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RESUMO 
 

Paleossolos são representados por um corpo geológico que se encontra nas sucessões 

sedimentares e corresponde a um solo enterrado coberto por rochas ou por outros paleossolos 

mais recentes. A Formação Marília (Grupo Bauru) é constituída por uma porção relevante de 

perfis de paleossolos, em alguns afloramentos a espessura dos paleossolos supera 95% da 

sucessão. A alternância entre os processos paleopedogenéticos e sedimentares é um dos 

fatores fundamentais de controle para o desenvolvimento dos paleossolos. Esta pesquisa tem 

como objetivo a interpretação paleoambiental da porção superior do Grupo Bauru na região 

dos municípios de Marília e Echaporã do estado de São Paulo. Durante o trabalho de campo 

os paleossolos foram identificados e separados dos sedimentos mediante observação e 

descrição das estruturas pedogenéticas, horizontes, marcas  de  raízes, mosqueamentos e 

ausências  de  estruturas sedimentares. Os sedimentos foram identificados mediante a 

presença de estruturas sedimentares. Análises geoquímicas possibilitaram caracterizar os 

diferentes  tipos de horizontes como Bw, Bk e Btk, o material de origem, hidrólise, 

calcificação e lixiviação. Os perfis de paleossolos analisados indicam condições ambientais de 

clima semiárido, com pouca vegetação. A maioria dos perfis de paleossolos são poucos 

desenvolvidos e possuem estruturas incipientes, alguns outros possuem estruturas 

pedogenéticas mais evidentes e contém um bom grau de desenvolvimento. O paleoambiente é 

identificado como clima semiárido, caracterizado pela alternância cíclica temporal entre 

depósitos subaquáticos não confinados.  

 

Palavras-chave: paleossolos, sedimentos, paleoambiente, Grupo Bauru. 

 

 

 

 

 

 

 

  



 

ABSTRACT 
 

Paleosols are represented by a geological body that is found in sedimentary successions and 

corresponds to a buried ground covered by rocks or other newer paleosols. The Marília 

Formation (Bauru Group) is composed of a relevant portion of paleosols profiles, in some 

outcrops of paleosols the thickness exceeds 95% of the sequence. Switching between 

paleopedogenetics and sedimentary processes were fundamental in the development of 

paleosols. This research aims to make paleoenvironmental interpretation of the upper portion 

of the Bauru Group in the area of the cities of Marilia and Echaporã the state of São Paulo, 

analyzing the builders factors of geological bodies. During fieldwork for the identification and 

description of the structures of paleosols, horizons, roots traces, mottling. sedimentary 

structures of absences. The sediments were identified by the presence of sedimentary 

structures. Geochemical laboratory made it possible to characterized the different types of 

horizons as Bw, Bk and Btk, provenance, hydrolysis, calcification and leaching. The analyzed 

profiles indicate conditions in an environment with semiarid climate, with little vegetation. 

Some profiles are few developed and have few incipient structures, others have more obvious 

structures and contains a good level of development, in all. The paleoenvironment is 

identified as desert, with semi-arid climate, characterized by temporal cyclical alternation 

between unconfined underwater. 

 

Keywords: paleosols, sediments, paleoenvironment, Bauru Group. 
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1. ORGANIZAÇÃO DA DISSERTAÇÃO 

 

 A presente dissertação é composta por uma introdução sobre os paleossolos seguida 

por uma fundamentação teórica, descrição dos objetivos e dos métodos utilizados e um 

parágrafo dedicado ao contexto geológico da área de estudo.  

 Logo em seguida é apresentado um artigo elaborado para a submissão em revista 

científica arbitrada. No artigo é descrito e discutido uma seção com cinco perfis de 

paleossolos alternados com depósitos sedimentares. No texto são apresentados e discutidos os 

fatores que deram origem a tais paleossolos.  

 Posteriormente é apresentado em anexo outro artigo no qual o autor dessa dissertação 

colaborou com a sua realização. 
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2. INTRODUÇÃO 
 

 Paleossolos são classificados como solos de uma paisagem pretérita não mais existente 

nos dias atuais. Eles podem preservar interessantes registros de determinados períodos como o 

clima, temperatura, geomorfologia, fauna e flora, além de ser bons indicadores para análises 

estratigráficas constituindo superfície discordâncias. Em geral, os paleossolos são um 

importante objeto de estudos para auxiliar a compreensão dos processos evolutivos da Terra. 

Nas sucessões sedimentares os paleossolos representam uma fase de estabilidade da superfície 

deposicional. A indisponibilidade de sedimentos aliado com o desenvolvimento de uma 

cobertura vegetal, podem levar à ausência de processos de sedimentação e de erosão e formar 

processos pedogenéticos. Os principais paleossolos observados na porção setentrional do 

Grupo Bauru são Aridissolos, Alfissolos, Entissolos e Vertissolos (Basilici et al. 2009, Dal' 

Bó et al. 2010). Os primeiros dois representam longas interrupções na sedimentação, 

enquanto Entissolos, menos difundidos, representam curtos períodos de interrupção da 

sedimentação (Basilici et al. 2009, Dal' Bó et al. 2010). Os Vertissolos não dependem do fator 

tempo como os outros tipos. 

 A Bacia Bauru se formou a partir do processo termo-litostático ocorrido após 

acúmulo de quase 2.000 m de derrames basálticos da Formação Serra Geral, essa bacia 

sedimentar ocupa uma área de aproximadamente 370.000 km², se distribuindo no centro-oeste 

do estado de São Paulo, partes dos estados de Mato Grosso do Sul, Mato Grosso, Goiás, 

Minas Gerais e Paraná (Fernandes & Coimbra 1996, Riccomini 1997, Fernandes & Coimbra 

2000). 

Na referida bacia é possível encontrar diversos afloramentos de paleossolos, em 

especial na unidade litoestratigráfica denominada Formação Marília, que constitui  a parte 

superior do Grupo Bauru. Em alguns locais os perfis de paleossolos representam cerca de 

90% da sucessão sedimentar. Paleossolos podem ser representados por um corpo geológico 

que se encontra nas sucessões sedimentares e corresponde a um solo enterrado coberto por 

rochas ou por outros paleossolos mais recentes (Catt 1990, Retallack 2001). Nos últimos anos 

veem aumentando os estudos sobre paleossolos no Brasil, em especial na porção superior do 
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Grupo Bauru, no entanto ainda são poucos os trabalhos relacionados à paleopedogênese 

aliados a sedimentação tanto a nível internacional como a nível nacional. O presente trabalho 

pretende contribuir com os conhecimentos aplicando estudos de campo e geoquímicos, com o 

intuito de realizar uma reconstrução paleoambiental e paleoclimática do Grupo Bauru na área 

de estudos. As características sedimentológicas e paleopedogenéticas das unidades 

litoestrátigráficas do Grupo Bauru possuem informações paleoambientais que podem auxiliar 

em estudos do Cretáceo Superior sendo possível inferir aspectos como paleoprecipitação, 

paleotemperatura, comunidades biológicas que viveram em tal ambiente a fim de reconstituir 

o paleoambiente e poder realizar estimativas da evolução climática e geológica na parte 

centro-sul do Brasil. 
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3. FUNDAMENTAÇÃO TEÓRICA 
 

Na Bacia Bauru já é possível encontrar alguns trabalhos referentes à gênese dos 

paleossolos em climas áridos e semiáridos da formação Marília e seu grau de 

desenvolvimento aliado com a sedimentação (Dal Bó 2009, Basilici 2010). 

Para desenvolver um bom grau de estruturação interna (agregados, cutículas, 

horizontes, etc.) um paleossolo precisa formar-se, em geral, entre um período de 103 a mais de 

106 anos. Durante este longo período de tempo o paleossolo se comporta como um sistema 

aberto, que tem a possibilidade de registrar todas as condições ambientais que ocorreram 

acima ou pouco abaixo da sua superfície e as relativas mudanças. Além disso, as relações de 

interestratificação vertical e horizontal entre paleossolos e sedimentos podem dar importantes 

informações de variações regionais ou locais das condições paleoambientais. Muitas das 

sucessões sedimentares formadas em ambientes continentais são caracterizadas por uma 

interestratificação vertical e horizontal de paleossolos e sedimentos. Os paleossolos se 

desenvolveram nos sedimentos apenas depositados quando condições climáticas, 

geomorfológicas, biológicas, de estabilidade topográfica (ausências de deposição e erosão) e 

temporais o permitiram (Kraus 1999). 

Os paleossolos podem ser modificados por animais, penetrado por raízes e outras 

alterações como o soterramento por deposição sedimentar e erosão, com isso as marcas do 

registro sedimentar original são progressivamente destruídas. Algumas estruturas 

sedimentares podem ser preservadas em um paleossolo pouco desenvolvido ou nos seus 

horizontes inferiores (Retallack 2001). Antes de o paleossolo ser totalmente soterrado seus 

horizontes superiores frequentemente são truncados por erosão, isso pode ocorrer devido ao 

fato dos horizontes superiores serem frágeis e suscetíveis a erosão subaquosa ou eólica (Catt 

1990). 
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Dixon (1994) afirma que solos áridos exibem uma variedade de características físico-

químicas, biológicas e morfológicas distintas. Entre estes estão a presença de superfícies de 

cascalho e o desenvolvimento de crostas superficiais. Esses solos são caracterizados pela 

formação de uma diversidade de horizontes subsuperficiais diagnósticos, incluindo câmbicos, 

argilosos, petrocálcicos, gipsicos, petrogipsicos, natricos, salicos e horizontes duripan . 

 Solos áridos são tipicamente finos, dominados por sais e possuem pouca matéria 

orgânica. Os processos responsáveis pelo desenvolvimento destes solos são distintos e 

também resultam no desenvolvimento de um conjunto de características morfológicas 

diferenciadas (Dixon 1994). 
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4. OBJETIVOS 
 

Essa dissertação de mestrado teve como objetivo principal realizar uma interpretação 

dos mecanismos que permitiram a construção dos corpos geológicos e dos paleoambientes 

que constituem a porção superior do Grupo Bauru (Membro Echaporã) no estado de São 

Paulo a partir de informações de estudos de paleossolos e o processo de sedimentação. 

Os objetivos secundários foram a realização, a análise e interpretação dos paleossolos 

e depósitos sedimentares a partir de: 

 Identificar, caracterizar e classificar os paleossolos. 

 Identificar os processos controladores da evolução dos paleossolos: clima, 

tempo, material parental, associação biológica, morfologia, aporte sedimentar e 

erosão. 

 Caracterizar os sedimentos e interpretar os processos deposicionais e os fatores 

de controle das fácies sedimentares. 

 Definir as inter-relações entre os paleossolos e sedimentos. 
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5. MÉTODOS 

 

Para a realização dos estudos foram necessárias etapas de pesquisas bibliográficas, 

trabalhos de campo, trabalhos laboratoriais e elaboração dos dados obtidos. 

1. Pesquisas bibliográficas foram realizadas em busca de temas e de assuntos 

sedimentológicos e paleopedológicos relativos a sucessões sedimentares similares a área de 

estudo, assim como trabalhos específicos da área. 

2. Foram realizados três trabalhos de campo nos respectivos meses de Janeiro, 

Julho e Agosto de 2015 para aquisição de dados, identificação e descrição de sedimentos e 

paleossolos nas áreas de estudos escolhidas.  

2a. Na primeira fase de campo foi necessário o reconhecimento de perfis de 

paleossolos nas sucessões estratigráficas medidas, em particular, foram distintos paleossolos 

de depósitos. Formas macroscópicas  típicas dos paleossolos foram usados para uma 

apropriada distinção. Entre os aspectos típicos foram procurados: marcas de raízes, agregados 

(peds), películas (cutans), níveis ou faixas com diferentes características cromáticas, 

concentração de minerais em nódulos, mosqueamentos (mottling) e bioturbações. 

2b. Na segunda fase de campo os perfis de paleossolos foram descritos e medidos 

com análise de detalhe do topo para a base da seção estudada. Os dados de paleossolos foram 

coletados de acordo com os manuais de paleopedologia (Catt 1990, Retallack 1991, 1994, 

2001) e pedologia (Dos Santos et al. 2005, IBGE 2007), excluindo devidamente todos os 

aspectos mascarados ou alterados pela diagênese. Os dados adquiridos durante esta fase são: 

granulometria (usando comparadores de bolso); cor (a definição é feita mediante a Carta de 

cores de Munsell); presença e tipo de películas (cutans); estrutura dos paleossolos, presença, 

tipo e dimensões de agregados (peds); presença, tipo, dimensões e concentração de nódulos 

ou concreções; concentrações de CaCO3 com o auxílio de HCl à 10%; tipo, forma e 

percentual de marcas de raízes; bioturbações; presença, dimensões e difusão de gleização 
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(gleying); presença e dimensões de superfícies de fricção (slickensides); espessura e 

desenvolvimento lateral dos horizontes; tipo de contatos entre os horizontes; tipo de contato 

dos perfis de paleossolos com os sedimentos. 

2c. Os depósitos foram descritos e interpretados mediante o método de análise de fácies. 

As litofácies foram diferenciadas de acordo com as características litológicas (granulometria, 

textura, estruturas sedimentares e geometria das camadas) e relações de contato. A aquisição 

de dados em campo foi efetuada mediante medida e análise de perfis estratigráficos e 

observações verticais e horizontais dos afloramentos. Observações em afloramentos pontuais 

foram feitas. Na área a WSW de Marília foram identificados cinco perfis de paleossolos com 

detalhe à escala centimétrica. Nesses perfis foram coletadas 32 amostras para análises 

químicas.  

3. A atividade de laboratório consistiu em análises geoquímicas de fluorescência de 

raios X, essas análises foram fundamentais para identificar e caracterizar os elementos 

químicos de cada horizonte trabalhado e através dos mesmos realizar os cálculos geoquímicos 

para obter resultados como hidrólise, calcificação, teor de argila, proveniência e lixiviação 

(Sheldon & Tabor 2009) e inferir qual ambiente que possibilitou a formação e 

desenvolvimento dos paleossolos e realizar comparações com os dados de campo obtendo 

assim resultados mais fiéis para as interpretações. 

 

 

  



19 

6. CONTEXTO GEOLÓGICO 
 

A Bacia Bauru se formou acima de efusões basálticas (Formação Serra Geral) e é 

considerada ligada à subsidência termo-litostática por causa da enorme espessura dos 

basaltos, sendo que a parte mais espessa da sucessão é localizada em cima do depocentro da 

Formação Serra Geral (Riccomini 1997). 

A sucessão estratigráfica que constitui a Bacia Bauru é formada prevalentemente por 

arenitos, de muito finos a médios, apresentando diferentes graus de cimentação. Na Formação 

Marília (Membro Echaporã) camadas de conglomerados areníticos ocorrem de forma 

localizada e não constituem mais de 5% da espessura total da sucessão. Sutis e descontínuas 

camadas de pelitos areníticos ocorrem por vezes interestratificadas com os arenitos, mas não 

constituem mais de 2% da espessura total (Fernandes & Coimbra 1996, Riccomini 1997, 

Fernandes & Coimbra 2000). Estudos paleontológicos de restos de vertebrados (Bertini et al. 

