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Resumo

Nesta tese, abordamos o problema de caracterizacao de formas intrinsecamente harmonicas
e relacionados. Dentre os resultados obtidos, os mais relevantes sao: caracterizacao de
fibrados de circulos flat, em termos da classe de cohomologia do pullback da forma volume;
caracterizacao do n-torus como sendo a tnica variedade fechada, admitindo uma colecao
linearmente independente em todos os pontos de (n — 1) formas fechadas de grau 1, de
tal modo que o produto entre elas determina uma classe de cohomologia nao trivial;
caracterizagao de (n — 1)-formas sem singularidades que sao intrinsecamente harmonicas
como aquelas que induzem um fluxo geodesicavel; e, por fim, duas condigoes suficientes

para que um fluxo de classe C! sobre uma variedade fechada seja periédico.

Palavras-chave: Fibrado de circulos, fluxos peridédicos, formas harmonicas, teoria de

correntes, fibrados folheados.



Abstract

In this thesis, we address the problem of characterizing intrinsically harmonic forms and
related ones. Among the results obtained, the most relevant are: characterization of flat
circles bundles, in terms of the cohomological class determined by the pullback of the
volume form on the base space; characterization of n-torus as the only closed manifold,
admitting an everywhere linearly independent set, of (n — 1) closed 1-forms, in such a way
that the product between them determines nontrivial cohomological class; characterization
of nowhere-vanishing intrinsically harmonic (n — 1)-forms, such as those that induce a
geodesible flow; and, finally, two sufficient conditions for a flow of class C'! over a closed

manifold to be periodic.

Keywords: Circle bundles, periodic flows, harmonic forms, currents theory, foliated
bundles.
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Introduction

A classical theorem, due to W.V.D. Hodge, states that in each De Rham
cohomology class of a compact Riemannian manifold, there is one, and only one, harmonic

form (Section 1.7). A natural question is the following,.

Given a closed form w on a compact manifold M, is there a Riemannian metric g on M

such that w is harmonic concerning g?

If such a metric exists, w is called an intrinsically harmonic form. The problem
of obtaining an intrinsic characterization of harmonic forms was first placed by E. Calabi.
He showed in his beautiful paper [7] that under suitable conditions on its zero-set, an one
form w is intrinsically harmonic if and only if it is transitive. Transitivity means that for
every point x that is not a zero for w, there is an embedded circle containing z, such that
the restriction of w to the it never vanishes. In Section 2.4 we sketch a proof of Calabi’s

theorem as well as provide a proof of the following assertion of E. Calabi (Theorem 2.4.2)

Theorem A nowhere-vanishing closed 1-form on a closed manifold is intrinsi-

cally harmonic.

E. Volkov made the more notable advance in this subject. He generalized
Calabi’s characterization of intrinsically harmonic one forms by showing that a closed
1-form is intrinsically harmonic if, and only if, it is harmonic in a neighborhood of its
zero set and transitive. The condition of transitivity can be generalized for higher degree
forms. Roughly speaking, a p-form w is transitive if for any “regular point” there is a closed
submanifold, containing the point, such that the w restricts to a volume form (see Section
2.2).

In [37] Ko Honda proved a “dual” version of Calabi-Volkov’s result: roughly
speaking, he showed that a closed (n — 1)-form is intrinsically harmonic, under suitable
conditions on its zero-set, provided that it is transitive. Naturally comes up the following
issue. Is a nowhere-vanishing closed (n—1)-form intrinsically harmonic? The main objective
of this thesis was to try to answer this question. We want to point out a difference between
this and the degree one case. From Hodge’s Theorem, it follows that the pullback of the
volume form in the Hopf’s fibration S® — S? is a nowhere-vanishing closed 2-form which
is not intrinsically harmonic since it represents the trivial cohomological class (in general,
given a map f : M — N, N orientable, ) a volume form on N, the pullback of the volume
form is f*Q). On the other hand, on a closed manifold, a nowhere-vanishing closed 1-form

always determines a nontrivial cohomological class.

It is known that given a volume form €2 on an orientable manifold, every closed
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(n — 1)-form corresponds to a unique vector field inducing a flow preserving €2. Conversely,
any volume-preserving flow induces a closed (n — 1)-form. The fixed points of the flow
are exactly the singular points of the associate form. We obtain the following criteria
(Theorem ??7 and Theorem 2.4.4)

Theorem Let M be a closed orientable manifold. A nowhere-vanishing volume-
preserving flow defined on M admits global cross-section if and only if the induce closed

nowhere-vanishing (n — 1)-form is intrinsically harmonic.

Theorem Let M be a closed orientable manifold. A nowhere-vanishing C"-
volume-preserving flow on M admits a C"-global cross-section if and only if it admits a

C"-transversal foliation (r > 2).

So one objective of this work is to study conditions for a volume-preserving

flow admits global cross-sections (or transversal foliations).

We search examples of (n — 1)-forms that are not intrinsically harmonic among
nowhere-vanishing closed-decomposable forms; these forms are products of (n — 1) linearly
independent closed 1-forms. It is known that a closed manifold admitting such a form
becomes the total space of a fiber bundle with base an (n-1)-torus (Tischler’s argument
1.8). We prove the following (Theorem 5.0.4)

Theorem The n-torus is the unique closed n-dimensional manifold admitting
a set of (n — 1) everywhere linearly independent nowhere-vanishing closed 1-forms {w;},

such that the product w = wy; A - -+ A w,_1 determines a nonzero cohomological class.

This fact led us to the study of circle bundles. By Theorem 2.4.4, a closed
nowhere-vanishing (n — 1)-form is intrinsically harmonic if, and only if the induced flow
admits a complementary foliation. So the pullback of the volume form on a circle bundle

is an intrinsically harmonic form if and only if the bundle is smoothly foliated.

As already said, we have characterized nowhere-vanishing intrinsically harmonic
(n — 1)-forms as being the ones that induce a flow admitting a global cross-section. The
first criterion to decide if a flow admits a global cross-section is due to S. Schwartzmann
[74]. He introduced the notion of asymptotic cycles. Such a cycle is a real homology class
defined for each invariant measure. A global cross-section is determined by an integral
1-dimensional cohomology class that is positive on all asymptotic cycle. Using this criterion,
we give examples of intrinsically harmonic forms and characterize flat circle bundles. The

main results are:

Theorem Let M be a closed smooth manifold with a nowhere-vanishing closed
(n — 1)-form w inducing a pointwise periodic flow. If each orbit of the induced flow is
homologous to each other and [w] # 0 in H}y5' (M), then w is intrinsically harmonic. If w
is intrinsically harmonic, then there exists a smooth S'-action on M with the same orbits

as the one from the flow induced by w.
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Theorem Let B = {B,p, M,S'} be a differentiable principal circle bundle with
M closed and orientable. Then B admits a flat connection if and only if the form p*(£2,)

is intrinsically harmonic.

For fiber bundles over orientable manifolds we obtain the following result
(Lemma 5.2.7).

Lemma Let B = {B,p, M, F'} be a differentiable fiber bundle with compact
total space and base be an orientable manifold. Let 2 be a volume form on M with
SMQ = 1. Then, the Poincaré dual to the fiber of B can be represented by p*Q). In
particular, [F] = 0 in Hgiym p(B;R) if and only if p*() is an exact form.

From this, using the Gysin sequence, we obtain a known result, but by a
different approach, about smooth foliated circle bundles. It is contained in Theorem 5.2.11
highlighted below.

Theorem A differentiable principal circle bundle B = {B, p, M, S} with closed
orientable base space admits a flat connection if and only if one (and consequently all) of

the four conditions below holds:

(1) p*(Q2y) is intrinsically harmonic;
(2) p*(2yr) determines a nonzero cohomological class;
(3) the fiber represents a nonzero class in H;(B;R);

(4) x(B) is a torsion element.

Similar results for circle bundles over non-orientable manifolds are presented in
Section 5.2.1. For forms of a degree different from 0,1,n — 1, n, the question of obtaining
an intrinsic characterization of harmonic forms is quite open. A notable aspect of the
difficulty to obtain a general characterization is that Calabi’s argument does not apply
to intermediate degrees. In fact, a concrete example, due to J. Latshev, of a transitive
2-form on a 4-manifold not intrinsically harmonic was presented by E. Volkov in [85]. We

generalize this example in Section 3.1.

For a p-form w, the kernel space at a point x is the space of all X € T, M such
that 2xw is the zero (p — 1)-form. The dimension of the kernel space at z, denoted by v(z),
is called the nullity of w at z. The number r(z) = dim M — v(z) is called rank of w at x.
It is well known that if the form has a constant rank, the kernel spaces form a smooth
distribution, denoted by ker w, which is integrable when, for example, the form is closed.

In Section 3.3, we provided the following result (Theorem 3.3.5).

Theorem Let M be a closed Riemannian manifold. If w is a harmonic p-form

of constant rank p, the kernel distributions of w and =w are orthogonal, and the leaves
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of the two foliations induced by theses distributions are minimal concerning a suitable

modification of the metric.

We also give characterizations of intrinsically harmonic p-forms w, of nullity
(n — p), in terms of the existence of foliations complementary to the nullity foliation of w
(theorems 2.1.2 and 3.3.9)

Theorem Let w be a closed p-form of rank p. Then w is intrinsically harmonic

if and only if there exists a closed form 7 of rank (n — p) such that kerw n kern = {0}.

Theorem Let M be a manifold and w be a closed p-form of rank p on M.
Suppose that there exists a Riemannian metric g on M such that every leaf of the foliation
induced by w is a minimal submanifold concerning g. If (ker w)! is an integrable distribution,

then w is intrinsically harmonic.

We do not know if we can weaken the hypothesis in Theorem 2.1.2 by merely
supposing that the foliation induced by the differential form w admits complementary
foliation. This problem can be studied in the context of foliated fiber bundles. In this

direction, we obtain the following result (Theorem 3.3.10).

Theorem Let B = {B,m, M, F,§} be a foliated bundle with total space and
base orientated manifolds. Let €2 a volume for on M. If the fundamental group of M is

finite then 7*() is a transitive intrinsically harmonic form.

S. Shwartzamnn [74] showed that a recurrent flow has only one asymptotic cycle.
By a recurrent flow ® on a metric space X we mean a flow with some sequence t,, — o0
such that ®;, — 1x uniformly. We can show that the class of a closed (n—1)-form induces
an asymptotic cycle to the induced flow (Lemma 5.1.1). Hence, a nowhere-vanishing closed
(n — 1)-form inducing a recurrent flow is intrinsically harmonic if, and only if it determines
a nontrivial cohomological class. It is well-known from dynamical systems’ theory that
a volume-preserving flow is pointwise recurrent. Hence, it is natural to ask if we can
obtain a uniform recurrence for that kind of flow. This question directs the last part of
this thesis. We noted that the equicontinuity of a flow implies recurrence of it. So, based
on a criterion of Y. Carriere [11] and H. Rummler [70] to a flow be geodesible, we give
another characterization of a nowhere-vanishing intrinsically harmonic (n — 1)-form, the
ones inducing a geodesible flow. More precisely, we provide the following result (Theorem
6.3.8).

Theorem Let w be a nowhere-vanishing closed (n—1)-form on a closed manifold
M and X be a vector field that generates the foliation induced by w. Suppose that [w] # 0
in H55 (M). Then are equivalents: :

(1) there exists a 1-form 1 on M satisfying n A w > 0 and ixdn = 0;

(2) X is geodesible;
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(3) X is Killing for some Riemannian metric on M;

(4) w is intrinsically harmonic.

We give attention to the problem of obtaining a uniform recurrence to pointwise
periodic flows. We want to obtain a global cross-section for a given flow. Since this is a
topological condition, independent of flow reparametrization, it makes sense to ask if the
orbits of this flow are the orbits of a (continuous) recurrent flow. Let ® be a pointwise
periodic flow with period function A. The flow U(z,t) = ®(z, A(z)t) (no necessarily
continuous) has the same orbits of ® and is periodic (hence recurrent). This fact led us to
study the set of continuity of A\. D.B. Epstein proved in [20] that this set is invariant, open,
and dense for flows defined on manifolds. On the other hand, if a flow is recurrent on a
dense subset, it is easy to show that this flow is recurrent. These observations directed us
to the study of pointwise periodic flows with continuous period function. We showed that
Epstein’s remark holds for pointwise periodic flows defined on any locally compact metric

space (Theorem 6.5.3). For this reason, we deal with flows in these spaces.

An old problem in the theory of pointwise periodic flows is to obtain a condition
so that there exists a continuous action of S! possessing the same orbits as the one of
the flow. For instance, this is trivially true when the period function is continuous. By a
very delicate argument, D.B. Epstein showed in [20] that this condition always holds for
flows on compact three-dimensional manifolds. Hence, in dimension 3, a pointwise periodic
nowhere-vanishing volume-preserving flow admits a global cross-section if and only if the
induced closed 2-form determines a nontrivial cohomological class. A necessary condition
for the orbits of a C''-flow be the same as one given by a S'-action is the following: the
period function must be locally bounded. In particular, on compact manifolds, the period
function must be bounded. We obtain the following result (Theorem 6.8.10).

Theorem Let ® be a pointwise periodic C''-flow on a manifold M, compact
or not. Then the period function A is locally bounded if, and only if, & is locally weakly

almost periodic.

As showed by W. H. Gottschalk in [29], on compact metric space, locally weakly
almost periodic flows are characterized as one where the orbit space satisfies the Hausdorff
property. Hence, this property on the orbit space and the boundedness (local) of the period
function are equivalent. The latter theorem is probably a particular case of a more general
result present in [21]. However, in any case, we give proof of this fact. Then there are two
significant problems in the theory of pointwise periodic flows: one is characterizing when
the period function is locally bounded and another when the orbits of the flow are given
by a S'-action with the same regularity of the flow. The former was known as pointwise
orbit conjecture. In [86], A. W. Wadsley showed that the latter occurs when the flow (on a

smooth manifold) is of class C® and geodesible. We improve this result to flows on closed
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manifolds by showing the following result 6.8.1:

Theorem Let M be a closed manifold. Let & be a pointwise periodic flow
without singularity of class C* on M. Let N the continuity set of the period function .
Suppose that ® is locally weakly almost periodic. If ® is equicontinuous in N for some

metric inducing its topology, then ® is periodic.

As we will see, it follows from this theorem that if d is a metric inducing the
topology of M and if ® is a pointwise periodic C'-flow on M preserving d, then ® is

periodic.

A problem similar to these regarding flows is determining conditions for a
pointwise periodic homomorphism to be periodic. D. Montgomery showed in [58] that any
pointwise periodic homomorphism of a connected and locally Euclidean space is periodic.
This result is essential to study pointwise periodic flows. It is noteworthy that in dimension
5, D. Sullivan [79] obtained an example of a pointwise periodic flow on a closed manifold
where the period is unbounded and gave a rich discussion about this problem, relating it
with one in compact foliation theory. In dimension 4, a counterexample for the pointwise
orbit conjecture was given by D.B. Epstein and E. Vogt [22]. At the end of the work, we
conclude that pointwise periodic flows are not necessarily recurrent. Actually, this is a

very restrictive condition, as shown in the following result (Theorem 6.9.5).

Theorem Let ® be a pointwise periodic C'-flow without singularity with
bounded period function on a manifold M. Then & is recurrent if and only if ® it is locally

periodic. If, also, M is compact, then ® is recurrent if, and only if, it is periodic.

Some questions for which we did not get an answer appear at the end of this
work. We have made an effort to present this thesis as self-contained as possible. In no
case does the absence of a reference imply any claim to originality on our part. This not
omits our results since we stated them clearly. We believe that many pieces of arguments
in mathematics, not all, can already be considered in the “public domain”. However, the
most relevant ones are presented here with the author’s mention or reference where it
appears. We encourage the reader to contact us by the email elizeufranca@ufam.edu.br if

you want to give any criticism, suggestion, or commentary of any order.
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1 Background

In this chapter, we collect the basic definitions and some important results that

will be used throughout the thesis.

1.1

(1)

(2)

Conventions

By a neighborhood of a subset Y of a topological space X, we mean a subset of X

that contains each element of Y as an interior point.

Throughout this work, by manifold we mean a smooth (class C®), finite-dimensional,
connected (hence path connected), Hausdorff, second enumerable space, whithout
boundary, unless it is said explicitely otherwise. These manifolds are known to be
paracompact. Also, for every covering of such a manifold by open subsets, there
exists a partition of unity subordinate to it [33, 45, 87]. We reserve the symbol
M to denote a smooth n-dimensional manifold and the letters p and ¢ represent
nonnegative integer numbers satisfying p + ¢ = n in this context. The tangent bundle
of M will be denoted by 7, and the total space this bundle will be denoted by T'M

A coordinate neighborhood (chart) around a point z € M means a homeomorphism
¢p:UcM— ¢p(U)cR"”

where U is an open connected set containing x and ¢ belongs to a maximal atlas
defining the differentiable structure of M [45].

Given a smooth map f: M — N, M and N smooth manifolds, the derivative of
f will be denoted by f,. It is defined by f.(X) = 0o f(c(t)), where X € T, M and
a: (—€,€) —> M is a smooth curve with a(0) = = and J|pa(t) = X. A smooth map
is said to be a submersion if f, : T,M — Ty, N is surjective for all x € M. The
pullback of f in the space of differential forms will be denoted by f*. It is defined by
frwlXy, .. Xp) = w(fuXa, ..o fuXp) [45)].

The domain and range of a map are occasionally omitted. For example, if ¢ : U <
M — ¢(U)cR"and ¢ : V< M — ¢(V) < R"™ are coordinate neighborhoods,

we consider the transition function ¢ o ¢! (if exists) without mention to its domain.

Given an equivalence relation ~ on a set X we always denote by [z] the class
determined by z € X, that is, the set [z] = {y € Xy ~ x}. The set of equivalence

classes determined by ~ is denoted X/ ~. We have a natural map 7 : X — X/ ~,
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given by m(x) = [z]. When X is a topological space, the topology considered on
X/ ~ is the smallest (coarser) topology that makes the projection 7 continuous. In

particular, a subset U of X/ ~ is open if and only if 77!(U) is open [41].

(7) Let X be a nonempty set. The identity map of X is denoted by the symbol “1”, that
is, the map 1 : X — X given by 1(z) = x. In some contexts, to emphasize the

space in consideration, we denote the identity map of X by 1x.

(8) Let p: X — Y be a continuous map. By a local cross-section for p trhough y € Y
we mean a continuous function s : V. — X defined on a neighborhood of = such
that fos=1.If V =Y, then s is called a global cross-section.

1.2 Fiber bundles

In some references in foliation theory, the notion of the fiber bundle has been
given as a triple (B, p, X) where p: B — X is a smooth submersion and, around each
point of B, there exists a local trivialization such that the map p behaves like a projection
on a certain factor (for example, [9, 8]). This notion is a particular case of an Ehresmann-
Feldbau bundle, in which the group of diffeomorphisms of the fiber is the structural group
of the fiber bundle. This definition of fiber bundle (given in [19]) is very general, because
the structural group is not necessarily topological and the natural action on the fiber is
not required to be continuous. In a later work, C. Ehresmann [17] considered a notion
of fiber bundle where the topology of the structural group plays a rule. This notion is
equivalent to the given in Steenrod’s book [78], where the structural group is a topological
group that acts effectively and continuously on the fiber. This is meaningful to us, because
the topology of the structural group plays an important role in classification theorems,
and some of them are used in this thesis. Suppose that the fiber is a Lie group that acts
on itself by translations, that the total space and base space are smooth manifolds and
that the coordinate functions are diffeomorphisms. Then the definition of fiber bundle

according to N. E. Steenrod is a particular case of the a differentiable principal fiber bundle
defined in Kobayashi-Nomizu’s book [42].

In this section, these notions of fiber bundles are discussed. We study when
an Ehresmann-Feldbau bundle is associated to a Steenrod bundle and we show that the
existence of a continuous morphism between two differentiable principal bundles implies the
existence of a differentiable morphism (in particular, two differentiable principal bundles
that are isomorphic by a continuous bundle map are shown to be isomorphic in the sense
of Kobayashi-Nomizu). We finish the section by showing that two differentiable principal
circle bundles that are Diff*(S')-equivalents are equivalents as differentiable principal
bundles. The most important references for this section are Kobayashi-Nomizu’s and
Steenrod’s books [42, 78].
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1.2.1 Eheresmann-Feldbau bundle

Definition 1.2.1 (Ehresmann-Feldbau [19]). Let E be a connected topological space with
an equivalence relation ~ on E, B = E/ ~ the quotient space (base space), p: E — B
the canonic projection, F' a topological space and G a group of homeomorphisms of F'.
Suppose that for each x € B there exists a family H, of homeomorphisms from p~!(x) to
F' such that

(1) If h,k € H, then hk! € G;

(2) To each point x € B exists a neighborhood U, of x and a homeomorphism ¢ :
p'(U;) — U, x F such that for each y € Uy, ¢, : p'(y) — {y} x F is a

homeomorphims and the canonic projection 7y o ¢, is an element of H,,.

In this situation, the family H = {H,} defines on E a structure of fiber space associated
with group G denoted by E(B, F,G,H).

Remark 1.2.2. If GG is the group of all homeomorphisms of F' then H, is the family of all
homeomorphims of p~!(z) to F, the conditions (1) and (2) reduces the following: to each
x € B there exists a neighborhood U, of z and a homeomorphims ¢ : p~}(U) — U, x F
such that p = m o p. In the smooth category, that is, when F, B and F' are smooth
manifolds and G is the group of all diffeomorphisms of the fiber, we have a fiber bundle as
defined in [9, §].

Lemma 1.2.3 (Ehresmann’s lemma', [18]). Let p : £ — B a submersion such that p is
a proper map?. Then FE is the total space of a fiber space over B with projection p. When
OFE # &, the result is still valid since plop : 0OE — B be a submersion.

Proof. Fixe x € B and let W be a tubular neighborhood of p~(x) in F with smooth
retraction 7 : W — p~!(z) (see [33], page 109. The hypothesis that p|sg is a submersion
ensures that, for each x € B, p~'(z) is a neat submanifold, hence admits a tubular
neighborhood). The differential of the map

pxr:W— Bxp(z)

is nonsingular at each point of p~!(z) = W. Since p~!(z) is compact, we can obtain an
open neighborhoord W' of p~*(z) such that p x r : W' — B x p~!(z) is an embendding.
Since p is a proper map, we can obtain an open set U of B such that p~!(x) < p~1(U)
and p~'(U) < W'. Thus,

pxrip (U) — Bxp(z)

For an extention of this lemma see [15].
A map f: X — Y is said proper if the inverse image of any compact subset of Y under it is a compact
subset of X.

2
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is a diffeomorphism satisfying m o (r x p) = p. It remains only to show that given z,y € B,
then p~!(y) is diffeomorphic to p~'(x), that is, there exists a well-defined fiber. First, the
condition “p~!(y) is diffeomorphic to p~'(x)” is an open condition, since for y € p~(U),
the restriction p x r : p~*(y) — {y} x p~'(z) is a diffeomorphism. Let y € B such that
there exists a sequence y,, —> y and, furthemore, p~'(y,) and p~!(z) are diffeomorphic

for all n € N. By the bove construction, for sufficiently large n, p~!(y,) is diffeomorphic

to p~'(y), concluding that the condition “p~!(y) is diffeomorphic to p~'(x)” is a closed

condition. Since B is a connected space, this proves the claim. O

1.2.2 Fiber bundles according Steenrod

N. E. Steenrod defined a fiber bundle as a maximal coordinate bundle. The

definition of a coordinate bundle is given below.

Definition 1.2.4 (Coordinate bundle). A coodinate bundle B is a collection as follows:

(1) A space B called bundle space;

(2) a space X called base space;

(3) a surjective map p: B — X called projection;

(4) a space Y called fiber;

(5) an effective topological transformation group G of F' called the group of the bundle;

(6) a family {V;} of open sets covering X indexed by a set J, the V}’s are called coordinate

neighborhoods, and
(7) for each j € J, a homeomorphism
¢+ Vi x Y — p (V)

called coordinate function (local trivialization). The coordinate functions are required

to satisfy the following conditions:
(8) pp;(z,y) ==z, forallz eV, yeY,

(9) if the map
Gja: Y — p ' (2)
is defined by setting
Pej(y) = 05(z,y),

then, for each pair 7, j € J, and each x € V; 0V}, the homeomorphism
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coincides with the operation of an element of G (it is unique since G is effective),

and

(10) For each pair 4, j the map
9ji - ‘/; N ‘/J — G

defined by g;i(z) = (bj_’;(bm is continuous.

Definition 1.2.5 (Fiber bundle). Two coordinate bundle B and B are said to be equivalent
in the strict sense if they have the same bundle space, base space, projection, fiber, and
group, and the union B U B is a coordinate bundle. This notion of equivalence between
coodinate bundles defines an equivalence relation on the collection of all coordinate bundles
with the same bundle space, base space, projection, fiber, and group. A fiber bundle is
defined to be an equivalence class of coordinate bundles. We eventually call such a fiber
bundle Steenrod bundles.

This definition is analogous to the Ehresmann-Feldbau’s definition of fiber
space but here the topology of G plays a rule. The definition given by N.E. Steenrod is

equivalent to the definition given by C. Ehresmann in [17].

Definition 1.2.6. Let B and B’ be two coordinate bundles having the same fiber, group.
By a bundle map (fiber preserving map) h : B —> B', we mean a continuous function

h : B — B having the following properties:

(1) h carries each fiber Y, homeomorphically onto a fiber Y,/ of B, thus inducing a

continuous function h : X — X', such that
ph=hp

(2) fxeV,n E_I(Vk/) and h, : Y, — Y, is the function induced by h (z' = h(z)),
then the map
’ -1
Jkj = Oy haBja:Y —Y

coincides with the operation of an element of GG, and

(3) the map
_ 71,
gy Vinh (V) — G

so obtained is continuous.

Definition 1.2.7. Two coordinate bundles B and B’ with the same base space, fiber, and
group are said to be equivalent if there exists a bundle map B — B’ that induces the
identity map of the common base space. Two fiber bundles having the same base space,
fiber and group are said to be equivalent if they have a representative coordinate bundles

that are equivalent.
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Definition 1.2.8. Let G be a topological group, and X a space. By a system of coordinate
transformations in X with values in G is meant an indexed covering {V;} of X by open

sets and a collection of continuous maps

(1)
gjz-:VimV}—>G,i,jeJ

such that
(2) grj(x)gji(x) = gri(z), for all x € V; n V; N V4.

Theorem 1.2.9 (Construction of fiber bundles). Let G a topological group acting efectively
on a topological space Y, {V;} and {g;;} a system of coordinate transformation on a
topological space X. There exists a unique fiber bundle B with base space X, fiber Y and

group G with coordinate transformations {g;;}.

Proof’s sketch. The construction is given by consider on the disjoint union

T =] |Vixy x{j}

the equivalence relation
(2,9,9) ~ (z',y , k)
if
r=1 egy@y=y.
Defining ¢ : T'— B the natural projection and p[(z,y, j)] = x, the coordinate functions

are given by
¢j<xay) = [(xvyaj)]
(Compare with [17], § 3). ]

Definition 1.2.10. A fiber bundle B = {B,p, X, Y, G} is called principal fiber bundle if
Y = G and the action is the left translation. Principal bundles are denoted briefly by
B={B,p, X,G}.

Definition 1.2.11. Let B = {B,p, X,Y,G} be an arbitrary bundle. The associated
principal bundle P(B) of B is the bundle given by the construction in Theorem 1.2.9 using
the same base space X, the same {V;} the same {g;;} and the same group G as for B but
replacing F' by GG and allowing G to operate on itself by left translations.

Definition 1.2.12. Let B be a fiber bundle. We call B a fiber bundle of class C" and

write C"-fiber bundle for short if it satisfies the following two condition:

(1) Its total space and base space are manifolds of class C”;
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(2) the representative coordinate functions of B are diffeomorphisms of class C".

Let h : B— B a bundle map between two C"-fiber bundles. We say that h is a C"-bundle
map if h is a map of class C" that carries the fibers diffeomorphically. Two differentiable
fiber bundles are said to be differentiable equivalent if they have representative coordinate

bundle equivalent by a C"-bundle map.

Theorem 1.2.13. Let B, B’ be C"-fiber bundles with the same group and same base M.
Let h : B— B’ be a C"-bundle map that induces a diffeomorphism & : M — M. Then

h is a diffeomorphism.

Proof. Since dim B = dim B', it is enough to show that h, is injective. Let ¢ : U x F —

p~}(U) be a coordinate function for B and
¢, F— B, ¢/ :U— B

defined by ¢,(f) = ¢(z, f) and ¢ (z) = ¢(x, f). Given b e 7~ (U), any v € T, B has unique

representation
v = (@6)*(711) @ (¢f)*(v2)'

Suppose that h,v = 0. Denoting the projections of B and B’ by p and g, respectively, the
map h satisfies hp = gh. Since hyp.(v) = vy, it follows that vo = 0. Thus, v = (¢,)(v1) is
tangent to fiber over x. Since h restricts to a diffeomorphism in the fibers and h,v = 0, it
follows that v = 0. O]

1.2.3 Associating a coordinate bundle to an Ehresmann-Feldbau bundle

We next discuss when an Eheresmann-Feldbau bundle is actually a Steenrod
bundle. Recall that the latter one is required to possess a topologized structural group that
act continuously on the fiber. But the structural group in the former one is not required

to satisfy any topological condition.

In some cases, a group G of homeomorphisms (C”- diffeomorphisms) of a
topological space F' (a manifold) has a natural topology 7 such that G is a topological
group under 7 and the natural action (g,y) € G x Y — ¢(y) is continuous. In some of
these cases, an Ehresmann-Feldbau bundle E(B, F, G, H) determines a coordinate bundle.

Now we give some examples.

Definition 1.2.14 (Compact-open topology, R.H. Fox [23]). Let X,Y be topological
spaces and F a set of continuous functions from X to Y. Given A and B subsets of X
and Y, respectively, denote by M (A, B) the set of all elements f € F satisfying f(A) < B.
The compact-open topology (co.o.-topology) on G is the topology that has as a subbasis for
open sets of F' the sets M (K,U), where K ranges over all compact subsets of X and U

ranges over all open subsets of Y.
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Definition 1.2.15 (Admissible topology, S. Myers [60]). Let X,Y be topological spaces
and F' a set of continuous functions from X to Y. A topology on F' is said admissible if

the natural map (evaluation map) F' x X — Y is continuous.

Theorem 1.2.16 (R.H. Fox, [23]). Let X be a regular and locally compact space and Y
be an arbitrary topological space. The co.o.-topology for a collection of continuous maps

from X to Y is admissible.

Theorem 1.2.17 (S. Myers, [60]). Let X and Y be arbitrary topological spaces. The
co.o.-topology on a set of continuous maps from X to Y is smaller than any admissible

topology.

Theorem 1.2.18 (S. Myers, [60]). Let X be a metric space and G be a group of homeo-
morphisms of X. Suppose that G is an equicontinuous set of functions. Then, under the

co. o.-topology, G is a topological group.

Theorem 1.2.19 (R. Arens, [2]). The group of all homeomorphisms of a compact Hausdorff

space under the co.o.-topology is a topological group.

Theorem 1.2.20 (R. Arens,[2]). Let X be a locally connected, locally compact, and
Hausdorff space. The group of all homeomorphisms of X under the co.o.-topology is a

topological group.

Let £ = E(B, F,G,H) be an Ehresmann-Feldbau bundle such that its struc-
tural group G is a subgroup of the group of all homeomorphisms of the fiber (equipped
with the co.o-topology, see Remark 1.2.21). It follows from theorems 1.2.16-1.2.20 that if
F satisfies one of the conditions (1)-(3) below, then F is a Stenrood bundle.

(1) F is compact and Hausdorff.
(2) F is locally connected, locally compact and Hausdorff.
(3) F' is a metric space and G is equicontinuous.

Remark 1.2.21. Let H be the group of all homeomorphisms of a topological space Y
and let £ = F(B, F,G,H) be an Ehresmann-Feldbau bundle with fiber Y and structural
group G. Suppose that H is a topological group under the co.o-topology and that G is
a subgroup of H such that the natural action G x Y — Y is continuous (under this

topology). Then E determines a coordinate bundle:

(1) the natural action of G on Y is continuous, since it is the restriction of the natural
action H x Y — Y
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(2) the group G is a topological group. Indeed, let V' an open set of G. We want to show
that p;;/ (U n H) and i (U n H) are open in H x H and H, respectively, where py

denotes the product of H and iy the inversion of H. We have the equalities
py(Un H)=pz'(U)n (H x H) and i3 (U n H) =i (U) n H.

Since the product topology of H x H is the same as the subspace topology, we

conclude that py and iy are continuous.

(3) Given homeomorphisms ; : p~*(V;) — V; x F as in 1.2.1, putting ¢; = ¢; ', we
claim that the function z € V; n'V; — g;;(z) = qu_;gbm € (7 is continuous. R.H. Fox
23], observes that for any tpoological spaces X,Y, T, if a function h: X x T — Y
is continuous and the space C°(X,Y) of all continuous functions of X to Y has
the co.o.-topology, then the function h* : T — C°(X,Y) defined by h*(t)(y) =
h(y,t) is continuous. Taking h = pagh;d; " : (Vi nV;) x Y — Y, we have that
gji(x) = h*(z) is continuous, concluding the claim by Fox’s observation (note that
h* : V; nV; — G is continuous, since the image of h* is contained in G < C°(Y,Y’)
and h* : V; nV; — C°(Y,Y) is continuous).

