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Resumo

Neste trabalho nós estudamos o problema de interpolação em P2 para esquemas de

interseção completa e monomiais, para isso seguimos o trabalho de Coskun e Huizenga em

Interpolation, Bridgeland Stability and Monomial Schemes in the Plane, onde é mostrado

como a estabilidade de Bridgeland se relaciona com tal problema.

Palavras-chave: Geometria Algébrica. Interpolação. Estabilidade de Bridgeland.



Abstract

In this work we study the interpolation problem in P2 for complete intersection and

monomial schemes, for that we follow the work of Coskun and Huizeng in Interpolation,

Bridgeland Stability and Monomial Schemes in the Plane, where it is shown how Bridgeland

relates to such problem.

Keywords: Algebraic Geometry. Interpolation. Bridgeland Stability.
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Introduction

Polynomial interpolation is an interesting problem in mathematics, as it has

several applications to pure and applied math, we can cite as examples the approximation

of complicated functions by a polynomials, like the Taylor’s expansion

f♣xq ✏
r➳

n✏0

f ♣nq♣aq
n!

♣x✁ aqn � En♣xq,

or the numerical quadrature. The classical problem is how to find a polynomial pass-

ing through a given set of points and its solution in R2 is quite simple, given points

♣x1, y1q, . . . , ♣xn, ynq the polynomial

p♣xq ✏
n➳

i✏0

✒ ➵
0↕j↕n

j✘i

x✁ xj

xi ✁ xj

✚
yi,

satisfies the property, i.e., p♣xiq ✏ yi. In algebraic geometry such problem can be described

in terms of cohomology in the following way: given a set of points, namely Z, we would

like to know when it is possible to find a line bundle such that H i♣IZ ❜ Lq ✏ 0 for all

i ➙ 0. This natural problem can be extended to higher-rank bundles, i.e., when one can

find a vector bundle E with H i♣IZq ✏ 0 for all i ➙ 0.

Stability conditions on triangulated categories were introduced in [Bri07] by

Tom Bridgeland, inspired by the work done in [Dou02] by Michael R. Douglas on string

theory. The main result proved by Bridgland in [Bri08] is that on a fixed category D one

can associate a complex manifold Stab♣Dq parametrizing the set of stability conditions on

D. One of the first reasons that motivated the study of the space of stability conditions

was that they define a new invariant for triangulated categories. Also, it is shown in [Bri08]

the profound connection between geometrical ideas and homological algebra.

Calculating cohomologies is not an easy task in general, so Coskun and Huizenga

show in [CH14] that there is a deep connection between the interpolation problem and

Bridgeland stability. In the light of the work done in [ABCH13], where it is shown that the

moduli space of Bridgland semi-stable objects are isomorphic to moduli space of quiver

representations, furthermore this shows the finiteness of Bridgeland walls. Not only that,

but it is also studied what is the destabilizing object of a zero-dimensional Z, and the

relation between Bridgeland walls and the walls in the stable base locus decomposition.

These results leads to Proposition 2.1.3, that gives the correspondence between

the geometry of a Bridgeland potential wall defined by two Chern characters ξ1, ξ2 and

the numerical invariants of a vector bundle ζ orthogonal to the objects defining the wall,

where it is shown that the center and the radius of such potential wall will be respectively
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the slope and the discriminant of ζ. Considering this, Coskun and Huizenga proposes that

finding the destabilizing sequence of a zero-dimensional scheme, also means finding an

exact sequence that has acyclic side terms when tensored by ζ (or the general element

E of the stack of prioritary sheaves with Chern character equals to ζ), therefore solving

H i♣E ❜ IZq ✏ 0.

Furthermore, Theorem 2.1.4 shows that if we find a general bundle E with

slope µ that satisfies interpolation for Z, then the general bundle of the stack of prioritary

bundles with Chern character ξ, that has slope µ✶ ➙ µ also satisfies interpolation for Z,

therefore the question is not only finding bundles that satisfies interpolation, but also

finding the smaller slope such that a general bundle of some Chern character with that

slope satisfies interpolation.

Again, the destabilizing sequence gives the answer. In [CH14] it is shown that

for Z a complete intersection scheme or a monomial scheme, the orthogonal Chern character

to both the ideal sheaf of the scheme and the destabilizing object not only gives an acyclical

sequences when tensorizing the destabilizing sequence, but also the general element of

the stack of prioritary sheaves of such Chern character is the one having minimal slope

satisfying interpolation for Z.

The dissertation is structured in two parts.

The first chapter is an introduction to the tools necessaries to follow the text.

The first section introduces the notion of sheaves and schemes, the notion of divisors and

Chern classes, we conclude this section with the Hizerbruch-Riemman-Roch theorem. The

second section is an introduction to derived categories. In the third section is presented

the notion of cohomology for a sheaf and the Serre duality theorem. The last section is an

introduction to stacks.

In the second chapter is presented the study of [CH14]. In the first section it is

defined the notion of a Bridgeland stability, we define a Bridgeland stability suitable for

the interpolation problem and calculate the behavior of the potential Bridgeland walls.

We also prove that if a zero-dimensional scheme Z satisfies interpolation for a slope µ,

then Z satisfies interpolation for all slopes µ✶ ➙ µ, see Theorem 2.1.4, and we give the

candidate for the minimal slope that satisfies interpolation, see Proposition 2.1.3. The

second section is dedicated to prove the interpolation problem for complete intersection

schemes, see Theorem 2.3.1. The third section is an introduction to monomial schemes,

where we define its representation as a block diagram, calculate invariants of the potential

Bridgeland walls of such schemes and its destabilizing walls. In the last section we prove

the interpolation problem for monomial schemes, see Theorem 2.5.1.
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1 Preliminaries

In this section we present the basic definitions that are going to be needed to

follow the text.

1.1 Sheaves and Schemes

Definition 1.1.1. Let X be a topological space and A a category, a pre-sheaf F on X

with values in A consists of the following data

1. For each open sets U ⑨ X, F♣Uq is an object of A.

2. For each inclusion of open set V ãÑ U in X, we have a morphism ρUV : F♣Uq Ñ F♣V q
in A, called restriction morphism, satisfying:

a) for every open set U ⑨ X, the restriction morphism ρUU is the identity morphism

in F♣Uq,
b) if we have three open sets W ⑨ U ⑨ V , then ρW,V ✆ ρV,U ✏ ρW,U .

The elements of F♣Uq will be named sections of F over U , and occasionally we will

denote Γ♣F , Uq ✏ F♣Uq. Also if s P F♣Uq, we denote s⑤V ✏ ρUV .

If the pre-sheaf F satisfies the next two conditions, it is called a sheaf.

3. (Identity Axiom) Let U ⑨ X be an open set, and let tVi✉iPI be an open covering of

U , if s, t P F♣Uq are sections such that s⑤Vi
✏ t⑤Vi

for each i P I, then s ✏ t.

4. (Gluing Axiom) Let U ⑨ X be an open set and tVi✉iPI be an open cover of U , and

suppose that there are sections si P F♣Viq such that si⑤Vi❳Vj
✏ sj⑤Vi❳Vj

for all i, j P I,

then there exists a section s P F♣Uq satisfying s⑤Vi
✏ si.

Working with sheaves of rings, and introducing the Zariski topology leads us

to the definition of schemes. In this work we are going to assume that a ring means a

commutative ring with unity.

Definition 1.1.2. Let A be ring, we define the set spec A as the set of all prime ideals of

A. We define the subset V ♣aq ⑨ spec A as the set of all prime ideals of A that contains

the ideal a.

Note that

V ♣abq ✏ V ♣aq ❨ V ♣bq and V ♣
➳
iPI

aiq ✏ V ♣
↔
iPI

aiq,
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it follows that the sets of the form V ♣aq is a base of a closed sets of a topology in spec A,

namely the Zariski topology.

Now consider spec A with the Zariski topology, for each prime ideal p ⑨ A, let

Ap be the localization by A③p. For each open subset U ⑨ spec A, let O♣Uq be the set of

functions s : U Ñ
➜
pPU

Ap, such that each s♣pq P Ap for each p P U , and s is locally the

quotient of elements in A, more precisely, for each p P U , there is a neighborhood V of p,

and a, f ✘ 0 P A, such that for each q P V , we have f ❘ q and s♣qq ✏ a

f
P Aq. Then O is a

sheaf of rings over spec A named structure sheaf. We define Spec A ✏ ♣spec A, Oq.
Let f : X Ñ Y be a continuous map of topological spaces. For any sheaf F on

X, we define the direct image sheaf f✝♣Fq on Y by f✝♣Fq♣V q ✏ F♣f✁1♣V qq, for any open

set V ⑨ Y . For any sheaf G on Y , we define the inverse image sheaf f✁1G on X to be the

sheaf associated to the presheaf U ÞÑ limV ⑩f♣UqG♣V q, where U is a open set in X.

Now we can define the concept of scheme.

Definition 1.1.3. A ringed space is a pair ♣X, OXq consisting of a topological space X

and a sheaf of rings OX over X. A morphism of ringed spaces ♣f, f#q : ♣X, OXq Ñ ♣Y, OY q
such that f : X Ñ Y is continuous and f# : OY Ñ f✝OX is a morphism of sheaves of

rings. We say that a ringed space is a scheme if ♣X, OXq is isomorphic to Spec A for some

ring A.

We define some special kinds of schemes by putting conditions over its topolog-

ical space or over its structure sheaf.

Let X ✏ ♣X, OXq be a scheme, X is integral if its structure sheaf OX♣Uq is an

integral domain for every open subset U of X.

Let X and Y be schemes. A morphism f : X Ñ Y is of finite type if there

exists a covering of Y by open affine subsets Vi ✏ Spec Bi, such that for each i, f✁1♣Viq
can be covered by finite open affine subsets Uij ✏ Spec Aij, where each Aij is a finitely

generated Bi-algebra. We say that a scheme X is of finite type over a field k (or only finite

type), if the morphism X Ñ Spec k is of finite type.

Let f : X Ñ Y be a morphism of schemes, we say that f is separated over Y if

the diagonal morphism ∆ : X Ñ X ✂Y X is a closed immersion. A scheme X is separated

if it is separated over SpecZ.

Definition 1.1.4. A variety is an integral separated scheme of finite type over an alge-

braically closed field.

We now define the sheaf of O-modules, with whom we can describe the rank of

a sheaf and also define the concept of coherent sheaf.
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Definition 1.1.5. Let ♣X, OXq be a ringed space. A sheaf of OX-modules is a sheaf F of

groups on X, such that for each open subset U of X, the group F♣Uq is an OX♣Uq-module,

and for each restriction V ⑨ U , the restriction morphism F♣Uq Ñ F♣V q is compatible

with the module structure via the ring homomorphism OX♣Uq Ñ OX♣V q.
Similar to a module, an OX-module F is free if it is isomorphic to a direct sum

of copies of OX . It is locally free if X can be covered by open sets U for which F ⑤U is a

free OX ⑤U -module. In this case, the rank of F in U is the number of copies in each open

set. If X is connected, then it is the same everywhere.

A sheaf of ideals in on X is a sheaf of modules I, such that I♣Uq is an ideal in

OX♣Uq.

Definition 1.1.6. Let ♣X, OXq be a ringed space, a quasi-coherent sheaf F is a sheaf of

OX-modules which has local presentation, i.e. every point in X has an open neighborhood

U where there is an exact sequenceà
I

OX ⑤U Ñà
J

OX ⑤U Ñ F ⑤U Ñ 0,

for some sets I and J .

A quasi-coherent sheaf F on the ringed space ♣X, OXq is coherent if satisfies

another two conditions:

1. F is of finite type over OX .

2. For each open set U of X and every finite collection si P F♣Uq, i ✏ 1, . . . , n, the

kernel of the associated map ❵n
i✏1OX ⑤U Ñ F ⑤U is of finite type.

