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Resumo

Estudamos aspectos analíticos de soluções suaves das equaçõs de Yang–Mills–Higgs em

variedades riemannianas não-compactas com geometria limitada, focando no problema de com-

pacidade para soluções do tipo monopolo sob um certo regime assintótico de massas arbitrari-

amente grandes em variedades assintóticamente cônicas (AC) de dimensões 3 e 7. No caso

de dimensão 3, as componentes conexas do espaço de módulos de monopolos são indexadas

por um inteiro chamado de carga, e consideramos o problema do comportamento limite de se-

quências de monopolos com carga fixa 𝑘 e massas arbitrariamente grandes, cf. Fadel–Oliveira

[FO19]. Provamos que a comportamento limite de tais monopolos é caracterizado pela concen-

tração de energia ao longo de um conjunto finito 𝑍, consistindo de no máximo 𝑘 pontos nos

quais os zeros dos campos de Higgs se acumulam e um monopolo em R
3 de massa 1 e carga

1 borbulha. Também apresentamos alguns resultados na direção do problema de convergência

da sequência fora de 𝑍. Finalmente, seguindo uma sugestão do artigo seminal de Donaldson–

Segal [DS09], desenvolvemos o mesmo tipo de análise para monopolos de dimensões mais

altas em G2−variedades AC de dimensão 7 e, sob certas hipóteses brandas, provamos, entre

outras coisas, que o conjunto de acumulação dos zeros dos campos de Higgs nesse caso é de

medida ℋ4 finita e está contido em um conjunto ℋ4−retificável onde a energia intermediária

da sequência se concentra.

Palavras-chave: Gauge, Teorias de; Monopolos magnéticos; Blow-up locus; Geometria

calibrada.



Abstract

We study analytical aspects of smooth solutions of the Yang–Mills–Higgs equations on

noncompact Riemannian manifolds of bounded geometry, focusing on the compactness prob-

lem for monopole solutions under a certain asymptotic regime of arbitrarily large mass on

asymptotically conical (AC) 3− and 7− dimensional manifolds. In the 3−dimensional case,

the connected components of the moduli space of monopoles are labeled by an integer called

the charge, and we consider the problem of the limiting behavior of sequences of monopoles

with fixed charge 𝑘 and arbitrarily large masses, cf. Fadel–Oliveira [FO19]. We prove that

the limiting behavior of such monopoles is characterized by energy concentration along a finite

set 𝑍, consisting of at most 𝑘 points at which the zeros of the Higgs fields accumulate and a

mass 1 and charge 1 R
3−monopole bubbles off. We also give some results on the direction

of the convergence problem of the sequence outside 𝑍. Finally, following a suggestion of the

seminal paper of Donaldson–Segal [DS09], we develop the same sort of analysis for higher

dimensional monopoles on 7−dimensional AC G2−manifolds and under certain mild assump-

tions we prove, among other things, that the accumulation set of the Higgs fields zeros in this

case is of finite ℋ4−measure and is included in a ℋ4−rectifiable set where the intermediate

energy of the sequence concentrates.

Keywords: Gauge theory; Magnetic monopoles; Blow-up locus; Calibrated geometry.
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Introduction

The study of gauge theory, particularly Yang–Mills–Higgs theory, has been a powerful tool

in geometry and topology. The pioneering work1 of Atiyah, Donaldson, Taubes, Uhlenbeck et

al has led to revolutionary advances in low dimensional topology, differential and algebraic

geometry. The basic concept in the theory is the Yang–Mills–Higgs functional, defined for con-

figurations (𝐴,Φ) consisting of a connection 𝐴 on a SU(2)−bundle over a given Riemannian

manifold 𝑋 and a section Φ of the associated adjoint bundle, as the average square 𝐿2-norm of

the curvature of 𝐴 and the exterior covariant derivative of Φ:

ℰ(𝐴,Φ) :=
1

2

(︀

‖𝐹𝐴‖
2
𝐿2 + ‖d𝐴Φ‖

2
𝐿2

)︀

.

Its critical points are characterized by a second-order partial differential equation on (𝐴,Φ)

called the Yang–Mills–Higgs equations: d*
𝐴𝐹𝐴 = [d𝐴Φ,Φ] and ∆𝐴Φ = 0, which one can think

of as a nonlinear analogue of Maxwell’s equations. In the ‘pure’ Yang–Mills case where Φ ≡ 0,

there is a very important type of manifest solutions in four-dimensions consisting of so-called

(anti-)selfdual connections or instantons, satisfying

*𝐹𝐴 = ±𝐹𝐴,

under the Hodge star operator. This is a first-order condition, which implies the Yang–Mills

equation: d*
𝐴𝐹𝐴 = 0. Moreover, on closed manifolds, instantons are absolute minimizers of the

Yang–Mills energy. The space of equivalence classes of such solutions, modulo symmetries,

is called the (A)SD instanton moduli space (respectively). In particular, outstanding results

on topology of 4−manifolds derive from the study of moduli spaces of anti-selfdual (ASD)

instantons.

From the dimensional reduction of the instanton equation one can also obtain very in-

teresting gauge theoretical equations in lower dimensions; in particular, in 3−dimensions. In

1Just to cite some of them: [Ati78, AHDM78, AB83, Don83, Don85, Don90, DK90, Tau82b, Tau83, Tau84,

Tau87, Tau88, Tau89, Tau90, Uhl82a, Uhl82b, UY86].
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fact, given a noncompact, oriented, Riemannian 3−manifold 𝑋3, one can study the so-called

Bogomolnyi monopole equation,

𝐹𝐴 = *d𝐴Φ,

for configurations (𝐴,Φ) on a SU(2)−bundle over 𝑋3. Solutions are critical points of the

Yang–Mills–Higgs energy functional and are translation-invariant instantons on 𝑋3 × R. One

usually also imposes suitable asymptotic conditions ensuring finite energy ℰ(𝐴,Φ) < ∞, the

most important being that |Φ| is asymptotic to a constant 𝑚 at infinity, for some 𝑚 > 0 called

the mass of the monopole. A special case is when 𝑋 = R
3, where the scaling invariance of

the Euclidean metric allows one to reduce to the case 𝑚 = 1. But in general 𝑚 is a genuine

parameter and one may study the behavior of solutions as 𝑚 varies, in particular as 𝑚→ ∞.

Extensions of the monopole and instanton equations to higher dimensions exist under the

presence of additional geometric structure [DT98], which is available in certain special holon-

omy manifolds: the monopole equation find parallels in 6−dimensional Calai–Yau manifolds

and 7−dimensional G2−manifolds, and they arise as dimensional reductions of the parallel

instanton equation in 8−dimensional Spin(7)−manifolds. Donaldson and Segal [DS09, §6.3]

proposed to study these higher dimensional monopoles under the finite mass asymptotic condi-

tion and suggested that under the regime where the mass of the monopoles gets arbitrarily large,

these concentrate along codimension 3 calibrated cycles in these contexts much in the same way

as higher dimensional instantons on closed special holonomy manifolds experience energy con-

centration and bubbling phenomena along codimension 4 calibrated cycles, cf. [Tia00]. In fact,

they suggest that it may be possible that a detailed study of the moduli spaces of finite mass

monopoles, in particular the compactness problem of large mass monopoles and its relation

with codimension 3 calibrated geometry, potentially could lead to the definition of invariants of

certain noncompact special holonomy manifolds.

In this thesis we investigate the problem of the behavior of arbitrarily large mass monopoles

on asymptotically conical 3− and G2−manifolds. In the 3−dimensional case, the connected

components of the moduli space of monopoles are labeled by an integer called the charge,

and we consider the problem of the limiting behavior of sequences of monopoles with fixed

charge 𝑘 and arbitrarily large masses, cf. [FO19]. In Chapter 3 we prove that the limiting

behavior of such monopoles is characterized by energy concentration along a finite subset 𝑍 of

𝑋 , consisting of at most 𝑘 points at which the zeros of the Higgs fields accumulate and a mass

one and charge one R
3−monopole bubbles off, cf. Theorem 3.1.1. We also give some results
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on the direction of the convergence problem of the sequence outside 𝑍, cf. Section 3.8.

Under certain mild assumptions, in Chapter 4 we develop the same sort of analysis for the

G2−case and prove that the accumulation set of the Higgs fields zeros in this case is of finite

ℋ4−measure and is included in a ℋ4−rectifiable subset where the intermediate energy of the

sequence concentrates (cf. Theorem 4.5.9, Proposition 4.6.12 and Theorem 4.6.13). Moreover,

we give some results concerning the bubbling analysis (cf. Proposition 4.7.4) and finish stating

some conjectures of its possible outcomes.

The first two chapters set the stage and provide important tools for the analysis performed

in the chapters described above. Chapter 1 introduces the reader to the central objects and

equations of this thesis. We start with the general setup of Yang–Mills–Higgs theory, the action

functional and its Euler–Lagrange equations, then review the unified description of pure Yang–

Mills instantons in dimensions 𝑛 ≥ 4, mentioning the failure of compactness of their moduli

spaces on closed manifolds via energy concentration along codimension 4 calibrated integer

rectifiable currents. Next, we introduce monopoles, also in a unified setup, in dimensions 𝑛 ≥ 3,

explaining the particular cases of interest, giving some of their basic properties and explaining

the notions of finite mass configurations as well as the notions of charge and monopole class in

the context of asymptotically conical 3− and G2− manifolds respectively. We finish the chapter

presenting the conjectural picture on their relation with codimension 3 calibrated geometry.

In Chapter 2 we collect some important analytical properties of YMH configurations in

general Riemannian 𝑛−manifolds and prove some new results that does not appear in the lit-

erature. We start with a basic scaling property of the YMH/monopole equations and a known

important monotonicity formula for the YMH energy on small geodesic balls in dimensions

𝑛 ≥ 4. Then we give simple Bochner–Weitzenböck formulae that imply a known important

estimate on the Laplacian of the energy density. By using these results and a nonlinear mean

value inequality, we prove a 𝑛−dimensional 𝜀−regularity result (Theorem 2.3.1) which has

some strong analytical consequences and whose 3−dimensional instance is key to the analysis

in Chapter 3 (cf. Theorem 3.3.1). We then prove that on a noncompact manifold of bounded ge-

ometry the energy density of a YMH configuration with finite energy decays uniformly to zero

at infinity and attains its maximum (Corollary 2.3.3). Moreover, we prove that for an irreducible

YMH configuration (𝐴,Φ) on an AC 𝑛−manifold with 𝑛 ≥ 3, finite energy forces |Φ| to uni-

formly converge to a constant at infinity and, conversely, that if this holds then |d𝐴Φ| ∈ 𝐿2(𝑋)

(Proposition 2.3.5). In particular, in an AC 3−dimensional manifold, an irreducible monopole
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has finite energy if and only if its Higgs field norm uniformly converges to a constant at infinity

(Corollary 2.3.8).

More detailed summaries of the contents of each chapter can be found in their own intro-

ductions.

Conventions and notations throughout this thesis. 𝑋 always denotes a connected smooth

manifold without boundary. If 𝑔 is a Riemannian metric on 𝑋 then given any 𝑥 ∈ 𝑋 we denote

by 𝑖𝑥(𝑔) the injectivity radius at 𝑥, and then we let 𝑖𝑋(𝑔) := inf𝑥∈𝑋 𝑖𝑥(𝑔) be the injectivity

radius of 𝑋 . Whenever (𝑋, 𝑔) is of bounded geometry, we let 0 < 𝑟0(𝑔) <𝑔 𝑖𝑋(𝑔) be a small

enough constant satisfying the scaling property 𝑟0(𝜆2𝑔) = 𝜆𝑟0(𝑔) for all 𝜆 > 0, and for which

the ball 𝐵𝑟0(𝑥) ⊂ (𝑋, 𝑔) is geometrically uniformly controlled for any 𝑥 ∈ 𝑋 . We use the

geometers’ convention for the Laplacian: ∆ := d*d. The gauge theory setup will always be as

in §1.1; in particular, 𝐺 will always denote a compact semi-simple Lie group and a 𝐺−bundle

means a vector bundle associated to a principal 𝐺−bundle via a faithful representation. We

denote by 𝑐 > 0 (sometimes 𝑐0, 𝑐1 and 𝑐′) a generic constant, which depends only on 𝑛, the

geometry of the base manifold (𝑋, 𝑔) and possibly on the structure group 𝐺 of the bundle

over 𝑋 in consideration (it should be clear in each context). Its value might change from one

occurrence to the next. Should 𝑐 depend on further data we indicate this by a non-numerical

subscript. Finally, we write 𝑥 . 𝑦 for 𝑥 ≤ 𝑐𝑦.
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Chapter 1

Gauge theories

In this introductory chapter we briefly review the language of Yang–Mills–Higgs theory,

introducing the relevant objects and equations that will be studied in more detail in the rest

of this thesis. We start in Section 1.1 with a general description of the gauge theory setup,

the action functional and its Euler–Lagrange equations, together with basic observations on its

solutions. We then continue in Section 1.2 with the special case of Yang–Mills instantons in

a generalized context of dimensions 𝑛 ≥ 4 and mention the failure of compactness of their

moduli spaces on closed manifolds via energy concentration along codimension 4 calibrated

integer rectifiable currents, cf. [Tia00]. Next, in Section 1.3, we introduce the central notion

of monopoles, also in a unified setup, in dimensions 𝑛 ≥ 3, explaining the particular cases of

interest in 3, 6 and 7 dimensions. We give some of their basic properties, introduce the notions

of finite mass and (generalized) charge in the context of asymptotically conical 3− and G2−

manifolds and cite important energy formulas (cf. [Oli14a]). We finish this chapter presenting

a conjectural picture on the relation of large mass monopoles with codimension 3 calibrated

geometry. The main references for this chapter are Jaffe-Taubes’ book [JT80] and Oliveira’s

thesis [Oli14a].

1.1 Yang–Mills–Higgs theory

Let (𝑋𝑛, 𝑔) be an oriented Riemannian 𝑛−manifold and let 𝐸 be a 𝐺−bundle over 𝑋 ,

where the structure group (or gauge group) 𝐺 is a compact semi-simple Lie group. More

concretely, we shall mostly work with 𝐺 = SU(2). We write g𝐸 for the associated adjoint

bundle, equipped with the metric induced by a suitable normalization of the negative of the
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Killing form on the Lie algebra g of𝐺; e.g., when𝐺 = SU(2) we take the metric induced by the

inner product (𝑎, 𝑏) ↦→ −tr(𝑎𝑏) for 𝑎, 𝑏 ∈ su(2). We refer to (smooth) sections of g𝐸 as Higgs

fields. We write 𝒜(𝐸) for the affine space modelled on Ω1(𝑋, g𝐸) of (smooth) 𝐺−connections

on 𝐸, and we let 𝒞(𝐸) := 𝒜(𝐸)× Γ(g𝐸) denote the space of (smooth) configurations on 𝐸.

The Yang–Mills–Higgs (YMH) energy of a configuration (𝐴,Φ) ∈ 𝒞(𝐸) over an open

subset 𝑈 ⊆ 𝑋 is given by

ℰ𝑈(𝐴,Φ) :=

∫︁

𝑈

𝑒(𝐴,Φ),

where

𝑒(𝐴,Φ) :=
1

2

(︀

|𝐹𝐴|
2 + |d𝐴Φ|

2
)︀

denotes the YMH energy density function. Here the integral is taken with respect to the usual

Riemannian measure (which we shall mostly omit), 𝐹𝐴 ∈ Ω2(𝑋, g𝐸) denotes the curvature of

𝐴, while d𝐴Φ ∈ Ω1(𝑋, g𝐸) is the exterior covariant derivative of Φ induced by 𝐴, and |·| stands

for the norm induced on g𝐸−valued forms by the tensor product metric. YMH theory is the

variational theory of the functional ℰ𝑋 , which is usually considered to be defined on the set of

configurations (𝐴,Φ) with |𝐹𝐴|, |d𝐴Φ| ∈ 𝐿2(𝑋), also known as finite energy configurations.

As a particular instance, the Yang–Mills (YM) energy of a connection 𝐴 ∈ 𝒜(𝐸) over 𝑈 is

given by

ℰ𝑈(𝐴) := ℰ𝑈(𝐴, 0) =
1

2
‖𝐹𝐴‖

2
𝐿2(𝑈).

The Euler–Lagrange equations1 for the YMH energy functional are

d*
𝐴𝐹𝐴 = [d𝐴Φ,Φ], ∆𝐴Φ = 0, (1.1.1)

and these are called the YMH equations. Here d*
𝐴 stands for the 𝐿2−adjoint operator of d𝐴,

which acting on g𝐸−valued 𝑘−forms has the form d*
𝐴 = (−1)𝑛(𝑘+1)+1 * d𝐴*, where * is the

Hodge star operator associated to 𝑔; ∆𝐴 := d*
𝐴d𝐴 denotes the Laplacian induced by 𝐴. In

particular, a smooth critical point 𝐴 ∈ 𝒜(𝐸) of the YM energy satisfies the YM equation:

d*
𝐴𝐹𝐴 = 0. (1.1.2)

Definition 1.1.3. A configuration (𝐴,Φ) ∈ 𝒞(𝐸) is called YMH if it satisfies (1.1.1). A con-

nection 𝐴 ∈ 𝒜(𝐸) is called YM if it satisfies (1.1.2).

Remark 1.1.4. We do not ask for finite energy in any of the definitions.

1with respect to compactly supported variations.
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If (𝐴,Φ) ∈ 𝒞(𝐸) is YMH then, in particular, ∆𝐴Φ = 0 and this implies that2

∆
|Φ|2

2
= ⟨Φ,∆𝐴Φ⟩ − |d𝐴Φ|

2 = −|d𝐴Φ|
2 ≤ 0. (1.1.5)

As a consequence, the function |Φ|2 is subharmonic, and so, has no local maxima by the Max-

imum Principle (cf. [JT80, Proposition 3.3, Chapter VI]). Thus, if 𝑋 was to be a compact

manifold (without boundary), then |Φ|2 would be constant and d𝐴Φ = 0 = d*
𝐴𝐹𝐴, in which

case 𝐴 would be a YM connection. Therefore, if one is to study smooth irreducible YMH con-

figurations, meaning those with d𝐴Φ ̸= 0, on a manifold without boundary 𝑋 , then 𝑋 must be

noncompact.

Remark 1.1.6. Of course one can also consider the theory of weak solutions of the YMH equa-

tions, in some appropriate functional analytic setup depending on 𝑋 . In this thesis, however,

we shall mostly restrict ourselves to smooth solutions (unless otherwise stated).

We denote by 𝒢(𝐸) the group of (smooth) gauge transformations on 𝐸. There is a natural

action of 𝒢(𝐸) on 𝒞(𝐸), acting on connections via pullback and on Higgs fields by the adjoint

action. By the Ad-invariance of the metric on g𝐸 it follows that the YMH energy (density) is

invariant under the action of 𝒢(𝐸), and so are the YMH equations (one can also check this

directly).

Now that we introduced the general framework of YMH theory, we turn to special solutions

of the YMH equations.

1.2 Instantons

In pure YM theory, a rather important type of first-order solutions of the YM equation

(1.1.2) appear in four-dimensions, the so-called instantons. Let us briefly recall this classi-

cal notion before giving a more general definition. Let (𝑋4, 𝑔) be an oriented Riemannian

4−manifold. Then it is well-known that the space of 2−forms splits orthogonally into so-called

selfdual and anti-selfdual parts, corresponding respectively to ±-eigenspaces of the Hodge * op-

erator. Given a 𝐺−bundle 𝐸 over 𝑋 , this splitting immediately extends to g𝐸−valued 2−forms

and a connection 𝐴 ∈ 𝒜(𝐸) is said to be a anti-selfdual (ASD) instanton if its curvature satis-

fies *𝐹𝐴 = −𝐹𝐴. These are automatically Yang–Mills connections by the Bianchi identity and

for SU(r)−bundles of positive topological charge over closed 4−manifolds these are in fact

2∆ denotes the geometers’ Laplacian on functions; ∆ := d∗d.
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absolute minimizers of the Yang–Mills functional. If (𝑋𝑛, 𝑔) is an 𝑛−dimensional oriented

Riemannian manifold, with 𝑛 > 4, the Hodge * operator is not an endomorphism on 2−forms

anymore but rather maps 2−forms into (𝑛 − 2)−forms. But if, rather naively, we suppose that

𝑋𝑛 is endowed with a (𝑛− 4)−form Ξ, then the operator *(· ∧Ξ) maps 2−forms into 2−forms

and we could make precise a notion of instanton depending on Ξ. This turns out to be very

interesting in special cases and in this section we shall introduce this higher dimensional notion

of instanton and the particularly important cases it includes.

1.2.1 The instanton equation

In the context of §1.1, now suppose that 𝑛 ≥ 4 and furthermore that 𝑋 admits a closed

(𝑛− 4)−form Ξ ∈ Ω𝑛−4(𝑋,R).

Definition 1.2.1 (Instantons). A connection 𝐴 ∈ 𝒜(𝐸) is called a Ξ−instanton on 𝑋 if it

satisfies

*(𝐹𝐴 ∧ Ξ) = −𝐹𝐴. (1.2.2)

Since Ξ is closed, it follows from the Bianchi identity that every Ξ−instanton is a Yang–

Mills connection.

However, even when Ξ is a parallel form, the algebraic equation (1.2.2) is in general

overdetermined and may admit no solutions at all. When 𝑛 > 4, this definition behaves best

when (𝑋𝑛, 𝑔) has special holonomy so that it admits a natural geometric structure defining Ξ.

Indeed, the interest in studying this equation in general lies on the following particular types of

settings (𝑋𝑛, 𝑔,Ξ):

(i) (𝑋4, 𝑔) an oriented Riemannian 4−manifold and Ξ ≡ 1. Then equation (1.2.2) is of

course the classical anti-self-dual (ASD) instanton equation: *𝐹𝐴 = −𝐹𝐴.

(ii) (𝑋2𝑚, 𝑔) Kähler 𝑚−fold with 𝑚 ≥ 2 and Ξ = 𝜔m−2

(𝑚−2)!
, where 𝜔 is the associated funda-

mental (1, 1)−form. Then equation (1.2.2) is the Hermitian–Yang–Mills (HYM) equa-

tion: 𝐹 0,2
𝐴 = 0 and Λ𝜔𝐹𝐴 = 0, where Λ𝜔 is the dual Lefschetz operator.

(iii) (𝑋7, 𝑔) a G2−manifold and Ξ = 𝜑 the G2−structure 3−form. Then equation (1.2.2) is

the G2−instanton equation which can be written as 𝐹𝐴 ∧ 𝜓 = 0, where 𝜓 = *𝜑.

(iv) (𝑋8, 𝑔) a Spin(7)−manifold and Ξ = Ω the Spin(7)−structure 4−form. Then equation

(1.2.2) is the Spin(7)−instanton equation: *(𝐹𝐴 ∧ Ω) = −𝐹𝐴.
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In all the above cases, it turns out that Ξ is in fact a calibration. Recall that a 𝑘−form 𝛼 ∈

Ω𝑘(𝑋) is called a calibration if it is closed and has comass(𝛼) ≤ 1, i.e., d𝛼 = 0 and for each

𝑥 ∈ 𝑋 and each oriented 𝑘−plane 𝑉 𝑘 ≤ 𝑇𝑥𝑀 we have 𝛼|𝑉 ≤ vol𝑉 . Then a closed oriented

𝑘−dimensional submanifold 𝑄𝑘 ⊂ 𝑋𝑛 is called calibrated with respect to 𝛼 if 𝛼|𝑇x𝑄 = vol𝑇x𝑄

for all 𝑥 ∈ 𝑌 . We note that this notion also extends to rectifiable 𝑘−currents, which are some

sort of generalized (possibly very singular) submanifolds in the sense of geometric measure

theory. The key property of calibrated submanifolds (and currents) is that they are volume

minimizers in their homology class, attaining a topological volume bound.

It turns out that Ξ−instantons in all the above cases, when they exist, are also energy

minimizers for the SU(r) YM energy attaining a topological energy bound. The energy bound

is given by the following simple result.

Lemma 1.2.3 (Topological energy bound). Let (𝑋𝑛, 𝑔,Ξ) be a closed, oriented, Riemannian

𝑛−manifold, 𝑛 ≥ 4, together with a calibration (𝑛 − 4)−form Ξ ∈ Ω𝑛−4(𝑋). Let 𝐸 be a

SU(r)−bundle over 𝑋 . If ⟨𝑐2(𝐸) ∪ [Ξ], [𝑋]⟩ ≥ 0 and 𝐴 ∈ 𝒜(𝐸) is a Ξ−instanton then

ℰ(𝐴) = 4𝜋2⟨𝑐2(𝐸) ∪ [Ξ], [𝑋]⟩.

1.2.2 Non-compactness phenomena and codimension 4 calibrated geom-

etry

The Ξ−instanton equation (1.2.2) (and, more generally, the Yang–Mills equation (1.1.2))

is invariant under the group 𝒢(𝐸) of gauge transformations of 𝐸. A major difficulty in the

study of Ξ−instantons is that their moduli spaces need not be compact. This non-compactness

phenomenon has two causes: the formation of non-removable singularities and bubbling in

codimension four. In fact, Tian [Tia00] discovered that there is an interesting relation between

gauge theory in higher dimension and calibrated geometry via the bubbling process. In par-

ticular, his general foundational compactness result—extending work of Uhlenbeck [Uhl82a],

Price [Pri83] and Nakajima [Nak88] —, together with the removable singularity theorem of

Tao–Tian [TT04], can be summarized as follows.

Theorem 1.2.4 (Uhlenbeck, Price, Nakajima, Tian, Tao). Let (𝑋𝑛, 𝑔,Ξ) be a closed, oriented,

Riemannian 𝑛−manifold, 𝑛 ≥ 4, together with a calibration (𝑛 − 4)−form Ξ ∈ Ω𝑛−4(𝑋).

Let 𝐸 be a SU(r)−bundle over 𝑋 and let {𝐴𝑖} ⊂ 𝒜(𝐸) be a sequence of Ξ−instantons over

(𝑋, 𝑔). Then there exist constants 𝑐 ≥ 0 and 𝜀inst > 0, where 𝑐 depends only on 𝑛 and the
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geometry of (𝑋𝑛, 𝑔), and 𝜀inst depends furthermore on the structure constants of su(𝑟), such

that the following holds.

∙ The subset 𝑆 ⊆ 𝑋 defined by

𝑆 = 𝑆 ({𝐴𝑖}) :=
⋂︁

0<𝑟<𝑟0

{︂

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑒𝑐𝑟
2

𝑟4−𝑛
∫︁

𝐵r(𝑥)

|𝐹𝐴i |
2ℋ𝑛 ≥ 𝜀inst

}︂

is closed and satisfies ℋ𝑛−4(𝑆) < ∞. Moreover, after passing to a subsequence, there

are gauge transformations 𝜎𝑖 ∈ 𝒢(𝐸|𝑋∖𝑆) such that 𝜎*
𝑖𝐴𝑖 converges to a Ξ−instanton 𝐴

on 𝐸|𝑋∖𝑆 in 𝐶∞
loc outside 𝑆.

∙ There exists a bounded upper semicontinuous function Θ : 𝑆 → [𝜀inst,∞) such that, as

Radon measures,

|𝐹𝐴i |
2ℋ𝑛 ⇀ |𝐹𝐴|

2ℋ𝑛 +Θℋ𝑛−4⌊𝑆.

∙ 𝑆 decomposes as 𝑆 = Γ ∪ sing(𝐴), where

Γ := supp(Θℋ𝑛−4⌊𝑆) and

sing(𝐴) :=

{︂

𝑥 ∈ 𝑋 : lim sup
𝑟↓0

𝑟4−𝑛
∫︁

𝐵r(𝑥)

|𝐹𝐴|
2ℋ𝑛 > 0

}︂

;

Γ is countably ℋ𝑛−4−rectifiable and, for ℋ𝑛−4−a.e. 𝑥 ∈ Γ, Ξ|𝑇xΓ is a volume form on

𝑇𝑥Γ; moreover, ℋ𝑛−4(sing(𝐴)) = 0.

∙ The connection 𝐴 extends to a Ξ−instanton on a SU(r)−bundle �̃� over 𝑋 ∖ sing(𝐴)

which is isomorphic to 𝐸 over 𝑋 ∖ 𝑆.

∙ For ℋ𝑛−4−a.e. 𝑥 ∈ Γ, there exists a non-trivial ASD instanton I(𝑥) on 𝑇𝑥Γ
⊥ satisfying

Θ(𝑥) ≥ ℰ(I(𝑥)) (1.2.5)

and whose pullback to 𝑇𝑥𝑋 is gauge-equivalent to the limit of a blowing-up of the se-

quence {𝐴𝑖} around the point 𝑥.

∙ Finally, the (𝑛− 4)−current 𝐶(Γ,Θ) given by

𝐶(Γ,Θ)(𝜙) :=
1

8𝜋2

∫︁

Γ

⟨Ξ|Γ, 𝜙⟩Θd
(︀

ℋ𝑛−4⌊Γ
)︀

, ∀𝜙 ∈ Ω𝑛−4(𝑋),

is a Ξ−calibrated integer rectifiable current satisfying conservation of instanton charge

density, in the following sense: for every 𝜙 ∈ Ω𝑛−4(𝑋),

lim
𝑖→∞

∫︁

𝑋

tr(𝐹𝐴i ∧ 𝐹𝐴i) ∧ 𝜙 =

∫︁

𝑋

tr(𝐹𝐴 ∧ 𝐹𝐴) ∧ 𝜙+ 8𝜋2𝐶(Γ,Θ)(𝜙). (1.2.6)
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In particular, the 𝐿2−energy is conserved:

8𝜋2⟨𝑐2(𝐸) ∪ [Ξ], [𝑋]⟩ = ‖𝐹𝐴‖
2
𝐿2(𝑋∖𝑆) +

∫︁

Γ

Θd
(︀

ℋ𝑛−4⌊Γ
)︀

.

Remark 1.2.7. In the situation of Theorem 1.2.4:

∙ The function Θ measures the energy density lost by the sequence around a point 𝑥 ∈ Γ.

If, instead of a single ASD instanton bubbling off transversely at 𝑥 ∈ Γ, there is actually

a whole bubbling tree of ASD instantons, then the inequality (1.2.5) is necessarily strict.

∙ In the simplest case, the singularities of 𝐴 are removable, Γ is a smooth Ξ−calibrated

submanifold, and the bubbling trees of ASD instantons consist of single ASD instantons

forming a smooth section I of an instanton bundle associated to the normal bundle of Γ

and the restriction 𝐸|Γ of the ambient bundle. Conjecturally, in case (𝑋, 𝑔,Ξ) is a G2−

or Spin(7)−manifold, I should satisfy a certain non-linear Dirac equation, associated to

Ξ and the restriction 𝐴|Γ, called the Fueter equation, see [Wal17b, Wal17c, Hay17].

Remark 1.2.8. Two of the most important analytical results underlying the blow-up analysis

and proof of Theorem 1.2.4 are the pure YM instances of the monotonicity formula of Theorem

2.1.2 and the 𝜀−regularity of Theorem 2.3.1. A self-contained comprehensive treatment on

the proof of Tian’s bubbling theorem (accounting for all the results in Theorem 1.2.4 but the

singularity removal result of Tao–Tian) can be found in the book by the author and his supervisor

Sá Earp [FSE19].

We finish this section with a simple linear algebra result which is the reason why ASD

instantons bubbles off transversally.

Lemma 1.2.9 ([Fad16, Proposition 2.3.6]). Suppose 𝑛 > 4, let Ξ ∈ Ω𝑛−4(R𝑛) be a calibration,

let R𝑛 = R
𝑛−4 ⊕ R

4 be an orthogonal decomposition and let 𝐸 be a 𝐺−bundle over R4 where

𝐺 is a compact semi-simple Lie group. If 𝐼 ∈ 𝒜(𝐸) is a non-flat connection then the following

are equivalent:

(i) The lifted connection 𝐼 is a Ξ−ASD instanton.

(ii) There exist orientations on R
𝑛−4 and R

4 with respect to which Ξ calibrates R𝑛−4 and 𝐼

is an ASD instanton on R
4.
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1.3 Monopoles

1.3.1 The monopole equation

In the context of §1.1, now suppose that 𝑛 ≥ 3 and furthermore that 𝑋 admits a closed

(𝑛 − 3)−form Θ ∈ Ω𝑛−3(𝑋,R). As some sort of a dimensional reduction of the previous

section notion, we introduce the following.

Definition 1.3.1 (Monopoles). A configuration (𝐴,Φ) on 𝐸 is called a Θ−monopole on (𝑋, 𝑔)

if it satisfies

𝐹𝐴 ∧Θ = *d𝐴Φ. (1.3.2)

Since Θ is closed, it follows from the Bianchi identity that a solution (𝐴,Φ) to (1.3.2)

satisfies ∆𝐴Φ = 0.

In this thesis we are particularly interested in monopoles (rather than instantons), and our

interest in introducing equation (1.3.2) in general lies mainly on two of the following three

particular types of settings (𝑋𝑛, 𝑔,Θ):

(a) When (𝑋3, 𝑔) is an oriented Riemannian 3−manifold we take Θ = 1, so that (1.3.2) is

the classical Bogomolnyi equation:

𝐹𝐴 = *d𝐴Φ, (1.3.3)

and its solutions are simply called (Bogomolnyi) monopoles. This equation can be ob-

tained from the dimensional reduction of the ASD instanton equation on 𝑀4 := 𝑋3 ×R𝑡

with the standard product structure. Indeed, let 𝐸 → 𝑀4 be the pullback bundle. Then

an R−invariant connection A on 𝐸 is always of the form A = 𝐴+Φ⊗ d𝑡, where (𝐴,Φ)

is a configuration on 𝐸 → 𝑋3, and 𝐴 and Φ denote the corresponding pullbacks. Now

one may easily check that *4𝐹A = −𝐹A if and only if (𝐴,Φ) satisfy (1.3.3).

Monopoles are easily seen to be YMH configurations and, in fact, in suitable cases (e.g.

𝐺 = SU(2) and 𝑋3 = R
3) they are absolute minimizers of the YMH energy func-

tional. They have been focus of intense study in conformally flat manifolds such as R
3

(some of the earlier references in the mathematics literature are [Tau82a, JT80, AH88])

and R
2 × 𝑆1 (see for example [CK01,CK02,Fos16]), as in these cases the moduli spaces

of monopoles are (noncompact) Hyperkähler manifolds. In more general geometries,

Braam [Bra89] considered monopoles on asymptotically hyperbolic manifolds, while
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Floer [Flo95, Flo95] and Ernst [Ern95] studied monopoles on asymptotically Euclidean

(AE) ones, which are natural generalizations of the R3 situation. A further generalization

of the R
3 situation, which contains the AE case as a subcase, is that of asymptotically

conical (AC) manifolds [Kot15], [Oli16c], [FO19], which we shall focus in this thesis.

We shall study these on Chapter 3.