Remark 1.2.22. Given an effective continuous action of a topological group G on a
topological space Y, we can see the group G as a group of homeomorphisms of Y. In this
case, GG has an admissible topology since acts continuously on Y. Now, suppose that G is
compact and Y is Hausdorff. Then the topology of G is the co.o.-topology. Indeed, denote
by 7 the original topology of G and 7, the co.o.-topology on G. We have:

(1) 7. is a Hausdorff topology. Let g,h € G, g # h. Given y € Y with g(y) # h(y),
since Y is Hausdorff, there exists open disjoint sets U and V' with ¢g(y) € U and
h(y) e V. So M({x},U) and M ({y}, V) are disjoint open sets for the co.o.-topology
on G with g e M({z},U) and h € M({y}, V). Therefore G under the co.o.-topology
is Hausdorff.

(2) Now, any co.o.-open set is open in the original topology of G, since the original
topology of GG is admissible and any admissible topology is finer than co.o.-topology
by 1.2.17. It follows that the identity map I : (G,7) — (G, 7.) is continuous.
Since (G, 7) is compact and (G, 7.) Hausdorff, this map is closed. Therefore 1! is

continuous concluding that 7 = 7.

Thus, given a fiber bundle B = {B,p, X,Y, G} with G compact and Y Hausdorff, the
topology of G is necessarily the co.o.-topology. More generally, the same proof shows that
any compact admissible topology on a set G of homeomorphisms of Y coincides with the

co.o.-topology.
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We will now deal with the differentiable case. The notation B = {B,p, M, F'}
will be fixed to denote a C" fiber space, 1 < r < oo, with the group of all C"-diffeomorphisms
of the fiber (see 1.2.2). Next, we describe a topology for this group so that B is a fiber
bundle and present a characterization of bundle map. Let M, N be C"-manifolds (without
boundary) and denote C" (M, N) the space of all C" maps f : M —> N. Let J"(M, N) the
space of all r-jets of functions f € C"(M, N). The spaces J"(M, N) are finite dimensional
manifolds for all 1 < r < o and for r = oo the space J*(M, N) is an infinite dimensional

manifold modeled on R®. The natural projections

J'(M,N) il M
Jr(M,N) s M
Jr(M,N) ok J5(M,N)

l1<s<r<r<ow,gvenby mjif =z, mojif = f(x) and 7,450 f = jif are surjective

submersions (see [72] for details). We have an injective inclusion
J:C"(M,N) — C°(M,J" (M, N))

given by J"(f)(xz) = jof. Considering on C°(M, J"(M,N)) the co.o.-topology, we can
topologize the space C"(M,N) so that J" be an embbeding. This topology is called
C"-topology (or weak topology). When M is noncompact, it is convenient consider the
strong topology on C"(M, N), induced by the graph-topology on C°(M, J"(M, N)). Those
topologies coincide when M is compact. We will restrict our attention to the compact case.

Many properties about this topology can be found in Hirsch’s book [33], chapter 2.

Theorem 1.2.23. The C"-topology is admissible, 1 < r < o0.

Proof. We have a commutative diagram

J"x1

C"(M,N) x M COM, JT(M,N)) x M

N J"(M,N)

Tr,0

where e;, © = 1,2, denote the evaluation maps. Since e5 is continuous by 1.2.16, it follows
that the C"-topology is admissible. O]

Theorem 1.2.24 ([33], chapter 2). Let M be a C"-closed manifold. The group Diff" (M)
under the C"-topology is a topological group.

Theorem 1.2.25. A C" fiber space with group G = Diff"(F') equipped with the C”-
topology is a fiber bundle. Let B = {B,p, M,F} and B = {B',p’,M', F} be C"-fiber



Chapter 1. Background 29

bundles with group G = Diff'(F). A C"-map h : B — B’ that carries each fiber of B
diffeomorphically to a fiber of B’ is a bundle map.

Proof. In general, given C"-function f: X x Y — Z, denoting f, the function f,(y) =

f(z,y) we have a continuous map

kX xY — J'(Y,2)

Since k is continuous, the function k* : X — C%(Y, J"(Y, Z)) given by k*(x)(y) = k(z,y)
is continuous (see 1.2.21 item 3).

Now, let B = {B,p, M, F} a C"-fiber space and ¢; : p~1(V;) — V; x F be a
C"-diffeomorphism as in Definition 1.2.1. Denoting ¢; = ¢; !, we want to show that the

function

given by g;i(z) = ¢;.9;. L is continuous. Via the identification of C"(F, F) as a subspace
of CU(F, J"(F, F)), this function is given by g;;(x)(y) = j;((b]xqbz_;) With the notation of
the preceeding paragraph, taking f(z,y) = p2¢;¢i(x,y), then k*(z) = g;(z) is continuous,

since f is a C"-function. Therefore B is a fiber bundle.

Now, let (¢,U), (¢, V) local trivializations for B and B', respectively, z € M

and z' = h(z). As in the preceeding paragraph, we can show that the map

U~k (V) —> Diff (F)
v — ¢ yhats

is continuous. Thus, since h carries the fibers of B homeomorphically into the fibers of B,
it follows that h is a bundle map. m

Corollary 1.2.26. Two C"-fiber bundles B = {B,p, M, F} and B = {B',p’, M, F'} are
equivalent if there exists a C"-diffeomorphism h : B — B’ satisfying p'h = p.

In what follows, we will consider only smooth fiber bundles (C*-fiber bundles).
The group of all C*°-diffeomorphisms of a manifold F' equipped with the C'*-topology will
be denoted by Diff(F).

1.2.4 Differentiable principal fiber bundles

In the classical book [42], S. Kobayashi and K. Nomizu define the notion of
principal fiber bundle as follows. Let M be a smooth manifold and G a Lie group. A
manifold P is called a differentiable principal fiber bundle provided the following conditions

are satisfied:
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(1) G acts differentiably on P to the right without fixed point: (b,g) € P x G — bg =
R,-be P;

(2) M is the quotient space of P by the equivalence relation induced by G and the

canonical projection 7w : P — M is differentiable;

(3) P is locally trivial, that is, every point € M has a neighborhood U such 7=(U)
is isomorphic with U x G in sense that b € 771 (U) — (7(b), (b)) € U x G is
differentible isomorphism satisfying ¢(bg) = ¢(b)g for all g € G. In this case, M is
called the base of P and G the structural group of P. We denote by P(M,G) a
principal bundle with base M and group G.

Remark 1.2.27. There exists a 1-1 correspondence between local trivializations and
local cross-sections in a differentiable principal bundle. Indeed, given a local trivialization
Y7 Y U) — U x G, then sy(x) = ¢~ (x,e) is a smooth local cross-section. Conversely,
given a local cross-section s : U — 7~ 1(U), the function ¢ : U x G —> 7~ }(U) given by
é(z,9) = s(x)g is a diffeomorphism and 1) = ¢! become a local trivialization satisfying
s = s,. Note that the map ¢, : G — 7 !(z) satisfies ¢, '(bg) = ¢, '(b)g.

Definition 1.2.28. Let P(M,G) and P'(M,G") be differentiable principal fiber bundles. A
differentiable mapping f of P into P’ is called a homomorphism if there is a homomorphism,
denoted by the same letter f, of G into G’ such that f(bg) = f(b)f(g) for all be P and

ge G. If fis a diffeomorphism, it is called an isomorphism.

Theorem 1.2.29. The following statements hold:

(1) Let B and X be smooth manifolds and let G be a Lie group. Suppose that B =
{B,p, X, G} is a principal bundle and that there exists a representative coordinate
bundle for B such that the coordinate functions concerning this coordinate bundle

are diffeomorphisms. Then B is a differentiable principal bundle;
(2) a differentiable principal bundle is a Steenrod bundle;

(3) Let h be a bundle map between two differentiable principal bundles. Then A is an

homomorphism between differentiable principal bundles;

(4) let h be a homomorphism between two differentiable principal bundles P(M, G) and
P'(M,G). Suppose that that the induced map G — G is an homeomorphism. Then

h is a differentiable bundle map.
Proof. The proof requires only routine definitions and computations.

(1) - Let B = {B,p, X, G} be a principal bundle with B, X being smooth manifolds,

G being a Lie group, and a family {V;} of open sets covering X with coordinate



Chapter 1. Background 31

functions ¢; : V; x G —> p~*(V}) being smooth diffeomorphisms. We will construct
a right action of G on B such that B/G = X. Let b € B with m(b) = z. Set

b-g= ¢j,z(gflp2¢;1(b))7

where ¢, ;(g) = ¢;(z, g). Note the following equalities

¢j,x(p2¢;1(b)) = b and P2¢;1¢i,x(g) =g.

Given z € V; n 'V}, we have

02 Gia(P20; (D)) = pach; (D).

Since gbj_;qbw conicides with an operation of an element of GG, then

G 0ia (97 D207 (1)) = g~ 'p2; (D)

for all g € G. Thus, the rule (b, g) — b - g is well-defined. This rule satisfies the

axioms of an action:

b-e= ¢j,x(671p2¢;1(b)) = b;

(b-9) -1 = dj(h™ pad;  (d50(97 205 (1)) = bju(h™' g™ P25 (b)) = b (gh).
This action is smooth, since it is given in terms of smooth maps. Note that the
orbit of a point b € B is equal the fiber containing b. It follows that the function
p: B — B/G is equal to p: B — X. Now, we will give the local trivializations.
For each 7, let ¢;(b) = (¢4~ (b))~ and ¢;(b) = (m(b), p;(b)). Denoting x = 7 (b),

we have

pi(b-g) = (95 (b-9)) 7" = (¢5(852(g7 ' P20; (0))) " = (97 P25 ' (0)) ™! = (b)g.
It follows that B determines a differentiable principal fiber bundle.

- Let P(M,G) be a differentiable principal bundle. We will associate to P(M,G) a
coordinate bundle as in Definition 1.2.4. The bundle space, base space, projection,
and fiber are, respectively, P, M, m and G. Since P(M, ) is a differentiable principal
bundle, we can consider a family of open sets {V;} covering M with local cross-section
s; + V; — 7 (V) such that ¢;(x,g) = s;(x)g is a diffemorphism for all j (see
1.2.27). We have

(b;;(bi,x(g) = ¢;;(Sz($)9) = ¢;;(31(5U)) g,

hence gbj_;(ﬁw conicides with the operation by an element of GG. Note that gzﬁj_;gzﬁm =
gzﬁj_;(s](x)) is a smooth function. It follows that the collection P,m, M,G,V;, ¢,

determine a (smooth) coordinate bundle.
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(3) - Now, let h : P(M,G) — P'(M,G) be a bundle map between differentiable

principal bundles. Fixed b € P, let s,s local cross-sections with s(z) = b and

s(z') = h(b) (z' = h(z)) and ¢, ¢' given by é(y,9) = s(y)g, ¢ (y,9) = s (y)g. By the
item 1 above, ¢ and ¢ are coordinate functions for P and P’, respectively. Then

! / 71

-1 r —1
¢x' h(bg> = ¢x’ hm¢x(g) = (¢x' h$¢$> 9
since gzﬁ;,_lhxgbx coincides with an operation of an element of G, and
r =1 r =1 ;=1 ;=1
¢y hbg) = (b, hatale))-g=0y (h(b)-g=0, (h(b)g),
concluding that h(bg) = h(b)g.

(4) - Now, let f : P(M,G) — P'(M,G) be a homomorphism with the induced map
of G onto itself being a homeomorphism. Since f(bg) = f(b)f(g) and a continuous
homomorphism with continuous inverse between Lie groups is a diffeomorphism (see
[48]), then f carries the fibers of P diffeomorphically onto the fibers of P’. With the

notations of the item 3, we have

1 r —1 r —1

gb;c’ilfmgbx(g) = gb;c’i fm(S(l')g) = ¢x' (fac(s(x))f(g» = (¢x' fm(S([E))) ’ f(g)

Thus, gb;,_l fote = gb;,_l fz(s(x)) is a smooth map that conincides with an operation

of an element of GG. Hence f is a bundle map.

]

Definition 1.2.30. Let P be a differentiable principal fiber bundle with base M and

structural Lie group G. A connection in P is a smooth distribution I' in P satisfying

(1) T,P =T, ® G,, where G, denotes the tangent space of the fiber at x.

(2) Given z € P and g € G, then I'y; = (R,).[';, where R, denote the right translation
of G by g.

The subspaces I';, are called horizontal subspaces of the connection I'. A connection in a

principal fiber bundle is said flat if it is given by an integrable distribution?.

Theorem 1.2.31 ([42], page 79). A homomorphism f : P(B,G) — P'(B,G") such that
the induced map in the base spaces is a diffeomorphism, maps a connection I' into a
connection I in such way that f maps the horizontal subspaces of I' into the horizontal

subspaces of T".

3 This is an equivalent condition to flatness. A connection is said flat if the associated curvature two

form vanishes.
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Remark 1.2.32. Let P(M,G) be a differentiable principal fiber bundle and F' be a
differentiable manifold on which G acts to the left. Consider the action of G on P x F
given by (z, f)g = (zg,g7'f). Let B = (P x F)/G be the quotient space. The canonical
projection wp : P — M induces a projection wg of B onto M in the following way: the
class determined by class (z, f) is mapped to mp(x). Space B is called a fiber bundle with
base space M that is associated with P. This definition of associated bundle appear in
Kobayashi-Nomizu [42]. It is easy to show that if B = {B,p, X, Y, G} is a smooth Stenrod
fiber bundle and if GG is a Lie group that acts smoothly on the fiber, then the associated
principal bundle P = P(B) is a differentiable principal bundle and the bundle that is

associated to P is equivalent to B (equivalence as defined by Steenrod of course).

1.2.5 Circle bundles

By a circle bundle we means a fiber bundle B = {B,p, X, Y, G} with fiber
Y = S'. Next, we will show that two differentiable principal circle bundles are isomorphic
Kobayashi-Nomizu’s sense (differentiable isomorphic) if, and only if, are equivalents as
Diff* (S')-bundles®.

Theorem 1.2.33 ([78], §6.7). Let B = {B,p, X, F, G} be a smooth fiber bundle and p a
metric that generates the topology of B. If there exists a continuous cross-section® s for B,
given € > 0, there exists a smooth cross-section s* for B such that p(s(z), s (z)) < e for all
reM.

Let By, B, be differentiable principal fiber bundles with the same base space M
and the same group G. Consider the action of G on By x By given by (b1,b2)g = (b1g, b29g).
Then, B = (B; x By)/G is the total space of a smooth fiber bundle B with base space M,
group G, fiber By and projection given by p[(by, b2)] = p1(b1) (Defining a left action on By
by g-b=b-g !, this bundle is the associated to B; with fiber Bs, see 1.2.32). Considering

By x By — By as a trivial bundle, we have that 7 is a bundle map and the diagram

By x Bs s B
l/m ip
B, o M

is commutative. To see this, we will describe the coordinate functions for the bundle B.
Let (¢,U) a local trivialization of B; and s the associated cross-section given by 1.2.27.
The function ¢ : U x By —> p~'(U) given by ¢(z,by) = [(s(x), bs)] is a coordinate trans-

formation as in the item (7) of 1.2.4. Since the map (z,g) — s(x)g is a diffeomorphism,

4 The symbol Diff* (M) denote the subgroup of Diff(M) of all orientation preserving diffeomorphisms of
M.

> A cross-section on a fiber bundle B = {B,p, X, F, G} is a function s : X — B satisfying ps = 1.
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the map b — g, such that s(x)g, = b is a smooth map. Then,

(60) " ([b1, b2]) = 07 [(5(2) s, b2)] = 6 [(5(2), bag,']) = bagy,”

and
¢I:11(b1)7rb1 (b2) = b2.gb_11 = gb1b27 (1.1)

concluding that ¢;11(b1)7rb1 coincides with the operation of an element of G and the function
b — Cb;ll(bl)”bl is smooth. Now, given b; € By and s be a local cross-section with s(x) = by,

we have that
7, (b2) = (7, by)

is a diffeomorphism. It follows that 7 is a bundle map.

Theorem 1.2.34. Under the above hypothesis, there is a 1-1 correspondence between the
smooth (continuous) cross-sections of B and the smooth (continuous) bundle maps of 5,
to BQ.

Proof. To proof this theorem we will use the following general fact about submersions.
Let f: M — N be a submersion. Then, a map g : N — Z is smooth (continuous) if,
and only if, gf is smooth (continuous). Indeed, there exists smooth local cross-section
for f trough every point y € N. Thus, if gf is smooth (continuous), then given y € N
and smooth local cross-section s : U — M, the map (¢fs)|y is smooth (continuous), but

(9f9)|lv = glu- Tt follows that g is smooth (continuous).

Given a smooth (continuous) bundle map h : By — By, then s : M — B given
by s(z) = [(b, h(b))], where b is any point in the fiber over z, is well-defined cross-section.

Indeed, given g € GG, we have

[(bg, h(bg))] = [(bg, h(b)g)] = [(b, h(D))]-

By the commutativity of the diagram

B, el B, x By
lpl S lﬂ
M B

it follows that sp; = (1 x h) is smooth (continuous). Since p; is a submserion, we conclude

that s is smooth (continuous).

Conversely, let s : M — B be a smooth (continuous) cross-section. Since 7 is
a bundle map, for each b; € By, the map m, is a diffeomorphism from B, to the fiber over
p1(b1). Thus, the map h(b;) = m,." (s(p1(b1))) is well-defined and satisfies:

(1) m(1 x h) = spy, hence h(b1g) = h(by)g for all by € By; in particular, h carries fiber in
fiber diffeomorphically.
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(2) Given a trivialization ¢(x,by) = [(s(x),bs)] as above, by Equation 1.1 we have that

g25;11(?>1)h(bl> = ¢;11(b1)7rb_11<8p1(b1)) = (Spl(bl))gb_ll

is a smooth (continuous) map. It follows that h is a smooth (continuous) map.
[

Let By, Bs bundle with the same base space and group and h : By — Bs a
bundle map that covers the identity. Let s : M — B, s(z) = [(b, h(b))] be the local
cross-section given by Theorem 1.2.34. Since h covers the identity, we have p;(b) = pah(b).
Conversely, if s : M — B is a cross-section, say s(z) = [(b, f(x))], satisfying p;(b) =
p2(f(x)), given the bundle map h(b) = 7, *(s(p1(b))) associeated with s, it is easy to see
that h covers the identity. Thus, we have characterized the cross-sections that correspond
to bundle maps that covers the identity. It is not difficult to see that B" = {[(by,bs)] €
B/p1(by) = pa(by)} is an embendding submanifold of B and the restricition 7 : B — M
determines a fiber bundle with fiber G. Thus, a cross-section s : M — B determines a
bundle map that covers the identity if and only if take values in B, that is, if and only if

. . . /
it is a cross-section s : M — B'. Thus, we have:

Theorem 1.2.35. Two differentiable principal fiber bundles equivalents by a continuous

bundle map are differentiable isomorphic.

Proof. Let By and By two differentiable principal bundle with same base space M and
group G. Suppose that there exists a continuous bundle map h : B; — B; that covers the
identity. Then, by 1.2.34 there exists a cross-section s : M — B determined by h. Since
h covers the identity, s is a cross-section s : M — B'. By Theorem 1.2.33, there exists a
smooth cross-section s : M — B’ that apporoximates s. This cross-section corresponds
to a smooth bundle map A’ : B; — B, that covers the identity. By 1.2.13 and 1.2.35, this

bundle map determines an isomorphism of differentiable principal bundles. O]

Lemma 1.2.36 ([78], theorem 29.2.). Let B be a fiber bundle with fiber F' and base
space a finite complex K of dimension n. If Y is arcwise connected and m;(Y) = 0 for

1=1,...,n—1, then B admits a cross-section.

Theorem 1.2.37. Let K be a finite complex of dimension n, G be a topological group and
H a closed subgroup of G such that G/H is arcwise connected. Suppose that m;(G/H) = 0
foralli =1,...,n — 1. If H has a local cross-section in G°, then any two H-bundles over
K that are G-equivalents are also H-equivalents. In particular, two H-bundles over a

smooth manifold M that are G-equivalents are also H-equivalent.

6 This means that there exists a neighborhood U of H € G//H and a continuous cross-section s : U — G.
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Proof’s sketch. This theorem follows as in [78], § 12.5. The hypothesis about K and G/K
enable us to obtain cross-section of any bundle with fiber G/H over K by 1.2.36. In
particular, a G-bundle over a n-complex K is equivalent to a H-bundle over K (See [78],
§ 9.2 for details). To finish, every smooth manifold M admit a smooth triangulation
t:|K| — X 7. Thus, a fiber bundle B = {B,p, M,Y, G} is completely determined by the
fiber bundle B = {B,t 1p, K, Y, G} over the n-complex K. O

Theorem 1.2.38. The space Diff"(S') has as a deformation retract the rotation group
SO(2).

Proof’s sketch. Denote by Diff*((S!) the subgroup of Diff"(S*) that keep fixed 1 € S'.

(1) Diff"(S!) = Diff "((S')SO(2). Indeed, given f € Diff *(S'), and v € S* with f(y) = 1,
there exists g € SO(2) with g7*(y) = 1. Thus, fog(1) = 0, and f o g € Diff "((S*).
It follows that f € Diffg (S')SO(2) and, therefore, Diff*(S') = Diff"((S!)SO(2).

(2) Consider the usual coverging 7 : R — R/Z = S' with 7(0) = 1. Any function
f:S' — R extend to a function f : R — R safisfying f(z + 1) = f(z) +d. Since f
is an orientation-preserving diffeomorphism, we have d = 1. It follows that Diff"o(S*)
can be idendified with

G={f:R—R/f(0)=0and f(z +1) = f(z) + 1} c Diff"(R).

Now, the function F : G x I — G given by F(f,t) = (1 —t)f + tx is well-defined,
continuous, hence give us a homotopy between the identity map 14 and the point
1r € G.

(3) To finish, we have that the function r : Diff*(S') x I — Diff*(S') given by
r(fg,t) = n(F(f,t))g, f € Diff§ (S'), g € SO(2), satisfies ro = 1 and r;(g) = g for
all g € SO(2). Tt follows that r, is a deformation retraction of Diff *(S') onto SO(2).

]

Theorem 1.2.39. Two differentiable principal circle bundles are differentiable isomorphic

if and only if are equivalents as Diff " (S')-bundles.

Proof. In Theorem 1.2.38 we have showed that SO(2) has a global cross-section in Diff " (S!)

and Diff"(S')/SO(2) is arcwise connected and contractible. In particular

7;(Diff* (S1)/SO(2)) = 0

The map t : |K| — X is homeomorphism such that for each simplex o of K, the restriction
t: o — t(o) is a smooth submersion. The existence of smooth triangulations was established, for
example, in [6].

e
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for all i > 1. It follows by 1.2.37 that two SO(2)-principal bundles over a finite complex K
that are Diff " (S')-equivalents, are SO(2)-equivalentes. If those bundles are differentiable
principal bundles over a manifold M, it follows by 1.2.35 that we can obtain a differentiable

isomorphism. O

1.3 Foliations

Intuitively, a manifold M is “foliated” if it is expressed as the union of -
dimensional submanifolds that fit alongside each other, locally, like parallel [-planes in

8 a (smooth) foliation §

Euclidian n-space. Following Deahna-Clebsch-Frobenius’ theorem
can be defined as an involutive subbundle E of the tangent bundle of M. If the fibers of
E are [—dimensional, the maximal integral manifolds of £ are immersed [-dimensional
submanifolds of M called leaves of the foliation §. This result allows constructing an atlas

for M as in the next definition.

Definition 1.3.1. Let § be a foliation on M. A foliated chart for M is a coordinate
neighborhood (U, ¢) for it, ¢ = (z,y), such that the leaves of § are determined locally
by y = constant. Each set y = constant < U is called plaque of §. A foliated atlas
U = {Us, Patacs Tor M is an atlas formed only by foliated charts. A foliated atlas is said

to be regular provided:

(1) for each o € J, U, is a compact subset of a foliated chart (W, ¢) and ¢, = ¢ |v,;
(2) the cover {U,}aes is locally finite?;

(3) if (Ua, va) and (Ug, @) are elements of U, a, § € J, then the interior of each closed

plaque P < U, meets at most one plaque in Upg.

Given a foliated atlas U concerning to a foliation §, the coordinate maps
To: Uy — RP and y, : U, — R?

are submersions on its image and the local coordinate change on U, n Up has, therefore,

the form
To = ¢a(Ts, Ys),
Yo = Yalyp)-
Fixing for each foliated chart (U,, ¢s) a submanifold S, = {z, = constant}, we have that

Su:]_[sa

aed

See historical note of [53].
9 This means that given I c J, if Noer Ua # O, then I is finite.
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is an embedded submanifold of M transverse to §, that is, transverse to the leaves of §
(see [30] chapter 2). The equation y, = 14 (yg) can be viewed as local diffeomorphism 7,4
of S, to Sg. These diffeomorphisms generate a pseudogroup I'y called holonomy pseugroup
of § defined on Sy; the definition of pseudogroup is given in the sequence. Geometrically
theses pseudogroups are obtained by sliding along the leaves. For a discussion about the
equivalence between these pseudogroups see [31]. In what follows, we will refer to holonomy

pseudogroup of § as the pseudogroup 'y, for a regular foliated atlas U.

Definition 1.3.2. A pseudgroup of transformation on a topological space S is a set I' of

transformations satisfying the following conditions:

(1) Each element f € I' is a homeomorphism of an open set of S (called the domain of

f) onto another open set of S (called the range of f);

(2) If f €T then the restriction of f to an arbitrary open subset of the domain of f is
in I';

(3) If f; : Uy — V;, i € J, are elements in I, then f : |J,., Ui — U, Vi defined by
f(x) = fi(z) if x € U;, is an element of T

(4) For every open set U of S the identy transformation of U is in T';
(5) If feT, then f~' eT;
(6) The composition of elements of I" where have sense is in T'.

Remark 1.3.3. There are other definitions of regularity of a foliation. For example,
foliations where the individual leaves are C*-submanifolds but T'F, when exists, have class

C", r < k. Foliations also can be defined in other topological spaces (see [21]).

Let § be a foliation defined on M and L be a leaf of §. Given x € L and X
a transversal embedding submanifold containing x, to each loop o with base at x € M,
we can associate a germ of a local diffeomorphism ¢, : U € ¥ — ¥ by sliding along
the leaves “covering” «. The definition of this map depends only on the homotopy class
of a. It is well-comported concerning the concatenation of loops. Therefore, induces a

homomorphism
@ :m (M) — Germ(X)

called holonomy of L at x. Given z,y € L, the holonomy of L at z is equivalent the

holonomy of L at y. For a precise definition see [8, 9].

Example 1.3.4. Let w be a closed p-form of constant rank defined on manifold M. Then,

the distribution x — ker w,, is integrable and determines a foliation denoted by §,,. Indeed,
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if X,Y are vector fields tangent to kerw, then

do(X1,.. Xpn) = D) ()7 Xi(w(Xy, .. X X))

1<i<k+1
+ Z W([Xi,Xj],Xl,...,Xi,...,Xj,...,Xp+1),
Isi<y<p+1
for any smooth vector fields Xy, ..., X, 1, where X mens that X not is considered. Given

X,Y € kerw, putting X = X;,Y = X, and X, arbitrary for i > 2, we have
d(,d(Xl, PN ,Xp+1> = —W([X, Y], Xg, N ,Xp+1) = ’L.[ny](,U(Xg, PN ,Xp+1).

Thus, if dw = 0 then i[xyjw = 0. Therefore, when w is a closed form of constant rank, the
distribution ker w gives a foliation on M. When p = 1, the holonomy of each leaf of §, is
trivial. Conversely, if § is a C?-codimension one foliation such that every leaf has trivial
holonomy group, then § is topologically equivalent to a foliation given by the kernel of a
closed 1-form ([8], page 82).

1.4 Foliated bundles

A foliated bundle B = {B,p, M, F,§} is a smooth fiber bundle (group G =
Diff(F')) with a foliation § satisfying the following condition: for each = € X there exists a
local trivialization of the bundle B, ¢ : p~'(U) — U x F, such that §|,-1( is the trivial
foliation {U x {y}},er. In a foliated bundle, each leaf is a covering of the base space and
the holonomy pseudogroup of § have a simpler description by the existence of the global
sections for §, the fibers of B (in fact we have a group). For each x,y € M, and continuous

path « : [0,1] — M conecting x to y in M, we have a diffeomorphism

p(a) :p~(z) —p ' (y)
defined by
P (@)(2) = Ay(2),
where A : [0,1] — p~!(2) is the unique curve that covers o concerning to the covering

map p : L, — M (where L, is the leaf of § containing x). The covering proprerties

implies that ¢(«) depend only of the homotopy class of . For x = y, the function
o+ m(M,z) — Diff(p~"(z))

is a homomorphism called holonomy homomorphism of the B with image I" called holonomy
group of B. This homomorphism independs of the choice of base point and we can see it

as a homomorphism from 7 (M) to Diff(F’). Conversely, given a homomorphism

@ m (M) — Diff(F)
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we can construct a smooth fiber bundle with base space M, fiber F' and discret structural
group I' =image of . We know that m (M) act on M by Deck transformations and on F
by . Then, 71 (M) act on M x F by a(, f) = (- Z, ()" (f)). Let

B = (X x F)/m (M)
with natural projection
p: (M x F)/m(M) — X/m (M) = M.

We have that B, = {B,p, M, F,§} is a foliated bundle where the leaves of F are given
by the projection of the M x y, y € Y. If ¢ : m (M) — T' < Diff(F) is the holonomy
homomorphism of the foliated bundle B = {B,p, M, F,§}, then B, is equivalent to B with

the natural equivalence preserving both foliations. To refer, we will highlight those results.

Theorem 1.4.1 ([8], chapter V). Let M and F' be connected manifolds and ¢ : m (M) —
Diff(F#') be a homomorphism. There exists a foliated fiber bundle B, = {B,p, M, F,§(¢)}
whose the holonomy homomorphism is ¢. The structural group of B, can be taken as the

image of ¢ with the discrete topology.

Theorem 1.4.2 ([8], chapter V). Let M and F be connected manifolds, ¢, ¢ : 71 (M) —
Diff(F') be homomorphisms and f : F — F be a diffemorphism satisfying ¢(a) =
f~1¢' (a) f. There exists a smooth bundle map h : B, — B, that covers the identity and
take the leaves of F(y) on the leaves of F().

Theorem 1.4.3 ([8], chapter V). Let B = {B,p, M, F,F} be a foliated bundle with
holonomy homomorphism ¢ : 7 (M) — Diff(F'). There exists a bundle map B — B,
that covers the identity and take the leaves of § on the leaves of F(¢p).

Remark 1.4.4. Those theorems hold when the fiber has a boundary. Let F' any topological
space and X a topological space possessing universal covering. Let ¢ : m1(X) — Homeo(F')
be a homomorphism. With this data, we can construct a “foliated bundle” as already
described in this section (see [34]).

Remark 1.4.5. In Theorem 1.4.1, the topology of G = ¢(m(M)) as a subspace of
Diff(F') can be a no discrete topology. However, we can get a coordinate bundle equivalent
to B, with the system of coordinate transformation being constant (taking values on
Image(p)). Thus, we can see B, as a fiber bundle with structural group G equipped with
the discrete topology. As a subspace of Diff(F), we can show that the topology of G is
totally disconnected. Indeed, we have that m(M) is a finitely presented group, hence

an enumerable set'’. We claim that every enumerable subspace A of Diff(F') is totally

10 Since M is compact, it has a simplicial decomposition with a finite number of cells. It follows by Van
Kampen’s theorem that the fundamental group of M is finitely generated, hence enumerable.
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disconnected. More generally, let X be a topological space that separates points!! and A be
an enumerable subset of X. Given x # y elements of A, there exists a continuous function
f: X — Rsatisfying f(x) =0 and f(y) = 1. Since A is an enumerable set, there exists
a € (0,1) with f(2) # a for all z€ A. Then, x € f~1(—0,a) n A, y € f (a,0) n A and,
therefore, we may write A = (f~!(—o0,a) n A) | J(f(a,0) n A) (note that this union is
disjoint). Since x,y € A were arbitrarily chosen, it follows that A is totally disconnected.
Now, since the space C*(F, F) is metrizable ([33], chapter 2 theorem 4.4), we conclude
that ¢(m(M)) is a totally disconnected subgroup of Diff(F'). This proves the claim. Recall
that any subgroup of a topological group is, itself, a topological group (see 1.2.21). Hence,
it follows from Theorem 1.4.4 that the structural group Diff(F) of a foliated bundle can be
reduced to a totally disconnected group, namely, the image of the holonomy homomorphism
@. In general, fiber bundles where the structural group is totally disconnected have similar

characterizations as the one given above (see [78], §13).

A smooth fiber bundle can admit transversal foliations that are not compatible.
That is, there may exist leaves that do not cover the base space. C. Ehresmann showed
that in this case, the fiber is necessarily noncompact. More precisely, we have the following

theorem.

