
 

UNIVERSIDADE ESTADUAL DE CAMPINAS 

INSTITUTO DE GEOCIÊNCIAS 

 

 

 

 

BRUNO CÉSAR ZANARDO HONÓRIO 

 

 

 

 

 

DEVELOPMENT AND APPLICATIONS OF TIME-FREQUENCY BASED 

SEISMIC ATTRIBUTES  

 

 

 

 

DESENVOLVIMENTO E APLICAÇÕES DE ATRIBUTOS SÍSMICOS 

BASEADOS EM ANÁLISES TEMPO-FREQUÊNCIA 

 

 

 

 

 

 

 

 

 

 

 

CAMPINAS 

2016 

  



 

BRUNO CÉSAR ZANARDO HONÓRIO 

 

 

 

DEVELOPMENT AND APPLICATIONS OF TIME-FREQUENCY BASED 

SEISMIC ATTRIBUTES  

 

 

DESENVOLVIMENTO E APLICAÇÕES DE ATRIBUTOS SÍSMICOS BASEADOS 

EM ANÁLISES TEMPO-FREQUÊNCIA 

 

 

 

THESIS PRESENTED TO THE INSTITUTE OF 
GEOSCIENCES OF THE UNIVERSITY OF 
CAMPINAS AS PART TO OBTAIN THE DEGREE 
OF DOCTOR IN CIENCES IN AREA OF GEOLOGY 
AND NATURAL RESOURCES 
 

 

TESE APRESENTADA AO INSTITUTO DE 
GEOCIÊNCIAS DA UNIVERSIDADE ESTADUAL 
DE CAMPINAS COMO REQUISITO PARA 
OBTENÇÃO DO TITULO DE DOUTOR EM 
CIÊNCIAS NA ÁREA DE GEOLOGIA E RECURSOS 
NATURAIS  

 

 

ORIENTADOR: PROF. DR. ALEXANDRE CAMPANE VIDAL 

COORIENTADOR: PROF. DR. MARCÍLIO CASTRO DE MATOS 

 

 

ESTE EXEMPLAR CORRESPONDE À VERSÃO 
FINAL DA TESE DEFENDIDA PELO ALUNO 
BRUNO CÉSAR ZANARDO HONÓRIO E  
ORIENTADO PELO PROF. DR. S ALEXANDRE 
CAMPANE VIDAL 
 

 

CAMPINAS 

2016 



Agência(s) de fomento e nº(s) de processo(s): CNPq, 142102/2012-1

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Geociências

Cássia Raquel da Silva - CRB 8/5752

    

  Honório, Bruno César Zanardo, 1983-  

 H759d HonDevelopment and applications of time-frequency based seismic attributes /

Bruno César Zanardo Honório. – Campinas, SP : [s.n.], 2016.

 

   

  HonOrientador: Alexandre Campane Vidal.

  HonCoorientador: Marcílio Castro de Matos.

  HonTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Geociências.

 

    

  Hon1. Geofísica. 2. Ondas sísmicas. 3. Método sísmico de reflexão. 4.

Processamento de sinais - Análise espectral. I. Vidal, Alexandre

Campane,1969-. II. Matos, Marcílio Castro de. III. Universidade Estadual de

Campinas. Instituto de Geociências. IV. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Desenvolvimento e aplicação de atributos sísmicos baseados em

análises tempo-frequencia

Palavras-chave em inglês:
Geophysics

Seismic waves

Seismic reflection method

Signal processing - spectral analysis

Área de concentração: Geologia e Recursos Naturais

Titulação: Doutor em Geociências

Banca examinadora:
Alexandre Campane Vidal [Orientador]

Emilson Pereira Leite

João Marcos Travassos Romano

Luis Alberto D'Afonseca

Rodrigo Drummond Couto Duarte

Data de defesa: 12-09-2016

Programa de Pós-Graduação: Geociências

Powered by TCPDF (www.tcpdf.org)



 

UNIVERSIDADE ESTADUAL DE CAMPINAS 

INSTITUTO DE GEOCIÊNCIAS 

PÓS-GRADUAÇÃO EM GEOCIÊNCIAS NA 

ÀREA DE GEOLOGIA E RECURSOS NATURAIS 

 

AUTOR: Bruno César Zanardo Honório 

 
 

“Desenvolvimento e aplicações de atributos sísmicos baseados em análises 

tempo-frequência.” 

 

 

ORIENTADOR: Prof. Dr. Alexandre Campane Vidal 

 
 
COORIENTADOR: Prof. Dr. Marcílio Castro de Matos 

 

 

Aprovado em: 12 / 09 / 2016 

 
 
EXAMINADORES:  

 

Prof. Dr. Alexandre Campane Vidal – Orientador  

 

Prof. Dr. Emilson Pereira Leite  

 

Prof. Dr. João Marcos Travassos Romano 

 

Prof. Dr. Luis Alberto D’Afonseca 

 

Dr. Rodrigo Drummond Couto Duarte 

 
 

A Ata de Defesa assinada pelos membros da Comissão Examinadora, consta no 

processo de vida acadêmica do aluno. 

 

 

Campinas, 12 de setembro de 2016. 



 

 

Dedication 

 

 

 

To my beloved parents and brother: Zé, Kuca and Lucas



 

 

Acknowledgements 

If a long journey starts by a first step, it only endures until the finish line by the 

union of several forces, for which I will be always thankful.  

I would like to express my endless gratitude to my advisor Alexandre Vidal, who 

since the very beginning of the graduate program gave me the ways and motivation to 

explore and learn this fantastic world of geosciences.  

My sincere thanks to my co-advisor Marcílio Matos, who has always been by my 

side, even geographically little far. I have always admired your geophysical works. 

Now, I admire you as person as well. You helped me more than you think. 

I thank Prof. Dr. Emilson Pereira Leite, Prof. Dr João Marcos Travassos Romano, 

Dr. Luis Alberto D’Afonseca, Dr. Rodrigo Drummond, and Prof. Dr. Liliana Alcazar 

Diogo for participating in my qualifying and/or final exams, contributing substantially 

to the work developed here. 

Thanks to all my fellas in the lab.: Ulisses Correia (Giant), Leandro Melani (Galã), 

Luis Sugi (Luizera), and Alexandre Sanchetta (Champs). I hope I gave you more than 

nicknames. The list continues: Juliana Bueno, Michelle Kuroda, Aline Belila, Mateus 

Basso, Guilherme Chinelatto, and Ivan Mingireanov. All and each of you somehow 

assisted me in this journey. 

To my friends I have made in Norway. Although this was not done as part of my 

PhD., this period has greatly impacted it and my development: Giulio Casini, Sacha 

Tremblay, David Hunt, Aart-Jan, Alexandra Jurkiw, Fabio Lapponi, Michael Zeller, and 

Ole Wennberg. No professional development is rich enough without the personal 

incomes: thanks to Jan Norbisrath, Dan Stokes, Rich McAllister, Tatyana Gabellone, 

Aleksandra Hosa, Sarah Bateman, Larissa Hansen, and Chandra Tapossea. 

To my friends outside the Campus, who teach me what is not in the books. RB, 

Nadja, Josafá and family.  

To all the IGe staff for making the things happen, specially to Valdirene Pinotti who 

always has the right and precise answers. 

Thanks to the Brazilian Council for Technological and Scientific Development 

(CNPq) for its financial support. I hope I have made a good usage of this public 

resource. 

To my families - of blood (Botucatu and somewhere around) and heart (Campinas). 

Your support was fundamental.  



 

 

A special thanks to my beloved wife, Lidia Bertolo. I wish I could return all your 

love and patience. Your support goes beyond this PhD.  



 

 

We are, finally, all wanderers in search of knowledge. Most of us hold the dream of 

becoming something better than we are, something larger, richer, in some way more 

important to the world and ourselves. Too often, the way taken is the wrong way, with 

too much emphasis on what we want to have, rather than what we wish to become.  

Louis L'Amour (Education of a Wandering Man)



 

 

Biography 

 

I am Physicist (2008) and M.Sc. in Science and Petroleum Engineering (2011), both 

from the University of Campinas - UNICAMP. This document is part of my Ph.D. 

degree in Geosciences (2016), which was also granted from UNICAMP. Since 2010, 

I´m collaborating with the Geological Reservoir Modeling (MGR) group at the Centre 

for Petroleum Studies - CEPETRO, where I´ve been involved in research projects 

together with oil companies. In 2014, I had my first international work experience, in 

which I´ve been in the Statoil Carbonate Research Center - Norway, working in a pre-

salt oil field in the Santos Basin, Brazil. My academic and professional interests are 

focused on applied geophysics on the following subjects: characterization of petroleum 

reservoirs, time-frequency analysis, signal processing, seismic resolution improvement 

and seismic attributes. 

 



 

 

RESUMO 

 

A imagem sísmica é uma composição de diversas estruturas geológicas as quais 

geralmente possuem diferentes escalas. Por ser condicionada pela frequência dominante 

da wavelet sísmica, esta imagem pode mascarar a detecção de características sutis 

presentes na subsuperfície. Em contrapartida, a decomposição espectral consegue 

acessar as componentes do sinal sísmico particulares à uma determinada escala e pode 

ser útil para compreender as variações de forma de onda, a espessura dentro das zonas 

de interesse do reservatório e, de modo geral, obter uma informação mais valiosa da 

geologia sob investigação.  

No presente trabalho, estou interessado em desenvolver abordagens e fluxos de 

trabalho utilizando atributos sísmicos conjuntos à analises tempo-frequência com o 

objetivo final de fornecer informações mais detalhadas dos dados sísmicos. 

Especificamente, (1) propus um procedimento baseado na análise de componentes 

independentes (ICA), um método estatístico de ordem superior, para lidar com os 

volumes de iso-frequência gerados pela decomposição espectral, a transformada wavelet 

contínua (CWT) neste caso. As componentes computadas através da ICA são 

combinadas no espaço de cores vermelho-verde-azul (RGB), produzindo uma única 

imagem. Realizo um estudo comparativo com a abordagem convencional, a qual 

escolhe empiricamente as componentes de frequência a serem utilizadas no RGB. 

Comparo também os resultados com os obtidos pela análise de componentes principais 

(PCA). Em ambos os casos, o método baseado na ICA pôde gerar uma melhor imagem 

e fielmente delinear a estrutura de canais do sistema fluvio-deltaico presente no volume 

sísmico de uma zona offshore localizada no setor holandês do Mar do Norte; (2) a 

metodologia desenvolvida em 1 é aplicada conjuntamente com o atributo sweetness, 

uma relação entre amplitude e frequência instantâneas, e um procedimento de detecção 

de descontinuidades em um reservatório carbonático do Albiano na Bacia de Campos, 

Brasil. Neste caso, pudemos mapear diferentes elementos estruturais e padrões 

litológicos que, por sua vez, puderam ser associados ao Joulters Cays (JC) nas 

Bahamas, corroborando JC como um análogo moderno para o campo; (3) proponho a 

combinação de um procedimento para aumento do conteúdo espectral baseado na 

resolução diferencial (DR) com a extração de atributos de descontinuidades. Ao refinar 



 

 

o cálculo do atributo de acordo com as diferentes bandas de frequência das 

componentes da DR e combiná-los no espaço de cores RGBα, pudemos obter uma 

definição mais detalhada das falhas e estruturas cársticas presentes na área de estudo; 

(4) por fim, trago a improved complete ensemble empirical mode decomposition 

(ICEEMD), uma técnica proposta no processamento de sinais biomédicos baseada na 

decomposição em modos empíricos (EMD), para o contexto da análise do sinal sísmico. 

Neste caso, faço um estudo comparativo com a técnica referência de EMD, i.e., a 

complete ensemble empirical mode decomposition (CEEMD), para dados sintéticos e 

reais, bem como atributos convencionalmente avaliados no contexto da EMD. Apesar 

de em alguns casos as diferenças serem sutis, modos melhores separados com menor 

ocorrência de ruído, melhor distribuição de energia e representação tempo-frequência, 

características espectrais das reflexões mais claramente resolvidas sugerem a ICEEND 

como o método de referência para as variações “noise-assisted” de EMD. 

 

 

 

Palavras-chave: Geofísica, ondas sísmicas, método sísmico de reflexão, processamento 

de sinais - análise espectral 

 



 

 

ABSTRACT 

 

The seismic image is a composite of various geological structures which usually 

have different scales. Because this image is conditioned by the dominant frequency of 

the seismic wavelet, it can mask the detection of subtle features present in the 

subsurface. In contrast, the spectral decomposition can access the components of the 

seismic signal at a particular scale and can be useful to understand the changes in the 

waveform, the thickness within the reservoir zones and, in general, obtain a more 

valuable information from the geology under investigation.  

In the present work, I am interested in developing approaches and workflows using 

time-frequency joint seismic attributes to the final goal of providing deeper and detailed 

information from the seismic data. Specifically, (1) I have proposed a higher-order 

statistic procedure based on independent component analysis (ICA) to deal with the iso-

frequency volumes generated by spectral decomposition, the continuous wavelet 

transform (CWT) in this case. The components computed through the ICA are 

combined into the red-green-blue (RGB) color space, producing a single and good 

quality image. A comparative study is made with the conventional approach, which 

chooses empirically the frequency components to be used in the RGB color stack. We 

also compared the results with the ones obtained by principal component analysis 

(PCA). In both cases, the ICA based method could generate a better image and 

faithfully delineate a channel system presented in a fluviodeltaic seismic volume from 

an offshore zone located in the Dutch sector of the North Sea; (2) The methodology 

developed in 1 is applied jointly with sweetness attribute, a relation between 

instantaneous amplitude and instantaneous frequency, and a discontinuity detection 

procedure in an Albian carbonate reservoir in Campos Basin, Brazil. In this case, we 

could map different architectural elements and lithological patterns, which in turn could 

be associated with the Joulters Cays (JC) in the Bahamas, corroborating JC as a modern 

analog to the field; (3) I have combined a spectral enhancement procedure based 

differential resolution (DR) with discontinuity attribute extraction. By refining the 

attribute computation according to the different frequency bands of the DR components 

and combining them into RGBα, we could get a more detailed definition of the faults 

and karst structures present in the studied area; (4) Finally, I bring the improved 



 

 

complete ensemble empirical mode decomposition (ICEEMD), an empirical mode 

decomposition (EMD) based technique proposed in biomedical signal processing, to the 

context of seismic signal analysis. In this case, we do a comparative study with the 

current EMD technique, i.e, the complete ensemble empirical mode decomposition 

(CEEMD) for synthetic and real seismic data as well the seismic attributes 

conventionally evaluated in the EMD-based framework.  Although in some cases the 

differences are subtle, better modes separation with lower noise occurrence, better 

power distribution and time-frequency representation, spectral characteristics of the 

reflections more clearly resolved suggest ICEEND as the reference method for "noise- 

assisted" variations of EMD. 

