

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE GEOCIÊNCIAS

SAMIA PASSARELLA SOARES

CARACTERIZAÇÃO E CORRELAÇÃO DE SUPERFÍCIE GEOMÓRFICA DE CIMEIRA NO SUDOESTE DE MINAS GERAIS

> CAMPINAS 2016

SAMIA PASSARELLA SOARES

CARACTERIZAÇÃO E CORRELAÇÃO DE SUPERFÍCIE GEOMÓRFICA DE CIMEIRA NO SUDOESTE DE MINAS GERAIS

TESE DE DOUTORADO APRESENTADA AO INSTITUTO DE GEOCIÊNCIAS DA UNICAMP PARA OBTENÇÃO DO TÍTULO DE DOUTORA EM GEOGRAFIA NA ÁREA DE CONCENTRAÇÃO ANÁLISE AMBIENTAL E DINÂMICA TERRITORIAL

ORIENTADOR: FRANCISCO SÉRGIO BERNARDES LADEIRA

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA SAMIA PASSARELLA SOARES E ORIENTADA PELO PROF. DR. FRANCISCO SERGIO BERNARDES LADEIRA.

> Campinas 2016

Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Geociências Cássia Raquel da Silva - CRB 8/5752

Passarella, Samia, 1984-

P266c Caracterização e correlação de superfície geomórfica de cimeira no sudoeste de Minas Gerais, Brasil / Samia Passarella Soares. – Campinas, SP : [s.n.], 2016.

Orientador: Francisco Sergio Bernardes Ladeira. Tese (doutorado) – Universidade Estadual de Campinas, Instituto de Geociências.

1. Geomorfologia. 2. Superficies geomorfológicas. 3. Geocronologia. I. Ladeira, Francisco Sergio Bernardes,1965-. II. Universidade Estadual de Campinas. Instituto de Geociências. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Characterization and correlation of geomorphic surface summit in the Southwest of Minas Gerais State, Brazil

Palavras-chave em inglês: Geomorphology Geomorphologic surfaces Geocrhonology Área de concentração: Análise Ambiental e Dinâmica Territorial Titulação: Doutora em Geografia Banca examinadora: Francisco Sergio Bernardes Ladeira [Orientador] Alessabdro Batezelli Airton Natanael Coelho Dias Julio Cesar Hadler Neto Norberto Morales Data de defesa: 19-08-2016 Programa de Pós-Graduação: Geografia

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE GEOCIÊNCIAS PÓS-GRADUAÇÃO EM GEOGRAFIA ÁREA DE ANÁLISE AMBIENTAL E DINÂMICA TERRITORIAL

AUTORA: Samia Passarella Soares

"O MAPEAMENTO, CARACTERIZAÇÃO E CORRELAÇÃO DE SUPERFÍCIES GEOMÓRFICAS: ESTUDO DE CASO DO SUDOESTE DE MINAS GERAIS"

ORIENTADOR: Prof. Dr. Francisco Sergio Bernardes Ladeira

Aprovado em: 01 / 08 / 2016

EXAMINADORES:

- Prof. Dr. Francisco Sergio Bernardes Ladeira
- Prof. Dr. Alessandro Batezelli
- Prof. Dr. Airton Natanael Coelho Dias
- Profa. Dra. Regina Célia de Oliveira
- Prof. Dr. Julio Cesar Hadler Neto

A Ata de Defesa assinada pelos membros da Comissão Examinadora, consta no processo de vida acadêmica do aluno.

Campinas, 01 de agosto de 2016.

Aos meus avós queridos, **Cinyra e Darcílio**, por serem exemplo de família e do lar. Aos meus amados pais **Maria Regina † e Francisco**, pelo amor incondicional e construção de toda minha base. Ao companheiro **Cleber Soares**, pelos exemplos concedidos de dedicação, disciplina e tenacidade.

E a **Deus**, sempre...

AGRADECIMENTOS

Agradeço imensamente a todos que me ajudaram de maneira direta e indireta na elaboração deste trabalho e me sinto na obrigação de me desculpar previamente por todos os nomes que por ventura estejam generalizados neste texto, pois considero todos meus relacionamentos únicos, insubstituíveis e inspiradores para a realização deste trabalho.

A instituição UNICAMP e o instituto de Geociências, por oferecerem amparo e oportunidade de crescimento.

Ao programa de **pós-graduação** e seus grandes funcionários, **Val, Gorette e Valdir**, pela enorme eficiência.

Ao orientador **Francisco Sérgio Bernardes Ladeira**, pela dedicação, paciência, grandes ensinamentos e bombons de cupuaçu.

Aos queridos colegas do DRCC da Física, Profs Drs.Airton, Lisandro, Júlio e pesquisadores Wagner, Igor e Arnaldo, por todo o tempo, disponibilidade, ensinamentos e suporte, minha eterna gratidão.

Ao grande amigo **Prof. Dr Veraldo Liesenberg**, pela motivação, troca de ideias e conselhos.

Aos amigos e professores **Márcio Silva** e **Fernanda Leonardi**, pelo apoio, amizade, e ajuda que me ofereceram, vocês são um exemplo para mim.

Aos professores **Norberto Morales, Regina Célia e Alessandro Batezelli**, pela atenção e ensinamentos preciosos.

Aos **professores Drs. Cândido e Lafont**, por oferecerem tão gentilmente seus laboratórios e equipamentos.

Ao pessoal da sala 9, André, Marina, Roberta, Glaúcia, Vonei, Sérgio e Eduardo, pela maravilhosa experiência de conviver com pessoas tão especiais.

Ao pessoal da sala 5, Rosa, Saeid, Mariana Velcic, Lucinana, Flavinha, Sam, por toda a amizade e pelo melhor café do MUNDO!!!!

A todos os **colegas da pós-graduação**, pelas palavras amigas e boas energias trocadas.

Ao pessoal da carona de Itapira X Campinas, Júlio, Juliana, Marco, Bruninho, Thaís, pela amizade, risadas e muita pista juntos.

A **todos os funcionários da UNICAMP**, em suas mais diferentes tarefas, por fazerem deste local um ambiente harmonioso para o trabalho.

A **Fapesp**, pela bolsa de doutoramento e todos os recursos concedidos.

E a **Deus**, por sempre estar ao meu lado me inspirando e guiando, pois não existem créditos e méritos sem a inspiração do divino.

RESUMO

A partir da existência da associação entre perfis de alteração e superfícies geomórficas elevadas, pode-se efetivamente indicar momentos muito específicos do quadro evolutivo geomorfológico, momentos significativos de estabilidade. Neste trabalho se buscará, através da proposta de identificar e caracterizar materiais lateríticos presentes nas porções mais elevadas da topografia comprovando sua concordância e relação com as superfícies geomórficas mais elevadas da área que envolve o sudoeste de Minas Gerais e nordeste de São Paulo, mais precisamente entre as coordenadas 46°30' a 47°20' W e 20°00' a 21°00' S. Para executar tal proposta, foram feitos trabalhos de mapeamento, análises micromorfológicas, espectrometria de fluorescência e difração de raios-X em amostras destes materiais que permitiram a caracterização de perfis selecionados. Posteriormente foi aplicada a técnica de Termocronologia por Traço de Fissão (TTF), nos minerais de apatita encontrados na porção que remete ao embasamento cristalino com o intuito de conferir a história térmica geológica da amostra e por fim obter a idéia de evolução geomorfológica de longa duração.

Palavras chaves: Geomorfologia, paleossuperfícies, termocronologia.

ABSTRACT

existence of the association From the between change profiles and high geomorphical surfaces can be very effectively indicate specific times of rolling geomorphological above, significant moments stability. This paper will seek, through the proposal to identify and characterize lateritic materials present in the higher topography portions confirming its agreement and relationship with the highest geomorphic surface area surrounding the southwest of Minas Gerais and northeast of Sao Paulo, more precisely between the coordinates 46 ° 30 '47 ° 20' W and 20 ° 00 'to 21º00' S. To accomplish such a proposal was made mapping work, micromorphological analysis, fluorescence spectroscopy and X-ray diffraction of samples of these materials allowed the characterization of selected profiles. It was later applied to Thermochronology technique of trace Fission (TTF), apatite minerals in found in the portion refer to the crystalline base with the aim of improving the geological thermal history of the sample, and finally getting the idea of geomorphology development of long term.

Key words: Geomorphology, paleosurfaces, thermochronology.

NDICE DE FIGURAS

Figura 1.3.1- Esquema exemplificado os respectivos pontos para a coleta de 22 amostras de materiais detríticos lateríticos para geoquímica/difração de RX e de rochas em que serão extraídos os minerais de apatita para elaborar as análises de TTF. Figura 1.3.2- Formação do traço latente- (modelo ion explosion spike)-26 (Wagner and Van Den Haute, 1992 - modificado) Figura 2- Mapa de localização, baseado nos dados do Brasil ao Milionésimo 30 Digital (bCIM) Goncalves et al. (1999) e Gatto, (1983). Figura 2.1.1- Mapa de compartimentação geológico regional simplificado, 34 baseado no projeto Radambrasil (Gatto,1983), carta geológica do Brasil ao milhonésimo, articulação SF23. **Figura 2.1.2-** Mapa de compartimentação geológico regional destacando os 41 principais grupos selecionados para amostragem, baseado no projeto Radambrasil (1983), carta geológica do Brasil ao milhonésimo, articulação SF23. Figura 2.2.1- Mapa de compartimentação geomorfológico Regional 44 simplificado, baseado no projeto Radambrasil (1983). Figura 2.2.2- Visada do trajeto Franca/Capetinga, dando destaque às 45 variações de relevo contidas no compartimento "Planaltos Residuais Cuestiformes" das escarpas erosivas para uma superfície de aplainamento rebaixada. Figura 2.2.3- Vista panorâmica destacando superfície de aplainamento, a 46 porção mais elevada remete ao Planalto de França. Figura 2.2.4-Marcos estratigráficos de lateritas da região de Franca. 47 Figura 2.2.5-Visada dando ênfase ao Planalto de Franca e relevos residuais, 48 testemunhos da superfície de aplainamento Sul-Americana. Na porção rebaixada, a superfície de aplainamento de Patrocínio Paulista. Figura 2.2.6-. Escarpa sustentada por arenito da Formação Botucatu, destacando a estratificação cruzada de grande porte desta formação. Figura 2.2.7-. Escarpa sustentada por arenito da Formação Botucatu, 49 destacando a estratificação cruzada de grande porte desta formação. Figura 2.2.8. Relevo residual da área, sustentado por rochas areníticas da 51 Formação Aguidauna recobrindo o embasamento pré-cambriano. Ao fundo, percebe-se a escarpa erosiva limítrofe entre os compartimentos. Aponta-se para 3 níveis de aplainamentos na dada localização. 51 Figura2.2.9- Pontualmente são encontradas coberturas sedimentares cenozóicas, com retrabalhamento de arenitos, basaltos e outras rochas. Figura2.2.10-. Registro de lateritas imaturas nas proximidades de Capetinga. 52 Figura2.2.11 Mapa Geológico Estrutural da Serra da Fortaleza e do 54 Chapadão. Fonte: Morales (1993). Figura 2.2.12- Visada de N para S, onde pode-se notar uma feição do tipo 55 "hogback", que sugere inclinação de camadas e a interpretação das estruturas inclinadas. Figura 2.2.13-Visada de W para E mostrando de modo pontual o 56 compartimento "Planalto Varginha", que na área de estudo se apresenta com

morros alongados e fortemente orientados. **Figura 2.2.14-**Visada mostrando extensa superfície ao fundo e o limite entre **57** os compartimentos Patamares da Canastra com o domínio das Depressões Alto do São Francisco. **Figura 2.2.15-**Fotografia mostrando cobertura argilosa com forte **58** concentração ferruginosa nos topos aplainados do compartimento Depressões do alto São Francisco.

Figura 2.2.16-Visada mostrando cobertura com forte concentração **59** ferruginosa nos topos quartziticos aplainados do compartimento Depressão Sapucaí.

Figura 2.3.1- Modelo Davis (1899), apurado de Saadi (1998). 60

 Figura 2.3.2- Modelo de Penck (1924), apurado de Klein (1985).
 61

Figura 2.3.3- Modelo de King (1953), apurado de Valadão (1998). 62

Figura 2.3.4- Modelo de Büdel (1982), modificado de Grohmann (2008).63Figura 3.1.1-Disposição dos depósitos detríticos lateríticos em função das77diferentes cotas altimétricas destacadas pelas curvas de nível no SRTM.77

Figura 3.1.2-Classificação dos materiais detríticos lateríticos de acordo com **78** as diferentes altimetrias destacadas do SRTM.

Figura 3.1.3- Etapas para a construção do mapa de isobase. Fonte: Shahzad **79** & Gloaguen, 2011, b.

Figura 3.1.4-Etapas para a construção de um mapa de índice de posição **80** topográfica.

Figura3.1.5-Disposição das das áreas que agregam as feições **81** geomorfológicas de destaque (suas diferentes altimetrias) e concentração de depósitos lateríticos.

Figura3.1.6-Fator de Simetria Topográfica Transversa **(FSTT)**, como fator de **83** quantificação de deslocamento de um rio, Salamuni 2004, (mod. COX, 1994)

Figura3.1.7 Fator de assimetria da bacia de drenagem **(FABD)**, Salamuni et **84** al. (2004), Hare e Gardner, (1985).

Figura3.1.8- Integral hipsométrica demonstrando sua representatividade **85** através da proporção total da altura (h/H) pela área (a/A).

Figura3.1.9- Diferentes curvas geradas pela integral hipsométrica **85** demonstrando cada fase evolutiva do relevo **a**-topografia jovem, **b**-topografia equilibrada **c**-estágio de senilidade.

Figura. 3.2.1- Analisador de tamanho de partículas CILAS 1090. 86

Figura. 3.2.2-Centrífuga, agitando as amostras preparadas em solução de Água Deionizada com Hexametafosfato De Sódio, (NaPO₃)n. **87**

Figura. 3.4.1- Ângulos O dos raios X refletidos segundo as leis de Bragg. 89

Figura 3.4.2-Sistema X'Pert MRD da Philips instalado no LPCM para **90** análises de amostras policristalinas, filmes finos e estrutura epitaxiais semicondutoras.

Figura 3.5.1-Sistema Espectrômetro Sequencial de Fluorescência de Raios **91** X, WDXRF (PW 2404 - PanAnalytical, Holanda), Laboratório de Geoquímica Analítica, Unicamp..

Figura 4.1.1- Mapa de Isobase em conjunto com os materiais detrito **96** lateríticos, assinalando as altimetrias de maior destaque do conjunto.

Figura 4.1.2-Mapa do Índice de posição topográfica composto na área 97 estudada.

Figura 4.1.3- Mapa geológico regional simplificado, baseado no projeto **99** RadamBrasil (1983) e a disposição das das áreas que agregam as feições geológicas de destaque.

Figura 4.1.4- Mapa de compartimentação geomorfológica baseado no **100** projeto RadamBrasil (1983) e a disposição das das áreas que agregam as feições geomorfológicas de destaque

Figura 4.1.5- Diposição das bacías extraídas do modelo digital de elevação 101

SRTM .

Figura 4.1.6- Representação gráfica dos índices de análise de bacias, os 103 canais selecionados, a disposição dos depósitos lateríticos, sobrepostos ao modelo isobase.

Gráfico 4.1.1-Relação das bacias de 4ª ordem do polígono um com os 104 respectivos valores de seu índice Hi.

Gráfico 4.1.2-Relação das bacias de 4^ª ordem do polígono um com as **105** respectivas curvas do índice **Hi.**

Gráfico 4.1.3-Gráfico de simetria topográfica transversal em relação aos **106** respectivos canais de 4ª ordem.

Figura 4.1.7- Diposição das bacías extraídas do modelo digital de elevação 107 SRTM.

Figura 4.1.8- Representação gráfica dos índices de análise de bacias, os 108 canais selecionados, a disposição dos depósitos lateríticos, sobrepostos ao modelo isobase.

Gráfico 4.1.4- Relação das bacias de 4^ª ordem do polígono 2 com os **109** respectivos valores de seu índice **Hi.**

Gráfico 4.1.5- Relação das bacias de 4^ª ordem do polígono 2 com as **110** respectivas curvas do índice **Hi**.

Gráfico 4.1.6- Gráfico de simetria topográfica transversal em relação aos **111** respectivos canais de 4ª ordem.

Figura 4.1.9 - Diposição das bacías extraídas do modelo digital de elevação **112** SRTM .

Figura 4.1.10- Representação gráfica dos índices de análise de bacias, os **113** canais selecionados, a disposição dos depósitos lateríticos, sobrepostos ao modelo isobase.

Gráfico 4.1.7- Relação das bacias de 4ª ordem do polígono 2 com os 114 respectivos valores de seu índice Hi.

Gráfico 4.1.8- Relação das bacias de 4^ª ordem do polígono um com as **115** respectivas curvas do índice **Hi**.

Figura 4.2.1- Localização geral das amostras coletadas para granulometria **116** de acordo com dados altimétricos.

Gráfico 4.2.1-Gráfico da curva granulométrica das amostras selecionadas.121Figura 4.3.1-Disposição geral das amostras de micromorfologia em relação a
área e as diferentes altimetrias dos materiais detríticos lateríticos.121

Figura 4.3.2- Amostra SF1em campo e fotomicrografias utilizando luz123refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

Figura 4.3.3-Amostra SF5B em campo e fotomicrografias utilizando luz124refletida.Sequência A e C com luz polarizada e B e D sem luz polarizada..125Figura 4.3.4-Amostra SF5B, fotomicrografias utilizando luz refletida.125

Sequência A e C com luz polarizada e B e D sem luz polarizada. Figura 4.3.5- Amostra SF7 em campo e fotomicrografias utilizando luz

Figura 4.3.5- Amostra SF7 em campo e fotomicrografias utilizando luz126refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.126

Figura 4.3.6- Amostra SF9 em campo e fotomicrografias utilizando luz128refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.129Figura 4.3.7- Amostra SF10 em campo e fotomicrografias utilizando luz129

refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada. **Figura 4.3.8-** Amostra SF11A,B e C em campo e fotomicrografias utilizando luz refletida. Sequência A, C e E com luz polarizada e B, D e F sem luz polarizada..

Figura 4.3.9- Amostra SF13 em campo e fotomicrografias utilizando luz133refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.134Figura 4.3.10- Amostra SF16 em campo e fotomicrografias utilizando luz134refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.134Figura 4.3.11- Amostra SF20 em campo e fotomicrografias utilizando luz135

refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

Figura 4.4.1-Localiazação das amostras coletadas para a Difratometria de **139** Raios X.

Figura 4.4.2- Difratograma referente as amostras do polígono1 (SF1, SF2, **141** SF3, SF4, SF5, SF6 e SF7).

Figura 4.4.3- Difratograma referente as amostras da área do polígono 2 **142** (SF11a, SF11b e SF11c).

Figura 4.4.4- Difratograma referente as amostras da área do polígono 2 **144** (SF12, SF16, SF17, SF18, SF19 e SF20).

Figura 4.4.5- Difratograma referente as amostras da área do polígono 3 **145** (SF8, SF9, SF10, SF13, SF14 e SF15).

Figura 4.5.1-Localiazação das amostras coletadas para a Fluorescência de **147** Raios X, cada amostra leva as iniciais, F, S e A que indicam o tipo de materiais lateríticos encontrados (**F** com maiores concentrações de Fe2O3, **S** com predominância de SiO2 e por fim **A** com altos teores de Al2O3).

Gráfico 4.5.1-Representaçãoem porcentagem da concentração dos **148** principais elementos das amostras da série SF.

Gráfico4.5.2-Representaçãoem porcentagem da concentração dos **150** elementos menos expressivos das amostras da série SF

Gráfico 4.5.3 Representação em porcentagem da concentração dos **150** elementos menos expressivos das amostras da série SF

Gráfico 4.5.4-Representação em porcentagem da concentração dos **151** elementos por perda ao fogo.

Figura 4.5.2-Diagrama triangular de classificação de lateritas. Schellmann **152** (1982) apud Ferrari (1996).

Figura 4.6.1-Mapa geológico com as amostras de traço de fissão em apatitas **154** por LA-ICP-MS

Figura 4.6.1-Gráficos da amostra CR1 de história térmica e de distribuição **156** dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Figura 4.6.2-Gráficos das amostrasCR4,CR11e CR30 de história térmica e **157** de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Figura 4.6.3-Gráficos das amostras CR5 de história térmica e de distribuição **158** dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Figura 4.6.4-Gráficos das amostras CR12, CR17 eCR32 de história térmica **159** e de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Figura 4.6.5-Gráficos das amostras CR35, CR37 eCR38 de história térmica **160** e de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Gráficos 4.6.4-Gráficos referentes as amostras CR20 e CR28, com a história **161** térmica de traço de fissão e a distribuição dos comprimentos dos traços em apatitas por LA-ICP-MS.

Gráficos 4.6.8-Gráficos referentes as amostras CR40 e CR41, com a história **162** térmica de traço de fissão e a distribuição dos comprimentos dos traços em apatitas por LA-ICP-MS.

Figura 5.1.1- Localiazação das amostras coletadas para a Termocronologia **164** por Traços de Fissão (TTF).

Figura 5.1.2- Disposição das histórias térmicas no contexto geológico geral **166** da área estudada.

Figura 5.1.3-Conjunto de análises das amostras da série SF, coletadas com **168** a finalidade de caracterizar os depósitos física e quimicamente no polígono 1.

A letra A indica a presença de nódulos de ferro, B indica a presença de quartzo e C indica o plasma composto por óxidos de ferro.

Figura 5.1.4-Conjunto de análises das amostras da série SF, coletadas com 169

a finalidade de caracterizar os depósitos física e quimicamente no polígono 1. A letra A indica a presença de nódulos de ferro, B indica a presença de quartzo e C indica o plasma composto por óxidos de ferro.

Figura 5.1.5-Conjunto de análises das amostras da série SF, coletadas com **170** a finalidade de caracterizar os depósitos física e quimicamente no polígono 1. A letra A indica a presença de nódulos de ferro, B indica a presença de quartzo e C indica o plasma composto por óxidos de ferro.

Figura 5.1.6-Conjunto de análises das amostras da série SF, coletadas com **171** a finalidade de caracterizar os depósitos física e quimicamente no polígono 2.

Figura 5.1.7-Conjunto de análises das amostras da série SF16, coletadas **172** com a finalidade de caracterizar os depósitos física e quimicamente no polígono 2.

Figura 5.1.8-Conjunto de análises das amostras da série SF, coletadas com **175** a finalidade de caracterizar os depósitos física e quimicamente no polígono 2.

ÍNDICE DE TABELAS

Tabela 2.3.1- Adaptada de VALTER CASSETI (1996) Tabelas 4.2.1- Classificação granulométrica através das normas da ABNT. Tabelas 4.2.2- Pré-classificação granulométrica com peneiras de frações de 2 0mm/1 0mm/0 5mm de ABNT	64 117 117
Tabelas 4.2.3- Classificação granulométrica referente ao intervalo de areias médias, através da CILAS 1090 , ressaltando os intervalos sugeridos pela ABNT.	118
Tabelas 4.2.4- Classificação granulométrica referente ao intervalo de areias finas, através da CILAS 1090 , ressaltando os intervalos sugeridos pela ABNT.	119
Tabelas 4.2.5- Classificação granulométrica referente ao intervalo de silte,	120
através da CILAS 1090, ressaltando os intervalos sugeridos pela ABNI.	
Labelas 4.2.7- Classificação granulometrica referente ao intervalo de argila,	121
Tabela 441 American de DPX e sues principais errectorísticas e	127
componentes	137
Tabela 4.5.1- Tabela apresentando em porcentagem a concentração dos	149
principais elementos das amostras da série SF.	
Tabela 4.6.1. Idades de traço de fissão em apatitas por LA-ICP-MS.	153
Tabela 1-Tabela com o valor médio do deslocamento dos canais de 4ª	193
ordem das bacias do polígono 1. (ANEXO)	
Tabela 2-Tabela com todos os canais de 4ª ordem do polígono 1 e seus	194
respectivos fatores de simetria topográfica transversal e direção de	
basculamento por trecho. (ANEXO)	107
ordem das bacias do polígono 2 (ANEXO)	190
Tabela 4- Tabela com todos os canais de 4ª ordem do polígono 2 e seus	197
respectivos fatores de simetria topográfica transversal e direção de	177
basculamento por trecho.	
Tabela 5- Tabela com o valor médio do deslocamento dos canais de 4ª	200
ordem das bacias do polígono 3.	
Tabela 6-Tabela com todos os canais de 4ª ordem do polígono 3 e seus	202
respectivos fatores de simetria topográfica transversal e direção de	
basculamento por trecho.	
Tabela 7-l abela com todas as amostras de rochas para 11F coletadas em	209
campo.	

SUMÁRIO

CAPÍTULO-1 INTRODUÇÃO E JUSTIFICATIVAS	17
1.1-Apresentação ao tema	17
1.2-Objetivo:	19
1.3-Método de Trabalho	20
CAPÍTULO-2 CARACTERIZAÇÃO DA ÁREA ESTUDADA E ABORDAGEM CONCEITUAL	29
2-Area de estudo	29
2.1-Quadro Geológico Regional	31
2.2- Quadro Geomorfológico Regional	42
2.3-Superfícies de aplainamento	59
CAPÍTULO-3 PROCEDIMENTOS METODOLÓGICOS	75
3.1-Caracterização da dinâmica superficial da área estudada e sua relação com a disposição das superfícies erosivas.	75
3.2-Granulometria	86
3.3-Micromorfologia	87
3.4Difração de Raios X	88
3.5-Fluorescência de Raios X	90
3.6-Termocronologia por traços de fissão	91
CAPÍTULO- 4 RESULTADOS	95
4.1-Caracterização da dinâmica superficial da área estudada e sua relação com a disposição das superfícies erosivas.	95
4.2- Granulometria	116
4.3-Micromorfologia	122
4.4-Difração por Raios X	136
4.5-Fluorescência de Raios X	146
4.6-Termocronologia por Traços de Fissão	152
CAPÍTULO-5 DISCUSSÕES	163
CONCLUSÃO	177
REFERÊNCIAS BIBLIOGRÁFICAS	179
ANEXOS	193

CAPÍTULO-1 INTRODUÇÃO E JUSTIFICATIVAS

1.1-Apresentação ao tema

Os estudos das superfícies geomórficas no Brasil ganharam destaque no campo da geociências a princípio com as investigações do relevo apoiadas em interpretações qualitativas e descritivas, através das obras feitas por (De MARTONNE, 1943; AB'SÁBER, 1949; FREITAS, 1951; KING, 1956; BIGARELLA e AB'SÁBER, 1964; MOUSINHO e SILVA, 1965) que propunham explicações e teorias para a evolução do relevo através da disposição de "remanescentes de superfícies" em altitudes escalonadas.

Com o advento de novas tecnologias trazidas pelos sensores remotos, análises químicas e físicas entre outros estudos multidisciplinares, foi possível quantificar diversos elementos da superfície terrestre(FILOSOFOV, 1960; HOWARD, 1968; MORISAWA & HACK, 1985; WALLACE 1986; SUMMERFIELD 1987, 1991; SCHUMM 1981, 1986, 2000, 2007; COX, 1994; BURBANK & ANDERSON, 2001), trazendo para o estudo das superfícies geomórficas e os seus remanescentes, uma interpretação mais refinada, capaz de distinguir e espacializá-las com maior rigor, inclusive para ambientes tectonicamente deformados.

Desde então diversos trabalhos, retomaram no cenário científico nestas últimas décadas com o propósito de interpretar o relevo e suas superfícies com análises quantitativas não apenas morfológicas mas também com o intuito de classificá-las cronologicamente, como os de Widdowson (1995) com o estudo de paleosuperfícies terciárias e pré-terciárias, na Austrália (BATTIAU-QUENEY 1996, 1997) na tentativa de classificação de formações paleointempéricas em áreas glaciais, nos Alpes franceses; Gunnell (1997) e seu trabalho sobre topografia, paleosuperfície e denudação no Planalto de Karnataka, no sul da Índia; Valadão (1998), e a caracterização e evolução de longo-termo, através das superfícies do Brasil oriental; Twidale &Bourne (1998) com o uso de *duricrusts*¹ e suas relações topográficas na correlação geomorfológica, na Austrália; Rossetti (2004) com o estudo das paleosuperfícies do nordeste da Amazônia como uma chave para a reconstrução da

¹Duricrusts no sentido de"acumulações relativas de elementos maiores, pouco móveis, como o ferro, alumínio e sílica, e elementos traços, menores, como o vanádio, cromo,fósforo, e de minerais insolúveis, como o quartzo, ilmenita, turmalina e zircônio" Twidale & Bourne (1998).

paisagem; Ladeira e Santos (2005) e o uso de perfis lateríticos, de silcrete e depósitos sedimentares associados às superfícies como marco estratigráfico/geomorfológico; Riffel (2005) e o uso da hipsometria no mapeamento de paleosuperfícies, no sul do Brasil; Grohomann (2008) com a temática da caracterização das paleossuperfícies por meio da morfometria e análise digital do centro leste brasileiro; Burke e Gunnell, (2008) e a evolução da Superfície Africana através da Termocronologia por Traços de Fissão; Carmo (2009) e a geocronologia do intemperismo Cenozoico no sudeste do Brasil.

No entanto, apesar dos atributos geomórficos adquiridos com estas novas técnicas serem capazes de identificar diferentes ciclos de aplainamento do relevo, a questão da gênese e da quantificação cronológica destes ciclos ainda precisava ser desenvolvida no Brasil e no continente Sul Americano.Desde então, diversos autores passaram a se preocupar com essa potencial perspectiva como no caso de: Riffel (2005); Salgado (2007); Grohomann (2008); Rabassa, Carignano e Cioccale (2010); Aguilera e Rabassa (2010), Aguilera, Aragón e Carretero (2010); Morrás, Tófalo e Sánchez-Bettucci (2010); Suvires (2010); Verdum e Soares (2010); Ribeiro e Sigueira Ribeiro (2010); Rabassa (2010) e Leonardi (2015).

Seguindo a tendência supracitada, buscou-se neste trabalho aplicar numa escala de atuação menor, porém regional, metodologias que permitiram relacionar as superfícies de cimeira com a caracterização de perfis de alteração componentes destas feições, (NAHON e LAPPARTIENT, 1977; RETALLACK, 1990; THIRY et al., 1998; TARDY, 1993; LADEIRA e SANTOS, 2005), sendo estas, não somente guiadas pelo uso das cotas altimétricas "per si", teoria utilizada por King (1956), mas também baseadas nas análises de histórias térmicas oferecidas pela Termocronologia por Traços de Fissão em apatitas (TELLO et al., 2003; 2005; SOARES et al., 2013; SOARES et al., 2014; SOARES et. al., 2015).

Ao fazer tais associações entre perfis de alteração e as superfícies geomórficas mais elevadas, as hipóteses que são relativas a correlação das altitudes e escalonamento do relevo com a cronologia, representadas principalmente por King (1956), tornaram-se cada vez menos confiáveis, considerando que em muitos casos não são compatíveis com a realidade da área estudada.

O uso do método quantitativo/geocronológico da Termocronologia por Traços de Fissão em minerais de apatitas incorporou ainda mais elementos para a investigação desta problemática, e tornou possível a compreensão da paisagem por meio do gradiente de temperatura que as rochas sofreram durante seu processo de desenvolvimento, que oscilou entre maior aquecimento/resfriamento e duração do evento em escala de tempo geológico. Para as superfícies geomórficas estas informações foram extremamente importantes uma vez que elas estão efetivamente ligadas a momentos de estabilidade tectônica combinados a condições climáticas e muito específicas².

Apesar destas superfícies gerarem muitas discussões e controvérsias no campo das ciências da Terra e se apresentarem com diferentes hipóteses e reflexões mediante sua gênese, desenvolvimento e permanência na paisagem, ainda são e continuarão sendo de grande interesse para o entendimento da evolução da paisagem.

1.2-Objetivo:

O objetivo central deste trabalho foi o de identificar e caracterizar as ocorrências de materiais lateríticos com o intuito de relacioná-los com as superfícies erosivas pretéritas mais elevadas do relevo e por fim, buscar um quadro evolutivo da paisagem que remete a área estudada.

Para tanto foi necessário o arcabouço das análises de granulometria, micromorfologia, espectrometria de fluorescência de Raio-X e difração de Raio-X, para o processo de identificação e caracterização e o estudo de TTF para obtenção de histórias térmicas em minerais de apatita para subsidiar a evolução de longo termo da paisagem e suas possíveis correlações com as superfícies.

²Fase Geocrática, Reativação Wealdeniana, Ótimo Climático entre outros períodos que envolveram climas quentes/com atuação hídrica ou não e estabilidade tectônica (JATOBÁ & LINS, 2001; FANTON, 2013).

1.3-Método de Trabalho

Para alcançar os objetivos propostos foram elaboradas as seguintes metodologias e atividades:

Trabalhos iniciais, envolvendo a aquisição e análise da documentação existente.

Os trabalhos iniciais consistiram primordialmente em uma revisão bibliográfica sobre os conceitos atuais e mais consistentes que dizem respeito ao estudo geomorfológico, geológico e sobre perfis lateríticos, aplicados na região estudada.

A aquisição e interpretação de mapas geomorfológicos e geológicos nas escalas 1:1.000.000 (GATTO, 1983) e topográficos, na escala 1:1.000.000 (Brasil ao Milionésimo Digital, Gonçalves et al., 1999) e posteriormente em escala mais local 1:250.000 nas folhas (Mantiqueira/Furnas, Silva 1977) de imagens de radar SRTM (*Shuttle Radar Topographic Mission*, FARR *et al.*, 2007) forneceram arcabouço para a preparação de mapas bases. Conseqüentemente essas informações geográficas, ao serem integradas no software ARC.GIS-10.2, forneceram mapas que identificaram os materiais constituintes de topos de morros, separaram compartimentos geomorfológicos e coberturas sedimentares.

Trabalhos de campo

Baseado na experiência de trabalhos anteriores, (LADEIRA e SANTOS, 2005; LEONARDI, 2008; PASSARELLA et. al 2010), foram conferidas as feições geomorfológicas, com ênfase nas descontinuidades dos corpos rochosos com a finalidade de facilitar o mapeamento e amostragem das coberturas sedimentares e feições de alteração associadas (perfis lateríticos completos ou parcialmente erodidos) e de suas respectivas rochas parentais. Onde também foram realizadas coletas de amostras para análises com trabalhos laboratoriais, envolvendo a preparação destas amostras selecionadas para técnicas de análise de materiais lateríticos e correlação.

A seleção dos perfis representativos das diferentes áreas foi realizada com base em descrições detalhadas e coleta de amostras para análises químicas e por TTF.

Esta seleção de perfis levou em conta os seguintes aspectos (Figura 1.3.1):

- Perfis em posições estratégicas dentro da área, próximos a corpos de materiais detríticos/lateríticos em compartimentos geomorfológicos e geológicos distintos, regiões de contato, proximidade com bacias e represas de referência, etc;
- Representatividade das feições identificadas na área, com a seleção de perfis que apresentassem a sequencia vertical completa dos horizontes/camadas;
- Exposição dos materiais em seção vertical única e contínua, visando facilitar a descrição, amostragem e representação.

Este procedimento foi repetido para as demais áreas da região que envolveram grandes distâncias e um contexto litológico diferente, no entanto com o mesmo material laterítico de cimeira como especificado na figura 1.3.1. Por fim foram coletadas amostras para a TTF, que através de histórias térmicas permitiu obter uma ideia de evolução da paisagem de longa duração (Figura 1.3.1).

Figura 1.3.1 – Seção exemplificado de localizaçãodos respectivos pontos da coleta de amostras de materiais detríticos lateríticos para geoquímica/difração de RX e de rochas em que foram extraídos os minerais de apatita para elaborar as análises de TTF.

Trabalhos de laboratório

Foi feita a preparação das amostras selecionadas para o uso de técnicas de descrição e caracterização como a granulometria, micromorfologia, espectrometria de fluorescência de raios-X e difração de raios-X em materiais lateríticos, existentes nos altos da Serra da Canastra na margem direita do Rio Grande e nos topos de relevos residuais localizados nas regiões da borda noroeste da Bacia Sedimentar do Paraná, e a correlação com histórias térmicas dadas pelo método do traço de fissão para as rochas do embasamento cristalino (amostras de apatita e gnaisses) a fim de obter idades e informações sobre períodos de estabilidade ou instabilidade tectônica.

Granulometria

A granulometria foi realizada no laboratório de Geoquímica Analítica do Instituto de Geociências da UNICAMP-Campinas, pelo analisador de tamanho de partículas CILAS 1090.

Foi aplicado o método de espalhamento de Luz Laser, onde a interação de um feixe de luz colimado de gás He e Ne atinge as partículas amostradas com a intenção de captar a intensidade da energia espalhada e por fim, transformá-la em distribuição volumétrica.

Essa análise determinou nos solos derivados de material laterítico, as frações constituintes do material, através da classificação das dimensões das partículas. Oferecendo a caracterização do nível de desenvolvimento e energia de transporte das amostras, mediante a forma e o tamanho do grão.

Micromorfologia

A montagem das lâminas foi realizada no laboratório de laminação do departamento de Petrologia da Universidade Estadula Paulista Júlio de Mesquita Filho, UNESP, Campus de Rio Claro. Onde, amostras rochosas e solos endurecidos foram mandados para o lixamento, colagem, corte e polimento. As lâminas ofereceram a identificação de elementos constituintes dos materiais analisados, promovendo classificação de hierarquias, composição e dinâmica do material.

