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Resumo

O foco deste trabalho consiste em estudar e aplicar o esquema Lagrangiano-Euleriano para leis

de conservação hiperbólicas escalares e leis de balanço escalares. Portanto, apresentamos ao

longo do estudo algumas definições básicas e exemplos de conceitos fundamentais relacionados.

O esquema Lagrangiano-Euleriano tem como objetivo não ser dependente de uma estrutura

particular do termo de fonte. Um conjunto de experimentos numéricos - escalar e sistemas - para

leis de conservação hiperbólica e leis de balanço são apresentados para ilustrar o desempenho

do método, como a equação de Burgers, a equação de Buckley-Leverett, Equações de águas

rasas e o fluxo trifásico não-miscivel. Enfim, aplicamos a abordagem do esquema Lagrangiano-

Euleriano para lei de conservação hiperbólica com fluxo não local e condições iniciais de medida

como a Gaussiana e condição inicial oscilatória. Sempre que for possível, os resultados numéricos

são comparados com soluções aproximadas ou soluções exatas.

Palavras-chave: Formulação Lagrangiano-Euleriano, Métodos de volumes finitos, Leis de bal-

anço, Problema hiperbólico, Mecânica dos fluidos, Fluxo não local.



Abstract

The focus of this work consists on the study and on the application of the Lagrangian-Eulerian

scheme for scalar hyperbolic conservation laws and scalar hyperbolic balance laws. For this pur-

pose, we present some basic definitions and examples of fundamental concepts related through-

out the study. The Lagrangian-Eulerian scheme is aimed to be not dependent on a particular

structure of the source term. Furthermore, a set of representative numerical experiments - scalar

and system - of hyperbolic conservation laws and balance laws are presented to illustrate the

performance of the method such as the Burgers’ equation, the Buckley-Leverett’s equation,

Shallow water equations and the Immiscible three-phase flow. For completeness, we apply the

Lagrangian-Eulerian framework to hyperbolic conservation laws with nonlocal flux, with mea-

sure initial datas such as Guassian initial data and Oscillatory initial data. Whenever possible,

we make a comparison between the numerical results and accurate approximate solutions or

exact solutions.

Keywords: Lagrangian-Eulerian framework, Finite volume method, Balance laws, Hyperbolic

problems, Fluid mechanics, Nonlocal flux.
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1 Introduction

In this work, we study a formal construction of the Lagrangian-Eulerian scheme

developed in [35] (see also [1]). A locally conservative and divergence space-time finite control

volume in a Lagrangian-Eulerian framework have been explored in several cases such as scalar

hyperbolic conservation laws, scalar hyperbolic conservation laws with nonlocal flux and scalar

hyperbolic balance laws. The Lagrangian-Eulerian scheme is aspired to be independent on a

particular structure of the source term and the flexibility of the Scheme allows its extension

to construct approximate solutions of hyperbolic laws systems and balance laws systems. It is

worth mention that we follow very closely the works [1, 35], and we take advantage of some

matlab codes produced on those cited works as base for our numerical approximations. A sim-

ple accurate algorithm to evaluate the Hilbert transform of a real function using interpolations

with piecewise–linear functions is developed [11]. The qualitative numerical approximations for

our hyperbolic conservation laws with nonlocal flux using the Lagrangian-Eulerian scheme is a

novelty in this master dissertation and it is worth emphasizing that a complete and mathemat-

ically rigorous understanding of this model constitute an open problem. Indeed, to the best of

our knowledge there is no detailed comprehension about such problem.

1.1 Motivation for the research work

Transport models with nonlocal flux appear in various problems in applied and pure

sciences, e.g., mechanics and fluid dynamics problems in porous media. Nonlocal flux problems

appear in porous media induced by nonlocal effects of diffusion and also with fractional po-

tential pressure (Laplacian) and also in dynamic fracture mechanics. Transport models with

nonlocal flux also appear in the granular material flow modeling, which gives origin to an

integro-differential conservation law, see [3, 4]. It is also mentioned that related transport mod-

els with nonlocal flow are also proposed as a model of dislocation dynamics, where the pertinent

primary variable is related to the density of fractures per length in the material under consid-

eration. As another physical motivation of the transport models with the nonlocal flow, we

mention real crystals, which in turn show certain defects in the organization of their natural

crystalline structure, called dislocations [17]. In [17], the author studies the well-posedness, as

well as numerical approximations, of a nonlocal transport equation with a parabolic second

order operator. Solutions of the above-mentioned PDEs can exhibit singularities, forming steep

gradients and high concentration of quantities. In the present work, we deal with numerical

solutions for a similar equation without the second order term with measure initial datas. The
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hyperbolic conservation laws problem with nonlocal flux 𝑢t ⊗ (H(𝑢)𝑢)x = 0 studied in this work

shows numerical evidence that for a certain class of measure initial data the solution blows up

with the conservation of the mass as time evolves for any 𝑅 > 0, and with refined grid cells the

solution of the problem 𝑢t + (H(𝑢)𝑢)x = 0 presents attenuation effect for any 𝑅 > 0, where 𝑅

represents the mass of the measure initial datum.

A variety of efficient numerical schemes for hyperbolic systems of conservation laws

has been developed in the recent past for different problem settings. These schemes evolved

following the natural understanding of fundamental concepts from the theory of nonlinear hy-

perbolic conservation laws concerning the characteristic surfaces properties, existence, unique-

ness, and solution of the Riemann problem. In addition, for a scalar balance laws the solution

strongly depend on certain properties of the source term [35]. For numerical approximation of

the solution of the – scalar and system – hyperbolic conservation laws, balance laws and scalar

hyperbolic conservation laws with nonlocal flux, we study the Lagrangian-Eulerian scheme de-

veloped in [1, 35] in a cell-centered framework. The Lagrangian-Eulerian scheme consists on one

more tentative to deal with the difficult issue of the well-balancing between the computation of

the numerical flux function and the source term. The Lagrangian-Eulerian method studied here

relates to the (locally conservative) divergence form of the full balance equation. The divergence

form allows locally to study the transport and the conservation property, see [1, 35].

1.2 Aims and objectives of the dissertation proposal

This work particularly focuses on the study and on the application of the Lagrangian-

Eulerian scheme constructed in [1, 35]. We will first study the Lagrangian-Eulerian framework

for classic evolutionary differential models, namely, scalar hyperbolic conservation laws and

scalar balance laws problems and its extension for systems of hyperbolic conservation laws and

balance laws. Next, we will apply the Lagrangian-Eulerian framework for hyperbolic conserva-

tion laws with nonlocal flux. Those are state-of-the-art differential models and there are many

numerical works on these subject matter.

The specific objectives of the dissertation are:

• Apply the Lagrangian-Eulerian scheme to scalar hyperbolic conservation laws following

closely the lines of [1, 35]. In Section 3.4 we discuss our understanding in the numerical

implementation of the Lagrangian-Eulerian scheme for classical hyperbolic problems

• Apply the Lagrangian-Eulerian scheme to scalar hyperbolic conservation laws with non-

local flux. In Section 3.5 we present and discuss qualitative numerical results for the
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scalar hyperbolic conservation laws with nonlocal flux by use of an accurate algorithm to

aproximate the Hilbert transform.

• Study the theoretical background of the formal extension of the Lagrangian-Eulerian

framework to balance laws (see Chapter 4 ) and present numerical implementation for

classical balance laws problems.

• Extend the Lagrangian-Eulerian scheme for hyperbolic law systems and balance law sys-

tems. A finite control volume for each equation is used, which represent the conserva-

tion laws or the balance laws in the corresponding case. In this approach, we use the

Lagrangian-Eulerian scheme, for balance laws (or conservation laws) in each equation

and then we solve each equation explicitly with ∆𝑡 time step.

1.3 Our findings and numerical studies

The purpose of the presentation and the discussion of our findings and numerical

studies is to show our current understanding of the Lagrangian-Eulerian framework that is

applied for classical and well-known scalar hyperbolic problems. We perform tests for linear

and nonlinear models. On the linear case we study problems with constant and non constant

velocities. On the nonlinear case, we approximate the solution of Burgers’ equation (convex

flux) and Buckley-Leverett’s equation (non convex flux). As we will see in Section 3.4, the

scheme is able to approximate properly the solution of all presented problems. Based on these

first understanding studies and on the numerical experiments reported in Section 3.4, we deal

qualitatively with the hyperbolic conservation law problems with nonlocal flux using an accurate

method to approximate the Hilbert transform on the real line.

1.4 Organization of the dissertation proposal

The dissertation proposal is organized as follows. In Chapter 2, we present some

basics definitions and presentation of some concepts studied throughout the study. In Chapter

3, we present the formal construction of the Lagrangian-Eulerian scheme for scalar hyperbolic

conservation laws including the cases of linear and nonlinear hyperbolic in the conservation

form. Then we present and discuss numerical experiments for linear and nonlinear scalar con-

servation laws with convex and non-convex flux functions. Finally, an algorithm for fast Hilbert

transform of real functions, qualitative numerical experiments are presented for the hyperbolic

conservation laws with nonlocal flux. In Chapter 4, we discuss the Lagrangian-Eulerian scheme

for hyperbolic balance laws in the linear and nonlinear case. We perform numerical approxima-

tions with grid refinement for scalar balance laws. In chapter 5, we study the extension of the
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Lagrangian-Eulerian framework for balance law systems and discuss some numerical experi-

ments for system of hyperbolic conservation laws and balance laws systems. Finally, in Chapter

6, we present our concluding remarks and further perspectives.
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2 Definitions and presentation of studied con-

cepts

Many interesting problems in physical, biological, engineering and social sciences

can be described by a partial differential equation (PDE). Most real physical processes are

governed by partial differential equations. In many cases, simplifying approximations are made

to reduce the governing PDEs to ordinary differential equations (ODEs) or even to algebraic

equations. However, because of the ever increasing requirement for more accurate modeling

of physical processes, engineers and scientists are more and more required to solve the actual

PDEs that govern the physical problems. The three classes of PDEs (i.e., elliptic, parabolic, and

hyperbolic PDEs) are introduced and many of these partial differential equations are obtained

by conservation laws. Therefore, in this Chapter we begin presenting some definitions, prop-

erties and examples of fundamental concepts studied by addressing brief definitions of Partial

differential equations and examples. We present important concepts of –scalar and system– of

hyperbolic Conservation Law and introduce the concepts of two important components in the

study of solutions of conservation laws: the shock waves and rarefaction waves.

2.1 Partial differential equations and its classification

A partial differential equation (henceforth abbreviated as PDE) for a function 𝑢(𝑥)

, 𝑥 ∈ R
n is a relation of the form

𝐹 (𝑥, 𝑢, ∇𝑢, ∇2𝑢, ...) = 0 (2.1.1)

where 𝐹 is a given function of the independent variable 𝑥 = (𝑥1, 𝑥2, 𝑥3, ...𝑥n) and a classical

solution function 𝑢 and of a finite number of its partial derivatives. We call 𝑢 a solution of

(2.1.1) if 𝑢(𝑥) is a sufficiently smooth function and after substitution of 𝑢(𝑥) and its partial

derivatives, (2.1.1) is satisfied identically in 𝑥1, 𝑥2, ..., 𝑥n in some region Ω in the space of

these independent variables. Several PDEs involving one or more unknown functions and their

derivatives constitute a system.

The order of a PDE or of a system is defined as the order of the highest derivative

that occurs in (2.1.1). A PDE is said to be linear if it is linear in the unknown functions and

their derivatives, with coefficients depending on the independent variables 𝑥1, 𝑥2, ..., 𝑥n. The

PDE of order 𝑚 is called quasilinear if it is linear in the derivatives of order 𝑚 with coefficients

that depend on 𝑥1, 𝑥2, ..., 𝑥n and the derivatives of order < 𝑚 [22].



Chapter 2. Definitions and presentation of studied concepts 25

Consider a linear second-order differential equation in two independent variables of

the form:

𝑎𝑢xx + 𝑏𝑢xy + 𝑐𝑢yy + 𝑑𝑢x + 𝑒𝑢y + 𝑓𝑢 = 𝑔, (2.1.2)

where a, b, c, d, e, f and g depend on (𝑥, 𝑦). The classification of (2.1.2) depends on the sign

of the discriminant [29],

𝑏2 ⊗ 4𝑎𝑐 =

∏︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋃︁

< 0, =⇒ Elliptic,

= 0, =⇒ Parabolic,

> 0, =⇒ Hyperbolic.

(2.1.3)

In the next sections we will present some classes of classical PDEs.

2.1.1 Classical Examples for Partial differential equations

Partial differential equations occur throughout mathematics. In this section we give

some examples of partial differential equations that arise in engineering and science. In many

instances one of the independent variables is the time, usually denoted by 𝑡, while the others,

denoted by 𝑥1, 𝑥2, ≤ ≤ ≤ , 𝑥n (or by 𝑥, 𝑦, 𝑧 when 𝑛 ⊘ 3 ) give position in an 𝑛-dimensional space.

• Heat equation: 𝑢t = 𝑐2𝑢xx, 𝑐 > 0.

• Heat equation: 𝑢t = 𝑐2(𝑢xx + 𝑢yy), 𝑐 > 0.

• Wave equation: 𝑢tt = 𝑐2𝑢xx, 𝑐 > 0.

• Wave equation: 𝑢tt = 𝑐2(𝑢xx + 𝑢yy), 𝑐 > 0.

• Laplace equation: 𝑢xx + 𝑢yy = 0.

2.2 Conservation laws

The class of conservation laws is a very important class of partial differential equa-

tions because as their name indicates, they include those equations that model conservation

laws of physics (mass, momentum, energy, etc.) [41, 44].

2.2.1 The scalar conservation laws

In [28, 33], many interesting problems in physical, biological, engineering and social

sciences are modeled by a simple paradigm: Consider a domain Ω ⊆ R
n and a quantity of

interest 𝑢, defined for all points 𝑥 ∈ Ω. The quantity of interest 𝑢 may be the temperature of

a rod, the pressure of a fluid, the concentration of a chemical or a group of cells or the density
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of a human population. The evolution (in time) of this quantity of interest 𝑢 can be described

by a simple phenomenological observation:

The time rate of change of 𝑢 in any Ąxed sub-domain æ ⊆ Ω is equal to the total

amount of 𝑢 produced or destroyed inside æ and the Ćux of 𝑢 across the boundary 𝜕æ.

The above observation says that the change in 𝑢 is due to two factors: the source or

sink, representing the quantity produced or destroyed, and the flux, representing the amount

of 𝑢 that either goes in or comes out of the sub-domain, see Figure 1. This observation is

mathematically rendered as

𝑑

𝑑𝑡

∫︁

ω
𝑢 𝑑𝑥 = ⊗

∫︁

∂ω
𝐹 ≤ Ü 𝑑à(𝑥) +

∫︁

ω
𝑆 𝑑𝑥, (2.2.1)

where Ü is the unit outward normal, 𝑑à(𝑥) is the surface measure, and 𝐹 and 𝑆 are the flux

and the source or sink respectively. The minus sign in front of the flux term is for convenience.

Note that (2.2.1) is an integral equation for the evolution of the total amount of 𝑢 in æ.

We simplify (2.2.1) by using integration by parts (or the Gauss divergence theorem)

on the surface integral to obtain

𝑑

𝑑𝑡

∫︁

ω
𝑢 𝑑𝑥 +

∫︁

ω
div(𝐹 ) 𝑑𝑥 =

∫︁

ω
𝑆 𝑑𝑥, (2.2.2)

Since (2.2.2) holds for all sub-domains æ of Ω, we can use an infinitesimal æ to obtain the

following differential equation:

𝑢t + div(𝐹 ) = 𝑆, ∀(𝑥, 𝑡) ∈ (Ω,R+). (2.2.3)

The differential equation (2.2.3) is often termed as a balance law as it is a statement of the fact

that the rate of change in 𝑢 is a balance of the flux and the source. Frequently, the only change

in 𝑢 is from the fluxes and the source is set to zero. In such cases, (2.2.3) reduces to

𝑢t + div(𝐹 ) = 0, ∀ (𝑥, 𝑡) ∈ (Ω,R+). (2.2.4)

Equation (2.2.4) is known as a conservation law, as the only change in 𝑢 comes from

the quantity entering or leaving the domain of interest.

The conservation law (2.2.4) (or homogeneous first order hyperbolic equation) and

the balance law (2.2.3) are generic to a very large number of models. Explicit forms of the quan-

tity of interest, flux and source depend on the specific model being considered. The modeling

of the flux 𝐹 is the core function of a physicist, biologist, engineer or other domain scientists.

We will provides some examples to illustrate conservation laws [28, 33].
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• Buckley-Leverett equation:

𝑢t + (𝐹 (𝑢))x = 0, 𝑥 ∈ R, 𝑡 > 0, (2.2.10)

where the flux function is

𝐹 (𝑢) =
𝑢2

𝑢2 + Û(1 ⊗ 𝑢)2

with initial condition 𝑢(𝑥, 0) = 𝑢0(0) and Û constant.

The flux 𝐹 in (2.2.4) is often a function of 𝑢 and its derivatives,

𝐹 = 𝐹 (𝑢, ∇𝑢, ∇2𝑢, ...).

For simplicity of our analysis, we neglect the role of the higher than first-order derivatives.

Hence, the flux is of the form:

𝐹 = 𝐹 (𝑢, ∇𝑢) (2.2.11)

If (2.2.11) is of the form 𝐹 = 𝐹 (𝑢), then the conservation law (2.2.4) is a first-order

PDE. It is usually classified as hyperbolic. The scalar transport equation (2.2.5) is an example

for hyperbolic equations.

If we have 𝐹 = 𝐹 (∇𝑢), then the conservation law (2.2.4) is a second-order PDE and

is often classified as parabolic. The heat equation (2.2.7) is an example of a parabolic equation.

When the flux 𝐹 depends on both the function 𝑢 and its first derivative, the conservation law

(2.2.4) is termed as a convection-diffusion equation [28, 33].

2.3 Theory of scalar conservation laws

Definition: Consider the initial-value problem of the form:
∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑢t + 𝑓(𝑢(𝑥, 𝑡))x = 0, 𝑥 ∈ R 𝑡 > 0.

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R,
(2.3.1)

where 𝑓 ∈ 𝐶2(R) with convex flux (𝑓 ′′(𝑢) > 0) and 𝑢0(𝑥) ∈ 𝐶2(R).

We say 𝑢 is a strong or classical solution of (2.3.1) if :

• 𝑢 is continuous for all 𝑥 ∈ R and 𝑡 > 0;

• 𝑢x and 𝑢t exist and are continuous for all 𝑥 ∈ R and 𝑡 > 0;

• 𝑢 satisfies (2.3.1) for all 𝑥 ∈ R and 𝑡 > 0.
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It is well known that the Cauchy problem (2.3.1) does not have, in general, a smooth solution

beyond some finite time interval, even when 𝑢0 is sufficiently smooth. For this reason, we study

the weak solutions containing the discontinuities; these weak solutions are, in general, not

unique and one needs an admissibility criterion to select physically relevant solutions. Here,

we study the one-dimensional scalar case to highlight some of these fundamental issues in the

theory of hyperbolic equations of conservation laws [28, 33, 39, 44].

2.3.1 Shock Formation

We next rewrite equation (2.3.1) in the nonconservative form

𝑢t + 𝑓 ′(𝑢)𝑢x = 0, 𝑥 ∈ R 𝑡 > 0. (2.3.2)

We define the characteristic curve of equation (2.3.1) (or equation (2.3.2)) to be the solution

to the differential equation
𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓 ′(𝑢(𝑥, 𝑡)). (2.3.3)

If we consider a solution of partial differential equation (2.3.2), 𝑢 = 𝑢(𝑥, 𝑡), then along any

characteristic curve (a curve 𝑥 = 𝑥(𝑡) on which (2.3.3) is satisfied), and since 𝑢 is a solution to

partial differential equation (2.3.2), we have

(2.3.4)

𝑑

𝑑𝑡
𝑢(𝑥(𝑡), 𝑡)=𝑢x(𝑥(𝑡), 𝑡)

𝑑

𝑑𝑡
𝑥(𝑡) + 𝑢t(𝑥(𝑡), 𝑡)

=𝑢x(𝑥(𝑡), 𝑡)𝑓 ′(𝑢(𝑥(𝑡), 𝑡)) + 𝑢t(𝑥(𝑡), 𝑡)

=0,

That means that along any characteristic curve defined by equation (2.3.3), the solution to

partial differential equation (2.3.2) (or to (2.3.1)) is constant and the characteristic curves are

straight lines 𝑥(𝑡) = 𝑓 ′(𝑢)𝑡 + 𝑐, where 𝑐 is constant [41, 44].

If 𝑢 is a sufficiently smooth solution to the initial-value problem defined by conservation law

(2.3.1) for 𝑥 ∈ R, 𝑡 > 0 or (2.3.2) along with initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R, then 𝑢

will satisfy

𝑢(𝑥, 𝑡) = 𝑢0(𝑥 ⊗ 𝑓 ′(𝑢(𝑥, 𝑡)) 𝑡), ∀𝑥 ∈ R, 𝑡 > 0. (2.3.5)

Using the chain rule in (2.3.5) we have
∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑢t =
⊗𝑓 ′(𝑢)𝑢′

0(𝑥 ⊗ 𝑡𝑓 ′)

1 + 𝑓 ′′(𝑢)𝑢′
0𝑡

,

𝑢x =
𝑢′

0(𝑥 ⊗ 𝑡𝑓 ′)

1 + 𝑓 ′′(𝑢)𝑢′
0𝑡

.

(2.3.6)
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For shorthand notation, we define

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

[𝑢] = 𝑢⊗ ⊗ 𝑢+,

[𝑓(𝑢)] = 𝑓(𝑢⊗) ⊗ 𝑓(𝑢+),

à = Ý′(𝑡).

We call [𝑢] and [𝑓(𝑢)] the jumps of 𝑢 and 𝑓(𝑢) across the discontinuity curve and à the speed

of propagation of the discontinuity. Therefore, if 𝑢 is a weak solution with discontinuity along

a curve 𝑥 = Ý(𝑡), the solution must satisfy

[𝑓(𝑢)] = à[𝑢]. (2.3.9)

where à = Ý′(𝑡). This is called the Rankine-Hugoniot jump condition [28, 41, 44]

2.3.3 Examples

Consider the scalar inviscid Burger’s equation [28, 41, 44],
∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

𝑢t +

(︃

𝑢2

2

)︃

x

= 0, 𝑥 ∈ R, 𝑡 > 0

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R,

(2.3.10)

where

𝑢(𝑥, 0) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

1, for 𝑥 < 0,

0, for 𝑥 > 0.
(2.3.11)

Using the method of characteristics to solve this equation we have that 𝑢 is constant

along the projected characteristic curves given by 𝑥 = 𝑢0(𝑟)𝑡+𝑟. If 𝑟 < 0 then 𝑢0(𝑟) = 1, which

implies that the projected characteristic curves are 𝑥(𝑡) = 𝑡 + 𝑟 for 𝑟 < 0 and the solution 𝑢

should be equal to 1 along those curves. Also for 𝑟 > 0, 𝑢0(𝑟) = 0 which means the projected

characteristic curves are given by 𝑥(𝑡) = 𝑟 for 𝑟 > 0 and the solution 𝑢 should be equal to 0

along these curves. We have crossing of characteristics curves (see, Figure 3). Clearly, this is

a contradiction and we can’t hope to find any continuous solution which solves this problem.

