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Resumo

Nesta tese apresentar-se-a alguns resultados relativos a nao-linearidades do tipo expo-
nencial com pesos apropriados: primeiramente, tratar-se-a a atingibilidade de supremos
do tipo Trudinger-Moser e Trudinger-Moser-Hardy na bola unitaria e em um dominio com
fronteira C'! simplesmente conexo contendo a origem,respectivamente (ambos os casos em
R?).Chega-se em condi¢oes de decaimento para o limite do peso na origem, com condigoes
pouco restritivas para o comportamento do peso numa bola muito pequena no entorno da
origem. Tal resultado é atingido utilizando técnicas de Compacidade Concentrada. No
terceiro capitulo, estabelecer-se-4 um resultado de existéncia para o caso critico de um

problema de Dirichlet eliptico
—Au = f(z,u) in B, u=0in 0B

na bola unitaria em R? com nao-linearidade exponencial associada ao primeiro problema
de atingibilidade. A condicgao de criticalidade da funcao f novamente ignora o comporta-

mento fora de uma pequena vizinhanga da origem.

Palavras-chave: Equagoes diferenciais parciais, Equacoes diferenciais parciais nao-lineares,

Analise funcional nao-linear.



Abstract

We present some results regarding critical nonlinearities of exponential type with ap-
propriate weights in R?: first regarding the attainability of supremum of a weighted
Trudinger-Moser functional on the unit ball and of a Trudinger-Moser-Hardy type on
any simply connected domain containing the origin. We arrive on decay conditions for
the limit of the weight at the origin (thus, we do care about the behavior of the weight
only on a neighbourhood of zero, requiring less information on the rest of the domain.
This is achieved using Concentration-Compactness-type techniques. Moreover, we show
an existence result for an elliptical Dirichlet problem

— Au = f(z,u) in B, u=0in 0B

with exponential nonlinearity on the ball. The criticality condition is associated to the

first supremum and again ignores the behaviour of f outside a small ball around the origin.

Key words: Partial differential equations, Nonlinear partial differential equations, Non-

linear functional analysis.
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Introduction

Let © € R? be a C' and bounded domain, and W,”(Q) denote the closure of C°(Q)

(compact-supported C*°(2) functions) with respect to the norm

1/p
fullgoi= ([ 19uP)

The classical Sobolev inequality states that if u € W, (), then u € LI(Q), for 1 < ¢ < p*,

where 1% = 110 — 1 (if p < 2), and the embedding is continuous. The borderline case
p = 2 corresponds to the Trudinger-Moser inequality, first proved by Pohozaev [26] and

Trudinger [29] separately, and states that if u € H}(Q), then
/ el g < 00, Va € R,
Q

A sharp result by J. Moser [24] is

2 <], a < 4m,
sup e dx
u€H§(Q),[|Vull 2<1 /0 =00, a > 4.

An interesting question is whether the supremum below is attained, i.e., the existence
of a function uy € H}(B) such that

sup /e‘“‘2 dx:/ea“?) dx. (1)
u€H (Q),[|Vul 2<1 /@ Q

If o < 47 we have compactness of the embedding, so the supremum is achieved. If a = 4,
this argument fails. However, Carleson and Chang [9] proved that, for Q = B;(0) , the
supremum is attained, using Concentration Compactness techniques (c.f. [23]). Further
improvements on this question were made by Struwe [28] (for small perturbations of B;(0))
and Flucher [21] (for any bounded domain in R?).

In the present thesis we present some results regarding critical nonlinearities of expo-
nential type with appropriate weights. Embeddings in weighted Sobolev spaces were first
considered by Ni [25] and were completely settled by de Figueiredo, Miyagaki and Santos
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[16]: if B C R" is the open ball, for N > mp and « > 0 one has

p(N + «)

sup / |ul?|z|%dr <00 1< g < .
B N —mp

weW, o7 (B)|[uflm,p=1

rad

The Trudinger-Moser associated case for N = 2 was considered first by Calanchi and
Terraneo [8]. They established that for any 8 > 0

). / TP < oo, (2)
ueHol,rad(B)vHvulbgl B
and
it / T ] = oo, (3)
uw€H{(B),||Vull2<1 /B

In [15], de Figueiredo, do O e dos Santos generalized (2) substituting the weight |z|? for

any function h such that

(i) h(z) = h(|z]) : B — [0, 00| a radial non-decreasing differentiable function such that
h(0) = 0, and
(ii)
h
0 < M :=limsup % < 00. (4)
r—o0+ T
Definition. The case M = 0 in (ii) is called subcritical case, and M > 0 is the critical

case.

More specifically, they established that, under (i) and (ii), the supremum

sup /Be%(”ﬁ)“Qh(x) dr. (5)

weH}, . (B),||Vull2=1

is finite. Regarding the attainability of (5), the subcritical case is solved in [15] under the
additional hypothesis

(iii) A is differentiable in |0, 1] and lim sup,_,+ % < 0.

and the critical case is solved for h(r) = r®. Here we will present 3 main results: the first

two regarding the attainability of a weighted Trudinger-Moser type and a Hardy-type

supremums, and one regarding the solvability of a Henén-type Dirichlet problem.

Attainability of the supremum (5) on the critical case

Let 3 > 0, B = B(0,1) C R? be the open ball. The first goal is to establish decay
conditions on the limit (6) to guarantee the attainability of (5) in the critical case where

h does not need to be radial. It will be assumed
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(h1) h(z): B — [0, 00[ a radial continuous function such that h(0) = 0,

(h2)
h
0<M::limﬂ<oo, (6)
z—0 |:(:|5

Theorem 1. Let h be a function satisfying (h1) and (h2). Then (5) is finite. Suppose
the existence of a ng > 0 sufficiently large (c.f. remark below, item (ii)) such that

——M‘<—. (7)

Then the supremum (5) is achieved.

Remark. (i) It is important to emphasize that the decay condition on the theorem
above does not depend on the value of the weight function h(x) except on
a small neighbourhood of the origin. This is achieved by using Concentrating

Sequences and Concentration-Compactness-type techniques (c.f. [23], [9]).

(11) The meaning of sufficiently large will be clarified during the demonstration of the
theorem: it depends on the value of M and on the further choice of the test functions

used on the proof.

Attainability of the supremum of a Hardy-type embed-
ding

Let Q C R? be a bounded domain containing the origin. Adimurthi and Sandeep |[2]
established the finiteness of the following singular embedding:

IN

2
e ) a ﬁ
sup /QW<OOI£BE[O?2[’&>O’E+§ 1. (8)

weHL(Q),]|Vul2<1

Csato and Roy proved the attainability for any domain  [11] and for simply connected
domain [12] using a much simpler technique relying on the Riemann Mapping Theorem.
Here we will replace the weight # by ﬁ, where h : B — R satisfy hypothesis (h2) (as
on Theorem 1) and

(h1)’ h(z) : Q — [0, 00 a continuous function such that h(0) = 0,

(h3) There exists a constant C' > 0 such that

Tx(—vrﬁ)ZCinB. 9)



12

We arrive again at the necessity of a decay condition for the limit (6):

Theorem 2. Let Q C R? be a C* simply connected bounded domain containing the origin,
B €10,2], >0 h be a function satisfying (h1)’, (h2) and (h3). Then

(i) if 1= +§ < 1, the supremum

et —1
sup / < 00. (10)
vEHL(Q),]|Vo]| 2<1/Q h(x)

is attained for any h, while

(ii) if &=+ g =1, (10) is achieved if there exists ng > 0 sufficiently large such that

1
<M 1'— (11)
no

Ll V

where a = 43.
T

Here the observations of Remark are still valid.

Existence of solution for a associated Dirichlet Problem

It is known by the Lagrange Multiplier theorem that there exists a constant A # 0 such
that the function ug € Hy,,q(B) that achieves the supremum (5) is the (classical) solution
of a Dirichlet problem

—Au(z) = e @0 h(z), z € B,

u(z) =0, z € 0B. (12

The regularity of the solution will be discussed further. Motivated by that, we study the

existence problem for a particular class of Henén-type problems; i.e.:

—Au(z) = f(z,u), z € B, (13)
u(zr) =0, z € 0B,
where f has exponential critical growth (ie. f(z,t) > Ce** for t large, C,K > 0
constants). Problems of this type have been vastly studied ([1], [3], [14], etc). Here we
apply a variational approach in the spirit of Brezis-Nirenberg [7], primarily studied by de
Figueiredo, Miyagaki and Ruf (c.f. [14]). Let B C R? be the open unit ball centered at

zero, and f satisfies the following conditions:
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(H1)
f: B xR — R continuous and radial on x; f(z,0) = 0 Vz € B;
(H2)
>0, M>0: 0 <F(a,t):= [ f(z,s)ds < Mf(x,t) Vo € B, Vt > t;
0 < F(x,t) < —Mf(x,t) Ve € B, Vt < —tg
(H3)
1
0< F(x,t) < §tf($,t) Vo € B, Vt € R.

(H4)

_ 2F(x,t) o s I Vul?

1 T <y = inf{B— H! (B

II?_}S(}lp 2 451 m { fB u2 u € O,rad( )}

(H5) There exist some o > 0 some k > 0 and some constant K > 0 such that

|f(z,t)| < K|t|feX™ > |z V¥ t € R, Yz € B,

(H6) Given e > 0 there exists t. > 0 and ¢ > 0 such that for all ¢ > ¢. and for x € By:

Fla, t)te 208 =8 5 ¢ ¢

2+8

where 8 > 0 and ¢ is any constant strictly greater than 5".

