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Resumo

Álgebras não comutativas de Jordan foram introduzidas por Albert. Ele observou que as

teorias estruturais das álgebras alternativas e de Jordan compartilham tantas propriedades

boas que é natural supor que essas álgebras são membros de uma classe mais geral

com uma teoria estrutural semelhante. Então, ele introduziu a variedade de álgebras

não comutativas de Jordan definidas pela identidade de Jordan e pela identidade da

flexibilidade. A classe de (super)álgebras não-comutativas de Jordan se tornou vasta:

por exemplo, além das (super)álgebras alternativas e de Jordan, ela contém álgebras

quasiassociativas, (super)álgebras quadráticas flexíveis e (super)álgebras anticomutativas.

No entanto, a teoria da estrutura dessa classe está longe de ser boa.

No entanto, um certo progresso foi feito no estudo da teoria estrutural de álgebras (e, mais

geralmente, superálgebras) não comutativas de Jordan. Particularmente, álgebras simples

dessa classe foram estudadas por muitos autores. Superalgebras centrais não-comutativas

simples de Jordan de dimensão finita foram descritas por Pozhidaev e Shestakov.

Representações de superalgebras alternativas e de Jordan são um tópico popular atualmente,

estudado por muitos autores. Neste trabalho, estudamos representações de álgebras não-

comutativas de Jordan. Em particular, classificamos as representações irredutíveis de

dimensões finitas de superalgebras simples não-comutativas de Jordan de dimensão finita

sobre um corpo algebricamente fechado da característica 0 e mostramos o teorema de

fatoração de Kronecker para algumas àlgebras.

Palavras-chave: superálgebra não comutativa de Jordan, teoria de representações de

superalgebras não-associativas, representações das superalgebras de Jordan, Teorema da

fatoração de Kronecker.



Abstract

Noncommutative Jordan algebras were introduced by Albert. He noted that the structure

theories of alternative and Jordan algebras share so many nice properties that it is natural

to conjecture that these algebras are members of a more general class with a similar theory.

So he introduced the variety of noncommutative Jordan algebras defined by the Jordan

identity and the flexibility identity. The class of noncommutative Jordan (super)algebras

turned out to be vast: for example, apart from alternative and Jordan (super)algebras

it contains quasiassociative (super)algebras, quadratic flexible (super)algebras and (su-

per)anticommutative (super)algebras. However, the structure theory of this class is far

from being nice.

Nevertheless, a certain progress was made in the study of structure theory of noncommuta-

tive Jordan algebras (and, more generally, superalgebras). Particularly, simple algebras of

this class were studied by many authors. Simple finite-dimensional central noncommutative

Jordan superalgebras were described by Pozhidaev and Shestakov.

Representations of alternative and Jordan superalgebras is a popular topic nowadays which

was studied by many authors. In this work we study representations of noncommutative

Jordan algebras. In particular, we classify the irreducible finite-dimensional representations

of simple finite-dimensional noncommutative Jordan superalgebras over an algebraically

closed field of characteristic 0 and prove Kronecker factorization theorems for some

superalgebras.

Keywords: noncommutative Jordan superalgebra, representation theory of nonassociative

superalgebras, representations of Jordan superalgebras, Kronecker factorization theorem.
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Introduction

Noncommutative Jordan algebras were introduced by Albert in [Alb48]. He

noted that the structure theories of alternative and Jordan algebras share so many nice

properties that it is natural to conjecture that these algebras are members of a more

general class with a similar theory. So he introduced the variety of noncommutative

Jordan algebras defined by the Jordan identity and the flexibility identity. The class

of noncommutative Jordan (super)algebras turned out to be vast: for example, apart

from alternative and Jordan (super)algebras it contains quasiassociative (super)algebras,

quadratic flexible (super)algebras and (super)anticommutative (super)algebras. However,

the structure theory of this class is far from being nice.

Nevertheless, a certain progress was made in the study of structure theory of

noncommutative Jordan algebras. Particularly, simple algebras of this class were studied by

many authors. Schafer proved that a simple finite-dimensional noncommutative Jordan al-

gebra over a field of characteristic 0 is either a Jordan algebra, or a quasiassociative algebra,

or a flexible algebra of degree 2 [Sch55]. Oehmke proved an analog of Schafer’s classification

for simple flexible algebras with strictly associative powers and of characteristic ‰ 2, 3

[Oeh58], McCrimmon classified simple noncommutative Jordan algebras of degree ą 2 and

characteristic ‰ 2 [McC66, McC71], and Smith described such algebras of degree 2 [Smi71].

The case of nodal (degree 1) simple algebras of positive characteristic was considered in the

articles of Kokoris [Kok60, Kok58], and the case of infinite-dimensional noncommutative

Jordan superalgebras was studied by Shestakov and Skosyrskiy [She71, Sko89].

Simple finite-dimensional Jordan superalgebras over algebraically closed fields

of characteristic 0 were classified by Kac [Kac77] and Kantor [Kan92]. The study of

superalgebras in positive characteristic was initiated by Kaplansky [Kap80]. Racine and

Zelmanov [RZ03] classified finite-dimensional Jordan superalgebras of characteristic ‰ 2

with semisimple even part, and the case where even part is not semisimple was considered

by Martínez and Zelmanov in [MZ10]. Cantarini and Kac described linearly compact

simple Jordan and generalized Poisson superalgebras in [CK07].

Simple finite-dimensional central noncommutative Jordan superalgebras were

described by Pozhidaev and Shestakov in [PS10a, PS13, PS19]. Structure and derivations

of low-dimensional simple noncommutative Jordan algebras were studied in [KLP18].

Generalizations of derivations of simple noncommutative Jordan superalgebras were

studied in [Kay10].

We briefly recall the history of the structure theory of other classes of algebras

generalizing Jordan algebras. In the paper [Kan72] Kantor generalized the Tits–Koecher–
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Kantor construction, extending it to the wide class of algebras, which he called conservative

algebras. The Kantor construction puts a graded Lie algebra into correspondence with a

conservative algebra. A conservative algebra is said to be of order 2 if its Lie algebra has

p´2, 2q-grading. In the same paper, he classified the finite dimensional simple conservative

algebras of order 2 over an algebraically closed field of characteristic 0.

In [All78], Allison defined a class of nonassociative algebras containing the

class of Jordan algebras and allowing the construction of generalizations of the structure

algebra and the Tits–Koecher–Kantor construction (Allison’s construction). The algebras

in this class, called structurable algebras, are unital algebras with involution. The class

is defined by an identity of degree 4 and includes associative algebras, Jordan algebras

(with the identity map as involution), tensor product of two composition algebras, the

56-dimensional Freudenthal module for E7 with a natural binary product, and some

algebras constructed from hermitian forms in a manner generalizing the usual construction

of Jordan algebras from quadratic forms. Central simple finite dimensional structurable

algebras over a field of characteristic zero were classified by Allison. The classification

of simple structurable algebras over a modular field was obtained by Smirnov [Smi90].

Moreover, he found a new class of simple structurable algebras of characteristic zero,

missed by Allison. Simple structurable superalgebras over an algebraically closed field

of characteristic 0 were described by Faulkner [Fau10] and by Pozhidaev and Shestakov

[PS10b].

Representations of alternative and Jordan superalgebras are considered in vari-

ous works. In the paper [MZ10] Martínez and Zelmanov used the Tits-Koecher-Kantor con-

struction to describe superbimodules over superalgebras JP pnq, Mm,npFqp`q, Josppm, 2rq
and Jordan superalgebras of supersymmetric bilinear superforms over algebraically closed

fields of characteristic 0. Also they proved that the universal enveloping superalgebra for

unital representations of simple finite-dimensional Jordan superalgebra of degree ě 3 is

finite-dimensional and semisimple and that every representation over such superalgebra is

completely reducible. Some of the Martínez-Zelmanov results were generalized to the case

of arbitrary characteristic ‰ 2. For example, representations of superalgebras JP pnq and

Qpnqp`q, n ě 2 over fields of characteristic ‰ 2 were considered by Martínez, Shestakov and

Zelmanov in [MSZ10]. Irreducible representations of superalgebras of Poisson-Grassmann

bracket were classified by Shestakov and Solarte in [SFS16]. In the papers [Tru05], [Tru08]

Trushina described irreducible bimodules over the superalgebras Dt and K3. In the work

[MZ02] the universal envelopes for one-sided representations of simple Jordan superalgebras

were constructed, and also irreducible one-sided bimodules over the superalgebras Dt

were described. Shtern [Sht87] classified irreducible bimodules over the exceptional Kac

superalgebra K10.

Representations of alternative superalgebras were studied by Pisarenko. Par-
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ticularly, he proved the following: let A be a finite-dimensional semisimple alternative

superalgebra over a field of characteristic ‰ 2, 3. If A contains no ideals isomorphic to the

two-dimensional simple associative superalgebra, then every bimodule over A is associative

and completely reducible [Pis94]. For the case of two-dimensional simple associative super-

algebra he obtained a series of indecomposable alternative superbimodules. López-Díaz and

Shestakov described irreducible superbimodules and proved the analogues of Kronecker

factorization theorem for exceptional alternative and Jordan superalgebras of characteristic

3 in [LDS02, LDS05]. Infinite-dimensional representations of alternative superalgebras

were studied in the paper [ST16].

In the present work we begin the study of representations of central simple

finite-dimensional noncommutative Jordan superalgebras.

This work is organized as follows. In Chapter 1 we provide all the preliminary

information and prove technical lemmas which will be necessary to work with noncommu-

tative Jordan superalgebras and their representations. Then we reformulate the definitions

of a noncommutative Jordan (super)algebra and representation in terms of Jordan multi-

plication and Poisson brackets. In Chapter 2 we classify finite-dimensional representations

of simple noncommutative Jordan superalgebras of degree ě 3 and noncommutative

Jordan representations of some simple Jordan superalgebras. In Chapter 3 we study

representations of low-dimensional noncommutative Jordan superalgebras. Particularly, in

Section 3.1 we describe superbimodules over superalgebras Dtpα, β, γq and K3pα, β, γq, and

in Section 3.2 we prove the Kronecker factorization theorem for superalgebras Dtpα, β, γq
and use it to study representations of the superalgebra Qp2q in Section 3.3. In Chapter 4

we prove a theorem which connects the irreducibility of a noncommutative Jordan module

with the irreducibility of the underlying Jordan module and use it to classify irreducible

finite-dimensional representations over superalgebras UpV, f, ‹q and KpΓn, Aq. For a more

detailed review of the results of this work, one can see Section 1.13 and the summaries

at the beginning of each chapter. The results of this work were published in the paper

[Pop20].
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1 Preliminaries

In this chapter we briefly recall the definitions, techniques and objects which

we work with. Also here we prove some technical lemmas and reproduce the classification

of central simple finite-dimensional noncommutative Jordan superalgebras by Pozhidaev

and Shestakov. At the end of the chapter we state our main results.

1.1 Notations and defining identities

Since this work deals with representations of nonassociative superalgebras,

“(super)algebra” means a not necessarily associative (super)algebra, and “module” and

“representation” mean respectively a (super)bimodule and a two-sided representation over

a (super)algebra, if not explicitly said otherwise. Also, occasionally we drop the prefix

“super-”, but it should be always clear from the context in which setting we are working.

All algebras and vector spaces in this work are over a field F of characteristic not 2 (note

that there exists an approach to (noncommutative) Jordan algebras which does not assume

the characteristic restriction, see, for example, [McC71]). Because this work follows up on

and uses the formulas from the papers [PS10a] and [PS13], the operators in this work act

on the right.

For a subset S of an F-vector (super)space by xSy we denote its F-span.

Let U “ U0̄ ` U1̄ be a superalgebra. In what follows, if the parity of an element

arises in a formula, this element is assumed to be homogeneous. Idempotents are also

assumed to be homogeneous. We assume the following standard notation:

p´1qxy “ p´1qppxqppyq,

where ppaq “ i, if a P Uī is the parity of a, and

p´1qx,y,z “ p´1qxy`xz`yz.

Definition 1.1.1. Let A and B be superalgebras. By A b B “ C we denote their graded

(sometimes also called twisted, super or colored) tensor product, which is defined as

C0̄ “ A0̄ b B0̄ ` A1̄ b B1̄, C1̄ “ A0̄ b B1̄ ` A1̄ b B0̄,

and the multiplication is given by

pa b bq ¨ pa1 b b1q “ p´1qa1bpaa1q b pbb1q.
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By Lx, Rx we denote the operators of left and right multiplication by x P U :

yLx “ p´1qxyxy, yRx “ yx.

The supercommutator and super Jordan product are also denoted in the standard manner:

rx, ys “ xy ´ p´1qxyyx, x ˝ y “ pxy ` p´1qxyyxq{2, x ‚ y “ xy ` p´1qxyyx.

Definition 1.1.2. The (super)algebra pU, ˝q is called the symmetrized (super)algebra of

U and is denoted by U p`q.

Definition 1.1.3. A supercommutative superalgebra J is called Jordan if it satisfies the

following operator identity:

RaRbRc `p´1qa,b,cRcRbRa `p´1qbcRpacqb “ RaRbc `p´1qa,b,cRcRba `p´1qabRbRac. (1.1.1)

Definition 1.1.4. A superalgebra U is called noncommutative Jordan if it satisfies the

following operator identities:

rRa˝b, Lcs ` p´1qapb`cqrRb˝c, Las ` p´1qcpa`bqrRc˝a, Lbs “ 0, (1.1.2)

rRa, Lbs “ rLa, Rbs. (1.1.3)

The identity (1.1.3) defines the class of flexible superalgebras. If we assume that

all elements of U are even we get the notion of a noncommutative Jordan algebra.

The flexibility identity may be written as

p´1qabLab ´ LbLa “ Rba ´ RbRa, (1.1.4)

or

px, y, zq “ ´p´1qx,y,zpz, y, xq, (1.1.5)

where pa, b, cq “ pabqc ´ apbcq is the associator of the elements a, b, c.

We would like to clarify the origin of the name “noncommutative Jordan”. One

can check that a Jordan (super)algebra is noncommutative Jordan. On the other hand, a

commutative noncommutative Jordan (super)algebra is Jordan — hence the name. In fact,

the relation between noncommutative and commutative Jordan (super)algebras can be

made precise using the notion of the symmetrized algebra:

Lemma 1.1.5 ([PS10a], Lemma 1.3). U is a noncommutative Jordan (super)algebra if

and only if U is a flexible (super)algebra such that its symmetrized (super)algebra U p`q is

a Jordan (super)algebra.

Using this lemma it is easy to see that (super)algebras from many well-known

varieties, such as associative, alternative and anticommutative (super)algebras, are non-

commutative Jordan. So while reading this work it is useful to bear in mind associative

(or alternative) and Jordan (super)algebras as examples.
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From now on, unless otherwise stated, we denote by U a noncommutative

Jordan superalgebra over a field F, and by e an even idempotent in U .

1.2 Peirce decomposition

Here we recall some usual facts about Peirce decomposition, which is going to

be our main tool during the work. A more detailed exposition of Peirce decomposition can

be found in [McC66], [PS10a].

The identity (1.1.2) can be shown to be equivalent to the identity

Rapb‚cq ´ RaRb‚c ` p´1qabpRb ` LbqpLaLc ´ p´1qcaLcaq
` p´1qcpa`bqpRc ` LcqpLaLb ´ p´1qabLbaq “ 0.

(1.2.1)

Substituting a “ b “ c “ e in (1.2.1) gives us

Re ` pRe ` LeqL2
e “ pRe ` LeqLe ` R2

e.

By (1.1.4) we have Le ´ L2
e “ Re ´ R2

e. Hence, the last equation is equivalent to

pRe ` LeqpLe ´ L2
eq “ pLe ´ L2

eq.

Put

Ui “ tx P U : ex ` xe “ ixu for i “ 0, 1, 2.

Using the standard argument, we get the decomposition

U “ U0 ‘ U1 ‘ U2. (1.2.2)

Definition 1.2.1. The decomposition (1.2.2) is called the Peirce decomposition of U with

respect to e, and the spaces Ui “ Uipeq are called Peirce spaces.

The identities (1.1.2) and (1.1.3) imply that

rEx, Fes “ 0, if x P U0 ` U2, tE, F u Ď tR, Lu. (1.2.3)

Denote by Pi the associated projections on Ui along the direct sum of two other Peirce

spaces. Since Pi are polynomials in Le ` Re, we have

rEx, Pis “ 0, if x P U0 ` U2, tE, F u Ď tR, Lu. (1.2.4)

The spaces U0, U1 and U2 satisfy the following relations (which we call the Peirce relations):

U2
i Ď Ui, UiU1 ` U1Ui Ď U1, i “ 0, 2; U0U2 “ U2U0 “ 0, (1.2.5)

x P Ui, i “ 0, 2 ñ xe “ ex “ 1
2

ix; x, y P U1 ñ x ˝ y P U0 ` U2. (1.2.6)
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These relations will be used so frequently throughout our work that referencing

them each time would make it messy. Therefore, we only occasionally explicitly reference

them (for example, when it is not clear which relation we use), and in other cases when

we apply them we say “by Peirce relations”, or use them without mentioning.

If e “
n

ÿ

i“1

ei is a sum of orthogonal idempotents, then analogously one can

obtain the Peirce decomposition with respect to e1, . . . , en:

U “
n

à

i,j“0

Uij, (1.2.7)

where

U00 “ tx P U : eix “ xei “ 0 for all iu,

Uii “ tx P U : eix “ xei “ x, ejx “ xej “ 0, j ‰ iu,

Ui0 “ tx P U : eix ` xei “ x, ejx ` xej “ 0, j ‰ iu “ U0i,

Uij “ tx P U : eix ` xej “ ejx ` xej “ x, ekx ` xek “ 0, k ‰ i, ju “ Uji.

Note that if i, j ‰ 0 and x P Uij, then eix “ xej. As above, there are associated projections

Pij on Uij and the following inclusions hold:

U2
ii Ď Uii, UiiUij ` UijUii Ď Uij,

UijUjk ` UjkUij Ď Uik, U2
ij Ď Uii ` Uij ` Ujj.

for distinct i, j, k (all other products are zero). Clearly, the decompositions above apply

to any subspace M Ď U invariant under the multiplication by e, for example, to an ideal

of U . For instance, for the usual matrix algebra U “ MnpFq and the set of orthogonal

idempotents te1 “ e11, e2 “ e22, . . . , en “ ennu we have

Uii “ xeiiy, i “ 1, . . . , n, Uij “ xeij, ejiy, i ‰ j.

One can see that the Peirce relations for a system of n orthogonal idempotents resemble

the multiplication rules for the spaces in the matrix algebra generated by matrix units

given above, so one can think of the Peirce decomposition of U as an “approximation of U

by an n ˆ n matrix algebra”. In some cases this reasoning can be made rigorous, see, for

example, Theorem 1.4.2.

With the aid of the following lemmas one can restore some of the original

products in U from the products in U p`q and multiplication by e.

Lemma 1.2.2 ([PS10a], Lemma 1.4). If z, w P U1, then

P2pez ‚ wq “ P2pz ‚ weq “ P2pzwq, P0pw ‚ ezq “ P0pwe ‚ zq “ P0pwzq. (1.2.8)
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Lemma 1.2.3. For x, y, z P U1 the following relation holds:

x ˝ P1pyzq “ P1pxyq ˝ z “ p´1qxpy`zqy ˝ P1pzxq. (1.2.9)

Proof. From [PS10a, Lemma 1.4], it follows that for i P t0, 2u and x, y, z P U1 the following

relation holds:

Pipx ˝ P1pyzqq “ PipP1pxyq ˝ zq “ p´1qxpy`zqPipy ˝ P1pzxqq.

Since U1 ˝ U1 Ď U0 ` U2 by (1.2.6), summing the relations for i “ 0 and i “ 2 yields the

desired relation.

The following statement is an obvious yet useful consequence of the last lemma:

Lemma 1.2.4. Let x, y P U1 be such that xy P U0 ` U2. Then

P1LxP1pRy ` Lyq “ 0, P1RxP1pRy ` Lyq “ 0. (1.2.10)

Note that in contrast to associative or Jordan superalgebras, for arbitrary

noncommutative Jordan superalgebra the inclusion U2
1 Ď U0 ` U2 does not hold (see

relation (1.2.6)). However, one can find a sufficient condition to ensure that this inclusion

holds:

Lemma 1.2.5. Suppose that there exists a subset K Ď U1 such that

1) KU1 Ď U0 ` U2;

2) a P U1, K ˝ a “ 0 ñ a “ 0.

Then U2
1 Ď U0 ` U2.

Proof. Indeed, the relation (1.2.9) implies that for a, b P U1 we have K ˝ P1pabq “
P1pKaq ˝ b “ 0 by the first condition of the lemma. Hence, the second condition of the

lemma implies that P1pabq “ 0.

We will also need a technical lemma by Pozhidaev and Shestakov:

Lemma 1.2.6 ([PS10a], Lemma 1.5). For a, b P Ui, i “ 0, 2, the following operator

identities hold in U1:

Rab “ RaRb ` p´1qabLbRa “ RaRb ` p´1qabRbLa;

Lab “ p´1qabLbLa ` LaRb “ p´1qabLbLa ` RaLb.
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1.3 Algebras with connected idempotents

For some well-studied classes of (super)algebras, such as associative and Jor-

dan, the Peirce relations are in fact stronger than (1.2.5), (1.2.6), which can be seen a

consequence of their defining identities. For example, if J is a Jordan (super)algebra, then

its Peirce space J1 is obviously

J1 “ tx P J : xe “ x{2u,

and if A is an associative (super)algebra, then its Peirce space A1 decomposes as

A1 “ A10 ‘ A01, where

A10 “ tx P A : ex “ x, xe “ 0u,

A01 “ tx P A : ex “ 0, xe “ xu.

Therefore, in nice cases the space U1 decomposes in the direct sum of eigenspaces of Le.

Moreover, if U is associative or Jordan, then U2
1 Ď U0 ` U2.

In this section we consider the general situation, introducing Le-eigenspaces in

U1 and showing that they satisfy properties analogous to ones described above. Then we

introduce related notions of connectedness of idempotents and the degree of an algebra.

Finally, we state the results that show that if an algebra U is “sufficiently large” (i.e., has

degree ě 3) and if “eigenspaces” of U1 satisfy certain conditions, then U is associative or

Jordan.

For λ P F consider the space U
rλs
1 “ tx P U1 : xLe “ λxu. This set is invariant

under the multiplication by Ui, i “ 0, 2:

Lemma 1.3.1 ([PS10a], Lemma 1.8). UiU
rλs
1 ` U

rλs
1 Ui Ď U

rλs
1 for i “ 0, 2.

The following technical lemmas will simplify further computations:

Lemma 1.3.2. Let x P U
rλs
1 . Then:

1) p1 ´ λqppid ´LeqLx ` ReRxq ´ λppid ´ReqRx ` LeLxq “ 0;

2) λpLxpid ´Leq ` RxReq ´ p1 ´ λqpLxLe ` Rxp1 ´ Reqq “ 0.

Proof. 1) Let a “ x, b “ e in (1.1.4):

0 “ p1 ´ λqLx ´ p1 ´ λ ` λqLeLx ´ λRx ` p1 ´ λ ` λqReRx

“ p1 ´ λqpLx ´ LeLx ` ReRxq ´ λpRx ` LeLx ´ ReRxq,

which proves the first point of the lemma.
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2) Let a “ e, b “ x in (1.1.4):

0 “ λLx ´ p1 ´ λ ` λqLxLe ´ p1 ´ λqRx ` p1 ´ λ ` λqRxRe

“ λpLx ´ LxLe ` RxReq ´ p1 ´ λqpLxLe ` Rx ´ RxReq,

which proves the second point of the lemma.

Lemma 1.3.3.

1) U
r0s
1 U0 “ U2U

r0s
1 “ 0;

2) U0U
r1s
1 “ U

r1s
1 U2 “ 0.

Proof. Let a P U0, b “ e in (1.1.4): LeLa “ ReRa. Applying this relation on z P U
r0s
1 ,

we get za “ 0. Now let a P U2, b “ e in (1.1.4): La ´ LeLa “ Ra ´ ReRa. Applying this

relation on z P U
r0s
1 , we get az “ 0. The second point of the lemma is proved completely

analogously.

Lemma 1.3.4.

1) U
r0s
1 U1 Ď U0 ` U1, U1U

r0s
1 Ď U1 ` U2;

2) U
r1s
1 U1 Ď U1 ` U2, U1U

r1s
1 Ď U0 ` U1;

3) pU r0s
1 q2 Ď U1, pU r1s

1 q2 Ď U1.

Proof. First two items of the lemma follow from (1.2.8), and the third point follows from

the first two.

For any λ P F the space S
rφs
1 peq “ U

rλs
1 `U

r1´λs
1 is completely determined by the

value φ “ λp1 ´ λq and can be considered as the “eigenspace” of Le and Re corresponding

to the “eigenvalue” φ. Let (1.2.7) be the Peirce decomposition of U with respect to a

system of orthogonal idempotents e1, . . . , en. Put

S
rφs
ij “ S

rφs
1 peiq X S

rφs
1 pejq.

Definition 1.3.5. We say that ei and ej are evenly connected if there is a scalar φ P F

and even elements vij, uij P S
rφs
ij such that vijuij “ uijvij “ ei ` ej, i ă j. We say that ei

and ej are oddly connected if there is a scalar φ P F and odd elements vij, uij P S
rφs
ij , i ă j,

such that vijuij “ ´uijvij “ ei ´ ej. Lastly, ei and ej are said to be connected if they are

either evenly or oddly connected. The element φ is called an indicator of Uij.

Definition 1.3.6. We say that a noncommutative Jordan superalgebra U is of degree k if

k is the maximal possible number of pairwise orthogonal connected idempotents in U bFF,

where F is the algebraic closure of F. And say that U has unity of degree k if k is the

degree of U and the unity of U is a sum of k orthogonal pairwise connected idempotents.
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A classical situation in theory of Jordan algebras is that a lot can be said about

the structure and representations of a Jordan (super)algebra if it has degree ě 3 (see, for

example, the coordinatization theorem in [Jac68]). This remains true for the noncommuta-

tive case as well: McCrimmon partially described the structure of noncommutative Jordan

algebras with unity of degree ě 3, and Pozhidaev and Shestakov generalized his results for

superalgebras. We state their results:

Lemma 1.3.7 ([PS10a], Lemma 1.10). If U has unity of degree ě 3, then all indicators

have the common value φ and Uij “ S
rφs
ij , i ‰ j. The element φ P F is then called the

indicator of U, and U is said to be of indicator type φ.

Lemma 1.3.8 ([PS10a], Lemma 1.11). If U has unity of degree at least 3 and is of

indicator type φ “ 1{4, then U is supercommutative.

Lemma 1.3.9 ([PS10a], Lemma 1.12). If U is of degree at least 3 and of indicator type

φ “ 0, then U is associative.

It seems that the results stated above only work for specific values of an Le-

eigenvalue λ and indicator φ. In fact, we can control the indicator type of U and the

eigenvalue λ using the construction called mutation, which we discuss in the next section.

1.4 Mutations

Mutation is a construction which generalizes the symmetrization of an algebra:

A Ñ Ap`q. Since the class of noncommutative Jordan algebras is large, it is closed under

mutations. In fact, the process of mutation is almost always invertible, so it does not

really give new interesting examples of algebras. However, using mutations we may greatly

simplify the multiplication table of an algebra, and also they allow us to formulate our

results in a concise way, so they are still useful.

Definition 1.4.1. Let A “ pA, ¨q be a superalgebra over F and λ P F. By Apλq we denote

the superalgebra pA, ¨λq, where

x ¨λ y “ λx ¨ y ` p´1qxyp1 ´ λqy ¨ x.

The superalgebra Apλq is called the λ-mutation of U .

It is easy to see that Ap1{2q is the symmetrized superalgebra Ap`q, and Ap0q is

the opposite superalgebra Aop. Since Lλ
x “ λLx ` p1 ´ λqRx, Rλ

x “ λRx ` p1 ´ λqLx, it is

easy to see (by inserting the new operators in relations (1.1.2), (1.1.3)) that a mutation of

a noncommutative Jordan superalgebra is again a noncommutative Jordan superalgebra. A

mutation Apλq of an associative superalgebra A is called a split quasiassociative superalgebra.
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A superalgebra U is called a quasiassociative superalgebra if there exists an extension Ω of

F such that UΩ “ U bF Ω is a split quasiassociative superalgebra over Ω.

Consider a double mutation pApλqqpµq. One can compute that pApλqqpµq “ Apλdµq,

where λ d µ “ 2λµ ´ λ ´ µ ` 1. Hence, if λ ‰ 1{2, there exists µ P F such that λ d µ “ 1,

and we can recover A from Apλq: A “ Ap1q “ Apλdµq “ pApλqqpµq. However, if λ “ 1{2, it is

impossible to immediately recover A from Ap1{2q “ Ap`q, since, for example, all mutations

of A have the same Ap`q.

