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Resumo

Nesta tese apresentar-se-á alguns resultados relativos a não-linearidades do tipo expo-

nencial com pesos apropriados: primeiramente, tratar-se-á a atingibilidade de supremos

do tipo Trudinger-Moser e Trudinger-Moser-Hardy na bola unitária e em um domínio com

fronteira C1 simplesmente conexo contendo a origem,respectivamente (ambos os casos em

R
2).Chega-se em condições de decaimento para o limite do peso na origem, com condições

pouco restritivas para o comportamento do peso numa bola muito pequena no entorno da

origem. Tal resultado é atingido utilizando técnicas de Compacidade Concentrada. No

terceiro capítulo, estabelecer-se-á um resultado de existência para o caso crítico de um

problema de Dirichlet elíptico

−∆u = f(x, u) in B, u = 0 in ∂B

na bola unitária em R
2 com não-linearidade exponencial associada ao primeiro problema

de atingibilidade. A condição de criticalidade da função f novamente ignora o comporta-

mento fora de uma pequena vizinhança da origem.

Palavras-chave: Equações diferenciais parciais, Equações diferenciais parciais não-lineares,

Análise funcional não-linear.



Abstract

We present some results regarding critical nonlinearities of exponential type with ap-

propriate weights in R
2: first regarding the attainability of supremum of a weighted

Trudinger-Moser functional on the unit ball and of a Trudinger-Moser-Hardy type on

any simply connected domain containing the origin. We arrive on decay conditions for

the limit of the weight at the origin (thus, we do care about the behavior of the weight

only on a neighbourhood of zero, requiring less information on the rest of the domain.

This is achieved using Concentration-Compactness-type techniques. Moreover, we show

an existence result for an elliptical Dirichlet problem

−∆u = f(x, u) in B, u = 0 in ∂B

with exponential nonlinearity on the ball. The criticality condition is associated to the

first supremum and again ignores the behaviour of f outside a small ball around the origin.

Key words: Partial differential equations, Nonlinear partial differential equations, Non-

linear functional analysis.
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CONTENTS 9

Introduction

Let Ω ⊂ R
2 be a C1 and bounded domain, and W 1,p

0 (Ω) denote the closure of C∞
c (Ω)

(compact-supported C∞(Ω) functions) with respect to the norm

‖u‖W 1,p
0

:=

(
∫

Ω

|∇u|p
)1/p

.

The classical Sobolev inequality states that if u ∈ W 1,p
0 (Ω), then u ∈ Lq(Ω), for 1 ≤ q ≤ p∗,

where 1
p∗

= 1
p
− 1

2
(if p < 2), and the embedding is continuous. The borderline case

p = 2 corresponds to the Trudinger-Moser inequality, first proved by Pohozaev [26] and

Trudinger [29] separately, and states that if u ∈ H1
0 (Ω), then

∫

Ω

eα|u|
2

dx <∞, ∀α ∈ R,

A sharp result by J. Moser [24] is

sup
u∈H1

0 (Ω),‖∇u‖L2≤1

∫

Ω

eαu
2

dx







≤ c|Ω|, α ≤ 4π,

= ∞, α > 4π.

An interesting question is whether the supremum below is attained, i.e., the existence

of a function u0 ∈ H1
0 (B) such that

sup
u∈H1

0 (Ω),‖∇u‖L2≤1

∫

Ω

eαu
2

dx =

∫

Ω

eαu
2
0 dx. (1)

If α < 4π we have compactness of the embedding, so the supremum is achieved. If α = 4π,

this argument fails. However, Carleson and Chang [9] proved that, for Ω = B1(0) , the

supremum is attained, using Concentration Compactness techniques (c.f. [23]). Further

improvements on this question were made by Struwe [28] (for small perturbations of B1(0))

and Flucher [21] (for any bounded domain in R
2).

In the present thesis we present some results regarding critical nonlinearities of expo-

nential type with appropriate weights. Embeddings in weighted Sobolev spaces were first

considered by Ni [25] and were completely settled by de Figueiredo, Miyagaki and Santos
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[16]: if B ⊂ R
N is the open ball, for N > mp and α ≥ 0 one has

sup
u∈Wm,p

rad (B),‖u‖m,p=1

∫

B

|u|q|x|αdx <∞ ⇔ 1 ≤ q ≤ p(N + α)

N −mp
.

The Trudinger-Moser associated case for N = 2 was considered first by Calanchi and

Terraneo [8]. They established that for any β > 0

sup
u∈H1

0,rad(B),‖∇u‖2≤1

∫

B

e2π(2+β)u2 |x|β <∞, (2)

and

sup
u∈H1

0 (B),‖∇u‖2≤1

∫

B

e2π(2+β)u2 |x|β = ∞. (3)

In [15], de Figueiredo, do Ó e dos Santos generalized (2) substituting the weight |x|β for

any function h such that

(i) h(x) = h(|x|) : B̄ → [0,∞[ a radial non-decreasing differentiable function such that

h(0) = 0, and

(ii)

0 ≤M := lim sup
r→0+

h(r)

rβ
<∞. (4)

Definition. The case M = 0 in (ii) is called subcritical case, and M > 0 is the critical

case.

More specifically, they established that, under (i) and (ii), the supremum

sup
u∈H1

0,rad(B),‖∇u‖2=1

∫

B

e2π(2+β)u2

h(x) dx. (5)

is finite. Regarding the attainability of (5), the subcritical case is solved in [15] under the

additional hypothesis

(iii) h is differentiable in ]0, 1[ and lim supr→0+
h′(r)r
h(r)

<∞.

and the critical case is solved for h(r) = rα. Here we will present 3 main results: the first

two regarding the attainability of a weighted Trudinger-Moser type and a Hardy-type

supremums, and one regarding the solvability of a Henón-type Dirichlet problem.

Attainability of the supremum (5) on the critical case

Let β ≥ 0, B = B(0, 1) ⊂ R
2 be the open ball. The first goal is to establish decay

conditions on the limit (6) to guarantee the attainability of (5) in the critical case where

h does not need to be radial. It will be assumed
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(h1) h(x) : B̄ → [0,∞[ a radial continuous function such that h(0) = 0,

(h2)

0 < M := lim
x→0

h(x)

|x|β <∞, (6)

Theorem 1. Let h be a function satisfying (h1) and (h2). Then (5) is finite. Suppose

the existence of a n0 > 0 sufficiently large (c.f. remark below, item (ii)) such that

sup

|x|≤e
−

n0
2+β

∣

∣

∣

∣

h(x)

|x|β −M

∣

∣

∣

∣

<
M

n0

. (7)

Then the supremum (5) is achieved.

Remark. (i) It is important to emphasize that the decay condition on the theorem

above does not depend on the value of the weight function h(x) except on

a small neighbourhood of the origin. This is achieved by using Concentrating

Sequences and Concentration-Compactness-type techniques (c.f. [23], [9]).

(ii) The meaning of sufficiently large will be clarified during the demonstration of the

theorem: it depends on the value of M and on the further choice of the test functions

used on the proof.

Attainability of the supremum of a Hardy-type embed-

ding

Let Ω ⊂ R
2 be a bounded domain containing the origin. Adimurthi and Sandeep [2]

established the finiteness of the following singular embedding:

sup
u∈H1

0 (Ω),‖∇u‖2≤1

∫

Ω

eαu
2

|x|β <∞ if β ∈ [0, 2[, α > 0,
α

4π
+
β

2
≤ 1. (8)

Csató and Roy proved the attainability for any domain Ω [11] and for simply connected

domain [12] using a much simpler technique relying on the Riemann Mapping Theorem.

Here we will replace the weight 1
|x|β by 1

h(x)
, where h : B → R satisfy hypothesis (h2) (as

on Theorem 1) and

(h1)’ h(x) : Ω̄ → [0,∞[ a continuous function such that h(0) = 0,

(h3) There exists a constant C > 0 such that

h(x)

|x|β ≥ C in B. (9)
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We arrive again at the necessity of a decay condition for the limit (6):

Theorem 2. Let Ω ⊂ R
2 be a C1 simply connected bounded domain containing the origin,

β ∈ [0, 2[, α > 0 h be a function satisfying (h1)’, (h2) and (h3). Then

(i) if α
4π

+ β
2
< 1, the supremum

sup
v∈H1

0 (Ω),‖∇v‖L2≤1

∫

Ω

eαv
2 − 1

h(x)
<∞. (10)

is attained for any h, while

(ii) if α
4π

+ β
2
= 1, (10) is achieved if there exists n0 > 0 sufficiently large such that

sup
r≤e−

n0
2a

∣

∣

∣

∣

|x|β
h(x)

−M−1

∣

∣

∣

∣

< M−1 1

n0

(11)

where a = α
4π

.

Here the observations of Remark are still valid.

Existence of solution for a associated Dirichlet Problem

It is known by the Lagrange Multiplier theorem that there exists a constant λ 6= 0 such

that the function u0 ∈ H1
0,rad(B) that achieves the supremum (5) is the (classical) solution

of a Dirichlet problem







−∆u(x) = λue2π(2+β)u2
h(x), x ∈ B,

u(x) = 0, x ∈ ∂B.
(12)

The regularity of the solution will be discussed further. Motivated by that, we study the

existence problem for a particular class of Henón-type problems, i.e.:







−∆u(x) = f(x, u), x ∈ B,

u(x) = 0, x ∈ ∂B,
(13)

where f has exponential critical growth (i.e. f(x, t) ≥ CeKt2 for t large, C,K > 0

constants). Problems of this type have been vastly studied ([1], [3], [14], etc). Here we

apply a variational approach in the spirit of Brezis-Nirenberg [7], primarily studied by de

Figueiredo, Miyagaki and Ruf (c.f. [14]). Let B ⊂ R
2 be the open unit ball centered at

zero, and f satisfies the following conditions:
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(H1)

f : B̄ × R → R continuous and radial on x; f(x, 0) = 0 ∀x ∈ B;

(H2)

∃t0 > 0, M > 0 : 0 ≤ F (x, t) :=
∫ t

0
f(x, s)ds ≤Mf(x, t) ∀x ∈ B, ∀t ≥ t0;

0 ≤ F (x, t) ≤ −Mf(x, t) ∀x ∈ B, ∀t ≤ −t0

(H3)

0 ≤ F (x, t) ≤ 1

2
tf(x, t) ∀x ∈ B, ∀t ∈ R.

(H4)

lim sup
t→0

2F (x, t)

t2
< µ1 := inf{

∫

B
|∇u|2
∫

B
u2

: u ∈ H1
0,rad(B)}

(H5) There exist some α > 0 some k ≥ 0 and some constant K > 0 such that

|f(x, t)| ≤ K|t|ke2π(2+α)t2 |x|α ∀ t ∈ R, ∀x ∈ B,

(H6) Given ε > 0 there exists tε > 0 and δ > 0 such that for all t ≥ tε and for x ∈ Bδ:

f(x, t)te−2π(2+β)t2 |x|−β > ζ − ε,

where β > 0 and ζ is any constant strictly greater than 2+β
2πe

.

For instance, f(x, t) = Cte2π(2+γ)t2h(x) satisfy conditions (H1) to (H6) for any constants

C > 0, γ > 0 and any continuous radial function h : B̄ → R such that L1 ≤ h(x)
|x|γ ≤

L2 ∀ x ∈ B̄ for constants L1, L2 > 0.

Theorem 3. Suppose f satisfies conditions (H1) - (H6). Then the problem (13) has a

radial nonzero weak solution u ∈ H1
0,rad(B) ∩H2(B).

