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Resumo

Estudamos aspectos analiticos de solu¢des suaves das equacds de Yang—Mills—Higgs em
variedades riemannianas ndo-compactas com geometria limitada, focando no problema de com-
pacidade para soluc¢des do tipo monopolo sob um certo regime assintdtico de massas arbitrari-
amente grandes em variedades assintoticamente conicas (AC) de dimensdes 3 e 7. No caso
de dimensdo 3, as componentes conexas do espaco de mdédulos de monopolos sdo indexadas
por um inteiro chamado de carga, e consideramos o problema do comportamento limite de se-
quéncias de monopolos com carga fixa k& e massas arbitrariamente grandes, cf. Fadel-Oliveira
[FO19]. Provamos que a comportamento limite de tais monopolos é caracterizado pela concen-
tracdo de energia ao longo de um conjunto finito Z, consistindo de no maximo k pontos nos
quais os zeros dos campos de Higgs se acumulam e um monopolo em R? de massa 1 e carga
1 borbulha. Também apresentamos alguns resultados na direcdo do problema de convergéncia
da sequéncia fora de Z. Finalmente, seguindo uma sugestio do artigo seminal de Donaldson—
Segal [DS09], desenvolvemos o mesmo tipo de andlise para monopolos de dimensdes mais
altas em Go—variedades AC de dimensdo 7 e, sob certas hipéteses brandas, provamos, entre
outras coisas, que o conjunto de acumulacdo dos zeros dos campos de Higgs nesse caso é de
medida H* finita e estd contido em um conjunto H*—retificivel onde a energia intermedidria

da sequéncia se concentra.

Palavras-chave: Gauge, Teorias de; Monopolos magnéticos; Blow-up locus; Geometria

calibrada.



Abstract

We study analytical aspects of smooth solutions of the Yang—Mills—Higgs equations on
noncompact Riemannian manifolds of bounded geometry, focusing on the compactness prob-
lem for monopole solutions under a certain asymptotic regime of arbitrarily large mass on
asymptotically conical (AC) 3— and 7— dimensional manifolds. In the 3—dimensional case,
the connected components of the moduli space of monopoles are labeled by an integer called
the charge, and we consider the problem of the limiting behavior of sequences of monopoles
with fixed charge k and arbitrarily large masses, cf. Fadel-Oliveira [FO19]. We prove that
the limiting behavior of such monopoles is characterized by energy concentration along a finite
set Z, consisting of at most £ points at which the zeros of the Higgs fields accumulate and a
mass 1 and charge 1 R3—monopole bubbles off. We also give some results on the direction
of the convergence problem of the sequence outside Z. Finally, following a suggestion of the
seminal paper of Donaldson—Segal [DS09], we develop the same sort of analysis for higher
dimensional monopoles on 7—dimensional AC G,—manifolds and under certain mild assump-
tions we prove, among other things, that the accumulation set of the Higgs fields zeros in this
case is of finite H*—measure and is included in a H*—rectifiable set where the intermediate

energy of the sequence concentrates.

Keywords: Gauge theory; Magnetic monopoles; Blow-up locus; Calibrated geometry.
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Introduction

The study of gauge theory, particularly Yang—Mills—Higgs theory, has been a powerful tool
in geometry and topology. The pioneering work' of Atiyah, Donaldson, Taubes, Uhlenbeck et
al has led to revolutionary advances in low dimensional topology, differential and algebraic
geometry. The basic concept in the theory is the Yang—Mills—Higgs functional, defined for con-
figurations (A, ®) consisting of a connection A on a SU(2)—bundle over a given Riemannian
manifold X and a section ® of the associated adjoint bundle, as the average square L?-norm of

the curvature of A and the exterior covariant derivative of ®:

E(A, @) := 5 (IFallZz + [lda®]lZ2) -

N —

Its critical points are characterized by a second-order partial differential equation on (A, ®)
called the Yang—Mills—Higgs equations: d’y F4x = [d4®, ®] and A 4® = 0, which one can think
of as a nonlinear analogue of Maxwell’s equations. In the ‘pure’ Yang—Mills case where ¢ = 0,
there is a very important type of manifest solutions in four-dimensions consisting of so-called

(anti-)selfdual connections or instantons, satisfying
xF A= +F A,

under the Hodge star operator. This is a first-order condition, which implies the Yang—Mills
equation: d’y F4 = 0. Moreover, on closed manifolds, instantons are absolute minimizers of the
Yang—Mills energy. The space of equivalence classes of such solutions, modulo symmetries,
is called the (A)SD instanton moduli space (respectively). In particular, outstanding results
on topology of 4—manifolds derive from the study of moduli spaces of anti-selfdual (ASD)
instantons.

From the dimensional reduction of the instanton equation one can also obtain very in-

teresting gauge theoretical equations in lower dimensions; in particular, in 3—dimensions. In

LJust to cite some of them: [Ati78, AHDM78, AB83, Don83, Don85, Don90, DK90, Tau82b, Tau83, Tau84,
Tau87, Tau88, Tau89, Tau90, Uhl82a, Uhl82b, UY86].
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fact, given a noncompact, oriented, Riemannian 3—manifold X3, one can study the so-called
Bogomolnyi monopole equation,

FA = *dACD,

for configurations (A, ®) on a SU(2)—bundle over X?. Solutions are critical points of the
Yang-Mills-Higgs energy functional and are translation-invariant instantons on X? x R. One
usually also imposes suitable asymptotic conditions ensuring finite energy £(A, ) < oo, the
most important being that |®| is asymptotic to a constant m at infinity, for some m > 0 called
the mass of the monopole. A special case is when X = R?, where the scaling invariance of
the Euclidean metric allows one to reduce to the case m = 1. But in general m is a genuine
parameter and one may study the behavior of solutions as m varies, in particular as m — oo.

Extensions of the monopole and instanton equations to higher dimensions exist under the
presence of additional geometric structure [DT98], which is available in certain special holon-
omy manifolds: the monopole equation find parallels in 6—dimensional Calai—Yau manifolds
and 7—dimensional Go—manifolds, and they arise as dimensional reductions of the parallel
instanton equation in 8 —dimensional Spin(7)—manifolds. Donaldson and Segal [DS09, §6.3]
proposed to study these higher dimensional monopoles under the finite mass asymptotic condi-
tion and suggested that under the regime where the mass of the monopoles gets arbitrarily large,
these concentrate along codimension 3 calibrated cycles in these contexts much in the same way
as higher dimensional instantons on closed special holonomy manifolds experience energy con-
centration and bubbling phenomena along codimension 4 calibrated cycles, cf. [Tia00]. In fact,
they suggest that it may be possible that a detailed study of the moduli spaces of finite mass
monopoles, in particular the compactness problem of large mass monopoles and its relation
with codimension 3 calibrated geometry, potentially could lead to the definition of invariants of
certain noncompact special holonomy manifolds.

In this thesis we investigate the problem of the behavior of arbitrarily large mass monopoles
on asymptotically conical 3— and Gs—manifolds. In the 3—dimensional case, the connected
components of the moduli space of monopoles are labeled by an integer called the charge,
and we consider the problem of the limiting behavior of sequences of monopoles with fixed
charge k£ and arbitrarily large masses, cf. [FO19]. In Chapter 3 we prove that the limiting
behavior of such monopoles is characterized by energy concentration along a finite subset Z of
X, consisting of at most k points at which the zeros of the Higgs fields accumulate and a mass

one and charge one R3—monopole bubbles off, cf. Theorem 3.1.1. We also give some results
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on the direction of the convergence problem of the sequence outside Z, cf. Section 3.8.

Under certain mild assumptions, in Chapter 4 we develop the same sort of analysis for the
(Gy—case and prove that the accumulation set of the Higgs fields zeros in this case is of finite
H*—measure and is included in a H*—rectifiable subset where the intermediate energy of the
sequence concentrates (cf. Theorem 4.5.9, Proposition 4.6.12 and Theorem 4.6.13). Moreover,
we give some results concerning the bubbling analysis (cf. Proposition 4.7.4) and finish stating
some conjectures of its possible outcomes.

The first two chapters set the stage and provide important tools for the analysis performed
in the chapters described above. Chapter | introduces the reader to the central objects and
equations of this thesis. We start with the general setup of Yang—Mills—Higgs theory, the action
functional and its Euler-Lagrange equations, then review the unified description of pure Yang—
Mills instantons in dimensions n > 4, mentioning the failure of compactness of their moduli
spaces on closed manifolds via energy concentration along codimension 4 calibrated integer
rectifiable currents. Next, we introduce monopoles, also in a unified setup, in dimensions n > 3,
explaining the particular cases of interest, giving some of their basic properties and explaining
the notions of finite mass configurations as well as the notions of charge and monopole class in
the context of asymptotically conical 3— and G, — manifolds respectively. We finish the chapter
presenting the conjectural picture on their relation with codimension 3 calibrated geometry.

In Chapter 2 we collect some important analytical properties of YMH configurations in
general Riemannian n—manifolds and prove some new results that does not appear in the lit-
erature. We start with a basic scaling property of the YMH/monopole equations and a known
important monotonicity formula for the YMH energy on small geodesic balls in dimensions
n > 4. Then we give simple Bochner—Weitzenbock formulae that imply a known important
estimate on the Laplacian of the energy density. By using these results and a nonlinear mean
value inequality, we prove a n—dimensional ¢—regularity result (Theorem 2.3.1) which has
some strong analytical consequences and whose 3—dimensional instance is key to the analysis
in Chapter 3 (cf. Theorem 3.3.1). We then prove that on a noncompact manifold of bounded ge-
ometry the energy density of a YMH configuration with finite energy decays uniformly to zero
at infinity and attains its maximum (Corollary 2.3.3). Moreover, we prove that for an irreducible
YMH configuration (A, ®) on an AC n—manifold with n > 3, finite energy forces |®| to uni-
formly converge to a constant at infinity and, conversely, that if this holds then |d4®| € L?(X)

(Proposition 2.3.5). In particular, in an AC 3—dimensional manifold, an irreducible monopole
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has finite energy if and only if its Higgs field norm uniformly converges to a constant at infinity
(Corollary 2.3.8).
More detailed summaries of the contents of each chapter can be found in their own intro-

ductions.

Conventions and notations throughout this thesis. X always denotes a connected smooth
manifold without boundary. If g is a Riemannian metric on X then given any € X we denote
by i.(g) the injectivity radius at x, and then we let ix(g) := inf,cx i.(g) be the injectivity
radius of X. Whenever (X, g) is of bounded geometry, we let 0 < 7(g) <, ix(g) be a small
enough constant satisfying the scaling property ro(A\%g) = Ary(g) for all A > 0, and for which
the ball B,,(x) C (X,g) is geometrically uniformly controlled for any = € X. We use the
geometers’ convention for the Laplacian: A := d*d. The gauge theory setup will always be as
in §1.1; in particular, G will always denote a compact semi-simple Lie group and a G—bundle
means a vector bundle associated to a principal G—bundle via a faithful representation. We
denote by ¢ > 0 (sometimes ¢y, ¢c; and ¢’) a generic constant, which depends only on n, the
geometry of the base manifold (X, g) and possibly on the structure group G of the bundle
over X in consideration (it should be clear in each context). Its value might change from one
occurrence to the next. Should ¢ depend on further data we indicate this by a non-numerical

subscript. Finally, we write x < y for z < cy.
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Chapter 1

Gauge theories

In this introductory chapter we briefly review the language of Yang—Mills—Higgs theory,
introducing the relevant objects and equations that will be studied in more detail in the rest
of this thesis. We start in Section 1.1 with a general description of the gauge theory setup,
the action functional and its Euler-Lagrange equations, together with basic observations on its
solutions. We then continue in Section 1.2 with the special case of Yang—Mills instantons in
a generalized context of dimensions n > 4 and mention the failure of compactness of their
moduli spaces on closed manifolds via energy concentration along codimension 4 calibrated
integer rectifiable currents, cf. [Tia00]. Next, in Section 1.3, we introduce the central notion
of monopoles, also in a unified setup, in dimensions n > 3, explaining the particular cases of
interest in 3, 6 and 7 dimensions. We give some of their basic properties, introduce the notions
of finite mass and (generalized) charge in the context of asymptotically conical 3— and G,—
manifolds and cite important energy formulas (cf. [Olil4a]). We finish this chapter presenting
a conjectural picture on the relation of large mass monopoles with codimension 3 calibrated
geometry. The main references for this chapter are Jaffe-Taubes’ book [JT80] and Oliveira’s

thesis [Olil4a].

1.1 Yang-Mills—Higgs theory

Let (X™, g) be an oriented Riemannian n—manifold and let £ be a G—bundle over X,
where the structure group (or gauge group) G is a compact semi-simple Lie group. More
concretely, we shall mostly work with G = SU(2). We write gg for the associated adjoint

bundle, equipped with the metric induced by a suitable normalization of the negative of the
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Killing form on the Lie algebra g of GG; e.g., when G = SU(2) we take the metric induced by the
inner product (a,b) — —tr(ab) for a,b € su(2). We refer to (smooth) sections of gx as Higgs
fields. We write A(E) for the affine space modelled on '(X, g) of (smooth) G—connections
on F, and we let C(E) := A(F) x I'(gg) denote the space of (smooth) configurations on E.

The Yang-Mills-Higgs (YMH) energy of a configuration (A, ®) € C(FE) over an open
subset U C X is given by

Eu(A, D) ::/e(A,@),

U

where

1
e(A, @) = 3 (|Fal® + [da®]?)

denotes the YMH energy density function. Here the integral is taken with respect to the usual
Riemannian measure (which we shall mostly omit), F,y € Q*(X, gg) denotes the curvature of
A, while d4® € Q'(X, gg) is the exterior covariant derivative of ® induced by A, and |-| stands
for the norm induced on gz —valued forms by the tensor product metric. YMH theory is the
variational theory of the functional £y, which is usually considered to be defined on the set of
configurations (A, ®) with |Fy|,|[da®| € L*(X), also known as finite energy configurations.
As a particular instance, the Yang-Mills (YM) energy of a connection A € A(F) over U is
given by
£0(4) = £0(A,0) = 2| Fallfay

The Euler-Lagrange equations' for the YMH energy functional are
dyFa = [da®,?], A4P =0, (1.1.1)

and these are called the YMH equations. Here d* stands for the L?—adjoint operator of d,
which acting on gz—valued k—forms has the form d% = (—1)"*+D+! « d %, where * is the
Hodge star operator associated to g; A4 := d’yda denotes the Laplacian induced by A. In

particular, a smooth critical point A € A(F) of the YM energy satisfies the YM equation:
dyFy=0. (1.1.2)

Definition 1.1.3. A configuration (A, ®) € C(F) is called YMH if it satisfies (1.1.1). A con-
nection A € A(F) is called YM if it satisfies (1.1.2).

Remark 1.1.4. We do not ask for finite energy in any of the definitions.

!with respect to compactly supported variations.
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If (A, ®) € C(E) is YMH then, in particular, A 4® = 0 and this implies that”
P 2
A‘Tl = (O, A ®) — |ds®@* = —|ds®|* < 0. (1.1.5)

As a consequence, the function |CI>|2 is subharmonic, and so, has no local maxima by the Max-
imum Principle (cf. [JT80, Proposition 3.3, Chapter VI]). Thus, if X was to be a compact
manifold (without boundary), then |®|?> would be constant and d4® = 0 = d’ F, in which
case A would be a YM connection. Therefore, if one is to study smooth irreducible YMH con-
figurations, meaning those with d4® # 0, on a manifold without boundary X, then X must be

noncompact.

Remark 1.1.6. Of course one can also consider the theory of weak solutions of the YMH equa-
tions, in some appropriate functional analytic setup depending on X. In this thesis, however,

we shall mostly restrict ourselves to smooth solutions (unless otherwise stated).

We denote by G(F) the group of (smooth) gauge transformations on E. There is a natural
action of G(F) on C(FE), acting on connections via pullback and on Higgs fields by the adjoint
action. By the Ad-invariance of the metric on gg it follows that the YMH energy (density) is
invariant under the action of G(F), and so are the YMH equations (one can also check this
directly).

Now that we introduced the general framework of YMH theory, we turn to special solutions

of the YMH equations.

1.2 Instantons

In pure YM theory, a rather important type of first-order solutions of the YM equation
(1.1.2) appear in four-dimensions, the so-called instantons. Let us briefly recall this classi-
cal notion before giving a more general definition. Let (X*, g) be an oriented Riemannian
4—manifold. Then it is well-known that the space of 2—forms splits orthogonally into so-called
selfdual and anti-selfdual parts, corresponding respectively to +-eigenspaces of the Hodge * op-
erator. Given a G—bundle E over X, this splitting immediately extends to g—valued 2—forms
and a connection A € A(FE) is said to be a anti-selfdual (ASD) instanton if its curvature satis-
fies xF'4 = —F4. These are automatically Yang—Mills connections by the Bianchi identity and

for SU(r)—bundles of positive topological charge over closed 4—manifolds these are in fact

2A denotes the geometers’ Laplacian on functions; A := d*d.
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absolute minimizers of the Yang-Mills functional. If (X", ¢) is an n—dimensional oriented
Riemannian manifold, with n. > 4, the Hodge * operator is not an endomorphism on 2—forms
anymore but rather maps 2—forms into (n — 2)—forms. But if, rather naively, we suppose that
X" is endowed with a (n — 4)—form =, then the operator *(- A =) maps 2—forms into 2—forms
and we could make precise a notion of instanton depending on =. This turns out to be very
interesting in special cases and in this section we shall introduce this higher dimensional notion

of instanton and the particularly important cases it includes.

1.2.1 The instanton equation

In the context of §1.1, now suppose that n > 4 and furthermore that X admits a closed

(n —4)—form = € Q" *(X,R).

Definition 1.2.1 (Instantons). A connection A € A(F) is called a =—instanton on X if it
satisfies

«(FA ANE) = —F}y. (1.2.2)

Since = is closed, it follows from the Bianchi identity that every =—instanton is a Yang—
Mills connection.

However, even when = is a parallel form, the algebraic equation (1.2.2) is in general
overdetermined and may admit no solutions at all. When n > 4, this definition behaves best
when (X™, g) has special holonomy so that it admits a natural geometric structure defining =.
Indeed, the interest in studying this equation in general lies on the following particular types of

settings (X", ¢g,Z):

(i) (X%, g) an oriented Riemannian 4—manifold and = = 1. Then equation (1.2.2) is of

course the classical anti-self-dual (ASD) instanton equation: xF'y = —F4.

(i) (X?™,g) Kihler m—fold with m > 2 and = = ™2 where w is the associated funda-

(m—2)!°
mental (1, 1)—form. Then equation (1.2.2) is the Hermitian—Yang-Mills (HYM) equa-

tion: Fg’Q = 0and A, F4 = 0, where A, is the dual Lefschetz operator.

(iii) (X7, g) a Go—manifold and = = ¢ the Go—structure 3—form. Then equation (1.2.2) is

the Gy —instanton equation which can be written as F)4 A ¢ = 0, where ¢ = %¢.

(iv) (X®, g) a Spin(7)—manifold and = = € the Spin(7)—structure 4—form. Then equation
(1.2.2) is the Spin(7)—instanton equation: *(F4 A Q) = —F}y4.
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In all the above cases, it turns out that = is in fact a calibration. Recall that a k—form o €
OF(X) is called a calibration if it is closed and has comass(a) < 1, i.e., da = 0 and for each
r € X and each oriented k—plane V* < T, M we have aly < voly. Then a closed oriented
k—dimensional submanifold Q¥ C X™ is called calibrated with respect to « if a|r,o = volr,¢
for all z € Y. We note that this notion also extends to rectifiable k—currents, which are some
sort of generalized (possibly very singular) submanifolds in the sense of geometric measure
theory. The key property of calibrated submanifolds (and currents) is that they are volume
minimizers in their homology class, attaining a topological volume bound.

It turns out that =—instantons in all the above cases, when they exist, are also energy
minimizers for the SU(r) YM energy attaining a topological energy bound. The energy bound

is given by the following simple result.

Lemma 1.2.3 (Topological energy bound). Ler (X", g,=) be a closed, oriented, Riemannian
n—manifold, n > 4, together with a calibration (n — 4)—form = € Q" 4(X). Let E be a
SU(r)—bundle over X. If (co(E) U [Z],[X]) > 0and A € A(E) is a E—instanton then

E(A) = dn*(c2(E) U ], [X]).

1.2.2 Non-compactness phenomena and codimension 4 calibrated geom-

etry

The =—instanton equation (1.2.2) (and, more generally, the Yang—Mills equation (1.1.2))
is invariant under the group G(F) of gauge transformations of £. A major difficulty in the
study of Z—instantons is that their moduli spaces need not be compact. This non-compactness
phenomenon has two causes: the formation of non-removable singularities and bubbling in
codimension four. In fact, Tian [Tia0O] discovered that there is an interesting relation between
gauge theory in higher dimension and calibrated geometry via the bubbling process. In par-
ticular, his general foundational compactness result—extending work of Uhlenbeck [Uhl82a],
Price [Pri83] and Nakajima [Nak88] —, together with the removable singularity theorem of

Tao-Tian [TTO04], can be summarized as follows.

Theorem 1.2.4 (Uhlenbeck, Price, Nakajima, Tian, Tao). Let (X", g, Z) be a closed, oriented,
Riemannian n—manifold, n > 4, together with a calibration (n — 4)—form = € Q"4(X).
Let E be a SU(r)—bundle over X and let {A;} C A(E) be a sequence of E—instantons over

(X, g). Then there exist constants ¢ > 0 and i,y > 0, where ¢ depends only on n and the
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geometry of (X™,g), and €y depends furthermore on the structure constants of su(r), such

that the following holds.

o The subset S C X defined by

=S {A;}) = ﬂ {x € X : liminf e ”/ |Fa, PH™ > &?inst}
By (x)

1—00
0<r<ro
is closed and satisfies H"*(S) < oo. Moreover; after passing to a subsequence, there
are gauge transformations o; € G(E|x\g) such that o} A; converges to a Z—instanton A

on E|x\g in C2 outside S.

e There exists a bounded upper semicontinuous function © : S — [ging, 00) such that, as

Radon measures,
|Fa,|PH™ — |FalPH" + OH"*|S.
o S decomposes as S = 1" Using(A), where
I = supp(OH"*|S) and
sing(A) = {x € X: limsupr4"/ ( )]FAIQ’H” > O} ;

rl0

[ is countably H"~*—rectifiable and, for H"*—a.e. x € T, Z|r,r is a volume form on

T.T; moreover, H" *(sing(A)) = 0.

e The connection A extends to a Z—instanton on a SU(r)—bundle E over X \ sing(A)

which is isomorphic to E over X \ S.
o For H" *—a.e. v € T, there exists a non-trivial ASD instanton J(x) on T,I'* satisfying
O(z) > £(3(x)) (1.2.5)

and whose pullback to 1, X is gauge-equivalent to the limit of a blowing-up of the se-

quence {A;} around the point x.
e Finally, the (n — 4)—current C(I', ©) given by
C(T, 0)( :_/ Elr, 0)0d (H" ), Ve Q" 4X),

is a Z—calibrated integer rectifiable current satisfying conservation of instanton charge

density, in the following sense: for every p € Q" 4(X),

lim [ (Fa, A Fa) A g = / W(Fo A Fa) A g+ 8720, 0)(0).  (12.6)
X

1—00 X
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In particular, the L?—energy is conserved:
87T2<02(E) U [E], [XD = HFAH%2(X\S) +/F@d (’H"*ﬂl“) .