(b) If (𝑋6, 𝑔) is a Calabi–Yau 3−fold, we take Θ = Ω1 the real part of the holomorphic

volume form Ω ∈ Ω3,0(𝑋,C). Then (1.3.2) gives the Calabi–Yau monopoles equation

𝐹𝐴 ∧ Ω1 = *d𝐴Φ, which comes with the condition Λ𝜔𝐹𝐴 = 0. These can be obtained

from the dimensional reduction of the G2−instanton equation. More generally, one may

study complex Calabi–Yau monopoles, i.e. pairs (𝐴,Φ), where Φ ∈ Ω0(𝑋, gC𝐸) is a com-

plex Higgs field, such that
1

2
𝐹𝐴 ∧Ω = *𝜕𝐴Φ and Λ𝐹𝐴 =

𝑖

2
[Φ,Φ]. Besides its mention in

[DS09, §6.3], the only mathematical reference studying these monopoles that the author

knows is Oliveira’s work [Oli14a, Oli16a], where he constructs the first nontrivial exam-

ples under a symmetry assumption, on the cotangent bundle of the 3−sphere endowed

with the (AC) Stenzel metric. His main results constructs the moduli space of such sym-

metric monopoles, show that they are parametrized by their mass (i.e. the asymptotic

value of |Φ|) and then describes their behavior in the large mass limit.

(c) When (𝑋7, 𝑔) is a G2−manifold we take Θ = 𝜓 the G2−structure 4−form. Then equa-

tion (1.3.2) is the G2−monopole equation:

𝐹𝐴 ∧ 𝜓 = *d𝐴Φ. (1.3.4)

This can be obtained from dimensional reduction of the Spin(7)−instanton equation, and

includes G2−instantons as pure Yang–Mills solutions (these are the only solutions in the

compact setting, cf. Proposition 1.3.11). Oliveira [Oli14a, Oli14b] studied these under a

symmetry assumption on the three Bryant–Salamon examples of AC G2−manifolds. He

gives the first nontrivial examples of G2−monopoles constructing the moduli space of

symmetric monopoles on two of these manifolds: the total spaces of the bundles of ASD

2−forms over the 4−sphere and CP
2, and showed analogous results as those described

above in (b), as well as proves a vanishing result for monopoles on the total space of

the spinor bundle over the 3−sphere. In [Oli16b] he also studies G2−monopoles with

singularities. We shall study more closely G2−monopoles on AC manifolds in Chapter

4.
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As it should be clear from the above, in this thesis we shall focus in cases (a) and (c), i.e. the

3−dimensional Bogomolnyi equation (1.3.3) and the higher dimensional G2−monopole equa-

tion (1.3.4). Even so, it is convenient to use the Θ−monopole notion to unify some common

properties that we shall need.

There is an important energy functional associated to the notion of Θ−monopoles and

directly related to the YMH energy functional.

Definition 1.3.5. Let 𝑈 ⊂ 𝑋 be a precompact open subset. The Θ−energy of ℰΘ
𝑈 of a config-

uration (𝐴,Φ) on 𝑈 is defined by

ℰΘ
𝑈 (𝐴,Φ) :=

∫︁

𝑈

𝑒Θ(𝐴,Φ),

where

𝑒Θ(𝐴,Φ) :=
1

2

(︀

|𝐹𝐴 ∧Θ|2 + |d𝐴Φ|
2
)︀

is the Θ−energy density.

A standard computation of the first variation gives the following.

Proposition 1.3.6 (cf. [Oli14a, Proposition 1.3.2]). The Euler–Lagrange equations for the

Θ−energy functional are

d*
𝐴𝜋Θ(𝐹𝐴) = [d𝐴Φ,Φ], ∆𝐴Φ = 0, (1.3.7)

where 𝜋Θ(𝐹𝐴) := *(*(𝐹𝐴 ∧Θ) ∧Θ).

Some comments are in order:

∙ The YMH energy and the Θ−energy agree in the classical 3−dimensional case (a), and

so does their Euler–Lagrange equations.

∙ As for the Calabi–Yau case (b), the complex structure gives the bi-degree splitting Ω2
C
=

Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2, then 𝜋Θ(𝐹𝐴) = −2(𝐹 2,0
𝐴 + 𝐹 0,2

𝐴 ). So the Θ−energy just measures

the 𝐿2−norm of 𝐹 0,2
𝐴 (for unitary 𝐴) and its Euler–Lagrange equations are ∆𝐴Φ = 0 and

𝜕*𝐴𝐹
2,0
𝐴 = −

1

2
[𝜕𝐴Φ,Φ].

∙ In the G2−case (c), the G2−structure gives the splitting Ω2 = Ω2
7 ⊕ Ω2

14 and 𝜋Θ(𝐹𝐴) =

3𝜋7(𝐹𝐴). So the Θ−energy just measures the𝐿2−norm of 𝜋7(𝐹𝐴) and the Euler–Lagrange

equations are the YMH equations since by G2−linear algebra one has

d*
𝐴𝐹𝐴 = 3d*

𝐴𝜋7(𝐹𝐴) = d*
𝐴𝜋Θ(𝐹𝐴).
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Using integration by parts, one can easily prove the following energy identities:

Proposition 1.3.8 (cf. [Oli14a, Proposition 1.3.4]). Let 𝑈 ⊂ 𝑋 be a precompact subset with

smooth boundary 𝜕𝑈 , and let (𝐴,Φ) be a configuration on 𝐸. Then:

ℰΘ
𝑈 (𝐴,Φ) =

∫︁

𝜕𝑈

⟨Φ, 𝐹𝐴⟩ ∧Θ+
1

2
‖𝐹𝐴 ∧Θ− *d𝐴Φ‖

2
𝐿2(𝑈). (1.3.9)

Moreover, in case (𝑋7, 𝑔) is a G2−manifold one has

ℰ𝑈(𝐴,Φ) = −
1

2

∫︁

𝑈

⟨𝐹𝐴 ∧ 𝐹𝐴⟩ ∧ 𝜑+

∫︁

𝜕𝑈

⟨Φ, 𝐹𝐴⟩ ∧ 𝜓 +
1

2
‖𝐹𝐴 ∧ 𝜓 − *d𝐴Φ‖

2
𝐿2(𝑈). (1.3.10)

For noncompact manifolds𝑋 with an end of a suitable type, it can happen that the first term

in the energy identity (1.3.9) will give rise to a quantity that is fixed in terms of the topology

of the bundle 𝐸 and Θ (e.g. 𝑋 = R
3 or, more generally, on asymptotically conical manifolds

under mild assumptions, cf. Propositions 1.3.18 and 1.3.23). Since the second term is always

greater than or equal to zero with equality if and only if (𝐴,Φ) is a Θ−monopole, it follows

that in such cases the Θ−monopoles minimize the Θ−energy.

In accordance with what we already remarked for YMH configurations in §1.1 (recall that

Bogomolnyi and G2−monopoles are YMH configurations), Proposition 1.3.8 gives:

Corollary 1.3.11. If 𝑋 is closed and (𝐴,Φ) is a Θ−monopole then ℰΘ
𝑋 = 0 and d𝐴Φ = 0 =

𝐹𝐴 ∧Θ. In particular, if Φ ̸= 0, the connection 𝐴 is reducible.

It follows from the above result that in order to study solutions of equation (1.3.2) with

d𝐴Φ ̸= 0 one must either let 𝑋 be compact with nonempty boundary, noncompact or allow the

monopoles to have singularities. In this thesis we shall focus on the noncompact manifolds of

bounded geometry, specially on asymptotically conical manifolds.

1.3.2 Monopoles on asymptotically conical (AC) manifolds

In this section we introduce the main class of noncompact Riemannian manifolds of bounded

geometry with which we shall work in this thesis.

Definition 1.3.12. Let (𝑋𝑛, 𝑔) be a complete, oriented, Riemannian 𝑛−manifold. Then (𝑋𝑛, 𝑔)

is called asymptotically conical (AC) with rate 𝜈 < 0 if there exist a compact subset 𝐾 ⊂ 𝑋 ,

an oriented, closed (compact and without boundary) Riemannian (𝑛−1)−manifold (𝑁𝑛−1, 𝑔𝑁),

and an orientation preserving diffeomorphism

𝜙 : 𝐶(𝑁) := (1,∞)𝑟 ×𝑁 → 𝑋 ∖𝐾
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such that the cone metric 𝑔𝐶 := 𝑑𝑟2 + 𝑟2𝑔𝑁 on 𝐶(𝑁) satisfies

|∇𝑗 (𝜙*𝑔 − 𝑔𝐶)|𝐶 = 𝑂(𝑟𝜈−𝑗) as 𝑟 → ∞ for all 𝑗 ∈ N0.

Here ∇ is the Levi–Civita connection of 𝑔𝐶 . We say furthermore that 𝑋 has one end if 𝑁

is connected, and we refer to 𝑋 ∖ 𝐾 as the end of 𝑋 . 𝑁 is called the asymptotic link of

𝑋 . A distance function on 𝑋 will be any positive smooth function 𝜌 : 𝑋 → R
+ such that

𝜌|𝑋∖𝐾 = 𝑟 ∘ 𝜙−1.

Finite mass configurations. On AC manifolds, we shall be interested in the following partic-

ular class of configurations.

Definition 1.3.13. Let (𝑋𝑛, 𝑔) be an AC oriented Riemannian 𝑛−manifold with one end, as in

Definition 1.3.12. Let 𝐸 be a 𝐺−bundle over 𝑋 and suppose there exists a 𝐺−bundle 𝐸∞ over

the asymptotic link 𝑁 of 𝑋 together with an isomorphism of bundles 𝜙*
(︀

𝐸|𝑋∖𝐾

)︀

∼= 𝜋*𝐸∞,

where 𝜋 : (1,∞)×𝑁 → 𝑁 is the projection onto the second factor. A configuration (𝐴,Φ) on

𝐸 is said to have finite mass if there exists a connection 𝐴∞ on 𝐸∞ such that 𝐴 is asymptotic

to 𝐴∞ with some rate 𝜂 < 0, i.e.

|∇𝑗
∞(𝜙*∇𝐴− 𝜋*∇∞)| = 𝑂(𝜌𝜂−1−𝑗) as 𝜌→ ∞ for all 𝑗 ∈ N0 and for some 𝜂 < 0, (1.3.14)

and there is a positive constant 𝑚 ∈ R
+ with

lim
𝜌→∞

|Φ| = 𝑚. (1.3.15)

We call the constant 𝑚 the mass of (𝐴,Φ).

Remark 1.3.16. Definition 1.3.13 may not be the most general one, but the analysis of the

next chapters will motivate it better in the case of YMH configurations and monopoles. For

instance, Proposition 2.3.5 and Corollary 2.3.8 will relate the asymptotic condition (1.3.15) to

finite energy assumption. Below we shall also see that one can prove nice energy formulas

with it for YMH configurations under reasonable assumptions. Moreover one should have in

mind that all nontrivial examples of monopoles on AC 3−dimensional, Calabi–Yau and G2−

manifolds constructed in [Oli14a] satisfy these assumptions.

Remark 1.3.17. If (𝐴,Φ) is a YMH configuration with finite mass 𝑚 then, by subharmonicity,

as |Φ| converges to 𝑚 along the end of 𝑋 , the maximum principle yields that either |Φ| < 𝑚 on

𝑋 or |Φ| is constant equal to 𝑚.
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Charge and energy formula in the 3−dimensional case. Let (𝑋3, 𝑔) be an AC oriented

Riemannian 3−manifold with asymptotic link 𝑁 , fix a smooth radius function 𝜌 on 𝑋 , and

let 𝐸 be an SU(2)−bundle over 𝑋 . We note that 𝐸 is necessarily trivializable, since SU(2)

is 2−connected. Now let (𝐴,Φ) be a configuration with finite mass 𝑚 ̸= 0. Then there is

𝑟 ≫ 1 so that Φ does not vanish in 𝜌−1[𝑟,∞). It follows that the various Φ|𝜌−1(𝑟) yield a well

defined homotopy class of maps 𝜌−1(𝑟) ∼= 𝑁2 → su(2)∖{0} ∼= 𝑆2. The degree of such maps is

therefore a well defined integer 𝑘 called the charge of (𝐴,Φ). Equivalently, the eigenspaces of

Φ split the bundle in this region as 𝐸|𝜌−1(𝑟)
∼= 𝐿 ⊕ 𝐿−1, for some complex line bundle 𝐿 over

𝑁 ∼= 𝜌−1(𝑟). Moreover, the degree of any such 𝐿 does not depend on 𝑟 and equals to the charge

𝑘 of (𝐴,Φ).

In particular, in this 3−dimensional AC case, using the energy identity of Proposition 1.3.8 one

can prove the following energy formula.

Proposition 1.3.18 ([Oli14a, Corollary 1.4.11]). Let (𝑋3, 𝑔) be an AC oriented Riemannian

3−manifold and 𝐸 be an SU(2)−bundle over 𝑋 . If (𝐴,Φ) ∈ 𝒞(𝐸) is a finite mass monopole

of mass 𝑚 ̸= 0 and charge 𝑘, then

ℰ𝑋(𝐴,Φ) = 4𝜋𝑚𝑘. (1.3.19)

In fact, more generally, one has the following. Suppose that (𝐴,Φ) ∈ 𝒞(𝐸) has finite mass

𝑚 ̸= 0, charge 𝑘 and satisfy the following conditions:

(i) (𝐴,Φ) is asymptotic to a configuration (𝐴∞,Φ∞) on 𝐸∞, with rates 𝜂 − 1 for the con-

nection and −1 for the Higgs field, with all derivatives, for some 𝜂 < 0;

(ii) 𝐴∞ is YM, 𝑑𝐴∞
Φ∞ = 0 and ⟨Φ∞, 𝐹𝐴∞

⟩ ≠ 0.

(iii) ℰ𝑋(𝐴,Φ) <∞.

Then 𝐴∞ is reducible and

ℰ𝑋(𝐴,Φ) = 4𝜋𝑚𝑘 +
1

2
‖ * 𝐹𝐴 − d𝐴Φ‖

2
𝐿2(𝑋). (1.3.20)

Notice that the first term of (1.3.20) is fixed by the charge and mass while the second is

nonnegative, and vanishes if and only if (𝐴,Φ) is a monopole. Thus showing, in particular, that

monopoles minimize the YMH energy amongst such finite mass𝑚 and charge 𝑘 configurations.
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AC G2−structures and energy formula in the 7−dimensional case.

Definition 1.3.21. Let 𝑁6 be a 6−manifold. A pair of forms (𝜔,Ω1) ∈ Ω2 ⊕ Ω3(𝑁,R) deter-

mine an SU(3)−structure on 𝑁 if:

∙ The GL(6,R) orbit of Ω1 is open, with stabilizer a covering of SL(3,C);

∙ The following compatibility relations hold

𝜔 ∧ Ω1 = 𝜔 ∧ Ω2 = 0,
𝜔3

3!
=

1

4
Ω1 ∧ Ω2,

where Ω2 := 𝐽Ω1 and 𝐽 denotes the almost complex structure determined by Ω1;

∙ 𝑔𝑁 := 𝜔(·, 𝐽 · ) determines a Riemannian metric on 𝑁 .

If, furthermore, the forms (𝜔,Ω1,Ω2) satisfy

dΩ2 = −2𝜔2 and d𝜔 = 3Ω1,

then (𝑁, 𝑔𝑁) is said to be nearly Kähler.

Lemma 1.3.22. Suppose that 𝑁6 is endowed with an SU(3)−structure determined by (𝜔,Ω1).

Then the Riemannian cone (𝐶(𝑁) := (1,∞)𝑟 ×𝑁, 𝑔𝐶 := 𝑑𝑟2 + 𝑟2𝑔𝑁) with the G2−structure

𝜑𝐶 := 𝑟2𝑑𝑟 ∧ 𝜔 + 𝑟3Ω1, 𝜓𝐶 := 𝑟4
𝜔2

2
− 𝑟3𝑑𝑟 ∧ Ω2,

is a G2−manifold if and only if (𝑁6, 𝑔𝑁) is nearly Kähler.

Thus if 𝑋 is an AC oriented Riemannian 7−manifold endowed with a compatible torsion-

free G2−structure (𝜓, 𝑔), then its asymptotic link (𝑁6, 𝑔𝑁) is necessarily nearly Kähler. More-

over, it follows that 𝜓 has the same asymptotic rate of the metric:

|∇𝑗 (𝜙*𝜓 − 𝜓𝐶)|𝐶 = 𝑂(𝑟𝜈−𝑗) as 𝑟 → ∞ for all 𝑗 ∈ N0.

In this context, one can prove the following energy formula.

Proposition 1.3.23 ([Oli14b, Proposition 4]). Let (𝑋7, 𝜓, 𝑔) be an AC G2−manifold with one

end, with asymptotic link 𝑁 , and 𝐸 be an SU(2)−bundle over 𝑋 . Suppose that (𝐴,Φ) ∈ 𝒞(𝐸)

is a finite mass G2−monopole of mass 𝑚 ̸= 0 and |𝐴 − 𝐴∞| = 𝑂(𝜌𝜂−5) as 𝜌 → ∞ for some

𝜂 < 0. Then (𝐸∞, 𝐴∞) is reducible to a complex line bundle 𝐿 → 𝑁 such that 𝐸|𝜌−1(𝑟)∼=𝑁
∼=

𝐿⊕ 𝐿−1 for 𝑟 ≫ 1, and

ℰ𝜓𝑋(𝐴,Φ) = 4𝜋𝑚⟨𝑐1(𝐿) ∪ [𝜄*𝜓], [𝑁 ]⟩, (1.3.24)
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where [𝜄*𝜓] ∈ 𝐻4(𝑁,R) is the cohomology class obtained by restricting [𝜓] ∈ 𝐻4(𝑋,R) to any

cross section 𝜌−1(𝑟) ∼= 𝑁 for 𝑟 ≫ 1. In fact, more generally, one has the following. Suppose

that (𝐴,Φ) ∈ 𝒞(𝐸) is of finite mass 𝑚 ̸= 0 and satisfy the following properties:

(i) (𝐴,Φ) is asymptotic to a configuration (𝐴∞,Φ∞) on 𝐸∞, with rates 𝜂 − 5 for the con-

nection and −5 for the Higgs field, with all derivatives, for some 𝜂 < 0;

(ii) 𝐴∞ is Hermitian–Yang–Mills with respect to the nearly Kähler structure of𝑁 , i.e. 𝐹𝐴∞
∧

Ω2 = 0 and 𝐹𝐴∞
∧ 𝜔2 = 0;

(iii) ℰ𝜓𝑋(𝐴,Φ) <∞.

Then 𝐴∞ is reducible and

ℰ𝜓𝑋(𝐴,Φ) = 4𝜋𝑚⟨𝑐1(𝐿) ∪ [𝜄*𝜓], [𝑁 ]⟩+
1

2
‖ * 𝐹𝐴 ∧ 𝜓 − d𝐴Φ‖

2
𝐿2(𝑋). (1.3.25)

Under the hypothesis of Proposition 1.3.23, keeping the class 𝑐1(𝐿)∪ [𝜄*𝜓] fixed, it follows

that G2−monopoles minimize the 𝜓−energy. The class [𝜄*𝜓] is determined by the calibration

and 𝑐1(𝐿) ∈ 𝐻2(𝑁,R) by the asymptotic behavior of the G2-monopole. We call such 𝑐1(𝐿) a

monopole class and this is the higher dimensional analog of what in 3 dimensions is known as

the monopole charge.

1.3.3 Conjectural picture: large mass monopoles and codimension 3 cali-

brated geometry

By the invariance of equation (1.3.2) under the action of the gauge group 𝒢 = 𝒢(𝐸), one

is interested in the moduli space of irreducible monopoles on 𝐸:

ℳΘ(𝑋,𝐸) := {(𝐴,Φ ̸= 0) : (𝐴,Φ) is a solution of (1.3.2) and 𝐴 is irreducible}/𝒢.

Let us retrict attention to monopoles on a G2−manifold 𝑋 . Then, in parallel with the in-

stanton case (cf. Tian’s theorem 1.2.4), Donaldson–Segal [DS09] suggested that these might be

related to coassociative submanifolds of 𝑋 , i.e. 4−dimensional 𝜓−calibrated submanifolds (in

the Calabi–Yau case these would be the special Lagrangian submanifolds). Joyce [Joy16] gives

some conjectures which attempt to define an invariant of a G2−manifold by counting rigid,

compact coassociative submanifolds. In fact, it follows from McLean’s work that a closed

coassociative submanifold 𝑄 ⊂ 𝑋 deforms in a smooth moduli space of dimension 𝑏−2 (𝑄).
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Hence these are rigid when 𝑏−2 (𝑄) = 0 and one could hope to count these. Another (possibly

complementary) attempt to define an enumerative invariant of G2−manifolds is by an appro-

priate count of monopoles and the idea is that this may be related to a count of coassociative

submanifolds via the (non)compactness problem for ℳΘ(𝑋,𝐸): the general expectation is

that sequences of monopoles under the regime where the asymptotic values of the Higgs fields

norms at infinity (their mass) becomes arbitrarily large, should concentrate along coassociative

cycles whose homology class is determined by the topological type of the bundle 𝐸. Such a

concentration phenomena is then expected to be modelled on R
3−monopoles along the fibers

of the normal bundle to the coassociatives; in fact, there is an analogue of Lemma 1.2.9 for

G2−monopoles. (One can write down a similar result for the Calabi-Yau case.)

Lemma 1.3.26. Let R7 = R
4 ⊕ R

3 be an orthogonal decomposition and let 𝐸 be a 𝐺−bundle

over R3. If (𝐴,Φ) is a configuration on 𝐸 with 𝐴 non-flat and d𝐴Φ ̸= 0, then the following are

equivalent:

(i) The lifted configuration (𝐴,Φ) is a G2−monopole.

(ii) There exist orientations on R
4 and R

3 with respect to which 𝜓 calibrates R4 and (𝐴,Φ)

is a monopole on R
3.

The works of Oliveira [Oli14b, Oli16a] provides concrete instances of these general ex-

pectations on the codimension 3 concentration phenomena for large mass monopoles under

symmetry assumptions on certain examples of AC Calabi–Yau and G2−manifolds.

In Chapters 3 and 4 of this thesis we start the investigation of the general behavior of large

mass monopoles on AC 3−dimensional and G2− manifolds respectively.
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Chapter 2

General properties of YMH configurations

In this chapter we gather some important analytical properties of YMH configurations in

general. These will be useful for the analysis of sequences of large mass YMH/monopoles

configurations on the next chapters.

We start with a basic scaling property (Proposition 2.1.1) of the YMH/monopole equations

and a key monotonicity formula (Theorem 2.1.2) enjoyed by YMH configurations in dimensions

𝑛 ≥ 4. Then we move to Bochner–Weitzenböck formulas that imply an important estimate on

the Laplacian of the energy density (Corollary 2.2.4). By using these results and a nonlinear

mean value inequality, we then derive an 𝜀−regularity result (Theorem 2.3.1) that has some

powerful analytic consequences. For instance, we prove that on a noncompact manifold of

bounded geometry the energy density of a YMH configuration with finite energy decays uni-

formly to zero at infinity and attains its maximum (Corollary 2.3.3). Moreover, we prove that

for an irreducible YMH configuration (𝐴,Φ) on an AC 𝑛−manifold with 𝑛 ≥ 3, finite energy

forces |Φ| to uniformly converge to a constant at infinity and, conversely, that if this holds then

|d𝐴Φ| ∈ 𝐿2(𝑋) (Proposition 2.3.5). In particular, in an AC 3−dimensional manifold, an irre-

ducible monopole has finite energy if and only if its Higgs field norm uniformly converges to a

constant at infinity (Corollary 2.3.8).

In the last section, we generalize a result of Taubes for monopoles on the Euclidean space

R
3 to finite mass YMH configurations on AC 𝑛−dimensional manifolds with 𝑛 ≥ 3 (Theorem

2.4.1). Our result controls how big the radius of a ball should be so that it contains points where

the Higgs field norm of a finite mass YMH configuration is bigger than a given portion of its

mass.
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2.1 Scaling properties and a monotonicity formula

Notations. Consider the setup of §1.1. Henceforth, it will be convenient to use the follow-

ing notations. If we scale the metric 𝑔 by 𝜆2, for some 𝜆 > 0, then for the new metric 𝑔𝜆 := 𝜆2𝑔

we write:

∙ 𝐵𝜆
𝑟 (𝑥) := open 𝑔𝜆−ball of center 𝑥 and radius 𝑟;

∙ 𝑒𝜆(𝐴, 𝜆
−1Φ) := 𝑔𝜆−YMH energy density of (𝐴, 𝜆−1Φ);

∙ vol𝜆 := 𝑔𝜆−volume form;

∙ ℰ𝜆𝑈 := 𝑔𝜆−YMH functional over 𝑈 .

With these notations, note that the following identities holds:

∙ 𝐵𝜆
𝜆𝑟(𝑥) = 𝐵𝑟(𝑥);

∙ 𝑒𝜆(𝐴, 𝜆
−1Φ) = 𝜆−4𝑒(𝐴,Φ);

∙ vol𝜆 = 𝜆𝑛vol;

∙ ℰ𝜆𝑈(𝐴, 𝜆
−1Φ) = 𝜆𝑛−4ℰ𝑈(𝐴,Φ).

We shall use analogous notations for the Θ−energy density and functional.

We start with a basic scaling property of the YMH and Θ−monopole equations.

Proposition 2.1.1. Let (𝑋𝑛, 𝑔) be an oriented Riemannian 𝑛-manifold, 𝐸 a 𝐺-bundle over 𝑋 ,

and (𝐴,Φ) a configuration on 𝐸. For any real 𝜆 > 0, the following holds:

∙ If (𝐴,Φ) is YMH on (𝑋𝑛, 𝑔), then (𝐴, 𝜆−1Φ) is YMH on (𝑋𝑛, 𝑔𝜆).

∙ Suppose Θ ∈ Ω𝑛−3(𝑋,R) is a calibration. If (𝐴,Φ) is a Θ−monopole on (𝑋𝑛, 𝑔), then

(𝐴, 𝜆−1Φ) is a (𝜆𝑛−3Θ)−monopole on (𝑋𝑛, 𝑔𝜆).

Proof. Acting on 𝑘−forms, the Hodge-* operators associated to 𝑔𝜆 and 𝑔 are related by

*𝜆 = 𝜆𝑛−2𝑘*. Therefore, we have d*λ
𝐴 𝐹𝐴 = 𝜆−2d*

𝐴𝐹𝐴 = 𝜆−2[d𝐴Φ,Φ] in the YMH case, and

*𝜆(d𝐴(𝜆−1Φ)) = 𝜆𝑛−3 * d𝐴Φ = 𝐹𝐴 ∧ (𝜆𝑛−3Θ) in the Θ−monopole case. �
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We now cite a key monotonicity property enjoyed by the renormalized scale-invariant

YMH energy of YMH configurations on geodesic balls in dimensions 𝑛 ≥ 4. For YM con-

nections this was proved by Price [Pri83]; the proof in the YMH case is analogous.

Theorem 2.1.2 ([Afu19, Theorem 2.1]). Let (𝑋𝑛, 𝑔) be an oriented Riemannian 𝑛−manifold,

where 𝑛 ≥ 4, and let 𝐸 be a 𝐺−bundle over 𝑋 . Let 𝑥 ∈ 𝑋 , write 𝜌 := d𝑔(𝑥, ·) for the distance

function from 𝑥, and suppose the Hessian estimate

𝑐−𝜌
2𝑔𝜌 ≤ 𝑔 −∇2

(︂

1

2
𝜌2
)︂

≤ 𝑐+𝜌
2𝑔𝜌

holds on 𝐵𝑟x(𝑥) for some 𝑟𝑥 ∈ (0, 𝑖𝑥(𝑔)] and 𝑐± ≥ 0, where 𝑔𝜌 := 𝑔 − d𝜌⊗ d𝜌. Then there is a

constant 𝑐 = 𝑐(𝑛, 𝑐±) ≥ 0 such that if (𝐴,Φ) ∈ 𝒞(𝐸) is YMH then the inequality

d
d𝑟

(︁

𝑒𝑐𝑟
2

𝑟4−𝑛ℰ𝐵r(𝑥)(𝐴,Φ)
)︁

≥ 𝑒𝑐𝑟
2

𝑟4−𝑛
∫︁

𝜕𝐵r(𝑥)

|𝜕𝜌y𝐹𝐴|
2 + |d𝐴,𝜕ρΦ|

2

+ 𝑒𝑐𝑟
2

𝑟3−𝑛
∫︁

𝐵r(𝑥)

|d𝐴Φ|
2 ≥ 0 (2.1.3)

holds for all 𝑟 < 𝑟𝑥. In particular, for all 0 < 𝑠 < 𝑟 ≤ 𝑟𝑥 one has

𝑒𝑐𝑟
2

𝑟4−𝑛ℰ𝐵r(𝑥)(𝐴,Φ)− 𝑒𝑐𝑠
2

𝑠4−𝑛ℰ𝐵s(𝑥)(𝐴,Φ)

≥

∫︁

𝐴r,s(𝑥)

𝑒𝑐𝜌
2

𝜌4−𝑛
(︀

|𝜕𝜌y𝐹𝐴|
2 + |d𝐴,𝜕ρΦ|

2
)︀

, (2.1.4)

where 𝐴𝑟,𝑠(𝑥) := 𝐵𝑟(𝑥) ∖𝐵𝑠(𝑥). Furthermore:

∙ If 𝑋𝑛 = R
𝑛 or1 𝑆𝑛(−𝜅2), then 𝑐 = 0 and the inequalities (2.1.3) and (2.1.4) holds for all

𝑥 ∈ 𝑋 and 𝑟 > 0.

∙ If (𝑋𝑛, 𝑔) is of bounded geometry (e.g. AC or compact), then there are uniform constants

𝑟0 ∈ (0, 𝑖𝑋(𝑔)] and 𝑐 = 𝑐(𝑛, 𝑔) ≥ 0 such that the inequalities (2.1.3) and (2.1.4) holds

for all 𝑥 ∈ 𝑋 and 𝑟 ∈ (0, 𝑟0].

One consequence of the monotonicity formula is the following vanishing result (compare

with [Pri83, Corollary 2, p. 148] and [JT80, Corollary 2.3]).

Corollary 2.1.5 ([Afu19, Theorem A]). Let (𝐴,Φ) be a YMH configuration on 𝑋𝑛 = R
𝑛 or

𝑆𝑛(−𝜅2). If there is some 𝑥 ∈ R
𝑛 such that2

ℰ𝐵R(𝑥)(𝐴,Φ) = 𝑜(𝑅𝑛−4) as 𝑅 → ∞, (2.1.6)

1Sn(−κ2) denotes the hyperbolic n−space of constant sectional curvature −κ2.
2Here we use the standard little-o notation.
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then (𝐴,Φ) is gauge equivalent to the canonical flat connection and a constant function R
𝑛 →

g. In particular, for 𝑛 ≥ 5 there is no non-trivial finite energy YMH configuration on R
𝑛 or

𝑆𝑛(−𝜅2).

Proof. Suppose, by contradiction, that 𝐹𝐴 or d𝐴Φ is nonzero. Then there exists some 𝑅0 > 0

large enough so that

∆ := 𝑅4−𝑛
0 ℰ𝐵R0

(𝑥)(𝐴,Φ) > 0.

On the other hand, for each 𝑅 ≥ 𝑅0, Theorem 2.1.2 implies that

∆ ≤ 𝑅4−𝑛ℰ𝐵R(𝑥)(𝐴,Φ).

Thus, making𝑅 → ∞ and using the hypothesis (2.1.6) we conclude ∆ ≤ 0 (⇒⇐). This proves

the main statement. �

2.2 Bochner–Weitzenböck formulas and estimate

The following are simple but very useful Bochner–Weitzenböck formulae for general YMH

configurations that immediately gives an important estimate on the Laplacian of their YMH

energy density and later we will used in Chapters 3 and 4 to derive improved estimates for the

energy density of monopoles in dimensions 3 and 7 (cf. Corollary 3.8.2, Proposition 4.2.1 and

Corollary 4.2.6).

Lemma 2.2.1. Let (𝑋𝑛, 𝑔) be an oriented Riemannian 𝑛−manifold and 𝐸 be a 𝐺−bundle over

𝑋 where 𝐺 is a compact Lie group. Equip g𝐸 with an Ad-invariant inner product. Suppose that

(𝐴,Φ) is a smooth YMH configuration on 𝐸. Then

1

2
∆|d𝐴Φ|

2 =− ⟨(d𝐴Φ) ∘ Ric𝑔, d𝐴Φ⟩ − 2⟨*[*𝐹𝐴, d𝐴Φ], d𝐴Φ⟩

− |[d𝐴Φ,Φ]|
2 − |∇𝐴(d𝐴Φ)|

2 (2.2.2)

and3

1

2
∆|𝐹𝐴|

2 =− ⟨𝐹𝐴 ∘ (Ric𝑔 ∧ 𝐼 + 2𝑅𝑔), 𝐹𝐴⟩ − ⟨[d𝐴Φ, d𝐴Φ], 𝐹𝐴⟩

−
∑︁

𝑖,𝑗,𝑘

⟨[𝐹𝑖𝑗, 𝐹𝑗𝑘], 𝐹𝑘𝑖⟩ − |[𝐹𝐴,Φ]|
2 − |∇𝐴𝐹𝐴|

2. (2.2.3)

Here ∆ := d*d denotes the (positive definite) Laplacian and Ric𝑔 the Ricci curvature

tensor of 𝑔.

3Fij := FA(ei, ej) denotes the components of the curvature on a local orthonormal frame {ei}.
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Proof. The formulas follows by straightforward computations using the YMH equations and

the standard Bochner–Weitzenböck formulas. We shall do the proof of (2.2.2). First recall the

Bochner–Weitzenböck formula (cf. [BLJ81]) for the Laplacian of g𝐸−valued 1−forms:

∆𝐴(d𝐴Φ) = ∇*
𝐴∇𝐴(d𝐴Φ) + (d𝐴Φ) ∘ Ric𝑔 + *[*𝐹𝐴, d𝐴Φ].

Then,

1

2
∆|d𝐴Φ|

2 = ⟨∇*
𝐴∇𝐴d𝐴Φ, d𝐴Φ⟩ − |∇𝐴(d𝐴Φ)|

2

= ⟨∆𝐴(d𝐴Φ), d𝐴Φ⟩ − ⟨(d𝐴Φ) ∘ Ric𝑔, d𝐴Φ⟩ − ⟨*[*𝐹𝐴, d𝐴Φ], d𝐴Φ⟩ − |∇𝐴(d𝐴Φ)|
2.

But since (𝐴,Φ) is YMH, one has

∆𝐴(d𝐴Φ) = d*
𝐴d𝐴(d𝐴Φ)

= d*
𝐴[𝐹𝐴,Φ]

= *d𝐴[*𝐹𝐴,Φ]

= * ([d𝐴 * 𝐹𝐴,Φ]− [*𝐹𝐴, d𝐴Φ])

= [d*
𝐴𝐹𝐴,Φ]− *[*𝐹𝐴, d𝐴Φ]

= [[d𝐴Φ,Φ],Φ]− *[*𝐹𝐴, d𝐴Φ].

Putting the above together using the Ad𝐺-invariance of the inner product ⟨·, ·⟩ gives the result.

�

Corollary 2.2.4 (Bochner type estimate). Let (𝑋𝑛, 𝑔) be an oriented Riemannian 𝑛−manifold,

let 𝐸 be a 𝐺−bundle over 𝑋 , and let (𝐴,Φ) be a YMH configuration on 𝐸. Then the following

estimate holds pointwise on 𝑋:

∆𝑒(𝐴,Φ) . |R𝑔|𝑒(𝐴,Φ) + 𝑒(𝐴,Φ)3/2. (2.2.5)

2.3 𝜀−regularity and some consequences

Combining the Bochner estimate and the monotonicity formula of the last sections, we can

use the nonlinear mean value inequality of Theorem A.3 to prove the following.

