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Topology has the peculiarity that questions belonging in its domain may under certain
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Resumo

Nesta tese, abordamos o problema de caracterização de formas intrinsecamente harmônicas

e relacionados. Dentre os resultados obtidos, os mais relevantes são: caracterização de

fibrados de ćırculos flat, em termos da classe de cohomologia do pullback da forma volume;

caracterização do n-torus como sendo a única variedade fechada, admitindo uma coleção

linearmente independente em todos os pontos de pn ´ 1q formas fechadas de grau 1, de

tal modo que o produto entre elas determina uma classe de cohomologia não trivial;

caracterização de pn ´ 1q-formas sem singularidades que são intrinsecamente harmônicas

como aquelas que induzem um fluxo geodesicável; e, por fim, duas condições suficientes

para que um fluxo de classe C1 sobre uma variedade fechada seja periódico.

Palavras-chave: Fibrado de ćırculos, fluxos periódicos, formas harmônicas, teoria de

correntes, fibrados folheados.



Abstract

In this thesis, we address the problem of characterizing intrinsically harmonic forms and

related ones. Among the results obtained, the most relevant are: characterization of flat

circles bundles, in terms of the cohomological class determined by the pullback of the

volume form on the base space; characterization of n-torus as the only closed manifold,

admitting an everywhere linearly independent set, of pn´ 1q closed 1-forms, in such a way

that the product between them determines nontrivial cohomological class; characterization

of nowhere-vanishing intrinsically harmonic pn ´ 1q-forms, such as those that induce a

geodesible flow; and, finally, two sufficient conditions for a flow of class C1 over a closed

manifold to be periodic.

Keywords: Circle bundles, periodic flows, harmonic forms, currents theory, foliated

bundles.
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Introduction

A classical theorem, due to W.V.D. Hodge, states that in each De Rham

cohomology class of a compact Riemannian manifold, there is one, and only one, harmonic

form (Section 1.7). A natural question is the following.

Given a closed form ω on a compact manifold M , is there a Riemannian metric g on M

such that ω is harmonic concerning g?

If such a metric exists, ω is called an intrinsically harmonic form. The problem

of obtaining an intrinsic characterization of harmonic forms was first placed by E. Calabi.

He showed in his beautiful paper [7] that under suitable conditions on its zero-set, an one

form ω is intrinsically harmonic if and only if it is transitive. Transitivity means that for

every point x that is not a zero for ω, there is an embedded circle containing x, such that

the restriction of ω to the it never vanishes. In Section 2.4 we sketch a proof of Calabi’s

theorem as well as provide a proof of the following assertion of E. Calabi (Theorem 2.4.2)

Theorem A nowhere-vanishing closed 1-form on a closed manifold is intrinsi-

cally harmonic.

E. Volkov made the more notable advance in this subject. He generalized

Calabi’s characterization of intrinsically harmonic one forms by showing that a closed

1-form is intrinsically harmonic if, and only if, it is harmonic in a neighborhood of its

zero set and transitive. The condition of transitivity can be generalized for higher degree

forms. Roughly speaking, a p-form ω is transitive if for any “regular point” there is a closed

submanifold, containing the point, such that the ω restricts to a volume form (see Section

2.2).

In [37] Ko Honda proved a “dual” version of Calabi-Volkov’s result: roughly

speaking, he showed that a closed (n´ 1)-form is intrinsically harmonic, under suitable

conditions on its zero-set, provided that it is transitive. Naturally comes up the following

issue. Is a nowhere-vanishing closed pn´1q-form intrinsically harmonic? The main objective

of this thesis was to try to answer this question. We want to point out a difference between

this and the degree one case. From Hodge’s Theorem, it follows that the pullback of the

volume form in the Hopf’s fibration S3 ÝÑ S2 is a nowhere-vanishing closed 2-form which

is not intrinsically harmonic since it represents the trivial cohomological class (in general,

given a map f : M Ñ N , N orientable, Ω a volume form on N , the pullback of the volume

form is f˚Ω). On the other hand, on a closed manifold, a nowhere-vanishing closed 1-form

always determines a nontrivial cohomological class.

It is known that given a volume form Ω on an orientable manifold, every closed
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pn´ 1q-form corresponds to a unique vector field inducing a flow preserving Ω. Conversely,

any volume-preserving flow induces a closed pn ´ 1q-form. The fixed points of the flow

are exactly the singular points of the associate form. We obtain the following criteria

(Theorem ?? and Theorem 2.4.4)

Theorem LetM be a closed orientable manifold. A nowhere-vanishing volume-

preserving flow defined on M admits global cross-section if and only if the induce closed

nowhere-vanishing pn ´ 1q-form is intrinsically harmonic.

Theorem Let M be a closed orientable manifold. A nowhere-vanishing Cr-

volume-preserving flow on M admits a Cr-global cross-section if and only if it admits a

Cr-transversal foliation (r ě 2).

So one objective of this work is to study conditions for a volume-preserving

flow admits global cross-sections (or transversal foliations).

We search examples of pn´ 1q-forms that are not intrinsically harmonic among

nowhere-vanishing closed-decomposable forms; these forms are products of pn ´ 1q linearly

independent closed 1-forms. It is known that a closed manifold admitting such a form

becomes the total space of a fiber bundle with base an (n-1)-torus (Tischler’s argument

1.8). We prove the following (Theorem 5.0.4)

Theorem The n-torus is the unique closed n-dimensional manifold admitting

a set of pn´ 1q everywhere linearly independent nowhere-vanishing closed 1-forms tωiu,

such that the product ω “ ω1 ^ ¨ ¨ ¨ ^ ωn´1 determines a nonzero cohomological class.

This fact led us to the study of circle bundles. By Theorem 2.4.4, a closed

nowhere-vanishing pn ´ 1q-form is intrinsically harmonic if, and only if the induced flow

admits a complementary foliation. So the pullback of the volume form on a circle bundle

is an intrinsically harmonic form if and only if the bundle is smoothly foliated.

As already said, we have characterized nowhere-vanishing intrinsically harmonic

pn ´ 1q-forms as being the ones that induce a flow admitting a global cross-section. The

first criterion to decide if a flow admits a global cross-section is due to S. Schwartzmann

[74]. He introduced the notion of asymptotic cycles. Such a cycle is a real homology class

defined for each invariant measure. A global cross-section is determined by an integral

1-dimensional cohomology class that is positive on all asymptotic cycle. Using this criterion,

we give examples of intrinsically harmonic forms and characterize flat circle bundles. The

main results are:

Theorem Let M be a closed smooth manifold with a nowhere-vanishing closed

pn ´ 1q-form ω inducing a pointwise periodic flow. If each orbit of the induced flow is

homologous to each other and rωs ‰ 0 in Hn´1
DR pMq, then ω is intrinsically harmonic. If ω

is intrinsically harmonic, then there exists a smooth S1-action on M with the same orbits

as the one from the flow induced by ω.
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Theorem Let B “ tB, p,M, S1u be a differentiable principal circle bundle with

M closed and orientable. Then B admits a flat connection if and only if the form p˚pΩMq

is intrinsically harmonic.

For fiber bundles over orientable manifolds we obtain the following result

(Lemma 5.2.7).

Lemma Let B “ tB, p,M, F u be a differentiable fiber bundle with compact

total space and base be an orientable manifold. Let Ω be a volume form on M withş
M

Ω “ 1. Then, the Poincaré dual to the fiber of B can be represented by p˚Ω. In

particular, rF s “ 0 in HdimF pB;Rq if and only if p˚Ω is an exact form.

From this, using the Gysin sequence, we obtain a known result, but by a

different approach, about smooth foliated circle bundles. It is contained in Theorem 5.2.11

highlighted below.

Theorem A differentiable principal circle bundle B “ tB, p,M, S1u with closed

orientable base space admits a flat connection if and only if one (and consequently all) of

the four conditions below holds:

(1) p˚pΩMq is intrinsically harmonic;

(2) p˚pΩMq determines a nonzero cohomological class;

(3) the fiber represents a nonzero class in H1pB;Rq;

(4) χpBq is a torsion element.

Similar results for circle bundles over non-orientable manifolds are presented in

Section 5.2.1. For forms of a degree different from 0, 1, n ´ 1, n, the question of obtaining

an intrinsic characterization of harmonic forms is quite open. A notable aspect of the

difficulty to obtain a general characterization is that Calabi’s argument does not apply

to intermediate degrees. In fact, a concrete example, due to J. Latshev, of a transitive

2-form on a 4-manifold not intrinsically harmonic was presented by E. Volkov in [85]. We

generalize this example in Section 3.1.

For a p-form ω, the kernel space at a point x is the space of all X P TxM such

that ıXω is the zero pp´ 1q-form. The dimension of the kernel space at x, denoted by νpxq,

is called the nullity of ω at x. The number rpxq “ dimM ´ νpxq is called rank of ω at x.

It is well known that if the form has a constant rank, the kernel spaces form a smooth

distribution, denoted by kerω, which is integrable when, for example, the form is closed.

In Section 3.3, we provided the following result (Theorem 3.3.5).

Theorem Let M be a closed Riemannian manifold. If ω is a harmonic p-form

of constant rank p, the kernel distributions of ω and ˚ω are orthogonal, and the leaves
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of the two foliations induced by theses distributions are minimal concerning a suitable

modification of the metric.

We also give characterizations of intrinsically harmonic p-forms ω, of nullity

pn´ pq, in terms of the existence of foliations complementary to the nullity foliation of ω

(theorems 2.1.2 and 3.3.9)

Theorem Let ω be a closed p-form of rank p. Then ω is intrinsically harmonic

if and only if there exists a closed form η of rank pn ´ pq such that kerω X ker η “ t0u.

Theorem Let M be a manifold and ω be a closed p-form of rank p on M .

Suppose that there exists a Riemannian metric g on M such that every leaf of the foliation

induced by ω is a minimal submanifold concerning g. If pkerωqK is an integrable distribution,

then ω is intrinsically harmonic.

We do not know if we can weaken the hypothesis in Theorem 2.1.2 by merely

supposing that the foliation induced by the differential form ω admits complementary

foliation. This problem can be studied in the context of foliated fiber bundles. In this

direction, we obtain the following result (Theorem 3.3.10).

Theorem Let B “ tB, π,M,F,Fu be a foliated bundle with total space and

base orientated manifolds. Let Ω a volume for on M . If the fundamental group of M is

finite then π˚Ω is a transitive intrinsically harmonic form.

S. Shwartzamnn [74] showed that a recurrent flow has only one asymptotic cycle.

By a recurrent flow Φ on a metric space X we mean a flow with some sequence tn ÝÑ 8

such that Φtn ÝÑ 1X uniformly. We can show that the class of a closed pn´1q-form induces

an asymptotic cycle to the induced flow (Lemma 5.1.1). Hence, a nowhere-vanishing closed

pn´ 1q-form inducing a recurrent flow is intrinsically harmonic if, and only if it determines

a nontrivial cohomological class. It is well-known from dynamical systems’ theory that

a volume-preserving flow is pointwise recurrent. Hence, it is natural to ask if we can

obtain a uniform recurrence for that kind of flow. This question directs the last part of

this thesis. We noted that the equicontinuity of a flow implies recurrence of it. So, based

on a criterion of Y. Carriere [11] and H. Rummler [70] to a flow be geodesible, we give

another characterization of a nowhere-vanishing intrinsically harmonic pn´ 1q-form, the

ones inducing a geodesible flow. More precisely, we provide the following result (Theorem

6.3.8).

Theorem Let ω be a nowhere-vanishing closed pn´1q-form on a closed manifold

M and X be a vector field that generates the foliation induced by ω. Suppose that rωs ‰ 0

in Hn´1
DR pMq. Then are equivalents: :

(1) there exists a 1-form η on M satisfying η ^ ω ą 0 and iXdη “ 0;

(2) X is geodesible;
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(3) X is Killing for some Riemannian metric on M ;

(4) ω is intrinsically harmonic.

We give attention to the problem of obtaining a uniform recurrence to pointwise

periodic flows. We want to obtain a global cross-section for a given flow. Since this is a

topological condition, independent of flow reparametrization, it makes sense to ask if the

orbits of this flow are the orbits of a (continuous) recurrent flow. Let Φ be a pointwise

periodic flow with period function λ. The flow Ψpx, tq “ Φpx, λpxqtq (no necessarily

continuous) has the same orbits of Φ and is periodic (hence recurrent). This fact led us to

study the set of continuity of λ. D.B. Epstein proved in [20] that this set is invariant, open,

and dense for flows defined on manifolds. On the other hand, if a flow is recurrent on a

dense subset, it is easy to show that this flow is recurrent. These observations directed us

to the study of pointwise periodic flows with continuous period function. We showed that

Epstein’s remark holds for pointwise periodic flows defined on any locally compact metric

space (Theorem 6.5.3). For this reason, we deal with flows in these spaces.

An old problem in the theory of pointwise periodic flows is to obtain a condition

so that there exists a continuous action of S1 possessing the same orbits as the one of

the flow. For instance, this is trivially true when the period function is continuous. By a

very delicate argument, D.B. Epstein showed in [20] that this condition always holds for

flows on compact three-dimensional manifolds. Hence, in dimension 3, a pointwise periodic

nowhere-vanishing volume-preserving flow admits a global cross-section if and only if the

induced closed 2-form determines a nontrivial cohomological class. A necessary condition

for the orbits of a C1-flow be the same as one given by a S1-action is the following: the

period function must be locally bounded. In particular, on compact manifolds, the period

function must be bounded. We obtain the following result (Theorem 6.8.10).

Theorem Let Φ be a pointwise periodic C1-flow on a manifold M , compact

or not. Then the period function λ is locally bounded if, and only if, Φ is locally weakly

almost periodic.

As showed by W. H. Gottschalk in [29], on compact metric space, locally weakly

almost periodic flows are characterized as one where the orbit space satisfies the Hausdorff

property. Hence, this property on the orbit space and the boundedness (local) of the period

function are equivalent. The latter theorem is probably a particular case of a more general

result present in [21]. However, in any case, we give proof of this fact. Then there are two

significant problems in the theory of pointwise periodic flows: one is characterizing when

the period function is locally bounded and another when the orbits of the flow are given

by a S1-action with the same regularity of the flow. The former was known as pointwise

orbit conjecture. In [86], A. W. Wadsley showed that the latter occurs when the flow (on a

smooth manifold) is of class C3 and geodesible. We improve this result to flows on closed
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manifolds by showing the following result 6.8.1:

Theorem Let M be a closed manifold. Let Φ be a pointwise periodic flow

without singularity of class C1 on M . Let N the continuity set of the period function λ.

Suppose that Φ is locally weakly almost periodic. If Φ is equicontinuous in N for some

metric inducing its topology, then Φ is periodic.

As we will see, it follows from this theorem that if d is a metric inducing the

topology of M and if Φ is a pointwise periodic C1-flow on M preserving d, then Φ is

periodic.

A problem similar to these regarding flows is determining conditions for a

pointwise periodic homomorphism to be periodic. D. Montgomery showed in [58] that any

pointwise periodic homomorphism of a connected and locally Euclidean space is periodic.

This result is essential to study pointwise periodic flows. It is noteworthy that in dimension

5, D. Sullivan [79] obtained an example of a pointwise periodic flow on a closed manifold

where the period is unbounded and gave a rich discussion about this problem, relating it

with one in compact foliation theory. In dimension 4, a counterexample for the pointwise

orbit conjecture was given by D.B. Epstein and E. Vogt [22]. At the end of the work, we

conclude that pointwise periodic flows are not necessarily recurrent. Actually, this is a

very restrictive condition, as shown in the following result (Theorem 6.9.5).

Theorem Let Φ be a pointwise periodic C1-flow without singularity with

bounded period function on a manifold M . Then Φ is recurrent if and only if Φ it is locally

periodic. If, also, M is compact, then Φ is recurrent if, and only if, it is periodic.

Some questions for which we did not get an answer appear at the end of this

work. We have made an effort to present this thesis as self-contained as possible. In no

case does the absence of a reference imply any claim to originality on our part. This not

omits our results since we stated them clearly. We believe that many pieces of arguments

in mathematics, not all, can already be considered in the “public domain”. However, the

most relevant ones are presented here with the author’s mention or reference where it

appears. We encourage the reader to contact us by the email elizeufranca@ufam.edu.br if

you want to give any criticism, suggestion, or commentary of any order.
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1 Background

In this chapter, we collect the basic definitions and some important results that

will be used throughout the thesis.

1.1 Conventions

(1) By a neighborhood of a subset Y of a topological space X, we mean a subset of X

that contains each element of Y as an interior point.

(2) Throughout this work, by manifold we mean a smooth (class C8), finite-dimensional,

connected (hence path connected), Hausdorff, second enumerable space, whithout

boundary, unless it is said explicitely otherwise. These manifolds are known to be

paracompact. Also, for every covering of such a manifold by open subsets, there

exists a partition of unity subordinate to it [33, 45, 87]. We reserve the symbol

M to denote a smooth n-dimensional manifold and the letters p and q represent

nonnegative integer numbers satisfying p` q “ n in this context. The tangent bundle

of M will be denoted by τM and the total space this bundle will be denoted by TM

(3) A coordinate neighborhood (chart) around a point x P M means a homeomorphism

φ : U Ă M ÝÑ φpUq Ă Rn

where U is an open connected set containing x and φ belongs to a maximal atlas

defining the differentiable structure of M [45].

(4) Given a smooth map f : M ÝÑ N , M and N smooth manifolds, the derivative of

f will be denoted by f˚. It is defined by f˚pXq “ Bt|0fpαptqq, where X P TxM and

α : p´ǫ, ǫq ÝÑ M is a smooth curve with αp0q “ x and Bt|0αptq “ X. A smooth map

is said to be a submersion if f˚ : TxM ÝÑ TfpxqN is surjective for all x P M . The

pullback of f in the space of differential forms will be denoted by f˚. It is defined by

f˚ωpX1, . . . , Xpq “ ωpf˚X1, . . . , f˚Xpq [45].

(5) The domain and range of a map are occasionally omitted. For example, if φ : U Ă

M ÝÑ φpUq Ă Rn and ψ : V Ă M ÝÑ φpV q Ă Rn are coordinate neighborhoods,

we consider the transition function ψ ˝ φ´1 (if exists) without mention to its domain.

(6) Given an equivalence relation ∼ on a set X we always denote by rxs the class

determined by x P X, that is, the set rxs “ ty P X{y ∼ xu. The set of equivalence

classes determined by ∼ is denoted X{ ∼. We have a natural map π : X ÝÑ X{ ∼,
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given by πpxq “ rxs. When X is a topological space, the topology considered on

X{ ∼ is the smallest (coarser) topology that makes the projection π continuous. In

particular, a subset U of X{ ∼ is open if and only if π´1pUq is open [41].

(7) Let X be a nonempty set. The identity map of X is denoted by the symbol “1”, that

is, the map 1 : X ÝÑ X given by 1pxq “ x. In some contexts, to emphasize the

space in consideration, we denote the identity map of X by 1X .

(8) Let p : X ÝÑ Y be a continuous map. By a local cross-section for p trhough y P Y

we mean a continuous function s : V ÝÑ X defined on a neighborhood of x such

that f ˝ s “ 1. If V “ Y , then s is called a global cross-section.

1.2 Fiber bundles

In some references in foliation theory, the notion of the fiber bundle has been

given as a triple pB, p,Xq where p : B ÝÑ X is a smooth submersion and, around each

point of B, there exists a local trivialization such that the map p behaves like a projection

on a certain factor (for example, [9, 8]). This notion is a particular case of an Ehresmann-

Feldbau bundle, in which the group of diffeomorphisms of the fiber is the structural group

of the fiber bundle. This definition of fiber bundle (given in [19]) is very general, because

the structural group is not necessarily topological and the natural action on the fiber is

not required to be continuous. In a later work, C. Ehresmann [17] considered a notion

of fiber bundle where the topology of the structural group plays a rule. This notion is

equivalent to the given in Steenrod’s book [78], where the structural group is a topological

group that acts effectively and continuously on the fiber. This is meaningful to us, because

the topology of the structural group plays an important role in classification theorems,

and some of them are used in this thesis. Suppose that the fiber is a Lie group that acts

on itself by translations, that the total space and base space are smooth manifolds and

that the coordinate functions are diffeomorphisms. Then the definition of fiber bundle

according to N. E. Steenrod is a particular case of the a differentiable principal fiber bundle

defined in Kobayashi-Nomizu’s book [42].

In this section, these notions of fiber bundles are discussed. We study when

an Ehresmann-Feldbau bundle is associated to a Steenrod bundle and we show that the

existence of a continuous morphism between two differentiable principal bundles implies the

existence of a differentiable morphism (in particular, two differentiable principal bundles

that are isomorphic by a continuous bundle map are shown to be isomorphic in the sense

of Kobayashi-Nomizu). We finish the section by showing that two differentiable principal

circle bundles that are Diff`pS1q-equivalents are equivalents as differentiable principal

bundles. The most important references for this section are Kobayashi-Nomizu’s and

Steenrod’s books [42, 78].
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1.2.1 Eheresmann-Feldbau bundle

Definition 1.2.1 (Ehresmann-Feldbau [19]). Let E be a connected topological space with

an equivalence relation ∼ on E, B “ E{ ∼ the quotient space (base space), p : E ÝÑ B

the canonic projection, F a topological space and G a group of homeomorphisms of F .

Suppose that for each x P B there exists a family Hx of homeomorphisms from p´1pxq to

F such that

(1) If h, k P Hx then hk´1 P G;

(2) To each point x P B exists a neighborhood Ux of x and a homeomorphism ϕ :

p´1pUxq ÝÑ Ux ˆ F such that for each y P Ux, ϕy : p´1pyq ÝÑ tyu ˆ F is a

homeomorphims and the canonic projection π2 ˝ ϕy is an element of Hy.

In this situation, the family H “ tHxu defines on E a structure of fiber space associated

with group G denoted by EpB,F,G,Hq.

Remark 1.2.2. If G is the group of all homeomorphisms of F then Hx is the family of all

homeomorphims of p´1pxq to F , the conditions (1) and (2) reduces the following: to each

x P B there exists a neighborhood Ux of x and a homeomorphims ϕ : p´1pUq ÝÑ Ux ˆ F

such that p “ π1 ˝ ϕ. In the smooth category, that is, when E, B and F are smooth

manifolds and G is the group of all diffeomorphisms of the fiber, we have a fiber bundle as

defined in [9, 8].

Lemma 1.2.3 (Ehresmann’s lemma1, [18]). Let p : E ÝÑ B a submersion such that p is

a proper map2. Then E is the total space of a fiber space over B with projection p. When

BE ‰ H, the result is still valid since p|BE : BE ÝÑ B be a submersion.

Proof. Fixe x P B and let W be a tubular neighborhood of p´1pxq in E with smooth

retraction r : W ÝÑ p´1pxq (see [33], page 109. The hypothesis that p|BE is a submersion

ensures that, for each x P B, p´1pxq is a neat submanifold, hence admits a tubular

neighborhood). The differential of the map

p ˆ r : W ÝÑ B ˆ p´1pxq

is nonsingular at each point of p´1pxq Ă W . Since p´1pxq is compact, we can obtain an

open neighborhoord W
1
of p´1pxq such that p ˆ r : W

1
ÝÑ B ˆ p´1pxq is an embendding.

Since p is a proper map, we can obtain an open set U of B such that p´1pxq Ă p´1pUq

and p´1pUq Ă W
1
. Thus,

p ˆ r : p´1pUq ÝÑ B ˆ p´1pxq

1 For an extention of this lemma see [15].
2 A map f : X ÝÑ Y is said proper if the inverse image of any compact subset of Y under it is a compact

subset of X.
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is a diffeomorphism satisfying π1 ˝ prˆ pq “ p. It remains only to show that given x, y P B,

then p´1pyq is diffeomorphic to p´1pxq, that is, there exists a well-defined fiber. First, the

condition “p´1pyq is diffeomorphic to p´1pxq” is an open condition, since for y P p´1pUq,

the restriction p ˆ r : p´1pyq ÝÑ tyu ˆ p´1pxq is a diffeomorphism. Let y P B such that

there exists a sequence yn ÝÑ y and, furthemore, p´1pynq and p´1pxq are diffeomorphic

for all n P N. By the bove construction, for sufficiently large n, p´1pynq is diffeomorphic

to p´1pyq, concluding that the condition “p´1pyq is diffeomorphic to p´1pxq” is a closed

condition. Since B is a connected space, this proves the claim.

1.2.2 Fiber bundles according Steenrod

N. E. Steenrod defined a fiber bundle as a maximal coordinate bundle. The

definition of a coordinate bundle is given below.

Definition 1.2.4 (Coordinate bundle). A coodinate bundle B is a collection as follows:

(1) A space B called bundle space;

(2) a space X called base space;

(3) a surjective map p : B ÝÑ X called projection;

(4) a space Y called fiber ;

(5) an effective topological transformation group G of F called the group of the bundle;

(6) a family tVju of open sets covering X indexed by a set J , the Vj ’s are called coordinate

neighborhoods, and

(7) for each j P J , a homeomorphism

φj : Vj ˆ Y ÝÑ p´1pVjq

called coordinate function (local trivialization). The coordinate functions are required

to satisfy the following conditions:

(8) pφjpx, yq “ x, for all x P Vj, y P Y ,

(9) if the map

φj,x : Y ÝÑ p´1pxq

is defined by setting

φx,jpyq “ φjpx, yq,

then, for each pair i, j P J , and each x P Vi X Vj, the homeomorphism

φ´1
j,xφi,x : Y ÝÑ Y
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coincides with the operation of an element of G (it is unique since G is effective),

and

(10) For each pair i, j the map

gji : Vi X Vj ÝÑ G

defined by gjipxq “ φ´1
j,xφi,x is continuous.

Definition 1.2.5 (Fiber bundle). Two coordinate bundle B and B
1
are said to be equivalent

in the strict sense if they have the same bundle space, base space, projection, fiber, and

group, and the union B Y B
1
is a coordinate bundle. This notion of equivalence between

coodinate bundles defines an equivalence relation on the collection of all coordinate bundles

with the same bundle space, base space, projection, fiber, and group. A fiber bundle is

defined to be an equivalence class of coordinate bundles. We eventually call such a fiber

bundle Steenrod bundles.

This definition is analogous to the Ehresmann-Feldbau’s definition of fiber

space but here the topology of G plays a rule. The definition given by N.E. Steenrod is

equivalent to the definition given by C. Ehresmann in [17].

Definition 1.2.6. Let B and B
1
be two coordinate bundles having the same fiber, group.

By a bundle map (fiber preserving map) h : B ÝÑ B
1
, we mean a continuous function

h : B ÝÑ B having the following properties:

(1) h carries each fiber Yx homeomorphically onto a fiber Yx1 of B
1
, thus inducing a

continuous function h : X ÝÑ X
1
, such that

p
1

h “ hp

(2) If x P Vj X h
´1

pV
1

kq and hx : Yx ÝÑ Yx1 is the function induced by h (x
1

“ hpxq),

then the map

gkj “ φ
1

k,x
1

´1
hxφj,x : Y ÝÑ Y

coincides with the operation of an element of G, and

(3) the map

gkj : Vi X h
´1

pV
1

kq ÝÑ G

so obtained is continuous.

Definition 1.2.7. Two coordinate bundles B and B
1
with the same base space, fiber, and

group are said to be equivalent if there exists a bundle map B ÝÑ B
1
that induces the

identity map of the common base space. Two fiber bundles having the same base space,

fiber and group are said to be equivalent if they have a representative coordinate bundles

that are equivalent.
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Definition 1.2.8. Let G be a topological group, and X a space. By a system of coordinate

transformations in X with values in G is meant an indexed covering tVju of X by open

sets and a collection of continuous maps

(1)

gji : Vi X Vj ÝÑ G, i, j P J

such that

(2) gkjpxqgjipxq “ gkipxq, for all x P Vi X Vj X Vk.

Theorem 1.2.9 (Construction of fiber bundles). LetG a topological group acting efectively

on a topological space Y , tVju and tgiju a system of coordinate transformation on a

topological space X. There exists a unique fiber bundle B with base space X, fiber Y and

group G with coordinate transformations tgiju.

Proof’s sketch. The construction is given by consider on the disjoint union

T “
ğ

Vi ˆ Y ˆ tju

the equivalence relation

px, y, jq „ px
1

, y
1

, kq

if

x “ x
1

e gkjpxqy “ y
1

.

Defining q : T ÝÑ B the natural projection and prpx, y, jqs “ x, the coordinate functions

are given by

φjpx, yq “ rpx, y, jqs.

(Compare with [17], § 3).

Definition 1.2.10. A fiber bundle B “ tB, p,X, Y,Gu is called principal fiber bundle if

Y “ G and the action is the left translation. Principal bundles are denoted briefly by

B “ tB, p,X,Gu.

Definition 1.2.11. Let B “ tB, p,X, Y,Gu be an arbitrary bundle. The associated

principal bundle P pBq of B is the bundle given by the construction in Theorem 1.2.9 using

the same base space X, the same tVju the same tgiju and the same group G as for B but

replacing F by G and allowing G to operate on itself by left translations.

Definition 1.2.12. Let B be a fiber bundle. We call B a fiber bundle of class Cr and

write Cr-fiber bundle for short if it satisfies the following two condition:

(1) Its total space and base space are manifolds of class Cr;
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(2) the representative coordinate functions of B are diffeomorphisms of class Cr.

Let h : B ÝÑ B
1
a bundle map between two Cr-fiber bundles. We say that h is a Cr-bundle

map if h is a map of class Cr that carries the fibers diffeomorphically. Two differentiable

fiber bundles are said to be differentiable equivalent if they have representative coordinate

bundle equivalent by a Cr-bundle map.

Theorem 1.2.13. Let B, B
1
be Cr-fiber bundles with the same group and same base M .

Let h : B ÝÑ B
1
be a Cr-bundle map that induces a diffeomorphism h : M ÝÑ M . Then

h is a diffeomorphism.

Proof. Since dimB “ dimB
1
, it is enough to show that h˚ is injective. Let φ : U ˆ F ÝÑ

p´1pUq be a coordinate function for B and

φx : F ÝÑ B, φf : U ÝÑ B

defined by φxpfq “ φpx, fq and φf pxq “ φpx, fq. Given b P π´1pUq, any v P TbB has unique

representation

v “ pφxq˚pv1q ‘ pφf q˚pv2q.

Suppose that h˚v “ 0. Denoting the projections of B and B
1
by p and q, respectively, the

map h satisfies hp “ qh. Since h˚p˚pvq “ v2, it follows that v2 “ 0. Thus, v “ pφxqpv1q is

tangent to fiber over x. Since h restricts to a diffeomorphism in the fibers and h˚v “ 0, it

follows that v “ 0.

1.2.3 Associating a coordinate bundle to an Ehresmann-Feldbau bundle

We next discuss when an Eheresmann-Feldbau bundle is actually a Steenrod

bundle. Recall that the latter one is required to possess a topologized structural group that

act continuously on the fiber. But the structural group in the former one is not required

to satisfy any topological condition.

In some cases, a group G of homeomorphisms (Cr- diffeomorphisms) of a

topological space F (a manifold) has a natural topology τ such that G is a topological

group under τ and the natural action pg, yq P G ˆ Y ÝÑ gpyq is continuous. In some of

these cases, an Ehresmann-Feldbau bundle EpB,F,G,Hq determines a coordinate bundle.

Now we give some examples.

Definition 1.2.14 (Compact-open topology, R.H. Fox [23]). Let X, Y be topological

spaces and F a set of continuous functions from X to Y . Given A and B subsets of X

and Y , respectively, denote by MpA,Bq the set of all elements f P F satisfying fpAq Ă B.

The compact-open topology (co.o.-topology) on G is the topology that has as a subbasis for

open sets of F the sets MpK,Uq, where K ranges over all compact subsets of X and U

ranges over all open subsets of Y .
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Definition 1.2.15 (Admissible topology, S. Myers [60]). Let X, Y be topological spaces

and F a set of continuous functions from X to Y . A topology on F is said admissible if

the natural map (evaluation map) F ˆ X ÝÑ Y is continuous.

Theorem 1.2.16 (R.H. Fox, [23]). Let X be a regular and locally compact space and Y

be an arbitrary topological space. The co.o.-topology for a collection of continuous maps

from X to Y is admissible.

Theorem 1.2.17 (S. Myers, [60]). Let X and Y be arbitrary topological spaces. The

co.o.-topology on a set of continuous maps from X to Y is smaller than any admissible

topology.

Theorem 1.2.18 (S. Myers, [60]). Let X be a metric space and G be a group of homeo-

morphisms of X. Suppose that G is an equicontinuous set of functions. Then, under the

co. o.-topology, G is a topological group.

Theorem 1.2.19 (R. Arens, [2]). The group of all homeomorphisms of a compact Hausdorff

space under the co.o.-topology is a topological group.

Theorem 1.2.20 (R. Arens,[2]). Let X be a locally connected, locally compact, and

Hausdorff space. The group of all homeomorphisms of X under the co.o.-topology is a

topological group.

Let E “ EpB,F,G,Hq be an Ehresmann-Feldbau bundle such that its struc-

tural group G is a subgroup of the group of all homeomorphisms of the fiber (equipped

with the co.o-topology, see Remark 1.2.21). It follows from theorems 1.2.16-1.2.20 that if

F satisfies one of the conditions (1)-(3) below, then E is a Stenrood bundle.

(1) F is compact and Hausdorff.

(2) F is locally connected, locally compact and Hausdorff.

(3) F is a metric space and G is equicontinuous.

Remark 1.2.21. Let H be the group of all homeomorphisms of a topological space Y

and let E “ EpB,F,G,Hq be an Ehresmann-Feldbau bundle with fiber Y and structural

group G. Suppose that H is a topological group under the co.o-topology and that G is

a subgroup of H such that the natural action G ˆ Y ÝÑ Y is continuous (under this

topology). Then E determines a coordinate bundle:

(1) the natural action of G on Y is continuous, since it is the restriction of the natural

action H ˆ Y ÝÑ Y ;



Chapter 1. Background 27

(2) the group G is a topological group. Indeed, let V an open set of G. We want to show

that p´1
H pU XHq and i´1

H pU XHq are open in H ˆH and H, respectively, where pH

denotes the product of H and iH the inversion of H. We have the equalities

p´1
H pU X Hq “ p´1

G pUq X pH ˆ Hq and i´1
H pU X Hq “ i´1

G pUq X H.

Since the product topology of H ˆ H is the same as the subspace topology, we

conclude that pH and iH are continuous.

(3) Given homeomorphisms ϕi : p´1pViq ÝÑ Vi ˆ F as in 1.2.1, putting φi “ ϕ´1
i , we

claim that the function x P Vj X Vi ÝÑ gjipxq “ φ´1
j,xφi,x P G is continuous. R.H. Fox

[23], observes that for any tpoological spaces X, Y, T , if a function h : X ˆ T ÝÑ Y

is continuous and the space C0pX, Y q of all continuous functions of X to Y has

the co.o.-topology, then the function h˚ : T ÝÑ C0pX, Y q defined by h˚ptqpyq “

hpy, tq is continuous. Taking h “ p2φjφ
´1
i : pVi X Vjq ˆ Y ÝÑ Y , we have that

gjipxq “ h˚pxq is continuous, concluding the claim by Fox’s observation (note that

h˚ : Vj X Vi ÝÑ G is continuous, since the image of h˚ is contained in G Ă C0pY, Y q

and h˚ : Vj X Vi ÝÑ C0pY, Y q is continuous).

Remark 1.2.22. Given an effective continuous action of a topological group G on a

topological space Y , we can see the group G as a group of homeomorphisms of Y . In this

case, G has an admissible topology since acts continuously on Y . Now, suppose that G is

compact and Y is Hausdorff. Then the topology of G is the co.o.-topology. Indeed, denote

by τ the original topology of G and τc the co.o.-topology on G. We have:

(1) τc is a Hausdorff topology. Let g, h P G, g ‰ h. Given y P Y with gpyq ‰ hpyq,

since Y is Hausdorff, there exists open disjoint sets U and V with gpyq P U and

hpyq P V . So Mptxu, Uq and Mptyu, V q are disjoint open sets for the co.o.-topology

on G with g P Mptxu, Uq and h P Mptyu, V q. Therefore G under the co.o.-topology

is Hausdorff.

(2) Now, any co.o.-open set is open in the original topology of G, since the original

topology of G is admissible and any admissible topology is finer than co.o.-topology

by 1.2.17. It follows that the identity map I : pG, τq ÝÑ pG, τcq is continuous.

Since pG, τq is compact and pG, τcq Hausdorff, this map is closed. Therefore I´1 is

continuous concluding that τ “ τc.

Thus, given a fiber bundle B “ tB, p,X, Y,Gu with G compact and Y Hausdorff, the

topology of G is necessarily the co.o.-topology. More generally, the same proof shows that

any compact admissible topology on a set G of homeomorphisms of Y coincides with the

co.o.-topology.
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We will now deal with the differentiable case. The notation B “ tB, p,M, F u

will be fixed to denote a Cr fiber space, 1 ď r ď 8, with the group of all Cr-diffeomorphisms

of the fiber (see 1.2.2). Next, we describe a topology for this group so that B is a fiber

bundle and present a characterization of bundle map. Let M,N be Cr-manifolds (without

boundary) and denote CrpM,Nq the space of all Cr maps f : M ÝÑ N . Let JrpM,Nq the

space of all r-jets of functions f P CrpM,Nq. The spaces JrpM,Nq are finite dimensional

manifolds for all 1 ď r ă 8 and for r “ 8 the space J8pM,Nq is an infinite dimensional

manifold modeled on R8. The natural projections

JrpM,Nq
πr //M

JrpM,Nq
πr,0

//M

JrpM,Nq
πr,k

// JspM,Nq

1 ď s ă r ď r ď 8, given by πrj
r
xf “ x, πr,0j

r
xf “ fpxq and πr,kj

r
xf “ jsxf are surjective

submersions (see [72] for details). We have an injective inclusion

Jr : CrpM,Nq ÝÑ C0pM,JrpM,Nqq

given by Jrpfqpxq “ jrxf . Considering on C0pM,JrpM,Nqq the co.o.-topology, we can

topologize the space CrpM,Nq so that Jr be an embbeding. This topology is called

Cr-topology (or weak topology). When M is noncompact, it is convenient consider the

strong topology on CrpM,Nq, induced by the graph-topology on C0pM,JrpM,Nqq. Those

topologies coincide when M is compact. We will restrict our attention to the compact case.

Many properties about this topology can be found in Hirsch’s book [33], chapter 2.

Theorem 1.2.23. The Cr-topology is admissible, 1 ď r ď 8.

Proof. We have a commutative diagram

CrpM,Nq ˆ M
Jrˆ1

//

e1

��

C0pM,JrpM,Nqq ˆ M

e2

��

N JrpM,Nqπr,0

oo

where ei, i “ 1, 2, denote the evaluation maps. Since e2 is continuous by 1.2.16, it follows

that the Cr-topology is admissible.

Theorem 1.2.24 ([33], chapter 2). Let M be a Cr-closed manifold. The group DiffrpMq

under the Cr-topology is a topological group.

Theorem 1.2.25. A Cr fiber space with group G “ DiffrpF q equipped with the Cr-

topology is a fiber bundle. Let B “ tB, p,M, F u and B
1

“ tB
1
, p

1
,M

1
, F u be Cr-fiber
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bundles with group G “ DiffrpF q. A Cr-map h : B ÝÑ B
1
that carries each fiber of B

diffeomorphically to a fiber of B
1
is a bundle map.

Proof. In general, given Cr-function f : X ˆ Y ÝÑ Z, denoting fx the function fxpyq “

fpx, yq we have a continuous map

k : X ˆ Y ÝÑ JrpY, Zq

px, yq ÝÑ jryfx.

Since k is continuous, the function k˚ : X ÝÑ C0pY, JrpY, Zqq given by k˚pxqpyq “ kpx, yq

is continuous (see 1.2.21 item 3).

Now, let B “ tB, p,M, F u a Cr-fiber space and ϕi : p´1pViq ÝÑ Vi ˆ F be a

Cr-diffeomorphism as in Definition 1.2.1. Denoting φi “ ϕ´1
i , we want to show that the

function

gji : Vj X Vi ÝÑ DiffrpF q

given by gjipxq “ φj,xφ
´1
i,x is continuous. Via the identification of CrpF, F q as a subspace

of C0pF, JrpF, F qq, this function is given by gjipxqpyq “ jrypφj,xφ
´1
i,xq. With the notation of

the preceeding paragraph, taking fpx, yq “ p2φjφipx, yq, then k˚pxq “ gjipxq is continuous,

since f is a Cr-function. Therefore B is a fiber bundle.

Now, let pφ, Uq, pφ
1
, V q local trivializations for B and B

1
, respectively, x P M

and x
1

“ hpxq. As in the preceeding paragraph, we can show that the map

U X h
´1

pV q ÝÑ DiffrpF q

x ÝÑ φ
1 ´1

x
1hxφx

is continuous. Thus, since h carries the fibers of B homeomorphically into the fibers of B
1
,

it follows that h is a bundle map.

Corollary 1.2.26. Two Cr-fiber bundles B “ tB, p,M, F u and B
1

“ tB
1
, p

1
,M, F u are

equivalent if there exists a Cr-diffeomorphism h : B ÝÑ B
1
satisfying p

1
h “ p.

In what follows, we will consider only smooth fiber bundles pC8-fiber bundles).

The group of all C8-diffeomorphisms of a manifold F equipped with the C8-topology will

be denoted by DiffpF q.

1.2.4 Differentiable principal fiber bundles

In the classical book [42], S. Kobayashi and K. Nomizu define the notion of

principal fiber bundle as follows. Let M be a smooth manifold and G a Lie group. A

manifold P is called a differentiable principal fiber bundle provided the following conditions

are satisfied:
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(1) G acts differentiably on P to the right without fixed point: pb, gq P P ˆ G ÝÑ bg “

Rg ¨ b P P ;

(2) M is the quotient space of P by the equivalence relation induced by G and the

canonical projection π : P ÝÑ M is differentiable;

(3) P is locally trivial, that is, every point x P M has a neighborhood U such π´1pUq

is isomorphic with U ˆ G in sense that b P π´1pUq ÝÑ pπpbq, ϕpbqq P U ˆ G is

differentible isomorphism satisfying ϕpbgq “ ϕpbqg for all g P G. In this case, M is

called the base of P and G the structural group of P . We denote by P pM,Gq a

principal bundle with base M and group G.

Remark 1.2.27. There exists a 1-1 correspondence between local trivializations and

local cross-sections in a differentiable principal bundle. Indeed, given a local trivialization

ψ : π´1pUq ÝÑ U ˆG, then sψpxq “ ψ´1px, eq is a smooth local cross-section. Conversely,

given a local cross-section s : U ÝÑ π´1pUq, the function φ : U ˆ G ÝÑ π´1pUq given by

φpx, gq “ spxqg is a diffeomorphism and ψ “ φ´1 become a local trivialization satisfying

s “ sψ. Note that the map φx : G ÝÑ π´1pxq satisfies φ´1
x pbgq “ φ´1

x pbqg.

Definition 1.2.28. Let P pM,Gq and P
1
pM,G

1
q be differentiable principal fiber bundles. A

differentiable mapping f of P into P
1
is called a homomorphism if there is a homomorphism,

denoted by the same letter f , of G into G
1
such that fpbgq “ fpbqfpgq for all b P P and

g P G. If f is a diffeomorphism, it is called an isomorphism.