Many results about noncommutative Jordan algebras can be formulated using

mutations. For example, in case of degree ě 3 we have the noncommutative coordinatization

theorem:

Theorem 1.4.2 (Coordinatization theorem, [PS10a]). Let F be a field which allows square

root extraction and U be a noncommutative Jordan superalgebra with unity of degree n ě 3

which is not supercommutative. Then U “ pAnqpλq is the λ-mutation of the n ˆ n matrix

algebra over an associative superalgebra A for λ P F.

Proof. We only give the main idea of the proof. If U is not supercommutative, then its

indicator type φ “ λp1 ´ λq ‰ 1{4 by Lemma 1.3.8. Therefore, F Q λ ‰ 1{2 and there

exists µ P F such that λ d µ “ 1. Now, one can check that U pµq is of indicator type 0.

Thus, by Lemma 1.3.9 it is associative and is in fact the n ˆ n matrix superalgebra over

the superalgebra A “ U11. Hence, by the double mutation rule, U “ pAnqpλq.

Now we can state our results on the classification of simple algebras. Recall that

an anticommutative algebra is noncommutative Jordan, and the classification of simple

finite-dimensional anticommutative algebras is far from being done. Therefore, we adapt

the definition of a simple noncommutative Jordan (super)algebra in the following way:

Definition 1.4.3. A noncommutative Jordan (super)algebra is simple if it has no proper

ideals and is not a nilalgebra.

Remark. In the paper [She71] it is shown that a nil noncommutative Jordan algebra with

no proper ideals is anticommutative.

It is easy to see that an ideal in A remains an ideal in Apλq. Hence, if λ ‰ 1{2,

ideals in A and Apλq coincide. In particular, if U is a simple noncommutative Jordan

superalgebra, then all its λ-mutations, λ ‰ 1{2, are simple noncommutative Jordan

superalgebras.

The list of central simple noncommutative Jordan superalgebras clearly includes

all central simple Jordan superalgebras. Also we just understood that it also includes all

simple quasiassociative superalgebras. Pozhidaev and Shestakov proved that in the case of

finite dimension and degree ě 3 there is nothing else:
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Theorem 1.4.4 ([PS10a, PS19]). A finite-dimensional central simple noncommutative

Jordan superalgebra U is either

1) of degree 1;

2) of degree 2;

3) quasiassociative;

4) supercommutative.

Therefore, essentially new examples of simple noncommutative Jordan superal-

gebras must have degree ď 2. The next section gives an approach for their classification.

1.5 Poisson brackets

Poisson brackets, Poisson algebras and generic Poisson algebras are important

objects in nonassociative algebra. Here we shall see that one can give a definition of a

noncommutative Jordan (super)algebra using the notion of generic Poisson bracket and its

symmetrized (super)algebra. Also we see that the simplicity of a noncommutative Jordan

(super)algebra is equivalent to the simplicity of its symmetrized (super)algebra in the case

of degree ě 2.

Definition 1.5.1. A superanticommutative binary linear operation t¨, ¨u on a superalgebra

pA, ¨q is called a generic Poisson bracket [KSU18] if for arbitrary a, b, c P A we have

ta ¨ b, cu “ p´1qbcta, cu ¨ b ` a ¨ tb, cu. (1.5.1)

In other words, for any homogeneous c P A the map t¨, cu is a derivation of degree ppcq.

Generic Poisson brackets are important in the study of noncommutative Jordan

(super)algebras. We have already seen that the symmetrized (super)algebra of a noncom-

mutative Jordan (super)algebra is a Jordan (super)algebra. So we may ask ourselves: how

do we reproduce the original structure of a noncommutative Jordan (super)algebra U

having only its symmetrized (super)algebra U p`q? Or equivalently, which noncommutative

Jordan (super)algebras have a symmetrized (super)algebra isomorphic to a given Jordan

(super)algebra J? The answer can be formulated nicely in terms of generic Poisson brackets:

Lemma 1.5.2 ([PS13], Lemma 7). Let pJ, ˝q be a Jordan superalgebra and t¨, ¨u be a generic

Poisson bracket on J. Then pJ, ¨q, where a ¨ b “ 1
2

pa ˝ b ` ta, buq is a noncommutative

Jordan superalgebra. Conversely, if U is a noncommutative Jordan superalgebra, then

the supercommutator r¨, ¨s is a generic Poisson bracket on a Jordan superalgebra U p`q.

Moreover, the multiplication in U can be recovered by the Jordan multiplication in U p`q

and the Poisson bracket: ab “ 1
2

pa ˝ b ` ra, bsq.
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Hence, we can define a noncommutative Jordan superalgebra U as a superalge-

bra with two multiplications:

Definition 1.5.3. A (super)algebra U “ Up˝, t¨, ¨uq with two multiplications ˝ and t¨, ¨u,

which we call respectively circle and bracket multiplications, is called noncommutative

Jordan, if pU, ˝q “ J is a Jordan (super)algebra, and t¨, ¨u is a generic Poisson bracket on

J.

In this setting, an ideal of pU, ˝, t¨, ¨uq is a subspace invariant with respect to

both multiplications. A subspace I Ď U such that I ˝ U Ď I is called a Jordan ideal of

U. Consider two marginal cases: if t¨, ¨u “ 0, then U is Jordan, and if ˝ “ 0, then U is

anticommutative. The passage to the symmetrized algebra in this setting is just forgetting

the bracket multiplication: U p`q “ pU, ˝q.

Now, if A is any algebra, it is obvious that if Ap`q is simple, then A is also simple.

Pozhidaev and Shestakov proved that the converse holds in the case of noncommutative

Jordan superalgebras of degree ě 2:

Theorem 1.5.4 ([PS10a, PS13, PS19]). Let U be a central simple finite-dimensional non-

commutative Jordan superalgebra of degree ě 2. Then U p`q is a simple finite-dimensional

Jordan superalgebra.

In other words, a simple finite-dimensional central noncommutative Jordan

superalgebra of degree ě 2 is a simple finite-dimensional Jordan superalgebra with a generic

Poisson bracket. Therefore, to classify simple superalgebras in degree 2, it suffices to find

all generic Poisson brackets on simple finite-dimensional Jordan superalgebras (which are

known), and classify the resulting noncommutative superalgebras up to isomorphism. In

the next section we consider some examples of this approach.

So the structure theory of noncommutative Jordan (super)algebras can be

formulated in a nice manner if we think of them as (super)algebras with two multiplications.

In the last section of this section we will see what does the definition of a noncommutative

Jordan representation look like in this context.

1.6 Examples and classification in degree ď 2

Here we provide some examples of noncommutative Jordan superalgebras of

degree ď 2 given in [PS10a, PS13]. We also correct a mistake in the classification of the

algebras Dtpα, β, γq from the paper [PS10a] (the algebra Dtp1{2, 1{2, 0q was omitted there).

In the end of the section we state the classification theorem for simple superalgebras of

degree ď 2.
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1.7 The superalgebra Dtpα, β, γq
Let t P F. Recall that a Jordan superalgebra Dt is defined in the following way:

Dt “ pDtq0̄ ‘ pDtq1̄, pDtq0̄ “ xe1, e2y, pDtq1̄ “ xx, yy,
e2

i “ ei, e1 ˝ e2 “ 0,

e1 ˝ x “ e2 ˝ x “ x{2, e1 ˝ y “ e2 ˝ y “ y{2,

x ˝ y “ ´y ˝ x “ e1 ` te2.

This superalgebra is simple if t ‰ 0.

Suppose that U is a noncommutative Jordan superalgebra such that U p`q “ Dt.

Here we describe such algebras and classify them up to isomorphism.

The Peirce decomposition of U with respect to e1 is as follows: U0 “ xe2y, U1 “
xx, yy, U2 “ xe1y. be The Peirce relation (1.2.5) implies that

e1x “ αx ` βy, e1y “ γx ` δy, α, β, γ, δ P F.

Relation (1.2.8) implies that P2pxyq “ P2pe1x ‚ yq “ αP2px ‚ yq “ 2αe1. Analogously, we

obtain P2pyxq “ ´2δe1. Hence, α ` δ “ 1. Since U1 “ U1̄, we have

P1px2q “ 0, P1py2q “ 0, P1pxyq “ 0, P1pyxq “ 0.

Again using the relation (1.2.8) we get

P2px2q “ ´2βe1, P0px2q “ 2βte2,

P2py2q “ 2γe1, P0py2q “ ´2γte2,

P0pxyq “ 2p1 ´ αqte2, P0pyxq “ ´2αte2.

Therefore, multiplication in U is of the following form:

e2
i “ ei, e1e2 “ e2e1 “ 0,

e1x “ αx ` βy “ xe2, xe1 “ p1 ´ αqx ´ βy “ e2x,

e1y “ γx ` p1 ´ αqy “ ye2, ye1 “ ´γx ` αy “ e2y,

xy “ 2pαe1 ` p1 ´ αqte2q, yx “ ´2pp1 ´ αqe1 ` αte2q,
x2 “ ´2βpe1 ´ te2q, y2 “ 2γpe1 ´ te2q.

One can check that for all α, β, γ P F, U is a flexible superalgebra such that U p`q “ Dt,

thus, by Lemma 1.1.5 it is noncommutative Jordan. Denote this algebra by Dtpα, β, γq.
Putting t “ ´1, we obtain the superalgebra M1,1pα, β, γq, and putting t “ ´2, we obtain

the superalgebra ospp1, 2qpα, β, γq (see [PS13]). Putting α “ 1{2, β “ γ “ 0, we obtain a

Jordan superalgebra Dt.

We can classify these algebras up to isomorphism (when this work was being

written, the classification also appeared in [PS19]):
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Lemma 1.7.1. If F is a field which allows square root extraction, then for α, β, γ P F, the

superalgebra Dtpα, β, γq is isomorphic either to Dtpλ, 0, 0q “ Dtpλq for some λ P F, or to

Dtp1{2, 1{2, 0q.

Proof. Let U “ Dtpα, β, γq and consider the restriction of the operator Le1
to U1. Since F

allows square root extraction, U1 has a Jordan basis with respect to Le1
. We denote the

elements of this basis by x1 “ ax ` by, y1 “ cx ` dy, a, b, c, d P F. Let δ “ det

˜

a b

c d

¸

.

We consider two cases:

1) x1Le1
“ λx1, y1Le1

“ µy1, where λ, µ P F. It is easy to see that x1 ˝ x1 “ y1 ˝ y1 “ 0,

and

x1 ˝ y1 “ δpe1 ` te2q.

Setting x2 “ x{δ, y2 “ y1, we may assume that the multiplication rules in the

symmetrized superalgebra for x2, y2 are the same as for x, y. That is, we may assume

that x2 “ x and y2 “ y are eigenvectors with respect to Le1
. Again using relation

(1.2.8), we see that λ ` µ “ 1. Repeating the calculations of the structure constants

of U as in the general case, we conclude that the original superalgebra is isomorphic

to Dtpλ, 0, 0q.

2) x1Le1
“ λx1 ` y1, y1Le1

“ λy1, where λ P F. Setting x2 “ x1{
?

δ, y2 “ y1{
?

δ, we

see that the multiplication rules for x, y and x2, y2 in the symmetrized algebra Dt

coincide. Thus, as in the previous case we may assume x2 “ x, y2 “ y. From

(1.2.8) it follows that λ “ 1 ´ λ “ 1{2. Repeating the calculations of the structure

constants of U as in the general case, we see that D – Dtp1{2, 1, 0q. Repeating these

calculations for α “ β “ 1{2, γ “ 0, we see that Dtp1{2, 1, 0q – Dtp1{2, 1{2, 0q (the

last algebra has more symmetrical multiplication rules and will be more convenient

to work with).

1.8 The superalgebra K3pα, β, γq
A noncommutative Jordan superalgebra K3pα, β, γq “ U0̄‘U1̄; U0̄ “ xe1y, U1̄ “

xx, yy is defined by the following multiplication table:

e1 x y

e1 e1 αx ` βy γx ` p1 ´ αqy
x p1 ´ αqx ´ βy ´2βe1 2αe1

y αy ´ γx ´2p1 ´ αqe1 2γe1

The superalgebra K3pα, β, γqp`q is isomorphic to the simple nonunital Jordan

superalgebra K3 “ K3p1{2, 0, 0q. In fact, they are characterized by this property:
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Lemma 1.8.1 ([PS10a], Lemma 4.6). Let U be a noncommutative Jordan superalgebra

such that U p`q – K3. Then U – K3pα, β, γq for some α, β, γ P F.

Analogously to Lemma 1.7.1 one can classify these algebras up to isomorphism:

Lemma 1.8.2. If F is a field which allows square root extraction, then for α, β, γ P F

K3pα, β, γq is isomorphic either to K3pλ, 0, 0q “ K3pλq for some λ P F, or to K3p1{2, 1{2, 0q.

Note that in fact K3pα, β, γq is of degree 1, but we still list these algebras here

because of their similarity to the algebras Dtpα, β, γq described above. In fact, the unital

hull of K3pα, β, γq is a nonsimple noncommutative Jordan superalgebra D0pα, β, γq.

1.9 The superalgebra UpV, f, ‹q
Let V “ V0̄ ‘ V1̄ be a vector superspace over F, and let f be a supersymmetric

nondegenerate bilinear form on V. Also let ‹ be a superanticommutative multiplication on

V such that fpx ‹ y, zq “ fpx, y ‹ zq (that is, f is an invariant form with respect to the

product ‹). Then we can define a multiplication on U “ F ‘ V in the following way:

pα ` xqpβ ` yq “ pαβ ` fpx, yqq ` pαy ` βx ` x ‹ yq,

and the resulting superalgebra (which is noncommutative Jordan) is denoted by UpV, f, ‹q.

The superalgebra UpV, f, ‹qp`q is isomorphic to a simple Jordan superalgebra of

nondegenerate supersymmetric bilinear form which is usually denoted by JpV, fq. Again,

this property characterizes this family:

Lemma 1.9.1 ([PS10a], Lemma 4.4). Let F be a field which allows square root extrac-

tion, JpV, fq be a superalgebra of nondegenerate supersymmetric bilinear form, and U

be a noncommutative Jordan superalgebra such that U p`q – JpV, fq. Then there exists a

superanticommutative product ‹ on V such that U – UpV, f, ‹q.

We remark here that the condition that F allows square root extraction serves

to ensure that algebras JpV, fq and UpV, f, ‹q are of degree 2 (see Section 2.2.1, where we

describe the idempotents of this algebra). If F does not allow square root extraction, it

is possible that JpV, fq and UpV, f, ‹q have degree 1. Note also that JpV, fq “ UpV, f, 0q.
Examples of this type of algebras are generalized Cayley-Dickson algebras of dimension

2n, see [ZSSS82].
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1.10 The classification in degree 2

Analogously to the examples described above, Pozhidaev and Shestakov calcu-

lated all possible generic Poisson brackets on simple Jordan superalgebras in the case of

characteristic 0, concluding the classification in the case of degree ě 2. We provide it here:

Theorem 1.10.1 ([PS13], Theorem 2). Let U be a simple noncommutative central Jordan

superalgebra over a field F of characteristic zero. Suppose that U is neither supercom-

mutative nor quasiassociative. Then U is isomorphic to one of the following algebras:

K3pα, β, γq, Dtpα, β, γq, KpΓn, Aq, ΓnpDq, or there exists an extension P of F of degree

ď 2 such that U bF P is isomorphic as a P-superalgebra to UpV, f, ‹q.

The only algebras in the list whose structure we did not describe here are the

algebras KpΓn, Aq and ΓnpDq. The underlying Jordan superalgebra of KpΓn, Aq is the

Kantor double of the Grassmann superalgebra Γn, its representations will be considered

in Section 4.3. The symmetrized superalgebra of ΓnpDq is the Grassmann superalgebra

Γn (which is not simple and is of degree 1), their descriptions can be found in the paper

[PS13]. We will not treat these algebras in this work. Note also that many simple Jordan

superalgebras, such as P p2q, K10, K9, do not admit nonzero Poisson brackets and do not

give new examples of simple algebras (see [PS13], [PS19]).

In positive characteristic some additional algebras appear, see [PS19].

1.11 Bimodules and representations

In this section we briefly recall the basic notions of representation theory of

nonassociative algebras.

Definition 1.11.1. A superbimodule over a superalgebra A “ A0̄‘A1̄ is a linear superspace

M “ M0̄ ‘ M1̄ with two bilinear operations A ˆ M Ñ M, M ˆ A Ñ M such that

AīMj̄ ` Mj̄Aī ` Aj̄Mī ` MīAj̄ Ď Mī`j̄ for ī, j̄ P Z2.

For a subset S Ă M by ModpSq we denote the submodule generated by S.

Definition 1.11.2. A set tL, Ru of two even linear maps L, R : A Ñ EndpMq is called a

representation of A.

It is clear that the notions of superbimodule and representation are equivalent.

Definition 1.11.3. The regular superbimodule RegpAq for a superalgebra A is defined on

the vector space A with the action of A induced by the multiplication in A.
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Definition 1.11.4. For an A-superbimodule M the structure of the opposite module on

the space Mop with M
op

0̄
“ M1̄, M

op

1̄
“ M0̄ is defined by the action

a ¨ m “ am, m ¨ a “ p´1qama for a P A, m P Mop.

Note that a module M is irreducible if and only if its opposite Mop is irreducible.

Recall the definition of a split null extension:

Definition 1.11.5. The split null extension of A by a module M is a superalgebra

E “ A ‘ M with the multiplication

pa1 ` m1qpa2 ` m2q “ a1a2 ` a1 ¨ m2 ` m1 ¨ a2 for a1, a2 P A, m1, m2 P M.

Now we give the standard definition of a representation in a variety.

Definition 1.11.6. Suppose that A lies in a homogeneous variety of algebras M. Then

an A-module M is called an M-superbimodule if the split null extension E of A by M

also lies in M. A representation of A is called an M-represenation if the corresponding

superbimodule is an M-superbimodule.

Lemma 1.11.7. Let M be an M-superbimodule over A. Then Mop is also an M-

superbimodule over A.

Proof. From the definition it follows that the split null extension E “ A ‘ M lies in M.

Consider the superalgebra P “ x1, 1̄y with P0̄ “ x1y, P1̄ “ x1̄y, 1 is the unit of P , and

1̄2 “ 0. It is easy to see that P is an associative and supercommutative superalgebra,

therefore, E b P P M. Note that E b P contains a subalgebra E 1 “ A b 1 ` M b 1̄. One

can easily check that E 1 is isomorphic to the split null extension of A by Mop. Therefore,

Mop is a M-superbimodule over A.

1.12 Noncommutative Jordan representations

Here we briefly recall the definitions of representation theory specific to non-

commutative Jordan algebras. Then we formulate the definition of a noncommutative

Jordan representation in the spirit of Definition 1.5.3, and prove some technical results in

this setting.

Let M be a noncommutative Jordan bimodule over U . Since M Ď E is an

ideal, M has the Peirce decomposition with respect to e:

M “ M0 ‘ M1 ‘ M2,
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where Mi “ M X Ei is the ith Peirce component of M . Suppose now that U is unital and

e “ 1. Since U Ď E2p1q, Peirce relations (1.2.5) imply that the Peirce components Mip1q
are submodules of M.

The relations (1.2.5) imply that M0 is a zero bimodule, that is, all Rx, Lx, x P U

act as zero operators on it. On M2 we have L1 “ R1 “ id, so M2 is called a unital bimodule.

On M1 we have R1 ` L1 “ id, such bimodules will be called one-sided.

Definition 1.5.3 states that U can be considered as a Jordan superalgebra pU, ˝q
with generic Poisson bracket t¨, ¨u. Here we state the definition of a noncommutative

Jordan representation in this framework. The idea is clear: given a module M over

U “ pU, ¨q “ pU, ˝, t¨, ¨uq, we construct the split null extension E “ U ‘ M, then extend

the circle and the bracket products to E and require that the algebra pE, ˝, t¨, ¨uq be

noncommutative Jordan. Finally, we express the conditions for a representation to be

noncommutative Jordan by means of operator identities, similarly to (1.1.2). Here are the

details:

Let A be a noncommutative Jordan superalgebra. For x P A, introduce operators

R`
x , R´

x P EndpAq:
R`

x “ Rx ` Lx

2
, R´

x “ Rx ´ Lx

2
.

These operators express circle and bracket multiplications:

yR`
x “ y ˝ x, yR´

x “ ry, xs{2,

where x, y P A (the denominator of 2 appearing in the formula seems unnatural for now,

but it will make our future computations easier).

Let M be a noncommutative Jordan bimodule over U and E be the correspond-

ing split null extension. Then for x in U , M is closed under operators R`
x , R´

x P EndpEq.
Since M2 “ 0 as a subalgebra of E, these operators should be understood as extending

the circle and the generic Poisson bracket on U to E. Note that

Lx “ R`
x ´ R´

x , Rx “ R`
x ` R´

x ,

so to give a structure of a noncommutative Jordan bimodule on a vector space M it suffices

to define the operators R`
x , R´

x for every x P U.

We can now state the new definition of a noncommutative Jordan representation:

Definition 1.12.1. Let U “ pU, ˝, t¨, ¨uq be a noncommutative Jordan superalgebra, M

be a vector superspace, and R`, R´ : U Ñ EndpMq two even maps defined by R` : x ÞÑ
R`

x , R´ : x ÞÑ R´
x . Extend the multiplications on U to the split null extension E “ U ‘ M

as follows:

m ˝ a “ mR`
a , tm, au “ 2mR´

a , m ˝ n “ tm, nu “ 0,
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where a P U, m, n P M. Then M is a noncommutative Jordan superbimodule (equivalently,

tR`, R´u is a noncommutative Jordan representation) iff pE, ˝, t¨, ¨uq is a noncommutative

Jordan superalgebra.

By Lemma 1.5.2 it is obvious that this definition is equivalent to the usual

definition of a noncommutative Jordan superbimodule (noncommutative Jordan represen-

tation). Now we formulate the explicit conditions on the representation tR`, R´u for it to

be noncommutative Jordan.

Let M be a noncommutative Jordan superbimodule over U with the action

given by m ˝ a “ mR`
a , tm, au “ 2mR´

a . By Lemma 1.5.2, pE, ˝q is a Jordan superalgebra.

Thus, M is a Jordan module over J “ U p`q with the action given by m ˝ a “ mR`
a .

The relation (1.5.1) is equivalent to two operator relations:

rR`
a , R´

b s “ 1
2

R`
ra,bs, (1.12.1)

R´
a R`

b ` p´1qabR´
b R`

a “ R´
a˝b, (1.12.2)

where a, b P U. Thus, if tR`, R´u is a noncommutative Jordan representation, then R`

must be a Jordan representation and the two relations above must hold. On the other

hand, let M be a module over U . Then from Lemma 1.5.2 and definitions of Jordan and

noncommutative Jordan bimodule it follows that if M is a Jordan bimodule over U p`q

with the action given by m ˝ a “ mR`
a and relations (1.12.1), (1.12.2) hold, then the

algebra E is noncommutative Jordan, hence, the representation R`, R´ : U Ñ EndpMq is

noncommutative Jordan. We state what we have just seen as a definition:

Definition 1.12.2. Let pU, ˝, t¨, ¨uq be a noncommutative Jordan superalgebra, and M be

a vector superspace. A representation R`, R´ : U Ñ EndpMq is noncommutative Jordan

if and only if R` : U Ñ EndpMq is a Jordan representation of U p`q (that is, the relation

(1.1.1) holds for R`) and relations (1.12.1), (1.12.2) hold.

It seems that the approach which we have just constructed works better with

describing representations over superalgebras in which the circle and the bracket products

are “more natural” than the usual multiplication (for example, noncommutative Jordan

superalgebras that are explicitly built as a Jordan superalgebra with a generic Poisson

bracket). For superalgebras in which the usual multiplication is more “natural” than the

circle and bracket ones (for example, associative and quasiassociative ones), it appears

better to stick with the usual definition of a noncommutative Jordan bimodule which was

given in the beginning of the section (that is, to work with relations (1.1.2), (1.1.3), and

the relations derived from them).

We finish this section by proving some technical results that will be useful later.

A large part of the subsequent calculations of the work will be similar, so we note first
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that from now on we will use the Peirce relations (1.2.5), (1.2.6) in the operator form. For

example, if x P U0, then we can rewrite the relations (1.2.5) in the following way:

P0Lx “ P0LxP0, P0Rx “ P0RxP0,

P1Lx “ P1LxP1, P1Rx “ P1RxP1,

P2Lx “ 0, P2Rx “ 0.

We can transform analogously the relations (1.2.5), (1.2.6) for x P U0, U1, U2 and also with

the operators R`, R´ instead of operators L, R. The relations of this type we also call the

Peirce relations.

Lemma 1.12.3. Let x P U1. Then

1) P0R
´
x “ ´P0R

`
re,xs;

2) P2R
´
x “ P2R

`
re,xs;

3) P1R
´
x pP0 ` P2q “ P1R

`
re,xspP0 ´ P2q.

Proof. Consider the relation (1.12.1) with a “ e, b “ x:
1
2

R`
re,xs “ rR`

e , R´
x s. Multiply it

by P0 on the left:

1
2

P0R
`
re,xs “ P0rR`

e , R´
x s “ ´P0R

´
x R`

e “ ´P0R
´
x P1R

`
e “ ´1

2
P0R

´
x ,

hence, the first relation follows. The second relation is obtained analogously by multiplying

this relation on P2. Now multiply the same relation by P1 on the left:

1
2

P1R
`
re,xs “ P1rR`

e , R´
x s “ P1R

´
x

ˆ

1
2

id ´R`
e

˙

“ P1R
´
x pP0 ` P1 ` P2q

ˆ

1
2

id ´R`
e

˙

“ 1
2

P1R
´
x pP0 ´ P2q.

Since by the Peirce relations P1R
`
re,xs “ P1R

`
re,xspP0 ` P2q, the third relation follows.

Lemma 1.12.4. Let x, y, z P U1 be such that rx, es “ 0, xy P U0 ` U2. Then

1) pP0 ` P2qR´
x “ 0, P1R

´
x “ P1R

´
x P1;

2) P1R
`
z R´

x “ 0;

3) P1R
´
x R`

y “ 0, P1R
`
rx,ys “ 0;

4) P1R
´
x˝y “ p´1qxyP1R

´
y R`

x “ P1R
`
x R´

y . Particularly, if ry, es “ 0, then P1R
´
x˝y “ 0.

Proof. The points 1) and 2) follow directly from the previous lemma.
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3) The relation (1.2.10) implies that

P1RxP1R
`
y “ 0, P1LxP1R

`
y “ 0.

Subtracting the second equation from the first and using 1), we obtain 0 “
P1R

´
x P1R

`
y “ P1R

´
x R`

y . By 1) and the Peirce relations (1.2.6), we have P1R
`
y R´

x “
P1R

`
y pP0 ` P2qR´

x “ 0. Now the identity (1.12.1) implies that P1R
`
rx,ys “ 0.

4) The relation (1.12.2) and the previous point imply that

P1R
´
x˝y “ P1pR´

x R`
y ` p´1qxyR´

y R`
x q “ p´1qxyP1R

´
y R`

x .

Now, the relation P1R
`
rx,ys “ 0 implies P1pR`

x R´
y ´ p´1qxyR´

y R`
x q “ 0, and we have

the second equality. The second statement follows from the point 2).

We also state here the following widely known fact. Let J be a unital Jordan

superalgebra with an idempotent e and a Peirce decomposition J “ J0 ` J1 ` J2 with

respect to e. Then a ÞÑ R`
a is a homomorphism of J0 ` J2 into EndpJ1qp`q. Hence, for

arbitrary unital noncommutative Jordan superalgebra U with unit of degree ě 2 we have

P1R
`
x˝y “ P1pR`

x ˝ R`
y q. (1.12.3)

1.13 Discussion of main results

The main result of this work, obtained in many theorems dispersed throughout

the thesis, is as follows:

Main result: Irreducible finite-dimensional representations of simple finite-

dimensional noncommutative Jordan superalgebras of degree ě 2 over an algebraically

closed field of characteristic 0 are described.

In fact, for many algebras we obtain more than just a classification of irre-

ducible modules. Let us describe in an informal manner the results of this work. In

Section 2.1 we study representations of noncommutative Jordan superalgebras of degree

ě 3. Theorem 1.4.4 implies that a finite-dimensional central simple noncommutative

Jordan superalgebra of degree ě 3 is either Jordan or quasiassociative. In Theorem 2.1.1

we prove that all its representations are also respectively Jordan or quasiassociatve and

show that finite-dimensional representations of such algebras are completely reducible.

In Section 2.2 we study noncommutative Jordan representations of simple

Jordan superalgebras. In Theorem 2.2.2 we describe irreducible unital noncommutative

Jordan modules over the superalgebra JpV, fq of a nondegenerate bilinear superform

(in particular, we find one large new family of modules). For low-dimensional Jordan

superalgebras Dt, K3, P p2q, Qp2qp`q, K10 and K9 we prove in a uniform way that every
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noncommutative Jordan module over them is Jordan (Theorems 2.2.4 and 2.2.6 to 2.2.9).