Theorem 2.3.1 (𝜀−regularity for the total YMH energy density). Let (𝑋𝑛, 𝑔) be an oriented

Riemannian 𝑛−manifold of bounded geometry and let 𝐸 be a 𝐺−bundle over 𝑋 where 𝐺 is



CHAPTER 2. GENERAL PROPERTIES OF YMH CONFIGURATIONS 36

a compact Lie group. Then there are (scale invariant) constants 𝜀0 > 0 and 𝐶0 > 0 with the

following significance. Let (𝐴,Φ) be a YMH configuration on 𝐸. If 𝑥 ∈ 𝑋 and 0 < 𝑟 ≤ 𝑟0 are

such that

𝜀 := 𝑟4−𝑛ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0,

then

sup
𝐵 r

2
(𝑥)

𝑒(𝐴,Φ) ≤ 𝐶0𝑟
−4𝜀. (2.3.2)

Proof. We apply the mean value inequality given by Theorem A.3 for 𝑓 := 𝑒(𝐴,Φ), 𝑑 = 4,

𝜏 = 0, 𝑎0 = 0 and 0 < 𝑎1, 𝑎 . 1. Indeed, with this setup, the monotonicity formula of

Theorem 2.1.2 implies (A.4) in case 𝑛 ≥ 4 (in case 𝑛 < 4 it is trivially satisfied), and the

Bochner estimate of Corollary 2.2.4 implies (A.5) with critical exponent 𝛼 = 3/2 = (𝑑+ 2)/2.

Therefore, noting that 1 . 𝑟−4, it follows from (A.7) that there is 𝜀0 := ~𝑎−2 > 0 and 𝐶0 > 0

(depending only on 𝑛, the geometry of (𝑋𝑛, 𝑔) and the structure constants of g) such that (2.3.2)

holds. (Note that the statement is scaling invariant, and so are the desired constants.) �

This result is of key importance in the compactness theory of YMH configurations and in

this thesis we shall use it most notably in Chapter 3 in a 3−dimensional version (cf. Theorem

3.3.1). We now state some of its general consequences.

Corollary 2.3.3. Let (𝑋𝑛, 𝑔) be a noncompact, oriented, Riemannian 𝑛−manifold of bounded

geometry and let 𝐸 be a 𝐺−bundle over 𝑋 where 𝐺 is a compact Lie group. Suppose that

(𝐴,Φ) is a YMH configuration of finite energy, i.e. with 𝑒 := 𝑒(𝐴,Φ) ∈ 𝐿1(𝑋). Then 𝑒 ∈

𝐿𝑝(𝑋) for all 𝑝 ∈ [1,∞] and decays uniformly to zero at infinity.

Proof. Since (𝑋𝑛, 𝑔) is of bounded geometry, we can cover 𝑋 with a countable collection of

geodesic balls {𝐵𝑠(𝑥𝑖)}
∞
𝑖=1 of radius 𝑠 := 1

4
min{1, 𝑟0}, with a uniform bound on the number of

balls containing any point of 𝑋 and the half-radius balls pairwise disjoint (cf. [Heb00, Lemma

1.1]). Then since 𝑒 ∈ 𝐿1(𝑋) it follows that for each 𝛿 ∈ (0, 𝜀0] there exists 𝑁𝛿 ∈ N so that up

to removing a finite number of balls one has

𝐶0𝑠
−𝑛ℰ𝐵2s(𝑥i)(𝐴,Φ) < 𝛿, ∀𝑖 > 𝑁𝛿.

Thus, by Theorem 2.3.1, we conclude that for any 𝛿 ∈ (0, 𝜀0],

sup
𝐵s(𝑥i)

𝑒 < 𝛿 ∀𝑖≫𝛿 1.
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This implies that 𝑒 decays uniformly to zero at infinity and its supremum is achieved at some

𝑥0 ∈ 𝑋 . Since 𝐿1(𝑋) ∩ 𝐿∞(𝑋) ⊆ 𝐿𝑝(𝑋) for all 𝑝 ≥ 1 this already imply the result. Further-

more, applying again Theorem 2.3.1 also gives the estimate

‖𝑒‖𝐿∞(𝑋) = 𝑒(𝑥0) ≤ 𝐶‖𝑒‖𝐿1(𝑋),

for some 𝐶 > 0; in particular, for 𝑝 ≥ 1 we have

‖𝑒‖𝑝𝐿p(𝑋) ≤ ‖𝑒‖𝑝−1
𝐿∞(𝑋)‖𝑒‖𝐿1(𝑋) ≤ 𝐶𝑝−1‖𝑒‖𝑝𝐿1(𝑋) <∞.

�

In fact, by combining Theorem 2.3.1, Corollary 2.3.3 and invoking Uhlenbeck’s Coulomb

gauge theorem [Uhl82a, Theorem 1.3] (also see [Weh04, Theorem 6.1]), standard elliptic tech-

niques proves (see [Ste10, §2]):

Corollary 2.3.4. Under the same hypothesis of Corollary 2.3.3, one has |∇𝑘
𝐴𝐹𝐴|, |∇

𝑘
𝐴(d𝐴Φ)| ∈

𝐿2(𝑋) ∩ 𝐿∞(𝑋) for all 𝑘.

Moreover, in the AC case we can prove the following:

Proposition 2.3.5. Let (𝑋𝑛, 𝑔) be an AC oriented Riemannian 𝑛−manifold with one end, where

𝑛 ≥ 3, let 𝐸 be a 𝐺−bundle over 𝑋 and (𝐴,Φ) ∈ 𝒞(𝐸) be an irreducible YMH configuration.

If (𝐴,Φ) has finite energy ℰ𝑋(𝐴,Φ) <∞ then there exists a constant 𝑚 ∈ R
+ with

lim
𝜌→∞

|Φ| = 𝑚. (2.3.6)

Conversely, if (2.3.6) holds then |d𝐴Φ| ∈ 𝐿2(𝑋).

Proof. In one direction, suppose that (𝐴,Φ) is an irreducible YMH configuration with finite

energy. Then, by Corollary 2.3.3, we know that 𝑒(𝐴,Φ) decays uniformly to zero at infinity; in

particular,

lim
𝜌→∞

|d𝐴Φ| = 0.

Since 𝐴 is irreducible, (2.3.6) follows using Kato’s inequality.

For the converse we follow [Oli14a, proof of Proposition 1.4.4]. Fix a smooth radius

function 𝜌 on (𝑋𝑛, 𝑔). Consider the function

𝑤 :=
1

2

(︀

𝑚2 − |Φ|2
)︀

.
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Since (𝐴,Φ) is YMH (and so ∆𝐴Φ = 0), we have that ∆|Φ|2 = −2|d𝐴Φ|2 ≤ 0 so that the

hypothesis (2.3.6) together with the Maximum Principle implies that 𝑤 is a smooth nonnegative

superharmonic function satisfying

∆𝑤 = |d𝐴Φ|
2 (2.3.7)

and lim𝜌→∞𝑤 = 0. Since (𝑋𝑛, 𝑔) is AC and 𝑛 > 2, all Green’s functions are ∼ 𝜌2−𝑛 at infinity

(cf. [LT95]), so it follows by the Maximum Principle that there is a constant 𝑐𝑤 > 0 such that

𝑤 ≤ 𝑐𝑤𝜌
2−𝑛 along the end. Now, for 𝑅 ≫ 1, let 𝜒𝑅 be a smooth bump function which is

identically 1 in 𝐵𝑅 := 𝜌−1([0, 𝑅]) and has support contained in 𝐵2𝑅. From the fact that (𝑋𝑛, 𝑔)

is AC, the derivatives of 𝜌 are uniformly bounded and we can assume that |∇2𝜒𝑟| ≤ 𝑐𝑅−2.

Thus, multiplying the identity (2.3.7) by 𝜒𝑅 and integrating by parts yields

‖d𝐴Φ‖
2
𝐿2(𝐵R)

≤

∫︁

𝑋

𝜒𝑅|d𝐴Φ| =
∫︁

𝑋

𝜒𝑅∆𝑤

=

∫︁

𝑋

𝑤∆𝜒𝑅

≤ 𝑐𝑤𝑅
−2

∫︁

𝐵2R∖𝐵R

𝜌2−𝑛

≤ 𝑐𝑤𝑅
−2

∫︁ 2𝑅

𝑅

𝜌d𝜌 ≤ 𝑐𝑤.

(Of course, in this computation the value of 𝑐𝑤 changes from one occurrence to the next, but the

important point is that it is independent of 𝑅.) This gives a uniform bound on ‖d𝐴Φ‖2𝐿2(𝐵R)
for

any 𝑅 ≫ 1 and so, by dominated convergence, we get |d𝐴Φ| ∈ 𝐿2(𝑋) as we wanted. �

Corollary 2.3.8. Let (𝑋3, 𝑔) be an AC oriented Riemannian 3−manifold with one end, 𝐸 a

𝐺−bundle over 𝑋 and (𝐴,Φ) ∈ 𝒞(𝐸) be an irreducible monopole. Then (𝐴,Φ) has finite

energy ℰ𝑋(𝐴,Φ) <∞ if and only if there exists a constant 𝑚 ∈ R
+ with

lim
𝜌→∞

|Φ| = 𝑚.

Proof. Immediate from Proposition 2.3.5 using that for a monopole ℰ𝑋(𝐴,Φ) = ‖d𝐴Φ‖2𝐿2(𝑋).

�

2.4 AC and mass dependent 𝑛−dimensional version of Taubes’

small Higgs field estimates

Let (𝑋3, 𝑔) be an AC oriented Riemannian 3−manifold with one end, let 𝐸 be an SU(2)-

bundle over 𝑋 (necessarily trivializable) and let (𝐴,Φ) be a finite mass monopole on 𝐸 with
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charge 𝑘 ̸= 0 and mass 𝑚 ̸= 0. Then for 𝑟 ≫ 1 we know that Φ does not vanish in 𝜌−1[𝑟,∞)

and Φ
|Φ|

defines a degree 𝑘 map from the various 𝜌−1(𝑟) ∼= 𝑁 to the unit sphere in su(2).

Therefore, since 𝑘 ̸= 0, the Higgs field Φ must vanish at points in 𝑋 . With this observation in

mind, Taubes [Tau14] poses and addresses the following question, in the case where (𝑋3, 𝑔) is

the Euclidean 3−dimensional space (R3, 𝑔𝐸):

Question. What is the largest radius of a ball in 𝑋 that contains only points where |Φ| ≪ 𝑚?

The goal of this section is to prove an analogue of Taubes’ result [Tau14, Theorem 1.2]

in a much more general context. The following generalizes the 3−dimensional case proved in

[FO19, Theorem 4.1].

Theorem 2.4.1. Let (𝑋𝑛, 𝑔) be an oriented AC Riemannian 𝑛−manifold with one end, 𝑛 ≥ 3;

𝐸 be a 𝐺−bundle over 𝑋; 𝛿 ∈ (0, 1) and Λ ∈ R+. Then there is a constant 𝑚* > 0, depending

only on 𝑔, Λ and 𝛿, with the following significance. If (𝐴,Φ) is a finite mass YMH configuration

on 𝐸 with mass 𝑚 > 𝑚* and 𝑚−1‖d𝐴Φ‖2𝐿2(𝑋) ≤ Λ, then

𝑟𝛿(𝑥) := sup

{︃

𝑟 ∈ [0,∞) : sup
𝐵r(𝑥)

|Φ| < 𝑚𝛿

}︃

satisfy the upper bound4

𝑟𝛿(𝑥) ≤

(︂

4Λ𝑐1
𝑚(1− 𝛿)(𝑛− 2)𝑐2

)︂
1

n−2

, (2.4.2)

where 𝑐1, 𝑐2 > 0 are the constants of Theorem 2.4.4.

Remark 2.4.3. Recall from Proposition 2.3.5 that for any finite mass YMH configuration (𝐴,Φ)

on an AC 𝑛−manifold there is some Λ > 0 such that 𝑚−1‖d𝐴Φ‖2𝐿2(𝑋) ≤ Λ.

The essential ingredient in the proof of this result concerns Green’s functions (see [Oli16c,

Proposition 2] for the 3−dimensional case):

Theorem 2.4.4. Let 𝑛 ≥ 3 and (𝑋𝑛, 𝑔) be an oriented AC Riemannian 𝑛−manifold. Then,

there are constants 𝑐1 > 0 and 𝑐2 > 0 such that for any given point 𝑥 ∈ 𝑋 , there exists a

distribution 𝐻𝑥 ∈ (𝐶∞
𝑐 (𝑋))′ such that ∆𝐻𝑥 = 𝛿𝑥. Moreover, 𝐻𝑥 is represented by an integral

operator

𝐻𝑥(𝑓) :=

∫︁

𝑋

𝑓𝜑𝑥,

4It will be clear from the proof that one can sharpen this upper bound, but for our purposes here the important

point is that rδ(x) .

(︂

Λ

m(1− δ)

)︂
1

n−2

.
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where 𝜑𝑥 is a harmonic function on 𝑋 ∖ {𝑥} such that

𝜑𝑥|𝑉 (𝑥) = −
𝑐1
𝑟𝑛−2

+𝑂(1) and (2.4.5)

𝜑𝑥|𝑉 (𝑁) = −
𝑐2

vol(𝑁)

1

𝑟𝑛−2
+𝑂(𝑟1−𝑛), (2.4.6)

where 𝑟 := dist𝑔(·, 𝑥), and 𝑉 (𝑥), 𝑉 (𝑁) denote a neighborhood of 𝑥 and the end of 𝑋 respec-

tively.

The rest of this section is dedicated to the proof of Theorem 2.4.4 and then Theorem 2.4.1.

Henceforth, we let 𝑛 ≥ 3 and (𝑋𝑛, 𝑔) be a connected AC oriented Riemannian 𝑛−manifold

with one end, so that there is a compact set 𝐾 ⊂ 𝑋 outside of which 𝑋 is asymptotic to the

Riemannian cone (𝐶(𝑁) := (1,∞)𝑟 × 𝑁, 𝑔𝐶 := 𝑑𝑟2 + 𝑟2𝑔𝑁) over a closed and connected

(𝑛 − 1)−dimensional Riemannian manifold (𝑁, 𝑔𝑁). Choose a smooth radius function 𝜌 ∼

1 + dist𝑔(𝑜, ·) on the cone factor, and let (𝐸,𝐴) be a metric pair over 𝑋 , i.e. 𝐸 is a Hermitian

vector bundle over 𝑋 endowed with a metric connection 𝐴. Suppose also that we have fixed

asymptotics, i.e. there is a metric pair (𝐸∞, 𝐴∞) over 𝑁 such that 𝜙*
(︀

𝐸|𝑋∖𝐾

)︀

∼= 𝜋*𝐸∞, where

𝜋 : (1,∞) × 𝑁 → 𝑁 is the projection onto the second factor, and 𝐴 is asymptotic to 𝐴∞ with

some rate 𝜂 < 0, i.e. (1.3.14) holds.

We now state a key estimate we shall need in this setup.

Proposition 2.4.7 ([Hei11, Corollary 1.3]). For all 𝑠 ∈ 𝐶∞
𝑐 (𝑋) and 𝛼 ∈ [1, 𝑛

𝑛−2
], one has

‖𝑠‖2
𝐿

2n
n−2

≤ 𝐶𝐾‖∇𝐴𝑠‖
2
𝐿2 .

Let 𝐻 be the Hilbert space given by the completion of 𝐶∞
𝑐 (𝑋) with respect to the inner

product

⟨𝜉1, 𝜉2⟩𝐻 := ⟨d𝜉1, d𝜉2⟩𝐿2 =

∫︁

𝑋

d𝜉1 ∧ *d𝜉2.

In particular, if 𝜉 ∈ 𝐻 then 𝜉 ∈ 𝐿1
loc(𝑋), ∇𝜉 ∈ 𝐿2(𝑋) and 𝜉|𝑁 := lim𝜌→∞ 𝜉 = 0.

Definition 2.4.8. Given 𝜂 ∈ 𝐿1
loc(𝑋), a function 𝜑 ∈ 𝐿1

loc(𝑋) with ∇𝜑 ∈ 𝐿2(𝑋) is called a

weak solution to ∆𝜑 = 𝜂 if

⟨d𝜑, d𝜓⟩𝐿2 =

∫︁

𝑋

𝜂𝜓, ∀𝜓 ∈ 𝐶∞
𝑐 (𝑋).

Lemma 2.4.9. Let 𝜂 ∈ 𝐿
2n
n+2 (𝑋); then there is a unique weak solution 𝜑𝜂 ∈ 𝐻 of

∆𝜑𝜂 = 𝜂
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Proof. To prove existence, we prove that the linear functional 𝜙𝜂 : 𝜉 ↦→
∫︀

𝑋
𝜂𝜉 is bounded on

𝐻 . To show this, recall from Proposition 2.4.7 that any 𝜉 ∈ 𝐻 satisfies

‖𝜉‖𝐿2n/n−2 ≤ 𝑐‖𝜉‖𝐻 .

Hence, using Hölder’s inequality and the hypothesis 𝜂 ∈ 𝐿
2n
n+2 (𝑋), we get

⃒

⃒

⃒

⃒

∫︁

𝑋

𝜂𝜉

⃒

⃒

⃒

⃒

≤ 𝑐‖𝜂‖𝐿2n/n+2‖𝜉‖𝐻 ,

as we wanted. Then, the Riesz representation theorem gives an element 𝜑𝜂 ∈ 𝐻 such that

⟨𝜑𝜂, 𝜉⟩𝐻 =
∫︀

𝑋
𝜂𝜉 for all 𝜉 ∈ 𝐻 ⊇ 𝐶∞

𝑐 (𝑋); therefore, 𝜑𝜂 is a weak solution to the problem.

Moreover, one has ‖𝜑𝜂‖𝐻 = ‖𝜙𝜂‖𝐻′ ≤ 𝑐‖𝜂‖𝐿2n/n+2 .

To prove uniqueness, let 𝜑, 𝜑 ∈ 𝐻 be weak solutions of the problem. Then ℎ := 𝜑−𝜑 ∈ 𝐻

satisfy weakly ∆ℎ = 0. By elliptic regularity, it follows that ℎ is in fact a smooth harmonic

function on 𝑋 .5 In particular, since (𝑋𝑛, 𝑔) is AC and 𝑛 > 2, ℎ ∼ 𝜌2−𝑛 and dℎ ∼ 𝜌1−𝑛 along

the end. Therefore

0 =

∫︁

𝑋

ℎ∆ℎ = −

∫︁

𝑋

(d(ℎ ∧ *dℎ)− dℎ ∧ *dℎ)

= − lim
𝑟→∞

∫︁

𝜌−1(𝑟)

ℎ ∧ *dℎ+ ‖ℎ‖2𝐻

= ‖ℎ‖2𝐻 ,

Hence, 𝜑 = 𝜑 as we wanted. �

Consider the transpose of the Laplacian, still denoted by ∆, acting on (𝐶∞
𝑐 (𝑋))′ in the

usual fashion: given 𝐻 ∈ (𝐶∞
𝑐 (𝑋))′, then ∆𝐻(𝜓) := 𝐻(∆𝜓) for all 𝜓 ∈ 𝐶∞

𝑐 (𝑋). In what

follows, given a point 𝑥 ∈ 𝑋 , we denote by 𝛿𝑥 ∈ 𝐶∞
𝑐 (𝑋) the Dirac delta distribution supported

on 𝑥, i.e.

𝛿𝑥(𝜓) := 𝜓(𝑥), ∀𝜓 ∈ 𝐶∞
𝑐 (𝑋).

We are now in position to give the

Proof of Theorem 2.4.4. There is a 1−parameter family {𝛿𝜀𝑥}𝜀>0 ⊂ 𝐶∞
𝑐 (𝑋) of smoothings of

the current 𝛿𝑥, i.e. such that

𝛿𝑥(𝜓) = lim
𝜀→0

∫︁

𝑋

𝜓𝛿𝜀𝑥, ∀𝜓 ∈ 𝐶∞
𝑐 (𝑋),

5If h ∈ L2 it would readily follow by a result of Yau [Yau76, see e.g. Proposition 1 or Theorem 3] that h must

be constant. Since h|N = 0 it follows that h ≡ 0 (or because vol(X) = ∞).
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where each 𝛿𝜀𝑥 vanishes outside an 𝜀−neighborhood of 𝑥 and satisfy the uniform bound ‖𝛿𝜀𝑥‖𝐿1 =

1.

For each 𝜀 > 0, the 𝐿
2n
n+2−norm of 𝛿𝜀𝑥 is still bounded, however not independently of 𝜀.

Thus Lemma 2.4.9 gives a family of functions 𝜑𝜀𝑥 ∈ 𝐻 , weakly solving

∆𝜑𝜀𝑥 = 𝛿𝜀𝑥

and with 𝜑𝜀𝑥 unique for each 𝜀. Since the 𝛿𝜀𝑥 are smooth, elliptic regularity implies that so are

the 𝜑𝜀𝑥. However, one must note that the norm ‖𝜑𝜀𝑥‖𝐻 is not uniformly bounded independently

of 𝜀.

For 𝜓 ∈ 𝐶∞
𝑐 (𝑋),

𝛿𝑥(𝜓) = lim
𝜀→0

∫︁

𝑋

𝜓𝛿𝜀𝑥 = lim
𝜀→0

⟨𝜑𝜀𝑥, 𝜓⟩𝐻 ,

and since, for all 𝜀, we have ⟨𝜑𝜀𝑥, 𝜓⟩𝐻 =
∫︀

𝑋
𝜓𝛿𝜀𝑥 ≤ ‖𝜓‖𝐿∞ , the weak limit as 𝜀 → 0 of the 𝜑𝜀𝑥

exists and gives a distribution 𝐻𝑥 weakly solving ∆𝐻𝑥 = 𝛿𝑥. This distribution is represented

by an unbounded function which we denote by 𝜑𝑥, such that the integral

∫︁

𝑋

𝜓𝜑𝑥 = lim
𝜀→0

∫︁

𝑋

𝜓𝜑𝜀𝑥

is well-defined for all 𝜓 ∈ 𝐶∞
𝑐 (𝑋). As the 𝐿1−norm of the 𝛿𝜀𝑥 is bounded independently of

𝜀 and ∆𝜑𝜀𝑥 = 0 outside an 𝜀−neighborhood of 𝑥, it follows that 𝜑𝑥 ∈ 𝐿1
loc(𝑋) and 𝜑𝑥 ∈

𝐶∞(𝑋 ∖ {𝑥}).

Finally, as the metric is AC it readily follows from the expression of the Laplacian on the

cone, namely

∆𝑔 = −(𝜕𝑟)
2 −

𝑛− 1

𝑟
𝜕𝑟 + 𝑟−2∆𝑁 ,

that 𝜑𝑥 behaves as (2.4.6) along the end. Locally on a small ball 𝑈(𝑥) around 𝑥, the metric is

approximately Euclidean, so that on these (2.4.5) holds. �

Now the last ingredient we need for the proof of Theorem 2.4.1 is the following (see

[Oli14a, Section 1.4.1] and, for the 3−dimensional version, [FO19, Proposition 2.2])

Proposition 2.4.10. Let (𝑋𝑛, 𝑔) be an AC oriented Riemannian 𝑛−manifold with one end, 𝐸 a

𝐺−bundle over 𝑋 and (𝐴,Φ) ∈ 𝒞(𝐸) a finite mass YMH configuration on (𝑋𝑛, 𝑔), with mass

𝑚 ̸= 0 and such that |d𝐴Φ| ∈ 𝐿2(𝑋). Then in a neighborhood 𝑉 (𝑁) of the end, we have

|Φ| = 𝑚−
‖d𝐴Φ‖2𝐿2(𝑋)

𝑚(𝑛− 2)vol(𝑁)𝜌𝑛−2
+ 𝑜(𝜌2−𝑛) as 𝜌→ ∞. (2.4.11)
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Sketch of proof of Proposition 2.4.10. By the arguments in [Oli14a, proof of Proposition 1.4]

(also see [JT80, Theorem 10.5 in Chap. IV]), one can write

|Φ| = 𝑚− 𝑐𝜌2−𝑛 + 𝑜(𝜌2−𝑛) on 𝑉 (𝑁),

for some constant 𝑐 ∈ R+ that we will now compute. Since |d𝐴Φ| ∈ 𝐿2(𝑋), by dominate

convergence we can write

∫︁

𝑋

|d𝐴Φ|
2 = lim

𝑟→∞

∫︁

𝜌−1(0,𝑟]

|d𝐴Φ|
2.

Now, since ∆𝐴Φ = 0, we know that ∆|Φ|2 = −2|d𝐴Φ|2. Hence, by Stokes’ theorem,

∫︁

𝜌−1(0,𝑟]

|d𝐴Φ|
2 =

1

2

∫︁

𝜌−1(𝑟)

*d|Φ|2.

Therefore, we can compute:

∫︁

𝑋

|d𝐴Φ|
2 = lim

𝑟→∞

∫︁

𝜌−1(𝑟)

*|Φ|d|Φ|

= lim
𝑟→∞

∫︁

𝜌−1(𝑟)

|Φ|𝜕𝜌|Φ| * d𝜌

= lim
𝑟→∞

∫︁

𝜌−1(𝑟)

|Φ|𝜕𝜌(𝑚− 𝑐𝜌2−𝑛 + 𝑜(𝜌2−𝑛))𝜌𝑛−1

= lim
𝑟→∞

∫︁

𝜌−1(𝑟)

|Φ|((𝑛− 2)𝑐+ 𝑜(1))

= 𝑐𝑚(𝑛− 2)vol(𝑁),

where in the last equality we used that (𝐴,Φ) has finite mass equal to 𝑚. �

Proof of Theorem 2.4.1. Suppose, by contradiction, that for all 𝑚* > 0 depending only on

the indicated data, there exists a finite mass YMH configuration (𝐴,Φ) with mass 𝑚 > 𝑚*,

satisfying 𝑚−1‖d𝐴Φ‖2𝐿2(𝑋) ≤ Λ, and such that

𝑠 :=

(︂

4Λ𝑐1
𝑚(1− 𝛿)(𝑛− 2)𝑐2

)︂
1

n−2

< 𝑟𝛿(𝑥).

Let 𝜑𝑥 be the harmonic function on 𝑋 ∖ {𝑥} obtained from applying Theorem 2.4.4, and let

𝜑0 := ((𝑛− 2)𝑐2)
−12Λ𝜑𝑥. Then, for small enough 𝑟 = dist(𝑥, ·), equation (2.4.5) yields

𝜑0|𝑈(𝑥) ≥ −
𝑚(1− 𝛿)𝑠𝑛−2

2𝑟𝑛−2
+ 𝑐Λ, (2.4.12)

for some constant 𝑐Λ ∈ R, depending only on 𝑔 and Λ.
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Now, as 𝑠 is inversely proportional to 𝑚1/(𝑛−2), there is 𝑚* > 0, depending only on 𝑔, Λ

and 𝛿, so that the expansion (2.4.12) is valid for 𝑟 = 𝑠. At this point, it is convenient to further

define the harmonic function on 𝑋∖{𝑥} given by 𝜑 := 𝜑0 +𝑚. Then, by possibly increasing

𝑚* so that 𝑚* > −2𝑐Λ(1− 𝛿)−1, we have

𝜑|𝜕𝐵s(𝑥) ≥ −
𝑚(1− 𝛿)

2
+ 𝑐Λ +𝑚 > 𝑚𝛿 ≥ |Φ|𝜕𝐵s(𝑥)|,

where in the last inequality we used the assumption that our 𝑠 < 𝑟𝛿. Then, the previous inequal-

ity, and the fact that both the harmonic function 𝜑 and the subharmonic function |Φ| converge

to 𝑚 along the end show that

|Φ| < 𝜑 in 𝑋 ∖𝐵𝑠(𝑥).

On the other hand, recall from equations (2.4.11) and (2.4.6) that

|Φ| ≥ 𝑚− Λ(𝑛− 2)−1vol(𝑁)−1𝜌2−𝑛 + 𝑜(𝜌2−𝑛), and

𝜑 = 𝑚− 2Λ(𝑛− 2)−1vol(𝑁)−1𝜌2−𝑛 + 𝑜(𝜌2−𝑛),

as 𝜌 → ∞. Putting these together, we conclude that Λvol(𝑁)−1 ≥ 2Λvol(𝑁)−1, hence a

contradiction. �

Remark 2.4.13. Under its hypothesis, Theorem 2.4.1 implies that for any finite mass YMH

configuration with mass 𝑚 > 𝑚* and 𝑚−1‖d𝐴Φ‖2𝐿2(𝑋) ≤ Λ, whenever 𝑟 > 𝑐(Λ𝑚−1(1 −

𝛿)−1)1/(𝑛−2) for some suitable constant 𝑐 > 0 (depending only on 𝑔) then

sup
𝜕𝐵r(𝑥)

|Φ| ≥ sup
𝐵r(𝑥)

|Φ| ≥ 𝑚𝛿,

where in the first inequality we applied the maximum principle.
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Chapter 3

Large mass monopoles on AC 3−manifolds

In this chapter we describe the work of the author and his co-supervisor Gonçalo Oliveira

[FO19], together with some minor improvements, corrections, new observations and a new

section (cf. Section 3.8). We consider SU(2) monopoles on an asymptotically conical, oriented,

Riemannian 3-manifold with one end and analyze the limiting behavior of sequences of finite

mass monopoles with fixed charge, and whose sequence of masses (or, equivalently, YMH

energies) is unbounded. We prove that the limiting behavior of such monopoles is characterized

by energy concentration along a certain set, which we call the blow-up set. Our work shows that

this set is finite, and using a bubbling analysis obtain effective bounds on its cardinality, with

such bounds depending solely on the charge of the monopole. Moreover, for such sequences

of monopoles there is another naturally associated set, the zero set, which consists on the set at

which the zeros of the Higgs fields accumulate. In this regard, our results show that for such

sequences of monopoles, the zero set and the blow-up set coincide. In particular, proving that

in this “large mass” limit, the zero set is a finite set of points. We end this chapter with a brief

discussion on the problem of convergence of the monopole sequence outside the zero set.

Some of our work extends for sequences of finite mass critical points of the YMH func-

tional for which the YMH energies are 𝑂(𝑚𝑖) as 𝑖 → ∞, where 𝑚𝑖 are the masses of the

configurations.

3.1 Main results

The virtual dimension of the moduli space of finite mass SU(2) monopoles of fixed charge

over an AC oriented Riemannian 3−manifold 𝑋 was computed in [Kot15], and a smooth open
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set constructed by a gluing theorem in [Oli16c]. Such gluing is an AC version of Taubes’ origi-

nal gluing of well separated multi-monopoles in the R3 case, [JT80]. In the case of [Oli16c], the

mass plays the role of a parameter controlling the concentration of the resulting multi-monopole

around its centers. Indeed, allowing the mass to vary gives the freedom of bringing these cen-

ters as close as one wants. In order to motivate our main results we shall now summarize this

construction of large mass, charge 𝑘 monopoles on 𝑋 . This goes as follows: Start with 𝑘 points

in 𝑋; Insert charge one and mass one monopoles in R
3 scaled down to fit in small disjoint balls

around these points; As a byproduct of having been scaled down the monopoles must have mass

larger than 𝑂(𝑑−2), where 𝑑 is the minimum separation between the 𝑘-points; Then, by mak-

ing use of a partition of unity these can be glued with a certain mass 𝑂(𝑑−2) monopole in the

complement of these balls; The resulting configuration does not solve the monopole equations,

but by a version of the contraction mapping principle it can be deformed to a nearby one which

does. Moreover, we further remark that this configuration produces monopoles with any mass

𝑚 ≥ 𝑂(𝑑−2), for more details and the precise statements see Theorem 1 in [Oli16c] or Theorem

3.2.11 later in this chapter. 1

The goal of our paper [FO19] is to take the inverse point of view and consider a sequence

of finite mass monopoles {(𝐴𝑖,Φ𝑖)}𝑖∈N with unbounded masses, lim sup𝑚𝑖 = ∞, but fixed

charge 𝑘, over an AC manifold (𝑋3, 𝑔). In this case, the natural expectation would be an

inverse construction to that of [Oli16c], with the monopoles either “escaping” through the end,

or getting concentrated around at most 𝑘 points 𝑥1, . . . , 𝑥𝑘 in 𝑋 , where a monopole in the

Euclidean R
3 ∼= 𝑇𝑥i𝑋 bubbles off.2 See Section 3.2 for a plethora of examples motivating this

expectation.

From the analytic point of view, the case when the energies ℰ𝑋(𝐴𝑖,Φ𝑖) of the sequence

{(𝐴𝑖,Φ𝑖)}𝑖∈N are uniformly bounded has a well known limiting behavior, which is easily un-

derstood. In this case, the monopoles are either converging smoothly everywhere on 𝑋 , or

“escaping” to infinity through the end, see for example [AH88] for the more general statement

in the R
3 case. In fact, independently of whether they are escaping through the end or not,

the restriction of such a sequence of monopoles to any compact subset 𝐾 ⊂ 𝑋 smoothly con-

1We further point out that it should be possible to start this construction by using higher charge monopoles in

R
3 (monopole clusters). A metric version of this gluing have been carried out in [KS15] for the case of R3.

2Even though in this introduction, and for motivation purposes, we restrict to the case when the {(Ai,Φi)}i∈N

are monopoles, many of our results hold in the more general case of families of YMH configurations on a fixed

G-bundle.
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verges to a monopole. Therefore, the most interesting case is when these energies do not remain

bounded. Indeed, the energy formula (1.3.19) for monopoles ℰ𝑋(𝐴𝑖,Φ𝑖) = 4𝜋𝑘𝑚𝑖, shows that

this is precisely the case under consideration, where the sequence of masses 𝑚𝑖 is unbounded.

We now introduce some preparation needed in order to state our main results. Let

{(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) be a sequence of finite mass YMH configurations on (𝑋3, 𝑔) whose

masses satisfy lim sup𝑚𝑖 = ∞. Define the blow-up set 𝑆 of {(𝐴𝑖,Φ𝑖)} by

𝑆 :=
⋃︁

𝜀>0

⋂︁

0<𝑟≤𝑟0

{︁

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) ≥ 𝜀

}︁

.

This may be interpreted as the set 𝑆 ⊂ 𝑋 where the energy of the sequence is concentrating.

On the other hand, we have the zero set

𝑍 :=
⋂︁

𝑛≥1

⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0),

which consists of the accumulation points of the Higgs fields zeros, i.e. the limit set of the

zeros. Under suitable assumptions, our main results show that these two sets are equal and the

failure of compactness is entirely due to monopole bubbling at its points. In what follows, we

shall use ℋ0 to denote the counting measure on 𝑋 and ℋ3 to denote the standard Riemannian

measure on (𝑋3, 𝑔).

Theorem 3.1.1 (cf. [FO19, Theorem 1.1]). Let (𝑋3, 𝑔) be an AC oriented Riemannian 3−mani-

fold with one end, 𝐸 an SU(2)−bundle over 𝑋 and {(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒜(𝐸) × Γ(su(2)𝐸) a

sequence of finite mass monopoles on (𝑋3, 𝑔) with fixed charge 𝑘 ̸= 0 and masses 𝑚𝑖 satisfying

lim sup𝑚𝑖 = ∞. Then, after passing to a subsequence, the following hold:

(a) For each 𝑥 ∈ 𝑆, the sequence (𝐴𝑖,Φ𝑖) bubbles off a mass 1 monopole (𝐴𝑥,Φ𝑥) on R
3 ∼=

𝑇𝑥𝑋 . Moreover, ℰR3(𝐴𝑥,Φ𝑥) = 4𝜋𝑘𝑥, where 𝑘𝑥 ∈ Z>0, 𝑘𝑥 ≤ 𝑘, is its charge.