For instance, f(z,t) = Cte?™ @+ b(z) satisfy conditions (H1) to (H6) for any constants
C > 0, v > 0 and any continuous radial function h : B — R such that L; < Irx(ﬁ) <
Ly V x € B for constants Ly, Lo > 0.

Theorem 3. Suppose f satisfies conditions (H1) - (H6). Then the problem (13) has a

radial nonzero weak solution u € Hj,,,(B) N H*(B).

Remark. Hypothesis (H1)-(H5) are useful to produce the traditional set-up for appliance
of the Mountain Pass Theorem (Th. C.0.3), including the proof that the apropriate func-
tional satisfies the Palais-Smale condition until a certain level d € R. Condition (H6) is

the minimum growth that allows finding a critical value below d.
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Chapter 1

Proof of Theorem 1

1.1 Finiteness

First we notice that if a function ug € Hy,,,(B) achieves the supremum (5), then it also

;rad

achieves
sup /((32’T(2+B)“2 — 1)h(z)dz, (1.1)
B

u€H; 4(B),[Vul2<1

since the added part does not depend on w. From now on we will deal with (1.1) instead

of (5) whenever it is convenient.

Proof. (Theorem 1.1, finiteness of the supremum) By (h2) one has

/ 627r(2+ﬂ)u2h(x)dx < O/ 627r(2+ﬁ)u2|x|6dx
B B

for all u € H&
ball with radius 7) of the origin such that

(B), since, given n > 0, there exists a neighbourhood B., (the 0-centered

rad

h(z)
WSM_UV$€BW7

and outside B, the function % is continuous and thus bounded from above. One has

Theorem 1.1.1. (/15], Theorem 1.1(particular case))

sup / 2O 118 e (1.2)
B

ueH]} d(B)7||Vu||L2(B)§1

0,ra
s finite.

The proof of Theorem 1.1.1 by de Figueiredo, do O and Santos goes as follows: we
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perform the following change of variables

1 1/2 —t
2(t) = (m) u(z), |x| = e?*5, (1.3)

which is an isometry (c.f. [15]) between Hj,,,(B) and

H :={w:(0,00) — R : w is measurable, has weak derivative, w(0) = 0,

ol = / /() Pds < oo},
0

in order to get

2T o 2

(e —1)e 'dt

sup /(62”(2“3)“2 — D|zPdz = sup
ueH} | 4(B),||Vull 2<1 /B weH,|ullz<1 2+ B Jo

2
R
24 B ueny, (B)IVull <1 /B

which happens to be finite due to a J.Moser result [24]. |

1.2 Attainability

1.2.1 Concentration-Compactness

Definition 1.2.1. Let Q C R? be an open set. We say that (u,) C HJ(Q) is a normalized
concentrating sequence at rg € Q if

(C1) [ |Vu,|?dt =1V n,
(C2) limsup,, . foBp(xo) |V, |?dt =0 as n — oo for all p > 0 fized.

The technique used here is based on Concentration-Compactness results, first estab-
lished by Lions:

Theorem 1.2.2. (Lions [23], pg. 195-199) Let @ C RN, N > 2, (u,) € W™ (Q) such
that ||Vu,| v < 1V n. Without loss of generality we assume u, — u, |Vul?dz — du. Set

ay = Nwy |, where wy_y is the area of the unit sphere SN=' C RY. Then either

(i) du = 6z, u=0 and exp(ozNu%) — €Oy, for some ¢ >0 and zy € Q, or

(ii) there exists a > 0 such that exp((an + a)us ") is bounded in L'(Q) and thus

N
exp(ayus ') — exp(aNu%) in L*(Q).

We will use the above theorem to prove
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Theorem 1.2.3. Define
B\(B) = {u € Hy,qq(B) : |l <1}, (1.4)

Let B be the unitary open ball in R%. Let (u,) in %1 (B) with u, — u and |Vu,|* — du.
There is a subsequence (still denoted by (uy,,)) such that either

(i) (u,) concentrates at 0 (or equivalently p is a Dirac measure cdy for some ¢ > 0)

and u =0 or

(ii) compactness holds in the sense that e"+E)uap(z) — 2 AW b(1) in L'(B).

Remark 1.2.4. (i) Since H}(Q) is reflexive, if (u,) is a bounded sequence a theorem
by Kakutani (c.f. [6], Theorem 3.17) guarantees the existence of u € Hg(2) such
that u, — w in H ().

(i) Since (uy) is a normalized sequence, i.e, [5|Vuy|*dx =1 Vn, it is possible to apply
Prohorov’s Theorem ([5], p. 59) to guarantee the existence of such a measure dy.
More exactly: Prohorov theorem states that a tight subset I1 (given € > 0 there exists
K C RY compact such that P(K) > 1 — ¢ for all P € 11) of probability measures
is relatively compact (there exists a weakly convergent subsequence). The sequence
of probability measures |Vu,|>dx is tight with respect to R? since the functions are

supported on the unit ball, which is compact.

Proof. (Theorem 1.2.3) Notice that for any p > 1:
/ 2 (Pdy < O ( / €2ﬂ(2+ﬁ)pun(|x)2’x‘pﬁdx)
B B

C (/ €2W(2+B)pun(|x)2’x|5dx>
B

(since |z| < 1 and Bp > = |z|?? < |z|P)

1
= C(QW/ 62”(2+ﬂ)p“"(r)2r5+1d7")
0

B+2

(taking s =7 2 , (24 B)Y2u,(r) = 2%, (s))  (1.5)

1
= C am eAmPon(8)? g 1
2+ 06 Jo

2 dmpun (z)?
— Wﬂnl"d
0(2"‘5/36 T

where v, () = (22)"? u,(jz|757). Notice that ||V, 2(s) = || Vitnl2(5) and that, since

(u,) does not concentrate, neither (v,,) concentrates. Thus, applying Holder’s inequality

IN

for p > 1 one has

1/p
/ 62”(2+B)“%h(x)dx <C (/ e47rp”%dx> |E|1/p* < C'/|E|1/p*,
E E
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if p is sufficiently close to 1 by Lions’ theorem 1.2.2 item (ii). Thus, the sequence of
functions e2"+8)4ih(x) is equiintegrable. Since w, — w in H}, u, — w in L? up to a
subsequence and finally w,, — u almost everywhere up to a subsequence. This allows us

to conclude the proof by directly applying Vitali’s Convergence Theorem. [ |

1.2.2 Non-Compactness Level

We now establish the non-compactness level for the functional:

Theorem 1.2.5. Let (u,) C By raa(B) be a concentrating sequence. Then

2rM
lim sup/ (20 _ ) h(z)da < e (1.6)
B

n—00 — 2408

In the proof of the theorem above, we use the following lemmas:

Lemma 1.2.6. (c.f. [18], Proof of Theorem 1.4, page 142, or [9]) If (z,) is a concentrating

sequence just like in Remark 1.2.8, then

lim sup/ (e — 1)etdt < e.
0

n—00

Lemma 1.2.7. Let B C R? and (u,,) be a normalized concentrating sequence around zero,
then
lim sup/ ('™ — 1)dz — 0 as n — oo,

B-B;s

n—o0

Proof. (Lemma 1.2.7) Let € C°°(B) be a cutoff function such that n > 0 and
n=1in B— Bs, n=0in Bs/,.

Therefore

lim (e““i — 1) dr < lim sup/ <e4”("“”)2 — 1) dx (1.7)
"0 JB-B;s n—oo  JB-Bs/,

Notice that nu,, € Hy(B — Bs/2) and nu, does not concentrate at any point, since

/ |Vnu,|*de < (2||n||Z2: + 2|]77]|L2)/ |Vu,|?dr — 0 as n — oc. (1.8)
B—Bs)s B

—Bs /2

So the conclusion holds by Lions’ Concentration Compactness Alternative (Theorem 1.2.2)

second item (ii), which states that the non-concentrating nature of (nu,,) yields compacity
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for a subsequence:

/ <647r(77un)2 _ 1) dr — <e4”(nu)2 — 1) dr = 0.
B—By s B—Bs/s

Proof. (Theorem 1.2.5) We have by (h2), for any > 0, that there exists p > 0 suficiently
small such that M —n < % <M+nitze B, So

/ (@A — 1) h(x)da < (M +n) / (> — 1)) dr. (1.9)
By

By

Now we perform again the change of variables (1.3) to conclude that

2m(M 0
(M + n)/ (2@t — 1)|z|dw = u/ (e — e ~fdt.  (1.10)
B 2+ 6 (2+8) log%

P

Remark 1.2.8. Supposing (u,) C H&}md(Q) 15 a normalized concentrationg sequence
at xo = 0 and performing the changes of variables (1.3), we can analogously define a
normalized concentrating (at o) sequence (z,(t)) by the following conditions:

(CO) (zy) is continuous, piecewise differentiable and z,(0) = 0,
(C1) [J°|2h|2dt =1V n,

(C2) fOA |22 |2dt — 0 as n — oo for any A > 0 fized,

From Lemma 1.2.6 we conclude, putting together (1.9) and (1.10):

2 (M + 77)6

5 (1.11)

n—o0

lim sup/ (2" Hu _ ) p(z)dx <
By
Now notice that for any 6 > 0 such that Bs C B one has

lim (20 _ 1) h(z)dx = 0,
n—oo Jp_p;
by performing the change of variables (1.3) and also by lemma 1.2.7. So instead of (1.11)

one actually has

2n(M +n)

lim sup/ 22BN ) p(z)dx <
K hia)de < 2

n—oo

(1.12)