Then, we look for a weak solution, by looking for a piecewise continuously differentiable function

which satisfies the Rankine Hugoniot jump condition [28, 41, 44].

For the Rankine-Hugoniot condition we have Ý′(𝑡) =
1

2
, where 𝑢⊗ = 1 and 𝑢+ = 0.

Thus, the weak solution of (2.3.10) satisfying (2.3.11) is given by

𝑢(𝑥, 𝑡) =

∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

1, for 𝑥 <
𝑡

2
,

0, for 𝑥 >
𝑡

2
.

(2.3.12)
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Figure 3 – Characteristic curves for (2.3.10)-(2.3.11).

Besides the intersection of the characteristics curves, another particularity of the non-linear

Figure 4 – Shock curve.

equations is the possibility of existence regions of the plane 𝑥 ⊗ 𝑡 where these curves are not

defined. We will modify the feature of the characteristic method in these regions so that we can

get solutions of the problem across the 𝑥 ⊗ 𝑡 plane. This modification generates what is called

rarefaction waves [28, 41, 44].

Consider the inviscid Burgers’ equation (2.3.10) with initial condition

𝑢(𝑥, 0) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

0, for 𝑥 < 0,

1, for 𝑥 > 0.
(2.3.13)

By the characteristics methods [28, 41, 44], we see that 𝑢 should be constant along the projected

characteristic curves, 𝑥(𝑡) = 𝑢0(𝑟)𝑡 + 𝑟. Here, if 𝑟 < 0, then 𝑢0(𝑟) = 0 and therefore, 𝑥(𝑡) = 𝑟.

If 𝑟 > 0, then 𝑢0(𝑟) = 1 and therefore, 𝑥(𝑡) = 𝑡 + 𝑟. Consequently, we have no crossing of

characteristics curves. However, we still have a problem. In fact, we have a region on which we

don’t have enough information (see, Figure 5)!
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Figure 5 – Characteristic curves for (2.3.13)-(2.3.14) .

In this case, a weak solution of (2.3.10) satisfying (2.3.13) is given by

𝑢(𝑥, 𝑡) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

0, for 𝑥 ⊘ 𝑡

2
,

𝑥

𝑡
, for 0 ⊘ 𝑥 ⊘ 𝑡,

1, for 𝑥 ⊙ 𝑡

2
.

(2.3.14)

This type of solution which “fans” the wedge 0 < 𝑥 < 𝑡 is called a rarefaction wave.

Figure 6 – Rarefaction fan.

2.3.4 The Entropy Condition

As we have seen in the last section, weak solutions to conservation laws may contain

discontinuities that are due to a discontinuity in the initial condition or to characteristics that

cross each other, or may occur reasonably randomly as long as the jump conditions are satisfied
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across the discontinuities. In addition, we saw that the weak solutions to conservation laws need

not be unique.

If we write the inviscid Burgers’ equation

𝑢t + (
𝑢2

2
)x = 0, (2.3.15)

in the quasilinear form 𝑢t + 𝑢𝑢x = 0 and multiply by 2𝑢, we obtain 2𝑢𝑢t + 2𝑢2𝑢x = 0, which

can be rewritten as

(𝑢2)t + (
2

3
𝑢3)x = 0. (2.3.16)

This is again a conservation law, now for 𝑢2 rather than 𝑢 itself, with flux function 𝑓(𝑢2) =
2

3

(︁

𝑢2
)︁3/2

The differential equations (2.3.15) and (2.3.16) have precisely the same smooth so-

lutions. However, they have different weak solutions, as we can see by considering the Riemann

problem with 𝑢⊗ > 𝑢+. A weak solution of (2.3.15) is a shock traveling at speed

à1 =

[︁

1
2
𝑢2
]︁

[𝑢]
=

1

2

(︁

𝑢⊗ + 𝑢+
)︁

, (2.3.17)

whereas a weak solution to (2.3.16) is a shock traveling at speed

à2 =

[︁

2
3
𝑢3
]︁

[𝑢2]
=

2

3

(︃

(𝑢⊗)3 ⊗ (𝑢+)3

(𝑢⊗)2 ⊗ (𝑢+)2

)︃

. (2.3.18)

We have then

à2 ⊗ à1 =
1

6

(𝑢⊗ ⊗ 𝑢+)
2

𝑢⊗ + 𝑢+
, and so à2 ̸= à1 when 𝑢⊗ ̸= 𝑢+, and the two equations have

different weak solutions [28].

Entropy Condition (Lax): For a convex scalar conservation law, a discontinuity propagating

with speed à given by (2.3.8) satisfies the Lax entropy condition if

𝑓 ′(𝑢⊗) > à > 𝑓 ′(𝑢+). (2.3.19)

Note that 𝑓 ′(𝑢) is the characteristic speed.

We say that a curve of discontinuity is a shock curve for a solution 𝑢 if the curve

satisfies the Rankine-Hugoniot jump condition and the entropy condition for that solution 𝑢.

We say that 𝑢 is a weak, admissible solution of (2.3.1) only if 𝑢 is a weak solution such that

any curve of discontinuity for 𝑢 is a shock curve.
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A function 𝑓 is uniformly convex if there exists a constant 𝜃 > 0 such that 𝑓 ′′ > 𝜃 >

0. In particular, this means 𝑓 ′ is strictly increasing.

For convex or concave function, the Rankine-Hugoniot speed à from (2.3.8) must lie

between 𝑓 ′(𝑢⊗) and 𝑓 ′(𝑢+), so (2.3.19) reduces to simply the requirement that 𝑓 ′(𝑢⊗) > 𝑓 ′(𝑢+).

If 𝑢⊗ > 𝑢+ then the correct solution would be a shock curve for a uniformly convex flux function

and if 𝑢⊗ < 𝑢+ , the correct solution would be a rarefaction wave for a uniformly convex flux

function. For Burgers’ equation with 𝑓(𝑢) = 𝑢2/2, the Lax Entropy Condition requires 𝑢⊗ > 𝑢+

for an admissible shock, since 𝑓 ′′(𝑢) is everywhere positive rather than negative.

For the case when 𝑓 is uniformly convex, requiring that curves of discontinuity sat-

isfy the entropy condition (2.3.19) guarantees uniqueness of (2.3.1). In the case, when 𝑓 is not

uniformly convex, condition (2.3.19) is not enough to guarantee uniqueness of solutions. In or-

der to guarantee uniqueness of solutions, we introduce the Oleinik entropy condition [28, 41, 44].

Entropy condition (Oleinik): The condition that

𝑓(𝑢⊗) ⊗ 𝑓(𝑢)

𝑢⊗ ⊗ 𝑢
⊙ 𝑓(𝑢⊗) ⊗ 𝑓(𝑢+)

𝑢⊗ ⊗ 𝑢+
, (2.3.20)

for all 𝑢 between 𝑢⊗ and 𝑢+ is known as the Oleinik entropy condition [28, 41, 44].

2.4 Hyperbolic systems of conservation laws in one space dimension

Hyperbolic systems of partial differential equations can be used to model a wide

variety of phenomena that involve wave motion or the advective transport of substances.

In one space dimension, a homogeneous first-order 𝑛×𝑛 system of conservation laws

equations in 𝑥 and 𝑡 has the form

𝑢t(𝑥, 𝑡) + 𝑓(𝑢(𝑥, 𝑡))x = 0, 𝑡 ∈ R
+, 𝑥 ∈ R, (2.4.1)

or
∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝜕

𝜕𝑡
𝑢1 +

𝜕

𝜕𝑥

[︁

𝑓 1
(︁

𝑢1, 𝑢2, ..., 𝑢n
)︁]︁

= 0,

.....

𝜕

𝜕𝑡
𝑢n +

𝜕

𝜕𝑥

[︁

𝑓n
(︁

𝑢1, 𝑢2, ..., 𝑢n
)︁]︁

= 0,

(2.4.2)

where 𝑢 : R × R ⊗⊃ R
n is a vector with 𝑛 components representing the unknown functions

(pressure, velocity, etc.,) i.e, 𝑢 = [𝑢1, 𝑢2, ..., 𝑢n]T and 𝑓 = [𝑓 1, 𝑓2, ..., 𝑓n]T is the flux vector.
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Calling

𝐴(𝑢) = 𝐷𝑓(𝑢) =

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

𝜕𝑓 1

𝜕𝑢1
...

𝜕𝑓 1

𝜕𝑢n

...

𝜕𝑓n

𝜕𝑢1
...

𝜕𝑓n

𝜕𝑢n

∫︀

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

, (2.4.3)

the 𝑛 × 𝑛 Jacobian matrix of the map 𝑓 at the point 𝑢, the system (2.4.2) can be written in

the quasilinear form

𝑢t + 𝐴(𝑢)𝑢x = 0. (2.4.4)

In the linear case,

𝑢t + 𝐴𝑢x = 0, (2.4.5)

we have 𝑓(𝑢) = 𝐴𝑢 where 𝐴 ∈ R
n×n is a constant matrix (in both space and time) entries, with

𝑢(𝑥, 0) = 𝑢0(𝑥) as initial condition (see [28, 29, 33, 44]).

2.4.1 Hyperbolicity and well-balancing

Definition: (strictly hyperbolic system). The system of conservation laws (2.4.2)

is strictly hyperbolic if, for every 𝑢, the Jacobian matrix 𝐴(𝑢) = 𝐷𝑓(𝑢) has 𝑛 real, distinct

eigenvalues (diagonalizable): Ú1(𝑢) < ... < Ún(𝑢).

Thus, the concept of hyperbolicity for a system is tied to the eigenstructure of the

underlying matrix. A matrix 𝐴 is diagonalizable if it has a complete set of eigenvectors, i.e,

there exists 𝑛 linearly independent vectors 𝑟1(𝑢), ..., 𝑟n(𝑢) ∈ R
n and corresponding eigenvalues

Ú1(𝑢) < ... < Ún(𝑢) ∈ R such that 𝐴(𝑢)𝑟i(𝑢) = Úi(𝑢)𝑟i(𝑢), 𝑖 = 1, ..., 𝑛 [28, 29, 33, 44].

The 𝑛-th field of conservation law (2.4.1) is genuinely nonlinear if (gradÚn(𝑢)).𝑟n(𝑢) ̸=
0 (where grad is the gradient with respect to the components of the 𝑢 vector) for all 𝑢 ∈ R

n.

If (gradÚn(𝑢)).𝑟n(𝑢) = 0 for all 𝑢 ∈ R
n, we say that the n-th field of conservation law (2.4.1) is

linearly degenerate [44].

2.4.2 Linear case and nonlinear cases

Consider the linear systems (2.4.5), where A is a diagonalizable constant matrix.

Then we can perform the transformation

𝑅⊗1𝑢t + 𝑅⊗1𝐴𝑅𝑅⊗1𝑢x = 0, (2.4.6)

where R is the matrix of eigenvectors of A. Introducing the characteristic variable

𝑤(𝑥, 𝑡) = 𝑅⊗1𝑢(𝑥, 𝑡),
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we obtain the decoupled system

𝑤t + 𝛬𝑤x = 0, (2.4.7)

where 𝛬 = 𝑅⊗1𝐴𝑅 is the diagonal matrix consisting of the eigenvalues Úp of A, 𝑝 = 1, 2, ..., 𝑛.

We thus have a set of 𝑛 independent advection equations for components 𝑤p of 𝑤:

(𝑤p)t + Úp(𝑤p)x = 0, for 𝑝 = 1, 2, ≤ ≤ ≤ , 𝑛. (2.4.8)

with solution 𝑤p(𝑥, 𝑡) = (𝑤p)0(𝑥 ⊗ Úp𝑡), where (𝑤p)0(𝑥) ⊕ 𝑅⊗1𝑢0(𝑥) is the initial data.

We use the decoupling of the linear system to solve the problem

𝑢t + 𝐴𝑢x = 0 (2.4.9)

with

𝑢(𝑥, 0) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑢⊗, 𝑥 < 0,

𝑢+, 𝑥 > 0,
(2.4.10)

where 𝑢⊗ and 𝑢+ are two constant states. A hyperbolic partial differential equation with the

initial data consisting of two constant states is called a Riemann problem. The solution of

(2.4.9)-(2.4.10) can be written

𝑢(𝑥, 𝑡) =
n
∑︁

p=1

(𝑤p)0(𝑥 ⊗ Úp𝑡)𝑟p, (2.4.11)

where all the functions (𝑤p)0(𝑥) are step functions with a jump at 𝑥 = 0. Let denote

(𝑤p)0(𝑥) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑤⊗
p , 𝑥 < 0,

𝑤+
p , 𝑥 > 0.

(2.4.12)

The solution is thus piecewise constant, with changes when 𝑥 ⊗ Úp𝑡 changes sign for some 𝑝.

From this observation the solution is

𝑢(𝑥, 𝑡) =
∑︁

p:λ𝑝<x/t

𝑤+
p 𝑟p +

∑︁

p:λ𝑝>x/t

𝑤⊗
p 𝑟p. (2.4.13)

The solution is thus constant on wedges in the 𝑥 ⊗ 𝑡 plane as seen in Figure 7.

The derivation of (2.3.9) is valid for systems of conservation laws as well as for scalar

equations. However, for a system of 𝑛 equations, 𝑢⊗ ⊗ 𝑢+ , and 𝑓(𝑢⊗) ⊗ 𝑓(𝑢+) will both be

𝑛-vectors and we will not be able to simply divide as in (2.3.8) to obtain the shock speed. In

fact, for arbitrary states 𝑢⊗ and 𝑢+, there will be no scalar value à for which (2.3.9) is satisfied.

Special relations must exist between the two states in order for them to be connected by a

shock: the vector 𝑓(𝑢⊗) ⊗ 𝑓(𝑢+) must be a scalar multiple of the vector 𝑢⊗ ⊗ 𝑢+. We have

already seen this condition in the case of a linear system, where 𝑓(𝑢) = 𝐴𝑢. In this case the
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Figure 7 – Solution of the linear Riemann problem in the 𝑥 ⊗ 𝑡 plane, 𝑛 = 4.

Rankine–Hugoniot condition (2.3.9) becomes 𝐴[𝑢] = à[𝑢], which means that 𝑢⊗ ⊗ 𝑢+ must

be an eigenvector of the matrix A. The propagation speed à of the discontinuity is then the

corresponding eigenvalue Ú.

If the coefficient matrix is diagonalizable, a linear system can be decoupled into a

number of independent scalar problems. This is however not true for a non-linear system where

the diagonalizing transformation 𝑅 is now a function of 𝑢(𝑥, 𝑡).

Let 𝑘 be a genuinely nonlinear field. A 𝑘-shock is a discontinuity satisfying (2.3.9)

and for which it holds (see, [28, 29, 33, 44]),

Úk(𝑢⊗) > à > Úk(𝑢+),

Úk⊗1(𝑢
⊗) < à < Úk+1(𝑢

+).

2.4.3 Nonstrictly Hyperbolic System of Conservation Laws

Consider the first-order 𝑛 × 𝑛 system of conservation laws in one dimensional space

(2.4.1). We suppose that this system is hyperbolic: for every 𝑢 ∈ R
⋉ the eigenvalues Úi(𝑢)

, 𝑖 = 1, 2 ≤ ≤ ≤ , 𝑛 are real. The system (2.4.1) is nonstrictly hyperbolic if Úi(𝑢) = Új(𝑢) for

some states 𝑢 and for 𝑖 ̸= 𝑗, then waves pertaining to different characteristic families may not

separate as time evolves. When this happens, nonlinear interactions of these waves may alter

the asymptotic state.

In particular, if we consider a 2×2 system in one dimensional space we have Ú1(𝑢) =

Ú2(𝑢) then 𝑢 is called an umbilic point. The strict hyperbolicity fails precisely at the umbilic

points of a certain surface. For hyperbolic equations, umbilic points are typically isolated and

at an isolated umbilic point, A is typically diagonalizable. Moreover, such umbilic points persist

under perturbations of the function 𝑓 , providing that the hyperbolicity of (2.4.1) is maintained.
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The difficulty for non-strictly hyperbolic conservation laws is that there is no well-defined

ordering of the eigenvalues in the domain of the problem. [25, 30, 37, 31].

2.4.4 Examples of hyperbolic systems

• The wave equation: The simplest example of (2.4.5) is given by the one-dimensional

second-order wave equation,

𝑢tt ⊗ 𝑐2𝑢xx = 0. (2.4.14)

This equation is also known as the string equation (see [28, 29, 33, 41, 44]), as it models

vibrations in media like strings and rods. The wave equation can be written as a first-

order system by defining auxiliary variables 𝑣 = 𝑐𝑢x and 𝑤 = ⊗𝑢t. With this change of

variables, we show that (2.4.14) transforms to

∏︁

⨄︁

⋃︁

𝑣t + 𝑐𝑤x = 0,

𝑤t + 𝑐𝑣x = 0.
(2.4.15)

Hence, the wave equation (2.4.15) is an example of the strictly hyperbolic linear system

(2.4.5) with

𝑢 =

⋃︀

⨄︀

𝑣

𝑤

⋂︀

⋀︀ , 𝐴 =

⋃︀

⨄︀

0 𝑐

𝑐 0

⋂︀

⋀︀ . (2.4.16)

• Shallow water equations: To derive the one-dimensional shallow water equations, we

consider fluid in a channel of unitary width and assume that the vertical velocity of the

fluid is negligible and the horizontal velocity 𝑣(𝑥, 𝑡) is roughly constant throughout any

cross section of the channel, ℎ(𝑥, 𝑡) is the height. The quantity ℎ𝑣 is often called the

discharge in shallow water theory, since it measures the flow rate of water past a point

[28], We have
⋃︀

⨄︀

ℎ

ℎ𝑣

⋂︀

⋀︀

t

+

⋃︀

⋁︀

⨄︀

ℎ𝑣

𝑣2ℎ +
1

2
𝑔ℎ2

⋂︀

⎥

⋀︀

x

=

⋃︀

⨄︀

0

0

⋂︀

⋀︀ . (2.4.17)

If we define

𝑢 =

⋃︀

⨄︀

ℎ

ℎ𝑣

⋂︀

⋀︀ , 𝑓(𝑢) =

⋃︀

⋁︀

⨄︀

ℎ𝑣

𝑣2ℎ +
1

2
𝑔ℎ2

⋂︀

⎥

⋀︀ , (2.4.18)

the nonlinear equations can be written in the form of (2.4.2). And the Jacobian matrix

is

𝐴 =

⋃︀

⨄︀

0 1

⊗𝑣2 + 𝑔ℎ 2𝑣

⋂︀

⋀︀ . (2.4.19)

The eigenvalues are Ú1 = 𝑣 ⊗ 𝑐 , Ú2 = 𝑣 + 𝑐 and the right eigenvectors are 𝑟1 = (1, 𝑣 ⊗ 𝑐)T

, 𝑟2 = (1, 𝑣 + 𝑐)T ,
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where 𝑐 =
√︁

𝑔ℎ. However, this nonlinear system is strictly hyperbolic [28]. If we assume

that ℎ and 𝑣 are smooth the system (2.4.17, becomes

⋃︀

⨄︀

𝑣

𝜙

⋂︀

⋀︀

t

+

⋃︀

⋁︀

⨄︀

𝑣2

2
+ 𝜙

𝑣𝜙

⋂︀

⎥

⋀︀

x

= 0, (2.4.20)

where 𝜙 = 𝑔ℎ. Notice that if ℎ = 0, the eigenvalues coincide. In that case the system is

no longer hyperbolic and this induces difficulties at both theoretical and numerical levels.

If ♣𝑣♣ <
√︁

𝑔ℎ the characteristic velocities have opposite signs and information propagates

upward as well as downward the flow, what is called subcritical or fluvial. On the other

hand, when ♣𝑣♣ >
√︁

𝑔ℎ, the flow is supercritical, or torrential and all information go

downwards. A transcritical regime exists when some parts of a flow are subcritical, other

supercritical . A subcritical flow is therefore determined by one upstream and one down-

stream value, whereas a supercritical flow is completely determined by the two upstream

values. Two quantities are useful in this context. The first one is a dimensionless param-

eter called the Froude number 𝐹𝑟 =
♣𝑣♣√
𝑔ℎ

. It is the analogue of the Mach number in gas

dynamics, and the flow is subcritical (resp. supercritical) if 𝐹𝑟 < 1 (resp. 𝐹𝑟 > 1). The

other important quantity is the so-called critical height ℎ𝑐 which writes ℎ𝑐 = (
𝑀√

𝑔
)

2

3 , for

𝑀 a given discharge ℎ𝑣. It is a very readable criterion for criticality: the flow is subcritical

(resp. supercritical) if ℎ > ℎ𝑐 (resp. ℎ < ℎ𝑐) [16, 28].

• Isentropic gas dynamics: Consider this coupled system of two nonlinear conservation

laws
∏︁

⨄︁

⋃︁

𝜌t + (𝜌𝑣)x = 0,

(𝜌𝑣)t + (𝜌𝑣2 + 𝑃 (𝜌))x = 0.
(2.4.21)

Here 𝜌 is the mass density, 𝑣 is the velocity and 𝑃 the pressure. 𝑃 (𝜌) is a given function

specifying the pressure in terms of density which satisfies 𝑃 ′(𝜌) > 0 for all 𝜌 > 0. If we

define

𝑢 =

⋃︀

⨄︀

𝜌

𝜌𝑣

⋂︀

⋀︀ =

⋃︀

⨄︀

𝑢1

𝑢2

⋂︀

⋀︀ , 𝑓(𝑢) =

⋃︀

⨄︀

𝜌𝑣

𝜌𝑣2 + 𝑃 (𝜌)

⋂︀

⋀︀ =

⋃︀

⨄︀

𝑢2

(𝑢2)2/𝑢1 + 𝑃 (𝑢1)

⋂︀

⋀︀ . (2.4.22)

the nonlinear equations (2.4.21) of isentropic gas dynamics can be written in the form of

(2.4.2). And the Jacobian matrix is

𝐴 =

⋃︀

⨄︀

0 1

⊗𝑣2 + 𝑃 ′(𝜌) 2𝑣

⋂︀

⋀︀ . (2.4.23)

The eigenvalues are Ú1 = 𝑣 ⊗ 𝑐 , Ú2 = 𝑣 + 𝑐 and the right eigenvectors are 𝑟1 = (1, 𝑣 ⊗ 𝑐)T

, 𝑟2 = (1, 𝑣 + 𝑐)T , where the velocity 𝑣 may now vary from point to point, as does the
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sound speed 𝑐 =
√︁

𝑃 ′(𝜌). However, since 𝑃 ′(𝜌) > 0 at all points in the gas, this nonlinear

system is strictly hyperbolic [28].