Remark. Hypothesis (H1)-(H5) are useful to produce the traditional set-up for appliance

of the Mountain Pass Theorem (Th. C.0.3), including the proof that the apropriate func-

tional satisfies the Palais-Smale condition until a certain level d ∈ R. Condition (H6) is

the minimum growth that allows finding a critical value below d.
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Chapter 1

Proof of Theorem 1

1.1 Finiteness

First we notice that if a function u0 ∈ H1
0,rad(B) achieves the supremum (5), then it also

achieves

sup
u∈H1

0,rad(B),‖∇u‖2≤1

∫

B

(e2π(2+β)u2 − 1)h(x)dx, (1.1)

since the added part does not depend on u. From now on we will deal with (1.1) instead

of (5) whenever it is convenient.

Proof. (Theorem 1.1, finiteness of the supremum) By (h2) one has

∫

B

e2π(2+β)u2

h(x)dx ≤ C

∫

B

e2π(2+β)u2 |x|βdx

for all u ∈ H1
0,rad(B), since, given η > 0, there exists a neighbourhood Bγ (the 0-centered

ball with radius γ) of the origin such that

h(x)

|x|β ≤M − η ∀ x ∈ Bγ,

and outside Bγ the function h(x)
|x|β is continuous and thus bounded from above. One has

Theorem 1.1.1. ([15], Theorem 1.1(particular case))

sup
u∈H1

0,rad(B),‖∇u‖L2(B)≤1

∫

B

e2π(2+β)u2 |x|βdx (1.2)

is finite.

The proof of Theorem 1.1.1 by de Figueiredo, do Ó and Santos goes as follows: we
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perform the following change of variables

z(t) =

(

1

2π(2 + β)

)1/2

u(x), |x| = e
−t
2+β , (1.3)

which is an isometry (c.f. [15]) between H1
0,rad(B) and

H := {w : (0,∞) → R : w is measurable, has weak derivative, w(0) = 0,

‖w‖H :=

∫ ∞

0

|w′(s)|2ds <∞},

in order to get

sup
u∈H1

0,rad(B),‖∇u‖L2≤1

∫

B

(e2π(2+β)u2 − 1)|x|βdx = sup
u∈H,‖u‖H≤1

2π

2 + β

∫ ∞

0

(ez
2 − 1)e−tdt

=
2π

2 + β
sup

u∈H1
0,rad(B),‖∇u‖L2≤1

∫

B

(e4πu
2 − 1)dx

which happens to be finite due to a J.Moser result [24]. �

1.2 Attainability

1.2.1 Concentration-Compactness

Definition 1.2.1. Let Ω ⊂ R
2 be an open set. We say that (un) ⊂ H1

0 (Ω) is a normalized

concentrating sequence at x0 ∈ Ω̄ if

(C1)
∫

Ω
|∇un|2dt = 1 ∀ n,

(C2) lim supn→∞
∫

Ω−Bρ(x0)
|∇un|2dt = 0 as n→ ∞ for all ρ > 0 fixed.

The technique used here is based on Concentration-Compactness results, first estab-

lished by Lions:

Theorem 1.2.2. (Lions [23], pg. 195-199) Let Ω ⊂ R
N , N ≥ 2, (un) ⊂ W 1,N

0 (Ω) such

that ‖∇un‖LN ≤ 1 ∀ n.Without loss of generality we assume un ⇀ u, |∇u|2dx ⇀ dµ. Set

αN = Nω
1

N−1

N−1, where ωN−1 is the area of the unit sphere SN−1 ⊂ R
N . Then either

(i) dµ = δx0, u = 0 and exp(αNu
N

N−1 )⇀ cδx0 for some c ≥ 0 and x0 ∈ Ω̄, or

(ii) there exists α > 0 such that exp((αN + α)u
N

N−1
n ) is bounded in L1(Ω) and thus

exp(αNu
N

N−1
n ) → exp(αNu

N
N−1 ) in L1(Ω).

We will use the above theorem to prove
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Theorem 1.2.3. Define

B1(B) := {u ∈ H1
0,rad(B) : ‖u‖ ≤ 1}. (1.4)

Let B be the unitary open ball in R
2. Let (un) in B1(B) with un ⇀ u and |∇un|2 ⇀ dµ.

There is a subsequence (still denoted by (un)) such that either

(i) (un) concentrates at 0 (or equivalently µ is a Dirac measure cδ0 for some c ≥ 0)

and u = 0 or

(ii) compactness holds in the sense that e2π(2+β)u2
nh(x) → e2π(2+β)u2

h(x) in L1(B).

Remark 1.2.4. (i) Since H1
0 (Ω) is reflexive, if (un) is a bounded sequence a theorem

by Kakutani (c.f. [6], Theorem 3.17) guarantees the existence of u ∈ H1
0 (Ω) such

that un ⇀ u in H1
0 (Ω).

(ii) Since (un) is a normalized sequence, i.e,
∫

B
|∇un|2dx = 1 ∀n, it is possible to apply

Prohorov’s Theorem ([5], p. 59) to guarantee the existence of such a measure dµ.

More exactly: Prohorov theorem states that a tight subset Π (given ε > 0 there exists

K ⊂ R
N compact such that P (K) > 1 − ε for all P ∈ Π) of probability measures

is relatively compact (there exists a weakly convergent subsequence). The sequence

of probability measures |∇un|2dx is tight with respect to R
2 since the functions are

supported on the unit ball, which is compact.

Proof. (Theorem 1.2.3) Notice that for any p > 1:

∫

B

e2π(2+β)pu2
nh(x)pdx ≤ C

(
∫

B

e2π(2+β)pun(|x|)2 |x|pβdx
)

≤ C

(
∫

B

e2π(2+β)pun(|x|)2 |x|βdx
)

(since |x| ≤ 1 and βp ≥ β ⇒ |x|βp ≤ |x|β)

= C

(

2π

∫ 1

0

e2π(2+β)pun(r)2rβ+1dr

)

(taking s = r
β+2
2 , (2 + β)1/2un(r) = 21/2vn(s)) (1.5)

= C

(

4π

2 + β

∫ 1

0

e4πpvn(s)
2

sds

)

= C

(

2

2 + β

∫

B

e4πpvn(x)
2

dx

)

where vn(x) =
(

2+β
2

)1/2
un(|x|

2
2+β ). Notice that ‖∇vn‖L2(B) = ‖∇un‖L2(B) and that, since

(un) does not concentrate, neither (vn) concentrates. Thus, applying Holder’s inequality

for p > 1 one has

∫

E

e2π(2+β)u2
nh(x)dx ≤ C

(
∫

E

e4πpv
2
ndx

)1/p

|E|1/p∗ ≤ C ′|E|1/p∗ ,
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if p is sufficiently close to 1 by Lions’ theorem 1.2.2, item (ii). Thus, the sequence of

functions e2π(2+β)u2
nh(x) is equiintegrable. Since un ⇀ u in H1

0 , un → u in L2 up to a

subsequence and finally un → u almost everywhere up to a subsequence. This allows us

to conclude the proof by directly applying Vitali’s Convergence Theorem. �

1.2.2 Non-Compactness Level

We now establish the non-compactness level for the functional:

Theorem 1.2.5. Let (un) ⊂ B1,rad(B) be a concentrating sequence. Then

lim sup
n→∞

∫

B

(e2π(2+β)u2
n − 1)h(x)dx ≤ 2πMe

2 + β
. (1.6)

In the proof of the theorem above, we use the following lemmas:

Lemma 1.2.6. (c.f. [18], Proof of Theorem 1.4, page 142, or [9]) If (zn) is a concentrating

sequence just like in Remark 1.2.8, then

lim sup
n→∞

∫ ∞

0

(ez
2
n − 1)e−tdt ≤ e.

Lemma 1.2.7. Let B ⊂ R
2 and (un) be a normalized concentrating sequence around zero,

then

lim sup
n→∞

∫

B−Bδ

(e4πu
2
n − 1)dx→ 0 as n→ ∞.

Proof. (Lemma 1.2.7) Let η ∈ C∞(B̄) be a cutoff function such that η ≥ 0 and

η = 1 in B − Bδ, η = 0 in Bδ/2.

Therefore

lim
n→∞

∫

B−Bδ

(

e4πu
2
n − 1

)

dx ≤ lim sup
n→∞

∫

B−Bδ/2

(

e4π(ηun)2 − 1
)

dx (1.7)

Notice that ηun ∈ H1
0 (B − Bδ/2) and ηun does not concentrate at any point, since

∫

B−Bδ/2

|∇ηun|2dx ≤ (2‖η‖2C1 + 2‖η‖L2)

∫

B−Bδ/2

|∇un|2dx→ 0 as n→ ∞. (1.8)

So the conclusion holds by Lions’ Concentration Compactness Alternative (Theorem 1.2.2)

second item (ii), which states that the non-concentrating nature of (ηun) yields compacity
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for a subsequence:

∫

B−Bδ/2

(

e4π(ηun)2 − 1
)

dx→
∫

B−Bδ/2

(

e4π(ηu)
2 − 1

)

dx = 0.

�

Proof. (Theorem 1.2.5) We have by (h2), for any η > 0, that there exists ρ > 0 suficiently

small such that M − η ≤ h(x)
|x|β ≤M + η if x ∈ Bρ. So

∫

Bρ

(e2π(2+β)u2
n − 1)h(x)dx ≤ (M + η)

∫

Bρ

(e2π(2+β)u2
n − 1)|x|βdx. (1.9)

Now we perform again the change of variables (1.3) to conclude that

(M + η)

∫

Bρ

(e2π(2+β)u2
n − 1)|x|βdx =

2π(M + η)

2 + β

∫ ∞

(2+β) log 1
ρ

(ez
2
n − 1)e−tdt. (1.10)

Remark 1.2.8. Supposing (un) ⊂ H1
0,rad(Ω) is a normalized concentrationg sequence

at x0 = 0 and performing the changes of variables (1.3), we can analogously define a

normalized concentrating (at ∞) sequence (zn(t)) by the following conditions:

(C0) (zn) is continuous, piecewise differentiable and zn(0) = 0,

(C1)
∫∞
0

|z′n|2dt = 1 ∀ n,

(C2)
∫ A

0
|z′n|2dt→ 0 as n→ ∞ for any A > 0 fixed,

From Lemma 1.2.6 we conclude, putting together (1.9) and (1.10):

lim sup
n→∞

∫

Bρ

(e2π(2+β)u2
n − 1)h(x)dx ≤ 2π(M + η)

2 + β
e (1.11)

Now notice that for any δ > 0 such that Bδ ⊂ B one has

lim
n→∞

∫

B−Bδ

(e2π(2+β)u2
n − 1)h(x)dx = 0,

by performing the change of variables (1.3) and also by lemma 1.2.7. So instead of (1.11)

one actually has

lim sup
n→∞

∫

B

(e2π(2+β)u2
n − 1)h(x)dx ≤ 2π(M + η)

2 + β
e. (1.12)

Since (1.12) holds for any η > 0, we conclude that if (un) is a concentrating sequence,

then

lim sup
n→∞

∫

B

(e2π(2+β)u2
n − 1)h(x)dx ≤ 2πM

2 + β
e.
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This finishes the proof of Theorem 1.2.5. �

1.2.3 Test functions and decay condition

Given any δ > 0 and again performing the change of variables (1.3) write

∫

B

(e2π(2+β)u2 − 1)h(x)dx ≥ (M − ε(δ))

∫

Bδ

(e2π(2+β)u2 − 1)|x|βdx

=
2π(M − ε(δ))

2 + β

∫ ∞

(2+β) log 1/δ

(ev
2 − 1)e−tdt,

where ε(δ) = supx∈Bδ

∣

∣

∣

h(x)
|x|β −M

∣

∣

∣
. Consider the sequence

yn(t) =







t
n1/2 (1− δn)

1/2, 0 ≤ t ≤ n,

1
(n(1−δn))1/2

log An+1
An+e−(t−n) + (n(1− δn))

1/2, n ≤ t,
(1.13)

where δn = 2 logn
n

and An are constants to be chosen. This sequence is contained on the

space H and concentrates at ∞. On this context, they will be used as test functions,

in order to surpass the non-compactness level given by Lemma 1.2.5. First one needs to

establish some properties of (yn):

Lemma 1.2.9. The coefficients An can be chosen such that An = 1
n2e

+O( log
2 n

n3 ) ∀ n ∈ N

sufficiently large and
∫∞
0

|y′n|2dt = 1 ∀ n ∈ Z+.