Since (1.12) holds for any n > 0, we conclude that if (u,) is a concentrating sequence,

then
2 M
<

T2+p

lim sup/ (2 _ 1) h(z)da e.
B

n—o0
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This finishes the proof of Theorem 1.2.5. [ |

1.2.3 Test functions and decay condition

Given any § > 0 and again performing the change of variables (1.3) write

/(62ﬂ(2+5)u2 —Dh(x)de > (M — 5((5))/ (€2ﬂ(2+ﬁ)u2 —1)|z|dx

Bs

L)
2+ p (248) log 1/ 7

where £(d) = sup,¢p,

% - M ‘ Consider the sequence

L (1—=6,)"% 0<t<n,
Yn(t) = il : ==t (1.13)

(n(l—én))l/2 log Anfgj(tlfn) + (n(1 - 571))1/27 n<t,

where 6,, = 210% and A, are constants to be chosen. This sequence is contained on the
space H and concentrates at co. On this context, they will be used as test functions,
in order to surpass the non-compactness level given by Lemma 1.2.5. First one needs to

establish some properties of (y,):

Lemma 1.2.9. The coefficients A,, can be chosen such that A, = —— + O(loi#) VneN
sufficiently large and fooo [y, |Pdt =1V neZ,.

Proof. (Lemma 1.2.9) First notice that [ |y} [?dt =1 —6, =1 — 210% (since 6,, = 210%
on (1.13)) so we have to show that it is possible to choose A,, such that

o 1
/ ! [2dt = 5, = 227 (1.14)
n n
Indeed,
- /2 1 “|d —(t—n) ’
’yn’ dt = m a[log(An + 1) — IOg(An +e )] dt

2
dt

1 00 e—(t—n)
N n(l—4,) /n A, + e—(t-n)
2
ds

B 1 /°° e ®

T n(1-0,) Jy |Ante
21

—d -
rr(r e®)

1 /°° 1

= 1 1 p T = T
‘n<1—6n>/o @ =)

1 P Antl 1
Tl —ey %A, T A, 1
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By (1.14) this gives the condition

A +1 1
log A+ A1 (1—6,)2logn (1.15)
and thus
ATL + 1 _ﬁ o 2 _410g2n
i e Antl =n’e
Since A,, converges to 0 (by (1.15)), A’:’jrl — 0 as n — 0o. Since ¢ AT = e‘leﬁ, we
get
A +]_ A A 4log2n

= 1 - N =nlee” n . 1.16

A, ( +An+1+0(An+1)> e (1.16)
Thus

An +1 1 1 _4log2n

A e ﬁo(l) =e+tele » —1),

so we conclude that

A, +1 4 1og2 n log4 n
_ O . 1.17
n?A, c n +0l n? ) ( )
This implies
1
A_ = n2e — den log2 n + 0(108;4 77/)>
hence 2
1 log”n
Ay=—+0 :
nZe ( n3 )
[ |
Lemma 1.2.10. 00 1
/ evn=t > e+ - +o(=). (1.18)
n n n

Proof. (Lemma 1.2.10)

= e 1 A, +1Y)°
ynft — — 1/2 n — —
/n eYntdt /0 exp [((n(l 9n)) "+ WA= 0.7 log e €_S> n s] ds

- /OOO exp {n(l — 0p) + 2log A/,tn—i——'—eis + ol i 5 log? AAH”++€}S —n— s} ds
= % Oooexp :2 1og% - s_ exp {n(l i 5] log” Aiir:;i} ds

> % 000 exp :2 log % — 3: (1 + W —35,) log? AAnn++€15)

= % Oooexp :2 log% — s: ds (I)

+ % Oooexp [2 log % — } n(l i 5] log? AAnn_i_—i_;s ds (II)

(1.19)
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Developing (I) from (1.19):

1 [ A, +1 1 [/ A, +1\* _
— 2log — "~ —s|ds = — - sd
n2/0 exp{ o8 A, e 81 ° n2/0 (An—l—e—s) c

n? Apes + 1)
2 00

_ (144 / 1 ir

n? 1 (Apr+1)
(1442 1
B n? A, (1+A,)
1+ A
- n24A,

4elog“n log’ n
= —). 1.20

- BN 0B ()

Developing (II) from (1.19):

_/ exp [2 log AA ++ }8 - s] ol i 5 log® Ajinj_ei ds

:—/ (log Ant 1 )2 L log? An+ 1 e’ds
n? J, Apes+1) n(l—6,) A, +e s

B 1 © /A 41 21 2 An 1,

~ n2n(l —5,1)/1 <Anr+1) %, v

An+1

A, +1 /Anl 2. d A, +1
— ogudu (u=
n?(n —2logn) J; s A+ 12

An+1

A, +1 BT
= Z(n — 2log 1) / 22e*dz (z = logu)

A, +1
= -2 2
nZ(n—Qlogn)[ et 6}

_ Al [ e (AN Al (AT Al At
~ n%(n —2logn) & A, A, & A, A, A,

An+1

log

- {e—I—O(

n — 2logn

log®n

)} [4log”n +4logn + 1 —4logn — 2+ 2] + O(1/n?)

(by (1.17) and (1.15))

4elog?
= €108 n+E+O(E)_
n n n
(1.21)
[ |
Proof. (Theorem 1.1, Attainability) By Lemma 1.2.10 one has
2m(M — (o o 2m(M —e(6 1
u/ (e¥ — 1)e~tdt > M(e + S o)), (1.22)
2+6 (24+8)log1/é 2 +ﬁ n n
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% — M|, provided that (2 + )log1/6 > n. The goal is to

determine a decay condition such that

27r(1\24+—;(5)) (e L4, (l)) > sij‘ée (1.23)

where £(6) = sup,¢p,

in order to apply Theorem 1.2.3.

Remark 1.2.11. (i) Notice that one cannot send n to oo while § is fized since it would
be impossible to obtain (1.23) and neither send 6 to 0 while n is fized, otherwise
(1.22) would not be true (because (2 + f)logt > n and it would be impossible to
apply Lemma 1.2.10). The decays of the sequence and of the function h are linked
(since the chosen sequence increases the right-hand side of (1.22) and the decay of
h decreases it). Therefore a balance between n and 0 is necessary; here we choose
n= (24 p)log1/é for sharpness. There is no contradiction on the fact that n is an
integer and log1/§ is not: y, can be treated as a net or one can take a decreasing

sequence of 0),s — 0 without loss of generality.

(11) Here it is possible to clarify the meaning of sufficiently small: one needs to make
n sufficiently big (or § sufficiently small with our choice) in order to compensate

the lower order term Mo (%) which comes from the choice of test functions and the

value of M.
So it is sufficient that for one ¢ sufficiently small £(§) < (2%%’ or, for a ng suffi-
o
ciently big:

M

sup ﬂ M| < —,

_ "o ‘IW No

ja|<e” T4

For this value of ng, the following is true for any sequence (u,,) concentrating at zero:

2rMe

/ (@R _ 1) h(z)da > > lim sup / (F I — Dh(x)de,
B B

Thus a maximizing sequence (u,) with ||V,| 125y < 1V n cannot concentrate. Therefore

Theorem 1.2.3, item (ii) implies compacity for a subsequence of (u,,):

sup /(62”(%5)”2 — Dh(z)dz = lim [ ("% — 1)h(z)dx
B

N
UEH&,rad(B)vllvaLZS:l n—oo JB

_ / (@O _ 1\ () da
B



23

Chapter 2

Proof of Theorem 2

2.1 Finiteness

Proof. (Theorem 1.2, Finiteness) First regarding the finiteness of the supremum

2

au® _
sup / ‘ dx, (2.1)
Q

weHE(Q),||Vul| 2<1 h(x)

by (h3) one has

2

eau2 -1 edu” _ 1
———dz < | O———dx
/Q h(z) — — /Q ||

and this is finite by the following result by Adimurthi and Sandeep (c.f. [2]):
Theorem 2.1.1. Let u € H}(Y). Then for every a > 0 and 3 € [0, 2]

ou? -1
/ e—gdx < 00.

Moreover,

—1
sup —Bda: < 00
w€HE (), Vull 2<1/Q 7]

if and only z'fﬁ+§ <1.
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2.2 Attainability

2.2.1 The case ﬁ +§ <1

Proof. (Theorem 1.2, Attainability, & + & < 1) Let (u,) C H3(Q), [[Vun| 2 < 1 be a

maximizing sequence, i.e.:

2 2
au;, eou

lim dx = sup / dx. (2.2)
n—oo Jo h(z) weHY(Q),||Vul| 2<1 JQ h(z)

Since (uy,) is a bounded sequence and H}(€) is a reflexive space, a theorem by Kakutani
(c.f. [6], Theorem 3.17) implies that there exists u € H} () such that

Vul|z2() < 1 and u, — u.