Moreover, we extend the Kronecker factorization theorem for K10 obtained in [MZ03] to

noncommutative Jordan case (Theorems 2.2.10 and 2.2.11).

In Chapter 3 we study modules over superalgebras Dtpα, β, γq and K3pα, β, γq.
By Lemma 1.7.1 a superalgebra Dtpα, β, γq is isomorphic either to Dtpλq for λ P F or to

Dtp1{2, 1{2, 0q. In Section 3.1 we study representations of these two algebras separately

using different methods, but obtain the same result: except for some values of parameters

t, α, β, γ every module over Dtpα, β, γq is a direct sum of copies of the regular module and

its opposite (Theorems 3.1.2 and 3.1.7, see also Theorems 3.1.3, 3.1.8 and 3.1.9 for results

for exceptional values of parameters). As a consequence, in Theorem 3.1.10 we classify

representations of K3pα, β, γq, which has nontrivial indecomposable modules.

In Section 3.2 we use this result to prove the Kronecker theorem for Dtpα, β, γq.
That is, in Theorems 3.2.8 and 3.2.16 we show that if U is a noncommutative Jordan

superalgebra containing Dtpα, β, γq as a unital subalgebra, then U – Dtpα, β, γq b A for

an associative-commutative superalgebra A (except for some values of α, β, γ). We use

this result in Section 3.3 to prove that every noncommutative Jordan module over the

superalgebra Qp2q is associative (Theorem 3.3.2) and show the Kronecker factorization

theorem for Qp2q (Theorem 3.3.3).

In Chapter 4 we prove a general result which is useful for classification of

irreducible representations. In particular, we show that if M is an irreducible noncommu-

tative module over U, then it is either irreducible as Jordan module over U p`q or equals

one of its Peirce components (Theorem 4.1.8). We use this result and classifications of

irreducible modules over Jordan superalgebras JpV, fq and KpΓnq to classify irreducible

finite-dimensional modules over superalgebras UpV, f, ‹q and KpΓn, Aq in Theorems 4.2.6

and 4.3.2.
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2 Representations of simple superalgebras of

degree ě 3 and Jordan superalgebras

In this chapter we study representations of noncommutative Jordan superal-

gebras of degree ě 3 and Jordan superalgebras. Recall that by Theorem 1.4.4 a finite-

dimensional central simple noncommutative Jordan superalgebra of degree ě 3 is either

Jordan or quasiassociative. In Theorem 2.1.1 we prove that all its representations are also

respectively Jordan or quasiassociatve and show that finite-dimensional representations of

such algebras are completely reducible. Therefore, to find new examples of noncommutative

Jordan representations of simple (algebras) one has to study algebras of degree ď 2.

In Section 2.2 we study noncommutative Jordan representations of simple

Jordan superalgebras. In Theorem 2.2.2 we describe irreducible unital noncommuta-

tive Jordan modules over the superalgebra JpV, fq of a nondegenerate bilinear super-

form (in particular, we find one large new family of modules which will serve as coun-

terexamples and border cases during the text, see, for example, the remark at the end

of Section 3.2.1 and Lemma 4.2.2). Next, for low-dimensional Jordan superalgebras

Dtpt ‰ 1q, K3, P p2q, Qp2qp`q, K10 and K9 we prove in a uniform way (by checking that

they contain Dt for some appropriate value of t or K3, see Lemma 2.2.3) that every

noncommutative Jordan module over them is Jordan (Theorems 2.2.4 and 2.2.6 to 2.2.9).

Moreover, for the case of the base field algebraically closed of characteristic 0, we extend

the Kronecker factorization theorem for K10 obtained in [MZ03] to noncommutative Jordan

case (Theorems 2.2.10 and 2.2.11).

2.1 Superalgebras of degree ě 3

We begin with the case of degree ě 3: we obtain results analogous to these of

McCrimmon [McC66]. Basically, there are no new examples of noncommutative Jordan

representations in this case.

Theorem 2.1.1. Let U be a simple finite-dimensional noncommutative Jordan superalgebra

of degree ě 3 over an algebraically closed field F of characteristic 0. Then:

1) If U is Jordan, then every unital noncommutative Jordan superbimodule over U is

Jordan;

2) If U is quasiassociative, then for every unital noncommutative Jordan superbimodule

M over U the split null extension E “ U ‘ M is quasiassociative;
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3) Every finite-dimensional noncommutative Jordan superbimodule over U is completely

reducible.

Proof. From Theorem 1.4.4 and the classification of simple finite-dimensional associative

and Jordan superalgebras it follows that U has a unit. Let e1, . . . , en be a system of

pairwise orthogonal connected idempotents in U which sum to 1. By Lemma 1.3.7 U has

the indicator φ “ λp1 ´ λq, and since F is algebraically closed, λ P F. Let M be a finite-

dimensional noncommutative Jordan superbimodule over U. We denote by E “ U ‘ M

the split null extension of U by M. Let M “ M0 ` M1 ` M2 be the Peirce decomposition

of M relative to the idempotent 1 P E. We have already seen that Mi’s are submodules of

M . Therefore, we only have to prove the complete reducibility of each Mi.

M0 is a zero submodule, therefore, it is obviously completely reducible (the

submodules are one-dimensional subspaces).

Now consider M1 “ N , which is a special U -bimodule. With respect to the

system of idempotents e1, . . . , en it has the Peirce decomposition N “
n

ÿ

i“0

Ni0. By connec-

tivity, for distinct i, j not equal to 0, there exist uij, vij P S
rφs
ij such that uijvij “ pei ˘ ejq.

Then, by Lemmas 1.2.6 and 1.3.1 Ni0 “ puijvijqNi0 ` Ni0puijvijq Ď N
rφs
i0 , hence,

N “ S
rφs
1 p1q “ N rλsp1q ` N r1´λsp1q.

Since U Ď E2p1q, Lemma 1.3.1 implies that N rλsp1q, N r1´λsp1q are submodules.

Thus, we only have to show that N rλsp1q and N r1´λsp1q are completely reducible. If the

indicator of U is φ “ 1{4, then by Lemma 1.3.8 U is commutative and λ “ 1 ´ λ “ 1{2,

then L1 “ R1 “ 1{2 (from now on to until the end of the theorem by Lx, x P U we denote

the restriction of the operator Lx to M) thus, for x P U,

Lx ´ Rx “ Lx¨1 ´ R1¨x “ (by (1.1.4)) “ L1Lx ´ RxR1 “ 1
2

pLx ´ Rxq,

hence, Lx “ Rx and N is a one-sided Jordan bimodule over U. From [MZ02, Theorem

1] it follows that N is completely reducible. If φ ‰ 1{4, we may perform a mutation of

E 1 “ U ‘ N so that φ becomes 0 and by Lemma 1.3.9 U becomes associative. Since the

ideals of U ‘ N rλsp1q and its µ-mutation (µ ‰ 1{2) coincide, it is enough to consider the

case where U is associative, φ “ λ “ 0. Then for x P U we have

Lx ´ Rx “ Lx¨1 ´ R1¨x “ (by (1.1.4)) “ L1Lx ´ RxR1 “ ´Rx,

hence Lx “ 0 and by (1.1.4) we have Rxy “ RxRy. Therefore, N r0sp1q is a finite-dimensional

right module (analogously, N r1sp1q is a left module) over a simple associative finite-

dimensional superalgebra U , and is completely reducible.

Consider now the bimodule M2. Since U has unity of degree n ě 3, so does

E2 “ U ` M. If the indicator φ of U is 1{4, then E2 is commutative by Lemma 1.3.8.
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Hence, M is a Jordan superbimodule over U and is completely reducible by [MZ10,

Theorem 8.1]. If φ ‰ 1{4 we can mutate E2 to reduce to the case φ “ 0 as in the proof

of the coordinatization theorem. Thus, by Lemma 1.3.9, E2 is associative, and M is a

finite-dimensional associative bimodule which is completely reducible by [Pis94].

In the rest of the work we study irreducible unital representations over simple

noncommutative Jordan superalgebras of degree ď 2. From now on, if not explicitly said

otherwise, by “representation” we mean a unital noncommutative Jordan representation,

and by “bimodule” we mean a unital noncommutative Jordan bimodule.

2.2 Noncommutative Jordan representations of simple Jordan su-

peralgebras

In this section we study unital noncommutative Jordan representations of

simple Jordan (super)algebras. For the (super)algebra JpV, fq of nondegenerate vector

form we find a class of representations that are not Jordan, and prove that an irreducible

noncommutative Jordan representation of such (super)algebra is Jordan or belongs to the

described class. For low-dimensional superalgebras Dt, K3, P p2q, Qp2qp`q, K10 and K9

we develop a unified approach which allows us to prove that any (not just irreducible)

noncommutative Jordan representation over them is Jordan. For the Kac superalgebra

K10 in the case of F algebraically closed and characteristic zero it means that any unital

K10-module is completely reducible with irreducible summands regular module and its

opposite [Sht87], so we check that the Kronecker factorization for K10 holds in the class of

noncommutative Jordan superalgebras.

First of all, we prove some technical statements that we will need later. Clearly,

in our setting (studying noncommutative Jordan representations of Jordan algebras) it is

easier to use the approach given by Definitions 1.5.3 and 1.12.2.

Lemma 2.2.1. Let J be a Jordan superalgebra with an even idempotent e and M a

noncommutative Jordan bimodule over J . Then the following statements hold:

1) Let x, y P J1. Then R`
x R´

y “ R´
x R`

y “ 0;

2) M1 is closed under the operators of the form Rǫ1

a Rǫ2

b , where a, b P J1, ǫ1, ǫ2 P t`, ´u;

3) R´
J1˝J1

“ 0;

4) Let a P J0 ` J2, x P J1. Then P1R
´
a R`

x “ 0, P1R
´
a˝x “ p´1qaxP1R

´
x R`

a ;

5) M 1 “ M1R
´
J is a J-submodule of M, and M 1 Ď M1.

Proof.
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1) From Lemma 1.12.4 it follows that pP0 ` P2qR´
x R`

y “ 0 and P1R
`
x R´

y “ 0.

Since J is commutative, (1.12.1) simplifies to

rR`
a , R´

b s “ 0. (2.2.1)

Therefore,

pP0 ` P2qR`
x R´

y “ p´1qxypP0 ` P2qR´
y R`

x “ 0, P1R
´
x R`

y “ p´1qxyP1R
`
y R´

x “ 0.

2) Easily follows from 1), 1) of Lemma 1.12.4 and Peirce relations.

3) Easily follows from 1) and (1.12.2).

4) From (1.12.2) it follows that

P1pR´
a˝x ´ p´1qaxR´

x R`
a q “ P1R

´
a R`

x .

Using 1) of Lemma 1.12.4 and Peirce relations, it is easy to see that the image of

the left part lies in M1, and the image of the right part lies in M0 ` M2, hence the

statement follows.

5) We have to check that M 1 is closed under all operators R`
x , R´

x , x P J. Let x, y P
J1, z, t P J0 ` J2. Then, using 1), 4), (2.2.1) and 1) of Lemma 1.12.4 it is easy to

see that

M1R
´
x R`

y “ 0, M1R
´
x R´

y Ď M 1, M1R
´
x R`

z “ M1R
`
z R´

x Ď M 1, M1R
´
x R´

z Ď M 1,

M1R
´
z R`

x “ 0, M1R
´
z R´

x Ď M 1, M1R
´
z R`

t “ M1R
`
t R´

z Ď M 1, M1R
´
z R´

t Ď M 1,

hence, M 1 is a J-submodule of M, and from 1) of Lemma 1.12.4 it follows that

M 1 Ď M1.

Now we are ready to describe noncommutative Jordan bimodules over simple

Jordan superalgebras.

2.2.1 Representations of the superalgebra JpV, fq.
Jordan representations of simple superalgebra JpV, fq of symmetric bilinear

form over an algebraically closed field of characteristic 0 were considered in [MZ10]. Here

we describe irreducible noncommutative Jordan representations of this superalgebra with

the restriction that V0̄ ‰ 0 and that F allows square root extraction (these conditions

ensure that the degree of this superalgebra is 2, see below).

Let J “ JpV, fq be the superalgebra of nondegenerate supersymmetric bilinear

form f on a vector superspace V “ V0̄ ‘ V1̄ with V0̄ ‰ 0. If V0̄ ‰ 0, there exists an element
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u P V0̄ with fpw, wq “ α ‰ 0. If F allows square root extraction, then J has a nonzero

idempotent e “ 1{2 ` v, where v “ w{2
?

α P V0 is such that fpv, vq “ 1{4, and it is easy

to see that any idempotent of J is of this form. The superalgebra J has the following

Peirce decomposition relative to e:

J0 “
A1

2
´ v

E

, J1 “ tu P V : fpu, vq “ 0u, J2 “
A1

2
` v

E

.

Let M be an irreducible noncommutative Jordan bimodule over J. The one-

dimensionality of Peirce spaces J0, J2 and 1) of Lemma 1.12.4 imply that operators

R´
x , x P J , act nonzero only on M1. Now, by 5) of Lemma 2.2.1, M 1 “ M1R

´
J is a

submodule of M. If M 1 is zero, M is commutative (note that in case of algebraically closed

field of characteristic 0, finite-dimensional Jordan irreducible representations of JpV, fq
were described in [MZ10, Section 7]). If M 1 “ M, then it is easy to see that R`

u “ 0 for

any u P V (for u P xvyK “ J1 this follows from Peirce relations, and for v it follows from

the fact that M “ M1, thus, R`
e “ id {2). One can check that the action of J given by

R`
1 “ id, R`

v “ 0, v P V,

is Jordan. Moreover, if one chooses a basis tviu of V , then it is easy to see that relations

(1.12.1), (1.12.2) hold for any set of operators R´
vi

P EndpMq. Hence, we have the following

description of irreducible noncommutative Jordan bimodules over J :

Theorem 2.2.2. Let JpV, fq be the superalgebra of nondegenerate supersymmetric bilinear

form f on vector space V ‰ V1̄ with a basis tviu over a field F which allows square root

extraction and M be an irreducible noncommutative Jordan superbimodule over M. Then

one of the following holds:

1) M is a Jordan superbimodule over J ;

2) M “ M1, MR`
V “ 0, R´

vi
are linear operators on M such that M has no invariant

subspaces with respect to all of R´
vi

.

Remark. One can check that the formulas in Theorem 2.2.2 define a noncommutative

Jordan representation not only for JpV, fq, but for all algebras UpV, f, ‹q. In Section 4.2 we

shall see that the modules defined in this way are essentially the only nontrivial irreducible

modules for the algebras UpV, f, ‹q.

2.2.2 Representations of superalgebras Dt and K3.

Finite-dimensional unital Jordan representations of Dt and K3 were studied in

[MZ06] and [Tru05] in the case of characteristic 0, and in [Tru08] in the case of characteristic

p ‰ 2. One-sided representations of Dt were studied in [MZ02]. In this section we study

noncommutative irreducible Jordan bimodules over Jordan superalgebras Dt and K3.
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First of all, we prove the following useful technical lemma. It will allow us

to consider noncommutative Jordan representations of many Jordan superalgebras in a

uniform way.

Lemma 2.2.3. Let J be a unital Jordan superalgebra containing Dt “ xe1, e2, x, yy, t ‰ 1

as a unital subalgebra por containing K3 “ xe1, x, yyq. Then the following statements hold:

1) There is no nonzero unital noncommutative Jordan bimodule M over J such that

M “ M1pe1q;

2) If M is a unital noncommutative Jordan bimodule over J such that pM0pe1q `
M2pe1qqR´

a “ 0 for all a P J0pe1q ` J2pe1q, then M is commutative;

3) If J1pe1q2 “ J0pe1q ` J2pe1q, then every noncommutative bimodule over J is commu-

tative.

Proof. 1) Suppose first that J Ě Dt, t ‰ 1 as a unital subalgebra and let M be a

bimodule such that M “ M1pe1q. Then Dt also acts unitally on M. Peirce relations

(1.2.5), (1.2.6) imply that

R`
x “ 0, R`

y “ 0, R`
e1

“ R`
e2

“ id {2.

From the definition of a noncommutative Jordan representation it follows that the

action of Dt on M defined above should be Jordan. However, substituting in (1.1.1)

a “ x, b “ e1, c “ y we have
1
2

“ 1
2

ˆ

1
2

` t

2

˙

, hence, t “ 1, which contradicts the

lemma condition. If a unital Jordan superalgebra J contains K3, then it contains its

unital hull D0 as a unital subalgebra, and the result follows.

2) From 5) of Lemma 2.2.1 it follows that M 1 “ M1pe1qR´
J is a J-submodule of M ,

and M 1 “ M 1
1. Hence, the previous point implies that M1pe1qR´

J “ 0. From 1) of

Lemma 1.12.4 it follows that pM0 ` M2qR´
x “ 0 for all x P J1pe1q, therefore, the

lemma condition implies that R´
x “ 0 for all x P J, and M is commutative.

3) Follows from 3) of Lemma 2.2.1 and the previous point.

Now we can describe the representations of the superalgebras J. Let M be a

noncommutative bimodule over J “ Dt. Suppose first that t ‰ 1. Peirce relations and the

one-dimensionality of Peirce spaces J0, J2 imply that pP0 ` P2qR´
a “ 0 for a P J0 ` J2.

Then 2) of the previous lemma implies that every noncommutative Jordan bimodule over

J is Jordan. Consider now the case t “ 1. In this case it is easy to see that D1 is a Jordan

superalgebra of nondegenerate symmetric form on the space V “ xe1 ´ e2, x, yy with

V0̄ “ xe1 ´ e2y, V1̄ “ xx, yy, and irreducible bimodules over superalgebras of superforms

were classified in the previous subsection. Hence, we have proved the following results:
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Theorem 2.2.4. Every noncommutative Jordan bimodule over Dt, t ‰ 1, is Jordan.

Theorem 2.2.5. Let M be an irreducible noncommutative Jordan bimodule over D1. Then

one of the following holds:

1) M is a Jordan bimodule;

2) M “ M1pe1q, MR`
x “ MR`

y “ 0, R´
x , R´

y , R´
e1

“ ´R´
e2

are linear operators on M

such that M has no invariant subspaces with respect to all of them.

From 3) of Lemma 2.2.3 immediately follows the following theorem:

Theorem 2.2.6. Every noncommutative Jordan bimodule over K3 is Jordan.

2.2.3 Representations of the superalgebra P p2q.
Recall that the simple Jordan superalgebra P pnq – HpMn,npFq, strpq is the

Jordan superalgebra of symmetric elements of the simple associative superalgebra Mn,npFq
with respect to the transpose superinvolution

˜

A B

C D

¸strp

“
˜

Dt ´Bt

Ct At

¸

,

where A, B, C, D P MnpFq, and t is the transpose. Jordan representations of P pnq were

described in [MZ10, Section 3] in the case of algebraically closed field of characteristic 0

and n ě 2, and in [MSZ10] in the case of arbitrary field and n ě 3.

In the paper [PS13] it was proved that P p2q does not admit a nonzero generic

Poisson bracket. The degree of P pnq is exactly n, so here we will only deal with noncommuta-

tive Jordan representations of P p2q (the superalgebra P p1q is not simple). Representations

of P p2q are characterized in the following theorem:

Theorem 2.2.7. All noncommutative Jordan representations of P p2q are Jordan.

Proof. Let e1 “ e11 ` e33 be an idempotent of P p2q “ J. We have the following Peirce

decomposition relative to e1:

J0 “ xe2 “ e22 ` e44, f “ e42y,
J1 “ xa “ e12 ` e43, b “ e21 ` e34, c “ e14 ´ e23, d “ e32 ` e41y,

J2 “ xe1 “ e11 ` e33, e “ e31y.

For the sake of convenience we provide below the multiplication table of P p2q (zero

products are omitted).

Note that J has a (unital) subalgebra J 1 “ xe1, e2, c, dy which is isomorphic to

D´1. Also it is easy to see that J1pe1q ˝ J1pe1q “ J0pe1q ` J2pe1q. Thus, 3) of Lemma 2.2.3

implies that every noncommutative Jordan bimodule over J is Jordan.
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Table 1 – Multiplication table of P p2q
˝ e1 e2 e f a b c d

e1 e1 e a{2 b{2 c{2 d{2
e2 e2 f a{2 b{2 c{2 d{2
e e d{2 b{2
f f d{2 ´a{2
a a{2 a{2 d{2 pe1 ` e2q{2 f

b b{2 b{2 d{2 pe1 ` e2q{2 e

c c{2 c{2 ´b{2 a{2 pe1 ´ e2q{2
d d{2 d{2 f e pe2 ´ e1q{2

2.2.4 Representations of the superalgebra Qp2qp`q

Finite-dimensional Jordan represenations of a simple Jordan superalgebra

Qp2qp`q were studied in [MSZ10]. In particular, irreducible bimodules were described and it

was proved that if the characteristic of the field is zero or ą 3, then every finite-dimensional

representation over Qp2qp`q is completely reducible. Here we describe noncommutative

Jordan bimodules over Qp2qp`q.

The associative superalgebra Qpnq is a subalgebra of the full matrix superalgebra

Mn,npFq with the following grading:

Qpnq0̄ “
# ˜

A 0

0 A

¸

, A P MnpFq
+

, Qpnq1̄ “
# ˜

0 B

B 0

¸

, B P MnpFq
+

.

We can consider Qpnq as the double of the n ˆ n matrix algebra:

Qpnq “ MnpFq ‘ MnpFq,

where MnpFq is an isomorphic copy of MnpFq as a vector space. The grading on Qpnq is

then

Qpnq0̄ “ MnpFq, Qpnq1̄ “ MnpFq.

The multiplication in Qpnq is defined in the following way:

a ¨ b “ ab, ā ¨ b “ a ¨ b̄ “ ab, ā ¨ b̄ “ ab,

where a, b P MnpFq, and ab is the usual matrix product. Therefore, the multiplication is

defined in Qpnqp`q in the following way:

a ˝ b “ a ˝ b, a ˝ b̄ “ ā ˝ b “ a ˝ b, ā ˝ b̄ “ ra, bs{2,

where a, b P MnpFq, and a ˝ b, ra, bs are the matrix Jordan product and commutator.

Regarding to the idempotent e11, we have the following Peirce decomposition

of Qp2qp`q “ J :

J0 “ xe22, e22y, J1 “ xe12, e21, e12, e21y, J2 “ xe11, e11y.
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Jordan superalgebras Qpnqp`q are simple and of degree exactly n for all n. Note that J

has a unital subsuperalgebra J 1 “ xe11, e22, e12, e21y, which is isomorphic to D´1.

Now we are ready to study the representations of J. Let M be a unital noncom-

mutative Jordan bimodule over J, and let M “ M0 ` M1 ` M2 be its Peirce decomposition

with respect to e11. Substituting a “ e12, b “ e21 in (1.12.2), by 3) of Lemma 2.2.1 we

have 0 “ R´
e11

` R´
e22

. Therefore, Peirce relations imply that

P0R
´
e22

“ ´P0R
´
e11

“ 0.

Analogously, P2R
´
e11

“ 0. Hence,

pP0 ` P2qR´
e11

“ pP0 ` P2qR´
e22

“ 0.

Combining this with Peirce relations, we have pM0 ` M2qR´
J0`J2

“ 0. Thus, 2) of

Lemma 2.2.3 implies that M is Jordan. We state this result as a theorem:

Theorem 2.2.8. Every noncommutative Jordan bimodule over Qp2qp`q is Jordan.

2.2.5 Representations of superalgebras K10 and K9.

Representations of the Kac superalgebra K10 were studied in the case of

algebraically closed field of characteristic 0. In the article [Sht87] Shtern proved that any

(Jordan) representation of K10 is completely reducible, with irreducible summands being

the regular module and its opposite. Later, Martínez and Zelmanov used his results to

prove the Kronecker factorization theorem for K10.

The superalgebras K10 and K9 do not admit nonzero generic Poisson brackets

(see [PS19, Theorem 4]). In this section we classify noncommutative Jordan representations

of K10 and K9. Also we prove the Kronecker factorization theorem in the noncommutative

Jordan case for K10 if the base field is algebraically closed and of characteristic 0.

Recall the definitions of the simple Jordan superalgebras K10 and K9 over a

field F. The even and odd parts of K10 are respectively

A “ A1 ‘ A2 “ 〈e1, uz, vz, uw, vw〉 ‘ 〈e2〉 and M “ 〈u, v, w, z〉

The even part A is a direct sum of ideals (of A). The unity in A1 is e1, e2
2 “ e2, and

ei ¨ m “ 1{2m for every m P M . The multiplication table of K10 is as follows:

u ¨ z “ uz, u ¨ w “ uw, v ¨ z “ vz, v ¨ w “ vw,

z ¨ w “ e1 ´ 3e2, uz ¨ w “ ´u, vz ¨ w “ ´v, uz ¨ vw “ 2e1,

and the remaining nonzero products may be obtained either by applying the skew-

symmetries z Ø w, u Ø v, or by the substitution z Ø u, w Ø v. If the characteristic of F
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is not 3, the superalgebra K10 is simple, but in the case of characteristic 3 it contains a

simple subsuperalgebra K9 “ A1 ‘ M .

Consider first the case of the superalgebra J “ K10. One can see that it contains

a subsuperalgebra xe1, e2, z, wy, which is isomorphic to D´3. The Peirce decomposition of

J with respect to e1 is the following:

J0pe1q “ A2, J1pe1q “ M, J2pe1q “ A1.

Let M be a noncommutative Jordan bimodule over K10. From the multiplication

table it is easy to see that

uz, vz, uw, vw P J1pe1q2,

thus, 3) of Lemma 2.2.1 implies that

R´
uz “ 0, R´

vz “ 0, R´
uw “ 0, R´

vw “ 0 on M.

Moreover, since e1 and e2 are orthogonal idempotents that sum to 1, it is obvious that

pM0pe1q ` M2pe1qqR´
e1

“ pM0pe1q ` M2pe1qqR´
e2

“ 0. Hence, 2) of Lemma 2.2.3 implies

that M is Jordan.

Now consider the case of J “ K9. One can see that it contains a subsuperalgebra

xe1, z, wy – K3. The Peirce decomposition of J with respect to e1 is the following:

J0pe1q “ 0, J1pe1q “ M, J2pe1q “ A1.

Let M be a noncommutative Jordan bimodule over K9. Again, 3) of Lemma 2.2.1

implies that

R´
uz “ 0, R´

vz “ 0, R´
uw “ 0, R´

vw “ 0 on M.

Also, it is obvious that pM0pe1q ` M2pe1qqR´
e1

“ 0. Hence, 2) of Lemma 2.2.3 implies that

M is Jordan. We have proved the following theorem:

Theorem 2.2.9. Every unital noncommutative Jordan bimodule over K10 or K9 is Jordan.

2.2.6 Kronecker factorization theorem for K10

A well known theorem, due to Wedderburn, states that if B is an associative

algebra and A is a finite dimensional central simple subalgebra of B that contains its unit

element, then B is the tensor product of algebras A and Z where Z is the subalgebra of

elements of B that commute with every element of A. The statements of this type are

usually called Kronecker factorization theorems. In the paper [Jac54] Jacobson proved the

Kronecker factorization theorem for the split Cayley-Dickson algebra and the exceptional

simple Albert algebra. In the case of superalgebras, López-Díaz and Shestakov proved

the Kronecker factorization theorem for simple alternative superalgebras Bp1, 2q and
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Bp4, 2q [LDS02] and for simple Jordan superalgebras H3pBp1, 2qq, H3pBp4, 2qq obtained

from them [LDS05]. Martínez and Zelmanov used Shtern’s classification of irreducible

modules over K10 to prove the Kronecker factorization theorem this algebra in the case

where F is algebraically closed of characteristic 0. In this subsection we extend their result

to noncommutative Jordan case:

Theorem 2.2.10. Suppose that the base field F is algebraically closed and is of charac-

teristic 0. Let U be a noncommutative Jordan superalgebra which contains J “ K10 as

a unital subsuperalgebra. Then U is supercommutative and U – Z b J, where Z is an

associative-supercommutative superalgebra.

Proof. Let U “ U0 ` U1 ` U2 be the Peirce decomposition of U with respect to e1. We

need to show that U is supercommutative. Since U is a Jordan bimodule over J, the point

1) of Lemma 1.12.4 implies that rU0 ` U2, U1s “ 0, rU1, U1s Ď U1.

We prove that we can take K “ tu, zu in Lemma 1.2.5. Since U is a Jordan

superbimodule over J , the Peirce relations (1.2.6) imply that KU1 Ď U0 ` U2. Suppose

now that K ˝ a “ 0 for a P U1. The description of Jordan superbimodules over J ([Sht87])

implies that U is a direct sum of submodules isomorphic either to RegpK10q or RegpK10qop.

Hence, we can assume that a P RegpJq or RegpJqop. Let

a “ αu1 ` βv1 ` γw1 ` δz1 P RegpJq

(we have added primes to distinguish elements of the regular superbimodule from elements

of J). Then

u ˝ a “ βpe1
1 ´ 3e1

2q ` γpuwq1 ` δpuzq1 “ 0,

thus, β “ γ “ δ “ 0. Hence, z ˝ a “ ´αpuzq1 “ 0, and α “ 0. Therefore, a “ 0. The case

where a P RegpJqop is considered analogously. We proved that K satisfies the conditions

of Lemma 1.2.5, thus, U2
1 Ď U0 ` U2. Hence, rU1, U1s “ 0 and rU, U1s “ UR´

U1
“ 0.