Remark 1.2.7. In the situation of Theorem 1.2.4:

e The function © measures the energy density lost by the sequence around a point x € I'.
If, instead of a single ASD instanton bubbling off transversely at = € I', there is actually

a whole bubbling tree of ASD instantons, then the inequality (1.2.5) is necessarily strict.

e In the simplest case, the singularities of A are removable, I" is a smooth =—calibrated
submanifold, and the bubbling trees of ASD instantons consist of single ASD instantons
forming a smooth section J of an instanton bundle associated to the normal bundle of I'
and the restriction E|r of the ambient bundle. Conjecturally, in case (X, g,Z) is a Go—

or Spin(7)—manifold, J should satisfy a certain non-linear Dirac equation, associated to

= and the restriction A|r, called the Fueter equation, see [Wall7b, Wall7¢,Hay17].

Remark 1.2.8. Two of the most important analytical results underlying the blow-up analysis
and proof of Theorem 1.2.4 are the pure YM instances of the monotonicity formula of Theorem
2.1.2 and the e—regularity of Theorem 2.3.1. A self-contained comprehensive treatment on
the proof of Tian’s bubbling theorem (accounting for all the results in Theorem 1.2.4 but the
singularity removal result of Tao—Tian) can be found in the book by the author and his supervisor

S4 Earp [FSE19].

We finish this section with a simple linear algebra result which is the reason why ASD

instantons bubbles off transversally.

Lemma 1.2.9 ([Fad16, Proposition 2.3.6]). Suppose n > 4, let = € Q"*(R"™) be a calibration,
let R" = R"* @ R* be an orthogonal decomposition and let E be a G—bundle over R* where
G is a compact semi-simple Lie group. If I € A(FE) is a non-flat connection then the following

are equivalent:
(i) The lifted connection I is a Z=—ASD instanton.

(ii) There exist orientations on R"™* and R* with respect to which = calibrates R"~* and I

is an ASD instanton on R*,
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1.3 Monopoles

1.3.1 The monopole equation

In the context of §1.1, now suppose that n > 3 and furthermore that X admits a closed
(n — 3)—form © € Q" 3(X,R). As some sort of a dimensional reduction of the previous

section notion, we introduce the following.

Definition 1.3.1 (Monopoles). A configuration (A, ®) on F is called a ©—monopole on (X, g)
if it satisfies

FoAO =xd,d. (13.2)

Since O is closed, it follows from the Bianchi identity that a solution (A, ®) to (1.3.2)
satisfies A4® = 0.

In this thesis we are particularly interested in monopoles (rather than instantons), and our
interest in introducing equation (1.3.2) in general lies mainly on two of the following three

particular types of settings (X", g, ©):

(a) When (X 3 g) is an oriented Riemannian 3—manifold we take © = 1, so that (1.3.2) is

the classical Bogomolnyi equation:
Fp = xd 9, (1.3.3)

and its solutions are simply called (Bogomolnyi) monopoles. This equation can be ob-
tained from the dimensional reduction of the ASD instanton equation on M* := X3 x R,
with the standard product structure. Indeed, let £ — M* be the pullback bundle. Then
an R—invariant connection A on E is always of the form A = A + ® ® dt, where (A, )
is a configuration on £ — X3, and A and ® denote the corresponding pullbacks. Now

one may easily check that x4y = —F) if and only if (A, ®) satisfy (1.3.3).

Monopoles are easily seen to be YMH configurations and, in fact, in suitable cases (e.g.
G = SU(2) and X?® = R?) they are absolute minimizers of the YMH energy func-
tional. They have been focus of intense study in conformally flat manifolds such as R?
(some of the earlier references in the mathematics literature are [Tau82a, JT80, AH88])
and R? x S* (see for example [CKO01,CKO02,Fos16]), as in these cases the moduli spaces
of monopoles are (noncompact) Hyperkihler manifolds. In more general geometries,

Braam [Bra89] considered monopoles on asymptotically hyperbolic manifolds, while
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(b)

(c)

Floer [Flo95, Flo95] and Ernst [Ern95] studied monopoles on asymptotically Euclidean
(AE) ones, which are natural generalizations of the R? situation. A further generalization
of the R? situation, which contains the AE case as a subcase, is that of asymptotically
conical (AC) manifolds [Kot15], [Olil6c], [FO19], which we shall focus in this thesis.
We shall study these on Chapter 3.

If (X5, g) is a Calabi-Yau 3—fold, we take © = €, the real part of the holomorphic
volume form 2 € Q*%(X, C). Then (1.3.2) gives the Calabi-Yau monopoles equation
Fi AN Q= xdyP, which comes with the condition A,F4 = 0. These can be obtained
from the dimensional reduction of the G, —instanton equation. More generally, one may
study complex Calabi—Yau monopoles, i.e. pairs (A, ®), where ® € Q°(X, g%) is a com-
plex Higgs field, such that %F WA =x0,Pand AFy = %[@, ®]. Besides its mention in
[DS09, §6.3], the only mathematical reference studying these monopoles that the author
knows is Oliveira’s work [Olil4a, Olil6a], where he constructs the first nontrivial exam-
ples under a symmetry assumption, on the cotangent bundle of the 3—sphere endowed
with the (AC) Stenzel metric. His main results constructs the moduli space of such sym-
metric monopoles, show that they are parametrized by their mass (i.e. the asymptotic

value of |®|) and then describes their behavior in the large mass limit.

When (X7, g) is a Go—manifold we take © = 1) the Gy—structure 4—form. Then equa-

tion (1.3.2) is the G, —monopole equation:
Fa Ny = xdy®. (1.3.4)

This can be obtained from dimensional reduction of the Spin(7)—instanton equation, and
includes G,—instantons as pure Yang—Mills solutions (these are the only solutions in the
compact setting, cf. Proposition 1.3.11). Oliveira [Olil4a, Oli14b] studied these under a
symmetry assumption on the three Bryant—Salamon examples of AC G,—manifolds. He
gives the first nontrivial examples of G;—monopoles constructing the moduli space of
symmetric monopoles on two of these manifolds: the total spaces of the bundles of ASD
2—forms over the 4—sphere and CP?, and showed analogous results as those described
above in (b), as well as proves a vanishing result for monopoles on the total space of
the spinor bundle over the 3—sphere. In [Olil6b] he also studies Gy—monopoles with
singularities. We shall study more closely G,—monopoles on AC manifolds in Chapter

4.
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As it should be clear from the above, in this thesis we shall focus in cases (a) and (¢), i.e. the
3—dimensional Bogomolnyi equation (1.3.3) and the higher dimensional G, —monopole equa-
tion (1.3.4). Even so, it is convenient to use the © —monopole notion to unify some common
properties that we shall need.

There is an important energy functional associated to the notion of ©®—monopoles and

directly related to the YMH energy functional.

Definition 1.3.5. Let U C X be a precompact open subset. The ©—energy of £ of a config-
uration (A, ®) on U is defined by

C] o e@
e(4.0):= [ E(a.0)

where

e9(A, @) := = (|[Fa A O + |da®|?)

DO | —

is the ©—energy density.
A standard computation of the first variation gives the following.

Proposition 1.3.6 (cf. [Olil4a, Proposition 1.3.2]). The Euler—Lagrange equations for the

©—energy functional are
dimo(Fa) = [da®, P], A,P =0, (1.3.7)
where 1o (Fa) = x(x(F4 A ©) A O).
Some comments are in order:

e The YMH energy and the ©—energy agree in the classical 3—dimensional case (a), and

so does their Euler-Lagrange equations.

e As for the Calabi—Yau case (b), the complex structure gives the bi-degree splitting Q2 =
020 @ QM @ Q02 then 7o (Fy) = —2(F7° + F5?). So the ©—energy just measures
the L?>—norm of FX’Z (for unitary A) and its Euler—Lagrange equations are A 4@ = 0 and

1
N = 3104, @].

e In the Gy—case (c), the Gy—structure gives the splitting Q? = Q% © O3, and 7o (Fa) =
3m7(F4). So the ©—energy just measures the L?—norm of 77(F4) and the Euler—Lagrange

equations are the YMH equations since by Go—linear algebra one has

d:quA == 3dZ7T7(FA) = dZﬂ'@(FA).
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Using integration by parts, one can easily prove the following energy identities:

Proposition 1.3.8 (cf. [Olil4a, Proposition 1.3.4]). Let U C X be a precompact subset with
smooth boundary OU, and let (A, ®) be a configuration on E. Then:

e = [

1
8U<c1>,FA> /\@+§||FA/\@—*dA<IJ||%2(U). (1.3.9)

Moreover, in case (X7, g) is a Goa—manifold one has

Eu(A ) = —%/

1
(D, F4) AN+ §HFA AP = 5da®||72. (1.3.10)
U

<FA/\FA>/\¢+/

oUu

For noncompact manifolds X with an end of a suitable type, it can happen that the first term
in the energy identity (1.3.9) will give rise to a quantity that is fixed in terms of the topology
of the bundle F and © (e.g. X = R? or, more generally, on asymptotically conical manifolds
under mild assumptions, cf. Propositions 1.3.18 and 1.3.23). Since the second term is always
greater than or equal to zero with equality if and only if (A, ®) is a ©—monopole, it follows
that in such cases the © —monopoles minimize the © —energy.

In accordance with what we already remarked for YMH configurations in §1.1 (recall that

Bogomolnyi and G, —monopoles are YMH configurations), Proposition 1.3.8 gives:

Corollary 1.3.11. If X is closed and (A, ®) is a ©—monopole then £Q = 0 and d,@ = 0 =
F4 N\ ©. In particular, if ® # 0, the connection A is reducible.

It follows from the above result that in order to study solutions of equation (1.3.2) with
da® # 0 one must either let X be compact with nonempty boundary, noncompact or allow the
monopoles to have singularities. In this thesis we shall focus on the noncompact manifolds of

bounded geometry, specially on asymptotically conical manifolds.

1.3.2 Monopoles on asymptotically conical (AC) manifolds

In this section we introduce the main class of noncompact Riemannian manifolds of bounded

geometry with which we shall work in this thesis.

Definition 1.3.12. Let (X", ¢g) be a complete, oriented, Riemannian n—manifold. Then (X", g)
is called asymptotically conical (AC) with rate v < 0 if there exist a compact subset K C X,
an oriented, closed (compact and without boundary) Riemannian (n—1)—manifold (N"~!, gy ),

and an orientation preserving diffeomorphism

p:C(N):=(1,00), x N> X\ K
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such that the cone metric g¢ := dr? + rgy on C(N) satisfies
V7 (g — go)|lc = O(r"™7) asr — oo forall j € Ny.

Here V is the Levi—Civita connection of g-. We say furthermore that X has one end if N
is connected, and we refer to X \ K as the end of X. N is called the asymptotic link of

X. A distance function on X will be any positive smooth function p : X — R™ such that

p|X\K =ropt

Finite mass configurations. On AC manifolds, we shall be interested in the following partic-

ular class of configurations.

Definition 1.3.13. Let (X", g) be an AC oriented Riemannian n—manifold with one end, as in
Definition 1.3.12. Let E be a G—bundle over X and suppose there exists a G—bundle £, over
the asymptotic link N of X together with an isomorphism of bundles ¢* (E |x\ K) = 1P,
where 7 : (1,00) x N — N is the projection onto the second factor. A configuration (A, ®) on
E is said to have finite mass if there exists a connection A, on F, such that A is asymptotic

to A, with some rate 7 < 0, i.e.
|V (p*V4—7*Voo)| = O(p"'77) asp— ooforall j € Ny and for some < 0, (1.3.14)
and there is a positive constant m € R* with

lim |®| = m. (1.3.15)

p—+00

We call the constant m the mass of (A, ©).

Remark 1.3.16. Definition 1.3.13 may not be the most general one, but the analysis of the
next chapters will motivate it better in the case of YMH configurations and monopoles. For
instance, Proposition 2.3.5 and Corollary 2.3.8 will relate the asymptotic condition (1.3.15) to
finite energy assumption. Below we shall also see that one can prove nice energy formulas
with it for YMH configurations under reasonable assumptions. Moreover one should have in
mind that all nontrivial examples of monopoles on AC 3—dimensional, Calabi—Yau and Go—

manifolds constructed in [Olil4a] satisfy these assumptions.

Remark 1.3.17. If (A, ®) is a YMH configuration with finite mass m then, by subharmonicity,
as |®| converges to m along the end of X, the maximum principle yields that either |®| < m on

X or |®| is constant equal to m.
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Charge and energy formula in the 3—dimensional case. Let (X3, g) be an AC oriented
Riemannian 3—manifold with asymptotic link /N, fix a smooth radius function p on X, and
let £ be an SU(2)—bundle over X. We note that E is necessarily trivializable, since SU(2)
is 2—connected. Now let (A, ®) be a configuration with finite mass m # 0. Then there is
r > 1 so that ® does not vanish in p~'[r, 00). It follows that the various ®|,-1(, yield a well
defined homotopy class of maps p~*(r) & N? — su(2)\{0} = S?. The degree of such maps is
therefore a well defined integer k called the charge of (A, ®). Equivalently, the eigenspaces of
® split the bundle in this region as |,y = L @ L~1, for some complex line bundle L over
N = p~!(r). Moreover, the degree of any such L does not depend on r and equals to the charge
kof (A, ®).

In particular, in this 3—dimensional AC case, using the energy identity of Proposition 1.3.8 one

can prove the following energy formula.

Proposition 1.3.18 ([Olil4a, Corollary 1.4.11]). Let (X3, g) be an AC oriented Riemannian
3—manifold and E be an SU(2)—bundle over X. If (A, ®) € C(FE) is a finite mass monopole

of mass m # 0 and charge k, then
Ex(A, D) = dmmk. (1.3.19)

In fact, more generally, one has the following. Suppose that (A, ®) € C(FE) has finite mass

m # 0, charge k and satisfy the following conditions:

(i) (A, ®) is asymptotic to a configuration (A, Ps) on Ex, with rates 1 — 1 for the con-

nection and —1 for the Higgs field, with all derivatives, for some n < 0;
(ii) Ao is YM, dy P = 0and (O, Fa_ ) # 0.
(iii) Ex(A, D) < oo.
Then A, is reducible and
Ex(A, @) = 4mmk + %II * Fy — da®||72x)- (1.3.20)

Notice that the first term of (1.3.20) is fixed by the charge and mass while the second is
nonnegative, and vanishes if and only if (A, ®) is a monopole. Thus showing, in particular, that

monopoles minimize the YMH energy amongst such finite mass m and charge k£ configurations.
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AC G,—structures and energy formula in the 7—dimensional case.

Definition 1.3.21. Let N° be a 6—manifold. A pair of forms (w, ;) € Q2 ® Q3(N,R) deter-

mine an SU(3)—structure on N if:
e The GL(6, R) orbit of {2, is open, with stabilizer a covering of SL(3, C);

e The following compatibility relations hold

wS

1
5 - 191 /\QQ,

U)/\Ql :(JJ/\QQZO,
where (2, := J(2; and J denotes the almost complex structure determined by €2;;

e gy :=w(:,J ) determines a Riemannian metric on N.

If, furthermore, the forms (w, €2y, €29) satisfy
dQy = —2w? and dw = 30y,
then (NN, gy ) is said to be nearly Kihler.

Lemma 1.3.22. Suppose that N is endowed with an SU(3)—structure determined by (w, ;).

Then the Riemannian cone (C(N) := (1,00), x N, gc := dr* + r’gx) with the Go—structure

2
bo =1r2dr Aw~+13Q, Yo = 7’4% —73dr A Q,

is a Go—manifold if and only if (N®, gn) is nearly Kdihler:

Thus if X is an AC oriented Riemannian 7—manifold endowed with a compatible torsion-
free Go—structure (1, g), then its asymptotic link (N, gy) is necessarily nearly Kéhler. More-

over, it follows that ¢ has the same asymptotic rate of the metric:
V7 (") —bo)|c = O(r*™7) asr — oo forall j € Np.
In this context, one can prove the following energy formula.

Proposition 1.3.23 ([Oli14b, Proposition 4]). Let (X7, 1, g) be an AC Gy—manifold with one
end, with asymptotic link N, and E be an SU(2)—bundle over X. Suppose that (A, ®) € C(E)
is a finite mass Go—monopole of mass m # 0 and |A — As| = O(p"75) as p — oo for some
n < 0. Then (E, As) is reducible to a complex line bundle L — N such that E|,-1 )~y =
L& L forr > 1, and

EV(A, ®) = dmm(cy (L) U [*¢], [N]), (1.3.24)
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where [1*1)] € H*(N,R) is the cohomology class obtained by restricting [1)] € H*(X,R) to any
cross section p~Y(r) = N forr > 1. In fact, more generally, one has the following. Suppose

that (A, ®) € C(E) is of finite mass m # 0 and satisfy the following properties:

(i) (A, ®) is asymptotic to a configuration (As, Poo) on E, with rates n — 5 for the con-

nection and —5 for the Higgs field, with all derivatives, for some n < 0;

(ii) A is Hermitian—Yang—Mills with respect to the nearly Kdihler structure of N, i.e. Fa__ N\
Qo =0and Fy_, A w? = 0;

(iii) EL(A, D) < co.
Then Ao, is reducible and
. 1
EV(A, ®) = dmmic (L) U [* Y], [N]) + Sl Fane - da®|720x)- (1.3.25)

Under the hypothesis of Proposition 1.3.23, keeping the class ¢; (L) U [t*9] fixed, it follows
that Go—monopoles minimize the 1)—energy. The class [t*1)] is determined by the calibration
and ¢;(L) € H?(N,R) by the asymptotic behavior of the Go-monopole. We call such ¢;(L) a
monopole class and this is the higher dimensional analog of what in 3 dimensions is known as

the monopole charge.

1.3.3 Conjectural picture: large mass monopoles and codimension 3 cali-

brated geometry

By the invariance of equation (1.3.2) under the action of the gauge group G = G(F), one

is interested in the moduli space of irreducible monopoles on E':
Meo(X,E) = {(A,® #0) : (A, ®) is a solution of (1.3.2) and A is irreducible} /G.

Let us retrict attention to monopoles on a Go—manifold X. Then, in parallel with the in-
stanton case (cf. Tian’s theorem 1.2.4), Donaldson—Segal [DS09] suggested that these might be
related to coassociative submanifolds of X, i.e. 4—dimensional ¢)—calibrated submanifolds (in
the Calabi—Yau case these would be the special Lagrangian submanifolds). Joyce [Joy16] gives
some conjectures which attempt to define an invariant of a Gy—manifold by counting rigid,
compact coassociative submanifolds. In fact, it follows from McLean’s work that a closed

coassociative submanifold Q C X deforms in a smooth moduli space of dimension b, (Q).
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Hence these are rigid when b, () = 0 and one could hope to count these. Another (possibly
complementary) attempt to define an enumerative invariant of G,—manifolds is by an appro-
priate count of monopoles and the idea is that this may be related to a count of coassociative
submanifolds via the (non)compactness problem for Mg (X, F): the general expectation is
that sequences of monopoles under the regime where the asymptotic values of the Higgs fields
norms at infinity (their mass) becomes arbitrarily large, should concentrate along coassociative
cycles whose homology class is determined by the topological type of the bundle £. Such a
concentration phenomena is then expected to be modelled on R3—monopoles along the fibers
of the normal bundle to the coassociatives; in fact, there is an analogue of Lemma 1.2.9 for

Gy—monopoles. (One can write down a similar result for the Calabi-Yau case.)

Lemma 1.3.26. Let R” = R* @ R3 be an orthogonal decomposition and let E be a G—bundle
over R3. If (A, ®) is a configuration on E with A non-flat and d,® # 0, then the following are

equivalent:
(i) The lifted configuration (A, ®) is a Gy—monopole.

(ii) There exist orientations on R* and R? with respect to which 1) calibrates R* and (A, ®)

is a monopole on R3.

The works of Oliveira [Olil4b, Olil6a] provides concrete instances of these general ex-
pectations on the codimension 3 concentration phenomena for large mass monopoles under
symmetry assumptions on certain examples of AC Calabi—Yau and G;—manifolds.

In Chapters 3 and 4 of this thesis we start the investigation of the general behavior of large

mass monopoles on AC 3—dimensional and G,— manifolds respectively.
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Chapter 2

General properties of YMH configurations

In this chapter we gather some important analytical properties of YMH configurations in
general. These will be useful for the analysis of sequences of large mass YMH/monopoles
configurations on the next chapters.

We start with a basic scaling property (Proposition 2.1.1) of the YMH/monopole equations
and a key monotonicity formula (Theorem 2.1.2) enjoyed by YMH configurations in dimensions
n > 4. Then we move to Bochner—Weitzenbdck formulas that imply an important estimate on
the Laplacian of the energy density (Corollary 2.2.4). By using these results and a nonlinear
mean value inequality, we then derive an e—regularity result (Theorem 2.3.1) that has some
powerful analytic consequences. For instance, we prove that on a noncompact manifold of
bounded geometry the energy density of a YMH configuration with finite energy decays uni-
formly to zero at infinity and attains its maximum (Corollary 2.3.3). Moreover, we prove that
for an irreducible YMH configuration (A, ®) on an AC n—manifold with n > 3, finite energy
forces |®| to uniformly converge to a constant at infinity and, conversely, that if this holds then
|da®| € L*(X) (Proposition 2.3.5). In particular, in an AC 3—dimensional manifold, an irre-
ducible monopole has finite energy if and only if its Higgs field norm uniformly converges to a
constant at infinity (Corollary 2.3.8).