1993, Santucci & Bertini 2001) e de microfósseis (Dias-Brito et al. 2001) indicam, porém 

sem muita certeza, que a sucessão sedimentar desta bacia se desenvolveu entre o Coniaciano e 

o Maastrichtiano. A Bacia Bauru é dividida em dois grupos: Grupo Caiuá e Grupo Bauru. O 

Grupo Caiuá aflora na porção oeste da bacia e, segundo alguns autores, (Fulfaro et al. 1999) é 

colocado estratigraficamente abaixo do Grupo Bauru do qual é separado por uma discordância 

estratigráfica denominada de geossolo Santo Anastácio (Fulfaro et al. 1992). 

 A ordenação estratigráfica da Bacia Bauru até os dias atuais ainda é discutida, cuja 

resolução consensual ainda parece muito longe. Um dos trabalhos mais antigos sobre a 

caracterização estratigráfica da Bacia Bauru é de Soares et al. (1980). Estes autores 

reconheceram quatro unidades, da base para o topo: Formação Caiuá, Formação Santo 

Anastácio, Formação Adamantina e Formação Marília. Fernandes & Coimbra (1996) 

reavaliaram a distribuição estratigráfica das unidades da Bacia Bauru. Estes autores dividiram 

a sucessão sedimentar em dois grupos: Caiuá e Bauru. O Grupo Caiuá é constituído pelas 
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formações Rio Paraná, Goio Erê e Santo Anastácio. O Grupo Bauru é constituído pelas 

formações Uberaba, Adamantina, Marília e pelas rochas extrusivas alcalinas chamadas de 

Analcimitos Taiúva.  

 Uma visão diferente da organização estratigráfica, em parte similar ao modelo inicial 

de Soares et al. (1980), se observa em (Batezelli, 2003, Fulfaro et al. 1999, Paula & Silva et 

al .2003, 2005, 2006, 2009). Milani et al. (2007) interpreta a Bacia Bauru como sendo uma 

Supersequência da Bacia do Paraná, tendo uma espessura máxima preservada de cerca de 300 

m e área de ocorrência de 370.000 km2, com contato basal discordante. A Supersequência 

Bauru é formada pelos grupos cronocorrelatos Caiuá e Bauru. Os limites da Bacia Bauru são 

caracterizados por processos erosivos e/ou tectônicos (Batezelli 2010). O clima da época de 

sua formação foi proposto como árido/semiárido (Batezelli 2003). Com base em seu conteúdo 

fossilífero a formação Marília é considerada de idade Maastrichtiana (Dias-Brito et al. 2001, 

Santucci & Bertini 2001). Ela é a unidade do topo do Grupo Bauru, consiste essencialmente 

de arenitos maciços e, em menor quantidade, de conglomerados cimentados por calcita, 

conferindo à paisagem um característico relevo de platôs. 

Na área de estudos a Formação Marília, unidade a qual são desenvolvidas as pesquisas 

deste trabalho é exposta por uma espessura maior de 110 m, na mesma os paleossolos são 

predominantes (95%).  
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7. RESULTADOS 

 

Apresentação do Artigo 

  

 No artigo abaixo são apresentados parte dos resultados obtidos em campo e as análises 

em laboratório. A partir da correlação entre ambos os resultados foi definido os tipos de perfis 

e seus respectivos horizontes. Em laboratório foram realizadas análises geoquímicas e foi 

possível obter resultados como a hidrólise, teor de argila, calcificação, proveniência, 

lixiviação e índices de alteração química.  

 Os perfis de paleossolos analisados indicam condições ambientais de clima semiárido, 

com pouca vegetação. A maioria dos perfis de paleossolos são poucos desenvolvidos e 

possuem estruturas incipientes, alguns outros possuem estruturas pedogenéticas mais 

evidentes e contém um bom grau de desenvolvimento. O paleoambiente é identificado como 

clima semiárido, caracterizado pela alternância cíclica temporal entre depósitos subaquáticos 

não confinados.  
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ABSTRACT 

Paleosols are represented by geological bodies that are found in sedimentary successions and 

correspond to old soils overlaid by deposits or other younger paleosols. The Echaporã 

Member (Marília Formation, Upper Cretaceous) is almost entirely composed of a paleosol 

profiles. This research has as objective to reconstruct the paleoenvironmental conditions of 

formation of the Echaporã Member in the area close to the cities of Marilia and Echaporã, 

analyzing the controlling factors that generated the sedimentary succession. The methods used 

were: identification and description of paleosols and facies analysis of the deposits and 

geochemical analyses in laboratory. The studied profiles of the paleosols indicate 

development in semiarid climate. Most of the paleosols profiles display low grade of 

development, because they are represented by incipient structures and poor carbonate 

concentration. The paleoenvironment of the Echaporã Member is identified as a distal portion 

of a distributary fluvial system in semi-arid climate, characterized by occasional unconfined 

subaqueous flows that constituted the sediment supply and the parent material of the 

paleosols.  

 
Key words: paleoenvironment, paleosols, sediments, Marília Formation, Upper Cretaceous. 
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INTRODUCTION 

 Paleosols is a buried soil formed in a past time. In paleosols some preserved aspects 

can record original features of the ancient climate, geomorphology, parental material, fauna 

and flora, depositional processes and time of formation. Paleosols are commonly found in 

continental sedimentary successions, where they may be covered by deposits or younger 

paleosols (Catt 1990, Retallack 2001). In sedimentary successions the paleosols represent a 

phase of stability of the topographic surface. In continental areas, the lack of availability of 

sediment, yield for example by absence of fluvial source, combined with the development of 

vegetation coverage may lead to periods of no sedimentation and no erosion and pedogenesis.  

 To develop internal structure (peds, cutans) and to be organized in horizons a 

paleosols need a period from 103 to 106 years. During this time the paleosol is an open system 

that has the possibility to record all environmental conditions that occur above or just below 

its surface and relative changes. Moreover, the relations of interestratification vertical and 

horizontal betwen paleosols and sediments can provide important information of regional or 

local variations of paleoenvironmental conditions.  

 Although in last years the interest on paleosols grew in Brazil (Dal Bó 2009, Basilici 

2010), detailed studies on sedimentary successions abundant in paleosols are yet few if related 

with the international literature. The sedimentological and paleopedological features of the 

Bauru Group give paleoenvironmental information that can help in studies of the Upper 

Cretaceous allowing to infer aspects as paleoclimate, paleotopography, paleobiology and 

relationships with sedimentary processes. Thus, the objective of this work is to describe and 

interpret the paleosols and sedimentary deposits of the Echaporã Member of Marília 

Formation, in order to contribute to the understanding of the development of 

paleoenvironments and part of the geology of Bauru Group in southeastern Brazil.  
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GEOLOGICAL SETTING 

 The Bauru Basin formed from a isostasy process occurred after the accumulation of 

almost 2000 m of basaltic lavas of the Serra Geral Formation. This sedimentary basin covers 

an area of more than 350.000 km², occupying the central-western portion of  the State of São 

Paulo, and part of the states of Mato Grosso do Sul, Mato Grosso, Goiás, Minas Gerais and 

Paraná (Riccomini 1997, Fernandes and Ribeiro 2015). The stratigraphic succession of the 

Bauru Basin consists predominantly of very fine- to medium-grained sandstones. 

Conglomeratic sandstone does not constitute more than 5% of the total thickness of the 

succession. Subtle and discrete layers of sandy pelites sometimes occur interstratified with 

sandstones; they constitute no more than 2% of the total thickness (Riccomini 1997, 

Fernandes and Coimbra 2000). Paleontological studies of vertebrate remains (Bertini et al. 

1993, Santucci and Bertini 2001) and microfossils (Dias-Brito et al. 2001) indicate that this 

sedimentary succession developed between the Coniacian and Maastrichtian. The 

stratigraphic ordering of Bauru Basin to the present day is also discussed, whose consensual 

resolution still seems far away. Soares et al. (1980) recognized four units, from bottom to top: 

Caiuá fm, Santo Anastacio fm, Adamantina fm and Marília formations. Fernandes and 

Ribeiro (2015) reassessed the stratigraphic distribution of units of the Bauru Basin. These 

authors divided the sedimentary succession into two groups: Caiuá and Bauru. The Caiuá 

group consists of the Paraná River fm, Goio Ere fm, Santo Anastacio fm and Presidente 

Prudente formations. The Bauru Group consists of formations Araçatuba, Marília, São José 

do Rio Preto, Uberaba, Vale do Rio do Peixe and the extrusive alkaline rocks called 

Analcimitos Taiúva (Fernandes and Ribeiro, 2015, see  their Fig. 2). A different view of the 

stratigraphic organization, similar in part to the initial model of Soares et al. (1980), observed 

in (Batezelli 2015, see his Fig. 2). Marília formation was interpreted as a vast alluvial fan, 

dominated by braided rivers and small lakes (Fernandes and Coimbra 2000). However, 
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Basilici et al. (2009) interpreted this formation as a eolian sand sheet area, dominated by 

alternation between the deposition of wind-ripples, pedogenesis and some ephemeral 

channels. This new interpretation is due to the emphasis on the study of paleosols region, 

together with the sandstone deposit and wind ephemeral streams.  The main paleosols 

observed in Bauru Group are Aridisols and Alfisols, representing long breaks in 

sedimentation, while Entisols, less abundant, represent short periods of interruption of 

sedimentation  (Dal Bó et al. 2010). The studies were conducted in Marilia municipality 

region which has several outcrops of Marília formation (Figure 1). 

 

 

 

 
Figure 1: A - Location of the study área. B – Geological map of Bauru Group in São Paulo state, 
adapted from Batezelli 2015. C – Lithostratigrapy of the Bauru Group in São Paulo state, adapted from 
Batezelli 2015. 
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METHODS  

 In this present work paleosols were identified and analyzed in the field and laboratory 

analyses. 

 Firstly, we recognized the paleosols profiles in the stratigraphic succession measures, 

in particular separating paleosols from sedimentary deposits. Root marks, peds, cutans, 

horizons with different colors, concentration of minerals in nodules, mottling and bioturbation 

are used as macroscopic aspects to distinguish paleosols. 

    Secondarily, we produced a description and measurement of paleosol profiles from 

the top to the bottom. The paleosol data were collected according to the paleopedology 

manuals (Catt 1990, Retallack 1991, 1994, 2001). In this phase we collected these data: 

particle size; color; type and dimension of the structures (peds and cutans); presence, type, 

size and concentration of nodules or concretions; CaCO3 concentrations; type, form and 

percentage of root marks; bioturbation; presence, size and distribution of gleying; presence 

and dimensions of the slickensides; thickness and lateral development of horizons; types of 

contacts between the horizons and with deposits. 

 Facies analysis methods were used to describe and interpret the deposits. They were 

differentiated according to the lithologic characteristics (particle size, texture, structure and 

geometry of the sedimentary layers) and bounding surfaces.  

 Laboratory activity consisted in chemical analysis of X-ray fluorescence, that 

identified and quantified the chemical elements of each horizons. By means these analyses we 

calculated the Weathering Molar Ratios of hydrolysis, calcification, clay content, source, and 

leaching (Sheldon & Tabor 2009).  
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RESULTS 

 Five paleosol profiles were described: Profile 1 with Bk and R horizons; Profile 2 

with the A, Bw1, Bw2 and Bk horizons; Profile 3, divided between Bw1, Bw2, Btk, Bw3, C 

and R; Profile 4, divided between the Bw and C; Profile 5 horizons, divided between Btk1, 

Bw1, Btk2, Bw2, Bk and C (Figure 2). 
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Figure 2: Stratigraphic measured section with interpreted paleosol horizons. 
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The top and bottom of the profiles are characterized by planar erosive surfaces 

identifiable by the presence above this surface of intraformational mudstone  and small 

pebbles of metamorphic or magmatic rocks. Overall, the paleosol profiles consist of fine to 

medium-grained sandstone in upper part of the profile and coarse-grained sandstone in the 

lower portion. In C horizons, it is possible observe remains of sedimentary structures that 

consist in weakly horizontal laminations and horizontal accumulations of intraformational 

mudstone clasts. R horizon is the original parent material, is below described as deposit. 

 

Description of horizons  

The horizon A consists of medium- to fine-grained sandstone, moderate- to well-

sorted. Predominant color is orange (2,5YR6/6), however there are mottling bright reddish 

brown (2,5YR5/8). There is no reaction in the test with 10% Hcl. The horizon A contain often 

tubular structures (rizotubules), vertical and 0.5 m length, filled with sandstone of different 

particle size. These marks are very common between 0-0.3 m. Some branching tubules show, 

the diameter is generally about 0.2 m and tapering down with a 5-7 mm diameter, filled 

sandstone is light gray with black spots linked to manganese, thick, poorly sorted and small 

pebbles (Figure 3 A).   

 The Bw horizons consist of medium- to fine-grained, moderately sorted sandstone. 

The sandstone grains show apparent surface microtexture to wind transport. The predominant 

color is orange (2,5YR6/8) and reddish brown (2,5YR5/8). Roots marks are present, but not 

so abundat as in A horizon. The transition from the lower limit is 60 mm (gradual) and is 

characterized by an increase of cementation (Figure 3 B). 
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Figure 3: A - roots marks vertically with ramifications, coin with 20 mm in diameter. B - Peds separated by 
calcans, horizon structures Bw, coin with 21 mm in diameter. 

 

The horizon Bk consists of fine- to medium-grained sandstone, cemented and 

moderately sorted. The predominant color is orange (2.5YR6/6). The upper contact has 

transition 20-30 mm (abrupt). The nodules are widespread on the surface of the vertical 

section by up to 20%. The reaction with HCl produces bubbles to 4 mm demonstrating high 

content of calcium carbonate. The lower limit transition has around 60-70 mm (gradual), 

indicated by the progressive reduction of nodules. The nodules have size ranging from 10 mm 

to 30 mm and irregular shape. Some nodules show dark spots of manganese (Figure 4 A ). 

Reddish orange surfaces (2.5YR7/3) are present and may indicate calcans. Small radial 

structures recognized as rizotubules (coated calcite esparítica) are frequent (Figure 4 A and 

B). 

Btk horizons is light reddish orange (2,5YR7/4) with light gray (5Y8/1)  mottling, that 

can indicate conditions of temporary stagnation of water within the soil. This horizon is 

characterized by higher values molar ratio of Al203/Si02 (clay content) if compared with the 

adjacent horizons, probably indicating accumulation of clay (Figure 4 C and D).  
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Figure 4: A - Upper limit of Bk horizon with carbonate nodules. B - Root marks and calcans in horizon Bk. C – 
Horizon Btk,  root marks cylindrical and vertical gray with greenish halo, filled by cemented sand and calcium 
carbonate and blocky structures. D - Horizonte Btk, gradual transition to the higher range of carbonate nodules. 
Coin with 20 mm in diameter. 
 