Difratometria de raio-X

A difratometria de raios-X foi realizada no Laboratório de Raio X do instituto de Física da UNICAMP-Campinas e sua análise consistiu no uso de amostras totais. Estas amostras foram analisadas pelo difratômetro Siemens D 5000 e os dados foram interpretados pelo programa Diffrac-AT/ Socabim 1986, 1991. Também foi utilizado o espectro 3-70 com tubo de cobalto com comprimento de onda de 1,7893Å, tempo de contagem de 1 segundo e passo de 0,05° e potência 25 mA e 35 Kv.

O uso desta análise foi importante na determinação de alguns minerais presentes, a qual pôde fornecer informações sobre a gênese do perfil, contribuindo também para a determinação dos ambientes geoquímicos.

Análises de espectrometria de fluorescência de raios-X

O Método da Espectrometria de Fluorescência de Raios-X, foi realizado na no laboratório de fluorescência de Raios X, no departamento de Petrologia da Universidade Estadula Paulista Júlio de Mesquita Filho, UNESP campus de Rio Claro.

Os dados para análise foram gerados em um espectrômetro WDXRF (PW 2404 - PanAnalytical, Holanda) de acordo com a técnica de fluorescência de raios-X (XRF).

A XRF consistiu na medida das intensidades dos raios-X característicos, emitidos pela amostra, após excitação pela fonte primária (tubo de raios-X). Nas amostras, a quantificação foi realizada pela comparação com as intensidades obtidas para calibração do instrumento, correção de efeitos de absorção e realce inter-elementar.

Essa análise auxiliou a identificação dos processos genéticos atuantes dos ambientes geradores dos perfis e também na identificação de antigos processos de alteração.

Termocronologia por traços de fissão (TTF)

As análises de termocronologia por traços de fissão foram realizadas na empresa ChronusCamp Research – Laboratório de Termocronologia, LTDA, utilizando o novo método, através do sistema LA-ICP-MS.Nesta introdução apenas será abordado de forma simplificada como a fissão espontânea do ²³⁸Utornou possível a criação do método de datação de minerais³.

Essa metodologia tem como princípio a fissão espontânea que ocorre em alguns nuclídeos pesados da natureza.

As fissões espontâneas são produzidas ao longo do tempo da vida dos minerais porque estes possuem alguns ppm de urânio como impureza. Quando o ²³⁸U decai nestes dois fragmentos de fissão há a liberação de cerca de 170mev, o que os leva a viajar em direções opostas interagindo com os átomos que compõe a rede cristalina formando ao longo de suas trajetórias uma zona de desarranjada da rede cristalina que é designada por traço latente.

A teoria mais aceita atualmente para explicar o processo da formação de traços nucleares é baseada no princípio do "*ion explosion spike*", termo usado para se referir a um evento muito rápido e intenso onde uma partícula energizada atravessa um sólido, Wagner&Van Den Haute (1992), Figura-2.5.7.

³ Dentro da metodologia da termocronologia por traços de fissão, se utiliza a espectrometria de massas via ablação de laser, o que evita a irradiação das amostras com neutrons num reator nuclear. Este processo será explicado de forma mais detalhada no item 3.6-Termocronologia por Traços de Fissão, pág.148.

Figura-1.3.2 - Formação do traço latente- (modelo *ion explosion spike*)- (Wagner and Van Den Haute, 1992 - modificado)

Esta teoria foi formulada a partir de experimentos teóricos de Fleischer et al. (1975) e passou a ser denominada de "Teoria da Explosão lônica" (*Ion Explosion Spike Theory*).

A formação destes traços latentes é produzida continuamente ao longo da história geológica dos minerais, seguindo a lei de decaimento radioativo, (WAGNER & VAN DEN HAUTE, 1992. Obeserva-se no entanto que os traços são termicamente instáveis e podem ser parcialmente encurtados ou mesmo apagados (efeito de *annealing*). Estudos laboratoriais permitiram conhecer a cinética de *annealing o* que, ajustado em equações matemáticas empíricas tornou possível a extrapolação de *annelings* para intervalos de tempo laboratorial para intervalos de tempos geológicos. Desta informa, a distribuição dos traços permitiu inferir a evolução termal das amostra analisadas.

Formas de análise dos resultados

Através de dados pré-existentes da bibliografia, de materiais cartográficos e de sensores remotos, em conjunto com trabalhos de campo, as litologias, arranjos estruturais, formas e feições de relevo, relacionadas a superfícies de cimeira e de perfis lateríticos foram registradas sobre cartas topográficas. Esse processo subsidiou o entendimento sobre o desenvolvimento e a localização destes materiais que poderiam apresentar perfis de alteração muito semelhantes. Estas análises permitiram a visualização da distribuição geográfica dos materiais e eventuais correlações geométricas, incluindo a possibilidade de influência de atividades tectônicas.

Amostras retiradas de alguns perfis lateríticos da região, foram caracterizadas usando a granulometria, a micromorfologia, a espectrometria de fluorescência e a difração de raios-X. Os resultados destas análises serviram de base para que se estabelecesse desde suas sequências evolutivas até suas relações moleculares que indicaram processos de alteração e grau de evolução dos materiais ferruginosos.

Considerando que o desenvolvimento destes perfis ocorreu em tempos geológicos relativos a períodos de estabilidade tectônica, juntamente com a existência de um clima tropical, foi usado a TFF, ferramental que trouxesse informações a respeito de possíveis eventos térmicos que são consequêntes destas atividades. Com o emprego desta metodologia em apatitas, pertencentes às rochas do embasamento cristalino, foi possível obter essa identificação, através de idades e histórias térmicas. Desta forma as análises supracitadas, somadas à TTF, complementaram as informações acerca da formação e correlação da gênese e localização dos materiais estudados, testando a viabilidade de uso destes procedimentos, já que muitas vezes outros métodos que datam diretamente os perfis lateríticos apresentam uma série de riscos, pelo fato dos principais minerais encontrados nestes materiais (óxidos/hidróxidos de ferro e manganês) fazerem parte de um sistema aberto e que por isso podem conter impurezas que trazem incertezas nos resultados geocronológicos.

Com a junção dos dados obtidos foi possível o entendimento da evolução geomorfológica e suas implicações desde o arcabouço litológico até os materiais das

antigas superfícies, permitindo inclusive correlações com áreas circunvizinhas trabalhadas por outros pesquisadores.

CAPÍTULO-2 CARACTERIZAÇÃO DA ÁREA ESTUDADA E ABORDAGEM CONCEITUAL.

2-Area de estudo

A área de estudo compõe um polígono de 200.000km², localiza-se no sudoeste do estado de Minas Gerais e nordeste do estado de São Paulo, entre as latitudes 20°00' e 22°00' e as longitudes 45°00' e 48°20' (figura 1.4.1). Os principais acessos à área são feitos pela Rodovia MG-050, que liga São Sebastião do Paraíso a Passos, pela MG 344 e MG-444, que interligam as outras cidades da região. Além disso, um grande número de estradas secundárias facilita a locomoção pela área.

Figura 2- Mapa de localização, baseado nos dados do Brasil ao Milionésimo Digital (bCIM) Gonçalves et al. (1999) e Gatto, (1983).

2.1-Quadro Geológico Regional

A região de estudo está localizada na Plataforma Sul-Americana, porção sudeste do Brasil, sendo composta por núcleos pré-cambrianos relacionados com áreas cratônicas e faixas de dobramentos (ALMEIDA et al., 1977), figura 2.1.1.

A unidade geológica mais antiga compreende o Cráton do São Francisco, caracterizado por embasamento arqueano exposto, composto por gnaisse, migmatito e anfibolito, cujos protólitos se caracterizam por idades entre 3,2 e 2,9 Ga. Granitos calci-alcalinos e anorogênicos também estão associados ao embasamento arqueano, sendo que estes terrenos se tornaram estáveis após a Orogenia Transamazônica (2,2-1,8 Ga). Granitos de idade paleoproterozoica se alojaram na região em estágios sin- e pós-tectônica Transamazônica (ALKMIM, 2004) figura, 2.1.1.

A estabilidade do Cráton do São Francisco ocasionou a predominância de processos como erosão e sedimentação nas margens do cráton até a ocorrência do evento termal de considerável magnitude, originado a partir da quebra do supercontinente Rodínia (1300-900 Ma), com início a partir de ~900-800 Ma (CONDIE, 2001). Na área de estudo, o evento termal é representado pela Orogenia Brasiliana que teve seu ápice entre aproximadamente 640 e 520 Ma (ALKMIM e MARTINS NETO, 2005). Neste período, magmatismo e reciclagem de rochas préexistentes ocorreram em função da nova dinâmica geotectônica mundial, caracterizada pela aglutinação de fragmentos continentais, o que culminou com a origem do supercontinente Gondwana no Cambriano que, por sua vez, foi aglutinado ao Laurásia, originando o supercontinente Pangea entre cerca de 450 e 320 Ma (CONDIE, 2005). A colisão de fragmentos continentais compreendeu a colisão dos crátons Amazônico, do São Francisco e do Paranapanema. Este processo gerou faixas de dobramentos neoproterozoicas pertencentes à Província Tocantins, sendo todas marcadas por convergências em direção aos crátons aos quais bordejam. A Faixa Brasília compreende uma destas faixas de dobramentos, sendo o seu setor meridional marcado por empilhamento de terrenos e escamas de empurrão (figura 2.1.1). As principais unidades compreendem rochas metassedimentares afetadas por metamorfismo de fácies xisto verde e anfibolito, podendo alcançar fácies granulito. Destacam-se o Grupo Canastra, composto por quartzito e filito, cuja proveniência aparenta estar relacionada com sedimentos do Cráton do São Francisco; o Grupo Ibiá, composto por uma sequencia metassedimentar pelítica (calcifilito e calcixisto), cuja proveniência sedimentar advém do Cráton do São Francisco e do Grupo Canastra; e o Grupo Araxá, caracterizado por rochas metassedimentares e metavulcânicas depositadas em ambiente plataformal no Neoproterozoico (VALERIANO et al., 2004). Rochas neoproterozoicas do Grupo Andrelândia, marcadas por sucessões metassedimentares, a exemplo de quartzito, filito e gnaisse, assim como as rochas do embasamento mais antigas que 1,7 Ga, também foram intensamente deformadas e orientadas na direção preferencial NE-SW. Observa-se no setor sudeste da área de estudo (figura, 2.1.1), que a orientação tectônica passa de NW-SE para NE-SW, compondo a zona de interferência entre as faixas de dobramentos Brasília e Ribeira (PETERNEL et al., 2005). A Faixa Ribeira, pertencente a Provínica Mantiqueira, também está associada à Orogenia Brasiliana, porém relacionada com o evento de colisão dos crátons do São Francisco, do Congo e do Paranapanema (HEILBRON et al., 2004).

Concomitantemente à formação da Faixa Brasília, a porção a oeste, relacionada com o Cráton do São Francisco, funcionou como uma bacia de antepaís, acumulando sucessões sedimentares neoproterozoicas, relacionadas com eventos como transgressões marinhas e glaciação. Esta área corresponde à atual Bacia Sanfranciscana, caracterizada por rochas carbonáticas, pelíticas, além de conglomerados e arenitos do Grupo Bambuí (Fig. 2.1.1) (ALKMIM, 2004; Valeriano et al., 2004), cuja proveniência sedimentar está relacionada com aporte neoproterozoico (Faixa Brasília) iniciada há pelo menos ~610 Ma (RODRIGUES, 2008).

A estabilidade alcançada com a formação do supercontinente Gondwana no Cambriano favoreceu processos de erosão, deposição e sedimentação, culminando com a origem de sucessões de sequências sedimentares marinhas, glaciais, eólicas e fluviais que compõem a Bacia do Paraná, a partir de ~450 Ma (MILANI, 2004).

Com o início da abertura do Atlântico a partir da quebra do supercontinente Gondwana há aproximadamente 130 Ma (ALKMIM e MARTINS-NETO, 2005; CONDIE, 2005; HASUI, 2010), episódios magmáticos cretáceos ocorreram na região de estudo. Destaca-se: (1) o magmatismo basáltico na Bacia do Paraná ~130Ma (MARQUES e ERNESTO, 2005) e (2) os complexos alcalino-carbonatíticos de Araxá, Tapira e Poços de Caldas que intrudem rochas metamórficas neoproterozóicas da Faixa Brasília, sendo as duas primeiras pertencentes ao Alto do Paranaíba (90Ma), uma estrutura soerguida que separa as bacias do Paraná e a Sanfranciscana (SOARES et al., 2015).

De acordo com Hasui (2010), esta região passou por um perído de estabilidade tectônica entre o final do Cretáceo e o início do Paleógeno, originando a Superfície Sul-Americana, proposta por King (1956). Atualmente, esta superfície está associada a topos aplainados a altitudes entre 1100 e 1200 m.

A estabilidade tectônica posterior à quebra do supercontinente Pangea favoreceu a formação de coberturas detrito-lateríticas ferruginosas do Paleógeno ao Quaternário que se encontram sobrepostas aos demais grupos rochosos (Fig. 2.1.1). Estas coberturas formam espessos pacotes que contém crostas ferruginosas, possuem coloração variando do vermelho escuro ao ocre, e estão localizadas, na maioria dos casos, em regiões de cimeira (Passarella et al 2010).

Figura 2.1.1- Mapa de compartimentação geológico regional simplificado, baseado no projeto Radambrasil (Gatto,1983), articulação SF23.

Quadro Geologico Local

As rochas dispostas na área de estudo se separam em dois principais grupos dos terrenos "**pré-cambrianos aflorantes**" e da "**Bacia Sedimentar do Paraná**". Aquelas representantes dos terrenos "**pré-cambrianos aflorantes**", são compostas por:

Rochas do **Embasamento Cristalino** referentes aos períodos do Arqueano ao paleoproterozóico representadas pelas unidades dominates da área: Complexo Campos Gerais e Grupo Barbacena, que findaram sua história evolutiva com a ocorrência de corpos intrusivos de composição granítica, tonalítica e trondjemítica associados a metagabros (ÁVILA, 2000; CHERMAN, 2004; PETERNEL, 2005; POLO, 2009).

Rochas **Supracrustais** que recobrem o embasamento, contendo rochas ultramáficas e máficas de origem vulcânica/vulcanoclásticas , sedimentares epiclásticas e químicas, intrusivas ultramáficas e gabro-dioríticas, geralmente metamorfisadas em fácies xisto verde (PACIULLO, 1996). Representadas pelas unidades: Seqüência Vulcano-Sedimentar Morro do Ferro, Complexo Varginha-Guaxupé e Grupo Bambuí.

Por fim as rochas componentes da **Faixa Brasília** definidas pelo empilhamento de extensas *nappes* de cavalgamento subhorizontais, formadas essencialmente por rochas da margem passiva do Cráton São Francisco, deformadas e metamorfizadas por volta de 640 Ma, associadas ao Ciclo Brasiliano. As unidades que a representam são: Grupos Araxá e Canastra.

As unidades representantes da "**Bacia Sedimentar do Paraná**" com registro sedimentar-magmático, marcado por varias seqüências evolutivas, composta pelas unidades: Grupo Itararé, Formações Aquidauana, Pirambóia, Botucatu, Serra Geral e Bauru.

Cabe mencionar que devido a ordem de grandeza da área estudada e a riqueza de unidades geológicas nela encontrada, foram descritas com maior detalhamento as litologias em que foram coletadas amostras tanto das análises químicas quanto por Termocronologia por Traços de Fissão.

Complexo Campos Gerais

O Complexo Campos Gerais situado na área de estudo no extremo sudoeste do Cráton do São Francisco é marcado por rochas migmatíticas e gnáissicas com intrusões graníticas locais. Sua configuração se dá através de áreas de domínio de rochas homogêneas ao lado de áreas de predomínio de gnaisses bandados, com estruturas migmatíticas preservadas. As litologias coletadas que foram consideradas como pertencentes a esse Complexo, são representadas por variedades graníticas, gnáissicas e migmatíticas (OLIVEIRAet al., 1983; TURBAY at al. 2008), Figura, 2.1.2

As rochas graníticas situadas na porção SE da área remetem a tipos que variam de granito a tonalito. No entanto encontra-se com maior freqüência os granodioritos. Essas rochas mostram-se com foliação dada por cataclase e textura granular-cataclástica, com micas levemente orientadas e grãos de quartzo estirados (OLIVEIRA et al., 1983). Nota-se também para esse domínio a presença de fraturamento e microfalhamentos, conferidos por planos preenchidos por material micáceo secundário e pelos contatos das rochas graníticas com as demais rochas, onde é possível de se observar contatos abruptos (OLIVEIRA et al., 1983, PASSARELLA, 2010).

Os gnaisses são em geral como leucocráticos, identificados através da coloração cinzenta, granulação média a grossa, estruturas bandadas, fitadas ou ocelares e freqüentemente dobradas. Para os migmatitos a sua identificação fica restrita a faixas associadas aos gnaisses consideradas passagem transicional de zonas mais deformadas (OLIVEIRA et al., 1983; PASSARELLA, 2010).

Percebe-se que o contato destes gnaisses com esses migmatitos se dá através de zona falha de empurrão com pacote metassedimentar, o que as leva a assumir feições de filonitos em áreas próximas (OLIVEIRA et al., 1983).

Grupo Barbacena

O complexo Barbacena é descrito por Machado Filho et al. (1983), como um dos grandes complexos que ocupam a porção Sul do Craton do São Francisco, representado dominantemente por por granitóides, gnaisses e migmatitos diversos, originados no Arqueano (CAVALCANTE et al., 1979; FONSECA et al., 1979;
WERNICK et al., 1981;TEIXEIRA et al., 1989; FERNANDES, 2002), contendo restos de enclaves de metaultrabásicas das sequências metavulcanossedimentares (Figura, 2.1.2).

Mostra-se na região de estudo como um processo resultante da dinâmica do Cinturão de Cisalhamento Campo do Meio, uma vez que limita-se a norte pela Nappe de Passos e a sul pelas zonas de cisalhamento empinadas do Grupo Araxá (ZANARDO, 2003).

Sobre este complexo surgem as unidades de rochas metassedimentares atribuídas aos grupos Araxá e Canastra de idade Meso a Neoproterozóica e ao Grupo Bambuí de idade Neoproterozóica. Completando o quadro litológico, aparecem rochas intrusivas básicas e hidrotermais de diferentes idades (ZANARDO et al., 2000).

Seqüência Metavulcano-Sedimentar Morro do Ferro.

Nesta seqüência predominam rochas máficas e ultramáficas metamorfisadas associadas a quartzitos finos, itabiritos, mica-quartzo xisto e filonitos, ocorrendo principalmente a sul e leste da Serra do Chapadão e a norte da Serra de Fortaleza, além de pequenas ocorrências pela área, Oliveira et al., 1983. Entre os tipos máficos e ultra-máficos se destacam clorita xistos, clorita-tremolita xistos, magnetitaclorita xistos, serpentinitos e outros sub tipos.

Nos arredores do Morro do Níquel (conferido e registrado em campo) encontram-se corpos alongados de contornos irregulares e extremidades rompidas, destacados pela ocorrência de serpentinitos, Oliveira et al., 1983. Na região do Morro do Ferro, metassedimentos como hematita quartzitos (itabiritos) metacalcários e brechas fosfáticas merecem destaque pela ocorrência em níveis topográficos bem mais elevados que os metaultramáficas. Quanto aos contatos desta unidade com as encaixantes nota-se que são de natureza tectônica, pelo fato de ser comum a existência de rochas como milonitos e filonitos, que se encontram numa situação presente de total concordância, tanto com as rochas do embasamento quanto com os metamorfitos do Grupo Araxá, Oliveira et al., 1983.

Metassedimentos do Grupo Araxá

Esses metassedimentos são representados por metacalcários, quartzitos, xistos e gnaisses diversos. Ao longo dos sopés das serras do Chapadão e da Fortaleza, flanco leste, e principalmente ao sul da Serra de Itau, ocorrem os metacalcários sob a forma de lentes intercaladas em rochas cataclásticas e de filonitos, que podem ser identificadas pela coloraçãocinza-claro ou até mesmo esbranquiçada, compostas ricamente por sílica, carbonatos, quartzo e flogopita,Oliveira et al., 1983.

As serras do Chapadão, da Fortaleza, de Itaú e outras da mesma região, são sustentadas por corpos de quartzitos, relativamente espessos (centenas a dezenas de metros), que podem ser facilmente identificados em imagens SRTM, fotografias aéreas e em cartas topográficas, Figura, 2.1.2. Possuem uma coloração clara com granulação fina e estrutura maciça, bandada, foliada ou finamente laminada. Segundo o autor supracitado, exibem forte foliação, com dobras similares, intrafoliares ou concêntricas que redobram a xistosidade e lineações.

Os xistos representam a litologia principal do Grupo Araxá, representados por muscovita xistos, biotita xistos, quartzo muscovita xistos, granada xistos, cianita granada xistoscom ou sem feldspato, Oliveira et al., 1983.

Os gnaisses se distinguem pela maior ou menor riqueza em biotita e muscovita, quartzo, epidoto, cianita, granada e feldspatos, de composição granítica e mais raramente calcossilicática. Assim os tipos ricos em granada e biotita são caracterizados pela coloração cinzenta, granulação média a grossa, estruturas foliadas, bandadas ou fitadas e ricos em porfiroblastos de granada. Os de composição granítica e granodiorítica possuem estruturas que variam entre homogênea a bandada ou fitadas e são reconhecidos através de intercalação assumindo muitas vezes feições migmatíticas. Os de tipo anfibolítico aparecem espalhados ao longo de toda a área podendo ser encontrados nos metassedimentos como corpos de dimensões e formas variadas, Oliveira et al., 1983.

Complexo Varginha-Guaxupé.

O Complexo Varginha-Guaxupé, se posiciona no sul da área estudada, constituído por litologias de natureza intermediária a ácida, ortoderivadas com intercalações de metassedimentos (pelíticos, psamíticos, carbonáticos) e de rochas máficas e mais raramente rochas ultramáficas (ZANARDO et al., 2006) Figura, 2.1.2.

Este complexo foi ajustado tectonicamente sobre rochas arqueanas e paleoproterozóicas do embasamento e metassedimentos neoproterozóicos durante a colisão continental neoproterozóica. Possui alto grau metamórfico que pode ser dividido em três unidades: Granulítica Basal, Ortognáissica Migmatítica Intermediária e Paragnáissica Migmatítica Superior, (DEL LAMA et al., 2000; CPRM, 2007).

Morales (1988), descreve as litologias como: gnaisses granulíticos bandados, anfibolitos, gnaisses kinzigíticos, migmatitos bandados, migmatitos oftálmicos, migmatitos nebulíticos, rochas calciossilicatadas, gnaisses charnockíticos, leucognaisses, granitóides porfiríticos, gnaisses ocelares, granitóides discordantes, granitóides equigranulares, aplitos, pegmatitos, rochas miloníticas, rochas sedimentares da Bacia do Paraná e rochas alcalinas do Maciço Alcalino de Poços de Caldas.

Grupo Canastra

As rochas relativas ao Grupo Canastra ocorrem no extremo norte da área de estudo, posicionadas entre o Grupo Araxá e a norte e leste da Nappe de Passos, representadas por ortoquartzitos (metarenitos), quartzitos micáceos (meta arenitos e metassiltitos com a presença de pequena quantidade de matriz argilosa) e filitos, (NASCIMENTO, 2010) Figura, 2.1.2.

Essas rochas tiveram sua origem num contexto de bacia de margem passiva, com sedimentos provenientes de fontes antigas, possivelmente o Cráton do São Francisco e seu metamorfismo ocorreu em condições de fácies xisto verde (BARBOSA et al., 1970; VALERIANO et al., 2004).

Na região frontal da nappe de Passos, apresentam contato tectônico, através de superfícies de cavalgamento, com as rochas do Grupo Bambuí, sendo freqüente a presença de lascas tectônicas do embasamento entre as duas unidades (VALERIANO, 1993; SIMÕES, 1995).

Grupo Bambuí

Este grupo se situa na porção centro norte da área de estudo é composto por uma sucessão de rochas marinhas carbonáticas e pelíticas, que nas bordas da bacia e no topo passam a conglomerados e arenitos respectivamente (CASTRO&DARDENE, 2000; DARDENE, 1978). Trata-se de um depósito de cobertura do Cráton do São Francisco que ocupa vasta área no Estado de Minas Gerais, estendendo-se ainda por outros estados, Figura, 2.1.2.

Na região, esta unidade aparece cobrindo extensa área na região frontal da Nappe de Passos, adentrando a sul em direção à cidade de Alpinópolis representada, por metamargas, seguida de meta-siltitos, meta-argilitos, metaarenitos, meta-arcóseos, mármores e ardósias, pertencentes a diversas formações como: Jequitaí, Sete Lagoas, Serra de Santa Helena, Lagoa do Jacaré, Serra da Saudade e Três Marias (DARDENE, 2000; NASCIMENTO, 2010).

O metamorfismo dessa sequência é de baixo grau, fácies xisto verde, evidenciando condições metamórficas ligeiramente inferiores nas encontradas no Grupo Canastra (ZANARDO, 2003).

Figura 2.1.2- Mapa de compartimentação geológico regional destacando os principais grupos selecionados para amostragem, baseado no projeto Radambrasil (1983), carta geológica do Brasil ao milhonésimo, articulação SF23.

2.2- Quadro Geomorfológico Regional

A geomorfologia regional da área foi baseada nos estudos e no mapa do projeto Radambrasil (1983) onde a região abrange domínios morfoestruturais como: "Escudo Exposto", "Remanescentes de Cadeias Dobradas", "Bacias e Coberturas Sedimentares do São Francisco" e "Bacias e Coberturas Sedimentares do Paraná". Posteriormente, novas campanhas de campo foram elaboradas e uma inspeção de maior detalhe foi feita, em pontos que continham feições que ofereciam maior interesse presentes na área.

I - Domínio do Escudo Exposto

Este domínio engloba as regiões Planalto de Poços de Caldas-Varginha e Planalto Centro Sul de Minas e consequentemente as unidades Planalto Varginha/Amparo, Planalto Poços de Caldas, Depressão Belo Horizonte e Planalto dos Campos das Vertentes. No mapa de compartimentação geomorfológica da área de estudo se pode visualizar a ocorrência deste domínio na porção sudeste, correspondente a unidade morfoestrutural do Planalto Varginha (Figura 2.2.1).

Suas regiões e unidades estão relacionadas com porções da plataforma estabilizada que resistiram as ações dos ciclos tectônicos posteriores ao Arqueano.

As deformações e deslocamentos do embasamento resultaram em maciços de elevações atingidos por estágios sucessivos de erosão, originando modelados de dissecação homogênea e diferencial.

II - Remanescentes de Cadeias Dobradas

Neste domínio estão contidas as regiões Planaltos da Canastra, Planaltos do Alto Rio Grande e Quadrilátero Ferrífero e que estão subdivididas nas unidades Patamares da Canastra, Serra da Canastra, Depressão de Sapucaí, Planalto de Andrelândia e Alinhamentos de Cristas do Quadrilátero - Pará de Minas, ao norte da Figura 2.2.1.

São integrados no domínio conjuntos de modelados resultantes da exumação de estruturas dobradas. As marcas do controle estrutural são refletidas através de extensos alinhamentos de cristas cortados por vales profundos ou compartimentos planálticos maciços. A dissecação presente no domínio é capaz de acusar influências estruturais e paleoclimáticas e os efeitos dos processos

morfogenéticos mecânicos do escoamento superficial retratam características litológicas complexas.

III - Bacias e Coberturas Sedimentares do Paraná

Contendo as regiões Depressão Paulista, Patamares Orientais da Bacia do Paraná, Planaltos do Alto Rio Paraná e as unidades Depressão do Tietê-Mogi Guaçu, Patamares Cuestiformes, Planaltos Rebaixados e Planaltos Residuais Cuestiformes, este domínio se localiza na porção oeste da Figura 2.2.1.

Esse domínio compreende relevos resultantes de dissecação homogênea e diferencial, assim como modelados de aplanamento englobando planalto, patamar e depressão sustentados por arenitos, siltitos, argilitos e derrames basálticos. Os tipos de formas de relevo predominantes são de topos tabulares com bordas convexizadas, topos convexizados, relevos monoclinais e cuestas, em que o aspecto retilinizado de seus *fronts* sugere interferências tectônicas.

Figura 2.2.1- Mapa de compartimentação geomorfológico Regional simplificado, baseado no projeto Radambrasil (1983).

Nestes domínios morfoestruturais foram atribuídas subdivisões do relevo com o propósito de organizá-lo de forma mais detalhada por regiões e unidades, assim como pela coleta de amostras feita para o entendimento dos materiais detríticos lateríticos.

Compartimento I- Planaltos Residuais Cuestiformes

Este compartimento abrange a porção noroeste e oeste da área estudada. Sua extensão para oeste adentra os domínios do Planalto de Franca, porção do Planalto Ocidental Paulista e sua transição para o domínio das cuestas basálticas (ALMEIDA, 1974, PONÇANO et al., 1981).

São consideradas feições de destaque para este compartimento as variações de relevo desde superfícies aplainadas até feições mais abruptas relacionadas à conservação de formas através das litologias mais resistentes sendo assim consideradas as escarpas, as cuestas basálticas, as mesas e peões.

A organização das formas ajusta-se à passagem das zonas de altitude, separadas por escarpas e formando degraus mais abatidos, visualizados nas fotos panorâmicas, com a presença das superfícies de aplainamento ao fundo (Figuras 2.2.2 e 2.2.3).

Figura 2.2.2- Visada do trajeto Franca/Capetinga, dando destaque às variações de relevo contidas no compartimento "Planaltos Residuais Cuestiformes" das escarpas erosivas para uma superfície de aplainamento rebaixada.

Figura 2.2.3- Vista panorâmica destacando superfície de aplainamento, a porção mais elevada remete ao Planalto de Franca.

As porções mais elevadas correspondem a restos do Planalto de Franca, remanescentes em região aplainada onde o relevo é caracterizado por pequena amplitude (menor que 40 m), baixa declividade, baixa densidade de drenagem, topos aplainados representados por rampas ou colinas muito amplas, com morros arredondados. O padrão de drenagem predominante é dendrítico, com vários canais abertos e perfis de vertentes convexos. Em muitas ocasiões é possível reconhecer relevo residual, na forma de tabuleiros e peões, representando verdadeiros morros testemunhos do Planalto de Franca (Figura 2.2.2 e 2.2.3).

Essas formas aplainadas merecem total atenção, uma vez que possuem "em comum" topos achatados e grande concentração de lateritas e crostas ferruginosas (Figura 2.2.4) que proporcionam pistas quanto à correlação com a antiga superfície de aplainamento Sul-americana (King 1956) ou Japi (Almeida 1974), descritas na região de Franca. Logo abaixo, na região de Patrocínio Paulista, é possível reconhecer novas superfícies de aplainamento, em torno da cota de 1000 metros.

Figura 2.2.4-Bloco de laterita encontrado na região de Franca.

Planalto de Franca:

O Planalto de Franca ocorre mais a oeste da área e é um grande planalto de reverso de cuesta interna que ocorre entre os rios Grande e Sapucaí, posicionado no extremo leste da bacia do Paraná, nos estados de São Paulo e Minas Gerais.

A passagem para superfície de Patrocínio Paulista é feita na forma de degraus, com escarpas e patamares em diferentes altitudes, relacionados a diferentes padrões de resistência das rochas, preservando localmente relevo residual. Esta passagem é bem marcada nas rodovias que promovem acesso a área a partir de São Sebastião do Paraíso, Franca, Patrocínio Paulista, Itirapuã e Ibiraci.

Figura 2.2.5-Visada dando ênfase ao Planalto de Franca e relevos residuais, testemunhos da superfície de aplainamento Sul-Americana. Na porção rebaixada, a superfície de aplainamento de Patrocínio Paulista.

As bordas escarpadas são sustentadas por rochas areníticas ou por rochas basálticas, localmente sotopostas pelos sedimentos predominantemente arenosos, entremeados por diques e sills de diabásio da Formação Serra Geral (Fiori 1979, Oliveira et al. 1983, Corsi 2003, Perdoncini 1997), visível nas Figura 2.2.5.

Neste estudo, ao longo das Superfície próximas a cidade de Patrocínio, foi possível reconhecer a presença de arenitos relacionando-se aos topos aplainados arenosos e a incisões alcançando, no fundo dos vales, diabásios relacionados às rochas correlatas a Formação Serra Geral.

As muitas situações de escarpas e patamares, no entanto, se repetem em diferentes situações de litologias associadas, reconhecidas no contato entre arenitos (provavelmente Formação Botucatu) e diabásio, entre diabásio e Grupo Itararé, entre Formação Botucatu e Grupo Itararé, com a região de escarpa sendo sustentada ora por arenitos silicificados (Formação Botucatu), ora por diabásio Figura 2.2.7.

Figura 2.2.7-. Escarpa sustentada por arenito da Formação Botucatu, destacando a estratificação cruzada de grande porte desta formação.

A presença de cobertura arenosa nos patamares, relacionada a alteração das unidades sedimentares e/ou a presença de coberturas cenozóicas relacionadas a evolução e recuo das escarpas, levam ao desenvolvimento de um padrão dendrítico de drenagem, com modificações ao atingir a linha de escarpa.

Compartimento 2- Patamares da Canastra

Este compartimento da área estudada, representa a passagem topográfica das áreas elevadas tanto a oeste, do Planalto Ocidental e das Cuestas, quanto a sudeste, do Planalto de Varginha, para o vale da bacia hidrográfica do Rio Grande. Por isso, apresenta um relevo com restos de feições elevadas, relacionadas à erosão remontante e ao recuo progressivo da escarpa, bem como um forte papel das estruturas presentes no substrato rochoso, decorrentes da história evolutiva deste segmento. Os valores topográficos deste compartimento atingem cotas de 1220 à 700 metros, em sua porção mais rebaixada onde está instalado o Complexo Hidroelétrico Furnas. O relevo deste compartimento possui características como colinas amplas de topos convexos a aplainados e vertentes de topos planos, convexo-côncavas, rampeadas em fase incipiente de dissecação caracterizando exemplos típicos de substrato rochoso magmático metamórfico recoberto por bacia sedimentar, com a implantação de sistema erosivo fluvial que foi esculpindo a paisagem e deixando feições de relevo relacionadas às estruturas deste substrato.

Nas porções mais dissecadas da área, a drenagem possui alta densidade, e esculpe os micaxistos distribuídos nos arredores das cidades de Itaú de Minas, São Sebastião do Paraíso, Cássia, e Vale do Rio Grande.

O estabelecimento da rede de drenagem local rompeu estas superfícies aplainadas, dissecando-as e aproveitando as estruturas do embasamento précambriano para desenvolver formas mais resistentes de relevo, representando as estruturas presentes nestas rochas.

Neste compartimento, as feições de destaque são relacionadas a relevos residuais, que subdividem-se associados a preservação de rochas sedimentares da Bacia do Paraná, ou então às rochas mais resistentes dos terrenos pré-cambrianos.

Relevo residual relacionado às rochas sedimentares

Os topos aplainados são associados às litologias dominadas pelos sedimentos da Formação Aquidauana que foram conservados da atuação de processos erosivos. Estes sedimentos se dispõem em camadas horizontais assentadas sobre o embasamento cristalino, formando assim feições de destaque como mesas, tabuleiros e até mesmo peões, de pequenas dimensões, principalmente quando comparados com as feições do compartimento I.

Os exemplos reconhecidos são sustentados por patamares internos do Grupo Itararé (Formação Aquidauana) Figura 2.2.8.

Pode ser ressaltada também a ocorrência de formas de topo aplainado devido à presença localizada de coberturas sedimentares cenozóicas (Figura 2.2.8 e 2.2.9) com retrabalhamento de arenitos, basaltos e outras rochas. Estas podem indicar a formação de algum tipo de nível de aplainamento local (como representando na figura) ou mesmo o desenvolvimento de um pediplano a partir da evolução e recuo das escarpas principais.

Figura 2.2.8. Relevo residual da área, sustentado por rochas areníticas da Formação Aquidauna recobrindo o embasamento pré-cambriano. Ao fundo, percebese a escarpa erosiva limítrofe entre os compartimentos. Aponta-se para 3 níveis de aplainamentos na dada localização.

Figura2.2.9- Pontualmente são encontradas coberturas sedimentares cenozóicas, com retrabalhamento de arenitos, basaltos e outras rochas (PASSARELLA, 2010).

Nas proximidades de Capetinga, a W da área estudada e logo abaixo da escarpa, é possível reconhecer lateritas retrabalhadas associadas às coberturas, podendo indicar nova superfície de aplainamento local, talvez relacionada a acumulação dos sedimentos acima descritos (Figura 2.2.10)

Figura2.2.10-. Registro de lateritas retrabalhadas nas proximidades de Capetinga (PASSARELLA, 2010).

Relevo residual controlado por rochas pré-cambrianas

A observação do mapa de compartimentos permite o reconhecimento de cristas diversas, alinhadas ou isoladas, ou mesmo expressivas serras. Seu reconhecimento e interpretação em conjunto com as feições de drenagem permite a caracterização de estruturas regionais, nas forma de zonas periclinais de grandes dobras ou de zonas de falhas regionais.