Let £ C Q be an arbitrary measurable set. Let r := 47 /a > 1 and % =1- % > g and

use Holder’s inequality to obtain

L= (L) (Lags)

Notice that that ﬁ € L'(), since, by condition (h3), for any sufficiently small > 0,

@ € L>(Q—B,) and by condition (h2) h is very similar to (1/M)|z|?, and leﬁ e LY(0Q)

since 3s < 2 and thus [, ‘w'% < 27 fOR ri=Psdr = 27;132;35, where R < oo is the radius

of a ball containing the bounded domain 2. Using this fact and the Trudinger-Moser

2
eQUn

inequality, we conclude then that the sequence is equi-integrable, and apply the

h(w)
Vitali Convergence Theorem to conclude that
e eUn, e
sup / dr = lim | ——dzr = / dz. 2.3
w€HE(Q),|Vul 2<1/Q h(z) n—oo Jo h(z) o h(z) (23)
|
a | B _
2.2.2 Thecase - +5=1
Passing from () to B
Let
B\(E) = {u € Hy(E) : [[u] <1}, (2.4)

where F C R? is any measurable set. Fix

2

0= [ S 0 =

Q
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particularly

F;;p’a’h’B = sup {Fg(’sh(u); u € %1(3)} : (2.5)
analogously for F' g;’g :

F;ipaﬁB—sup{FgB(u); uE%l(B)} (2.6)
Let

F % (1) = sup {lim sup FP (uy); (un) C %1 (Q) concentrates at z € Q} :
n—s00

and

F](;znc’a’ﬁ’B(a:) = sup {lim_)sup Fgf(un); (un) C %1(B) concentrates at x € Bg} . (2.7)
Remark 2.2.1. Here one supposes ) to be simply connected in order to use the Riemann
theorem from Complex Analysis (c.f. [10]), guaranteeing the existence of a conformal
map ¢ : B — Q (which is a C* diffeomorphism in the standard topology) such that
®(0) = 0. The inverse of ¢ is also a conformal map. Thus (by the representation of a

holomorphic function by its power series) there exists a conformal map ¢ : B — Q such
that ¢(z) = zp(z) and ¢(0) = ¢'(0) # 0. This implies also that ¢ # 0 since ¢ is 1:1.

Theorem 2.2.2. Define ;
T
For any v € Hy,,q(B) N %, define u :=vo¢". Then u € %,(Q) and given any 6 > 0

such that Bs(0) C Q we have

g(9) := sup

|z|<é

(2.8)

Fg™(u) 2 |0/ () (M~ — £(8) Fg)” (v). (2.9)

Proof. (Theorem 2.2.2) Notice that given § > 0 such that Bs C Q for any 0 < r < § and
t €R,

M e@) 1 (M (o)
rlp(re®)|P— hg(re)) = rlp(ret)|?
(p : B — Q is the conformal map defined in Remark 2.2.1 such that ¢(z) = zp(z)) which
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implies
Y el G0 TP S )l G0 s
27 Jo h(¢(r€it))dt > 27T7 rB /(; ‘go(?“eitﬂﬁdt (2.10)
= WW(ONM (2.11)

- 7,,8 /271- |(;5/<T6it)|2
— Jo N(g(re))
The passage from (2.10) to (2.11) holds by the definition of a complex integral of a
holomorphic function f: U — C (U C C open) over I, := {z € C||z| =r}:

= 21(M~ — £(9))|¢' (0)]** dtVr <. (2.12)

27 it
_f(z) dz = f(?“i )ireitdt
ret

0
= i/:w f(re™)dt, (2.13)

r. <

by the fact that ﬁ is holomorphic since ¢ # 0 and by a subsequent application of the

Cauchy’s Integral Formula (c.f. Appendix, Theorem B.0.1).
Since the Jacobian of the change of variables ¢ is |¢/(y)|? on each point y € B by the

Cauchy-Riemann equations, we have by Cavalieri’s Principle:

FOh(u) > /0 (2 1) ( /6 ) %dm)) dr

§ pow(r)? _
> 27T(M_1—€(5))|¢/(0)|2_5/0 er—ﬁlrdr (2.14)

= ('O P(M ™" —e(8) Fg) (v).

[
Theorem 2.2.3. Let (u,) C %1(2) be a sequence concentrating at zero. Let v, = u,0¢ €

PB1(B). Then (v,) concentrates at zero and for any 6 > 0 sufficiently small one has

lim F3"(uy) = M~ (0)]>7 lim Fg’ (vg). (2.15)

n—oo

In particular, it follows that

Féonc,a,h(o) _ M_l|¢,(O)|2_BFEO:C’Q’6(O). (216)

Proof. (Theorem 2.2.3) It has been shown in [12] (Theorem 12) that

Theorem 2.2.4. Let (u,) C %1(Q) be a concentrating sequence at zero, let ¢ : B — Q
be the conformal map as in Remark 2.2.1 and v, := u, o ¢. Then v, € HB1(B) (and thus
FP(vy) is well-defined for all i) and (v,) concentrates at 0.
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From the theorem above follows the first statement of theorem 2.2.3. Now we use the

change of variables x = ¢(y) to obtain

eun — 1 en — 1
lim FS"(u,) = lim dr = lim [ ————|¢'(y)|*dy
Let 6 > 0 and split
eav% -1 60“)721 —1

&' (y)I*dy.  (2.17)

lim Fo"(u,) = lim

(y)Pdy + 1i
i o | ey W+ lim,

B—B; h(9(y))

Denote the integrals in (2.17) by A}(d) and A5(d) respectively. First we notice that
lim,, 00 A5(6) =0V 6 > 0: indeed, since ¢(z) #0V 2z # 0 and h(x) >0V x # 0, so

W e
o) <& BB

So it suffices to use the fact lim,_, [ B B; (eavﬁ —1)dy = 0, which has been already proven
(Lemma 1.2.7). Now define

yl®le )2
own - Ty #0,

M) i y = 0.

[1]

(2.18)

= is a continuous function on B: indeed, since ¢(z) = zp(2),

yl?lo' W) _ lew)l” 1¢'(y)I?
ho(y)  h(oy)) [ey)]P

which, together with (h2) and the fact ¢(0) = ¢/(0) # 0, yields the desired continuity. If
necessary, modify 0 so that |=Z(y) — Z(0)| < ¢ if |y| < 0. Thus

2
avy _
lim A%(8) = lim | “———Z(y)dy

= | lim F5" (w,) — M7H'(0) lim F5(v,)

n—oo n—oo
— |lim / emi_l(ay) =(0))dy
n—oo Jp |y|’3
< eFpe? (2.19)

Since ¢ is arbitrary, theorem is proved. [
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Concentration-Compactness Result

Definition 2.2.5. A functional Fg : %,(B) — R on the form Fg(u) = [, f(z,u(z))dz
is called compact in the interior of %B,(B) if given (u,) C %,(B) with

limsup || Vuy | 25y < 1 and u, — u (2.20)

n—0o0
implies f(-,u,) — f(-,u) in L*(B) for some subsequence.
The following general result will be useful:

Theorem 2.2.6. (/21], p.473) Let B be the unitary open ball in R%. Define a general
functional Fo(u) = [, f(z,u)dx. If Fqo is compact in the interior of %,(B), then for
every sequence (uy) in %B1(B) com u, — u and |Vu,|> — du there is a subsequence
such that either (u,) concentrates at 0 and u = 0 or compactness holds in the sense that

fCun) = f(u) in LY(B)).

To prove the attainability of the supremum, we will use the following Lions-type

Concentration-Compactness result:

Theorem 2.2.7. Let (u,) C %,(2). Then there exists a subsequence and u € HJ(S2)
such that u, — u in H}(Q) and either

(i) (un) concentrates at a point x € Q, or

(11) lim,, o Fo(u,) = Fo(u).

Proof. (Theorem 2.2.7) The proof is an application of Theorem 2.2.6 together with the
fact that Fy" is compact in the interior of %;(Q) (c.f. Definition (2.2.5)): indeed, the
proof is quite similar to the case - —i-g < 1;let 0 < 7 < 1 and suppose that (u,) C HJ ()
is such that

lim sup ||V, || 12y < 1 and u, — u in H'(Q)

n—oo

for some u € H'(Q2). Assume, up to a subsequence, that u, — u almost everywhere on €
and ||V, 2@y <0 =22 <1V n € N. Define v, :=u,/0 € %,(2), and @ = ab? < q,
so that we have 5

d—i- <1
At 2 ’
1

Let £ C Q be an arbitrary measurable set. Let r := 47 /a > 1 and % =1-2> 5 and

2
use Holder’s inequality to obtain

i =) (i)

In view of the Trudinger-Moser inequality and using the fact that ﬁ e L*(Q) (by (h3),

for any sufficiently small n > 0, we have ﬁ € L>*(Q2— B,) and by (h2) h is very similar
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(11142
to (1/M)|z|?, and Iw\% € L'(Q)). We conclude then that the sequence G@ s equi-
integrable, and apply the Vitali Convergence Theorem to conclude that the functional is

compact at the interior of €. [ |

Reducing to Radial Functions, Change of Variables

According to Lemma 10 on [11], if 0 < a < oo and w is a radial function defined on B,
the map T, : Hy ,,q(B) = Hp 0q(B); Ta(u) := Vau(|z|«) is invertible, with (T,)~ = T}/,
and satisfies | VT (u)lls = |[Vull2 ¥V u € Hj,,4(B). Moreover, if & =a=1— 5. we have

1 1 Bse
Fp(u) +/ dr = —/B ('™ e _ 1)dz + | ; |, (2.21)
6{1

Bs |x‘,8 a

This follows by performing the change of variables r = s'/¢ and using the fact =+ ’g =1

au? )
/ < = 27r/ e =Py (2.22)
Bs |z|P 0

604
_ 2T [T am(vau(st /) oa too(E1) g

a Jo
1

= = / e m(Ta()* g (2.23)
a4 J Bsa

Given any u : B — R, denote by u* its Schwarz rearrangement (c.f. Definition B.0.2).
It is shown in Lemma 14 of [11] that if (u,) C % (B) is a sequence concentrating at
zero and (u}) concentrates at 0, then v, = T, (u}) is a sequence of symmetric functions

concentrating at zero.