Definition 1.1.7. A scheme ♣X, OXq is reduced if for every open set U ❸ X, the ring

OX♣Uq has no nilpotent elements. Let ♣OXqred be the sheaf associated to the presheaf

U ÞÑ OX♣Uqred, where for any ring A, we denote Ared the quotient of A by its ideal of

nilpotent elements. The scheme ♣X, ♣OXqredq is called the reduced scheme associated to X

and denoted Xred.

We now recall the concept of divisor.

Definition 1.1.8. Let X be a Noetherian variety such that every local ring Ox of X

of dimension 1 is regular. A prime divisor on X is a closed integral subscheme Y of

codimension one. A Weil divisor is an element of the free abelian group Div X generated

by the prime divisors. We say that a divisor D ✏
➳

niYi is effective if all ni ➙ 0.

Let K be the function field of X, and let f P K✝ be a non zero rational function

on X. Let νY be the evaluation on the prime divisor Y of X, a principal divisor is a divisor

of the form ♣fq ✏
➳
Y

νY ♣fqY .
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Two divisor D and D✶ are said to be linearly equivalent, written D ✒ D✶, if

D ✁ D✶ is a principal divisor. We can then define the class group of X as the quotient

Cl X ✏ Div X④Pr X of the divisor of X by its principal divisors.

Furthermore, we define the Picard group of X as the group of isomorphism

classes of invertible sheaves on X.

We want to extend the notion of divisors to arbitrary schemes. The idea will

be that divisors is something that locally looks like the divisor of a rational function.

Definition 1.1.9. Let X be a scheme. For each open affine subset U ✏ Spec A let S be

the set of elements of A which are not zero divisors, and let K♣Uq be the localization of A

by the multiplicative system S. We call K♣Uq the total quotient ring of A. For each open

set U , let S♣Uq denote the set of elements of Γ♣U, OXq which are not zero divisors in each

local ring Ox for x P U . Then the set S♣Uq✁1Γ♣U, OXq form a presheaf, whose associated

sheaf ring H we call the sheaf of total quotient of OX . On an arbitrary scheme, the sheaf

H replaces the concept of function field of an integral scheme. We denote by H✝ the sheaf

of invertible elements in the sheaf of rings H.

Definition 1.1.10. A Cartier divisor on a scheme X is a global section of the sheaf

H✝④O✝. A Cartier divisor can be described by giving an open cover tUi✉ of X, and for

each i an element fi P Γ♣Ui, H✝q, such that for each i, j,
fi

fj

P Γ♣Ui ❳ Uj, O✝q. A Cartier

divisor is principal if it is in the image of the natural map Γ♣X, H✝q Ñ Γ♣X, H✝④O✝q. Two

Cartier divisors are lineraly equivalent if their difference is a principal divisor.

The next proposition gives the relation between Weil and Cartier divisors.

Proposition 1.1.1. Let X be an integral, separated noetherian scheme, all of whose local

rings are unique factorization domains. Then the group Div X of Weil divisors on X

is isomorphic to the group of Cartier divisors Γ♣X, H✝④O✝q, furthermore principal Weil

divisors correspond to the principal Cartier divisors under this isomorphism.

Proof. [Har77] Chapter 2, Proposition 6.11.

One of the most important reason to define Cartier divisors is that it also gives

a relation between invertible sheaves, i.e. a locally free OX-module of rank 1, and divisor

classes modulo linear equivalence.

We recall an important property of invertible sheaves.

Proposition 1.1.2. If L and M are invertible sheaves on a ringed space X, then L❜M

is also invertible. Furthermore, if L is any invertible sheaf on X, there exists an invertible

sheaf L✁1 such that L❜ L✁1 ✔ OX .
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Proof. Since L and M are locally free of rank 1 we have L❜M ✔ OX ❜OX ✔ OX locally.

For the second statement, let L be locally free of rank 1, and let L❴ ✏ Hom♣L, OXq be

the dual sheaf. Then L❴ ❜ L ✔ Hom♣L, Lq ✏ OX .

This proposition leads to the definition of the Picard group.

Definition 1.1.11. Let X be a ringed space, we define the Picard group of X, denoted

by Pic X, to be the group of isomorphism classes of invertible sheaves on X, under the

operation ❜.

Now we can state the relation between divisors and invertible sheaves.

Definition 1.1.12. Let D be a Cartier divisor on a scheme X, represented by t♣Ui, fiq✉.
We define a subsheaf L♣Dq to be the sub-OX-module of H, generated by f✁1

i on Ui. This

is well-defined since fi④fj is invertible in Ui ❳ Uj. We call L♣Dq the sheaf associated to D.

Definition 1.1.13. A Cartier divisor is effective if it can be represented by t♣Ui, fiq✉,
where all fi P Γ♣Ui, OUi

q. In this case we define the associated subscheme of codimension

1, namely Y , to be the closed subscheme defined by the sheaf of ideals I which is locally

generated by fi.

Proposition 1.1.3. Let D be an effective Cartier divisor on a scheme X, and let Y be

the associated locally principal closed subscheme. Then IY ✔ L♣✁Dq.

Proof. [Har77] Chapter 2, Proposition 6.18.

Definition 1.1.14. Let G be a sheaf of OY -modules, and f : ♣X, OXq Ñ ♣Y, OY q be a

morphism of ringed spaces. We define f✝♣Gq to be the tensor product

f✁1G ❜f✁1OY
OX .

Then f✝G is an OX-module, called the inverse image of G by the morphism f .

With these concepts in mind, we can start to discuss intersection theory, and

the finally define the Chern classes.

Let X be a variety over k. A cycle of codimension r on X is an element of the

free abelian group generated by the closed irreducible subvarieties of X of codimension r.

If Z is a closed subscheme of codimension r, let Y1, . . . , Yl be its irreducible components,

which have codimension r, and define the cycle associated to Z as
➳

niYi, where ni is the

length of the local ring Oyi,Z , where yi is the generic point yi of Yi in Z.

Let f : X Ñ X ✶ be a morphism of varieties, and let Y be a subvariety of

X, if dim f♣Y q ➔ dim Y , then we set f✝♣Y q ✏ 0. Otherwise, we set f✝♣Y q ✏ rK♣Y q :

K♣f♣Y qqsf♣Y q, where K♣Xq denotes the function field of a variety X, and rK, Ls denotes
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the field extension of K over L. Extending it by linearity we define a homomorphism of

cycles on X.

For any subvariety V of X, let f : Ṽ Ñ V be the normalization of V . Whenever

D and D✶ are linearly equivalent divisors on Ṽ , we say that f✝D and f✝D
✶ are rational

equivalent cycles on X.

For each r, let Ar♣Xq be the group of cycles of codimension r on X modulo

rational equivalences. Denote by

A♣Xq ✏
nà

r✏0

Ar♣Xq,

where dim X ✏ n, A0♣Xq ✏ Z and Ar♣Xq ✏ 0 for r → dim X.

An intersection theory on a given class of varieties A is defined by giving a

pairing Ar♣Xq ✂ As♣Xq Ñ Ar�s♣Xq for each X P A, satisfying the axioms listed below.

If Y P Ar♣Xq and Z P As♣Xq, we denote its intersection by Y.Z. Also, for a subvariety

Y ✶ P X ✶, we denote

f✝♣Y ✶q ✏ p1✝♣Γf .p✁1
2 ♣Y ✶qq,

where p1 and p2 are projections from X ✂X ✶ to X and X ✶, and Γf is the graph of f as a

cycle in X ✂X ✶. The following axioms must be satisfied.

1. The intersection pairing makes A♣Xq into a commutative associative graded ring

with identity, for every X P A. It is called the Chow ring of X.

2. For any morphism f : X Ñ X ✶ of varieties in A, f✝ : A♣X ✶q Ñ A♣Xq is a ring

homomorphism. If g : X ✶ Ñ X✷ is another morphism, then f✝ ✆ g✝ ✏ ♣g ✆ fq✝.

3. For any proper morphism f : X Ñ X ✶ of varieties in A, f✝ : A♣Xq Ñ A♣X ✶q is

a homomorphism of graded groups. If g : X ✶ Ñ X✷ is another morphism, then

g✝ ✆ f✝ ✏ ♣g ✆ fq✝.

4. Projection Formula. If f : X Ñ X ✶ is a proper morphism, if x P A♣Xq and y P A♣X ✶q,
then

f✝♣xf✝yq ✏ f✝♣xqy.

5. Reduction to the diagonal. If Y and Z are cycles on X, and if ∆ : X Ñ X ✂ X is

the diagonal morphism, then

Y.Z ✏ ∆✝♣Y ✂ Zq.

6. Local nature. If Y and Z are subvarieties of X which intersect properly, then we can

write

Y.Z ✏
➳

i♣Y.Z; WjqWj,
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where the sum runs over the irreducible components of Wj of Y ❳ Z, and where the

integer i♣Y.Z; Wjq depends only on a neighborhood of the generic point of Wj on X.

We call i♣Y.Z; Wjq the local intersection multiplicity of Y and Z along Wj.

7. Normalization. If Y is a subvariety of X and Z is an effective divisor meeting Y

properly, then Y.Z is just the cycle associated to the divisor Y ❳ Z on Y .

8. Since the cycles in codimension 1 are just divisors, and rational equivalence is the

same as linear equivalence, then A1♣Xq ✔ Pic X.

9. For any affine space Am, the projection X ✂ Am Ñ X induces an isomorphism

p✝ : A♣Xq Ñ A♣X ✂ Amq.

10. Exactness. If Y is a nonsingular closed subvariety of X, and U ✏ X③Y , there is an

exact sequence

A♣Y q i✝ÝÑ A♣Xq Ñ j✝A♣Uq Ñ A♣Uq Ñ 0,

where i : Y ãÑ X is one inclusion, and j : U ãÑ X is the other.

11. Let E be a locally free sheaf of rank r on X, and let P♣Eq be the associated projective

space bundle, and let ξ P A1♣P♣Eqq be the class of the divisor corresponding to

OP♣Eq♣1q. Let π : P♣Eq Ñ X be the projection. Then π✝ makes A♣P♣Eqq into a free

A♣Xq-module generated by 1, ξ, ξ2, . . . , ξr✁1.

Definition 1.1.15. Let E be a locally free sheaf of rank r on a nonsingular quasi-projective

variety X. For each i ✏ 0, 1, . . . , r, we define the ith Chern class ci♣Eq P Ai♣Xq by the

requirement of c0♣Eq ✏ 1, and

r➳
i✏0

♣✁1qiπ✝ci♣Eq.ξr✁i ✏ 0,

using the notation of item 11.

Often it will be useful to use the notation of Chern polynomial

ct♣Eq ✏ 1� c1♣Eqt� ☎ ☎ ☎ � cr♣Eqtr.

We have the following properties

1. If E ✔ L♣Dq for a divisor D, ct♣Eq ✏ 1�Dt.

2. If f : X ✶ Ñ X is a morphism, and E is a locally free sheaf on X, then for each i

ci♣f✝Eq ✏ f✝ci♣Eq.

3. If 0 Ñ E ✶ Ñ E Ñ E✷ Ñ 0 is an exact sequence of locally free sheaves, then

ct♣Eq ✏ ct♣E ✶qct♣E✷q.
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4. If E splits, i.e.

E ✏
rà

i✏1

Li,

where Li are invertibles sheafs, then

ct♣Eq ✏
r➵

i✏1

ct♣Liq.

In fact, for any computation of Chern classes we can assume that the bundle E

splits.

For instance, if we have vector bundles F and L of rank 2 and 1 respectivily, to

calculate the Chern classes of F ❜ L in terms, we can assume that F ✏ L1 ❵ L2, and then

c1♣F q ✏ c1♣L1q � c1♣L2q,

c2♣F q ✏ c1♣L1qc1♣L2q.
Then F ❜ L ✔ ♣L1 ❜ Lq ❵ ♣L2 ❜ Lq, and it follows that

c1♣F ❜ Lq ✏ c1♣F1 ❜ F q � c1♣F2 ❜ F q ✏ c1♣L1q � c1♣L2q � 2c1♣Lq ✏ c1♣F q � 2c1♣Lq,

and

c2♣F❜Lq ✏ c1♣L1❜Lqc1♣L2❜Lq ✏ ♣c1♣L1qc1♣Lqq♣c1♣L2qc1♣Lqq ✏ c2♣F q�c1♣F qc1♣Lq�c1♣Lq2.