 

 

 

Keywords: Geophysics, seismic waves, seismic reflection method, signal processing - 

spectral analysis 
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CHAPTER 1: INTRODUCTION 

In the past few decades, a considerable effort has been made and significant 

advances have been achieved in the application of seismic attribute analysis to 

subsurface oil exploration (Chopra and Marfurt, 2005; 2007). In addition to many 

classical seismic attributes algorithms (Taner et al., 1979), many emerging ones have 

been developed, which significantly enhanced the interpreters’ ability for identify and 

characterize a given geological feature under the subsurface seismic data. Nowadays, 

seismic attributes became an integral part of modern 3D seismic interpretation 

workflows. 

Fundamentally, a seismic attribute is any measurement extracted direct or indirectly 

from the seismic data that help us better visualize or quantify features of interpretation 

interest. Broadly speaking, seismic attributes fall into two categories: morphological- 

and reflectivity-related attributes. The morphological attributes give us an understanding 

about the reflector dip, azimuth, and terminations, which can in turn be associated with 

faults, fractures, channels, carbonate buildups and karsts. The reflectivity attributes help 

us to extract information on reflector amplitude, waveform, and variation related to 

illumination angle, which can in turn be associated to lithology, reservoir thickness, and 

presence of hydrocarbon. 

Time-frequency (TF) analysis or general spectral decomposition (SD) is a specific 

technique that plays in these two broad fields, i.e., it can be used either on 

morphological (geometrical) and reflectivity (physical) based approaches. Analyzing 

the time-frequency characteristic of seismic traces can give important insights from the 

complex structure of the “multi-layered” signal consisting of several components that 

occurs as consequence of the variety of geological features. Some of its usefulness 

include structural and seismic stratigraphy interpretation, denoising (ground roll, 50- or 

60-Hz cultural noise, high-frequency random noise), thin-bed and channels 

characterization, time-frequency-based attenuation analysis, and direct hydrocarbons 

detection to mention a few. 

There are a variety of time-frequency analysis algorithms and approaches to access 

and characterize the frequency behavior of a given signal, but overall they can be 

categorized into linear, quadratic (bilinear), and non(bi)linear methods. In linear 

methods, the analyzed signal is characterized by its inner products (or cross-correlation) 

with a pre-defined family of templates. The most known example of linear method is 
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the windowed Fourier transform, which is generated by translating and modulating a 

basic window function. Improvement on the resolution of the windowed Fourier 

transform was one of the motivations behind the development of other techniques for 

the analysis of nonstationary signals, such as the continuous wavelet transform (CWT) 

(Grossmann and Morlet, 1984; Chakraborty and Okaya, 1995), S-transform (Stockwell 

et al., 1996), synchrosqueezing transform (Daubechies et al., 2011), and matching 

pursuit (Mallat and Zhang, 1993; Wang, 2007). Because these methods use templates 

functions to access the TF content of the signal, invariably they “colors” the 

representation and can influence the interpretability of the signal properties. 

Additionally, and again because the templates functions, these methods are limited by 

the Heisenberg uncertainty, which affect the resolution attained in the TF 

representation.  In quadratic methods, one can avoid the use of functions templates to 

build the TF representation. The Wigner-Ville distribution (WVD) is an example of 

such approach. In this case, a “more-focused” TF representation can be achieved. 

However, interference terms from multicomponent or nonlinear frequency modulated 

signals arise rendering a more complicate TF representation and interpretation. 

Although these interference terms can be handled by further processing with smoothed 

kernel, it reintroduces the blurring in the TF representation. Additionally, signal 

reconstruction in quadratic methods is not as straightforward as in linear methods. Other 

examples of quadratic methods include the smoothed pseudo-Wigner-Ville distribution 

(SPWVD) (Franz et al., 1995) the Choi-Williams distribution (CWD) (Choi and 

Williams, 1989) and the Wigner-Ville maximum entropy method (WV-MEM) 

(Zoukaneri and Porsani, 2015). The Empirical Mode Decomposition (EMD) method 

(Huang et al., 1998) is a nonlinear method, an alternative that would allow TF analysis 

of multicomponent signals without the weaknesses sketched above, overcoming the 

artificial spectrum spread caused by sudden changes. The EMD algorithm received 

more robust and versatile extensions, given rise to the ensemble EMD (EEMD) (Wu 

and Huang, 2009), the complete ensemble EMD with adaptive noise (CEEMD) (Torres 

et al., 2011), and more recently to an improved version of CEEMD (ICEEMD) 

(Colominas et al., 2014). With the exception of the last one (ICEEMD), the applicability 

and usefulness of the EMD-based methods to seismic time-frequency analysis are 

demonstrated and compared in Han and van der Ban (2013).    

From the lines drawn above, it is clear that the variety of TF frequency methods 

combined with the variety of seismic attributes that can be computed from the TF 
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representations lead to wide range of possibilities to the final goal of proving and 

supporting the geoscientist with some new information and different insights from the 

geology under study. Although this complexity and the intrinsic limitation of each 

method, time-frequency joint seismic attributes has proven its value in the 

understanding the geology hidden in the seismic data. The present work is an attempt to 

move a step further on this direction. Rather than a comparative study of which TF 

representation is best suitable to seismic signal analysis, I am focused on understand 

where some established techniques in the literature have stopped, and propose new 

ideas to overcome their limitations. To this finality, I present this work in the form of 

scientific papers in order to document and transfer the technology I have applied or 

developed. Chapters 2 and 3 are published in the “seismic attributes” special section of 

the SEG Interpretation journal. Chapter 4 and 5 are in press for publication in SEG 

Interpretation journal and will be published in February 2017 as a technical paper and in 

“Seismic time-frequency analysis” special section, respectively.   

In chapter 2, by using higher order statistics, I address the complexity on handling 

the iso-frequency volumes generated from seismic spectral decomposition. 

 In chapter 3, the technique proposed in chapter 2 is applied jointly with sweetness 

and discontinuity detection attributes in an integrated workflow. 

In chapter 4, I propose a combination of the “Differential Resolution”, a spectral 

enhancement technique, with the computation of discontinuities at different spectral 

bands. 

In chapter 5, I bring an EMD-based technique proposed in biomedical signal 

processing to the context of seismic signal analysis. 

Finally, in Chapter 6, I present my conclusions and recommendations.  
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ABSTRACT 

Spectral decomposition techniques can break down the broadband seismic records 

into a series of frequency components that are useful for seismic interpretation and 

reservoir characterization. However, it is laborious and time-consuming to analyze and 

to interpret each seismic frequency volume taking all the usable seismic bandwidth. In 

this context, we propose a multivariate technique based on independent component 

analysis (ICA) with the goal of choosing the spectral components that best represent the 

whole seismic spectrum while keeping the main geological information. The ICA based 

method goes beyond the Gaussian assumption and takes advantage of higher order 

statistics to find a new set of variables that are independent of each other. The 

independence between two components is a more general statistical concept than the 

non-correlation and, in principle, allows the extraction of more significant information 

from the data. We have tested four different contrast functions to estimate the 

independent components (ICs), which we could verify a better channel system 

identification depending on the contrast function used. By stacking the ICs in the red-

green-blue color space, we could represent the main information in a single and good 

quality image. To illustrate the proposed method, we have applied it to a seismic 

volume which was acquired over the F3 block in the Dutch sector of the North Sea. We 

also compared the results with those obtained by principal component analysis. In this 

case, the ICA based method could generate a better image and faithfully delineate a 

channel system presented in the studied seismic volume. 
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INTRODUCTION 

Spectral decomposition is an effective method for signal analysis, and is commonly 

used to generate seismic attributes for reservoir characterization. By transforming the 

data into the frequency domain, it often reveals many features that are hidden or not 

properly seen in the time domain, which makes it an important tool for seismic 

processing and interpretation (Chakraborty and Okaya, 1995). 

Several works have reported that spectral analysis is useful as a direct hydrocarbons 

indicator (Sun et al., 2002; Wang, 2007; Li et al., 2011), as well as in reservoir 

characterization (Partyka et al., 1999; Matos et al., 2005; Liu and Marfurt, 2007a; Matos 

et al. 2012; Davogustto et al., 2013; Wallet, 2013). A common way to analyze seismic 

data in the spectral domain is by searching through each frequency component, in order 

to determine which single frequency component best represents a particular feature of 

interest (Guo et. al, 2009). Although the frequency transformation is useful, an 

interpreter may generate and analyze dozens of isofrequency volumes using the seismic 

bandwidth. Therefore, it is useful to develop effective ways to represent and visualize 

such transformed data.  

A considerable effort has been made to find a better way for frequency 

representation. Particularly, the red-green-blue (RGB) color display technique plays an 

important role in the visualization of frequency components (Stark, 2006; Henderson et. 

al, 2007; Liu and Marfurt, 2007b; Guo et al.,2009; McArdle and Ackers, 2012). Guo et. 

al, (2009)  applied the principal component analysis (PCA) to reduce the redundancy of 

the spectral decomposed seismic record, ranking the variance of the data. Then, using 

the three channels of the RGB color display and the three first principal components, 

more than 80% of the spectral variability could be represented in a single image. 

The PCA technique, however, is based only on the variance and covariance of the 

data. The uncorrelatedness obtained by PCA is just a weaker form of independence 

(Hyvärinen and Oja, 2000). Unlike PCA, ICA deals with higher-order statistics, which, 

in principle, assigns more information to the components. In this way, ICA can be seen 

as an extension of PCA (Hyvärinen et al., 2001). While the PCA decorrelates the input 

data, ICA separates the remaining higher-order dependencies (Draper et al., 2003). 

Another comparison between the two methods is that PCA assumes the signal as 

Gaussian distributed, whereas ICA assumes that the signal is non-Gaussian distributed 

(Lu, 2006). Considering that the seismic data can be viewed as signals with super-
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Gaussian distributions, i.e., with positive kurtosis (Walden, 1985) and, therefore, non-

Gaussian, this assumption fits the fundamental assumption of ICA. 

In this study, we propose a technique based on ICA to select those frequency features 

that best represent the entire seismic spectrum. To do so, we briefly present a different 

implementation of the continuous wavelet transform (CWT) used to generate the 

seismic frequency volumes; the mathematical fundamentals of ICA and the strategy for 

ICs visualization. We then test the proposed technique by applying it to the F3 block in 

the Dutch sector of the North Sea. Finally, we compare the ICA results with composite 

images obtained from the PCA technique.  

THEORY AND METHOD 

Spectral Decomposition 
Spectral decomposition or time-frequency analysis of a seismic record is utilized to 

characterize the time-dependent frequency response of subsurface rocks and reservoirs 

(Sinha et al., 2005).  

Since it is a non-unique process, there are various methods to perform the time-

frequency analysis of nonstationary signals. Among them, the time-frequency 

continuous wavelet transform (TFCWT, Sinha et al. 2005) responds with an optimal 

time-frequency resolution and, therefore, it is a useful approach to seismic data analysis. 

The TFCWT takes the Fourier transform of the inverse continuous wavelet transform. 

Mathematically, the operation can be represented as the inner product between the 

wavelet transform of the signal 𝑊𝑓(𝜎, 𝜏) (i.e., the scalogram or time-scale map) and the 

wavelet as an adaptive window 𝛹̂𝜔(𝜎):  𝑓 (𝜔, 𝜏) =  〈𝑊𝑓(𝜎, 𝜏), 𝛹̂𝜔(𝜎) 〉.                                       (1) 
The adaptive window 𝛹̂𝜔(𝜎) means that for a particular scale 𝜎, we have a 

determined frequency 𝜔 and vice-versa, and it is represented as: 𝛹̂𝜔(𝜎) =  𝛹̂(𝜎𝜔)𝑒−𝑖𝜔𝜏𝐶𝛹𝜎3/2 ,                                                (2) 
where 𝐶𝛹 is a constant for wavelet 𝛹 and 𝜏 is the time-shifting parameter. The function 𝛹̂𝜔(𝜎) is the complex conjugate of the mother wavelet in the frequency domain 𝛹̂𝜔(𝜎). 
For a detailed discussion on TFCWT and how it is implemented, see Sinha et al. (2005).  

Note that other spectral decomposition method can be applied. The main concern of the 

article is how to better deal with large frequency volumes that can be produced by 
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where x is an observed m-dimensional vector that represents the multiple spectral 

components of the seismic data in our case, and s is the signal source vector (or ICs) 

whose components are taken as mutually independent. The ICs can be viewed as the 

spectral response of different types of geologic features weighted by the unknown 

mixing matrix A.  

A common issue in statistical signal processing & neural networks is to find a 

transformation that provides some desired feature from the input data. For simplicity, 

such representation is commonly taken as a linear transformation of the original data. In 

the special case of ICA, the linear transformation is performed by a weight matrix W, 

which estimates the signal source vector s’ as a set of scalar sources that are statistically 

and mutually independent: 

𝒔′ = ∑𝒘𝒊𝒎
𝒊=𝟏 xi = 𝐖𝐱.                                                  (5) 

So, the goal of an ICA algorithm is to find a matrix W that maximizes the 

independence between each estimated source 𝑠′𝑖. Here s’ denotes the estimated s. 

However, in order to make the problem of IC estimation simpler and better constrained, 

some processing is usually very useful before applying an ICA algorithm to the data 

(Hyvärinen and Oja, 2000).  

Preprocessing  
 

The first step is to center the data (𝐱′ ≡ 𝐱 − 𝐱), so that a zero-mean variable is 

obtained. Here, 𝐱 is the mean of x. Consequently, 𝐬′ is also a zero-mean variable. The 

aim of the zero-mean step is to simplify the ICA algorithm and subsequently the mean 

can be added at the final stage. 

The second step is the sphering transformation (also known as whitening; not to be 

confused with spectral whitening), which removes the second order statistical 

dependence in the data. This can be done by transforming linearly the observed vector 

x’ to obtain a new vector z whose components are uncorrelated and their variances 

equal unity: 𝐳 = 𝐕𝐱′,          so that               𝐸{𝐳𝐳𝑇} = 𝐈,                            (6) 
where z the sphered data, V is the sphering matrix, and E{.} the expectation function.  

The transformation given by equation 6 is always possible. In fact, it can be 

performed by PCA using the eigenvalue decomposition (EVD) of the covariance matrix 
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Cx’ = U λ UT. Here, U is the orthogonal matrix of eigenvectors of Cx’ and λ denotes the 

diagonal matrix of its eigenvalues, i.e., λ = diag (λ1, ..., λn). Hence, we have        

VPCA=λ-1/2UT, so that: 𝐳 = 𝐕𝐏𝐂𝐀𝐱′,                                                              (7) 
where 𝝀−1 2⁄ = diag (𝜆1−1 2⁄ , … , 𝜆𝑛−1 2⁄ ).  