Proof. (Lemma 1.2.9) First notice that
∫ n

0
|y′n|2dt = 1− δn = 1− 2 logn

n
(since δn = 2 logn

n

on (1.13)) so we have to show that it is possible to choose An such that

∫ ∞

n

|y′n|2dt = δn = 2
log n

n
. (1.14)

Indeed,

∫ ∞

n

|y′n|2dt =
1

n(1− 2 logn
n

)

∫ ∞

n

∣

∣

∣

∣

d

dt
[log(An + 1)− log(An + e−(t−n))]

∣

∣

∣

∣

2

dt

=
1

n(1− δn)

∫ ∞

n

∣

∣

∣

∣

e−(t−n)

An + e−(t−n)

∣

∣

∣

∣

2

dt

=
1

n(1− δn)

∫ ∞

0

∣

∣

∣

∣

e−s

An + e−s

∣

∣

∣

∣

2

ds

=
1

n(1− δn)

∫ ∞

1

∣

∣

∣

∣

1

Anr + 1

∣

∣

∣

∣

2
1

r
dr (r = es)

=
1

n(1− δn)

∫ 1

0

ρ

(An + ρ)2
dr (ρ = 1/r)

=
1

n(1− δn)

(

log
An + 1

An

− 1

An + 1

)
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By (1.14) this gives the condition

log
An + 1

An

− 1

An + 1
= (1− δn)2 log n (1.15)

and thus
An + 1

An

e−
1

An+1 = n2e−
4 log2 n

n

Since An converges to 0 (by (1.15)), An

An+1
→ 0 as n → ∞. Since e−

1
An+1 = e−1e

An
An+1 , we

get
An + 1

An

(

1 +
An

An + 1
+ o(

An

An + 1
)

)

= n2ee−
4 log2 n

n . (1.16)

Thus
An + 1

n2An

+
1

n2
+

1

n2
o(1) = e+ e(e−

4 log2 n
n − 1),

so we conclude that
An + 1

n2An

= e− 4 log2 n

n
+O(

log4 n

n2
). (1.17)

This implies
1

An

= n2e− 4en log2 n+O(log4 n),

hence

An =
1

n2e
+O(

log2 n

n3
).

�

Lemma 1.2.10.
∫ ∞

n

ey
2
n−tdt ≥ e+

e

n
+ o(

1

n
). (1.18)

Proof. (Lemma 1.2.10)

∫ ∞

n

ey
2
n−tdt =

∫ ∞

0

exp

[

(

(n(1− δn))
1/2 +

1

(n(1− δn))1/2
log

An + 1

An + e−s

)2

− n− s

]

ds

=

∫ ∞

0

exp

[

n(1− δn) + 2 log
An + 1

An + e−s
+

1

n(1− δn)
log2

An + 1

An + e−s
− n− s

]

ds

=
1

n2

∫ ∞

0

exp

[

2 log
An + 1

An + e−s
− s

]

exp

[

1

n(1− δn)
log2

An + 1

An + e−s

]

ds

≥ 1

n2

∫ ∞

0

exp

[

2 log
An + 1

An + e−s
− s

](

1 +
1

n(1− δn)
log2

An + 1

An + e−s

)

=
1

n2

∫ ∞

0

exp

[

2 log
An + 1

An + e−s
− s

]

ds (I)

+
1

n2

∫ ∞

0

exp

[

2 log
An + 1

An + e−s
− s

]

1

n(1− δn)
log2

An + 1

An + e−s
ds (II).

(1.19)
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Developing (I) from (1.19):

1

n2

∫ ∞

0

exp

[

2 log
An + 1

An + e−s
− s

]

ds =
1

n2

∫ ∞

0

(

An + 1

An + e−s

)2

e−sds

=
(1 + An)

2

n2

∫ ∞

0

es

(Anes + 1)2
ds

=
(1 + An)

2

n2

∫ ∞

1

1

(Anr + 1)2
dr

=
(1 + An)

2

n2

1

An(1 + An)

=
1 + An

n2An

= e− 4e log2 n

n
+O(

log4 n

n2
). (1.20)

Developing (II) from (1.19):

1

n2

∫ ∞

0

exp

[

2 log
An + 1

An + e−s
− s

]

1

n(1− δn)
log2

An + 1

An + e−s
ds

=
1

n2

∫ ∞

0

(

log
An + 1

Anes + 1

)2
1

n(1− δn)
log2

An + 1

An + e−s
esds

=
1

n2n(1− δn)

∫ ∞

1

(

An + 1

Anr + 1

)2

log2
An + 1

An +
1
r

dr

=
An + 1

n2(n− 2 log n)

∫ An+1
An

1

log2 u du

(

u =
An + 1

An +
1
r

)

=
An + 1

n2(n− 2 log n)

∫ log An+1
An

0

z2ezdz (z = log u)

=
An + 1

n2(n− 2 log n)

[

z2ez − 2zez + 2ez
]log An+1

An

0

=
An + 1

n2(n− 2 log n)

[

−2 + log2
(

An + 1

An

)

An + 1

An

− 2 log

(

An + 1

An

)

An + 1

An

+ 2
An + 1

An

]

=
1

n− 2 log n

[

e+O(
log2 n

n
)

]

[

4 log2 n+ 4 log n+ 1− 4 log n− 2 + 2
]

+O(1/n2)

(by (1.17) and (1.15))

=
4e log2 n

n
+
e

n
+ o(

e

n
).

(1.21)

�

Proof. (Theorem 1.1, Attainability) By Lemma 1.2.10 one has

2π(M − ε(δ))

2 + β

∫ ∞

(2+β) log 1/δ

(ey
2
n − 1)e−tdt ≥ 2π(M − ε(δ))

2 + β
(e+

e

n
+ o(

1

n
)), (1.22)
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where ε(δ) = supx∈Bδ

∣

∣

∣

h(x)
|x|β −M

∣

∣

∣
, provided that (2 + β) log 1/δ ≥ n. The goal is to

determine a decay condition such that

2π(M − ε(δ))

2 + β

(

e+
e

n
+ o

(

1

n

))

>
2πM

2 + β
e (1.23)

in order to apply Theorem 1.2.3.

Remark 1.2.11. (i) Notice that one cannot send n to ∞ while δ is fixed since it would

be impossible to obtain (1.23) and neither send δ to 0 while n is fixed, otherwise

(1.22) would not be true (because (2 + β) log 1
δ
> n and it would be impossible to

apply Lemma 1.2.10). The decays of the sequence and of the function h are linked

(since the chosen sequence increases the right-hand side of (1.22) and the decay of

h decreases it). Therefore a balance between n and δ is necessary; here we choose

n = (2+β) log 1/δ for sharpness. There is no contradiction on the fact that n is an

integer and log 1/δ is not: yn can be treated as a net or one can take a decreasing

sequence of δ′ns→ 0 without loss of generality.

(ii) Here it is possible to clarify the meaning of sufficiently small: one needs to make

n sufficiently big (or δ sufficiently small with our choice) in order to compensate

the lower order term Mo
(

1
n

)

which comes from the choice of test functions and the

value of M .

So it is sufficient that for one δ sufficiently small ε(δ) ≤ M
(2+β) log 1

δ

, or, for a n0 suffi-

ciently big:

sup

|x|≤e
−

n0
2+β

∣

∣

∣

∣

h(x)

|x|β −M

∣

∣

∣

∣

≤ M

n0

,

For this value of n0, the following is true for any sequence (un) concentrating at zero:

∫

B

(e2π(2+β)y2n0 − 1)h(x)dx >
2πMe

2 + β
≥ lim sup

n→∞

∫

B

(e2π(2+β)u2
n − 1)h(x)dx.

Thus a maximizing sequence (un) with ‖∇un‖L2(B) ≤ 1 ∀ n cannot concentrate. Therefore

Theorem 1.2.3, item (ii) implies compacity for a subsequence of (un):

sup
v∈H1

0,rad(B),‖∇v‖L2≤1

∫

B

(e2π(2+β)v2 − 1)h(x)dx = lim
n→∞

∫

B

(e2π(2+β)u2
n − 1)h(x)dx

=

∫

B

(e2π(2+β)u2 − 1)h(x)dx

�
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Chapter 2

Proof of Theorem 2

2.1 Finiteness

Proof. (Theorem 1.2, Finiteness) First regarding the finiteness of the supremum

sup
u∈H1

0 (Ω),‖∇u‖L2≤1

∫

Ω

eαu
2 − 1

h(x)
dx, (2.1)

by (h3) one has
∫

Ω

eαu
2 − 1

h(x)
dx ≤

∫

Ω

C
eαu

2 − 1

|x|β dx

and this is finite by the following result by Adimurthi and Sandeep (c.f. [2]):

Theorem 2.1.1. Let u ∈ H1
0 (Ω). Then for every α > 0 and β ∈ [0, 2[

∫

Ω

eαu
2 − 1

|x|β dx <∞.

Moreover,

sup
u∈H1

0 (Ω),‖∇u‖L2≤1

∫

Ω

eαu
2 − 1

|x|β dx <∞

if and only if α
4π

+ β
2
≤ 1.

�
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2.2 Attainability

2.2.1 The case α
4π

+ β

2
< 1

Proof. (Theorem 1.2, Attainability, α
4π

+ β
2
< 1) Let (un) ⊂ H1

0 (Ω), ‖∇un‖L2(Ω) ≤ 1 be a

maximizing sequence, i.e.:

lim
n→∞

∫

Ω

eαu
2
n

h(x)
dx = sup

u∈H1
0 (Ω),‖∇u‖L2≤1

∫

Ω

eαu
2

h(x)
dx. (2.2)

Since (un) is a bounded sequence and H1
0 (Ω) is a reflexive space, a theorem by Kakutani

(c.f. [6], Theorem 3.17) implies that there exists u ∈ H1
0 (Ω) such that

‖∇u‖L2(Ω) ≤ 1 and un ⇀ u.

Let E ⊂ Ω be an arbitrary measurable set. Let r := 4π/α > 1 and 1
s
= 1 − 1

r
> β

2
and

use Hölder’s inequality to obtain

∫

E

eαu
2
n

h(x)
≤
(
∫

E

e4πu
2
n

)1/r (∫

E

1

h(x)s

)1/s

.