• Gas dynamics: The Euler equations describing the evolution of a non viscous gas take

the form
∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝜌t + (𝜌𝑣)x = 0, (conservation of mass),

(𝜌𝑣)t + (𝜌𝑣2 + 𝑝)x = 0, (conservation of momentum),

(𝜌𝐸)t + (𝜌𝐸𝑣 + 𝑝𝑣)x = 0, (conservation of energy).

(2.4.24)

Here 𝜌 is the mass density, 𝑣 is the velocity while 𝐸 = (𝑝/𝜌)(Ò ⊗ 1)⊗1 + (𝑣2/2) is the

total specific energy, Ò > 1. The system is closed by a constitutive relation of the form

𝑝 = 𝑝(𝜌, 𝑒), giving the pressure as a function of the density and the internal energy 𝑒. The

particular form of 𝑝 depends on the gas under consideration [28, 29, 33, 44].

We know that for smooth flows, the system (2.4.24) can be equivalently written in a

nonconservative form , namely

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝜌t + 𝑣𝜌x + 𝜌𝑣x = 0,

𝑣t + 𝑣𝑣x + (1/𝜌)𝜌x = 0,

𝑝t + Ò𝑝𝑣x + 𝑣𝑝x = 0.

(2.4.25)

The Jacobian of the system (2.4.25) has distinct eigenvalues. Ú1 = 𝑣 ⊗ 𝑐 < Ú2 = 𝑣 < Ú3 =

𝑣 + 𝑐,

where 𝑐 =

√︃

Ò𝑝

𝜌
is the speed of sound; the associated eigenvectors can be taken as

𝑟1 = (𝜌, ⊗𝑐, 𝜌𝑐2)T , 𝑟2 = (1, 0, 0)T , 𝑟3 = (𝜌, 𝑐, 𝜌𝑐2)T .

Thus, we have grad (Ú1, 𝑟1) = ⊗(1 + Ò)𝑐/2, grad (Ú2, 𝑟2) = 0 , grad (Ú3, 𝑟3) = (1 + Ò)𝑐/2,

implying thereby that the first and third characteristic fields are genuinely nonlinear, while

the second one is linearly degenerate. This nonlinear system is strictly hyperbolic [28].

• Immiscible three-phase flow: Three-phase flow is described by a pressure equation,

expressing Darcy’s law of force, coupled with two saturation equations, which generalize

the classical Buckley-Leverett equation and express the conservation of mass of water,

oil, and gas. The pressure equation implies that the total fluid velocity is independent

of position, so we take it to be constant. After nondimensionalizing the time and space

variables, fluid viscosities, and capillary pressures in the standard way [31], one obtains

the following system of partial differential equations

𝜕𝑠w

𝜕𝑡
+

𝜕

𝜕𝑥
𝑓w(𝑠w, 𝑠g) = 𝐷w, (2.4.26)
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𝜕𝑠g

𝜕𝑡
+

𝜕

𝜕𝑥
𝑓g(𝑠w, 𝑠g) = 𝐷g. (2.4.27)

Here 𝑠w and 𝑠g denote the water and gas saturations, and the oil saturation is 𝑠o =

1 ⊗ 𝑠w ⊗ 𝑠g. The state of the fluid is defined by the saturation pair, denoted 𝑆 = (𝑠w, 𝑠g).

The fractional flow functions 𝑓w and 𝑓g are given in terms of the relative permeability

functions 𝑘w , 𝑘g, and 𝑘o and the fluid viscosities Ûw, Ûg , and Ûo by

𝑓w =
𝑘w/Ûw

𝑘w/Ûw + 𝑘g/Ûg + 𝑘o/Ûo

, (2.4.28)

and

𝑓g =
𝑘g/Ûg

𝑘w/Ûw + 𝑘g/Ûg + 𝑘o/Ûo

, (2.4.29)

The diffusion terms

𝐷w =
𝜕

𝜕𝑥

(︃

𝐵ww
𝜕𝑠w

𝜕𝑥

)︃

+
𝜕

𝜕𝑥

(︃

𝐵wg
𝜕𝑠g

𝜕𝑥

)︃

, (2.4.30)

and

𝐷g =
𝜕

𝜕𝑥

(︃

𝐵gw
𝜕𝑠w

𝜕𝑥

)︃

+
𝜕

𝜕𝑥

(︃

𝐵gg
𝜕𝑠g

𝜕𝑥

)︃

, (2.4.31)

represent the effect of capillary pressure differences among fluids; here 𝐵ww, 𝐵wg , 𝐵gw,

and 𝐵gg are the components of the diffusion matrix B given by

𝐵 =

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

𝑘w

Ûw

(1 ⊗ 𝑓w) ⊗𝑘w

Ûw

𝑓g

⊗𝑘g

Ûg

𝑓w
𝑘g

Ûg

(1 ⊗ 𝑓g)

∫︀

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

𝜕𝑝wo

𝜕𝑠w

𝜕𝑝wo

𝜕𝑠g

𝜕𝑝go

𝜕𝑠w

𝜕𝑝go

𝜕𝑠g

∫︀

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

. (2.4.32)

For simplicity, we assume that each of the relative permeability functions depends solely

on its corresponding fluid saturation. We also adopt the assumption of Leverett about

the capillary pressure differences, namely that 𝑝wo depends solely on 𝑠w and 𝑝go depends

solely on 𝑠g. The partial differential equations (2.4.26) and (2.4.27) have solutions that

propagate as waves. The propagation speeds of continuous waves are the eigenvalues of

the Jacobian derivative matrix
𝜕(𝑓w, 𝑓g)

𝜕(𝑠w, 𝑠g)
, provided that these eigenvalues are real. There

are two eigenvalues corresponding to each pair of saturations; the smaller is called the

slow characteristic speed and the larger is called the fast characteristic speed. Both are

nonnegative in the saturation triangle ¶(𝑠w, 𝑠g) : 0 ⊘ 𝑠w ⊘ 1, 0 ⊘ 𝑠g ⊘ 1, 𝑠w + 𝑠g ⊘ 1♢ . A

model of Corey-Pope type has the peculiarity that for a particular state in the interior

of the saturation triangle, 𝑆u = (𝑠u
w, 𝑠u

g ) , the characteristic speeds coincide, or resonate.

Such a state is called an umbilic point. For fixed relative permeability functions, the

viscosities of the fluids determine the location of the umbilic point [31].
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• Elastic string problem:

The following two conservation laws are derives from a model of elastic strings,(see, [25,

30, 37])
∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑢t + (ã𝑢)x = 0, 𝑥 ∈ R, 𝑡 > 0,

𝑣t + (ã𝑣)x = 0, 𝑥 ∈ R, 𝑡 > 0,
(2.4.33)

where ã = ã(𝑢, 𝑣). This system models the propagation of forward longitudinal and

transverse waves in a stretched elastic string which moves in a plane.

The feature of interest in system (2.4.33) is that the equations are non-strictly hyperbolic

in the following sense. Introducing vector notation 𝑈 = (𝑢, 𝑣), 𝐹 = (ã𝑢, ã𝑣), then for the

differentiable solutions the system (2.4.33) can be written as

𝑈t + 𝐴𝑈x = 0, (2.4.34)

where 𝐴 = 𝐴(𝑈) =
𝜕𝐹

𝜕𝑈
. Let (𝑟, 𝜃) be the polar coordinates, 𝑟2 = 𝑢2 + 𝑣2, tg𝜃 = 𝑣/𝑢 and

write ã = ã(𝑟, 𝜃), then we find from the differentiated form of (5.2.11) with

𝐴 =

∏︀

̂︁

̂︁

̂︁

∐︁

ã + 𝑢ãu 𝑢ãv

𝑣ãu ã + 𝑣ãv

∫︀

̂︂

̂︂

̂︂

̂︀

, (2.4.35)

the eigenvalues of A (characteristic speeds of the system) are

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

Ú1 = ã,

Ú2 =
𝜕

𝜕𝑟
(𝑟ã) = ã + 𝑟

𝜕ã

𝜕𝑟
.

In the elastic string problem, solutions with 𝑟 = 0 are physically inadmissible, and we

shall look in general at solutions of (2.4.33) in the punctured plane R2⊗¶0♢. Thus (2.4.33)

is not strictly hyperbolic on Σ ⊕ ¶(𝑟, 𝜃) : 𝜕ã/𝜕𝑟 = 0♢ = ¶(𝑟, 𝜃) : Ú1 = Ú2♢.

The eigenvector 𝑤1 corresponding to Ú1 is parallel to (⊗ãv, ãu), so that 𝑤1.∇Ú1 = 0 and

hence every shock of this family is a contact discontinuity. The eigenvector 𝑤2 corre-

sponding to Ú2 is parallel to (𝑢, 𝑣), and 𝑤2.∇Ú2 = 𝑟(𝑟ã)rr and so this family is genuinely

nonlinear if (𝑟ã)rr = 2ãr + 𝑟ãrr ̸= 0 [25, 30, 37].
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3 Lagrangian-Eulerian scheme for scalar hyper-

bolic conservation laws

For the construction of the Lagrangian-Eulerian scheme and the study of an equiva-

lent finite difference scheme to the Lagrangian-Eulerian approach based on locally conservative

finite volume method we follow very closely the works [1, 35]. We address the usefulness of

identifying modified equations which models the qualitative behavior of the difference scheme

in connection to the original equation taking into account the regularity of the initial data.

Computational results for linear and nonlinear scalar conservation laws with convex and non-

convex flux functions – Linear hyperbolic conservation law with constant and variable velocity,

inviscid Burgers’ equations and Bucklet-Leverett’s equations– are presented and discussed to

show our current understanding of the Lagrangian-Eulerian framework. Finally, by means of an

accurate algorithm developed in [11] for approximating the Hilbert transform, we present and

discuss qualitative numerical experiments for hyperbolic conservation laws with nonlocal flux,

showing evidence of attenuation and blow up of concentration type by means of some initial

measure data such as square pulse initial data, Gaussian initial data and Oscillatory initial

data.

3.1 The Lagragian-Eulerian formulation

Consider the initial value problem for single conservation laws as follows:

𝜕𝑢

𝜕𝑡
+

𝜕𝐻(𝑢)

𝜕𝑥
= 0, 𝑡 > 0, 𝑥 ∈ R, (3.1.1)

𝑢(𝑥, 0) = Ö(𝑥), 𝑥 ∈ R, (3.1.2)

where 𝐻(𝑢) is a smooth function of 𝑢 = 𝑢(𝑥, 𝑡). For the construction of the Lagrangian-Eulerian

procedure, we first consider the equation (3.1.1) written in locally conservative space-time

generalized divergence form, along with 𝑢(𝑥, 0) = Ö(𝑥),

∇t,x

⋃︀

⨄︀

𝑢

𝐻(𝑢)

⋂︀

⋀︀ = 0, 𝑡 > 0, 𝑥 ∈ R. (3.1.3)

In order to set the finite dimensional function spaces relying on solving the approx-

imate problem by the Lagrangian-Eulerian method for (3.1.1)-(3.1.2), we now introduce some

notation. The plane region R×R = ¶(𝑥, 𝑡); ⊗∞ < 𝑥 < ∞; 𝑡 ⊙ 0♢ will be replaced by the lattice

N × Z = ¶(𝑗, 𝑛); 𝑗 = 0, ∘1, ∘2, . . . ; 𝑛 = 0, 1, 2, ≤ ≤ ≤♢, and instead of functions 𝑢(≤, 𝑡) ∈ 𝐿p(R)
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for 𝑡 ⊙ 0, we will consider the sequences 𝑈n = (𝑈n)j, 𝑗 ∈ Z for 𝑛 = 0, 1, 2, ≤ ≤ ≤, for a given mesh

ℎ > 0 and a time level

𝑡n =
i=n⊗1
∑︁

i=0

∆𝑡i, (3.1.4)

with 𝑡0 = 0, for non-constant time step ∆𝑡i. In the time level 𝑡n, we have 𝑥n
j = 𝑗ℎ, 𝑥n

j+ 1

2

= 𝑗ℎ+
ℎ

2
on the uniform local grid or original grid, here ℎn

j = ∆𝑥n = 𝑥n
j+ 1

2

⊗ 𝑥n
j⊗ 1

2

= ℎ, 𝑗 ∈ Z, where

𝑥n
j∘ 1

2

are endpoint of the cell. For the non-uniform grid we have ℎn+1
j = ∆𝑥

n+1
= 𝑥n+1

j+ 1

2

⊗ 𝑥n+1
j⊗ 1

2

,

in the time level 𝑡n+1. Here 𝑥n
j and 𝑥n+1

j are the centers of the cells respectively. The numerical

solution of 𝑢 in the cells [𝑥n
j⊗ 1

2

, 𝑥n
j+ 1

2

] and [𝑥n+1
j⊗ 1

2

, 𝑥n+1
j+ 1

2

] are defined by,

𝑈(𝑥j, 𝑡n) = 𝑈n
j =

1

ℎ

∫︁ x𝑛

𝑗+ 1
2

x𝑛

𝑗−
1
2

𝑢(𝑥, 𝑡n)𝑑𝑥, and 𝑈
n+1
j =

1

ℎn+1
j

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡n+1)𝑑𝑥 𝑗 ∈ Z,

(3.1.5)

respectively, and the initial condition is 𝑈(𝑥0
j , 𝑡0) = 𝑈0

j in the cells [𝑥0
j⊗ 1

2

, 𝑥0
j+ 1

2

], 𝑗 ∈ Z. Notice, in

the equations (3.1.5), the quantity 𝑢(𝑥, 𝑡) is a solution of (3.1.1). The discrete counterpart of the

space 𝐿p(R) is 𝑙p
h, the space of sequences 𝑈 = (𝑈j), with 𝑗 ∈ Z, such that ‖𝑈‖l𝑝

ℎ
=

∏︀

∐︁ℎ
∑︁

j∈Z

♣𝑈j♣p
∫︀

̂︀

1

𝑝

,

1 ⊘ 𝑝 < ∞ or ‖𝑈‖l∞
ℎ

= sup
j∈Z

♣𝑈j♣ where 𝑈 is defined in the appropriate 𝑙p-space.

3.1.1 The local Lagrangian-Eulerian conservation relation

As in [1, 35], we consider cell-centered finite-volume cell in a Lagrangian framework

(see left picture in Figure 8) and it reads:

𝐷n
j = ¶(𝑡, 𝑥) / 𝑡n ⊘ 𝑡 ⊘ 𝑡n+1, àn

j (𝑡) ⊘ 𝑥 ⊘ àn
j+1(𝑡)♢, (3.1.6)

where àn
j (𝑡) is a parameterized curve to be defined in the following àn

j (𝑡n) = 𝑥n
j ; i.e., define

the space-time local control volume 𝐷n
j (see top picture in Figure 8) to be the set contained

between [𝑥n
j , 𝑥n

j+1] (bottom) and [𝑥n+1
j⊗ 1

2

, 𝑥n+1
j+ 1

2

] (top), and two integral curves given by àn
j (𝑡) (left)

and àn
j+1(𝑡), 𝑡, ∈ [𝑡n, 𝑡n+1] (right). From the basic calculus we know the divergence theorem

states that the outward flux of a vector field through a closed surface is equal to the volume

integral of the divergence over the region inside the surface. Thus, from the conservation law

(3.1.3) we get:

∫︁∫︁

D𝑛
𝑗

∇t,x

⋃︀

⨄︀

𝑢

𝐻(𝑢)

⋂︀

⋀︀ 𝑑𝑉 = 0 ⇔
⌊︁

∂D𝑛
𝑗

⋃︀

⨄︀

𝑢

𝐻(𝑢)

⋂︀

⋀︀ ≤ n⃗𝑑𝑠 = 0. (3.1.7)

This means that by enforcing discrete local conservation over space-time control volumes 𝐷n
j

which “fill-up” the space-time domain, this method satisfies global conservation in space-time.
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where we define 𝑥n+1
j⊗ 1

2

= àn
j (𝑡n+1) and 𝑥n+1

j+ 1

2

= àn
j+1(𝑡

n+1). Next, we use (3.1.5) with the conser-

vation law (3.1.9) to get:

(3.1.10)

𝑈
n+1
j =

1

ℎn+1
j

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡n+1) 𝑑𝑥

=
1

ℎn+1
j

∫︁ x𝑛
𝑗+1

x𝑛
𝑗

𝑢(𝑥, 𝑡n) 𝑑𝑥

=
ℎ

ℎn+1
j

⋃︀

⨄︀

1

ℎ

∫︁ x𝑛

𝑗+ 1
2

x𝑛
𝑗

𝑢(𝑥, 𝑡n)𝑑𝑥 +
1

ℎ

∫︁ x𝑛
𝑗+1

x𝑛

𝑗+ 1
2

𝑢(𝑥, 𝑡n)𝑑𝑥

⋂︀

⋀︀ ,

=
1

ℎn+1
j

1

2
ℎ
[︁

𝑈n
j + 𝑈n

j+1

]︁

=
ℎ

ℎn+1
j

[︂

1

2
𝑈n

j +
1

2
𝑈n

j+1

]︂

.

The resulting local approximations 𝑈
n+1
j , 𝑗 ∈ Z, are defined over the original grid,

given by:

𝑈n+1
j =

1

ℎ

[︁

𝑐0j𝑈
n+1
j⊗1 + 𝑐1j𝑈

n+1
j

]︁

. (3.1.11)

Here 𝑐0j = (
ℎ

2
+ 𝑓n

j 𝑘n), 𝑐1j = ℎ ⊗ 𝑐0j = (
ℎ

2
⊗ 𝑓n

j 𝑘n) and we use the approximation 𝑓n
j =

𝐻(𝑈n
j )

𝑈n
j

≡ 𝐻(𝑢)

𝑢
and notice that now the curve àn

j (𝑡) is a straight line for 𝑓n
j along with

𝑘n = ∆𝑡n = 𝑡n+1 ⊗ 𝑡n (see bottom picture in Figure 8).

Notice that the nonlinear quantity 𝐻(𝑢)/𝑢 is related to the unknown solution 𝑢, and

so one cannot find the exact tracelines of the fluid particles. Although simple at first glance,

is not well understood how to define a good, robust and efficient approximations to 𝐻(𝑢)/𝑢

by means of nonlinear reconstructions. Here we use a quite simple explict approximation 𝑓n
j ≡

𝐻(𝑢)

𝑢
(but with quite good results), for both hyperbolic and balance laws, which is advantageous

to the numerical analysis. Indeed, all machinery developed for implicit strategies for source

terms in the case of balance laws can be used for the family of problems involving ODEs in

(3.1.8). Finally, the combination of equations (3.1.8) and (3.1.11) form the basic building block

of the Lagrangian-Eulerian scheme of approximate solutions to hyperbolic conservation laws

and balance laws.
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3.2 The Lagrangian-Eulerian scheme for scalar linear hyperbolic con-

servation laws

Now we will define an equivalent finite difference method of a Lagrangian-Eulerian

approach based on locally conservative finite volume method and to the hyperbolic linear

constant-coefficient case and leave the proof of its consistency, stability and convergence in

the sense of classical Lax stalibity in [1, 35].

Consider the linear flux function 𝐻(𝑢) = 𝑎 𝑢, 𝑎 ∈ R to the conservation law (3.1.3),

with the Lagrangian-Eulerian approach (3.1.8)-(3.1.11), whose exact well-known solution is

𝑢(𝑥, 𝑡) = Ö(𝑥 ⊗ 𝑎𝑡). Therefore, we set 𝑓n
j = 𝑎 and then ℎn+1

j = ℎ, 𝑗 ∈ Z. Thus, the solutions of

the family of initial value problem:

𝑑àn
j (𝑡)

𝑑𝑡
= 𝑎, àn

j (𝑡n) = 𝑥n
j , (3.2.1)

is precisely àn
j (𝑡) = 𝑎(𝑡 ⊗ 𝑡n) + 𝑥n

j and, in connection with the definitions above, also reads

that 𝑥n+1
j⊗ 1

2

= àn
j (𝑡n+1) = 𝑎𝑘n + 𝑥n

j . Moreover, using a simple mathematical reasoning the above

construction can be viewed as an analogue of finite difference scheme for scalar linear hyperbolic

conservation laws. The procedure for balance laws is quite straightforward. Then, we notice from

equation (3.1.10) that:

(3.2.2)

𝑈
n+1

j =
1

ℎn+1
j

∫︁ x𝑛

𝑗+ 1
2

x𝑛

𝑗−
1
2

𝑢(𝑥, 𝑡n+1) 𝑑𝑥

=
1

ℎn+1
j

∫︁ x𝑛
𝑗+1

x𝑛
𝑗

𝑢(𝑥, 𝑡n) 𝑑𝑥

=
1

ℎn+1
j

1

2
ℎ
[︁

𝑈n
j + 𝑈n

j+1

]︁

=
1

2

[︁

𝑈n
j + 𝑈n

j+1

]︁

.

By replacing (3.2.2) in the equation (3.1.11), it reads (the one-step or the two-level finite dif-

ference scheme):

𝑈n+1
j =

1

4

[︁

𝑈n
j⊗1 + 2𝑈n

j + 𝑈n
j+1

]︁

⊗ 𝑎𝑘n

2ℎ

[︁

𝑈n
j+1 ⊗ 𝑈n

j⊗1

]︁

, (3.2.3)

then, with fixed 𝑘 = 𝑘n, we get the equivalent difference finite scheme to the scalar linear

conservation laws:

𝑈n+1
j =

1

4

[︁

𝑈n
j⊗1 + 2𝑈n

j + 𝑈n
j+1

]︁

⊗ 𝑎𝑘

2ℎ

[︁

𝑈n
j+1 ⊗ 𝑈n

j⊗1

]︁

. (3.2.4)

The linear Lagrangian-Eulerian scheme (3.2.4) is designed to a straightforward application of

Lax equivalence theory.
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Figure 9 – The geometrical interpretation of the Lagrangian-Eulerian Method scheme for linear
case with 𝑎 > 0.