In the last section, we generalize a result of Taubes for monopoles on the Euclidean space
R to finite mass YMH configurations on AC n—dimensional manifolds with n > 3 (Theorem
2.4.1). Our result controls how big the radius of a ball should be so that it contains points where
the Higgs field norm of a finite mass YMH configuration is bigger than a given portion of its

mass.
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2.1 Scaling properties and a monotonicity formula

Notations. Consider the setup of §1.1. Henceforth, it will be convenient to use the follow-
ing notations. If we scale the metric g by A2, for some A > 0, then for the new metric g, := \g

we write:
e B} (x) := open gy—ball of center z and radius 7;
o c\(A,\71®) := g\—YMH energy density of (4, \71®);
e vol, := g),—volume form:;
e &) := g»—YMH functional over U.
With these notations, note that the following identities holds:
o B} (x) = By(x);
o (A, NT1D) = \1e(A, D);
e vol, = \"vol;
o EH(ANTID) = \IEL (A, D).

We shall use analogous notations for the ©—energy density and functional.

We start with a basic scaling property of the YMH and © —monopole equations.

Proposition 2.1.1. Let (X", g) be an oriented Riemannian n-manifold, E a G-bundle over X,

and (A, ®) a configuration on E. For any real \ > 0, the following holds:
o If (A, ®)is YMH on (X", g), then (A, \7'®) is YMH on (X™, gy).

e Suppose © € 0" 3(X,R) is a calibration. If (A, ®) is a ©—monopole on (X", g), then
(A, \71®) is a (\"30)—monopole on (X", g)).

Proof. Acting on k—forms, the Hodge-* operators associated to g, and g are related by
x\ = A""?kx. Therefore, we have d} Fy = A\72d Fa = A\ "2[d4®, ] in the YMH case, and
#A(da(ANT1P)) = A3 % da® = Fa A (A\"730) in the ©—monopole case. |



CHAPTER 2. GENERAL PROPERTIES OF YMH CONFIGURATIONS 33

We now cite a key monotonicity property enjoyed by the renormalized scale-invariant
YMH energy of YMH configurations on geodesic balls in dimensions n > 4. For YM con-

nections this was proved by Price [Pri83]; the proof in the YMH case is analogous.

Theorem 2.1.2 ([Aful9, Theorem 2.1]). Let (X", g) be an oriented Riemannian n—manifold,
where n > 4, and let E be a G—bundle over X. Let x € X, write p := d’(x, -) for the distance

function from x, and suppose the Hessian estimate
2 2 (1 o 2
P gp=g—V {50 | Scipgp

holds on B, (x) for some r,, € (0,i,(g)] and c+ > 0, where g, := g — dp ® dp. Then there is a
constant ¢ = ¢(n, cy.) > 0 such that if (A, ®) € C(F) is YMH then the inequality

d

5 <€CT2T4_H(€BT($) (A, @)) Z 60T2T4—n/

[OpaFal* + 1da 9, @]
OBr(x)

+ ec’"Qr?’"/ |ds®* >0 (2.1.3)
Br(x)
holds for all r < r,. In particular, for all 0 < s < r < r, one has
68T2T4_ngB7.(z) <A7 @) . 6352 84_n€Bs(a:) (147 @)
> / e p (10, 5F al? + |da g, @), (2.1.4)
A s(z
where A, s(x) := B,(x) \ Bs(x). Furthermore:

o If X" =TR"or' S"(—k?), then c = 0 and the inequalities (2.1.3) and (2.1.4) holds for all

rze Xandr > 0.

o If(X™, g) is of bounded geometry (e.g. AC or compact), then there are uniform constants
ro € (0,ix(g)] and ¢ = ¢(n,g) > 0 such that the inequalities (2.1.3) and (2.1.4) holds
forallx € X andr € (0,71¢).

One consequence of the monotonicity formula is the following vanishing result (compare

with [Pri83, Corollary 2, p. 148] and [JT80, Corollary 2.3]).

Corollary 2.1.5 ([Aful9, Theorem A]). Let (A, ®) be a YMH configuration on X" = R" or

S"(—k?). If there is some x € R™ such that®

Epp)(A, @) = o(R"™") as R — oo, (2.1.6)

15" (—k?) denotes the hyperbolic n—space of constant sectional curvature —r?2.
2Here we use the standard little-o notation.
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then (A, ®) is gauge equivalent to the canonical flat connection and a constant function R" —
g. In particular, for n > 5 there is no non-trivial finite energy YMH configuration on R" or

S (—kK2).

Proof. Suppose, by contradiction, that F'4 or d 4 is nonzero. Then there exists some Ry > 0

large enough so that

A= R4 "8BR (A, @) >
On the other hand, for each R > R, Theorem 2.1.2 implies that
A< R4_ngBR(x)(A, (P)

Thus, making R — oo and using the hypothesis (2.1.6) we conclude A < 0 (=<=). This proves

the main statement. [ |

2.2 Bochner—Weitzenbock formulas and estimate

The following are simple but very useful Bochner—Weitzenbock formulae for general YMH
configurations that immediately gives an important estimate on the Laplacian of their YMH
energy density and later we will used in Chapters 3 and 4 to derive improved estimates for the
energy density of monopoles in dimensions 3 and 7 (cf. Corollary 3.8.2, Proposition 4.2.1 and

Corollary 4.2.6).

Lemma 2.2.1. Let (X", g) be an oriented Riemannian n—manifold and E be a G—bundle over
X where G is a compact Lie group. Equip g with an Ad-invariant inner product. Suppose that

(A, ®) is a smooth YMH configuration on E. Then
%A\dACI)P = — {(da®) o Ric?, d4®) — 2(x[xF4,d1®],d,®P)
—|[da®, ®]|> = [Va(da®)[? (2.2.2)
and’
%A|FA|2 =— (Fyo(Ric! AT +2R9),Fy) — {[da®,da®P], Fu)

— > [Fy. Fitl, Fs) — |[Fa, @] = [VaFal® (2.2.3)
0,5,k

Here A := d*d denotes the (positive definite) Laplacian and Ric? the Ricci curvature

tensor of g.

3F;; := F4(e;, e;) denotes the components of the curvature on a local orthonormal frame {e; }.
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Proof. The formulas follows by straightforward computations using the YMH equations and
the standard Bochner—Weitzenbock formulas. We shall do the proof of (2.2.2). First recall the

Bochner—Weitzenbock formula (cf. [BLJ81]) for the Laplacian of gg—valued 1—forms:
AA(dACI)) = VZVA(dACD) + (dACI)> o Ric? + *[*FA, dA(D]
Then,
1
§A|dAd>|2 = (V4 V4d @, dy @) — |V 4(ds®)|?
= (A4(dg®),ds®) — ((da®) o Ric?, da®) — (¥[xFy,ds®],ds®) — [V 4(ds®)|>.
But since (A, ®) is YMH, one has
Ax(da®) = dda(daD)

= d%[Fa, D]

= *dA[*FA7 (I)]

= % ([dA * FA, (I)] — [*FA, dA(I)])

= [szAa (I)] - *[*FAaqu)}

= [[da®, @], ] — [« F4,daD].

Putting the above together using the Adg-invariance of the inner product (-, -) gives the result.

Corollary 2.2.4 (Bochner type estimate). Let (X", g) be an oriented Riemannian n—manifold,
let E be a G—bundle over X, and let (A, ®) be a YMH configuration on E. Then the following

estimate holds pointwise on X :

Ae(A, ) < [RYe(A, D) + e(A, D)*/2, (2.2.5)

2.3 c—regularity and some consequences

Combining the Bochner estimate and the monotonicity formula of the last sections, we can

use the nonlinear mean value inequality of Theorem A.3 to prove the following.

Theorem 2.3.1 (¢—regularity for the total YMH energy density). Let (X", g) be an oriented

Riemannian n—manifold of bounded geometry and let E be a G—bundle over X where G is



CHAPTER 2. GENERAL PROPERTIES OF YMH CONFIGURATIONS 36

a compact Lie group. Then there are (scale invariant) constants ¢y > 0 and Cy > 0 with the

following significance. Let (A, ®) be a YMH configuration on E. If x € X and 0 < r < r( are

such that
€= 7“4_n<€Br(x)(A, (I)) < €p,
then
sup e(A, ®) < Core. (2.3.2)
By (x)

Proof. We apply the mean value inequality given by Theorem A.3 for f := e(A, ®), d = 4,
7 =20,a0 = 0and 0 < a;,a < 1. Indeed, with this setup, the monotonicity formula of
Theorem 2.1.2 implies (A.4) in case n > 4 (in case n < 4 it is trivially satisfied), and the
Bochner estimate of Corollary 2.2.4 implies (A.5) with critical exponent o = 3/2 = (d +2)/2.
Therefore, noting that 1 < r~4, it follows from (A.7) that there is £y := ha=2 > 0 and Cy > 0
(depending only on n, the geometry of (X™, ¢g) and the structure constants of g) such that (2.3.2)

holds. (Note that the statement is scaling invariant, and so are the desired constants.) |

This result is of key importance in the compactness theory of YMH configurations and in
this thesis we shall use it most notably in Chapter 3 in a 3—dimensional version (cf. Theorem

3.3.1). We now state some of its general consequences.

Corollary 2.3.3. Let (X", g) be a noncompact, oriented, Riemannian n—manifold of bounded
geometry and let ¥ be a G—bundle over X where G is a compact Lie group. Suppose that
(A, ®) is a YMH configuration of finite energy, i.e. with e := e(A,®) € LY(X). Then e €
LP(X) for all p € [1, 0] and decays uniformly to zero at infinity.

Proof. Since (X", g) is of bounded geometry, we can cover X with a countable collection of
geodesic balls { B,(z;)}:2, of radius s := 1 min{1, o}, with a uniform bound on the number of
balls containing any point of X and the half-radius balls pairwise disjoint (cf. [Heb0O, Lemma
1.1]). Then since e € L*(X) it follows that for each § € (0, &) there exists N5 € N so that up

to removing a finite number of balls one has
CoS_ngBQS(xi)(A7 CD) < (5, Vi > N(s.
Thus, by Theorem 2.3.1, we conclude that for any ¢ € (0, &),

sup e <90 Vi>; 1.
Bs(z;)
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This implies that e decays uniformly to zero at infinity and its supremum is achieved at some
zg € X. Since L'(X) N L>(X) C LP(X) for all p > 1 this already imply the result. Further-
more, applying again Theorem 2.3.1 also gives the estimate
el (x) = e(zo) < Cllellrx),
for some C' > 0; in particular, for p > 1 we have
1 _
||6||I£p(x) < Heniw(x)HeHLl(X) <CP 1”6“?1()() < 00.
[ |

In fact, by combining Theorem 2.3.1, Corollary 2.3.3 and invoking Uhlenbeck’s Coulomb
gauge theorem [Uhl82a, Theorem 1.3] (also see [Weh04, Theorem 6.1]), standard elliptic tech-
niques proves (see [Stel0, §2]):

Corollary 2.3.4. Under the same hypothesis of Corollary 2.3.3, one has |V* Fa|, | V5 (da®)| €
L*(X) N L*>(X) for all k.

Moreover, in the AC case we can prove the following:

Proposition 2.3.5. Let (X", g) be an AC oriented Riemannian n—manifold with one end, where
n > 3, let E be a G—bundle over X and (A, ®) € C(F) be an irreducible YMH configuration.

If (A, @) has finite energy Ex (A, ®) < oo then there exists a constant m € RT with

lim |®| = m. (2.3.6)

p—00

Conversely, if (2.3.6) holds then |d,®| € L*(X).

Proof. In one direction, suppose that (A, ®) is an irreducible YMH configuration with finite
energy. Then, by Corollary 2.3.3, we know that e( A, ®) decays uniformly to zero at infinity; in
particular,

p—>00

Since A is irreducible, (2.3.6) follows using Kato’s inequality.

For the converse we follow [Olil4a, proof of Proposition 1.4.4]. Fix a smooth radius

function p on (X", g). Consider the function

(m* —|®]?).

N | —

w =
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Since (A, ®) is YMH (and so A ® = 0), we have that A|®|> = —2|d,®|*> < 0 so that the
hypothesis (2.3.6) together with the Maximum Principle implies that w is a smooth nonnegative
superharmonic function satisfying

Aw = |d @ (2.3.7)

and lim, ., w = 0. Since (X", g) is AC and n > 2, all Green’s functions are ~ p*~"

at infinity
(cf. [LT95])), so it follows by the Maximum Principle that there is a constant c¢,, > 0 such that
w < c,p* " along the end. Now, for R > 1, let yr be a smooth bump function which is
identically 1 in Bg := p~'([0, R]) and has support contained in Byr. From the fact that (X", g)
is AC, the derivatives of p are uniformly bounded and we can assume that |V?y,| < cR™2.

Thus, multiplying the identity (2.3.7) by xr and integrating by parts yields

4|2, < / rlda®] = / AW
X X

= / 'UJAXR
X

S Cw R—2 / IOQ—TL
Bar\Br

2R
< cwR‘Q/ pdp < .
R

(Of course, in this computation the value of ¢,, changes from one occurrence to the next, but the
important point is that it is independent of R.) This gives a uniform bound on ||d A<I>||%2( By for

any R > 1 and so, by dominated convergence, we get |d4®| € L*(X) as we wanted. [

Corollary 2.3.8. Let (X3, g) be an AC oriented Riemannian 3—manifold with one end, E a
G—bundle over X and (A, ®) € C(E) be an irreducible monopole. Then (A, ®) has finite

energy Ex (A, ®) < oo if and only if there exists a constant m € R with
lim |®| = m.
p—+00
Proof. Immediate from Proposition 2.3.5 using that for a monopole Ex (A, @) = [|d4P||%, (x)-

2.4 AC and mass dependent n—dimensional version of Taubes’
small Higgs field estimates

Let (X3, g) be an AC oriented Riemannian 3—manifold with one end, let F be an SU(2)-

bundle over X (necessarily trivializable) and let (A, ®) be a finite mass monopole on F with
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charge k # 0 and mass m # 0. Then for 7 >> 1 we know that ® does not vanish in p~![r, 0o)
and ‘%' defines a degree k£ map from the various p~!(r) = N to the unit sphere in su(2).
Therefore, since k # 0, the Higgs field ® must vanish at points in X. With this observation in
mind, Taubes [Taul4] poses and addresses the following question, in the case where (X3, g) is

the Euclidean 3—dimensional space (R3, gg):
Question. What is the largest radius of a ball in X that contains only points where |®| < m?

The goal of this section is to prove an analogue of Taubes’ result [Taul4, Theorem 1.2]
in a much more general context. The following generalizes the 3—dimensional case proved in

[FO19, Theorem 4.1].

Theorem 2.4.1. Let (X", g) be an oriented AC Riemannian n—manifold with one end, n > 3;
E be a G—bundle over X; § € (0,1) and A € R. Then there is a constant m,. > 0, depending
only on g, A\ and §, with the following significance. If (A, ®) is a finite mass YMH configuration

on E with mass m > m, and m_1||dA<I>||%2(X) < A, then

rs(x) := sup {T € [0,00) : sup |P| < m5}
By (x)

satisfy the upper bound"

1

4A01 n—2
ro(a) < (m<1 - 5)(n_2)62> , (242)

where cy1,co > 0 are the constants of Theorem 2.4.4.

Remark 2.4.3. Recall from Proposition 2.3.5 that for any finite mass YMH configuration (A, ®)

on an AC n—manifold there is some A > 0 such that m™"(|d @7, x) < A.

The essential ingredient in the proof of this result concerns Green’s functions (see [Olil6c,

Proposition 2] for the 3—dimensional case):

Theorem 2.4.4. Let n > 3 and (X", g) be an oriented AC Riemannian n—manifold. Then,
there are constants ¢y > 0 and co > 0 such that for any given point x € X, there exists a
distribution H,, € (C°(X))" such that AH, = 0,. Moreover, H, is represented by an integral

operator

()= [ fon

“It will be clear from the proof that one can sharpen this upper bound, but for our purposes here the important

o A n=2
point is that r5(z) < (m(l—é)) .
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where ¢, is a harmonic function on X \ {x} such that

C1
— + O(l) and (2.4.5)

Tn

¢£B|V($) - -

Co 1

¢z‘V(N) = —Wm + O(rl—n)’ (2.4.6)

where r := dist,(-, ), and V(x), V(N) denote a neighborhood of = and the end of X respec-

tively.

The rest of this section is dedicated to the proof of Theorem 2.4.4 and then Theorem 2.4.1.
Henceforth, we let n > 3 and (X", g) be a connected AC oriented Riemannian n—manifold
with one end, so that there is a compact set X' C X outside of which X is asymptotic to the
Riemannian cone (C'(N) := (1,00), x N,gc = dr? + r’gy) over a closed and connected
(n — 1)—dimensional Riemannian manifold (/V, gy). Choose a smooth radius function p ~
1 + dist, (o, -) on the cone factor, and let (£, A) be a metric pair over X, i.e. E is a Hermitian
vector bundle over X endowed with a metric connection A. Suppose also that we have fixed
asymptotics, i.e. there is a metric pair (F+,, A ) over N such that * (E\ X\ K) =~ r* .., where
7: (1,00) x N — N is the projection onto the second factor, and A is asymptotic to A, with
some rate n < 0, i.e. (1.3.14) holds.

We now state a key estimate we shall need in this setup.

Proposition 2.4.7 ([Heil 1, Corollary 1.3]). For all s € C°(X) and o € [1, -"5], one has
112 20, < CrclIV asll7-

Let H be the Hilbert space given by the completion of C'2°(X') with respect to the inner

product
(&1, &) = (d&1,d&s) 2 = / d§; A *d&.
X

In particular, if £ € H then § € L (X), V& € L*(X) and £|y = lim, 00 & = 0.

loc

Definition 2.4.8. Given 5 € L; .(X), a function ¢ € L] (X) with V¢ € L*(X) is called a

loc loc

weak solution to A¢p = 7 if
(do.40)1: = [ o, v e CR()
b's
Lemma 2.4.9. Letn € Lz (X); then there is a unique weak solution ¢,, € H of

A¢n:n
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Proof. To prove existence, we prove that the linear functional ¢, : £ — [ + 1§ is bounded on

H. To show this, recall from Proposition 2.4.7 that any £ € H satisfies

€ 1] 2z < cl|€]lar-

Hence, using Holder’s inequality and the hypothesis 1 € Ltz (X), we get

' / ng\ < clnllgonsmell
X

as we wanted. Then, the Riesz representation theorem gives an element ¢, € H such that
(0, &) = [y n& forall € € H DO C°(X); therefore, ¢, is a weak solution to the problem.
Moreover, one has || 1 = [l¢lli < clnllze/ns.

To prove uniqueness, let ¢, gz~5 € H be weak solutions of the problem. Then h := gzﬁ—qg eH
satisfy weakly Ah = 0. By elliptic regularity, it follows that A is in fact a smooth harmonic
function on X.° In particular, since (X", g) is AC and n > 2, h ~ p? " and dh ~ p'~™ along

the end. Therefore

0:/ hAh:—/(d(h/\*dh)—dhA*dh)
X X

= — lim h A sdh + ||h||%
7—00 pfl 7’)

= Ihll%,
Hence, ¢ = (5 as we wanted. [ |

Consider the transpose of the Laplacian, still denoted by A, acting on (C'2°(X))’ in the
usual fashion: given H € (C°(X))’, then AH(¢)) := H(Av) for all v € C°(X). In what
follows, given a point x € X, we denote by J,, € C2°(X) the Dirac delta distribution supported

on z,1.e.
0. (V) = (x), VY € CF(X).

We are now in position to give the

Proof of Theorem 2.4.4. There is a 1—parameter family {05}.~o C C°(X) of smoothings of

the current J,, i.e. such that

S.(0) =lim | 95, Vo e C(X),
e—0 X

SIf h € L? it would readily follow by a result of Yau [Yau76, see e.g. Proposition 1 or Theorem 3] that i must

be constant. Since h|x = 0 it follows that 4 = 0 (or because vol(X) = c0).
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where each ¢ vanishes outside an e —neighborhood of x and satisfy the uniform bound ||55|| 1 =
1.
For each ¢ > 0, the L7+ —norm of 0: is still bounded, however not independently of ¢.

Thus Lemma 2.4.9 gives a family of functions ¢;, € H, weakly solving
Ag, =0,

and with ¢ unique for each €. Since the ¢ are smooth, elliptic regularity implies that so are
the ¢5. However, one must note that the norm ||¢%|| ; is not uniformly bounded independently
of €.
For ¢ € C*(X),
5.(0) =iy [ 8% = lim(o%. v},

e—0
and since, for all e, we have (¢, )y = [, V05 < |[¢)]| L, the weak limit as ¢ — 0 of the ¢
exists and gives a distribution H, weakly solving AH, = ¢,. This distribution is represented

by an unbounded function which we denote by ¢, such that the integral

[ oo =tim [ v

is well-defined for all v» € C°(X). As the L'—norm of the & is bounded independently of
e and A¢S = 0 outside an e—neighborhood of z, it follows that ¢, € Ll (X) and ¢, €
(X \ {x}).

Finally, as the metric is AC it readily follows from the expression of the Laplacian on the
cone, namely

n—1

A, =—(8,)% - 0, + 1 %Ay,

r

that ¢, behaves as (2.4.6) along the end. Locally on a small ball U(z) around z, the metric is

approximately Euclidean, so that on these (2.4.5) holds. |

Now the last ingredient we need for the proof of Theorem 2.4.1 is the following (see

[Olil4a, Section 1.4.1] and, for the 3—dimensional version, [FO19, Proposition 2.2])

Proposition 2.4.10. Let (X", g) be an AC oriented Riemannian n—manifold with one end, E a
G—bundle over X and (A, ®) € C(F) a finite mass YMH configuration on (X", g), with mass
m # 0 and such that |do®| € L*(X). Then in a neighborhood V (N) of the end, we have

1da®]|Z2x)
Ol =m — 2—n — 0. 2.4.11
| | m m(ﬂ o 2)V01<N)pn_2 O(p ) as p &Y ( )
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Sketch of proof of Proposition 2.4.10. By the arguments in [Olil4a, proof of Proposition 1.4]
(also see [JT80, Theorem 10.5 in Chap. IV]), one can write

@] =m —cp?™ +0(p*™") onV(N),

for some constant ¢ € R, that we will now compute. Since |d4®| € L?*(X), by dominate

convergence we can write

/|dA®|2 = lim/ |ds®|%.
X r—00 Pil(O,T]

Now, since A 4P = 0, we know that A|®|* = —2|d4P|. Hence, by Stokes’ theorem,

1
|d @ = = *d| P,
2
p=1(0,7] P ()

Therefore, we can compute:

/|dAcI>|2= lim/ *|®|d|D|
X "0 S p1(r)

= lim |CI)|8p|CI)| * dp
" pmi(r)
— lim ‘(I)‘ap<m o Cprn 4 0(p27n))pn71

T J p=1(r)

= lim |P|((n —2)c+ o(1))

"0 S p(r)

= cm(n — 2)vol(N),
where in the last equality we used that (A, ®) has finite mass equal to m. |

Proof of Theorem 2.4.1. Suppose, by contradiction, that for all m, > 0 depending only on
the indicated data, there exists a finite mass YMH configuration (A, ®) with mass m > m,,

satisfying m~'||da®||72x) < A, and such that

v (mu o 2)02) T <t

Let ¢, be the harmonic function on X \ {x} obtained from applying Theorem 2.4.4, and let
b0 = ((n — 2)ca)"12A¢,. Then, for small enough r = dist(z, -), equation (2.4.5) yields

m(1 — §)s"2

>
dolu@) > 53

+ cn, (2.4.12)

for some constant ¢y € R, depending only on g and A.
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Now, as s is inversely proportional to m!/(*=2) there is m, > 0, depending only on ¢, A
and 0, so that the expansion (2.4.12) is valid for » = s. At this point, it is convenient to further
define the harmonic function on X\{z} given by ¢ := ¢ + m. Then, by possibly increasing
m, so that m, > —2c, (1 — )71, we have

m(1— )

+cn+m>mo > |Plap, )],

where in the last inequality we used the assumption that our s < rs. Then, the previous inequal-
ity, and the fact that both the harmonic function ¢ and the subharmonic function |®| converge

to m along the end show that

B < ¢ in X\ By(x).