Notice that that 1
h(x)s

∈ L1(Ω), since, by condition (h3), for any sufficiently small η > 0,
1

h(x)s
∈ L∞(Ω̄−Bη) and by condition (h2) h is very similar to (1/M)|x|β, and 1

|x|βs ∈ L1(Ω)

since βs < 2 and thus
∫

Ω
1

|x|βs ≤ 2π
∫ R

0
r1−βsdr = 2πR2−βs

2−βs
, where R < ∞ is the radius

of a ball containing the bounded domain Ω. Using this fact and the Trudinger-Moser

inequality, we conclude then that the sequence eαu2n

h(x)
is equi-integrable, and apply the

Vitali Convergence Theorem to conclude that

sup
u∈H1

0 (Ω),‖∇u‖L2≤1

∫

Ω

eαu
2

h(x)
dx = lim

n→∞

∫

Ω

eαu
2
n

h(x)
dx =

∫

Ω

eαu
2

h(x)
dx. (2.3)

�

2.2.2 The case α
4π

+ β

2
= 1

Passing from Ω to B

Let

B1(E) = {u ∈ H1
0 (E) : ‖u‖ ≤ 1}, (2.4)

where E ⊂ R
2 is any measurable set. Fix

F α,h
Ω (u) =

∫

Ω

(eαu
2 − 1)

h(x)
dx; F α,β

Ω (u) =

∫

Ω

(eαu
2 − 1)

|x|β dx,
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particularly

F sup,α,h,B
Bδ

= sup
{

F α,h
Bδ

(u); u ∈ B1(B)
}

. (2.5)

analogously for F α,β
Bδ

:

F sup,α,β,B
Bδ

= sup
{

F α,β
Bδ

(u); u ∈ B1(B)
}

(2.6)

Let

F conc,α,β
Ω (x) = sup

{

lim sup
n→∞

F α,β
Ω (un); (un) ⊂ B1(Ω) concentrates at x ∈ Ω̄

}

,

and

F conc,α,β,B
Bδ

(x) = sup

{

lim sup
n→∞

F α,β
Bδ

(un); (un) ⊂ B1(B) concentrates at x ∈ B̄δ

}

. (2.7)

Remark 2.2.1. Here one supposes Ω to be simply connected in order to use the Riemann

theorem from Complex Analysis (c.f. [10]), guaranteeing the existence of a conformal

map φ : B → Ω (which is a C∞ diffeomorphism in the standard topology) such that

φ(0) = 0. The inverse of φ is also a conformal map. Thus (by the representation of a

holomorphic function by its power series) there exists a conformal map ϕ : B → Ω such

that φ(z) = zϕ(z) and ϕ(0) = φ′(0) 6= 0. This implies also that ϕ 6= 0 since φ is 1:1.

Theorem 2.2.2. Define

ε(δ) := sup
|x|≤δ

∣

∣

∣

∣

|x|β
h(x)

−M−1

∣

∣

∣

∣

. (2.8)

For any v ∈ H1
0,rad(B) ∩ B1 define u := v ◦ φ−1. Then u ∈ B1(Ω) and given any δ > 0

such that Bδ(0) ⊂ Ω we have

F α,h
Ω (u) ≥ |φ′(0)|2−β(M−1 − ε(δ))F α,β

Bδ
(v). (2.9)

Proof. (Theorem 2.2.2) Notice that given δ > 0 such that Bδ ⊂ Ω for any 0 < r < δ and

t ∈ R,
(M−1 + ε(δ))

rβ|ϕ(reit)|β ≥ 1

h(φ(reit))
≥ (M−1 − ε(δ))

rβ|ϕ(reit)|β ,

(ϕ : B → Ω is the conformal map defined in Remark 2.2.1 such that φ(z) = zϕ(z)) which
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implies

1

2π

∫ 2π

0

|φ′(reit)|2
h(φ(reit))

dt ≥ 1

2π

(M−1 − ε(δ))

rβ

∫ 2π

0

|φ′(reit)|2
|ϕ(reit)|β dt (2.10)

=
(M−1 − ε(δ))

rβ
|φ′(0)|2−β (2.11)

⇒ 2π(M−1 − ε(δ))|φ′(0)|2−β ≤ rβ
∫ 2π

0

|φ′(reit)|2
h(φ(reit))

dt ∀ r < δ. (2.12)

The passage from (2.10) to (2.11) holds by the definition of a complex integral of a

holomorphic function f : U → C (U ⊂ C open) over Γr := {z ∈ C||z| = r}:
∫

Γr

f(z)

z
dz =

∫ 2π

0

f(reit)

reit
ireitdt

= i

∫ 2π

0

f(reit)dt, (2.13)

by the fact that 1
|ϕ|β is holomorphic since ϕ 6= 0 and by a subsequent application of the

Cauchy’s Integral Formula (c.f. Appendix, Theorem B.0.1).

Since the Jacobian of the change of variables φ is |φ′(y)|2 on each point y ∈ B by the

Cauchy-Riemann equations, we have by Cavalieri’s Principle:

F α,h
Ω (u) ≥

∫ δ

0

(eαv(r)
2 − 1)

(
∫

∂Br

|φ′(reit)|2
h(φ(reit))

dσ(t)

)

dr

≥ 2π(M−1 − ε(δ))|φ′(0)|2−β

∫ δ

0

eαv(r)
2 − 1

rβ
rdr (2.14)

= |φ′(0)|2−β(M−1 − ε(δ))F α,β
Bδ

(v).

�

Theorem 2.2.3. Let (un) ⊂ B1(Ω) be a sequence concentrating at zero. Let vn = un◦φ ∈
B1(B). Then (vn) concentrates at zero and for any δ > 0 sufficiently small one has

lim
n→∞

F α,h
Ω (un) =M−1|φ′(0)|2−β lim

n→∞
F α,β
Bδ

(vn). (2.15)

In particular, it follows that

F conc,α,h
Ω (0) =M−1|φ′(0)|2−βF conc,α,β

Bδ
(0). (2.16)

Proof. (Theorem 2.2.3) It has been shown in [12] (Theorem 12) that

Theorem 2.2.4. Let (un) ⊂ B1(Ω) be a concentrating sequence at zero, let φ : B → Ω

be the conformal map as in Remark 2.2.1 and vn := un ◦ φ. Then vn ∈ B1(B) (and thus

F β
B(vn) is well-defined for all i) and (vn) concentrates at 0.
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From the theorem above follows the first statement of theorem 2.2.3. Now we use the

change of variables x = φ(y) to obtain

lim
n→∞

F α,h
Ω (un) = lim

n→∞

∫

φ(B)

eαu
2
n − 1

h(x)
dx = lim

n→∞

∫

B

eαv
2
n − 1

h(φ(y))
|φ′(y)|2dy.

Let δ > 0 and split

lim
n→∞

F α,h
Ω (un) = lim

n→∞

∫

Bδ

eαv
2
n − 1

h(φ(y))
|φ′(y)|2dy + lim

n→∞

∫

B−Bδ

eαv
2
n − 1

h(φ(y))
|φ′(y)|2dy. (2.17)

Denote the integrals in (2.17) by An
1 (δ) and An

2 (δ) respectively. First we notice that

limn→∞An
2 (δ) = 0 ∀ δ > 0: indeed, since φ(z) 6= 0 ∀ z 6= 0 and h(x) > 0 ∀ x 6= 0, so

|φ′(y)|2
h(φ(y))

∈ L∞(B − Bδ).

So it suffices to use the fact limn→∞
∫

B−Bδ
(eαv

2
n−1)dy = 0, which has been already proven

(Lemma 1.2.7). Now define

Ξ(y) :







|y|β |φ′(y)|2
h(φ(y))

if y 6= 0,

M−1|φ′(0)|2−β if y = 0.
(2.18)

Ξ is a continuous function on B: indeed, since φ(z) = zϕ(z),

|y|β|φ′(y)|2
h(φ(y))

=
|φ(y)|β
h(φ(y))

|φ′(y)|2
|ϕ(y)|β ,

which, together with (h2) and the fact ϕ(0) = φ′(0) 6= 0, yields the desired continuity. If

necessary, modify δ so that |Ξ(y)− Ξ(0)| < ε if |y| < δ. Thus

lim
n→∞

An
1 (δ) = lim

n→∞

∫

Bδ

eαv
2
n − 1

|y|β Ξ(y)dy

⇒
∣

∣

∣
lim
n→∞

F α,h
Ω (un)−M−1|φ′(0)|2−β lim

n→∞
F α,β
B (vn)

∣

∣

∣
=

∣

∣

∣
lim
n→∞

An
1 (δ)− Ξ(0) limFB(vn)

∣

∣

∣

=

∣

∣

∣

∣

∣

lim
n→∞

∫

Bδ

eαv
2
n − 1

|y|β (Ξ(y)− Ξ(0))dy

∣

∣

∣

∣

∣

≤ εF sup,α,β
B1

. (2.19)

Since ε is arbitrary, theorem is proved. �
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Concentration-Compactness Result

Definition 2.2.5. A functional FB : B1(B) → R on the form FB(u) =
∫

Ω
f(x, u(x))dx

is called compact in the interior of B1(B) if given (un) ⊂ B1(B) with

lim sup
n→∞

‖∇un‖L2(B) < 1 and un ⇀ u (2.20)

implies f(·, un) → f(·, u) in L1(B) for some subsequence.

The following general result will be useful:

Theorem 2.2.6. ([21], p.473) Let B be the unitary open ball in R
2. Define a general

functional FΩ(u) =
∫

Ω
f(x, u)dx. If FΩ is compact in the interior of B1(B), then for

every sequence (un) in B1(B) com un ⇀ u and |∇un|2 ⇀ dµ there is a subsequence

such that either (un) concentrates at 0 and u = 0 or compactness holds in the sense that

f(·, un) → f(·, u) in L1(B)).

To prove the attainability of the supremum, we will use the following Lions-type

Concentration-Compactness result:

Theorem 2.2.7. Let (un) ⊂ B1(Ω). Then there exists a subsequence and u ∈ H1
0 (Ω)

such that un ⇀ u in H1
0 (Ω) and either

(i) (un) concentrates at a point x ∈ Ω̄, or

(ii) limn→∞ FΩ(un) = FΩ(u).

Proof. (Theorem 2.2.7) The proof is an application of Theorem 2.2.6 together with the

fact that F α,h
Ω is compact in the interior of B1(Ω) (c.f. Definition (2.2.5)): indeed, the

proof is quite similar to the case α
4π
+ β

2
< 1; let 0 < η < 1 and suppose that (un) ⊂ H1

0 (Ω)

is such that

lim sup
n→∞

‖∇un‖L2(Ω) ≤ η and un ⇀ u in H1(Ω)

for some u ∈ H1(Ω). Assume, up to a subsequence, that un → u almost everywhere on Ω

and ‖∇un‖L2(Ω) ≤ θ = 1+η
2
< 1 ∀ n ∈ N. Define vn := un/θ ∈ B1(Ω), and ᾱ = αθ2 < α,

so that we have
ᾱ

4π
+
β

2
< 1.

Let E ⊂ Ω be an arbitrary measurable set. Let r := 4π/ᾱ > 1 and 1
s
= 1 − 1

r
> β

2
and

use Hölder’s inequality to obtain

∫

E

eαu
2
n

h(x)
=

∫

E

eᾱv
2
n

h(x)
≤
(
∫

E

e4πv
2
n

)1/r (∫

E

1

h(x)s

)1/s

.

In view of the Trudinger-Moser inequality and using the fact that 1
h(x)s

∈ L1(Ω) (by (h3),

for any sufficiently small η > 0, we have 1
h(x)s

∈ L∞(Ω−Bη) and by (h2) h is very similar
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to (1/M)|x|β, and 1
|x|βs ∈ L1(Ω)). We conclude then that the sequence eαu2n

h(x)
is equi-

integrable, and apply the Vitali Convergence Theorem to conclude that the functional is

compact at the interior of Ω. �

Reducing to Radial Functions, Change of Variables

According to Lemma 10 on [11], if 0 < a < ∞ and u is a radial function defined on B,

the map Ta : H1
0,rad(B) → H1

0,rad(B); Ta(u) :=
√
au(|x| 1a ) is invertible, with (Ta)

−1 = T1/a

and satisfies ‖∇Ta(u)‖2 = ‖∇u‖2 ∀ u ∈ H1
0,rad(B). Moreover, if α

4π
= a = 1− β

2
, we have

F α,β
Bδ

(u) +

∫

Bδ

1

|x|β dx =
1

a

∫

Bδa

(e4πTa(u)2 − 1)dx+
|Bδa |
a

, (2.21)

This follows by performing the change of variables r = s1/a and using the fact α
4π

+ β
2
= 1:

∫

Bδ

eαu
2

|x|β = 2π

∫ δ

0

eαu
2

r1−βdr (2.22)

=
2π

a

∫ δa

0

e4π(
√
au(s1/a))2s

1
a
−1s

1
a
−2( 1

a
−1)ds

=
1

a

∫

Bδa

e4π(Ta(u))2dx. (2.23)

Given any u : B → R, denote by u∗ its Schwarz rearrangement (c.f. Definition B.0.2).