Theorem 1.2.29. The following statements hold:

(1) Let B and X be smooth manifolds and let G be a Lie group. Suppose that B “

tB, p,X,Gu is a principal bundle and that there exists a representative coordinate

bundle for B such that the coordinate functions concerning this coordinate bundle

are diffeomorphisms. Then B is a differentiable principal bundle;

(2) a differentiable principal bundle is a Steenrod bundle;

(3) Let h be a bundle map between two differentiable principal bundles. Then h is an

homomorphism between differentiable principal bundles;

(4) let h be a homomorphism between two differentiable principal bundles P pM,Gq and

P
1
pM,Gq. Suppose that that the induced map G ÝÑ G is an homeomorphism. Then

h is a differentiable bundle map.

Proof. The proof requires only routine definitions and computations.

(1) - Let B “ tB, p,X,Gu be a principal bundle with B, X being smooth manifolds,

G being a Lie group, and a family tVju of open sets covering X with coordinate
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functions φj : Vj ˆG ÝÑ p´1pVjq being smooth diffeomorphisms. We will construct

a right action of G on B such that B{G “ X. Let b P B with πpbq “ x. Set

b ¨ g “ φj,xpg´1p2φ
´1
j pbqq,

where φx,jpgq “ φjpx, gq. Note the following equalities

φj,xpp2φ
´1
j pbqq “ b and p2φ

´1
j φi,xpgq “ g.

Given x P Vi X Vj, we have

φ´1
j,xφi,xpp2φ

´1
i pbqq “ p2φ

´1
j pbq.

Since φ´1
j,xφi,x conicides with an operation of an element of G, then

φ´1
j,xφi,xpg´1p2φ

´1
i pbqq “ g´1p2φ

´1
j pbq

for all g P G. Thus, the rule pb, gq ÝÑ b ¨ g is well-defined. This rule satisfies the

axioms of an action:

b ¨ e “ φj,xpe´1p2φ
´1
j pbqq “ b;

pb ¨ gq ¨ h “ φj,xph´1p2φ
´1
j pφj,xpg´1p2φ

´1
j pbqqqq “ φj,xph´1g´1p2φ

´1
j pbqq “ b ¨ pghq.

This action is smooth, since it is given in terms of smooth maps. Note that the

orbit of a point b P B is equal the fiber containing b. It follows that the function

p : B ÝÑ B{G is equal to p : B ÝÑ X. Now, we will give the local trivializations.

For each j, let ϕjpbq “ pφj,πpbq
´1pbqq´1 and ψjpbq “ pπpbq, ϕjpbqq. Denoting x “ πpbq,

we have

ϕjpb ¨ gq “ pφ´1
j,xpb ¨ gqq´1 “ pφ´1

j,xpφj,xpg´1p2φ
´1
j pbqqq´1 “ pg´1p2φ

´1
j pbqq´1 “ ϕpbqg.

It follows that B determines a differentiable principal fiber bundle.

(2) - Let P pM,Gq be a differentiable principal bundle. We will associate to P pM,Gq a

coordinate bundle as in Definition 1.2.4. The bundle space, base space, projection,

and fiber are, respectively, P ,M , π and G. Since P pM,Gq is a differentiable principal

bundle, we can consider a family of open sets tVju coveringM with local cross-section

sj : Vj ÝÑ π´1pVjq such that φjpx, gq “ sjpxqg is a diffemorphism for all j (see

1.2.27). We have

φ´1
j,xφi,xpgq “ φ´1

j,xpsipxqgq “ φ´1
j,xpsipxqq ¨ g,

hence φ´1
j,xφi,x conicides with the operation by an element of G. Note that φ´1

j,xφi,x “

φ´1
j,xpsjpxqq is a smooth function. It follows that the collection P, π,M,G, Vj, φj

determine a (smooth) coordinate bundle.
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(3) - Now, let h : P pM,Gq ÝÑ P
1
pM,Gq be a bundle map between differentiable

principal bundles. Fixed b P P , let s, s
1
local cross-sections with spxq “ b and

spx
1
q “ hpbq (x

1
“ hpxq) and φ, φ

1
given by φpy, gq “ spyqg, φ

1
py, gq “ s

1
pyqg. By the

item 1 above, φ and φ
1
are coordinate functions for P and P

1
, respectively. Then

φ
1

x
1

´1
hpbgq “ φ

1

x
1

´1
hxφxpgq “ pφ

1

x
1

´1
hxφxq ¨ g,

since φ
1

x
1

´1
hxφx coincides with an operation of an element of G, and

φ
1

x
1

´1
hpbgq “ pφ

1

x
1

´1
hxφxpeqq ¨ g “ φ

1

x
1

´1
phpbqq ¨ g “ φ

1

x
1

´1
phpbqgq,

concluding that hpbgq “ hpbqg.

(4) - Now, let f : P pM,Gq ÝÑ P
1
pM,Gq be a homomorphism with the induced map

of G onto itself being a homeomorphism. Since fpbgq “ fpbqfpgq and a continuous

homomorphism with continuous inverse between Lie groups is a diffeomorphism (see

[48]), then f carries the fibers of P diffeomorphically onto the fibers of P
1
. With the

notations of the item 3, we have

φ
1

x
1

´1
fxφxpgq “ φ

1

x
1

´1
fxpspxqgq “ φ

1

x
1

´1
pfxpspxqqfpgqq “ pφ

1

x
1

´1
fxpspxqqq ¨ fpgq.

Thus, φ
1

x
1

´1
fxφx “ φ

1

x
1

´1
fxpspxqq is a smooth map that conincides with an operation

of an element of G. Hence f is a bundle map.

Definition 1.2.30. Let P be a differentiable principal fiber bundle with base M and

structural Lie group G. A connection in P is a smooth distribution Γ in P satisfying

(1) TxP “ Γx ‘ Gx, where Gx denotes the tangent space of the fiber at x.

(2) Given x P P and g P G, then Γxg “ pRgq˚Γx, where Rg denote the right translation

of G by g.

The subspaces Γx are called horizontal subspaces of the connection Γ. A connection in a

principal fiber bundle is said flat if it is given by an integrable distribution3.

Theorem 1.2.31 ([42], page 79). A homomorphism f : P pB,Gq ÝÑ P
1
pB,G

1
q such that

the induced map in the base spaces is a diffeomorphism, maps a connection Γ into a

connection Γ
1
in such way that f maps the horizontal subspaces of Γ into the horizontal

subspaces of Γ
1
.

3 This is an equivalent condition to flatness. A connection is said flat if the associated curvature two
form vanishes.
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Remark 1.2.32. Let P pM,Gq be a differentiable principal fiber bundle and F be a

differentiable manifold on which G acts to the left. Consider the action of G on P ˆ F

given by px, fqg “ pxg, g´1fq. Let B “ pP ˆ F q{G be the quotient space. The canonical

projection πP : P ÝÑ M induces a projection πB of B onto M in the following way: the

class determined by class px, fq is mapped to πP pxq. Space B is called a fiber bundle with

base space M that is associated with P . This definition of associated bundle appear in

Kobayashi-Nomizu [42]. It is easy to show that if B “ tB, p,X, Y,Gu is a smooth Stenrod

fiber bundle and if G is a Lie group that acts smoothly on the fiber, then the associated

principal bundle P “ P pBq is a differentiable principal bundle and the bundle that is

associated to P is equivalent to B (equivalence as defined by Steenrod of course).

1.2.5 Circle bundles

By a circle bundle we means a fiber bundle B “ tB, p,X, Y,Gu with fiber

Y “ S1. Next, we will show that two differentiable principal circle bundles are isomorphic

Kobayashi-Nomizu’s sense (differentiable isomorphic) if, and only if, are equivalents as

Diff`pS1q-bundles4.

Theorem 1.2.33 ([78], §6.7). Let B “ tB, p,X, F,Gu be a smooth fiber bundle and ρ a

metric that generates the topology of B. If there exists a continuous cross-section5 s for B,

given ǫ ą 0, there exists a smooth cross-section s
1
for B such that ρpspxq, s

1
pxqq ă ǫ for all

x P M .

Let B1,B2 be differentiable principal fiber bundles with the same base space M

and the same group G. Consider the action of G on B1 ˆB2 given by pb1, b2qg “ pb1g, b2gq.

Then, B “ pB1 ˆ B2q{G is the total space of a smooth fiber bundle B with base space M ,

group G, fiber B2 and projection given by prpb1, b2qs “ p1pb1q (Defining a left action on B2

by g ¨ b “ b ¨ g´1, this bundle is the associated to B1 with fiber B2, see 1.2.32). Considering

B1 ˆ B2 ÝÑ B1 as a trivial bundle, we have that π is a bundle map and the diagram

B1 ˆ B2
π //

π1

��

B

p
��

B1

p1 //M

is commutative. To see this, we will describe the coordinate functions for the bundle B.

Let pψ,Uq a local trivialization of B1 and s the associated cross-section given by 1.2.27.

The function φ : U ˆ B2 ÝÑ p´1pUq given by φpx, b2q “ rpspxq, b2qs is a coordinate trans-

formation as in the item (7) of 1.2.4. Since the map px, gq ÝÑ spxqg is a diffeomorphism,

4 The symbol Diff`pMq denote the subgroup of DiffpMq of all orientation preserving diffeomorphisms of
M .

5 A cross-section on a fiber bundle B “ tB, p, X, F, Gu is a function s : X ÝÑ B satisfying ps “ 1.
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the map b ÝÑ gb such that spxqgb “ b is a smooth map. Then,

pφxq´1prb1, b2sq “ φ´1
x rpspxqgb1

, b2qs “ φ´1
x rpspxq, b2g

´1
b1

sq “ b2g
´1
b1

and

φ´1
p1pb1qπb1

pb2q “ b2g
´1
b1

“ gb1
b2, (1.1)

concluding that φ´1
p1pb1qπb1

coincides with the operation of an element of G and the function

b1 ÝÑ φ´1
p1pb1qπb1

is smooth. Now, given b1 P B1 and s be a local cross-section with spxq “ b1,

we have that

πb1
pb2q “ φpx, b2q

is a diffeomorphism. It follows that π is a bundle map.

Theorem 1.2.34. Under the above hypothesis, there is a 1-1 correspondence between the

smooth (continuous) cross-sections of B and the smooth (continuous) bundle maps of B1

to B2.

Proof. To proof this theorem we will use the following general fact about submersions.

Let f : M ÝÑ N be a submersion. Then, a map g : N ÝÑ Z is smooth (continuous) if,

and only if, gf is smooth (continuous). Indeed, there exists smooth local cross-section

for f trough every point y P N . Thus, if gf is smooth (continuous), then given y P N

and smooth local cross-section s : U ÝÑ M , the map pgfsq|U is smooth (continuous), but

pgfsq|U “ g|U . It follows that g is smooth (continuous).

Given a smooth (continuous) bundle map h : B1 ÝÑ B2, then s : M ÝÑ B given

by spxq “ rpb, hpbqqs, where b is any point in the fiber over x, is well-defined cross-section.

Indeed, given g P G, we have

rpbg, hpbgqqs “ rpbg, hpbqgqs “ rpb, hpbqqs.

By the commutativity of the diagram

B1
1ˆh

//

p1

��

B1 ˆ B2

π
��

M
s // B,

it follows that sp1 “ πp1ˆhq is smooth (continuous). Since p1 is a submserion, we conclude

that s is smooth (continuous).

Conversely, let s : M ÝÑ B be a smooth (continuous) cross-section. Since π is

a bundle map, for each b1 P B1, the map πb1
is a diffeomorphism from B2 to the fiber over

p1pb1q. Thus, the map hpb1q “ π´1
b1

pspp1pb1qqq is well-defined and satisfies:

(1) πp1 ˆ hq “ sp1, hence hpb1gq “ hpb1qg for all b1 P B1; in particular, h carries fiber in

fiber diffeomorphically.
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(2) Given a trivialization φpx, b2q “ rpspxq, b2qs as above, by Equation 1.1 we have that

φ´1
p1pb1qhpb1q “ φ´1

p1pb1qπ
´1
b1

psp1pb1qq “ psp1pb1qqg´1
b1

is a smooth (continuous) map. It follows that h is a smooth (continuous) map.

Let B1,B2 bundle with the same base space and group and h : B1 ÝÑ B2 a

bundle map that covers the identity. Let s : M ÝÑ B, spxq “ rpb, hpbqqs be the local

cross-section given by Theorem 1.2.34. Since h covers the identity, we have p1pbq “ p2hpbq.

Conversely, if s : M ÝÑ B is a cross-section, say spxq “ rpb, fpxqqs, satisfying p1pbq “

p2pfpxqq, given the bundle map hpbq “ π´1
b pspp1pbqqq associeated with s, it is easy to see

that h covers the identity. Thus, we have characterized the cross-sections that correspond

to bundle maps that covers the identity. It is not difficult to see that B
1

“ trpb1, b2qs P

B{p1pb1q “ p2pb2qu is an embendding submanifold of B and the restricition π : B
1

ÝÑ M

determines a fiber bundle with fiber G. Thus, a cross-section s : M ÝÑ B determines a

bundle map that covers the identity if and only if take values in B
1
, that is, if and only if

it is a cross-section s : M ÝÑ B
1
. Thus, we have:

Theorem 1.2.35. Two differentiable principal fiber bundles equivalents by a continuous

bundle map are differentiable isomorphic.

Proof. Let B1 and B2 two differentiable principal bundle with same base space M and

group G. Suppose that there exists a continuous bundle map h : B1 ÝÑ B2 that covers the

identity. Then, by 1.2.34 there exists a cross-section s : M ÝÑ B determined by h. Since

h covers the identity, s is a cross-section s : M ÝÑ B
1
. By Theorem 1.2.33, there exists a

smooth cross-section s
1
: M ÝÑ B

1
that apporoximates s. This cross-section corresponds

to a smooth bundle map h
1
: B1 ÝÑ B2 that covers the identity. By 1.2.13 and 1.2.35, this

bundle map determines an isomorphism of differentiable principal bundles.

Lemma 1.2.36 ([78], theorem 29.2.). Let B be a fiber bundle with fiber F and base

space a finite complex K of dimension n. If Y is arcwise connected and πipY q “ 0 for

i “ 1, . . . , n ´ 1, then B admits a cross-section.

Theorem 1.2.37. Let K be a finite complex of dimension n, G be a topological group and

H a closed subgroup of G such that G{H is arcwise connected. Suppose that πipG{Hq “ 0

for all i “ 1, . . . , n ´ 1. If H has a local cross-section in G6, then any two H-bundles over

K that are G-equivalents are also H-equivalents. In particular, two H-bundles over a

smooth manifold M that are G-equivalents are also H-equivalent.

6 This means that there exists a neighborhood U of H P G{H and a continuous cross-section s : U ÝÑ G.
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Proof’s sketch. This theorem follows as in [78], § 12.5. The hypothesis about K and G{K

enable us to obtain cross-section of any bundle with fiber G{H over K by 1.2.36. In

particular, a G-bundle over a n-complex K is equivalent to a H-bundle over K (See [78],

§ 9.2 for details). To finish, every smooth manifold M admit a smooth triangulation

t : |K| ÝÑ X 7. Thus, a fiber bundle B “ tB, p,M, Y,Gu is completely determined by the

fiber bundle B “ tB, t´1p,K, Y,Gu over the n-complex K.

Theorem 1.2.38. The space Diff`pS1q has as a deformation retract the rotation group

SOp2q.

Proof’s sketch. Denote by Diff`
0pS1q the subgroup of Diff`pS1q that keep fixed 1 P S1.

(1) Diff`pS1q “ Diff`
0pS1qSOp2q. Indeed, given f P Diff`pS1q, and γ P S1 with fpγq “ 1,

there exists g P SOp2q with g´1pγq “ 1. Thus, f ˝ gp1q “ θ, and f ˝ g P Diff`
0pS1q.

It follows that f P Diff`
0 pS1qSOp2q and, therefore, Diff`pS1q “ Diff`

0pS1qSOp2q.

(2) Consider the usual coverging π : R ÝÑ R{Z “ S1 with πp0q “ 1. Any function

f : S1 ÝÑ R extend to a function f̃ : R ÝÑ R safisfying f̃px` 1q “ f̃pxq `d. Since f

is an orientation-preserving diffeomorphism, we have d “ 1. It follows that Diff`
0pS1q

can be idendified with

G “ tf̃ : R ÝÑ R{f̃p0q “ 0 and f̃px ` 1q “ f̃pxq ` 1u Ă Diff`pRq.

Now, the function F : G ˆ I ÝÑ G given by F pf̃ , tq “ p1 ´ tqf̃ ` tx is well-defined,

continuous, hence give us a homotopy between the identity map 1G and the point

1R P G.

(3) To finish, we have that the function r : Diff`pS1q ˆ I ÝÑ Diff`pS1q given by

rpfg, tq “ πpF pf̃ , tqqg, f P Diff`
0 pS1q, g P SOp2q, satisfies r0 “ 1 and rf pgq “ g for

all g P SOp2q. It follows that rt is a deformation retraction of Diff`pS1q onto SOp2q.

Theorem 1.2.39. Two differentiable principal circle bundles are differentiable isomorphic

if and only if are equivalents as Diff`pS1q-bundles.

Proof. In Theorem 1.2.38 we have showed that SOp2q has a global cross-section in Diff`pS1q

and Diff`pS1q{SOp2q is arcwise connected and contractible. In particular

πipDiff
`pS1q{SOp2qq “ 0

7 The map t : |K| ÝÑ X is homeomorphism such that for each simplex σ of K, the restriction
t : σ ÝÑ tpσq is a smooth submersion. The existence of smooth triangulations was established, for
example, in [6].
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for all i ě 1. It follows by 1.2.37 that two SOp2q-principal bundles over a finite complex K

that are Diff`pS1q-equivalents, are SOp2q-equivalentes. If those bundles are differentiable

principal bundles over a manifoldM , it follows by 1.2.35 that we can obtain a differentiable

isomorphism.

1.3 Foliations

Intuitively, a manifold M is “foliated” if it is expressed as the union of l-

dimensional submanifolds that fit alongside each other, locally, like parallel l-planes in

Euclidian n-space. Following Deahna-Clebsch-Frobenius’ theorem8, a (smooth) foliation F

can be defined as an involutive subbundle E of the tangent bundle of M . If the fibers of

E are l´dimensional, the maximal integral manifolds of E are immersed l-dimensional

submanifolds of M called leaves of the foliation F. This result allows constructing an atlas

for M as in the next definition.

Definition 1.3.1. Let F be a foliation on M . A foliated chart for M is a coordinate

neighborhood pU,ϕq for it, ϕ “ px, yq, such that the leaves of F are determined locally

by y “ constant. Each set y “ constant Ă U is called plaque of F. A foliated atlas

U “ tUα, ϕαuαPJ for M is an atlas formed only by foliated charts. A foliated atlas is said

to be regular provided:

(1) for each α P J , Uα is a compact subset of a foliated chart pW,ϕq and φα “ ϕ |Uα
;

(2) the cover tUαuαPJ is locally finite9;

(3) if pUα, ϕαq and pUβ, ϕβq are elements of U , α, β P J , then the interior of each closed

plaque P Ă Uα meets at most one plaque in Uβ.

Given a foliated atlas U concerning to a foliation F, the coordinate maps

xα : Uα ÝÑ Rp and yα : Uα ÝÑ Rq

are submersions on its image and the local coordinate change on Uα X Uβ has, therefore,

the form
xα “ φαpxβ, yβq,

yα “ ψαpyβq.

Fixing for each foliated chart pUα, ϕαq a submanifold Sα “ txα “ constantu, we have that

SU “
ž

αPJ

Sα

8 See historical note of [53].
9 This means that given I Ă J , if

Ş
αPI Uα ‰ H, then I is finite.
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is an embedded submanifold of M transverse to F, that is, transverse to the leaves of F

(see [30] chapter 2). The equation yα “ ψαpyβq can be viewed as local diffeomorphism γαβ

of Sα to Sβ. These diffeomorphisms generate a pseudogroup ΓU called holonomy pseugroup

of F defined on SU ; the definition of pseudogroup is given in the sequence. Geometrically

theses pseudogroups are obtained by sliding along the leaves. For a discussion about the

equivalence between these pseudogroups see [31]. In what follows, we will refer to holonomy

pseudogroup of F as the pseudogroup ΓU for a regular foliated atlas U .

Definition 1.3.2. A pseudgroup of transformation on a topological space S is a set Γ of

transformations satisfying the following conditions:

(1) Each element f P Γ is a homeomorphism of an open set of S (called the domain of

f) onto another open set of S (called the range of f);

(2) If f P Γ then the restriction of f to an arbitrary open subset of the domain of f is

in Γ;

(3) If fi : Ui ÝÑ Vi, i P J , are elements in Γ, then f :
Ť
iPJ Ui ÝÑ

Ť
iPJ Vi defined by

fpxq “ fipxq if x P Ui, is an element of Γ;

(4) For every open set U of S the identy transformation of U is in Γ;

(5) If f P Γ, then f´1 P Γ;

(6) The composition of elements of Γ where have sense is in Γ.

Remark 1.3.3. There are other definitions of regularity of a foliation. For example,

foliations where the individual leaves are Ck-submanifolds but TF, when exists, have class

Cr, r ď k. Foliations also can be defined in other topological spaces (see [21]).

Let F be a foliation defined on M and L be a leaf of F. Given x P L and Σ

a transversal embedding submanifold containing x, to each loop α with base at x P M ,

we can associate a germ of a local diffeomorphism ϕα : U Ă Σ ÝÑ Σ by sliding along

the leaves “covering” α. The definition of this map depends only on the homotopy class

of α. It is well-comported concerning the concatenation of loops. Therefore, induces a

homomorphism

ϕ : π1pMq ÝÑ GermpΣq

called holonomy of L at x. Given x, y P L, the holonomy of L at x is equivalent the

holonomy of L at y. For a precise definition see [8, 9].

Example 1.3.4. Let ω be a closed p-form of constant rank defined on manifold M . Then,

the distribution x ÝÑ kerωx is integrable and determines a foliation denoted by Fω. Indeed,
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if X, Y are vector fields tangent to kerω, then

dωpX1, . . . , Xp`1q “
ÿ

1ďiďk`1

p´1qi´1XipωpX1, . . . , X̂i, . . . , Xp`1qq

`
ÿ

1ďiăjďp`1

ωprXi, Xjs, X1, . . . , X̂i, . . . , X̂j, . . . , Xp`1q,

for any smooth vector fields X1, . . . , Xp`1, where X̂ mens that X not is considered. Given

X, Y P kerω, putting X “ X1, Y “ X2 and Xi arbitrary for i ą 2, we have

dωpX1, . . . , Xp`1q “ ´ωprX, Y s, X3, . . . , Xp`1q “ irX,Y sωpX3, . . . , Xp`1q.

Thus, if dω “ 0 then irX,Y sω “ 0. Therefore, when ω is a closed form of constant rank, the

distribution kerω gives a foliation on M . When p “ 1, the holonomy of each leaf of Fω is

trivial. Conversely, if F is a C2-codimension one foliation such that every leaf has trivial

holonomy group, then F is topologically equivalent to a foliation given by the kernel of a

closed 1-form ([8], page 82).

1.4 Foliated bundles

A foliated bundle B “ tB, p,M, F,Fu is a smooth fiber bundle (group G “

DiffpF q) with a foliation F satisfying the following condition: for each x P X there exists a

local trivialization of the bundle B, ψ : p´1pUq ÝÑ U ˆ F , such that F|π´1pUq is the trivial

foliation tU ˆ tyuuyPF . In a foliated bundle, each leaf is a covering of the base space and

the holonomy pseudogroup of F have a simpler description by the existence of the global

sections for F, the fibers of B (in fact we have a group). For each x, y P M , and continuous

path α : r0, 1s ÝÑ M conecting x to y in M , we have a diffeomorphism

ϕpαq : p´1pxq ÝÑ p´1pyq

defined by

ϕ´1pαqpzq “ λypzq,

where λ : r0, 1s ÝÑ p´1pzq is the unique curve that covers α concerning to the covering

map p : Lz ÝÑ M (where Lz is the leaf of F containing x). The covering proprerties

implies that ϕpαq depend only of the homotopy class of α. For x “ y, the function

ϕ : π1pM,xq ÝÑ Diffpp´1pxqq

is a homomorphism called holonomy homomorphism of the B with image Γ called holonomy

group of B. This homomorphism independs of the choice of base point and we can see it

as a homomorphism from π1pMq to DiffpF q. Conversely, given a homomorphism

ϕ : π1pMq ÝÑ DiffpF q
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we can construct a smooth fiber bundle with base space M , fiber F and discret structural

group Γ “image of ϕ. We know that π1pMq act on M̃ by Deck transformations and on F

by ϕ. Then, π1pMq act on M̃ ˆ F by αpx̃, fq “ pα ¨ x̃, ϕpαq´1pfqq. Let

B “ pX̃ ˆ F q{π1pMq

with natural projection

p : pM̃ ˆ F q{π1pMq ÝÑ X̃{π1pMq “ M.

We have that Bϕ “ tB, p,M, F,Fu is a foliated bundle where the leaves of F are given

by the projection of the M̃ ˆ y, y P Y . If ϕ : π1pMq ÝÑ Γ Ă DiffpF q is the holonomy

homomorphism of the foliated bundle B “ tB, p,M, F,Fu, then Bϕ is equivalent to B with

the natural equivalence preserving both foliations. To refer, we will highlight those results.

Theorem 1.4.1 ([8], chapter V). LetM and F be connected manifolds and ϕ : π1pMq ÝÑ

DiffpF q be a homomorphism. There exists a foliated fiber bundle Bϕ “ tB, p,M, F,Fpϕqu

whose the holonomy homomorphism is ϕ. The structural group of Bϕ can be taken as the

image of ϕ with the discrete topology.

Theorem 1.4.2 ([8], chapter V). LetM and F be connected manifolds, ϕ, ϕ
1
: π1pMq ÝÑ

DiffpF q be homomorphisms and f : F ÝÑ F be a diffemorphism satisfying ϕpαq “

f´1ϕ
1
pαqf . There exists a smooth bundle map h : Bϕ ÝÑ Bϕ

1 that covers the identity and

take the leaves of Fpϕq on the leaves of Fpϕ
1
q.

Theorem 1.4.3 ([8], chapter V). Let B “ tB, p,M, F,Fu be a foliated bundle with

holonomy homomorphism ϕ : π1pMq ÝÑ DiffpF q. There exists a bundle map B ÝÑ Bϕ

that covers the identity and take the leaves of F on the leaves of Fpϕq.

Remark 1.4.4. Those theorems hold when the fiber has a boundary. Let F any topological

space andX a topological space possessing universal covering. Let ϕ : π1pXq ÝÑ HomeopF q

be a homomorphism. With this data, we can construct a “foliated bundle” as already

described in this section (see [34]).

Remark 1.4.5. In Theorem 1.4.1, the topology of G “ ϕpπ1pMqq as a subspace of

DiffpF q can be a no discrete topology. However, we can get a coordinate bundle equivalent

to Bϕ with the system of coordinate transformation being constant (taking values on

Imagepϕq). Thus, we can see Bϕ as a fiber bundle with structural group G equipped with

the discrete topology. As a subspace of DiffpF q, we can show that the topology of G is

totally disconnected. Indeed, we have that π1pMq is a finitely presented group, hence

an enumerable set10. We claim that every enumerable subspace A of DiffpF q is totally

10 Since M is compact, it has a simplicial decomposition with a finite number of cells. It follows by Van
Kampen’s theorem that the fundamental group of M is finitely generated, hence enumerable.
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disconnected. More generally, let X be a topological space that separates points11 and A be

an enumerable subset of X. Given x ‰ y elements of A, there exists a continuous function

f : X ÝÑ R satisfying fpxq “ 0 and fpyq “ 1. Since A is an enumerable set, there exists

α P p0, 1q with fpzq ‰ α for all z P A. Then, x P f´1p´8, αq X A, y P f´1pα,8q X A and,

therefore, we may write A “ pf´1p´8, αq XAq
Ť

pf´1pα,8q XAq (note that this union is

disjoint). Since x, y P A were arbitrarily chosen, it follows that A is totally disconnected.

Now, since the space C8pF, F q is metrizable ([33], chapter 2 theorem 4.4), we conclude

that ϕpπ1pMqq is a totally disconnected subgroup of DiffpF q. This proves the claim. Recall

that any subgroup of a topological group is, itself, a topological group (see 1.2.21). Hence,

it follows from Theorem 1.4.4 that the structural group DiffpF q of a foliated bundle can be

reduced to a totally disconnected group, namely, the image of the holonomy homomorphism

ϕ. In general, fiber bundles where the structural group is totally disconnected have similar

characterizations as the one given above (see [78], §13).

A smooth fiber bundle can admit transversal foliations that are not compatible.

That is, there may exist leaves that do not cover the base space. C. Ehresmann showed

that in this case, the fiber is necessarily noncompact. More precisely, we have the following

theorem.

Theorem 1.4.6 (C. Ehresmann, [17]). Let B “ tB, p,M, F u be a fiber bundle. If B has

compact fiber and admits a transversal foliation, then B is a foliated fiber bundle.

Proof’s sketch. Let B “ tB, p,M, F u be a fiber bundle with compact fiber and F be a

foliation transversal to the fibers of B. Let L be a leaf of F. Since L is transversal to the

kernel of p˚ : TB ÝÑ TM , then the restriction p : L ÝÑ M is a local diffeomorphism.

Now, we affirm that the map p is proper. Let K be a compact subset of M . Since K is

compact and B is a fiber bundle, we can take a cover of K by compact sets K1, . . . , Kl

such that p´1pKiq is diffeomorphic to Ki ˆ F . Then,
Ť
p´1pKiq is compact set containing

p´1pKq. It follows that p´1pKq is compact, hence p is a proper map. Now, any proper local

homeomorphism is a covering map ([35], lemma 3). Therefore p : L ÝÑ M is a convering

map. Now, let x P M and a U be an open contractible neighborhood of x in M . Define

φ : U ˆ p´1pxq ÝÑ p´1pUq

as follows. Given pz, yq P Uˆp´1pUq, let α : r0, 1s ÝÑ U path conecting x to z and α̃ unique

path covering α concerning to the covering map p : Ly ÝÑ M . Define ψpz, yq “ α̃p1q. Since

U is contractible, this function is well-defined. Now, fixed y P p´1pxq, the function ψy :

U ÝÑ Ly given by ψypzq “ ψpy, zq has inverse given by the restriction of p to p´1pUq X Ly,

hence a local diffeomorphism. For fixed z P U , we can show that ψz : p´1pxq ÝÑ p´1pzq

11 For example, every metric space pX, dq satisfies this property. Indeed, if x, y P X, x ‰ y, then the

continuous functions f : X ÝÑ R given by fpzq “ dpz,xq
dpz,xq`dpz,yq separates x from y.
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given by ψzpyq “ ψpz, yq is a diffeomorphism. This is made proceeding as in the definition

of germinal holonomy (see [9, 8]). Thus, ψ is a diffeomorphism. To finish, note that F|p´1pUq

is the trivial foliation tU ˆ tyuyPp´1pxqu.

Theorem 1.4.7. Let G be a Lie group and M and F be connected manifolds. Given a

homomorphism ϕ : π1pMq ÝÑ G, the bundle Bϕ is a differentiable principal fiber bundle

and the foliation Fpϕq determines a (flat) connection for Bϕ
12.

Proof’s skecth. A local trivialization of Bϕ is given as follows. Let ρ : M̃ ÝÑ M the

universal covering of M . Let U be an open set of M evenly covered by ρ. For each path

connected component V of ρ´1pUq we have that

φV : U ˆ G ÝÑ p´1pUq

given by φV px, gq “ rpρ|´1
V pxq, gqs is a local trivialization of Bϕ (see [8] chapter 5). Let U

1

be another open set of M evenly covered by ρ and W be a path connected component of

ρ´1pU
1
q. If U X U

1
‰ H, we can take α P π1pMq such that αρ|´1

V pU X U
1
q “ ρ|´1

W pU X U
1
q.

Thus

φV px, gq “ rpρ|´1
V pxq, gqs “ rpαρ|´1

V pxq, ϕpαq´1gqs “ rpρ|´1
W pxq, ϕpαq´1gqs “ φW px, ϕpαq´1gq,

concluding that φ´1
W,xφV,xpgq “ ϕpαq´1g. From this and Theorem 1.2.29 we conclude that

Bϕ is a differentiable principal fiber bundle. The right action of G on Bϕ given in Theorem

1.2.29 has the form

rpx̃, gqsh “ rpx̃, h´1gqs.

Thus, since the leaves of Fpϕq are given by Lg “ rM̃ ˆ tgus “ trpx̃, gqs{x̃ P M̃u, we have

RhpLgq “ LL
h´1pgq

, concluding that Rh is an automorphism of F for each h P G (that is,

take leaf on leaf). Since F is transversal to the fibers, TF satisfies TxP “ TxFpϕq ‘ Gx.

Therefore TF is a (flat) connection in Bϕ.

1.5 Orientability

In this section, we address some notions of orientability.

Definition 1.5.1. A smooth manifold M is said to be orientable provided there exists a

smooth atlas U “ tpUα, ϕαquαPΛ for M satisfying det Jpϕα ˝ ϕ´1
β q ą 0 for all α, β P Λ.

Remark 1.5.2. Let M be a smooth manifold, and Ω be a top degree differential form

defined on M . If Ω does not vanish anywhere in M (that is, Ωpxq ‰ 0 for each x P M)

then we call Ω a volume form of M and we say that Ω ą 0. It is easy to prove that M is

orientable if, and only if, M admits a volume form.

12 Conversely, every flat bundle has the form Bϕ; see Lemma 1 in [50].
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Definition 1.5.3. Let B “ tB, p,M, F,Gu be a smooth fiber bundle with F be an

orientable manifold. The fiber bundle B is said to be orientable provided there exist local

trivializations tpψα, Uαqu to B such that B “
Ť
π´1pUαq and the transitions functions

gαβ “ ψα ˝ ψ´1
β : Uα X Uβ ÝÑ G are always orientation-preserving.

Remark 1.5.4. Using Definition 1.5.3 we may introduce the idea of positive (correct)

and negative orientation on the fibers. Let ΩF be a volume form on F that orientate F

positively. Let tpψα, Uαqu as in Definition 1.5.3. For each index α, the differential form

ωα “ ψ˚
αΩF induces an orientation on the fiber that is called positive. Indeed, given

x P M and indexes α, β, we have that ωβ “ g˚
αβωα. Since the transition functions gαβ are

orientation-preserving, it follows that ωα and ωβ must determine the same orientation in

the fibers. The definition of negative orientation on the fibers is analogous.

Remark 1.5.5. The usual notion of orientability of a vector bundle coincides with

Definition 1.5.3 because the transition functions in vector bundles behave like linear maps

on the fibers.

Definition 1.5.6. Let M be a smooth manifold with P a continuous k-plane field on it.

P is said to be orientable provided for each x P M there exists an orientation Opxq of P pxq

that is continuous in the following sense. It is possible obtain an open cover U “ tUαuαPΛ

of M such that the restriction P |Uα
is defined by k-continuous vector fields Xα

1 , . . . , X
α
k ,

Opxq is equal the orientation determined by tXα
1 pxq, . . . , Xα

k pxqu and for all α, β P Λ

the orientation determined by tXα
1 , . . . , X

α
k u and the one determined by tXβ

1 , . . . , X
β
k u

coincides in UαXUβ. A continuous k-plane field is said to be tranversely orientable provided

there exists a field complementary to P that is continuous and orientable. A Cr pr ě 1q

foliation F is said to be orientable (transversely orientable) provided TF is orientable

(transversely orientable).

Remark 1.5.7. A Cr k-plane field on an orientable manifold M is orientable if and only

if it is transversely orientable. A Crpr ě 1q foliation is transversely orientable if and only

if there exists a foliated atlas U “ tUα, xα, yαu for M such that detpJgαβq ą 0 for all

gαβ P ΓU (see [8], page 38).

Theorem 1.5.8. Let P be a Ck pk ě 1q p-plane field defined on a smooth manifold M .

Then

(1) P is orientable if and only if there exists a p-form ω defined on M satisfying

the following condition. For any x P M and basis tX1, . . . , Xpu of P pxq we have

ωpX1, . . . , Xn´pq ‰ 0 (in this case, we say that ω is positive on P );

(2) P is transversely orientable if and only it is given by the kernel of a p-form of class

Ck´1.
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Proof. Suppose that there exists a p-form ω such that for all x P M and any basis

tX1, . . . , Xpu of P pxq we have ωpX1, . . . , Xpq ‰ 0. Define an orientation of P as follows. A

basis tv1, . . . , vpu of P pxq gives a positive orientation of P when ωxpv1, . . . , vpq ą 0. Let

tX1, . . . , Xpu defined on U and tY1, ¨ ¨ ¨ , Ypu defined on V be Ck set of vector fields that

determine P locally and are positively oriented. If Yi “
ř
aijXj then

ωpY1, ¨ ¨ ¨ , Ypq “ detpaijqωpX1, ¨ ¨ ¨ , Xpq.

Since both ωpY1, ¨ ¨ ¨ , Ypq and ωpX1, ¨ ¨ ¨ , Xpq are positive, then detpaijq is positive. It

follows that tYiu determines the same orientation of tXiu, concluding that P is orientable.

Suppose now that P is orientable. Let Q be a complementary pn´pq-plane field

to P . Let tXα
1 , . . . , X

α
p u and tY α

1 , . . . , Y
α
q u sets of Ck vector fields that determine locally P

and Q, respectively, in a domain common Uα such that tXα
1 , . . . , X

α
p u is positively oriented.

Define on Uα the p-form

ωαpXα
1 , . . . , X

α
p q “ 1 and iY α

j
ωα “ 0.

Cover M by open sets Uα and take a partition of unity tλαu subordinate to the cover tUαu.

Define ω “
ř
λαωα. It is easy to conclude that iXω “ 0 for all vector field X tangent to Q

(that is, Q Ă kerω). We will now proof that ω is positive in any positively oriented basis

of P . If Uα X Uβ ‰ H, then pXβ
1 , . . . , X

β
p q “ AαβpXα

1 , . . . , X
α
p q for some matriz Aαβ with

positive determinant. It follows that

ωαpXβ
1 , . . . , X

β
p q “ detpAαβq

and ωpXβ
1 , . . . , X

β
p q “

ř
λα detAαβ ą 0. In particular, since Q Ă kerω and ω is nowhere-

vanishing form on M , we conclude by dimension argument that Q “ kerω. Thus, if P is

orientable, there exists a p-form of rank p such that ω is positive in P ; if Q is transversely

orientable, there exists a p-form ω of rank p such that Q “ kerω.

To finish, let ω be a p-form of rank p and P pxq “ kerωx. Let g be a Riemannian

metric on M . The q-plane field

Qpxq “ tv P TxM{gpu, vq “ 0 for all u tangent to P u

is Ck and complementay to P . Given x P M and basis tX1, . . . , Xqu of Qpxq, we have

that ωpX1, . . . , Xqq ‰ 0, since ωx ‰ 0 for all x P M . It follows that Q is orientable and P

transversely orientable.

Remark 1.5.9. By this theorem, a manifold M admitting a transversely orientable and

orientable p-plane field is orientable. Indeed, in this case, given ω a positive form on P and

η a form with P “ ker η, the form ω ^ η is a nowhere-vanishing top degree form defined

on M , hence M is orientable.
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Theorem 1.5.10. Let B “ tB, p,M, F,Gu be a smooth fiber bundle with fiber be an

orientable manifold. Consider the following statements:

(1) M is an orientable manifold;

(2) E is an orientable manifold;

(3) B is orientable.

Then the validity of any two of these statements implies the same for the other.

Proof. First of all, we will obtain an equivalent condition to the orientability of a fiber

bundle. Suppose that B is orientable. Let Ω be an orientation of F and tpψα, Uαqu be local

trivializations of B such that B “
Ť
π´1pUαq and the transitions functions

gαβ “ ψα ˝ ψ´1
β : Uα X Uβ ÝÑ DiffpF q

are always orientation-preserving. Let tλαu be a partition of the unity subordinate to

the cover tπ´1pUαqu. The differential form ω “
ř
λαψ

˚
αΩ restricts to a volume form in

each fiber. Conversely, suppose that there is a pdimF q-differential form ω restricting to

a volume form in each fiber. We will demonstrate that B is orientable. Let pψ,Uq be

local trivialization of B. Since ω is volume in each fiber, there exists a smooth function

f : π´1pUq ÝÑ R such that ψ˚ΩF “ fω. Necessarly we have that f is always positive or

always negative. Consider tpψα, Uαqu the collection of all local trivializations such that the

respective function fα are positive. We have that

g˚
αβΩ “ pψα ˝ ψ´1

β q˚Ω “ pψ´1
β q˚fαω “ fαppψ´1

β q˚ωq “ pfα{fβqΩ.

Since pfα{fβq ą 0, we conclude that gαβ is orientation-preserving. We will now prove the

theorem.

(1) Suppose that B and M are orientable. Let ΩM be an orientation of M and ω be a

pdimF q-differential form that restricts to each fiber is a volume form. It is easy to

see that the form η “ ω ^ π˚ΩM define a nowhere-vanishing top degree form on B.

It follows that B is an orientable manifold.

(2) Suppose that B and M are orientable manifolds. Let ΩM and ΩB orientations for M

and B respectively. If there exists a differential form ω such that ω ^ π˚ΩM “ ΩB,

the form ω restricts to a volume form in the fibers. Hence B is orientable. We can

obtain a solution for this equation showing the existence of local solutions. Indeed,

suppose that ωα are local solutions defined on Uα with B “
Ť
Uα. Let tλαu be a

partition of the unity subordinate to the cover tUαu and ω “
ř
λαωα. We have that

ω ^ π˚ΩM “ p
ÿ

λαωαq ^ ΩM “
ÿ

λαpωα ^ ΩMq “
ÿ

λαΩB “ ΩB
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is a global solution. To obtain local solutions, let x “ px1, . . . , xnq be a local coordinate

system toM . Complete this set to obtain px, yq “ px1˝π, . . . , xn˝π, y1, . . . , ymq a local

coordinate system to B. We have that, locally, π˚ΩM “ fπ˚dx and ΩB “ gpπ˚dx^dyq

for some never null functions f and g. A local solution is given by ω “ ˘pg{fqdy.

(3) Suppose that B and B are orientable. Let ω be an orientation of B and ΩB be an

orientation of B. Given local trivialization ψ : π´1pUq ÝÑ UˆF of B and orientation

ΩU of U , the form ω ^ ψ˚ΩU is a nowhere-vanishing top degree form on π´1pUq. It

follows that ω ^ ψ˚ΩU “ fΩB for some never null function f : π´1pUq ÝÑ R. Hence

the form ηU “ p1{fqΩU satisfies ω ^ ψ˚ηU “ ΩB. Noting that ψ˚ηU “ π˚ηU , we can

use a partition of unity to obtain a form η defined on M satisfying ω ^ π˚η “ ΩB.

The differential form η give us an orientation of M .

Example 1.5.11. Let M Ă R3 be the usual Möbius strip. We claim that the normal

bundle B of M is non-orientable. Indeed, the total space of this bundle can be viewed

as an open subset of R3. Thus, B is an orientable manifold. Hence, if we assume that

B is orientable, it follows that so is M . But it is well-known that the Möbius strip is

non-orientable. This proves the claim.

Theorem 1.5.12. Let Σ be a codimension one embedding orientable submanifold of an

orientable manifold M . The normal bundle of Σ is trivial.