 

C horizons is constituted of poorly defined planar laminations and horizontal 

alignment of mudstone intraclasts; they testify original sedimentary structures of the parent 

material. The horizon consists of medium to fine sandstones. The color is orange-red (10R 

6/6) and mudstone intraclast are present. These clasts ranging from medium- to coarse-

grained and has bright reddish brown color (2.5YR5/8). There is HCl reaction, however, the 

reaction is mild, with smaller bubbles than 1 mm. Uncommon carbonate nodules occur. The 

transition to the lower horizon has less than 2 cm (abrupt) (Figure 5). 
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Figure 5: Horizon C, details for mark to tap roots. Scale - Jacob staff: 1.5 m 

 

Geochemistry  

As in current soils in paleosols geochemical analyzes are also used, however it is 

important to highlight some considerations. In paleosols there is some difficulty in performing 

analysis of cation exchange or base saturation, because the base saturation and capacity of 

cation exchange soil are not preserved in paleosols and are substantially altered shortly after 

burial (Retallack 1991, 2001). However, the chemical composition of some of the more 

resistant mineral paleosols resists to the diagenetic processes and even the metamorphic 

changes (Barrientos and Selverstone 1987). 

When is the burial of paleosols, soon results in compression and the spaces between 

the pores may be changed or lost. The organisms and the water are compressed by the weight 

of the overlying layers. The compaction of the loose material of the original soil could create 

a standard surface slickensides, similar to slickensides produced by expansion and contraction 

of clay soils of seasonally dry climates (Paton 1974, Gray and Nickelsen 1989). 
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The use of larger elements geochemical is intended to identify individual indices 

which quantify all of the weathering processes. Nesbitt and Young (1982) proposed the 

"chemical index of alteration" (CIA) having a molar ratio of CIA 100 X (Al2O3 / (Al2O3 + CaO 

+ Na2O + K2O)), where each of the elemental concentrations is converted into moles. CIA is a 

measure of the resistance of feldspar minerals and its hydration to form clay minerals. As the 

clay content increases Al2O3 should also increase as CaO, K2O and Na2O contents should 

decrease, thus leading to higher values of CIA. 

Six analyzes of molecular ratios were calculated to evaluate the degree of chemical 

weathering of paleosols and check which pedogenetic processes were more important. In 

addition, these indexes have been used to separate the horizons paleosols (Sheldon and Tabor 

2009, Retallack 2001, Sheldon et al. 2002). 

Bases / alumina ratios ((CaO + MgO + Na2O + K2O) / Al2O3) can be used to quantify 

the extent of hydrolysis (Retallack 2001). In Figure 6 the accumulation indicates some major 

points, it demonstrates greater amount of base as compared with aluminum, this is because the 

basic elements (CaO, MgO, Na2O and K2O) have greater ease to being leached when 

compared with aluminum and its preservation may indicate the accumulation of bases. Still in 

Figure 6, in the hydrolysis, while the other points are low it may indicate a decrease of bases 

compared to aluminum showing that hears a higher hydrolysis rate in the system. Comparing 

this relationship with the CIA is observed that the proportions between both appear in reverse. 

The Btk horizontal profile 3 shows the minimum CIA value around 4, leaching with a value 

close to 1, and the hydrolysis around 39, so you can see the high levels of hydrolysis 

representing the accumulation of bases, low leaching and CIA highlighting the few chemical 

changes in this horizon. 

Leaching was quantified using the links Ba/Sr and Rb/Sr. Strontium is significantly 

more soluble than barium and rubidium thus higher values are expected in more leached 
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horizons (Retallack 2001). Leaching occurs in reverse order as compared to the hydrolysis; 

consequently higher leaching values are expected to decrease the basic loss ratios (CaO + 

MgO + Na2O + K2O / Al2O3). 

The clay content was quantified using the ratio Al2O3 / SiO2. The clay content can be 

used in paleosols for confirming Bt horizons. The analyzed profiles, the clay shows a 

proportion with calcification, which suggests horizons such as Btk. 

Calcification ((CaO + MgO) / Al2O3) also correlates with the preservation ratio of the 

bases shown in hydrolysis. Such calcification is characteristic of pedogenic horizons enriched 

in calcium carbonate occurring in areas where the primary ion source is the wind transport 

through the dust (Goudie 1983, Machette 1985). 

The provenance was calculated by the proportion of TiO2 / Al2O3 and is used as a TiO2 

content indicator can be quite variable among different types of rocks as well as the Al2O3 

concentration is relatively constant (e.g., granite, basalt vs.; Li, 2000). Both TiO2 as Al2O3 are 

relatively immobile, the proportion of both must remain constant during pedogenesis. The 

analyzed values can be observed that there is a wide variation in the results of the proportion 

TiO2/Al2O3, thus indicating the origin of the same type of parental material, consisting of 

felsic rocks. 
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Figure  6: Analyzes with data from chemical elements. Hydrolysis (CaO+MgO+Na2O+K2O/(Al2O3)). Clay 
Formation (Al2O3/SiO2). Calcification (CaO+MgO/Al2O3). Provenance (TiO2/Al2O3). CIA 100X  (Al2O3 /(Al2O3 

+ CaO + Na2O + K2O)) 
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Interpretation of horizons  

The horizon A can be recognized for abundance of roots traces and bioturbation. The 

horizon A is not cemented, probably due to leaching of calcium carbonate which precipitated 

in lower horizon (Bw or Btk). Uncommon preservation of A horizon is due to the easy 

erosion that it suffered by unchannelized flows, as below described.  More dense vegetal 

cover and low energy of the unconfined subaqueous flows can be at origin of local 

preservation of A horizon. 

In Bw horizon poor defined prismatic structures, separated by thin cuticles carbonate 

(calcans) can be observed. Bw is a cambic horizon, a horizon where the pedogenetic alteration 

of the parent material is sufficient to differentiate horizons, but not enough to define other 

more developed horizons as Bk or Bt.  

Bk horizons were identified only in two cases. They are individualized by higher 

concentration of calcium carbonate relatively to the other horizons. This higher content is 

indicated by the presence of calcium carbonate nodules and chemical analysis, which show 

peaks of calcification in correspondence of Bk horizon. 

Btk horizon. Three horizons have been described. This horizon is characterized by 

values mole ratio of Al2O3 / SiO2 (clay content) higher compared with the adjacent horizons 

indicating accumulation of clay, ash content is too high, the highest rate of clay is what 

differentiates this horizon compared to Bk horizon. 

Horizon C. have been reported three C. Overall, C horizon is identified and classified 

to have some pedogenetic features, but not enough to define them as horizons A or B. It also 

show original some features of parental material. 
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Parental material 

Molecular ratios of TiO2/Al2O3 have values of 0.07 to 0.15. Thus they indicate that the 

source of these sandstones is felsic rocks (Sheldon and Tabor 2009). These values are similar 

for all paleosol profiles indicating no change of the parent material along the studied section. 

Deposits 

In paleosol profiles the deposits are described as horizons R. Deposits are constituted 

of conglomeratic sandstone with contain a significant amount of muddy intraclasts. They are 

characterized by plane parallel laminations and horizontal alignment of muddy intraclasts.   

The deposits are partially preserved in the lower portion of each paleosol profile. They 

consist of conglomeratic sandstone. The sandstones are medium- to coarse-grained and the 

conglomerates are constituted of intraformational mudstone clasts, 1 to 60 mm across, angular 

or sub-rounded, flattened or elliptical in shape (Figure 7). Some calcareous nodules can be 

present amongst the as intraclasts (pedorelicts). Extraformational clasts are constituted of 

quartzite and granitic rocks, they are rounded or subrounded and up to 50 mm across.  There 

are more than 60 m in lateral extension; the bottom is sharp and erosive, characterized by 

small scours, the top is transitional to medium-grained sandstone of C horizon, sandstones 

with planar parallel laminations and horizontal alignments of pebbles are the only evident 

sedimentary structure.  
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Figure 7:  Sedimentar deposit with plane-parallel lamination. 

 

Interpretation of the deposits 

The dimensions and shapes of conglomeratic clasts suggest deposition from 

subaqueous flows because usually the subaerial flows cannot carry larger clasts the coarse-

grained sands (Pye and Tsoar 2009). Planar-parallel or low-angle laminations are similar to 

deposits formed in high energy flows of upper flow regime (plane bed) or transition to 

antidunes (Fielding 2006). The basal erosive surfaces suggest high energy of the subaqueous 

flows before the deposition. The lateral extent of these deposits indicates unconfined 

depositional flows. 
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DISCUSSION 

 The alternation between sedimentary deposits and topographic stability were the main control 

factors of the development paleopedogenetics. The genesis of the five paleosol profiles is controlled 

by unconfined depositional flows by catastrophic flooding phenomena occurring periodically, these 

flows transporting coarse sandstone, clay intraclasts, pedorelicts and pebles. After the deposition when 

it happened the stability of the topographic surface, the pedogenesis processes began. However there 

were no enough time to change the entire deposit, this is demonstrated in C and R horizons. 

 Calcium carbonate indicate a climatic semiarid because these carbonate it is not water table 

but pedogenetic, root marks mains in horizon A indicate the sparse vegetation, usually when erosion 

occurs in A horizons, for being the most superficial horizons are destroyed, probably this vegetation 

probably this vegetation contributes to its preservation. 

In section profiles 1 and 4 has only two horizons, while the other profiles are more developed, 

this can represent less exposure time in the atmosphere of the profiles 1 and 4 compared to others, or 

by increased sediment yield or the rate of greater erosion, or a more unstable surface, since the other 

profiles may represent greater development time and higher environmental stability. 

The types of paleosols described in profiles 1 and 4 are classified as compound, these types of 

paleosols are formed when the sedimentary deposit is relatively rapid and few erosion, occurs the 

process of pedogenesis but does not change the entire deposit (Marriott and Wright 1993). Can 

preserve in its sedimentary structures bases as well as demonstrates the most evident form the erosive 

surfaces (Figures 8 and 9)  

In the profiles 2, 3 and 5 the paleosols are classifies with polygenetic paleosols, in this type of 

paleosols there is enough time and weather conditions that can enable pedogenetic development 

throughout the deposit and because the new sedimentation and pedogenesis the horizon of a new 

profile can override the horizon of an older profile, this may also indicate a greater interruption in the 

sedimentation (Figures 8 and 9). 
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 The geochemical data Ba/Sr, Rb/Sr, hydrolysis and CIA  indicate low or very mild conditions 

of pedogenetic change. Geochemical data indicate felsic source rocks as source of the parental 

material. This differentiates it markedly in the rocks of the same unit exposed in the northern part of 

the basin, where, Basilici et.al. (2010) found that the origins of the sandstones are basaltic rocks.  

 

 

Figure 8: Pedosedimentary reconstruction profiles 
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Figure 9: Pedosedimetary reconstruction profiles 

  

 

CONCLUSIONS 

 The analysis of the paleosols suggests that the Marília formation formed in a semi-arid 

paleoenvironment, characterized by sparse vegetation. 

 The sedimentary section of Marília formation which outcrops on site studies it consists 

predominantly of paleosols with 95% formed by process paleopedogenetics, only the lithofacies plane 

parallel laminations it was identified. 

The local climatic variations and deposition by water flows are the main drivers of the 

development of paleopedogenesis probably the wettest periods or for some sporadic event was 

occurred when the underwater transport. 
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8. CONCLUSÃO 
 

 A gênese dos cinco perfis de paleossolos apresentados no artigo, assim como os perfis 

descritos no trabalho são controlados por fluxos deposicionais não confinados que ocorriam 

periodicamente, esses fluxos transportavam areia grossa, clastos, intraclastos de argila e 

pedorelictos, uma vez depositado e estabilizado iniciava-se o processo de pedogênese, no 

entanto não houve tempo suficiente para alterar todo o depósito, isso é demonstrado nos 

horizontes C e R. 

 As variações climáticas locais e a deposição por fluxos subaquáticos são os principais 

controladores do desenvolvimento da paleopedogênese, provavelmente nos períodos mais 

úmidos ou por algum evento esporádico era quando ocorria o transporte subaquático. A 

atividade eólica também estava ativa nos intervalos dos depósitos subaquáticos retrabalhando 

os materiais depositados durante os períodos mais áridos. 

 Com as análises dos paleossolos é possível observar os ciclos de alta frequência  

caracterizados por deposição de sedimentos e estabilidade da paisagem por determinados 

períodos. 
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10. GLOSSÁRIO 

 
 
Bioturbação: 
Marcas de organismos (raízes, animais) 
preservados em paleossolos. 
 
Calcans: Manchas esbranquiçadas provocadas 
pela precipitação de carbonato de cálcio. 
 
Estrutura do solo (agregados, peds): 
Organização das partículas dos solos 
(blocos, prismática, granular), tamanho e 
grau de desenvolvimento. 
 
Estrutura incipiente: 
Estrutura do solo pouco desenvolvida, de 
difícil identificação. 
 
Horizonte:  
Diferentes níveis de um perfil de solo, 
caracterizados por modificação da cor, 
textura, estrutura, processo de 
intemperização. 
 
Horizonte A:  
Horizonte superficial, possui cor mais 
escura pela influência da decomposição da 
matéria orgânica, e com grande atividade 
biológica. 
 
Horizonte B: 
Horizonte mais desenvolvido, com 
estruturas, cor, textura e cerosidade mais 
evidentes, é o horizonte mais adequado 
para classificar o tipo de solo.  
 
Horizonte C: 
Horizonte que preserva algumas estruturas 
da rocha, porém sofreu o processo de 
pedogênese. 
 
 

 
 
Horizonte R:  
Material de origem. Rocha sem sofrer o 
processo pedogenético. 
 
Horizonte duripan: horizonte subsuperficial 
fortemente cimentado por sílica. 
 
Mosqueamento (mottling): 
Manchas esbranquiçadas provocadas pela 
redução do ferro. 
 
Nódulos carbonáticos: 
Concentração de carbonato de cálcio em 
formas de nódulos. 
 
Paleossolos compostos: 
Paleossolos em que os processos 
pedogenéticos não são capazes de alterar todo 
o material de origem, preservando estruturas 
da rocha nos horizontes inferiores. 
 
Paleossolos Poligenéticos:  
Paleossolos com condições suficientes para 
permitir o desenvolvimento pedogenético de 
todo o depósito não preservando estruturas do 
material de origem. 
 
Superfície de fricção (slickensides): 
Estrias no solo provocado pela expansão e 
contração da argila. Pode indicar 
alternância entre ambiente úmido e seco. 
 
