% had 5. Figure 1 shows the histograms for the

concentration levels study.

1.2.2 Apple data

Apple data (Little & Rubin, 1987) is a small dataset frequently used in missing

data literature which contains partially observed measurements of hundreds of fruits yi1

and 100 times the percentage of wormy fruits yi2 on 18 apple trees. In this dataset, the
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Figure 1 – VDEQ data. Histograms for the concentration levels study. Complete observed
points are represented in gray bins while censored observations are represented
by blue bins. Limits of detection are represented in dashed lines.

observations y1i and y2i, for i ✏ 1, . . . , 12, are fully observed, while y2i, for i ✏ 13, . . . , 18,

are missing (see Table 1).

Table 1 – Apple data.

y1k 8 6 11 22 14 17 18 24 19 23 26 40 4 4 5 6 8 10
y2k 59 58 56 53 60 45 43 42 39 38 30 27 - - - - - -

1.2.3 Wine data

Wine data represent 27 chemical measurements on each of 178 wine specimens

belonging to three types of wine produced in the Piedmont region of Italy and is available

in the SN library at CRAN repository (Azzalini, 2020). The data have been presented and

examined by Forina et al. (1986) and were freely accessible until a few years ago.

The 28 variables are: wine, wine name (categorical variable, i.e. factor, with

levels Barbera, Barolo, Grignolino); alcohol, alcohol percentage (numeric); sugar, sugar-

free extract (numeric); acidity, fixed acidity (numeric); tartaric, tartaric acid (numeric);

malic, malic acid (numeric); uronic, uronic acids (numeric); pH, pH (numeric); ash,

ash (numeric); alcal_ash, alcalinity of ash (numeric); potassium, potassium (numeric);

calcium, calcium (numeric); magnesium, magnesium (numeric); phosphate, phosphate

(numeric); cloride, chloride (numeric); phenols, total phenols (numeric); flavanoids,

flavanoids (numeric); nonflavanoids, nonflavanoid phenols (numeric); proanthocyanins,

proanthocyanins (numeric); colour, colour intensity (numeric); hue, hue (numeric), OD_dw

OD280④OD315 of diluted wines (numeric); OD_fl, OD280④OD315 of flavanoids (numeric);

glycerol, glycerol (numeric); butanediol, 2,3-butanediol (numeric); nitrogen, total

nitrogen (numeric), proline, proline (numeric); and methanol, methanol (numeric).

This dataset avaiable in SN package does not contain the“sulphate” variable.
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2 On moments of folded and truncated mul-

tivariate Student’s t distributions via recur-

rence relations

2.1 Introduction

The multivariate Student’s t (MVT) distribution has played over the past

decades a crucial role in statistical analysis because it offers a more viable alternative

with respect to real-world data, in particular due to its properties of having harmonizing

parameter (called the degrees of freedom) to control the thickness of tails and including the

multivariate normal (MVN) distribution as a limiting case. Both the MVT and the MVN

are members of the general family of elliptically symmetric distributions whose properties

have been widely studied (Fang et al., 1990). Some recent applications in the areas such as

spatial models (De Bastiani et al., 2015), linear mixed effects models (Pinheiro et al., 2001;

Savalli et al., 2006), multivariate linear mixed effects models (Wang & Fan, 2011; Wang &

Lin, 2014), mixture modelling (Peel & McLachlan, 2000), missing data imputation (Wang

et al., 2017) and Bayesian statistical modeling (Fonseca et al., 2008; Wang & Lin, 2015),

have been broadly studied.

On the other hand, for many applications on simulations or experimental

studies, the researches often generate a large number of datasets with values restricted to

fixed intervals. For example, variables such as pH, grades, viral load in HIV studies and

humidity in environmental studies, have upper and lower bounds due to detection limits,

and the support of their densities is restricted to some given intervals. Thus, the necessity

of studying the truncated distributions along with their properties arises naturally. In

this context, there has been a growing interest in evaluating the moments of truncated

distributions. For instance, Tallis (1961) provided the formulae for the first two moments

of truncated multivariate normal (TN) distributions. Lien (1985) gave the expressions for

the moments of truncated bivariate log-normal distributions with applications to testing

the Houthakker effect in future markets. Jawitz (2004) derived the truncated moments of

several continuous univariate distributions commonly applied to hydrologic problems. Kim

(2008) provided analytical formulae for moments of the truncated univariate Student’s t

distribution in a recursive form. Flecher et al. (2010) obtained expressions for the moments

of truncated skew-normal distributions (Azzalini, 1985) and applied the results to model

the relative humidity data. Genç (2013) studied the moments of a doubly truncated member

of the symmetrical class of normal/independent distributions and their applications to
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the actuarial data. Ho et al. (2012) presented a general formula to compute the first two

moments of the truncated multivariate Student’s t (TMVT) distribution based on the

moment generating function (MGF) of the TMVN by expressing a TMVT random variable

as a TMVN scale mixture variable. Arismendi (2013) provided explicit expressions for

computing arbitrary-order product moments of the TMVN distribution by using the MGF.

However, the calculation of this approach relies on differentiation of the MGF and can be

prohibitively time consuming.

Instead of differentiating the MGF of the TN distribution, Kan & Robotti

(2017) recently presented recurrence relations for integrals that involve directly the density

of the MVN distribution for computing arbitrary order product moments of the TMVN

distribution. These recursions offer fast computation of the moments of folded (FMVN)

and TMVN distributions, which require evaluating p-dimensional integrals that involve

the MVN density. Explicit expressions for some low order moments of FMVN and TMVN

distributions are presented. Although some proposals to calculate the moments of the

truncated Student’s t distribution (Kim, 2008; Ho et al., 2012) have been recently published

so far, to the best of our knowledge, there is no attempt on studying the product moments

of folded (FMVT) and TMVT distributions. In this paper, we develop recurrence relations

for integrals involving the density of MVT distributions based on the idea of Kan & Robotti

(2017). The proposed recursions allow fast computation of the product moments of the

FMVT and TMVT distributions. The proposed new methodology has been implemented

in the R package MomTrunc (Galarza et al., 2018) available on CRAN repository.

The rest of this paper is organized as follows. In Section 2.2, we define the

notation and briefly discuss some preliminary results related to the MVT, TMVT and

FMVT distributions. Section 2.3 presents a recurrence formula of an integral for evaluating

product moments of the FMVT and TMVT distributions. Explicit expressions for the

first two moments of the FMVT and TMVT distributions are also presented. Section 2.4

presents maximum likelihood (ML) estimation for the MVT distribution with the presence

interval censored responses. The proposed method is illustrated in Section 2.5 through a

simulation study and a real-data example concerning the concentration levels data. Some

concluding remarks and implications for future research are given in Section 2.6. Technical

details and additional information are sketched in the Appendix A.

2.2 Preliminaries

2.2.1 The MVT and FMVT distributions and main properties

A random variable X having a p-variate t distribution with location vector

µ, positive-definite scale-covariance matrix Σ and degrees of freedom ν, denoted by
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X ✒ tp♣µ,Σ, νq, has the pdf:

tp♣x; µ,Σ, νq ✏ Γ♣p�ν

2
q

Γ♣ν
2
qπp④2

ν✁p④2⑤Σ⑤✁1④2

✂
1 � δ♣xq

ν

✡✁♣p�νq④2

, (2.1)

where Γ♣☎q is the standard gamma function and δ♣xq ✏ ♣x ✁ µq❏Σ✁1♣x ✁ µq is the

Mahalanobis distance. Let Lp♣a,b; µ,Σ, νq be Lp♣a,b; µ,Σ, νq ✏
➺ b

a

tp♣x; µ,Σ,νqdx,

where a ✏ ♣a1, . . . , apq❏ and b ✏ ♣b1, . . . , bpq❏. The cdf of X is denoted as

Tp♣b; µ,Σ, νq ✏
➺ b

✁✽

tp♣x; µ,Σ, νqdx ✏ Lp♣✁✽,b; µ,Σ, νq.

In light of Theorem 1.1, we have Lp♣a,b; µ,Σ, νq ✏
➳

sPS♣a,bq

♣✁1qnsTp♣s; µ,Σ, νq, where

S♣a,bq and ns are defined as in Theorem 1.1.

It is known that as ν Ñ ✽, X converges in distribution to a multivariate normal

with mean µ and variance-covariance matrix Σ, denoted by Np♣µ,Σq. An important

property of the random vector X is that it can be written as a scale mixture of the MVN

random vector coupled with a independent positive random variable U ✒ Gamma♣ν④2, ν④2q,
where its pdf can be obtained as in (1.5).

The following properties of the MVT distribution are useful for our theoretical

developments. We start with the marginal-conditional decomposition of a MVT random

vector. The proof of the following propositions can be found in Arellano-Valle & Bolfarine

(1995).

Proposition 2.1. Let X ✒ tp♣µ,Σ, νq partitioned as X❏ ✏ ♣X❏
1
,X❏

2
q❏ with dim♣X1q ✏

p1, dim♣Y2q ✏ p2, where p1 � p2 ✏ p. Let µ ✏ ♣µ❏
1
,µ❏

2
q❏ and Σ ✏

✓
Σ11 Σ12

Σ21 Σ22

✛
be the

corresponding partitions of µ and Σ. Then, we have

♣iq X1 ✒ tp1♣µ1,Σ11, νq; and

♣iiq The conditional distribution of X2 ⑤ ♣X1 ✏ x1q is given by

X2 ⑤ ♣X1 ✏ x1q ✒ tp2

�
y2; µ2.1, rΣ22.1, ν � p1

✟
,

where µ2.1 ✏ µ2 � Σ21Σ
✁1

11
♣x1 ✁ µ1q and rΣ22.1 ✏

✂
ν � δ1

ν � p1

✡
Σ22.1 with δ1 ✏ ♣x1 ✁

µ1q❏Σ✁1

11
♣x1 ✁ µ1q and Σ22.1 ✏ Σ22 ✁ Σ21Σ

✁1

11
Σ12.

Proposition 2.2. Let X ✒ tp♣µ,Σ, νq. Then for any fixed vector b P R
m and matrix

A P R
m✂p of full rank we get

V ✏ b � AX ✒ tm♣b � Aµ,AΣA❏, νq.
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We are interested in computing E
✏⑤X1⑤k1 . . . ⑤Xp⑤kp

✘
and ErXk1

1
. . . Xkp

p ⑤ai ➔
Xi ➔ bi, i ✏ 1, . . . , ps for any non-negative integer values ki ✏ 0, 1, 2, . . ., where the

former is the moment of a FMVT distribution ⑤X⑤ ✏ ♣⑤X1⑤, . . . , ⑤Xp⑤q❏, and the later

is the moment of a TMVT distribution, with Xi truncated at the lower limit ai and

upper limit bi, i ✏ 1, . . . , p. Remark that some of the a✶is can be ✁✽ and some of the b✶is

can be �✽ in the second expression. When all the bi’s are ✽, the distribution is called

the lower TMVT, and when all the ai’s are ✁✽, the distribution is called the upper TMVT.

2.2.2 The TMVT distribution and main properties

A p-dimensional random vector Y is said to follow a doubly truncated Stu-

dent’s t distribution with location vector µ, scale-covariance matrix Σ and degrees of

freedom ν over the truncation region A defined in (1.1), denoted by Y ✒ Ttp♣µ,Σ, ν;Aq,
if it has the pdf:

Ttp♣y; µ,Σ, ν;Aq ✏ tp♣y; µ,Σ, νq
Lp♣a,b; µ,Σ, νq , a ↕ y ↕ b. (2.2)

Note that equation above is a special case of equation (1.6). Besides, the cdf of Y evaluated

at the region a ↕ y ↕ b is

TTp♣y; µ,Σ, ν;Aq ✏ 1
Lp♣a,b; µ,Σ, νq

➺ y

a

tp♣x; µ,Σ, νqdx ✏ Lp♣a,y; µ,Σ, νq
Lp♣a,b; µ,Σ, νq .

The following propositions are related to the marginal and conditional moments

of the first two moments of the TMVT distributions under a double truncation. The proof

is similar to those given in Matos et al. (2013). In what follows, we shall use the notation

Y♣0q ✏ 1, Y♣1q ✏ Y, Y♣2q ✏ YY❏, and W ✒ Ttp♣µ,Σ, ν; ♣a,bqq stands for a p-variate

doubly truncated Student’s t distribution on ♣a,bq P R
p.

Proposition 2.3. If Y ✒ Ttp♣µ,Σ, ν; ♣a,bqq then it holds that

E

✒✂
ν � p

ν � δ♣Yq
✡r

Y♣kq

✚
✏ cp♣ν, rqLp♣a,b; µ,Σ✝, ν � 2rq

Lp♣a,b; µ,Σ, νq ErW♣kqs,

where

cp♣ν, rq ✏
✁ν � p

ν

✠r Γ
�

p�ν

2

✟
Γ
�

ν�2r
2

✟
Γ
�

ν
2

✟
Γ
�

p�ν�2r

2

✟ ,
Σ✝ ✏ νΣ④♣ν � 2rq and ν � 2r → 0, with W ✒ Ttp♣µ,Σ✝, ν � 2r; ♣a,bqq.

Notice that Proposition 2.3 depends on formulas for ErWs and ErWW❏s,
where W ✒ Ttp♣µ,Σ, ν; ♣a,bqq. Having established the formula on the k-order moment

of Y, we provide an explicit formula for the conditional moments with respect to a

two-component partition of Y.
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Proposition 2.4. Let Y ✒ Ttp♣µ,Σ, ν; ♣a,bqq. Consider the partition Y❏ ✏ ♣Y❏
1
,Y❏

2
q

with dim♣Y1q ✏ p1, dim♣Y2q ✏ p2, p1 � p2 ✏ p, and the corresponding partitions of a, b,

µ, and Σ. Then,

E

✒✂
ν � p

ν � δ♣Yq
✡r

Y
♣kq
2 ⑤ Y1

✚
✏ dp♣p1, ν, rq
♣ν � δ♣Y1qqr

Lp2♣a2,b2; µ2.1, rΣ✝
22.1, ν � p1 � 2rq

Lp2♣a2,b2; µ2.1, rΣ22.1, ν � p1q
ErW♣kq

2 s,

for ν � p1 � 2r → 0, with δ♣Y1q ✏ δ♣Y1; µ1,Σ11q,

rΣ✝
22.1 ✏

✂
ν � δ1

ν � 2r � p1

✡
Σ22.1, and dp♣p1, ν, rq ✏ ♣ν � pqr Γ

�
p�ν

2

✟
Γ
�

p1�ν�2r

2

✟
Γ
�

p1�ν

2

✟
Γ
�

p�ν�2r

2

✟ ,
where Σ22.1 is defined as in proposition 2.1. Moreover, W2 ✒ Ttp2♣µ2.1, rΣ✝

22.1, ν � p1 �
2r; ♣a2,b2qq.

2.3 The recurrence relation for the multivariate Student’s t integral

Let a♣iq be a vector a with its ith element being removed. For a matrix ∆, we

let ∆i♣jq stand for the ith row of ∆ with its jth element being removed. Similarly, ∆♣i,jq

stands for the matrix ∆ with its ith row and jth columns being removed. Besides, let ei

denote a p✂ 1 vector with its ith element equaling one and zero otherwise.

The integral that we are interested in evaluating is

Fp
κ♣a,b; µ,Σ, νq ✏

➺ b

a

xκtp♣x; µ,Σ, νqdx.

The initial condition is obviously Fp
0♣a,b; µ,Σ, νq ✏ Lp♣a,b; µ,Σ, νq. The recurrence

relation for the normal case has been recently presented by Kan & Robotti (2017). When

p ✏ 1, the use of integration by parts straightforwardly leads to

F1

0
♣a, b;µ, σ2, νq ✏ T1♣b;µ, σ2, νq ✁ T1♣a;µ, σ2, νq,

F1

k�1
♣a, b;µ, σ2, νq ✏ µF1

k♣a, b;µ, σ2, νq � kνσ2

♣ν✁2q
F1

k✁1
♣a, b;µ, ν

ν✁2
σ2, ν ✁ 2q

� νσ2

♣ν✁2q
rakt1♣a;µ, ν

ν✁2
σ2, ν ✁ 2q ✁ bkt1♣b;µ, ν

ν✁2
σ2, ν ✁ 2qs, ♣k ➙ 0q.

(2.3)

When p → 1, we need a similar recurrence relation in order to compute Fp
κ♣a,b; µ,Σ, νq

which we propose in the following Theorem:

Theorem 2.1. For p ➙ 1 and i ✏ 1, . . . , p,

Fp
κ�ei

♣a,b; µ,Σ, νq ✏ µiF
p
κ♣a,b; µ,Σ, νq � ν

ν✁2
e❏i Σcκ, (2.4)

where cκ is a p✂ 1 vector with the jth element being

cκ,j ✏ kjF
p
κ✁ej

♣a,b; µ,Σ✝, ν ✁ 2q
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�akj

j t1♣aj;µj, σ
✝2

j , ν ✁ 2qFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃a

j , δ̃
a
j Σ̃j, ν ✁ 1q

✁bkj

j t1♣bj;µj, σ
✝2

j , ν ✁ 2qFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃b

j , δ̃
b
j Σ̃j, ν ✁ 1q, (2.5)

and

Σ̃j ✏ Σ✝
♣jq♣jq ✁

1
σ✝2

j

Σ✝
♣jqjΣ

✝
j♣jq, δ̃

a
j ✏

ν ✁ 2� ♣aj✁µjq
2

σ✝2
j

ν ✁ 1
, δ̃b

j ✏
ν ✁ 2� ♣bj✁µjq

2

σ✝2
j

ν ✁ 1
,

µ̃a
j ✏ µ♣jq � ♣aj✁µjq

σ✝2
j

Σ✝
♣jqj, µ̃b

j ✏ µ♣jq � ♣bj✁µjq

σ✝2
j

Σ✝
♣jqj, Σ✝ ✏ ν

ν✁2
Σ, σ✝2

j ✏ ν

ν ✁ 2
σ2

j .

When kj ✏ 0, the first term in (2.5) vanishes. When aj ✏ ✁✽ and kj ↕ ν ✁ 2, the second

term vanishes, and when bj ✏ �✽ and kj ↕ ν ✁ 2, the third term vanishes.

Proof. In light of equation (1.10), we have that

✁❇tp♣x; µ, ν
ν✁2

Σ, ν ✁ 2q
❇x

✏ ν ✁ 2
ν

tp♣x; µ,Σ, νqΣ✁1♣x ✁ µq. (2.6)

Multiplying each element on both sides by xκ and integrating x from a to b, we have

cκ ✏ ν✁2

ν
Σ✁1

✔✖✖✖✖✕
Fp

κ�e1
✁ µ1Fp

κ

Fp
κ�e2

✁ µ2Fp
κ

...

Fp
κ�ep

✁ µpFp
κ.

✜✣✣✣✣✢ ,
Using integration by parts, the jth element of the left-hand side is

cκ,j ✏ ✁
➺ b♣jq

a♣jq

xκtp♣x; µ,Σ✝, ν ✁ 2q|bj
xj✏aj

dx♣jq �
➺ b

a

kjx
κ✁ej tp♣x; µ,Σ✝, ν ✁ 2qdx. (2.7)

Using the fact that

tp♣x; µ,Σ✝, ν ✁ 2q⑤xj✏aj
✏ t1♣aj;µj, σ

✝2

j , ν ✁ 2qtp✁1♣x♣jq; µ̃a
j , δ̃

a
j Σ̃j, ν ✁ 1q and

tp♣x; µ,Σ✝, ν ✁ 2q⑤xj✏bj
✏ t1♣bj;µj, σ

✝2

j , ν ✁ 2qtp✁1♣x♣jq; µ̃b
j , δ̃

b
j Σ̃j, ν ✁ 1q,

we get

cκ,j ✏ kjFp
κ✁ej

♣a,b; µ,Σ✝, ν ✁ 2q � a
kj

j t1♣aj;µj, σ
✝2

j , ν ✁ 2qFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃a

j , δ̃
a
j Σ̃j, ν ✁ 1q

✁bkj

j t1♣bj;µj, σ
✝2

j , ν ✁ 2qFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃b

j , δ̃
b
j Σ̃j, ν ✁ 1q.

When kj ✏ 0, the last integral in (2.7) is equal to zero, and the first term of cκ,j vanishes.

When aj Ñ ✁✽ and kj ↕ ν ✁ 2, akj

j t1♣aj;µj, σ
✝2

j , ν ✁ 2q Ñ 0, so the second term of cκ,j

vanishes. Similarly when bj Ñ ✽ the third term of cκ,j vanishes. Finally, the desired result

is obtained by multiplying ν
ν✁2

Σ on both sides of (2.4).
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As a consequence, ErXκs always exists for
p➳

j✏1

κj ➔ ν. When all the a✶is are ✁✽

or all the b✶is are �✽, the length of the recurrence relation is reduced to 2p � 1 rather

than the original 3p� 1. When all the a✶is are ✁✽ and all the b✶is are �✽, we have

Fp
κ♣✁✽,�✽; µ,Σ, νq ✏ ErXκs, X ✒ tp♣µ,Σ, νq

and the recursive relation of length ♣p� 1q is

ErXκ�eis ✏ µiErXκs �
p➳

j✏1

σ✝ijkjErYκ✁eis, Y ✒ tp♣µ,Σ✝, ν ✁ 2q, i ✏ 1, . . . , p.

Another special case of interest occurs when ai ✏ 0 and bi ✏ �✽, i ✏ 1, . . . , p.

In this scenario, we have Ip
κ♣µ,Σ, νq ✏ Fp

κ♣0,�✽; µ,Σ, νq. The recurrence relation for Ip
κ

can be written as

I
p
κ�ei

♣µ,Σ, νq ✏ µiI
p
κ♣µ,Σ, νq �

p➳
j✏1

σ✝ijdκ,j, i ✏ 1, . . . , p,

where

dκ,j ✏
★
kjI

p
κ✁ei

♣µ,Σ, νq for kj → 0,

t1♣0⑤µj, σ
✝2

j , ν ✁ 2qIp✁1

κ♣jq
♣µ̃j, δ̃jΣ̃j, ν ✁ 1q for kj ✏ 0,

with

µ̃j ✏ µ♣jq ✁ µj

σ✝2
j

Σ✝
♣jqj, Σ̃j ✏ Σ✝

♣jq♣jq ✁
1
σ✝2

j

Σ✝
♣jqjΣ

✝
j♣jq, and δ̃j ✏

ν ✁ 2� µ2
j

σ✝2
j

ν ✁ 1
.

2.3.1 The first two moments of the doubly TMVT distribution

Let X ✒ tp♣µ,Σ, νq and Z ✏ X ⑤ ♣a ↕ X ↕ bq ✒ Ttp♣µ,Σ, ν; ♣a,bqq. It follows

that

ErZκs ✏ 1
Lp♣a,b; µ,Σ, νq

➺ b

a

xκtp♣x; µ,Σ, νqdx ✏ Fp
κ♣a,b; µ,Σ, νq
Lp♣a,b; µ,Σ, νq .

Furthermore, let denote Fp
κ ✑ Fp

κ♣a,b; µ,Σ, νq and L ✑ Lp♣a,b; µ,Σ, νq for simplicity. In

light of Theorem 2.1, it is straightforward that to see that

ErZis ✏
F p

ei

L
✏ µi � 1

L
e❏i Σ✝c0 and ErZiZjs ✏

F
p
ei�ej

L
✏ µjErZis � 1

L
e❏j Σ✝cei

, (2.8)

where c0 ✏ ca ✁ cb, with

ca ✏
✏
t1♣aj;µj, σ

✝2

j , ν ✁ 2qLp✁1♣a♣jq,b♣jq; µ̃a
j , δ̃

a
j Σ̃j, ν ✁ 1q✘p

j✏1
, (2.9)

cb ✏
✏
t1♣bj;µj, σ

✝2

j , ν ✁ 2qLp✁1♣a♣jq,b♣jq; µ̃b
j , δ̃

b
j Σ̃j, ν ✁ 1q✘p

j✏1
, (2.10)
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and

cei
✏

✑
eijLp♣a,b; µ,Σ✝, ν ✁ 2q � ajt1♣aj;µj, σ

✝2

j , ν ✁ 2qFp✁1

ei♣jq
♣a♣jq,b♣jq; µ̃a

j , δ̃
a
j Σ̃j, ν ✁ 1q

✁ bjt1♣bj;µj, σ
✝2

j , ν ✁ 2qFp✁1

ei♣jq
♣a♣jq,b♣jq; µ̃b

j , δ̃
b
j Σ̃j, ν ✁ 1q

✙p

j✏1

. (2.11)

where

cei i ✏ Lp♣a,b; µ,Σ✝, ν ✁ 2q � ajcai ✁ bjcbi,

cei j

i✘j✏ ajcaiEr♣X♣jq ⑤ Xj ✏ ajq ⑤ a♣jq ↕ X♣jq ↕ b♣jqs
✁bjcbiEr♣X♣jq ⑤ Xj ✏ bjq ⑤ a♣jq ↕ X♣jq ↕ b♣jqs.

This last equality is obtained by noting that

P♣a♣jq ↕ X♣jq ↕ b♣jq⑤Xj ✏ ajq ✏ Lp✁1♣a♣jq,b♣jq; µ̃a
j , δ̃

a
j Σ̃j, ν ✁ 1q

and P♣a♣jq ↕ X♣jq ↕ b♣jq⑤Xj ✏ bjq ✏ Lp✁1♣a♣jq,b♣jq; µ̃b
j , δ̃

b
j Σ̃j, ν ✁ 1q.

Let C ✏ ♣ce1 , ce2 , . . . , cep
q. From expressions in (2.8), we can note that for

ErZis, c0 does not depend on i and, for ErZiZjs, cei
does not depend on j. Then, it is easy

to establish that the mean vector ξ ✏ ErZs and variance-covariance matrix Ψ ✏ covrZs
are given by

ξ ✏ µ� 1
L

Σ✝c0, (2.12)

Ψ ✏ 1
L

Σ✝♣C✁ c0ξ❏q, (2.13)

where ErZZ❏s ✏ µξ❏ � 1
L

CΣ✝.

Methods for computing the mean and variance-covariance matrix of Z are

summarized in algorithms 1 and 2. Note that, to calculate the variance-covariance matrix

Algorithm 1 – Mean vector for Z ✒ Ttp♣µ,Σ, ν; ♣a,bqq
mean♣a,b,θq
LÐ Lp♣a,b; µ,Σ, νq; ca Ð 0; cb Ð 0;
for j ✏ 1 : p do

θa
j Ð ♣µ̃a

j , δ̃
a
j Σ̃j, ν ✁ 1q; θb

j Ð ♣µ̃b
j , δ̃

b
j Σ̃j, ν ✁ 1q;

if aj ✘ ✽ then

ca♣jq Ð t1♣aj;µj, σ
✝2

j , ν ✁ 2qLp✁1♣a♣jq,b♣jq; µ̃a
j , δ̃

a
j Σ̃j, ν ✁ 1q;

end
if bj ✘ ✽ then

cb♣jq Ð t1♣bj;µj, σ
✝2

j , ν ✁ 2qLp✁1♣a♣jq,b♣jq; µ̃b
j , δ̃

b
j Σ̃j, ν ✁ 1q;

end

end

ξ Ð µ� ν

ν ✁ 2
Σ♣ca ✁ cbq④L;

return ξ;
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Algorithm 2 – Mean vector and variance-covariance matrix for Z ✒
Ttp♣µ,Σ, ν; ♣a,bqq

meanvar♣a,b,θq
LÐ Lp♣a,b; µ,Σ, νq; L✝ Ð Lp♣a,b; µ,Σ✝, ν ✁ 2q;
Wa Ð 0p✂p; Wb Ð 0p✂p;
for j ✏ 1 : p do

θa
j Ð ♣µ̃a

j , δ̃
a
j Σ̃j, ν ✁ 1q; θb

j Ð ♣µ̃b
j , δ̃

b
j Σ̃j, ν ✁ 1q;

if aj ✘ ✽ then

ca♣jq Ð t1♣aj;µj, σ
✝2

j , ν ✁ 2qLp✁1♣a♣jq,b♣jq; µ̃a
j , δ̃

a
j Σ̃j, ν ✁ 1q;

Wa♣✁j, jq Ð mean♣a♣jq,b♣jq,θ
a
♣jqq;

Wa♣j, jq Ð a♣jq;
end
if bj ✘ ✽ then

cb♣jq Ð t1♣bj;µj, σ
✝2

j , ν ✁ 2qLp✁1♣a♣jq,b♣jq; µ̃b
j , δ̃

b
j Σ̃j, ν ✁ 1q;

Wb♣✁j, jq Ð mean♣a♣jq,b♣jq,θ
b
♣jqq;

Wb♣j, jq Ð b♣jq;
end

end
ξ Ð µ�Σ✝♣ca ✁ cbq④L;
Ψ Ð ♣L✝diag♣pq �Wadiag♣caq ✁Wbdiag♣cbqqΣ✝④L;
return ξ, Ψ;

Ψ in Algorithm 2, it is necessary to compute 2p ♣p✁ 1q-variate mean vectors (lines 8 and

13) through Algorithm 1. This schema leads to only 1� 2p necessary integrals to compute

the mean and additional 1� 2p� 4p♣p✁ 1q integrals for the variance-covariance matrix.

It is noteworthy to mention that i) probabilities between lines 7 and 12 in Algorithm 2,

can be recycled from the mean♣a,b,θq function, and ii) C is not symmetric, however

both of its ♣i, jq-th and ♣j, iq-th elements cej i
and cei j depends on probabilities of the

form P
�
a♣i,jq ↕ X♣i,jq ↕ b♣i,jq ⑤ ♣Xi, Xjq ✏ ♣xi, xjq

✟
, with ♣xi, xjq P tai, bi✉ ✂ taj, bj✉. This

leads to an optimal schema with a maximum total of 2♣1 � p2q integrals to compute

the mean and the variance-covariance matrix in the case that the distribution is doubly

truncated. Lastly, we remark that this recurrence is limited to work for real degrees of

freedom greater than 3 due to the computation of Σ✝✝ ✏ ν✝Σ④♣ν✝ ✁ 2q when ν✝ ✏ ν ✁ 1.

For ν ✏ 3, we approximate its value taking its right-hand limit, which showed a good

performance in terms of precision and stability. Finally, expressions for the mean vector

and variance-covariance matrix derived in subsection 1.1.3 are equivalent but less efficient.

2.3.2 The first two moments of the TMVT distribution when a non-truncated

partition exists

We describe a trick for fast computation of the first two moments of the TMVT

distribution when there are double infinite limits. Consider the partition X ✏ ♣X❏
1
,X❏

2
q❏
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such that dim♣X1q ✏ p1, dim♣X2q ✏ p2, where p1 � p2 ✏ p. Using the law of total

expectations, we have

ErXs ✏ E

✓
ErX1⑤X2s

X2

✛
and

covrXs ✏
✓

ErcovrX1⑤X2ss � covrErX1⑤X2ss covrErX1⑤X2s,X2s
covrX2,ErX1⑤X2ss covrX2s

✛
.

Let p1 be the number of pairs in ra,bs that are both infinite. We consider the

partition X ✏ ♣X❏
1
,X❏

2
q❏ in which the upper and lower truncation limits associated with

X1 are both infinite, but at least one of the truncation limits associated with X2 is finite.

Let

µ ✏ ♣µ❏
1
,µ❏

2
q❏, Σ ✏

✄
Σ11 Σ12

Σ21 Σ22

☛
, a ✏ ♣a❏

1
, a❏

2
q❏ and b ✏ ♣b❏

1
,b❏

2
q❏,

be the corresponding partitions of µ, Σ, a and b. Since a1 ✏ ✁✽ and b1 ✏ ✽, it follows

that X2 ✒ Ttp2

�
µ2,Σ22, ν; ra2,b2s

✟
and X1⑤X2 ✒ tp1

�
µ1 � Σ12Σ

✁1

22
♣X2 ✁ µ2q, ♣Σ11 ✁

Σ12Σ
✁1

22
Σ21q♣ν � δ♣x2; µ2,Σ22qq④♣ν � p2q, ν � p2

✟
. This leads to

ErXs ✏ E

✓
µ1 � Σ12Σ

✁1

22
♣X2 ✁ µ2q

X2

✛
✏
✓
µ1 � Σ12Σ

✁1

22
♣ξ2 ✁ µ2q

ξ2

✛
. (2.14)

On the other hand, we have that covrX2,ErX1⑤X2ss ✏ covrX2,X2Σ
✁1

22
Σ21s ✏

Ψ22Σ
✁1

22
Σ21, covrErX1⑤X2ss ✏ Σ12Σ

✁1

22
Ψ22Σ

✁1

22
Σ21 and ErcovrX1⑤X2ss ✏ ω1.2♣Σ11✁Σ12Σ

✁1

22

Σ21q with ξ2 ✏ ErX2s and Ψ22 ✏ covrX2s, and

ω1.2 ✏ E

✂
ν � δ♣X2; µ2,Σ22q

ν � p2 ✁ 2

✡
✏
✂

ν

ν ✁ 2

✡
Lp♣a2,b2; µ2,Σ

✝
22
, ν ✁ 2q

Lp♣a2,b2; µ2,Σ22, νq , (2.15)

with Σ✝
22
✏ νΣ22④♣ν ✁ 2q. This last expression follows from Proposition 2.3. Finally,

covrXs ✏
✓
ω1.2Σ11 ✁ Σ12Σ

✁1

22

�
ω1.2Ip2 ✁ Ψ22Σ

✁1

22

✟
Σ21 Σ12Σ

✁1

22
Ψ22

Ψ22Σ
✁1

22
Σ21 Ψ22

✛
, (2.16)

where ξ2 and Ψ22 are the mean vector and variance-covariance matrix of the

TMVT distribution, which can be computed by using (2.12) and (2.13), respectively.

Note that X1 does not follow a non-truncated t distribution, that is, X1 ✚
tp1

�
µ1,Σ11, ν

✟
, even though a1 ✏ ✁✽ and b1 ✏ ✽. In general, the marginal distributions

of a TMt distribution are not TMt, however this holds for X2 due to the particular case

a1 ✏ ✁✽ and b1 ✏ ✽. Also note that obtaining (2.15) does not require the compu-

tation of additional integrals given that the probabilities Lp♣a2,b2; µ2,Σ
✝
22
, ν ✁ 2q and

Lp♣a2,b2; µ2,Σ22, νq are involved in the calculation of ξ2 and Ψ22 (see Algorithm 2, Line

2).
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It is important to emphasize that ErXs and ErXX❏s exist if and only if

ν � p2 → 1 and ν � p2 → 2 respectively. This is equivalent to say that, (2.14) exists if at

least one dimension containing a finite limit exists. Besides, (2.16) exists if at least two

dimensions containing a finite limit exist.

As can be seen, we can use equations (2.14) and (2.16) to deal with double

infinite limits, where the truncated moments are computed only over a p2-variate partition,

avoiding some unnecessary integrals and saving a significant computational cost.

2.3.3 Folded Multivariate Student’s t distribution

Let X ✒ tp♣µ,Σ, νq, we now turn our attention to discuss the computation of

any arbitrary order moment of ⑤X⑤. First, we established the following corollary.

Corollary 2.1. If X ✒ tp♣µ,Σ, νq then Zs ✏ ΛsX ✒ tp♣µs,Σs, νq and consequently the

joint pdf, cdf and the κth raw moment of Y ✏ ⑤X⑤ are, respectively, given by

fY♣yq ✏
➳

sPS♣pq

tp♣y; µs,Σs, νq, FY♣yq ✏
➳

sPS♣pq

πsTp♣ys; µ,Σ, νq,

and

ErYκs ✏
➳

sPS♣pq

Ip
κ♣µs,Σs, νq,

where ys ✏ Λsy, µs ✏ Λsµ, Σs ✏ ΛsΣΛs and Ip
κ♣µs,Σs, νq ✏

➺ ✽

0

yκtp♣y; µs,Σs, νqdy.

Proof. The proof follows straightforwardly from the definition of probability theory and

basic matrix algebra and thus is omitted.

Thus the product moments of Y can be calculated easily using Ip
κ♣µs,Σs, νq

terms as stated above. In particular, in light of Corollary 1.2, we have that the mean

vector ξ and variance-covariance matrix Ψ of Y can be calculated as

ξ ✏
➳

sPS♣pq

ErZ�

s s, (2.17)

Ψ ✏
➳

sPS♣pq

E
✏
Z�

s Z�

s
❏
✘✁ ξξ❏, (2.18)

where Z�

s is the positive component of Zs ✏ ΛsX ✒ tp♣µs,Σs, νq from Corollary 1.1. Note

that there are 2p times more integrals to be calculated as compared to the non-folded

case. Specifically, ♣1 � pq2p integrals are required for the mean vector, and additional

♣1 � 2p� 2p2q2p integrals for the variance-covariance matrix. For the univariate case, the
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explicit expressions for the first four raw moments of Y ✏ ⑤X⑤, where X ✒ t♣µ, σ2, νq,
based on (2.3) and (2.5) can be obtained as

ErY s ✏ µr1 ✁ 2T1♣0;µ, σ2, νqs � 2σ✝2t1♣0;µ, σ✝2, ν ✁ 2q,
ErY 2s ✏ µ2 � σ✝2,

ErY 3s ✏ µ2
ErY s � 3µσ✝2r1 ✁ 2T1♣0;µ, σ✝2, ν ✁ 2qs � 4♣ν✁2qσ✝4

ν✁4
t1♣0;µ, ν

ν✁4
σ2, ν ✁ 4q,

ErY 4s ✏ µ4 � 6µ2σ✝2 � 3♣ν✁2q
ν✁4

σ✝4.

Illustrative results via the implementation of R package MomTrunc are presented in the

Appendix B.

2.4 Inference for MVT with Interval Censored Responses

Let Yi ✏ ♣Yi1, . . . , Yipq❏ be a p✂ 1 response vector for the ith sample unit, for

i P t1, . . . , n✉, and consider the set of independent and identically distributed samples:

Y1, . . . ,Yn ✒ tp♣µ,Σ, νq, (2.19)

where the location vector µ ✏ ♣µ1, . . . , µpq❏ and the dispersion matrix Σ ✏ Σ♣αq depend

on an unknown and reduced parameter vector α. However, the response vector Yi may

not be fully observed due to censoring, so we define ♣Vi,Ciq the observed data for the ith

sample, where Vi✏ ♣Vi1, . . . , Vipq❏ represents either an uncensored observation ♣Vik ✏ V0iq
or the interval censoring level ♣Vik P rV1ik, V2iksq, and Ci ✏ ♣Ci1, . . . , Cipq❏ is the vector of

censoring indicators, satisfying

Cik ✏
★

1 if V1ik ↕ Yik ↕ V2ik ,

0 if Yik ✏ V0i .
(2.20)

for all i P t1, . . . , n✉ and k P t1, . . . , p✉, i.e., Cik ✏ 1 if Yik is located within a specific

interval. In this case, (2.19) along with (2.20) defines the multivariate Student’s t interval

censored model (hereafter, the MVT-IC model). Notice that a left censoring structure

causes truncation from the lower limit of the support of the distribution, since we only

know that the true observation Yik is less than or equal to the observed quantity V2ik. This

situation has been studied by Lachos et al. (2017). Missing observations can be handled

by considering V1ik ✏ ✁✽ and V2ik ✏ �✽.