Lemma 2.2.8. Let Q be any bounded domain with C* boundary. Let Q* be the open ball
centered at the origin with |Q| = |Q*|. Then for any u € Hy(Q)

Fo(u) < Fol (u).

Proof. (Lemma 2.2.8) First we need to prove that v € HJ(Q) implies |u| € H}(Q), i.e,
|u| € H'(Q) and the trace of |u| on the boundary is identically null. Indeed, |u| € H'(Q)
(c.f. [17], page 308) , with

Vuif u >0,
Vi|ul=<0if u=0, (2.24)
—Vu if u < 0.

Now let (u,) C C(2) be a sequence such that u,, — v in H'(Q), and T : H'(Q) —
L?(09) be the trace operator. Notice that T'|u,| = 0 for all u, by item (i) of Theorem
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B.0.5. Now write

1] = Tl 2oy = T (] = [u]) 2o
OV || — Full 20 (2.25)

N

Notice that V|u,| — V]u| almost everywhere in €2, since for almost all z € Q,if u(z) > 0,
there is n sufficiently big such that u,(x) > 0, and thus V|u,|(z) = Vu,(n) = V|u|(z) =
Vu(x); analogously for the case u < 0. For the case u = 0, just notice that either
Vu,(z) = 0 and —Vu,(z) — 0 and Vu, = 0 a.e. on {u = 0} (c.f. [17], page 308). Now
let E be any open subset in Q. Then u € H'(Q), and u,, — u in H'(E). Thus

[ Vlual = ViulPde < [ 2+ [9]ul P
E E
= 22/ \Vu,|* + |Vul*dx
E

< C’/|Vu\2d:v,
E

yielding equiintegrability. Applying Vitali’s Convergence Theorem one concludes that
T|u| = 0. Since the boundary 9 is assumed to be C"!, Theorem B.0.6 implies |u| € HJ ().
Let |u|* the Schwarz rearrangement of |ul: it is a positive function and belongs to

H&’md(Q) according to theorem B.0.4. So without loss of generality one may consider

au2 .
u to be positive and radial. Now regarding the functional F*(u) = Jo elx—;l: notice

that the function F(t) : [0,00[— [0,00[, F(t) := " — 1 is increasing and thus may be

approximated by simple functions of the form

k-1
Z O‘iX]ai7ai+1] + O‘ch]ak,ooh
i=0
where 0 = ag < a; < ... < a < o0 and ;11 > o for all ¢ = 0,..., k. For instance, on
(|20], Th. 2.10) the simple functions used to approximate measurable functions have the

form
22" 1

gb = Z IC2_TLXETI€L + QnXFn,
k=0

where, for n =0,1,2,... and k = 0,1,...,2?" — 1, one defines
Ef = f (k27 (k+1)27"]) and F, = f7'(]2", 00])

n

and for a fixed n, the incrising character of I implies that E* is an interval for all k and

the superior extremity of E¥ is equal to the inferior extremity of E**.

It is worth noticing that [{u* > t}| is a ball centered at the origin, and ¢(r) = -5 is
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decreasing, thus assuming greatest values on a ball around the origin rather than on the
complement of the same ball; this is valid for any ball centered at the origin. Having this

and (i) in mind, one concludes that for any ¢,

/ ool (W) ) / Xeoel () o g (2.26)
SNl o =7 T
To prove it, write

E = {u>t}—{u" >t}

E* = {u" >t} —{u>t},

E, = {u" >t} n{u>t},

and notice that

1 .
sup —— < inf

z€E |l‘|5 T zeE* JZ|’B7
since, if zo € E and
1 i 1
[zo? ~ wckr Ja]?”

then W > ﬁ for some x; € E* | implying that |zg| < |z, from which one con-
cludes that zo € {u* > t}, since {u* > t} is a ball centered at the origin, leading to a
contradiction. So one concludes that (by Theorem B.0.3)

1 ) 1
/ mﬁdx < <§gg| |B) Hu >t} < (1€ng x\»@) H{u* >t} < /E de. (2.27)

Adding [, #dm to both sides of (2.27) one arrives at (2.26) . Now fix i = k and consider

the following computations for this case:

/ O‘kX]ak:OO[(u*)dx_/ akX]abOO[(u)dx_i_/ ak—lX]ak,l,ak}(U*)dx
* Q *

|| |z ]

_/ ak—lX}ak,l,ak](u)dx
Q

)7

_ / e X]ancol (W) ;- / Ok Xja oo (1) 1 / =1 XJax 1 oo[ (W)

] || ||

_/ aklx}ak,oo[(U*)dx_/ 04k1X1ak1,oo[(U)dx+/ V=1 Xjar. ool (W) ;-
* Q Q

|| || ]

X]ak,oo[(u*> / X]ak,oo[<u>
=(or. — v SR P dr — inliiad D Ap
( k k—l) (/* | |6 T | |5 T

+/ cvk_wqa“,oo[(u*)dx_/ =1 XJax_1,00[() ;-
* Q

] ]

Z/ Oék].X]CLkl,OO[<U*)d‘/L‘_/ ak*lX}akfl,OO[(u)dx.
Q* Q

)7 ]
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by (2.26). Performing the analogous computations for i = k— 1, ..., 0 in the same fashion,

one concludes that

>0 QiXjana (U5) + akX}ak,OO[(U*)dx B / im0 @iXjavas ] (1) + UXjagoo (1)
- | Q |”
[ st
~ Jo |z|? o |7ff B

Since it is valid for simple functions, it is also true to F'(t) = e — 1 by passing the limit

using the Dominated Convergence Theorem. This finishes the proof of Lemma 2.2.8. N

Thus
lim sup F gf (u,) <limsup F, g;f (u))
n—oo n—oo
1 2 | B%| 1
= —lim sup/ (e'™n — 1)dx + —— — / —=dx
4 n—oo Bsa a Bs |l‘|ﬁ (228)
1 Bsa 1
< - sup / ('™ — 1)dx + B! —/ —pde
Q (u,) concentrates at 0 Bgsa a Bs |(L’|

Now we must note that (u,) C %;(B) is a sequence concentrating at zero maximizing
F ;;,‘;“C’“ﬁ P then (u?) also concentrates at zero. Indeed (this proof was taken from [12]),
since FE‘;HC’O"B B = peeneeB B (same argument used in the proof of Theorem 2.2.3), (uy,)
also maximizes F"““?P. since u, concentrates, then u, — 0 in L?*(B); if u* do not
concentrate we have by the Concentration-Compactness Theorem 2.2.7 that

0 < FreehB — im FOP(u,) < lim F2%(u?) = 0. (2.29)

n—oo n—oo

Test functions and decay condition

Lemma 2.2.9. Define a = . If h satisfies the decay condition "There exists a ng > 0
sufficiently big such that

‘:E’ﬁ -1 -1 1 9
SUp |y - <M — (2.30)
T (x) i
then
(MY = e(8))Fg>™P > M FRre b, (2.31)

mﬂ _ M—l

Recall that we defined £(6) = sup, <5 | 453

Proof. (Lemma 2.2.9) Using the change of variables by Moser » = e~/? and supposing
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that u € H}(B) is radially symmetric, write v(t) = (47)"2u(e~*?) and

e}
2

G, (u) = /B M(eW —Ndz = / (e —1)e tdt. (2.32)

2alog1/d

If (u,,) is any concentrating sequence at zero (on the z-variable), then limsup,,_, ., Gg, (u,) <
me (c.f. Lemma 1.2.6). Consider again the sequence (y,,) defined in (1.13). Recalling Re-
mark (1.2.11), one chooses n = 2log 5% yielding

Te 1
GBya (Yn) > me + o +o (5) ) (2.33)

Performing the change of variables 2.21, Lemma 2.2.9 is implied by

(ML — () |me 1 7€ 4 1Bl _ / RN
B

n a s |z]?

Bse 1
> M1 [mﬂ o —/ —dx} (2.34)
B

a 5 1717
for some 0 > 0 or, simplifying and dropping the lower order terms,

(M~ — £(5)) (”—e) > &(8)me, (2.35)

n

(notice that [, # and |Bs.| tend to zero as 6 — 0, thus £(9) [ # and ()| Bsa| are

low order terms in comparison to the ones in (2.35))or still, for some ¢ sufficiently small,

Mfl
1
2log 5

|| a1

h(x) =

sup (2.36)

|z|<8
with ¢ is sufficiently small enough in order to compensate the negative or low order terms
we dropped from the expression (2.34). Or, in terms of ng:
2|

o M

M1
o

sup <
ng
ja <e™ 26

(2.37)

This is implied by the decay condition (2.30) with ng sufficiently large. So the choice of

no depends on the sequence y,, and on the value of M~!. [ |

Proof. (Theorem 2, Attainability, = + g = 1) Now we put together Theorems 2.2.2, 2.2.3

and Lemma 2.2.9 to conclude that

Fah 2 (M7 = e@)Ig/ ()P PP > MG OP PR (2.38)
_ Fg(;onc,oz,h’

which shows that a concentrating sequence cannot be a maximizing sequence if h satisfies
the decay condition (D). We conclude that the supremum is achieved by Theorem 2.2.7.
|
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Chapter 3

Proof of Theorem 3

3.1 Differentiability of the functional

We will write

F(z,t) = /Ot f(z,s)ds.