Paleossolos truncados:  
A remoção dos horizontes superiores de 
um paleossolo pode retirar totalmente o 
horizonte B, o material restante atua como 
material de origem para um novo 
desenvolvimento pedogenético.
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ABSTRACT 12 

The stratigraphic and sedimentological knowledge of the Bauru Group (Upper Cretaceous, SE 13 

Brazil) are still broadly insufficient and controversial. This contrasts with a great amount of 14 

palaeontological studies. A detailed sedimentological and palaeopedological study allowed to 15 

interpret the south-eastern portion of the Bauru Group according to the model of fluvial 16 

distributary system. This work has two objectives: (1) to give detailed information on the 17 

sedimentological and stratigraphic features of the SE portion of the Bauru Group to support 18 

biostratigraphical, taphonomic and palaeoecological studies; (2) to include palaeosols into the 19 

model of fluvial distributary system. In south-eastern portion of the Bauru Group three genetic 20 

stratigraphic units were described and interpreted, here informally called lower, intermediate and 21 

upper units. The lower unit is constituted of muddy sandstone salt flat deposits and sandstone 22 

sheet deltas deposits and is interpreted as basinal part of a fluvial distributary system. The 23 

intermediate unit is formed of sand-filled ribbon channel and sandy sheet-shaped beds, 24 

suggesting distal or medial portion of a fluvial distributary system. The upper unit is almost 25 



completely constituted of palaeosols and does not match with the present models of fluvial 26 

distributary system. Preserved features of sedimentary structures suggest that the parent material 27 

was formed by catastrophic unconfined flows. Moderately developed palaeosols (Inceptisols) 28 

testify pauses of sedimentation of the order of 104 y, probably linked with a climate aridification 29 

that decreased the sedimentary input due to the retreat of the fluvial system. Thus, the upper unit 30 

deposited in more distal portion of a fluvial distributary system, where catastrophic unconfined 31 

flows, which occurred with recurrence time of 104 y, were almost completely pedogenised during 32 

the interruption of sedimentation. Including palaeosols into the fluvial distributary system modified 33 

the architectural structure of this model. 34 

 35 

Key Words: fluvial distributary system, semiarid depositional environment, palaeosols, Late 36 

Cretaceous, Bauru Group. 37 

 38 

1. INTRODUCTION 39 

In arid or semiarid climate fluvial systems can disappear before to reach a larger river or a 40 

standing body of water. This type of fluvial systems, called fluvial distributary system or terminal 41 

fan or terminal fluvial fan, was firstly described by Mukerji (1976) and Friend (1978) and 42 

subsequently amplified and modified by Tunbridge (1984), Kelly and Olsen (1993), Nichols 43 

(2005), Nichols and Fisher (2007), Saéz et al. (2007), North and Warwick (2007) and Cain and 44 

Mountney (2009). This depositional system is subdivided in three main portions (Kelly and Olsen, 45 

1993): proximal, medial and distal. The proximal part is characterised by a main feeder channel, 46 

whose lateral migrations and avulsions generate a lateral and vertical amalgamated channel body 47 

complex with almost absent overbank deposits. The medial portion shows distributary channels, 48 

probably without coeval flow (North and Warwick, 2007; Cain and Mountney, 2009), and it forms 49 

a geological body with minor channel deposits surrounded by interchannel deposits. The distal 50 



portion is characterised by unconfined deposits originated at the termination of the channels and 51 

few channel bodies. Depending on the climate and morphological conditions the basinal zone of 52 

this system can be characterised by ephemeral lakes or aeolian deposits (Nichols, 2005). In 53 

place of terminal fan or terminal fluvial fan, Nichols and Fisher (2007) proposed to use the more 54 

general term of "fluvial distributary system", which describes a river system with fan shape, 55 

decreasing discharge downwards, and distal area constituted of terminal splays when a lake is 56 

absent or deltas when the lake is present. This term is used in this work. 57 

The depositional models of fluvial distributary systems take in account only sediments, whereas 58 

palaeosols are rarely cited, often as portion of the interchannel deposits or as fragments 59 

(pedorelicts) contained within the channel deposits (Tunbridge, 1984; Nichols and Fisher, 2007; 60 

Fisher et al., 2007; Cain and Mountney, 2009). In this paper, we propose to apply the model of 61 

fluvial distributary system to explain the stratigraphic organisation and the depositional 62 

paleoenvironment of the south-eastern portion of the Bauru Group. However, differently to the 63 

usual models of fluvial distributary system, we considered in our model analysis the palaeosols 64 

and their relationships with the deposits.  65 

The stratigraphic organisation of the Bauru Group is complex and debated since its first studies 66 

(Mezzalira and Arruda, 1965; Soares et al., 1980; Fernandes and Coimbra, 2000; Paula e Silva et 67 

al., 2009). Many reasons make complicated the stratigraphic resolution of this sedimentary basin: 68 

(1) the lithologic featureless of the succession, which is in general formed of reddish brown 69 

sandstone, with relatively uncommon sedimentary structures; (2) the huge dimension of the 70 

basin, which exceeds 350,000 km2; (3) the absence of clear biostratigraphic or geochronological 71 

data; (4) the abundance of multiple palaeosol profiles, which, on average, are c.60% of the 72 

thickness of the sedimentary succession (Basilici et al., 2009); (5) the large scale lateral 73 

variations of sedimentological and palaeopedological features; (6) the previous exclusive use of 74 

lithostratigraphic criteria to distinguish the different units. These difficulties generated contrasting 75 



interpretations of the stratigraphy of this group (Fernandes and Coimbra, 2000; Paula e Silva et 76 

al., 2009; Fernandes and Ribeiro, 2015; Batezelli, 2015), which in the field result in a huge 77 

difficulty to distinguish the different lithostratigraphic units. Being the Bauru Basin an important 78 

sedimentary succession containing a rich and well-preserved Cretaceous fauna association, this 79 

difficulty is realised above all by palaeontologists, which complain that the exact definition of the 80 

units where the fossils were found is not always an easy task.  81 

In recent years, punctual works on palaeosols and relationships palaeosols/deposits have been 82 

realised in northern and south-eastern portions of the Bauru Basin, in an area of approximately 83 

13,000 km2 (Fig. 1), permitting the collection of many information on the stratigraphy of this basin 84 

(Fernandes and Basilici, 2009; Dal' Bó et al., 2009; Basilici et al., 2009; Dal' Bó et al., 2010; 85 

Basilici et al., 2010; Basilici et al., 2012). The study area coincides with the sites where the main 86 

lithostratigraphic units of the Bauru Basin were originally defined (Soares et al., 1980; Fernandes 87 

and Coimbra, 2000).  88 

 89 

2. STUDY AREA, GEOLOGIC AND STRATIGRAPHIC SETTING OF THE BAURU GROUP 90 

Small and sporadic outcrops, few previous detailed sedimentological studies and the huge 91 

extension of the Bauru Group make deceptive to produce presently a clear framework of the 92 

stratigraphic organisation and sedimentary evolution of the entire unit. For these reasons, this 93 

work is limited to the analysis of the south-eastern portion of the Bauru Group (Fig. 1).  94 

The sedimentary succession of this basin is developed above one of largest basalt effusion of the 95 

earth history, the Serra Geral Formation, due to the separation of South America and Africa. The 96 

succession reaches a maximum thickness of around 300 m for a period comprised between 97 

Coniacian to Maastrichtian (Fernandes and Ribeiro, 2015) or Aptian to Maastrichtian (Batezelli, 98 

2015). The succession is constituted of fine- to medium grained sandstone with uncommon 99 

conglomerate beds (less than 5% of the thickness), which are diffused in northern part of the 100 



basin, and sandy mudstone (less than 2% of the thickness). Overall, two groups are 101 

distinguished: Caiuá and Bauru groups, which are distributed on the western and eastern part of 102 

the basin, respectively (Fig. 2A). The Figures 2B and 2C represent two different stratigraphy 103 

interpretations of the Bauru Basin. These interpretations show a consistent quantity of 104 

lithostratigraphic units, mostly characterised by interbedded and undefined boundaries, which 105 

commonly make unreliable their identification in the field. The cited authors agree with the 106 

interpretation of the Caiuá Group deposited in erg system, although they disagree on its chrono- 107 

and lithostratigraphic position (Fig. 2B and C). The sedimentological interpretation of the Bauru 108 

Group is unclear and partially conflicting. Fernandes and Ribeiro (2015) interpreted the Araçatuba 109 

Formation formed in marshland areas, the Vale do Rio do Peixe Formation (or Adamantina 110 

Formation, according to Batezelli, 2015) and Echaporã Member of Marília Formation deposited in 111 

aeolian sand sheet, and Serra da Galga and Ponte Alta members of Marília Formation formed in 112 

distal part of alluvial fan systems. Batezelli (2015) interprets the Araçatuba Formation as lake 113 

system, the Adamantina Formation as fluvial systems and the Marília Formation as alluvial fan 114 

deposits. Unfortunately, these interpretations did not give an adequate consideration to the 115 

palaeosols, which actually constitute on average 60% of the thickness of the Bauru Group.  116 

 117 

3. METHODS 118 

In south-eastern portion of the Bauru Group we measured 15 detailed stratigraphic sections for a 119 

total thickness of 161 m. Several tens of outcrops were observed to better define the lithofacies 120 

and palaeosols of the sedimentary succession. Directly in the area of the Serra de Echaporã 121 

(Marília) (Fig.1) we measured a general stratigraphic section of 245 m taking advantage of all 122 

possible the outcrops. Methods of analyses and study of deposits and palaeosols has been 123 

diversified. In the field, the palaeosols were identified for presence of root traces (rhizoliths), 124 

colour, pedogenic structures, parent material, nodules, mottles, calcium carbonate concentration, 125 



horizons and absence of sedimentary structures. Forty-five palaeosol profiles were analyzed in 126 

detail, for a total 68 m of thickness. In these palaeosol profiles 46 samples were collected from 127 

palaeosol horizons. Analyses of the samples were performed for classifying and defining the 128 

paleoenvironmental features of the palaeosols, the provenance of parent material and deposits, 129 

and the depositional mechanism of the parent material. Field estimation of abundance of calcium 130 

carbonate and boundary distinctness of the palaeosol horizons were done using the 131 

recommendations of Hodgson (1976). When the horizon thickness was used to calculate time of 132 

development the field values were corrected by a compaction factor defined by the compaction 133 

equation and relative tables of Sheldon and Retallack (2001). In the laboratory, geochemical, 134 

petrographic and microtextural analyses were realized. Geochemical analyses consisted in the 135 

determination of major oxides and trace elements of fused beads and pressed pellets, 136 

respectively, of 26 samples by X-ray fluorescence spectrometer (Philips, PW2404). Twenty-four 137 

thin sections of palaeosols and 6 of deposits were made for textural and provenance analyses 138 

and for micromorphologic analyses in the first case. Medium-grained sand quartz grains were 139 

selected to observe the surface textural features by scanning electronic microscope (SEM) 140 

images. To classify palaeosols the Mack et al. (1993) and USDA (Soil Survey Staff, 1999, 2006) 141 

classifications are here used, because both are based on features that may be yet recognized in 142 

palaeosols. Deposits are subdivided in lithofacies with a genetic meaning according to lithologic 143 

and textural features, thickness and form of the beds, sedimentary structures and bounding 144 

surfaces.  145 

 146 

4. RESULTS 147 

In this paper, three informal genetic units were recognized: lower, intermediate, and upper units. 148 

However, to avoid terminological confusions, proliferation of names and because these units are 149 

overall analogous to those defined for Suguio et al. (1977), Soares et al., (1980), Barcelos (1984), 150 



Suguio and Barcelos (1987), Fernandes and Coimbra (2000), the names Araçatuba, Adamantina 151 

and Marília formations are associated to the lower, intermediate and upper units, respectively. 152 

Description and interpretation of the components (deposits and palaeosols) for each of these 153 

units follow. 154 

 155 

4.1. Lower unit 156 

The lower unit is formed of two lithofacies: deformed interbedding of sandstone and mudstone 157 

and planar parallel and cross-laminated sandstone (Tab. 1 and Fig. 3). They constitute c.75 and 158 

25% of the thickness of the measured sections, respectively.  159 

 160 

4.1.1. Deformed interbedding of sandstone and mudstone 161 

This lithofacies is constituted of irregular, broken, undulated and micro-folded interbedding of 162 

patches of well-sorted, fine- to very fine-grained weakly-cemented sandstone (olive grey - 163 

5GY7/1) and mudstone (bright reddish brown - 2.5YR5/8) (Figs. 4A and B), which are organised 164 

in intervals 0.3 to 4 m thick and more than 380 m in lateral extension. Sandstone beds are 165 

constituted of patches, few millimetres to 50 mm thick and few millimetres to 0.5 m in lateral 166 

extension, with jagged lateral edges and cuspate margins (Fig. 4Ai), characterised by protrusion 167 

of the mudstone in the sandstone patches (Fig. 4Aii). Sandstone patches sometimes show thin 168 

laminae of different grain size and orientation (Fig. 4Ai). Mudstone beds are >1 mm to 30 mm 169 

thick, few millimetres to 0.5 m in lateral extension, and show cuspate and jagged margins (Figs. 170 

4Ai and ii; Fig. 4Bi). Locally, mudstone and sandstone laminae have concave-up shape, 0.04 to 171 

0.3 m in width, which in correspondence of lifted margin (crests) form tepee-like structure (Figs. 172 

4Aiii and 4Bii). Small depressions, sandstone filled, 20 to 40 mm wide and 10 to 50 mm deep, 173 

with concave bottom and flat top, showing thin internal laminations may be present (Fig. 4Ci ). 174 

Bioturbation is present and characterised by vertical or subvertical tubes with circular section of 1-175 



5 mm in diameter and 0.03-0.2 m high (Fig. 4Cii). Small root traces, characterised by drab halos, 176 

may be also present (Fig. 4D).  177 

Interpretation. At first glance the "chaotic" aspect of this lithofacies could be interpreted as related 178 

to post-depositional physical and/or biological processes that disrupted previous stratifications. In 179 

this matter, Tunbridge (1984) interpreted a similar lithofacies of the Devonian Trentishoe 180 

Formation. For this author, excess pore water pressure and relative upward water escape 181 

generated deformations of the beds consisting in undulation and microfolds. However, a detailed 182 

analysis of the type of the deformation and relationships between sandstone and mudstone beds 183 

leads to define the structures of this lithofacies as the sedimentary product of thin salt efflorescent 184 

crust growing. Smoot and Castens-Seidell (1994) and Goodall et al. (2000) described similar 185 

structures produced by efflorescence crusts of evaporite minerals that in saline flat generate 186 

deformation of sediments deposited by wind or water on the saline crusts. The crusts form for 187 

evaporation of saline groundwater near the surface or for redistribution by wind and further 188 

dissolution by rain of solute on the surface. Due to the thin thickness, the saline crusts are easy 189 

dissolved by standing water, rainfall or flood on the saline pan and they do not have preservation 190 

in geological record. The only record of salt efflorescent crusts is the deformed sediments 191 

deposited on the saline crust surface (Smoot and Castens-Seidell, 1994). Irregular sandstone 192 

and mudstone patches can be interpreted as trapped sand and mud on the depressions of the 193 

moderately thick or thin saline crust surface (Smoot and Olsen, 1988; Smoot 1991; Smoot and 194 