2.4.1 The likelihood function

Let y ✏ ♣y❏
1
, . . . ,y❏

n q❏, where yi ✏ ♣yi1, . . . , yipq❏ is a realization of Yi ✒
tp♣µ,Σ, νq. To obtain the likelihood function of the MVT-IC model, we firstly treat the
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observed and censored components of yi, separately, i.e., yi ✏ ♣yo❏

i ,yc❏

i q❏, where Cik ✏ 0

for all elements in the po
i -dimensional vector yo

i , and Cik ✏ 1 for all elements in the

pc
i -dimensional vector yc

i . Accordingly, we write Vi ✏ vec♣Vo
i ,V

c
iq, where Vc

i ✏ ♣Vc
1i,V

c
2iq

with

µi ✏ ♣µo❏
i ,µc❏

i q❏ and Σ ✏ Σ♣αq ✏
✂

Σoo
i Σoc

i

Σco
i Σcc

i

✡
.

Then, using Proposition 2.1, we have that Yo
i ✒ tpo

i
♣µo

i ,Σ
oo
i , νq and Yc

i ⑤ Yo
i ✏ yo

i ✒
tpc

i
♣µco

i ,S
co
i , ν � po

i q, where

µco
i ✏ µc

i � Σco
i Σoo✁1

i ♣yo
i ✁ µo

i q, Sco
i ✏

✧
ν � δ♣yo

i q
ν � po

i

✯
Σcc.o

i , (2.21)

Σcc.o
i ✏ Σcc

i ✁ Σco
i ♣Σoo

i q✁1Σoc
i and δ♣yo

i q ✏ ♣yo
i ✁ µo

i q❏♣Σoo
i q✁1♣yo

i ✁ µo
i q. (2.22)

Let V ✏ vec♣V1, . . . ,Vnq and C ✏ vec♣C1, . . . ,Cnq denote the observed data. Therefore,

the log-likelihood function of θ ✏ ♣µ❏,α❏, νq❏, where α ✏ vech♣Σq, for the observed data

♣V,Cq is

ℓ♣θ ⑤ V,Cq ✏
n➳

i✏1

lnLi, (2.23)

where Li represents the likelihood function of θ for the ith sample, given by

Li ✑Li♣θ ⑤ Vi,Ciq ✏ f♣Vi ⑤ Ci,θq ✏ f♣Vc
1i ↕ yc

i ↕ Vc
2i ⑤ yo

i ,θqf♣yo
i ⑤ θq

✏ Lpc
i
♣Vc

1i,V
c
2i; µco

i ,S
co
i , ν � po

i qtpo
i
♣yo

i ; µo
i ,Σ

oo
i , νq.

2.4.2 Parameter estimation via the EM algorithm

We describe how to carry out ML estimation for the MVT-IC model. The

EM algorithm, originally proposed by Dempster et al. (1977), is a very popular iterative

optimization strategy and commonly used to obtain ML estimates for incomplete-data

problems. This algorithm has many attractive features such as the numerical stability, the

simplicity of implementation and quite reasonable memory requirements (McLachlan &

Krishnan, 2008).

By the essential property of MVT distribution, we can write Yi⑤♣Ui ✏ uiq ✒
Np♣µ, u✁1

i Σq and ui ✒ Gamma♣ν④2, ν④2q. The complete-data log-likelihood function of

θ ✏ ♣µ,Σ, νq is given by ℓc♣θq ✏
n➳

i✏1

ℓic♣θq, where the individual complete-data log-

likelihood is

ℓic♣θq ✏ ✁1
2

✥
ln ⑤Σ⑤ � ui♣yi ✁ µq❏Σ✁1♣yi ✁ µq✭� ln h♣ui; νq � c,

where c is a constant irrelevant of θ and h♣ui; νq is the pdf of Gamma♣ν④2, ν④2q. In

summary, the EM algorithm for the MVT-IC model can be adopted as follows:
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E-step: Given the current estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣Σ♣kq, ν̂♣kqq at the kth step, the E-step

provides the conditional expectation of the complete data log-likelihood function

Q♣θ ⑤ ♣θ♣kqq ✏ E

✑
ℓc♣θq ⑤ V,C, ♣θ♣kq✙ ✏ n➳

i✏1

Qi♣θ ⑤ ♣θ♣kqq,
where

Qi♣θ ⑤ ♣θ♣kqq ✏ ✁ 1
2

ln ⑤Σ⑤ ✁ 1
2

tr
✒✧②uy2

i

♣kq ✁①uy♣kqi µ❏ ✁ µ♣①uy♣kqi q❏ � ♣u♣kqi µµ❏

✯
Σ✁1

✚

with ①uy♣kqi ✏ ErUiYi ⑤ Vi,Ci, ♣θ♣kqs, ②uy2
i

♣kq ✏ ErUiYiY
❏
i ⑤ Vi,Ci, ♣θ♣kqs and ♣u♣kqi ✏

ErUi ⑤ Vi,Ci, ♣θ♣kqs which are collected in Appendix A. Note that, since ν is fixed,

the calculation of Erln h♣Ui; νq ⑤ V,C, ♣θ♣kqs is unnecessary.

M-step: Conditionally maximizing Q♣θ ⑤ ♣θ♣kqq with respect to each entry of θ, we update

the estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣Σ♣kq, ν♣kqq by

♣µ♣k�1q ✏
✄

n➳
i✏1

♣u♣kqi

☛✁1
n➳

i✏1

①uy♣kqi ,

♣Σ♣k�1q ✏ 1
n

n➳
i✏1

✧②uy2
i

♣kq ✁①uy♣kqi ♣µ♣k�1q❏ ✁ ♣µ♣k�1q♣①uy♣kqi q❏ � ♣u♣kqi ♣µ♣k�1q♣µ♣k�1q❏

✯
.

Then we update the parameter ν by maximizing the marginal log-likelihood function

for y, that is, ♣ν♣k�1q ✏ arg max
ν

n➳
i✏1

log f♣Vi ⑤ Ci, ♣µ♣k�1q, ♣Σ♣k�1q; ν♣kqq.

The algorithm is iterated until a suitable convergence rule is satisfied. In

the later analysis, the algorithm is terminated when the difference between two suc-

cessive evaluations of the log-likelihood defined in (2.23) is less than a tolerance, i.e.,

ℓ♣♣θ♣k�1q ⑤ V,Cq ✁ ℓ♣♣θ♣kq ⑤ V,Cq ➔ ǫ, for example, ǫ ✏ 10✁6.

2.5 Numerical Illustrations

2.5.1 Simulation study

We conduct a simple simulation study to show how Monte Carlo (MC) estimates

for the mean vector and variance-covariance matrix elements converge to the real values

computed by our method. We consider a 5-variate t distribution X ✒ t5♣0,Σ, 4q, where

Σ is a positive-definite matrix with unit diagonal elements and off-diagonal elements

σij ✏ σiσj for i ✘ j ✏ 1, . . . , 5 where σ1 ✏ ✁0.4, σ2 ✏ ✁0.7, σ3 ✏ 1, σ4 ✏ 0.7, and σ5 ✏ 0.4.

Let Y
d✏ X ⑤ ♣a ↕ X ↕ bq be a TMVT random variable with lower and upper truncation

limits a ✏ ♣✁✽,✁✽,✁✽,✁3,✁3q❏ and b ✏ ♣✽,✽, 1, 1,✽q❏, respectively. Note that the
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first two dimensions are not truncated, while the other three are upper, interval and

lower truncated, respectively. Hence, we can write a ✏ ♣✁✽2, a2q and b ✏ ♣✽2,b2q, with

a2 ✏ ♣✁✽,✁3,✁3q and b2 ✏ ♣1, 1,✽q. Consider the partitions X1 ✏ ♣X1, X2q❏ and

X2 ✏ ♣X3, X4, X5q❏. Since a non-truncated partition X1 exists, we use relations (2.14)

and (2.16) given in Subsection 3.2 to compute ξ ✏ ErYs and Ω ✏ covrYs and obtain the

true values:

ξ ✏

☎✝✝✝✝✝✝✆
0.167

0.292

-0.417

-0.397

-0.110

☞✍✍✍✍✍✍✌ and Ω ✏

☎✝✝✝✝✝✝✆
1.355

0.224 1.137

✁0.321 ✁0.561 0.802

✁0.166 ✁0.290 0.414 0.698

✁0.101 ✁0.177 0.253 0.131 1.165

☞✍✍✍✍✍✍✌.

In this scenario, lower partitions of ξ and Ω (values in bold) correspond to

ξ2 ✏ ErX2 ⑤ a2 ↕ X2 ↕ b2s and Ω22 ✏ covrX2 ⑤ a2 ↕ X2 ↕ b2s due to P♣a ↕ X ↕ bq ✏
P♣a2 ↕ X2 ↕ b2q, which are computed using our recurrence-based formulae (2.12) and

(2.13), while the reminder are computed using basic algebra where no integrals are needed.

A total of 10,000 realizations of Y were generated, and then the sample mean

and the sample variance-covariance matrix are computed. Figures 2 and 3 shows the

evolution trace of the MC estimates for the distinct elements of ξ and Ω, denoted by ξ̂i

and ω̂ij for i, j ✏ 1, . . . , 5 with i ✘ j, along with true values depicted as blue dashed lines.

Note that even with 10000 MC simulations there exist slight variation in the chains for

some elements as depicted in Figure 3.

Remark that the computation of the first two moments of Y based on ξ2 and

Ω22 using our method discussed in Subsection 3.2 results in 1.2 times faster than that

considering the full vector Y with the non-truncated partition. Even though the evaluation

of integrals involving infinite values are faster, the number of integrals required increases

exponentially as the dimension p increases. For instance, considering a vector of dimension

p ✏ 20, where 15 (75%) of its dimensions are non-truncated, the computational time for

evaluating the first two moments based on (2.14) and (2.16) is 10 times faster than that

using the crude method. Our method indeed improves the computational efficiency.

−0.25

0.00

0.25

0.50

0 2500 5000 7500 10000

sample size

−0.25

0.00

0.25

0.50

0.75

2500 5000 7500 10000

sample size

−0.75

−0.50

−0.25

0.00

0 2500 5000 7500 10000

sample size

−0.75

−0.50

−0.25

0.00

0 2500 5000 7500 10000

sample size

−0.6

−0.4

−0.2

0.0

0.2

0.4

0 2500 5000 7500 10000

sample size

ξ̂1 ξ̂2 ξ̂3 ξ̂4 ξ̂5

Figure 2 – MC estimates for the elements of ξ ✏ ErYs.
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Figure 3 – MC estimates for the distinct elements of Ω ✏ covrYs.

2.5.2 Concentration levels study

In order to study the performance of our proposed model and algorithm, we

analyze the concentrations level dataset introduced before in subsection 1.2.1. Thus, we fit

the MVT-IC model to the data which contain p ✏ 5 attributes, and thus we assume that

Yi ✏ ♣Yi1, Yi2, . . . , Yi5q ✒ t5♣µ,Σ, νq. For the sake of comparison, we also fit the MVN-IC

model which can be considered as a limiting case when ν Ñ ✽. As the concentration

levels are strictly positive measures, to guarantee this, we consider an interval-censoring

analysis by setting all lower limit of detection to equal 0 for all trace metals. Due to the

different scales for each trace metal, we standardize the dataset to have zero mean and unit

variance as in Wang et al. (2019), which considered this study as a left-censoring problem

without taking in account the possibility of predicting negative concentration levels for

the trace metals. For instance, we can see from Figure 5 that Pb censored concentrations
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take values on the small interval r0, 0.1s.

Table 2 – VDEQ data. Estimated mean and ML estimate for ν and model criteria.

Model Cu Pb Zn Ca Mg ν ℓ♣θ̂⑤Yq AIC
Normal 0.556 0.099 2.314 12.083 3.814 - ✁1351.60 2743.19

Student’s t 0.557 0.102 2.329 12.084 3.817 3 ✁1040.21 2122.42

The ML estimates of model parameters are obtained using the EM algorithm

described in Subsection 4.2. The estimated mean of the trace metals, degrees of freedom ν

as well as the maximized log-likelihood and Akaike information criterion (AIC; Akaike,

1974) are shown in Table 2. Here, we can see that the estimated mean values are quite

similar for both models. The estimated value of ν is fairly small, taking the minimum

possible value that our algorithm supports (see subsection 2.3.1). This indicates a lack of

adequacy of the normal assumption for the VDEQ data. This finding can be also confirmed

from Figure 4 where the profile log-likelihood values are depicted for a grid of values of ν.

As expected, the AIC value for our MVT-IC model is lower than that for MVN-IC model.
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Figure 4 – VDEQ data. Plot of the profile log-likelihood of the degrees of freedom ν.

Figure 5 shows the histograms on diagonal and pair-wise scatter plots for the

concentration levels study. From the histograms in diagonal of the matrix plot, we observe

how censored observations (taking values over the dashed lines) are distributed to the left

(blue bins) after fitting our proposed model, while gray bins represent complete observed

points. On the other hand, the scatter plots in off-diagonal of the matrix plot show complete

observed (black) points and the predicted observations using the multivariate SN-C model

(blue triangles).

With the aim of validating the proposed censored model approach, we compare

the correlation matrices of the data by considering 5 strategies: (a) Original: original data,

(b) Omitting: zeros are not considered, (c) Manipulating: multiplying the limit of detection

by the factor 0.75, (d) MVN-IC model, and (e) MVT-IC model.
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Figure 5 – VDEQ data. Histograms (diagonal) and pair-wise scatter plots (lower-triangle)
for the concentration levels study. Complete observed points are represented
in black points (gray bins) and MVT predicted observations in blue triangles
(bins). Limit of detection are represented in dashed lines.

From the results depicted in Figure 6, we can find that the correlation matrices

for the MVN-IC and MVT-IC models are similar. Based on the AIC, we consider the

second one as a reference. We can get very decent results for this study by using the

original data (a) or even manipulating the data (c), with both tending to underestimate

the correlations. Omitting (b) is by far the worst strategy. For example, the correlation

between Pb and Cu is poorly estimated to the point that they have the sign changed.

Similar problems arise for the correlations between Zn and other three elements. Given the

large number of censored observations, the omitting method leads to loss of information

(say the case where the correlation between Ca and Pb and that between Ca and Mg are

estimated to be zero).
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Figure 6 – VDEQ data. Correlation matrices of the concentration levels for 5 different
strategies.

2.6 Conclusion

We have developed recurrence relations for integrals involving the density

of MVT distribution and provided explicit expressions for the first two moments of the

TMVT and FMVT distributions. These recursions allow fast computation of arbitrary-order

product moments of TMVT and FMVT distributions. As an illustration, we have shown the

practicability of our methods through a real-data example that contains positive censored

observations. Our methods can also be applied in the context of missing observations

(Lin et al., 2009). The proposed methodology has been implemented in the R MomTrunc

package, which is available on CRAN repository.
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3 Efficient computation of moments of

folded and doubly truncated multivariate

extended skew-normal distributions

3.1 Introduction

Many applications on simulations or experimental studies, the researches often

generate a large number of datasets with restricted values to fixed intervals. For example,

variables such as pH, grades, viral load in HIV studies and humidity in environmental stud-

ies, have upper and lower bounds due to detection limits, and the support of their densities

is restricted to some given intervals. Thus, the need to study truncated distributions along

with their properties naturally arises. In this context, there has been a growing interest in

evaluating the moments of truncated distributions. These variables are also often skewed,

departing from the traditional assumption of using symmetric distributions. For instance,

Tallis (1961) provided the formulae for the first two moments of truncated multivariate

normal (TMVN) distributions. Lien (1985) gave the expressions for the moments of trun-

cated bivariate log-normal distributions with applications to test the Houthakker effect

(Houthakker, 1959) in future markets. Jawitz (2004) derived the truncated moments of

several continuous univariate distributions commonly applied to hydrologic problems. Kim

(2008) provided analytical formulae for moments of the truncated univariate Student-t dis-

tribution in a recursive form. Flecher et al. (2010) obtained expressions for the moments of

truncated univariate skew-normal distributions (Azzalini, 1985) and applied the results to

model the relative humidity data. Genç (2013) studied the moments of a doubly truncated

member of the symmetrical class of univariate normal/independent distributions and their

applications to the actuarial data. Ho et al. (2012) presented a general formula based

on the slice sampling algorithm to approximate the first two moments of the truncated

multivariate Student-t (TMVT) distribution under the double truncation. Arismendi

(2013) provided explicit expressions for computing arbitrary order product moments of

the TMVN multivariate distribution by using the moment generating function (MGF).

However, the calculation of this approach relies on differentiation of the MGF and can be

somewhat time consuming.

Instead of differentiating the MGF of the TMVN distribution, Kan & Robotti

(2017) recently presented recurrence relations for integrals that are directly related to the

density of the multivariate normal distribution for computing arbitrary order product

moments of the TMVN distribution. These recursions offer a fast computation of the
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moments of folded (FN) and TMVN distributions, which require evaluating p-dimensional

integrals that involve the Normal (N) density. Explicit expressions for some low order

moments of FN and TMVN distributions are presented in a clever way, although some

proposals to calculate the moments of the univariate truncated skew-normal distribution

and truncated univariate skew-normal/independent distribution (Flecher et al., 2010)

has recently been published. So far, to the best of our knowledge, there has not been

attempt on studying neither moments nor product moments of the folded multivariate

extended skew-normal (FESN) and truncated multivariate extended skew-normal (TESN)

distributions. Moreover, our proposed methods allow to compute, as a by-product, the

product moments of folded and truncated distributions, of the N (Kan & Robotti, 2017),

SN (Azzalini & Dalla-Valle, 1996), and their respective univariate versions. The proposed

algorithm and methods are implemented in the new R package MomTrunc.

The rest of this paper is organized as follows. In Section 3.2 we briefly discuss

some preliminary results related to the multivariate SN, ESN and TESN distributions and

some of its key properties. The section 3.3 presents a recurrence formula of an integral

to be applied in the essential evaluation of moments of the TESN distribution as well

as explicit expressions for the first two moments of the TESN and TMVN distributions.

A direct relation between the moments of the TESN and TMVN distribution is also

presented which is used to improved the proposed methods. In section 3.4, by means of

approximations, we propose strategies to circumvent some numerical problems that arise

on limiting distributions and extreme cases. We compare our proposal with others popular

methods of the literature in Section 3.5. Finally, Section 3.6 is devoted to the moments

of the FESN distribution, several related results are discussed. Explicit expressions are

presented for high order moments for the univariate case and the mean vector and variance-

covariance matrix of the multivariate FESN distribution. Finally, some concluding remarks

are presented in Section 3.7.

3.2 Preliminaries

3.2.1 The multivariate skew-normal distribution

In this subsection we present the skew-normal distribution and some of its

properties. We say that a p✂ 1 random vector Y follows a multivariate SN distribution

with p✂ 1 location vector µ, p✂p positive definite dispersion matrix Σ and p✂ 1 skewness

parameter vector λ P R
p, and we write Y ✒ SNp♣µ,Σ,λq, if its joint probability density

function (pdf) is given by

SNp♣y; µ,Σ,λq ✏ 2φp♣y; µ,ΣqΦ1♣λ❏Σ✁1④2♣y ✁ µqq, (3.1)

where Φ1♣☎q represents the cumulative distribution function (cdf) of the standard univariate

normal distribution. If λ ✏ 0 then (3.1) reduces to the symmetric Np♣µ,Σq pdf. Except
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by a straightforward difference in the parametrization considered in (3.1), this model

corresponds to the one introduced by Azzalini & Dalla-Valle (1996), whose properties

were extensively studied in Azzalini & Capitanio (1999). See also Arellano-Valle & Genton

(2005).

Proposition 3.1 (cdf of the SN). If Y ✒ SNp♣µ,Σ,λq, then for any y P R
p

FY♣yq ✏ P♣Y ↕ yq ✏ 2Φp�1

�♣y❏, 0q❏; µ✝,Ω
✟
, (3.2)

where µ✝ ✏ ♣µ❏, 0q❏ and Ω ✏
✄

Σ ✁∆

✁∆❏ 1

☛
, with ∆ ✏ Σ1④2λ④♣1� λ❏λq1④2.

Proof of proposition 3.1 can be found in Azzalini & Dalla-Valle (1996). It is worth

mentioning that the multivariate skew-normal distribution is closed over marginalization

but not conditioning. Next we present its extended version which holds both properties,

called, the multivariate ESN distribution.

3.2.2 The extended multivariate skew-normal distribution

We say that a p ✂ 1 random vector Y follows a ESN distribution with p ✂ 1

location vector µ, p✂ p positive definite dispersion matrix Σ, a p✂ 1 skewness parameter

vector λ P R
p, and a shift or extension parameter τ P R, denoted by Y ✒ ESNp♣µ,Σ,λ, τq,

if its pdf is given by

ESNp♣y; µ,Σ,λ, τq ✏ ξ✁1φp♣y; µ,ΣqΦ1♣τ � λ❏Σ✁1④2♣y✁ µqq, (3.3)

with ξ ✏ Φ1♣τ④♣1 � λ❏λq1④2q. Note that when τ ✏ 0, we retrieve the skew-normal

distribution defined in (3.1), that is, ESNp♣y; µ,Σ,λ, 0q ✏ SNp♣y; µ,Σ,λq. Here, we used

a slightly different parametrization of the ESN distribution than the one given in Arellano-

Valle & Azzalini (2006a) and Arellano-Valle & Genton (2010). Futhermore, Arellano-Valle

& Genton (2010) deals with the multivariate extended skew-t (EST) distribution, in which

the ESN is a particular case when the degrees of freedom ν goes to infinity. From this last

work, it is straightforward to see that

ESNp♣y; µ,Σ,λ, τqÝÑφp♣y; µ,Σq, as τ Ñ �✽.

Also, letting Z ✏ Σ✁1④2♣Y ✁ µq, it follows that Z ✒ ESNp♣0, I,λ, τq, with mean vector

and variance-covariance matrix

ErZs ✏ ηλ and covrZs ✏ Ip ✁ ErZs
✂
ErZs ✁ τ

1� λ❏λ
λ

✡❏
,

with η ✏ φ1♣τ ; 0, 1� λ❏λq④ξ. Then, the mean vector and variance-covariance matrix of Y

can be easily computed as ErYs ✏ µ�Σ1④2
ErZs and covrYs ✏ Σ1④2covrZsΣ1④2.
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Next, we present some propositions that are crucial to develop our methods.

First, we propose the marginal and conditional distribution of the ESN with pdf as in (3.3)

(proof can be found in the Appendix B), while the second and third proposition comes

from Arellano-Valle & Azzalini (2006a) and Arellano-Valle & Genton (2010).

Proposition 3.2 (Marginal and conditional distribution of the ESN ). Let Y ✒ ESNp♣µ,Σ,
λ, τq and Y is partitioned as Y ✏ ♣Y❏

1
,Y❏

2
q❏ of dimensions p1 and p2 (p1 � p2 ✏ p),

respectively. Let

Σ ✏
✄

Σ11 Σ12

Σ21 Σ22

☛
, µ ✏ ♣µ❏

1
,µ❏

2
q❏, λ ✏ ♣λ❏

1
,λ❏

2
q❏ and ϕ ✏ ♣ϕ❏

1
,ϕ❏

2
q❏

be the corresponding partitions of Σ, µ, λ and ϕ ✏ Σ✁1④2λ. Then,

Y1 ✒ ESNp1♣µ1,Σ11, c12Σ
1④2
11 ϕ̃1, c12τq, Y2⑤Y1 ✏ y1 ✒ ESNp2♣µ2.1,Σ22.1,Σ

1④2
22.1ϕ2, τ2.1q

where c12 ✏ ♣1 � ϕ❏
2

Σ22.1ϕ2q✁1④2, ϕ̃1 ✏ ϕ1 � Σ✁1

11
Σ12ϕ2, Σ22.1 ✏ Σ22 ✁ Σ21Σ

✁1

11
Σ12,

µ2.1 ✏ µ2 � Σ21Σ
✁1

11
♣y1 ✁ µ1q and τ2.1 ✏ τ � ϕ̃❏

1
♣y1 ✁ µ1q.

Proposition 3.3 (Stochastic representation of the ESN ). Let X ✒ Np�1♣µ✝,Ωq with X

part as X ✏ ♣X1
❏, X2q❏. If

Y
d✏ ♣X1⑤X2 ➔ τ̃q, (3.4)

it follows that Y ✒ ESNp♣µ,Σ,λ, τq, with µ✝ and Ω as defined in Proposition 3.1, and

τ ✏ τ̃♣1 � λ❏λq1④2.

Proposition 3.4 (cdf of the ESN ). If Y ✒ ESNp♣µ,Σ,λ, τq, then for any y P R
p

FY♣yq ✏ P♣Y ↕ yq ✏ Φp�1

�♣y❏, τ̃q❏; µ✝,Ω
✟

Φ♣τ̃q . (3.5)

Proof is direct from proposition 3.3. Hereinafter, for Y ✒ ESNp♣µ,Σ,λ, τq, we

will denote to its cdf as FY♣yq ✑ Φ̃p♣y; µ,Σ,λ, τq for simplicity.

Let A be a Borel set in R
p. We say that the random vector Y has a truncated

extended skew-normal distribution on A when Y has the same distribution as Y⑤♣Y P Aq.
In this case, the pdf of Y is given by

f♣y ⑤ µ,Σ, ν;Aq ✏ ESNp♣y; µ,Σ,λ, τq
P♣Y P Aq 1A♣yq,

where 1A is the indicator function of A. We use the notation Y ✒ TESNp♣µ,Σ,λ, τ ;Aq.
If A has the form

A ✏ t♣x1, . . . , xpq P R
p : a1 ↕ x1 ↕ b1, . . . , ap ↕ xp ↕ bp✉ ✏ tx P R

p : a ↕ x ↕ b✉, (3.6)
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then we use the notation tY P A✉ ✏ ta ↕ Y ↕ b✉, where a ✏ ♣a1, . . . , apq❏ and

b ✏ ♣b1, . . . , bpq❏. Here, we say that the distribution of Y is doubly truncated. Analogously

we define tY ➙ a✉ and tY ↕ b✉. Thus, we say that the distribution of Y is truncated from

below and truncated from above, respectively. For convenience, we also use the notation

Y ✒ TESNp♣µ,Σ,λ, τ ; ♣a,bqq.

3.3 On moments of the doubly truncated multivariate ESN distri-

bution

3.3.1 A recurrence relation

For two p-dimensional vectors x ✏ ♣x1, . . . , xpq❏ and κ ✏ ♣k1, . . . , kpq❏, let xκ

stand for ♣xκ1
1
, . . . , xκp

p q, and let a♣iq be a vector a with its ith element being removed. For

a matrix A, we let Ai♣jq stand for the ith row of A with its jth element being removed.

Similarly, A♣i,jq stands for the matrix A with its ith row and jth columns being removed.

Besides, let ei denote a p✂ 1 vector with its ith element equaling one and zero otherwise.

Let

Lp♣a,b; µ,Σ,λ, τq ✏
➺ b

a

ESNp♣y; µ,Σ,λ, τqdx.

We are interested in evaluating the integral

Fp
κ♣a,b; µ,Σ,λ, τq ✏

➺ b

a

xκESNp♣y; µ,Σ,λ, τqdx. (3.7)

The initial condition is obviously Fp
0 ♣a,b; µ,Σ,λ, τq ✏ Lp♣a,b; µ,Σ,λ, τq. When λ ✏ 0

and τ ✏ 0, we recover the multivariate normal case, and then

Fp
κ♣a,b; µ,Σ,0, 0q ✑ F p

κ♣a,b; µ,Σq ✏
➺ b

a

xκφp♣x; µ,Σqdx, (3.8)

with initial condition

Lp♣a,b; µ,Σ,0, 0q ✑ Lp♣a,b; µ,Σq ✏
➺ b

a

φp♣x; µ,Σqdx. (3.9)

Note that we use calligraphic style for the integrals of interest Fp
κ and Lp when we work

with the skewed version. In both expressions (3.8) and (3.9), for the normal case, we are

using compatible notation with the one used by Kan & Robotti (2017).

3.3.1.1 Univariate case

Let θ ✏ ♣µ, σ2, λ, τq❏ be the set of parameters. When p ✏ 1, it is straightforward

to use integration by parts to show that

F1

0
♣a, b; θq ✏ ξ✁1 rΦ2 ♣♣b✁ µ, τq❏; 0,Ωq ✁ Φ2 ♣♣a✁ µ, τq❏; 0,Ωqs ,
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F1

k�1
♣a, b; θq ✏ µF1

k ♣a, b; θq � kσ2F1

k✁1
♣a, b; θq � λσηF 1

k ♣a, b;µ✁ µb, γ
2q

�σ2
�
akESN1♣a; θq ✁ bkESN1♣b; θq✟; for k ➙ 0,

where Ω ✏
✄

σ2 ✁σψ
✁σψ 1

☛
, ψ ✏ λ④

❄
1� λ2, µb ✏ 1

σ
λτγ2 and γ ✏ σ④

❄
1� λ2.

When p → 1, we need a similar recurrence relation in order to compute

Fp
κ♣a,b,µ,Σ,λ, τq which we propose in the next theorem.

3.3.1.2 Multivariate case

Theorem 3.1. For p ➙ 1 and i ✏ 1, . . . , p,

Fp
κ�ei

♣a,b; µ,Σ,λ, τq ✏ µiF
p
κ♣a,b; µ,Σ,λ, τq � δiF

p
κ♣a,b; µ✁ µb,Γq � e❏i Σdκ, (3.10)

where δ ✏ ♣δ1, . . . , δpq❏ ✏ ηΣ1④2λ, µb ✏ τ̃∆, Γ ✏ Σ✁∆∆❏ and dκ is a p-vector with jth

element

dκ,j ✏ kjF
p
κ✁ej

♣a,b,µ,Σ,λ, τq (3.11)

�akj

j ESN1♣aj;µj, σ
2

j , cjσjϕ̃j, cjτqFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃a

j , Σ̃j, Σ̃
1④2

j ϕ♣jq, τ̃
a
j q

✁bkj

j ESN1♣bj;µj, σ
2

j , cjσjϕ̃j, cjτqFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃b

j , Σ̃j, Σ̃
1④2

j ϕ♣jq, τ̃
b
j q,

with τ̃a
j ✏ τ � ϕ̃j♣aj ✁ µjq and τ̃b

j ✏ τ � ϕ̃j♣bj ✁ µjq, where

µ̃a
j ✏ µ♣jq �Σ♣jq,j

aj ✁ µj

σ2
j

, µ̃b
j ✏ µ♣jq �Σ♣jq,j

bj ✁ µj

σ2
j

, ϕ̃j ✏ ϕj � 1
σ2

j

Σj♣jqϕ♣jq,

cj ✏ 1
♣1�ϕ❏

♣jqΣ̃jϕ♣jqq1④2
, and Σ̃j ✏ Σ♣jq,♣jq ✁ 1

σ2
j

Σ♣jq,jΣj,♣jq.

Proof. Taking the derivative of the ESN density, we have

❇
❇x
ESNp♣x; µ,Σ,λ, τq ✏ ξ✁1

✧
φp♣x; µ,Σq ❇❇x

Φ1

�
τ � λ❏Σ✁1④2♣x ✁ µq✟� ❇

❇x
φp♣x; µ,Σq

Φ♣τ � λ❏Σ✁1④2♣x ✁ µqq
✯
,

✏ ξ✁1

✦
Σ✁1④2λφ1♣τ � λ❏Σ✁1④2♣x ✁ µqqφp♣x; µ,Σq ✁Σ✁1♣x ✁ µq

✂ φp♣x; µ,ΣqΦ1♣τ � λ❏Σ✁1④2♣x ✁ µqq
✮
,

✏ ✁Σ✁1♣x ✁ µqESNp♣x; µ,Σ,λ, τq � ξ✁1Σ✁1④2λφp♣x; µ,Σq

✂ φ1♣τ � λ❏Σ✁1④2♣x ✁ µqq. (3.12)
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On the other hand we have that

φ1♣τ � λ❏Σ✁1④2♣x ✁ µqqφp♣x; µ,Σq ✏ ⑤Σ✁1⑤1④2
♣2πq p�1

2

exp
✧
✁1

2

✏
δ♣xq � ♣τ � λ❏Σ✁1④2♣x ✁ µqq2

✘✯
,

✏ ⑤ΓΣ✁1⑤1④2 exp
✧

µ❏
b Γ✁1µb

2

✯
✂ 1❄

2π
exp

✧
✁τ

2

2

✯
✂ 1
♣2πq p

2 ⑤Γ⑤1④2 exp
✧
✁δ♣x; µ ✁ µb,Γq

2

✯
,

✏ ⑤Σ✁1Γ⑤1④2 exp
✧

µ❏
b Γ✁1µb

2

✯
φ1♣τqφp♣x; µ ✁ µb,Γq,

(3.13)

where we use the fact that,

δ♣xq � ♣τ � λ❏Σ✁1④2♣x ✁ µqq2 ✏ ♣x ✁ µq❏Γ✁1♣x ✁ µq � 2µ❏
b Γ✁1♣x ✁ µq � τ 2,

✏ ♣x ✁ ♣µ ✁ µbqq❏Γ✁1♣x ✁ ♣µ ✁ µbqq ✁ µ❏
b Γ✁1µb � τ 2,

✏ δ♣x; µ ✁ µb,Γq ✁ µ❏
b Γ✁1µb � τ 2,

and where δ♣xq ✑ δ♣x; µ,Σq ✏ ♣x ✁ µq❏Σ✁1♣x ✁ µq is the Mahalanobis distance and

with Γ ✏ Σ1④2♣Ip � λλ❏q✁1Σ1④2 ✏ Σ ✁ ∆∆❏ (using the fact that, ♣Ip � λλ❏q✁1 ✏
Ip ✁ ♣1 � λ❏λq✁1λλ❏) and µb ✏ τΓΣ✁1④2λ ✏ τ̃∆.

Plugging (3.13) in (3.12), we obtain

✁ ❇
❇x
ESNp♣x; µ,Σ,λ, τq ✏Σ✁1 r♣x ✁ µqESNp♣x; µ,Σ,λ, τq ✁ δφp♣x; µ ✁ µb,Γqs ,

where δ ✏ ηΣ1④2λ and

η ✏ ⑤ΓΣ✁1⑤1④2 ✂ φ1♣τq
ξ

exp
✧

µ❏
b Γ✁1µb

2

✯
, (3.14)

✏ ⑤Ip � λλ❏⑤✁1④2 ✂ φ1♣τq
ξ

exp
✧
τ 2λ❏♣Ip � λλ❏q✁1λ

2

✯
,

✏ 1❄
1 � λ❏λ

✂ 1
ξ
❄

2π
exp

✧
✁τ

2

2

✒
1 ✁ λ❏λ

1 � λ❏λ

✚✯
,

✏ 1❄
1 � λ❏λ

✂ 1
ξ
❄

2π
exp

✧
✁1

2
τ 2

1 � λ❏λ

✯
,

✏ φ1♣τ ; 0, 1 � λ❏λq
ξ

with det♣Ip � λλ❏q ✏ 1 � λ❏λ from the Sylvester’s determinant identity (Harville, 1997).

Multiplying both sides by xκ and integrating from a to b, we have (after

suppressing the arguments of Fp
κ and F p

κ) that

dκ ✏ Σ✁1

✔✖✖✖✖✕
Fp

κ�e1
✁ µ1F

p
κ ✁ δ1F

p
κ

Fp
κ�e2

✁ µ2F
p
κ ✁ δ2F

p
κ

...
...

Fp
κ�ep

✁ µpFp
κ ✁ δpF

p
κ

✜✣✣✣✣✢ ,
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and the jth element of the left hand side is

dκ,j ✏ ✁
➺ b♣jq

a♣jq

xκESNp♣x; µ,Σ,λ, τq
✞✞✞✞bj

xj✏aj

dx♣jq �
➺ b

a

kjx
κ✁ejESNp♣x; µ,Σ,λ, τqdx

by using integration by parts. Using Proposition 3.2, we know that

ESNp♣x; µ,Σ,λ, τq✞✞
xj✏aj

✏ ESN1♣aj;µj, σ
2

j , cjσjϕ̃j, cjτqESNp✁1♣x♣jq; µ̃a
j , Σ̃j, Σ̃

1④2

j ϕ♣jq, τ̃
a
j q,

ESNp♣x; µ,Σ,λ, τq✞✞
xj✏bj

✏ ESN1♣bj;µj, σ
2

j , cjσjϕ̃j, cjτqESNp✁1♣x♣jq; µ̃b
j , Σ̃j, Σ̃

1④2

j ϕ♣jq, τ̃
b
j q,

and we obtain

dκ,j ✏ kjF
p
κ✁ej

♣a,b; µ,Σ,λ, τq
�akj

j ESN1♣aj;µj, σ
2

j , cjσjϕ̃j, cjτqFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃a

j , Σ̃j, Σ̃
1④2

j ϕ♣jq, τ̃
a
j q

✁bkj

j ESN1♣bj;µj, σ
2

j , cjσjϕ̃j, cjτqFp✁1

κ♣jq
♣a♣jq,b♣jq; µ̃b

j , Σ̃j, Σ̃
1④2

j ϕ♣jq, τ̃
b
j q.

Finally, multiplying both sides by Σ, we obtain (3.10). This completes the proof.

This delivers a simple way to compute any arbitrary moments of multivariate

TSN distribution Fp
κ based on at most 3p� 1 lower order terms, with p� 1 of them being

p-dimensional integrals, the rest being ♣p✁ 1q-dimensional integrals, and a normal integral

F p
κ that can be easily computed through our proposed R package MomTrunc available at

CRAN. When kj ✏ 0, the first term in (3.11) vanishes. When aj ✏ ✁✽, the second term

vanishes, and when bj ✏ �✽, the third term vanishes. When we have no truncation, that

is, all the a✶is are ✁✽ and all the b✶is are �✽, for Y ✒ ESNp♣µ,Σ,λ, τq, we have that

Fp
κ♣✁✽,�✽; µ,Σ,λ, τq ✏ ErYκs,

and in this case the recursive relation is

ErYκ�eis ✏ µiErYκs � δiErWκs �
p➳

j✏1

σijkjErYκ✁eis, i ✏ 1, . . . , p,

with W ✒ Np♣µ ✁ µb,Γq.
It is worth to stress that any arbitrary truncated moment of Y, that is,

ErYκ⑤a ↕ Y ↕ bs ✏ Fp
κ♣a,b; µ,Σ,λ, τq

Lp♣a,b; µ,Σ,λ, τq , (3.15)

can be computed using the recurrence relation given in Theorem 3.1. In the next section,

we proposed another approach to compute (3.15) using a unique corresponding arbitrary

moment to a truncated normal vector.
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3.3.2 Computing ESN moments based on normal moments

Next, we present a theorem establishing a 1-1 relation between the ESN integral

Fκ and the normal integral Fκ.

Theorem 3.2. It holds that

Fp
κ♣a,b; µ,Σ,λ, τq ✏ ξ✁1F

p�1

κ✝ ♣a✝,b✝; µ✝,Ωq, (3.16)

with µ✝ and Ω as defined in Proposition 3.1, and κ✝ ✏ ♣κ❏, 0q❏, a✝ ✏ ♣a❏,✁✽q❏ and

b✝ ✏ ♣b❏, τ̃q❏.

