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Resumo

O método amostral de gradientes (GS) é um algoritmo recentemente desenvolvido para

resolver problemas de otimização não suave. Fazendo uso de informações de primeira

ordem da função objetivo, este método generaliza o método de máxima descida, um dos

clássicos algoritmos para minimização de funções suaves.

Este estudo tem como objetivo desenvolver e explorar diferentes métodos amostrais para a

otimização numérica de funções não suaves. Inicialmente, provamos que é possível ter uma

convergência global para o método GS na ausência do procedimento chamado “teste de

diferenciabilidade”. Posteriormente, apresentamos condições que devem ser esperadas para

a obtenção de uma taxa de convergência local linear do método GS. Finalmente, um novo

método amostral com convergência local superlinear é apresentado, o qual se baseia não

somente no cálculo de gradientes, mas também nos valores da função objetivo nos pontos

sorteados.

Palavras-chave: otimização não convexa e não suave. minimização irrestrita. métodos

amostrais. convergência local. teste de diferenciabilidade.



Abstract

The Gradient Sampling (GS) method is a recently developed tool for solving unconstrained

nonsmooth optimization problems. Using just first order information of the objective

function, it generalizes the steepest descent method, one of the most classical methods for

minimizing a smooth function.

This study aims at developing and exploring different sampling algorithms for the numerical

optimization of nonsmooth functions. First, we prove that it is possible to have a global

convergence result for the GS method in the abscence of the differentiability check procedure.

Second, we prove in which circumstances one can expect the GS method to have a linear

convergence rate. Lastly, a new sampling algorithm with superlinear convergence is

presented, which rests not only upon the gradient but also on the objective function value

at the sampled points.

Keywords: nonsmooth nonconvex optimization. unconstrained minimization. gradient

sampling. local convergence. differentiability check.
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Introduction

Problems involving continuous nonsmooth functions arise in many fields of

science [35,43,48], acting in a direct way or playing a secondary role (e.g., subproblems) in

different areas. A large class of problems needs to cope with one or more minimizations of

convex nonsmooth functions [39,42], which has been successfully solved by well established

optimization algorithms known as Bundle Methods [1,25,34]. However, a significant amount

of problems involve minimizations of nonsmooth functions that are also nonconvex [12,13],

a property that usually introduces an undesirable complexity to the implementation of

the aforementioned technique.

Recently, an algorithm known as Gradient Sampling (GS) [6, 27] has gained

attention for providing good alternatives to the difficulties that Bundle Methods need to

deal with if the function is not convex (see [34,41] and references therein). Basically, the

functioning of GS is very close to the steepest descent method for smooth functions, since it

works in every iteration with a descent direction computed just with first order information

and it finds the next iterate by a line search procedure (in fact, when a nonnormalized

version of GS is used to solve a smooth optimization problem, its step asymptotically

recovers the direction taken by the steepest descent method). In contrast to the Bundle

Method, the GS does not work with a memory of the past iterations, but it tries to gain

information about the function by computing gradients of sampled points obtained in each

iteration. This behavior is less complex than keeping a history of the last iterations, since

in the nonconvex case it is hard to determine whether a past iteration is contributing to

construct a good model of the objective function or it is so far from the current iteration

that its incorporation to the model might lead to an erroneous local information. As a

counterpart, by evaluating the gradients of the sampled points, the GS has a significant

cost per iteration.

The present study has the goal to explore the convergence behavior of methods

that use sampling techniques to solve unconstrained nonsmooth optimization problems.

Although we present some numerical results along the text, this study is essentially

theoretical and its contribution can be divided in three parts.

The first major contribution is the preservation of the global convergence result

for the GS method when a step called “differentiability check” is not implemented. We

present two alternative procedures that replace this undesirable step, which have the

advantage of not asking from the user the knowledge of points of nondifferentiability of

the objective function [19].

The second contribution is the study of local convergence of the original GS
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method in its nonnormalized version [21]. Although the global convergence result is

well established, a local rate of convergence has not been stated yet. In the nonsmooth

optimization community, there is a belief that in the best case scenario, the GS method

would converge linearly and mainly because it can be seen as a generalization of the

steepest descent method [10]. However, because of the random nature of GS, this result can

not be easily obtained and a mathematical meaning for the “best case scenario” expression

is also not trivial.

Finally, we end this thesis by trying to answer a natural question that arises

when one studies the GS algorithm. Since the aforementioned algorithm may be viewed

as a generalization of the Cauchy method, it is reasonable to wonder whether it would

be possible to develop a sampling technique that would generalize the Newton or quasi-

Newton method, in the sense that a superlinear convergence result could be achieved. As

a result, we present a new sampling algorithm that moves superlinearly to the solution of

the nonsmooth optimization problem in some specific iterations of the method [20].

We believe that the results obtained in this text are a step further into the

study of a practical algorithm with rapid local convergence to minimize nonsmooth and

nonconvex functions (important studies on the matter for nonsmooth and convex functions

can be found in [28–30,37]). The pursuit for such an algorithm has raised efforts of many

researchers (an enlightening review can be found in [38]) and up to our knowledge there is

no method in the literature that fulfills those features.
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1 Theoretical Background

The need to minimize a function f : Rn Ñ R that is not differentiable in its

full domain arise in many areas of science [35,43,48] and has gained attention from the

optimization field along the last four decades, since a large class of problems needs to

cope with one or more minimizations of nonsmooth functions [12,13,39,42]. Usually, the

problem to be solved can be described by

min fpxq
s.t x P X Ă R

n.
(1.1)

Here, some of the typical hypotheses commonly made over the optimization problems

are not assumed. The map f may not be differentiable at every x P R
n and, additionally,

it might be nonconvex as well. Besides, the set X is usually represented by means of

continuous functions gi, hi : Rn Ñ R such that

X :“ tx P R
n | gipxq ď 0 and hjpxq “ 0, @i P I, @j P Eu,

where I, E Ă N are finite index sets. The functions gi and hi may not be necessarily

smooth.

A natural example of a nonsmooth problem can be given by the exact penalty

function approach for constrained optimization. Under mild assumptions, it is possible

to show that there must exist a sufficiently large ρ ą 0 such that the solution of the

unconstrained minimization problem

min
xPRn

fpxq ` ρ maxt}Gpxq`}8,}Hpxq}8u,

where

Gpxq “
“

g1pxq . . . g|I|pxq
‰T

and Hpxq “
“

h1pxq . . . h|E|pxq
‰T

,

is equivalent to problem (1.1). Therefore, even for the smooth optimization case, it is a

natural approach to see the problem as a nonsmooth minimization one.

Since many constrained optimization problems can be easily transformed into

an unconstrained minimization by the penalization approach presented above, from now

on, our study will be focused on the problem (1.1) for X “ R
n. So, the case of interest

can be stated as

min
xPRn

fpxq. (1.2)

Although we are not requiring smoothness of the function f , it is inevitable to

impose some structure over the objective function in order to have a convergent algorithm.
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An assumption weaker than the differentiability of a function is the hypothesis of Lipschitz

continuity. This assumption is important because it still provides desirable properties for

the objective function and cuts out some pathological functions. An important implication

of this assumption is that, for any unitary d P R
n and t ą 0, we have the finiteness of the

quotient
|fpx ` tdq ´ fpxq|

t
, for all x P R

n.

Therefore, from now on, we suppose that f is a local Lipschitz continuous function.

Definition 1.1 (local Lipschitz continuity). Let f : Rn Ñ R be a continuous function.

We say that f is a locally Lipschitz continuous function if for all x P R
n, there exist r ą 0

and Lr ą 0 such that

|fpzq ´ fpxq| ď Lr}z ´ x}, for all z P Bpx, rq.

An important implication of Definition 1.1 is given by Rademacher’s theorem [4],

which states that if f is locally Lipschitz continuous, then the set of points where the

function f is not differentiable has null measure (in the sense of Lebesgue measure).

Roughly speaking, one can say that given any point x P R
n obtained in a random and

uniform way, with probability one, the function f will be differentiable at x. Hence, a

point in the domain of the objective function where f is not differentiable is rare.

In addition, we ask a little more structure for the function f . So, defining D as

the set of all points in which f is differentiable, we assume the following property for f

along this study.

Assumption 1.1. The set D is open in R
n.

Figure 1 – Absolute value function.

At this point, one could be tempted to think that, in practice, any algorithm

developed to minimize smooth functions works to optimize a locally Lipschitz function,
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since points of nondifferentiability are rare. Unfortunately, this is not a true statement.

Usually, in real-world problems, when the minimization of a locally Lipschitz function is

needed, some or all local minimizers are points of nondifferentiability. Consequently, it is

easy to see that any method used to solve the optimization will face the nondifferentiability

issue. For example, this undesirable behavior can be seen in the one-dimensional absolute

value function (see Figure 1) or, more generally, in the norm } ¨ }1. Many regularization

processes of ill-posed problems use this norm to obtain a good solution and, in general, at

the optimal point, the function } ¨ }1 is not differentiable. Moreover, some methods might

get stuck in regions of nondifferentiability far away from the solution [22, Chapter VIII].

The next section has the goal to establish generalizations of some well known

concepts of smooth functions and present useful properties of locally Lipschitz functions.

1.1 Basic concepts

There are several ways of presenting and motivating a generalization of the

different concepts related with smooth functions. Additionally, different generalizations are

possible. Here, we have decided to use the concepts developed by Clarke [8] and to start

giving a geometrical motivation of those notions. For that goal, we begin with a simple

definition.

Definition 1.2 (cone). Given any nonempty set A Ă R
n, we say that A is a cone in R

n

if for any scalar α ě 0, we have

a P A ñ αa P A.

Notice that the null vector is always an element of a cone A, since by its

definition 0 ¨ a must belong to A. With this first concept in mind, we determine an

important cone for our study.

Definition 1.3 (tangent cone). Given any nonempty set X Ă R
n, we say that d P R

n is

tangent to X at x P X if for every sequence of points txju Ă X converging to x and any

positive sequence ttju Ă R decreasing to zero, there is a sequence tdju Ă R
n converging to

d such that

xj ` tjdj P X , for all j P N. (1.3)

The set that contains all the tangent vectors of X at x is called tangent cone and is denoted

by TX pxq.

Directly linked to the notion of tangent cone is the normal cone. For such a

definition, we choose any inner product x¨, ¨y in R
n.
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or, in a more direct way,

p0, ´1q P Nepi f

`

x˚, fpx˚q
˘

.

Hence, since the equilibrium is possible, the object will remain stationary at this point.

This reasoning motivates the next definition.

Definition 1.7 (stationary point). Let f : R
n Ñ R be a locally continuous Lipschitz

function. Then, given any fixed point x P R
n, we call the point x an stationary point for

the function f if

p0, ´1q P Nepi f

`

x, fpxq
˘

,

or, alternatively, 0 P Bfpxq.

Mathematically, it would be desirable to have that every local minimum (or

maximum) of the function f satisfies the definition of stationarity. However, to ensure that

this property holds, we need to define the generalized directional derivative for nonsmooth

functions.

Notice that we have established a generalization for the derivative concept

without using a generalization of the directional derivative. This connection will be given by

analyzing the set Tepi f px, fpxqq. So, in order to explore the relation between Tepi f px, fpxqq
and Bfpxq, we will need a well known definition in the convex analysis area.

Definition 1.8 (support function). Given a compact and convex set C Ă R
n, we define

its respective support function s : Rn Ñ R as

sCpdq :“ maxtxx, dy | x P Cu.

The support function is of great importance in convex analysis because a

compact and convex set defines a support function and vice-versa, i.e., it is enough to have

one of these objects to know both. This result is due to the fact that C can be described

as the intersection of all half-spaces of the form

S´
C pxq :“ ty P R

n | xx, yy ď sCpxqu. (see Figure 4)

We will see that the generalized directional derivative will be the support

function of the set Bfpxq. For now, we present a proposition that will prove useful.

Proposition 1.1. Let f : Rn Ñ R be a locally Lipschitz continuous function. Then, given

d P R
n, r P R and x P R

n, the following holds

pd, rq P Tepi f px, fpxqq ô lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

ď r.
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Figure 4 – Representation of a compact and convex set C and some of its half-spaces
S´

C pxiq related to the support function associated with C.

Proof. Given any pd, rq P Tepi f px, fpxqq, we must have, for any sequence tpxj, zjqu Ă epi f

converging to ppx, fpxqq and any ttju decreasing to zero, that there is tpdj, rjqu Ă R
n ˆ R

converging to pd, rq such that

pxj, zjq ` tjpdj, rjq P epi f , for all j P N ô fpxj ` tjdjq ´ zj

tj

ď rj, for all j P N.

Therefore, since this must be valid for any sequence tpxj, zjqu Ă epi f , we choose the

sequence tpxj, fpxjqqu, which implies

fpxj ` tjdjq ´ fpxjq
tj

ď rj, for all j P N ñ lim sup
jÑ8

fpxj ` tjdjq ´ fpxjq
tj

ď r. (1.4)

Notice that since f is locally Lipschitz continuous, there must exist a Lipschitz constant L

that holds for all points near x. Consequently, for j sufficiently large, it yields that
ˇ

ˇ

ˇ

ˇ

fpxj ` tjdjq ´ fpxjq
tj

´ fpxj ` tjdq ´ fpxjq
tj

ˇ

ˇ

ˇ

ˇ

ď L}dj ´ d}.

Hence, by the condition that dj Ñ d and by (1.4), we have

lim sup
jÑ8

fpxj ` tjdq ´ fpxjq
tj

“ lim sup
jÑ8

fpxj ` tjdjq ´ fpxjq
tj

ď r.

Summarizing, the following holds

pd, rq P Tepi f px, fpxqq ñ lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

ď r.

Conversely, let pd, rq P R
n ˆ R and assume that

lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

ď r
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holds. Consequently, for any sequences tpxj, zjqu Ă epi f and ttju Ă R such that xj Ñ x

and tj Ó 0, it yields that

lim sup
jÑ8

fpxj ` tjdq ´ zj

tj

ď lim sup
jÑ8

fpxj ` tjdq ´ fpxjq
tj

ď r. (1.5)

Then, we define the sequence tpd, rjqu Ă R
n ˆ R, with

rj “ max

"

sup
sěj

fpxs ` tsdq ´ zs

ts

, r

*

.

By the manner we have defined the sequence tpd, rjqu, we see that

fpxj ` tjdq ´ zj

tj

ď rj, for all j P N ñ fpxj ` tjdq ď zj ` tjrj, for all j P N.

Equivalently, we have pxj, zjq`tjpd, rjq P epi f . Moreover, by (1.5), it implies that pd, rjq Ñ
pd, rq, which completes the proof of our statement.

This last result, gives the support function of the closed and convex set Bfpxq.
Indeed, since pξ, ´1q P Nepi f px, fpxqq, then

pξ, ´1q P Nepi f px, fpxqq ô xpξ, ´1q, pd, rqy ď 0, for all pd, rq P Tepi f px, fpxqq.

So, assuming that the inner product x¨, ¨y above is the natural inner product for a space

originated from a Cartesian product of a space X and R, that is, xpa, bq, pc, dqy “ xa, cyX `bd,

then

pξ, ´1q P Nepi f px, fpxqq ô xξ, dy ď r, for all pd, rq P Tepi f px, fpxqq.

By Proposition 1.1, one can see that

ξ P Bfpxq ô pξ, ´1q P Nepi f px, fpxqq ô xξ, dy ď lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

, (1.6)

which yields

sBfpxqpdq “ max
ξPBfpxq

xξ, dy “ lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

. (1.7)

That being established, we are ready to understand the concept of the general-

ized directional derivative. Remember that for the smooth case, the directional derivative

at x in the direction d can be defined as the inner product of the gradient at x and the

vector d, i.e., the growth rate of the function in the direction d. In our context, we intend

to do the same, but since we can have more than one generalized derivative at the same

point, we define the generalized directional derivative as the support function that appears

in (1.7).
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Definition 1.9 (generalized directional derivative). The generalized directional derivative

of a locally Lipschitz continuous function f : Rn Ñ R at x in the direction v P R
n is given

by

f ˝px; dq :“ lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

.

By relation (1.6), it is also possible to define the subdifferential set in a different

manner, but equivalent to its previous definition. While Definition 1.6 has a geometric

understanding of the generalized derivative, the definition below presents an analytical

view.

Definition 1.10 (Subdifferential set,subgradient). The set given by

Bfpxq :“ tξ P R
n| xξ, dy ď f ˝px; dq, @d P R

nu

is called the subdifferential set of f at x and any ξ P Bfpxq is known as a subgradient of f

at x.

From this last definition, it is easy to see that when we compute the generalized

derivative at a point x, where the function f is differentiable, we obtain exactly the gradient

of the function.

Proposition 1.2. Let f : Rn Ñ R be a locally continuous Lipschitz function. Then, if at

x P R
n the function f is differentiable, we have

Bfpxq “ t∇fpxqu.

Proof. Let ξ P Bfpxq be an arbitrary subgradient. Then, it yields that xξ, dy ď f ˝px; dq,
@d P R

n. However, since f is differentiable at x, we have that f ˝px; dq “ x∇fpxq, dy. Then,

xξ, dy ď x∇fpxq, dy, for all d P R
n.

Taking d “ ξ ´ ∇fpxq, it yields that xξ ´ ∇fpxq, ξ ´ ∇fpxqy ď 0. Therefore, ξ “ ∇fpxq,
which completes the proof.

The analytical definition of the subdifferential set, gives us the means to prove

a result announced before, but we were not yet capable to attest it.

Proposition 1.3. If f : Rn Ñ R is a locally Lipschitz continuous function and x is a

local minimum or maximum of the function f , then 0 P Bfpxq.

Proof. First, suppose that x is a local minimum of f . Also, we take any sequence ttju Ă R

decreasing to zero and the constant sequence txju with xj “ x, for all j P N. Then, it is

clear that for any j P N sufficiently large, we have that

fpxj ` tjdq ´ fpxjq
tj

ě 0 ñ f ˝px; dq ě 0, for all d P R
n.
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Therefore, 0 P Bfpxq. Now, for the case of local maximum, we need to show that 0 P
Bfpxq ô 0 P Bp´fqpxq. Indeed,

p´fq˝px; dq “ lim sup
yÑx

tÓ0

p´fqpy ` tdq ´ p´fqpyq
t

“ lim sup
zÑx
tÓ0

fpz ´ tdq ´ fpzq
t

, using z “ y ` td

“ f˝px; ´dq.

Consequently,

0 P Bfpxq ô @d P R
n, x0, dy ď f ˝px; dq ô @d P R

n, x0, ´dy ď f ˝px; ´dq ô 0 P Bp´fqpxq.

But a local maximum for f is a local minimum for p´fq, therefore it relies on the case

already proven, which completes the proof.

Both definitions of the subdifferential set are important, but they are not so

useful in practice. Even an attempt to approximate Bfpxq seems impracticable. Next, we

present a different view of the generalized directional derivative that will prove helpful.

Theorem 1.1. Let f : Rn Ñ R be a locally Lipschitz continuous function. Then, the

generalized directional derivative of f at any point x P R
n can be written as

f ˝px, dq :“ lim sup
yÑx

yPD

x∇fpyq, dy,

where D is the set of points in R
n such that f is differentiable.

Proof. To prove this statement, we first fix any d P R
n and take any δ ą 0. Moreover, let

txju Ă R
n and ttju Ă R be any sequences such that xj Ñ x and tj Ó 0. As a consequence,

we define the sequence tzju Ă R
n, with

zj P B

ˆ

xj,
δtj

2L

˙

X D, where L is the local Lipschitz constant around x.

Notice that the existence of each zj is given by the Rademacher’s theorem. Now, for all

j P N sufficiently large, we must have that

fpxj ` tjdq ´ fpxjq
tj

ď
fpzj ` tjdq ´ fpzjq

tj

` δ.

However, since the sequences txju and ttju are arbitrary, the relation above yields

lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

ď lim sup
yÑx

yPD

tÓ0

fpy ` tdq ´ fpyq
t

` δ.
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Since δ ą 0 can be arbitrarily small and the sequences considered in the right-hand side of

the last inequality are contained in the sequences in the left-hand side, we have

lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

“ lim sup
yÑx

yPD

tÓ0

fpy ` tdq ´ fpyq
t

.

Again, consider arbitrary sequences txju Ă D and ttju Ă R such that xj Ñ x and tj Ó 0.

Then, for any J, I P N with J ě I, it yields that

lim
JÑ8

"

sup
jěJ

fpxj ` tjdq ´ fpxjq
tj

*

ď lim
JÑ8

$

&

%

sup
jěJ

iěI

fpxi ` tjdq ´ fpxiq
tj

,

.

-

“ sup
iěI

x∇fpxiq, dy.

However, since the sequences involved in the inequality above are arbitrary, we have

lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

ď lim sup
yÑx

x∇fpyq, dy.

In fact, this inequality can be proven to be an equality. Indeed, let us choose any δ ą 0.

Then, for any sequence txju Ă D converging to x, there is a sequence ttju Ă R decreasing

to zero such that

x∇fpxjq, dy ď
fpxj ` tjdq ´ fpxjq

tj

` δ ñ sup
jěJ

x∇fpxjq, dy ď sup
jěJ

fpxj ` tjdq ´ fpxjq
tj

` δ.

Considering j Ñ 8 and since txju is arbitrary, we get

lim sup
yÑx

x∇fpyq, dy ď lim sup
yÑx

tÓ0

fpy ` tdq ´ fpyq
t

` δ.

Again, since δ ą 0 may be arbitrarily small, we finish our proof.

In finite dimensional spaces, which is our case, the subdifferential set can

be seen from a third viewpoint. To present this new definition, we need an auxiliary

result [44, Theorem 2.29].

Theorem 1.2 (Carathéodory’s theorem). If x is an element of the convex hull of a non

empty set X Ă R
n, then there exists a maximum of n ` 1 elements of X such that x is a

convex combination of those points.

We are ready to prove a theorem that will play a key role in the optimization

methods that use sampling techniques.

Theorem 1.3. Let f : Rn Ñ R be a locally Lipschitz continuous function. Then, the

subdifferential set of f at any point x P R
n can be written as

Bfpxq :“ co

"

lim
jÑ8

∇fpxjq | xj Ñ x, xj P D

*

,

where D is the set of points in R
n such that f is differentiable.
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Proof. To prove the result, we start by showing that the support function of

X :“ co

"

lim
jÑ8

∇fpxjq | xj Ñ x, xj P D

*

is the map d ÞÑ lim sup
yÑx

yPD

x∇fpyq, dy. In other words, we show that

max
ξPX

xξ, dy “ lim sup
yÑx

yPD

x∇fpyq, dy, for all d P R
n.

So, let us fix any d P R
n. Then, there exists ξd P X such that max

ξPX
xξ, dy “ xξd, dy. By the

Carathéodory’s theorem, we know that there exist sequences tx1
ju,. . .,txn`1

j u converging

to x and scalars λ1,. . .,λn`1 ě 0 such that

ξd “
n`1
ÿ

i“1

λi lim
jÑ8

∇fpxi
jq, with

n`1
ÿ

i“1

λi “ 1.

Then,

xξd, dy “
C

n`1
ÿ

i“1

λi lim
jÑ8

∇fpxi
jq, d

G

ď max
1ďiďn`1

B

lim
jÑ8

∇fpxi
jq, d

F

ď lim sup
yÑx

yPD

x∇fpyq, dy.

As a result, max
ξPX

xξ, dy ď lim sup
yÑx

yPD

x∇fpyq, dy, for all d P R
n. Let us prove the other side of

the inequality.

Let us still consider an arbitrary and fixed d P R
n. By the definition of lim sup,

it yields that there exists a sequence txju converging to x such that

x∇fpxjq, dy ě lim sup
yÑx

yPD

x∇fpyq, dy ´ 1

j
.

However, because of the locally Lipschitz continuity of f , }∇fpxjq} is bounded near

x. Consequently, there is a subsequence txjk
u converging to x such that ∇fpxjk

q also

converges and
B

lim
jkÑ8

∇fpxjk
q, d

F

ě lim sup
yÑx

yPD

x∇fpyq, dy.

The inclusion,

lim
jkÑ8

∇fpxjk
q P co

"

lim
jÑ8

∇fpxjq | xj Ñ x, xj P D

*

(1.8)

yields that d ÞÑ lim sup
yÑx

yPD

x∇fpyq, dy is the support function of the set that appears in (1.8).

But we have showed in Theorem 1.3 that this map is exactly the support function f ˝px; ¨q.
As any support function defines a compact convex set and vice-versa, the statement

follows.
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It is easy to understand the physical concept behind the last statement. Let us

return to the example of Figure 3. It seems reasonable that any force that the tiny particle

will receive when it is in the corner of the two “rigid walls” will be a convex combination of

the normal vectors of each wall. The theorem above says precisely that, since one can view

the normal force of one of those walls as p∇fpyq, ´1q P Nepi f py, fpyqq, for any y near x.

Although Theorem 1.3 depends on the collection of all sequences of points

of differentiability converging to x, which decreases the practicality of the result, its

representation by the actual gradients of the function f is extremely useful. In this fashion,

we can think in a natural set to approximate the real subdifferential Bfpxq by computing

gradients near x and taking their convex hull. Associated with this idea, we present a

more general set than Bfpxq.

Definition 1.11 (�-Subdifferential set, �-subgradient, �-stationary point). The set called

�-subdifferential of f at x is given by

B�fpxq :“ co BfpBpx, �qq.

Any v P B�fpxq is known as an �-subgradient of f at x. Moreover, if 0 P B�fpxq, then we

say that x is an �-stationary point for f .

This new set includes the information about the function f around the point

x P R
n, towards the implications of Theorem 1.3. Besides, it still depends on the generalized

derivatives and not on the gradients. The next set is more in line with a practical

approximation of Bfpxq:

G�pxq :“ cl co p∇f pBpx, �q X Dqq .

This definition is directly linked with B�fpxq, because Bδfpxq Ă G�pxq Ă B�fpxq, when

� ą δ ą 0. Moreover, we have that

Bfpxq “
č

�ą0

G�pxq,

which evinces the property of G�pxq to approximate the subdifferential set.

So far, we have exhibited the basic concepts associated with locally Lipschitz

functions, but we have not looked yet at the optimization problem (1.2). Although the main

focus of our study will be the sampling techniques normally used to solve minimization

problems, an introduction about bundle algorithms can not be left aside when one studies

nonsmooth optimization.

1.2 Bundle techniques

In this section we have the intent to give a brief introduction in one of the most

well known algorithms for solving nonsmooth optimization problems. Bundle methods
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were originally developed to deal with nonsmooth and convex functions and, unlike the

standard subgradient methods, they were built to be descent methods [34, 41]. Posteriorly,

nonconvex objective functions were added to the class of maps that bundle methods might

handle, but the complexity of these algorithms increases considerably when compared to

their convex versions. For the purpose of this section, we will just consider the case where

f is a convex and possibly nonsmooth function.

Let f : Rn Ñ R be a locally Lipschitz continuous function, then we say that f

is convex if its epigraph is a convex set, i.e, given any λ P r0, 1s, it yields that

x, y P epi f ñ λx ` p1 ´ λqy P epi f .

Equivalently, we must have that

fpλx ` p1 ´ λqyq ď λfpxq ` p1 ´ λqfpyq, for all x, y P R
n.

As a consequence, we can establish the main result that bundle methods are based on,

which tells us that it is possible to approximate the function f by affine maps that

underestimate the values of f .

Proposition 1.4. Let f : Rn Ñ R be a locally Lipschitz continuous function. Moreover,

assume that f is convex. Then, for all x, y P R
n and ξ P Bfpxq, it yields that

fpxq ` xξ, y ´ xy ď fpyq.

Proof. For any x, y P R
n, we define d “ y ´ x. Consequently, we must have that

f ˝px; dq “ lim sup
zÑx
tÓ0

fpz ` tdq ´ fpzq
t

“ lim sup
zÑx
tÓ0

fptpz ` dq ` p1 ´ tqzq ´ fpzq
t

ď lim sup
zÑx
tÓ0

tfpz ` dq ` p1 ´ tqfpzq ´ fpzq
t

“ lim sup
zÑx

fpz ` dq ´ fpzq

“ fpx ` dq ´ fpxq
“ fpyq ´ fpxq.

So, by (1.7), it yields, for all ξ P Bfpxq, that

xξ, y ´ xy ď f ˝px; dq ď fpyq ´ fpxq ñ fpxq ` xξ, y ´ xy ď fpyq,

which proves our statement.
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Figure 5 – Representation of a convex function by affine approximations.