The formulation as stated above makes a direct connection with the final and useful 

preprocessing step, which can be performed as sphering takes place: the dimension 

reduction (DR) of the data. The DR acts as a denoising procedure and prevents over-

learning from happening during ICA (Hyvärinen et al., 1999). To do so, we analyze the 

eigenvalues of the covariance matrix and discard those that do not represent significant 

information. This step enhances the ICA performance by discarding small trailing 

eigenvalues and reduces computational complexity (compute time and memory 

consumption) by minimizing pair-wise dependencies (Liu and Wechsler, 1999; Hoyer 

and Hyvärinen, 2000).  

The preprocessing steps can be synthesized as follow:  𝐬′ = 𝐖𝐱 𝐜𝐞𝐧𝐭𝐞𝐫𝐢𝐧𝐠⇒      𝐖𝐱′ 𝐬𝐩𝐡𝐞𝐫𝐢𝐧𝐠⇒     𝐖𝐳 𝐏𝐂𝐀 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧⇒        𝐖𝐕𝐏𝐂𝐀𝐱′  𝐃𝐑 ⇒  𝐖𝝀𝒏−𝟏𝟐𝐔 𝒏𝐓 𝐱′, 
where the n-th largest eigenvalues are represented by the diagonal matrix  λ n and Un is 

the corresponding eigenvector matrix.  

Because there is no easy way for thresholding the eigenvalues, we adopt an empirical 

and quantitative approach for DR. The eigenvalue that accounts for less than 1% of the 

accumulated eigenvalues is set as threshold. Figure 2. 3 illustrates the preprocessing 

workflow for the FastICA (Hyvärinen and Oja, 1997), as explained below.  
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for some non-quadratic function G and standardized variable  𝑣. Equation 8 is always 

non-negative and equals zero for Gaussian-distributed y. In this way, based on the 

maximum-entropy principle, the ICA method represents an optimization problem in 

which the contrast function should be maximized.  

To do that, we use a fixed-point algorithm, namely FastICA (Hyvärinen and Oja, 

1997). In  FastICA, ICs can be extracted successively one after another (deflation or the 

one-unit algorithm) or simultaneously (symmetric algorithm). We adopt the symmetric-

based FastICA approach because the deflationary method has the drawback that 

estimation errors in the first vectors are accumulated in the subsequent ones, whereas 

the symmetric orthonormalization approach enables parallel computation of 

independent components (Hyvärinen et al., 2001).  

Basically, each algorithm iteration updates each row 𝐰iT of W by: 𝐰𝑖 𝒖𝒑𝒅𝒂𝒕𝒆𝒅 ⃪  𝐸{𝒛g(𝐰𝑖T𝐳)} −  𝐸{g′(𝐰𝑖T𝐳)}𝐰𝑖,                                      𝐰𝐢 ⃪ 𝐰𝐢 𝒖𝒑𝒅𝒂𝒕𝒆𝒅/||𝐰𝐢 𝒖𝒑𝒅𝒂𝒕𝒆𝒅|| .                                                      
The steps are repeated until convergence. To prevent different components from 

converging to the same maxima, we apply a symmetric decorrelation, e.g., by the 

classical method involving matrix square roots, which does not “privileges” any 

component (Hyvärinen and Oja, 2000). The decorrelation is done by applying EVD to 

the inverse square root matrix (𝐖𝐖𝐓)−𝟏/𝟐. Then, we set 𝐖𝒅𝒆𝒄  ⃪  (𝐖𝐖𝐓)−𝟏/𝟐𝐖 

(Hyvärinen and Oja, 2000), where 𝐖𝒅𝒆𝒄 is W decorrelated.  

 The expectations for FastICA, in practice, must be replaced by their estimates, and 

the natural choice is the corresponding sample means (Hyvärinen and Oja, 2000).  In the 

algorithm iteration, g is the derivative of G, and g′ is its second derivative. We tested 

four different contrast functions commonly used in FastICA algorithm:  G1(𝑦) =  13 𝑦3,                                                                  (9) 𝐺2(𝑦) =  14 𝑦4,                                                                (10) 𝐺3(𝑦) = logcosh(𝑦),                                        (11) 𝐺4(𝑦) = −𝑒(−𝑦2 2⁄ ) ,                                            (12) 

Practically any non-quadratic function G can be used to perform ICA. However, 

choosing G that does not grow too fast, one can obtain estimators that are more robust. 

In particular, the contrast functions using G3 and G4 have proved to be very useful 
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(Hyvärinen and Oja, 2000). In Figure 2. 4, we illustrate the behavior of the functions G 

used in our study.  

 

Figure 2. 4: Contrast functions used in FastICA. 

Visualization of ICs 
The RGB color blending is a powerful technique for visualization of the spectral 

decomposed seismic data (McArdle and Ackers, 2012). However, the choice of which 

frequencies components to be used is often an empirical task and a considerable amount 

of information may be lost. Additionally, depending on the frequency combination, the 

visualization does not show a significant difference (Guo et al., 2009). Different 

approaches have been proposed to better deal with the frequency components of the 

seismic data at the RGB color space (Stark, 2006; Liu and Marfurt, 2007b; Guo et al., 

2009).     

In our study, we extend the idea of Guo et al., (2009) who used the RGB channels to 

display the principal components. Taking advantage of the statistical properties of ICA, 

we display the first three independent components against RGB color channels.  
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having to be qualitatively interpreted using principles of seismic geomorphology within 

a given depositional, erosional, or diagenetic framework, as pointed out by Guo et al. 

(2009). Another consideration is that, differently from PCA, which orders the principal 

components based on the eigenvalues, the independent components have 

no inherent order. Hyvärinen (1999b) suggested a technique for ordering the ICs using 

the norms of the mixing matrix A columns. We have tested this approach but we 

recommend analyzing each of the ICs before RGB color stack. Technically, the number 

of components set in DR limits the number of ICs. Fortunately, around 95% of the total 

variance was captured in 6 components for other dataset we have studied, even using 91 

frequency volumes as input.  Our results are based on taking the first three ICs of seven 

possible. 

CONCLUSION 

We have shown that ICA can be successfully applied in order to reduce the large 

data volume generated by the spectral decomposition process. By using the proposed 

workflow, the redundant frequency volumes could be reduced to a more manageable 

number of components. Taking advantage of the ICA statistical properties, we kept the 

most geologically pertinent information within the spectral decomposed data.  

When compared with the PCA-based technique, the RGB images produced from ICs 

showed superior results and could better delineate the channel system present in the 

studied seismic volume. 

Different approaches can be taken for dimensionality reduction. We recommend 

evaluating each of the extracted ICs in order to stack them in the RGB color space, 

although some criteria for ordering the ICs can be adopted.  
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ABSTRACT 

Identification of structural and stratigraphic components within a hydrocarbon 

reservoir is essential for the construction of geologic models that represent the facies 

distribution as accurately as possible. Such construction may represent a challenge for 

ancient carbonate reservoirs, which exhibit greater heterogeneity than siliciclastic 

reservoirs. We developed a workflow that incorporated seismic attribute analysis and 

well log data to highlight structural and architectural elements with the benefit of the 

understanding the distribution of facies in this features in an Albian offshore carbonate 

reservoir in Brazil. The proposed workflow combined incoherence, sweetness, and a 

new approach of spectral decomposition to delineate the main structural and 

architectural elements in the field. Well log facies and modern analog analyses were 

used to support the architectural elements’ interpretation. Joulters Cays is an oolitic 

shoal in the Bahamas that provided a modern analog for the field in study. Three main 

fault systems, responsible for the rollover structure of the field, were detected with the 

incoherence attribute. The workflow allowed the interpretation of four main 

architectural elements in the field: (1) tidal channels, (2) carbonate shoals, (3) reef, and 

(4) lagoons. Tidal channels and lagoons are mainly composed by wackestone. 

Carbonate shoals are primarily composed by grainstone with secondary packstone, 

while the reef crest is composed by packstone. Sequential indicator simulation (SIS) of 

well log facies supported these observations. The highlighted architectural elements 

could be helpful for the construction of a conceptual model of the field or useful as a 

training image for multiple-point statistics because SIS of well log facies does not 

define geologic bodies. 
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INTRODUCTION 

The characterization of carbonate reservoirs is challenging because carbonate 

reservoirs can be more heterogeneous than siliciclastic reservoirs. Carbonate reservoirs 

can present lateral inconsistency in rock properties, subtle facies changes, and low 

impedance contrasts with the surrounding rocks. Seismic attributes together with well 

log data can help in the understanding of these heterogeneities, which is an essential 

step for the construction of reliable geologic models. Seismic attributes are used in 

quantitative and qualitative interpretation. Quantitative interpretation includes 

prediction of physical properties such as porosity or lithology, whereas qualitative 

interpretation is focused on detection of stratigraphic and/or structural features (Hart, 

2008). In this paper, a qualitative approach was used to identify the main structural and 

architectural elements and the related facies of an Albian carbonate field in Brazil. To 

achieve these goals, spectral decomposition, sweetness, incoherence, and well log facies 

analysis were used. Spectral decomposition is an effective method for signal analysis, 

commonly used in seismic interpretation and reservoir characterization. By 

transforming the data into the frequency domain, it often becomes easier to identify 

many features that are difficult to delineate in the time domain (Chakraborty and Okaya, 

1995). Sweetness is an attribute that was developed for identifying sands and sandstones 

using 3D seismic data in clastic successions (Hart, 2008). For this reason, it is largely 

used to detect channels (Hart, 2008; Ahmad and Rowell, 2012; Wang et al., 2012). 

Sweetness and spectral decomposition have mainly been applied to clastic depositional 

systems in which there are significant contrasts between the homogeneous matrix and 

the sandy volume. Because carbonates are often grown in place rather than transported 

to their depositional site and therefore suffer significantly greater diagenetic alteration, 

intracarbonate impedance changes are subtle and may not have an easily identified 

spatial pattern (Matos et al., 2009). For this reason, sweetness and spectral 

decomposition applied to carbonate reservoirs are still challenging, and the relation 

between carbonate rock properties and seismic sweetness and spectral content is not 

very well documented. To help in the understanding of the architectural elements 

identified by means of the sweetness and spectral decomposition, well log facies 

analysis was performed for an Albian Brazilian carbonate field.  
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This Albian Brazilian field is an offshore field named the “A Field” for 

confidentiality reasons. For the same reason, no depth, time, and coordinates can be 

presented. The A Field is composed of oncolitic, oolitic, and peloidal calcarenites, 

calcirudites, and calcilutites, deposited in a shallow platform environment. The Albian 

reservoir is responsible for 31% of A-Field in-place oil volume, but the recovery factor 

is only 15.40% (Horschutz et al., 1992). This low recovery factor can be related to the 

difficulties for the definition of stratigraphic architecture and interrelationships of facies 

that control the distribution of reservoir and nonreservoir facies. 

 This study focuses on delineating the principal structural and architectural elements 

of the A Field and on understanding the relations between these features and 

depositional facies. 

 

FIELD DESCRIPTION 

Geologic background 
The A Field is located in the Brazilian continental platform, in the south part of the 

Campos Basin (Figure 3. 1). The area of the Campos Basin is approximately 100,000 

km2. More than 1600 wells have been drilled for oil and gas exploration for more than 

three decades. Campos is an important offshore basin, encompassing more than 90% of 

the Brazilian reserves for oil and gas (Winter et al., 2007). The Campos Basin is a 

passive continental margin-type basin formed during the breakup of the Gondwana 

supercontinent resulting in the separation of South America and Africa (Guardado et al., 

1989). The basin is composed of several hydrocarbon-producing fields of Oligo-

Miocene ages. Sediment starvation occurred in the basin from the Cenomanian to the 

Maestrichtian as a consequence of tectonic subsidence, eustatic sea level rise, and a 

relatively low influx of terrigenous sediments (Guardado et al., 1989). Stratigraphically, 

the Campos Basin has been subdivided into three megasequences (Ponte and Asmus, 

1976; Horschutz et al., 1992; Rangel et al., 1994). These depositional sequences evolve 

from alluvial-lacustrine dominant syn-rift sediments in the Neocomian to transitional 

alluvial fan and evaporitic sediments in the Aptian, to postrift marine dominant 

sedimentation in the Albian to the Recent. The stratigraphic sequence includes Campos, 

Macaé, and Lagoa Feia Formations (Guardado et al., 1989, 2000). The installation of 

the marine environment started with carbonate deposition in shallow-water conditions, 
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followed by the siliciclastics of the Macaé Formation, which is a wedge-shaped 

structure divided into the Lower and Upper Macaé.  

The Campos Basin shows two principal structural elements: (1) the high angle 

normal faults of the rift phase and (2) the adiastrophic structures, mostly normal listric 

faults that affected the postsalt sediments. The rift phase is represented by horsts and 

grabens involving basement and presalt sediments. The adiastrophic structures were 

formed due to basin tilting and differential compaction. Salt movement resulted in the 

formation of pillows that controlled the distribution of Albian shallow water carbonate 

facies and the thickness of the lowermost section of the Lower Macaé. With the 

continuing evolution of the salt structure, syndepositional listric faults were generated, 

developing structures of rollover type, which caused abrupt lateral facies changes at the 

top of the Lower Macaé (Spadini et al., 1988; Guardado et al., 1989).  

 

Figure 3. 1: Location map of the study area. 

The Campos Basin encompasses dozens of oilproducing fields, and A is one of these 

fields in this basin. The Albian reservoir of the A Field covers an area of 32 km2 in 

water depths of around 100 m and is responsible for 31% of A-Field in-place oil 

volume, but the recovery factor is only 15.40% (Horschutz et al., 1992). The A Field is 

composed of oncolitic, oolitic, and peloidal calcarenites, calcirudites, and calcilutites of 

the Quissamã Member in the Macaé Formation, deposited in a shallow platform 

environment. The structure consists of a smoothly dipping dome formed by rollover 

associated with salt tectonics, cut by small throw growth faults. The trapping of oil in 

this reservoir is essentially structural- stratigraphic in nature. The structural component 

is represented by normal growth faults and the stratigraphic components by facies 

variations in the upper part of the reservoir where the calcarenites and calcirudites grade 
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into calcilutites to the west and south-southwest of the field. The average porosity and 

permeability are 20% and 250 mD, respectively. The gravity of the oil is 20º API 

(Horschutz et al., 1992). 

Spadini (1992) proposes that the Joulters Cays (JC), in the Bahamas, could be a 

modern analog for the sedimentation in Albian of the A Field, considering the peloidal 

and oolitic facies relationship and the sedimentary structures presented in both areas. 

Despite Spadini’s efforts to characterize the A-Field reservoir, the geometries of the 

carbonatic bodies still remain undefined. 