(b) The blow-up set 𝑆 can be written as

𝑆 =
⋂︁

0<𝑟≤𝑟0

{︁

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) ≥ 4𝜋

}︁

.

Moreover, it coincides with the zero set 𝑍:

𝑆 = 𝑍.

(c) 𝑆 = 𝑍 is a finite set of at most 𝑘 points. In fact, we actually have

ℋ0(𝑆) ≤
𝑘

min
𝑥∈𝑆

𝑘𝑥
.
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(d) The following weak convergence of Radon measures holds:

𝑚−1
𝑖 𝑒(𝐴𝑖,Φ𝑖)ℋ

3 ⇀ 4𝜋
∑︁

𝑥∈𝑆

𝑘𝑥𝛿𝑥,

where 𝑒(𝐴𝑖,Φ𝑖) := |𝐹𝐴i |
2 + |d𝐴iΦ𝑖|

2, and 𝛿𝑥 denotes the Dirac delta measure supported

on {𝑥}.

(e) For each 𝑥 ∈ 𝑋 ∖ 𝑆, we can find 𝑟 > 0 and a subsequence 𝑖′(𝑥) → ∞ such that

sup
𝐵r(𝑥)

𝑚−1
𝑖′ 𝑒(𝐴𝑖′ ,Φ𝑖′) → 0 as 𝑖′ → ∞.

In the more general case where we have a sequence of YMH configurations on a𝐺−bundle,

we can still guarantee some of the above results under the assumption that ℰ𝑋(𝐴𝑖,Φ𝑖) = 𝑂(𝑚𝑖)

as 𝑖→ ∞, which amounts to the fixed charge assumption in the case of SU(2)−monopoles.

Theorem 3.1.2. [FO19, Theorem 1.2] Let (𝑋3, 𝑔) be an AC oriented Riemannian 3−manifold

with one end, 𝐸 a 𝐺−bundle over 𝑋 where 𝐺 is a compact semi-simple Lie group, and

{(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) a sequence of finite mass YMH configurations on (𝑋3, 𝑔) whose masses

𝑚𝑖 satisfy lim sup𝑚𝑖 = ∞. Suppose that

𝑚−1
𝑖 ℰ𝑋(𝐴𝑖,Φ𝑖) ≤ 𝐶,

for some uniform constant 𝐶 > 0. Then, after passing to a subsequence, the following holds:

(a’) For each 𝑥 ∈ 𝑆, the sequence (𝐴𝑖,Φ𝑖) bubbles off a mass 1 YMH configuration (𝐴𝑥,Φ𝑥)

in R
3 ∼= 𝑇𝑥𝑋 . Moreover, each bubble (𝐴𝑥,Φ𝑥) has strictly positive energy ℰR3(𝐴𝑥,Φ𝑥) >

0.

(b’) The blow-up set 𝑆 can be written as

𝑆 =
⋂︁

0<𝑟≤𝑟0

{︁

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) > 0

}︁

.

Moreover, it contains the zero set 𝑍:

𝑍 ⊂ 𝑆.

(c’) 𝑆 (therefore 𝑍) is countable.
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We shall now explain how this chapter is organized. Section 3.2 gives several examples

of families of monopoles whose masses converges to infinity. The results are very illustrative

and allow for the realization of all cases in our Theorem 3.1.1, and give a good intuition for the

behavior of large mass monopoles. The proof of Theorems 3.1.1–3.1.2 takes up every section

from Section 3.3 to 3.8, and their content is summarized below.

Having in mind the aim of relating the zero set 𝑍 and the blow-up set 𝑆 of such sequences

of large mass monopoles, a key result is given by the 3−dimensional instance of our AC version

of Taubes’ small Higgs field radius estimate in Theorem 2.4.1. This provides a way to control

how big, in terms of the mass 𝑚 ̸= 0 and the charge 𝑘 ̸= 0 of the monopole, one needs the

radius of a ball in 𝑋 to be so that the value of the Higgs field outside such a ball is a sufficiently

large portion of 𝑚.

In Section 3.3 we prove an appropriate 3−dimensional version of the 𝜀-regularity theorem

(Theorem 3.3.1) for YMH configurations, which is an important ingredient to relate the zero set

with the blow-up set. Indeed, in Section 3.4, using a simple argument involving the fundamental

theorem of calculus, together with the 𝜀−regularity, we prove that a large mass YMH configu-

ration with (locally) small energy has an interior lower bound on its Higgs field, provided it is

bounded from below in some boundary ball. Together with our analogue of Taubes small Higgs

field estimate, this is used in Section 3.5 to prove the inclusion 𝑍 ⊆ 𝑆, i.e. the last part of (b’)

in Theorem 3.1.2; here we also prove (c’).

Section 3.6 uses the scaling properties of the YMH/monopole equations and their ellipticity

on a fixed Coulomb gauge, to perform the bubbling analysis. In particular, we are able to show

that at each point 𝑥 ∈ 𝑆, a mass 1 (YMH/)monopole in R
3 with strictly positive energy bubbles

off. This gives part (a) and half of part (b) in Theorem 3.1.1 and (a’) and half of (b’) in Theorem

3.1.2. In the case of monopoles, the energy formula and a degree argument then yield the

reverse inclusion 𝑆 ⊆ 𝑍, and thus the equality in part (b) of Theorem 3.1.1. This part of the

proof somewhat resembles Taubes’ proof of the Weinstein conjecture where a degree argument

and the energy identity for the vortex equations is used to prove that a certain component of the

spinor involved in the Seiberg–Witten equations vanishes, see [Tau07, Section 6.4].

Using all this and some simple measure theory, Section 3.7 is dedicated to describe the

convergence of the relevant measures as in statement (d) of Theorem 3.1.1 and an estimate on

the maximum number of elements in 𝑆 = 𝑍 follows, depending on the fixed charge 𝑘 of the

sequence and the minimum of the charges 𝑘𝑥 of each bubble at 𝑥 ∈ 𝑆; this corresponds to
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part (c) of Theorem 3.1.1. Finally, in Section 3.8 after stating a conjecture on the problem of

convergence of the (translated) sequence outside 𝑍, we provide some ideas on how to tackle it,

proving an improved (linear) Bochner estimate for the Laplacian of the energy densities outside

𝑍 and deriving part (e) of Theorem 3.1.1. All these together gives a full proof of the main

Theorems 3.1.1 and 3.1.2.

Conventions for this chapter. Unless otherwise stated, (𝑋3, 𝑔) will denote an oriented

Riemannian 3−manifold of bounded geometry, and 𝐸 will be a 𝐺−bundle over 𝑋 , where 𝐺 is

a compact semi-simple Lie group. In fact, for the most part (𝑋3, 𝑔) will be an AC manifold with

one end and whenever we restrict attention to monopoles configurations on 𝐸 we will always

consider 𝐺 = SU(2) for simplicity.

3.2 Motivating examples

In this section we collect a few examples which motivate the current work. The first of

these consists of exploring the explicit Prasad–Sommerfield monopole in the limit when its

mass is sent off to infinity. The second examples uses Taubes’ construction of multi-monopoles

on R
3 to produce sequences of charge 𝑘 ≥ 1 monopoles with unbounded masses, such that the

corresponding zero set 𝑍 is any a priori prescribed set of 𝑙 pairwise distinct points in 𝑋 , for

any given 1 ≤ 𝑙 ≤ 𝑘. Next, we include a simple general way to produce, from a given charge

𝑘 > 1 monopole, examples of sequences of charge 𝑘 monopoles in R
3 with unbounded masses

and for which the zero set 𝑍 = {0} and the charge 𝑘0 of the bubble at the origin equals 𝑘 > 1.

Finally, using the multi-monopole construction of [Oli16c] in the more general setting of an

AC 3−manifold (𝑋3, 𝑔) with 𝑏2(𝑋) = 0, we construct sequences of charge 𝑘 monopoles with

unbounded masses whose zero set is any a priori prescribed set of 𝑘 pairwise distinct points in

𝑋 .

3.2.1 The BPS Monopole

In this section we shall write down the standard mass 𝑚 BPS monopole (𝐴𝑚,Φ𝑚) on R
3,

constructed by Prasad and Sommerfield in [PS75]. For any 𝑚 ∈ R
+, this has a unique zero

Φ−1
𝑚 (0) = {0} and is spherically symmetric. Obviously, by considering the sequence letting

𝑚 → ∞ we will have 𝑍 = {0}, however, the interesting thing of considering this specific
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example is that we shall be able to check the convergence to the delta function on 𝑍 explicitly.

Write R
3∖{0} ∼= R+ × S

2, and pullback from S
2 ∼= SU(2)/U(1) the homogeneous bundle

𝑃 = SU(2)×𝜒 SU(2),

with 𝜒 : U(1) → SU(2) the group homomorphism given by 𝜒(𝑒𝑖𝜃) = diag(𝑒𝑖𝜃, 𝑒−𝑖𝜃). In this

polar form, and actually working on the pullback to the total space of the radially extended Hopf

bundle R
+ × SU(2), the Euclidean metric can be written as

𝑔𝐸 = 𝑑𝑟2 + 4𝑟2(𝜔2 ⊗ 𝜔2 + 𝜔3 ⊗ 𝜔3),

where 𝑟 is the radial direction, i.e. the distance to the origin. Now fix the standard basis

{𝑆𝑖} of su(2) given by the Pauli matrices, and let 𝜔1, 𝜔2, 𝜔3 be the dual coframe. The 1-form

𝑆1 ⊗ 𝜔1 ∈ Ω1(SU(2), su(2)) equips the Hopf bundle SU(2) → S
2 with an SU(2)-invariant

connection, which in turn, induces a connection in 𝑃 . Making use of Wang’s theorem [Wan58],

one can write any other spherically symmetric connection on R
3∖{0} as

𝐴 = 𝑆1 ⊗ 𝜔1 + 𝑎(𝑟)(𝑆2 ⊗ 𝜔2 + 𝑆3 ⊗ 𝜔3),

for some function 𝑎 : R+ → R. Similarly, seeing an Higgs field Φ(𝑟) as a function in the total

space with values in su(2) one can show, see the Appendix in [Oli14b], that any spherically

symmetric Higgs field must be of the form Φ = 𝜑(𝑟) 𝑆1, with 𝜑 : R+ → R some function. A

computation yields that

𝐹𝐴 = 2(𝑎2 − 1)𝑆1 ⊗ 𝜔23 + �̇�(𝑆2 ⊗ 𝑑𝑟 ∧ 𝜔2 + 𝑆3 ⊗ 𝑑𝑟 ∧ 𝜔3),

∇𝐴Φ = �̇� 𝑆1 ⊗ 𝑑𝑟 + 2𝑎𝜑 (𝑆2 ⊗ 𝜔3 − 𝑆3 ⊗ 𝜔2),

with the dot denoting differentiation with respect to 𝑟. The energy density, as a function of 𝑟, is

then

𝑒 =
(𝑎2 − 1)2

4𝑟4
+

�̇�2

2𝑟2
+ �̇�2 +

2𝑎2𝜑2

𝑟2
. (3.2.1)

In this spherically symmetric setting, the monopole equations turn into the following system of

ODE

�̇� =
1

2𝑟2
(𝑎2 − 1), �̇� = 2𝑎𝜑,

Some particular solutions are given by the flat connection (𝑎, 𝜑) = (±1, 0), and the Dirac

monopole (𝑎, 𝜑) = (0,𝑚−1/2𝑟), where 𝑚 ∈ R. However, the regularity conditions so that the
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configuration (𝐴,Φ) smoothly extends over the origin yield that 𝜑(0) = 0 and 𝑎(0) = 1. One

can then show, see the Appendix in [Oli14b], that any such solution is given by

𝜑𝑚 =
1

2

(︂

1

𝑟
−

2𝑚

tanh(2𝑚𝑟)

)︂

, 𝑎𝑚 =
2𝑚𝑟

sinh(2𝑚𝑟)
, (3.2.2)

for some 𝑚 ∈ R
+, which is the mass of the resulting monopole. The resulting formula for the

energy density in (3.2.1) is

𝑒𝑚 :=
cosh4(2𝑚𝑟) + (32𝑚4𝑟4 − 2) cosh2(2𝑚𝑟)− 32 sinh(2𝑚𝑟) cosh(2𝑚𝑟)𝑚3𝑟3 + 16𝑚4𝑟4 + 1

2 sinh4(2𝑚𝑟)𝑟4
.

(3.2.3)

Recall that in this case we have 𝑍 = {0}. Given the formula above it is easy to see that in R
3∖𝑍

we have

𝑚−1𝑒𝑚 ≤
1

2𝑚
coth4(2𝑚𝑟) +𝑂(𝑚−2) → 0, as 𝑚→ ∞.

On the other hand, using this fact together with the dominated convergence theorem, we have

𝐼 := lim
𝑚→∞

∫︁

R3

𝑚−1𝑒𝑚

= lim
𝑚→∞

lim
𝑠→∞

∫︁

𝐵s(0)

𝑚−1𝑒𝑚 = 4𝜋 lim
𝑚→∞

lim
𝑠→∞

∫︁ 𝑠

0

𝑟2 𝑚−1𝑒𝑚(𝑟)dr

= 4𝜋 lim
𝑚→∞

∫︁ ∞

0

𝑟2 𝑚−1𝑒𝑚(𝑟)dr

= 4𝜋 lim
𝑚→∞

(︂

lim
𝑟→∞

𝑓𝑚(𝑟)− lim
𝑟→0+

𝑓𝑚(𝑟)

)︂

, (3.2.4)

where

𝑓𝑚(𝑟) = −
1

2𝑚𝑟
−

2

(𝑒4𝑚𝑟 − 1)3
(︀

(8𝑚2𝑟2 − 4𝑚𝑟 − 1)𝑒8𝑚𝑟 + (8𝑚2𝑟2 + 4𝑚𝑟 + 2)𝑒4𝑚𝑟 − 1
)︀

.

Thus, inserting this into equation (3.2.4) shows that 𝐼 = 4𝜋 and thus

𝑚−1𝑒𝑚ℋ
3 ⇀ 4𝜋𝛿0, as 𝑚→ ∞.

3.2.2 Sequences of Taubes’ multi-monopoles on R
3 with prescribed 𝑍

We start by recalling the following Theorem of Taubes, see [JT80].

Theorem 3.2.5 (Theorems 1.1 and 1.2 in [JT80]). Let 𝑘 ∈ N. Then, there is 𝑑0 > 0 and 𝑐 > 0

such that for any 𝑦1, . . . , 𝑦𝑘 ∈ R
3 with 𝑑 = min𝑗,𝑙 dist(𝑦𝑖, 𝑦𝑗) > 𝑑0, there is a charge 𝑘, mass

1, monopole (𝐴,Φ) in R
3. Furthermore, for 𝑅 = 𝑐𝑑−1/2 we have that Φ−1(0) ⊂ ∪𝑘𝑖=1𝐵𝑅(𝑦𝑖)

and Φ|𝜕𝐵R(𝑦i) has degree 1. In particular, Φ does have zeros inside each of the ball’s 𝐵𝑅(𝑦𝑖),

for 𝑖 = 1, . . . , 𝑘.
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We shall now use this construction to give a number of different examples of sequences of

monopoles as those we consider in this chapter.

Proposition 3.2.6. Let 1 ≤ 𝑙 ≤ 𝑘 be integers, {𝑥1, . . . , 𝑥𝑙} ⊆ R
3 a subset of pairwise distinct

points, and {𝑚𝑖}𝑖∈N ⊂ R
+ an unbounded increasing sequence, i.e. 𝑚𝑖 ↑ ∞. Then, there is a

sequence {(𝐴𝑖,Φ𝑖)}𝑖∈N of charge 𝑘, mass 𝑚𝑖 monopoles on R
3 with zero set

𝑍 = {𝑥1, . . . , 𝑥𝑙}.

Remark 3.2.7. In this construction, as will be evident during the proof, we have 𝑘𝑥j = 1

for all 𝑗 = 1, . . . , 𝑙. The case 𝑙 < 𝑘 is precisely the case where there are 𝑘 − 𝑙 monopoles

“escaping through the end”, or “run of to infinity”. In the construction below we shall see that

the monopole (𝐴𝑖,Φ𝑖) has a zero

𝑧𝑖𝑗 ∈ 𝐵
𝑐𝑚

−1/2
i

(𝑚𝑖𝑥𝑗),

for 𝑗 = 𝑙 + 1, . . . , 𝑘. And the centers of these balls leave any compact set as 𝑖 → ∞. Thus, the

sequence of zeros 𝑧𝑖𝑗 → ∞ has no convergent subsequence, and so does not contribute to 𝑍.

In the rest of this subsection we prove this result by using Theorem 3.2.5 to construct the

monopoles. Let 𝜆 > 0 and consider the scaling map 𝑠𝜆(𝑥) = 𝜆−1𝑥 for 𝑥 ∈ R
3. Recall that

the Euclidean metric 𝑔𝐸 is invariant by scaling, i.e. 𝑔𝐸 = 𝜆2𝑠*𝜆𝑔𝐸 for any such positive 𝜆.

Therefore, by Proposition 2.1.1, if (𝐴,Φ) is a charge 𝑘 mass 1 monopole, we have that

(𝐴𝜆,Φ𝜆) = (𝑠*𝜆𝐴, 𝜆
−1𝑠*𝜆Φ) (3.2.8)

is a charge 𝑘, mass 𝜆−1 monopole.

It is instructive to split the proof in two different cases:

Case 𝑙 = 𝑘. We now construct a sequence of charge 𝑘, large mass monopoles on R
3 with pre-

scribed 𝑍 = {𝑥1, . . . , 𝑥𝑘} being 𝑘 distinct points in R
3. After choosing such 𝑘 points, we fix

a sequence of masses 𝑚𝑖 → ∞ and suppose, with no loss of generality, that 𝑚1 ≫ 1 so as

to 𝑚1dist(𝑥𝑗, 𝑥𝑙) > 𝑑0, for all 𝑗, 𝑙 ∈ {1, . . . , 𝑘}. Then, we can use Taubes’ Theorem 3.2.5 to

construct a sequence, labeled by 𝑖, of charge 𝑘, mass 1 monopoles using in the construction the

points 𝑦𝑖𝑗 = 𝑚𝑖𝑥𝑗 for 𝑗 = 1, . . . , 𝑘. Rescaling these as in equation (3.2.8) with 𝜆 = 𝑚−1
𝑖 we

obtain a sequence of monopoles (𝐴𝑖,Φ𝑖) with charge 𝑘, mass 𝑚𝑖 and

Φ−1
𝑖 (0) ⊂

𝑘
⋃︁

𝑗=1

𝐵
𝑐𝑚

−1/2
i

(𝑥𝑗), deg(Φ𝑖

⃒

⃒

⃒

𝜕𝐵
cm

−1/2
i

(𝑥j)
) = 1. (3.2.9)
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Now, recall from the definition of the zero set that

𝑍 =
⋂︁

𝑛≥1

⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0).

Hence, as the sequence {𝑚𝑖}𝑖 is increasing, it follows that

⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0) ⊆

𝑘
⋃︁

𝑗=1

𝐵
𝑐𝑚

−1/2
n

(𝑥𝑗),

and thus

𝑍 ⊆
⋂︁

𝑛≥1

𝑘
⋃︁

𝑗=1

𝐵
𝑐𝑚

−1/2
n

(𝑥𝑗) =
𝑘
⋃︁

𝑗=1

⋂︁

𝑛≥1

𝐵
𝑐𝑚

−1/2
n

(𝑥𝑗) =
𝑘
⋃︁

𝑗=1

{𝑥𝑗}.

On the other hand, for every fixed 𝑗 ∈ {1, . . . , 𝑘}, the degree of the map Φ restricted to a normal

sphere of radius 𝑐𝑚−1/2
𝑖 equals 1 and thus Φ𝑖 has a zero

𝑧𝑖 ∈ 𝐵
𝑐𝑚

−1/2
i

(𝑥𝑗),

for each 𝑖 ≫ 1. Since 𝑚𝑖 ↑ ∞, it follows that 𝑧𝑖 → 𝑥𝑗 as 𝑖 → ∞. Thus we get the reverse

inclusion {𝑥1, . . . , 𝑥𝑘} ⊆ 𝑍, proving that indeed

𝑍 = {𝑥1, . . . , 𝑥𝑘}.

�

Case 𝑙 < 𝑘. We can modify the above construction in order to make 𝑙 < 𝑘 of the monopoles

“escape to infinity”. We shall proceed as before and fix 𝑘 distinct points {𝑥1, . . . , 𝑥𝑘} ⊆ R
3.

Then, we consider the charge 𝑘, mass 1 monopole obtained through Taubes’ Theorem 3.2.5

using the points 𝑦𝑖𝑗 = 𝑚𝑖𝑥𝑗 for 𝑗 = 1, . . . , 𝑙 and the points 𝑦𝑖𝑗 = 𝑚2
𝑖𝑥𝑗 for 𝑗 = 𝑙 + 1, . . . , 𝑘.3

Then, rescaling this monopole as before, i.e. using equation (3.2.8) with 𝜆 = 𝑚−1
𝑖 , we obtain a

mass 𝑚𝑖, charge 𝑘, monopole on R
3. This has the property that

Φ−1
𝑖 (0) ⊂

(︃

𝑙
⋃︁

𝑗=1

𝐵
𝑐𝑚

−1/2
i

(𝑥𝑗)

)︃

∪

(︃

𝑘
⋃︁

𝑗=𝑙+1

𝐵
𝑐𝑚

−1/2
i

(𝑚𝑖𝑥𝑗)

)︃

, deg(Φ𝑖

⃒

⃒

⃒

𝜕𝐵
cm

−1/2
i

(𝑥j)
) = 1. (3.2.10)

Similarly to before we now have

⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0) ⊆

(︃

𝑙
⋃︁

𝑗=1

𝐵
𝑐𝑚

−1/2
n

(𝑥𝑗)

)︃

∪

(︃

⋃︁

𝑖≥𝑛

𝑘
⋃︁

𝑗=𝑙+1

𝐵
𝑐𝑚

−1/2
n

(𝑚𝑖𝑥𝑗)

)︃

,

and for 𝑛 sufficiently large the second sets inside parenthesis above are disjoint for 𝑛 sufficiently

large. It then follows again from the same degree argument as before that

𝑍 = {𝑥1, . . . , 𝑥𝑙}.

�
3By slight modification of this we can also let the points yj for j > l go off to infinity at different rates.
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3.2.3 An example with 𝑘x > 1

In the examples above we have already seen that it is possible to have ℋ0(𝑍) < 𝑘 by

letting the monopoles “escape through the end”. One other possibility would be to have points

𝑥 ∈ 𝑍 with 𝑘𝑥 > 1, in this Subsection we give the simplest of such examples.

Let (𝐴,Φ) be a finite mass SU(2)−monopole in (R3, 𝑔𝐸) with mass 𝑚 ̸= 0 and charge

𝑘 > 1. Since 𝑔𝐸 is scale-invariant, taking any null-sequence 𝜆𝑖 ↓ 0 we get a corresponding

sequence

(𝐴𝜆i ,Φ𝜆i) := (𝑠*𝜆i𝐴, 𝜆𝑖
−1𝑠*𝜆iΦ)

of monopoles in (R3, 𝑔𝐸) with masses 𝑚𝑖 := 𝑚𝜆−1
𝑖 → ∞. Note that for such sequence 𝑍 =

{0} and 𝑘0 = 𝑘 > 1.

3.2.4 Sequences of monopoles with prescribed 𝑍 on any AC 3−manifold

with 𝑏2(𝑋) = 0

Let (𝑋, 𝑔) be an AC oriented Riemannian 3−manifold with 𝑏2(𝑋) = 0 (i.e., the second

Betti number of 𝑋 vanishes), and let 𝑘 ∈ Z>0. For a real number 𝑚 > 0, denote by ℳ𝑘,𝑚 the

moduli space of mass 𝑚 and charge 𝑘 monopoles on (𝑋, 𝑔). In this setting, the main result of

[Oli16c] yields

Theorem 3.2.11 ([Oli16c, Theorem 1]). There is 𝜇 ∈ R, so that for all 𝑚 ≥ 𝜇 and 𝑋𝑘(𝑚) ⊂

𝑋𝑘 defined by

𝑋𝑘(𝑚) =
{︁

(𝑥1, ..., 𝑥𝑘) ∈ 𝑋𝑘
⃒

⃒

⃒
dist(𝑥𝑖, 𝑥𝑗) > 4𝑚−1/2 , for 𝑖 ̸= 𝑗

}︁

,

while Ť
𝑘−1 = {(𝑒𝑖𝜃1 , ..., 𝑒𝑖𝜃k) ∈ T

𝑘 | 𝑒𝑖(𝜃1+...+𝜃k) = 1}, there is a local diffeomorphism onto its

image

ℎ𝑚 : 𝑋𝑘(𝑚)×𝐻1(𝑋, S1)× Ť
𝑘−1 → ℳ𝑘,𝑚. (3.2.12)

In order to use this theorem we shall fix once and for all 𝛼 ∈ 𝐻1(𝑋,𝑆1) and 𝜃 =

(𝑒𝑖𝜃1 , . . . , 𝑒𝑖𝜃k) ∈ T
𝑘 satisfying 𝑒𝑖(𝜃1+...+𝜃k) = 1. Then, we chose any 𝑘 disjoint points (𝑥1, ..., 𝑥𝑘) ∈

𝑋𝑘 and take an increasing sequence of positive real numbers𝑚𝑖 ↑ ∞ with𝑚1 > max{16min𝑗,𝑙

dist(𝑥𝑗, 𝑥𝑙)
2, 𝜇} and consider the monopoles

(𝐴𝑖,Φ𝑖) = ℎ𝑚i((𝑥1, . . . , 𝑥𝑘), 𝛼, 𝜃).

Then, using the results of [Oli16c] we have the following
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Proposition 3.2.13. The zero set

𝑍 =
⋂︁

𝑛≥1

⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0),

of the family of monopoles (𝐴𝑖,Φ𝑖) defined above is precisely the set of points {𝑥1, . . . , 𝑥𝑘}.

Proof. The result follows from proving that the zeros of the monopole (𝐴𝑖,Φ𝑖) are contained in

balls of radius 𝑂(𝑚−1/2
𝑖 ) around the points {𝑥1, . . . , 𝑥𝑘}, i.e. for sufficiently large 𝑖 we have

Φ−1
𝑖 (0) ⊂

𝑘
⋃︁

𝑗=1

𝐵
10𝑚

−1/2
i

(𝑥𝑗) and Φ−1
𝑖 (0) ∩ 𝐵

10𝑚
−1/2
i

(𝑥𝑗) ̸= ∅, ∀𝑗 ∈ {1, . . . , 𝑘}. (3.2.14)

Indeed, if we prove this assertion, then, as the sequence {𝑚𝑖} is increasing, on the one hand

note that
⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0) ⊆

𝑘
⋃︁

𝑗=1

𝐵
10𝑚

−1/2
n

(𝑥𝑗),

and thus

𝑍 ⊆
⋂︁

𝑛≥1

𝑘
⋃︁

𝑗=1

𝐵
10𝑚

−1/2
n

(𝑥𝑗) =
𝑘
⋃︁

𝑗=1

⋂︁

𝑛≥1

𝐵
10𝑚

−1/2
n

(𝑥𝑗) =
𝑘
⋃︁

𝑗=1

{𝑥𝑗}.

On the other hand, for every fixed 𝑗0 ∈ {1, . . . , 𝑘}, we can find 𝑧𝑖 ∈ Φ−1
𝑖 (0) ∩ 𝐵

10𝑚
−1/2
i

(𝑥𝑗0)

for each 𝑖 ≫ 1. Since 𝑚𝑖 ↑ ∞, it follows that 𝑧𝑖 → 𝑥𝑗0 as 𝑖 → ∞. Thus we get the reverse

inclusion {𝑥1, . . . , 𝑥𝑘} ⊆ 𝑍, and equality follows as claimed.

We are thus left with proving the assertion (3.2.14), which is the content of Appendix

B. �

3.3 𝜀-regularity estimate

In this section we give an appropriate restatement of the 3−dimensional instance of The-

orem 2.3.1 that will be useful in the analysis of sequences of large mass monopoles in the rest

of this chapter. The following is essentially [FO19, Theorem 5.1] but stated in a stronger form

and derived in a way that provides a more general perspective on the result.

Theorem 3.3.1 (𝜀−regularity estimate in 3−dimensions). Let (𝑋3, 𝑔) be an oriented Rieman-

nian 3−manifold of bounded geometry and 𝐸 a 𝐺−bundle over 𝑋 , where 𝐺 is a compact Lie

group. Then there are scaling invariant constants 𝜀0 > 0 and 𝐶0 > 0 with the following signif-

icance. Let (𝐴,Φ) ∈ 𝒞(𝐸) be a YMH configuration on (𝑋3, 𝑔). For any 𝑚 > 0 and 𝑅 > 0, if

𝑥 ∈ 𝑋 and 0 < 𝑟 ≤ min{𝑅𝑚−1, 𝑟0} are such that

𝜀 := 𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0,
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then

sup
𝐵 r

2
(𝑥)

𝑚−1𝑒(𝐴,Φ) ≤ 𝐶𝑅𝑟
−3𝜀, (3.3.2)

where 𝐶𝑅 := 𝐶0 max{1, 𝑅3}.

Proof. First of all, we note that, by scaling, we may assume 𝑚 = 1. Indeed, assume the result

is true for 𝑚 = 1. Then given a YMH configuration (𝐴,Φ) with respect to a metric 𝑔, it follows

from Proposition 2.1.1 that (𝐴,𝑚−1Φ) is a YMH configuration with respect to the scaled metric

𝑔𝑚 := 𝑚2𝑔. Now, by hypothesis, for 𝑟 ∈ (0,min{𝑅𝑚−1, 𝑟0(𝑔)}],

ℰ𝑚𝐵mrm(𝑥)(𝐴,𝑚
−1Φ) = 𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0.

Noting that 𝑟0(𝑔𝑚) = 𝑚𝑟0(𝑔), the result for 𝑚 = 1 implies that

sup
𝐵mrm

4
(𝑥)

𝑒𝑚(𝐴,𝑚
−1Φ) ≤ 𝐶𝑅(𝑟𝑚)−3ℰ𝑚𝐵mrm(𝑥)(𝐴,𝑚

−1Φ).

Thus, rescaling back to 𝑔 we get precisely (3.3.2). This proves our claim.

Given the above observation, in order to prove the theorem we are left to prove that there

are 𝜀0 > 0 and 𝐶0 > 0 such that for any YMH configuration (𝐴,Φ) and any 𝑅 > 0, if 𝑥 ∈ 𝑋

and 0 < 𝑟 ≤ min{𝑅, 𝑟0} are such that 𝜀 := ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0, then

sup
𝐵 r

4
(𝑥)

𝑒(𝐴,Φ) ≤ 𝐶0 max{1, 𝑅3}𝑟−3𝜀. (3.3.3)

We take 𝜀0 and 𝐶0 as in the case 𝑛 = 3 of Theorem 2.3.1. Now note that if 𝑟 ≤ 1, then the

hypothesis imply

𝑟ℰ𝐵r(𝑥)(𝐴,Φ) ≤ ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0,

so that by (2.3.2) we have4

sup
𝐵 r

2
(𝑥)

𝑒(𝐴,Φ) ≤ 𝐶0𝑟
−3𝜀,

which proves the assertion. Otherwise, i.e. in case 𝑟 > 1, then for all 𝑦 ∈ 𝐵 r
2
(𝑥) one has

𝐵 1
2
(𝑦) ⊆ 𝐵𝑟(𝑥) and thus the hypothesis imply

1

2
ℰ𝐵 1

2
(𝑦)(𝐴,Φ) ≤ ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0.

Hence, using Theorem 2.3.1 and noting that 1 ≤ 𝑅3𝑟−3, we get

𝑒(𝐴,Φ)(𝑦) ≤ sup
𝐵 1

4
(𝑦)

𝑒(𝐴,Φ) ≤ 8𝐶0𝜀 ≤ 8𝐶0𝑅
3𝑟−3𝜀.

4Note that the ε of (2.3.2) differs from this one by a factor of r, that’s why here we get r−3 in the right-hand

side of the inequality instead of r−4.
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Since 𝑦 ∈ 𝐵 r
2
(𝑥) is arbitrary, this proves the assertion with 𝐶0 replaced by 8𝐶0 and finishes the

proof. �

Note that taking 𝑟 ∈ (0, 𝑟0], 𝑚 = 𝑟−1 and 𝑅 = 1 on the statement of Theorem 3.3.1 gives

back the 𝑛 = 3 case of Theorem 2.3.1, so that these are indeed equivalent (the above proof gives

the other implication). In fact, playing around with the parameters 𝑚 and 𝑅 in Theorem 3.3.1

one obtains the following easy consequences.

Corollary 3.3.4. Let (𝑋3, 𝑔) be an oriented Riemannian 3−manifold of bounded geometry and

𝐸 a 𝐺−bundle over 𝑋 , where 𝐺 is a compact Lie group. Let 𝜀0, 𝐶0 > 0 be the constants given

by Theorem 3.3.1 and (𝐴,Φ) ∈ 𝒞(𝐸) a YMH configuration on (𝑋3, 𝑔). Then:

(i) For any 𝑚 > 0 such that 2𝑚−1 < 𝑟0, if 𝑥 ∈ 𝑋 and 𝑟 ∈ (2𝑚−1, 𝑟0] are such that

𝜀 := 𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0,

then

sup
𝐵 r

2
(𝑥)

𝑚−1𝑒(𝐴,Φ) ≤ 𝑚3𝐶0𝜀. (3.3.5)

(ii) If 𝑥 ∈ 𝑋 and 0 < 𝑟 ≤ min{1, 𝑟0} are such that

𝜀 := ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0,

then

sup
𝐵 r

2
(𝑥)

𝑒(𝐴,Φ) ≤ 𝐶0𝑟
−3𝜀. (3.3.6)

Proof. (i) Let 𝑦 ∈ 𝐵 r
2
(𝑥). Since 0 < 2𝑚−1 < 𝑟, one has 𝐵𝑚−1(𝑦) ⊆ 𝐵𝑟(𝑥) and thus by

hypothesis

𝑚−1ℰ𝐵m−1 (𝑦)(𝐴,Φ) ≤ 𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀0.

Then we can apply Theorem 3.3.1 to conclude that

sup
𝐵(2m)−1 (𝑦)

𝑚−1𝑒(𝐴,Φ) ≤ 𝑚3𝐶0𝜀.

Since 𝑦 ∈ 𝐵 r
2
(𝑥) is arbitrary and the bound is uniform, the result follows.

(ii) This is just a direct consequence of Theorem 3.3.1 using 𝑚 = 𝑅 = 1. �
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3.4 An interior lower bound on the Higgs field

The next result is a consequence of the previous 𝜀−regularity estimate and will prove to

be useful in analyzing large mass YMH configurations. It is an improved version of [FO19,

Theorem 6.1].

Theorem 3.4.1. Let (𝑋3, 𝑔) be an oriented Riemannian 3−manifold of bounded geometry, let

𝐸 be a 𝐺−bundle over 𝑋 , and let (𝐴,Φ) be a YMH configuration on 𝐸. Given 𝛿 ∈ (0, 1) and

𝑅 > 0, set

𝜀𝛿,𝑅 := min
{︀

𝐶−1
𝑅 𝑅𝛿2, 𝜀0

}︀

.