In particular, for κ ✏ 0, then

Lp♣a,b; µ,Σ,λ, τq ✏ ξ✁1Lp�1♣a✝,b✝; µ✝,Ωq. (3.17)

Proof. From the inclusion-exclusion principle, we have that

Fp
κ♣a,b; µ,Σ,λ, τq ✏

➳
sPS♣a,bq

♣✁1qns

➺ s

✁✽

xκESNp♣x; µ,Σ,λ, τqdx,

where S♣a,bq ✏ a✂b is a cartesian product with 2p elements of the form s ✏ ♣s1, . . . , spq❏,

with si P tai, bi✉ for i ✏ 1, . . . , p and ns ✏
p➳

i✏1

✶♣si ✏ aiq. For Y ✒ ESNp♣µ,Σ,λ, τq and

X ✏ ♣X1
❏, X2q❏ ✒ Np�1♣µ✝,Ωq, it follows from its stochastic representation (3.4) that

Fp
κ♣a,b; µ,Σ,λ, τq ✏

➳
sPS♣a,bq

♣✁1qns

➺ s

✁✽

xκ
1
fX1♣x1⑤X2 ➔ τ̃qdx1,

✏
➳

sPS♣a,bq

♣✁1qns

➺ s

✁✽

➺ τ̃

✁✽

xκ
1

fY♣x1, x2q
P ♣X2 ➔ τ̃qdx2dx1,

✏ ξ✁1
➳

sPS♣a,bq

♣✁1qns

➺ s

✁✽

➺ τ̃

✁✽

xκ✝fX♣xqdx,

✏ ξ✁1
➳

sPS♣a,bq

♣✁1qns

➺ s1

✁✽

xκ✝φp�1♣x; µ✝,Ωqdx,

✏ ξ✁1
➳

sPS♣a,bq

♣✁1qnsF
p�1

κ✝ ♣✁✽, s1; µ✝,Ωq

with s1 ✏ ♣s❏, τ̃q❏ being a vector of dimension p � 1. For convenience, we preserve the

index s in the summation due to s1 is a one-to-one transformation. Similarly, we define

the vector s0 ✏ ♣s❏,✁✽q❏.

Let U0 and U1 be the two sets U0 ✏
↕

sPS♣a,bq

s0 and U1 ✏
↕

sPS♣a,bq

s1, both with 2p

elements. Then, U0❨U1 contains the same 2p�1 elements s✝ in S♣a✝,b✝q for a✝ ✏ ♣a❏,✁✽q❏
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and b✝ ✏ ♣b❏, τ̃q❏. Since Fp�1

κ✝ ♣s0; µ✝,Ωq ✏ 0 for all s0 P U0 and ns✝ ✏ ns �✶♣sp�1 ✏ ✁✽q,
then ➳

sPS♣a,bq

♣✁1qnsF
p�1

κ✝ ♣✁✽, s1; µ✝,Ωq ✏
➳

s0PU0

♣✁1qns�1F
p�1

κ✝ ♣✁✽, s0; µ✝,Ωq

�
➳

s1PU1

♣✁1qnsF
p�1

κ✝ ♣✁✽, s1; µ✝,Ωq,

✏
➳

s✝PS♣a✝,b✝q

♣✁1qns✝F
p�1

κ✝ ♣✁✽, s✝; µ✝,Ωq,

✏ F
p�1

κ✝ ♣a✝,b✝; µ✝,Ωq.

Equation (3.17) offers us in a very convenient manner to compute the probability

Lp♣a,b; µ,Σ,λ, τq, since efficient algorithms already exist to calculate Lp♣a,b; µ,Σq (e.g.,

see Genz (1992)), which avoids performing 2p evaluations of cdf of the multivariate N

distribution.

Corollary 3.1. For Y ✒ ESNp♣µ,Σ,λ, τq and X ✒ Np�1♣µ✝,Ωq, it follows from Theo-

rem 3.2 that

ErYκ⑤a ↕ Y ↕ bs ✏ ErXκ✝ ⑤a✝ ↕ X ↕ b✝s,
with a✝, b✝, κ✝, µ✝ and Ω as defined in Theorem 3.2.

3.3.3 Mean and covariance matrix of multivariate TESN distributions

Let us consider Y ✒ TESNp♣µ,Σ,λ, τ, ♣a,bqq. In light of Theorem 3.1, we

have that

ErYis ✏ 1
L

✓
δiL�

p➳
j✏1

σij

✏
ESN1♣aj;µj, σ

2

j , cjσjϕ̃j, cjτqLp✁1♣a♣jq,b♣jq; µ̃a
j , Σ̃j, Σ̃

1④2

j ϕ♣jq, τ̃
a
j q

✁ ESN1♣bj;µj, σ
2

j , cjσjϕ̃j, cjτqLp✁1♣a♣jq,b♣jq; µ̃b
j , Σ̃j, Σ̃

1④2

j ϕ♣jq, τ̃
b
j q
✘✛� µi,

for i ✏ 1, . . . , p, where L ✑ Lp♣a,b; µ,Σ,λ, τq and L ✑ Lp♣a,b; µ ✁ µb,Γq.
It follows that

ErYs ✏ µ � 1
L
rLδ � Σ♣qa ✁ qbqs, (3.18)

where the j-th element of qa and qb are

qa,j ✏ ESN1♣aj;µj, σ
2

j , cjσjϕ̃j, cjτqLp✁1♣a♣jq,b♣jq; µ̃a
j , Σ̃j, Σ̃

1④2

j ϕ♣jq, τ̃
a
j q, (3.19)

qb,j ✏ ESN1♣bj;µj, σ
2

j , cjσjϕ̃j, cjτqLp✁1♣a♣jq,b♣jq; µ̃b
j , Σ̃j, Σ̃

1④2

j ϕ♣jq, τ̃
b
j q. (3.20)
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Denoting D ✏ rde1 , . . . ,dep
s, we can write

ErYY❏s ✏ µErYs❏ � 1
L
rLδErWs❏ � ΣDs, (3.21)

covrYs ✏ ✏
µ ✁ ErYs✘ErYs❏ � 1

L
rLδErWs❏ � ΣDs, (3.22)

where W ✒ TNp♣µ ✁ µb,Γ, ♣a,bqq, that is a p-variate truncated normal distribution on

♣a,bq.

Besides, from Corollary 3.1, we have that the first two moments of Y can be

also computed as

ErYs ✏ ErXs♣p�1q, (3.23)

ErYY❏s ✏ ErXX❏s♣p�1,p�1q, (3.24)

with X ✒ TNp�1♣µ✝,Ω; ♣a✝,b✝qq. Note that covrYs ✏ ErYY❏s ✁ ErYsErY❏s. Equations

(3.23) and (3.24) are more convenient for computing ErYs and covrYs since all boils

down to compute the mean and the variance-covariance matrix for a p� 1-variate TMVN

distribution which integrals are less complex than the ESN ones.

3.3.4 Mean and covariance matrix of TMVN distributions

Some approaches exists to compute the moments of a TMVN distribution. For

instance, for doubly truncation, Manjunath & Wilhelm (2009) (method available through

the tmvtnorm R package) computed the mean and variance of X directly deriving the

MGF of the TMVN distribution. On the other hand, Kan & Robotti (2017) (method

available through the MomTrunc R package) is able to compute arbitrary higher order

TMVN moments using a recursive approach as a result of differentiating the multivariate

normal density. For right truncation, Vaida & Liu (2009) (see Appendix B) proposed a

method to compute the mean and variance of X also by differentiating the MGF, but

where the off-diagonal elements of the Hessian matrix are recycled in order to compute

its diagonal, leading to a faster algorithm. Next, we present an extension of Vaida & Liu

(2009) algorithm to handle doubly truncation.

3.3.5 Deriving the first two moments of a double truncated MVN distribution

through its MGF

Theorem 3.3. Let X ✒ TNp♣0,R; ♣a,bqq, with R being a correlation matrix of order

p✂ p. Then, the first two moments of X are given by

❊rXs ✏ ❇m♣tq
❇t

✞✞✞✞❏
t✏0

✏ ✁ 1
L

Rq,
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❊rXX❏s ✏ ❇2m♣tq
❇t❇t❏

✞✞✞✞
t✏0

✏ R � 1
L

RHR,

and consequently,

covrXs ✏ R � 1
L2

R
�
LH✁ qq❏

✟
R,

where L ✑ Lp♣a,b; 0,Rq, q ✏ qa ✁ qb, with the i-th element of qa and qb as

qa,i ✏ φ1♣aiqLp✁1♣a♣iq,b♣iq; aiR♣iq,i, R̃iq and qb,i ✏ φ1♣biqLp✁1♣a♣iq,b♣iq; biR♣iq,i, R̃iq,

H being a symmetric matrix of dimension p, with off-diagonal elements hij given by

hij ✏ haa
ij ✁ hba

ij ✁ hab
ij � hbb

ij ,

✏ φ2♣ai, aj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µaa
ij , R̃ijq ✁ φ2♣bi, aj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µba

ij , R̃ijq
✁ φ2♣ai, bj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µab

ij , R̃ijq � φ2♣bi, bj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µbb
ij , R̃ijq,

(3.25)

and diagonal elements

hii ✏ aiqai
✁ biqbi

✁Ri,♣iqH♣iq,i, (3.26)

with R̃i ✏ R♣iq,♣iq ✁ R♣iq,iRi,♣iq, µ
αβ
ij ✏ R♣ijq,ri,js♣αi, βjq❏ and R̃ij ✏ R♣i,jq,♣i,jq ✁ R♣i,jq,ri,js

Rri,js,♣i,jq.

Proof. See Appendix B.

The main difference of our proposal in Theorem 3.3 and other approaches

deriving the MGF relies on (3.26), where the diagonal elements are recycled using the

off-diagonal elements hij, 1 ↕ i ✘ j ↕ p. Furthermore, for W ✒ TNp♣µ,Σ; ♣ã, b̃qq, we

have that

❊rWs ✏ µ✁ S❊rXs, (3.27)

covrWs ✏ S covrXsS, (3.28)

where Σ being a positive-definite matrix, S ✏ diag♣σ1, σ2, . . . , σpq, and truncation limits ã

and b̃ such that a ✏ S✁1♣ã ✁ µq and b ✏ S✁1♣b̃✁ µq.

3.4 Dealing with limiting and extreme cases

Let consider Y ✒ ESNp♣µ,Σ,λ, τq. As τ Ñ ✽, we have that ξ ✏ Φ♣τ̃q Ñ 1.

Besides, as τ Ñ ✁✽, we have that ξ Ñ 0 and consequently Fp
κ♣a,b; µ,Σ,λ, τq ✏

ξ✁1F
p�1

κ✝ ♣a✝,b✝; µ✝,Ωq Ñ ✽. Thus, for negative τ̃ values small enough, we are not able to

compute ❊rYκs due to computation precision. For instance, in R software, Φ♣τ̃q ✏ 0 for

τ̃ ➔ ✁37. The next proposition helps us to circumvent this problem.
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Proposition 3.5. (Limiting distribution for the ESN) As τ Ñ ✁✽,

ESNp♣y; µ,Σ,λ, τ qÝÑφp♣y; µ✁ µb,Γq. (3.29)

Proof. Let X2 ✒ N♣0, 1q. As τ̃ Ñ ✁✽, we have that P ♣X2 ↕ τ̃q Ñ 0, ❊rX2⑤X2 ↕ τ̃ s Ñ τ̃

and varrX2⑤X2 ↕ τ̃ s Ñ 0 (i.e., X2 is (i.e., X2 is degenerated on τ̃). In light of Proposition

3.3, Y
d✏ ♣X1⑤X2 ✏ τ̃q, and by the conditional distribution of a multivariate normal, it

is straightforward to show that ErX1⑤X2 ✏ τ̃ s ✏ µ✁ µb and covrX1⑤X2 ✏ τ̃ s ✏ Γ, which

concludes the proof.

3.4.1 Approximating the mean and variance-covariance of a TMVN distribu-

tion for extreme cases

While using the normal relation (3.23) and (3.24), we may also face numerical

problems for extreme settings of λ and τ due to the scale matrix Ω does depend on them.

Most common problem is that the normalizing constant Lp♣a✝,b✝; µ✝,Ωq is approximately

zero, because the probability density has been shifted far from the integration region. It is

worth mentioning that, for these cases, it is not even possible to estimate the moments

generating Monte Carlo (MC) samples due to the high rejection ratio when subsetting to

a small integration region.

For instance, consider a bivariate truncated normal vector X ✏ ♣X1, X2q❏, with

X1 and X2 having zero mean and unit variance, cov♣X1, X2q ✏ ✁0.5 and truncation limits

a ✏ ♣✁20,✁10q❏ and b ✏ ♣✁9, 10q❏. Then, we have that the limits of X1 are far from the

density mass since P ♣✁20 ↕ X1 ↕ ✁9q ✓ 0. For this case, both the mtmvnorm function

from the tmvtnorm R package and the Matlab codes provided in Kan & Robotti (2017)

return wrong mean values outside the truncation interval ♣a,bq and negative variances.

Values are quite high too, with mean values greater than 1✂ 1010 and all the elements of

the variance-covariance matrix greater than 1✂ 1020. When changing the first upper limit

from ✁9 to ✁13, that is b ✏ ♣✁13, 10q❏, both routines return Inf and NaN values for all

the elements.

Although the above scenarios seem unusual, extreme situations that require

correction are more common than expected. For instance, this occurs when the elements of

the scale matrix Σ are small, even if the location parameter µ is close to the integration

region. Furthermore, the development of this part was motivated as we identified this

problem when we fit censored regression models, with high asymmetry and presence of

outliers. Hence, we present correction method in order to approximate the mean and

the variance-covariance of a multivariate TMVN distribution even when the numerical

precision of the software is a limitation.
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Dealing with out-of-bounds limits

Consider the partition X ✏ ♣X❏
1
,X❏

2
q❏ such that dim♣X1q ✏ p1, dim♣X2q ✏ p2,

where p1 � p2 ✏ p. It is well known that

ErXs ✏ E

✓
ErX1⑤X2s

X2

✛

and

covrXs ✏
✓

ErcovrX1⑤X2ss � covrErX1⑤X2ss covrErX1⑤X2s,X2s
covrX2,ErX1⑤X2ss covrX2s

✛
.

Now, consider X ✒ TNp

�
µ,Σ, ♣a,bq✟ to be partitioned as above. Also consider

the corresponding partitions of µ, Σ, a ✏ ♣a❏
1
, a❏

2
q❏ and b ✏ ♣b❏

1
,b❏

2
q❏. We say that

the limits ra2,b2s of X2 are out-of-bounds if P ♣a2 ↕ X2 ↕ b2q ✓ 0. Let us consider

the case where we are not able to compute any moment of X, because there exists a

partition X2 of X of dimension p2 that is out-of-bounds. Note this happens because

Lp♣a,b; µ,Σq ↕ P ♣a2 ↕ X2 ↕ b2q ✓ 0. Also, we consider the partition X1 such that

P ♣a1 ↕ X1 ↕ b1q → 0. Since the limits of X2 are out-of-bounds (and a2 ➔ b2), we have two

possible cases: b2 Ñ ✁✽ or a2 Ñ ✽. For convenience, let ξ2 ✏ ErX2s and Ψ22 ✏ covrX2s.
For the first case, as b2 Ñ ✁✽, we have that ξ2 Ñ b2 and Ψ22 Ñ 0p2✂p2 . Analogously, we

have that ξ2 Ñ a2 and Ψ22 Ñ 0p2✂p2 as a2 Ñ ✽.

Then X1 ✒ TNp1

�
µ1,Σ11; ra1,b1s

✟
, X2 ✒ Np2

�
ξ2,0

✟
(i.e., X2 is degenerated

on ξ2) and X1⑤X2 ✒ TNp1

�
µ1 �Σ12Σ

✁1

22
♣ξ2 ✁µ2q,Σ11 ✁Σ12Σ

✁1

22
Σ21; ra1,b1s

✟
. Given that

covrErX1⑤X2ss ✏ 0p1✂p2 and covrErX1⑤X2s,X2s ✏ 0p2✂p2 , it follows that

ErXs ✏
✓
ξ1.2

ξ2

✛
and covrXs ✏

✓
Ψ11.2 0p1✂p2

0p2✂p1 0p2✂p2

✛
, (3.30)

with ξ1.2 ✏ ErX1⑤X2s and Ψ11.2 ✏ covrX1⑤X2s being the mean and variance-covariance

matrix of a TMVN distribution, which can be computed using (3.27) and (3.28).

In the event that there are double infinite limits, we can partition the vector

as well, in order to avoid unnecessary calculation of these integrals.

Dealing with double infinite limits

Let p1 be the number of pairs in ♣a,bq that are both infinite. We consider the

partition X ✏ ♣X❏
1
,X❏

2
q❏, such that the upper and lower truncation limits associated

with X1 are both infinite, but at least one of the truncation limits associated with X2

is finite. Since a1 ✏ ✁✽ and b1 ✏ ✽, it follows that X2 ✒ TNp2

�
µ2,Σ22, ra2,b2s

✟
and
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X1⑤X2 ✒ Np1

�
µ1 � Σ12Σ

✁1

22
♣X2 ✁ µ2q,Σ11 ✁ Σ12Σ

✁1

22
Σ21

✟
. This leads to

ErXs ✏ E

✓
µ1 � Σ12Σ

✁1

22
♣X2 ✁ µ2q

X2

✛
✏
✓
µ1 � Σ12Σ

✁1

22
♣ξ2 ✁ µ2q

ξ2

✛
, (3.31)

and

covrXs ✏
✓

Σ11 ✁ Σ12Σ
✁1

22

�
Ip2 ✁ Ψ22Σ

✁1

22

✟
Σ21 Σ12Σ

✁1

22
Ψ22

Ψ22Σ
✁1

22
Σ21 Ψ22

✛
, (3.32)

with ξ2 and Ψ22 being the mean vector and variance-covariance matrix of a TMVN

distribution, which can be computed using (3.27) and (3.28) as well.

As can be seen, we can use equations (3.31) and (3.32) to deal with double

infinite limits, where the truncated moments are computed only over a p2-variate partition,

avoiding some unnecessary integrals and saving some computational effort. On the other

hand, expression (3.30) let us to approximate the mean and the variance-covariance matrix

for cases where the computational precision is a limitation.

3.5 Comparison of our proposal with existent methods

Now, we compare different approaches to compute the mean vector and variance-

covariance matrix of a p-variate TESN distribution. We consider our proposal derived

from Theorem 3.1, as well as the normal relation given in Theorem 3.2 using different

(some existent) methods for computing the mean and variance-covariance of a TMVN

distribution. The methods that we compare are the following:

Proposal 1: Theorem 3.1, i.e., equations (3.18), and (3.24),
Proposal 2: Normal relation (NR) in Theorem 3.2 using Theorem 3.3,
K&R: NR in Theorem 3.2 using the Matlab routine from Kan & Robotti (2017),
tmvtnorm: NR in Theorem 3.2 using the tmvtnorm R function from Manjunath &

Wilhelm (2009).

Left panel of Figure 7 shows the number of integrals required to achieve this for different

dimensions p. We compare the proposal 1 for a p-variate TESN distribution and the

equivalent p� 1-variate normal approaches K&R and proposal 2.

It is clear that the importance of the new proposed method since it reduces the

number of integral involved almost to half, this compared to the TESN direct results from

proposal 1, when we consider the double truncation. In particular, for left/right truncation,

we have that the equivalent p� 1-variate normal approach along with Vaida & Liu (2009)

(now, a special case of proposal 2) requires up to 4 times less integrals than when we use
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Proposal 1

K&R

Proposal 2
tmvtnorm

K&R

Proposal 2
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Figure 7 – Number of integrals required and relative processing time for computing the
mean vector and variance-covariance matrix for a p-variate truncated ESN
and MVN distribution respectively, for 3 different approaches under double
truncation.

the method K&R. As seen before, the normal relation proposal 2 outperforms the proposal

1, that is, the equivalent normal approach always resulted faster even it considers one

more dimension, that is a p� 1-variate normal vector, due to its integrals are less complex

than for the ESN case.

Processing time when using the equivalent normal approach are depicted in

the right panel of Figure 7. Here, we compare the relative processing time of the mean

and variance-covariance of a TMVN distribution under the methods tmvtnorm, K&R and

our proposal 2, for different dimensions p. Note that a method with relative processing

time equal to 1 means this is the fastest one. In general, our proposal is the fastest one, as

expected. Method K&R resulted better only for p ↕ 3, which confirms the necessity for

a faster algorithm, in order to deal with high dimensional problems. Method tmvtnorm

resulted to be the slowest one by far. Our MonTrunc R package computes the mean and

the variance of a TMVN distribution in an optimal way, such that it uses the method

proposed by K&R for p ➔ 4 and otherwise proposal 2.

3.6 On moments of folded multivariate ESN distributions

First, we established some general results for the pdf, cdf and moments of a

folded multivariate distributions (FMD). These extend the results found in Chakraborty

& Chatterjee (2013) for a folded normal (FN) distribution to any multivariate distribution,

as well as the multivariate location-scale family. The proofs are given in Appendix B.

Theorem 3.4 (pdf and cdf of a MFD). Let X P R
p be a p-variate random vector

with pdf fX♣x; θq and cdf FX♣x; θq with θ being a set of parameters characterizing such

distribution. If Y ✏ ⑤X⑤, then the joint pdf and cdf of Y that follows a folded distribution
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of X are given, respectively, by

fY♣yq ✏
➳

sPS♣pq

fX♣Λsy; θq and FY♣yq ✏
➳

sPS♣pq

πsFX♣Λsy; θq, for y ➙ 0,

where S♣pq ✏ t✁1, 1✉p is a cartesian product with 2p elements, each of the form s ✏
♣s1, . . . , spq, Λs ✏ Diag♣sq and πs ✏

p➵
i✏1

si.

Corollary 3.2. If X ✒ fX♣x; ξ,Ψq belongs to the location-scale family of distributions with

location and scale parameters ξ and Ψ respectively, then Zs ✏ ΛsX ✒ fX♣z; Λsξ,ΛsΨΛsq
and consequently the joint pdf and cdf of Y ✏ ⑤X⑤ are given by

fY♣yq ✏
➳

sPS♣pq

fX♣y; Λsξ,ΛsΨΛsq and FY♣yq ✏
➳

sPS♣pq

πsFX♣Λsy; ξ,Ψq, for y ➙ 0.

Hence, the κ-th moment of Y follows as

ErYκs ✏
➳

sPS♣pq

Er♣Zκ
s q�s,

where X� denotes the positive component of the random vector X.

Let X ✒ ESNp♣µ,Σ,λ, τq, we now turn our attention to discuss the computa-

tion of any arbitrary order moment of ⑤X⑤, a multivariate folded ESN (FESN) distribution.

Let define the Ip
κ ✑ Ip

κ♣µ,Σ,λ, τq function as

Ip
κ♣µ,Σ,λ, τq ✏

➺ ✽
0

yκESNp♣y; µ,Σ,λ, τqdy. (3.33)

Note that Ip
κ is a special case of Fp

κ that occurs when ai ✏ 0 and bi ✏ �✽, i ✏ 1, . . . , p.

In this scenario we have

Ip
κ♣µ,Σ,λ, τq ✏ Fp

κ♣0,�✽; µ,Σ,λ, τq.

When λ ✏ 0 and τ ✏ 0, that is, the normal case we write Ip
κ♣µ,Σ,0, 0q ✏ Ip

κ♣µ,Σq.

Proposition 3.6. If X ✒ ESNp♣µ,Σ,λ, τq then Zs ✏ ΛsX ✒ ESNp♣µs,Σs,λs, τq and

consequently the joint pdf, cdf and the κth raw moment of Y ✏ ⑤X⑤ are, respectively, given

by

fY♣yq ✏
➳

sPS♣pq

ESNp♣yp; µs,Σs,λs, τq,

FY♣yq ✏ Lp♣✁y,y; µ,Σ,λ, τq,
and

ErYκs ✏
➳

sPS♣pq

Ip
κ♣µs,Σs,λs, τq,

where ys ✏ Λsy, µs ✏ Λsµ, Σs ✏ ΛsΣΛs and λs ✏ Λsλ.
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Proof. Note that is suffices to show that if X ✒ ESNp♣µ,Σ,λ, τq, then Zs ✏ ΛsX ✒
ESNp♣µs,Σs,λs, τq since the rest of the corollary is straightforward. We have that

✏ ESNp♣x; µs,Σs,λs, τq
✏ ξ✁1φp♣x; Λsµ,ΛsΣΛsq ✂ Φ1

�
τ � ♣Λsλq❏♣ΛsΣΛsq✁1④2♣x ✁ Λsµq

✟
✏ ξ✁1⑤ΛsΛs⑤1④2φp♣Λ✁1

s x; µ,Σq ✂ Φ1

�
τ � λ❏Λs♣ΛsΣΛsq✁1④2Λs♣Λ✁1

s x ✁ µq✟
✏ ξ✁1φp♣Λsx; µ,Σq ✂ Φ1

�
τ � λ❏Λs♣ΛsΣΛsq✁1④2Λs♣Λsx ✁ µq✟ (3.34)

?✏ ξ✁1φp♣Λsx; µ,Σq ✂ Φ1

�
τ � λ❏Σ✁1④2♣Λsx ✁ µq✟ (3.35)

✏ ESNp♣Λsx; µ,Σ,λ, τq,

where ξ✁1 ✏ Φ1

�
τ④
❛

1 � λ❏
s λs

✟
due to λ❏

s λs ✏ λ❏λ.

In order to equalize (3.34) and (3.35), we see that it suffices to show that

Σ✁1④2 ✏ Λs♣ΛsΣΛsq✁1④2Λs. This is equivalent to show that A ✏ B for A ✏ ♣ΛsΣΛsq1④2

and B ✏ ΛsΣ
1④2Λs. We have that both matrices A and B are positive-definite matrices

since ♣ΛsΣΛsq1④2 and Σ1④2 are too, as a consequence that they are obtained using Singular

Value Decomposition (SVD). Finally, given that A2 ✏ B2 ✏ ΛsΣΛs and any positive-

definite matrix has an unique positive-definite square root, we conclude that A ✏ B by

uniqueness, which concludes the proof.

Observation 3.1. As a consequence of Proposition 3.6, we also have the new vectors

δs ✏ Λsδ, µbs ✏ Λsµb, ϕs ✏ Λsϕ, ϕ̃s ✏ Λsϕ̃, µ̃a
js ✏ Λs♣jqµ̃

a
j and µ̃b

js ✏ Λs♣jqµ̃
b
j , and

matrix Γs ✏ ΛsΓΛs, while the constants ξ, η, cj ,Σ̃j, and τ̃j remain invariant with respect

to s.

A bivariate case

For instance, let us consider a bivariate case. We denote that X follows a

bivariate ESN distribution as X ✒ ESN2♣µ1, µ2, σ
2

1
, σ12, σ

2

2
, λ1, λ2, τq. For Y ✏ ⑤X⑤, it

follows that

fY♣y1, y2q ✏ fX♣y1, y2q � fX♣✁y1, y2q � fX♣y1,✁y2q � fX♣✁y1,✁y2q (3.36)

✏ fX1♣y1, y2q � fX2♣y1, y2q � fX3♣y1, y2q � fX4♣y1, y2q (3.37)

✏
4➳

i✏1

fXi
♣y1, y2q,

with

X1 ✒ ESN2♣�µ1,�µ2, σ
2

1
,�σ12, σ

2

2
,�λ1,�λ2, τq,

X2 ✒ ESN2♣✁µ1,�µ2, σ
2

1
,✁σ12, σ

2

2
,✁λ1,�λ2, τq,

X3 ✒ ESN2♣�µ1,✁µ2, σ
2

1
,✁σ12, σ

2

2
,�λ1,✁λ2, τq,



Chapter 3. Moments of folded and doubly truncated multivariate extended skew-normal distributions 72

X4 ✒ ESN2♣✁µ1,✁µ2, σ
2

1
,�σ12, σ

2

2
,✁λ1,✁λ2, τq.

Equation (3.36) stands from Theorem 3.4. Its four summands are respectively

equivalent to the four terms in (3.37). This can be seen through a briefly comparison of

the density regions at the points on Figure 8 above and the four points in the respective

densities in Figure 16 in the Appendix section B. As noted, to pass the signs to the

parameters, let us to fix the point ♣y1, y2q and then integrating in both sides, we can obtain

any arbitrary moment for ⑤X⑤ as a sum of other 2p moments.

4
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Figure 8 – Density of X.

From Proposition 3.6, we can compute any arbitrary moment of a FESN

distribution as a sum of Ip
κ integrals. In light of Theorem 3.1, the recurrence relation for

Ip
κ can be written as

Ip
κ�ei

♣µ,Σ,λ, τq ✏ µiI
p
κ♣µ,Σ,λ, τq � δiI

p
κ♣µ ✁ µb,Γq �

p➳
j✏1

σijdκ,j, i ✏ 1, . . . , p, (3.38)

where

dκ,j ✏
★
kjI

p
κ✁ei

♣µ,Σ,λ, τq ; for kj → 0

ESN1♣0;µj, σ
2

j , cjσjϕ̃j, cjτqIp✁1

κ♣jq
♣µ̃j, Σ̃j, Σ̃

1④2

j ϕ♣jq, τ̃jq ; for kj ✏ 0

with µ̃j ✏ µ♣jq ✁ µj

σ2
j

Σ♣jqj and τ̃j ✏ τ ✁ ϕ̃jµj.

It is also possible to use the normal relation in Theorem 3.2 to compute Er⑤X⑤κs
in a simpler manner as in next proposition.

Proposition 3.7. Let Y ✏ ⑤X⑤, with X ✒ ESNp♣µ,Σ,λ, τq. In light of Theorem 3.4, It

follows that

ErYκs ✏ ξ✁1
➳

sPS♣pq

I
p�1

κ✝ ♣µ✝
s ,Ω

✁
s q, (3.39)
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where Ip
κ♣µ,Σq ✑ F p

κ♣0,✽; µ,Σq, µ✝
s ✏ ♣µ❏

s , τ̃q❏ and Ωs ✏
✄

Σs ✁∆s

✁∆❏
s 1

☛
, with µs ✏

Λsµ, Σs ✏ ΛsΣΛs, ∆s ✏ Λs∆ and Ω✁
s standing for the block matrix Ωs with all its

off-diagonal block elements signs changed.

Proof is direct from Theorem 3.2 as Ip
κ is a special case of Fp

κ. From proposition

3.2, we have that the mean and variance-covariance matrix can be calculated as a sum of

2p terms as well, that is

ErYs ✏
➳

sPS♣pq

ErZ�

s s, (3.40)

covrYs ✏
➳

sPS♣pq

E
✏
Z�

s Z�

s
❏
✘✁ ErYsErYs❏, (3.41)

where Z�

s is the positive component of Zs ✏ ΛsX ✒ ESNp♣µs,Σs,λs, τq. Note that

there are 2p times more integrals to be calculated as compared to the non-folded case,

representing a huge computational effort for high dimensional problems.

In order to circumvent this, we can use the fact that ErYs ✏ ♣ErY1s, . . . ,ErYpsq❏
and the elements of ErYY❏s are given by the second moments ErY 2

i s and ErYiYjs, 1 ↕
i ✘ j ↕ p. Thus, it is possible to calculate explicit expressions for the mean vector and

variance-covariance matrix of the FESN only based on the marginal univariate means and

variances of Yi, as well as the covariance terms cov♣Yi, Yjq.

Univariate case

Using the recurrence relation on Ik in (3.38), and following the notation in

Subsection 3.3.1.1, we can find explicit expressions for Er⑤X⑤ks for its first four raw

moments, as well as for others univariate folded distributions that are special cases of the

ESN distribution. For instance, setting τ ✏ 0, we obtain the moments for the univariate

folded skew-normal Y ✏ ⑤X⑤, with X ✒ SN1♣µ, σ2, λq. Additionally, if we set the skewness

parameter as λ ✏ 0, we obtain the moments for the folded normal distribution where

X ✒ N♣µ, σ2q. Furthermore, moments for the well-known half normal distribution can be

obtained when we set µ ✏ λ ✏ τ ✏ 0. Explicit expressions for all these special cases can

be found the Appendix B.

Next, we propose explicit expressions for the mean and the variance-covariance

of the multivariate FESN distribution.

3.6.1 Explicit expressions for mean and covariance matrix of multivariate

folded ESN distribution

Let X ✒ ESNp♣µ,Σ,λ, τq. To obtain the mean and covariance matrix of ⑤X⑤ boils down

to compute Er⑤Xi⑤s, Er⑤X2

i ⑤s and Er⑤XiXj⑤s. Consider Xi to be the i-th marginal partition
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of X distributed as Xi ✒ ESN♣µi, σ
2

i , λi, τiq. In light of proposition 3.6 it follows that

Er⑤Xi⑤ks ✏ I1

k♣µi, σ
2

i , λi, τiq � I1

k♣✁µi, σ
2

i ,✁λi, τiq.

Thus, using the recurrence relation on Ik in (3.38), and following the notation in Subsection

3.3.1.1, we can write explicit expressions for Er⑤Xi⑤s and Er⑤Xi⑤2s. High order moments for

the univariate FESN and others related distributions are detailed in Appendix B.

It remains to obtain Er⑤XiXj⑤s for i ✘ j, which can be obtained as

Er⑤XiXj⑤s ✏I2

1,1♣µi, µj, σ
2

i , σij, σ
2

j , λi, λj, τq � I2

1,1♣µi,✁µj, σ
2

i ,✁σij, σ
2

j , λi,✁λj, τq
� I2

1,1♣✁µi, µj, σ
2

i ,✁σij, σ
2

j ,✁λi, λj, τq � I2

1,1♣✁µi,✁µj, σ
2

i , σij, σ
2

j ,✁λi,✁λj, τq,
(3.42)

as pointed in proposition 3.6, with ♣Xi, Xjq denoting an arbitrary bivariate partition of X.

Without loss of generality, let’s consider the partition ♣X1, X2q ✒ ESN2♣µ,Σ,λ, τq and

♣W1,W2q ✒ N2♣m,Γq with m ✏ µ ✁ µb. For simplicity, we denote I2

1,1 ✑ I2

1,1♣µ,Σ,λ, τq,
and the normalizing constants L2 ✑ L2♣0,✽; µ,Σ,λ, τq and L2 ✑ L2♣0,✽; µ ✁ µb,Γq.

Using the recurrence relation on I2

κ�ei
in (3.38), we can obtain I2

1,1 for κ ✏
♣1, 0q❏ and e2 ✏ ♣0, 1q❏ as

I2

1,1 ✏♣µ1µ2 � σ12qL2 � ♣δ1µ2 � δ2♣µ1 ✁ µb1qqL2 � ♣µ2σ
2

1
� σ12qφ̃♣1q♣1 ✁ Φ̃♣2.1qq

� δ2

✏
γ2

1
φ♣µ1;µb1, γ

2

1
q♣1 ✁ Φ♣0;m2.1, γ

2

2.1qq � γ12φ♣µ2;µb2, γ
2

2
q♣1 ✁ Φ♣0;m1.2, γ

2

1.2qqq
✘

� µ2σ12φ̃
♣2q♣1 ✁ Φ̃♣1.2qq � σ2

2
φ̃♣2qI1

1
♣µ1.2, σ

2

11.2, σ11.2ϕ1, τ1.2q, (3.43)

where m2.1 ✏ m2✁γ12m1④γ2

1
, m1.2 ✏ m1✁γ12m2④γ2

2
, γ2

2.1 ✏ γ2

2
✁γ12④γ2

1
, γ2

1.2 ✏ γ2

1
✁γ12④γ2

2
,

and in light of Proposition 3.2 we have that Φ̃♣2.1q ✑ Φ̃1♣0;µ2.1, σ
2

2.1, σ2.1ϕ2, τ2.1q, Φ̃♣1.2q ✑
Φ̃1♣0;µ1.2, σ

2

1.2, σ1.2ϕ1, τ1.2q, and φ̃♣ℓq ✑ ESN1♣0;µℓ, σ
2

ℓ , cℓσℓϕ̃ℓ, cℓτq for ℓ ✏ t1, 2✉.
Using Remark 1 along with (3.42), we finally obtain an explicit expression for

Er⑤XiXj⑤s as

✏ Er⑤XiXj⑤s
✏ ♣µiµj � σijq♣1 ✁ 2♣Φ̃♣iq � Φ̃♣jqqq � ♣δiµj � δj♣µi ✁ µbiqq ♣1 ✁ 2♣Φ♣iq � Φ♣jqqq
� 2µj

✏
σ2

i φ̃
♣iq♣1 ✁ 2Φ̃♣iqq � σijφ̃

♣jq♣1 ✁ 2Φ̃♣jqq✘� 2σ2

j φ̃
♣jq
Er⑤Yi.j⑤s

� 2δj

✏
γ2

i φ♣µi;µbi, γ
2

i q♣1 ✁ 2Φ♣0;mj.i, γ
2

j.iqq � γijφ♣µj;µbj, γ
2

j q♣1 ✁ 2Φ♣0;mi.j, γ
2

i.jqq
✘

(3.44)

with Xi.j ✒ ESNi♣µi.j, σ
2

i.j, σi.jϕi, τi.jq. Furthermore,

Φ̃♣1q ✑ Φ̃2♣0; ♣✁µi, µjq❏,Σ✁, ♣✁λi, λjq❏, τq, Φ̃♣2q ✑ Φ̃2♣0; ♣µi,✁µjq❏,Σ✁, ♣λi,✁λjq❏, τq,

Φ♣1q ✑ Φ2♣0; ♣✁mi,mjq❏,Γ✁q and Φ♣2q ✑ Φ2♣0; ♣mi,✁mjq❏,Γ✁q,
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with Σ✁ (Γ✁) denoting the Σ ✏ rσijs (Γ ✏ rγijs) matrix with all its signs of covariances

(off-diagonal elements) changed. Here, we have simplified the expressions above using that➳
sPS♣pq

Lp♣0,✽,ms,Γsq ✏ 1, along the equivalences

Lp♣0,✽; µ,Σ,λs, τq ✏ Φ̃p♣0;✁µs,Σs,✁λs, τq, for s P S♣pq
ESNp♣0; µq,Σq,λq, τq ✏ ESNp♣0; µr,Σr,λr, τq, for q, r P S♣pq

P ♣Y1Y2 ☎ ☎ ☎Yp → 0q ✏
➳

sPS♣pq

πsLp♣0,✽; µs,Σs,λs, τq,

with πs ✏
p➵

i✏1

si as in Theorem 3.4 and
➳

sPS♣pq

Lp♣0,✽; µs,Σs,λs, τq ✏ 1. It is worth men-

tioning that these expressions hold for the normal case, when λ ✏ 0 and τ ✏ 0.

As expected, this approach is much faster than the one using equations (3.40)

and (3.41). For instance, when we consider a trivariate folded ESN distribution, we have

that it is approximately 56x times faster than using MC methods and 10x times faster

than using equations (3.40) and (3.41). Time comparison (summarized in Figure 15, right

panel) as well as sample codes of our MomTrunc R package are provided in the Appendices

B.3 and B.4, respectively. Contours of different FESN densities can be found in Figure 17

given in Appendix B.3 as well.