Database 
The A Field is covered by a 3D seismic survey, from which structural and 

sedimentological information was derived for reservoir evaluation. A total of 26 wells 

drilled and logged were used in this study. The well logs presented in the data set are 

density (RHOB), gamma ray (GR), resistivity (ILD), neutron porosity (NPHI), and 

sonic (DT). Sixteen wells have a drill cuttings description, two wells were cored, and 

qualitative petrographic description is available. 

METHODS AND PRINCIPLES 

The zone of interest is the Albian reservoir of the A Feld (Figure 3. 1). Three main 

seismic horizons (A1, A2, and A3) were previously interpreted in the 3D seismic data 

and interpolated to generate continuous horizon surfaces for extracting attributes (Figure 

3. 2). The A1 horizon represents the top of the Albian reservoir. A seismic 

geomorphology workflow (Posamantier et al., 2007) was used to highlight structural 

and architectural elements by means of attribute analysis and well log facies analysis 

(Figure 3. 3). A modern analog, represented by JC, was used to help the understanding 

of the architectural elements delineated in this study. 

 

Figure 3. 2: The Albian carbonate reservoir showing three marked horizons. 



50 

 

 

Figure 3. 3: Seismic geomorphology workflow used to highlight structural and 
architectural elements interpretation of the A Field. 

Seismic attributes and spectral decomposition 
The sweetness attribute is derived by dividing the reflection strength (or 

instantaneous amplitude envelope) by the square root of the instantaneous frequency 

(Radovich and Oliveros, 1998; Hart, 2008), and it is a useful attribute for detecting 

channels or other stratigraphic features when those features can be distinguished from a 

“background” lithology by a combination of instantaneous frequency and reflection 

strength (Hart, 2008). Usually, sweetness is used to map sand bodies because acoustic 

impedance contrasts between sands and shales tend to be high in clastic environments 

(Hart, 2008; Ahmad and Rowell, 2012). In the same way, sweetness also shows 

variability in carbonate successions. In carbonate reservoirs, sweetness can be useful 

qualitatively to differentiate contrasts between zones with more mud content (e.g., 

wackestone facies) from zones without mud (e.g., grainstone facies). The sweetness 

attribute was compared to well log facies distributions to check the validity of any 

relationship between this attribute and mud content in the A-Field carbonate reservoir. 

The structure-oriented median filter (median SOF) was used to enhance seismic 

continuity for faults and channel delineation. This filter enhances seismic continuity by 

selecting the median values of multiple time samples along estimated local dip from 

adjacent traces in the inline and crossline directions. The filter picks up samples within 

the chosen aperture along the local dip and azimuth replacing the amplitude of the 

central sample position with the median value of the amplitudes (Chopra and Marfurt, 

2008). 

Incoherence and the fault moment filter are attributes that highlight geologic 

structures like faults and channels. Seismic trace values within a window of scale 



51 

 

length, in samples, will be compared with surrounding seismic traces. An estimate of 

local dip is made at every spatial and temporal location, and incoherence is estimated 

along these dips (Marfurt et al., 1999). The fault moment filter creates an attribute 

volume that accentuates the seismic trace-to-trace discontinuities estimated with 

incoherence. By using image processing techniques, the fault moment filter detects and 

enhances regions of high incoherence exhibiting high spatial and vertical correlation. 

The fault moment filter is actually a cascade of two filters. The first filter is cp*(1-nz2), 

where cp is the local measure of planarity and nz is the vertical component of the local 

unit-length normal vector. The second filter is 1-rsq, where rsq is the second moment of 

the function with respect to the plane defined by the local orientation. 

To delineate geometric features of the A Field, a spectral decomposition technique 

was applied to the median SOF 3D data. Spectral decomposition is a powerful tool to 

identify and map temporal bed thickness and geologic discontinuities over large 3D 

seismic surveys (Partyka et al., 1999). For broadband seismic data, an interpreter might 

generate and analyze dozens of somewhat redundant amplitude and phase spectral 

components. B. C. Z. Honório (personal communication, 2013) propose a new 

algorithm called independent component spectral analysis (ICSA) to reduce the 

multiplicity of spectral data and enhance the most energetic trends inside the data. Like 

principal component analysis (Guo et al., 2009), ICSA converts the 10–80 Hz frequency 

components into a much smaller suite of narrowband spectra that can be conveniently 

visualized using the three primary colors of red, green, and blue (RGB) in a single 

image. 

Well log facies interpretation  
The facies were defined by means of the self-organizing maps (SOM) algorithm. 

Developed by Kohonen (2001), SOM is an unsupervised neural network method, with 

no a priori information required to train the algorithm. The technique is based on neuron 

(also called prototype vector) mapping, in which nodes are updated according to input 

similarity. Not only the nearest neuron but also its neighborhood is updated to be 

statistically closer to the desired input, thereby preserving the topological structure of 

mapping. 

Ten lithofacies were identified from the core samples, ranging from grainstone to 

wackestone. These lithofacies were grouped into four major lithotypes according to 

their depositional texture and petrophysical properties: coarse- to medium-grained 
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grainstone, medium-grained packstone, fine-grained wackestone, and cemented facies. 

For the SOM classification, 151 prototypes vectors were used and clustered into four 

groups using a k-means algorithm. For each cluster, the core samples were identified 

and the histogram for the facies distribution of these samples was performed. The facies 

with the highest frequency in the histogram was selected to label the cluster. More 

details about the facies classification can be found in Kuroda et al. (2012). 

The A1, A2, and A3 time seismic horizons (Figure 3. 2) were converted into depth 

units and used to build the structural model for the A Field. The A1 and A3 horizons 

represent the top and the base of the Albian reservoir, respectively. To capture the 

reservoir heterogeneities, a geostatistical grid cell resolution of 50 × 50 × 1 m was 

defined inside the physical limits of the A Field Albian reservoir. The geostatistical grid 

is a corner- point-based, layered geocellular grid, which means that each cell of the grid 

honors the structural model and the seismic horizons. The facies log defined in the wells 

using the SOM algorithm was upscaled and discretized to the geostatistical grid 

resolution without any loss of heterogeneity. The facies model was built by using a 

sequential indicator simulation (SIS) algorithm and the vertical trends obtained with 

vertical proportion curves. The vertical proportion curve gives the proportion of each 

facies per level in the flattened space, integrated laterally over the whole field. It reflects 

the vertical variations of the facies proportions and confirms the depositional process 

that governed the facies distribution (Ravenne et al., 2002).  

SIS is an algorithm used to generate a discrete 3D facies parameter for the current 

geostatistical realization. A facies code is assigned to each cell inside the geostatistical 

grid, defining the facies (grainstone, packstone, wackestone, or cemented facies) in that 

cell, based on probabilities calculated from well data and user-defined input (Srivastava, 

1994; Seifert and Jensen, 1999). Although SIS does not define geologic bodies, it can 

help to support the geologic interpretation made by the use of the sweetness attribute 

and spectral decomposition. 
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RESULTS AND DISCUSSION 

Fault delineation 
The fault moment filter (Figure 3. 3), computed from the incoherence volume, 

highlights three main discontinuity fault systems (Figure 3. 4). The more pronounced 

fault system in the A Field is the boundary F1 faults that are clearly seen on the fault 

moment filter horizon slice (Figure 3. 4) and mark the reservoir limit. The F1 are 

normal faults that exhibit a listric style creating a rollover anticline formed during the 

halokinesis syndepositional in the A Field (Figure 3. 5). The main F1 fault direction is 

northwest–southeast, which is the regional main fault direction (Albertão et al., 2011) 

that forms the overall structure and palaeotopography of the Albian reservoir. 

 

Figure 3. 4: Horizon slices along the A1 horizon shown in Figure 2 through the (a) 
incoherence and (b) fault moment filter volumes. (c) Same horizon slice through the 
fault moment filter with interpreted faults showing location of line AA’ displayed in 
Figures 2, 5, and 8. 
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Figure 3. 5: AA′ seismic line showing the A1 horizon and faults (F1 in red and F2 in 
orange) in (a) amplitude data and (b) fault moment filter. Note the rollover structure 
marked by F1 faults (yellow arrows).  

The F2 and F3 are northeast–southwest and north– south normal faults, respectively 

(Figure 3. 4). They represent a secondary set of less significant faults. 
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Architectural elements 
The identification of architectural elements in the A Field is not possible to map on 

conventional full spectrum seismic data (Figure 3. 6a). To delineate these features, 

ICSA was applied to the spectral decomposition data. Discrete frequency cubes were 

computed with the continuous wavelet transform technique of spectral decomposition 

for the frequency bandwidth of 10–80 Hz. ICSA identifies seven main components of 

the spectral decomposition energy, and these components were extracted along the 

seismic horizons (Figure 3. 6b). After qualitative analysis, the independent components 

IC-2, IC-6, and IC-7 were chosen for the composite RGB image (Figure 3. 6c). 

We used sweetness (Figure 3. 7a), spectral decomposition (Figure 3. 7b), and 

simulation of facies analysis (Figure 3. 7c) to help delineate the architectural elements. 

We interpret these geomorphological features to indicate the (1) tidal channel, (2) 

carbonate shoals, (3) reef, and (4) protected lagoons (Figure 3. 7). More details about 

these features are shown in the following subsections. 

 

Figure 3. 6: (a) Depth-structure map of the A1 horizon and corresponding horizon slices 
through (b) seismic amplitude and (c) ICSA components 2, 6, and 7 co-rendered using a 
composite RGB display. 
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Figure 3. 7: Horizon slices along horizon A1 through (a) sweetness, (b) co-rendered 
ICSA components 2, 6, and 7, and (c) a realization of facies simulation. (d-f) Same 
images with interpretation showing shoals (indicated by S), a reef crest (indicated by 
“RC”), a lagoon (indicated by “L”), and a tidal channel (indicated by “TC”). The pink 
polygon represents the physical limit of the A Field Albian reservoir. A more detailed 
description is in the text. 

Tidal channel and delta identification 
The composite RGB image of the A1 horizon slice (Figure 3. 8a) reveals two 

interpreted channels in the southern area of the A Field. The fault moment filter horizon 

slice of the A1 horizon (Figure 3. 8b) also shows the channels but not as clearly as the 

composite RGB image. Other possible geologic processes, such as faults, can also 

produce discontinuity detectable by incoherence and fault moment filter attributes. 

However, we interpret the discontinuity under discussion as channels because (1) the 

observed discontinuities are not straight, which is expected by faults, (2) the vertical 

slice through seismic amplitude (Figure 3. 8c) shows a channel feature, and (3) the 

composite RGB image shows that the sedimentary filling has a different spectral 

component compared with the neighboring areas, which is not expected if the 

discontinuity represents a fault system.  
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Figure 3. 8: Interpreted channel features extracted from (a) the composite RGB image of 
the A1 horizon slice, (b) the fault moment filter horizon slice of the A1 horizon, with 
the dashed blue line showing the location of the AA′ seismic line, and (c) AA′ seismic 
line. Red and pink ellipses show the interest features. 

Partyka et al. (1999) propose that amplitude spectra delineate thin-bed variability via 

spectral notching pattern, which is related to local rock mass variability. This concept 

can be applicable to the interpreted tidal channels. The interior of interpreted tidal 

channels revealed a spectral content different that presented by the surrounding areas 

(Figure 3. 8a), and this difference could have been related to differences in the 

sedimentary infill from the interior of the channels compared to the surrounding areas.  

Spadini (1992) proposes that the JC could be a modern analog for the sedimentation 

in Albian of the A Field, considering the peloidal and oolitic facies relationship and the 

sedimentary structures presented in both areas. However, Spadini (1992) does not 

consider geometrical relationships between the two fields. Our study indicates that the 
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proposed channel for the A Field (Figure 3. 9a) is similar to those present in the JC 

(Figure 3. 9b). 

 

 

Figure 3. 9: (a) Composite RGB image of A1 horizon slice, (b) JC satellite image 
(NASA-Johnson Space Center, 2013); (c) sweetness attribute extracted from A1 horizon 
slice. Yellow ellipses show channels and pink ellipses show flood tidal delta lobes in the 
A Field and JC. Black arrows show the areas with high sweetness. 

The JC is a Holocene island, immediately north of Andros Island on Great Bahama 

Bank, and it is interpreted as a modern shoal complex that extends over 400 km2 and 

varies on average 4 m in thickness. The JC is a shoal formed by a sand flat, partly cut by 

numerous tidal channels and fringed on the ocean-facing borders by mobile sands 

(Harris, 1979, 1983). The tidal channels occur in the east–west and northeast–southwest 

directions and are not completely opened in the seaward and bankward sides.  

In the A Field, the proposed channel occurs in east–west direction (Figure 3. 9a) and 

differently from the JC, the channel is open in the seaward and bankward sides. Another 

difference of the A Field compared to JC is the amount of tidal channels. In the A Field, 

spectral decomposition allowed the interpretation of two channels, while in the JC, there 

are several tidal channels. This difference in amount of tidal channels could be 

explained by the variance in area; while the JC is a 400-km2 area, the A Field is only a 

32-km2 (Figure 3. 9). 

The A Field tidal channels length range from 1.5 to 2.0 km, which is close to the 3 

km average for the Bahamas tidal channels (Harris, 2010), and they have their seaward 

ends terminate abruptly in a paleo seaward-facing, similar to those present in the JC 

(Figure 3. 9). In the bankward side, the A Field tidal channels join to form one wide 

channel that divides into three branches forming a flood tidal delta lobes in a more 
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gradual open ending (Figure 3. 8a). In the JC area, the bankward channels shoal and 

divide into several interconnected depressions within the sand flat (Harris, 1979).  

The bankward end of the A Field tidal channels forms a flood tidal delta lobe (Figure 

3. 9a), although this presents an elongated geometry. The geometry of the flood tidal 

delta lobes tends to be more circular, similar to that observed in the bankward end of the 

Lowe Sound in JC (Figure 3. 9b). Lowe Sound is a wide channel that separates JC from 

the Andros Island in the south. The anomalous elongated geometry of the flood tidal 

delta lobe in the A Field can be explained by the F1 faults (Figure 3. 4) that affected the 

region as a consequence of syndepositional halokinesis, forming a slope in the 

bankward end of the tidal channels.  

The sweetness attribute shows that the filling of the flood tidal delta lobe is similar to 

that presented in the seaward part of the A Field (Figure 3. 9c). In general, sweetness is 

useful for mapping sand bodies because acoustic impedance contrasts between sands 

and shales are high in clastic environments (Ahmad and Rowell, 2012). In the same 

way, in carbonate reservoirs, sweetness can be useful qualitatively to show contrasts 

between zones with more mud content such as wackestone facies and zones without 

mud content such as grainstone facies.  