Proof. Let g be a Riemannian metric on M . To prove the theorem, it enough to show the

existence of a smooth normal vector field N : Σ ÝÑ TM . Given x P S, let tv1, . . . , vn´1u

any ortonormal set of vectors tangent to Σ at x and positively oriented. Let N P TxM

such that tN, v1, . . . , vn´1u is an ortonormal set and positively oriented concerning to the

oriention of M . The association

x P Σ ÝÑ Npxq P TxM

give us the required smooth nonvanishing normal vector field. Indeed, let tw1, . . . , wn´1u

another ortonormal set tangent to Σ at x and positively oriented. Let N
1

P TxM such that

tN
1
, w1, . . . , wn´1u is an ortonormal set and positively oriented concerning to the oriention

of M . We have

w1 ^ . . . ^ wn´1 “ v1 ^ . . . ^ vn´1

and

N
1

^ w1 ^ . . . ^ wn´1 “ N ^ v1 ^ . . . ^ vn´1,

concluding that N “ N
1
. It follows that the assosiation x ÝÑ Npxq is well-defined. It is

easy to see that N is smooth by using smooth local orthonormal frames.
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Remark 1.5.13. Let M “ Rn and Σ a codimension one embedding submanifold without

boundary of M . We have that Σ must be orientable (see [71]). When M ‰ Rn, this result

is not valid in general. For example, the two-dimensional real projective space RP2 is

non-orientable, but it is a closed embedded submanifold of the three-dimensional real

projective space RP3 that is orientable.

Theorem 1.5.14. Let M be an orientable manifold and f : S1 ÝÑ M be an embedding.

The normal bundle of fpS1q in M is trivial.

Proof. Since π1pGnq “ Z2 for n ě 2, there exists precisely two n-plane bundle over S1 (see

[51] page 70). On the other hand, it is always possible to construct a non-orientable vector

bundle over S1 (typically a Möbius stripe). Thus, the two possible vector bundles over

S1 are the trivial vector bundle and the non-orientable vector bundle (since equivalent

bundles are both orientable or both non-orientable).

Since M is orientable, the total space of the normal bundle of fpS1q in M is

orientable. Hence, since S1 is orientable, Theorem 1.5.10 ensures that the normal bundle

of S1 in M is orientable, therefore trivial by the preceding paragraph.

1.6 De Rham theory of currents

In this section, we present some tools needed to prove some theorems important

used in this work. Namely, Sullivan’s criterion to a foliation admits a transversal closed

form, Schwartzamnn’s one for the existence of a global cross-section for flows, and Tischler’s

argument by an approximation on the current space. The most significant references for

this section are [13, 67, 68, 73].

1.6.1 The space of smooth differential forms

Let M be a compact manifold (with boundary or not). Denote by Dk
p the space

of all Ck p-forms defined on M . For k “ 8, we symple write Dp
13. We now define a

norm in the space Dk
p . For J “ pi1, . . . , ilq 0 ď l ď k, or J “ H, denote BJ the operator

BJ “ B
Bxi1

...Bxil

, where for J “ H we set BJf “ f . The set of all possible such J ’s with

0 ď l ď k have the description tJ{#J ď ku. Let tpUα, ϕαquαPI be a finite coordinate atlas

for M . Let ω P Dk
p . For each α P I we know that ω has unique local representation

ω|Uα
“

ÿ

J

aαJdx
α
J ,

13 This notation for arbitrary manifold was introduced by De Rham to denote the space of all compactly
supported C8-differential forms defined on a manifold M .
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where aαJ : Uα ÝÑ R are Ck-functions. The function ρk : Dk
p ÝÑ R defined by

ρkpωq “
ÿ

αPI

sup
xPUα

ÿ

#Jďk

|BJa
α
Jpxq|

is a norm in Dk
p . Denote by τk the topology on Dk

p genereted by this norm. Clearly τk Ă τk`1

for each k P N. We may equip Dp with the topology τ genereted by
Ť
kě0 τk. In what

follows, we will highlight some properties of such spaces.

Theorem 1.6.1. The space Dp with the topology τ become a convex and Hausdorff

topological vector space.

This theorem is a particular case of a more basic general result that states the

topology of a convex space14 is described by a collection of seminorms (see [68], theorem

1.37).

Theorem 1.6.2. The space Dp is a Fréchet space15.

Proof’s sketch. The topology of Dp has a countable basis since it is generated by an

enumerable collection of norms ([68], theorem 1.37). Any topological vector space with an

enumerable basis of open sets admits a translation-invariant metric generating its topology

([68], theorem 1.24). Hence Dp is metrizable. The completeness follows by a well-known

theorem concerning the term-by-term differentiation of a sequence of functions.

Corollary 1.6.3. The differential operator d : Dp ÝÑ Dp`1 is continuous.

Proof. Since Dp is a metrizable topological vector space, it is enough to show that if

ωm ÝÑ 0 in Dp then dωm ÝÑ 0 in Dp`1. In general, if ω P Dp have a local representation

ωU “
ř
J aJdxJ concerning to a coordinate neighborhood pU,ϕq, ϕ “ px1, . . . , xnq, then

the local representation for dω in U is

dω|U “
nÿ

i“1

BaJ
Bxi

dxi ^ dxJ .

From this, it is clear that ωm ÝÑ 0 implies dωm ÝÑ 0.

Definition 1.6.4. Let E be a topological vector space with a topology τ . A subset B of

E is said to be τ -bounded provided given a τ -neighborhood U of the origin, there exists

t ą 0 such that B Ă tU 16.

14 A topological vector space E is said to be a convex space if there exists a basis of convex neighborhoods
of the origin. Some authors use the terminology locally convex space instead of convex space.

15 By a Fréchet space we mean a convex, complete, and metrizable topological vector space.
16 This notion is equivalent to the following condition: a subset B of a topological vector space E is

bounded provided given any sequence pxnq in E and any sequence of real numbes pλnq converging to
zero, the sequence pλnxnq converges to zero [38].
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Remark 1.6.5. Let E be a convex Hausdorff topological vector space with a topology

given by a family of seminorms P. A subset B of E is bounded if and only if ppBq is

bounded for each p P P (see [68], theorem 1.37). It follows that a subset B of Dp is bounded

if and only if pkpBq is bounded for all k.

Theorem 1.6.6. The spaces Dp satisfy the Heine-Borel property17.

Proof. Let B be a bounded closed subset of Dp. Since Dp is metrizable, to show that

B is compact, it is enough to show that every sequence pωnq contained in B has a

convergent subsequence. Let pωnq be a sequence of elements in B. Since B is bounded,

there exists a sequence of positive real numbersMk such that pkpωq ď Mk for all ω P B. Let

U “ tpUα, φαqulα“1 be a finite atlas for M and tλαu be a partition of the unity subordinate

to the cover U . Suppose we have shown that given α and sequence pωnq contained in

B, then there exists a subsequence pωnk
q such that the restriction λαωnk

converges to

some ωα P Dp. From this, we can obtain a common subsequence pωnk
q such that pλαωnk

q

converges to ωα for all α “ 1, . . . , l. It follows that

ωnk
“

ÿ
λαωnk

ÝÑ
ÿ

ωα,

concluding that B is compact. We will now show that given a sequence pωnq containing in

B, there exists a subsequence of pωnk
q and ω P Dp with λαωnk

ÝÑ ω. Since ωn “
ř
λαωn,

we have pkpλαωnq ď Mk for all n and α. Writing λαωn “
ř
aαJ,ndx

α
J , then | BJa

α
n,J |ď Mk

when #J ď k. This implies that the collection of functions BJa
α
n,J is equicontinuous in the

compact set suppλα. It now follows by the Ascoli’s theorem and Cantor diagonal process

that there exists a subsequence pλαωnk
q such that BJa

α
nk,J

converge uniformly in suppλα.

It follows that pλαωnk
q converge in Dp.

Remark 1.6.7. It is easily seen a normed vector space possesses a bounded neighborhood

of origin. The converse is also true: a topological vector space with a bounded neighborhood

of the origin is a normed space (see [38]). We also know that a normed space admits a

compact neighborhood of the origin, if and only if it is finite-dimensional. It then follows

from Theorem 1.6.6 that Dp does not admit a norm generating its topology.

Definition 1.6.8. Let E be a topological vector space and A and B subsets of E. A is

said absorb B, if there exists t ą 0 such that B Ă tA. The set A is said to be balanced

if αC Ă C for all | α |ď 1. The set A is said to be absolutely convex if it is convex and

balanced. The topological space E is said to be bornological space provided any absolutely

convex set that absorbs any bounded set is a neighborhood of the origin18.

17 A topological vector space E is said to satisfy the Heine-Borel property provided every closed bounded
subset of E is compact.

18 Bornological spaces were studied first by G.W. Mackey. The name bornological coined by Bourbaki is
a reference to the French word borné for bounded.
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Remark 1.6.9. The spaces Dp are bornological since they are Fréchet. In general, a

convex Hausdorff topological space E is a bornological space if, and only if satisfies the

following condition. Every linear transformation T from E into a convex topological space

that is bounded is also continuous. Some authors use this equivalent condition to define

bornological spaces (for example, [5] section 4 and [67] page 81).

1.6.2 The space of currents

In [13], G. De Rham defined the notion of current19 as a linear functional T

in the vector space Ep of all C
8-forms with compact support that are continuous in the

following sense: if pωhq is a sequence of differential forms with support contained in a single

local coordinate system such that each derivative of the coefficients of ωh in this local

representation tends uniformly to zero, then T pωhq ÝÑ 0. This notion of convergence is one

we call weak convergence on the topological dual of E (the topology on E given implicitly

by the notion of convergence in it). The notion of continuity of currents presented by G.

De Rham follows as in L. Schwartz [73], chapter III.

The topology on Dp did is not given explicitly in De Rham’s book. However,

G. De Rham makes the following observation: let E be a vector space where the notion

of a bounded set is defined. Then, one can equip E with a topology τ that makes E a

topological vector space. This topology is defined as one with a basis of the neighborhood

of the origin given by a collection C, generated by all sets that absorbs any bounded set.

On the other hand, L. Schwartz defined explicitly the topology on E
1

“ E
1

0 in terms of the

bounded subsets of E and showed the reflexivity of such spaces. In what follows, we describe

the topology for such spaces explicitly and show Schwartz’s reflexivity theorem. For this

purpose, we present some results in topological vector spaces’ theory. For simplicity, we

restrict attention to compact manifolds, where Ep and Dp coincides.

Definition 1.6.10. Let E and F be vector spaces. We call pE,F q a dual pair if there

exists a nondegenerate bilinear form x¨, ¨y : E ˆ F ÝÑ R.

The interesting case is when F is the set of all continuous linear functionals

defined on E
1
. The fact of pE,E

1
q be a dual pair follows by Hahn-Banach’s theorem for

convex spaces (see [68]) chapter 3). In particular, pE,E˚q is a dual pair, where E˚ is the

algebraic dual of E.

Let pE,F q be a dual pair. Each y P F can be viewed as a function y : E ÝÑ R

given by ypxq “ xx, yy. The smallest (coarsest) topology in E so that every function y,

y P F , is continuous is called weakly topology and denoted by σpE,F q. Analogously one

can define the weakly topology σpF,Eq on F .

19 The choice of the term “current” is motivated by the fact that in ordinary 3-space, “1- dimensional
currents” can be interpreted as electrical currents (De Rham).
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Definition 1.6.11. Let pE,F q be a dual pair. The polar of a subset A of E is the set

A0 “ ty P F { | xx, yy |ď 1u.

The polar of a subset B of F is defined analagously.

Next, we will highlight some properties of taking dual of a subset. One can find

proof of these facts in many references, for example [5], [43] and [67].

Theorem 1.6.12. Let pE,F q be a dual pair. Then

(1) A Ă B implies B0 Ă A0;

(2) p
Ť
Aαq0 “

Ş
A0
α;

(3) A Ă A00;

(4) pλAq0 “ 1
λ
A0;

(5) A0 is absolutely convex and σpF,Eq-closed;

(6) The polar of a subset A absorbs every one-point set if and only if A is σpE,F q-

bounded;

(7) [Bipolar theorem] If A is an absolutly convex subset of E, then A00 “ A
σpE,F q20.

Let pE,F q be a dual pair and A a σpE,F q-bounded subset of E. Since each

y P F gives a continuous linear functional on E, we have that xA, yy is a bounded subset

of R. It follows that the rule

pApyq “ sup
xPA

t| xx, yy |u

define a seminorm on F (see 1.6.4 and 1.6.5).

Definition 1.6.13. Let pE,F q be a dual pair and A a collection of σpE,F q-bounded

subsets of E. The collection A is said to be saturated provided

(1) Given A,B P A, there exists C P A with A Y B Ă C;

(2) λA P A for all A P A and λ ą 0;

(3)
Ť

A “ E.

20 Given X topological space and Y Ă X, the symbol Y , as usual, denotes the closure of Y in X.
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Let A be a saturated collection of σpE,F q-bounded subsets of E. The family

of seminorms tpA{A P Au defines a convex topology on F called topology of uniform

convergence on the sets of A or topoloy of A-convergence. Such topology has as a basis of

the neighborhoods of the origin the collection BA “ tA0{A P Au. By considering different

saturated collections A we obtain different topologies on F . The smallest (coarsest) one

is the weak topology σpE,F q and it is precisely the topology of uniform convergence on all

finite subsets of E. The largest (finest) one is obtained by considering the collection of all

σpE,F q-bounded subsets of E. This topology is denoted by βpE.F q and is called strong

topology.

Let pE,F q be a dual pair. Then, the topological dual of E with the weak

topology if equal to F , that is, pE, σpE,F qq
1

“ F . A fundamental problem in the theory

of convex topological vector spaces is to characterize the topologies τ in E for which

pE, τq
1

“ F . If τ is a such topology, we say that τ is a topology for the dual pair pE,F q.

The Mackey-Arens Theorem characterizes all topologies of a dual pair pE,F q.

Theorem 1.6.14 (Mackey-Arens). Let pE,F q be a dual pair with E convex and Hausdorff.

Then the topological dual of E is F if and only if the topology on E is the topology of

uniform convergence on a collection of absolutely convex σpF,Eq-compact subsets of F .

By this theorem, there exists the largest topology of a dual pair pE,F q. It is

sometimes called Mackey topology and denoted by τpE,F q. A space with the Mackey

topology is called Mackey space. To show this theorem, we need to state some results.

Theorem 1.6.15 (Banach-Alaoglu-Bourbaki21). Let E be a convex Hausdorff topological

vector space. Then U0 Ă E
1
is σpE

1
, Eq-compact for each neighborhood U of the origin in

E.

Lemma 1.6.16. Let pE,F q be a dual pair. Let A a convex subset of E. The closure of A

is the same for every topology of the dual pair pE,F q.

Proof. Let τ a topology of the dual pair pE,F q. Since σpE,F q Ă τ , we have the inclusion

A
τ

Ă A
σpE,F q

. Now, let x P E´A
σpE,F q

. By Hahn-Banach theorem, there exists a continuous

linear functional f defined on E such that fpxq R fpAq. Since pE, τq
1

“ F , we have that

f “ x¨, yy for some y P Y . It follows that there exists ǫ ą 0 such that | xx ´ a, yy |ě ǫ for

all a P A. Let U “ tz P E{ | xz, yy |ă ǫu. Then, x ` U is a σpE,F q-neighborhood of the

x not meeting A. Thus, x P E ´ A
σpE,F q

concluding that E ´ A
τ

Ă E ´ A
σpE,F q

. Hence

A
σpE,F q

Ă A
τ
, concluding the proof.

21 A proof of this theorem for separable normed vector spaces was published in 1932 by Stefan Banach.
The first proof for the general case was published in 1940 by the mathematician Leonidas Alaoglu.
Some authors attribute the generalization to convex space to the mathematician’s group N. Bourbaki;
for example, [43] and [49].
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Definition 1.6.17. Let E and F topological vector spaces. A collection L of linear maps

of E to F is said to be equicontinuous provided given any neighborhood V of the origin in

F , there exists a neighborhood U of the origin in E, depending on V , such that T pUq Ă V

for all T P L.

Lemma 1.6.18. Let E be a convex Hausdorff topological vector space with topological

dual E
1
. Let A

1
the collection of all equicontinuous subsets of E

1
. The topology of E is

the topology of A
1
-convergence.

Proof. Let Φ P A
1
and U be a neighborhood of the origin in E. Since Φ is an equicontinuous

set of linear functionals on E, there exists t ą 0 such that ΦpUq Ă p´t, tq. Thus, Φ Ă p1
t
Uq0.

It follows that 1
t
U Ă p1

t
Uq00 Ă Φ0 concluding that Φ0 is a neighborhood of the origin in E.

Now, let V be an absolutely convex and closed neighborhood of the origin in E.

By Lemma 1.6.16, V is weakly closed. By Bipolar Theorem 1.6.12, V 00 “ V Ă U . Since

V 0 P A
1
(it follows because V 0pV q Ă r´1, 1s), we have that U is a neighborhood of the

origin concerning the topology of uniform convergence on the sets of A
1
.

Lemma 1.6.19. Let pE,F q be a dual pair and A a collection of saturated σpE,F q-

bounded subsets of E. Then the topological dual of F under the topology of A-convergence

is
Ť
APA A

00, the bipolars being taken in F ˚.

Proof. Let E be a convex Hausdorff topological vector space. Firstly, we will show that

the topological dual of E is
Ť
UPB U

0 (the polar being taken in E˚), where B is any basis

for the topology on E. Let x
1

P E
1
. By the continuity of x

1
, there exists U P B such that

x
1
pUq Ă r´1, 1s. It follows that x

1
P U0. Conversely, let U P B and x˚ P U0. We will

show that x˚ is continuous. Let V be a symmetric neighborhood of the origin such that

V ` y Ă U for some y P U . Given x P V , since ´x P V and supxPU | x˚pxq |ď 1, we have

| x˚pxq |“| x˚pyq ´ x˚py ´ xq |ď| x˚pyq | ` | x˚py ´ xq |“ 2.

Thus, given ǫ ą 0 then x˚pǫ{2V q Ă p´ǫ, ǫq concluding that x˚ P E
1
.

Now, a basis for the topology of A-convergence on F is given by tA0{A P Au.

Thus, the dual of F for the topology of A-convergence is given by
Ť
APA A

00, the bipolars

being taken in F ˚.

Proof of Mackey-Arens Theorem. Suppose that E has F as topological dual. Then, by

1.6.18 the topology of E is the topology of uniform convergence concerning the collection

of all equicontinuous subsets of F . In particular, given a neighborhood U of the origin in

E, since the set U0 is equicontinuous, then U00 Ă E is a neighborhood of the origin. On

the other hand, Banach-Alaoglu-Boubaki’s theorem ensures that U0 is σpF,Eq-compact.
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It follows that the topology of E is a topology of uniform convergence on a collection of

absolutely convex σpF,Eq-compact subsets of F .

Conversely, suppose the topology of E is a topology of uniform convergence on

a collection A of absolutely convex σpF,Eq-compact subsets of F . Since pF,Eq is a dual

pair, Lemma 1.6.19 ensures that the dual of E is
Ť
APA A

00, the bipolars being taken in

E˚. Now, compact sets are closed in a Hausdorff space. Hence any A P A is an absolutely

convex and closed set. We can apply Bipolar Theorem 1.6.12 to conclude that the A00 “ A.

It follows that the dual of E is F .

Definition 1.6.20. Let E be a convex Hausdorff topological vector space. The topological

bidual of E is the topological dual of E
1
concerning the strong topology. It is denoted by

E
2
. In symbols, E

2
“ pE

1
, βpE

1
, Eqq

1
.

For each x P E we have a well-defined element x P E
2
given by xpx

1
q “ x

1
pxq.

Indeed, note that

x´1p´ǫ, ǫq “ tx
1

P E
1

{ | x
1

pxq |ă ǫu

is a neighborhood of the origin concerning the σpE
1
, Eq-topology. In particular, a neighbor-

hood of the origin concerning the strong topology βpE
1
, Eq. Therefore x : pE

1
, βpE

1
, Eqq ÝÑ

R is continuous linear functional. Thus, we can identify E with a vectorial subspace of E
2
.

Definition 1.6.21. Let E be a convex Hausdorff topological vector space.

(1) E is said to be semi-reflexive provided the inclusion E ãÑ E
2
is surjective; that is, if

every continuous linear functional on E
1
has the form Jx for some x P E.

(2) E is said to be reflexive provided the inclusion E ãÑ E
2
is a topological isomorphism.

Consider the dual pair pE
1
, Eq. Note that the following inclusions are always

true

σpE
1

, Eq Ă ξ Ă τpE
1

, Eq Ă βpE
1

, Eq.

Suppose that E is semi-reflexive. Then we can identifie E with E
2
(identification as set).

Since the topology already defined on E
1
is the stronger one and, on the other hand,

pE
1
q

1
“ E, then the topology of E

1
is contained in the Mackey topology. It follows that

τpE
1
, Eq “ βpE

1
, Eq. Conversely, if βpE

1
, Eq “ τpE

1
, Eq, then pE

1
q

1
“ E by Mackey-Arens’

theorem. In short, we have:

Theorem 1.6.22. Let E be a convex Hausdorff topological vector space. Then E is semi-

reflexive if and only if the Mackey topology on E
1
coincides with the stronger topology.

Below is given a more workable characterization of semi-reflexive spaces.
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Theorem 1.6.23. A convex Hausdorff topological vector space E is semi-reflexive if and

only if the weakly closure of any bounded subset of E is weakly compact.

Proof. Suppose that E is semi-reflexive. Let A be a bounded subset of E. Then, A0 is a

neighborhood of the origin for βpE
1
, Eq. By 1.6.22, βpE

1
, Eq “ τpE

1
, Eq. Since τpE

1
, Eq is

the topology of uniform convergence on all absolutely convex σpE,E
1
q-compact subsets of

E, there exists an absolutely convex σpE
1
, Eq-compact subset B of E with B0 Ă A0. It

follows that A Ă A00 Ă B00 “ B concluding that the closure of A is σpE,E
1
q-compact.

Conversely, suppose that the closure of all bounded subset of E is weakly

compact. Let A a bounded subset of E. Since A is bounded, the smalest absolutely convex

set containing A is bounded. Did is not difficult to see that this set is characterized by

ΓpAq “ tx P E{x “
ÿ

aixi, ai P A,
ÿ

| ai |ď 1u.

Since the weakly closure ΓpAq of ΓpAq is weakly compact, we have that pΓpAqq0 P τpE
1
, Eq.

On the other hand, A0 P βpE
1
, Eq and pΓpAqq0 Ă A0. It follows that βpE

1
, Eq Ă τpE

1
, Eq

and, consequently, βpE
1
, Eq “ τpE

1
, Eq, concluding that E is semi-reflexive.

Definition 1.6.24. A barrel (tonneau) in a topological vector E space is absolutely convex

closed subset of E that absorb every one-point set. A convex topological vector space is

said to be barelled (tonnelé) provided every barrel is a neighborhood of the origin.

Banach-Steinhaus’s theorem is one of the most powerful tools in functional

analysis. A version of this theorem holds in barreled spaces, and it is deeply associated

with the notion of reflexivity, as we will see now.

Theorem 1.6.25. Let E be a convex Hausdorff topological vector space with topolog-

ical dual E
1
. Then E is barreled if and only if every σpE

1
, Eq-bounded subset of E

1
is

equicontinuous.

Proof. Firstly, given Φ be a subset of E
1
, if the polar Φ0 in E is a neighborhood, then Φ

is equicontinuous. Of course, in this case, we have ΦpΦ0q Ă r´1, 1s.

Suppose now that E is barreled. Let Φ be a σpE
1
, Eq-bounded subset of E

1
.

Then, Φ0 absorb any one-point set (1.6.12 iten 6). It follows that Φ0 is a barrel in E. Since

E is barreled, then Φ0 is a neighborhood of the origin in E. Hence Φ is equicontinuous.

Conversely, suppose that every σpE
1
, Eq-bounded subset of E

1
is equicontinuous.

Let B a barrel in E. Since B is (absolutely) convex and closed, it is σpE,E
1
q-closed by

1.6.16. It follows from Bipolar Theorem 1.6.12 that that B00 “ B. Again by 1.6.12, since

B00 “ B absorbs every one-point set, then B0 is σpE
1
, Eq-bounded, hence equicontinuous

by hypothesis. Thus, there exists a neighborhood U of the origin in E with B0pUq Ă r´1, 1s.

It follows that U Ă U00 Ă B00 “ B, concluding that B is a neighborhood of the origin.
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Lemma 1.6.26. In a convex space E, a barrel absorbs every convex compact set.

Proof. Let B be a barrel in E and K a compact convex subset of E. We will show the

existence of a positive integer n, an open set U , and a point x P K with

K X px ` Uq Ă nB.

Firstly, note that compact sets are bounded (it is easy to show) and that any convex set

A containing the origin satisfies A Ă λA for all ě 1. Thus, there exists λ ě 1 such that

K ´ x Ă λU . Hence

K ´ x Ă λpK ´ xq X λU Ă λpnB ´ xq.

Since B is absorbing, there exists µ ě 1 such that λnB Ă µB. It follows that

K Ă λnB ´ pλ ´ 1qx Ă µB.

Suppose then that no n, U , x can be found to satisty the condition K X px ` Uq Ă nB.

Then, taking n “ 1, any x0 P K and any open set U0, there is some

x1 P K X px0 ` U0q X pE ´ Bq.

Since px0 ` U0q X pE ´ Bq is an open set, there exists some open set U1 with x1 ` U1 Ă

px0 ` U0q X pE ´ Bq. Take n “ 2, x “ x1, U “ U1 and repeat the process. So, we obtain

a decreasing sequence pK X pxn ` Unqq of closed non-empty sets contained in K. Since

K is compact, they have a common point y P K. For each n, y R nB, and so B is not

absorbent, wich is a contradiction.

Theorem 1.6.27 (Mackey [46], theorem 7). The same sets are bounded in every topology

of a dual pair.

Proof. Let ξ be any topology of the dual pair pE,E
1
q. Then the ξ-bounded sets are

certainly σpE,E
1
q-bounded. Conversely, let A be a σpE,E

1
q-bounded set and U be a

closed absolutely convex ξ-neighborhood. By 1.6.12 item 6, A0 absorbs any one-point

set. Since A is absolutely convex and closed, it follows that A0 is a barrel in E
1
(under

σpE,E
1
)). Since U0 is convex and σpE

1
, Eq-compact by 1.6.15, then A0 absorbs U0 by

1.6.26. Therefore U00 absorbs A00. But U00 “ U by the bipolar theorem. It follows that

A Ă A00, hence U absorbs A. Thus A is ξ-bounded.

Theorem 1.6.28. Let E be a convex Hausdorff topological vector space. Then E is

reflexive if and only if is semi-reflexive and barreled.

Proof. Each equicontinuous subset of E
1
is bounded in E

1
. On the other hand, the collection

of all equicontinuous subsets of E
1
is saturated. Hence we can consider on E

2
the topology of

uniform convergence on all equicontinuous subsets of E
1
. Denote this topology by ǫpE

2
, E

1
q.
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Suppose that E is barreled. Let Φ be a bounded subset of E. Then, Φ is σpE
1
, Eq-bounded,

since the same sets are bounded in every topology of a dual pair 1.6.27. Since E is barreled,

we have that Φ is equicontinuous subset of E
1
. It follows that a bounded subset of a

barreled space is equicontinuous. Thus, βpE
2
, E

1
q “ ǫpE

2
, E

1
q.

As observed in 1.6.18, E has the topology of uniform convergence on the

collection of all equicontinuous subsets of E
1
. Thus, given an absolutely convex closed

neighborhood U of the origin in E we have that U00, the polar taken in E
2
, is a neighborhood

of the origin to ǫpE
2
, E

1
q “ βpE

2
, E

1
q. Then, if E is barreled and semi-reflexive, we have

that U “ U00 is a neighborhood of the origin for the topology of E and for the topology

of E
2
. It follows that a barreled and semi-reflexive space is reflexive.

Conversely, suppose that E is reflexive. Then E is trivially semi-reflexive. So

remains to show that E is barreled. Let B be a barrel in E. Since B absorbs every

one-point set and B00 “ B, we have by 1.6.12 that B0 is σpE
1
, Eq-bounded. Since E is

reflexive, the topology of E is the topology of uniform convergence on the collection of all

σpE
1
, Eq-bounded subsets of E

1
. Consequently, B00 “ B is a neighborhood of the origin in

E, concluding that E is barreled.

Theorem 1.6.29. Every convex topological vector space E, which is a Baire space22, is

barreled.

Proof’s sketch. Let B be a barrel in E. Given x P E, there is t ą 0 such that x P tB.

Since B is totally convex given s ą t we have that x P sB. In particular, x P nB for some

integer n ě t. Thus E “
Ť
ně1 nB. Since E is a Baire space, there exists n P N such that

intpnBq ‰ H. It follows that intpBq ‰ H. Let y P intpBq. A general fact about convex

sets in a topological vector space is that it contains the interior of lines; that is, if B is

convex and x P intpBq, y P B, then the open line segment joining x to y is interior to B.

From this, we have

0 “
1

2
y ´

1

2
y P intpBq.

Then every barrel is a neighborhood of the origin concluding that E is barreled.

Definition 1.6.30 (Currents). A continuous linear functional ϕ : Dp ÝÑ R will be called

a p-currents on M . The space D
1

p with the strong topology βpE
1
, Eq will be called space

of p-currents on M .

The strength of the current theory resides in the following beautiful theorem,

due to L. Schwartz 23.

22 A topological space X is said to be Baire if the intersection of any countable collection of dense open
subsets of X is dense in X. See [68] chapter 2.

23 Schwartz established this property for p “ 0 and M “ Rn. See also [13], page 89.
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Theorem 1.6.31 (Schwartz, [73]). The space Dp is reflexive.

Proof. By 1.6.6 the space Dp satisfies the Heine-Borel property. Therefore the closure

of each bounded subset of Dp is compact. Since compact subsets are certainly weakly

compact and the same sets are closed in any topology of a dual pair, we conclude from

1.6.23 that Dp is semi-reflexive. On the other hand, Dp being metrizable is a Baire Space

by the Baire Theorem. Therefore, by 1.6.29, Dp is barrelled. So, since Dp is semi-reflexive

and barreled, it is reflexive by 1.6.28.

Remark 1.6.32. A barreled Hausdorff topological vector space E satisfying the Heine-

Borel property is called a Montel space. Historically, this nomenclature honors the French

mathematician Paul Antoine Aristide Montel (29 April 1876 – 22 January 1975), who

showed that the space of holomorphic functions has this property. It follows from Theorem

1.6.31 that any Montel space is reflexive. In the following, we will highlight a property

important in these spaces.

Theorem 1.6.33. The dual of a Montel space is Montel.

Proof. Let E be a Montel space. So, just like in Theorem 1.6.31, one can show that E is

reflexive. It follows that E
1
is reflexive, hence barreled by 1.6.28.

We will now demonstrate that E
1
satisfies the Heine-Borel property. First of all,

since E
1
is barreled, it follows from 1.6.25 and 1.6.27 that every bounded subset of E

1
is

equicontinuous. On the other hand, since the bounded subsets of E are relatively compact

and the topology on E
1
is one of uniform convergence on the collection of all bounded

subsets of E, we conclude that the topology on E
1
is one of compact convergence24.

Let X be an equicontinuous subset of E
1
. We claim that the topology of

compact convergence and the weakly topology coincides on X. We have already said that

the topology of the A-convergence is the same as the generated by the family of seminorms

tpA{A P Au. This topology as a subbasis for it the collection of all sets

V ppA, x, nq “ ty{pApx ´ yq ă 1{nu, A P A, x P E, n P N.

Let then C be a compact subset of E, f0 P X and n0 P N. The set V ppC , f0, 1{n0q XX is a

subbasis open set for the topology of compact convergence on X. Since X is equicontinuous,

there is a neighborhood U of origin with supfPX,xPU |pf0 ´ fqx| ă 1{n0. Since C is compact,

there are finitely many xi P C with C Ă
Ťk

i“1pxi ` Uq. Each y P C therefore takes the

form y “ xi ` x, x P U . Then, given f P X with f P
Şk

i“1 V ppxi
, f0, 1{2n0q (a weakly

neighborhood of f0), we have

pCpf ´ f0q “ sup
yPC

|pf ´ f0qy| ď sup
i“1,...k

|pf ´ f0qxi| ` sup
xPU

|pf ´ f0qx| ă 1{n0.

24 This topology is one of uniform convergence on the collection of all compact subsets of E.
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It follows that a subbasis open set for the topology of compact convergence on X is an

open set for the weakly topology on X. Since the weakly topology is contained in the

topology of compact convergence, this proves the claim.

Now, ler X be a closed bounded subset of E
1
(hence equicontinuous). Let U be

a neighborhood of the origin in E such that X Ă U0 (it follows from equicontinuity). By

Banach-Alaoglu-Bourbaki theorem, U0 is weakly compact. Since X is closed, it follows by

1.6.16 that X is also weakly closed, hence weakly compact (because then X is a weakly

closed subset of the weakly compact set U0). Now, on the one hand, the topology of

compact convergence and the weakly topology coincides on X, on the other the topology

on E
1
is the topology of compact convergence. Therefore, X is compact.

Remark 1.6.34. Let ω P Dp. We can see ω as current ω : Dq ÝÑ R by the rule

ωpηq “
ş
M
ω ^ η. Such currents are called diffuse currents. We claim that the inclusion

ι : Dp ãÑ D
1

q is injective and continuous. Indeed, let B be a bounded subset of Dp. Firstly,

we will show that ιpBq is weakly bounded (hence bounded by 1.6.27). Let ϕ : Dq

1

ÝÑ R

be an arbitrary continuous linear functional. By 1.6.31, ϕ “ η for some η P Dq. Thus,

ϕpιpBqq “ ηpιpBqq “ ιpBqpηq “

ż

M

B ^ η “ ˘

ż

M

η ^ B “ ˘ηpBq

is bounded, since η : Dq ÝÑ R is a continuous linear functional. It follows by 1.6.5 that

ιpBq is weakly bounded. Since Dp is a bornological space and the inclusion ι : Dp ÝÑ Dq

1

takes bounded subsets of Dp onto bounded subsets of Dq

1

, it follows by 1.6.9 that ι is

continuous. Suppose now that ω is a nonzero p-form. Let x P M with ωx ‰ 0 and pU, φq be

a local coordinate neighborhood around x P M such that ω |U‰ 0. Let ω “
ř

#J“p aJdx
J

the local representation of ω in this local coordinate neightborhood and J0 such that

aJ0
‰ 0. Let V Ă U be a neighborhood of the origin such that aJ0

not change the signal

on V . Let f : M ÝÑ R be a nonnegative smooth function with support contained in V

satisfying fpxq “ 1. If η “ aJ0
dxJ0 , then

ωpηq “

ż

M

ω ^ η “ ˘

ż

V

faJ0
dx1 ^ . . . ^ dxn ‰ 0.

Therefore, if ω ‰ 0 the inclusion of ω in D
1

q gives a nonzero element. It follows that the

inclusion Dp ãÑ D
1

q is injective. Another significant fact established by L. Schwartz is the

density of Dp in D
1

q ([73] page 75).

Remark 1.6.35. Let L : E ˆ F ÝÑ Z be a bilinear function. L is said to be separately

continuous provided it is continuous in each factor. Let E be a barreled topological vector

space and F and Z be any topological vector spaces. Then a separately continuous bilinear

function L : E ˆ F ÝÑ Z is sequentially continuous. In particular, if E and F are

metrizable, then L is continuous. Indeed, let pxn, ynq be a sequence converging to px0, y0q.

We claim that Lpxn, ynq converges to Lpx0, y0q. In fact, let V,W be neighborhoods of the
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origin in Z with V ` V Ă W . Define fnpxq “ Lpx, ynq. So, fn P E
1
. Hence, for each x P E,

supntfnpxqu is bounded. Denote Φ “ tfn, n P Nu. Since the seminorms pxpfq “ |fpxq|,

x P E, generate the topology σpE
1
, Eq and pxpΦq is bounded for each x P E, it follows that

Φ is σpE
1
, Eq-bounded (see 1.6.5). On the other hand, since E is barreled 1.6.28, the set Φ

is equicontinuous by 1.6.25. Thus, there exists a neighborhood U of the origin in E with

ΦpUq Ă V . So, for sufficiently large n we have that xn Ă x0 ` U . Hence fnpxn ´ x0q P V ,

and Lpx0, yn ´ y0q P V by the continuity of L at y. It follows that

Lpxn, ynq ´ Lpx0, y0q “ fnpxn ´ x0q ` Lpx0, yn ´ y0q P V ` V Ă W

for large n. Thus Lpxn, ynq ÝÑ Bpx0, y0q when pxn, ynq ÝÑ px0, y0q, concluding that L is

sequentially continuous.

Remark 1.6.36. Let E be a convex Hausdorff topological vector space. Consider the

following separately continuous bilinear map e : E
1
ˆ E ÝÑ R defined by epx

1
, xq “ x

1
pxq.

We claim that this bilinear map is continuous if and only if E is normable. Indeed, suppose

that there is a neighborhood U of origin in E and a neighborhood V of the origin in E
1

satisfying V pUq Ă r´1, 1s. It follows that V Ă U0, therefore, U0 absorbs every one-point

set (because every neighborhood of the origin absorbs them). Hence, by 1.6.12, U is

σpE,E
1
q-bounded. It follows by 1.6.27 that U is bounded. But by Remark 1.6.7, normed

topological vector spaces are the only ones that admit a bounded neighborhood of the

origin. Hence, E must be normed.

1.6.3 The De Rham Theorem

In his doctoral thesis, G. De Rham showed that for each p ě 0, the singular

homology group HppM ;Rq and the differential cohomology group Hp
DRpMq are dual real

vector spaces via the operation pω, cq ÝÑ
ş
c
ω. In a posterior work, he demonstrated that

chains and differential forms are two aspects of currents. He introduced the notion of

the De Rham homology and identified it with the singular homology. Today it is well-

known that any homology (cohomology) theory with the same value in an one-point

set is equivalent in the category of finite CW-complexes. It follows that the singular

cohomology with coefficients in R of a manifold is equivalent to De Rham’s cohomology25.

This axiomatization was made by S. Eilenberg and N. Steenrod after the work of G. De

Rham (see [84] chapter 3).

Theorem 1.6.37 (De Rham). The bilinear map

k : H
p
DRpMq ÝÑ HppM ;Rq

25 Since one can triangulate any smooth manifold, each of them is equivalent to a finite CW-complex.
For example, see [52] theorem 3.5 and corollary 6.7.
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given by kprωsqprσsq “
ş
σ
ω is an isomorphism between the De Rham cohomology and the

singular chomology26.

Definition 1.6.38. Let E and F be vector spaces and T : E ÝÑ F be a linear map. The

transpose of T , denoted by T
1
, is the linear map T

1
: F

1
ÝÑ E

1
defined by

T py
1

qpxq “ y
1

pT pxqq.

Lemma 1.6.39. Let E and F reflexive Hausdorff topological vector spaces. Then a linear

map T : E ÝÑ F is continuous if and only if T
1
: F

1
ÝÑ E

1
is continuous.

Proof. We claim that pT pAqq0 “ T
1 ´1

pA0q for any vector spaces E, F and linear function

T : E ÝÑ F . Indeed:

ϕ P T
1 ´1

pA0q ðñ T
1

pϕq P A0 ðñ ϕpT pAqq Ă r´1, 1s ðñ ϕ P pT pAqq0.

Suppose now that E and F are Hausdorff reflexive topological vector spaces. Then E
1
has

the topology of uniform convergence on the collection of all bounded subsets of E and F
1

has one of uniform convergence on the collection of all bounded subsets of F . Suppose that

T is continuous linear function from E to F . Let V be a neihgborhood of the origin in E
1
.

There exists a bounded subset A of E with A0 Ă V . Since T is continuous and A bounded,

then T pAq is bounded. It follows that U “ T
1 ´1

pA0q “ pT pAqq0 is a neighborhood of the

origin in F
1
. Hence, T

1
pUq “ A0 Ă V , concluding that T

1
is continuous. Suppose now that

T
1
is continuous. So, since E

1
and F

1
are reflexives Hausdorff spaces, from what we already

showed follows that the function T
2

: E
2

ÝÑ F
2
is continuous. That is, T

2
is a continuous

linear function from E to F . Since ϕpT
2
pxqq “ ϕpT pxqq for all ϕ P F

1
, it follows from

Hahn-Banach Theorem that T “ T
2
and, therefore, T is continuous.

Definition 1.6.40. let M be a manifold. The boundary operator

B : D
1

p ÝÑ D
1

p´1

is defined as the transpose of the differential operator, that is, B “ d
1
. Since the differential

operator is continuous and Dp reflexive for all p, then the boundary operator is continuous.

The set Zp “ ker B is called space of p-cycles of M and the space Bp “ imB is called space

of p-boundaries of M . The ph-De Rham homology of M is defined by HDR
p pMq “ Zp{Bp.

For each smooth p-chain c, one can associate a p-current by the rule cpωq “
ş
c
ω.

Since any continuous map between smooth manifolds is homotopic to a smooth map, one

can define the homology of M by using smooth singular chains. So, we can work in the

smooth category. Denote by Bs the usual boundary operator defined on the complex of

26 For a modern proof see [87].
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smooth singular p-chains. The combinatorial version of the Stokes’ theorem states that for

a singular p-chain c and a smooth pp ´ 1q-form ω,
ż

Bsc

ω “

ż

c

dω.

It follows that the singular boundary operator Bs and the boundary operator B “ d
1

coincides in the set CppM ;Rq of all smooth singular p-chains. Thus, the inclusion

i : CppM ;Rq ÝÑ D
1

p

induces a homomorphism

i˚ : HppM ;Rq ÝÑ HDR
p pMq.

Now, the evaluation map e : D
1

p ˆ Dp ÝÑ R induces a well-defined bilinear map

HDR
p pMq ˆ H

p
DRpMq ÝÑ R

prωs, rϕsq ÝÑ ϕpωq.

This bilinear map induces an homomorphism

j˚ : HDR
p pMq ÝÑ pHp

DRpMqq
1

.

By the De Rham Theorem, pHp
DRpMqq

1
is canonically identified with HppM ;Rq and the

homomorphism j˚ can be viewed as a homomorphism of HDR
p pMq into HppM ;Rq.

Theorem 1.6.41 (De Rham [13], Chapiter IV). The homomorphisms i˚ and j˚ are

mutually inverse.

Theorem 1.6.42. The subspaces Bp and Zp are closed.

Proof. Since D
1

p is a Hausdorff space, any one-point set in D
1

p is closed. Hence, since the

boundary operator is continuous, it follows that Zp “ B´1p0q is closed.

By Theorem 1.6.41, a cycle ϕ P D
1

p is a boundary if and only if take zero value

in every closed p-form ω P Dp. Thus

Bp “
č

ωPDp, dω“0

ω´1p0q,

where ω : D
1

p ÝÑ R is the continuous linear functional ωpϕq “ ϕpωq. It follows that Bp is

a closed subset in D
1

p since it is an intersection of closed subsets in D
1

p.

Remark 1.6.43. By De Rham Theorem, given any set c1, . . . , ck of p-cycles in a manifold

M where among which there is no homology (that is, such that trc1s, . . . , rcksu is a linearly

independent subset of H1pM ;Rq) and real number r1, . . . , rk, there exists a closed p-form

ω such that
ş
ci
ω “ ri. This was stated by H. Poincaré in his famous Analysis Situs (1895)

without proof (see [40] for a historical account).
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1.7 The Hodge Theorem

The Laplace operator on the Euclidian space has a generalization for Riemannian

manifolds observed for the first time by E. Beltrami and defined for differential forms by

W.V.D. Hodge. This operator now is called Laplace-Beltrami operator. A differential form

living in the kernel of the Laplace-Beltrami operator is called harmonic. In his book [36],

W.V.D. Hodge shows that the space of forms has an orthogonal decomposition, where a

factor is the space of harmonic forms, which he showed to be a finite-dimensional vector

space. Hodge’s demonstration was not entirely correct, and the correction appears in Weyel

paper [88]. A detailed historical account and proof of Hodge’s decomposition theorem

appears in [13].