3.7 Conclusions

In this paper, we have developed a recurrence approach for computing order

product moments of TESN and FESN distributions as well as explicit expressions for the

first two moments as a byproduct, generalizing results obtained by Kan & Robotti (2017)

for the normal case. The proposed methids also includes the moments of the well-known

truncated multivariate SN distribution, introduced by Azzalini & Dalla-Valle (1996). For

the TESN, we have proposed an optimized robust algorithm based only in normal integrals,

which for the limiting normal case outperforms the existing popular method for computing

the first two moments, even computing these two moments for extreme cases where all

available algorithms fail. The proposed method (including its limiting and special cases)

has been coded and implemented in the R MomTrunc package, which is available for the

users on CRAN repository.

During the last decade or so, censored modeling approaches have been used

in various ways to accommodate increasingly complicated applications. Many of these

extensions involve using Normal (Vaida & Liu, 2009) and Student-t (Matos et al., 2013;

Lachos et al., 2017), however statistical models based on distributions to accommodate

censored and skewness, simultaneously, so far have remained relatively unexplored in



Chapter 3. Moments of folded and doubly truncated multivariate extended skew-normal distributions 76

the statistical literature. We hope that by making the codes available to the community,

we will encourage researchers of different fields to use our newly methods. For instance,

now it is possible to derive analytical expressions on the E-step of the EM algorithm for

multivariate SN responses with censored observation as in Matos et al. (2013).
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4 Likelihood-based inference for multivariate

skew-normal censored responses

4.1 Introduction

In many applications on simulations or on experimental studies, the researches

often generate a large number of datasets with values restricted to fixed intervals. For

example, variables such as pH, grades, viral load in HIV studies and humidity in environ-

mental studies, have upper and lower bounds due to detection limits, being the support of

their densities restricted to some given intervals. On the other hand, during the last decade

or so, censored modeling approaches have been used in several ways to accommodate

increasingly complicated applications. Many of these extensions involve using normal and

its symmetrical extension. For instance, Massuia et al. (2015) proposed the Student-t

censored regression model. Garay et al. (2017) (see also, Matos et al. (2013)) advocated

the use of the multivariate Student-t distribution in the context of censored regression

models, where a simple and efficient EM-type algorithm for iteratively computing ML

estimates of the parameters was also presented. More recently, Wang et al. (2018) proposed

a multivariate extension of the models of Garay et al. (2017) and Matos et al. (2013),

for analyzing multi-outcome longitudinal data with censored observations, where they

established a feasible EM algorithm that admits closed-form expressions at E-steps and

tractable solutions at M-steps. They demonstrated its robustness against outliers through

extensive simulations. A common drawback of these proposals is that they are not ap-

propriate when the observed data exhibit skewness, which might lead to bias estimates

(Azzalini & Capitanio, 1999).

In this paper, we propose to use the multivariate skew-normal distribution to

analyze censored data, so that the SN-C model is defined and a fully likelihood-based

approach is carried out, including the implementation of an exact EM-type algorithm for

the ML estimation. Like Garay et al. (2017), we show that the E-step reduces to computing

the first two moments of a truncated multivariate skew-normal distribution, which are

implemented in the R package MomTrunc (Galarza et al., 2018). The likelihood function is

easily computed as a byproduct of the E-step and it is used for monitoring convergence

and for model selection.

The rest of this paper is organized as follows. In Section 4.2 we briefly discuss

some preliminary results related to the multivariate SN, extended SN (ESN) and some of

its key properties. Moreover, the truncated extended skew-normal is presented along with

some sketch of the computation of its first two moments. Section 4.3 presents the EM
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algorithm for estimating the model parameters of multivariate SN responses as well as in

a regression SN setting. Section 4.4 implements the proposed algorithm to real datasets

and finally, some concluding remarks are presented in Section 4.5.

4.2 Preliminaries

In this section we present some properties of the multivariate skew-normal

distribution and its extended version, the extended skew-normal distribution.

4.2.1 The multivariate skew-normal distribution

We say that a p✂ 1 random vector Y follows a multivariate SN distribution

with p✂ 1 location vector µ, p✂p positive definite dispersion matrix Σ and p✂ 1 skewness

parameter vector λ P R
p, and we write Y ✒ SNp♣µ,Σ,λq, if its joint probability density

function (pdf) is given by

SNp♣y; µ,Σ,λq ✏ 2φp♣y; µ,ΣqΦ1♣λ❏Σ✁1④2♣y ✁ µqq, (4.1)

where Φ1♣☎q represents the cumulative distribution function (cdf) of the standard univariate

normal distribution. If λ ✏ 0, then (4.1) reduces to the symmetric Np♣µ,Σq pdf. Except

by a straightforward difference in the parametrization considered in (4.1), this model

corresponds to that introduced by Azzalini & Dalla-Valle (1996).

Proposition 4.1 (cdf of the SN). If Y ✒ SNp♣µ,Σ,λq, then for any y P R
p,

FY♣yq ✏ P ♣Y ↕ yq ✏ 2Φp�1

�♣y❏, 0q❏; µ✝,Ω
✟
, (4.2)

where µ✝ ✏ ♣µ❏, 0q❏ and Ω ✏
✄

Σ ✁∆

✁∆❏ 1

☛
, with ∆ ✏ Σ1④2λ④♣1 � λ❏λq1④2.

It is worth mentioning that the multivariate skew-normal distribution is closed

over marginalization but not conditioning. Next we present its extended version which

holds both properties, called, the multivariate ESN distribution.

4.2.2 The extended multivariate skew-normal distribution

We say that a p ✂ 1 random vector Y follows a ESN distribution with p ✂ 1

location vector µ, p✂ p positive definite dispersion matrix Σ, a p✂ 1 skewness parameter

vector λ P R
p, and a shift or extension parameter τ P R, denoted by Y ✒ ESNp♣µ,Σ,λ, τq,

if its pdf is given by

ESNp♣y; µ,Σ,λ, τq ✏ ξ✁1φp♣y; µ,ΣqΦ1♣τ � λ❏Σ✁1④2♣y ✁ µqq, (4.3)
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with ξ ✏ Φ1♣τ④♣1 � λ❏λq1④2q. Note that, when τ ✏ 0, we retrieve the skew-normal

distribution defined in (4.1), that is, ESNp♣y; µ,Σ,λ, 0q ✏ SNp♣y; µ,Σ,λq. In this work,

we uses a slightly different parametrization of the ESN distribution found in Arellano-Valle

& Azzalini (2006a) and Arellano-Valle & Genton (2010). Furthermore, Arellano-Valle &

Genton (2010) deals with the multivariate extended skew-t (EST) distribution, in which the

ESN is a particular case when the degrees of freedom ν go to infinity. From Arellano-Valle

& Genton (2010), it is straightforward to see that

ESNp♣y; µ,Σ,λ, τqÝÑφp♣y; µ,Σq, as τ Ñ �✽.

The following propositions will allow us to develop our methods.

Proposition 4.2 (Marginal and conditional distribution of the ESN ). Let Y ✒ ESNp♣µ,Σ,
λ, τq partitioned as Y ✏ ♣Y❏

1
,Y❏

2
q❏ of dimensions p1 and p2 (p1 � p2 ✏ p), respectively.

Let

Σ ✏
✄

Σ11 Σ12

Σ21 Σ22

☛
, µ ✏ ♣µ❏

1
,µ❏

2
q❏, λ ✏ ♣λ❏

1
,λ❏

2
q❏ and ϕ ✏ ♣ϕ❏

1
,ϕ❏

2
q❏,

be the corresponding partitions of Σ, µ, λ and ϕ ✏ Σ✁1④2λ. Then,

Y1 ✒ ESNp1♣µ1,Σ11, c12Σ
1④2
11 ϕ̃1, c12τq, Y2⑤Y1 ✏ y1 ✒ ESNp2♣µ2.1,Σ22.1,Σ

1④2
22.1ϕ2, τ2.1q

where c12 ✏ ♣1 � ϕ❏
2

Σ22.1ϕ2q✁1④2, ϕ̃1 ✏ ϕ1 � Σ✁1

11
Σ12ϕ2, Σ22.1 ✏ Σ22 ✁ Σ21Σ

✁1

11
Σ12,

µ2.1 ✏ µ2 � Σ21Σ
✁1

11
♣y1 ✁ µ1q and τ2.1 ✏ τ � ϕ̃❏

1
♣y1 ✁ µ1q.

Proof. The proof can be found in Appendix section B.

Proposition 4.3 (Stochastic representation by convolution). Assume that X and T are

independent variables with distribution Np♣0, Ipq and TN1♣0, 1; r✁τ̃ ,✽sq (which represents

a truncated standard normal distribution on r✁τ̃ ,✽q) respectively. Henceforth,

Y
d✏ µ� T∆� Γ1④2X, (4.4)

is distributed as Y ✒ ESNp♣µ,Σ,λ, τq, where Γ ✏ Σ ✁ ∆∆❏ with ∆ as defined in

Proposition 4.1.

Proof. The proof can be found in Arellano-Valle & Azzalini (2006a).

Proposition 4.4 (Stochastic representation by conditioning). Let X ✏ ♣X1
❏, X2q❏ ✒

Np�1♣µ✝,Ωq. If

Y
d✏ ♣X1⑤X2 ➔ τ̃q, (4.5)

it follows that Y ✒ ESNp♣µ,Σ,λ, τq, with µ✝ and Ω as defined in Proposition 4.1, and

τ̃ ✏ τ④♣1� λ❏λq1④2.
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The stochastic representation in Equation (4.5) can be derived from Proposition

1 in Arellano-Valle & Genton (2010).

Proposition 4.5 (cdf of the ESN ). If Y ✒ ESNp♣µ,Σ,λ, τq, then for any y P R
p,

FY♣yq ✏ P ♣Y ↕ yq ✏ Φp�1

�♣y❏, τ̃q❏; µ✝,Ω
✟

Φ♣τ̃q . (4.6)

Proof. The proof comes from proposition 4.4. Hereinafter, for Y ✒ ESNp♣µ,Σ,λ, τq, we

will denote its cdf as FY♣yq ✑ Φ̃p♣y; µ,Σ,λ, τq, for simplicity.

4.2.3 The truncated extended skew-normal distribution

Let A be a Borel set in R
p. We say that the random vector Y has a truncated

extended skew-normal distribution on A when Y has the same distribution as Y⑤♣Y P Aq.
In this case, the pdf of Y is given by

f♣y ⑤ µ,Σ, ν;Aq ✏ ESNp♣y; µ,Σ,λ, τq
P ♣Y P Aq 1A♣yq,

where 1A is the indicator function of A. We use the notation Y ✒ TESNp♣µ,Σ,λ, τ ;Aq.
If A has the form

A ✏ t♣x1, . . . , xpq P R
p : a1 ↕ x1 ↕ b1, . . . , ap ↕ xp ↕ bp✉ ✏ tx P R

p : a ↕ x ↕ b✉, (4.7)

we use the notation tY P A✉ ✏ ta ↕ Y ↕ b✉, where a ✏ ♣a1, . . . , apq❏ and b ✏
♣b1, . . . , bpq❏. In this case, we say that the distribution of Y is double truncated. Anal-

ogously, we define tY ➙ a✉ and tY ↕ b✉, so, we say that the distribution of Y

is truncated from below and truncated from above, respectively. For convenience, we

also use the notation Y ✒ TESNp♣µ,Σ,λ, τ ; ra,bsq. In particular, for a truncated

p-variate skew-normal and normal distribution on ra,bs, we use the notations X ✒
TSNp♣µ,Σ; ra,bsq and W ✒ TNp♣µ,Σ; ra,bsq, respectively. We also define the normaliz-

ing constant Lp♣a,b; µ,Σ,λ, τq ✏ P ♣a ↕ Y ↕ bq as

Lp♣a,b; µ,Σ,λ, τq ✏
➺ b

a

ESNp♣y; µ,Σ,λ, τqdy.

If all λ and τ are equal to zero, we have a normal integral Lp♣a, b; µ, Σ, 0, 0q ✏ Lp♣a, b; µ, Σq ✏➺ b

a

φp♣y; µ, Σqdy.

Remark: Note that, we use calligraphic style Lp to denote the skewed extended normal

integral and roman style Lp for the symmetric one.

Let a♣iq denote a vector a with its ith element being removed. For a matrix

A, we let A♣i,jq stands for its ith row and jth column being removed. Then, for Y ✒
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TESNp♣µ,Σ,λ, τ ; ra,bsq, it follows from corollary 3.1 that the first two moments of Y

can be computed from its corresponding Normal random variable, as

ErYs ✏ ErWs♣p�1q, (4.8)

ErYY❏s ✏ ErWW❏s♣p�1,p�1q, (4.9)

where W ✒ TNp�1♣µ✝,Ω; ra✝,b✝sq, with µ✝ and Ω as defined in Proposition 4.1, a✝ ✏
♣a❏,✁✽q❏ and b✝ ✏ ♣b❏, τ̃q❏.

The first two moments of Y obtained from equations (4.8) and (4.9) are

available through the MomTrunc R package (Galarza et al., 2018), which so far, is the

unique method to compute the moments of the TESN and TSN. In the following, we

present some useful propositions and corollaries related to TESN random vectors.

Proposition 4.6. Let Y ✒ TESNp♣µ,Σ,λ, τ, ra,bsq. For any measurable function g♣☎q,
we have that

E

✒
g♣Yqφ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq

Φ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq
✚
✏ ηL

L
Erg♣Wqs, (4.10)

with η ✏ φ1♣τ ; 0, 1 � λ❏λq④ξ, µb ✏ τ̃∆, Γ ✏ Σ ✁ ∆∆❏, L ✑ Lp♣a,b; µ ✁ µb,Γq,
L ✑ Lp♣a,b; µ,Σ,λ, τq and W ✒ TNp♣µ ✁ µb,Γ, ra,bsq.

Proof. Let X ✏ ♣X1
❏, X2q❏ ✒ Np�1♣µ✝,Ωq as in Proposition 4.4. From the conditional

distribution of a multivariate normal distribution , it is straightforward to show that

X1⑤X2 ✒ Np♣µ ✁X2∆,Γq and X2⑤X1 ✒ N1♣✁∆❏Σ✁1♣X1 ✁ µq, 1 ✁ ∆❏Σ✁1∆q. Then, it

holds that

fX2⑤X1♣τ̃ ; xqfX1♣xq ✏ fX2♣τ̃qfX1⑤X2♣x; τ̃q
φ1♣τ̃ ;✁∆❏Σ✁1♣x ✁ µq, 1 ✁ ∆❏Σ✁1∆qφp♣x; µ,Σq ✏ φ1♣τ̃qφp♣x; µ ✁ τ̃∆,Γq
❄

1 � λ❏λ ✂ φ1♣τ � λ❏Σ✁1④2♣x ✁ µqqφp♣x; µ,Σq ✏ φ1♣τ̃qφp♣x; µ ✁ µb,Γq
φ1♣τ � λ❏Σ✁1④2♣x ✁ µqqφp♣x; µ,Σq ✏ φ1♣τ ; 0, 1 � λ❏λqφp♣x; µ ✁ µb,Γq,

(4.11)

where we have used that ∆❏Σ✁1∆ ✏ ✁λ❏λ. Thus,

E

✓
g♣Yq

φ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq

Φ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq

✛
✏

➺ b

a

g♣yq
φ1♣τ � λ❏Σ✁1④2♣y ✁ µqq

Φ1♣τ � λ❏Σ✁1④2♣y ✁ µqq

ESN♣y; µ, Σ, λ, τq

Lp♣a, b; µ, Σ, λ, τq
dy

✏

➺ b

a

φ1♣τ � λ❏Σ✁1④2♣y ✁ µqqφp♣y; µ, Σq

ξLp♣a, b, µ, Σ, λ, τq
g♣yqdy

✏
φ1♣τ ; 0, 1� λ❏λq

ξLp♣a, b; µ, Σ, λ, τq

➺ b

a

g♣yqφp♣y; µ ✁ µb, Γqdy

✏
ηLp♣a, b; µ ✁ µb, Γq

Lp♣a, b; µ, Σ, λ, τq

➺ b

a

g♣wq
φp♣w; µ ✁ µb, Γq

Lp♣a, b, µ ✁ µb, Γq
dw

✏
ηL

L
Erg♣Wqs,

for W ✒ TNp♣µ ✁ µb, Γ, ra, bsq.
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Corollary 4.1. Let Y ✒ TESNp♣µ,Σ,λ, τ, ra,bsq. As τ ÝÑ ✁✽, we have from Proposi-

tion 4.6 that

E

✒
g♣Yqφ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq

Φ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq
✚
✏ ✁ τ

1� λ❏λ
Erg♣Wqs, (4.12)

where W ✒ TNp♣µ✁ µb,Γ, ra,bsq.

Proof. As τ Ñ ✁✽, we have

Φ1♣τ � λ❏Σ✁1④2♣y ✁ µqq
Φ1♣τ④♣1� λ❏λq1④2q ÝÑ 0

0
.

Using L’Hospital,

lim
τÑ✁✽

ESNp♣y; µ,Σ,λ, τq ✏ lim
τÑ✁✽

φ1♣τ � λ❏Σ✁1④2♣y ✁ µqqφp♣y; µ,Σq
♣1� λ❏λq✁1④2 ✂ φ1♣τ④♣1� λ❏λq1④2q

(4.11)✏ lim
τÑ✁✽

φ1♣τ ; 0; 1� λ❏λqφp♣y; µ✁ µb,Γq
♣1� λ❏λq✁1④2 ✂ φ1♣τ④♣1� λ❏λq1④2q

✏ lim
τÑ✁✽

φp♣y; µ✁ µb,Γq.

Therefore, ESNp♣y; µ,Σ,λ, τ qÝÑφp♣y; µ ✁ µb,Γq, Lp♣a,b; µ,Σ,λ, τq ÝÑ
Lp♣a,b; µ ✁ µb,Γq and η ÝÑ ✁τ④♣1� λ❏λq, as τ ÝÑ ✁✽. This last holds from the

inverse Mill’s ratio, since φ♣xq④Φ♣xq ÝÑ ✁x as x ÝÑ ✁✽. It is enough to replace the

limiting terms in Proposition 4.6.

Corollary 4.2. Setting τ ✏ 0 in Corollary 1, it follows that Y ✒ TSNp♣µ,Σ,λ, ra,bsq
and

E

✒
g♣Yqφ♣λ

❏Σ✁1④2♣Y ✁ µqq
Φ♣λ❏Σ✁1④2♣Y ✁ µqq

✚
✏ L0❛

π
2
♣1� λ❏λqL0

Erg♣W0qs, (4.13)

with L0 ✏ Lp♣a,b; µ,Γq, L0 ✏ Lp♣a,b; µ,Σ,λ, 0q and W0 ✒ TNp♣µ,Γ, ra,bsq.

Proof. The proof is straightforward. Setting τ ✏ 0, it suffices to show that µb ✏ 0 and

η ✏
❛

2④π♣1� λ❏λq.

Proposition 4.7. Let Y ✒ ESNp♣µ,Σ,λ, τq. Also, let Y be partitioned as Y ✏ ♣Y❏
1
,Y❏

2
q❏

of dimensions p1 and p2 (p1 � p2 ✏ p), with corresponding partitions of a, b, µ, Σ, λ and

ϕ. Then, for any measurable function g♣☎q, we have that

EY2

✒
g♣Y2qφ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq

Φ1♣τ � λ❏Σ✁1④2♣Y ✁ µqq
✞✞✞✞Y1

✚
✏ η2.1L2.1

L2.1

Erg♣W2qs, (4.14)

where L2.1 ✏ Lp2♣a2,b2; µ2.1 ✁ µb2.1,Γ22.1q, L2.1 ✏ Lp2♣a2,b2; µ2.1,Σ22.1,λ2.1, τ2.1q and

W2 ✒ TNp♣µ2.1 ✁ µb2.1,Γ22.1, ra2,b2sq, with λ2.1 ✏ Σ
1④2
22.1ϕ2, µ2.1, Σ22.1 and τ2.1 as in

Proposition 4.2; and η2.1, µb2.1 and Γ22.1 can be computed as expressions η, µb and Γ in

Proposition 4.6 but using the new set of parameters µ2.1, Σ22.1, λ2.1 and τ2.1 (instead of

µ, Σ, λ and τ).
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Proof. From Proposition 2, it is known that τ �λ❏Σ✁1④2♣Y✁µq ✏ τ2.1 �λ❏
2.1Σ

✁1④2
22.1 ♣Y2 ✁

µ2.1q, then it is enough to apply Proposition 4.6 by considering Y as Y2 ✒ TESNp2♣µ2.1,

Σ22.1,λ2.1, τ2.1, ra2,b2sq.

4.3 Multivariate SN censored responses

Let Yi ✏ ♣Yi1, . . . , Yipq❏ be a p ✂ 1 response vector for the ith sample unit,

for i P t1, . . . , n✉, and consider the set of random samples (independent and identically

distributed):

Y1, . . . ,Yn ✒ SNp♣µ,Σ,λq, (4.15)

with location vector µ ✏ ♣µ1, . . . , µpq❏, dispersion matrix Σ ✏ Σ♣αq depending on an

unknown and reduced parameter vector α and skewness parameter λ. However, the

response vector Yi may not be fully observed due to censoring, so we define ♣Vi,Ciq the

observed data for the ith sample, where Vi✏ ♣Vi1, . . . , Vipq❏ with elements being either an

uncensored observation ♣Vik ✏ V0iq or the interval censoring level ♣Vik P rV1ik, V2iksq, and

Ci ✏ ♣Ci1, . . . , Cipq❏ is the vector of censoring indicators, satisfying

Cik ✏
★

1 if V1ik ↕ Yik ↕ V2ik ,

0 if Yik ✏ V0i ,
(4.16)

for all i P t1, . . . , n✉ and k P t1, . . . , p✉, i.e., Cik ✏ 1 if Yik is located within a specific

interval. In this case, (4.15) along with (4.16) defines the multivariate skew-normal interval

censored model (hereafter, the SN-C model). For instance, left censoring structure causes

truncation from the lower limit of the support of the distribution, since we only know that

the true observation Yik is greater than or equal to the observed quantity V1ik. Moreover,

missing observations can be handled by considering V1ik ✏ ✁✽ and V2ik ✏ �✽.

4.3.1 The likelihood function

Let y ✏ ♣y❏
1
, . . . ,y❏n q❏, where yi ✏ ♣yi1, . . . , yipq❏ is a realization of Yi ✒

SNp♣µ,Σ,λq. In order to obtain the likelihood function of the SN-C model, first we treat,

separately, the observed and censored components of yi, i.e., yi ✏ ♣yo❏

i ,yc❏

i q❏, where

Cik ✏ 0 for all elements in the po
i -dimensional vector yo

i , and Cik ✏ 1 for all elements in

the pc
i -dimensional vector yc

i . On according to that, we write Vi ✏ vec♣Vo
i ,V

c
iq, where

Vc
i ✏ ♣Vc

1i,V
c
2iq with

µi ✏ ♣µo❏
i ,µc❏

i q❏, Σ ✏ Σ♣αq ✏
✂

Σoo
i Σoc

i

Σco
i Σcc

i

✡
, λi ✏ ♣λo❏

i ,λc❏
i q❏ and ϕi ✏ ♣ϕo❏

i ,ϕc❏
i q❏.

Then, using Proposition 4.2, we have that Yo
i ✒ SNpo

i
♣µo

i ,Σ
oo
i , c

oc
i Σ

oo 1④2
i ϕ̃o

i q and Yc
i ⑤ Yo

i ✏
yo

i ✒ ESNpc
i
♣µco

i , Σcc.o
i ,Σ

cc.o 1④2
i ϕc

i , τ
co
i q, where

µco
i ✏ µc

i �Σco
i Σoo✁1

i ♣yo
i ✁µo

i q, Σcc.o
i ✏ Σcc

i ✁Σco
i ♣Σoo

i q✁1Σoc
i , ϕ̃o

i ✏ ϕo
i �Σoo✁1

i Σoc
i ϕc

i ,

(4.17)
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coc
i ✏ ♣1�ϕc❏

i Σcc.o
i ϕc

iq✁1④2 and τ c.o
i ✏ ϕ̃o❏

i ♣yo
i ✁ µo

i q. (4.18)

Let V ✏ vec♣V1, . . . ,Vnq and C ✏ vec♣C1, . . . ,Cnq denote the observed data.

Therefore, the log-likelihood function of θ ✏ ♣µ❏,α❏
Σ ,λ

❏q❏, where αΣ denotes a minimal

set of parameters such that Σ♣αq is well defined (e.g. the upper triangular elements of Σ

in the unstructured case), for the observed data ♣V,Cq is

ℓ♣θ ⑤ V,Cq ✏
n➳

i✏1

lnLi, (4.19)

where Li ✑ Li♣θ ⑤ Vi,Ciq represents the likelihood function of θ for the ith sample, say

Li ✏ f♣Vi ⑤ Ci,θq ✏ f♣Vc
1i ↕ yc

i ↕ Vc
2i ⑤ yo

i ,θqf♣yo
i ⑤ θq

✏ Lpc
i
♣Vc

1i,V
c
2i; µco

i ,Σ
cc.o
i ,Σ

cc.o 1④2
i ϕc

i , τ
co
i qSNpo

i
♣yo

i ; µo
i ,Σ

oo
i , c

oc
i Σ

oo 1④2
i ϕ̃o

i q.

4.3.2 Parameter estimation via the EM algorithm

In this subsection, we describe how to carry out ML estimation for the SN-C

model. The EM algorithm, originally proposed by Dempster et al. (1977), is a very popular

iterative optimization strategy commonly used to obtain ML estimates for incomplete-data

problems. This algorithm has many attractive features such as the numerical stability, the

simplicity of implementation and quite reasonable memory requirements (McLachlan &

Krishnan, 2008).

From the stochastic representation of multivariate ESN distribution in Propo-

sition 4.3, setting τ ✏ 0, we can write Yi⑤♣Ti ✏ tiq ✒ Np♣µ�∆ti,Γq and Ti ✒ HN♣0, 1q,
with HN referring to a Half normal distribution The complete data log-likelihood function

of an equivalent set of parameters θ ✏ ♣µ❏,∆❏,α❏
Γ q❏, where αΓ ✏ vech♣Γq, is given by

ℓc♣θq ✏
n➳

i✏1

ℓic♣θq, where the individual complete data log-likelihood is

ℓic♣θq ✏ ✁1
2

✥
ln ⑤Γ⑤ � ♣yi ✁ µ✁∆tiq❏Γ✁1♣yi ✁ µ✁∆tiq

✭� c,

with c being a constant that does not depend on θ. Subsequently, the EM algorithm for

the SN-C model can be summarized as follows:

E-step: Given the current estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣∆♣kq, ♣α♣kq

Γ q at the kth step

of the algorithm, the E-step provides the conditional expectation of the complete data

log-likelihood function

Q♣θ ⑤ ♣θ♣kqq ✏ E
✑
ℓc♣θq ⑤ V,C, ♣θ♣kq

✙
✏

n➳
i✏1

Qi♣θ ⑤ ♣θ♣kqq,

where

Qi♣θ ⑤ ♣θ♣kqq✾ ✁ 1
2

ln ⑤Γ⑤ ✁ 1
2

tr
✒✧ ♣y2

i

♣kq � µµ❏ � ♣t2i ♣kq∆∆❏ ✁ 2µ♣yi
♣kq❏ ✁ 2 ♣ty♣kq

i ∆❏



Chapter 4. Likelihood-based inference for multivariate skew-normal censored responses 85

�2♣ti♣kq∆µ❏
✮

Γ✁1

✙
,

with ♣yr
i

♣kq ✏ ETiYi
rYr

i ⑤Vi,Ci, ♣θ♣kqs, ♣tri ♣kq ✏ ETiYi
rT r

i ⑤Vi,Ci, ♣θ♣kqs (for r ✏ t1, 2✉, with

Y1

i ✏ Yi and Y2

i ✏ YiY
❏
i ) and ♣ty♣kqi ✏ ETiYi

rTiYi ⑤Vi,Ci, ♣θ♣kqs.
M-step: Conditionally maximizing Q♣θ ⑤ ♣θ♣kqq ✏ n➳

i✏1

Qi♣θ ⑤ ♣θ♣kqq with respect

to each entry of θ, we update the estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣∆♣kq, ♣α♣kq

Γ q by

♣µ♣k�1q ✏ 1
n

n➳
i✏1

✦♣yi
♣kq ✁ ♣ti♣kq ♣∆♣kq

✮
, (4.20)

♣∆♣k�1q ✏
★

n➳
i✏1

♣t2i ♣kq
✰✁1

n➳
i✏1

✦①tyi

♣kq ✁ ♣t♣kqi ♣µ♣k�1q
✮
, (4.21)

♣Γ♣k�1q ✏ 1
n

n➳
i✏1

✧ ♣y2
i

♣kq � ♣µ♣k�1q♣µ♣k�1q❏ � ♣t2i ♣kq ♣∆♣k�1q ♣∆♣k�1q❏ ✁ 2♣µ♣k�1q ♣yi
♣kq❏

✁2 ♣ty♣kqi
♣∆♣k�1q❏ � 2♣ti♣kq ♣∆♣k�1q♣µ♣k�1q❏

✮
. (4.22)

Algorithm is iterated until a suitable convergence rule is satisfied. In the later

analysis, the algorithm stops when the relative distance between two successive evaluations

of the log-likelihood defined in (4.19) is less than a tolerance, i.e., ⑤ℓ♣♣θ♣k�1q ⑤ V,Cq④ℓ♣♣θ♣kq ⑤
V,Cq ✁ 1⑤ ➔ ǫ, for example, ǫ ✏ 10✁6. Once converged, we can recover ♣λ and ♣Σ using the

expressions ♣Σ ✏ ♣Γ � ♣∆ ♣∆❏ and ♣λ ✏
♣Σ✁1④2 ♣∆

♣1 ✁ ♣∆❏ ♣Σ✁1 ♣∆q1④2
.

It is important to stress that, from equations (4.20) and (4.22), the E-step reduces to the

computation of ♣yi
♣kq, ♣y2

i

♣kq ♣ti♣kq, ♣t2i ♣kq and ♣ty♣kqi . To compute these expected values, first

note that for any measurable function of Ti and Yi, such that g♣Ti,Yiq ✏ g1♣Tiqg2♣Yiq,
we have that

ETiYi
rg♣Ti,Yiq⑤Vi,Cis ✏ EYi

rg1♣YiqETi
rg2♣Tiq⑤Yis⑤Vi,Cis. (4.23)

Then,

♣yr
i ✏ ETiYi

rYr
i ⑤Vi,Cis ✏ EYi

rYr
i ⑤Vi,Cis,♣tri ✏ ETiYi

rT r
i ⑤Vi,Cis ✏ EYi

rETi
rT r

i ⑤Yis⑤Vi,Cis,①tyi ✏ ETiYi
rTiYi⑤Vi,Cis ✏ EYi

rYiETi
rTi⑤Yis⑤Vi,Cis.

From Cabral et al. (2012), we know that Ti⑤Yi ✒ TN1♣M2♣θq∆❏Γ✁1♣Yi✁µq,M2♣θq, ♣0,✽qq,
having that

ETi
rTi⑤Yis ✏M2♣θq∆❏Γ✁1♣yi ✁ µq �M♣θqφ1♣λ❏Σ✁1④2♣yi ✁ µqq

Φ1♣λ❏Σ✁1④2♣yi ✁ µqq , (4.24)
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ETi
rT 2

i ⑤Yis ✏rM2♣θq∆❏Γ✁1♣yi ✁ µqs2 �M3♣θq∆❏Γ✁1♣yi ✁ µqφ1♣λ❏Σ✁1④2♣yi ✁ µqq
Φ1♣λ❏Σ✁1④2♣yi ✁ µqq

�M2♣θq, (4.25)

where M♣θq ✏ ♣1 � ∆❏Γ✁1∆q✁1④2.

Subsequently, on according to expressions (4.23), (4.24) and (4.25), and Corol-

lary 4.2, we have the implementable expressions to the conditional expectations as follows:

1. If the ith subject has only non-censored components, then

♣yr
i

♣kq ✏ EYi
rYr

i ⑤Vi,Ci, ♣θ♣kqs ✏ yr
i ,♣tri ♣kq ✏ ETiYi

rT r
i ⑤Vi,Ci, ♣θ♣kqs ✏ ETi

rT r
i ⑤Yi, ♣θ♣kqs,①tyi

♣kq ✏ ETiYi
rTiYi⑤Vi,Ci, ♣θ♣kqs ✏ yiETi

rTi⑤Yi, ♣θ♣kqs,

with y0

i ✏ 1, y1

i ✏ yi and y2

i ✏ yiy
❏
i and ETi

rT r
i ⑤Yi, ♣θ♣kqs ✏ ETi

rT r
i ⑤Yis⑤θ✏♣θ♣kq for

r ✏ t1, 2✉.

2. If the ith subject has only censored components, we have

♣yr
i

♣kq ✏ EYi
rYr

i ⑤Vi,Ci, ♣θ♣kqs ✏ ①wr
i

♣kq
,♣ti♣kq ✏M2♣♣θ♣kqq ♣∆♣kq❏♣Γ✁1♣kq♣①wi

♣kq ✁ ♣µ♣kqq � ♣γ♣kqi M♣♣θ♣kqq,♣t2i ♣kq ✏M4♣♣θ♣kqq ♣∆♣kq❏♣Γ✁1♣kq♣①w2
i

♣kq ✁ 2①wi
♣kq♣µ♣kq❏ � ♣µ♣kq♣µ♣kq❏q♣Γ✁1♣kq ♣∆♣kq �M2♣♣θ♣kqq

� ♣γ♣kqi M3♣♣θ♣kqq ♣∆♣kq❏♣Γ✁1♣kq♣①w0

♣kq
i ✁ ♣µ♣kqq,①tyi

♣kq ✏M2♣♣θ♣kqq♣①wi
2♣kq ✁①wi

♣kq♣µ♣kq❏q♣Γ✁1♣kq ♣∆♣kq � ♣γ♣kqi M♣♣θ♣kqq①w0

♣kq
i ,

where

♣w♣kq
i ✏ ErWi ⑤ ♣θ♣kqs, ♣w2♣kq

i ✏ ErWiW
❏
i ⑤ ♣θ♣kqs and ①w0

♣kq
i ✏ ErW0i ⑤ ♣θ♣kqs,

with Wi ✒ TSNp♣♣µ♣kq, ♣Σ♣kq, ♣λ♣kq, rv1i,v2isq, W0i ✒ TNp♣♣µ♣kq, ♣Γ♣kq, rv1i,v2isq and

♣γ♣kqi ✏ 1❜
π
2

�
1 � ♣λ♣kq❏♣λ♣kq

✟ Lp♣v1i,v2i, ♣µ♣kq, ♣Γ♣kqq
Lp♣v1i,v2i, ♣µ♣kq, ♣Σ♣kq, ♣λ♣kq, 0q .

3. If the ith subject has both censored and uncensored components and given that

♣Yi ⑤Vi,Ciq, ♣Yi ⑤Vi,Ci,Y
o
i q, and ♣Yc

i ⑤Vi,Ci,Y
o
i q are equivalent processes, we

have

♣y♣kq
i ✏ E♣Yi ⑤Yo

i ,Vi,Ci, ♣θ♣kqq ✏ vec♣yo
i , ♣wc♣kq

i q,

♣y2
i

♣kq ✏ E♣YiY
❏
i ⑤Yo

i ,Vi,Ci, ♣θ♣kqq ✏
✄

yo
i y

o❏
i yo

i ♣wc♣kq❏
i♣wc♣kq

i yo❏
i ♣w2c♣kq

i

☛
,
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♣y♣kq0i ✏ vec♣yo
i , ♣wc♣kq

0i q,♣ti♣kq ✏M2♣♣θ♣kqq ♣∆♣kq❏♣Γ✁1♣kq♣♣yi
♣kq ✁ ♣µ♣kqq � ♣γ♣kqi M♣♣θ♣kqq,♣t2i ♣kq ✏M4♣♣θ♣kqq ♣∆♣kq❏♣Γ✁1♣kq♣ ♣y2

i

♣kq ✁ 2♣yi
♣kq♣µ♣kq❏ � ♣µ♣kq♣µ♣kq❏q♣Γ✁1♣kq ♣∆♣kq �M2♣♣θ♣kqq

� ♣γ♣kqi M3♣♣θ♣kqq ♣∆♣kq❏♣Γ✁1♣kq♣ ♣y0

♣kq
i ✁ ♣µ♣kqq,①tyi

♣kq ✏M2♣♣θ♣kqq♣♣yi
2♣kq ✁ ♣yi

♣kq♣µ♣kq❏q♣Γ✁1♣kq ♣∆♣kq � ♣γ♣kqi M♣♣θ♣kqq ♣y0

♣kq
i ,

where

♣wc♣kq
i ✏ ErWc

i ⑤ ♣θ♣kqs, ♣w2c♣kq
i ✏ ErWc

iW
c❏
i ⑤ ♣θ♣kqs and ①w0

c♣kq
i ✏ ErWc

0i ⑤ ♣θ♣kqs,
with Wc

i ✒ TESNpc
i

�♣µco♣kq
i , ♣Σcc.o♣kq

i , ♣λco♣kq
i , ♣τ co♣kq

i , rvc
1i,v

c
2is
✟
, Wc

0i ✒ TNp♣ ♣mco♣kq
i , ♣Γcc.o♣kq

i ,

rvc
1i,v

c
2isq and

♣γ♣kqi ✏ ηco
i Lp♣vc

1i,v
c
2i; ♣mco♣kq

i , ♣Γcc.o♣kq
i q

Lp♣vc
1i,v

c
2i; ♣µco♣kq

i , ♣Σcc.o♣kq
i , ♣λco♣kq

i , ♣τ co♣kq
i q

,

with λco
i ✏ Σcc.o1④2

i ϕc
i , mco

i ✏ µco
i ✁µco

bi , where ηco
i , µco

bi and Γcc.o
i can be computed as

expressions η, µb and Γ in Proposition 4.6, but using the new set of parameters µco
i ,

Σcc.o
i , λco

i and τ co
i (instead of µ, Σ, λ and τ).

To compute the truncated moments ErW0is, ErWis and ErWiW
❏
i s given in

items 2 and 3, we use the MomTrunc R package.

4.3.3 Regression setting

Suppose that we have observations on n independent individuals, Y1, . . . ,Yn,

where Yi ✒ SNp♣µi,Σ,λq, i ✏ 1, . . . , n. Associated with individual i we assume a known

p✂ q covariate matrix Xi, which we use to specify the linear predictor µi ✏ Xiβ, where β

is a q-dimensional vector of unknown regression coefficients. In this case, the parameter

vector is θ ✏ ♣β❏,α❏,λ❏q❏. The E-Step of the EM algorithm updates β as follows

♣β♣k�1q ✏ ♣
n➳

i✏1

X❏
i Xiq✁1

n➳
i✏1

X❏
i ♣♣y♣kqi ✁ ♣ti♣kq∆♣kqq, (4.26)

and the necessary quantities of the E and M-steps found in Subsection 4.3.2 remain the

same once we plug-in ♣µ♣kq by ♣µ♣kq
i ✏ Xi

♣β♣kq.