As litologias mais resistentes desse compartimento são compostas principalmente pelos quartzitos e paragnaisses do Grupo Araxá, que sustentaram em seu topo rochas compostas pelos sedimentos da Formação Aquidauana, assim gerando feições residuais que são controladas pelas estruturas e diferenças de resistência das rochas pré-cambrianas. Dentre estas feições podemos citar os relevos de serras alinhadas e as sinformas e antiformas.

Serras do Chapadão e da Fortaleza:

Esta serraria abrange feições de grande destaque tanto para a geologia quanto para a geomorfologia, além de ter oferecido material para amostras de materiais lateríiticos.

A serra do Chapadão apresenta uma orientação NE-SW, com feição de relevo com desnível de aproximadamente 200m, com topo aplainado de grandes dimensões, (Figura 2.2.11), o que dá sustentação a sua denominação.

O conjunto de rochas mais resistentes sofre forte inflexão para NW-WNW, passando a constituir a Serra da Fortaleza.

A observação dos flancos destas serras mostra feições que indicam a inclinação das camadas rochosas, representadas por formas triangulares dos interfluvios marcadoras da inclinação dos corpos rochosos reconhecidas nos flancos das serras, na porção interna da sua confluência. No rebordo da Serra do Chapadão, na observação da escarpa, é possível reconhecer os traços do acamamento, fazendo indicação também da inclinação das camadas. Já na Serra da Fortaleza, em seu flanco norte, as cristas são mais isoladas e alinhadas, formando arranjos simétricos e indicativos de alto ângulo de mergulho, até verticais.

Figura2.2.11Mapa Geológico Estrutural da Serra da Fortaleza e do Chapadão. Fonte: Morales (1993).

Outros arranjos de cristas alinhadas e de inclinações de camadas podem ser reconhecidos na área, na forma de "*hogbacks*" (Figura **2.2.12**), relacionados às estruturas e que também permitem a sua interpretação.

Figura 2.2.12- Visada de N para S, onde pode-se notar uma feição do tipo *"hogback*", que sugere inclinação de camadas e a interpretação das estruturas inclinadas.

Compartimento III - Planalto de Varginha/Amparo

Este compartimento se localiza na porção sudeste da área de estudo e é nitidamente destacado dos demais compartimentos por possuir morros alongados e cristas alinhadas com elevações que variam de 900 a 1080m. Estas elevações são sustentadas por rochas précambrianas referentes aos Complexos Varginha e Amparo dominantemente composto por migmatitos, gnaisses e xistos diversos.

O modelado de dissecação desta região apresenta-se homogêneo em meio à presença de colinas e morros alongados, de vertentes convexo-côncavas de topos que podem variar de arredondados a convexos que, neste caso, podem ser relacionados às de linhas de cumeada.

Uma forma bem nítida de separar este domínio da porção correspondente aos Patamares da Canastra (Compartimento II) seria através de uma perceptível dissecação diferencial entre os mesmos.

As cristas alinhadas presentes neste compartimento são feições formadas pela litologia mais resistentes dos migmatitos e gnaisses que se conservaram perante a dissecação mais acentuada (Figura 2.2.13).

Os morros apresentam um nivelamento de seus topos (Figura 2.2.13), que permite suspeitar de uma superfície erosiva. Imediatamente a sul destes alinhamentos, os traços NW-SE são truncados pela Serra do Chapadão, permitindo a caracterização mais fácil do limite entre dois compartimentos.

Nesta configuração de relevo, percebe-se que o padrão de drenagem é basicamente resumido à forma dendrítica, que pode ser relacionada à dissecação das estruturas desse compartimento e às estruturas tectônicas nele presentes, herdadas da época de deformação précambriana, uma vez que esta apresenta direções preferenciais NW- SE.

Figura 2.2.13-Visada de W para E mostrando de modo pontual o compartimento "Planalto Varginha", que na área de estudo se apresenta com morros alongados e fortemente orientados.

Compartimento IV – Depressão Alto do São Francisco

Este compartimento se localiza na porção norte da área de estudo e representa uma área rebaixada entre as unidades limítrofes, dando encerramento a uma série de feições geomorfológicas das mesmas Figura 2.2.14.

Apresenta como característica principal a forte dissecação de grandes redes de drenagem centralizadas em padrão subparalelo e subdendrítico pelo rio São Francisco e que assim deixam expostas as litologias do Grupo Bambuí, com seus argilitos, siltitos e conglomerados calcários (Radam Brasil, 1983).

Seu posicionamento na área de estudo delimita extensa zona de transição que marca a saída dos Patamares da Canastra para uma zona de depressão e por isso favorece a organização e ajuste das formas em colinas alongadas em posições interfluviais com topos achatados devido a retenção *in situ* de pacotes sedimentares que retrabalhados se transformaram em coberturas superficiais de característica argilosa, Figuras 2.2.14 e2.2.15.

Figura 2.2.14-Visada mostrando extensa superfície ao fundo e o limite entre os compartimentos Patamares da Canastra com o domínio das Depressões Alto do São Francisco.

Figura 2.2.15-Fotografia mostrando solo com forte concentração ferruginosa nos topos aplainados do compartimento Depressões do alto São Francisco.

Compartimento V – Depressão Sapucaí

Localizado na porção NE da área, este compartimento possui altitude média que segue a ordem de 900m e pode atingir de 1000 a 1100m nas partes que interpenetram o domínio da Serra da Mantiqueira.

Dissecando litologias que variam de migmatitos, gnaises a biotitas dos grupos Itapira, Complexo Amparo e Paraisópolis, o relevo se desenvolve em formas colinosas e apresenta vertentes convexadas em aprofundamentos de 30 a 40m (Figura 2.2.16).

As caracteristícas deste compartimento seguem uma descrição muito próxima do anterior (Depressão do Alto São Francisco), com colinas amplas e topos planos que são recobertos por depósitos não possibilitando a visibilidade da rocha matriz e demonstrando profunda alteração, causada pelo rearranjo da drenagem e deposição de materiais de áreas fontes próximas.

Figura 2.2.16-Visada mostrando cobertura com forte concentração ferruginosa nos topos quartziticos aplainados do compartimento Depressão Sapucaí.

2.3-Superfícies de aplainamento

A problemática conceitual ou paradigma das bases referenciais das superfícies erosivas, de aplainamento ou geomórficas, sempre foi uma realidade dentro dos preceitos da geomorfologia, essa imprecisão do termo levou a necessidade de direcionar neste trabalho qual o conceito seria seguido. Portanto optou-se pelo preceito de Ollier, (1981) no qual é definida a superfície como: "Porções continentais caracterizadas por relevo plano ou suavemente ondulado, modelado pela ação da erosão subaérea e que trunca indistintamente estruturas geológicas de natureza e resistência diferenciadas, de acordo com sua grandeza espacial e escala temporal em que foram elaboradas".

Acredita-se também que os modelos de evolução do relevo são complementares entre si, na área estudada, fato este explicado pela riqueza da dinâmica dos elementos espaciais, climáticos, tectônicos, eustáticos e bioclimáticos, articulados ao longo do tempo.

Superfícies de aplainamento e o desenvolvimento do relevo

A configuração da superfície terrestre é o resultado de situações de "equilíbrio dinâmico" ou de "desequilíbrios sustentados", envolvendo relações cambiantes, no tempo e no espaço, entre forças endógenas e exógenas, SAADI (1998). Essas relações foram analisadas sistematicamente ao longo do tempo por diversos

autores, que tinham como objetivo compreender esse ajuste mútuo entre as formas de relevo e os processos atuantes do presente.

Davis em (1889) propôs o modelo do "**Ciclo Geográfico**", que atribuiu a evolução do relevo às águas correntes e ao nível de base regional, no papel decisivo da tarefa de suavizar a morfologia, através de fases como, juventude (cuja dissecação é predominante), maturidade (presença da erosão fluvial lateral e rebaixamento por desnudação) e senilidade, quando atinge a forma de uma peneplanície (Christofoletti, 1973, Figura 2.3.1).

Portanto os processos evolutivos desse modelo dominam claramente as variáveis tempo e estrutura do sistema (Casseti, 1996).

Figura 2.3.1- Modelo Davis (1899), apurado de Saadi (1998).

Neste modelo o processo de laterização e sua fomação estão ligados a pediplanação do relevo, que implica em condições ideais para a formação dos materiais lateríticos. No caso dos períodos de juventude e maturidade onde reinam vertentes escarpadas à declives moderados, com rochas desnudas à finas camadas detríticas e percolação rápida do lençol freático, essas condições ideais não ocorrerão. Porém no momento de senilidade, ciclo mais longo da formação do relevo peneplano, os vales aprofundados, vertentes com baixos declives, clima quente e úmido, remoção dos detritos por arrastamento e lenta percolação do lençol freático permitem a realização de várias reações químicas favoráveis na formação das lateritas (Nascimento, 1983).

Em contraposição ao modelo do "Ciclo Geográfico", Penck (1924) concebeu uma nova proposta, o modelo de "Evolução Acíclica e Tectônica Contínua" ou *Primärrumpf,* que ofereceu a análise do relevo como um meio de reconstituir os ritmos da movimentação crustal, Figura 2.3.2. Neste modelo considerou-se que a deformação tectônica foi expressa por soerguimentos representados por movimentos contínuos, progressivamente acelerados e em seguida, simetricamente desacelerados, SAADI (1998). O conceito de *piedmonttreppen* serviu de base para que King (1953) explicasse novos ciclos de erosão, pois Penck (1924) estabeleceu que a formação das escarpas obedece às leis físicas que controlam o escoamento da água e os movimentos de massa e como consequência existe o soerguimento da crosta (NASCIMENTO 1993).

Infelizmente o autor não teve a merecida propagação no meio científico tanto pela barreira linguística do alemão quanto pela morte prematura, que levou a interpretações inconsistentes e errôneas do trabalho no meio científico. Seu modelo *Primärrumpf* assim como uma investigação mais avançanda aos processos de laterização e formação de crostas ferruginosas foram continuados pelo modelo de King (1953), (GROHMANN, 2008; CASSETI, 1996; NASCIMENTO, 1993).

Figura 2.3.2- Modelo de Penck (1924), apurado de Klein (1985).

King (1953), propôs o modelo de **Pediplanação**, que assumiu tanto as propostas de Davis (1889) sobre estabilidade tectônica com admissão das compensações isostáticas quanto o modelo de Penck (1924), ao utilizar o recuo paralelo das vertentes para a evolução morfológica. No entanto o fator clima, nesta teoria, possuiu fundamental importância (Salgado, 2007).

Neste modelo o processo de planação tem seu desenvolvimento na regressão lateral das escarpas, considerando por meio da erosão das cabeceiras e dos movimentos de massa a formação do acumulo de materiais, os pedimentos. King (1953) considerou que a ciclicidade destes procedimentos pode se relacionar com os estágios assumidos por Davis (1889) de juventude, maturidade e senilidade NASCIMENTO (1993).

O autor assume em seu modelo que apenas no momento de senilidade onde superfícies ficam por um longo tempo sem serem rebaixadas pela erosão que podem se desenvolver crostas espessas com precipitados de óxi-hidróxido de ferro, carbonatos, sílica entre outros. No entanto diferente de Davis (1899), King (1953) considera que o processo de laterização é proveniente dos precipitados dos constituintes ferruginosos lixiviados das rochas através do lençol freático, que ascendem a superfície por capilaridade e também acrescenta que a *pallid zone*, camada lixiviada subjacente a couraça, possa ser uma evidência de extensa translocação do material, NASCIMENTO (1993).

Ao considerar a laterita como um precipitado o modelo demonstra a importância da relação da pluviosidade e evapotranspiração na gênese deste material, aonde regiões que possuem o clima úmido com contrastes entre períodos chuvosos e quentes com intervalos quentes e secos são as mais favoráveis à formação deste material.

Figura 2.3.3- Modelo de erosão regressiva do sistema fluvial, King (1953), apurado de Valadão (1998).

No ano de 1982, Büdel prepapou o modelo da **Etchplanação**, que consistiu em conjungar dois fatores: relativa quietude tectônica e existência de condições climáticas tropicais semi-úmidas. Para esse modelo, os aplainamentos têm início quando uma região adquire clima tropical semi-úmido e estabilidade tectônica, gerando condições para que o intemperismo químico atue. Por meio deste processo ocorre um espesso manto de alteração formando assim uma superfície onde ocorre o apodrecimento de rochas e a perda de massas litosféricas, através da matéria que sai com o intemperismo na forma de solução (Valadão, 1998; Salgado, 2007; Grohmann, 2008).

O termo de superfície *etchplano* teve sua raiz em outros autores como Wayland (1933) e Thomas (1968), mas foi Büdel (1982) que reelaborou o conceito acrescentando a "dupla superfície de nivelamento". Este conceito consiste em dizer que a superfície alterada é modificada enquanto que a "superfície basal de alteração" aprofunda-se e modela a rocha por processos de alteração química.

Figura 2.3.4- Modelo de Büdel (1982), modificado de Grohmann (2008).

A tabela 2.3.1, adaptada de Valter Casseti (1996), apresenta de forma resumida as principais características de cada um dos modelos explicados neste capítulo.

CARACTERÍSTICAS	W.M. Davis	W. Penck (19-	L.C.King (1953)	Büdel (1982)
	(1899)	24)		
CARACTERÍSTICA GERAL	Rápido soer-	Ascensão de	Longos períodos de	Decomposição
DO SISTEMA	guimento com	massa com	estabilidade	química frente
	posterior esta-	intensidade e	tectônica,	a alteração em
	bilidade tec-	duração	separados por	períodos de
	tônica e eus-	diferentes	períodos rápidos e	estabilidade
	tática		intermitentes de	tectônica geram
			soerguimento da	manto de
			crosta.	alteração.
RELAÇÃO	Início da denu-	Intensidade de	Denudação	Denudação
SOERGUIMENTO/DENUDAÇ	dação (coman-	denudação	concomitante ao	relacionada aos
ÃO	dada pela in-	associada ao	soerguimento	processos de
	cisão fluvial)	comportamento		intemperismo
	após estabilida-	da crosta		químico e
	de ascensional			estabilidade
				climática e
				tectônica.
ESTÁGIO FINAL OU	Evolução mor-	Evolução por	Evolução	Evolução por
PARCIAL DA MORFOLOGIA	fológica de	recuo paralelo	morfológica por	meio da
	cima para baixo	das vertentes	recuo paralelo	estrutura,
	(wearing-	(wearing back)	(wearing back)	litologia,
	down)			morfologia da
				frente de erosão
				e reposta do
				clima
				(etchplanação)
CARACTERÍSTICAS MORFO-	Fases antropo-	Processos de	Nível de	Intima relação
LÓGICAS	mórficas:	declividade	pedimentação	com a estrutura
	juventude, ma-	laterais das	(coalescência de	geológica X
	turidade e	vertentes:	pedimentos:	frente de erosão
	senilidade	convexas,	pediplano)	e clima, geram
	(peneplano)	retilíneas e côn-		diversos
		cavas (relação		etchplanos.
		incisão/denudaç		
		ão por ação		
		crustal)		
ESTÁGIO FINAL OU	Peneplanização	Superfície	Pediplanação	Etchsuperfície
PARCIAL DA MORFOLOGIA	(formas	primária (lenta	(formas	incisa

Tabela 2.3.1-Adaptada de VALTER CASSETI (1996)

	residuais:mona	ascensão	residuais: inselberg	
	dnocks)	compensada	<i>s</i>)	
		pela denudação).		
		Não haveria		
		produção de		
		elevação geral		
		da superfície		
NOÇÃO DE NÍVEL DE BASE	Processo evolu-	Vertente evolui	Pressupõe a	Ajustamento
	tivo	em função do	generalização de	seqüencial ao
	comandado	nível de base	níveis de base	nível de base
	pelo nível de	local	(qualquer ponto de	local.
	base geral		um rio é	
			considerado NB	
			para os demais à	
			montante)	
VARIÁVEIS QUE COMPÕEM	Temporal/estrut	Processo,	Processo/forma,	Relação
Os SISTEMA	ural com	tectônica e	considerando o	formas/process
	subordinação	tempo	fator temporal,	os conjugando
	da processual		admitindo	o tempo todo
			implicações	na alteração da
			isostásicas	paisagem

O estudo das superfícies de aplainamento no Brasil.

A diversidade de idéias quanto à gênese das superfícies geomórficas do território brasileiro iniciou-se em meados da década de 40, quando os primeiros estudos apresentados seguiam o modelo davisiano, que define níveis de erosão de acordo com topos concordantes ou topos de mesma altitude.

De Martonne (1943), foi um dos primeiros a ganhar destaque com sua obra sobre os problemas morfológicos do Brasil Tropical Atlântico. Ele distinguiu quatro superfícies erosivas: a Superfície pré-permiana, a Superfície de Campos, a Superfície de Cristas Médias (Eocênico) e a Superfície Neogênica.

Moraes Rêgo (1946), por sua vez, ao interpretar a gênese e a morfologia do Estado de São Paulo destacou que a forma do relevo atual do estado data principalmente da fase erosiva, conseqüência do levantamento Pliocênico. Evidências da influência de topografias anteriores foram registradas, principalmente daquela que foi criada pelo levantamento do fim do Período Cretáceo e que assinalou a existência no Brasil da peneplanização Post-Cretácea, anterior ao Plioceno, entre os períodos Eoceno e Mioceno, apontando fenômenos de mesmo gênero observados na América do Sul. Segundo o mesmo autor, um abaixamento recobriu quase todo o território brasileiro e deixou seus registros nos arredores do estado de São Paulo com uma capa de sedimentos de espessura média, que chega a altitude atual de 800m, representado pelos Patamares Cuestiformes, na região. Por fim, esse processo foi cessado no final do Terciário, quando um soerguimento acabou com a sedimentação anterior e causou o ciclo erosivo que deu formas a "topografia atual".

Freitas, em 1951, destacou três ciclos erosivos. O mais antigo seria relacionado com o período Mesozóico e antecedido por um soerguimento epirogênico que teria sido encerrado no Cretáceo, resultando no peneplano cretáceo, de *nível B* (Nível de cristas peneplanadas, entre 1200 e 1400 metros de altitude). Em seguida, ocorreu um novo movimento epirogênico positivo. A fragmentação do Escudo Brasileiro no Terciário gerou os principais acidentes tectônicos do relevo do país e também o peneplano terciário que se desenvolveu correspondendo ao *nível A*, ao qual se segue o terceiro ciclo, ou seja, *ciclo quaternário* ou *pós-deposição* dos sedimentos de São Paulo e Curitiba (PONÇANO e ALMEIDA, 1993) (Quadro 1).

Freitas (1951) ainda afirmou que os dois níveis mais elevados das antigas superfícies de aplainamento do Brasil compunham os últimos peneplanos gondwânicos, elaborados nas saliências principais do Escudo Brasileiro no decorrer do Mesozóico, ao mesmo tempo em que as massas continentais regionais se estendiam muito para leste, embora em nível tectônico baixo (AB'SABER, 1955).

Posteriormente King (1956) fundamentou seu modelo de evolução geomorfológica para o Brasil Oriental baseado nos conceitos pré-estabelecidos e suas relações com as superfícies de aplanamento do continente africano. Suas superfícies escalonadas eram reconhecidas como "Gondwana, Pós-Gondwana, Sul-Americana e Paraguaçu que são equivalentes, para Bigarella (2007), aos níveis Pd3, Pd2, Pd1 e P2 (Quadro-1), pois ambas foram reconhecidas nos compartimentos regionais de acordo com o conceito *davisiano* e separadas por degraus originados

por fases sucessivas de levantamento, alternadas de peneplanação, reconhecido como "escadas de Piemonte".

O mesmo autor também identificou estas Superfícies de Erosão no Brasil na seguinte ordem: Superfície Fóssil (Período Carbonífero); Superfície Desértica (Triássico); Superfície Pós-Gonduana ou Superfície Gonduana (Cretáceo); Peneplanação Sul-Americana (Paleoceno-Eoceno) seguido por um soerguimento (Oligoceno); Ciclo Velhas (Mioceno-Plioceno) e Ciclo Paraguaçu (Pleistoceno-Holoceno).

Portanto, mesmo não chegando a um consenso sobre a definição de gênese, desenvolvimento e dinâmica destas superfícies, destacadas pelos autores acima descritos (MORAES REGO, 1946; DE MARTONNE, 1943; FREITAS, 1951; KING 1956; ALMEIDA, 1964; AB´SÁBER, 1955) é clara a correlação entre elas ou até mesmo a sua equivalência.

Revisão das superfícies de aplainamento na área de estudo.

Como a área de estudo se encontra na porção sul/sudoeste do craton do São Francisco, envolvida pelas faixas móveis Brasília e um pequeno trecho ao sul da faixa Ribeira, considerou-se mais conveniente abordar as superfícies mezozóicas a partir do período jurássico até as evidências mais recentes identificadas no Neógeno, através de autores que trabalharam anteriormente na mesma.

As Superfícies Juro/Cretácicas

As superfícies mais antigas trabalhadas pelos autores, na região de estudo, geralmente são correlacionadas aos períodos que variam do Jurássico ao Cretáceo Inferior e Médio. São elas a Gondwana por (KING 1956, BARBOSA 1965 e BRAUN, 1971) e a Superfície Campos por (DE MARTONE, 1943; FREITAS, 1951e AB SÁBER, 1955).

Também denominadas superfícies de cumeeira se apresentam descontínuas na paisagem e estão associadas aos divisores de drenagem das principais bacias hidrográficas da região de estudo, São Franciscana e do Paraná. Por serem relativas a fases erosivas de rebaixamento, são encontradas tanto nas estruturas do embasamento cristalino, tanto quanto sobre capeamento cretáceo, Silva (2009). King (1956) considera que a superfície descrita no parágrafo anterior seria designada superfície Gondwana. Para o autor, esta superfície se encontra atualmente na maior parte da paisagem do Sudeste em estado fóssil ou exposta nos cumes das porções mais elevadas. Para este autor esta superfície não existiria na área estudada, uma vez que sua altimetria seria cotada acima dos 1400m.

Como só ocorre nos divisores mais importantes, ocupando a posição mais alta em relação aos próprios cumes a superfície Gondwana apresenta boas razões para que seja considerada como a superfície mais antiga do Brasil atual. Além do mais, tôdas as superfícies anteriores são exumadas ou fósseis. Enquanto que a maior parte da superfície Gondwana pemanece atualmente em estado fóssil sob um capeamento cretácio, em outras regiões, tais como área montanhosa ao sul de Belo Horizonte, essa superfície parece não ter tido nenhuma cobertura sedimentar e foi exposta continuamente aos elementos desde o Cretáceo até os dias atuais. Já foi sugerido que (KING, 1950, pg. 124) a superfície Gondwana é, mesmo, mais antiga do que o Brasil e fazia parte da topografia do antigo continente austral Gondwana, que já existia antes que os atuais contornos da América do Sul fôssem estabilizados e antes que a, bacia do Oceano Atlântico fôsse criada. (KING, 1956 pgs.18-19.)

No entanto autores como Barbosa (1965), que a caracterizou como **PDVI**, defendem a teoria de que essa superfície atinge as cotas acima de 1300m e, portanto estariam inseridas nos relevos tabuliformes dos testemunhos cretácicos pertencentes aos domínios dos Relevos Residuais Cuestiformes e Patamares Cuestiformes, ou das estruturas do embasamento cristalino pertencentes aos domínios das Serras da Canastra e Patamares da Canastra que atingem a dada altimetria.

Braun (1971), a caracterizou como Gondwana e pós-Gondwana, na área estudada, onde estas superfícies são encontradas nas zonas que inferem os limites da área a sudeste e as zonas próximas aos domínios das cuestas basalticas a oeste, sempre correlacionadas ao vulcanismo basáltico mesozóico.

De Martone (1943) descreve uma superfície similar designada "Campos", uma superfície de erosão desenvolvida numa grande extensão, em condições notáveis de estabilidade.

> É isto que nos leva a colocar de preferência essas formas muito evoluídas no Terciário antigo, em vez de no Plioceno; mas é possível que sua elaboração tenha continuado, cada vez mais lentamente, até a época atual, na bacia superior do rio Grande, até a orla das serras onde está sua nascente e até a linha divisora das águas com o rio Doce ou com o rio São Francisco (De Martonne, 1943 pg. 20.)

O mesmo autor considera duas hipóteses para o desenvolvimento desta superfície e sua altimeria elevada (1300 a 1400m), a primeira estaria ligada a sua relação com os arenitos do Bauru, devendo sua superelevação ser atribuida a movimentos Terciários e a segunda de que ela seria derivada da superfície prépermiana.

Para Ab' Sáber(1955), a altimetria desta mesma superfície, estaria na casa dos 1800 a 2000m. Logicamente é necessário considerar que apesar de nomes similares, as ocorrências destes materiais se apresentam em domínios de realidades geomorfológicas totalmente distintas, sendo que Ab' Sáber(1955) descreveu e deu enfoque destas ocorrências nos domínios mais elevados da Serra do Mar e Mantiqueira, tendo como unidades de relevo as intrusões alcalinas dos Maciços do Itatiaia.

Freitas (1951) considera essa superfície como o peneplano de nível B, uma vez que para ele esse material tem todas as características de um, ou seja, apresenta-se como uma superfície plana, composto por rochas resistentes a denudação, com uniformidade de cotas e grande extensão em área (mesmo que descontínua). As cotas altimétricas que definem essa superfície para o autor atingem de 1200 a 1400m e remetem a realidade do relevo do Brasil Meridional e Central.

Para o autor, eventos tectônicos são extremamente pertinentes à distribuição destas superfícies uma vez que as áreas fontes do peneplano de nível B, são as cristas mais elevadas com gênese tectônica, como exemplo das Serras do Espinhaço, Mantiqueira e do Mar.

A serra do Espinhaço consiste em uma muralha produzida por uma distensão do escudo cristalino orientada WNW"-ESE, resultando linhas de ruptura perpendiculares (SSW -NNE) que coincidem com a direção geral da xistosidade (Freitas, 1951 p.8)

Ab' Sáber (2000) também considera de um ponto de vista bastante amplo, sobre a importância destes eventos tectônicos e sua ligação com as superfícies, concluindo que podem ser formas residuais, retrabalhadas do antigo continente Gondwana. Como o exemplo das Serras do Espinhaço, Diamantina, Bocaina e Mantiqueira), todas sujeitadas a diversos tipos de tectonismo e amplo retrabalhamento que levou a um aplainamento muito antigo. A very broad viewpoint it may be concluded that the most important summit surfaces are located on residual, reworked domes of the old continent of Gondwana. To them may be added the planed areas of "dorsais" of shields (Espinhafo/Diamantina and Bocaina/ Mantiqueira/Brasilia) and the planed summits of the Uruguay-Rio Grande do Sul shield (450-500 m), the heights of the Serra dos Carajas (670-700 m) and the Borborema massif (700-1,150 m), all subject to diverse types of tectonism and broad reworking of ancestral planations.(Ab' Sáber, 2000 p.516).

As Superfícies Neocretácicas

Ao caracterizar as superfícies erosivas que se desenvolveram nos ciclos erosivos do Terciário, é imprescindível se discutir primeiramente uma fase intermediária e provavelmente incompleta do material, que se posiciona entre os depósitos das superfícies Juro-Cretácias (Gondwana, KING 1956, Campos, DE MARTONE, 1943; FREITAS, 1951e AB SÁBER, 1955; PDVI,BARBOSA, 1965, etc.) e os depósitos do Eoceno e Oligoceno, considerada por vários autores como Sul Americana, King (1956); nível A, Freitas, (1951); Pd3, Bigarella & Ab Sáber, (1954), etc.

Essas superfícies podem ser observadas nos arredores do Sul de Belo Horizonte, na porção norte/nordeste da área estudada, atingindo cotas de aproximadamente 1100m, ou contrastando com as cristas referentes ao ciclo Gondwana, nos arredores da Serra da Moeda e Quadrilátero Ferrífero, com cotas na casa dos 1400 metros de altitude, King (1956).

Para Freitas (1951), este material se encontra numa média entre os peneplanos de nível A e B, e que por não ser bem defínido altimétricamente se caracteriza como incompleto, "*monadnoks comuns*".

King (1956), explica o desenvolvimento deste nível intermediário por meio do processo erosivo e da constituição litológica das escarpas abruptas que assim separam aplainamentos superiores e inferiores. De acordo com a litologia e a apresentação de seus contornos é afastada qualquer interpretação que considere origem tectônica, descartando a hipótese de que diferentes níveis possam ser a mesma superfícies deslocada em patamares de altimetria diferenciada.

Sempre que dois de tais aplainamentos são observados em justaposição, acham-se separados por escarpas relativamente abruptas Estas escarpas mostram todas as características das escarpas de erosão. Seus contornos, suas relações com os aplainamentos superiores e inferiores e suas relações com a rocha matriz afastam qualquer interpretação que as considere de origem tectônica e eliminam, portanto, qualquer possibilidade de que os aplainamentos superiores e inferiores constituam partes de uma única superfície que tivesse sido deslocada por movimentos da crosta. Não se trata de uma única forma de erosão mas sim de dois aplainamentos distintos, sendo cada um, bem como a escarpa que os separa, produto de erosão. Este fato é demonstrado em inúmeros exemplos, cobrindo milhares de quilômetros, pelas próprias paisagens brasileiras; e elas ali estão para que sejam consideradas e usadas pelos observadores, (KING, 1956 pg.11).

As Superfícies Terciárias

Estas superfícies são reconhecidas por se desenvolverem durante um extenso período do Terciário, com processos erosivos cíclicos, apresentando uma forma que varia de chapada a levemente ondulada, caracterizada de Cristas Médias (DE MARTONNE, 1943), Sul-Americana (KING, 1956), Japi (ALMEIDA, 1964) e Pd3 (BIGARELLA, 2007), estão espalhadas pelos estados da Bahia, Minas Gerias, São Paulo e Espirito Santo.

Para De Martonne (1943), esta superfície terciária classificada pelo autor de **Superfície das Cristas Médias,** seria registrada passando logo acima de uma cobertura permo-triássica, nos arredores do rio Grande, de possível concordancia com o *Front* da Cuesta de Botucatu que permeia cotas de 1100 à 900 metros.

Para o autor (op. cit) estas considerações sobre essa superfície e, surgiram a partir de sua interpretação de mecanismos de erosão diferencial e de tectônica que para ele foram responsáveis pela a existência de aplainamentos desenvolvidos em compartimentos intermontanos ou compartimentos embutidos da paisagem do SE ao Sul do Brasil.

Bigarella (1965), Mousinho e Silva (1965), consideram para a mesma superfície a nomenclatura de PD3.

Esta última superfície apareceria cortada novamente por aquela, na qual a erosão, recomeçando, retalhou cristas de rochas duras, e compreende-se que ela tenha desaparecido na maior parte do maciço antigo. A "superfície das cristas médias", prolongada para o oeste, passaria acima do contacto com a cobertura permo-triássica, e fica-se tentado em concordá-la com a frente da cuesta de Botucatu, que atinge freqüentemente 900 m. Trata-se, com tôda verossimilhança, de uma superfície de erosão terciária mas não, como alguns parecem ter pensado, de uma superfície pliocênica (De Martonne, 1943, pg. 18).

King (1956) caracterizou esta superfície de **Sul-Americana**, e destacou em seu trabalho que foi esculpida durante um longo período no decorrer do Terciário Inferior e atingiu grande uniformidade de aplainamento em meados do Mioceno. Ele também sugere que nos arredores da porção NE da área estudada (ao Sul do Quadrilátero Ferrífero) as cotas altimétricas atinjam 800 a 1200 metros.

O supracitado autor, atribui fundamental importância a esta superfície, uma vez que, a topografia moderna foi esculpida a partir dela, deixando como remanescentes de relevo, chapadas que se elevam sobre sistemas de vales ou planícies onduladas, produto da ação de ciclos, que recobrem a maior parte do oriente paulista.

Assim, em poucas palavras, o elemento fundamental do cenário brasileiro foi uma vasta planíce, produzida pela desnudação, entre o Cretáceo inferior e o Terciário-médio, guando foi soerguida, sendo mais tarde reduzida a um planalto dissecado pela erosão policíclica, que escavou vales em quase toda a superfície, ou, localmente, uma série de elevações de topo coincidente, sobre as cristas. Apesar disso, esse planalto dissecado ainda permanece e é possível reconhecê-lo desde a bacia do Paraná, através de Minas, no sul da Bahia, onde forma feições tabulares, e no Espírito Santo, onde constitui a concordância de cristas das montanhas. Esta vasta peneplanação, que concorda com superfícies de deposição nos contrafortes andinos e abaixo pelos pampas argentinos, é denominada peneplanação Sul Americana. Resíduos mais antigos ocupam atualmente apenas uma pequena porção pela paisagem brasileira, principalmente na zona montanhosa ao sul de Belo Horizonte e ao longo dos divisores entre os rios que drenam para o norte, para o Amazonas e o Tocantins (KING, 1956 pg.5).

As planícies desta superfície podem ser relacionadas a lagos e lagoas soerguidas no Terciário médio, onde ficaram remanescentes de depósitos paludais e lacustres reconhecidos atualmente por camadas de areias brancas, compactas, que aparecem nas cristas das escarpas, intercaladas por seixos espessos e areias vermelhas, nas cotas de 750 a 950 metros. Em alguns casos estes materiais se transformaram em silcretes (King, 1956).
Para Almeida (1964), essas superfícies seriam caracterizadas de **Japi**, devido a localização na qual o autor trabalhou, nos arredores da Serra do Japi, entre os rios Tiête e Jundiaí, onde foram, observadas nas cotas de 1050 a 1300 metros, mesmo assim sendo compostas de material muito similar ao descrito por outros autores. Na área de estudo deste trabalho o autor descreve a presença desta superfície na porção W/NW.

Perfis Lateríticos

Os materiais lateríticos de forma geral são depósitos residuais da crosta terrestre originados de acúmulos relativos e absolutos de constituintes cujo teor de Fe e/ou Al é maior e o de Si é menor que a rocha parental, Schellmann (1981). Resistentes a intensa alteração subaérea da rocha, são muito expressivos em regiões tropicais e associam se a solos muito desenvolvidos, espessos e dessaturados (Espindola, 2008).

Para uma melhor compreensão destes materiais existe a necessidade do estudo de seus perfis, que garantem uma melhor contextualização e interpretação genética diante da paisagem.

Neste trabalho, o perfil laterítico é assumido de acordo com as terminologias utilizadas por Tardy (1993), Ladeira (2001), Ladeira & Santos (2005), que consideram como perfil laterítico como o ferricrete endurecido e todo o perfil a ele associado, como o horizonte mosqueado, o caulinítico e eventualmente o superficial, que recobre o ferricrete. Compostos predominantemente de assembleias minerais de goethita, hematita, hidróxidos de alumínio, minerais de caulinita e quartzo.

Quanto à classificação dos materiais ferruginosos nele presente, considerase 3 tipos básicos Bourman et al.(1987), Milnes et al.(1987) e Bourman (1993):

 -As rochas ferruginisadas, que são materiais constituídos de materiais ferruginosos, que mesmo que impregnem as rochas mantém suas estruturas perfeitamente identificáveis em campo;

-**Os sedimentos ferruginosos**, que possuem a natureza do sedimento original em conjunto com o material ferruginoso, e por fim;

-**Os ferricretes complexos**, que possuem uma grande variedade de fábrica como psolíticas, nodulares, vermiformes e laminares.

Quanto a gênese destes materiais, mesmo sendo um assunto controverso e que apresenta muitos trabalhos com interpretações diversificadas, é consensual considerar que na grande maioria das vezes a formação, evolução e destruição de ferricretes estão intimamente associadas com a história da paisagem e que portanto oferece um conjunto de informações sobre fatores geológicos, climáticos, bióticos, químicos (Eh e pH) e hidrológicos.

Neste trabalho eles oferecerão arcabouço para o entendimento e associação dos mesmos com as superfícies erosivas/geomórficas na área estudada.

CAPÍTULO-3 PROCEDIMENTOS METODOLÓGICOS.

3.1-Caracterização da dinâmica superficial da área estudada e sua relação com a disposição das superfícies erosivas.

Na área estudada, foram selecionados polígonos de destaque, para o entendimento dos parâmetros morfométricos do desenvolvimento da paisagem. Estes estudos ofereceram o reconhecimento de elementos geomórficos típicos para a caracterização de áreas sob a influência de atividades de natureza tectônica e a possibilidade de distingui-las das erosivas.

Foram usadas para tanto, análises morfométricas, através do ferramental do software MATLAB o TecDEM, (SHAHZAD & GLOAGUEN, 2011 a, b), com MDE (Modelo Digital de Elevação), com resolução espacial de 90 m, trabalhados a partir da base de dados **SRTM** (*Shuttle Radar Topographic Mission*, FARR *et al.*, 2007).

Estas análises foram apoiadas em diversos trabalhos renomados e com diferentes metodologias multidisciplinares que oferececem respostas quanto a natureza da paisagem em seus diversos estados (HOWARD, 1968; MORISAWA & HACK, 1985; SUMMERFIELD 1987, 1991; SCHUMM, 1981, 1986, 2000, 2007; COX, 1994; BURBANK & ANDERSON, 2001, RIFFEL, 2005, GROHMANN, 2008).

Todos os produtos gerados foram baseados nos preceitos que melhor permitissem o reconhecimento das superfícies erosivas em seus diferentes níveis de desenvolvimento, e sua natureza diante da paisagem, levando em consideração que:

-As superfícies erosivas são relativas aos materiais detríticos lateríticos;

-As superfícies erosivas se desenvolveram em períodos de estabilidade tectônica;

-Possuem em determinadas áreas um padrão altimétrico de acordo com seu nível de desenvolvimento.