In fact, a more general result can be proven. Let F be a rank r bundle and L

be a line bundle, then

cp♣F ❜ Lq ✏
p➳

i✏0

✂
r ✁ i

p✁ i

✡
ci♣F qc1♣Lqp✁i.

Furthermore, if we denote the Chern polynomial of E by

ct♣Eq ✏
r➵

i✏1

♣1� ait
iq,

we define the Chern character

ch♣Eq ✏
r➳

i✏1

eai ,

and the Todd class of E as

td♣Eq ✏
r➵

i✏1

ai

1✁ eai
.

With this invariants, we can state one of the main results that connects cohomology and

Chern classes.
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Theorem 1.1.1 (Hirzebruch-Riemann-Roch). Let E be a locally free sheaf of rank r on a

nonsingular projective variety X of dimension n, then

χ♣Eq ✏
➺

X

ch♣Eqtd♣Xq.

Proof. [Hir66] Theorem 21.1.1.

1.2 Derived Categories

We present a small introduction to derived categories to be able to define the

cohomology of sheaves. In this section we will mostly follow the first three chapters of

[Huy06].

Definition 1.2.1. Let D be an additive category. The structure of a triangulated category

consists of an additive equivalence

T : D Ñ D,

called the shift functor, and a set of distinguished triangles on D

A Ñ B Ñ C Ñ T ♣Aq,
which satisfie the following properties:

1. Any triangle of the form A Ñ A Ñ 0 Ñ Ar1s is distinguished.

2. Any triangle isomorphic to a distinguished triangle is distinguished.

3. Any morphism f : A Ñ B can be completed to a distinguished triangle

A
fÝÑ B Ñ C Ñ Ar1s.

4. The triangle

A
fÝÑ B

gÝÑ C
hÝÑ Ar1s

is distinguished if and only if

B
gÝÑ C

hÝÑ Ar1s ✁f r✁1sÝÝÝÝÑ Br1s
is a distinguished triangle.

5. Suppose that exists a commutative diagram of distinguished triangles with vertical

arrows f and g, i.e.

A Ñ B Ñ C Ñ Ar1s
f Ó g Ó f r1s Ó
A✶ Ñ B✶ Ñ C ✶ Ñ A✶r1s

then the diagram can be completed to a commutative diagram by a morphism

h : C Ñ C ✶.
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6. Given distinguished triangles

A
uÝÑ B

jÝÑ C ✶ kÝÑ
B

vÝÑ C
lÝÑ A✶ iÝÑ

A
vuÝÑ C

mÝÑ B✶ nÝÑ

there exists a distinguished triangle

C ✶ fÝÑ B✶ gÝÑ A✶ hÝÑ

such that

l ✏ gm, k ✏ nf, h ✏ jr1si, ig ✏ ur1sn, fj ✏ mv.

Definition 1.2.2. A category of complexes Kom♣Aq of an abelian category A is the

category of complexes A✌ P A, and whose morphisms are morphisms of complexes.

We define the complex A✌r1s as the complex with ♣A✌r1sqi ✏ Ai�1 and differen-

tial di
A✌r1s ✏ di�1

A✌ .

Furthermore, the shift functor T : Kom♣Aq Ñ Kom♣Aq defines an equivalence

of abelian categories.

A morphism of complexes f : A✌ Ñ B✌ is a quasi-isomorphism (or qis) if for

all i P Z the induced map H i♣fq : H i♣Aq Ñ H i♣Bq is an isomorphism.

The idea of the derived category is that when considering two complexes A✌ and

B✌ in a category Kom♣Aq, the isomorphism in the derived category D♣Aq will not mean

Ai ✔ Bi for all i, but instead that each cohomology is isomorphic, i.e. H i♣A✌q ✔ H i♣B✌q,
in other words, quasi-isomorphism in the category of complexes means isomorphisms in

the derived category.

Theorem 1.2.1. Let A be an abelian category and Kom♣Aq its category of complexes.

Then there exists a category D♣Aq, called the derived category of A, and a functor

Q : Kom♣Aq Ñ D♣Aq,

such that

1. If f : A✌ Ñ B✌ is a quasi-isomorphism, then Q♣fq is an isomorphism in D♣Aq.

2. Any functor F : Kom♣Aq Ñ D♣Aq satisfying the last condition factorizes uniquely

over Q : Kom♣Aq Ñ D, i.e. there exists a unique functor G : D♣Aq Ñ D, with

F ✔ G ✆ Q.

Proof. [Huy06] Theorem 2.10.
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To be more precise, we can define the category D♣Aq by having as objects

Ob♣D♣Aqq ✏ Ob♣Kom♣Aqq,

and the set of morphisms between complexes A✌ and B✌ viewed as objects in D♣Aq is the

set of equivalence class of diagrams of the form

C✌

!!

qis

}}
A✌ B✌

Definition 1.2.3. Let f : A✌ Ñ B✌ be a complex morphism, its mapping cone is the

complex C♣fq with

C♣fqi ✏ Ai�1 ❵ Bi, di
C♣fq ✏

✄
✁di�1

A 0

f i�1 di
B

☛

Definition 1.2.4. Two morphisms of complexes f, g are called homotopically equivalent,

denoted by f ✒ g, if there exists a collection of homomorphism hi : Ai Ñ Bi✁1 P Z such

that

f i ✁ gi ✏ hi ✆ di
A � di✁1

B ✆ hi.

The homotopy category of complexes K♣Aq is the category whose objects are

the objects of Kom♣Aq and morphisms HomK♣Aq♣A✌, B✌q ✏ HomKom♣Aq♣A✌, B✌q④ ✒.

Now we construct the derived functors.

Definition 1.2.5. Let Kom✝♣Aq, with ✝ ✏ �,✁, b, be the category of complexes A✌ in

the category A with Ai ✏ 0 for i ↕ 0, i ➙ 0, ⑤i⑤ ➙ 0 respectively.

Lemma 1.2.1. Let F : A Ñ B be a functor between triangulated categories, then F

induces a commutative diagram

K✝♣Aq Ñ K✝♣Bq
Ó Ó

D✝♣Aq Ñ D✝♣Bq,

if one of the following is true:

1. under F , a quasi-isomorphism is mapped to a quasi-isomorphism,

2. the image of an acyclic complex is again acyclic.

Proof. [Huy06] Lemma 2.44.
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So assume that we have a left exact functor F : A Ñ B, furthermore we assume

that A contains enough injectivies. We have the following diagram

K�♣IAq

i %%

�

� // K�♣Aq K♣F q //

QA

��

K�♣Bq
QB

��
D�♣Aq D�♣Bq

Definition 1.2.6. We define the right derived functor of F as the functor

RF ✏ QB ✆ K♣F q ✆ i✁1 : D�♣Aq Ñ D�♣Bq.

In the same manner one can construct the left derived functor.

We also set RiF ♣A✌q ✏ H i♣RF ♣A✌qq P B.

Proposition 1.2.1. The right derived functor is an exact functor of triangulated categories.

Proof. [Huy06] Proposition 2.47.

Definition 1.2.7. If A contains enough injectives, one defines

Exti♣A,✁q ✏ H i ✆ R Hom♣A,✁q.

These Ext groups can be interpreted purely in terms of certain homomorphism groups

within the derived category.

Proposition 1.2.2. If A, B P A an abelian category with enough injectives, then there

are natural isomorphisms

Exti
A♣A, Bq ✏ HomD♣Aq♣A, Brisq,

where A and B are complexes concentrated in degree zero.

Proof. [Huy06] Proposition 2.56.

We now introduce these notions in the sense of sheaves and schemes. Let X be

a scheme, its derived category Db♣Xq is, by definition, the bounded derived category of

the abelian category Coh♣Xq of coherent sheaves, i.e.,

Db♣Xq ✏ Db♣Coh♣Xqq.

Often the category Coh♣Xq do not contain non-trivial injective objects, usually

this happens when X is projective, then to compute derived functors we have to pass

to the category of quasi-coherent sheaves Qcoh♣Xq, and some times, to the category of

OX-modules ShOX
♣Xq.
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Proposition 1.2.3. For any noetherian scheme X there are natural equivalences

D✝♣Qcoh♣Xqq ✔ D✝
Qcoh♣Xq♣ShOX

♣Xqq.

This means that we can think D✝♣Qcoh♣Xqq as the bounded derived category of Qcoh♣Xq or

as the full triangulate subcategory of D✝♣ShOX
q of bounded complexes with quasi-coherent

cohomology.

Proof. [Huy06] Proposition 3.3.

We now recall what is t-structure and its heart. For this part we follow [BBD82].

Definition 1.2.8. A t-structure is a triangulated category D, with two full subcategories

D➙0 and D↕0, such that, defining D↕n ✏ D↕0r✁ns and D➙n ✏ D➙0r✁ns, we have

1. If X P D↕0 and Y P D➙1, then Hom♣X, Y q ✏ 0.

2. D↕0 ⑨ D↕1 and D➙0 ⑩ D➙1.

3. For any X P D, there is a distinguished triangle

A Ñ X Ñ B Ñ Ar1s,

such that A P D↕0 and B P D➙0.

The heart H of a t-structure on ♣Dq is the intersection

H ✏ D↕0 ❳D➙0.

A natural exemple of a t-structure on the derived category of an abelian category

A is the set D♣Aq↕0 (respectively D♣Aq➙0q) defined by the subcategories of complexes K

such that H i♣Kq ✏ 0 for i → 0 (repectively i ➔ 0), and its heart H is the set of complexes

K satisfying H i♣Kq ✏ 0 for i ✘ 0.

1.3 Cohomology of Sheaves

The goal of this section is to introduce the reader to the concept of cohomology

of sheaves.

Definition 1.3.1. Let X be a topological space. Let Γ♣X,✁q be the global section functor.

We define the cohomology functors H i♣X,✁q as the right derived functors of Γ♣X,✁q. For

any sheaf F , the groups H i♣X, Fq are the cohomology groups of F .

Often we have similar results of the classical cohomology translated for coho-

mology of sheaves, as the next one.
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Theorem 1.3.1. Let X be a noetherian topological space of dimension n. Then for all

i → n and all sheaves of abelian groups F on X, we have H i♣X, Fq ✏ 0.

Proof. [Har77] Chapter 3, Theorem 2.7.

The next theorem gives a criterium for affiness of a scheme X by its cohomology.

Theorem 1.3.2. Let X be a noetherian space, then the following conditions are equivalent.

1. X is affine.

2. H i♣X, Fq ✏ 0 for all F quasi-coherent and all i → 0.

3. H i♣X, Iq ✏ 0 for all coherent sheaves of ideals I.

Proof. [Har77] Chapter 3, Theorem 3.7.

We give the calculations of the cohomology for the structure sheaf of Pn in the

following theorem.

Theorem 1.3.3. Let A be a noetherian ring and let X ✏ Pn
A, with n ➙ 1. Then

H i♣X, OX♣mqq ✏ 0,

for 0 ➔ i ➔ n and all m P Z, and

Hn♣X, OX♣✁n✁ 1qq ✔ A.

Proof. [Har77] Chapter 3, Theorem 5.1.

Definition 1.3.2. Let X be a proper scheme of dimension n over a field K. A dualizing

sheaf for X is a coherent sheaf ω✆
X on X, together with a trace morphism tr : Hn♣X, ω✆

Xq Ñ
k, such that for all coherent sheaves F on X, the natural pairing

Hom♣F , ω✆
Xq ✂Hn♣X, Fq Ñ Hn♣X, ω✆

Xq,

composed with tr induces an isomorphism

Hom♣F , ω✆
Xq ✒ÝÑ Hn♣X, Fq✝.