If in a siliciclastic depositional environment high sweetness is correlated to sand 

content (Ahmad and Rowell, 2012), in the A Field, carbonatic reservoir high sweetness 

can be associated to grainstone facies and low sweetness can be associated to 

wackestone facies. Tidal channels are clearly marked by low sweetness (Figure 3. 9c) 

representing a facies with more mud content, such as wackestone facies, which is the 

opposite of that observed for the flood tidal delta lobe. The flood tidal delta lobe 

presents a high sweetness associated with grainstone facies that could be transported to 

this area by the tidal channels. The tidal channels transported the ooid/oncoid 

sediments, to form grainstone, from the seaward part of the A Field to the flood tidal 

delta lobe, which could explain the high sweetness presented only in these areas of the 

field. In the Bahamas, Reeder and Rankey (2008) show that the tidal channels are able 

to transport oolitic sediments. 

Carbonate shoal identification 
The composite RGB image, sweetness attribute, and facies distribution for the A1 

horizon slice reveal four areas with potential for shoal development (Figure 3. 7). In the 

shoal areas, “S” sweetness is high (Figure 3. 7a and Figure 3. 7d) compared to the tidal 
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channel area. As described above, high sweetness in carbonate reservoirs can be 

associated to areas with low mud content such as those formed by grainstone. The same 

high sweetness areas are marked in the composite RGB image of A1 horizon slice 

(Figure 3. 7b and Figure 3. 7e), and these areas have a different spectral signature 

compared to that shown by the tidal channels. In area S4, the sweetness is lower than in 

areas S1, S2, and S3. The A1 horizon slice in this area shows a mixture of RGB 

components.  

The facies distribution in the A Field (Figure 3. 7c and Figure 3. 7f) confirms that in 

areas S1, S2, and S3 (Figure 3. 7a and Figure 3. 7d), high sweetness values and IC 

spectral component 2 (Figure 3. 7b and Figure 3. 7e) are associated with grainstone 

facies, while medium sweetness content and a mixture of spectral component are 

associated with packstone facies in area S4.  

Grainstone facies are characteristics of environments of high hydraulic energy 

(Wright, 2008), while in the packstone area the energy is moderate. The variation of 

depositional environments and facies distribution in carbonate reservoirs can be 

explained by water depth variation in the area or by changing the level of agitation of 

the grains caused by ocean currents.  

Ocean currents currents are produced by tides and waves and are concentrated at 

major topographic features, such as along ramp and rimmed shelf margins, islands, and 

shorelines (Lucia, 2007). In the JC area, Harris (1979) proposes that the variations in 

depositional environment are a result of changing the level of agitation of the grains. If 

the same idea is used to explain the facies variation in the A Field, the areas S1, S2, and 

S3 represent a paleo high in the field where high energy, with constant wave action, 

grainstone facies were deposited. By analogy, area S4 represents a lower area of ancient 

relief where moderate energy packstone facies were deposited.  

At present, these observations are reversed as shown by Figure 3. 6b. The high area 

in the A Field is the area S4, while areas S1, S2, and S3 represent low structural areas. 

These features can be explained by the F2 and F3 faults that affected the area and can be 

responsible, together with the F1 faults, for the current anatomy of the A Field. 
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Reef identification 
The composite RGB image, sweetness attribute, and facies distribution for the A1 

horizon slice reveal an area with potential reef development (Figure 3. 7). Matos et al. 

(2009), using wavelet transform Teager-Kaiser energy, propose that the same area can 

be associated to bioconstructions. The available drill cuttings descriptions for wells in 

this area reveal a large amount of carbonate bioconstructed fragments.  

In the circular area presented in Figure 3. 7, according to the same reasoning 

presented above, medium sweetness content (Figure 3. 7a and Figure 3. 7d) and a 

mixture of spectral component (Figure 3. 7b and Figure 3. 7e) are associated with 

packstone facies that can be associated to the developing of reef crest (RC) in an area of 

moderate relief (Figure 3. 6b). According to Tucker and Wright (2008), reefs will 

preferentially develop on topographic highs because shallow-water corals grow faster 

than deeper forms and sedimentation will be reduced on higher areas. Facies simulation 

(Figure 3. 7c and Figure 3. 7f) shows that in the RC area, the cemented facies are 

predominant. Cementation is a major process and is partly responsible for the steep, 

wave-resistant profiles of many reefs and occurs abundantly in ancient reefs (Tucker 

and Wright, 2008).  

The dashed circular area presented in Figure 3. 7 shows the same characteristics 

presented by the tidal channels with low sweetness content (Figure 3. 7a and Figure 3. 

7d) that can be associated to wackestone facies with a high amount of mud. The spectral 

signature (Figure 3. 7b and Figure 3. 7e) is quite similar to that presented by the tidal 

channels. The dashed circular area presented in Figure 3. 7 represents a relief lower 

(Figure 3. 6b) than the RC area and is interpreted as a lagoon area (L1) in the inner part 

of the reef. Facies simulation (Figure 3. 7c and 7f) confirms that the L1 area has much 

more wackestone facies than the RC area. 

 In the inner area of the lagoon, there are some circular bodies (Figure 3. 7) with the 

same sweetness and spectral behavior as that presented by the RC area, with high 

sweetness content and a mixture of spectral component that was interpreted as 

characteristics of packstone facies. The circular bodies can represent small reefs rising 

up from the lagoon floor analogous to modern Bermuda Patch Reefs (Garret et al., 

1971), although we do not have enough control to classify the reef in the A Field as a 

patch reef.  
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Protected areas  
The L2 and L3 areas (Figure 3. 7) are potential areas to the formation of a lagoon in 

the A Field. In these areas, the sweetness attribute is low (Figure 3. 7a and Figure 3. 7d) 

and the spectral signature (Figure 3. 7b and Figure 3. 7e) is similar to that presented in 

the L1 area. These features can be associated to a lagoon environment protected from 

the ocean swell and storms by the shoal barrier system. Packstone to lime mudstone are 

the typical sediments in protected carbonate lagoons. However, there can be significant 

variation in sediment type depending on the circulation within the lagoon, which in turn 

is largely controlled by the frequency of tidal channels and by the climate (Tucker and 

Wright, 2008). The low sweetness and the spectral signature shown by the L2 and L3 

areas can be associated with wackestone facies with high amounts of mud, similar to 

that observed by the lagoon in the inner part of the reef. Facies simulation (Figure 3. 7c 

and Figure 3. 7f) indicates that the predominant facies are packstone and mudstone in 

regions L2 and L3. Cemented facies and a small percentage of grainstone are secondary 

facies. 

 

Figure 3. 10: The A Field showing principal structures in the A1 horizon slice from the 
(a) sweetness attribute and (b) composite RGB image. (c) Predominant facies 
distribution according to the main structures in the field. Areas: S, shoals; RC, reef 
crest; L, protected lagoons, and TC, tidal channel. The pink polygon represents the 
physical limit of the A Field Albian reservoir. 
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CONCLUSIONS 

 The seismic geomorphology workflow used in this study successfully integrated 

seismic interpretation, attribute analysis, geostatistical simulation of well log facies, and 

modern analog analysis to build a geologic scenario for the A1 top horizon of the A 

Field Albian reservoir.  

The fault moment filter applied to incoherence volume identifies three main 

discontinuities fault system, F1, F2, and F3. The F1 faults are responsible for the 

rollover structural anatomy of the reservoir. 

Previous facies simulation in the A Field showed that the sweetness attribute can be 

used to qualitatively distinguish different architectural elements and lithological patterns 

in a carbonate reservoir in association with composite RGB images, in this case. The 

sweetness volume may help to assist facies prediction as a trend function during the 

geostatistical simulation. 

JC in the Bahamas may represent a modern analog for the Albian A Field. Using this 

analog, the composite RGB image of independent spectral components delineates the 

reservoir into four main architectural elements (Figure 3. 10): (1) tidal channel, (2) 

carbonate shoals, (3) reef, and (4) lagoons.  

The sweetness attribute (Figure 3. 10a) together with composite RGB images (Figure 

3. 10b) provide a means to estimate the predominant facies for each architectural 

element (Figure 3. 10c). The tidal channel and lagoons are sites of wackestone 

deposition, mainly. Carbonate shoals are primarily composed by grainstone with some 

packstone subordinately, while the reef crest is composed by packstone. SIS of facies 

supported these observations, and the highlighted architectural elements can be helpful 

for the construction of a conceptual model of the field or useful as a training image for 

multiple-point statistics, because SIS does not define geologic bodies.  
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ABSTRACT 

Seismic resolution plays an important role in the delineation of structural and 

stratigraphic features. The resolution improvement directly affects the seismic attributes 

and, consequently, the interpretation of a given feature. However, the broadband data do 

not necessarily provide the best insight for seismic attribute evaluation. Particularly, 

geological discontinuities, such as karsts, faults and fractures, can have different seismic 

expressions according to their intrinsic scales and, therefore, they are better illuminated 

in a given frequency range. To extract dissimilar characteristics in different frequency 

bands, we have combined a recently developed spectral enhancement method based on 

differential resolution (DR1) and similarity attribute. The DR algorithm is 

simultaneously used for frequency enhancement and as a pseudo-filter, allowing us to 

compute similarity attribute at different frequency bands. The similarity computation 

follows the reflector dip of each DR sub-band and adjusts its analysis window 

accordingly to the dominant frequency within the sub-bands. Then, the sub-band 

similarities are combined in the red-green-blue-alpha (RGBα) color space, allowing a 

more detailed view of the geology under investigation. Although more expensive in 

terms of processing time because of all the steps needed for each sub-band, the 

proposed strategy proved to be a great improvement over the conventional procedure of 

detecting and delineating discontinuities in fault and karst structures, when treating 

seismic data from an offshore carbonate field in Campos Basin, Brazil. 

 

                                                 
1 DR here is used with a different meaning from the chapter 2, which states for “dimension reduction” 
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INTRODUCTION 

The relatively low dominant frequency of conventional amplitude seismic data limits 

the visualization of structural details. In general, as greater bandwidth implies higher 

resolution, the application of processing techniques to broaden the seismic record 

spectrum is a common and useful approach to resolve subtle features, such as minor 

faults and karsts. Nowadays, resolution enhancement has become a hot topic in this 

field of seismic research. Enhancing seismic resolution allows a more refined structural 

and stratigraphic interpretation. Such refinement is vital in complex geologic settings, as 

the ones encountered on carbonate reservoirs, but it is equally true for any scenario 

where a detailed analysis is needed. 

Broadly speaking, resolution improvement algorithms fall into spectral balancing and 

inverse Q-filtering approaches (Fraser and Neep, 2004; Puryear and Castagna, 2008; 

Matos and Marfurt, 2011; Wang, 2006; Braga and Moraes, 2013; Zhou et al., 2015).  

Regardless of the technique applied to this finality, the seismic resolution improvement 

will affect directly the quality and reliability of the seismic attributes extracted from it. 

Chopra and Marfurt (2007) show that the seismic attribute calculated from a data set 

with limited resolution can overlook the delineation of subtle reservoir features. On the 

other hand, Zhou et al. (2015) demonstrate how resolution improvements have a 

positive impact on seismic data when it comes to coherence, energy, curvature, and 

frequency attributes, allowing a more accurate interpretation of fault and channel edges. 

Usually, the most broadband data is preferred for interpretation. However, the 

broadband data do not necessarily provide the best insight for seismic attribute 

evaluation. In fact, the seismic response of a given geologic structure and, consequently, 

the seismic attributes calculated from it, has a different seismic expression at different 

frequency bands (Li and Lu, 2014). Al-Dossary and Marfurt (2006), for example, 

evaluated how long- and short-wavelength curvature attributes impact the delineation of 

geologic features of different scales. Sun et al. (2010) showed how discrete frequency 

coherence cubes can detect faults and fracture zones not easily seen through the full 

spectrum coherence data, particularly when focusing on the high frequency band of the 

data. Hardage (2015), on the other hand, demonstrate a better fault illumination 

considering only the lowest octave of the seismic spectrum (8-16Hz). Thus, spectral 

decomposition and red-green-blue (RGB) color-stack have been proven to be useful 

techniques to extract and display geological features at different spectral bands.  
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Although there is useful information in the instantaneous spectral attributes, the exact 

frequency range that produces an optimal image of a target varies according to target 

size, depth, thickness and impedance properties (Hardage, 2009). Additionally, it is not 

easy for interpreters to individually evaluate all possible iso-frequency volumes, making 

the choice of optimum components subjective and unclear (Liu and Marfurt, 2007). 

There are techniques that circumvent this “problem” somehow by using mathematical 

approaches, such as the average of three non-overlapping spectral bands (Stark, 2006); 

the use of three predetermined basis functions, producing a more continuous and 

overlapped spectral bands (Liu and Marfurt, 2007); or the use of projections in a 

multidimensional space (Guo et al., 2009; Honório et al., 2014). 

In the present work, we demonstrate how a recently developed spectral enhancement 

method based on differential resolution (DR- Sajid and Ghosh, 2014) can be used as a 

pre-processing technique to compute similarity attribute at different frequency bands, 

which we call Differential Resolution Similarity (DRS). To do so, we first review the 

concepts of the DR method. Then, we propose an approach to compute and combine the 

similarity attribute from different spectral bands honoring their frequency content as a 

guide for windowing. Finally, we apply the proposed strategy to enhance delineation of 

geological features using seismic data from an offshore carbonate field in Campos 

Basin, Brazil. 

DIFFERENTIAL RESOLUTION AND SIMILARITY 

In this section, we introduce the proposed method and briefly highlight the 

parameters involved. The DR method adds different versions of the seismic trace to the 

original one. In order to keep the main behavior of the signal, the first term to be added 

is the smoothed version YS of the normalized original signal Y, which is obtained by 10 

passes of a three-point smoother with weights [1 2 1]. The normalization is discussed in 

the sequence. Then, the normalized second-, fourth-, and sixth-order differentiated 

version of the trace, denoted by YII, YIV and YVI, respectively, are added: 𝑟 = 𝑌 + 𝑌𝑆 − 𝑌𝐼𝐼 + 𝑌𝐼𝑉 − 𝑌𝑉𝐼 ,                                            (1) 
where r is the non-normalized DR. The negative signal in equation 1 is to correct the 

phase shift introduced by differentiation. The fourth order difference has normal 

polarity while the second and the sixth order differences have reverse polarity. The 

effect of adding the smoothed trace is to boost low frequencies, while adding the three 
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difference traces highlights higher frequencies successively. The combination of these 

components enhances the entire bandwidth of the data. 