The structure of U as a bimodule over K10 implies that

U0 ` U2 “ pJ1 ˝ U1q ` pJ1 ˝ U1q ˝ pJ1 ˝ U1q.

Applying (1.12.2) twice, we see that

R´
J1˝U1

“ 0, R´
pJ1˝U1q˝pJ1˝U1q “ 0.

Therefore, R´
U0`U2

“ 0 and U is commutative. By the result of Martínez and Zelmanov,

U – Z b J for an associative-supercommutative superalgebra Z.

In fact we can drop the assumption that K10 contains the unity of U.
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Theorem 2.2.11. Let U be a noncommutative Jordan superalgebra that contains J “ K10

as a subsuperalgebra. Then U – pZ b Jq ‘ U 1 is a direct sum of ideals, where Z is an

associative-supercommutative superalgebra.

Proof. Let U “ U0 ` U1 ` U2 be the Peirce decomposition of U with respect to the unity of

J. Then U p`q is a Jordan superalgebra and U1 is a one-sided Jordan bimodule over J with

the action induced by multiplication in U. But since J is an exceptional simple Jordan

superalgebra, U1 must be zero (see, for example, [MZ03, Theorem 2]). Hence, U “ U0 `U2.

Applying the previous theorem to J Ď U2, we get the desired result.
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3 Representations of low-dimensional alge-

bras

In this chapter we study modules over low-dimensional simple noncommutative

Jordan superalgebras Dtpα, β, γq, K3pα, β, γq and Qp2q. By Lemma 1.7.1 for α, β, γ P F

a superalgebra Dtpα, β, γq is isomorphic either to Dtpλq for λ P F or to Dtp1{2, 1{2, 0q.
In Section 3.1 we study representations of these two algebras separately using different

methods described in Section 1.12, but obtain the same result: except for some values of

parameters t, α, β, γ every module over Dtpα, β, γq is a direct sum of copies of the regular

module and its opposite (Theorems 3.1.2 and 3.1.7). For t “ 0 we classify all indecom-

posable bimodules Theorems 3.1.3 and 3.1.8, and for the algebra D´1p1{2, 1{2, 0q we only

describe its irreducible finite-dimensional modules (Theorem 3.1.9). As a consequence, in

Theorem 3.1.10 we classify all indecomposable modules over of K3pα, β, γq.

In Section 3.2 we use the results of Section 3.1 to prove the Kronecker theorem

for Dtpα, β, γq. That is, in Theorems 3.2.8 and 3.2.16 we show that if U is a noncommutative

Jordan superalgebra containing Dtpα, β, γq as a unital subalgebra, then U – Dtpα, β, γqbA

for an associative-commutative superalgebra A (except for some values of α, β, γ). We use

this result in Section 3.3 to prove that every noncommutative Jordan module over the

superalgebra Qp2q is associative (Theorem 3.3.2) and show the Kronecker factorization

theorem for Qp2q (Theorem 3.3.3).

3.1 Representations of Dtpα, β, γq and K3pα, β, γq
In this section we describe representations of the superalgebras Dtpα, β, γq and

simple nonunital superalgebras K3pα, β, γq, except for two cases:

1) the case α “ 1{2, β “ γ “ 0 is the case of Jordan superalgebra Dt (resp., K3), which

was considered in the previous chapter;

2) the case t “ 1, because in this case Dt is of the type UpV, f, ‹q. Indeed, its symmetrized

superalgebra D1 is a Jordan superalgebra of nondegenerate symmetric form on the

space V “ xe1 ´ e2, x, yy with V0̄ “ xe1 ´ e2y, V1̄ “ xx, yy. Representations of such

superalgebras will be considered in Section 4.2.

In what follows we assume that the base field F allows square root extraction.

Lemma 1.7.1 then tells that for α, β, γ P F, a superalgebra Dtpα, β, γq belongs to one of

the families: Dtpλ, 0, 0q or Dtp1{2, 1{2, 0q, the first family consisting of “almost associative”
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(up to a mutation), and the second of “almost commutative” superalgebras. We consider

the two cases separately, using two different approaches given in the previous section.

The results, however, are the same: except for some special values of parameters, every

unital bimodule over a superalgebra Dtpα, β, γq is completely reducible, with irreducible

summands being the regular bimodule and its opposite. Also we classify irreducible

representations over non-unital superalgebras K3pα, β, γq. Note that in almost any case

we make no dimensionality or characteristic restriction.

3.1.1 Representations of Dtpλq, λ ‰ 1{2

In this subsection we classify all noncommutative Jordan representations over

the superalgebra Dtpλq, λ ‰ 1{2, t ‰ 1. First of all we describe a certain procedure, which

we occasionally refer to as “module mutation”, which in our case permits us to consider

only the representations of the superalgebra Dtp1q, in which case the computations are

drastically simplified.

Module mutation. Let U be a noncommutative Jordan (super)algebra and M

be a (super)bimodule over U. Then the split null extension E “ U ‘M is a noncommutative

Jordan superalgebra. Let λ ‰ 1{2 be an element of the base field, and consider the

λ-mutation Epλq, which is equal to U pλq ‘ M. It is again a noncommutative Jordan

superalgebra, and M is an ideal of E such that M2 “ 0. Hence, we may consider Epλq as

the split null extension of U pλq by the module M . Therefore, M (with the action twisted by

mutation) is a noncommutative Jordan bimodule over U pλq. This construction is invertible:

since λ ‰ 1{2, there exists µ P F such that λ d µ “ 1. Mutating back again by µ, we obtain

the original algebra E (that is, we recover the original action of U on M). Therefore, it is

equivalent to study representations of a noncommutative Jordan superalgebra U and any

its nontrivial mutation U pλq, λ ‰ 1{2. It is also clear that the module mutation preserves

irreducibility and direct sum decomposition.

Now we apply this construction to our case: if 1{2 ‰ λ P F, then one can check

that the µ-mutation (where λ d µ “ 1) of Dtpλq is equal to Dtp1q. Hence, it suffices to

study representations of the superalgebra Dtp1q.

For the reference, we provide the multiplication table of the algebra Dtp1q “ D:

D “ D0̄ ‘ D1̄, D0̄ “ xe1, e2y, D1̄ “ xx, yy,
e2

i “ ei, e1e2 “ 0 “ e2e1,

e1x “ x “ xe2, xe1 “ 0 “ e2x, e1y “ 0 “ ye2, e2y “ y “ ye1,

xy “ 2e1, yx “ ´2te2, x2 “ 0 “ y2.

The Peirce decomposition of D relative to e1 is as follows:

D0 “ xe2y, D1 “ xx, yy, D2 “ xe1y.
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Now, let M be a unital bimodule over D and let M “ M0 ` M1 ` M2 be its Peirce

decomposition with respect to e1. Our goal is to obtain enough operator relations derived

from defining identities (1.1.2), (1.1.3) and Peirce relations in operator form, and then see

that they in fact completely define the structure of a module over D.

Apply Lemma 1.3.2 to the split null extension E “ U ‘ M. Since x P D
r1s
1 , by

1) of Lemma 1.3.2 we have pid ´Re1
qRx ` Le1

Lx “ 0. Multiplying this relation on P1 by

the left, we get

P1Le1
pLx ` Rxq “ 0. (3.1.1)

Multiplying the same relation by P0 and P2 on the left, we have

P0Rx “ 0, (3.1.2)

P2Lx “ 0. (3.1.3)

Now, by 2) of Lemma 1.3.2 we have Lxpid ´Le1
q ` RxRe1

“ 0. Multiplying this relation

by P0 and P2 on the left and using relations (3.1.2), (3.1.3), we have

P0LxRe1
“ 0, P0LxLe1

“ P0Lx, (3.1.4)

P2RxRe1
“ 0, P2RxLe1

“ P2Rx. (3.1.5)

Analogously, since y P U
r0s
1 , by Lemma 1.3.2 we obtain the following relations:

P0Ly “ 0, (3.1.6)

P1Re1
pRy ` Lyq “ 0,

P2Ry “ 0, (3.1.7)

P0RyLe1
“ 0, P0RyRe1

“ P0Ry, (3.1.8)

P2LyLe1
“ 0, P2LyRe1

“ P2Ly. (3.1.9)

Note that relations (3.1.3), (3.1.6) imply that

pP0 ` P2qpLe1
Ly ´ Lyq “ 0, pP0 ` P2qpLe1

Lxq “ 0. (3.1.10)

Combining the relations (3.1.1) and (3.1.4) with Peirce relations, we have

P0LxpLx ` Rxq “ P0LxP1pRe1
` Le1

qpLx ` Rxq
“ P0LxRe1

pLx ` Rxq ` P0LxP1Le1
pLx ` Rxq “ 0.

(3.1.11)

Analogously, we have

P2RxpLx ` Rxq “ 0, (3.1.12)

P0RypLy ` Ryq “ 0, P2LypLy ` Ryq “ 0.
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Let a “ b “ x in (1.1.4): L2
x “ R2

x. Multiply this relation by P0 on the left.

Then (3.1.2) and (3.1.11) imply that

P0L
2
x “ 0, P0LxRx “ 0. (3.1.13)

Analogously, (3.1.3) and (3.1.12) imply that

P2R
2
x “ 0, P2RxLx “ 0. (3.1.14)

Analogously, substituting a “ b “ y in (1.1.4), we obtain

P0R
2
y “ 0, P0RyLy “ 0, (3.1.15)

P2L
2
y “ 0, P2LyRy “ 0. (3.1.16)

Let a “ e1, b “ x, c “ y in (1.2.1):

2Re1
´ 2Re1

pRe1
` tRe2

q ` pRx ` LxqpLe1
Ly ´ Lyq ´ pRy ` LyqpLe1

Lxq “ 0.

Multiply this relation on P1 on the left:

P1pp2 ´ 2tqpRe1
´ R2

e1
q ` pRx ` LxqpLe1

Ly ´ Lyq ´ pRy ` LyqpLe1
Lxqq “ 0.

By Peirce relations (1.2.6) P1pRx ` LxqP1 “ P1pRy ` LyqP1 “ 0. Hence, by (3.1.10) the

previous relation reduces to

p2 ´ 2tqP1pRe1
´ R2

e1
q “ 0.

Since t ‰ 1, we have P1pRe1
´ R2

e1
q “ 0. Hence, P1Re1

“ pP1Re1
q2 and P1Le1

“ pP1Le1
q2

are orthogonal projections that sum to P1. Thus, M1 “ M
r0s
1 ` M

r1s
1 . Further on we use

this fact without mentioning it.

Let a “ y, b “ x in (1.1.4): 2tLe2
´ LxLy “ 2Re1

´ RxRy. Multiplying this

relation by Peirce projections on the left, using relations (3.1.2) and (3.1.3) and Peirce

relations in operator form we have

P0LxLy “ 2tP0, (3.1.17)

P1p2p1 ´ tqRe1
´ RxRy ` LxLyq “ 0, (3.1.18)

P2RxRy “ 2P2. (3.1.19)

Analogously, substituting a “ x, b “ y in (1.1.4), we have

P0RyRx “ ´2tP0, (3.1.20)

P1p2p1 ´ tqLe1
´ RyRx ` LyLxq “ 0, (3.1.21)

P2LyLx “ ´2P2. (3.1.22)
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Substituting e “ e1, z P tx, yu, w P M1, and alternatively, e “ e1, z P M1, w P
tx, yu in (1.2.8), we obtain the following operator relations:

P1RxP2 “ 0, P1LxP0 “ 0, (3.1.23)

P1RyP0 “ 0, P1LyP2 “ 0. (3.1.24)

The relation (1.2.10) and the multiplication table of Dtp1q imply that for

a, b P U1 we have

P1LaP1pLb ` Rbq “ 0, P1RaP1pLb ` Rbq “ 0. (3.1.25)

Consider the relation (3.1.21):

0 “ P1p2p1 ´ tqLe1
´ RyRx ` LyLxq “ (by (3.1.24))

“ 2p1 ´ tqP1Le1
` P1pLypP1 ` P0qLx ´ RypP1 ` P2qRxq

“ P1p2p1 ´ tqLe1
´ RyP2Rx ` LyP0Lxq ` P1pLyP1Lx ´ RyP1Rxq.

Consider the second summand:

P1pLyP1Lx ´ RyP1Rxq “ (since P1pRy ` LyqP1 “ 0q
“ P1LyP1pLx ` Rxq “ (by (3.1.25)) “ 0.

Therefore, we have

2p1 ´ tqP1Le1
“ P1pRyP2Rx ´ LyP0Lxq. (3.1.26)

Analogously, considering (3.1.18) and using (3.1.23) and (3.1.25), we have

2p1 ´ tqP1Re1
“ P1pRxP0Ry ´ LxP2Lyq (3.1.27)

Multiply (3.1.21) on the left by P0Lx:

2p1 ´ tqP0LxLe1
“ P0LxpRyRx ´ LyLxq.

Combining this relation with (3.1.4) and (3.1.17), we have

2P0Lx “ P0LxRyRx. (3.1.28)

Multiply this relation by Ly on the right, and combine it with (3.1.17):

4tP0 “ 2P0LxLy “ P0LxRyRxLy. (3.1.29)

Analogously, multiplying (3.1.18) on the left by P0Ry and using (3.1.8) and (3.1.20), we

have

2P0Ry “ ´P0RyLxLy. (3.1.30)
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The relation (3.1.17) implies that P0LxLyP1 “ 0. Hence, Peirce relations imply

that

P0LxRyP1 “ P0LxP1RyP1 “ ´P0LxP1LyP1 “ 0.

Thus, from (3.1.24) it follows that

P0LxRy “ P0LxRyP2. (3.1.31)

Now, multiply (3.1.21) on the left by P2Rx: 2p1 ´ tqP2RxLe1
“ P2RxpRyRx ´

LyLxq. Combining this with (3.1.5) and (3.1.19), we have

2tP2Rx “ P2RxLyLx. (3.1.32)

The relation (3.1.19) implies that P2RxRyP1 “ 0, hence, Peirce relations imply

that P2RxLyP1 “ 0. Hence, from (3.1.24) it follows that

P2RxLy “ P2RxLyP0. (3.1.33)

Analogously, multiplying the relation (3.1.18) on the left by P2Ly and using (3.1.9) and

(3.1.22), we have

´2tP2Ly “ P2LyRxRy. (3.1.34)

Consider the identity (1.1.3) for a “ x, b “ y: RxLy ` LyRx “ RyLx ` LxRy.

Multiplying it on the left by P0 and P2 and using (3.1.2), (3.1.6), (3.1.3) and (3.1.7), we

have

P0pRyLx ` LxRyq “ 0, (3.1.35)

P2pRxLy ` LyRxq “ 0. (3.1.36)

Multiply (3.1.36) by Ry on the right:

P2RxLyRy “ ´P2LyRxRy “ (by (3.1.34)) “ 2tP2Ly. (3.1.37)

Using the relations derived above we construct submodules of M isomorphic to

the regular module or its opposite. Note that for t “ 0, the algebra D0p1q acts irreducibly

on the algebra K3p1q by restricting the regular representation to the submodule generated

by e1.

Lemma 3.1.1.

1) Let m be a homogeneous nonzero element of M2. Then

Modpmq “ xm, mRx, mLy, mRxLyy,

the elements mRx, mLy P M1 are linearly independent, mRxLy P M0 and

mRxLyLx “ 2tmRx, mRxLyRy “ 2tmRy.
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(a) If t ‰ 0, then mRxLy ‰ 0 and Modpmq is isomorphic to RegpDq or its opposite

depending on the parity of m;

(b) If t “ 0 and mRxLy “ 0, then Modpmq is isomorphic to K3p1q or the opposite

module;

(c) If t “ 0 and mRxLy ‰ 0, then Modpmq is isomorphic to the module D0p1q “
xe1

1, x1, y1, e1
2y (or its opposite) with the action given as follows:

x1Ly “ ´y1Rx “ e1
2,

the only nonzero actions on e1
2 are

e1
2Le2

“ e1
2Re2

“ e1
2

(that is, Modpe1
2q is isomorphic to RegpD0p1qq{K3p1q), and all other actions

coincide with the actions on RegpD0p1qq. Moreover, D0p1q is indecomposable

with the unique nontrivial submodule isomorphic to RegpDq{K3p1q.

2) Let m be a homogeneous nonzero element of M0. If t ‰ 0, then Modpmq is isomorphic

either to RegpDq or its opposite. If t “ 0, then ModpMq is isomorphic to RegpDq
or RegpD0p1qq{K3p1q or their opposites.

Proof.

1) Let 0 ‰ m be a homogeneous element of M2. The relations (3.1.3) and (3.1.7) imply

that

mLx “ 0, mRy “ 0,

and relations (3.1.19), (3.1.22) imply that the elements mRx, mLy ‰ 0. Relations

(3.1.5) and (3.1.9) imply that the elements mRx and mLy are linearly independent

and that multiplying mRx and mLy by e1 on both sides does not give new elements

in Modpmq. From (3.1.14) and (3.1.16) it follows that

mR2
x “ 0, mRxLx “ 0, mL2

y “ 0, mLyRy “ 0.

From relations (3.1.19) and (3.1.22) we get

mRxRy “ 2m “ ´mLyLx.

Relations (3.1.36) and (3.1.33) imply that

mLyRx “ ´mRxLy P M0.

From relations (3.1.2), (3.1.6) we infer that

mRxLyRx “ 0, mRxLyLy “ 0.
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Relations (3.1.32) and (3.1.37) show respectively that

mRxLyLx “ 2tmRx, mRxLyRy “ 2tmLy.

Therefore, Modpmq is equal to xm, mLy, mRx, mRxLyy, and mRxLy ‰ 0 if t ‰ 0.

Now, one can easily check that if t ‰ 0, then Modpmq is isomorphic to the regular

Dtp1q-bimodule or its opposite. Indeed, one identifies

m Ø e1, mRx Ø x, mLy Ø y, mRxLy{2t Ø e2

if m is even, and analogously if m is odd.

Now let t “ 0. If mRxLy “ 0, then the isomorphism between Modpmq and K3p1q
(or K3p1qop) is completely analogous to the one constructed above. If mRxLy ‰ 0,

then it is easy to see that Modpmq is isomorphic to D0p1q or its opposite. One can

check the relations (1.2.1), (1.1.3) and see that D0p1q is indeed a noncommutative

Jordan module. The space xe1
2y is the unique nontrivial submodule of D0p1q because

a Peirce-homogeneous element of degree not zero generates the whole module.

Thus, D0p1q is isomorphic neither to RegpDq (they have different socles) nor to

K3p1q ‘ RegpD0p1qq{K3p1q (because D0p1q has no 3-dimensional submodule).

2) Let 0 ‰ m P M0. Analogously to the previous point, using (3.1.2), (3.1.6), (3.1.4),

(3.1.8), (3.1.13), (3.1.15), (3.1.17), (3.1.20), (3.1.31), (3.1.30) and (3.1.28) one can

see that Modpmq “ xm, mLx, mRy, mLxRyy.

If t ‰ 0, then (3.1.29) implies that Modpmq “ ModpmLxRyq, and (3.1.31) implies

that mLxRy P M2. Hence, Modpmq is generated by an element of M2, therefore, by

the previous item, it is either the regular Dtp1q-bimodule or its opposite.

If t “ 0, then from (3.1.28), (3.1.30) and (3.1.35) it follows that the elements

mLx, mRy and mLxRy are either all zero or all nonzero. If they are all nonzero, then

Modpmq is isomorphic to RegpDtp1qq. If they are all zero, then dim Modpmq “ 1 and

it is isomorphic to RegpD0p1qq{K3p1q.

Now we are ready to describe the representations of Dtpλq. First, we consider

the case t ‰ 0:

Theorem 3.1.2. Let M be a unital bimodule over Dtpλq, t ‰ 0, 1, λ ‰ 1{2. Then M is

completely reducible and the irreducible summands of M are isomorphic to the regular

Dtpλq-bimodule or its opposite.

Proof. As we noted in the beginning of the section, module mutation preserves irreducibility

and direct sum decomposition, so we may only consider the case λ “ 1. Since the regular

bimodule over Dtp1q “ D and its opposite are irreducible, to prove the theorem it suffices
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to show that the submodule generated by any m P M is a sum of homomorphic images of

the bimodules listed above. It is easy to see that

Modpmq “ ModpmP0, mP1, mP2q “ ModpmP0q ` ModpmP1q ` ModpmP2q.

Hence, we can assume that m is Peirce-homogeneous. Analogously, we can assume that

m P M0̄ Y M1̄.

If m P M0 Y M2, the previous lemma implies that Modpmq is isomorphic either

to RegpDq or RegpDqop. Suppose that m P M1. Since M1 “ M
r0s
1 ‘ M

r1s
1 , Modpmq “

ModpmLe1
, mRe1

q. Thus, we can assume that m P M
r0s
1 Y M

r1s
1 . If m P M

r1s
1 , then (3.1.26)

implies that Modpmq “ ModpmRyP2, mLyP0q, therefore, Modpmq can be generated by

elements of M0 and M2, hence, it satisfies the above claim. Analogously, if m P M
r0s
1 , then

(3.1.27) implies that Modpmq “ ModpmRxP0, mLxP2q.

Now consider the case t “ 0. Note that D0pλq is not simple: it contains an ideal

xe1, x, yy, which is isomorphic to a simple nonunital superalgebra K3pλq. Hence, the regular

bimodule over D0pλq is not irreducible, but indecomposable. Moreover, the module D0pλq,
obtained as the λ-mutation of the module D0p1q from Lemma 3.1.1 is also indecomposable.

Theorem 3.1.3. Let M be an indecomposable bimodule over D0pλq, λ ‰ 1{2. Then M is

isomorphic to one of the following bimodules:

1) RegpD0pλqq or its opposite;

2) K3pλq with the action restricted from the RegpD0pλqq or its opposite;

3) RegpD0pλqq{K3pλq or its opposite;

4) D0pλq or its opposite.

Proof. We prove that any D-module M is a direct sum of the above modules. Again we

can only consider the case λ “ 1. Consider the subspace K “ ker LxRy X M0. Let I1
0 be a

complement of a base of K to a base of M0. By Lemma 3.1.1 Modpmiq is isomorphic to

either RegpD0p1qq or its opposite for all i P I1
0 . Recall that by (3.1.31) M0LxRy Ď M2 and

let M 1
2 be a vector space complement of M0LxRy to M2. Let I1

2 be a basis of ker RxLy XM 1
2

and I2
2 be a basis of a vector space complement of ker RxLy X M 1

2 to M 1
2. Then by

Lemma 3.1.1 we have

Modpmiq –

$

&

%

K3p1q or K3p1qop, i P I1
2 ,

D0p1q or D0p1qop, i P I2
2

.

By construction of the module D0p1q, we have M 1
2RxLy Ď K. Let M 1

0 be a vector space

complement of M 1
2RxLy to K, and let I2

0 be a base of M 1
0. By Lemma 3.1.1 we have
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Modpmiq – RegpD0p1qq{K3p1q for all i P I2
0 . Consider the sum

M “
ÿ

iPI1

0

Modpmiq `
ÿ

iPI1

2

Modpmiq `
ÿ

iPI2

2

Modpmiq `
ÿ

iPI2

0

Modpmiq

We prove that this sum is direct. By construction, no module in the above sum can lie

completely in the sum of others. The modules Modpmiq, i P I1
2 Y I2

0 , are irreducible, so we

only have to check that the modules Modpmiq, i P I2
2 Y I1

0 , do not intersect with all other

ones. Suppose that for j P I2
2 we have

Modpmjq
č

¨

˚

˚

˝

ÿ

iPI1

0

Modpmiq `
ÿ

iPI1

2

Modpmiq `
ÿ

iPI2

2

j‰i

Modpmiq `
ÿ

iPI2

0

Modpmiq

˛

‹

‹

‚

‰ 0.

Since the only nontrivial submodule of Modpmjq is xmjLxRyy Ď K Ď M0 and M 1
2LxRy X

M 1
0 “ 0, we must have

ÿ

iPI2

2

Modpmiq
č

¨

˝

ÿ

iPI1

0

Modpmiq `
ÿ

iPI1

2

Modpmiq `
ÿ

iPI2

0

Modpmiq

˛

‚“ 0,

and

Modpmjq
č ÿ

iPI2

2

j‰i

Modpmiq ‰ 0 ñ mjLxRy “
n

ÿ

k“1

αimiLxRy

for some k “ 1, . . . , n P I2
2 , αi P F, ik ‰ j for all k. But this implies that mj ´

k
ÿ

i“1

αimi P

ker LxRy XM 1
2, which is a contradiction with the definition of I2

2 . The proof for the modules

Modpmiq, i P I1
0 is analogous: the only nontrivial submodule in Modpmiq is isomorphic to

xmLx, mRy, mLxRyy, and mLxRy P M2zM 1
2, which implies that

ÿ

iPI1

0

Modpmiq
č

¨

˝

ÿ

iPI2

0

Modpmiq `
ÿ

iPI1

2

Modpmiq `
ÿ

iPI2

2

Modpmiq

˛

‚“ 0.

The rest of the proof is analogous to the case of Modpmiq, i P I2
2 .

The module M 1 “ M{M is equal to its Peirce 1-component. Hence, P0 “
0, P2 “ 0 in M 1. Sum the relations (3.1.26) and (3.1.27):

2P1 “ P1pRyP2Rx ´ LyP0Lx ` RxP0Ry ´ LxP2Lyq.

From this relation it follows that P1 “ 0, therefore, M 1 “ 0 and M “ M.

3.1.2 Representations of Dtp1{2, 1{2, 0q
Let D “ Dtp1{2, 1{2, 0q. This algebra is very close to being commutative (see

the multiplication table below). Therefore, we study its representations using the approach
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given by Definitions 1.5.3 and 1.12.2, that is, interpreting it as a superalgebra with Jordan

and bracket products and using the R` and R´ operators.

We start with the multiplication table for D:

e2
i “ ei, i “ 1, 2,

e1 ˝ x “ e2 ˝ x “ x{2,

e1 ˝ y “ e2 ˝ y “ y{2,

rx, xs “ ´2pe1 ´ te2q,
x ˝ y “ e1 ` te2,

e1 ˝ e2 “ re1, e2s “ 0,

re1, xs “ ´re2, xs “ y,

re1, ys “ re2, ys “ 0,

ry, ys “ 0,

rx, ys “ 0.

Fix an idempotent e “ e1 P D. Then D0 “ D0pe1q “ xe2y, D1 “ D1pe1q “
xx, yy, D2 “ D2pe1q “ xe1y. Let M be a unital bimodule over D, and let M “ M0‘M1‘M2

be its Peirce decomposition with respect to e1.

First we prove the following proposition that will allow us to reduce the study

of Dtp1{2, 1{2, 0q-bimodules to the study of Jordan bimodules over Dt.

Proposition 3.1.4.

1) The operators R´
a , a P D lie in the enveloping associative algebra of the Jordan

representation R` : Dp`q Ñ EndpMq. The expressions for R´ operators of basis

elements e1, e2, x, y do not depend on M ;

2) A subspace N Ď M is a D-submodule if and only if it is a submodule with respect to

the representation R`;

3) M is irreducible if and only if it is irreducible with respect to R`;

4) Two bimodules over D are isomorphic if and only if they are isomorphic as Jordan

bimodules over Dp`q with the symmetrized action.

Proof. To prove the first point, we need to express the operators R´
a , a P D as polynomials

in operators R`
a , a P D. By Lemma 1.12.4 we have

pP0 ` P2qR´
y “ 0, P1R

´
y P1 “ P1R

´
y . (3.1.38)

By Item 2) we have

P0R
´
x “ ´P0R

`
y , (3.1.39)

P2R
´
x “ P2R

`
y , (3.1.40)

P1R
´
x pP0 ` P2q “ P1R

`
y pP0 ´ P2q. (3.1.41)
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Note that since rx, ys “ ry, ys “ 0 and rx, xs “ ´2pe1 ´ te2q, from (1.2.10) it

follows that

P1R
´
a P1R

`
b “ 0, where a, b P D1. (3.1.42)

Substituting a “ y, b “ y in (1.12.1), we have rR`
y , R´

y s “ 0. Multiplying this

relation by Peirce projections on the left and using (3.1.38) and Peirce relations, one can

see that

R`
y R´

y “ 0, R´
y R`

y “ 0. (3.1.43)

Substituting a “ y, b “ x in (1.12.1), we have rR`
y , R´

x s “ 0. Multiply this

relation by P0 ` P2 on the left and by P1 on the right:

0 “ pP0 ` P2qpR`
y R´

x ` R´
x R`

y qP1 “ pP0 ` P2qR`
y R´

x P1. (3.1.44)

Substituting a “ y, b “ x in (1.12.2), we have R´
y R`

x ´ R´
x R`

y “ ´R´
e1`te2

.