Definition 1.3.3. A bundle L is very ample if the pull back of O♣1q via i : X Ñ Pn is

isomorphic to L, for some embedding i and some n P Z.

In other words, a very ample line bundle is a line bundle with enough global

sections to embed its base variety into a projective space.
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Theorem 1.3.4 (Serre duality). Let X be a projective scheme of dimension n over an

algebraically closed field K. Let ω✆
X be a dualizing sheaf on X, and let OX♣1q be a very

ample sheaf on X. Then:

1. For all i ➙ 0 and F coherent on X, there are natural functorial maps

θi : Exti♣F , ω✆
Xq Ñ Hn✁i♣X, Fq✝,

such that θ0 is the map given in the definition of dualizing sheaf above.

2. The following conditions are equivalent:

a) X is Cohen-Macaulay and equidimensional, i.e. for each x P X there is a

neighborhood U of x, such that OX♣Uq is Cohen-Macaulay and all irreducible

components have same dimension respectively.

b) For any local F locally free sheaf on X, we have H i♣X, F♣✁qqq ✏ 0 for i ➔ n

and q ✧ 0.

c) The maps θi are isomorphisms for all i ➙ 0 and all F coherent on X.

Proof. [Har77] Chapter 3, Theorem 7.6.

1.4 A Brief Introduction To Stacks

The notion of stacks was introduced in [DM69] having as motivation the study

of moduli space of curves, and it was generalized in [Art74]. The main reference used to

this introduction is [Fan01].

For this section we fix the category G, as our main case of interest is when it is

a subcategory of the category of schemes, we will call its objects schemes. A commutative

diagram

T ✶ fÝÑ T

p✶
➓➓➒ ➓➓➒p

S ✶ fÝÑ S

is called a Cartesian diagram if it induces all other commutative diagrams with same

lower-right corner, i.e. for any other commutative diagram

U
gÝÑ T

q
➓➓➒ ➓➓➒p

S ✶ fÝÑ S

there is a unique morphism h : U Ñ T ✶, such that q ✏ p✶ ✆ h and g ✏ f ✆ h.

We want to give the structure to our scheme. For this we define the Grothendieck

topology.
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Definition 1.4.1. A Grothendieck topology T consists of a category T and a set Cov T

of families tUi
φiÝÑ U✉iPI of maps in T called coverings, where the U is fixed, satisfying:

1. if φi is a isomorphism, then tφi✉ P Cov T ,

2. if tUi Ñ U✉ P Cov T for each i, then the family tVij Ñ U✉ obtained by composition

is in Cov T ,

3. if tUi Ñ U✉ P Cov T and V Ñ U P T is arbitrary, then Ui ✂U V exists and

tUi ✂U V Ñ V ✉ P Cov T .

In the case whom the objects of G are topologial spaces, we can take open

covering to be the usual ones. However, in the case of G being a category of schemes,

the Zariski topology is not appropriate. An étale morphism, i.e. for a smooth scheme, a

morphism with the differential that is a isomorphism at every point is not necessaraly a

local isomorphism. For that reason when defining an algebraic stack, we will utilise the

étale topology, i.e. let S be a scheme and define an open covering to be a collection of

étale morphisms tSi Ñ S✉, such that ❨Si Ñ S is surjective. For a fixed j, tSi ✂S Sj✉ is

an open of Sj because being étale is invariant under base change. If each Si Ñ S is an

open embedding, then tSi ✂S Sj✉ ✔ Si ❳ Sj.

Definition 1.4.2. Let E be a vector bundle over a scheme S and f : T Ñ S is a morphism

of schemes, we call a diagram

F
fÝÑ E➓➓➒ ➓➓➒

T
fÝÑ S

a pullback diagram if F is a vector bundle over T , and the diagram makes F into the

pullback of E via f , i.e. the diagram is cartesian. We also say that ♣F, fq is a pullback of

E via f .

Pullback is unique up to isomorphisms, in other words, if ♣F ✶, f
✶q is another

pullback of the previous diagram, there exists a unique isomorphism α : F ✶ Ñ F of vector

bundles over T such that f
✶ ✏ f ✆ α.

We can define the category Vr as the category that has as its objects rank r

vector bundles over schemes, and its morphism are pullback diagrams. There is a natural

forgetful functor from Vr to G, which associates to every bundle its base scheme and to

every pullback diagram the morphism f of the bases. The category Vr will be our guideline

example.

Definition 1.4.3. A category over G is a category X with a fixed covariant functor

π : X Ñ G. We say that a object E P X is over, or is a lifting of a scheme S P G, if
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π♣Eq ✏ S, and similarly for morphisms. If S P G, the fiber over S is the subcategory of X

of objects over S and morphisms over the identity of S.

Note that Vr is a category over G, the fiber over S P G is the category of vector

bundles over S, and the morphisms are the isomorphisms among them.

To a scheme S P G we can associate a category G④S over G, called the category

of S-schemes. The objects are morphisms with target S in G, and a morphism from

f : T Ñ S to f ✶ : T ✶ Ñ S is a morphism g : T Ñ T ✶ with f ✏ f ✶ ✆ g. The projection

functor sends the object T Ñ S to T and a morphism g to itself. In diagrams we have the

following picture

T
g //

��

T ✶

��
S S

is commutative.

In the case where S is a point p, the category G④p is just the category G itself,

and the natural projection is the identity functor.

Now we should define what are the morphisms of categories over G.

Definition 1.4.4. A morphism of categories over G is a covariant functor commuting

with the projection to G.

Let S be a scheme, X a category over G, f : G④S Ñ X a morphism of

categories over G. To this morphism we can associate an object E P X over S, the image

of idS : S Ñ S.

If S and T are schemes, and f : G④T Ñ G④S is a morphism of categories over

G, then the associated object is a morphism g : T Ñ S, and f is uniquely determined by g.

Therefore, morphisms of categories over G from G④T to G④S are the same as a morphism

of schemes T Ñ S. Hence, the category G④S determines the scheme S up to isomorphism.

Definition 1.4.5. If X and Y are categories over G, let f and g be morphisms from X

to Y , a 2-morphism f Ñ g is a natural transformation over the identity functor on G.

As we have the existence of 2-morphisms, categories over G form a 2-category,

i.e. morphisms can be isomorphic without being equal. This idea is analagous to homotopy,

as two continous maps are homotopic without being equal.

Definition 1.4.6. An isomorphism of categories over G is a morphism which is an

equivalence of categories, in other words, it induces bijections on morphisms and is surjective

on objects up to isomorphism. An isomorphism has an inverse up to 2-isomorphisms.
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Definition 1.4.7. A category X over G is called a category fibered in grupoids, or grupoid

fibration, over G if for any choice of morphism of schemes f : T Ñ S and of a lifting E

of S to X, there exists a lifting f : F Ñ E of f to X, and the lifting is unique up to

isomorphism, i.e. for any other lifting f
✶
: F ✶ Ñ E, there is a unique α : F ✶ Ñ F over idT

such that f
✶ ✏ f ✆ α.

Definition 1.4.8. A grupoid is a category in which every morphism is invertible, i.e. an

isomorphism.

Let X be a grupoid over G. We assume that for every morphism f : T Ñ S

and every object E over S, we have choosen one lifting fE : f✝E Ñ E of f with target

E. If E ✶ is another object over S, and α : E ✶ Ñ E is a morphism in the fiber there is a

unique morphism f✝α : f✝ : f✝E ✶ Ñ f✝E such that the diagram

f✝E ✶ fE✶ //

f✝α

��

E ✶

α

��
f✝E

fE

// E

commutes.

If the morphism considered f : T Ñ S is clear, sometimes we will denote f✝E

by T ⑤E, we will analogously change the notation for morphisms.

Definition 1.4.9. Let X be a category fibered in grupoids over G. A descent datum for

X over a scheme S is the following: an open covering tSi Ñ S✉; for every i, a lifting Ei

of Si to X; for every i, j an isomorphism αij : Ei⑤Si ❳ Sj Ñ Ej⑤Si ❳ Sj in the fiber which

satisfies the cocycle condition αik ✏ αjk ✆ αij over Si ❳ Sj ❳ Sk.

The descent datum is said to be effective if there exists a lifting E of S to

X together with isomorphisms αi : E⑤Si Ñ Ei in the fiber such that αij ✏ αj⑤Si ❳ Sj ✆
♣αi⑤Si ❳ Sjq✁1.

The covering tSi✉ can be thought as lying over S, and we have a collection of

bundles above, and we descend them to a bundle over S.

Definition 1.4.10. Let X be a category fibered in grupoids over G. We say that isomor-

phisms are a sheaf for X if, for any scheme S and any E, E ✶ in the fiber of S, for every

open covering tSi Ñ S✉ of S, and for every collection of isomorphisms αi : E⑤Si Ñ E ✶⑤Si

in the fiber over Si, such that αi⑤Si ❳ Sj ✏ αj⑤Si ❳ Sj, there is a unique isomorphism

α : E Ñ E ✶ such that α⑤Si ✏ αi.

With these concepts we can define the notion of stack.
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Definition 1.4.11. A stack is a category fibered in grupoids over G such that isomorphisms

are a sheaf and every descent datum is effective.

If X is a stack, then for every descent datum as in Definition 1.4.9, the ♣E, αiq
whose existence is guaranteed by effectiveness are unique up to isomorphism, i.e. for any

other ♣E ✶, α✶
iq there exists a unique isomorphism β : E ✶ Ñ E in the fiber such α✶

i ✏ αi ✆ β.

Morphisms of stacks are defined to be morphisms of categories over G, and the

same for 2-morphisms and isomorphisms.

The category G④S is always fibered in grupoids over G, but not necessarily a

stack, it will depend on the topology. However, for schemes, varieties, manifolds, topological

spaces, they form a stack with the usual topology. It is also true for schemes with the étale

topology.

Definition 1.4.12. A stack X over G is representable if it is isomorphic to the stack G④S
induced by S.

Roughly speaking, a representable morphism of stacks is a morphism whose

fibers are schemes.

Definition 1.4.13. A morphism X Ñ Y of stacks is representable if, for every morphism

S Ñ Y with S a scheme, the fiber product S ✂Y X is representable.

A property of morphism of schemes is invariant under base change if, for any

cartesian diagram, if p has a the property, then so has p✶.

Definition 1.4.14. Let P be a property of morphisms of schemes which is invariant under

base change. A representable morphism X Ñ Y of stacks has property P if, for every

morphism S Ñ Y with S a scheme, the induced morphism of schemes S ✂Y X Ñ S has P .

Examples of properties that are invariant under base changes includes smooth-

ness, being étale, being proper, open embedding and closed embedding.

We now will consider G to be the category of quasiprojective schemes over the

complex numbers, with the étale topology.

Definition 1.4.15. A stack X over G is algebraic in the sense of Deligne and Mumford

(respectively Artin) if there exists an étale (respectively smooth) and surjective repre-

sentable morphism S Ñ X where S is a scheme. We say S Ñ X is a presentation of

X.

Lemma 1.4.1. Let W be a vector space of dimension r. Define a morphism p Ñ Vr, where

p is the category G④p, mapping every scheme T to the trivial bundle T ✂ W , and every

morphism to the natural pullback diagram. Then for every scheme S and every morphism
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S Ñ Vr, the fiber product S ✂Vr
p is a representable stack, isomorphic to the frame bundle

of E. Furthermore, the morphism p Ñ Vr is representable.

Proof. [Fan01] Subsection 6.2.

This lemma implies that p Ñ Vr is representable, smooth and surjective,

therefore the stack Vr is algebraic in the sense of Artin, and the morphism p Ñ Vr is a

presentation.

We now give the example of the stack of coherent sheaves. To obtain the stack

of prioritary sheaves utilized later in the text, one can just restrict the category to the

category of prioritary sheaves, and then the stack of prioritary sheaves will be an open

substack of the stack of coherent sheaves.

Definition 1.4.16. Let f : X Ñ S be a morphism of schemes.