3.2.1 The modified equation for the linear Lagrangian-Eulerian scheme

Here we will use modified equations for the Lagrangian-Eulerian scheme with the

aim of understanding the qualitative behaviour of numerical solutions (related to the two-level

Lagrangian-Eulerian scheme (3.2.4). Let ã(𝑥, 𝑡) in 𝐶∞, this is supposed to be a function that

agrees exactly with 𝑈n
j at the grid points and so, unlike 𝑢 (𝑥, 𝑡), the function ã(𝑥, 𝑡) satisfies

(3.2.4) exactly:

ã (𝑥, 𝑡 + 𝑘) =
1

4
[ã(𝑥 ⊗ ℎ, 𝑡) + 2ã(𝑥, 𝑡) + ã(𝑥 + ℎ, 𝑡)] ⊗ 𝑎𝑘

2ℎ
[ã(𝑥 + ℎ, 𝑡) ⊗ ã(𝑥 ⊗ ℎ, 𝑡)] .

Expanding these terms in Taylor series about (𝑥, 𝑡) and simplifying gives :

ãt + 𝑎ãx = ⊗1

2
𝑘ãtt ⊗ 1

6
𝑘2ãttt +

ℎ2

4𝑘
ãxx ⊗ 𝑎ℎ2

6
ãxxx + 𝑂(𝑘3).

We can rewrite this as

ãt + 𝑎ãx =
ℎ2

2𝑘

(︃

1

2
⊗ 𝑎2𝑘2

ℎ2

)︃

ãxx ⊗ 𝑎ℎ2

6

(︃

1 ⊗ 𝑎2𝑘2

ℎ2

)︃

ãxxx + 𝑂(𝑘3), (3.2.5)

or in a more convenient form (keep in mind 𝑣 =
𝑎 𝑘

ℎ
with ratio 𝑘/ℎ fixed),

ãt + 𝑎ãx =
𝑎 ℎ

2 𝑣

(︂

1

2
⊗ 𝑣2

)︂

ãxx ⊗ 𝑎ℎ2

6

(︁

1 ⊗ 𝑣2
)︁

ãxxx + 𝑂(𝑘3). (3.2.6)
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Equations of the form (3.2.6) arise in fluid dynamics when both diffusion (viscosity

term ãxx) and dispersion (capillarity term ãxxx) play a role. The diffusion smoothes out the

discontinuous solutions of (3.1.1) while the dispersion causes high-frequency oscillations. The

dispersion process is an example of combined convection and diffusion. Thus, from equation

(3.2.6) one might expect numerical solutions by scheme (3.2.4) for the purely linear hyperbolic

PDE be contaminated by both spurious dispersion and diffusion effects. Thus, let’s consider

the numerical experiments related to a linear hyperbolic conservation laws to the Lagrangian-

Eulerian scheme (3.2.4), which in turn will be the building block to the anologue Lagrangian-

Eulerian scheme [1, 35].

3.3 Lagrangian-Eulerian scheme for scalar nonlinear hyperbolic conser-

vation laws and its conservative form

We essentially mimic the procedure in the linear case, but now notice that the curves

àn
j (𝑡) are not straight lines in general but rather solutions of the system of ordinary differential

equations (3.1.8), we write here again for clarity of presentation:

𝑑àn
j (𝑡)

𝑑𝑡
=

𝐻(𝑢)

𝑢
, 𝑡n < 𝑡 ⊘ 𝑡n+1,

with the initial condition àn
j (𝑡n) = 𝑥n

j , related to the diffential problem:

𝜕𝑢

𝜕𝑡
+

𝜕𝐻(𝑢)

𝜕𝑥
= 0, 𝑢(𝑥, 0) = Ö(𝑥). (3.3.1)

The idea here is to use the linear Lagrangian-Eulerian scheme as building block to construct local

approximations with the natural first choice to develop a fully explicit scheme 𝑓n
j =

𝐻(𝑈n
j )

𝑈n
j

≡

𝐻(𝑢)

𝑢
with the initial condition àn

j (𝑡n) = 𝑥n
j (see Figure 10 ). Now, the solutions àn

j (𝑡) of the

differential equations (3.1.8) system are (local) straight lines, but they are not parallel as in the

linear case.

In order to start the procedure let us first revisit the coefficients in the linear case,
∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑐0j =
ℎ

2
+ 𝑓n

j 𝑘n and 𝑐1j =
ℎ

2
⊗ 𝑓n

j 𝑘n,

with max
j

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

𝑓j∆𝑡n

ℎ

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

<

√
2

2
and 𝑘n = min

n
∆𝑡n,

(3.3.2)

where the stability CFL condition in (3.3.2) is given by the construction of the scheme. Thus,

we use equations (3.1.9)-(3.1.10) to write:

𝑈
n+1
j =

1

ℎn+1
j

1

2
ℎ
[︁

𝑈n
j + 𝑈n

j+1

]︁

, (3.3.3)
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Figure 10 – Lagrangian-Eulerian scheme nonlinear case

and plugging this into (3.1.11) reads,

𝑈n+1
j =

1

ℎ

[︃

𝑐0j
1

ℎn+1
j⊗1

ℎ

2
(𝑈n

j⊗1 + 𝑈n
j ) + 𝑐1j

1

ℎn+1
j

ℎ

2
(𝑈n

j + 𝑈n
j+1)

⟨

=
𝑐0j

2

1

ℎn+1
j⊗1

(𝑈n
j⊗1 + 𝑈n

j ) +
𝑐1j

2

1

ℎn+1
j

(𝑈n
j + 𝑈n

j+1).

(3.3.4)

Now, notice that for each 𝑗 ∈ Z,

ℎn+1
j = 𝑥n+1

j+ 1

2

⊗ 𝑥n+1
j⊗ 1

2

= 𝑥n
j+1 + 𝑓n

j+1𝑘
n ⊗ (𝑥n

j + 𝑓n
j 𝑘n) = ℎ + (𝑓n

j+1 ⊗ 𝑓n
j )𝑘n, (3.3.5)

and, also that:

ℎn+1
j = ℎ + (𝑓n

j+1 ⊗ 𝑓n
j )𝑘n = (

ℎ

2
+ 𝑓n

j+1𝑘
n) + (

ℎ

2
⊗ 𝑓n

j 𝑘n) = 𝑐0j+1 + 𝑐1j. (3.3.6)

On the other hand we have,

𝑐0j = ℎn+1
j⊗1 ⊗ 𝑐1j⊗1 and 𝑐1j = ℎn+1

j ⊗ 𝑐0j+1, (3.3.7)

along with,
∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑐1j⊗1 =
ℎ

2
⊗ 𝑓n

j⊗1𝑘
n =

1

2
(ℎn+1

j⊗1 ⊗ 𝑓n
j⊗1𝑘

n ⊗ 𝑓n
j 𝑘n),

𝑐0j+1 =
ℎ

2
+ 𝑓n

j+1𝑘
n =

1

2
(ℎn+1

j+1 + 𝑓n
j+1𝑘

n + 𝑓n
j 𝑘n).

(3.3.8)

Finally, plugging (3.3.7) into (3.3.4) we get, along with W(𝑈n
j , 𝑈n

j+1) ⊕ 𝑓n
j +𝑓n

j+1

ℎn+1
j

(𝑈n
j +

𝑈n
j+1),

𝑈n+1
j =

1

4
[𝑈n

j⊗1 + 2𝑈n
j + 𝑈n

j+1] ⊗ 𝑘n

4

(︁

W(𝑈n
j+1, 𝑈n

j ) ⊗ W(𝑈n
j⊗1, 𝑈n

j )
)︁

. (3.3.9)
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The finite difference scheme (3.3.9) is the Lagrangian-Eulerian scheme for the nonlinear scalar

problem (3.3.1). Hereafter this numerical scheme will called LEH1 (Lagrangian Eulerian Hy-

perbolic scheme 1).

Notice, if we set 𝑓n
j = 𝑎 and plug it into (3.3.9) we recover the linear Lagrangian-

Eulerian scheme (3.2.4). Moreover, the scheme (3.3.9) can also be written in conservative form,

𝑈n+1
j = 𝑈n

j ⊗ 𝑘n

ℎ

[︁

𝐹 (𝑈j, 𝑈n
j+1) ⊗ 𝐹 (𝑈n

j⊗1, 𝑈n
j )
]︁

, (3.3.10)

where the Lagrangian-Eulerian numerical Ćux function is defined by,

𝐹 (𝑈n
j , 𝑈n

j+1) =
1

4

[︃

ℎ

𝑘n

(︁

𝑈n
j ⊗ 𝑈n

j+1

)︁

+ ℎW(𝑈j, 𝑈j+1)

⟨

. (3.3.11)

A numerical formulation of the type Lagrangian-Eulerian scheme for nonlinear case, which we

present as one generalization of the Lagrangian-Eulerian scheme (3.3.9), it called in this work

as LEH2 (Lagragian Eulerian Finite Difference scheme) as the follow scheme,

𝑈n+1
j =

1

4
(𝑈n

j⊗1 + 2𝑈n
j + 𝑈n

j+1) ⊗ 𝑘

2ℎ
(𝐻(𝑈n

j+1) ⊗ 𝐻(𝑈n
j⊗1)), (3.3.12)

where 𝑘 = 𝑘n and with CFL condition

max
j

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

𝐻 ′(𝑈n
j )

𝑘

ℎ

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

⊘
√

2

2
. (3.3.13)

This method results to be conservative, i.e., the scheme (3.3.12) can be writed in

the form conservative

𝑈n+1
j = 𝑈n

j ⊗ 𝑘

ℎ
(𝐹 (𝑈n

j , 𝑈n
j+1) ⊗ 𝐹 (𝑈n

j⊗1, 𝑈n
j )), (3.3.14)

where

𝐹 (𝑈n
j , 𝑈n

j+1) =
1

4

[︃

ℎ

𝑘
(𝑈n

j ⊗ 𝑈n
j+1) + 2(𝐻(𝑈n

j+1) + 𝐻(𝑈n
j ))

⟨

. (3.3.15)

3.4 Our findings and numerical studies

Here we show our current understanding of the Lagrangian-Eulerian framework that

is applied for classical and well-known hyperbolic problems. We present and discuss computa-

tional results for linear and nonlinear scalar conservation laws with convex and non-convex flux

functions. The numerical results are compared with accurate approximate solutions or exact

solutions whenever possible.
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3.4.1 Linear case

It is shown numerical solutions for initial value problem for scalar linear conservation

laws,
∏︁

⨄︁

⋃︁

𝑢t + (𝑎(𝑥, 𝑡) 𝑢)x = 0, 𝑥 ∈ R, 𝑡 > 0

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R,
(3.4.1)

with scheme (3.2.4) along with various 𝑎(𝑥, 𝑡) functions.

Example 3.4.1. Scalar linear hyperbolic conservation law with Shu’s linear test [20, 21].

Consider the initial value problem

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑢t +
(︂

1

2
𝑢
)︂

x
= 0, 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R,
(3.4.2)

where 𝑎(𝑥, 𝑡) = 𝑎 =
1

2
, and

𝑢0(𝑥) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

1

6
(𝐺(𝑥, Ñ, 𝑧 ⊗ Ó) + 𝐺(𝑥, Ñ, 𝑧 + Ó) + 4𝐺(𝑥, Ñ, 𝑧)), ⊗0.8 ⊘ 𝑥 ⊘ ⊗0.6,

1, ⊗0.4 ⊘ 𝑥 ⊘ ⊗0.2,

1 ⊗ ♣10 (𝑥 ⊗ 0.1)♣ , 0 ⊘ 𝑥 ⊘ 0.2,
1

6
(𝐹 (𝑥, Ð, 𝑎 ⊗ Ó) + 𝐹 (𝑥, Ð, 𝑎 + Ó) + 4𝐹 (𝑥, Ð, 𝑎)), 0.4 ⊘ 𝑥 ⊘ 0.6,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(3.4.3)

𝐺 (𝑥, Ñ, 𝑧) = 𝑒⊗β(x⊗z)2

,

𝐹 (𝑥, Ð, 𝑎) =

√︂

𝑚𝑎𝑥
(︁

1 ⊗ Ð2 (𝑥 ⊗ 𝑎)2 , 0
)︁

.

The constants are taken 𝑧 = ⊗0.7, Ó = 0.005, Ð = 10, Ñ =
𝑙𝑜𝑔2

36Ó2
. The solution contains a

smooth but narrow combination of Gaussians, a square wave, a sharp triangle wave and a half

ellipse as we can see in the Figure 11 .

In Figure 12 we show and discuss numerical aproximations for the scalar linear

hyperbolic conservation laws with a standard test case called Shu’s linear test with 128, 256

and 512 cells respectively and with the Lagrangian-Eulerian scheme (3.2.4). As it is known in

[1, 35] for the range of CFL condition bigger than 0.5 (left pictures), the modified equation

shows that the dispersive terms are dominant and the wave group travel with velocity less

than 𝑎. Analogously in right pictures of Figure 12 is shown the case which the diffusive term is

dominant in modified equation, when the CFL-range is less than 0.5, and the effect is captured

by the method.
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Figure 11 – Exact solution with 512 grid cells.
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Figure 12 – Numerical solution for scalar linear hyperbolic conservation laws with Shu’s linear
test. The solution is shown with time 𝑇 = 0.5 and with 128, 256, 512 cells. CFL-
condition bigger than 0.5 (left) and CFL-condition less than 0.5 (right).
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Example 3.4.2. Scalar linear hyperbolic conservation laws with velocity depending on 𝑡.

In this example we take the velocity only depending on 𝑡. Following [20], we test this

case with 𝑎(𝑥, 𝑡) = sen(𝑡) for 𝑥 ∈ [0, 2] by means of the Lagrangia-Eulerian scheme (3.3.12). For

this example exact solution is 𝑢(𝑥, 𝑡) = 𝑢0(𝑥 + 1 + 𝑐𝑜𝑠(𝑡)) where 𝑢0(𝑥) = 0.75 + 0.25sen(Þ 𝑥).

Figure 13 shows the initial value (time 𝑇 = 0) and the numerical solutions at times 𝑇 = 0.5 , 1

with 128 cells.

Example 3.4.3. Scalar linear hyperbolic conservation laws with velocity depending on 𝑥.

Let 𝑎(𝑥, 𝑡) = sen(𝑥) over [0, 2Þ]. The exact solution, see [20], with initial condition

𝑢(𝑥, 0) = 1 is given by

𝑢(𝑥, 𝑡) =
sen(2 arctan(𝑒⊗t tg(𝑥/2)))

sen(𝑥)
.

Pictures in Figure 14 show the initial condition (top) and the solution at times 𝑇 = 0.5 and

𝑇 = 1 (middle and bottom) with 128 cells by means of the Lagrangian-Eulerian scheme (3.1.11).
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Figure 13 – Numerical solution for the scalar linear hyperbolic conservation laws with velocity
depends on t. The solution is shown at time T=0, 0.5, 1 respectively with 128 cells.
The velocity is variable in time, test case with 𝑎(𝑥, 𝑡) = sen(𝑡).
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Figure 14 – Numerical test with 128 cells at time 𝑇=0, 0.5, 1, with variable velocity in space.
In this test 𝑎(𝑥, 𝑡) = sen(𝑥).
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3.4.2 Nonlinear case

Example 3.4.4. Inviscid Burgers’ equation with discontinuous initial data.

Left of Figure 15, we present the solutions of the problem with Burgers’ equation,

𝑢t +

(︃

𝑢2

2

)︃

x

= 0, 𝑥 ∈ R, 𝑡 > 0. (3.4.4)

along the discontinuous initial data (left picture),

𝑢(𝑥, 0) =

∏︁

⨄︁

⋃︁

1, 𝑥 < 0,

0, 𝑥 > 0,
(3.4.5)

at time 𝑇 = 1 with 128, 256 and 512 cells (top to bottom).

Right of Figure 15, it is shown the numerical solutions for (3.4.4) with another

discontinuous initial data,

𝑢(𝑥, 0) =

∏︁

⨄︁

⋃︁

⊗1, 𝑥 < 0,

1, 𝑥 > 0,
(3.4.6)

which the exact solution is a transonic rarefaction wave. We use meshes with 128, 256 and 512

cells (top to bottom).

On these frames are shown snapshot graphs with waves moving from left to right.

We get a very nice looking numerical approximate solution with scheme (3.3.9), which in turn

seems to be propagating at entirely entropy-correct Rankine-Hugoniot speed and similar good

results are shown to the rarefaction case as well. Here, as the rarefaction wave is crossed, there

is a sign change in the characteristic speed 𝑢 and thus there is one point at which 𝑢 = 0, the

sonic point. However, our numerical scheme shows no spurious anomalies around 𝑢 = 0.
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Figure 15 – Burgers’ flux function, shock wave solution with initial condition 𝑢(𝑥, 0) = 1, 𝑥 < 0
and 𝑢(𝑥, 0) = 0, 𝑥 > 0, at time 𝑡 = 1.0 (left). Rarefaction wave with initial condition
𝑢(𝑥, 0) = ⊗1, 𝑥 < 0 and 𝑢(𝑥, 0) = 1, 𝑥 > 0, end time 𝑡 = 1.0 (right).
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Example 3.4.5. Buckley-Leverett’s equation

In Figure 16 we present the solution of the problem with nonlinear one-dimensional

Buckley-Leverett’s equation,

𝑢t + (𝐻(𝑢))x = 0, 𝑥 ∈ R, 𝑡 > 0, (3.4.7)

where

𝐻(𝑢) =
𝑢2

𝑢2 + 0.5(1 ⊗ 𝑢)2
,

with initial condition

𝑢(𝑥, 0) =

∏︁

⨄︁

⋃︁

1, 𝑥 < 0,

0, 𝑥 > 0,
(3.4.8)

at time 𝑡 = 1 with 128, 256 and 512 (top to bottom).

Another example with the Buckley-Leverett flux function is seen on Figure 17, where

we set a square wave as initial condition

𝑢(𝑥, 0) =

∏︁

⨄︁

⋃︁

1, ⊗1 < 𝑥 < 0,

0, otherwise.
(3.4.9)

The solution profile starts as a rarefaction wave followed by a shock on the left side

and a rarefaction wave followed by a shock on the right side for small times (middle picture).

When the left shock meets the right rarefaction (see middle and bottom pictures in Figure 17),

we observe the expected decaying pattern [34]; see also [18], Section 3. These test cases here

are simulated with 256 cells at time 𝑡=0, 0.5, 1.
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Figure 16 – Buckley-Leverett flux function (𝐻(𝑢) = 𝑢2/(𝑢2 +0.5(1⊗𝑢)2)) with initial condition
𝑢(𝑥, 0) = 1, 𝑥 < 0 and 𝑢(𝑥, 0) = 0, 𝑥 > 0.
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Figure 17 – Buckley-Leverett flux function with initial condition 𝑢(𝑥, 0) = 1, ⊗1 < 𝑥 < 0 and
𝑢(𝑥, 0) = 0, otherwise. Snapshots at 𝑡 = 0, 𝑡 = 0.5 and 𝑡 = 1, respectively.
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3.5 Scalar hyperbolic conservation laws with nonlocal flux

In this Section, numerical approximations of the scalar hyperbolic conservation law

with nonlocal flux are shown. By the use of the Lagrangian-Eulerian scheme and a simple

accurate algorithm to evaluate the Hilbert transform of a real function using interpolations

with piecewise–linear functions, we compute qualitatively correct approximations by showing

evidence of attenuation and blow-up of concentration type with mass-preserving with measure

initial data [11, 17].

3.5.1 Approximation of the Hilbert transform

The Hilbert transform is an important mathematical tool for many engineering

problems. Computation of the Hilbert transform has attracted much attention in the literature.

Existing numerical methods for this computation fall into two major categories: fast Fourier

transform (FFT) related methods and non-FFT methods. The existing FFT method comes

with fast algorithms but it suffers from low order of approximation accuracy. Some non-FFT

methods have higher order of approximation accuracy but require high computational cost [11,

17, 32]. Therefore it is important to develop reliable methods to compute the Hilbert transform.

Here, we describe an algorithm for approximate the Hilbert transform on the real

line. The computational complexity of this algorithm is 𝑂(𝑁 log𝑁), with N being the dimension

of the core matrix, and it has an optimal numerical accuracy [11]. Consider the nonlinear

transport equation with nonlocal flux, in particular the equation:

𝑢t = Ü𝑢xx + (H(𝑢)𝑢)x, 𝑡 > 0, 𝑥 ∈ R, (3.5.1)

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ R, (3.5.2)

where H(𝑢) is the Hilbert transform of the variable 𝑢 = 𝑢(𝑥, 𝑡), namely

H(𝑢(𝑥, 𝑡)) =
1

Þ
𝑃𝑉

(︂

1

𝑥
* 𝑢
)︂

(𝑥, 𝑡) =
1

Þ
𝑃𝑉

∫︁ ∞

⊗∞

𝑢(𝑥, 𝑡)

𝑥 ⊗ 𝑦
𝑑𝑦 =

1

Þ
lim
ε⊃0

∫︁

♣x⊗y♣>ε

𝑢(𝑦, 𝑡)

𝑥 ⊗ 𝑦
𝑑𝑦, (3.5.3)

and the unknown function 𝑢 = 𝑢(𝑥, 𝑡) associated with the nonlocal transport model problem

(3.5.1)-(3.5.2) denotes the flow of velocity while the positive Ü stands for the viscosity of the

fluid (see [9, 17] ). Moreover, for numerically approximate the hyperbolic conservation law

problems with nonlocal flux, we present a simple accurate algorithm for approximating the

Hilbert transform on the real line [9, 11, 17, 32].

For ℎ > 0, let á = ¶𝑥n = 𝑥0 + 𝑛ℎ♢N
n=0 be a grid of equally spaced 𝑁 + 1 points,

determining the closed interval 𝐼τ = [𝑥0, 𝑥N ]. The grid á should be such that the function

𝑢(𝑥, 𝑡) can be approximated by zero outside 𝐼τ . Then, for every interior point 𝑥k ∈ á with
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𝑘 = 1, ... , 𝑁 ⊗ 1, we have

H𝑢(𝑥k, 𝑡) ⋍
1

Þ
lim

ε⊃0+

N⊗1
∑︁

n=0

∫︁

♣y⊗x𝑘♣>ε,x𝑛⊘y⊘x𝑛+1

𝑢(𝑦, 𝑡)

𝑥k ⊗ 𝑦
𝑑𝑦,

=
1

Þ
lim

ε⊃0+

[︃

∫︁ x𝑘⊗ε

x𝑘−1

+
∫︁ x𝑘+1

x𝑘+ε

⟨

𝑢(𝑦, 𝑡)

𝑥k ⊗ 𝑦
𝑑𝑦

+
1

Þ

k⊗2
∑︁

n=0

∫︁ x𝑛+1

x𝑛

𝑢(𝑦, 𝑡)

𝑥k ⊗ 𝑦
𝑑𝑦 +

1

Þ

N⊗1
∑︁

n=k+1

∫︁ x𝑛+1

x𝑛

𝑢(𝑦, 𝑡)

𝑥k ⊗ 𝑦
𝑑𝑦.