The result presented previously is illustrated by Figure 5. In this figure, one

can see that the affine approximation in Proposition 1.4 will always underestimate the

function f . Moreover, one may consider a model for the objective function using different

affine approximations. Basically, the model function can be given by

f̌pxq :“ max
jPJ

tfpyjq ` ξT
j px ´ yjqu, (1.9)

where J Ă N is a finite set of indices, yj P R
n are points that help us to construct a model

for the function f and ξj P Bfpyjq.

The model presented in (1.9) is known as the cutting-plane approach [7, 24]

and it is the precursor of bundle methods. Although this model seems a good and cheap

way to approximate the actual objective function, it has some drawbacks. For example,

the cutting-plane model may not always have a global minimizer, which is a condition

closely related to the points yj P R
n that enrich the model of f (see Figure 6). Hence,

any attempt to find a good approximation of the solution x˚ by looking at f̌ will prove

unsuccessful.

Even in the case that the model f̌ does present a global minimum, it might be

a poor approximation. To illustrate this behavior, let us consider the convex function that

appears in Figure 7 with its respective model function f̌ . While the point y2 is close to the

actual solution of the problem, the model that is obtained by using an affine approximation

at y2 gives back a bad approximation of the global minimizer. This happens because at

the right-hand side of the solution, the function f is almost horizontal. In that case, if the

point y1 is not close enough to the solution x˚, it will give us a global minimizer of f̌ far

from y2 and, consequently, from x˚. This explanation also justifies why the cutting-plane

method behaves poorly when applied to a smooth function.

Some of the difficulties of the cutting-plane approach exposed here suggest

that a stabilization of the method is needed in order to guarantee that f̌ will always have
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Figure 6 – Representation of a model f̌pxq for the function f that does not present a
global minimizer.

Figure 7 – Representation of how f̌pxq can approximate poorly the solution x˚.

a global minimizer and it will not produce bad approximations of x˚ when close to the

solution. One of the possible ways is to impose a level of reliability on the function f̌ ,

which means that we will trust in the approximation of f̌ in a close neighborhood of xk

(the current iteration of the method) [46]. Mathematically speaking, the approximation of

the solution x˚ will be given by

min f̌pxq
s.t }x ´ xk} ď Δk,

where Δk ą 0 controls the radius of reliability of f̌pxq around xk.

Another possible approach that one might consider is to build a quadratic

approximation of f instead of considering affine functions. In the case that this quadratic

approximation presents a positive definite Hessian, it is clear that a minimum of this

approximation will always exist. In view of this goal, it is better to centralize the function
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f̌ at the current iterate point xk, that is,

f̌pxq “ max
jPJ

tfpyjq ` ξT
j px ´ yjqu “ max

jPJ
tfpxkq ` ξT

j px ´ xkq ´ αk,ju,

where αk,j is called the linearization error and it is given by

αk,j :“ fpxkq ´ fpyjq ´ ξT
j pxk ´ yjq.

So, considering Hk P R
nˆn a positive definite matrix, one can stabilize the model of f by

giving a new definition for the function f̌ :

f̌pxk ` dq :“ max
jPJ

tfpxkq ` ξT
j d ´ αk,ju ` 1

2
dT Hkd.

At this moment we are ready to understand the general mechanism of bundle

methods. Here, we will discuss a general bundle technique, but we do not have the intent

to encompass all the existing bundle methods.

To start, let us consider that we are at an iteration k of our general algorithm

with its respective current iterate xk P R
n. Moreover, we have an index set Jk Ă t1, . . . , ku

related to the points yj, with j P Jk, that enriches our model. As the first step, we solve

the following optimization problem for any positive definite matrix Hk P R
nˆn

min
dPRn

f̌pxk ` dq :“ min
dPRn

max
jPJk

tfpxkq ` ξT
j d ´ αk,ju ` 1

2
dT Hkd. (1.10)

In the way that the above problem is presented to us, it does not seem any easier than our

original optimization problem, since the objective function is still nonsmooth. However,

the solution of (1.10) can be also obtained by solving the following constrained problem

min
pd,zqPRnˆR

z ` 1

2
dT Hkd

s.t ´ αk,j ` ξT
j d ď z, j P Jk.

(1.11)

Now, we are able to obtain a solution by a quadratic optimization problem and there are

efficient algorithms in the literature to solve this kind of constrained minimization.

Once solved this subproblem, we define a possible candidate to be the next

iterate

yk`1 :“ xk ` dk,

with dk being the solution of (1.11). The acceptance or not of this point as the next iterate

will be given by the quotient
fpxkq ´ fpyk`1q
fpxkq ´ f̌pyk`1q

.

In the case that the quotient above is greater than a positive real number q P p0, 1{2q, we

accept the point yk`1 as our next iterate, since this relation tell us that the model f̌ is good
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enough (according to the parameter q). Otherwise, a null step is taken, i.e., xk`1 :“ xk.

Moreover, we enrich our model by adding the point yk`1 and we set Jk`1 :“ Jk Y tk ` 1u.

The process comes to an end when the predicted decrease of the function value

is small enough, i.e., when

fpxkq ´ f̌pyk`1q ď �,

where � ą 0 is a previously established tolerance. Finally, we declare the approximate

solution of the original optimization problem as the last iterate obtained.

Clearly, different bundle methods can be drawn by setting different ways to

choose Hk [25, 26]. Additionally, one can even consider a different quadratic term for each

piecewise affine function instead of fixing the same quadratic term for all of them [33].

Independently of the choice of positive definite matrix, an important issue

must be stressed at this point. As the number of iterations increases, the index set Jk

will increase. Therefore, the number of restrictions in (1.11) can be dramatically high if a

cleaning procedure is not implemented. In the literature, this routine is called aggregation

and is an important procedure if one wants to implement a practical method. For this

subject, we guide the reader to [2, Chapter 10] and references there in.

As we have already said in the beginning of this section, the bundle techniques

are more complex when the hypothesis of convexity is left aside. For this case, it is hard

to determine whether a past iteration is contributing to construct a good model of the

objective function or it is so far from the current iterate that its incorporation to the

model might lead to an erroneous local information. Moreover, the underestimation of

the affine approximations is no longer a valid result, which contributes to add an extra

difficulty when one tries to build a reliable model for the function f .

With the objective of overcoming these difficulties in solving nonsmooth and

nonconvex optimization problems and, in order to present an alternative algorithm to the

well established bundle method, the algorithm known as Gradient Sampling (GS) was

published in 2005 [6]. The next section has the intent to explore its functioning and present

the algorithm itself.

1.3 Gradient sampling

In contrast to the bundle techniques, the Gradient Sampling method is not

deterministic, since in each iteration a sampling procedure is executed as a way to avoid

keeping the past iterations in the memory to construct a good model for f . Consequently,

the decision whether the past iteration is contributing to build a good model for f , present

in the bundle method, is no longer a concern. On the other hand, the cost per iteration is

considerably higher.
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In order to understand the GS functioning, we emphasize that the aforemen-

tioned method is a generalization of the steepest descent method for nonsmooth functions.

Hence, the GS algorithm tries to emulate the behavior of Cauchy method, i.e., in each

iteration the algorithm computes a descent direction at the current iterate xk with just

first order information and executes a line search procedure in view of obtaining the next

iterate xk`1.

At this point, one can guess that the hardest step is the computation of the

descent direction, since the nonsmoothness of the function f can make this procedure

harder than when one has a smooth function. Indeed, this step is the kernel of the method

and once we understand how this process works, the functioning of the remaining steps

becomes natural.

The idea behind the sampling procedure is to approximate the set G�pxq by

sampling points around the point x and computing the gradients of f at those points [5].

Of course, the Rademacher’s theorem plays a key role at this step, since it states that the

set of points in which the function f is not differentiable has null measure. Consequently,

if one has, for example, an uniform sampling around x, with probability one the function

f will be differentiable at those random points. Therefore, the well-definiteness of the GS

method is subjected to an almost sure event.

Additionally, in the case that f is also differentiable at x, the vector ∇fpxq is

also used to approximate G�pxq. In further details, considering yi as the random points

sampled in Bpx, �q, we have that

G̃�pxq :“ cot∇fpxq, ∇fpy1q, . . . , ∇fpymqu,

is an attempt to approximate G�pxq (for a geometrical view see Figure 8). Moreover,

although G̃�pxq is just an approximation, it has a very important property: independently

of the sampled points, it is always possible to find a direction d P G̃�pxq of descent for f at

x.

Indeed, let us consider that 0 R G̃�pxq. Since G̃�pxq is compact, the following

vector must exist

ξ̃ :“ arg min
vPG̃�pxq

xv, vy. (1.12)

We then define, for any v P G̃�pxq, the function φv : R Ñ R, where

φvpλq “
@

p1 ´ λqξ̃ ` λv, p1 ´ λqξ̃ ` λv
D

.

Therefore, it yields that

φ1
vpλq “ ´2p1 ´ λqxξ̃, ξ̃y ` 2λxv, vy ` 2p1 ´ 2λqxξ̃, vy, for all λ P R.

However, since ξ̃ is given by (1.12) and G̃�pxq is convex, we must have that

φvp0q ď φvpλq, for all λ P r0, 1s,
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Figure 8 – Representation of the set G�pxq for the bidimensional function fpxq “
maxt´x1 ` x2

2, x1 ` x2
2u at x “ p0, 2q with � “ 0.5. In this case, we have

three sampled points y1, y2 and y3 to approximate G�pxq. The vector ξ˚ stands
for the vector with minimum Euclidean norm over the set G�pxq, whereas ξ̃

represents its approximation by just using the gradients ∇fpy1q, ∇fpy2q and
∇fpy3q.

which implies that φv is an increasing function at 0. Hence, φ1
vp0q ě 0 and we get

´2xξ̃, ξ̃y ` 2xξ̃, vy ě 0 ñ xξ̃, ξ̃y ď xξ̃, vy.

Consequently, since 0 R G̃�pxq and the above implication is valid for any v P G̃�pxq, it yields

that

x´ξ̃, ∇fpxqy ă ´xξ̃, ξ̃y ă 0,

which proves that ´ξ̃ is a descent direction for f at x.

Having the descent direction d “ ´ξ̃, there are two possibilities for a given

tolerance ν ą 0: }d} ă ν or }d} ě ν. For the first case, the algorithm declares that, under

the given tolerance ν, the point x is an �-stationary point for the function f and the

method decreases the sampling radius �. Otherwise, a line search procedure is performed

along the vector d and finds the next iterate xk`1, which completes an iteration of the

method.

There are still some clarifications that we need to provide for a complete

understanding of the method, but before we proceed with these explanations, we introduce

in Algorithm 1 a general model for most of the GS methods that have been developed

over the years [10, 27].

The first observation that we must highlight is the use of the positive definite

matrices Hk in the GS algorithm. With those matrices we can define inner products and

norms induced by them and, consequently, obtain different concepts of a vector with

minimum norm over a closed and convex set. The different types of inner products produce

different GS methods. For example, if we set Hk ” I for all k P N, we obtain the standard
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GS method. However, updating Hk with limited memory LBFGS techniques, we get a

variant of the methods suggested in the study of Curtis and Que [10].

The real value αk that appears in Step 4 is just an approach to encompass the

normalized and nonnormalized versions in the literature. In the pioneering paper of the

GS method [6], the original authors make use of a normalized descent direction, while a

couple of years later, Kiwiel presented a nonnormalized version of the same idea [27] with

better convergence properties. Notice also that the line search procedure in Step 4 is well

defined, whenever xk P D, since as argued before, dk will be always a descent direction for

f at xk.

Algorithm 1: A general algorithmic framework for GS methods.

Step 0. Set k “ 0, x0 P D, m P N with m ě n ` 1, fixed real numbers 0 ď νopt ă ν0,
0 ď �opt ă �0 and 0 ă θν , θ�, γ, β ă 1.

Step 1. Choose txk,1, . . . , xk,mu Ă Bpxk, �kq with randomly, independently and
uniformly sampled elements.

Step 2. Set G̃k “ r∇fpxkq ∇fpxk,1q . . . ∇fpxk,mqs and find g̃k “ H´1
k uk

such that uk “ G̃kλk and λk solves

min
λ

1

2
λT G̃T

k H´1
k G̃kλ

s.t. eT λ “ 1, λ ě 0

where Hk P R
nˆn is a positive definite symmetric matrix.

Step 3. If νk ă νopt and �k ă �opt, then STOP!
Otherwise, if mint}g̃k}, }g̃k}Hk

u ă νk, then �k`1 “ θ��k, νk`1 “ θννk,
xk`1 “ xk and go to Step 6.

Step 4. Do a backtracking line search and find the maximum tk P t1, γ, γ2, . . .u
such that

fpxk ` tkdkq ă fpxkq ´ βαktkg̃T
k Hkg̃k,

where dk “ ´αkg̃k, for some positive αk P t1, ϑ{}g̃k}u. Moreover, set �k`1 “ �k

and νk`1 “ νk.

Step 5. If xk ` tkdk P D, then set xk`1 “ xk ` tkdk. Otherwise, find
xk`1 P Bpxk ` tkdk, minttk, �ku}dk}q X D, where the following holds
fpxk`1q ď fpxkq ´ βαktkg̃T

k Hkg̃k.

Step 6. Set k Ð k ` 1 and go back to Step 1.

Finally, the procedure that has not been discussed yet is the routine that appears

in Step 5. It is patent that the necessity of keeping xk P D during all the functioning of the

algorithm is a crucial point for the well-definiteness of the method. Without this condition,

we cannot compute ∇fpxkq, compromising the acquisition of a descent direction, and
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consequently, collapsing Step 4. Therefore, Step 5 cannot be suppressed without affecting

the convergence of GS. Unfortunately, the routine of checking if a point belongs to D or

not is not trivial for a broad class of real problems.

The next chapter is entirely devoted to deal with the difficulty of executing

Step 5. Although in most cases the suppression of this procedure does not prevent the

method to converge in practice, we show that there are cases where the absence of this

step might prevent the achievement of a stationary point for the function f .
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2 Differentiability Check

Our purpose in this chapter is threefold. First, we advocate that, even in finite

precision, we have to be aware not only about the issues that a point of nondifferentiability

might cause, but also about the troubles of a nondifferentiability neighborhood, which

opposes to the belief presented so far in many GS variants. Second, we aim to present two

modifications in order to produce a gradient sampling algorithm that has probability one

to converge, even in the condition where one suppresses the differentiability check (DC).

The first proposal considers a perturbation in the search direction of each iteration (if the

user does not know the set of nondifferentiability of the function) or just in some specific

iterations (if the user does know the set of differentiability or is not tolerant to have too

many perturbations). The second one presents a nonmonotone line search as a way to

avoid the differentiability check. Third, we exhibit numerical illustrative results and one

real problem to show that, besides having a theoretical appeal, our modifications might

be useful in practice.

In order to motivate this chapter we present a two dimensional example that

illustrates how the GS method might have an undesirable behavior when the DC procedure

is not taken into account. Furthermore, we introduce two modifications that have the

intent to help the practical algorithm to be well defined and ultimately to have guarantee

of convergence.

Let us consider an example with only two variables. Suppose we want to

minimize a convex and nonsmooth function f : R2 Ñ R, where

fpxq “ maxtφ1pxq, φ2pxq, φ3pxq, φ4pxqu

with

φ1pxq “ 0.5x2
1 ` 0.1x2;

φ2pxq “ x1 ` 0.1x2 ` 1;

φ3pxq “ ´x1 ` 0.1x2 ` 1;

φ4pxq “ ´0.05x2 ´ 50.

(2.1)

Assume that we have a point x P Bpp10, 10q, 1q and we want to start an iteration of the

Algorithm 1 with Hk “ I and αk “ 1 for all k P N. Therefore, the first step that we need

to take is to uniformly sample m points (with m ě 3) around x with a sampling radius

� ą 0. For our example, we will set m “ 4 and � “ 0.1. Consider that all of those sampled

points were picked up in the set

A :“ tpx1, x2q P Bpx, �q | x1 ą x1u. (2.2)
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This is an event with probability 0.0625 “ 0.54 to happen. Thus, since φ1pxq is the only

function that assumes the maximum in Bpx, �q, the result of the minimization of the

convex combination that appears in Step 2 is the vector ∇φ1pxq “ px1, 0.1q. Consequently,

assuming that ν ă 10´1 in Step 3, the algorithm does not reduce the sampling radius �,

and then, the search direction obtained is d “ ´∇φ1pxq. Therefore, for any reasonable

value of β, it is possible to see that the point

x` “ x ` d “ p0, x2 ´ 0.1q pobserve that x2 ´ 0.1 ě 8.90q

is accepted (assuming that we are suppressing the differentiability check).

Notice that the function f is not differentiable at x`. Moreover, the algorithm

will remain trapped in the manifold

M :“ tpx1, x2q P R
2 | x1 “ 0u,

independently of the sampled points obtained during the next iterations. This behavior is

undesirable and troubling for the algorithm, because the function f is not differentiable at

any point of

W :“ M X tpx1, x2q P R
2 | x2 ě ´340u,

and the model algorithm expects that the iterations will always remain in D. However,

let us assume that the user returns a reasonable value, namely a subgradient, for the

impossible computation of ∇fpxq, for all x P W. Suppose that the user breaks the ‘tie’

of the functions arbitrarily by selecting just one function that reaches the maximum to

compute the subgradient (which is a recommendation of the original authors [6, Section

4]). Let us say that the user choose to give back the vector ∇φ2pxq, for all x P W (the

same reasoning can be used if the user selects ∇φ3pxq).

Now, we must observe that for all iterations in W, the search direction will

always be

p´1, ´0.1q or p0, ´0.1q.

The first one is a troubling vector, since it is not a descent direction and will make Step 4

not well defined. However, the probability to sample points that will generate the first

vector as a search direction is 6.25%. Moreover, since x`
2 ě 8.90, the algorithm will remain

in W for at least 10 ˆ p340 ` 8.90q “ 3489 iterations. Considering that in 75 iterations the

chance to generate the vector p´1, ´0.1q as a search direction is 1´p1´6.25{100q75 « 99%,

it is possible to see that the line search has an enormous chance of not succeeding at an

iteration during the execution of the method.

An observation that one can stress here is that since in practice we do not

solve Step 2 with exact precision, the algorithm may never reach the set W (or this is a

very unlikely event), and therefore, this example is not an issue in a real implementation.
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Although this statement is partially true, it is false to assume that it will not be problematic

for the algorithm (see Figures 9 and 10). Since we are working with finite precision, iterations

very close to the set W may produce the same undesirable behavior as a point that, in fact,

is in W. We justify this affirmative exhibiting in Section 2.4 the results of one hundred

runs of the nonnormalized version of GS and showing that in 68% of them the algorithm

fails to reach the optimal solution.

For now, let us present the modifications that we have proposed for the method.

The first one is the perturbation of the search direction.

10´20

10´15

10´10

10´5

100

105

0 50 100 150 200
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i

´
x

˚ i
|

Iterations

Figure 9 – An example of how the iterations might go quickly to a nondifferentiability
region without reaching the optimal solution. In blue color we see the distance
of the first coordinate of the iterates to x˚

1 “ 0, whereas the read color stands
for the same distance but now for the second coordinate.

2.1 Search direction perturbation

This section has the intent to circumvent the DC procedure by adding a

perturbation vector in the search direction, ensuring, with probability one, that every xk

will be in the differentiable set. For this purpose, we suggest that Step 4 of Algorithm 1 is

replaced by Step 4a. It is important to notice that if ∇fpxkq “ 0 eventually happens, then

Step 4a will never be performed. Indeed, in this case we would have g̃k “ 0, and hence,

the algorithm would enter in an infinite loop because of Step 3. Therefore, the quotient

that appears inside Step 4a should not worry the reader.
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Figure 10 – Here we see a 2D-representation of how the iterations move fast to an unde-
sirable region. The colored lines represent the level curves of the objective
function, with the blue colors representing a lower function value than the red
lines.

Step 4a. Do a backtracking line search and find the maximum tk P t1, γ, γ2, . . .u such

that

fpxk ` tkdkq ă fpxkq ´ βαktkg̃T
k Hkg̃k,

where dk “ ´αkpg̃k ` ξkq, for some positive αk P t1, ϑ{}g̃k}u and

ξk P B

ˆ

0, c
∇fpxkqT g̃k

}∇fpxkq}

˙

is uniformly and randomly chosen with 0 ă c ă 1.

Two important remarks must be stressed here. First, for a minimum disturbance

on the natural behavior of GS, one should always set c « 0. Second, we need to observe

that we are trying to avoid the nondifferentiability set whenever this region is far from the

solution. Observe that the perturbation vector ξk is directly related to the vector g̃k, whose

norm is used as an optimality certificate. Therefore, the perturbation becomes smaller as

}g̃k} goes to zero. So, we are in fact avoiding only the troubling situation in which the

algorithm approaches a nondifferentiability neighborhood prematurely.

With this modification, we claim that the differentiability check can be sup-

pressed without affecting the convergence properties. To ensure this, we start proving a

lemma.

Lemma 2.1. If dk is given by Step 4a, xk P D and xk is not a stationary point for f ,



Chapter 2. Differentiability Check 43

then dk is a descent direction for f at xk and with probability one xk ` tkdk P D, where tk

is the step size obtained with the Armijo line search.

Proof. First, by relation (4.3) in [10, Lemma 4.3], we know that ∇fpxkqT g̃k ě }g̃k}2
Hk

.

Therefore, it follows that

∇fpxkqT dk “ ´αk∇fpxkqT pg̃k ` ξkq
ď ´αkp∇fpxkqT g̃k ´ }∇fpxkq}}ξk}q
ď ´αkp∇fpxkqT g̃k ´ c∇fpxkqT g̃kq
“ pc ´ 1qαk∇fpxkqT g̃k

ď pc ´ 1qαk}g̃k}2
Hk

.

By assumption, we know that xk is not stationary for f (so, }g̃k}Hk
‰ 0) and pc ´ 1qαk ă 0.

Consequently, dk is a descent direction for f at xk. Now, let us prove that xk ` tkdk P D

with probability one.

First, we define the following isomorphism:

T : Rn ÝÑ R
n

x ÞÝÑ y “ σx ` z,

where z P R
n and σ P R with σ ą 0. Now, given r ą 0, we define the sets

D :“ D X Bpz, σrq and D̂ :“ T ´1
`

D
˘

Ă Bp0, rq.

Therefore, considering a uniform distribution and denoting VolpAq as the volume of

A Ă R
n, we see that, since D has full measure in R

n, it implies that

Vol
`

D
˘

“ Vol pBpz, σrqq .

Moreover, for any affine transformation T̃ pxq “ Mx ` b, it is well known [49, Section 3.5]

that

Vol
`

T̃ pAq
˘

“ |detM | Vol pAq .

Therefore, the volume of D̂ exists and is given by

Vol
´

D̂

¯

“ σ´n Vol
`

D
˘

.

With these facts in mind, we have

P

”

x P D̂ | x P Bp0, rq
ı

“
Vol

´

D̂

¯

Vol pBp0, rqq

“ Vol
`

D
˘

Vol pBpz, σrqq
“ P

“

y P D | y P Bpz, σrq
‰

“ 1.
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Consequently, setting σ “ ´αkγj and z “ xk ` σg̃k, we see that for a uniform random

choice of ξk P B p0, rq, we have, for any j P N, that ξk P D̂ with probability one, and then,

T pξkq “ xk ` σg̃k ` σξk “ xk ` γjdk P D

with probability one. Therefore, since tk P t1, γ, γ2, . . .u, we have

Prxk ` tkdk P Ds “ 1,

which completes the proof.

According to this result, with probability one, the function f is differentiable

for all xk by adding a perturbation vector in the usual direction search. Hence, with

probability one, the algorithm is still well defined if we suppress the differentiability check.

Additionally, in order to guarantee the proof of convergence, an assumption

over the matrices Hk must be assumed.

Assumption 2.1. For every k P N, Hk P R
nˆn is a symmetric positive definite matrix

and there exist positive real numbers ς and ς such that

ς}d}2
ď dT Hkd ď ς}d}2, @d P R

n.

Now, we can proceed following closely to the results of [27]. We start with a

slight modification of [27, Lemma 3.1].

Lemma 2.2. Suppose that C Ă R
n is a nonempty compact and convex set such that 0 R C.

Thus, if β P p0, 1q and H P R
nˆn is a positive definite symmetric matrix, then there exists

δ ą 0 such that u, v P C and }u}H ď distHp0, Cq ` δ imply vT Hu ą β}u}2
H . Moreover, for

a fixed u P C and

µ :“ inf
vPC

vT Hu ´ β}u}2
H ,

it is possible to conclude that µ ą 0.

Proof. First, let us prove that there exists δ ą 0 such that u, v P C and }u}H ď distHp0, Cq`
δ imply vT Hu ą β}u}2

H . Indeed, if the statement were false it would be possible to find

sequences tuku, tvku Ă C such that }uk}H ď distHp0, Cq`1{k and uT
k Hvk ď β}uk}2

H . Hence,

since C is a compact set, we can assume without loss of generality that uk Ñ u and vk Ñ v.

Thus,

uT Hv ď β}u}2
H .

However, since }¨}H is a norm associated with an inner product, we must have by definition

of the projection map that

u “ ProjHC p0q ‰ 0 ñ uT Hv ě }u}2
H , for all v P C,
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which gives a contradiction.

Now, since C is a compact set, we have that

inf
vPC

vT Hu “ min
vPC

vT Hu.

Consequently, there exists µ ą 0 such that µ “ inf
vPC

vT Hu ´ β}u}2
H , which is the desired

result.

Before we present another important result, we expose, for a positive definite

symmetric matrix H, some definitions related to the H-measure of proximity to the

�-stationarity ρH
� pxq “ distHp0, G�pxqq:

Dm
� pxq :“

m
ź

1

pBpx, �q X Dq Ă

m
ź

1

R
n

and

VH
� px, x, δq :“

�

py1, . . . , ymq P Dm
� pxq : distHp0, cot∇fpyiqum

i“1q ď ρH
� pxq ` δ

(

.

We are now able to present our next result, which establishes a lower bound for the step

size tk when the points are properly sampled, and gives us a sufficient condition to ensure

that 0 P Bfpxq.

Lemma 2.3. Let � ą 0, x P R
n and H be a positive definite symmetric matrix.

i) For any δ ą 0, there exist τ ą 0 and a nonempty open set V satisfying V Ă

VH
� px, x, δq for all x P Bpx, τq, that is, distH

`

0, co
�

∇fpyiq
(m

i“1

˘

ď ρH
� pxq ` δ for all

py1, . . . , ymq P V.

ii) Assuming 0 R G�pxq, pick δ ą 0 and β P p0, 1q as in Lemma 2.2 for C :“ G�pxq,
H “ H´1

k and then τ and V as in statement piq. Suppose at iteration k of Algorithm 1,

Step 5 is reached with xk P Bpx, mintτ, �{3uq, �k “ � and pxk1, . . . , xkmq P V. Then,

uk P C. Moreover, considering u “ uk in Lemma 2.2 and selecting µ for this fixed

u, we have that if }ξk} ă µ{L, where L is the Lipschitz constant over Bpx, �q, then

tk ě mint1, γς�{p6Lq, γ�{p6ϑqu.

iii) If lim inf
k

maxt}xk ´ x}, }uk}, �ku “ 0 with uk P B�k
fpxkq for all k, then 0 P Bfpxq.

Proof. Let us begin by proving the first statement. Choose u P co t∇fpBpx, �q X Dqu such

that }u}H ă ρH
� pxq ` δ. By Carathéodory’s Theorem, we know that there must exist

px1, . . . , xmq P Dm
� pxq such that

u “
m
ÿ

i“1

λi∇fpxiq, with
m
ÿ

i“1

λi “ 1 and λ ě 0.
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Since f is continuously differentiable on the open set D, we must have that there exists

� P p0, �q such that

V :“
m

ź

i“1

Bpxi, �q

is a subset of Dm
�´�pxq and

›

›

›

›

›

m
ÿ

i“1

λi∇fpyiq
›

›

›

›

›

H

ă ρH
� pxq ` δ, @py1, . . . , ymq P V.

Hence, the statement is proven for τ “ �.

To prove the second assertion, we see, by hypothesis, that pxk1, . . . , xkmq P V Ă

V
H´1

k
� px, x, δq. Therefore, it follows that distH´1

k
p0, cot∇fpxkiqum

i“1q ď ρ
H´1

k
� pxq ` δ and

cot∇fpxkiqum
i“1 Ă G�pxq.