Consider the functional ® : Hy,.,(B) — R

B(u) ::%/B|Vu\2dx—/BF(a:,u(:L‘))dx. (3.1)

Proposition 3.1.1. ® is a C! functional, with

(@' (u),v) = /BVuV'U — /B fla,u)v Vv e Hy,qy(B). (3.2)

Frechét-differentiability follows from the following lemma together with proposition
C.0.1.

Lemma 3.1.2. ® is Gatéaua-differentiable in Hj,,,(B) and its Gatéaua-derivative is

continuous at Hy ,,q4(B).
Proof. For t > 0 we have

P(u+tv) — P(u) :%(t/Bvuvv_i_g/B’VU|2+K/BF(:U,u+tv)—F(%U))-

t
(3.3)

Since F' is differentiable, it is possible to write for all ¢ and for almost all x € B:
F(z,u+tv) = F(x,u) + tof(z,u) + r(t), (3.4)

where r is a function such that r(t)/t — 0 as h — 0 (thus it can be ignored since it does
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not depende on x € B). By (H5), we have for all z € B

F(z,u+tv) — F(z,u)
t

~ o f(x,u)| < Klolju]Fe2 @z,

which is integrable due to the Trudinger-Moser embedding (ew2 € L'V w e H}) and
the Sobolev embedding HJ(B) C LYB) Y q € [2,00). Then we can apply Lebesgue’s
Dominated Convergence Theorem and conclude that the Gatéaux-drivative exists. For
the continuity of the derivative, it suffices to show it is bounded.

Notice that given any A C B measurable and h € Hg,,4(B), for any v € Hg,,4(B)

with [v]| <1, we have

+

(¥ (u+h),v)al =

/Af(x,u%—h)v

/ V(u+ h)Vodx
A

< HVILHLz(A) + ||Vh||L2(A) + K/ |u + h|k|€27r(2+a)(U+h)2||x|a|v|dl,
A
< ”VU||L2(A) =+ thHL?(A) —+ K/ |u + h|k|687r(2+a)(u2+h2)||x|a|v‘dx
A
< |Vullz2a) + [[VR]| 24y + (3.5)

1/8 1/8 1/4
() (o) (i)
A A A

1/2
If ||| < (2”<2+4a>) we have

327 (2+a)
/6327r(2+a)h2|x|4a < (O < oo,
A

where C' is independent of h due to theorem 1.1.1. By the Trudinger-Moser embedding,
e0Am2+e)w® ¢ 1 therefore given £ > 0, there exists § > 0 such that |[A| < § implies
[ e32m(2te)u® < o From these observations and using again the Sobolev Embedding
Hj ,qa(B) C LY(B) Vq € [2,00) we conclude that, fixed u € Hj,,4(B), the family

27m(2 + 4a)\ /?
= : 1 <|— <
y {lf(iC,'Lb-F h)Ul h e HO,rad(B>7 HhH — (327’(’(2 —|—Oé>> ) HUH — 1

is uniformly integrable in B, allowing us to apply Vitali’s Convergence Theorem. Conti-

nuity of the derivative follows from taking the limit h — 0. |

3.2 Palais-Smale condition

Proposition 3.2.1. Let (u,) C Hy ,,4(B) be a Palais-Smale sequence such that ®(u,) —
c. Then if ¢ < 1/2, (u,) admits a strongly convergent subsequence, i.e., ® satisfies (PS).
for all ¢ < 1/2.
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Proof. (uy) is a (PS). sequence if and only if
1 2
— [ |Vu,|*dx — | F(z,u,) de — e, (3.6)
2J/B B

/Vuan dx — / f(z,uy)v do
B B

Now notice that, by (H2) and (H3) given any £ > 0 there exists t. such that

S gnvaHLQ(B) Yove H&,rad(B>7 En — 0. (37)

F(z,t) < M|f(x,t)| <etf(z,t)Vx € B, V|t| > t.;

just consider t. such that t. > max{%,to}. It follows that, for any € > 0, by condition
(H5):

1
§||Vun|]%2 < K'—i—/BF(J:,un) deK/—i—/{ F(z,u,) dx

[un|<te}

+€/ f(z,up)u, dx
{‘un|2ts}

IN

Kl + Kg|t8|k3+16271'(2+06)t3 + 5/ f(x’ un)un dl‘

{lunl=te}

= K.+ 5/ [z, up)uy, de, (3.8)
{lun|>te}

where K’ > 0 is a constant coming from (3.6), K comes from (H5) and K. = K’ +
K|t [F+1e27(+)%  From (3.7) and (3.8) we have

1
§HvunH%2(B) < K.+ €HVUnH%2(B) + enl| V|| 28,

which implies (C' > 0 a constant)
Vel z2m) < C. /B F@ ) dz < C by (3.7), /B Fla,u,) dz < C by (3.6).  (3.9)
Now take a subsequence (uy) such that there exists u € Hg,,4(B) such that
Uy — U E H&’md(B); u, — u € LI(Q) Vg € [1,00); up(x) — u(x) ae.. (3.10)

The first convergence follows from Theorem 3.18 in ([6], p.69) and the fact that Hj
is reflexive and thus Hj, ., being a closed linear subspace of Hj, is too. The second
follows form Rellich-Kondrachov Theorem. Then we have by Lemma C.0.2 and (3.9)
f(z,u,) — f(z,u) in L'(B) (note that f(z,u) € L'(B) due to the Trudinger-Moser
inequality). Therefore it follows from this convergence, condition (H2) and the Generalized
Dominated Convergence Theorem (c.f. [19], p.89) that F(z,u,) — F(z,u) in L'(B).
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From (3.6) and (3.7) it follows that

lim HVunH%Q(B) = 2(c+/ F(z,u) dz), (3.11)
n—oo B
lim [ f(z,u,)u, = 2(c—|—/ F(z,u) dx). (3.12)

Using (3.12) and (H3) we conclude that ¢ > 0, because (applying Fatou’s Lemma)
lim [ f(z,u,)u, de < 2c+ f ryu)u de < 2c+liminf | f(x,u,)u, dx.

n—oo B n—oo B

Given any ¢ € C°(B), by (3.7) we have

S 5nvaHL2(B)

/BVuanﬁ dr — /Bf(x,un)d} dx

(3.13)
= / VuVy dx = / flz,u)y dx Y € C(B).
B B

Since f(z,u) € L*(B) (again by Trudinger-Moser inequality, Sobolev Embedding and
(H5)) then V ¢ € C°(B):

1/2
< ([ nras) 1o ulem, )

flx,u)y dx —/ f(z,w)u dx
B B

VuVip dx—/ \Vul? dz| < ||Vullz2]lv — ullr2s)- (3.15)
B B

Taking a sequence (1,,) C C°(B) such that 1, — w in H}(B), by (3.14), (3.15) and (H3)

one has

HVU/H%Q(B) = /Bf(x,u)u dx > Q/BF(:c,u) dr = ®(u) > 0.

Now we treat 3 different cases:
Case 1: ¢=0

Then we would have

1
0 < P(u / |Vul? — / z,u) dr < Eliminf/ |Vu,|? dx—/ F(z,u) de=0
B B

(by (3.11)) and thus lim ||Vu,| 128y = || Vul| 128y = un, — v in Hj(B).

Case 2: ¢c#0, u=0

We claim that for some ¢ > 1 we have [, |f(x,u,)|? de < C (C independent of n):
indeed, since u = 0, given € > 0 3 ng such that n > n, implies ||Vun|]%2(3) < 2c+e¢,
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which implies
/ | fz,up)|? do < K/ |y, [F9€27 )0 |04 gy
B B

) 1/
( /B (22 Ha)lud| ol dx) Vi>1) (3.16)

, ]
<K (/ |, |4 dx)
B
2 1/1
< K (/ 627r(2+a)ql||vun||2L?(B)(I\Vun||L2(B>) |:E|o¢ d.lf)
B

Note that K is independent of n, and the last step of (3.16) is true because (u,) is a
convergent sequence in L for all r € [1,00). The integral in then last line of (3.16)
is bounded independently of n due to theorem 1.1.1 if ¢l HVUHH%Q( p) < 1, for which is
sufficient that gl(2¢ +¢) < 1. Since ¢ < 1/2, this will happen if we choose [, ¢ sufficiently
close to 1 and ¢ sufficiently close to 0. This proves the claim.

Now from (3.7) and (3.9) we have | [, [Vu|?> dz — [ f(z,u,)u, dz| < &,|| V125 <
Ce,. We estimate the integral [, f(x,u,)u, da using Holder and the claim above; since
u, — 0 in LY we conclude that ||Vu,| z2(z) — 0. This contradicts (3.11), which implies
VU725 — 2¢ # 0.