(3.5.4)

If the nodal values 𝑢(𝑥k, 𝑡) of the considered function are known, on each interval [𝑥n, 𝑥n+1]

the function 𝑢(𝑦, 𝑡) is approximated by linear interpolation. Although this is the simplest inter-

polation formula, it is suitable for our problem, since 𝑢 is at least second order differentiable,

𝑢 (𝑦, 𝑡) ♠ 𝑢 (𝑥n, 𝑡) +
𝑢 (𝑥n+1,t) ⊗ 𝑢 (𝑥n, 𝑡)

ℎ
(𝑦 ⊗ 𝑥n) . (3.5.5)

Each contribution can now be evaluated analytically and the approximated Hilbert

transform (3.5.4) becomes

H𝑢(𝑥k, 𝑡) ⋍ ⊗ 1

Þ
¶𝑢(𝑥k+1, 𝑡) ⊗ 𝑢(𝑥k, 𝑡)

+
N⊗1⊗k
∑︁

n=1

[⊗ (1 ⊗ (𝑛 + 1)𝑏n) 𝑢(𝑥k+n, 𝑡) + (1 ⊗ 𝑛𝑏n) 𝑢(𝑥k+n+1, 𝑡)]

+
N⊗1⊗k
∑︁

n=1

[⊗ (1 ⊗ (𝑛 + 1)𝑏n) 𝑢(𝑥k⊗n, 𝑡) + (1 ⊗ 𝑛𝑏n) 𝑢(𝑥k⊗n⊗1, 𝑡)]♢,

(3.5.6)

where 𝑏n = log
(︂

𝑛 + 1

𝑛

)︂

. The right-hand side of (3.5.6) defines a linear operator

which maps the vector of sample values 𝑈 = (𝑢(𝑥0, 𝑡), 𝑢(𝑥1, 𝑡) ... , 𝑢(𝑥N , 𝑡)) into the approximate

values of the Hilbert transform on interior grid points. Such an operator is the proposed discrete

Hilbert transform Hτ , with the subscript denoting explicitly the dependence on the grid á . In

matrix form it reads,

Hτ 𝑈 = 𝐴𝑈int + 𝐶𝑈bnd, (3.5.7)

where the vector 𝑈 has been split into its projection on internal nodes 𝑈int = (𝑢(𝑥1, 𝑡) , ... , 𝑢(𝑥N⊗1, 𝑡))

and boundary points 𝑈bnd = (𝑢(𝑥0, 𝑡), 𝑢(𝑥N , 𝑡)) whereas 𝐴 is a (𝑁 ⊗1)× (𝑁 ⊗1) antisymmetric

Toeplitz matrix,

𝐴 =

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

𝑎0 𝑎1 ... 𝑎N⊗3 𝑎N⊗2

⊗𝑎1 𝑎0 ... 𝑎N⊗4 𝑎N⊗3

...
...

...
...

...

⊗𝑎N⊗2 ⊗𝑎N⊗3 ... ⊗𝑎1 𝑎0

∫︀

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

, (3.5.8)
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along with the matrix entries,

𝑎k = ⊗ 1

Þ
.

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

0, for 𝑘 = 0,

2𝑏1, for 𝑘 = 1,

(𝑘 + 1)𝑏k ⊗ (𝑘 ⊗ 1)𝑏k⊗1, for 𝑘 > 1,

(3.5.9)

where

𝑏k = log

(︃

𝑘 + 1

𝑘

)︃

, (3.5.10)

and 𝐶 is a rectangular (𝑁 ⊗ 1) × 2 matrix

𝐶 =

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

0 𝑐N ⊗ 1

⊗𝑐1 ⊗𝑐N⊗2

...
...

⊗𝑐N⊗1 0

∫︀

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

, (3.5.11)

𝑐k = ⊗ 1

Þ
(1 ⊗ 𝑘𝑏k). An antisymmetric Toeplitz matrix is completely defined by its first row.

Thus the evaluation of the 𝑁 ⊗ 1 elements (𝑎0, ... , 𝑎N⊗2) is enough to determine 𝐴, and that

requires only 𝑁 ⊗ 2 calculations of the algorithm.

3.5.2 Numerical experiments for scalar hyperbolic conservation laws with nonlocal

flux

For our numerical experiments convenience, we rewrite the one-dimensional nonlin-

ear transport equation with nonlocal flux given in the computational domain [𝑎, 𝑏], as follows

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑢t ∘ (H(𝑢)𝑢)x = 0, (𝑥, 𝑡) ∈ Ω × (0, 𝑇 ] ,

𝑢(𝑎, 𝑡) = 0, 𝑢(𝑏, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ] ,

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ Ω,

(3.5.12)

where

H(𝑢(𝑥, 𝑡)) =
1

Þ
𝑃𝑉

(︂

1

𝑥
* 𝑢
)︂

(𝑥, 𝑡) =
1

Þ
𝑃𝑉

∫︁ b

a

𝑢(𝑥, 𝑡)

𝑥 ⊗ 𝑦
𝑑𝑦 =

1

Þ
lim
ε⊃0

∫︁

♣x⊗y♣>ε

𝑢(𝑦, 𝑡)

𝑥 ⊗ 𝑦
𝑑𝑦, (3.5.13)

is the Hilbert transform and the quantity
∫︁

R

𝑓(𝑥) 𝑑𝑥 is the mass of the initial datum with a

physical significance for attenuation or blow-up of concentration type.

Example 3.5.1. Square pulse measure.

In this example, we consider the nonlocal transport model problems (3.5.12) with

initial condition

𝑓(𝑥) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑅

ℎ
, if ♣𝑥 ⊗ 0.5♣ ⊘ ℎ

2
,

0, otherwise,
(3.5.14)
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with ℎ = 1 and for three distinct values of the mass 𝑅 (𝑅=1, 20, 40). Analyzing the Figures

18 - 20, it seems that the problem can be better interpreted for 𝑢t = ⊗(H(𝑢)𝑢)x. In this case,

the term ⊗(H(𝑢)𝑢) is decreased with a large gradient and the solution is faster as the height of

the initial condition decreases. Otherwise it happens when analyzing 𝑢t = (H(𝑢)𝑢)x the term

(H(𝑢)𝑢) is increased with a large gradient. For the case 𝑢t +(H(𝑢)𝑢)x = 0, the numerical results

show that the solution is an attenuation and as the mass of the initial condition increases, the

solution increases in height.

In Figures 18 - 19 we have a mass-preserving diffusion mechanism with mesh grid

refinement. The numerical experiments show that even with thick mesh grid the Lagrangian-

Eulerian scheme seems to solve numerically well the problem and the numerical diffusion effect

is not very significant.
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Figure 18 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.14) with mass 𝑅 =
1. We show numerical approximations for the Hilbert transform and the Hilbert
transform versus 𝑢(𝑥, 𝑡) with 512 grid cells at time 𝑇=0.1 (top). The solution is
shown at times 𝑇 = 0.1 (left), 𝑇 = 1 (right) and with 128, 256, 512, 1024, 2048
cells. The computational time is 40 seconds.
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Figure 19 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.14) with mass
𝑅=40 (bottom left), 20 (bottom right). We show numerical approximations for the
Hilbert transform and the Hilbert transform versus 𝑢(𝑥, 𝑡) with 512 grid cells at
time 𝑇 = 0.1 (top) with mass 𝑅=20. The solution is shown at times 𝑇=0.04 (left),
𝑇=0.1 (right) and with 128, 256, 512, 1024, 2048 cells. The computational time is
40 seconds.
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Figure 20 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.14) with mass 𝑅 = 1.
We show the approximation for the Hilbert transform and the Hilbert transform
versus 𝑢(𝑥, 𝑡) with 512 grid cells at time 𝑇=0.1 (top). The solution of the model
is shown at several times with 512 grid cells and 0.60 as the CFL condition. The
computational time is 40 seconds.
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Example 3.5.2. Gaussian data .

In this example, we consider the nonlocal transport model problems (3.5.12) with

initial condition

𝑓(𝑥) = 𝑅exp
[︁

⊗(𝑥 ⊗ 0.5)2/Þ
]︁

, (3.5.15)

for several values of the mass 𝑅 ( 𝑅=0.04, 0.5, 1, 20, 35).

Analyzing the Figures 21 , 22 it seems that the problem 𝑢t + (H(𝑢)𝑢)x = 0 better

captures the effect of attenuation and the problem 𝑢t ⊗ (H(𝑢)𝑢)x = 0 captures better the effect

of blow-up of concentration type. In Figure 21 we have a mass-preserving diffusion mechanism

with mesh grid refinement. Numerical experiments show that even with thick mesh grid the

Lagrangian-Eulerian scheme seems to solve well the problem and the numerical diffusion effect

is not very significant. In Figure 22, we have a blow-up of concentration type with 512, 1024

grid cells at distinct times of simulation.
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Figure 21 – Numerical solution for 𝑢t+(H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.15) with mass 𝑅=0.04,
1 (top) and 𝑅=20, 35 (bottom). The solution is shown at several times and with
128, 256, 512, 1024, 2048 cells. The computational time is 1 minute.
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Figure 22 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.15). The solution
is shown at several times of simulation with mass 𝑅=0.5 (top), 20 (middle), 35
(bottom) with 1024 grid cells. The computational time is 3 days.
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True value given by the norms ‖𝑢‖L1= 62.8320 and ‖𝑢‖L1= 109.9561 for the Figure

22.

Þ𝑅 T=0.01 T=0.025 T=0.05 T=0.078 T=0.1
N ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1

128 62.8110 62.8002 62.7805 62.7681 62.7272
256 62.8152 62.8118 62.8027 62.7986 62.7834
512 62,8175 62.8158 62.8118 62.8100 62.8014
1024 62.8188 62.8175 62.8161 62.8145 62.8081

Table 1 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 22 linked to nonlocal transport equation (3.5.12) at several simu-
lation times with Þ𝑅 = 62.832 and 𝑅=20.

Þ𝑅 T=0.001 T=0.008 T=0.01 T=0.08 T=0.1
N ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1

128 109.9309 109.9173 109.9100 109.6654 109.5451
256 109.9331 109.9257 109.9221 109.8180 109.7515
512 109.9344 109.9302 109.9283 109.8651 109.8172
1024 109.9353 109.9331 109.9317 109.9216 109.9202

Table 2 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 22 linked to nonlocal transport equation (3.5.12) at several simu-
lation times with Þ𝑅 = 109.9561 and 𝑅=35.
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Figure 23 – Mass versus times with 𝑅=20 (left), 35 (right) and 1024 mesh grid.
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Example 3.5.3. Gaussian data .

Consider the nonlocal transport model problems (3.5.12) with initial condition

𝑓(𝑥) = 𝑅exp
[︁

⊗Þ × (𝑥 ⊗ 0.5)2
]︁

, (3.5.16)

for several values of the mass 𝑅 ( 𝑅=0.04, 0.5, 1, 20 and 35).

Analysing the Figures 24 - 25, it seems that the problem 𝑢t + (H(𝑢)𝑢)x = 0 better

captures the effect of attenuation and the problem 𝑢t⊗(H(𝑢)𝑢)x = 0 captures better the effect of

blow-up of concentration type. Qualitative approximations of the nonlocal transport problems

show that we have an attenuation for the problem 𝑢t + (H(𝑢)𝑢)x = 0 with a mass-preserving

diffusion mechanism which can be seen in the Figure 24 and a blow up of concentration type

for the problem 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with 1024 grid cells at distinct times of simulation which

can be seen in the Figure 25. Numerical experiments show that even with thick mesh grid the

Lagrangian-Eulerian scheme seems to solve well the problem and the numerical diffusion effect

is not very significant.
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Figure 24 – Numerical solution for 𝑢t+(H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.16) with mass 𝑅=0.04,
1 (top) and 𝑅=20, 35 (bottom). The solution is shown at several times and with
128, 256, 512, 1024, 2048 grid cells. The computational time is 1 minute.
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Figure 25 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.16) with mass R=0.5
(top), 20 (middle) and 35 (bottom). The solution is shown at several times of
simulation with 1024 grid cell. The computational time is 3 days.
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True value given by the norms ‖𝑢‖L1= 20 and ‖𝑢‖L1= 35 for the Figure 25.

R=20 T=0.025 T=0.05 T=0.1
N ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1

128 20 20 20
256 20 20 20
512 20 20 20
1024 20 20 20

R=35 T=0.025 T=0.01 T=0.1
N ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1

128 35 35 35
256 35 35 35
512 35 35 35
1024 35 35 35

Table 3 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 25 linked to nonlocal transport equation (3.5.12) at several times
of simulation.
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Figure 26 – Mass versus times with 𝑅= 20, 35 and with 1024 mesh grid.
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Example 3.5.4. Consider the nonlocal transport model problems (3.5.12) with initial condition

𝑓(𝑥) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑅 × (1 ⊗ 𝑥2)2, if ⊗ 1 ⊘ 𝑥 ⊘ 1

0, otherwise,
(3.5.17)

for four values of the mass 𝑅 (R= 1, 20, 35, 100 ). In Figure 27, the numerical

results have been attenuated and we have a mass-preserving diffusion mechanism with mesh

grid refinement. The numerical experiments show that even with coarse grid the Lagrangian-

Eulerian scheme seems to solve well the problem and as the mass of the initial solution increases,

the solution increases in height. The numerical diffusion effect is not very significant. In Figure

28, we have a blow up of concentration type at distinct time of simulations.
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Figure 27 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.17) with mass
𝑅=1 (top), 100 (bottom). The solution is shown at times 𝑇 = 0.1, 1 (top) amd
at time 𝑇 = 0.001, 0.01 (bottom) with 128, 256, 512, 1024, 2048 grid cells. The
computational time is 40 seconds.
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Figure 28 – Numerical solution for 𝑢t⊗(H(𝑢)𝑢)x = 0 with 𝑓 given in (3.5.17) with mass 𝑅 = 0.5
(top), 20 (middle), 35 (bottom). The solution is shown at several time of simulations
with 1024 mesh grid. The computational time is 4 days.
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True value given by the norms ‖𝑢‖L1= 20 and ‖𝑢‖L1= 35 for the Figure 28.

R=20 T=0.02 T=0.078 T=0.1
N ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1

128 21.3333 21.3333 21.3333
256 21.3333 21.3333 21.3333
512 21.3333 21.3333 21.3333
1024 21.3333 21.3333 21.3333

R=35 T=0.002 T=0.02 T=0.1
N ‖𝑢‖L1 ‖𝑢‖L1 ‖𝑢‖L1

128 37.3333 37.3333 37.3333
256 37.3333 37.3333 37.3333
512 37.3333 37.3333 37.3333
1024 37.3333 37.3333 37.3333

Table 4 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 28 linked to nonlocal transport equation (3.5.12) at several time
of simulations.
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Figure 29 – Mass versus times with 𝑅=20 (left), 35 (right) and 1024 mesh grid.
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Example 3.5.5. Oscillatory initial data.

In this example, we present and discuss numerical solutions for the nonlocal trans-

port model problems (3.5.12) with oscillatory initial datas. We start our discussion with the

positive (above of the 𝑥-axis) cases and measure sinusoidal shape like

𝑓(𝑥) =

∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

𝑅

2
+ sen(2Þ𝑛𝑥), if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

,

0, otherwise,
(3.5.18)

and

𝑓(𝑥) =

∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

𝑅

2
(1 +

1

4
sen(2Þ𝑛𝑥)), if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

,

0, otherwise,
(3.5.19)

which numerical solutions are shown in Figures 30 - 31 and 32 - 33 with R=35. Analysing those

Figures, it seems that the problem 𝑢t + (H(𝑢)𝑢)x = 0 better captures the effect of attenuation

and the problem 𝑢t ⊗ (H(𝑢)𝑢)x = 0 captures better the effect of blow-up of concentration type.

Now, we turn our attention to the symmetric case

𝑓(𝑥) =

∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

Þ𝑅

4
sen(2Þ𝑛𝑥), if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

,

0, otherwise,
(3.5.20)

with positive and negative portions with respect to the 𝑥-axis. In Figures 34 - 36, numerical

approximations are shown for this symmetric case with R=35. Although the Oscillatory is

symmetric at the initial time of simulation, we see that the attenuation or the blow up of

concentration type are not symmetrics in some sense.

In Figures 34 - 35, it seems that the positive portion of the Oscillatory tends to

develop a faster or stronger attenuation with respect to the negative portion and in Figure 36,

it seems that the positive portion tends to develop a blow up of concentration type with respect

to the negative portion.

In Figures 38 - 40 numerical approximations are shown for the nonlocal problems

(3.5.12) with the purely negative portion i.e., along the oscilatory initial data

𝑓(𝑥) =

∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

⊗Þ𝑅

4
♣sen(2Þ𝑛𝑥)♣ , if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

,

0, otherwise.
(3.5.21)

For several positive – or negative – measure initial datas we can see from our nu-

merical computing that ‖𝑢‖L1≡ R as we refine the grid [17]. In Tables 5 , 6 , 7 and 8 it is shown

numerical computation of the ‖𝑢‖L1-norm corresponding to the numerical experiments reported
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in Figures 31 , 33 , 36 and 40 linked to the nonlocal transport equation (3.5.12) at simulation

time T=0.001 along the oscillatory initial datas. We take R=35, 𝑛=1, 2, 4, 8, 32, 64 and 128.

In Table 7 Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments

reported in Figure 36 linked to nonlocal transport equation (3.5.12) at simulation time T=0.001

along the symmetric oscillatory initial data. We take R=35, 𝑛=1 and 4. As we refine the grid

mesh, we may see the sequence of computed norm approaching to the corresponding true value

given by the norm ‖𝑢‖L1⊃ 0.
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Figure 30 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
𝑅

2
+

sen(2Þ𝑛𝑥) if 𝑥 ∈
[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solution is

shown at time 𝑇 = 0.001 with 128, 256, 512, 1024, 2048 grid cells and with 𝑛=1,
2, 64,128 respectively.
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Figure 31 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
𝑅

2
+

sen(2Þ𝑛𝑥) if 𝑥 ∈
[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solution is

shown at time 𝑇 = 0.001 with 128, 256, 512, 1024, 2048 grid cells and with 𝑛=1,
2, 64, 128 respectively.
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True value given by the norms ‖𝑢‖L1= 35 for the Figure 31.

R=35 𝑛 = 1 𝑛 = 2
N ‖𝑢‖L1 ‖𝑢‖L1

128 35 35
256 35 35
512 35 35
1024 35 35
2048 35 35

R=35 𝑛 = 64 𝑛 = 128
N ‖𝑢‖L1 ‖𝑢‖L1

128 35 35
256 35 35
512 35 35
1024 35 35
2048 35 35

Table 5 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 31 linked to the nonlocal transport equation (3.5.12) at simulation

time 𝑇=0.001 along the oscillatory initial data 𝑓(𝑥) =
𝑅

2
+sen(2Þ𝑛𝑥) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise. We take 𝑅 = 35 and 𝑛=1, 2, 64, 128. As we refine the grid mesh,
we may see the sequence of computed norm equals to the corresponding true value
given by the norm ‖𝑢‖L1= 35.
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Figure 32 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
𝑅

2
(1 +

1

4
sen(2Þ𝑛𝑥)) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solution

is shown at time 𝑇 = 0.001 with 128, 256, 512, 1024, 2048 grid cells and with 𝑛=1,
2, 32, 64 respectively.
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Figure 33 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
𝑅

2
(1 +

1

4
sen(2Þ𝑛𝑥)) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solution

is shown at time 𝑇=0.001 with 128, 256, 512, 1024, 2048 grid cells and with 𝑛=1,
2, 32 64 respectively.
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True value given by the norms ‖𝑢‖L1= 35 for the Figure 33.

R=35 𝑛 = 1 𝑛 = 2
N ‖𝑢‖L1 ‖𝑢‖L1

128 35 35
256 35 35
512 35 35
1024 35 35
2048 35 35

R=35 𝑛 = 32 𝑛 = 64
N ‖𝑢‖L1 ‖𝑢‖L1

128 35 35
256 35 35
512 35 35
1024 35 35
2048 35 35

Table 6 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 33 linked to the nonlocal transport equation (3.5.12) at simulation

time T=0.001 along the oscillatory initial data 𝑓(𝑥) =
𝑅

2
(1 +

1

4
sen(2Þ𝑛𝑥)) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise. We take 𝑅 = 35 and 𝑛=1, 2, 32,64. As we refine the

grid mesh, we may see the sequence of computed norm equals to the corresponding
true value given by the norm ‖𝑢‖L1= 35.
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Figure 34 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
Þ𝑅

4
sen(2Þ𝑛𝑥) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The so-

lution is shown at time 𝑇=0.001 with 128, 256, 512, 1024, 2048 grid cells and with
𝑛=1, 2, 4 respectively.
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Figure 35 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
Þ𝑅

4
sen(2Þ𝑛𝑥) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The so-

lution is shown at time 𝑇=0.01 and 0.1 with 128, 256, 512, 1024 grid cells and with
𝑛=1.
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Figure 36 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
Þ𝑅

4
sen(2Þ𝑛𝑥) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solu-

tion is shown at time 𝑇=0.001 with 128, 256, 512, 1024, 2048 grid cells and with
𝑛=1, 2, 4, respectively.
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Figure 37 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =
Þ𝑅

4
sen(2Þ𝑛𝑥) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solu-

tion is shown at time 𝑇=0.01, 0.1 with 128, 256, 512, 1024 grid cells and with 𝑛=1
.
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True value given by the norms ‖𝑢‖L1= 0 for the Figure 36.

R=35 𝑛 = 1 𝑛 = 4
N ‖𝑢‖L1 ‖𝑢‖L1

128 6.2103e-016 1.2976e-015
256 4.7835e-016 1.3722e-015
512 0 7.9017e-016
1024 0 1.6805e-016

Table 7 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 36 linked to the nonlocal transport equation (3.5.12) at simulation

time T=0.001 along the oscillatory initial data 𝑓(𝑥) =
Þ𝑅

4
sen(2Þ𝑛𝑥) if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise. We take 𝑅 = 35, 𝑛=1 and 4. As we refine the grid mesh, we
may see the sequence of computed norm approaching to the corresponding true value
given by the norm ‖𝑢‖L1⊃ 0.
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Figure 38 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =

⊗Þ𝑅

4
♣sen(2Þ𝑛𝑥)♣ if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The

solution is shown at time 𝑇=0.001 with 128, 256, 512, 1024, 2048 cells and with
𝑛=1, 2, 4 respectively.
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Figure 39 – Numerical solution for 𝑢t + (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =

⊗Þ𝑅

4
♣sen(2Þ𝑛𝑥)♣ if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The

solution is shown at time 𝑇=0.01 and 0.1 with 128, 256, 512 and 1024 grid cells
with 𝑛=1.
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Figure 40 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =

⊗Þ𝑅

4
♣sen(2Þ𝑛𝑥)♣ if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solu-

tion is shown at time t𝑇=0.001 with 128, 256, 512, 1024, 2048 cells and 𝑛=1, 2, 4,
8 respectively.
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Figure 41 – Numerical solution for 𝑢t ⊗ (H(𝑢)𝑢)x = 0 with mass 𝑅 = 35 and 𝑓(𝑥) =

⊗Þ𝑅

4
♣sen(2Þ𝑛𝑥)♣ if 𝑥 ∈

[︂

⊗1

2
,
3

2

]︂

and zero otherwise as initial condition. The solu-

tion is shown at time 𝑇=0.01, 0.1 with 128, 256, 512, 1024 cells and 𝑛=1.
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True value given by the norms ‖𝑢‖L1= 35 for the Figure 40.