4.4 Applications

To exemplify the method developed in this work, we considered all three

datasets introduced in chapter 1: (a) Apple data: a bivariate example with missing data,

(b) Concentration levels data: an interval-censoring data; and (c) Wine data: a skew normal

censored regression.
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4.4.1 Apple data: A bivariate example with missing data

First, we apply our methodology to the apple data introduced in subsection

1.2.2. We consider our proposed SN-C model with p ✏ 2 dimension to fit the data, that is,

Yi ✏ ♣Yi1, Yi2q ✒ SN2♣µ,Σ,λq. In order to fit the models via the EM-based ML estimation

developed in Subsection 4.3.2, we employed different sets of initial values and chose the

fitting result with the largest maximized log-likelihood value to be the global maxima. For

the sake of comparison, we also fit a multivariate N-C model, which can be treated as a

reduced multivariate SN-C model for λ ✏ 0.

A graphical representation for these fitted models is displayed in Figure 9,

with the scatter for the observed data, predicted points using both models, and overlaid

contours of the fitted SN and N densities.

Results are summarized on Tables 3 and 4. In Table 3, we can see that the

estimates for the skewness parameter λ are quite high (due to the small tolerance used for

the stopping rule of the algorithm) evidencing a significant departure from symmetry. From

Figure 9, note that these high values lead to a truncated effect for the response region.

As expected, the SN model outperforms the N model in terms of log-likelihood and AIC.

Predicted missing values are shown in Table 4, where we can see that not considering the

asymmetry in the model leads to underestimation. Comparing our results with Lin et al.

(2009), which studies the same dataset without considering any restriction (as censoring)

on the missing data, we have that our proposed model presents similar results in terms of

log-likelihood and AIC (ℓ♣θ̂⑤Yq ✏ ✁98.47 and AIC = 208.94). It is worth to mention that

Lin et al. (2009) works with a different version of the SN distribution, the one introduced

by Sahu et al. (2003).

Figure 9 – Apple data. Scatter and predictive plot of the apple data, overlaid on the
contours of fitted SN model (solid lines) and N model (dashed lines). ESN
marginal densities are shown on borders.
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Table 3 – Apple data. Comparison of ML estimates between the two models

Model µ1 µ2 σ11 σ12 σ22 λ1 λ2 ℓ♣θ̂⑤Yq AIC
Normal 14.72 49.33 89.53 ✁90.69 114.68 - - ✁101.79 213.57

Skew-normal 9.56 52.36 118.31 ✁111.09 135.70 1163.26 317.91 ✁98.23 210.45

Table 4 – Apple data. Comparisons of EM predictions of the six missing values

Model ŷ13,2 ŷ14,2 ŷ15,2 ŷ16,2 ŷ17,2 ŷ18,2

Normal 60.19 60.19 59.18 58.17 56.14 54.12
Skew-normal 63.88 63.88 62.59 61.32 58.79 56.29

4.4.2 Concentration levels data: interval-censoring to fit positive left-censored

data

In the second application, we consider the concentration levels data as in

Chapter 2. These data were previously analyzed by Hoffman & Johnson (2015), where

they proposed a pseudo-likelihood approach for estimating parameters of multivariate

normal and log-normal models.

Censored responses in addition to asymmetric behavior of the data, lead us

to propose a SN-C model to fit the data, now with dimension p ✏ 5 , that is, Yi ✏
♣Yi1, Yi2, . . . , Yi5q ✒ SN5♣µ,Σ,λq. For the sake of comparison, we also fit a multivariate

N-C model as in the previous application.

To guarantee strictly positive concentration levels, we consider an interval-

censoring analysis by setting all lower limit of detection equal to 0 for all trace metals.

Again, we standardize the dataset to have zero mean and variance equal to one as in

Wang et al. (2019). The ML estimates of the parameters were obtained using the EM

algorithm described in Subsection 4.3.2. The estimated skewness parameter λ̂ as well as

the log-likelihood and AIC are shown in Table 5. Here, we can see that the estimates of λ̂

are quite different from zero, indicating a lack of adequacy of the symmetry assumption

for the VDEQ data. The AIC value is lower for our SN-C model as expected.

Table 5 – VDEQ data. ML estimates for the skewness parameter and model comparison.

Model λ1 λ2 λ3 λ4 λ5 ℓ♣θ̂⑤Yq AIC
Normal - - - - - ✁1351.596 2743.192

Skew-normal 5.693 16.442 28.579 ✁1.382 0.488 ✁1269.078 2588.157

Figure 10 shows the histograms on diagonal and pair-wise scatter plots for the

concentration levels study. From the histograms we can see how censored observations

(taking values over the dashed lines) are distributed adequately to the left (blue bins)
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Figure 10 – VDEQ data. Histograms (diagonal) and pair-wise scatter plots (lower-triangle)
for the concentration levels study. Complete observed points are represented
in black points (gray bins) and SN predicted observations in blue points (bins).
Limits of detection are represented in dashed lines.

after fitting our proposed model, while gray bins represent complete observed points. On

the other hand, the scatter plots of the show complete observed (black) points and the

predicted observations using the multivariate SN-C model (blue points).

Finally, with the aim of validating the proposed censored model approach, we

compare the correlation matrices of the data by considering 5 strategies:

a) Original: original data

b) Omitting: zeros are not considered

c) Manipulating: multiplying the limit of detection by the factor 0.75

d) N-C model

e) SN-C model
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Figure 11 – VDEQ data. Correlation matrices of the concentration levels for 5 different
strategies.

The results are depicted in Figure 11. From this figure we can see that the

correlation matrices for the N and SN models are similar. Based on the AIC, we consider

the second one as a reference. We can get very decent results for this study by using the

original data (a) or even manipulating the data (c), with both tending to underestimate

the correlations. Omitting (b) is by far the worst strategy. For example, the correlation

between the Pb and Cu is poorly estimated to the point that they have the sign changed.

Similar problems arise for the correlations between Zn and other three elements. Given the

large number of censored observations, omitting leads to loss of information (as is the case

of the correlation between Ca and Pb, as well as between Ca and Mg, where correlation

was estimated to be zero).

4.4.3 Wine data: A skew normal censored regression with censored and missing

values

For this data, we propose the following simultaneous model:

acidityi ✏ β10 � β11sugari � β12flavonoidsi � β13pHi � β14ODdwi � ε1i, (4.27)

alcoholi ✏ β20 � β21sugari � β22flavonoidsi � β23pHi � β24ODdwi � ε2i, (4.28)

where we consider a correlation structure between the acidity and alcohol, that is,

cov♣εl, εbq ✘ 0, and Erε2is ✏ Erε2is ✏ 0. The proposed model can be written in a matrix

form as

yi ✏ rI2 ❜ xisβ � εi, i ✏ 1, . . . , n, (4.29)

where for the object i, yi ✏ ♣acidity, alcoholq❏i is a bivariate response of interest, xi ✏
♣1, sugar, flavanoids, pH,ODdwq❏i is a covariate vector, β ✏ ♣β❏

1
,β❏

2
q❏ is a 10✂1 vector,

with β1 and β2 being a 5 ✂ 1 vector of regression coefficient for acidity and alcohol,

respectively; and finally εi ✏ ♣ε1i, ε2iq❏ is the zero mean error term considered to be i.i.d.

as εi ✒ SN2♣✁
❛

2④π∆,Σ,λq, where Σ is a 2 ✂ 2 dispersion matrix, λ ✏ ♣λ1, λ2q❏ is the

skewness parameters and ∆ as defined in Proposition 4.1.

Furthermore, flavonoids are complicated compounds responsible for the color

and flavor of grapes and consequently of the wine, while ODdw is a measure of protein
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content. The units for the variables is not registered in the database, however they seem

to be positive quantities.

In order to validate our methodology, we alter the data by creating censoring

as well as missing values at random. Hence, we create 15% of right-censored values for

acidity, 15% of left-censored values for alcohol and an additionally 10% of missing values,

which were selected randomly along the remaining non-censored points.

This setting led to a total of 24.4% of censored/missing points. Note that,

only 57.3% of the measures had 0 missing/censored responses, 36.5% had exactly one

missing/censored characteristic and 6.2% observations with no information at all, that is,

both responses are missing/censored.

Furthermore, since quantities are strictly positive measures, to guarantee this,

we consider this feature by setting the lower limit of detection always greater than 0 for

both responses. This lead us to propose a skew-normal censored regression (SN-CR) model

defined in (4.29) to fit the data. For the sake of comparison, we also fit a multivariate

normal censored regression (N-CR) model and the skew-normal regression (SN-R) model

for the original non-disturbed data.

Table 6 – Wine data. Model comparison criteria for fitting the N-CR and SN-CR models
in the disturbed data.

Model λ1 λ2 ℓ♣θ̂⑤Yq AIC BIC

N-CR - - -726.68 1479.35 1529.73
SN-CR 2.96 -2.07 -718.16 1466.32 1524.44

Table 7 – Wine data. Estimated regression coefficients using the SN-CR model for the
original and disturbed data.

β10 β11 β12 β13 β14 β20 β21 β22 β23 β24 ȳ1 ȳ2

Original 257.14 1.86 -5.97 -58.31 -5.21 10.01 0.13 0.26 -0.03 -0.29 85.64 13.00
Disturbed 259.38 2.17 -6.53 -60.72 -5.32 9.34 0.15 0.22 0.02 -0.23 86.25 12.95

For model selection, we consider the log-likelihood (ℓ♣θ̂⑤Yq), Akaike information

criterion (AIC, Akaike, 1974) as well as the Bayesian Information Criterion (BIC, Schwarz

et al., 1978), displayed in Table 6. From this table, we can see that the estimates of λ are

not near from zero, indicating a significant skewness and consequently a lack of adequacy

of the symmetry assumption for this dataset. All criteria point out to our SN-CR model,

as expected.

We also analyzed the parameter estimation when we have the original and

the disturbed (missing/censored) data, for both datasets we fitted the SN-CR model.

Estimated values for the regression coefficients β, dispersion matrix Σ, skewness parameter
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λ can be found in Table 7, we can see that the estimated values are closer, showing that

it is reasonable to accommodate a mechanism for censoring/missing into the model.
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Figure 12 – Wine data. Scatter plots with marginal histograms (left panel) and estimated
densities (right panel) for the original data (in black) and disturbed data (in
blue) using our proposed SN-CR model.

Note from Figure 12 that the estimated densities for the original dataset (in

gray) and the estimated densities using our model (in blue) for the disturbed data are

almost indistinguishable, showing that our proposal offers a good performance in prediction,

even when the censoring/missing levels are high.

4.5 Conclusions

In this paper, a novel exact EM algorithm for skew-normal censored responses

has been developed. Our proposal uses closed-form expressions at the E-step, that rely on

formulas of the mean and variance of a multivariate truncated skew-normal distribution.

These formulas are available in closed form and have been derived recently (chapter 3).

Our approach includes some previously proposed solutions, such as, the skew-normal linear

regression model proposed by Lachos et al. (2007), the classic Tobit linear models in

which the error terms are assumed to follow a Gaussian distribution and the multivariate

skew-normal models with incomplete data proposed by Lin et al. (2009), among others.

We applied our methods to three real datasets containing missing and censored

components, where we demonstrate the superiority of the SN-C model by providing more

adequate results when the available data have asymmetric behavior. Furthermore, our

results reveal that our method has very competitive performance in terms of imputation

when the skew-normal model is imposed. Therefore, it is noteworthy that the use of the

SN-C model can offer a better fit and more precise inferences. It is important to remark
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that we assumed the dropout/censoring mechanism to be "missing at random" (MAR),

(see, Diggle et al., 2002, p 283). However, in the case where MAR with ignorability is not

realistic, the relationship between the unobserved measurements and censoring process

should be further investigated. The proposed method (including the limiting normal

symmetric case) has been coded and implemented in the R MomTrunc package, which is

available for the users on CRAN repository.
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5 Moments of the doubly truncated selection

elliptical distributions with emphasis on the

unified multivariate skew-t distribution

5.1 Introduction

Truncated moments have been a topic of high interest in the statistical literature,

whose possible applications are wide, from simple to complex statistical models as survival

analysis, censored data models, and in the most varied areas of applications such as

agronomy, insurance, finance, biology, among others. These areas have data whose inherent

characteristics lead to the use of methods that involve these truncated moments, such as

restricted responses to a certain interval, partial information such as censoring (which

may be left, right or interval), among others. The need to have more flexible models that

incorporate features such as asymmetry and robustness, has led to the exploration of

this area in last years. From the first two one-sided truncated moments for the normal

distribution, useful in Tobin’s model Tobin (1958), its evolution led to its extension to the

multivariate case Tallis (1961), double truncation Manjunath & Wilhelm (2009), heavy

tails when considering the Student’s t bivariate case in Nadarajah (2007), and finally the

first two moments for the multivariate Student’s t case in Ho et al. (2012). Besides the

interval-type truncation in cases before, Arismendi & Broda (2017) considers an interesting

non-centered ellipsoid elliptical truncation of the form a ↕ ♣x ✁ µAq❏A♣x ✁ µAq on well

known distributions as the multivariate normal, Student’s t, and generalized hyperbolic

distribution. On the other hand, Kan & Robotti (2017) recently proposed a recursive

approach that allows calculating arbitrary product moments for the normal multivariate

case. Based on the latter, Roozegar et al. (2020) proposes the calculation of doubly

truncated moments for the normal mean-variance mixture distributions which includes

several well-known complex asymmetric multivariate distributions as the generalized

hyperbolic distribution.

Unlike Roozegar et al. (2020), we focus our efforts to the general class of

asymmetric distributions called the selection elliptical family multivariate. This large

family of distributions includes complex multivariate asymmetric versions of well-known

elliptical distributions as the normal, Student’s t, exponential power, hyperbolic, Slash,

Pearson type II, contaminated normal, among others. We go further in details for the unified

skew-t (SUT) distribution, a complex multivariate asymmetric heavy-tailed distribution

which includes the extended skew-t (EST) distribution (Arellano-Valle & Genton, 2010),
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the skew-t (ST) distribution (Azzalini & Capitanio, 2003) and naturally its analogous

normal cases when ν Ñ ✽.

The rest of the paper is organized as follows. In Section 5.2 we present some

preliminaries results, most of them being definitions of the class of distributions and its

special cases of interest along the document. Section 5.3, the addresses the moments for

the doubly truncated selection elliptical distributions. We establish formulas for high order

moments as well as its first two moments. We present a methodology to deal with some

limiting cases of interest and when a non-truncated partition exists, and we establish

sufficient and necessary conditions for the existence of these truncated moments. Section 5.4

bases results from Section 5.3 to the SUT case. In Section 5.5, a brief numerical study

is presented in order to validate the methodology. In Section 5.6, a direct application

of ST truncated moments is developed in the context of risk measurement in Finance.

Section 5.7 presents some lemmas and corollaries useful in censored modeling framework.

These are given for the SUT distribution and its particular cases EST (ESN) and ST

(SN) distributions. Finally, Section 5.8 proposes estimation on interval-censored models

for skew-t responses. We last conclude with some comments and future research.

5.2 Preliminaries

5.2.1 Selection distributions

First, we start our exposition defining a selection distribution as in Arellano-

Valle et al. (2006b).

Definition 5.1 (selection distribution). Let X1 P R
q and X2 P R

p be two random

vectors, and denote by C a measurable subset of Rq. We define a selection distribution as

the conditional distribution of X2 given X1 P C, that is, as the distribution of ♣X2 ⑤ X1 P Cq.
We say that a random vector Y P R

p has a selection distribution if Y
d✏ ♣X2 ⑤ X1 P Cq.

We use the notation Y ✒ SLCTp,q with parameters depending on the char-

acteristics of X1, X2, and C. Furthermore, for X2 having a probability density function

(pdf) fX2 say, then Y has a pdf fY given by

fY♣yq ✏ fX2♣yq
P♣X1 P C ⑤ X2 ✏ yq

P♣X1 P Cq . (5.1)

Since selection distribution depends on the subset C P R
q, particular cases are

obtained. One of the most important case is when the selection subset has the form

C♣cq ✏ tx1 P R
q ⑤ x1 → c✉. (5.2)

In particular, when a ✏ 0, the distribution of Y is called to be a simple selection

distribution.
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In this work, we are mainly interested in the case where ♣X1,X2q has a joint

density following an arbitrary symmetric multivariate distribution fX1,X2 . For Y
d✏ ♣X2 ⑤

X1 P Cq, this setting leads to a Y p-variate random vector following a skewed version of

f , which its pdf can be computed in a simpler manner as

fY♣yq ✏
➩

C
fX1,X2♣x1,yq dx1➩
C
fX1♣x1q dx1

. (5.3)

5.2.2 Selection elliptical (SE) distributions

A quite popular family of selection distributions arises when X1 and X2 have

a joint multivariate elliptically contoured ♣ECq distribution, as follows:

X ✏
✄

X1

X2

☛
✒ ECq�p

✄
ξ ✏

✄
ξ1

ξ2

☛
,Ω ✏

✄
Ω11 Ω12

Ω21 Ω22

☛
, h♣q�pq

☛
, (5.4)

where ξ1 P R
q and ξ2 P R

p are location vectors, Ω11 P R
q✂q, Ω22 P R

p✂p, and

Ω21 P R
p✂q are dispersion matrices, and, in addition to these parameters, h♣q�pq is a

density generator function. We denote the selection distribution resulting from (5.4) by

SLCT -ECp,q♣ξ,Ω, h♣q�pq, Cq. They typically result in skew-elliptical distributions, except

for two cases: Ω21 ✏ 0p✂q and C ✏ C♣ξ1q (for more details, see Arellano-Valle et al.

(2006b)). Given that the elliptical family of distributions is closed under marginalization

and conditioning, the distribution of X2 and ♣X1 ⑤ X2 ✏ xq are also elliptical, where their

respective pdfs are given by

X2 ✒ ECp♣ξ2,Ω22, h
♣pqq, (5.5)

X1 ⑤ X2 ✏ x ✒ ECq♣ξ1 �Ω12Ω
✁1

22
♣x ✁ ξ2q,Ω11 ✁Ω12Ω

✁1

22
Ω21, h

♣qq
x q, (5.6)

with induced conditional generator

h♣qqx ♣uq ✏ h♣q�pq♣u� δ2♣xqq
h♣pqδ2♣xq ,

with δ2♣xq △✏ ♣x✁ ξ2q❏Ω✁1

22
♣x✁ ξ2q. These last equations imply that the selection elliptical

distributions are also closed under marginalization and conditioning. Furthermore, it is

well-know that the SE family is closed under linear transformations. For A P R
r✂p and

b P R
r being a matrix of rank r ↕ p and a vector, respectively, it holds that the linear

transformation AY � b
d✏ ♣AX2 � bq ⑤ ♣X1 → 0q, where d✏ is an acronym that stands for

identically distributed, and then

AY � b ✒ SLCT -ECr,q

✄
ξ ✏

✄
ξ1

Aξ2 � b

☛
,Ω ✏

✄
Ω11 Ω12A

❏

AΩ21 AΩ22A
❏

☛
, h♣q�rq

☛
.

(5.7)
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Notice from Equation (5.3), that alternatively we can write

fY♣yq ✏
➩

C
fq�p♣x1,y; ξ,Ω, h♣q�pqq dx1➩
C
fq♣x1; ξ1,Ω11, h♣qqq dx1

. (5.8)

5.2.3 Particular cases for the SE distribution

Some particular cases, useful for our purposes, are detailed next. For further

details, we refer to Arellano-Valle et al. (2006b).

Unified-skew elliptical (SUE) distribution

Let Y ✒ SLCT -ECp,q♣ξ,Ω, h♣q�pq, Cq. Y is said to follow the unified skew-

elliptical distribution introduced by Arellano-Valle & Azzalini (2006b) when the truncation

subset C ✏ C♣0q. From (5.8), it follows that

fY♣yq ✏ fp♣y; ξ2,Ω22, h
♣pqqFq♣ξ1 � Ω12Ω

✁1

22 ♣y ✁ ξ2q; 0,Ω11 ✁ Ω12Ω
✁1

22 Ω21, h
♣qq
y q

Fq♣ξ1; Ω11, h♣qqq , (5.9)

where fp♣y; ξ2,Ω22, h
♣pqq ✏ ⑤Ω22⑤✁1④2h♣pq♣δX2♣yqq, and Fq♣z; 0,Θ, g♣qqq denote the cumu-

lative distribution function (cdf) of the ECq♣0,Θ, g♣qqq. Note that the density in (5.9)

extends the family of skew elliptical distributions proposed by Branco & Dey (2001) (see

also, Azzalini & Capitanio, 2003), which consider q ✏ 1 and ξ1 ✏ 0.

Scale-mixture of unified-skew normal (SMSUN) distribution

Let W being a nonnegative random variable with cdf G. For a generator

function h♣p�qq♣uq ✏
➺ ✽

0

♣2πζ♣wqq✁♣p�qq④2e✁u④2ζ♣wqdG♣wq, several skewed and thick-tailed

distributions can be obtained from different specifications of the weight function ζ♣☎q and

G. It is said that Y follows a SMSUN distribution, if its probability density function (pdf)

takes the general form

fY♣yq ✏
➺ ✽

0

φp♣y; ξ2, ζ♣wqΩ22qΦq♣ξ1 � Ω12Ω
✁1

22 ♣y ✁ ξ2q; ζ♣wqtΩ11 ✁ Ω12Ω
✁1

22 Ω21✉q
Φq♣ξ1; ζ♣wqΩ11q dG♣wq,

(5.10)

where Φr♣☎; Σq represents the cdf of a r-variate normal distribution with mean

vector 0 and variance-covariance matrix Σ. Here Y ⑤ ♣W ✏ wq follow a unified skew-normal

(SUN) distribution, where we write Y ⑤ ♣W ✏ wq ✒ SUN♣ξ, ζ♣wqΩq.
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• Unified skew-normal (SUN) distribution

Setting W as a degenerated r.v. in 1 (P♣W ✏ 1q ✏ 1) and ζ♣wq ✏ w, then h♣p�qq♣uq ✏
♣2πq✁♣p�qq④2e✁u④2, u ➙ 0, for which h♣pq♣uq ✏ ♣2πq✁p④2e✁u④2. Then, Y follow a SUN

distribution, that is, Y ✒ SUNp,q♣ξ,Ωq, with pdf as

fY♣yq ✏ φp♣y; ξ2,Ω22qΦq♣ξ1 �Ω12Ω
✁1

22 ♣y ✁ ξ2q; Ω11 ✁Ω12Ω
✁1

22 Ω21q
Φq♣ξ1; Ω11q . (5.11)

• Unified skew-t (SUT) distribution

For W ✒ G♣ν④2, ν④2q and weight function ζ♣wq ✏ 1④w, we obtain h♣p�qq♣uq ✏
Γ♣♣p�q�νq④2qνν④2

Γ♣ν④2qπ♣p�qq④2 t1� u✉✁♣p�q�νq④2 and hence (5.10) becomes

fY♣yq ✏ tp♣y; ξ2,Ω2, νq
Tq♣ξ1 �Ω12Ω

✁1

22 ♣y ✁ ξ2q; ν�δ2♣yq
ν�p

tΩ11 ✁Ω12Ω
✁1

22 Ω21✉, ν � pq
Tq♣ξ1; Ω11, νq ,

(5.12)

where Tr♣☎; Σ, νq represents the cdf of a r-variate Student’s t distribution with location

vector 0, scale matrix Σ and degrees of freedom ν. For Y with pdf as in (5.12) is

said to follow a SUT distribution, which is denoted by Y ✒ SUTp,q♣ξ,Ω, νq and was

introduced by Arellano-Valle & Azzalini (2006b). It is well-know that (5.12) reduces

to a SUN pdf (5.11) as ν Ñ ✽ and to an unified skew-Cauchy (SUC) distribution,

when ν ✏ 1.

Furthermore, using the following parametrization:

ξ ✏
✄

τ

µ

☛
and Ω ✏

✄
Ψ�Λ❏Λ Ω12

Ω21 Σ

☛
, (5.13)

where Ω21 ✏ Σ1④2Λ, with Σ1④2 being the square root matrix of Σ such that Σ ✏
Σ1④2Σ1④2, we use the notation Y ✒ SUTp,q♣µ,Σ,Λ, τ , ν,Ψq, to stand for a p-variate

EST distribution with location parameter µ P R
p, positive-definite scale matrix

Σ P R
p✂p, shape matrix parameter λ P R

p✂q, extension vector parameter τ P R
q and

positive-definite correlation matrix Ψ P R
q✂q. The pdf Y is now simplified to

SUTp,q♣y; µ,Σ,Λ, τ , ν,Ψq ✏ tp♣y; µ,Σ, νqTq

�♣τ �Λ❏Σ✁1④2♣y ✁ µqqν♣yq,Ψ; ν � p
✟

Tq♣τ ; Ψ�Λ❏Λ, νq ,

(5.14)

with ν2♣xq ✑ ν2

X♣xq △✏ ♣ν � dim♣xqq④♣ν � δ♣xqq and δ♣xq ✏ ♣x ✁ µXq❏Σ✁1

X ♣x ✁ µXq
being the Mahalanobis distance. The pdf in (5.14) is equivalent to the one found

in Arellano-Valle & Genton (2010), with a different parametrization. Although the

unified skew-t distribution above is appealing from a theoretical point of view, the

particular case, when q ✏ 1, leads to simpler but flexible enough distribution of

interest for practical purposes.
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Extended skew-t (EST) distribution

For q ✏ 1, we have that Ψ ✏ 1, Λ ✏ λ and Tq♣x; Ψ, νq ✏ T1♣x④
❛
ψ, νq, hence (5.14)

reduces to the pdf of a EST distribution, denoted by ESTp♣y; µ,Σ,λ, τq, that is,

ESTp♣y; µ,Σ,λ, τq ✏ tp♣y; µ,Σ, νqT1

�♣τ � λ❏Σ✁1④2♣y✁ µqqν♣yq; ν � p
✟

T1♣τ̃ ; νq . (5.15)

with τ̃ ✏ τ④
❄

1� λ❏λ .Here, λ P R
p is a shape parameter which regulates the

skewness of Y, and τ P R is a scalar. Location and scale parameters µ and Σ

remains as before. Here, we write Y ✒ ESTp♣µ,Σ,λ, τq Notice that, SUTp,1 ✏ ESTp.

Besides, it is straightforward to see that

ESTp♣y; µ,Σ,λ, τ, νqÝÑ tp♣y; µ,Σ, νq, as τ Ñ ✽,

where tp♣☎; µ,Σ, νq corresponds to the pdf of a multivariate Student’s t distribution

with location parameter µ, scale parameter Σ and degrees of freedom ν. On the

other hand, when τ ✏ 0, we retrieve the skew-t distribution STp♣µ,Σ,λ, νq say,

which density function is given by

STp♣y; µ,Σ,λ, νq ✏ 2tp♣y; µ,Σ, νqT1

�
λ❏Σ✁1④2♣y✁ µq ν♣yq; ν � p

✟
, (5.16)

that is, ESTp♣µ,Σ,λ, 0, νq ✏ STp♣µ,Σ,λ, νq. Other properties are studied in

Arellano-Valle & Genton (2010), with a slightly different parametrization.

Six different densities for special cases of the truncated SUT distribution are shown in

Figure 13. Symmetrical cases normal and Student’s t are shown at first row (λ ✏ 0),

skew cases: skew-normal (SN) and ST at second row (τ ✏ 0) and extended skew

cases: extended skew-normal (ESN) and EST at the third row. Location vector µ

and scale matrix Σ remains fixed for all cases.

• Others unified skewed distributions

Others unified members are given by different combinations of the weight function

ζ♣W q and the mixture cdf G. For instance, we obtain an unified skew-slash distribu-

tion when ζ♣wq ✏ 1④w and W ✒ Beta♣ν, 1q; an unified skew-contaminated-normal

distribution when ζ♣W q ✏ 1④W and W is a discrete r.v. with probability mass

function (pmf) g♣w; ν, γq ✏ νItw✏γ✉�♣1✁νqItw✏1✉, with I being the identity function.

Besides, Branco & Dey (2001) mentions some other distributions as the skew-logistic,

skew-stable, skew-exponential power, skew-Pearson type II and finite mixture of

skew-normal distribution. It is worth mentioning that even though Branco & Dey

(2001) works with a subclass of the SMSUN, when q ✏ 1 and ξ1 ✏ 0, unified versions

of these are readily computed by considering the same respective weight function

ζ♣☎q and mixture distribution G.
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5.3 On moments of the doubly truncated selection elliptical distri-

bution

Let Y ✒ SLCT -ECp,q♣ξ,Ω, h♣q�pq, Cq with pdf as in (5.8) and let also A be a

Borel set in R
p. We say that a random vector W has a truncated selection elliptical (TSE)

distribution on A when W
d✏ Y⑤♣Y P Aq. In this case, the pdf of W is given by

fW♣wq ✏ fY♣wq
P ♣Y P Aq1A♣wq,

where 1A is the indicator function of A. We use the notation W ✒ TSLCT -ECp,q♣ξ,Ω, h♣q�pq,

C;Aq. If A has the form

A ✏ t♣y1, . . . , ypq P R
p : a1 ↕ y1 ↕ b1, . . . , ap ↕ yp ↕ bp✉ ✏ ty P R

p : a ↕ y ↕ b✉, (5.17)

hence we use the notation tY P A✉ ✏ ta ↕ Y ↕ b✉, where a ✏ ♣a1, . . . , apq❏ and b ✏
♣b1, . . . , bpq❏, where ai and bi values may be infinite, by convention. Here, we say that the

distribution of W is doubly truncated. Analogously we define tY ➙ a✉ and tY ↕ b✉. Thus,

(a) (b)

Figure 13 – Densities for particular cases of Y being a truncated SUT distribution. (a)
Normal cases at left column (normal, SN and ESN from top to bottom) and
(b) Student’s-t cases at right (Student’s t, ST and EST from top to bottom).
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we say that the distribution of W is truncated from below and truncated from above, respec-

tively. For convenience, we also use the notation W ✒ TSLCT -ECp,q♣ξ,Ω, h♣q�pq, C; ♣a,bqq
with the last parameter indicating the truncation interval. Analogously, we do denote

TECp♣ξ,Ω, h♣pq; ♣a,bqq to refer to a p-variate (doubly) truncated elliptical (TE) distribu-

tion on ♣a,bq P R
p. Some characterizations of the doubly TE have been recently discussed

in Morán-Vásquez & Ferrari (2019).

5.3.1 Moments of a TSE distribution

For two p-dimensional vectors y ✏ ♣y1, . . . , ypq❏ and k ✏ ♣k1, . . . , kpq❏, let yk

stand for ♣yk1
1
, . . . , ykp

p q, that is, we use a pointwise notation. Next, we present a formulation

to compute arbitrary product moments of a TSE distribution.

Theorem 5.1 (moments of a TSE). Let X ✒ ECq�p♣ξ,Ω, h♣q�pqq as in (5.6.1). Let

C be a truncation subset of the form C♣c,dq ✏ tx1 P R
q ⑤ c ↕ x1 ↕ d✉. For Y ✒

SLCT -ECp,q♣ξ,Ω, h♣q�pq, C♣c,dqq, it holds that ErYks ✏ ErY k1
1
Y k2

2
. . . Y kp

p s can be com-

puted as

ErYk ⑤ a ↕ Y ↕ bs ✏ ErXκ ⑤ α ↕ X ↕ βs, (5.18)

with κ ✏ ♣0❏q ,k❏q❏, α ✏ ♣c❏, a❏q❏ and β ✏ ♣d❏,b❏q❏, where k ✏ ♣k1, k2, . . . , kpq❏, with

ki P N, for i ✏ 1, . . . , p.

Proof. Since Y
d✏ X2 ⑤ ♣c ↕ X1 ↕ dq, the proof is direct by noting that

Y ⑤ ♣a ↕ Y ↕ bq d✏ X2 ⑤ ♣c ↕ X1 ↕ d ❳ a ↕ X2 ↕ bq
d✏ X2 ⑤ ♣α ↕ X ↕ βq.

Corollary 5.1 (first two moments of a TSE). Under the same conditions of Theorem

5.1, let m ✏ ErX ⑤ α ↕ X ↕ βs and M ✏ ErXX❏ ⑤ α ↕ X ↕ βs, both partitioned as

m ✏
✄

m1

m2

☛
and M ✏

✄
M11 M12

M21 M22

☛
,

respectively. Then, the first two moments of Y ⑤ ♣a ↕ Y ↕ bq are given by

ErY ⑤ a ↕ Y ↕ bs ✏ m2, (5.19)

ErYY❏ ⑤ a ↕ Y ↕ bs ✏ M22, (5.20)

where m2 P R
p and M22 P R

p✂p.

For the particular truncation subset C♣cq as in (5.2), theorem 5.1 and corollary

5.1 holds considering α ✏ ♣c❏, a❏q❏ and β ✏ ♣✽❏,b❏q❏. Notice that, theorem 5.1 and
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corollary 5.1 state that we are able to compute any arbitrary moment of Y ⑤ ♣a ↕ Y ↕ bq,
that is, a TSE distribution just using an unique corresponding moment of a doubly TE

distribution X ⑤ ♣α ↕ X ↕ βq.
This is highly convenient since doubly truncated moments for some members

of the elliptical family of distributions are already available in the literature and statistical

softwares.

5.3.2 Dealing with limiting and extreme cases

Consider X ✒ ECq�p♣ξ,Ω, h♣q�pqq and Y ✒ SLCT -ECp,q♣ξ,Ω, h♣q�pq, Cq as in

Theorem 5.1 with truncation subset C ✏ C♣0q. As ξ1 Ñ ✽, we have that P♣X1 ➙ 0q Ñ 1.

Besides, as ξ1 Ñ ✁✽, we have that P♣X1 ➙ 0q Ñ 0 and consequently P♣a ↕ Y ↕ bq ✏
P♣α ↕ X ↕ βq④P♣X1 ➙ 0q Ñ ✽. Thus, for ξ1 containing high negative values small

enough, sometimes we are not able to compute ❊rYks due to computation precision,

mainly when we work with distributions with lighter tails densities. For instance, for a

normal univariate case, Φ1♣ξ1q ✏ 0 for ξ1 ↕ ✁38 in R software. The next proposition helps

us to circumvent this problem.

Proposition 5.1 (limiting case of a SE). As ξ1 Ñ ✁✽ ♣ξ1i Ñ ✁✽, i ✏ 1, . . . , qq,

SLCT -ECp,q♣ξ,Ω, h♣q�pq, C♣0qqÝÑECp♣ξ2 ✁Ω21Ω
✁1

11
ξ1,Ω22 ✁Ω21Ω

✁1

11
Ω12, h

♣pq
0 q. (5.21)

Proof. Let X ✏ ♣X❏
1
,X❏

2
q❏ ✒ ECq�p♣ξ,Ω, h♣q�pqq and Y ✒ TSLCT -ECp,q♣ξ,Ω, h♣q�pq,

C♣0q; ♣a,bqq. As ξ1 Ñ ✁✽, we have that P♣X1 ➙ 0q Ñ 0, ❊rX1⑤X1 ➙ 0s Ñ 0 and

VarrX1⑤X1 ➙ 0s Ñ 0, hence X1⑤X1 ➙ 0 becomes degenerated on 0. From Definition

5.1, Y
dÝÑ ♣X2⑤X1 ✏ 0q, and by the conditional distribution in Equation (5.6), it is

straightforward to show that X2⑤X1 ✒ ECp♣ξ2�Ω21Ω
✁1

11
♣X1✁ξ1q,Ω22✁Ω21Ω

✁1

11
Ω12, h

♣pq
X1
q.

Evaluating X1 ✏ 0 we achieve (5.21) concluding the proof.

5.3.3 Approximating the mean and variance-covariance of a TE distribution

for extreme cases

While using the relation (5.19) and (5.20), we may face numerical problems

trying to compute m ✏ ErX ⑤ α ↕ X ↕ βs and M ✏ ErXX❏ ⑤ α ↕ X ↕ βs for extreme

settings of ξ and Ω. Usually, it occurs when P♣α ↕ X ↕ βq ✓ 0 because the probability

density is far from the integration region ♣α,βq. It is worth mentioning that, for these

cases, it is not even possible to estimate the moments generating Monte Carlo (MC)

samples via rejection sample due to the high rejection ratio when subsetting to a small

integration region. Other methods as Gibbs sampling are preferable under this situation.
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Hence, we present correction method in order to approximate the mean and the

variance-covariance of a multivariate TE distribution even when the numerical precision

of the software is a limitation.

5.3.3.1 Dealing with out-of-bounds limits

Consider X ✒ ECr

�
ξ,Ω, h♣rq

✟
to be partitioned as X ✏ ♣XT

1
,X❏

2
q❏ such that

dim♣X1q ✏ r1, dim♣X2q ✏ r2, where r1 � r2 ✏ r. Also, consider ξ, Ω, α ✏ ♣α❏
1
,α❏

2
q❏

and β ✏ ♣β❏
1
,β❏

2
q❏ partitioned as before. Suppose that we are not able to compute

ErXκ⑤α ↕ X ↕ βs, because there exists a partition X2 of X of dimension r2 that is out-of-

bounds, that is P ♣α2 ↕ X2 ↕ β2q ✓ 0. Notice that this happens because P♣α ↕ X ↕ βq ↕
P ♣α2 ↕ X2 ↕ β2q ✓ 0. Besides, we suppose that P ♣α1 ↕ X1 ↕ β1q → 0. Since the limits of

X2 are out-of-bounds (and α2 ➔ β2), we have two possible cases: β2 Ñ ✁✽ or α2 Ñ ✽. For

convenience, let µ2 ✏ ErX2 ⑤ α2 ↕ X2 ↕ β2s and Σ22 ✏ covrX2 ⑤ α2 ↕ X2 ↕ β2s. For the

first case, as β2 Ñ ✁✽, we have that µ2 Ñ β2 and Σ22 Ñ 0r2✂r2 . Analogously, we have that

µ2 Ñ α2 and Σ22 Ñ 0r2✂r2 as α2 Ñ ✽. Hence, X2 ⑤ ♣α2 ↕ X2 ↕ β2q is degenerated on µ2

and then X1.2
d✏ X1 ⑤ ♣X2 ✏ µ2q ✒ ECr1♣ξ1 �Ω12Ω

✁1

22
♣µ2 ✁ ξ2q,Ω11 ✁Ω12Ω

✁1

22
Ω21, h

♣r1q
µ2
q.

Given that covrErX1⑤X2ss ✏ 0 and covrErX1⑤X2s,X2s ✏ 0, it follows that

ErX ⑤ α ↕ X ↕ βs ✏
✓
µ1.2

µ2

✛
and covrX ⑤ α ↕ X ↕ βs ✏

✓
Σ11.2 0r1✂r2

0r2✂r1 0r2✂r2

✛
,

(5.22)

with µ1.2 ✏ ErX1.2 ⑤ α1 ↕ X1.2 ↕ β1s and Σ11.2 ✏ covrX1.2 ⑤ α1 ↕ X1.2 ↕ β1s being the

mean and variance-covariance matrix of a r1-variate TE distribution.

In the event that there are double infinite limits, we can part the vector as

well, in order to avoid unnecessary calculation of these integrals.