De acordo com estas considerações seguem as etapas de classificação abaixo.

Classificação dos materiais lateríticos

A classificação dos materiais partiu no primeiro momento da base de dados da CPRM – Serviço Geológico do Brasil, e do modelo digital de elevação SRTM da Embrapa, na escala de 1:1000000. A partir destes materiais foram cruzadas as informações, de <u>Materiais Detríticos Lateríticos</u> (CPRM) com as <u>Cotas Altimétricas</u> retiradas do modelo digital de elevação, DEM (Embrapa). Esse cruzamento foi baseado em pontos concordantes quediversos autores indicavam a respeito das superfícies erosivas, (KING, 1956; ALMEIDA, 1964, 1980; AB'SÁBER, 1969, 1972; VALADÃO,1998; BIGARELLA, 2007; HASUI, 2010) figura 3.1.1.

Desta forma os materiais lateríticos foram separados em três diferentes categorias de cotas altimétricas:

1-Os materias pertencentes as cotas altimétricas de 900 à 1300m, indicam uma superfícies erosiva mais antiga e em estágio de maior preservação de seus mimerais, sendo reconhecidas por Cimeira (Ab'Sáber, 1955); Pediplanação Sul Americana (King 1956); Japi (Almeida 1964); Sul Americana (Valadão, 1998); PD3 (Bigarella, 2007);

2-Os materiais pertencentes as cotas altimétricas de 600 à 900m, mostram-se mais arrasados e com maior perda dos minerais de ferro e maior concentração de caulinita, essas superfícies são classificadas como Superfícies Intermontanas (Ab'Sáber, 1969/1972); Ciclo Velhas (King 1956); Superfícies "diversas" ao longo dos vales (Almeida 1964); Sul Americana I (Valadão, 1998)); PD2 (Bigarella, 2007);

3-Os materiais pertencentes as cotas altimétricas abaixo de 600m, são considerados os mais arrasados, onde prevalesce a sílica, são caracterizados por: Paleopavimentos (Ab'Sáber, 1969/1972); Ciclo Paraguaçu (King 1956); Sul Americana II (Valadão, 1998)); PD2/PD1 (Bigarella, 2007).

Figura 3.1.1-Disposição dos depósitos detríticos lateríticos em função das diferentes cotas altimétricas destacadas pelas curvas de nível no SRTM.

Para realizar este cruzamento, <u>Materiais Detríticos Lateríticos X Altimetría</u>, foi usada a técnica estatística da lógica Fuzzy. Esta técnica baseia-se na construção de classes que medem o grau de pertinencia de um atributo mediante a um conjunto, (BOHAN &.CARTER, 1994, MARRO et al, 2010).

O intervalo de pertinência é [0,1], onde 0 significa que um elemento não pertence a um determinado conjunto, 1 significa completa pertinência ao conjunto, e valores entre 0 e 1 representam graus parciais de pertinências (Marro 2010).

Essa classificação proporcionou distinguir a presença do material laterítico pertinente a cada grupo de cotas altimétricas. O valor igual a "**0**" seria referente a classe não possuidora do material laterítico no determinado valor da cota altimétrica e o valor igual a "**1**" seria referente a classe mais pertinente ao mesmo em determinado intervalo, figura 3.1.2.

Dessa forma, foi possível restringir uma grande extensão da área estudada, que seria inapropriada para uma averiguação mais refinada, o que possibilitou maior agilidade nas interpretações com maior escala, nas atividades de campo e extração de perfís.

Figura 3.1.2-Classificação dos materiais detríticos lateríticos de acordo com as diferentes altimetrias destacadas do SRTM.

A Isobase na determinação da distribuição dos materiais

A isobase é considerada uma superfície hipotética determinada pela intersecção entre drenagens de ordem similar, com a topografia associada (Filosofov, 1960), é uma representação simplificada mediante o relevo original, Steiner, (2007), que assim permite classificar em um modelo digital de elevação (MDT), zonas que compõe em um relevo homogêneo a partir de uma determinada ordem de drenagem.

O produto gerado permite uma comparação entre as superfícies mais elevadas que representam as formas de relevo antes da dissecação dos canais (da ordem selecionada para comparação), e as zonas mais dissecadas, que sofreram com a atuação dos mesmos.

Esse processo pode ser melhor observado e compreendido através da figura 3.1.3, baseada em Golts & Rosental (1993), apresentada no trabalho de (SHAHZAD & GLOAGUEN, 2011 a, b). No polígono (a), observa-se o modelo digital de elevação em tons de cinza, com a sobreposição das curvas de nível e os canais de diferentes ordens no caso, 1^ª, 2^ª e 3^ª. Em seguida, no polígono (b), as linhas de isobase são derivadas da elevação dos canais de 2^ª e 3^ª ordem em sobreposição aos níveis altimétricos. A mancha mais clara na imagem, marca claramente a posição de uma feição morfotectônica (SHAHZAD & GLOAGUEN, 2011 a, b).

Figura 3.1.3- Etapas para a construção do mapa de isobase. Fonte: Shahzad & Gloaguen, 2011, b.

O Índice da posição topográfica na determinação da distribuição dos materiais:

É uma forma de classificação do relevo que consiste em identificar as partes altas, médias e baixas da paisagem por meio dos valores de cada pixel de um Modelo Digital de Elevação figura 3.1.4. De acordo com os estes valores é fragmentada a imagem em zonas/setores similares ou não, que são convertidos em algoritmos que fornecem parâmetros para estabelecer uma média e a imagem passa a ser classificada de acordo com os valores que estão acima e abaixo desta (GUISAN, 1999 e WEISS, 2001, DE REU et al 2013).

Os valores positivos indicam que são superiores a média topográfica de uma dada região, classificando assim as porções que remetem aos altos topográficos, os valores negativos indícam que estão abaixo da média topografica e por isso remetem as zonas próximas ao nível de base e valores próximos a 0 indicam ou uma monotonia do relevo, que no caso tende a ser o mais plano o possível ou um declive constante, Weeis 2001, De Reu et al 2013, figura 3.1.4.

Figura 3.1.4-Etapas para a construção de um mapa de índice de posição topográfica.

Áreas de destaque

Como dito anteriormente, foram selecionadas 3 zonas de destaque dentro da área de estudo. Estas zonas foram selecionadas por possuirem os materiais lateríticos em grande quantidade/ fácil acesso, nas três diferentes cotas altimétricas e estarem relativamente próximas as amostras coletadas para TTF.

Seguindo o dado critério, as zonas escolhidas para se trabalhar foram representadas na figura 3.1.5:

Figura3.1.5-Disposição das das áreas que agregam as feições geomorfológicas de destaque (suas diferentes altimetrias) e concentração de depósitos lateríticos.

Partindo do pressuposto que sistemas hidrográficos e suas bacias de drenagem refletem certas características do material superficial em que se desenvolveram, os polígonos de número 1, 2, 3, contidos na figura 3.1.5, foram avaliados na escala aproximada de 1:500.000, com a finalidade de averiguar de

modo amplo a assimetria das bacias, curva hipsométrica e o perfil longitudinal dos canais, para pontualmente encontrar bacias que possam oferecer informações sobre o papel erosivo e sua influência no deslocamento dos depósitos de materiais lateríticos. Além disso buscou-se também bacias anômalas, com caracteres tectônicos para reforçar ainda mais a busca por registros estruturais que pudessem marcar alguma atividade de influenciasse nos momentos de estabilidade tectônica e que tenham contribuido para o cessar do desenvolvimento das superfícies.

Abaixo segue a descrição mais apurada sobre o procedimento das análises:

Fator de simetria topográfica transversal e Assimetria da bacia de drenagem

O fator de simetria topográfica transversal (FSTT) quantifica numa escala de 0 a 1 a direção da migração média dos canais, considerando que a migração preferencial do canal indica a assimetria do perfil topográfico transversal ao seu eixo, através da relação: *T = Da/Dd.*

Onde **T** corresponderia ao fator de simetria, **Da**, seria a distância da linha média do eixo da bacia de drenagem até a linha média do cinturão do meandro ativo e **Dd** a distância da linha média da bacia ao divisor da bacia, figura 3.1.6.

Essa relação permite uma discriminação entre migração de canais como uma consequência de processos internos fluviais (valores próximos de 0) ou de forças tectônicas (valores próximos de 1), Cox (1994), Cox et al (2001), Garrote et al. (2008).

Figura3.1.6-Fator de Simetria Topográfica Transversa **(FSTT)**, como fator de quantificação de deslocamento de um rio, Salamuni 2004, (mod. COX, 1994)

Já o fator de assimetria da bacia de drenagem (FABD), Hare e Gardner, (1985), Keller & Pinter (1996), Salamuni (1998), apresenta o componente de migração perpedicular ao seu eixo que pode ser resultado de processos fluviais internos, com valores iguais ou próximos a 50, ou processos fluviais sucetíveis a forças externas que no caso, menores que 50 indicam um basculamento do canal na sua margem esquerda, se maior que 50 demonstram provável basculamento na margem direita.

Esses valores são obtidos através da equação: **FA = 100 (Ar/At),** onde **FA** seria o fator de assimetria, **Ar**, corresponderia a área da bacia à direita do rio (olhando ajusante), **At** a área total da bacia de drenagem, figura 3.1.7.

Figura3.1.7 Fator de assimetria da bacia de drenagem (FABD), Salamuni et al. (2004), Hare e Gardner, (1985).

Integral Hipsométrica

Considerando que a relação da drenagem com o relevo oferece indícios importantes sobre a morfotectônica e a morfoestrutura de uma região, a curva hipsométrica é um fator que oferece a representação gráfica do relevo médio da bacia hidrográfica. Apresentando em termos quantitativos, o rebaixamento erosivo da bacia, através da variação de elevação dos terrenos da bacia com relação ao nível do mar (Chorley & Morley, 1959). Portanto cada curva obtida por essa técnica representa a proporção total da altura da bacia (h/H) pela proporção total de sua área (a/A), Fig. 3.1.8.

Figura3.1.8- Integral hipsométrica demonstrando sua representatividade através da proporção total da altura (h/H) pela área (a/A).

Essa proporção oferece uma interpretação das fases evolutivas da paisagem (jovem, equilibrada ou monadnock) a qual a bacia pertence, Fig. 3.1.9.

Figura3.1.9- Diferentes curvas geradas pela integral hipsométrica demonstrando cada fase evolutiva do relevo **a**-topografia jovem, **b**-topografia equilibrada **c**-estágio de senilidade.

Análises dos materiais lateríticos:

3.2-Granulometria

A análise granulométrica foi feita nas amostras de solo derivado de material laterítico para expressar as frações constituintes do solo em percentagem de peso por meio da determinação das dimensões das partículas.

O procedimento, realizado no Laboratório de Geoquímica Analítica da Universidade Estadual de Campinas, foi feito pelo analisador de tamanho de partículas CILAS 1090, Fig. 3.2.1

Figura. 3.2.1- Analisador de tamanho de partículas CILAS 1090.

Pré-Processamento

Tratou-se as amostras selecionadas em uma solução de água Água Deionizada com Hexametafosfato de Sódio, (NaPO₃)n que desagrega os materiais com maior facilidade, diminuindo a tensão superficial entre as partículas. Posteriormente acelerou-se a separação das partículas no meio, por agitação na centrífuga Fig. 3.2.2.

Figura. 3.2.2-Centrífuga, agitando as amostras preparadas em solução de Água Deionizada com Hexametafosfato De Sódio, (NaPO₃)n.

Processamento e Análise

O Método de Espalhamento de Luz Laser utiliza como princípio a interação de um feixe de luz com partículas em um meio fluido. Quando um feixe de luz monocromático e colimado de gás He-Ne atinge uma quantidade de partículas, parte desta luz é submetida a um espalhamento, parte é absorvida e parte é transmitida. No espalhamento, a luz pode ser difratada, refratada e refletida. Neste método, um conjunto de lentes, detectores foto-elétrico e um microprocessador irão captar a intensidade da energia espalhada e transformá-la em distribuição volumétrica das partículas, assumindo-se, a princípio, que as partículas têm formato esférico (Papini et al, 2006; Selmo, 2006; Alves, 2011).

3.3-Micromorfologia

Este tipo de análise dos solos correspondeu a técnica de observação morfológica em escala micrométrica e requeriu amostras de material pedológico previamente impregnado com resinas, finamente cortadas e coladas em lâminas delgadas similares às petrográficas (Castro et al, 2003).

Os materiais preparados foram observados com o auxílio de lupas e microscópios ópticos polarizadores, ambos binoculares, com o objetivo de identificar os constituintes dos solos nas diferentes frações; definir as relações existentes entre os constituintes (tipos de organização, hierarquia e cronologia das organizações) e por fim, formular hipóteses ou demonstrações acerca da dinâmica genética e evolutiva dos solos, na tentativa de esclarecer as controvérsias sobre sua origem, evolução e comportamento (Murphy, 1986; FitzPatrick, 1993; Castro et al, 2003).

3.4.-Difração de Raios X

A difratometria de raios-X corresponde a uma das principais técnicas de caracterização microestrutural de materiais cristalinos no campo da geociência (KLUG et al,1974; CULLITY, 1978).

Esse método consiste na interpretação que o arranjo dos raios X podem oferecer ao atingirem um determinado material. Estes podem ser espalhados, por forma elástica, sem perder energia pelos elétrons de um átomo como no caso de dispersão ou espalhamento coerente (JENKINS e SNYDER; 1996). Se os átomos que geraram este espalhamento estiverem arranjados de maneira sistemática, as relações de fase entre os espalhamentos tornam-se periódicas e o fenômeno de difração passa a ser observado em vários ângulos dos feixes (ANTONIASSI, 2010).

As condições para que isso ocorra são de que o comprimento de onda (λ) seja da mesma ordem de grandeza dos centros espalhadores (d), como resultado de uma interferência construtiva que satisfaça as leis de Bragg, fig. 3.4.1 (CULLITY, 1978).

Figura. 3.4.1- Ângulos O dos raios X refletidos segundo as leis de Bragg.

Os ângulos O dos raios X refletidos estão relacionados com as dimensões das celas unitárias e as orientações dos planos interatômicos hkl específicos do material cristalino (REYNOLDS, 1989). Portanto os átomos são distribuídos no espaço de tal forma que vários planos de uma estrutura cristalina possuem diferentes densidades de átomos ou elétrons, fazendo com que as intensidades difratadas sejam distintas para os diversos planos cristalinos, assim cada composto cristalino possui uma padrão de difração característico único, permitindo sua identificação através das posições angulares e intensidades relativas dos feixes difratados (ANTONIASSI, 2010).

O método quantitativo escolhido para essa análise foi o Rietveld, que tem por base a simulação de perfis difratométricos partindo de parâmetros estruturais das fases componentes de uma amostra (RIETVELD,1969; WILL, 2006).

No LPCM - Laboratório de Preparação e Caracterização de Materiais do Instituto Gleb Wataghin (Física da Unicamp), a análise foi promovida pelo difratômetro Siemens D 5000 no espectro 3-70 com tubo de cobalto no comprimento de onda de 1,7893Å, tempo de contagem de 1 segundo e passo de 0,05° e potência 25 mA e 35 Kv, e os dados foram interpretados pelo programa Diffrac-AT/ Socabim 1986, 1991, Figura 3.4.2.

Figura 3.4.2-Sistema X´Pert MRD da Philips instalado no LPCM para análises de amostras policristalinas, filmes finos e estrutura epitaxiais semicondutoras.

3.5-Fluorescência de Raios X

A Espectrometria de Fluorescência de Raios-X, é um método analítico para a determinação da composição química de materiais, inclusive minerais e rochas (DUTRA e GOMES 1984).

A análise é feita por meio da excitação e irradiação de uma dada substância através de um feixe de raios X, emanado de um tubo operando em condições de alta voltagem, produzindo assim uma radiação secundária (fluorescente) característica dos elementos químicos presentes numa dada amostra.

Sabendo-se os ângulos de reflexão e as intensidades dessa radiação é possível a partir de cristais analisadores e detectores específicos, a determinação qualitativa e quantitativa de todos os elementos constituintes.

No caso dos materiais detrito lateríticos, a análise química consistiu em oferecer os diferentes componentes químicos dos depósitos analisados na área.

Os dados para análise foram gerados em um espectrômetro WDXRF (PW 2404 - PanAnalytical, Holanda) de acordo com a técnica de fluorescência de raios-X (XRF), Figura 3.5.1.

Elementos maiores foram determinados pelo método descrito por Vendemiatto e Enzweiler (2001). A exatidão dos resultados foi dada pela análise de dois materiais de referência certificados WS-E (dolerito, SARM, França) e BCR-2 (basalto, USGS).

As análises químicas foram efetuadas no laboratório de geoquímica do Instituto de Geociências da Universidade Estadual Paulista "*Júlio de Mesquita Filho*" Campus Rio Claro. Onde se obteve dados totais sobre os principais elementos componentes dos materiais estudados na identificação dos processos genéticos atuantes dos ambientes geradores dos perfis.

Figura 3.5.1-Sistema Espectrômetro Sequencial de Fluorescência de Raios X, WDXRF (PW 2404 - PanAnalytical, Holanda), Laboratório de Geoquímica Analítica, Unicamp.

3.6-Termocronologia por traços de fissão

A Termocronologia por traços de fissão, é um método geocronológico quantitativo de grande importância para as "ciências da terra", pois permite através da observação dos traços gerados pelas fissões espontâneas do ²³⁸U (para este trabalho, no mineral de apatita), a mensuração da evolução tectônica e/ou denudacional, através da distribuição espacial de traços de fissão. Para isto, são necessários essencialmente duas análises: 1). o número de traços presentes na superfície mineral polida que, combinados com a quantidade de urânio, torna possível obter-se a idade de traço de fissão do mineral; 2). a medida do comprimento dos traços confinados (presentes dentro da superfície do mineral e

paralelo a superfície de observação), e a sua distribuição, torna possível inferir a evolução termal da amostra analisada.

Processamento:

Após a coleta das amostras em campo, estas são submetidas a procedimentos laboratoriais cujo objetivo é a separação dos minerais de apatita. Para isso as amostras são submetidas às seguintes etapas: 1). Britagem mecânica para a quebra das rochas em pequenos fragmentos; 2). Peneira de 80 mesh para selecionar os grãos mais finos e homogêneos; 3). Bateia para separar essencialmente os minerais das frações mais finas, como argila; 4). Separador magnético Frantz (no caso da apatita, esse procedimento é feito em etapas, variando a amperagem de 0.4 até 1.4 ampere, onde as apatitas se encontram na parcela não magnética; 5). Separação com líquidos pesados (bromofórmio) paraseparar os minerais mais densos; 6). Seleção manual dos grãos de apatita com auxilio de um microscópio estereoscópico.

Posteriormente, os grãos selecionados são montados em resina epóxi. Após a secagem desta resina, as amostras foram lixadas (com lixas de #1200, #2400 e #4000) e polidas (com pasta de diamante de 1/4µm). Posteriormente, as amostras foram tratadas quimicamente para a revelação dos traços de fissão. Isto ocorre porque a região danificada é mais reativa ao tratamento químico do que o corpo do mineral. O ataque químico foi realizado com ácido nítrico (NHO₃) a 20°C durante 60 segundos (TELLO et al., 2006). Desta forma, os traços que cruzam a superfície polida foram então revelados e a densidade superficial de traços pode ser observada. O ataque químico dos traços confinados, que se encontram dentro do corpo do mineral, só é possível quando este se cruza com um traço superficial, permitindo, portanto a chegada do ácido e a revelação do mesmo.

Para datação por traço de fissão, uma calibração proposta por Soares et al., (2014a) foi utilizada. Nesta calibração, o conteúdo de urânio das amostras são medidos diretamente por meio do *Laser Ablation- Inductively Coupled Plasma-Mass Spectrometer* (LA-ICP-MS), assim excluindo uma irradiação por nêutrons térmicos em um reator nuclear. Para isso, um padrão primário (MT-7) e um padrão de U secundário (Dur-2) foram utilizados para a normalização dos resultados (SOARES et al.. 2015)

A equação impregada para tanto foi:

$$t = \frac{1}{\lambda_{\alpha}} \ln \left[1 + \frac{\rho_{S} \lambda_{\alpha}}{\varepsilon_{238} N_{U} C_{238} \lambda_{f}} \right]$$
(1)

Onde: ρ_S é a densidade espontânea dos traços de fissão; ε_{238} é a eficiencia de detecção do mineral, *i.e.*, a razão entre o número de traços espontaneos observados por unidade de superfície e o número de fissões ocorridas, por unidade de volume do mineral; N_U é o número de ²³⁸U por unidade de volume no mineral; C_{238} é a concentração isotópica do ²³⁸U no urânio natural; λ_{α} é a constante de decaimento alfa do ²³⁸U; λ_{f} é a constante por fissão espontânea do ²³⁸Ue *t* é a idade de traço de fissão, em Ma.

Uma das maiores dificuldades em obter a idade de traço de fissão baseada na análise do conteúdo de urânio por LA-ICP-MS é a determinação do fator de eficiência (eficiência de revelação e observação dos traços) na superfície interna do mineral. Uma possível forma de alcançar tal valor, é utilizando amostra padrão de idade, *i.e.*, Durango apatite. Desta forma, a equação (1) pode ser re-escrita como:

$$\varepsilon_{238} = \frac{\rho_S \lambda_\alpha}{N_U C_{238} \lambda_f \left(e^{\lambda_\alpha t} - 1\right)} \tag{2}$$

Na equação (2), a eficiência de detecção do mineral é determinada utilizando a apatite de Durango com idade de 31.4±0.5Ma (GREEN, 1986). Para isso, necessita apenas determinar, para a amostra padrão de idade, os valores de ρ_S medindo os traços espontâneos e determinado o valor de N_U pelo LA-ICP-MS. Por outro lado, quando a concentração de urânio é diretamente medida, a relação entre seu conteúdo e o fator de eficiência deve ser considerado. Esta relação pode ser feita como:

$$K(ppm) = \varepsilon_{238} N_U \tag{3}$$

Na equação (3), *K* é a constante de calibração do LA-ICP-MS. O valor de *ppm* é a concentração de urânio dada em µg.g⁻¹. Sendo assim, considerando a equação (1) e (3), a idade de traço de fissão, pode ser calculada da seguinte forma:

$$t = \frac{1}{\lambda_{\alpha}} \ln \left[1 + \frac{\rho_{s} \lambda_{\alpha}}{K(ppm) C_{238} \lambda_{f}} \right]$$
(4)

Uma vez determinada a constante *K*, utilizando a amostra padrão de idade, a idade de traço de fissão das amostras de interesse geológico, podem ser determinadas através de subsequente analises do conteúdo de urânio.

Cabe mencionar que, para o uso do LA-ICP-MS, um padrão de urânio é necessário. Neste caso, foram utilizadas uma fração da amostra Dur-2 (7.5 μ g.g⁻¹ de U) e MT-7 (6.9 μ g.g⁻¹ de U). Essas amostras padrões foram amplamente estudadas e a variação do conteúdo de urânio é por volta de 1-1.5% (SOARES et al., 2015).

Os traços de fissão foram medidos em parceria com a empresa *ChonusCamp-Research*. As análises foram realizadas utilizando um microscópio óptico Leica DM 6M, com aumento nominal 1000×, a seco. A medida dos traços confinados (bem como o valor do D-par e ângulo em relação ao eixo-cristalográfico-C), foi realizada com auxilio de uma câmera Bel Photonics, de 1.3MP.

O conteúdo de urânio foi obtido na Universidade Federal do Pará, UFPA, no qual foi utilizado o quadrupolo iCap-Q acoplado a um Laser Photomachine 213nm. O sistema foi calibrado utilizando o vidro padrão NIST-610, no qual foi também utilizado como controle da performance das durante o processo de análise.

CAPÍTULO- 4 RESULTADOS

4.1-Caracterização da dinâmica superficial da área estudada e sua relação com a disposição das superfícies erosivas.

Distribuição dos materiais quanto a Isobase

Na área estudada foi possivel notar três domínios de isobase, que podem ser relacionados a ciclos evolutivos:

O domínio que remete a superfícies elevadas, com cotas acima de 900 metros, o domínio intermediário, com altimetrias abaixo de 900 metros e o domínio dos materiais rebaixados, com altimetrias abaixo de 600 metros.

O domínio topográfico mais elevado, destacado pela cor amarela, indica uma superfície preservada porum arcabouço litológico muito resistente ao intemperismo, compostopelos quartzitos e rochas intrusivas pertencentes ao domínio paleoproterozóico/proterozóico (figura 4.1.1). Ele é representado através dos remanescentes dos domínios: Planaltos Residuais Cuestiformes, Patamares da Canastra, Serranias da Canastra, Planaltos Vaginha Amparo.

Na área, esse fato é comprovado através dos depósitos lateríticos que estão instalados entre as cotas de 1000 a 1200 metros, recobrindo os topos da Serra da Canastra, e de unidades geomorfológicas pontuais, como os testemunhos, da sinforma do Chapadão, Serra do Itambé, Morro do Agapito, do Ferro, da Angolinha entre outros (Passarella, 2010).

Os domínios que estão abaixo de 900 m, foram representados em púrpura e se mostram em concordância com áreas mais entalhadas pelos canais, ou seja, com maior densidade de drenagem, pertencentes a rochas que possuem um arranjo físico/químico mais sensível aos processos de intemperismo e que por isso foram desnudadas e retrabalhadas transformando os materiais que ali foram depositados. As porções mais expressivas são representadas pelos domínios de depressões como a do Alto São Francisco que concentra a quantidade mais vigorosa de material laterítico e a do Sapucaí.

Abaixo dos 600 metros, em tons de azul, é possível observar o patamar mais próximo ao das calhas fluviais dos maiores rios da região como o Rio Grande que secciona a área transversalmente, São Francisco ao norte e Pardo a sudoeste. Nele são encontrados pouquíssimos materiais detríticos lateríticos demonstrando a forte relação da área com a intensa dinâmica erosiva reforçada em algumas porções pela dinâmica tectônica que deixou zonas de fraqueza e anomalias que auxiliaram na formação destes materiais.

Figura 4.1.1- Mapa de Isobase em conjunto com os materiais detrito lateríticos, assinalando as altimetrias de maior destaque do conjunto.

Distribuição dos materiais quanto ao Índice de posição topográfica

A figura, 4.1.2 representa que esse índice proporcionou um forte realce da estrutura do relevo e das fortes anomalias de drenagem que influenciam a região.

Os maiores valores, ressaltados pelos tons mais claros de cinza demarcam as regiões que foram conservadas na paisagem, graças ao arcabouço litológico composto de rochas quartziticas, intrusivas alcalínas e plutônicas, que sobreviveram aos processos erosivos, também destacado pelas curvas altimétricas de 1200 á

1400 metros . Nos arredores dos topos aplainados, nota-se a nuance de cinza mais escura, (com o valor próximo a 0), assim como nas zonas próximas aos fundos de vale indicando declive constante e a marcação das principais arranjos estruturais.

Figura 4.1.2-Mapa do Índice de posição topográfica composto na área estudada.

O casamento com as estruturas fica evidente, ainda mais com presença das cotas altimétricas, que mostram os escalonamentos e feições estruturais a que o relevo obedece, figura, 4.1.2. Boa parte dos materiais detríto lateríticos se encontram em zonas que possuem menos lineamentos tectônicos. A maior parte dos materiais compõem zonas de deposição, que não necessariamente as atuais.

Análise das áreas de destaque

As 3 zonas de destaque que foram selecionadas na área de estudo, apresentadas no capítulo anterior (fig. 3.1.5) ofereceram informações sobre a disposição dos materiais lateríticos de acordo com o contexto de desenvolvimento da paisagem, seja pelo papel erosivo que atua nas drenagens atuais ou os caractéres tectônicos que influenciaram a instalação das principais bacias.

O reconhecimento de zonas estáveis ou instáveis tectônicamente auxiliou no entendimento do deslocamento e disposição dos depósitos de materiais lateríticos, uma vez que áreas com atuações tectônicas menos expressivas são mais favoráveis na conservação destes materiais.

Abaixo segue os mapas de geológico e geomorfológico assinalando as áreas de destaque da análise com a finalidade de evidenciar as principais características de cada polígono, figuras 4.1.3 e 4.1.4:

Figura 4.1.3- Mapa geológico regional simplificado, baseado no projeto RadamBrasil (1983) e a disposição das das áreas que agregam as feições geológicas de destaque.

Figura 4.1.4- Mapa de compartimentação geomorfológica baseado no projeto RadamBrasil (1983) e a disposição das das áreas que agregam as feições geomorfológicas de destaque.

Polígono 1:

O Polígono 1 representa a porção noroeste da área de estudo, que está encaixada em uma zona de transição geológica por se tratar do límite da Bacia Sedimentar do Paraná. embasamento cristalíno (representado com 0 majoritariamente por rochas dos domínios Neo е Mesoproterozíco) е geomorfológica, uma vez que está inserida no limite entre os domínios Planaltos Residuais Cuestiformes e Patamares e Serranias da Canastra, figuras 4.1.3 e 4.1.4.

É um polígono representado por elevadas cotas altimétricas, que possue depósitos desde suas zonas de topo que atingem a casa dos 1200 a 1300m até as

zonas mais baixas próximas as represas do Rio Grande/ Jaraguá e do Estreito que variam de 900 a 600 metros de altitude, figura 4.1.5.

A configuração litológica contribuiu para o desenvolvimento de uma padrão de drenagem subdendrítico, que evidencia essa relação de controle estrutural secundário pelo encaixamento progressivo da drenagem sob uma cobertura sedimentar que passa a sofrer influência do dado embasamento cristalino, figuras 4.1.3, 4.1.4 e 4.1.5.

Figura 4.1.5- Diposição das bacías extraídas do modelo digital de elevação SRTM .

Análise das bacias

Esta análise foi feita de forma generalizada, com a finalidade de extrair da área o seu contexto geral quanto as suas porções de relevo que foram ou não, sujeitas a um rebaixamento erosivo, através do índice (Hi). De acordo com a análise deste índice foi possível saber quantitativamente e gráficamente qual o quadro geral do estágio evolutivo da área. Foram selecionadas para tanto bacias de 4ª ordem, por serem melhor estabelecidas na paisagem a ponto de preservar tanto caracteres erosivos quanto tectônicos, sem tanta sucetibilidade a mudanças como as bacias de ordem inferior.

Neste polígono se extraiu 28 bacias de 4^ª ordem (figura 4.1.5) e foi constatado que quase todos os canais sofreram forte rebaixamento erosivo, no entanto se deve considerar que as drenagens atuais foram subordinadas a um controle tectônico do Meso e Neoproterozóico, figuras 4.1.3, 4.1.4 e 4.1.5.

Nota-se que na figura abaixo (4.1.6), boa parte dos rios que compoem as bacias são de correntes formadoras, ou seja canais de 1ª, 2ª e 3ª ordens, já demonstrando desde então o atual caráter erosivo da paisagem que se ajustou nas estruturas do embasamento.

Figura 4.1.6- Representação gráfica dos índices de análise de bacias, os canais selecionados, a disposição dos depósitos lateríticos, sobrepostos ao modelo isobase.

De acordo com a tabela 1 (que se encontra em anexo) e o gráfico 4.1.1 podemos observar que poucas bacias tendem a um encaixe tectônico, na atual fase da paisagem. De acordo com o índice **Hi**, a maior parte dos canais sugerem um valor próximo a 0, característico de perfís erosivos, a única bacia anômala é a de número 28, cujo o valor atinge 0,7, mais próximo de 1 e portanto demonstra uma atuação tectônica mais evidente do canal, subordinado a um maior controle estrutural do Neo/Mesoproterozóico representados pelas litologias dos Grupos Araxá e Canastra. Deve se destacar que de acordo com o aumento da ordem das hierarquias das bacias o controle estrutural fica mais evidente.

Gráfico 4.1.1-Relação das bacias de 4ª ordem do polígono um com os respectivos valores de seu índice **Hi.**

No gráfico abaixo (4.1.2) existem 2 grupos com populações de dados distintos, o primeiro representa as "Curvas regulares da integral hipsomética", onde é possível compreender a situação geral do nível erosivo do relevo, que se configura em desenvolvimento, indicado pelas médias muito baixas do índice Hi, com valores próximos a 0. O segundo, composto pelo "Curvas anômalas da integral hipsomética" apresenta apenas a bacia 28, com comportamento anômalo, tanto pelo fato da atuação tectônica discutida anteriormente, quanto pelos valores do Hi serem mais elevados, próximos a 1, que indica maior potencial energético da bacia característico da fase de juventude.

Gráfico 4.1.2-Relação das bacias de 4ª ordem do polígono um com as respectivas curvas do índice Hi.

Também foram extraídos os valores dos fatores de **simetria topográfica transversal** e **assimetria da bacia de drenagem**, com a intenção de averiguar a direção de migração média dos canais e a migração perpendicular de seu eixo, Cox (1994), Cox *et al.*, (2001), Garrote *et al.* (2008), Hare & Gardner, (1985), Keller & Pinter (1996), Salamuni (1998).

Na figura 4.1.6, essa medida foi representada graficamente pelo índice T, que indica por meio de setas para onde os canais obtiveram maior deslocamento.

Abaixo podemos analisar esse contexto através do gráfico 4.1.3 (informações numéricas estão tabela 2 presente nos anexos) nele podemos observar que existem alguns picos que chegam relativamente próximos ao número 1, que indica que a migração dos canais ocorreu devido a forças tectônicas, já os valores mais baixos, próximos a 0 são consequência de processos internos fluviais.

Gráfico 4.1.3-Gráfico de simetria topográfica transversal em relação aos respectivos canais de 4ª ordem.

Polígono 2:

O polígono 2 se encontra na porção sudoeste da área estudada, sendo composto pelas litologias da Bacia Sedimentar do Paraná em contato com as rochas do embasamento cristalino dos Complexos Varginha/Guaxupé, Campos Gerais, Grupos Barbacena, Araxá e Canastra e está inserido no limite entre os domínios Planaltos Varginha/Amparo, Planaltos Residuais e Cuestiformes e Patamares Cuestiformes e da Canastra, figuras 4.1.3, 4.1.4.

É também representado por elevadas cotas altimétricas, que possue depósitos desde suas zonas de topo em torno de 1200 a 1300m até as zonas mais baixas próximas as represas de Furnas que variam de 900 a 600 metros de altitude, figura 4.1.3.

Essa configuração litológica contribuiu para o desenvolvimento de uma padrão de drenagem dendrítico na porção que remete a Bacia Sedimentar do Paraná e rico em anomalias, com trechos angulósos, nas zonas que seguem para os domínios do Embasamento Cristalino devido ao posicionamento próximo a Zona de Falha de Cássia. É notável que depósitos lateríticos se encontrem em feições de topos achatados compostas por quartzitos que sobreviveram a uma erosão intensa reforçada pelo forte controle tectônico que arrasou as demais litologias até o embasamento cristalino, figura 4.1.3 e 4.1.7.

Figura 4.1.7- Diposição das bacías extraídas do modelo digital de elevação SRTM . Análise de bacias

Neste polígono extraiu-se 32 bacias de 4^ª ordem (figuras 4.1.7 e 4.1.8) que também sugerem que o controle tectônico é associado a uma erosão intensa, onde foi possível preservar apenas trechos dispersos dos materiais de cimeira, pelas litologias resistentes da região como os quartizitos, figuras 4.1.3, 4.1.4, 4.1.7 e 4.1.8.

Possui caracteristicas similares ao polígono 1 e por isso contém os mesmo padrões e densidade de drenagem, onde boa parte dos rios que compoem as bacias são de correntes formadoras, ou seja canais de 1ª, 2ª e 3ª ordens, também já demonstrando desde então o caráter erosivo da paisagem atual.

Na porção que remete aos domínios da Bacia do Paraná, **o índice T** não possui padrões tão visíveis, mas nas porções relativas ao embasamento, podemos notar um deslocamento dos canais obedecendo ao desenho das dobras e nappes da Faixa Brasília, seguindo o sentido NE/SW, N/S e E/W e a zona de falha regional de Cássia, ao sul com o padrão NW/SE.

Figura 4.1.8- Representação gráfica dos índices de análise de bacias, os canais selecionados, a disposição dos depósitos lateríticos, sobrepostos ao modelo isobase.

De acordo com a tabela 3 presente nos anexos e o gráfico 4.1.4 observa-se 3 bacias anômalas que tendem a um encaixe tectônico. De acordo com o índice **Hi**, a maior parte dos canais sugerem um valor próximo a 0, característico de perfís erosivos, as bacías anômalas de destaque são 5, 8 e 10, cujo os valores são mais próximos de 1 e portanto demonstram uma atuação tectônica mais evidente, carcterística da mudança litológica entre os domínios da Bacia Sedimentar do Paraná com as rochas do embasamento cristalino, figura 4.1.3.

Gráfico 4.1.4- Relação das bacias de 4^ª ordem do polígono 2 com os respectivos valores de seu índice **Hi.**

Abaixo segue o gráfico 4.1.5 com os 2 grupos de populações, o primeiro composto das "Curvas regulares da integral hipsométrica", representado pela maioria das linhas que informam a situação geral do nível erosivo do relevo bem desenvolvido, indicado pelas médias muito baixas do índice Hi, com valores próximos a 0. O segundo, composto pelo grupo "Curvas anômalas da integral hipsométrica" apresenta bacias com comportamento anômalo, tanto pelo fato da atuação tectônica, quanto pelos valores do Hi serem mais elevados, que indicam maior potencial energético da bacia característico da fase de juventude.