R=35 𝑛 = 1 𝑛 = 2
N ‖𝑢‖L1 ‖𝑢‖L1

128 35.0141 35.0563
256 35.0035 35.0141
512 35.0009 35.0035
1024 35.0002 35.0009
2048 35.0001 35.0002

R=35 𝑛 = 4 𝑛 = 8
N ‖𝑢‖L1 ‖𝑢‖L1

128 35.2259 35.9160
256 35.0562 35.2259
512 35.0140 35.0562
1024 35.0035 35.0140
2048 35.0008 35.0035

Table 8 – Numerical computation of ‖𝑢‖L1-norm corresponding to the numerical experiments
reported in Figure 40 linked to the nonlocal transport equation (3.5.12) at simu-

lation time T=0.001 along the oscillatory initial data 𝑓(𝑥) = ⊗Þ𝑅

4
♣sen(2Þ𝑛𝑥)♣ if

𝑥 ∈
[︂

⊗1

2
,
3

2

]︂

and zero otherwise. We take 𝑅 = 35, 𝑛=1, 2, 4 and 8. As we refine

the grid mesh, we may see that the sequence of computed norm equals to the corre-
sponding true value given by the norm ‖𝑢‖L1= 35.
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4 The Lagrangian-Eulerian scheme for scalar hy-

perbolic balance laws

In this Chapter we present the studied Lagrangian-Eulerian framework for scalar

hyperbolic balance laws as well as the linear and the nonlinear cases. We study a distinctive

aspect of the Lagrangian-Eulerian approach and numerical approximations of scalar balance

laws as presented and discussed in [35]. For the numerical approximations of the scalar balance

laws problems we use quadrature rules such as the predictor-corrector method, the midpoint

method for approximate the source term. In addition, the balance problem is then solved by

forward tracking the boundary of grid cells along the so-called integral tubes. This is a distinct

feature of the studied Lagrangian-Eulerian approach [35].

4.1 The presentation of the Lagrangian-Eulerian scheme for scalar hy-

perbolic balance laws

Consider the scalar balance laws problem,
∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

𝜕𝑢

𝜕𝑡
+

𝜕𝐻(𝑢)

𝜕𝑥
= 𝐺(𝑢), 𝑡 > 0, ⊗∞ < 𝑥 < ∞,

𝑢(𝑥, 0) = Ö(𝑥), ⊗∞ < 𝑥 < ∞,
(4.1.1)

under the assumption
∫︁∫︁

D𝑛
𝑗

𝐺(𝑢) 𝑑𝑥 𝑑𝑡 < ∞.

Now, write (4.1.1) as follows,

∇t,x ≤
⋃︀

⨄︀

𝑢

𝐻(𝑢)

⋂︀

⋀︀ = 𝐺(𝑢), 𝑡 > 0, ⊗∞ < 𝑥 < ∞,

𝑢(𝑥, 0) = Ö(𝑥), ⊗ ∞ < 𝑥 < ∞.

(4.1.2)

Now, lets us write (4.1.2) over the local space-time “Integral tube” 𝐷n
j (see equation (3.1.6)

and the top picture in Figure (8)),

∫︁∫︁

D𝑛
𝑗

∇t,x ≤
⋃︀

⨄︀

𝑢

𝐻(𝑢)

⋂︀

⋀︀ 𝑑𝑥 𝑑𝑡 =
∫︁∫︁

D𝑛
𝑗

𝐺(𝑢) 𝑑𝑥 𝑑𝑡. (4.1.3)

Following the same arguments in Chapter 3, it first applies the divergence theorem in (4.1.3)

and, by means of the impervious boundaries given by àn
j (𝑡), reads:

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡n+1)𝑑𝑥 =
∫︁ x𝑛

𝑗+1

x𝑛
𝑗

𝑢(𝑥, 𝑡n)𝑑𝑥 +
∫︁∫︁

D𝑛
𝑗

𝐺(𝑢) 𝑑𝑥 𝑑𝑡. (4.1.4)
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This equation can be viewed as the local space-time Lagrangian-Eulerian conservation relation

for the balance laws (4.1.4). Finally, it is used (4.1.4) to define,

𝑈
n+1

j =
1

ℎn+1
j

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡n+1)𝑑𝑥 =
1

ℎn+1
j

[︃

∫︁ x𝑛
𝑗+1

x𝑛
𝑗

𝑢(𝑥, 𝑡n)𝑑𝑥 +
∫︁∫︁

D𝑛
𝑗

𝐺(𝑢)𝑑𝑥𝑑𝑡

⟨

, (4.1.5)

and its associated projection step over the original mesh grid,

𝑈n+1
j =

1

ℎ

[︃

(
ℎ

2
+ 𝑓n

j 𝑘)𝑈
n+1
j⊗1 + (

ℎ

2
⊗ 𝑓n

j 𝑘)𝑈
n+1
j

⟨

. (4.1.6)

The Lagrangian-Eulerian scheme for balance law (LEB1) is fully defined by combining equations

(4.1.5) and (4.1.6). Clearly, the key point here is how to design a discretization in a manner

which retains an accurate balance between the gradients of the flux function and the source

term. Thus, extend the designed proposed scheme for linear hyperbolic conservation laws to

the case of balance laws in order to describe the features of the Lagragian-Eulerian procedure.

4.2 Linear case for balance laws

Consider the following balance law problem,

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝜕𝑢

𝜕𝑡
+

𝜕(𝑎𝑢)

𝜕𝑥
= 𝐺(𝑥, 𝑡), 𝑡 > 0, ⊗∞ < 𝑥 < ∞,

𝑢(𝑥, 0) = Ö(𝑥), ⊗∞ < 𝑥 < ∞.

(4.2.1)

As in Chapter 3 , resulting that 𝑓n
j = 𝑎, ℎn+1

j = ℎ and the combination of (4.1.5) and (4.1.6)

give The Lagrangian-Eulerian scheme for the scalar linear balance laws:

𝑈n+1
j ⊗ 1

4

(︁

𝑈n
j⊗1 + 2𝑈n

j + 𝑈n
j+1

)︁

𝑘
⊗ 𝑎

𝑈n
j+1 ⊗ 𝑈n

j⊗1

2ℎ
=

1

𝑘 ℎ

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

1

ℎ

(︂

ℎ

2
+ 𝑎𝑘

)︂∫︁∫︁

D𝑛
𝑗−1

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+
1

ℎ

(︂

ℎ

2
⊗ 𝑎𝑘

)︂∫︁∫︁

D𝑛
𝑗

𝐺(𝑥, 𝑡)𝑑𝑥 𝑑𝑡

⋂︀

⎥

⎥

⎥

⎥

⎥

⎥

⋀︀

.

(4.2.2)

At this point, a distinctive aspect of the new Lagrangian-Eulerian approach can be considered.

First, consider the “hyperbolic counterpart” of the balance law (4.2.1), i.e., 𝐺(𝑢) ⊕ 0 and

𝑢t + 𝑎𝑢x = 0, 𝑢(𝑥, 0) = Ö(𝑥), along with the well known exact solution 𝑢(𝑥, 𝑡) = Ö(𝑥 ⊗ 𝑎𝑡).

If the mesh grid parameters in space ℎ and time 𝑘 are to obey a CFL condition (e.g.,[1,

35]), then the following mesh grid representation of the local approximate solution is given by

𝑢(𝑥j, 𝑡n+1) = 𝑢(𝑥j ⊗ 𝑎𝑘, 𝑡n) ⊕ Öj(ℎ ⊗ 𝑎𝑘). By construction, the Lagrangian-Eulerian scheme

points (𝑥j, 𝑡n) and (𝑥j, 𝑡n+1) are inside the space-time local control finite volume 𝐷n
j and away

from the parameterized curves àn
j (𝑡), and 𝑢(𝑥j, 𝑡n+1) = Ö(ℎ ⊗ 𝑎𝑘) is a smooth function in each
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𝐷n
j . Furthermore, it is worth pointing out that in the linear hyperbolic case the integral curves

(integral tubes) coincide with the characteristic curves. Thus, the source term can be solved

by forward tracking the boundary of grid cells from the parameterized curves àn
j (𝑡) along the

so-called integral tubes. Thus, (4.2.2) can be recasted as follows:

𝑈n+1
j ⊗ 1

4

(︁

𝑈n
j⊗1 + 2𝑈n

j + 𝑈n
j+1

)︁

𝑘
⊗ 𝑎

𝑈n
j+1 ⊗ 𝑈n

j⊗1

2ℎ
=

1

𝑘ℎ

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

1

ℎ
[Ö⊗1

j⊗1 (ℎ/2 + 𝑎𝑘)]

∫︁∫︁

D𝑛
𝑗−1

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+
1

ℎ
[Ö⊗1

j (ℎ/2 ⊗ 𝑎𝑘)]

∫︁∫︁

D𝑛
𝑗

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

⋂︀

⎥

⎥

⎥

⎥

⎥

⎥

⋀︀

.

(4.2.3)

4.3 Nonlinear case for balance laws

In this section, we turn our attention from the Lagragian-Eulerian procedure de-

veloped for linear hyperbolic conservation laws to the case of nonlinear scalar balance laws.

From the very beginning of Chapter 4, we design the Lagrangian-Eulerian framework proce-

dure (4.1.5)-(4.1.6) for balance law of type (4.1.1) given by,

𝑈
n+1
j =

1

ℎn+1
j

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡n+1)𝑑𝑥 =
1

ℎn+1
j

[︃

∫︁ x𝑛
𝑗+1

x𝑛
𝑗

𝑢(𝑥, 𝑡n) 𝑑𝑥 +
∫︁∫︁

D𝑛
𝑗

𝐺(𝑢) 𝑑𝑥 𝑑𝑡

⟨

,

𝑈n+1
j =

1

ℎ

[︃

(
ℎ

2
+ 𝑓n

j 𝑘)𝑈
n+1
j⊗1 + (

ℎ

2
⊗ 𝑓n

j 𝑘)𝑈
n+1
j

⟨

.

The combination of the above equations (see (4.1.5)-(4.1.6)) gives the Lagrangian-Eulerian

scheme 1 (LEB1) for the scalar nonlinear balance laws:

𝑈n+1
j =

1

4
(𝑈n

j⊗1 + 2𝑈n
j + 𝑈n

j ) ⊗ 𝑘

4

(︁

W(𝑈n
j+1, 𝑈n

j ) ⊗ W(𝑈n
j⊗1, 𝑈n

j )
)︁

+
1

ℎ

[︃

1

ℎ

(︃

ℎ

2
+ 𝑓n

j 𝑘

)︃

∫︁∫︁

D𝑛
𝑗−1

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 +
1

ℎ

(︃

ℎ

2
⊗ 𝑓n

j 𝑘

)︃

∫︁∫︁

D𝑛
𝑗

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

⟨

,

(4.3.1)

along with CFL condition (3.3.2). Where 𝑓n
j = 𝐻(𝑈n

j )/𝑈n
j ≡ 𝐻(𝑈)/𝑈 ; see (4.1.1).

In [1, 35] section 3, it is also possible design a diference Ąnite Lagrangian-Eulerian

scheme 2 (LEB2):

𝑈n+1
j =

1

4

(︁

𝑈n
j⊗1 + 2𝑈n

j + 𝑈n
j+1

)︁

⊗ 𝑘

2ℎ

(︁

𝐻(𝑈n
j+1) ⊗ 𝐻(𝑈n

j⊗1)
)︁

+
1

ℎ

[︃

1

ℎ

(︃

ℎ

2
+ 𝑓n

j 𝑘

)︃

∫︁∫︁

D𝑛
𝑗−1

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 +
1

ℎ

(︃

ℎ

2
⊗ 𝑓n

j 𝑘

)︃

∫︁∫︁

D𝑛
𝑗

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

⟨

.

(4.3.2)
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With the CFL condition

max¶maxj¶𝐻 ′(𝑈j)♢, maxj¶𝑓n
j ♢♢ 𝑘

ℎ
⊘

√
2

2
. (4.3.3)

Consider Φ = Φ(𝑥, 𝑡) ∈ 𝐶∞(R) (i.e., under a CFL constraint) such that Φt + 𝑓x(Φ) = 𝐺(Φ)

in order to seek the appropriate approximations for grid functions for Φ(𝑥, 𝑡) in the flux and

source term for schemes (4.3.1) and (4.3.2).

4.3.1 Predictor-corrector method for the source term approximation

First, suppose 𝑈
n+ 1

2

j as a known predictor value for Φ(𝑥, 𝑡) at space-time point

(𝑥j, 𝑡n). It is sufcient to consider the integration just over one “Integral tube” 𝐷n
j the other case

𝐷n
j⊗1 is similar. Thus, write the source term approximation as,

∫︁∫︁

D𝑛
𝑗

𝐺(Φ(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 ≡
∫︁∫︁

D𝑛
𝑗

𝐺(𝑈
n+ 1

2

j ) 𝑑𝑥 𝑑𝑡 = 𝐺(𝑈
n+ 1

2

j )

∫︁∫︁

D𝑛
𝑗

𝑑𝑥 𝑑𝑡 = 𝐺(𝑈
n+ 1

2

j ) 𝒜(𝐷n
j ), (4.3.4)

where

𝒜(𝐷n
j ) =

∫︁ t𝑛+1

t𝑛

∫︁ σ𝑛
𝑗+1

(t)

σ𝑛
𝑗

(t)
𝑑𝑥 𝑑𝑡 =

∫︁ t𝑛+1

t𝑛

(︁

àn
j+1(𝑡) ⊗ àn

j (𝑡)
)︁

𝑑𝑡. (4.3.5)

Since àn
j+1(𝑡) ⊗ àn

j (𝑡) = (𝑡 ⊗ 𝑡n)𝑓n
j+1 + 𝑥n

j+1 ⊗ (𝑡 ⊗ 𝑡n)𝑓n
j ⊗ 𝑥n

j = (𝑡 ⊗ 𝑡n)(𝑓n
j+1 ⊗ 𝑓n

j ) + ℎ,

we recast (4.3.5) as,

𝒜(𝐷n
j ) = 𝑘

[︃

𝑘

2
(𝑓n

j+1 ⊗ 𝑓n
j ) + ℎ

⟨

. (4.3.6)

Now, in view of the balance law Φt + 𝑓x(Φ) = 𝐺(Φ) we might write Φt = 𝐺(Φ) ⊗ 𝑓x(Φ) and

thus reads,

𝐺(Φ
n+ 1

2

j ) ≡ 𝐺(Φ(𝑥n
j , 𝑡n) +

𝑘

2
Φt(𝑥

n
j , 𝑡n)) = 𝐺

[︃

Φn
j +

𝑘

2
(𝐺(Φn

j ) ⊗ (𝑓(Φ))x)n
j

⟨

. (4.3.7)

We point out that quantity 𝑓x(Φ(𝑥, 𝑡))n
j denotes the numerical derivative of function 𝑓(Φ) with

respect to space variable 𝑥 evaluated at point (𝑥j, 𝑡n). Indeed, a family of slope limiters can be

used here, as such the Mimmod limiter: ((𝑓(Φ))x)n
j = 𝑀𝑀¶∆𝑓j+ 1

2

, ∆𝑓j⊗ 1

2

♢ where 𝑀𝑀¶𝑥, 𝑦♢ ⊕

𝑀𝑖𝑛𝑀𝑜𝑑¶𝑥, 𝑦♢ =
1

2
[𝑠𝑔𝑛(𝑥) + 𝑠𝑔𝑛(𝑦)] ≤ 𝑀𝑖𝑛(♣𝑥♣, ♣𝑦♣) [35]. Finally, from equations (4.3.6) and

(4.3.7), we might write,

∫︁∫︁

D𝑛
𝑗

𝐺(Φ(𝑥, 𝑡))𝑑𝑥𝑑𝑡 ≡ 𝑘 𝐺

[︃

𝑈n
j +

𝑘

2
(𝐺(𝑈n

j ) ⊗ 𝑓x(Φ)n
j

⟨ [︃

𝑘

2
(𝑓n

j+1 ⊗ 𝑓n
j ) + ℎ

⟨

. (4.3.8)
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4.3.2 Midpoint method for the source term approximation

Consider Φ = Φ(𝑥, 𝑡) ∈ 𝐶∞(R) such that Φt + 𝑓x(Φ) = 𝐺(Φ), at time 𝑡 = 𝑡n+ 1

2 . It

is sufcient to consider the integration just over one “Integral tube” 𝐷n
j the other case 𝐷n

j⊗1 is

similar. Thus we have,

∫︁∫︁

D𝑛
𝑗

𝐺(Φ(𝑥, 𝑡))𝑑𝑥 𝑑𝑡 =
∫︁ t𝑛+1

t𝑛

∫︁ σ𝑛
𝑗+1

(t)

σ𝑛
𝑗

(t)
𝐺(Φ(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (4.3.9)

∫︁∫︁

D𝑛
𝑗

𝐺(Φ(𝑥, 𝑡))𝑑𝑥 𝑑𝑡 ≡
∫︁ t𝑛+1

t𝑛
(àn

j+1(𝑡) ⊗ àn
j (𝑡))𝐺

(︃

Φ(
àn

j+1(𝑡) + àn
j (𝑡)

2
), 𝑡

)︃

𝑑𝑡 ≡

≡
∫︁ t𝑛+1

t𝑛
(àn

j+1(𝑡n+ 1

2 ) ⊗ àn
j (𝑡n+ 1

2 ))𝐺

∏︀

∐︁Φ(
àn

j+1(𝑡n+ 1

2 ) + àn
j (𝑡n+ 1

2 )

2
), 𝑡n+ 1

2

∫︀

̂︀ 𝑑𝑡 ≡

≡ 𝑘 ℎ 𝐺

∏︀

∐︁Φ

∏︀

∐︁

àn
j+1(𝑡n+ 1

2 ) + àn
j (𝑡n+ 1

2 )

2
, 𝑡n+ 1

2

∫︀

̂︀

∫︀

̂︀ ≡ 𝑘 ℎ 𝐺

(︂

Φ(𝑥n
j +

1

2
(𝑓n

j 𝑘 + ℎ), 𝑡n +
𝑘

2
)

)︂

≡

≡ 𝑘 ℎ 𝐺

(︂

Φ(𝑥j , 𝑡n) +
1

2
(𝑓n

j 𝑘 + ℎ)(Φx)n
j +

𝑘

2
(𝐺(Φn

j ) ⊗ 𝑓x(Φ)n
j )

)︂

.

(4.3.10)

Finally, the approximation for the source term by means of the midpoint rule gives:
∫︁∫︁

D𝑛
𝑗

𝐺(𝑢(𝑥, 𝑡))𝑑𝑥 𝑑𝑡 ≡ 𝑘ℎ𝐺

(︃

𝑈n
j +

1

2
(𝑓n

j 𝑘 + ℎ)(𝑢x)n
j +

𝑘

2
(𝐺(𝑈n

j ) ⊗ 𝑓x(Φ)n
j )

)︃

(4.3.11)

where (𝑢x)n
j = 𝑀𝑀(∆𝑢j+ 1

2

, ∆𝑢j⊗ 1

2

) and 𝑓x(Φ)n
j = 𝑀𝑀(∆𝑓j+ 1

2

, ∆𝑓j⊗ 1

2

), 𝑀𝑀¶𝑥, 𝑦♢ ⊕

𝑀𝑖𝑛𝑀𝑜𝑑¶𝑥, 𝑦♢ =
1

2
[𝑠𝑔𝑛(𝑥) + 𝑠𝑔𝑛(𝑦)] ≤ 𝑀𝑖𝑛(♣𝑥♣, ♣𝑦♣) [35].

For the scalar linear balance laws we consider the same quadrature rules to approx-

imate the source term with 𝑓n
j = 𝑎, ℎn+1

j = ℎ.

4.4 Numerical experiments for scalar balance laws

We are interested in designing well-balanced conceptually simple schemes, which

have a well balanced property for static and moving equilibrium, applicable to a wide class of

systems with source. One may find, in a variety of physical problems, source terms that are

balanced by internal forces and this balance supports multiple steady-state solutions that are

stable. The well-balance property can be formally enunciated as follows. Consider the system

of balance laws as such,

𝜕𝑢

𝜕𝑡
+

𝜕(𝐻(𝑢))

𝜕𝑥
= 𝑔(𝑢), 𝑡 > 0, 𝑥 ∈ R, (4.4.1)

we denote 𝑢e the stationary solution, which satisfies the equation,

𝜕(𝐻(𝑢e))

𝜕𝑥
= 𝑔(𝑢e), 𝑥 ∈ R. (4.4.2)
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A numerical scheme is said to be well-balanced (in the sense that it must exactly preserve

physically relevant steady states), if it fully satisfies a discrete version of the equilibrium equa-

tion (4.4.2). If a method is not well-balanced, the truncation error of solutions near of equilib-

rium state may be larger than 𝑢(𝑥, 𝑡) ⊗ 𝑢e(𝑥) [35].

Here, numerical approximations with grid refinement are presented and discussed

for scalar balance laws in order to show the well-balance of the Lagrangian-Eulerian scheme

in the sense that the method captures the correct steady states entropy-solution and to give

evidence of the convergence of the scheme.

Example 4.4.1. Langseth, Tveito, and Winther (SINUM)

In [27], we consider the problem

𝑢t + (𝑓(𝑢))x = 𝑔(𝑢), (4.4.3)

with initial condition

𝑢(𝑥, 0) =

∏︁

⨄︁

⋃︁

0.1 + 0.1sen(2Þ𝑥), 0 ⊘ 𝑥 ⊘ 1,

0.1, Otherwise,
(4.4.4)

where the flux function is 𝑓(𝑢) =
1

2
𝑢2 and the source term is 𝑔(𝑢) = 𝑢(1 ⊗ 𝑢).