On the other hand, recall from equations (2.4.11) and (2.4.6) that

@ > m — A(n — 2)"'Vol(N) ' p*™ 4+ 0(p*>™), and

¢ =m —2A(n —2)"'vol(N) ' p* " + o(p*™"),

as p — oo. Putting these together, we conclude that Avol(N)~' > 2Avol(N)~!, hence a

contradiction. [ |

Remark 2.4.13. Under its hypothesis, Theorem 2.4.1 implies that for any finite mass YMH
configuration with mass m > m, and m~'(|da®||72 ) < A, whenever 7 > c(Am~'(1 —
§)~1)1/("=2) for some suitable constant ¢ > 0 (depending only on g) then

sup |®| > sup [®] > md,

aBr(z) Br(w)

where in the first inequality we applied the maximum principle.
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Chapter 3

Large mass monopoles on AC 3—manifolds

In this chapter we describe the work of the author and his co-supervisor Gongalo Oliveira
[FO19], together with some minor improvements, corrections, new observations and a new
section (cf. Section 3.8). We consider SU(2) monopoles on an asymptotically conical, oriented,
Riemannian 3-manifold with one end and analyze the limiting behavior of sequences of finite
mass monopoles with fixed charge, and whose sequence of masses (or, equivalently, YMH
energies) is unbounded. We prove that the limiting behavior of such monopoles is characterized
by energy concentration along a certain set, which we call the blow-up set. Our work shows that
this set is finite, and using a bubbling analysis obtain effective bounds on its cardinality, with
such bounds depending solely on the charge of the monopole. Moreover, for such sequences
of monopoles there is another naturally associated set, the zero set, which consists on the set at
which the zeros of the Higgs fields accumulate. In this regard, our results show that for such
sequences of monopoles, the zero set and the blow-up set coincide. In particular, proving that
in this “large mass” limit, the zero set is a finite set of points. We end this chapter with a brief
discussion on the problem of convergence of the monopole sequence outside the zero set.

Some of our work extends for sequences of finite mass critical points of the YMH func-
tional for which the YMH energies are O(m;) as i« — oo, where m; are the masses of the

configurations.

3.1 Main results

The virtual dimension of the moduli space of finite mass SU(2) monopoles of fixed charge

over an AC oriented Riemannian 3—manifold X was computed in [Kot15], and a smooth open
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set constructed by a gluing theorem in [Olil6¢]. Such gluing is an AC version of Taubes’ origi-
nal gluing of well separated multi-monopoles in the R? case, [JT80]. In the case of [Olil6c], the
mass plays the role of a parameter controlling the concentration of the resulting multi-monopole
around its centers. Indeed, allowing the mass to vary gives the freedom of bringing these cen-
ters as close as one wants. In order to motivate our main results we shall now summarize this
construction of large mass, charge k£ monopoles on X . This goes as follows: Start with £ points
in X; Insert charge one and mass one monopoles in R? scaled down to fit in small disjoint balls
around these points; As a byproduct of having been scaled down the monopoles must have mass
larger than O(d~?%), where d is the minimum separation between the k-points; Then, by mak-
ing use of a partition of unity these can be glued with a certain mass O(d~2) monopole in the
complement of these balls; The resulting configuration does not solve the monopole equations,
but by a version of the contraction mapping principle it can be deformed to a nearby one which
does. Moreover, we further remark that this configuration produces monopoles with any mass
m > O(d™?), for more details and the precise statements see Theorem 1 in [Oli16¢] or Theorem
3.2.11 later in this chapter. '

The goal of our paper [FO19] is to take the inverse point of view and consider a sequence
of finite mass monopoles {(A;, ®;) };eny With unbounded masses, limsupm; = oo, but fixed
charge k, over an AC manifold (X3, g). In this case, the natural expectation would be an
inverse construction to that of [Olil6c], with the monopoles either “escaping” through the end,
or getting concentrated around at most k points zy,...,x; in X, where a monopole in the
Euclidean R? 2 T,. X bubbles off.” See Section 3.2 for a plethora of examples motivating this
expectation.

From the analytic point of view, the case when the energies Ex(A;, ®;) of the sequence
{(A;, ®;) }ien are uniformly bounded has a well known limiting behavior, which is easily un-
derstood. In this case, the monopoles are either converging smoothly everywhere on X, or
“escaping” to infinity through the end, see for example [AH88] for the more general statement
in the R3 case. In fact, independently of whether they are escaping through the end or not,

the restriction of such a sequence of monopoles to any compact subset X C X smoothly con-

"'We further point out that it should be possible to start this construction by using higher charge monopoles in

R3 (monopole clusters). A metric version of this gluing have been carried out in [KS15] for the case of R3.
ZEven though in this introduction, and for motivation purposes, we restrict to the case when the {(4;, ;) }ien

are monopoles, many of our results hold in the more general case of families of YMH configurations on a fixed

G-bundle.
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verges to a monopole. Therefore, the most interesting case is when these energies do not remain
bounded. Indeed, the energy formula (1.3.19) for monopoles Ex (A;, ®;) = 4wkm;, shows that
this is precisely the case under consideration, where the sequence of masses m; is unbounded.

We now introduce some preparation needed in order to state our main results. Let
{(A;, ®;) }ien € C(F) be a sequence of finite mass YMH configurations on (X3, g) whose
masses satisfy lim sup m; = oco. Define the blow-up set S of {(A;, ®;)} by

S = U ﬂ {:c € X :liminfm; 'Ep, () (Ai, ®;) > 5} :

i—00
e>00<r<rg

This may be interpreted as the set S C X where the energy of the sequence is concentrating.

On the other hand, we have the zero set

z=UJe 0,
n>11i>n

which consists of the accumulation points of the Higgs fields zeros, i.e. the limit set of the
zeros. Under suitable assumptions, our main results show that these two sets are equal and the
failure of compactness is entirely due to monopole bubbling at its points. In what follows, we
shall use H° to denote the counting measure on X and H? to denote the standard Riemannian

measure on (X3, g).

Theorem 3.1.1 (cf. [FO19, Theorem 1.1]). Let (X3, g) be an AC oriented Riemannian 3—mani-
fold with one end, E an SU(2)—bundle over X and {(A;,®;)}ien C A(F) x I'(su(2)g) a

sequence of finite mass monopoles on (X3, g) with fixed charge k # 0 and masses m; satisfying

lim sup m; = oo. Then, after passing to a subsequence, the following hold:

(a) Foreach x € S, the sequence (A;, ®;) bubbles off a mass 1 monopole (A, ®,) on R? =
T.X. Moreover, Egs (A, ®,) = 4k, where k, € Z~o, k. < k, is its charge.

(b) The blow-up set S can be written as

S = ﬂ {x e X: liminfmi_ISBr(I)(Ai, ;) > 47‘(‘} )
0<r<rg oo

Moreover, it coincides with the zero set Z:

S=1Z.

(c) S = Z is a finite set of at most k points. In fact, we actually have

k
0
< .
H(S) < min k.,
€S
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(d) The following weak convergence of Radon measures holds:

m; te(A;, ®)H? — 47?2 ky0y,

€S
where e(A;, ®;) = |Fa.|* + |da,®;

on {x}.

2, and 6, denotes the Dirac delta measure supported

(e) Foreachx € X \ S, we can find r > 0 and a subsequence i'(x) — oo such that

sup my'e(Ay, @) = 0 as i — .
B.(z)

In the more general case where we have a sequence of YMH configurations on a G—bundle,
we can still guarantee some of the above results under the assumption that Ex (A;, ®;) = O(m;)

as ¢ — 0o, which amounts to the fixed charge assumption in the case of SU(2)—monopoles.

Theorem 3.1.2. [FO19, Theorem 1.2] Let (X3, g) be an AC oriented Riemannian 3—manifold
with one end, E a G—bundle over X where G is a compact semi-simple Lie group, and
{(A;, ®;) }ien € C(F) a sequence of finite mass YMH configurations on (X3, g) whose masses

m; satisfy lim sup m; = oo. Suppose that
m;IEX(AZ-, (I)Z) S C,
for some uniform constant C' > 0. Then, after passing to a subsequence, the following holds:

(a’) Foreach x € S, the sequence (A;, ®;) bubbles off a mass 1 YMH configuration (A,., ®,)

inR3 = T, X. Moreover, each bubble (A, ®,) has strictly positive energy Egs (A, y) >
0.

(b’) The blow-up set S can be written as

S = ﬂ {x € X: liminfmi_ISBr(x)(Ai,@i) > 0}.

i—00
0<r<rog

Moreover, it contains the zero set Z:

Z CS.

(c’) S (therefore Z) is countable.
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We shall now explain how this chapter is organized. Section 3.2 gives several examples
of families of monopoles whose masses converges to infinity. The results are very illustrative
and allow for the realization of all cases in our Theorem 3.1.1, and give a good intuition for the
behavior of large mass monopoles. The proof of Theorems 3.1.1-3.1.2 takes up every section
from Section 3.3 to 3.8, and their content is summarized below.

Having in mind the aim of relating the zero set Z and the blow-up set S of such sequences
of large mass monopoles, a key result is given by the 3—dimensional instance of our AC version
of Taubes’ small Higgs field radius estimate in Theorem 2.4.1. This provides a way to control
how big, in terms of the mass m # 0 and the charge £ # 0 of the monopole, one needs the
radius of a ball in X to be so that the value of the Higgs field outside such a ball is a sufficiently
large portion of m.

In Section 3.3 we prove an appropriate 3—dimensional version of the e-regularity theorem
(Theorem 3.3.1) for YMH configurations, which is an important ingredient to relate the zero set
with the blow-up set. Indeed, in Section 3.4, using a simple argument involving the fundamental
theorem of calculus, together with the e—regularity, we prove that a large mass YMH configu-
ration with (locally) small energy has an interior lower bound on its Higgs field, provided it is
bounded from below in some boundary ball. Together with our analogue of Taubes small Higgs
field estimate, this is used in Section 3.5 to prove the inclusion Z C 5, i.e. the last part of (b’)
in Theorem 3.1.2; here we also prove (c’).

Section 3.6 uses the scaling properties of the YMH/monopole equations and their ellipticity
on a fixed Coulomb gauge, to perform the bubbling analysis. In particular, we are able to show
that at each point z € S, a mass 1 (YMH/)monopole in R? with strictly positive energy bubbles
off. This gives part (a) and half of part (b) in Theorem 3.1.1 and (a’) and half of (b”) in Theorem
3.1.2. In the case of monopoles, the energy formula and a degree argument then yield the
reverse inclusion S C Z, and thus the equality in part (b) of Theorem 3.1.1. This part of the
proof somewhat resembles Taubes’ proof of the Weinstein conjecture where a degree argument
and the energy identity for the vortex equations is used to prove that a certain component of the
spinor involved in the Seiberg—Witten equations vanishes, see [Tau07, Section 6.4].

Using all this and some simple measure theory, Section 3.7 is dedicated to describe the
convergence of the relevant measures as in statement (d) of Theorem 3.1.1 and an estimate on
the maximum number of elements in S = Z follows, depending on the fixed charge % of the

sequence and the minimum of the charges k, of each bubble at x € S; this corresponds to
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part (c) of Theorem 3.1.1. Finally, in Section 3.8 after stating a conjecture on the problem of
convergence of the (translated) sequence outside Z, we provide some ideas on how to tackle it,
proving an improved (linear) Bochner estimate for the Laplacian of the energy densities outside
Z and deriving part (e) of Theorem 3.1.1. All these together gives a full proof of the main
Theorems 3.1.1 and 3.1.2.

Conventions for this chapter. Unless otherwise stated, (X3, g) will denote an oriented
Riemannian 3—manifold of bounded geometry, and F will be a G—bundle over X, where G is
a compact semi-simple Lie group. In fact, for the most part (X3, g) will be an AC manifold with
one end and whenever we restrict attention to monopoles configurations on £ we will always

consider G = SU(2) for simplicity.

3.2 Motivating examples

In this section we collect a few examples which motivate the current work. The first of
these consists of exploring the explicit Prasad—Sommerfield monopole in the limit when its
mass is sent off to infinity. The second examples uses Taubes’ construction of multi-monopoles
on R? to produce sequences of charge k > 1 monopoles with unbounded masses, such that the
corresponding zero set Z is any a priori prescribed set of [ pairwise distinct points in X, for
any given 1 < [ < k. Next, we include a simple general way to produce, from a given charge
k > 1 monopole, examples of sequences of charge & monopoles in R? with unbounded masses
and for which the zero set Z = {0} and the charge k; of the bubble at the origin equals k& > 1.
Finally, using the multi-monopole construction of [Olil6c¢] in the more general setting of an
AC 3—manifold (X?, g) with b?(X) = 0, we construct sequences of charge & monopoles with
unbounded masses whose zero set is any a priori prescribed set of k£ pairwise distinct points in

X.

3.2.1 The BPS Monopole

In this section we shall write down the standard mass m BPS monopole (A,,, ®,,) on R?,
constructed by Prasad and Sommerfield in [PS75]. For any m € R™, this has a unique zero
®-1(0) = {0} and is spherically symmetric. Obviously, by considering the sequence letting

m

m — oo we will have Z = {0}, however, the interesting thing of considering this specific
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example is that we shall be able to check the convergence to the delta function on Z explicitly.

Write R*\{0} = R, x S?, and pullback from S? = SU(2)/U(1) the homogeneous bundle
P = SU(2) x, SU(2),

with y : U(1) — SU(2) the group homomorphism given by y(e??) = diag(e?, e~). In this
polar form, and actually working on the pullback to the total space of the radially extended Hopf

bundle R™ x SU(2), the Euclidean metric can be written as
g = dr® + 4r*(wy @ wa + w3 ® ws),

where 7 is the radial direction, i.e. the distance to the origin. Now fix the standard basis
{S;} of su(2) given by the Pauli matrices, and let wy, wy, w3 be the dual coframe. The 1-form
S @ wt € QY(SU(2),s5u(2)) equips the Hopf bundle SU(2) — S? with an SU(2)-invariant
connection, which in turn, induces a connection in P. Making use of Wang’s theorem [Wan58],

one can write any other spherically symmetric connection on R3\ {0} as
A= Sl & wi + CL(T)(SQ ®w2 + 53 ® w3),

for some function a : R™ — R. Similarly, seeing an Higgs field ®(r) as a function in the total
space with values in su(2) one can show, see the Appendix in [Olil4b], that any spherically
symmetric Higgs field must be of the form ® = ¢(r) Si, with ¢ : RT™ — R some function. A

computation yields that

Fy = 2(a®> = 1) @w? 4+ a(Sy @ dr ANw? + S3 @ dr Aw?),

Vil = ¢S ®dr+2a¢ (S; ®w® — S5 ®w?),

with the dot denoting differentiation with respect to r. The energy density, as a function of r, is

then

2a2¢2

. L +q'5 n (3.2.1)

In this spherically symmetric setting, the monopole equations turn into the following system of
ODE

Qb— (CL _1) d:2a¢7

27"2
Some particular solutions are given by the flat connection (a,¢) = (£1,0), and the Dirac

monopole (a, ¢) = (0, m —1/2r), where m € R. However, the regularity conditions so that the
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configuration (A, ®) smoothly extends over the origin yield that ¢(0) = 0 and a(0) = 1. One

can then show, see the Appendix in [Oli14b], that any such solution is given by

1/1 2m 2mr
(1 D L 322
¢ 2 <r tanh(er)) ¢ sinh(2mr) ( )

for some m € R™, which is the mass of the resulting monopole. The resulting formula for the

energy density in (3.2.1) is

cosh®(2mr) + (32m*r* — 2) cosh?(2mr) — 32sinh(2mr) cosh(2mr)m?r® + 16m*r* + 1
Cm = :
2 sinh*(2 myr)rd

(3.2.3)
Recall that in this case we have Z = {0}. Given the formula above it is easy to see that in R*\ Z

we have

1
m e, < 5 coth®(2mr) + O(m™2) — 0, as m — oo.
m

On the other hand, using this fact together with the dominated convergence theorem, we have

I = Ilim mle,,

m—00 R3

= lim lim m e, =4m lim lim [ 7 m e, (r)dr
m—00 §—00 BS(O) m—00 §—00 0

= 4r lim 2 m e, (r)dr

m—0o0 0
= Arm ﬂ}bl_r)noo (rlggo fm(r) — rli>r(§l+ fm(r)) ) (3.2.4)
where
1 2 2.2 8 2.2 4
fm(r) = ((8m*r? — dmr — 1)e™™ + (8m*r* + 4mr + 2)e™™ — 1) .

C2mr (et —1)3

Thus, inserting this into equation (3.2.4) shows that / = 47 and thus

m e, H — 4y, as m — oo.

3.2.2 Sequences of Taubes’ multi-monopoles on R? with prescribed Z

We start by recalling the following Theorem of Taubes, see [JT80].

Theorem 3.2.5 (Theorems 1.1 and 1.2 in [JT80]). Let k € N. Then, there is dy > 0 and ¢ > 0
such that for any vy, . ..,yx € R® with d = min,, dist(y;,y;) > do, there is a charge k, mass
1, monopole (A, ®) in R®. Furthermore, for R = cd='/* we have that ®~(0) C UF_, Br(y;)
and ®|op,,(y,) has degree 1. In particular, ® does have zeros inside each of the ball’s Br(y;),

fori=1,... k.
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We shall now use this construction to give a number of different examples of sequences of

monopoles as those we consider in this chapter.

Proposition 3.2.6. Let 1 < | < k be integers, {x1,..., 1} C R? a subset of pairwise distinct
points, and {m;};en C RY an unbounded increasing sequence, i.e. m; 1 oo. Then, there is a

sequence {(A;, ®;) }ien of charge k, mass m; monopoles on R3 with zero set

Z ={zy,...,21}.
Remark 3.2.7. In this construction, as will be evident during the proof, we have k:z], =1
forall ;7 = 1,...,[. The case [ < k is precisely the case where there are kK — [ monopoles

“escaping through the end”, or “run of to infinity”. In the construction below we shall see that

the monopole (A;, ®;) has a zero
Z; € ch;l/z (min),

forj =1+1,..., k. And the centers of these balls leave any compact set as ¢ — oo. Thus, the

sequence of zeros z; — 00 has no convergent subsequence, and so does not contribute to Z.

In the rest of this subsection we prove this result by using Theorem 3.2.5 to construct the
monopoles. Let A > 0 and consider the scaling map s)(z) = A\~'xz for z € R?. Recall that
the Euclidean metric gp is invariant by scaling, i.e. gr = A?s}gp for any such positive .

Therefore, by Proposition 2.1.1, if (A, ®) is a charge k& mass 1 monopole, we have that
(Ay, By) = (s34, 1\ Ls5D) (3.2.8)

is a charge k, mass A\~! monopole.

It is instructive to split the proof in two different cases:

Case | = k. We now construct a sequence of charge k, large mass monopoles on R? with pre-
scribed Z = {x1,...,x;} being k distinct points in R3. After choosing such k points, we fix
a sequence of masses m; — oo and suppose, with no loss of generality, that m; > 1 so as
to mydist(z;, ;) > dp, forall j,l € {1,...,k}. Then, we can use Taubes’ Theorem 3.2.5 to
construct a sequence, labeled by i, of charge £, mass 1 monopoles using in the construction the
points y;. = myx; for j = 1,... k. Rescaling these as in equation (3.2.8) with A = m; " we
obtain a sequence of monopoles (A;, ®;) with charge &, mass m; and

k

o0 c Y B, 12(1j), deg(®; ) =1. (3.2.9)

j:l chmfl/Q(xj)
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Now, recall from the definition of the zero set that

z=UJo"0)

n>1i>n

Hence, as the sequence {m;, }; is increasing, it follows that

UCD UB _1/2(x),

>n

and thus

A4 C ﬂ U B —1/2 .I'] U m B —1/2 ZEJ U{Z‘]}

n>1j=1 j=1n>1
On the other hand, for every fixed j € {1,. .., k}, the degree of the map & restricted to a normal

—-1/2

sphere of radius cm,; '~ equals 1 and thus ®; has a zero

Z; € ch_ﬁ1/2 (l’j),

for each @ > 1. Since m; 1 oo, it follows that z; — x; as 1 — oo. Thus we get the reverse

inclusion {z1, ..., x;} C Z, proving that indeed

Z:{xl,...,xk}.
n

Case | < k. We can modify the above construction in order to make [ < k of the monopoles
“escape to infinity”. We shall proceed as before and fix & distinct points {zy,...,z;} C R3.
Then, we consider the charge k, mass 1 monopole obtained through Taubes’ Theorem 3.2.5
using the points y: = m,x; for j = ,1 and the points y; = m7z; for j =1+ 1,... k.’
Then, rescaling this monopole as before, i.e. using equation (3.2.8) with A\ = m; !, we obtain a
mass m;, charge k, monopole on R3. This has the property that

l k
C (U chi—1/2(l’j))u< U ch;uz(mim]‘)) y deg((bz

j=l+1

) =1. (3.2.10)
chmfl/Q (z5)

Similarly to before we now have

U@ (UB 12 a:j> <U U B, m,xj)>,

i>n i>n j=I+1

and for n sufficiently large the second sets inside parenthesis above are disjoint for n sufficiently

large. It then follows again from the same degree argument as before that

Z =Ax,...,1}.