Gráfico 4.1.5- Relação das bacias de 4ª ordem do polígono 2 com as respectivas curvas do índice **Hi**.

Os valores dos fatores de **simetria topográfica transversal**e **assimetria da bacia de drenagem** foram extraidos para averiguar a direção de migração média dos canais e a migração perpendicular de seu eixo.

Na figura 4.1.8, essa medida foi representada graficamente pelo índice T, que indica por meio de setas a direção dos canais que obtiveram maior deslocamento.

Podemos analisar esse contexto através da tabela 4 (presente no anexo do trabalho) e logo abaixo no gráfico 4.1.6, de que existem alguns picos que chegam relativamente próximos ao número 1, e demonstram que a migração dos canais ocorreu devido a forças tectônicas, já os valores mais baixos, próximos a 0 são consequência de processos internos fluviais.

Gráfico 4.1.6- Gráfico de simetria topográfica transversal em relação aos respectivos canais de 4ª ordem.

Polígono 3:

O polígono 3 se encontra na porção leste da área estudada, sendo composto pelas litologias do embasamento cristalino com destaque para as rochas pertencentes a zona do Craton do São Francisco, as plutônicas graníticas e a cobertura do Grupo Bambuí. Quanto aos domínios geomorfológicos é composto em sua maior parte pelo domímio da Depressão Sapucaí sendo limítrofe a sul/sudoeste pelo Planaltos Varginha/Amparo, a oeste pelos Patamares e Serranias da Canastra e Depressão do Alto São Francisco e a nordeste com o Quadrilátero Ferrífero, figuras 4.1.3 e 4.1.4.

Devido a litologia estar inserida numa zona intracratônica boa parte das direções do deslocamento dos canais apontam para porções mais rebaixadas onde se formam depósitos, que do contrário dos polígonos anteriores não é representado por elevadas cotas altimétricas, mas sim por cotas que variam de 900 a 600 metros de altitude, figuras 4.1.3, 4.1.4, 4.1.9 e 4.1.10.

Essa configuração litológica contribuiu para o desenvolvimento de uma padrão de drenagem dendrítico a subdendríticos, com poucos traços tectônicos expressivos mediante a atividade erosiva, que domina todo o contexto da paisagem.

Este é o maior poligono selecionado e envolve o estudo de 102 bacias de 4ª ordem (figura 4.1.9 e 4.1.10). O controle tectônico, num quadro geral é secundario, associado a uma erosão intensa, apropriada de um domínio geomorfológico de depressão (Depressão Sapucaí), e de um contexto geológico de zona de cráton.

Por estar numa depressão a densidade de drenagem é muito maior e os padrões tendem do subdendrítico ao dendrítico.

Os lineamentos e os trends não são tão evidentes, mas nas porções relativas as zonas das represas e do Rio Grande, podemos notar um deslocamento dos canais obedecendo ao curso do rio principal.

Figura 4.1.10- Representação gráfica dos índices de análise de bacias, os canais selecionados, a disposição dos depósitos lateríticos, sobrepostos ao modelo isobase.

De acordo com a tabela 5 (presente no anexo do trabalho) e o gráfico 4.1.7 observa-se que a maioria das bacias obtiveram um forte rebaixamento erosivo com valores baixos, próximo a 0 e por isso diante da extensão da área de estudo, poucas foram as bacias com comportamento anômalo. De acordo com o índice **Hi**, as bacías anômalas de destaque, cujos os valores são próximos de 1 representam características da mudança litológicas entre os domínios da Serra da Canastra, Depressão do Alto São Francisco e Depressão Sapucaí, figura 4.1.4.

Gráfico 4.1.7- Relação das bacias de 4ª ordem do polígono 2 com os respectivos valores de seu índice **Hi.**

Abaixo segue o gráfico 4.1.8 com os 2 grupos de populações, o primeiro composto das "Curvas regulares da integral hipsomética", representado pela maioria das linhas que informam a situação geral do nível erosivo do relevo bem desenvolvido, indicado pelas médias muito baixas do índice Hi, com valores próximos a 0. O segundo, composto pelo grupo "Curvas anômalas da integral hipsométrica" apresenta bacias com comportamento anômalo (1, 5, 11, 98, e 100) pelos valores do Hi serem mais elevados, que estes canais estão por buscar uma situação de ajuste na paisagem.

Conciderando que este é um dos poligonos com maior concentração de bacias e densidade de drenagem, podemos observar que a concentração de anomalias é proporcionalmente bem menor do que nos demais polígonos.

Gráfico 4.1.8- Relação das bacias de 4^ª ordem do polígono um com as respectivas curvas do índice **Hi**.

Os valores dos fatores de **simetria topográfica transversal**e **assimetria da bacia de drenagem**, foram extraídos para averiguar a direção de migração média dos canais e a migração perpendicular de seu eixo.

Na figura 4.1.10, essa medida foi representada graficamente pelo índice T, que indica por meio de setas a direção dos canais que obtiveram maior deslocamento.

Podemos analisar esse contexto através da tabela 6 (presente na parte anexa do texto) de que existem alguns picos que chegam relativamente próximos ao número 1, e indicam que a migração dos canais ocorreu devido a forças tectônicas, já os valores mais baixos, a grande maioria, próximos a 0 são consequência de processos internos fluviais.

Devido a grande quantidade de canais extraídos ficou inviável a representação dos mesmos através de um gráfico, como feito para as outras áreas.

4.2- Granulometria

Foram selecionadas oito amostras de solo para este procedimento, que se concentram principalmente na porção norte da área selecionada, figura 4.2.1.

Nestas áreas foram encontram as melhores amostras para o procedimento, uma vez que se agrupam em altimetrias diferentes que abrangem todas as classes de desenvolvimento da superfície erosiva existente na região.

São elas SF2, SF3, SF4, SF5a, SF6, SF8, correspondentes a porção noroeste relativas aos materiais de maior altimetria na área estudada e SF17, SF19, correspondentes a porção nordeste, nos arredores da calha do rio São Francisco.

Figura 4.2.1- Localização geral das amostras coletadas para granulometria de acordo com dados altimétricos.

A análise destas amostras foi feita por difração a laser e proporcionou a extração de 100 classes, que variaram de 0.04µ a 500µ, no entanto para abordagem deste trabalho foi explorado apenas os intervalos estabelecidos pelas normas da ABNT, descrito na Tabela 4.2.1. Este procedimento ofereceu ainda mais elementos para confirmar as condições em que estes materiais se desenvolveram. Por meio do tamanho, agregação e forma dos grãos foi possível se estabelecer uma relação entre e o gradiente energético do transporte e o nível de desenvolvimento do material.

Tabelas 4.2.1 - Olassincação granulometrica atraves das normas da Abivi.								
PEDREGULHO			AREIA			SILTE	ARGILA	
G	М	F	G	М	F			
60	20	6	2.0	0.6	0.2	0.006	0.002	0

Tabelas 4.2.1- Classificação granulométrica através das normas da ABNT

Dentre as amostras apresentadas na tabela abaixo 4.2.2, (2.0m à 0.5mm) apenas a SF3 continha areia no intervalo de 1.0mm, todo o restante continha grãos a partir da fração de 0.5mm. As amostras SF5 e SF8, não apresentaram nenhum grão nesta classe. Podemos perceber um maior potencial energético destas amostra devido ao seu posicionamento, encontradas nos depósitos classificados acima de 900m, fazem parte de materiais de cimeira, figura 4.2.3.

Amostra	Peneira 2,0 mm	Peneira 1,0 mm	Peneira 0,5 mm	Massa				
SF_2_A	nada	nada	0,05 ml de areia	1,0 g				
SF_2_B	nada	nada	0,05 ml de areia	1,0 g				
SF_3_A	nada	0,05 ml de areia	0,1 ml de areia	1,0 g				
SF_3_B								
SF_4_A	nada	nada	0,05 ml de areia	1,0 g				
SF_4_B	nada	nada	0,05 ml de areia	1,0 g				
SF_5_A	nada	nada	nada	1,0 g				
SF_5_B	nada	nada	nada	1,0 g				
SF_6_A	nada	nada	0,05 ml de areia	1,0 g				
SF_6_B	nada	nada	0,05 ml de areia	1,0 g				
SF_8_A	nada	nada	nada	1,0 g				
SF_8_B	nada	nada	nada	1,0 g				
SF_17_A	nada	nada	0,05 ml de areia + MO	1,0 g				
SF_17_B	nada	nada	0,05 ml de areia + MO	1,0 g				
SF_19_A	nada	nada	0,05 ml de areia + MO	1,0 g				
SF_19_B	nada	nada	0,05 ml de areia + MO	1,0 g				

Tabelas 4.2.2- Pré-classificação granulométrica com peneiras de frações de 2,0mm/1,0mm/0.5mm de ABNT.

A classe das areias médias (tabela 4.2.3) foi aquela que possuiu maior presença de grãos, com excessão da amostra SF3, que desde a classificação das peneiras demontrou ser um solo com frações de grãos maiores e mais angulosos. Fato explicado pela presença maciça de materiais lateríticos nas cotas de 600 a 900 metros, figuras 4.2.1 e 4.2.2.

Amostra	Padrão	Cumulado á 200 μm 0.2mm	Cumulado á 300 μm 0.3mm	Cumulado á 400µm 0.4mm	Cumulado á 500µm 0.5mm
SF_2_A	Sedimento	100.000	100.000	100.000	100.000
SF_2_B	Sedimento	100.000	100.000	100.000	100.000
SF_3_A	Sedimento	99.481	99.481	100.000	100.000
SF_4_A	Sedimento	100.000	100.000	100.000	100.000
SF_4_B	Sedimento	100.000	100.000	100.000	100.000
SF_5_A	Sedimento	100.000	100.000	100.000	100.000
SF_5_B	Sedimento	100.000	100.000	100.000	100.000
SF_6_A	Sedimento	100.000	100.000	100.000	100.000
SF_6_B	Sedimento	100.000	100.000	100.000	100.000
SF_8_A	Sedimento	100.000	100.000	100.000	100.000
SF_8_B	Sedimento	100.000	100.000	100.000	100.000
SF_17_A	Sedimento	100.000	100.000	100.000	100.000
SF_17_B	Sedimento	99.960	99.960	100.000	100.000
SF_19_A	Sedimento	100.000	100.000	100.000	100.000
SF_19_B	Sedimento	100.000	100.000	100.000	100.000

Tabelas 4.2.3- Classificação granulométrica referente ao intervalo de areias médias, através da **CILAS 1090**, ressaltando os intervalos sugeridos pela ABNT.

Na classe de areias finas, intervalo de 6 µm a 100µm (tabela 4.2.4), observase o valor dos grãos decrescer lentamente, característica típica de solos de solos que são bem desenvolvidos.

Padrão	Padrão	Cumulado á 6 um	Cumulado á 10 um	Cumulado á 50um	Cumulado á 100um
		0.006mm	0.01mm	0.05mm	0.1mm
SF_2_A	Sedimento	96.328	99.706	100.000	100.000
SF_2_B	Sedimento	96.111	99.687	100.000	100.000
SF_3_A	Sedimento	26.733	36.897	82.284	95.033
SF_4_A	Sedimento	65.560	76.865	99.922	100.000
SF_4_B	Sedimento	64.227	75.839	99.912	100.000
SF_5_A	Sedimento	62.721	69.815	99.248	100.000
SF_5_B	Sedimento	62.047	69.237	99.249	100.000
SF_6_A	Sedimento	55.017	65.985	99.266	100.000
SF_6_B	Sedimento	55.791	66.966	99.347	100.000
SF_8_A	Sedimento	75.611	83.432	100.000	100.000
SF_8_B	Sedimento	75.094	83.433	100.000	100.000
SF_17_A	Sedimento	46.947	58.487	91.935	98.642
SF_17_B	Sedimento	46.292	57.665	90.774	97.511
SF_19_A	Sedimento	96.492	99.715	100.000	100.000
SF_19_B	Sedimento	96.500	99.715	100.000	100.000

Tabelas 4.2.4- Classificação granulométrica referente ao intervalo de areias finas, através da **CILAS 1090**, ressaltando os intervalos sugeridos pela ABNT.

A fração silte referente ao intervalo 2µm à 6 µm (tabela 4.2.5) contém três amostras SF3, SF6 e SF17, que possuem uma queda abrupta na composição de seus grãos, diferente do comportamento comum das amostras retantes, que decrescem de forma homogenia e sutil.

Estas amostras anômalas, apresentam elementos de solos menos desenvolvidos, ou que passaram por processos mais agressivos de transporte. No caso das amostras SF3 e SF6, explicado por estarem em elevadas cotas altimétricas e próximas a zona da represa de Marechal Mascarenhas, figuras 4.2.1 e 4.2.2.

	,		U			
Padrão	Padrão	Cumulado á 2um	Cumulado á 3um	Cumulado á 4 um	Cumulado á 5um	Cumulado á 6 um
1 dai do	1 dando	0.002mm	0.003mm	0.004mm	0.005mm	0.006mm
SF_2_A	Sedimento	83.416	88.770	92.232	94.383	96.328
SF_2_B	Sedimento	83.275	88.320	91.868	94.083	96.111
SF_3_A	Sedimento	16.454	18.890	21.488	23.426	26.733
SF_4_A	Sedimento	42.916	50.430	56.689	61.095	65.560
SF_4_B	Sedimento	41.627	49.010	55.258	59.689	64.227
SF_5_A	Sedimento	49.320	54.190	57.813	60.245	62.721
SF_5_B	Sedimento	48.620	53.500	57.112	59.555	62.047
SF_6_A	Sedimento	34.973	42.100	47.443	51.149	55.017
SF_6_B	Sedimento	35.101	42.440	47.977	51.811	55.791
SF_8_A	Sedimento	57.220	63.360	68.567	72.124	75.611
SF_8_B	Sedimento	56.530	62.700	67.945	71.550	75.094
SF_17_A	Sedimento	26.777	33.300	38.792	42.764	46.947
SF_17_B	Sedimento	26.368	32.820	38.254	42.173	46.292
SF_19_A	Sedimento	86.145	89.880	92.786	94.700	96.492
SF_19_B	Sedimento	86.195	89.930	92.815	94.713	96.500

Tabelas 4.2.5- Classificação granulométrica referente ao intervalo de silte, através da **CILAS 1090**, ressaltando os intervalos sugeridos pela ABNT.

Na fração argila notamos que a maioria das amostras, continuaram progressivamente a perder de modo sutil grãos nesta fração, como um padrão, que condiz com a característica de solos bem desenvolvidos presentes em ambientes estáveis com pouca possibilidade de deslocamento de materiais com alto gradiente energético. Amostras como a SF2, SF4, SF5, SF8 e SF19, se mostraram com maior concentração de grãos em frações menores.

,					
	Cumulado á	Cumulado á	Cumulado á	Cumulado á	Cumulado á
Padrão	0.1µm	0.2µm	0.5 μm	1µm	2µm
	0.0001mm	0.0002mm	0.0005mm	0.001mm	0.002mm
Sedimento	13.080	28.030	59.312	70.348	83.416
Sedimento	12.810	27.510	58.524	69.748	83.275
Sedimento	1.080	2.930	8.049	12.088	16.454
Sedimento	5.470	11.220	23.773	29.946	42.916
Sedimento	5.290	10.860	23.101	29.093	41.627
Sedimento	7.920	16.010	32.244	37.898	49.320
Sedimento	7.640	15.470	31.301	37.113	48.620
Sedimento	1.510	4.130	11.052	20.039	34.973
Sedimento	1.560	4.190	10.980	19.963	35.101
Sedimento	8.180	16.860	35.187	43.726	57.220
Sedimento	8.000	16.490	34.540	43.114	56.530
Sedimento	1.300	3.570	9.934	16.305	26.777
Sedimento	1.260	3.480	9.715	15.993	26.368
Sedimento	16.720	35.470	70.847	77.420	86.145
Sedimento	16.790	35.580	70.969	77.439	86.195
	Padrão Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento Sedimento	PadrãoCumulado á 0.1µm 0.0001mmSedimento13.080Sedimento12.810Sedimento12.810Sedimento5.470Sedimento5.290Sedimento7.920Sedimento7.640Sedimento1.560Sedimento8.180Sedimento8.180Sedimento8.180Sedimento1.260Sedimento1.260Sedimento16.720Sedimento16.790	Padrão Cumulado á 0.1µm Cumulado á 0.2µm Sedimento 13.080 28.030 Sedimento 12.810 27.510 Sedimento 1.080 2.930 Sedimento 5.470 11.220 Sedimento 5.290 10.860 Sedimento 7.920 16.010 Sedimento 7.640 15.470 Sedimento 1.560 4.130 Sedimento 8.180 16.860 Sedimento 8.180 16.490 Sedimento 1.300 3.570 Sedimento 1.260 3.480 Sedimento 16.720 35.470	PadrãoCumulado á 0.1μm 0.0001mmCumulado á 0.2μmCumulado á 0.5 μm 0.0005mmSedimento13.08028.03059.312Sedimento12.81027.51058.524Sedimento1.0802.9308.049Sedimento5.47011.22023.773Sedimento5.29010.86023.101Sedimento7.92016.01032.244Sedimento7.64015.47031.301Sedimento1.5104.13011.052Sedimento8.08016.86035.187Sedimento8.18016.86035.187Sedimento1.3003.5709.934Sedimento1.2603.4809.715Sedimento16.72035.47070.847Sedimento16.79035.58070.969	PadrãoCumulado á 0.1μmCumulado á 0.2μmCumulado á 0.5 μmCumulado á 1μmSedimento13.08028.03059.31270.348Sedimento12.81027.51058.52469.748Sedimento1.0802.9308.04912.088Sedimento5.47011.22023.77329.946Sedimento5.29010.86023.10129.093Sedimento7.92016.01032.24437.898Sedimento7.64015.47031.30137.113Sedimento1.5604.19010.98019.963Sedimento8.00016.49034.54043.114Sedimento8.00016.49034.54043.114Sedimento1.2603.4809.71515.993Sedimento1.26035.47070.84777.420Sedimento1.26035.58070.96977.439

Tabelas 4.2.7- Classificação granulométrica referente ao intervalo de argila, através da **CILAS 1090**, ressaltando os intervalos sugeridos pela ABNT.

No gráfico abaixo é possível de conferir todas as variações das amostras, gráfico 4.2.1.

Gráfico 4.2.1-Gráfico da curva granulométrica das amostras selecionadas.

4.3-Micromorfologia

Foram analisadas lâminas das amostras de materiais lateríticos SF1, SF5b, SF7, SF9, SF10, SF11a, SF11b, SF11c, SF13, SF16 e SF20, com a finalidade de encontrar ainda mais elementos que reforcem a idéia de desenvolvimento dos materiais e comportamento, e por fim, fazer comparações entres os mesmos e avaliar quais seriam as diferenças e similitudes entre eles.

A maior parte dos materiais coletados se concentraram na porção norte da área estudada, considerando que nesta região se encontravam os melhores depósitos dos materiais detríticos lateríticos devido a diversidade de altimetria e a grande concentração.

Figura 4.3.1-Disposição geral das amostras de micromorfologia em relação a área e as diferentes altimetrias dos materiais detríticos lateríticos.

Esta amostra pertence a um depósito laterítico que fazia contato com o quartzito, na região da represa de Marechal Mascarenhas (polígono 1) com 1024metros de altitude, figura 4.3.1.

Seu esqueleto tem composição de aproximadamente de 30% de material grosso representado por quartzo, 65% de óxidos de ferro e 5% de porosidade. A distribuição relativa se apresentou enaúlica em boa parte da lâmina, no entanto foi encontrada algumas porções poroestriadas. Algumas feições pedológicas, cristalinas e justapostas foram registradas, como nódulos típicos, figura 4.3.2, sequência AB. As microestruturas são granulares se apresentando relativamente bem desenvolvidas, figura 3.3.2, sequência CD.

Figura 4.3.2- Amostra SF1em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

A amosrea SF5B, foi localizada próxima ao caminho do Parque Estadual da Serra da Canastra (polígono 1), possui altimetria muito próxima a amostra anterior (1391metros) e apresentou-se como uma intercalação de ferricretes, figura 4.3.1.

Sua lâmina tem composição de 20% de material grosso, 78% de material fino e 2% de poros e apresentou uma distribuição porfírica e compactada, Figura 4.3.3 e 4.3.4. Feições pedológicas de gênero cristalino foram encontradas, mais especificamente, cutãs de grão englobado Figura 4.3.3 (A e B) e 4.3.4, pedotúbulos e forte presença de nódulos, Figura 4.3.3 (C e D), Figura 3.3.4.(C e D).Os agregados desta amostra foram parcialmente acomodados conferindo assim um forte grau de desenvolvimento, Figura 4.3.3 e 4.3.4.

Figura 4.3.3- Amostra SF5B em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

Figura 4.3.4- Amostra SF5B, fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

A amostra SF7, foi encontrada também no Parque Estadual da Serra da Canastra (polígono 1), à 1.398metros e apresentou uma lâmina composta de 35% de material grosso, dominantemente por quartzo, 55% de plasma formado de óxidos de ferro e 10% de poros, Figura 4.3.5.

Sua distribuição relativa se arranjou de modo porfiro-enaúlico, com feições pedológicas cristalinas com cristais distinguiveis (Fig. 4.3.5 sequência C e D), cutãs de poros e pedotúbulos com preechimento solto e glébulas nodulares e halonodulares, figura 4.3.5, sequência A e B.

Figura 4.3.5- Amostra SF7 em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

A amostra SF9, foi representada por um depósito de ferricretes que recobria os quartzitos da área, nos arredores do município de Arcos, no polígono 3 à 1153 metros.

A lâmina desta amostra possui um esqueleto composto por 35% de material grosso formado por quartzos, 60% de plasma dominantemente representado por óxidos de ferro e 5% de poros, Figura 4.3.6.

As feições pedológicas presentes nesta lâmina foram cristalinas com cutãs de grãos e de poros englobados e crescentes, Figura 4.3.6 sequência A - B, pedotúbulos de preenchimento solto/ descontínuo e glébulas nodulares e de concreções, Figura 4.3.6 sequência C - D.

O aspecto geral dos agregados com tramas que variam de pórfiricas a enaulicas e presença de grãos com tamanhos diferenciados sugeriu um processo de evolução e em algumas partes até mesmo transporte, Figura 4.3.6 (A e B).

Figura 4.3.6- Amostra SF9 em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

A amostra SF10, foi representada por um perfil laterítico que alterava o embasamento no polígono 3 com altitude de 940metros. Nela foi encontrado um esqueleto composto por um material grosso quase que inexistente e de dificil definição, um plasma de óxidos de ferro de 80% e 5% de poros.

A distribuição relativa dessa lâmina se apresentou com tramas porfiroenáulicas abertas com feições pedológicas com cutãs de agregados e poros Figura 4.3.7 sequência A - B; os pedotúbulos de preenchimento solto Figura 3.3.7 sequência A - B e por fim, forte presença de glébulas que variavam entre nodulares, de concreções e halo globulares Figura 4.3.7 sequência C- D.

Figura 4.3.7- Amostra SF10 em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

Amostras SF11 (a, b, c)

As amostras SF11a, SF11b e SF11c foram retiradas de um perfil desenvolvido a partir do Itabirito, na Mina Morro do Ferro, da mineradora Vórtice (polígono 2), estavam numa altitude de 1279 metros.

Na lâmina SF11a, figura 4.3.8 sequência E e F, notou-se um plasma muito denso com aproximadamente 80% de óxidos de ferro , 15% de material grosso formado majoritariamente por quartzos e 5% de poros. A distribuição relativa se apresentou enaúlica com feições pedológicas de gênero cristalino com presença de cutãs de grãos crescentes e de poros, poucos pedotúbulos e glébulas com nódulos concentrados, Figura 4.3.8 sequência E e F.

A lâmina SF11b, Figura 4.3.8 sequência A-B, encontrou-se um esqueleto composto de 20% de material grosso de quartzo, um plasma muito denso de 75% de óxidos de ferro e 5% de poros. Sua distribuição relativa se apresentou porfírica compactada, com feições pedológicas cristalinas com cutãs de poros e grãos englobados e glébulas nodulares, Figura 4.3.8 sequência A-B.

Por fim a lâmina SF11c, Figura 4.3.8 sequência A-B, conteve um esqueleto de 75% de plasma composto de óxidos de ferro, 20% de material grosso composto de quartzo e 5% de poros, muito similar com as lâminas anteriores. No entanto sua distribuição relativa se arranjou de forma enaúlica e com feicões pedológicas cristalinas, dentre as quais se encontram em abudância pedotúbulos de grãos soltos e glébulas nodulares, cutãs de grãos e de poros também são vistos, todos bem acomodados e desenvolvidos.

Figura 4.3.8- Amostra SF11A,B e C em campo e fotomicrografias utilizando luz refletida. Sequência A, C e E com luz polarizada e B, D e F sem luz polarizada.

A amostra SF13, representou a disposição de alguns depósitos remanescentes sobre a alteração do embasamento cristalino, coletada no polígono 3 a 789metros de altitude.

Sua lâmina foi composta de um esqueleto de 10% de material grosso, dominantemente formado por quartzos, 75% de material fino composto por óxidos de ferro e 5% de poros, figura 4.3.9. A distribuição relativa dos materiais se encontra enaúlica, figura3.3.9 sequência C e D, com feições pedológicas cristalinas compostas de cutãs de poros crescentes, pedotúbulos de preenchimento solto, glébulas nodulares e acomodamento dos grãos sugerindo desenvolvimento,figura 4.3.9 sequência A e B.

Figura 4.3.9- Amostra SF13 em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

A amostra SF16,Figura 4.3.10, foi coletada na Serra do Chapadão (polígono 2) a 1272metros, representando o ponto de contato entre o quartzito intemperizado e os materiais detríticos lateríticos. Na lâmina esta amostra teve como composição 30% de material grosso formado de quartzo em sua maioria, 65% de plasma ferruginoso e 5% de poros, figura 4.3.10 sequência A e B. Sua distribuição relativa pórfiroenaulica contém feições pedológicas de cristalinas com cutãs de grãoenglobado e glébulas nodulares. Aacomodação dos grãos é boa, podendo nos dar a ideia de que o material se encontrou em processo de desenvolvimento, Figura 4.3.10 sequência C e D.

Figura 4.3.10- Amostra SF16 em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

A amostra SF20, figura 4.3.11, é proveniente de um depósito laterítico que em partes se desenvolveu para um solo vermelho, que também recobre o substrato rochoso do quartzito localizado na Serra do Chapadão, no polígono 2 a 1199metros. Na lâmina deste amostra foi encontrado um esqueleto composto de 30% de material grosso de quartzo, 60% de plasma de óxidos de ferro e 5% de poros. A distribuição relativa dos componentes possui um arranjo enaulico, figura3.3.11 sequência A e B, com feições pedológicas cristalinas de cutãs de poros e grão englobados e glébulas com nódulos de concreção, figura 4.3.11 sequência C e D. Nota-se de acordo com a acomodação das feições e grãos, que o material se apresentou num forte estágio de desenvolvimento.

Figura 4.3.11- Amostra SF20 em campo e fotomicrografias utilizando luz refletida. Sequência A e C com luz polarizada e B e D sem luz polarizada.

4.4-Difração por Raios X

Para este trabalho a análise de difração por **Raios X** permitiu caracterizar os materiais cristalinos presentes nas amostras coletadas e identificar algumas amostras que possuissem minerais de granulometria muito fina como argilominerais, com a finalidade de relacionar depósitos lateríticos com a dinâmica da evolução da área estudada. Ao inferir o método Rietveld, em algumas amostras, pode-se ter mais elementos para adeterminação da estrutura de compostos cristalinos, tabela 4.4.1 e figura 4.4.1.

Amostra	Altimetria (metros)	Material/Litologia	Composição Mineralógica	Localização
SF1	1024	Laterita em contato com quartzito	70% SiO2 (Quartzo baixo) 30% Fe+3O(OH) (Goethita)	Polígono 1
SF2	1024	Laterita em contato com quartzito	60% SiO2 (Quartzo baixo) 50% Fe2O ₃ (Hematita)	Polígono1
SF3	1106	Laterita em contato com quartzito	50% SiO2 (Quartzo baixo) 30%Al2Si2O5(OH)4 (Caulinita) 20% Fe2O ₃ (Hematita)	Polígonol
SF4	1250	Afloramento de quartzito	60% Al2O3 3H2O (Gibsita) 40% Al2Si2O5(OH)4 (Caulinita)	Polígono1
SF5	1250	Ferricrete intercalado com o quartzito	70% Al2O3 3H2O (Gibsita) 30% Fe+3O(OH) (Goethita)	Polígono1
SF6	1391	Laterita em contato com quartzito	50% Al2O3 3H2O (Gibsita) 20% Fe+3O(OH) (Goethita) 30%Al2Si2O5(OH)4 (Caulinita)	Polígono1
SF7	1398	Laterita em contato com quartzito	$(Cuannu)$ $52\%SiO2$ $(Quartzo baixo)$ $48\%Fe2O_3$ $(Hematita)$	Polígono1
SF8	681	Laterita em contato com alterações do embasamento	45%Al2Si2O5(OH)4 (Caulinita) 35% Al2O3 3H2O (Gibsita) 20% Fe2O ₃ (Hematita)	Polígono3
SF9	1024	Laterita em contato com alterações do embasamento	54%SiO2 (Quartzo baixo) 46%Fe2O ₃ (Hematita)	Polígono3
SF10	940	Laterita em contato com alterações do embasamento	50%Fe+3O(OH) (Goethita)	Polígono3
SF11a	1279	Laterita desenvolvendo do itabirito	95% Fe2O ₃ (Hematita)	Polígono2
SF11b	1279	Laterita desenvolvendo do itabirito	94% Fe2O ₃ (Hematita)	Polígono2
SF11c	1279	Laterita desenvolvendo do itabirito	64% Fe2O ₃ (Hematita) 46% SiO2	Polígono2

 Tabela 4.4.1-Amostras de DRX e suas principais características e componentes.

			(Quartzo baixo)	
SF12	1125	Material silicatado abaixo do itabirito	80% SiO2 (Quartzo baixo) 20%Al2Si2O5(OH)4 (Caulinita)	Polígono2
SF13	789	Laterita em contato com alterações do embasamento	42% Fe2O ₃ (Hematita) 28%NaO.3(AlMg)2 Montemorilonita 20%Al2Si2O5(OH)4 (Caulinita) 10% SiO2 (Quartzo baixo)	Polígono3
SF14	1218	Laterita em contato com quartzito	90% SiO2 (Quartzo baixo)	Polígono3
SF15	1218	Laterita em contato com quartzito	76% SiO2 (Quartzo baixo) 24%KAl2Si3AlO10(OH,F)2 (Muscovita)	Polígono3
SF16	1272	Laterita em contato com quartzito	$\begin{array}{c} 45\% SiO2\\ (Quartzo \ baixo)\\ 23\% Fe2O_3\\ (Hematita)\\ 32\% Fe+3O(OH)\\ (Goethita) \end{array}$	Polígono2
SF17	1214	Laterita em contato com quartzito	37%SiO2 (Quartzo baixo) 20%Fe2O ₃ (Hematita) 30%Al2Si2O5(OH)4 (Caulinita) 23%Al2O3 3H2O (Gibsita)	Polígono2
SF18	1147	Laterita em contato com quartzito	87% SiO2 (Quartzo baixo)	Polígono2
SF19	1199	Laterita em contato com quartzito	33%SiO2 (Quartzo baixo) 20%Fe2O ₃ (Hematita) 30%Al2Si2O5(OH)4 (Caulinita) 27%Al2O3 3H2O (Gibsita)	Polígono2
SF20	1199	Laterita em contato com quartzito	(Hematita) 45%Fe+3O(OH) 32%SiO2 (Quartzo baixo) 23%Fe2O ₃ (Goethita)	Polígono2

Figura 4.4.1-Localiazação das amostras coletadas para a Difratometria de Raios X.

Adiante seguem os gráficos dos difratogramas referentes ao **polígono 1** (figura 3.1.7), composto pelas amostras, SF1, SF2, SF3, SF4, SF5, SF6, SF7, que são materiais lateríticos que recobrem rochas quartzíticas e SF8, que recobre alterações do embasamento cristalino.

A maior parte destes difratogramas apresentaram amostras com alta concentração de goethita, hematita e quartzo e em menor proporção gibsita e caulinita.

A amostras SF1, apresentou picos bem definidos e similares de goethita e quartzo. O alto teor de goethita se deve a sua propriedade de mineral primário, resistente ao intemperismo, que conferiu alta estabilidade e baixa solubilidade em pedoambientes aeróbios (ANTONELLO, 1988).

Na amostra SF2, nota-se um comportamento anômalo, com maior presença de interferências no difratograma, no entanto a mudança da presença da goethita para hematita, é semelhante a da amostra SF7, figura 4.4.2. Essa alteração pode ser explicável pelo fato de uma possível mudança das condições do ambiente, a hematita do contrario da goethita, é favorecida com altas temperaturas e baixa atividade de água (CORNEL & SCHEWERTMANN, 1996).

No difratograma da amostra SF4, encontra-se picos de caulinita e gibsita, caso comum em argilo minerais que passam por processos de substituições isomórficas.

A amostra SF6, é composta por picos dos minerais de goethita, gibsita e caulinita, que indicam o desenvolvimento destes materiais em condições de pH elevado e com nível de intemperismo moderado deste perfil.

Nas amostras SF3 e SF5 os picos dos difratogramas apontam para o óxido de ferro hematita, e os silicatos quartzo e caulinita.

Figura 4.4.2- Difratograma referente as amostras do polígono1 (SF1, SF2, SF3, SF4, SF5, SF6 e SF7).

No **polígono 2**, foram exploradas as amostras muito próximas entre si, no caso de SF11a, SF11b e SF11c, fazem parte de um perfil que desenvolveu-se do Itabirito, figura, 4.4.3, que foram retiradas da zona de mineração tutelada pela empresa Vórtice, nos arredores da cidade de Itaú de Minas, fig. 4.4.3.

Nesta sequência é possível observar o desenvolvimento dos minerais nos difratogramas. SF11a e SF11b, são compostos majoritariamente por hematita e SF11c, apresenta componentes de quartzo baixofig. 4.4.3. Cabe reforçar que estas amostras foram retiradas de um perfil, onde as amostras não possuíam mais de dez metros de altitude uma da outra. De acordo com os componentes mineralógicos destas amostras, estima-se que a formação ferrífera fonte, seria o Itabirito comum.

Figura 4.4.3- Difratograma referente as amostras da área do polígono 2 (SF11a, SF11b e SF11c).

A figura 4.4.4, apresenta os difratogramas das amostras SF12, SF16, SF17, SF18, SF19 e SF20. A amostra SF12, faz parte de um depósito de material silicatado próximo ao perfil das amostras SF11(a,b e c), o intuito de analisar esta amostras foi o de adquirir mais elementos para entender os processos de desenvolvimento deste perfil. Diante da presença dominante de quartzo e caulinita pode-se considerar a hipótese de substituições isomórficas de Al⁺³,assim como na amostra SF18 e a amostra SF8 do polígono 1.

A amostra SF16, figura 4.4.4, apresenta em seu difratograma picos nos óxidos ferruginosos tanto de hematita quanto de goethita e no de quartzo, o que sugere que esta amostra passou por um severo processo de desenvolvimento, mantendo assim, apenas os minerais considerados primários.

Nas amostras SF17, SF19 e SF20, figura 4.4.4, possuem como minerais primários a hematita e o quartzo, mas também apresentam picos de gibsita e caulinita, esses componentes sugerem que estas amostras passaram por um forte processo de desenvolvimento, com altas temperaturas e baixa atividade da água, muito próxima a realidade das amostras do polígono 1.

Figura 4.4.4- Difratograma referente as amostras da área do polígono 2 (SF12, SF16, SF17, SF18, SF19 e SF20).

O polígono 3 possui, cinco amostras (SF8, SF9, SF10, SF13, SF14 e SF15), que estão inseridas nos conjuntos geomorfológicos mais rebaixados, os domínios Depressão do Alto São Francisco e Depressão Sapucaí, figura 4.4.5.

A amostra SF8, também possui como óxido de ferro, a hematita, no entanto os processos relativos a substituições isomórficas do Al⁺³, parecem ter sido dominantes no desenvolvimento desta amostra, uma vez que nela existem picos de gibsita e caulinita.

No difratograma das amostras SF9 e SF13, foram encontrados picos nos minerais primários de hematita e quartzo, apresentando elementos muito similares a

Grupo das amostras do polígono 2
da maioria das amostras. No entanto a amostras SF13 apresenta o mineral de montmorilonita, nos oferecendo elementos para interpretá-la como uma amostra bem desenvolvida, com a presença de teor argiloso e uma matriz central de Al⁺³.

A amostra SF10, apresenta pico dominante no mineral de goethita, como óxido de ferro hidratado pode ser correlacionado a um ambiente com alguma relação a atividade hídrica.

Nas amostras SF14 e 15, foram encontrados picos nos minerais de quartzo e quartzo muscovita, estas amostras foram retiradas de rochas intemperizadas de quartzito em zonas de contato com embasamento, que eram recobertas por materiais detríticos lateríticos.

Grupo das amostras do polígono 3

Figura 4.4.5- Difratograma referente as amostras da área do polígono 3 (SF8, SF9, SF10, SF13, SF14 e SF15).

4.5-Fluorescência de Raios X

Todas as amostras apresentaram composição de elementos químicos similares, sendo observados altos de porcentagem correspondentes aos elementos SiO₂, Al₂O₃ e Fe₂O₃.