5.3.3.2 Dealing with a non-truncated partition

Now, consider X ✏ ♣X❏
1
,X❏

2
q❏ to be partitioned such that the upper and lower

truncation limits associated with X1 are both infinite, but at least one of the truncation

limits associated with X2 is finite. Then r1 be the number of pairs in ♣α,βq that are both

infinite, that is, dim♣X1q ✏ r1 and dim♣X2q ✏ r2, by complement. Since α1 ✏ ✁✽ and

β1 ✏ ✽ , it follows that X2 ⑤ ♣α ↕ X ↕ βq ✒ TECr2

�
ξ2,Ω22, h

♣r2q; rα2,β2s
✟

and X1⑤X2 ✒
ECr1

�
ξ1 � Ω12Ω

✁1

22
♣X2 ✁ ξ2q,Ω11 ✁ Ω12Ω

✁1

22
Ω21, h

♣r1q
X2

✟
. Let µ2 ✏ ErX2 ⑤ α2 ↕ X2 ↕ β2s

and Σ22 ✏ covrX2 ⑤ α2 ↕ X2 ↕ β2s. Hence, it follows that ErX ⑤ α ↕ X ↕ βs ✏ ErErX1 ⑤
X2s ⑤ α2 ↕ X2 ↕ β2s, that is

ErX ⑤ α ↕ X ↕ βs ✏ E

✓✄
ξ1 �Ω12Ω

✁1

22
♣X2 ✁ ξ2q

X2

☛✞✞✞✞✞α2 ↕ X2 ↕ β2

✛
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✏
✓
ξ1 � Ω12Ω

✁1

22
♣µ2 ✁ ξ2q

µ2

✛
. (5.23)

On the other hand, we have that covrX2,ErX1⑤X2ss ✏ covrX2,X2Ω
✁1

22
Ω21s ✏ Σ22Ω

✁1

22
Ω21,

covrErX1⑤X2ss ✏ Ω12Ω
✁1

22
Σ22Ω

✁1

22
Ω21 and ErcovrX1⑤X2ss ✏ ω1.2♣Ω11 ✁ Ω12Ω

✁1

22
Ω21q, with

ω1.2 being a constant depending of the conditional generating function h
♣r1q
X2

. Finally,

covrX ⑤ α ↕ X ↕ βs ✏
✓
ω1.2Ω11 ✁ Ω12Ω

✁1

22

�
ω1.2Ip2 ✁ Σ22Ω

✁1

22

✟
Ω21 Ω12Ω

✁1

22
Σ22

Σ22Ω
✁1

22
Ω21 Σ22

✛
,

(5.24)

where µ2 and Σ22 are the mean vector and variance-covariance matrix of a TE distribution,

so we can use (5.19) and (5.20) as well.

Note that X1 ⑤ ♣α ↕ X ↕ βq ✚ ECr1

�
ξ1,Ω11, h

♣r1q
✟

even though ✁✽ ↕ X1 ↕
✽ since X1 ⑤ ♣α ↕ X ↕ βq ✏ X1 ⑤ ♣α2 ↕ X2 ↕ β2q . In general, the marginal distributions

of a TE distribution are not TE, however this holds for X2 due to the particular case

α1 ✏ ✁✽ and β1 ✏ ✽.

Particular cases

Notice that the constant ω1.2 will vary depending of the elliptical distribution

we are using. For instance, if X ✒ tr1�r2♣ξ,Ω, νq then it follows that X2 ✒ tr2

�
ξ2,Ω22, ν

✟
and X1⑤X2 ✒ tr1

�
ξ1 �Ω12Ω

✁1

22
♣X2 ✁ ξ2q, ♣Ω11 ✁Ω12Ω

✁1

22
Ω21q④ν2♣X2q, ν � r2

✟
. In this case,

it takes the form ω1.2 ✏ Er♣ν � r2q④♣ν � r2 ✁ 2qν2♣X2q ⑤ α2 ↕ X2 ↕ β2s, which is given by

ω1.2 ✏ E

✒
ν � δ♣X2q
ν � r2 ✁ 2

⑤ α2 ↕ X2 ↕ β2

✚
,

✏
✂

ν

ν ✁ 2

✡
Lr2♣α2,β2; ξ2, νΩ22④♣ν ✁ 2q, ν ✁ 2q

Lr2♣α2,β2; ξ2,Ω22, νq , (5.25)

where Lr♣α,β; ξ,Ω, νq denotes the integral

Lr♣α,β; ξ,Ω, νq ✏
➺ β

α

tr♣y; ξ,Ω, νqdy, (5.26)

that is, Lr♣α,β; ξ,Ω, νq ✏ P♣α ↕ Y ↕ βq for Y ✒ tr♣ξ,Ω, νq. Probabilities in (5.25) are

involved in the calculation of µ2 and Σ22 so they are recycled. For the normal case, it is

straightforward to see that ω1.2 ✏ 1, by taking ν Ñ ✽.

As can be seen, we can use equations (5.23) and (5.24) to deal with double

infinite limits, where the truncated moments are computed only over a r2-variate partition,

avoiding some unnecessary integrals and saving significant computational effort. On the

other hand, expression (5.22) let us to approximate the mean and the variance-covariance

matrix for cases where the computational precision is a limitation.
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5.3.4 Existence of the moments of a TE and TSE distribution

It is well know that for some members of EC family of distributions, their

moments do not exist, however, this could be different depending of the truncation limits.

Let X ✒ ECr♣ξ,Ω, h♣rqq be partitioned as in Subsection 5.3.3.2, with r1 being

the number of pairs in ♣α,βq that are both finite and r2 ✏ r✁r1. Similarly, κ ✏ ♣κ❏
1
,κ❏

2
q❏

is partitioned as well. If r1 ✏ r, then the truncation limits α and β contains only

finite elements, and hence ErXκ ⑤ α ↕ X ↕ βs exists for all κ P N
r because the

distribution is bounded. When r2 ➙ 1, there exists at least one pair in ♣α,βq containing

infinite values, and the expectation may not exist. Given that ErXκ ⑤ α ↕ X ↕ βs ✏
ErXκ1

1
ErXκ2

2
⑤ X1,α2 ↕ X2 ↕ β2s ⑤ α1 ↕ X1 ↕ β1s, for any measurable function g,

Erg♣X1q ⑤ α1 ↕ X1 ↕ β1s always exists, and ♣α2,β2q is not bounded, it is straightforward

to see that ErXκ ⑤ α ↕ X ↕ βs exist if and only if (iff ) the inner expectation ErXκ2
2
⑤ X1s

exists.

As seen, the existence only depends of the order of the moment κ2 and the

distribution of X2⑤X1, this last depending on the conditional generating function h
♣r2q
X1

.

If Y ✒ SLCT -ECp,q♣ξ,Ω, h♣q�pq, Cq, with truncation subset of the form C♣c,dq
and r ✏ p�q say. It follows from Theorem 5.1, that ErYk ⑤ a ↕ Y ↕ bs ✏ ErXκ ⑤ α ↕ X ↕
βs. Hence, the same condition holds taking in account that κ ✏ ♣0❏q ,k❏q❏, α ✏ ♣c❏, a❏q❏
and β ✏ ♣d❏,b❏q❏. Next, we present a result for a particular case.

5.4 The doubly truncated SUT distribution

For the rest of the paper we shall focus on the computation of the mo-

ments of the doubly truncated unified skew-t (TSUT) distribution, denoted by W ✒
TSUTp,q♣µ,Σ,Λ, τ , ν,Σ; ♣a,bqq. Besides, we shall study some of its properties and for

its particular case (when q ✏ 1), the doubly truncated extended skew-t distribution, say

W ✒ TESTp♣µ,Σ,λ, τ, ν; ♣a,bqq. For the limiting symmetrical case, we shall use the nota-

tion W ✒ Ttp♣µ,Σ, ν; ♣a,bqq to refer to a p-variate truncated Student-t (TT) distribution

on ♣a,bq P R
p. Finally, W ✒ TNp♣µ,Σ; ♣a,bqq will stand for a p-variate truncated normal

distribution on the interval ♣a,bq . Hereinafter we shall omit the expression doubly due to

we only work with intervalar truncation.

Corollary 5.2 (moments of a TSUT). If Y ✒ SUTp,q♣µ,Σ,Λ, τ , ν,Ψq, it follows from

Theorem 5.1 that

ErYk ⑤ a ↕ Y ↕ bs ✏ ErXκ ⑤ α ↕ X ↕ βs,
where X ✒ tq�p♣ξ,Ω, νq with ξ and Ω as defined in expression (5.13) and κ ✏ ♣0❏q ,k❏q❏,

α ✏ ♣0❏q , a❏q❏ and β ✏ ♣✽❏
q ,b

❏q❏.
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5.4.1 Mean and covariance matrix of the TSUT distribution

Let Y ✒ TSUTp,q♣µ,Σ,Λ, τ , ν,Ψ; ♣a,bqq and X ✒ Ttq�p♣ξ,Ω, ν; ♣α,βqq.
From Corollary 5.2, we have that the first two moments of Y can be computed as

ErYs ✏ m2, (5.27)

ErYY❏s ✏ M22, (5.28)

where m ✏ ErXs and M ✏ ErXX❏s are partitioned as in Corollary 5.1. Notice that

covrYs ✏ ErYY❏s ✁ ErYsErY❏s.
Equations (5.27) and (5.28) are convenient for computing ErYs and covrYs

since all boils down to compute the mean and the variance-covariance matrix for a

q � p-variate TT distribution which can be calculated using the our MomTrunc R package

available on CRAN.

Existence of the moments of a TSUT

Let also p1 be the number of pairs in ♣a,bq that are both finite. Without loss

of generality, we assume Y ✏ ♣Y❏
1
,Y❏

2
q❏, where the upper and lower truncation limits

associated with Y1 are both finite, but at least one of the truncation limits associated

with Y2 is not finite, say dim♣Y1q ✏ p1 and dim♣Y2q ✏ p2, with p1 � p2 ✏ p. Consider the

partitions of a ✏ ♣a❏
1
, a❏

2
q❏ ,b ✏ ♣b❏

1
,b❏

2
q❏ and k ✏ ♣k❏

1
,k❏

2
q❏ as well. The next proposition

gives a sufficient condition for the existence of the moment of a TSUT distribution.

Proposition 5.2 (existence of the moments of a TSUT). Under the conditions

above, ErYk ⑤ a ↕ Y ↕ bs exists iff sum♣k2q ➔ ν � p1.

Proof. From subsection 5.3.4, it is suffices to demonstrate that ErXκ2
2
⑤X1s exists. Since

α ✏ ♣0❏q , a❏1 , a❏2 q❏ and β ✏ ♣✽❏
q ,b

❏
1
,b❏

2
q❏, it follows that r1 ✏ p1, r2 ✏ q � p2, κ1 ✏ k1

and κ2 ✏ ♣0❏q ,k❏2 q❏. It is easy to show that the distribution of X2⑤X1 is a ♣q � p2q-variate

Student-t distribution with ν � p1 degrees of freedom. Hence, the above expectation exists

iff sum♣k2q ➔ ν � p1.

From Proposition 5.2, see that ErYs and ErYY❏s exist iff ν � p1 → 1 and

ν � p1 → 2 respectively. Since ν → 0, this is equivalent to say that, (5.23) exists if at

least one dimension containing a finite limit exists. Besides, (5.24) exists if at least two

dimensions containing a finite limit exist.

This sufficient condition for the existence of the first two moments of a trun-

cated SUT distribution holds for the truncated Student-t (q ✏ 0) and for the truncated

EST distribution (q ✏ 1) due to the condition does not depend on q.
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Corollary 5.3 (Proposition 1 for a SUT). As τ Ñ ✁✽ ♣τi Ñ ✁✽, i ✏ 1, . . . , qq,

SUTp,q♣µ,Σ,Λ, τ , ν,ΨqÝÑtp♣γ, ωτ Γ, ν � qq, (5.29)

with γ ✏ µ✁Ω21Ω
✁1

11
τ , Γ ✏ Σ✁Ω21Ω

✁1

11
Ω12 and ωτ ✏ ν2

X1
♣0q ✏ ♣ν � τ❏Ω✁1

11
τ q④♣ν � qq

with Ω11 ✏ Ψ�Λ❏Λ.

In particular, for q ✏ 1,

ESTp♣µ,Σ,λ, τ, νqÝÑtp♣γ, ♣ν � τ̃ 2q④♣ν � 1qΓ, ν � 1q, (5.30)

with γ ✏ µ✁ τ̃∆, Γ ✏ Σ✁∆∆❏, and ∆ ✏ Σ1④2λ④
❄

1� λ❏λ.

5.5 Numerical example

In order to illustrate our method, we performed a simple Monte Carlo (MC)

simulation study to show how MC estimators for the mean vector and variance-covariance

matrix elements converge to the real values computed by our method.

We consider a bivariate TSUT distribution Y ✒ TSUT2,2♣µ,Σ,Λ, τ , ν,Ψ; ♣a,bqq
with lower and upper truncation limits a ✏ ♣✁0.8,✁0.6q❏ and b ✏ ♣0.5, 0.7q❏ respectively,

null location vector µ ✏ 0, degrees of freedom ν ✏ 4,

τ ✏
✄
✁1

2

☛
, Σ ✏

✄
1 0.2

0.2 4

☛
, Λ ✏

✄
1 3

✁3 ✁2

☛
and Ψ ✏

✄
1 ✁0.5

✁0.5 1

☛
.
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Figure 14 – Contour plot for the TSUT density (upper left corner) and trace plots of the
evolution of the MC estimates for the mean and variance-covariance elements
of Y. The solid line represent the true estimated value by our proposal.
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Figure 14 shows the contour plot for the TSUT density (upper left corner) as

well as the evolution trace of the MC estimates for the mean (first row) and variance-

covariance (last row) elements µ1, µ2, σ11, σ12 and σ22. Estimated true values for the

mean vector and the variance-covariance matrix were computed using equations (5.27)

and (5.28), being

ErYs ✏
✄

✁0.039

0.303

☛
and covrYs ✏

✄
0.112 ✁0.007

✁0.007 0.096

☛
,

which are depicted as a blue solid line in Figure 14. Note that even with 1000 MC

simulations there exists a significant variation in the chains.

5.6 Application of SE truncated moments on tail conditional ex-

pectation

Let Y be a random variable representing in this context, the total loss in a

portfolio investment, a credit score, etc. Let yα be the ♣1 ✁ αqth quantile of Y , that is,

P♣Y → yαq ✏ α. Hence, the tail conditional expectation (TCE) (see, e.g., Denuit et al.

(2006)) is denoted by

TCEY ♣yαq ✏ ErY ⑤ Y → yαs. (5.31)

This can be interpreted as the expected value of the α% worse losses. The

quantile yα is usually chosen to be high in order to be pessimistic, for instance, α ✏ 0.05.

Notice that, if we consider a variable Y which we are interested on maximizing, for example,

the pay-off of a portfolio, we simply compute TCE✁Y ♣✁yαq ✏ ✁ErY ⑤ Y ↕ ✁yαs, being a

measure of worst expected income.

Main applications of TCE are in actuarial science and financial economics: mar-

ket risk, credit risk of a portfolio, insurance, capital requirements for financial institutions,

among others. TCE (also known as tail value at risk, TVaR) represents an alternative to

the traditional value at risk (VaR) that is more sensitive to the shape of the tail of the loss

distribution. Furthermore, if Y is a continuous r.v., TCE coincides with the well-known

risk measure expected shortfall (Acerbi & Tasche, 2002). In contrast with VaR, TCE is

said to be a coherent measure, holding desirable mathematical properties in the context of

risk measurement and and is a convex function of the selection weights (Artzner et al.,

1999; Pflug, 2000). A good reference to several risk measures and their properties can be

found in Sereda et al. (2010).

Multivariate framework

Let consider a set of p assets, business lines, credit scores, Y ✏ ♣Y1, ☎ ☎ ☎ , Ypq❏.

In the multivariate case, the sum of risks arises as a natural and simple measure of total
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risk. Hence, the sum S ✏ Y1 � Y2 � ☎ ☎ ☎ � Yp follows a univariate distribution and from

(5.31), we have that the TCE for S is given by

TCES♣sαq ✏ ErS ⑤ S → sαs. (5.32)

Even though we may know the marginal distribution of S, it is preferable to compute the

total risk TCE of S as a decomposed sum, that is

ErS ⑤ S → sαs ✏
p➳

i✏1

ErYi ⑤ S → sαs, (5.33)

where each term ErYi ⑤ S → sαs represents the average amount of risk due to Yi. This

decomposed sum offers a way to study the individual impact of the elements of the set,

being an improvement to (5.32).

In order to model combinations of correlated risks, Landsman & Valdez (2003)

extended the TCE to the multivariate framework. The multivariate TCE (MTCE) is given

by

MTCEY♣yαq ✏ ErY ⑤ Y → yαs ✏ ErY ⑤ Y1 → y1α1 , . . . , Yp → ypαp
s, (5.34)

with α ✏ ♣α1, . . . , αpq be a vector of quantiles of interest. Notice that the quantile-level

for the MTCE is fixed per each risk i ✏ 1, . . . , p, in contrast with the TCE of the sum,

which is fixed over all the sum of risk S.

5.6.1 MTCE for selection elliptical distributions

Let consider Y ✒ SLCT -ECp,q♣ξ,Ω, h♣q�pq, Cq. Without loss of generality, we

consider the selection subset C ✏ C♣0q. It follows from Theorem 5.1 that

MTCEY♣yαq ✏ ErX2 ⑤ X → xαs, (5.35)

where X ✏ ♣X❏
1
,X❏

2
q❏ ✒ ECq�p♣ξ,Ω, h♣q�pqq and xα ✏ ♣0❏q ,y❏αq❏. It is noteworthy that

the computation of the MTCE for Y following a SE distribution relies on the calculation

of truncated moments for its symmetrical elliptical multivariate case.

On the other hand, by noticing that S ✏ 1❏Y, it follows from (5.7) that S is

an univariate SE distribution given by S ✒ SLCT -EC1,q♣ξs,Ωs, h
♣q�1q, Cq, with

ξS ✏
✄

ξ1

1❏ξ2

☛
, and ΩS ✏

✄
Ω11 Ω121

1❏Ω21 1❏Ω221

☛
.

Hence, its TCE in (5.32) can be easily computed as ErS ⑤ S → sαs ✏ ErW2 ⑤
W1 → 0,W2 → sαs, W ✏ ♣W❏

1
,W2q❏ ✒ ECq�1♣ξs,Ωs, h

♣1�qqq, due to S d✏ W2 ⑤ ♣W1 → 0q.
Next, we establish a general proposition for computing ErS ⑤ S → αss in matrix form as a

decomposed sum.
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Proposition 5.3. Let Y ✒ SLCT -ECp,q♣ξ,Ω, h♣q�pq, Cq, with ξ and Ω as in (5.4), and

W ✏ ♣W❏
1
,W2q❏ ✒ ECq�1♣ξS,ΩS, h

♣1�qqq as before. It follows that

ErS ⑤ S → sαs ✏ 1❏s, (5.36)

with s ✏ ξ2 � Ω2S Ω✁1

S ♣ES ✁ ξSq, where Ω2S ✏ ♣Ω21,Ω221q and ES ✏ ErW ⑤ W1 →
0,W2 → sαs.

Proof. Let A ✏ ♣1, Ipq❏ be a real matrix of dimensions ♣p� 1q✂p. For V ✏ AY, it follows

that

V ✏
✄

V1

V2

☛
✒ SLCT -ECp�1,q

✄
ξV ✏

✄
ξS

ξ2

☛
,ΩV ✏

✄
ΩS Ω❏

2S

Ω2S Ω22

☛
, h♣q�1�pq, C

☛
,

where V ✏ ♣S,Y❏q❏. It comes from the definition of selection distribution that V
d✏

♣X2,X
❏
3
q❏⑤♣X1 → 0q, where X ✏ ♣X❏

1
, X2,X

❏
3
q❏ is a partitioned random vector with

elements of dimensions q, 1 and p respectively, where X ✒ ECp�q�1♣ξV ,ΩV ;h♣q�1�pqq.
Hence, it is straightforward to see that

s ✏ ErY ⑤ S → sαs ✏ ErX3 ⑤ X1 → 0, X2 → sα,✁✽ ↕ X3 ↕ ✽s.

Since there exists a non-truncated partition, the result in (5.36) immediately follows from

equation (5.23), where W ✏ ♣X1, X2q❏.

Observation 5.1. It is noteworthy that, the ith element of vector s, say si ✏ e❏i s, is equal

to ErYi ⑤ S → αss, representing the contribution to the total risk due to the ith risk.

Observation 5.2. Since S
d✏ W2 ⑤ ♣W1 → 0q, it follows that the last element of the vector

Es is equivalent to ErS ⑤ S → sαs ✏ ErW2 ⑤ W1 → 0,W2 → sαs.

5.6.2 Application of MTCE using a ST distribution

Suppose that a set of risks Y are distributed as Y ✒ STp♣µ,Σ,λ, νq. Let y

represents a realization of Y. Based on y, the set of parameters θ ✏ ♣µ,Σ,λ, νq❏ can be

estimated through maximum likelihood estimation. It follows that

MTCEY♣yαq ✏ ErX2 ⑤ X1 → 0,X2 → yαs, (5.37)

where X ✏ ♣X1,X
❏
2
q❏ ✒ t1�p♣ξ,Ω, νq with

ξ ✏
✄

0

µ

☛
and Ω ✏

✄
1 ∆❏

∆ Σ

☛
. (5.38)

Additionally, using simple algebraic manipulation, it follows from (5.7) that

S ✒ ST1

✄
µS ✏

p➳
i✏1

µi, σ
2

S ✏
p➳

i✏1

p➳
j✏1

σij, λS ✏ ∆S❛
σ2

S ✁ ∆2
S

, ν

☛
, (5.39)
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with ∆S ✏
p➳

i✏1

∆i. Besides, the TCE of the sum is given by TCES♣sαq ✏ ErW2 ⑤ W1 →
0,W2 → sαs, W ✏ ♣W❏

1
,W2q❏ ✒ t2♣ξS,ΩS, νq, where

ξS ✏
✄

0

µS

☛
, and ΩS ✏

✄
1 ∆S

∆S σ2

S

☛
.

We have from Proposition 5.3 that

ErYi ⑤ S → αss, ✏ e❏i
✏
µ � ♣∆,Σ1qΩ✁1

S ♣ES ✁ ξSq
✘
,

✏ µi � ES1♣∆iσ
2

S � σiS∆Sq ✁ ♣TCES♣sαq ✁ µSq♣∆i∆S � σiSq, (5.40)

with ES1 ✏ ErW1 ⑤ W1 → 0,W2 → sαs and σiS ✏
p➳

j✏1

σij. Besides, summing (5.40) over

i ✏ 1, . . . , p, and after some straightforward algebra we obtain that TCES♣sαq ✏ ErS ⑤
S → sαs can be written as

TCES♣sαq ✏ µS � ES1

p➳
i✏1

✥
∆iσ

2

S � σiS∆S

✭✁ ♣TCES♣sαq ✁ µSq
p➳

i✏1

t∆i∆S � σiS✉

✏ µS � 2∆Sσ
2

S

1 � ∆2
S � σ2

S

ES1. (5.41)

Finally, plugging (5.41) in (5.40), we obtain a explicit expression for ErYi ⑤ S → αss that

does not depends on TCES♣sαq, that is

ErYi ⑤ S → αss ✏ ✏ µi �
✂

∆iσ
2

S � σiS∆S ✁ 2∆Sσ
2

S

1 � ∆2
S � σ2

S

♣∆i∆S � σiSq
✡

ES1. (5.42)

5.7 Additional results related to interval censored mechanism

Under interval censoring mechanism the implementation of inferences depends

on the computation of certain marginal and conditional expectations (Matos et al., 2013).

For instance, for X ✏ ♣X❏
1
,X❏

2
q❏ ✒ φ1�p♣ξ,Ω, νq, as in (5.13), with Ψ ✏ 1, Λ ✏ λ and

τ ✏ 0, it holds that fX1♣0 ⑤ X2 ✏ Yq ✏ φ
�
λ❏Σ✁1④2♣Y ✁ µq✟ . Then,

E

✒
g♣Yq fX1♣0 ⑤ X2 ✏ Yq

P♣X1 → 0 ⑤ X2 ✏ Yq
✚
✏ E

✒
g♣Yqφ

�
λ❏Σ✁1④2♣Y ✁ µq✟

Φ
�
λ❏Σ✁1④2♣Y ✁ µq✟

✚
, (5.43)

where g♣☎q is a measurable function. The expectation in the right side of the expression (5.43)

is highly used to perform inferences under SN censored models from a likelihood-based

perspective, such as the E-Step of the EM-algorithm (Dempster et al., 1977).

Next, we derive general expressions that are involved in interval censored mod-

eling, specifically, in the E-step of the EM algorithm. These expressions arise, when we

consider the responses Yi, i ✏ 1, . . . , n, to be i.i.d. realizations from a selection elliptical

distribution or any of its particular cases. For instance, a SUT, EST or ST distribution or

any normal limiting case as the SUN, ESN or SN distribution as the example in (5.43).
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Lemma 5.1. Let X ✏ ♣X❏
1
,X❏

2
q❏ ✒ ECq�p♣ξ,Ω, h♣q�pqq and Y ✒ TSLCT -ECp,q♣ξ,Ω,

h♣q�pq, C; ♣a,bqq with truncation subset C ✏ C♣0q. For any measurable function g♣yq :

R
p Ñ R, we have that

E

✒
g♣Yq fX1♣0 ⑤ X2 ✏ Yq

P♣X1 → 0 ⑤ X2 ✏ Yq
✚
✏ P♣a ↕ W0 ↕ bq

P♣a ↕ Y0 ↕ bq
Erg♣Wqs
P♣X1 ➙ 0qfX1♣0q, (5.44)

where X1 ✒ ECp♣ξ1,Ω11, h
♣qqq, Y0 ✒ SLCT -ECp,q♣ξ,Ω, h♣q�pq, C♣0qq, W0 ✒ ECp♣ξ2 ✁

Ω21Ω
✁1

11
ξ1,Ω22 ✁ Ω21Ω

✁1

11
Ω21, h

♣pq
0 q and W

d✏ W0 ⑤ ♣a ↕ W0 ↕ bq.

Proof. Using basic probability theory, we have

✏ E

✒
g♣Yq fX1♣0 ⑤ X2 ✏ Yq

P♣X1 → 0 ⑤ X2 ✏ Yq
✚

✏ 1
P♣a ↕ Y0 ↕ bq

➺ b

a

g♣yq fX1♣0 ⑤ X2 ✏ yq
P♣X1 → 0 ⑤ X2 ✏ yqfY♣yqdy,

✏ 1
P♣a ↕ Y0 ↕ bq

➺ b

a

g♣yq fX1♣0 ⑤ X2 ✏ yq
P♣X1 → 0 ⑤ X2 ✏ yq

P♣X1 → 0 ⑤ X2 ✏ yqfX2♣yq
P♣X1 → 0q dy,

✏ 1
P♣a ↕ Y0 ↕ bq

➺ b

a

g♣yqfX1♣0 ⑤ X2 ✏ yqfX2♣yq
P♣X1 → 0q dy,

✏ 1
P♣a ↕ Y0 ↕ bq

fX1♣0q
P♣X1 → 0q

➺ b

a

g♣yqfX2♣y ⑤ X1 ✏ 0q dy,

✏ P♣a ↕ W0 ↕ bq
P♣a ↕ Y0 ↕ bq

Erg♣Wqs
P♣X1 → 0qfX1♣0q,

where W0

d✏ X2⑤♣X1 ✏ 0) and W
d✏ W0 ⑤ ♣a ↕ W0 ↕ bq.

Lemma 5.2. Consider X, Y and g as in Lemma 5.1. Now, consider Y to be partitioned

as Y ✏ ♣Y❏
1
,Y❏

2
q❏ of dimensions p1 and p2 (p1 � p2 ✏ p). For a given random variable

U, let U✝ stands for U✝ d✏ U ⑤ Y1. It follows that

E

✒
g♣Y2q fX1♣0 ⑤ X2 ✏ Yq

P♣X1 → 0 ⑤ X2 ✏ Yq
✞✞✞✞Y1

✚
✏ P♣a2 ↕ W✝

0
↕ b2q

P♣a2 ↕ Y✝
0 ↕ b2q

Erg♣W2qs
P♣X✝

1 → 0qfX✝
1
♣0q (5.45)

with X1, Y0, and W0 as defined in Lemma 5.1, and W2

d✏ W✝
0
⑤ ♣a2 ↕ W✝

0
↕ b2q.

Proof. Consider X2 partitioned as X2 ✏ ♣X❏
21
,X❏

22
q❏ such that dim♣X21q ✏ dim♣Y1q and

dim♣X22q ✏ dim♣Y2q. Since fY2♣y2⑤Y1 ✏ y1q ✏ fY♣yq④fY1♣y1q, it follows (in a similar

manner that the proof of Lemma 5.1) that

✏ E

✒
g♣Y2q fX1♣0 ⑤ X2 ✏ Yq

P♣X1 → 0 ⑤ X2 ✏ Yq
✞✞✞✞Y1

✚
✏ 1

P♣a2 ↕ Y✝
0 ↕ b2q

➺ b2

a2

g♣y2q fX1♣0 ⑤ X2 ✏ yq
P♣X1 → 0 ⑤ X2 ✏ yq

P♣X1 → 0 ⑤ X2 ✏ yq
P♣X1 → 0 ⑤ X21 ✏ y1q

fX2♣yq
fX21♣y1qdy2,
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✏ 1
P♣a2 ↕ Y✝

0 ↕ b2q
➺ b2

a2

g♣y2q fX1♣0 ⑤ X2 ✏ yq
P♣X1 → 0 ⑤ X21 ✏ y1q

fX2♣yq
fX21♣y1qdy2,

✏ 1
P♣a2 ↕ Y✝

0 ↕ b2q
fX1♣0q

P♣X1 → 0 ⑤ X21 ✏ y1q
➺ b2

a2

g♣y2qfX2♣y ⑤ X1 ✏ 0q
fX21♣y1q dy2,

✏ 1
P♣a2 ↕ Y✝

0 ↕ b2q
fX1♣0⑤X21 ✏ y1q

P♣X1 → 0 ⑤ X21 ✏ y1q
➺ b2

a2

g♣y2qfX22♣y2 ⑤ X21 ✏ y1,X1 ✏ 0q dy2,

✏ P♣a2 ↕ W✝
0
↕ b2q

P♣a2 ↕ Y✝
0 ↕ b2q

Erg♣W2qs
P♣X✝

1 → 0qfX✝
1
♣0q,

where W✝
0

d✏ X22⑤♣X21 ✏ y1,X1 ✏ 0) and W2

d✏ W✝
0
⑤ ♣a2 ↕ W✝

0
↕ b2q.

In the next corollaries we particularize the aforementioned lemmas to the

truncated SUT, EST, SUN and ESN distributions.

Corollary 5.4 (Lemma 5.1 for a SUT). Let Y ✒ TSUTp,q♣µ,Σ,Λ, τ , ν,Ψ, ♣a,bqq.
For any measurable function g♣yq : Rp Ñ R, we have that

E

✒
g♣Yq tq

�♣τ � Λ❏Σ✁1④2♣Y ✁ µqq ν♣Yq,Ψ; ν � p
✟

Tq

�♣τ � Λ❏Σ✁1④2♣Y ✁ µqq ν♣Yq,Ψ; ν � p
✟✚ ✏ P♣a ↕ W0 ↕ bq

P♣a ↕ Y0 ↕ bq Erg♣Wqsη,
(5.46)

where η ✏ tq♣τ ; Ψ� Λ❏Λ, νq④Tq♣τ ; Ψ� Λ❏Λ, νq, Y0 ✒ SUTp,q♣µ,Σ,Λ, τ , ν,Ψq, W0 ✒
tp♣γ, ωτ Γ, ν � qq and W

d✏ W0 ⑤ ♣a ↕ W0 ↕ bq. When τ ✏ 0, we have that η ✏
2 tq♣τ ; Ψ� Λ❏Λ, νq and W0 ✒ tp♣µ, νΓ④♣ν � qq, ν � qq .

In particular for q ✏ 1, Y ✒ TESTp♣µ,Σ,λ, τ, ν; ♣a,bqq, and

E

✒
g♣Yq t1

�♣τ � λ❏Σ✁1④2♣Y ✁ µqq ν♣Yq; ν � p
✟

T1

�♣τ � λ❏Σ✁1④2♣Y ✁ µqq ν♣Yq; ν � p
✟✚ ✏ P♣a ↕ W0 ↕ bq

P♣a ↕ Y0 ↕ bq η Erg♣Wqs, (5.47)

with η ✏ t1♣τ ; 1� λ❏λ, νq④T1♣τ̃ ; νq, Y0 ✒ ESTp♣µ,Σ,λ, τ , νq, W0 ✒ tp♣γ, ♣ν� τ̃ 2qΓ④♣ν�
1q, ν � 1q, and W

d✏ W0 ⑤ ♣a ↕ W0 ↕ bq. Similarly, when τ ✏ 0, we have that

η ✏ 2 t1♣0; 1� λ❏λ, νq and W0 ✒ tp♣µ, νΓ④♣ν � 1q, ν � 1q.

Corollary 5.5 (Lemma 5.1 for a SUN). Taking ν Ñ ✽, Y ✒ TSUNp,q♣µ,Σ,Λ, τ ,Ψ,

♣a,bqq and hence from Lemma 5.1 it follows that

E

✒
g♣Yqφq

�
τ � Λ❏Σ✁1④2♣Y ✁ µq,Ψ✟

Φq

�
τ � Λ❏Σ✁1④2♣Y ✁ µq,Ψ✟✚ ✏ P♣a ↕ W0 ↕ bq

P♣a ↕ Y0 ↕ bq Erg♣Wqsη, (5.48)

where η ✏ φq♣τ ; 0,Ψ� Λ❏Λq④Φq♣τ ; 0,Ψ� Λ❏Λq, Y0 ✒ SUNp,q♣µ,Σ,Λ, τ ,Ψq, W0 ✒
Np♣γ,Γq, and W

d✏ W0 ⑤ ♣a ↕ W0 ↕ bq .When τ ✏ 0, we have that η ✏ 2φq♣0; Ψ� Λ❏Λq
and W0 ✒ Np♣µ,Γq.
In particular for q ✏ 1, Y ✒ TESNp♣µ,Σ,λ; ♣a,bqq, and

E

✒
g♣Yqφ

�
τ � λ❏Σ✁1④2♣Y ✁ µq✟

Φ
�
τ � λ❏Σ✁1④2♣Y ✁ µq✟

✚
✏ P♣a ↕ W0 ↕ bq

P♣a ↕ Y0 ↕ bq η Erg♣Wqs, (5.49)
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with η ✏ φ♣τ ; 1 � λ❏λq④Φ♣τ̃q, Y0 ✒ ESNp♣µ,Σ,λ, τ q, W0 ✒ Np♣γ,Γq, and W
d✏ W0 ⑤

♣a ↕ W0 ↕ bq. Similarly, when τ ✏ 0, we have that η ✏
❛

2④π♣1 � λ❏λq and W0 ✒
Np♣µ,Γq.

5.8 Multivariate ST censored responses

Let Yi ✏ ♣Yi1, . . . , Yipq❏ be a p ✂ 1 response vector for the ith sample unit,

for i P t1, . . . , n✉, and consider the set of random samples (independent and identically

distributed):

Y1, . . . ,Yn ✒ STp♣µ,Σ,λ, νq, (5.50)

with location vector µ ✏ ♣µ1, . . . , µpq❏, dispersion matrix Σ ✏ Σ♣αq depending on an

unknown and reduced parameter vector α, skewness parameter λ and degrees of freedom

ν. However, the response vector Yi may not be fully observed due to censoring, so we

define ♣Vi,Ciq the observed data for the ith sample, where Vi✏ ♣Vi1, . . . , Vipq❏ with

elements being either an uncensored observation ♣Vik ✏ V0iq or the interval censoring level

♣Vik P rV1ik, V2iksq, and Ci ✏ ♣Ci1, . . . , Cipq❏ is the vector of censoring indicators, satisfying

Cik ✏
★

1 if V1ik ↕ Yik ↕ V2ik ,

0 if Yik ✏ V0i ,
(5.51)

for all i P t1, . . . , n✉ and k P t1, . . . , p✉, i.e., Cik ✏ 1 if Yik is located within a specific

interval. In this case, (5.50) along with (5.51) defines the multivariate skew-t interval

censored model (hereafter, the ST-C model). For instance, left censoring structure causes

truncation from the lower limit of the support of the distribution, since we only know that

the true observation Yik is greater than or equal to the observed quantity V1ik. Moreover,

missing observations can be handled by considering V1ik ✏ ✁✽ and V2ik ✏ �✽.

5.8.1 The likelihood function

Let y ✏ ♣y❏
1
, . . . ,y❏n q❏, where yi ✏ ♣yi1, . . . , yipq❏ is a realization of Yi ✒

STp♣µ,Σ,λ, νq. In order to obtain the likelihood function of the ST-C model, first we

treat, separately, the observed and censored components of yi, i.e., yi ✏ ♣yo❏

i ,yc❏

i q❏, where

Cik ✏ 0 for all elements in the po
i -dimensional vector yo

i , and Cik ✏ 1 for all elements in

the pc
i -dimensional vector yc

i . On according to that, we write Vi ✏ vec♣Vo
i ,V

c
iq, where

Vc
i ✏ ♣Vc

1i,V
c
2iq with

µi ✏ ♣µo❏
i ,µc❏

i q❏, Σ ✏ Σ♣αq ✏
✂

Σoo
i Σoc

i

Σco
i Σcc

i

✡
, and ϕi ✏ ♣ϕo❏

i ,ϕc❏
i q❏.

See that, we must rely on the marginal and conditional distribution of a ST variate. Next,

we propose a general result for the EST variate in a similar manner than Arellano-Valle &

Genton (2010).
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Proposition 5.4 (Marginal and conditional distribution of the EST ). Let Y ✒ ESTp♣µ,Σ,
λ, τ, νq and Y is partitioned as Y ✏ ♣Y❏

1
,Y❏

2
q❏ of dimensions p1 and p2 (p1 � p2 ✏ p),

respectively. Let

Σ ✏
✄

Σ11 Σ12

Σ21 Σ22

☛
, µ ✏ ♣µ❏

1
,µ❏

2
q❏, and ϕ ✏ ♣ϕ❏

1
,ϕ❏

2
q❏

be the corresponding partitions of Σ, µ and ϕ ✏ Σ✁1④2λ. Then,

Y1 ✒ ESTp1♣µ1,Σ11, λ̃1, τ1, νq,
Y2⑤Y1 ✏ y1 ✒ ESTp2♣µ2.1, Σ̃22.1,λ2.1, τ2.1, ν � p1q

with λ̃1 ✏ c12Σ
1④2
11 ϕ̃1,τ1 ✏ c12τ , λ2.1 ✏ Σ

1④2
22.1ϕ2, τ2.1 ✏ ν♣y1q♣τ � ϕ̃❏

1
♣y1 ✁ µ1qq where

c12 ✏ ♣1 � ϕ❏
2

Σ22.1ϕ2q✁1④2, ϕ̃1 ✏ ϕ1 � Σ✁1

11
Σ12ϕ2, Σ̃22.1 ✏ Σ22.1④ν2♣y1q, Σ22.1 ✏ Σ22 ✁

Σ21Σ
✁1

11
Σ12, µ2.1 ✏ µ2 � Σ21Σ

✁1

11
♣y1 ✁ µ1q and ν2♣y1q ✏ ♣ν � p1q④♣ν � δ♣y1qq.