3By slight modification of this we can also let the points y; for j > [ go off to infinity at different rates.
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3.2.3 An example with £, > 1

In the examples above we have already seen that it is possible to have H°(Z) < k by
letting the monopoles “escape through the end”. One other possibility would be to have points
x € Z with k, > 1, in this Subsection we give the simplest of such examples.

Let (A, @) be a finite mass SU(2)—monopole in (R? gg) with mass m # 0 and charge
k > 1. Since gg is scale-invariant, taking any null-sequence \; | 0 we get a corresponding
sequence

(A, Dy,) = (siiA, )\i_lsl@)

of monopoles in (R?, g) with masses m; := m\; ' — oo. Note that for such sequence Z =

{0} and kg = k > 1.

3.2.4 Sequences of monopoles with prescribed Z on any AC 3—manifold
with b?(X) =0

Let (X, g) be an AC oriented Riemannian 3—manifold with b*(X) = 0 (i.e., the second
Betti number of X vanishes), and let k € Z-. For a real number m > 0, denote by Mj, ,,, the

moduli space of mass m and charge £ monopoles on (X, g). In this setting, the main result of

[Olil6c] yields

Theorem 3.2.11 ([Olil6¢, Theorem 1]). There is i € R, so that for all m > p and X*(m) C
X* defined by

Xk(m) = {(xlv 7xk) € Xk dlSt(xl7xj) > 4m_1/2 ,fOl"i ?é ]}7

while TF"1 = {('1, ..., %) € TF | ¢!O1++%) = 1}, there is a local diffeomorphism onto its
image

B+ XE(m) x HY(X,S") x T" ' — My . (3.2.12)

In order to use this theorem we shall fix once and for all « € H'(X,S') and 0 =
(e, ..., %) € T satistying ¢’("s++0) —= 1. Then, we chose any k disjoint points (1, ..., ;)
X* and take an increasing sequence of positive real numbers m; 1 oo with m; > max{16 min;,

dist(z;, 7;)?, 1} and consider the monopoles
(Ai, (I)z> = hmi((xl, N ,l‘k), (N 9)

Then, using the results of [Olil6¢] we have the following
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Proposition 3.2.13. The zero set

of the family of monopoles (A;, ®;) defined above is precisely the set of points {x1, ..., xy}.

Proof. The result follows from proving that the zeros of the monopole (A;, ®;) are contained in

balls of radius O(m-fl/ ?) around the points {x1, ...,z }, i.e. for sufficiently large i we have
U Byg,2(w;) and 7N 0)N By ue(r;) # 0, Vi€ {l... k). (3.2.14)

Indeed, if we prove this assertion, then, as the sequence {m;} is increasing, on the one hand

note that i
U (I) C U B 71/2 33']
>n
and thus i
ﬂ U my /2 x] U m B mo /2 x] U{SU]}
n>1j=1 j=1n>1

On the other hand, for every fixed jo € {1,...,k}, we can find z; € ®;'(0) N B, —12(x;,)
for each ¢ > 1. Since m; 1T oo, it follows that z; — xj, as ¢« — oo. Thus we get thé reverse
inclusion {z1,...,x;} C Z, and equality follows as claimed.

We are thus left with proving the assertion (3.2.14), which is the content of Appendix
B. [

3.3 c-regularity estimate

In this section we give an appropriate restatement of the 3—dimensional instance of The-
orem 2.3.1 that will be useful in the analysis of sequences of large mass monopoles in the rest
of this chapter. The following is essentially [FO19, Theorem 5.1] but stated in a stronger form

and derived in a way that provides a more general perspective on the result.

Theorem 3.3.1 (c—regularity estimate in 3—dimensions). Let (X?, g) be an oriented Rieman-
nian 3—manifold of bounded geometry and E a G—bundle over X, where G is a compact Lie
group. Then there are scaling invariant constants €q > 0 and Cy > 0 with the following signif-
icance. Let (A, ®) € C(E) be a YMH configuration on (X?,g). Foranym > 0 and R > 0, if

r € X and0 <r <min{Rm~' ry} are such that

€= m_lgBT(z)(A, @) < &y,
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then

sup m e(A, ®) < Opr2e, (3.3.2)

By (z)

where Cp := Cymax{1, R*}.

Proof. First of all, we note that, by scaling, we may assume m = 1. Indeed, assume the result
is true for m = 1. Then given a YMH configuration (A, ®) with respect to a metric g, it follows
from Proposition 2.1.1 that (A, m~'®) is a YMH configuration with respect to the scaled metric

gm = m2g. Now, by hypothesis, for r € (0, min{Rm =, r¢(g)}],
Efm oy (A,m™1®) = m™ Ep () (A, @) < &0.
Noting that ro(g,,) = mro(g), the result for m = 1 implies that

sup ep(A,m ') < Cr(rm) >Ef (A, m™'®).
BT, (x)
4

Thus, rescaling back to g we get precisely (3.3.2). This proves our claim.
Given the above observation, in order to prove the theorem we are left to prove that there
are €9 > 0 and Cy > 0 such that for any YMH configuration (A, ®) and any R > 0, if z € X

and 0 < r < min{R, 1o} are such that € := Ep (;)(A, P) < &, then

sup e(A, ®) < Comax{1, R*}r 3. (3.3.3)

Br(z)
1
We take ¢y and C as in the case n = 3 of Theorem 2.3.1. Now note that if » < 1, then the
hypothesis imply
rEB,(2)(A, ®) < Ep () (A, @) < &0,

so that by (2.3.2) we have*

sup e(A, ®) < Cor e,
By (z)

which proves the assertion. Otherwise, i.e. in case » > 1, then for all y € Bg(x) one has

By (y) € B,(r) and thus the hypothesis imply

1

EgBé(y)(A’ (I)) S gBr(x) (A, (1)) < €g.
Hence, using Theorem 2.3.1 and noting that 1 < R3r~3, we get

e(A, ®)(y) < sup e(A, ®) < 8Cpe < 8CyR*r3¢.

B1 (y)
4

“Note that the € of (2.3.2) differs from this one by a factor of , that’s why here we get »~2 in the right-hand

side of the inequality instead of 7%,
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Since y € B: (x) is arbitrary, this proves the assertion with C replaced by 8C), and finishes the

proof. |

Note that taking r € (0,70], m = r~! and R = 1 on the statement of Theorem 3.3.1 gives
back the n = 3 case of Theorem 2.3.1, so that these are indeed equivalent (the above proof gives
the other implication). In fact, playing around with the parameters m and 2 in Theorem 3.3.1

one obtains the following easy consequences.

Corollary 3.3.4. Let (X3, g) be an oriented Riemannian 3—manifold of bounded geometry and
E a G—bundle over X, where G is a compact Lie group. Let £y, Cy > 0 be the constants given

by Theorem 3.3.1 and (A, ®) € C(E) a YMH configuration on (X3, g). Then:

(i) For any m > 0 such that 2m™" < ry, if v € X andr € (2m™", ro| are such that
€= m’lé'BT(x)(A, D) < e,

then

sup m te(A, ®) < m3Cye. (3.3.5)
By (x)

(ii) If v € X and 0 < r < min{1,r¢} are such that
£ = 837,(36)(.4, (13) < €,

then

sup e(A, ®) < Cor?e. (3.3.6)

By (2)

Proof. (i) Let y € By(x). Since 0 < 2m~' < r, one has B,,-1(y) € B,(z) and thus by
hypothesis
m ' Ep (A, @) <mTIER ) (A, @) < &

Then we can apply Theorem 3.3.1 to conclude that

sup  m te(A, @) < m*Cye.
B(Qm)_1 (y)

Since y € B: (x) is arbitrary and the bound is uniform, the result follows.

(i1) This is just a direct consequence of Theorem 3.3.1 usingm = R = 1. |



CHAPTER 3. LARGE MASS MONOPOLES ON AC 3—MANIFOLDS 59

3.4 An interior lower bound on the Higgs field

The next result is a consequence of the previous e—regularity estimate and will prove to
be useful in analyzing large mass YMH configurations. It is an improved version of [FO19,

Theorem 6.1].

Theorem 3.4.1. Let (X3, g) be an oriented Riemannian 3—manifold of bounded geometry, let
E be a G—bundle over X, and let (A, ®) be a YMH configuration on E. Given ¢ € (0,1) and
R >0, set

£5,r 1= Min {C§1R52,60} .

Letx € X andm > 0. If r := Rm™ < rgand sup |®| > md, then
0B (x)
4

- mo
m 1537“(95)(‘4? (I)) < E5R — ‘(I)‘ > 7 on B% (:E)
Here Cr and ¢ are the constants given by Theorem 3.3.1.

Proof. Fix q € OB (x) such that the restriction of |®| to dB: () attains its maximum at ¢. For
any p € Br(z) we can choose a (smooth by parts) path , in Bz (z) with length L(v,) < §

joining p to ¢. Thus, using the fundamental theorem of calculus and Kato’s inequality we get:

o] < f
Yp v

On the other hand, by the c—regularity estimate (Theorem 3.3.1), the hypothesis

-
[®](q) — ||(p) < [da®] < 5 sup [ds@]. (3.4.2)

B (z)

m R, () (A, ®) < g5 < &0 implies that

1
sup |da®| < sup e(A, @)% < Cér’%még
Bz (z) By (2)

R. (3.4.3)

Sl

Putting (3.4.2) and (3.4.3) together and using the definitions of r and €; r along with the lower

bound on |®|(¢) = sup |P| gives the statement. |
OB r ()
4

Combining the above result with Theorem 2.4.1, we get (cf. [FO19, Corollary 6.1]):

Corollary 3.4.4. Let (X3, g) be an oriented AC Riemannian 3—manifold with one end, E be a
G—bundle over X and A € (0,00). Then there are constants Ry > 0 and ey > 0, €5 < &,
such that the following holds. Let (A, ®) be a finite mass YMH configuration on E with mass
m > m, and m*1||dA<I>||%2(X) < A Ifr:= Rym™t < rq then

m

milgBT(m)<A, (I)> <EN — |(I)| > 1

on B:(x). (3.4.5)
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Proof. Let

Ry:=cA and ep:=¢ipor, = min{‘flCﬁAlRA,é?o}-

Here we choose ¢ > 0 depending only on g big enough (e.g. ¢ := 64c;c; ') so that by letting
0 :=1/2 it follows from Theorem 2.4.1 that

sup || >
OB (2)

m
2 7
therefore by hypothesis we can apply Theorem 3.4.1 with R = R, to get the desired result. W

This has the following immediate corollary which is very important in the large mass limit.

Corollary 3.4.6. Let (X3, g) be an oriented AC Riemannian 3—manifold with one end, E be
a SU(2)—bundle over X and k € N. Let Ry, > 0 and ¢, > 0, ¢, < €q, be the constants
given by Corollary 3.4.4 when N = 4rk. Let (A, ®) be a monopole of charge k and mass

m > max{m,, 2Ryry ' }. Then for all v € (2Rym ™", 1] one has
- m
m g (A ®) <e = |®> T o B (z). (3.4.7)

Proof. Lety € Bz (x). Since 0 < 2Rym~" < r, one has Bg -1 (y) € B,(z) and thus using

the smallness hypothesis on the energy we can apply Corollary 3.4.4 to conclude that

/() > 7

Since y € Bz (z) is arbitrary and the bound is uniform, the result follows. |

3.5 The blow-up set and the zero set

From now on we will be dealing with a sequence {(A;, ®;)}ien € C(F) of finite mass

YMH configurations on (X3, g) satisfying the uniform bound
m; Ex (A, ®;) < C, (3.5.1)

for some constant C' > 0, and whose masses m; satisfy limsup m; = oco. In fact, for conve-
nience, we may assume (after passing to a subsequence) that m; 1 co. We note that in case the
(A;, ;) are SU(2)—monopoles of fixed charge k£ # 0, the energy formula (1.3.19) guarantee

an a priori uniform bound of the form (3.5.1) with equality for C' = 47k.



CHAPTER 3. LARGE MASS MONOPOLES ON AC 3—MANIFOLDS 61

In order to study the behavior of such sequence of infinitely large mass YMH configura-

tions, it is convenient to consider the corresponding sequence of Radon measures
-1 3
wi i =m; e(A;, ©;)H”. (3.5.2)

By (3.5.1) this sequence is of bounded mass. Thus, after passing to a subsequence which
we do not relabel, it converges weakly to a Radon measure p. By Fatou’s lemma and Riesz

representation theorem, we can write
p= e M+, (3.5.3)
where e, : X — [0, oo] is the L' —function

oo := liminf m; e(A;, ®;),
11— 00

and v is some nonnegative Radon measure, singular with respect to 3, called the defect mea-
sure.

Let © be the 0—dimensional density function of g, i.e.

O(r) == lim (B, (r)), VrelX. (3.5.4)

Note that O is well-defined and bounded by C'. In this section, we will be considering the
blow-up set S of {(A;, ®;)}, which is defined to be

S:={r e X:0(zx) >0}

The fact that {u;} weakly converges to p a priori only implies that

pu(Br(z)) < liminf; o (B (z)) and pu(B,(x)) > limsup,_, . p;(B.(x)). Thus, for each

x € X, it is convenient to set
R, :={r € (0,79] : p(0B,(x)) > 0}.
For all r € (0,70 \ R, one has

p(Br(x)) = lim p1;(By(x)).

11— 00

Since  is locally finite, the set R, is at most countable. In particular, for each point z € X we

can find a null-sequence {r;} C (0,79] \ R, so that

O(x) = lim (B, (x).

i—00

From these facts, the following is immediate.
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Lemma 3.5.5. The blow-up set S can be written as
S=Js;
jEN
where

S = ﬂ {JE cX: liminfm;lé’Br(x)(Ai, ;) > jfl} .
1—00
0<r<rg

Our first result relates the blow-up set S with the accumulation points of the Higgs fields

zeros, called the zero set Z, and defined by

Z = U o:71(0).

In the following statement, we shall use H° to denote the counting measure.

Theorem 3.5.6. Let (X3, g) be an AC oriented Riemannian 3—manifold with one end, E be an
G'—bundle over X, and {(A;, ®;) }:ien C C(E) be a sequence of finite mass YMH configurations
on (X3, g) satisfying the uniform bound (3.5.1) and whose masses m; satisfy lim sup;_, . m; =
oo. Then, after passing to a subsequence for which m; 1 oo and j; — p, where j; are the

Radon measures given by (3.5.2), the following holds:
(i) H°(S;) < jC, forall j € N; in particular, each S; is finite and S is countable.
(ii) The blow-up set contains the zero set:

ZCS.

Proof. (i) Given 0 < r < 79, we can find a countable open covering {Bs,,(x;)} of S; with

x; € S;, 10r; < r and B,,(z;) pairwise disjoint. Then

> 6r)” < 3 liminfm; ' Ep, @) (A1, ®:) (@ € S))
l

7 1—00

1—>00

< jliminfm;! Z &, (@) (Ai, @;)  (by Fatou’s lemma)
1

< jliminfm;'Ex(A4;, ®;) (the B, (x;)’s are disjoint)
11— 00

= jC. (by(3.5.1))

Since this bound is uniform in 7 € (0, ro], it follows that H°(S;) < jC.
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(ii) We shall apply Corollary 3.4.4 with A :=2C. Let x € X \ S. Then z € X \ 5, for all

j € N. In particular, there is r € (0, (] such that

lim inf mi_lc‘,’Br(x)(Ai, CDZ) < EA.

i—00
We may assume r ¢ R, otherwise we just work in a smaller ball for which we still have the

above energy bound. In particular, it follows that there is 7y € N such that

m; Epy ) (Ai, @) <en, Vi > .
Since m; 1 oo, by increasing 7 if necessary we may also assume that

m; >m, and 7= Rym;' < g, Vi > .

Hence, given any y € B, /2(x), it follows that

m;lé'B”(y)(Ai, D) <ep, Vi>i,
so that applying Corollary 3.4.4 we get that

@(y) > T ViZ

Therefore, by possibly increasing 7y, we have

By (z)

In particular, it follows that x € X \ Z. By the arbitrariness of x € X \ S, this shows that
ZCS. |

3.6 Bubbling

Let (A, @) be a finite mass configuration on F with mass m # 0, and pick a point z € X.
For each r € (0, o], consider the geodesic ball B,.(x) C X. Then, identify R* 2 T, X and use

the exponential map s,,(+-) = exp(m™'-) to define

(A, @) = (55 A,m™s5 @), g, = m*sh g. (3.6.1)

m

It follows from Proposition 2.1.1 that if (A, ®) is a YMH configuration on B,(x) C X, then

(A,,, ®,,) is a YMH configuration in B,,,(0) C R? with respect to the metric g,,.> Moreover,

SHere B,.,(0) C R3 is a radius r ball with respect to both the metrics g, = m?s*,g and m? exp* g, by the

Gauss Lemma.
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we note that as m — oo the metric g, geometrically converges to the Euclidean one, gz, on

compact subsets of R®. The main result of this section is

Theorem 3.6.2. Let (X3, g) be an AC oriented Riemannian 3—manifold with one end, let E
be a G—bundle over X, and let {(A;, ®;)}ien € C(E) be a sequence of finite mass YMH
configurations on (X3, g) with masses m; satisfying lim sup m; = oco. Denote by S and Z the
corresponding blow-up and zero sets. Then, for each x € S, after passing to a subsequence
and changing gauge, the rescaled sequence (A,,,, ®,,,) converges uniformly with derivatives,
in compact subsets of R* = T, X, to a YMH configuration (A,, ®,) of mass m, < 1 and strictly
positive energy® Ers(Ay, @) > 0. If, moreover, the sequence satisfy (3.5.1), then m, = 1.

Furthermore, in case G = SU(2) and the (A;, ®;) are monopoles with fixed charge k # 0, then
the limit (A,, ®,) is a monopole of mass m, = 1 and charge k, > 0, k, < k, and we have

S=7

The rest of this section is devoted to proving Theorem 3.6.2. We shall start with two

auxiliary results.

Lemma 3.6.3. Let r € (0,70) and K C R? be a compact set. Then, there are constants ¢ > ()
and m, > 1 such that: If (A, ®) is a mass m > m, > 1 YMH configuration on X, then there

is a gauge such that on K C R3:

D] <1

IV (I)m|gE + |V2mq)m|gE <c

m

‘Am|9E + |vAmAm|gE + |v124mAm|gE <ec.
Furthermore, the following inequalities holds on K

[Enlgs + 1V a4y @l < €

|vAmFm|gE + |v,24mq)m|gE <c

Proof. We start recalling Remark 1.3.17, which in terms of ®,,, reads |®,,| < 1.

Now, let (2!, 22, 23) be geodesic normal coordinates on B,(z) C X and (y*, 2, y?) co-

ordinates in B,,,(0) C R? so that s,,,(y', v%,v*) = (mz', mz?, mz?). In these coordinates we

can write the metric g as

1 . .
g = <5ij + gRikakxl + O(]x|2)> da' ® da’.

Possibly oo.
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Thus, by defining the symmetric 2-tensor v = $R;u;4*y'dy’ ® dy’, with Ry; is the Riemann

curvature tensor of g, we can write the metric g, in B,,,,(0) C R3, as
gm = g5 +m 2y +0(m™?). (3.6.4)

It is at this point that we choose m, to be large enough so that X' C B,,,1/2(0) C B,,,. Hence,
given that || < |y|%, in K we have |V (g, — gr)|ss < O(m™1), for all j € Ny. In particular,
these metrics are quasi-isometric in /.

Now, the YMH equations (1.1.1), in Coulomb gauge, give an elliptic system for ®,,, and the
components of the connection A,,,. Furthermore, for m, > 1 and m > m, all the components
of such system, written in the coordinates y on I, are uniformly bounded in m. Thus, elliptic
regularity supplied by the m independent bound |®,,| < 1, gives m independent bounds on
the first and second y-derivatives of ®,, and A,,,. These bounds can be further iterated to yield
bounds on higher y-derivatives these fields. Moreover, given that the metrics g, and gr on
K are quasi-isometric it is irrelevant with respect to which of these metric such bounds are

written. [ |

Next, we prove the following result which states that as m — oo the (A,,, ®,,) is not only
a YMH configuration with respect to g,, as it approaches one for gz in compact subsets of R3.
This is a consequence of the geometric convergence of g, to gg but a complete proof is given

below.

Lemma 3.6.5. Letr € (0,7ry] and K C R, then there is m, > 1 and a constant ¢ > 0 with the

following significance. If (A, ®) is a mass m YMH configuration on X, then the inequality
AR @lgp + |d2E Fa,, — [da, @, @illge < em™,

holds in K. Moreover, in the particular case when (A, ®) is actually a monopole, we further
have

| *E FAm - dAm(I)m|gE S cm_l'

Proof. We shall prove only the case of a YMH configuration, for monopoles the result follows
from similar, but somewhat easier computations. We continue to work with the coordinates y
introduced during the proof of Lemma 3.6.3. Start by using equation (3.6.4) to relate the action

of the Hodge-* operators of both g,,, and gg. Let w be a k-form and Ric;; the Ricci curvature of
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g, a computation gives

1 o
xy W = (1 n m—27|(°”|’2“) . m_QERiCijyzy]> spw—+O0(m™) (3.6.6)
w
9E
= *pw—m 2y, (w), (3.6.7)

where in the last equality ,, denotes an algebraic operator. This has the property of being
uniformly bounded with all derivatives, i.e. there are a m-independent constants ¢; > 0 so

that for all j € Ny and m > m, > 1, we have |(Vym)(W)|gs < ¢;(1 + |y]?)|wlyy» Where

V i denotes the Levi—Civita connection of the Euclidean metric in B,,,(0) C R?. By possibly
further increasing m, so that K C B,,,1/2(0), as in the proof of Lemma 3.6.3, we have that as

a consequence of this we have that |(V/;7,) (W), < ¢jm|wly, on K. Then, we compute
AR @, = xpda, *pda, ®pn = *pda, (xnda, Pm +m >y (da, )
= #p (A} O +m 2 (VeYm)(da, @) + m 7 (Va,da,, )
= NXM ¢ + "‘mmi2 (7m<vAmdAmq)m> + (VE’Vm)(dAm(I)m»
+m” (*mAZLm(Dm + m72<vE7m>(dAm(I)m) + miz%n(vAmdAmcI)m)) :
Recall that (A,,, ®,,) is a YMH configuration for g,),, A}m ®,, = 0, and so, on K we have
‘Agmq)mbE <em™ (|dAm(I)m|gE + |V124mq)m|gE) (3.6.8)
Similarly, we consider
d’;fnﬂm = xpda, *g Fa, = *pda,, (*mFAm + m_2fym(FAm))
= g (4nd" Fa, +m 2 (Veym)(Fa,) +m % (Va, Fa,))
= di" Fa, +m 50 (Veym)(Fa,) +%m(Va, Fa,,))
+m_2,ym ((*md:r:lnFAm + m_2(vE,ym)(FAnL) + m_2/ym(vA'mFA7n)))

Again, the fact that (A,,,®,) is a YMH configuration for g¢,, implies that

dy" Fa,, = [da,, P, ®p,), which together with the previous computation yields that on K

Then, putting together equations (3.6.8)—(3.6.9) with the result of Lemma 3.6.3 we conclude
that on K

AL ®plg + | E Fa, — [da, P, Pil]g, < cm™, (3.6.10)

m

for some ¢ > 0 independent of m. |
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This lemmata has the following consequence:

Corollary 3.6.11. Let {(A;, ;) }ien C C(E) be a sequence of finite mass YMH configurations
on (X, g) with masses m; satisfying lim supm; = oo, and let v € X. Then, after passing to a
subsequence and changing gauge, the rescaled sequence {(A,,, ®.,,) bien defined in equation
(3.6.1) converges uniformly with derivatives, in compact subsets of R® = T,X, to a YMH
configuration (A, ®,) of mass m, < 1. Moreover, if the (A;, ®;) satisfy the uniform bound
(3.5.1) then m, = 1. In particular, if the (A;, ®;) are monopoles, then so is (A, ®,) and

m, = 1.