Theorem 1.4.6 (C. Ehresmann, [17]). Let B = {B,p, M, F'} be a fiber bundle. If B has

compact fiber and admits a transversal foliation, then B is a foliated fiber bundle.

Proof’s sketch. Let B = {B,p, M, F} be a fiber bundle with compact fiber and § be a
foliation transversal to the fibers of B. Let L be a leaf of §. Since L is transversal to the
kernel of p, : TB — T M, then the restriction p : L — M is a local diffeomorphism.
Now, we affirm that the map p is proper. Let K be a compact subset of M. Since K is
compact and B is a fiber bundle, we can take a cover of K by compact sets K, ..., K
such that p~!(K;) is diffeomorphic to K; x F. Then, | Jp~'(K;) is compact set containing
p H(K). It follows that p~!(K) is compact, hence p is a proper map. Now, any proper local
homeomorphism is a covering map ([35], lemma 3). Therefore p : L — M is a convering

map. Now, let z € M and a U be an open contractible neighborhood of x in M. Define
¢:Uxp () — p ' (U)

as follows. Given (z,y) € U xp~}(U), let « : [0,1] —> U path conecting z to z and & unique
path covering « concerning to the covering map p : L, — M. Define ¢(z,y) = &(1). Since
U is contractible, this function is well-defined. Now, fixed y € p~*(z), the function ¥ :
U — L, given by ¢¥(z) = 9(y, z) has inverse given by the restriction of p to p~*(U) n L,,

hence a local diffeomorphism. For fixed z € U, we can show that v, : p~!(z) — p~!(2)

1 For example, every metric space (X,d) satisfies this property. Indeed, if z,y € X, x # y, then the

continuous functions f : X — R given by f(z) = X d(z.z)

m Separates z from Y.
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given by ¢, (y) = 1(z,y) is a diffeomorphism. This is made proceeding as in the definition
of germinal holonomy (see [9, 8]). Thus, ¢ is a diffeomorphism. To finish, note that §|,-1 (U)
is the trivial foliation {U x {y},c,-1 (4} O

Theorem 1.4.7. Let G be a Lie group and M and F' be connected manifolds. Given a
homomorphism ¢ : 7 (M) — G, the bundle B, is a differentiable principal fiber bundle

and the foliation §(y) determines a (flat) connection for B,'2.

Proof’s skecth. A local trivialization of B, is given as follows. Let p : M — M the
universal covering of M. Let U be an open set of M evenly covered by p. For each path

connected component V' of p~!(U) we have that
¢y U x G —pH(U)

given by ¢y (z,9) = [(ply' (), g)] is a local trivialization of B, (see [8] chapter 5). Let U’
be another open set of M evenly covered by p and W be a path connected component of
pWU). IfU N U # &, we can take a € (M) such that ap|y, (U nU') = p|t (U~ U).
Thus

ov(z,9) = [(plv" (), 9)] = [(aply' (), () 9)] = [(ply! (z), 0(a) " 9)] = dw(z, p(a)'g),

concluding that ¢y, év,.(g9) = ¢(a)~'g. From this and Theorem 1.2.29 we conclude that
B, is a differentiable principal fiber bundle. The right action of G on B, given in Theorem
1.2.29 has the form

(@ 9)]h = [(Z,h 7 g)].
Thus, since the leaves of F(¢) are given by £, = [M x {g}] = {[(, 9)]/# € M}, we have

Ry(L,) = Ly, concluding that Ry, is an automorphism of § for each h € G (that is,

r=1(g)’
take leaf on leaf). Since § is transversal to the fibers, T'F satisfies T,P = T, F(p) ® G,.
Therefore T'F is a (flat) connection in B,,. O

1.5 Orientability

In this section, we address some notions of orientability.

Definition 1.5.1. A smooth manifold M is said to be orientable provided there exists a
smooth atlas U = {(Us, ¢a)}aea for M satisfying det J(¢q 0 p5') > 0 for all o, f € A,

Remark 1.5.2. Let M be a smooth manifold, and 2 be a top degree differential form
defined on M. If 2 does not vanish anywhere in M (that is, Q(x) # 0 for each z € M)
then we call €2 a volume form of M and we say that {2 > 0. It is easy to prove that M is

orientable if, and only if, M admits a volume form.

12 Conversely, every flat bundle has the form B,; see Lemma 1 in [50].
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Definition 1.5.3. Let B = {B,p, M, F,G} be a smooth fiber bundle with F' be an
orientable manifold. The fiber bundle B is said to be orientable provided there exist local
trivializations {(¢a,Us,)} to B such that B = | J7*(U,) and the transitions functions

Jap = Yo © wﬁ’l : Uy nUg — @ are always orientation-preserving.

Remark 1.5.4. Using Definition 1.5.3 we may introduce the idea of positive (correct)
and negative orientation on the fibers. Let 2z be a volume form on F' that orientate F
positively. Let {(¢a,Us)} as in Definition 1.5.3. For each index «, the differential form
W = Y:Qp induces an orientation on the fiber that is called positive. Indeed, given
r € M and indexes «, 3, we have that wg = g} 5w, Since the transition functions g,s are
orientation-preserving, it follows that w, and ws must determine the same orientation in

the fibers. The definition of negative orientation on the fibers is analogous.

Remark 1.5.5. The usual notion of orientability of a vector bundle coincides with
Definition 1.5.3 because the transition functions in vector bundles behave like linear maps
on the fibers.

Definition 1.5.6. Let M be a smooth manifold with P a continuous k-plane field on it.
P is said to be orientable provided for each z € M there exists an orientation O(z) of P(x)
that is continuous in the following sense. It is possible obtain an open cover U = {Up,}aea
of M such that the restriction P |y, is defined by k-continuous vector fields X, ..., X2,
O(x) is equal the orientation determined by {X{(x),...,X2(z)} and for all o, € A
the orientation determined by {X® ..., X} and the one determined by {XV, ... X/}
coincides in U, nUp. A continuous k-plane field is said to be tranversely orientable provided
there exists a field complementary to P that is continuous and orientable. A C” (r > 1)
foliation § is said to be orientable (transversely orientable) provided T'F is orientable

(transversely orientable).

Remark 1.5.7. A C" k-plane field on an orientable manifold M is orientable if and only
if it is transversely orientable. A C"(r > 1) foliation is transversely orientable if and only
if there exists a foliated atlas U = {Us,, Ta, Yo} for M such that det(Jgnz) > 0 for all
gap € Iy (see [8], page 38).

Theorem 1.5.8. Let P be a C* (k = 1) p-plane field defined on a smooth manifold M.
Then

(1) P is orientable if and only if there exists a p-form w defined on M satisfying
the following condition. For any = € M and basis {X;,...,X,} of P(x) we have
w(X1,. .., Xn—p) # 0 (in this case, we say that w is positive on P );

(2) P is transversely orientable if and only it is given by the kernel of a p-form of class
Ck1,
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Proof. Suppose that there exists a p-form w such that for all x € M and any basis
{X1,...,X,} of P(z) we have w(Xj,...,X,) # 0. Define an orientation of P as follows. A
basis {v1,...,v,} of P(z) gives a positive orientation of P when w,(v1,...,v,) > 0. Let

{X1,...,X,} defined on U and {Y;,---,Y,} defined on V be C* set of vector fields that
determine P locally and are positively oriented. If ¥; = >} a;;X; then

w(Yy, -, Y,) = det(a;)w(Xq, -, Xp).

Since both w(Y;,---,Y,) and w(Xy,---,X,) are positive, then det(a;;) is positive. It

follows that {Y;} determines the same orientation of {X;}, concluding that P is orientable.

Suppose now that P is orientable. Let () be a complementary (n — p)-plane field
to P. Let {X{,..., X} and {Y}*,..., Y} sets of C* vector fields that determine locally P
and @, respectively, in a domain common U, such that {XT,..., X} is positively oriented.

Define on U, the p-form
wa(XT,- .., X7) = 1 and iyew, = 0.

Cover M by open sets U, and take a partition of unity {\,} subordinate to the cover {U,}.
Define w = Y] A\ w,. It is easy to conclude that iyw = 0 for all vector field X tangent to @
(that is, @ < kerw). We will now proof that w is positive in any positively oriented basis
of P.If U, n Us # &, then (X7,... LX) = Aup(XP, ..., X) for some matriz A,z with

positive determinant. It follows that
wa (X7, .., X5) = det(Ang)

and w(Xlﬁ, . ,Xg) = > Aadet Ayp > 0. In particular, since @) < kerw and w is nowhere-
vanishing form on M, we conclude by dimension argument that ) = kerw. Thus, if P is
orientable, there exists a p-form of rank p such that w is positive in P; if @) is transversely

orientable, there exists a p-form w of rank p such that ) = kerw.

To finish, let w be a p-form of rank p and P(x) = kerw,. Let g be a Riemannian

metric on M. The g-plane field
Q(z) = {veT,M/g(u,v) =0 for all u tangent to P}

is C* and complementay to P. Given x € M and basis {Xi,...,X,} of Q(x), we have
that w(Xy,...,X,) # 0, since w, # 0 for all z € M. It follows that @) is orientable and P

transversely orientable. O

Remark 1.5.9. By this theorem, a manifold M admitting a transversely orientable and
orientable p-plane field is orientable. Indeed, in this case, given w a positive form on P and
n a form with P = kern, the form w A n is a nowhere-vanishing top degree form defined

on M, hence M is orientable.
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Theorem 1.5.10. Let B = {B,p, M, F,G} be a smooth fiber bundle with fiber be an

orientable manifold. Consider the following statements:

(1) M is an orientable manifold;
(2) E is an orientable manifold;

(3) B is orientable.
Then the validity of any two of these statements implies the same for the other.

Proof. First of all, we will obtain an equivalent condition to the orientability of a fiber
bundle. Suppose that B is orientable. Let € be an orientation of F' and {(¢,, U,)} be local

trivializations of B such that B = | J7~(U,) and the transitions functions
Gap = Yo © @Dgl : Uy n Uz — Diff(F)

are always orientation-preserving. Let {)\,} be a partition of the unity subordinate to
the cover {7~1(U,)}. The differential form w = >} A\,1*Q restricts to a volume form in
each fiber. Conversely, suppose that there is a (dim F')-differential form w restricting to
a volume form in each fiber. We will demonstrate that B is orientable. Let (i, U) be
local trivialization of B. Since w is volume in each fiber, there exists a smooth function
f 7 1(U) — R such that 9*Qp = fw. Necessarly we have that f is always positive or
always negative. Consider {(¢4,U,)} the collection of all local trivializations such that the

respective function f, are positive. We have that

9o = (Wa 0tz )" = (U5")" faw = fa((W5")"w) = (fa/f5)Q.

Since (f./fs) > 0, we conclude that g, is orientation-preserving. We will now prove the

theorem.

(1) Suppose that B and M are orientable. Let 2, be an orientation of M and w be a
(dim F)-differential form that restricts to each fiber is a volume form. It is easy to
see that the form n = w A 7*Q), define a nowhere-vanishing top degree form on B.

It follows that B is an orientable manifold.

(2) Suppose that B and M are orientable manifolds. Let €5, and Qp orientations for M
and B respectively. If there exists a differential form w such that w A 7%, = Qp,
the form w restricts to a volume form in the fibers. Hence B is orientable. We can
obtain a solution for this equation showing the existence of local solutions. Indeed,
suppose that w, are local solutions defined on U, with B = | JU,. Let {\,} be a
partition of the unity subordinate to the cover {U,} and w = >} A\ w,. We have that

w AT s = (O Aawa) A Q= D AaWa A Qi) = D Aallp = Qp
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is a global solution. To obtain local solutions, let z = (x!, ..., 2") be alocal coordinate

system to M. Complete this set to obtain (x,y) = (xi0m, ..., 2,07, Y1, ..., Ym) alocal
coordinate system to B. We have that, locally, 7*Q,, = fr*dz and Qp = g(7*dz Ady)

for some never null functions f and g. A local solution is given by w = +(g/f)dy.

(3) Suppose that B and B are orientable. Let w be an orientation of B and 25 be an
orientation of B. Given local trivialization ¢ : 71(U) — U x F of B and orientation
Qp of U, the form w A ¥*Qy is a nowhere-vanishing top degree form on 7=1(U). Tt
follows that w A ¥*Qy = fQp for some never null function f : 7=1(U) — R. Hence
the form ny = (1/f)Q satisfies w A ¥*ny = Qp. Noting that ¢¥*ny = 7*ny, we can
use a partition of unity to obtain a form 7 defined on M satisfying w A 7*n = Qp.

The differential form 7 give us an orientation of M.

]

Example 1.5.11. Let M < R? be the usual Mébius strip. We claim that the normal
bundle B of M is non-orientable. Indeed, the total space of this bundle can be viewed
as an open subset of R®. Thus, B is an orientable manifold. Hence, if we assume that
B is orientable, it follows that so is M. But it is well-known that the Mobius strip is

non-orientable. This proves the claim.

Theorem 1.5.12. Let ¥ be a codimension one embedding orientable submanifold of an

orientable manifold M. The normal bundle of ¥ is trivial.

Proof. Let g be a Riemannian metric on M. To prove the theorem, it enough to show the
existence of a smooth normal vector field N : ¥ — T'M. Given z € S, let {vy,...,v,_1}
any ortonormal set of vectors tangent to ¥ at x and positively oriented. Let N € T, M
such that {N,vy,...,v,_1} is an ortonormal set and positively oriented concerning to the

oriention of M. The association
reX— N(x)eT,M

give us the required smooth nonvanishing normal vector field. Indeed, let {wy, ..., w,_1}
another ortonormal set tangent to ¥ at z and positively oriented. Let N € T, M such that
{N',wy,..., w,_1} is an ortonormal set and positively oriented concerning to the oriention
of M. We have

WL N .o . ANWp—1 =UV1 N ... AN Up—1

and

/
N AW Ao A W1 =NAVIA oAU,

concluding that N = N'. It follows that the assosiation 2 — N(x) is well-defined. It is

easy to see that IV is smooth by using smooth local orthonormal frames. O]
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Remark 1.5.13. Let M = R" and ¥ a codimension one embedding submanifold without
boundary of M. We have that ¥ must be orientable (see [71]). When M # R™, this result
is not valid in general. For example, the two-dimensional real projective space RP? is
non-orientable, but it is a closed embedded submanifold of the three-dimensional real

projective space RP? that is orientable.

Theorem 1.5.14. Let M be an orientable manifold and f : S — M be an embedding.
The normal bundle of f(S') in M is trivial.

Proof. Since m1(G,,) = Zs for n > 2, there exists precisely two n-plane bundle over S' (see
[51] page 70). On the other hand, it is always possible to construct a non-orientable vector
bundle over S! (typically a Mébius stripe). Thus, the two possible vector bundles over
St are the trivial vector bundle and the non-orientable vector bundle (since equivalent

bundles are both orientable or both non-orientable).

Since M is orientable, the total space of the normal bundle of f(S') in M is
orientable. Hence, since S' is orientable, Theorem 1.5.10 ensures that the normal bundle

of S' in M is orientable, therefore trivial by the preceding paragraph. O

1.6 De Rham theory of currents

In this section, we present some tools needed to prove some theorems important
used in this work. Namely, Sullivan’s criterion to a foliation admits a transversal closed
form, Schwartzamnn’s one for the existence of a global cross-section for flows, and Tischler’s
argument by an approximation on the current space. The most significant references for
this section are [13, 67, 68, 73].

1.6.1 The space of smooth differential forms

Let M be a compact manifold (with boundary or not). Denote by D} the space
of all C* p-forms defined on M. For k = oo, we symple write D,'®. We now define a
norm in the space Dz'j. For J = (i1,...,4) 0 <1<k, or J = (J, denote 0, the operator
0y = T where for J = ¢ we set 0;f = f. The set of all possible such J’s with
0 < I < k have the description {J/#.J < k}. Let {(Ua, ¥a)}aer be a finite coordinate atlas

for M. Let w € D]’j. For each oo € I we know that w has unique local representation

(03 (6%
J

13 This notation for arbitrary manifold was introduced by De Rham to denote the space of all compactly
supported C*-differential forms defined on a manifold M.
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where a5 : Uy — R are C*-functions. The function pj, : Df — R defined by

pr(w) = D sup D [0sa5(x)]
ael T€Va 4k
is a norm in D;f. Denote by 74 the topology on D;; genereted by this norm. Clearly 7, < 741
for each k € N. We may equip D, with the topology 7 genereted by (J;>, 7 In what

follows, we will highlight some properties of such spaces.

Theorem 1.6.1. The space D, with the topology 7 become a convex and Hausdorff

topological vector space.

This theorem is a particular case of a more basic general result that states the

topology of a convex space'? is described by a collection of seminorms (see [68], theorem
1.37).

Theorem 1.6.2. The space D, is a Fréchet space'®.

Proof’s sketch. The topology of D, has a countable basis since it is generated by an
enumerable collection of norms ([68], theorem 1.37). Any topological vector space with an
enumerable basis of open sets admits a translation-invariant metric generating its topology
([68], theorem 1.24). Hence D, is metrizable. The completeness follows by a well-known

theorem concerning the term-by-term differentiation of a sequence of functions. O

Corollary 1.6.3. The differential operator d : D, — D, is continuous.

Proof. Since D, is a metrizable topological vector space, it is enough to show that if
Wm — 0 in D,, then dw,, — 0 in Dp;1. In general, if w € D, have a local representation
wy = ,;aydxy concerning to a coordinate neighborhood (U, ¢), ¢ = (21,...,2,), then

the local representation for dw in U is

n

dw|y = Z aa‘]d:vi Adxy.

jal
=1

ox;
From this, it is clear that w,, — 0 implies dw,, — 0. O

Definition 1.6.4. Let E be a topological vector space with a topology 7. A subset B of
E is said to be 7-bounded provided given a 7-neighborhood U of the origin, there exists
t > 0 such that B < tU 1°,

14 A topological vector space E is said to be a convex space if there exists a basis of convex neighborhoods
of the origin. Some authors use the terminology locally convex space instead of convex space.

15 By a Fréchet space we mean a convex, complete, and metrizable topological vector space.

16 This notion is equivalent to the following condition: a subset B of a topological vector space E is
bounded provided given any sequence (z,) in E and any sequence of real numbes (\,,) converging to
zero, the sequence (A, x,) converges to zero [38].
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Remark 1.6.5. Let E¥ be a convex Hausdorff topological vector space with a topology
given by a family of seminorms P. A subset B of E is bounded if and only if p(B) is
bounded for each p € P (see [68], theorem 1.37). It follows that a subset B of D,, is bounded
if and only if py(B) is bounded for all .

Theorem 1.6.6. The spaces D,, satisfy the Heine-Borel property'”.

Proof. Let B be a bounded closed subset of D,. Since D, is metrizable, to show that
B is compact, it is enough to show that every sequence (w,) contained in B has a
convergent subsequence. Let (w,) be a sequence of elements in B. Since B is bounded,
there exists a sequence of positive real numbers M, such that py(w) < My, for all w € B. Let
U = {(U,, ¢a)},_; be a finite atlas for M and {\,} be a partition of the unity subordinate
to the cover U. Suppose we have shown that given « and sequence (w,) contained in
B, then there exists a subsequence (w,, ) such that the restriction \,w,, converges to
some w, € D,. From this, we can obtain a common subsequence (w,, ) such that (A,wy, )

converges to w, for all « = 1,...,[. It follows that

Wn,, = 2 )\awnk ? Z Ways

concluding that B is compact. We will now show that given a sequence (w,,) containing in
B, there exists a subsequence of (w,, ) and w € D, with Aqw,, — w. Since w,, = >, A\qwy,
we have pj(Aawn) < My for all n and a. Writing Aow, = >, a5,dxg, then | 0 a5 ; |< My
when #.J < k. This implies that the collection of functions d;ay ; is equicontinuous in the
compact set suppA,. It now follows by the Ascoli’s theorem and Cantor diagonal process
that there exists a subsequence (Aywy, ) such that d;a;, ; converge uniformly in supp,.

It follows that (A,wp, ) converge in D,,. O

Remark 1.6.7. It is easily seen a normed vector space possesses a bounded neighborhood
of origin. The converse is also true: a topological vector space with a bounded neighborhood
of the origin is a normed space (see [38]). We also know that a normed space admits a
compact neighborhood of the origin, if and only if it is finite-dimensional. It then follows

from Theorem 1.6.6 that D, does not admit a norm generating its topology.

Definition 1.6.8. Let E be a topological vector space and A and B subsets of E. A is
said absorb B, if there exists ¢t > 0 such that B < tA. The set A is said to be balanced
if «C < C for all | a |< 1. The set A is said to be absolutely convez if it is convex and
balanced. The topological space E is said to be bornological space provided any absolutely

convex set that absorbs any bounded set is a neighborhood of the origin'®.

17 A topological vector space E is said to satisfy the Heine-Borel property provided every closed bounded
subset of E is compact.

18 Bornological spaces were studied first by G.W. Mackey. The name bornological coined by Bourbaki is
a reference to the French word borné for bounded.



Chapter 1. Background 50

Remark 1.6.9. The spaces D, are bornological since they are Fréchet. In general, a
convex Hausdorff topological space E' is a bornological space if, and only if satisfies the
following condition. Every linear transformation 7" from FE into a convex topological space
that is bounded is also continuous. Some authors use this equivalent condition to define

bornological spaces (for example, [5] section 4 and [67] page 81).

1.6.2 The space of currents

In [13], G. De Rham defined the notion of current!' as a linear functional T'
in the vector space &, of all C*-forms with compact support that are continuous in the
following sense: if (wy,) is a sequence of differential forms with support contained in a single
local coordinate system such that each derivative of the coefficients of wy in this local
representation tends uniformly to zero, then T'(w;) — 0. This notion of convergence is one
we call weak convergence on the topological dual of E (the topology on E given implicitly
by the notion of convergence in it). The notion of continuity of currents presented by G.
De Rham follows as in L. Schwartz [73], chapter III.

The topology on D, did is not given explicitly in De Rham’s book. However,
G. De Rham makes the following observation: let E be a vector space where the notion
of a bounded set is defined. Then, one can equip E with a topology 7 that makes F a
topological vector space. This topology is defined as one with a basis of the neighborhood
of the origin given by a collection C, generated by all sets that absorbs any bounded set.
On the other hand, L. Schwartz defined explicitly the topology on £ = 5(') in terms of the
bounded subsets of £ and showed the reflexivity of such spaces. In what follows, we describe
the topology for such spaces explicitly and show Schwartz’s reflexivity theorem. For this
purpose, we present some results in topological vector spaces’ theory. For simplicity, we

restrict attention to compact manifolds, where &, and D, coincides.

Definition 1.6.10. Let E and F' be vector spaces. We call (E, F') a dual pair if there

exists a nondegenerate bilinear form (-,-) : £ x ' — R.

The interesting case is when F' is the set of all continuous linear functionals
defined on E'. The fact of (E, E') be a dual pair follows by Hahn-Banach’s theorem for
convex spaces (see [68]) chapter 3). In particular, (£, E*) is a dual pair, where E* is the

algebraic dual of F.

Let (E, F) be a dual pair. Each y € F' can be viewed as a function y : E — R
given by y(x) = (z,y). The smallest (coarsest) topology in E so that every function y,
y € F, is continuous is called weakly topology and denoted by o(F, F'). Analogously one
can define the weakly topology o(F, E) on F.

19 The choice of the term “current” is motivated by the fact that in ordinary 3-space, “1- dimensional
currents” can be interpreted as electrical currents (De Rham).
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Definition 1.6.11. Let (E, F') be a dual pair. The polar of a subset A of E is the set

A" ={yeF/|{z,y <1}

The polar of a subset B of F'is defined analagously.

Next, we will highlight some properties of taking dual of a subset. One can find

proof of these facts in many references, for example [5], [43] and [67].
Theorem 1.6.12. Let (£, F') be a dual pair. Then

(1) A< B implies B® = A%

(2) (UAa)® =M Ag

(3) Ac A%,

(1) (AP = 1A%

(5) A is absolutely convex and o(F, E)-closed;

(6) The polar of a subset A absorbs every one-point set if and only if A is o(F, F)-
bounded;

(7) [Bipolar theorem] If A is an absolutly convex subset of E, then A% = A7 EF)20

Let (E, F) be a dual pair and A a o(F, F')-bounded subset of E. Since each
y € F gives a continuous linear functional on F, we have that (A, y) is a bounded subset
of R. It follows that the rule

paly) = TSAP“ {x,y) |}

define a seminorm on F' (see 1.6.4 and 1.6.5).

Definition 1.6.13. Let (£, F') be a dual pair and A a collection of o(E, F')-bounded
subsets of E. The collection A is said to be saturated provided

(1) Given A, B € A, there exists C'€ A with Au B < C
(2) M e Aforall Ae A and \ > 0;

3) UA=FE.

20 Given X topological space and Y < X, the symbol Y, as usual, denotes the closure of Y in X.
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Let A be a saturated collection of o(F, F')-bounded subsets of E. The family
of seminorms {p4/A € A} defines a convex topology on F' called topology of uniform
convergence on the sets of A or topoloy of A-convergence. Such topology has as a basis of
the neighborhoods of the origin the collection B4 = {A°/A € A}. By considering different
saturated collections A we obtain different topologies on F' . The smallest (coarsest) one
is the weak topology o(E, F') and it is precisely the topology of uniform convergence on all
finite subsets of E. The largest (finest) one is obtained by considering the collection of all
o(E, F)-bounded subsets of E. This topology is denoted by S(E.F") and is called strong
topology.

Let (E,F) be a dual pair. Then, the topological dual of E with the weak
topology if equal to F , that is, (E,o(E, F)) = F. A fundamental problem in the theory
of convex topological vector spaces is to characterize the topologies 7 in E for which
(E,7) = F.If 7 is a such topology, we say that 7 is a topology for the dual pair (E,F).
The Mackey-Arens Theorem characterizes all topologies of a dual pair (E, F).

Theorem 1.6.14 (Mackey-Arens). Let (E, F') be a dual pair with E convex and Hausdorff.
Then the topological dual of F is F' if and only if the topology on E is the topology of

uniform convergence on a collection of absolutely convex o(F, F)-compact subsets of F.

By this theorem, there exists the largest topology of a dual pair (E, F). It is
sometimes called Mackey topology and denoted by 7(FE, F'). A space with the Mackey

topology is called Mackey space. To show this theorem, we need to state some results.

Theorem 1.6.15 (Banach-Alaoglu-Bourbaki®!). Let E be a convex Hausdorff topological
vector space. Then U° < E' is o(E’, E)-compact for each neighborhood U of the origin in
E.

Lemma 1.6.16. Let (E, F') be a dual pair. Let A a convex subset of E. The closure of A
is the same for every topology of the dual pair (E, F).

Proof. Let T a topology of the dual pair (E, F'). Since o(F, F') c 7, we have the inclusion
A ATED. Now, let z € E iy By Hahn-Banach theorem, there exists a continuous
linear functional f defined on E such that f(x) ¢ f(A). Since (E,7) = F, we have that
f ={,y) for some y € Y. It follows that there exists € > 0 such that | (x — a,y) |> € for
allae A. Let U = {z € E/ | {z,y) |< €}. Then, x + U is a o(E, F)-neighborhood of the
x not meeting A. Thus, x € E — A°EH concluding that £ — A" < E — A5
—)

A

. Hence

— A", concluding the proof. O

21 A proof of this theorem for separable normed vector spaces was published in 1932 by Stefan Banach.
The first proof for the general case was published in 1940 by the mathematician Leonidas Alaoglu.
Some authors attribute the generalization to convex space to the mathematician’s group N. Bourbaki;
for example, [43] and [49].
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Definition 1.6.17. Let £ and F topological vector spaces. A collection £ of linear maps
of F to F'is said to be equicontinuous provided given any neighborhood V' of the origin in
F| there exists a neighborhood U of the origin in E, depending on V', such that T(U) < V
for all T' e L.

Lemma 1.6.18. Let E be a convex Hausdorff topological vector space with topological
dual E'. Let A" the collection of all equicontinuous subsets of E'. The topology of E is

the topology of A'-convergence.

Proof. Let ® € A" and U be a neighborhood of the origin in E. Since ® is an equicontinuous
set of linear functionals on F, there exists ¢ > 0 such that ®(U) < (—t,t). Thus, ® < (;U)°.
It follows that U < (3U)" < ®° concluding that ®° is a neighborhood of the origin in E.

Now, let V' be an absolutely convex and closed neighborhood of the origin in E.
By Lemma 1.6.16, V is weakly closed. By Bipolar Theorem 1.6.12, V% =V < U. Since
V0 e A (it follows because VO(V) < [—1,1]), we have that U is a neighborhood of the

origin concerning the topology of uniform convergence on the sets of A’ m

Lemma 1.6.19. Let (E,F) be a dual pair and A a collection of saturated o(E, F)-
bounded subsets of E. Then the topological dual of F' under the topology of A-convergence
is |J4eq A%, the bipolars being taken in F*.

Proof. Let E be a convex Hausdorff topological vector space. Firstly, we will show that
the topological dual of E is | J;;5 U° (the polar being taken in E*), where B is any basis
for the topology on E. Let 2" € E'. By the continuity of z, there exists U € B such that
z'(U) < [~1,1]. It follows that z" € U°. Conversely, let U € B and z* € U°. We will
show that x* is continuous. Let V' be a symmetric neighborhood of the origin such that

V +yc U for some y € U. Given x € V, since —z € V and sup,.; | 2*(z) |< 1, we have

| 2% (x) [=] 2(y) — 2™ (y — @) |<[2%(y) | + | 2™ (y —2) [= 2.

Thus, given € > 0 then 2*(¢/2V) < (—¢, €) concluding that 2* € £’

Now, a basis for the topology of A-convergence on F is given by {A°/A € A}.
Thus, the dual of F for the topology of A-convergence is given by J 4 4 A%, the bipolars
being taken in F'*. O

Proof of Mackey-Arens Theorem. Suppose that E has F' as topological dual. Then, by
1.6.18 the topology of E is the topology of uniform convergence concerning the collection
of all equicontinuous subsets of F. In particular, given a neighborhood U of the origin in
E, since the set U° is equicontinuous, then U% < F is a neighborhood of the origin. On

the other hand, Banach-Alaoglu-Boubaki’s theorem ensures that U° is o(F, E)-compact.



Chapter 1. Background 54

It follows that the topology of F is a topology of uniform convergence on a collection of

absolutely convex o(F, E)-compact subsets of F.

Conversely, suppose the topology of E is a topology of uniform convergence on
a collection A of absolutely convex o(F, E')-compact subsets of F. Since (F, F) is a dual
pair, Lemma 1.6.19 ensures that the dual of E is [, 4 A%, the bipolars being taken in
E*. Now, compact sets are closed in a Hausdorff space. Hence any A € A is an absolutely
convex and closed set. We can apply Bipolar Theorem 1.6.12 to conclude that the A% = A.
It follows that the dual of F is F. O]

Definition 1.6.20. Let E be a convex Hausdorff topological vector space. The topological
bidual of E is the topological dual of E concerning the strong topology. It is denoted by
E". In symbols, E" = (E', B(E, E)) .

For each x € E we have a well-defined element 2 € E" given by z(z') = z' ().
Indeed, note that
N —ee)={zx € E/|z () ]|< €

is a neighborhood of the origin concerning the o(E', E)-topology. In particular, a neighbor-
hood of the origin concerning the strong topology S(E’, E). Therefore x : (E', B(E', E)) —

R is continuous linear functional. Thus, we can identify E with a vectorial subspace of E".

Definition 1.6.21. Let E be a convex Hausdorff topological vector space.

(1) E is said to be semi-reflexive provided the inclusion E < E” is surjective; that is, if

. . . /
every continuous linear functional on £ has the form J, for some z € E.

(2) E is said to be reflezive provided the inclusion E — E" is a topological isomorphism.

Consider the dual pair (E', E). Note that the following inclusions are always
true

o(E,E)c&cT(EE)c B(E,E).

Suppose that E is semi-reflexive. Then we can identifie E with E” (identification as set).
Since the topology already defined on E' is the stronger one and, on the other hand,
(E')" = E, then the topology of E is contained in the Mackey topology. It follows that
7(E',E) = B(E', E). Conversely, if 3(E', E) = 7(E', E), then (E')" = E by Mackey-Arens’

theorem. In short, we have:

Theorem 1.6.22. Let E be a convex Hausdorff topological vector space. Then E is semi-

reflexive if and only if the Mackey topology on E’ coincides with the stronger topology.

Below is given a more workable characterization of semi-reflexive spaces.
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Theorem 1.6.23. A convex Hausdorff topological vector space E is semi-reflexive if and

only if the weakly closure of any bounded subset of E is weakly compact.

Proof. Suppose that E is semi-reflexive. Let A be a bounded subset of £. Then, A° is a
neighborhood of the origin for 8(E', ). By 1.6.22, 3(E', E) = 7(E', E). Since 7(E', E) is
the topology of uniform convergence on all absolutely convex o(E, E')-compact subsets of
E, there exists an absolutely convex o(E', E)-compact subset B of E with B® = A°. It
follows that A = A% = B = B concluding that the closure of A is o(E, E')-compact.