Now, by the manner uk is computed in Step 2 and as ∇fpxkq P G�pxq (since xk P
Bpx, mintτ, �{3uq X D) , we have that uk P G�pxq (which also gives us that }uk} ď L) and

}uk}H´1

k
ď ρ

H´1

k
� pxq ` δ. Hence, by Lemma 2.2, there exists µ ą 0 such that

µ “ inf
vPG�pxq

vT H´1
k uk ´ β}uk}H´1

k
. (2.3)

Suppose for contradiction that tk ă mint1, γς�{p6Lq, γ�{p6ϑqu. Hence, the Armijo’s in-

equality does not hold for γ´1tk, that is,

´βγ´1αktkg̃T
k Hkg̃k ď fpxk ` γ´1tkdkq ´ fpxkq. (2.4)

But we know, from the generalized mean value theorem for Lipschitz functions [8, Theorem

2.3.7], that there exist yk P rxk ` γ´1tkdk, xks and vk P Bfpykq such that

fpxk ` γ´1tkdkq ´ fpxkq “ γ´1tkvT
k dk. (2.5)

On the other hand, we observe that

γ´1tk}dk} ď γ´1tkαkp}g̃k} ` }ξk}q
ď 2γ´1tkαk}g̃k}.

Therefore, if αk “ 1, it follows that

γ´1tk}dk} ď γ´1tk2}g̃k}
ď γ´1tk2}H´1

k }}uk}
ď γ´1tk2ς´1L (by Assumption 2.1 and }uk} ď L)

ă �{3,
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otherwise, if αk}g̃k} “ ϑ, then γ´1tk}dk} ď γ´1tk2ϑ ă �{3. Thus, since }xk ´ x} ď �{3, we

have that vk P G�pxq and also }vk} ď L. Now, by (2.4) and (2.5), we have

´βγ´1αktkg̃T
k Hkg̃k ď γ´1tkvT

k dk ñ ´βαkg̃T
k Hkg̃k ď vT

k dk

ñ ´βαkg̃T
k Hkg̃k ď ´vT

k αkpg̃k ` ξkq
ñ βαkpH´1

k ukqT HkH´1
k uk ě vT

k αkpH´1
k uk ` ξkq

(since g̃k “ H´1
k uk)

ñ β}uk}2

H´1

k

ě vT
k H´1

k uk ` vT
k ξk

ñ β}uk}2

H´1

k

ě vT
k H´1

k uk ´ }vk}}ξk}

ñ β}uk}2

H´1

k

ą vT
k H´1

k uk ´ µ

(since }vk} ď L and }ξk} ă µ{L)

ñ µ ą vT
k H´1

k uk ´ β}uk}2

H´1

k

,

which is a contradiction with (2.3). Therefore, we have the desired lower bound for tk.

For the last statement, just notice that B¨fp¨q is closed, which completes the

proof.

With this result in hands we are ready to prove the convergence of the model

algorithm presented in the previous chapter.

Theorem 2.1. If txku is a sequence generated by Algorithm 1 with Step 4a, then either

fpxkq Ñ ´8 or every cluster point of txku is a stationary point for f .

Proof. By the manner we choose txk1, . . . , xkmu, it is possible to see that with probability

one the algorithm does not stop in Step 1. Now, we suppose that tfpxkqu has a lower

bound l P R. By the line search inequality, we have that

8
ÿ

k“0

βαktkg̃T
k Hkg̃k ď

8
ÿ

k“0

pfpxkq ´ fpxk`1qq ,

and since fpxkq ě l, for all k P N and some l P R, it implies that

8
ÿ

k“1

αktkg̃T
k Hkg̃k ă 8. (2.6)

We also have by Assumption 2.1 that if }g̃k} ‰ 0, then

}xk`1 ´ xk} “ tk}dk}
ď tkαkp}g̃k} ` }ξk}q
ď 2tkαk}g̃k}

“ 2tk

αk

}g̃k}}g̃k}2

ď 2ς´1tk

αk

}g̃k} g̃T
k Hkg̃k,
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and therefore, this inequality together with (2.6), give us

8
ÿ

k“0

}xk`1 ´ xk}}g̃k} ă 8. (2.7)

Now, we split the proof in two cases:

i) �k “ � ą 0 and νk “ ν ą 0 for all k sufficiently large;

ii) �k, νk Ñ 0 and txku has a cluster point x.

In the first case, we have that }g̃k}, g̃T
k Hkg̃k ě ν, for all k sufficiently large. By

(2.7), the whole sequence must converge, that is, xk Ñ x, for some x P R
n. Moreover, by

the locally Lipschitz continuity over a neighborhood of x, we see that }g̃k} is bounded,

which implies a strictly positive lower bound for αk. Using this information together

with (2.6) and g̃T
k Hkg̃k ě ν, we have that tk Ñ 0.

If 0 R G�pxq there exist δ, τ , µ and V as in Lemma 2.3. Moreover, since ξk is

uniformly sampled, there exists, with probability one, an infinite set K Ă N such that

}ξk} ă µ{L, for all k P K. Now, since tk Ñ 0 and xk Ñ x, there exists k1 such that

tk ă mint1, γς�{p6Lq, γ�{p6ϑqu and xk P Bpx, mintτ, �{3uq, for all k P K and k ě k1. This

implies that pxk1, . . . , xkmq R V for all k P K and k ě k1, which is an event that has

probability zero to occur.

On the other hand, if 0 P G�pxq, we can choose δ “ ν{2, for Lemma 2.3 i), and

pick k2 P N such that k ě k2 implies that xk P Bpx, τq. So, we have that

ν ď }g̃k}Hk
ď distHk

p0, co t∇fpxkiqum

i“1q , for all k ě k2,

and consequently, pxk1, . . . , xkmq R V for all k ě k2. Again, this is an event that has

probability zero to happen. Therefore, with probability one, we must have �k Ñ 0.

Consider then that we are in the second case. Then, if xk Ñ x, we have directly

from for Lemma 2.3 iii) that x is a stationary point. So, let us assume that xk does to

converge to x. Then, for contradiction, suppose that

lim inf
k

maxt}xk ´ x}, }g̃k}u ‰ 0.

Consequently, there must exist ν ą 0, k P N and an infinite index set

K :“ tk P N | k ě k, }xk ´ x} ď νu

such that }g̃k} ě ν, for all k P K. Hence, by (2.7), it implies that
ÿ

k

}xk`1 ´ xk} ă 8.

Therefore, txku must converge to x, which is a contradiction. Therefore, by Lemma 2.3

iii), 0 P Bfpxq.



Chapter 2. Differentiability Check 49

With the above result we complete the convergence analysis of the model

algorithm modified with Step 4a and guarantee a practical procedure to ensure, with

probability one, that f will be differentiable at any xk. Furthermore, we have presented a

general convergence proof that embraces several gradient sampling methods, including the

algorithms proposed in [6, 10] (with or without the normalization of the search direction).

Observation on the adaptive case. It is important to note that an adaptive approach,

in the way Curtis and Que did in [10], can also be introduced in our algorithm without

affecting the proofs presented in this section, by just noting that if we infinitely do

incomplete line searches during the execution of the algorithm, then the case iq of the

proof of Theorem 2.1 can not occur. Indeed, if case iq happens, then we must have that

tk Ñ 0, and since an incomplete line search presents a lower bound for the step size, it is

impossible to have tk Ñ 0. So, we rely on case iiq and with the same proof we see that

x is a stationary point for f . Otherwise, if at some point of the algorithm, we no longer

do incomplete line searches, then from a sufficiently large k P N onwards, the algorithm

behaves exactly like Algorithm 1, and thus, the same proof holds.

2.2 Alternatives to avoid perturbations in each iteration

For some users, the perturbation procedure in every iteration might sound

an excessive precaution. It would be desirable to have a threshold condition to discern

when it is really necessary to have a perturbed direction. Although we did not observe

any undesirable behavior when perturbing the direction in every iteration (and that is the

reason why in our numerical results we always have perturbed the search direction), one

might experience an undesirable result.

In this brief section, we have the intent to present two alternatives to avoid

the perturbation procedure. The first one is related to the case in which the user does

not know the set D (Case I), whereas the second one occurs if this set can be determined

(Case II).

For Case I, one can always avoid the perturbation procedure until a line search

has failed, i.e., the step size has become smaller than the machine precision. Indeed, since

the perturbation procedure is only executed to guarantee a successful line search, it is

reasonable to think that we only need to apply the perturbation when the line search has

failed. Therefore, if we have an iteration xk that does not obtain a successful line search, we

can come back to iteration xk´1 and find xk with a perturbed direction, and consequently,

we guarantee, with probability one, that xk will be in D. Moreover, we guarantee that, if

xk is not close enough to a stationary point, xk will not be in a dangerous neighborhood

too close to a nondiferentiability point.

For Case II, if the user observes that the line search gives back an iteration
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in which the objective function is not differentiable or is very close to a manifold of

nondifferentiability, then the user may reject that point, perturb the search direction and

execute the line search again. In that way, there is no need to perform perturbations in

every iteration.

Lastly, we want to stress again that we have not encountered any trouble in

perturbing the search direction in every iteration. We strongly recommend the precautious

user that is concerned with the perturbation procedure to set the parameter c close to

zero, prior to any alternative presented in this subsection.

2.3 Nonmonotone line search

This section also focuses on the goal of suppressing the differentiability check

without losing the convergence properties of the GS variants. Here, instead of perturbing

the search direction, we show that relaxing the line search presented in Step 4 still fulfills

our aspirations. What this subsection proposes not only deals with the DC procedure, but

also is in agreement with what Kiwiel said in [27, p.385]:

“Further, the implementation of [6, Section 4] obtained best results for the

Armijo parameter β “ 0 (although β ą 0 is required in theory). Thus there is

still the need for further study of line searches.”

As was shown in Lemma 2.3, a lower bound for the step size tk exists when the

sample points of the current iteration lie in a specific open set. However, we can only assure

that it will happen eventually, and therefore, the algorithm could perform many iterations

without reaching this specific set. Consequently, due to computer rounding errors we may

fail to find a step size tk greater than zero. Therefore, this modification has the advantage

of not only addressing the issue of the differentiability check, but also has the property of

avoiding tiny step sizes during the algorithm.

The change that we suggest allows the user not to compute the vector ∇fpxkq
or replace it by a reasonable vector, that is, a vector that will not make the convex

combination of Step 2 to produce a vector that cannot be generated by any convex

combination of gradients computed at Bpxk, �kq X D. The importance of replacing ∇fpxkq
by a reasonable vector is essential. For example, if we choose the null vector instead of

∇fpxkq the algorithm might erroneously declare that it had reached a stationary point.

Thus, we call vk a reasonable vector to replace ∇fpxkq if and only if there are λ1, . . . , λp ě 0,

with
p

ÿ

i“1

λi “ 1, and z1, . . . , zp P Bpxk, �q X D such that }vk} ě }
p

ÿ

i“1

λi∇fpziq} and vk is in

the cone generated by the vectors t∇fpziqup
i“1.
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In the sequence, we present the second modification for the GS methods. It

is a simple adjustment with a straightforward proof, but it should not belittle the issues

that it aims to address.

Step 4b. Do an Armijo’s line search and find the maximum tk P t1, γ, γ2, . . .u such

that

fpxk ` tkdkq ă fpxkq ´ βαktkg̃T
k Hkg̃k ` ηk,

where tηku is a summable positive sequence and dk “ ´αkg̃k, for some positive

αk P t1, ϑ{}g̃k}u.

Since we request that
ÿ

ηk ă 8, the convergence proof for the Algorithm 1

with Step 4b is essentially the same found in Theorem 2.1.

Theorem 2.2. Suppose that txku is a sequence generated by Algorithm 1 with Step

4b. Furthermore, suppose that in Step 2 we do not compute ∇fpxkq, but instead, we use

G̃k “ r∇fpxk1q . . . ∇fpxkmqs or G̃k “ rvk ∇fpxk1q . . . ∇fpxkmqs, with vk being a reasonable

vector. Then either fpxkq Ñ ´8 or every cluster point of txku is a stationary point for f .

Proof. First, we observe that the only role that the computation of ∇fpxkq plays in the

entire algorithm is to produce a descent method, and consequently, to have a well defined

line search. All the results obtained until this point do not use ∇fpxkq besides this reason.

Therefore, if one guarantees that the line search will end in a finite number of steps, then

not computing the vector ∇fpxkq or replacing it by a reasonable vector will guarantee

convergence.

We claim that since we have a nonmonotone approach, the line search will

always end in a finite number of reductions. Indeed, since f is continuous everywhere, we

can find t ą 0 sufficiently small, such that |fpxk ` tdkq ´ fpxkq| ă ηk{2, for all 0 ă t ď t.

Consequently, this statement follows by just noticing that

0 ă tk ă min

"

t,
ηk

2βαkg̃T
k Hkg̃k

*

satisfies the inequality presented in Step 4b. Therefore, Step 4b will always be well defined,

even if dk is not a descent direction for f at xk.

Now, notice that the lower bound for tk found in Lemma 2.3 iiq is still valid,

since ∇fpxkq is not used to obtain the result and every step size that satisfies the standard

line search also satisfies the nonmonotone line search. Therefore, we can follow exactly

the same proof of Theorem 2.1 by just noting that the inequalities (2.6) and (2.7) still

hold, since tηku is a summable sequence. Moreover, although the reasonable vector may

be large, the boundness of }gk} remains valid due to the way gk is computed.
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We have shown that with this new modification, the GS algorithm does not

need to compute ∇fpxkq in every iteration, and consequently, there is no longer the need

to keep xk P D. Moreover, with this nonmonotone line search, the algorithm is much more

tolerant with the size of tk, favoring the method to avoid tiny step sizes.

Remark 2.1. One can advocate that it is better to proceed like Kiwiel suggested in [27,

Procedure 4.3] than to have a nonmonotone line search, since a null step seems to be

more reasonable than to have a worse function value. This matter is more delicate than it

appears. First, because providing to the algorithm the chance to move, it might allow the

method to reach a region in which it is easier to have a successful sample than at the past

iteration. Second, because there is a compromise between function evaluations and a new

computation of gradients and a solution of a quadratic minimization. Notice that if the

number of variables of the problem is large, the number of gradients that the method needs

to compute in each iteration can exceed the number of step size reductions that the method

might need to reach the machine precision. Therefore, nothing can be stated.

Remark 2.2. Although we have presented a method that does not need to use ∇fpxkq, its

use is not forbidden and should be encouraged. In fact, as we have argued, the great difficulty

in the practical algorithm is not to be exactly at a point of nondifferentiability (which,

indeed, is an unlikely event), but to stay in a close neighborhood of nondifferentiability

points. Therefore, the computation of ∇fpxkq in a practical algorithm must not be a

problem. Consequently, there is no practical reason to avoid its computation and throw

away the information therein.

2.4 Numerical results

In order to see the difficulties that one might face during the algorithm when the

DC procedure is ignored in the implementation of GS methods, we have solved illustrative

examples to exhibit the bad behavior of these methods in their standard forms. Moreover,

we show that our modifications are effective to handle the troubling situation when an

iteration is prematurely close to a set in which f is not differentiable. Lastly, we solve a

difficult control problem to evince that our changes may also benefit the solution of real

problems.

The methods based on gradient sampling employed to obtain the numerical

results are: piq the original method (GS) proposed in [6], which uses a normalized search

direction; piiq a not normalized version suggested by Kiwiel (nNGS) in [27]; piiiq a limited

line search version with normalized search direction (LGS) also suggested by Kiwiel and

pivq its nonnormalized version (nNLGS). All the tests were implemented using Matlab

in an Intel Core 2 Duo T6500, 2.10 GHz and 4 Gb of RAM. We have used quadprog

as the tool for solving the quadratic minimizations needed in each iteration, setting
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interior-point-convex as the algorithmic choice and 10´12 as the tolerances TolX and

TolFun and 10´8 (default value) as TolCon. The parameter values used for each of these

methods are related in Table 1. Further, if the sampled points at an iteration k were

obtained with the radius �k “ 10´6 and Step 2 returns }g̃k} ă 10´6, then the algorithm

stops and we declare that we have reached our optimality certificate.

Algorithm m ν0 �0 θν θ� γ β αk Hk

GS 2n 10´6 10´1 1 10´1 0.5 0 }g̃k}´1 I

nNGS 2n 10´6 10´1 1 10´1 0.5 0 1 I

LGS 2n 10´6 10´1 1 10´1 0.5 0 }g̃k}´1 I

nNLGS 2n 10´6 10´1 1 10´1 0.5 0 1 I

Table 1 – Parameter values used for the standard implementations of GS.

Both the parameter values and the optimality certificate were chosen to be in

agreement with the implementation found in [6]. This is the reason for the choices β “ 0

and θν “ 1. Those values do not agree with the convergence theory, but in [6] the authors

realized that, in practice, these settings provide better results. Further, as presented in [6],

we also kept safeguards. It was stipulated a maximum number of iterations (104 for the

illustrative examples and 102 for the control problem) per sampling radius. Moreover, for

the variants GS and nNGS, if the line search fails during the execution of the methods, we

skip the current radius and reduce it to the next one. This last safeguard is important

(especially for difficult problems), because a line search failure suggests that the algorithm

is not obtaining a good representation of the function f , therefore, it is reasonable to think

that a reduction of the sampling radius will provide a better local representation of the

same function. Under these observations, we stop the algorithm and declare that it fails

to reach the optimality certificate if the algorithm reduces the sampling radius �k “ 10´6

without reaching }g̃k} ă 10´6 at this specific �k (also a procedure implemented by the

original authors).

Perturbed and nonmonotone versions of GS. For the perturbed version proposed

by this manuscript we have set c “ 10´3. For the generation of the sequence tηku, we have

used the Zhang and Hager’s nonmonotone line search [50]. Hence, we set ηk “ Ck ´ fpxkq,
where we define

�k P r�min, �maxs with 0 ď �min ď �max ă 1;

Q0 “ 1 and Qk`1 “ �kQk ` 1;

C0 “ fpx0q and Ck`1 “ p�kQkCk ` fpxk`1qq{Qk`1.

(2.8)

Under the hypothesis that �max ă 1, it is possible to prove that tηku is a summable and

positive sequence (see Appendix A). The value used for �k is indicated in each problem

description.
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It is important to mention that we have chosen to use ∇fpxkq or a reasonable

replacing vector vk (when necessary) in the nonmonotone approach, instead of using just

the gradients of the sampled points. For the illustrative examples, if xk R D, we have

broken arbitrarily the ‘tie’ of the functions by selecting one of them and setting vk as the

gradient of this selected function at xk. In the control problem, we have assumed that

vk “ ∇fpxkq is always a reasonable vector. Finally, to indicate our versions of the gradient

sampling methods we added the prefixes P (if we have used Step 4a) and nM (if we have

used Step 4b) in each method name.

Limited line search variants (LGS and nNLGS). For the variants that use limited

line search, we have chosen to implement the following procedure instead of Step 4 and to

use ∇fpxkq or a reasonable vector when needed at Step 2.

Limited Line Search. Do a limited Armijo’s line search and find the maximum

tk P t1, γ, γ2, . . . , γlku such that

fpxk ` tkdkq ă fpxkq ´ βαktkg̃T
k Hkg̃k,

where dk “ ´αkg̃k, for some positive αk P t1, ϑ{}g̃k}u, and lk is the largest positive

integer such that

lk ď ´ logγ´1

ˆ

min

"

1,
γ�k

3}dk}

*˙

.

If such tk does not exist, then go to Step 5.

This is not the only way to implement the Procedure 4.3 contained in [27],

however, this choice seemed reasonable for us when we take into account the way the other

variants were implemented. Further, by the same reasoning used in [27], it is possible to

see that this line search still provide a convergence result, even if we add a perturbation

in the search direction or use a nonmonotone line search.

Is is important to mention that by no means we had the ambition to conclude

in this study that our modifications are better than the variants LGS and nNLGS. The

results that are presented here for the methods LGS and nNLGS, and their perturbed and

nonmonotone versions, are just for completeness and to guarantee that the reader has as

much information as possible. Again, we stress that the main goal of this study is to show

that the differentiability check cannot be ignored if we want that the most used variants

of GS be well defined and convergent. Further, we were concerned to present solutions

that would keep the new algorithm as close as possible to the original GS.
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2.4.1 Motivating examples

In this subsection we exhibit the numerical results when one tries to solve the

two dimensional motivating example that appears at the beginning of this chapter and a

simpler version of the same problem.

All the initial points were randomly chosen in Bpp10, 10q, 1q and for the non-

monotone version of the GS variants we have used �k “ 10´1, for all k P N. We minimized

the following two dimensional real-valued functions

fmotpxq “ max
1ďiď4

tφipxqu and fsmotpxq “ max
2ďiď4

tφipxqu,

where the functions φi, for i P t1, . . . , 4u, are given in (2.1). Both functions have their

minimizers at px˚

1 , x˚

2q “ p0, ´340q with optimal values fmotpx˚q “ fsmotpx˚q “ ´33. Since

the GS methods have a non deterministic step, we need to solve each function several

times in order to have statistical relevance of the results. Thus, we minimized each function

one hundred times for each variant. The results are found in Tables 2 and 3. We named

fm as the median of the last function value of all runs, Tm as the median time to solve

all successful runs and #Eval as the median of function evaluations of the runs that the

method demanded to solve the problem.

To determine if the variant has solved the problem, we took the best result f

obtained by all runs of all variants and we stipulated that a GS method has minimized the

problem successfully if the function value of the last iteration is smaller than f ` 10´4.

Observing the results obtained by the minimization of both functions we can see

that our changes have provided a significant improvement in the robustness of the methods.

This becomes clearer if we look at the values of fm for each variant. Since the iterations

prematurely start to be very close to a region of nondifferentiability for f , the GS and

nNGS methods start to have line search failures due to rounding errors. Consequently, the

implemented algorithms stop without reaching the optimality certificate and the methods

fail to obtain a satisfactory solution to the problems. It is worth mentioning that this

undesirable behavior has occurred asking only for a simple decrease of the function at

each iteration, i.e. β “ 0. The results can be even worse if one sets β ą 0.

Finally, we observe that the simpler version of the motivating example can be

transformed into a linear minimization problem, which evidences the simple structure of

that function. To support the statement that even in very simple problems the implemented

GS methods might fail, we present in the next subsection a naive minimization problem

and some generalizations such an example.
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Algorithm # successful runs β fm Tm #Eval

GS 25 0 ´19.79312 3.63 1550.00
nNGS 32 0 ´0.27127 33.45 15448.00
nM-GS 100 10´8 ´33.00000 4.04 1301.00

nM-nNGS 100 10´8 ´33.00000 33.33 9073.50
P-GS 100 10´8 ´33.00000 3.64 1348.00

P-nNGS 100 10´8 ´33.00000 33.63 12738.50

LGS 100 0 ´33.00000 4.40 1557.00
nNLGS 100 0 ´33.00000 43.91 14643.50
nM-LGS 100 10´8 ´33.00000 4.45 1618.50

nM-nNLGS 100 10´8 ´33.00000 44.25 14412.00
P-LGS 100 10´8 ´33.00000 4.39 1528.50

P-nNLGS 100 10´8 ´33.00000 44.93 14793.00

Table 2 – Minimization results for the motivating example.

Algorithm # successful runs β fm Tm #Eval

GS 22 0 ´19.77259 3.60 1518.00
nNGS 36 0 ´0.51889 33.30 13725.00
nM-GS 100 10´8 ´33.00000 3.99 1299.00

nM-nNGS 100 10´8 ´33.00000 33.06 9115.50
P-GS 100 10´8 ´33.00000 3.62 1334.50

P-nNGS 100 10´8 ´33.00000 33.29 12692.50

LGS 100 0 ´33.00000 4.47 1537.00
nNLGS 100 0 ´33.00000 42.00 13404.50
nM-LGS 100 10´8 ´33.00000 4.52 1636.00

nM-nNLGS 100 10´8 ´33.00000 42.19 13364.50
P-LGS 100 10´8 ´33.00000 4.52 1601.00

P-nNLGS 100 10´8 ´33.00000 42.07 13015.00

Table 3 – Minimization results for the simpler version of the motivating example.

2.4.2 Naive example and its generalizations

Here, we show a simple example to endorse that we do not need to contrive an

elaborated function to face problematic runs of GS methods. Further, two more general

functions were created to provide problems with different dimensions.

Again, one hundred runs were performed for each GS variant and we have

set �k “ 10´1 for all nonmonotone versions. All the starting points were randomly cho-

sen in Bp0, 1q.

The first function that was minimized is a two dimensional function described

by fnaivepxq “ 100|x1| ` |x2 ´ 500|. It is easy to see that its minimizer is px˚

1 , x˚

2q “ p0, 500q
and the optimal value is fnaivepx˚q “ 0. This minimization could be converted into a linear

problem too, but it is even simpler than the examples presented so far. The results are

shown in Table 4.
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Algorithm # successful runs β fm Tm #Eval

GS 32 0 74.06361 5.04 3427.50
nNGS 0 0 332.23060 ´ ´
nM-GS 100 10´8 0.00000 5.07 1704.00

nM-nNGS 100 10´8 0.00000 5.13 2274.13
P-GS 100 10´8 0.00000 4.97 2037.50

P-nNGS 100 10´8 0.00000 5.05 2533.50

LGS 100 0 0.00001 6.47 2272.50
nNLGS 100 0 0.00001 5.90 3060.50
nM-LGS 100 10´8 0.00000 6.51 2435.00

nM-nNLGS 100 10´8 0.00001 6.14 3329.00
P-LGS 100 10´8 0.00000 6.45 2316.50

P-nNLGS 100 10´8 0.00001 6.00 3115.00

Table 4 – Minimization results for the function fnaive.

Since the iterations quickly go to a region too close to M :“ tpx1, x2q P
R

2 | x1 “ 0u, any iteration with a bad set of sample points can generate a search direction

that will break the line search down. Hence, in most cases, the algorithm stops prematurely,

and as a consequence, the methods do not find the desirable solution (see fm). On the

other hand, it is possible to see that our proposed modifications can handle the dangerous

neighborhood in a satisfactory way, and hence, the modified algorithms were able to find

good solutions for the minimization problem.

Taking advantage of the structure of this example, it is possible to create a

general function that, in many cases, will produce the same difficulties for GS methods. We

can see fnaive as a sum of two separable functions: f1px1q “ 100|x1| and f2px2q “ |x2 ´ 500|.
Therefore, when one tries to minimize fnaive, the algorithm is solving two distinct and

independent minimization problems. The major obstacle for GS algorithms is that the

iterations approach very quickly to the minimizer of f1, forcing the method to work for

a long time in (or too close to) a nondifferentiability set. With this reasoning and for n

multiple of 4, we have created a function

gsplit : R
3n{4 ˆ R

n{4 ÝÑ R

px, yq ÞÝÑ g1pxq ` g2pyq,

where

g1pxq “ 100

ˆ

max
1ďiď3n{4`1

tAi,:xu
˙

and g2pyq “ }y ´ 500e}1.

The matrix A P R
p3n{4`1qˆp3n{4q can be any full-rank matrix such that each element is

between ´1 and 1 and satisfies

Ap,: “ ´
3n{4
ÿ

i“1

Ai,:, where p “ 3n{4 ` 1. (2.9)
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Algorithm # successful runs β fm Tm #Eval
GS 0 0 1216.94309 ´ ´

nNGS 0 0 985.43729 ´ ´
nM-GS 100 10´8 0.00001 120.39 30675.50

nM-nNGS 100 10´8 0.00001 73.23 21665.50
P-GS 100 10´8 0.00001 198.68 91200.00

P-nNGS 100 10´8 0.00001 118.46 57305.50

LGS 100 0 0.00001 260.04 51079.50
nNLGS 100 0 0.00001 146.43 42169.00
nM-LGS 100 10´8 0.00001 257.71 51158.00

nM-nNLGS 100 10´8 0.00001 138.87 39316.50
P-LGS 100 10´8 0.00001 291.36 57828.50

P-nNLGS 100 10´8 0.00001 148.25 42061.00

Table 5 – Minimization results for the function gsplit for n “ 12.

Notice that since A has full rank and (2.9) holds, it yields that the unique minimizer of

g1 is x˚ “ 0. Moreover, it is straightforward to see that g2 assumes its minimum value at

y˚ “ 500e.

The function gsplit has the same features of fnaive, and consequently, a minimiza-

tion algorithm will converge fast to the minimizer of g1, providing the same undesirable

behavior to GS methods. To support this statement, we show the results obtained for

n “ 12 in Table 5.

It is undeniable the difficulty that GS and nNGS methods present when one

tries to minimize gsplit. In none of the runs the algorithms were able to successfully solve

the problems. In contrast, our versions have solved 100% of the runs. The same behavior

was observed with n “ 4 and n “ 8.