It is shown in Lemma 14 of [11] that if (un) ⊂ B1(B) is a sequence concentrating at

zero and (u∗n) concentrates at 0, then vn = Ta(u
∗
n) is a sequence of symmetric functions

concentrating at zero.

Lemma 2.2.8. Let Ω be any bounded domain with C1 boundary. Let Ω∗ be the open ball

centered at the origin with |Ω| = |Ω∗|. Then for any u ∈ H1
0 (Ω)

F α,β
Ω (u) ≤ F α,β

Ω∗ (u∗).

Proof. (Lemma 2.2.8) First we need to prove that u ∈ H1
0 (Ω) implies |u| ∈ H1

0 (Ω), i.e,

|u| ∈ H1(Ω) and the trace of |u| on the boundary is identically null. Indeed, |u| ∈ H1(Ω)

(c.f. [17], page 308) , with

∇|u| =



















∇u if u > 0,

0 if u = 0,

−∇u if u < 0.

(2.24)

Now let (un) ⊂ C∞
c (Ω) be a sequence such that un → u in H1(Ω), and T : H1(Ω) →

L2(∂Ω) be the trace operator. Notice that T |un| = 0 for all un by item (i) of Theorem
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B.0.5. Now write

‖T |un| − T |u|‖L2(∂Ω) = ‖T (|un| − |u|)‖L2(∂Ω)

≤ C‖∇|un| − ∇|u|‖L2(Ω) (2.25)

Notice that ∇|un| → ∇|u| almost everywhere in Ω, since for almost all x ∈ Ω,if u(x) > 0,

there is n sufficiently big such that un(x) > 0, and thus ∇|un|(x) = ∇un(n) → ∇|u|(x) =
∇u(x); analogously for the case u < 0. For the case u = 0, just notice that either

∇un(x) → 0 and −∇un(x) → 0 and ∇un = 0 a.e. on {u = 0} (c.f. [17], page 308). Now

let E be any open subset in Ω. Then u ∈ H1(Ω), and un → u in H1(E). Thus

∫

E

|∇|un| − ∇|u||2dx ≤
∫

E

22(|∇|un||2 + |∇|u||2)dx

= 22
∫

E

|∇un|2 + |∇u|2dx

≤ C

∫

E

|∇u|2dx,

yielding equiintegrability. Applying Vitali’s Convergence Theorem one concludes that

T |u| = 0. Since the boundary ∂Ω is assumed to be C1, Theorem B.0.6 implies |u| ∈ H1
0 (Ω).

Let |u|∗ the Schwarz rearrangement of |u|: it is a positive function and belongs to

H1
0,rad(Ω) according to theorem B.0.4. So without loss of generality one may consider

u to be positive and radial. Now regarding the functional F α,β(u) =
∫

Ω
eαu2−1
|x|β : notice

that the function F (t) : [0,∞[→ [0,∞[, F (t) := eαt
2 − 1 is increasing and thus may be

approximated by simple functions of the form

k−1
∑

i=0

αiχ]ai,ai+1] + αkχ]ak,∞[,

where 0 = a0 < a1 < ... < ak < ∞ and αi+1 > αi for all i = 0, ..., k. For instance, on

([20], Th. 2.10) the simple functions used to approximate measurable functions have the

form

φ =
22

n−1
∑

k=0

k2−nχEk
n
+ 2nχFn ,

where, for n = 0, 1, 2, ... and k = 0, 1, ..., 22
n − 1, one defines

Ek
n = f−1(]k2−n, (k + 1)2−n]) and Fn = f−1(]2n,∞])

and for a fixed n, the incrising character of F implies that Ek
n is an interval for all k and

the superior extremity of Ek
n is equal to the inferior extremity of Ek+1

n .

It is worth noticing that |{u∗ > t}| is a ball centered at the origin, and φ(r) = 1
rβ

is
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decreasing, thus assuming greatest values on a ball around the origin rather than on the

complement of the same ball; this is valid for any ball centered at the origin. Having this

and (i) in mind, one concludes that for any t,

∫

Ω∗

χ]t,∞[(u
∗)

|x|β dx−
∫

Ω

χ]t,∞[(u)

|x|β dx ≥ 0. (2.26)

To prove it, write

E := {u > t} − {u∗ > t},
E∗ := {u∗ > t} − {u > t},
E∗ := {u∗ > t} ∩ {u > t},

and notice that

sup
x∈E

1

|x|β ≤ inf
x∈E∗

1

|x|β ,

since, if x0 ∈ E and
1

|x0|β
> inf

x∈E∗

1

|x|β ,

then 1
|x0|β > 1

|x1|β for some x1 ∈ E∗ , implying that |x0| ≤ |x1|, from which one con-

cludes that x0 ∈ {u∗ > t}, since {u∗ > t} is a ball centered at the origin, leading to a

contradiction. So one concludes that (by Theorem B.0.3)

∫

E

1

|x|β dx ≤
(

sup
x∈E

1

|x|β
)

|{u > t}| ≤
(

inf
x∈E∗

1

|x|β
)

|{u∗ > t}| ≤
∫

E∗

1

|x|β dx. (2.27)

Adding
∫

E∗

1
|x|β dx to both sides of (2.27) one arrives at (2.26) . Now fix i = k and consider

the following computations for this case:

∫

Ω∗

αkχ]ak,∞[(u
∗)

|x|β dx−
∫

Ω

αkχ]ak,∞[(u)

|x|β dx+

∫

Ω∗

αk−1χ]ak−1,ak](u
∗)

|x|β dx

−
∫

Ω

αk−1χ]ak−1,ak](u)

|x|β dx

=

∫

Ω∗

αkχ]ak,∞[(u
∗)

|x|β dx−
∫

Ω

αkχ]ak,∞[(u)

|x|β dx+

∫

Ω∗

αk−1χ]ak−1,∞[(u
∗)

|x|β dx

−
∫

Ω∗

αk−1χ]ak,∞[(u
∗)

|x|β dx−
∫

Ω

αk−1χ]ak−1,∞[(u)

|x|β dx+

∫

Ω

αk−1χ]ak,∞[(u)

|x|β dx

=(αk − αk−1)

(
∫

Ω∗

χ]αk,∞[(u
∗)

|x|β dx−
∫

Ω

χ]αk,∞[(u)

|x|β dx

)

+

∫

Ω∗

αk−1χ]ak−1,∞[(u
∗)

|x|β dx−
∫

Ω

αk−1χ]ak−1,∞[(u)

|x|β dx.

≥
∫

Ω∗

αk−1χ]ak−1,∞[(u
∗)

|x|β dx−
∫

Ω

αk−1χ]ak−1,∞[(u)

|x|β dx.
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by (2.26). Performing the analogous computations for i = k− 1, ..., 0 in the same fashion,

one concludes that

∫

Ω∗

∑k−1
i=0 αiχ]ai,ai+1](u

∗) + αkχ]ak,∞[(u
∗)

|x|β dx−
∫

Ω

∑k−1
i=0 αiχ]ai,ai+1](u) + αkχ]ak,∞[(u)

|x|β

≥
∫

Ω∗

α0χ]a0,∞[(u
∗)

|x|β dx−
∫

Ω

α0χ]a0,∞[(u)

|x|β dx ≥ 0.

Since it is valid for simple functions, it is also true to F (t) = eαt
2 − 1 by passing the limit

using the Dominated Convergence Theorem. This finishes the proof of Lemma 2.2.8. �

Thus

lim sup
n→∞

F α,β
Bδ

(un) ≤ lim sup
n→∞

F α,β
Bδ

(u∗n)

=
1

a
lim sup
n→∞

∫

Bδa

(e4πv
2
n − 1)dx+

|Bδa |
a

−
∫

Bδ

1

|x|β dx

≤ 1

a
sup

(un) concentrates at 0

∫

Bδa

(e4πu
2
n − 1)dx+

|Bδa |
a

−
∫

Bδ

1

|x|β dx

(2.28)

Now we must note that (un) ⊂ B1(B) is a sequence concentrating at zero maximizing

F conc,α,β,B
Bδ

, then (u∗n) also concentrates at zero. Indeed (this proof was taken from [12]),

since F conc,α,β,B
Bδ

= F conc,α,β,B
B (same argument used in the proof of Theorem 2.2.3), (un)

also maximizes F conc,α,β,B
B ; since un concentrates, then un → 0 in L2(B); if u∗n do not

concentrate we have by the Concentration-Compactness Theorem 2.2.7 that

0 < F conc,α,β,B
B = lim

n→∞
F α,β
B (un) ≤ lim

n→∞
F α,β
B (u∗n) = 0. (2.29)

Test functions and decay condition

Lemma 2.2.9. Define a = α
4π

. If h satisfies the decay condition "There exists a n0 > 0

sufficiently big such that

sup
r≤e−

n0
2a

∣

∣

∣

∣

|x|β
h(x)

−M−1

∣

∣

∣

∣

< M−1 1

n0

” (2.30)

then

(M−1 − ε(δ))F sup,α,βB
Bδ

> M−1F conc,α,β,B
Bδ

. (2.31)

Recall that we defined ε(δ) = sup|x|<δ

∣

∣

∣

|x|β
h(x)

−M−1
∣

∣

∣
.

Proof. (Lemma 2.2.9) Using the change of variables by Moser r = e−t/2 and supposing



33

that u ∈ H1
0 (B) is radially symmetric, write v(t) = (4π)1/2u(e−t/2) and

GBδa
(u) :=

∫

Bδa

(e4πu
2 − 1)dx = π

∫ ∞

2a log 1/δ

(ev
2 − 1)e−tdt. (2.32)

If (un) is any concentrating sequence at zero (on the x-variable), then lim supn→∞GBδ
(un) ≤

πe (c.f. Lemma 1.2.6). Consider again the sequence (yn) defined in (1.13). Recalling Re-

mark (1.2.11), one chooses n = 2 log 1
δa

yielding

GBδa
(yn) ≥ πe+

πe

n
+ o

(

1

n

)

, (2.33)

Performing the change of variables 2.21, Lemma 2.2.9 is implied by

(M−1 − ε(δ))

[

πe+
πe

n
+

|Bδa |
a

−
∫

Bδ

1

|x|β dx
]

> M−1

[

πe+
|Bδa |
a

−
∫

Bδ

1

|x|β dx
]

(2.34)

for some δ > 0 or, simplifying and dropping the lower order terms,

(M−1 − ε(δ))
(πe

n

)

> ε(δ)πe, (2.35)

(notice that
∫

Bδ

1
|x|β and |Bδa | tend to zero as δ → 0, thus ε(δ)

∫

Bδ

1
|x|β and ε(δ)|Bδa | are

low order terms in comparison to the ones in (2.35))or still, for some δ sufficiently small,

sup
|x|≤δ

∣

∣

∣

∣

|x|β
h(x)

−M−1

∣

∣

∣

∣

≤ M−1

2 log 1
δa

(2.36)

with δ is sufficiently small enough in order to compensate the negative or low order terms

we dropped from the expression (2.34). Or, in terms of n0:

sup
|x|≤e−

n0
2a

∣

∣

∣

∣

|x|β
h(x)

−M−1

∣

∣

∣

∣

≤ M−1

n0

(2.37)

This is implied by the decay condition (2.30) with n0 sufficiently large. So the choice of

n0 depends on the sequence yn and on the value of M−1. �

Proof. (Theorem 2, Attainability, α
4π

+ β
2
= 1) Now we put together Theorems 2.2.2, 2.2.3

and Lemma 2.2.9 to conclude that

F sup,α,h
Ω ≥ (M−1 − ε(δ))|φ′(0)|2−βF sup,α,β,B

Bδ
> M−1|φ′(0)|2−βF conc,α,β,B

Bδ
(2.38)

= F conc,α,h
Ω ,

which shows that a concentrating sequence cannot be a maximizing sequence if h satisfies

the decay condition (D). We conclude that the supremum is achieved by Theorem 2.2.7.