Let 𝑥 ∈ 𝑋 and 𝑚 > 0. If 𝑟 := 𝑅𝑚−1 ≤ 𝑟0 and sup
𝜕𝐵 r

4
(𝑥)

|Φ| ≥ 𝑚𝛿, then

𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀𝛿,𝑅 =⇒ |Φ| >
𝑚𝛿

2
on 𝐵 r

4
(𝑥).

Here 𝐶𝑅 and 𝜀0 are the constants given by Theorem 3.3.1.

Proof. Fix 𝑞 ∈ 𝜕𝐵 r
4
(𝑥) such that the restriction of |Φ| to 𝜕𝐵 r

4
(𝑥) attains its maximum at 𝑞. For

any 𝑝 ∈ 𝐵 r
4
(𝑥) we can choose a (smooth by parts) path 𝛾𝑝 in 𝐵 r

4
(𝑥) with length 𝐿(𝛾𝑝) ≤ 𝑟

2

joining 𝑝 to 𝑞. Thus, using the fundamental theorem of calculus and Kato’s inequality we get:

|Φ|(𝑞)− |Φ|(𝑝) ≤

⃒

⃒

⃒

⃒

⃒

∫︁

𝛾p

d|Φ|

⃒

⃒

⃒

⃒

⃒

≤

∫︁

𝛾p

|d𝐴Φ| ≤
𝑟

2
sup
𝐵 r

4
(𝑥)

|d𝐴Φ|. (3.4.2)

On the other hand, by the 𝜀−regularity estimate (Theorem 3.3.1), the hypothesis

𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀𝛿,𝑅 ≤ 𝜀0 implies that

sup
𝐵 r

4
(𝑥)

|d𝐴Φ| ≤ sup
𝐵 r

4
(𝑥)

𝑒(𝐴,Φ)
1
2 < 𝐶

1
2
𝑅𝑟

− 3
2𝑚

1
2 𝜀

1
2
𝛿,𝑅. (3.4.3)

Putting (3.4.2) and (3.4.3) together and using the definitions of 𝑟 and 𝜀𝛿,𝑅 along with the lower

bound on |Φ|(𝑞) = sup
𝜕𝐵 r

4
(𝑥)

|Φ| gives the statement. �

Combining the above result with Theorem 2.4.1, we get (cf. [FO19, Corollary 6.1]):

Corollary 3.4.4. Let (𝑋3, 𝑔) be an oriented AC Riemannian 3−manifold with one end, 𝐸 be a

𝐺−bundle over 𝑋 and Λ ∈ (0,∞). Then there are constants 𝑅Λ > 0 and 𝜀Λ > 0, 𝜀Λ ≤ 𝜀0,

such that the following holds. Let (𝐴,Φ) be a finite mass YMH configuration on 𝐸 with mass

𝑚 > 𝑚* and 𝑚−1‖d𝐴Φ‖2𝐿2(𝑋) ≤ Λ. If 𝑟 := 𝑅Λ𝑚
−1 ≤ 𝑟0 then

𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀Λ =⇒ |Φ| >
𝑚

4
on 𝐵 r

4
(𝑥). (3.4.5)
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Proof. Let

𝑅Λ := 𝑐Λ and 𝜀Λ := 𝜀1/2,𝑅Λ
= min{4−1𝐶−1

𝑅Λ
𝑅Λ, 𝜀0}.

Here we choose 𝑐 > 0 depending only on 𝑔 big enough (e.g. 𝑐 := 64𝑐1𝑐
−1
2 ) so that by letting

𝛿 := 1/2 it follows from Theorem 2.4.1 that

sup
𝜕𝐵 r

4
(𝑥)

|Φ| ≥
𝑚

2
,

therefore by hypothesis we can apply Theorem 3.4.1 with 𝑅 = 𝑅Λ to get the desired result. �

This has the following immediate corollary which is very important in the large mass limit.

Corollary 3.4.6. Let (𝑋3, 𝑔) be an oriented AC Riemannian 3−manifold with one end, 𝐸 be

a SU(2)−bundle over 𝑋 and 𝑘 ∈ N. Let 𝑅𝑘 > 0 and 𝜀𝑘 > 0, 𝜀𝑘 ≤ 𝜀0, be the constants

given by Corollary 3.4.4 when Λ = 4𝜋𝑘. Let (𝐴,Φ) be a monopole of charge 𝑘 and mass

𝑚 > max{𝑚*, 2𝑅𝑘𝑟
−1
0 }. Then for all 𝑟 ∈ (2𝑅𝑘𝑚

−1, 𝑟0] one has

𝑚−1ℰ𝐵r(𝑥)(𝐴,Φ) < 𝜀𝑘 =⇒ |Φ| >
𝑚

4
on 𝐵 r

2
(𝑥). (3.4.7)

Proof. Let 𝑦 ∈ 𝐵 r
2
(𝑥). Since 0 < 2𝑅𝑘𝑚

−1 < 𝑟, one has 𝐵𝑅k𝑚−1(𝑦) ⊆ 𝐵𝑟(𝑥) and thus using

the smallness hypothesis on the energy we can apply Corollary 3.4.4 to conclude that

|Φ|(𝑦) >
𝑚

4
.

Since 𝑦 ∈ 𝐵 r
2
(𝑥) is arbitrary and the bound is uniform, the result follows. �

3.5 The blow-up set and the zero set

From now on we will be dealing with a sequence {(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) of finite mass

YMH configurations on (𝑋3, 𝑔) satisfying the uniform bound

𝑚−1
𝑖 ℰ𝑋(𝐴𝑖,Φ𝑖) ≤ 𝐶, (3.5.1)

for some constant 𝐶 > 0, and whose masses 𝑚𝑖 satisfy lim sup𝑚𝑖 = ∞. In fact, for conve-

nience, we may assume (after passing to a subsequence) that 𝑚𝑖 ↑ ∞. We note that in case the

(𝐴𝑖,Φ𝑖) are SU(2)−monopoles of fixed charge 𝑘 ̸= 0, the energy formula (1.3.19) guarantee

an a priori uniform bound of the form (3.5.1) with equality for 𝐶 = 4𝜋𝑘.
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In order to study the behavior of such sequence of infinitely large mass YMH configura-

tions, it is convenient to consider the corresponding sequence of Radon measures

𝜇𝑖 := 𝑚−1
𝑖 𝑒(𝐴𝑖,Φ𝑖)ℋ

3. (3.5.2)

By (3.5.1) this sequence is of bounded mass. Thus, after passing to a subsequence which

we do not relabel, it converges weakly to a Radon measure 𝜇. By Fatou’s lemma and Riesz

representation theorem, we can write

𝜇 = 𝑒∞ℋ3 + 𝜈, (3.5.3)

where 𝑒∞ : 𝑋 → [0,∞] is the 𝐿1−function

𝑒∞ := lim inf
𝑖→∞

𝑚−1
𝑖 𝑒(𝐴𝑖,Φ𝑖),

and 𝜈 is some nonnegative Radon measure, singular with respect to ℋ3, called the defect mea-

sure.

Let Θ be the 0−dimensional density function of 𝜇, i.e.

Θ(𝑥) := lim
𝑟↓0

𝜇(𝐵𝑟(𝑥)), ∀𝑥 ∈ 𝑋. (3.5.4)

Note that Θ is well-defined and bounded by 𝐶. In this section, we will be considering the

blow-up set 𝑆 of {(𝐴𝑖,Φ𝑖)}, which is defined to be

𝑆 := {𝑥 ∈ 𝑋 : Θ(𝑥) > 0}.

The fact that {𝜇𝑖} weakly converges to 𝜇 a priori only implies that

𝜇(𝐵𝑟(𝑥)) ≤ lim inf𝑖→∞ 𝜇𝑖(𝐵𝑟(𝑥)) and 𝜇(𝐵𝑟(𝑥)) ≥ lim sup𝑖→∞ 𝜇𝑖(𝐵𝑟(𝑥)). Thus, for each

𝑥 ∈ 𝑋 , it is convenient to set

ℛ𝑥 := {𝑟 ∈ (0, 𝑟0] : 𝜇(𝜕𝐵𝑟(𝑥)) > 0}.

For all 𝑟 ∈ (0, 𝑟0] ∖ ℛ𝑥 one has

𝜇(𝐵𝑟(𝑥)) = lim
𝑖→∞

𝜇𝑖(𝐵𝑟(𝑥)).

Since 𝜇 is locally finite, the set ℛ𝑥 is at most countable. In particular, for each point 𝑥 ∈ 𝑋 we

can find a null-sequence {𝑟𝑖} ⊆ (0, 𝑟0] ∖ ℛ𝑥 so that

Θ(𝑥) = lim
𝑖→∞

𝜇𝑖(𝐵𝑟i(𝑥)).

From these facts, the following is immediate.
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Lemma 3.5.5. The blow-up set 𝑆 can be written as

𝑆 =
⋃︁

𝑗∈N

𝑆𝑗,

where

𝑆𝑗 :=
⋂︁

0<𝑟≤𝑟0

{︁

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) ≥ 𝑗−1

}︁

.

Our first result relates the blow-up set 𝑆 with the accumulation points of the Higgs fields

zeros, called the zero set 𝑍, and defined by

𝑍 :=
⋂︁

𝑛≥1

⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0).

In the following statement, we shall use ℋ0 to denote the counting measure.

Theorem 3.5.6. Let (𝑋3, 𝑔) be an AC oriented Riemannian 3−manifold with one end, 𝐸 be an

𝐺−bundle over𝑋 , and {(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) be a sequence of finite mass YMH configurations

on (𝑋3, 𝑔) satisfying the uniform bound (3.5.1) and whose masses 𝑚𝑖 satisfy lim sup𝑖→∞𝑚𝑖 =

∞. Then, after passing to a subsequence for which 𝑚𝑖 ↑ ∞ and 𝜇𝑖 ⇀ 𝜇, where 𝜇𝑖 are the

Radon measures given by (3.5.2), the following holds:

(i) ℋ0(𝑆𝑗) ≤ 𝑗𝐶, for all 𝑗 ∈ N; in particular, each 𝑆𝑗 is finite and 𝑆 is countable.

(ii) The blow-up set contains the zero set:

𝑍 ⊆ 𝑆.

Proof. (i) Given 0 < 𝑟 ≤ 𝑟0, we can find a countable open covering {𝐵5𝑟l(𝑥𝑙)} of 𝑆𝑗 with

𝑥𝑙 ∈ 𝑆𝑗 , 10𝑟𝑙 < 𝑟 and 𝐵𝑟l(𝑥𝑙) pairwise disjoint. Then

∑︁

𝑙

(5𝑟𝑙)
0 ≤ 𝑗

∑︁

𝑙

lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵rl (𝑥l)(𝐴𝑖,Φ𝑖) (𝑥𝑙 ∈ 𝑆𝑗)

≤ 𝑗 lim inf
𝑖→∞

𝑚−1
𝑖

∑︁

𝑙

ℰ𝐵rl (𝑥l)(𝐴𝑖,Φ𝑖) (by Fatou’s lemma)

≤ 𝑗 lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝑋(𝐴𝑖,Φ𝑖) (the 𝐵𝑟l(𝑥𝑙)’s are disjoint)

= 𝑗𝐶. (by (3.5.1))

Since this bound is uniform in 𝑟 ∈ (0, 𝑟0], it follows that ℋ0(𝑆𝑗) ≤ 𝑗𝐶.
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(ii) We shall apply Corollary 3.4.4 with Λ := 2𝐶. Let 𝑥 ∈ 𝑋 ∖ 𝑆. Then 𝑥 ∈ 𝑋 ∖ 𝑆𝑗 for all

𝑗 ∈ N. In particular, there is 𝑟 ∈ (0, 𝑟0] such that

lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) < 𝜀Λ.

We may assume 𝑟 /∈ ℛ𝑥, otherwise we just work in a smaller ball for which we still have the

above energy bound. In particular, it follows that there is 𝑖0 ∈ N such that

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) < 𝜀Λ, ∀𝑖 ≥ 𝑖0.

Since 𝑚𝑖 ↑ ∞, by increasing 𝑖0 if necessary we may also assume that

𝑚𝑖 > 𝑚* and 𝑟𝑖 := 𝑅Λ𝑚
−1
𝑖 <

𝑟

2
, ∀𝑖 ≥ 𝑖0.

Hence, given any 𝑦 ∈ 𝐵𝑟/2(𝑥), it follows that

𝑚−1
𝑖 ℰ𝐵ri (𝑦)(𝐴𝑖,Φ𝑖) < 𝜀Λ, ∀𝑖 ≥ 𝑖0,

so that applying Corollary 3.4.4 we get that

|Φ𝑖|(𝑦) >
𝑚𝑖

4
, ∀𝑖 ≥ 𝑖0.

Therefore, by possibly increasing 𝑖0, we have

inf
𝐵 r

2
(𝑥)
|Φ𝑖| ≥ 100 > 0, ∀𝑖 ≥ 𝑖0.

In particular, it follows that 𝑥 ∈ 𝑋 ∖ 𝑍. By the arbitrariness of 𝑥 ∈ 𝑋 ∖ 𝑆, this shows that

𝑍 ⊂ 𝑆. �

3.6 Bubbling

Let (𝐴,Φ) be a finite mass configuration on 𝐸 with mass 𝑚 ̸= 0, and pick a point 𝑥 ∈ 𝑋 .

For each 𝑟 ∈ (0, 𝑟0], consider the geodesic ball 𝐵𝑟(𝑥) ⊂ 𝑋 . Then, identify R
3 ∼= 𝑇𝑥𝑋 and use

the exponential map 𝑠𝑚(·) = exp(𝑚−1·) to define

(𝐴𝑚,Φ𝑚) = (𝑠*𝑚𝐴,𝑚
−1𝑠*𝑚Φ), 𝑔𝑚 = 𝑚2𝑠*𝑚𝑔. (3.6.1)

It follows from Proposition 2.1.1 that if (𝐴,Φ) is a YMH configuration on 𝐵𝑟(𝑥) ⊂ 𝑋 , then

(𝐴𝑚,Φ𝑚) is a YMH configuration in 𝐵𝑟𝑚(0) ⊂ R
3 with respect to the metric 𝑔𝑚.5 Moreover,

5Here Brm(0) ⊂ R
3 is a radius r ball with respect to both the metrics gm = m2s∗mg and m2 exp∗ g, by the

Gauss Lemma.
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we note that as 𝑚 → ∞ the metric 𝑔𝑚 geometrically converges to the Euclidean one, 𝑔𝐸 , on

compact subsets of R3. The main result of this section is

Theorem 3.6.2. Let (𝑋3, 𝑔) be an AC oriented Riemannian 3−manifold with one end, let 𝐸

be a 𝐺−bundle over 𝑋 , and let {(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) be a sequence of finite mass YMH

configurations on (𝑋3, 𝑔) with masses 𝑚𝑖 satisfying lim sup𝑚𝑖 = ∞. Denote by 𝑆 and 𝑍 the

corresponding blow-up and zero sets. Then, for each 𝑥 ∈ 𝑆, after passing to a subsequence

and changing gauge, the rescaled sequence (𝐴𝑚i ,Φ𝑚i) converges uniformly with derivatives,

in compact subsets of R3 ∼= 𝑇𝑥𝑋 , to a YMH configuration (𝐴𝑥,Φ𝑥) of mass𝑚𝑥 ≤ 1 and strictly

positive energy6 ℰR3(𝐴𝑥,Φ𝑥) > 0. If, moreover, the sequence satisfy (3.5.1), then 𝑚𝑥 = 1.

Furthermore, in case 𝐺 = SU(2) and the (𝐴𝑖,Φ𝑖) are monopoles with fixed charge 𝑘 ̸= 0, then

the limit (𝐴𝑥,Φ𝑥) is a monopole of mass 𝑚𝑥 = 1 and charge 𝑘𝑥 > 0, 𝑘𝑥 ≤ 𝑘, and we have

𝑆 = 𝑍.

The rest of this section is devoted to proving Theorem 3.6.2. We shall start with two

auxiliary results.

Lemma 3.6.3. Let 𝑟 ∈ (0, 𝑟0] and 𝐾 ⊂ R
3 be a compact set. Then, there are constants 𝑐 > 0

and 𝑚* ≫ 1 such that: If (𝐴,Φ) is a mass 𝑚 ≥ 𝑚* ≫ 1 YMH configuration on 𝑋 , then there

is a gauge such that on 𝐾 ⊂ R
3:

|Φ𝑚| < 1

|∇𝐴mΦ𝑚|𝑔E + |∇2
𝐴mΦ𝑚|𝑔E ≤ 𝑐

|𝐴𝑚|𝑔E + |∇𝐴m𝐴𝑚|𝑔E + |∇2
𝐴m𝐴𝑚|𝑔E ≤ 𝑐.

Furthermore, the following inequalities holds on 𝐾

|𝐹𝑚|𝑔E + |∇𝐴mΦ𝑚|𝑔E ≤ 𝑐

|∇𝐴m𝐹𝑚|𝑔E + |∇2
𝐴mΦ𝑚|𝑔E ≤ 𝑐.

Proof. We start recalling Remark 1.3.17, which in terms of Φ𝑚 reads |Φ𝑚| < 1.

Now, let (𝑥1, 𝑥2, 𝑥3) be geodesic normal coordinates on 𝐵𝑟(𝑥) ⊂ 𝑋 and (𝑦1, 𝑦2, 𝑦3) co-

ordinates in 𝐵𝑟𝑚(0) ⊂ R
3 so that 𝑠𝑚(𝑦1, 𝑦2, 𝑦3) = (𝑚𝑥1,𝑚𝑥2,𝑚𝑥3). In these coordinates we

can write the metric 𝑔 as

𝑔 =

(︂

𝛿𝑖𝑗 +
1

3
R𝑖𝑘𝑙𝑗𝑥

𝑘𝑥𝑙 +𝑂(|𝑥|2)

)︂

𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗.

6Possibly ∞.
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Thus, by defining the symmetric 2-tensor 𝛾 = 1
3
R𝑖𝑘𝑙𝑗𝑦

𝑘𝑦𝑙𝑑𝑦𝑖 ⊗ 𝑑𝑦𝑗 , with R𝑖𝑘𝑙𝑗 is the Riemann

curvature tensor of 𝑔, we can write the metric 𝑔𝑚 in 𝐵𝑟𝑚(0) ⊂ R
3, as

𝑔𝑚 = 𝑔𝐸 +𝑚−2𝛾 +𝑂(𝑚−3). (3.6.4)

It is at this point that we choose 𝑚* to be large enough so that 𝐾 ⊂ 𝐵𝑟𝑚1/2(0) ⊂ 𝐵𝑟𝑚. Hence,

given that |𝛾| ≤ |𝑦|2, in 𝐾 we have |∇𝑗(𝑔𝑚 − 𝑔𝐸)|𝑔E ≤ 𝑂(𝑚−1), for all 𝑗 ∈ N0. In particular,

these metrics are quasi-isometric in 𝐾.

Now, the YMH equations (1.1.1), in Coulomb gauge, give an elliptic system for Φ𝑚 and the

components of the connection 𝐴𝑚. Furthermore, for 𝑚* ≫ 1 and 𝑚 ≥ 𝑚* all the components

of such system, written in the coordinates 𝑦 on 𝐾, are uniformly bounded in 𝑚. Thus, elliptic

regularity supplied by the 𝑚 independent bound |Φ𝑚| < 1, gives 𝑚 independent bounds on

the first and second 𝑦-derivatives of Φ𝑚 and 𝐴𝑚. These bounds can be further iterated to yield

bounds on higher 𝑦-derivatives these fields. Moreover, given that the metrics 𝑔𝑚 and 𝑔𝐸 on

𝐾 are quasi-isometric it is irrelevant with respect to which of these metric such bounds are

written. �

Next, we prove the following result which states that as 𝑚→ ∞ the (𝐴𝑚,Φ𝑚) is not only

a YMH configuration with respect to 𝑔𝑚 as it approaches one for 𝑔𝐸 in compact subsets of R3.

This is a consequence of the geometric convergence of 𝑔𝑚 to 𝑔𝐸 but a complete proof is given

below.

Lemma 3.6.5. Let 𝑟 ∈ (0, 𝑟0] and 𝐾 ⊂ R
3, then there is 𝑚* ≫ 1 and a constant 𝑐 > 0 with the

following significance. If (𝐴,Φ) is a mass 𝑚 YMH configuration on 𝑋 , then the inequality

|∆𝐸
𝐴mΦ𝑚|𝑔E + |d*E

𝐴m
𝐹𝐴m − [d𝐴mΦ𝑚,Φ𝑚]|𝑔E ≤ 𝑐𝑚−1,

holds in 𝐾. Moreover, in the particular case when (𝐴,Φ) is actually a monopole, we further

have

| *𝐸 𝐹𝐴m − d𝐴mΦ𝑚|𝑔E ≤ 𝑐𝑚−1.

Proof. We shall prove only the case of a YMH configuration, for monopoles the result follows

from similar, but somewhat easier computations. We continue to work with the coordinates 𝑦

introduced during the proof of Lemma 3.6.3. Start by using equation (3.6.4) to relate the action

of the Hodge-* operators of both 𝑔𝑚 and 𝑔𝐸 . Let 𝜔 be a 𝑘-form and Ric𝑖𝑗 the Ricci curvature of
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𝑔, a computation gives

*𝑔m𝜔 =

(︂

1 +𝑚−2𝛾(𝜔, 𝜔)

|𝜔|2𝑔E
−𝑚−21

6
Ric𝑖𝑗𝑦

𝑖𝑦𝑗
)︂

*𝐸 𝜔 +𝑂(𝑚−3) (3.6.6)

= *𝐸𝜔 −𝑚−2𝛾𝑚(𝜔), (3.6.7)

where in the last equality 𝛾𝑚 denotes an algebraic operator. This has the property of being

uniformly bounded with all derivatives, i.e. there are a 𝑚-independent constants 𝑐𝑗 > 0 so

that for all 𝑗 ∈ N0 and 𝑚 > 𝑚* ≫ 1, we have |(∇𝑗
𝐸𝛾𝑚)(𝜔)|𝑔E ≤ 𝑐𝑗(1 + |𝑦|2)|𝜔|𝑔E , where

∇𝐸 denotes the Levi–Civita connection of the Euclidean metric in 𝐵𝑟𝑚(0) ⊂ R
3. By possibly

further increasing 𝑚* so that 𝐾 ⊂ 𝐵𝑟𝑚1/2(0), as in the proof of Lemma 3.6.3, we have that as

a consequence of this we have that |(∇𝑗
𝐸𝛾𝑚)(𝜔)|𝑔E ≤ 𝑐𝑗𝑚|𝜔|𝑔E on 𝐾. Then, we compute

∆𝐸
𝐴mΦ𝑚 = *𝐸d𝐴m *𝐸 d𝐴mΦ𝑚 = *𝐸d𝐴m

(︀

*𝑚d𝐴mΦ𝑚 +𝑚−2𝛾𝑚(d𝐴mΦ𝑚)
)︀

= *𝐸
(︀

*𝑚∆
𝑚
𝐴mΦ𝑚 +𝑚−2(∇𝐸𝛾𝑚)(d𝐴mΦ𝑚) +𝑚−2𝛾𝑚(∇𝐴md𝐴mΦ𝑚)

)︀

= ∆𝑚
𝐴mΦ𝑚 + *𝑚𝑚

−2 (𝛾𝑚(∇𝐴md𝐴mΦ𝑚) + (∇𝐸𝛾𝑚)(d𝐴mΦ𝑚))

+𝑚−2𝛾𝑚
(︀

*𝑚∆
𝑚
𝐴mΦ𝑚 +𝑚−2(∇𝐸𝛾𝑚)(d𝐴mΦ𝑚) +𝑚−2𝛾𝑚(∇𝐴md𝐴mΦ𝑚)

)︀

.

Recall that (𝐴𝑚,Φ𝑚) is a YMH configuration for 𝑔𝑚, ∆𝑚
𝐴m

Φ𝑚 = 0, and so, on 𝐾 we have

|∆𝐸
𝐴mΦ𝑚|𝑔E ≤ 𝑐𝑚−1

(︀

|d𝐴mΦ𝑚|𝑔E + |∇2
𝐴mΦ𝑚|𝑔E

)︀

(3.6.8)

Similarly, we consider

d*E
𝐴m
𝐹𝐴m = *𝐸d𝐴m *𝐸 𝐹𝐴m = *𝐸d𝐴m

(︀

*𝑚𝐹𝐴m +𝑚−2𝛾𝑚(𝐹𝐴m)
)︀

= *𝐸
(︀

*𝑚d*m
𝐴m
𝐹𝐴m +𝑚−2(∇𝐸𝛾𝑚)(𝐹𝐴m) +𝑚−2𝛾𝑚(∇𝐴m𝐹𝐴m)

)︀

= d*m
𝐴m
𝐹𝐴m +𝑚−2 *𝑚 ((∇𝐸𝛾𝑚)(𝐹𝐴m) + 𝛾𝑚(∇𝐴m𝐹𝐴m))

+𝑚−2𝛾𝑚
(︀(︀

*𝑚d*m
𝐴m
𝐹𝐴m +𝑚−2(∇𝐸𝛾𝑚)(𝐹𝐴m) +𝑚−2𝛾𝑚(∇𝐴m𝐹𝐴m)

)︀)︀

Again, the fact that (𝐴𝑚,Φ𝑚) is a YMH configuration for 𝑔𝑚, implies that

d*m
𝐴m
𝐹𝐴m = [d𝐴mΦ𝑚,Φ𝑚], which together with the previous computation yields that on 𝐾

|d*E
𝐴m
𝐹𝐴m − [d𝐴mΦ𝑚,Φ𝑚]|𝑔E ≤ 𝑐𝑚−1 (|𝐹𝐴m |𝑔E + |∇𝐴m𝐹𝐴m |𝑔E) (3.6.9)

Then, putting together equations (3.6.8)–(3.6.9) with the result of Lemma 3.6.3 we conclude

that on 𝐾

|∆𝐸
𝐴mΦ𝑚|𝑔E + |d*E

𝐴m
𝐹𝐴m − [d𝐴mΦ𝑚,Φ𝑚]|𝑔E ≤ 𝑐𝑚−1, (3.6.10)

for some 𝑐 > 0 independent of 𝑚. �
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This lemmata has the following consequence:

Corollary 3.6.11. Let {(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) be a sequence of finite mass YMH configurations

on (𝑋, 𝑔) with masses 𝑚𝑖 satisfying lim sup𝑚𝑖 = ∞, and let 𝑥 ∈ 𝑋 . Then, after passing to a

subsequence and changing gauge, the rescaled sequence {(𝐴𝑚i ,Φ𝑚i)}𝑖∈N defined in equation

(3.6.1) converges uniformly with derivatives, in compact subsets of R3 ∼= 𝑇𝑥𝑋 , to a YMH

configuration (𝐴𝑥,Φ𝑥) of mass 𝑚𝑥 ≤ 1. Moreover, if the (𝐴𝑖,Φ𝑖) satisfy the uniform bound

(3.5.1) then 𝑚𝑥 = 1. In particular, if the (𝐴𝑖,Φ𝑖) are monopoles, then so is (𝐴𝑥,Φ𝑥) and

𝑚𝑥 = 1.

Proof. Lemma 3.6.3, together with a standard patching argument (see e.g. [DK90, Section

4.4.2]) and the Arzelà–Ascoli theorem, imply immediately that, after passing to a subsequence

and changing gauge, the sequence (𝐴𝑚i ,Φ𝑚i) converges uniformly with derivatives on compact

subsets of R3 to a configuration (𝐴𝑥,Φ𝑥) with mass 𝑚𝑥 ≤ 1. The fact that (𝐴𝑥,Φ𝑥) is a YMH

configuration/monopole is then immediate from Lemma 3.6.5. Finally, to see that we have

𝑚𝑥 = 1 in the case (3.5.1) is satisfied, fix 𝑟 ∈ (0, 𝑟0] and note that, since lim sup𝑚𝑖 = ∞,

given a sequence {𝛿𝑖} ⊂ (0, 1) with 𝛿𝑖 ↑ 1, then a diagonal argument shows that up to taking a

subsequence we can assume that 𝑚𝑖 > 𝑚* and 𝑟 > 8𝐶𝑐1𝑐
−1
2 𝑚−1

𝑖 (1− 𝛿𝑖)
−1, so that by Theorem

2.4.1 we get

1 ≥ sup
𝜕𝐵rmi (0)

|Φ𝑚i | = 𝑚−1
𝑖 sup

𝜕𝐵r(𝑥)

|Φ𝑖| > 𝛿𝑖.

Taking the limit 𝑖→ ∞, we get the desired conclusion. �

Remark 3.6.12. Since 𝑔𝑚 converges to 𝑔𝐸 in 𝐶∞
loc (cf. proof of Lemma 3.6.3), the first part

of Corollary 3.6.11 could be directly deduced as a consequence of the 𝜀−regularity (Theorem

3.3.1).

Corollary 3.6.13. Let {(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) be a sequence of YMH configurations on (𝑋3, 𝑔)

satisfying the uniform bound (3.5.1) and whose masses satisfy lim sup𝑚𝑖 = ∞. Then, after

passing to a subsequence,

𝑆 =
⋂︁

0<𝑟≤𝑟0

{︁

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) > 0

}︁

. (3.6.14)

Moreover, in case 𝐺 = SU(2) and the (𝐴𝑖,Φ𝑖) are monopoles of fixed charge 𝑘 ̸= 0, then

𝑆 =
⋂︁

0<𝑟≤𝑟0

{︁

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) ≥ 4𝜋

}︁

. (3.6.15)
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Proof. We start proving (3.6.14). One inclusion (⊆) is clear from Lemma 3.5.5. On the other

hand, if 𝑥 ∈ 𝑋 is such that for all 𝑟 ∈ (0, 𝑟0] one has

𝜀 := lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) > 0,

then by Corollary 3.6.11 one has that 𝜀 > 0 is the energy of a YMH configuration (𝐴𝑥,Φ𝑥) in

R
3; hence, for 𝑗 = 𝑗(𝑥) ∈ N such that ℰR3(𝐴𝑥,Φ𝑥) ≥ 𝑗−1, we get that 𝑥 ∈ 𝑆𝑗 ⊂ 𝑆, thereby

proving the other inclusion.

In the case of (3.6.15), the trivial inclusion is (⊇) and it suffices to note that the above

(𝐴𝑥,Φ𝑥) is a positive energy monopole in this case, so that 𝜀 = 4𝜋𝑘𝑥 for some positive integer

𝑘𝑥; hence, 𝜀 ≥ 4𝜋, as we wanted. �

We are now in position to prove the main result of this section.

Proof of Theorem 3.6.2. Let {(𝐴𝑖,Φ𝑖)} be a sequence of YMH configurations with masses 𝑚𝑖

satisfying lim sup𝑚𝑖 = ∞. For 𝑥 ∈ 𝑆, we consider the rescaled sequence {(𝐴𝑚i ,Φ𝑚i)}

obtained from the construction in equation (3.6.1). It follows from the definition of 𝑆 that there

is 𝑗 = 𝑗(𝑥) ∈ N such that for all 𝑟 ∈ (0, 𝑟0] we have

lim inf
𝑖→∞

∫︁

𝐵rmi (0)

𝑒(𝐴𝑚i ,Φ𝑚i) ≥ 𝑗−1. (3.6.16)

Moreover, it follows from Corollary 3.6.11 that, after passing to a subsequence and changing

gauge, the (𝐴𝑚i ,Φ𝑚i) converges uniformly with derivatives on compact subsets of R3 to a YMH

configuration (𝐴𝑥,Φ𝑥) with mass 𝑚𝑥 ≤ 1 (and 𝑚𝑥 = 1 in case (3.5.1) holds). Furthermore,

equation (3.6.16) implies that
∫︁

R3

𝑒(𝐴𝑥,Φ𝑥) ≥ 𝑗−1 > 0. (3.6.17)

This condition gives that (𝐴𝑥,Φ𝑥) has strictly positive energy. Now, in case 𝐺 = SU(2) and the

(𝐴𝑖,Φ𝑖) are monopoles with fixed charge 𝑘 ̸= 0, then (𝐴𝑥,Φ𝑥) is a monopole of mass 𝑚𝑥 = 1

and the energy formula (1.3.19) shows that

4𝜋𝑘 ≥

∫︁

R3

𝑒(𝐴𝑥,Φ𝑥) = 4𝜋𝑘𝑥, (3.6.18)

where 𝑘𝑥 ∈ Z>0 is the charge of (𝐴𝑥,Φ𝑥); in particular, 𝑘𝑥 ≤ 𝑘. Recalling that 𝑘𝑥 > 0 is

the degree of Φ𝑥 restricted to a large sphere, we conclude that Φ𝑥 must have zeros. Thus,

by Lemma 3.6.5, for all sufficiently large 𝑖 so does (𝐴𝑚i ,Φ𝑚i) in 𝐵𝑟𝑚i(0) ⊂ R
3 (since as

𝑖 → ∞ the (𝐴𝑚i ,Φ𝑚i) becomes as close as one wants of being a positive energy monopole
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with respect to 𝑔𝐸). Rescaling back, we have that (𝐴𝑖,Φ𝑖) must have zeros in 𝐵𝑟(𝑥) ⊂ 𝑋 for

𝑖 ≫ 1. However, given that the value of 𝑟 ∈ (0, 𝑟0) is arbitrary, as 𝑖 → ∞ such zeros becomes

as close as one wants to 𝑥 yielding that 𝑥 ∈ 𝑍. This together with Theorem 3.5.6 shows that

𝑍 = 𝑆. This finishes the proof of the theorem. �

Remark 3.6.19. Notice that, by the equality (3.6.14) of Corollary 3.6.13, if 𝑥 ∈ 𝑋∖𝑆 then

rather than equation (3.6.17) we have
∫︁

R3

𝑒(𝐴𝑥,Φ𝑥) = 0,

which means that (𝐴𝑥,Φ𝑥) is gauge equivalent to a flat connection and a constant function

R
3 → g. This means that 𝑆 is indeed precisely the set where the bubbling occurs.

3.7 Convergence as measures

Our aim in this section is to prove the following:

Theorem 3.7.1. Let (𝑋3, 𝑔) be an AC oriented Riemannian 3−manifold with one end, let 𝐸 be

a SU(2)-bundle over 𝑋 and let {(𝐴𝑖,Φ𝑖)}𝑖∈N ⊆ 𝒞(𝐸) be a sequence of finite mass monopoles

on (𝑋3, 𝑔) with fixed charge 𝑘 ̸= 0 and masses 𝑚𝑖 satisfying lim sup𝑚𝑖 = ∞. Then, up to

taking a subsequence, the corresponding blow-up set 𝑆 is finite with at most 𝑘 points and we

have the following weak convergence of Radon measures:

𝑚−1
𝑖 𝑒(𝐴𝑖,Φ𝑖)ℋ

3 ⇀ 4𝜋
∑︁

𝑥∈𝑆

𝑘𝑥𝛿𝑥,

where 𝛿𝑥 denotes the Dirac delta measure supported on {𝑥}.

In what follows we fix a sequence of monopoles (𝐴𝑖,Φ𝑖) as in the hypothesis of Theo-

rem 3.7.1. Recall the sequence {𝜇𝑖} of Radon measures (3.5.2) which, by the energy formula

(1.3.19), is of bounded mass 4𝜋𝑘 and hence, after passing to a subsequence which we do not

relabel, converges weakly to a Radon measure 𝜇, where 𝜇 decomposes as in (3.5.3).

The first observation we make is that on the one hand 𝑒∞(𝑥) = 0 for every 𝑥 ∈ 𝑋 ∖ 𝑆

by equation (3.6.14) of Corollary 3.6.13. On the other hand, it follows from assertion (i) of

Theorem 3.5.6 that ℋ3(𝑆) = 0. Therefore, we conclude that 𝜇 = 𝜈.