Conversely, suppose that the closure of all bounded subset of E is weakly
compact. Let A a bounded subset of E. Since A is bounded, the smalest absolutely convex

set containing A is bounded. Did is not difficult to see that this set is characterized by

P(A) = {re Bje =) aw,a € A Y | ai|< 1}

Since the weakly closure T'(A) of I'(A) is weakly compact, we have that (T'(A))° € 7(E', E).
On the other hand, A° € B(E', E) and (T'(A))°? < A°. It follows that B(E, E) c 7(E', E)
and, consequently, (E', E) = T(E E), concluding that E is semi-reflexive. ]

Definition 1.6.24. A barrel (tonneau) in a topological vector E space is absolutely convex
closed subset of E that absorb every one-point set. A convex topological vector space is

said to be barelled (tonnelé) provided every barrel is a neighborhood of the origin.

Banach-Steinhaus’s theorem is one of the most powerful tools in functional
analysis. A version of this theorem holds in barreled spaces, and it is deeply associated

with the notion of reflexivity, as we will see now.

Theorem 1.6.25. Let E be a convex Hausdorff topological vector space with topolog-
ical dual E'. Then E is barreled if and only if every o(E', E)-bounded subset of E is

equicontinuous.

Proof. Firstly, given ® be a subset of E', if the polar ®° in E is a neighborhood, then ®

is equicontinuous. Of course, in this case, we have ®(®°) < [—1,1].

Suppose now that E is barreled. Let ® be a U(E/, E)-bounded subset of E'.
Then, ®° absorb any one-point set (1.6.12 iten 6). It follows that ®° is a barrel in E. Since

E is barreled, then ®° is a neighborhood of the origin in F. Hence ® is equicontinuous.

Conversely, suppose that every o(E', E)-bounded subset of E’ is equicontinuous.
Let B a barrel in E. Since B is (absolutely) convex and closed, it is o(E, E')-closed by
1.6.16. It follows from Bipolar Theorem 1.6.12 that that B% = B. Again by 1.6.12, since
B% = B absorbs every one-point set, then B° is o(E’, E)-bounded, hence equicontinuous
by hypothesis. Thus, there exists a neighborhood U of the origin in E with B®(U) < [-1,1].
It follows that U < U" < B = B, concluding that B is a neighborhood of the origin. [J
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Lemma 1.6.26. In a convex space F, a barrel absorbs every convex compact set.

Proof. Let B be a barrel in E and K a compact convex subset of E. We will show the

existence of a positive integer n, an open set U, and a point z € K with
Kn(x+U)cnB.

Firstly, note that compact sets are bounded (it is easy to show) and that any convex set
A containing the origin satisfies A € AA for all > 1. Thus, there exists A > 1 such that
K —x < A\U. Hence

K—-zc MK —12)n AU c A(nB —z).

Since B is absorbing, there exists p > 1 such that A\nB < uB. It follows that
KcnB—(A—1)x c uB.

Suppose then that no n, U, z can be found to satisty the condition K n (z + U) < nB.

Then, taking n = 1, any zy € K and any open set Uy, there is some
1‘16Kﬂ(l‘0+Uo)ﬂ(E—B).

Since (xg + U) N (E — B) is an open set, there exists some open set U; with z; + U;
(o + Up) n (E — B). Take n = 2,z = x;,U = U; and repeat the process. So, we obtain
a decreasing sequence (K n (z, + U,)) of closed non-empty sets contained in K. Since
K is compact, they have a common point y € K. For each n, y ¢ nB, and so B is not

absorbent, wich is a contradiction. O

Theorem 1.6.27 (Mackey [46], theorem 7). The same sets are bounded in every topology

of a dual pair.

Proof. Let ¢ be any topology of the dual pair (E,E’). Then the &bounded sets are
certainly o(E, E')-bounded. Conversely, let A be a ¢(E, E')-bounded set and U be a
closed absolutely convex &-neighborhood. By 1.6.12 item 6, A° absorbs any one-point
set. Since A is absolutely convex and closed, it follows that A° is a barrel in E' (under
o(E,E")). Since U° is convex and o(E', E)-compact by 1.6.15, then A° absorbs U° by
1.6.26. Therefore U absorbs A%. But U% = U by the bipolar theorem. It follows that
A < A hence U absorbs A. Thus A is £&-bounded. O

Theorem 1.6.28. Let E be a convex Hausdorff topological vector space. Then F is

reflexive if and only if is semi-reflexive and barreled.

Proof. Each equicontinuous subset of E' is bounded in E’. On the other hand, the collection
of all equicontinuous subsets of E’ is saturated. Hence we can consider on E” the topology of

uniform convergence on all equicontinuous subsets of E'. Denote this topology by e(E", E').
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Suppose that E' is barreled. Let ® be a bounded subset of E. Then, ® is O’(El, E)-bounded,
since the same sets are bounded in every topology of a dual pair 1.6.27. Since F is barreled,
we have that ® is equicontinuous subset of E'. It follows that a bounded subset of a
barreled space is equicontinuous. Thus, 3(E", E') = ¢(E", E).

As observed in 1.6.18, E has the topology of uniform convergence on the
collection of all equicontinuous subsets of E'. Thus, given an absolutely convex closed
neighborhood U of the origin in E we have that U, the polar taken in E, is a neighborhood
of the origin to e(E",E') = B(E", E'). Then, if E is barreled and semi-reflexive, we have
that U = U is a neighborhood of the origin for the topology of E and for the topology

of E". It follows that a barreled and semi-reflexive space is reflexive.

Conversely, suppose that F is reflexive. Then FE' is trivially semi-reflexive. So
remains to show that E is barreled. Let B be a barrel in E. Since B absorbs every
one-point set and B% = B, we have by 1.6.12 that B° is ¢(E’, E)-bounded. Since E is
reflexive, the topology of F is the topology of uniform convergence on the collection of all
o(E', E)-bounded subsets of E'. Consequently, B’ = B is a neighborhood of the origin in
E, concluding that E is barreled.

]

Theorem 1.6.29. Every convex topological vector space E, which is a Baire space?, is

barreled.

Proof’s sketch. Let B be a barrel in E. Given x € E, there is t > 0 such that z € tB.
Since B is totally convex given s > t we have that x € sB. In particular, z € nB for some
integer n > t. Thus E = ( J,-, nB. Since E is a Baire space, there exists n € N such that
int(nB) # . It follows that int(B) # J. Let y € int(B). A general fact about convex
sets in a topological vector space is that it contains the interior of lines; that is, if B is
convex and z € int(B), y € B, then the open line segment joining x to y is interior to B.

From this, we have

1 1
0= AR int(B).
Then every barrel is a neighborhood of the origin concluding that E is barreled. O]

Definition 1.6.30 (Currents). A continuous linear functional ¢ : D, — R will be called
a p-currents on M. The space D;, with the strong topology /3 (E', E) will be called space

of p-currents on M.

The strength of the current theory resides in the following beautiful theorem,

due to L. Schwartz 3.

22 A topological space X is said to be Baire if the intersection of any countable collection of dense open
subsets of X is dense in X. See [68] chapter 2.
23 Schwartz established this property for p = 0 and M = R". See also [13], page 89.
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Theorem 1.6.31 (Schwartz, [73]). The space D, is reflexive.

Proof. By 1.6.6 the space D, satisfies the Heine-Borel property. Therefore the closure
of each bounded subset of D, is compact. Since compact subsets are certainly weakly
compact and the same sets are closed in any topology of a dual pair, we conclude from
1.6.23 that D, is semi-reflexive. On the other hand, D, being metrizable is a Baire Space
by the Baire Theorem. Therefore, by 1.6.29, D, is barrelled. So, since D,, is semi-reflexive
and barreled, it is reflexive by 1.6.28. m

Remark 1.6.32. A barreled Hausdorff topological vector space E satisfying the Heine-
Borel property is called a Montel space. Historically, this nomenclature honors the French
mathematician Paul Antoine Aristide Montel (29 April 1876 — 22 January 1975), who
showed that the space of holomorphic functions has this property. It follows from Theorem
1.6.31 that any Montel space is reflexive. In the following, we will highlight a property

important in these spaces.

Theorem 1.6.33. The dual of a Montel space is Montel.

Proof. Let E be a Montel space. So, just like in Theorem 1.6.31, one can show that E is
reflexive. It follows that £’ is reflexive, hence barreled by 1.6.28.

We will now demonstrate that E satisfies the Heine-Borel property. First of all,
since E' is barreled, it follows from 1.6.25 and 1.6.27 that every bounded subset of E is
equicontinuous. On the other hand, since the bounded subsets of E are relatively compact
and the topology on E' is one of uniform convergence on the collection of all bounded

subsets of E, we conclude that the topology on E' is one of compact convergence?*.

Let X be an equicontinuous subset of E'. We claim that the topology of
compact convergence and the weakly topology coincides on X. We have already said that
the topology of the A-convergence is the same as the generated by the family of seminorms

{pa/A € A}. This topology as a subbasis for it the collection of all sets
V(pA,:(:,n) = {y/pA(fE - y) < 1/”}714 € A,l‘ € E,TL eN.

Let then C' be a compact subset of E, fo € X and ng € N. The set V' (pc, fo, 1/ng) n X is a
subbasis open set for the topology of compact convergence on X. Since X is equicontinuous,
there is a neighborhood U of origin with sup . x ,er |(fo — f)x| < 1/ng. Since C' is compact,
there are finitely many x; € C' with C' < Ule(a:i + U). Each y € C therefore takes the
form y = x; + x, v € U. Then, given f € X with f € ﬂleV(pxi,fo, 1/2ng) (a weakly
neighborhood of fj), we have

po(f = fo) = swpl(f = folyl < sup |(f = fo)wil +supl(f = fo)z| < 1/no.

i=1,..

24 This topology is one of uniform convergence on the collection of all compact subsets of E.
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It follows that a subbasis open set for the topology of compact convergence on X is an
open set for the weakly topology on X. Since the weakly topology is contained in the

topology of compact convergence, this proves the claim.

Now, ler X be a closed bounded subset of £ (hence equicontinuous). Let U be
a neighborhood of the origin in E such that X < U° (it follows from equicontinuity). By
Banach-Alaoglu-Bourbaki theorem, U° is weakly compact. Since X is closed, it follows by
1.6.16 that X is also weakly closed, hence weakly compact (because then X is a weakly
closed subset of the weakly compact set U°). Now, on the one hand, the topology of
compact convergence and the weakly topology coincides on X, on the other the topology

on E is the topology of compact convergence. Therefore, X is compact. O

Remark 1.6.34. Let w € D,. We can see w as current w : D, — R by the rule
w(n) = SM w A 1. Such currents are called diffuse currents. We claim that the inclusion
L:D,— D; is injective and continuous. Indeed, let B be a bounded subset of D,,. Firstly,
we will show that ¢(B) is weakly bounded (hence bounded by 1.6.27). Let ¢ : D, — R

be an arbitrary continuous linear functional. By 1.6.31, ¢ = n for some 7 € D,. Thus,

o((B)) = 1((B)) = «(B)(n) = fMB Ap=z an A B = +q(B)

is bounded, since 1 : D, — R is a continuous linear functional. It follows by 1.6.5 that
1(B) is weakly bounded. Since D, is a bornological space and the inclusion ¢ : D, — D,
takes bounded subsets of D, onto bounded subsets of Dq/, it follows by 1.6.9 that ¢ is
continuous. Suppose now that w is a nonzero p-form. Let x € M with w, # 0 and (U, ¢) be
a local coordinate neighborhood around x € M such that w |y# 0. Let w = Z#J:p aydz’
the local representation of w in this local coordinate neightborhood and J; such that
ay, # 0. Let V < U be a neighborhood of the origin such that aj, not change the signal
on V. Let f: M — R be a nonnegative smooth function with support contained in V'

satisfying f(z) = 1. If n = aj,dz”, then
w(n)zf wAn:iJ fajdx' A ... Ada"™ # 0.
M v

Therefore, if w # 0 the inclusion of w in D:I gives a nonzero element. It follows that the
inclusion D), — D; is injective. Another significant fact established by L. Schwartz is the
density of D, in D, ([73] page 75).

Remark 1.6.35. Let L : E x F' — Z be a bilinear function. L is said to be separately
continuous provided it is continuous in each factor. Let E be a barreled topological vector
space and F' and Z be any topological vector spaces. Then a separately continuous bilinear
function L : F x F — Z is sequentially continuous. In particular, if £ and I are
metrizable, then L is continuous. Indeed, let (x,,y,) be a sequence converging to (zg, yo)-
We claim that L(z,,y,) converges to L(xg,yo). In fact, let V, W be neighborhoods of the
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origin in Z with V 4+ V < W. Define f,(x) = L(z,y,). So, f, € E". Hence, for each x € E,
sup, {fn(z)} is bounded. Denote ® = {f,,n € N}. Since the seminorms p,(f) = |f(x)|,
r € E, generate the topology o(E', E) and p,(®) is bounded for each x € E, it follows that
® is o(E', E)-bounded (see 1.6.5). On the other hand, since E is barreled 1.6.28, the set ®
is equicontinuous by 1.6.25. Thus, there exists a neighborhood U of the origin in E with
®(U) < V. So, for sufficiently large n we have that x, < zo + U. Hence f,(z, — zo) € V,
and L(xo,yn — o) € V by the continuity of L at y. It follows that

L(xmyn) - L(x07y0) = fn(xn - {L‘()) + L(anyn - yO) eV+VcWW

for large n. Thus L(x,,y,) — B(xo,yo) when (x,,y,) — (2o, yo), concluding that L is

sequentially continuous.

Remark 1.6.36. Let E be a convex Hausdorff topological vector space. Consider the
following separately continuous bilinear map e : E' x E — R defined by e(z’, 2) = 2'(z).
We claim that this bilinear map is continuous if and only if F is normable. Indeed, suppose
that there is a neighborhood U of origin in E and a neighborhood V' of the origin in E’
satisfying V(U) < [—1,1]. Tt follows that V < U, therefore, UY absorbs every one-point
set (because every neighborhood of the origin absorbs them). Hence, by 1.6.12, U is
o(E, E')-bounded. Tt follows by 1.6.27 that U is bounded. But by Remark 1.6.7, normed
topological vector spaces are the only ones that admit a bounded neighborhood of the

origin. Hence, £/ must be normed.

1.6.3 The De Rham Theorem

In his doctoral thesis, G. De Rham showed that for each p > 0, the singular
homology group H,(M;R) and the differential cohomology group H?,,(M) are dual real
vector spaces via the operation (w,c) — Scw. In a posterior work, he demonstrated that
chains and differential forms are two aspects of currents. He introduced the notion of
the De Rham homology and identified it with the singular homology. Today it is well-
known that any homology (cohomology) theory with the same value in an one-point
set is equivalent in the category of finite CW-complexes. It follows that the singular
cohomology with coefficients in R of a manifold is equivalent to De Rham’s cohomology?®.
This axiomatization was made by S. Eilenberg and N. Steenrod after the work of G. De
Rham (see [84] chapter 3).

Theorem 1.6.37 (De Rham). The bilinear map

k:HY)p(M) — HP(M;R)

25 Since one can triangulate any smooth manifold, each of them is equivalent to a finite CW-complex.

For example, see [52] theorem 3.5 and corollary 6.7.
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given by k([w])([o]) = § w is an isomorphism between the De Rham cohomology and the

singular chomology?°.

Definition 1.6.38. Let E and F' be vector spaces and T : . — F' be a linear map. The
transpose of T, denoted by T', is the linear map 7" : ' — E' defined by

Lemma 1.6.39. Let E and F reflexive Hausdorff topological vector spaces. Then a linear

map T : E — F is continuous if and only if T : ' — E’ is continuous.

Proof. We claim that (T'(A))° = T’fl(AO) for any vector spaces F, F' and linear function
T:FE — F. Indeed:

peT (A%« T'(p) e A = p(T(A)) c [-1,1] = p e (T(4))".

Suppose now that E and F are Hausdorff reflexive topological vector spaces. Then E has
the topology of uniform convergence on the collection of all bounded subsets of E and F'
has one of uniform convergence on the collection of all bounded subsets of F'. Suppose that
T is continuous linear function from E to F. Let V be a neihgborhood of the origin in E’.
There exists a bounded subset A of E with A° = V. Since T is continuous and A bounded,
then T(A) is bounded. It follows that U = T’ (A°) = (T((A))° is a neighborhood of the
origin in . Hence, T'(U) = A° = V, concluding that 7" is continuous. Suppose now that
T’ is continuous. So, since E' and F are reflexives Hausdorff spaces, from what we already
showed follows that the function 7" : E* — F" is continuous. That is, 7" is a continuous
linear function from E to F. Since p(T" (z)) = ¢(T(x)) for all p € F', it follows from
Hahn-Banach Theorem that 7 = 7" and, therefore, T is continuous. O

Definition 1.6.40. let M be a manifold. The boundary operator
0: Dp — Dpfl

is defined as the transpose of the differential operator, that is, @ = d . Since the differential
operator is continuous and D, reflexive for all p, then the boundary operator is continuous.
The set Z, = ker 0 is called space of p-cycles of M and the space B, = im? is called space
of p-boundaries of M. The ph-De Rham homology of M is defined by H]?R(M) = Z,/B,.

For each smooth p-chain ¢, one can associate a p-current by the rule ¢(w) = Sc w.
Since any continuous map between smooth manifolds is homotopic to a smooth map, one
can define the homology of M by using smooth singular chains. So, we can work in the

smooth category. Denote by ds the usual boundary operator defined on the complex of

26 For a modern proof see [87].
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smooth singular p-chains. The combinatorial version of the Stokes’ theorem states that for

a singular p-chain ¢ and a smooth (p — 1)-form w,

J w = de.
osc c

It follows that the singular boundary operator d, and the boundary operator ¢ = d

coincides in the set C,(M;R) of all smooth singular p-chains. Thus, the inclusion
i: Cy(M;R) — D,
induces a homomorphism
is : Hy(M;R) — HP™(M).

Now, the evaluation map e : D; x D, — R induces a well-defined bilinear map

HI?R(M) x Hhp(M) — R
([w], []) — ¢(w).
This bilinear map induces an homomorphism

Ju : HY"(M) — (Hpp(M))'
By the De Rham Theorem, (H%,(M))" is canonically identified with H,(M;R) and the

homomorphism j, can be viewed as a homomorphism of H#(M) into H,(M;R).

Theorem 1.6.41 (De Rham [13], Chapiter IV). The homomorphisms i, and j,. are

mutually inverse.

Theorem 1.6.42. The subspaces B, and Z,, are closed.

Proof. Since D;) is a Hausdorff space, any one-point set in D;, is closed. Hence, since the

boundary operator is continuous, it follows that Z, = 07(0) is closed.

By Theorem 1.6.41, a cycle ¢ € D;, is a boundary if and only if take zero value

in every closed p-form w € D,. Thus

Bp = ﬂ w_l(o)a
weDy, dw=0
where w : D, —> R is the continuous linear functional w(p) = ¢(w). It follows that B, is

. / . . . . . . /
a closed subset in Dp since it is an intersection of closed subsets in Dp. ]

Remark 1.6.43. By De Rham Theorem, given any set ¢y, ..., ¢ of p-cycles in a manifold
M where among which there is no homology (that is, such that {[ci], ..., [cx]} is a linearly
independent subset of H;(M;R)) and real number ry, ..., 7y, there exists a closed p-form
w such that Sci w = r;. This was stated by H. Poincaré in his famous Analysis Situs (1895)

without proof (see [40] for a historical account).
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1.7 The Hodge Theorem

The Laplace operator on the Euclidian space has a generalization for Riemannian
manifolds observed for the first time by E. Beltrami and defined for differential forms by
W.V.D. Hodge. This operator now is called Laplace-Beltrami operator. A differential form
living in the kernel of the Laplace-Beltrami operator is called harmonic. In his book [36],
W.V.D. Hodge shows that the space of forms has an orthogonal decomposition, where a
factor is the space of harmonic forms, which he showed to be a finite-dimensional vector
space. Hodge’s demonstration was not entirely correct, and the correction appears in Weyel
paper [88]. A detailed historical account and proof of Hodge’s decomposition theorem

appears in [13].

Suppose now that M is an oriented Riemannian manifold. Here, to avoid
confusion with the preceding section, we denote the space of smooth p-forms on M by
OP(M) instead of D,. We can induce a scalar product in APT* M as follows. Let {vq,...,v,}
be a positive ortonormal basis for T, M and {wi,...,w,} be the dual basis for T M, that

iS, wi(vj) = 51] Set <wz-,wj> = 5@']' and

{wiy A Awy,wiy A Awjy) = det({wiy, wi, ) = 801, ..oy I, Jis ey Jp)-
Let {wi,...,w,} be a positive orthonormal basis for T*M. The Hodge star operator,
#+ 1 AP — Af is defined as the linear extension of

#( Wi, A AWy) = Wi, A A W,

where {i1,...,%, j1,- .. Jq} 1S an even permutation of {1,...,n}. Clearly there is an induced

map, still denoted by the same symbol,
«: QP(M) — QUM).
Since
{wiy A AWy, Wi A AW =S8N0, s lp, J1, -0, Jq) s

we can rewrite the scalar product in APTF M as

wymp = #(w A ).

From these pointwise scalar products we obtain a global scalar product in Q7(M) by

integration:
(w,m) = f W A #g).
M

Note that this scalar product induces a L?*norm in QP(M), as usual, putting || w ||=

1/2

(w,w)"?. We will now obtain the adjoint of the differential operator concerning the scalar

product (-,-) (for a closed manifold M). Since +* = (—1)?4, we have

dw A #n) =dw A sn+ (—1)Pw A dn =
dw A sn—w A L£xxd*n
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and
SM d(w A #n) = SM dw A =1+ (=1)Pw A dn =

Sde/\*n—SMw/\i**d*n:
(dw,n) — (w, £ = d=n).
It follows by Stokes’ theorem that

(dw,n) = (w, £ = d=*n),

where the signal is (—1)"®*D*! Thus, § = (—1)"®*D+! « d« is the adjoint of d. In this
situation we define:

(1) The codifferential

6 QP(M) — QPY(M), §=(—1)"PrIH s gs = —div
where div is the divergence operator acting on p-forms.
(2) The (geometers) Laplacian or Laplace-Beltrami operator
A:QP(M) — QP(M), A =dj+dd.

Remark 1.7.1. Let M = R" with the flat metric and f : M — R be a smooth function
(0-form). Then
n an

2
i=1 0]

Af =—divdf =—
is the opposite of the usual Laplacian.

Definition 1.7.2. A differential form w defined on a Riemannian manifold M is said to be
co-closed if dw = 0. The form w is said to be harmonic if it is a zero of the Laplace-Beltrami
operator. We will denote the space of all harmonic p-forms of a Riemannian manifold
(M, g) by HP(M).

Instead of using the above definition of harmonic forms, we will use one due to

W.V.D. Hodge. These coincide on compact Riemannian manifolds.

Definition 1.7.3. Let w be a differential form defined on a Riemannian manifold (M, g).

The form w is said to be harmonic if both w and #,w are closed forms.
Remark 1.7.4. Let M be a closed Riemannian manifold. The following equalities hold:
(Aw,w) = (déw + ddw,w) = (bw, dw) + (dw,dw) =|| dw ||* + || dw ||*.

Hence, a differential form on a closed manifold is harmonic if and only if it is closed
and co-closed. It follows that the two definitions of harmonic form coincide on compact
Riemannian manifolds. However, if M is a noncompact manifold, there are harmonic forms

that are not closed or co-closed. For example, x € Q°(R) is harmonic but not closed.
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Theorem 1.7.5 (Hodge’s decomposition theorem?”). For each integer p we have that
HP(M) is finite dimsensional vector space and QP(M) admit the following ortogonal

decomposition

QP(M) = AQP(M)) @H = d(QP (M) @ 6(QFHH (M) @ HP.

Let us mention three significant consequences of Hodge’s decomposition theo-

rernn.

Corollary 1.7.6 (Hodge’s theorem). Let M be a closed Riemannian manifold. In each

cohomological class [w] € HY,z(M) there exist a unique harmonic representative.

Proof. Let w be a closed p-form. By Theorem 1.7.5 w have a unique representation
w = dn + 0y + 7, where 7 is harmonic. Applying the differential operator in both side we
obtain ddy = 0. It follows that || 0 ||?= (0%, 6¢) = (d6vp, ) = 0, hence 69 = 0. Let 7'

be a harmonic form in the cohomological class of w. Then 7 — 7 = d¢ for some ¢ and
|7 =7 = (d&7—7) = (p.67 = 67) =0
Therefore 7 is unique. O

Corollary 1.7.7 (Poincaré duality). Let M be a closed Riemannian manifold. Then the
map
h: Hpp(M) — Hpp(M)
(] € HB (M) — [sun] € H (M),

where wy, denotes the unique harmonic representative in the cohomological class determined

by w, is an isomorphism.

Proof. Suppose that h|w] = 0. Then =wj, is harmonic and represents a null cohomological
class. Since the zero-form is a harmonic form representing the zero cohomological class, then
xpw = 0. It follows that wy, = 0 and [w] = 0, hence A is injective. This map is surjective since

given a class [n] € Hp (M) with harmonic representative 7y, then n, = =(x(—1)Pn,). 0O

Corollary 1.7.8 (De Rham). The bilinear map

H{p(M) x Hp(M) — R

o[ o

is nondegenerated.

" For a proof see [87].
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Proof. Suppose [w] # 0. Let 7 the harmonic representative in the cohomological class
determined by w. Then, by 1.7.6 7 and *7 are nonzero. Since 7 is harmonic, then 7 and =7

are closed forms (here M is a closed manifold). It follows that

J w/\*T—f T A =7 =|| 7 ||# 0.
M M
O

Remark 1.7.9. A form w is exact if, and only if, as an element of D; it is a boundary.
Indeed, let w = d§. By Stokes’ theorem

cuo(n) = w(dn) = fMdgAdn= fMd@Adn) —0.

Hence w € Z,. On the other hand, given a closed form [n] € HY,z(M) we have

i) = [ wnn=[ dean=[decan=-o

again by Stokes’ theorem. It follows that [w] = 0€ H, qDR(M ), that is, w € B,. Conversely,
suppose w = 0. Then dw(n) = dw(n) = 0, with imples dw = 0 in D,_;. Since the inclusion
Dpi1 — D;_l is injective by 1.6.34, it follows that dw = 0 in Dp;;. This proves the claim.
Let (w,) be a convergente sequence of exact forms and ), € D',y1 with w,, = dih,, n e N.
We claim that w = limw, is an exact form. Let [n] € Hpx(M). Then, looking w as a

diffuse current (see 1.6.34), we have
J wAn=uwn) =limw,(n) = limdy,(n) = limy,(dn) = 0.
M

Since the form 7 was arbitrarily chosen and the bilinear map ([w],[n]) — §,,w A 7 is

nondegenerated by 1.7.8, we concludes that w is exact.

1.8 The Tischler argument

In the beautiful paper [82], D. Tischler showed that any closed n-dimensional
manifold supporting a set of m everwhere linearly independent closed 1-forms must be
a fiber bundle over the m-dimensional torus. The principal idea is to approximate each
of such forms by forms with integral periods, thus obtaining submersions M — S'. By
Eheresmann’s lemma 1.2.3, such submersion gives a fiber bundle. The approximation used
by D. Tischler uses a metric in the space of 1-forms (that is, a L?-approximation). For
a later application, we demonstrate that it is possible to obtain the same result by an

approximation concerning the topology of D,,.
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Lemma 1.8.1. Let [w] € H}i(M;Z)*®. There exists a smooth function f : M — S*
such that w = f*df. Conversely, given f : M — S! be a smooth function, we have that

[*df represents a class in H},,(M;Z).

Proof. Define f: M — S! by

(@) = exp (27m' J w) ,

where g € M is fixed and the integral is calculated in some smooth path connecting xy to
x. This function is well-defined since SK w € Z when K is a closed path. Let K any smooth
path. Then

frdf(0roK () = d(0 o )((7t!oK(t))
= difo(0 0 f)(K (1))

o)

K(t)
@tloj w
= w(|oK (1)),

concluding that [w] = [f*d0)].

Conversely, given f : M — S! be a smooth function and a closed curve
K :S' — M, we have
J f*szJ (f o K)*db.
K(SY) st
Since {., df = 1, then
J f*df = degree(f o K) € Z.
K(S1)

Therefore, f*df represents a class in Hp,5(M;Z)%. O

Lemma 1.8.2. The subset of all nowhere-vanishing forms in D,, is an open set.

Proof. Let w be a nowhere-vanishing p-form. We want to show that there exists a neigh-

borhood U of w in D, such that n € U implies that 1 is a nowhere-vanishing form. Suppose

28 The set H},x(M;Z) is defined as being the subset of H}, (M) of all cohomological class with integral
period. That is, w € H,p(M;Z) if and only if w(K) € Z for any closed smooth curve K : S — M.
By the Universal Coefficient Theorem, Hi,p(M) = H'(M,Z) ® R. From this, it is easily seen that
HLp(M,R) = Hhp(M,Z) ® R. It follows that H},(M;Z) has a natural structure of a free Z-module
with dimension equal the Betti number of M.

For every smooth map f : X — Y between oriented closed manifolds having the same dimension,
if ([w],[Y]) = 1, then {, f*w is the number of points, counted with multiplicity +1, in the inverse
image of any regular point in N (see [4]).

29
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that it is impossible to obtain such a neighborhood. Then we can contruct a sequence w,,
in D, converging to w such that each w, is zero at some z,, € M. Since M is compact,
taking a subsequence if necessary, we can suppose that x, — z. Let v, € AP(T'M)
be any p-vector in M. Let v,, € AP(T, M) be a sequence of p-vectors converging to
v, (we can obtain such a sequence working with a local trivialization to AP(T'M) at x).
Since each p-vector v, define an element in D, by rule v,(w) = w(v,), and the bilinear
evaluation form (p,w) € D; x D, — p(w) € R is sequentially continuous by 1.6.35,
then w(v,) = limwv,, (w) = 0. Now, v, was arbitrarily chosen. Hence w is zero at z, a

contradiction. The lemma is proven. O

Theorem 1.8.3 (D. Tischler, [82]). Let M be a closed manifold. Suppose that there is
on M aset wy,...,w, of m everwhere linearly independent closed 1-forms. Then M is the

total space of a fiber bundle over the m-dimensional torus.

Proof. Let ny,...,mx be a basis of the free part in H'(M;Z). By 1.8.1, we can suppose
that n; = f*(df), for certain smooth functions f; : M — S', i = 1,... k. Given an 1-form

w in M, we can write
[w] = D rilf7 (d6)]

for certain constants a; € R. Let g;; : M — R be smooth funtions such that

w= Zajf;“(dQ) + ngj.
Consider the identification S' = R/Z with natural projection 7 : R — R/Z. Let dt =
7*(df). Given f: M — S' and h: M — R, we can rewrite a form n = f*(df) + dg as
n = f*(df) +dgodt= f*(df) + dgor*(df) = (f + modg)*(dh),

where the last sum is from the group structure in S'. By this observation, we can suppose
that

w= > a;f;(db).
Fixed ny,...,nm € Dy, the association
(7"1,. .. ,’l"m) e R™ — 27"1771 S Dl

is continuous, since D, is a topological vector space. Thus, there exist rational numbers
Tin such that w = lim,, X7, f;(df). Since the expressions Y n; f;, with f; : M — S! and
n;j € Z, give us functions h = >, n,f; : M — R, there are integers d,, such that

1
d

where h, = > r;,f; and the convergence is in D;. Now, the bilinear mapping (w,n) €

hy(d),

w = lim
n

D, x Dy —> w A n € D,y4 being separately continuous must be continuous by Remark
1.6.35. It follows that there exist integers d,, and functions h;, : M — S' such that
1

Wi A LA Wy = lim d—th(dG) AooAhE (D)
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in D,,. Since wy A ... A W, is nowhere-vanishing, it follows by 1.8.2
hi,(dO) A ... AR (dO)
is nowhere-vanishing for sufficiently large n. Equivalenty, the functions
Ry = hip X ... X hypy : M — T™

are submersions for sufficiently large n . By Ehresmann’s lemma 1.2.3, a submersion

defined on a closed manifold gives a fiber bundle. O

Remark 1.8.4. A continuous p-form is defined as being a continuous section w : M —
AP(T*M). A continuous p-form is said to be closed provided § w = 0 for all p-cycle
[c] € Hy(M;R). J.F. Plante [65] showed that any smooth manifold admitting a continuous

nowhere-vanishing closed 1-form fiber over S!, generalizing Tischler’s result.
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2 The problem of to obtain an intrinsic char-

acterization of harmonic forms

The problem to obtain an intrinsic characterization of harmonic forms was first
placed by E. Calabi [7]. More precisely, we can present the question in the following way.
Let C be a set formed by closed forms defined on M. What are the topological (global) and
local conditions on C' such that each member of C' is harmonic for a suitable Riemannian
metric on M? For the set formed by closed 1-forms possessing only nondegenerate zeros!,

he obtained the following theorem.

Theorem 2.0.1 (E. Calabi, [7]). Let M be a closed smooth manifold and w be a closed
1-form on M having only nondegenerate zeros of finite order different from 0 or n. Then, a
necessary and sufficient condition so that M admits a Riemannian metric g such that w

become harmonic is w be transitive.