Castens-Seidell, 1994). These structure represent aggradational features on the surface of the 195 

salt flat due to the progressive deposition of sandy and muddy material for aeolian or water 196 

transport, further accumulated for dissolution of the thin salt crust. Structures related to the 197 

contemporaneous deformation by efflorescent crust probably are represented by the concave-up 198 

laminae of sandstone and mudstone into bowl shapes (Figs. 4Aiii and Bii), which correspond to 199 

polygonal forms on the salt flat surface. Small sandstone-filled depressions (Fig. 4Ci) can rather 200 



be related to localised solution collapse of the saline crust and progressive sandstone filling. 201 

Evaporite deposits are not observed in this study area, but Fernandes et al. (2003) described 202 

sandy pseudomorphs after acicular crystals of gypsum in the same unit in nearby areas. 203 

Contemporary bioturbation of digging organisms and roots also contributed to the deformation of 204 

the deposits. Light olive gray colour suggests temporary water-logged conditions with iron 205 

reduction and consequent grey stainning of the sediment. In summary, this lithofacies formed on 206 

a salt flat surface with near surface water table, characterised by a thin saline crust, probably 207 

gypsum, on which depression accumulated wind- or water-transported sandy and muddy 208 

deposits. 209 

 210 

4.1.2. Planar parallel- and cross-laminated sandstone 211 

This lithofacies is formed of tabular beds of well-sorted, fine- and very fine-grained weakly 212 

cemented sandstone. The beds are 0.15-0.4 m thick and extended for more than 30 m, although 213 

observable in fragmentary exposures. Planar parallel laminations are highlighted by small grain 214 

variation and thin accumulation of very fine-grained clasts of magnetite, the laminations are 0.5 to 215 

2 mm thick (Fig. 5A). Cross-laminations show climbing sets 10-20 mm thick with foresets dipping 216 

toward NW (Fig. 5B). Locally, the cross laminations are organised in sets with concave-up bottom 217 

and with opposite dip of the foresets (Fig. 6). Sometimes, planar parallel-laminations and cross-218 

laminations form small sequences where planar parallel-laminations are located at the base. Thin 219 

beds or laminae of mudstone sometimes overlie the cross-laminated sandstone. Uncommonly, 220 

the bottom of the sequence is indicated by an erosive surface with scours up to 0.15 m deep 221 

where mudstone intraclasts from few millimetres to 0.35 m are accumulated.  222 

Interpretation. Where subaqueous and subaerial aeolian processes interact, as observed in 223 

Bauru Group (Basilici et al., 2009), is often difficult to distinguish planar lamination yielded by 224 

subaqueous upper flow regime from sand laminations produced by aeolian climbing ripples. We 225 



used the following absent or present features to separate the two different structures, as we 226 

observed in present day semiarid depositional systems (Basilici and Dal' Bó, 2014): i) aeolian 227 

climbing ripple laminations have strong bimodal grain-size signature; ii) laminations of wind 228 

ripples commonly show inverse grading and can have thickness larger than 10 mm; iii) small 229 

flattened lens of medium-grained sand are often preserved in aeolian wind ripples, representing 230 

their coarse crest; iv) commonly laminations of wind ripples have low-angle dip and sets that cut 231 

each other; v) planar laminations formed in subaqueous upper flow regime are commonly 232 

interbedded with cross-laminated sand indicating small variation of the flow. Thus, planar parallel 233 

laminations are interpreted as structures formed in upper flow regime from high velocity 234 

subaqueous flows (Best and Bridge, 1992; Bridge and Best, 1997; Fielding, 2006). 235 

Climbing cross lamination are deposited by unidirectional currents in lower flow regime and high 236 

bed load transport and correspond to the type A of Jopling and Walker (1968). Cross laminations 237 

with concave sets are similar to the unidirectional cross-laminated sandstone (lithotype S1, var. 238 

a2) of De Raaf et al. (1977) and where their foresets show opposite dip directions (upper portion 239 

of the Fig. 6) they are comparable with the bidirectional cross-laminated sandstone (lithotype S1, 240 

var. a2) of the same authors. This similarity suggests that the cross laminations with concave sets 241 

were originated by flows characterised by an oscillatory and unidirectional component (combined 242 

flows) in a stagnant water body. 243 

The association of this lithofacies to deformed interbedding of sandstone and mudstone, which 244 

represent deposits of a salt flat, and the tabular shape of the beds, more than 30 m in extension, 245 

suggest that this planar and cross-laminated sandstone may have been originated by 246 

unidirectional unconfined flows when the salt flat surface was flooded. Smoot (1991), Smoot and 247 

Lowenstein (1991) and Smoot and Castens-Seidell (1994) described tabular-shape, very fine-248 

grained sandstone beds characterised by planar laminations and climbing cross-laminations that 249 

they called sheet deltas and interpreted as deposited at the margin of shallow water lakes or 250 



flooded salt flats. The interpretation as crevasse splay deposits is excluded given that 251 

channelised deposits are absent in this unit. Cross laminations with concave sets are formed by 252 

oscillation and combined flows and testify wave action on flooded salt flat surface.  253 

 254 

4.2. Intermediate unit 255 

This unit contains four lithofacies: muddy sandstone (45% of the thickness), sandstone sheets 256 

(30% of the thickness), channelised sandstone (20% of the thickness) and medium-scale cross-257 

stratified sandstone (5% of the thickness), which can be observed in few artificial outcrops at SW 258 

of Marília (Fig. 1).  259 

 260 

4.2.1. Muddy sandstone 261 

This facies is formed of tabular muddy very fine-grained sandstone, reddish brown (2.5YR4/8), 262 

0.1-1.5 m thick and more than 40 m in lateral extension (Fig. 7). Boundaries with other lithofacies 263 

are sharp. Intense bioturbation obscures possible sedimentary structures (Fig. 8A). Small 264 

cylindrical tubes, less than 0.5 mm in diameter and 10-30 mm long, constituted of sparitic calcite 265 

and attributable to small rhizocretions (Klappa, 1980), are common. 266 

Interpretation. The fine grained and the large lateral extension of this lithofacies suggest 267 

deposition by low-energy and unconfined flows. Bioturbation and rhizocretions indicate rapid 268 

colonization after the deposition by biological communities in subaerial conditions. Although these 269 

processes disrupted possible sedimentary structures, these were not sufficiently long to generate 270 

a complete development of palaeosol profiles. 271 

 272 

4.2.2. Sandstone sheets 273 

Sandstone sheets are constituted of bright reddish brown (2.5YR5/8) fine-grained sheet- or flatted 274 

lenticular-shaped sandstone beds (Fig. 7). The beds show more than 30 m in lateral extension 275 



and are 0.1-0.6 m thick. The bottom is a sharp and flat surface, locally forming small erosive 276 

scours; the top is planar and sharp. Overall, the beds are bioturbated (Fig. 8A) and lack 277 

sedimentary structures, but planar parallel-laminations are locally observed, associated to 278 

granule- or small pebble-grained muddy intraclast alignments. No grain-size grading is observed. 279 

Sandstone sheets are interbedded vertically and laterally with muddy sandstone. 280 

Interpretation. Erosive scours testify that this lithofacies was characterised by a depositional flow 281 

enough powerful to erode the underlying muddy sandstone. The absence of sedimentary 282 

structures and the general homogeneity of the grain-size indicate rapid deceleration of the flow 283 

and consequent deposition of sediment from suspension. Similar structureless features are 284 

observed in analogous ancient fluvial systems (Tunbridge, 1981, 1984; Kelly and Olsen, 1993; 285 

Fisher et al., 2007) and reproduced in experimental conditions (Alexander et al., 2001). Local 286 

planar lamination, stressed by mud clasts, may be related to subaqueous upper flow regime. The 287 

tabular shape of these beds testify unconfined depositional mechanism, whereas the lenticular 288 

shape of some beds may be attributed to the marginal portions of unconfined deposits, which 289 

probably had a lobate shape, as observed in modern fluvial splays of Australia (Tooth, 2005). 290 

 291 

4.2.3. Channelised sandstone 292 

This lithofacies is formed by bright reddish brown (2.5YR5/8), ribbon shape sandstone bodies up 293 

to 2.2 m thick and 25 m laterally extended, with concave-up bottom and flat top (Fig. 7). Internally, 294 

various lenticular beds, 0.2-1 m thick and 1-10 m wide, divided by concave-up erosive surfaces, 295 

may be recognised. The dominant lithology is moderately-sorted fine-grained sandstone, but at 296 

the base of the lenticular beds poorly sorted coarse- to medium-grained sandstone with 297 

conglomerate intraclasts is observed (Fig. 8B). Overall, the sandstone is structureless, but local 298 

concentration of intraformational clasts permit to identify planar or low-angle laminations and 299 



sporadic cross-stratifications, the latter located above the concave-up erosive bottom (Fig. 7). No 300 

vertical variation of grain size is observed. 301 

Interpretation. Moderately to poorly sorted sandstone, filling concave-up erosive depressions, 302 

which are and characterised by width/thickness ratio <15, constitute the deposits of ribbon-303 

shaped river channels. These represent laterally stable channels subjected to deposition for 304 

vertical accretion (Gibling, 2006). The lenticular beds separated by concave-up erosive surfaces 305 

suggest various episodes of sedimentation within the same channelised structure, configuring this 306 

lithofacies as multistorey channel. The structureless sandstone beds suggest rapid waning flows 307 

that did not permit the formation of bedforms such as dunes or ripples, but rapid deposition by 308 

suspension (Jones, 1977; Alexander et al., 2001). Cross-stratifications constitute the filling of 309 

erosive troughs more than bedforms and the planar or low-angle laminations indicate local 310 

deposition for upper flow regime. The absence of vertical variation in grain size and sedimentary 311 

structures indicates that the channel was characterised by the same hydraulic processes until its 312 

complete filling.  313 

 314 

4.2.4. Medium-scale cross-stratified sandstone 315 

Cross-stratifications are constituted by tangential foresets of alternating fine- and very fine-316 

grained sandstone, which dip 15-20º (Fig. 8C). Cross-stratifications set are 1-1.2 m thick, with 317 

planar, smooth and sharp, erosional, bottom surface. This lithofacies is interbedded to fine-318 

grained sandstone sheets. 319 

Interpretation. These cross stratifications are interpreted as small aeolian dunes, because they 320 

show some typical features of wind and subaerial deposition. (1) The foreset constituted of 321 

alternating fine- and very fine-grained sandstone may be interpreted as depositional product of 322 

grain flows and grain falls on the lee side of a dune (Hunter, 1977). (2) The planar and smooth 323 



bottom is compatible with a flat aeolian deflation surface. (3) This lithofacies is associated with 324 

sandstone deposits on an emerged alluvial plain. 325 

 326 

4.3. Upper unit  327 

The palaeosols constitute most of the upper unit succession (95% of the thickness); the 328 

remaining 5% is formed of sandy conglomerate with mudstone intraclasts. In study area one type 329 

of palaeosol and one lithofacies were distinguished: Echaporã pedotype and planar-stratified 330 

conglomerate sandstone, respectively. 331 

 332 

4.3.1. Echaporã pedotype 333 

The palaeosol profiles of this pedotype are 0.9-2.4 m thick (Fig. 9). Bottom and top of the profiles 334 

are highlighted by erosional surfaces, more than 200 m laterally extended (Fig. 10A), which at 335 

large scale are horizontal, but locally are characterised by small scours, not more depth of 0.5 m 336 

and wide more than 3 m. The pedotype shows the following horizons: A-Bw-(Btk)-C-R, with A, Btk 337 

and R in general absent. The parent material of A, B and partially C horizons is formed of 338 

moderately to well-sorted fine- to medium-grained sandstone. Medium- and coarse-grained 339 

quartz grains are subrounded or rounded and if observed with the SEM in secondary electron 340 

mode show surface microtextures interpretable as bubble edges, equidimensional elongated 341 

depressions and upturned plates (Mahaney, 2002) (Fig. 10B). Part of C horizon and R horizon, 342 

when present, are constituted of medium- and coarse-grained sandstone with small pebbles of 343 

intraformational mudstone or felsic igneous rocks and quartzite, which sometimes shows ventifact 344 

form (Fig 10C). Petrography of the parent material is constituted of monocrystalline and 345 

polycrystalline quartz (73-87%), microcline and plagioclase (5-18%), lithic fragments of 346 

sedimentary rocks (2-8%). Four rhizolith types can be observed in this pedotype. (1) Type I is 347 

formed of thin branched cylindrical tube, internally empty, c.0.5 mm in diameter, 30-40 mm long, 348 



constituted by microsparitic calcite (Fig. 11A); this type is attributable to rhizocretions (Klappa, 349 

1980). (2) Type II consists of vertical laterally branched cylinders, 70-200 mm in diameter, 0.05-3 350 

m long, constituted of sand cemented by micritic calcite; sand grains are dispersed and floating 351 

within the micritic cement (Fig. 11B). Locally these forms show light greenish grey (7.5GY8/1) 352 

halos. In some cases these rhizoliths were observed to cross vertically all the palaeosol profile up 353 

to the lower portion C horizon, where they branch horizontally (Fig. 11B). Morphological features 354 

and composition of the types II are similar to the rhizotubules described by Kraus and Hasiotis 355 

(2006). (3) Type III is formed by sandstone filled cylindrical tubes, 0.5 m long, downward tapering 356 

from 20 to 5 mm in diameter, and laterally and downward branching (Fig. 11C). Sandstone filling 357 

is coarser than the surrounding parent material, and corresponds to the material of the overlying 358 

C or R horizon. These rhizoliths may be classified as root cast (Klappa, 1980). (4) Type IV is 359 

constituted of light greenish grey (7.5GY8/1), laterally branching cylindrical tube of calcite 360 

cemented sand with diffuse edge, up to 0.4 m long and 0.03 m wide (Fig. 11D), which sometimes 361 

present a central tube, less than 1 mm wide, filled in sparitic calcite. This type of root can be 362 

classified as drab-haloed root traces (Retallack, 2001). A horizon is uncommonly preserved. Its 363 

thickness is less than 0.3 m, orange (2.5YR6/6), and the calcium carbonate content is absent. 364 

Type I and III rhizoliths are very common in this horizon. Upper boundary is an erosional, sharp 365 

and wavy surface; lower boundary surface is diffuse and smooth. Bw is 0.3-2 m thick, orange 366 