Suppose now that M is an oriented Riemannian manifold. Here, to avoid

confusion with the preceding section, we denote the space of smooth p-forms on M by

ΩppMq instead of Dp. We can induce a scalar product in ΛpT ˚
xM as follows. Let tv1, . . . , vnu

be a positive ortonormal basis for TxM and tω1, . . . , ωnu be the dual basis for T ˚
xM , that

is, ωipvjq “ δij. Set xωi, ωjy “ δij and

xωi1 ^ ¨ ¨ ¨ ^ ωip , ωj1 ^ ¨ ¨ ¨ ^ ωjpy “ detpxωik , ωisyq “ sgnpi1, ..., ip, j1, ..., jpq.

Let tω1, . . . , ωnu be a positive orthonormal basis for T ˚
xM . The Hodge star operator,

˚ : Λp
x ÝÑ Λq

x, is defined as the linear extension of

˚pωi1 ,^ ¨ ¨ ¨ ^ ωipq “ ωj1 ,^ ¨ ¨ ¨ ^ ωjq ,

where ti1, . . . , ip, j1, . . . jqu is an even permutation of t1, . . . , nu. Clearly there is an induced

map, still denoted by the same symbol,

˚ : ΩppMq ÝÑ ΩqpMq.

Since

xωi1 ^ ¨ ¨ ¨ ^ ωip , ωj1 ^ ¨ ¨ ¨ ^ ωjq y “ sgnpi1, ..., ip, j1, ..., jqq,

we can rewrite the scalar product in ΛpT ˚
xM as

xω, ηy “ ˚pω ^ ˚ηq.

From these pointwise scalar products we obtain a global scalar product in ΩppMq by

integration:

pω, ηq “

ż

M

ω ^ ˚gη.

Note that this scalar product induces a L2-norm in ΩppMq, as usual, putting ‖ ω ‖“

pω, ωq1{2. We will now obtain the adjoint of the differential operator concerning the scalar

product p¨, ¨q (for a closed manifold M). Since ˚2 “ p´1qpq, we have

dpω ^ ˚ηq “ dω ^ ˚η ` p´1qpω ^ dη “

dω ^ ˚η ´ ω ^ ˘ ˚ ˚d ˚ η
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and ş
M
dpω ^ ˚ηq “

ş
M
dω ^ ˚η ` p´1qpω ^ dη “ş

M
dω ^ ˚η ´

ş
M
ω ^ ˘ ˚ ˚d ˚ η “

pdω, ηq ´ pω,˘ ˚ d ˚ ηq.

It follows by Stokes’ theorem that

pdω, ηq “ pω,˘ ˚ d ˚ ηq,

where the signal is p´1qnpp`1q`1. Thus, δ “ p´1qnpp`1q`1 ˚ d˚ is the adjoint of d. In this

situation we define:

(1) The codifferential

δ : ΩppMq ÝÑ Ωp´1pMq, δ “ p´1qnpp`1q`1 ˚ d˚ :“ ´div

where div is the divergence operator acting on p-forms.

(2) The (geometers) Laplacian or Laplace-Beltrami operator

∆ : ΩppMq ÝÑ ΩppMq, ∆ “ dδ ` δd.

Remark 1.7.1. Let M “ Rn with the flat metric and f : M ÝÑ R be a smooth function

(0-form). Then

∆f “ ´div df “ ´
nÿ

i“1

B2f

Bx2
i

is the opposite of the usual Laplacian.

Definition 1.7.2. A differential form ω defined on a Riemannian manifoldM is said to be

co-closed if δω “ 0. The form ω is said to be harmonic if it is a zero of the Laplace-Beltrami

operator. We will denote the space of all harmonic p-forms of a Riemannian manifold

pM, gq by HppMq.

Instead of using the above definition of harmonic forms, we will use one due to

W.V.D. Hodge. These coincide on compact Riemannian manifolds.

Definition 1.7.3. Let ω be a differential form defined on a Riemannian manifold pM, gq.

The form ω is said to be harmonic if both ω and ˚gω are closed forms.

Remark 1.7.4. Let M be a closed Riemannian manifold. The following equalities hold:

p△ω, ωq “ pdδω ` δdω, ωq “ pδω, δωq ` pdω, dωq “‖ δω ‖2 ` ‖ dω ‖2 .

Hence, a differential form on a closed manifold is harmonic if and only if it is closed

and co-closed. It follows that the two definitions of harmonic form coincide on compact

Riemannian manifolds. However, if M is a noncompact manifold, there are harmonic forms

that are not closed or co-closed. For example, x P Ω0pRq is harmonic but not closed.
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Theorem 1.7.5 (Hodge’s decomposition theorem27). For each integer p we have that

HppMq is finite dimsensional vector space and ΩppMq admit the following ortogonal

decomposition

ΩppMq “ △pΩppMqq ‘ H “ dpΩp´1pMqq ‘ δpΩp`1pMqq ‘ Hp.

Let us mention three significant consequences of Hodge’s decomposition theo-

rem.

Corollary 1.7.6 (Hodge’s theorem). Let M be a closed Riemannian manifold. In each

cohomological class rωs P Hp
DRpMq there exist a unique harmonic representative.

Proof. Let ω be a closed p-form. By Theorem 1.7.5 ω have a unique representation

ω “ dη ` δψ ` τ , where τ is harmonic. Applying the differential operator in both side we

obtain dδψ “ 0. It follows that ‖ δψ ‖2“ pδψ, δψq “ pdδψ, ψq “ 0, hence δψ “ 0. Let τ
1

be a harmonic form in the cohomological class of ω. Then τ ´ τ
1

“ dξ for some ξ and

‖ τ ´ τ
1

‖“ pdξ, τ ´ τ
1

q “ pϕ, δτ ´ δτ
1

q “ 0.

Therefore τ is unique.

Corollary 1.7.7 (Poincaré duality). Let M be a closed Riemannian manifold. Then the

map

h : H
p
DRpMq ÝÑ H

q
DRpMq

rωs P Hp
DRpMq ÝÑ r˚ωhs P Hq

DRpMq,

where ωh denotes the unique harmonic representative in the cohomological class determined

by ω, is an isomorphism.

Proof. Suppose that hrωs “ 0. Then ˚ωh is harmonic and represents a null cohomological

class. Since the zero-form is a harmonic form representing the zero cohomological class, then

˚hω “ 0. It follows that ωh “ 0 and rωs “ 0, hence h is injective. This map is surjective since

given a class rηs P Hq
DRpMq with harmonic representative ηh, then ηh “ ˚p˚p´1qpqηhq.

Corollary 1.7.8 (De Rham). The bilinear map

H
p
DRpMq ˆ H

q
DRpMq ÝÑ R

prωs, rηsq ÝÑ

ż

M

ω ^ η

is nondegenerated.

27 For a proof see [87].
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Proof. Suppose rωs ‰ 0. Let τ the harmonic representative in the cohomological class

determined by ω. Then, by 1.7.6 τ and ˚τ are nonzero. Since τ is harmonic, then τ and ˚τ

are closed forms (here M is a closed manifold). It follows that

ż

M

ω ^ ˚τ “

ż

M

τ ^ ˚τ “‖ τ ‖‰ 0.

Remark 1.7.9. A form ω is exact if, and only if, as an element of D
1

q it is a boundary.

Indeed, let ω “ dξ. By Stokes’ theorem

Bωpηq “ ωpdηq “

ż

M

dξ ^ dη “

ż

M

dpξ ^ dηq “ 0.

Hence ω P Zq. On the other hand, given a closed form rηs P Hp
DRpMq we have

rωsprηsq “

ż

M

ω ^ η “

ż

M

dξ ^ η “

ż
dpξ ^ ηq “ 0,

again by Stokes’ theorem. It follows that rωs “ 0 P HDR
q pMq, that is, ω P Bq. Conversely,

suppose ω “ Bψ. Then dωpηq “ Bωpηq “ 0, with imples dω “ 0 in D
1

q´1. Since the inclusion

Dp`1 ÝÑ D
1

q´1 is injective by 1.6.34, it follows that dω “ 0 in Dp`1. This proves the claim.

Let pωnq be a convergente sequence of exact forms and ψn P D
1

q`1 with ωn “ Bψn, n P N.

We claim that ω “ limωn is an exact form. Let rηs P H
p
DRpMq. Then, looking ω as a

diffuse current (see 1.6.34), we have

ż

M

ω ^ η “ ωpηq “ limωnpηq “ lim Bψnpηq “ limψnpdηq “ 0.

Since the form η was arbitrarily chosen and the bilinear map prωs, rηsq ÝÑ
ş
M
ω ^ η is

nondegenerated by 1.7.8, we concludes that ω is exact.

1.8 The Tischler argument

In the beautiful paper [82], D. Tischler showed that any closed n-dimensional

manifold supporting a set of m everwhere linearly independent closed 1-forms must be

a fiber bundle over the m-dimensional torus. The principal idea is to approximate each

of such forms by forms with integral periods, thus obtaining submersions M ÝÑ S1. By

Eheresmann’s lemma 1.2.3, such submersion gives a fiber bundle. The approximation used

by D. Tischler uses a metric in the space of 1-forms (that is, a L2-approximation). For

a later application, we demonstrate that it is possible to obtain the same result by an

approximation concerning the topology of Dp.
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Lemma 1.8.1. Let rωs P H1
DRpM ;Zq28. There exists a smooth function f : M ÝÑ S1

such that ω “ f˚dθ. Conversely, given f : M ÝÑ S1 be a smooth function, we have that

f˚dθ represents a class in H1
DRpM ;Zq.

Proof. Define f : M ÝÑ S1 by

fpxq “ exp

ˆ
2πi

ż x

x0

ω

˙
,

where x0 P M is fixed and the integral is calculated in some smooth path connecting x0 to

x. This function is well-defined since
ş
K
ω P Z when K is a closed path. Let K any smooth

path. Then

f˚dθpBt|0Kptqq “ dpθ ˝ fqpBt|0Kptqq

“ Bt|0pθ ˝ fqpKptqq

“ Bt|0θ

˜
exp

˜ż Kptq

x0

ωq

¸¸

Bt|0

ż Kptq

x0

ω

“ ωpBt|0Kptqq,

concluding that rωs “ rf˚dθs.

Conversely, given f : M ÝÑ S1 be a smooth function and a closed curve

K : S1 ÝÑ M , we have ż

KpS1q

f˚dθ “

ż

S1

pf ˝ Kq˚dθ.

Since
ş
S1 dθ “ 1, then

ż

KpS1q

f˚dθ “ degreepf ˝ Kq P Z.

Therefore, f˚dθ represents a class in H1
DRpM ;Zq29.

Lemma 1.8.2. The subset of all nowhere-vanishing forms in Dp is an open set.

Proof. Let ω be a nowhere-vanishing p-form. We want to show that there exists a neigh-

borhood U of ω in Dp such that η P U implies that η is a nowhere-vanishing form. Suppose

28 The set H1

DRpM ;Zq is defined as being the subset of H1

DRpMq of all cohomological class with integral
period. That is, ω P H1

DRpM ;Zq if and only if ωpKq P Z for any closed smooth curve K : S1 ÝÑ M .
By the Universal Coefficient Theorem, H1

DRpMq “ H1pM,Zq b R. From this, it is easily seen that
H1

DRpM,Rq “ H1

DRpM,Zq b R. It follows that H1

DRpM ;Zq has a natural structure of a free Z-module
with dimension equal the Betti number of M .

29 For every smooth map f : X ÝÑ Y between oriented closed manifolds having the same dimension,
if prωs, rY sq “ 1, then

ş
X

f˚ω is the number of points, counted with multiplicity ˘1, in the inverse
image of any regular point in N (see [4]).
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that it is impossible to obtain such a neighborhood. Then we can contruct a sequence ωn

in Dp converging to ω such that each ωn is zero at some xn P M . Since M is compact,

taking a subsequence if necessary, we can suppose that xn ÝÑ x. Let vx P ΛppTMq

be any p-vector in M . Let vxn
P ΛppTxn

Mq be a sequence of p-vectors converging to

vx (we can obtain such a sequence working with a local trivialization to ΛppTMq at x).

Since each p-vector vx define an element in D
1

p by rule vxpωq “ ωpvxq, and the bilinear

evaluation form pϕ, ωq P D
1

p ˆ Dp ÝÑ ϕpωq P R is sequentially continuous by 1.6.35,

then ωpvxq “ lim vxn
pωq “ 0. Now, vx was arbitrarily chosen. Hence ω is zero at x, a

contradiction. The lemma is proven.

Theorem 1.8.3 (D. Tischler, [82]). Let M be a closed manifold. Suppose that there is

on M a set ω1, . . . , ωm of m everwhere linearly independent closed 1-forms. Then M is the

total space of a fiber bundle over the m-dimensional torus.

Proof. Let η1, . . . , ηk be a basis of the free part in H1pM ;Zq. By 1.8.1, we can suppose

that ηi “ f˚
i pdθq, for certain smooth functions fi : M ÝÑ S1, i “ 1, . . . , k. Given an 1-form

ω in M , we can write

rωs “
ÿ

rjrf
˚
j pdθqs

for certain constants αj P R. Let gij : M ÝÑ R be smooth funtions such that

ω “
ÿ

αjf
˚
j pdθq `

ÿ
dgj.

Consider the identification S1 “ R{Z with natural projection π : R ÝÑ R{Z. Let dt “

π˚pdθq. Given f : M ÝÑ S1 and h : M ÝÑ R, we can rewrite a form η “ f˚pdθq ` dg as

η “ f˚pdθq ` dg ˝ dt “ f˚pdθq ` dg ˝ π˚pdθq “ pf ` π ˝ dgq˚pdθq,

where the last sum is from the group structure in S1. By this observation, we can suppose

that

ω “
ÿ

αjf
˚
j pdθq.

Fixed η1, . . . , ηm P D1, the association

pr1, . . . , rmq P Rm ÝÑ
ÿ

riηi P D1

is continuous, since D1 is a topological vector space. Thus, there exist rational numbers

rin such that ω “ limn

ř
rjnf

˚
j pdθq. Since the expressions

ř
njfj, with fj : M ÝÑ S1 and

nj P Z, give us functions h “
ř
njfj : M ÝÑ R, there are integers dn such that

ω “ lim
n

1

dn
h˚
npdθq,

where hn “
ř
rjnfj and the convergence is in D1. Now, the bilinear mapping pω, ηq P

Dp ˆ Dq ÝÑ ω ^ η P Dp`q being separately continuous must be continuous by Remark

1.6.35. It follows that there exist integers dn and functions hin : M ÝÑ S1 such that

ω1 ^ . . . ^ ωm “ lim
n

1

dn
h˚

1npdθq ^ . . . ^ h˚
mnpdθq
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in Dm. Since ω1 ^ . . . ^ ωm is nowhere-vanishing, it follows by 1.8.2

h˚
1npdθq ^ . . . ^ h˚

mnpdθq

is nowhere-vanishing for sufficiently large n. Equivalenty, the functions

hn “ h1n ˆ . . . ˆ h1m : M ÝÑ Tm

are submersions for sufficiently large n . By Ehresmann’s lemma 1.2.3, a submersion

defined on a closed manifold gives a fiber bundle.

Remark 1.8.4. A continuous p-form is defined as being a continuous section ω : M ÝÑ

ΛppT ˚Mq. A continuous p-form is said to be closed provided
ş
c
ω “ 0 for all p-cycle

rcs P HppM ;Rq. J.F. Plante [65] showed that any smooth manifold admitting a continuous

nowhere-vanishing closed 1-form fiber over S1, generalizing Tischler’s result.
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2 The problem of to obtain an intrinsic char-

acterization of harmonic forms

The problem to obtain an intrinsic characterization of harmonic forms was first

placed by E. Calabi [7]. More precisely, we can present the question in the following way.

Let C be a set formed by closed forms defined onM . What are the topological (global) and

local conditions on C such that each member of C is harmonic for a suitable Riemannian

metric on M? For the set formed by closed 1-forms possessing only nondegenerate zeros1,

he obtained the following theorem.

Theorem 2.0.1 (E. Calabi, [7]). Let M be a closed smooth manifold and ω be a closed

1-form on M having only nondegenerate zeros of finite order different from 0 or n. Then, a

necessary and sufficient condition so that M admits a Riemannian metric g such that ω

become harmonic is ω be transitive.

Under the above assumptions, E. Calabi showed the existence of a Riemannian

metric g1 on a neighborhood U of the zero-set S of ω such that ωU is g1-harmonic. Further-

more, one can take U in such a way the form ˚g1
ω|U is an exact form, an important step in

Calabi’s proof. The topological (global) condition in Calabi’s theorem was called transitivity.

This hypothesis enables one to show the following assertion. Given a neighborhood U of

the zero-set S of ω, there is a closed pn ´ 1q-form η defined on M satisfying: ω ^ η ą 0 in

M ´ U and η “ 0 outside a neighborhood of S. Hence, for a suitable small neighborhood

U of S, by using a standard gluing argument, E. Calabi constructs a Riemannian metric g

such that ω becomes g-harmonic. A sharpened version of this theorem was proved by E.

Volkov in paper [85]. To formulate it, we make use of the following definition.

Definition 2.0.2. A closed form ω is said to be locally intrinsically harmonic provided

there exists a neighborhood U of the zero-set of ω and a Riemannian metric g defined on

U such that ω|U is g-harmonic.

Theorem 2.0.3 (E. Calabi-E. Volkov). Let M be a closed smooth manifold and ω be a

closed 1-form on M . A necessary and sufficient condition so that M admits a Riemannian

metric g such that ω become g-harmonic is it be locally intrinsically harmonic and

transitive.

An essential fact to demonstrate this result appears in Bär’s paper [3]: the

zero-set of solutions of a semilinear elliptic system of first-order is contained in a countable
1 A zero x of a closed 1-form ω is said to be nondegenerate provided the following holds. Let U be a

neighborhood of x such that ω “ df for some smooth function f : U ÝÑ R. Then the Hessian of f at
x is nonsingular.
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union of smooth pn ´ 2q-dimensional submanifolds. By using this, Volkov shows that ˚gω

is an exact form in a suitable neighborhood of its zero-set and follows the argument in the

same way as in Calabi’s paper. The transitivity condition is obtained in a different way,

by using The Poincaré Recurrence Theorem, a classical result from dynamical systems.

To date, Ko Honda, in your doctoral thesis [37], made the only advance in

the problem of characterizing intrinsically harmonic forms of degree pn ´ 1q. He got an

analogous theorem as that Calabi.

Theorem 2.0.4 (Ko Honda, [37]). Let M be a closed smooth manifold and ω be a closed

pn ´ 1q-form on M having only nondegenerate zeros. Then, a necessary and sufficient

condition so that M admits a Riemannian metric g such that ω become g-harmonic is it

be transitive and locally intrinsically harmonic2.

As we will see, forms of degree strictly between 1 and pn ´ 1q seem to present

considerable additional difficulties. Next, we extend a definition due to E. Calabi that we

will use throughout this thesis.

Definition 2.0.5. Let ω be a closed form defined on a manifoldM . We call ω intrinsically

harmonic if there exists a Riemannian metric on M such that ˚gω is a closed form.

2.1 Tautologically characterization of intrinsically harmonic p-forms

of rank p

We are interested in finding conditions to forms of degree strictly between 1

and n be intrinsically harmonic. We consider firstly closed p-forms of rank p since, for

these, there is a well-defined foliation induced by the integrable distribution kerω 1.3.4.

So, maybe some aspect of foliation theory developed so far can be useful. For such a

class of forms, we provide a straightforward characterization of when they are intrinsically

harmonic.

Lemma 2.1.1. Let E be an oriented real vector space with a scalar product and ω P ΛppEq

be an exterior form of rank p. Then kerω ‘ ker ˚ω provides an orthogonal decomposition

of E.

Proof. Let Ω the volume form induce by the scalar product on E. Since ω ^ ˚ω “‖ ω ‖ Ω,

given v P kerω X ker ˚ω we have ivΩ “ 0. It follows that v “ 0.

2 In the formulation of this theorem, we have omitted some additional conditions in the zero-set of ω. The
notion having only nondegenerated zeros means that ω as a section of the bundle Λn´1pT ˚Mq ÝÑ M

is transverse to the zero-section.
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Now, let tv1, ¨ ¨ ¨ , vn´pu be an ortonormal basis for kerω and tv1, ¨ ¨ ¨ , vn´p, ¨ ¨ ¨ , vnu

an ortonormal basis for E. For any integer k ą 0 we have

iun´p`k
˚ ωpvi1 , ¨ ¨ ¨ , vin´p´1

q “ ˚ωpun´p`k, vi1 , ¨ ¨ ¨ , vin´p´1
q “ ˘ωpvj1 , ¨ ¨ ¨ , vjpq,

where tn ´ p ` k, i1, ¨ ¨ ¨ , in´p´1, j1, ¨ ¨ ¨ , jpu “ t1, ¨ ¨ ¨ , nu. If some vi with i ď n ´ p not

appear in the set tvi1 , ¨ ¨ ¨ , vin´p´1
u, the latter expression vanishes. Indeed, in this case, vi

will appear in tvj1 , ¨ ¨ ¨ , vjpu and ωpvj1 , ¨ ¨ ¨ , vjpq “ 0 is zero if jk is less or equal than n´ p.

Now, in the choice of pn ´ p ´ 1q elements among pn ´ pq possible, there will be at least

one left by the pigeonhole principle. Therefore

iun´p`k
p˚ωq “ 0.

The lemma follows now by a dimension argument.

Theorem 2.1.2. Let M be a manifold with a closed p-form ω of rank p. Then ω is

intrinsically harmonic if and only if there exists a closed form η of rank q such that

kerω X ker η “ t0u.

Proof. Let ω be a closed p-form of rank p. Suppose that there is onM a Riemannian metric

g such that ω is g-harmonic. Then, by Lemma 2.1.1 the form η :“ ˚ω is a closed q-form

with the desired property. Conversely, let η be a q-form with the property above. Choose

Riemannian metrics g1, g2 on the bundles kerω and ker η and let g be the Riemannian

metric on M which is the orthogonal sum of g1 and g2. The forms ˚ω and η are volume

forms in ker ηK and have the same nullity space. Hence

˚ω “ sη

where s : M ÝÑ R is a smooth function. We have

ω ^ ˚ω “ }ω}2Ω, ω ^ η “ kΩ,

where Ω is the volume form of g and k : M ÝÑ R is a smooth function. It follows that

}ω}2Ω “ ω ^ ˚ω “ ω ^ sη “ skΩ.

Therefore sk “ }ω}2. Let tEiu and tFju, i “ 1, . . . q, j “ 1, . . . , p be orthonormal bases for

kerω, ker η, respectively, and let f : M ÝÑ R be a positive function. Setting E 1
i “ f

´1

2 Ei,

then tE 1
i, Fju is an orthonormal basis concerning

gf “ fgi ‘ g2.

We look for a function f which is a solution of

˚gf
ω “ η. (2.1)
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If f is such a solution, ω is harmonic with respect to gf , since η is closed and we have:

ωpF1, . . . , Fpq “ ˚gf
ωpE 1

1, . . . , E
1
qq “ ηpE 1

1, . . . , E
1
pq “ f

p´n

2 ηpE1, . . . , Epq.

Hence

f “ pωpF, . . . , Fpq{ηpE1, . . . , Epqq
2

p´n “ s
2

p´n

is a solution of (2.1).

Remark 2.1.3. Note that any closed p-form ω of rank p is locally intrinsically harmonic,

in sense that given x P M , there is an open set U containing x such that ω|U is harmonic.

Indeed, let x P M and ϕ “ pu, vq be a foliated chart around x concerning the foliation

Fω (the foliation induced by ω), where the leaves of it are given by v “ constant. Then,

η “ dv is a closed form of rank q satisfying ω ^ η ą 0. It follows by 2.1.2 that ω|U is

harmonic for a suitable Riemannian metric on U .

2.2 The Calabi’s transitivity condition

We already said that E. Calabi introduced a global restriction to closed 1-form

ω be intrinsically harmonic. Where this condition holds, it is possible construct a closed

differential pn ´ 1q-form η satisfying ω ^ η ą 0. Generalizing literally the transitivity

condition introduced by E. Calabi for forms of arbitrary degree, the latter conclusion is

still true for certain kind of differential forms (Lemma 2.2.2).

Definition 2.2.1. Let ω be a differential p-form defined on M . The form ω is said to be

transitive at x P M provided there exists an embedding closed smooth submanifold Σ of

M containing x such that ω|Σ ą 0. The form ω is said to be transitive if it is transitive at

every x P M where it does not null.

Lemma 2.2.2. Let M be a closed manifold and ω a p-form defined on M . Suppose that

for every x P M with ωx ‰ 0, there is a closed p-dimensional submanifold Σ with normal

trivial bundle containing x and such that ω|Σ ą 0. Let U be a neighborhood of S. Then,

there exists a closed form ψ defined on M satisfying ω ^ ψ ą 0 where ψ ‰ 0. Moreover,

we can take ψ “ 0 in some closed neighborhood W of S contained in U . If, in addition,

S “ H, we can take ψ with ω ^ ψ ą 0 everywhere, and the compactness of M can be

dropped.

Proof. Let x P M and Σ be a closed submanifold containing x with normal trivial bundle.

Let

φ : Σ ˆ Dn´p ÝÑ V
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diffeomorphism satisfying φpx, 0q “ x for x P Σ (given by trivializing the normal bundle

of Σ). Denoting φ “ px, yq, we have ωxpBx1, ¨ ¨ ¨ , Bxpq ą 0 for x P Σ. By compactness,

ω ^ dy ą 0 in an open set V0 with Σ Ă V0 Ă V . Let ǫ ą 0 such that V2ǫ Ă V0 and

h : r0, 2ǫs ÝÑ R be a smooth function satisfying

$
’&
’%

hptq “ 1 if t ă ǫ

hptq “ 0 if t ě 2ǫ

h ě 0 everwhere.

The differential form

η “ hp}y}2qdy

is closed on M and satisfies: ω ^ η ě 0, ω ^ η ą 0 where η ‰ 0 and ω ^ η “ ω ^ dy ą 0

in Vǫ. Since S X V2ǫ “ H, the vanishing of η near of the boundary of V2ǫ implies that η

vanishes in some neighborhood of S. The set M ´ U is a closed subset of the compact M ,

hence compact. By using the preceding argument we can obtain a finite cover V1, . . . , Vm

of M ´ U and respective closed forms η1, . . . , ηm such that:

(1) ω ^ ηi ě 0 everwhere;

(2) ω ^ ηi ą 0 in Vi;

(3) ηi “ 0 in some a closed neighborhood Ui of S.

To finish the first part of the lemma, take ψ “
ř
ηi and W “ XUi. Note that if ψx “ 0,

then

0 “ ωx ^ ψx “
ÿ

ωx ^ pηiqx

with ωx ^ pηiqx ą 0 when pηiqx ‰ 0. It follows that x P XUi hence kerψ “ W . Suppose

now that S “ H with M be merely a boundaryless manifold. Consider an enumerable

locally finite cover of M by opens sets Vi with respective closed forms ηi satisfying the

three conditions above. The expression

ψ “
ÿ

k

ηk

gives a well-defined closed differential form satisfying ω ^ η ą 0 in M .

2.3 Outline of demonstration of Calabi-Volkov-Honda’s theorems

The assumption about the zero-set made in 2.0.1 ensures the existence of a

neighborhood U of it such that Hn´1
DR pUq “ 0. Since those zeros are finite number one

because they are isolated and M is compact, this fact follows trivially by the well-known

Poincaré’s lemma. More effort is needed to deal with the general case, as shown in the

following theorem that needs a nontrivial result from Bär’s paper [3].
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Theorem 2.3.1 (E. Volkov, [85]). Let ω be a locally intrinsically harmonic closed 1-form

defined on a closed manifold M and S the zero-set of it. Then, there exists a neighborhood

U of S such that Hn´1
DR pUq “ 0.

The latter theorem is the main contribution of Volkov to the problem of charac-

terizing intrinsically harmonic 1-forms. We will now give the outline of the demonstration

of Calabi-Volkov-Honda’s theorems.

Lemma 2.3.2. Let ω be a transitive and locally intrinsically harmonic closed 1-form

defined on a closed orientable manifold M . Let S the zero-set of ω. Then there exists a

closed pn ´ 1q-form η on M satisfying the following conditions:

(1) there is a neighborhood U of S and a Riemannian metric gU on U such that

η|U “ ˚gU
ω;

(2) ω ^ η ą 0 everwhere on M ´ S.

Proof. Since ω is locally intrinsically harmonic, Theorem 2.3.1 ensure the existence of a

neighborhood U0 of the zero-set of ω and a Riemannian metric g defined on U0 such that

˚gU0
ω is an exact form, say ˚gU0

ω “ dη. Let V be a neighborhood of S with V Ă U0. By

the transitivity of ω, given x outside S there exists an embedding circle containing x where

ω restricting to a volume form. Since M is orientable, any embedding circle has a trivial

normal bundle in M by 1.5.14. By this, concerning V , we can take ψ and W as in Lemma

2.2.2. Remember the following properties of ψ and W :

(1) ω ^ ψ ě 0 everwhere;

(2) ω ^ ψ ą 0 in M ´ V ;

(3) W is a neighborhood of S and ψ|W “ 0.

Since W and M ´ U0 are closed disjoint sets, there exists a smooth bump function

α : M ÝÑ R satisfying α|U “ 1 and α|M´U0
“ 0. For each K ą 0, set

ψK “ Kψ ` dpαηq.

Setting U “intpW q, given any K ą 0, we have

pψKq|U “ dη “ ˚gUω.

It follows that the first statement in the lemma is satisfied for any K. We claim that the

second statement in the lemma follows by choosing K sufficiently large. Indeed, in U´S we

have that ω^ψK “ ω^dη “ ω^ ˚gU0
ω ą 0. Outside of U0 we have ω^ψK “ ω^Kψ ą 0.
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In the region where 0 ď α ď 1, we have that ω ^ ψ ą 0 and ω ^ dpαηq is bounded since

t0 ď α ď 1u is a compact set. So, for sufficiently large K we have

ω ^ ψK |M´S ą 0.

The proof is completed by taking η “ ψK for a sufficiently large positive constant K.

Proof’s sketch of 2.0.3. Let η, U, gU and gV as in Lemma 2.3.2. Let tφU , φV u be a partition

of the unity subordinate to the cover tU, V u ofM satisfying φU “ 1 in a neighborhood U
1
of

S. Then h “ φUgU `φV gV define a Riemannian metric onM such that h|V “ h|kerω‘h|ker η.

As in the proof of 2.1.2, there exists a function f : M ´ S ÝÑ R such that g “ fh define

a Riemannian metric on M ´ S satisfying ˚gω “ η. Note that h “ gU on U
1
´ S. On the

other hand, η “ ˚gU
ω “ ˚hω on U

1
´ S Ă U . It follows that f “ 1 on U

1
´ S Ă U . Thus,

we can extend the metric g on M putting g “ gU on S. Therefore ˚gω “ η, concluding

that ω is g-harmonic.

The last argument is due to Calabi. The following transitivity condition obtained

by Volkov differs from one presented by E. Calabi (Calabi’s necessity proof does not apply

to the general case). To prove the necessity, note that there exists on M ´ S a nowhere-

vanishing flow transversal to ω and preserving a volume of M . Such a flow can be obtained

in the equation iXΩ “ ˚gω, where g is a Riemannian metric that makes ω harmonic and

Ω is any volume form on M . By Poincaré Recurrence Theorem concerning the natural

measure determined by Ω, given any open set V Ă M ´ S, one can obtain an arc of the

flow generated by X going from V and returning to V after a finite time. By an usual

concatenation argument, we obtain an embedding circle such that ω restrict to a volume

form.

Proof’s sketch of 2.0.4. The zeros of ω are isolated since are nondegenerate. Because

M is compact, it follows that the zero-set of ω is a finite set. Thus, we can obtain a

neighborhood U of the zero-set of ω satisfying Hn´1
DR pUq “ 0. Each embedded submanifold

Σ Ă M satisfying ω|Σ ą 0 is orientable, since in such case ω is a top degree form

without zeros defined on Σ. Since M is orientable, any orientable embedding pn´ 1q-closed

submanifold admit trivial normal bundle in M by 1.5.12. By the same proof as in Lemma

2.3.2 we can obtain a closed 1-form η satisfying the conditions stated in the lemma. It

follows that the demonstration of 2.0.3 applies literally for this case. To the transitivity of

harmonic pn ´ 1q-form having only nondegenerate zeros, see Honda’s thesis.

Although the Lemma 2.2.2 is holds for forms of degree p in general only with

the more weak hypothesis that each Σ have normal neighborhood diffeomorphic to a

product by a function φ satisfying φpx, 0q “ x for any x P Σ, Calabi’s argument does not

generalize for intermediate degrees. As we will see, any nowhere-vanishing transitive closed
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differential p-form ω of rank p satisfies ω ^ η ą 0 for some closed differential q-form η.

However, by Lemma 2.1.2, ω is intrinsically harmonic if, and only if, it is possible to obtain

η with rank pn ´ pq. Concrete examples of this phenomenon are presented in the next

chapter. Let us mention to other works about the problem of characterizing intrinsically

harmonic forms, the works [1, 47, 44].

2.4 An intrinsic characterization of harmonic nowhere-vanishing

pn ´ 1q-forms

This section addresses the problem of characterizing when a nowhere-vanishing

closed pn´1q-form is intrinsically harmonic. This problem was motivated by an observation

made by Calabi. He argues that any closed nowhere-vanishing 1-form on a closed manifold

is intrinsically harmonic (see [7], §5). We begin by proving this geometrically by showing

firstly that such forms are transitive.

Lemma 2.4.1. Let M be a closed manifold and ω be a nowhere-vanishing closed 1-form

on M . Then ω is transitive.

Proof. Let X be the smooth vector field defined by the equation ωpXq “ 1. Let x P M and

φx “ px1, ¨ ¨ ¨ , xnq be a chart defined on a neighborhood Ux of x such that the leaves of Fω

are given by xn “ constant. Since the flow Φtpxq induced by X is complete and transversal

to Fω, the curve t ÝÑ Φtpxq stays in Ux only by finite time. If the image of this curve is

compact, then it and S1 are diffeomorphic (see [54]). Otherwise, if the curve t ÝÑ Φtpxq

is noncompact, since M can be covered by finite collection of open sets Ux, this curve

returns to some open set of this cover, lets say, returns to pφ, Uq. We now can construct an

embedding J : r0, 1s ÝÑ M transversal to Fω such that BJ “ tx0, x1u is contained in the

plaque txn “ 0u. Since Fω is transversely orientable by 1.5.8 and the form ω is positive in

the image of J , we can construct a closed transversal to Fω as in the lemma 3.3.7 of [9]

(see figure below). The proof is completed.

Theorem 2.4.2. Let M be an orientable manifold. Suppose that ω is a nowhere-vanishing

transitive closed 1-form (or pn ´ 1q-form) on M . Then ω is intrinsically harmonic.

Proof. SinceM is an orientable manifold, any closed 1-dimensional or any closed orientable

pn´ 1q-dimensional submanifold of M have a normal trivial bundle in M (see 1.5.12 and

1.5.14). Thus, in the case that ω is a transitive 1-form or a transitive pn´ 1q-form, we can

apply Lemma 2.2.2 to obtain a closed form ψ defined on M such that ω ^ ψ ą 0. The

proof is completed by applying Theorem 2.1.2 observing that in both cases ω and ψ have

the correct rank.
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Let M be an orientable manifold (with boundary or not). Let ω be a pn ´ 1q-

form on M and Ω a volume form on M . There exists a unique vector field X such that

ω “ ιXΩ. To prove this, let tUiu be a cover of M and tλiu be a partition of the unity

subordinate to it. For each i we can suppose that there exist linearly independent vector

fields tX i
1, X

i
2, ¨ ¨ ¨ , X i

nu defined on Ui such that X1 is tangent to kerω and

ΩpX i
1, X

i
2, ¨ ¨ ¨ , X i

nq “ 1.

In Ui then we have

ω “ ωpX i
2, ¨ ¨ ¨ , X i

nqιXi
1

Ω

and, therefore,

ω “
ÿ

λiω “
ÿ

λiωpX i
2, ¨ ¨ ¨ , X i

nqιXi
1

Ω “ ιr
ř
λiωpXi

2
,¨¨¨ ,Xi

nqXi
1s
ω “ ιXΩ.

The unicity follows since Ω is a volum form on M .

Suppose now that ω is a closed nowhere-vanishing pn ´ 1q-form defined on an

orientable manifold M . Let Ω be a volume form on M and X the unique vector field

given in the equation ω “ iXΩ. The flow generated by X is volume-preserving. That is,

LXΩ “ 0, where LX denotes the Lie’s derivative in the X direction. Conversely, if a flow

generated by a vector field X preserves a volume form Ω onM , then dpιXΩq “ 0, by Magic

Cartan Formula. Thus, we have a 1-1 correspondence between closed nowhere-vanishing

pn ´ 1q-forms and nowhere-vanishing volume-preserving flows. We will now prove the

following theorems.

Theorem 2.4.3. Let M be a closed orientable manifold. A nowhere-vanishing volume-

preserving flow defined on M admits global cross-section if and only if the induce closed

nowhere-vanishing pn ´ 1q-form is intrinsically harmonic.

By a global cross section we mean a closed pn ´ 1q-dimensional submanifold

everywhere transverse to the flow and cutting every orbit. Necessary and sufficient condi-

tions for the existence of a global cross-section for a flow given in [24] and [74], for example.

We will discuss the latter in the context of smooth manifolds in Chapter 4. The next

theorem enables us to approach the problem of obtaining an intrinsic characterization of

nowhere-vanishing harmonic pn ´ 1q-forms by another direction.

Theorem 2.4.4. Let M be a closed orientable manifold. A nowhere-vanishing Cr-volume-

preserving flow on M admits a Cr-global cross-section if and only if it admits a Cr-

transversal foliation (r ě 2).

Remark 2.4.5. The geodesic flow of a Riemannian manifold with negative sectional

curvature gives us an example of a nowhere-vanishing volume-preserving flow admitting

complementary C1 foliation (is an Anosov flow). However, the inducing closed nowhere-

vanishing pn ´ 1q-form cannot be intrinsically harmonic. In this case, we cannot obtain a
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transversal foliation induced by the kernel of a closed 1-form. We will clarify this remark

in Chapter 5.

Remark 2.4.6. From a result of Palais ([65], corollary 2.11), the latter theorem follows

for C1 flows admitting complementary foliation given by the kernel of a nowhere-vanishing

continuous closed 1-form. This result is the main ingredient in the preprint [76], which states

the same one as here. It is worth pointing out that the characterization of intrinsically

harmonic nowhere-vanishing (n-1)-forms is implicit in Honda’s thesis. Our proof here

follows the spirit of Calabi’s work and does not use Plante’s result above.

proof of 2.4.3. Let ω be a closed nowhere-vanishing harmonic pn ´ 1q-form defined on

an orientable Riemanian manifold pM, gq and Φ be a volume-preserving flow induced by

ω. Then ω ^ ˚gω is a volume form on M , with ˚gω being a closed nowhere-vanishing

1-form. By Tischler’s argument 1.8.3, there is a 1-form η with integral periods such that

ω ^ η is a volume form on M . Each of such forms have the form f˚dθ for some smooth

function f : M ÝÑ S1, where dθ is the obvious volume form on S1. Since η “ f˚dθ

is nowhere-vanishing, the function f is a submersion. By Eheresmann’s lemma 1.2.3,

B “ tM, f, S1, F u defines a fiber bundle with fiber F diffeomorphic to f´1pθq, θ P S1. Since

Φ induces a 1-dimensional foliation of M transversal to the fibers of this fiber bundle, we

have by 1.4.6 that B “ tM, f, S1u is a foliated bundle, the foliation given by the orbits of

Φ, of course. In particular, every fiber of this bundle intercept every orbit of Φ, concluding

that f´1pθq is a global cross-section to Φ for all θ P S1.

Conversely, suppose that the flow induced by ω admits a global cross-section

Σ. We can assume ω|Σ ą 0. By a standard argument from foliation theory (sliding Σ

transversally in the flow direction), it follows that the flow has a global cross-section at

every point x P M . Thus ω is transitive. From Theorem 2.4.2, we conclude that ω is

intrinsically harmonic.

Lemma 2.4.7. Let X be a nowhere-vanishing Cr-vector field admitting complementar

Cr-foliation F, r ě 2. Then, F “ Fη for some closed 1-form η of class Cr´1.

Proof. The foliation F is transversely orientable since it is transversal to the nowhere-

vanishing vector field X. Thus, by 1.5.8 there is a differential Cr´1-form ω such that

TF “ kerω. We claim that η “ 1
ωpXq

ω is closed. Consider px, yq and pu, zq be local

coordinates with common domain such that X “ Bx and F is given locally by z “constant.

By transversality, px, uq defines a coordinate neighbohoord. In this coordinate, since Bui
is

tangent to F, ηpXq “ 1 and rBx, Bui
s “ 0, then

dηpBx, Bui
q “ BxpηpBui

qq ´ Bui
pηpBxqq ` ωrBx, Bzi

s “ 0.

It follows that η is closed. Now, note that ker η “ kerω, hence η is a closed form and

F “ Fη.
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proof of 2.4.4. Let Ω be a volume form onM and Φ a flow preserving it. Let X be a vector

field generating Φ. Set ω “ ιXΩ. If X admits a complementary foliation, by 2.4.7 there

exists a closed 1-form η such that ηpXq “ 1. Thus, ω ^ η ą 0 with dω “ 0 and dη “ 0.

Hence, Theorem 2.1.2 applies, concluding that ω is intrinsically harmonic and, therefore,

by 2.4.3 Φ admits a global cross-section. Conversely, if Φ admits a global cross-section,

then again by 2.4.3 there is a Riemannian metric g on M such that ˚gω is a closed

1-form. The foliation generated by the distribution ker ˚gω is transversal to Φ. The proof

is completed.
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3 Forms of intermediate degrees

The only affirmatives answers in the problem of obtaining an intrinsic characteri-

zation of harmonic forms occur in degree 1 and pn´1q, synthesized in Calabi-Volkov-Honda’s

theorems, and the class of symplectic forms (that appear in Honda’s thesis [37]). We have

already noted that even in the case o closed p-forms of rank p the problem is equivalent to

one very hard in foliation theory (see 2.1.2). As shown in an example due to J. Latshev,

generalized here, even we add the transitivity hypothesis, it has no affirmative answer.

In this chapter, we will be concerned with the study closed p-forms of rank

p. We have clarified some aspects of obtaining an intrinsic characterization of harmonic

forms in this class, although we do not provide any significant results. We organized it as

follows. Section 3.1 provides a detailed generalization of the mentioned Latshev’s example.

In Section 3.2, we give a brief exposition of foliation currents’ theory to establish Sullivan’s

characterization of foliations with closed transversal forms. From this, we showed that

any transitive closed p-form of rank p has many closed transversal forms. However, this

not implies that these are intrinsically harmonic by concrete examples. In Section 3.3, we

show that a closed manifold with a harmonic p-form of rank p admits two complementary

foliations, where the leaves of both are minimal surfaces for a suitable metric. Also, are

given another characterization of intrinsically harmonic p-forms of rank p and examples of

these. In Section 3.4, we deal with the study of transitivity condition.