1. We say that f is of finite presentation at x P X if there exists an affine open

neighbourhood Spec♣Aq ✏ U ⑨ X of x and affine open Spec♣Rq ✏ V ⑨ S with

f♣Uq ⑨ V such that the induced ring map R Ñ A is of finite presentation.

2. We say that f is locally of finite presentation if it is of finite presentation at every

point of X.

3. We say that f is of finite presentation if it is locally of finite presentation, quasi-

compact and quasi-separated.

Let S be a scheme, and f : B Ñ X be a morphism of algebraic spaces over S.

Assume that f is of finite presentation. We denote CohX④B the category whose objects are

triples ♣T, f, Fq where

1. T is a scheme over S,

2. g : T Ñ B is a morphism over S, and setting XT ✏ T ✂g,B X,

3. F is quasi-coherent OXT
-module of finite presentation, flat over T , with support

proper over T .

A morphism ♣T, g, Fq Ñ ♣T ✶, g✶, F ✶q is given by a pair ♣h, ϕq where

1. h : T Ñ T ✶ is a morphism of schemes over B, i.e. g✶ ✆ h ✏ g, and

2. ϕ : ♣h✶q✝F ✶ Ñ F is an isomorphism of OXT
-modules where h✶ : XT Ñ XT ✶ is the

base change of h.
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Thus CohX④B is a category and the rule

p : CohX④B Ñ ♣Sch④Sqfppf ; ♣T, g, Fq ÞÑ T

is a functor. For a scheme T over S we denote CohX④T the fibre category p over T . These

fibre categories are grupoids.

Proposition 1.4.1. In this situation, the functor p : CohX④B Ñ ♣Sch④Sqfppf is a stack

in grupoids.

Proof. [Sta19] Lemma 92.5.4.
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2 Interpolation Problem

2.1 Bridgeland Stability

In this section we will define the concepts of Bridgeland stability and its walls,

we will also state the main results used to prove the interpolation for complete instersection

and monomial schemes.

Given a zero-dimensional scheme Z, the interpolation problem consists in

finding the rational number µ such that there exists a vector bundle E with such slope µ,

such that H i♣E ❜ IZq ✏ 0 for all i P Z. In the case that E satisfies this property, we are

going to say that E satisfies interpolation for IZ . The article [CH14] gives a proof for the

cases of Z being a complete intersection and a monomial scheme.

The slope µ and the discriminant ∆ of a bundle E are defined as

µ ✏ c1

r
, ∆ ✏ µ2

2
✁ c2

r
.

We say that a pure sheaf E is Gieseker semistable if for every coherant subsheaf

F ⑨ E we have pE♣mq ➙ pF ♣mq for m ➙ 0. When the inequality is strict, we say that the

sheaf is stable.

The Riemann-Roch theorem relates the Chern character with the Euler charac-

teristic of a bundle E by

χ♣Eq ✏ r♣P ♣µq ✁∆q,
where P ♣xq ✏ 1

2
♣x2 � 3x� 2q.

A bundle E is slope stable if for every coherent subsheaf F , µ♣F q ➔ µ♣Eq, and

semistable in case of equality. Utilizing the last relations, and since pX♣mq ✏ χ♣X♣mqq
r♣Xq ,

we see that a pure bundle E is Gieseker stable if µ♣F q ↕ µ♣Eq, and ∆♣F q → ∆♣Eq in case

of equality.

The concept of Bridgeland stability can be thought as a generalization of the

Gieseker stability. To define the most general notion of Bridgeland stability we still need

some definitions.

Definition 2.1.1. Let X be a smooth projective variety over C of dimension n ➙ 2. A

slicing P of Db♣Xq is a collection of subcategories P♣σq ⑨ Db♣Xq for all σ P R such that

• P♣φqr1s ✏ P♣φ� 1q,

• if φ1 → φ2, and A P P♣φ1q, B P P♣φ2q, then Hom♣A, Bq ✏ 0,
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• For all E P Db♣Xq, there are real numbers φ1 → ☎ ☎ ☎ → φm, objects Ei P Db♣Xq,
Ai P P♣φiq for i ✏ 1, . . . , m and a collection of triangles

0 ✏ E0
// E1

//

��

E2
//

��

. . . // Em✁1
//

��

Em ✏ E

��
A1

cc

A2

``

Am✁1

bb

Am

ee

where Ai P P♣φiq.

For this filtration of an element E P Db♣Xq we write φ✁♣Eq ✏ φm and φ�♣Eq ✏
φ1. Moreover for E P P♣φq, we call φ♣Eq ✏ φ the phase of E. The last property is called

the Harder-Narasimhan filtration. By setting A ✏ P♣♣0, 1sq to be the extension closure of

the subcategories tP♣φq⑤φ P ♣0, 1s✉ one gets a heart of a t-structure from a slicing.

The definition of a Bridgeland stability condition will depend on some additional

data. More precisely, we fix a finite rank lattice ∆ and a surjective group homomorphism

v : K0♣Xq ։ ∆.

We also fix a norm ⑥☎⑥ on ΛR. All choices of norms are equivalent here and subsequent

definitions will not depend on it.

A Bridgeland stability condition on Db♣Xq is a pair σ ✏ ♣P , Zq where

• P is a slicing of Db♣Xq, and

• Z : ∆ Ñ C is an additive homomorphism, called the central charge,

satisfying the following properties:

1. For any non-zero E P P♣φq, we have

Z♣v♣Eqq P R→0 ☎ eiπφ.

2. (Support property)

Cσ ✏ inf

✧ ⑤Z♣v♣Eqq⑤
⑥v♣Eq⑥ 0 ✘ E P P♣φq, φ P R

✯
→ 0.

The heart of a t-structure can be defined by A ✏ P♣♣0, 1sq. Objects in P♣φq
are called σ-semistable of phase φ. The mass of an object E P Db♣Xq is defined as

mσ♣Eq ✏ Σ⑤Z♣Ajq⑤, where A1, . . . , Am are the Harder-Narasimhan factors of E.

But for the purpose of this work, we can use a more simple notion of a Bridgeland

stability given by the next definition.
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Definition 2.1.2. Let Db♣P2q be the derived category of coherant sheaves and L the class

of a line. A Bridgeland stability consists of a pair σ ✏ ♣A, Zq such that A is the heart of a

bounded t-structure and Z : K♣P2q Ñ C is a homomorphism satisfying:

(i) (Positivity) For all E ✘ 0 P A, Z♣Eq P treiθ⑤r → 0, θ P ♣0, 1s✉.

(ii) (Harder-Narasimhan property) For any object E P A, let the Z-slope of E be defined

as µ♣Eq ✏ ✁Re♣Z♣Eqq
Im♣Z♣Eqq . An object E is called Z-stable if for every subobject F ,

µ♣F q ➔ µ♣Eq, in case of equality we say that is semi-stable. The pair ♣A, Zq is

required to satisfy the Harder-Narasimhan property, i.e. E has a filtration

0 ✏ E0 ãÑ E1 ãÑ ☎ ☎ ☎ ãÑ En ✏ E,

such that Fi ✏ Ei④Ei✁1 is Z-semi-stable and µ♣Fiq → µ♣Fi�1q.

We construct the Bridgeland Stability that we will use. Let s P R be given,

and consider the full categories of torsion sheaves Qs with µmin♣Qq → s, for Q P Qs, and

the full category of torsion free sheaves Fs, satisfying µmax♣Fsq ↕ s. Then let As be the

heart of the t-structure on Db♣P2q obtained from ♣Fs, Qsq. Define the function Z by

Zs,t♣Eq ✏ ✁
➺
P2

e✁♣s�itqLch♣Eq.

If E has Chern character ξ ✏ ♣r, µ, ∆q, then

Zs,t♣Eq ✏ 1

2
r♣♣µ ✁ s2q ✁ t2 ✁ 2∆q � irt♣µ ✁ sq,

and the slope is given by

µs,t ✏ ♣µ ✁ sq2 ✁ t2 ✁ 2∆

2t♣µ ✁ sq .

If we have a Chern character ξ, then in the ♣s, tq-plane we can consider the

walls such that, as the stability condition σs,t varies in the chamber, the set of σs,t-stable

objects of class ξ does not change. These walls are called Bridgeland walls.

Suppose that ξ, ζ are two linearly independent Chern characters, a potential

Bridgeland wall is a set in the ♣s, tq-plane of the form

W ♣ξ, ζq ✏ t♣s, tq⑤µs,t♣ξq ✏ µs,t♣ζq✉,

note that Bridgeland walls are potential Bridgeland walls. The potential Bridgeland walls

for ξ are all the walls W ♣ξ, ζq as ζ varies.

If we consider ξ ✏ ♣r, c, dq and ζ ✏ ♣r✶, c✶, d✶q, by direct calculation we have that

(i) If µ♣ξq ✏ µ♣ζq, then the wall W ♣ξ, ζq is the vertical line s ✏ µ♣ξq.
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(ii) Otherwise, assume µ♣ξq ➔ ✽. It can be shown that the walls W ♣ξ, ζq and W ♣ξ, ξ�ζq
are equal, so we can assume that µ♣ζq ➔ ✽. Then changing the basis to ξ ✏ ♣r, µ, ∆q
and ζ ✏ ♣r✶, µ✶, ∆✶q, we obtain that the wall W ♣ξ, ζq is the semicircle centered at

♣s, 0q and radius ρ, with

s ✏ µ� µ✶

2
✁ ∆✁∆✶

µ✁ µ✶
, ρ2 ✏ ♣s✁ µq2 ✁ 2∆.

From this we see that for a Chern character ξ with nonzero rank and nonnegative

discriminant the walls are a vertical line in s ✏ µ, and semicircles to the left of the

vertical line, with smaller radius closer to the wall, and the centers converge to the point

♣µ✁
❄

2∆, 0q when comparing with negative ranks, and for positive ranks the picture is

similar converging to the point ♣µ�
❄

2∆, 0q. In the case of a rank 0 object, the walls are

semicircles centered at ♣µ, 0q.

Proposition 2.1.1. An object E is Gieseker semistable if there is some s P R such that

E is a Zs,t-semi-stable object of As for all t ✧ 0.

If W is a semicircular potential wall for a Gieseker semi-stable object E, then

E is destabilized along W if

1. E is not semistable at any point inside of W ,

2. E is semistable along W ,

3. E is semistable at any point ♣s, tq outside of W such that E P As.

Proposition 2.1.2. Let

0 Ñ A Ñ E Ñ B Ñ 0

be an exact sequence of Gieseker semistable As. Suppose A and B have linearly independent

Chern characters. If A and B are destabilized along walls nested inside of W ♣A, Eq, then

E is destabilized along W .

Proof. [CH14] Proposition 2.5.

The proof of the interpolation for complete intersection consists in finding these

sequences and showing acyclicity for A and B.

We introduce another space of coherent sheaves.

Definition 2.1.3. A torsion-free coherent sheaf E on P2 is prioritary if

Ext2♣E, E♣✁1qq ✏ 0.
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Definition 2.1.4. Let E be a coherent sheaf on P2, we say that E has nonespecial

cohomology if H i♣Eq ✘ 0 for at most one value of i P Z.

Now we list some important properties about prioritary sheaves that will be

used later. Let P ♣ξq be the stack of prioritary sheaves in P2 with Chern character ξ.

Theorem 2.1.1. Let ξ be a Chern character such that P ♣ξq is nonempty.

1. The stack P ♣ξq is irreducible.

2. The stack of semi-stable sheaves M♣ξq is an open substack of P ♣ξq, which is irreducible

when nonempty.

3. If rkξ ➙ 2, then the general element of P ♣ξq is locally free.

4. If rkξ ➙ 2, then the general element of P ♣ξq has nonespecial cohomology.

Proof. For items 1 to 3 see [HL93], and [GH94] for item 4.

The next result gives a clear connection between cohomology and stability.