(2.5YR7/6), and is characterised by incipient prismatic (150 mm high and 80 mm wide, on 367 

average) or angular blocky (50-80 mm wide) structures, which are separated by calcium 368 

carbonate thin coatings (calcans) (Fig. 11E). Type II and IV rhizoliths are common. A-Bw 369 

boundary is diffuse and smooth. When A horizon is absent, upper boundary of Bw is sharp and 370 

wavy. Lower boundary of Bw with Btk or C is diffuse and smooth. Btk horizon is 0.1-0.4 m thick, 371 

bright reddish brown (2.5YR5/8) or orange (2.5YR7/6). This horizon is characterised by 372 

subspherical to irregular nodules, <1 to 40 mm across, 10-20% in abundance (Fig. 11F). The 373 



nodules are constituted of micritic calcite with floating fine-grained sand clasts. Type II and IV 374 

rhizoliths occur here, but not so common as in Bw horizons. C horizon is 0.2-1.15 m thick, orange 375 

(2.5YR7/6) or reddish orange (10R6/6) (Fig. 9), its upper and lower boundaries are diffuse and 376 

smooth. Parent material of C horizon shows commonly mud clasts; the calcium carbonate content 377 

is less than that the B horizons. R horizon corresponds to the "structureless and planar-stratified 378 

conglomerate sandstone" lithofacies, and it is below described. Weathering Molar Ration of Ba/Sr 379 

and Rb/Sr show low values, similar to the value in parent material (C and R horizons), and no 380 

variations along the profile are evident (Fig. 12 and Tabs. 2 and 3). The peak in correspondence 381 

to Btk horizon corresponds to the incorporation of Sr in calcite crystalline lattice (Buggle et al., 382 

2011). Calcification shows high values only where macroscopic concentrations of calcareous 383 

nodules occur (Fig. 12 and Tabs. 2 and 3). Clayeyness is in general low, but higher 384 

concentrations of clay occur in the same horizons where high concentrations of calcium 385 

carbonate occur, helping to define the Btk horizons (Fig. 10 and Tabs. 2 and 3). Hydrolysis 386 

(bases/Al2O3) and CIA (Chemical Index of Alteration) have values >0.5 and <75, respectively 387 

(Fig. 10 and Tabs. 2 and 3). TiO2/Al2O3 has mean values of 0.12. 388 

Interpretation. Br/Sr, Rb/Sr, hydrolysis and CIA are Weathering Molar Ratios related to the 389 

weathering development of the palaeosols. The values of these ratios suggest low conditions of 390 

palaeopedogenic alterations (Sheldon and Tabor, 2009), mainly if they are compared with the R 391 

or C horizons (Fig. 10 and Tab. 3), which are considered to have a geochemical signature similar 392 

to the original parent material. This aspect is also confirmed by presence of incipient prismatic 393 

structures and poor accumulation of calcium carbonate in Btk horizons, which does not exceed 394 

the phase II of Gile et al. (1966), thus indicating a palaeopedogenic evolution of the order of 104 y 395 

(Machette, 1985). Weathering Molar Ratio of Al2O3/SiO2 gives information on the distribution of 396 

clay on the palaeosol profile (clayeyness). Overall, these values are homogeneous, only with very 397 

small concentration in Btk horizons, suggesting only poor lessivage of clay particles in few 398 



developed palaeosol profiles. To define the time of formation of the palaeosol profiles we can 399 

apply an equation of Sheldon (2003)  400 

Tf = 17.07 TBt2 + 645.8TBt 401 

where Tf is time of formation, TBt is the original thickness of the Bt horizons. This equation, using 402 

the data of Markevich et al. (1990), relates the original thickness of the Bt horizon with the 403 

development time of the palaeosols. Actually, the development of Bt horizon is related to the time, 404 

because the illuviation of clay from the upper horizons takes time (Retallack , 2001). The time 405 

development obtained by three Btk horizons (Fig. 12) is 8,668, 14,415 and 62,860 y, indicating 406 

relatively short periods of formation for these profiles. The other palaeosols profiles without Btk 407 

horizon probably record lower times of development. Bw horizon may be interpreted as cambic 408 

horizon, that is an horizon that presents some weathered characteristic, but not so developed to 409 

be defined as other specific B horizon (Soil Survey Staff, 1999). For all these previous 410 

characteristics the Echaporã Pedotype may be classified as Inceptisol (Soil Survey Staff, 1999, 411 

2006) or calcic Protosol (Mack et al., 1993).  412 

A clear idea on the depositional origin of the parent material does not exist because the 413 

palaeopedogenesis disrupted all the original sedimentary structures, apart some features 414 

preserved in C or R horizons. Some considerations can be based on the textural and grain-size 415 

features of parent material. The moderate to well-sorted sandstone and the medium- to coarse-416 

grained sandstone clasts with microtextural features, associated to wind-induced saltation 417 

(Mahaney, 2002), testify a subaerial aeolian-dominated environment. Pebble-sized clasts suggest 418 

that subaqueous flows could had have importance to generate this parent material, although 419 

some of these clasts show ventifact features. Thus, it is not possible clearly define if the parent 420 

material was originated by subaqueous flows that reworked wind transported material or vice 421 

versa. Geochemical (TiO2/Al2O3) and petrographic data indicate felsic origin of the parent 422 

material. 423 



 424 

4.3.2. Structureless and planar-stratified conglomeratic sandstone 425 

This lithofacies is constituted of sheet beds of conglomeratic sandstone, 0.1-0.6 m thick, more 426 

than 60 m laterally extended. The sandstone is poorly sorted, fine- to coarse-grained; the 427 

conglomerate is constituted of mudstone intraclasts, and secondarily of quartzite and granitic 428 

clasts. The bed bottom is a horizontal, but irregular, erosional surface on A or B horizon of 429 

palaeosol profiles (Fig. 10A) and the top shows a gradual transition to medium-grained sandstone 430 

of C horizon. The lithofacies is structureless or organised in alternating beds of sandstone and 431 

conglomerate, with pebble-sized showing a bed parallel orientation (Fig. 13). These beds are 432 

laterally continuous and seem to represent a single sedimentary episode. The C horizons of the 433 

palaeosol profile show similar features to this lithofacies. 434 

Interpretation. Grain size of this lithofacies indicates subaqueous depositional flows, planar 435 

parallel beds suggest upper flow regime (Bridge, 2003). Poorly sorted and structureless 436 

sandstone and sheet geometry of the beds may be associated to rapid sedimentation of 437 

unconfined hyperconcentrated flows (North and Davidson, 2012). It is noteworthy that the 438 

undulating basal erosion surface and tabular geometry of this lithofacies are very similar to the 439 

erosional sandstone sheet of Fisher et al. (2007) interpreted as unconfined flow deposit on the 440 

floodplain of fluvial distributary systems (cf. Fig. 10A with Fig. 3d of Fisher et al., 2007). 441 

 442 

5. STRATIGRAPHIC ORGANISATION AND SEDIMENTARY SEQUENCES  443 

 444 

5.1. Lower unit 445 

The lower unit is 25 m thick, but its base is not exposed (Fig. 14). This unit matches the 446 

Araçatuba Formation according to the sedimentary descriptions of previous authors (Suguio et al. 447 

1977; Fernandes et al., 2003). In particular, the lithofacies named "deformed interbedding of 448 



sandstone and mudstone" is extensively diffused in the Araçatuba Formation (Fernandes et al., 449 

2003; their Fig. 4B). The lower unit is characterised by fine- to very fine-grained sand alternated 450 

with thin beds of muddy sands. The beds show alternating colours (light olive grey colour 451 

(5GY7/1) and bright reddish brown (2.5YR5/8) (Fig. 4A and C), which allow to distinguish it from 452 

the overlying units, which are in general characterised by bright reddish brown (2.5YR5/6) or 453 

orange (2.5YR7/6) colours. "Deformed interbedding of mudstone and sand" is vertically 454 

interbedded with "planar parallel- and cross-laminated sandstone" (Fig. 3). Planar parallel-455 

laminated sandstone and cross-laminated sandstone form depositional sequences 0.2- 0.6 m 456 

thick. The absence of well-defined palaeopedogenic features means that this unit was 457 

characterised by continuous processes of deposition. 458 

 459 

5.2. Intermediate unit 460 

The intermediate unit measures 70 m of thickness (Fig. 14), its transition to the lower unit is 461 

apparently gradual developing in less than 10 m in vertical section. This transition is underlined 462 

by the disappearance of sandstone with high value colour (light olive grey - 5GY7/1) and the 463 

dominance of colours with intermediate value and high chroma (bright reddish brown -2.5YR5/8 464 

or orange - 2.5YR7/6). According to the description of Soares et al. (1980) and Fernandes and 465 

Coimbra (2000), the intermediate unit may be attributed to the Adamantina Formation. Most of 466 

the intermediate unit is formed of laterally extended tabular muddy sandstone and sandstone 467 

beds, which are alternated to channelised sandstone bodies and less common medium-scale 468 

cross-stratifications (Fig. 14). The palaeopedogenic features observed in very-fine grained 469 

sandstone indicate short time of subaerial exposition and interruption of the depositional 470 

processes for a time lower than 1 ky (Allen and Wright, 1989). 471 

 472 

5.3. Upper unit 473 



The upper unit is c.150 m thick and (Fig. 14) can be attributed to the Marília Formation, because 474 

it is located in the same area where Soares et al. (1980) defined the strato-type of Marília 475 

Formation and coarser grain-size, general absence of sedimentary structures and presence of 476 

carbonate nodules are features already described by Soares et al. (1980) as typical for this unit. 477 

The transition from intermediate unit develops in c.20 m and it is characterised by the progressive 478 

appearance of palaeosol profiles. The upper unit is organised in cyclic alternations of deposits 479 

(structureless and planar-stratified conglomeratic sandstone) and palaeosols (Echaporã 480 

pedotype) (Fig. 15). These sequences, 0.9 to 2.4 m thick, are separated by erosional surfaces, 481 

more than 200 m in extension with scours up to 0.5 m depth and 3 m wide (Fig. 10A). The 482 

deposits are located at the base of the sequence (Fig. 15), but sometimes, above the erosional 483 

surface only the C horizon with poorly-preserved sedimentary structures is observed. Palaeosol 484 

profiles separated by deposits and/or C horizons are denominated compound profiles (Morrison, 485 

1978). The formation of compound profiles entails that the depositional and pedogenic processes 486 

were separated in time and that sedimentation was sufficiently rapid and thick for not allow to the 487 

pedogenesis to incorporate the material within the soil profile. Daniels (2003) highlighted in 488 

present floodplain of semiarid environment that the sedimentation rate above 5 mm/y inhibits the 489 

pedogenic processes and allows to the preservation of the sedimentary structures. Echaporã 490 

pedotype is an Inceptisol, i.e. a poorly developed palaeosol. Time and not favourable climate 491 

conditions influence the formation of Inceptisols (Foss et al., 1993). Time may be defined 492 

applying the time-function of Sheldon (2003) to the palaeosol profiles with Btk horizons, where we 493 

verified times of formation from 8,668 to 62,860 y. In this study case, climate may be considered 494 

a secondary factor, because this same unit in the northern portion of the Bauru Basin shows in 495 

similar climate conditions well-developed palaeosols (Basilici et al., 2009). Thus, the time may be 496 

considered to be the main factor responsible for the immaturity of these palaeosols. 497 

 498 



6. DEPOSITIONAL RECONSTRUCTION OF THE PALAEOENVIRONMENT AND MODEL OF 499 

EVOLUTION OF THE BAURU GROUP  500 

This paragraph reconstructs the depositional conditions and the possible evolution of the three 501 

units of the Bauru Group exposed in Serra de Echaporã. 502 

 503 

6.1. Lower unit: basinal salt flat system 504 

Deformed sandstone and mudstone constitutes three-quarters of the thickness of the deposits of 505 

the lower unit (Fig. 3), therefore this lithofacies represents the dominant depositional system. This 506 

was produced by the deposition of sand and mud by subaqueous or subaerial flows on a thin 507 

saline efflorescent crust, which covered the surface of a salt flat (Smoot and Lowenstein, 1991; 508 

Smoot and Castens-Seidell, 1994; Goodall et al., 2000). The clastic material was deposited 509 

above an irregular saline crust and successively it was deformed by the contemporaneous growth 510 

or dissolution of salts. Evaporite minerals did not preserved due to the undersaturated 511 

groundwater and the relatively frequent floods. The salt flat area was rather extended because, 512 

although the maximum observed exposure of these deposits is few hundreds of metres, 513 

Fernandes et al. (2003) recognised similar lithofacies c.100 km northward from the study area. 514 

Occasional floods on the salt flat are indicated by planar parallel- and cross-laminated sandstone 515 

sequences. This lithofacies testifies rapid subaqueous flows, which spread sand on surfaces 516 

some tens of metres wide. The sand initially was deposited in plane bed form, followed with the 517 

decreasing of the flow velocity by climbing current ripples; at calm water, a thin bed of muddy 518 

sandstone covered the sand. These deposits probably reflect the construction of sheet deltas at 519 

the margin of the flooded salt flat (Fig. 16A). Sheet deltas are shoreline subenvironments of dry or 520 

saline mudflat settings, which are constituted of sand beds organised in vertical sequences of 521 

planar parallel-laminations, climbing-ripple cross-laminations and thin beds of mud, which form 522 

wedge-shaped flat bodies (Smoot and Lowenstein, 1991). On the standing waters, established 523 



after the flood, wave motion reworked the sand forming wave or combined ripple bedforms. 524 

However, the waters did not remain for long time on the depositional surface: uncommon beds 525 

with structures produced by wave motion and absence of clayey laminated and bluish grey 526 

deposits exclude the presence of deep and permanent waters. On the contrary, efflorescence 527 

crust structures, root traces and bright reddish brown colour suggest emergence conditions (Fig. 528 

4). Conclusively, lower unit depositional area may be configured a shallow and ephemeral lake, 529 

identifiable as salt flat or playa-lake, where during occasional floods from the neighbouring areas 530 

high-velocity and shallow-water unconfined flows transported sediment into the flooded salt flat 531 

forming small sheet deltas (Fig. 18A). 532 

 533 

6.2. Intermediate unit: distributary system 534 

Most of this unit is constituted of vertical interbedding of sheet sandstone and muddy sandstone 535 

beds. The tabular geometry of these lithofacies indicates that these deposits were generated by 536 

unconfined shallow-water flows on a floodplain. Sheet sandstone is the product of high-energy 537 

flows, probably originated from breakage of the channel margins or from points where the 538 

channels extinguished on the floodplain (Fig. 7 and 16B). The sharp upper transition to muddy 539 

sandstone suggests that the latter does not represent the waning flow deposits of sheet 540 

sandstone but lower-energy overbank deposits (Bridge, 2003). Small rhizocretions and intense 541 

bioturbation of the muddy sandstone indicate a pedogenic alteration. However, the pedogenesis 542 

was incipient and insufficient to produce a well-developed palaeosol profile, thus indicating short 543 

periods of interruption of the depositional processes. Sheet sandstone and muddy sandstone are 544 

cut by multistorey channelised bodies filled by lenticular fine-grained sandstone beds that 545 

represent various episodes of sedimentation within ribbon-shape fixed channels (Fig. 7 and 16B). 546 