Proof. Lemma 3.6.3, together with a standard patching argument (see e.g. [DK90, Section
4.4.2]) and the Arzela—Ascoli theorem, imply immediately that, after passing to a subsequence
and changing gauge, the sequence (A,,,, ®,,,) converges uniformly with derivatives on compact
subsets of R? to a configuration (A, ®,) with mass m, < 1. The fact that (A,, ®,) is a YMH
configuration/monopole is then immediate from Lemma 3.6.5. Finally, to see that we have
m, = 1 in the case (3.5.1) is satisfied, fix » € (0, ro] and note that, since limsupm; = oo,
given a sequence {0;} C (0, 1) with ¢; 1 1, then a diagonal argument shows that up to taking a

subsequence we can assume that m; > m, and r > 8C'c;c; 'm; (1 — ;) 7%, so that by Theorem

2

2.4.1 we get
1> sup |®,,|=m;" sup |®;] > 6.
Taking the limit © — oo, we get the desired conclusion. |

Remark 3.6.12. Since g,, converges to gg in Cpe (cf. proof of Lemma 3.6.3), the first part
of Corollary 3.6.11 could be directly deduced as a consequence of the e —regularity (Theorem

3.3.1).

Corollary 3.6.13. Ler {(A;, ®;) }ien € C(E) be a sequence of YMH configurations on (X3, g)
satisfying the uniform bound (3.5.1) and whose masses satisfy limsupm; = oo. Then, after
passing to a subsequence,

s= N {x € X : liminf m; ' Ep, (o) (A, ;) > 0} . (3.6.14)

1—+00
0<r<rg

Moreover, in case G = SU(2) and the (A;, ®;) are monopoles of fixed charge k # 0, then

s= N {x € X : liminf m; ' Ep, (o) (A, ;) > 47r} . (3.6.15)
0<r<rg e
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Proof. We start proving (3.6.14). One inclusion (C) is clear from Lemma 3.5.5. On the other

hand, if x € X is such that for all » € (0, 7| one has

€ := liminf m;ISBT(x)(Ai, o) >0,

i—00
then by Corollary 3.6.11 one has that € > 0 is the energy of a YMH configuration (A,, ®,) in
R?; hence, for j = j(z) € N such that Egs(A4,, P,) > j~', we get that z € S; C S, thereby
proving the other inclusion.

In the case of (3.6.15), the trivial inclusion is (D) and it suffices to note that the above
(A, ®,) is a positive energy monopole in this case, so that ¢ = 47k, for some positive integer

k. hence, ¢ > 4m, as we wanted. [ |
We are now in position to prove the main result of this section.

Proof of Theorem 3.6.2. Let {(A;, ®;)} be a sequence of YMH configurations with masses m;
satisfying limsupm; = oo. For x € S, we consider the rescaled sequence {(A,,,, ®.,)}
obtained from the construction in equation (3.6.1). It follows from the definition of .S that there

is j = j(x) € N such that for all » € (0, 7] we have

liminf/ e(Am,, ®m,) > 571 (3.6.16)
790 J By, (0)

Moreover, it follows from Corollary 3.6.11 that, after passing to a subsequence and changing
gauge, the (A,,,, D,,.) converges uniformly with derivatives on compact subsets of R* to a YMH
configuration (A,, ®,) with mass m, < 1 (and m, = 1 in case (3.5.1) holds). Furthermore,

equation (3.6.16) implies that

/ e(Ay, @) > 571> 0. (3.6.17)
R3

This condition gives that (A,, ®,) has strictly positive energy. Now, in case G = SU(2) and the
(A;, ®;) are monopoles with fixed charge k& # 0, then (A, ®,) is a monopole of mass m, = 1

and the energy formula (1.3.19) shows that
drk > / e(Ay, ®,) = drk,, (3.6.18)
R3

where k, € Z- is the charge of (A,, ®,); in particular, k, < k. Recalling that k£, > 0 is
the degree of @, restricted to a large sphere, we conclude that ¢, must have zeros. Thus,
by Lemma 3.6.5, for all sufficiently large i so does (A,,,, ®,,,) in B,,.(0) C R? (since as

i — oo the (A,,,, D,,,) becomes as close as one wants of being a positive energy monopole
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with respect to ¢gg). Rescaling back, we have that (A;, ;) must have zeros in B,(z) C X for
i > 1. However, given that the value of r € (0, 1) is arbitrary, as i — oo such zeros becomes
as close as one wants to z yielding that z € Z. This together with Theorem 3.5.6 shows that

7/ = S. This finishes the proof of the theorem. |

Remark 3.6.19. Notice that, by the equality (3.6.14) of Corollary 3.6.13, if x € X\S then

rather than equation (3.6.17) we have

/ e(A,, ®,) =0,
R3

which means that (A4,, ®,) is gauge equivalent to a flat connection and a constant function

R3 — g. This means that S is indeed precisely the set where the bubbling occurs.

3.7 Convergence as measures

Our aim in this section is to prove the following:

Theorem 3.7.1. Let (X3, g) be an AC oriented Riemannian 3—manifold with one end, let E be
a SU(2)-bundle over X and let {(A;, ®;) }ien € C(E) be a sequence of finite mass monopoles
on (X3, g) with fixed charge k # 0 and masses m; satisfying limsupm; = oo. Then, up to
taking a subsequence, the corresponding blow-up set S is finite with at most k points and we
have the following weak convergence of Radon measures:
m;e(Ay, ®)HP — An > " kb,
zes

where 0, denotes the Dirac delta measure supported on {x}.

In what follows we fix a sequence of monopoles (A;, ®;) as in the hypothesis of Theo-
rem 3.7.1. Recall the sequence {yx;} of Radon measures (3.5.2) which, by the energy formula
(1.3.19), is of bounded mass 47k and hence, after passing to a subsequence which we do not
relabel, converges weakly to a Radon measure i, where 1 decomposes as in (3.5.3).

The first observation we make is that on the one hand e, (x) = 0 forevery z € X \ S
by equation (3.6.14) of Corollary 3.6.13. On the other hand, it follows from assertion (i) of
Theorem 3.5.6 that H3(S) = 0. Therefore, we conclude that y = v.

Next, we provide some properties of the 0—dimensional density function © of .

Proposition 3.7.2. The function © : X — [0, 4rk]| satisfy the following properties:
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(i) ©(x) = 4rk, > 4m for all x € S, where k, is the charge of the bubble (A, ®,) at ©
obtained as in Corollary 3.6.11.

(ii) © is upper semicontinuous.

Proof. (i) Let x € S. Then, by Corollary 3.6.11, after passing to a subsequence and changing
gauge, the rescaled sequence {(A,,,, .,,) }ien defined in equation (3.6.1) converges uniformly
with derivatives, in compact subsets of R® = T, X, to a mass 1 monopole (A,, ®,) of charge
k. Then, for any r € (0, o],
Ak, = Ers(Ay, P,) = liminf mi_lé'Br(x) (A;, @;).
1—00
Now recall that for € (0,70 \ R, the weak convergence of measures implies
p(B(z)) = lim inf m;lﬁBT(x)(Ai, b,) = Ark,.
1—00
Moreover, we can find a null-sequence (r;) C (0,79 \ R, so that
O(z) = lim u(B,,(z)) = 4nk,,
j—00

as we wanted.

(ii) Suppose {x, } is a sequence of points in X with z,, —» x € X asn — oo. Letd > 0

and r > 0. Thus, for n > 1 we have

and so limsup,,_,. O(z,) < p(B,(z)). The result then follows from taking the limit as r |
0. n

Corollary 3.7.3. S = Z is a finite set with at most k points; in fact,

k
HO(9) < e
Proof. Proposition 3.7.2 immediately implies that S'is closed: if z,, — z, with x,, € S, then
the upper semicontinuity of © implies that ©(x) > lim sup O(z,,) > 4, thereby showing that
x € S. Nowif K C X isacompact subset, then SN K is also compact. Then, given 0 < r < 7,

we can find a finite open covering { By, (z;) }1<j<; of S N K with z; € SN K, 2r; < r and
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B, (x;) pairwise disjoint. Hence,

Zr? < —thrgglfm 153 (A, @) (x5 €9)

j=1

< Lliminf Ze ) (A;, ®))

— liminfm; (@) (A,
- 47'(' 1—00 = BT ]
1
< I liminfm; 'Ex(A;, ®;) (the B, (x;)’s are disjoint)
T 1—00

= k. (by the energy formula (1.3.19))

Finally, since S is finite, we can write S = {1, ..., 2;} (for some [ < k) and choose r € (0, 7|

such that the balls B, (z;), j = 1,...,[, are pairwise disjoint. Then

HO(S) = Zr —Z L gRg(Al,j,cpxj)

7j=1
S
B JZ Amk, ,zllglom 5, (ay) (A, ©)
1 l
< — -1 c N A“(I)Z
= drming ky, i ; By () (Ais i)
1
= W}E&m '€x(A;, ®;) (the B,(x;) are pairwise disjoint)
k
= —— . (by(1.3.19)
min; &,

Finally, writting S = {21, ..., 2}, for some [ < k (by Corollary 3.7.3), we have

Proposition 3.7.4. ;= 47w i k0.
j=1

Proof. Firstly, we show that spt(x) = S. Indeed, in one hand, by Proposition 3.7.2, note that
x € S implies O(z) > 47 > 0 and therefore = € spt(x). On the other hand, if x € X \ S then
(B (x)) < liminf u;(B,(x)) = 0 for all r € (0, 7). Therefore, z € X \ spt(u).

By the energy formula, we know that O(z) < 4rk for all z € X. In particular, given
A Cspt(u) = S, it follows that

th,u (AN B,(x;)) < 4rkH(9).

rl0

Hence, ; is absolutely continuous with respect to H". Putting these facts together, the Radon—

Nikodym theorem implies that we can write y1 = 0H°|S, for some L!'—function § : S — R,
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Since S is finite, by the definition of the density function © it immediately follows that § = O)|g,

thereby proving the desired statement. [

This completes the proof of Theorem 3.7.1.

3.8 Questions on convergence outside 7/

In order to improve the description of the large mass limit behavior of monopoles obtained
in [FO19] (and described in the last sections), one question that arises is about a possible con-
vergence result for the monopoles outside the zero set. More specifically, we hope that the

following result is true

Conjecture 3.8.1. Under the hypothesis of Theorem 3.1.1, there is a subsequence of {(A;, ;) }ien,
which we do not relabel, and a sequence of gauge transformations g; € G(E|x\z) such that the

gauge transformed translated sequence

P;
g,’f Am o, — mz_)
( D4

converges in C2—topology to a configuration of zero mass on X \ Z.

loc

In order to prove Conjecture 3.8.1, we need to show that for each point z € X \ Z we can
find a subsequence i'(x) — oo such that e(A;/, ;) is uniformly bounded in a neighborhood of
2. Then it follows by Uhlenbeck’s Coulomb gauge theorem, elliptic regularity, Arzela—Ascoli,
and a standard patching argument, that we can choose a single subsequence i” — oo such that

@ i
141'//7 CI)Z-/, — mi” —Z)
< | D |

is C° —convergent modulo gauge to a configuration of zero mass on X \ Z.

We note that, a priori, given a sequence {(A4;, ®;)} as in Theorem 3.1.1, Corollary 3.3.4
doesn’t even give us a local uniform bound on (a subsequence of) m, 1e(Ai, ®,); in fact, the
bound it produces goes to infinity like O(m?) as i — co. One possible way to get around this
problem is to explore Corollary 3.4.6 together with the Lie algebra structure of su(2) to get an
improved estimate on the Laplacian of the energy density outside Z. In what follows we give
some results in this direction.

Suppose that £ is an SU(2)—bundle over (X3, g). For each p € Ny, consider the bundle

EP .= NPT* X ® su(2)p of su(2)g—valued p—forms on X with the natural metric induced by
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g and the Ad-invariant metric on su(2) . Let ® € Q°(X, su(2)x) be a Higgs field on E. Then

there is an orthogonal decomposition of £? over the open subset U := X \ ®71(0),
&y = (€)' @ ()",

into parallel () and orthogonal (*) components with respect to ® as follows: if ¢ is a

su(2) g—valued form then
€l = O] 2E, B @,
and
¢ = - ¢l = 4@ 2 )ic, 3], @)
Note that, for any p, ¢ € N,
@l =o, (€N (€< () and (€)1 ().

Moreover, given £ € QP (X, su(2)g), n € QU X,su(2)g) and ¢ € Q" (X, su(2)g), one has

([€,m),¢) = (X n 1, ¢y + (e a1, ¢y + (€l n ], ¢ ).

For each p € Ny, the operator ad(®) = [P, -] restricted to su(2)z—valued p—forms vanishes
precisely on the forms parallel to ® and its eigenvalues restricted to the purely orthogonal ones

are +2i|P|; in particular, for all £ € QP (X, su(2)g),
(@, ¢]l > 2[@llg™].

With the above observations in mind and using Lemma 2.2.1, we get the following Bochner

estimate on the energy density of a monopole outside the Higgs field zero.

Corollary 3.8.2. Let (X3, g) be an oriented Riemannian 3—manifold and E be a SU(2)—bundle
over X. Suppose that (A, ®) is a monopole on E and let U := X \ ®71(0) be the complement

of the zero set of ®. Then, on U one has
Alds®[* < c[Ric?|[ds®@[* + (¢|(da®)| — 4[P[*)[(da®)*|?, (3.8.3)
where ¢, ¢ > 0 are constants depending only on g and the structure constants of su(2).
Equipped with Corollary 3.8.2, we can prove the following.

Proposition 3.8.4. Under the hypothesis of Theorem 3.1.1, the following holds.
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(i) Foreachx € X \ Z we can find r > 0 and a subsequence i'(x) — oo such that

sup my'e(Ay, @) = 0 as i — .
By ()

(ii) Write Z = {x1, ..., x;}, with | < k, and define the functions

w;

(m} — i)

l\DI»—

For each r € (0,ry] such that the B,(x,) are pairwise disjoint, there is a subsequence
i;(r) — oo such that
on X\ B.(Z). (3.8.5)

€i; S Wi

Proof. (i) Suppose x € X \ Z. Then there exists r € (0, ry] and a subsequence i’ — oo such
that
My Ep, (z) (A, Pir) < .

By taking a further subsequence if necessary, we may assume that
my > max{m,, 2R,r~!,2r=1} for all 7/. In particular, by Corollaries 3.3.4 and 3.4.6,

for all 7’ one has

sup |da, @y < m2Cy%e/* and (3.8.6)
Br(x)
Jn T (3.8.7)

Thus, on B (x), the term ¢|d 4, ®is| — 4|®y|* in the Bochner estimate (3.8.2) is nonposi-

tive provided we suppose ¢, is sufficiently small. Thus, we get
AG(AZ‘/, (I)z’) S C€<A7y7 @Z/) on B% (l’) (388)

With this improved (linear) bound on the Laplacian of the energy densities it follows from
a standard mean value inequality (cf. Theorem A.3) that

sup my " e(Ay, ®y) Srmy, / e(Ay, i)

Br(z)
Now the convergence of measures given by Theorem 3.7.1 implies that

m; e(Ay,®y) =0 as i — oo,

Br(z)

thus proving the desired result.
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(i1) Using the above part (i) and a standard diagonal argument, given r > 0 as in the statement,

there is a subsequence ¢;(r) — oo such that

A€(Aij, (I)z]) S C@(Aij, (I)z]) on X \ BT(Z) (389)

Since A A ;. = 0and (Ai]., <I>l-j) has finite mass m;_, it follows that for each i; we have

Awij = G(Aij, q)z]) = 6,‘]. (3810)
and
lim w;; = 0. (3.8.11)
pP—00

Putting together (3.8.9) and (3.8.10) gives
A(cw;; —e;;) > 0. (3.8.12)

Now since both e;; (cf. Corollary 2.3.3) and w;; (cf. (3.8.11)) goes to zero as p — oo,
inequality (3.8.5) follows from the Maximum Principle.

These facts may be helpful in establishing Conjecture 3.8.1, but at the time of writing it is

not clear to the author how to prove it completely.
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Chapter 4

Partial results on large mass monopoles on

AC Go—manifolds

We turn to the problem of analyzing sequences of large mass Go—monopoles using anal-
ogous techniques of those employed in Chapter 3 (cf. [FO19]). In this higher dimensional
case, new technicalities and difficulties arises. More specifically, a priori it is not so clear what
should be the precise definition of the blow-up set and, in fact, a suitable e—regularity result
for the more relevant 1)—energy density requires a monotonicity formula for the renormalized
1—energy and a Bochner estimate that in general are not available without further hypothesis.
Moreover, one expects that the relevant blow-up set(s), including the zero set, have Hausdorff
dimension 4 (codimension 3) and to treat the bubbling analysis on these one needs regularity
results and techniques from geometric measure theory.

We start by proving the desired versions of the above mentioned results under a certain mild
assumption, satisfied by, e.g., the examples in [Olil4b]. In Section 4.1 we give codimension
3 and 4 monotonicity formulas for the renormalized 1)—energy on small geodesic balls as a
consequence of the general formula in §2.1. Next, in Section 4.2 we give the Go—monopoles
version of the Bochner—Weitzenbock formula of §2.2 and its consequent estimates, including
a version of the estimate outside the zero set of the Higgs field for SU(2)—bundles analogous
to the one given by Corollary 3.8.2 in 3—dimensions. As a consequence of these results, in
Section 4.3 we derive appropriate e —regularities for the 1»—energy density.

With the previous results at hand, we then proceed to prove a number of properties con-
cerning the behavior of sequences (A;, ®;) of Go—monopoles of arbitrarily large mass and

fixed monopole class, satisfying mild assumptions. We begin in Section 4.5 defining a notion



CHAPTER 4. PARTIAL RESULTS ON LARGE MASS MONOPOLES ON AC G,—MANIFOLDS 77

of blow-up set S in this context, which corresponds to the set of points where the v)—energy
of the sequence concentrates, and as in the 3—dimensional case we define the zero set Z as the
limiting set of the Higgs fields zeros. We prove that Z C S and that Z has finite *—measure.
After passing to a subsequence if necessary, the Radon measures pf = m; eV (A;, ®;)H" have
a weak* limit u¥ = e2H™ + v, where e¥, := liminf; ,,, m; 'e¥(A;, ®;) and v < H*|S is
some (nonnegative) Radon measure singular with respect to 7. We begin Section 4.6 showing
that the 4—dimensional density function ©¥ of ¥ exists, is bounded, upper semi-continuous

and its support equals S. We then proceed to show that S decomposes as:
S = Q Using(el),

where Q) = supp(v) and sing(e?.) is the support of the 4—dimensional upper density of e¥ H".
Further, sing(e?)) is shown to have zero H*—measure. We end this section showing a first
regularity result for the blow-up set: @ is a H*—rectifiable set, i.e. at H*—ae. x € Q the
approximate 4—dimensional tangent space T},.() exists, and v can be written as v = O¥H*| Q.
We end this chapter with Section 4.7, where we start the analysis of the behavior of blow-up
configurations of (A;, ®;) fori > 1 at a smooth point v € Q, i.e. T,(Q exists and x ¢ sing(e¥.).
We show an asymptotic translation invariance result and finish stating some conjectures on the

possible outcomes of a still lacking complete analysis.

4.1 Monotonicity for the renormalized ) —energy

Let (X7, g) be a Gy—manifold of bounded geometry and let £ be a G—bundle over X.
Fixing a Go—monopole (A, ®) on E, a point z € X and k € N, define functions 6, 9}5 :
(0,70] — [0,00) and 67 : (0,70] — R by

9k<r) = e(27,27'_]%5‘1%(90) (A> (I))

O (r) = e 1R ER () (A, @)

cr?,.—k

e’ r
0 (r) == 5 / (Ima(Fa)[? = 2|mr(Fa)l?)
By ()
ecrz,rfk

= — 5 / <FA N FA> A ¢.
By ()

Note that, by the energy identity (1.3.10), we have

O = 07 + 07 4.1.1)
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In what follows, we want to prove monotonicity formulas for 9;{’ and 91’. We shall consider the

following additional assumption:

|Im1a(Fa)|* = 2|77 (Fa <1. 4.1.2)

W[l poe ) S
Then we have:

Proposition 4.1.3 (Monotonicity for the renormalized 1»—energy under assumption (4.1.2)).
Let (A, ®) be a Go—monopole on E satisfying (4.1.2). Then forall x € X and 0 < s <r <rg

one has

ec’"2r—3€gr(x)(A, <I>)—e“23‘3€;fs(m)(f1, ®) > /A ( )ec"Qp_?’ (Jto, Fal? + |to,da®@|) —c(r—s").
(4.1.4)

and

eCT2r_451§r($)(A, @)—60828_45§S($)(A, ) > /A ( )€Cp2p_4 (|LapFA’2 + |LapdA(I)’2) —c(r*—s%).
(4.1.5)

Proof. Note that assumption (4.1.2) implies 67 (r) = O(r7~*). The result then readily follows
by combining the general monotonicity formula (2.1.3) of Theorem 2.1.2 for n = 7 with the

identity (4.1.1). ]

4.2 Bochner—Weitzenbock formula and estimates (G, —case)

The following results are direct consequences of the formulas in Lemma 2.2.1.