Now, just to show that this behavior of the standard algorithms does not

appear only for separable functions, we have created a second generalization function of

the naive example. Let us consider that we have a number of variables n multiple of 4 and

a function

gnsplit : R
n{4 ˆ R

n{4 ˆ R
n{2 ÝÑ R

px, y, zq ÞÝÑ g̃1px, zq ` g̃2px, yq,

where

g̃1px, zq “ 100

˜

max
1ďiď3n{4`1

#

Ai,:

˜

x

z

¸+¸

and g̃2px, yq “ }x}2 ` }y ´ 500e}1,

and A is any matrix with the same structure defined for the function gsplit. Clearly, this new

map is not separable, but still, the GS and nNGS are not able to solve the minimization

problem. For the results obtained with n “ 12, see Table 6.
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Algorithm # successful runs β fm Tm #Eval
GS 0 0 1158.47939 ´ ´

nNGS 0 0 889.88880 ´ ´
nM-GS 100 10´8 0.00001 126.92 30355.00

nM-nNGS 100 10´8 0.00001 78.96 21866.00
P-GS 100 10´8 0.00001 217.24 93824.00

P-nNGS 100 10´8 0.00001 126.42 57353.50

LGS 100 0 0.00001 297.34 55478.50
nNLGS 100 0 0.00001 146.69 39115.00
nM-LGS 100 10´8 0.00001 316.56 58812.50

nM-nNLGS 100 10´8 0.00001 143.46 38045.00
P-LGS 100 10´8 0.00001 313.32 58738.00

P-nNLGS 100 10´8 0.00001 141.00 37900.50

Table 6 – Minimization results for the function gnsplit for n “ 12.

To conclude our numerical results we exhibit in the next subsection a non

trivial real problem in order to reinforce that our procedures have a practical appeal.

2.4.3 Stability problem of a Boeing 767

This problem was presented and for the first time solved in [6]. It is a real

problem that comes from the design optimization of a controller of an airplane (Boeing

767) at flutter condition. This maximization problem is far from being trivial and it has the

difficulty of having badly scaled data. This characteristic makes the optimization process

very difficult and even a tiny improvement on the function value is a tough task when

we are close to a local optimizer. To a better understanding of the optimization problem

involved in this situation, we must describe some stability measures of a dynamical system

9x “ Ux, where U is a square matrix. However, we refer the reader to look at [6] to have a

more complete introduction on the matter.

One of the ways to measure the stability of a dynamical system is by means of

a parameter known as spectral abscissa, which is defined as

αpUq “ maxtRe λ | λ is an eigenvalue of Uu.

Thus, it is said that the dynamical system 9x “ Ux is stable if we have αpUq ă 0. A more

efficient measure is a function known as the distance to instability, defined as

dinstpUq “ mintδ P R` | }U ´ X} ď δ and X is an unstable matrixu.

The higher is the value of this function, the more stable is the dynamical system. Therefore,

the aim of this problem is to maximize the distance to instability of the matrix

M “
«

A 0

0 0k

ff

`
«

B 0

0 Ik

ff «

X1 X2

X3 X4

ff «

C 0

0 Ik

ff

,
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Algorithm β f fm Tm #Eval
GS 0 6.18098e-05 6.17690e-05 609.22 2295.00

nM-GS 10´8 7.89284e-05 6.17696e-05 856.83 2793.50
P-GS 10´8 6.18867e-05 6.17646e-05 683.72 2263.00

LGS 0 7.91686e-05 6.18287e-05 1259.71 5674.50
nM-LGS 10´8 7.93924e-05 6.18313e-05 1287.60 5878.50
P-LGS 10´8 7.90832e-05 7.85363e-05 1863.44 6569.50

Table 7 – Maximization results for the stability problem of an airplane using k “ 0.

where A P R
55ˆ55, B P R

55ˆ2 and C P R
2ˆ55 are fixed matrices and X1 P R

2ˆ2, X2 P R
2ˆk,

X3 P R
kˆ2 and X4 P R

kˆk are variable matrices1. We have considered three instances of

this problem (k P t0, 1, 2u) with the respective dimensions: n P t4, 9, 16u.

For this optimization problem we have chosen to use the algorithms GS, nM-GS,

P-GS, LGS, nM-LGS and P-LGS. Since the function that we are trying to maximize is

badly scaled, it is reasonable to think that a normalization on the search direction at each

iteration is preferable than not normalizing it. Moreover, for the same reason, we used

a smaller perturbation parameter (c “ 10´6) for the P-GS and P-LGS methods, since a

small perturbation might lead to a large variation in the function value. Therefore, we

kept our attention only on the aforementioned six methods.
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Figure 11 – Boxplots of the objective function values obtained with ten runs of each
instance.

In order to produce the initial points x0 that were taken for each instance of

the problem, we have used perturbations proportional to the solution obtained by the

nM-GS method for the spectral abscissa minimization problem. As the problem demands

a considerable computational time, we solved each instance ten times (as the original

authors have proceed too). The results can be found in Figure 11 and Tables 7, 8 and 9.

Here, we have named f as the best function value obtained, fm as the median of the last

function value, Tm as the median time and #Eval as the median of function evaluations

of all runs.

1 The data of this problem can be found in www.cs.nyu.edu/overton/papers/gradsamp/probs.
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Algorithm β f fm Tm #Eval
GS 0 1.03743e-04 1.03252e-04 1847.89 3744.50

nM-GS 10´8 1.04446e-04 1.03434e-04 2059.54 3859.50
P-GS 10´8 1.03857e-04 1.03501e-04 1927.94 3749.50

LGS 0 1.03821e-04 1.03382e-04 2407.12 7595.50
nM-LGS 10´8 1.03765e-04 1.03303e-04 2369.41 7565.00
P-LGS 10´8 1.03688e-04 1.03576e-04 2402.80 7603.00

Table 8 – Maximization results for the stability problem of an airplane using k “ 1.

Algorithm β f fm Tm #Eval
GS 0 1.04856e-04 1.04776e-04 3686.07 3913.00

nM-GS 10´8 1.05087e-04 1.04779e-04 4338.22 5010.00
P-GS 10´8 1.04791e-04 1.04772e-04 4083.01 5151.50

LGS 0 1.04891e-04 1.04792e-04 4781.40 7650.50
nM-LGS 10´8 1.04879e-04 1.04783e-04 4898.98 7534.50
P-LGS 10´8 1.04839e-04 1.04788e-04 4990.90 7737.00

Table 9 – Maximization results for the stability problem of an airplane using k “ 2.

Observing the results it is possible to see that in none of the instances the

standard GS method was able to obtain the best function value. We see that for k “ 0 the

best result is obtained by nM-LGS, whereas in the other instances the algorithm nM-GS

has reached the best value. The reason for this positive results against GS is that the other

approaches enabled the algorithm to work with fewer line search failures, which allowed

the method to reach a better solution. Furthermore, we were able to obtain better function

values even with β ą 0. This was prohibitive in the original method, since it would led to

many line search failures, preventing the achievement of significant results.

2.4.4 Differences between nM-GS, P-GS and LGS

Although this study does not have the intent to compare our versions with

LGS, it is worth stressing the differences of each version, since this clarification might help

a future user of gradient sampling methods. To that goal, we exhibit a three dimensional

example.

Suppose we have a separable function f : R
3 Ñ R such that fpx, y, zq “

100f1px, yq ` f2pzq, with

f1px, yq “ maxt2x ` cotpθqy, ´2x ` cotpθqy, ´cotpθqyu, f2pzq “ |z|,

and 0 ă θ ă π{2. Notice that f has the same features of the other functions presented so

far, i.e., a minimization algorithm finds quickly the minimizer of f1, forcing it to work in (or

very close to) a nondifferentiability region. Now, let us suppose that we have an iteration

pxk, yk, zkq such that pxk, ykq “ 0 (since we have rounding errors, assuming pxk, ykq “ 0 or
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and therefore, if we use ∇fpxk`1q in the quadratic minimization of Step 2 (like we have

used in our illustrative tests), we will no longer need a sampled point in X̃ to have the

best search direction. Thus, giving to the algorithm the chance to move, we can land in a

region in which it is easier to obtain a good sample and as a consequence, we will move

faster than we would if we keep accepting null steps.

For the perturbed version of GS, it will avoid the nondifferentiability region,

and therefore, it will accept positive steps in each iteration, allowing the algorithm to

move, and again, it might reach a region in the domain that is easier to sample.

Finally, we want to stress that this is the very same behavior that we observe

in Tables 5 and 6. For example, considering the random matrix that we have generated

in gsplit, the chance to sample a point such that A2,:x assumes the maximum in g1 is

approximately 2.23%. As a consequence, using m “ 2 ¨ 12, the chance that in an iteration

we do not sample in a region where A2,:x reaches the maximum is approximately 58.20%.

Therefore, once the LGS or nNLGS methods reach the nondifferentiability region of g1,

they have more than fifty percent of chance to accept a null step. Hence, more than a half

of the computational effort is useless. That is the reason why the proposed methods have

such good results when compared to LGS or nNLGS.

2.5 Discussion

In this chapter we have presented a model algorithm for the well known class of

gradient sampling methods and pursued ways to overcome an important drawback of these

algorithms. The differentiability check has always been a theoretical trick to guarantee

the convergence of the methods, but none of the practical algorithms currently existing

had this step implemented in their routines, as such kind of verification is impossible for

general problems. Moreover, it was argued that this disregard is harmless for a practical

implementation, since the event xk R D is unlikely to occur in practice.

In opposite direction, we have shown illustrative examples where both in theory

and in practice the GS fails to reach an acceptable solution if one ignores the DC procedure.

This undesired behavior can be explained by the finite precision of the machine. In fact,

xk R D is an unlikely event, however, due to rounding errors, being too close to a set

where f is not differentiable might cause the same difficulties as if xk R D. This fact

produces an extra difficulty for the user, since one needs to be concerned not only with

the differentiability of f at xk, but also if xk is not too close to a dangerous set of points.

We have presented two ways to avoid this issue. The first one works with a

perturbation vector in the search direction of each iteration. It was shown that, with

probability one, all the iterates xk remain in the differentiable set, and consequently, such

a test (differentiability check) can be suppressed without affecting the convergence proof.
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The second proposal is a nonmonotone line search. This modification supports

the assessment of the differentiability, because even in the unlikely event that xk R D or

xk is close to a nondifferentiability set for f , the positive term ηk in the backtracking

inequality will allow a successful line search. Additionally, it highlights the perennial issue

of tiny steps during the execution of these methods, specially in solving some challenging

problems. This difficulty shows up due to the nature of these methods, which are random

by design. To guarantee the step size tk remains bounded away from zero, we must sample

points in a certain open set. Unfortunately, although we can assure that this event will

happen, we cannot know how many iterations it would take for this to happen. As a result,

the algorithms may need tiny step sizes to satisfy the backtracking inequality, and due to

rounding errors, this eventually generates null steps. Consequently, the algorithms make

efforts to produce tiny (or even none) improvements.

In order to show that our changes may also be useful to address real problems,

we have solved a challenging control problem. Due to line search failures the GS method

stops the runs prematurely and since nM-GS, LGS and nM-LGS are more tolerant, they

were able to find better solutions.

Finally, since our proposals are very cheap in terms of computational time and

can be easily implemented, we believe that users worried about robustness may be favored

by our modifications. Further, the limited line search algorithm presented by Kiwiel (LGS)

or a hybrid method (for example, nM-LGS) might be good alternatives as well.
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3 Local Convergence Analysis of GS

In 2007, Kiwiel introduced a nonnormalized version of GS [27], which can be

seen as a generalization of the well known steepest descent method. Hence, it suggests that,

in the best case scenario, the Gradient Sampling will have the same local convergence as

the Cauchy method. Although this is reasonable to expect, to the best of our knowledge,

there is no proof in the literature of local convergence rates for the GS method nor a

clarification of hypotheses under which this can be established.

This chapter has the goal to prove that, under special circumstances, one can

achieve linear reduction of the function values at infinitely many iterations of the GS

method. Moreover, we justify our hypotheses with illustrative examples, which help us

understand when such a behavior cannot be expected.

Looking into the GS functioning, it is possible to see that the method only uses

points at which the objective function is differentiable. Additionally, [27, Theorem 3.3]

guarantees, with probability one, that txk,1, . . . , xk,mu Ă D, for all k P N. This behavior

releases the user from returning a subgradient to the method, but, in contrast, the efficiency

of the algorithm depends on how well the sampled points describe properly the local

behavior of f . Consequently, any local convergence result will be restricted to a good set

of sampled points as well.

The next section establishes reasonable conditions over the set of sampled

points in order to achieve a linear rate of convergence for the GS method. However, a

more structured optimization problem must be assumed. Henceforward, we suppose that

x˚ is a local minimizer of the objective function f and there is a neighborhood W Ă R
n of

x˚ such that

fpxq “ max
1ďiďr

tφipxqu, for all x P W. (3.1)

where r P N and the functions φi : Rn Ñ R are all of class C2. It is important to stress

that the functions φi are not analytically known, i.e., we do not assume that the functions

φi are inputs for the GS method. In other words, the representation (3.1) of the function

f only plays its role within the theoretical proofs presented in this study. Therefore, we

just assume that the method needs to know how to evaluate f and its gradient, whenever

the latter exists.

Finally, for functions satisfying (3.1), it is possible to define some sets that will

be useful latter. The first one is called the active set of indices at x P W and it is given by

Ipxq :“ ti P t1, . . . , ru | fpxq “ φipxqu,

whereas the other sets are defined below (see [36] for more details about U ,V -spaces).
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Definition 3.1 (U ,V -spaces). Suppose that f : Rn Ñ R satisfies (3.1) and x is any point

in W. Then, we define

Upxq :“ ts P R
n | r∇φipxq ´ ∇φjpxqsT s “ 0, @i, j P Ipxq, i ‰ ju

and V pxq :“ UpxqK as, respectively, the smooth and nonsmooth subspaces of f at x.

The subspaces defined above are of great importance to us. Notice that they split

the domain of the function in two subspaces: the one in which f behaves smoothly (U -space)

and the other that captures all the nonsmoothness of the function (V -space).

3.1 Example

With the aid of motivational examples, we settle, in this section, some hypothe-

ses over the set of sampled points to ensure a good descent direction at a given iteration k.

Since we do not ask for the knowledge of the functions that comprise f , it seems natural

that a good reduction on the function value can only be ensured when the sampled points

carry indirect information about the behavior of the functions φi. This concept is described

in the following assumption, where we consider xk,0 :“ xk.

Assumption 3.1. The sequence txku generated by Algorithm 1 converges to the local

minimizer x˚ and �k, νk Ñ 0 according to the global convergence theorem of the GS method.

In addition, there is an infinite index set K Ă N such that for all k P K and any i P Ipx˚q,
there is xk,j P Bpxk, �kq Ă W, for some j P t0, . . . , mu, such that

φipxk,jq ą φspxk,jq, for any s P t1, . . . , ruztiu. (Hφ)

At first, Hφ seems to demand too much of the GS method. However, as we will

see latter (see Remark 3.1), this condition can be naturally obtained (with probability

one) from other more common assumptions made in nonsmooth analysis. For now, let us

highlight with two examples the importance of Hφ for a good local behavior of the GS

method.

Let us consider a bidimensional function f : R2 Ñ R, with

fpxq “ max tφ1pxq, φ2pxq, φ3pxqu ,

where, for x “ pξ1, ξ2q, we have

φ1pxq “ ξ1 ` ξ2, φ2pxq “ ´2ξ1 ` ξ2 and φ3pxq “ ξ1 ´ 2ξ2.

Clearly, it is a convex function with x˚ “ 0 as its global minimizer. Furthermore, the

lowest function value is given by fpx˚q “ 0.
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Suppose we want to start an iteration of the GS method with

x0 “
`

0.5l, 0.52l
˘

, for any fixed l P N.

Moreover, we assume that the method has sampled in such a way that

fpx0,iq “ φ2px0,iq, @i P t1, 2, 3u (assuming m “ 3).

Consequently, the function φ3 does not assume the maximum at the sampled points nor

at x0. Step 2 returns us g̃0 “ p0, 1q. Assuming that ν0 “ �0 “ 10´1 and �opt “ νopt “ 10´6,

the method does not stop neither jumps from Step 3 to Step 6.

Now, notice that, for all t ą 0, we have

φ1px0 ´ tg̃0q “ 0.52l ` 0.5l ´ t;

φ2px0 ´ tg̃0q “ 0.52l ´ 2 ¨ 0.5l ´ t;

φ3px0 ´ tg̃0q “ ´ 2 ¨ 0.52l ` 0.5l ` 2t.

Hence, for t “ Op1q, we must have that fpx0 ´ tg̃0q “ φ3px0 ´ tg̃0q, while for t “ ρ ¨ 0.52l,

with ρ P p0, 1q, we have fpx0 ´ tg̃0q “ φ1px0 ´ tg̃0q. Since fpx0q “ ´2 ¨ 0.52l ` 0.5l, we see

clearly that for any t0 P t1, γ, γ2, . . .u, we must have

fpx0q ă φ3px0 ´ t0g̃0q.

Consequently, in order to have a successful line search, we must be in a region of the domain

where φ3 does not assume the maximum, which is achieved by setting t0 “ Op0.52lq.

Defining x1 “ x0 ´t0g̃0, one can compute the reduction efficiency of the function

value, which yields
fpx1q ´ fpx˚q
fpx0q ´ fpx˚q “ 1 ` Op0.5lq.

Hence, one can see that it is not possible to establish a linear convergence rate no matter

how close we start from x˚ (l Ñ 8).

Notice that the above example has the property that Upx˚q “ t0u. We now

present another example which has Upx˚q ‰ t0u. So, let us consider a bidimensional

function f : R2 Ñ R, with

fpxq “ max tφ1pxq, φ2pxqu ,

where, for x “ rξ1 ξ2sT , we have

φ1pxq “ 1

2
ξ2

1 ´ ξ2 and φ2pxq “ 1

2
ξ2

1 ` ξ2.

Clearly, f is a convex function with its optimal value being reached at x˚ “ 0.

Suppose we want to start an iteration of the GS method with

x0 “
“

0.5l ´ 0.53l
‰T

, for any fixed l P N.
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Moreover, assuming m “ 3 in Algorithm 1 and taking any α ą 0, we suppose that the

method has sampled in such a way that

fpx0,iq “ φ1px0,iq and }x0,i ´ x0} ď α0.52l, for all i P t1, 2, 3u.

Consequently, the function φ2 does not assume the maximum at the sampled points nor at

x0. Therefore, by the way Step 2 is designed, Algorithm 1 returns g̃0 “ r0.5l ` w0 ´ 1sT ,

where |w0| ď α0.52l. Now, notice that, for all t ą 0, we have

φ1px0 ´ tg̃0q “ 1

2

“

0.5l ´ tp0.5l ` w0q
‰2 ` 0.53l ´ t;

φ2px0 ´ tg̃0q “ 1

2

“

0.5l ´ tp0.5l ` w0q
‰2 ´ 0.53l ` t.

Hence, supposing that }g̃0} ě ν0, the GS method performs the line search procedure

presented in Step 4. Then, noticing that

fpx0q “ 1

2
0.52l ` 0.53l,

we see that t0 “ Op0.53lq, when one considers a sufficiently large l. Consequently, if

x1 “ x0 ´ t0g̃0, we have

fpx1q ´ fpx˚q
fpx0q ´ fpx˚q “ 1 ` Op0.5lq ÝÑ

lÑ8
1.

These examples show that, when k R K (with K being the infinite index set of Assump-

tion 3.1), the decrease of the function value may happen to be sublinear. It would be

desirable to obtain a linear convergence result, since this convergence rate reinforces the

idea that the GS method can be seen as a generalization of the Cauchy method. Therefore,

it is reasonable to think that a local convergence result will rely on the condition that

k P K. However, one might still wonder if Hφ is sufficient for our goal. Unfortunately,

Assumption 3.1 is not enough for reaching our purposes, as the size of the sampling radius

plays a key role as well (see Sections 3.2 and 3.3). Indeed, an additional condition must be

taken into account: a restriction over the value of

τk :“ max
1ďiďm

t}xk,i ´ xk}u. (3.2)

We state that assuming τk ď T }xk ´ x˚}2, for a sufficiently small T ą 0, one can guarantee

that, for iterations at which k P K, the function value will be reduced with a linear rate.

Before we proceed with the proofs, we need to make a remark. The local

convergence theory developed here is applicable only to functions that have local minimizers

x˚ that satisfy Upx˚q ‰ t0u. We justify this by looking at the function f : R Ñ R, stated

as fpxq “ |x| “ maxt´x, xu. We have seen that for iterations that are not in K, the

GS method may present a very slow decrease of the function value. However, for the

absolute value function, every time we have an iteration k P K, it yields that g̃k “ 0, and

consequently, xk`1 “ xk. Therefore, the analysis for the case that V px˚q “ R
n cannot be

based on Hφ and accordingly, from now on we assume that Upx˚q ‰ t0u.
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3.2 Convergence results

In this section, we establish a local convergence result for the nonnormalized

version of the GS method. In other words, we find R P p0, 1q such that, for infinitely many

indices k P N, we have

fpxk`1q ´ fpx˚q ď R rfpxkq ´ fpx˚qs .

To achieve our goal, we present an assumption that is commonly used in nonsmooth

analysis [11, 36].

Assumption 3.2. Let x˚ be the local minimizer of f , previously exhibited at (3.1). The

gradients t∇φipx˚quiPIpx˚q compose an affinely independent set, that is,

ÿ

iPIpx˚q

αi∇φipx˚q “ 0 and
ÿ

iPIpx˚q

αi “ 0 ðñ αi “ 0, @i P Ipx˚q.

In [22, Chapter III], we see that the aforementioned assumption guarantees,

for any j P Ipx˚q, that

t∇φipx˚q ´ ∇φjpx˚quiPIpx˚qztju

is linearly independent. Consequently, |Ipx˚q| ď n` 1, and since we supposed Upx˚q ‰ t0u,

it implies that |Ipx˚q| ď n.

The role played by Assumption 3.2 in our results is of great importance. It is

worth noticing that the affine independence of the gradients ∇φipx˚q allows us to rule

out redundant representations of the objective function near the local minimizer x˚. For

instance, let us consider the bidimensional function used as the motivational example

of the previous section. There is more than one way to write such a function, since one

can also represent it as fpξ1, ξ2q “ maxtξ2
1 ` ξ2, ξ2

1 ´ ξ2, ´ξ2
1 ` ξ2u. Obviously, ´ξ2

1 ` ξ2

has no use in describing f . Moreover, there is no region near its optimal solution such

that only ´ξ2
1 ` ξ2 would assume the maximum, which cuts out the validity of Hφ. In

fact, it is not difficult to see that redundant representations can be easily obtained for any

objective function near a local minimizer. Therefore, when Upx˚q ‰ t0u, Assumption 3.2

is imposing a good description of f (which does not need to be known) but not necessarily

assuming a condition over the shape of f . Summing up, Assumption 3.2 brings some

algebraic regularity to the optimization problem. One of the ways to see this regularity is

by noticing that there is only one λ˚ P R
r that satisfies [22, Chapter III]

λ˚
ě 0,

r
ÿ

i“1

λ˚

i “ 1 and
r

ÿ

i“1

λ˚

i ∇φipx˚q “ 0. (3.3)

Once we have elucidated some of the implications of Assumption 3.2, we are

ready to present our first results. For this, we will consider that |Ipx˚q| ě 2, since otherwise
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the convergence would be to a point at which f is smooth, that is not the case of interest.

Additionally, without any loss of generality, we assume that the neighborhood W presented

in (3.1) is small enough such that the functions that comprise f in W are only the smooth

functions that are active at x˚ (which implies r ď n). Moreover, for all x P W and for any

fixed j P Ipx˚q,
t∇φipxq ´ ∇φjpxquiPIpx˚qztju

is linearly independent.

We start our theoretical results with a technical lemma that will be directly

linked to Assumption 3.3, presented subsequently.

Lemma 3.1. Suppose Assumption 3.2 holds. Then, for any d P Upx˚q, we must have

dT

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

d ě 0.

Proof. Let us consider any vector d P Upx˚q. Since φi P C2, for all i P t1, . . . , ru, and

Assumption 3.2 holds, we can see by a cautious application of the Implicit Function

Theorem [40, Appendix] that there exist a sufficiently small δ ą 0 and a twice differentiable

function γ : p´δ, δq Ñ R
n such that γp0q “ x˚, γ1p0q “ d and

t P p´δ, δq ñ φipγptqq ´ φrpγptqq “ 0, for all i P t1, . . . , r ´ 1u.

Additionally, since x˚ is a local minimizer of f , we must have that t “ 0 is a local minimizer

of the function F ptq :“ φrpγptqq. Consequently,

dT
∇

2φrpx˚qd ` ∇φrpx˚qT γ2p0q “ F 2p0q ě 0. (3.4)

Now, defining ψipxq :“ φipxq ´ φrpxq, for i P t1, . . . , r ´ 1u, we must have

ψipγptqq “ ψipx˚q ` t∇ψipx˚qT d ` t2

2

`

dT
∇

2ψipx˚qd ` ∇ψipx˚qT γ2p0q
˘

` opt2q.

Hence, since ψipγptqq “ ψipx˚q “ 0, for all t P p´δ, δq, and ∇ψipx˚qT d “ 0, for i P
t1, . . . , r ´ 1u, we see, by taking the limit t Ñ 0, that

dT
∇

2ψipx˚qd ` ∇ψipx˚qT γ2p0q “ 0, @i P t1, . . . , r ´ 1u,

which yields

dT
r´1
ÿ

i“1

λ˚

i

“

∇
2φipx˚q ´ ∇

2φrpx˚q
‰

d `
r´1
ÿ

i“1

λ˚

i r∇φipx˚q ´ ∇φrpx˚qsT
γ2p0q “ 0.

Finally, adding the last equation to (3.4) and recalling that eT λ˚ “ 1, we have

dT

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

d `
r

ÿ

i“1

λ˚

i ∇φipx˚qT γ2p0q ě 0,

which implies the desired result (because
r

ÿ

i“1

λ˚

i ∇φipx˚q “ 0).
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The result presented above is a strong statement. It highlights that the positive

semidefinite U -Hessian matrix
r

ÿ

i“1

λ˚

i ∇
2φipx˚q

will play the role of a generalized Hessian of the function f in the U -space. Now, following

closely the analysis made in [37, Section 5.1] for the case where f is a convex function, we

motivate our next assumption.

Assumption 3.3. The local minimizer x˚ of f is a strong minimizer1, i.e., 0 P ri Bfpx˚q
and there is µ ą 0 such that

dT

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

d ě µ}d}2, for all d P Upx˚q. (3.5)

Remark 3.1. Under the condition 0 P ri Bfpx˚q and Assumption 3.2, one can see that the

unique vector that satisfies (3.3) must have strictly positive entries, i.e., λ˚
ą 0 (see [22,

Remark III.2.1.4]). Consequently, if Hφ does not hold, then, in the case that xk Ñ x˚, we

must have }g̃k} bounded away from zero for any sufficiently large k. However, [27, Theorem

3.3] guarantees, with probability one, that there is an infinite index set K Ă N such that

}g̃k} Ñ
kPK

0 (since �k, νk Ñ 0). Hence, this implies that under the Assumptions 3.2 and 3.3

and supposing xk Ñ x˚, the probability that Assumption 3.1 does not hold is zero. Therefore,

although Assumptions 3.2 and 3.3 are sufficient to have Assumption 3.1 (with probability

one), for clarity of our results, we present Assumption 3.1 as a hypothesis, which exempts

us from obtaining statements involving probability.

The next lemma ensures a sufficient growth of f at x˚ for directions close

enough to the subspace Upx˚q.

Lemma 3.2. Suppose that Assumptions 3.2 and 3.3 hold. Moreover, let us assume a

sequence tsku Ă R
n such that sk Ñ 0 and 2

sk “ ProjUpx˚q pskq ` op}sk}q. (3.6)

Then, for all sufficiently large k P N, the following must be valid

iq sT
k

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

sk ě
2

3
µ}sk}2;

iiq fpx˚q ` µ

4
}sk}2

ď fpx˚ ` skq,

where µ is such that (3.5) holds.

1 The property that 0 P ri Bfpx˚q is also called nondegeneracy [11].
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Proof. First, let us prove statement iq. Since

›

›ProjUpx˚q pskq
›

› ď }sk} ,

notice that

sT
k

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

sk ě ProjUpx˚q pskqT

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

ProjUpx˚q pskq

´ 2
›

›ProjUpx˚q pskq
›

› op}sk}q ` op}sk}2q
ě µ

›

›ProjUpx˚q pskq
›

›

2 ` op}sk}2q
“ µ}sk}2 ` op}sk}2q

(by relation (3.6)).