Estes óxidos, combinados, são os mesmos presentes nos materiais lateríticos que muitas vezes fazem parte de paleossolos entre outros remanescentes indicadores de antigas superfícies erosivas, na figura 4.5.1, gráfico 4.5.1 e Tabela 4.5.1.

A concentração e a proporção destes elementos mais abundantes nas amostras da série SF, indicaram, superficialmente alguns processos de intemperismo e paleoambientes classificando-os em 3 grupos diante dos elementos químicos mais abundantes nas amostras, sendo eles:

O grupo dos materiais que sofreram principalmente com o intemperismo químico de oxidação de Fe, onde Fe_2O_3 possuiu uma concentração de mais de 50% nas amostras, são elas SF7, SF9, SF10, SF11a, SF11b, SF11c, SF16 e SF20, indicando um paleoambiente úmido onde o processo propício para combinar o Fe⁺³ com água e precipitá-lo em Fe₂O₃. Estas amostras se encontram nas cotas mais elevadas da área estudada, nenhuma abaixo de 1199m.

Figura 4.5.1-Localiazação das amostras coletadas para a Fluorescência de Raios X, cada amostra leva as iniciais, F, S e A que indicam o tipo de materiais lateríticos encontrados (**F** com maiores concentrações de Fe2O3, **S** com predominância de SiO2 e por fim **A** com altos teores de Al2O3).

Existe também o grupo dos materiais que Al_2O_3 foi encontrado em concentrações expressivas (SF4, SF5, SF6, SF 8ab, SF 12, SF 13, SF17, SF 19) acima de 20%, indicando que estas amostras proporcionalmente possuiram menos Fe que o grupo anterior e um aumento na concentração de SiO₂. Neste caso é evidenciando um processo de intemperismo semelhante ao da caulinização, no entanto gerando uma variedade de argilo-minerais onde o destaque se encontra com Al_2O_3 que reforça a ideia de um paleoambiente úmido e com muita lixiviação.

As cotas onde estes materiais foram encontrados são mais baixas que a dos anteriores variando de 700 a 1200m.

Por fim o grupo com a maior concentração em SiO₂, acima de 50% (SF3, SF13,SF14, SF15, SF17, SF18 e SF19) se encontra no processo de caulinização, que libera SiO₂ e K⁺por meio da hidratação. Neste caso mais uma vez reforçando que esses materiais passaram por um paleoambiente úmido. As cotas altimétricas destas amostras circundam cotas mais altas entre 800 a 1200m, Gráfico 4.5.1.

Gráfico 4.5.1-Representação em porcentagem da concentração dos principais elementos das amostras da série SF.

Amostra/	SiO2	A12:03	Fe2O3	TiO2	MnO	ΜσΟ	CaO	Na2O	K2O	P2O5	LOI
elevação	5102	11200	10200	1102		11150	cuo	1.420	1120	1200	201
SF-2(1024m)	28.56	23.52	28.31	6.15	0.10	0.26	0.08	0.02	0.02	0.38	12.62
SF-3(1103m)	65.77	12.11	13.49	1.90	0.06	0.34	0.09	0.12	0.53	0.31	4.89
SF-4(1106m)	7.98	39.57	28.79	1.85	0.01	0.06	0.04	0.01	0.02	0.54	21.13
SF-5(1250m)	39.27	32.11	13.38	1.93	0.06	0.06	0.04	0.02	0.15	0.11	12.59
SF-6(1391m)	18.77	39.53	16.76	2.81	0.02	0.07	0.03	0.01	0.03	0.15	21.85
SF-7(1398m)	27.62	9.94	52.50	0.24	0.01	0.03	0.03	0.01	0.05	0.14	9.45
SF-8a(681m)	42.78	29.37	12.81	1.74	0.04	0.57	0.04	0.02	1.48	0.08	11.09
SF-8b(672m)	34.44	36.77	9.74	2.20	0.03	0.15	0.06	0.01	0.19	0.13	16.28
SF-9(1024m)	12.77	8.33	66.45	2.91	0.01	0.02	0.05	0.01	0.01	0.33	9.14
SF-10(940m)	10.70	3.35	74.63	0.17	0.02	0.03	0.04	0.01	0.01	0.03	11.02
SF- 11A(1279m)	0.52	2.48	95.83	0.03	0.03	0.22	0.04	0.01	0.01	0.07	0.77
SF- 11B(1279m)	0.23	1.15	97.39	0.12	0.01	0.03	0.03	0.01	0.01	0.06	0.99
SF- 11C(1279m)	17.19	2.87	75.76	0.56	0.01	0.03	0.06	0.02	0.02	0.29	3.22
SF- 12(1125m)	66.75	22.73	1.32	0.58	0.01	0.08	0.04	0.04	0.23	0.03	8.19
SF-13(789m)	21.96	20.04	45.66	1.10	0.03	0.07	0.06	0.01	0.19	0.11	10.80
SF- 14(1218m)	93.50	3.10	0.56	0.18	0.02	0.40	0.04	0.09	1.36	0.03	0.75
SF- 15(1218m)	95.64	0.81	2.59	0.03	0.01	0.03	0.04	0.06	0.23	0.03	0.56
SF- 16(1272m)	21.18	11.89	56.45	0.26	0.02	0.05	0.06	0.02	0.14	0.17	9.76
SF- 17(1214m)	53.43	22.69	10.25	1.41	0.02	0.06	0.20	0.03	0.06	0.17	11.29
SF- 18(1147m)	87.18	2.20	8.10	0.06	0.01	0.01	0.04	0.04	0.19	0.03	2.17
SF- 19(1199m)	55.26	23.56	9.79	1.34	0.03	0.03	0.04	0.02	0.05	0.06	9.82
SF- 20(1199m)	22.38	12.35	55.28	0.68	0.01	0.02	0.04	0.02	0.10	0.31	8.88
SF_1(1024m)	32.94	9.26	47.19	0.58	0.02	0.02	0.05	0.01	0.04	0.26	9.66

Tabela 4.5.1- Tabela apresentando em porcentagem a concentração dos principais elementos das amostras da série SF.

No caso dos elementos com menor concentração, encontramos os óxidos de TiO₂, MnO, MgO, CaO, Na₂O, K₂O e P₂O₅, todos liberados em menores concentrações por meio dos processos de intemperismo químico de oxidação do Fe, caulinização e formação de argilas, gráficos, 4.5.2 e 4.5.3.

Gráfico4.5.2-Representaçãoem porcentagem da concentração dos elementos menos expressivos das amostras da série SF

Gráfico 4.5.3 Representação em porcentagem da concentração dos elementos menos expressivos das amostras da série SF

150

No caso da concentração de matéria orgânica as amostras SF4, SF6 e SF8 eram as que possuíam maior concentração, o que nos leva a deduzir que foram as mais retrabalhadas e que tiveram atividade mais intensa da vegetação atuando em seu desenvolvimento, Gráfico 4.5.4.

Gráfico 4.5.4-Representação em porcentagem da concentração dos elementos por perda ao fogo.

Por fim, a distinção entre as amostras lateriticas pode ser sintetizada no diagrama triangular da figura 4.5.2, proposto por Shellmann (1982), apurado de Ferrari (1996). A maior parte destas amostras, 11 delas, foram caracterizadas como lateritas ferruginosas, considerando o alto teor de ferro em relação aos demais óxidos. Secundariamente, 9 amostras foram classificadas como lateritas silicosas (com alto teor de sílica), e 3 se classificam como aluminosas que por sua vez apresentam forte concentração de alumínio.

Figura 4.5.2-Diagrama triangular de classificação de lateritas. Schellmann (1982) apud Ferrari (1996).

4.6-Termocronologia por Traços de Fissão

Foram coletadas na área de estudo, cerca de 44 amostras (catalogadas na tabela 7 no anexo), das quais 16 delas tiveram número suficiente de minerais de apatita para serem analisadas. Isto se dá devido a maior parcela da área de estudo ser recoberta por quartzitos. As coletas foram referentes à série CR e são rochas do embasamento cristalino compostas, em sua maioria, por granitos e gnaisses (mapa de pontos na Figura 4.6.1).

As idades estão apresentadas na tabela 4.6.1. Como pode ser visto, não há uma flutuação significativa das idades, de forma que podem ser basicamente divididos em dois grupos: Idades de aproximadamente 150-170Ma (CR-A) e idades de aproximadamente 200-250Ma (CR-B). As idades mais antigas (CR-B) se referem ao Cráton São Francisco e as rochas das faixas móveis Brasília e Ribeira. As idades mais recentes a eventos tectônicos relacionados ao cinturão de cisalhamento "Campo do Meio", com destaque para a Zona de Falha de Cássia e o Soerguimento do Alto Paranaíba, como pode ser visto na figura 4.6.1 e tabela 4.6.1.

Amostra	Altimetria	Ns	ο _s ×10 ⁶ ±1σ	$L \pm 1\sigma(\mu m) (n)$	U (ppm)	t ±1σ (Ma)
	(metros)	3	(cm ²)	(,	- (PP)	,
CR1(A)	921m	90	0.19±0.02	10.97±2.21 (46)	1.22	171.9±30.1
CR4(B)	837m	256	0.93±0.06	12.02±2.54 (23)	4.26	242.1±38.6
CR5(A)	1023m	137	0.74±0.07	10.01±1.59 (38)	6.35	150.6±27.1
CR11(B)	786m	163	0.50±0.04	10.70±2.04 (47)	2.28	243.7±40.5
CR12(B)	744m	368	1.23±0.06	10.62±1.48 (58)	7.61	179.6±28.0
CR17(A)	1155m	173	2.29±0.17	9.61±1.93 (77)	18.1	140.9±21.3
CR20(A)	717m	248	0.71±0.05	10.23±2.07 (82)	6.18	128.1±20.5
CR28(A)	1022m	515	0.17±0.01	9.57±2.03 (102)	17.0	113.2±17.3
CR30(B)	780m	558	1.86±0.08	10.41±1.37 (70)	9.07	227.4±35.2
CR32(B)	962m	159	1.59±0.13	9.76±1.61 (75)	8.37	211.1±34.2
CR33(B)	962m	307	1.12±0.06	12.31±2.16 (79)	5.22	236.9±37.3
CR35(A)	821m	800	2.46±0.09	9.61±2.17 (79)	16.3	168.8±25.5
CR37(A)	820m	402	1.34±0.07	9.94±1.48 (32)	8.51	175.4±27.2
CR38(B)	832m	302	1.21±0.07	10.22±1.79 (63)	6.14	218.3±34.4
CR40(B)	876m	356	0.84±0.04	10.56±2.38 (49)	4.73	196.6±30.7
CR41(B)	834m	569	1.20±0.05	11.16±1.74 (101)	5.78	230.0±35.1

Tabela 4.6.1. Idades de traço de fissão em apatitas por LA-ICP-MS.

 N_S : é o número de traços espontâneos contados na superfície do mineral; ρ_S é a densidade de traços espontâneo por unidade de superfície (cm²); L(n) é o comprimento médio (número) dos traços de fissão confinados; U é o conteúdo de urânio dado em ppm e t é a idade traço de fissão.

Figura 4.6.1-Mapa geológico com as amostras de traço de fissão em apatitas por LA-ICP-MS.

Histórias térmicas e a distribuição do comprimento dos traços foram modelados para todas as 16 amostras. As histórias témicas foram geradas através do programa HeFTy (Ketcham et al., 2007). Para cada história térmica, caixas de Monte-Carlo foram inseridas de modo que a distribuição teórica (dada pelo software) se encaixasse com a ditribuição dos traços confinados. Foram simulados pelo menos 10000 histórias térmicas para cada amostra, de foma que as que são aceitáveis do ponto de vista estatístico (histórias térmicas em verde) e as boas (histórias térmicas em magenta) compõe as histórias térmicas total das amostras. Em contrapartida, àquelas que não passaram no teste estatístico, são automaticamente descartadas.

Como pode ser visto, apenas foram aceitas histórias térmicas que seguem a tendência de uma estabilidade, não havendo, para a modelagem, nenhuma outra história permitida/aceitável.

Na maior parte dos gráficos, existiu uma tendência de que toda as amostras permaneceram levemente aquecidas (aprox. 80°C, ou considerando um gradiente geotérmico de 30°C/km, há aproximadamente 2 km de profundidade) na maior parte do tempo, seguido de resfriamentos nos últimos 40-10Ma.Cabe mencionar que para as 16 amostras, as histórias térmicas possuem exatamente a mesma tendência, havendo variações entre elas no período de resfriamento. Abaixo serão discutidas com maiores detalhes cada uma das histórias térmicas obtidas.

Amostra CR1

A amostra CR1, Figura 3.6.1, apresentou um gráfico diferenciado. Teve uma história térmicaque se iniciou em 170Ma a 120ºC e posteriormente um resfriamento intenso, chegando aos 60ºC em 130Ma. Notou-se, a partir de então, um longo intervalo de estabilidade tectônica, que foi sucedido por outro período de resfriamento, a partir dos 40Ma que seguiu até a temperatura ambiente, ou seja, até a amostra atingir a superfície, figura 4.6.1.

Figura 4.6.1-Gráficos da amostra CR1 de história térmica e de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Amostras CR4, CR11 e CR30

O grupo de amostras CR4, CR11 e CR30, possuem um padrão muito semelhante quanto a história térmica. Por volta dos 280 Ma, atingem a temperatura de 120°C, seguem com uma denudação lenta e linear (que pode se observado pela horizontalização da história térmica) seguido de um novo período de resfriamento mais acentuado que perdura até os 100/120 Ma, onde atingem um novo momento de resfriamento até os 25 °C.

Figura 4.6.2-Gráficos das amostrasCR4,CR11e CR30 de história térmica e de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Amostra CR5

No caso da amostra CR5, onde o resfriamento ocorreu tardiamente, a temperatura passou de 80°C para 25°C (temperatura ambiente) nos últimos 10Ma/30Ma, o que caracteriza um resfriamento neste período de 5.5°C/Ma, ou soerguimento equivalente a 183m/Ma, gráfico 4.6.3.

Figura 4.6.3-Gráficos das amostras CR5 de história térmica e de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Amostra CR12, CR17, 32, 35, 37 e 38

As histórias térmicas, destas amostras, representam um padrão bem consolidado, pois fazem parte de um vasto período de estabilidade tectônica que varia de 300Ma a 15Ma, demonstrado que ao longo deste período ocorreu estabilidade no ambiente e esta foi propícia para o aplainamento do relevo e desenvolvimento de uma extensa superfície, figuras 4.6.4 e 4.6.5.

Figura 4.6.4-Gráficos das amostras CR12, CR17 eCR32 de história térmica e de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Figura 4.6.5-Gráficos das amostras CR35, CR37 eCR38 de história térmica e de distribuição dos comprimentos dos traços confinados em apatitas por LA-ICP-MS.

Amostras CR20 e CR28

Estas amostras possuem idades mais jovens. Apresentam o primeiro resfriamento a partir dos 140/150 Ma, e passam por uma longa estabilidade tectônica até os 20Ma, no entando, neste período pode ser observado um leve resfriamento, no qual pode ser associado a um processo denudacional. Posteriormente, há um novo resfriamento mais intenso até chegar a temperatura atual.

Gráficos 4.6.4-Gráficos referentes as amostras CR20 e CR28, com a história térmica de traço de fissão e a distribuição dos comprimentos dos traços em apatitas por LA-ICP-MS.

Amostras CR40 e CR41

Estas amostras possuem idades mais antigas. Apresentam o primeiro resfriamento a partir dos 300 Ma, e passam por uma longa estabilidade tectônica até os 20Ma (a exemplo das amostras CR20 e CR28, no período de estabilidade tectônica pode-se observar um leve resfriamento, no qual também pode ser associado a um processo denudacional). Por fim, há um novo resfriamento mais intenso que vai de 20Ma até chegar a temperatura ambiente de 25°C.

Gráficos 4.6.8-Gráficos referentes as amostras CR40 e CR41, com a história térmica de traço de fissão e a distribuição dos comprimentos dos traços em apatitas por LA-ICP-MS.

CAPÍTULO-5 DISCUSSÕES

A área estudada atinge uma ordem de grandeza de aproximadamente 200.000km² e abrange extensas zonas heterogênias, tanto nos aspectos geológicos quanto geomorfológicos.

No que se diz respeito a litologia, encontra-se num contexto geral, a distribuição de rochas sedimentares a oeste compostas pelos domínios da Bacia Sedimentar do Paraná, e as rochas supracrustrais e do embasamento cristalino, desnudadas sentido leste, se dividindo entre domínios do Meso/Neoproterozóico e Arqueano.

No contexto geomorfológico regional, encontra-se a passagem de grandes domínios, que delimitam a área estudada em domínios com altos topográficos, oriundos das zonas planálticas (Planaltos Residuais Cuestiformes, Andrelândia e Varginha/Amparo) e de patamares (Residuais Cuestiformes e Canastra) e de Serrarias (Canastra) a noroeste e oeste e a zonas de depressões marcadas por toda a região nordeste (Depressões Sapucaí e São Franciscana).

A partir deste contexto é possível encontrar dois principais tipos de relevo residual:

- (1)- os ligados as rochas sedimentares, representadas pela Bacia Sedimentar do Paraná e as formações Aquidauana e Itararé e;
- (2)- relevo residual controlados por rochas supracrustrais e précambrianas compostas pelo Cráton do São Francisco, Faixa Brasília e pequena porção da Faixa Ribeira Figura 4.1.1; 4.1.2.

Nestes relevos residuais, nos diferentes domínios tanto geomorfológicos quanto geológicos, estão contidos resíduos de materiais lateríticos, que do contrário dos materiais ferruginosos atuais que geralmente se concentram em baixos topográficos, estão nas porções mais elevadas da topografia.

Diante desta problemática, foi utilizada primeiramente, a Termocronologia por Traços de Fissão, para compreender o relevo e sua dinâmica de forma generalizada, sob uma óptica regional, para por fim se obter o entendimento da paisagem a partir da perspectiva dos materiais detríticos lateríticos.

Esta metodologia foi capaz de estimar por meio da relação do decaimento de átomos radioativos, idades, eventos de exumação e erosão e por fim obter grandes progressos a respeito da evolução da paisagem classificando possíveis ciclos e anomalias tectônicas nesta mesma escala. Para tanto foram selecionadas amostras nos diversos domínios geomorfológicos e geológicos da área de estudo, figura 5.1.1.

Figura 5.1.1- Localiazação das amostras coletadas para a Termocronologia por Traços de Fissão (TTF).

A partir destas coletas idades e histórias térmicas foram geradas em 16 amostras. Estes dados reforçam um longo período de estabilidade tectônica que se desenvolveu na área do Triássico ao Paleógeno médio, Tabela, 4.6.1. e Figuras 5.1.1 e 5.1.2.

As idades mais antigas, 218 a 243 Ma, são compatíveis com eventos térmicos que aconteceram no Permiano. Milani (1997), Tankard et al. (1996), Rostirolla et al. (2003) e Trzaskos et al., (2006) sugerem que neste período esforços no Sul da Placa Sul-Americana ajudaram na reativação fanerozóica de estruturas antigas do

embasamento, como no caso da Zona de falha de Jacutinga ao sul da área estudada, Soares et al. (1996). Posteriormente, sucessivos ciclos de erosão da plataforma brasileira ofereceram sedimentos para as bacias Paleozóicas.

Nota-se um padrão de idades antigas circundando a borda do Craton do São Francisco, atingindo zonas limítrofes com os cinturões móveis da Faixa Brasília, Ribeira e Araçuaí, representado pelas amostras do Grupo (B), CR11, CR30, CR33, CR38, CR40 e CR41. Os histogramas destas amostras apresentam maior atividade erosiva por volta 300Ma a 200Ma, com taxas erosivas que permeiam uma média de 20m/Ma.

Nas amostras com idades mais baixas, porém um pouco mais próximas a zona central da área estudada, como a CR12, CR35, observa-se nos histogramas um pico erosivo de aproximadamente 280 a 200Ma, com taxas de denudação que atingem 40m/Ma. Já a amostra CR37, se encontra complementar, pois inicia seu pico por volta de 240 a 180Ma, no entanto com taxa erosiva mais baixa, que atinge a cota de aproximadamente 20m/Ma.

As idades de TTF, mais baixas, Grupo (A) que estão por volta de 113 a 170 Ma, são compatíveis com eventos tectônicos já mencionados na literatura como:

- (1) Abertura do Atlântico e o Magmatismo basáltico na Bacia do Paraná entre ~130-120 Ma (Alkmim e Martins-Neto, 2005; Condie, 2005; Hasui, 2010; Marques e Ernesto, 2005);
- (2) Os complexos alcalino-carbonatíticos de Araxá, Tapira com ~90Ma e Poços de Caldas ~50Ma que intrudem rochas metamórficas neoproterozóicas da Faixa Brasília, (Soares et al.2015).
- (3) Soerguimento do Alto do Paranaíba ~150-130 Ma (Hasui & Haralyi 1991).

A média destas amostras com idades "mais baixas", é de 139Ma, e estas se posicionam na porção central da área estudada, tanto nos arredores da Bacia sedimentar do Paraná quanto nos arredores da Bacia Sedimentar do São Francisco, compondo de forma muito próxima ao desenho do limite sul do Soerguimento do Alto Paranaíba proposto por Hasui e Haralyi (1991) (figura 5.1.1).

Nas histórias térmicas das amostras CR1, CR4, CR5, CR11, CR17, CR20 e CR28, encontramos forte taxa erosiva que se inicia aproximadamente a 180Ma em meados do Jurássico e segue até o final do Cretáceo por volta dos 80 Ma, com uma taxa de denudação de aproximadamente 30m/Ma, Figura 5.1.1 e 5.1.2.

Para refinar ainda mais a questão das idades, foram correlacionadas informações das amostras entre idades e a altimetria. Essa correlação permitiu constatar que amostras com as maiores altimetrias posssuem idades abaixo de 150 Ma, como o caso das amostras CR5 (150 Ma e elevação de 1023m), CR17 (140Ma e elevação de 1155m) e CR28 (113Ma e elevação de 1022m) tabela 5.1.1. No entanto existe a exceção, que é representada pela amostra CR20, que apesar de possuir uma altimetria extremamente baixa, de 717 metros, possui idade de 128Ma.

Figura 5.1.2- Disposição das histórias térmicas no contexto geológico geral da área estudada.

As amostras que estão acima de 800m de elevação, estão inseridas em sua maioria no polígono 3, com excessão da amostra CR1, localizada no polígono1. A maior parte delas possuem idades entre 211 a 240 Ma e por isso mantém um padrão de correlação entre idades e altimetrias (CR4, CR32, CR33, CR38 e CR41) Tabela 4.6.1. No entanto as amostras CR1, CR35 e CR37, possuem idades mais baixas, alguns elementos em comum podem ser considerados como o fato de estarem próximas a porções com maior atividade tectônica (Cinturão Campo do Meio e Zona de Falha de Cássia).

Por fim o grupo com os mais baixos valores altimétricos (abaixo de 800m), se apresentou como o grupo mais heterogêneo, pois continha tanto idades com valores mais baixos como CR12 com 179Ma e CR20 com 128Ma, como idades mais elevadas CR11 com 243Ma e CR30 com 227Ma, tabela 4.6.1.

Com estes dados, foi possível de forma regional, correlacionar como o relevo atuou em cada polígono, para que possamos levantar ainda mais elementos para compreender a disposição atual dos materiais lateríticos que foram deixados nas porções mais elevadas da altimetria.

Na região de estudo são encontradas 3 diferentes altimerias para o material, superfícies preservadas abaixo de 600m, entre 600 à 900m e acima de 900m, Figura 5.1.1.

No **"polígono 1"**, encontramos a disposição dos materiais preservados em todas as cotas encontradas. A sua dinâmica atual de acordo com a análise de bacias feitas no capítulo anterior, é de um relevo com características erosivas, pois é composto majoritariamente por canais de primeira ordem (correntes formadoras), e que se encaixam nas zonas de fraqueza litológica que muitas vezes fora condicionada por uma tectônica pretérita mais expressiva, o "Soerguimento do Alto do Paranaíba", que separou, na região, as bacias do Paraná e do São Francisco, a reativação dos cisalhamentos verticais pertencentes a "Zona de Falha de Cássia" (ramificação do Cinturão "Campo do Meio") e as dobras regionais da "Nappe de Passos".

A partir desta situação foi entendida a dinâmica atual e através de análises físicas e químicas em amostras pertencentes aos depósitos lateríticos encontrados (Série SF), sua dinâmica pretérita e assim mais dados substanciais foram obtidos a respeito de como estes materiais vieram a se desenvolver até os dias atuais.

As amostras SF1 e SF6 (DRX), apresentam picos bem definidos e similares de goethita. Nas amostras SF2, SF3, SF5, SF7 e SF8, nota-se a a presença da hematita, tabela 4.4.1 e figuras 4.4.2, 5.1.4. A alteração em que se predomina os picos de hematita pode ser explicada pelo condições do ambiente, a hematita ao contrario da goethita, é favorecida em altas temperaturas e baixa atividade de água, podendo nos indicar a possível mudança do nível de base, que ficou registrada na assinatura mineralógica destes materiais. Esse desenvolvimento dos minerais também é possível de se acompanhar pelas lâminas de micromorfologia, que mostram nas mesmas amostras, forte nível de desenvolvimento com a segregação do Fe, notável por meio dos nódulos preservados nas amostras, SF1, SF5 e SF7, figura 4.4.2.

Amostras como SF4 possui picos de caulinita e gibsita, caso comum em argilo minerais que passam por processos de substituições isomórficas relacionadas com Al⁺³, figura, 4.4.2 e tabela 4.4.1.

Figura 5.1.3-Conjunto de análises das amostras da série SF, coletadas com a finalidade de caracterizar os depósitos física e quimicamente no polígono 1. A letra A

indica a presença de nódulos de ferro, B indica a presença de quartzo e C indica o plasma composto por óxidos de ferro.

Fato reforçado pela análise das amostras por Fluorescência de Raios X, que indica para o **"polígono 1"** que maior parte dos processos de intemperismo químico são semelhantes ao da caulinização, no entanto gerando uma variedade de argilominerais onde o destaque se encontra com Al₂O₃, que reforça a ideia de um paleoambiente úmido e com muita lixiviação, que apenas deixou minerais primários e secundários resistentes ao intemperismo na paisagem atual.

As exceções deste polígono são as amostras SF1 e SF7 que apresentam um processo de intemperismo químico onde a oxidação do Fe foi mais intensa, gerando amostras com Fe₂O₃ a uma concentração de mais de 50%. Indicando um paleoambiente com condições para desenvolvimento de perfil laterítico bastante desenvolvido.

Figura 5.1.4-Conjunto de análises das amostras da série SF, coletadas com a finalidade de caracterizar os depósitos física e quimicamente no polígono 1. A letra A

indica a presença de nódulos de ferro, B indica a presença de quartzo e C indica o plasma composto por óxidos de ferro.

Figura 5.1.5-Conjunto de análises das amostras da série SF, coletadas com a finalidade de caracterizar os depósitos física e quimicamente no polígono 1. A letra A indica a presença de nódulos de ferro, B indica a presença de quartzo e C indica o plasma composto por óxidos de ferro.

No **"polígono 2**" também encontramos materiais detríticos lateríticos preservados nas três diferentes cotas. Este polígono possui elementos muito parecidos com os do **"polígono 1"**, os canais mais densos são os de 1^ª e 2^ª ordem, que se caracterizam por correntes formadoras e apresentam uma dinâmica tipicamente erosiva do relevo atual. Por ser uma área muito próxima ao **"polígono 1"**, comporta-se quase como uma extensão do mesmo, sofrendo das mesmas atuações tectônicas pretéritas que condicionaram algumas de suas bacias atuais, 4.1.7, 4.1.8 e tabelas 4.1.1 e em anexo tabelas 3 e 4.

No entanto neste "**polígono 2**" a maior parte das amostras estão concentradas em áreas muito próximas. As amostras de SF11a, SF11b e SF11c, fazem parte de um perfil que desenvolveu-se do Itabirito. Os difratogramas SF11a e SF11b, delas são compostos majoritariamente por hematita e SF11c, apresenta componentes de quartzo baixo. Cabe reforçar que estas foram retiradas de um perfil, onde não possuíam mais de dez metros de diferença de altitude uma da outra. De acordo com os componentes mineralógicos destas amostras, estima-se que a formação ferrífera fonte, seria o Itabirito comum, esse processo também é confirmado por meio de lâminas figura 5.1.6.

Figura 5.1.6-Conjunto de análises das amostras da série SF, coletadas com a finalidade de caracterizar os depósitos física e quimicamente no polígono 2.

De acordo com os dados da Fluorescência de Raios X, estes materiais passaram pelo processo de intemperismo químico de oxidação, indicando um paleoambiente úmido onde o processo foi propício para combinar o Fe⁺³ com água e precipitá-lo em Fe₂O₃ de modo extremamente lento, confirmado pela presença dos minerais primários de hematita e quartzo, figura 5.1.6.

Figura 5.1.7-Conjunto de análises das amostras da série SF16, coletadas com a finalidade de caracterizar os depósitos física e quimicamente no polígono 2.

No caso dos difratogramas das amostras SF16, SF17, SF18, SF19 e SF20 percebe-se que o óxido dominante é a hematita, figuras 5.1.6, 5.1.7.

A amostra SF16, apresenta em seu difratograma picos nos óxidos ferruginosos tanto de hematita quanto de goethita e no de quartzo, o que sugere que esta amostra passou por um severo processo de intemperismo, mantendo assim apenas os minerais primários e secundários resistentes ao intemperismo.

As amostras SF17, SF19 e SF20, possuem como minerais primários a hematita e o quartzo, mas também apresentam picos de gibsita e caulinita, esses componentes sugerem que estas amostras passaram por um forte processo de desenvolvimento, com altas temperaturas e baixa atividade da água, muito próxima a realidade das amostras do polígono 1. Assim como no perfil das amostras SF11a,b e c, o isomorfismo e o intemperismo químico de oxidação foram as atividades dominantes para o desenvolvimento destes materiais até os dias atuais.

No **polígono 3** encontramos apenas a classe de materiais detríticos lateríticos preservados nas cotas entre 600 à 900 metros, devendo-se considerar que parte da configuração da altimetria dos depósitos é fortemente influenciada pela configuração geológica e geomorfológica deste polígono. A litologia deste polígono é caracterizada por rochas do embasamento cristalino, do Cráton do São Francisco ou que o recapeiam, portanto é uma área que passou por longa estabilidade tectônica e não possui relevos residuais com altimetria muito expressiva. Os aspectos geomorfológicos deste polígono são de área de depressão, com baixos topográficos onde os processos erosivos são intensos (Depressão São Franciscana e Depressão Sapucai) e os rios principais Grande e São Francisco, esculpiram o relevo para que ele proporcionasse situação ideal para deposição.

A análise de bacias demonstra que este é o polígono com maior densidade de drenagem e menor (em termos de proporção) índice de anomalias tectônicas da área estudada.

Este polígono possui cinco amostras (SF9, SF10, SF13, SF14 e SF15), todas com presença de matriz de quartzo, no caso algumas amostras apresentaram variações como quartzo muscovita (SF 14 e 15) estas amostras foram retiradas de rochas intemperizadas de quartzito em zonas de contato com embasamento, que eram recobertas por materiais detríticos lateríticos, possíveis de se observar nas lâminas SF9, SF10 e SF13, figura 5.1.8.

No difratograma das amostras SF9 e SF13, foram encontrados picos nos minerais primários de hematita e quartzo, apresentando elementos muito similares a da maioria das amostras dos polígonos 1 e 2. No entanto a amostras SF13 apresenta o mineral de montmorilonita, nos oferecendo elementos para interpretá-la como uma amostra bem desenvolvida, com a presença de teor argiloso e uma matriz central de Al⁺³, figura 5.1.8.

Figura 5.1.8-Conjunto de análises das amostras da série SF, coletadas com a finalidade de caracterizar os depósitos física e quimicamente no polígono 2.

A amostra SF10, apresenta pico dominante no mineral de goethita, como óxido de ferro hidratado pode ser correlacionado a um ambiente com alguma relação à atividade hídrica.

No caso da análise por Fluorescência de Raios X, neste grupo a maior parte das amostras (SF13, SF14 e SF15) exibiu grande concentração de SiO₂, acima de 50%. Esse teor permite confirmar que estas se encontram num processo de caulinização, que libera SiO₂ e K⁺ por meio da hidratação.

CONCLUSÃO

As paleosuperfícies na região sudoeste de Minas Gerais foram, nesta tese, identificadas e correlacionadas mediante revisão de literatura, levantamentos de campo e trabalhos de laboratório. De acordo com os dados obtidos foi possível compreender sua dinâmica regional e correlacioná-la com coletas pontuais dos matérias detríticos lateríticos.

Estes materiais estão associados a dois grupos litológicos/topográficos de idades distintas:

-O primeiro grupo é representado por idades mais antigas que alcançam o final do Paleozoico até o inicio do Mesozoico (aproximadamente 250 a 200 Ma), composto por rochas que representam as porções limítrofes do Craton do São Francisco. Neste grupo são encontrados materiais lateríticos na forma de depósitos de clastos, em zonas mais rebaixadas, que variam de 900 a 600 metros, majoritariamente presentes no polígono 3. Estes materiais representam o que restou de uma extensa superfície que se instalou posterior a uma fase erosiva de rebaixamento após o Cretáceo Superior, e que hoje se apresenta discordante diante dos domínios do embasamento com a borda da Bacia São Franciscana.

-O segundo e fundamental para o entendimento da disposição destes materiais seriam as idades mais jovens, que de acordo com a estatística atingem por volta de 139 Ma, compostos por rochas pertencentes a Zona de Falha de Cássia/Cinturão Campo do Meio, e a materiais retrabalhados oriundos do Soerguimento do Alto do Paranaíba. Neste grupo são encontrados materiais lateríticos *in situ*, no topo de feições como a Serra da Canastra representada pelos polígonos 1 e 2, a Sinforma do Chapadão, os Morros do Ferro, Azul e da Angolinha, no polígono 2 entre outras porções mais elevadas, na cota dos 1.000/1.200 metros.

Mudanças progressivas causadas por reativações tectônicas durante o Cretáceo, distribuiram estes materiais em altimetrias diferenciadas, muitas vezes preservados em topos de morros nas cotas dos 900/800 metros, sendo assim correlacionados as idades discrepantes do contexto geral das amostras datadas. Como o caso do perfil composto pelas amostras CR4 e CR5, onde a idade mais jovem (CR5) se encontra no topo do perfil com 150 Ma a 1023 metros e a mais antiga, CR4, logo abaixo, 837 metros, possui aproximadamente, 242 Ma. Isto se

deve a localização das amostras estar inseridas na Zona de Falha de Cássia⁴. Neste caso não se deve atribuir patamares altimétricos as superfícies de aplainamento encontradas nos polígonos 1 e 2 de forma direta.

Também fica evidente que o surgimento e desenvolvimento destas superfícies se deve dispõe no intervalo dado após o Soerguimento do Alto do Paranaíba e a reativação de falhas pré-cambrianas no Cretáceo num período bem demarcado pelas histórias térmicas entre 139 a 80Ma.

Amostras de Difração e Fluorescência de Raios X, apresentam elementos que indicam que estes materiais se formaram num momento de transição, de um ambiente seco e quente, para um ambiente úmido, com forte relação de atividades hídricas, que promoveu processos químicos que desenvolveram estes materiais até os dias atuais.

Por fim cabe mencionar sobre um novo pulso denudacional que se desenvolveu por volta de 20Ma, no Neógeno, no entanto é necessário apurar estes eventos com estudos complementares, uma vez que estes podem fazer parte de um artefato da estatística que existe na metodologia do Termocronologia por Traços de Fissão.

⁴ Morales (2005), Passarella et al., (2010) e Sartori (2011).