3.1 Non intrinsically harmonic forms examples

Theorem 3.1.1. Let B “ tB, p,M, F u be a smooth fiber bundle with compact total space

and simply connected base. Let Ω be a volume form on M . Then B is trivializable if and

only if p˚Ω is intrinsically harmonic.

Proof. Set α “ p˚Ω. Suppose that α is a g-harmonic form. It is easily seen that

kerαy ‘ kerp˚αqy “ TyB.

Therefore, ˚α has a constant rank. Since ˚α is closed, the regular distribution kerp˚αq

induces a foliation in B transversal to the fibers (see 1.3.4). The compactness of the fibers

and Theorem 1.4.6 implies that we have a foliated bundle. By 1.4.3 this kind of bundle is

differentiable equivalent to

Bϕ “ pM̃ ˆ F q{π1pMq,

where ϕ : π1pMq ÝÑ DiffpF q is the holonomy homomorphism characterizing it. Since

π1pMq “ 0, it follows that B is trivializable.



Chapter 3. Forms of intermediate degrees 82

Conversely, suppose that B is a trivializable (now, M and F can be any

boundaryless oriented manifolds). There exists a diffeomorphism f : B ÝÑ M ˆ F such

that p2pfpxqq “ ppxq, where p2 : M ˆ F ÝÑ F is the natural projection onto the second

factor. Let ΩF be a volume form on F . It is easy to see that the closed form pf ˝ p2q˚pΩF q

has degree and rank equal to pdimF q and, moreover, it is complementary to p˚pΩMq. It

follows by 2.1.2 that p˚pΩMq is intrinsically harmonic.

The hypothesis π1pMq “ 0 cannot be dropped. Otherwise, since any closed 1-

form without singularities on closed manifolds is intrinsically harmonic (see 2.4.1 and 2.4.2),

any orientable bundle over a circle would be trivial (this happens only for vector bundles).

We can construct concrete examples of no trivializable circle bundles as follows. Let Σg be

an orientable surface and φ P Diff`pΣgq. Then, Sφ “ pΣg ˆ r0, 1sq{tpx, 0q „ px, 1qu fibers

over S1 with fiber Σg and projection πgpx, tq “ e2πit.

In the argument to prove Theorem 3.1.1, the compactness hypothesis of the

fiber cannot be dropped. Generally, a submersion π : E ÝÑ M with compact fibers and

a transversal foliation give us a foliated bundle (see 1.2.3 and 1.4.6). However, without

the compactness of the fibers, we cannot ensure that a transversal foliation gives us a

compatible one. With a transversal foliation, each restriction π : L ÝÑ M , L leaf, is a

surjective local diffeomorphism. Despite that, the injectivity follows in general only when

those functions are proper maps (see [35]). In what follows, we provide examples of bundles

with transversal foliations that do not admit any compatible foliation.

Theorem 3.1.2. There exists transversal foliations to the vector bundle τSn for all n ě 1.

Every such foliations are incompatible for n ‰ 1, 3, 7.

Proof. J.W. Milnor showed in [53] that every tangent bundle τM of a smooth manifold

M has a codimension n “ dimM transversal foliation. He obtained a microfoliation in

the τM from the pullback of the trivial foliation M “
Ť
xPMtxu by using the exponential

map and extend it to the whole tangent space (see the demonstration of Proposition 6.1

in referred Milnor’s paper ). We conclude from a particular case of Theorem 1 in [14] that

if TSn and Sn ˆ Rn are diffeomorphic, then TSn is trivializable. Thus, if some foliation

guaranteed to exist by Milnor’s paper were compatible with τSn , then TSn and Sn ˆ Rn

would be diffeomorphic, hence τSn would be trivializable. However, by a well-known result

of J.F. Adams, the tangent bundle of Sn is trivializable if, and only if, n P t0, 1, 3, 7u.

This theorem is similar to“using a bazooka to kill a fly”. The mentioned Milnor’s

result is elementary, but the others not. By using the following observation, we provide

elementary examples as ones in Theorem 3.1.2.
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Theorem 3.1.3. Let M be a compact manifold. Suppose that there exists a homeomor-

phism f : TM ÝÑ M ˆ Rn satisfying p1pfpvqq “ ppvq, where p1 is the natural projection

onto the first factor and p is the projection of the fiber bundle τM . Then the Euler

characteristic χpMq of M is zero.

Proof. Given y P Rn, let sy : M ÝÑ TM the global cross-section defined by sypxq “

f´1px, yq (it is a cross-section since p “ p1 ˝ f). Let pyiq be a sequence in Rn with

‖ yi ‖ÝÑ 8. Suppose that for each i there exists xi P M with syi
pxiq “ 0xi

, that is, syi
pxiq

is the origin of Txi
M . Since the image of the zero cross-section in TM is compact, taking

a subsequence if necessarily, we can suppose that 0xi
converge to 0x for some x P M . Thus,

letting i ÝÑ 8 we obtain

0xi
“ f´1pxi, yiq ÝÑ 0x and pxi, yiq “ fp0xi

q ÝÑ fp0xq.

Since pxi, yiq is a no convergent sequence, this leads a contradiction. It follows that there

exists some y P Rn such that the cross-section sy no intercept the zero cross-section. By

Poicaré-Hopf Theorem (see [54], page 35) we concludes that χpMq “ 0.

Corollary 3.1.4. Let M be a compact manifold. There exist transversal foliations to τM .

If χpMq ‰ 0 any such a foliation is incompatible with τM .

Proof. The existence of such foliations is given in Milnor’s paper [53]. If some such a

foliation is compatible with τM , then there will exist a diffeomorphism f : TM ÝÑ M ˆRn

satisfying p1pfpvqq “ ppvq (see 1.4.3). The latter theorem and the hypothesis χpMq ‰ 0

leads to a contradiction. This proves the corollary.

3.1.1 Concrete transitive non intrinsically harmonic forms examples

Let Sn´1 be a great pn ´ 1q-sphere of Sn, E1, E2 be the closed hemisphere

determined by Sn´1 and V1, V2 be contractible open disjoint neighbohood containing E1

and E2, respectively. Then, V1, V2 cover Sn and V1 X V2 is an equatorial band containning

Sn´1. Since that V1, V2 are contractible, there exist bundle maps φ
1

1 : BVi
ÝÑ Vi ˆG. Fixed

x0 P Sn´1 we can obtain a bundle strictely equivalent to B putting g12pxq “ g
1

12px0q´1g
1

12pxq.

The map

T “ g12|Sn´1 : pSn´1, x0q ÝÑ pG, eq

is called characteristic map of B. A bundle over Sn is said to be in normal form if it

coordinate neighborhoods are V1, V2 and T px0q “ e.

Theorem 3.1.5 ([78], theorem 18.3). Let B,B
1
be bundles over Sn in normal form and

having the same fiber and group. Let T, T
1
be their characteristic maps. Then B,B

1
are

equivalent if and only if there exists an element a P G and a homotopy between T
1
and
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aTa´1. If G is arcwiseconnected, then B,B
1
are equivalent if and only if there there exists

a homotopy between T
1
and T .

Corollary 3.1.6. Let F be an arcwise connected smooth manifold such that πipF q “ 0

for all i “ 1, . . . n´ 1. Suppose that Diff`pF q is arcwise connected and πn´1pDiff`pF qq ‰ 0.

Let B “ tB, p, Sn, F,Diff`pF qu be a nontrivial fiber bundle. Then p˚pΩSnq is transitive but

not an intrinsically harmonic form.

Proof. Suppose p˚pΩSnq intrinsically harmonic. Thus, by 3.1.1, the fiber bundle B “

tB, p, Sn, F,Diff`pF qu is DiffpSnq-trivializable, that is, there exists a diffeomorphism ϕ :

B ÝÑ Sn ˆ F satisfying ϕpxq “ pppxq, φpxqq. Changing orientation if necessary, we can

suppose that φ is always orientation preserving, since x ÝÑ detpφ˚qx is never zero. It

follows that B is trivial, a contradiction. Thus by 1.2.36 is a transitive no intrinsically

harmonic form.

The hypothesis in latter theorem is no vacuous. In fact, S. Smale [77] showed

that the inclusion SOp3q ãÑ Diff`pS2q is a homotopy equivalence. Since π1pSOp3qq “ Z2,

it follows from 3.1.5 that there exists a nontrivial bundle over S2 with group Diff`pS2q and

fiber S2. According to E. Volkov, this example is due to J. Latschev.

3.2 The Sullivan Theorem

Theorem 2.1.2 gives us a sufficient condition to a closed p-form ω of rank p to

be intrinsically harmonic. Naturally, two questions come up:

(1) If the foliation Fω admit merely a complementary foliation, is ω an intrinsically

harmonic form?

(2) If there exists a closed form η with ω ^ η ą 0, is ω an intrinsically harmonic?

The category of the foliated bundle is the more simple one where we can discuss

the first question. The latter has a negative answer by using the results of Sullivan’s

paper [80]. D. Sullivan and D. Ruelle introduced in [69] the notion of foliation currents.

These are real homological classes associated with a partial or total orientable foliation

F. The relative position between the set of all foliations currents and the spaces of cycles

and boundaries determine whether F admits closed forms or exact forms transversal,

respectively. D. Sullivan also characterized foliations cycles, currents that are also cycles,

in terms of holonomy invariant measures. In this section, we present shortly the basic

definitions and the results stated in Sullivan’s paper. From this, we demonstrate any

transitive closed p form of rank p admits a closed transversal form.
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Let F be a smooth orientable foliation defined on a closed manifold M . Fix

a regular foliated atlas U “ tpUα, xα, yαqu for M such that for each x P M , the p-tuple

px1, ¨ ¨ ¨ , xpq determines the correct orientation for F|Uα. Give a positive basis pv1x, ¨ ¨ ¨ , vpxq

of the TxLx, where Lx is the leaf containing x, the p-vector

vx “ v1x ^ ¨ ¨ ¨ ^ vpx

determines a p-current called Dirac foliation current for F.

Definition 3.2.1. Let F be a smooth orientable foliation defined on a closed manifold M .

Define CF the set of all finite linear combinations with positive coefficients of the Dirac

foliation currents for F. We define:

(1) the set CF, as being the topological closure of CF in D
1

p. The elements of it are called

foliation currents (for F);

(2) the set ZF “ Zp X CF, whose elements are called foliation cycles (for F);

(3) and the set BF “ Bp X CF, whose elements are called foliation boundaries (for F).

Definition 3.2.2. Let F be a foliation of M . A p-form ω on M is said to be transversal

to F provided vxpωq ą 0 for every Dirac foliation current for F. In particular, a transversal

form to F restricts to a volume form on each leaf of it.

Any orientable foliation admits many transversal differential forms. It is easy

to construct such differential forms locally by using a foliated chart. Hence, by the usual

gluing method from a partition of unity subordinate to a foliated atlas, one can construct

examples of transversal forms (see 1.5.8). When a foliation admits, a transversal closed or

an exact form is a more engaging question and was answered by D. Sullivan as follows.

Lemma 3.2.3 (Sullivan, [80]). Let F be an orientable foliation. There exists an exact

form transversal to F if, and only if, 0 is the unique foliation cycle for F. There exists a

closed form transversal to F if, and only if, 0 is the unique foliation boundary for F.

Proof. Let ω be a differential form transversal to F. First of all, we will show the set
pCF “ CF X ω´1p1q is compact in D

1

1 (where here ω : D
1

1 ÝÑ R is given by ωpϕq “ ϕpωq).

Since D
1

1 satisfies the Heine-Borel propertie 1.6.33, it is enough to show that pCF is bounded.

The proof of the boundedness of pCF will be divided into two parts.

(1) Let E be a topological vector space and ω : E ÝÑ R be a continuous linear functional.

For any cone C Ă E we have the equality

C X ω´1p1q “ C X ω´1p1q.
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Indeed, let x P C X ω´1p1q and U be a neighborhood of x. There exists ǫ ą 0 and

neighborhood V of x with p1 ´ ǫ, 1 ` ǫqV Ă U (because the scalar multiplication of

E is continuous). Now, since ω is continuous, ωpxq “ 1 and x P C, for each n P N

there exists an P V X ω´1p1 ´ 1{n, 1 ` 1{nq. If follows that there exists a sequence

panq Ă C X V such that ωpanq ÝÑ 1. Therefore 1
ωpanq

an P U for large n. Since C is a

cone, 1
ωpanq

an P C. Thus, for an arbitrary neighborhood U of x we showed that there

exists a P C X U with ωpaq “ p1q, with implies x P C X ω´1p1q. Since is always true

that A X B Ă A X B, this proves the claim.

(2) We will now prove that pCF is bounded. Put on M a Riemannian metric. It induces a

metric in the space ΛppTMq of all p-vectors tangent to M . Since ω : ΛppTMq ÝÑ R

is continuous and the set of all unit p-vectors tangents to M is compact, there exists

λ ą 0 such that 0 ă ωpvxq ď λ for all unit p-vector. By Theorem 1.6.27, it is enough

to show that CF Xω´1p1q is σpD
1

p,Dpq-bounded. Equivalentely, it is sufficent to show

that ηpCF X ω´1p1q) is bounded for all differential form η P Dp. Let η P Dp and α

the maximum value of η on any unit p-vector. Let ϕ P C X ω´1p1q. We can write

ϕ “
ř
aivxi

, with ai ě 0 for all i and each vxi
being a Dirac foliation current with

norm 1. Then,

1 “ ωpϕq ď λ
ÿ

ai

and
ř
ai ď 2{λ . Thus,

|ηpϕq| “ |
ÿ

aiηpvxi
q| ď 2α{λ.

It follows that C X ω´1p1q is bounded. This proves the claim.

Since a subset A of a topological vector space E is bounded if, and only if, A is

bounded, we conclude from the above item that

pCF “ CF X ω´1p1q “ CF X ω´1p1q

is bounded.

We will now prove the first statement of the lemma. by hypothesis we have that

CF X Zp “ t0u. Since the vectorial subspace Zp and the compact convex set pCF

are disjoints, by Hahn-Banach Theorem there exists a continuous linear functional

ϕ : D
1

p ÝÑ R such that

ϕpZpq “ 0 and ϕp pCFq ą 0.

By Schwartz’s theorem 1.6.31, there exists a differential form ω such that ϕ “ ω.

Since ωpZpq “ ϕpZpq “ 0, given any current c P D
1

p`1 we have

dωpcq “ ωpBcq “ 0.
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It follows that ω is closed. In fact, ω is exact, since as a linear functional ω :

H
p
DRpMq ÝÑ R is identically zero. Furthemore,

ωp pCFq “ θp pCFq ą 0,

concluding that ω is an exact form transversal to F. Conversely, if c P CF X Zp and

ω “ dη is transversal to F, then

ωpcq “ dηpcq “ ηpBcq “ 0.

Since c P CF and ω is strictly positive on pCF, it follows that that c “ 0.

To proof the second statement of the lemma, suppose CF X Bp “ t0u. Analougously

as in the proof of the first part of the lemma, there exists one form ω such that

ωpBpq “ 0 and ωp pCFq ą 0.

Thus, given any current c P D
1

p`1 we have dωpcq “ ωpBcq “ 0. It follows that ω is a

closed form transversal to F. Conversely, if ω is a closed form transversal to F, given

c P CF X Bp, say c “ Bz, then ωpcq “ ωpBzq “ dωpzq “ 0. It follows that c “ 0, since

ω is transversal to F. The proof is completed.

Remark 3.2.4. By a theorem of J. Dieudonné, every Fréchet Montel topological vector

space E is separable (see [43], page 370). Let E be a separable topological vector space.

Then, a convex σpE
1
, Eq-compact subset K of E

1
is metrizable with the σpE

1
, Eq-topology

(see [68], page 70). Thus, with the notation of the latter theorem, since Dp is Fréchet

Montel space and C X ω´1p1q is dense in the compact convex set pCF, we have that every

element of pCF is a weakly limit of members of C X ω´1p1q. On the other hand, by the

demonstration of 1.6.33, a sequence in D
1

p is strongly convergent if, and only if, is weakly

convergent. It follows that the elements of pCF are limits of finite linear combinations with

positive coefficients of Dirac foliations currents.

We will now describe Sullivan’s characterization of foliations cycles in terms of

holonomy invariant measures.

Definition 3.2.5. Let Γ be a pseudogroup of homeomorphisms of a space X and µ be a

nonnegative, finite, σ-additive measure, defined on the ring of the subsets of X generated

by compact sets. We will say that µ is Γ-invariant provided for every γ P Γ and every

mensurable set A in the domain of γ we have µpγpAqq “ µpAq.

Definition 3.2.6. A foliation F on a manifold M is said to have a holonomy invariant

measure (or transversal measure) if their holonomy pseudogroup admits an invariant

measure.
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Let F be an orientable foliation of a closed manifold M . Let U be a regular

foliated atlas for M and λα be a partition of the unity subordinate to it. Given ω P Dp, for

each plaque Py P Sα we can integrate λαω in Py getting a continuous real function on Sα.

Integrating on Sα concerning to a holonomy invariant measure µ and adding, we obtain

φµpωq “
ÿ

α

ż

Sα

˜ż

Py

λαω

¸
dµpyq.

By Stokes’ theorem,

Bφµpωq “ φµpdωq “
ÿ

α

ż

Sα

˜ż

Py

dpλαωαq

¸
dµpyq “ 0.

Therefore, φµ is a cycle. Indeed, it is a foliation current and independent of the partition

of unity chosen, see [69] for details.

Theorem 3.2.7 (D. Sullivan, [80]). Every foliation cycle has the form φµ for some

holonomy invariant measure µ.

3.2.1 Forms admitting complementary forms

We will now show that any transitive p-form of rank p admits complementary

closed forms.

Definition 3.2.8 (Plante, [66]). Let µ be a F-invariant measure. Its support (denoted

suppµ) is the set of points x P M with the following property: if Σ is a submanifold

transverse to F with dimension equal to the codimension of F and that contains x as

an interior point, then µpΣq ą 0. The support of an F-invariant measure is closed and

F-saturated, that is, it is an union of leaves of F.

Theorem 3.2.9 (Plante [66]). Let F be an orientable codimension k foliation. If a closed

submanifold Σ transverse to F intersepts the support of a F-invariant measure µ, then Σ

represents a nonzero element in HkpM ;Rq and rφµs ‰ 0 in Hn´ppM ;Rq.

This proposition is proved building a closed form η, Poincaré dual to Σ, such

that φµpηq “ µpΣq ą 0.

Theorem 3.2.10. Let ω be a transitive closed p-form of rank p on a closed manifold M .

Then ω admits a closed transversal form.

Proof. Since ω is transitive, for each point x P M there exists a closed submanifold Σ

containing x such that ω|Σ ą 0. It follows that for each holonomy Fω-invariant measure

µ, there exists a submanifold Σ transverse to Fω and contained in support of µ. The

Lemma 3.2.3 and theorems 3.2.7 and 3.2.9 together ensure the existence of a closed form

η transversal to Fω. That is, satisfying ω ^ η ą 0.
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The latter theorem and the existence of concrete examples of transitive non

intrinsically harmonic p-forms of rank p show that the condition of admitting a comple-

mentary form, evidently a necessary condition for a form to be intrinsically harmonic,

is not sufficient. In the intermediate degrees, considering a p-form of rank p, we cannot

ensure that ω ^ η ą 0 implies that η has rank equal to pn ´ pq.

Corollary 3.2.11. Let M be a closed 4-dimensional manifold with a transitive 2-form ω

of rank 2. Then M admits a structure of the symplectic manifold.

Proof. By 3.2.10, there exist a closed 2-form η such that ω ^ η ą 0. Since M is compact,

the differential forms ωk “ ω ` kη have null kernel for k sufficiently large.

3.3 Foliations induced by harmonic p-forms of rank p

Denote by TF the subbundle of the TM formed of all vectors tangent to F.

Lemma 3.3.1. Let ω be a closed p-form of rank p on an orientable manifold M . Then

Fω is orientable.

Proof. It follows by 1.5.8.

Let pM, gq be a Riemannian manifold and F be an orientable codimension p

foliation of M . A differential form on M is said to be a characteristic form for F provided

it induces the Riemannian volume on the leaves of F. The characteristic form for a foliation

F is denoted by χF. Another description for this form is given as follows. Fixe for each

point x P M a positive orthonormal frame tξ1, . . . , ξpu for TxF. Then,

χFpη1, . . . , ηpq “ detpgpξi, ηjqq,

η1 . . . , ηp P TM .

Lemma 3.3.2. Let ω be a harmonic p-form of the rank p on a Riemannian manifold pM, gq.

Let g “ g1 ‘ g2 the decomposition of g in the ortogonal sum TM “ kerω ‘ ker ˚gω. Then

there exist strictly positive smooth functions f, k : M ÝÑ R such that ω is characteristic

form for F˚gω and ˚gω is characteristic form for Fω concerning to the Riemannian metric

h “ f 2g1 ‘ k2g2.

Proof. Let θ be a smooth section of ΛppT ˚Fωq such that restrict to each leaf of Fω it give

the volume induced by g. Since ˚ω is positive in the leaves of F˚ω, there exist strictly

postive function k : M ÝÑ R such that kpθ “ ˚ω|ΛppT pFqq. Analogously, let f : M ÝÑ R



Chapter 3. Forms of intermediate degrees 90

be a smooth such that fn´pκ “ ˚ω|ΛppT pFqq, where κ is the volume form induced by g in

ΛppT ˚F˚ωq. The required metric is given by

h “ f 2g1 ‘ k2g2.

Definition 3.3.3. A form η is said to be relatively closed concerning to a foliation F

provided

dηpX1, . . . , Xp, Y q “ 0

whenever X1, . . . , Xp are tangent to F.

Theorem 3.3.4 (H. Rummler, [70]). Let F be a foliation of a manifold M . The charac-

teristic form χF of F is relatively closed (concerning to F) if, and only if, each leaf of F is a

minimal submanifold1.

We then have the following structure on a manifold supporting a harmonic

p-form of rank p.

Theorem 3.3.5. Let pM, gq be a Riemannian manifold. Suppose that ω is a g-harmonic

p-form of rank p on M . Then there exist a Riemannian metric h on M such that the

tangent space of M split orthogonally as TM “ TFω ‘ TF˚ω. Furthemore, χF “ ˚gω,

χF˚gω
“ ω and all leaves of the foliations Fω and F˚ω are minimal submanifolds (concerning

to h).

Proof. It follows by 3.3.2 and 3.3.4.

Definition 3.3.6 ([83], page 49). Let G be a Lie group. A foliation F is said to be a

G´foliation if

pγαβq˚ : Uα X Uβ ÝÑ G Ă GLpq,Rq

for every generator of the ΓU , the holonomy pseudgroup of F concerning to the cover U .

Theorem 3.3.7 ([83], theorem 6.32). Let F be a transversally orientable foliation defined

on a Riemannian manifold pM, gq. Then F is SLpqq-foliation if and only if dχF “ 0.

Therefore, if ω is harmonic p´form of rank p, then Fω is a SLpqq-foliation and

F˚ω is a SLppq-foliation.

Corollary 3.3.8 (Local structure of harmonic p-form of rank p). Let pM, gq be a Rieman-

ninan manifold and ω be a harmonic p-form of rank p on M . Then there exists an atlas

U “ tUα, xα, yαu for M such that the equations x “ constant and y “ constant determine

locally F˚ω and Fω, respectively. Furthemore, pγαβq˚ P SLpqq and pθαβq˚ P SLppq. Besides

this, the rules η “ dy1
α ^ . . . ^ dypα and ξ “ dx1

α ^ . . . ^ dxqα fit together in a well-defined

closed form which determines globally Fω and F˚ω, respectively.
1 See [31] for a short proof of this theorem.
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Proof. If V “ tUα, xα, uαu and W “ tUα, yα, vαu are foliated atlas for Fω and F˚ω, respec-

tively, then Uα “ tUα, xα, yαu is the required atlas. By the previous discussion, we have

pγαβq˚ P SLpqq and pθαβq˚ P SLppq. Therefore

dy1
α ^ . . . ^ dypα “ detpγβαq˚dy

1
β ^ . . . ^ dy

p
β “ dy1

β ^ . . . ^ dy
p
β.

Analogously,

dx1
α ^ . . . ^ dxpα “ detpθβαq˚dx

1
β ^ . . . ^ dx

p
β “ dx1

β ^ . . . ^ dx
p
β,

concluding the corollary.

The next theorem follows from the sequence given in [83] to prove Theorem

3.3.7.

Theorem 3.3.9. Let ω be a closed p-form of rank p on a manifold M . Suppose there

exists a Riemannian metric g on M such that every leaf of the foliation induced by ω is

a minimal submanifold. If pkerωqK is an integrable distribution, then ω is intrinsically

harmonic.

Proof. Throughout the proof, F denotes the foliation induced by ω, η denotes χF and FK

denotes pkerωqK. We claim that η is a closed form. The proof of this will be divided into

four steps.

(1) Let Y P FK. We have iY η “ 0. By Theorem 3.3.4, piY dηq|F “ 0. Then,

pLY ηq|F “ pdiY η ` iY dηq|F “ 0.

(2) Let Z P FK and X, Y P TM . Using the rule rLX , iY sα “ irX,Y sα, we have

iZpLY ηq “ LY iZη ´ irY,Zsη “ ´irY,Zsη.

By the involutivity of FK then rY, Zs P FK. It follows that iZpLY ηq “ 0. Since Z was

arbitrarily chosen, then pLY ηq|FK “ 0.

(3) By 1 and 2, given any Y P FK, we have pLY ηq|F “ 0 and pLY ηq|FK “ 0. Therefore

iY dη “ LY η ´ diY η “ 0

for all Y P FK.

(4) We will now prove that iXdη “ 0 for all X tangent to F. By item 3, iY dη “ 0 for all

Y tangent to FK. It follows that iXiY dη “ ´iY iXdη “ 0. Hence iXdη is determined

completely by its values in the tangent vectors to F. But, since η is F-closed, then

iXdη|F “ 0. Thereofre iXdη “ 0 for all X tangent to F. Since TM “ TF ‘ TFK,

iXdη “ 0 for all X tangent to F and iY dη “ 0 for all Y tangent to FK, we conclude

that η is closed.
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To finish the proof of the theorem, note that η have rank q (since it is the

characteristic form of F), it is complementary to ω and closed as have shown above. It

follows by 2.1.2 that ω is intrinsically harmonic.

We show that in any smooth fiber bundle B “ tB, p,M, F u with χpF q ‰ 0,

the form π˚pΩMq determines a nontrivial cohomological class (see Lemma 5.2.7). Thus,

it is suspicious that we can weaken theorem 2.1.2, assuming that Fω admits only a

complementary foliation. If this theorem holds merely with this hypothesis, then any

foliated bundle with rπ˚pΩMqs ‰ 0 admits a SLpqq-transversal foliation by the results

presented in this section so far. We end this section by providing a class of examples of

transitive intrinsically harmonic forms.

Theorem 3.3.10. Let B “ tB, p,M, F,Fu be a foliated bundle with total space and base

base being oriented manifolds. If the fundamental group of M is finite, then π˚Ω is a

transitive intrinsically harmonic form for all volume form Ω on M .

Proof. First fo all, we observe the following general fact. Let G be a finite subgroup of

DiffpF q. Since for any element g P G we have g|G| “ 1, then detpg˚q “ ˘1.

As in the proof of Theorem 1.5.10, we can obtain a differential form that

restricts to each fiber give us a volume form. It follows by 1.5.8 that the foliation given

by the fibers of B is orientable. Since F is transversal to the fibers, then F is transversely

orientable. Hence, we can take the holonomy homomorphism

ϕ : π1pMq Ñ DiffpF q

with image in Diff`pF q. By the preceding paragraph, since π1pMq is finite, we have

detpϕpαqq˚q “ 1

for all α P π1pMq. Thus, the foliation F is a SLpqq-foliation (the demonstration of the

first assertion in the theorem could stop here). Let U “ tUα, xα, uαu be a foliated atlas

for B concerning to F such that det γ “ 1 for all γ P ΓU . Since duα “ detpγβαq˚duβ and F

is a SLpqq-foliation, the rule ηα “ duα fit together in a well-defined closed form η which

determines the foliation F globally . It follows by 2.1.2 that π˚ΩM is intrinsically harmonic.

Now, each leaf of F is compact, since that cover the compact manifold M with finite sheets.

Hence, each leaf of F is a global cross-section for the fibers. From this, we conclude that

π˚pΩMq is transitive.

3.4 The transitivity condition

Let M be a manifold and x P M . Denote by T x
p the subset of Dp consinting of

all p-forms transitive at x. Let ω P T x
p and pωnq be a sequence converging to ω. Let Σ be
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a closed embendding submanifold containing x such that ω|Σ is a volume form. Fixed a

Riemannian metric on M , let

S “ tv P ΛppTΣq; ‖ v ‖“ 1u.

Suppose for each n P N there exists vxn
P S such that ωnpvxn

q “ 0. Since Σ is compact,

we can suppose that xn ÝÑ y P Σ and vxn
ÝÑ vy, for some vy P S. Thus, for each

p-form η P Dp, ηpvxn
q ÝÑ ηpvyq. It follows that vxn

ÝÑ vy in D
1

p. Since the evaluation

map e : Dp ˆ D
1

p ÝÑ R is sequentially continuous by 1.6.35, then ωpvxq “ limωnpvxn
q “

limpepωn, vxn
qq “ 0, a contradiction. Thus, for sufficiently large n, we have ωn P T p

x . From

the fact of Dp is a metrizable space, we conclude that T p
x is an open set2. Note we have

proved the subset of all differential forms that are volume in Σ is an open set.

Theorem 3.4.1. Let F be a smooth foliation of a manifold M . The set TΣ of all points in

M contained in a closed submanifold transverse to F and diffeomorphic to Σ is F-saturated

and open.

Proof’s sketch. Suppose there exists a submanifold containing x, diffeomorphic to Σ, and

transverse to F. By deformation in the leaves direction, we conclude that the leaf containing

x is contained in TΣ (the proof of this is analogous to the given in J.W. Milnor [54] to

show the Homogeneity Lemma, page 22). Working in a foliated chart around x, it is easily

seen that TΣ contains a neighborhood of x. Since x was arbitrarily chosen, the proof is

completed.

Corollary 3.4.2. Let ω be a closed p-form of rank p on a manifold M . Suppose that there

exists a closed p-submanifold of M transversal to every leaf of Fω. Then ω is transitive.

In some situations, we can prove that the transitivity condition is homogeneous,

in the sense that transitivity at one point implies transitivity at any point. We will highlight

some examples.

Theorem 3.4.3. Let M be a closed manifold and F be a foliation of M such that M{F

satisfy the Hausdorff property. If Σ is a closed submanifold intercepting F transversally,

then Σ intercept every leaf of F.

Proof. Denote by π : M ÝÑ M{F the natural projection. It is easily seen that πpΣq is an

open set since Σ is an embedding submanifold without boundary. Since πpΣq is compact

and M{F Hausdorff, then it is closed. Thus, πpΣq is both open and closed in the connected

space M{F. Therefore, M{F “ πpΣq, concluding the theorem.

2 Let X be a metric space. Let U be a subset of X satisfying the following condition: given x P U and a
sequence xn ÝÑ x, then there exists n P N such that xk P U for all k ě n. Under this condition, if
pxnq is a sequence in X ´ U converging to x, then x R U . Thus, X ´ U is a sequentially closed subset
of X, hence closed since X is metric.
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Definition 3.4.4 (J.F. Plante, [64]). A polisection of a fiber bundle B “ tB, p,X, Y,Gu is

a covering map π : X̃ ÝÑ X with a continuous function f : M̃ ÝÑ B such that p ˝ f “ π.

Theorem 3.4.5. Let B “ tB, p,M, Y u be a smooth fiber bundle with closed total space

and orientable base space. Let Ω be a volume form on M . If p˚Ω is transitive at one point,

then B admits a compact polisection. In particular, p˚Ω is transitive.

Proof. Let F the foliation given by the fibers of B. By hypothesis, there exists a closed

submanifold Σ of B intercepting F transversally. Since E{F “ M , then Σ intercept every

fiber of B (every leaf of F). By transversality, it is easy to check that p|Σ is a local

diffeomorphism. Since the fibers of B are compact, then p|Σ is a proper map, hence a

covering projection (see [35]).

Definition 3.4.6. An automorphism of a foliated manifold pM,Fq is a diffeomorphism

φ : M ÝÑ M preserving the foliation. That is, the image of any leaf by φ is a leaf of F

too. A foliation is said to be homogeneous provided the group of automorphisms of pM,Fq

acts transitively on M .

If ω is a closed p-form of rank p and Fω is homogeneous, then the transitivity

condition for ω at one point implies the transitivity of ω. For example, if ω is a closed-

decomposable p-form, that is, a form described globally by

ω1 ^ . . . ^ ωp,

where each ωi is closed nowhere-vanishing 1-form, then Fω is homogenous (see [57], chapter

4). We do not know if a harmonic form is transitive in general. G. Katz proposed this

problem in [39].
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4 Asymptotic cycles on smooth manifolds

In Chapter 2, we proved a characterization of nowhere-vanishing intrinsically

harmonic pn´ 1q-forms on closed manifolds. We have shown this in terms of the existence

of a global cross-section for a canonical associated volume-preserving flow, Theorem 2.4.3.

The first criterion in the literature for a flow admits a global cross-section is due to S.

Schwartzmann [74]. He introduced the notion of the asymptotic cycle that is a 1-dimensional

real homological class (in the sense of De Rham for the smooth context) associated with

an invariant measure. Global cross-sections are determined by an integral one-dimensional

cohomology class that is positive on all these asymptotic cycles. Since Schwartzmann’s

results are for flows defined on compact metric spaces, the notion of a global cross-section

is slightly different, and a translation for the differentiable context was necessary. In this

chapter, we present the theory developed by S. Schwartzmann. Are discussed two criteria

for a flow admits a global cross-section. One of them appears rigorously proved in [74].

For the other case, we provide a detailed demonstration.

4.1 Asymptotic cycles

Let M be a compact manifold and C “ C8pM, S1q the set of all smooth

functions f : M ÝÑ S1 with group structure given by pf ¨ gqpxq “ fpxq ¨ gpxq. Set R the

subgroup of C

tf P C; fpxq “ exp p2πiHpxqq, H : M ÝÑ R smoothu.

Every element f P C is given locally by fpxq “ exp 2πiHpxq, where Hpxq is some smooth

real function determined up to an additive constant. If H1 and H2 are determined as

above in two different coordinate systems, dH1 and dH2 agree in the region of overlapping.

Then for each f P C there is a closed 1-form ωf given locally by dH. Consider the local

parametrization of the circle given by θpexp p2πitqq “ t and the usual volume form on

S1 described locally by dθ. Let α : I ÝÑ M be a smooth curve with Xpxq “ Bt|0αptq. If

f “ exp 2πiHpxq in a neighborhood of αp0q, then
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f˚dθpXq “ dθpf˚Xq

“ dθpBt|0fpαptqqq

“ Bt|0θpfpαptqqq

“ Bt|0θpexp p2πiHpαptqqqq

“ Bt|0Hpαptqq

“ dHpXq

“ ωf pXq

concluding that ωf “ f˚dθ. The association f ÝÑ ωf give us a natural homomorphism

rf s P C{R ÝÑ rωf s P H1
DRpM ;Zq.

By Lemma 1.8.1, this homomorphism is surjective. Furthemore, if fg´1pxq “ exp p2πiHpxqq

everywhere, then it is easily seen that ωf ´ ωg “ dH. Therefore, the forms ωf and ωg

determine the same cohomological class. We synthesize these facts in the next theorem.

Theorem 4.1.1. The rule that associates each rf s P C{R to the closed 1-form rωf s “

rf˚dθs P H1
DRpM ;Zq is an isomorphism.

Proof. It remains only to show that the association rf s ÝÑ rωf s is a homomorphism.

Let f, g P C. Let U be an open subset of M where f and g have local representaion

f “ expp2πiHq and g “ expp2πiLq. In the open set U we have

ωf ¨g “ dpH ` Lq “ ωf ` ωg.

This concludes the theorem.

Notation 4.1.2. Let K be a parametrized curve in M and f P C. We will use the symbol

∆Kargfpxq to denote the change in the angular variable of f along K.

Remark 4.1.3 (A geometric interpretation of C{R). Let K be a smooth closed curve

in M . The number 1
2π

∆Kargfpxq is an integer depending only on the element of the first

homology group corresponding to K and the coset determined by f in C{R. Furthemore,

setting δf prKsq “ 1
2π

∆Kargfpxq, the function

δ : C{R ÝÑ H1pM ;Zq

defined by δprf sq “ δf is an isomorphism. The proof of this claim will be divided into four

steps.
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(1) Fixe rf s P C{R. We claim that δf : H1pM ;Zq ÝÑ R is a Z-linear function. Firstly,

given K,L : r0, 1s ÝÑ M be smooth closed curves with the same base point, then

rKs ` rLs “ rK ¨ Ls in H1pM,Zq,

where

K ¨ Lptq “

#
Kp2tq, if 0 ď t ď 1{2

Lp2t ´ 1q, if 1{2 ď t ď 1

(see [32], page 166). From this, it is easy to check that

δf prKs ` rLsq “ δf prKsq ` δf prLsq,

concluding the claim.

(2) Let f P C and K : r0, T s ÝÑ M be a smooth path. If fpxq “ exp 2πiHpxq for some

smooth function H : M ÝÑ R, then

1

2π
∆Kargfpxq “ Hpx2q ´ Hpx1q,

where p1 and p2 are the initial and terminal point of K. Thus, using a suitable

partition of r0, T s, it follows that

∆Kargpf ¨ gqpxq “ ∆Kargfpxq ` ∆Karggpxq.

Hence δpf ¨ gq “ δf ` δg, concluding that δ is a homomorphism.

(3) We will now show that δf prKsq P Z. Let K : r0, T s ÝÑ M be a smooth closed

curve and 0 “ t0 ă . . . ă tm “ T be a partition of r0, T s such that fpKptqq “

exp p2πiHipKptqqq when ti ď t ă ti`1. Then,

1

2π
∆Kargf “

ÿ
pHipKpti`1qq ´ HipKptiqqq

“
ÿ ż ti`1

ti

dHipBtpKptqqq

“
ÿ ż ti`1

ti

ωf pBtpKptqqq

“

ż

r0,T s

K˚ωf

“

ż

r0,T s

K˚f˚dθ.

Consider the natural projection π : r0, 1s ÝÑ S1 where 0 is identified with 1. Since

Kp0q “ KpT q, this curve induces a smooth function K̃ : S1 ÝÑ M such that
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K̃ ˝ π “ K. It follows that

1

2π
∆Kargf “

ż

r0,T s

π˚K̃˚f˚dθ

“

ż

r0,T s

π˚ppf ˝ K̃q˚dθq

“

ż

πr0,T s

pf ˝ K̃q˚dθ

“

ż

S1

pf ˝ K̃q˚dθ

“ degreepf ˝ K̃q P Z

(for the last equality see 1.8.1).

(4) From the previous items it follows that δ : C{R ÝÑ H1pM ;Zq is a homomorphism.

It remains only to show that δ is a bijective function. It is sufficient to show that δ

injective, since C{R and H1pM ;Zq are free modules with the same dimension equal

the Betti number of M (see the footnote in Lemma 1.8.1). Suppose that δf “ 0.

With the same notation as in item (2), it follows that degree(f ˝ K̃q “ 0 for all closed

curve K. Since

degreepf ˝ K̃q “

ż

K̃pS1q

f˚dθ,

then f˚dθ represent the zero class. From 4.1.1 we conclude that rf s “ 0.

Notation 4.1.4. Let X be a vector field on M . We will denote by ΦX (or Φ for short)

the flow generated by X and px, tq ÝÑ xt the R-action induced by it (this flow is complete

since M is compact).

Definition 4.1.5. A measure µ defined in the σ-algebra generated by all Borel subsets of

M is called invariant provided that is normalized (µpMq “ 1) and for every mensurable

set S and every real number t we have µpStq “ µpSq.

Definition 4.1.6. A point x P M is called quasi-regular provided that

lim
TÝÑ8

1{T

ż T

0

fpxtqdt

exists for every real-valued continuous function defined on M .

Theorem 4.1.7 (Oxtoby, [62]). For every quasi-regular point x, there exist a unique

normalized invariant positive Borel measure µx such that

lim
TÝÑ8

1{T

ż T

0

fpxtqdt “

ż

M

fppqdµxppq.
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Proof. Let C0pMq the topological vector space of all continuous real valued functions

defined on M with usual norm ‖ f ‖“
ř
xPM |fpxq|. For each n P N, set In the linear

functional on C0pMq by the rule

Inpfq “ 1{n

ż n

0

fpxtqdt.

We have

‖ In ‖“ sup
‖f‖“1

|Inpfq| “ 1.

Thus, by Banach-Alaoglu-Bourbaki Theorem, the sequence pInq admits a weakly convergent

subsequence. Suppose that Ink
ÝÑ I weakly. Since the linear functional I is nonnegative,

the Riesz Representation Theorem ensures that there exists a unique nonnegative Borel

measure µx which represent I in sense that Ipfq “
ş
M
fppqdµxppq for every f P C0pMq.

Then

lim
TÝÑ8

1{T

ż T

0

fpxtqdt “

lim
nkÝÑ8

1{nk

ż nk

0

fpxtqdt “
ż

M

fppqdµxppq.

It remains only to show that µx is normalized and invariant. It is normalized:

µxpMq “

ż

M

dµxppq “ lim
TÝÑ8

1{T

ż T

0

dt “ 1.

To conclude that µx is invariant, it is enough to show that
ş
M

pfpptq ´ fppqqdµxppq “ 0 for

every f P C0pMq. Denote by Rt the function p ÝÑ pt. We have

ż

M

fpptqdµxppq “

ż

M

fRtppqdµxppq “

lim
TÝÑ8

1{T

ż T

0

fRtpxsqds “

“ lim
TÝÑ8

1{T

ż T

0

fpxpt ` sqqds.

Using the change u “ t ` s,

lim
TÝÑ8

1{T

ż T`t

t

fpxuqdu “

“ lim
TÝÑ8

1{T

ˆż T

0

fpxuqdu ´

ż t

0

fpxuqdu `

ż T`t

T

fpxuqdu

˙
“

“

ż

M

fppqdµxppq ` lim
TÝÑ8

1{T

ż T`t

T

fpxuqdu.
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Thus, ż

M

pfpptq ´ fppqqdµxppq “ lim
TÝÑ8

1{T

ż T`t

T

fpxuqdu.

But

lim
TÝÑ8

1{T

ż T`t

T

fpxuqdu ď lim
TÝÑ8

1{T

ż T`t

T

sup
pPM

|fppq|du “ lim
TÝÑ8

1{T sup
pPM

|fppq|t “ 0.

The proof is completed.

Theorem 4.1.8 (Oxtoby, [62]). The set of all not quasi-regular points has zero measure

concerning any invariant measure.

Notation 4.1.9. The change in the angular variable of f along the orbit going from x to

xt will be denoted by ∆px,xtqargf .

Let f : M ÝÑ S1 be a smooth function and α be a smooth curve on M with

αp0q “ x. We have that

f˚pBt|0αptqq “ Bt|0fpαptqq

can be interpreted as a complex number.