The sedimentological features of the channel deposits show that the channels did not laterally 547 

migrate and not never were gradually abandoned, but once completely filled they shifted abruptly 548 



channel belt. Moderately-sorted sandstone and weak planar or low-angle laminations suggest 549 

that channel flows were characterised by high bed-load transport, high velocity and rapid 550 

deposition, which did not permit the formation of bars or smaller bedforms. Locally, the alluvial 551 

plain was characterised by wind reworking of the sand that formed small aeolian dunes just over 552 

one metre high (Fig. 8C and 16B). Thus, the depositional environment of the intermediate unit is 553 

represented by an alluvial plain characterised by fixed ribbon channel and by a floodplain 554 

subjected to frequent floods and local aeolian reworking (Fig. 16B). 555 

Sheet sandstone beds associated to ribbon-shaped channel deposits are described as typical of 556 

the distributary zone of fluvial distributary systems in arid or semiarid areas. In modern examples, 557 

Parkash et al. (1983) and Abdullatif (1989) observed that the terminal portion of the course of the 558 

Markanda (India) and Gash rivers (Sudan), respectively, is branched in various distributary 559 

smaller channels due to the progressive loss of water for evaporation and infiltration. In these 560 

areas, the channels are laterally and downstream alternated with unconfined sandy deposits 561 

generated at the termination of the channels or by overbank flows. Tooth (2005), describing the 562 

inland termination of two ephemeral rivers (Sandover and Sandover-Bundey, Australia), observed 563 

that they divide in distributary channels and pass laterally and distally in sandy sheet flood 564 

deposits. In ancient depositional systems the examples of terminal fluvial fan are more numerous. 565 

Kelly and Olsen (1993), based on three Devonian examples, recognised that medial and distal 566 

portion of the fluvial distributary system is constituted of interbedding of channel and sheet 567 

sandstone deposits with an increase of the latter in distal part. In Miocene Ebro Basin, Fisher et 568 

al. (2007) interpreted sandstone-filled ribbon channel associated with sheet sandstone and 569 

pedogenised mudstone as distal part of fluvial distributary system. Cain and Mountney (2009) 570 

used similar depositional interpretation for Organ Rock Formation, which is constituted of laterally 571 

extensive sandstone sheetflood deposits interbedded with ribbon-shape channel deposits and 572 

aeolian dunes or sands sheets. Thus, the architectural structure of the intermediate unit matches 573 



well with the medial or distal part of the distributary zone of a fluvial distributary system (Kelly e 574 

Olsen, 1993) (Fig. 18B). 575 

 576 

6.3. Upper unit: distal distributary system in more arid climate 577 

The upper unit is considerably different from the other two units because is palaeosol dominated 578 

and slightly coarser in grain size. Compound profiles of palaeosols indicate interruptions of the 579 

depositional processes of the order of 104 y, which caused the almost complete alteration of the 580 

sediments. Structureless and planar-stratified conglomeratic sandstone and some relicts of 581 

sedimentary features preserved in C horizons permit to associate the origin of the parent material 582 

to the deposition by unconfined subaqueous flows (Fig. 17A). Wind action is testified by surface 583 

textural features observed in sand grains and ventifacts, but no data exist to unravel if the wind 584 

formed deposits or the subaqueous flows reworked previous aeolian transported material. Thus, 585 

the environmental conditions of the upper unit may be visualised as a flat area subjected to short 586 

duration and periodical unconfined floods, which probably reworked previous aeolian transported 587 

sands, (Fig. 17A) and successive prolonged periods of pedogenesis (Fig. 17B). 588 

The three units are characterised by gradual stratigraphic transition. Therefore, it is likely that 589 

these units constitute portions of the same depositional system. If the lower and intermediate 590 

units can be interpreted as basinal and medial or distal zone of a fluvial distributary system, 591 

respectively (Kelly and Olsen, 1993; Nichols, 2005; Nichols and Fisher, 2007; Cain and 592 

Mountney, 2009) (Fig. 18 A and B), inserting the upper unit in this depositional system results a 593 

little complex. This difficulty is mainly related to the fact that the upper unit is constituted almost 594 

exclusively by palaeosols, and they are not considered into the model of fluvial distributary 595 

system, if not marginally. For example, Fisher et al. (2007) described floodplain mudstone with 596 

pedogenic modifications and Cain and Mountney (2009) recognised palaeosol profiles with Bk 597 



horizons (calcrete) as part of the overbank deposits. Nevertheless, in both cases the palaeosol 598 

types were not identified and the relationship with the depositional processes was not analysed. 599 

In upper unit, the abundance of palaeosols suggests decrease in sedimentation rate. Vertical 600 

alternations of compound palaeosols, interpreted as moderately developed palaeosols 601 

(Inceptisols), indicate sedimentation processes with recurrence time of the order of 104y (Fig. 15). 602 

The climate is one of the main factors that governs the depositional processes in endorheic 603 

basins (Nichols, 2005). In fact, the hinterland climate of distributary fluvial systems controls the 604 

supply of water and the basin climate the loss of water for evaporation (Nichols, 2005; Nichols 605 

and Fisher, 2007). Therefore, the lesser availability of material observed in upper unit may be 606 

associated to more arid climate that reduced the discharge of the rivers and consequently the 607 

input of sediment into the basin. Chumakov et al. (1995) published climate global maps for the 608 

Upper Cretaceous, and collocated the study area in Southern Hot Arid belt. Several features 609 

testify a semiarid climate for the upper unit formation. (i) Calcium carbonate concentration in 610 

palaeosol horizons (Btk horizons) indicates some degree of aridity (Sheldon and Tabor, 2009). (ii) 611 

Long tap root traces (type II) are related to deep groundwater level in the soil. (iii) Grain size and 612 

general textural features of the parent material of the upper unit testify aeolian transport. (iv) 613 

Unconfined flow deposits are common in semiarid environment due to improvise and catastrophic 614 

floods (Fielding et al., 2009). More arid conditions provoked the decrease of the sedimentary 615 

input of the fluvial distributary system. The sheet-shaped compound palaeosol profiles, whose 616 

parent material was interpreted as deposited from unconfined flows, and the absence of channel 617 

deposits allow to attribute this unit to the more distal portion of a fluvial distributary system, which 618 

was invaded by low-frequency and occasional unconfined flood. Thus, the transition from 619 

intermediate to upper unit indicates a general retrogradation of the system (Fig. 18C). 620 

 621 

7. CONCLUSIONS 622 



The application of genetic criteria, which consider sedimentary facies of the deposits and 623 

palaeosols, to the stratigraphy of the south-eastern portion of the Bauru Group can help to 624 

unravel the complicated and apparently featureless stratigraphy of this unit and its sedimentary 625 

evolution. In this area, three lithostratigraphic units, informally named as lower, intermediate and 626 

upper units, were recognised. They may be identified as Araçatuba, Adamantina and Marília 627 

formations, respectively. 628 

The three units constitute a continuous sedimentary succession that may be interpreted as 629 

depositional product of a fluvial distributary system. The lower and intermediate units are 630 

interpreted as basinal and distal or medial portion of an endorheic fluvial distributary system. The 631 

upper unit, which is mostly constituted for palaeosols, does not fit well to the proposed models of 632 

fluvial distributary system. In fact, although the palaeosols are known in these depositional 633 

systems, they are not considered as important element of this depositional model. Palaeosols of 634 

the upper unit represent poor and occasional input of sediment into the depositional system, 635 

probably due to a general drying up of the climate, which reduced the river discharge and 636 

consequently the generation of sediment into the basin. Preserved sedimentary feature and 637 

erosive bottom and sheet shaped of the palaeosol profiles suggest that occasional unconfined 638 

flow deposited the parent material of the upper unit. These features and the absence of 639 

channelised bodies allow interpreting this unit as more distal portion of a fluvial distributary 640 

system where occasional unconfined flow deposited sheet sandstone. During the pauses of 641 

sedimentation moderately developed palaeosols (Inceptisols) formed above the deposits for a 642 

time of the order of 104y.  643 

In conclusion, the coordinate study of palaeosol and sediments permitted to unravel the 644 

stratigraphy of the apparently featureless Bauru Group, its sedimentary palaeoenvironment as 645 

fluvial distributary system and to insert the palaeosol dominated upper unit into this depositional 646 

model. 647 
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 830 

CAPTIONS 831 

Figure 1. Location map of the study areas. Previous study areas were considered in Basilici et al. 832 

(2009), Dal' Bó et al. (2009) and Basilici and Dal' Bó (2010).  833 

Figure 2. (A) Schematic geological map of the Bauru Basin. (B) Stratigraphic interpretation 834 

according to Batezelli (2015). (C) Stratigraphic interpretation according to Fernandes and Ribeiro 835 

(2015). 836 

Figure 3. Detailed stratigraphic sketch of the lower unit (attributed to Araçatuba Formation). 837 

Deformed interbedding of sandstone and mudstone (lithofacies dsm in the picture) constitute 838 

most of the succession. Lithofacies: dsm = deformed interbedding of sandstone and mudstone; 839 

pcs = planar parallel and cross-laminated sandstone. 840 

Figure 4. Lower unit. The lithofacies deformed interbedding of sandstone and mudstone is 841 

interpreted as deformed sediments by superficial growing of thin salt efflorescence crusts. (A)  842 

Thin beds or laminae of sandstone (olive grey - 5GY7/1) and mudstone (bright reddish brown - 843 

2.5YR5/8) show jagged lateral edge and cuspate margins. Some sandstone are characterised of 844 

thin internal laminations (i). Protrusions of mudstone in sandstone patches (ii) can represent the 845 



"popcorn" surface of salt crust. Mudstone and sandstone concave-up laminae (iii) are interpreted 846 

as surface deformation features that correspond to polygonal forms on the salt flat surface. Coin: 847 

20 mm. (B) Irregular patches of mudstone and sandstone (i) representing aggradational features 848 

of salt efflorescence crusts. Bowl-shaped laminae of mudstone and sandstone (ii) reflect surface 849 

deformation structures like polygons or mound shapes. Object for scale is 26 mm in diameter. (C) 850 

(i) Small sandstone-filled depression can represent solution collapse structures associated with 851 

efflorescent crust fabric. (ii) Bioturbation is present, but not common, this consists in small 852 

sandstone-filled vertical tube, with circular section of 1-5 mm in diameter and 0.03-0.2 m high. 853 

Object for scale is 26 mm in diameter. (D) Root trace with drab halo (arrowed) testifies iron 854 

reduction and depletion under reducing conditions around the root walls. Coin: 20 mm.  855 

Figure 5. Lower unit. Lithofacies planar parallel- and cross-laminated sandstone. (A) Planar 856 

parallel-laminated sandstone was formed in upper flow subaqueous regime. Coin: 22 mm. (B) 857 

Cross-laminated sandstone represents subaqueous climbing current ripples. Coin: 20 mm.  858 

Figure 6.  Lower unit. Lithofacies planar parallel- and cross-laminated sandstone. Trough cross-859 

laminations with bipolar and opposite dip of the foreset are interpreted as wave-reworked sand. 860 

The section is close to the direction of the foreset dip. Coin: 20 mm. 861 

Figure 7.  Intermediate unit. Muddy sandstone (ms) and sandstone sheets (ss) constitute most of 862 

the lithofacies of the intermediate unit. They are interpreted as unconfined flows. Channelised 863 

sandstone (chs) represents the filling of ribbon-shaped channel. The lenticular beds separated by 864 

concave-up erosive surfaces suggest various episodes of sedimentation.  865 

Figure 8. Intermediate unit. (A) Sheet shape beds of muddy sandstone and sandstone sheets are 866 

commonly intensively bioturbated. Coin: 20 mm. (B) Conglomerate intraclasts accumulated at the 867 

base of the channelised sandstone lenticular beds. The small holes (arrowed) represent muddy 868 

intraclast positions. Pencil: 145 mm. (C) Medium-scale cross-stratifications (css) are interpreted 869 

as small aeolian dune deposits. They are interbedded with fine-grained sandstone sheets (ss) 870 



and perhaps. Poor exposure does not permit to interpret the facies indicated with interrogative 871 

point. Probably may represent subaqueous bedforms due to the presence of muddy intraclasts. 872 

Figure 9. Palaeosol profiles representing the Echaporã pedotype. Bottom and top are divided by 873 

erosive surfaces; A-Bw1-Btk-Bw2-C-R horizons may be present, but commonly A, Btk and R 874 

horizon are lacking. This pedotype is interpreted as Inceptisol or calcic Protosol and it is 875 

constituted by compound profiles. 876 

Figure 10.  Upper unit. (A) The dotted lines indicate the erosive bottom of the compound 877 

palaeosol profiles, described as Echaporã pedotype. Above this erosive surface structureless or 878 

planar-stratified conglomerate sandstone occurs, testifying deposition of unconfined subaqueous 879 

flows. The red cone is c.0.5 m high. (B) Subrounded clast of coarse-grained sand with bulbous 880 

edges, which indicate wind transport. (C) Some pebble-sized clasts show ventifact appearance. 881 

Figure 11. Echaporã pedotype. (A) Type I of root trace. Thin rhizocretions formed of sparitic thin 882 

cylindrical tubes (arrowed). Coin: 22 mm. (B) Type II of root trace. Long rhizotubules attributable 883 

to tap roots. The arrow shows the root system turning horizontal, probably where the root reached 884 

the ground water level or sufficient humidity. (C) Type III of root trace. Sand-filled root cast. Note 885 

the lateral branching and the downward tapering. Coin: 22 mm. (D). Type IV of root trace. Drab-886 

haloed root traces. Coin: 22 mm. (E) Incipient prismatic structures separated by calcans (white 887 

patches in photo) constitute a feature of the Bw horizon. Pencil: 145 mm. (F) Non-coalescent 888 

carbonate nodules in Btk horizon. Pencil: 145 mm. 889 

Figure 12.  Molecular Weathering Ratios (MWR) of profiles of Echaporã pedotype. 890 

Figure 13.  Structureless and planar-stratified conglomerate sandstone is described as R horizon 891 

in palaeosol profiles. Muddy clast alignment on horizontal surfaces alternated with poorly sorted 892 

fine- to coarse-grained sandstone is the main sedimentary structure. Coin: 22 mm. 893 

Figure 14. Stratigraphic synthesis of the study area. The beds are not in scale and the transition 894 

between the units is gradual, as indicated in the text.  895 



Figure 15. Inceptisol palaeosol profiles of upper unit of south-eastern portion of the Bauru Basin 896 

are organised in cyclic sequences of compound palaeosols. Legend in Figs. 3, 7 and 12. 897 

Figure 16. (A) The lower unit was deposited in a salt flat or playa-lake. The interbedding of 898 

sandstone and mudstone, deformed by efflorescent salt crust growth, constitute most of the 899 

depositional unit. During the floods, at the margin of the salt flat, unconfined flows formed sheet 900 

delta. (B) The intermediate unit deposited in medial or distal zone of a fluvial distributary system. 901 

Small and fixed ribbon-channel deposits cut prevalent interbedding of sandstone sheet and 902 

muddy sandstone beds, formed by unconfined flows. Rarely, aeolian cross-stratifications can be 903 

observed . 904 

Figure 17. (A) The upper unit deposited by unconfined subaqueous deposits, which probably 905 

partially reworked wind-transported material. (B) A relatively long period of stasis of 906 

sedimentation of the order of 104 y favoured pedogenesis of the previous deposits and the 907 

formation of Inceptisols. 908 

Figure 18. Cartoon showing the depositional and stratigraphic evolution of the south-eastern 909 

portion of the Bauru Basin. (A) Lower unit, (B) intermediate unit and (C) upper unit. See text for 910 

details. 911 
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Table 1. Summary of lithofacies and pedotype observed in south-eastern portion of the Bauru 913 

Group. 914 

Table 2. Major and trace element data. 915 

Table 3. Molecular Weathering Ratios used as palaeoenvironmental proxies in Echaporã 916 

pedotype. 917 
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Facies and 
palaeosols 

name 

Stratigraphic 
occurrence 

Description Interpretation Figures 

Deformed 
interbedding of 
sandstone and 
mudstone 

Lower unit Irregular, broken, undulated and 
micro-folded interbedding of 
laminae or patches of well-
sorted, fine- to very fine-grained 
weakly-cemented sandstone 
(olive grey - 5GY7/1) and 
mudstone (bright reddish brown 
- 2.5YR5/8) Drab-haloed root 
traces and bioturbation are 
present. 