Proof. See Appendix section C.

Then, from Proposition 5.4, we have that Yo
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i q ϕ̃o❏
i ♣yo

i ✁ µo
i q. (5.52)

Let V ✏ vec♣V1, . . . ,Vnq and C ✏ vec♣C1, . . . ,Cnq denote the observed data.

Therefore, the log-likelihood function of θ ✏ ♣µ❏,α❏
Σ ,λ

❏q❏, where αΣ denotes a minimal

set of parameters such that Σ♣αq is well defined (e.g. the upper triangular elements of Σ

in the unstructured case), for the observed data ♣V,Cq is

ℓ♣θ ⑤ V,Cq ✏
n➳

i✏1

lnLi, (5.53)

where Li represents the likelihood function of θ for the ith sample, given by

Li ✑Li♣θ ⑤ Vi,Ciq ✏ f♣Vi ⑤ Ci,θq ✏ f♣vc
1i ↕ yc

i ↕ vc
2i ⑤ yo

i ,θqf♣yo
i ⑤ θq
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i qSTpo
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where Lr♣α,β; ξ,Ω,λ, τ, νq denotes the integral

Lr♣α,β; ξ,Ω,λ, τ, νq ✏
➺ β

α

EST r♣w; ξ,Ω,λ, τ, νqdw, (5.54)

that is, Lr♣α,β; ξ,Ω,λ, τ, νq ✏ P♣α ↕ W ↕ βq for W ✒ ESTr♣ξ,Ω,λ, τ, νq. For

the ST case (τ ✏ 0), we simply omit the τ parameter, that is, Lr♣α,β; ξ,Ω,λ, νq ✏
Lr♣α,β; ξ,Ω,λ, 0, νq.
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5.8.2 Parameter estimation via the EM algorithm

In this subsection, we describe how to carry out ML estimation for the ST-C

model. The EM algorithm, originally proposed by Dempster et al. (1977), is a very popular

iterative optimization strategy commonly used to obtain ML estimates for incomplete-data

problems. This algorithm has many attractive features such as the numerical stability, the

simplicity of implementation and quite reasonable memory requirements (McLachlan &

Krishnan, 2008).

From the stochastic representation of the multivariate ST distribution, it can

be hierarchical represented as,

Yi ⑤ ♣Ui ✏ ui, Ti ✏ tiq ✒ Np♣µ � ∆ti, u
✁1

i Γq (5.55)

Ui ✒ Gamma♣ν④2, ν④2q (5.56)

Ti ✒ HT♣νq, (5.57)

with HT♣νq referring to a Half standard Student’s t distribution with degrees of freedom ν,

with Ui and Ti being mutually independent, and ∆ and Γ as in proposition 5.3. The com-

plete data log-likelihood function of an equivalent set of parameters θ ✏ ♣µ❏,∆❏,α❏
Γ , νq❏,

where αΓ ✏ vech♣Γq, is given by ℓc♣θq ✏
n➳

i✏1

ℓic♣θq, where the individual complete data

log-likelihood is

ℓic♣θq ✏ ✁1
2

✥
ln ⑤Γ⑤ � ui♣yi ✁ µ ✁ ∆tiq❏Γ✁1♣yi ✁ µ ✁ ∆tiq

✭� c,

with c being a constant that does not depend on θ. Subsequently, the EM algorithm for

the ST-C model can be summarized as follows:

E-step: Given the current estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣∆♣kq, ♣α♣kq

Γ , ν̂♣kqq at the kth step

of the algorithm, the E-step provides the conditional expectation of the complete data

log-likelihood function

Q♣θ ⑤ ♣θ♣kqq ✏ E
✑
ℓc♣θq ⑤ V,C, ♣θ♣kq✙ ✏ n➳

i✏1

Qi♣θ ⑤ ♣θ♣kqq,
where

Qi♣θ ⑤ ♣θ♣kqq✾ ✁ 1
2

ln ⑤Γ⑤ ✁ 1
2

tr
✒✧②uy2

i

♣kq� ♣ui
♣kqµµ❏� ①ut2i ♣kq∆∆❏✁ 2 ①uyi

♣kq
µ❏ ✁ 2②uty♣kqi ∆❏

�2①uti♣kq∆µ❏
✮

Γ✁1

✙
,

with ②uyr
i

♣kq ✏ EUiTiYi
rUiY

r
i ⑤Vi,Ci, ♣θ♣kqs, ①utri ♣kq ✏ EUiTiYi

rUiT
r
i ⑤Vi,Ci, ♣θ♣kqs (for r ✏

t1, 2✉, with Y1

i ✏ Yi and Y2

i ✏ YiY
❏
i ), ②uty♣kqi ✏ EUiTiYi

rUiTiYi ⑤Vi,Ci, ♣θ♣kqs and♣u♣kqi ✏ EUiTiYi
rUi ⑤Vi,Ci, ♣θ♣kqs.
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M-step: Conditionally maximizing Q♣θ ⑤ ♣θ♣kqq ✏ n➳
i✏1

Qi♣θ ⑤ ♣θ♣kqq with respect

to each entry of θ, we update the estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣∆♣kq, ♣α♣kq

Γ , ν̂♣kqq by

♣µ♣k�1q ✏ 1
n

n➳
i✏1

✦①uyi
♣kq ✁ ①uti♣kq ♣∆♣kq

✮
, (5.58)

♣∆♣k�1q ✏
★

n➳
i✏1

①ut2i ♣kq
✰✁1

n➳
i✏1

✦②utyi

♣kq ✁ ①uti♣µ♣k�1q
✮
, (5.59)

♣Γ♣k�1q ✏ 1
n

n➳
i✏1

✧②uy2
i

♣kq ✁ 2①uyi
♣kq♣µ♣k�1q❏ ✁ 2②utyi

♣kq ♣∆♣k�1q❏ � 2①uti♣kq ♣∆♣k�1q♣µ♣k�1q❏

� ①ut2i ♣kq ♣∆♣k�1q ♣∆♣k�1q❏ � ♣ui♣µ♣k�1q♣µ♣k�1q❏

✯
(5.60)

Then we update the parameter ν by maximizing the marginal log-likelihood function for

y, that is, ♣ν♣k�1q ✏ arg max
ν

n➳
i✏1

log f♣Vi ⑤ Ci,θ
♣k�1q; ν♣kqq.

Algorithm is iterated until a suitable convergence rule is satisfied. In the later

analysis, the algorithm stops when the relative distance between two successive evaluations

of the log-likelihood defined in (5.53) is less than a tolerance, i.e., ⑤ℓ♣♣θ♣k�1q ⑤ V,Cq④ℓ♣♣θ♣kq ⑤
V,Cq ✁ 1⑤ ➔ ǫ, for example, ǫ ✏ 10✁6. Once converged, we can recover ♣λ and ♣Σ using the

expressions ♣Σ ✏ ♣Γ � ♣∆ ♣∆❏ and ♣λ ✏
♣Σ✁1④2 ♣∆

♣1 ✁ ♣∆❏ ♣Σ✁1 ♣∆q1④2 .

It is important to stress that, from equations (5.58) to (5.60), the E-step reduces to the

computation of ♣ui
♣kq, ①uyi

♣kq, ②uy2
i

♣kq ①uti♣kq, ①ut2i ♣kq and ②uty♣kqi . Details of these expectations

can be found in Appendix C.

5.8.3 Regression setting

Suppose that we have observations on n independent individuals, Y1, . . . ,Yn,

where Yi ✒ STp♣µi,Σ,λ, νq, i ✏ 1, . . . , n. Associated with individual i we assume a known

p✂ q covariate matrix Xi, which we use to specify the linear predictor µi ✏ Xiβ, where β

is a q-dimensional vector of unknown regression coefficients. In this case, the parameter

vector is θ ✏ ♣β❏,α❏,λ❏q❏. The E-Step of the EM algorithm updates β as follows

♣β♣k�1q ✏ ♣
n➳

i✏1

X❏
i Xiq✁1

n➳
i✏1

X❏
i ♣①uy♣kqi ✁ ①uti♣kq∆♣kqq, (5.61)

and the necessary quantities of the E and M-steps found in Subsection 5.8.2 remain the

same once we plug-in ♣µ♣kq by ♣µ♣kq
i ✏ Xi

♣β♣kq.
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5.9 Conclusions

In this paper, we proposed expressions to compute product moment of truncated

multivariate distributions belonging to the selection elliptical family, showing in a clever

way that their moments can be computed using an unique moment for their respective

elliptical symmetric case. In contrast with other works, we avoid cumbersome expressions,

having neat formulas for high-order truncated moments. To the best of our knowledge,

this is the first proposal discussing the conditions of existence of the truncated moments

for members of the selection elliptical family. Also, we propose optimized methods able

to deal with extreme setting of the parameters, partitions with almost zero volume or

no truncation. In order to show the applicability of this work, we have developed an

application of truncated ST moments in risk measurement in Finance context as well as

a ST censored model, a robust model capable to deal with missing data, outliers and

skewness.
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6 Concluding remarks

In this last chapter, we present the scientific production resulting from this

thesis: original articles and software. In addition to the articles of our authorship, we present

articles by other authors that have been based on the results of this thesis. A summary of

the main functions of the proposed MomTrunc package are presented in subsection 6.1.2.

Finally, we close the chapter with two sections concluding the results of this thesis, as well

as sketching some future research.

6.1 Technical production

6.1.1 Submitted papers

As result of the present work, we have written four articles with three of them

being already submitted to high impact journals. Resulting works presented in chapters

2-5 are respectively:

1. Galarza, C., Lachos V. Lin, T.-I., & Wang, W.-L. (2020+) “Moments of doubly

truncated multivariate student-t distribution: A recurrence approach”. Submitted to

Statistica Sinica.

2. Galarza, C., Matos, L. Dey, D. & Lachos V. (2019+) “On moments of folded and

doubly truncated multivariate extended skew-normal distributions”. Submitted to

Journal of Computational and Graphical Statistics.

3. Galarza, C., Matos, L. & Lachos, V. (2020+) “Likelihood-based inference for

multivariate skew-normal censored regression models”. Submitted to METRON.

4. Galarza, C., Matos, L. & Lachos, V. (2020+) “Moments of the doubly truncated

selection elliptical distributions with emphasis on the unified multivariate skew-t

distribution”. To be submitted.

5. Galarza, C., Matos, L. & Lachos, V. (2020+) “Likelihood-based inference for mul-

tivariate skew-t censored regression models with missing data”. Under construction.

Other works based on the results in this document are:

6. Mattos, T.B., Matos, L. & Lachos, V. (2019) “A semiparametric mixed-effects

model for censored longitudinal data”. Technical report, RT-UConn 15, University

of Connecticut.
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7. De Alencar, F., Galarza, C., Matos, L. & Lachos, V. (2019) “Finite mixture modeling

of censored and missing data using the multivariate skew-normal distribution”.

Technical report, RT-UConn 31, University of Connecticut.

6.1.2 R package implementation

MomTrunc: Moments of Folded and Doubly Truncated Multivariate Distributions

It computes arbitrary products moments (mean vector and variance-covariance

matrix), for some doubly truncated (and folded) multivariate distributions. These distribu-

tions belong to the family of selection elliptical distributions, which includes well known

skewed distributions as the unified skew-t distribution (SUT) and its particular cases as

the extended skew-t (EST), skew-t (ST) and the symmetric student-t (MVT) distribution.

Analogous normal cases unified skew-normal (SUN), extended skew-normal (ESN), skew-

normal (SN), and symmetric normal (MVN) are also included. Density, probabilities and

random deviates are also offered for these members.

Probabilities can be computed using the functions pmvSN() and pmvESN() for

the normal cases SN and ESN and, pmvST() and pmvEST() for the t cases ST and EST

respectively, which offer the option to return the logarithm in base 2 of the probability,

useful when the true probability is too small for the machine precision. These functions

above use methods in Genz & Bretz (2009) through the mvtnorm package (linked direclty

to our C++ functions) and Cao et al. (2019b) through the package tlrmvnmvt. For the

double truncated Student-t cases SUT, EST, ST and T, decimal degrees of freedom are

supported. Computation of arbitrary moments are based in this thesis. Reference for the

family of selection-elliptical distributions in this package can be found in Arellano-Valle &

Genton (2005).

Next, we show part of the MomTrunc R manual (also available on CRAN) for

the three most important functions.

meanvarTMD Mean and variance for doubly truncated multivariate dis-
tributions

Description

It computes the mean vector and variance-covariance matrix for some doubly truncated

skewelliptical distributions. It supports the p-variate Normal, Skew-normal (SN), Extended

Skew-normal (ESN) and Unified Skew-normal (SUN) as well as the Student’s-t, Skew-t

(ST), Extended Skew-t (EST) and Unified Skew-t (SUT) distribution.

Usage
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meanvarTMD(lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),mu,

Sigma,lambda = NULL,tau = NULL,Gamma = NULL,nu = NULL,dist)

Arguments

lower the vector of lower limits of length p

upper the vector of upper limits of length p

mu a numeric vector of length p representing the location parameter

Sigma a numeric positive definite matrix with dimension p ✂ p representing the
scale parameter

lambda a numeric matrix of dimension p✂ q representing the skewness/shape matrix
parameter for the SUN and SUT distribution. For the ESN and EST distribu-
tions (q = 1), lambda is a numeric vector of dimension p (see examples at the
end of this help). If all(lambda == 0), the SUN/ESN/SN (SUT/EST/ST)
reduces to a normal (t) symmetric distribution.

tau a numeric vector of length q representing the extension parameter for the
SUN and SUT distribution. For the ESN and EST distributions, tau is a
positive scalar (q = 1). Furthermore, if tau == 0, the ESN (EST) reduces
to a SN (ST) distribution.

Gamma a correlation matrix with dimension q ✂ q. It must be provided only for the
SUN and SUT cases. For particular cases SN, ESN, ST and EST, we have
that Gamma == 1.

nu It represents the degrees of freedom for the Student’s t-distribution

log2 a boolean variable, indicating if the log2 result should be returned. This is
useful when the true probability is too small for the machine precision.

Details

Univariate case is also considered, where Sigma will be the variance σ2. Normal case code

is an R adaptation of the Matlab available function dtmvnmom.m from Kan & Robotti

(2017) and it is used for p<=3. For higher dimensions we use the extension of the algorithm

in Vaida & Liu (2009) proposed in Chapter 3.

Value

It returns a list with three elements:

mean the mean vector of length p

EYY the second moment matrix of dimensions p✂ p
varcov the variance-covariance matrix of dimensions p✂ p

Warning
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For the t cases, the algorithm supports degrees of freedom nu <= 2, however, it may take

more time than usual.

Note

If nu >= 300, Normal case is considered.

Examples

a = c(-0.8,-0.7,-0.6)

b = c(0.5,0.6,0.7)

mu = c(0.1,0.2,0.3)

Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),

nrow = length(mu),ncol = length(mu),byrow = TRUE)

lambda = c(-2,0,1)

# Theoretical value

value1 = meanvarTMD(a,b,mu,Sigma,dist="normal")

#MC estimates

MC11 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal") #by defalut n = 10000

MC12 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal",n = 10^5) #more precision

# Now works for for any nu>0

value2 = meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 0.87)

value3 = meanvarTMD(a,b,mu,Sigma,,dist = "SN")

value4 = meanvarTMD(a,b,mu,Sigma,lambda,nu = 4,dist = "ST")

value5 = meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

value6 = meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,nu = 4,dist = "EST")

#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions

Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q

Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q

tau = c(-1,2) #A vector of extension parameters of dim q

value7 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,dist = "SUN")

value8 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,nu = 4,dist = "SUT")

#The ESN and EST as particular cases of the SUN and SUT for q == 1

Lambda = matrix(c(-2,0,1),3,1)
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Gamma = 1

tau = 1

value9 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,dist = "SUN")

value10 = meanvarTMD(a,b,mu,Sigma,Lambda,tau,Gamma,nu = 4,dist = "SUT")

round(value5$varcov,2) == round(value9$varcov,2)

round(value6$varcov,2) == round(value10$varcov,2)

momentsTMD Moments for doubly truncated multivariate distributions

Description

It computes kappa-th order moments for for some doubly truncated skew-elliptical distri-

butions. It supports the p-variate Normal, Skew-normal (SN) and Extended Skew-normal

(ESN), as well as the Student’s t, Skew-t (ST) and the Extended Skew-t (EST) distribution.

Usage

momentsTMD(kappa,lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),

mu,Sigma,lambda = NULL,tau = NULL,nu = NULL,dist)

Arguments

Details

Univariate case is also considered, where Sigma will be the variance σ2.

Value

A data frame containing p� 1 columns. The p first containing the set of combinations of

exponents summing up to sum(kappa) and the last column containing the the expected

value. Normal cases (ESN, SN and normal) return prod(kappa)+1 moments while the

Student’s t cases return all moments of order up to kappa. See example section.

Note

If nu >= 300, the Normal case is considered.

Examples

a = c(-0.8,-0.7,-0.6)

b = c(0.5,0.6,0.7)
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kappa moments vector of length p. All its elements must be integers greater or equal
to 0. For the Student’s-t case, kappa can be a scalar representing the order
of the moment.

lower the vector of lower limits of length p

upper the vector of upper limits of length p

mu a numeric vector of length p representing the location parameter

Sigma a numeric positive definite matrix with dimension p ✂ p representing the
scale parameter

lambda a numeric vector of length p representing the skewness parameter for ST
and EST cases. If lambda == 0, the EST/ST reduces to a t (symmetric)
distribution.

tau It represents the extension parameter for the EST distribution. If tau == 0,
the EST reduces to a ST distribution.

nu It represents the degrees of freedom for the Student’s t-distribution.

dist represents the truncated distribution to be used. The values are normal,
SN and ESN for the doubly truncated Normal, Skew-normal and Extended
Skew-normal distributions and, t, ST and EST for the for the doubly truncated
Student-t, Skew-t and Extended Skew-t distributions.

mu = c(0.1,0.2,0.3)

Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),

nrow = length(mu),ncol = length(mu),byrow = TRUE)

kp = c(2,0,1)

lambda = c(-2,0,1)

value1 = momentsTMD(kp,a,b,mu,Sigma,dist="normal")

value2 = momentsTMD(kp,a,b,mu,Sigma,dist = "t",nu = 7)

value3 = momentsTMD(kp,a,b,mu,Sigma,lambda,dist = "SN")

value4 = momentsTMD(kp,a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

#T cases with kappa scalar (all moments up to 3)

value5 = momentsTMD(3,a,b,mu,Sigma,nu = 7,dist = "t")

value6 = momentsTMD(3,a,b,mu,Sigma,lambda,nu = 7,dist = "ST")

value7 = momentsTMD(3,a,b,mu,Sigma,lambda,tau = 1,nu = 7,dist = "EST")

dprmvEST Multivariate Extended-Skew t Density, Probablilities and
Random Deviates Generator
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Description

These functions provide the density function, probabilities and a random number generator

for the multivariate extended-skew t (EST) distribution with mean vector mu, scale matrix

Sigma, skewness parameter lambda, extension parameter tau and degrees of freedom nu.

Usage

dmvEST(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau,nu)

pmvEST(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),

mu = rep(0,length(lambda)),Sigma,lambda,tau,nu,log2 = FALSE)

rmvEST(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau,nu)

Arguments

x vector or matrix of quantiles. If x is a matrix, each row is taken to be a
quantile.

n number of observations.

lower the vector of lower limits of length p

upper the vector of upper limits of length p

mu a numeric vector of length p representing the location parameter

Sigma a numeric positive definite matrix with dimension p ✂ p representing the
scale parameter

lambda a numeric vector of length p representing the skewness parameter for ST
and EST cases. If lambda == 0, the EST/ST reduces to a t (symmetric)
distribution.

tau It represents the extension parameter for the EST distribution. If tau == 0,
the EST reduces to a ST distribution.

nu It represents the degrees of freedom for the Student’s t distribution

log2 a boolean variable, indicating if the log2 result should be returned. This is
useful when the true probability is too small for the machine precision.

Examples

#Univariate case

dmvEST(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)

rmvEST(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)

#Multivariate case

mu = c(0.1,0.2,0.3,0.4)

Sigma = matrix(c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,
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1),nrow = length(mu),ncol = length(mu),byrow = TRUE)

lambda = c(-2,0,1,2)

tau = 2

#One observation

dmvEST(x = c(-2,-1,0,1),mu,Sigma,lambda,tau,nu=4)

rmvEST(n = 100,mu,Sigma,lambda,tau,nu=4)

#Many observations as matrix

x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)

dmvEST(x = x,mu,Sigma,lambda,tau,nu=4)

lower = rep(-Inf,4)

upper = c(-1,0,2,5)

pmvEST(lower,upper,mu,Sigma,lambda,tau,nu=4)

Other functions: MC estimates for the first two moments of a truncated

multivariate distribution (TMD) can be reach through the function MCmeanvarTMD().

Functions to compute the mean and variance-covariance matrix, as well as product

moments for folded multivariate distributions (FMDs) are also available through the

analogous meanvarFMD() and momentsFMD(), which arguments are the same for functions

meanvarFMD() and momentsFMD(), except for arguments lower and upper that are not

longer neeeded. Finally, A function cdfFMD() is provided to compute the cdf of several

FMDs.

Some R MomTrunc package output

# All moments up to 3 for an 5-variate folded Student-t distribution

> momentsFMD(3,mu,S,nu)

[k1] [k2] [k3] [k4] [k5] Moment

[1,] 0 0 0 0 0 1.0000

[2,] 0 0 0 0 1 0.9598

[3,] 0 0 0 0 2 1.5000

[4,] 0 0 0 0 3 3.1311

[5,] 0 0 0 1 0 0.9260

[6,] 0 0 0 1 1 1.1925

[7,] 0 0 0 1 2 2.3439

[8,] 0 0 0 2 0 1.4100

[9,] 0 0 0 2 1 2.2836

[10,] 0 0 0 3 0 2.8902

[11,] 0 0 1 0 0 0.8994
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[12,] 0 0 1 0 1 0.9001

[13,] 0 0 1 0 2 1.4851

[14,] 0 0 1 1 0 0.8878

[15,] 0 0 1 1 1 1.1914

[16,] 0 0 1 2 0 1.4502

[17,] 0 0 2 0 0 1.3400

[18,] 0 0 2 0 1 1.4142

[19,] 0 0 2 1 0 1.4188

[20,] 0 0 3 0 0 2.7055

[21,] 0 1 0 0 0 0.8803

[22,] 0 1 0 0 1 0.9144

[23,] 0 1 0 0 2 1.5559

[24,] 0 1 0 1 0 0.8585

[25,] 0 1 0 1 1 1.1785

[26,] 0 1 0 2 0 1.3919

[27,] 0 1 1 0 0 0.8831

[28,] 0 1 1 0 1 0.9604

[29,] 0 1 1 1 0 0.9207

[30,] 0 1 2 0 0 1.4725

[31,] 0 2 0 0 0 1.2900

[32,] 0 2 0 0 1 1.4584

[33,] 0 2 0 1 0 1.3388

[34,] 0 2 1 0 0 1.4483

[35,] 0 3 0 0 0 2.5749

[36,] 1 0 0 0 0 0.8686

[37,] 1 0 0 0 1 0.9191

[38,] 1 0 0 0 2 1.5934

[39,] 1 0 0 1 0 0.9570

[40,] 1 0 0 1 1 1.3782

[41,] 1 0 0 2 0 1.7208

[42,] 1 0 1 0 0 0.8392

[43,] 1 0 1 0 1 0.9340

[44,] 1 0 1 1 0 0.9739

[45,] 1 0 2 0 0 1.3567

[46,] 1 1 0 0 0 0.8224

[47,] 1 1 0 0 1 0.9552

[48,] 1 1 0 1 0 0.9576

[49,] 1 1 1 0 0 0.8830

[50,] 1 2 0 0 0 1.3073
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[51,] 2 0 0 0 0 1.2600

[52,] 2 0 0 0 1 1.4780

[53,] 2 0 0 1 0 1.6387

[54,] 2 0 1 0 0 1.3205

[55,] 2 1 0 0 0 1.2940

[56,] 3 0 0 0 0 2.4966

6.2 Conclusions

In this thesis, we proposed a methodology to calculate the truncated moments

of several elliptical distributions and its skewed extended versions belonging to the family

of SE distributions. High order moments are achieved using a recurrence approach, plus

a 1-1 relation which let us write in a neat manner, any product moment of a member

of the SE class as a moment of its respective symmetric case. Expressions for the first

two moments, conditions of existence and useful expectations in the context of censored

interval models, are presented in general. Various estimation and regression applications in

censored models are proposed in order to show the usefulness of our proposal, considering

Student’s t, SN and ST deviates as well as an application of ST truncated moments in

Finance. All proposed methodology has been implemented and is available in the MomTrunc

package of the R software, a highly optimized package that provides truncated moments

and other functions of interest for various symmetrical and asymmetric distributions.

6.3 Future research

A natural extension for this work is to calculate the moments other members

of the elliptical and consequently to the SE class of distributions, as their probabilities are

implemented efficiently. Multimodality can be easily handled by considering mixtures of

censored regression models, extending works as Lachos et al. (2017) and De Alencar et al.

(2019a) to the regression framework with interval-censored responses. Mixed effects models

with skewed heavy-tailed random effects or error terms are also a natural extension. For

all models above is also possible to include a semi-parametric structure for modeling the

any nonlinear behavior as in Mattos et al. (2019), or using a spatial covariance structure

for spatially correlated data. Experimental studies include covariates that often comes

with substantial measurement errors (Liu & Wu, 2007). How to incorporate measurement

error in covariates within our robust framework can also be part of future research. An

in-depth investigation of such extensions is beyond the scope of the present work, but

certainly an interesting topic for future research.
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APPENDIX A: Appendix for chapter 2

Appendix A.1: Details for the expectations in EM algorithm

To compute the required expected values of all latent data, we find that most

of them can be written in terms of E♣Ui ⑤ Yiq, and thereby we write ♣ui ✏ EtE♣Ui ⑤
Yiq ⑤ Vi,Ci, ♣θ♣kq✉, where E♣Ui ⑤ Yiq ✏ ♣ν � pq④♣ν � δq with δ ✏ ♣Yi ✁ µq❏Σ✁1♣Yi ✁ µq.
Subsequently, we discuss the closed-form expressions of conditional expectations as follows:

1. If the ith subject has only non-censored components, then

②uy2
i

♣kq ✏ ♣u♣kqi yiy
❏
i , ①uy♣kq

i ✏ ♣u♣kqi yi, and ♣u♣kqi ✏ ν � p

ν � ♣δ♣kq♣yiq
,

where ♣δ♣kq♣yiq ✏ ♣yi ✁ ♣µ♣kqq❏♣♣Σ♣kqq✁1♣yi ✁ ♣µ♣kqq.

2. If the ith subject has only censored components, from Proposition 3 with r ✏ 1, we

have

②uy2
i

♣kq ✏ ErUiYiY
❏
i ⑤ Vi,Ci, ♣θ♣kqs ✏ ♣ϕ♣kq♣Viq♣w2c♣kq

i ,①uy♣kq
i ✏ ErUiYi ⑤ Vi,Ci, ♣θ♣kqs ✏ ♣ϕ♣kq♣Viq♣wc♣kq

i ,♣u♣kqi ✏ ErUi ⑤ Vi,Ci, ♣θ♣kqs ✏ ♣ϕ♣kq♣Viq,

where ♣ϕ♣kq♣Viq ✏ Lp♣V1i,V2i; ♣µ♣kq, ♣Σ✝♣kq, ν � 2q
Lp♣V1i,V2i; ♣µ♣kq, ♣Σ♣kq, νq ,

♣wc♣kq
i ✏ ErWi ⑤ ♣θ♣kqs, ♣w2c♣kq

i ✏ ErWiW
❏
i ⑤ ♣θ♣kqs (A.1)

with Wi ✒ Ttp♣♣µ♣kq, ♣Σ✝♣kq, ν � 2; ♣V1i,V2iqq and ♣Σ✝♣kq ✏ ν

ν � 2
♣Σ♣kq. To compute

ErWis and ErWiW
❏
i s we use the results given in Subsection 3.1.

3. If the ith subject has both censored and uncensored components, then ♣Yi ⑤ Vi,Ciq,
♣Yi ⑤ Vi,Ci,y

o
i q, and ♣Yc

i ⑤ Vi,Ci,y
o
i q are equivalent processes. We obtain

②uy2
i

♣kq ✏ E♣UiYiY
❏
i ⑤ yo

i ,Vi,Ci, ♣θ♣kqq ✏
✄

yo
i y

o❏
i ♣u♣kqi ♣u♣kqi yo

i ♣wc♣kq❏
i♣u♣kqi ♣wc♣kq

i yo❏
i ♣u♣kqi ♣w2c♣kq

i

☛
,

①uy♣kq
i ✏ E♣UiYi ⑤ yo

i ,Vi,Ci, ♣θ♣kqq ✏ vec♣yo
i ♣u♣kqi , ♣u♣kqi ♣wc♣kq

i q,

♣u♣kqi ✏ E♣Ui ⑤ yo
i ,Vi,Ci, ♣θ♣kqq ✏ po

i � ν

ν � ♣δ♣kq♣yo
i q
Lpc

i
♣Vc

1i,V
c
2i; ♣µco♣kq

i , rSco♣kq
i , ν � po

i � 2q
Lpc

i
♣Vc

1i,V
c
2i; ♣µco♣kq

i , ♣Scc.o♣kq
i , ν � po

i q
,

where

rSco♣kq
i ✏

★
ν � ♣δ♣kq♣yo

i q
ν � 2 � po

i

✰ ♣Σcc.o♣kq
i , ♣δ♣kq♣yo

i q ✏ ♣yo
i ✁ ♣µo♣kq

i q❏♣♣Σoo♣kq
i q✁1♣yo

i ✁ ♣µo♣kq
i q,
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♣Σcc.o♣kq
i is defined as in equation (4.22) in the main document, ♣wc♣kq

i and ♣w2c♣kq

i are

defined in (A.1) with Wi ✒ Ttpc
i
♣♣µco♣kq

i , rSco♣kq
i , ν � po

i � 2; ♣Vc
1i,V

c
2iqq. Similarly, to

compute ErWis and ErWiW
❏
i s, we use the results given in Subsection 3.1.

Appendix A.2: Some illustrations using the R MomTrunc package

> momentsTMD(kappa=c(2,2,2),lower,upper,mu,Sigma,nu,dist = "t")

Call:

momentsTMD(kappa = c(2, 2, 2), lower, upper, mu,Sigma, dist = "t", nu)

k1 k2 k3 F(k) E[k]

1 2 2 2 0.0002 0.0017

2 1 2 2 -0.0003 -0.0021

3 0 2 2 0.0021 0.0172

4 0 1 2 -0.0002 -0.0019

5 0 0 2 0.0161 0.1346

6 0 0 1 0.0089 0.0743

7 0 0 0 0.1194 1.0000

> meanvarTMD(lower,upper,mu,Sigma,nu,dist = "t") #Using 5000 MC sims

> means

mean1 mean2 mean3 mean4 mean5 mean6

Proposed -0.3587 -0.0837 -0.0781 0.2745 0.8097 0.9313

MonteCarlo -0.3465 -0.0744 -0.0730 0.2912 0.8022 0.9327

> variances

var1 var2 var3 var4 var5 var6

Proposed 0.0807 0.0863 0.1018 0.1340 0.0962 0.1459

MonteCarlo 0.0787 0.0888 0.0992 0.1393 0.0890 0.1464

> times

Proposed MonteCarlo

3.50 11.89 seconds
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Appendix B.1: Proofs of propositions and theorems

Proof of Proposition 3.2. Consider the partition Y ✏ ♣Y❏

1
,Y❏

2
q❏ and the correspond-

ing partitions of µ, Σ, λ and ϕ. We based our proof on the factorization of fY♣yq ✏
fY1,Y2♣y1,y2q as fY1,Y2♣y1,y2q ✏ fY1♣y1qfY2⑤Y1✏y1♣y2q. First, for the symmetric part, we

have that

φp♣y; µ,Σq ✏ φp1♣y1; µ1,Σ11qφp2♣y2; µ2.1,Σ22.1q. (B.2)

Let now c12 ✏ ♣1 � ϕ❏
2

Σ22.1ϕ2q✁1④2, ϕ̃1 ✏ ϕ1 � Σ✁1

11
Σ12ϕ2 and τ2.1 ✏ τ � ϕ̃❏

1
♣y1 ✁ µ1q.

By noting after some straightforward algebra that λ❏Σ✁1④2♣y ✁ µq ✏ ϕ❏♣y ✁ µq ✏
ϕ̃❏

1
♣y1 ✁ µ1q � ϕ❏

2
♣y2 ✁ µ2.1q and λ❏λ ✏ ϕ❏Σϕ ✏ ϕ̃❏

1
Σ11ϕ̃1 � ϕ❏

2
Σ22.1ϕ2, we obtain

Φ1

�
c12τ � c12ϕ̃

❏
1
♣y1 ✁ µ1qq

✟ ✏ Φ1

✂
τ2.1

♣1 � ϕ❏
2 Σ22.1ϕ2q1④2

✡
. (B.3)

Hence, using (B.2) and (B.3), we can rewrite the density of Y ✏ ♣Y❏
1
,Y❏

2
q❏ as

fY♣yq ✏ φp♣y; µ,ΣqΦ1♣τ � λ❏Σ✁1④2♣y ✁ µqq
Φ1♣τ④♣1 � λ❏λq1④2q

✏ φp♣y; µ,ΣqΦ1

�
τ � ϕ̃❏

1
♣y1 ✁ µ1q � ϕ❏

2
♣y2 ✁ µ2.1q

✟
Φ1 ♣τ④♣1 � ϕ❏Σϕq1④2q

✏ φp♣y; µ,Σq Φ1

�
τ2.1 � ϕ❏

2
♣y2 ✁ µ2.1q

✟
Φ1 ♣τ④♣1 � ϕ̃❏

1 Σ11ϕ̃1 � ϕ❏
2 Σ22.1ϕ2q1④2q

✏ φp♣y; µ,Σq Φ1

�
τ2.1 � ϕ❏

2
♣y2 ✁ µ2.1q

✟
Φ1 ♣c12τ④♣1 � c2

12ϕ̃
❏
1 Σ11ϕ̃1q1④2q

Φ1♣c12τ � c12ϕ̃
❏
1
♣y1 ✁ µ1qq

Φ1 ♣τ2.1④♣1 � ϕ❏
2 Σ22.1ϕ2q1④2q

✏ φp1♣y1; µ1,Σ11qΦ1♣c12τ � c12ϕ̃
❏
1
Σ

1④2
11 Σ

✁1④2
11 ♣y1 ✁ µ1qq

Φ1 ♣c12τ④♣1 � c2
12ϕ̃

❏
1 Σ11ϕ̃1q1④2q

✂ φp2♣y2; µ2.1,Σ22.1q
Φ1

�
τ2.1 � ϕ❏

2
Σ

1④2
22.1Σ

✁1④2
22.1 ♣y2 ✁ µ2.1q

✟
Φ1 ♣τ2.1④♣1 � ϕ❏

2 Σ22.1ϕ2q1④2q ,

✏ ESNp1♣µ1,Σ11, c12Σ
1④2
11 ϕ̃1, c12τq ✂ ESNp2♣µ2.1,Σ22.1,Σ

1④2
22.1ϕ2, τ2.1q.

Proof of Theorem 3.3. For X ✒ TNp♣0,R; ♣a,bqq, we have that its MGF is given by

m♣tq ✏ ❊rexptt❏X✉s ✏ 1
L

➺ b

a

1
♣2πqp④2⑤R⑤1④2 exp

✥✁1

2
♣x❏R✁1x ✁ 2t❏xq✭ dx,

✏ L✁1 exptt❏Rt④2✉
➺ b

a

φp♣x; Rt,Rqdx,

✏ L✁1 exptt❏Rt④2✉Lp♣a,b; Rt,Rq, (B.4)
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with normalizing constant L ✑ Lp♣a,b; 0,Rq. From Tallis (1961), we can compute the

first two moments of X differentiating (B.4). Hence,

❇m♣tq
❇t

✏ m♣tqt❏R � L✁1 exptt❏Rt④2✉
✒ ❇
❇t
Lp♣a,b; Rt,Rq

✚
.

After a change of variable w ✏ x ✁ Rt,

❇
❇t
Lp♣a,b; Rt,Rq ✏ ❇

❇w

❇w

❇t

➺ b

a

φp♣w; Rqdw ✏ ✁q♣tq❏R. (B.5)

For t ✏ 0, we denote q ✑ q♣0q, which is given by q ✏ qa ✁ qb, with the i-th

element of qa and qb as

qa,i ✏ φ1♣aiqLp✁1♣a♣iq,b♣iq; aiR♣iq,i, R̃iq,
qb,i ✏ φ1♣biqLp✁1♣a♣iq,b♣iq; biR♣iq,i, R̃iq,

with R̃i ✏ R♣iq,♣iq ✁ R♣iq,iRi,♣iq. Additionally, it is straightforward that

❇2m♣tq
❇t❇t❏

✏ ❇m♣tq
❇t

❏

tR �m♣tqR ✁ L✁1 exptt❏Rt④2✉R♣t q♣tq❏ ✁ H♣tqqR, (B.6)

with H♣tq ✏ ✁ ❇
❇t

q♣tq. For t ✏ 0, we have that H ✑ H♣0q ✁ ❇
❇x

q, with off-diagonal

elements hij given by

hij ✏ haa
ij ✁ hba

ij ✁ hab
ij � hbb

ij

✏ φ2♣ai, aj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µaa
ij , R̃ijq ✁ φ2♣bi, aj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µba

ij , R̃ijq
✁ φ2♣ai, bj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µab

ij , R̃ijq � φ2♣bi, bj; ρijqLp✁2♣a♣i,jq,b♣i,jq; µbb
ij , R̃ijq,

with µ
αβ
ij ✏ R♣ijq,ri,js♣αi, βjq❏ and R̃ij ✏ R♣i,jq,♣i,jq ✁ R♣i,jq,ri,jsRri,js,♣i,jq.

Finally, following Vaida & Liu (2009), we can derive the diagonal elements hii

as linear combinations of the elements hik for i ✘ k. This can be achieved as

hii ✏ ✁ ❇
❇xi

qai
� ❇
❇xi

qbi

✏ ❇
❇xi

✥
φ1♣aiqLp✁1♣a♣iq,b♣iq; aiR♣iq,i, R̃iq ✁ φ1♣biqLp✁1♣a♣iq,b♣iq; biR♣iq,i, R̃iq

✭
,

✏ aiφ1♣aiqLp✁1♣a♣iq,b♣iq; aiR♣iq,i, R̃iq ✁ φ1♣aiq ☎ ❇
❇xi

Lp✁1♣a♣iq,b♣iq; aiR♣iq,i, R̃iq

✁ biφ1♣biqLp✁1♣a♣iq,b♣iq; biR♣iq,i, R̃iq � φ1♣biq ☎ ❇
❇xi

Lp✁1♣a♣iq,b♣iq; biR♣iq,i, R̃iq

✏ aiqai
✁ biqbi

✁ Ri,♣iq

✥
φ1♣aiq

✏
φ1♣aj⑤aiqLp✁2♣a♣i,jq,b♣i,jq; µaa

ij , R̃ijq ✁ φ1♣bj⑤aiq
✂ Lp✁2♣a♣i,jq,b♣i,jq; µab

ij , R̃ijq
✘p

j✘i✏1
✁ φ1♣biq

✏
φ1♣aj⑤biqLp✁2♣a♣i,jq,b♣i,jq; µba

ij , R̃ijq
✁ φ1♣bj⑤biqLp✁2♣a♣i,jq,b♣i,jq; µbb

ij , R̃ijq
✘p

j✘i✏1

✮
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✏ aiqai
✁ biqbi

✁ Ri,♣iq

✏
haa

ij ✁ hab
ij ✁ hba

ij ✁ hbb
ij

✘p
j✘i✏1

✏ aiqai
✁ biqbi

✁ Ri,♣iqH♣iq,i.