Using the Fourier properties and theorems, we can better understand the effect of 

differentiation in the DR method. Denoting 𝐹(𝜔) as the Fourier transform of the 

differentiable signal 𝑓(𝑡),  prime to the derivative with respect to time and i as the 

imaginary unit, the successive derivatives of 𝑓(𝑡) are:             𝑓′(𝑡) .⇔ 𝑖𝜔𝐹(𝜔),                 𝑓′′(𝑡) .⇔−𝜔2𝐹(𝜔), 
                      …             𝑓′′′′(𝑡) .⇔𝜔4𝐹(𝜔),  
            …                𝑓′′′′′′(𝑡) .⇔−𝜔6𝐹(𝜔),                                                    (2) 

which progressively boosts the higher frequencies according to the derivative order. 

Additionally, it is straightforward to understand the negative signals in the sub-bands 

stacking in equation 1.  

The amplitude normalization for each version of the trace X is performed according 

to its median of the absolute value |𝑋̃|: 𝑌 =   𝑋|𝑋̃|  ,                                                                        (3) 
 

where Y is the normalized seismic trace. To obtain a normalized DR, denoted by R, r is 

also normalized according to equation 3. 

The differentiation is obtained by difference operators for efficiency. In the 

algorithm proposition, a combination of one forward and one backward difference is 

done in order to not introduce a time shift. Although the algorithm works well in terms 

of computational efforts and precision, we have refined this procedure by performing a 

forward difference for the first sample, a backward difference for the last sample and 

the central difference for all the intermediate samples: 𝑦𝑗 ′  =̃  𝑦𝑗+1  −  𝑦𝑗∆𝑡  (𝑗 ∈ 𝑅(𝑗 = 1)).      𝑓𝑜𝑟𝑤𝑎𝑟𝑑                  (4) 𝑦𝑗 ′  =̃   𝑦𝑗  − 𝑦𝑗−1∆𝑡  (𝑗 ∈ 𝑅(𝑗 = 𝑛)).       𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑                 (5) 𝑦𝑗 ′  =̃  𝑦𝑗+1  −  𝑦𝑗−12∆𝑡  (𝑗 ∈ 𝑅(1 < 𝑗 < 𝑛 − 1)).    𝑐𝑒𝑛𝑡𝑟𝑎𝑙                    (6) 
The reason for this is that the truncation error for the backward and forward 

difference is O(∆t), while the truncation error for the central difference is O(∆t2), which 
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yields a more accurate approximation. Although the truncation error can drop to O(∆t2), 
after one backward and one forward differentiation by applying the central difference, 

we reduce by half the number of calculations and the computing time, which can be 

significant when working with large 3D seismic volumes. The n
th-order difference is 

approximated by applying n successive differences on the signal y(t). 

Figure 4. 1 shows a synthetic signal and the results of the main steps of the DR 

method. In Figure 4. 1a, the event I is a single interface transition, while events II-VI 

represent thin-beds from 6 to 14 ms thicknesses (2 ms-thickness increments). The 

representation of the seismic trace generated by applying a 35Hz Ricker wavelet is 

shown in Figure 4. 1b. The output of the DR algorithm, R, is shown in Figure 4. 1c. The 

corresponding spectra for the signals in Figure 4. 1a and Figure 4. 1b are illustrated in 

Figure 4. 1f. 

 
Figure 4. 1: Illustration of the DR method. (a) Reflectivity series; b) seismic trace; (c) 
DR output; (d) and (e) are the components used for signal reconstruction in the DR 
method; (f) spectra from (b) and (c); (g) spectra from (e). 
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It is clear from Figure 4. 1c the resolution improvement obtained from DR algorithm. 

The constructive interference that occurs between the top and base of thin-beds III and 

IV in the original seismic trace (red arrows) could suggest a single interface transition, 

which is not true. From checking the output of the DR algorithm, we can clearly 

discriminate the two interfaces in IV (separated by 5 samples or 10 ms thickness), and 

get a glimpse about the thin-bed III (four samples or 8 ms thickness). Also, note the 

frequency shift that occurs as we move from YS to YVI (Figure 4. 1g), which is the base 

for our algorithm.  

As mentioned before, the seismic response of a given geologic structure is expressed 

differently at different spectral bands. Thus, instead of reconstructing the signal with 

extended bandwidth according to equation 1 and 3 as the DR algorithm does, we extract 

the similarity attribute for each DR component. In this way, the DR algorithm is used as 

a pre-processing procedure and acts as a pseudo-filter to be used for similarity 

computation. Because we want to combine the attributes in the RGBα color-space, we 

are limited to four variables. Thus, we can combine Y and YS as a new variable YNS 

according to equation 3, what accounts to the general behavior of the data, i.e, the low 

frequency content. Next, in a step called dip-steering, we extract the local dip 

information at every sample position for each DR component in order to guide the 

attribute extraction along the reflectors. 

Considering that each derivative shifts the frequency spectrum to higher frequencies, 

the seismic wavelets become tighter as we move to higher order differences. Therefore, 

we can use a different analysis window honoring the peak frequency of each DR 

component to extract the similarity attribute, in a similar way as proposed by Lin et al. 

(2014).  In our case, we determine the peak frequency 𝑓𝑝𝑒𝑎𝑘 for each time sample inside 

a 400 ms interval, 200 ms above and below the key horizon. Then, we calculate the 

mean peak frequency 𝑓𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅ of each DR component to determine the half-window height 𝐻𝑔𝑎𝑡𝑒 for the similarity computation: 𝐻𝑔𝑎𝑡𝑒 = β2 𝑓𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅  ,                                                      (7) 
where β is a refinement parameter that can be used to adjust the actual window size, 

depending on data quality, thus giving a flexibility to the workflow. In our simulations, 

we set the β-value as 1, but it can be adjusted to greater values if signal-to-noise is 

judged to be too low or, equivalently, if the detected discontinuity is noise-influenced. 
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The final step is to compute the similarity for each sub-band and combine them in the 

RGBα color-space. The α-channel (transparency) of the RGBα color-space goes from 0 

(fully transparent) to 255 (fully opaque), so the lowest similarity or completely 

dissimilar feature appears as the background color, which is black in our case. The 

proposed workflow is summarized in Figure 4. 2. 

 
Figure 4. 2: Differential resolution similarity workflow. 
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RESULTS AND DISCUSSION 

 

We start our study by first analyzing the effect of applying the DR algorithm and 

how the frequency content varies within each DR component. Figure 4. 3 displays a 

random seismic section and the average spectra for the corresponding volume. The 

green line represents a key horizon (H1) in our study. Comparing the spectrum of the 

original (plus curve) and the R data (circle curve), we can see a considerable gain in the 

frequencies above 30Hz. Additionally, note how the spectrum of each DR component 

(solid lines) fit in the R spectrum. The high frequency gain seen in the R volume 

spectrum helps to delineate some subtle features not properly seem in the original data, 

as the features highlighted by the white arrows in Figure 4. 3a and Figure 4. 3b. By 

evaluating the subsequent sections of Figure 4. 3, we can track back which DR 

component or sub-band better illuminates a given feature. Because the derivatives 

operations make the seismic wavelets progressively tighter, the tuning effects migrate to 

thinner thickness, helping to discriminate reflections previously merged in the original 

data, as the one pointed by the white ellipses in Figure 4. 3. Thus, considering that each 

DR component highlights slightly different information, we can adjust the similarity 

computation accordingly and get a final image with improved discontinuity detection 

and delineation. 





77 

 

in the α-channel (see Figure 4. 4a). In other words, this suggests a small feature that is 

not detected by SYII and SYNS, thus appearing continuous in the red- and α-channels. 

 
Figure 4. 4: Differential Resolution Similarity computed for H1. (a-d) Similarity from 
YNS, YII, YIV, YVI, respectively; (e) RGBα color-stack of SYII, SYIV, SYVI and SYNS. 

For comparison, in Figure 4. 5 we show the similarity attribute computed directly 

using the original seismic volume, which we call base model, and by applying the 

proposed strategy. We also evaluate the effect of computing the similarity directly in the 

bandwidth extended volume, R, to demonstrate the effect of not considering the scale of 

each DR sub-band separately as we do in DRS. To make the comparison accordingly, 

for the computation of similarity attribute through the original and R volumes, the dip 

information is also extracted and the window size follows the peak frequency as 

described in equation 7, in accordance with what we do in DRS. 
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Figure 4. 5: Comparison of similarity attributes. Horizon H1 through (a) original 
seismic amplitude and the corresponding similarity attribute in (b); (c) Similarity from 
R; and (d) DRS.  

A particular improvement occurs in the definition of the features pointed by the red 

arrows. The similarity extracted from the R volume (Figure 4. 5c) enables the detection 

of different features slightly over the original data (Figure 4. 5b). However, through the 

DRS, we can see a much better detection and definition of features in Figure 4. 5d. The 

leftmost arrow, for example, shows a subtle discontinuity that is well captured in DRS, 

poorly seen in similarity from R, and not seen at all in the similarity from the original 

data. The red arrow with black outline in the center is another similar example that 

pinpoints to a karst structure which is clearly seen in the DRS. A vertical section along 

A-A’ profile in Figure 4. 5a crossing this structure through the base model and DRS 

data is shown in Figure 4. 6 and Figure 4. 7. Note that, although correlated, each DRS 

component illuminates and detects different structures. In the particular case of the 

pointed karst, its boundary is better detected in the SYII (Figure 4. 6c2), a sub-band 

dominated by approximately 40Hz in the amplitude data. Also note the discontinuities 

pointed by the blue arrows in the center column of Figure 4. 6. In the base model, such 

discontinuities are quite blurred. As we move down in the figure, we are able to see a 
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and is justified because of the intrinsic relationship between R and its components, 

which will impact the higher correlation between the attributes extracted from them. 

Note, for example, the high correlation between SYII and the similarity from R (c = 

0.94, Figure 4. 8b2), which occurs mainly because the corresponding amplitude data 

have almost the same dominant frequency (~40Hz, see Figure 4. 3g) and, consequently, 

the same window size is applied to similarity computation in both cases. This reinforces 

the importance of considering the scale of the feature we are dealing with and interested 

in. For the other sub-bands, their cross correlation drops close to 70%, suggesting that 

they are capturing different information. 

CONCLUSIONS 

 

If on one hand broadening the seismic spectrum is a logical step for seismic 

resolution improvement, on other hand we have to consider that such image is a 

composite of various geological structures which may have different scale ranges. Thus, 

if the scale of observation is not appropriate to the scale we are interested in, we risk an 

improper interpretation. An interpretation in a structurally complex setting, such as karst 

- or fault-related regions, can be very challenging to co-render different seismic 

attributes to highlight seismic features of interest. The scale range plays an important 

role in defining and identifying whether we are seeing a simple seismic feature or a 

subtle geologic structure. 

In this way, we have combined a seismic spectral enhancement method based on 

differential resolution and similarity attribute in order to extract dissimilar features at 

different spectral bands. Because each DR component has a different frequency content, 

we can use different analysis windows to evaluate the discontinuity at a given frequency 

range. The combination of the DRS components in the RGBα color space helps to 

group the sub-bands discontinuities, allowing a more detailed definition of the 

structures under investigation. 

Although more expensive in terms of processing time because of all steps needed in 

DRS, it proved to be a great improvement in discontinuity detection and delineation 

over the base model. Such improvement is especially important in complex scenarios 

where the discontinuities can vary in many different scales and be associated either with 

reservoir compartmentalization or migration pathways. 
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ABSTRACT 

Spectral decomposition plays a significant role in seismic data processing and is 

commonly used to generate seismic attributes that are useful for interpretation and 

reservoir characterization. Among several techniques that are applied to this finality, the 

complete ensemble empirical mode decomposition (CEEMD) is an alternative 

procedure that has proven higher spectral-spatial resolution than the short-time Fourier 

transform or wavelet transform, thus offering potential to highlighting subtle geologic 

structures that might otherwise be overlooked. In this paper we analyze a recent 

development in CEEMD, which we call improved CEEMD (ICEEMD), and its impacts 

on seismic attribute analysis commonly used in the empirical mode decomposition 

(EMD) framework. By replacing the estimation of modes by the estimation of local 

means, the mode mixing and the presence of noise in the modes are reduced. 

Application on a synthetic and real data demonstrates that ICEEMD improve the signal 

decomposition and the energy concentration in the time-frequency domain, producing a 

better understanding of the analyzed signal and, consequently, of the geology under 

investigation. 
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INTRODUCTION 

This paper aims to be the continuation and an update of Han and van der Baan 

(2013) work, which discuss the empirical mode decomposition method for seismic 

signal analysis and its suitability for seismic interpretation. The EMD (Huang et al., 

1998) is an effective technique for nonstationary and nonlinear signal analysis. The 

EMD is an entirely data-driven process, decomposing the analyzed signal into 

elementary amplitude/frequency modulated harmonics, called intrinsic mode functions 

(IMFs), or simply modes. The IMFs are based on direct extraction of the energy 

associated with various intrinsic scales, which means that each IMF has different 

frequency content. The first IMF corresponds to the highest frequency harmonic in the 

signal, with decreasing frequency content in the subsequent IMFs. In terms of seismic 

signals analysis, such characteristic potentially highlights different structural and 

stratigraphic information. If signal reconstruction is needed, it can be done by simply 

summing the IMFs plus a final monotonic trend. 

Due to the local nature of EMD method, it can produce oscillations with disparate 

amplitude in a mode or the presence of very similar frequency content in different 

modes. Such characteristic is known as mode mixing and can be viewed as a limitation 

of this method. To overcome this problem, some noise-assisted versions of EMD were 

proposed. Wu and Huang (2009) introduced the ensemble EMD (EEMD), which 

performs the decomposition over an ensemble of noisy versions of the original signal. 

Then, the IMFs are estimated simultaneously as the mean of all the correspondents 

IMFs. Although the EEMD aids better modes separation, different number of modes 

can be generated for different realizations of the noisy signal and the reconstructed 

signal does not perfectly reproduce the original one. In order to address these 

limitations, Torres et al., (2011) proposed the complete ensemble EMD with adaptive 

noise (CEEMD).  For the first IMF, CEEMD performs as in EEMD. Then, a unique 

signal residual is obtained and treated as a new signal which is again perturbed with 

noisy realizations. In this way, the modes are extracted sequentially for subsequent 

decomposition stage. The resulting decomposition is complete in the sense that it 

provides an exact reconstruction of the original data (Torres et al., 2011). 

Despite CEEMD can be considered an important improvement on EEMD and has 

encountered applications in many different fields, its modes can contain residual noise 

and the existence of spurious modes (Colominas et al., 2014) and, like other methods, it 
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still has limitations when the components are not well separated in the time-frequency 

plane. Although the residual noise can be canceled when summing the IMFs, thus 

leading to a reconstruction error about machine precision in CEEMD (Han and van der 

Baan, 2013), if we intend to use the modes separately as a preprocessing step for further 

applications (Matos and Marfurt, 2013; Du et al., 2015) or to compute instantaneous 

attributes, the presence of such noise in the IMFs can impact negatively.  