REFERÊNCIAS BIBLIOGRÁFICAS

- AB´SÁBER, A. N. Regiões de Circunsdesnudação Pós-cretácea, no Planalto Brasileiro. Boletim Paulista de Geografia. São Paulo, n.1, p. 3-21, 1949.
- AB´SÁBER, A. N. As Altas Superfícies de Aplainamento do Brasil Sudeste. Boletim Geográfico. Rio de Janeiro, n. 126, ano XIII, p.295-300, 1955(a).
- AB'SÁBER, A. N. Problemas Paleogeográficos do Brasil Sudeste. Boletim Geográfico. Rio de Janeiro, n. 127, ano XIII, p.392-402, 1955 (b).
- ALBUQUERQUE, A. P. B. Tectônica Deformadora Cenozóica na Bacia Sedimentar de Resende (Rift Continental do Sudeste do Brasil). 2004. Dissertação (Mestrado) - Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, 2004.
- ALMEIDA, F.F.M.;HASUI, Y; NEVES, B.B.B; FUCK, R.A., 1977. Provincias Estruturais Brasileiras. Simpósio de Geologia do Nordeste, 8, Campina Grande; 1977. SBG, Atas...Campina Grande, PP.363-391.
- ALMEIDA, F.F.M. Os fundamentos Geológicos do Relevo Paulista. Transcrito de "Geologia do Estado de São Paulo" do Boletim do Instituto Geográfico e Geológico, n. 41 (1964). São Paulo: IGEOG. Série Teses e Monografias. n.14, p. 1- 110, 1974.
- ALKMIM F.F. & MARTINS-NETO M.A. 2001. A Bacia intracratônica do São Francisco: arcabouço estrutural e cenários evolutivos. In: Pinto C.P., Martins-Neto M.A. (eds.) Bacia do São Francisco: geologia e recursos naturais. Belo Horizonte: SBG-MG, p. 9-30.
- ALKMIM F. 2004. O que faz de um cráton um cráton ? O Cráton do São Francisco e as revelações Almeidianas ao delimita-lo. In: Mantesso-Neto *et al.* (eds) Geologia do Continente Sul Americano. Evolução da obra de Fernando Flávio Marques de Almeida. Becca, pp.: 17-35.
- AGUILERA, E.Y., RABASSA, J. Origin of the Northern Patagonian Massif Regional Paleosurface. Geociências. v.29, n. 4, p. 467-478, 2010.
- AGUILERA, E.Y., ARAGÓN, E., CARRETERO, S. The Paleosurface on the Paso Del Sapo Volcanic Rocks, Chubut, Argentina. Geociências. v.29, n. 4, p. 479-486, 2010.
- ALKMIN, F.F.; MARSHAK, S. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambriam Research. v. 90. p. 29-58, 1998.
- ALVARADO, B. P. Caracterização Petrográfica e Geoquímica das Rochas Encaixantes e dos Minérios Auríferos da Mina de Morro Velho (Mina Velha) – Distrito de Nova Lima – MG. Dissertação (Mestrado) – IG/ UNICAMP, 2003.
- AULER, A. S.; PILÓ, L. B. Introdução às Cavernas em Minério de Ferro e Canga. O Carste. Ed. Especial. v. 17, n. 3. p. 70-72, 2005.
- BACELLAR, L.A.P. Condicionantes Geológicos, Geomorfológicos e Geotécnicos dos Mecanismos de Voçorocamento na Bacia do Rio Maracujá, Ouro Preto, MG. Rio de Janeiro, Universidade Federal do Rio de Janeiro. 2000. 226p. (Tese de Doutorado).

- BALLESTEROS, E.M.; TALEGÓN, J. G.; HERNÁNDEZ, M. A. V. Palaeoweathering Profiles Developed on the Iberian Hercynian Basement and their Relationship to the Oldest TertiarySurface in Central and Western Spain. Geological Society, London, Special Publications. v. 120; p. 175-185, 1997.
- BALTAZAR, O.F.; BAARS, F.J.; LOBATO, L.M.; REIS, L.B.; ACHTSCHIN, A.B.; BERNI, G.V.; SILVEIRA, V.D. Mapa Geológico na Escala 1: 50.000 com Nota Explicativa. In: Projeto Geologia do Quadrilátero Ferrífero - Integração e Correção Cartográfica em SIG com Nota Explicativa. Lobato et al. (2005) CODEMIG. Belo Horizonte. 2005.
- BARBARAND, J., CARTER, A., WOOD, I., HURFORD, A.J., 2003. Compositional and structural control of fission-track annealing in apatite. Chem. Geol. 198, 107-137.
- BARBOSA, O. Quadro Provisório de Superfícies de Erosão e Aplainamento no Brasil (inferências paleoclimáticas e econômicas). Revista Brasileira de Geografia, Rio de Janeiro, v. 27, n.4, p. 641-642, 1965.
- BARBOSA, G.V. Superfícies de Erosão no Quadrilátero Ferrífero, Minas Gerais. Revista Brasileira de Geociências, v. 10, p. 89-101, 1980.
- BARRETOS, H. N. ; VARAJAO, C. A. C. ; BRAUCHER, R. ; BOURLÉS, D. ; SALGADO, A. A. R. . Denudation rates of the Southern Espinhaço Range, Minas Gerais, Brazil, determined by in situ-produced cosmogenic beryllium-10. Geomorphology (Amsterdam), v. 191, p. 1-13, 2013.
- BARBOSA, J. S. F. & SABATÉ, P. 2004. Archean and Paleoproterozoic crust of the São Francisco Cráton, Bahia, Brazil: geodynamic features. *Prec. Res.* 133:1– 27.
- BATTIAU-QUENEY, Y. A tentative Classification of Paleoweathering Formations Based on Geomorphological Criteria. Geomorphology. v. 16, p. 87-102, 1996.
- BATTIAU-QUENEY, Y. Preservation of Old Palaeosurfaces in Glaciated Areas: examples from the French western Alps. Geological Society, London, Special Publications. v. 120, p. 125-132, 1997.
- BIGARELLA, J. J.; AB'SÁBER, N. A. Paläogeographische und Paläoklimatische Sspekte des känozoikums in Südbrasilien. Zeitschrift für geomorphologie. Berlin, v. 8, n.3, p. 286-312, 1964.
- BIGARELLA, J. J. Estrutura e Origem das Paisagens Tropicais e Subtropicais. 2ed. Florianópolis: Ed. da UFSC, 2007.
- BIGARELLA, J.J.; ANDRADE, G.O. Contribution to the Study of the Brazilian Quaternary. The Geological Society of America. Special Paper 84, p. 431-451, 1965.
- BIGARELLA, J.J.; MOUSINHO, M.R.; SILVA, J.X. Pediplanos, Pedimentos e seus Depósitos Correlativos no Brasil. Boletim Paranaense de Geografia. n.16-17, p.117-151, 1965.
- BRAUN, O.P.G. Contribuição à Geomorfologia do Brasil Central. Revista Brasileira de Geografia. Rio de Janeiro. Ano 32, v.3, p. 3-40, 1971.
- BREWER, R. Fabric and Mineral Analysis of Soils. Krieger Publishing Company, 1976, 482p.
- BOURGEON, G et GUNNELL, Y. Rôle du régime tectonique et du taux de denudation sur la repartitiongéographique et les proprieties des sols tropicaux. Earth & Planetary Sciences. Paris, Elsevier, 326,p.167-172,1998.
- BÜDEL, J. Climatic Geomorphology. Tradução de L. Fischer e D. Busche. New Jersey: Princenton University Press, 1982.
- BURKE, K.; GUNNELL, Y. The African Erosion Surface: A Continental-Scale Synthesis of Geomorphology, Tectonics, and Environmental Change over the Past 180 Milion Years. Colorado: The Geological Society of America. Memoir 201. 2008.
- CAMPOS J.E.G. & DARDENNE M.A. 1997. Origem e evoluçãotectônica da Bacia Sanfranciscana. Revista Brasileira de Geociências, 27:283-294.
- CAMPOS NETO, M. C. Orogenic Systems from Southwestern Gondwana, an approach to Brasiliano-Pan African Cycle and Orogenic Collage in Southeastern Brazil. In: CORDANI, U.G.et al. Tectonic Evolution in South America. Rio de Janeiro: Becca, 2000. p. 335-365.
- CARMO, I. O.; VASCONCELOS, P. M. 40Ar/39Ar Geochronology Constraints on Late Miocene Weathering Rates in Minas Gerais, Brazil. Earth and Planetary Science Letters. v. 241, p. 80-94, 2006.
- CARNEIRO, C.D.R.; MIZUSAKI, A.M.P.; ALMEIDA, F.F.M. de. A Determinação da Idade das Rochas. Terræ Didatica, v.1, n.1, p. 6-35, 2005.
- CARLSON, W.D., 1990. Mechanisms and kinetics of apatite fission-track annealing. Amer. Mineral. 75, 1120-1139.
- CARLSON, W.D., Donelick, R.A., Ketcham, R.A., 1999. Variability of apatite fissiontrack annealing kinetics: I.Experimental results. Amer. Mineral. 84, 1213-1223.
- CASSETI, W. Elementos de Geomorfologia. Goiânia: Editorial e Gráfico da UFG, 1990. 136p. (Textos para Discussão, 13).

Elementos de Geomorfologia. Goiânia: UFG, 1994.

CAVALCANTE, L. V. B.; VALADÃO, R. C.; SALGADO, A. A. R. Mapeamento das Unidades de Relevo da Serra do Caraça/MG: uma proposta baseada na interpretação de mapas temáticos. Revista de Geografia: UFPE-DCG/NAPA, v. especial VIII SINAGEO, n.1, 2010.

CASTRO, S.S. (1989) – Micromorfologia de Solos – pequeno guia para

descrição de lâminas delgadas (mimeo). São Paulo, Brasil, 87p.DE MARTONNE, E. de. ProblemasMorfológicos do Brasil Tropical Atlântico. Revista Brasileira de Geografia. Rio de Janeiro. Ano V,n.4, 1943.

CHRISTOFOLETTI, A. Geomorfologia. São Paulo: Edgar Blücher Ltda, 1974.

- CHORLEY, R. J & MORLEY, L.S.D. A Simplified Approximation for the Hypsometric Integral. Journal of Geology. Chicago, p. 566-571.1959.
- COLTRINARI, L. Paleosurfaces in Southeastern Brazil: São José dos Campos Plateaus Landform evolution. São Paulo, UNESP, Geociências, v. 30, n. 1, p. 113-120, 2011.
- CONDIE, K. C. High field strength element ratios in Archean basalts a window to evolving sources of mantle plumes? Lithos, Amsterdam, v. 79, p.491-504, abr. 2005.

- FARLEY, K. A; WOLF, R. A. and SILVER, L. T. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60:4223– 4229, 1996.
- FARLEY, K. A. (U-Th)/He. Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry. v. 47, n.1, pp. 819–844, 2002.
- CORRÊA, A.C.B.; MENDES, I.A. O Problema das Superfícies de Erosão: novas abordagens conceituais e metodológicas. Revista de Geografia DCG/UFPE. Recife, v.18, n.2, p.70-86, 2002.
- CROWLEY, K.D., Cameron, M., Schaefer, R.L., 1991. Experimental studies of annealing of etched fission tracksin fluorapatite. Geochim. Cosmochim. Acta 55, 1449-1465.
- COX, RANDEL TOM. Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Bulletin Of The Geological Society Of America, Boulder, v. 106, n. 5, p.571-581, 1994.
- DAVIS, W. M. The Geographical Cycle. Geographical Journal. v. 14, n.4, p. 481-504, 1899.
- DANIŠÍK, M. (2005). Cooling history and relief evolu-tion of Corsica (France) as constrained by fissiontrack and (U-Th)/He thermochronology, Ph.D. thesis, 130p., University of Tübingen, Tübingen, Germany.
- DONELICK, R. A; P. B. O'SULLIVAN; R. A. KETCHAM. 2005.Apatite fisson-track analysis. – In: Reiners, P. W., T. A. Ehlers (Eds.). Reviews in Mineralogy and Geochemistry, 58, 49–94.
- DE MARTONNE, E. Problemas Morfológicos do Brasil Tropical Atlântico. Revista Brasileira de Geografia. Ano V, n. 4, 1943. p. 523 -550.
- DORR, J. V. Physiographic, Stratigraphic and Structural Development of the Quadrilatero F errifero, Minas Gerais, Brazil. United States Governament printing office, Washington, 1969.
- ENDO, I. Regimes Tectônicos do Arqueano e Proterozóico no Interior da Placa Sanfranciscana: Quadrilátero Ferrífero e Áreas Adjacentes, Minas Gerais. 1997. Tese de Doutoramento, IG/USP. 243p.
- FARLEY, K. A. (U-Th)/He. Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry. v. 47, n.1, pp. 819–844, 2002.
- FARR, TOM G. et al. The Shuttle Radar Topography Mission. Rev. Geophys., [s.l.], v. 45, n. 2, 19 maio 2007. Wiley-Blackwell. http://dx.doi.org/10.1029/2005rg000183.
- FERRARI, A. L. & RICCOMINI, C., 2001. Controle tectônico dos eventos de magmatismo Mesozoico e Cenozóico da área emersa adjacente as Bacias de Campos e Santos. In: VII Simposio de Geologiado Sudeste, Rio de Janeiro., Anais, pp. 67.
- FERREIRA, R. L. A vida subterrânea nos campos ferruginosos. O Carste. Ed. Especial. v. 17, n. 3. p. 106-115, 2005.
- FERREIRA, A.F.; LAZARIN, H.A. Caracterização Litoestrutural e Geomorfológica da Região do Pico do Itacolomi, Ouro Preto. Monografia de Graduação, Departamento de Geologia, Universidade Federal de Ouro Preto, 1993. 54p.

- FIGUEIREDO, B. R. Minérios e Ambiente. Campinas, SP: Editora da Unicamp, 2000 (Coleção Livro-Texto).
- FIGUEIREDO, M.A.; VARAJÃO, A.F.D.C.; FABRIS, J.D.; LOUTFI, I.S.; CARVALHO, A.P. Alteração Superficial e Pedogeomorfologia no Sul do Complexo Bação – Quadrilátero Ferrífero (MG). Revista Brasileira de Ciências do Solo. v.28, pp.713-729, 2004.
- FIGUEIREDO, M. C. H. Introdução à Geoquímica dos Elementos Terras Raras. Bol. IG-USP, Série Científica, v.16, p.15-31. 1985
- FILOSOFOV,V.P. Brief Guide to Morphometric Methods in Search of Tectonic Features. Saratov: Saratov University Publishing House, 1960.
- FLEISCHER, R.L., PRICE, P.B., WALKER, R.M., 1975. Nuclear Tracks in Solids: Principles and Applications. University of California Press, Berkeley, 605 pp.
- FOOKES, P.G.(ed.) Tropical Residual Soils. London: The geological society, 1997.
- FREITAS, R. O. Relevos Policíclicos na Tectônica do Escudo Brasileiro. Boletim Paulista de Geografia. São Paulo, n.7, p.3-19, 1951.
- GARROTE, J; HEYDT, G.G; COX, R.T. Multi-stream order analyses in basin asymmetry: a tool to discriminate the influence of neotectonicas in fluvial landscape development (Madrid Basin, Central Spain). Geomorphology, Amsterdam, v. 1, n. 102, p.130-144, 2008.
- GREEN, P.F., DUDDY, I.R., GLEADOW, A.J.W., TINGATE, P.R., LASLETT, G.M., 1986. Thermal annealingof fission tracks in apatite 1. Qualitative description. Chem. Geol. (Isot. Geosci. Sect.) 59, 237-253.
- GROHMANN, C. H.; RICCOMINI, C.; CHAMANI, M. A. C.. Regional scale analysis of landform configuration with base-level (isobase) maps. Hydrol. Earth Syst. Sci., [s.l.], v. 15, n. 5, p.1493-1504, 18 maio 2011. Copernicus GmbH. <u>http://dx.doi.org/10.5194/hess-15-1493-2011</u>.
- GATTO, L. C. S. et al. Geomorfologia, Folhas SF.23/24 Rio de Janeiro/Vitória ao Milionésimo. In:Projeto Radam Brasil. Rio de Janeiro: MME, 1983. v. 32, p. 305-384.
- GONTIJO-PASCUTTI, A. H. F.; BEZERRA, F. H. R.;Terra, E.; ALMEIDA, J. C. H. Brittle Reactivation of Mylonitic Fabric and the Origin of the Cenozoic Rio Santana Graben, Southeastern Brazil. Journal of South American Earth Sciences, v. 29, p. 522-536, 2010.
- HASUI, Y. Neotectônica e aspectos fundamentais da tectônica ressurgente no Brasil.
 In: Workshop sobre Neotectônica e Sedimentação Cenozóica Continental no Sudeste Brasileiro, 1., 1990, Belo Horizonte. Boletim... Belo Horizonte: SBG/MG, 1990. p. 11-31.
- HARLIN, JOHN M. Statistical moments of the hypsometric curve and its density function. Statistical Moments Of The Hypsometric Curve And Its Density Function, [s.l.], v. 10, n. 1, p.59-72, jan. 1978.
- HARE P; W, GARDNER, I. Geomorphic indicators of vertical neotectonism along converging plate margins. Nicoya Peninsula, Costa Rica. In: M, Morisawa; T, Hack J (Ed.). Tectonic Geomorphology: 15th. Annual Binghamton Geomorphology Simp. Binghamton: Proceedings, 1984. p. 390.

HEILBRON, M. et al. O contato basal do Grupo Canastra entre Itaú de Minas e Carmo do Rio Claro, MG. In: SIMP. GEOL. MINAS GERAIS, 4., 1987, Belo Horizonte. Anais... Belo Horizonte: Sbg/mg, 1987. v. 6, p. 176 - 198.

HEILBRON, M.; SOARES, Antonio Carlos Pedrosa ; CAMPOS NETO, Mario ; SILVA, Luiz Carlos ; TROUW, Rudolph ; JANASI, Valdeci . Província Mantiqueira. In: Virgino Mantesso-Neto; Andrea Bartorelli; Celso Dal Ré Carneiro; Benjamin Bley de Brito Neves. (Org.). Geologia do Continente Sul Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. 1ªed.São Paulo: Beca Produções Culturais Ltda., 2004, v. I, p. 203-234.

- HOWARD, A. D. Stratigraphic and structural controls on landform development in the Central Kentucky Karst. National Speleological Bulletin, [s.l.], v. 30, n. 1, p.95-114, jan. 1968.
- GUEDES, S, HADLER, J.C., OLIVEIRA, K.M.G., MOREIRA, P.A.F.P., IUNES, P.J., TELLO, C.A., 2006.Kinetic model for the annealing of fission tracks in minerals and its application to apatite. Radiat.Meas. 41, 392-398.
- LEONARDOS, H. O; ULBRICH, M. N; GASPAR, J.C. The Mata da Corda volcanic rocks. In: FIFTH INTERNATIONAL KIMBERLITE CONFERENCE, 50., 1991, Araxá. Conference. Cprm, 1991. p. 655 - 673.
- GUEDES, S., CURVO, E.A.C., TELLO, C., HADLER, J.C., IUNES, P.J., PAULO, S.R., PALISSARI, R.,2007. On the annealing of fission tracks in randomly oriented grains of apatite. Nucl. Instrum. Meth. B256, 683-692.
- GUNNELL, Y. Topography, Palaeosurfaces and Denudation over the Karnataka Uplands, Southern India. Geological Society, London, Special Publications, v. 120, p. 249-267, 1997.
- HOU, X.; JONES, B.T. Inductively Coupled Plasma/optical Emission Spectrometry. In: Meyers R.A. (Ed.) Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons Ltd., p. 9468-9485, 2000.
- JAMES, H. L. Sedimentary Facies of Iron Formation. Economic Geology, v. 49, n.3, p. 235-293, 1954.
- JACOBI, C. M.; CARMO, F. F. Diversidade dos Campos Rupestres Ferrugionosos no Quadrilátero Ferrífero, MG. Megadiversidade. v.4, n.12, p. 25-33, 2008.
- JENKINS, R. X-ray Fluorescence Spectrometry. 2. ed. New York: John Wiley, 1999, 207p.
- JONCKHEERE, R., WAGNER, G.A., 2000. On the thermal stability of fossil and neutron-induced fission-tracks innatural titanite. Nucl. Instrum. Meth. B 168, 78-87.
- KELLER, E.A; PINTER, N. Active tectonics. Santa Barbara: Prentice-hall, 1996.
- KING, L. C. A Geomorfologia do Brasil Oriental. Revista Brasileira de Geografia. Rio de Janeiro, n.2, p.147-265, 1956.
- KING, L. C. Canons of Landscapes Evolution. Bulletin of the Geology Society of America, Wahington DC, v. 64, n.7, p. 721-732, 1953.
- KETCHAM, R.A., CARTER, A., DONELICK, R.A., BARBARAND, J., HURFORD, A.J., 2007. Improved modeling of fissio-track annealing in apatite. Amer. Mineral. 92, 799-810.

- LADEIRA, F.S.B. Paleossolos Silicificados na Serra de Itaqueri-Itirapina/SP: susbsídios para a reconstituição paleoambiental. 2v. Tese (Doutorado em Ciências - Geografia Física) - Faculdade de Filosofia, Letras e Ciências Humanas, Departamento de Geografia e Letra, Universidade de São Paulo, São Paulo, 2001.
- LADEIRA, F. S. B.; SANTOS, M. . O uso de Paleossolos e Perfís de Alteração para a Identificação e Análise de Superfícies Geomórficas Regionais: o caso da Serra de Itaqueri (SP). Revista Brasileira de Geomorfologia, v. 6, p. 3-20, 2005.
- LEONARDI, F.A.; LADEIRA, F.S.B.; SANTOS, M. Paleosurfaces and Bauxite Profiles in the Poços de Caldas Plateau, São Paulo/Minas Gerais, Brazil. Geociências, v. 30, n. 2, p. 147-160, 2011.
- LASLETT, G.M., GALBRAITH, R.F., 1996. Statistical modelling of thermal annealing of fission tracks in apatite.Geochim. Cosmochim. Acta 60, 5117-5131.
- LASLETT, G.M., GREEN, P.F., DUDDY, I.R., GLEADOW, A.J.W., 1987. Thermal annealing of fission tracks inapatite. 2. A quantitative analysis. Chem. Geol. (Isot. Geosci. Sect.) 65, 1-13.
- LICHT, O. A. Prospecção Geoquímica: princípios, técnicas e métodos. Rio de Janeiro: CPRM, 1998.
- LIPSKI, M. Tectonismo Cenozoico no Quadrilatero Ferrifero, Minas Gerais. Dissertação (Mestrado). Universidade Federal de Ouro Preto, Ouro Preto, 2002. 171 p.
- LOBATO, L.M.; BALTAZAR, O.F.; REIS, L.B.; ACHTSCHIN, A.B.; BAARS, F.J.; TIMBÓ, M.A.;BERNI, G.V; MENDONÇA, B.R.V. de; FERREIRA, D.V. 2005. Projeto Geologia do Quadrilátero Ferrífero - Integração e Correção Cartográfica em SIG com Nota Explicativa. Belo Horizonte: CODEMIG, 2005. 1 CD-ROM.
- MAGALHÃES JR, A. P.; TRINDADE, E.S. Relações entre Níveis (Paleo) Topográficos e Domínios Morfotectônicos na Região Sul de Minas Gerais: contribuições aos estudos de Superfícies Erosivas no Sudeste Brasileiro. Revista Brasileira de Geomorfologia, Ano, n. 1, p. 1-10, 2004.
- MARQUES, S L; ERNESTO, M. O Magmatismo Toleítico Da Bacia Do Paraná. In: Martins-Neto, M. A. et al (Ed.). Geologia Do Continente Sul - Americano: Evolução Da Obra De Fernando Flávio Marques De Almeida. São Paulo: Becca, 2004. p. 245-263.

Base nos Aspectos Palinologicos e Sedimentares. Tese (Doutorado em Geologia). Universidade Federal de Ouro Preto, Ouro Preto, 2001, 333 p.

- MARCON, R. Aplicações de Difratometria de Raios-X e Método de Rietveld (RQXRD) na Classificação de Rochas Ígneas e na Caracterização Mineralógica de Minérios Auríferos da Província Aurífera de Alta Floresta (MT). 2010. 46 f. TCC (Graduação) - Curso de Geologia, IG/Unicamp, Campinas, 2010.
- MARENT, B. R.; SALGADO, A. A. R. Mapeamento das unidades do relevo da porção nordeste do Quadrilátero Ferrífero MG. Geografias. Belo Horizonte. v. 6, n. 1, p. 118-139, 2010.

- MARKER, M. E; MCFARLANE, M. J; WORMALD, R. J. A laterite Profile near Ibertinia, Southern Cape, South Africa: its significance in the evolution of the African Surface. South African Journal of geology, v. 105, p. 67-74, 2002.
- MELLO, C.L., Moura, J.R.S., Carmo, I.O., Silva, T.M., Peixoto, M.N.O., 1995, Eventos de sedimentação durante o Holoceno no Médio Vale do Rio Paraíba do Sul (SP/RJ) - aloestratigrafia e datações por radiocarbono: 50. Congresso da Associação Brasileira de Estudos do Quaternário, Niterói, 1995, Anais, pp. 193-200.
- MELLO, C.L., 1997, Sedimentação e tectônica cenozóicas no Médio Vale do Rio Doce (MG, sudeste do Brasil) e suas implicações na evolução de um sistema de lagos: PhD. thesis, Institute of Geosciences, University of São Paulo, Brazil, 75 p.
- MELLO, C.L.; SANT'ANNA,L.G.; BERGQVIST,L.P. 2002. Fonseca, MG. Vegetais Fósseis do Terciário Brasileiro. In: SCHOBBENHAUS,C.; CAMPOS,D.A.; QUEIROZ,E.T.; WINGE,M.; BERBERT-BORN,M. (Edit.) Sítios Geológicos e Paleontológicos do Brasil. Publicado na Internet em 31/01/2000 no endereço http://www.unb.br/ig/sigep/sitio086/sitio086.htm
- MILANI EJ. 2004. Comentários sobre a origem e a evolução tectônica da Bacia do Paraná. In: MANTESSO-NETO V, BARTORELLI A, CARNEIRO CDR & BRITO NEVES BB (Eds.). Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida, São Paulo, Beca. p. 265-279.
- MILNES, A.R.; BOURMAN, R.P.; FITZPATRICK, R. W.; Petrology and Mineralogy of "laterites" in Southern and Eastern Australia and Southern Africa. Chemical Geology. v. 60. p. 237-250, 1987.
- MODENESI-GAUTTIERI, M. C., HIRUMA, S. T., &RICCOMINI, C., 2002. Morphotectonics of a high plateau on the northwestern ank of the Continental Rift of southeastern Brazil. Geomorphology, 43:257-271.
- MORISAWA, M; HACK, T J. ed: Tectonic geomorphology. In: 15TH ANNUAL BINGHAMTON GEOMORPHOLOGY SYMPOSIUM, 15., 1984, Boston. Symposium. Boston: Allen And Unwin, 1985. p. 1 - 390.
- MONTEIRO, H.S.; VASCONCELOS, P. M.; FARLEY, K.A.; S´PIER, C.A.; MELLO, C.L. (U–Th)/He Geochronology of Goethite and the Origin and Evolution of Cangas. Geochimica et Cosmochimica Acta. v. 131, p. 267–289, 2014.
- MORALES, NORBERTO. Evolução tectônica do cinturão de cisalhamento Campo do Meio na sua porção ocidental. 1993. 2 v. Tese (Doutorado) - Curso de Geologia Regional, Departamento de Petrologia e Metalogenia, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, 1993.
- MORAES RÊGO, L. F. Notas sôbre a Geomorfologia de São-Paulo e sua Gênesis. Boletim Geográfico. Rio de Janeiro. Ano IV, n.37, p.9-17, 1946(a).

_____ Notas sôbre a Geomorfologia de São-Paulo e sua Gênesis. Boletim Geográfico. Rio de Janeiro. Ano IV, n.38, p.122-132, 1946(b).

MORRÁS, H., TÓFALO, O.R., SÁNCHEZ-BETTUCCI, L. Weathering Processes at the Boundary between the Mercedes (Cretaceous) and Asencio (Eocene) Formations, Southwestern Uruguay. Geociências. v.29, n. 4, p. 487-500, 2010.

- MORRIS, R. C. Genesis of Ore in Banded Iron-formation by Supergene-metamorfic Processes – A Conceptual Model. In: WOLF, K. H. Handbook of Strata-Bound and Stratifor Ore Deposits. Netherlands: Elsevie Science Publishers'B. V., 1985, v. 13, Cap. 2, p. 73-235.
- MURRAY, R.W.; MILLER, D.J., KRYC, K.A. Analysis of Major and Trace Elements in Rocks, Sediments, and Interstitial Waters by Inductively Coupled Plasmaatomic Emission Spectrometry (ICP-AES). ODP Technical Note, 29, 2000. Disponível em: http://wwwodp.tamu.edu/publications/tnotes/tn29/INDEX.HTM. Acesso em 2 de julho de 2012.
- OLIVEIRA, A. B.; OLIVITO, J.P.R.; RODRIGUES-SILVA, D. Caracterização da Unidade Espeleológicas e das Unidades Geomorfológicas da Região do Quadrilátero Ferrífero – MG. Espeleo-Tema. v.22, n.1, p. 61-80, 2011.
- OLLIER, C.D. Laterite profiles, ferricrete and landscape evolution. Z. Geomorphol., 35:165-173, 1991.
- OLLIER, C. & PAIN, C. Regolith, soils and landforms. Chichester, Wiley, 1996. 316p.
- PASSARELLA, S.M. ; MORALES, N. ; SARTORI. J.E. . Uma proposta de compartimentação geomorfológica para a região de Cássia, sudoeste do estado de Minas Gerais. Revista Brasileira de Geomorfologia, v. 11, p. 91-102, 2010.
- PASSARELLA, S.M. (2016). Caracterização e Correlação das Superfícies Geomorficas de Cimeira no Sudoeste de Minas Gerais. Campinas, 194 p. (Tese de Doutorado, Instituto de Geociências/UNICAMP).
- PASSARELLA, S.M.; LADEIRA, F.S.B.; LIESENBERG, V. . Morfometria Da Bacia Do Rio São João, Mg: Uma Proposta de entendimento dos limites e da dinâmica das superfícies erosivas. Revista Brasileira de Geomorfologia, v. 17, p. 241-252, 2016.
- PEREZ-PENA, J.V., AZANON, J.M., AZOR, A. CalHypso: an ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers & Geosciences, [s.l.], v. 6, n. 6, p.1214-1223, 2009.
- PENTEADO, M. P. Fundamentos de Geomorfológia. 3ªed. Rio de Janeiro: IBGE, 1980.
- PETERNEL, R.; TROUW, R. A. J. ; SCHMITT, R. S. . Interferência entre duas faixas móveis neoproterozóicas: o caso das faixas Brasília e Ribeira no sudeste do Brasil. Revista Brasileira de Geociências, v. 35(3), p. 297-310, 2005.
- PILÓ, L. B.; AULER, A. S. Cavernas em Minério de Ferro e Canga de Capão Xavier, Quadrilátero Ferrífero, MG. O Carste. Ed. Especial. v. 17, n. 3. p. 92-105. 2005.
- PONÇANO, W.L.; ALMEIDA, F.F. Superfícies Erosivas nos Planaltos Cristalinos do Leste Paulista e Adjacências: uma revisão. Cadernos IG/UNICAMP, Campinas, v.3, n.1, p.55-90, 1993.
- RABASSA, J., CARIGNANO, C., CIOCCALE, M. Gondwana Paleosurfaces in Argentina: na Introduction. Geociências. v.29, n. 4, p. 439-466, 2010.
- RABASSA, J. Gondwana Paleolandscaes: Long-Term Landscape Evolution, Genesis, Distribution and Age. Geociências. v.29, n. 4, p. 541-570, 2010.

- RENÓ, R.; DUQUE, T. R. F.; LUCON, T. N.; LEVY, M. O. P.; SIMÕES, P. R. Considerações sobre o Carste em Quartzito do Parque Estadual do Itacolomi, Mariana/Ouro Preto – MG. ANAIS do XXX Congresso Brasileiro de Espeleologia. Montes Claros, 2009.
- RIBEIRO, L.F., SIQUEIRA RIBEIRO, M.C. Paleosurfaces Mapping and Associated Supergene Copper Deposits Identification as Mineral Exploration tool Itapeva and Ribeirão Branco Region – Ribeira Valley, State of São Paulo, Brazil. Geociências. v.29, n. 4, p. 519-526, 2010.
- RICCOMINI, C. (1989) O Rift Continental do Brasil. São Paulo, 256 p. (Tese de Doutorado, Instituto de Geociências/USP).
- RICCOMINI, C., 1992, Some remarks on neotectonic movements in southeastern Brazil, in Lacerda, L.D., Turcq, B., Knoppers, B., and Kjerfve, B., eds, Paleoclimatic changes and the carbon cycle: Rio de Janeiro, Sociedade Brasileira de Geoquímica, pp. 73-79.
- RICCOMINI, C., 1995, Tectonismo gerador e deformador dos depósitos sedimentarespós-gondvânicos da porção centro-oriental do Estado de São Paulo e áreas vizinhas: "Livre-docência" thesis, Institute of Geosciences, University of São Paulo, Brazil, 100 p.
- RICCOMINI, C. & ASSUMPÇÃO, M., 1999. Quaternary tectonics in Brazil. Episodes, 22: pg. 221- 225.
- RIETVELD, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Cryst., n.2, p.65-71, 1969.
- RODRIGUES, S. W. O. ; BRITO NEVES, B. B. . Padrões Isotópicos Sm-Nd no limite entre os terrenos Alto Pajeú e Alto Moxotó (PB). Revista Brasileira de Geociências, v. 38, p. 209-225, 2008.
- ROSEMBLUM, S; BROWNFIELD, I. K. Magnetic Susceptibilities of Minerals. v. 99, ed. 529. U.S. Geological Survey open-file report, 2000. 74 p.
- ROSIERE, C. A. ; CHEMALE Jr., F. . Itabiritos e Minérios de Ferro de Alto Teor do Quadrilátero Ferrífero - uma visão geral e discussão. Geonomos. Belo Horizonte, v. 8, n. 2, p. 27-42, 2000.
- ROSS, J. L. S. O Registro Cartográfico dos Fatos Geomórficos e a Questão da Taxonomia do Relevo, Revista do Departamento de Geografia, FFLCH-USP, São Paulo, n.6, p.17-29, 1992.
- ROSSETTI, D. F. Paleosurfaces from Northeastern Amazonia as a Key for Reconstructing Paleolandscapes and Understanding Weathering Products. Sedimentary Geology, v. 169, p. 151-174, 2004.
- RUCHKYS, U. A. Geoparques e a Musealização do Território: um estudo sobre o Quadrilátero Ferrífero. Geologia USP. Publicação Especial, São Paulo, v.5, p. 35-46, 2009.
- SAADI, A. Neotectonica da Plataforma Brasileira: esboço e interpretação preliminares. Geonomos. v. 1, n.1, p. 1–15, 1993.

- SALGADO, A. A. R.; BRAUCHER, R.; COLIN, F.; NALINI JR, H. A.; VARAJÃO, A. F.D.C.; VARAJÃO, C. A. C. Denudation Rates of the Quadrilátero Ferrífero (Minas Gerais, Brazil): preliminary results from measurements of solute fluxes in rivers and in situ-produced cosmogenis 10Be. Journal of Geochemical Exploration, v.88, p. 313-317, 2006.
- SALGADO, A. A. R; VARAJÃO, C.A.C.; COLIN, F.; BRAUCHER, R.; VARAJÃI, A.F.D.C.; BALINI JÚNIOR, H.A.; CHEREM, L.F.S.; MARENT, B.R.; BRINDUSA, C.B. Estimativa das Taxas de Erosão das Terras Altas da Alta Bacia do Rio das Velhas no Quadrilátero Ferrífero: implicações para a evolução do relevo. Revista Brasileira de Geomorfologia. Ano 8, n. 2, 2007.
- SALGADO, A. A. R. Superfícies de Aplainamento: antigos paradigmas revistos pela ótica dos novos conhecimentos geomorfológicos. Geografias Artigos Científicos. Belo Horizonte, v.3, n.1, p. 64-78, 2007.
- SALAMUNI, E. Tectônica da Bacia Sedimentar de Curitiba (PR). 1998. 214 f. Tese (Doutorado) - Curso de Geologia Regional, Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista-Rio Claro, Rio Claro, 1998.SANT'ANNA, L.G., SCHORSCHER, H.D., RICCOMINI, C. Cenozoic Tectonics of the Fonseca Basin region, Eastern Quadrilatero Ferrifero, MG, Brazil. Journal of South American Earth Sciences. v. 10, n.3/4, p. 275–284. 1997.
- SALVADOR, E.D., and Riccomini, C., 1995, Neotectônica do Alto estrutural de Queluz (SP-RJ), Brasil: Revista Brasileira de Geociências, v. 25, no. 3, pp. 151-164.
- SANT'ANNA, L.G., Schorscher, H.D., and Riccomini, C., 1997, Cenozoic tectonics of the Fonseca basin region, eastern Quadrilátero Ferrífero, MG, Brazil: Journal of South American Earth Sciences: v. 10, nos. 3-4, pp. 275-284.
- SANSON, M. S. R. Sistemas deposicionais aluviais e tectônica rúptil cenozóica na região de Volta Redonda (RJ) - Rift Continental do Sudeste do Brasil. 2006.142 f. Dissertação (Mestrado) - Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.
- SARGES, R. R. Morfologia de lagos da região do médio Vale do Rio Doce,.Minas Gerais, e a sua relação com a tectônica quaternária. 2002. 188 f. Dissertação (Mestrado) - Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2002.
- SANTOS, L. D. Caracterização Microestrutural de Minérios de Ferro do Quadrilátero Ferrífero – MG. 2002. Tese (Pós-gradução em Engenharia Metalúrgica e de Minas). Belo Horizonte: Universidade Federal de Minas Gerais. 178p.
- SOARES C.J.; Guedes, S.; Tello S., C.A.; LIXANDRAO-FILHO, A.; BALAN, A. M. O. A.; Alencar, Igor; Dias, A.N.C.; Hadler, J.C. Further investigation of the initial fission-track length and geometry factor in apatite fission-track thermochronology. The American Mineralogist, v. 98, p. 1381-1392, 2013.
- SOARES C.J.; GUEDES, S. ; HADLER, J.C. ; MERTZ-KRAUS, R. ; ZACK, T. ; lunes, P.J. . Novel calibration for LA-ICP-MS-based fission-track thermochronology. Physics and Chemistry of Minerals, v. 41, p. 65-73, 2014.