In Figure 42 it is shown numerical approximations of the problem (4.4.3) - (4.4.4) by

means of the Lagrangian-Eulerian scheme for balance laws 4.1.5 - 4.1.6 (LgBL or LEB1) along

the midpoint rule ( see Section 4.3.2 ) for approximating the source term at time 𝑡=1.5 [35]. In

the case of no availability of an analytic solution (see [27]), an approximation to the expected

“exact solution” is computed using a very fine mesh (2048 cells) numerical solution as the refer-

ence solution (solid line in Figure 42), for comparison purpose with numerical approximations

with 128 cells (top), 256 cells (middle) and 512 cells (bottom). Such solutions are in a very

good agreement with that reported in [27], where the initial data give rise into a shock. But due

to the balance between flux function and source term, the left and right state of the shock will

increase and asymptotically reach the steady-state equilibrium 𝑢 = 1. Comparing the computed

solution with the Lagrangian-Eulerian scheme for balance laws (4.3.2) and that one reported

in [27], it is found that our solution is quite accurate and capturing all qualitative details,

even in a coarse grid (left picture in Figure 42 ). The Lagrangian-Eulerian scheme seems to be

well-balanced in the sense that the method captured the correct steady states entropy-solution

as reported in [27].
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Figure 42 – Approximated solutions with a smooth source function with multiple equilibria at
time 𝑇=1.5 and CFL condition equals 0.61. The computational time is 30 seconds.
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Example 4.4.2. A Puzzling Numerical Example

Consider the balance law problem

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑢t + 𝑓(𝑢)x = 𝑘(𝑥)𝑔(𝑢), 0 < 𝑘 ∈ 𝐿1
loc ∩ 𝐶0(R),

𝑢0(𝑥) = 𝑌 (𝑥), 𝑥 ∈ R,
(4.4.5)

where 𝑓(𝑢) =
𝑢2

2
, 𝑘(𝑥) = 0.2, 𝑔(𝑢) = 𝑢 and 𝑌 the Heaviside function.

The main goal of this example is, as in [19], to emphasize the qualitative difference

between time-splitting, (or fractional step methods) and well-balanced numerical schemes when

it comes to computing the entropy solution of a simple scalar, yet non-resonant, balance law

(4.4.5), 𝑓 is genuinely non-linear, which means that it is strictly convex in 𝑢 and 𝑔 ∈ 𝐶1(R),

see [19] for more details. This results in the classical “one-half” order of convergence in 𝐿1,

which is known to be optimal for Godunov type [36, 42], denoting the entropy solution 𝑢 and

its numerical approximation by 𝑢∆t; see [42] that states: ∀𝑡 ∈ [0, 𝑇 ], ‖𝑢∆t(𝑡, .) ⊗ 𝑢(𝑡, .)‖L1(R) ⊘
𝐶

√
∆𝑡. The analysis discussed in [43] reveals that the “constant 𝐶” is actually an exponential

in time, which results in the more rigorous statement: ∀𝑡 ∈ [0, 𝑇 ], ‖𝑢∆t(𝑡, .) ⊗ 𝑢(𝑡, .)‖L1(R) ⊘
𝐶exp(max[𝑔′(𝑢)]𝑡)

√
∆𝑡. This estimate is disastrous from a computational standpoint, because

in order to keep the absolute error below a given tolerance, the computational grid’s parameters

are meant to decrease exponentially with time (except if 𝑔′ ⊘ 0, for which 𝑇𝑉 (𝑢)(𝑡, .) decays

exponentially too). Figure 43 shows numerical approximations with 128, 256 and 512 cells with

the Lagrangian-Eulerian scheme for balance law (4.1.5)-(4.1.6) (LgBL1 or LEB1) along with

the Predictor-corrector method (see Section 4.3.1) for approximating the source term at time

𝑡 = 10 [35]. And an approximation to the expected “exact solution” is computed using a very

fine mesh (2048 cells) as the reference solution (solid line in Figure 43), for comparison purpose

with numerical approximations with 128 cells, 256 cells and 512 cells. As expected, the method

converges with refinement.
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Figure 43 – Numerical approximations for the scalar balance laws. The solution is shown first
at time 𝑇=0 with 512 cells, and with 128, 256, 512 cells with time 𝑇=10 from top
to the bottom and CFL condition equals 0.57. The computational time is 1 minute.
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5 The Lagrangian-Eulerian scheme for systems

of hyperbolic conservation laws and balance

laws

In this Chapter, we study how to extend the scalar Lagrangian-Eulerian procedure

to the one-dimensional system of balance laws 𝑢t + 𝑓x(𝑢) = 𝑔(𝑢), where now 𝑢(𝑥, 𝑡) can be

viewed as the unknown 𝑛⊗vector of the form 𝑢 = (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), ≤ ≤ ≤ , 𝑢n(𝑥, 𝑡))⊤, and 𝑓(𝑢) is

the flux vector function such that 𝑓(𝑢) = (𝑓 1(𝑢), 𝑓2(𝑢), ≤ ≤ ≤ , 𝑓n(𝑢))⊤. Essentially, the analogue

Lagrangian-Eulerian scheme for system of balance laws retain all the simplicities of the one

single equation case, which in turn is carried out by a straightforward componentwise applica-

tion of the scalar framework. Thus, for simplicity of presentation, let us consider the following

prototype 2 × 2 system of balance laws (see Section 2.4) and present numerical experiments for

systems of hyperbolic conservation laws and balance laws such as the shallow water equations

and the immiscible three-phase flow.

5.1 Systems of balance laws

Consider the system of balance laws

𝑢t + [𝑓(𝑢)]x = 𝑔(𝑢), (5.1.1)

where 𝑓(𝑢) = [𝑓 1(𝑢), 𝑓2(𝑢)], 𝑢 = [𝑢1, 𝑢2], 𝑢1 = 𝑢1(𝑥, 𝑡), and 𝑢2 = 𝑢2(𝑥, 𝑡), with 𝑔(𝑢) =

[𝑔1(𝑢), 𝑔2(𝑢)]. System (5.1.1) can be written in open form as,

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑢1
t + [𝑓 1(𝑢1, 𝑢2)]x = 𝑔1(𝑢1, 𝑢2),

𝑢2
t + [𝑓 2(𝑢1, 𝑢2)]x = 𝑔2(𝑢1, 𝑢2),

(5.1.2)

As before, we consider the space-time control finite volumes for each variable 𝑢1, 𝑢2 as follows,

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝐷n
u1,j = ¶(𝑡, 𝑥) / 𝑡n ⊘ 𝑡 ⊘ 𝑡n+1, àn

u1,j(𝑡) ⊘ 𝑥 ⊘ àn
u1,j+1(𝑡)♢,

𝐷n
u2,j = ¶(𝑡, 𝑥) / 𝑡n ⊘ 𝑡 ⊘ 𝑡n+1, àn

u2,j(𝑡) ⊘ 𝑥 ⊘ àn
u2,j+1(𝑡)♢,

(5.1.3)

where àn
u1,j(𝑡) and àn

u2,j(𝑡) are parametrized curves such that àn
u1,j(𝑡

n) = 𝑥n
j and àn

u2,j(𝑡
n) = 𝑥n

j .

These curves àn
u1,j(𝑡) and àn

u2,j(𝑡), define the ”lateral boundaries” of integral tubes for each

primitive variable 𝑢1, 𝑢2, which in turn will be used to desgin a balancing unbiased upwinding

Riemann-solver-free discretization between the numerical flux functions and the source terms by
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(5.1.2). Thus, the approximations of the variables 𝑢1, 𝑢2 for system are a rather component-wise

extension of the scalar framework given by,

𝑈1,n
j =

1

ℎ

∫︁ x𝑛

𝑗+ 1
2

x𝑛

𝑗−
1
2

𝑢1(𝑥, 𝑡n) 𝑑𝑥, and 𝑈
1,n+1

j =
1

ℎn+1
u1,j

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑢1(𝑥, 𝑡n+1) 𝑑𝑥 𝑗 ∈ Z,

𝑈2,n
j =

1

ℎ

∫︁ x𝑛

𝑗+ 1
2

x𝑛

𝑗−
1
2

𝑢2(𝑥, 𝑡n) 𝑑𝑥, and 𝑈
2,n+1
j =

1

ℎn+1
u2,j

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑢2(𝑥, 𝑡n+1) 𝑑𝑥 𝑗 ∈ Z,

(5.1.8)

respectively, and the initial condition is 𝑈1(𝑥0
j , 𝑡0) = 𝑈1,0

j and 𝑈2(𝑥0
j , 𝑡0) = 𝑈2,0

j over the local

space-time cells [𝑥0
j⊗ 1

2

, 𝑥0
j+ 1

2

], 𝑗 ∈ Z. Next, we use (5.1.8) into the “locally conservative relation”

to get,

𝑆
n+1
j =

1

ℎn+1
s,j

∫︁ x𝑛+1

𝑗+ 1
2

x𝑛+1

𝑗−
1
2

𝑠(𝑥, 𝑡n+1) 𝑑𝑥 =
1

ℎn+1
s,j

[︃

∫︁ x𝑛
𝑗+1

x𝑛
𝑗

𝑠(𝑥, 𝑡n) 𝑑𝑥. +
∫︁∫︁

D𝑛
𝑠,𝑗

𝑔α(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡

⟨

. (5.1.9)

In (5.1.9) 𝑆 = 𝑈1, 𝑈2 and 𝑠 = 𝑢1, 𝑢2 denotes a representation of a component-wise extension of

the scalar case to systems of balance law in compact form (5.1.1). Next, the local approximations

𝑆
n+1
j , 𝑗 ∈ Z are projected over the original grid and reads,

𝑆n+1
j =

1

ℎ

[︁

𝑐s,0j𝑆
n+1
j⊗1 + 𝑐s,1j𝑆

n+1
j

]︁

. (5.1.10)

Here 𝑐s,0j = (
ℎ

2
+ 𝑓n

s,j𝑘
n), 𝑐s,1j = ℎ ⊗ 𝑐s,0j = (

ℎ

2
⊗ 𝑓n

s,j𝑘
n) and we use the approximations

𝑓n
u1,j ⊕ 𝑓 1(𝑈1,n

j , 𝑈2,n
j )

𝑈1,n
j

≡ 𝑓 1(𝑢1, 𝑢2)

𝑢1
,

𝑓n
u2,j ⊕ 𝑓 2(𝑈1,n

j , 𝑈2,n
j )

𝑈2,n
j

≡ 𝑓 2(𝑢1, 𝑢2)

𝑢2
.

Notice that now the curve àn
s,j(𝑡) is a simple straight line for 𝑓n

s,j (see right picture

in Figure 44), along with 𝑘n = ∆𝑡n = 𝑡n+1 ⊗ 𝑡n. Finally, combination of equations (5.1.9) and

(5.1.10) form the building-block for the Lagrangian-Eulerian scheme. Thus, for each discrete

variable 𝑆 = 𝑈1, 𝑈2 and for 𝑠 = 𝑢1, 𝑢2 we define Ws(𝑆
n
j , 𝑆n

j+1) ⊕ 𝑓n
s,j + 𝑓n

s,j+1

ℎn+1
s,j

(𝑆n
j + 𝑆n

j+1), and

we get,

𝑈1,n+1
j =

1

4
(𝑈1,n

j⊗1 + 2𝑈1,n
j + 𝑈1,n

j+1) ⊗ 𝑘n

4

(︁

Wu1(𝑈1,n
j , 𝑈1,n

j+1) ⊗ Wu1(𝑈1,n
j⊗1, 𝑈1,n

j )
)︁

+
1

ℎ

⋃︀

⨄︀

1

ℎ

(︃

ℎ

2
+ 𝑓n

u1,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢1,𝑗−1

𝑔1(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡 +
1

ℎ

(︃

ℎ

2
⊗ 𝑓n

u1,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢1,𝑗

𝑔1(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡

⋂︀

⋀︀ ,

(5.1.11)
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𝑈2,n+1
j =

1

4
(𝑈2,n

j⊗1 + 2𝑈2,n
j + 𝑈2,n

j+1) ⊗ 𝑘n

4

(︁

Wu2(𝑈2,n
j , 𝑈2,n

j+1) ⊗ Wu2(𝑈2,n
j⊗1, 𝑈2,n

j )
)︁

+
1

ℎ

⋃︀

⨄︀

1

ℎ

(︃

ℎ

2
+ 𝑓 2,n

u2,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢2,𝑗−1

𝑔2(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡 +
1

ℎ

(︃

ℎ

2
⊗ 𝑓n

u2,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢2,𝑗

𝑔2(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡

⋂︀

⋀︀ ,

(5.1.12)

along the CFL condition max
j

¶𝑓n
u1,j, 𝑓n

u2,j♢(𝑘/ℎ) ⊘
√︁

(2)/2 and with initials condi-

tions 𝑈1,0
j = 𝑢1(𝑥0

j , 0), 𝑈2,0
j = 𝑢2(𝑥0

j , 0).

The extension of the Lagrangian-Eulerian scheme finite difference (4.3.2) to system

of hyperbolic balance law can be write as

𝑈1,n+1
j =

1

4
(𝑈1,n

j⊗1 + 2𝑈1,n
j + 𝑈1,n

j+1) ⊗ 𝑘

2ℎ

[︁

𝑓 1(𝑈1,n
j+1, 𝑈2,n

j+1) ⊗ 𝑓 1(𝑈1,n
j⊗1, 𝑈2,n

j⊗1)
]︁

+
1

ℎ

⋃︀

⨄︀

1

ℎ

(︃

ℎ

2
+ 𝑓n

u1,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢1,𝑗−1

𝑔1(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡 +
1

ℎ

(︃

ℎ

2
⊗ 𝑓n

u1,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢1,𝑗

𝑔1(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡

⋂︀

⋀︀ ,

(5.1.13)

𝑈2,n+1
j =

1

4
(𝑈2,n

j⊗1 + 2𝑈2,n
j + 𝑈2,n

j+1) ⊗ 𝑘

2ℎ

[︁

𝑓 2(𝑈1,n
j+1, 𝑈2,n

j+1) ⊗ 𝑓 2(𝑈1,n
j⊗1, 𝑈2,n

j⊗1)
]︁

+
1

ℎ

⋃︀

⨄︀

1

ℎ

(︃

ℎ

2
+ 𝑓n

u2,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢2,𝑗−1

𝑔2(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡 +
1

ℎ

(︃

ℎ

2
⊗ 𝑓n

u2,j𝑘

)︃

∫︁∫︁

D𝑛

𝑢2,𝑗

𝑔2(𝑢1, 𝑢2) 𝑑𝑥 𝑑𝑡

⋂︀

⋀︀ ,

(5.1.14)

along the CFL condition max
j

¶‖𝐹 ′(𝑈1,n
j , 𝑈2,n

j )‖2, 𝑓n
u1,j, 𝑓n

u2,j, ♢(𝑘/ℎ) ⊘
√

2/2, where

𝐹 is the vector function 𝑓 = [𝑓 1, 𝑓2]. Note that the CFL condition to the Lagragian-Eulerian

scheme (5.1.13), (5.1.14) is a extension of the scalar case (4.3.2), in which is considered the

eigenvalues of jacobian matrix of 𝑓 [35].

5.2 Numerical experiments

In this section we perform numerical tests using the Lagrangian-Eulerian method

with mesh refinement for systems of hyperbolic conservation laws (see, Section 2.4) – the purely

hyperbolic shallow water equations and the immiscible three-phase flow in porous media – in

order to give some numerical evidence of the convergence of the Lagrangian-Eulerian scheme.

For the purely hyperbolic shallow water equations, the numerical solutions for the height, the
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velocity and height versus velocity are presented at various times with mesh refinement. For the

immiscible three-phase flow problem, we present the numerical solution for water saturation, gas

saturation and oil saturation of two Riemann problems with mesh refinement. Then, we present

numerical approximations of the well known system of balance laws modeling the shallow-water

problem and present three test cases ( transcritical flow without shock, transcritical flow with

shock, and subcritical flow) with numerical and analytical solutions for water height (ℎ) and

discharge (𝑀) with three level of refinement. Then, we also present the reproductions of test

cases for the modified system for shallow water equations-small perturbation of steady flow over

a slanted surface. For shallow water equations, the numerical solution is shown for the height,

the velocity and height versus velocity, and for the modified system for shallow water equations

we present the evolution of the numerical solution in the supercritical case, the subcritical case

and with large bottom slope.

5.2.1 Hyperbolic system of conservation laws

If we set the source term of the system (5.1.1) equal to zero (𝑔(𝑢) ⊕ 0), we get the

prototype for systems of hyperbolic conservation laws in the form 𝑢t + [𝑓(𝑢)]x = 0, keeping

in mind that the meaning of the variable must be understood in the new framework. From

(5.1.9)-(5.1.10) or (5.1.11)-(5.1.12), we can see that the Lagrangian-Eulerian scheme can be

used for systems of conservation laws.

Example 5.2.1. The shallow water equations:

It is well-known that solutions of hyperbolic conservation laws can develop shock

discontinuities in a finite time, independent of whether the initial data is smooth or not (as

we consider here). Hence, the solutions of hyperbolic conservation laws, must be viewed in the

weak sense.

In [1, 27], it was considered a 2 × 2 nonlinear system of balance laws in the form of

(in dimensionless and scaled variables),

⋃︀

⨄︀

ℎ

ℎ𝑣

⋂︀

⋀︀

t

+

⋃︀

⋁︀

⨄︀

ℎ𝑣

𝑣2ℎ +
1

2
ℎ2

⋂︀

⎥

⋀︀

x

=

⋃︀

⋁︀

⨄︀

0

ℎ ⊗ 𝐶
1 + ℎ

tg𝜃
𝑣2

⋂︀

⎥

⋀︀ , (5.2.1)

where ℎ is the height of the free surface and 𝑣 is the averaged horizontal velocity, modeling the

flow of water downing in a channel having a rectangular cross section and inclined at a constant

angle 𝜃 to the horizontal. This is a prototype model for shallow-water flow in an inclined

channel with friction. Precisely, as in [27], the friction coefficient 𝐶 is taken to be 0.1, while the

inclination angle 𝜃 =
Þ

6
. In our current implementation, we will consider first the equation of

hyperbolic system (5.2.1), then the balance laws system (5.2.1) with the initial velocity 𝑣0 =
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1.699, while the initial height of the free surface consists of a triangular perturbation of the

uniform flow level, ℎ0(𝑥) = 𝑥 + 1.5, ⊗0.5 ⊘ 𝑥 ⊘ 0, ℎ0(𝑥) = ⊗𝑥 + 1.5, 0 ⊘ 𝑥 ⊘ 0.5, and 1

elsewhere [1].

In Figures 45, 46, 47, 48 are shown numerical approximations by means of the scheme

(5.1.9)-(5.1.10) with zero source term along the initial value problem described just above, and

computed solutions for 𝑣, (the averaged horizontal velocity) ℎ, the height and ℎ𝑣 with initial

times 𝑡 = 0, 𝑡 = 0.5, 𝑡 = 1.0 and 𝑡 = 1.5, from top to bottom. The purely hyperbolic shallow

water solutions (with 512, 256, 128, 64 grid cells) were compute with the scheme introduced in

this work in Section 3.3 . As expected from the analysis in [27], we have two waves moving in

opposite directions. For the purely hyperbolic shallow water solutions, we are able to capture

this correct qualitative behavior with a very good accuracy [1]. The model (5.2.1) correspond

to uniform flow (𝑣0=constant and ℎ0=constant) with the frictional and gravitational forces in

perfect balance. In order to study the balance between convective/source in the model (5.2.1), it

is considered as initial conditions a perturbation of an uniform flow, in which the gravitational

and frictional forces balance as expected from the model problem.

In Figure 49 numerical approximations are shown by means of the Lagrangian-

Eulerian scheme (5.1.9)-(5.1.10) for the initial value problem described above and computed

solutions for 𝑣, (the averaged horizontal velocity) ℎ, (the height ) and ℎ𝑣 with 128, 256 and 512

cells from top to bottom at time 𝑡 = 1.5. As in [27] with no friction (𝐶 = 0), two symmetrical

waves will arise from the initial data. On the other hand, the introduction of friction not only

downs the velocity of these waves, but also changes the shape. For instance, if 𝐶 = 0.1 is

considered, one can still observe two waves, but the symmetry is now lost. The numerical

solutions are in a very good agreement to that reported in [1, 27], corresponding to the balance

between the frictional and gravitational forces at time evolves. The approximation of the source

terms in this example of system of balance laws was performed by means of the predictor-

corrector method [35].
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Figure 45 – Numerical approximations to the shallow water equations (2.4.17) . The numerical
solutions to the height topography, the velocity and height versus velocity are shown
from top to bottom at simulation times 𝑇 = 0, 𝑇 = 0.5, 𝑇 = 1.0 and 𝑇 = 1.5 with
512 mesh grid cells, CFL condition equals 0.62 and one minute as computational
time.
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Figure 46 – Numerical approximations to the shallow water equations (2.4.17) . The numerical
solutions to the height topography, the velocity and height versus velocity are shown
from top to bottom at simulation times 𝑇 = 0, 𝑇 = 0.5, 𝑇 = 1.0 and 𝑇 = 1.5 with
256 mesh grid cells, CFL condition equals 0.62 and one minute as computational
time
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Figure 47 – Numerical approximations to the shallow water equations (2.4.17) . The numerical
solutions to the height topography, the velocity and height versus velocity are shown
from top to bottom at simulation times 𝑇 = 0, 𝑇 = 0.5, 𝑇 = 1.0 and 𝑇 = 1.5 with
128 mesh grid cells, CFL condition equals 0.62 and one minute as computational
time.
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Figure 48 – Numerical approximations to the shallow water equations (2.4.17) . The numerical
solutions to the height topography, the velocity and height versus velocity are shown
from top to bottom at simulation times 𝑇 = 0, 𝑇 = 0.5, 𝑇 = 1.0 and 𝑇 = 1.5 with
64 mesh grid cells, CFL condition equals 0.62 and one minute as computational
time.
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Figure 49 – Numerical approximations to the shallow water equations (5.2.1). The numerical
solutions to the height topography, the velocity and height versus velocity are shown
from top to bottom at simulation time 𝑇 = 1.5 with 128, 256 and 512 mesh grid
cells with computational times, 2 minutes, 4 minutes, 9 minutes respectively. In
each frame we compare numerical solutions obtained on grids having 128, 256 and
512 cells against a reference numerical solution of 2048 cells.
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Example 5.2.2. Immiscible three-phase flow:

We present the result of numerical solution of the non-strictly hyperbolic three-

phase system of conservation laws in porous media applications (2.4.26)-(2.4.32) by means of

the scheme (5.1.9)-(5.1.10) with zero source term, for two Riemann problems, namely RP1 and

RP2, given by:

𝑅𝑃1 =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑠L
w = 0.613 and 𝑠R

w = 0.05,

𝑠L
g = 0.387 and 𝑠R

g = 0.15,
(5.2.2)

and

𝑅𝑃2 =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑠L
w = 0.721 and 𝑠R

w = 0.05,

𝑠L
g = 0.279 and 𝑠R

g = 0.15,
(5.2.3)

for each variable. We use the quadratic model by Corey-Pope [1], which has been used exten-

sively for phase relative permeabilities,

𝑘w = 𝑠2
w, 𝑘o = 𝑠2

o and 𝑘g = 𝑠2
g. (5.2.4)

We consider the following viscosity values Ûo = 1.0, Ûw = 0.5, and Ûg = 0.3 [1]. From the

analysis discussed in [31], we remark that for the choice of parameters described above, a

transitional shock wave is present in the solution of (5.2.3), which in turn is not present in the

solution of (5.2.2). Since the oil phase saturation can be directly obtained from the other two

phase saturations (i.e., 𝑠o = 1 ⊗ 𝑠w ⊗ 𝑠g), we display the water saturation, the gas saturation

and the oil saturation profile in Figures 50, 51 and 52 respectively, showing the effect of a

grid refinement in the numerical solution of (2.4.26)-(2.4.27) with 𝐷w = 0 and 𝐷g = 0 - with

Riemann data (5.2.2) on the left and (5.2.3) on the right and we take the CFL condition

max¶‖𝜕(𝑓w, 𝑓g)/𝜕(𝑠w, 𝑠g)‖2, 𝑓n
w,j, 𝑓n

g,j, ♢(𝑘/ℎ) ⊘
√

2/2 in the the saturation triangle [31, 35].