Definition 2.1.5. Let E be a locally free sheaf (or a holomorphic vector bundle), there

is a unique k such that

r ✁ 1 ↕ c1♣E♣✁kEqq ↕ 0,

where r ✏ rk♣Eq. We denote by Enorm ✏ E♣✁kEq the normalized sheaf of E, and we say

that E is the normalized if Enorm ✏ E.

Theorem 2.1.2 (Hoppe). Let X be a projective manifold with Pic X ✏ Z, and let E be

a vector bundle on X. If H0♣X, ♣❫qEqnormq ✏ 0, for 1 ↕ q ↕ r ✁ 1, then E is stable.

Proof. [Hop84] Lemma 2.6.

The converse of the previous statement is false, but for rank 2 sheaves the

converse is true.

Theorem 2.1.3. If E is a rank 2 holomorphic vector bundle on X, and Pic X ✏ Z, then

E is stable if and only if h0♣Enormq ✏ 0.

Proof. [OSS80] Lemma 1.2.5.

For the last part of normalized bundle we refer to [JMPSE17] and [AO94].

Having nonespecial cohomology is a great improvement, because now the

problem translates into showing that χ♣Eq ✏ 0. The next theorem shows that is not only

important to find E with interpolation, but we should care to find the Chern character ξ

with minimal slope such that the general prioritary bundle E P P ♣ξq has χ♣IZ ❜ Eq ✏ 0.
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Theorem 2.1.4. Let Z ⑨ P2 be a zero-dimensional scheme, suppose that E is a vector

bundle of slope µ with H1♣E ❜ IZq ✏ 0. Then for each slope µ✶ ➙ µ there is a prioritary

bundle E ✶ with slope µ✶ such that E ✶ has interpolation for Z.

Proof. By Lemma 3.1 and Corollary 3.4 in [CH14], we can assume that E is a stable

vector bundle, µ♣Eq ➙ 0 and H1♣Eq ✏ 0. Let µ✶ ➙ µ, and k the integer such

µ� k ↕ µ✶ ➔ µ� k � 1.

We can chose a, b such that the bundle

F ✏ E♣kqa ❵ E♣k � 1qb

has slope µ✶ and by Serre duality it follows that F is prioritary.

We claim that H1♣F ❜ IZq ✏ 0, which follows from H1♣E♣jq ❜ IZq ✏ 0 for each

j ➙ 0.

For the base case, it is the assumption of the theorem. Note that we have a

exact sequence

0 Ñ E♣✁1q Ñ E Ñ E⑤L Ñ 0,

where L is a line in P2. Notice that H2♣E♣✁1qq ✔ H0♣E❴♣✁2qq, as E is stable, it means that

E❴ is also stable and has µ♣E❴q ↕ 0. Because E❴ is stable, it follows that H0♣E❴
Normq ✏ 0,

and E❴
norm ✔ E❴♣αq for some α ➙ 0, therefore H0♣E❴♣✁2qq ✏ 0, also H1♣Eq ✏ 0. Then

H1♣E⑤Lq ✏ 0. Assume that this vanishes hold for j ✁ 1, we have the sequence

0 Ñ E♣j ✁ 1q Ñ E♣jq Ñ E♣jq⑤L Ñ 0.

We can restrict this sequence even more to

0 Ñ E♣j ✁ 1q⑤L Ñ E♣jq⑤L Ñ E♣jq⑤p Ñ 0.

By induction H i♣E♣jqq⑤L ✏ 0. Tensoring the first sequence by IZ gives H i♣E♣jq ❜ IZq ✏ 0

by induction. Lemma 3.1 of [CH14] shows that H1♣F q ✏ H1♣F ❜ IZq ✏ H2♣F ❜ IZq ✏ 0.

If h0♣F ❜ IZq ✘ 0, let w ✏ h0♣F ❜ IZq, and consider a zero dimensional scheme of length

w. If F ✶ is the kernel of a general map F ❜ IZ Ñ OW , then F ✶ is acyclic by Lemma 3.7

[CH14]. As F ✶ Ñ F ❜ IZ is a isomorphism near Z, we have that F ✶ ✏ F ✷ ❜ Z for some

F ✷ ⑨ F , and there is a exact sequence

0 Ñ F ✷ Ñ F Ñ OW Ñ 0,

if F Ñ OW is a general map with kernel F ✷, then F ✷ ❜ IZ is acyclic. Moreover, F ✷ is

prioritary since F is, and µ♣F q ✏ µ♣F ✷q.
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With this theorem it is natural to define µ❑
min♣IZq as the minimum slope such

that there is a bundle with interpolation for IZ .

Theorem 2.1.5. Let F be a semi-stable pure 1 dimensional sheaf, and suppose that E

is prioritary and E ❜ F is acyclic. Let ♣r, µ, ∆q be numerical invariantes of E, and fix

∆✶ ➙ ∆ rational. If r✶ is sufficiently divisible, then E ✶❜F is acyclic for a general prioritary

bundle E ✶ P P ♣r✶, µ, ∆✶q.

Proof. [CH14] Theorem 3.15.

The next proposition will give us the candidate for the Chern character with

minimal slope having interpolation.

Proposition 2.1.3. Let ξ1, ξ2 be two independent Chern character with either rank 0 or

0 → ∆. Suppose that ζ ✏ ♣r, µ, ∆q is a Chern character with r ✘ 0, ∆ → ✁1

8
and

χ♣ζ✝, ξ1q ✏ χ♣ζ✝, ξ2q ✏ 0.

Then the wall W ♣ξ1, ξ2q is semicircular, with center ♣s, 0q and radius ρ equal to

s ✏ ✁µ✁ 3

2
, ρ2 ✏ 2∆� 1

4
.

Proof. [CH14] Proposition 4.1.

Definition 2.1.6. Let ξ, ζ be two Chern characters. We will say that they are orthogonal

if χ♣ζ✝, ξq ✏ 0.

The ζ comes naturally in the sense that it will be the orthogonal Chern character

of the destabilizing sequence of the complete intersection and monomial schemes.

2.2 The Hilbert Scheme P2rns

Let P2rns denote the Hilbert scheme parametrizing subschemes of P2 with

constant Hilbert polynomial n. The Hilbert scheme P2rns parametrizes subschemes Z of P2

of dimension zero with h0♣Z, OZq ✏ n. A subscheme Z consisting of n distinct, reduced

points of P2 has Hilbert polynomial n, therefore Z induces a point of P2rns.

Definition 2.2.1. Let P2♣nq denote the quotient of the product P2 ✂ ☎ ☎ ☎ ✂ P2 of n copies

of P2 under the symmetric group action Sn permuting the factor.

Theorem 2.2.1 (Fogarty). The Hilbert scheme P2rns is a smooth, irreducible, projective

variety of dimension 2n. The Hilbert scheme P2rns admits a natural morphism to the

symmetric product P2♣nq called the Hilbert-Chow morphism

h : P2rns Ñ P2♣nq.
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The morphism h is birational and gives a crepant desingularization of the symmetric

product P2♣nq.

Proof. [Fog68] Section 2.

This theorem also guarantee that Weil divisors are Cartier divisors in P2rns.

Therefore, we can define Cartier divisors by imposing codimension one geometric conditions

on schemes parametrized by P2rns. Furthermore, the Hilbert-Chow morphism allow us to

compute the Picard group of P2rns.

Definition 2.2.2. Let H ✏ h✝♣c1♣OP2♣nq♣1qqq be the class of the pullback of the ample

generator from the symmetric product P2♣nq, H is nef and big, i.e., αC ➙ 0 for all algebraic

curves α. The exceptional locus of the Hilbert-Chow morphism is an irreducible divisor

whose class we denote by B.

H is the class of the locus of subschemes Z in P2rns whose supports intersect a

fixed line L ⑨ P2. The class B is the class of the locus of non-reduced schemes.

Theorem 2.2.2 (Fogarty). The Picard group of the Hilbert scheme of points P2rns is

the free abelian group generated by OP2rns♣Hq and OP2rns♣B
2
q. The Neron-Severi space is

N1♣P2rnsq ✏ Pic♣P2rnsq ❜Q and is spanned by the divisor classes H and B.

Proof. [Fog73] Section 6.

Definition 2.2.3. Let D be a divisor over a variety X, and let ⑤D⑤ be the complete linear

system associated to D, the base locus of ⑤D⑤ is given by the intersection

Bl♣⑤D⑤q ✏
↔

DeffP⑤D⑤

Supp♣Deff q,

where the intersection is taken over all effective divisors Deff in the linear system.

The stable base locus of D is the intersection

Bsl♣Dq ✏
↔
m

Bl♣⑤mD⑤qred,

where the intersection is taken over all m such that mD P Div♣Xq.

Proposition 2.2.1. Let E be a vector bundle of rank r on P2 and c1♣Eq ✏ aL, where L

is the class of a line, and suppose that E satisfies interpolation for n points. The divisor

DE has class aH ✁ r

2
B. Furthermore, the stable base locus of the divisor class DE lies in

the locus of schemes which fail to impose independent conditions on sections of E.

Proof. [ABCH13] Proposition 3.6.
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Proposition 2.2.2. Suppose 0 ➔ α ➔ β. The stable base locus of H ✁ αB is contained in

the stable base locus of H ✁ βB.

Proof. [ABCH13] Lemma 4.12.

Proposition 2.2.3. Let α be a curve class in P2rns with αH → 0, and suppose that

α♣H ✁ aBq ✏ 0 for some a → 0. Then the stable base locus of every divisor H ✁ bB with

b → a contains the locus sewpt out by irreducible curves of class α.

Proof. [ABCH13] Lemma 4.13.

2.3 Interpolation for Complete Intersection Schemes

Now we prove the interpolation for complete intersection schemes.

Theorem 2.3.1. Let Z be a zero-dimensional complete intersection scheme in P2 given

by Z ✏ ♣f, gq, where deg♣fq ✏ a, deg♣gq ✏ b, with a ↕ b. Then µ❑
min♣IZq ✏ b� a✁ 3

2
.

Proof. Note that IZ has resolution

0 Ñ OP2♣✁a✁ bq Ñ OP2♣✁aq ❵OP2♣✁bq Ñ IZ Ñ 0.

We can complete it to the following diagram

0

��

0

��
OP2♣✁aq

��

OP2♣✁aq

��
0 // OP2♣✁a✁ bq // OP2♣✁aq ❵OP2♣✁bq //

��

IZ
//

��

0

0 // OP2♣✁a✁ bq // OP2♣✁bq //

��

OC♣✁bq //

��

0

0 0

And from that we obtain the sequence

0 Ñ OP2♣✁aq Ñ IZ Ñ OC♣✁bq Ñ 0,

where C is the curve defined by f . We will show that there is a choice of E such that

E ❜OP2♣✁aq and E ❜OC♣✁bq are acyclic.

First we compute the wall W ♣OP2♣✁aq, IZq. We have

ch♣OP2♣✁aqq ✏ ♣1,✁a,
✁a2

2
q, ch♣IZq ✏ ♣1, 0,✁abq,
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from the previous calculations for the center and radius of the walls we obtain

s ✏ ✁1

2
a ✁ b, ρ2 ✏ 1

4
♣a ✁ 2bq2.

Then we can consider the Chern character ξopt with r♣ξoptq ✘ 0 that satisfies

χ♣ξ✝opt, OP2♣✁aqq ✏ χ♣ξopt, IZq ✏ 0,

using the previous proposition we must have

µopt :✏ µ♣ξoptq ✏ ✁s ✁ 3

2
✏ b � a ✁ 3

2

and

∆opt :✏ ∆♣ξoptq ✏ 1

2
ρ2 ✁ 1

8
✏ 1

8
♣♣a ✁ 2bq2 ✁ 1q.

We want to show that if r♣ξoptq is sufficiently large and divisible, then a general E P P ♣ξoptq
has interpolation for Z. Note that χ♣ξ✝opt, OP2♣✁aqq ✏ χ♣E✝, OP2♣✁aqq ✏ χ♣E♣✁aqq ✏ 0,

then by Theorem 2.1.1, we have H i♣E♣✁aqq ✏ 0 for i ➙ 0.