Notation 4.1.10. The symbol f
1
pxq will denote the derivative of f in the Xpxq-direction,

that is,

f
1

pxq “ Bt|0fpxtq “ f˚pXpxqq. (4.1)

Note that if fpxq “ exp 2πiHpxq, then f
1
pxq “ 2πiH˚pBt|0pxtqqfpxq hence

f
1
pxq{p2πifpxqq “ Bt|0Hpxtq “ ωf pXpxqq.

Theorem 4.1.11. Let x be a quasi-regular point. For any f P C the limit

lim
TÝÑ8

∆px,xT qargf

exists and depends only on the class determined by f . The induced mapping of C{R into

the real line is a group homomorphism.

Proof. It follows analogously as in 4.1.3.

Thus, we have associated each quasi-regular point x a homomorphism from

C{R to R. By the Universal Coefficient Theorem, any member of the real cohomology is

expressible as a finite linear combination of members in the integral cohomology. Since

C{R may be identified with the elements of the first cohomology group with integral

periods, then we can extend this homomorphism uniquely to a linear functional Ax on the

first cohomology group with real coefficients. To make it clear, we will write the definition

of Ax.
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Definition 4.1.12. Let x be a quasi-regular point. The asymptotic cycle associated with

x is defined as being the linear extension of Ax : H1pM ;Zq ÝÑ R to H1pM ;Rq, where Ax

is given by

Axrf s “ lim
TÝÑ8

1

2πiT

ż T

0

f
1

pxtq{fpxtq.

Theorem 4.1.13. Let µ be an invariant measure for a flow Φ. For each f P C

Aµprf sq “

ż

M

Axrf sdµpxq “
1

2πi

ż

M

f
1

pxq{fpxqdt.

Proof. We have

ż

M

Axrf sdµpxq “

ż

M

ˆ
lim
TÝÑ8

1

2πiT

ż T

0

f
1

pxtq{fpxtqdt

˙
dµpxq.

Since the quantity inside the parenthesis is uniformly bounded and µ is finite measure,

this equals

lim
TÝÑ8

1

2πiT

ż

M

ˆż T

0

f
1

pxtq{fpxtqdt

˙
dµpxq

which by the Fubini’s theorem equals

lim
TÝÑ8

1

2πiT

ż T

0

ˆż

M

f
1

pxtq{fpxtqdµpxq

˙
dt

wich by the invariance of µ equals

lim
TÝÑ8

1

2πiT

ż T

0

ˆż

M

f
1

pxq{fpxqdµpxq

˙
dt

“ lim
TÝÑ8

1

2πiT

ˆż

M

f
1

pxq{fpxqdµpxq

˙
T

“
1

2πi

ż

M

f
1

pxq{fpxqdµpxq.

Thus, to each invariant measure µ we have associated (by linear extension) a

linear functional Aµ : H1pM ;Rq ÝÑ R, hence Aµ determine an element in H1pM ;Rq.

Definition 4.1.14. Given an invariant measure µ, the µ-asymptotic cycle associated with

this measure is defined by

Aµrf s “
1

2πi

ż

M

pf
1

pxq{fpxqqdµpxq.

For certain kinds of flows, the µ-asymptotic cycle is independent of µ. S.

Schwartzman called those flows spectrally determinate.
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Definition 4.1.15. Let pX, dq be a metric space. Let Φ : X ˆ R ÝÑ X be a flow on X

(that is, a R-action on X). It is said to be recurrent provided there exists a sequence

tk ÝÑ 8 such that

lim
k

sup
xPX

dpx, xtkq ÝÑ 0.

Let us mention a theorem fundamental for us, which will be used in the next

chapters. For detailed proof of it, we refer the reader to Schwartzman’s paper.

Theorem 4.1.16 (S. Schwartzmann, [74]). A recurrent flow on a compact metric space is

spectrally determinate.

Remark 4.1.17. Implicitly we have the following definition of µ-asymptotic cycles. LetM

be a closed manifold and X be a smooth vector field onM . The asymptotic cycle associated

with an invariant measure µ is the homological class determined by the continuous linear

functional A
1

µ : D
1

1 ÝÑ R given by

A
1

µpωq “

ż

M

ωpXqdµ.

Indeed, let rf s P C{R. Since f
1
pxq{fpxq “ ωf pXq, then

Aµprf sq “

ż

M

pf
1

pxq{fpxqqdµ “

ż

M

ωf pXq “ A
1

µpωf q.

On the other hand, a linear functional is determined completely by its action on a basis,

and H1pM ;Zq generates H1pM ;Rq. It follows that Aµ “ rA
1

µs.

4.2 Global cross-section to flows

The main result in Schwartzman’s paper is a criterion to a flow admits a global

cross-section. In what follows, we discuss two forms of it for the smooth context.

Definition 4.2.1. Let Φ be a smooth flow on a closed manifold M . A closed codimension

one submanifold Σ of M is said to be a global cross-section for Φ provided intercept

transversally every orbit under Φ.

Let Φ be a smooth flow on a closed manifold M . A regular value θ (or t) of

a smooth function f : M ÝÑ S1 (or f : M ÝÑ R) give us a closed codimension one

submanifold f´1pθq (or f´1ptq). When ker f˚ is transversal to Φ and intercepts every orbit

under this flow, then the preimage of any regular value of f is a global cross-section for it.

In virtue of the theory developed in the previous section, it is natural to study functions

f in C. We will start by answering the following question: Let rf s P C{R. What are the

conditions to exist a global cross-section of the form g´1pθq for some g P rf s?

Let g P C and g “ expp2πiHpxqq be a local representation of it. Let α : I ÝÑ M

be a smooth curve with αp0q “ x. Then
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g˚pα
1

p0qq “ Bt|0 expp2πiHpαptqqq

“ 2πiBt|0Hpαptqqgpαp0qq

“ 2πigpxqH˚pα
1

p0qq.

It follows that g is submersion if and only if for each x P M there exists a curve starting

in x with

g˚pα
1

p0qq{p2πigpxqq “ H˚pα
1

pxqq ‰ 0.

By transversality, this condition is satisfied when

g˚pBt|0pxtqq ‰ 0.

These observations lead to the next lemma.

Lemma 4.2.2. Let Φ be a smooth flow on a closed manifold M . Let g P C and suppose

that g
1
pxq{p2πigpxqq ą 0 for all x P M . Then g is submersion and g´1pθq is a global

cross-section for Φ for every θ P S1.

Proof. Let θ P S1. By the above discussion, showing that g´1pθq intercepts every orbit

under the flow, we will have completed the proof (we have proved it in Section 2.4, but we

will give straightforward proof for this particular case). Since M is compact, there exists

ǫ ą 0 such that

g
1

pxq{p2πigpxqq ą ǫ ą 0 for every x P M.

The expression g
1
pxq{p2πifpxqq is the variation of the argument of g in the orbit of x.

Since this variation is a positive number greater than ǫ, and the orbit of x is a convex

set, there exist t P R such that fpxtq “ θ. From this, we conclude that g´1pθq is a global

cross-section to Φ.

Let Φ be a smooth flow on M and X the vector field generating Φ. Given

g P rf s, there exists a smooth function H : M ÝÑ R such that g “ fpxq expp2πiHpxqq.

Calculating the derivative of g in the flow direction, we obtain

g
1

pxq “ f
1

pxq expp2πiHpxqq ` 2πidHpXpxqqgpxq

“ expp2πiHpxqqpf
1

pxq ` 2πidHpXpxqqq

hence

g
1

pxq{p2πigpxqq “ f
1

pxq{p2πifpxqq ` dHpXq. (4.2)

Denote by D the set of all functions K : M ÝÑ R such that Kpxq “ dHpXq for some

smooth function K : M ÝÑ R. The Equation 4.2 gives us a condition for the existence of
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a function g in the class of f satisfying the positivity condition of Lemma 4.2.2. Indeed, if

the subspace E “ xf
1
pxq{p2πifpxqqy ‘ D of C0pMq have nontrivial intersection with the

cone of positive functions, namely, if for some H, the expression

f
1

pxq{p2πifpxq ` dHpXq

represents a positive function, then gpxq “ fpxq expp2πiHpxqq satisfies the positive condi-

tion of Lemma 4.2.2 and, therefore, the flow has a global cross-section. On the other hand,

if it no intercept the cone of positive functions, we can use functional analysis tools, as

Hahn-Banach Theorem and Riesz Representation Theorem, to obtain a Borel measure µ

satisfying ż

M

´
f

1

pxq{p2πifpxq
¯
dµpxq “ 0.

As we will see, this measure is invariant and, consequently, gives us an asymptotic cycle.

Observe when the positivity condition of Lemma 4.2.2 is satisfied, we have trivially

ż

M

´
f

1

pxq{p2πifpxq
¯
dµpxq ą 0

for every nonnegative measure µ. When the measure is invariant, we can rewrite the last

equation as

Aµprf sq ą 0.

These observations lead to the following criterion for the existence of a global cross-section

to a flow.

Theorem 4.2.3. Let M be a closed manifold and Φ be a flow on M . Let f P C. There

exists a global cross-section to Φ in the class of f P C if and only if Aµprf sq ą 0 for every

invariant measure µ.

To show this theorem, we need a characterization of invariant measure. It is

easily seen a measure µ is invariant if and only if

ż

M

pHpxtq ´ Hpxqqdµpxq “ 0

for every real-valued continuous function H on M and every real number t. Note that it is

sufficient to require that the above equality hold for merely smooth functions since any

continuous function can be approximated uniformly by such ones. Define D the set of all

functions K : M ÝÑ R satisfying Kpxq “ dHpXq for some smooth function H and E the

set of all functions which have the form

Hpxtq ´ Hpxq,

where Hpxq ranges in the space of smooth functions on M and t ranges over all possilble

real numbers.
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Lemma 4.2.4. The closure of E and the closure of D are identical.

Proof. For each t P R and H : M ÝÑ R, set Ktpxq “ Hpxtq. Note that Ktpxtq´Ktpxq P E

for each t P R and H P E. Given K P D, we have

Kpxq “ Bt|t“0Hpxtq

“ lim
tÝÑ0

ˆ
1

t
Hpxq ´

1

t
Hpxq

˙

“ lim
tÝÑ0

pKtpxtq ´ Ktpxqq.

Hence K P E, concluding that D Ă E. Given now pHpxtq ´ Hpxqq P E, we have

Hpxtq ´ Hpxq “

ż t

0

H
1

pxsqds.

By use of Riemannian’s sums to approximate the integral, it is easily seen that we have

a uniform approximation on M . Now, observe that each term in a Riemannian’s sum

referent to one partition 0 “ t0 ă . . . ă tl “ T is given by

pti`1 ´ tiqBt|t“t0Hpxtq “ Bt|t“0pti`1 ´ tiqHpxpt ` t0qq.

Since Bt|t“0pti`1 ´ tiqHpxpt` t0qq belongs to E for each i “ 1, . . . , l, it follows that E Ă D,

concluding the lemma.

Lemma 4.2.5. A measure µ is invariante if and only if
ş
M
Hpxqdµpxq “ 0 for every

H P D.

Proof. By Lemma 4.2.4, the closure of D and E are identical. Now, the set E is one of all

function which have the form Hpxtq ´ Hpxq where Hpxq ranges in the space of smooth

real functions on M and t ranges over all possible real numbers. On the other hand, a

measure µ is invariante if and only if

ż

M

pHpxtq ´ Hpxqqdµpxq “ 0

for every smooth real function H on M and every real number t. Thus, a measure µ is

invariant if and only if
ş
M
Kpxqdµpxq “ 0 for all K P E. Since the topology on C0pMq is

one of uniform convergence, it follows that any element in E can be uniformly approximated

by elements in E. Thus,
ş
M
Kpxqdµpxq “ 0 for all K P E if and only if

ş
M
Kpxqdµpxq “ 0

for all K P E “ D. The proof is completed.

Proof of 4.2.3. Set F “ D ‘ xf
1
pxq{p2πifpxqqy. We claim that F interspet the cone of

positive functions. Otherwise, by Hahn-Banach Theorem, there exists a continuous linear
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functional L : C0pMq ÝÑ R such that L ‰ 0 and L|F “ 0. By the Riesz Representation

Theorem, this functional is represented by a finite positive Borel measure µ onM satisfying

Lpgq “

ż

M

gpxqdµpxq

for every g P C0pMq. The condition L|D “ 0 implies that µ is invariant (see Lemma 4.2.5).

Since Lpf
1
pxq{p2πifpxqqq “ 0, this leads to the following contradiction

0 ă Aµprf sq “

ż

M

f
1

pxq{p2πifpxqqdµpxq “ 0.

It follows that F intersept the cone of positive functions in C0pMq, concluding the

theorem.

4.3 A condition ensuring the existence of a global cross-section

Given a finite Borel measure µ and a continuous vector field X, the rule

ϕµ,Xpωq “

ż

M

ωpXqdµ

define an element in D
1

1. Now, let Φ be a flow on a closed manifold M and X be a vector

generating it. If µ is an invariant measure, then Aµ “ rϕµ,Xs. Throughout this section the

symbol Aµ represent the linear functional Aµpωq “
ş
M
ωpXqdµ (see 4.1.17).

Lemma 4.3.1. Let Φ be a smooth flow on a closed manifold M . The set

C “ tAµ, µ is an invariant measureu

is convex and σpD
1

1,D1q´compact.

Proof. It is easy to check that C is convex. The proof of the second statement of the lemma

will be divided into three steps.

(1) Let L : C0pMq ÝÑ R be a continuous linear functional. By Riesz Representation

Theorem, there exists a unique finite measure µ defined on the σ-algebra of the Borel

subsets of X such that

Lpfq “

ż

M

fdµ

for all f P C0pMq. It follows that we can identifie the topological dual to C0pMq

with the set of all finite measure µ defined on the σ-algebra of Borel subsets of M .

Via this identification, the set of all probability measures on M is characterized as

P “ tµ{ ‖ µ ‖“ 1u, where the norm considered is the usual norm in the topological

dual of the Banach space C0pMq. By Banach-Alaoglu-Bourbaki Theorem, we have

that P is weakly-compact.



Chapter 4. Asymptotic cycles on smooth manifolds 107

(2) We will now show that the set of all Φ-invariant measures is a closed subset of P . Let

µn ÝÑ µ be a sequence with µn invariant for all n P N. Given f P C0pMq we have

ż

M

pfpxtq ´ fpxqqdµ “ µpf ˝ t ´ fq “ limµnpf ˝ t ´ fq “ 0,

concluding that µ is invariant. It follows that the set of all invariant measures is

closed (since pC0pMqq
1
is metric, a subset of pC0pMqq

1
is closed if and only if it is

sequentially closed).

(3) Let X be a vector field generating Φ. Let

ι : pC0pMqq
1

ÝÑ D
1

1

given by ιpµqpωq “
ş
M
ωpXqdµ. We will give straightforward proof that ι is weakly

continuous. Remember that for a dual pair pE,F q, the weak topology on F has

as subbasis of neighborhoods of the zero the sets Ux,ǫ “ ty P F {|xx, yy| ă ǫu,

where x range over E and ǫ range over all positive real numbers. Let ω P D1 and

ǫ ą 0. Concerning the dual pair pD1,D
1

1q we have µ P ι´1pUω,ǫq if and only if

|
ş
M
ωpXqdµ| ă ǫ. Since ωpXq P C0pMq, we have that ι´1pUω,ǫq “ UωpXq,ǫ is weakly

open (of course, concerning the dual pair pC0pMq, pC0pMqq
1
q). It follows that ι is

weakly continuous.

To finish, note that for an invariant measure µ we have

ιpµqpωq “ Aµpωq.

It follows from itens (1), (2) and (3) that C is the image of a weakly compact set by a

weakly continuous function. Therefore, C is weakly compact.

Theorem 4.3.2. Let Φ be a smooth flow on a closed manifold M . There exist a global

cross-section for Φ if and only if for every invariant measure µ the homological class

determined by Aµ is nonzero.

Proof. By Lemma 4.3.1, the set C “ tAµ, µ invariant measureu is convex and weakly

compact. Since B1 is σpD
1

1,D1q-closed and C X B1 “ H, by Hahn-Banach Theorem there

exists a σpD
1

1,D1q-continuous linear functional ϕ : D
1

1 ÝÑ R such that

ϕ|C ą 0 and φ|B1
“ 0.

This linear functional is strongly continuous (because pD1,D
1

1q is a dual pair by Schwartz’s

theorem 1.6.31 and in any dual pair pE,F q a weak continuous linear functional f : E ÝÑ R

is strongly continuous). Again by 1.6.31, there exist a 1-form η such that ϕ “ η. Hence

dηpφq “ ηpBφq “ ϕpBφq “ 0,
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concluding that η is closed. The positivity condition of ϕ on C implies that

Aµpηq “ ηpAµq “ ϕpAµq ą 0

for every invariant measure µ. Now, the set of all invariant measures is weakly compact,

and by 1.8.3 η can be approximated in D1 by forms with integral periods. It follows that

there exists a form ω with integral periods such that ωpAµq ą 0 for all invariant measure

µ. Since ω “ f˚dθ for some smooth function f : M ÝÑ S, it follows by Scwartzmann’s

Theorem 4.2.3 that Φ admit a global cross-section.

Corollary 4.3.3. Let Φ be a smooth flow on a closed manifold M . Suppose that the

homological class determined by Aµ is nonzero for any invariant measure µ. Then there

exists a submersion f : M ÝÑ S1 with all fibers transverse to Φ.

Proof. The hypothesis and Theorem 4.3.2 implies the existence of a global cross-section

to Φ. Hence, Theorem 4.2.3 implies the existence of a smooth function f : M ÝÑ S1

satisfying the positivity condition in the Lemma 4.2.2. The proof is completed.

Example 4.3.4 (Hamiltonian vector fields). Let pM2n, ωq be a symplectic closed manifold.

Given any 1-form α, there exists a vector fieldXα such that α “ ιXα
ω, since ω is nonsingular

two-form. When α is closed, then the pn ´ 1q-form ιXα
ωn is closed and the vector field

Xα preserves the volume form ωn. Those vector fields are called Hamiltonian vector fields.

Suppose µ is an invariant measure for the flow generated by Xα. The µ-asymptotic cycle

associated with µ is given by

Aµpβq “

ż

M

βpXqdµ.

Denote now µ the measure determined by the volum form ωn. We have

Aµpβq “

ż

M

βpXαqωn “

ż

M

β ^ ιXα
ωn.

In general, ιXω
k “ kιXω ^ ιXω

k´1. If Xβ is such that β “ ιXβ
ω, then

β ^ ιXα
ωn “ nιXβ

ω ^ ιXα
ω ^ ωn´1 “

ιXα
ω ^ npιXβ

ωq ^ ωn´1 “

α ^ ιXβ
ωn.

It follows that

Aµpβq “

ż

M

α ^ ιXβ
ωn.

On the other hand, there is an isomorphism H1
DRpM ;Rq ÝÑ Hn´1

DR pM ;Rq given by

rβs ÝÑ rιXβ
ωns. Thus, the µ-asymptotic cycle associated with ωn concerning Xα is

homologous to zero if and only if the class determined by α cohomologous to zero. It

follows by 4.1.16 and 4.3.2 that a recurrent Hamiltonian vector field Xα admits a global

cross-section if and only if rαs ‰ 0 in H1
DRpMq.
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4.4 Correspondence between asymptotic cycles and foliation cycles

Many references in the literature indicate that the foliation currents theory is a

generalization of the asymptotic cycle theory. For example, Schwartzamnn itself in [75]

says: “using the notion of a transversal invariant measure as defined in [80], a generalization

of the µ-asymptotic cycle was given that applies to arbitrary smooth oriented foliations of

a compact manifold”.

This section deal with the “equivalence”between asymptotic cycles and foliation

cycles for the case of 1-dimensional foliations. Namely, let Φ be a smooth nonsingular flow

on a closed manifod M (a 1-dimensional foliation). Let c be a 1-dimensional current. Then

cpωq “
ş
M
ωpXqdν for some measure ν and, furthemore, c is a cycle if, and only if, ν is an

Φ-invariant measure.

Theorem 4.4.1 (Sullivan, [80]). Let F be a 1-dimensinal foliation on a closed manifold

M . Let X be a nowhere-vanishing vector field tangent to F. Given a foliation current c

(for F) there exists one, and only one, positive, finite, Borel measure νc in M such that

cpηq “

ż

M

ηpXqdνc

for all η P D1.

Proof’s sketch. Let ω be a 1-form satisfying ωpXq “ 1. The idea is to use Riesz Represen-

tation Theorem to obtain a measure νc such that the linear functional

Jc : C8pMq ÝÑ R

f Ñ cpfωq

be given by Jcpfq “
ş
M
fdνc. Suppose c “ aXx, a Dirac foliation current in the Xx

direction. Then, denoting νc the atomic measure concentred in txu, we have

cpfωq “ paXxqpfωq “ afpxqωpXxq “ afpxq “

ż

M

fdνc.

It follows that if c is a finite sum with positive coefficients of Dirac foliation currents, then

the unique measure which satisfies the condition in the theorem is given by the sum of

atomic measures concentred in each xi.

Now, let c any foliation current. Then c “ lim cn, where each cn is a finite

linear combination with positive coeficients of Dirac foliation currents (convergence in

the σpD
1

1,D1q-topology, see 3.2.4). For each n P N, let ν
n
as in the preceding paragraph.

The bounded sequence tνcn
u has a subsequence converging for a measure ν with the same

proprieties. By Riesz Representation Theorem, the measure ν is uniquely determined.

Given a 1-form η, writing

η “ η0 ` ηpXqω
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with η0pXq “ 0, we have

cnpηq “ cnpη0 ` ηpXqωq “ cnpηpXqωq “

ż

M

ηpXqdνcn
.

Therefore,

cpηq “ lim cnpηq “ lim

ż

M

ηpXqdνcn
“

ż

M

ηpXqdνc.

Theorem 4.4.2. With the notations of the previous theorem, a foliation current c is a

cycle if and only if is Φ-invariant. Furthemore, every invariant measure ν determines a

foliation cycle by the rule η ÝÑ Aνpηq. In particular, there is an one-to-one correspondence

between foliations cycles and µ-asymptotic cycles.

Proof’s skecth. Suppose that c is a cycle. Then, for every smooth function f : M Ñ R we

have

0 “ Bφµpfq “ φµpdfq “

ż

M

dfpXqdν.

Given t P R, f P C8pMq, using Fubbini Theorem, we have

ż

M

pfpxtq ´ fpxqqdνpxq “

ż

M

ˆż t

0

dfpXpxsqqds

˙
dνpxq “

ż t

0

ˆż

M

dfpXpxsqqdνpxq

˙
ds “ 0.

Since
ş
M

pfpxtq ´ fpxqqdνpxq “ for every t P R and f P C8pMq, we conclude that ν is

invariant. Conversely, if ν is invariant, Aν have sense and is a cycle. Hence c “ Aν is a

cycle.

To prove that invariant measures determine foliation cycles requires a little

more effort. This is clear in the proof of Sullivan’s theorem. An invariant measure ν can be

“disintegrated” in each foliated chart obtaining two measures, a measure νp in each plaque

(q.t.p.) and a transversal measure that is holonomy invariant. Thus, for a foliated atlas U ,

and a transversal SU associated, we can obtain a holonomy invariant measure µ such that

φµ “ Aν . It follows that invariant measures determine foliations cycles.
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5 Characterization of flat circle bundles

E. Calabi showed that any nowhere-vanishing closed 1-form is intrinsically

harmonic (see section 2.4). Thus, it is natural to raise the question about the dual case. Is

a closed nowhere-vanishing pn´ 1q-form intrinsically harmonic? We must exclude exact

forms since by 1.7.6 they are harmonic only if they are identically zero. In contrast with

the case of nowhere-vanishing closed 1-forms that determines a nonzero cohomological

class, there exists exact nowhere-vanishing closed pn´ 1q-forms, as the natural pullback

form given in the Hopf’s fibration S3 ÝÑ S2. In Chapter 2, we provide a condition to a

closed nowhere-vanishing pn´ 1q-form on a closed manifold to be intrinsically harmonic,

namely, when an associated canonical flow admits a global cross-section. This and the

next chapter, where is given an improvement of this characterization, originated in an

attempt to provide an example of a nowhere-vanishing closed pn´ 1q-form, non-exact and

non intrinsically harmonic. Unfortunately, we did not get such an example nor manage to

show that obtaining it is impossible.

We started this search in the class of forms given in circle bundles B “

tB, p,Tn´1, S1u. By Thishler’s argument and characterization of the covering of the torus,

if the form p˚ΩTn´1 is intrisically harmonic, then B and Tn are diffeomorphic. Hence, a

possible counterexample would arise from a circle bundle p : B ÝÑ Tn´1 with total space

not diffeomorphic to the n-torus and p˚
Ω

Tn´1
a non-exact form. The fact that this attempt

fails more generally, in any circle bundle with closed total space, is the main result of this

chapter. We provide the following results.

Theorem 5.0.1. Let M be a closed smooth manifold with a closed pn ´ 1q-form ω that

induces a compact foliation1. If each orbit of the flow induced by ω is homologous to

each other and rωs ‰ 0, then ω is intrinsically harmonic. If ω is intrinsically harmonic,

then there exists a smooth S1-action on M with the same orbits as the one from the flow

induced by ω.

Theorem 5.0.2. Let B “ tB, p,M, S1u be a differentiable principal bundle over a closed

orientable manifoldM . Then B admit a flat connection if and only if p˚pΩMq is intrinsically

harmonic.

By another direction, in Subsection 5.2.1 we provide the following characteriza-

tion of the foliated circle bundle:

Theorem 5.0.3. Let B “ tB, p,M, S1u be a differentiable circle bundle over a closed

manifold M . Then B is smooth foliated if and only if the fiber determines a nontrivial

1 A foliation F is said to be compact provided every leaf of F is compact.
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homological class. When M is orientable, this happens if and only if p˚ΩM is nonzero in

cohomology.

We finish this chapter by providing the following characterization of the torus.

Theorem 5.0.4. The n-torus is the unique closed n-dimensional manifold admitting a set

of pn´ 1q everywhere linearly independent nowhere-vanishing closed 1-forms tωiu, such

that the product ω “ ω1 ^ ¨ ¨ ¨ ^ ωn´1 determines a nonzero cohomological class.

5.1 Examples of intrinsically harmonic pn ´ 1q-forms

Lemma 5.1.1. Let M be a closed orientable manifold. Let Ω be a volume form on M

and X be a smooth vector field on M preserving Ω. Set ω “ iXΩ and µ the measure

determined by Ω. Then µ is invariant by the flow determined by X and Aµ “ rωs, ω

viewed as a diffuse current. In particular, if ω determines a nonzero cohomological class,

then Aµ ‰ 0 in HDR
1 pMq.

Proof. Let η be a 1-form on M . Using the identity iXpη ^ Ωq “ iXη ^ Ω ` η ^ iXΩ and

the definition of µ, then

ż

M

ηpXqdµ “

ż

M

ηpXqΩ “
ż

M

iXη ^ Ω “
ż

M

piXpη ^ Ωq ` η ^ iXΩq “
ż

M

η ^ ω.

Thus, since dpfωq “ df ^ ω ´ fdω and dω “ 0, by Stokes’s theorem

ż

M

dfpXqdµ “

ż

M

df ^ ω “

ż

M

dpfωq “ 0

for all f P C8pMq. Using this, we will prove that µ is invariant. Let t P R and f P C8pMq.

By Fubini’s theorem

ż

M

pfpxtq ´ fpxqqdµpxq “

ż

M

ˆż t

0

dfpXpxsqqds

˙
dµpxq “

ż t

0

ˆż

M

dfpXpxsqqdµpxq

˙
ds “ 0.
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Hence, since
ş
M

pfpxtq ´ fpxqqdµpxq “ 0 for every t P R and f P C8pMq, it follows that µ

is invariant. Therefore, have sense Aµ and

Aµpηq “

ż

η

pXqdµ “

ż

M

η ^ ω “ ωpηq,

where ω is seen as a diffuse current. Now, by 1.7.9, the form ω determine a nonzero

cohomological class if and only if, as a diffuse current, determine a nonzero homological

class. The proof is completed.

Lemma 5.1.2. Let M be a manifold and Φ be a continuous flow on M with a periodic

point x under Φ. Then x is quasi-regular and λpxqAx “ rCxs, where λpxq2 is the period of

x and rCxs represents the integral homological class determined by the orbit of x under Φ.

Proof. If x is a fixed point, the assertion follows. Suppose x is not a fixed point. For each

smooth function f : M ÝÑ R, it is easily seen that

lim
tÝÑ8

1{T

ż T

0

fpxtqdt “ 1{λpxq

ż λpxq

0

fpxtqdt.

Therefore every periodic point x P M is quasi-regular. Set α : r0, T s ÝÑ M given by

αptq “ xt. Let f P C. Then

Axrf s “ lim
TÝÑ8

1

2πiT

ż T

0

f
1

pxtq{fpxtq

“ lim
TÝÑ8

1

2πiT

ż T

0

2πi
´
ωf pα

1

ptqqdt
¯

“ lim
TÝÑ8

1

T

ż

αpr0,T sq

ωf

“ 1{λpxq

ż

αr0,λpxqs

ωf .

Denoting by rCxs the integral homological class determined by the orbit of x parametrized

by α, then

rCxsprf sq “

ż

αr0,λpxqs

ωf “ λpxqAxrf s.

Therefore,

λpxqAx “ rCxs.

To prove the next theorem, let us mention a result of D. Montgomery and, for

later use, a mild generalization of it mentioned by D.B. Epstein in [21] (Theorem 7.3).

2 The period function is defined by λpxq “ inftě0txt “ xu.
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Theorem 5.1.3 (D. Montgomery, [58]). Let X be a connected metric space locally

homeomorphic to Rn. If T is a pointwise periodic homeomorphism of X into itself then T

is periodic.

Theorem 5.1.4 (K.C. Millett). Let M be a connected manifold and let G be a group of

homeomorphisms of M , such that the orbit of any point of P is finite. Then G is finite.

Proof of Theorem 5.0.1: Let Ω be a volume form on M and X be the vector field given

in the equation ω “ iXΩ. Denote by Φ the flow on M induced by X. Suppose every orbit

under Φ determines the same element in homology. Let µ the measure induced by Ω. By

Lemma 5.1.1, Aµ “ rωs. By 1.7.9 the homological class of ω as a diffuse current is zero

if and only if the cohomological class of ω is zero. It follows that Aµ ‰ 0. Now, given

f P C{R and ν be a Φ-invariant measure, it follows by Lemma 5.1.2 that

Aνrf s “

ż

M

Axrf sdνpxq

“

ż

M

1

τx
prCxs, rf sqdνpxq.

Therefore, rCxs ‰ 0 for all x P M , since rCxs independ on x by hypothesis and Aµ ‰ 0.

Let x0 P M and f P C{R such that prCx0
s, rf sq ‰ 0. Then

Aνrf s “ prCx0
s, rf sq

ż

M

1

λpxq
dνpxq

for all Φ-invariant measure ν. Now, since x ÝÑ λpxq is a positive function3, we conclude

that Aν ‰ 0 for all Φ-invariant measure ν. The theorems 2.4.3 and 4.3.2 together implies

that ω is intrinsically harmonic.

Conversely, suppose that ω is intrinsically harmonic. Then there exists a closed

1-form η such that ηpXq ą 0. By 1.8.3, we can take η “ f˚dθ with f : M ÝÑ S1 be a

submersion. By Ehresmann’s lemma 1.2.3 and Theorem 1.4.6, we have that f : M ÝÑ S1

determines a foliated bundle B, with the foliation given by the orbits under Φ. Such a

bundle is characterized by the holonomy homomorphism

ϕ : π1pS1q ÝÑ DiffpF q.

Since π1pS1q “ Z, the homomorphism ϕ is determined completely by the diffeomorphism

g “ ϕp1q. On the other hand, since each orbit under Φ is compact, the diffeomorphism g is

pointwise periodic. By Theorem 5.1.3, there exists k P Z such that ϕkp1q “ 1, concluding

that Φ is periodic. It follows easily that there is an smooth action Ψ : M ˆ S1 ÝÑ M with

the same orbits as Φ.

3 The function λ is lower-semicontinuous (see 6.5.3), hence Lebesgue measurable. It follows that
ş
M

fdν ‰
0 for any measure ν defined on the σ-algebra generated by all Borel subsets of M .
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5.2 Flat circle bundles

Every orientable smooth circle bundle B admits principal bundle structure. It

is a well-known fact that a principal bundle is trivial if, and only if, it admits a global

cross-section. In the case of circles bundles, there is a unique obstruction to the existence

of a global cross-section, an element

χpBq P H2pM ;Zq

called Euler characteristic of the bundle B ([59], page 346). Hence, an orientable circle

bundle B has a global cross-section if and only if χpBq “ 0. This cohomological class carries

not only information about the triviality of the circle bundle. As we will see, it is possible

to characterize when a circle bundle is smooth foliated in terms of this class. As already

said (see Section 1.4), these are classified by their holonomy homomorphisms. Namely,

there is a natural bijection between the set of all smooth foliated orientable circle bundles

over M modulo leaf preserving bundle isomorphism and the set of all homomorphisms

ϕ : π1pMq ÝÑ Diff`pS1q modulo conjugacy. Many papers were concerned about the

problem of the existence of a codimension-one foliation transverse to the fibers of a given

circle bundle, that is, the question of when is foliated a circle bundle. For circle bundles

with the base space being a surface, a necessary and sufficient condition for the existence of

a transverse foliation was obtained by J. Milnor [50] and J. W. Wood [90]. Circle bundles

with base space being a 3-manifold were studied by S. Miyoshi [55]. An answer to when is

smooth foliated a circle bundle was given in [56, 61].

In this section, the main result is to characterizing a flat circle bundle over an

orientable base. Also are given results on non-orientable circle bundles and circle bundles

with a non-orientable base similar to the previous one. As a consequence, but by a different

approach, we obtain the same results as in [56, 61].

Theorem 5.2.1. Let B “ tB, p,M, S1u be a differentiable orientable circle bundle over a

closed orientable manifold M . Let Ω be a volume form on M . Then B is smooth foliated if

and only if p˚pΩq is intrinsically harmonic.

Proof. Suppose that p˚pΩq determines a nontrivial cohomological class. Since the orbits of

the flow induced by p˚pΩMq are homologous to each other, Theorem 5.0.1 ensures that

p˚pΩq is an intrinsically harmonic form.

Conversely, suppose p˚pΩMq is intrinsically harmonic. Then there exists a

closed 1-form η transversal to the flow generated by p˚pΩMq. This form induces a foliation

transversal to the fibers of B. Since B has compact fibers, it follows by 1.4.6 that this

foliation is compatible and B becomes a smooth foliated bundle. The proof is completed.

Lemma 5.2.2. The isometry group of the sphere with the canonical metric is the orthog-

onal group.
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Proof. It is well-known that an isometry of a connected Riemannian manifold is charac-

terized by its value at a point x and the evaluation of its differential at x. That is, if f, g

are isometries of a connected Riemannian manifold M , fpxq “ gpxq, and dfx “ dfx then

f “ g (for example, see [63] page 143). Observe now that any element in Opn ` 1q is an

isometry of Sn. On the other hand, using linear algebra we can show that given x, y P Sn

and α, β ortonormal basis for TxS
n and TyS

n, respectively, there exists g P Opn ` 1q such

that gpxq “ y and dfx take the basis α in the basis β. Thus, Opn` 1q contains all possibles

isometries of Sn.

Lemma 5.2.3. Let g and h be Riemannian metrics on S1. Then there exists an isometry

f : pS1, gq ÝÑ pS1, hq.

Proof. Consider the usual covering map π : R ÝÑ R{Z “ S1. The Riemannian metrics π˚g

π˚h are related by a positive function, that is, there exists a smooth function f : R ÝÑ R

such that π˚g “ efπ˚h. The function f is necessarily invariant by translation of elements

in Z. It follows that the isometry

φptq “

ż x

0

e
1

2
fptqdt

between pR, π˚gq and pR, π˚hq induces an isometry between pS1, gq and pS1, hq.

Remark 5.2.4. If two Riemannian manifolds pM, gq and pN, hq are isometric by a function

f : M ÝÑ N , then the groups IsogpMq and IsohpNq are related by the isomorphism Φf :

IsogpMq ÝÑ IsohpNq given by Φf pθq “ f ˝ θ ˝ f´1. In particular, if f : pS1, gq ÝÑ pS1, canq

is an isometry, each element of IsogpS
1q have the form f ˝ Lθ ˝ f´1, where Lθ denotes the

left translation by θ P S1 (compare with [25], proposition 4.1).

Theorem 5.2.5. Let B “ tB, p,M, S1u be a smooth orientable circle bundle over a closed

orientable manifold. If p˚pΩMq determines a nontrivial cohomological class, then B is

Diff`pS1q-equivalent to a flat circle bundle.

Proof. In the proof of Theorem 5.2.1 we can take η with integral periods by Tischler’s

argument 1.8.3. Then η “ f˚dθ, for some smooth function f : B ÝÑ S1. It follows that B

is foliated by a compact foliation. Let

ϕ : π1pMq ÝÑ Diff`pS1q

be the holonomy homomorphism which characterizes this foliated bundle. Since each leaf of

Fη is compact and transversal to the fibers of B, then the orbit of any point in the fiber Bx

over x under the group ϕpπ1pMqq is finite (indeed, it is equal to #pf´1pfpxqq XBxq). This

and Theorem 5.1.4, implies that ϕpπ1pMqq is a finite group. Now, let g be a Riemannian

metric on S1. Set

hpX, Y q “
1

|ϕpπ1pMqq|

ÿ

kPϕpπ1pMqq

gpdϕpkqpXq, dϕpkqpY qq.
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Then, h is a Riemannian metric on S1 such that ϕpkq is an isometry for all k P Impϕq. It

follows by 5.2.3 that there exists a diffeomorphism f : S1 ÝÑ S1 such that f´1˝ϕpαq˝f P S1

for all α P π1pMq. The fiber bundle obtained considering as holonomy homomorphism the

map

ϕ
1

: π1pMq ÝÑ S1

given by ϕ
1
pαq “ f´1ϕpαqf is a differentiable principal flat bundle by 1.4.7. Furthemore,

this bundle is Diff`pS1q-equivalent to B by 1.4.2. The proof is completed.

Theorem 5.2.6. Let B “ tB, p,M, S1u be a differentiable principal circle bundle with M

closed and orientable. Then B admits a flat connection if and only if the form p˚pΩMq is

intrinsically harmonic.

Proof. Suppose that π˚ΩM is intrinsically harmonic. Then, by Theorem 5.2.5 there exists

a differentiable principal flat circle bundle which is Diff`pS1q-equivalent to B. It follows by

1.2.39 that B is differentiable isomorphic to B
1
as S1-bundles. To finish, a flat connection

in B
1
can be transferred to a flat connection for B by 1.2.31. The converse follows by 5.2.1.

The proof is completed.

Another characterization of flat circle bundles in terms of the real homological

class represented by the fiber is possible and depends on the next lemma.

Lemma 5.2.7. Let B “ tB, p,M, F u be a differentiable fiber bundle with compact total

space and base be an orientable manifold. Let Ω be a volume form on M with
ş
M

Ω “ 1.

Then, the Poincaré dual to the fiber of B can be represented by p˚Ω. In particular, rF s “ 0

in HdimF pB;Rq if and only if p˚Ω is an exact form.

Proof. Let x P M . Denote by F the fiber over x. Let U be a sufficiently small open set

diffeomorphic to Rn such that there exists a trivialization

φ : p´1pUq ÝÑ U ˆ F,

for which the normal bundle of F is equivalent to the trivial vector bundle τ : F ˆU ÝÑ F .

Denote by

π1 : U ˆ F ÝÑ U

the projection on the first factor. Given a n-form ω in U generating Hn
c pUq “ R (the

compactly supported cohomology), the closed form

η “ π˚
1ω

represents the Thom class of the bundle τ , because generates Hn
c ptyu ˆ Uq for each y P F

(proposition 6.18 of [4]). On the other hand, the Thom class of τ can be represented by
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the Poincaré dual of the null section, which in this case is F ( proposition 6.24 of the [4]).

Then, η represents the Poincaré dual of F in U ˆ F and, therefore,

φ˚η “ φ˚pπ˚
1ωq “ pπ1 ˝ φq˚ω “ p˚ω

represents the Poincaré dual of F in p´1pUq. The trivial extension of p˚ω to B gives the

Poincaré dual of F in B. Clearly ω defines a form in M , by trivial extension, and

prωs, rM sq “

ż

M

ω “

ż

U

ω “ 1 “ prΩM s, rM sq,

concluding that ΩM and ω are cohomologous. To finish, p˚ΩM and p˚ω are cohomologous

with π˚ω representing the Poincaré dual of F in B. Therefore, we have rF s “ 0 in

HdimF pB;Rq if, and only if, p˚ΩM is an exact form.

Example 5.2.8. Let B “ tB, p,M, F u be a differentiable fiber bundle with compact

total space and base be an orientable manifold. Suppose that χpF q ‰ 0 (the Euler

characteristic of F is nonzero). Let Ω be a volume form on M . Then π˚Ω determines a

nonzero cohomological class by 5.2.7. Indeed, since χpF q ‰ 0 it is not possible for F to be

a boundary and, therefore, we have rF s ‰ 0 in HdimF pB;Rq.

Theorem 5.2.9. A differentiable principal circle bundle B “ tB, p,M, S1u over a closed

orientable manifold admits a flat connection if, and only if, rS1s ‰ 0 in H1pB,Rq.

Proof. It follows by 5.2.1 and 5.2.7.

Example 5.2.10 (Plante, [64]). Given a smooth orientable sphere bundle B “ tB, p,M, Sku

we have from the Gysin cohomology sequence (real coefficients)

... ÝÑ HkpMq
p˚

ÝÑ HkpBq ÝÑ H0pMq
Ψ

ÝÑ Hk`1pMq ÝÑ ...

where Ψp1q P Hk`1pMq is just the Euler class of the bundle. Hence, the fiber is null-

homologous in HkpEq if and only if p˚ is surjective which is true if and only if the Euler

class is nonzero.

Theorem 5.2.11. A differentiable principal circle bundle B “ tB, p,M, S1u with closed

orientable base space admits a flat connection if and only if one (and consequently all) of

the four conditions below holds:

(1) p˚pΩMq is intrinsically harmonic;

(2) p˚pΩMq determines a nonzero cohomological class;

(3) the fiber represents a nonzero class in H1pB;Rq;

(4) χpBq is a torsion element.

Proof. It follows by 5.2.6, 5.2.7 and 5.2.10 and from the fact that the real Euler class

χRpBq of B is equal to χpBq b R.
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5.2.1 Smooth foliated circle bundle

Theorem 5.2.12. Let B “ tB, p,M, S1u be a circle bundle over a non-orientable closed

manifold. The fiber determines a nonzero real homological class if and only if B is smooth

foliated. In the case of B be smooth foliated, then B is a non-orientable manifold and B is

an orientable fiber bundle.

Proof. Since the real homological class determined by the fiber is nonzero, the flow Φ

induced by the it admits a global cross-section by 4.3.2 (this flow has only an assymptotic

circle given by the class of the fiber which is nonzero). By Corollary 4.3.3, there exists

a closed differential form ω transverse to the orbits under Φ. Thus, B is smooth foliated.

Conversely, suppose that B is smooth foliated. A compatible foliation to B being transversal

to the nowhere-vanishing vector field X given by the fibers of B must be induced from

a closed differential 1-form η by 2.4.7. Since the form η restricts to a nowhere-vanishing

form in the fibers, then each of these represents a nonzero homology class. Furthemore,

B is orientable since ω restricted to each fiber is a volume form. It follows now by 1.5.10

that B is non-orientable, since M is non-orientable and B is orientable.