Multiplying this relation by P0 and P2 on the left and using (3.1.38), (3.1.39), and (3.1.40),

we have

0 “ P0R
´
x R`

y “ ´P0pR`
y q2,

0 “ P2R
´
x R`

y “ P2pR`
y q2,

thus,

pP0 ` P2qpR`
y q2 “ 0. (3.1.45)

Substituting a “ x, b “ y in (1.12.1), we have rR`
x , R´

y s “ 0. Multiplying this

relation by Peirce projections on the left and using (3.1.38) and (3.1.42), one has

R`
x R´

y “ 0, R´
y R`

x “ 0. (3.1.46)

Substituting a “ x, b “ x in (1.12.1), we have

rR`
x , R´

x s “ ´R`
e1´te2

. (3.1.47)

Multiply this relation by P0 on the left and by P0 ` P1 on the right:

tP0 “ P0pR`
x R´

x ` R´
x R`

x qpP0 ` P1q
“ (by (3.1.39)) “ P0pR`

x P1R
´
x pP0 ` P1q ´ R`

y R`
x P0q

“ (by (3.1.41)) “ P0ppR`
x R`

y ´ R`
y R`

x qP0 ` R`
x R´

x P1q,

hence,

P0pR`
x R`

y ´ R`
y R`

x qP0 “ tP0, (3.1.48)

P0R
`
x R´

x P1 “ 0. (3.1.49)
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Analogously, multiplying the relation (3.1.47) by P2 on the left and by P1 ` P2 on the

right, we have

P2R
`
x R´

x P1 “ 0, (3.1.50)

P2pR`
x R`

y ´ R`
y R`

x qP2 “ P2. (3.1.51)

Multiplying the relation (3.1.47) by P1 on the left, we have

´1 ´ t

2
P1 “ P1pR`

x R´
x ` R´

x R`
x q

“ (by (3.1.42)) “ P1pR`
x pP0 ` P2qR´

x ` R´
x pP0 ` P2qR`

x q
“ (by (3.1.39), (3.1.40), (3.1.41)) “ P1pR`

x pP2 ´ P0qR`
y ` R`

y pP0 ´ P2qR`
x q.

Therefore (recall that t ‰ 1),

P1 “ 2
1 ´ t

P1pR`
x pP0 ´ P2qR`

y ` R`
y pP2 ´ P0qR`

x q. (3.1.52)

Multiply (3.1.52) by R´
y on the right:

P1R
´
y “ 2

1 ´ t
P1pR`

x pP0 ´ P2qR`
y R´

y ` R`
y pP2 ´ P0qR`

x R´
y q

“ (by (3.1.43), (3.1.46)) “ 0.

(3.1.53)

Multiply (3.1.52) by R´
e1

on the right:

P1R
´
e1

“ 2
1 ´ t

P1pR`
x pP0 ´ P2qR`

y R´
e1

` R`
y pP2 ´ P0qR`

x R´
e1

q “ (by (1.12.1))

“ 2
1 ´ t

P1pR`
x pP0 ´ P2qR´

e1
R`

y ` R`
y pP2 ´ P0qpR´

e1
R`

x ´ 1
2

R`
y qq

“ 1
1 ´ t

P1R
`
y pP0 ´ P2qR`

y .

(3.1.54)

Multiply (3.1.52) on R´
x P1 on the right:

P1R
´
x P1 “ 2

1 ´ t
P1pR`

x pP0 ´ P2qR`
y R´

x P1 ` R`
y pP2 ´ P0qR`

x R´
x P1q

“ (by (3.1.44), (3.1.49), (3.1.50)) “ 0.

Therefore,

P1R
´
x “ P1R

´
x pP0 ` P2q “ (by (3.1.41)) “ P1R

`
y pP0 ´ P2q. (3.1.55)

Now, one can see that

R´
x “ pP0 ` P1 ` P2qR´

x “ (by (3.1.39), (3.1.40), (3.1.55))

“ ´P0R
`
y ` P1R

`
y pP0 ´ P2q ` P2R

`
y ,

R´
e1

“ ´R´
e2

“ P1R
´
e1

“ (by (3.1.54)) “ 1
1 ´ t

P1R
`
y pP0 ´ P2qR`

y ,

R´
y “ pP0 ` P1 ` P2qR´

y “ (by (3.1.38), (3.1.53)) “ 0.
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These relations and the fact that Peirce projections Pi are polynomials in R`
e1

imply

that the operators R´
a , a P D lie in the enveloping associative algebra of the Jordan

representation R` : D Ñ EndpMq. Also it is clear that the operators R´
e1

, R´
e2

, R´
x , R´

y do

not depend on the module M. Therefore, the first point is now proved. It follows that the

structure of M as a noncommutative Jordan superbimodule is completely determined by

its structure as a Jordan superbimodule over Dp`q. The other points follow immediately

from this statement.

Consider first the case t ‰ ´1. In this case we have the following result:

Lemma 3.1.5 ([Tru05]). Let t ‰ ´1. Then the operators

E “ 2
1 ` t

pR`
x q2, F “ 2

1 ` t
pR`

y q2, H “ 2
1 ` t

pR`
x R`

y ` R`
y R`

x q

form a basis of the simple Lie algebra sl2, that is, rE, Hs “ 2E, rF, Hs “ ´2F, rE, F s “ H.

From Peirce relations it follows that M0 ` M2 is invariant under E, F and H.

Hence, (3.1.45) and the multiplication table of sl2 imply that

pP0 ` P2qpR`
x q2 “ 0, pP0 ` P2qpR`

y q2 “ 0, pP0 ` P2qpR`
x R`

y ` R`
y R`

x q “ 0. (3.1.56)

As in the previous subsection, with the aid of the relations above we can find submodules

in M that are isomorphic to the regular one or its opposite. Note that D0p1{2, 1{2, 0q acts

irreducibly on K3p1{2, 1{2, 0q of which it is the unital hull.

Lemma 3.1.6. Let t ‰ ´1, 1.

1) Let m be a nonzero homogeneous element in M2. Then

Modpmq “ xm, mR`
x , mR`

y , mR`
x R`

y P0y.

Moreover, mR`
x and mR`

y are linearly independent, and

mpR`
x q2 “ mpR`

y q2 “ 0, mR`
x R`

y P0R
`
x “ tmR`

x {2, mR`
x R`

y P0R
`
y “ tmR`

y {2.

(a) If t ‰ 0, Modpmq is isomorphic to RegpDq or RegpDqop;

(b) If t “ 0 and mR`
x R`

y “ 0, then Modpmq is isomorphic to K3p1{2, 1{2, 0q;
(c) If t “ 0 and mR`

x R`
y ‰ 0, then Modpmq – D0p1{2, 1{2, 0q “ xe1

1, x1, y1, e1
2y (or

its opposite) with the action given as follows:

x1R`
y “ ´y1R`

x “ e1
1 ` e1

2, x1R´
x “ ´e1

1 ` e1
2,

the only nonzero action on e1
2 is e2R

`
e1

2

“ e1
2 (that is, Modpe1

2q is isomorphic

to RegpD0p1{2, 1{2, 0qq{K3p1{2, 1{2, 0q), and all other actions coincide with the

actions on RegpDq. Moreover, D0p1{2, 1{2, 0q is indecomposable with the unique

nontrivial submodule isomorphic to RegpDq{K3p1{2, 1{2, 0q.
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2) Let m be a nonzero homogeneous element in M0. If t ‰ 0, then Modpmq is isomor-

phic to RegpDq or RegpDqop. If t “ 0, then Modpmq is isomorphic to RegpDq or

RegpDq{K3p1{2, 1{2, 0q or their opposites.

Proof.

1) Relations (3.1.56) and (3.1.51) imply that

mpR`
x q2 “ mpR`

y q2 “ 0, mR`
x R`

y P2 “ ´mR`
y R`

x P2 “ m{2.

Hence, mR`
x , mR`

y ‰ 0. Suppose that mR`
x “ αmR`

y for some α P F. Acting by

R`
x P2 on this relation and using (3.1.56) we see that ´α{2 m “ 0, hence, α “ 0, a

contradiction. Therefore, mR`
x and mR`

y are linearly independent.

Consider the identity that holds for every Jordan superalgebra:

Rpa,b,cq “ ´p´1qbcrrRa, Rcs, Rbs. (3.1.57)

Consider this identity for the symmetrized split null extension Ep`q “ pD ‘ Mqp`q.

Substituting in it a “ x, b “ y, c “ x we get
1 ` t

2
R`

x “ rpR`
x q2, R`

y s. Applying this

relation on m and using (3.1.56), we get

mrpR`
x q2, R`

y s “ ´mR`
y pR`

x q2 “ mR`
x R`

y pP0 ` P2qR`
x

“ m

2
R`

x ` mR`
x R`

y P0R
`
x “ 1 ` t

2
mR`

x .

Denote n “ mR`
x R`

y P0. Then the relation above implies that nR`
x “ tmR`

x {2.

Analogously, substituting a “ y, b “ x, c “ y in (3.1.57) and applying the resulting

relation on m, we get nR`
y “ tmR`

y {2. Thus, the space xm, mR`
x , mR`

y , ny is closed

under all R` operators. Proposition 3.1.4 implies that it is also closed under all R´

operators and xm, mR`
x , mR`

y , ny “ Modpmq.

Suppose that t ‰ 0. Then, since nR`
x “ tmR`

x {2, n must be nonzero. Hence, Modpmq
is isomorphic as a Jordan superbimodule to the regular Dp`q-bimodule or its opposite.

Indeed, one identifies

m Ø e1, mR`
x Ø x{2, mR`

y Ø y{2, n Ø te2{2

if m is even, and analogously if m is odd. Therefore, by Proposition 3.1.4 it is

isomorphic to the regular D-bimodule or its opposite.

Now, let t “ 0. If n “ 0, then the isomorphism between Modpmq and K3p1{2, 1{2, 0q
or its opposite is obtained from the isomorphism above by erasing the last line. If

n ‰ 0, then the mapping

m ÞÑ e1, mR`
x ÞÑ x{2, mR`

y ÞÑ y{2, n ÞÑ e1
2{2
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gives an isomorphsim between Modpmq an D0p1{2, 1{2, 0q if m is even, and analo-

gously if m is odd. One can check the relations (3.1.57), (1.12.1) and (1.12.2) to see

that D0p1{2, 1{2, 0q is indeed noncommutative Jordan. Because Peirce projections

are polynomials in R`
e1

, it is easy to see that D0p1{2, 1{2, 0q is indecomposable with

the unique nontrivial submodule equal to

xe1
2y “ RegpD0p1{2, 1{2, 0qq{K3p1{2, 1{2, 1{2q,

hence, it is isomorphic neither to RegpD0p1{2, 1{2, 0qq nor to K3p1{2, 1{2, 1{2q ‘
RegpD0p1{2, 1{2, 0qq{K3p1{2, 1{2, 1{2q.

2) Suppose that t ‰ 0. From relations (3.1.56) and (3.1.48) it follows that

mR`
x R`

y P0 “ ´mR`
y R`

x P0 “ t

2
m ñ mR`

x , mR`
y ‰ 0 if t ‰ 0.

Consider the element n “ mR`
x R`

y P2. Substituting in (3.1.57) a “ x, b “ y, c “ x

and a “ y, b “ x, c “ y we get

nR`
x “ mR`

x {2, nR`
y “ mR`

y {2, (3.1.58)

therefore, nR`
x R`

y P0 “ tm{4. Hence, if t ‰ 0, Modpmq “ Modpnq and the result

follows from the previous point. If t “ 0, then it still holds true that Modpmq “
xm, mR`

x , mR`
y , mR`

x R`
y P2y, and from the equations (3.1.58) and (3.1.56) it follows

that the elements mR`
x , mR`

y , mR`
x R`

y P2 are either all zero or all nonzero. If they are

all nonzero, then Modpmq – RegpD0p1{2, 1{2, 0qq or RegpD0p1{2, 1{2, 0qqop. If they

are all zero, then Modpmq – RegpD0p1{2, 1{2, 0qq{K3p1{2, 1{2, 0q or its opposite.

Now we are ready to describe noncommutative Jordan bimodules over D.

Theorem 3.1.7. Let M be an superbimodule over Dtp1{2, 1{2, 0q “ D, t ‰ ´1, 0, 1. Then

M is completely reducible and its irreducible summands are isomorphic either to RegpDq
or RegpDqop.

Proof. It is enough to show that every one-generated bimodule is a sum of homomorphic

images of RegpDq and RegpDqop. Let m P M and consider Modpmq. As in the previous

subsection, we may suppose that m is homogeneous and Peirce-homogeneous.

If m P M0 YM2, from the previous lemma it follows that Modpmq is isomorphic

as a noncommutative Jordan superbimodule to the regular D-bimodule or its opposite.

Suppose that m P M1. Then relation (3.1.52) implies that Modpmq can be generated by

homogeneous elements of M0 ` M2. Hence, Modpmq is a sum of bimodules isomorphic to

RegpDq or RegpDqop.

Consider now the case t “ 0. Recall that in Lemma 3.1.6 we found that

D0p1{2, 1{2, 0q has nontrivial indecomposable modules.
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Theorem 3.1.8. Let M be an indecomposable bimodule over D0p1{2, 1{2, 0q “ D. Then

M is isomorphic to one of the following bimodules:

1) RegpDq or its opposite;

2) K3p1{2, 1{2, 0q with the action restricted from the RegpD0pλqq or its opposite;

3) RegpDq{K3p1{2, 1{2, 0q or its opposite;

4) D0p1{2, 1{2, 0q or its opposite.

Proof. The proof is completely analogous to the one of Theorem 3.1.3. Consider a D-

module M. Consider the subspace K “ ker R`
x R`

y P2 X M0. Let I1
0 be a complement of a

base of K to a base of M0. By Lemma 3.1.6 Modpmiq is isomorphic to either RegpDq or

its opposite for all i P I1
0 . Let M 1

2 be a vector space complement of M0R
`
x R`

y P2 to M2.

Let I1
2 be a basis of ker R`

x R`
y P0 X M 1

2 and I2
2 be a basis of a vector space complement of

ker R`
x R`

y P0 X M 1
2 to M 1

2. Then by Lemma 3.1.6 we have

Modpmiq –

$

&

%

K3p1{2, 1{2, 0q or K3p1{2, 1{2, 0qop, i P I1
2 ,

D0p1{2, 1{2, 0q or D0p1{2, 1{2, 0qop, i P I2
2

.

By construction of the module D0p1{2, 1{2, 0q, we have M 1
2R

`
x R`

y P0 Ď K. Let M 1
0 be a

vector space complement of M 1
2R

`
x R`

y P0 to K, and let I2
0 be a base of M 1

0. By Lemma 3.1.6

we have Modpmiq – RegpD0p1qq{K3p1q for all i P I2
0 . Consider the sum

M “
ÿ

iPI1

0

Modpmiq `
ÿ

iPI1

2

Modpmiq `
ÿ

iPI2

2

Modpmiq `
ÿ

iPI2

0

Modpmiq

and note that M0 ` M2 Ď M. Hence, by Lemma 2.2.3 we have M{M “ 0 and M “ M.

The proof that the sum of the submodules constituting M is direct is completely analogous

to Theorem 3.1.3 and we omit it.

Consider the case t “ ´1. In this case we only describe finite-dimensional

irreducible superbimodules over D´1p1{2, 1{2, 0q “ D. Also in this case we assume that F

is algebraically closed.

For α, β, γ P F consider a superbimodule V pα, β, γq over Dp`q “ J with

V0̄ “ xv, wy, V1̄ “ xz, ty and the multiplication table

v ˝ e1 “ v, w ˝ e1 “ 0, z ˝ e1 “ z

2
, t ˝ e1 “ t

2
,

v ˝ e2 “ 0, w ˝ e2 “ w, z ˝ e2 “ z

2
, t ˝ e2 “ t

2
,

v ˝ x “ z, w ˝ x “ pγ ´ 1qz ´ 2αt, z ˝ x “ αv, t ˝ x “ 1
2

ppγ ´ 1qv ´ wq,

v ˝ y “ t, w ˝ y “ 2βz ´ pγ ` 1qt, z ˝ y “ 1
2

ppγ ` 1qv ` wq, t ˝ y “ βv.
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In the paper [MZ10] it was proved that the modules V pα, β, γq are Jordan and

every finite-dimensional irreducible Jordan superbimodule over J is isomorphic to one of

V pα, β, γq (if γ2 ´ 4αβ ´ 1 ‰ 0), or V1 “ xw, w ˝ J1̄y, or V2 “ V {V1 (if γ2 ´ 4αβ ´ 1 “ 0),

or its opposite.

Therefore, by Proposition 3.1.4, we have to check whether a module V pα, β, γq
admits a structure of noncommutative Jordan bimodule over D. Note that with respect to

e1 the Peirce decomposition of V is the following:

V0 “ xwy, V1 “ xz, ty, V2 “ xvy.

Note also that the operators pR`
x q2, pR`

y q2, R`
x R`

y ` R`
y R`

x act on V pα, β, γq as α, β, γ,

respectively. Hence, the relation (3.1.45) implies that β “ 0.

The proof of Proposition 3.1.4 shows that there is only one way to introduce

the noncommutative Jordan action of D in V pα, 0, γq:

wR´
x “ ´wR`

y “ pγ ` 1qt, vR´
x “ vR`

y “ t,

zR´
x “ zR`

y pP0 ´ P2q “ 1
2

pw ´ pγ ` 1qvq,

zR´
e1

“ 1
2

zP1R
`
y pP0 ´ P2qR`

y “ ´γ ` 1
2

t “ ´zR´
e2

,

and all other R´ operators are zero.

Let a “ x, b “ e1 in (1.12.1): rR`
x , R´

e1
s “ ´1

2
R`

y . Applying this relation on

v, we get γ “ 0. Now, one can check that the bimodule V pα, 0, 0q with the R´ actions

introduced above is indeed a noncommutative Jordan D-bimodule. To ensure that we

have to check that (1.12.1), (1.12.2) hold for all a, b P D. Some of them have already been

checked in the proof of Proposition 3.1.4 and the remaining relations can be easily checked

by a direct calculation. Since γ2 ´ 4αβ ´ 1 “ ´1 ‰ 0, this bimodule is irreducible. We

denote this noncommutative Jordan bimodule as V pαq. The calculation for the opposite

module is completely analogous. We have proved the following result:

Theorem 3.1.9. Let M be an irreducible finite-dimensional noncommutative Jordan

bimodule over D´1p1{2, 1{2, 0q and let the base field F be algebraically closed. Then M is

isomorphic to V pαq, α P F, or its opposite.

3.1.3 Representations of K3pα, β, γq
Here, as a corollary of two previous subsections, we obtain a description of

indecomposable bimodules over nonunital simple noncommutative Jordan superalgebra

K3pα, β, γq.

Note that to study representations of K3pα, β, γq it suffices to study unital

representations of D0pα, β, γq. Indeed, the superalgebra D0pα, β, γq “ D is the unital hull
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of K3pα, β, γq “ K, and any noncommutative Jordan K-bimodule M admits a unital

noncommutative Jordan action of D by setting Re2
“ id ´Re1

, Le2
“ id ´Le1

. Moreover,

a structure of a D-module is completely determined by the structure of K-module induced

by embedding (in particular, a subspace N of a unital D-bimodule M is a submodule if

and only if it is a K-submodule with the action induced by embedding and two D-modules

are isomorphic if and only if they are isomorphic as K-modules).

Recall that if F allows square root extraction, then K3pα, β, γq is isomor-

phic either to K3pλ, 0, 0q for λ P F or to K3p1{2, 1{2, 0q. Applying module mutation,

we can define the modules D0pα, β, γq in the obvious manner. Note that the module

RegpD0pα, β, γqq{K3pα, β, γq is a zero module over K3pα, β, γq. Hence, from Theorems 3.1.3

and 3.1.8 we have the following result:

Theorem 3.1.10. Suppose that the base field F allows square root extraction. Then every

finite-dimensional indecomposable noncommutative Jordan bimodule over K3pα, β, γq is

isomorphic either to one of the following modules:

1) RegpK3pα, β, γqq or its opposite;

2) RegpD0pα, β, γqq with the action induced by embedding or its opposite;

3) D0pα, β, γq;

4) a one-dimensional zero module.

3.2 Kronecker factorization theorem for Dtpα, β, γq
Clearly, a necessary condition for the Kronecker factorization over a (su-

per)algebra A to hold is that every A-module be completely reducible and irreducible

summands be isomorphic to RegpAq (or RegpAqop). This is exactly what we proved in

the previous section for the superalgberas Dtpα, β, γq. In this section we investigate if the

Kronecker factorization holds for these superalgebras. Again, by different methods for

each subclass, we obtain the same result: except for some special values of parameters,

any noncommutative algebra U that contains Dtpα, β, γq as a unital subalgebra is the

graded tensor product of Dtpα, β, γq and an associative-commutative superalgebra A. As

a consequence, we obtain the classification of noncommutative Jordan representations and

the Kronecker factorization for simple associative superalgebra Qp2q.

3.2.1 Kronecker factorization theorem for Dtpλq
We consider first the case λ “ 1, t ‰ 0, 1 hoping to apply the mutation

later. Let U be a noncommutative Jordan superalgebra that contains Dtp1q “ D as a
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unital subsuperalgebra. Then U can be considered as a unital bimodule over D. From

Theorem 3.1.2 it follows that U is a direct sum of regular D-bimodules and opposite to

them:

U “
à

iPI

Mi ‘
à

jPJ

M j,

where Mi are isomorphic to RegpDq, and M j are isomorphic to the RegpDqop. For a P D,

i P I pj P Jq by ai pajq we denote the image of a with respect to the module isomorphism

RegpDq Ñ Mi pRegpDqop Ñ M jq. From now on by U “ U0 ` U1 ` U2 we denote the Peirce

decomposition of U with respect to e1 P D.

Consider the space Z “ ta P U : ra, Ds “ 0u. It is easy to see that the

commutative center of D is equal to F. Therefore, the module structure of U implies that

Z “ x1i, i P I, 1j, j P Jy, thus, Z Ă U0 ` U2.

Lemma 3.2.1. Z is a subalgebra of U.

Proof. Let a, b P Z, c P D. Then

ra ˝ b, cs “ 2aR`
b R´

c “ (by (1.12.1)) “ p´1qbc2aR´
c R`

b “ 0.

Since Z Ď U0 ` U2, Z2 also lies in U0 ` U2 and rZ2, e1s “ rZ2, e2s “ 0. Therefore, we only

have to show that rra, bs, xs “ rra, bs, ys “ 0. This can be showed as follows:

rra, bs, xs “ 4aR´
b R´

x “ 4aR´
b pP0 ` P2qR´

x “ (by Lemma 1.12.3)

“ 4aR´
b p´P0 ` P2qR`

x “ (by (1.2.4)) “ 4ap´P0 ` P2qR´
b R`

x “ (by (1.12.1))

“ p´1qb4ap´P0 ` P2qR`
x R´

b “ p´1qb4apP0 ` P2qR´
x R´

b “ p´1qb4aR´
x R´

b “ 0.

Analogously one can show that rra, bs, ys “ 0. Hence, rZ2, Ds “ 0 and Z is a subalgebra.

Note that the module structure of U implies that U1 “ U
r0s
1 ‘ U

r1s
1 . We will

extensively use this property to prove some associativity conditions. In fact, we will show

that U0 ` U2 lies in the associative center of U.

Lemma 3.2.2. pU1, U0 ` U2, U0 ` U2q “ 0, pU0 ` U2, U1, U0 ` U2q “ 0, pU0 ` U2, U0 `
U2, U1q “ 0.

Proof. Let u0, u1
0 P U0, a P U

r0s
1 , b P U

r1s
1 , u2, u1

2 P U2. Then

pa, u0, u1
0q “ apRu0

Ru1

0
´ Ru0u1

0
q “ (by Lemma 1.2.6)

“ ´p´1qu0u1

0aRu1

0
Lu0

“ (by Lemma 1.3.3) “ 0,

pa, u2, u1
2q “ apRu2

Ru1

2
´ Ru2u1

2
q “ (by Lemma 1.2.6)

“ ´p´1qu2u1

2aLu1

2
Ru2

“ (by Lemma 1.3.3) “ 0.
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Analogously, pb, u0, u1
0q “ 0, pb, u2, u1

2q “ 0.

Also,

pa, u0, u2q “ pau0qu2 “ (by Lemma 1.3.3) “ 0,

pu0, u2, aq “ ´u0pu2aq “ (by Lemma 1.3.3) “ 0.

Analogously, pb, u2, u0q “ 0, pu2, u0, bq “ 0.

Also,

pu0, a, u1
0q “ pu0aqu1

0 P (by Lemma 1.3.1) P U
r0s
1 u1

0 “ 0,

pu2, a, u1
2q “ ´u2pau1

2q P (by Lemma 1.3.1) P u2U
r0s
1 “ 0.

Analogously, pu0, b, u1
0q “ 0, pu2, b, u1

2q “ 0.

By Lemma 1.3.3 pu2, a, u0q “ 0, pu0, b, u2q “ 0. Finally, the arbitrariness of

u0, u1
0, a, b, u2, u1

2 and the flexibility relation (1.1.5) imply the lemma statement.

Lemma 3.2.3. U0 ` U2 is an associative subalgebra of U.

Proof. It suffices to show that U0 and U2 are associative. Consider the following identity

which is valid in any algebra ([ZSSS82, p. 136]):

pab, c, dq ` pa, b, cdq ´ apb, c, dq ´ pa, b, cqd ´ pa, bc, dq “ 0.

Substituting in it a “ x; b, c, d P U0 by the previous lemma we get xpb, c, dq “ 0. Then

the structure of U as a module over D implies that pb, c, dq “ 0 and U0 is associative.

Analogously, substituting a “ y; b, c, d P U2 we infer that U2 is associative.

Lemma 3.2.4. U2
1 Ď U0 ` U2, pU r0s

1 q2 “ pU r1s
1 q2 “ 0, U

r0s
1 U

r1s
1 Ď U0, U

r1s
1 U

r0s
1 Ď U2.

Proof. First we prove that the set K “ tx, yu satisfies the conditions of Lemma 1.2.5.

Indeed, the first condition follows automatically from the bimodule structure of U over

D. Suppose now that a P U1 is such that K ˝ a “ 0. The bimodule structure of U over D

implies that

a “
ÿ

αixi `
ÿ

βiyi `
ÿ

γjxj `
ÿ

δjyj,

where αi, βi, γj, δj P F, i P I, j P J. Hence,

0 “ x ˝ a “
ÿ

βipe1i ` te2iq `
ÿ

δipe1i ` te2iq,

therefore, βi “ δj “ 0, i P I, j P J. Analogously, since y ˝ a “ 0, αi “ γj “ 0 for all

i P I, j P J. Therefore, a “ 0. Thus, Lemma 1.2.5 implies that U2
1 Ď U0 ` U2, and

Lemma 1.3.4 implies the lemma statement.
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Lemma 3.2.5. pU0 ` U2, U1, U1q “ 0, pU1, U0 ` U2, U1q “ 0, pU1, U1, U0 ` U2q “ 0.

Proof. Let u0 P U0, a, a1 P U
r0s
1 , b, b1 P U

r1s
1 , u2 P U2. Then

pu0, b, aq “ pu0bqa ´ u0pbaq “ (by Lemmas 1.3.3 and 3.2.4) “ 0,

pu2, a, bq “ pu2aqb ´ u2pabq “ (by Lemmas 1.3.3 and 3.2.4) “ 0.

Analogously, pb, a, u0q “ 0, pa, b, u2q “ 0. Now,

pu0, b, b1q “ pu0bqb1 ´ u0pbb1q “ (by Lemmas 1.3.3 and 3.2.4) “ 0,

pu2, b, b1q “ pu2bqb1 ´ u2pbb1q “ (by Lemmas 1.3.1 and 3.2.4) “ 0.

Analogously, pu0, a, a1q “ 0, pu2, a, a1q “ 0. Now,

pa, u0, bq “ pau0qb ´ apu0bq “ (by Lemma 1.3.3) “ 0,

pb, u2, aq “ pbu2qa ´ bpu2aq “ (by Lemma 1.3.3) “ 0,

pa, u0, a1q “ pau0qa1 ´ apu0a
1q “ (by Lemmas 1.3.1 and 3.2.4) “ 0,

pb, u0, b1q “ pbu0qb1 ´ bpu0b
1q “ (by Lemmas 1.3.1 and 3.2.4) “ 0.

Analogously, pa, u2, a1q “ 0, pb, u2, b1q “ 0. Finally, arbitrariness of u0, a, a1, b, b1, u2 and the

flexibility relation (1.1.5) imply the statement of the lemma.

Lemma 3.2.6. U is isomorphic to the graded tensor product of Z and D.

Proof. Lemmas 3.2.2, 3.2.3 and 3.2.5 imply that U0 ` U2 lies in the associative center of

U. Hence, Z also lies in the associative center of U. Let a, b P D, z, z1 P Z. Then

pzaqpz1bq “ ppzaqz1qb “ pzpaz1qqb “ p´1qaz1pzpz1aqqb “ p´1qaz1ppzz1qaqb “ p´1qaz1pzz1qpabq.