Next, we provide some properties of the 0−dimensional density function Θ of 𝜇.

Proposition 3.7.2. The function Θ : 𝑋 → [0, 4𝜋𝑘] satisfy the following properties:
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(i) Θ(𝑥) = 4𝜋𝑘𝑥 ≥ 4𝜋 for all 𝑥 ∈ 𝑆, where 𝑘𝑥 is the charge of the bubble (𝐴𝑥,Φ𝑥) at 𝑥

obtained as in Corollary 3.6.11.

(ii) Θ is upper semicontinuous.

Proof. (i) Let 𝑥 ∈ 𝑆. Then, by Corollary 3.6.11, after passing to a subsequence and changing

gauge, the rescaled sequence {(𝐴𝑚i ,Φ𝑚i)}𝑖∈N defined in equation (3.6.1) converges uniformly

with derivatives, in compact subsets of R3 ∼= 𝑇𝑥𝑋 , to a mass 1 monopole (𝐴𝑥,Φ𝑥) of charge

𝑘𝑥. Then, for any 𝑟 ∈ (0, 𝑟0],

4𝜋𝑘𝑥 = ℰR3(𝐴𝑥,Φ𝑥) = lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖).

Now recall that for 𝑟 ∈ (0, 𝑟0] ∖ ℛ𝑥 the weak convergence of measures implies

𝜇(𝐵𝑟(𝑥)) = lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥)(𝐴𝑖,Φ𝑖) = 4𝜋𝑘𝑥.

Moreover, we can find a null-sequence (𝑟𝑗) ⊂ (0, 𝑟0] ∖ ℛ𝑥 so that

Θ(𝑥) = lim
𝑗→∞

𝜇(𝐵𝑟j(𝑥)) = 4𝜋𝑘𝑥,

as we wanted.

(ii) Suppose {𝑥𝑛} is a sequence of points in 𝑋 with 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞. Let 𝛿 > 0

and 𝑟 > 0. Thus, for 𝑛≫ 1 we have

Θ(𝑥𝑛) ≤ 𝜇(𝐵𝑟(𝑥𝑛)) ≤ 𝜇(𝐵𝑟+𝛿(𝑥)),

and so lim sup𝑛→∞ Θ(𝑥𝑛) ≤ 𝜇(𝐵𝑟(𝑥)). The result then follows from taking the limit as 𝑟 ↓

0. �

Corollary 3.7.3. 𝑆 = 𝑍 is a finite set with at most 𝑘 points; in fact,

ℋ0(𝑆) ≤
𝑘

min𝑥∈𝑆 𝑘𝑥
.

Proof. Proposition 3.7.2 immediately implies that 𝑆 is closed: if 𝑥𝑛 → 𝑥, with 𝑥𝑛 ∈ 𝑆, then

the upper semicontinuity of Θ implies that Θ(𝑥) ≥ lim supΘ(𝑥𝑛) ≥ 4𝜋, thereby showing that

𝑥 ∈ 𝑆. Now if𝐾 ⊂ 𝑋 is a compact subset, then 𝑆∩𝐾 is also compact. Then, given 0 < 𝑟 ≤ 𝑟0,

we can find a finite open covering {𝐵2𝑟j(𝑥𝑗)}1≤𝑗≤𝑙 of 𝑆 ∩ 𝐾 with 𝑥𝑗 ∈ 𝑆 ∩ 𝐾, 2𝑟𝑗 < 𝑟 and
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𝐵𝑟j(𝑥𝑗) pairwise disjoint. Hence,

𝑙
∑︁

𝑗=1

𝑟0𝑗 ≤
1

4𝜋

𝑙
∑︁

𝑗=1

lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝐵rj (𝑥j)(𝐴𝑖,Φ𝑖) (𝑥𝑗 ∈ 𝑆)

≤
1

4𝜋
lim inf
𝑖→∞

𝑚−1
𝑖

𝑙
∑︁

𝑗=1

ℰ𝐵rj (𝑥j)(𝐴𝑖,Φ𝑖)

≤
1

4𝜋
lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝑋(𝐴𝑖,Φ𝑖) (the 𝐵𝑟j(𝑥𝑗)’s are disjoint)

= 𝑘. (by the energy formula (1.3.19))

Finally, since 𝑆 is finite, we can write 𝑆 = {𝑥1, . . . , 𝑥𝑙} (for some 𝑙 ≤ 𝑘) and choose 𝑟 ∈ (0, 𝑟0]

such that the balls 𝐵𝑟(𝑥𝑗), 𝑗 = 1, . . . , 𝑙, are pairwise disjoint. Then

ℋ0(𝑆) =
𝑙
∑︁

𝑗=1

𝑟0 =
𝑙
∑︁

𝑗=1

1

4𝜋𝑘𝑥j
ℰR3(𝐴𝑥j ,Φ𝑥j)

=
𝑙
∑︁

𝑗=1

1

4𝜋𝑘𝑥j
lim
𝑖→∞

𝑚−1
𝑖 ℰ𝐵r(𝑥j)(𝐴𝑖,Φ𝑖)

≤
1

4𝜋min𝑗 𝑘𝑥j
lim
𝑖→∞

𝑚−1
𝑖

𝑙
∑︁

𝑗=1

ℰ𝐵r(𝑥j)(𝐴𝑖,Φ𝑖)

≤
1

4𝜋min𝑗 𝑘𝑥j
lim
𝑖→∞

𝑚−1
𝑖 ℰ𝑋(𝐴𝑖,Φ𝑖) (the 𝐵𝑟(𝑥𝑗) are pairwise disjoint)

=
𝑘

min𝑗 𝑘𝑥j
. (by (1.3.19))

�

Finally, writting 𝑆 = {𝑥1, . . . , 𝑥𝑙}, for some 𝑙 ≤ 𝑘 (by Corollary 3.7.3), we have

Proposition 3.7.4. 𝜇 = 4𝜋
𝑙
∑︁

𝑗=1

𝑘𝑥j𝛿𝑥j .

Proof. Firstly, we show that spt(𝜇) = 𝑆. Indeed, in one hand, by Proposition 3.7.2, note that

𝑥 ∈ 𝑆 implies Θ(𝑥) ≥ 4𝜋 > 0 and therefore 𝑥 ∈ spt(𝜇). On the other hand, if 𝑥 ∈ 𝑋 ∖ 𝑆 then

𝜇(𝐵𝑟(𝑥)) ≤ lim inf 𝜇𝑖(𝐵𝑟(𝑥)) = 0 for all 𝑟 ∈ (0, 𝑟0]. Therefore, 𝑥 ∈ 𝑋 ∖ spt(𝜇).

By the energy formula, we know that Θ(𝑥) ≤ 4𝜋𝑘 for all 𝑥 ∈ 𝑋 . In particular, given

𝐴 ⊆ spt(𝜇) = 𝑆, it follows that

𝜇(𝐴) =
𝑙
∑︁

𝑗=1

lim
𝑟↓0

𝜇(𝐴 ∩𝐵𝑟(𝑥𝑗)) ≤ 4𝜋𝑘ℋ0(𝑆).

Hence, 𝜇 is absolutely continuous with respect to ℋ0. Putting these facts together, the Radon–

Nikodym theorem implies that we can write 𝜇 = 𝜃ℋ0⌊𝑆, for some 𝐿1−function 𝜃 : 𝑆 → R
+.
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Since 𝑆 is finite, by the definition of the density function Θ it immediately follows that 𝜃 = Θ|𝑆 ,

thereby proving the desired statement. �

This completes the proof of Theorem 3.7.1.

3.8 Questions on convergence outside 𝑍

In order to improve the description of the large mass limit behavior of monopoles obtained

in [FO19] (and described in the last sections), one question that arises is about a possible con-

vergence result for the monopoles outside the zero set. More specifically, we hope that the

following result is true

Conjecture 3.8.1. Under the hypothesis of Theorem 3.1.1, there is a subsequence of {(𝐴𝑖,Φ𝑖)}𝑖∈N,

which we do not relabel, and a sequence of gauge transformations 𝑔𝑖 ∈ 𝒢(𝐸|𝑋∖𝑍) such that the

gauge transformed translated sequence

𝑔*𝑖

(︂

𝐴𝑖,Φ𝑖 −𝑚𝑖
Φ𝑖

|Φ𝑖|

)︂

converges in 𝐶∞
loc−topology to a configuration of zero mass on 𝑋 ∖ 𝑍.

In order to prove Conjecture 3.8.1, we need to show that for each point 𝑥 ∈ 𝑋 ∖ 𝑍 we can

find a subsequence 𝑖′(𝑥) → ∞ such that 𝑒(𝐴𝑖′ ,Φ𝑖′) is uniformly bounded in a neighborhood of

𝑥. Then it follows by Uhlenbeck’s Coulomb gauge theorem, elliptic regularity, Arzelà–Ascoli,

and a standard patching argument, that we can choose a single subsequence 𝑖′′ → ∞ such that

(︂

𝐴𝑖′′ ,Φ𝑖′′ −𝑚𝑖′′
Φ𝑖′′

|Φ𝑖′′ |

)︂

is 𝐶∞
loc−convergent modulo gauge to a configuration of zero mass on 𝑋 ∖ 𝑍.

We note that, a priori, given a sequence {(𝐴𝑖,Φ𝑖)} as in Theorem 3.1.1, Corollary 3.3.4

doesn’t even give us a local uniform bound on (a subsequence of) 𝑚−1
𝑖 𝑒(𝐴𝑖,Φ𝑖); in fact, the

bound it produces goes to infinity like 𝑂(𝑚3
𝑖 ) as 𝑖 → ∞. One possible way to get around this

problem is to explore Corollary 3.4.6 together with the Lie algebra structure of su(2) to get an

improved estimate on the Laplacian of the energy density outside 𝑍. In what follows we give

some results in this direction.

Suppose that 𝐸 is an SU(2)−bundle over (𝑋3, 𝑔). For each 𝑝 ∈ N0, consider the bundle

ℰ𝑝 := Λ𝑝𝑇 *𝑋 ⊗ su(2)𝐸 of su(2)𝐸−valued 𝑝−forms on 𝑋 with the natural metric induced by
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𝑔 and the Ad-invariant metric on su(2)𝐸 . Let Φ ∈ Ω0(𝑋, su(2)𝐸) be a Higgs field on 𝐸. Then

there is an orthogonal decomposition of ℰ𝑝 over the open subset 𝑈 := 𝑋 ∖ Φ−1(0),

ℰ𝑝|𝑈 = (ℰ𝑝)‖ ⊕ (ℰ𝑝)⊥,

into parallel (‖) and orthogonal (⊥) components with respect to Φ as follows: if 𝜉 is a

su(2)𝐸−valued form then

𝜉‖ := |Φ|−2⟨𝜉,Φ⟩su(2)EΦ,

and

𝜉⊥ := 𝜉 − 𝜉‖ = 4−1|Φ|−2[[𝜉,Φ],Φ].

Note that, for any 𝑝, 𝑞 ∈ N0,

[(ℰ𝑝)‖ , (ℰ𝑞)‖] = 0, [(ℰ𝑝)‖ , (ℰ𝑞)⊥] ⊆
(︀

ℰ𝑝+𝑞
)︀⊥

and [(ℰ𝑝)⊥ , (ℰ𝑞)⊥] ⊆
(︀

ℰ𝑝+𝑞
)︀‖
.

Moreover, given 𝜉 ∈ Ω𝑝(𝑋, su(2)𝐸), 𝜂 ∈ Ω𝑞(𝑋, su(2)𝐸) and 𝜁 ∈ Ω𝑟(𝑋, su(2)𝐸), one has

⟨[𝜉, 𝜂], 𝜁⟩ = ⟨[𝜉⊥, 𝜂⊥], 𝜁‖⟩+ ⟨[𝜉⊥, 𝜂‖], 𝜁⊥⟩+ ⟨[𝜉‖, 𝜂⊥], 𝜁⊥⟩.

For each 𝑝 ∈ N0, the operator ad(Φ) = [Φ, ·] restricted to su(2)𝐸−valued 𝑝−forms vanishes

precisely on the forms parallel to Φ and its eigenvalues restricted to the purely orthogonal ones

are ±2𝑖|Φ|; in particular, for all 𝜉 ∈ Ω𝑝(𝑋, su(2)𝐸),

|[Φ, 𝜉]| ≥ 2|Φ||𝜉⊥|.

With the above observations in mind and using Lemma 2.2.1, we get the following Bochner

estimate on the energy density of a monopole outside the Higgs field zero.

Corollary 3.8.2. Let (𝑋3, 𝑔) be an oriented Riemannian 3−manifold and𝐸 be a SU(2)−bundle

over 𝑋 . Suppose that (𝐴,Φ) is a monopole on 𝐸 and let 𝑈 := 𝑋 ∖ Φ−1(0) be the complement

of the zero set of Φ. Then, on 𝑈 one has

∆|d𝐴Φ|
2 ≤ 𝑐|Ric𝑔||d𝐴Φ|

2 + (𝑐′|(d𝐴Φ)
‖| − 4|Φ|2)|(d𝐴Φ)

⊥|2, (3.8.3)

where 𝑐, 𝑐′ > 0 are constants depending only on 𝑔 and the structure constants of su(2).

Equipped with Corollary 3.8.2, we can prove the following.

Proposition 3.8.4. Under the hypothesis of Theorem 3.1.1, the following holds.
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(i) For each 𝑥 ∈ 𝑋 ∖ 𝑍 we can find 𝑟 > 0 and a subsequence 𝑖′(𝑥) → ∞ such that

sup
𝐵r(𝑥)

𝑚−1
𝑖′ 𝑒(𝐴𝑖′ ,Φ𝑖′) → 0 as 𝑖′ → ∞.

(ii) Write 𝑍 = {𝑥1, . . . , 𝑥𝑙}, with 𝑙 ≤ 𝑘, and define the functions

𝑤𝑖 :=
1

2

(︀

𝑚2
𝑖 − |Φ𝑖|

2
)︀

.

For each 𝑟 ∈ (0, 𝑟0] such that the 𝐵𝑟(𝑥𝛼) are pairwise disjoint, there is a subsequence

𝑖𝑗(𝑟) → ∞ such that

𝑒𝑖j . 𝑤𝑖j on 𝑋 ∖𝐵𝑟(𝑍). (3.8.5)

Proof. (i) Suppose 𝑥 ∈ 𝑋 ∖𝑍. Then there exists 𝑟 ∈ (0, 𝑟0] and a subsequence 𝑖′ → ∞ such

that

𝑚−1
𝑖′ ℰ𝐵r(𝑥)(𝐴𝑖′ ,Φ𝑖′) < 𝜀𝑘.

By taking a further subsequence if necessary, we may assume that

𝑚𝑖′ > max{𝑚*, 2𝑅𝑘𝑟
−1, 2𝑟−1} for all 𝑖′. In particular, by Corollaries 3.3.4 and 3.4.6,

for all 𝑖′ one has

sup
𝐵 r

2
(𝑥)

|d𝐴i′Φ𝑖′ | ≤ 𝑚2
𝑖′𝐶

1/2
0 𝜀

1/2
𝑘 and (3.8.6)

inf
𝐵 r

2
(𝑥)
|Φ𝑖′ | ≥

𝑚𝑖′

4
. (3.8.7)

Thus, on 𝐵 r
2
(𝑥), the term 𝑐′|d𝐴i′Φ𝑖′ | − 4|Φ𝑖′ |

2 in the Bochner estimate (3.8.2) is nonposi-

tive provided we suppose 𝜀𝑘 is sufficiently small. Thus, we get

∆𝑒(𝐴𝑖′ ,Φ𝑖′) ≤ 𝑐𝑒(𝐴𝑖′ ,Φ𝑖′) on 𝐵 r
2
(𝑥). (3.8.8)

With this improved (linear) bound on the Laplacian of the energy densities it follows from

a standard mean value inequality (cf. Theorem A.3) that

sup
𝐵 r

4
(𝑥)

𝑚−1
𝑖′ 𝑒(𝐴𝑖′ ,Φ𝑖′) . 𝑟−3𝑚−1

𝑖′

∫︁

𝐵r(𝑥)

𝑒(𝐴𝑖′ ,Φ𝑖′).

Now the convergence of measures given by Theorem 3.7.1 implies that

𝑚−1
𝑖′

∫︁

𝐵r(𝑥)

𝑒(𝐴𝑖′ ,Φ𝑖′) → 0 as 𝑖′ → ∞,

thus proving the desired result.
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(ii) Using the above part (i) and a standard diagonal argument, given 𝑟 > 0 as in the statement,

there is a subsequence 𝑖𝑗(𝑟) → ∞ such that

∆𝑒(𝐴𝑖j ,Φ𝑖j) ≤ 𝑐𝑒(𝐴𝑖j ,Φ𝑖j) on 𝑋 ∖𝐵𝑟(𝑍). (3.8.9)

Since ∆𝐴ij
Φ𝑖j = 0 and (𝐴𝑖j ,Φ𝑖j) has finite mass 𝑚𝑖j , it follows that for each 𝑖𝑗 we have

∆𝑤𝑖j = 𝑒(𝐴𝑖j ,Φ𝑖j) =: 𝑒𝑖j (3.8.10)

and

lim
𝜌→∞

𝑤𝑖j = 0. (3.8.11)

Putting together (3.8.9) and (3.8.10) gives

∆(𝑐𝑤𝑖j − 𝑒𝑖j) ≥ 0. (3.8.12)

Now since both 𝑒𝑖j (cf. Corollary 2.3.3) and 𝑤𝑖j (cf. (3.8.11)) goes to zero as 𝜌 → ∞,

inequality (3.8.5) follows from the Maximum Principle.

�

These facts may be helpful in establishing Conjecture 3.8.1, but at the time of writing it is

not clear to the author how to prove it completely.



CHAPTER 4. PARTIAL RESULTS ON LARGE MASS MONOPOLES ON AC G2−MANIFOLDS 76

Chapter 4

Partial results on large mass monopoles on

AC G2−manifolds

We turn to the problem of analyzing sequences of large mass G2−monopoles using anal-

ogous techniques of those employed in Chapter 3 (cf. [FO19]). In this higher dimensional

case, new technicalities and difficulties arises. More specifically, a priori it is not so clear what

should be the precise definition of the blow-up set and, in fact, a suitable 𝜀−regularity result

for the more relevant 𝜓−energy density requires a monotonicity formula for the renormalized

𝜓−energy and a Bochner estimate that in general are not available without further hypothesis.

Moreover, one expects that the relevant blow-up set(s), including the zero set, have Hausdorff

dimension 4 (codimension 3) and to treat the bubbling analysis on these one needs regularity

results and techniques from geometric measure theory.

We start by proving the desired versions of the above mentioned results under a certain mild

assumption, satisfied by, e.g., the examples in [Oli14b]. In Section 4.1 we give codimension

3 and 4 monotonicity formulas for the renormalized 𝜓−energy on small geodesic balls as a

consequence of the general formula in §2.1. Next, in Section 4.2 we give the G2−monopoles

version of the Bochner–Weitzenböck formula of §2.2 and its consequent estimates, including

a version of the estimate outside the zero set of the Higgs field for SU(2)−bundles analogous

to the one given by Corollary 3.8.2 in 3−dimensions. As a consequence of these results, in

Section 4.3 we derive appropriate 𝜀−regularities for the 𝜓−energy density.

With the previous results at hand, we then proceed to prove a number of properties con-

cerning the behavior of sequences (𝐴𝑖,Φ𝑖) of G2−monopoles of arbitrarily large mass and

fixed monopole class, satisfying mild assumptions. We begin in Section 4.5 defining a notion
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of blow-up set 𝑆 in this context, which corresponds to the set of points where the 𝜓−energy

of the sequence concentrates, and as in the 3−dimensional case we define the zero set 𝑍 as the

limiting set of the Higgs fields zeros. We prove that 𝑍 ⊆ 𝑆 and that 𝑍 has finite ℋ4−measure.

After passing to a subsequence if necessary, the Radon measures 𝜇𝜓𝑖 := 𝑚−1
𝑖 𝑒𝜓(𝐴𝑖,Φ𝑖)ℋ

7 have

a weak* limit 𝜇𝜓 = 𝑒𝜓∞ℋ7 + 𝜈, where 𝑒𝜓∞ := lim inf𝑖→∞𝑚−1
𝑖 𝑒𝜓(𝐴𝑖,Φ𝑖) and 𝜈 ≪ ℋ4⌊𝑆 is

some (nonnegative) Radon measure singular with respect to ℋ7. We begin Section 4.6 showing

that the 4−dimensional density function Θ𝜓 of 𝜇𝜓 exists, is bounded, upper semi-continuous

and its support equals 𝑆. We then proceed to show that 𝑆 decomposes as:

𝑆 = 𝑄 ∪ sing(𝑒𝜓∞),

where 𝑄 := supp(𝜈) and sing(𝑒𝜓∞) is the support of the 4−dimensional upper density of 𝑒𝜓∞ℋ7.

Further, sing(𝑒𝜓∞) is shown to have zero ℋ4−measure. We end this section showing a first

regularity result for the blow-up set: 𝑄 is a ℋ4−rectifiable set, i.e. at ℋ4−a.e. 𝑥 ∈ 𝑄 the

approximate 4−dimensional tangent space 𝑇𝑥𝑄 exists, and 𝜈 can be written as 𝜈 = Θ𝜓ℋ4⌊𝑄.

We end this chapter with Section 4.7, where we start the analysis of the behavior of blow-up

configurations of (𝐴𝑖,Φ𝑖) for 𝑖≫ 1 at a smooth point 𝑥 ∈ 𝑄, i.e. 𝑇𝑥𝑄 exists and 𝑥 /∈ sing(𝑒𝜓∞).

We show an asymptotic translation invariance result and finish stating some conjectures on the

possible outcomes of a still lacking complete analysis.

4.1 Monotonicity for the renormalized 𝜓−energy

Let (𝑋7, 𝑔) be a G2−manifold of bounded geometry and let 𝐸 be a 𝐺−bundle over 𝑋 .

Fixing a G2−monopole (𝐴,Φ) on 𝐸, a point 𝑥 ∈ 𝑋 and 𝑘 ∈ N0, define functions 𝜃𝑘, 𝜃
𝜓
𝑘 :

(0, 𝑟0] → [0,∞) and 𝜃𝜑𝑘 : (0, 𝑟0] → R by

𝜃𝑘(𝑟) := 𝑒𝑐𝑟
2

𝑟−𝑘ℰ𝐵r(𝑥)(𝐴,Φ)

𝜃𝜓𝑘 (𝑟) := 𝑒𝑐𝑟
2

𝑟−𝑘ℰ𝜓𝐵r(𝑥)(𝐴,Φ)

𝜃𝜑𝑘 (𝑟) :=
𝑒𝑐𝑟

2
𝑟−𝑘

2

∫︁

𝐵r(𝑥)

(|𝜋14(𝐹𝐴)|
2 − 2|𝜋7(𝐹𝐴)|

2)

= −
𝑒𝑐𝑟

2
𝑟−𝑘

2

∫︁

𝐵r(𝑥)

⟨𝐹𝐴 ∧ 𝐹𝐴⟩ ∧ 𝜑.

Note that, by the energy identity (1.3.10), we have

𝜃𝑘 = 𝜃𝜑𝑘 + 𝜃𝜓𝑘 . (4.1.1)
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In what follows, we want to prove monotonicity formulas for 𝜃𝜓3 and 𝜃𝜓4 . We shall consider the

following additional assumption:

⃦

⃦|𝜋14(𝐹𝐴)|
2 − 2|𝜋7(𝐹𝐴)|

2
⃦

⃦

𝐿∞(𝑋)
. 1. (4.1.2)

Then we have:

Proposition 4.1.3 (Monotonicity for the renormalized 𝜓−energy under assumption (4.1.2)).

Let (𝐴,Φ) be a G2−monopole on 𝐸 satisfying (4.1.2). Then for all 𝑥 ∈ 𝑋 and 0 < 𝑠 ≤ 𝑟 ≤ 𝑟0

one has

𝑒𝑐𝑟
2

𝑟−3ℰ𝜓𝐵r(𝑥)(𝐴,Φ)−𝑒
𝑐𝑠2𝑠−3ℰ𝜓𝐵s(𝑥)(𝐴,Φ) ≥

∫︁

𝐴r,s(𝑥)

𝑒𝑐𝜌
2

𝜌−3
(︀

|𝜄𝜕ρ𝐹𝐴|
2 + |𝜄𝜕ρd𝐴Φ|

)︀

−𝑐(𝑟4−𝑠4).

(4.1.4)

and

𝑒𝑐𝑟
2

𝑟−4ℰ𝜓𝐵r(𝑥)(𝐴,Φ)−𝑒
𝑐𝑠2𝑠−4ℰ𝜓𝐵s(𝑥)(𝐴,Φ) ≥

∫︁

𝐴r,s(𝑥)

𝑒𝑐𝜌
2

𝜌−4
(︀

|𝜄𝜕ρ𝐹𝐴|
2 + |𝜄𝜕ρd𝐴Φ|

2
)︀

−𝑐(𝑟3−𝑠3).

(4.1.5)

Proof. Note that assumption (4.1.2) implies 𝜃𝜑𝑘 (𝑟) = 𝑂(𝑟7−𝑘). The result then readily follows

by combining the general monotonicity formula (2.1.3) of Theorem 2.1.2 for 𝑛 = 7 with the

identity (4.1.1). �

4.2 Bochner–Weitzenböck formula and estimates (G2−case)

The following results are direct consequences of the formulas in Lemma 2.2.1.

Lemma 4.2.1 (Bochner-Weitzenböck for G2−monopoles). If (𝑋7, 𝜓4, 𝑔) is a G2−manifold

and (𝐴,Φ) is a G2−monopole then

1

2
∆|d𝐴Φ|

2 =−
2

3
⟨* ([d𝐴Φ, d𝐴Φ] ∧ 𝜓) , d𝐴Φ⟩ − 2⟨*[*𝜋14(𝐹𝐴), d𝐴Φ], d𝐴Φ⟩

− |[d𝐴Φ,Φ]|
2 − |∇𝐴(d𝐴Φ)|

2. (4.2.2)

In particular,

∆𝑒𝜓(𝐴,Φ) . |𝜋14(𝐹𝐴)|𝑒
𝜓(𝐴,Φ) + 𝑒𝜓(𝐴,Φ)3/2. (4.2.3)

Proof. This follows from Lemma 2.2.1 observing that Ric𝑔 ≡ 0 for a G2−manifold and that

*3𝜋7(𝐹𝐴) = d𝐴Φ ∧ 𝜓 for a G2−monopole. �
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Corollary 4.2.4 (Bochner type estimate under assumption (4.1.2)). Let (𝑋7, 𝜓, 𝑔) be a G2−mani-

fold and 𝐸 be a 𝐺−bundle over 𝑋 . If (𝐴,Φ) is a G2−monopole on 𝐸 satisfying assumption

(4.1.2), then

∆𝑒𝜓(𝐴,Φ) . 𝑒𝜓(𝐴,Φ) + 𝑒𝜓(𝐴,Φ)3/2. (4.2.5)

Proof. Direct consequence of Lemma 4.2.1 noting that (4.1.2) implies |𝜋14(𝐹𝐴)|. 1+𝑒𝜓(𝐴,Φ).

�

Restricting attention to SU(2)−bundles and recalling the discussion on §3.8, by Lemma

4.2.1 have also have the following Bochner estimate on the energy density of a G2−monopole

outside the Higgs field zero.

Corollary 4.2.6. Let (𝑋7, 𝑔) be G2−manifold and 𝐸 be a SU(2)−bundle over𝑋 . Suppose that

(𝐴,Φ) is a G2−monopole on 𝐸 and let 𝑈 := 𝑋 ∖ Φ−1(0) be the complement of the zero set of

Φ. Then on 𝑈 one has

∆|d𝐴Φ|
2 ≤

(︀

𝑐0|(d𝐴Φ)
‖|+ 𝑐1|(𝜋14(𝐹𝐴))

‖| − 4|Φ|2
)︀

|(d𝐴Φ)
⊥|2

+ 𝑐2|(𝜋14(𝐹𝐴))
⊥||(d𝐴Φ)

⊥||(d𝐴Φ)
‖|, (4.2.7)

where the 𝑐𝑖 > 0, 𝑖 = 0, 1, 2, are constants depending only on 𝑔 and the structure constants of

su(2).

4.3 𝜀−regularity for the 𝜓−energy density

We are now able to prove 𝜀−regularity results for the 𝜓−energy density of G2−monopoles

satisfying assumption (4.1.2) using the monotonicity of Proposition 4.1.3 and the Bochner esti-

mate of Corollary 4.2.4.

Theorem 4.3.1. Let (𝑋7, 𝜓, 𝑔) be an oriented G2−manifold of bounded geometry and let 𝐸 be

a 𝐺−bundle over 𝑋 . Then there are constants 𝜀𝜓 > 0 and 𝐶𝜓 > 0 such that the following

holds. Let (𝐴,Φ) be a G2−monopole satisfying assumption (4.1.2). If 𝑥 ∈ 𝑋 and 0 < 𝑟 ≤ 𝑟0

are such that

𝜀 := 𝑟−3ℰ𝜓𝐵r(𝑥)(𝐴,Φ) < 𝜀𝜓,

then

sup
𝐵 r

2
(𝑥)

𝑒𝜓(𝐴,Φ) ≤ 𝐶𝜓(𝑟−4𝜀+ 1). (4.3.2)
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Proof. We apply the mean value inequality of Theorem A.3 for 𝑓 := 𝑒𝜓(𝐴,Φ), 𝑑 = 4, 𝜏(𝑟) =

𝑐𝑟4, 𝑎0 = 0 and 0 < 𝑎1, 𝑎 . 1. Indeed, with this setup, the monotonicity formula of Proposition

4.1.3 implies (A.4), and the Bochner estimate of Corollary 4.2.4 implies (A.5) with critical

exponent 𝛼 = 3/2 = (𝑑+2)/2. Therefore, noting that 1 . 𝑟−4, it follows from (A.7) that there

is 𝜀𝜓 := ~𝑎−2 > 0 and 𝐶𝜓 > 0 (depending only on the geometry of (𝑋7, 𝑔) and the structure

constants of g) such that if 𝜀+ 𝜏 < 𝜀𝜓 then (4.3.2) holds. Now since 𝜏(𝑟) = 𝑐𝑟4 and 𝑟 ≤ 𝑟0, by

choosing 𝑟0 smaller (depending only on the geometry) we may assume that 𝜏(𝑟0) < 4−1𝜀𝜓, so

that replacing 𝜀𝜓 by 2−1𝜀𝜓 we get the desired result. �

As in the 3−dimensional case, in order to analyze sequences of large mass G2−monopoles

the following version of the 𝜀−regularity will come in handy.

Theorem 4.3.3 (𝜀−regularity for the𝜓−energy density under assumption (4.1.2)). Let (𝑋7, 𝜓, 𝑔)

be an oriented G2−manifold of bounded geometry and let 𝐸 be a 𝐺−bundle over 𝑋 . Then

there are constants 𝜀𝜓 > 0 and 𝐶𝜓 > 0 such that the following holds. Let (𝐴,Φ) be a

G2−monopole satisfying assumption (4.1.2). For any 𝑚 ≥ 1 and 𝑅 > 0, if 𝑥 ∈ 𝑋 and

0 < 𝑟 ≤ min{𝑅𝑚−1, 𝑟0} are such that

𝜀 := 𝑚−1𝑟−4ℰ𝜓𝐵r(𝑥)(𝐴,Φ) < 𝜀𝜓,

then

sup
𝐵 r

4
(𝑥)

𝑚−1𝑒𝜓(𝐴,Φ) ≤ 𝐶𝜓
𝑅

(︀

𝑟−3𝜀+𝑚−1
)︀

, (4.3.4)

where 𝐶𝜓
𝑅 := 𝐶𝜓max {1, 𝑅3}.

Proof. We give a direct proof, also based on the Heinz trick (like the proof of Theorem A.3) but

more on the spirit of [Wal17a, Appendix A]. Consider the function 𝜃 : 𝐵𝑟/2(𝑥) → [0,∞) given

by

𝜃(𝑦) :=
(︁𝑟

2
− 𝑑(𝑥, 𝑦)

)︁3

𝑚−1𝑒𝜓(𝐴,Φ)(𝑦).

By continuity, 𝜃 attains a maximum. Since 𝜃 is non-negative and vanishes on the boundary

𝜕𝐵𝑟/2(𝑥), it achieves its maximum

𝑀 := max
𝐵r/2(𝑥)

𝜃

in the interior of𝐵𝑟/2(𝑥). We will derive a bound for𝑀 of the form𝑀 . max {1, 𝑅3} (𝜀+𝑚−1𝑟3),

from which the assertion of the theorem follows. Let 𝑦0 ∈ 𝐵𝑟/2(𝑥) be a point with 𝜃(𝑦0) = 𝑀 ,

set

𝑒0 := 𝑚−1𝑒𝜓(𝐴,Φ)(𝑦0)
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and

𝑠0 :=
1

2

(︁𝑟

2
− 𝑑(𝑥, 𝑦0)

)︁

,

Note that

𝑦 ∈ 𝐵𝑠0(𝑦0) ⇒
(︁𝑟

2
− 𝑑(𝑥, 𝑦)

)︁

≥ 𝑠0.

Therefore,

𝑦 ∈ 𝐵𝑠0(𝑦0) ⇒ 𝑚−1𝑒𝜓(𝐴,Φ)(𝑦) ≤ 𝑠−3
0 𝜃(𝑦) ≤ 𝑠−3

0 𝜃(𝑦0) . 𝑒0.

In particular, from the Bochner estimate (4.2.5) that

∆(𝑚−1𝑒𝜓) . (𝑚−1𝑒𝜓) +𝑚1/2(𝑚−1𝑒𝜓)3/2 . 𝑒0 +𝑚1/2𝑒
3/2
0 on 𝐵𝑠0(𝑦0).

Now by Lemma A.1 we have

𝑒0 . 𝑠−7

∫︁

𝐵s(𝑦0)

𝑚−1𝑒𝜓(𝐴,Φ)vol + 𝑠2(𝑒0 +𝑚1/2𝑒
3/2
0 ), ∀𝑠 ≤ 𝑠0.

Then the almost monotonicity of Proposition 4.1.3 implies

𝑒0 . 𝑠−3𝜀+ 𝑠−3𝑚−1𝑟3 + 𝑠2(𝑒0 +𝑚1/2𝑒
3/2
0 ),

which we rewrite as

𝑠3𝑒0 . 𝜀+𝑚−1𝑟3 + 𝑠5(𝑒0 +𝑚1/2𝑒
3/2
0 ). (4.3.5)

Since 𝑚 ≥ 1, (4.3.5) implies

𝑠3𝑒0 . 𝜀+𝑚−1𝑟3 + 𝑠5(𝑚2𝑒0 +𝑚1/2𝑒
3/2
0 ). (4.3.6)

We split into two cases.

Case (i). 𝑚2𝑒0 ≥ 𝑚1/2𝑒
3/2
0 ( ⇐⇒ 𝑚3 ≥ 𝑒0): in this case, for each 𝑠 ≤ 𝑠0, it follows from

(4.3.6) that

𝑠3𝑒0 ≤
𝑐(𝜀+𝑚−1𝑟3)

1− 𝑐𝑚2𝑠2
. (4.3.7)

Thus, if 𝑐𝑚2𝑠20 ≤ 1/2 we get

𝑀 = 𝜃(𝑦0) . 𝑠30𝑒0 . 𝜀+𝑚−1𝑟3.