�
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Chapter 3

Proof of Theorem 3

3.1 Differentiability of the functional

We will write

F (x, t) =

∫ t

0

f(x, s)ds.

Consider the functional Φ : H1
0,rad(B) → R

Φ(u) :=
1

2

∫

B

|∇u|2dx−
∫

B

F (x, u(x))dx. (3.1)

Proposition 3.1.1. Φ is a C1 functional, with

〈Φ′(u), v〉 =
∫

B

∇u∇v −
∫

B

f(x, u)v ∀ v ∈ H1
0,rad(B). (3.2)

Frechét-differentiability follows from the following lemma together with proposition

C.0.1.

Lemma 3.1.2. Φ is Gatêaux-differentiable in H1
0,rad(B) and its Gatêaux-derivative is

continuous at H1
0,rad(B).

Proof. For t > 0 we have

Φ(u+ tv)− Φ(u)

t
=

1

t

(

t

∫

B

∇u∇v + t2

2

∫

B

|∇v|2 +K

∫

B

F (x, u+ tv)− F (x, u)

)

.

(3.3)

Since F is differentiable, it is possible to write for all t and for almost all x ∈ B:

F (x, u+ tv) = F (x, u) + tvf(x, u) + r(t), (3.4)

where r is a function such that r(t)/t→ 0 as h→ 0 (thus it can be ignored since it does
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not depende on x ∈ B). By (H5), we have for all x ∈ B

∣

∣

∣

∣

F (x, u+ tv)− F (x, u)

t

∣

∣

∣

∣

≈ |vf(x, u)| ≤ K|v||u|ke2π(2+α)u2 |x|α,

which is integrable due to the Trudinger-Moser embedding (ew
2 ∈ L1 ∀ w ∈ H1

0 ) and

the Sobolev embedding H1
0 (B) ⊂ Lq(B) ∀ q ∈ [2,∞). Then we can apply Lebesgue’s

Dominated Convergence Theorem and conclude that the Gatêaux-drivative exists. For

the continuity of the derivative, it suffices to show it is bounded.

Notice that given any A ⊂ B measurable and h ∈ H1
0,rad(B), for any v ∈ H1

0,rad(B)

with ‖v‖ ≤ 1, we have

|〈Φ′(u+ h), v〉A| :=

∣

∣

∣

∣

∫

A

∇(u+ h)∇vdx
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

A

f(x, u+ h)v

∣

∣

∣

∣

≤ ‖∇u‖L2(A) + ‖∇h‖L2(A) +K

∫

A

|u+ h|k|e2π(2+α)(u+h)2 ||x|α|v|dx

≤ ‖∇u‖L2(A) + ‖∇h‖L2(A) +K

∫

A

|u+ h|k|e8π(2+α)(u2+h2)||x|α|v|dx

≤ ‖∇u‖L2(A) + ‖∇h‖L2(A) + (3.5)

K

(
∫

A

|u+ h|8k
)1/8(∫

A

e64π(2+α)u2

)1/8(∫

A

e32π(2+α)h2 |x|4α
)1/4

,

If ‖h‖ ≤
(

2π(2+4α)
32π(2+α)

)1/2

we have

∫

A

e32π(2+α)h2 |x|4α ≤ C <∞,

where C is independent of h due to theorem 1.1.1. By the Trudinger-Moser embedding,

e64π(2+α)u2 ∈ L1, therefore given ε > 0, there exists δ > 0 such that |A| ≤ δ implies
∫

A
e32π(2+α)u2 ≤ ε. From these observations and using again the Sobolev Embedding

H1
0,rad(B) ⊂ Lq(B) ∀q ∈ [2,∞) we conclude that, fixed u ∈ H1

0,rad(B), the family

F =

{

|f(x, u+ h)v| : h ∈ H1
0,rad(B), ‖h‖ ≤

(

2π(2 + 4α)

32π(2 + α)

)1/2

, ‖v‖ ≤ 1

}

is uniformly integrable in B, allowing us to apply Vitali’s Convergence Theorem. Conti-

nuity of the derivative follows from taking the limit h→ 0. �

3.2 Palais-Smale condition

Proposition 3.2.1. Let (un) ⊂ H1
0,rad(B) be a Palais-Smale sequence such that Φ(un) →

c. Then if c < 1/2, (un) admits a strongly convergent subsequence, i.e., Φ satisfies (PS)c

for all c < 1/2.
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Proof. (un) is a (PS)c sequence if and only if

1

2

∫

B

|∇un|2 dx−
∫

B

F (x, un) dx → c, (3.6)
∣

∣

∣

∣

∫

B

∇un∇v dx−
∫

B

f(x, un)v dx

∣

∣

∣

∣

≤ εn‖∇v‖L2(B) ∀ v ∈ H1
0,rad(B), εn → 0. (3.7)

Now notice that, by (H2) and (H3) given any ε > 0 there exists tε such that

F (x, t) ≤M |f(x, t)| ≤ εtf(x, t)∀x ∈ B, ∀|t| ≥ tε;

just consider tε such that tε > max{M
ε
, t0}. It follows that, for any ε > 0, by condition

(H5):

1

2
‖∇un‖2L2 ≤ K ′ +

∫

B

F (x, un) dx ≤ K ′ +

∫

{|un|≤tε}
F (x, un) dx

+ε

∫

{|un|≥tε}
f(x, un)un dx

≤ K ′ +K
π

2
|tε|k+1e2π(2+α)t2ε + ε

∫

{|un|≥tε}
f(x, un)un dx

= Kε + ε

∫

{|un|≥tε}
f(x, un)un dx, (3.8)

where K ′ > 0 is a constant coming from (3.6), K comes from (H5) and Kε = K ′ +

K π
2
|tε|k+1e2π(2+α)t2ε . From (3.7) and (3.8) we have

1

2
‖∇un‖2L2(B) ≤ Kε + ε‖∇un‖2L2(B) + εn‖∇un‖L2(B),

which implies (C > 0 a constant)

‖∇un‖L2(B) ≤ C,

∫

B

f(x, un)un dx ≤ C by (3.7),

∫

B

F (x, un) dx ≤ C by (3.6). (3.9)

Now take a subsequence (un) such that there exists u ∈ H1
0,rad(B) such that

un ⇀ u ∈ H1
0,rad(B); un → u ∈ Lq(Ω) ∀q ∈ [1,∞); un(x) → u(x) a.e.. (3.10)

The first convergence follows from Theorem 3.18 in ([6], p.69) and the fact that H1
0

is reflexive and thus H1
0,rad, being a closed linear subspace of H1

0 , is too. The second

follows form Rellich-Kondrachov Theorem. Then we have by Lemma C.0.2 and (3.9)

f(x, un) → f(x, u) in L1(B) (note that f(x, u) ∈ L1(B) due to the Trudinger-Moser

inequality). Therefore it follows from this convergence, condition (H2) and the Generalized

Dominated Convergence Theorem (c.f. [19], p.89) that F (x, un) → F (x, u) in L1(B).
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From (3.6) and (3.7) it follows that

lim
n→∞

‖∇un‖2L2(B) = 2(c+

∫

B

F (x, u) dx), (3.11)

lim
n→∞

∫

B

f(x, un)un = 2(c+

∫

B

F (x, u) dx). (3.12)

Using (3.12) and (H3) we conclude that c ≥ 0, because (applying Fatou’s Lemma)

lim
n→∞

∫

B

f(x, un)un dx ≤ 2c+

∫

B

f(x, u)u dx ≤ 2c+ lim inf
n→∞

∫

B

f(x, un)un dx.

Given any ψ ∈ C∞
c (B), by (3.7) we have

∣

∣

∣

∣

∫

B

∇un∇ψ dx−
∫

B

f(x, un)ψ dx

∣

∣

∣

∣

≤ εn‖∇ψ‖L2(B)

⇒
∫

B

∇u∇ψ dx =

∫

B

f(x, u)ψ dx ∀ψ ∈ C∞
c (B).

(3.13)

Since f(x, u) ∈ L2(B) (again by Trudinger-Moser inequality, Sobolev Embedding and

(H5)) then ∀ ψ ∈ C∞
c (B):

∣

∣

∣

∣

∫

B

f(x, u)ψ dx−
∫

B

f(x, u)u dx

∣

∣

∣

∣

≤
(
∫

B

|f(x, u)|2dx
)1/2

‖ψ − u‖L2(B), (3.14)
∣

∣

∣

∣

∫

B

∇u∇ψ dx−
∫

B

|∇u|2 dx
∣

∣

∣

∣

≤ ‖∇u‖L2‖ψ − u‖L2(B). (3.15)

Taking a sequence (ψn) ⊂ C∞
c (B) such that ψn → u in H1

0 (B), by (3.14), (3.15) and (H3)

one has

‖∇u‖2L2(B) =

∫

B

f(x, u)u dx ≥ 2

∫

B

F (x, u) dx⇒ Φ(u) ≥ 0.

Now we treat 3 different cases:

Case 1: c = 0

Then we would have

0 ≤ Φ(u) =
1

2

∫

B

|∇u|2 −
∫

B

F (x, u) dx ≤ 1

2
lim inf

∫

B

|∇un|2 dx−
∫

B

F (x, u) dx = 0

(by (3.11)) and thus lim ‖∇un‖L2(B) = ‖∇u‖L2(B) ⇒ un → u in H1
0 (B).

Case 2: c 6= 0, u = 0

We claim that for some q > 1 we have
∫

B
|f(x, un)|q dx ≤ C (C independent of n):

indeed, since u = 0, given ε > 0 ∃ n0 such that n ≥ n0 implies ‖∇un‖2L2(B) ≤ 2c + ε,
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which implies

∫

B

|f(x, un)|q dx ≤ K

∫

B

|un|kqe2π(2+α)qu2
n |x|αq dx

≤ K

(
∫

B

|un|kql
′

dx

)
1
l′
(
∫

B

e2π(2+α)qlu2
n |x|αql dx

)1/l

(∀ l > 1)

≤ K

(

∫

B

e
2π(2+α)ql‖∇un‖2

L2(B)

(

u
‖∇un‖

L2(B)

)2

|x|α dx
)1/l

. (3.16)

Note that K is independent of n, and the last step of (3.16) is true because (un) is a

convergent sequence in Lr for all r ∈ [1,∞). The integral in then last line of (3.16)

is bounded independently of n due to theorem 1.1.1 if ql‖∇un‖2L2(B) < 1, for which is

sufficient that ql(2c+ ε) < 1. Since c < 1/2, this will happen if we choose l, q sufficiently

close to 1 and ε sufficiently close to 0. This proves the claim.

Now from (3.7) and (3.9) we have
∣

∣

∫

B
|∇u|2 dx−

∫

f(x, un)un dx
∣

∣ ≤ εn‖∇un‖L2(B) ≤
Cεn. We estimate the integral

∫

B
f(x, un)un dx using Hölder and the claim above; since

un → 0 in Lq′ we conclude that ‖∇un‖L2(B) → 0. This contradicts (3.11), which implies

‖∇un‖2L2(B) → 2c 6= 0.