Case 3: ¢c#0, u#0

We claim that ®(u) = c¢. ®(u) cannot be > ¢ because of Fatou’s Lemma. Suppose by
contradiction that ®(u) < ¢. Then

IVul|72p) < 2(c+ /BF(af,u) dr). (3.17)

(2(c+[5 F(x,u) dx))/2"

P Un, —
Let v, :== TS and v :

result by Lions [23]:

Now we use and adaptation of a classical

Lemma 3.2.2. Let (v,) C Hj,q(B), [Vnll2s) =1V n, and ||Vvl||25) < 1. Then

1
I ”VUH%z(B)

sup/ 2RO 0 < o0 W < (3.18)
n JB

Proof. The result by Lions is, under the same conditions,

1
- ||VU||%2(B)‘

sup/ e < 0o ¥ p <
B

n

Given any z € Hy,,q(B), we again (just like in the proof of finiteness of the supremum in
Theorem 1.1) use the change of variables introduced by Moser [24] z(r) = w(t)/(4m)"/?,

r = e7¥? and, after, the one used in [15] v(s) = (HT‘I)U2 w(gi—sa), t = 2t2s, together with
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the fact that 2z — w +— v is an isometry from Hj,,,(B) to

H :={w:]0,00) — R : w is measurable, has weak derivative, w(0) = 0, / |w'|* < oo}
0

to compute
1
sup / 627r(2+a)pz(a:)2|x|o¢dx _ sup 271_/ 627r(2+0¢)pz(7")2,,,,a+1dr
z€H}) . ,q(B)llz|<1/ B z€HL L (B)llz|<1 0
[o¢]
= sup 7T/ e
weH,[|w||<1 0
0
= sup 2n / P8 =5 g,
veH, ||v||<1 2+a )y
Analogously
2 e 2
sup /64”"2(“) dr = sup 7r/ PP ) = g,
Z€H} ,,q(B)ll2lI<1J B veH Jvu|<1 Jo
and comparing the two equalities the result is proved. [ |

Now we proceed just as in case 2 to obtain

5 5 1/1
/ (2, un)|? de < K ( / Tt eNalVunllyz gy o dx) (3.19)
B B

for any ¢, > 1 (where K depends only on ¢,l). The integral on the right-hand side of
(3.19) is bounded (by Lemma 3.2.2) provided that

1 1 ot [y flau) do

< = =
1- HVUH22 ||V“H2L2(B) C— q)(u)
LB 1 - 2(c+ [ F(z,u) dx)
B ’

]| Vun|l72 < p

Given & > 0, for n sufficiently big we have ||V, [|225) < 2(c + [ F(z,u) dz) + . Since
P(u) >0, 1 < ——, soif lg2(c+ [, F(x,u) do) +¢ < ctlp Pl do e vesult follows.

(u)? c

Since ¢ < 1/2, just take [, ¢ sufficiently close to 1 and ¢ sufficiently close to zero. [ |

3.3 Mountain Pass Theorem set-up

Proposition 3.3.1. Let Z be a finite dimentional subspace of Hj,,q(B) spanned by L>
functions. Then ® is bounded from above in Z, and moreover, given M > 0 there exists
an R > 0 such that

O(u) < —M VYV uc Z; ||Vu|2p) > R.
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Proof. Notice that by (H2) we have the existence of ty > 0 and K > 0 such that F(z,t) >
Kenll for all |t| > to. We conclude that F(z,t) > (Kt? — K) Y x,t, where K is a positive
constant and p > 2 by choice. Let ug € Z with ||ug|/z(p) = 1; then

t2
O (tug) = §/B|Vu0|2 d:z:—/BF(a:,uo) dx
tz 2 p p
B
< —||Vu0||L2 — K[t Vuolljzp + K — —ocoast — o0, (3.21)

where (3.21) was achieved from (3.20) using the equivalence of norms in a finite dimen-

sional vector space. [

Proposition 3.3.2. There exists a > 0 and p > 0 such that

P(u) > aif ||Vull2s = p.

Proof. From (H4) there exists p < py = inf{ Lz ng‘ u € Hj,.q(B)} and § > 0 such that
F(xz,t) < $ut? if |t| < 6. By (H3) and (H5) we have for any ¢ > max{2,k + 1} (k comes
from the condition (H5)):

K
F(x,t) < K[t]7eX™ % gV [t > 1 = F(x,t) < 5—| |q62”<2+a)52 2|V |t] > 6.
Thus . % ,
Fla,t) < gut* + ﬁyt\qe%@ﬂ)éﬂw Y ,t. (3.22)

Then for any p > 1

1 2 1 2 K q 27r(2+o<)ﬁ a
§/Wu! d:c—§,u/u dw—ﬁ/\ule o7 |z|* dx
w2 1/p , 1/p
> (1——) / IVl dr </ 2mP(2+0) % | o d:c) (/ v dx)
B

Now if [|Vul|Z2(5) < 6%/p we have

®(u)

v

sup/ 2mp(2+a) iz |z|*P dx < sup/ () iy |z|* dz < oo,
u JB B

(since || < 1 we have |2]*? < |z|® for p > 1) and by the Sobolev embedding H} c L%’

. /v
(/B‘qu dx) < K[ Vulfa -



41

So we have for ||[Vul|72 5 < 1/p

O (u) >

N | =

o K

Now consider the function ¢(s) = 1 (1 - ﬁ) s? — £s9. Writing

o-e(3(-2) -5

one can see that there exists a number 1 > 0 sufficiently small such that s < n implies
#(s) > 0. So we take p = min{n, %/p} and a = p(p). |

3.4 Mountain Pass Theorem set-up - test functions

We will apply the Mountain Pass Theorem C.0.3. According to proposition 3.3.1, given
any v € Hj,,q(B)NL>®(B), there exists to > 0 such that ®(tyv) < 0. Recall that ®(0) =0
by (H3). By proposition 3.3.2, there exists a > 0 and a ball B, such that ®[sp, =
raq(B) With ||Vwg||r2 = 1 such that max{®(twy) :
t > 0} < i Set then U = B,, v = towy (wp from 3.24). Let & denote the class
of all paths joining 0 to v. By definition, if such a wy exists, we conclude that ¢ =

a. Suppose there exists a wy C H&

inf pe » maxyep @(w) < 1/2, which yields, together with theorem C.0.3 and proposition
raa(B). Therefore we need to show that there
exists an wy € Hy(B) with |[Vwg| 2 = 1 such that

3.2.1, the existence of the minimizer u € Hj

max{®(twy) : t >0} < %, (3.24)

Consider the same sequence used on the proofs of Theorems 1 and 2:

(1 —0,)"%, 0<t <,

ni/2
An+1 + (n(l o (')‘n))l/Z’n S t,

1 (3.25)
(n(1-6,))1/2 log Ap+e—(=n)

yn(t) =

or, in terms of the radio

1 v (n(1——2&’g">)1/2 log 22tes + (n(1 — 28212 0 < < €375,
war) = (g :
7( )

2+8

(2+5)10g%(1 . 21(;Lgn)1/27€*n/(2+5) S r S 1,

nl/z

(3.26)

after the change of variables

alt) = (ﬁ)/ walr), = ¢75. (3:27)
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Notice that (w,) C L*(B), allowing us to apply proposition 3.3.1.

Proof. (Theorem 3) Suppose that for all n € N we have max{®(tw,) : t > 0} > 1/2. By
Propositions 3.3.1 and 3.3.2, for each n € N there exists ¢, > 0 such that

max{B(tw,) £ > 0} = B(byn) > % (3.28)
Recalling that ||[Vw,||r2p) =1V n €N, by (3.28) and (H3) we have
t2 > 1. (3.29)
It follows from (3.28) that 4®(tw,) =0 at t = ¢, or
b — /Bf(x,tnwn)wndx =0. (3.30)
Multiplying (3.30) by ¢, we have
2= tn/ wy f(x, tyw,)d. (3.31)
B

By (H6) there exists some t. > 0 and d(¢) such that ¢ > ¢. and x € B; implies f(x,t)t >
(¢ — €)e>™ AP |2|8 for some ¢ > 0 such that ¢ —e > 0. From (3.26), we see that
if 1 < e w,(r) > (n(l — 222))1/2 5o given any number L € N there exists
ny € N sufficiently big such that n > ny implies that w,(r) > L if n > ny. There exists
ng sufficiently large such that n > ng implies B 2, C Bs. Then applying (H6) and

B
proceeding just like in the proof of Lemma 1.2.10 to obtain

2 > (C—E)/ €2ﬂ(2+ﬂ)t%wi‘x’ﬁdx

B —n/(248)

s Zmll—e) / % it
2+8 ),

27T(C — 5) 1 >~ [(t2 1)n+210g A”+1 73] 1 2 An +1
> o = |1 1 d
RN n2/ ¢ a6 A, e

and since, by (1.20) and (1.21),

A, +1 1 , A, +1
_/ exp [2logA —3} {1+n(1_5n)10g An—f—e—s} ds — e,

we conclude that ¢, is a bounded sequence, otherwise the right side would blow-up faster

than the left side. More: from (3.29) we get that ¢2 converges to 1 (particularly with
a decay equal or faster than 1/n for the blow-up not to happen). Now recall that the
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sequence (wy,) C Hj,,q(B) is a concentrating sequence, thus converging a.e. to zero. This
implies that there exists n; € N such that n > n; implies t,w,(r) < t. for all z € B
such that |r| = 6. Since all the functions w,, are radially decreasing, one concludes that
if n > ny then t,w,(r) < t. for all € B such that |r| > 6. Thus if n is greater than n;
one has {z € B : t,w,(x) > t.} C Bs. So by (H6) and (3.31) we have for n > ny:

ti - /{ y f(l’, tnwn)tnwn + / f(ZL’, tnwn>tnw"
tnwn>te

{tnwn Ste}

> ((—e¢) / 2T | P + / (@, tyw,)taw,
{tnwn >t}

{tnwn Sts}

= (C— 5)/ 2B 2P — (¢ — 5)/ 2B 18 4
B {tnwn<te}
—i—/{ }f(x,tnwn)tnwn (3.33)
tnwn<te