Otherwise, setting 𝑠 := (2𝑐)−1/2𝑚−1 < 𝑠0 and plugging into (4.3.7) yields

𝑒0 . 𝑚3(𝜀+𝑚−1𝑟3).
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Since 𝑠0 ≤ 𝑟 and by hypothesis 𝑟 ≤ 𝑅𝑚−1, we conclude that

𝑀 . 𝑠30𝑒0 ≤ 𝑅3(𝜀+𝑚−1𝑟3).

Case (ii). 𝑚1/2𝑒
3/2
0 > 𝑚2𝑒0 ( ⇐⇒ 𝑚3 < 𝑒0): in this case, 𝑚1/2 < 𝑒1/6 and thus 𝑒5/30 >

𝑚1/2𝑒
3/2
0 > 𝑚2𝑒0, so that from (4.3.6) we derive

𝑠3𝑒0 ≤ 𝑐(𝜀+𝑚−1𝑟3) + 𝑐𝑠5𝑒
5/3
0 = 𝑐(𝜀+𝑚−1𝑟3) + 𝑠3𝑒0𝑐(𝑠

2𝑒
2/3
0 ), ∀𝑠 ≤ 𝑠0. (4.3.8)

Thus, setting 𝑡 = 𝑡(𝑠) := 𝑠𝑒
1/3
0 , the inequality (4.3.8) can be expressed as

𝑡3(1− 𝑐𝑡2) ≤ 𝑐(𝜀+𝑚−1𝑟3).

Now we can choose 𝜀𝜓 > 0 sufficiently small, where the smallness depends only on 𝑐, which

in turn depends only on 𝑔 and 𝐺, so that for 𝜀 ≤ 𝜀𝜓 the corresponding equation 𝑡3(1 − 𝑐𝑡2) =

𝑐(𝜀+𝑚−1𝑟3) has three small (real) roots 𝑡1, 𝑡2, 𝑡3, which are approximately ±(𝑐𝜀+ 𝑐𝑚−1𝑟3)1/3,

and two large (complex) roots. Since 𝑡(0) = 0 and 𝑡 is continuous, for each 𝑠 ∈ [0, 𝑠0], 𝑡(𝑠)

must be less than the smallest positive (real) root. Therefore, 𝑡(𝑠) . (𝜀 + 𝑚−1𝑟3)1/3 for all

𝑠 ∈ [0, 𝑠0]; in particular, 𝑀 . 𝑠30𝑒0 . 𝜀+𝑚−1𝑟3. This finishes the proof. �

Remark 4.3.9. We conjecture that Theorem 4.3.3 should be a consequence of Theorem 4.3.1.

Also note that the first imply the case 𝑟 ∈ (0,min{1, 𝑟0}] of the later by setting 𝑚 = 𝑟−1 and

𝑅 = 1.

4.4 An interior lower bound on the Higgs field (G2 case)

Let (𝑋7, 𝜓, 𝑔) be a G2−manifold of bounded geometry and 𝐸 be a 𝐺−bundle over 𝑋 .

Given real parameters 𝛿 ∈ (0, 1) and 𝑅 > 0, we define

𝜀𝜓𝛿,𝑅 := min{(𝐶𝜓
𝑅)

−1𝑅𝛿2, 𝜀𝜓}, (4.4.1)

where 𝜀𝜓 > 0 and 𝐶𝜓
𝑅 > 0 are the constants given by Theorem 4.3.3.

A simple argument using the fundamental theorem of calculus together with Theorem 4.3.3

proves the following.

Proposition 4.4.2. Let 𝛿 ∈ (0, 1), 𝑚 ≥ 1, 𝑅 > 0 be real parameters and (𝐴,Φ) ∈ 𝒞(𝐸) be a

G2−monopole satisfying assumption (4.1.2). If 𝑟 := 𝑅𝑚−1 ≤ 𝑟0 and 𝑥 ∈ 𝑋 are such that

sup
𝐵 r

4
(𝑥)

|Φ| ≥ 𝑚𝛿, (4.4.3)
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then

𝑚−1𝑟−4ℰ𝜓𝐵r(𝑥)(𝐴,Φ) < 𝜀𝜓𝛿,𝑅 =⇒ |Φ| >
𝑚𝛿

2
−
𝑅(𝐶𝜓

𝑅)
1
2

2𝑚
on 𝐵 r

4
(𝑥). (4.4.4)

Proof. Fix 𝑞 ∈ 𝜕𝐵 r
4
(𝑥) such that the restriction of |Φ| to 𝜕𝐵 r

4
(𝑥) attains its maximum at 𝑞. For

any 𝑝 ∈ 𝐵 r
4
(𝑥) we can choose a (smooth by parts) path 𝛾𝑝 in 𝐵 r

4
(𝑥) with length 𝐿(𝛾𝑝) ≤ 𝑟

2

joining 𝑝 to 𝑞. Thus, using the fundamental theorem of calculus and Kato’s inequality we get:

|Φ|(𝑞)− |Φ|(𝑝) ≤

⃒

⃒

⃒

⃒

⃒

∫︁

𝛾p

d|Φ|

⃒

⃒

⃒

⃒

⃒

≤

∫︁

𝛾p

|d𝐴Φ| ≤
𝑟

2
sup
𝐵 r

4
(𝑥)

|d𝐴Φ|.

Using the assumption (4.4.3), it follows that

|Φ|(𝑝) ≥ 𝑚𝛿 −
𝑟

2
sup
𝐵 r

4
(𝑥)

|d𝐴Φ|, ∀𝑝 ∈ 𝐵 r
4
(𝑥). (4.4.5)

On the other hand, using the hypothesis, Theorem 4.3.3 gives the following:

𝑟

2
sup
𝐵 r

4
(𝑥)

|d𝐴Φ| ≤
1

2
(𝐶𝜓

𝑅)
1/2𝑟−1/2𝑚1/2(𝜀𝜓𝛿,𝑅)

1/2 +
𝑟

2
(𝐶𝜓

𝑅)
1/2 =

𝑚𝛿

2
+
𝑅(𝐶𝜓

𝑅)
1/2

2𝑚
. (4.4.6)

Putting (4.4.5) and (4.4.6) together completes the proof. �

Combining the above with Theorem 2.4.1, we get:

Theorem 4.4.7. Let (𝑋7, 𝜓, 𝑔) be an AC G2−manifold with one end, 𝐸 be an SU(2)−bundle

over 𝑋 and 𝑘 ∈ N. Then there are positive constants 𝑅𝜓
𝑘 , 𝜀

𝜓
𝑘 ≤ 𝜀𝜓 and 𝑐𝜓𝑘 such that the

following holds. Let (𝐴,Φ) ∈ 𝒞(𝐸) be a finite mass G2−monopole over (𝑋7, 𝜓, 𝑔) with fixed

monopole class 𝑐1(𝐿) such that 𝑘 := ⟨𝑐1(𝐿) ∪ [𝜄*𝜓], [𝑁 ]⟩ ̸= 0, mass 𝑚 ≫𝑔,𝑘 1 and satisfying

both the energy formula (1.3.24) and assumption (4.1.2). Then for 𝑟 := 𝑅𝜓
𝑘𝑚

−1 one has

𝑚−1𝑟−4ℰ𝜓𝐵r(𝑥)(𝐴,Φ) < 𝜀𝜓𝑘 =⇒ |Φ| >
𝑚

4
−𝑚−1𝑐𝜓𝑘 on 𝐵 r

4
(𝑥). (4.4.8)

Proof. Let

𝑅𝜓
𝑘 := 𝑐𝑘,

𝜀𝜓𝑘 := 𝜀𝜓
1/2,𝑅ψk

= min{4−1(𝐶𝜓

𝑅ψk
)−1𝑅𝜓

𝑘 , 𝜀
𝜓}, and

𝑐𝜓𝑘 := 2−1𝑅𝜓
𝑘 (𝐶

𝜓

𝑅ψk
)1/2.

Here we choose 𝑐 > 0 depending only on 𝑔 big enough so that it follows from Theorem 2.4.1

with 𝛿 := 1/2 and Λ = 4𝜋𝑘 that

sup
𝜕𝐵 r

4
(𝑥)

|Φ| ≥
𝑚

2
.

Therefore, by hypothesis, we can apply Proposition 4.4.2 with 𝛿 = 1/2 and 𝑅 = 𝑅𝜓
𝑘 to get the

desired result. �
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4.5 The blow-up set and the zero set (G2 case)

Let 𝐸 be an SU(2)−bundle over an AC G2−manifold (𝑋7, 𝜓, 𝑔). From now on we shall

consider a sequence {(𝐴𝑖,Φ𝑖)}𝑖∈N of finite mass G2−monopoles on 𝐸 with fixed monopole

class 𝑐1(𝐿) such that 𝑘 := ⟨𝑐1(𝐿) ∪ [𝜄*𝜓], [𝑁 ]⟩ ≠ 0 and masses 𝑚𝑖 satisfying lim sup𝑚𝑖 = ∞;

in fact, by taking a subsequence if necessary, we may assume that 𝑚𝑖 ↑ ∞. Finally, we shall

suppose that the (𝐴𝑖,Φ𝑖) satisfy the energy formula (1.3.24) (e.g., they satisfy the conditions of

Proposition 1.3.23), so that

ℰ𝜓𝑋(𝐴𝑖,Φ𝑖) = 4𝜋𝑘𝑚𝑖, ∀𝑖 ∈ N. (4.5.1)

In order to study the behavior of such sequence of infinitely large mass G2−monopoles,

we shall consider the corresponding sequence of Radon measures

𝜇𝜓𝑖 := 𝑚−1
𝑖 𝑒𝜓(𝐴𝑖,Φ𝑖)ℋ

7 (4.5.2)

These are finite and their total mass are uniformly bounded by the energy formula (4.5.1),

which yields 𝜇𝜓𝑖 (𝑋) = 4𝜋𝑘. Thus, after passing to a subsequence which we do not relabel, they

weakly converge to a positive Radon measure 𝜇𝜓. By Fatou’s lemma and Riesz representation

theorem, we can write

𝜇𝜓𝑖 ⇀ 𝜇𝜓 = 𝑒𝜓∞ℋ7 + 𝜈, (4.5.3)

where 𝑒𝜓∞ : 𝑋 → [0,∞] is the 𝐿1−function

𝑒𝜓∞ := lim inf
𝑖→∞

𝑚−1
𝑖 𝑒𝜓(𝐴𝑖,Φ𝑖)

and 𝜈 is singular with respect to ℋ7; 𝜈 is called the defect measure.

We set

ℛ𝜓
𝑥 := {𝑟 ∈ (0, 𝑟0] : 𝜇

𝜓(𝜕𝐵𝑟(𝑥)) > 0}.

For all 𝑟 ∈ (0, 𝑟0] ∖ ℛ
𝜓
𝑥 one has

𝜇𝜓(𝐵𝑟(𝑥)) = lim
𝑖→∞

𝜇𝜓𝑖 (𝐵𝑟(𝑥)).

Since 𝜇𝜓 is locally finite, the set ℛ𝜓
𝑥 is at most countable.

Fixed the above context, we now make the following definitions.

Definition 4.5.4 (Blow-up and zero sets). The blow-up set is defined by

𝑆 :=
⋃︁

𝜀>0

𝑆𝜀,
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where

𝑆𝜀 :=
⋂︁

0<𝑟≤𝑟0

{︂

𝑥 ∈ 𝑋 : lim inf
𝑖→∞

𝑚−1
𝑖 𝑒𝑐𝑟

2

𝑟−4

∫︁

𝐵r(𝑥)

|𝐹𝐴i ∧ 𝜓|
2 ≥ 𝜀

}︂

.

The zero set is the accumulation points of the Higgs fields zeros:

𝑍 :=
⋂︁

𝑛≥1

⋃︁

𝑖≥𝑛

Φ−1
𝑖 (0).

Note that 𝑍 ⊆ 𝑋 is a closed subset.

For the rest of this chapter, we shall work under the following:

Assumption 1: The (𝐴𝑖,Φ𝑖) satisfy assumption (4.1.2) uniformly, i.e.

⃦

⃦|𝜋14(𝐹𝐴i)|
2 − 2|𝜋7(𝐹𝐴i)|

2
⃦

⃦

𝐿∞(𝑋)
. 1, for all 𝑖 ≥ 1. (4.5.5)

Example 4.5.6. We note that the only known nontrivial finite mass G2−monopoles on AC

manifolds, namely the invariant G2−monopoles on the Bryant–Salamon manifolds Λ2
−(CP

2)

and Λ2
−(S

4), were constructed in [Oli14b] and they satisfy assumption (4.5.5). For instance,

recall the following:

Theorem 4.5.7 ([Oli14b]). The moduli space ℳ𝑖𝑛𝑣(Λ
2
−(CP

2), 𝑃 ) = ℳ𝑖𝑛𝑣 of SU(3)−invariant

irreducible G2−monopoles on a homogeneous principal SU(2)−bundle 𝑃 over Λ2
−(CP

2) is non

empty and the following hold:

1. For all (𝐴,Φ) ∈ ℳ𝑖𝑛𝑣, Φ
−1(0) = CP

2 is the zero section and the mass gives a bijection

𝑚 : ℳ𝑖𝑛𝑣 → R
+.

Let (𝐴𝑚,Φ𝑚) ∈ ℳ𝑖𝑛𝑣 be a monopole with mass 𝑚 ∈ R
+, there is a gauge in which

(𝐴𝑚,Φ𝑚) =
(︀

𝐴𝑐1,−1 + 𝑓 2𝑏𝑚 (𝜈1 ⊗ 𝑇2 + 𝜈2 ⊗ 𝑇3) , 𝜑𝑚𝑇1
)︀

,

with 𝑏𝑚(0) = 1 and 𝜑𝑚(0) = 0. In this gauge, the curvature of the connection 𝐴𝑚 is

𝐹𝐴m =
𝑑

𝑑𝜌

(︀

𝑓 2𝑏𝑚
)︀

(𝑇2 ⊗ 𝑑𝜌 ∧ 𝜈1 + 𝑇3 ⊗ 𝑑𝜌 ∧ 𝜈3) + 𝑓 2𝑏𝑚 (𝑇2 ⊗ Ω2 + 𝑇3 ⊗ Ω3)

+
(︀

2
(︀

𝑓 4𝑏2𝑚 − 1
)︀

𝜈12 + Ω1

)︀

⊗ 𝑇1. (4.5.8)

2. Let 𝑅 > 0, and {(𝐴𝜆,Φ𝜆)}𝜆∈[Λ,+∞) ⊂ ℳ𝑖𝑛𝑣 be a sequence of monopoles with masses

𝜆 → ∞. Then there is a sequence 𝜂(𝜆,𝑅) converging to 0 as 𝜆 → ∞ such that for all

𝑥 ∈ CP
2

exp*
𝜂(𝐴𝜆, 𝜂Φ𝜆)|Λ2

−
(CP2)x



CHAPTER 4. PARTIAL RESULTS ON LARGE MASS MONOPOLES ON AC G2−MANIFOLDS 86

converges uniformly to the BPS monopole (𝐴𝐵𝑃𝑆,Φ𝐵𝑃𝑆) in the ball of radius 𝑅 in

(R3, 𝑔𝐸). Here exp𝜂 denotes the exponential map along the fibre Λ2
−(CP

2)𝑥 ∼= R
3.

3. Let {(𝐴𝜆,Φ𝜆)}𝜆∈[Λ,+∞) be the sequence above. Then the translated sequence
(︂

𝐴𝜆,Φ𝜆 − 𝜆
Φ𝜆

|Φ𝜆|

)︂

,

converges uniformly with all derivatives to a reducible, singular monopole on Λ2
−(CP

2)

with zero mass and which is smooth on Λ2
−(CP

2) ∖ CP2.

Write the curvature of (𝐴𝑚,Φ𝑚) as 𝐹𝑚 = 𝐹1 ⊗ 𝑇1 + . . ., then

⟨𝐹𝑚 ∧ 𝐹𝑚⟩ ∧ 𝜑 = ⟨𝐹1 ∧ 𝐹1⟩ ∧ 𝜑+ . . .

=
(︀

8𝑓 4𝑏2𝑚(𝑠
2𝑓 2 + 2𝑔2) + 4𝑠2𝑓 2 − 16𝑔2

)︀

𝑑𝜌 ∧ 𝜈12 ∧ Ω2
1.

Now, recall that 𝑏𝑚(0) = 1 and 𝑏𝑚 is decreasing so the above is uniformly bounded indepen-

dently of 𝑚, i.e.

|⟨𝐹𝑚 ∧ 𝐹𝑚⟩ ∧ 𝜑| . 1.

Our first result relates the blow-up set 𝑆 with the zero set 𝑍. In the following statement,

we shall use ℋ4 to denote the Hausdorff 4−dimensional measure.

Theorem 4.5.9. Under the above conditions, the following holds:

(i) ℋ4(𝑆𝜀) ≤ 54𝑒𝑐4𝜋𝑘𝜀−1, for all 𝜀 > 0; in particular, 𝑆 has Hausdorff dimension at most 4.

(ii) Let 0 < 𝜀𝜓𝑘 ≤ 𝜀𝜓 be as in Theorem 4.4.7. Then:

𝑍 ⊆ 𝑆𝜀ψk
.

In particular, the zero set in contained in the blow-up set and ℋ4(𝑍) <∞.

Proof. We prove each item separately:

(i) Fix 𝜀 > 0. Given 0 < 𝑟 ≤ min{1, 𝑟0}, we can find a countable open covering {𝐵5𝑟l(𝑥𝑙)}

of 𝑆𝜀 with 𝑥𝑙 ∈ 𝑆𝑗 , 10𝑟𝑙 < 𝑟 and 𝐵𝑟l(𝑥𝑙) pairwise disjoint. Then

∑︁

𝑙

(5𝑟𝑙)
4 ≤ 54𝑒𝑐𝜀−1

∑︁

𝑙

lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝜓𝐵rl (𝑥l)

(𝐴𝑖,Φ𝑖) (𝑥𝑙 ∈ 𝑆𝑗)

≤ 54𝑒𝑐𝜀−1 lim inf
𝑖→∞

𝑚−1
𝑖

∑︁

𝑙

ℰ𝜓𝐵rl (𝑥l)
(𝐴𝑖,Φ𝑖) (by Fatou’s lemma)

≤ 54𝑒𝑐𝜀−1 lim inf
𝑖→∞

𝑚−1
𝑖 ℰ𝜓𝑋(𝐴𝑖,Φ𝑖) (the 𝐵𝑟l(𝑥𝑙)’s are disjoint)

= 54𝑒𝑐4𝜋𝑘𝜀−1. (by the energy formula (1.3.24))

Since this bound is uniform in 𝑟 ∈ (0, 𝑟0], the result follows.
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(ii) We shall apply Theorem 4.4.7. Let 𝑥 ∈ 𝑋 ∖ 𝑆𝜀ψk
. Then there is 𝑟 ∈ (0, 𝑟0] such that

lim inf
𝑖→∞

𝑚−1
𝑖 𝑟−4ℰ𝜓𝐵r(𝑥)(𝐴𝑖,Φ𝑖) < 𝜀𝜓𝑘 .

Now note that we may assume 𝑟 /∈ ℛ𝑥; otherwise, by an approximation argument of

taking an increasing sequence of radii 𝑟𝑗 ↑ 𝑟 with 𝑟𝑗 /∈ ℛ𝑥 we can replace 𝑟 by some 𝑟𝑗

for large 𝑗 and work in a smaller ball for which the above energy bound still holds. In

particular, it follows that there is 𝑖0 ∈ N such that

𝑚−1
𝑖 𝑟−4ℰ𝜓𝐵r(𝑥)(𝐴𝑖,Φ𝑖) < 𝜀𝜓𝑘 , ∀𝑖 ≥ 𝑖0.

Since 𝑚𝑖 ↑ ∞, by increasing 𝑖0 if necessary we may also assume that

𝑚𝑖 ≫𝑔,𝑘 1 and 𝑟𝑖 := 𝑅𝜓
𝑘𝑚

−1
𝑖 <

𝑟

2
, ∀𝑖 ≥ 𝑖0.

Hence, given any 𝑦 ∈ 𝐵𝑟/2(𝑥), it follows that

𝑚−1
𝑖 𝑟−4

𝑖 ℰ𝜓𝐵ri (𝑦)
(𝐴𝑖,Φ𝑖) < 𝜀𝜓𝑘 , ∀𝑖 ≥ 𝑖0,

so that applying Theorem 4.4.7 we get that

|Φ𝑖|(𝑦) >
𝑚𝑖

4
−𝑚−1

𝑖 𝑐𝜓𝑘 , ∀𝑖 ≥ 𝑖0.

Therefore, by possibly increasing 𝑖0, we have

inf
𝐵 r

2
(𝑥)
|Φ𝑖| ≥ 100 > 0, ∀𝑖 ≥ 𝑖0.

In particular, it follows that 𝑥 ∈ 𝑋 ∖ 𝑍. We are done.

�

4.6 Decomposition and rectifiability of the blow-up set

We continue the analysis of the last section under the same hypothesis.

Lemma 4.6.1. For every 𝑥 ∈ 𝑋 and 0 < 𝑠 ≤ 𝑟 ≤ 𝑟0,

𝑒𝑐𝑠
2

𝑠−4𝜇𝜓(𝐵𝑠(𝑥)) ≤ 𝑒𝑐𝑟
2

𝑟−4𝜇𝜓(𝐵𝑟(𝑥)).
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Proof. Fix 𝑥 ∈ 𝑋 . If 𝑟 /∈ ℛ𝜓
𝑥 , then the result immediately follows from Proposition 4.1.3. As

for the case where 𝑟 ∈ ℛ𝑥, we proceed by an approximation argument. Since 𝜇𝜓 is a locally

finite measure, the set ℛ𝜓
𝑥 is countable. Thus, we can pick a sequence {𝑟𝑗} ⊂ (𝑠, 𝑟) ∖ ℛ𝜓

𝑥 with

𝑟𝑗 ↑ 𝑟. Then, by dominated convergence

𝜇𝜓(𝐵𝑟(𝑥)) = lim
𝑗→∞

𝜇𝜓(𝐵𝑟j(𝑥)),

and the result follows from the first part. �

Proposition 4.6.2 (The 4−dimensional density Θ𝜓). The limit

Θ𝜓(𝑥) := lim
𝑟↓0

𝑟−4𝜇𝜓(𝐵𝑟(𝑥))

exists for all 𝑥 ∈ 𝑋 and is bounded by 𝑒𝑐𝑟
2
04𝜋𝑘𝑟−4

0 . The function Θ𝜓 : 𝑋 → [0,∞) is upper

semicontinuous and supp(Θ𝜓) = 𝑆.

Proof. The first part is a direct consequence of Lemma 4.6.1 and the energy formula (1.3.24).

To show upper semicontinuity, let {𝑥𝑛} ⊆ 𝑋 be a sequence of points converging to 𝑥 ∈ 𝑋 .

Let 𝑟 /∈ ℛ𝜓
𝑥 and 𝜀 > 0. Then, for 𝑛≫ 1, one has 𝐵𝑟(𝑥𝑛) ⊆ 𝐵𝑟+𝜀(𝑥) and thus

Θ𝜓(𝑥𝑛) ≤ 𝑒𝑐𝑟
2

𝑟−4𝜇𝜓(𝐵𝑟(𝑥𝑛)) + 𝑐𝑟3 ≤ 𝑒𝑐𝑟
2

𝑟−4𝜇𝜓(𝐵𝑟+𝜀(𝑥)) + 𝑐𝑟3.

Thus lim supΘ𝜓(𝑥𝑛) ≤ 𝑒𝑐𝑟
2
𝑟−4𝜇𝜓(𝐵𝑟(𝑥))+𝑐𝑟

3. Taking the limit 𝑟 ↓ 0 shows what we desired.

To show that 𝑆 ⊆ supp(Θ𝜓), one should note that since Θ(𝑥) exists for every 𝑥 ∈ 𝑋 , then

by letting {𝑟𝑗} ⊂ (0, 𝑟0) ∖ℛ
𝜓
𝑥 be a null-sequence one can write (see the proof of Lemma 4.6.1)

Θ𝜓(𝑥) = lim
𝑗→∞

lim inf
𝑖→∞

𝑟−4𝜇𝜓𝑖 (𝐵𝑟j(𝑥)).

Thus if 𝑥 ∈ 𝑆, then there exists 𝜀 > 0 such that Θ𝜓(𝑥) ≥ 𝜀 > 0, so that 𝑥 ∈ supp(Θ𝜓).

Finally, the reverse inclusion supp(Θ𝜓) ⊆ 𝑆 follows by monotonicity. �

Corollary 4.6.3. The measure 𝜇𝜓 is absolutely continuous with respect to ℋ4.

Proof. This follows from the fact that Θ𝜓(𝑥) exists and is uniformly bounded from above. �

Corollary 4.6.4. 𝑆𝜀ψk
⊆ 𝑋 is a closed subset.

Proof. This follows from the upper semi-continuity of Θ𝜓 and the monotonicity for 𝜇𝜓 given

by Lemma 4.6.1. Indeed, if {𝑥𝑛} is a sequence of points in 𝑆𝜀ψk
such that 𝑥𝑛 → 𝑥, then

Θ𝜓(𝑥) ≥ lim sup
𝑛→∞

Θ𝜓(𝑥𝑛) ≥ 𝜀𝜓𝑘 , (4.6.5)
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where in the first and second inequalities we used that Θ𝜓 is upper semi-continuous and 𝑥𝑛 ∈

𝑆𝜀ψk
respectively. Now the monotonicity for 𝜇𝜓 gives

Θ𝜓(𝑥) ≤ 𝑒𝑐𝑟
2

𝑟−4𝜇𝜓(𝐵𝑟(𝑥)) (4.6.6)

for all 𝑟 ∈ (0, 𝑟0]. Putting together (4.6.5) and (4.6.6) and recalling that

𝜇𝜓(𝐵𝑟(𝑥)) ≤ lim inf𝑖→∞ 𝜇𝜓𝑖 (𝐵𝑟(𝑥)) completes the proof. �

Definition 4.6.7.

sing(𝑒𝜓∞) :=

{︂

𝑥 ∈ 𝑋 : (Θ𝜓
∞)*(𝑥) := lim sup

𝑟↓0
𝑟−4

∫︁

𝐵r(𝑥)

𝑒𝜓∞ > 0

}︂

.

Lemma 4.6.8. ℋ4(sing(𝑒𝜓∞)) = 0.

Proof. For each 𝜀 > 0, define

∆𝜀 = {𝑥 ∈ 𝑋 : (Θ𝜓
∞)*(𝑥) > 𝜀}.

Given 0 < 𝛿 ≪ 1, appealing to Vitali’s covering lemma we can find countably many points

{𝑥𝑗} ⊂ ∆𝜀 and radii 𝑟𝑗 ∈ (0, 𝛿] so that the balls 𝐵𝑟j(𝑥𝑗) are pairwise disjoint and the balls

𝐵5𝑟j(𝑥𝑗) cover ∆𝜀. Moreover, we can suppose that

𝑟−4
𝑗

∫︁

𝐵rj (𝑥j)

𝑒𝜓∞ > 𝜀.

By definition of ∆𝜀, it is clear that 𝑥 ∈ ∆𝜀 implies Θ(𝑥) > 0, so that as supp(Θ) ⊂ 𝑆, it follows

that ∆𝜀 ⊆ 𝑆. Hence,

ℋ4(∆𝜀) ≤ 54
∑︁

𝑗

𝑟4𝑗 ≤ 54𝜀−1
∑︁

𝑗

∫︁

𝐵rj (𝑥j)

𝑒𝜓∞ ≤ 54𝜀−1

∫︁

𝐵δ(𝑆)

𝑒𝜓∞,

which goes to zero as 𝛿 ↓ 0 since ℋ7(𝑆) = 0. Thus ℋ4(∆𝜀) = 0 for all 𝜀 > 0, thereby proving

the lemma. �

As a consequence of Proposition 4.6.2 and Lemma 4.6.8, we get:

Corollary 4.6.9. For ℋ4−a.e. point 𝑥 ∈ 𝑋 the density

Θ𝜈(𝑥) := lim
𝑟↓0

𝑟−4𝜈(𝐵𝑟(𝑥))

exists and agrees with Θ𝜓(𝑥); in fact, the assertion is true for all 𝑥 ∈ 𝑋 ∖ sing(𝑒𝜓∞).
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In order to continue the analysis of the decomposition of 𝑆, and in fact for it to be con-

sidered a blow-up set in the usual sense, a key property that we need is that the defect measure

𝜈 should have its support contained in 𝑆. In oder to show this, we actually shall need another

assumption on the sequence (𝐴𝑖,Φ𝑖). In what follows, recall that 𝑍 ⊆ 𝑆 (by Theorem 4.5.9)

and that each Φ𝑖 decomposes su(2)𝐸−valued forms orthogonally into parallel and orthogonal

components outside Φ−1
𝑖 (0) (cf. §3.8). From now on we make the following:

Assumption 2: At each 𝑥 ∈ 𝑋 ∖ 𝑆, the (𝐴𝑖,Φ𝑖) satisfy

|𝜋14(𝐹𝐴i)
⊥| . |𝜋7(𝐹𝐴i)

⊥|, for 𝑖≫ 1. (4.6.10)

Using (4.6.10) together with Corollary 4.2.6, we are able to improve the Bochner estimate

on the Laplacian of the 𝜓−energy densities of the sequence (𝐴𝑖,Φ𝑖) to a linear estimate out-

side 𝑆, in the same way as we did in Section 3.8, and then a mean value inequality together

with Arzelà–Ascoli proves that 𝑚−1
𝑖 𝑒𝜓(𝐴𝑖,Φ𝑖) is (up to taking a subsequence) 𝐶0−convergent

outside 𝑆, so that the desired inclusion supp(𝜈) ⊆ 𝑆 follows.

Proposition 4.6.11. Under the above assumptions, the support of the defect measure 𝜈 is con-

tained in the blow-up set 𝑆:

supp(𝜈) ⊆ 𝑆.

Now we are able to easily prove the following:

Proposition 4.6.12 (Decomposition of the blow-up set). The blow-up locus decomposes as

follows:

𝑆 = supp(𝜈) ∪ sing(𝑒𝜓∞).

Proof. We divide the proof as follows:

⊇: We know that supp(𝜈) ⊆ 𝑆 from Proposition 4.6.11. Moreover, by definition, sing(𝑒𝜓∞) ⊆

supp(Θ𝜓) and, by Proposition 4.6.2, supp(Θ𝜓) = 𝑆; thus, sing(𝑒𝜓∞) ⊆ 𝑆.

⊆: Let 𝑥 ∈ 𝑆. Then there is 𝜀 > 0 such that Θ𝜓(𝑥) ≥ 𝜀 > 0. Now if 𝑥 /∈ sing(𝑒𝜓∞), then

Θ𝜈(𝑥) = Θ𝜓(𝑥) > 0, so that 𝑥 ∈ supp(Θ𝜈) ⊂ supp(𝜈). Since sing(𝑒𝜓∞) ⊆ 𝑆, the result

follows.

�

We now prove the main result of this section.
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Theorem 4.6.13 (Rectifiability of the blow-up set). The measure 𝜈 is ℋ4−rectifiable, i.e. 𝜈 =

Θ𝜓ℋ4⌊supp(𝜈) and supp(𝜈) is a ℋ4−rectifiable set.

Proof. Since supp(𝜈) ⊆ 𝑆, Corollary 4.6.9 and Proposition 4.6.2 imply that Θ𝜈(𝑥) = Θ𝜓(𝑥) >

0 for ℋ4−a.e. 𝑥 ∈ supp(𝜈). Furthermore, in general Θ*
𝜈 ≤ Θ𝜓 < ∞, which implies that

𝜈 ≪ ℋ4. Thus the rectifiability follows from Preiss’ criteria [Pre87]. �

Corollary 4.6.14. The blow-up set 𝑆 is ℋ4−rectifiable. In particular, at ℋ4−a.e. point 𝑥 ∈ 𝑆,

the tangent space 𝑇𝑥𝑆 exists.

Proof. This follows from Theorem 4.6.13 by using Lemma 4.6.8 and the decomposition of 𝑆

given by Proposition 4.6.12. �

4.7 Partial progress on bubbling analysis and a few conjec-

tures

In this final section we give some progress on the development of the bubbling analysis of

the problem under the assumptions of the last sections. In the end, we state some conjectures

on what we believe to be some of the outcomes of such an analysis.

Definition 4.7.1 (Bubbling set and smooth point). We call 𝑄 := supp(𝜈) the bubbling set and

a point 𝑥 ∈ 𝑄 is said to be smooth if the tangent space 𝑇𝑥𝑄 exists and 𝑥 /∈ sing(𝑒𝜓∞).

By Theorem 4.6.13, at a smooth point 𝑥 ∈ 𝑄 the measure 𝜈 has a unique tangent measure,

i.e., the limit

𝑇𝑥𝜈 := lim
𝛿↓0

𝛿−4𝑠*𝑥,𝛿𝜈

exists and is given by

𝑇𝑥𝜈 = Θ𝜓(𝑥)ℋ4⌊𝑇𝑥𝑄.

Here 𝑠𝑥,𝛿(·) := exp𝑥(𝛿·). An alternative way of obtaining this is to construct 𝑇𝑥𝜈 explicitly

from a blow up sequence as we shall now do. Let (𝐴,Φ) be a mass 𝑚 configuration, 𝑥 ∈ 𝑋 ,

𝛿 > 0 and 𝑠𝑥,𝛿(·) = exp𝑥(𝛿·). Define the blow up configuration at 𝑥 to be

(𝐴𝑥,𝛿,Φ𝑥,𝛿) = (𝑠*𝑥,𝛿𝐴, 𝛿𝑠
*
𝑥,𝛿Φ), 𝑔𝑥,𝛿 = 𝛿−2𝑠*𝑥,𝛿𝑔, 𝜓𝑥,𝛿 = 𝛿−4𝑠*𝑥,𝛿𝜓, (4.7.2)

and respectively denote by 𝐹𝑥,𝛿, *𝛿, vol𝑥,𝛿 the curvature of 𝐴𝑥,𝛿, the Hodge-*, and volume form

of 𝑔𝑥,𝛿. These are being regarded as defined in a ball of radius at most 𝛿−1𝑖𝑥 in 𝑇𝑥𝑀 , where
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𝑖𝑥 is the injectivity radius at 𝑥. A simple computation gives |𝐹𝑥,𝛿|
2
𝑔x,δ

= 𝛿4|𝐹 |2𝑔 ∘ 𝑠𝑥,𝛿 and

|d𝐴x,δΦ𝑥,𝛿|
2
𝑔x,δ

= 𝛿4|d𝐴Φ|2𝑔 ∘ 𝑠𝑥,𝛿, so that

𝑠*𝑥,𝛿(𝑒(𝐴,Φ)vol) = 𝛿7−4𝑒(𝐴𝑥,𝛿,Φ𝑥,𝛿)vol𝑥,𝛿.

We further point out that as 𝛿 ↓ 0, the metric 𝑔𝑥,𝛿 and 4-form 𝜓𝑥,𝛿 geometrically converge to

those of their flat counterparts in R
7 ∼= 𝑇𝑥𝑋 .

We shall begin by proving the following result.