Under the above assumptions, E. Calabi showed the existence of a Riemannian
metric g; on a neighborhood U of the zero-set S of w such that wy is g;-harmonic. Further-
more, one can take U in such a way the form =, w|y is an exact form, an important step in
Calabi’s proof. The topological (global) condition in Calabi’s theorem was called transitivity.
This hypothesis enables one to show the following assertion. Given a neighborhood U of
the zero-set S of w, there is a closed (n — 1)-form 1 defined on M satisfying: w A 7 > 0 in
M — U and n = 0 outside a neighborhood of S. Hence, for a suitable small neighborhood
U of S, by using a standard gluing argument, E. Calabi constructs a Riemannian metric g
such that w becomes g-harmonic. A sharpened version of this theorem was proved by E.

Volkov in paper [85]. To formulate it, we make use of the following definition.

Definition 2.0.2. A closed form w is said to be locally intrinsically harmonic provided
there exists a neighborhood U of the zero-set of w and a Riemannian metric g defined on

U such that w|y is g-harmonic.

Theorem 2.0.3 (E. Calabi-E. Volkov). Let M be a closed smooth manifold and w be a
closed 1-form on M. A necessary and sufficient condition so that M admits a Riemannian
metric g such that w become g-harmonic is it be locally intrinsically harmonic and

transitive.

An essential fact to demonstrate this result appears in Bér’s paper [3]: the

zero-set of solutions of a semilinear elliptic system of first-order is contained in a countable

LA zero z of a closed 1-form w is said to be nondegenerate provided the following holds. Let U be a

neighborhood of = such that w = df for some smooth function f : U — R. Then the Hessian of f at
x is nonsingular.
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union of smooth (n — 2)-dimensional submanifolds. By using this, Volkov shows that =,w
is an exact form in a suitable neighborhood of its zero-set and follows the argument in the
same way as in Calabi’s paper. The transitivity condition is obtained in a different way,

by using The Poincaré Recurrence Theorem, a classical result from dynamical systems.

To date, Ko Honda, in your doctoral thesis [37], made the only advance in
the problem of characterizing intrinsically harmonic forms of degree (n —1). He got an

analogous theorem as that Calabi.

Theorem 2.0.4 (Ko Honda, [37]). Let M be a closed smooth manifold and w be a closed
(n — 1)-form on M having only nondegenerate zeros. Then, a necessary and sufficient
condition so that M admits a Riemannian metric g such that w become g-harmonic is it
be transitive and locally intrinsically harmonic?.

As we will see, forms of degree strictly between 1 and (n — 1) seem to present
considerable additional difficulties. Next, we extend a definition due to E. Calabi that we

will use throughout this thesis.

Definition 2.0.5. Let w be a closed form defined on a manifold M. We call w intrinsically

harmonic if there exists a Riemannian metric on M such that #,w is a closed form.

2.1 Tautologically characterization of intrinsically harmonic p-forms

of rank p

We are interested in finding conditions to forms of degree strictly between 1
and n be intrinsically harmonic. We consider firstly closed p-forms of rank p since, for
these, there is a well-defined foliation induced by the integrable distribution kerw 1.3.4.
So, maybe some aspect of foliation theory developed so far can be useful. For such a
class of forms, we provide a straightforward characterization of when they are intrinsically

harmonic.

Lemma 2.1.1. Let E be an oriented real vector space with a scalar product and w € AP(E)

be an exterior form of rank p. Then ker w @ ker *w provides an orthogonal decomposition
of E.

Proof. Let € the volume form induce by the scalar product on E. Since w A xw =|| w || €,

given v € kerw N ker x«w we have 7,2 = 0. It follows that v = 0.

2 In the formulation of this theorem, we have omitted some additional conditions in the zero-set of w. The

notion having only nondegenerated zeros means that w as a section of the bundle A"~ *(T*M) — M
is transverse to the zero-section.
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Now, let {vy, - ,v,_p} be an ortonormal basis for ker w and {vy, - -+, Up—p, -+ , U}

an ortonormal basis for E. For any integer £ > 0 we have

iun7p+k * w<vi17 e 7,Uin7p71) = *w(un*p+k7 Viyy 7’Uin7p71> = iW(Ujl, e 7Ujp>7
where {n —p + k,i1, - in—p-1,71, - s Jpf = {1,--- ,n}. If some v; with i < n — p not
appear in the set {v;,--- ,v;,_,_,}, the latter expression vanishes. Indeed, in this case, v;
will appear in {v;,,--- ,v;,} and w(v;,,--- ,v;,) = 0 is zero if jj is less or equal than n — p.

Now, in the choice of (n — p — 1) elements among (n — p) possible, there will be at least

one left by the pigeonhole principle. Therefore
iunprrk(*w) = 0
The lemma follows now by a dimension argument. O]

Theorem 2.1.2. Let M be a manifold with a closed p-form w of rank p. Then w is
intrinsically harmonic if and only if there exists a closed form 7 of rank g such that

kerw n kern = {0}.

Proof. Let w be a closed p-form of rank p. Suppose that there is on M a Riemannian metric
g such that w is g-harmonic. Then, by Lemma 2.1.1 the form 7 := *w is a closed ¢-form
with the desired property. Conversely, let  be a ¢-form with the property above. Choose
Riemannian metrics ¢;, go on the bundles kerw and kern and let g be the Riemannian
metric on M which is the orthogonal sum of g; and gs. The forms *w and n are volume

forms in ker n* and have the same nullity space. Hence
*W = SN
where s : M — R is a smooth function. We have
wAsw = |w[?Q,  wAn=kQ,
where () is the volume form of g and k : M — R is a smooth function. It follows that
|w[?Q = w A xw = w A sy = skS.

Therefore sk = ||w|?. Let {E;} and {F;},i=1,...q, j = 1,...,p be orthonormal bases for
ker w, kerm, respectively, and let f: M — R be a positive function. Setting E! = f el E;,

then {E], F;} is an orthonormal basis concerning
9r = [9: ® g2.
We look for a function f which is a solution of

*g, W = 1. (2.1)
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If f is such a solution, w is harmonic with respect to g¢, since 7 is closed and we have:

p—n

W(Fy, ... Fy) =g w(EY,... E)=n(E],....E)=f72n(E,... E).

Hence
f=W(F ....,F,)/n(E,...,E,))rn =spn

is a solution of (2.1). O

Remark 2.1.3. Note that any closed p-form w of rank p is locally intrinsically harmonic,
in sense that given x € M, there is an open set U containing x such that w|y is harmonic.
Indeed, let x € M and ¢ = (u,v) be a foliated chart around z concerning the foliation
S (the foliation induced by w), where the leaves of it are given by v = constant. Then,
n = dv is a closed form of rank ¢ satisfying w A n > 0. It follows by 2.1.2 that w|y is

harmonic for a suitable Riemannian metric on U.

2.2 The Calabi’s transitivity condition

We already said that E. Calabi introduced a global restriction to closed 1-form
w be intrinsically harmonic. Where this condition holds, it is possible construct a closed
differential (n — 1)-form 7 satisfying w A n > 0. Generalizing literally the transitivity
condition introduced by E. Calabi for forms of arbitrary degree, the latter conclusion is

still true for certain kind of differential forms (Lemma 2.2.2).

Definition 2.2.1. Let w be a differential p-form defined on M. The form w is said to be
transitive at x € M provided there exists an embedding closed smooth submanifold ¥ of
M containing = such that w|y, > 0. The form w is said to be transitive if it is transitive at

every x € M where it does not null.

Lemma 2.2.2. Let M be a closed manifold and w a p-form defined on M. Suppose that
for every x € M with w, # 0, there is a closed p-dimensional submanifold ¥ with normal
trivial bundle containing = and such that w|y > 0. Let U be a neighborhood of S. Then,
there exists a closed form i defined on M satisfying w A ¥ > 0 where ¢ # 0. Moreover,
we can take ¢ = 0 in some closed neighborhood W of S contained in U. If, in addition,
S = ¢, we can take ¥ with w A ¥ > 0 everywhere, and the compactness of M can be

dropped.

Proof. Let x € M and ¥ be a closed submanifold containing x with normal trivial bundle.
Let
U xD"P —V
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diffeomorphism satisfying ¢(x,0) = x for € ¥ (given by trivializing the normal bundle
of ¥). Denoting ¢ = (z,y), we have w,(dxq,---,0x,) > 0 for x € ¥. By compactness,
w A dy > 0 in an open set Vy with ¥ < Vj < V. Let € > 0 such that V5, < V} and
h:[0,2¢] — R be a smooth function satisfying

h(t)=1ift <e
h(t) =01if t > 2¢

h = 0 everwhere.
The differential form

n = h(lyl*)dy
is closed on M and satisfies: w A1 >0, w An >0 wheren#0and wAan=wAdy >0
in V.. Since S n Vo, = J, the vanishing of  near of the boundary of Vs, implies that n
vanishes in some neighborhood of S. The set M — U is a closed subset of the compact M,
hence compact. By using the preceding argument we can obtain a finite cover V..., V,,

of M — U and respective closed forms 7y, ..., n,, such that:

(1) w A m; = 0 everwhere;
(2) wAan >0inV;

(3) 1; = 0 in some a closed neighborhood U; of S.

To finish the first part of the lemma, take ¢» = > )n; and W = nU,. Note that if ¢, = 0,
then

0= we Aty = ) wr A (1)
with w, A (1;) > 0 when (7;), # 0. It follows that x € nU; hence kery = W. Suppose
now that S = ¢J with M be merely a boundaryless manifold. Consider an enumerable
locally finite cover of M by opens sets V; with respective closed forms n; satisfying the

three conditions above. The expression
Y = Z Nk
&

gives a well-defined closed differential form satisfying w A n > 0 in M. m

2.3 Outline of demonstration of Calabi-Volkov-Honda's theorems

The assumption about the zero-set made in 2.0.1 ensures the existence of a
neighborhood U of it such that Hp5' (U) = 0. Since those zeros are finite number one
because they are isolated and M is compact, this fact follows trivially by the well-known
Poincaré’s lemma. More effort is needed to deal with the general case, as shown in the

following theorem that needs a nontrivial result from Bér’s paper [3].
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Theorem 2.3.1 (E. Volkov, [85]). Let w be a locally intrinsically harmonic closed 1-form
defined on a closed manifold M and S the zero-set of it. Then, there exists a neighborhood
U of S such that H}s5'(U) = 0.

The latter theorem is the main contribution of Volkov to the problem of charac-
terizing intrinsically harmonic 1-forms. We will now give the outline of the demonstration
of Calabi-Volkov-Honda’s theorems.

Lemma 2.3.2. Let w be a transitive and locally intrinsically harmonic closed 1-form
defined on a closed orientable manifold M. Let S the zero-set of w. Then there exists a

closed (n — 1)-form n on M satisfying the following conditions:
(1) there is a neighborhood U of S and a Riemannian metric gy on U such that
o = *guWs

(2) w A n >0 everwhere on M — S.

Proof. Since w is locally intrinsically harmonic, Theorem 2.3.1 ensure the existence of a
neighborhood Uy of the zero-set of w and a Riemannian metric g defined on Uy such that
*gy,W 18 an exact form, say #g, w = dn. Let V' be a neighborhood of S with V c Uy. By
the transitivity of w, given x outside S there exists an embedding circle containing x where
w restricting to a volume form. Since M is orientable, any embedding circle has a trivial
normal bundle in M by 1.5.14. By this, concerning V', we can take 1) and W as in Lemma

2.2.2. Remember the following properties of ¢ and W'

(1) w A = 0 everwhere;
(2) way>0in M —V;

(3) W is a neighborhood of S and |y = 0.

Since W and M — U, are closed disjoint sets, there exists a smooth bump function

a: M — R satisfying a|; = 1 and a|p—y, = 0. For each K > 0, set
Y = K¢ +d(an).

Setting U =int(W), given any K > 0, we have
(Vr)|o = dn = =guw.

It follows that the first statement in the lemma is satisfied for any K. We claim that the
second statement in the lemma follows by choosing K sufficiently large. Indeed, in U — S we

have that w A e = w A dy = w A #g, w > 0. Outside of Uy we have w A e = w A K¢p > 0.
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In the region where 0 < o < 1, we have that w A 1» > 0 and w A d(an) is bounded since

{0 < a < 1} is a compact set. So, for sufficiently large K we have

(OVAN wK‘MfS > (.

The proof is completed by taking n = ¥k for a sufficiently large positive constant K. []

Proof’s sketch of 2.0.3. Let n,U, gy and gy as in Lemma 2.3.2. Let {¢y, ¢y} be a partition
of the unity subordinate to the cover {U, V'} of M satisfying ¢y = 1 in a neighborhood U’ of
S. Then h = ¢y gy + ¢y gy define a Riemannian metric on M such that hly = h|kerw @R/ ker -
As in the proof of 2.1.2, there exists a function f : M — S — R such that ¢ = fh define
a Riemannian metric on M — S satisfying *,w = 7. Note that h = gy on U —S. On the
other hand, 1 = *5,w = *,w on U —ScU.Tt follows that f =1 on U — S < U. Thus,
we can extend the metric g on M putting g = gy on S. Therefore *,w = 7, concluding

that w is g-harmonic.

The last argument is due to Calabi. The following transitivity condition obtained
by Volkov differs from one presented by E. Calabi (Calabi’s necessity proof does not apply
to the general case). To prove the necessity, note that there exists on M — S a nowhere-
vanishing flow transversal to w and preserving a volume of M. Such a flow can be obtained
in the equation ix{) = *,w, where g is a Riemannian metric that makes w harmonic and
) is any volume form on M. By Poincaré Recurrence Theorem concerning the natural
measure determined by €2, given any open set V < M — S, one can obtain an arc of the
flow generated by X going from V and returning to V after a finite time. By an usual
concatenation argument, we obtain an embedding circle such that w restrict to a volume

form. O]

Proof’s sketch of 2.0.4. The zeros of w are isolated since are nondegenerate. Because
M is compact, it follows that the zero-set of w is a finite set. Thus, we can obtain a
neighborhood U of the zero-set of w satisfying Hpy'(U) = 0. Each embedded submanifold
Y © M satisfying w|y > 0 is orientable, since in such case w is a top degree form
without zeros defined on X. Since M is orientable, any orientable embedding (n — 1)-closed
submanifold admit trivial normal bundle in M by 1.5.12. By the same proof as in Lemma
2.3.2 we can obtain a closed 1-form 7 satisfying the conditions stated in the lemma. It
follows that the demonstration of 2.0.3 applies literally for this case. To the transitivity of

harmonic (n — 1)-form having only nondegenerate zeros, see Honda’s thesis. O

Although the Lemma 2.2.2 is holds for forms of degree p in general only with
the more weak hypothesis that each ¥ have normal neighborhood diffeomorphic to a
product by a function ¢ satisfying ¢(z,0) = z for any x € ¥, Calabi’s argument does not

generalize for intermediate degrees. As we will see, any nowhere-vanishing transitive closed
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differential p-form w of rank p satisfies w A n > 0 for some closed differential g-form 7.
However, by Lemma 2.1.2, w is intrinsically harmonic if, and only if, it is possible to obtain
n with rank (n — p). Concrete examples of this phenomenon are presented in the next
chapter. Let us mention to other works about the problem of characterizing intrinsically

harmonic forms, the works [1, 47, 44].

2.4 An intrinsic characterization of harmonic nowhere-vanishing
(n — 1)-forms

This section addresses the problem of characterizing when a nowhere-vanishing
closed (n—1)-form is intrinsically harmonic. This problem was motivated by an observation
made by Calabi. He argues that any closed nowhere-vanishing 1-form on a closed manifold
is intrinsically harmonic (see [7], §5). We begin by proving this geometrically by showing

firstly that such forms are transitive.

Lemma 2.4.1. Let M be a closed manifold and w be a nowhere-vanishing closed 1-form

on M. Then w is transitive.

Proof. Let X be the smooth vector field defined by the equation w(X) = 1. Let z € M and
¢ = (21, -+ ,x,) be a chart defined on a neighborhood U, of x such that the leaves of §F,,
are given by x, = constant. Since the flow ®;(x) induced by X is complete and transversal
to §., the curve t — ®,(z) stays in U, only by finite time. If the image of this curve is
compact, then it and S' are diffeomorphic (see [54]). Otherwise, if the curve t — ®,(x)
is noncompact, since M can be covered by finite collection of open sets U,, this curve
returns to some open set of this cover, lets say, returns to (¢, U). We now can construct an
embedding J : [0,1] — M transversal to §,, such that 0.J = {xg, z1} is contained in the
plaque {z,, = 0}. Since §, is transversely orientable by 1.5.8 and the form w is positive in
the image of J, we can construct a closed transversal to §, as in the lemma 3.3.7 of [9]

(see figure below). The proof is completed.

Theorem 2.4.2. Let M be an orientable manifold. Suppose that w is a nowhere-vanishing

transitive closed 1-form (or (n — 1)-form) on M. Then w is intrinsically harmonic.

Proof. Since M is an orientable manifold, any closed 1-dimensional or any closed orientable
(n — 1)-dimensional submanifold of M have a normal trivial bundle in M (see 1.5.12 and
1.5.14). Thus, in the case that w is a transitive 1-form or a transitive (n — 1)-form, we can
apply Lemma 2.2.2 to obtain a closed form v defined on M such that w A ¥ > 0. The
proof is completed by applying Theorem 2.1.2 observing that in both cases w and v have

the correct rank. O
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Let M be an orientable manifold (with boundary or not). Let w be a (n — 1)-
form on M and 2 a volume form on M. There exists a unique vector field X such that
w = tx§2. To prove this, let {U;} be a cover of M and {)\;} be a partition of the unity
subordinate to it. For each ¢ we can suppose that there exist linearly independent vector
fields { X}, X3,- -+, X!} defined on U; such that X is tangent to ker w and

In U; then we have
w=w(Xf XD

and, therefore,

W= Zx\iw = Z)\iw(Xé, e ,XTZ;L)LX{Q = Uy (g xi)XIW = tx§.
The unicity follows since {2 is a volum form on M.

Suppose now that w is a closed nowhere-vanishing (n — 1)-form defined on an
orientable manifold M. Let €2 be a volume form on M and X the unique vector field
given in the equation w = ix{2. The flow generated by X is volume-preserving. That is,
Lx) =0, where Lx denotes the Lie’s derivative in the X direction. Conversely, if a flow
generated by a vector field X preserves a volume form € on M, then d(tx€2) = 0, by Magic
Cartan Formula. Thus, we have a 1-1 correspondence between closed nowhere-vanishing
(n — 1)-forms and nowhere-vanishing volume-preserving flows. We will now prove the

following theorems.

Theorem 2.4.3. Let M be a closed orientable manifold. A nowhere-vanishing volume-
preserving flow defined on M admits global cross-section if and only if the induce closed

nowhere-vanishing (n — 1)-form is intrinsically harmonic.

By a global cross section we mean a closed (n — 1)-dimensional submanifold
everywhere transverse to the flow and cutting every orbit. Necessary and sufficient condi-
tions for the existence of a global cross-section for a flow given in [24] and [74], for example.
We will discuss the latter in the context of smooth manifolds in Chapter 4. The next
theorem enables us to approach the problem of obtaining an intrinsic characterization of

nowhere-vanishing harmonic (n — 1)-forms by another direction.

Theorem 2.4.4. Let M be a closed orientable manifold. A nowhere-vanishing C"-volume-
preserving flow on M admits a C"-global cross-section if and only if it admits a C"-

transversal foliation (r = 2).

Remark 2.4.5. The geodesic flow of a Riemannian manifold with negative sectional
curvature gives us an example of a nowhere-vanishing volume-preserving flow admitting
complementary C! foliation (is an Anosov flow). However, the inducing closed nowhere-

vanishing (n — 1)-form cannot be intrinsically harmonic. In this case, we cannot obtain a
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transversal foliation induced by the kernel of a closed 1-form. We will clarify this remark
in Chapter 5.

Remark 2.4.6. From a result of Palais ([65], corollary 2.11), the latter theorem follows
for C! flows admitting complementary foliation given by the kernel of a nowhere-vanishing
continuous closed 1-form. This result is the main ingredient in the preprint [76], which states
the same one as here. It is worth pointing out that the characterization of intrinsically
harmonic nowhere-vanishing (n-1)-forms is implicit in Honda’s thesis. Our proof here

follows the spirit of Calabi’s work and does not use Plante’s result above.

proof of 2.4.3. Let w be a closed nowhere-vanishing harmonic (n — 1)-form defined on
an orientable Riemanian manifold (M, g) and ® be a volume-preserving flow induced by
w. Then w A *4w is a volume form on M, with #,w being a closed nowhere-vanishing
1-form. By Tischler’s argument 1.8.3, there is a 1-form 7 with integral periods such that
w A n is a volume form on M. Each of such forms have the form f*df for some smooth
function f : M — S!, where df is the obvious volume form on S'. Since n = f*df
is nowhere-vanishing, the function f is a submersion. By Eheresmann’s lemma 1.2.3,
B = {M, f,S!, F} defines a fiber bundle with fiber F' diffeomorphic to f~1(6), 6 € S!. Since
® induces a 1-dimensional foliation of M transversal to the fibers of this fiber bundle, we
have by 1.4.6 that B = {M, f,S'} is a foliated bundle, the foliation given by the orbits of
®, of course. In particular, every fiber of this bundle intercept every orbit of ®, concluding
that f~1(0) is a global cross-section to ® for all § € S*.

Conversely, suppose that the flow induced by w admits a global cross-section
Y. We can assume w|y > 0. By a standard argument from foliation theory (sliding %
transversally in the flow direction), it follows that the flow has a global cross-section at
every point x € M. Thus w is transitive. From Theorem 2.4.2, we conclude that w is

intrinsically harmonic. O]

Lemma 2.4.7. Let X be a nowhere-vanishing C"-vector field admitting complementar
C-foliation §, r = 2. Then, § = §, for some closed 1-form 7 of class C"'.

Proof. The foliation § is transversely orientable since it is transversal to the nowhere-
vanishing vector field X. Thus, by 1.5.8 there is a differential C"~!-form w such that
T§ = kerw. We claim that n = ﬁw is closed. Consider (z,y) and (u,z) be local
coordinates with common domain such that X = ¢d, and § is given locally by z =constant.
By transversality, (x,u) defines a coordinate neighbohoord. In this coordinate, since 0, is
tangent to §, n(X) = 1 and [0, 0y,] = 0, then

dn(0z, Ou;) = 0x(n(0y,)) — Ou,(1(02)) + w[0a, 05] = 0.

It follows that 7 is closed. Now, note that kern = kerw, hence n is a closed form and

S:Sn-
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]

proof of 2.4.4. Let €2 be a volume form on M and ® a flow preserving it. Let X be a vector
field generating ®. Set w = 1x€). If X admits a complementary foliation, by 2.4.7 there
exists a closed 1-form 7 such that n(X) = 1. Thus, w A 7 > 0 with dw = 0 and dn = 0.
Hence, Theorem 2.1.2 applies, concluding that w is intrinsically harmonic and, therefore,
by 2.4.3 ® admits a global cross-section. Conversely, if ® admits a global cross-section,
then again by 2.4.3 there is a Riemannian metric ¢ on M such that *,w is a closed
1-form. The foliation generated by the distribution ker #4w is transversal to ®. The proof

is completed. O
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3 Forms of intermediate degrees

The only affirmatives answers in the problem of obtaining an intrinsic characteri-
zation of harmonic forms occur in degree 1 and (n—1), synthesized in Calabi-Volkov-Honda’s
theorems, and the class of symplectic forms (that appear in Honda’s thesis [37]). We have
already noted that even in the case o closed p-forms of rank p the problem is equivalent to
one very hard in foliation theory (see 2.1.2). As shown in an example due to J. Latshev,

generalized here, even we add the transitivity hypothesis, it has no affirmative answer.

In this chapter, we will be concerned with the study closed p-forms of rank
p. We have clarified some aspects of obtaining an intrinsic characterization of harmonic
forms in this class, although we do not provide any significant results. We organized it as
follows. Section 3.1 provides a detailed generalization of the mentioned Latshev’s example.
In Section 3.2, we give a brief exposition of foliation currents’ theory to establish Sullivan’s
characterization of foliations with closed transversal forms. From this, we showed that
any transitive closed p-form of rank p has many closed transversal forms. However, this
not implies that these are intrinsically harmonic by concrete examples. In Section 3.3, we
show that a closed manifold with a harmonic p-form of rank p admits two complementary
foliations, where the leaves of both are minimal surfaces for a suitable metric. Also, are
given another characterization of intrinsically harmonic p-forms of rank p and examples of

these. In Section 3.4, we deal with the study of transitivity condition.

3.1 Non intrinsically harmonic forms examples

Theorem 3.1.1. Let B = {B, p, M, F'} be a smooth fiber bundle with compact total space
and simply connected base. Let € be a volume form on M. Then B is trivializable if and

only if p*() is intrinsically harmonic.

Proof. Set a = p*€). Suppose that « is a g-harmonic form. It is easily seen that
ker v, @ ker(xa), = T, B.

Therefore, *a has a constant rank. Since =« is closed, the regular distribution ker(x«)
induces a foliation in B transversal to the fibers (see 1.3.4). The compactness of the fibers
and Theorem 1.4.6 implies that we have a foliated bundle. By 1.4.3 this kind of bundle is
differentiable equivalent to

B, = (I x F)/m (M),

where ¢ : m (M) — Diff(F) is the holonomy homomorphism characterizing it. Since
m (M) = 0, it follows that B is trivializable.
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Conversely, suppose that B is a trivializable (now, M and F can be any
boundaryless oriented manifolds). There exists a diffeomorphism f: B — M x F such
that pa(f(x)) = p(x), where ps : M x F — F' is the natural projection onto the second
factor. Let 2 be a volume form on F. It is easy to see that the closed form (f o p2)*(Qr)
has degree and rank equal to (dim F') and, moreover, it is complementary to p*(€Q,,). It

follows by 2.1.2 that p*(€2y,) is intrinsically harmonic. O

The hypothesis 71 (M) = 0 cannot be dropped. Otherwise, since any closed 1-
form without singularities on closed manifolds is intrinsically harmonic (see 2.4.1 and 2.4.2),
any orientable bundle over a circle would be trivial (this happens only for vector bundles).
We can construct concrete examples of no trivializable circle bundles as follows. Let 3, be
an orientable surface and ¢ € Diff*(3,). Then, S, = (3, x [0,1])/{(x,0) ~ (x,1)} fibers

over S with fiber X, and projection 7 (z,t) = e*™.

In the argument to prove Theorem 3.1.1, the compactness hypothesis of the
fiber cannot be dropped. Generally, a submersion 7 : E — M with compact fibers and
a transversal foliation give us a foliated bundle (see 1.2.3 and 1.4.6). However, without
the compactness of the fibers, we cannot ensure that a transversal foliation gives us a
compatible one. With a transversal foliation, each restriction @ : L — M, L leaf, is a
surjective local diffeomorphism. Despite that, the injectivity follows in general only when
those functions are proper maps (see [35]). In what follows, we provide examples of bundles

with transversal foliations that do not admit any compatible foliation.

Theorem 3.1.2. There exists transversal foliations to the vector bundle 7s» for all n > 1.

Every such foliations are incompatible for n # 1,3, 7.

Proof. J.W. Milnor showed in [53] that every tangent bundle 75, of a smooth manifold
M has a codimension n = dim M transversal foliation. He obtained a microfoliation in
the 7, from the pullback of the trivial foliation M = | .,,{x} by using the exponential
map and extend it to the whole tangent space (see the demonstration of Proposition 6.1
in referred Milnor’s paper ). We conclude from a particular case of Theorem 1 in [14] that
if T'S™ and S™ x R™ are diffeomorphic, then T'S™ is trivializable. Thus, if some foliation
guaranteed to exist by Milnor’s paper were compatible with 7g», then T'S™ and S™ x R"
would be diffeomorphic, hence 7s» would be trivializable. However, by a well-known result
of J.F. Adams, the tangent bundle of S" is trivializable if, and only if, n € {0, 1, 3, 7}.

[]

This theorem is similar to “using a bazooka to kill a fly”. The mentioned Milnor’s
result is elementary, but the others not. By using the following observation, we provide

elementary examples as ones in Theorem 3.1.2.
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Theorem 3.1.3. Let M be a compact manifold. Suppose that there exists a homeomor-
phism f: TM — M x R" satisfying p1(f(v)) = p(v), where p; is the natural projection
onto the first factor and p is the projection of the fiber bundle 7),. Then the Euler
characteristic x (M) of M is zero.

Proof. Given y € R”, let s, : M — TM the global cross-section defined by s,(z) =
f~Yz,y) (it is a cross-section since p = p; o f). Let (y;) be a sequence in R™ with
|| yi ||[— oo. Suppose that for each i there exists z; € M with s, (z;) = 0,,, that is, s, (z;)
is the origin of T}, M. Since the image of the zero cross-section in 7'M is compact, taking
a subsequence if necessarily, we can suppose that 0,, converge to 0, for some x € M. Thus,

letting 1 — 00 we obtain
O, = f (@i, 1) — 0, and (2, 4) = f(Or,) — f(0x).

Since (x;,y;) is a no convergent sequence, this leads a contradiction. It follows that there
exists some y € R™ such that the cross-section s, no intercept the zero cross-section. By
Poicaré-Hopf Theorem (see [54], page 35) we concludes that (M) = 0. O

Corollary 3.1.4. Let M be a compact manifold. There exist transversal foliations to 7.

If x(M) # 0 any such a foliation is incompatible with 7.

Proof. The existence of such foliations is given in Milnor’s paper [53]. If some such a
foliation is compatible with 7,;, then there will exist a diffeomorphism f : TM — M x R"
satisfying p1(f(v)) = p(v) (see 1.4.3). The latter theorem and the hypothesis x (M) # 0

leads to a contradiction. This proves the corollary. ]

3.1.1 Concrete transitive non intrinsically harmonic forms examples

Let S be a great (n — 1)-sphere of S", E, E, be the closed hemisphere
determined by S"~! and V;, V5 be contractible open disjoint neighbohood containing £,
and F,, respectively. Then, Vi, V, cover S™ and Vi n V5 is an equatorial band containning
S"~1. Since that V4, V, are contractible, there exist bundle maps ¢, : By, — V; x G. Fixed
7o € S"! we can obtain a bundle strictely equivalent to B putting gi2(x) = g15(20) " g15(2).
The map

T = gia|gn-1 : (8", 29) — (G, e)

is called characteristic map of B. A bundle over S" is said to be in normal form if it

coordinate neighborhoods are Vi, V5 and T'(zg) = e.

Theorem 3.1.5 ([78], theorem 18.3). Let B, B  be bundles over S” in normal form and
having the same fiber and group. Let T, T" be their characteristic maps. Then B, B are

equivalent if and only if there exists an element a € G and a homotopy between 7" and
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aTa ' If G is arcwiseconnected, then B, B’ are equivalent if and only if there there exists

a homotopy between 7" and 7.

Corollary 3.1.6. Let F' be an arcwise connected smooth manifold such that m;(F) =0
for alli = 1,...n—1. Suppose that Diff" (F) is arcwise connected and m,,_; (Diff" (F)) # 0.
Let B = {B,p,S", F,Diff"(F)} be a nontrivial fiber bundle. Then p*(Qs») is transitive but

not an intrinsically harmonic form.

Proof. Suppose p*(2s») intrinsically harmonic. Thus, by 3.1.1, the fiber bundle B =
{B,p,S", F,Diff" (F')} is Diff(S")-trivializable, that is, there exists a diffeomorphism ¢ :
B — S" x F satistying ¢(x) = (p(z), ¢(x)). Changing orientation if necessary, we can
suppose that ¢ is always orientation preserving, since z — det(¢,), is never zero. It
follows that B is trivial, a contradiction. Thus by 1.2.36 is a transitive no intrinsically

harmonic form. ]

The hypothesis in latter theorem is no vacuous. In fact, S. Smale [77] showed
that the inclusion SO(3) < Diff"(S?) is a homotopy equivalence. Since 71(SO(3)) = Zo,
it follows from 3.1.5 that there exists a nontrivial bundle over S? with group Diff* (S?) and
fiber S?. According to E. Volkov, this example is due to J. Latschev.

3.2 The Sullivan Theorem

Theorem 2.1.2 gives us a sufficient condition to a closed p-form w of rank p to

be intrinsically harmonic. Naturally, two questions come up:

(1) If the foliation §, admit merely a complementary foliation, is w an intrinsically

harmonic form?

(2) If there exists a closed form 1 with w A 77 > 0, is w an intrinsically harmonic?

The category of the foliated bundle is the more simple one where we can discuss
the first question. The latter has a negative answer by using the results of Sullivan’s
paper [80]. D. Sullivan and D. Ruelle introduced in [69] the notion of foliation currents.
These are real homological classes associated with a partial or total orientable foliation
§. The relative position between the set of all foliations currents and the spaces of cycles
and boundaries determine whether § admits closed forms or exact forms transversal,
respectively. D. Sullivan also characterized foliations cycles, currents that are also cycles,
in terms of holonomy invariant measures. In this section, we present shortly the basic
definitions and the results stated in Sullivan’s paper. From this, we demonstrate any

transitive closed p form of rank p admits a closed transversal form.
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Let § be a smooth orientable foliation defined on a closed manifold M. Fix
a regular foliated atlas U = {(Uy, o, Ya)} for M such that for each z € M, the p-tuple
(21, -, x,) determines the correct orientation for §|U,. Give a positive basis (v1z, - - , Vpz)

of the T, L., where L, is the leaf containing x, the p-vector
Up = Vig A " A Upg

determines a p-current called Dirac foliation current for §.