Lemma 4.2.1 (Bochner-Weitzenbock for Gy—monopoles). If (X7, 4%, g) is a Go—manifold
and (A, ®) is a Go—monopole then

%A|d,4q)|2 = — %(* ([dA(I), dA(D] A Q/)) ,dA(I)> — 2(*[*71’14(FA), dACI)], dACI>>

— [da®, @]]* — |Va(da®)]>. (4.2.2)

In particular,

Ae(A, @) < |mu(Fa)le? (A, @) + e?(A, ®)%2 (4.2.3)

Proof. This follows from Lemma 2.2.1 observing that Ric? = 0 for a Go—manifold and that
x377(F4) = da® A 1 for a Gy—monopole. [ |
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Corollary 4.2.4 (Bochner type estimate under assumption (4.1.2)). Let (X7, v, g) be a Go—mani-
fold and E be a G—bundle over X. If (A, ®) is a Goa—monopole on E satisfying assumption
(4.1.2), then

Ac? (A, ®) < e¥(A, ) + eV (A, )32, (4.2.5)

Proof. Direct consequence of Lemma 4.2.1 noting that (4.1.2) implies |4 (F4)|S 1+e¥ (A, ).
|

Restricting attention to SU(2)—bundles and recalling the discussion on §3.8, by Lemma
4.2.1 have also have the following Bochner estimate on the energy density of a Gy—monopole

outside the Higgs field zero.

Corollary 4.2.6. Let (X7, g) be Go—manifold and E be a SU(2)—bundle over X. Suppose that
(A, ®) is a Go—monopole on E and let U := X \ ®71(0) be the complement of the zero set of
®. Then on U one has

Alda®f* < (col(da®)] + erl (ma(Fa)| = 4]@[7) [(da®)* |

T ol (raa(Fa)) 11 (da®) | (), 4.2.7)

where the c; > 0, 1 = 0,1, 2, are constants depending only on g and the structure constants of

su(2).

4.3 c—regularity for the {)—energy density

We are now able to prove e —regularity results for the 1)—energy density of Go—monopoles
satisfying assumption (4.1.2) using the monotonicity of Proposition 4.1.3 and the Bochner esti-

mate of Corollary 4.2.4.

Theorem 4.3.1. Let (X7, 1), g) be an oriented Go—manifold of bounded geometry and let E be
a G—bundle over X. Then there are constants ¥ > 0 and C¥ > 0 such that the following
holds. Let (A, ®) be a Go—monopole satisfying assumption (4.1.2). If v € X and 0 < r < r

are such that

£ 1= r’?’é’gr(x)(A, P) < e?,

then

sup e¥(A, ®) < CY(r e +1). (4.3.2)
By (z)
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Proof. We apply the mean value inequality of Theorem A.3 for f := e¥(A, ®), d = 4, 7(r) =
cr*,ap=0and 0 < a1, a < 1. Indeed, with this setup, the monotonicity formula of Proposition
4.1.3 implies (A.4), and the Bochner estimate of Corollary 4.2.4 implies (A.5) with critical
exponent o = 3/2 = (d + 2) /2. Therefore, noting that 1 < r~4, it follows from (A.7) that there
is ¥ := ha=? > 0 and C¥ > 0 (depending only on the geometry of (X7, g) and the structure
constants of g) such that if ¢ + 7 < ¥ then (4.3.2) holds. Now since T(r) = er* and r < rg, by
choosing 7 smaller (depending only on the geometry) we may assume that 7(ry) < 4~ 1¢?, so

that replacing ¥ by 271c¥ we get the desired result. [ |

As in the 3—dimensional case, in order to analyze sequences of large mass Go—monopoles

the following version of the e —regularity will come in handy.

Theorem 4.3.3 (¢ —regularity for the 1)—energy density under assumption (4.1.2)). Let (X7, 4, g)
be an oriented Go—manifold of bounded geometry and let E be a G—bundle over X. Then
there are constants ¥ > 0 and C¥ > 0 such that the following holds. Let (A, ®) be a
Go—monopole satisfying assumption (4.1.2). For any m > 1 and R > 0, if v € X and

0 <r <min{Rm™', ry} are such that
£:= m_lr_4é'§r(x)(A, P) < &¥,

then

sup m~'e¥(A, @) < C}é (r’Sg + mfl) , (4.3.4)
Br ()
1

where Cy := Cmax {1, R*}.

Proof. We give a direct proof, also based on the Heinz trick (like the proof of Theorem A.3) but
more on the spirit of [Wall7a, Appendix A]. Consider the function 6: B, 2(z) — [0, 00) given
by

) = (5 —dlr.)) m e (A, ) ().

By continuity, # attains a maximum. Since € is non-negative and vanishes on the boundary
0B, j5(x), it achieves its maximum

M := max 0
Br/Q(m)

in the interior of B, j»(x). We will derive a bound for M of the form M < max {1, R*} (¢ +m~'r?),
from which the assertion of the theorem follows. Let yy € B, 2(x) be a point with 6(y,) = M,
set

eo :=m e (A, ®)(yo)



CHAPTER 4. PARTIAL RESULTS ON LARGE MASS MONOPOLES ON AC Go—MANIFOLDS 81

and
1 /r
S0 ‘= 5 <§ - d(fU”yo)) )
Note that
r
Y € By (v) = <§ - d(x,y)> > S0
Therefore,

Y€ Bylyo) = me"(A,0)(y) < s5°0(y) < 5°0(y0) < eo-
In particular, from the Bochner estimate (4.2.5) that
Alm=le?) S (m7te?) + m2 (m eV 2 S e +mY2e)* on By (o).
Now by Lemma A.1 we have
eo S 3_7/ m~te? (A, ®)vol + s%(eq + ml/Qeg/Q), Vs < sp.
Bs(yo)
Then the almost monotonicity of Proposition 4.1.3 implies
eo S s 3e+573m e 4 5% (eg + m”%ﬁ”),

which we rewrite as

sPeo S e+ m i 4 55 (e + m' 2. (4.3.5)

Since m > 1, (4.3.5) implies
sPeo Se+mir? 4 5P (mPey + ml/zeg/Q). (4.3.6)

We split into two cases.
Case (i). m?ey > m1/263/2 ( <= m> > ep): in this case, for each s < s, it follows from

(4.3.6) that
c(e +m~1r3)

1 — cm?2s?

4.3.7)

8360 <

Thus, if em?s2 < 1/2 we get
M = 0(yo) < sdeg Se+m
Otherwise, setting s := (2¢)~/?m~! < s, and plugging into (4.3.7) yields

eo Smi(e +m~r).
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Since sy < r and by hypothesis » < Rm ™!, we conclude that

M < sdeg < R¥(e+m~ ).

5/3

1/263/2 > m?ey (<= m?® < e): in this case, m'/? < /¢ and thus ¢)/” >

Case (i1). m

ml/zeg/2 > mZeq, so that from (4.3.6) we derive

sPeg < (e +m %) + 68568/3 =cle+m ) + 83606<826(2)/3), Vs < sp. (4.3.8)

Thus, setting ¢ = t(s) := se(l)/ ® the inequality (4.3.8) can be expressed as
31— ct?) < cle + m™1r?).

Now we can choose €, > 0 sufficiently small, where the smallness depends only on ¢, which
in turn depends only on g and G, so that for ¢ < ¢, the corresponding equation t3(1 — ct?) =
c(e +m~'r?) has three small (real) roots t1, to, t3, which are approximately =+ (ce 4+ cm™173)"/3,
and two large (complex) roots. Since ¢(0) = 0 and ¢ is continuous, for each s € [0, s¢], £(s)
must be less than the smallest positive (real) root. Therefore, t(s) < (¢ + m™1r3)'/3 for all
s € [0, so; in particular, M < sdeq < & + m~'r. This finishes the proof. [ |
Remark 4.3.9. We conjecture that Theorem 4.3.3 should be a consequence of Theorem 4.3.1.

1

Also note that the first imply the case » € (0, min{1, r¢}] of the later by setting m = r~" and

R=1.

4.4 An interior lower bound on the Higgs field (G, case)

Let (X7,4, g) be a Go—manifold of bounded geometry and £ be a G—bundle over X.

Given real parameters 0 € (0,1) and R > 0, we define
e = min{(Ch) " Ro%, "}, (4.4.1)

where ¢¥ > 0 and C’}é > () are the constants given by Theorem 4.3.3.
A simple argument using the fundamental theorem of calculus together with Theorem 4.3.3

proves the following.

Proposition 4.4.2. Let 6 € (0,1), m > 1, R > 0 be real parameters and (A, ®) € C(E) be a

Gy —monopole satisfying assumption (4.1.2). If r := Rm~ < ryand x € X are such that

sup |®| > md, (4.4.3)
B ()
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then
L aew y mé  R(CY)z
morT ey (A, Q) <e5p = [0 > & T o

Proof. Fix q € 832 (x) such that the restriction of |®| to 0?2 (x) attains its maximum at ¢. For

on B:(x). (4.4.4)

any p € Br(z) we can choose a (smooth by parts) path v, in Bz (z) with length L(v,) < §

joining p to ¢. Thus, using the fundamental theorem of calculus and Kato’s inequality we get:

[®[(q) — [®](p) < dI‘PI

/ da9| < - 5 Sup |[da®].

Br (z)

Using the assumption (4.4.3), it follows that

|®[(p) > md — g Su(p)|dA¢)|, Vp € B: (). (4.4.5)
Br(x

On the other hand, using the hypothesis, Theorem 4.3.3 gives the following:

r r mé  R(CY)L/?
5 Sup [da®| < (0%1/2 Ve )P+ S (CR)Y = (2—R> (4.4.6)
Br () m
Putting (4.4.5) and (4.4.6) together completes the proof. |

Combining the above with Theorem 2.4.1, we get:

Theorem 4.4.7. Let (X714, g) be an AC Gy—manifold with one end, E be an SU(2)—bundle
over X and k € N. Then there are positive constants R} &' < ¥ and ck such that the
following holds. Let (A, ®) € C(E) be a finite mass Go—monopole over (X7, 1, g) with fixed
monopole class c1(L) such that k := (c;(L) U [*¢], [N]) # 0, mass m >, 1 and satisfying
both the energy formula (1.3.24) and assumption (4.1.2). Then for r := R;fmfl one has

m’lr’4€§T($)(A,®)<€}f = [P > L™ ¥ on B:(z). (4.4.8)
Proof. Let
R} = ck,
¥ = z—:fmﬂ}f = min{4_1(C’;’$ )7LRY &%}, and

= 2_1R}f(C’zw)1/2.
k
Here we choose ¢ > 0 depending only on g big enough so that it follows from Theorem 2.4.1

with 0 := 1/2 and A = 47k that

sup || >

m
= 2
OB (v)

Therefore, by hypothesis, we can apply Proposition 4.4.2 with 6 = 1/2 and R = R}f to get the

desired result. [ |
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4.5 The blow-up set and the zero set (G, case)

Let E be an SU(2)—bundle over an AC Go—manifold (X7, ), g). From now on we shall
consider a sequence {(A;, ®;)}ien of finite mass Go—monopoles on E with fixed monopole
class ¢; (L) such that k := (c1(L) U [¢*], [N]) # 0 and masses m; satisfying lim sup m; = oo;
in fact, by taking a subsequence if necessary, we may assume that m,; T co. Finally, we shall
suppose that the (A;, ®,) satisfy the energy formula (1.3.24) (e.g., they satisfy the conditions of

Proposition 1.3.23), so that
EV(A;, ®;) = dmkm;, VieN. (4.5.1)

In order to study the behavior of such sequence of infinitely large mass Gy —monopoles,

we shall consider the corresponding sequence of Radon measures
1t = m7 e (A;, ©)HT (4.5.2)

These are finite and their total mass are uniformly bounded by the energy formula (4.5.1),
which yields ,u;b(X ) = 4rk. Thus, after passing to a subsequence which we do not relabel, they
weakly converge to a positive Radon measure ;%. By Fatou’s lemma and Riesz representation
theorem, we can write

=t =etH + v, (4.5.3)

where ¢¥ : X — [0, oo is the L!—function

e = liminfm; ‘e’ (4;, ®;)

& 1—+00
and v is singular with respect to H'; v is called the defect measure.
We set
RY = {r € (0,70) : u* (0B, (v)) > 0}.

For all 7 € (0,7,] \ RY one has

' (Bp(x)) = lim p1)' (B, (x)).

1—+00
Since p¥ is locally finite, the set RY is at most countable.

Fixed the above context, we now make the following definitions.

Definition 4.5.4 (Blow-up and zero sets). The blow-up set is defined by

s::Usg,

e>0
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where

S, = ﬂ {:c e X: liminfmileCT27’4/ |Fa, Ap? > 5} .
B, ()

1—00
0<r<ro

The zero set is the accumulation points of the Higgs fields zeros:

Z = J & 0.

n>1i>n

Note that Z C X is a closed subset.

For the rest of this chapter, we shall work under the following:

Assumption 1: The (A;, ;) satisfy assumption (4.1.2) uniformly, i.e.

[1714(Fa)* = 22 (Fa,)

|| ey S 1, foralli > 1. (4.5.5)

Example 4.5.6. We note that the only known nontrivial finite mass Gy—monopoles on AC
manifolds, namely the invariant G;—monopoles on the Bryant-Salamon manifolds A2 (CP?)
and A%(S*), were constructed in [Oli14b] and they satisfy assumption (4.5.5). For instance,

recall the following:

Theorem 4.5.7 ([Oli14b]). The moduli space M,,(A% (CP?), P) = My, of SU(3)—invariant
irreducible Go—monopoles on a homogeneous principal SU(2)—bundle P over A? (CIP?) is non

empty and the following hold:
1. Forall (A, ®) € M, ®1(0) = CP? is the zero section and the mass gives a bijection
m: M, — RT.
Let (A, ®,,) € Mn, be a monopole with mass m € R, there is a gauge in which
(A, @) = (Ai,—l + b (1 @Th+1,®T;), ¢mT1) )

with b,,(0) = 1 and ¢,,(0) = 0. In this gauge, the curvature of the connection A,, is

+ (20, =) v+ ) @ T4 (4.5.8)

2. Let R > 0, and {(Ax, ®x)}reir+00) C Miny be a sequence of monopoles with masses
A — oo. Then there is a sequence n(\, R) converging to 0 as A\ — oo such that for all

r € CP?

exp, (Ax, NPa)[a2 (cp2),
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converges uniformly to the BPS monopole (APYS ®BFPS) in the ball of radius R in

(R3, gi). Here exp, denotes the exponential map along the fibre A* (CP?), = R?.

3. Let {(Ax, ) }rc[a,+00) De the sequence above. Then the translated sequence

)
Ay, Py — ==
< Ay E |q)/\|) ;

converges uniformly with all derivatives to a reducible, singular monopole on A> (CP?)

with zero mass and which is smooth on A> (CPP?) \ CP2,
Write the curvature of (A,,, ®,,) as F,,, = F; ® T1 + .., then
(FEp, NE)NG=(FIANFI) NG+ ...
— (8f4b72n(32f2 +2¢%) + 45 f? — 16g2) dp A via A Y.

Now, recall that b,,(0) = 1 and b,, is decreasing so the above is uniformly bounded indepen-

dently of m, i.e.

[(Fmn A Fn) Aol S 1.

Our first result relates the blow-up set S with the zero set Z. In the following statement,

we shall use H* to denote the Hausdorff 4—dimensional measure.
Theorem 4.5.9. Under the above conditions, the following holds:

(i) 7-[4(56) < 5tedmke™Y, for all € > 0; in particular, S has Hausdorff dimension at most 4.

(ii) Let 0 < €V < ¥ be as in Theorem 4.4.7. Then:
Z g S€1/).
k
In particular, the zero set in contained in the blow-up set and H*(Z) < ooc.
Proof. We prove each item separately:

(i) Fix e > 0. Given 0 < r < min{1, o}, we can find a countable open covering { Bs,, (z;) }

of S; with z; € S}, 10r; < r and B,,(z;) pairwise disjoint. Then

> (r)t < 546‘36_1Zliminfmi_lgg”(m(Ai,(I)Z-) (2, € S})
l

. 1— 00

< Blete ! hifl_l)glf m;! zl: Egrl (:c,)(Ai7 ®;) (by Fatou’s lemma)
< 5% ! liminf mi_lc‘,’;é(Ai, ®;) (the B,,(z;)’s are disjoint)

1—00

= b5'edrke!.  (by the energy formula (1.3.24))

Since this bound is uniform in € (0, r¢], the result follows.
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(ii) We shall apply Theorem 4.4.7. Let z € X \ Ss}f' Then there is r € (0, 79| such that

lim inf mi_lr"lé'gr(m) (A;, @) < e}f.

1—>00
Now note that we may assume r ¢ R,; otherwise, by an approximation argument of
taking an increasing sequence of radii r; T r with r; ¢ R, we can replace r by some r;

for large 7 and work in a smaller ball for which the above energy bound still holds. In

particular, it follows that there is i, € N such that
m;lr"lc‘fgr(m) (A;, @) < 5}5, Vi > 1.
Since m; T 0o, by increasing 7, if necessary we may also assume that
m; > 1 and 1= Rfm;l < g, Vi > 1.
Hence, given any y € B, /Q(x), it follows that

mz‘_lri_4g7é7.i(y)(‘4i7 q)z) < 82, Vi > 10,

so that applying Theorem 4.4.7 we get that

[@il(y) > 57 —mi e, Vi> o,

Therefore, by possibly increasing ¢y, we have

inf |®;| > 100 >0, Vi > i.
By (z)

In particular, it follows that x € X \ Z. We are done.

4.6 Decomposition and rectifiability of the blow-up set

We continue the analysis of the last section under the same hypothesis.

Lemma 4.6.1. Foreveryx € X and 0 < s <1 < ry,

2

sl (By(x)) < et (B ().
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Proof. Fix x € X. If r ¢ RY, then the result immediately follows from Proposition 4.1.3. As
for the case where r € R, we proceed by an approximation argument. Since u is a locally
finite measure, the set RY is countable. Thus, we can pick a sequence {r;} C (s,r) \ RY with

r; 1 r. Then, by dominated convergence

1’ (B, (z)) = lim p¥(B,,(z)),

Jj—o0
and the result follows from the first part. [

Proposition 4.6.2 (The 4—dimensional density ©%). The limit

0%(z) == fim r ¥ (B, (x))

exists for all v € X and is bounded by ecr347rk:ra . The function ©¥: X — [0,00) is upper

semicontinuous and supp(©¥) = S.

Proof. The first part is a direct consequence of Lemma 4.6.1 and the energy formula (1.3.24).
To show upper semicontinuity, let {x,,} C X be a sequence of points converging to z € X.

Letr ¢ RY and € > 0. Then, for n >> 1, one has B,(z,,) C B,,.(z) and thus
0% (2,) < e r ¥ (Bo(xn)) + e < e ¥ (Brge (2)) + e,

Thus lim sup ©¥(z,,) < e r~*1(B,(x)) +cr®. Taking the limit r | 0 shows what we desired.
To show that S C supp(©¥), one should note that since O () exists for every z € X, then

by letting {r;} C (0,79) \ RY be a null-sequence one can write (see the proof of Lemma 4.6.1)

OY(x) = lim lim inf T_4,u;p(Brj(x)).

j—00  i—00
Thus if = € S, then there exists ¢ > 0 such that ©¥(z) > € > 0, so that = € supp(O?).

Finally, the reverse inclusion supp(©¥) C S follows by monotonicity. |
Corollary 4.6.3. The measure ;1% is absolutely continuous with respect to H*.
Proof. This follows from the fact that ©¥(z) exists and is uniformly bounded from above. M
Corollary 4.6.4. qu}f C X is a closed subset.

Proof. This follows from the upper semi-continuity of ©% and the monotonicity for ;¥ given

by Lemma 4.6.1. Indeed, if {z, } is a sequence of points in Sslkp such that x,, — z, then

0¥ (x) > limsup O%(z,) >V, (4.6.5)

n—oo
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where in the first and second inequalities we used that ©¥ is upper semi-continuous and z,, €

. . . ¢ .
Sglkp respectively. Now the monotonicity for ¥ gives

2

OV (x) < e ru¥(B,(z)) (4.6.6)

for all » € (0,7 Putting together (4.6.5) and (4.6.6) and recalling that
(¥ (By(z)) < liminf,_,o p? (B, (z)) completes the proof. |

Definition 4.6.7.

sing(e?) = {m € X : (02)*(z) := limsup r_4/ el > 0}.
rl0 Br(z)

Lemma 4.6.8. H"(sing(e¥)) = 0.

Proof. For each € > 0, define
A, ={r e X:(0%)(x)>c}

Given 0 < 0 < 1, appealing to Vitali’s covering lemma we can find countably many points
{z;} C A. and radii r; € (0,0] so that the balls B, (z;) are pairwise disjoint and the balls

Bs,,(x;) cover A.. Moreover, we can suppose that

T'j / €% > £.
BTj (xj)

By definition of A, itis clear that x € A, implies O(z) > 0, so that as supp(©) C S, it follows

that A, C S. Hence,

HY(A,) < 5 Zr? < 5! Z/ el < 5451/ ev
j j 7 Brj(z;) Bs(S5)

which goes to zero as ¢ | 0 since H'(S) = 0. Thus H*(A.) = 0 for all € > 0, thereby proving

the lemma. u
As a consequence of Proposition 4.6.2 and Lemma 4.6.8, we get:

Corollary 4.6.9. For H*—a.e. point x € X the density

O,(x) = lriﬁ)l r~*v(B,(z))

exists and agrees with ©Y (x); in fact, the assertion is true for all v € X \ sing(e¥).
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In order to continue the analysis of the decomposition of S, and in fact for it to be con-
sidered a blow-up set in the usual sense, a key property that we need is that the defect measure
v should have its support contained in S. In oder to show this, we actually shall need another
assumption on the sequence (A;, ®;). In what follows, recall that Z C S (by Theorem 4.5.9)
and that each ®; decomposes su(2) p—valued forms orthogonally into parallel and orthogonal
components outside ®;*(0) (cf. §3.8). From now on we make the following:

Assumption 2: Ateach z € X \ S, the (A;, ®;) satisfy

|14 (Fa) b < |mr(Fa,) b, fori > 1. (4.6.10)

Using (4.6.10) together with Corollary 4.2.6, we are able to improve the Bochner estimate
on the Laplacian of the ¢»—energy densities of the sequence (A;, ®;) to a linear estimate out-
side .S, in the same way as we did in Section 3.8, and then a mean value inequality together
with Arzela—Ascoli proves that m; 'e¥(A;, ®;) is (up to taking a subsequence) C°—convergent

outside S, so that the desired inclusion supp(r) C S follows.