Therefore, U is a homomorphic image of the graded tensor product of Z and D. Since

Z “ x1i, i P I, 1j, j P Jy, it is clear that the equality z1e1 ` z2e2 ` z3x ` z4y “ 0 for

z1, z2, z3, z4 P Z implies z1 “ z2 “ z3 “ z4 “ 0. Thus, U – Z b D.

By Lemma 3.2.3, Z is an associative superalgebra. Suppose that t “ ´1. Then

D is isomorphic to an associative superalgebra M1,1, and U is also associative as the graded

tensor product of two associative superalgebras. If t ‰ ´1, we can specify the structure of

Z further:

Lemma 3.2.7. Suppose that t ‰ ´1. Then Z is supercommutative.

Proof. Let z1, z2, z3 P Z. Then by associativity of Z we have

pz1 b x, z2 b y, z3 b xq “ p´1qz2pz1z2z3q b px, y, xq.
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The flexibility relation (1.1.5) implies that

pz1 b x, z2 b y, z3 b xq “ ´p´1qz1bx,z2by,z3bxpz3 b x, z2 b y, z1 b xq
“ p´1qz1,z2,z3pz3 b x, z2 b y, z1 b xq.

Hence,

0 “ pz1z2z3 ´ p´1qz1,z2,z3z3z2z1q b px, y, xq “ 2p1 ` tqpz1z2z3 ´ p´1qz1,z2,z3z3z2z1q b x.

Therefore, z1z2z3 ´ p´1qz1,z2,z3z3z2z1 “ 0. Taking z3 “ 1, we get z1z2 “ p´1qz1z2z2z1.

Consider now the general situation, that is, let U be a noncommutative Jordan

superalgebra that contains Dtpλq as a unital subsuperalgebra. Suppose that λ ‰ 1{2.

Therefore, U 1 “ U pµq contains Dtp1q as a unital subsuperalgebra, where µ P F is such that

λ d µ “ 1. By what was proved above, U 1 “ Z b Dtp1q for an associative superalgebra

Z, and U “ U 1pλq “ pZ b Dtp1qqpλq. Suppose that Z is supercommutative and let z, z1 P
Z, a, b P Dtp1q. Then

pz b aq ¨λ pz1 b bq “ λpz b aqpz1 b bq ` p´1qpz`aqpz1`bqp1 ´ λqpz1 b bqpz b aq
“ p´1qaz1

λpzz1q b pabq ` p´1qaz1`abp1 ´ λqpzz1q b pbaq
“ p´1qaz1pzz1q b pa ¨λ bq.

Therefore, if Z is supercommutative (which holds, for example, when t ‰ ´1), U is

isomorphic to Z b Dtp1qpλq “ Z b Dtpλq. Now we can state our main result:

Theorem 3.2.8. Let U be a noncommutative Jordan superalgebra that contains Dtpλq as

a unital subsuperalgebra, t ‰ 0, 1, λ ‰ 1{2. Then:

1) If t ‰ ´1, then U – Z b Dtpλq, where Z is an associative-commutative superalgebra;

2) If t “ ´1, then U – pZ b M1,1qpλq, where Z is an associative superalgebra. Par-

ticularly, any noncommutative Jordan superalgebra containing D´1p1q “ M1,1 as a

unital subsuperalgebra is associative.

Remark. Note that the condition λ ‰ 1{2 and t ‰ 0, 1 is necessary for the theorem. Indeed,

when λ “ 1{2, the algebra Dtp1{2q is just the Jordan superalgebra Dt which has Jordan

bimodules non-isomorphic neither to RegpDtq nor RegpDtqop [Tru05], [Tru08]. If t “ 0,

then it is easy to see that RegpD0pα, β, γqq has a 3-dimensional submodule generated

by e1, x, y. Since the superalgebra D “ D1pλq is a superalgebra of the type UpV, f, ‹q,
Theorem 2.2.2 implies that there are bimodules over it which are not isomorphic to RegpDq
or RegpDqop. Hence, Theorem 3.1.2 and Kronecker factorization theorem do not hold for

t “ 1.
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3.2.2 Kronecker factorization theorem for Dtp1{2, 1{2, 0q
Let pU, ˝, t¨, ¨uq be a noncommutative Jordan superalgebra containing D “

Dtp1{2, 1{2, 0q as a unital subalgebra, t ‰ ´1, 0, 1. Consider U as a unital bimodule over

D. As before, Theorem 3.1.7 implies that

U “
à

iPI

Mi ‘
à

jPJ

M j, (3.2.1)

where Mi – RegpDq, and M j – RegpDqop. For a P D, i P I pj P Jq by ai pajq we denote

the image of a with respect to the module isomorphism RegpDq Ñ Mi pRegpDqop Ñ M jq.
By U “ U0 ` U1 ` U2 we denote the Peirce decomposition of U with respect to e1 P D.

As in the previous section, let Z “ x1i, i P I, 1j, j P Jy. In this section we

prove that Z is a supercommutative subalgebra of U and U – Z b D.

Lemma 3.2.9. Z is a commutative subalgebra of U .

Proof. The module structure of U implies that Z “ ta P U : ra, Ds “ 0u X pU0 ` U2q. It is

obvious that Z2 Ď U0 ` U2, thus, to prove that Z is a subalgebra it suffices to show that

rZ2, Ds “ 0. If a, b P Z, c P D, then

ra ˝ b, cs “ 2aR`
b R´

c “ (by (1.12.1)) “ p´1qbc2aR´
c R`

b “ 0.

To show that rZ, Zs “ 0 it suffices to prove that U0 ` U2 is a commutative subalgebra of

U. In the same way as in Lemma 3.2.4 we can prove that U1U1 Ď U0 ` U2. Then, since

re1, yis “ 0, re1, yjs “ 0, re1, xis “ yi, re1, xjs “ yj

for all i P I, j P J , Lemma 1.12.3 and Lemma 1.12.4 imply that

R´
yi

“ 0, R´
yj

“ 0, P1R
´
xi

“ P1R
`
yi

pP0 ´ P2q, P1R
´
xj

“ P1R
`
yj

pP0 ´ P2q.

Now,

yi ˝ yj “ yiR
`
yj

pP0 ` P2q “ yiR
´
xj

pP0 ´ P2q “ 1
2

ryi, xjspP0 ´ P2q “ xjR
´
yi

pP0 ´ P2q “ 0.

Analogously we can prove that yi ˝ yj “ 0, yi ˝ yj “ 0.

Consider now the relation (1.12.2) with a “ x, b “ yi: R´
x R`

yi
“ R´

pe1`te2qi
.

Apply the resulting relation on the element e1j
:

1
2

re1j
, e1i

s “ e1j
R´

x R`
yi

“ 1
2

yj ˝ yi “ 0.

Analogously (using the relation (1.12.2) with a “ x, b “ yi) we can show that

re1i
, e1j

s “ 0, re1i
, e1j

s “ 0,

therefore, U2 is supercommutative. Since t ‰ 0, we can apply the same identities to

elements e2i
, e2j

, i P I, j P J to prove that U0 is supercommutative. Therefore, Z is a

supercommutative subalgebra of U .
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With the aid of the following lemma we may consider only the symmetrized

Jordan superalgebra:

Lemma 3.2.10. Suppose that U p`q is the graded tensor product of Jordan superalgebras

Z and Dp`q “ Dt. Then U as a noncommutative Jordan superalgebra is the graded tensor

product of Z and D.

Proof. In the proof of the previous lemma we noted that U0 ` U2 is a commutative

subsuperalgebra of U , and that R´
yi

“ R´
yj

“ 0 for all i P I, j P J. Hence, every nonzero

commutator in U is a sum of the commutators of the form ra, xis, rb, xjs, where a, b P
U0 ` U2 ` xxi, i P I, xj, j P Jy. Consider, for example, the commutator rxi, xjs:

rp1i b xq, p1j b xqs “ rxi, xjs “ 2xiR
´
xj

“ 2xiR
`
yj

pP0 ´ P2q
“ 2p1i b xq ˝ p1j b yqpP0 ´ P2q “ 2p1i ˝ 1jq b px ˝ yqpP0 ´ P2q
“ (by Lemma 3.2.9) “ 2p1i1jq b p´e1 ` te2q “ 1i1j b rx, xs.

Thus,

p1i b xqp1j b xq “ p1i b xq ˝ p1j b xq ` 1
2

rp1i b xq, p1j b xqs

“ 1i1j b
ˆ

x ˝ x ` 1
2

rx, xs
˙

“ 1i1j b x2.

Consider also the commutator of elements e1i
and xj:

rp1i b e1q, p1j b xqs “ re1i
, xjs “ 2e1i

R´
xj

“ 2e1i
R`

yj

“ 2p1i b e1q ˝ p1j b yq “ 2p1i ˝ 1jq b pe1 ˝ yq
“ (by Lemma 3.2.9) “ p1i1jq b y “ p1i1jq b re1, xs.

Hence,

p1i b e1qp1j b xq “ p1i b e1q ˝ p1j b xq ` 1
2

rp1i b e1q, p1j b xqs

“ 1i1j b pe1 ˝ x ` 1
2

re1, xsq “ 1i1j b e1x.

Other cases of a, b can be done completely analogously. For other pairs of

elements the product in U coincides with the product in U p`q. Therefore, U – Z b D as a

noncommutative Jordan superalgebra.

Now it is only left for us to show that U p`q – Z bDt. We prove this analogously

to the paper [MZ03]. From now on until the end of the section we will be working with

a Jordan superalgebra U p`q, thus, for convenience we will denote it as U , write Jordan

product in U as juxtaposition and denote operators R`
x , x P U, as Rx. Henceforth we may
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suppose that t ‰ ´3. Indeed, if char F “ 3, then t “ 0, which we have already excluded,

and if char F ‰ 3, then D´3 – D´1{3. First of all we need some preliminary data about

derivations:

Definition 3.2.11. Let A be a superalgebra, and M be a superbimodule over A. A

mapping d : A Ñ M is called a derivation from A to M if

pabqd “ apbdq ` p´1qbdpadqb

for all a, b P A. The space of derivations from A to M is denoted by DerpA, Mq. If A is

considered as a module over itself, then an element d P DerpA, Aq is called a derivation of

A. The space DerpAq “ DerpA, Aq with the Lie superalgebra structure is called the algebra

of derivations of A.

Let J be a Jordan superalgebra. For elements a, b P J the operator Dpa, bq “
rRa, Rbs is a derivation of J. Derivations of the form

ÿ

Dpai, biq, ai, bi P J are called inner.

We need to know some facts about the algebra of derivations of Dt.

Lemma 3.2.12. The superalgebra of derivations of Dt, t ‰ ´1 is a simple 5-dimensional

Lie superalgebra, and Dt{F is an irreducible DerpDtq-module. Moreover, every derivation

of Dt is inner.

Proof. The computation of this algebra is rather straightforward, so we omit it and only

present the base of DerpDtq (basis elements of Dt on which the derivations below are not

defined map to zero):

e : x ÞÑ y, f : y ÞÑ x, h :

$

&

%

x ÞÑ x,

y ÞÑ ´y

a :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

e1 ÞÑ x,

e2 ÞÑ ´x,

x ÞÑ 0,

y ÞÑ 2pe1 ´ te2q

, b :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

e1 ÞÑ y,

e2 ÞÑ ´y,

x ÞÑ 2p´e1 ` te2q,
y ÞÑ 0

.

Let M be a DerpDtq-submodule of Dt containing 1. Note that e, f, h span

the simple Lie algebra sl2 that acts irreducibly on the odd space xx, yy. Therefore, if M

contains an odd element of Dt, it contains all pDtq1. Hence (by acting by a), it contains

an element e1 ´ te2. Since t ‰ ´1, M is equal to the whole Dt. If M contains an even

element ‰ 1, it contains (by acting by a, b) elements x and y and again is equal to the

whole Dt. Hence, Dt{F is an irreducible DerpDtq-supermodule.
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The multiplication table of DerpDtq is as follows:

re, f s “ h, rh, f s “ ´2f, rh, es “ 2e,

ra, as “ 4p1 ` tqf, ra, bs “ ´2p1 ` tqh, rb, bs “ ´4p1 ` tqe,

re, as “ ´b, rf, as “ 0, rh, as “ ´a,

re, bs “ 0, rf, bs “ ´a, rh, bs “ b.

Using this table it is quite easy to see that DerpDtq is a simple superalgebra.

One can also check that

e “ 2
1 ` t

rRy, Rys, f “ ´2
1 ` t

rRx, Rxs, h “ 2
1 ` t

rRx, Rys,

a “ 4rRe1
, Rxs, b “ 4rRe1

, Rys.

Therefore, all derivations of Dt are inner.

Note that the decomposition (3.2.1) also holds for the symmetrized superalgebra:

Mi, i P I as a Jordan bimodule is isomorphic to RegpDtq, and M j, j P J as a Jordan

bimodule is isomorphic to RegpDtqop. From this and the previous lemma it follows that for

any Dt-submodule M Ď U the Lie superalgebra DerpDtq acts on M and on DerpDt, Mq.
Note also that DerpDt, D

op
t q as a module over DerpDtq is isomorphic to the opposite of

the regular bimodule, thus is also irreducible.

Lemma 3.2.9 implies that Z is a subalgebra of U p`q. Note also that for a, b P
Dt, i P I, j P J we have

pa1iqb “ pabq1i, bpa1iq “ pbaq1i, (3.2.2)

pa1jqb “ p´1qbpabq1j, bpa1jq“ pbaq1j. (3.2.3)

From this equations it follows easily that Z DerpDtq “ 0.

We will also need the Jordan identity in the element form:

ppabqcqd ` p´1qb,c,dppadqcqb ` p´1qcdappbdqcq
“ pabqpcdq ` p´1qbcpacqpbdq ` p´1qpb`cqdpadqpbcq

“ appbcqdq ` p´1qcdppabqdqc ` p´1qbpc`dqppacqdqb.

Recall that we aim to prove that for a, b P Dt, z1, z2 P Z we have pz1aqpz2bq “
p´1qz2apz1z2qpabq.

Lemma 3.2.13. For a P Dt, z1, z2 P Z we have paz1qz2 “ apz1z2q.

Proof. We show that the mapping d : Dt Ñ U defined by a ÞÑ paz1qz2 ´ apz1z2q, where

z1, z2 P Z, is a derivation. That is, we show that for a, b P Dt we have

ppabqz1qz2 ´ pabqpz1z2q “ appbz1qz2 ´ bpz1z2qq ` p´1qbpz1`z2qppaz1qz2 ´ apz1z2qqb.
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From relations (3.2.2), (3.2.3) it follows that pabqpz1z2q “ p´1qbpz1`z2qpapz1z2qqb. Thus, we

need to prove that

ppabqz1qz2 “ appbz1qz2 ´ bpz1z2qq ` p´1qbpz1`z2qppaz1qz2qb. (3.2.4)

By the Jordan identity we have

pz2pabqqz1 ` p´1qbz1pz2paz1qqb ` p´1qapb`z1qpz2pbz1qqa
“ ppz2aqbqz1 ` p´1qa,b,z1ppz2z1qbqa ` p´1qbz1z2ppaz1qbq.

Since pz2pabqqz1 “ ppz2aqbqz1, we have

p´1qbz1pz2paz1qqb ` p´1qapb`z1qpz2pbz1qqa “ p´1qa,b,z1ppz2z1qbqa ` p´1qbz1z2ppaz1qbq,

which together with supercommutativity implies (3.2.4). Since Z DerpDtq “ 0, the deriva-

tion d commutes with DerpDtq. Thus, the compositions of d with the projections U Ñ Mi,

U Ñ M j belong to DerpDt, Miq and DerpDt, M jq respectively and also commute with

DerpDtq. Since the action of DerpDtq on DerpDtq and DerpDt, D
op
t q has only zero constants,

we conclude that d “ 0.

Lemma 3.2.14. For a, b P Dt, z1, z2 P Z we have pz1aqpz2bq “ p´1qz2apz1z2qpabq.

Proof. For fixed elements z1, z2 P Z, a P Dt consider the mapping

da : Dt Ñ U, b ÞÑ pbz1qpz2aq ´ p´1qapz1`z2qpbaqpz1z2q.

We prove that da is a derivation. Indeed, by the Jordan identity for b, b1 P Dt

we have

ppbb1qz1qpz2aq ` p´1qb1pz1`z2`aq`z1pz2`aqppbpz2aqz1qb1 ` p´1qz1pz2`aqpbpb1pz2aqqz1q
“ p´1qb1pz1`z2`aqppbz1qpz2aqqb1 ` bppb1z1qpz2aqq ` p´1qz1pz2`aqppbb1qpz2aqqz1.

By previous lemma and relations (3.2.2), (3.2.3) we have

p´1qz1pz2`aqppbb1qpz2aqqz1 “ p´1qapz2`z1qppbb1qaqpz1z2q,
p´1qz1pz2`aqpbpz2aqqz1 “ p´1qapz2`z1qpbaqpz1z2q,
p´1qz1pz2`aqpb1pz2aqqz1 “ p´1qapz2`z1qpb1aqpz1z2q.

Therefore,

pbb1qda “ ppbb1qz1qpz2aq ´ p´1qapz2`z1qppbb1qaqpz1z2q
“ bppb1z1qpz2aq ´ p´1qapz2`z1qpb1aqpz1z2qq
` p´1qb1pa`z1`z2qppbz1qpz2aq ´ p´1qapz2`z1qpbaqpz1z2qqb1

“ b ¨ b1da ` p´1qb1dabda ¨ b,
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and da is a derivation. One can easily check that

daDx,y “ rda, Dpx, yqs for a, x, y P Dt,

that is, the map a ÞÑ da is a DerpDtq-module homomorphism from Dt to DerpDt, Uq. By the

previous lemma, F lies in the kernel of this homomorphism, therefore, there is a homomor-

phism of an irreducible DerpDtq-module Dt{F into DerpDt, Uq. If this homomorphism is not

zero, then one of its compositions with projections to submodules DerpDt, Miq, DerpDt, M jq
is not zero. Hence, Dt{F is contained in DerpDt, Dtq or DerpDt, D

op
t q, which are also ir-

reducible DerpDt, Dtq-bimodules. Since dim DerpDt, Dtq “ dim DerpDt, D
op
t q “ 5 and

dim Dt{F “ 3, we have obtained a contradiction. Therefore, da “ 0 for all a P Dt.

Lemma 3.2.15. Z is an associative superalgebra.

Proof. Consider the Jordan identity for a “ z1 b x, b “ z2 b y, c “ z3 b e1, d “
1 b x, z1, z2, z3 P Z:

p´1qz2
1
2

pz1z2qz3 b x ´ p´1qz2
1
2

z1pz2z3q b x

“ p´1qz2
1 ` t

4
pz1z2qz3 b x ´ p´1qz2`z2z3

1 ` t

4
pz1z3qz2 b x.

Therefore, we have

pz1, z2, z3q “ p´1qz1z2
1 ` t

2
pz2, z1, z3q “ p1 ` tq2

4
pz1, z2, z3q.

Since we have excluded the cases t “ 1, ´3, Z is associative.

We have now proved the main result of the section:

Theorem 3.2.16. Let U be a noncommutative Jordan superalgebra containing D “
Dtp1{2, 1{2, 0q, t ‰ ´1, 0, 1 as a unital subalgebra. Then U – Z b D, where Z is an

associative-supercommutative superalgebra.

3.3 Representations of Qp1q and Qp2q
Recall that Qpnq “ MnpFq ‘ MnpFq, where MnpFq is an isomorphic copy of

MnpFq as a vector space. Also, Qpnq0̄ “ MnpFq, Qpnq1̄ “ MnpFq. The multiplication in

Qpnq is defined as follows:

a ¨ b “ ab, ā ¨ b “ a ¨ b̄ “ ab, ā ¨ b̄ “ ab,

It is widely known that Qpnq is a simple associative superalgebra for all natural

n, and its degree is exactly n [Wal64]. Thus, noncommutative Jordan representations of

Qpnq, n ě 3, are described in Theorem 2.1.1. In this section we describe noncommutative

Jordan representations of Qp1q and Qp2q.
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3.3.1 Representations of Qp1q
The superalgebra Qp1q has a basis 1, 1, where 1 is the unit of the superalgebra,

and 12 “ 1. Alternative representations of Qp1q were studied by Pisarenko in [Pis94]. In

particular, he described all irreducible alternative representations of Qp1q and found a

series of indecomposable alternative superbimodules over this algebra.

We note that in fact all unital representations of Qp1q are alternative. Indeed,

a superalgebra A is alternative if and only if it satisfies the following operator relations:

Lx˝y “ Lx ˝ Ly, Rx˝y “ Rx ˝ Ry, x, y P A.

Let M be a unital bimodule over Qp1q. Then it is easy to see that the above relations

trivially hold in the split null extension Qp1q ‘ M . Thus, we have proved

Proposition 3.3.1. Any unital representation of Qp1q is alternative.

3.3.2 Representations of Qp2q
Qp2q is an 8-dimensional simple associative superalgebra. Regarding to an

idempotent e11, we have the following Peirce decomposition of Qp2q “ U :

U0 “ xe22, e22y, U1 “ xe12, e21, e12, e21y, U2 “ xe11, e11y.

Alternative representations of Qp2q were studied by Pisarenko [Pis94]. Particu-

larly, he described irreducible unital bimodules over Qp2q (all of them turned out to be

associative and isomorphic either to RegpQp2qq or RegpQp2qqop) and proved that every

bimodule over Qp2q is completely reducible.

In the paper [PS13] it was proved that a noncommutative Jordan superalgebra

U such that U p`q – Qp2qp`q is necessarily its mutation: U – Qp2qpλq, λ P F. So, using the

module mutation, it suffices to study the representations of Qp2q and Qp2qp`q. Description

of noncommutative Jordan representations of Qp2q is a consequence of the results of

previous section:

Theorem 3.3.2. Any unital noncommutative Jordan representation of Qp2q is associative.

Proof. Let M be a noncommutative Jordan bimodule over Qp2q and E be the corresponding

split null extension. Note that Qp2q contains a subalgebra D “ xe11, e12, e21, e22y, which

contains the unit of Qp2q and is isomorphic to D´1p1q – M1,1. Therefore, E contains D

as a unital subalgebra, so by Theorem 3.2.8, E is associative and M is an associative

bimodule over U.

Moreover, as a consequence of Theorem 3.2.8, we can prove the Kronecker

factorization theorem for Qp2q:
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Theorem 3.3.3. Let U be a noncommutative Jordan superalgebra that contains Qp2q
as a unital superalgebra. Then U is associative and U – Z b Qp2q, for an associative

superalgebra Z.

Proof. Since Qp2q contains a noncommutative Jordan subsuperalgebra which is isomorphic

to D´1p1q, by Theorem 3.2.8, U is an associative algebra. From Pisarenko’s classification

of unital superbimodules over Qp2q it follows that

U “
à

iPI

Mi ‘
à

jPJ

M j,

where Mi are isomorphic to RegpQp2qq, and M j are isomorphic to the RegpQp2qqop. For

a P Qp2q, i P I pj P Jq by ai pajq we denote the image of a with respect to the module

isomorphism RegpQp2qq Ñ Mi pRegpQp2qqop Ñ M jq.

Consider the set Z “ x1i, i P I, 1j, j P Jy. Since the commutative center of

Qp2q is equal to F, it is clear that Z “ ta P U : ra, Qp2qs “ 0u. Since U is associative, Z is

a subalgebra of U. It is clear that

pzaqpz1bq “ p´1qaz1pzz1qpabq for z, z1 P Z, a, b P Qp2q

and the definition of Z implies that every element of U can be uniquely expressed as a

sum
ÿ

bPB

zbb, where B is a basis of Qp2q, zb P Z, b P B. Hence, U – Z b B.
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4 Representations of superalgebras UpV, fq
and KpΓn, Aq

So far we have classified finite-dimensional irreducible representations of simple

noncommutative Jordan superalgebras of degree ě 2, except for the algebras UpV, f, ‹q and

KpΓn, Aq. In this chapter we consider the representations of these algebras. In Section 4.1 we

show that if M is an irreducible noncommutative module over U, then it is either irreducible

as Jordan module over U p`q or equals one of its Peirce components (Theorem 4.1.8). This

result can be used to obtain a generalization of Theorem 1.5.4 without characteristic or

dimensionality restrictions. We use this result and classifications of irreducible modules

over Jordan superalgebras JpV, fq and KpΓnq obtained in [MZ10] and [SFS16] to classify

irreducible finite-dimensional modules over superalgebras UpV, f, ‹q and KpΓn, Aq in

Theorems 4.2.6 and 4.3.2. Particularly, we find that there is a large family of irreducible

UpV, f, ‹q-modules that are equal to their Peirce 1-components (previously discovered in

Section 2.2.1), and for any irreducible KpΓnq-module there exists a unique structure of a

noncommutative Jordan KpΓn, Aq-module on it.

4.1 Irreducibility of the symmetrized module

In this section we take a noncommutative Jordan superalgebra U and construct

ideals in U out of ideals in U p`q. Adapting and simplifying the proof of [McC71] to

our new setting, we prove that an irreducible module over a simple noncommutative

Jordan superalgebra U of degree ě 2 is either an irreducible module over its symmetrized

superalgebra U p`q or is equal to one of its Peirce components. As a consequence, we have

a new simpler proof of Theorem 1.5.4.

We will need the following lemma:

Lemma 4.1.1 ([PS10a]). If N1 Ď U1 such that Ui ˝ N1 ` rUi, N1s Ď N1 for i “ 0, 2, then

Ni “ PipU1 ˝ N1 ` rU1, N1sq E Ui, i “ 0, 2.

Lemma 4.1.2. Let B1 be a subspace of U1 such that rB1, es Ď B1 and Ui˝B1 Ď B1, i “ 0, 2.

Then Bi “ PipU1 ˝ B1q is an ideal in Ui. The subspace B “ B0 ` B1 ` B2 will be an ideal

in U if

1) U1 ˝ Bi Ď B1,

2) P1prU1, B1sq Ď B1,
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in which case B coincides with the ideal in U p`q generated by B1.

Proof. From 1) and 2) of Lemma 1.12.3 it follows that rUi, B1s Ď B1. Now 3) of

Lemma 1.12.3 implies that for i “ 0, 2 we have

PiprU1, B1sq “ U1R
´
B1

Pi Ď U1R
`
re,B1sPi Ď PipU1 ˝ B1q.

Thus, from Lemma 4.1.1 it follows that Bi is an ideal in Ui. Suppose now that the conditions

1) and 2) hold for B. We have already shown that Bi, i “ 0, 2 are ideals in Ui, and U0 ˝B2 “
rU0, B2s “ 0 “ U2 ˝B0 “ rB0, U2s by Peirce relations. Moreover, PipU1 ˝B1 `rU1, B1sq “ Bi

by definition of Pi, so condition 2) implies that rU1, B1s ` U1 ˝ B1 Ď B. Note also that

1) and 2) of Lemma 1.12.3 imply that rU1, Bis Ď B1. Therefore, B ⊳ U. Since Bi, i “ 0, 2

are generated by B1 using Jordan products in U p`q, B is contained in the ideal of U p`q

generated by B1, and if B is an ideal in U it is also an ideal in U p`q.

Lemma 4.1.3. For i “ 0, 2 the space

Zi “ tzi P Ui : U1 ˝ zi “ rU1, zis “ 0u “ tzi P Ui : U1 ˝ zi “ 0u

is an ideal of U.

Proof. First of all, Lemma 1.12.3 implies that the two definitions of Zi in the formula

above are equivalent. It suffices to prove the statement for i “ 0. It is easy to see

that pU1 ` U2q ˝ Z0 “ rU1 ` U2, Z0s “ 0, and relations (1.12.3), (1.12.1) imply that

U0 ˝ Z0 Ď Z0, rU0, Z0s Ď Z0, hence Z0 is an ideal of U.

Lemma 4.1.4. Let B be a Jordan ideal of U with B “ B0 ` B1 ` B2 relative to an

idempotent e. Then there exists a Jordan ideal C “ C0 ` C1 ` C2, with B0 “ C0, B1 Ď
C1, B2 “ C2 such that

1) P1prU1, C1sq Ď C1,

2) PipU1 ˝ C1q “ PipU1 ˝ B1q pi “ 0, 2q.

Proof. Set C1 “
8
ÿ

n“0

B1,n, where B1,0 “ B1, B1,n`1 “ P1prU1, B1,nsq. Is is obvious that

C1 Ě B1 satisfies 1) by construction, and to prove 2) it is enough to establish PipU1˝B1,nq Ď
PipU1 ˝ B1q for all n. For n “ 0 it is trivial, and, if it is true for n, then

PipU1 ˝ B1,n`1q “ U1R
`
P1prU1,B1,nsqPi “ U1R

`
rU1,B1,nsPi “ (by (1.12.1))

“ U1rR`
Bn

, R´
U1

sPi “ rU1, U1sR`
Bn

Pi Ď PipU1 ˝ B1,nq Ď Bi.
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by induction. It remains to verify that C is still a Jordan ideal. From the construction of

C, and 1), 2) it suffices to prove that Ui ˝ C1 Ď C1. Again, we can show this for B1,n. For

n “ 0 it is trivially true, and by induction

Ui ˝ B1,n`1 “ B1,nR´
U1

P1R
`
Ui

“ (by (1.2.4)) “ B1,nR´
U1

R`
Ui

P1

Ď (by (1.12.2)) Ď B1,nR`
Ui

R´
U1

P1 Ď B1,nR´
U1

P1 “ B1,n`1.