Hence, for a sufficiently large k P N, the first result is obtained.

Now, let us prove the second statement. Notice that, for a sufficiently large

k P N, we must have

fpx˚ ` skq “ max
1ďiďr

tφipx˚ ` skqu

ě

r
ÿ

i“1

λ˚

i φipx˚ ` skq

“
r

ÿ

i“1

λ˚

i

„

φipx˚q ` ∇φipx˚qT sk ` 1

2
sT

k ∇
2φipx˚qsk



` op}sk}2q

“ fpx˚q ` 1

2
sT

k

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

sk ` op}sk}2q.

Consequently,

fpx˚ ` skq ´ fpx˚q
}sk}2

ě
1

2

sT
k

}sk}

˜

r
ÿ

i“1

λ˚

i ∇
2φipx˚q

¸

sk

}sk} ` op}sk}2q
}sk}2

.

Recalling the inequality that appears in iq, we obtain

fpx˚ ` skq ´ fpx˚q
}sk}2

ě
1

3
µ ` op}sk}2q

}sk}2
.

Hence, for all k P N sufficiently large, we must have

fpx˚ ` skq ´ fpx˚q
}sk}2

ě
1

4
µ,

which is the desired result.

2 Here we have an abuse of notation. The relation (3.6) stands for sk “ ProjUpx˚q pskq ` vk, where
}vk} “ op}sk}q. This notation will appear in other parts of the text.
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We have seen in Remark 3.1 that, when xk Ñ x˚, Assumption 3.1 is a necessary

condition to

lim inf
kÑ8

}g̃k} “ 0 (3.7)

be valid. The next lemma guarantees sufficient conditions for (3.7) to hold.

Lemma 3.3. Suppose that Assumptions 3.1 and 3.2 are verified. Then,

g̃k Ñ
kPK

0 and λ̂k Ñ
kPK

λ˚,

where λ̂k P R
r and, for i P t1, . . . , ru,

λ̂k
i :“

ÿ

jPJk,i

λk
j , with Jk,i :“ ts P t0, . . . , mu | fpxk,sq “ φipxk,squ. (3.8)

Proof. Assuming k P K, it yields Bpxk, �kq Ă W and that, for each i P t1, . . . , ru, Jk,i

is not empty. So, recalling the definition of τk in (3.2) and that λk solves the quadratic

minimization problem of Step 2, we get

}g̃k} “
›

›

›

›

›

r
ÿ

i“1

ÿ

jPJk,i

λk
j ∇φipxk,jq

›

›

›

›

›

ď

›

›

›

›

›

r
ÿ

i“1

ÿ

jPJk,i

λ˚

i

|Jk,i|
∇φipxk,jq

›

›

›

›

›

“
›

›

›

›

›

r
ÿ

i“1

ÿ

jPJk,i

λ˚

i

|Jk,i|
∇φipxkq

›

›

›

›

›

` Opτkq

“
›

›

›

›

›

r
ÿ

i“1

λ˚

i ∇φipxkq
›

›

›

›

›

` Opτkq. (3.9)

Hence, since xk Ñ x˚, �k Ñ 0 and τk P p0, �kq, we obtain

g̃k Ñ
kPK

0.

Moreover, it implies

g̃k “
r

ÿ

i“1

ÿ

jPJk,i

λk
j ∇φipxkq ` Opτkq “

r
ÿ

i“1

λ̂k
i ∇φipxkq ` Opτkq Ñ

kPK
0.

Now, since Assumption 3.2 holds and λ˚ P R
r is the unique vector satisfying (3.3), we

must have

λ̂k Ñ
kPK

λ˚,

which ends the proof.

The next technical lemma establishes sufficient conditions ensuring that the

vector xk ´ x˚ will be close enough to the subspace Upx˚q.
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Lemma 3.4. Suppose that Assumption 3.1 and 3.2 hold. Then, there must exist k1 P K,

such that for all k P K larger than k1 and having τk ď α}xk ´ x˚}2, for any fixed α ą 0,

the following must happen

iq For all i P t1, . . . , r ´ 1u, we have

|φipxkq ´ φrpxkq| ď 2αLmax}xk ´ x˚}2,

where Lmax is an upper bound for the Lipschitz constants of the functions φi around

x˚;

iiq xk ´ x˚ “ ProjUpx˚qpxk ´ x˚q ` op}xk ´ x˚}q.

Proof. First, since Assumption 3.1 holds, there are points y1, . . . , yr P Bpxk, τkq, for all

k P K, such that

φrpyrq ą φipyrq and φrpyiq ă φipyiq, i P t1, . . . , r ´ 1u.

Therefore, defining ψi :“ φi ´ φr, we have, by the Intermediate Value Theorem, that

there exists zi P Bpxk, τkq such that ψipziq “ 0, for all i P t1, . . . , r ´ 1u. Consequently,

considering k P K and Lmax as a valid upper bound for the Lipschitz constants of the

functions φi in W , the following holds

φipziq “ φrpziq ñ |φipxkq ´ φrpxkq| “ |φipxkq ´ φipziq ` φrpziq ´ φrpxkq|
ñ |φipxkq ´ φrpxkq| ď 2Lmaxτk.

Since τk ď α}xk ´ x˚}2, the first result is obtained.

Now, let us consider the Taylor’s expansion of the functions φi, with i P
t1, . . . , ru. Then,

φipxkq “ φipx˚q ` ∇φipx˚qT pxk ´ x˚q ` Op}xk ´ x˚}2q.

So, for i P t1, . . . , r ´ 1u,

φipxkq ´ φrpxkq “ r∇φipx˚q ´ ∇φrpx˚qsT pxk ´ x˚q ` Op}xk ´ x˚}2q,

which yields, by item iq, that

r∇φipx˚q ´ ∇φrpx˚qsT pxk ´ x˚q “ Op}xk ´ x˚}2q.

Therefore, because of the definition of the subspace Upx˚q, we must have

xk ´ x˚ “ ProjUpx˚qpxk ´ x˚q ` op}xk ´ x˚}q,

as desired.
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The following statement says that, under some hypotheses, the difference

fpxkq ´ fpx˚q can be bounded above by a value proportional to }g̃k}2. This and the other

subsequent results pursuit, for the nonsmooth case, equivalent statements of the well

established local convergence result of the steepest descent method [2, Chapter 2]. For

this goal, the hypothesis about the value τk in Lemma 3.5 turns to be essential.

Lemma 3.5. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then, there must exist

k1 P K, such that

k P K, with k ě k1, and τk ď
µ

8Lmax

}xk ´ x˚}2 ñ µ

4
rfpxkq ´ fpx˚qs ď }g̃k}2.

Proof. Let us consider k P K and that

τk ď
µ

8Lmax

}xk ´ x˚}2.

Now, using the definition of λ̂k in (3.8), one can notice that

fpx˚q “ max
1ďiďr

tφipx˚qu

“ max
1ďiďr

"

φipxkq ` ∇φipxkqT px˚ ´ xkq ` 1

2
px˚ ´ xkqT

∇
2φipxkqpx˚ ´ xkq

*

` op}xk ´ x˚}2q

ě

r
ÿ

i“1

λ̂k
i

„

φipxkq ` ∇φipxkqT px˚ ´ xkq ` 1

2
px˚ ´ xkqT

∇
2φipxkqpx˚ ´ xkq



` op}xk ´ x˚}2q.

Assuming, without loss of generality, that

max
1ďiďr

tφipxkqu “ φrpxkq

and recalling iq of Lemma 3.4, we have

r
ÿ

i“1

λ̂k
i φipxkq ě max

1ďiďr
tφipxkqu ´ µ

8Lmax

2Lmax}xk ´ x˚}2

“fpxkq ´ µ

4
}xk ´ x˚}2.

Additionally, since the derivatives of φi are all Lipschitz continuous, we must have

r
ÿ

i“1

λ̂k
i ∇φipxkqT px˚ ´ xkq “

r
ÿ

i“1

ÿ

jPJk,i

λk
j ∇φipxkqT px˚ ´ xkq

“
r

ÿ

i“1

ÿ

jPJk,i

λk
j ∇φipxk,jqT px˚ ´ xkq ` op}xk ´ x˚}2q

“ g̃T
k px˚ ´ xkq ` op}xk ´ x˚}2q.
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By the fact that the functions φi are of class C2 and by Lemmas 3.2, 3.3 and 3.4, we see,

for a sufficiently large k P K, that

px˚ ´ xkqT
r

ÿ

i“1

λ̂k
i ∇

2φipxkqpx˚ ´ xkq “ px˚ ´ xkqT
r

ÿ

i“1

λ˚

i ∇
2φipx˚qpx˚ ´ xkq

` op}xk ´ x˚}2q

ě
2

3
µ}xk ´ x˚}2 ` op}xk ´ x˚}2q.

Therefore, the following must hold

fpx˚q ě fpxkq ` g̃T
k px˚ ´ xkq ` 2

3
µ}xk ´ x˚}2

´ 1

4
µ}xk ´ x˚}2 ` op}xk ´ x˚}2q

“ fpxkq ` g̃T
k px˚ ´ xkq ` 5

12
µ}xk ´ x˚}2 ` op}xk ´ x˚}2q.

Consequently, for k P K sufficiently large, it yields

fpxkq ´ fpx˚q ď g̃T
k pxk ´ x˚q ď }g̃k}}xk ´ x˚}. (3.10)

By Lemma 3.4, we see that, for a sufficiently large k P K, the hypotheses of Lemma 3.2

will hold for sk “ xk ´ x˚. So, iiq of Lemma 3.2 implies

}xk ´ x˚} ď 2

d

fpxkq ´ fpx˚q
µ

.

Finally, from the last inequality and (3.10), we obtain the desired result.

The result below guarantees a sufficient decrease of the function value. This

lemma will be of great importance in our main theorem.

Lemma 3.6. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then, there must exist

k1 P K, such that for all k P K larger than k1 with

τk ď
µ

8Lmax

}xk ´ x˚}2, (3.11)

the following must happen

γ
1 ´ β

M
ď t ď

1 ´ β

M
ñ fpxk ´ tg̃kq ă fpxkq ´ βt}g̃k}2,

where M is a positive real number such that

max
1ďiďr

�

}∇2φipxq}
(

ď M , for all x P W. (3.12)
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Proof. Let us consider an index k P K sufficiently large and that τk satisfies the upper

bound of (3.11). Then, considering a fixed t P p0, 1s, we have

fpxk ´ tg̃kq “ max
1ďiďr

"

φipxkq ´ t∇φipxkqT g̃k ` t2

2
g̃T

k ∇
2φipxkqg̃k

*

` op}g̃k}2q
ď fpxkq ` max

1ďiďr

�

´t∇φipxkqT g̃k

(

` t2

2
max
1ďiďr

�

g̃T
k ∇

2φipxkqg̃k

(

` op}g̃k}2q.

Additionally, choosing k P K large enough and considering sk “ xk ´x˚ in iiq of Lemma 3.2

and the result of Lemma 3.5, we see that τk “ Op}g̃k}2q. Consequently,

max
1ďiďr

�

´t∇φipxkqT g̃k

(

“ max
0ďiďm

�

´t∇fpxk,iqT g̃k

(

` op}g̃k}2q.

Moreover, from convex analysis [22, Chapter 3], we know that

g̃k solves min
gPcot∇fpxk,iqum

i“0

}g} ô xg ´ g̃k, ´g̃ky ď 0, @g P cot∇fpxk,iqum
i“0,

which yields

max
0ďiďm

�

´t∇fpxk,iqT g̃k

(

ď ´t}g̃k}2.

Hence, it implies

fpxk ´ tg̃kq ď fpxkq ´ t}g̃k}2 ` t2

2
max
1ďiďr

�

g̃T
k ∇

2φipxkqg̃k

(

` op}g̃k}2q.

Moreover, since xk Ñ x˚, we must have

max
1ďiďr

�

g̃T
k ∇

2φipxkqg̃k

(

ď M}g̃k}2, for all xk close enough to x˚.

Therefore, since g̃k tends to the null vector for indices in K (by Lemma 3.3), there must

exist a sufficiently large k1 P K such that for all k P K larger than k1 and

γ
1 ´ β

M
ď t ď

1 ´ β

M
,

we have

fpxk ´ tg̃kq ă fpxkq ´ t}g̃k}2 ` t2M}g̃k}2

“ fpxkq ´ t}g̃k}2 p1 ´ Mtq
ď fpxkq ´ βt}g̃k}2,

which completes the proof.

Finally, we are able to prove our main result. It establishes, under special

conditions, that the GS method, in fact, has a linear convergence rate for some iterations.
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Theorem 3.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then, there must exist

k1 P K, such that

k P K with k ě k1, τk ď
µ

8Lmax

}xk ´ x˚}2 and xk`1 “ xk ´ tkg̃k, (3.13)

implies

fpxk`1q ´ fpx˚q ď

ˆ

1 ´ µγ
βp1 ´ βq

4M

˙

rfpxkq ´ fpx˚qs.

Proof. First, let us suppose that we have k1 P K large enough so that Lemmas 3.5 and

3.6 hold. Then, assuming k ě k1 and (3.13), one can notice that since tk is obtained using

Step 4 of Algorithm 1, we must have, by Lemma 3.6, that

tk ě γ
1 ´ β

M
.

Therefore,

fpxk`1q ă fpxkq ´ βtk}g̃k}2
ď fpxkq ´ γ

βp1 ´ βq
M

}g̃k}2.

Consequently, by Lemma 3.5, we obtain

fpxk`1q ´ fpxkq ď ´γ
βp1 ´ βq

M

µ

4
rfpxkq ´ fpx˚qs,

which yields

fpxk`1q ´ fpx˚q ď

ˆ

1 ´ µγ
βp1 ´ βq

4M

˙

rfpxkq ´ fpx˚qs,

as desired.

3.3 Practical implications

By the results from the last section, we see that an essential hypothesis to

obtain those statements is

τk ď
µ

8Lmax

}xk ´ x˚}2. (3.14)

By Step 2, the probability of such a condition to hold in any fixed k P N is directly linked

to the value of �k. If �k is significantly larger than the upper bound required for τk, then

the probability of (3.14) to happen is low. On the other hand, if �k is small enough, such

a condition has a high probability to hold.

At least theoretically, we have a strong reason to ask for

�k « µ

8Lmax

}xk ´ x˚}2.

Unfortunately, the knowledge of µ and Lmax is not a reality for most of the problems.

Moreover, x˚ is the ultimate goal of GS, which implies that }xk ´ x˚} cannot be directly
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computed. Therefore, it seems difficult to guarantee this approximation. Fortunately, such

a requirement is not impossible to be satisfied in practice.

Indeed, let us consider the infinite index set K Ă N presented in Assumption 3.1.

Then, by (3.9), we see, for k P K, that

}g̃k} ď

›

›

›

›

›

r
ÿ

i“1

λ˚

i ∇φipxkq
›

›

›

›

›

` Opτkq.

For now, let us assume that, for all k P N, we know how to guarantee τk “ Op}g̃k}2`ρq, for

some fixed ρ ą 0. Then,

}g̃k}
“

1 ` Op}g̃k}1`ρq
‰

ď

›

›

›

›

›

r
ÿ

i“1

λ˚

i ∇φipxkq
›

›

›

›

›

“
›

›

›

›

›

r
ÿ

i“1

λ˚

i

“

∇φipx˚q ` ∇
2φipx˚qpxk ´ x˚q

‰

›

›

›

›

›

` op}xk ´ x˚}q.

Consequently, since
r

ÿ

i“1

λ˚

i ∇φipx˚q “ 0, we obtain }g̃k} “ Op}xk ´ x˚}q. Recalling that

τk “ Op}g̃k}2`ρq, it yields

τk “ Op}xk ´ x˚}2`ρq, k P K.

Therefore, for any sufficiently large k P K, we have (3.14), which is our desired hypothesis.

The only gap that we have left out is how to ensure τk “ Op}g̃k}2`ρq. To this

aim, we just need to set the following adjustment in Step 0:

θ� “ pθνq2`ρ, for any desired value of ρ ą 0. (3.15)

Indeed, defining lk as the number of times the algorithm has reduced the sampling radius

until the iteration k, and assuming that xk`1 “ xk ´ tkg̃k (i.e., xk ´ tkg̃k P D), we have

τk ď �k “ pθ�qlk�0 “
“

pθνqlk
‰2`ρ

�0 “
ˆ

νk

ν0

˙2`ρ

�0.

Hence, since xk`1 “ xk ´ tkg̃k, it means that a line search procedure was performed and,

therefore, we must have }g̃k} ě νk, which guarantees τk “ Op}g̃k}2`ρq.

As a result, (3.15) gives a practical implication for the GS method. In fact, what

one really needs to ask is that �k “ Opν2`ρ
k q, for all sufficiently large k. The equality (3.15)

is just a way to ensure this relation between �k and νk. To the best of our knowledge, there

is no previous study that uses theoretical arguments to help a potential user to set the

parameter values of θν and θ�.
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Finally, we present two illustrative examples in order to stress the importance

of relation (3.14) and one to show the behavior of our approach when some assumptions do

not hold. We compare the number of iterations and time (in seconds) versus the distance

of the current function value to the minimum function value f˚ reached along twenty runs.

For each example, we exhibit the median with the first and third quartiles of those runs.

The curves in black stand for the GS method with the parameter values suggested by the

original authors [6], whereas the grey curves represent the same GS method but now using:

νk “ 10´plk`1q; �0 “ ν0, �k “ ν1.5
k , if lk “ 1, and �k “ ν2.25

k , if lk ě 2.

All the results were obtained using Matlab and its function quadprog for addressing the

GS subproblem of Step 2.
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Figure 13 – Results for the nonsmooth convex function Chained CB3 II [47]. It satisfies
Upx˚q ‰ t0u.
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Figure 14 – Results for the nonsmooth nonconvex function Chained Crescent I [47]. It
satisfies Upx˚q ‰ t0u.
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Figure 15 – Results for the nonsmooth convex function MAXQ [47]. It does not satisfy
Assumption 3.2.

In Figure 1, we have minimized the convex function Chained CB3 II [47]. This

objective function presents to have dim V px˚q “ 2 and, consequently, dim Upx˚q “ 8.

Because the parameter values of the GS method, whose results are depicted in the black

curves, do not ensure relation (3.14) to hold, the sampled points start to be too far from

the current iterate, preventing the GS method from sustaining a good decreasing rate of

the function value. On the other hand, when the parameter values are chosen in a manner

that τk becomes small enough, the decreasing rate is preserved in most of the iterations.

The same behavior can be seen for the function that is minimized in Figure 2.

Although, this objective function is nonconvex, we can see by Lemma 3.1 that restrained

to the subspace where f behaves smoothly (for this case, we have dim Upx˚q “ 9), the

generalized Hessian is positive semidefinite. Therefore, since Lemma 3.4 guarantees that

xk approaches the optimal point x˚ by tracking the subspace Upx˚q (for some specific

iterations), the GS method starts to follow closely the behavior of the steepest descent

method. But again, the value τk plays a key role on the rate of convergence.

Finally, Figures 3 shows a bad behavior of the GS method when one considers

our approach. This can be explained by the lack of validity of Assumptions 3.2 and 3.3.

For this case, we have

fpxq “ max
1ďiďn

tx2
i u.

Therefore, one can see that the gradients of the smooth functions that comprise f are not

affinely independent, which does not ensure the uniqueness of the vector λ˚. Moreover,

0 R ri Bfpx˚q, and therefore, x˚ is not a strong minimizer for the objective function.

Consequently, the theoretical results cannot support a linear convergence rate of the

functions values, a fact that can also be seen in practice.
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3.4 Discussion

In this study, we have shown a linear local convergence result for the function

value sequence generated by the nonnormalized version of the GS method. Our analysis

does not provide any kind of local convergence result for functions with V px˚q “ R
n.

Moreover, as it is reasonable to expect, for nonsmooth functions satisfying Upx˚q ‰ t0u, a

good decrease of the function value is strongly dependent on a good set of sampled points.

This set needs to cover all functions φi near x˚. More than that, a restriction over the size

of τk is also a crucial hypothesis.

Although the assumption over τk seems impracticable to be verified, we have

shown that such a requirement can be satisfied by tunning properly the values of the

parameters θν and θ�. We believe this is an important implication, since as far we are

concerned, there is no previous theoretical argument that corroborates any particular

choice of such parameters.

In conclusion, this study reinforces what was already a belief in the nonsmooth

field, by giving a theoretical proof and establishing in which circumstances one can expect

linear local convergence of the GS method.
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4 Gradient and Function Sampling Method

Although the GS method has shown to be robust, presenting good numerical

results even for challenging problems, its computational cost can be an obstacle, specially if

we take into account the expectation over the rate of convergence. Therefore, this leads to

a natural question: would it be possible to have a GS algorithm that can be understood as

a generalization of Newton’s (or quasi-Newton) method for nonsmooth functions, meaning

that it would locally converge faster than linearly?

This study has the intent to start answering this question. As we shall see,

the answer is, at least, partially affirmative. In fact, there are recent studies that have

introduced GS-like algorithms with quasi-Newton techniques [9, 10], however there are no

proofs nor numerical results that corroborate a rapid local convergence. Therefore, our

affirmative answer is directly linked to the property that, in a good sampling condition

and for a special class of nonsmooth functions, it is possible to move superlinearly to the

solution.

One might view our method as a GS algorithm that incorporates some elements

of Bundle Methods developed over the years [17, 33], but still keeps the GS facilities

to handle nonconvex functions. This last characteristic is in agreement with Kiwiel’s

expectation [27]

“We believe, however, that deeper understanding of their [GS and Bundle

Methods] similarities and differences should lead to new variants.”

In order to obtain rapid local convergence, the new algorithm needs to look at

the VU-decomposition of the space [31,36]. Roughly speaking, the method behaves like the

cutting-plane methods [15,24] in the V-space, whereas into the U-space (a smooth subspace

for the objective function) it emulates the quasi-Newton techniques. For this purpose, we

need not only to evaluate the gradients at the sample points, but also their respective

function values. This procedure does not produce a significant increase in computational

time, since, in most cases, the computational effort of evaluating the function value is

fundamental in evaluating the gradient as well, so by computing the gradient one can

obtain the function value essentially for free.

Finally, we believe that the results obtained in this chapter are a step further

into the study of a practical algorithm with rapid local convergence to minimize nonsmooth

and nonconvex functions. A future work assessing its performance in an extensive class of
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nonsmooth functions is needed to determine how efficient the proposed algorithm is. For

now, we limit ourselves to the convergence theory and the presentation of some illustrative

examples.

4.1 Motivation and the new algorithm

As in the previous chapter, we will be interested in solving a minimax problem,

but now considering W “ R
n, i.e.,

min
xPRn

ˆ

fpxq :“ max
1ďiďp

tφipxqu
˙

, (4.1)

where the functions φi : Rn Ñ R are all of class C2, but they are not necessarily known.

Again, we only ask that the function f may be represented as a maximum of functions,

that is distinct from the case in which the functions that comprise f are known. For such

a case, many studies have been developed (see [14] and references therein). Additionally,

we also suppose the affinely independence presented in the previous chapter, but now we

assume this condition for a larger set of points in the domain of f .

Assumption 4.1. For all x P R
n with |Ipxq| ě 2, the gradients t∇φipxquiPIpxq compose

an affinely independent set, that is,

ÿ

iPIpxq

αi∇φipxq “ 0 and
ÿ

iPIpxq

αi “ 0 ðñ αi “ 0, @i P Ipxq.

4.1.1 Motivational example

Suppose that we have fpxq “ |x| “ maxtx, ´xu and we want to start an

iteration of Algorithm 1. If we have that

m “ 2, �0 “ 1, �opt ă 1, x0 “ 0.5, x0,1 ă 0 and x0,2 ą 0,

then f 1px0,1q “ ´1, f 1px0,2q “ 1 and g̃0 “ 0 in Step 2. Consequently, by Step 3, we skip

Steps 4 and 5 and go directly to Step 6, which starts a new iteration. Although this

routine indicates that we have an �0-stationary point for f , this procedure does not allow

us to move. Moreover, it prevents the algorithm to take an action when it has a complete

information about the function, that is, when we have points sampled in the sets

X´ “ tx P R | x ă 0u and X` “ tx P R | x ą 0u.

As a consequence, we see that the method only gets a chance to move when either xk and

the sampled points are all in X´ or all in X`. Moreover, in this scenario, the GS method

behaves exactly as the steepest descent method.

This undesirable behavior can be explained by the lack of information about

the function values at the sampled points. Indeed, taking a careful look into the quadratic
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optimization problem that is solved in Step 2, it is possible to see that its dual problem is

given by

min
pd,zq

z ` 1

2
dT Hkd

s.t. G̃T
k d ď ze,

where z P R and d is the vector dk that appears in Step 4. Equivalently, considering

xk,0 :“ xk, the same direction dk can be obtained if we solve

min
dPRn

"

max
0ďiďm

�

fpxkq ` ∇fpxk,iqT d
(

` 1

2
dT Hkd

*

. (4.2)

Notice, however, that if we use the function values of each sampled point instead of fpxkq,
i.e., if we solve

min
dPRn

"

max
1ďiďm

�

fpxk,iq ` ∇fpxk,iqT pxk ´ xk,iq ` ∇fpxk,iqT d
(

` 1

2
dT Hkd

*

, (4.3)

we would have a better model for the function f than the original one (closer to the

cutting-plane method). Furthermore, the new quadratic optimization problem allows us to

move when we have sampled in both “faces” of f , that is, in X´ and X`. Lastly, observe

that in (4.3), we do not use the objective function value at the current iterate xk neither

the gradient ∇fpxkq. As we shall see later, these omissions do not prevent the algorithm

to converge and introduce an advantage over the GS method, since the Differentiability

Check at Step 5 is no longer necessary.

Unfortunately, this new quadratic programming problem comes with a price:

the vector dk might not be a descent direction for f at xk (especially under a bad sampling

condition), a property that is always true if we solve (4.2). Therefore, to have an algorithm

that uses the function values at all sampled points, we must overcome this issue.

4.1.2 New algorithm

In order to surpass the difficulty of not having a descent direction under a bad

sample, we replace the Armijo’s line search by a trust-region procedure. Besides, to have

a smooth problem to solve, instead of dealing with (4.3), we solve at each iteration the

following quadratic optimization problem

min
pd,zq

z ` 1

2
dT Hkd

s.t. f̃k ` GT
k d ď ze

}d}8 ď Δk,

(4.4)

where f̃k “ rfpxk,1q ` ∇fpxk,1qT pxk ´ xk,1q, . . . , fpxk,mq ` ∇fpxk,mqT pxk ´ xk,mqsT , Gk “
r∇fpxk,1q . . . ∇fpxk,mqs and }d}8 ď Δk stands for the trust-region constraint, for some
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Δk ą 0. Consequently, its dual optimization problem, after changing variables, can be

viewed as

max
pλ,ωqPRm`n

λT f̃k ´ 1

2
pGkλ ` ωqT H´1

k pGkλ ` ωq ´ Δk}ω}1

s.t. λT e “ 1

λ ě 0.

With these modifications in mind, we introduce the proposed algorithm (Algorithm 2),

also referred to as GraFuS, which stands for Gradient and Function Sampling. Together

with the exhibition of our new method, we must highlight some of its properties that will

be important for the good understanding of the convergence results.

• The generated sequence of function values is monotone decreasing, i.e., fpxk`1q ă

fpxkq, for all k P N;

• the sequence tνku is also monotone decreasing and it is a measure of how far we are

from a stationary point as the sampling radius is related with the value of νk ;

• the role played by the exponent σl in the algorithm will be clarified at the local

convergence section. Furthermore, its definition at Step 1 has the purpose of providing

freedom for such a parameter, so that it may be modified any time the algorithm

performs the referred step.

Notation Glossary

k: outer iteration counter νk: optimality measure

l: inner iteration counter νopt: optimality certificate tolerance

xk: current iterate ι: exponent for updating νk

m: number of sampled points �k,l: related to the current sampling size

γ∆: constant related to the trust region ∆k,l: current trust-region size

γ�: constant related to the sampling size θ: reduction factor for �k,l and ∆k,l

ρ: parameter of step acceptance σl: exponent related to the sampling size

4.2 Convergence

As in the last chapters, we also suppose that Assumptions 2.1 and 4.1 hold.

Moreover, we also use Ipxq “ ti | φipxq “ fpxqu.

Remark 4.1. Again it is worth pointing out that Assumption 4.1 can be viewed as a way

to guarantee that, for any fixed j P Ipxq, the set

t∇φipxq ´ ∇φjpxquiPIpxqztju

is linearly independent for all x P R
n with |Ipxq| ě 2. This association will be of great

importance for both the global and the local convergence results.
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Algorithm 2: A Superlinear Gradient and Function Sampling-based method (Gra-
FuS).