In the studied model, has been chosen for convenience, the saturations of water and

gas. The diffusive term is represented by the righthand side of the system (2.4.26)-(2.4.27)

and it incorporates the capillary pressure effects. We neglect the diffusive effect, by just taking

𝐷w = 0 and 𝐷g = 0 in (2.4.26)-(2.4.32). We point out that for a wave to be truly defined as a

“shock wave”, a discontinuity must be the zero-diffusion limit of traveling wave solutions. For

such solutions, diffusion balances the convergence of waves caused by hyperbolic nonlinearity.

Moreover, the set of non-classical wave solutions obtained in the zero-diffusion (zero-capillarity)

limit might depends sensitively on the form of the diffusion matrix and not only on the hyper-

bolic structure of the equations [1]. In each frame we compare numerical solutions obtained on

grids having 32, 64, 128 and 256 cells against a reference numerical solution of 2048 cells. It is

clear from the pictures in Figures 50, 51, and 52, that as the grid is refined we have some good

evidence of numerical convergence of the scheme. We remark that the numerical solutions pre-
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sented here are in very good agreement with the semi-analytic results reported in [31], yielding

a numerical verification of our computations [1].
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Figure 50 – Grid refinement study. Water saturation profiles are shown as a function of distance.
RP1 on the left and RP2 on the right. We compare numerical solutions obtained on
grids having 32, 64, 128 and 256 cells against a reference numerical solution of 2048
cells at time 𝑇=1, CFL condition equals 0.48 and with computational times equal
5 minutes for RP1 Riemann problem and 4 minutes for RP2 Riemann problem.



Chapter 5. The Lagrangian-Eulerian scheme for systems of hyperbolic conservation laws and balance laws 120

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.01821e+000,   24 TIME STEPS WITH    32 CELLS

 

 

REFERENCE

S
g
 (NLE)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.03467e+000,   22 TIME STEPS WITH    32 CELLS

 

 

REFERENCE

S
g
 (NLE)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.00956e+000,   47 TIME STEPS WITH    64 CELLS

 

 

REFERENCE

S
g
 (NLE)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.02364e+000,   41 TIME STEPS WITH    64 CELLS

 

 

REFERENCE

S
g
 (NLE)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.00167e+000,   92 TIME STEPS WITH   128 CELLS

 

 

REFERENCE

S
g
 (NLE)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.00209e+000,   76 TIME STEPS WITH   128 CELLS

 

 

REFERENCE

S
g
 (NLE)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.00063e+000,  182 TIME STEPS WITH   256 CELLS

 

 

REFERENCE

S
g
 (NLE)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
g

CFL = 0.48, T = 1.00605e+000,  147 TIME STEPS WITH   256 CELLS

 

 

REFERENCE

S
g
 (NLE)

Figure 51 – Grid refinement study. Gas saturation profiles are shown as a function of distance.
RP1 on the left and RP2 on the right. We compare numerical solutions obtained on
grids having 32, 64, 128 and 256 cells against a reference numerical solution of 2048
cells at time 𝑇=1,CFL condition equals 0.48 and with computational times equal
5 minutes for RP1 Riemann problem and 4 minutes for RP2 Riemann problem.
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Figure 52 – Grid refinement study. Oil saturation profiles are shown as a function of distance.
RP1 on the left and RP2 on the right. We compare numerical solutions obtained on
grids having 32, 64, 128 and 256 cells against a reference numerical solution of 2048
cells at time 𝑇=1, CFL condition equals 0.48 and with computational times equal
5 minutes for RP1 Riemann problem and 4 minutes for RP2 Riemann problem.
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Example 5.2.3. The shallow water problem

During the last decades there has been an enormous amount of activity related to

approximate solutions for the shallow water equation written in conservative form as
∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝜕ℎ

𝜕𝑡
+

𝜕 (ℎ𝑣)

𝜕𝑥
= 0,

𝜕(ℎ𝑣)

𝜕𝑡
+

𝜕
(︁

ℎ𝑣2 + g
2
ℎ2
)︁

𝜕𝑥
= ⊗𝑔ℎ𝑍x.

(5.2.5)

where 𝑍(𝑥) is the function characterizing the bottom topography, ℎ(𝑡, 𝑥) is the height of the

water above the bottom, 𝑔 is the acceleration due to gravity and 𝑣(𝑡, 𝑥) is the flow velocity.

Computing their numerical solutions is not trivial due to nonlinearity, the presence of the

convective term and the coupling of the equations through the source term. It is well known

that the solutions of (5.2.5) present steep fronts and even shock discontinuities, which need

to be resolved accurately in applications and often cause severe numerical difficulties. Balance

laws often admit steady state solutions in which the source term is exactly balanced by the flux

gradients. Such cases, along with their perturbations, are very difficult to capture numerically.

A straightforward treatment of the source terms will fail to preserve this balance (4.4.2) ( see,

[10, 16, 40]). For this purpose we rewrite (5.2.5) as

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝜕ℎ

𝜕𝑡
+

𝜕 (ℎ𝑣)

𝜕𝑥
= 0,

𝜕(ℎ𝑣)

𝜕𝑡
+

𝜕 (ℎ𝑣2)

𝜕𝑥
= ⊗ 𝜕

𝜕𝑥

(︂

𝑔

2
ℎ2
)︂

⊗ 𝑔ℎ
𝜕𝑍

𝜕𝑥
.

(5.2.6)

Applying the Lagrangian-Eulerian method to each equation, we get

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

∫︁

D𝑛
ℎ,𝑗

(︃

𝜕ℎ

𝜕𝑡
+

𝜕 (ℎ𝑣)

𝜕𝑥

)︃

𝑑𝐴 = 0,

∫︁

D𝑛
𝑚,𝑗

(︃

𝜕(ℎ𝑣)

𝜕𝑡
+

𝜕 (ℎ𝑣2)

𝜕𝑥

)︃

𝑑𝐴 = ⊗𝑔
∫︁

D𝑛
𝑚,𝑗

ℎ

(︃

𝜕ℎ

𝜕𝑥
+

𝜕𝑍

𝜕𝑥

)︃

𝑑𝐴.

(5.2.7)

The integrals on the left side in (5.2.7) is discussed in [2]. We will focus on how to approximate

the integral on the right side. We have

𝐼n
m,j =

∫︁

D𝑛
𝑚,𝑗

ℎ

(︃

𝜕ℎ

𝜕𝑥
+

𝜕𝑍

𝜕𝑥

)︃

𝑑𝐴 =
∫︁ t𝑛

t𝑛+1

∫︁ σ𝑛
𝑗+1

(t)

σ𝑛
𝑗

(t)
ℎ

𝜕(ℎ + 𝑍)

𝜕𝑥
𝑑𝑥 𝑑𝑡. (5.2.8)

Therefore from (5.2.8) we get,

𝐼n
m,j ≡ 𝐻n

j

∫︁ t𝑛

t𝑛+1

[︁

ℎ(àn
j+1(𝑡), 𝑡) + 𝑍(àn

j+1(𝑡)) ⊗ (ℎ(àn
j (𝑡), 𝑡) + 𝑍(àn

j (𝑡)))
]︁

. (5.2.9)
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The last integral can be approximated using Taylor series expansion of order one, where we use

a slope limiter to approximate the derivatives (𝐻x)j and (𝑍x)j, and the trapezoidal rule for the

integral in time [2]. The final approximation gives

𝐼n
m,j ≡ 𝐻n

j (𝐻n
j+1+𝑍j+1⊗(𝐻n

j +𝑍j))+0.5𝐻n
j (∆𝑡)2(𝑓n

h,j+1(𝐻x)n
j+1+𝑓n

h,j(𝑍x)j+1⊗(𝑓n
h,j(𝐻x)n

j ⊗𝑓n
h,j+1(𝑍x)j+1)).

(5.2.10)

The topography is flat with a bump for 𝑥 ∈ [8, 12], as follows: 𝑍(𝑥) = 0.2 ⊗ 0.05(𝑥 ⊗ 10)2.

Transcritical flow without shock: This test case is performed according to the initial and bound-

ary conditions given by [16, 40]. The initial water height is 0.33 𝑚. A unit discharge of 1.53 𝑚2/𝑠

is imposed at the upstream boundary, and open boundary conditions (𝑑ℎ/𝑑𝑥 = 0, 𝑑𝑣/𝑑𝑥 = 0)

are applied at the downstream side. The numerical solutions for water height and discharge can

be seen in Figure 53 after the steady state has been reached (which happens at time 41.5 sec).

We show in Figure 53 the numerically evaluated water height and discharge with the corre-

sponding analytical solutions, with three levels of refinement (200, 600 and 1000 mesh points).

At the end of the bump a constant level is again reached. Discharge shows an underestimation

near the bump, reduced on refinement [2, 16, 40].

Transcritical flow with shock: The initial water height is also 0.33 m. A unit discharge

of 0.18 𝑚2/𝑠 is imposed on the upstream boundary and a depth of 0.33 𝑚 is imposed on the

downstream boundary. The steady state here is reached at 175.5 sec. We show in Figure 54 the

analytical and numerical solution for water surface profile and discharge, with three levels of

refinement (200, 600 and 1000 mesh points). A local peak in numerical solution for discharge

is observed on the jump after the bump [2, 16, 40].

Subcritical flow over a bump without a shock: A unit discharge of 4.42 𝑚2/𝑠 is im-

posed on the upstream boundary and a depth of 2.0 𝑚 is imposed on the downstream boundary.

The steady state is reached at time 85.5 sec. Figure 55 shows the solutions for this case after

reaching the steady state, with three levels of refinement (200, 600 and 1000 mesh points).

For all the three cases, the Lagrangian-Eulerian scheme produced qualitatively cor-

rect results compared to analytical solutions with 200 mesh grid cells.
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Figure 53 – Transcritical flow without shock test case: Numerical and analytic solutions for
water height (ℎ) and discharge (𝑀) with three level of refinement. Top: Numerical
solution of ℎ + 𝑍 with 200, 600 and 1000 mesh grid points at time 𝑇=600 sec.
Bottom: discharge 𝑀 with 200, 600 and 1000 mesh grid points.
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Figure 54 – Transcritical flow with shock: Numerical and analytic solutions for water height
(ℎ) and discharge (𝑀) with three level of refinement. The steady-state has been
already reached (exhibited time is 𝑇= 600 sec). Top: ℎ + 𝑍 solutions with 200, 600
and 1000 mesh grid points. Bottom: discharge 𝑀 with 200, 600 and 1000 mesh grid
points.
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Figure 55 – Subcritical test case: Numerical and analytic solutions for water height (ℎ) and
discharge (𝑀) with three level of refinement. The steady-state has been already
reached (exhibited time is 𝑇 = 600 sec). Top: ℎ + 𝑍 solutions with 200, 600 and
1000 mesh grid points. Bottom: discharge 𝑀 with 200, 600 and 1000 mesh grid
points.
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Example 5.2.4. The modified system for shallow water equations

Here we consider the modified system for shallow water equations (5.2.11) presented

in [12] with water source term 𝑅(𝑥, 𝑡) and a bottom friction term with the classical Manning

formulation and the reproductions of test cases presented in the cited paper– small perturbation

of steady flow over a slanted surface. In these test cases we will consider 𝑅(𝑥, 𝑡) identically zero.

As in (5.2.1), we use the same approximation for the source term. In one spatial dimension the

equation is reduced to:

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝜕ℎ

𝜕𝑡
+

𝜕 (ℎ𝑣)

𝜕𝑥
= 𝑅(𝑥, 𝑡),

𝜕(ℎ𝑣)

𝜕𝑡
+

𝜕
(︁

ℎ𝑣2 + g
2
ℎ2
)︁

𝜕𝑥
= ⊗𝑔ℎ𝑍x ⊗ 𝑔

𝑛2

ℎ
1

3

𝑣 ♣𝑣♣ ,

(5.2.11)

with the initial data

ℎ(𝑥, 0) = ℎ0 +

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

0.2ℎ0, 1 ⊘ 𝑥 ⊘ 1.25

0, otherwise
, 𝑞(𝑥, 0) = 𝑞0. (5.2.12)

The first test is a supercritical case (top), with ℎ0 = 0.09564, 𝑞0 = 0.1, 𝑛 = 0.02 and

the (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) slope of topography 𝑍x = ⊗0.01. We show on Figure 56 (top) the initial state,

a snapshot at time 𝑡 = 1.0 sec, where the perturbation propagates to the right and the steady

state at time 𝑡 = 100 sec.

Next, the subcritical case (middle) is presented with ℎ0 = 0.02402, 𝑞0 = 0.002,

𝑛 = 0.1 and the slope of topography again as 𝑍x = ⊗0.01. Here, the shape of the propagated

solution is different from the previous case. We show on Figure 56 (middle) the initial state, a

snapshot at time 𝑡 = 0.5 sec and the steady state solution at time 𝑡 = 100 sec.

Then, the last test case on Figure 56 (bottom) with ℎ0 = 0.44894, 𝑞0 = 2 and

𝑛 = 0.1 shows a magnitude of topography slope larger than the other cases, 𝑍x = ⊗ 1√
13

. In

this case, the perturbation propagates faster than in previous tests, but the numerical steady

state is achieved at large times. These tests are evaluated with 200 grid cells.
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Figure 56 – Top: Supercritical test case at initial time (left), 𝑇= 1.0 sec (middle), and steady
state at 𝑇= 100sec (right). Middle: Subcritical test case at initial time (left), 𝑇=
0.5 sec (middle), and steady state at t = 100 sec (right). Bottom: Larger slope
topography test case at initial time (left), 𝑇= 0.05 sec (middle), and steady state
at 𝑇= 100 sec (right).
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6 Conclusion and perspectives

The aim of this dissertation is to study numerical approximations for – scalar and

system – of hyperbolic conservation laws and balance laws, using a Lagrangian-Eulerian ap-

proach based on locally conservative finite volume method. Specifically, we concerned with non

classical model in the state of the art, namely, a hyperbolic conservation law with nonlocal flux.

6.1 Conclusion

In this work we studied a locally conservative and divergence space-time finite control

volume in a Lagrangian-Eulerian framework, first developed in the context of purely hyperbolic

conservation laws, in order to design a locally conservative scheme to account the balance be-

tween numerical approximations of the hyperbolic flux function and the source term linked to

steady solutions. We learned that the Lagragian-Eulerian scheme is a conservative and con-

sistent numerical method for conservation laws. In addition, this scheme is independent on a

particular form of the flux function and is aimed to be not dependent on a particular structure

of the source term [1, 35].

In chapter 2, we presented some definitions of concepts studied through the study.

In Chapter 3, we discussed the construction of the Lagrangian-Eulerian scheme, and

its conservative form applied for solving – linear and nonlinear – hyperbolic conservation law

problems and hyperbolic conservation law problems with nonlocal flux. For the construction of

this scheme, we write the conservation law in space-time in divergence form. Next we define a

control volume, called integral-tube, where we impose local conservation. For this, the diver-

gence theorem plays a role. We use the modified equation to the Lagrangian-Eulerian scheme

for linear sclacar hyperbolic conservation laws to discuss the numerical nature of the scheme.

Then we discussed numerical experiments of the linear and nonlinear scalar hyperbolic con-

servation laws, specifically the Burgers’ equation and Buckley-Leverett’s equation. We observe

that the Lagrangian-Eulerian approach is able to capture qualitative correct solutions for linear

and nonlinear scalar problems. The first experiment has a test for the linear case and study

the nature of the scheme in the sense of the modified equation, there we find that according

to the CFL condition that the scheme has a diffusive property (when 𝑣 <
1

2
) or dispersive

property (when
1

2
< 𝑣 <

√
2

2
). An accurate algorithm for the approximation of the Hilbert

transform on the real line and qualitative numerical solutions to the hyperbolic conservation

laws with nonlocal flux, were presented and discussed with distinct initial measure data such
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as Gaussian measure initial data and Oscillatory initial data. Based on the qualitative numeri-

cal experiments, we conclude that the studied Lagrangian-Eulerian scheme is able to compute

qualitatively correct approximations by showing strong evidence of blow-up of concentration

type with mass-preserving of the initial data with respect to the hyperbolic conservation law

with nonlocal flux. As we reproduce numerical experiments of [11, 17], it seems that for some

initial data the nonlocal tansport model problem can be better interpreted as 𝑢t = ⊗(H(𝑢)𝑢)x.

In this case the term ⊗(H(𝑢)𝑢)x is decreased with large grandient and the solution is faster

as the height of the initial data decreased and numerical experiments show that we have evi-

dence of attenuation for any 𝑅 > 0 with an insignificant diffusion effect as we refine the grid.

Otherwise when analysing the case 𝑢t = (H(𝑢)𝑢)x, the term (H(𝑢)𝑢)x increased with a large

gradient. In this case, numerical results show that we have evidence of blow up of concentration

type for any 𝑅 > 0 with mass-preserving as time evolves. Then we can speculate that for the

problem 𝑢t ⊗ (H(𝑢)𝑢)x = 0 the mass 𝑅 serves as a trigger for the concentration effect and the

mass-preserving. Otherwise for the problem 𝑢t + (H(𝑢)𝑢)x = 0 the mass 𝑅 stops the trigger

which leads to an evidence of a diffusion attenuation effect. These results are quite distinct from

those reported in Juan’s thesis [17]. In this relevant work are presented fairly robust numerical

evidences that the term viscous provides a limear 𝑅l > 𝑅 > 0 for the blow-up mechanism

trigger.

In Chapter 4, we used the same framework for numerically approximate the linear

and nonlinear scalar problems for balance laws. For balance law, we need to integrate the source

term on the integral-tube defined by the associated conservation laws. Then we presented and

discussed numerical approximations with grid refinement for scalar balance laws in order to show

the well-balancing of the Lagrangian-Eulerian scheme in the sense that the method captured

the correct steady states entropy-solution and to give evidence of the convergence of the scheme.

In Chapter 5, we used the Lagrangian-Eulerian framework for systems of hyperbolic

conservation laws and balance laws, and we presented and discussed numerical experiments of

hyperbolic conservation law and balance law problems, specifically the shallow water equations,

the immiscible three-phase flow problem with mesh refinement. All numerical experiments were

performed with the most simple first order version of the Lagrangian-Eulerian scheme, and

comparison is made between the numerical results and accurate approximate solutions or exact

solutions whenever possible. We observe that the studied Lagrangian-Eulerian approach is able

to capture qualitative correct solutions for linear and nonlinear problems as well as for systems

in one-dimensional space.
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6.2 Perspectives

Based on the good results reported in numerical experiments, we expect to apply the

Lagrangian-Eulerian scheme to the non conservative Baer-Nunziato model [13]. The isentropic

Baer-Nunziato model is a two-phase flow model formulated in Eulerian coordinates where bal-

ance equations account for the evolution of mass and momentum of each phase. The velocities

of each phase are denoted 𝑢i, 𝑖 ∈ ¶1, 2♢, while the densities are denoted by 𝜌i, 𝑖 ∈ ¶1, 2♢. Each

phase has a statistical phase fraction Ði, 𝑖 ∈ ¶1, 2♢, with the saturation constraint Ð1 + Ð2 = 1.

The model reads:

𝜕tU + 𝜕x𝑓(U) + 𝑐(U)𝜕xU = 0, 𝑥 ∈ R, 𝑡 > 0,

with

U =

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

Ð1

Ð1𝜌1

Ð1𝜌1𝑢1

Ð2𝜌2

Ð2𝜌2𝑢2

⋂︀

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︀

, 𝑓(U) =

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

0

Ð1𝜌1𝑢1

Ð1𝜌1𝑢
2
1 + Ð1𝑝1(𝜌1)

Ð2𝜌2𝑢2

Ð2𝜌2𝑢
2
2 + Ð2𝑝2(𝜌2)

⋂︀

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︀

, 𝑐(U)𝜕xU =

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑢2

0

⊗𝑝1(𝜌1)

0

+𝑝1(𝜌1)

⋂︀

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︀

𝜕xÐ1.

The state vector U is expected to belong to the natural physical space

Ω =
{︁

U ∈ R
5, 0 < Ð1 < 1 and Ði𝜌i > 0 𝑓𝑜𝑟 𝑖 ∈ ¶1, 2♢

}︁

.

As an other perspective, we also intend to formulate a semidiscrete scheme by using

the same Lagrangian-Eulerian framework studied in this master dissertation.

In general, based on the numerical results reported in this master’s work together

with the important theoretical and numerical results of Juan’s thesis [17], we can conjecture

the existence of a limear value for nonlocal hyperbolic flow models that preserve the mass. It is

worth emphasizing that a complete and mathematically rigorous understanding of this model

constitute an open problem.

Analising the approach to nonlocal flux, perhaps the hyperbolic problem with non-

local flux supports self-similar solutions. The advantages from a theoretical standpoint are gen-

erally well understood [14]. However an other interest from a computational point of view can

be very useful to save computational time. Numerical experiments provide preliminary evidence

of blow-up of concentration type and attenuation, in that sense we can argue self-similarity to

study The mass 𝑅 for which the effect of blow-up of concentration type and attenuation effect

are quickly obtained from the conclusion that we have blow-up or attenuation for any 𝑅 > 0.
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