Lemma 4.1.5. Let B be a Jordan ideal of U, and x P U . Then D “ DpB, xq “
8
ÿ

n“0

BpR´
x qn

is also a Jordan ideal of U , and DR´
x Ď D.

Proof. By construction DR´
x Ď D, so we only have to prove that D is still a Jordan ideal.

It suffices to prove that for all n P N, y P U we have BpR´
x qnR`

y Ď
n

ÿ

k“0

BpR´
x qk. This is

trivial for n “ 0, and by induction

BpR´
x qn`1R`

y “ BpR´
x qnR´

x R`
y Ď (by (1.12.1))

Ď BpR´
x qnR`

y R´
x ` BpR´

x qnR`
rx,ys Ď

n`1
ÿ

k“0

BpR´
x qk.

Corollary 4.1.6. Let B be a Jordan ideal of U , B “ B0`B1`B2 relative to an idempotent

e, then there exists a Jordan ideal E “ E0 ` E1 ` E2 with B0 “ E0, B1 Ď E1, B2 “ E2

such that ER´
e Ď E.

Proof. Take E “ DpB, eq, and the inclusions now follow from Peirce relations.

Lemma 4.1.7. If B is a Jordan ideal of U , and B “ B0 ` B1 ` B2 relative to e, then

there exists an ideal I “ I0 ` I1 ` I2 of U such that I0 Ď B0, I1 Ě B1, I2 Ď B2.

Proof. Given a Jordan ideal J Ď U let CpJq Ě J be the Jordan ideal constructed from J

in Lemma 4.1.4, and EpJq Ě J be the Jordan ideal constructed in Corollary 4.1.6. Set

B0 “ B, B2n`1 “ EpB2nq, B2n`2 “ CpB2n`1q for n ą 0.

Then Bn form an increasing sequence of Jordan ideals, and K “
8
ÿ

n“0

Bn is a Jordan ideal of

U which contains B. Since the constructions C and E only increase the Peirce 1-component,

it is easy to see that K0 “ B0, K1 Ě B1, K2 “ B2. One can see that EpKq, CpKq Ď K,

since

EpB2nq “ B2n`1, EpB2n`1q “ B2n`1, CpB2nq “ B2n, CpB2n`1q “ B2n`2.

Therefore, since K is a Jordan ideal, we have

K1R
´
e Ď K1, P1prU1, K1sq Ď K1, Ui ˝ K1 Ď K1, U1 ˝ PipU1 ˝ K1q Ď U1 ˝ Ki Ď K1.

By Lemma 4.1.2 it follows that I “ I0 ` I1 ` I2 is an ideal with Ii “ PipK1 ˝ U1q Ď Ki “
Bi, I1 “ C1 Ě B1. The lemma is now proved.
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Theorem 4.1.8. Let U be a noncommutative Jordan algebra with an idempotent e ‰ 0, 1,

and M be an irreducible noncommutative Jordan bimodule over U. Suppose that M has

a proper Jordan submodule N . Then M “ Mi, its ith Peirce component with respect

to e, i “ 0, 1, 2.

Proof. From Lemma 4.1.7 applied to the split null extension E of U by M it follows that

there exists a submodule V of M such that Vi Ď Ni and V1 Ě N1 (from the proofs of

the previous lemmas one can easily see that N Ď M implies V Ď M). Suppose now that

N0 `N2 ‰ M0 `M2. Then V0 `V2 ‰ M0 `M2 as well, and V ‰ M . Hence, V “ 0, V1 “ 0,

and N1 Ď V1 “ 0. It follows that pN0 `N2q˝pE1q Ď N1 “ 0. Hence, Ni Ď Zi in the notation

of Lemma 4.1.3, therefore, Zi X Mi, i “ 0, 2 are submodules of M . If M ‰ M0, M1, M2,

these modules are proper and the irreducibility of M implies that Ni “ 0 and N “ 0,

which is a contradiction.

Consider now the case where N is a Jordan sunmodule of M , and N0 ` N2 “
M0 ` M2. Consider L1 “ pM0 ` M2q ˝ U1, and Li “ PipL1 ˝ U1q, i “ 0, 2. By construction

L “ L0 ` L1 ` L2 Ď N. We prove that L is a submodule of M. For that we check that

all conditions of Lemma 4.1.2 hold for L. Since L Ď M and M2 “ 0, while checking the

conditions we may substitute Ui for Ei. First,

L1R
´
e “ pM0 ` M2qR`

U1
R´

e Ď by (1.12.1) Ď pM0 ` M2qpR´
e R`

U1
` R`

U1
q Ď L1.

Second,

L1R
`
U0`U2

“ U1R
`
M0`M2

R`
U0`U2

Ď by (1.12.3)

Ď U1pR`
U0`U2

R`
M0`M2

` R`
M0`M2

q Ď U1R
`
M0`M2

“ L1.

Next, by construction of Li it is obvious that U1 ˝ Li Ď L1. Finally,

P1prU1, L1sq “ U1R
`
pM0`M2q˝U1

P1 Ď (by (1.12.2)) Ď U1pR´
M0`M2

R`
U1

` R´
U1

R`
M0`M2

qP1

“ U1R
´
U1

R`
M0`M2

P1 “ (by (1.2.4)) “ U1R
´
U1

P1R
`
M0`M2

Ď U1R
`
M0`M2

“ L1.

Therefore, L is a submodule of M. Since M is irreducible, L “ N or 0. If L “ N , then

N “ M, a contradiction. If L “ 0, then L1 “ pM0 ` M2q ˝ U1 “ 0, and by Lemma 1.12.3

M0, M2 are submodules of M . Again, if M ‰ Mi, i “ 0, 1, 2, they are proper, which

contradicts the irreducibility of M . The theorem is now proved.

As a consequence of the theorem, we obtain an analog of Oehmke’s theorem for

superalgebras (see [PS10a], [PS19]) which is independent of characteristic and finiteness

conditions:

Corollary 4.1.9. Let U be a simple unital noncommutative Jordan algebra with an

idempotent e ‰ 0, 1. Then U p`q is also simple.
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Proof. Since U is simple, its regular bimodule is irreducible. By Theorem 4.1.8, either the

regular submodule of U p`q is irreducible (which means that U p`q is simple) or U equals

one of its Peirce components with respect to e. It is obvious that the option U “ U1peq is

impossible, and nontriviality of e implies that U ‰ U0, U2. Hence, U p`q is simple.

In the following sections we use Theorem 4.1.8 and the classification of ir-

reducible finite-dimensional representations over simple Jordan superalgebras obtained

in the papers [MZ10, SFS16] to study the representations of noncommutative Jordan

superalgebras UpV, f, ‹q and KpΓn, Aq.

4.2 Irreducible bimodules over UpV, f, ‹q
In this section we study representations of superalgebras UpV, f, ‹q. First we

recall the definition of the algebra and some its basic properties, and then classify its

irreducible finite-dimensional modules. During this section we assume that the base field

F allows square root extraction.

4.2.1 The superalgebra UpV, f, ‹q
Let V “ V0̄ ‘ V1̄ be a vector superspace over F, and let f be a supersymmetric

bilinear form on V. Then we can define a multiplication on J “ F ‘ V in the following

way:

pα ` xqpβ ` yq “ pαβ ` fpx, yqq ` pαy ` βxq,

and the resulting superalgebra is denoted JpV, fq. This algebra is called a superalgebra of

a supersymmetric bilinear form. One can check that JpV, fq is simple if f is nondegenerate

and dim V ą 1. From now on we only consider nondegenerate forms f. Generic Poisson

brackets on these algebras were described by Pozhidaev and Shestakov:

Proposition 4.2.1 ([PS10a]). Let ‹ be a generic Poisson bracket on the superalgebra

JpV, fq, where f is nondegenerate. Then ‹ is a superanticommutative multiplication on V

such that fpx ‹ y, zq “ fpx, y ‹ zq.

The resulting simple noncommutative Jordan superalgebra is denoted by

UpV, f, ‹q. Note that JpV, fq “ UpV, f, 0q.

We will need the expression of the multiplication ‹ in the coordinate form.

Let v1, . . . , vn be an orthonormal basis of V0̄, and let w1, . . . , w2m be a basis of V1̄ such

that pwi, w2m`1´iq “ 1 “ ´pw2m`1´i, wiq, where all other products are zero. Write the
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multiplication ‹ in this basis:

vi ‹ vj “ ´vj ‹ vi “
n

ÿ

k“1

αijkvk,

vi ‹ wp “ ´wp ‹ vi “
2m
ÿ

k“1

βipkwk,

wp ‹ wq “ wq ‹ wp “
n

ÿ

k“1

γpqkvk.

The superanticommutativity and f -invariance of ‹ then imply that

ασpiqσpjqσpkq “ sgnpσqαijk,

γpqi “ γqpi, γpqi “ ˘βip2m`1´q

for all σ P S3, i, j, k “ 1, . . . , n, p, q “ 1, . . . , 2m.

(4.2.1)

4.2.2 Classification of irreducible representations

By Theorem 4.1.8, if M is an irreducible bimodule over U “ UpV, f, ‹q, then it is

either equal to one of Peirce components, or is an irreducible bimodule over U p`q “ JpV, fq
with the symmetrized action. We start by considering the modules which are Peirce-

homogeneous.

Lemma 4.2.2. Let J “ JpV, f, ‹q be a superalgebra of a nondegenerate bilinear form,

dim V ą 1, and let ‹ be a superanticommutative f -invariant multiplication on V.

1) There is no nonzero unital Jordan bimodule M over J such that M “ M0peq or

M “ M2peq for an even idempotent e P J.

2) Let U “ UpV, f, ‹q, and let M be a linear superspace. Define the map R` : U Ñ
EndpMq by R`

1 “ id, R`|V “ 0. Then for any linear mapping R´ : U Ñ EndpMq
the pair pR`, R´q is a unital noncommutative Jordan representation of U on M,

and M “ M1peq for all idempotents e P M. This module is irreducible if and only if

it is irreducible with respect to R´ action (in particular, if M is finite-dimensional,

then R´ must be surjective).

3) Let M be a unital noncommutative Jordan bimodule over U “ UpV, f, ‹q such that

M “ M1peq with respect to an even idempotent e P U. Then the action of U on M is

of the form above.

Proof. 1) Recall from Section 2.2.1 that a nontrivial even idempotent e of J must

be of the form e “ 1{2 ` v, where v P V0̄ is such that fpv, vq “ 1{4. The Peirce

decomposition of J with respect to e is as follows:

J0 “
A1

2
´ v

E

, J1 “ tu P V : fpu, vq “ 0u, J2 “
A1

2
` v

E

. (4.2.2)
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Therefore, it suffices to only consider modules M with M “ M2peq. Let M be

such module. Peirce relations imply that MR`
J1

“ 0, R`
v |M “ id {2. Note that J1 is

nonzero, otherwise J – F‘F. The irreducibility of f implies that there exist vectors

u, w P J1 such that fpu, wq “ 1. Substituting a “ v, b “ u, c “ w in (1.1.1) and

restricting the relation to M, we obtain 1{2 idM “ 0.

2) This can be checked by direct verification of relations (1.1.1), (1.12.1), (1.12.2) using

the description of idempotents in U given in (4.2.2).

3) Let M “ M1peq for some idempotent e “ 1{2 ` v. Then we have MR`
V “ 0 (for

elements in J1 this follows from Peirce relations, and for v it follows from the fact

that R`
e |M “ id {2). The rest follows from the previous point.

In case of F algebraically closed of characteristic 0 the classification of irreducible

finite-dimensional representations of the simple Jordan superalgebra JpV, fq was obtained

in the paper [MZ10]. We provide the classification here.

Let V “ V0̄ ‘ V1̄ be a vector superspace with a nondegenerate supersymmetric

form, let v1, . . . , vn be an orthonormal base of V0̄, and let w1, . . . , w2m be a base of V1̄ such

that

fpwi, w2m`1´iq “ 1 “ ´fpw2m`1´i, wiq,

while all other products are zero.

Let C be the Clifford algebra of pV, fq. The products

vi1

1 ¨ ¨ ¨ vin

n wk1

1 ¨ ¨ ¨ wk2m

2m , where 0 ď i1, . . . , in ď 1, k1, . . . , k2m ě 0,

form a basis of C. Consider the subspace Cr “
ÿ

iďr

V ¨ ¨ ¨ V of all basic products of length

ď r. If r ă 0, then we set Cr “ t0u. One can check that for an odd r, the space Cr is a

J-submodule of C with respect to the regular action. Indeed, for v, u1, . . . , ur P V we have

u1 ¨ ¨ ¨ urv ` p´1qpu1¨¨¨urqvvu1 ¨ ¨ ¨ ur

“
r

ÿ

k“1

p´1qk`1`puk`1¨¨¨urqvu1 ¨ ¨ ¨ uk´1pukv ` p´1qukvvukquk`1 ¨ ¨ ¨ ur,
(4.2.3)

and it is easy to see that the expression on the right side lies in Cr.

Let u be an even vector, V 1 “ V ‘Fu. Let us extend the superform f to V 1 via

fpu, uq “ 1 and fpu, V q “ 0. Consider the subspace C 1
ruCr “

ÿ

iďr

V 1 ¨ ¨ ¨ V 1. Analogously, if

r is even, then C 1
r`1 is a J 1 “ F ` V 1-submodule of C 1.

Theorem 4.2.3 ([MZ10]). If the ground field F is algebraically closed and of characteristic

0, then the only finite-dimensional unital irreducible Jordan bimodules over JpV, fq are

Cr{Cr´2 if r ě 1 is odd and uCr{uCr´2 if r ě 0 is even.
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Note that the module C1 is isomorphic to the regular J-bimodule. The module

MFu is one-dimensional such that uR`
V “ 0. Thus, M “ M1peq for any idempotent e P J,

and the structures of noncommutative Jordan bimodules on such modules were considered

in Lemma 4.2.2.

Now we classify all possible structures of noncommutative Jordan bimodules

on the modules above. We begin with the regular module:

Proposition 4.2.4. Let V be a noncommutative Jordan bimodule over U “ UpV, f, ‹q
such that as a Jordan module over U p`q it is isomorphic to RegpJpV, fqq. Then V –
RegpUpV, f, ‹qq as a U-module. The same statement holds if V – RegpJpV, fqqop as a

Jordan module.

Proof. This is done by a direct computation. Let t11, v1
i, i “ 1, . . . , n, w1

j, j “ 1, . . . , 2mu
be a basis of Reg JpV, fq with the obvious Jordan action. Write the minus action in this

basis:

11R´
vi

“ ai11 `
n

ÿ

k“1

akiv
1
k, 11R´

wp
“

2m
ÿ

q“1

bqpw1
q,

v1
iR

´
vj

“ cij11 `
n

ÿ

k“1

cijkv1
k, v1

iR
´
wp

“
2m
ÿ

q“1

dipqw
1
q,

w1
pR´

vi
“

2m
ÿ

q“1

epiqw
1
q, w1

pR´
wq

“ fpq11 `
n

ÿ

k“1

fpqkv1
k.

We check the relations (1.12.1), (1.12.2) on the basis elements of V. Note that the right

part of the relation (1.12.2) is always zero for a, b P V.

Act by the relation (1.12.2) with a “ b “ vi on the element 11:

0 “ 2 ¨ 11R´
vi

R`
vi

“ 2aiv
1
i ` 2aii11,

so we get ai “ 0, aii “ 0. Acting by the relation (1.12.1) with a “ vi, b “ vj on the

element 11, we get

11rR`
vi

, R´
vj

s “ cij11 `
n

ÿ

k“1

cijkv1
k ´ aij11 “ 1

2
11R`

rvi,vjs “ 1
2

n
ÿ

k“1

αijkv1
k,

so we get aij “ cij, cijk “ αijk{2. Acting by the relation (1.12.1) with a “ vi, b “ vj on

the element v1
k, k ‰ i, we have

v1
krR`

vi
, R´

vj
s “ ´ckjv

1
i ´ ckji11 “ 1

2
v1

kR`
rvi,vjs “ 1

2
αijk11,

which implies aij “ 0, cij “ 0.

Acting by the relation (1.12.1) with a “ vi, b “ wp on the element 11, we get

11rR`
vi

, R´
wp

s “
2m
ÿ

q“1

dipqw
1
q “ 1

2
11R`

rvi,wps “ 1
2

2m
ÿ

q“1

βipqw
1
q,
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so we get diqp “ βiqp{2. Analogously, taking a “ wp, b “ vi we get epiq “ ´βiqp{2.

Act by the relation (1.12.2) with a “ wp, b “ wq, where p ‰ q, on the element

w1
r:

0 “ w1
rpR´

wp
R`

wq
´ R´

wq
R`

wp
q “ frpw1

q ´ frqw
1
p,

which implies frp “ 0. Finally, act by the relation (1.12.1) with a “ wp, b “ wq on the

element 11:

11rR`
wp

, R´
wq

s “
n

ÿ

k“1

fpqkv1
k ˘ b2m`1´p,q11 “ 1

2
11R`

rwp,wqs “ 1
2

n
ÿ

k“1

γpqkv1
k,

which implies bpq “ 0, fpqk “ γpqk{2 for all p, q “ 1, . . . , 2m, k “ 1, . . . , n. So, all

coefficients of the minus action are determined uniquely and are equal to those of the

minus action on the regular bimodule. The proof for the opposite of the regular module is

completely analogous and we omit it.

Now we consider the structures of noncommutative Jordan bimodules arising

on the modules Cr`1{Cr´1 and uCr{uCr´2. The main result is that there are no nontrivial

such structures:

Proposition 4.2.5. Let V be a noncommutative Jordan bimodule over U “ UpV, f, ‹q
and suppose that as a Jordan bimodule V is isomorphic to Cr{Cr´2 or uCr{uCr´2 for

r ą 1. Then ‹ “ 0 (that is, U “ JpV, fq) and V is a Jordan bimodule over U.

Proof. Note that the second assertion of the theorem follows from the first and the results

of the paper [Pop20]. So it suffices to prove that ‹ “ 0. We begin with writing down the

bases of the modules above and writing down the explicit Jordan action of JpV, fq in those

bases.

Let us first consider the module Cr{Cr´2 for r odd. Recall that the products

vi1

1 ¨ ¨ ¨ vin

n wk1

1 ¨ ¨ ¨ wk2m

2m , where 0 ď i1, . . . , in ď 1, k1, . . . , k2m ě 0, form a basis of C. We

write such element as vIwJ , where I is the subset of the set In “ t1, . . . , nu defined by

I “ tk P I : ik “ 1u, and J is the multiset of all powers kj, j “ 1, . . . , 2m. Then we can

choose a base of Cr{Cr´2 as tvIwJ , |I| ` |J | “ r ´ 1, ru. Using the formula (4.2.3) one can

write down the Jordan action of JpV, fq in this base. Our goal is to obtain the equalities

αijk “ 0 “ βipq for all possible values of i, j, k, p, q, so we may consider the actions only up

to a sign.

Let |I| ` |J | “ r ´ 1. Then

vIwJR`
vi

“

$

&

%

0, i P I,

˘vIYtiuwJ , i R I.
,

vIwJR`
wj

“ vIwJYtju
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Let |I| ` |J | “ r. Then

vIwJR`
vi

“

$

&

%

0, i R I,

˘vIztiuwJ , i P I
,

vIwJR`
wj

“

$

&

%

0, 2m ` 1 ´ j R J,

˘kJ
2m`1´jvIwJzt2m`1´ju, 2m ` 1 ´ j P J

.

Now, for the module uCr{uCr´2, where r ą 0 is even, we can choose a base of

the form tuvIwJ , |I| ` |J | “ r ´ 1, ru, and using (4.2.3) one can see that the R` action of

JpV, fq on uCr{uCr´2 is of the same form as above (up to a sign which we can discard).

So we will only consider the module Cr{Cr´2 here.

Note that Cr{Cr´2 “ Sr´1 ‘ Sr, where Sk, k “ r ´ 1, r is the space of elements

of degree r. Denote by πr the projection onto Sr along Sr´1.

Let JpV, f, ‹q act on Cr{Cr´2 in the following way:

vIwJR´
vi

“
ÿ

cIJiP QvP wQ, vIwJR´
wp

“
ÿ

dIJpP QvP wQ.

If this action is noncommutative Jordan, then the relations (1.12.1), (1.12.2)

must hold. Act by the relation (1.12.2) with a “ b “ vi on the element vIwJ :

0 “ vIwJR´
vi

R`
vi

“
ÿ

|P |`|Q|“r´1
iRP

˘cIJiP QvP YtiuwQ `
ÿ

|P |`|Q|“r
iPP

˘cIJiP QvP ztiuwQ.

Thus, we have

|P | ` |Q| “ r ´ 1, i R P ñ cIJiP Q “ 0, (4.2.4)

|P | ` |Q| “ r, i P P ñ cIJiP Q “ 0. (4.2.5)

Act by (1.12.2) with a “ wp, b “ wq for p ‰ q on the element vIwJ and apply

projection πr:

0 “ vIwJpR´
wp

R`
wq

´ R´
wq

R`
wp

qπr “
ÿ

|P |`|Q|“r´1

˘dIJpP QvP wQYtqu ´
ÿ

|P |`|Q|“r´1

˘dIJqP QvP wQYtpu.

In particular, we get

|P | ` |Q| “ r ´ 1, p R Q ñ dIJpP Q “ 0. (4.2.6)

Act by (1.12.2) with a “ vi, b “ wp on the element vIwJ and apply πr:

0 “ vIwJpR´
vi

R`
wp

` R´
wp

R`
vi

qπr “ (by (4.2.4), (4.2.6))

“
ÿ

|P |`|Q|“r´1
iPP

˘cIJiP QvP wQYtpu `
ÿ

|P |`|Q|“r´1
iRP, pPQ

˘dIJpP QvP YtiuwQ.
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Therefore, we have

|P | ` |Q| “ r ´ 1, i P P ñ cIJiP Q “ ˘dIJpP ztiuQYtpu for any p “ 1, . . . , 2m. (4.2.7)

Act by (1.12.1) with a “ vi, b “ vj on the element vIwJ , where |I| ` |J | “
r ´ 1, i P I, j ‰ i, and apply πr:

vIwJ rR`
vi

, R´
vj

sπr “ (by (4.2.4)) “ ´
ÿ

|P |`|Q|“r´1
jPP, iRP

˘cIJjP QvP YtiuwQ

“ 1
2

vIwJR`
rvi,vjsπr “ 1

2

ÿ

kRI
k‰i,j

αijkvIYtkuwJ .

Note that if n ď 2, then all αijk “ 0 by (4.2.1). If n ě 3, then taking I “ tiu and j, k ‰ i

we see that the vector vti,kuwJ appears only at the right hand side with the coefficient

αijk. Therefore,

αijk “ 0 for all i, j, k “ 1, . . . , n. (4.2.8)

Act by (1.12.1) with a “ vi, b “ vj on the element vIwJ , where |I| ` |J | “
r ´ 1, i R I, j ‰ i:

0 “ vIwJ rR`
vi

, R´
vj

sπr “ (by (4.2.4), (4.2.5))

“
ÿ

|P |`|Q|“r
jRP

˘cIYtiuJjP QvP wQ `
ÿ

|P |`|Q|“r´1
jPP, iRP

˘cIJjP QvP YtiuwQ.

In particular, we have

|I| ` |J | “ r ´ 1, |P | ` |Q| “ r ´ 1, j P P, P Y I ‰ In ñ cIJjP Q “ 0. (4.2.9)

Act by the relation (1.12.1) with a “ vi, b “ wp on the element vIwJ , where

|I| ` |J | “ r ´ 1, i P I, and apply πr:

vIwJ rR`
vi

, R´
wp

sπr “ (by (4.2.6)) “ ´
ÿ

|P |`|Q|“r´1
pPQ, iRP

˘dIJpP QvP YtiuwQ

“ 1
2

vIwJR`
rvi,wpsπr “ 1

2

n
ÿ

r“1

βiprvIwJYtru.

For any p ‰ q “ 1, . . . , 2m consider I “ tiu and J “ tq, . . . , qu (r ´ 1 times). Then the

vector vtiuwtq,...,qu appears only at the right hand side with the coefficient βipq. Therefore,

if p ‰ q, then βipq “ 0. We can kill βipp as well: the same equation yields that for any I, J

such that i P I, |I| ` |J | “ r ´ 1 we have

1
2

βipp “ ˘dIJpIztiuJYtpu “ (by (4.2.7)) “ cIJiIJ .

Taking I “ tiu (and recalling that n ě 2), the equation (4.2.9) implies that βijj “ 0. This,

together with (4.2.8) and (4.2.1) implies that ‹ “ 0 and that U is Jordan.
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Therefore, we have proved the following result:

Theorem 4.2.6. Let M be an irreducible finite-dimensional unital noncommutative Jordan

module over U “ UpV, f, ‹q, where f is irreducible, and the ground field F is algebraically

closed and of characteristic 0. Then one of the following options holds:

1) M – RegpUq or M – RegpUqop;

2) U is Jordan and M is an irreducible Jordan U-module;

3) The restriction of the action R` to V is zero, and R´|V is an arbitrary surjective

linear map onto EndpMq.

4.3 Irreducible bimodules over KpΓn, Aq
In this section we study modules over the superalgebra KpΓn, Aq. As in the

last section, first we recall the definition of the algebra, and then classify its irreducible

finite-dimensional representations.

4.3.1 The superalgebra KpΓn, Aq
Let Γ be the Grassmann superalgebra in generators 1, xi, i P N, and Γn be the

Grassmann superalgebra in generators 1, x1, . . . , xn. We define the new operation t¨, ¨u on

Γ (the Poisson-Grassmann bracket) by

tf, gu “ p´1qf
8
ÿ

j“1

Bf

Bxj

Bg

Bxj

, (4.3.1)

where

B
Bxj

pxi1
xi2

. . . xin
q “

$

&

%

p´1qk´1xi1
xi2

. . . xik´1
xik`1

. . . xin
, if j “ ik,

0, if j R ti1, i2, . . . , inu.

Let Γ be an isomorphic copy of Γ with the isomorphism mapping x ÞÑ x̄. We define the

structure of a Jordan superalgebra on KpΓq “ Γ‘Γ, by setting KpΓq0̄ “ Γ0̄ `Γ1̄, KpΓq1̄ “
Γ1̄ ` Γ0̄ and defining multiplication by the rule

a ˝ b “ ab, a ˝ b “ p´1qbab, a ˝ b “ ab, a ˝ b “ p´1qbta, bu,

where a, b P Γ0̄ Y Γ1̄ and ab is their product in Γ. By KpΓnq we will denote the subsuperal-

gebra Γn ` Γn of KpΓq.

If Γn is considered as a Poisson superalgebra (with the Poisson bracket t¨, ¨u),

then it is easily seen that KpΓnq is the Kantor double of Γn [Kan92].
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Further in the paper we will need a basis of this algebra and the multiplication

table in this basis, so we provide them here. Recall that Γn has a basis t1, ei1
. . . eik

, 1 ď
i1 ă . . . ă ik ď nu. For an ordered subset I “ ti1, i2, . . . , iku Ď In “ t1, 2, . . . , nu, we

denote

eI “ ei1
ei2

¨ ¨ ¨ eik
, eI “ ei1

ei2
¨ ¨ ¨ eik

,

in particular, eH “ 1, and eH “ 1̄. Now, as eiej “ ´ejei, for i, j P In, i ‰ j, if σ is

a permutation of the set I, we have eI “ sgnpσqeσpIq, where sgnpσq is the sign of the

permutation σ.

For ordered subsets I “ ti1, . . . , iku and J “ tj1, . . . , jsu, denote by I Y J the

ordered set

I Y J “ ti1, . . . , ik, j1, . . . , jsu.

Then the multiplication table in the basis teI , eJ , I, J Ď Inu is as follows:

eI ˝ eJ “

$

&

%

eIYJ , if I X J “ H
0, if I X J ‰ H

,

eI ˝ eJ “

$

&

%

eIYJ , if I X J “ H
0, if I X J ‰ H

,

eI ˝ eJ “

$

&

%

p´1qseIYJ , if I X J “ H
0, if I X J ‰ H

,

eI ˝ eJ “ p´1qsteI , eJu “

$

&

%

p´1qs`k`p`qeI 1YJ 1 , if I X J “ tipu “ tjqu
0, otherwise

where I 1 “ ti1, . . . , ip´1, ip`1, . . . , iku and J 1 “ tj1, . . . , jq´1, jq`1, . . . , jsu. We will use the

notation ˝ only in the presence of other multiplications.