Step 0. Set k, l “ 0, x0 P R
n, m P N with m ě n ` 1 and fixed real numbers

γ�, γ∆ ą 0, 0 ă ν0, θ, ρ ă 1, 0 ď νopt ă ν0 and ι ą 1. Finally, define the
initial sampling radius and the maximum step size as �0,0 “ ν0 and
Δ0,0 “ γ∆ν0, respectively.

Step 1. Set σl as any real number in r1, 2s and choose

�

xl
k,1, . . . , xl

k,m

(

Ă Bpxk, γ��
σl

k,lq

with randomly, independently and uniformly sampled elements.

Step 2. Find pdk,l, zk,lq and pλk,l, ωk,lq that solve, respectively, (4.4) and its dual
problem, where Hk P R

nˆn is a symmetric and positive definite matrix.

Step 3. If νk ď νopt, then STOP! Otherwise, compute

Aredk,l :“ fpxkq ´ fpxk ` dk,lq

and

Predk,l :“ max
1ďiďm

�

fpxl
k,iq ` ∇fpxl

k,iqT pxk ´ xl
k,iq

(

´
ˆ

zk,l ` 1

2
dT

k,lHkdk,l

˙

.

Step 4. If Aredk,l ď ρPredk,l, then a null step is performed by setting Δk,l`1 “ θΔk,l,
�k,l`1 “ θ�k,l, l Ð l ` 1 and going back to Step 1. Otherwise, a serious step is
taken by setting xk`1 “ xk ` dk,l and νk`1 “ maxtmintνk, }H´1

k Gk,lλk,l}8u, νι
ku.

Step 5. Set �k`1,0 “ νk`1, Δk`1,0 “ γ∆νk`1, k Ð k ` 1, l Ð 0 and go back
to Step 1.

4.2.1 Global convergence

First, we present a technical lemma that guarantees that at most n`1 functions

will assume the maximum of f at a fixed point x P R
n. In addition, we prove that, for

each φj, with j P Ipxq, there is a sufficiently small open set such that φj strictly assumes

the maximum value at this specific set.

Lemma 4.1. Let x be any point in R
n and j be any fixed index in Ipxq. Then, |Ipxq| ď n`

1. Moreover, there exists r ą 0 such that for all � P p0, rq, we can find a set Cjpx, �q Ă Bpx, �q
with intpCjpx, �qq ‰ H, for which x R Cjpx, �q and

φjpxjq ą max
1ďiďp

i‰j

φipxjq, @xj P Cjpx, �q.

Proof. Let us prove first that |Ipxq| ď n ` 1. If |Ipxq| “ 1, the statement trivially holds.

Therefore, we assume that |Ipxq| ě 2. Besides, we suppose without any loss of generality
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that Ipxq “ t1, . . . , ru. Then, let α2, . . . , αr P R be any real numbers such that

r
ÿ

i“2

αi p∇φipxq ´ ∇φ1pxqq “ 0.

Then, it follows that

´
˜

r
ÿ

i“2

αi

¸

∇φ1pxq `
r

ÿ

i“2

αi∇φipxq “ 0,

and by Assumption 4.1, we have α2 “ . . . “ αr “ 0. Consequently,

A :“ t∇φipxq ´ ∇φ1pxquiPIpxqzt1u

forms a linearly independent set. So, |A| ď n, which implies that |Ipxq| ď n ` 1.

Now, for the other result, we also have that, if |Ipxq| “ 1, then the proof

is straightforward by a continuity argument. So, let us suppose that |Ipxq| ě 2 and

Ipxq “ t1, . . . , ru. By Assumption 4.1, given a fixed s P Ipxq and any j P Ipxq with

j ‰ s, we have that vj :“ ∇φjpxq ´ ∇φspxq cannot be written as a linear combination of

tvi | i P Ipxq, i ‰ ju (to see this, just use the same arguments that we have used to prove

|Ipxq| ď n ` 1 and notice that the set formed by the vectors vj’s is linearly independent).

Thus, it is possible to find a unitary dj P R
n such that vT

j dj ą 0 and

vT
i dj “ 0, i ‰ j with i P Ipxq.1

Consequently, it follows that ∇φjpxqT dj ą ∇φspxqT dj and

∇φipxqT dj “ ∇φspxqT dj, i ‰ j with i P Ipxq.

So, since φi P C2, for all i P Ipxq, we have that for all fixed wj P R
n it follows that

φipx ` �pdj ` wjqq “ φipxq ` �∇φipxqT pdj ` wjq ` Op�2q, i P Ipxq, i ‰ j,

φjpx ` �pdj ` wjqq “ φjpxq ` �∇φjpxqT pdj ` wjq ` Op�2q.

Now, subtracting the first equation above from the second one and dividing the result by

�, we obtain, for all i P Ipxq with i ‰ j, that

φjpx ` �pdj ` wjqq ´ φipx ` �pdj ` wjqq
�

“ ∇φjpxqT pdj ` wjq

´ ∇φipxqT pdj ` wjq ` Op�q.

Consequently, supposing that

wj P B p0, δq Ă R
n, where δ :“ min

iPIpxq
i‰j

"r∇φjpxq ´ ∇φipxqsT dj

2}∇φjpxq ´ ∇φipxq}

*

ą 0,

1 For example, setting sj as the orthogonal projection of vj over the hyperplane generated by tvi | i P
Ipxq, i ‰ ju, one can consider dj “ pvj ´ sjq{}vj ´ sj}.
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we must have, for all i P Ipxq with i ‰ j, that

φjpx ` �pdj ` wjqq ´ φipx ` �pdj ` wjqq
�

“ r∇φjpxq ´ ∇φipxqsT dj

` r∇φjpxq ´ ∇φipxqsT wj ` Op�q
ě r∇φjpxq ´ ∇φipxqsT dj

´ }∇φjpxq ´ ∇φipxq}}wj} ` Op�q

ą
r∇φjpxq ´ ∇φipxqsT dj

2
` Op�q.

From the inequality above and noticing that r∇φjpxq ´ ∇φipxqsT dj ą 0, for all i P Ipxq
with i ‰ j, it is possible to find rj ą 0 small enough such that for all � P p0, rjq the

following relation holds

φjpx ` �pdj ` wjqq ą φipx ` �pdj ` wjqq, i P Ipxq, i ‰ j.

To complete the proof, notice that the functions φi are continuous, and therefore, it is

possible to find r̃ ą 0 such that for all y P Bpx, r̃q the following holds

φapyq ą φbpyq, a P Ipxq, b R Ipxq.

So, setting r :“ mintr1, . . . , rp, r̃u and choosing � P p0, rq, we have that the set

Cjpx, �q :“ tx ` τpdj ` wjq | 0 ă τ ă �{2, wj P B p0, δq , j P Ipxqu ,

satisfies the properties previously claimed.

From the above result, we can see that for any � ą 0 (even when � ě r, since

in this case we have Bpx, rq Ă Bpx, �q), the following set is not empty

Sjpx, �q :“ int

$

&

%

y P Bpx, �q
ˇ

ˇ φjpyq ą max
1ďiďp

i‰j

φipyq

,

.

-

, j P Ipxq. (4.5)

So, we can proceed with two additional results. They guarantee that GraFuS is

well defined, i.e., the algorithm will not cycle forever from Step 4 to Step 1. Specifically,

the first result tells us that under a good set of sampled points, it is possible to obtain

Ared ą ρPred at Step 4 (the proof of the result is based on ideas from [51]).

Lemma 4.2. In Algorithm 2, consider fixed outer and inner iterations, denoted by k and

l, respectively. Let x P R
n be a nonstationary point for the function f : Rn Ñ R, ρ P p0, 1q

be a fixed real number and Sjpx, �q be the set defined in (4.5) for any � ą 0. Therefore,

there exist Δ and δ ą 0 such that, if the following hypotheses hold

i) xk P Bpx, δq;
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ii) 0 ă Δk,l ă Δ;

iii) there exist � ” �pk, lq ą 0 and M ą 0 such that

a) for all j P Ipxq, we have Sjpx, �q Ă Bpxk, M ¨ Δk,lq;
b) for all j P Ipxq, there exists xl

k,i P Sjpx, �q, for some i P t1, . . . , mu;

c) for all i P t1, . . . , mu, it is possible to find j P Ipxq such that xl
k,i P Sjpx, �q,

then

Aredk,l ą ρPredk,l.

Proof. First, we choose r ą 0 as a sufficiently small number such that for all x P Bpx, rq,
we have

φjpxq ą max
1ďiďp

iRIpxq

φipxq, for all j P Ipxq.

Since x is not a stationary point for f , we must have that 0 R Bfpxq. Recalling that Bfpxq
is a closed and convex set, it follows by the Hyperplane Separation Theorem [3, Section

2.5] that there exist a unitary vector v P R
n and a scalar τ ą 0 such that

sT v ď ´τ , @s P Bfpxq.

Since the generalized directional derivative of f at x in the direction v is given by

f ˝px; vq “ lim sup
xÑx
tÓ0

fpx ` tvq ´ fpxq
t

“ maxtsT v : s P Bfpxqu,

we have that f ˝px; vq ď ´τ . Thus, there exist Δ P p0, rq and δ P p0, rq such that for all

x P B
`

x, δ
˘

and Δ P p0, Δq, we have

fpx ` Δvq ´ fpxq ă ´τ

2
Δ. (4.6)

Now, let us keep this information in mind and proceed with a parallel idea. Let

us suppose that the hypotheses iq, iiq and iiiq hold for δ and Δ found above. Then

fpxkq “ max
iPIpxq

tφipxkqu

“ max
1ďiďm

tfpxl
k,iq ` ∇fpxl

k,iqT pxk ´ xl
k,iqu ` opΔk,lq

(notice that xl
k,i P Bpxk, M ¨ Δk,lq)

and

fpxk ` dk,lq “ max
iPIpxq

tφipxk ` dk,lqu

“ max
1ďiďm

tfpxl
k,iq ` ∇fpxl

k,iqT pxk ` dk,l ´ xl
k,iqu ` opΔk,lq

(notice that xl
k,i P Bpxk, M ¨ Δk,lq and that }dk,l}8 ď Δk,l).
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So, we have Aredk,l “ fpxkq ´ fpxk ` dk,lq “ Predk,l ` opΔk,lq. Consequently, to prove

the statement, we just need to show that Δk,l “ OpPredk,lq, since we would have, for any

η “ p1 ´ ρq P p0, 1q, a sufficiently small Δ ą 0 such that

Aredk,l ´ Predk,l “ opΔk,lq ą ´ηPredk,l,

which yields that Aredk,l ą p1 ´ ηqPredk,l “ ρPredk,l. So, to show that such a condition

holds, we define

ẑ “ max
1ďiďm

tfpxl
k,iq ` ∇fpxl

k,iqT pxk ` Δk,lv ´ xl
k,iqu.

Therefore, since pdk,l, zk,lq is the solution of the quadratic programming problem at Step 2,

we have that zk,l ď ẑ ` opΔk,lq, and hence,

Predk,l ě max
i

tfpxl
k,iq ` ∇fpxl

k,iqT pxk ´ xl
k,iqu ´

ˆ

ẑ ` Δ
2
k,l

2
vT Hkv

˙

` opΔk,lq.

Consequently, it yields that

Predk,l ě fpxkq ´ fpxk ` Δk,lvq ` opΔk,lq

ą
τ

2
Δk,l ` opΔk,lq,

where the last inequality comes from (4.6). Therefore, if Δ is small enough, we obtain the

desired result.

With the above result, we present the following lemma, which claims that if

GraFuS is at iteration k and xk is not a stationary point for f , then the index l of the

inner iteration has an upper limit (with probability one).

Lemma 4.3. Suppose that for an iteration k, we have that xk is not a stationary point

for f . Then, with probability one, there exists l P N such that the indices of the inner

iterations satisfy l ď l.

Proof. Let us assume, by contradiction, that such l does not exist, i.e., l Ñ 8 at the

iteration k. Consequently, we must have that Aredk,l ď ρPredk,l, for all l P N. Additionally,

by the way we have designed our algorithm, we see that

�k,l “ 1

γ∆

Δk,l, for all k, l P N,

and by the contradiction hypothesis the following holds: Δk,l Ñ 0 as l Ñ 8.

Therefore, setting x :“ xk in Lemma 4.2, it is straightforward to see that

at some ñ P N, if l ě ñ, then hypotheses iq and iiq of Lemma 4.2 are valid. Moreover,

considering � :“ γ��
σl

k,l and M :“ γ� maxtγ´1
∆

, γ´2
∆

u for a fixed inner iteration l, we will

satisfy hypothesis iiiq item aq of Lemma 4.2. Therefore, if at this specific inner iteration l
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we do not have Aredk,l ą ρPredk,l, it is due to the fact that we did not sample the points

properly, i.e, the items bq and/or cq of hypothesis iiiq were not fulfilled. So, since l Ñ 8
by the contradiction hypothesis we have made, it is also true that the next inner iteration

will not satisfy items bq and/or cq and so on. We claim that this behavior has probability

zero to occur.

Indeed, let us assume a fixed j P Ipxkq and notice that by the way we have

defined dj and Cjpxk, γ��
σl

k,lq in the proof of Lemma 4.1, we have that (for γ��
σl

k,l sufficiently

small) B
k,l
j Ă Cjpxk, γ��

σl

k,lq, where

B
k,l
j :“ B

¨

˝xk ` γ��
σl

k,l

4
dj,

γ��
σl

k,l

8
min

iPIpxkq
i‰j

"r∇φjpxkq ´ ∇φipxkqsT dj

2}∇φjpxkq ´ ∇φipxkq}

*

˛

‚.

Consequently, the volume of B
k,l
j in R

n is given by

Vol
´

B
k,l
j

¯

“ πn{2

Γpn{2 ` 1q

¨

˝ min
iPIpxkq

i‰j

"r∇φjpxkq ´ ∇φipxkqsT dj

2}∇φjpxkq ´ ∇φipxkq}

*

˛

‚

n
ˆ

γ��
σl

k,l

8

˙n

,

where Γ is the Gamma function [23]. On the other hand, it follows that

VolpBpxk, γ��
σl

k,lqq “ πn{2

Γpn{2 ` 1q
`

γ��
σl

k,l

˘n
.

Therefore, since the sampled points are chosen in Bpxk, γ��
σl

k,lq and

B
k,l
j Ă Cjpxk, γ��

σl

k,lq Ă Sjpxk, γ��
σl

k,lq,

we must have, for all i P t1, . . . , mu, that the conditional probability

Projpxl
k,i P Sjpxk, γ��

σl

k,lq | xl
k,i P Bpxk, γ��

σl

k,lqq “ VolpSjpxk, γ��
σl

k,lqq
VolpBpxk, γ��

σl

k,lqq

must be greater than the following strictly positive number

1

8n

¨

˝ min
iPIpxkq

i‰j

"r∇φjpxkq ´ ∇φipxkqsT dj

2}∇φjpxkq ´ ∇φipxkq}

*

˛

‚

n

.

With this inequality, we conclude that the probability of the items bq and cq of hypothesis

iiiq to happen together is strictly positive and does not depend on l. Therefore, the

probability of l Ñ 8 is zero, which concludes the proof.

Finally, we are close to reach the convergence theorem of GraFuS. For that

goal, we only need to prove a last technical lemma. Furthermore, to have a clearer proof,

from now on we will denote by lk the largest value of the index l at the iteration k.

Lemma 4.4. Let us consider the GraFuS algorithm. If Predk,lk
{Δk,lk

Ñ 0 as k Ñ 8, then

}Gk,lk
λk,lk

} Ñ 0.
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Proof. First, notice that the quadratic programming problem presented in (4.4) satisfies

the Slater’s condition. Indeed, if one considers dk “ 0 and zk “ maxtf̃ku ` 1 in (4.4), then

we see that all inequalities are strictly satisfied. Thus, since the problem is also convex, we

can guarantee that the quadratic programming problem satisfies strong duality. So, we

have

zk,lk
` 1

2
dT

k,lk
Hkdk,lk

“ λT

k,lk
f̃k,lk

´ 1

2

`

Gk,lk
λk,lk

` ωk,lk

˘T
H´1

k

`

Gk,lk
λk,lk

` ωk,lk

˘

´ Δk,lk
}ωk,lk

}1.

Thus, defining

αk :“ 1

2

`

Gk,lk
λk,lk

` ωk,lk

˘T
H´1

k

`

Gk,lk
λk,lk

` ωk,lk

˘

` Δk,lk
}ωk,lk

}1, (4.7)

it yields

λT

k,lk
f̃k,lk

´ αk “ zk,lk
` 1

2
dT

k,lk
Hkdk,lk

ñ αk “ λT

k,lk
f̃k,lk

´
ˆ

zk,lk
` 1

2
dT

k,lk
Hkdk,lk

˙

ñ αk ď Predk,lk

(since λk,lk
ě 0 and eT λk,lk

“ 1)

ñ αk

Δk,lk

ď
Predk,lk

Δk,lk

ñ αk

Δk,lk

Ñ 0.

Consequently, by Assumption 2.1 and (4.7), we obtain }Gk,lk
λk,lk

} Ñ 0.

Now, we reach the main goal of this subsection. Below, we prove the global

convergence (with probability one) of the proposed algorithm.

Theorem 4.1. Suppose that the GraFuS algorithm produces a bounded sequence of points

txku with νopt “ 0. Then, with probability one, there is a cluster point x of this sequence

which is a stationary point for f .

Proof. We split the proof in two complementary cases:

iq There are an infinite set of indices K1 Ă N and a real number � ą 0 such that

�k,lk
ě � for all k P K1.

iiq The sampling radius along the iterations satisfy �k,lk
Ñ
kPN

0.
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Initially, let us suppose that case iq holds. So, noticing that �k,lk
ď νk, for all k P N,

and that tνku is a monotone decreasing sequence, we see clearly that there must exist ν

such that νk ě ν, for all k P N. Additionally, we claim that there exists µ ą 0 such that

Δk,lk
µ ď Predk,lk

, for all k P N. Indeed, if this statement were false, there would exist an

infinite set of indices K̃ such that

Predk,lk
{Δk,lk

Ñ
kPK̃

0.

However, by Lemma 4.4, it would yield that

}Gk,lk
λk,lk

} Ñ
kPK̃

0.

Therefore, we would have νk Ñ 0, and consequently, that �k,lk
Ñ 0, which is a contradiction

with case iq. Thus, there must exist µ ą 0 such that Δk,lk
µ ď Predk,lk

, for all k P N.

Moreover, since

�k,l “ 1

γ∆

Δk,l, for all k, l P N,

we see that Δk,lk
ě γ∆�, for all k P K1. Consequently,

Aredk,lk
ą ρPredk,lk

, for all k P K1 ñ fpxkq ´ fpxk`1q ą ρµγ∆�, for all k P K1. (4.8)

Now, since txku is a bounded sequence by assumption, there must exist an infinite set of

indices K2 Ă K1 such that

xk Ñ
kPK2

x̂, for some x̂ P R
n.

So, considering sK2
pkq as the index in K2 that comes right after k P K2, we have

ÿ

kPK2

pfpxkq ´ fpxk`1qq ď

ÿ

kPK2

´

fpxkq ´ f
´

xsK2
pkq

¯¯

“ fpxwq ´ fpx̂q ă 8,

with w P N being the first index in K2. However, this is a condition that goes against (4.8).

Therefore, the case iq is an impossible event and we must consider case iiq.

Suppose that case iiq holds. Since txku is bounded, there exists at least one

cluster point x of this sequence. Hence, there is K Ă N such that

xk Ñ
kPK

x.

Now, let us add two additional hypotheses to case iiq:

aq The point x is not a stationary point for f ;

bq There exists M ą 0 such that νk ą M , for all k P N.
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Then, we choose δ, Δ ą 0 as presented in Lemma 4.2 for the point x. Since νk ą M , for

all k P N, and �k,lk
Ñ 0 as k Ñ 8, we have that, by the way we have designed GraFuS,

�k,lk
just keeps going smaller because lk Ñ 8. As a consequence, it yields that there exist

k1, l1 P N such that for all k ě k1 we have

Δk,l1 “ Δ̃ :“
´

θl1
¯

γ∆νk ă Δ and �k,l1 “ �̃ :“
´

θl1
¯

νk “ 1

γ∆

Δ̃.

Moreover, since x is a cluster point for the iteration sequence, we can find k̂ ě k1 such

that for all k ě k̂ and k P K, we have xk P Bpx, mintγ��̃, δu{4q. So, for all j P Ipxq we have

xk P Bpx, mintγ��̃
2, δu{4q and Sjpx, mintγ��̃, δu{4q Ă Bpxk, pγ�{γ∆qΔ̃q.

Therefore, the hypotheses iq, iiq and iiiq item aq of Lemma 4.2 are all satisfied. So, since

lk Ñ 8, we must have that items bq and/or cq of hypothesis iiiq are not satisfied for every

k ě k̂ and l “ l1. However, this is an event with probability zero to happen, since the sets

Sjpx, mintγ��̃
l1

, δu{4q are open and not empty. As a consequence, with probability one, at

least one of the two possible situations below must happen:

a1q The cluster point x is a stationary point for f ;

b1q There is no M ą 0 such that νk ą M , for all k P N. In other words, νk Ñ 0.

If a1q holds the statement is proven. However, if only b1q is valid, then there exist an infinite

set of indices K Ă N and a sequence of vectors tvku Ă R
n such that

vk P B�k,0
fpxkq and }vk} Ñ 0, for all k P K.

Thus, since txku is a bounded sequence, we can assume without loss of generality that

xk Ñ
kPK

x̃, for some x̃ P R
n.

Hence, remembering that �k,0 Ñ 0 (since νk Ñ 0), we have the desired result (see item iiiq
of [27, Lemma 3.2]), i.e., 0 P Bfpx̃q with probability one.

We have proved that our proposed algorithm has at least one cluster point

that is stationary for f . For that, we needed to assume that the method has generated

a bounded sequence of iterations, which can easily be obtained by supposing that the

function f has bounded level sets. In addition, we have shown that we do not need to

know the functions that comprise f to converge. In fact, we have traded this knowledge

by the chance of having a good set of sample points.

In the next subsection, we have the intent to show that, under a good sampling,

it is possible to move superlinearly to a local minimizer of f . For such a goal, our analysis

will involve the concept of U and V spaces.
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4.2.2 Local convergence

In this subsection our efforts will be focused in enlightening the role played

by the quadratic programming problem (4.4). In fact, under special circumstances, it is

possible to see this quadratic problem as a local approximation of a new optimization

problem that involves the smooth functions φi. Upon this new perspective, we can analyze

the local convergence of the proposed method and obtain interesting results. However,

since our method has a random nature and a good local information about the function is

restricted to a good set of sampled points, it is reasonable to think that a good rate of

convergence will not be achieved at every iteration. Therefore, the results presented here

will be sustained on hypotheses that guarantee a good sampling.

To accomplish the aim of this subsection, we start supposing that x˚ P R
n is a

local minimizer of the optimization problem presented in (4.1). Also, assume that Ipx˚q “
t1, . . . , r ` 1u, for some r ď n. Therefore, consider any xk P R

n and the sampled points

xlk
k,1, . . . , xlk

k,m P Bpxk, γ��
σ

lk

k,lk
q. So, we admit the following hypotheses on problem (4.4):

H1) We have a good set of sampled points: for any j P Ipx˚q there is ij P t1, . . . , mu such

that

φj

´

xlk
k,ij

¯

ą φs

´

xlk
k,ij

¯

, for all s P t1, . . . , pu, s ‰ j. (4.9)

For an easier exposition of our ideas, we will write without loss of generality that

φi

´

xlk
k,i

¯

ą φs

´

xlk
k,i

¯

, for all s P t1, . . . , pu, s ‰ i and i P Ipx˚q, (4.10)

since by a simple rearrangement of the sampled points in (4.9) the inequality (4.10)

holds. Moreover, notice that this condition is the same hypothesis made in Hφ in

the last chapter;

H2) The first r ` 1 constraints are active at the solution;

H3) Only the first r ` 1 constraints are active at the solution2.

Remark 4.2. Notice that assuming H3, we are implicitly asking that the trust-region

constraint is not active, an assumption that seems inevitable because of the random nature

of the algorithm.

Under those hypotheses, one can rewrite (4.4) as the following optimization

problem

min
pd,zqPRn`1

z ` 1

2
dT Hkd

s.t. φi

´

xlk
k,i

¯

` ∇φi

´

xlk
k,i

¯T ´

xk ` d ´ xlk
k,i

¯

“ z, 1 ď i ď r ` 1.

(4.11)

2 We believe that this hypothesis may seem unnatural at first sight. For this reason, we have treated it
in the Appendix.
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Alternatively, it can also be viewed as

min
dPRn

φr`1

´

xlk
k,r`1

¯

` ∇φr`1

´

xlk
k,r`1

¯T ´

xk ` d ´ xlk
k,r`1

¯

` 1

2
dT Hkd

s.t. Φ̃k ` J̃kd “ 0,
(4.12)

where Φ̃k P R
r with

pΦ̃kqi :“ φi

´

xlk
k,i

¯

` ∇φi

´

xlk
k,i

¯T ´

xk ´ xlk
k,i

¯

´
„

φr`1

´

xlk
k,r`1

¯

` ∇φr`1

´

xlk
k,r`1

¯T ´

xk ´ xlk
k,r`1

¯



, i P t1, . . . , ru,

and

J̃k :“

¨

˚

˚

˚

˝

∇φ1

´

xlk
k,1

¯T

´ ∇φr`1

´

xlk
k,r`1

¯T

...

∇φr

´

xlk
k,r

¯T

´ ∇φr`1

´

xlk
k,r`1

¯T

˛

‹

‹

‹

‚

.

So, the minimization problem (4.4) can be viewed as a quadratic approximation of

min
xPRn

φr`1pxq

s.t. Φpxq “ 0,
(4.13)

where

Φpxq :“

¨

˚

˚

˝

φ1pxq ´ φr`1pxq
...

φrpxq ´ φr`1pxq

˛

‹

‹

‚

.

Moreover, it is straightforward to see that x˚ is also a local minimizer for (4.13).

Notice that for any s P Upxq, we have that f behaves smoothly along s at

x, since the directional derivatives (considering s) of φi are all the same for i P Ipxq.
Consequently, the kernel of the Jacobian of Φpxq will be of great importance to us, because

it recovers the smooth subspace of f at x˚ when x approaches x˚. Therefore, we denote

by Jx the Jacobian of Φpxq and by ZŸ
x the matrix whose columns form a basis for the

kernel of Jx. Moreover, from now on, our analysis will be restricted to the case that

r P t1, . . . , n ´ 1u. The cases r “ 0 and r “ n will be treated later (see Remark 4.4).

In light of Remark 4.1, due to the Assumption 4.1, it is possible to see that

the map Jx : Rn Ñ R
r is surjective for all x in a small neighborhood W of x˚. Hence, for

x P W, there must exist JŸ
x P R

nˆr such that JxJŸ
x “ Ir. Moreover, by [2, Lemma 14.3],

one can see that there exists only one map

Z : Rn ÝÑ R
pn´rqˆn

x ÞÝÑ Zx

such that ZxJŸ
x is a null matrix, ZxZŸ

x “ In´r and the following relation holds

ZŸ
x Zx ` JŸ

x Jx “ In. (4.14)
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So, we may divide R
n into two subspaces, generated by the columns of ZŸ

x and JŸ
x ,

respectively.

Now, coming back to the optimization problem (4.13), we define its Lagrangian

function Lpx, λq : Rn ˆ R
r Ñ R as

Lpx, λq “ φr`1pxq ` λT
Φpxq. (4.15)

By Remark 4.1, the feasible set of problem (4.13) satisfies the linear independence constraint

qualification and thus there is only one λ˚ P R
r such that ∇xLpx˚, λ˚q is the null vector.

So, in possession of this vector λ˚, we define g : Rn Ñ R
n´r, where

gpxq :“ ZŸ
x

T
∇xLpx, λ˚q “ ZŸ

x
T
∇φr`1pxq. (4.16)

Moreover, for not overloading the proofs that will follow, we also define

Ak :“ In ´ ZŸ
xk

Ĥ´1
k ZŸ

xk

T
Hk, (4.17)

with

Ĥk :“ ZŸ
xk

T
HkZŸ

xk
.

Below, we present a theorem that establishes the exact solution dk,lk
obtained

in (4.4) when it is equivalent to (4.12). For this result and the subsequent ones, we define

τk,lk
:“ max

1ďiďr`1

›

›

›
xlk

k,i ´ xk

›

›

›
.