Definition 3.2.1. Let § be a smooth orientable foliation defined on a closed manifold M.
Define C; the set of all finite linear combinations with positive coefficients of the Dirac

foliation currents for §. We define:

(1) the set Cg, as being the topological closure of Cy in D;. The elements of it are called

foliation currents (for §);
(2) the set Zz = Z, n Cgz, whose elements are called foliation cycles (for §);
(3) and the set Bz = B, n Cz, whose elements are called foliation boundaries (for §).

Definition 3.2.2. Let § be a foliation of M. A p-form w on M is said to be transversal
to § provided v, (w) > 0 for every Dirac foliation current for §. In particular, a transversal

form to § restricts to a volume form on each leaf of it.

Any orientable foliation admits many transversal differential forms. It is easy
to construct such differential forms locally by using a foliated chart. Hence, by the usual
gluing method from a partition of unity subordinate to a foliated atlas, one can construct
examples of transversal forms (see 1.5.8). When a foliation admits, a transversal closed or

an exact form is a more engaging question and was answered by D. Sullivan as follows.

Lemma 3.2.3 (Sullivan, [80]). Let § be an orientable foliation. There exists an exact
form transversal to § if, and only if, 0 is the unique foliation cycle for §. There exists a

closed form transversal to § if, and only if, 0 is the unique foliation boundary for §.

Proof. Let w be a differential form transversal to §. First of all, we will show the set
é\g: = Cz nw™!(1) is compact in D; (where here w : D} — R is given by w(p) = p(w)).
Since D; satisfies the Heine-Borel propertie 1.6.33, it is enough to show that é\g is bounded.
The proof of the boundedness of CAS will be divided into two parts.

(1) Let E be a topological vector space and w : £ —> R be a continuous linear functional.

For any cone C' = E we have the equality

Crnwl(l)=Cnw ().



Chapter 3. Forms of intermediate degrees 86

Indeed, let z € C nw™!(1) and U be a neighborhood of z. There exists € > 0 and
neighborhood V' of z with (1 —¢,1 + €)V < U (because the scalar multiplication of
E is continuous). Now, since w is continuous, w(z) = 1 and z € C, for each n € N
there exists a, € V nw (1 —1/n,1+ 1/n). If follows that there exists a sequence
(an) € C "V such that w(a,) —> 1. Therefore —1~a, € U for large n. Since C' is a

(an)

cone, @an e C. Thus, for an arbitrary neighborhood U of = we showed that there
exists a € C'n U with w(a) = (1), with implies x € C' n w~1(1). Since is always true

that A n B ¢ A n B, this proves the claim.

We will now prove that C’Ag is bounded. Put on M a Riemannian metric. It induces a
metric in the space AP(T'M) of all p-vectors tangent to M. Since w : AP(TM) — R
is continuous and the set of all unit p-vectors tangents to M is compact, there exists
A > 0 such that 0 < w(v,) < A for all unit p-vector. By Theorem 1.6.27, it is enough
to show that C5 nw™!(1) is o(D,, D,)-bounded. Equivalentely, it is sufficent to show
that n(Cs N w™*(1)) is bounded for all differential form n € D,. Let n € D, and «
the maximum value of 7 on any unit p-vector. Let ¢ € C' n w™!(1). We can write
© = >, a;v,,, with a; = 0 for all 7 and each v,, being a Dirac foliation current with

norm 1. Then,
1 =w(p) < )\Zai
and Y a; < 2/\ . Thus,

(@) = | ) ain(vs,)| < 2a/X.

It follows that C' n w™'(1) is bounded. This proves the claim.

Since a subset A of a topological vector space E is bounded if, and only if, A is

bounded, we conclude from the above item that
Cs = Csnw (1) = G5 nw (1)

is bounded.

We will now prove the first statement of the lemma. by hypothesis we have that
Csz n Z, = {0}. Since the vectorial subspace Z, and the compact convex set Cs
are disjoints, by Hahn-Banach Theorem there exists a continuous linear functional
Y D;, — R such that

p(Z,) = 0 and o(C5) > 0.

By Schwartz’s theorem 1.6.31, there exists a differential form w such that ¢ = w.

Since w(Z,) = p(Z,) = 0, given any current c € D', we have

dw(c) = w(de) = 0.
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It follows that w is closed. In fact, w is exact, since as a linear functional w :

HY r(M) — R is identically zero. Furthemore,

concluding that w is an exact form transversal to §. Conversely, if c € Cz n Z, and

w = dn is transversal to §, then

w(e) = dn(c) = n(dc) = 0.

Since ¢ € Cz and w is strictly positive on C}, it follows that that ¢ = 0.

To proof the second statement of the lemma, suppose Cz n B, = {0}. Analougously

as in the proof of the first part of the lemma, there exists one form w such that
w(B,) = 0 and w(CAg) > (.

Thus, given any current ¢ € D',,; we have dw(c) = w(dc) = 0. It follows that w is a
closed form transversal to §. Conversely, if w is a closed form transversal to §, given
ce Cz n By, say ¢ = 0z, then w(c) = w(0dz) = dw(z) = 0. It follows that ¢ = 0, since

w is transversal to §. The proof is completed.

[]

Remark 3.2.4. By a theorem of J. Dieudonné, every Fréchet Montel topological vector
space E is separable (see [43], page 370). Let E be a separable topological vector space.
Then, a convex o(E’, E)-compact subset K of E' is metrizable with the o(E’, E)-topology
(see [68], page 70). Thus, with the notation of the latter theorem, since D, is Fréchet
Montel space and C' n w™(1) is dense in the compact convex set CA'S, we have that every
clement of Cs is a weakly limit of members of €'~ w=!(1). On the other hand, by the
demonstration of 1.6.33, a sequence in D'p is strongly convergent if, and only if, is weakly
convergent. It follows that the elements of ég are limits of finite linear combinations with

positive coefficients of Dirac foliations currents.

We will now describe Sullivan’s characterization of foliations cycles in terms of

holonomy invariant measures.

Definition 3.2.5. Let I' be a pseudogroup of homeomorphisms of a space X and p be a
nonnegative, finite, o-additive measure, defined on the ring of the subsets of X generated
by compact sets. We will say that p is ['-invariant provided for every v € I' and every

mensurable set A in the domain of v we have u(y(A)) = u(A).

Definition 3.2.6. A foliation § on a manifold M is said to have a holonomy invariant
measure (or transversal measure) if their holonomy pseudogroup admits an invariant

measure.
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Let § be an orientable foliation of a closed manifold M. Let U be a regular
foliated atlas for M and A\, be a partition of the unity subordinate to it. Given w € D,, for
each plaque P, € S, we can integrate A\ w in P, getting a continuous real function on S,.

Integrating on S, concerning to a holonomy invariant measure pu and adding, we obtain

Bu(w) = Za] J a (L Aaw) dp(y).

By Stokes’ theorem,

20,) = duld) = 3 | (f d(Aawa>> duly) = 0.

Therefore, ¢, is a cycle. Indeed, it is a foliation current and independent of the partition

of unity chosen, see [69] for details.

Theorem 3.2.7 (D. Sullivan, [80]). Every foliation cycle has the form ¢, for some

holonomy invariant measure .

3.2.1 Forms admitting complementary forms

We will now show that any transitive p-form of rank p admits complementary

closed forms.

Definition 3.2.8 (Plante, [66]). Let u be a F-invariant measure. Its support (denoted
suppp) is the set of points x € M with the following property: if ¥ is a submanifold
transverse to § with dimension equal to the codimension of § and that contains x as
an interior point, then p(X) > 0. The support of an F-invariant measure is closed and

S-saturated, that is, it is an union of leaves of §.

Theorem 3.2.9 (Plante [66]). Let § be an orientable codimension k foliation. If a closed
submanifold X transverse to § intersepts the support of a §-invariant measure p, then X
represents a nonzero element in Hy(M;R) and [¢,] # 0 in H"?(M;R).

This proposition is proved building a closed form 7, Poincaré dual to ¥, such

that ¢, (n) = u(X) > 0.

Theorem 3.2.10. Let w be a transitive closed p-form of rank p on a closed manifold M.

Then w admits a closed transversal form.

Proof. Since w is transitive, for each point x € M there exists a closed submanifold X
containing = such that w|y, > 0. It follows that for each holonomy §,-invariant measure
1, there exists a submanifold ¥ transverse to §, and contained in support of u. The
Lemma 3.2.3 and theorems 3.2.7 and 3.2.9 together ensure the existence of a closed form

7 transversal to §,. That is, satisfying w A n > 0. O
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The latter theorem and the existence of concrete examples of transitive non
intrinsically harmonic p-forms of rank p show that the condition of admitting a comple-
mentary form, evidently a necessary condition for a form to be intrinsically harmonic,
is not sufficient. In the intermediate degrees, considering a p-form of rank p, we cannot

ensure that w A n > 0 implies that n has rank equal to (n — p).

Corollary 3.2.11. Let M be a closed 4-dimensional manifold with a transitive 2-form w

of rank 2. Then M admits a structure of the symplectic manifold.

Proof. By 3.2.10, there exist a closed 2-form 7 such that w A n > 0. Since M is compact,

the differential forms w;, = w + kn have null kernel for £k sufficiently large. O

3.3 Foliations induced by harmonic p-forms of rank p

Denote by T'§ the subbundle of the T'M formed of all vectors tangent to §.

Lemma 3.3.1. Let w be a closed p-form of rank p on an orientable manifold M. Then

S, is orientable.
Proof. 1t follows by 1.5.8. m

Let (M, g) be a Riemannian manifold and § be an orientable codimension p
foliation of M. A differential form on M is said to be a characteristic form for § provided
it induces the Riemannian volume on the leaves of §. The characteristic form for a foliation
S is denoted by xz. Another description for this form is given as follows. Fixe for each

point x € M a positive orthonormal frame {&;,...,&,} for T,§. Then,

Xz (15 -, mp) = det(g(&i, my)),
M...,np €TM.

Lemma 3.3.2. Let w be a harmonic p-form of the rank p on a Riemannian manifold (M, g).
Let g = g1 @ g» the decomposition of g in the ortogonal sum 7'M = ker w @ ker #;,w. Then
there exist strictly positive smooth functions f,k : M — R such that w is characteristic
form for §, . and *,w is characteristic form for §,, concerning to the Riemannian metric

h= f’g1 @ kgs.

Proof. Let 6 be a smooth section of AP(T*F,) such that restrict to each leaf of §, it give
the volume induced by g¢. Since #w is positive in the leaves of §., there exist strictly

postive function k : M — R such that k70 = «w|sr(r(z)). Analogously, let f: M — R
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be a smooth such that " Px = *w|sr(r(z)), Where & is the volume form induced by g in

AP(T*F4.). The required metric is given by
h= 129 ®kg.
0

Definition 3.3.3. A form 7 is said to be relatively closed concerning to a foliation §
provided
dn(Xy,...,X,,Y) =0

whenever X1,..., X, are tangent to §.

Theorem 3.3.4 (H. Rummler, [70]). Let § be a foliation of a manifold M. The charac-
teristic form xz of § is relatively closed (concerning to §) if, and only if, each leaf of § is a

minimal submanifold!.

We then have the following structure on a manifold supporting a harmonic

p-form of rank p.

Theorem 3.3.5. Let (M, g) be a Riemannian manifold. Suppose that w is a g-harmonic
p-form of rank p on M. Then there exist a Riemannian metric A on M such that the
tangent space of M split orthogonally as TM = T, @ T« Furthemore, xz = *,w,
Xfsgo =W and all leaves of the foliations §, and §,, are minimal submanifolds (concerning
to h).

Proof. It follows by 3.3.2 and 3.3.4. [

Definition 3.3.6 ([83], page 49). Let G be a Lie group. A foliation § is said to be a
G—foliation if
(Yap)s : Us nUsg — G < GL(q,R)

for every generator of the I, the holonomy pseudgroup of § concerning to the cover U.

Theorem 3.3.7 ([83], theorem 6.32). Let § be a transversally orientable foliation defined
on a Riemannian manifold (M, g). Then § is SL(q)-foliation if and only if dxz = 0.

Therefore, if w is harmonic p—form of rank p, then §, is a SL(g)-foliation and
S+w 1s & SL(p)-foliation.

Corollary 3.3.8 (Local structure of harmonic p-form of rank p). Let (M, g) be a Rieman-
ninan manifold and w be a harmonic p-form of rank p on M. Then there exists an atlas
U = {U,, To, Yo} for M such that the equations x = constant and y = constant determine
locally §, and §,, respectively. Furthemore, (7,5)s € SL(q) and (6,3)« € SL(p). Besides
this, the rules n = dy} A ... A dy? and € = dx! A ... A dzd fit together in a well-defined

closed form which determines globally §, and §..,, respectively.
1

See [31] for a short proof of this theorem.
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Proof. It V = {U,, o, ua} and W = {U,, Yo, Vo } are foliated atlas for §, and §.., respec-
tively, then U, = {U,, o, Yo} is the required atlas. By the previous discussion, we have

(Yap)+ € SL(q) and (04p)« € SL(p). Therefore

dyl A oA dyf = det(fyﬁa)*dyé Ao~ dyg = dyé Ao dyg.
Analogously,

doy Ao~ dal, = det(Opa)sday Ao A daly = dag A A dad,

concluding the corollary. O]

The next theorem follows from the sequence given in [83] to prove Theorem
3.3.7.

Theorem 3.3.9. Let w be a closed p-form of rank p on a manifold M. Suppose there
exists a Riemannian metric g on M such that every leaf of the foliation induced by w is
a minimal submanifold. If (kerw)* is an integrable distribution, then w is intrinsically

harmonic.

Proof. Throughout the proof, § denotes the foliation induced by w, 7 denotes xz and F*
denotes (kerw)*. We claim that 7 is a closed form. The proof of this will be divided into

four steps.

(1) Let Y € §+. We have iyn = 0. By Theorem 3.3.4, (iydn)|z = 0. Then,
(Lyn)lz = (diyn + iydn)|z = 0.
(2) Let Z € §+ and X,Y € TM. Using the rule [Lx,iy]a = ijxyja, we have

iz(Lyn) = Lyizn — Uy,z]1 = —[y,z]"-
By the involutivity of F* then [Y, Z] € §+. It follows that iz(Lyn) = 0. Since Z was
arbitrarily chosen, then (Lyn)|z = 0.
(3) By 1 and 2, given any Y € §*, we have (Lyn)|z = 0 and (Lyn)|z. = 0. Therefore
’Lydn = ﬁy?’} — dly?] =0
forall Y e §+.

(4) We will now prove that ixdn = 0 for all X tangent to §. By item 3, iydn = 0 for all
Y tangent to §*. It follows that ixiydn = —iyixdn = 0. Hence ixdn is determined
completely by its values in the tangent vectors to §. But, since 7 is §-closed, then
ixdnlz = 0. Thereofre ixdn = 0 for all X tangent to §. Since TM = TF D T,

ixdn = 0 for all X tangent to § and iydn = 0 for all Y tangent to §*, we conclude
that 7 is closed.



Chapter 3. Forms of intermediate degrees 92

To finish the proof of the theorem, note that 1 have rank ¢ (since it is the
characteristic form of §), it is complementary to w and closed as have shown above. It

follows by 2.1.2 that w is intrinsically harmonic. O

We show that in any smooth fiber bundle B = {B,p, M, F'} with x(F) # 0,
the form 7*(£2),) determines a nontrivial cohomological class (see Lemma 5.2.7). Thus,
it is suspicious that we can weaken theorem 2.1.2, assuming that §, admits only a
complementary foliation. If this theorem holds merely with this hypothesis, then any
foliated bundle with [7*(2y)] # 0 admits a SL(g)-transversal foliation by the results
presented in this section so far. We end this section by providing a class of examples of

transitive intrinsically harmonic forms.

Theorem 3.3.10. Let B = {B,p, M, F,§} be a foliated bundle with total space and base
base being oriented manifolds. If the fundamental group of M is finite, then 7*Q is a

transitive intrinsically harmonic form for all volume form 2 on M.

Proof. First fo all, we observe the following general fact. Let G be a finite subgroup of
Diff(F'). Since for any element g € G we have /¢! = 1, then det(g,) = +1.

As in the proof of Theorem 1.5.10, we can obtain a differential form that
restricts to each fiber give us a volume form. It follows by 1.5.8 that the foliation given
by the fibers of B is orientable. Since § is transversal to the fibers, then § is transversely

orientable. Hence, we can take the holonomy homomorphism
o m (M) — Diff(F)
with image in Diff" (F). By the preceding paragraph, since 7 (M) is finite, we have

det(p(a))s) =1

for all a € m(M). Thus, the foliation § is a SL(g)-foliation (the demonstration of the
first assertion in the theorem could stop here). Let U = {U,, xa,us} be a foliated atlas
for B concerning to § such that dety = 1 for all v € I'y. Since du, = det(Vsq)«dus and §
is a SL(q)-foliation, the rule n, = du, fit together in a well-defined closed form 7 which
determines the foliation § globally . It follows by 2.1.2 that 7*(2,, is intrinsically harmonic.
Now, each leaf of § is compact, since that cover the compact manifold M with finite sheets.
Hence, each leaf of § is a global cross-section for the fibers. From this, we conclude that

() is transitive. O

3.4 The transitivity condition

Let M be a manifold and = € M. Denote by 7,7 the subset of D, consinting of

all p-forms transitive at x. Let w € 7,7 and (w,) be a sequence converging to w. Let ¥ be
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a closed embendding submanifold containing x such that w|y is a volume form. Fixed a

Riemannian metric on M, let
S={ve N(TE);||v|=1}.

Suppose for each n € N there exists v,,, € S such that w,(v,,) = 0. Since ¥ is compact,
we can suppose that z, — y € ¥ and v,, — v,, for some v, € S. Thus, for each
p-form n € Dy, n(v,,) — n(v,). It follows that v,, — v, in D;. Since the evaluation
map e : D, x D;) — R is sequentially continuous by 1.6.35, then w(v,) = limw,(v,,) =
lim(e(wy, vs,)) = 0, a contradiction. Thus, for sufficiently large n, we have w,, € T?. From
the fact of D, is a metrizable space, we conclude that 7 is an open set®. Note we have

proved the subset of all differential forms that are volume in I is an open set.

Theorem 3.4.1. Let § be a smooth foliation of a manifold M. The set T%, of all points in
M contained in a closed submanifold transverse to § and diffeomorphic to ¥ is §-saturated

and open.

Proof’s sketch. Suppose there exists a submanifold containing x, diffeomorphic to ¥, and
transverse to §. By deformation in the leaves direction, we conclude that the leaf containing
x is contained in 7% (the proof of this is analogous to the given in J.W. Milnor [54] to
show the Homogeneity Lemma, page 22). Working in a foliated chart around z, it is easily
seen that T% contains a neighborhood of x. Since x was arbitrarily chosen, the proof is

completed. O

Corollary 3.4.2. Let w be a closed p-form of rank p on a manifold M. Suppose that there

exists a closed p-submanifold of M transversal to every leaf of §,. Then w is transitive.

In some situations, we can prove that the transitivity condition is homogeneous,
in the sense that transitivity at one point implies transitivity at any point. We will highlight

some examples.

Theorem 3.4.3. Let M be a closed manifold and § be a foliation of M such that M /§
satisfy the Hausdorff property. If X is a closed submanifold intercepting § transversally,
then ¥ intercept every leaf of §.

Proof. Denote by m : M — M /§ the natural projection. It is easily seen that 7(X) is an
open set since ¥ is an embedding submanifold without boundary. Since 7(X) is compact
and M /§ Hausdorff, then it is closed. Thus, 7(X) is both open and closed in the connected
space M /§. Therefore, M /§ = 7w(X), concluding the theorem. O

2

Let X be a metric space. Let U be a subset of X satisfying the following condition: given z € U and a
sequence x, — z, then there exists n € N such that x; € U for all £ > n. Under this condition, if
(x,) is a sequence in X — U converging to x, then x ¢ U. Thus, X — U is a sequentially closed subset
of X, hence closed since X is metric.
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Definition 3.4.4 (J.F. Plante, [64]). A polisection of a fiber bundle B = {B,p, X, Y, G} is

a covering map 7 : X —> X with a continuous function f : M —> B such that po f = =.

Theorem 3.4.5. Let B = {B,p, M,Y} be a smooth fiber bundle with closed total space
and orientable base space. Let € be a volume form on M. If p*() is transitive at one point,

then B admits a compact polisection. In particular, p*(2 is transitive.

Proof. Let § the foliation given by the fibers of B. By hypothesis, there exists a closed
submanifold ¥ of B intercepting § transversally. Since E/§ = M, then ¥ intercept every
fiber of B (every leaf of §). By transversality, it is easy to check that p|X is a local
diffeomorphism. Since the fibers of B are compact, then p|y is a proper map, hence a

covering projection (see [35]). O

Definition 3.4.6. An automorphism of a foliated manifold (M, §) is a diffeomorphism
¢ : M — M preserving the foliation. That is, the image of any leaf by ¢ is a leaf of §
too. A foliation is said to be homogeneous provided the group of automorphisms of (M, §)

acts transitively on M.

If w is a closed p-form of rank p and §,, is homogeneous, then the transitivity
condition for w at one point implies the transitivity of w. For example, if w is a closed-

decomposable p-form, that is, a form described globally by
W1 Ao A Wy,

where each wj is closed nowhere-vanishing 1-form, then §,, is homogenous (see [57], chapter
4). We do not know if a harmonic form is transitive in general. G. Katz proposed this

problem in [39].
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4 Asymptotic cycles on smooth manifolds

In Chapter 2, we proved a characterization of nowhere-vanishing intrinsically
harmonic (n — 1)-forms on closed manifolds. We have shown this in terms of the existence
of a global cross-section for a canonical associated volume-preserving flow, Theorem 2.4.3.
The first criterion in the literature for a flow admits a global cross-section is due to S.
Schwartzmann [74]. He introduced the notion of the asymptotic cycle that is a 1-dimensional
real homological class (in the sense of De Rham for the smooth context) associated with
an invariant measure. Global cross-sections are determined by an integral one-dimensional
cohomology class that is positive on all these asymptotic cycles. Since Schwartzmann’s
results are for flows defined on compact metric spaces, the notion of a global cross-section
is slightly different, and a translation for the differentiable context was necessary. In this
chapter, we present the theory developed by S. Schwartzmann. Are discussed two criteria
for a flow admits a global cross-section. One of them appears rigorously proved in [74].

For the other case, we provide a detailed demonstration.

4.1 Asymptotic cycles

Let M be a compact manifold and C = C®(M,S') the set of all smooth
functions f : M — S! with group structure given by (f - g)(z) = f(z) - g(z). Set R the
subgroup of C

{feC; f(x) =exp(2miH(x)),H : M — R smooth}.

Every element f € C' is given locally by f(z) = exp2miH (x), where H(z) is some smooth
real function determined up to an additive constant. If H; and H, are determined as
above in two different coordinate systems, dH; and dH, agree in the region of overlapping.
Then for each f € C there is a closed 1-form wy given locally by dH. Consider the local
parametrization of the circle given by 6(exp (2mit)) = t and the usual volume form on
S! described locally by df. Let « : [ —> M be a smooth curve with X (z) = d;|oa(t). If
f =exp2miH(x) in a neighborhood of a(0), then
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concluding that wy = f*df. The association f — wy give us a natural homomorphism
[f1€ C/R — [wy] € Hpp(M;Z).

By Lemma 1.8.1, this homomorphism is surjective. Furthemore, if fg=1(x) = exp (2miH (z))
everywhere, then it is easily seen that w; — w, = dH. Therefore, the forms w; and w,

determine the same cohomological class. We synthesize these facts in the next theorem.

Theorem 4.1.1. The rule that associates each [f] € C/R to the closed 1-form [wy] =
[f*df] € H(M;Z) is an isomorphism.

Proof. It remains only to show that the association [f] — [wy] is a homomorphism.
Let f,g € C. Let U be an open subset of M where f and g have local representaion
f =-exp(2miH) and g = exp(2miL). In the open set U we have

wrg =d(H + L) = wy + wy.
This concludes the theorem. O

Notation 4.1.2. Let K be a parametrized curve in M and f € C. We will use the symbol
Agargf(x) to denote the change in the angular variable of f along K.

Remark 4.1.3 (A geometric interpretation of C'/R). Let K be a smooth closed curve
in M. The number iA rargf(z) is an integer depending only on the element of the first
homology group corresponding to K and the coset determined by f in C'/R. Furthemore,
setting 07([K]) = 5-Agargf(z), the function

§:C/R— H(M;7Z)

defined by d([f]) = d; is an isomorphism. The proof of this claim will be divided into four
steps.
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(1) Fixe [f] € C/R. We claim that &; : H'(M;Z) — R is a Z-linear function. Firstly,
given K, L : [0,1] — M be smooth closed curves with the same base point, then

[K]+[L]=[K-L]in H(M,Z),

where

K- L(t) = K(2t), if 0 <t <1/2
| L@t-1), if12<t<1

(see [32], page 166). From this, it is easy to check that
Op ([T + [L]) = &5 (LK]) + o([L]),
concluding the claim.

(2) Let fe C and K : [0,T] — M be a smooth path. If f(z) = exp2miH (z) for some
smooth function H : M — R, then

o Awcargf (x) = H(rs) ~ H(z),

where p; and p, are the initial and terminal point of K. Thus, using a suitable
partition of [0,T7], it follows that

Agarg(f - g9)(x) = Agargf(z) + Agargg(z).
Hence 6(f - g) = 67 + dg, concluding that ¢ is a homomorphism.

(3) We will now show that §¢([K]) € Z. Let K : [0,T] — M be a smooth closed
curve and 0 =ty < ... < t,, = T be a partition of [0, 7] such that f(K(t)) =
exp (2miH;(K(t))) when t; <t < t;41. Then,

;TAKargf = Z(Hz‘(K(tz’H)) — Hi(K(t:)))
= f (K (1))

i+1
DY RTCIEN
= K*Wf
0.7]

- K* f*d6.

[0,7]

Consider the natural projection 7 : [0,1] —> S where 0 is identified with 1. Since
K(0) = K(T), this curve induces a smooth function K : S' — M such that
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K o = K. It follows that
1 .
— Agargf = f T K* f*df
2 [0,T]
~ | wroRydo
(0,7
_ f (f o K)*do
w[0,T]

:Ll(fof()*dg

= degree(fo K) e Z
(for the last equality see 1.8.1).

(4) From the previous items it follows that § : C/R — H'(M;Z) is a homomorphism.
It remains only to show that ¢ is a bijective function. It is sufficient to show that ¢§
injective, since C'/R and H'(M;Z) are free modules with the same dimension equal
the Betti number of M (see the footnote in Lemma 1.8.1). Suppose that d; = 0.
With the same notation as in item (2), it follows that degree(f oK) = 0 for all closed

curve K. Since

degree(f o K) = J f*de,

K(SY)
then f*df represent the zero class. From 4.1.1 we conclude that [f] = 0.

Notation 4.1.4. Let X be a vector field on M. We will denote by ®x (or ¢ for short)
the flow generated by X and (z,t) — zt the R-action induced by it (this flow is complete

since M is compact).

Definition 4.1.5. A measure p defined in the o-algebra generated by all Borel subsets of
M is called invariant provided that is normalized (u(M) = 1) and for every mensurable

set S and every real number ¢ we have p(St) = p(S).

Definition 4.1.6. A point z € M is called quasi-reqular provided that
T
Th_r)noo 1/Tf0 f(xt)dt

exists for every real-valued continuous function defined on M.

Theorem 4.1.7 (Oxtoby, [62]). For every quasi-regular point z, there exist a unique

normalized invariant positive Borel measure p, such that

Jim 17 | fat)at = | )i (o)
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Proof. Let C°(M) the topological vector space of all continuous real valued functions
defined on M with usual norm || f ||= >, .,/ |f(x)|. For each n € N, set I,, the linear
functional on C°(M) by the rule

L.(f) = 1/nLn f(xt)dt

We have

| In |= sup [1,(f)] = 1.
!

Thus, by Banach-Alaoglu-Bourbaki Theorem, the sequence (1,,) admits a weakly convergent
subsequence. Suppose that I,,, — I weakly. Since the linear functional I is nonnegative,

the Riesz Representation Theorem ensures that there exists a unique nonnegative Borel

measure g, which represent I in sense that I(f) = SM p)du,(p) for every f e C°(M).
Then
T
Jim 1/Tf0 Flat)dt —

Nk
lim 1/nkf f(xt)dt =
nE—>00

jM £ ()i (p)

It remains only to show that pu, is normalized and invariant. It is normalized:

T

du,(p) = T@w 1/Tf0 dt = 1.

iz (M) =f

M

To conclude that p, is invariant, it is enough to show that §, (f(pt) — f(p))du.(p) = 0 for
every f e C%M). Denote by R; the function p — pt. We have

J f(pt)dpa(p f SRi(p)dpa(p) =
T

Tli_r)nml/Tf0 fRi(xs)ds =
T

= Tli_I)noo 1/TJ0 flz(t+s))ds.

Using the change u =t + s,

T+t
lim /T flzu)du =
t
T+t

= lim 17 <JT J(au)du —J Flau)du + f(xu)du) _

00 0
T+t

- | s+ pim 7| e

T
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Thus,
T+t
|| ) = it = i 7 | fau)d
M —® T
But
T+t T+t
lim 1/T du < lim 1/T s du = lim 1/Ts t=0.
Jim 1T [ plewdu< Jim 1T [ sup | fp)ldu = Jim 1T sup | 7(p)
The proof is completed. O

Theorem 4.1.8 (Oxtoby, [62]). The set of all not quasi-regular points has zero measure

concerning any invariant measure.

Notation 4.1.9. The change in the angular variable of f along the orbit going from x to
xt will be denoted by A, »argf.

Let f : M — S' be a smooth function and « be a smooth curve on M with
a(0) = z. We have that

fe(@oa(t)) = ailof(a(t))
can be interpreted as a complex number.

Notation 4.1.10. The symbol f (z) will denote the derivative of f in the X (z)-direction,
that is,

£ (@) = alof(xt) = fu(X(2)). (4.1)

Note that if f(z) = exp2miH(x), then f'(z) = 2miH,(d:|o(xt))f(z) hence
[ (@)/@rif(x)) = dloH (2t) = w(X (x)).

Theorem 4.1.11. Let x be a quasi-regular point. For any f € C' the limit
Tll—n>100 A(ac,:z:T) argf

exists and depends only on the class determined by f. The induced mapping of C'/R into

the real line is a group homomorphism.
Proof. 1t follows analogously as in 4.1.3. ]

Thus, we have associated each quasi-regular point z a homomorphism from
C'/R to R. By the Universal Coefficient Theorem, any member of the real cohomology is
expressible as a finite linear combination of members in the integral cohomology. Since
C'/R may be identified with the elements of the first cohomology group with integral
periods, then we can extend this homomorphism uniquely to a linear functional A, on the

first cohomology group with real coefficients. To make it clear, we will write the definition
of A,.
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Definition 4.1.12. Let x be a quasi-regular point. The asymptotic cycle associated with
x is defined as being the linear extension of A, : H'(M;Z) — R to H'(M;R), where A,
is given by

A.lf] = lim

T—so0 2731

ffﬂﬁﬂ)

Theorem 4.1.13. Let p be an invariant measure for a flow ®. For each f € C

AL = f A fldp(z) = = jM £ (@)/f(a)dt

M 2mi

Proof. We have

[ syt = [ (i S [ oot dute.

Since the quantity inside the parenthesis is uniformly bounded and p is finite measure,

this equals

g ([ sttt dute

which by the Fubini’s theorem equals

1

Jm L f (] 70t )a

wich by the invariance of p equals

Jim ([ s a
= 1i

T;nM;T(j f @)/ F)d <>)T
- o | F @/ @dnta).

]

Thus, to each invariant measure p we have associated (by linear extension) a
linear functional A, : H'(M;R) — R, hence A,, determine an element in H;(M;R).

Definition 4.1.14. Given an invariant measure p, the p-asymptotic cycle associated with

this measure is defined by

LM = 5 | (@) @)duta).

For certain kinds of flows, the p-asymptotic cycle is independent of u. S.

Schwartzman called those flows spectrally determinate.
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Definition 4.1.15. Let (X, d) be a metric space. Let & : X x R — X be a flow on X
(that is, a R-action on X). It is said to be recurrent provided there exists a sequence
t, — oo such that

limsup d(z, xt) — 0.
reX

Let us mention a theorem fundamental for us, which will be used in the next

chapters. For detailed proof of it, we refer the reader to Schwartzman’s paper.

Theorem 4.1.16 (S. Schwartzmann, [74]). A recurrent flow on a compact metric space is

spectrally determinate.

Remark 4.1.17. Implicitly we have the following definition of p-asymptotic cycles. Let M
be a closed manifold and X be a smooth vector field on M. The asymptotic cycle associated
with an invariant measure p is the homological class determined by the continuous linear

functional A;A : D} — R given by

Indeed, let [f] € C/R. Since f'(x)/f(z) = w;(X), then

’

A = fM<f’<x>/f<x>>du - jM w(X) = A (wy).