Case 3: c 6= 0, u 6= 0

We claim that Φ(u) = c. Φ(u) cannot be > c because of Fatou’s Lemma. Suppose by

contradiction that Φ(u) < c. Then

‖∇u‖2L2(B) < 2(c+

∫

B

F (x, u) dx). (3.17)

Let vn := un

‖∇un‖L2(B)
and v := u

(2(c+
∫

B F (x,u) dx))1/2
. Now we use and adaptation of a classical

result by Lions [23]:

Lemma 3.2.2. Let (vn) ⊂ H1
0,rad(B), ‖∇vn‖L2(B) = 1 ∀ n, and ‖∇v‖L2(B) < 1. Then

sup
n

∫

B

e2π(2+α)pv2n |x|α <∞ ∀p < 1

1− ‖∇v‖2L2(B)

. (3.18)

Proof. The result by Lions is, under the same conditions,

sup
n

∫

B

e4πpv
2
n <∞ ∀ p < 1

1− ‖∇v‖2L2(B)

.

Given any z ∈ H1
0,rad(B), we again (just like in the proof of finiteness of the supremum in

Theorem 1.1) use the change of variables introduced by Moser [24] z(r) = w(t)/(4π)1/2,

r = e−t/2 and, after, the one used in [15] v(s) =
(

2+α
2

)1/2
w( 2s

2+α
), t = 2+α

2
s, together with
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the fact that z 7→ w 7→ v is an isometry from H1
0,rad(B) to

H := {w : [0,∞) → R : w is measurable, has weak derivative, w(0) = 0,

∫ ∞

0

|w′|2 <∞}

to compute

sup
z∈H1

0,rad(B),‖z‖≤1

∫

B

e2π(2+α)pz(x)2 |x|αdx = sup
z∈H1

0,rad(B)‖z‖≤1

2π

∫ 1

0

e2π(2+α)pz(r)2rα+1dr

= sup
w∈H,‖w‖≤1

π

∫ ∞

0

e
2+α
2

pw(t)2e−
α+2
2

tdt

= sup
v∈H,‖v‖≤1

2π

2 + α

∫ ∞

0

epv(s)
2−sds.

Analogously

sup
z∈H1

0,rad(B),‖z‖≤1

∫

B

e4πpz(x)
2

dx = sup
v∈H,‖v‖≤1

π

∫ ∞

0

epv(s)
2−sds,

and comparing the two equalities the result is proved. �

Now we proceed just as in case 2 to obtain

∫

B

|f(x, un)|q dx ≤ K

(
∫

B

e
2π(2+α)lq‖∇un‖2

L2(B)
v2n |x|α dx

)1/l

(3.19)

for any q, l > 1 (where K depends only on q, l). The integral on the right-hand side of

(3.19) is bounded (by Lemma 3.2.2) provided that

lq‖∇un‖2L2(B) ≤ p <
1

1− ‖∇v‖2L2(B)

=
1

1−
‖∇u‖2

L2(B)

2(c+
∫

B F (x,u) dx)

=
c+

∫

B
f(x, u) dx

c− Φ(u)
.

Given ε > 0, for n sufficiently big we have ‖∇un‖2L2(B) ≤ 2(c +
∫

B
F (x, u) dx) + ε. Since

Φ(u) ≥ 0, 1
c
≤ 1

c−Φ(u)
, so if lq2(c +

∫

B
F (x, u) dx) + ε <

c+
∫

B F (x,u) dx

c
the result follows.

Since c < 1/2, just take l, q sufficiently close to 1 and ε sufficiently close to zero. �

3.3 Mountain Pass Theorem set-up

Proposition 3.3.1. Let Z be a finite dimentional subspace of H1
0,rad(B) spanned by L∞

functions. Then Φ is bounded from above in Z, and moreover, given M > 0 there exists

an R > 0 such that

Φ(u) ≤ −M ∀ u ∈ Z; ‖∇u‖L2(B) ≥ R.
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Proof. Notice that by (H2) we have the existence of t0 > 0 and K > 0 such that F (x, t) ≥
Ke

1
M

|t| for all |t| ≥ t0. We conclude that F (x, t) ≥ (Ktp−K) ∀ x, t, where K is a positive

constant and p > 2 by choice. Let u0 ∈ Z with ‖u0‖L∞(B) = 1; then

Φ(tu0) =
t2

2

∫

B

|∇u0|2 dx−
∫

B

F (x, u0) dx

≤ t2

2
‖∇u0‖2L2(B) −K|t|p

∫

B

|u0|p dx+K (3.20)

≤ t2

2
‖∇u0‖2L2(B) −K|t|p‖∇u0‖pL2(B) +K → −∞ as t→ ∞, (3.21)

where (3.21) was achieved from (3.20) using the equivalence of norms in a finite dimen-

sional vector space. �

Proposition 3.3.2. There exists a > 0 and ρ > 0 such that

Φ(u) ≥ a if ‖∇u‖L2(B) = ρ.

Proof. From (H4) there exists µ < µ1 = inf{
∫

B |∇u|2
∫

B |u2| : u ∈ H1
0,rad(B)} and δ > 0 such that

F (x, t) ≤ 1
2
µt2 if |t| ≤ δ. By (H3) and (H5) we have for any q > max{2, k + 1} (k comes

from the condition (H5)):

F (x, t) ≤ K|t|qe2π(2+α)t2 |x|α ∀ |t| ≥ 1 ⇒ F (x, t) ≤ K

δq
|t|qe2π(2+α) t2

δ2 |x|α ∀ |t| ≥ δ.

Thus

F (x, t) ≤ 1

2
µt2 +

K

δq
|t|qe2π(2+α) t2

δ2 |x|α ∀ x, t. (3.22)

Then for any p > 1

Φ(u) ≥ 1

2

∫

B

|∇u|2 dx− 1

2
µ

∫

B

u2 dx− K

δq

∫

B

|u|qe2π(2+α)u
2

δ2 |x|α dx

≥ 1

2

(

1− µ

µ1

)
∫

B

|∇u|2 dx− K

δq

(
∫

B

e2πp(2+α)u
2

δ2 |x|αp dx
)1/p(∫

B

|u|qp′ dx
)1/p′

Now if ‖∇u‖2L2(B) ≤ δ2/p we have

sup
u

∫

B

e2πp(2+α)u
2

δ2 |x|αp dx ≤ sup
u

∫

B

e2πp(2+α)u
2

δ2 |x|α dx <∞,

(since |x| ≤ 1 we have |x|αp ≤ |x|α for p > 1) and by the Sobolev embedding H1
0 ⊂ Lqp′

(
∫

B

|u|qp′ dx
)1/p′

≤ K‖∇u‖qL2(B).
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So we have for ‖∇u‖2L2(B) ≤ 1/p

Φ(u) ≥ 1

2

(

1− µ

µ1

)

‖∇u‖2L2(B) −
K

δq
‖∇u‖qL2(B). (3.23)

Now consider the function ϕ(s) = 1
2

(

1− µ
µ1

)

s2 − K
δq
sq. Writing

ϕ(s) = s2
(

1

2

(

1− µ

µ1

)

− K

δq
sq−2

)

one can see that there exists a number η > 0 sufficiently small such that s ≤ η implies

φ(s) > 0. So we take ρ = min{η, δ2/p} and a = ϕ(ρ). �

3.4 Mountain Pass Theorem set-up - test functions

We will apply the Mountain Pass Theorem C.0.3. According to proposition 3.3.1, given

any v ∈ H1
0,rad(B)∩L∞(B), there exists t0 > 0 such that Φ(t0v) ≤ 0. Recall that Φ(0) = 0

by (H3). By proposition 3.3.2, there exists a > 0 and a ball Bρ such that Φ|∂Bρ =

a. Suppose there exists a w0 ⊂ H1
0,rad(B) with ‖∇w0‖L2 = 1 such that max{Φ(tw0) :

t ≥ 0} < 1
2
. Set then U = Bρ, v = t0w0 (w0 from 3.24). Let P denote the class

of all paths joining 0 to v. By definition, if such a w0 exists, we conclude that c =

infP∈P maxw∈P Φ(w) < 1/2, which yields, together with theorem C.0.3 and proposition

3.2.1, the existence of the minimizer u ∈ H1
0,rad(B). Therefore we need to show that there

exists an w0 ∈ H1
0 (B) with ‖∇w0‖L2 = 1 such that

max{Φ(tw0) : t ≥ 0} < 1

2
, (3.24)

Consider the same sequence used on the proofs of Theorems 1 and 2:

yn(t) =







t
n1/2 (1− δn)

1/2, 0 ≤ t ≤ n,

1
(n(1−δn))1/2

log An+1
An+e−(t−n) + (n(1− δn))

1/2, n ≤ t,
(3.25)

or, in terms of the radio

wn(r) =

(

1

2π(2 + β)

)1/2







1

(n(1− 2 logn
n

))1/2
log An+1

An+enr2+β + (n(1− 2 logn
n

))1/2, 0 ≤ r ≤ e
−n
2+β ,

(2+β) log 1
r

n1/2 (1− 2 logn
n

)1/2, e−n/(2+β) ≤ r ≤ 1,

(3.26)

after the change of variables

yn(t) =

(

2

2 + β

)1/2

wn(r), r = e
−t
2+β . (3.27)
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Notice that (wn) ⊂ L∞(B), allowing us to apply proposition 3.3.1.

Proof. (Theorem 3) Suppose that for all n ∈ N we have max{Φ(twn) : t ≥ 0} ≥ 1/2. By

Propositions 3.3.1 and 3.3.2, for each n ∈ N there exists tn ≥ 0 such that

max{Φ(twn) : t ≥ 0} = Φ(tnwn) ≥
1

2
. (3.28)

Recalling that ‖∇wn‖L2(B) = 1 ∀ n ∈ N, by (3.28) and (H3) we have

t2n ≥ 1. (3.29)

It follows from (3.28) that d
dt
Φ(twn) = 0 at t = tn or

tn −
∫

B

f(x, tnwn)wndx = 0. (3.30)

Multiplying (3.30) by tn we have

t2n = tn

∫

B

wnf(x, tnwn)dx. (3.31)

By (H6) there exists some tε > 0 and δ(ε) such that t > tε and x ∈ Bδ implies f(x, t)t ≥
(ζ − ε)e2π(2+β)t2 |x|β for some ε > 0 such that ζ − ε > 0. From (3.26), we see that

if r ≤ e−n/(2+β), wn(r) ≥ (n(1 − 2 logn
n

))1/2, so given any number L ∈ N there exists

nL ∈ N sufficiently big such that n ≥ n1 implies that wn(r) ≥ L if n ≥ nL. There exists

n0 sufficiently large such that n ≥ n0 implies B
e
− n

2+β
⊂ Bδ. Then applying (H6) and

proceeding just like in the proof of Lemma 1.2.10 to obtain

t2n ≥ (ζ − ε)

∫

B
e−n/(2+β)

e2π(2+β)t2nw
2
n |x|βdx

≥ 2π(ζ − ε)

2 + β

∫ ∞

n

et
2
ny

2
n−tdt

≥ 2π(ζ − ε)

2 + β

1

n2

∫ ∞

0

e

[

(t2n−1)n+2 log An+1

An+e−s−s
]

[

1 +
1

n(1− δn)
log2

An + 1

An + e−s

]

ds,

(3.32)

and since, by (1.20) and (1.21),

1

n2

∫ ∞

0

exp

[

2 log
An + 1

An + e−s
− s

] [

1 +
1

n(1− δn)
log2

An + 1

An + e−s

]

ds→ e,

we conclude that tn is a bounded sequence, otherwise the right side would blow-up faster

than the left side. More: from (3.29) we get that t2n converges to 1 (particularly with

a decay equal or faster than 1/n for the blow-up not to happen). Now recall that the
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sequence (wn) ⊂ H1
0,rad(B) is a concentrating sequence, thus converging a.e. to zero. This

implies that there exists n1 ∈ N such that n ≥ n1 implies tnwn(r) < tε for all x ∈ B

such that |r| = δ. Since all the functions wn are radially decreasing, one concludes that

if n ≥ n1 then tnwn(r) < tε for all x ∈ B such that |r| ≥ δ. Thus if n is greater than n1

one has {x ∈ B : tnwn(x) ≥ tε} ⊂ Bδ. So by (H6) and (3.31) we have for n ≥ n1:

t2n =

∫

{tnwn≥tε}
f(x, tnwn)tnwn +

∫

{tnwn≤tε}
f(x, tnwn)tnwn

≥ (ζ − ε)