Now is only left to show that E ❜ OC♣✁bq is acyclic, to do that we will solve

the interpolation for OC♣✁bq in a similar manner. Consider the sequence

0 Ñ OP2♣✁bq Ñ OC♣✁bq Ñ OP2♣✁a ✁ bqr1s Ñ 0.

The wall W ♣OP2♣✁bq, OC♣✁bqq has center s ✏ ✁1

2
a ✁ b and radius ♣ρ✶q2 ✏ 1

4
a2. Then

ρ2 ✁ ♣ρ✶q2 ➙ 0, and then this wall is nested inside W ♣OP2♣✁aq, IZq.
Take ξ✶opt the orthogonal class to OP2♣✁bq and OC♣✁bq, then

µopt♣OC♣✁bqq :✏ µ♣ξ✶optq ✏ b � a ✁ 3

2
, ∆opt♣OC♣✁bqq :✏ ∆♣ξ✶optq ✏

1

8
♣a2 ✁ 1q.

By additivity χ♣E♣✁bqq ✏ χ♣E♣✁a✁ bqq ✏ 0, it follows again by Theorem 2.1.1

that if we choose r♣ξ✶optq sufficiently large and divisible, then for a general E ✶ P P ♣ξ✶optq then

both E ✶♣✁bq and E ✶♣✁a ✁ bq are acyclic. Therefore E ✶ ❜ OC♣✁bq is acyclic. By Theorem

2.1.5, the general E P P ♣ξoptq also has E ❜OC♣✁bq acyclic since ∆opt♣IZq ➙ ∆opt♣OC♣✁bqq.
It follows that F ❜ IZ is acyclic for F P P ♣ξq with µ♣ξq ➙ µopt.

To show that µ❑
min♣IZq ✏ µopt♣IZq we construct a projective curve α ⑨

Hilbn♣P2q such that Z P α and IZ✶ has interpolation when tensorized with E P P ♣ξoptq for

every Z ✶ P α, since

αDE ✏ tX P α⑤X ❜ E is not acyclic✉,
or in other words, E has interpolation for Z if and only if Z lies outside of the divisor DE,

i.e. αDE ✏ 0. To construct α we fix f and let g vary, for example

α♣tq ✏ tZ ✶ ✏ V ♣f, h♣tqgq ⑤ h♣tq is a polynomial in t✉,
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as any complete intersection Z ✶ constructed in such way has the same resolution, and since

the side terms will always be OP2♣✁aq and OC♣✁bq which are acyclic when tensorized with

E, it follows that IZ✶ ❜ E is acyclic for any Z ✶ P α, then

αDE ✏ tZ ✶ P α⑤H0♣IZ✶ ❜ Eq ✘ 0✉ ✏ ❍.

We have DE ✏ c1H � r
B

2
. Dividing this divisor by the rank of the bundle E, we have that

it is equivalent to parametrizing the divisor by the slope

rDEs ✏ µ♣EqH ✁ B

2
.

We want to show that given a bundle E ✶ with slope µ♣E ✶q ➔ µ♣Eq, the curve alpha is

contained on DE✶ , in other words α ☎DE✶ ➔ 0, meaning that H0♣Z ✶ ❜Eq ✘ 0 for all Z ✶ P α,

and therefore E ✶ does not satisfy interpolation for Z. We have that

αDE ✁ αDE✶ ✏ ♣µ♣Eq ✁ µ♣E ✶qqα ☎ H,

therefore, to show that α ☎ DE✶ ➔ 0 is equivalent to show that α ☎ H → 0. To do that we

consider the projection formula for cycles

f✝♣f✝D ☎ αq ✏ D ☎ h✝♣αq.

Applying this with f ✏ h, and D ✏ OP2♣nq♣1q, we want to show that

OP2♣nq♣1q ☎ h✝♣αq → 0.

Since OP2♣nq♣1q is an ample line bundle in P2♣nq, we have that it has positive intersection

with every curve. Also, the Hilbert-Chow morphism is a birational map, it follows that

h✝♣αq is a curve, and the inequality is satisfied.

It is worth to note that the walls W ♣OP2♣✁aq, IZq and W ♣OP2♣✁bq, IC♣✁bq are

the destabilizing walls of IZ and IC♣✁bq respectively and this is proved in [CH14], but we

came to the conclusion that even though the destabilizing sequences are used in the proof,

the fact of being the destabilizing one does not change the proof, and other sequences

with acyclic side terms and that ∆♣ξq ➙ ∆♣ξ✶q would be enough. What is interisting is

that Coskun and Huizenga conjuctured that the destabilizing wall of IZ will always give a

sequence that makes E ❜ IZ acyclic, with E having the minimum slope for such property.

2.4 Monomial Objects

We will now focus the same problem for monomial schemes. A monomial scheme

is a zero-dimensional scheme whose ideal is generated by monomials. If we consider the

monomial scheme on an affine space of P2, then it is generated by a set of monomials

xa1 , xa2yb2 , . . . , ybr ,
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IW ✶
i
♣✁iq xiÝÑ IZ⑨kL. The kernel is OP2♣✁k ✁ iq and the cokernel is IZ✶

i
⑨kL❳iL✶ . We have the

following diagram

IW ✶
i

//

��

IZ⑨kL

��
OP2♣✁iq // IZ✶

i
⑨kL

OP2♣✁iq ❵OP2♣✁jq //

OO

IZ✶
i

OO

Viewing the rows of the diagram as complexes, the vertical maps are quasi-isomorphism.

Let F ✌ be the last row, in positions ✁1 and 0 on the complex. Then F ✌ is the mapping

cone of the map IW ✶
i
Ñ IZ⑨kL, and there is a distingueshed triangle

IW ✶
i
Ñ IZ⑨kL Ñ F ✌ Ñ IW ✶

i
r1s

in Db♣P2q. From this sequence, for each i we have a potential Bridgeland wall W ♣IW ✶
i
, IZ⑨kLq

for the rank 0 object IZ⑨kL. Because the rank is zero, all of these walls are concentrical

semicircles and the biggest one will be the destabilizing one.

As before, the destabilizing subobject is a rank one monomial object, with such

monomial scheme having smaller degree than Z. Again, the cockernel is a new object, the

rank ✁1 monomial object.

A rank ✁1 monomial object is a complex F ✌ of the form

OP2♣✁kq ❵OP2♣✁iq ♣yk,xiqÝÝÝÝÑ IZ ,

where Z is a monomial scheme whose block diagram has r♣Dq ✏ k and c♣Dq ✏ i. Note

that

H✁1♣F ✌q ✏ OP2♣✁kq ❵OP2♣✁iq, H0♣F ✌q ✏ IZ⑨kL❳iL✶ ,

then F ✌ P As if and only if s lies on the right of the vertical wall s ✏ ✁i✁ k. Observe that

if Z is a complete intersection kL❳ k✶L✶, then F ✌ is quasi-isomorphic to OP2♣✁i✁ kqr1s,
in this case we call F ✌ trivial. Then, we assume that F ✌ is nontrivial. For any l ↕ j ↕ k

there are maps of complexes

OP2♣✁kq

��

// OP2♣✁kq ❵OP2♣✁iq //

��

OP2♣✁iq

��
IWj

♣✁jq // IZ
// IZj⑨jL

For each j we obtain a wall where the three vertical complexes have the same Bridgeland

slope. Again, the destabilizing wall will be the biggest of such walls.

If we are in the case of the diagram, i.e. not interchanging x and y roles, then

the destabilizing subobject is quasi-isomorphic to IWj⑨♣k✁jqL♣✁jq, a rank zero monomial
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object. On the other hand the quotient object OP2♣✁iq Ñ IZj⑨jL is quasi-isomorphic to

the rank ✁1 monomial object

OP2♣✁jq ❵OP2♣✁iq Ñ IZj
,

and since j ➔ k, then Wj, Zj ✘ ❍, it follows that they both have smaller degree than Z.

Now we present some numerical invariants for those monomial objects that

later will be used in the proof of interpolation for monomial schemes.

Using the sequence for rank one monomial objects

0 Ñ IWk
♣✁kq Ñ IZ Ñ IZk⑨kL Ñ 0,

we have ch♣IWk
♣✁kqq ✏ ♣1,✁k,

k2

2
✁ wkq and ch♣IZq ✏ ♣1, 0,✁nq. So the potential Bridge-

land wall W ♣IWk
♣✁kq, IZq is defined by its center ♣s, 0q,

sk ✏ ✁k

2
✁ wk ✁ n

2
.

Furthermore ∆♣IZq ✏ n ➙ 0, then the walls for IZ are nested semi-circles to the left of the

vertical wall s ✏ 0, and the radius grows as s is more negative, it follows that choosing

the biggest wall means minimizing sk.

If we let ξk be the Chern character with r♣ξkq ✘ 0 and χ♣ξ✝K , IWk
♣✁kqq ✏

χ♣ξ✝k , IZq ✏ 0, then

µk♣IZq ✏ µ♣ξkq ✏ ✁sk ✁ 3

2
,

and

∆k♣IZq ✏ ∆♣ξkq ✏ 1

2
ρ2

k ✁
1

8
.

Then µopt♣IZq ✏ maxtµk, µk✶✉ and ∆opt ✏ maxt∆k, ∆k✶✉.

Definition 2.4.1. These slopes µk gives rise to the definition of horizontaly pure. Let Z be

a monomial scheme, with k rows in its block diagram, and consider the k horizontal slopes

µ1♣IZq, . . . , µk♣IZq defined above. The scheme Z is horizontally pure if µi♣Ikq ↕ µk♣IZq,
for 1 ↕ i ↕ k.

We have the following proposition that assures that the cokernel of the destabi-

lizing sequence for rank one monomial objects are indeed horizontally pure, and therefore

a rank 0 monomial objects.

Proposition 2.4.1. Let Z be a monomial scheme, and suppose that the biggest potential

wall constructed for the rank one monomial object IZ corresponds to the horizontal slope

µopt♣IZq ✏ µk♣IZq. Then Zk is horizontally pure, so the quotient object IZk⑨kL is a rank 0

monomial object.
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Proof. [CH14] Proposition 7.3.

Similarly, consider F ✏ IZ⑨kL, where Z is horizontally pure, a rank 0 monomial

object. Let l✶ be the number of columns with length k, and l✶ ↕ i ↕ c♣Dq. In previous

discussion we obtained the triangle

IW ✶
i
♣✁iq Ñ F Ñ ♣OP2♣✁kq ❵OP2♣✁iq Ñ IZ✶

i
q Ñ IW ✶

i
♣✁iqr1s.

Then ch♣IW ✶
i
♣✁iqq ✏ ♣1,✁i,

i2

2
✁w✶

iq, ch♣F q ✏ ♣0, k,✁k2

2
✁nq. It follows that the potential

Bridgeland walls are defined by its center ♣s0, 0q and radius

s0 ✏ ✁2n✁ k2

2k
, ♣ρ✶iq2 ✏ s2

0 ✁ ♣i♣k ✁ iq � 2ni

k
� w✶

iq.

Now let ξi be the orthogonal class to IW ✶
i
♣✁iq and F , then

∆✶
i♣F q ✏ ∆✶♣ξiq ✏ 1

2
♣ρ✶iq2 ✁

1

8
.

As we want to maximize the wall we have

µopt♣F q ✏ ✁s0 ✁ 3

2
, ∆opt♣F q ✏ maxt∆i♣F q, ∆✶

i♣F q✉.

The last case is the invariants for rank ✁1 monomial objects. Let

F ✌ ✏ ♣OP2♣✁kq ❵OP2♣✁iq Ñ IZq,

we have the sequence

0 Ñ IWj⑨♣k✁jqL♣✁jq Ñ F ✌ Ñ ♣OP2♣✁jq ❵OP2♣✁iq Ñ IZj
q Ñ IWj⑨♣k✁jqL♣✁jqr1s Ñ 0,

with l ↕ j ➔ k. The Chern characters are

ch♣F ✌q ✏ ♣✁1, k � i,✁k2 � i2

2
✁ nq,

and

ch♣♣OP2♣✁jq ❵OP2♣✁iq Ñ IZj
qq ✏ ♣✁1, j � i,✁j2 � i2

2
✁ ♣n✁ wjqq.