Theorem 4.2. Suppose we are at a fixed iteration k of GraFuS and at the last inner

iteration indexed by lk. Then, if the hypotheses H1, H2 and H3 hold, and xk P W, we have

that

dk,lk
“ dU

k,lk
` dV

k,lk
,

where

dU

k,lk
:“ ´ZŸ

xk
Ĥ´1

k gpxkq ` ρU
k and dV

k,lk
:“ ´AkJŸ

xk
Φpxkq ` ρV

k ,

with

ρU
k “ ´ZŸ

xk
Ĥ´1

k ZŸ
xk

T
ρk and ρV

k “ ´AkJŸ
xk

ρ̂k,

for some ρk P R
n and ρ̂k P R

r satisfying

}ρk} “ O
`

τk,lk

˘

and }ρ̂k} “ O
´

τ 2

k,lk

¯

` O
`

τk,lk

˘

O pνkq .

Proof. First, we consider the Karush-Kuhn-Tucker conditions of problem (4.12), which

tell us that the solution dk,lk
must satisfy

Φ̃k ` J̃kdk,lk
“ 0 (4.18)

and

∇φr`1

´

xlk
k,r`1

¯

` Hkdk,lk
` J̃T

k λ̃ “ 0, (4.19)
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for some λ̃ P R
r. Since the functions that comprise f satisfy φi P C2, for i P t1, . . . , pu, we

have, by relations (4.18) and (4.19) and by

}dk,lk
}8 ď Δk,lk

ď γ∆νk,

that

Φpxkq ` Jxk
dk,lk

`
“

Φ̃k ´ Φpxkq
‰

`
“

J̃k ´ Jxk

‰

dk,lk
“ 0

Φpxkq ` Jxk
dk,lk

` ρ̂k “ 0
(4.20)

and

∇φr`1 pxkq ` Hkdk,lk
` JT

xk
λ̃ ` ρk “ 0, (4.21)

where }ρ̂k} “ O
´

τ 2

k,lk

¯

` O
`

τk,lk

˘

O pνkq and }ρk} “ O
`

τk,lk

˘

. Then, because AkJŸ
xk

is a

right inverse for Jxk
(see [2, Section 14.2]), it is possible to decompose R

n in two subspaces

generated by the columns of ZŸ
xk

and AkJŸ
xk

. As a consequence, we can consider two vectors

dU

k,lk
and dV

k,lk
such that there exist αU and αV that imply

dk,lk
“ dU

k,lk
` dV

k,lk
,

with

dU

k,lk
“ ZŸ

xk
αU and dV

k,lk
“ AkJŸ

xk
αV .

Hence, looking at relation (4.20), we obtain that

αV “ ´Φpxkq ´ ρ̂k,

which yields

dV

k,lk
“ ´AkJŸ

xk
Φpxkq ` ρV

k , with ρV
k “ ´AkJŸ

xk
ρ̂k.

Finally, pre-multiplying the relation (4.21) by ZŸ
xk

T , we have

gpxkq ` ZŸ
xk

T
Hk

“

ZŸ
xk

αU ´ AkJŸ
xk

pΦpxkq ` ρ̂kq
‰

` ZŸ
xk

T
ρk “ 0.

Then, since ZŸ
xk

T
HkAk “ 0, we complete the proof by noticing that

αU “ ´Ĥ´1
k gpxkq ´ Ĥ´1

k ZŸ
xk

T
ρk ñ dU

k,lk
“ ´ZŸ

xk
Ĥ´1

k gpxkq ` ρU
k ,

where ρU
k “ ´ZŸ

xk
Ĥ´1

k ZŸ
xk

T
ρk.

With this theorem in hand, we are able to prove a simple corollary.

Corollary 4.1. Under the assumptions of Theorem 4.2, we have that

}Φpxk`1q} “ Opν2
kq.
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Proof. Since φi P C2, }dk,lk
} “ Opνkq and τk,lk

“ Opνkq, it yields that

}Φpxk`1q} ď }Φpxkq ` Jxk
dk,lk

} ` Opν2
kq

ď }Φpxkq ´ Φpxkq} ` }ρ̂k} ` Opν2
kq

“ Opν2
kq,

which is the desired result.

The previous statement leaves us with an important observation: when GraFuS

samples under hypothesis H1, H2 and H3, the homogeneous system Φpxq “ 0 is quickly

satisfied, since νk is associated with our optimality certificate (notice that the term Opν2
kq

in Corollary 4.1 could also be changed to op�k,lk
q or opΔk,lk

q without losing validity).

Finally, we are able to prove the most important result of this subsection.

Theorem 4.3. Suppose that xk Ñ x˚, where x˚ P R
n is a local minimizer for f presented

in (4.1). Assume that, for iterations with indices in an infinite set K Ă N, hypotheses H1,

H2 and H3 hold and xk P W. Also, suppose that the maps

ZŸ : R
n ÝÑ R

nˆpn´rq

x ÞÝÑ ZŸ
x

and
JŸ : R

n ÝÑ R
nˆr

x ÞÝÑ JŸ
x

are all Lipschitz continuous functions close to x˚ and that the reduced gradient given

in (4.16) satisfies g P C1 with g1 being also a Lipschitz continuous function close to x˚.

Moreover, assume that Hk Ñ H˚ is such that

H˚ “ ∇
2
xxLpx˚, λ˚q ` γJT

x˚
Jx˚

, for some γ ě 0. (4.22)

Additionally, suppose that close to x˚ we have that }Hk ´ H˚} “ Op}xk ´ x˚}q. Then, the

following relation holds

}xk`1 ´ x˚} “ Op}xk ´ x˚}2q ` ρU
k ` ρV

k , for k P K.

Proof. First, let us define x̃k`1 :“ xk ` dV

k,lk
, with k P K. Now, observe that, from the

definition (4.17), for xk close enough to x˚, we have }Ak ´ A˚} “ Op}xk ´ x˚}q, where

A˚ :“ In ´ ZŸ
x˚

Ĥ´1
˚

ZŸ
x˚

T
H˚, with Ĥ˚ :“ ZŸ

x˚

T
H˚ZŸ

x˚
.

Using this fact, considering the Taylor expansion of the map Φ around x˚ in the relation

p˚q below and noticing that JŸ is Lipschitz continuous and a bounded map around x˚ in

p˚˚q, we have for a sufficiently small neighborhood of x˚ that

x̃k`1 ´ x˚ “ xk ´ x˚ ´ AkJŸ
xk

Φpxkq ` ρV
k

p˚q“ xk ´ x˚ ´ AkJŸ
xk

Jx˚
pxk ´ x˚q ` Op}xk ´ x˚}2q ` ρV

k

“ xk ´ x˚ ´ A˚JŸ
x˚

Jx˚
pxk ´ x˚q ` Op}xk ´ x˚}2q ` ρV

k

´
“

Ak

`

JŸ
xk

´ JŸ
x˚

˘

` pAk ´ A˚q JŸ
x˚

‰

Jx˚
pxk ´ x˚q

p˚˚q“ xk ´ x˚ ´ A˚JŸ
x˚

Jx˚
pxk ´ x˚q ` Op}xk ´ x˚}2q ` ρV

k .
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Consequently, taking into account the relation (see [2, Section 14.5])

g1px˚q “ ZŸ
x˚

T
∇

2
xxLpx˚, λ˚q

in p‚q, the Lipschitz property around x˚ of the maps ZŸ and Ĥ´1 in p‚‚q, the relation (4.22)

in p�q and the relation (4.14) in p��q, we have

xk`1 ´ x˚ “ x̃k`1 ´ x˚ ´ ZŸ
xk

Ĥ´1
k gpxkq ` ρU

k

p‚q“ x̃k`1 ´ x˚ ´ ZŸ
xk

Ĥ´1
k ZŸ

x˚

T
∇

2
xxLpx˚, λ˚qpxk ´ x˚q

` Op}xk ´ x˚}2q ` ρU
k

p‚‚q“ x̃k`1 ´ x˚ ´ ZŸ
x˚

Ĥ´1
˚

ZŸ
x˚

T
∇

2
xxLpx˚, λ˚qpxk ´ x˚q

` Op}xk ´ x˚}2q ` ρU
k

p�q“ x̃k`1 ´ x˚ ´ ZŸ
x˚

Ĥ´1
˚

ZŸ
x˚

T
H˚pxk ´ x˚q ` Op}xk ´ x˚}2q ` ρU

k

“ A˚pxk ´ x˚q ´ A˚JŸ
x˚

Jx˚
pxk ´ x˚q ` Op}xk ´ x˚}2q

` ρU
k ` ρV

k

“ A˚pI ´ JŸ
x˚

Jx˚
qpxk ´ x˚q ` Op}xk ´ x˚}2q ` ρU

k ` ρV
k

p��q“ A˚ZŸ
x˚

Zx˚
pxk ´ x˚q ` Op}xk ´ x˚}2q ` ρU

k ` ρV
k .

Hence, since A˚ZŸ
x˚

“ 0, it yields that

}xk`1 ´ x˚} “ Op}xk ´ x˚}2q ` ρU
k ` ρV

k ,

which concludes the proof.

With the above result, we see that the only term that might prevent the

algorithm to move superlinearly to the solution x˚ is τk,lk
. Therefore, since τk,lk

is intimately

linked to the sampling radius, it would be interesting to have the following relation:

�
σ

lk

k,lk
“ op}xk ´ x˚}q. If this last equation holds, the algorithm moves superlinearly to

the solution as k P K. It is clear that imposing that relation to �
σ

lk

k,lk
is impossible, since

this demands to know x˚. However, taking a careful look at the Karush-Kuhn-Tucker

conditions of (4.4), we have that

dk,lk
“ ´H´1

k

`

Gk,lk
λk,lk

` ωk,lk

˘

. (4.23)

Therefore, considering �k,lk
“ Opνkq and by the way νk is defined in GraFuS, we see

(specially when ωk´1,lk´1
“ 0, i.e., when dk´1,lk´1

ă Δk´1,lk´1
) that �k,lk

is a reasonable

approximation of }dk´1,lk´1
}. On the other hand, }dk´1,lk´1

} can be seen as a measure of

how far the algorithm is from }xk ´ x˚} (considering xk Ñ x˚). So, since the sampled

points are chosen in Bpxk, γ��
σ

lk

k,lk
q, it is not absurd to expect that, for an appropriate value

of σlk
P r1, 2s, the following will hold for a reasonable amount of times

τk,lk
“ op}xk ´ x˚}q. (4.24)
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One can argue that it would be better to let σl be greater than two in order

to have a smaller sampling radius, and consequently, to increase the chance of (4.24) to

happen. However, we cannot forget that to allow the possibility of moving superlinearly to

the solution, the method must have a good set of sampled points. A tiny sampling radius

might give us a bad representation of the function by e.g. sampling points where just one

φi assumes the maximum value. Therefore, a trade-off must be assumed between these

two conflicting needs.

Remark 4.3. We stress that �
σ

lk

k,lk
“ op}xk ´ x˚}q is a desirable result, but by no means, it

is a necessary condition for a rapid movement towards the solution of the optimization

problem. Let us consider that �
σ

lk

k,lk
is large. Even for this case, since we have a uniform

sample around xk, a sampling over the set Bpxk, op}xk ´ x˚}qq is an event that occurs with

probability greater than zero, which yields that a superlinear movement is a real possibility

(considering a good set of sampled points, which shows the importance of Corollary 4.1).

As a result, a good approximation of the value }xk ´ x˚} just allows the method to increase

the probability of (4.24) to happen. Finally, we also highlight that for the case that V “ R
n,

the equality (4.24) can be replaced by τk,lk
“ Op}xk ´ x˚}q without affecting the superlinear

convergence (to see this, just notice the properties of ρV
k ).

Remark 4.4. All the local convergence results were made assuming r P t1, . . . , n ´ 1u.

For the case r “ 0, we have that the method is approaching a point at which the function

f is smooth in the whole space. For such a situation, it is straightforward to see that the

direction dk,lk
will have only the U component, i.e., dk,lk

“ dU

k,lk
with ZŸ

x “ In for all x

around x˚. Now, considering r “ n, we see that the method is approaching a point at which

f is nonsmooth in any direction. For that case, it is also clear to see that the direction

dk,lk
will have only the V component, i.e., dk,lk

“ dV

k,lk
with Ak ” In for all xk around

x˚. Therefore, in these two cases, the method will also move superlinearly if the sampling

radius is assumed to be small enough and if the algorithm has a good set of sampled points

(for r “ n).

4.3 Numerical results

Since a superlinear move is dependent on a good set of sampled points, one

might think that the necessary hypotheses will be true just a few times during the execution

of the method. This subsection has the intent to show that a rapid move to the solution

is frequent enough to speed up the local convergence. However, by no means we have

the ambition to present an extensive set of tests nor to recommend our method over any

other one. Here, our main goal is to have numerical results that present to the reader a

proof-of-concept. Finally, we also aim at showing that one can expect global convergence

for more general problems than the ones considered in our theoretical results.
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For all functions we have chosen random starting points such that }x0}8 ď 2

and solved each of them twenty times in order to have statistical relevance of the results.

The comparable figures were plotted using the median and quartiles (25% and 75%) of

those twenty runs and also the best function value f˚ obtained by both methods in all of

the runs.

We have solved each optimization problem with two algorithms: (i) the GS

method presented by the original authors [6] but with a nonnormalized search direction

(a variant introduced by Kiwiel [27], that has the advantage to asymptotically recover

the steepest descent method when applied to smooth functions) and (ii) the GraFuS

method. We have used the original GS implementation without any modification (with

the exception of using a nonnormalized search direction). The parameter values used in

Algorithm 2 were: m “ 2n; ν0 “ 10´3; νopt “ 10´6; γ� “ 4
?

n; γ∆ “ 5; ι “ 2; ρ “ 10´8

and θ “ 0.5. The value of σl in Step 1 was set as σl “ 1 ` 0.5pl`2q{4 mod pl ` 1, 2q.

Along the analysis presented in this chapter, we suppose that the sampling

procedure is uniform. However, we must remind the reader that when the number of

variables, n, grows, an uniform distribution will prioritize the points near the frontier of the

Euclidean ball. This happens because the volume of an n-dimensional ball is concentrated

almost entirely around the frontier, when n is sufficiently large. This property has a direct

implication on our method, since the chance to satisfy (4.24) with a large sampling radius

can be dramatically reduced. Hence, for the numerical results presented here, we have first

uniformly sampled an unitary vector and then, we have resized the length of this vector

by an uniform sample in the interval r0, γ��
σ
k,ls. Such a procedure does not invalidate the

proofs presented previously, i.e., the global convergence result is not affected.

An important point that must be stressed here is that the iterations of GraFuS

are more expensive than those of GS. While the GS routine finds a search direction and

does an Armijo line search to find the next iterate, GraFuS constantly solves quadratic

programming problems until it finds a good set of sampled points and a good trust region

to move. Therefore, one could take advantage of the way GS was designed as a threshold to

start performing GraFuS iterations, deciding if the current iterate is close to the solution

indirectly by means of the size of the current sampling radius. As a result, we only start

to run the GraFuS algorithm after the second reduction of the sampling radius in GS (i.e.

when �k ă 10´2), and that is the reason why in the figures that follow below, we see that

in the first iterations both methods remain together.

Finally, the way we have chosen the matrices Hk is a delicate matter and, for

that reason, we have reserved the following subsection to explain our procedure. It is

worth pointing out that we have used BFGS ideas to update the matrices, but we do not

have any theoretical guarantee that the matrices Hk will converge to a matrix of the form

presented in (4.22). Nevertheless, the choice on how we update the matrices has a strong
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foundation, since it uses the same reasoning of a Sequential Quadratic Programming (SQP)

updating [16] for the optimization problem that appears in (4.13).

4.3.1 Hk updates in GraFuS method

As we have seen in the last section, if some hypotheses are satisfied, it is possible

to see the quadratic programming problem that is solved in every iteration of GraFuS

as a smooth constrained optimization problem. Moreover, the matrix that we would like

to approximate (at least in its null space) is the Hessian of (4.15). Therefore, a natural

attempt to reach that goal is to update the positive definite matrix Hk as it is done in

SQP routines. In other words, it would be desirable to have the following relation

Hkpx` ´ x´q “ ∇xLpx`, λ`q ´ ∇xLpx´, λ´q,

where L is the Lagrangian function defined in (4.15) and λ` and λ´ are vectors that try

to approximate the multiplier λ˚ that fulfills (4.16). In addition,

∇xLpx, λq “ ∇φr`1pxq `
r

ÿ

i“1

λip∇φipxq ´ ∇φr`1pxqq

“
˜

1 ´
r

ÿ

i“1

λi

¸

∇φr`1pxq `
r

ÿ

i“1

λi∇φipxq.

Therefore, defining λ̂ P R
r`1 as λ̂i “ λi, for i P t1, . . . , ru, and

λ̂r`1 “ 1 ´
r

ÿ

i“1

λi,

we have eT λ̂ “ 1 and one can rewrite ∇xLpx, λq “ Ĝλ̂, where

Ĝ :“ r∇φ1pxq . . . ∇φr`1pxqs.

Hence, if in two fixed outer and inner iterations k`, k´ and l`, l´, respectively, we have

that hypotheses H1, H2 and H3 are satisfied, it is natural to ask that the following secant

relationship holds

Hkpxk`
´ xk´

q “ Gk`,l`
λk`,l`

´ Gk´,l´
λk´,l´

.

The problem here is how one can identify if the aforementioned hypotheses hold. In fact,

although there is no straightforward response, we know that a good set of sampled points

is associated with a small norm of the convex combination of its gradients. Hence, a good

strategy would be to update the matrix Hk only if such a condition is verified.

Based on the previous reasoning, we present next the routine that provides the

sequence of matrices Hk that are used within GraFuS.
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Step 0. Start setting H “ I and let the GraFuS algorithm run until it finds two outer

iterations k`, k´ such that
›

›

›
Gk`,lk`

λk`,lk`

›

›

›

8
ď 10νk`

and
›

›

›
Gk´,lk´

λk´,lk´

›

›

›

8
ď 10νk´

.

Set

x` :“ xk`
and x´ :“ xk´

;

v` :“ Gk`,lk`

λk`,lk`

and v´ :“ Gk´,lk´

λk´,lk´

.

Step 1. Set p :“ x` ´ x´ and q :“ v` ´ v´. If qT p ă 0.2pT Hp then compute a new vector

q by Powell’s correction (see [2, Subsection 18.2]).

Step 2. Update H:

H Ð H ´ HppT H

pT Hp
` qqT

qT p
.

Step 3. Use the subsequent matrices Hk as H until the GraFuS algorithm finds another

iteration k̂ such that
›

›

›
Gk̂,l

k̂
λk̂,l

k̂

›

›

›

8
ď 10νk̂.

Then, x´ Ð x`, x` Ð xk̂, v´ Ð v`, v` Ð Gk̂,l
k̂
λk̂,l

k̂
. Go back to Step 1.

Clearly, other ways of updating Hk are possible. Indeed, even the pure BFGS

update as considered in [32] can be performed (although, in such a case, we have to assume

that for all iterates the function f will be differentiable and Assumption 2.1 will no longer

be satisfied). For us, this previous routine was the one that seemed more reasonable in

light of assumptions H1, H2 and H3, and generated good numerical results.

Below, we present the functions that were solved and divide them in different

categories. The black line plot in the following figures represents the GS method, whereas

the grey continuous one with ♦ marks is the GraFuS method. In addition, we must stress

that although the optimality certificates of Algorithms 1 and 2 are very similar, they are

not the same (specially because the quadratic programming problem of each method is

different). Therefore, one might be more rigorous than the other one. Thus, although in

most problems the GraFuS method appears to be closer to the solution, this does not mean

that GS is not able to reach the same precision (maybe a tighter optimality parameter

would allow it).

Additionally, as a tool for assessing how fast our method goes towards the

solution, we have represented the ratio

fpxk`1q ´ f˚

fpxkq ´ f˚

with color scales along the plotted curves of GraFuS, where the red hue stands for a ratio

close to zero and the blue color for the values near one.
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4.3.2 Test functions with V “ R
n

We present two nonconvex and nonsmooth functions [18] that, at the solution

point, have the whole space R
n as the V space:

F1) Active faces (defined for all number of variables n)

fpxq “ max

#

g

˜

´
n

ÿ

i“1

xi

¸

, max
1ďiďn

tgpxiqu
+

, with gpzq “ logp|z| ` 1q;

F2) Chained Mifflin 2 (defined for all number of variables n ě 2)

fpxq “
n´1
ÿ

i“1

`

´xi ` 2px2
i ` x2

i`1 ´ 1q ` 1.75|x2
i ` x2

i`1 ´ 1|
˘

.
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(d) n “ 10

Figure 16 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F1. For both number of variables we have x˚ “ 0.

Before we proceed, an important observation must be taken into consideration.

Suppose that one has fpxq “ maxtg1pxq, g2pxqu ` maxth1pxq, h2pxqu. Therefore, it is

possible to turn the previous function into a maximum of functions by just noticing that

f can be written as

fpxq “ maxtg1pxq ` h1pxq, g1pxq ` h2pxq, g2pxq ` h1pxq, g2pxq ` h2pxqu.

In other words, f is the maximum of all possible combinations of g1 and g2 with h1 and

h2. With the generalization of this reasoning and remembering that |x| “ maxt´x, xu, we
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Figure 17 – Medians and quartiles of twenty runs of GS and GraFuS meth-
ods for function F2. For n “ 6 and n “ 10 we have, respec-
tively, x˚ « p0.8152, 0.5792, 0.7747, 0.6323, 0.7747, 0.0000qT and x˚ «
p0.8152, 0.5792, 0.7362, 0.6767, 0.7362, 0.6767, 0.7362, 0.6767, 0.7362, 0qT .

see, at least in a close neighborhood of x˚, that F1 and F2 can be viewed as maximum of

smooth functions.

A closer look at the expressions of those functions reveals to us that the number

of active functions at their solutions have more than n ` 1 active functions. Therefore,

Assumption 4.1 does not hold for the functions F1 and F2. Fortunately, this fact does not

prevent GraFuS to converge for both functions (see Figures 16 and 17).

The good behavior in the absence of the validity of Assumption 4.1 was somehow

expected. In fact, if one can guarantee that without this assumption we still have open

sets where each active function assumes the maximum, the probability that the sampled

points be in regions of the domain where just some specific combination of n ` 1 functions

reaches the maximum is strictly positive, and consequently, the results hold.

Finally, looking at the plots that compare iterations versus the distance of the

current function value to f˚, in general, we can observe some rapid moves to the solution

as expected, with the exception of Figure 16 (d), where a rapid movement towards the

solution is not detected. However, it is possible to adjust the parameters of GraFuS in order

to have a better behavior of our method for this instance. When one looks to convergence

over time, it is possible to see that GraFuS is competitive with the well established GS
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method.

Remark 4.5. The functions inside the subsection of objective functions with multiple

stationary points do also satisfy V “ R
n. However, we have chosen to separate them from

F1 and F2 because they have an additional property.
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(d) n “ 5

Figure 18 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F2. For n “ 2 and n “ 5 we have, respectively, x˚ “ p1, 0qT and x˚ «
p0.8152, 0.5792, 0.7071, 0.7071, 0qT .
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Figure 19 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F3 (with n “ 2). We have x˚ “ p1, 0.5qT .
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(d) n “ 10

Figure 20 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F4. For both number of variables we have x˚ “ 0.

4.3.3 Test functions with V ‰ R
n

In the previous subsection we only presented functions for which the dimtUu “ 0

at the stationary points. In opposite direction, here we show and solve functions that, at

the stationary points, can behave in a smooth way for some directions. We have considered

the following functions [18,47]: F2 presented previously (but now with n P t2, 5u) and

F3) Generalized Rosenbrock function (defined for all number of variables n ě 2)

fpxq “
n´1
ÿ

i“1

ˆ

10i

n

ˇ

ˇ

ˇ

ˇ

xi`1 ´ i

n
x2

i

ˇ

ˇ

ˇ

ˇ

` i

n
p1 ´ xiq2

˙

.

F4) Chained crescent I (defined for all number of variables n ě 2)

fpxq “ max

#

n´1
ÿ

i“1

`

x2
i ` pxi`1 ´ 1q2 ` xi`1 ´ 1

˘

,

n´1
ÿ

i“1

`

´x2
i ´ pxi`1 ´ 1q2 ` xi`1 ` 1

˘

+

.

It is worth pointing out that for F2 and F3, we have set, respectively, n P t2, 5u
and n “ 2 only. This was done in order to maintain a dimension greater than zero for the

U space at the solution point. As a counterpart, there is no restriction on the dimension
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of F4, and therefore, we have solved instances with n “ 5 and n “ 10. The results can

be seen in Figures 18 - 20 and the rapid convergence behavior is also observed in some

iterations of GraFuS.

4.3.4 Test functions with multiple stationary points

In order to have a broader illustrative class of functions, we minimize in this

subsection two nonconvex and nonsmooth functions with multiple stationary points [18,47]:

F5) Chained crescent II (defined for all number of variables n ě 2)

fpxq “
n´1
ÿ

i“1

max
�`

x2
i ` pxi`1 ´ 1q2 ` xi`1 ´ 1

˘

,

`

´x2
i ´ pxi`1 ´ 1q2 ` xi`1 ` 1

˘(

;

F6) Problem 17 of Test 29 of [47] (defined for all n multiple of 5)

fpxq “ max
1ďiďn

#ˇ

ˇ

ˇ

ˇ

ˇ

5 ´ pj ` 1qp1 ´ cos xiq ´ senxi ´
5j`5
ÿ

k“5j`1

cos xk

ˇ

ˇ

ˇ

ˇ

ˇ

+

,

with j “ tpi ´ 1{5qu.

The results can be found in Figures 21 and 22. Again, it is possible to find

iterates for which the algorithm moves fast to the solution, enlarging the results previously

obtained.

4.3.5 Test functions without an appropriate maximum representation

The next functions can be seen in [18,47] and they cannot be written as the

maximum of sufficiently smooth functions:

F7) Nonsmooth generalization of Brown function 2 (defined for all number of variables

n ě 2)

fpxq “
n´1
ÿ

i“1

´

|xi|x
2

i`1
`1 ` |xi`1|x2

i
`1

¯

;

F8) Nonsmooth and nonconvex toy problem (defined for all number of variables n ě 2)

fpxq “
a

gpxq, with gpxq “ δ `
?

xT Ax ` xT Bx,

where δ P p0, 1q is a fixed parameter, A “ diagp1, 0, 1, 0, . . .q and B “ diagp1, . . . , 1{n2q.
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(d) n “ 10

Figure 21 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F5. For both number of variables we have x˚ “ 0.
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Figure 22 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F6. For both number of variables we have x˚ “ 0.
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For function F7, one may argue that it is not possible to have a maximum

representation with functions of class C1. Indeed, let us consider the function hpa, bq “
ap1`b2q, for a ě 0. Then, it yields that

lim
εÓ0

Bh

Ba
pε, εq “ lim

εÓ0
p1 ` ε2qεε2 “ 1;

lim
εÓ0

Bh

Ba
p2´1{ε3

, εq “ lim
εÓ0

p1 ` ε2q2´1{ε “ 0.

So, it is possible to see that any representation of F7 that might involve a maximum

of functions cannot have maps of class C1. Therefore, this function does not satisfy the

requirements of our convergence analysis.

Now, let us consider function F8, which primarily appeared in a pre-print

of [32]. Then, for Ax ‰ 0, its Hessian can be computed by

∇
2fpxq “ 1

2

ˆ

´1

2
gpxq´3{2

∇gpxq∇gpxqT ` gpxq´1{2
∇

2gpxq
˙

,

with

∇gpxq “ pxT Axq´1{2Ax ` 2Bx

and

∇
2gpxq “ ´pxT Axq´3{2AxpAxqT ` pxT Axq´1{2A ` 2B.

Consequently, if one could have a maximum representation of f as in (4.1), then the

functions φi would not be of class C2, since }∇2gpxq} Ñ 8 as }Ax} Ñ 0.

Fortunately, although those functions do not satisfy the representation hy-

pothesis, when we look at the results obtained by the minimization of F7 and F8 (see

Figures 23 and 24), we see that this fact is not an obstacle for GraFuS to present a rapid

convergence behavior for both functions.

4.4 Failures before reaching the current version of GraFuS

In this brief section, we have the intent to describe a previous idea that did

not work out. We believe that this presentation will be helpful for potential researchers,

specially because the failures that we have experienced might be fixed.