Remark 5.2.13. By the latter theorem, a non-orientable circle bundle over a non-

orientable closed manifold cannot be smooth foliated.

Theorem 5.2.14. Let B “ tB, p,M, S1u be a non-orientable circle bundle over an ori-

entable closed manifold. Then B is smooth foliated if and only if the fiber represents

a nonzero real homological class (or the pullback of the volume form is intrinsically

harmonic).

Proof. The proof is similar to the one given in Theorem 5.2.12. In this case, in contrast

to the previous one, the fibers are the integral submanifolds of the distribution ker p˚Ω,

where Ω is any volume form on M . If this form is intrinsically harmonic, then B is smooth

foliated. Conversely, if B is smooth foliated, this foliation is given by the kernel of a closed

1-form by 2.4.7, necessarily transversal to p˚Ω. Hence p˚Ω is an intrinsically harmonic

form.

5.3 Characterization of the torus

By Tischler’s argument and the characterization of the covering spaces over

the n-torus, ti is the unique closed manifold admitting a set consisting of n closed forms

of degree one everywhere linearly independent. Moreover, if in a closed n-dimensional

manifold M there exists a set consisting of pn ´ 1q closed forms of degree one everywhere

linearly independent, say ω1, . . . , ωn´1, such that the product ω1 ^ . . .^ ωn´1 is a nonzero

cohomological class, then M and Tn are diffeomorphic.
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Proof of Theorem 5.0.4. By the Tischler’s argument 1.8.3, there exist integers dl and a

collection of smooth fiber bundles

Bl “ tM, pl,T
n´1u

such that

ηl “
1

dl
p˚
l pΩTn´1q ÝÑ ω

in Dn´1. Since the limit of exact forms is an exact form by 1.7.9, at most a finite number

of ηl can be cohomologous to zero. If in Bk we have ηk not cohomologous to zero, then ηk

is intrinsically harmonic by 5.2.1. Thus, there exist a closed 1-form η such that

ηl ^ η ą 0.

From the last equality, we can obtain a set with n linearly independet closed 1-forms defined

on M . Again by Tischler’s argument, there exists a surjective submersion g : M ÝÑ Tn.

The map g is proper, because M is compact. By Lemma 3 in [35], we conclude that g

is a covering map. A covering of Tn is diffeomorphic to Rn{H, where H is subgroup of

π1pT nq “ Zn. They are compact only when H have the form m1Z ˆ ¨ ¨ ¨ ˆ mnZ, mi P Z.

Therefore, M and Tn are diffeomorphic.

Remark 5.3.1. Let M be a manifold with a closed-decomposable form ω “ ω1 ^ ¨ ¨ ¨ ^ ωp

defined on M . By Tischler’s argument, there exist a sequence of integers pdiq and a

collection of smooth fiber bundles

Bl “ tM, pl,T
p, Flu

such that ωl “ 1
dl
p˚
l ΩTp ÝÑ ω in Dp. In particular, if ω determines a nonzero cohomological

class, then the forms π˚
l ΩTn are eventually not cohomologous to zero by 1.7.9. Suppose ω

is harmonic concerning to a Rimannian metric g on M . Then η “ ˚gω is a closed form

with rank pn ´ pq. Since ωl ÝÑ ω in Dp and ω ^ η ą 0, eventually we have ωl ^ η ą 0.

Theorem 2.1.2 ensures that ωl is intrinsically harmonic. From these observations, the study

of intrinsical harmonicity of closed-decomposable p-forms is equivalent to the study about

closed-decomposable p-forms π˚ΩTp given in fiber bundles B “ tM, p,Tp, F u over the

p-torus. We can start weakening the hypothesis in Theorem 2.1.2, considering only foliated

bundles. By a result of J.F. Plante in [64], the fiber of a foliated bundle having a torus

as base detemines a nonzero cohomological class. Indeed, in this case the group π1pTpq is

abelian group, hence it has polinomial growth. On the other hand, Plante showed that in

a foliated bundle where the fiber determines a zero homological class, the fundamental

group of the base has polinomial growth. Consequently, in a foliated bundle having a

torus as base, we have rπ˚pΩTpqs ‰ 0 by 5.2.7. More generally, using 3.3.8, we can obtain

the following equivalence: given a foliated bundle B “ tM, p,Tp, F u, the form π˚pTpq is

intrinsically harmonic if, and only if, B admits a SLppq-transversal foliation.
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6 Pointwise periodic flows on locally compact

metric spaces

In the preceding chapter, we gave a condition to a pointwise periodic volume-

preserving flow admits a global cross-section, Theorem 5.0.1. It was sufficiently strong

to show that every asymptotic cycle for the flow is a nontrivial homological class if the

induced pn´1q-form is not cohomologous to zero. We can extend this theorem for recurrent

volume-preserving flows since, for these, the existence of a global cross-section will depend

only on the class of the induced closed pn ´ 1q-form.

It is well-known from dynamical systems’ theory that a volume-preserving flow

is pointwise recurrent. Hence it is natural to ask if we can obtain a uniform recurrence

for them. We begin by analyzing what happens with a pointwise periodic flow (without

singularity). Is such kind of flow recurrent? Since we want to obtain a global cross-section

to flows and this condition is topological, then, to our purpose, we can ask if the orbits

under this flow are the orbits under a (continuous) recurrent flow. Given a pointwise

periodic flow Φ with period function λ, since the flow Ψpx, tq “ Φpx, λpxqtq (not necessarily

continuous) has same orbits as the flow Φ and also is periodic (hence recurrent), this lead

us to study the set of continuity of λ. Since D.B. Epstein [20] it is well-known that this

set is invariant, open, and dense. On the other hand, if a flow is recurrent on a dense

invariant subset, it is easily seen that it is recurrent (on full space). This fact leads to the

study of pointwise periodic flows with continuous period function (in this case, flows on

noncompact manifolds).

We noted that recurrence is equivalent to existing a suitable function sequence

converging uniformly to the identity. In general, a function sequence on a compact metric

space itself that converges uniformly determines an equicontinuous set. Thus, it is natural

to ask when, given a flow Φ, the collection tΦt; t P Ru is an equicontinuous set of functions.

Such flows are called equicontinuous. For example, flows induced by Killing vector fields

on Riemannian manifolds are equicontinuous. If a flow is equicontinuous, we can show the

recurrence property for it. Thus, using Carrière’s characterization of a geodesible flow, the

above observations enable us to provide one of nowhere-vanishing intrinsically harmonic

pn ´ 1q-forms, improving the one given in Chapter 2 (see Theorem 6.3.8).

Let X be a locally compact metric space and Φ be a continuous pointwise

periodic flow on X without singularity. We showed that the set of continuity of the period

function is open and dense as follows. We showed the existence of a local cross-section

through any point of X. Using these, we built Poincaré’s first return map. From then on,

the proof is identical as in Epstein’s paper [20]. For some kinds of flows, namely, locally
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weakly almost periodic flows, we showed that Poincaré’s first return is a homeomorphism

for a suitable local cross-section. We established this result using the characterization of a

locally weakly almost periodic flow given by W.H. Gottschalk [29], namely, flows whose

decomposition of the phase space by the closure-orbits under the flow is a closed decom-

position (equivalently, for compact metric spaces, the orbit space satisfies the Hausdorff

property). This fact is fundamental for the main results stated here, namely, Theorem

6.8.1.

This chapter is organized as follows. In Section 6.1, we specialize the recursive

properties of general transformation groups on arbitrary uniform spaces for flows on metric

spaces. In Section 6.2, we use the Arzelá-Ascoli Theorem to prove that an equicontinuous

flow on a compact metric space is recurrent. In general, any equicontinuous transformation

group on a compact metric space is almost periodic, which implies recurrence [26]. Also

it is presented a inheritance theorem for flows on compact metric spaces. In Section 6.3,

we show that a volume-preserving flow on a closed manifold has a global cross-section if,

and only if it is geodesible and the induced closed pn ´ 1q-form determines a nontrivial

cohomological class. In Section 6.4, we will establish the existence of a local cross-section to

continuous flows around periodic points not fixed when the metric space is locally compact.

From this, we built Poincaré’s first return map. This construction is used in Section 6.5 to

show the openness of the period function for pointwise periodic flows without singularity.

In Section 6.6, we present some conditions for equicontinuity and the relation with the

decomposition of the phase space by the orbit-closure under the transformation group. In

sections 6.7 and 6.8, we will study pointwise periodic flows and show that a C1-pointwise

periodic and equicontinuous flow on a compact manifold is periodic, generalizing a theorem

of A.W. Wasdley when the manifold is compact. In Section 6.9, we use the theory of

asymptotic cycle for compact metric spaces and the results of the preceding sections to

show that recurrent pointwise periodic C1-flow with bounded period function is periodic.

We finished this chapter with some problems for further study.

6.1 Recursive properties to flows

A flow on a topological space X is a continuous function Φ : X ˆ R ÝÑ X

such that the folowing axioms are satisfied:

1 Φpx, 0q “ x for all x P X.

2 Φpxt, sq “ Φpx, pt ` sqq for all x P X and s, t P R.

The second axiom can be written more concisely by pxtqs “ xpt ` sq. We will

denote by Φt the function x P X ÝÑ Φpx, tq P X. Since Φt ˝ Φ´t “ Φ0 “ 1, given any
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t P R, the function Φt is a homeomorphism of X into itself with inverse given by Φ´t. Let

A,B Ă R and X Ă M . The set AB and XA are defined by AB “ ta ` b; a P A, b P Bu

and XA “ txa;x P X, a P au.

The orbit of a point x P X under Φ is defined by xR “ txuR. The orbit space

X{Φ is defined as the image of the natural function π : X ÝÑ X{Φ, where πpxq “ πpyq

if and only if x “ yt for some t P R. The orbit space has the smallest topology such

that the function π is continuous. W.H. Gottschalk introduced in [27] many recursivity

notions for topological transformations group on uniform spaces. The definition below is a

specialization of some of these for metric spaces.

Definition 6.1.1. Let pX, dq be a metric space.

1) [Periodicity] A flow on X is said to be periodic provided there exists a nonzero real

number t such that xt “ x for all x P X.

2) [Almost periodicity] A flow on X is said to be almost periodic provided given ǫ ą 0

there exists a relatively compact subset A of R such that dpx, xtq ă ǫ for all t P A (a

subset A of R is said to be relatively compact if there exists a compact subset K of

R such that R “ KA).

3) [Locally almost periodicity] A flow on X is said to be locally almost periodic at x P X

provided given a neighborhood U of x there exists a neighborhood V of x and a

relatively compact subset A of R such that V A Ă U . A flow is said to be locally

almost periodic if it is locally almost periodic at each point of X.

4) [Weakly almost periodicity] A flow on X is said to be weakly almost periodic provided

given ǫ ą 0 there exists a compact subset K of R such that for each x P X and t P R,

there exists s P K with dpxt, xsq ă ǫ.

5) [Locally weakly almost periodicity] A flow on X is said to be locally weakly almost

periodic at x P M provided given a neighborhood U of x there exists a neighborhood

V of x and a compact subset K of R such that V R Ă UK. A flow is said to be

locally weakly almost periodic if it is locally weakly almost periodic at each point of

X.

6) [Equicontinuity] A flow on X is said to be equicontinuous at x P M provided given

ǫ ą 0 there exists δ ą 0 such that dpx, yq ă δ implies dpxt, ytq ă ǫ. The flow is said

to be uniformly equicotinuous provided given ǫ ą 0 there exists δ ą 0 such that

dpx, yq ă δ implies dpxt, ytq ă ǫ for all t P R.

7) [Recurrence] A flow on X is said to be recurrent provided there exists a sequence

tn ÝÑ 8 such that limnÝÑ8 supxPX dpx, xtnq “ 0. Equivalently, a flow is recurrent if

given s, ǫ ą 0, there exists t ą s such that dpx, xtq ă ǫ for all x P X.
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8) [Distality] A flow on X is said to be distal provided given x ‰ y there exists ǫ ą 0

such that dpxt, ytq ě ǫ for all t P R.

Remark 6.1.2. Let X be a compact metric space and Φ be a continuous flow on X. It is

relatively easy to check that:

(1) if Φ is equicontinuous, then Φ is uniformly equicontinuous;

(2) if Φ is locally weakly almost periodic, then Φ is weakly almost periodic.

Remark 6.1.3 (Transformation group in general). A transformation group is a triple

pX,T, πq consisting of a nonvacuous topological space X, a topological group T and a

continuous map π : X ˆ T ÝÑ X satisfying the same conditions of a flow, namely, xe “ x

and pxtqs “ xptsq for all x P X, s, t P T , where e denotes the identity element of T . We

will now see as we can extend the recursive properties given in 6.1.1 for transformation

groups in general. For this aim, we need to define a class of subsets of T . A subset A of

T is said to be {left} {right} syndetic in G provided that tT “ AKutT “ KAu for some

compact subset K of T . If A is an invariant subgroup, that is, gAg´1 Ă A for all g P T ,

then A is left syndetic if, and only if, is right syndetic, hence for invariant subgroups for

short we say only syndetic. If a flow Φ is periodic with period t, then xt “ x for all x P X.

Hence, H “ tmt P Zu is a syndetic subset of R and xs “ x for all x P X and s P H. Thus,

we have a reasonable definition of periodic transformation group: a transformation group

is said to be periodic if there exists a syndetic subset P of T such that xt “ x for all t P P .

A transformation group is said to be almost periodic if given ǫ ą 0, there exist a syndetic

subset A of T such that dpx, xtq ă ǫ for all t P A. The notions of weakly almost periodicity,

locally almost periodicity, locally weakly almost periodicity, distality, and equicontinuity

for transformation groups follow analogously. The notion of recurrence for a transformation

group requires more definitions. A subset A of T is said to be replet provided S contains

some bilateral translate of each compact subset of T (for instance, the sets A “ rt,8q

are replete in R). A subset of A of T is said to be extensive provided that intersept every

replet semigroup in T (a semigroup of T is a subset S satisfying SS Ă S). For instance, if

T “ R, then a subset A of T is extensive if, and only if, contains a sequence marching to

`8 and a sequence marching to ´8. A transformation group T is said to be recurrent if

given ǫ ą 0, there exists an extensive subset A of T such that dpx, xtq ă ǫ for all t P A.

6.2 Recurrence from equicontinuity

Let X be a topological space and a pY, dq be a metric space. The space CpX, Y q

of all continuous functions of X to Y has a natural topology induced by the metric d. It is

called the topology of uniform convergence and has as subbasis for open subsets the sets

Bǫpfq “ tg P CpX, Y q{ sup
xPX

dpfpxq, gpxqq ă ǫu
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where f range over CpX, Y q and ǫ range all the real numbers. It and the co.o.-topology

coincides when X is compact 1. When X is noncompact, the latter is coarsest than the

former.

Theorem 6.2.1 (S. Myers, [60]). Let C be the family of all continuous functions from a

regular, locally compact, and Hausdorff topological space into a metric space and C has

the co.o.-topology. Then a subfamily T of C is compact if and only if

(1) T is closed in C,

(2) xT has compact closure for each x P X, and

(3) the family T is equicontinuous2.

.

Comparing Theorem 6.2.1 with the original in Mayers’ paper, the hypothesis

that xT is compact for all x P X replaces the connectedness ofX and completeness of Y ; see

also [41] pages 233-234. S. Myers also concluded the following. Let G be an equicontinuous

group of homeomorphisms on metric space into itself. If G has the co.o.-topology, then it is

a topological group. It follows that G equipped with the co.o.-topology is also a (compact)

group of transformations on X.

Lemma 6.2.2. Let G be a compact topological group. Given g P G, there exists a sequence

of integers nk ÝÑ 8 such that gnk ÝÑ e.

Proof. SinceG is compact, given g P G, the sequence pgnqnPN has a convergente subsequence

pgmsq. Given any integer k, let mr P tmsu such that nk :“ mr ´mk ą k, mk P tmsu. Using

the continuity of the product and inversion operations of G and letting k ÝÑ 8, then

gnk “ gmrg´mk ÝÑ e.

The proof is completed.

Theorem 6.2.3. An equicontinuous flow on compact metric space is recurrent.

Proof. Let Φ be an equicontinuous flow on a compact metric space X. If Φ is periodic, there

is nothing to be done. Suppose Φ not periodic. Then G “ tΦtu is an equicontinuous group

of homeomorphisms of X. It follows by 6.2.1 and 1.2.19 that G with the co.o.-topology

is a compact topological group. Hence, from 6.2.2, given t P R, there exists a sequence

1 More generally, when Y is a uniform space, one can define this notion analogously. See [41] page 230
for the equivalence between the topology of uniform convergence and the co.o.-topology for compact
uniform spaces.

2 A set T of continuous functions from a topological space X into a metric space pY, dq is called
equicontinuous provided corresponding to each x0 P X and each ǫ ą 0, there is a neighborhood U of x0

in X such that dptx0, txq ă ǫ for all t P T and all x P U .
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nk ÝÑ 8, nk P Z, such that Φtnk
ÝÑ 1 in the co.o.-topology. Since X is compact, the

co.o.-topology coincides with the uniform topology. It follows that Φtnk
ÝÑ 1 uniformly,

hence Φ is recurrent.

The inheritance theorem consists of proving the following. If the flow admits a

recursive property, then some category of subgroups admits this property. Such a kind of

theorem is treated extensively in the book Topological Dynamics [29]. R. A. Christiansen

provided in [12] an inheritance theorem for recurrent transformation group pX,T, πq where

X is a compact uniformizable space. Next, we establish an inheritance theorem for flows.

Theorem 6.2.4. Let Φ be a continuous flow on a compact metric space pX, dq. Let H be a

nontrivial subgroup of R. Then Φ is recurrent if and only if the restriction Φ : XˆH ÝÑ X

is a recurrent flow.

Proof. Suppose there exists a sequence tn ÝÑ 8 such that Φtn ÝÑ 1X uniformly. Let

h P H be a positive number. For each n P N, write tn “ knh ´ αn, with kn P Z and

αn P r0, hs. Set F “ tΦt{t P r0, hsu with the topology of r0, hs. This topology on F is

compact and admissible. Hence, by 1.2.22, it coincides with the co.o.-topology. Taking a

subsequence if necessary, we have that Φαn
ÝÑ Φα in the co.o.-topology for some α P r0, hs.

Since the group of homeomorphisms of X with the co.o.-topology is a topological group by

1.2.19, then Φknh ÝÑ Φα in this topology. For each n P N, let km such that km ´ kn ą n.

Then, pkm ´ knqh P H and letting n ÝÑ 8 we have

pkm ´ knqh ÝÑ 8

and

Φpkm´knqh “ ΦkmhΦ´knh ÝÑ 1.

Since M is compact, the co.o.-topology and the uniform topology coincides. It follows that

the restriction Φ : X ˆ H ÝÑ X is a (possibly discrete) recurrent flow.

6.3 A characterization of volume-preserving flows with a global

cross-section

If a closed manifold supports a smooth flow with a global cross-section, then

there exists a Riemannian metric so that each orbit under the flow is a geodesic (see 6.3.7).

In this section, we provide the converse for volume-preserving flows. We have shown that

it depends only on the cohomological class determined by the induced form. From this, by

proving Theorem 6.3.8, we improve the characterization of nowhere-vanishing intrinsically

harmonic pn´ 1q-forms presented in Chapter 2. Throughout this section, the flows and

vector fields considered are smooth.
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Definition 6.3.1. Let M be a manifold. A flow on M is said to be geodesible if there

exists a Riemannian metric g on M such that every orbit under the flow is a geodesic.

Theorem 6.3.2. Let M be a manifold and X be a nowhere-vanishing vector field on M .

Are equivalents:

(1) there exists a 1-form ω with ωpXq “ 1 and LXω “ 0;

(2) there exists a 1-form ω with ωpXq “ 1 and iXdω “ 0;

(3) the flow generated by X is geodesible by a Riemannian metric g satisfying gpX,Xq “

1;

(4) there exists a pn ´ 1q-plane bundle P Ă TM , complementary to X, such that

rX, Y s P P for all Y P P .

Proof. First of all, let g be a Riemanninan metric on M satisfying gpX,Xq “ 1. Let ω be

the 1-form given by ωpY q “ gpX, Y q. We claim that

LXωpY q “ gp∇XX, Y q,

where ∇ is the Levi-Civita connection associated to g. Let px1, . . . , xnq be a local coordinate

system with Bx1
“ X. Denoting Y “ Bxi

, we have

LXωpY q “ LXpωpY qq ´ ωpLXpY qq.

Since LXpY q “ rBx1
, Bxi

s “ 0, then

LXωpY q “ LXpωpY qq “ LXpgpX, Y qq “ gp∇XX, Y q ` gpX,∇XY q.

Using the equations ∇XY “ ∇YX ` LXY and LXY “ 0, we have

LXωpY q “ gp∇XX, Y q ` gpX,∇YXq.

By the equality Y gpX,Xq “ 2gpX,∇YXq then

LXωpY q “ gp∇XX, Y q `
1

2
Y gpX,Xq.

Hence, since gpX,Xq “ 1, it follows that

LXωpY q “ gp∇XX, Y q,

concluding the claim.

(1)ñ(2) If ωpXq “ 1 and LXω “ 0, then

0 “ LXω “ diXω ` iXdω.

Since dpωpXqq “ 0, it follows that iXdω “ 0. Thus, (1) implies (2).
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(2)ô(3) Suppose now that ω is a 1-form satisfying ωpXq “ 1 and LXω “ 0. Let h be a

Riemannian metric onM such that X and kerω are orthogonal concerning h. Setting

g “ 1
hpX,Xq

h, we have gpX,Xq “ 1 and ωpY q “ gpX, Y q (since any Y is expressible

as ωpY qX ` Z, with Z P kerω). Now, since LωpY q “ gp∇XX, Y q for all Y , and

LX “ 0, it follows that ∇XX “ 0, hence X is geodesible. Conversely, if all orbits

under the flow generated by X are geodesic concerning to a Riemannian metric

g on M , then the form ωpY q “ gpX, Y q satisfies LXω “ 0. Thus (2) and (3) are

equivalents.

(2)ñ(4) Suppose there exists a 1-form ω with ωpXq “ 1 and iXdω “ 0. Set P “ kerω. Given

Y P P we have

ωprX, Y sq “ ´dωpX, Y q ` XωpY q ´ Y ωpXq “ 0.

Hence rX, Y s P P whenever Y P P . Thus, (2) implies (4).

(4)ñ(1) Suppose (4) holds. Let g be a Riemannian metric on M such that X and P are

orthogonal and gpX,Xq “ 1 . Set ωpY q “ gpX, Y q. Note that P “ kerω and

ωpXq “ 1. Given Y P P , we have

iXdωpY q “ XpωpY qq ´ Y pωpXqq ` ωprX, Y sq.

Since rX, Y s P P by hypothesis, it follows that iXdω “ 0. Hence

LXω “ diXω ` iXdω “ 0.

Remark 6.3.3. The Theorem 6.3.2 follows from Rummler’s criterion 3.3.4 since a 1-

dimensional submanifold is minimal if, and only if, it is a geodesic.

Definition 6.3.4. A flow Φ : p´ǫ, ǫq ˆ M ÝÑ M on a Riemannian manifold pM, gq is

said to be isometric provided Φt is an isometry for all t P p´ǫ, ǫq. A vector field X on

pM, gq is said to be Killing if the flow generated by X is isometric. A flow Φ on M is said

to be isometrisable, if there exists a Riemannian metric g on M such that Φ is given by a

nowhere-vanishing Killing vector field.

Theorem 6.3.5 (Y. Carrière, [11]). A nowhere-vanishing vector is geodesible if and only

if it is isometrisable.

Proof. Suppose that X is a nowhere-vanishing Killing vector on a Riemannian manifold

pM, gq. Denote by Φ the flow generated by X. Given x P M , we have

rX, Y spxq “ LXY pxq “ lim
tÝÑ0

1{tppΦ´tq˚YΦtpxq ´ Yxq.
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Hence LXY pxq is orthogonal to Xpxq since Y pxq and Xpxq are orthogonal and Φt is

isometry for all t where Φt have sense. Thus, the pn´1q-plane bundle set as the complement

orthogonal to X satisfies the condition (4) of Theorem 6.3.2. Therefore, X is geodesible.

Conversely, suppose there exists a Riemannian metric g onM such that ∇XX “

0. Since gpX,Xq is constant, we can suppose gpX,Xq “ 1. We will use the well-known

characterization: a vector field X is Killing if and only if LXg “ 0. Since

LXgpY, Zq “ 1{2tLXgpY ` Z, Y ` Zq ´ LXgpY, Y q ´ LXgpZ,Zqu,

it is enough to show that LXgpY, Y q “ 0 for all Y P TM . Now, LXg is a tensor. Hence it

is determined only by its value at X and XK. Since

LXgpY, Zq “ XgpY, Zq ´ gpLXY, Zq ´ gpY,LXZq,

we have

LXgpY, Y q “ XgpY, Y q ´ 2gpLXY, Y q.

Using the equality LXY “ rX, Y s “ ∇XY ´ ∇YX, then

LXgpY, Y q ´ XgpY, Y q “ ´2gpLXY, Y q “

´2gp∇XY ´ ∇YX, Y q “

´2t1{2XgpY, Y q ´ gp∇YX, Y qu “

2gp∇YX, Y q “

2tY gpX, Y q ´ gpX,∇Y Y qu “

´2gpX,∇Y Y q.

It follows from these calculations that

LXpY, Y q “ XgpY, Y q ´ 2gpX,∇Y Y q for all Y P TM. (6.1)

Let x P X. Given vi P TxM such that tXpxq, v2, . . . , vnu is an ortonormal basis for TxM ,

and open set U Ă TpM such that expx : U ÝÑ exppUq is a diffeomorphism, the function

ψpx1, x2, . . . , xnq “ expxpx1Xpxq ` x2v2 ` . . . ` xnvnq

is a local coordinate neighborhood safistying ∇Bxi
Bxi

pxq “ 0 for all i “ 1, . . . , n. Then,

using the equation 6.1 we have

LXpBxi
, Bxi

qpxq “ XgpBxi
, Bxi

qpxq ´ 2gpXpxq,∇Bxi
Bxi

pxqq “ XgpBxi
, Bxi

qpxq.

Since the curve αptq “ expxptXpxqq is a geodesic with α
1
p0q “ Xpxq, and by hypothesis

∇XX “ 0, it follows by unicity of geodesics that α
1
ptq “ Xpαptqq for all t. Thus,

XgpBxi
, Bxi

qpxq “
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α
1

ptqgpBxi
, Bxi

q|t“0 “

2gp∇Bx1
Bxi

pxq, Bxi
pxqq “ 0.

Therefore X is a Killing vector field.

Theorem 6.3.6. Let M be an orientable closed manifold. A nowhere-vanishing volume-

preserving flow on M has a global cross-section if it is geodesible and the induced closed

pn ´ 1q-form determines a nontrivial cohomological class.

Proof. Let X be a geodesible vector field. Let Φ the flow generated by X. By Carrière’s

theorem 6.3.5, there exists a Riemannian metric g on M such that Φt is isometry for all

t P R. The Riemannian metric g induces a metric d on M generating the topology of M .

Since M is compact, given x, y P M , there exists a (minimizant) geodesic γ on M with

dpx, yq “ lenghtpγq (see [10], chapter 7). Now, an isometry f : M ÝÑ M carries geodesic

in geodesic and preserves the length of curves. Hence, if dpx, yq “ lpγq, then

dpfx, fyq ď lpfγq “ lpγq.

Given now γ
1
be a minimizant geodesic from fx to fy, then

dpx, yq ď lpf´1γ
1

q “ lpγ
1

q.

Therefore dpfx, fyq “ dpx, yq for all x, y P M . It follows that a Riemannian isometry

preserves the induced metric d. From this we conclude that Φ is a (uniformly) equicontinuous

flow on pM,dq. The Theorem 6.2.3 then ensures that Φ is a recurrent flow. We know by

Theorem 4.1.16 a recurrent flow has only one asymptotic cycle. Since the class of the

closed pn ´ 1q-form induced by X is an asymptotic cycle by 5.1.1 and also determines a

nontrivial cohomological class by hypothesis, it follows by Theorem 4.3.2 that there exists

a global cross-section to Φ. The proof is completed.

Theorem 6.3.7. A flow Φ on a closed manifold M has a global cross-section if, and only

if, it is geodesible and admits a nontrivial asymptotic cycle.

Proof. It remains only to show that flows with global cross-section are geodesible (since

geodesible flows have the same orbits as a recurrent one). Let Φ be a flow on M with a

global cross-section. Then every asymptotic cycle of Φ is nontrivial. Hence by Corollary

4.3.3, there exists a closed 1-form ω transversal to Φ. Let X be the vector field generating

Φ. Then ωpXq ą 0 and, trivially, iXdω “ 0. Thus, the vector field Y “ 1
ωpXq

X generates

a flow with the same orbits under Φ and satisfies ωpY q “ 1 and iY dω “ 0. It follows by

6.3.2 that Φ is geodesible.

We finish this section with a characterization of nowhere-vanishing intrinsically

harmonic pn ´ 1q-forms.
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Theorem 6.3.8. Let ω be a nowhere-vanishing closed pn ´ 1q-form on a closed manifold

M and X be a vector field generating the foliation induced by ω. Suppose rωs ‰ 0 in

Hn´1
DR pMq. Are equivalentes:

(1) there exists a 1-form η satisfying η ^ ω ą 0 and iXdη “ 0;

(2) X is geodesible;

(3) X is Killing for some Riemannian metric on M ;

(4) ω is intrinsically harmonic.

Proof. It remains only show that the condition given in (1) implies (2). In this case, we

have that ηpXq ą 0. Thus, Y “ 1
ηpXq

X induce a flow with the same orbits as the flow

generated by X. Furthermore, it satisfies

ηpY q “ 1 and iY dη “ 0.

Hence Y is geodesible by 6.3.2. It follows that X is geodesible. The proof is completed.

It is reasonable the conjecture that a closed manifold is the total space of a

fiber bundle over the circle if, and only if, it admits a nowhere-vanishing closed pn ´ 1q-

form determining a nonzero cohomological class. This assertion is the “dual” of Tischler’s

theorem, which asserts a closed manifold is the total space of a fiber bundle over S1 if

and only if admits a nowhere-vanishing closed 1-form. The necessity condition follows

since if p : M ÝÑ S1 is a submersion, M closed, then the closed-form p˚dθ is intrinsically

harmonic, hence there exists a closed pn´ 1q-form ω satisfying ω ^ p˚dθ ą 0. Furthemore,

a volume-preserving flow is pointwise recurrent, then, maybe, it is recurrent in sense of

definition 6.1.1.

6.4 Local cross-section to flows

In this section, we establish the existence of local cross-section to flows on

locally compact metric spaces around periodic points (such constructions are possible for

recurrent points). From this, we built Poincaré’s first return map and the map of the first

return.

Definition 6.4.1 (Local cross-section). Let X be a topological space and Φ : XˆR ÝÑ R

be a continuous flow on X. A subset K of X is said to be a local cross-section to Φ through

x P X provided there exist ǫ ą 0 such that the natural map Φ : K ˆ r´ǫ, ǫs ÝÑ Sr´ǫ, ǫs is

bijective and x is an interior point of Kr´ǫ, ǫs. We will denote this configuration by pK, ǫq.
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Remark 6.4.2. Let X be a Hausdorff topological space and Φ be a continuous flow on

X. Suppose that there exists a local cross-section pK, ǫq through x P X, with K compact.

Then the natural map K ˆ r´ǫ, ǫs ÝÑ K being a continuous bijective map between a

compact space and a Hausdorff space become a homeomorphism. From this, it is easily

seen that for every t, with |t| ă ǫ, the point xt is an interior point of Kr´ǫ, ǫs.

Remark 6.4.3 (The local cross-section for built the Poincaré’s first return map). Let X be

a metric space and Φ be a continuous flow on X periodic at x P X. Suppose there exists a

local cross-section pK, ǫq through x, with K compact. Then, given a positive number ǫ with

ǫ ă λpxq{2, there exists a neighborhood K
1
of x in K such that pK

1
, λpxq{2 ´ ǫq is a local

cross-section through x. By Remark 6.4.2, it is suffice to show that for some neighborhood

U of x in K, the natural map U ˆ r´λpxq{2 ` ǫ, λpxq{2 ´ ǫs ÝÑ X is injective. Otherwise,

there exist sequences yn, zn ÝÑ x with yn ‰ zn and tn, sn with |tn|, |sn| ď λpxq{2 ´ ǫ and

yntn “ znsn. Taking a subsequence if necessary, we can suppose that tn ÝÑ t and sn ÝÑ s.

Hence, xt “ xs and, therefore, s ´ t “ mλpxq for some m P Z. Since |tn ´ sn| ď λpxq ´ 2ǫ

for all n, it follows that |t ´ s| ď λpxq ´ ǫ, hence m “ 0. Thus, given n with |tn ´ sn| ă ǫ

we have ynptn ´ snq “ zn with |tn ´ sn| ă ǫ, yn, zn P K. Since pK, ǫq is a local cross-section,

then tn ´ sn “ 0 and yn “ zn, a contradiction.

6.4.1 Poincaré’s first return map

Let X be a metric space and Φ : X ˆ R ÝÑ X be a continuous flow periodic

at x P X. Suppose there exists a local cross-section pK, ǫq through x with K compact

(necessarily we have λpxq ą 0). We can take ǫ with 4ǫ ă λpxq. By 6.4.3 there exists K

such that pK,λpxq{2 ´ ǫq and pK, 2ǫq are also local cross-section through x. The function

g : Kr´ǫ, ǫs ÝÑ M given by gpyq “ yλpxq is continuous. Since gpxq “ x and x is an interior

point of Kr´ǫ, ǫs, there exists a neighborhood U of x in M such that gpUq Ă Kr´ǫ, ǫs.

Then Uλpxq Ă Kr´ǫ, ǫs. We will make use of the following constructions and facts.

(1) (Poincaré’s first return map) Let y P U . Since gpyq P Kr´ǫ, ǫs and pK, ǫq is a local

cross-section, there exist s P r´ǫ, ǫs and k P K with yλpxq “ ks. Furthemore, k and

s are uniquely determined. Set

f : U ÝÑ R and T : U ÝÑ K

by fpyq “ λpxq ´ s and T pyq “ k “ yfpyq. The function f is called the time for the

first return. Note that T is injective, since if T pyq “ T pzq “ k, then yλpxq “ ks “

kl “ zλpxq, with k P K and s, l P r´ǫ, ǫs. Since pK, 2ǫq is also a local cross-section,

y, z P K, |l ´ s| ď 2ǫ and y “ zpl ´ sq, it follows that s “ l and y “ z.

(2) T and f are continuous. Denote by p1 and p2 the natural projections K ˆ R ÝÑ K

andKˆR ÝÑ R, respectively. Since yλpxq “ Φ|Kˆr´ǫ,ǫspk, sq, and Φ : Kˆr´ǫ, ǫs ÝÑ
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Kr´ǫ, ǫs is a homeomorphism (see 6.4.2), then

T pyq “ p1

`
Φ|Kˆr´ǫ,ǫs

˘´1
pyλpxqq and fpyq “ p2

`
Φ|Kˆr´ǫ,ǫs

˘´1
pyλpxqq

are continuous. IfX is a smooth manifold, those maps have the class of differentiability

of Φ.

(3) Suppose now that Φ is pointwise periodic. Denote by λ the period function of Φ.

We will show that f ď λ for small U . Since λ is lower semincontinuous (see Lemma

6.4.5 below), there exists a neighborhood W of x in M such that y P W implies

λpyq ą λpxq´ ǫ. Taking U smaller if necessary, we can suppose that U Ă W . Suppose

that fpyq “ λpyq ` r, r ě 0. Then fpyq “ λpxq ´ s “ λpyq ` r. This implies that

0 ď r “ λpxq ´ λpyq ´ s ă 2ǫ, since λpyq ą λpxq ´ ǫ and ´ǫ ď s ď ǫ. Then

k “ yfpyq “ ypλpyq ` rq “ yr. But the function Φ : K ˆ r´2ǫ, 2ǫs ÝÑ Kr´2ǫ, 2ǫs is

bijective and k “ Φpk, 0q “ Φpy, rq. This implies that k “ y and r “ 0, concluding

that f ď λ.

(4) Suppose now that λ is continuous at x P X. Then f “ λ for a small U . Therefore,

the Poincaré first return map is the identity for a small U and λ is continuous

in U . In the construction, take W a neighborhood of x such that y P W implies

´ǫ ă λpyq ´ λpxq ă ǫ. If fpyq “ λpyq ´ r, with r ě 0, then r “ λpyq ´ λpxq ` s ă 2ǫ.

As in the item (3), we conclude that r “ 0. It follows that T pyq “ yfpyq “ yλpyq “ y.

Remark 6.4.4. In the contruction of the Poincaré’s first return map, the map of first

return f has this name due to the following characterization:

fpyq “ inf
tą0

tyt P Ku.

Hence why the name “Poincaré’s first return map”. Indeed, suppose that given y P K,

there exists 0 ă t ď fpyq with yt P K. Since pK,λpxq{2 ´ ǫq is local cross-section, then

t ą λpxq{2 ´ ǫ. Now, fpyq “ λpxq ´ s, |s| ď ǫ, and yfpyq “ k, yt “ k
1
, for some k, k

1
P K.

It follows that k
1

“ kpt ` s ´ λpxqq. We have

λpxq{2 ´ ǫ ă t ď λpxq ´ s ùñ

´λpxq{2 ´ ǫ ` s ă t ` s ´ λpxq ď 0 ùñ

´λpxq{2 ` ǫ ď ´λpxq{2 ´ ǫ ` s ` 3ǫ ď t ` s ´ λpxq ` 3ǫ ď 3ǫ ă λpxq{2 ´ ǫ.

Thus, k
1
p3ǫq “ kpt` s´ λpxq ` 3ǫq with 3ǫ, |t` s´ λpxq ` 3ǫ| ď λpxq{2 ´ ǫ and k, k

1
P K.

Since pK,λpxq{2 ´ ǫq is a local cross section, then k “ k
1
and t` s´λpxq “ 0. This proves

the claim.

Lemma 6.4.5. Let Φ be a continuous pointwise periodic flow without singularity3 on a

metric space X. Then the period function λ is lower semicontinuous.
3 By a flow Φ on topological space X without singularity we mean one without fixed point, that is, if

xt “ x for some x P X and t P R then t “ 0.
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Proof. Let x P X. It is enough to show that if λpxq ą t, t P R, then there exists a

neighborhood U of x such that λpyq ą t for all y P U . Suppose λpxq “ 0 and λpxq ą t.

Then t is a negative number. It follows that λpyq ą t for all y P X, since λ is a nonnegative

function. Hence, there is no loss of generality in assuming t ą 0 and λpxq ą 0. Set

f : X ˆ r´t, ts ÝÑ R the function given by fpy, sq “ dpy, ysq. Since λpxq ą t and

λpxq ‰ 0, we have that fpx, δq ą 0 for all δ P r´t, ts. By the continuity of f , there exist

neighborhoods Uδ of x and Iδ of δ such that f is positive on Uδ ˆ Iδ. Let δ1, ¨ ¨ ¨ , δk such

that r´t, ts “
Ť
Iδi

and set U “
Ş
Uδi

. It follows that U is neighborhood of x and f is

positive on U ˆ r´t, ts. In particular, given y P U we have that λpyq ą t, concluding that

λ is lower semicontinuous.

6.4.2 Existence of local cross-section to continuous flows on locally compact

metric spaces

Let X be a metric space and Φ be a continuous flow on X. Let f : X ÝÑ R be

a continuous function. We call f be diferentiable with respect to the flow provided that

the limit limtÝÑ0 fpxtq exists for all x P X. This limite will be denoted by f
1
pxq.

Theorem 6.4.6. Let X be a locally compact metric space and Φ be a continuous flow

on X. Let f : X ÝÑ R be a continuous function differentiable with respect to the flow.

Suppose that f
1
pxq ą 0 and the function f

1
is continuous at x P X. Then there exists a

compact local cross-section through x.

Proof. We claim that there exists ǫ ą 0 and a compact neighborhood U of x in X such

that the function t P r´2ǫ, 2ǫs ÝÑ fpytq is increasing for each y P U . Indeed, let V be

a neighborhood of x in X such that f
1
pyq ą 0 for each y P V . By continuity of Φ and

the local compactness of X, there exists a compact neighborhood U of x in X and δ ą 0

such that ΦpU, r´2ǫ, 2ǫsq Ă V . If y P U , then f
1
pytq ą 0 for |t| ă 2ǫ. Thus, the function

t P r´2ǫ, 2ǫs ÝÑ fpytq is an increasing function as claimed.

We will now show that the compact set K “ U X f´1pxq is a local cross-section

through x. The proof will be divided into two steps.

(1) The natural function Φ : K ˆ r´ǫ, ǫs ÝÑ Kr´ǫ, ǫs is a continuous bijection. Indeed.

This function is continuous since it is the restriction of such one. Now, if y1t1 “ y2t2,

then y1 “ y2pt2 ´ t1q and fpy1q “ fpy2pt2 ´ t1qq with fpy1q “ fpy2q “ fpxq. Since

the function t P r´ǫ, ǫs ÝÑ fpy2tq is one-to-one for |t| ă 2ǫ and fpy2q “ fpy1q “

fpy2pt2 ´ t1qq with |t2 ´ t1| ă 2ǫ, then t2 ´ t1 “ 0. Therefore y1 “ y2.

(2) The point x is an interior of Kr´ǫ, ǫs. Indeed, since X is a locally compact metric

space, f is continuous at x, and the flow is continuous, for each n P N, we can obtain

a compact neighborhood Un of x such that y P Un implies ´ 1
n

ă fpxq ´ fpyq ă 1
n
.
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Moreover, we can take such a neighborhoods satisfying Un`1 Ă Un and Unr´ǫ, ǫs Ă U

for all n P N. Set

sn “ suptfpyp´ǫqq; y P Unu and tn “ inftfpyǫq; y P Unu.

Then tsnu is a monotone limited non-increasing sequence and ttnu is a monotone

limited nondecreasing sequence. For each n P N, let yn P Un such that fpynp´ǫqq “ sn.

By continuity of f at x and the continuity of Φ we have

lim sn “ fplim ynp´ǫqq “ fpxp´ǫqq

and, analogously, lim tn “ fpxǫq. Thus, since fpxp´ǫqq ă fpxq ă fpxǫq, there exists

m such that sm ă fpxq ă tm. Taking m ą 1{ǫ, If y P Um, we have that

fpyp´ǫqq ď sm ă fpxq ă tm ď fpyǫq.

Using the continuity of t P r´ǫ, ǫs ÝÑ fptyq and the connectedness of r´ǫ, ǫs, we

can ensure the existence of |t| ă ǫ such that fpytq “ fpxq. By construction of the

sequence Un, yt P U . Therefore, yt P U X f´1pxq “ K. It follows that y P Kr´ǫ, ǫs.

Hence Um Ă Kr´ǫ, ǫs, concluding that x is an interior point of Kr´ǫ{2, ǫ{2s.

Lemma 6.4.7. Let Φ be a continuous flow without singularity on a locally compact metric

space X. Then there exists a compact local cross-section through each point x P X4 .

Proof. Let x P X. If x is a periodic point under Φ, let t0 any real number with 0 ă t0 ď λpxq.

If x is nonperiodic, let t0 any real positive number. The function

θpyq “

ż t0

0

dpys, xqds

is continuous and satisfy

θpytq ´ θpyq “

ż t0

0

dpypt ` sq, xqds ´

ż t0

0

dpys, xqds “

ż t`t0

t

dpys, xqds `

ż t0

0

dpys, xqds.