From which we obtain the center

sj ✏ ✁1

2
♣j � kq ✁ wj

k ✁ j
.

As ∆♣F ✌q ✏ ki✁ n ➙ 0, it follows that the walls are on the right of s ✏ ✁k✁ i,

and grow bigger as s grows, so maximizing the wall means maximizing sj. Denoting by ρj

the radius and defining ξj as the orthogonal class we have

µj♣F ✌q ✏ µ♣ξjq ✏ ✁sj ✁ 3

2
, ∆j♣F ✌q ✏ ∆♣ξjq ✏ 1

2
ρ2

j ✁
1

8
.
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Then

µopt♣F ✌q ✏ mintµj, µ✶
j✉, ∆opt♣F ✌q ✏ maxt∆j, ∆✶

j✉.

As the outline of the proof of interpolation for monomial schemes will be

similar to the one for complete intersections, it is necessary that those schemes are Gieseker

semi-stable, therefore we have the following theorem.

Theorem 2.4.1. Monomial objects are Gieseker semi-stable objects.

Proof. [CH14] Theorem 8.1.

We will assume for each sequence

0 Ñ A♣✁jq Ñ F Ñ B Ñ 0,

that the theorem is known for A and B. For each object we show that E ❜ F is acyclic for

a general E P P ♣ζopt♣F qq.
We state some lemmas that will give us inequalities to compare the slopes of

two monomial objects, these inqualities will later be used on the proof of the main theorem.

They will concern the destabilizing sequences of rank 1, rank 0 and rank ✁1 monomial

objects respectively.

Lemma 2.4.1. If IWk
♣✁kq is nontrivial, then

µopt♣IWk
q � k ↕ µopt♣IZq,

and

∆opt♣IZ⑨kLq ↕ ∆opt♣IZq.

Furthermore, IWk
♣✁kq is destabilized along a wall nested inside of W ♣IWk

♣✁kq, IZq.

Proof. [CH14] Lemma 9.2 and Lemma 9.3.

Lemma 2.4.2. Let F ✏ IZ⑨kL be a rank 0 monomial object. If IW ✶
i
♣✁iq is nontrivial, then

it is destabilized along a wall nested inside of W ♣IW ✶
i
♣✁iq, F q,

µopt♣IW ✶
i
q � i ↕ µopt♣F q,

and

µopt♣G✌q ➙ µopt♣F q,
where G✌ is the rank ✁1 object in the destabilizing sequence of F .

Proof. [CH14] Lemma 9.4 and Lemma 9.5.
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Lemma 2.4.3. Let F ✌ be a rank ✁1 monomial object and G✌ the rank ✁1 object on the

destabilizing sequence of F ✌

0 Ñ E♣✁jq Ñ F ✌ Ñ G✌ Ñ 0,

where E is the rank 0 object IWj⑨♣k✁jqL and G✌ ✏ OP2♣✁jq ❵OP2♣✁iq Ñ IZj
. Then G✌ is

destabilized along a wall nested in W ♣F ✌, G✌q,

∆opt♣Eq ↕ ∆opt♣F ✌q,

and

µopt♣G✌q ➙ µopt♣F ✌q.

Proof. [CH14] Lemma 9.6 and Lemma 9.7.

2.5 Interpolation for Monomial Schemes

We give first an example of how we are going to cut the block diagrams into

smaller block diagrams until we can decompose them into line bundles and their shifts,

and therefore the result is obtained trivially. For the example of our inductive procedure

consider the monomial scheme generated by x7, x4y3, x2y5, y7. Since the maximal vertical

or horinzontal slope is given by µ3 ✏ 7, the destabilizing sequence for IZ is

0 Ñ IW3
♣✁3q Ñ IZ Ñ IZ3⑨3L Ñ 0,

where W3 is the monomial scheme generated by x4, x2y2, y4, and Z3 is the ideal scheme

given by ♣x7, y3q. The left branch of the diagram will decompose W3 into smaller monomial

objects, until every object is a line bundle. For example, the first steep decomposes IW3
♣✁3q

into the destabilizing sequence

0 Ñ IW 1

2

♣✁5q Ñ IW3
♣✁3q Ñ IZ1

2

♣✁3q,

where the upper indicies just indicates that this is the first step. On the right branch,

since we already have a rectangle on the block diagram, we can already decompose this

into line bundles and solve the problem, by doing this we know that in the end of the tree

obtained, the objects will satisfy interpolation for the conjucturated bundle with minimal

slope, therefore the proof will consist in assuming that the result is true for the elements

on the side of the destabilizing sequence, and proving for the middle one.

The next image ilustrate this procedure, where the small arrows indicates where

the cuts are being done.
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then µ♣E♣✁jqq ➙ µopt♣Aq. As χ♣E♣✁jq❜Aq ✏ 0, we find by induction E❜A♣✁jq is acyclic

for a large and divisible rank.

Similarly we have

∆opt♣Bq ↕ ∆opt♣F q.
We have χ♣E ❜Bq ✏ 0, so again by induction E ❜B is acyclic for a general E for a large

and divisible rank.

Increasing the rank to a commum multiple if necessary, we have E ❜ F acyclic

for a general E P P ♣ζopt♣F qq.

The proof for the rank 0 case follows the exact same arguments with the

appropriate inequalities.

For the rank ✁1 case it follows applying Serre duality in the next result.

Proposition 2.5.1. The derived dual of a rank ✁1 monomial object is, up to twist and

shifts, a rank 1 monomial object.

Proof. Consider the rank ✁1 monomial object

F ✌ ✏ ♣OP2♣✁kq ❵OP2♣✁1q Ñ IZq,
and let xa1 , xa2yb2 , . . . , ybr to be the generators of IZ , with a1 ✏ i and br ✏ k. Then the

minimal resolution of IZ is

0 Ñ
r✁1à
j✏1

OP2♣✁aj ✁ bj�1q Ñ OP2♣✁iq ❵
r✁1à
j✏2

OP2♣✁aj ✁ bjq ❵OP2♣✁kq Ñ IZ Ñ 0.

It follows that F ✌ is quasi-isomorphic to the complex

r✁1à
j✏1

OP2♣✁aj ✁ bj�1q Ñ
r✁1à
j✏2

OP2♣✁aj ✁ bjq,

of locally free sheaves in degrees ✁1 and 0. The derived dual complex is

G✌ ✏
r✁1à
j✏2

OP2♣aj � bjq Ñ
r✁1à
j✏1

OP2♣aj � bj�1q,

in degrees 0 and 1. The matrix of the resolution of IZ is given by✔
✖✖✖✖✖✖✖✕

yb2✁b1

✁xa1✁a2 yb3✁b2

✁xa2✁a3
. . .

ybr✁br✁1

✁xar✁1✁ar

✜
✣✣✣✣✣✣✣✢

,

and the matrix of G✌ is obtained by deleting the first and last rows and taking the

transpose. If Z ✶ is the monomial scheme cut by the ♣r ✁ 2q ✂ ♣r ✁ 2q minors of the matrix

of G✌, then G✌ is quasi-isomorphic to IZ✶♣i� kqr✁1s.
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With these results we obtain that µopt♣F q ➙ µ❑min♣F q. Now we show the other

inequality for rank 1 monomial objects using the same idea as before, we construct a curve

in the Hilbert scheme and show that there is no interpolation for smaller slopes.

Let IZ be a rank 1 monomial object. Correspondingly to E P P ♣ζopt♣IZqq, there

is a divisor

DE ✏ c1♣Eq ✁ r♣Eq
2

B,

on the Hilbert Scheme Hilbn♣P2q such that Z is not in the stable base locus of DE. Denote

by S✁ ⑨ Hilbn♣P2q the stable base locus of a divisor class ♣µ♣Eq ✁ ǫqH ✁ 1

2
B, with ǫ → 0

small enough. If α is a curve on the Hilbert Scheme with αDE ✏ 0, then α ⑨ S✁. To show

that µ❑min♣IZq ✏ µopt♣IZq, it is enough to show that Z P S✁.

Suppose that IZ is destabilized by the following sequence

0 Ñ A♣✁jq Ñ IZ Ñ B Ñ 0,

where A♣✁jq is a rank 1 monomial object. Looking at other extensions

0 Ñ A♣✁jq Ñ IZ✶ Ñ B Ñ 0,

with Z ✶ not necessarily monomial, we can obtain a curve α in the Hilbert Scheme that

passes through Z and has αDE ✏ 0. Note that since E ❜ A♣✁jq and E ❜ B are acyclic,

any such ideal sheaf has E ❜ IZ✶ acyclic, and thus Z ✶ is not in the stable base locus of DE.

We must check that there is a complete curve of such extension.

Consider DZ the block diagram of Z. Since µj♣IZq ➙ µj�1♣IZq, the ♣j � 1qst
row of DZ must be shorter than the jth row of DZ . Then the block diagram of Zj has more

full columns of length j than the block diagram of Wj has columns. It follows that there

exists a monomial scheme Z ✶ whose block diagram is obtained from the block diagram of

Z by removing one box from each of the first j rows. For any ru : vs P L ✏ P1, let Yp ⑨ P2

be the scheme given by the complete intersection

Yp ✏ jL❳ tvx✁ uz ✏ 0✉.

For all p ✘ r0 : 1s, the scheme Z ✶ ❨ Yp has degree n and these schemes form a flat family

over L whose limit over p ✏ r0 : 1s is Z. As p varies, the ideal sheaf I♣Z✶❨Ypq❳jL⑨jL has

constant isomorphism type since IYp⑨jL ✏ OjL♣✁1q. Thus the ideal sheaf of each scheme

Z ✶ ❨ Yp can be realized as an extension of B by A♣✁jq and we conclude that all these

schemes lies in S✁.

The last thing to do is to show that this is the minimum for rank 0 objects. Let

F ✏ IZ⑨kL be a rank 0 monomial object. We show that no bundle E with ∆♣Eq ➔ ∆opt♣F q
satisfies interpolation for F . Consider the destabilizing sequence

0 Ñ A♣✁iq Ñ F Ñ B✌ Ñ 0,
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where A is a rank 1 monomial object and B✌ is a rank ✁1. Suppose E has E❜F acyclic and

∆♣Eq ➔ ∆opt♣F q, then E is slope-semistable. We have χ♣F ❜Eq ✏ 0 and χ♣A♣✁iq❜Eq → 0

since the point ♣µ♣Eq, ∆♣Eqq lies below the parabola χ♣A♣✁iq❜Eq ✏ 0 in the ♣µ, ∆q-plane.

If the derived dual of B✌ is written as I ✶Z♣i� kqr✁1s, then by Serre duality

R✁1Γ♣B✌ ❜L Eq ✏ H2♣E✝ ❜ IZ✶♣i� k ✁ 3qq✝.

We claim that µ♣E✝♣i� k ✁ 3qq → ✁3, so that this cohomology group vanishes

by semistability of E. We saw that

µ♣Eq ✏ ✁s0 ✁ 3

2
✏ n

k
� k

2
✁ 3

2
.

Approximating

n ↕ ik � w✶
i,

we find that the inequality µ♣E✝♣i� k ✁ 3qq → ✁3 amounts to

w✶
i ↕

✂
k � 2

2

✡
✁ 1,

so H2♣E✝❜IZ✶♣i�k✁3qq ✏ 0. Likewise, another slope computation shows H2♣A♣✁iq❜Eq ✏
0, and from χ♣A♣✁iq ❜Eq → 0, we deduce h0♣A♣✁iq ❜Eq → 0. In this case h0♣F ❜Eq ✘ 0,

contradicting the acyclicity of F ❜ E.
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