Finally, evaluating equations (B.5) and (B.6) on t ✏ 0, we obtain the expressions

for ❊rXs and ❊rXX❏s. This ends the proof.

Proof of Theorem 3.4. It follows that

FY♣yq ✏ P ♣✁y ↕ X ↕ yq
✏ P ♣✁y1 ↕ X1 ↕ y1,✁y2 ↕ X2 ↕ y2, . . . ,✁yp ↕ Xp ↕ ypq
✏ FX♣yq ✁

➳
i

FX♣y-♣iqq �
➳
i➔j

FX♣y-♣i,jqq ✁
➳

i➔j➔k

FX♣y-♣i,j,kqq � . . .� ♣✁1qpFX♣✁yq,

(B.7)

where y✁♣iq denotes the y vector with its ith elements multiplied by ✁1. For instance,

we have that y-♣iq ✏ ♣y1, y2, . . . , yi✁1,✁yi, yi�1, . . . , ypq. It is easy to see that FY♣yq can be

written as

FY♣yq ✏
➳

sPS♣pq

πsFX♣Λsy; θq,

with the constant πs ✏
p➵

i✏1

si providing the signs t✁1, 1✉ correctly for each summand in

(B.7).

By the other side, differentiating FY♣yq in expression (B.7), we have the joint

pdf of Y ✏ ⑤X⑤ given by

fY♣yq ✏ ❇p

❇y1❇y2 . . . ❇yp

FY♣yq

✏ fX♣yq ✁ ♣✁1q
➳

i

fX♣y-♣iqq � ♣✁1q2
➳
i➔j

fX♣y-♣i,jqq ✁ ♣✁1q3
➳

i➔j➔k

fX♣y-♣i,j,kqq

� . . .� ♣✁1q2pfX♣✁yq
✏ fX♣yq �

➳
i

fX♣y-♣iqq �
➳
i➔j

fX♣y-♣i,jqq �
➳

i➔j➔k

fX♣y-♣i,j,kqq � . . .� fX♣✁yq

✏
➳

sPS♣pq

fX♣Λsy; θq,

where we have conveniently used fX♣xq instead of fX♣x; θq for simplicity.

Proof of Corollary 3.2. By the method of change-of-variable for Zs ✏ ΛsX, then fZs
♣yq ✏

fX♣Λsyq since Λ✁1

s ✏ Λs, J ✏ Λs and ⑤ det♣Jq⑤ ✏ 1, where J is the Jacobian matrix

of the transformation and det♣Aq is the determinat of the matrix A. Additionally, if

X ✒ fX♣☎; ξ,Ψq belongs to the location-scale family of distributions with location and
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scale parameters ξ and Ψ, respectively, then Zs ✒ fX♣☎; Λsξ,ΛsΨΛsq. The κ-th moment

of Y can be obtained by the basic integration as➺ ✽

0

yκfY♣yqdy ✏
➳

sPS♣pq

➺ ✽

0

yκfX♣y; Λsξ,ΛsΨΛsqdy

✏
➳

sPS♣pq

➺ ✽

0

yκfZs
♣yqdy ✏

➳
sPS♣pq

Er♣Zκ
s q�s.

This concludes the proof.

Appendix B.2: Explicit expressions for moments of some folded uni-

variate distributions

Let X ✒ ESN♣µ, σ2, λ, τq, Y ✒ SN♣µ, σ2, λq, Z ✒ N♣µ, σ2q and W follow a

univariate half normal distribution denoted by W ✒ HN♣σ2q. The first four raw moments

for ⑤X⑤, ⑤Y ⑤, ⑤Z⑤ and W are given by

Er⑤X⑤s ✏ µ♣1 ✁ 2p1q � 2ασ2 � λησ♣1 ✁ 2Φ1♣0;m, γ2qq,
Er⑤X⑤2s ✏ µ2 � σ2 � λησ♣m� µq,
Er⑤X⑤3s ✏ ♣µ3 � 3µσ2q♣1 ✁ 2p1q � 2α♣µ2σ2 � 2σ4q

� λησ
✥
2γ♣m� µqφ1♣m④γq � ♣m2 � γ2 � µ♣m� µq � 2σ2q♣1 ✁ 2Φ1♣0;m, γ2qq✭ ,

Er⑤X⑤4s ✏ µ4 � 6µ2σ2 � 3σ4 � λησ
✥
m3 � 3mγ2 �m2µ� γ2µ�mµ2 � µ3 � ♣3m� 5µqσ2

✭
,

Er⑤Y ⑤s ✏ µ♣1 ✁ 2p1q � 2ασ2 ✁ λησ♣1 ✁ 2Φ1♣µ④γqq,
Er⑤Y ⑤2s ✏ µ2 � σ2 � 2µλησ,

Er⑤Y ⑤3s ✏ ♣µ3 � 3µσ2q♣1 ✁ 2p1q � 2α♣µ2σ2 � 2σ4q
� λησ

✥
4γµφ1♣µ④γq ✁ ♣3µ2 � γ2 � 2σ2q♣1 ✁ 2Φ1♣µ④γqq

✭
,

Er⑤Y ⑤4s ✏ µ4 � 6µ2σ2 � 3σ4 � 4µλησ
✥
µ2 � γ2 � 2σ2

✭
,

Er⑤Z⑤s ✏ ✁µ♣1 ✁ 2Φ1♣µ④σqq � 2σφ1♣µ④σq,
Er⑤Z⑤2s ✏ µ2 � σ2,

Er⑤Z⑤3s ✏ ✁µ♣µ2 � 3σ2q♣1 ✁ 2Φ1♣µ④σqq � 2σ♣µ2 � 2σ2qφ1♣µ④σq,
Er⑤Z⑤4s ✏ µ4 � 6µ2σ2 � 3σ4,

and

ErW s ✏ σ
❄

2❄
π
, ErW 2s ✏ σ2, ErW 3s ✏ 4σ3

❄
2π

and ErW 4s ✏ 3σ4,

with m ✏ µ✁ µb, p1 ✏ Φ̃1♣0;µ, σ2, λ, τq and α ✏ ESN1♣0;µ, σ2, λ, τq.
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Appendix B.3: Useful approximations.

Proposition B.1. As τ Ñ ✁✽ ,

η ÝÑ ✁ τ

1� λ❏λ
. (B.8)

Proof. Let h denote the complimentary inverse Mill’s ratio (CIMR) of a random variable

X, given by h♣xq △✏ f♣xq④F ♣xq. For X ✒ N1♣µ, σ2q, it follows from L’Hôpital that

h♣xq ÝÑ ✁x✁ µ

σ2
, as x ÝÑ ✁✽.

Setting X ✒ N1♣0, 1� λ❏λq, it follows that h♣τq ✏ η, ending the proof.

Proposition B.2. As λÑ ✁✽,

ESN1♣y;µ, σ2, λ, τqÝÑTN1♣y;µ, σ2, rµ,✽qq, (B.9)

and as λÑ �✽,

ESN1♣y;µ, σ2, λ, τqÝÑTN1♣y;µ, σ2, ♣✁✽, µsq. (B.10)

Proof. For λÑ ✁✽, it is straightforward that

Φ1♣τ � λ♣Y ✁ µq④σq
Φ1♣τ④♣1� λ2q1④2q ÝÑ ✶tY ➔ µ✉

1④2 ,

and for λÑ �✽,
Φ1♣τ � λ♣Y ✁ µq④σq

Φ1♣τ④♣1� λ2q1④2q ÝÑ ✶tY → µ✉
1④2 ,

where ✶tE✉ represents the indicator function. This completes the proof.

Corollary B.1. Let M and N be two large positive real numbers. If λ ✏ ✁M and τ ✏ ✟N ,

then

ESN1♣y;µ, σ2, λ, τq ✓ TN1♣y;µ, σ2, rµ✟ σN④M,✽qq,
and for λ ✏M , then

ESN1♣y;µ, σ2, λ, τq ✓ TN1♣y;µ, σ2, ♣✁✽, µ✁✟σN④M sq.

Appendix B.4: The MomTrunc R package

The methods proposed this work have been implemented in the package

MomTrunc, which is available on CRAN repository (version 4.51). It computes the first

two moments, as well as arbitrary moments for some multivariate truncated distributions

(TMD) using the functions meanvarTMD and momentsTMD, respectively. Another possible

distributions includes the Student-t and the ESN along with its limiting cases, say, the
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SN and N distribution. These moments can be accessed by setting the dist parameter

as "t", "ESN", "SN" and "N" respectively. For folded one can use the analogous functions

meanvarFMD and momentsFMD and their cdf s through the cdfFMD function. Densities,

probabilities and random generator functions are also offered for the multivariate ESN

distribution trough the functions dmvESN, pmvESN and rmvESN, respectively. In the following,

we present some sample codes useful for practitioners.

# Univariate ESN case

> dmvESN(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)

> rmvESN(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)

> pmvESN(lower = -5,upper = 2,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)

# Multivariate ESN case

> mu = c(0.1,0.2,0.3,0.4)

> Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,

-0.1,0.2,1),nrow = length(mu),ncol = length(mu),byrow = TRUE)

> lambda = c(-2,0,1,2)

> tau = 1

> dmvESN(x = c(-2,-1,0,1),mu,Sigma,lambda,tau) #One observation

> dmvESN(x = matrix(rnorm(4*10),ncol = 4),mu,Sigma,lambda,tau)

> rmvESN(n = 100,mu,Sigma,lambda,tau)

> pmvESN(lower = rep(-Inf,4),upper = c(-1,0,2,5),mu,Sigma,lambda,tau)

# Truncated case

# First two moments

> a = c(-0.8,-0.7,-0.6) #lower bound

> b = c(0.5,0.6,0.7) #upper bound

> mu = c(0.1,0.2,0.3)

> Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),

nrow = length(mu),ncol = length(mu),byrow = TRUE)

> lambda = c(-2,0,1)

> meanvarTMD(a,b,mu,Sigma,dist="normal")

> meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 4)

> meanvarTMD(a,b,mu,Sigma,lambda,dist = "SN")

> meanvarTMD(a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

# Arbitrary moment (2,0,1)

> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,dist="normal")
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> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,dist = "t",nu = 7)

> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,lambda,dist = "SN")

> momentsTMD(kappa = c(2,0,1),a,b,mu,Sigma,lambda,tau = 1,dist = "ESN")

# Folded ESN case

> meanvarFMD(mu,Sigma,lambda,tau = 1,dist = "ESN")

> momentsFMD(kappa = c(2,0,1),mu,Sigma,lambda,tau = 1,dist = "ESN")

> cdfFMD(x = c(0.5,0.2,1.0,1.3),mu,Sigma,lambda,tau = 1,dist = "ESN")

Appendix B.5: Figures

300 500 1000

Time [milliseconds]
10 30 300100

Time [milliseconds]

Figure 15 – Simulation study. Violin plots for the processing time to compute the mean
and the variance for a 4-variate doubly TESN (left panel) and a 3-variate
FESN distribution (right panel). For the FESN case, Method 1 refers to the
approach in Subsection 3.6.1 and Method 2 when using equations (3.40) and
(3.41).
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Figure 16 – Densities of Xi, i ✏ 1, . . . , 4.
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Figure 17 – Contour plots of bivariate FESN densities with same location and scale param-
eters, and different skewness λ ✏ t♣8, 3q, ♣3, 8q, ♣✁3,✁8q, ♣✁8,✁3q✉ (from left
to right) and extension τ ✏ t✁4,✁2, 0, 2, 4✉ (from top to bottom) parameters.
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Appendix C.1: Details for the expectations in EM algorithm

To compute the expected values, first note that for any multiplicatively separable

measurable function of Ui, Ti and Yi, such that g♣Ui, Ti,Yiq ✏ g1♣Yiqg2♣Uiqg3♣Tiq, we

have that

EUiTiYi
rg♣Ui, Ti,Yiq⑤Vi,Cis ✏ EYi

rg1♣YiqEUiTi
rg2♣Uiqg3♣Tiq⑤Yis⑤Vi,Cis

✏ EYi
rg1♣YiqEUi

rg2♣Uiq⑤YisETi
rg3♣Tiq⑤Ui,Yis⑤Vi,Cis.

Hence,

②uyr
i ✏ EUiTiYi

rUiY
r
i ⑤Vi,Cis ✏ EYi

rYr
iEUi

rUi⑤Yis⑤Vi,Cis,①utri ✏ EUiTiYi
rUiT

r
i ⑤Vi,Cis ✏ EYi

rEUiTi
rUiT

r
i ⑤Yis⑤Vi,Cis,③utyr

i ✏ EUiTiYi
rUiTiY

r
i ⑤Vi,Cis ✏ EYi

rYr
iEUiTi

rUiTi⑤Yis⑤Vi,Cis,

for r ✏ t0, 1, 2✉. From Cabral et al. (2012), we know that Ti ⑤ ♣Yi, Uiq ✒ TN1♣̺2∆❏Γ✁1♣Yi✁
µq, U✁1

i ̺2, ♣0,✽qq. Multiplying the first and second moment of Ti⑤Yi by Ui and taking

expectation with respect to this last, it follows that

EUiTi
rUiTi⑤Yis ✏ ̺2∆❏Γ✁1♣yi ✁ µqEUi

rUi⑤Yis � ̺φ♣θ,yiq, (C.11)

EUiTi
rUiT

2

i ⑤Yis ✏ ̺2r∆❏Γ✁1♣yi ✁ µqEUiTi
rUiTi⑤Yis � 1s, (C.12)

with ̺ ✏ ♣1 � ∆❏Γ✁1∆q✁1④2 and

φ♣θ,yiq ✏ EUi

✓
U

1④2
i

φ1♣U1④2
i λ❏Σ✁1④2♣yi ✁ µqq

Φ1♣U1④2
i λ❏Σ✁1④2♣yi ✁ µqq

✞✞✞✞✞Yi

✛
.

As noted, both expectations EUiTi
rUiTi⑤Yis and EUiTi

rUiT
2

i ⑤Yis depend on EUi
rUi⑤Yis and

φ♣θ,Yiq. Lachos et al. (2010) states that

EUi
rUi⑤Yis ✏ 2ν2♣yiq tp♣yi; µ,Σ, νq

STp♣yi; µ,Σ,λ, νq T1

✂❝
ν � p� 2
ν � δi

Ai; ν � p� 2
✡

and

φ♣θ,yiq ✏ 2 tp♣yi; µ,Σ, νq
STp♣yi; µ,Σ,λ, νq

Γ♣♣ν � p� 1q④2q❄
πΓ♣♣ν � pq④2q

♣ν � δiq♣ν�pq④2

♣ν � δi � A2
i q♣ν�p�1q④2

,

where δi ✏ δ♣yi; µ,Σq, Ai ✏ λ❏Σ✁1④2♣yi ✁ µq.
By using the fact that tp♣yi; µ,Σ, νq ✏ tp♣yi; µ, ν

ν�2
Σ, ν � 2q④ν2♣yiq, δi ✏

ν
ν�2

δ♣yi; µ, ν
ν�2

Σq, δi � A2

i ✏ ν
ν�1

δ♣yi; µ, ν
ν�1

Γq, det ♣Σq1④2 ✏
❄

1 � λ❏λ det ♣Γq1④2 and
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equation (C.24), we can propose simplified versions of equations above in a neat manner.

After some straightforward algebra, we obtain

EUi
rUi⑤Yis ✏

STp♣yi; µ, ν
ν�2

Σ,λ, ν � 2q
STp♣yi; µ,Σ,λ, νq (C.13)

and

φ♣θ,yiq ✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q
tp♣yi; µ, ν

ν�1
Γ, ν � 1q

STp♣yi; µ,Σ,λ, νq . (C.14)

Let us define the expectation of interest ②φyr
i ✏ EYi

rYr
iφ♣θ,Yiq⑤Vi,Cis, for

r ✏ t0, 1, 2✉. Next, we present two crucial propositions to compute these expectations.

Proofs can be found in next subsection C.2.

Proposition C.1. Let Z ✒ Np♣0,Γq, U ✒ Gamma♣ν④2, ν④2q and T ✒ HT♣νq. Then

Y
d✏ µ�∆T �U✁1④2Z ✒ STp♣µ,Σ,λ, νq. For any measurable function g♣yq, it holds that

Erφ♣θ,Yqg♣Yq⑤α ↕ Y ↕ βs ✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q

✂ L♣α,β; µ, ν
ν�1

Γ, ν � 1q
L♣α,β; µ,Σ,λ, νq Erg♣W1qs, (C.15)

and

ErU g♣Yq⑤α ↕ Y ↕ βs ✏ L♣α,β; µ, ν
ν�2

Σ,λ, ν � 2q
L♣α,β; µ,Σ,λ, νq Erg♣W2qs, (C.16)

where A ✏ λ❏Σ✁1④2♣Y✁µq, W1 ✒ Ttp♣µ, ν
ν�1

Γ, ν�1; ♣α,βqq and W2 ✒ TSTp♣µ, ν
ν�2

Σ,λ,

ν � 2; ♣α,βqq.

Proposition C.2. Consider Y, U and T as in Proposition C.1. Now, consider Y to be

partitioned as Y ✏ ♣Y❏
1
,Y❏

2
q❏ of dimensions p1 and p2 (p1 � p2 ✏ p), respectively. Let

Γ ✏
✄

Γ11 Γ12

Γ21 Γ22

☛
, α ✏ ♣α❏

1
,α❏

2
q❏, and β ✏ ♣β❏

1
,β❏

2
q❏

be the corresponding partitions of Γ, α and β. For a multiplicatively separable measurable

function g, it follows that

Erφ♣θ,Yqg♣Yq⑤Y1,α2 ↕ Y2 ↕ β2s (C.17)

✏g1♣Y1q
tp1♣y1; µ1,

ν
ν�1

Γ11, ν � 1q
STp1♣y1; µ1,Σ11, λ̃1, νq

✂ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q
L♣α2,β2; µ2.1,

ν2.1

ν2.1�1
Γ̃22.1, ν2.1 � 1q

L♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Erg2♣W✝

1
qs, (C.18)

and

ErU g♣Yq⑤Y1,α2 ↕ Y2 ↕ β2s ✏ g1♣Y1q
STp1♣y1; µ1,

ν
ν�2

Σ11, λ̃1, ν � 2q
STp1♣y1; µ1,Σ11, λ̃1, νq
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✂ L♣α2,β2; µ2.1,
ν2.1

ν2.1�2
Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2q

L♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Erg2♣W✝

2
qs,

(C.19)

where g♣Yq ✏ g1♣Y1qg2♣Y2q, W✝
1
✒ Ttp2♣µ2.1,

ν2.1

ν2.1�1
Γ̃22.1, ν2.1 � 1; ♣α2,β2qq and W✝

2
✒

TESTp2♣µ2.1,
ν2.1

ν2.1�2
Σ̃22.1,λ2.1, τ2.1, ν2.1�2; ♣α2,β2qq, with τ2.1 ✏ ν♣y1q♣ϕ̃❏

1
♣y1✁µ1qq, ν2.1 ✏

ν � p1, Γ̃22.1 ✏ ♣Γ22 ✁Γ21Γ
✁1

11
Γ12q④ν2♣y1q and remaining parameters as in Proposition 5.4.

Subsequently, on according to expressions (C.11) - (C.19), we have the imple-

mentable expressions to the conditional expectations for three possible scenarios:

1. If the ith subject has only non-censored components, EUiTiYi
rYr

i ⑤Vi,Cis ✏ yr
i ; then

②uyr
i

♣kq ✏ ♣u♣kqi yr
i ,♣u♣kqi ✏ EUi

rUi⑤Yi, ♣θ♣kqs①utri ♣kq ✏ EUiTi
rUiT

r
i ⑤Yi, ♣θ♣kqs,③utyr

i

♣kq ✏ yr
iEUiTi

rUiTi⑤Yi, ♣θ♣kqs,
with ②φyr

i ✏ yr
iφ♣θ,yiq, where y0

i ✏ 1, y1

i ✏ yi and y2

i ✏ yiy
❏
i .

2. If the ith subject has only censored components, we have

②uyr
i

♣kq ✏ ♣ui
♣kq②wr

2i

♣kq
,

♣ui
♣kq ✏ L♣v1i,v2i; µ̂♣kq, ν̂♣kq

ν̂♣kq�2
Σ̂♣kq, λ̂♣kq, ν̂♣kq � 2q

L♣v1i,v2i; µ̂♣kq, Σ̂♣kq, λ̂♣kq, ν̂♣kqq ,

①uti♣kq ✏ ˆ̺2♣kq∆̂♣kq❏Γ̂✁1♣kq
✁①uyi

♣kq ✁ µ̂♣kq ♣ui
♣kq
✠
� ˆ̺♣kq②φy0

i

♣kq
,

①ut2i ♣kq ✏ ˆ̺2♣kq∆̂♣kq❏Γ̂✁1♣kq

✒
♣②uy2

i

♣kq ✁ 2①uyi
♣kq

µ̂❏♣kq � ♣ui
♣kqµ̂♣kqµ̂❏♣kqqΓ̂✁1♣kq∆̂♣kq

� ˆ̺♣kq♣②τy1
i

♣kq ✁ µ̂♣kq②φy0
i

♣kqq
✚
� ˆ̺2♣kq,

②utyi

♣kq ✏ ˆ̺2♣kq♣②uy2
i

♣kq ✁ ①uyi
♣kq

µ̂♣kq❏qΓ̂✁1♣kq∆̂♣kq � ˆ̺♣kq②φy1
i

♣kq
,

with

②φyr
i

♣kq ✏ 2❜
πν̂♣kq♣1 � λ̂♣kq❏λ̂♣kqq

Γ♣ ν̂♣kq�1

2
q

Γ♣ ν̂♣kq

2
q
L♣v1i,v2i; µ̂♣kq, ν̂♣kq

ν̂♣kq�1
Γ̂♣kq, ν̂♣kq � 1q

L♣v1i,v2i; µ̂♣kq, Σ̂♣kq, λ̂♣kq, ν̂♣kqq ♣wr♣kq
1i ,

(C.20)

where ♣w♣kq
si ✏ ErWsi ⑤ ♣θ♣kqs, and ♣w2♣kq

si ✏ ErWsiW
❏
si ⑤ ♣θ♣kqs, (C.21)

for s ✏ t1, 2✉, with W1i ✒ Ttpi
♣µ, ν

ν�1
Γ, ν�1; ♣v1i,v2iqq and W2i ✒ TSTpi

♣µ, ν
ν�2

Σ,

λ, ν � 2; ♣v1i,v2iqq.
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3. If the ith subject has both censored and uncensored components and given that

♣Yi ⑤Vi,Ciq, ♣Yi ⑤Vi,Ci,Y
o
i q, and ♣Yc

i ⑤Vi,Ci,Y
o
i q are equivalent processes, we

have

①uy♣kq
i ✏ ErUiYi ⑤ yo

i ,Vi,Ci, ♣θ♣kqs ✏ ♣u♣kqi vec♣yo
i , ♣wc♣kq

2i q,

②uy2
i

♣kq ✏ ErUiYiY
❏
i ⑤ yo

i ,Vi,Ci, ♣θ♣kqs ✏
✄

yo
i y

o❏
i ♣u♣kqi ♣u♣kqi yo

i ♣wc♣kq❏
2i♣u♣kqi ♣wc♣kq

2i yo❏
i ♣u♣kqi ♣w2c♣kq

2i

☛
,

♣u♣kqi ✏ ErUi ⑤ yo
i ,Vi,Ci, ♣θ♣kqs ✏ STpo

i
♣yo

i ; µ̂
o♣kq
i , ν̂♣kq

ν̂♣kq�2
Σ̂

oo♣kq
i , λ̃

o♣kq
i , ν̂♣kq � 2q

STpo
i
♣yo

i ; µ̂
o♣kq
i , Σ̂

oo♣kq
i , λ̃

o♣kq
i , ν̂♣kqq

✂
Lpc

i
♣vc

1i,v
c
2i; ♣µco♣kq

i ,
ν̂

co♣kq
i

ν̂
co♣kq
i

�2
Σ̃

cc.o♣kq
i , λ̂

co♣kq
i , τ̂

co♣kq
i , ν̂

co♣kq
i � 2q

Lpc
i
♣vc

1i,v
c
2i; ♣µco♣kq

i , Σ̃
cc.o♣kq
i , λ̂

co♣kq
i , τ̂

co♣kq
i , ν̂

co♣kq
i q

,

with ①uti♣kq, ①ut2i ♣kq and ②utyi

♣kq
as in item 2, and

②φyr
i

♣kq ✏ 2❜
πν̂♣kq♣1 � λ̂♣kq❏λ̂♣kqq

Γ♣ ν̂♣kq�1

2
q

Γ♣ ν̂♣kq

2
q

Lpc
i
♣vc

1i,v
c
2i; ♣µco♣kq

i ,
ν̂

co♣kq
i

ν̂
co♣kq
i

�1
Γ̃

cc.o♣kq
i , ν̂

co♣kq
i � 1q

Lpc
i
♣vc

1i,v
c
2i; ♣µco♣kq

i , Σ̃
cc.o♣kq
i , λ̂

co♣kq
i , τ̂

co♣kq
i , ν̂

co♣kq
i q

✂ tpo
i
♣yo

i ; µ̂
o♣kq
i , ν̂♣kq

ν̂♣kq�1
Γ̂

oo♣kq
i , ν̂♣kq � 1q

STpo
i
♣yo

i ; µ̂
o♣kq
i , Σ̂

oo♣kq
i , λ̃

o♣kq
i , ν̂♣kqq

♣wr♣kq
1i ,

where ♣w♣kq
si ✏ ErW✝

si ⑤ ♣θ♣kqs, and ♣w2♣kq
si ✏ ErW✝

siW
✝❏
si ⑤ ♣θ♣kqs, (C.22)

for s ✏ t1, 2✉, where W✝
1i ✒ Ttpc

i
♣µco♣kq

i ,
νco

i

νco
i
�1

Γ̃cc.o
i , νco

i � 1; ♣vc
1i,v

c
2iqq and W✝

2i ✒
TESTpc

i
♣µ2.1,

ν2.1

ν2.1�2
Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2; ♣vc

1i,v
c
2iqq, with Γi being partitioned like

Σi, τco ✏ ν♣yc
iq♣ϕ̃c❏

i ♣yc
i ✁ µc

iqq, νco
i ✏ ν � po

i and Γ̃cc.o
i ✏ ♣Γcc

i ✁ Γco
i Γoo✁1

i Γoc
i q④ν2♣yo

i q.

To compute the truncated moments ♣w♣kq
si and ♣w2♣kq

si given in items 2 and 3, we

use our MomTrunc R package.

Appendix C.2: Proofs of propositions

Proof of Proposition 5.4. Consider the partition Y ✏ ♣Y❏

1
,Y❏

2
q❏ and the corresponding

partitions of µ, Σ and ϕ. We based our proof on the factorization of fY♣yq ✏ fY1,Y2♣y1,y2q
as fY1,Y2♣y1,y2q ✏ fY1♣y1qfY2⑤Y1✏y1♣y2q. First, for the symmetric part, we have that

tp♣y; µ,Σ, νq ✏ tp1♣y1; µ1,Σ11, νqtp2♣y2; µ2.1, Σ̃22.1, ν � p1q, (C.23)

with µ2.1 ✏ µ2 � Σ21Σ
✁1

11
♣y1 ✁ µ1q, Σ22.1 ✏ Σ22 ✁ Σ21Σ

✁1

11
Σ12, Σ̃22.1 ✏ Σ22.1④ν2♣y1q and

ν2♣y1q ✏ ♣ν � p1q④♣ν � δ♣y1qq.
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Let now c12 ✏ ♣1 � ϕ❏
2

Σ22.1ϕ2q✁1④2, ϕ̃1 ✏ ϕ1 � Σ✁1

11
Σ12ϕ2, τ2.1 ✏ ν♣y1q♣τ �

ϕ̃❏
1
♣y1 ✁ µ1qq, and ν2.1 ✏ ν � p1. By noting after some straightforward algebra that

λ❏Σ✁1④2♣y ✁ µq ✏ ϕ❏♣y ✁ µq ✏ ϕ̃❏

1
♣y1 ✁ µ1q � ϕ❏

2
♣y2 ✁ µ2.1q and λ❏λ ✏ ϕ❏Σϕ ✏

ϕ̃❏

1
Σ11ϕ̃1 � ϕ❏

2
Σ22.1ϕ2, we obtain

T1

✁
♣τ1 � λ̃❏

1
Σ
✁1④2
11 ♣y1 ✁ µ1qqν♣y1q; ν � p1

✠
✏ T1

✂
τ2.1

♣1 � λ❏
2.1λ2.1q1④2

; ν2.1

✡
, (C.24)

and

T1

✂
τ

♣1 � λ❏λq1④2
; ν
✡
✏ T1

✂
τ1

♣1 � λ̃❏
1 λ̃1q1④2

; ν
✡
, (C.25)

where λ̃1 ✏ c12Σ
1④2
11 ϕ̃1, τ1 ✏ c12τ and λ2.1 ✏ Σ

1④2
22.1ϕ2. Additionally, it is easy to see that

ν2♣yq ✏ ν � p

ν � δ♣yq
✏ ν � p1

ν � δ♣y1q
✂

ν2.1 � p2

ν2.1 � δ♣y2; µ2.1, Σ̃22.1q

✡
✏ ν2♣y1qν2

Y2.1
♣y2q. (C.26)

From this last equation, it holds that

T1

�♣A� τqν♣yq; ν � p
✟ ✏ T1

�♣τ2.1 � λ❏
2.1Σ̃

✁1④2
22.1 ♣y2 ✁ µ2.1qqνY2.1♣y2q; ν2.1 � p2

✟
, (C.27)

with A ✏ λ❏Σ✁1④2♣Y ✁ µq, Hence, using (C.23), (C.24) and (C.25), we can rewrite the

density of Y ✏ ♣Y❏
1
,Y❏

2
q❏ as

fY♣yq ✏ tp♣y; µ,Σ, νqT1♣♣τ � λ❏Σ✁1④2♣y ✁ µqqν♣yq; ν � pq
T1♣τ④♣1 � λ❏λq1④2; νq

✏ tp♣y; µ,Σ, νqT1

�♣τ2.1 � λ❏
2.1Σ̃

✁1④2
22.1 ♣y2 ✁ µ2.1qqνY2.1♣y2q; ν2.1 � p2

✟
T1

�
τ1④♣1 � λ̃❏

1 λ̃1q1④2; ν
✟

✏ tp1♣y1; µ1,Σ11, νq
T1

�♣τ1 � λ̃❏
1

Σ
✁1④2
11 ♣y1 ✁ µ1qqν♣y1q; ν � p1

✟
T1

�
τ1④♣1 � λ̃❏

1 λ̃1q1④2; ν
✟

✂ tp2♣y2; µ2.1, Σ̃22.1, ν2.1q
T1

�♣τ2.1 � λ❏
2.1Σ̃

✁1④2
22.1 ♣y2 ✁ µ2.1qqνY2.1♣y2q; ν2.1 � p2

✟
T1 ♣τ2.1④♣1 � λ❏

2.1λ2.1q1④2; ν2.1q
✏ ESTp1♣y1; µ1,Σ11, λ̃1, τ1, νq ✂ ESTp2♣y2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν � p1q.

Proof of Proposition C.1. First note that Y ⑤ ♣α ↕ Y ↕ βq ✒ TSTp♣µ,Σ,λ, ν; ♣α,βqq.
By direct integration of the simplified expressions (C.13) and (C.14), it is readily that

Erφ♣θ,Yqg♣Yq⑤α ↕ Y ↕ βs

✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q
➺ β

α

tp♣y; µ, ν
ν�1

Γ, ν � 1q
STp♣y; µ,Σ,λ, νq

STp♣y; µ,Σ,λ, νq
L♣α,β; µ,Σ,λ, νqg♣yqdy
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✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q

1
L♣α,β; µ,Σ,λ, νq

➺ β

α

g♣yqtp♣y; µ, ν
ν�1

Γ, ν � 1qdy

✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q
L♣α,β; µ, ν

ν�1
Γ, ν � 1q

L♣α,β; µ,Σ,λ, νq Erg♣W1qs

and

EUT YrU g♣Yq⑤α ↕ Y ↕ βs ✏
➺ β

α

STp♣y; µ, ν
ν�2

Σ,λ, ν � 2q
STp♣y; µ,Σ,λ, νq

STp♣y; µ,Σ,λ, νq
L♣α,β; µ,Σ,λ, νqg♣yqdy

✏ 1
L♣α,β; µ,Σ,λ, νq

➺ β

α

g♣yqSTp♣y; µ, ν
ν�2

Σ,λ, ν � 2qdy

✏ L♣α,β; µ, ν
ν�2

Σ,λ, ν � 2q
L♣α,β; µ,Σ,λ, νq Erg♣W2qs,

W1 ✒ Ttp♣µ, ν
ν�1

Γ, ν � 1; ♣α,βqq and W2 ✒ TSTp♣µ, ν
ν�2

Σ,λ, ν � 2; ♣α,βqq.

Proof of Proposition C.2. It follows from the conditional distribution of a ST distribu-

tion that Y2 ⑤ ♣Y1,α2 ↕ Y2 ↕ β2q ✒ TESTp2♣µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1; ♣α2,β2qq, with

conditional parameters and in proposition 5.4 . It is straightforward that

Erφ♣θ,Yqg♣Yq⑤Y1,α2 ↕ Y2 ↕ β2s

✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q

✂
➺ β2

α2

tp♣y; µ, ν
ν�1

Γ, ν � 1q
STp♣y; µ,Σ,λ, νq

ESTp2♣y2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Lp2♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q

g2♣y2qdy2

✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q
tp1♣y1; µ1,

ν
ν�1

Γ11, ν � 1q
STp1♣y1; µ1,Σ11, λ̃1, νq

g1♣Y1q

✂
➺ β2

α2

tp2♣y2; µ2.1,
ν2.1

ν2.1�1
Γ̃22.1, ν2.1 � 1q

ESTp2♣y2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
ESTp2♣y2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Lp2♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q

g♣yqdy2

✏ 2❛
πν♣1 � λ❏λq

Γ♣ν�1

2
q

Γ♣ν
2
q
tp1♣y1; µ1,

ν
ν�1

Γ11, ν � 1q
STp1♣y1; µ1,Σ11, λ̃1, νq

Lp2♣α2,β2; µ2.1,
ν2.1

ν2.1�1
Γ̃22.1, ν2.1 � 1q

Lp2♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
✂ g1♣Y1qErg2♣W✝

1
qs

and

EUT YrU g♣Yq⑤α ↕ Y ↕ βs

✏
➺ β2

α2

STp♣y; µ, ν
ν�2

Σ,λ, ν � 2q
STp♣y; µ,Σ,λ, νq

ESTp2♣y2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
Lp2♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q

g♣yqdy2

✏STp1♣y1; µ1,
ν

ν�2
Σ11, λ̃1, ν � 2q

STp1♣y1; µ1,Σ11, λ̃1, νq
g1♣Y1q

✂
➺ β2

α2

ESTp2♣y2; µ2.1,
ν2.1

ν2.1�2
Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2q

Lp2♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
g2♣y2qdy2

✏STp1♣y1; µ1,
ν

ν�2
Σ11, λ̃1, ν � 2q

STp1♣y1; µ1,Σ11, λ̃1, νq
L♣α2,β2; µ2.1,

ν2.1

ν2.1�2
Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2q

L♣α2,β2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1q
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✂ g1♣Y1qErg2♣W✝
2
qs,

where g♣Yq ✏ g1♣Y1qg2♣Y2q, W✝
1
✒ Ttp2♣µ2.1,

ν2.1

ν2.1�1
Γ̃22.1, ν2.1 � 1; ♣α2,β2qq and W✝

2
✒

TESTp2♣µ2.1,
ν2.1

ν2.1�2
Σ̃22.1,λ2.1, τ2.1, ν2.1 � 2; ♣α2,β2qq.

Appendix C.3: ML estimation via the EM algorithm for ST responses

Let Yi ✏ ♣Yi1, . . . , Yipq❏ be a p✂ 1 response vector for the ith sample unit, for

i P t1, . . . , n✉, considered to be a realization from Y1, . . . ,Yn ✒ STp♣µ,Σ,λ, νq. In the

case that Y is fully observed, in order to estimate the vector of parameters θ ✏ ♣µ,Σ,λ, νq,
we can propose a EM algorithm for ML estimation as a special case of the one proposed

in subsection 5.8.2. For the equivalent set of parameters θ ✏ ♣µ,∆,αΓ, νq, the algorithm

can be summarized as follows:

E-step: Given the current estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣∆♣kq, ♣α♣kq

Γ , ν♣kqq at the kth step

of the algorithm, compute the expectations

①utri ♣kq ✏ EUiTi
rUiT

r
i ⑤ Yi, ♣θ♣kqs,

for r ✏ t0, 1, 2✉, using expression (C.11) and (C.12).

M-step: Update the estimate ♣θ♣kq ✏ ♣µ̂♣kq, ♣∆♣kq, ♣α♣kq

Γ , ν♣kqq by

♣µ♣k�1q ✏ 1
n

n➳
i✏1

✦♣u♣kqyi ✁ ①uti♣kq ♣∆♣kq
✮
,

♣∆♣k�1q ✏
★

n➳
i✏1

①ut2i ♣kq
✰✁1

n➳
i✏1

✦①uti♣kq♣yi ✁ ♣µ♣k�1qq
✮
,

♣Γ♣k�1q ✏ 1
n

n➳
i✏1

✧♣ui
♣kq♣yi ✁ µ̂♣k�1qq♣yi ✁ µ̂♣k�1qq❏ ✁ 2①uti♣kq♣yi∆̂

♣k�1q❏ ✁ ∆̂♣k�1qµ̂♣k�1q❏q

�①ut2i ♣kq∆̂♣k�1q∆̂♣k�1q❏

✯
As before, we recover ♣λ and ♣Σ using the expressions in (5.8.2) and we update the parameter

ν by maximizing the marginal log-likelihood function for y, that is,

♣ν♣k�1q ✏ arg max
ν

n➳
i✏1

log f♣yi ⑤ ♣µ♣k�1q, ♣Σ♣k�1q, ♣λ♣k�1q; ν♣kqq.

Algorithm is iterated until a suitable convergence rule is satisfied, i.e., ⑤ℓ♣♣θ♣k�1q ⑤
Yq④ℓ♣♣θ♣kq ⑤ Yq ✁ 1⑤ ➔ ǫ ,for ǫ small enough.
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