First introduced in the biomedical signal processing context, an improved version of 

CEEMD (here named as ICEEMD) (Colominas et al., 2014) tries to reduce the presence 

of residual noise in the IMFs while keeping or even improving the reconstruction ability 

and the “unmixed modes” characteristic inherent to CEEMD method. By estimating the 

local mean of the noisy versions of the target signal and defining the true mode as the 

difference between the current residue and the average of its local means to estimate the 

IMFs, the ICEEMD generates modes with less residual noise and better mode 

separation. This property can be useful for seismic attributes calculation using the IMFs, 

generating more interpretable structural and stratigraphic framework. In fact, seismic 

waveform and attributes values are the most commonly used inputs in classification 

process. Because, in general, seismic facies analysis is sensitive to noise when 

waveform and its attributes serve as the input data to clustering analysis, extracting 

modes with less noise can aid more physical meaning to them and impact positively on 

the classification process.  Additionally, time-frequency representation with good 

resolution is always desirable in a sort of geophysical application (Tary et al., 2014). 

This transformation can be done combining the modes of EMD (and variants) with 

complex signal analysis (Taner et al., 1979), which is known as Hilbert-Huang 

Transform (HHT) (Huang et al., 1998), or by any other time-frequency representation 

such as wavelet-based methods (Matos and Marfurt, 2013; Zhang et al., 2015). In this 

way, IMFs with less noise and well-conditioned in the time-frequency domain will be 

more physically meaningful, allowing a more realistic post-processing and a better 

understanding of the analyzed signal and, consequently, of the geology under 

investigation. 

In terms of exploration geophysics, the EMD-based techniques are mostly applied 

for signal feature extraction and for seismic denoising. Magrin-Chagnolleau and 

Baraniuk (1999) call attention to the potentiality of obtaining time-frequency seismic 

attributes based on EMD. Huang and Milkereit (2009) use the EEMD to analyze the 

depth varying spectrum function of well logs to simulate locally stationary 
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heterogeneous petrophysical models. Liu et al. (2015) use the EMD and instantaneous 

frequency calculation to access the sedimentary cycle patterns in seismic data. Bekara 

and Van der Baan (2009) use the EMD to attenuate random and coherent seismic noise 

by eliminating the first IMF in the frequency-offset (f-x) domain. Similar to them, Chen 

et al. (2014) use the EMD in f-x domain to design a predictive filtering scheme for 

random noise attenuation in complex scenarios. By smoothing the seismic data via 

EMD in the flattened domain, Chen et al. (2015) improve the continuity of reflections 

events for both pre- and post-stack seismic data. Han and van der Baan (2015) use the 

EEMD and an adaptive thresholding scheme for microseismic denoising. Du et al. 

(2015) combine the EMD and self-organizing maps (SOM) for seismic denoising and 

waveform classification.  

In this way, any improvement in the EMD-based techniques can impact positively 

this relatively new and vast field. Therefore, the present study has the main goal of 

evaluating the ICEEMD method in the context of seismic signal analysis and its impacts 

on attributes conventionally used in EMD-based framework, such as instantaneous 

amplitude, instantaneous frequency and peak frequency. The paper is structured as 

follow. First, we review the concepts of CEEMD and ICEEMD methods and some 

considerations regarding the instantaneous attributes calculation. Then, we have applied 

both techniques to a synthetic signal which has been previously used to evaluate the 

time-frequency representations from various methods (Tary et al., 2014). Finally, we 

have compared CEEMD and ICEEMD on a real seismic data from an offshore field in 

Campos Basin, Brazil.  

THEORY 

Brief recap on EMD and EEMD 
The EMD extracts the IMFs recursively, from the most oscillatory one to the final 

monotonic trend. The decomposition scheme is based on the identification of the local 

maxima and minima of the analyzed signal, where a spline is fitted to define the upper 

and lower envelope, respectively. Then, the mean envelope is subtracted from the initial 

signal and the process repeat on the residual signal until the mean envelope is close 

enough to zero in the entire time series.  This procedure is called sifting and defines the 

first IMF. The first IMF is then subtracted from the original signal and the same sifting 

process is applied to the residual signal to define the subsequent IMF. The stopping 
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criteria is reached when the extracted IMF has a small amplitude or becomes monotonic 

(Huang et al., 1998).  

One of the attractiveness of the EMD is that there is no need to define a basis 

function to decompose the analyzed signal, contrary to Fourier and S-transform (sines 

and cosines), or wavelet transform (mother wavelet), which unavoidably “colors” the 

signal decomposition and the time-frequency representation, influencing the 

interpretation of the signal properties.   

As stated earlier, EMD also suffers from its own limitations: mode mixing (one IMF 

containing different scales), mode splitting (the spread of one scale over different 

IMFs), aliasing (overlapping of IMF spectra caused by a sub-Nyquist nature of extrema 

sampling), and end-point artefacts (energy spreading due to the lack of extrema at the 

very beginning and end of a data) (Mandic et al., 2013). 

Trying to accomplish the aforementioned limitation, the EEMD (Wu and Huang, 

2009) is essentially a EMD combined with noise stabilization. The addition of white 

Gaussian noise artificially inserts new extrema points to the signal, enabling the EMD 

algorithm to evaluate all possible solutions in a finite neighborhood of the final answer. 

Thus, the IMFs are computed as the mean of each decomposition level through all the 

noise realizations. Although such procedure effectively reduces the mode mixing, it 

does not guarantee a perfect signal reconstruction. Additionally, there is no guarantee 

about the number of IMFs extracted for each noise realization, which complicates the 

calculation of the mean IMFs. Thus, the need of a more effective signal decomposition 

led to the development of different noise-assisted versions of the EMD. 

Complete ensemble empirical mode decomposition 
As our main goal is to evaluate and compare the CEEMD with its improved version, 

we will not further discuss the details and particularities of EMD and EEMD. The 

superiority of CEEMD over EMD and EEMD for seismic data analysis is demonstrated 

in Han and van der Baan (2013). 

Let´s consider 𝑥(𝑖) = 𝑥 + 𝑤(𝑖) as a noisy version of 𝑥 under the ith realization of 

white Gaussian noise 𝑤(𝑖), and 𝐸𝑘( . ) the operator which produces the kth mode 

through EMD. Thus, the first CEEMD mode is estimated as: 

𝐼𝑀𝐹1 = 1𝐼  ∑𝐸1(𝑥 +  𝜀𝑤𝑖)𝐼
𝑖=1 ,                                                     (1) 
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where I is the number of realizations and 𝜀 is a fixed percentage of the injected 

Gaussian white noise. Then, the first residue 𝑟1 is calculated as: 𝑟1 = 𝑥 − 𝐼𝑀𝐹1.                                                                   (2) 
Now, 𝑟1 plus different noise realizations are treated as an ensemble of the new 

signals and the first EMD mode is extracted from each noisy 𝑟1. Then, the second 

CEEMD mode is estimated as the average of these modes: 

𝐼𝑀𝐹2 = 1𝐼  ∑𝐸1(𝑟1 +  𝜀𝐸1(𝑤(𝑖)))𝐼
𝑖=1 ,                                                     (3) 

and the second residue is calculated as 𝑟2 = 𝑟1 − 𝐼𝑀𝐹2 .  In this way, the IMFs are 

extracted sequentially, contrary to EEMD. This procedure continues until a stopping 

criterion is reached, usually when the last residue R has no more than two extrema and 

can be viewed as a monotonic trend. Thus, the signal reconstruction can be done by 

simply stacking the K-IMFs and the final residue R: 

𝑥 =  ∑ 𝐼𝑀𝐹𝑘 + 𝑅.                                                               (4)𝐾
𝑘=1  

Improved Complete ensemble empirical mode decomposition 
Let us recall the operator 𝐸𝑘( . )  and define the operator which produces the local 

means of the signal as 𝑀( . ). By recognizing that 𝐸1(𝑥) = 𝑥 −𝑀(𝑥) and defining 〈 . 〉 
as the average of different realizations, the first CEEMD mode (equation 1) can be 

rewritten as: 

 𝐼𝑀𝐹1 = 〈𝐸1(𝑥(𝑖))〉 =  〈𝑥(𝑖) −  𝑀(𝑥(𝑖))〉 =  〈𝑥(𝑖)〉 − 〈𝑀(𝑥(𝑖))〉              (5) 
 

By estimating only the local means and subtracting it from the original signal, we 

can reduce the presence of noise in the modes, making them more feasible for further 

processing. In this way, the estimation of modes is replaced by estimation of local 

means and first ICEEMD mode is defined as: 𝐼𝑀𝐹1 =  𝑥 − 〈𝑀(𝑥(𝑖))〉                                                        (6)    
In the original formulation of CEEMD, the first IMF is calculated as the average of 

first modes of signal plus different white noise realizations, exactly as in the EEMD. 

The main difference is that, for CEEMD, a unique residue is calculated (equation 2) and 

the subsequent components are extracted in a deflationary way, contrary to EEMD 
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which extracts all the IMFs and then averaging each IMF. Although this elegant 

solution generates better performance of CEEMD over EEMD, a strong overlap occurs 

for the successive CEEMD modes. For example, to extract IMF2, we decompose 

different versions of 𝑟1 +  𝜀𝐸1(𝑤(𝑖)) (see equation 3). Thus, a better mode separation 

can be achieved if we consider to use 𝐸𝑘(𝑤(𝑖)) to extract the kth mode instead.  

Another point is that, because the energy of the noise in the kth residue (for k>1) is 

only a fraction of the noise injected in the beginning of the algorithm, the signal-to-

noise ratio (SNR) between added noise and the residue increases with k. Thus, we can 

set our noise as k-level dependent  𝛽𝑘 = 𝜀𝑘 𝑠𝑡𝑑(𝑟𝑘).   
Thus, the ICEEMD algorithm is structured as follow: 

1) Calculate by EMD the local means of I noise realizations of 𝑥(𝑖) = 𝑥 + 𝛽0𝐸1(𝑤(𝑖)) to obtain the first residue 𝑟1 = 〈𝑀(𝑥(𝑖))〉. 
2) For k=1, calculate the first mode as: 𝐼𝑀𝐹1 = 𝑥 − 𝑟1 
3) Calculate the second residue as the average of local means of  𝑟1 + 𝛽1𝐸2(𝑤(𝑖)), 

and define the second mode 

as: 𝐼𝑀𝐹2 = 𝑟1 − 𝑟2 = 𝑟1 − 〈𝑀 (𝑟1 + 𝛽1𝐸2(𝑤(𝑖)))〉. 
4) For k=3,…, K, calculate the kth residue as: 𝑟𝑘 = 〈𝑀 (𝑟𝑘−1 + 𝛽𝑘−1𝐸𝑘(𝑤(𝑖)))〉,  
5) Define the kth mode as: 𝐼𝑀𝐹𝑘 = 𝑟𝑘−1 − 𝑟𝑘 and go to step 4 for the next k. 

Instantaneous Frequency 
The frequency content of any signal plays a fundamental role in the understanding of 

the signal characteristics. For seismic data, such information is very important for 

processing and interpretation. In this way, in order to get an in-depth view on how the 

IMFs behaves for the two methods, we evaluate the dominant frequency from each 

IMF. Among many different methods for this finality, the instantaneous frequency (IF) 

has been widely used due to its fast calculation and superior vertical resolution. 

Although IF is a very common used concept in signal analysis, there are several 

different approaches to compute it (Huang et al., 2009) and new approaches are 

continuously developed (Huo, 2015), not being the main scope of the present work to 

contrast and compare those different techniques. In general, for EMD-based methods, 

the IF is computed using a combination of complex signal analysis through Hilbert 

transform of constituents IMFs and a differentiation of the estimated phase 𝜃(𝑡). For 

any signal 𝑥(𝑡) with its Hilbert transform 𝑦(𝑡), the analytic signal 𝑧(𝑡) is given by: 
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𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡)  = 𝑅(𝑡) 𝑒𝑥𝑝[𝑖𝜃(𝑡)],                                      (7)  
where 𝑅(𝑡) and 𝜃(𝑡) refer to the instantaneous amplitude and instantaneous phase, 

respectively. Instantaneous amplitude is also known as reflection strength or trace 

envelope and can be defined as: 𝑅(𝑡) =  √𝑥2(𝑡) + 𝑦2(𝑡).                                                       (8) 
The IF is mathematically defined as the first derivative of 𝜃(𝑡) and, in order to 

prevent ambiguities due to phase unwrapping, a more stable form can be obtained by: 𝜔𝑥(𝑡) =  12𝜋 𝑑𝜃(𝑡)𝑑𝑡 =  12𝜋 𝑥(𝑡)𝑦′(𝑡)  − 𝑥′(𝑡)𝑦(𝑡)𝑥2(𝑡) + 𝑦2(𝑡) ,                        (9) 
where prime denotes derivative with respect to time. 

Equations 8 and 9 are used to instantaneous amplitudes and frequencies computation 

for each IMF, producing a very sparse time-frequency representation of the analyzed 

signal. The complete operation is broadly known as Hilbert-Huang Transform (HHT). 

Individual frequency components analysis remains possible.  In a similar way as 

proposed by Marfurt and Kirlin (2001), the mean-frequency attribute summarizes the 

information contained in a spectral decomposition to generate the isofrequency 

volumes. 

Application 

Synthetic data 
In this section, we compare CEEMD and ICEEMD to evaluate their performance for 

a synthetic signal 𝑠 (𝑡) (Figure 5.1) composed by: two spectral harmonics with 35 and 

15Hz (s1 and s2), one frequency-modulated harmonic of 65Hz (s3), one gliding 

harmonic between 15 and 155Hz (s4), and one Morlet atom with 113Hz as central 

frequency (s5). This signal has 8000 samples, recorded at 800 samples per second and 

have been previously evaluated in Tary et al. (2014), where specific equations to create 

it can be found.  
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Figure 5.5: Reconstructed signal and error for (a-b) CEEMD and (c-d) ICEEMD, 
respectively. 

Real data 
Case study 1: 

The next study we carried out is the analysis of the seismic trace on the common mid 

point (CMP) 81 from the Han and van der Baan (2013) work (Figure 5.6a). Because this 

signal is already analyzed by the EMD point of view, this approach aims to facilitate 

and promote a fairer comparison between the two methods. The same parameters are 

used for them, 50 realizations of 10% Gaussian white noise. Usually, it is useful to 

apply a 2-D Gaussian smoothing filter in order to better display the time-frequency 

representation. We have used a 5x5 Gaussian filter to this finality. 

  



98 

 

 

Figure 5.6: Analysis on CMP 81 seismic trace taken from Han and van der Baan (2013). 
(a) seismic signal; (b) reconstruction error; (c-d) time-frequency representation through 
HHT using CEEMD and ICEEMD; (e-f) zoom in the highlighted box for both 
techniques. 