It follows that θ is diferentiable with respect to the flow. The derivative of f in the flow

direction is given by

θ
1

pyq “ dpΦpy, t0q, xq ´ dpy, xq.

It follows that θ
1
is continuous and positive near x, since θ

1
pxq “ dpΦpx, t0q, xq ą 0. The

theorem follows by 6.4.6.

4 The idea for proof of this lemma is due to Whitney [89].
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6.5 The continuity set of λ

D.B. Epstein [20], showed that the continuity set of the period function of a

pointwise periodic flow on a manifold M is an open and dense subset of M . We will extend

this result for such flows on locally compact metric spaces. The idea is the same as in

Epstein’s proof, based on the existence of local cross-sections.

Theorem 6.5.1. Let Φ be a continuous pointwise periodic flow on a metric space X.

Suppose that Φ admits a local cross-section through x P X. If λ is continuous at x, then

λ is continuous in a neighborhood of x. In particular, the continuity set of the period

function is an open set.

Proof. The period function is invariant by the flow. Hence, the continuity and discontinuity

sets of λ decompose X in two disjoint sets. Indeed:

(1) the function λ is invariant: given x P X, and t P R, then

λpxtq “ infts ą 0; pxtqs “ xtu “ infts ą 0;xs “ xu “ λpxq.

It follows that λ is constant in the orbit of x;

(2) the continuity set of λ is saturated (therefore the same holds for the discontinuity

set of λ). Suppose that λ is continuous at x P X. Let t P R and pynq be a sequence

converging to xt. Then

lim λpynq “ lim λpyntq “ λpxq “ λpxtq.

It follows that λ is continuous at xt for all t P R.

Now, by construction given in 6.4.1, we can obtain a local cross-section pU, ǫq

through x such that λ|U “ f is continuous, where f is the time for the first return. Hence,

since λ is continuous on U and also invariant, then λ is continuous on ΦpU,Rq. But x is

an interior point of ΦpU,Rq, since that pU, ǫq is local cross-section through x. The proof is

completed.

Lemma 6.5.2. Let X be a metric space X and f : X ÝÑ R be a lower semicontinuous

function. Then the continuity set of f is a dense subset of X.

Proof. A function is continuous at x if and only if it is both upper and lower semicontinuous

at x. Since f is lower semicontinuous, the discontinuity set of f is characterized as one

where f is not lower semicontinuous. Hence, f is discontinuous at x P X if and only

if there exists ǫ ą 0 such that for each neighborhood U of x, there exists y P U with

fpyq ě fpxq ` ǫ. Given then x P X a discontinuity point for f , we can construct a sequence

xn ÝÑ x with fpxnq ě fpxq ` ǫ. For each rational number r, set Br “ ty P X{fpyq ď ru.
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Let q a rational number with fpxq ă q ă fpxq ` ǫ. We have that x P Bq ´ intpBqq (indeed,

given an open subset U of Bq, if x P U , then for large n we have xn P U , since xn converge

to x and fpxnq ď q. But, by construction fpxnq ě fpxq ` ǫ ą q, a contradiction). It follows

that x P Bq ´ intpBqq. Since f is lower semicontinuous, Fq “ Bq ´ intpBqq is a closed subset

of X. Therefore the discontinuity set of f is contained in
Ť
qPQ Fq, hence the continuity set

of f contains the intersection
Ş

pX ´ Fqq. To finish, note that X ´ Fq is dense in X. Since

X is a Baire space, an enumerable intersection of open subsets dense in X is dense in X.

It follows that the set of continuity of f is dense in X, since contains a dense subset.

Theorem 6.5.3. Let X be a locally compact metric space and Φ be a pointwise periodic

flow on X without singularity. The continuity set of λ is an invariant, open, and dense

subset of X.

Proof. It follows by 6.4.5, 6.5.1, and 6.5.2 togheter.

6.6 Conditions ensuring equicontinuity

In this section, we will see some conditions for a flow to be equicontinuous.

The starting point was Gottschalk’s one for equicontinuity given in [28]. Namely, a distal

transformation group on a compact, uniform space X that induces a locally weakly almost

periodic flow in the diagonal is equicontinuous (we provide a similar result for locally

compact metric spaces, Corollary 6.6.2). W.H. Gottschalk concludes that every distal

and locally almost periodic transformation group on a compact and uniform space is

equicontinuous. In what follows, we restrict our attention only to metric spaces.

It is easily seen that a locally almost periodic transformation group induces a

transformation group that is locally weakly almost periodic in the diagonal. Thus, by the

Gottschalk’s result, a transformation group T on a compact metric space that is locally

almost periodic and distal is also equicontinuous. Since a pointwise periodic flow is distal

(Lemma 6.7.2 below), we try to show that these flows are locally almost periodic. As we

will see in the next sections, this condition is very restrictive.

Lemma 6.6.1 ([28], Lemma 1). Let X be compact metric space and T a transformation

group on X. Suppose there exists x P X such that T is locally weakly almost periodic at

px, xq but T is not equicontinuous at x. Then T is not distal on X.

Corollary 6.6.2. Let X be locally compact metric space and T a transformation group

on X. Suppose there exists x P X such that T is locally weakly almost periodic at x and

px, xq but T is not equicontinuous at x. Then T is not distal on X.

Proof. Let x P X and U be a compact neighborhood of x. Since T is locally weakly almost

periodic at x, there exists a compact subset K of T and a neighborhood V of x with
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V T Ă UK. Now, UK is compact, since U and K are compact and T is a transformation

group (UK “ πpU ˆ Kq and π : X ˆ T ÝÑ X is continuous). Let Y “ V T . Then,

(1) Y is compact and we have a well-defined transformation group Y ˆ T ÝÑ Y , since

Y is invariant (if A is any invariant set, given t P T , since t : X ÝÑ X is a

homeomorphism, then At “ At “ A).

(2) T is locally weakly almost periodic at px, xq. Indeed, let U
1
be a neighborhood

of px, xq in Y . Since px, xq P intpY ˆ Y q (interior in X ˆ X, of course), U
1
is a

neighborhood of px, xq in XˆX. Then, there exists a neighborhood V
1
of x in XˆX

and a compact subset K
1
of T such that V

1
R Ă U

1
K. Since U

1
K Ă Y ˆ Y , it follows

that the action of T in Y ˆ Y is locally weaklly almost periodic at px, xq.

(3) Since Y is an invariant neighborhood of x, then T is equicontinuous at x P X if, and

only if, the restriction of T to Y is equicontinuous at x P Y .

By the above itens and Lemma 6.6.1, T is not distal on Y . Since T distal on X implies T

distal on any invariant subset of X, it follows that T is not distal on X.

Lemma 6.6.3 ([29], Lemma 5.16). LetX be a compact metric space and T be a continuous

transformation group on X. Suppose that if x, y P X with x ‰ y, then there exist

neighborhoods U and V of x and y, respectively, and ǫ ą 0 such that t P T implies

dpzt, wtq ě ǫ. Then T is uniformly equicontinuous.

Proof. Given ǫ ą 0 we want to show that there exists δ ą 0 such that dpx, yq ă δ implies

dpxt, ytq ă ǫ for all t P T . Setting αδ “ tpx, yq P X ˆ X; dpx, yq ă δu and for A Ă X ˆ X,

AT “ tpxt, ytq; px, yq P Au, this condition is equivalent to the existence of δ ą 0 such that

αδT Ă αǫ. For each z “ px, yq P X ˆ X ´ αǫ there exists ǫz ą 0, a neighborhood Uz of x,

and Vz of y, such that pUz ˆ VzqT X αǫz “ H. Hence

αzǫ
T Ă X ˆ X ´ pUz ˆ Uzq

(in general, AT XB “ H if, and only if, BT Ă X ´A). By the compactness of X ˆX ´αǫ,

we can obtain a finite subset E of X ˆ X such that X ˆ X ´ αǫ Ă
Ť
zPE Uz ˆ Vz. Hence,

č

zPE

pX ˆ X ´ Uz ˆ Vzq Ă αǫ.

Let δ ą 0 such that αδ Ă
Ş
zPE αz. Since

αδT Ă
č

zPE

αǫzT Ă
č

zPE

pX ˆ X ´ Uz ˆ Vzq Ă αǫ,

it follows that αδT Ă αǫ, concluding that T is uniformly equicontinuous.
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We will now describe the characterization of locally weakly almost periodicity

given by W.H. Gottschalk.

Definition 6.6.4. Let X be a set. A partition of X is defined as a disjoint class A of

nonvacuous subsets of X such that X “
Ť
A . A partition of a topological sapace X is

said to be {open}{closed} provided the natural projection p : X ÝÑ A is {open}{closed}.

A decomposition of a topological space X is a partition A of X such that every member

of A is compact. A partition A of X is said to be upper semi-continuous if, and only

if, for each A P A and for each open neighborhood U of A there exists a saturated open

neighborhood V of A contained in U .

Theorem 6.6.5. Let X be a topological space and A be a partition of X. Then

(1) the natural map π : X ÝÑ A is closed if, and only if, for any closed subset F of

X, the saturation of F is closed;

(2) A is upper semi-continuous if and only if it is closed;

(3) If A is upper semi-continuous decompositiion of X, then A is, respectively,

Hausdorff, regular, locally compact or satisfies the second axiom of countability,

provided X has the corresponding property;

(4) If X is compact and A is a Hausdorff partition of X, then π is a closed map.

Proof’s skecth. (1) Suppose π is a closed map. Let F be a closed subset of X. Since

the saturation of F is equal to π´1pπpF qq, then the saturation of F is closed.

Conversely, if πpF q is closed whenever F is a closed subset of X, then π´1p A

´πpF qq “ X ´ π´1pπpF qq is an open set. Hence the saturation π´1pπpF qq of F is a

closed set.

(2) [41], Theorem 12, page 99.

(3) [41], Theorem 20, page 148.

(4) Suppose X is compact and A is a Hausdorff partition of X. Let F be a closed

subset of X. The subspace F is compact since it is a closed subspace of such one. It

follows that πpF q is a compact set in a Hausdorff space, hence closed. Therefore π is

a closed map.

Remark 6.6.6. In Kelley’s book [41], the words partition and decomposition are synony-

mous.
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Definition 6.6.7. Let pX, π, T q be a transformation group. The orbit of x under T or

the T -orbit of x is defined to be the subset xT of X. The orbit-closure of x under T or

the T -orbit-closure of x is defined to be the subset xT of X.

Theorem 6.6.8 ([29], Theorem 4.17). Let X be a locally compact Hausdorff space and

T be a transformation group on X. Let A the partition of X given by the all orbit-

closure under T . Then T is locally weakly almost periodic if and only if A is a closed

decomposition of X.

Proof. The proof will be divided into four steps.

(1) Suppose X be a compact Hausdorff space and T be a locally weakly almost periodic

transformation group on X. We claim that A is a closed partition of X. Let A P A

and U be an open neighborhood of A in X. By Theorem 6.6.5 item 2, we need only

to show the existence of a saturated neighborhood W of A contained in U . We will

now show this. Since X is also a regular space (it is a Hausdorff compact space; see

[41], page 146) and A is a compact subset of X, there exists a closed neighborhood

W of A with W Ă U . For each x P X ´ U , there exists a neighborhood Nx of x and

a compact subset Kx of T such that

NxT Ă pX ´ W qK.

Since X ´ U is a closed subset of the compact space X, then we can select a finite

subset E of X ´ U so that

X ´ U Ă
ď

xPE

Nx.

Set K “
Ť
xPEKx. It follows that K is a compact subset of T and

pX ´ UqT Ă p
ď

xPE

NxqT Ă
ď

xPE

pX ´ W qKx “ pX ´ W qK.

Let V be a neighborhood of A such that V Ă WK. Then

V K´1 X pX ´ W q “ H ùñ V X pX ´ W qK “ H ùñ

ùñ V X pX ´ UqT “ H ùñ V T X pX ´ Uq “ H.

Hence V T Ă U , concluding the claim.

(2) Suppose X be a locally compact Hausdorff space and T be a locally weakly almost

periodic transformation group on X. Let F be a compact subset X. We claim that

FT is compact. Indeed, given x P F and Ux be a compact neighborhood of x, there

exists a neighborhood Vx of x and a compact subset Kx of T such that VxT Ă UxKx.

By compacteness of F there exists a finite subset E of F such that F Ă
Ť
xPE Vx.

Then

FT Ă
ď

xPE

VxT Ă
ď

xPE

UxKx,
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hence FT is compact as required.

(3) Suppose X be a locally compact Hausdorff space and T be a locally weakly almost

periodic transformation group on X. Let A P A . By item (2) above, there exists a

compact neighborhood V of A in X. Hence, given U be an open neighborhood of A

in X, since the restriction of T to V is still locally weakly almost periodic and V

is compact, by item (1) above there exists a saturated neighborhood W of A in V

such that W Ă pU X V q. Necessarily W is a saturated neighborhood of A in X. It

follows by Theorem 6.6.5 item 2 that A is a closed partition of X. The fact that

this partition is actually a decomposition follows from item (2) above.

(4) Suppose now that the class A of all orbit-closures under T is a closed decomposition

of X. Let x P X and U be an open neighborhood of x. Since xT Ă UT , and xT is

compact, there exist a finite subset K of T with xT Ă UK. Since A is closed,

then it is upper semi-continuous by 6.6.5. Hence, there exists a saturated open

neighborhood V of xT with V Ă UK (then V T “ V Ă UKq. It follows that T is

locally weaklly almost periodic.

Remark 6.6.9. Let pX, π, T q be a transformation group. The decomposition of X by the

orbits under T is open. Indeed, given U an open subset of X, then UT “
Ť
tPT Ut is an

open subset of X. It follows from π´1pπpUqq “ UT that πpUq is an open set.

We finish this section with another characterization of uniformly equicontinuous

transformation group.

Theorem 6.6.10 (W.H. Gottschalk, [26]). Let X be a totally bounded metric space and

T a transformation group on X such that t : X ÝÑ X is uniformly continuous for all

t P T . Then T is uniformly equicontinuous if and only if T is almost periodic.

6.7 Pointwise periodic flows

Let X be a locally compact metric space. Let Φ be a pointwise periodic and

locally weakly almost periodic flow Φ on X. One can prove that the condition given in

Lemma 6.6.3 holds for x, y P X whenever xR X yR “ H. Nevertheless, it can fail for x

and y in the same orbit under Φ. Analyzing such failure, we obtain Lemma 6.7.1 below,

which gives a very restrictive condition to a pointwise periodic flow to be equicontinuous.

Essentially this lemma says that an equicontinuous pointwise periodic flow is locally

constant where the period function is continuous.



Chapter 6. Pointwise periodic flows on locally compact metric spaces 142

Lemma 6.7.1. Let Φ be a continuous pointwise periodic flow on a locally compact metric

space X. Suppose for some x P X with λpxq ą 0, there exists a sequence yn ÝÑ x with

λpxq ‰ λpynq for all n and |λpxq ´ λpynq| ÝÑ 0. Then T is not equicontinuous at x.

Proof. Let s with 0 ă s ă λpxq and U, V be compact disjoint neighborhoods of x and

xs, respectively. Set ǫ “ dpU, V q. Note that ǫ ą 0. Given δ ą 0 we will show that there

exists y P X and t P R with dpx, yq ă δ but dpxt, ytq ě ǫ. Let f : X ˆ R ÝÑ X given

by fpy, tq “ yps ` tq. Since f is continuous and fpx, 0q “ xs P V , there exists γ ą 0 and

W Ă U a neighborhood of x such that if y P W and |t| ă γ then fpy, tq “ yps ` tq P V .

For each y P X, write λpxq “ λpyq ` γy. We want to obtain y and m such that ypmλpxqq

is close to ys. Since

ypmλpxqq “ ypmpλpyq ` γyqq “ ypmγyq, (6.2)

then, with this aim, it is enough to obtain y P W and m P Z such that |mγy ´ s| ă γ. By

hypothesis, there exists a sequence yn ÝÑ x with 0 ă |λpynq ´ λpxq| ÝÑ 0. So there exists

y P W with dpx, yq ă δ and 0 ă |γy| ď γ. We can suppose that γy ă s. Hence, there exists

m P Z with mγy ď s ă pm ` 1qγy (m “ maxkPZtmγy ď su). It follows that

´γ ă 0 ď s ´ mγy ă γy ď γ. (6.3)

Set t “ mλpxq. By equations 6.2 and 6.3, since y P W and zps ` tq P V whenever z P W

and |t| ă γ, we have

ypmλpxqq “ ypmγyq “ fpy,mγy ´ sq P V.

It follows that y P U , yt P V , dpx, yq ă δ but

dpxt, ytq “ dpx, ytq ě ǫ,

concluding that Φ is not equicontinuous at x.

Let us now provide a consequence of this lemma. For this, we need to show

that pointwise periodic flows are distal.

Lemma 6.7.2. Let Φ be a pointwise periodic flow on a metric space X. Then Φ is distal.

Proof. Let x ‰ y and s P R. If x and y live in the same orbit under Φ, then it is easily

seen that

dpxs, ysq ě inf
tPr0,λpxqs

dpxt, ytq ą 0.

Suppose now that xR X yR “ H. Since zR “ Φpz, r0, λpzqsq is a compact set for all z P X,

then dpxR, yRq ą 0. Therefore, in both cases, there exists ǫ ą 0 such that dpxs, ysq ě ǫ

for all s P R. The proof is completed.
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Theorem 6.7.3. Let Φ be a pointwise periodic flow without fixed points on a connected,

locally compact, and locally connected metric space X. Suppose Φ weakly almost periodic

in the diagonal of X ˆ X. If the period function λ is continuous, then Φ is periodic.

Proof. It follows from lemmas 6.7.2 and 6.6.2 that Φ is equicontinuous on X. Let x P X

and U be a connected neighborhood of x in X. Since λ is continuous, λpUq is a connected

subset of R, hence contains a set of the form rλpxq´ǫ, λpxq`ǫs, ǫ ě 0. By the equicontinuity

of Φ, the Lemma 6.7.1 ensures that ǫ “ 0. Therefore, λ is a locally constant and continuous

function on a connected space X. Hence is constant, concluding that Φ is periodic.

Example 6.7.4. Let X “ r1, 2s ˆS1. Set Φps, e2πiθq “ ps, e2πipθ`t{sqq. Then Φ is a continu-

ous pointwise periodic flow with continuous period function given by λps, e2πiθq “ s. Since

locally almost periodicity implies locally weakly almost periodicity in the diagonal (see

proof of 6.8.4), it follows by 6.7.3 that Φ cannot be locally almost periodic.

We finish this section with two sufficient conditions to a flow Φ on a locally

compact metric space X to be locally weakly almost periodic. Unfortunately, it is not clear

whether any of these conditions provide some relevant information about the behavior of

flow in the diagonal of X ˆ X.

Lemma 6.7.5. Let Φ be a pointwise periodic flow on a locally compact metric space X.

If the period function λ is continuous or bounded, then the flow Φ is locally weakly almost

periodic.

Proof. In general, given an Φ-invariant function f : X ÝÑ R, we can define a flow Ψ from

f and Φ as follows. Set Ψpx, tq “ Φpx, fpxqtq. Writting x ˚ t “ Ψpx, tq, we have

x ˚ 0 “ Φpx, 0q “ x

and

px ˚ tq ˚ s “ px ˚ tqfpx ˚ tqs “

pxfpxqtqfpxfpxqtqs “

xpfpxqt ` fpxqsq “

xpfpxqpt ` sqq “

x ˚ pt ` sq.

Hence Ψ is a flow. We will now prove that Φ is locally weakly almost periodic. Suppose λ

continuous. Set Ψ : X ˆR ÝÑ X Ψpx, tq “ Φpx, λpxqtq. As above, Ψ is a flow. Since λ and

Φ are continuous functions, Ψ is a continuous flow on X. Note that Ψ has period 1, hence

is, in particular, locally weakly almost periodic. By Theorem 6.6.8, the decomposition of

X by the orbits under Ψ is closed (note each orbit under Φ is closed in X). Since this
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decomposition is the same as the decomposition of X by the orbits under Φ, we conclude

again by 6.6.8 that Φ is locally weakly almost periodic.

Suppose now that λ is a bounded function on X. Then there exists a compact

subset K of R such that λpxq P K for all x P X. It follows that Y R “ Y K for all Y Ă X

and, therefore, Φ is locally weakly almost periodic.

6.8 Periodicity of equicontinuous pointwise periodic C1-flows on

closed manifolds

Smooth pointwise periodic flows on compact three-manifolds have been com-

pletely analysed by D. B. Epstein in the paper [20]. Essentially, he shows that all flows

arise as a decomposition of the manifold by the orbits of a smooth circle action. The

same result is still true for an arbitary smooth manifold, compact or not, if the flow is

geodesible (see [86]). Another fundamental question in the theory of pointwise periodic

flow is to obtain conditions so that the period function is locally bounded. The Periodic

Orbit Conjecture was one that every pointwise periodic flow on compact manifolds has the

period function bounded. This conjecture is known to be false ([79, 81, 22]). In particular,

not all pointwise periodic flows arise as the orbits of some circle-action.

In this section, we characterize when a pointwise periodic flow of class C1 on a

closed manifold has the period function bounded. Furthemore, we provide a class of flows

arising as the orbits of a smooth circle action. The main result is:

Theorem 6.8.1. Let M be a closed manifold. Let Φ be a pointwise periodic flow without

singularity of class C1 on M . Let N the continuity set of the period function λ. Suppose

that Φ is locally weakly almost periodic. If Φ is equicontinuous in N for some metric

inducing its topology, then Φ is periodic.

This theorem does not ensure that that λ is constant on M . For example,

the natural flow in the Klein bottle K2 induced by the flow generated by X “ Bx on

r´1, 1s ˆ r´1, 1s, has period function λpxq “ 1, if x “ rpt, 0qs and λpxq “ 2 if x ‰ rpt, 0qs,

where K2 “ pr´1, 1s ˆ r´1, 1sq{tp´1, tq ∼ p1,´tq; pt,´1q ∼ pt, 1qu. This flow has global

period 2. Before starting the proof of the theorem, we highlight some consequences.

Corollary 6.8.2. Let M be a closed manifold. Let Φ be a pointwise periodic flow without

singularity of class C1 onM . Suppose that Φ preserves some metric generating the topology

of M . Then Φ is periodic.

Proof. Let d be a metric generating the topology of M and preserved by Φ. Then Φ is

uniformly equicontinuous concerning the metric d. It follows by Theorem 6.6.10 that Φ is
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almost periodic. Hence, in particular, Φ is locally weakly almost periodic. We conclude

from Theorem 6.8.1 that Φ is periodic.

Corollary 6.8.3. Let M be a closed manifold. Let Φ be a pointwise periodic flow without

singularity of class C1 on M . If Φ is almost periodic then it is periodic.

Proof. Since Φ is almost periodic it is, in particular, locally weakly almost periodic. By

6.6.10 Φ is uniformly equicontinuous. It follows by 6.8.1 that it is periodic.

Corollary 6.8.4. Let M be closed manifold. Let Φ be a pointwise periodic flow without

singularity of class C1 on M . If Φ is locally almost periodic, then it is periodic.

Proof. The proof will be divided in two steps:

(1) Let T be a locally almost periodic transformation group on a metric space X. We

claim that it induces a locally weakly almost periodic transformation group on

the diagonal of X ˆ X. Let x P X and U be a neighborhood of x. There exists

a neighborhood V of x and a syndetic subset A of T such that V A Ă U . Let K

compact subset of T with T “ AK. Then

pV ˆ V qT Ă pV ˆ V qAK Ă pV A ˆ V AqK Ă pU ˆ UqK,

concluding the claim.

(2) Now, let Φ be a flow as in the corollary. By the above paragraph, Φ is locally weakly

almost periodic in the diagonal of M ˆ M . Since a pointwise periodic flow is distal

by 6.7.2, it follows by 6.6.1 that Φ is equicontinuous on M . Therefore, by Theorem

6.8.1, that flow is periodic.

Corollary 6.8.5 (A.W. Wadsley, [86]). Let Φ be a pointwise periodic C3-flow on a compact

manifold M . Suppose that there exists a Riemannian metric g on M such that every orbit

under Φ is a geodesic. Then Φ is periodic.

Proof. Let g be a Riemannian metric onM making all orbits under Φ geodesics. Concerning

the metric on M induced by g, Φ is uniformly equicontinuous (see 6.3.6). It follows by

6.8.1 that Φ is periodic.

The original Wadsley’s theorem asserts a pointwise periodic geodesible C3-flow

on a manifoldM , compact or not, must be periodic. The latter corollary holds for C1-flows,

but our argument, as stated, holds only for compact manifolds. We now deal with the

proof of Theorem 6.8.1. To this aim, we need to prove some preliminary results.
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Lemma 6.8.6. Let X be a locally connected topological space and A be an open

partition of X by connected sets. Given an open connected subset W of A then π´1pW q

is connected.

Proof. Let W be an open connected subset of A . Write π´1pW q “
Ť
αPJ Uα, where each

Uα is a connected component of π´1pW q. We have that each Uα is open in π´1pW q, hence

open in X. Let A P A . Suppose that A X Uα ‰ H. Then A Ă π´1pW q, since π´1pW q

is invariant. On the other hand, since A is a connected subset of π´1pW q intersepting

the component Uα then A Ă Uα. Therefore π
´1pW q is a disjoint union of open invariant

subsets of X. From this and the hypothesis that π is an open map, we conclude that W is

a disjoint union of open subsets. It is possible only if J has only one element. This proves

the lemma.

Lemma 6.8.7. Let X be a locally compact metric space. Let Φ be a continuous pointwise

periodic and locally weakly almost periodic flow on X. Given x P X, there exists a local

cross-section K through x such that the Poincaré’s first return map is a homeomorphism

of K. In addition, we have

(1) K can be obtained as an open subset of a local cross-section given previously;

(2) if X is a locally connected space, we can obtain K being a connected space.

Proof. Let x P X and pK0, ǫ0q be a local cross-section through x. Let pK1, 2ǫq be a local

cross-section through x with K1 an open subset of K0. Let U Ă K1 be a neighborhood of x

in K1 such that Poincaré’s first return map T : U ÝÑ K1 is defined (see 6.4.1; here we can

begin supposing K0 compact). By 6.6.8, the partition A of X by the orbit-closures under

Φ, which in this case is the same as the partition of X by the orbits under Φ, is a Hausdorff

space, hence upper semi-continuous. Therefore, by item 3 in Theorem 6.6.5, A is regular.

Since pU, ǫq is a local cross-section and π is an open map, the point rxs P A is an interior

point in πpUq. From the fact that πpK1 ´Uq is closed, rxs R πpK1 ´Uq (because T pxq “ x),

and A is a regular space, there exists disjoint neighborhoodW andW
1
in A of rxs and

πpK ´ Uq, respectively5. Note that given y P K1 X π´1pW q, then y P U . Indeed, otherwise

πpyq P πpK1 ´Uq XW “ H. It follows that for K “ K1 Xπ´1pW q then the Poincaré’s first

return map T |K ÝÑ K1 is defined (as the restriction of T : U ÝÑ K1 to K) and, moreover,

T pKq Ă K. Indeed, given y P K, and t with yt P K1, then yt P π´1pW q X K1 “ K. Thus,

we can consider Poincaré’s first return map as a map of K into itself,

T |K : K ÝÑ K.

5 An equivalent condition to regularity is that given closed set A and x R A, we can separate x and A by
disjoint neighborhoods.
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In the construction of Poincaré’s first return map 6.4.1, we consider the function gpyq “

yλpxq, and an open set U containing x with gpUq Ă Kr´ǫ, ǫs. We can restrict U to obtain

the “inverse” of T as follows. Let hpyq “ yp´λpxqq and take U with gpUq, hpUq Ă Kr´ǫ, ǫs.

In this case, given k P U , there exists uniquely determined y P K and s P r´ǫ, ǫs with

kp´λpxqq “ ys. Hence, the map S : U ÝÑ K given by Spkq “ y is continuous. This map

is the first return in the “negative direction”. With this construction and the choice of K,

we have that S|K “ pT |Kq´1. Indeed, let y P K. Then, T pyq “ k P K where yλpxq “ ks

and Spkq “ z P K where kp´λpxqq “ zt, s, t P r´ǫ, ǫs. Hence

ypλpxq ´ sq “ k “ zpt ` λpxqq ñ y “ zps ` tq.

Since pK1, 2ǫq is local cross section through x, the points y and z are in K1, and s `

t P r´2ǫ, 2ǫs, thus y “ z and s “ t, concluding that S|KpT |Kpyqq “ y for all y P K.

Analogously, we can show that T |KpS|Kpyqq “ y for all y P K. We conclude that T |K is a

homeomorphism.

Suppose now that X is a locally connected space. With the notation of the

previous paragraph, we can assume without loss of generality that K0 is a connected space.

Therefore, we can take K1 as a connected subspace of K0. Indeed, let V be a connected

neighborhood of x contained in K0r´ǫ0, ǫ0s. Let U be an open subset of K and δ ą 0 such

that U r´δ, δs Ă V . Then pU, δq is a local cross-section through x contained in K0 with U

being a connected space, concluding the claim. Now, since A is also locally connected,

we take W in A being a connected neighborhood of rxs. By Lemma 6.8.6, it follows

that π´1pW q is connected. Thus, K “ π´1pW q X K1 is a connected space. The proof is

completed.

Lemma 6.8.8. Let X be a metric space and Φ be a continuous pointwise periodic flow on

X. Suppose that for each x P X, there exists a local cross-section pK, ǫq through x, with K

being compact, such that Poincaré’s first return map is a well-defined map T : K ÝÑ K

and also a periodic homeomorphism. Then the period function λ is locally bounded.

Proof. Let k P Z with T k “ 1. Since T pyq “ yfpyq, where f : K ÝÑ R is the time for the

first return, then

Ty “ ypfyq

T 2y “ TypfTyq “ ypfy ` fTyq

T 3y “ T 2ypfT 2yq “ ypfy ` fTy ` fT 2yq

. . .

T ky “ y

˜
kÿ

i“1

fT i´1y

¸
.
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It follows that
řk

i“1 fT
i´1y “ myλpyq for some my P Z, my ě 1. In particular,

λpyq ď
kÿ

i“1

fT i´1y

for all y P K. Hence, for all y P KR. Since K is compact and y ÝÑ
řk

i“1 fT
i´1y is

continuous, it follows that λ is bounded in KR, hence locally bounded on X.

Lemma 6.8.9. Let M be a smooth manifold and Φ be a pointwise periodic flow on M of

class C1 . Suppose that for each x P M , there exists a local cross-section pK, ǫq through x,

with K being a manifold, Kp´ǫ, ǫq being an open subset of X, and such that Poincaré’s

first return map is a well-defined map T : K ÝÑ K and also a homeomorphim. Suppose

that λ is locally constant where it is continuous. Then Φ is locally periodic. If, in addition,

M is compact, then Φ is periodic.

Proof. Let x P X and pK, ǫq be a local cross-section through x as stated in the lemma. Since

Φ is pointwise periodic, then T : K ÝÑ K is a pointwise periodic homeomorphism. On the

other hand, K being a manifold (connected, by our convetion of manifold), Montgomery’s

theorem 5.1.3 ensures that T is periodic. Thus, by Lemma 6.8.6, for each y P K, there

exists an integer my such that

myλpyq “
kÿ

i“1

fT i´1y :“ gpyq,

g : K ÝÑ R. We claim that the function g is constant. Indeed, let N the continuity set of

the period function λ. By 6.5.3, N is an invariant, open, and dense subset of M . Hence

N X K is open dense subset of K (indeed, given an open subset V of K, then V R has

nonempty interior. Therefore, it contains some point of N , say yt P N . Since N is invariant,

then y P N , concluding that N X V ‰ H).

Let V be a connected component of K XN . Note that V is open in K (because

N is open in X). By hypothesis, λ is locally constant where it is continuous. Thus,

λpyq “ c for all y P V and gpyq “ myc for all y P V . Since the function g is continuous, V

is connected and gpV q Ă Zc, then g is constant on V . Hence, g is locally constant on a

dense open subset of K. Now we have known that Poincaré’s first return map and the

time for the first return map are C1-functions when induced by a C1-flow. It follows that

g is a differentiable function with differential dg also a continuous one. Since g is locally

constant on a dense open subset of K, then dg “ 0 in an open dense subset of K, hence

dg “ 0 on K. Therefore g is constant in K as claimed, say gpyq “ α for y P K.

By the previous paragraph, gpyq “ α for all y P K. Then

Φpy, αq “ Φpy,myλpyqq “ y
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for all y P K. Hence Φ is periodic on KR. Now let U and V open connected subsets of

M with U X V ‰ H and s, t ą 0 such that ys “ y for all y P U and zt “ y for all y P V .

We have that s “ myλpyq for each y P U and t “ nyλpyq for each y P V , with my, ny P Z.

Thus, for z P U X V we have

s “ mzλpzq and t “ nzλpzq

concluding that s{t P Q. Write s{t “ m{n, m,n P Z. Then ypmtq “ y for y P V and

ypmtq “ ypnsq “ y for y P U . It follows that Φ is periodic on U Y V . Suppose now that M

is compact. We can cover M by finite open sets tUi; i “ 1, . . . , lu such that Φ is periodic in

each Ui and Ui X Ui`1 ‰ H. By the the preceeding argument, there exists a global period

for Φ. The proof is completed.

Proof of Theorem 6.8.1. Since M is a smooth manifold and Φ is flow on M of class C1,

given x P M there exists a local cross-section K0 homeomorphic to Rn´1 through x. By

Lemma 6.8.6 there exists a local cross-section K such that the Poincaré’s first return map

T : K ÝÑ K is a homomorphism. In addition, we can take K being an open connected

subset of K0. It follows that K is a connected manifold. By hypothesis, there exists a

metric inducing the topology of the continuity set N of the period function λ for which Φ

is equicontinuous. By Theorem 6.7.3 λ is constant in each connected component of N . It

follows that λ is locally constant where it is continuous. Since M is compact, the Lemma

6.8.9 ensures that Φ is periodic.

Note in the proof of Theorem 7 we cannot ensure, at first, that Φ is periodic

without the compactness hypothesis. However, weakening only this, the flow Φ should be

at least locally periodic. We will end this section by highlighting this and characterization

of pointwise periodic C1-flows with locally bounded period function. This characterization

is similar to results already known, since a flow on a closed manfiold is locally weakly

almost periodic if, and only if, the orbit space is Hausdorff (see [21, 16]).

Theorem 6.8.10. Let Φ be a pointwise periodic C1-flow on a manifold M , compact or

not. Then the period function λ is locally bounded if, and only if, Φ is locally weakly

almost periodic.

Proof. Suppose that Φ is locally weakly almost periodic flow of class C1. Given x P X,

there exists a local cross-section K0 through x homeomorphic to Rn´1. By Lemma 6.8.7

there exists a connected local cross-section K through x being an open subset of K0 such

that Poincaré’s first return map T : K ÝÑ K is a homeomorphism. Since K is, therefore,

a connected manifold, it follows by Lemma 6.8.8 that λ is bounded in a neighborhood of

x. Since x was arbitrarily chosen, we conclude that λ is locally bounded.
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Conversely, suppose that λ is locally bounded (here, M can be any metric

space). Let x P X and U be a neighborhood of x. Let V be a neighborhood of x contained

in U such that supxPV λpxq ă 8. Say, λpxq ă t0 for all x P V . Set C “ r0, t0s. Then

V R “ V C Ă UC,

concluding that Φ is locally weakly almost periodic at x. Since x was arbitrarily chosen,

the proof is completed.

6.9 Pointwise periodic recurrent flows

We already showed that a pointwise periodic, equicontinuous flow on a closed

manifold has a global period. The equicontinuity property implies the boundedness of

the period function and recurrence of the flow. Therefore it is natural to weak the initial

hypothesis, supposing the flow to be merely recurrent with bounded period function. In

this section, we prove that the same result still holds with these weaker hypotheses.

Theorem 6.9.1. Let X be a locally connected and compact metric space. Let Φ be a

pointwise periodic recurrent flow without singularity on X. Suppose that there exists a

nontrivial asymptotic cycle for Φ. Then the period function λ is locally constant where it

is continuous.

Proof. Let x P X. Then x is a quasi-regular point for Φ and λpxqAx “ rCxs, where

Ax is the asymptotic cycle associated with x and rCxs is the element of the first Betti

group determined by the orbit of x (the proof for metric space is similiar to one given

in Lemma 5.1.2). Since Φ is recurrent, Ax is independent of x by Theorem 4.1.16. So,

Ax ‰ 0 for all x. It follows that 1{λpxqrCxs “ 1{λpyqrCys for all x, y P M . Since for all

x P X, rCxs represents an element in H1pM ;Zq, it follows that λpxq and λpyq are rationally

dependet for each x, y P X. Denote by Y the continuity set of λ. Then Y is open by

Theorem 6.5.3 and therefore, locally connected space since X is one. Now, the function

px, yq P Y ˆY ÝÑ λpxq{λpyq P R is continuous with image contained in Q. Thus λpxq{λpyq

is locally constant in each connected component of Y ˆY . Let U be a connected component

of Y . Then U ˆ U is a connected component of Y ˆ Y . Since λpxq{λpyq is constant for

each x, y P U , making x “ y we concludes that λpxq “ λpyq for all x, y P U . It follows that

λ is locally constant where is continuous.

Theorem 6.9.2. Let Φ be a pointwise periodic recurrent C8-flow without singularity on

a closed manifold M . If there exists a nontrivial asymptotic cycle, then Φ is periodic.

Proof. In manifolds, any recurrent C8-flow with a nontrivial asymptotic cycle has a global

cross-section K being a smooth manifold (theorems 4.1.16 and 4.3.2). In this case, it

is well-known from dynamical systems’ theory that the Poincaré’s first return map is
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well-defined smooth diffeomorphisms T : K ÝÑ K. Hence, if Φ is pointwise periodic then

T is pointwise periodic diffeomorphism, hence a periodic hemeomorphism by Theorem

5.1.3. Since the flow is recurrent by hypothsis, it follows from 6.9.1 that the period function

is locally constant where it is continuous. The Lemma 6.8.9 ensures that Φ is periodic.

We can improve the latter theorem using the concept of a global cross-section

for flow on compact metric spaces as given in Schwartzamnn’s paper [74]. He showed that

every asymptotic cycle of a flow on a compact metric space admitting a global cross-section

determines a nontrivial homological class. The orbit of any continuous point for the

period function admits something similar to a normal bundle that determines an invariant

compact “torus”. Thus, we can ensure from what was demonstrated by S. Schwartzmann

and Theorem 6.9.1 that the period function is locally constant where it is continuous

provided the flow is recurrent. We need to clarify what means a global cross-section in this

more general context. A global cross-section for a flow on a topological space X mean a

closed subset K of X such that the natural map K ˆ R ÝÑ X is a local homeomorphism.

This notion is the same as what was called a surface of section by G.D. Birkoff in his book

Dynamical Systems and is the notion of a global cross-section in Schwartzamnn’s paper

[74].

Lemma 6.9.3. Let X be a metric space. Let Φ be a continuous pointwise periodic flow

on X and x P X. Then there exists a compact saturated neighborhood U of x such that

the restriction Φ : U ˆ R ÝÑ U has a global cross-section when

(1) X is locally compact and Φ is locally weakly almost periodic on X or

(2) X is compact and the period function λ is continuous at x.

Proof. Suppose thatX is locally compact and Φ locally weaklly almost periodic. By Lemma

6.8.7, there exists a local cross section K through x such that Poincaré’s first return map is

a homeomorphism T : K ÝÑ K. Set U “ KR. Then, since K is compact and Φ is locally

weaklly almost periodic, we concludes from the proof of ite 2 in Theorem 6.6.8 that U is

compact. Since the natural map Φ : Kˆr´ǫ, ǫs ÝÑ Kr´ǫ, ǫs is a homeomorphism for some

ǫ ą 0 and Φt is a homeomorphism for each t P R it is easy to check that Φ : KˆR ÝÑ U is

a local homeomorphism. Therefore K is a global cross-section for the flow Φ : U ˆR ÝÑ U .

Suppose now that X is compact and λ continuous at x. Let K be a compact

local cross-section through x such that the Poincaré’s first return map is the identity and

λ is continuous in K (it is possible since λ is continuous at x; see item 4 in Section 6.4.1).

We claim that KR is compact. Let xntn be a sequence in KR, x P K, tn P R for all n P N.

Since X and K are compact, there is no loss of generality in supposing that xntn converge

to some y P X and xn converge to some z P K. Write

tn “ mnλpxnq ` rn, with 0 ď rn ă λpxnq.
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Since the Φ-invariant function λ is continuous on the compact set K, then it is bounded

in K, hence, it is bounded in KR. Thus, we can suppose that rn converge to some r P R.

Letting n ÝÑ 8 we have

xntn “ xnpmnλpxnq ` rnq “ xnrn ÝÑ zr “ y

concluding that y P KR. It follows that KR is compact (since X is a metric space, a

subspace of it is compact if, and only if, it is sequentially compact). As in the above

paragraph we conclude that K is a global cross-section for the flow Φ : KR ˆ R ÝÑ KR.

The proof is completed.

Theorem 6.9.4. Let X be a locally connected metric space. Let Φ be a continuous

pointwise periodic recurrent flow on X. Then

(1) If X is locally compact and Φ is locally weakly almost periodic on X then λ is locally

constant where it is continuous;

(2) if X is compact then λ is locally constant where it is continuous.

Proof. By Lemma 6.9.3, in both cases, given x P X be a continuous point for λ, there

exists a saturated compact neigborhood U of x such that the restriction Ψ “ Φ|UˆR :

U ˆ R ÝÑ U has a global cross-section. Hence, by the main Schwartzamnn’s theorem

[74], every asymptotic cycle under Ψ determines a nontrivial homological class. Since Φ is

recurrent, then Ψ is recurrent. It follows by 6.9.1 that the period function λ
1
concerning to

Ψ is locally constant where is continuous. But the λ|U “ λ
1
. Since U is a neighborhood of

x in X, it follows that λ is locally constant where it is continuous.

Theorem 6.9.5. Let Φ be a pointwise periodic C1-flow without singularity with bounded

period function on a manifold M . Then Φ is recurrent if and only if Φ it is locally periodic.

If, also, M is compact, then Φ is recurrent if, and only if, it is periodic.

Proof. By Theorem 6.8.10, Φ is locally weakly almost periodic. Since by Theorem 6.9.4 λ

is locally constant where it is continuous, the theorem follows by Lemma 6.8.9.

Since pointwise periodic flows are distal, from the results of this section, we

obtain a class of distal not recurrent flows: the ones where the period function is not locally

constant where it is continuous (for instance, see 6.7.4). These are more simple examples

than the ones presented in [12].

6.10 Problems

In this section we will list some problems that can lead to future work.
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• Is the transitivity condition homogeneous?

• Are harmonic forms transitive?

• Is it suffice a complementary foliation in Theorem 2.1.2?

• Are closed-decomposable forms intrinsically harmonic?

• Are volume-preserving flows recorrent?

• Does a flow that admits a closed submanifold transversal to any orbit has a global

cross-section (for example, this always holds if the orbit space satisfies the Hausdorff

property)?

• Do equicontinuous C1-flows on noncompact manifolds has a global period?

• Do pointwise periodic volume-preserving flows have bounded period function?

• Does a recurrent pointwise periodic flow has the period function bounded?

We concluded this work with the certainty that obtain a general intrinsic

characterization of harmonic forms is a great challenge.
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