On the other hand, a linear functional is determined completely by its action on a basis,
and H'(M;Z) generates H'(M;R). It follows that A, = [A;]

4.2 Global cross-section to flows

The main result in Schwartzman’s paper is a criterion to a flow admits a global

cross-section. In what follows, we discuss two forms of it for the smooth context.

Definition 4.2.1. Let ¢ be a smooth flow on a closed manifold M. A closed codimension
one submanifold ¥ of M is said to be a global cross-section for ® provided intercept

transversally every orbit under ®.

Let ® be a smooth flow on a closed manifold M. A regular value 6 (or t) of
a smooth function f : M — S! (or f : M —> R) give us a closed codimension one
submanifold f~1(0) (or f~1(t)). When ker f, is transversal to ® and intercepts every orbit
under this flow, then the preimage of any regular value of f is a global cross-section for it.
In virtue of the theory developed in the previous section, it is natural to study functions
f in C. We will start by answering the following question: Let [f] € C/R. What are the

conditions to exist a global cross-section of the form ¢g~'(6) for some g € [f]?

Let g € C and g = exp(2miH (x)) be a local representation of it. Let o : I — M

be a smooth curve with «(0) = x. Then



Chapter 4. Asymptotic cycles on smooth manifolds 103

/

g+(a (0)) = drfo exp(2miH (a(t)))
= 2midi|oH (a(t))g((0))
— 2mig(z) Hy (o' (0)).

It follows that g is submersion if and only if for each x € M there exists a curve starting

in £ with

/ I

9«( (0))/(2mig(x)) = Hu(or (x)) # 0.

By transversality, this condition is satisfied when

9« (C¢lo(xt)) # 0.

These observations lead to the next lemma.

Lemma 4.2.2. Let ® be a smooth flow on a closed manifold M. Let g € C' and suppose
that ¢ (z)/(2mig(z)) > 0 for all 2 € M. Then g is submersion and g~'(6) is a global

cross-section for @ for every # € S*.

Proof. Let 0 € S'. By the above discussion, showing that ¢~!(f) intercepts every orbit
under the flow, we will have completed the proof (we have proved it in Section 2.4, but we
will give straightforward proof for this particular case). Since M is compact, there exists
€ > 0 such that

g (x)/(2mig(x)) > € > 0 for every z € M.

The expression g (x)/(27if(x)) is the variation of the argument of g in the orbit of z.
Since this variation is a positive number greater than e, and the orbit of x is a convex
set, there exist t € R such that f(xt) = 6. From this, we conclude that g~1(6) is a global

cross-section to ®. OJ

Let ® be a smooth flow on M and X the vector field generating ®. Given
g € [f], there exists a smooth function H : M — R such that ¢ = f(x)exp(2miH (x)).

Calculating the derivative of ¢ in the flow direction, we obtain

q (x) = f (x) exp(2miH () + 2midH (X (z))g(x)
= exp(2miH (z))(f () + 2midH (X (z)))

hence

g ()/(2mig(x)) = f (x)/(2mif(2)) + dH(X). (4.2)

Denote by D the set of all functions K : M — R such that K(z) = dH(X) for some

smooth function K : M — R. The Equation 4.2 gives us a condition for the existence of
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a function ¢ in the class of f satisfying the positivity condition of Lemma 4.2.2. Indeed, if
the subspace E = {f(z)/(2mif(z))) ® D of C°(M) have nontrivial intersection with the

cone of positive functions, namely, if for some H, the expression
f(w)/(2mif(x) + dH(X)

represents a positive function, then g(x) = f(z)exp(2miH (x)) satisfies the positive condi-
tion of Lemma 4.2.2 and, therefore, the flow has a global cross-section. On the other hand,
if it no intercept the cone of positive functions, we can use functional analysis tools, as
Hahn-Banach Theorem and Riesz Representation Theorem, to obtain a Borel measure p
satisfying

fM (£ @)/(@rif(2)) du(z) = 0.

As we will see, this measure is invariant and, consequently, gives us an asymptotic cycle.

Observe when the positivity condition of Lemma 4.2.2 is satisfied, we have trivially

JM (f (@) <2m'f<x>) dp(z) > 0

for every nonnegative measure p. When the measure is invariant, we can rewrite the last

equation as
Au(Lf]) > 0.

These observations lead to the following criterion for the existence of a global cross-section

to a flow.

Theorem 4.2.3. Let M be a closed manifold and ® be a flow on M. Let f € C. There
exists a global cross-section to @ in the class of f € C' if and only if A, ([f]) > 0 for every

invariant measure fi.

To show this theorem, we need a characterization of invariant measure. It is

easily seen a measure p is invariant if and only if

fM<H<mt> ~ H(x))dp(x) = 0

for every real-valued continuous function H on M and every real number ¢t. Note that it is
sufficient to require that the above equality hold for merely smooth functions since any
continuous function can be approximated uniformly by such ones. Define D the set of all
functions K : M — R satisfying K (z) = dH (X)) for some smooth function H and F the

set of all functions which have the form
H(xt) — H(x),

where H(x) ranges in the space of smooth functions on M and ¢ ranges over all possilble

real numbers.
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Lemma 4.2.4. The closure of F£ and the closure of D are identical.

Proof. Foreachte R and H : M — R, set K;(z) = H(xt). Note that K;(zt) — K;(z) € E
for each t e R and H € E. Given K € D, we have

K(z) = 0t|i=oH (xt)

- lim (1H(x) - 1H(x))

—0\

= thmO(Kt(:I}t) — Kt(ﬂf))
Hence K € F, concluding that D  E. Given now (H(zt) — H(x)) € E, we have
t !
H(xt) — H(z) = f H (zs)ds.
0

By use of Riemannian’s sums to approximate the integral, it is easily seen that we have
a uniform approximation on M. Now, observe that each term in a Riemannian’s sum

referent to one partition 0 = tg < ... <t; =T is given by
(tz‘+1 - ti)8t|t=t0H(xt) = 8t|t:0(ti+1 — tz)H(ZL‘(t + to))

Since Oply—o(tiv1 — t;)H (x(t + to)) belongs to E for each i = 1,...,1, it follows that £ < D,

concluding the lemma. O

Lemma 4.2.5. A measure yx is invariante if and only if §, H(x)du(x) = 0 for every
HeD.

Proof. By Lemma 4.2.4, the closure of D and E are identical. Now, the set F is one of all
function which have the form H(zt) — H(z) where H(z) ranges in the space of smooth
real functions on M and t ranges over all possible real numbers. On the other hand, a

measure g is invariante if and only if

| e — H@)auta) - o

for every smooth real function H on M and every real number ¢. Thus, a measure p is
invariant if and only if {, K (z)du(z) = 0 for all K € E. Since the topology on C°(M) is
one of uniform convergence, it follows that any element in £ can be uniformly approximated
by elements in £. Thus, §, K(x)du(x) = 0 for all K € E if and only if §,, K (z)du(z) =0
for all K € E = D. The proof is completed. O

Proof of 4.2.3. Set F' = D@ {f (z)/(2mif(x))). We claim that F interspet the cone of

positive functions. Otherwise, by Hahn-Banach Theorem, there exists a continuous linear
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functional L : C°(M) — R such that L # 0 and L|r = 0. By the Riesz Representation

Theorem, this functional is represented by a finite positive Borel measure p on M satisfying

L(g) = JM g(z)dp(z)

for every g € C°(M). The condition L|5 = 0 implies that y is invariant (see Lemma 4.2.5).
Since L(f (z)/(2mif(x))) = 0, this leads to the following contradiction

0< Ay Jf J@mif())du(z) = 0.

It follows that F intersept the cone of positive functions in C°(M), concluding the

theorem. O

4.3 A condition ensuring the existence of a global cross-section

Given a finite Borel measure p and a continuous vector field X, the rule
pr@) = | w(X)du
M

define an element in D). Now, let ® be a flow on a closed manifold M and X be a vector
generating it. If p is an invariant measure, then A, = [‘Pu x]- Throughout this section the

symbol A, represent the linear functional A,(w) = {, w y wW(X)dp (see 4.1.17).

Lemma 4.3.1. Let ® be a smooth flow on a closed manifold M. The set
C = {A,, p is an invariant measure}

is convex and o (D}, D;)—compact.

Proof. 1t is easy to check that C is convex. The proof of the second statement of the lemma

will be divided into three steps.

(1) Let L : CY(M) — R be a continuous linear functional. By Riesz Representation
Theorem, there exists a unique finite measure p defined on the o-algebra of the Borel

subsets of X such that
=] s
M

for all f e C°(M). It follows that we can identifie the topological dual to C°(M)
with the set of all finite measure u defined on the o-algebra of Borel subsets of M.
Via this identification, the set of all probability measures on M is characterized as

= {u/ || p ||= 1}, where the norm considered is the usual norm in the topological
dual of the Banach space C°(M). By Banach-Alaoglu-Bourbaki Theorem, we have
that P is weakly-compact.
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(2) We will now show that the set of all ®-invariant measures is a closed subset of P. Let

tn —> p be a sequence with p,, invariant for all n € N. Given f € C°(M) we have

JM(f(l’t) — f(x))dp = p(fot—f)=limu,(fot—f)=0,

concluding that p is invariant. It follows that the set of all invariant measures is
closed (since (C°(M)) is metric, a subset of (C°(M))" is closed if and only if it is

sequentially closed).

(3) Let X be a vector field generating ®. Let
L (CO(M)) — D

given by «(p)(w) = §,, w(X)du. We will give straightforward proof that ¢ is weakly
continuous. Remember that for a dual pair (F, F'), the weak topology on F' has
as subbasis of neighborhoods of the zero the sets U, = {y € F/|(z,y)| < €},
where x range over F and € range over all positive real numbers. Let w € Dy and
¢ > 0. Concerning the dual pair (Dy,D’;) we have u € 171 (U,) if and only if
| §,, w(X)du| < e. Since w(X) € C°(M), we have that ™' (U, ) = Uy(x), is weakly
open (of course, concerning the dual pair (C°(M), (C°(M))")). It follows that ¢ is

weakly continuous.

To finish, note that for an invariant measure u we have
(1) () = Ay)
It follows from itens (1), (2) and (3) that C is the image of a weakly compact set by a

weakly continuous function. Therefore, C is weakly compact. m

Theorem 4.3.2. Let ® be a smooth flow on a closed manifold M. There exist a global
cross-section for & if and only if for every invariant measure p the homological class

determined by A, is nonzero.

Proof. By Lemma 4.3.1, the set C = {A,, u invariant measure} is convex and weakly
compact. Since B; is a(D’l, Dy)-closed and C n By = &, by Hahn-Banach Theorem there

exists a o (D), D;)-continuous linear functional ¢ : D; —> R such that
¢le > 0 and @|p, = 0.

This linear functional is strongly continuous (because (D;, D)) is a dual pair by Schwartz’s
theorem 1.6.31 and in any dual pair (E, F') a weak continuous linear functional f : £ — R

is strongly continuous). Again by 1.6.31, there exist a 1-form 1 such that ¢ = 7. Hence

dn(¢) = n(09) = ¢(0¢) = 0,
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concluding that 7 is closed. The positivity condition of ¢ on C implies that

Au(n) =n(AL) = p(Au) >0

for every invariant measure p. Now, the set of all invariant measures is weakly compact,
and by 1.8.3 n can be approximated in D; by forms with integral periods. It follows that
there exists a form w with integral periods such that w(A,) > 0 for all invariant measure
w. Since w = f*df for some smooth function f : M — §, it follows by Scwartzmann’s

Theorem 4.2.3 that ® admit a global cross-section. [

Corollary 4.3.3. Let ® be a smooth flow on a closed manifold M. Suppose that the
homological class determined by A, is nonzero for any invariant measure p. Then there

exists a submersion f : M — S! with all fibers transverse to ®.

Proof. The hypothesis and Theorem 4.3.2 implies the existence of a global cross-section
to ®. Hence, Theorem 4.2.3 implies the existence of a smooth function f : M — S!

satisfying the positivity condition in the Lemma 4.2.2. The proof is completed. O

Example 4.3.4 (Hamiltonian vector fields). Let (M?",w) be a symplectic closed manifold.
Given any 1-form «, there exists a vector field X, such that a = 1x_w, since w is nonsingular

" is closed and the vector field

two-form. When « is closed, then the (n — 1)-form tx, w
X, preserves the volume form w™. Those vector fields are called Hamiltonian vector fields.
Suppose p is an invariant measure for the flow generated by X,. The p-asymptotic cycle

associated with p is given by
A = | 30

Denote now p the measure determined by the volum form w”. We have
AB) = | B = | B A en
M M

In general, txw® = kixw A cxwh 1 If Xp is such that 8 = tx,w, then

BALx W = NLX W A LX,W A Wl =

Lxaw An(ix,w) AWt =
a A Lxzw".

It follows that
A, B) = f a A Lxw".
M

On the other hand, there is an isomorphism Hp}x(M;R) — HPEZ(M;R) given by
[8] — [ex,w"]. Thus, the p-asymptotic cycle associated with w"™ concerning X, is
homologous to zero if and only if the class determined by a cohomologous to zero. It
follows by 4.1.16 and 4.3.2 that a recurrent Hamiltonian vector field X, admits a global
cross-section if and only if [a] # 0 in H},z(M).
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4.4  Correspondence between asymptotic cycles and foliation cycles

Many references in the literature indicate that the foliation currents theory is a
generalization of the asymptotic cycle theory. For example, Schwartzamnn itself in [75]
says: “using the notion of a transversal invariant measure as defined in [80], a generalization
of the p-asymptotic cycle was given that applies to arbitrary smooth oriented foliations of

a compact manifold”.

This section deal with the “equivalence” between asymptotic cycles and foliation
cycles for the case of 1-dimensional foliations. Namely, let ® be a smooth nonsingular flow
on a closed manifod M (a 1-dimensional foliation). Let ¢ be a 1-dimensional current. Then
c(w) = §,, w(X)dv for some measure v and, furthemore, ¢ is a cycle if, and only if, v is an

d-invariant measure.

Theorem 4.4.1 (Sullivan, [80]). Let § be a 1-dimensinal foliation on a closed manifold
M. Let X be a nowhere-vanishing vector field tangent to §. Given a foliation current ¢

(for §) there exists one, and only one, positive, finite, Borel measure v, in M such that

) = | )i,

for all n € D;.

Proof’s sketch. Let w be a 1-form satisfying w(X) = 1. The idea is to use Riesz Represen-

tation Theorem to obtain a measure ve such that the linear functional

J.: C*(M) — R
f—c(fw)

be given by J.(f) = §,, fdv.. Suppose ¢ = aX,, a Dirac foliation current in the X,

direction. Then, denoting v, the atomic measure concentred in {z}, we have

c(fw) = (aX,)(fw) = af(z)w(X,) = af(z) = JM fdv..

It follows that if ¢ is a finite sum with positive coefficients of Dirac foliation currents, then
the unique measure which satisfies the condition in the theorem is given by the sum of

atomic measures concentred in each z;.

Now, let ¢ any foliation current. Then ¢ = lim¢,, where each ¢, is a finite
linear combination with positive coeficients of Dirac foliation currents (convergence in
the o (D}, D;)-topology, see 3.2.4). For each n € N, let v, as in the preceding paragraph.
The bounded sequence {v,,} has a subsequence converging for a measure v with the same
proprieties. By Riesz Representation Theorem, the measure v is uniquely determined.

Given a 1-form 7, writing

n=mno+ n(X)w
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with 79(X) = 0, we have

MW=%%+MM@=%@MM%thXW@

Therefore,
c(n) =lime,(n) = limf n(X)dv,, = f n(X)dv..
M M
O

Theorem 4.4.2. With the notations of the previous theorem, a foliation current c is a
cycle if and only if is ®-invariant. Furthemore, every invariant measure v determines a
foliation cycle by the rule n — A, (n). In particular, there is an one-to-one correspondence

between foliations cycles and p-asymptotic cycles.

Proof’s skecth. Suppose that ¢ is a cycle. Then, for every smooth function f: M — R we

have

0= 00,(f) = d,(df) = fM df (X)dv.

Given t € R, f € C*(M), using Fubbini Theorem, we have

Lumww@www=h(£wwum@)mwz

[ oo

Since §,,(f(xt) — f(z))dv(z) = for every t € R and f € C*(M), we conclude that v is
invariant. Conversely, if v is invariant, A, have sense and is a cycle. Hence ¢ = A, is a

cycle.

To prove that invariant measures determine foliation cycles requires a little
more effort. This is clear in the proof of Sullivan’s theorem. An invariant measure v can be
“disintegrated” in each foliated chart obtaining two measures, a measure v, in each plaque
(q.t.p.) and a transversal measure that is holonomy invariant. Thus, for a foliated atlas U,
and a transversal Sy, associated, we can obtain a holonomy invariant measure 1 such that

¢, = Ay. It follows that invariant measures determine foliations cycles.
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5 Characterization of flat circle bundles

E. Calabi showed that any nowhere-vanishing closed 1-form is intrinsically
harmonic (see section 2.4). Thus, it is natural to raise the question about the dual case. Is
a closed nowhere-vanishing (n — 1)-form intrinsically harmonic? We must exclude exact
forms since by 1.7.6 they are harmonic only if they are identically zero. In contrast with
the case of nowhere-vanishing closed 1-forms that determines a nonzero cohomological
class, there exists exact nowhere-vanishing closed (n — 1)-forms, as the natural pullback
form given in the Hopf’s fibration S* — S?. In Chapter 2, we provide a condition to a
closed nowhere-vanishing (n — 1)-form on a closed manifold to be intrinsically harmonic,
namely, when an associated canonical flow admits a global cross-section. This and the
next chapter, where is given an improvement of this characterization, originated in an
attempt to provide an example of a nowhere-vanishing closed (n — 1)-form, non-exact and
non intrinsically harmonic. Unfortunately, we did not get such an example nor manage to

show that obtaining it is impossible.

We started this search in the class of forms given in circle bundles B =
{B,p, T""! S'}. By Thishler’s argument and characterization of the covering of the torus,
if the form p*Qpa—1 is intrisically harmonic, then B and T" are diffeomorphic. Hence, a
possible counterexample would arise from a circle bundle p : B — T"~! with total space

not diffeomorphic to the n-torus and p;‘zTni a non-exact form. The fact that this attempt

1
fails more generally, in any circle bundle with closed total space, is the main result of this

chapter. We provide the following results.

Theorem 5.0.1. Let M be a closed smooth manifold with a closed (n — 1)-form w that
induces a compact foliation®. If each orbit of the flow induced by w is homologous to
each other and [w] # 0, then w is intrinsically harmonic. If w is intrinsically harmonic,
then there exists a smooth S'-action on M with the same orbits as the one from the flow

induced by w.

Theorem 5.0.2. Let B = {B,p, M,S'} be a differentiable principal bundle over a closed
orientable manifold M. Then B admit a flat connection if and only if p*(£2,) is intrinsically

harmonic.

By another direction, in Subsection 5.2.1 we provide the following characteriza-

tion of the foliated circle bundle:

Theorem 5.0.3. Let B = {B,p, M,S'} be a differentiable circle bundle over a closed

manifold M. Then B is smooth foliated if and only if the fiber determines a nontrivial

L A foliation § is said to be compact provided every leaf of § is compact.
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homological class. When M is orientable, this happens if and only if p*Q2,, is nonzero in
cohomology.
We finish this chapter by providing the following characterization of the torus.

Theorem 5.0.4. The n-torus is the unique closed n-dimensional manifold admitting a set
of (n — 1) everywhere linearly independent nowhere-vanishing closed 1-forms {w;}, such

that the product w = wy A -+ A w,_1 determines a nonzero cohomological class.

5.1 Examples of intrinsically harmonic (n — 1)-forms

Lemma 5.1.1. Let M be a closed orientable manifold. Let €2 be a volume form on M
and X be a smooth vector field on M preserving €. Set w = ix{) and p the measure
determined by 2. Then p is invariant by the flow determined by X and A4, = [w], w
viewed as a diffuse current. In particular, if w determines a nonzero cohomological class,
then A, # 0 in HPE(M).

Proof. Let n be a 1-form on M. Using the identity ix(n A Q) =ixn A Q+n A ix$ and
the definition of u, then

an<X>du - an<X>Q -

f anAQZ
M

nqu@AQ>+nAMQ):

J nAw.
M

Thus, since d(fw) = df A w— fdw and dw = 0, by Stokes’s theorem

| arcodu= | drne= | atpe) -0

for all f e C*(M). Using this, we will prove that u is invariant. Let ¢ € R and f € C*(M).
By Fubini’s theorem

[[arex i) duo) =

0

[ et = syt - |
(

:~uﬁa@m@u0@:o

S



Chapter 5. Characterization of flat circle bundles 113

Hence, since §,,(f(xt) — f(x))du(z) = 0 for every t € R and f € C*(M), it follows that p

is invariant. Therefore, have sense A, and
Au(n) = f(X)du = f nAw=w(n),
n M

where w is seen as a diffuse current. Now, by 1.7.9, the form w determine a nonzero
cohomological class if and only if, as a diffuse current, determine a nonzero homological

class. The proof is completed. O

Lemma 5.1.2. Let M be a manifold and ¢ be a continuous flow on M with a periodic
point z under ®. Then x is quasi-regular and A\(x)A, = [C,], where A(z)? is the period of

x and [C,] represents the integral homological class determined by the orbit of z under ®.

Proof. 1f x is a fixed point, the assertion follows. Suppose z is not a fixed point. For each

smooth function f: M — R, it is easily seen that

T A(x)
lim 1/T L Flat)dt — 1//\(x)JO Fat)dt.

Therefore every periodic point = € M is quasi-regular. Set « : [0,7] — M given by
a(t) = xt. Let f € C. Then

Adf = Jim o | @t fa)

— Jim JT2m<wf(a’(t))dt>

T e 2T 0
lim - f
= lim — w
=T Jupmy

_ 1/A(x)f .

a[0,A(z)]

Denoting by [C] the integral homological class determined by the orbit of x parametrized
by a, then

() = f wr = M2) AL f].

a[0,A(x)]

Therefore,

]

To prove the next theorem, let us mention a result of D. Montgomery and, for

later use, a mild generalization of it mentioned by D.B. Epstein in [21] (Theorem 7.3).

2 The period function is defined by \(z) = inf;>o{zt = z}.
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Theorem 5.1.3 (D. Montgomery, [58]). Let X be a connected metric space locally
homeomorphic to R™. If T" is a pointwise periodic homeomorphism of X into itself then T'

is periodic.

Theorem 5.1.4 (K.C. Millett). Let M be a connected manifold and let G be a group of
homeomorphisms of M, such that the orbit of any point of P is finite. Then G is finite.

Proof of Theorem 5.0.1: Let € be a volume form on M and X be the vector field given
in the equation w = ix{2. Denote by ® the flow on M induced by X. Suppose every orbit
under ¢ determines the same element in homology. Let p the measure induced by (). By
Lemma 5.1.1, A, = [w]. By 1.7.9 the homological class of w as a diffuse current is zero
if and only if the cohomological class of w is zero. It follows that A, # 0. Now, given
f e C/R and v be a ®-invariant measure, it follows by Lemma 5.1.2 that

AL = | Adfidv

M

=L1@@mww.

Tz

Therefore, [C;] # 0 for all x € M, since [C,] independ on z by hypothesis and A, # 0.
Let g € M and f € C'/R such that ([Cy,],[f]) # 0. Then

1
Al fl = ([Cy |, J ——dv(x
1= (Gl 1) | 5ev(e)
for all ®-invariant measure v. Now, since z —> \(z) is a positive function®, we conclude
that A, # 0 for all ®-invariant measure v. The theorems 2.4.3 and 4.3.2 together implies

that w is intrinsically harmonic.

Conversely, suppose that w is intrinsically harmonic. Then there exists a closed
1-form 7 such that n(X) > 0. By 1.8.3, we can take n = f*df with f : M — S! be a
submersion. By Ehresmann’s lemma 1.2.3 and Theorem 1.4.6, we have that f : M — S!
determines a foliated bundle B, with the foliation given by the orbits under ®. Such a

bundle is characterized by the holonomy homomorphism
¢ : m(S') — Diff(F).

Since 7 (S') = Z, the homomorphism ¢ is determined completely by the diffeomorphism
g = ¢(1). On the other hand, since each orbit under ® is compact, the diffeomorphism g is
pointwise periodic. By Theorem 5.1.3, there exists k € Z such that ©*(1) = 1, concluding
that ® is periodic. It follows easily that there is an smooth action ¥ : M x S' — M with

the same orbits as ©.

[]

The function A is lower-semicontinuous (see 6.5.3), hence Lebesgue measurable. It follows that §, fdv #
0 for any measure v defined on the o-algebra generated by all Borel subsets of M.

3
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5.2 Flat circle bundles

Every orientable smooth circle bundle B admits principal bundle structure. It
is a well-known fact that a principal bundle is trivial if, and only if, it admits a global
cross-section. In the case of circles bundles, there is a unique obstruction to the existence

of a global cross-section, an element
X(B) € H*(M;Z)

called Euler characteristic of the bundle B ([59], page 346). Hence, an orientable circle
bundle B has a global cross-section if and only if y(B) = 0. This cohomological class carries
not only information about the triviality of the circle bundle. As we will see, it is possible
to characterize when a circle bundle is smooth foliated in terms of this class. As already
said (see Section 1.4), these are classified by their holonomy homomorphisms. Namely,
there is a natural bijection between the set of all smooth foliated orientable circle bundles
over M modulo leaf preserving bundle isomorphism and the set of all homomorphisms
¢ : m(M) — Diff*(S') modulo conjugacy. Many papers were concerned about the
problem of the existence of a codimension-one foliation transverse to the fibers of a given
circle bundle, that is, the question of when is foliated a circle bundle. For circle bundles
with the base space being a surface, a necessary and sufficient condition for the existence of
a transverse foliation was obtained by J. Milnor [50] and J. W. Wood [90]. Circle bundles
with base space being a 3-manifold were studied by S. Miyoshi [55]. An answer to when is

smooth foliated a circle bundle was given in [56, 61].

In this section, the main result is to characterizing a flat circle bundle over an
orientable base. Also are given results on non-orientable circle bundles and circle bundles
with a non-orientable base similar to the previous one. As a consequence, but by a different

approach, we obtain the same results as in [56, 61].

Theorem 5.2.1. Let B = {B, p, M,S'} be a differentiable orientable circle bundle over a
closed orientable manifold M. Let €2 be a volume form on M. Then B is smooth foliated if

and only if p*(€?) is intrinsically harmonic.

Proof. Suppose that p*(£2) determines a nontrivial cohomological class. Since the orbits of
the flow induced by p*(£2,) are homologous to each other, Theorem 5.0.1 ensures that

p*(€) is an intrinsically harmonic form.

Conversely, suppose p*(€2ys) is intrinsically harmonic. Then there exists a
closed 1-form 7 transversal to the flow generated by p*(£25). This form induces a foliation
transversal to the fibers of B. Since B has compact fibers, it follows by 1.4.6 that this

foliation is compatible and B becomes a smooth foliated bundle. The proof is completed. [J

Lemma 5.2.2. The isometry group of the sphere with the canonical metric is the orthog-

onal group.
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Proof. 1t is well-known that an isometry of a connected Riemannian manifold is charac-
terized by its value at a point x and the evaluation of its differential at x. That is, if f, g
are isometries of a connected Riemannian manifold M, f(x) = g(z), and df, = df, then
f = g (for example, see [63] page 143). Observe now that any element in O(n + 1) is an
isometry of S™. On the other hand, using linear algebra we can show that given =,y € S™
and «, J ortonormal basis for T,,S™ and T,S", respectively, there exists g € O(n + 1) such
that g(x) = y and df, take the basis a in the basis 5. Thus, O(n + 1) contains all possibles

isometries of S™. O

Lemma 5.2.3. Let g and h be Riemannian metrics on S'. Then there exists an isometry

f:(8hg) — (8% h).

Proof. Consider the usual covering map 7 : R — R/Z = S'. The Riemannian metrics 7*¢g
7*h are related by a positive function, that is, there exists a smooth function f : R — R
such that 7*g = e/m*h. The function f is necessarily invariant by translation of elements
in Z. It follows that the isometry
olt) - f "B g
0
between (R, 7*g) and (R, 7*h) induces an isometry between (S!, g) and (S', h). O

Remark 5.2.4. If two Riemannian manifolds (M, g) and (N, h) are isometric by a function
f M — N, then the groups Iso,(M) and Iso,(N) are related by the isomorphism & :
Isog (M) —> Isop(N) given by ®;(f) = fofo f~'. In particular, if f : (S, g) — (S, can)
is an isometry, each element of Iso,(S') have the form f o Lyo f~!, where Ly denotes the

left translation by 6 € S' (compare with [25], proposition 4.1).

Theorem 5.2.5. Let B = {B,p, M,S'} be a smooth orientable circle bundle over a closed
orientable manifold. If p*(€2),) determines a nontrivial cohomological class, then B is
Diff " (S')-equivalent to a flat circle bundle.

Proof. In the proof of Theorem 5.2.1 we can take n with integral periods by Tischler’s
argument 1.8.3. Then n = f*d6, for some smooth function f : B — S'. It follows that B

is foliated by a compact foliation. Let
¢ : (M) — Diff (S

be the holonomy homomorphism which characterizes this foliated bundle. Since each leaf of
Sy is compact and transversal to the fibers of B, then the orbit of any point in the fiber B,
over x under the group o (m;(M)) is finite (indeed, it is equal to #(f~'(f(z)) n B,)). This
and Theorem 5.1.4, implies that ¢(m(M)) is a finite group. Now, let g be a Riemannian

metric on S*. Set

hMX,Y) = D 9(de(R)(X), dp(k)(Y)).

|90(7r1 (M)> ‘ kep(m1(M))
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Then, h is a Riemannian metric on S' such that (k) is an isometry for all k € Tm(y). Tt
follows by 5.2.3 that there exists a diffeomorphism f : S' — S* such that f~lop(a)of € S
for all a € 7 (M). The fiber bundle obtained considering as holonomy homomorphism the
map

¢ :m (M) — St

given by ¢ (o) = f~'¢(a)f is a differentiable principal flat bundle by 1.4.7. Furthemore,
this bundle is Diff " (S')-equivalent to B by 1.4.2. The proof is completed. O

Theorem 5.2.6. Let B = {B,p, M,S'} be a differentiable principal circle bundle with M
closed and orientable. Then B admits a flat connection if and only if the form p*(£2,) is

intrinsically harmonic.

Proof. Suppose that 7%, is intrinsically harmonic. Then, by Theorem 5.2.5 there exists
a differentiable principal flat circle bundle which is Diff* (S!)-equivalent to B. It follows by
1.2.39 that B is differentiable isomorphic to B  as S'-bundles. To finish, a flat connection
in B can be transferred to a flat connection for B by 1.2.31. The converse follows by 5.2.1.

The proof is completed. O

Another characterization of flat circle bundles in terms of the real homological

class represented by the fiber is possible and depends on the next lemma.

Lemma 5.2.7. Let B = {B, p, M, F'} be a differentiable fiber bundle with compact total
space and base be an orientable manifold. Let €2 be a volume form on M with SM Q=1.
Then, the Poincaré dual to the fiber of B can be represented by p*(2. In particular, [F] = 0
in Hyim r(B;R) if and only if p*Q is an exact form.

Proof. Let x € M. Denote by F' the fiber over x. Let U be a sufficiently small open set

diffeomorphic to R™ such that there exists a trivialization
¢:p (U) — U xF,

for which the normal bundle of F' is equivalent to the trivial vector bundle 7 : F x U — F.
Denote by
m:UxF—U

the projection on the first factor. Given a n-form w in U generating H'(U) = R (the

compactly supported cohomology), the closed form
n=mw

represents the Thom class of the bundle 7, because generates H”({y} x U) for each y € F
(proposition 6.18 of [4]). On the other hand, the Thom class of 7 can be represented by
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the Poincaré dual of the null section, which in this case is F' ( proposition 6.24 of the [4]).

Then, 7 represents the Poincaré dual of F in U x F' and, therefore,
¢*n = ¢*(miw) = (Mo ¢)'w = p*w

represents the Poincaré dual of F' in p~!(U). The trivial extension of p*w to B gives the

Poincaré dual of F'in B. Clearly w defines a form in M, by trivial extension, and

(LMD = | =] w=1= (. [M)),

concluding that €, and w are cohomologous. To finish, p*Q,,; and p*w are cohomologous
with 7*w representing the Poincaré dual of F' in B. Therefore, we have [F] = 0 in

Haim r(B;R) if, and only if, p*Q,, is an exact form. O

Example 5.2.8. Let B = {B,p, M, F} be a differentiable fiber bundle with compact
total space and base be an orientable manifold. Suppose that x(F) # 0 (the Euler
characteristic of F' is nonzero). Let Q2 be a volume form on M. Then 7*Q) determines a
nonzero cohomological class by 5.2.7. Indeed, since x(F') # 0 it is not possible for F' to be
a boundary and, therefore, we have [F| # 0 in Hgim r(B; R).

Theorem 5.2.9. A differentiable principal circle bundle B = {B, p, M,S'} over a closed
orientable manifold admits a flat connection if, and only if, [S'] # 0 in H;(B,R).