Lemma 4.7.3 (Scale fixing). Let 𝑥 ∈ 𝑄 be a smooth point. Then there is a null-sequence

{𝛿𝑖} ⊂ (0, 1) so that

(𝛿𝑖𝑚𝑖)
−1|𝐹𝑥,𝛿i ∧ 𝜓𝑥,𝛿i |

2
𝑔x,δi

vol𝑥,𝛿i ⇀ 𝑇𝑥𝜈 = Θ𝜓(𝑥)ℋ4⌊𝑇𝑥𝑄,

with 𝐹𝑥,𝛿i denoting the curvature of (𝐴𝑖)𝑥,𝛿i .

Proof. Since 𝑥 /∈ sing(𝑒𝜓∞), we have

𝑇𝑥𝜈 = lim
𝛿↓0

𝛿−4𝑠*𝑥,𝛿𝜈 = lim
𝛿↓0

𝛿−4𝑠*𝑥,𝛿𝜇
𝜓

Thus

𝑇𝑥𝜈 = lim
𝛿↓0

lim
𝑖→∞

𝛿−4𝑠*𝑥,𝛿𝜇
𝜓
𝑖 .

Therefore we can find a null-sequence {𝛿𝑖} ⊂ (0, 1) such that

𝑇𝑥𝜈 = lim
𝑖→∞

𝛿−4
𝑖 𝑠*𝑥,𝛿i𝜇

𝜓
𝑖 .

This gives the result since

𝛿−4
𝑖 𝑠*𝑥,𝛿i𝜇

𝜓
𝑖 = (𝛿𝑖𝑚𝑖)

−1|𝐹𝑥,𝛿i ∧ 𝜓𝑥,𝛿i |
2
𝑔x,δi

vol𝑥,𝛿i .

�

Henceforth, we let𝑁𝑥𝑄 := (𝑇𝑥𝑄)
⊥ ⊂ 𝑇𝑥𝑋 , write (𝑧, 𝑤) to denote points in 𝑇𝑥𝑄×𝑁𝑥𝑄 =

𝑇𝑥𝑋 and work with generalized cubes of the form

𝑄𝑟,𝑠(𝑧0, 𝑤0) := 𝐵𝑟(𝑧0)× 𝐵𝑠(𝑤0) ⊂ 𝑇𝑥𝑄×𝑁𝑥𝑄 = 𝑇𝑥𝑋.

Proposition 4.7.4 (Asymptotic translation invariance). Let 𝑥 ∈ 𝑄 be a smooth point and {𝛿𝑖}

be the null-sequence in Lemma 4.7.3. Then (after passing to a subsequence) there is a null-

sequence {𝑧𝑖} ⊂ 𝑇𝑥𝑄 so that

lim
𝑖→∞

sup
𝑟≤1

𝑟−4

∫︁

𝑄r,1(𝑧i,0)

(𝛿𝑖𝑚𝑖)
−1
(︁

|𝜄𝑣𝐹𝐴x,δi |
2
𝛿i
+ |𝜄𝑣d𝐴x,δiΦ𝑥,𝛿i |

2
𝛿i

)︁

= 0,

for all 𝑣 ∈ 𝑇𝑥𝑄.
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We split the proof of Proposition 4.7.4 into the following lemmas.

Lemma 4.7.5. Under the hypothesis of Proposition 4.7.4, for all 𝑣 ∈ 𝑇𝑥𝑄 we have

lim
𝑖→∞

∫︁

𝑄2,1(0)

(𝛿𝑖𝑚𝑖)
−1
(︁

|𝜄𝑣𝐹𝐴x,δi |
2
𝛿i
+ |𝜄𝑣d𝐴x,δiΦ𝑥,𝛿i |

2
𝛿i

)︁

= 0.

Proof. Fix 𝑔|𝑇x𝑋−orthogonal coordinates {𝑦𝑙}
4
𝑙=1 on 𝑇𝑥𝑄, with 𝜕𝑦l having length 4. Let 𝜕𝜌δi

denote the radial vector field emanating from the point 𝜕𝑦l associated with the metric 𝑔𝑥,𝛿i . Then

the monotonicity of Proposition 4.1.3 and |𝐹𝐴x,δi ∧ 𝐹𝐴x,δi ∧ 𝜑𝑥,𝛿i | . 𝛿4𝑖 (by assumption 4.1.2),

applied to the blow up sequence (𝐴𝑥,𝛿i ,Φ𝑥,𝛿i) centered at 𝜕𝑦l implies that for 0 < 𝑠 ≤ 𝑟

∫︁

𝐵r(𝜕yl )∖𝐵s(𝜕yl )

𝑒𝑐(𝛿i𝜏)
2

𝜏−4(𝛿𝑖𝑚𝑖)
−1
(︁

|𝜄𝜕ρδi
𝐹𝐴x,δi |

2
𝛿i
+ |𝜄𝜕ρδi

d𝐴x,δiΦ𝑥,𝛿i |
2
𝛿i

)︁

≤ 𝑒𝑐(𝛿i𝑟)
2

𝑟−4

∫︁

𝐵r(𝜕yl )

(𝛿𝑖𝑚𝑖)
−1|𝐹𝑥,𝛿i ∧ 𝜓𝑥,𝛿i |

2
𝑔x,δi

− 𝑒𝑐(𝛿i𝑠)
2

𝑠−4

∫︁

𝐵s(𝜕yl )

(𝛿𝑖𝑚𝑖)
−1|𝐹𝑥,𝛿i ∧ 𝜓𝑥,𝛿i |

2
𝑔x,δi

+ 𝑐𝑚−1
𝑖 𝛿4𝑖 𝑟

3.

Taking the limit as 𝑖→ ∞, the first two terms of the right-hand side both converge to Θ𝜓(exp𝑥(𝜕𝑦l))

(since 𝑇𝑥𝜈 = Θ𝜓(𝑥)ℋ4⌊𝑇𝑥𝑄) and the last term tends to zero. Since𝑄2,1(0) ⊂ 𝐵8(𝜕𝑦l)∖𝐵1(𝜕𝑦l),

it follows that

lim
𝑖→∞

∫︁

𝑄2,1(0)

(𝛿𝑖𝑚𝑖)
−1
(︁

|𝜄𝜕ρδi
𝐹𝐴x,δi |

2
𝛿i
+ |𝜄𝜕ρδi

d𝐴x,δiΦ𝑥,𝛿i |
2
𝛿i

)︁

= 0.

Furthermore, at the origin 𝜕𝜌δi generate 𝑇𝑥𝑄 and as the metrics 𝑔𝑥,𝛿i converge to 𝑔|𝑇x𝑋 we may

state the result in terms of it. �

Lemma 4.7.6. Under the hypothesis of Proposition 4.7.4, for ℋ4−a.e. 𝑧 ∈ 𝐵1(0) ⊂ 𝑇𝑥𝑄 one

has

lim
𝑖→∞

sup
𝑟≤1

𝑟−4

∫︁

𝑄r,1(𝑧,0)

(𝛿𝑖𝑚𝑖)
−1
(︁

|𝜄𝑣𝐹𝐴x,δi |
2
𝛿i
+ |𝜄𝑣d𝐴x,δiΦ𝑥,𝛿i |

2
𝛿i

)︁

= 0,

for all 𝑣 ∈ 𝑇𝑥𝑄.

Proof. Define 𝑓𝑖 : 𝐵2(0) ⊂ 𝑇𝑥𝑄→ [0,∞) by

𝑓𝑖(𝑧) :=

∫︁

𝐵1(0)⊂𝑁x𝑄

(𝛿𝑖𝑚𝑖)
−1
(︁

|𝜄𝑣𝐹𝐴x,δi |
2
𝛿i
+ |𝜄𝑣d𝐴x,δiΦ𝑥,𝛿i |

2
𝛿i

)︁

(𝑧, ·)

and denote by𝑀𝑓𝑖 : 𝐵1(0) ⊂ 𝑇𝑥𝑄→ [0,∞) the Hardy-Littewood maximal function associated

with 𝑓𝑖:

𝑀𝑓𝑖(𝑧) := sup
𝑟≤1

𝑟−4

∫︁

𝐵r(𝑧)⊂𝑇x𝑄

𝑓𝑖.
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We then want to show that the set

𝐴 := {𝑧 ∈ 𝐵1(0) : lim inf
𝑖→∞

𝑀𝑓𝑖(𝑧) > 0}

is such that ℋ4(𝐴) = 0. For each 𝑗 ∈ N, define

𝐴𝑖,𝑗 := {𝑧 ∈ 𝐵1(0) :𝑀𝑓𝑖(𝑧) ≥ 𝑗−1}.

Then we can write

𝐴 =
⋃︁

𝑗≥1

⋃︁

𝑛≥1

⋂︁

𝑖≥𝑛

𝐴𝑖,𝑗.

For each 𝑗, on the one hand, by the weak-type 𝐿1 estimate for the maximal operator, we have

ℋ4(𝐴𝑖,𝑗) . 𝑗‖𝑓𝑖‖𝐿1 .

On the other hand, by Lemma 4.7.5, it follows that ‖𝑓𝑖‖𝐿1 → 0 as 𝑖 → ∞. Therefore, for each

𝑗 and 𝑛 we get

ℋ4

(︃

⋂︁

𝑖≥𝑛

𝐴𝑖,𝑗

)︃

= 0,

which in turn implies that ℋ4(𝐴) = 0 by monotone convergence. �

Proof of Proposition 4.7.4. By Lemma 4.7.6, for each 𝑗 ∈ N we can find 𝑧𝑗 ∈ 𝐵1/𝑗(0) ⊂ 𝑇𝑥𝑄

such that

lim
𝑖→∞

sup
𝑟≤1

𝑟−4

∫︁

𝑄r,1(𝑧j ,0)

(𝛿𝑖𝑚𝑖)
−1
(︁

|𝜄𝑣𝐹𝐴x,δi |
2
𝛿i
+ |𝜄𝑣d𝐴x,δiΦ𝑥,𝛿i |

2
𝛿i

)︁

= 0.

The conclusion then follows by applying a standard diagonal sequence argument. �

The natural next step would be a bubble detection result, but we now stop the development

of the bubbling analysis since this is as far as the author could go until the time of writing

this thesis. A more complete account on this should appear in an upcoming future work in

collaboration with Gonçalo Oliveira.

Nonetheless, we now mention some conjectures. The following is what we believe to be a

first main result regarding the bubbling analysis.

Conjecture 4.7.7 (Bubbling). Let 𝑥 ∈ 𝑄 be a smooth point. Then:

(a) There are null-sequences 𝑥𝑖 = (𝑧𝑖, 𝑤𝑖) ∈ 𝑇𝑥𝑄×𝑁𝑥𝑄 = 𝑇𝑥𝑋 and {𝛿𝑖}, {𝜂𝑖} ⊂ (0, 1) so

that the "inner bubble"

(𝐴𝑖(𝑦),Φ𝑖(𝑦)) =
(︀

𝐴𝑥,𝛿i(𝜂
−1
𝑖 𝑥𝑖 + 𝑦), 𝜂−1

𝑖 Φ𝑥,𝛿i(𝜂
−1
𝑖 𝑥𝑖 + 𝑦)

)︀

, (4.7.8)
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converges, up to gauge, to the pullback of a mass 1 Bogomolnyi monopole (𝐴𝑥,Φ𝑥) on

𝑁𝑥𝑄 ∼= R
3 such that

0 < ℰR3(𝐴𝑥,Φ𝑥) ≤ Θ𝜓(𝑥).

(b) The tangent space 𝑇𝑥𝑄 is coassociative.

We note that proven part (a) of the above, part (b) can be proved as follows. Decompose1

𝜓𝑥 = 𝛼vol𝑇x𝑄 + 𝜓′, where 𝛼 ∈ [0, 1] and 𝜓′|𝑇x𝑄 = 0. Then the monopole equation becomes

d𝐴xΦ𝑥 = *(𝐹𝑥 ∧ 𝜓𝑥) = 𝛼 *𝑁x𝑄 𝐹𝑥 + *(𝐹𝑥 ∧ 𝜓
′). (4.7.9)

On the other hand we may equally write the monopole equation as

𝐹𝑥 + *(𝐹𝑥 ∧ 𝜑) = *(d𝐴xΦ𝑥 ∧ 𝜓𝑥) = 𝛼 *𝑁x𝑄 d𝐴xΦ𝑥 + *(d𝐴xΦ𝑥 ∧ 𝜓
′). (4.7.10)

Then, by combining equations (4.7.9) and (4.7.10) using the fact that *2𝑁x𝑄 = 1 yields

𝐹𝑥 = 𝛼2𝐹𝑥,

and so 𝛼 = 1 since 𝐴𝑥 is not flat. In particular, this shows that 𝑇𝑥𝑄 is calibrated by 𝜓.

Finally, we mention that if Conjecture 4.7.7 is indeed true, then we believe that by a degree

argument as in the proof of Theorem 3.6.2 one should be able to prove:

Conjecture 4.7.11. The zero set 𝑍 contains all the smooth points in 𝑄.

Since 𝑍 ⊆ 𝑆 (by Theorem 4.5.9), if Conjecture 4.7.11 is true then by the decomposition

of 𝑆 of Proposition 4.6.12, and Lemma 4.6.8, it would follow that the blow-up set and the zero

set coincide up to a set of zero ℋ4−measure. Thus by the rectifiability of 𝑄 (Theorem 4.6.13)

and the finiteness ℋ4(𝑍) < ∞, it would follow that 𝑆 and 𝑍 are ℋ4−rectifiable sets of finite

ℋ4−measure.

The establishment of Conjectures 4.7.7 and 4.7.11 would be very important steps in the di-

rection of a general concrete result on the concentration phenomena of large mass G2−monopoles

with fixed monopole class on AC G2−manifolds: under suitable assumptions, one would be

able to say that these concentrate along their zero set 𝑍, that 𝑍 define a ℋ4−rectifiable coasso-

ciative current of finite mass and that at each point 𝑥 ∈ 𝑍 a mass one R
3−monopole bubbles

off transversally carrying part of the lost energy at 𝑥.

1As ψ is a calibration this can certainly be done, by choosing an orientation on TxQ.
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Appendix A

Mean value inequalities

This appendix intends to summarize in a unified statement (cf. Theorem A.3) some well-

known (nonlinear) mean value inequalities for the Laplacian. This is an important analytical

tool for this thesis and have been successfully applied in various geometric PDE problems, e.g.

minimal submanifolds, harmonic maps, pseudo-holomorphic curves, Yang–Mills connections

and so on. The common feature of these problems is an energy functional associated to the

PDE, say scale-invariant in dimension 𝑑; in general the PDE are nonlinear, elliptic, of second

order and, in fact, are the associated Euler–Lagrange equations of such functional. The solu-

tions of the PDE then satisfy a nonlinear bound on the Laplacian of its energy density, with the

nonlinear term being of order (𝑑 + 2)/𝑑, and they also enjoy a monotonicity property on their

renormalized scale-invariant energy on small geodesic balls. One then derives a phenomena

of ‘energy quantization’ for sequences of solutions with uniformly bounded energy as a conse-

quence of a mean value inequality applied to the energy density of the functional; in fact, one

derives the existence of a ‘quanta’ of energy ~ > 0 and a codimension 𝑑 subset of points at

which such a sequence experiences energy concentration of at least ~.

The results here are basically a personal organization and mixing of (some of) the ones

appearing in the very nice approaches to the subject in [Weh05], [HNS09, Appendix B] and

[Wal17a, Appendix A].

We say that a Riemannian manifold (𝑋𝑛, 𝑔) is of bounded geometry if the following con-

ditions holds:

∙ The global injectivity radius is positive: 𝑖𝑋(𝑔) > 0 (in particular, (𝑋𝑛, 𝑔) is complete);

∙ The Riemannian curvature tensor 𝑅𝑔 and its covariant derivative ∇𝑅𝑔 are uniformly
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bounded:

|𝑅𝑔| . 1 and |∇𝑅𝑔| . 1 on 𝑋.

We shall need the following standard result which follows e.g. from [GT01, Theorem 9.20,

p.244] and [HNS09, Step 2 in the Proof of Theorem B.1].

Lemma A.1. Let (𝑋𝑛, 𝑔) be a Riemannian 𝑛−manifold of bounded geometry. Then there is

0 < 𝛿 < 𝑖(𝑔) with the following significance. If 𝑥 ∈ 𝑋 , 𝑟 ∈ (0, 𝛿] and 𝐴 ≥ 0, then every

𝑓 ∈ 𝐶2(𝐵𝑟(𝑥), [0,∞)) satisfies:

∆𝑓 ≤ 𝐴 =⇒ 𝑓(𝑥) . 𝐴𝑟2 + 𝑟−𝑛
∫︁

𝐵r(𝑥)

𝑓. (A.2)

Theorem A.3 (Mean value inequalities). Under the hypothesis of Lemma A.1, let 𝑥 ∈ 𝑋 ,

𝑟 ∈ (0, 𝛿] and suppose 𝑓 ∈ 𝐶2(𝐵𝑟(𝑥), [0,∞)) satisfy the following conditions:

(C1) There is 𝑑 ∈ N such that if 𝐵𝑠(𝑦) ⊆ 𝐵𝑟/2(𝑥) then

𝑠𝑑−𝑛
∫︁

𝐵s(𝑦)

𝑓 . 𝑟𝑑−𝑛
∫︁

𝐵r(𝑥)

𝑓 + 𝜏, (A.4)

for some 𝜏 = 𝜏(𝑟) ≥ 0.

(C2) There are constants 𝑎0, 𝑎1, 𝑎 ≥ 0 and 𝛼 ∈ [1, (𝑑+ 2)/𝑑] such that

∆𝑓 ≤ 𝑎0 + 𝑎1𝑓 + 𝑎𝑓𝛼. (A.5)

Setting

𝜀 := 𝑟𝑑−𝑛
∫︁

𝐵r(𝑥)

𝑓,

we have:

(i) If 𝛼 < (𝑑+ 2)/𝑑 then

sup
𝐵 r

2
(𝑥)

𝑓 .𝑑 𝑎0𝑟
2 + (𝑎

𝑑/2
1 + 𝑟−𝑑)(𝜀+ 𝜏) +

(︀

𝑎𝑑/2(𝜀+ 𝜏)
)︀𝛽
, (A.6)

where 𝛽 := 2/(2 + 𝑑− 𝛼𝑑).

(ii) If 𝛼 = (𝑑+ 2)/𝑑, then there is a constant ~ > 0 (depending only on the geometry and 𝑑)

such that

𝑎𝑑/2(𝜀+ 𝜏) < ~ =⇒ sup
𝐵 r

2
(𝑥)

𝑓 .𝑑 𝑎0𝑟
2 + (𝑎

𝑑/2
1 + 𝑟−𝑑)(𝜀+ 𝜏) (A.7)
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Proof of Theorem A.3. The proof is based on the so-called ‘Heinz trick’. In order for the reader

to see precisely where each relevant constant appears in the estimates, in this proof we shall

mostly avoid the notation ‘.’ and show the constants explicitly. Thus, choose 𝛿 > 0 as in

Lemma A.1, let 𝑐1 > 0 be the hidden constant in (A.2) and let 𝑐2 > 0 be the hidden constant in

(A.4). We shall see that both ~ and the final estimates depend only on 𝑐1, 𝑐2 and 𝑑.

Fix any point 𝑦 ∈ 𝐵𝑟/2(𝑥). Define ℎ : [0, 𝑟/2] → [0,∞) by

ℎ(𝑠) :=

(︂

𝑟/2− 𝑠

𝑟/2

)︂𝑑

max
𝐵s(𝑦)

𝑓.

Note that ℎ(0) = 𝑓(𝑦) and ℎ(𝑟/2) = 0. Since ℎ is nonnegative there is an 𝑠* ∈ [0, 𝑟/2) and a

𝑦* ∈ 𝐵𝑠*(𝑦) such that

ℎ(𝑠*) = max
0≤𝑠≤𝑟/2

ℎ(𝑠), 𝐹 := 𝑓(𝑦*) = max
𝐵s* (𝑦)

𝑓.

Set

𝑠0 :=
𝑟/2− 𝑠*

2
> 0.

Then

max
𝐵s0 (𝑦

*)
𝑓 ≤ max

𝐵s*+s0 (𝑦)
𝑓 =

(𝑟/2)𝑑

(𝑟/2− 𝑠* − 𝑠0)𝑑
ℎ(𝑠* + 𝑠0) ≤

2𝑑(𝑟/2)𝑑

(𝑟/2− 𝑠*)𝑑
ℎ(𝑠*) = 2𝑑 max

𝐵s* (𝑦)
𝑓 = 2𝑑𝐹.

Hence, by assumption (A.5), in 𝐵𝑠0(𝑦
*) we have the inequality

ℒ𝑓 ≤ 𝑎0 + 𝑎1𝑓 + 𝑎𝑓𝛼 ≤ 𝑎0 + 𝑎1(2
𝑑𝐹 ) + 𝑎(2𝑑𝐹 )𝛼.

By Lemma A.1 this implies

𝐹 = 𝑓(𝑦*) ≤ 𝑐1

(︂

(𝑎0 + 𝑎1(2
𝑑𝐹 ) + 𝑎(2𝑑𝐹 )𝛼)𝑠2 + 𝑠−𝑛

∫︁

𝐵s(𝑦*)

𝑓

)︂

, (A.8)

for all 𝑠 ∈ [0, 𝑠0]. Now using assumption (A.4), and observing that 𝑠0 ≤ 𝑟/2, we get

𝐹 ≤ 𝑐1𝑎0𝑟
2/4 + 𝑐1

(︀

𝑎1(2
𝑑𝐹 ) + 𝑎(2𝑑𝐹 )𝛼

)︀

𝑠2 + 𝑐1𝑐2𝑠
−𝑑(𝜀+ 𝜏), ∀𝑠 ∈ [0, 𝑠0]. (A.9)

We now make a case by case distinction.

Case 1. 𝐹 ≤ 𝑐1𝑎0𝑟
2
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In this case 𝑓(𝑦) ≤ 𝐹 ≤ 𝑐1𝑎0𝑟
2 . 𝑎0𝑟

2, which already proves the assertion.

Case 2. 𝐹 ≥ 𝑐1𝑎0𝑟
2 and 𝑎1(2𝑑𝐹 ) ≥ 𝑎(2𝑑𝐹 )𝛼.

From (A.9) we derive

𝐹 ≤ 𝐹/4 + 2𝑐1𝑎12
𝑑𝐹𝑠2 + 𝑐1𝑐2𝑠

−𝑑(𝜀+ 𝜏), ∀𝑠 ∈ [0, 𝑠0]. (A.10)

so that we have two possibilities:

∙ If 𝑐1𝑎12𝑑𝑠20 < 1/8, then by (A.10) we get

𝐹 ≤ 2𝑐1𝑐2𝑠
−𝑑
0 (𝜀+ 𝜏)

Since 𝑟/2− 𝑠* = 2𝑠0 this gives

𝑓(𝑦) = ℎ(0) ≤ ℎ(𝑠*) =

(︂

𝑟/2− 𝑠*

𝑟/2

)︂𝑑

𝐹 =
22𝑑𝑠𝑑0
𝑟𝑑

𝐹 ≤ 22𝑑+1𝑐1𝑐2𝑟
−𝑑(𝜀+𝜏) .𝑑 𝑟

−𝑑(𝜀+𝜏),

and so the desired estimate holds.

∙ Otherwise, we choose 𝑠 ≤ 𝑠0 such that 𝑐1𝑎12𝑑𝑠2 = 1/8. Then by (A.10) we have

𝑓(𝑦) ≤ 𝐹 ≤ 2𝑐1𝑐2𝑠
−𝑑(𝜀+ 𝜏) = 2𝑐1𝑐2(8𝑐1𝑎12

𝑑)𝑑/2(𝜀+ 𝜏) .𝑑 𝑎
𝑑/2
1 (𝜀+ 𝜏),

as we wanted.

Case 3. 𝐹 ≥ 𝑐1𝑎0𝑟
2 and 𝑎1(2𝑑𝐹 ) ≤ 𝑎(2𝑑𝐹 )𝛼.

Here from (A.9) we get

𝐹 ≤ 𝐹/4 + 2𝑐1𝑎(2
𝑑𝐹 )𝛼𝑠2 + 𝑐1𝑐2𝑠

−𝑑(𝜀+ 𝜏), ∀𝑠 ∈ [0, 𝑠0]. (A.11)

Hence we have the following possibilities:

∙ If 𝑐1𝑎2𝛼𝑑𝐹 𝛼−1𝑠20 < 1/8 then by (A.11),

𝐹 ≤ 2𝑐1𝑐2𝑠
−𝑑
0 (𝜀+ 𝜏),

and again by the same argument as above we get

𝑓(𝑦) ≤ ℎ(𝑠*) ≤ 22𝑑+1𝑐1𝑐2𝑟
−𝑑(𝜀+ 𝜏) .𝑑 𝑟

−𝑑(𝜀+ 𝜏),

as we wanted.
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∙ Otherwise we choose 𝑠 ≤ 𝑠0 such that 𝑐1𝑎2𝛼𝑑𝐹 𝛼−1𝑠2 = 1/8 so that

𝐹 ≤ 2𝑐1𝑐2𝑠
−𝑑(𝜀+ 𝜏) = 2𝑐1𝑐2(𝑐12

𝛼𝑑+3)𝑑/2𝑎𝑑/2𝐹 (𝛼𝑑−𝑑)/2(𝜀+ 𝜏). (A.12)

Now if 𝛼 < (𝑑+ 2)/𝑑 then 2 + 𝑑− 𝛼𝑑 > 0 and hence

𝑓(𝑦) ≤ 𝐹 ≤
(︀

2𝑐1𝑐2(𝑐12
𝛼𝑑+3)𝑑/2𝑎𝑑/2(𝜀+ 𝜏)

)︀𝛽
.𝑑

(︀

𝑎𝑑/2(𝜀+ 𝜏)
)︀𝛽
,

as we wanted. For the critical exponent 𝛼 = (𝑑+ 2)/𝑑 we have that (𝛼𝑑− 𝑑)/2 = 1 and

thus it follows from (A.12) that 1 ≤ 𝑐𝑎𝑑/2(𝜀+ 𝜏) for some 𝑐 > 0 depending only on 𝑐1, 𝑐2

and 𝑑. Thus if 𝑎𝑑/2(𝜀+ 𝜏) < ~ := 𝑐−1 this case can be excluded. We are done.

�
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Appendix B

The proof of assertion (3.2.14).

This appendix is basically the same as the one appearing in our paper [FO19]. Here we

shall prove assertion (3.2.14), which says that the zeros of the monopoles constructed via The-

orem 3.2.11 are contained in balls of radius 10𝑚−1/2 around the 𝑘-points in 𝑋 used in the

construction. This requires a number of technical ingredients from [Oli16c] and so we decided

to include this section as an Appendix.

It follows from [Oli16c, Proposition 6] that the monopole (𝐴𝑖,Φ𝑖) can be written as (𝐴𝑖,Φ𝑖) =

(𝐴0
𝑖 ,Φ

0
𝑖 ) + (𝑎𝑖, 𝜑𝑖), where

A.a (𝐴0
𝑖 ,Φ

0
𝑖 ) is an approximate monopole constructed in [Oli16c, Proposition 4]. Moreover,

by its own construction, we have that the restriction

Φ0
𝑖 : 𝑋∖ ∪𝑘𝑗=1 𝐵10𝑚

−1/2
i

(𝑥𝑗) → su(2),

satisfies |Φ0
𝑖 | ≥ 𝑚𝑖/2 has no zeros and yields a splitting of the trivial rank-2 complex

vector bundle C
2 ∼= 𝐿⊕ 𝐿−1, where the complex line bundle 𝐿 is such that

deg(𝐿|𝜕𝐵
10m

−1/2
i

(𝑥j)) = 1,

for all 𝑗 = 1, . . . , 𝑘. In other words, the restricted map

Φ0
𝑖 : 𝜕𝐵10𝑚

−1/2
i

(𝑥𝑗) → su(2)∖{0},

has degree 1.

A.b (𝑎𝑖, 𝜑𝑖) ∈ Γ((Λ1 ⊕Λ0)⊗ su(2)) satisfies an elliptic equation, when in a certain Coulomb

gauge (see [Oli16c, Lemma 13]). Moreover, from [Oli16c, Proposition 6], it satisfies

‖(𝑎𝑖, 𝜑𝑖)‖𝐻
1,− 1

2

. 𝑚
−7/4
𝑖 , (B.1)
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where 𝐻1,−1/2 is a certain Sobolev space.

The Sobolev space𝐻1,𝜈+1, with 𝜈 = −3/2 here, is one of several𝐻𝑛,𝜈+𝑛 constructed using

the approximate monopole (𝐴0
𝑖 ,Φ

0
𝑖 ). These are well adapted to solving the monopole equation,

and have the property that, in a certain gauge (see [Oli16c, Section 5]), one can iterate estimate

(B.1) to obtain that

‖(𝑎𝑖, 𝜑𝑖)‖𝐻n,ν+n . 𝑚
−7/4
𝑖 ,

for all 𝑛 ∈ N. Moreover, once restricted to certain subsets of𝑋 , these spaces satisfy a number of

interesting properties. Some of these can be easily read from the definition in [Oli16c, Section

4.1], and we summarize them below

B.a Restricted to compact set𝐾 ⊂ 𝑋 , the norm𝐻1,1+𝜈(𝐾) is equivalent to the usual 𝐿2,1(𝐾).

However, not in an 𝑚𝑖-independent way. In fact, there is a constant 𝑐𝑛, only depending

on 𝑔 and 𝐾, not 𝑚𝑖, so that

‖(𝑎𝑖, 𝜑𝑖)‖𝐿2,n(𝐾) ≤ 𝑐𝑛(𝐾)𝑚2
𝑖 ‖(𝑎𝑖, 𝜑𝑖)‖𝐻n,ν+n(𝐾) . 𝑚

1/4
𝑖 . (B.2)

B.b For 𝜖 > 0 we consider

𝐶𝜖 = 𝑋∖ ∪𝑘𝑗=1 𝐵𝜖(𝑥𝑗).

If we let 4𝑑 = min𝑗,𝑙 dist(𝑥𝑗, 𝑥𝑙), then the balls of radius 𝑑 around the points 𝑥𝑖 are

disjoint. Using 𝑑, we shall consider 𝐶𝑑. Then, certain weight functions 𝑊𝑛, on which the

spaces 𝐻𝑛,𝜈+𝑛 depend, can be arranged so that

‖(𝑎𝑖, 𝜑𝑖)‖𝐿2,n(𝐾) ≤ 𝑐𝑛(𝐾) ‖(𝑎𝑖, 𝜑𝑖)‖𝐻n,ν+n(𝐾) . 𝑚
−7/4
𝑖 . (B.3)

for any 𝐾 ⊂ 𝐶𝑑.

B.c On 𝐶 we can use the fact that Φ0
𝑖 > 0, as mentioned in A.a, to write any su(2)-valued

tensor 𝑓 as 𝑓 = 𝑓 ‖ + 𝑓⊥, with the 𝑓 ‖ denoting the component parallel to Φ0
𝑖 and 𝑓⊥ the

orthogonal one. On 𝐶, and for large 𝑚𝑖, we can write

‖(𝑎
‖
𝑖 , 𝜑

‖
𝑖 )‖𝐿2,n

ν+n(𝐶) + ‖(𝑎⊥𝑖 , 𝜑
⊥
𝑖 )‖𝐿2,n(𝐶) = ‖(𝑎𝑖, 𝜑𝑖)‖𝐻n,ν+n(𝐶) . 𝑚

−7/4
𝑖 , (B.4)

where the spaces 𝐿2,𝑛
𝜈+𝑛 are the more standard Lockhart–McOwen conically weighted

spaces.
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Combining item B.a. above and the Sobolev embedding 𝐿2,𝑛(𝐾) →˓ 𝐶𝑛−2(𝐾) one obtains

that

‖(𝑎𝑖, 𝜑𝑖)‖𝐶n−2(𝐾) . 𝑚
1/4
𝑖 ⇒ ‖Φ𝑖 − Φ0

𝑖 ‖𝐶0(𝐾) . 𝑚
1/4
𝑖 , (B.5)

for any compact set 𝐾 ⊂ 𝑋 . In particular (𝑎𝑖, 𝜑) is smooth. Moreover, as mentioned in A.a,

|Φ0
𝑖 | ≥ 𝑚𝑖/2 in 𝐶

10𝑚
−1/2
i

and thus

|Φ𝑖| ≥ |Φ0
𝑖 | − ‖𝜑𝑖‖𝐶0 ≥

𝑚𝑖

2
− 𝑐𝑚

1/4
𝑖 , in any compact 𝐾 ⊂ 𝐶

10𝑚
−1/2
i

and so, for 𝑚𝑖 ≫ 1, does not vanish in 𝜕𝐵
10𝑚

−1/2
i

(𝑥𝑗) for any 𝑗 ∈ {1, . . . , 𝑘}. In particular,

putting this together with the estimate (B.1) in A.b, which shows that 𝜑𝑖 is decaying, we con-

clude that Φ𝑖 does not vanish in 𝐶, and so any of its zeros must be inside one of the balls of

radius 10𝑚−1/2
𝑖 around the points 𝑥𝑖. Furthermore, this estimate shows that 1-parameter family

of maps

Φ𝑡
𝑖 = Φ0

𝑖 + 𝑡𝜑𝑖 : 𝐶10𝑚
−1/2
i

→ su(2)∖{0},

gives an homotopy between Φ0
𝑖 and Φ𝑖. Combining this with the discussion in A.a we conclude

that Φ𝑖

deg(Φ𝑖|𝜕𝐵
10m

−1/2
i

(𝑥j)) = deg(Φ0
𝑖 |𝜕𝐵

10m
−1/2
i

(𝑥j)) = 1.

Thus, Φ𝑖 does have zeros inside 𝐵
10𝑚

−1/2
i

(𝑥𝑗).


	Contents
	Introduction
	1 Gauge theories
	1.1 Yang–Mills–Higgs theory
	1.2 Instantons
	1.2.1 The instanton equation
	1.2.2 Non-compactness phenomena and codimension 4 calibrated geometry

	1.3 Monopoles
	1.3.1 The monopole equation
	1.3.2 Monopoles on asymptotically conical (AC) manifolds
	1.3.3 Conjectural picture: large mass monopoles and codimension 3 calibrated geometry


	2 General properties of YMH configurations
	2.1 Scaling properties and a monotonicity formula
	2.2 Bochner–Weitzenböck formulas and estimate
	2.3 -regularity and some consequences
	2.4 AC and mass dependent n-dimensional version of Taubes' small Higgs field estimates

	3 Large mass monopoles on AC 3-manifolds
	3.1 Main results
	3.2 Motivating examples
	3.2.1 The BPS Monopole
	3.2.2 Sequences of Taubes' multi-monopoles on R3 with prescribed Z
	3.2.3 An example with kx > 1
	3.2.4 Sequences of monopoles with prescribed Z on any AC 3-manifold with b2(X)=0

	3.3 -regularity estimate
	3.4 An interior lower bound on the Higgs field
	3.5 The blow-up set and the zero set
	3.6 Bubbling
	3.7 Convergence as measures
	3.8 Questions on convergence outside Z

	4 Partial results on large mass monopoles on AC G2-manifolds
	4.1 Monotonicity for the renormalized -energy
	4.2 Bochner–Weitzenböck formula and estimates (G2-case)
	4.3 -regularity for the -energy density
	4.4 An interior lower bound on the Higgs field (G2 case)
	4.5 The blow-up set and the zero set (G2 case)
	4.6 Decomposition and rectifiability of the blow-up set
	4.7 Partial progress on bubbling analysis and a few conjectures

	Bibliography
	Appendix A Mean value inequalities
	Appendix B The proof of assertion (3.2.14).