As we have seen during this chapter, the decomposition of the domain R
n in

two subspaces, namely, U and V spaces, is of great importance for the functioning of

GraFuS, but, in the way we have built our algorithm, the identification of those subspaces

are not necessary during the execution of the method.

Although this kind of identification is not implemented in the method, it would

be desirable to have this procedure inside the method. However, this step presented to be

tricker than we were expecting.
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(d) n “ 10

Figure 23 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F7. For both number of variables we have x˚ “ 0.
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Figure 24 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F8 with δ “ 10´2. For both number of variables we have x˚ “ 0.
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First, let us explain the reason why it would be a good idea to identify these

subspaces. Because of Theorem 4.3, we see that the only term that prevents us to move

superlinearly to the solution of the problem is the distance between the sampled points

and the current iterate. Therefore, the parameter σl P r1, 2s plays a key role in speeding

up the rate of convergence. Hence, if the dimension of Upx˚q is greater than one, it would

be desirable to have σl ą 1, since it would increase the chance of having a sufficiently

small τk,lk
. On the other hand, if the dimension of Upx˚q is zero, it is sufficient to have

σl “ 1, since in that case, the term τk,lk
can be of the order of }xk ´ x˚}. More than that,

we must have σl “ 1, since otherwise, we would prevent the method to satisfy hypothesis

H1 (see Figure 25).

Figure 25 – Representation of how the value σ may interfere in the validity of hypothesis
H1. In the figure we represent the regions where each φi assumes the maximum.

Unfortunately, this kind of identification is not an easy task. An attempt to

identify those subspaces at the solution during the execution of the method was done

(observing the components of the dual variable λ that were strictly positive and using the

related constraints to approximate Jx˚
and its null space), but we have failed in obtaining

a satisfactory result. For this reason, we have established the update of the power of �k as

σl “ 1 ` 0.5pl`2q{4 mod pl ` 1, 2q. With this rule, we try both values of σl, i.e., σl ą 1 and

σl “ 1.

A direct implication of this failure for approximating the smooth subspace

explains why our attempt to have a sampling algorithm that would generalize the simplified

Newton’s method [2, Section 14.5] has not succeeded. For this method, we would first

move in the nonsmooth subspace, and then, move in the direction of the smooth subspace
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related to the function f . Unfortunately, the failure in the identification of those subspaces

has prevented us to keep this idea alive.

4.5 Discussion

This chapter presents an implementable algorithm for solving unconstrained

nonsmooth and nonconvex optimization problems. Using the ideas of the Gradient Sampling

algorithm and taking advantage of some notions developed over the years for the Bundle

Method, we were able to produce an algorithm that, in some sense, can be viewed as a

generalization of the well established Newton’s (quasi-Newton) method.

Additionally, we believe that an important step has been taken in the direction

of obtaining a rapid method to minimize nonconvex and nonsmooth functions. It was

shown that a rapid move towards the solution is a reliable behavior for some iterations

of GraFuS. Moreover, at least for the small set of functions considered in the numerical

experiments, one can see that fast moves are not rare and can be expected for a reasonable

amount of iterations. However, it must be stressed that the iterations of GraFuS are

computationally expensive when compared to GS, and for this reason, the rapid behavior

might not be translated to a faster method for some functions. Furthermore, for a number

of variables greater than the values considered in the last section, we have experienced

good and bad results as well. For example, there is a clear advantage of GraFuS over the

GS method for the function F4, whereas for F2, the results obtained are unsatisfactory

(see Figure 26). Nevertheless, if we allow the GS method to work a few more iterations,

reasonable results are recovered for the function F2 (see Figure 27).

The matters of efficiency and applicability of the method are not treated

properly in this study, since our aim here was, first, to produce a mathematical theory

that would support a rapid convergence to a solution and second, to obtain numerical

results that would guarantee a proof-of-concept of the main theoretical results. There are

many possibilities of improvements on the algorithm (e.g. different forms of updating the

matrices Hk and efficient ways of selecting the sampling radius size without affecting the

global convergence) and we hope that future studies explore these possibilities.

Summing up, we end these final remarks with two questions that naturally

arise from some of the numerical results obtained in the previous section:

• under which conditions could we establish }Hk ´H˚} “ Op}xk ´x˚}q in Theorem 4.3?

• would it be possible to have convergence results with more general assumptions?
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Figure 26 – Medians and quartiles of twenty runs of GS and GraFuS methods for functions
F2 (top) and F4 (bottom).
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Figure 27 – Medians and quartiles of twenty runs of GS and GraFuS methods for function
F2, but allowing the GS method to work a few more iterations before we start
GraFuS.
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5 Final Remarks

In this thesis we have studied sampling techniques to solve unconstrained

nonsmooth optimization problems. While bundle methods have been extensively studied

over the years, sampling techniques are recent and have opened a new range of possibilities.

The first major contribution of this study is the fact that we were able to avoid

the differentiability check step without loosing the global convergence of the preexisting

sampling methods. This was possible by doing a perturbation procedure over the search

direction or by using a nonmonotone line search. With these alternative steps, we have

shortened the gap between the implemented version of GS and the theoretical one.

Further, we have explored the local convergence of the GS method. It was shown

that, under special conditions, the GS algorithm extends the linear rate of convergence of

the well established Cauchy method. Additionally, we have found theoretical foundation

for selecting some key parameters of the GS method, choices that were entirely empirical

before.

Finally, we were able to develop a new sampling method that has shown

promising practical performance. Using some ideas developed over the years for bundle

techniques and taking advantage of some good properties of the GS method, we have

created a practical algorithm with rapid local convergence (under special circumstances)

to minimize nonsmooth and nonconvex functions, a property that, up to our knowledge,

has not been fulfilled yet by any other method in the nonsmooth field.



118

Bibliography

[1] Michel L. Balinski and Philip Wolfe. Nondifferentiable Optimization, volume 3. Math.

Programming Studies., USA, 1975.

[2] Joseph F. Bonnans, Jean C. Gilbert, Claude Lemaréchal, and Claudia A. Sagastizábal.

Numerical optimization: theoretical and practical aspects. Springer-Verlag Berlin

Heidelberg, 2nd edition, 2006.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, 2004.

[4] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry,

volume 33. American Mathematical Society Providence, 2001.

[5] James V. Burke, Adrian S. Lewis, and Michael L. Overton. Approximating sub-

differentials by random sampling of gradients. Mathematics of Operations Research,

27(3):567–584, 2002.

[6] James V. Burke, Adrian S. Lewis, and Michael L. Overton. A robust gradient sampling

algorithm for nonsmooth, nonconvex optimization. SIAM Journal on Optimization,

15(3):751–779, 2005.

[7] E. Ward Cheney and Allen A. Goldstein. Newton’s method for convex programming

and Tchebycheff approximation. Numerische Mathematik, 1(1):253–268, 1959.

[8] Frank H. Clarke. Optimization and nonsmooth analysis, volume 5. SIAM, Montreal,

Canada, 1990.

[9] Frank E. Curtis and Michael L. Overton. A sequential quadratic programming

algorithm for nonconvex, nonsmooth constrained optimization. SIAM Journal on

Optimization, 22(2):474–500, 2012.

[10] Frank E. Curtis and Xiaocun Que. An adaptive gradient sampling algorithm for

non-smooth optimization. Optimization Methods and Software, 28(6):1302–1324, 2013.

[11] Aris Daniilidis, Claudia Sagastizábal, and Mikhail Solodov. Identifying structure of

nonsmooth convex functions by the bundle technique. SIAM Journal on Optimization,

20(2):820–840, 2009.

[12] Trinh-Minh-Tri Do and Thierry Artières. Regularized bundle methods for convex and

non-convex risks. The Journal of Machine Learning Research, 13(1):3539–3583, 2012.



Bibliography 119

[13] D. Dotta, A. S. Silva, and I. C. Decker. Design of power system controllers by

nonsmooth, nonconvex optimization. In Power Energy Society General Meeting, 2009.

PES ’09. IEEE, pages 1–7, 2009.

[14] Ding-Zhu Du and Panos M. Pardalos. Minimax and applications, volume 4. Springer

US, 2013.

[15] Antonio Fuduli, Manlio Gaudioso, and Giovanni Giallombardo. A DC piecewise affine

model and a bundling technique in nonconvex nonsmooth minimization. Optimization

Methods and Software, 19(1):89–102, 2004.

[16] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm

for large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005.

[17] Andreas Grothey and Kim McKinnon. A superlinearly convergent trust region bundle

method. Report, Department of Mathematics & Statistics, Edinburgh University,

1998.

[18] Marjo Haarala, Kaisa Miettinen, and Marko M. Mäkelä. New limited memory bundle

method for large-scale nonsmooth optimization. Optimization Methods and Software,

19(6):673–692, 2004.

[19] Elias S. Helou, Sandra A. Santos, and Lucas E. A. Simões. On the differentiability

check in gradient sampling methods. Optimization Methods and Software, 31(5):983–

1007, 2016.

[20] Elias S. Helou, Sandra A. Santos, and Lucas E. A. Simões. On the local convergence

analysis of the gradient sampling method. http: // www. optimization-online.

org/ DB_ HTML/ 2016/ 10/ 5683. html . Submitted, 2016.

[21] Elias S. Helou, Sandra A. Santos, and Lucas E. A. Simões. A second-order information-

based gradient and function sampling method for nonconvex, nonsmooth optimiza-

tion. http: // www. optimization-online. org/ DB_ HTML/ 2016/ 06/ 5513. html ,

2016.

[22] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimiza-

tion algorithms I. Springer Verlag, New York, 1993.

[23] Greg Huber. Gamma function derivation of n-sphere volumes. The American Mathe-

matical Monthly, 89(5):301–302, 1982.

[24] James E. Kelley, Jr. The cutting-plane method for solving convex programs. Journal

of the Society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

[25] Krzysztof C. Kiwiel. Methods of descent for nondifferentiable optimization, volume

1133. Springer Berlin Heidelberg, 1985.



Bibliography 120

[26] Krzysztof C. Kiwiel. A tilted cutting plane proximal bundle method for convex

nondifferentiable optimization. Operations research letters, 10(2):75–81, 1991.

[27] Krzysztof C. Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth

nonconvex optimization. SIAM Journal on Optimization, 18(2):379–388, 2007.

[28] Claude Lemaréchal and Robert Mifflin. Global and superlinear convergence of

an algorithm for one-dimensional minimization of convex functions. Mathematical

Programming, 24(1):241–256, 1982.

[29] Claude Lemaréchal, François Oustry, and Claudia Sagastizábal. The U-Lagrangian of a

convex function. Transactions of the American Mathematical Society, 352(2):711–729,

2000.

[30] Claude Lemaréchal and Claudia Sagastizábal. Practical aspects of the Moreau–

Yosida regularization: Theoretical preliminaries. SIAM Journal on Optimization,

7(2):367–385, 1997.

[31] Adrian S. Lewis. Active sets, nonsmoothness, and sensitivity. SIAM Journal on

Optimization, 13(3):702–725, 2002.

[32] Adrian S. Lewis and Michael L. Overton. Nonsmooth optimization via quasi-Newton

methods. Mathematical Programming, 141(1-2):135–163, 2013.

[33] Ladislav Lukšan and Jan Vlček. A bundle-Newton method for nonsmooth uncon-

strained minimization. Mathematical Programming, 83(1-3):373–391, 1998.

[34] Marko Mäkelä. Survey of bundle methods for nonsmooth optimization. Optimization

Methods and Software, 17(1):1–29, 2002.

[35] Pierre Maréchal and Jane J. Ye. Optimizing condition numbers. SIAM Journal on

Optimization, 20(2):935–947, 2009.

[36] Robert Mifflin and Claudia Sagastizábal. VU-decomposition derivatives for convex

max-functions. In Michel Théra and Rainer Tichatschke, editors, Ill-posed Variational

Problems and Regularization Techniques, volume 477 of Lecture Notes in Economics

and Mathematical Systems, pages 167–186. Springer Berlin Heidelberg, 1999.

[37] Robert Mifflin and Claudia Sagastizábal. A VU-algorithm for convex minimization.

Mathematical Programming, 104(2-3):583–608, 2005.

[38] Robert Mifflin and Claudia Sagastizábal. A science fiction story in nonsmooth opti-

mization originating at IIASA. In Martin Grötschel, editor, Documenta Mathematica

Optimization Stories, pages 291–300. Deutschen Mathematiker-Vereinigung, Bielefeld,

2012.



Bibliography 121

[39] Jean J. Moreau and Panagiotis D. Panagiotopoulos. Nonsmooth mechanics and

applications, volume 302. Springer, Vienna, 2014.

[40] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer-Verlag, New

York, 2006.

[41] Welington Oliveira and Claudia Sagastizábal. Bundle methods in the XXIst century:

A bird’s-eye view. Pesquisa Operacional, 34(3):647–670, 2014.

[42] Jiři Outrata, Michal Kočvara, and Jochem Zowe. Nonsmooth approach to optimization

problems with equilibrium constraints: theory, applications and numerical results,

volume 28. Kluwer Academic Publishers, The Netherlands, 2013.

[43] Chengbin Peng, Xiaogang Jin, and Meixia Shi. Epidemic threshold and immunization

on generalized networks. Physica A: Statistical Mechanics and its Applications,

389(3):549–560, 2010.

[44] R. Tyrrell Rockafellar and Roger Wets. Variational analysis, volume 317. Springer

Science & Business Media, 2009.

[45] Ekkehard W. Sachs and Stephen M. Sachs. Nonmonotone line searches for optimization

algorithms. Control & Cybernetics, 40(4), 2011.

[46] Helga Schramm and Jochem Zowe. A version of the bundle idea for minimizing a

nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM

Journal on Optimization, 2(1):121–152, 1992.

[47] Anders Skajaa. Limited memory BFGS for nonsmooth optimization. Master’s thesis,

Courant Institute of Mathematical Science, New York University, 2010.

[48] Fu-Cheng Wang and Hsuan-Tsung Chen. Design and implementation of fixed-order

robust controllers for a proton exchange membrane fuel cell system. International

Journal of Hydrogen Energy, 34(6):2705–2717, 2009.

[49] Richard L Wheeden and Antoni Zygmund. Measure and integral: an introduction to

real analysis, volume 308. CRC Press, 2015.

[50] Hongchao Zhang and William W. Hager. A nonmonotone line search technique

and its application to unconstrained optimization. SIAM Journal on Optimization,

14(4):1043–1056, 2004.

[51] Jianzhong Zhang, Nae-Heon Kim, and L. Lasdon. An improved successive linear

programming algorithm. Management Science, 31(10):1312–1331, 1985.



Appendix



123

APPENDIX A – On the Nonmonotone Line

Search

In this complementary part of Chapter 2, we show that if the Zhang and

Hager’s nonmonotone line search is assumed and we set ηk “ Ck ´ fpxkq, then we have

that the sequence tηku is summable. The proof is basically the same found in [45] and the

little changes are just due to the fact that we do not suppose that a descent direction is

obtained in each iteration, a condition that might concern the reader.

Lemma A.1. Suppose that in the line search defined at Step 4b, we set ηk “ Ck ´ fpxkq,
where Ck is given by the rules defined at (2.8). Then, if there exists fl P R such that

fpxkq ě fl, for all k P N, we must have

8
ÿ

k“0

ηk ă 8 and ηk ě 0.

Proof. By the line search defined at Step 4b and ηk “ Ck ´ fpxkq, we have

fpxk ` tkdkq ă fpxkq ´ βαktkgT
k Hkgk ` ηk

fpxk`1q ă Ck ´ βαktkgT
k Hkgk.

Since βαktkgT
k Hkgk ě 0, it holds that fpxk`1q ď Ck. So, by (2.8), we have

Ck`1 “ �kQkCk ` fpxk`1q
Qk`1

“ pQk`1 ´ 1qCk ` fpxk`1q
Qk`1

ď Ck.

Therefore, Ck ´ Ck`1 ě 0. Consequently,

ηk`1 “ Ck`1 ´ fpxk`1q

“ pQk`1 ´ 1qCk ` fpxk`1q
Qk`1

´ fpxk`1q

“ pQk`1 ´ 1q
Qk`1

Ck ` p1 ´ Qk`1q
Qk`1

fpxk`1q

“ pQk`1 ´ 1q
Qk`1

pCk ´ fpxk`1qq.

So, noticing that Qk`1 ě 1 by definition and remembering that Ck ´ fpxk`1q ě 0, we see

that ηk`1 ě 0.

We only need to prove now that the sequence is summable. Indeed, since tQku
is a sequence bounded by

Qk`1 “ �kQk ` 1 ď �maxQk ` 1 ď . . . ď �k`1
max ` . . . ` �max ` 1 ď

1

1 ´ �max

,
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we have that

8
ÿ

k“1

ηk “
8
ÿ

k“1

pQk ´ 1q
Qk

pCk´1 ´ fpxkqq ď
�max

1 ´ �max

8
ÿ

k“1

pCk´1 ´ fpxkqq
Qk

.

Then, taking into account that

Ck´1 ´ Ck “ Ck´1 ´ pQk ´ 1qCk´1 ` fpxkq
Qk

“ pCk´1 ´ fpxkqq
Qk

,

we obtain, by a telescopic series argument, that

8
ÿ

k“1

ηk ď
�max

1 ´ �max

pC0 ´ flq,

which is the desired result.
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APPENDIX B – Enlightening the

Hypothesis H3

The aim of this appendix is to show that the hypotheses made in the local

convergence subsection are reasonable. More precisely, we take a carefully look at the

assumption H3, which seems to be the strongest and unnatural hypothesis. However, we

stress that the estrangement of H3 is not in the fact that we are assuming the irrelevance

of the trust-region constraint (which due to the random nature of the method seems to be

a necessary hypothesis), but on the statement that many of the constraints associated

with the sampled points (at least n ´ 1, considering m “ 2n) are inactive.

At first sight, it seems strong to request that only the first r ` 1 constraints of

the quadratic programming problem solved in each iteration of GraFuS are active (which

is exactly the cardinality of Ipx˚q). Although it is acceptable that under a good set of

sampled points (hypothesis H1) and close to the solution x˚ there will be at least r ` 1

active constraints (hypothesis H2), it is hard to imagine why the quadratic programming

problem would not have more active constraints than that (hypothesis H3). Despite this is

not an impossible situation, we have the intent to show that even in the case where we

have more than r ` 1 active constraints, the results presented in the local convergence

subsection do not change. For this purpose, we divide the argumentation in two cases (for

both, we assume that H1 and H2 hold and that the trust-region constraint is not playing

any role):

A1) The cardinality of Ipx˚q is n ` 1;

A2) The cardinality of Ipx˚q is r ` 1 with r ă n.

Suppose that A1 holds and let us consider an iterate xk sufficiently close to

x˚. Moreover, assume that the trust-region constraint is irrelevant in the outer and inner

iterations k and lk, respectively. Then, looking at the optimization problem in (4.12), we

see that any additional active constraint will generate an additional active constraint

to (4.12) in a way that it will be a linear combination of the first n ` 1 active constraints

(by Remark 4.1 and because J̃k remains with constant rank in a close neighborhood of x˚).

Hence, the solution obtained with or without this additional constraint is the same, which

yields that the results presented at the local convergence subsection do not change for this

special case.

So, let us consider the more intricate case A2. Moreover, let us assume that

there is only one additional constraint, i.e., the number of active constraints is r ` 2 (we
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will see that the occurrence of more than one additional constraint will be a straightforward

generalization of this simpler case). In other words, we are saying that solving (4.4) is

equivalent to minimize

min
pd,zqPRn`1

z ` 1

2
dT Hkd

s.t. f
´

xlk
k,i

¯

` ∇f
´

xlk
k,i

¯T ´

xk ` d ´ xlk
k,i

¯

“ z, 1 ď i ď r ` 2,

where here we assume, as it was done in H1, that rearrangements were done to have

the additional constraint as the pr ` 2q-th constraint and that it has the associated

sampled point xlk
k,r`2. Therefore, for an iterate xk sufficiently close to the solution and a

sufficiently small sampling radius, we have, by the continuity of the functions φi, that

only the functions φ1, . . . , φr`1 can assume the maximum at any sampled point (here, as

it was done in the local convergence subsection, we assume without loss of generality that

Ipx˚q “ t1, . . . , r ` 1u). So, there is j P t1, . . . , r ` 1u such that fpxlk
k,r`2q “ φjpxlk

k,r`2q.
Consequently, recalling H1, the above minimization problem can be seen as

min
pd,zqPRn`1

z ` 1

2
dT Hkd

s.t. φi

´

xlk
k,i

¯

` ∇φi

´

xlk
k,i

¯T ´

xk ` d ´ xlk
k,i

¯

“ z, 1 ď i ď r ` 1

φj

´

xlk
k,r`2

¯

` ∇φj

´

xlk
k,r`2

¯T ´

xk ` d ´ xlk
k,r`2

¯

“ z,

whose dual optimization problem is written as

max
λPRr`2

r`1
ÿ

i“1

λi

„

φi

´

xlk
k,i

¯

` ∇φi

´

xlk
k,i

¯T ´

xk ´ xlk
k,i

¯



` λr`2

„

φj

´

xlk
k,r`2

¯

` ∇φj

´

xlk
k,r`2

¯T ´

xk ´ xlk
k,r`2

¯



´ 1

2

›

›

›

›

›

r`1
ÿ

i“1

λi∇φipxlk
k,iq ` λr`2∇φjpxlk

k,r`2q
›

›

›

›

›

2

H´1

k

s.t. eT λ “ 1.

(B.1)

Therefore, we can turn this last constrained maximization problem into an unconstrained

one by making the following substitution λr`2 “ 1 ´
r`1
ÿ

i“1

λi. So, we have

max
λPRr`1

r`1
ÿ

i“1

λi

„

φi

´

xlk
k,i

¯

` ∇φi

´

xlk
k,i

¯T ´

xk ´ xlk
k,i

¯

´ φj

´

xlk
k,r`2

¯

´∇φj

´

xlk
k,r`2

¯T ´

xk ´ xlk
k,r`2

¯



` φj

´

xlk
k,r`2

¯

` ∇φj

´

xlk
k,r`2

¯T ´

xk ´ xlk
k,r`2

¯

´ 1

2

›

›

›

›

›

r`1
ÿ

i“1

λi

”

∇φipxlk
k,iq ´ ∇φjpxlk

k,r`2q
ı

` ∇φjpxlk
k,r`2q

›

›

›

›

›

2

H´1

k

.
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Since the above problem is convex, its solution λ P R
r`1 can be obtained by

equaling the derivative of the objective function to the null vector. Consequently, assuming

without loss of generality that the function φj involved in the additional constraint is φr`1,

we have

¨

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`2

˙T

.

.

.

∇φr`1

ˆ

x
lk

k,r`1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`2

˙T

˛

‹

‹

‹

‹

‹

‹

‚

H´1

k

¨

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`2

˙T

.

.

.

∇φr`1

ˆ

x
lk

k,r`1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`2

˙T

˛

‹

‹

‹

‹

‹

‹

‚

T

λ “

¨

˚

˚

˚

˚

˚

˚

˝

φ1

ˆ

x
lk

k,1

˙

` ∇φ1

ˆ

x
lk

k,1

˙T ˆ

xk ´ x
lk

k,1

˙

.

.

.

φr`1

ˆ

x
lk

k,r`1

˙

` ∇φr`1

ˆ

x
lk

k,r`1

˙T ˆ

xk ´ x
lk

k,r`1

˙

˛

‹

‹

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˚

˚

˝

φr`1

ˆ

x
lk

k,r`2

˙

` ∇φr`1

ˆ

x
lk

k,r`2

˙T ˆ

xk ´ x
lk

k,r`2

˙

.

.

.

φr`1

ˆ

x
lk

k,r`2

˙

` ∇φr`1

ˆ

x
lk

k,r`2

˙T ˆ

xk ´ x
lk

k,r`2

˙

˛

‹

‹

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`2

˙T

.

.

.

∇φr`1

ˆ

x
lk

k,r`1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`2

˙T

˛

‹

‹

‹

‹

‹

‹

‚

H´1

k
∇φr`1

ˆ

x
lk

k,r`2

˙

.

Now, changing the points xlk
k,r`2 for xlk

k,r`1 and redefining

τk,lk
:“ max

1ďiďr`2

›

›

›
xlk

k,i ´ xk

›

›

›
,

we get

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

.

.

.

∇φr

ˆ

x
lk

k,r

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

0T

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

H´1

k

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

.

.

.

∇φr

ˆ

x
lk

k,r

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

0T

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

T

λ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

φ1

ˆ

x
lk

k,1

˙

` ∇φ1

ˆ

x
lk

k,1

˙T ˆ

xk ´ x
lk

k,1

˙

´ φr`1

ˆ

x
lk

k,r`1

˙

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T ˆ

xk ´ x
lk

k,r`1

˙

.

.

.

φr

ˆ

x
lk

k,r

˙

` ∇φr

ˆ

x
lk

k,r

˙T ˆ

xk ´ x
lk

k,r

˙

´ φr`1

ˆ

x
lk

k,r`1

˙

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T ˆ

xk ´ x
lk

k,r`1

˙

0T

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

.

.

.

∇φr

ˆ

x
lk

k,r

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

0T

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

H´1

k
∇φr`1

ˆ

x
lk

k,r`1

˙

` O
´

τ
k,lk

¯

.
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This last linear system yields
¨

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

.

.

.

∇φr

ˆ

x
lk

k,r

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

˛

‹

‹

‹

‹

‹

‹

‚

H´1

k

¨

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

.

.

.

∇φr

ˆ

x
lk

k,r

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

˛

‹

‹

‹

‹

‹

‹

‚

T

¨

˚

˚

˝

λ1

.

.

.

λr

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

φ1

ˆ

x
lk

k,1

˙

` ∇φ1

ˆ

x
lk

k,1

˙T ˆ

xk ´ x
lk

k,1

˙

´ φr`1

ˆ

x
lk

k,r`1

˙

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T ˆ

xk ´ x
lk

k,r`1

˙

.

.

.

φr

ˆ

x
lk

k,r

˙

` ∇φr

ˆ

x
lk

k,r

˙T ˆ

xk ´ x
lk

k,r

˙

´ φr`1

ˆ

x
lk

k,r`1

˙

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T ˆ

xk ´ x
lk

k,r`1

˙

˛

‹

‹

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˚

˚

˝

∇φ1

ˆ

x
lk

k,1

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

.

.

.

∇φr

ˆ

x
lk

k,r

˙T

´ ∇φr`1

ˆ

x
lk

k,r`1

˙T

˛

‹

‹

‹

‹

‹

‹

‚

H´1

k
∇φr`1

ˆ

x
lk

k,r`1

˙

` O
´

τ
k,lk

¯

.

Therefore, following the same reasoning used by us to get here, it is possible to

see that the first r components of the dual variable λ̂ P R
r`1 linked to the problem (4.11)

must satisfy the last linear system obtained above (not considering the remaining error

vector) and, moreover,

λ̂r`1 “ 1 ´
r

ÿ

i“1

λ̂i. (B.2)

Therefore, considering λ˚ P R
r`2 the solution of (B.1) and using equation (B.2), we must

have

λ˚ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

λ̂1

...

λ̂r

λ˚

r`1

1 ´
r

ÿ

i“1

λ̂i ´ λ˚

r`1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

` O
`

τk,lk

˘

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

λ̂1

...

λ̂r

λ˚

r`1

λ̂r`1 ´ λ˚

r`1

˛

‹

‹

‹

‹

‹

‹

‹

‚

` O
`

τk,lk

˘

.

So, to complete our reasoning, notice that since we are supposing that the trust-region

constraint does not play any role in the current iteration (i.e. ωk,lk
“ 0), one can see,

by (4.23), that

dk,lk
“ ´H´1

k

«

r`1
ÿ

i“1

λ˚

i ∇φipxlk
k,iq ` λ˚

r`2∇φr`1pxlk
k,r`2q

ff

“ ´H´1
k

«

r
ÿ

i“1

λ˚

i ∇φipxlk
k,iq `

`

λ˚

r`1 ` λ˚

r`2

˘

∇φr`1pxlk
k,r`1q

ff

` O
`

τk,lk

˘

“ ´H´1
k

r`1
ÿ

i“1

λ̂i∇φipxlk
k,iq ` O

`

τk,lk

˘

.

Hence, dk,lk
is exactly the search direction obtained in (4.11) with an additional error

vector. Therefore, the term O
`

τk,lk

˘

is absorbed by the other error vectors in Theorem 4.3

and the result is still valid.
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Finally, remember that we have considered just one additional active constraint

to the others r ` 1 active constraints. However, it is straightforward to see that exactly

the same reasoning can be used to prove the result for any other number of additional

constraints.