Performing the changes of variables (3.27) :

/62W(2+ﬁ)t%w%|x’ﬁd:€:/ 2 (AL | 118
B

B=B__,1/3/2+8)

2,,2
_|_ / 627T(2+ﬂ)tnwn |:L‘|de
B _11/3 )48 " Be-n/(2+8)

/ p2m(2+5) 2w 2|x]ﬁdx

—n/(2+8)

+
/ 27r(2+6 V2w 2|$|Bdl’ ( )

—n1/3/(2+p)

2 " t? 21
T exp [— <1 - ogn) - t} dt (IT)

+
2—}-6 nl/3 n n

log An+1

2
Arﬁie(t") nt/2(1=5,N1/2 | —t
20 (M — o0 {( W1/2 1/2+( ( n)) )

2
> [ |z|Pdx +
/B|| —

Integral (I) in (3.34) converges to [, |z|°dz by the Dominated Convergence Theorem.

e+ O(1/n)
(3.34)

Integral (II) in (3.34) converges to zero:

n t2 2logn _2logn
; / 6[?(17 o )4/] dt = o )75)](13
nl/3 2+ 6

< ex 2logn)ds
< 2+B N p(—2logn)

2r 1
< )
- 24+ 08n
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since for n sufficiently large one has

21 1
n<32 (1— Ogn)—s) < —2logn in [2—,1],
n n/3
21
n(32<1— ogn)_s) = —2lognats=1,
n

1 21 1
- (1 - Og") B ats=——_. (3.35)

because

nl/3 n

Integral (III) on (3.34) goes to e+ O(1/n) by (1.2.10). For the second and third integrals
on (3.33) we apply the Dominated Convergence Theorem, and those integrals converge
to [, |x|’dz and 0 respectively (recall that w, — 0 almost everywhere on B and f is

continuous, thus bounded on B x [0,t.]). So taking the limit we conclude that

2 1
1> e(C—eVe>0=(< o, (3.36)
2+ 5 245
a contradiction to (H6). This finishes the proof of Theorem 3. |

Remark 3.4.1. Taking the limit n — oo on (3.32) one could directly obtain (3.36). In

fact, further calculations were made just to show that outside Be*ﬁ the integral converges

to zero.
Regarding the regularity of the solution u: Let w € HJ(B) be a weak solution (in
H}(B)) of
—Aw = f(z,u) in B,
w=0 in 0B.

then by Elliptic Regularity (c.f. [4]) we have w € H?*(B) N H}(B). Since f and u are

radial in x, so is w. Now observe that for any function ¢ € Cg5,,4((B)) (C*, radial and

vanishing on the boundary) we have

/B w(—Ag)dr = /B (—Aw)pda /B o, w)pde = /B VuVidz /B u(—Ap)da.

Given any ¢ € C,4(B) let ¢ € Cg%,4(B) be the solution of

c,rad
—Ap=1 in B, u=0 in 0B.

So for any function ¢ € C2°_,(B) one has

c,rad

/B(w —Wdr =0V § € Cug(B).
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Thus .
/0 (w(r) —u(r))Y(r)rdr =0V ¢ € C(]0, 1]).

Therefore u = w almost everywhere and regularity is proven.
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Chapter 4
Conclusion

On [15], de Figueiredo, do O and Santos stated the finiteness of the supremum (5), as
well as the attainability for the case where M = 0 in (h2). the first theorem states the
attainability for the so-called critical case 0 < M < oo. We considered the sequence
(yn) (1.13) originally presented on [18] and here we establish an improvement on the

estimatives regarding it, namely:

ey e 1
/n e¥n dtZe—Fﬁ—I—o(ﬁ). (4.1)
Decay conditions on both theorems 1.1 and 1.2 depend explicitely on (4.1), being also a
consequence of the Concentration-Compactness technique used. Theorem 1.2 generalizes
the result by Csaté and Roy [12] changing the weight |z|? for a more general weight h(z)).
Lemma 2.2.8 is mentioned on literature (for instance, [2], [12]) as an easy consequence of
the properties of the Schwartz rearrangement, but since I did not find any proof, I crafted
the one we present here. Proof of Theorem 1.3 uses the same approach presented by de
Figueiredo, Miyagaki and Ruf, but here we get a radial weak solution (while the solution
found in [14]) may not be radial. We use here the same sequence (y,,) used on the proofs
of Theorems 1.1 and 1.2, which provides a much better estimative for the constant ¢ in
(H6) than the Moser sequence originally used in [14]. It is also worth noticing that the
so-called critical growth condition (H6) does not depend on the values of f outside an

arbitrarily small ball around the origin.
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Appendix A

Results used on the Proof of Theorem 1

Definition A.0.1. Let Q C R? be an open set. We say that (u,,) C HY () is a normalized

concentrating sequence at xy € Q if
(C1) [ |Vu,|?dt =1V n,

(C2) limsup,, fQ_BP(O) IV, |?dt =0 as n — oo for all 0 < p < 1 fized.

An important property of concentrating sequences is the following:

Proposition A.0.2. Let (u,) C Hi(B) be a normalized concentrating sequence. Then

(u,) converges weakly to 0.

Proof. Let ¢ be any C2°(B) (compact support) test function. Then for any 0 < p <1

/ VoVu,dr
B

< / |V¢||Vun]da;+/ V6|V |da
B-B, B,
< M@l Vunllz2s=8,) + |9llcr sy vV 7o | Vun| 2z (A1)

by Holder’s inequality. Taking n — oo and then p arbitrarily small one arrives at the
desired result. [ |

Theorem A.0.3. (Vitali’'s Convergence Theorem, c. f. [19]) Let E be a measurable set,
(fn) C LYE) be a uniformly integrable sequence and f, — f almost everywhere. Then
feLYE) and

[ 15— glde o0 (A2)
B
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Appendix B

Results used on the Proof of Theorem 2

Theorem B.0.1. (Cauchy’s Integral Formula) Let U be an open subset of the complex
plane, B, C U the open ball of radius r, I, its boundary, counterclockwise oriented and
f:U — C a holomorphic function. Then for any a € B,

1 (_Z)dz = f(a). (B.1)

21 Jr, z—a

Definition B.0.2. Let Q C R be a bounded domain and u : Q — R be a measurable
function. Then, its Schwarz symmetrization, or the spherically symmetric and decreasing

rearrangement is the function u* : Q* — R defined by

u*(0) =esssupu

uw*(z) =inf{t: {z:u(x) >t} < ay|z|V} if 2 £0,
where |E| denotes the N-dimentional Lebesque Measure of a measurable set E C RN and
an is such that |Bly| = an|z|V.
Some useful properties of the Schwarz rearragement are:
Theorem B.0.3. (c.f. [22])
(i) {u* >t} ={u>t}| Vtand

(11) u* is non-negative (if we assume u non-negative), radial and monotonically decreas-

ing (thus, almost everywhere differentiable).

Theorem B.0.4. (c.f. [22], Theorem 2.3.1) Let 1 < p < co. Let Q C RY be a bounded
doamin and u € WyP(Q) be such that u > 0. Then u* € Wy P (Q*) and

/ ]Vu*\pdxg/\Vu\pdx. (B.2)
. 0



o2

Theorem B.0.5. ([17], section 5.5, Theorem 1) Assume ) is bounded and open and 02

is Ct. Then there exists a bounded linear operator
T : W (Q) — LP(0R)
such that
(i) Tu = ulsq if u € WHP(Q)NC(Q) and

(11) there exists a constant C' = C(p,§2) such that
HTuHLp(aQ) < CHUHWLP(Q) Vue Wl’p(Q). (B.3)
Theorem B.0.6. ([17], section 5.5, Theorem 2) Assume € is bounded and O is C*.
Suppose furthermore that u € WYP(Q). Then

ue WyP(Q) & Tu=0 in Q.



93

Appendix C
Results used on the Proof of Theorem 3

Proposition C.0.1 ([13], p.47). Let X be a Banach space, = C X open and ¢ : = — R
such that V¢ (the Gatéauz derivative of ¢) exists in a neighbourhood of u € Z and is
continuous at u. Then ¢ € C* and ¢'(u) = Vo(u) (¢ denotes the Frechét-derivtive of ¢).

Lemma C.0.2. (/14/, page 145, Lemma 2.1) Let 2 be a finite measure smooth domain,
(un) C LY(Q) converging to uw € L'(Q). Assume that g(x,u,(z)) and g(z,u(z)) are also
L' functions satisfying (H1). If

[ ot )l < )

then g(z,u,) — g(x,u) in L'(Q).
Theorem C.0.3. (c.f. [7]) Let ® be a C* funcitonal on a Banach Space E. Suppose

(i) There exists a neighbourhood U of 0 in E and a constant a such that ®(u) > a for

every u in the boundary of U,
(11) ®(0) < a and ®(v) < a for somev ¢ U.

Set

¢ = inf max®(w) > a,
Pe® weP

where & denotes the class of continuous paths joining 0 to v. Then there exists a sequence
(uj) C E such that
P(uj) — ¢ and @'(u;) — 0 in E".

Thus, if ® satisfies (PS)., there exists a subsequence (u;,) and u € E such that

u;, — u and ®'(u) = lim ®(u;, ) = 0.
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