Proof. Tt follows by 5.2.1 and 5.2.7. m

Example 5.2.10 (Plante, [64]). Given a smooth orientable sphere bundle B = { B, p, M, S*}

we have from the Gysin cohomology sequence (real coefficients)
. — H¥M) 25 HY(B) — HO(M) -5 HMY(M) —> ...

where W(1) € H*(M) is just the Euler class of the bundle. Hence, the fiber is null-
homologous in Hy(FE) if and only if p* is surjective which is true if and only if the Euler

class is nonzero.

Theorem 5.2.11. A differentiable principal circle bundle B = {B, p, M,S'} with closed
orientable base space admits a flat connection if and only if one (and consequently all) of

the four conditions below holds:

(1) p*(Q2pr) is intrinsically harmonic;
(2) p*(2p) determines a nonzero cohomological class;
(3) the fiber represents a nonzero class in H;(B;R);

(4) x(B) is a torsion element.

Proof. 1t follows by 5.2.6, 5.2.7 and 5.2.10 and from the fact that the real Euler class
xr(B) of B is equal to x(B) ® R. O
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5.2.1 Smooth foliated circle bundle

Theorem 5.2.12. Let B = {B,p, M,S'} be a circle bundle over a non-orientable closed
manifold. The fiber determines a nonzero real homological class if and only if B is smooth
foliated. In the case of B be smooth foliated, then B is a non-orientable manifold and B is

an orientable fiber bundle.

Proof. Since the real homological class determined by the fiber is nonzero, the flow ®
induced by the it admits a global cross-section by 4.3.2 (this flow has only an assymptotic
circle given by the class of the fiber which is nonzero). By Corollary 4.3.3, there exists
a closed differential form w transverse to the orbits under ®. Thus, B is smooth foliated.
Conversely, suppose that B is smooth foliated. A compatible foliation to B being transversal
to the nowhere-vanishing vector field X given by the fibers of B must be induced from
a closed differential 1-form n by 2.4.7. Since the form 7 restricts to a nowhere-vanishing
form in the fibers, then each of these represents a nonzero homology class. Furthemore,
B is orientable since w restricted to each fiber is a volume form. It follows now by 1.5.10

that B is non-orientable, since M is non-orientable and B is orientable. O

Remark 5.2.13. By the latter theorem, a non-orientable circle bundle over a non-

orientable closed manifold cannot be smooth foliated.

Theorem 5.2.14. Let B = {B,p, M,S'} be a non-orientable circle bundle over an ori-
entable closed manifold. Then B is smooth foliated if and only if the fiber represents
a nonzero real homological class (or the pullback of the volume form is intrinsically

harmonic).

Proof. The proof is similar to the one given in Theorem 5.2.12. In this case, in contrast
to the previous one, the fibers are the integral submanifolds of the distribution ker p*(2,
where () is any volume form on M. If this form is intrinsically harmonic, then B is smooth
foliated. Conversely, if B is smooth foliated, this foliation is given by the kernel of a closed
1-form by 2.4.7, necessarily transversal to p*{2. Hence p*() is an intrinsically harmonic

form. O

5.3 Characterization of the torus

By Tischler’s argument and the characterization of the covering spaces over
the n-torus, ti is the unique closed manifold admitting a set consisting of n closed forms
of degree one everywhere linearly independent. Moreover, if in a closed n-dimensional
manifold M there exists a set consisting of (n — 1) closed forms of degree one everywhere
linearly independent, say wy, . ..,w,_1, such that the product w; A ... A w,_1 is a nonzero

cohomological class, then M and T™ are diffeomorphic.
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Proof of Theorem 5.0.4. By the Tischler’s argument 1.8.3, there exist integers d; and a

collection of smooth fiber bundles
Bl = {Mv b, Tn_l}

such that

= Q) —w
in D,,_1. Since the limit of exact forms is an exact form by 1.7.9, at most a finite number
of n; can be cohomologous to zero. If in By we have 1, not cohomologous to zero, then 7

is intrinsically harmonic by 5.2.1. Thus, there exist a closed 1-form 7 such that
m A n> 0.

From the last equality, we can obtain a set with n linearly independet closed 1-forms defined
on M. Again by Tischler’s argument, there exists a surjective submersion g : M — T".
The map g is proper, because M is compact. By Lemma 3 in [35], we conclude that g
is a covering map. A covering of T" is diffeomorphic to R"/H, where H is subgroup of
m(T™) = Z". They are compact only when H have the form myZ x - -+ x m,Z, m; € Z.
Therefore, M and T" are diffeomorphic. O]

Remark 5.3.1. Let M be a manifold with a closed-decomposable form w = w; A -+ A w),
defined on M. By Tischler’s argument, there exist a sequence of integers (d;) and a

collection of smooth fiber bundles
Bl = {Muprpu E}

such that w; = dilpl*QTp — w in D,,. In particular, if w determines a nonzero cohomological
class, then the forms 7;Qqn are eventually not cohomologous to zero by 1.7.9. Suppose w
is harmonic concerning to a Rimannian metric g on M. Then 1 = *,w is a closed form
with rank (n — p). Since w; — w in D, and w A > 0, eventually we have w; A 7 > 0.
Theorem 2.1.2 ensures that w; is intrinsically harmonic. From these observations, the study
of intrinsical harmonicity of closed-decomposable p-forms is equivalent to the study about
closed-decomposable p-forms 7*Qp, given in fiber bundles B = {M,p, T?, F'} over the
p-torus. We can start weakening the hypothesis in Theorem 2.1.2; considering only foliated
bundles. By a result of J.F. Plante in [64], the fiber of a foliated bundle having a torus
as base detemines a nonzero cohomological class. Indeed, in this case the group 7 (T?) is
abelian group, hence it has polinomial growth. On the other hand, Plante showed that in
a foliated bundle where the fiber determines a zero homological class, the fundamental
group of the base has polinomial growth. Consequently, in a foliated bundle having a
torus as base, we have [7*(Qrr)] # 0 by 5.2.7. More generally, using 3.3.8, we can obtain
the following equivalence: given a foliated bundle B = {M, p, T?, F'}, the form 7*(T?) is

intrinsically harmonic if, and only if, B admits a SL(p)-transversal foliation.
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6 Pointwise periodic flows on locally compact

metric spaces

In the preceding chapter, we gave a condition to a pointwise periodic volume-
preserving flow admits a global cross-section, Theorem 5.0.1. It was sufficiently strong
to show that every asymptotic cycle for the flow is a nontrivial homological class if the
induced (n—1)-form is not cohomologous to zero. We can extend this theorem for recurrent
volume-preserving flows since, for these, the existence of a global cross-section will depend

only on the class of the induced closed (n — 1)-form.

It is well-known from dynamical systems’ theory that a volume-preserving flow
is pointwise recurrent. Hence it is natural to ask if we can obtain a uniform recurrence
for them. We begin by analyzing what happens with a pointwise periodic flow (without
singularity). Is such kind of flow recurrent? Since we want to obtain a global cross-section
to flows and this condition is topological, then, to our purpose, we can ask if the orbits
under this flow are the orbits under a (continuous) recurrent flow. Given a pointwise
periodic flow ® with period function A, since the flow W(z,t) = ®(x, \(x)t) (not necessarily
continuous) has same orbits as the flow ® and also is periodic (hence recurrent), this lead
us to study the set of continuity of A. Since D.B. Epstein [20] it is well-known that this
set is invariant, open, and dense. On the other hand, if a flow is recurrent on a dense
invariant subset, it is easily seen that it is recurrent (on full space). This fact leads to the
study of pointwise periodic flows with continuous period function (in this case, flows on

noncompact manifolds).

We noted that recurrence is equivalent to existing a suitable function sequence
converging uniformly to the identity. In general, a function sequence on a compact metric
space itself that converges uniformly determines an equicontinuous set. Thus, it is natural
to ask when, given a flow ®, the collection {®;;t € R} is an equicontinuous set of functions.
Such flows are called equicontinuous. For example, flows induced by Killing vector fields
on Riemannian manifolds are equicontinuous. If a flow is equicontinuous, we can show the
recurrence property for it. Thus, using Carriere’s characterization of a geodesible flow, the
above observations enable us to provide one of nowhere-vanishing intrinsically harmonic

(n — 1)-forms, improving the one given in Chapter 2 (see Theorem 6.3.8).

Let X be a locally compact metric space and & be a continuous pointwise
periodic flow on X without singularity. We showed that the set of continuity of the period
function is open and dense as follows. We showed the existence of a local cross-section
through any point of X. Using these, we built Poincaré’s first return map. From then on,

the proof is identical as in Epstein’s paper [20]. For some kinds of flows, namely, locally
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weakly almost periodic flows, we showed that Poincaré’s first return is a homeomorphism
for a suitable local cross-section. We established this result using the characterization of a
locally weakly almost periodic flow given by W.H. Gottschalk [29], namely, flows whose
decomposition of the phase space by the closure-orbits under the flow is a closed decom-
position (equivalently, for compact metric spaces, the orbit space satisfies the Hausdorff
property). This fact is fundamental for the main results stated here, namely, Theorem
6.8.1.

This chapter is organized as follows. In Section 6.1, we specialize the recursive
properties of general transformation groups on arbitrary uniform spaces for flows on metric
spaces. In Section 6.2, we use the Arzeld-Ascoli Theorem to prove that an equicontinuous
flow on a compact metric space is recurrent. In general, any equicontinuous transformation
group on a compact metric space is almost periodic, which implies recurrence [26]. Also
it is presented a inheritance theorem for flows on compact metric spaces. In Section 6.3,
we show that a volume-preserving flow on a closed manifold has a global cross-section if,
and only if it is geodesible and the induced closed (n — 1)-form determines a nontrivial
cohomological class. In Section 6.4, we will establish the existence of a local cross-section to
continuous flows around periodic points not fixed when the metric space is locally compact.
From this, we built Poincaré’s first return map. This construction is used in Section 6.5 to
show the openness of the period function for pointwise periodic flows without singularity.
In Section 6.6, we present some conditions for equicontinuity and the relation with the
decomposition of the phase space by the orbit-closure under the transformation group. In
sections 6.7 and 6.8, we will study pointwise periodic flows and show that a C'-pointwise
periodic and equicontinuous flow on a compact manifold is periodic, generalizing a theorem
of A.W. Wasdley when the manifold is compact. In Section 6.9, we use the theory of
asymptotic cycle for compact metric spaces and the results of the preceding sections to
show that recurrent pointwise periodic C*-flow with bounded period function is periodic.

We finished this chapter with some problems for further study.

6.1 Recursive properties to flows

A flow on a topological space X is a continuous function ® : X x R — X

such that the folowing axioms are satisfied:

1 &(z,0) =z forall z € X.

2 O(at,s) = O(x, (t+s)) for all z € X and s,t € R.

The second axiom can be written more concisely by (zt)s = x(t + s). We will

denote by ®; the function x € X — ®(z,t) € X. Since &, 0 d_;, = §y = 1, given any
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t € R, the function &, is a homeomorphism of X into itself with inverse given by ®_;. Let
A,Bc Rand X ¢ M. The set AB and XA are defined by AB = {a + b;a € A,b € B}
and XA = {za;z € X,a € a}.

The orbit of a point z € X under @ is defined by xR = {z}R. The orbit space
X /® is defined as the image of the natural function 7 : X — X /®, where m(z) = 7(y)
if and only if x = yt for some ¢t € R. The orbit space has the smallest topology such
that the function 7 is continuous. W.H. Gottschalk introduced in [27] many recursivity
notions for topological transformations group on uniform spaces. The definition below is a

specialization of some of these for metric spaces.

Definition 6.1.1. Let (X, d) be a metric space.

1) [Periodicity] A flow on X is said to be periodic provided there exists a nonzero real

number ¢ such that 2t = z for all z € X.

2) [Almost periodicity] A flow on X is said to be almost periodic provided given € > 0
there exists a relatively compact subset A of R such that d(z,zt) < e forallte A (a

subset A of R is said to be relatively compact if there exists a compact subset K of
R such that R = K A).

3) [Locally almost periodicity] A flow on X is said to be locally almost periodic at v € X
provided given a neighborhood U of x there exists a neighborhood V' of x and a
relatively compact subset A of R such that VA < U. A flow is said to be locally

almost periodic if it is locally almost periodic at each point of X.

4) [Weakly almost periodicity] A flow on X is said to be weakly almost periodic provided
given € > (0 there exists a compact subset K of R such that for each x € X and t € R,
there exists s € K with d(xt, xs) < e.

5) [Locally weakly almost periodicity] A flow on X is said to be locally weakly almost
periodic at x € M provided given a neighborhood U of x there exists a neighborhood
V of x and a compact subset K of R such that VR < UK. A flow is said to be
locally weakly almost periodic if it is locally weakly almost periodic at each point of
X.

6) [Equicontinuity] A flow on X is said to be equicontinuous at x € M provided given
€ > 0 there exists § > 0 such that d(z,y) < ¢ implies d(xt,yt) < e. The flow is said
to be uniformly equicotinuous provided given € > 0 there exists 6 > 0 such that

d(x,y) < 0 implies d(zt,yt) < e for all t € R.

7) [Recurrence] A flow on X is said to be recurrent provided there exists a sequence
t, —> oo such that lim, ., sup,.y d(z, zt,) = 0. Equivalently, a flow is recurrent if

given s, e > 0, there exists ¢ > s such that d(x,zt) < € for all x € X.
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8) [Distality] A flow on X is said to be distal provided given = # y there exists € > 0
such that d(zt,yt) > € for all t € R.

Remark 6.1.2. Let X be a compact metric space and ® be a continuous flow on X. It is

relatively easy to check that:

(1) if ® is equicontinuous, then @ is uniformly equicontinuous;
(2) if @ is locally weakly almost periodic, then ® is weakly almost periodic.

Remark 6.1.3 (Transformation group in general). A transformation group is a triple
(X, T, ) consisting of a nonvacuous topological space X, a topological group 7" and a
continuous map 7 : X x T'— X satisfying the same conditions of a flow, namely, xe = x
and (zt)s = x(ts) for all x € X, s,t € T, where e denotes the identity element of T. We
will now see as we can extend the recursive properties given in 6.1.1 for transformation
groups in general. For this aim, we need to define a class of subsets of T'. A subset A of
T is said to be {left} {right} syndetic in G provided that {T' = AK}{T = KA} for some
compact subset K of T. If A is an invariant subgroup, that is, gAg~' < A for all g € T,
then A is left syndetic if, and only if, is right syndetic, hence for invariant subgroups for
short we say only syndetic. If a flow ® is periodic with period ¢, then xt = x for all z € X.
Hence, H = {mt € Z} is a syndetic subset of R and xs = x for all x € X and s € H. Thus,
we have a reasonable definition of periodic transformation group: a transformation group
is said to be periodic if there exists a syndetic subset P of T" such that xt = x for all t € P.
A transformation group is said to be almost periodic if given € > 0, there exist a syndetic
subset A of T such that d(x,zt) < € for all t € A. The notions of weakly almost periodicity,
locally almost periodicity, locally weakly almost periodicity, distality, and equicontinuity
for transformation groups follow analogously. The notion of recurrence for a transformation
group requires more definitions. A subset A of T is said to be replet provided S contains
some bilateral translate of each compact subset of T' (for instance, the sets A = [t,00)
are replete in R). A subset of A of T is said to be extensive provided that intersept every
replet semigroup in T (a semigroup of T' is a subset S satisfying SS < S). For instance, if
T = R, then a subset A of T is extensive if, and only if, contains a sequence marching to
+o0 and a sequence marching to —oo. A transformation group 7' is said to be recurrent if

given € > 0, there exists an extensive subset A of T" such that d(z,xt) < € for all ¢t € A.

6.2 Recurrence from equicontinuity

Let X be a topological space and a (Y, d) be a metric space. The space C'(X,Y)
of all continuous functions of X to Y has a natural topology induced by the metric d. It is

called the topology of uniform convergence and has as subbasis for open subsets the sets

Be(f) = {g € C(X,Y)/supd(f(x),g(x)) < €}

reX
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where f range over C'(X,Y’) and € range all the real numbers. It and the co.o.-topology
coincides when X is compact !. When X is noncompact, the latter is coarsest than the

former.

Theorem 6.2.1 (S. Myers, [60]). Let C' be the family of all continuous functions from a
regular, locally compact, and Hausdorff topological space into a metric space and C' has

the co.o.-topology. Then a subfamily 7" of C' is compact if and only if

(1) T is closed in C,
(2) 2T has compact closure for each z € X, and

(3) the family T is equicontinuous?.

Comparing Theorem 6.2.1 with the original in Mayers’ paper, the hypothesis
that 27 is compact for all z € X replaces the connectedness of X and completeness of Y'; see
also [41] pages 233-234. S. Myers also concluded the following. Let G be an equicontinuous
group of homeomorphisms on metric space into itself. If G’ has the co.o.-topology, then it is
a topological group. It follows that G equipped with the co.o.-topology is also a (compact)

group of transformations on X.

Lemma 6.2.2. Let G be a compact topological group. Given g € GG, there exists a sequence

of integers ny — oo such that g™ — e.

Proof. Since G is compact, given g € G, the sequence (¢"),en has a convergente subsequence
(g™¢). Given any integer k, let m, € {my} such that ny := m, —my, > k, my € {ms}. Using

the continuity of the product and inversion operations of G and letting k — oo, then

ng my

g M —e.

g =9

The proof is completed. O

Theorem 6.2.3. An equicontinuous flow on compact metric space is recurrent.

Proof. Let ® be an equicontinuous flow on a compact metric space X. If ¢ is periodic, there
is nothing to be done. Suppose ® not periodic. Then G = {®;} is an equicontinuous group
of homeomorphisms of X. It follows by 6.2.1 and 1.2.19 that G with the co.o.-topology

is a compact topological group. Hence, from 6.2.2, given t € R, there exists a sequence

L More generally, when Y is a uniform space, one can define this notion analogously. See [41] page 230

for the equivalence between the topology of uniform convergence and the co.o.-topology for compact
uniform spaces.

A set T of continuous functions from a topological space X into a metric space (Y,d) is called
equicontinuous provided corresponding to each xy € X and each € > 0, there is a neighborhood U of xq
in X such that d(txo,tz) <eforallte T and all z € U.
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ng — 0, ng € Z, such that ®,,, — 1 in the co.o.-topology. Since X is compact, the
co.o.-topology coincides with the uniform topology. It follows that ®;, — 1 uniformly,

hence ® is recurrent. O

The wnheritance theorem consists of proving the following. If the flow admits a
recursive property, then some category of subgroups admits this property. Such a kind of
theorem is treated extensively in the book Topological Dynamics [29]. R. A. Christiansen
provided in [12] an inheritance theorem for recurrent transformation group (X, T, 7) where

X is a compact uniformizable space. Next, we establish an inheritance theorem for flows.

Theorem 6.2.4. Let ® be a continuous flow on a compact metric space (X, d). Let H be a
nontrivial subgroup of R. Then ® is recurrent if and only if the restriction ® : X x H — X

is a recurrent flow.

Proof. Suppose there exists a sequence t,, — oo such that ®;, — 1x uniformly. Let
h € H be a positive number. For each n € N, write ¢, = k,h — «,,, with k, € Z and
a, € [0,h]. Set I = {P,/t € [0,h]} with the topology of [0,R]. This topology on F' is
compact and admissible. Hence, by 1.2.22, it coincides with the co.o.-topology. Taking a
subsequence if necessary, we have that ®,, — @, in the co.o.-topology for some « € [0, h].
Since the group of homeomorphisms of X with the co.o.-topology is a topological group by
1.2.19, then &, — P, in this topology. For each n € N, let k,, such that k,, — k, > n.
Then, (k,, — k,)h € H and letting n —> 0 we have

(K — kn)h —> o0

and

q)(km_kn)h = q)kmhq)fknh I 1

Since M is compact, the co.o.-topology and the uniform topology coincides. It follows that

the restriction ® : X x H — X is a (possibly discrete) recurrent flow. [

6.3 A characterization of volume-preserving flows with a global

cross-section

If a closed manifold supports a smooth flow with a global cross-section, then
there exists a Riemannian metric so that each orbit under the flow is a geodesic (see 6.3.7).
In this section, we provide the converse for volume-preserving flows. We have shown that
it depends only on the cohomological class determined by the induced form. From this, by
proving Theorem 6.3.8, we improve the characterization of nowhere-vanishing intrinsically
harmonic (n — 1)-forms presented in Chapter 2. Throughout this section, the flows and

vector fields considered are smooth.
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Definition 6.3.1. Let M be a manifold. A flow on M is said to be geodesible if there

exists a Riemannian metric g on M such that every orbit under the flow is a geodesic.

Theorem 6.3.2. Let M be a manifold and X be a nowhere-vanishing vector field on M.

Are equivalents:

(1) there exists a 1-form w with w(X) =1 and Lxw = 0;
(2) there exists a 1-form w with w(X) = 1 and ixdw = 0;

(3) the flow generated by X is geodesible by a Riemannian metric g satisfying g(X, X) =
1.

Y

(4) there exists a (n — 1)-plane bundle P < T'M, complementary to X, such that
[X,Y]ePforalY e P.

Proof. First of all, let g be a Riemanninan metric on M satisfying g(X, X) = 1. Let w be
the 1-form given by w(Y) = ¢(X,Y’). We claim that

Lxw(Y)=g(VxX,Y),

where V is the Levi-Civita connection associated to g. Let (x1, ..., x,) be alocal coordinate

system with d,, = X. Denoting Y = 0,,, we have
Lxw(Y) = Lx(w(Y)) = w(Lx(Y)).
Since Lx(Y) = [0y, 0z, ] = 0, then
LxwY)=Lxw())=Lx(g(X,Y)) =g(VxX,Y)+g(X,VxY).

Using the equations VxY = Vy X + LxY and LxY = 0, we have

LxwY)=9g(VxX,Y)+ g(X,VyX).
By the equality Yg(X, X) = 2¢(X, Vy X) then

Lxw(Y) = g(VaX,Y) + Yg(X,X)
Hence, since g(X, X) = 1, it follows that

Lxw(Y)=g(VxX)Y),

concluding the claim.
(1)=(2) If w(X) =1 and Lxw = 0, then
0= ﬁxw = din + ixdw.

Since d(w(X)) = 0, it follows that ixdw = 0. Thus, (1) implies (2).
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(2)=(3)

Suppose now that w is a 1-form satisfying w(X) = 1 and Lxw = 0. Let h be a
Riemannian metric on M such that X and kerw are orthogonal concerning h. Setting
g = mh, we have ¢g(X, X) =1 and w(Y) = g(X,Y) (since any Y is expressible
as w(Y)X + Z, with Z € kerw). Now, since Lw(Y) = g(VxX,Y) for all Y, and
Lx =0, it follows that VxX = 0, hence X is geodesible. Conversely, if all orbits
under the flow generated by X are geodesic concerning to a Riemannian metric
g on M, then the form w(Y) = g(X,Y) satisfies Lxw = 0. Thus (2) and (3) are

equivalents.

Suppose there exists a 1-form w with w(X) = 1 and ixdw = 0. Set P = ker w. Given
Y € P we have

w([X,Y]) = —dw(X,Y) + Xw(Y) - Yw(X) = 0.
Hence [X,Y] € P whenever Y € P. Thus, (2) implies (4).

Suppose (4) holds. Let g be a Riemannian metric on M such that X and P are
orthogonal and ¢g(X,X) = 1. Set w(Y) = ¢(X,Y). Note that P = kerw and
w(X) =1. Given Y € P, we have

ixdu(Y) = X(@(Y)) = Y (@(X) + w([X, V]).
Since [X, Y] € P by hypothesis, it follows that iydw = 0. Hence

Lxw =dixw+ixdw = 0.

]

Remark 6.3.3. The Theorem 6.3.2 follows from Rummler’s criterion 3.3.4 since a 1-

dimensional submanifold is minimal if, and only if, it is a geodesic.

Definition 6.3.4. A flow ® : (—¢,¢) x M — M on a Riemannian manifold (M, g) is
said to be isometric provided ®; is an isometry for all ¢ € (—e,€). A vector field X on
(M, g) is said to be Killing if the flow generated by X is isometric. A flow ® on M is said

to be isometrisable, if there exists a Riemannian metric g on M such that ® is given by a

nowhere-vanishing Killing vector field.

Theorem 6.3.5 (Y. Carriere, [11]). A nowhere-vanishing vector is geodesible if and only

if it is isometrisable.

Proof. Suppose that X is a nowhere-vanishing Killing vector on a Riemannian manifold
(M, g). Denote by ® the flow generated by X. Given x € M, we have

(X, ¥](2) = LY (@) = Jim 1/1((®_1)Yayo) — Vo).
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Hence LxY (z) is orthogonal to X (z) since Y (z) and X (x) are orthogonal and &, is
isometry for all ¢ where ®; have sense. Thus, the (n—1)-plane bundle set as the complement

orthogonal to X satisfies the condition (4) of Theorem 6.3.2. Therefore, X is geodesible.

Conversely, suppose there exists a Riemannian metric g on M such that Vx X =
0. Since ¢g(X, X) is constant, we can suppose g(X, X) = 1. We will use the well-known

characterization: a vector field X is Killing if and only if Lxg = 0. Since
Lxg(Y,Z) =1/2{Lxg(Y + Z,Y + Z) = Lxg(Y,Y) — Lxg(Z, Z)},

it is enough to show that Lxg(Y,Y) =0 for all Y € TM. Now, Lxg is a tensor. Hence it

is determined only by its value at X and X+*. Since
Lxg(Y,Z) = Xg(Y,Z) — g(LxY, Z) — g(Y,Lx Z),

we have

Using the equality LxY = [X,Y] = VxY — Vy X, then

—QQ(V)(Y - VyX, Y) =
—2{12Xg(YY) —g(Vy X, Y)} =

29(VyX, Y) =
2{Yg(X,Y) - g(X,VyY)} =
—2g<X, VYY)
It follows from these calculations that
LxY,Y)=Xg(Y,Y)—29(X,VyY) foral Y eTM. (6.1)

Let x € X. Given v; € T, M such that {X(z),vs,...,v,} is an ortonormal basis for T, M,
and open set U < T,,M such that exp, : U — exp(U) is a diffeomorphism, the function

Y(xy, T, ..., ) = exp,y (11X (x) + Tovy + ... + T,0,)

is a local coordinate neighborhood safistying Vo, ;,(7) = 0 for all i = 1,...,n. Then,

using the equation 6.1 we have
EX(axm axz)(x) = Xg<axz‘> aﬂ?z)(w) - QQ(X(iL’), Vazzamz(x)) = Xg(aﬂtw axz)(m)

Since the curve a(t) = exp,(tX(z)) is a geodesic with o' (0) = X (), and by hypothesis
VxX =0, it follows by unicity of geodesics that a'(t) = X (a(t)) for all ¢. Thus,

Xg(éwm azz)(x) =
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al(t)g@:m aCEi)
29(Va,, 0, (2), 0z, (7)) = 0.

t=0 —

Therefore X is a Killing vector field. ]

Theorem 6.3.6. Let M be an orientable closed manifold. A nowhere-vanishing volume-
preserving flow on M has a global cross-section if it is geodesible and the induced closed

(n — 1)-form determines a nontrivial cohomological class.

Proof. Let X be a geodesible vector field. Let ® the flow generated by X. By Carriere’s
theorem 6.3.5, there exists a Riemannian metric g on M such that ®; is isometry for all
t € R. The Riemannian metric g induces a metric d on M generating the topology of M.
Since M is compact, given x,y € M, there exists a (minimizant) geodesic v on M with
d(x,y) = lenght(~) (see [10], chapter 7). Now, an isometry f : M — M carries geodesic

in geodesic and preserves the length of curves. Hence, if d(z,y) = I(), then

d(fz, fy) <I(fy) =1(7).

Given now 7 be a minimizant geodesic from fz to fy, then

d(z,y) <U(f7'7) =1(7).
Therefore d(fz, fy) = d(z,y) for all z,y € M. It follows that a Riemannian isometry
preserves the induced metric d. From this we conclude that & is a (uniformly) equicontinuous
flow on (M, d). The Theorem 6.2.3 then ensures that ® is a recurrent flow. We know by
Theorem 4.1.16 a recurrent flow has only one asymptotic cycle. Since the class of the
closed (n — 1)-form induced by X is an asymptotic cycle by 5.1.1 and also determines a
nontrivial cohomological class by hypothesis, it follows by Theorem 4.3.2 that there exists

a global cross-section to ®. The proof is completed. O

Theorem 6.3.7. A flow ® on a closed manifold M has a global cross-section if, and only

if, it is geodesible and admits a nontrivial asymptotic cycle.

Proof. Tt remains only to show that flows with global cross-section are geodesible (since
geodesible flows have the same orbits as a recurrent one). Let ® be a flow on M with a
global cross-section. Then every asymptotic cycle of ® is nontrivial. Hence by Corollary
4.3.3, there exists a closed 1-form w transversal to ®. Let X be the vector field generating
®. Then w(X) > 0 and, trivially, ixdw = 0. Thus, the vector field Y = ﬁX generates
a flow with the same orbits under ® and satisfies w(Y') = 1 and iydw = 0. It follows by
6.3.2 that ® is geodesible. O]

We finish this section with a characterization of nowhere-vanishing intrinsically

harmonic (n — 1)-forms.
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Theorem 6.3.8. Let w be a nowhere-vanishing closed (n — 1)-form on a closed manifold
M and X be a vector field generating the foliation induced by w. Suppose [w] # 0 in
HPEH(M). Are equivalentes:

(1) there exists a 1-form n satisfying n A w > 0 and ixdn = 0;
(2) X is geodesible;
(3) X is Killing for some Riemannian metric on M,

(4) w is intrinsically harmonic.

Proof. Tt remains only show that the condition given in (1) implies (2). In this case, we
have that n(X) > 0. Thus, Y = ﬁX induce a flow with the same orbits as the flow
generated by X. Furthermore, it satisfies

n(Y) =1 and iydn = 0.
Hence Y is geodesible by 6.3.2. It follows that X is geodesible. The proof is completed. [

It is reasonable the conjecture that a closed manifold is the total space of a
fiber bundle over the circle if, and only if, it admits a nowhere-vanishing closed (n — 1)-
form determining a nonzero cohomological class. This assertion is the “dual” of Tischler’s
theorem, which asserts a closed manifold is the total space of a fiber bundle over S* if
and only if admits a nowhere-vanishing closed 1-form. The necessity condition follows
since if p : M — S! is a submersion, M closed, then the closed-form p*df is intrinsically
harmonic, hence there exists a closed (n — 1)-form w satisfying w A p*df > 0. Furthemore,
a volume-preserving flow is pointwise recurrent, then, maybe, it is recurrent in sense of
definition 6.1.1.

6.4 Local cross-section to flows

In this section, we establish the existence of local cross-section to flows on
locally compact metric spaces around periodic points (such constructions are possible for
recurrent points). From this, we built Poincaré’s first return map and the map of the first

return.

Definition 6.4.1 (Local cross-section). Let X be a topological space and & : X xR — R
be a continuous flow on X. A subset K of X is said to be a local cross-section to ® through
x € X provided there exist € > 0 such that the natural map ® : K x [—¢,¢] — S[—¢, €] is

bijective and x is an interior point of K|—e¢,€|. We will denote this configuration by (K, €).
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Remark 6.4.2. Let X be a Hausdorff topological space and ® be a continuous flow on
X. Suppose that there exists a local cross-section (K €) through = € X, with K compact.
Then the natural map K x [—¢,¢] — K being a continuous bijective map between a
compact space and a Hausdorff space become a homeomorphism. From this, it is easily

seen that for every ¢, with [¢t| < €, the point xt is an interior point of K[—e, ¢€].

Remark 6.4.3 (The local cross-section for built the Poincaré’s first return map). Let X be
a metric space and ® be a continuous flow on X periodic at x € X. Suppose there exists a
local cross-section (K €) through x, with K compact. Then, given a positive number e with
€ < M(z)/2, there exists a neighborhood K’ of z in K such that (K, \(x)/2 — €) is a local
cross-section through z. By Remark 6.4.2, it is suffice to show that for some neighborhood
U of z in K, the natural map U x [—A(z)/2 + €, A\(x)/2 — €] —> X is injective. Otherwise,
there exist sequences vy, z, — = with y,, # z, and t,,, s, with |t,], |s,| < A(z)/2 — € and
Yntn = ZnSn. Taking a subsequence if necessary, we can suppose that t, — t and s,, — s.
Hence, xt = xs and, therefore, s —t = mA(x) for some m € Z. Since |t,, — s,| < A(x) — 2¢
for all n, it follows that |t — s| < A(z) — €, hence m = 0. Thus, given n with [t, — s,| < €
we have y, (t, — $,) = 2z, with |t,, — s,| < €, Yn, 2, € K. Since (K, €) is a local cross-section,

then ¢, — s, = 0 and y,, = z,, a contradiction.

6.4.1 Poincaré’s first return map

Let X be a metric space and ¢ : X x R — X be a continuous flow periodic
at x € X. Suppose there exists a local cross-section (K, ¢€) through x with K compact
(necessarily we have A\(x) > 0). We can take e with 4¢ < \(x). By 6.4.3 t