∫

{tnwn≥tε}
e2π(2+β)t2nw

2
n |x|βdx+

∫

{tnwn≤tε}
f(x, tnwn)tnwn

= (ζ − ε)

∫

B

e2π(2+β)t2nw
2
n |x|βdx− (ζ − ε)

∫

{tnwn≤tε}
e2π(2+β)t2nw

2
n |x|βdx

+

∫

{tnwn≤tε}
f(x, tnwn)tnwn (3.33)

Performing the changes of variables (3.27) :

∫

B

e2π(2+β)t2nw
2
n |x|βdx =

∫

B−B
e−n1/3/(2+β)

e2π(2+β)t2nw
2
n |x|βdx

+

∫

B
e−n1/3/(2+β)

−B
e−n/(2+β)

e2π(2+β)t2nw
2
n |x|βdx

+

∫

B
e−n/(2+β)

e2π(2+β)t2nw
2
n |x|βdx

=

∫

B−B
e−n1/3/(2+β)

e2π(2+β)t2nw
2
n |x|βdx (I)

+
2π

2 + β

∫ n

n1/3

exp

[

t2

n

(

1− 2 log n

n

)

− t

]

dt (II)

+
2π(M − η)

2 + β

∫ ∞

n

e









log An+1

An+e−(t−n)

(n1/2(1−δn))1/2
+(n1/2(1−δn))1/2





2

−t





dt (III)

≥
∫

B

|x|βdx+ 2π

2 + β
e+O(1/n)

(3.34)

Integral (I) in (3.34) converges to
∫

B
|x|βdx by the Dominated Convergence Theorem.

Integral (II) in (3.34) converges to zero:

2π

2 + β

∫ n

n1/3

e

[

t2

n (1−
2 logn

n )−t
]

dt =
2π

2 + β
n

∫ 1

1

n2/3

e[n(s
2(1− 2 logn

n )−s)]ds

≤ 2π

2 + β
n

∫ 1

1

n2/3

exp(−2 log n)ds

≤ 2π

2 + β

1

n
,
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since for n sufficiently large one has

n

(

s2
(

1− 2 log n

n

)

− s

)

≤ −2 log n in

[

1

n2/3
, 1

]

,

because

n

(

s2
(

1− 2 log n

n

)

− s

)

= −2 log n at s = 1,

=
1

n1/3

(

1− 2 log n

n

)

− n1/3 at s =
1

n2/3
. (3.35)

Integral (III) on (3.34) goes to e+O(1/n) by (1.2.10). For the second and third integrals

on (3.33) we apply the Dominated Convergence Theorem, and those integrals converge

to
∫

B
|x|βdx and 0 respectively (recall that wn → 0 almost everywhere on B and f is

continuous, thus bounded on B̄ × [0, tε]). So taking the limit we conclude that

1 ≥ 2π

2 + β
e(ζ − ǫ)∀ ε > 0 ⇒ ζ ≤ 1

2πe
2+β

, (3.36)

a contradiction to (H6). This finishes the proof of Theorem 3. �

Remark 3.4.1. Taking the limit n → ∞ on (3.32) one could directly obtain (3.36). In

fact, further calculations were made just to show that outside B
e
− n

2+β
the integral converges

to zero.

Regarding the regularity of the solution u: Let w ∈ H1
0 (B) be a weak solution (in

H1
0 (B)) of







−∆w = f(x, u) in B,

w = 0 in ∂B.

then by Elliptic Regularity (c.f. [4]) we have w ∈ H2(B) ∩ H1
0 (B). Since f and u are

radial in x, so is w. Now observe that for any function ϕ ∈ C∞
0,rad((̄B)) (C∞, radial and

vanishing on the boundary) we have

∫

B

w(−∆ϕ)dx =

∫

B

(−∆w)ϕdx

∫

B

f(x, u)ϕdx =

∫

B

∇u∇ϕdx
∫

B

u(−∆ϕ)dx.

Given any ψ ∈ C∞
c,rad(B) let ϕ ∈ C∞

0,rad(B̄) be the solution of

−∆ϕ = ψ in B, u = 0 in ∂B.

So for any function ψ ∈ C∞
c,rad(B) one has

∫

B

(w − u)ψdx = 0 ∀ ψ ∈ C∞
0,rad(B).
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Thus
∫ 1

0

(w(r)− u(r))ψ(r)rdr = 0 ∀ ψ ∈ C∞
c (]0, 1[).

Therefore u = w almost everywhere and regularity is proven.
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Chapter 4

Conclusion

On [15], de Figueiredo, do Ó and Santos stated the finiteness of the supremum (5), as

well as the attainability for the case where M = 0 in (h2). the first theorem states the

attainability for the so-called critical case 0 < M < ∞. We considered the sequence

(yn) (1.13) originally presented on [18] and here we establish an improvement on the

estimatives regarding it, namely:

∫ ∞

n

ey
2
n−tdt ≥ e+

e

n
+ o(

1

n
). (4.1)

Decay conditions on both theorems 1.1 and 1.2 depend explicitely on (4.1), being also a

consequence of the Concentration-Compactness technique used. Theorem 1.2 generalizes

the result by Csató and Roy [12] changing the weight |x|β for a more general weight h(x)).

Lemma 2.2.8 is mentioned on literature (for instance, [2], [12]) as an easy consequence of

the properties of the Schwartz rearrangement, but since I did not find any proof, I crafted

the one we present here. Proof of Theorem 1.3 uses the same approach presented by de

Figueiredo, Miyagaki and Ruf, but here we get a radial weak solution (while the solution

found in [14]) may not be radial. We use here the same sequence (yn) used on the proofs

of Theorems 1.1 and 1.2, which provides a much better estimative for the constant ζ in

(H6) than the Moser sequence originally used in [14]. It is also worth noticing that the

so-called critical growth condition (H6) does not depend on the values of f outside an

arbitrarily small ball around the origin.
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Appendix A

Results used on the Proof of Theorem 1

Definition A.0.1. Let Ω ⊂ R
2 be an open set. We say that (un) ⊂ H1

0 (Ω) is a normalized

concentrating sequence at x0 ∈ Ω̄ if

(C1)
∫

Ω
|∇un|2dt = 1 ∀ n,

(C2) lim supn→∞
∫

Ω−Bρ(0)
|∇un|2dt = 0 as n→ ∞ for all 0 < ρ < 1 fixed.

An important property of concentrating sequences is the following:

Proposition A.0.2. Let (un) ⊂ H1
0 (B) be a normalized concentrating sequence. Then

(un) converges weakly to 0.

Proof. Let φ be any C∞
c (B) (compact support) test function. Then for any 0 < ρ < 1

∣

∣

∣

∣

∫

B

∇φ∇undx
∣

∣

∣

∣

≤
∫

B−Bρ

|∇φ||∇un|dx+
∫

Bρ

|∇φ||∇un|dx

≤ ‖φ‖L2(B)‖∇un‖L2(B−Bρ) + ‖φ‖C1(B)

√

πρ2‖∇un‖L2(B) (A.1)

by Hölder’s inequality. Taking n → ∞ and then ρ arbitrarily small one arrives at the

desired result. �

Theorem A.0.3. (Vitali’s Convergence Theorem, c. f. [19]) Let E be a measurable set,

(fn) ⊂ L1(E) be a uniformly integrable sequence and fn → f almost everywhere. Then

f ∈ L1(E) and
∫

B

|fn − f |dx→ 0. (A.2)
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Appendix B

Results used on the Proof of Theorem 2

Theorem B.0.1. (Cauchy’s Integral Formula) Let U be an open subset of the complex

plane, Br ⊂ U the open ball of radius r, Γr its boundary, counterclockwise oriented and

f : U → C a holomorphic function. Then for any a ∈ Br

1

2πi

∫

Γr

f(z)

z − a
dz = f(a). (B.1)

Definition B.0.2. Let Ω ⊂ R
N be a bounded domain and u : Ω → R be a measurable

function. Then, its Schwarz symmetrization, or the spherically symmetric and decreasing

rearrangement is the function u∗ : Ω∗ → R defined by







u∗(0) = ess sup u

u∗(x) = inf{t : |{x : u(x) > t}| < αN |x|N} if x 6= 0,

where |E| denotes the N-dimentional Lebesgue Measure of a measurable set E ⊂ RN and

αN is such that |B|x|| = αN |x|N .

Some useful properties of the Schwarz rearragement are:

Theorem B.0.3. (c.f. [22])

(i) |{u∗ > t}| = |{u > t}| ∀ t and

(ii) u∗ is non-negative (if we assume u non-negative), radial and monotonically decreas-

ing (thus, almost everywhere differentiable).

Theorem B.0.4. (c.f. [22], Theorem 2.3.1) Let 1 ≤ p < ∞. Let Ω ⊂ R
N be a bounded

doamin and u ∈ W 1,p
0 (Ω) be such that u ≥ 0. Then u∗ ∈ W 1,p

0 (Ω∗) and

∫

Ω∗

|∇u∗|pdx ≤
∫

Ω

|∇u|pdx. (B.2)
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Theorem B.0.5. ([17], section 5.5, Theorem 1) Assume Ω is bounded and open and ∂Ω

is C1. Then there exists a bounded linear operator

T : W 1,p(Ω) → Lp(∂Ω)

such that

(i) Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω̄) and

(ii) there exists a constant C = C(p,Ω) such that

‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) ∀ u ∈ W 1,p(Ω). (B.3)

Theorem B.0.6. ([17], section 5.5, Theorem 2) Assume Ω is bounded and ∂Ω is C1.

Suppose furthermore that u ∈ W 1,p(Ω). Then

u ∈ W 1,p
0 (Ω) ⇔ Tu = 0 in ∂Ω.
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Appendix C

Results used on the Proof of Theorem 3

Proposition C.0.1 ([13], p.47). Let X be a Banach space, Ξ ⊂ X open and φ : Ξ → R

such that ∇φ (the Gatêaux derivative of φ) exists in a neighbourhood of u ∈ Ξ and is

continuous at u. Then φ ∈ C1 and φ′(u) = ∇φ(u) (φ′ denotes the Frechét-derivtive of φ).

Lemma C.0.2. ([14], page 145, Lemma 2.1) Let Ω be a finite measure smooth domain,

(un) ⊂ L1(Ω) converging to u ∈ L1(Ω). Assume that g(x, un(x)) and g(x, u(x)) are also

L1 functions satisfying (H1). If

∫

Ω

|g(x, un)un| ≤ K, (C.1)

then g(x, un) → g(x, u) in L1(Ω).

Theorem C.0.3. (c.f. [7]) Let Φ be a C1 funcitonal on a Banach Space E. Suppose

(i) There exists a neighbourhood U of 0 in E and a constant a such that Φ(u) ≥ a for

every u in the boundary of U ,

(ii) Φ(0) < a and Φ(v) < a for some v /∈ U .

Set

c = inf
P∈P

max
w∈P

Φ(w) ≥ a,

where P denotes the class of continuous paths joining 0 to v. Then there exists a sequence

(uj) ⊂ E such that

Φ(uj) → c and Φ′(uj) → 0 in E∗.

Thus, if Φ satisfies (PS)c, there exists a subsequence (ujk) and u ∈ E such that

ujk → u and Φ′(u) = limΦ(ujk) = 0.
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