Proposition 4.6.11. Under the above assumptions, the support of the defect measure v is con-
tained in the blow-up set S':
supp(v) C S.

Now we are able to easily prove the following:

Proposition 4.6.12 (Decomposition of the blow-up set). The blow-up locus decomposes as
Jfollows:

S = supp(v) Using(el).
Proof. We divide the proof as follows:

D: We know that supp(v) C S from Proposition 4.6.11. Moreover, by definition, sing(e¥) C
supp(©¥) and, by Proposition 4.6.2, supp(©¥) = S; thus, sing(e%) C S.

N

: Let z € S. Then there is € > 0 such that ©¥(z) > ¢ > 0. Now if = ¢ sing(e¥), then
O,(z) = ©¥(z) > 0, so that z € supp(©,) C supp(v). Since sing(e%) C S, the result

follows.

We now prove the main result of this section.
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Theorem 4.6.13 (Rectifiability of the blow-up set). The measure v is H*—rectifiable, i.e. v =
OVH* | upp(v) and supp(v) is a H*—rectifiable set.

Proof. Since supp(v) C S, Corollary 4.6.9 and Proposition 4.6.2 imply that ©,(z) = ©¥(z) >
0 for H*—a.e. x € supp(v). Furthermore, in general ©% < ©¥ < oo, which implies that

v < H*. Thus the rectifiability follows from Preiss’ criteria [Pre87]. [ |

Corollary 4.6.14. The blow-up set S is H*—rectifiable. In particular, at H*—a.e. point v € S,

the tangent space TS exists.

Proof. This follows from Theorem 4.6.13 by using Lemma 4.6.8 and the decomposition of .S
given by Proposition 4.6.12. |

4.7 Partial progress on bubbling analysis and a few conjec-

tures

In this final section we give some progress on the development of the bubbling analysis of
the problem under the assumptions of the last sections. In the end, we state some conjectures

on what we believe to be some of the outcomes of such an analysis.

Definition 4.7.1 (Bubbling set and smooth point). We call ) := supp(v) the bubbling set and

a point z € @ is said to be smooth if the tangent space T, () exists and = ¢ sing(e¥).

By Theorem 4.6.13, at a smooth point x € () the measure v has a unique rangent measure,
i.e., the limit
T,v = limd*s* ;v
T 510 z,0
exists and is given by

T,v = 6% (z)H*|T,Q.

Here s, 5(-) := exp,(d-). An alternative way of obtaining this is to construct 7, explicitly
from a blow up sequence as we shall now do. Let (A, ®) be a mass m configuration, z € X,

0 > 0and s, 6(-) = exp,(6-). Define the blow up configuration at x to be
(Aa:,67 (I)xﬁ) = (S;ﬁAa 55;,5(1))a 9z,5 = 6_2827597 %0,5 = 5_48275 ) (472)

and respectively denote by F), 5, *5, vol, 5 the curvature of A, s, the Hodge-*, and volume form

of g, 5. These are being regarded as defined in a ball of radius at most 6~Y, in T, M, where
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i, is the injectivity radius at z. A simple computation gives |F; 5|2 . = 6*|F|2 o s, and

|da, s Pasls , = 04|da®[2 0 5,5, SO that
S;(;(G(A, ¢)>V01) = 57_46(1433,57 q)ac,é)VOla:,é‘

We further point out that as ¢ | 0, the metric g, s and 4-form 1), s geometrically converge to
those of their flat counterparts in R” = 7, X.

We shall begin by proving the following result.

Lemma 4.7.3 (Scale fixing). Let © € @ be a smooth point. Then there is a null-sequence

{6;} € (0,1) so that

(5imi)_1 ’Fx,&; A %:,&

395 5-V0193,5i —Tv = @w<x>%4 | 7.Q,

with F, s, denoting the curvature of (A;) . s,-

k3

Proof. Since = ¢ sing(e¥.), we have
. —4 * : —4 %
T,v= 1;&)15 SpsV = 1586 3175/ﬂ
Thus

T,v = lim lim 65 5!
510 i—00 :

Therefore we can find a null-sequence {d;} C (0, 1) such that
Tv = lim 67 %s" 5 ul.
i— r

(2

This gives the result since

07 sh sl = (6im) " Fos, A s,

2
9.5, VOII75i .
[ |

Henceforth, we let N, Q := (T,Q)* C T, X, write (z, w) to denote points in T,,Q x N,Q =

T, X and work with generalized cubes of the form
QT7S(Z0,QU0) = BT(Z()) X Bs(wo) C TIQ X NxQ = TIX

Proposition 4.7.4 (Asymptotic translation invariance). Let x € Q) be a smooth point and {J;}

be the null-sequence in Lemma 4.7.3. Then (after passing to a subsequence) there is a null-

§1> = 07

sequence {z;} C T,Q so that

lim sup r4/Q ( 0)(51'77%')1 (\LUFA:,;,Q |§ + ]LvdAzyéi D, 5,
r,1\Zi;

=00 p<q

forallv € T,Q).
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We split the proof of Proposition 4.7.4 into the following lemmas.

Lemma 4.7.5. Under the hypothesis of Proposition 4.7.4, for all v € T,(QQ we have

2)=o.

Proof. Fix g|r,x—orthogonal coordinates {y;};_; on T,Q, with 9,, having length 4. Let D,

i [ @ma) 7 (JFa B+ lda,, @
71— 00 Q2,1 (0)

denote the radial vector field emanating from the point J,, associated with the metric g, 5,. Then

the monotonicity of Proposition 4.1.3 and |[Fia, , A Fa, ;. A dzs| < ¢ (by assumption 4.1.2),

applied to the blow up sequence (A, s,, P, s5,) centered at 0, implies that for 0 < s <r

/ €C(5i7')27'_4(5im2-)_1 <|L8p§_ FAx,Ei i)
By (8y;)\Bs(9y,) '

< 0y / (Gima) Fus, A2, — €054 / (6:m) " | Fa, A,
By (0y,) ’ Bs(9y,)

2
d; + ‘Lapé, dAa:,6i ®x75i
i

2

9z,5;
+em; ot

Taking the limit as ¢ — oo, the first two terms of the right-hand side both converge to ©% (exp,(9y,))

(since T,,v = ©¥(x)H*| T,.Q) and the last term tends to zero. Since Q2 1(0) C Bs(9,,)\B1(9,),

it follows that

2)=o.

Furthermore, at the origin 0,, generate 7;,() and as the metrics g, 5, converge to g|7, x We may

. -1 2
ZILI& Q2,1(0) (6Zml) <| Lapéi FAxﬁéi |5i + |L8p5i dA’““v‘si (I)x,ﬁi

state the result in terms of it. [ |

Lemma 4.7.6. Under the hypothesis of Proposition 4.7.4, for H*—a.e. z € B,(0) C T,Q one

has

§7> = 07

lim sup /Q ( )((Simi)—l (|LUFAW|§1_+|Lvd,4m75i<1>x,5i
r,1 Z,O

1—00 r<i

forallv € T,Q.

Proof. Define f;: By(0) C T,,QQ — [0, 00) by

e = [ @) (B Bl Baal) (210
B1(0)CNzQ

and denote by M f;: B1(0) C T,.QQ — [0, co) the Hardy-Littewood maximal function associated
M fi(z) := sup r4/ fi-
r(2)CTeQ

r<l1



CHAPTER 4. PARTIAL RESULTS ON LARGE MASS MONOPOLES ON AC Go—MANIFOLDS 94

We then want to show that the set
A:={ze€ B(0): liirgci)?f M fi(z) > 0}
is such that #*(A) = 0. For each j € N, define
A, i ={z€ B(0): Mfi(z) > it

Then we can write

Aa=UU N4

j>1n>1i>n

For each j, on the one hand, by the weak-type L' estimate for the maximal operator, we have
H(Aiy) Sllfillo.

On the other hand, by Lemma 4.7.5, it follows that || f;||.: — 0 as ¢ — oo. Therefore, for each

7‘[4 (ﬂ Ai,j) — 0,
>n

which in turn implies that H*(A) = 0 by monotone convergence. |

j and n we get

Proof of Proposition 4.7.4. By Lemma 4.7.6, for each j € N we can find z; € B,/;(0) C T,Q

such that
lim sup r4/ (6;m;) <!%FAI,5. 5, + [toda, , Do, (2;) =0.
71— 00 TS]- QT,I(zjvo) ? z
The conclusion then follows by applying a standard diagonal sequence argument. |

The natural next step would be a bubble detection result, but we now stop the development
of the bubbling analysis since this is as far as the author could go until the time of writing
this thesis. A more complete account on this should appear in an upcoming future work in
collaboration with Gongalo Oliveira.

Nonetheless, we now mention some conjectures. The following is what we believe to be a

first main result regarding the bubbling analysis.
Conjecture 4.7.7 (Bubbling). Let x € () be a smooth point. Then:

(a) There are null-sequences x; = (z;,w;) € T,QQ x N,Q = T, X and {6;},{n;} € (0,1) so

that the "inner bubble"

(Ai(y), ®i(y)) = (Aws, (0, "z + 1) 0 Pas (0 i + ) (4.7.8)
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converges, up to gauge, to the pullback of a mass 1 Bogomolnyi monopole (A, ®,) on
N,Q = R? such that
0 < Eps(Ay, ) < O¥(1).

(b) The tangent space T, () is coassociative.

We note that proven part (a) of the above, part (b) can be proved as follows. Decompose'

Y, = avolr,g + ¢/, where v € [0, 1] and 9|1, = 0. Then the monopole equation becomes
da, @, = *(Fp AN)y) = axy,q Fr + *(Fx ANY). (4.7.9)
On the other hand we may equally write the monopole equation as
Fo4+%(Fpy A @) = #(da, Pp A)y) = axn,g da, Py + *(da, Pu A ). (4.7.10)
Then, by combining equations (4.7.9) and (4.7.10) using the fact that *?Vz o = lyields
F, = o*F,,

and so o = 1 since A, is not flat. In particular, this shows that 7,.() is calibrated by ).
Finally, we mention that if Conjecture 4.7.7 is indeed true, then we believe that by a degree

argument as in the proof of Theorem 3.6.2 one should be able to prove:
Conjecture 4.7.11. The zero set Z contains all the smooth points in Q).

Since Z C S (by Theorem 4.5.9), if Conjecture 4.7.11 is true then by the decomposition
of .S of Proposition 4.6.12, and Lemma 4.6.8, it would follow that the blow-up set and the zero
set coincide up to a set of zero H*—measure. Thus by the rectifiability of ) (Theorem 4.6.13)
and the finiteness H*(Z) < oo, it would follow that S and Z are H*—rectifiable sets of finite
H*—measure.

The establishment of Conjectures 4.7.7 and 4.7.11 would be very important steps in the di-
rection of a general concrete result on the concentration phenomena of large mass Gs—monopoles
with fixed monopole class on AC G;—manifolds: under suitable assumptions, one would be
able to say that these concentrate along their zero set Z, that Z define a H*—rectifiable coasso-
ciative current of finite mass and that at each point z € Z a mass one R?®—monopole bubbles

off transversally carrying part of the lost energy at .

! As 1 is a calibration this can certainly be done, by choosing an orientation on T}, Q.
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Appendix A

Mean value inequalities

This appendix intends to summarize in a unified statement (cf. Theorem A.3) some well-
known (nonlinear) mean value inequalities for the Laplacian. This is an important analytical
tool for this thesis and have been successfully applied in various geometric PDE problems, e.g.
minimal submanifolds, harmonic maps, pseudo-holomorphic curves, Yang—Mills connections
and so on. The common feature of these problems is an energy functional associated to the
PDE, say scale-invariant in dimension d; in general the PDE are nonlinear, elliptic, of second
order and, in fact, are the associated Euler-Lagrange equations of such functional. The solu-
tions of the PDE then satisfy a nonlinear bound on the Laplacian of its energy density, with the
nonlinear term being of order (d + 2)/d, and they also enjoy a monotonicity property on their
renormalized scale-invariant energy on small geodesic balls. One then derives a phenomena
of ‘energy quantization’ for sequences of solutions with uniformly bounded energy as a conse-
quence of a mean value inequality applied to the energy density of the functional; in fact, one
derives the existence of a ‘quanta’ of energy & > (0 and a codimension d subset of points at
which such a sequence experiences energy concentration of at least A.

The results here are basically a personal organization and mixing of (some of) the ones
appearing in the very nice approaches to the subject in [WehO5], [HNS09, Appendix B] and
[Wall7a, Appendix Al.

We say that a Riemannian manifold (X", g) is of bounded geometry if the following con-

ditions holds:
e The global injectivity radius is positive: ix(g) > 0 (in particular, (X", g) is complete);

e The Riemannian curvature tensor RY and its covariant derivative VRY are uniformly
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bounded:
IR <1 and |[VRIS1 onX.

We shall need the following standard result which follows e.g. from [GTOI, Theorem 9.20,
p.244] and [HNS09, Step 2 in the Proof of Theorem B.1].

Lemma A.l. Let (X", g) be a Riemannian n—manifold of bounded geometry. Then there is
0 < § < i(g) with the following significance. If v € X, r € (0,6] and A > 0, then every
f € C*B,.(z),[0,0)) satisfies:
Af <A = f(z) < Ar? —1—7“_"/ f. (A.2)
By (x)
Theorem A.3 (Mean value inequalities). Under the hypothesis of Lemma A.l, let x € X,
r € (0,8] and suppose | € C?*(B,(z),[0,00)) satisfy the following conditions:

(Cl) There is d € N such that if Bs(y) C B, /2(x) then
sd”/ S rd"/ [+, (A4)
Bs(y) BT‘(w)
for some T = T1(r) > 0.
(C2) There are constants agy,a1,a > 0and « € [1,(d + 2)/d] such that

Af <ap+arf+af® (A.5)

€= rd"/ fs
r ()

Setting

we have:

(i) If o < (d + 2)/d then

sup f <gaor® + (a? +r e+ 1)+ @2+ 1) (A.6)

By (x)

where 5 :=2/(2 + d — ad).

(ii) If « = (d + 2)/d, then there is a constant h > 0 (depending only on the geometry and d)

such that

a(e+71)<h = sup f<gaor®+ (@ +r HE+7) (A7)
Br(z)
2
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Proof of Theorem A.3. The proof is based on the so-called ‘Heinz trick’. In order for the reader
to see precisely where each relevant constant appears in the estimates, in this proof we shall
mostly avoid the notation ‘<’ and show the constants explicitly. Thus, choose 6 > 0 as in

Lemma A.1, let ¢; > 0 be the hidden constant in (A.2) and let ¢, > 0 be the hidden constant in

(A.4). We shall see that both 7 and the final estimates depend only on ¢y, ¢, and d.

Fix any point y € B, 5(x). Define h : [0,r/2] — [0, 00) by

o= (15) pe

Note that 2(0) = f(y) and h(r/2) = 0. Since h is nonnegative there is an s* € [0,7/2) and a

y* € By (y) such that

h(s*) = max h(s), F:=f(y")= érsl*aéx .

0<s<r/2 Y)
Set
r/2 — s*
Sp = /T > 0.
Then
(T/Q)d Qd(r/2)d d d
max [ < max = h(s* 4+ sg) < ————~—h(s") =2 max f = 2°F.
Bso(y*)f - Bsuso(y)f (r/2 — 5% — s50)4 ( 0) < (r/2 —s*)d (57 Bgs (y) d

Hence, by assumption (A.5), in By, (y*) we have the inequality
Lf <ag+arf+af*<ayg+a(2°F) +a(2F)".
By Lemma A.1 this implies
F=fy)<a ((ao +a1(2dF) + a(2dF)°‘)32 + 3_”/3 ( )f) , (A.8)
s(y*
for all s € [0, so]. Now using assumption (A.4), and observing that sq < /2, we get
F < ciagr?/4+ 1 (a1(2°F) + a(27F)*) s + cicas (e +7), Vs € [0, 5] (A.9)

We now make a case by case distinction.

Case 1. F < cjagr?
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In this case f(y) < F < cjagr? < aor?, which already proves the assertion.
Case 2. F' > cjagr? and a1 (27F) > a(27F).

From (A.9) we derive
F < F/4+2c1a12°Fs* 4+ cico5 e + 1), Vs €[0,s0]. (A.10)
so that we have two possibilities:
o If c;a,2%s2 < 1/8, then by (A.10) we get
F < 2cico85%(e +7)
Since r/2 — s* = 25 this gives
r/2 — s*)dF 2l

7 = =22 F < 22Meor Y et+r) Sar U e+r),
r r

o) = 0) < h(s) =
and so the desired estimate holds.
e Otherwise, we choose s < sg such that ¢;a,2%s? = 1 /8. Then by (A.10) we have

fly) < F < 21005 e +7) = 2c162(8¢1a121) Y% (e + 1) <4 aim(g +7),

Y
as we wanted.

Case 3. I > cjagr? and a,(27F) < a(2¢F)°.

Here from (A.9) we get
F < F/4+2c,a(29F)*s* + cicos e + 1), Vs € [0, s0]. (A.11)
Hence we have the following possibilities:
o If c;a2°¢F*~1s2 < 1/8 then by (A.11),
F< 2010285d<5 +7),
and again by the same argument as above we get
fly) < h(s*) <22 eicor e +7) Sqgr e +7),

as we wanted.
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e Otherwise we choose s < sg such that ¢;a2°¢F*~1s? = 1/8 so that
F < 2cic08 e +7) = 20102(0120‘d+3)d/2ad/2F(O‘d’d)ﬂ(e + 7). (A.12)
Now if @ < (d +2)/d then 2 4+ d — ad > 0 and hence
fly) < F < (2c109(c12°) 20 (e + 7'))6 <a (a¥?(e + T))B,

as we wanted. For the critical exponent o = (d + 2)/d we have that (ad — d)/2 = 1 and
thus it follows from (A.12) that 1 < ca®?(e +7) for some ¢ > 0 depending only on ¢y, ¢,

and d. Thus if a%/?(e + 7) < h := ¢! this case can be excluded. We are done.
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Appendix B

The proof of assertion (3.2.14).

This appendix is basically the same as the one appearing in our paper [FO19]. Here we
shall prove assertion (3.2.14), which says that the zeros of the monopoles constructed via The-
orem 3.2.11 are contained in balls of radius 10m~/? around the k-points in X used in the
construction. This requires a number of technical ingredients from [Olil6c¢] and so we decided
to include this section as an Appendix.

It follows from [Olil6c, Proposition 6] that the monopole (A4;, ®;) can be written as (A;, ®;) =
(A ®9) + (a;, ¢;), where

A.a (A?, @Y%) is an approximate monopole constructed in [Olil6¢, Proposition 4]. Moreover,

by its own construction, we have that the restriction
0. k

satisfies |®?| > m,/2 has no zeros and yields a splitting of the trivial rank-2 complex

vector bundle C? = L @ L', where the complex line bundle L is such that
deg(L‘aBIOmZ_l/z(z])) = 17
forall j =1,..., k. In other words, the restricted map
@? : 8B10m;1/2 (x;) — su(2)\{0},
has degree 1.

Ab (a;,¢;) € T((A' ® A°) ® su(2)) satisfies an elliptic equation, when in a certain Coulomb

gauge (see [Olil6c, Lemma 13]). Moreover, from [Olil6¢, Proposition 6], it satisfies

—7/4
@i, @)l _, < mi ™™, (B.1)
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where H; _; is a certain Sobolev space.

The Sobolev space H; , .1, with v = —3/2 here, is one of several H,, , ., constructed using
the approximate monopole (AY, ®?). These are well adapted to solving the monopole equation,
and have the property that, in a certain gauge (see [Olil6c, Section 5]), one can iterate estimate
(B.1) to obtain that

—7/4
H(ai?(bi)||Hn,V+n 5 mi / 9

for all n € N. Moreover, once restricted to certain subsets of X, these spaces satisfy a number of
interesting properties. Some of these can be easily read from the definition in [Olil6c, Section

4.1], and we summarize them below

B.a Restricted to compact set K C X, the norm H 1., (K) is equivalent to the usual L>!(K).
However, not in an m,-independent way. In fact, there is a constant c,,, only depending

on g and K, not m;, so that

(@5, )12y < enlB) M3 ([ (@i 8l i) S "™ (B.2)

B.b For ¢ > 0 we consider

Ce = X\ U?:l BE(xJ)

If we let 4d = min;,; dist(z;,z;), then the balls of radius d around the points x; are
disjoint. Using d, we shall consider C,. Then, certain weight functions W,,, on which the

spaces H,, .+, depend, can be arranged so that

(s, &)l 2y < enlE) [[(ai, @il typnie) S ;7" (B.3)
forany K C Cjy.

B.c On C we can use the fact that ®? > 0, as mentioned in A.a, to write any su(2)-valued
tensor f as f = fl + f*, with the fI denoting the component parallel to ®? and f* the

orthogonal one. On C, and for large m;, we can write

—7/4
(al, )Ml 20 oy + (@ 6D 2niey = (@i, 6) | tinicr Smi ", (BA)

where the spaces L?,fn are the more standard Lockhart-McOwen conically weighted

spaces.
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Combining item B.a. above and the Sobolev embedding L*"(K) — C"~%(K) one obtains
that

(@i, @) lon—2x) S mt = || — Y|l cory m;’, (B.5)

(2

for any compact set X' C X. In particular (a;, ¢) is smooth. Moreover, as mentioned in A.a,

|®Y| > m;/2in Cgp-1/2 and thus

)

1B > 0] — [| 63| 0 > m? —em}", inany compact K C C,,

and so, for m; > 1, does not vanish in 0B, —1/2(z;) for any j € {1,...,k}. In particular,
putting this together with the estimate (B.1) in A.b, which shows that ¢; is decaying, we con-
clude that ®; does not vanish in C', and so any of its zeros must be inside one of the balls of

/

radius 10m,; /2 around the points x;. Furthermore, this estimate shows that 1-parameter family

of maps

Of = O +t0;: Cyy 12— su(2)\{0},

gives an homotopy between @Y and ®;. Combining this with the discussion in A.a we conclude

deg(@ﬂanm.ﬁl/Q(%)) = deg(¢?|aBlonL_,1/2(xj)) =1.

Thus, ®; does have zeros inside B, -1/2(z;).
m;
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