Sedimentary structures formed by 
growing of thin salt efflorescent crusts 
on a salt flat or playa-lake. Root traces 
and reddish colour indicate subaerial 
conditions. 

Fig. 4 

Planar parallel 
and cross-
laminated 
sandstone 

Lower unit Tabular beds of well-sorted, 
fine- and very fine-grained 
weakly cemented sandstone. 
Planar parallel laminations, 
climbing cross-laminations and 
this mudstone beds constituted 
small sequences in this order. 
Trough cross-laminations with 
opposite dip of the foresets are 
present. 

Deposition by unidirectional 
subaqueous waning flows passing from 
upper to lower flow regime. These 
deposits formed sheet deltas at the 
margin of the flooded salt flat. Trough 
cross-laminations with opposite dip of 
the foresets indicate wave reworking. 

Figs. 5 
and 6 

Muddy 
sandstone 
 

Intermediate 
unit 

Tabular muddy very fine-
grained sandstone. Bioturbation 
and small rhizocretions are 
present. 

Deposition by low-energy and 
unconfined flows in floodplain area. 
Root traces indicate incipient 
pedogenesis.  

Figs. 7 
and 8A 

Sheet 
sandstone 

Intermediate 
unit 

Sheet shape beds of fine-
grained sandstone, 
structureless or with local planar 
laminations.  

Deposition by unconfined depositional 
subaqueous flows characterised by 
rapid deceleration of the flow and 
consequent deposition of sediment from 
suspension. Planar laminations may be 
related to subaqueous upper flow 
regime. 

Figs. 7 

Channelised 
sandstone  

Intermediate 
unit 

Ribbon shape sandstone bodies 
with concave-up bottom and flat 
top. Internally, constituted by 
various lenticular beds divided 
by concave-up erosive 
surfaces. 

Deposition in multistorey ribbon-shape 
fixed channel. 

Figs. 7 
and 8B 

Medium-scale 
cross-stratified 
sandstone 

Intermediate 
unit 

Tangential cross-stratifications 
of fine- and very fine-grained 
sandstone. 

Small aeolian dunes. Fig. 8C 

Echaporã 
pedotype 

Upper unit A-Bw-(Btk)-C-R, horizons in 
most complete profiles. A, Btk 
and R horizon are in general 
absent. Parent material is fine- 
to medium-grained, moderately 
to well-sorted sandstone. 
Incipient prismatic structures 
and poorly developed calcium 
carbonate concentration are 
present.  

Poorly developed palaeosols. Inceptisol 
or calcic Protosol.  

Figs. 9, 
10, 11 
and 12 

Structureless 
and planar-
stratified 
conglomeratic 
sandstone 
 

Upper unit Sheet beds of conglomeratic 
sandstone. Structureless or 
organised in alternating beds of 
sandstone and conglomerate, 
with pebble-sized showing a 
bed parallel orientation. 

Unconfined subaqueous flows. Fig.13 

     

 
 
 
 

TABLE 1 



 
Sample
  

Depth 
m 

Leaching 
Ba/Sr 

Leaching 
Rb/Sr 

Calcification  Clay 
formation  

Hydrolysis C.I.A. Provenience 
TiO2/Al2O3 

BA64 0 4.42 0.74 1.31 0.03 1.68 55.6 0.13 

BA68 35 3.87 0.71 1.23 0.04 1.61 58.9 0.14 

BA69 80 3.87 0.67 1.26 0.04 1.61 58.6 0.15 

BA70 105 2.57 0.4 1.66 0.04 2.02 46.5 0.14 

BA74 125 1.07 0.01 37.3 0.06 37.5 2.71 0.12 

BA75 150 3.92 0.8 1.16 0.04 1.5 67.8 0.13 

BA76 180 4.28 0.63 1.12 0.03 1.51 59.1 0.08 

BA77 195 4.33 0.64 0.77 0.03 1.18 64.3 0.13 

BA78 235 4.64 0.64 0.71 0.03 1.12 63.7 0.11 

BA79 280 4.6 0.6 0.8 0.02 1.19 62.8 0.1 

BA80 310 4.11 0.59 0.6 0.02 1.02 62.9 0.11 

BA81 345 4.14 0.61 0.6 0.02 1.03 62.8 0.13 

BA84 380 5.12 0.89 0.99 0.03 1.41 65.9 0.13 

BA86 415 4.55 0.91 0.96 0.03 1.37 65.6 0.14 

BA85 425 4.89 0.89 1.01 0.03 1.42 66.7 0.13 

BA87 460 1.18 0.08 6.64 0.06 6.92 14.3 0.13 

BA88 495 4.67 0.87 1.02 0.03 1.42 64.8 0.14 

BA92 570 5.04 0.83 1 0.03 1.42 62.7 0.13 

BA93 635 4.43 0.68 1.16 0.03 1.58 57.4 0.14 

BA94 650 0.9 0.1 5.5 0.05 5.82 16.8 0.13 

BA95 695 4.15 0.75 1.29 0.04 1.65 54.2 0.13 

BA96 735 2.5 0.35 2 0.04 2.35 39.6 0.13 

BA97 815 4.87 0.67 1.16 0.03 1.55 58.3 0.12 

BA98 845 0.49 0.03 16.2 0.05 16.5 6.06 0.14 

BA99 870 3.65 0.66 1.23 0.04 1.55 58 0.16 

BA100 905 4.07 0.59 1.19 0.03 1.56 54.7 0.12 

 
 
 
 

TABLE 3 



  
Major oxides (weight percentage) 

Sample Depth 
m 

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total 

BA64 0 86.65 0.427 4.35 1.63 0.016 1.51 1.03 0.19 1.19 0.042 2.9 99.9 

BA68 35 83.8 0.562 5.31 1.8 0.022 1.91 0.93 0.29 1.42 0.05 3.25 99.3 

BA69 80 82.45 0.697 5.75 2.28 0.02 2.06 1.12 0.28 1.45 0.058 3.49 99.6 

BA70 105 80.46 0.639 5.66 2.21 0.025 1.94 2.46 0.28 1.45 0.062 4.29 99.5 

BA74 125 19.55 0.205 2.1 1.1 0.14 1.32 41.25 0 0.35 0.004 33.8 99.8 

BA75 150 82.97 0.596 5.97 2.28 0.021 2.43 0.44 0.3 1.42 0.055 3.44 99.9 

BA76 180 87.79 0.248 4.13 1.32 0.014 1.33 0.69 0.2 1.18 0.048 2.49 99.4 

BA77 195 89.44 0.387 3.87 1.57 0.021 0.96 0.31 0.18 1.19 0.041 1.74 99.7 

BA78 235 90.38 0.323 3.84 1.41 0.018 0.84 0.33 0.18 1.19 0.042 1.55 100.1 

BA79 280 89.87 0.29 3.68 1.29 0.02 0.87 0.41 0.16 1.08 0.036 1.71 99.4 

BA80 310 91.96 0.262 3.06 1.13 0.015 0.52 0.28 0.13 1 0.033 1.27 99.6 

BA81 345 91.67 0.336 3.2 1.23 0.018 0.55 0.29 0.14 1.05 0.037 1.16 99.7 

BA84 380 86.93 0.457 4.38 1.51 0.015 1.54 0.24 0.2 1.39 0.037 3.14 99.8 

BA86 415 86.13 0.508 4.67 1.63 0.013 1.57 0.28 0.2 1.49 0.04 3.27 99.8 

BA85 425 87.15 0.443 4.36 1.52 0.015 1.59 0.22 0.15 1.41 0.04 3.14 100 

BA87 460 54.86 0.521 5.26 2.34 0.125 1.93 16.54 0.11 1.19 0.044 16.8 99.7 

BA88 495 86.57 0.494 4.59 1.7 0.014 1.6 0.34 0.18 1.46 0.041 3.33 100.3 

BA92 570 87.37 0.442 4.21 1.4 0.017 1.38 0.39 0.17 1.4 0.039 2.93 99.7 

BA93 635 86.03 0.495 4.53 1.65 0.021 1.5 0.8 0.21 1.44 0.042 3.47 100.2 

BA94 650 62.18 0.534 5.12 2.13 0.044 1.73 13.07 0.17 1.29 0.055 13.6 99.9 

BA95 695 80.92 0.598 6.04 2.38 0.019 1.92 1.6 0.29 1.58 0.058 5 100.4 

BA96 735 80.91 0.585 5.67 2.32 0.038 1.84 3.67 0.24 1.47 0.052 2.8 99.6 

BA97 815 86.18 0.435 4.58 1.61 0.015 1.51 0.82 0.22 1.31 0.045 3.52 100.3 

BA98 845 38.79 0.376 3.37 1.51 0.068 1.34 28.18 0.14 0.69 0.06 24.9 99.4 

BA99 870 82.01 0.663 5.3 2.51 0.023 1.73 1.17 0.22 1.25 0.06 4.34 99.3 

BA100 905 85.53 0.412 4.54 1.76 0.014 1.31 1.16 0.17 1.27 0.049 3.75 100 

 

Trace elements (ppm) 
Sample Depth 

m Ba Ce Cr Cu Ga La Nb Nd Ni Pb Rb Sc Sr Th V Y 

 

Zn 

 

Zr 

BA64 0 319 24 42 3.4 3.7 14 10 10 8.1 8 33 5 46 2.6 51 6.6 14.4 172 

BA68 35 340 27 61 4.5 5.9 15 15 16 12.7 10.9 39 6 56 5.1 56 7.5 19.7 188 

BA69 80 370 36 87 5.4 5 <13 18.4 15 13.5 9.4 40 9 61 5 61 8.6 22.2 222 

BA70 105 390 35 206 4.2 4.4 18 17.5 22 12.4 11.2 38 7 97 4.3 65 9.2 22.4 208 

BA74 125 704 17 12.9 <1.5 4.4 31 6.6 <8 9.9 17.5 4.2 16 418 <2 33 19.9 10.8 54 

BA75 150 307 36 46 4.9 6 18 13.3 21 12.9 9.1 39 10 50 5.8 71 8.7 20.5 205 

BA76 180 349 16 19.7 4.1 4.9 13 8 <8 8.3 7.3 32 5 52 4.3 41 5.9 14.2 100 

BA77 195 346 20 39 3.6 2.7 14 8.8 16 8.2 9.1 32 4 51 5.9 49 5.7 13.8 125 

BA78 235 371 24 90 2.3 3 16 7.8 <8 7.8 8.9 32 4 51 3.6 53 5 15.9 104 

BA79 280 368 20 155 2 2.6 19 7.9 10 8.5 9.4 30 5 51 2.9 64 5.6 14.4 99 

BA80 310 309 11 62 3.1 <2 <13 7 <8 5 7.4 27.7 <3 48 <2 36 6.3 10 107 

BA81 345 318 14 51 3 3.3 <13 8.1 8 6.3 8.8 29.4 <3 49 2.3 48 6.2 11.8 110 

BA84 380 353 16 57 3.4 6.2 15 14.5 17 9.7 10.4 38 4.5 44 3.5 43 7.4 15.2 190 

BA86 415 328 24 45 4.8 6.3 16 15.7 21 10.1 10 41 3.3 46 5.4 46 8.5 14.6 210 

BA85 425 345 23 32 4.7 6.1 17 13.6 13 9.9 10.3 39 4.7 45 6 43 8.4 14 183 

BA87 460 798 50 41 4.5 7 38 19.8 31 17 24.7 33 9 430 5.6 56 18.5 23.8 153 

BA88 495 344 30 39 5.3 6.4 16 14.9 12 9.8 10.8 40 3.3 47 4.2 50 7.7 14.8 201 

BA92 570 371 18 34 3.5 4.6 21 14 14 8.1 10.6 38 5.3 47 4.9 48 6.1 14.4 194 

BA93 635 410 22 35 4.5 5.9 16 15.5 15 9.1 12.4 39 4.3 59 4.6 52 7.7 15.1 195 

BA94 650 487 41 41 4.6 6.3 39 21.6 23 14.8 15.4 35 9.9 345 5.2 61 13.5 24.5 182 

BA95 695 410 25 42 8.2 8.8 19 18.7 26 14.6 10.1 46 5.7 63 4.5 73 10.9 24 224 

BA96 735 475 36 44 7.7 7.5 26 18.4 33 13.4 13 41 5.1 121 5.9 73 12 23.1 203 

BA97 815 420 18 36 4.6 5.9 16 13.1 <11 9.3 10.1 36 3.3 55 4.4 55 7.2 16 171 

BA98 845 472 38 21 <1 5.2 32 12.7 21 10.3 13.8 15.8 10.9 611 3.4 30 13.5 17 143 

BA99 870 320 31 60 5.7 7 19 14.6 26 13.6 11.3 36 5.1 56 5 79 10.4 21 285 

BA100 905 364 17 36 3.9 6.1 10 10.9 11 10.5 9.1 33 4.6 57 2.7 57 6.9 16.7 159 

 
 
 

TABLE 2 