Let A P pΓnq0̄. Define a superanticommutative binary bilinear operation r¨, ¨s
on KpΓnq by the rule

ra, bs “ p´1qbabA,

and zero otherwise. One can check that this operation is a generic Poisson bracket on

KpΓnq. The resulting superalgebra pKpΓnq, ¨, t¨, ¨uq will be denoted by JpΓn, Aq. In the

paper [PS13] it was proved that any generic Poisson bracket on KpΓnq is of the form

above.

4.3.2 Classification of irreducible representations

In this section we study irreducible representations of superalgebras KpΓn, Aq.
As Theorem 4.1.8 suggests, if M is an irreducible bimodule over U “ KpΓn, Aq, then

it is either equal to one of its Peirce components, or is an irreducible bimodule over
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U p`q “ KpΓnq with the symmetrized action. First we prove that the modules of the first

type do not exist:

Lemma 4.3.1. There is no irreducible U -bimodule M such that M is not irreducible as a

Jordan U p`q-module and M “ Mipeq, i “ 0, 1, 2 for some idempotent e.

Proof. Note that KpΓn, Aqp`q contains an even subalgebra J “ x1, x1, . . . , xny which is

isomorphic to an algebra of a symmetric nondegenerate bilinear form. Hence, if M is a

bimodule over KpΓn, Aq such that M “ M0 or M2, then it has the same property over

J . But Lemma 4.2.2 implies that Jordan J-bimodules with the property M “ M0peq or

M “ M2peq do not exist. Thus Theorem 4.1.8 implies that M “ M1peq for any idempotent

e P U. Consider the family of (non-orthogonal) idempotents ek “ 1 ` xk

2
P U, k “ 1, . . . , n.

Let us compute the Peirce component U1pekq for each k. It is easy to see that

Uipekq “ tx : x ˝ ek “ i

2
xu “ tx ˝ xk “ pi ´ 1qxku.

Writing any element x P U in the form x “ a1 ` xka2 ` b1 ` xkb2, where
Ba1

Bxk

“ Ba2

Bxk

“
Bb1

Bxk

“ Bb2

Bxk

“ 0, one can easily see that U1pekq “ taxk ` b :
Ba

Bxk

“ Bb

Bxk

“ 0u. Since

M “ M1pekq for any k, for the space U 1 “
n

ÿ

k“1

U1pekq we must have MR`
U 1 “ 0. But it

is obvious that U 1 contains every monomial in letters x1, . . . , xn, x1, . . . , xn except 1 and

x1 . . . xn. Substituting in the relation (1.1.1) a “ x1, b “ x1, c “ 1̄ and using the fact that

R`
a “ R`

b “ R`
c “ 0 on M , we get R`

1 “ 0 on M , which is clearly a contradiction.

Now we may suppose that M is an irreducible Jordan KpΓnq-bimodule. Ir-

reducible finite-dimensional Jordan KpΓnq-bimodules were described in [SFS16]. It was

proved that every irreducible module over KpΓnq is isomorphic to a member of the family

V pαq, α P F, where each V pαq has the base of the form vI , vI , I Ď In “ t1, . . . , nu,

and vI “ sgnpσqvσpIq, vI “ sgnpσqvσpIq for any permutation σ of a set I. Furthermore,

let I, J Ď In, J “ tj1, . . . , js1
, js1`1, . . . , js1`s2

u, I “ ti1, . . . , ik´s1
, js1

, ¨ ¨ ¨ , j1u. Then the

action of KpΓnq on V pαq is defined, up to permutations of the index sets I and J , as

follows:

vIeJ “

$

&

%

vpIzJq, s2 “ 0

0, otherwise
, vIeJ “

$

&

%

vpIzJq, s2 “ 0

0, otherwise
,

vIeJ “

$

&

%

p´1qsvpIzJq, s2 “ 0

0, otherwise
, vI eJ “

$

’

’

’

&

’

’

’

%

p´1qs1vppIzJq Y tjs1`1uq, s2 “ 1

p´1qs´1αps ´ 1q vpIzJq, s2 “ 0,

0, otherwise

,

where α “ R2
1̄, and s “ s1 ` s2 “ |J |. Note that the condition s2 “ 0 is equivalent to

J Ď I. The module V p0q is isomorphic to the regular KpΓnq-module.
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Let KpΓn, Aq act on V pαq in the following way:

vIR´
eJ

“
ÿ

KĎIn

cIJKvK `
ÿ

KĎIn

cIJKvK , vIR´
eJ

“
ÿ

KĎIn

cIJKvK `
ÿ

KĎIn

cIJKvK ,

vIR´
eJ

“
ÿ

KĎIn

cIJKvK `
ÿ

KĎIn

cIJKvK , vIR´
eJ

“
ÿ

KĎIn

cIJKvK `
ÿ

KĎIn

cIJKvK .

For V pαq to be a noncommutative Jordan bimodule, the R´ action has to

satisfy the relations (1.12.1), (1.12.2). We check these relations on the basis elements of

V pαq and KpΓn, Aq. Therefore, we obtain a system of linear equations for the structure

constants of the R´ action.

Note that reI , eJ s “ reI , eJ s “ reI , eJ s “ 0 for all I, J Ď In. We first check the

relation (1.12.1) for the commutators of this type.

Consider the relation vIrR`
eJ

, R´
eK

s “ 0.

Case 1: J Ę I.

0 “ vIrR`
eJ

, R´
eK

s “ ´p´1q|J ||K|vIR´
eK

R`
eJ

“
˜

ÿ

LĎIn

cIKLvL ` cIKLvL

¸

R`
eJ

“
ÿ

JĎLĎIn

cIKLvLzJ ` p´1q|J |cIKLvLzJ .

Note that in the equation above we have divided everything by ´p´1q|J ||K| just for

convenience. From now on we will frequently divide the expressions equal to 0 by similar

scalars in order to save space. From the above equation we infer that if there exists a set

J such that J Ę I, J Ď L, then we must have cIKL “ cIKL “ 0, or in other words

L Ę I ñ cIKL “ cIKL “ 0. (4.3.2)

Case 2: J Ď I.

0 “ vIrR`
eJ

, R´
eK

s “ (by (4.3.2)) “ vIzJR´
eK

´ p´1q|J ||K|

˜

ÿ

LĎI

cIKLvL ` cIKLvL

¸

R`
eJ

“
ÿ

LĎIzJ

cIzJKLvL ` cIzJKLvL ´ p´1q|J ||K|

˜

ÿ

JĎLĎI

cIKLvLzJ ` p´1q|J |cIKLvLzJ

¸

.

Therefore, if J Ď I, J X L “ H, then cIzJKL “ p´1q|J ||K|cIKpLYJq, or in other words

J X I “ J X L “ H ñ cIKL “ p´1q|J ||K|cpIYJqKpLYJq. (4.3.3)

Analogous relation holds for cIKL:

J X I “ J X L “ H ñ cIKL “ p´1q|J |p|K|`1qcpIYJqKpLYJq. (4.3.4)
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Consider the relation vIrR`
eJ

, R´
eK

s “ 0.

Case 1: J Ę I.

0 “ vIrR`
eJ

, R´
eK

s “ ´p´1qp|J |`1q|K|vIR´
eK

R`
eJ

“ (by (4.3.2))

“
˜

ÿ

LĎI

cIKLvL ` cIKLvL

¸

R`
eJ

“ (since J Ę I) “ p´1q|J |´1
ÿ

p˚q

cIKLvL△J ,

where the condition p˚q defines the sets L Ď I such that L “ tl1, . . . , lk´s`1, js´1, . . . , j1u if

J “ tj1, . . . , jsu, and by L△J we denote the ordered set that is the index of the element

vLR`
eJ

(by definition it is tl1, . . . , lk´s`1, jsu, which is just the symmetric difference of L and

J , hence the notation). Note that since vI “ sgnpσqvσpIq, we can always reorder the sets L

to get the the correct action of J , though most of the times it will not matter since the

sum will be equal to 0. From now on, we will assume that the sets L are properly ordered

(corresponding to the sense above) and denote the condition p˚q as “L Ď I, |JzI| “ 1”.

Note that L1△J ‰ L2△J for two distinct sets L1, L2 satisfying p˚q. Therefore,

if there exists a set J such that J Ę I, |JzL| “ 1, then cIKL “ 0 for L Ď I and any set K.

Equivalently, this condition can be written as

I ‰ In ñ cIKL “ 0. (4.3.5)

Case 2: J Ď I.

0 “ vIrR`
eJ

, R´
eK

s “ (by (4.3.2)) vIzJR´
eK

´ p´1qp|J |`1q|K|

˜

ÿ

LĎI

cIKLvL ` cIKLvL

¸

R`
eJ

“
ÿ

LĎIzJ

c
IzJKL

vL ` c
IzJKL

vL

´ p´1qp|J |`1q|K|

˜

ÿ

JĎLĎI

`

cIKLvLzJ ` p´1q|J |´1αp|J | ´ 1qcIKLvLzJ

˘

` p´1q|J |´1
ÿ

LĎI
|JzL|“1

cIKLvL△J

¸

.

Consider the sum involving only the vL terms:

ÿ

LĎIzJ

c
IzJKL

vL ´ p´1qp|J |`1q|K|`|J |´1

˜

ÿ

JĎLĎI

αp|J | ´ 1qcIKLvLzJ `
ÿ

LĎI
|JzL|“1

cIKLvL△J

¸

“ 0.

(4.3.6)

Taking J “ H, we get
ÿ

LĎI

cIKLvL ´ p´1q|K|
ÿ

LĎI

αcIKLvL “ 0,

hence,

cIKL “ p´1q|K|αcIKL. (4.3.7)
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Suppose now that J ‰ H. Note that the sets L△J indexing the basis elements v in

the third sum in (4.3.6) contain exactly one element from J , while sets indexing the

basis elements in other two sums do not contain elements from J . Thus, if J, L Ď I and

|JzL| “ 1, we have cIKL “ 0, or equivalently

L Ĺ I ñ cIKL “ 0.

The relation above and (4.3.5) imply that the only possible nonzero cIKL is cInKIn
. But

relations (4.3.4) and (4.3.7) imply that

cIKL “ cIKL “ 0 for all I, K, L Ď In (4.3.8)

and the sum (4.3.6) is 0. Consider now the sum involving only vL terms:

ÿ

LĎIzJ

c
IzJKL

vL ´ p´1qp|J |`1q|K|
ÿ

JĎLĎI

cIKLvLzJ “ 0.

Taking J “ H, we get

ÿ

LĎI

cIKLvL ´ p´1q|K|
ÿ

LĎI

cIKLvL “ 0,

hence,

cIKL “ p´1q|K|cIKL. (4.3.9)

In particular, by (4.3.2) we have

L Ę I ñ cIKL “ 0. (4.3.10)

The relation for coefficients for general J is a consequence of (4.3.9) and (4.3.3).

Consider the relation vIrR`
eJ

, R´
eK

s “ 0.

Case 1: J Ę I.

In this case, completely analogously to the Case 1 of the relation vIrR`
eJ

, R´
eK

s “ 0 we

obtain

L Ę I ñ cIKL “ cIKL “ 0. (4.3.11)

Case 2: J Ď I.

Analogously, in this case we get

J X I “ J X L “ H ñ cIKL “ p´1q|J |p|K|`1qcpIYJqKpLYJq (4.3.12)

and

J X I “ J X L “ H ñ cIKL “ p´1q|J ||K|cpIYJqKpLYJq. (4.3.13)

Consider the relation vIrR`
eJ

, R´
eK

s “ 0.

Case 1: J Ę I.
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In this case, (4.3.8) and (4.3.10) imply that the relation is trivial.

Case 2: J Ď I.

0 “ vIrR`
eJ

, R´
eK

s “ p´1q|J |vIzJR´
eK

´ p´1q|J ||K|vIR´
eK

R`
eJ

“ (by (4.3.8), (4.3.10))

“ p´1q|J |
ÿ

LĎIzJ

c
IzJKL

vL ´ p´1q|J |p|K|`1q
ÿ

JĎLĎI

cIKLvLzJ ,

which is zero by (4.3.9) and (4.3.3).

Consider the relation vIrR`
eJ

, R´
eK

s “ 0.

Case 1: |JzI| ě 2.

0 “ vIrR`
eJ

, R´
eK

s “ vIR´
eK

R`
eJ

“ (by (4.3.8), (4.3.10)) “
ÿ

LĎI

cIKLvLR`
eJ

“ 0

since |JzI| “ 2.

Case 2: J Ď I.

0 “ vIrR`
eJ

, R´
eK

s “ p´1q|J |´1αp|J | ´ 1qvIzJR´
eK

´ p´1qp|J |´1q|K|vIR´
eK

R`
eJ

“ (by (4.3.8), (4.3.10)) “ p´1q|J |´1αp|J | ´ 1q
ÿ

LĎIzJ

cIzJKLvL

´ p´1qp|J |´1q|K|`|J |´1

˜

ÿ

JĎLĎI

αp|J | ´ 1qcIKLvLzJ `
ÿ

LĎI
|JzL|“1

cIKLvL△J

¸

.

Again, supposing that J ‰ H and noting that the sets L△J contain exactly one element

from J , while sets indexing the basis elements in other two sums do not contain elements

from J. Thus, using relation (4.3.9) we obtain

L Ĺ I ñ cIKL “ cIKL “ 0. (4.3.14)

Moreover, the relations (4.3.9) and (4.3.3) imply that the remaining sum is identically

zero.

Case 3: |JzI| “ 1.

0 “ vIrR`
eJ

, R´
eK

s “ p´1q|J |´1vI△JR´
eK

´ p´1qp|J |´1q|K|vIR´
eK

R`
eJ

“ (by (4.3.8), (4.3.10), (4.3.14)) “ cI△JKI△JvI△J ´ p´1qp|J |´1q|K|cIKIvI△J ,

which is 0 by (4.3.9) and (4.3.3).

Consider the relation vIrR`
eJ

, R´
eK

s “ 0.

Case 1: J Ę I.

In this case, completely analogously to Case 1 of the relation vIrR`
eJ

, R´
eK

s “ 0 we obtain

L Ę I ñ cIKL “ cIKL “ 0. (4.3.15)
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Case 2: J Ę I.

Analogously, in this case we get

J X I “ J X L “ H ñ cIKL “ p´1q|J ||K|cpIYJqKpLYJq (4.3.16)

and

J X I “ J X L “ H ñ cIKL “ p´1q|J |p|K|`1qcpIYJqKpLYJq. (4.3.17)

Now we consider relations involving the commutator rR`
eJ

, R´
eK

s. Let A “
ÿ

IĎIn

αIeI . Then

reJ , eKs “ p´1q|K|eIAeJ “

$

’

&

’

%

0, J X K ‰ H,
ÿ

LXJ“LXK“H

p´1q|K|αLeJYLYK , J X K “ H.
(4.3.18)

Consider the relation vIrR`
eJ

, R´
eK

s “ 1
2

vIR`
reJ ,eK s.

Case 1: J Ę I.

In this case the RHS is 0: if J X K ‰ H, then (4.3.18) implies that R`
reJ ,eK s “ 0. If

J X K “ H, then

vIR`
reJ ,eK s “ vI

ÿ

LXJ“LXK“H

p´1q|K|αLR`
eJYLYK

“ 0

since every R` operator in this sum is indexed by a set which contains the set J Ę I.

Consider the LHS:

0 “ vIrR`
eJ

, R´
eK

s “ ´p´1qp|J |`1qp|K|`1qvIR´
eK

R`
eJ

“ (by (4.3.11))

“
˜

ÿ

LĎI

cIKLvL ` cIKLvL

¸

R`
eJ

“
ÿ

LĎI
|JzL|“1

p´1q|J |´1cIKLvL△J .

Note that the last sum is nonzero if and only if |JzI| “ 1. In other words, we have obtained

the following relation:

I ‰ In ñ cIKL “ 0. (4.3.19)

Case 2: J Ď I.

The RHS is nonzero only if J X K “ H and K Ď I. Then it is equal to

1
2

vIR`
reJ ,eK s “ 1

2
vI

ÿ

LXJ“LXK“H

p´1q|K|αLR`
eJYLYK

“ 1
2

ÿ

LĎI
LXJ“LXK“H

p´1q|K|αLvIzpJYLYKq.
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Consider the LHS:

vIrR`
eJ

, R´
eK

s “ vIzJR´
eK

´ p´1qp|J |`1qp|K|`1q

˜

ÿ

LĎI

cIKLvL ` cIKLvL

¸

R`
eJ

“ (by (4.3.15)) “
ÿ

LĎIzJ

c
IzJKL

vL ` c
IzJKL

vL

´ p´1qp|J |`1qp|K|`1q

˜

ÿ

JĎLĎI

˜

cIKLvLzJ ` p´1q|J |´1αp|J | ´ 1qcIKLvLzJ

¸

` p´1q|J |´1
ÿ

LĎI
|JzL|“1

cIKLvL△J

¸

.

Consider the last term of the LHS. Note that the sets indexing the basis elements vL△J in

this term contain exactly one element from J , while sets indexing the basis elements in

other terms in the LHS and the RHS (if it is nonzero) do not contain elements from J .

Therefore, if L, J Ď I, |JzL| “ 1, we have cIKL “ 0, or in other words

L Ĺ I ñ cIKL “ 0.

The relation above and (4.3.19) imply that the only possible nonzero cIKL is cInKIn
. But

relation (4.3.13) then implies that

cIKL “ 0 for all I, K, L Ď In. (4.3.20)

Note also that the sum containing the elements vL from the LHS is 0 since the RHS only

contains the elements vL:
ÿ

LĎIzJ

c
IzJKL

vL ´ p´1qp|J |`1qp|K|`1q
ÿ

JĎLĎI

cIKLvLzJ “ 0.

Taking J “ H, we get

cIKL “ p´1q|K|`1cIKL, (4.3.21)

and the relation for the general J Ď I follows from (4.3.21) and (4.3.17).

Therefore, the LHS is equal to
ÿ

LĎIzJ

c
IzJKL

vL.

Case 2.1. J XK ‰ H. In this case the RHS is 0. Therefore, we have the following relation:

L Ď IzJ, J X K ‰ H ñ c
IzJKL

“ 0,

or equivalently (by (4.3.15)),

K Ę I ñ cIKL “ 0. (4.3.22)

Case 2.2. J X K “ H, K Ę I. In this case the RHS is also 0, so we must have

K Ę I, J Ď I, J X K “ H ñ c
IzJKL

“ 0,
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which is equivalent to (4.3.22).

Case 2.3. J X K “ H, K Ď I. This is the only case in which the RHS can be nonzero.

Particularly, in this case we get

ÿ

LĎIzJ

c
IzJKL

vL “ 1
2

ÿ

LĎI
LXJ“LXK“H

p´1q|K|αLvIzpJYLYKq.

Note that the sets indexing elements from the RHS do not contain elements from K, which

implies that

L Ď IzJ, J X K “ H, L X K ‰ H ñ c
IzJKL

“ 0,

or equivalently (by (4.3.15)),

L X K ‰ H ñ cIKL “ 0. (4.3.23)

The refined equality then takes the following form:

ÿ

MĎIzpJYKq

c
IzJKM

vM “ 1
2

ÿ

LĎI
LXJ“LXK“H

p´1q|K|αLvIzpJYLYKq.

Any set M indexing the basis elements from the LHS can be written as M “ IzpJ YK YLq,
where L Ď I, L X J “ H “ L X K. Hence, taking J “ H, we get

K, L Ď I, K X L “ H ñ cIKIzpKYLq “ 1
2

p´1q|K|αL. (4.3.24)

Note that the equations (4.3.15), (4.3.22), (4.3.23) and (4.3.24) uniquely determine the

coefficients cIKL.

Consider the relation vIrR`
eJ

, R´
eK

s “ 1
2

vIR`
reJ ,eK s.

Case 1: |JzI| ě 2.

As in the previous relation, if J X K ‰ H, then R`
reJ ,eK s “ 0, and if J X K “ H, then

1
2

vIR`
reJ ,eK s “ 1

2
vI

ÿ

LXJ“LXK“H

p´1q|K|αLR`
eJYLYK

“ 0,

since every R` operator in this sum is indexed by a set which contains the set J Ę I.

Consider the LHS:

vIrR`
eJ

, R´
eK

s “ ´p´1qp|J |`1qp|K|`1qvIR´
eK

R`
eJ

“ (by (4.3.15))

“
˜

ÿ

LĎI

cIKLvL ` cIKLvL

¸

R`
eJ

“ 0,
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since |JzI| ě 2. Hence, this case is trivial.

Case 2: J Ď I. Consider the LHS:

vIrR`
eJ

, R´
eK

s “ p´1q|J |´1αp|J | ´ 1qvIzJR´
eK

´ p´1qp|J |`1qp|K|`1q

˜

ÿ

LĎI

cIKLvL ` cIKLvL

¸

R`
eJ

“ (by (4.3.20)) “ p´1q|J |´1αp|J | ´ 1q
ÿ

LĎIzJ

cIzJKLvL

´ p´1qp|J |`1qp|K|`1q

˜

ÿ

JĎLĎI

˜

cIKLvLzJ ` p´1q|J |´1αp|J | ´ 1qcIKLvLzJ

¸

` p´1q|J |´1
ÿ

LĎI
|JzL|“1

cIKLvL△J

¸

.

Note that the RHS is either 0 or a linear combination of elements vL. Either way, we must

have

αp|J |´1q
ÿ

LĎIzJ

cIzJKLvL´p´1qp|J |`1qp|K|`1q

˜

αp|J |´1q
ÿ

JĎLĎI

cIKLvLzJ`
ÿ

LĎI
|JzL|“1

cIKLvL△J

¸

“ 0.

Again, the sets indexing the basis elements vL△J in the third sum contain exactly one

element from J , while sets indexing the basis elements in other sum do not contain elements

from J . Together with (4.3.21) this implies that

L Ĺ I ñ cIKL “ cIKL “ 0. (4.3.25)

Moreover, the relations (4.3.25) and (4.3.17) imply that the rest of the sum is zero.

Therefore, by (4.3.23) the LHS is equal to

´p´1qp|J |`1qp|K|`1q
ÿ

JĎLĎI
LXK“H

cIKLvLzJ .

Case 2.1: J Ď I, J X K ‰ H. In this case the relations (4.3.23) and (4.3.18) respectively

imply that the LHS and the RHS are 0.

Case 2.2: J Ď I, J X K “ H, K Ę I. In this case the relation (4.3.22) implies that the

LHS is 0. As for the RHS, we get

1
2

vIR`
reJ ,eK s “ 1

2
vI

ÿ

LXJ“LXK“H

p´1q|K|αLR`
eJYLYK

“ 0

since every R`
eJYLYK

operator in this sum is indexed by a set which contains the set K Ę I.

Thus this case is also trivial.
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Case 2.3: J Ď I, J X K “ H, K Ď I. In this case the RHS is equal to

1
2

vIR`
reJ ,eK s “ 1

2
vI

ÿ

LXJ“LXK“H

p´1q|K|αLR`
eJYLYK

“ 1
2

p´1q|K|
ÿ

LĎI
LXJ“LXK“H

αLp´1q|J |`|L|`|K|vIzpJYLYKq

“ (since A P pΓnq0̄) “ 1
2

p´1q|J |
ÿ

LĎI
LXJ“LXK“H

αLvIzpJYLYKq.

Hence, we have the equation

´p´1qp|J |`1qp|K|`1q
ÿ

JĎLĎI
LXK“H

cIKLvLzJ “ 1
2

p´1q|J |
ÿ

LĎI
LXJ“LXK“H

αLvIzpJYLYKq.

For J “ H the equation is a consequence of relation (4.3.24), and for general J Ď I it

follows from (4.3.24) and (4.3.16).

Case 3: |JzI| “ 1. As in the Case 1, the RHS is 0. Consider the LHS:

0 “ vIrR`
eJ

, R´
eK

s “ (by (4.3.15), (4.3.25))

“ p´1q|J |´1vI△JR´
eK

´ p´1qp|J |`1qp|K|`1q

˜

ÿ

LĎI

cIKLvL ` cIKIvI

¸

R`
eJ

“ (since J Ę I) and by (4.3.25)) “ cI△JKI△JvI△J ´ p´1qp|J |`1qp|K|`1qcIKIvI△J ,

thus, we have

cI△JKI△J “ p´1qp|J |`1qp|K|`1qcIKI ,

which is a consequence of (4.3.21) and (4.3.17).

Now we check the relation (1.12.2). Consider the relation

vIpR´
eJ

R`
eK

` p´1q|J ||K|R´
eK

R`
eJ

q “ vIR´
eJ ˝eK

.

Write the LHS more explicitly:

vIpR´
eJ

R`
eK

` p´1q|J ||K|R´
eK

R`
eJ

q “ (by (4.3.2), (4.3.14)) cIJIvIR`
eK

` p´1q|J ||K|cIKIvIR`
eJ

.

Suppose that J, K Ď I, J X K ‰ H. Then eJ ˝ eK “ 0 and RHS is 0. The LHS in this

case is equal to

cIJIvIzK ` p´1q|J ||K|cIKIvIzJ “ 0.

Thus, if J ‰ K, we have cIKI “ 0. Clearly I has two different non-trivially intersecting

subsets if and only if |I| ě 2. Therefore, we have:

|I| ě 2, H ‰ K Ď I ñ cIKI “ 0.
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Now, let I, H ‰ K Ď In. Recall that n ě 2. Then relation (4.3.3) and the relation above

imply that cIKI “ 0. If K “ H, then cIKI is automatically 0, since eK “ 1 and R´
1 “ 0.

Finally, applying (4.3.2), (4.3.14) and (4.3.9) we conclude that

cIKL “ cIKL “ 0 for all I, K, L Ď In. (4.3.26)

Consider the relation

vIpR´
eJ

R`
eK

` p´1qp|J |`1q|K|R´
eK

R`
eJ

q “ vIR´
eJ ˝eK

.

Write the LHS more explicitly:

vIpR´
eJ

R`
eK

`p´1qp|J |`1q|K|R´
eK

R`
eJ

q “ (by (4.3.8), (4.3.11), (4.3.25), (4.3.26)) “ cIJIvIR`
eK

.

Case 1: K Ď I, J X K ‰ H. In this case eJ ˝ eK “ 0 and the RHS is 0. The LHS in this

case is equal to cIJIvIzK . Hence,

J X I ‰ H ñ cIJI “ 0. (4.3.27)

Case 2: K Ď I, J X K “ H. In this case the equality takes the form

cIJIvIzK “ p´1q|K|c
IpJYKqI

vI .

Hence, taking K ‰ H, J “ H we have

H ‰ I ñ cIHI “ 0. (4.3.28)

Now consider an arbitrary coefficient cIJI , I, J Ď In. If J ‰ H, then (4.3.27) and (4.3.12)

imply that cIJI “ 0. If J “ H, then (4.3.28) and (4.3.12) imply that cIJI “ 0. Finally, by

(4.3.11), (4.3.25) and (4.3.21) we conclude that

cIKL “ cIKL “ 0 for all I, K, L Ď In. (4.3.29)

Now, note that there is only one set of variables which satisfies all relations

above. Indeed, relations (4.3.8), (4.3.20), (4.3.26) and (4.3.29) imply that

cIKL “ cIKL “ cIKL “ cIKL “ cIKL “ cIKL “ cIKK “ 0 for all I, K, L Ď In,

and relations (4.3.15), (4.3.22), (4.3.23), (4.3.24) uniquely determine the coefficients cIKL.

We have to check all the remaining relations of the type (1.12.2). But these

relations in fact do not depend on the parameter α (indeed, for a relation to depend

on α means to contain a product of the type vIR`
eJ

, where I, J Ď In. But, having killed

most of the coefficients c, it is easy to see that the products of this type will not appear

in the remaining equations. Therefore, it suffices to check the remainig relations in the

case α “ 0. But in this case for V p0q, the regular bimodule over KpΓnq, there exists a
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structure of a noncommutative Jordan KpΓn, Aq-bimodule (the structure of the regular

KpΓn, Aq-bimodule). Since the coefficients of R´ action are determined uniquely by

previous equations, we conclude that they coincide with the coefficients of the R´ action

of KpΓn, Aq on the regular bimodule. Hence, all further relations of the type (1.12.2) are

satisfied by these coefficients.

We can treat the case of V pαqop in a completely analogous manner and obtain

completely analogous results. Clearly, we will not do it here. We can summarize our result:

Theorem 4.3.2. Let M be a finite-dimensional irreducible noncommutative Jordan bi-

module over KpΓn, Aq, where A “
ÿ

IĎIn

αIeI P pΓnq0̄. Then M as a Jordan bimodule over

KpΓnq is isomorphic to V pαq or V pαqop for some α P F and the only nonzero R´ action

of KpΓn, Aq on M is given by

vIR´
eK

“ 1
2

p´1q|K|
ÿ

LĎI
LXK“H

αLvIzpLYKq if K Ď I,

if M is isomorphic to V pαq as a Jordan bimodule over KpΓnq, and analogous action if M

is isomorphic to V pαqop as a Jordan bimodule over KpΓnq.
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