The reconstruction error is again equally accepted for both methods, although it is 

little less intense the for ICEEMD (Figure 5.6b). The seismic trace on CMP 81 crosses a 

Cretaceous meandering channel at 0.42 s, where a strong anomaly is evident around 

40Hz in both methods (Figure 5.6c and Figure 5.6d). By zooming around this area 

(Figure 5.6e and Figure 5.6f) one can note a smoother and more consistent IFs detection 

and delineation for ICEEMD. Additionally, note the IFs crossing against each other 

around 0.45s and 0.50s for CEEMD, which does not occur for the ICEEMD. This is 

especially true in this zoomed area but also occurs in others time intervals, for example 

around 0.7s.   

Case study 2: 

We have applied both decomposition methods for a real seismic data from an 

offshore field in Campos Basin, Brazil. In seismic data particularly, it is hard to identify 

the physical meaning of the lasts components. Specifically, after IMF4, the components 

are at the very low end in the frequency spectrum (<10Hz in our 4ms sampled data). In 

this way, in order to better evaluate, compare and analyze the methods in our seismic 

data, we grouped the components from IMF4 until the final one, in a similar way we did 

for the synthetic signal case. This is additionally justified by mostly two reasons: (i) 
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because the decomposition is directly related to the signal complexity and may result 

into an unknown number of components, if we intend to use them for seismic attributes 

calculation, it is interesting to have a fixed number of components; (ii) the number of 

components will impact directly the size on disk and can unnecessarily overload both, 

machine and the interpreter, with no geological and physical gain.  With this in mind, 

the components extracted using CEEMD and ICEEMD are shown in Figure 5.7 and 

Figure 5.8.  

 

Figure 5.7: CEEMD components. (a-d) IMF1-4 with corresponding frequency spectrum 
(inset). 
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Figure 5.8: ICEEMD components. (a-d) IMF1-4 with corresponding frequency 
spectrum (inset). 

The most evident difference between the two methods is related with IMF2 (Figure 

5.7b and Figure 5.8b). In the CEEMD, IMF2 is quite obscure in the second half of time 

direction and its geological meaning is not straightforward. Additionally, the lateral 

continuity is considerable impaired, mostly in IMF2 but well expressed in the IMF3 too.  

A good way to verify the main differences in the IMF2 from the two methods is by 

evaluating the cosine of instantaneous phase attribute (Figure 5.9). Barnes (2007) call 

attention for some redundant attributes which does not provide any interpretational gain 

over one another. Cosine of instantaneous phase, for example, can be seen as a strong 

amplitude gain or an amplitude normalization, which can be considered as a processing 

rather than an attribute. Basically, such processing removes the amplitude contrast, 

retaining the amplitude of peaks and troughs in their position and pushing the weak 

events to exhibit equal strength. Such processing highlights the content and 

characteristics intrinsic in the IMFs. Note the expressive artifacts in the left side below 

the horizon H1 in the CEEMD-based processing, which does not occur for the 

ICEEMD. Figure 5.9c and Figure 5.9d show a zoomed area highlighted by the rectangle 

in Figure 5.9a which exemplifies such observation. By this point of view, we can obtain 

a more stable and consistent decomposition by the ICEEMD.   

 

Figure 5.9: Cosine of instantaneous phase of IMF2 from (a and c) CEEMD and (b and 
d) ICEEMD. The highlighted box in (a) is the zoomed area. 
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As an example of the time-frequency distribution through CEEMD and ICEEMD, 

we picked a seismic trace pointed by the red arrow in Figure 5.10a. At the first glance, 

the time-frequency distributions look like the same (Figure 5.10c and Figure 5.10d). 

However, a careful inspection shows some considerable differences. In Figure 5.10e and 

Figure 5.10f we can see in detail the behavior of IFs for each method. The colormaps are 

adjusted to emphasize the differences. In the Figure 5.10e, the IF starting in 1.1s and 15Hz 

is well behaved along the entire time interval in the ICEEMD-based method, with little 

noise influence on it and consistent amplitude value, contrary to CEEMD-based IF, 

where this component is quite noisy and considerable discontinuous.  The low frequency 

component starting around 7 Hz in the ICEEMD peak frequency is continuous and smooth 

along the time entire interval displayed in Figure 5.10e. For CEEMD, this component is 

poorly detected. A similar analysis can be verified in Figure 5.10f, where the most 

expressive component is well defined in ICEEMD and very segmented and noisy in 

CEEMD. 
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Figure 5.10: Instantaneous spectrum on seismic signal. (a) seismic section; (b) seismic 
trace with its time-frequency distribution through (c) CEEMD and (d) ICEEMD; (e-f) 
zoom in the highlighted areas in (d). 

The peak frequency attribute, which is the frequency with the largest amplitude 

among all IMF components, captures the information from the spectral decomposition, 

generating a single attribute which is related to tuning effects at varying thicknesses. 

Figure 5.11 shows the peak frequency overlaid onto the original seismic data. Because it 

varies rapidly, spatially and temporally, the interpretation of EMD-based peak 

frequency seismic attribute is known to be challenging (Han and van der Baan, 2013). 

The highlighted white boxes show some regions where we can verify a higher energy 

concentration and less noise-affected peak frequency in ICEEMD over CEEMD. The 

box I, for example, shows that this energy spreading in CEEMD mix two neighbor 

transitions (Figure 5.11c), while in ICEEMD they are well separated. The arrow in the 

box II shows a good high-frequency energy concentration exactly in the layer transition 

in ICEEMD, while in CEEMD-based peak frequency, the energy spreads up in its left 
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side, indicating a possible noise-related pattern (Figure 5.11).  Similar pattern can be 

seen in the up-pointed arrow. Overall, the peak frequency attribute obtained by the two 

methods are quite similar. Their cross-correlation is relatively high (r = 0.87) and the 

differences relies mainly in the 5-35Hz band of ICEEMD-based peak frequency which 

spread up to 80Hz in the CEEMD (Figure 5.11e, green box). Therefore, a noiseless and 

a lower energy spreading in the peak frequency is achieved by ICEEMD, which can 

lead to an improved resolution and better definition of the frequency inherent to a 

specific layer. 

 

 

Figure 5.11: Peak frequency attribute computed from (a) CEEMD; (b)ICEEMD 
overlaid onto the original seismic data. (c) and (d) is the zoomed areas I and II in (a); (e) 
cross-correlation between CEEMD- and ICEEMD-based peak frequency 

It is important to emphasize that, by definition, the IF is only physically meaningful 

when 𝑧(𝑡) just has one single frequency component present at any time instant. Because 

we have as many IF as the number of IMF, the peak-frequency will capture the most 

expressive IF between all IMFs. Therefore, if 𝑧(𝑡) consists of two frequency 

components with equal amplitudes, the IF will be the mean of the two frequencies, 

consequently smoothing the peak-frequency attribute, possibly merging and not 

resolving close interfaces (compare Figure 5.11c). If the amplitudes are not equal, the IF 

will vary periodically with the difference frequency of the two. As the number of 
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components increase, the behavior turns more and more chaotic and noisy (compare 

Figure 5.11d).  

Next, we extract the 15, 30 and 50Hz frequency components through both techniques 

(Figure 5.12). For comparison purpose, we also evaluate those frequencies slices from 

short-time Fourier transform using 148ms (37 samples). The differences between 

Fourier- and EMD-based methods are evident. As already noticed in the Han and van 

der Baan work (2013), a much sparser output is achieved by EMD-based results, which 

resolves the spectral characteristics of the various reflections more clearly than the 

short-time Fourier. Regarding the isofrequency components for CEEMD and ICEEMD 

methods, the differences are not straightforward. Their cross-correlation are 0.86, 0.95 

and 0.97 for the 15Hz, 30Hz and 50Hz components, respectively. Therefore, in this 

particular case both methods are equally accepted for this specific attribute.  

 

 

Figure 5.12: Isofrequency sections through short-time Fourier transform (top), CEEMD 
(center) and ICEEMD (bottom). (a1-a3) 15Hz; (b1-b3) 30Hz; and (c1-c3) 50Hz.
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CONCLUSIONS 

In this work we have evaluated and compared the CEEMD and a recent proposed 

development of it, called ICEEMD. Conventional attributes calculated in the EMD-

based framework have been also evaluated. In our synthetic signal case, the differences 

and the superiority of ICEEMD over CEEMD are quite evident. The IMFs from 

ICEEMD are better separated with less noise occurrence, less mode-mixing and mode-

splitting, which also improve its time-frequency representation. In our first example on 

a real seismic trace, the TF distribution shows a more consistent IF detection and 

delineation for ICEEMD. Additionally, several crossing IFs are detected in the CEEMD 

case, which suggests a poorer mode separation.    In the second example of a real 

seismic data application, the differences are not straightforward. The main difference 

occurs in the second IMF. The cosine of phase turns the presence of noise and non-

geological artifacts quite evident in IMF2 from CEEMD. The lateral continuity from 

IMF2 and IMF3 are considerable impaired when compared with ICEEMD ones. There 

is no physical or geological reason to justify this gaps and “jumps” for neighbors traces. 

The time-frequency representation and the derived attributes are quite similar, with a 

subtle improvement in energy concentration and less noise interference in the ICEEMD. 

Regarding the isofrequency slices, they are equally accepted. 

Considering the stated findings and that both methods are equivalent in time-

processing and parameters needed, we understand that the ICEEMD would be more 

suitable for seismic signal analysis and attributes calculation than CEEMD. One 

important aspect that must be taken in account in the noise-assisted versions of EMD is the 

computational complexity. The number of noise realizations together with the sifting 

process turn such approach considerable computational expensive. 
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CHAPTER 6: CONCLUSIONS    

Since the first classical paper on seismic attributes from Taner et al. (1979), the 

subject of attribute extraction and analysis has fascinated and conducted the geophysical 

interpreters. The work from Partyka et al. (1999) on interpretational aspects of spectral 

decomposition has opened a new door to the exploration community. Together with the 

advent of interpretation workstation and visualization systems, the establishment of 

these powerful 3D algorithms has changed remarkably the methodologies applied in 

seismic interpretation to extract hidden interpretive information from seismic volumes.  

In this dissertation I examine some limitations of established techniques in the 

literature and propose new ideas and workflows based on the spectral characteristic of 

the seismic data for a more in depth interpretation of reservoir geometry and its physical 

aspects. 

In chapter 2, I evaluate the complexity on handling the iso-frequency volumes 

generated by spectral decomposition. Typically, an interpreter might generate 80 or 

more spectral magnitude and phase components covering the usable seismic bandwidth 

at 1-Hz intervals, presenting a challenge in conveying the meaning of these data in a 

concise and interpreter-friendly way. The most common means of displaying these 

components is simply by scrolling through them to determine manually which single 

frequency best delineates an anomaly of interest. More sophisticated techniques try to 

overcome such empiricism by using mathematical approaches, such as the average of 

three non-overlapping spectral bands (Stark, 2006); the use of three predetermined basis 

functions, producing a more continuous and overlapped spectral bands (Liu and 

Marfurt, 2007); or the use of projections in a multidimensional space (PCA) (Guo et al., 

2009). In this way, by going beyong the Gaussian assumption and taking advantage of 

higher order statistics to find a new set of variables, I propose the use of ICA to 

generate a set of independent spectral components to get a detailed image of the geology 

under investigation. Some remarks on this technique are that we could (i) better 

suppress the acquisition foot print; (ii) better delineate the channel system in the studied 

area; (iii) further analysis on different approaches for dimensionality reduction should 

be studied; (iv) a physical and geological guide for choosing the extracted ICs can 

enrich the technique. 

An attempt in such direction is made in chapter 3, where we evaluate the ICs jointly 

with others geometrical (incoherence and fault moment filter) and physical (sweetness) 
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attributes. The combination of such attributes allowed us (i) to map the three main 

discontinuities fault system in the field; (ii) to delineate the reservoir into four main 

architectural elements; (iii) estimate the predominant facies for each architectural 

element; (iv) to correlate structurally the studied field with the JC in Bahamas, 

corroborating or even improving the thesis of them being analogous system. 

In chapter 4, I propose the use of the DR algorithm, a technique for spectral 

enhancement and resolution improvement based on derivatives of the seismic data, as a 

pseudo-filter to extract dissimilar features at different spectral bands. Considering that 

the broadband data is a composite of various geological features which may have 

different scale ranges, the use of such pseudo-filter jointly with similarity attribute aims 

to capture the discontinuities intrinsic in each spectral band. Remarks from this 

technique are: (i) a different view using the Fourier properties allowed us to enrich the 

mathematical understanding of the technique; (ii) the trace normalization, which uses 

the median value of the absolute trace, should be further analyzed by means of different 

measurements such as the rms energy or other physical property (iii) a better definition 

on the smoothed component YNS should be evaluated in order to cover the “blindness” 

around 25Hz (Figure 4. 3); (iv) overall, a more detailed definition of the faults and 

karsts structures is achieved. 

In chapter 5, I evaluate the ICEEMD, a recent proposal of a noise-assisted version of 

EMD, and compare it with the CEEMD to time-frequency analysis and seismic 

attributes commonly used in the EMD-framework. In the synthetic signal analysis, my 

observations are: (i) the IMFs from ICEEMD are better separated (less mode-mixing) 

with less noise occurrence; (ii) as consequence, the IF detection and definition are more 

consistent and the time-frequency representation is also improved. For the first real 

seismic data example, (i) the TF distribution and the IFs detection and delineation are 

more consistent for ICEEMD, with less crossings IFs than the CEEMD, which suggests 

a better mode separation.  In the second real seismic data example, the differences are 

not straightforward. In this case, my analysis shows mainly that (i) the iso-frequency 

components from both techniques are quite equivalent and are equally accepted. When 

compared with the ones obtained by FFT, they have higher time-frequency resolution, 

but the associated peak-frequency attribute varies more rapidly, spatially and 

temporally, rendering the interpretation more challenging; (ii) despite their high cross-

correlation (r=0.87), the peak-frequency attribute is slightly more concentrated by 

means of ICEEMD, which can lead to an improved resolution and better definition of 
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the frequency inherent to a specific layer; (iii) the most expressive difference between 

the two EMD-based methods is related to the IMF2, which is quite obscure in the 

second half in time direction and the lateral continuity is considerable impaired for 

CEEMD. The cosine of instantaneous phase emphasizes such expressions. No physical 

or geological element justify these discontinuities for neighbors traces. Therefore, 

considering the stated findings and that both methods are equivalent in time-processing 

and parameters needed, I understand that ICCEMD would be the reference method for 

the noise-assisted variation of EMD. One important aspect that must be taken in account 

in the noise-assisted versions of EMD is the computational complexity. The number of 

noise realizations together with the sifting process turn such approach considerable 

computational expensive. 
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