- SOARES C.J.; GUEDES, S. ; JONCKHEERE, R. ; HADLER, J.C. ; PASSARELLA, S.M. ; DIAS, A.N.C. . Apatite fission-track analysis of Cretaceous alkaline rocks of Ponta Grossa and Alto Paranaíba Arches, Brazil. Geological Journal, 2015.
- SCHUMM, S. A; Patton, P C. Ephemeral-stream processes: Implications for studies of Quaternary valley fills. Quaternary Research, [s.l.], v. 15, p.24-43, jan. 1981.
- SCHUMM, STANLEY A. Alluvial river response to active tectonics. In: A SCHUMM, Stanley (Ed.). Active tectonics. Cambridge: Cambridge University Press, 1986. p. 80-94.
- SCHUMM STANLEY A. Active Tectonics and Alluvial Rivers. In: Dumont, F J; Holbrook, J M (Ed.). Active Tectonics and Alluvial Rivers. Cambridge: Cambridge University Press, 2000. p. 276.
- SCHUMM STANLEY A. Rivers and humans—Unintended consequences. In: GUPTA, A. (Ed.). Large Rivers: Geomorphology and Management. Chichester: John Wiley & Sons, 2007. p. 517-533.
- SHAHZAD, FAIZAL; MAHMOOD, SYED AMER; GLOAGUEN, RICHARD. Drainage network and lineament analysis: an approach for Potwar Plateau (northern Pakistan). Journal Of Mountain Sciences, [s.l.], v. 1, n. 6, p.14-24, fev. 2009.
- SHAHZAD, FAIZAL; GLOAGUEN, RICHARD. TecDEM: A MATLAB based toolbox for tectonic geomorphology, part 1: drainage network preprocessing and stream profile analysis. Comp & Geoci, [s.l.], v. 1, n. 1, p.250-260, fev. 2011(a).
- SHAHZAD, FAIZAL; GLOAGUEN, RICHARD. TecDEM: A MATLAB based toolbox for tectonic geomorphology, part 2: Surface dynamics and basin analysis. Comp & Geoci, [s.l.], v. 1, n. 37, p.261-271, fev. 2011(b).
- SILVA, T.I. RODRIGUES, S.C. Tutorial de Cartografia Geomorfológica ArcGis 9.2 e Envi 4.0. Revista Geográfica Acadêmica, v.3, n.2, p. 1-65. Instituto de Geografia, Laboratório de Geomorfologia e Erosão dos Solos, UFU, 2009.
- SIMÕES, LUÍS AMARANTE. Dobras em bainha macroscópicas relacionadas ao cisalhamento dúctil de baixo ângulo da Nappe Araxá-Canastra. Geociências, São Paulo, v. 12, n. 1, p.111-121, jan. 1993
- SPIER, C. A. Geoquímica e Gênese das Formações Ferríferas Bandadas e do Minério
- SOARES, C. J. et al. Further investigation of the initial fission-track length and geometry factor in apatite fission-track thermochronology. American Mineralogist, [s.l.], v. 98, n. 8-9,p.1381-1392,1ago.a2013.aGeoScienceWorld.a
- SUMMERFIELD, M. Neotectonics and landform genesis. Progress In Physical Geography, [s.l.], v. 11, n. 11, p.384-397, 1987.
- SUMMERFIELD, M. Global Geomorphology: An Introduction to the Study of Landfornis. New York: John Wiley Inc, 1991. 537 f.
- STEINER, SAMAR DOS SANTOS. Aquisição e processamento de dados morfométricos derivados do modelo digital de elevação SRTM. 2007. 1 v. Dissertação (Mestrado) - Curso de Geologia, Epartamento de Geologia Sedimentar e Ambiental, Universidade de São Paulo-usp, São Paulo, 2007.

- STRAHLER, A N. Quantitative analysis of watershed geomorphology. Transactions Of The American Geophysical Union,Si, v. 6, n. 8, p.913-920, jan. 1957.
- SUVIRES, G. M. Paleosurfaces and Relief Evolution in Cratonic Areas of the Western Pampean Ranges (Province of San Juan, Argentina). Geociências. v.29, n. 4, p. 501-509, 2010.
- TAGAMI, T., 2005. Zircon Fission-Track Thermochronology and Applications to Fault Studies. Reviews in Mineralogy and Geochemistry, 58, 95-122.
- TARDY, Y. Pétrologie des Latentes et des Sois Tropicaux. Masson, Paris, 1993. 459 p.
- TELLO S., C. A. ; <u>HACKSPACHER, P.</u>; <u>HADLER N., J. C.</u>; IUNES, P. J. ; <u>GUEDES</u>, <u>S.</u>; <u>RIBEIRO B., L. F.</u>; <u>PAULO, S. R.</u>. Recognition of Cretaceous, Paleocene and Neogene tectonic reactivation through aptite fissio-track anlysis in Precambrian areas of southeast Brazil: Association with the opening of the south Atlantic Ocean. Journal of South American Earth Sciences, Grã-Bretanha, v. 15, p. 765-774, 2003.
- TELLO S., C. A. ; <u>HADLER, J C</u>; IUNES, P J ; <u>GUEDES, S</u>; <u>HACKSPACHER, P</u> <u>C</u>; <u>RIBEIRO, L F B</u>; <u>PAULO, S R</u>; OSÓRIO, A M A . Thermochronology of the South American Platform in the state of São Paulo, Brazil, trough apatite fission track. Radiation Measurements, Grã-Bretanha, v. 39, p. 635-640, 2005
- TOLEDO,M.C.; OLIVEIRA,S.M.; MELFI, A.J. Intemperismo e Formação do Solo. In: TEIXEIRA, W. Et al (org.). Decifrando a Terra. São Paulo: Oficina de Textos, 2000.
- THÉVENIAUT, H.; QUESNEL, F.; WYNS, R.; HUGUES, G. Palaeomagnetic Dating of the "Borne de Fer" Ferricrete (NE France): Lower Cretaceous continental weathering. Palaeogeography, Palaeoclimatology, Palaeoecology. v. 253, p.271–279, 2007.
- THIRY, M.; MILNES, A. R.; RAYOT, V.; SIMON-COINÇON, R. Interpretation of Palaeoweathering Features and Successive Silicifications in the Tertiary Regolith of Inland Australia. Journal of the Geological Society. v.163, p. 723-736, 2006.
- TWIDALE, C.R. e BOURNE, J.A. The Use of Duricrusts and Tipographic Relationships in Geomorphological Correlation: conclusions based in Australian experience. Catena. v. 33, p. 105-122, 1998.
- VALADÃO, R.C. Evolução de Longo-termo do Relevo do Brasil Oriental: desnudação, superfície de aplanamento e movimentos crustais. Salvador: IGEO/UFBA, 1998. 243p. (Inclui anexo com 27 figuras). (Tese de Doutorado).
 - Geodinâmica de Superfícies de Aplainamento, Desnudação Continental e Tectônica Ativa como Condicionantes da Megageomorfologia do Brasil Oriental. **Revista Brasileira de Geomorfologia**, v. 10, n.2, p. 77-90, 2009.
- VALERIANO, C. M. et al. U-Pb geochronology of the southern Brasília belt (SE-Brazil):sedimentary provenance, Neoproterozoic orogeny and assemblyof west gondwana. Precambrian Research, [s.l.], v. 1, n. 130, p.27-55. 2004.

- VASCONCELOS, P. M.; BECKER, T.A.; RENNE, P. R.; BRIMHALL, G. H. Age and Duration of Weathering by 40K-40Ar and 40Ar/39Ar Analysis of Potassiummanganese Oxides. Science. v. 258. n. 5081, p. 451+, 1992.
- VARAJÃO, C. A. C. A questão da Correlação das Superfícies de Erosão do Quadrilátero Ferrífero, Minas Gerais. Revista Brasileira de Geociências. v. 21, n. 2, p. 138-145, 1991.
- VARAJÃO, C. A. C.; SALGADO, A. A. R.; VARAJÃO, A. F. D. C.; BRAUCHER, R.; COLIN, F.; NALINI JR, H. A. Estudo da Evolução da Paisagem do Quadrilátero Ferrífero (Minas Gerais, Brasil) por meio da Mensuração das Taxas de Erosão (10Be) e da Pedogênese. Revista Brasileira de Ciências do Solo, v. 33, p. 1409-1425, 2009.
- VENDEMIATTO, M. A. & ENZWEILER, J. Routine Control of Accuracy in Silicate Rock Analysis by X-ray Fluorescence Spectrometry. **Geostandards and Geoanalytical Research**, v. 25, p.283-291, 2001. 244
- VERDUM, R., SOARES, V. G. Dynamics and Erosion/Deposicional Processes in the Interior of the Sand Deposits, Southewestern Rio Grande do Sul, Brazil. Geociências. v.29, n. 4, p. 511-517, 2010.
- VERÍSSIMO, C. Jazida de Alegria: Gênese e tipologia dos minérios de ferro (Minas 3, 4 e 5 – Porção Ocidental), Instituto de Geociências e Ciências Exatas. Tese de Doutorado. Universidade Estadual Paulista – UNESP, Rio Claro, 234p.
- WAGNER, G.A. and HEJL, E. (1991). Apatite fission-track age- spectrum based on projected track-length analysis. Chem. Geol. (Isot. Geosci. Section) 87, 1–9.
- WAGNER, G. A. & VAN den HAUTE, P. (1992), Fission-Track Dating , 285 pp., Enke, Stuttgart, Germany.
- WIDDOWSON, M. Tertiary and Pré-Tertiary Palaeosurfaces: recognition, reconstruction and environmental interpretation. Journal of the Geological Society, London, v. 152, p. 193-195, 1995.
- YAMADA, R., MURAKAMI, M., TAGAMI, T., 2007. Statistical modelling of annealing kinetics of fissiontracks in zircon. Chem. Geol. 236, 75-91.
- ZANARDO, A., OLIVEIRA, M.A.F., DEL LAMA, E.A. Geologia do Grupo Araxá na região de Passos SãoSebastião do Paraíso, sul de Minas Gerais. Geociências, São Paulo vol.15, nº1, p.1-337, Jan./Jun.1996.

Anexos

N° das Bac	as do Valor do índice Hi
polígono 1	
1	0.240574
2	0.408402
3	0.2091
4	0.136918
5	0.149645
6	0.26072
7	0.340336
8	0.130815
9	0.25492
10	0.109953
11	0.130342
12	0.132568
13	0.048742
14	0.097419

Tabela 1-Tabela co	om o	valor	médio	do	deslocamento	dos	canais	de	4ª	ordem	das
bacias do polígono	1.										

N° das Bacias do	Valor do índice Hi
polígono 1	
15	0.151456
16	0.12976
17	0.208915
18	0.120896
19	0.280311
20	0.111139
21	0.141096
22	0.226298
23	0.206977
24	0.133481
25	0.123735
26	0.10122
27	0.117698
28	0.71565

Canais	Fator de	Direção do basculamento por	45	0.296296	280.304.846.000.000.000
de 4" ordem	simetria topográfica	treço	46	0.259091	288.434.949.000.000.000
1	transversal	333 434 949 000 000 000	47	0.202703	119.744.881.000.000.000
1	0.005238	320 527 539 999 909 000	48	0.212121	150.255.119.000.000.000
2	0.095256	336 801 408 000 000 000	49	0.5	289.983.107.000.000.000
1	0.337662	137 726 311 000 000 000	50	0.944444	190.784.298.000.000.000
	0.557632	154 536 655 000 000 000	51	0.822511	185.710.592.999.999.000
6	0.509091	188 130 101 999 999 000	52	0.497159	188.130.101.999.999.000
7	0.477273	190 784 298 000 000 000	53	0.468023	188.130.101.999.999.000
, 8	0.582573	190 784 298 000 000 000	54	0.340909	185.194.429.000.000.000
9	0.433333	207 645 974 999 999 000	55	0.3	188.130.101.999.999.000
10	0.135468	287.650.124.000.000.000	56	0.271605	192.804.266.000.000.000
11	0.405405	288.434.949.000.000.000	57	0.3	193.392.497.999.999.000
12	0.131579	285.945.396.000.000.000	58	0.387755	76.607.501.999.999.900
13	0.255682	307.874.983.999.999.000	59	0.228147	107.650.124.000.000.000
14	0.823864	155.556.045.000.000.000	60	0.162162	108.434.949.000.000.000
15	0.543988	140.527.539.999.999.000	61	0.457627	90.000.000.000.000.000
16	0.333333	153.434.948.999.999.000	62	0.465753	147.528.808.000.000.000
17	0.124788	141.009.006.000.000.000	63	0.282609	156.801.409.000.000.000
18	0.261324	169.215.701.999.999.000	64	0.358804	15.945.396.000.000.000
19	0.505515	332.354.024.999.999.000	65	0.419825	15.945.396.000.000.000
20	0.680952	47.726.311.000.000.000	66	0.213018	13.392.498.000.000.000
21	0.77907	51.009.005.999.999.900	67	0.139535	20.854.458.000.000.000
22	0.717949	68.198.590.999.999.900	68	0.020833	20.854.458.000.000.000
23	0.387097	74.744.881.000.000.000	69	0.147059	40.601.295.000.000.000
24	0.52381	97.765.165.999.999.900	70	0.307018	41.987.212.000.000.000
25	0.884615	126.384.352.000.000.000	71	0.358974	31.759.480.000.000.000
26	0.61039	160.709.954.000.000.000	72	0.102564	17.650.124.000.000.000
27	0.521886	115.463.345.000.000.000	73	0.086322	92.602.562.000.000.000
28	0.45098	87.397.437.999.999.900	74	0.299065	98.130.101.999.999.900
29	0.718194	100.784.298.000.000.000	75	0.317629	105.255.118.999.999.000
30	0.314815	111.801.409.000.000.000	76	0.409836	105.255.118.999.999.000
31	0.317073	92.726.310.999.999.900	77	0.666667	110.854.457.999.999.000
32	0.18	92.602.562.000.000.000	78	0.648526	124.286.877.000.000.000
33	0.019481	272.602.561.999.999.000	79	0.681818	124.286.877.000.000.000
34	0.382979	135.000.000.000.000.000	80	0.646465	152.354.025.000.000.000
35	0.210526	125.837.653.000.000.000	81	0.857143	68.749.493.999.999.900
36	0.320755	156.801.409.000.000.000	82	0.418744	10.784.298.000.000.000
37	0.442308	166.607.502.000.000.000	83	0.589286	19.983.107.000.000.000
38	0.342105	332.241.459.000.000.000	84	0.760563	11.309.932.000.000.000
39	0.27027	126.027.373.000.000.000	85	0.282836	52.305.759.999.999.900
40	0.020408	299.744.881.000.000.000	86	0.36	27.645.975.000.000.000
41	0.625	18.434.949.000.000.000	87	0.339623	20.854.458.000.000.000

Tabela 2-Tabela com todos os canais de 4^ª ordem do polígono 1 e seus respectivos fatores de simetria topográfica transversal e direção de basculamento por trecho.

42	0.62069	27.758.541.000.000.000	00	0 275184	53 615 648 000 000 000
43	0.094044	39.289.406.999.999.900	00 80	0.275184	246 801 400 000 000 000
44	0.421053	43.264.294.999.999.900	69	0.221759	240.801.409.000.000.000
90	0.08	221.820.169.999.999.000			
91	0.15	213.690.068.000.000.000			
92	0.215488	155.556.045.000.000.000			
93	0.275	182.726.311.000.000.000			
94	0.367647	207.758.541.000.000.000			
95	0.175926	213.690.068.000.000.000			
96	0.097087	182.726.311.000.000.000			
97	0.029717	182.726.311.000.000.000			
98	0.147059	26.565.051.000.000.000			
99	0.041667	210.963.756.999.999.000			
100	0.142857	211.759.480.000.000.000			
101	0.304348	206.565.051.000.000.000			
102	0.434211	216.027.373.000.000.000			
103	0.388889	195.945.395.999.999.000			
104	0.469444	196.699.243.999.999.000			
105	0.551282	188.130.101.999.999.000			
106	0.561644	193.392.497.999.999.000			
107	0.016254	190.784.298.000.000.000			
108	0.458333	116.565.051.000.000.000			
109	0.159091	135.000.000.000.000.000			
110	0.216667	135.000.000.000.000.000			
111	0.289256	154.536.655.000.000.000			
112	0.175953	160.016.893.000.000.000			
113	0.675676	164.054.604.000.000.000			
114	0.456522	167.195.733.999.999.000			
115	0.651767	136.548.158.000.000.000			
116	0.574713	113.198.590.999.999.000			
117	0.4	68.198.590.999.999.900			
118	0.836837	347.195.734.000.000.000			
119	0.583333	8.130.102.000.000.000			
120	0.659091	17.650.124.000.000.000			
121	0.522727	13.392.498.000.000.000			
122	0.82963	8.130.102.000.000.000			
123	0.671642	344.054.603.999.999.000			
124	0.650246	342.349.875.999.999.000			
125	0.608696	177.397.437.999.999.000			
126	0.592105	191.309.932.000.000.000			
127	0.219298	172.234.834.000.000.000			

N° das Bacias	Valor do índice Hi
do polígono 1	
1	0.115511
2	0.145687
3	0.130791
4	0.199286
5	0.788281
6	0.222504
7	0.220042
8	0.740154
9	0.114119
10	0.764766
11	0.125864
12	0.09958
13	0.090464
14	0.135197
15	0.148786
16	0.122383

17	0.109898
18	0.180463
19	0.143796
20	0.102375
21	0.128781
22	0.240633
23	0.146115
24	0.146115
25	0.095108
26	0.139254
27	0.075291
28	0.247585
29	0.139087
30	0.139087
31	0.147904
32	0.068722

Tabela 3- Tabela com o valor médio do deslocamento dos canais de 4ª ordemdas bacias do polígono 2.

Tabela 4-Tabela	com todos os	canais de	4ª ordem	do polígono	2 e seus respectivo	วร
fatores de simetri	ia topográfica	transversa	l e direção	de bascular	nento por trecho.	

Canais de 4ª ordam	Fator de simetria topográfica transvarsal	Direção do basculamento por	111 112	0.034483 0.316356	316.548.158.000.000.000 31.759.480.000.000.000
oruem 1	0.008772	233 072 626 000 000 000	113	0.289855	56.976.132.000.000.000
1	0.170228	20 805 571 000 000 000	114	0.041979	69.145.542.000.000.000
2	0.179528	10.082.107.000.000.000	115	0.073203	105.945.396.000.000.000
3	0.374093	227 750 075 000 000 000	116	0.141176	288.434.949.000.000.000
4	0.192508	226 801 408 000 000 000	117	0.197183	272.726.311.000.000.000
5	0.185529	330.801.408.999.999.000	118	0.209302	254.054.604.000.000.000
0	0.13/300	325.130.102.000.000.000	119	0.049834	254.054.604.000.000.000
/	0.340774	2 726 211 000 000 000	120	0.10625	8.130.102.000.000.000
8	0.114280	2.726.311.000.000.000	121	0.018182	34.286.876.999.999.900
9	0.262726	340.007.302.000.000.000	122	0	90.000.000.000.000.000
10	0.338025	555.772.254.999.999.000	123	0.435644	236.309.932.000.000.000
11	0	90.000.000.000.000	124	0.442308	244.536.655.000.000.000
12	0.216216	126.869.898.000.000.000	125	0.590909	256.607.502.000.000.000
13	0.294118	157.750.976.000.000.000	126	0.211538	221.185.925.000.000.000
14	0.040541	330.945.396.000.000.000	127	0.375	196.699.243.999.999.000
15	0.292208	116.565.051.000.000.000	128	0.278788	228.366.460.999.999.000
16	0.349074	114.227.745.000.000.000	129	0.223404	256.607.502.000.000.000
1/	0.0625	90.000.000.000.000	130	0.388704	344.054.603.999.999.000
18	0.172414	84.559.668.000.000.000	131	0.252	338.749.494.000.000.000
19	0.452/58	84.559.668.000.000.000	132	0.267943	330.255.118.999.999.000
20	0.495547	92.602.562.000.000.000	133	0.470588	329.420.773.000.000.000
21	0.482353	100.784.298.000.000.000	134	0.531646	294.227.745.000.000.000
22	0.461/28	102.804.266.000.000.000	135	0.392857	296.565.050.999.999.000
23	0.480857	148 240 520 000 000 000	136	0.567832	287.650.124.000.000.000
24	0.525077	148.240.520.000.000.000	137	0.642857	278.130.102.000.000.000
25	0.177778	138.576.554.000.000.000	138	0.247401	139.635.462.999.999.000
26	0.526316	245.556.045.000.000.000	139	0.245283	159.775.140.999.999.000
27	0.3	246.801.409.000.000.000	140	0.765957	116.565.051.000.000.000
28	0.093023	256.607.502.000.000.000	141	0.666667	165.963.756.999.999.000
29	0.030095	272.002.301.999.999.000	142	0.375	176.987.212.000.000.000
30	0.080550	278.130.102.000.000.000	143	0.175	105.945.396.000.000.000
31	0.694444	285.945.396.000.000.000	144	0.755556	120.465.545.000.000.000
32	0.681818	311.987.212.000.000.000	145	0.72549	145.491.477.000.000.000
33	0.40/15	318.012.788.000.000.000	146	0.520833	118.810.794.000.000.000
34	0.406977	300.579.227.000.000.000	147	0.333333	307.874.983.999.999.000
35	0.47124	301.759.480.000.000.000	148	0.217391	291.801.408.999.999.000
36	0.635886	302.471.191.999.999.000	149	0.561404	255.256.437.000.000.000
3/	0.333898	204.002.020.000.000.000	150	0.490909	98.130.101.999.999.900
38	0.378151	304.992.020.000.000.000	151	0.632727	101.309.932.000.000.000
39	0.210909	2/7.703.100.000.000.000	152	0.258359	111.801.409.000.000.000
40	0.591837	165.007.302.000.000.000	153	0.242424	90.000.000.000.000.000
41	0.506329	103.903.730.999.999.000	154	0.058355	31.429.566.000.000.000
42	0.088024	182.002.302.000.000.000			

43	0.089189	177.273.688.999.999.000	155	0.5	270.000.000.000.000.000
44	0.164384	166.607.502.000.000.000	156	0.39886	286.699.244.000.000.000
45	0.20625	151.389.540.000.000.000	157	0.336	267.273.688.999.999.000
46	0.33871	125.537.678.000.000.000	158	0.216216	259.215.702.000.000.000
47	0.357143	142.594.642.999.999.000	159	0.434211	237.724.356.000.000.000
48	0.202128	124.380.345.000.000.000	160	0.352941	81.469.234.000.000.000
49	0.180923	100.784.298.000.000.000	161	0.123457	70.709.953.999.999.900
50	0.651852	92.726.310.999.999.900	162	0	90.000.000.000.000.000
51	0.432494	95.440.331.999.999.900	163	0.704545	315.000.000.000.000.000
52	0.735786	81.469.234.000.000.000	164	0.178571	71.565.050.999.999.900
53	0.646154	103.392.498.000.000.000	165	0.462451	275.710.593.000.000.000
54	0.645161	105.945.396.000.000.000	166	0.615836	295.463.345.000.000.000
55	0.55	98.130.101.999.999.900	167	0.577778	283.392.497.999.999.000
56	0.769627	103.392.498.000.000.000	168	0.325	284.036.243.000.000.000
57	0.662338	98.130.101.999.999.900	169	0.272727	284.036.243.000.000.000
58	0.789715	313.667.779.999.999.000	170	0.065574	71.565.050.999.999.900
59	0.53617	312.273.688.999.999.000	171	0.333333	116.565.051.000.000.000
60	0.488095	313.667.779.999.999.000	172	0.303922	147.724.356.000.000.000
61	0.337342	313.602.819.000.000.000	173	0.135714	334.653.823.999.999.000
62	0.315621	287.650.124.000.000.000	174	0.177485	316.636.576.999.999.000
63	0.442529	287.650.124.000.000.000	175	0.05042	285.945.396.000.000.000
64	0.465	288.434.949.000.000.000	176	0.511628	87.273.689.000.000.000
65	0.423671	280.304.846.000.000.000	177	0.425676	81.869.898.000.000.000
66	0.434211	277.765.166.000.000.000	178	0.602871	95.194.429.000.000.000
67	0.567568	270.000.000.000.000.000	179	0.520833	79.215.701.999.999.900
68	0.469697	270.000.000.000.000.000	180	0.226415	251.565.051.000.000.000
69	0.606742	294.443.955.000.000.000	181	0.400549	250.709.954.000.000.000
70	0.780328	293.198.591.000.000.000	182	0.373333	261.027.373.000.000.000
71	0.244186	333.434.949.000.000.000	183	0.380282	275.194.429.000.000.000
72	0.269608	330.255.118.999.999.000	184	0.352841	289.290.046.000.000.000
73	0.58873	335.772.254.999.999.000	185	0.166667	198.434.948.999.999.000
74	0.548387	322.305.760.000.000.000	186	0.555556	208.810.793.999.999.000
75	0.52459	322.305.760.000.000.000	187	0.538462	218.659.808.000.000.000
76	0.456522	10.784.298.000.000.000	188	0.55102	231.709.836.999.999.000
77	0.614973	289.983.107.000.000.000	189	0.208333	231.340.192.000.000.000
78	0.404444	293.198.591.000.000.000	190	0.372093	70.709.953.999.999.900
79	0.525	303.690.068.000.000.000	191	0.308248	20.854.458.000.000.000
80	0.702703	298.610.459.999.999.000	192	0.14	39.093.859.000.000.000
81	0.7375	303.690.068.000.000.000	193	0.298273	73.300.756.000.000.000
82	0.586207	307.303.947.999.999.000	194	0.236364	93.012.788.000.000.000
83	0.321429	310.914.382.999.999.000	195	0.520833	117.758.540.999.999.000
84	0.672109	346.607.502.000.000.000	196	0.307692	128.659.808.000.000.000
85	0.400183	334.653.823.999.999.000	197	0.222222	149.036.243.000.000.000
86	0.465116	323.615.648.000.000.000	198	0.527778	136.847.610.000.000.000
87	0.233333	125.537.678.000.000.000	199	0.580645	169.215.701.999.999.000
88	0.600375	103.392.498.000.000.000	200	0.212766	163.300.756.000.000.000

89	0.443889	115.201.123.999.999.000	201	0.384615	193.392.497.999.999.000
90	0.601563	164.744.880.999.999.000	202	0.15	206.565.051.000.000.000
91	0.40293	166.607.502.000.000.000	203	0.041502	182.726.311.000.000.000
92	0.570028	164.744.880.999.999.000	204	0.419355	182.726.311.000.000.000
93	0.426471	146.976.132.000.000.000	205	0.669856	205.346.176.000.000.000
94	0.276923	146.309.932.000.000.000	206	0.653333	215.537.678.000.000.000
95	0.507692	336.801.408.999.999.000	207	0.73913	212.275.644.000.000.000
96	0.682839	357.137.594.999.999.000	208	0.770642	195.945.395.999.999.000
97	0.508929	315.000.000.000.000.000	209	0.657143	166.759.480.000.000.000
98	0.565733	316.974.934.000.000.000	210	0.558824	110.854.457.999.999.000
99	0.28877	192.804.266.000.000.000	211	0.714286	101.309.932.000.000.000
100	0.153846	196.699.243.999.999.000	212	0.515625	90.000.000.000.000.000
101	0.243665	38.659.807.999.999.900	213	0.078488	127.874.984.000.000.000
102	0.666207	79.215.701.999.999.900	214	0.275862	127.874.984.000.000.000
103	0.553191	79.215.701.999.999.900	215	0	90.000.000.000.000.000
104	0.526961	55.007.980.000.000.000	216	0.136364	161.565.051.000.000.000
105	0.26	310.601.294.999.999.000	217	0.309524	341.565.050.999.999.000
106	0.119403	309.093.859.000.000.000	218	0.315394	318.179.829.999.999.000
107	0.085227	299.744.881.000.000.000	219	0.340746	308.290.163.000.000.000
108	0.02381	154.653.823.999.999.000	220	0.328409	278.530.766.000.000.000
109	0.033333	141.340.192.000.000.000	221	0.324545	92.726.310.999.999.900
110	0.133333	328.240.520.000.000.000	222	0.470356	81.469.234.000.000.000

Tabela 5- Tabela com o valor médio do deslocamento dos canais de 4ª ordem dasbacias do polígono 3.

N° das Bacias do	Valor
polígono 1	do índice Hi
1	0.777697
2	0.071561
3	0.075108
4	0.117382
5	0.685306
6	0.077602
7	0.052143
8	0.088099
9	0.069615
10	0.085164
11	0.651335
12	0.072633
13	0.07635
14	0.089996
15	0.173986
16	0.070215
17	0.065476
18	0.128754
19	0.058396
20	0.090733
21	0.062326
22	0.098932
23	0.062404
24	0.115231
25	0.098566
26	0.074781
27	0.092033
28	0.154094
29	0.082404
30	0.175022
31	0.113063
32	0.161301
33	0.117474
34	0.096915
35	0.129677
36	0.123688
37	0.07899
38	0.097814
39	0.1358

50	0.132592
51	0.122254
52	0.10537
53	0.113005
54	0.0943
55	0.138892
56	0.100942
57	0.09875
58	0.084481
59	0.118263
60	0.117798
61	0.106996
62	0.142734
63	0.105488
64	0.081625
65	0.062161
66	0.073669
67	0.109913
68	0.130693
69	0.12759
70	0.095296
71	0.073235
72	0.109377
73	0.109488
74	0.054603
75	0.108014
76	0.116757
77	0.122643
78	0.121027
79	0.086655
80	0.104136
81	0.068614
82	0.099618
83	0.135794
84	0.104066
85	0.102559
86	0.163283
87	0.066265
88	0.136292
89	0.126242
90	0.130369
91	0.065311

92	0.048419
93	0.111887
94	0.075495
95	0.100363
96	0.079259
97	0.115571
98	0.69874
99	0.105226
100	0.771595
101	0.067148
102	0.113487

0.085273
0.089702
0.114276
0.102555
0.08136
0.118771
0.137327
0.103137
0.111971
0.143975

Tabela 6-Tabela com todos os canais de 4ª ordem do polígono 3 e seus respectiv	vos
fatores de simetria topográfica transversal e direção de basculamento por trecho.	

			53	0.153302	239.036.243.000.000.000
Canais de 4ª	Fator de simetria	Direção do basculamento p	54	0.104651	238.240.520.000.000.000
ordem	topográfica transversal	, treço	55	0.469388	244.653.823.999.999.000
1	0.545455	313.531.199.000.000	56	0.181818	246.801.409.000.000.000
2	0.5	316.636.576.999.999	57	0.036364	95.710.593.000.000.000
3	0.138889	133.264.295.000.000	58	0.468975	103.392.498.000.000.000
4	0.371184	84.559.668.000.000	59	0.302521	74.054.603.999.999.900
5	0.50814	98.530.766.000.000	60	0.894737	90.000.000.000.000.000
6	0.446429	285.945.396.000.000	61	0.610465	101.309.932.000.000.000
7	0.418182	258.690.068.000.000	62	0.415709	98.130.101.999.999.900
8	0.213333	299.357.754.000.000	63	0.451505	74.475.888.999.999.900
9	0.206066	321.009.006.000.000	64	0.442105	51.009.005.999.999.900
10	0.103896	313.667.779.999.999	65	0.48	56,309,932,000,000,000
11	0.141935	22.249.023.999.999	66	0.591787	51.340.192.000.000.000
12	0.307494	195.945.395.999.999	67	0.058824	61.389.539.999.999.900
13	0.7125	188.972.626.999.999	68	0.069565	58 240 519 999 999 900
14	0.021739	188.530.766.000.000	69	0.126168	51,340,192,000,000,000
15	0.037549	5.440.332.000.000	70	0.038835	236 976 132 000 000 000
16	0.129771	20.854.458.000.000	70	0.286667	251 565 051 000 000 000
17	0.546117	18.434.949.000.000	72	0.216667	254 054 604 000 000 000
18	0.309091	41.423.665.999.999	73	0.276471	214 992 020 000 000 000
19	0.615385	13.392.498.000.000	74	0.370126	226 735 705 000 000 000
20	0.952381	8.530.766.000.000	75	0.305085	238 240 520 000 000 000
21	0.945887	83.990.994.000.000	76	0.120879	240 255 119 000 000 000
22	0.763158	90.000.000.000.000	70	0.323529	182 726 311 000 000 000
23	0.264706	71.565.050.999.999	78	0.231707	194 743 562 999 999 000
24	0.380435	5.440.332.000.000	79	0.293878	191.309.932.000.000.000
25	0.121951	158.198.590.999.999	80	0.324074	199,290,045,999,999,000
26	0.081301	168.690.068.000.000	81	0.311688	202 833 654 000 000 000
27	0.092593	182.862.405.000.000	82	0.096923	190.784.298.000.000.000
28	0	90.000.000.000.000	83	0.304348	185.440.332.000.000.000
29	0.252063	205.463.345.000.000	84	0.333333	188.130.101.999.999.000
30	0.690909	203.198.590.999.999	85	0.251142	194.036.243.000.000.000
31	0.309764	199.290.045.999.999	86	0.135593	206,565.051.000.000.000
32	0.103363	174.559.667.999.999	87	0.293333	206,565.051.000.000.000
33	0.102564	174.289.407.000.000	88	0.185897	204.227.745.000.000.000
34	0.309524	166.607.502.000.000	89	0.747685	345.256.437.000.000.000
35	0.24	156.801.409.000.000	90	0.609023	347.471.191.999.999.000
36	0.30344	188.972.626.999.999	91	0.4375	345.256.437.000.000.000
37	0.733333	196.699.243.999.999	92	0.162963	354.289.406.999.999.000
38	0.50381	348.111.341.999.999	93	0.352941	154.653.823.999.999.000
39	0.530504	24.227.744.999.999	94	0.019608	120.963.757.000.000.000
40	0.806418	11.888.658.000.000	95	0.488889	308.659.808.000.000.000
41	0.247059	211.759.480.000.000	96	0.695652	135.000.000.000.000.000
42	0.650856	191.888.657.999.999			

43	0.510638	169.215.701.999.999 000 97	0.47619	168.690.068.000.000.000
44	0.482143	158.198.590.999.999 000 98	0.240275	168.111.342.000.000.000
45	0.03125	341.565.050.999.999 000 99	0.330435	168.111.342.000.000.000
46	0.028623	334.536.655.000.000 000 00	0.434783	191.309.932.000.000.000
47	0.086168	357.137.594.999.999 000101	0.047826	174.289.407.000.000.000
48	0.104348	324.162.347.000.000 000 02	0.383459	165.256.437.000.000.000
49	0.68254	301.759.480.000.000 000 03	0.269231	161.565.051.000.000.000
50	0.240418	5.440.332.000.000 000 04	0.266106	186.009.006.000.000.000
51	0.202532	15.524.111.000.000 000105	0.336134	103.392.498.000.000.000
52	0.333333	244.536.655.000.000 000		
316	0.333333	194.036.243.000.000.00018	0.306122	8.130.102.000.000.000
317	0.162212	157.750.976.000.000.00419	0.253731	351.469.233.999.999.000
318	0.060362	156.801.409.000.000.00420	0.215164	317.862.405.000.000.000
319	0.230415	334.536.655.000.000.00021	0.262966	313.451.842.000.000.000
320	0.170279	323.972.626.999.999.00422	0.065789	104.036.243.000.000.000
321	0.220588	341.565.050.999.999.00423	0.424242	75.256.437.000.000.000
322	0.326531	339.145.541.999.999.00024	0.736842	50.194.429.000.000.000
323	0.298246	326.309.932.000.000.00425	0	90.000.000.000.000.000
324	0.28	349.215.702.000.000.00026	0.190476	228.576.334.000.000.000
325	0.371429	344.054.603.999.999.00027	0.197531	210.963.756.999.999.000
326	0.269231	344.054.603.999.999.00028	0.048443	43.363.422.999.999.900
327	0.332804	322.696.052.000.000.00429	0.172414	238.570.434.000.000.000
328	0.15	324.462.321.999.999.00030	0.594183	133.531.198.999.999.000
329	0.388889	326.976.132.000.000.00431	0.526316	135.000.000.000.000.000
330	0.497076	308.990.994.000.000.00432	0.6	106.699.243.999.999.000
331	0.636607	28.810.794.000.000.00433	0.519231	108.434.949.000.000.000
332	0.715944	17.525.568.000.000.00434	0.628319	162.474.432.000.000.000
333	0.645604	343.300.755.999.999.00435	0.347826	171.469.234.000.000.000
334	0.666667	334.536.655.000.000.00436	0.018056	340.709.953.999.999.000
335	0.529412	335.772.254.999.999.00437	0.444444	340.709.953.999.999.000
336	0.234749	49.899.092.000.000.00438	0.169591	332.241.459.000.000.000
337	0	90.000.000.000.000.00439	0.148352	74.054.603.999.999.900
338	0.028846	63.434.949.000.000.000440	0.28	59.931.417.000.000.000
339	0.185185	255.963.756.999.999.00041	0.079365	73.300.756.000.000.000
340	0.346154	171.869.898.000.000.000442	0.180412	75.963.757.000.000.000
341	0.205231	148.240.520.000.000.000443	0.467692	87.137.595.000.000.000
342	0.5625	318.179.829.999.999.000444	0.533333	104.036.243.000.000.000
343	0.527778	326.309.932.000.000.000445	0.574468	124.380.345.000.000.000
344	0.282258	104.036.243.000.000.000446	0.521739	135.000.000.000.000.000
345	0.277778	90.000.000.000.000.000447	0.030303	348.690.068.000.000.000
346	0.202703	130.364.537.000.000.000448	0.680851	316.847.609.999.999.000
347	0.177083	131.633.539.000.000.000449	0.5	302.275.644.000.000.000
348	0.395652	113.198.590.999.999.00450	0.666667	84.559.668.000.000.000
349	0.37037	103.392.498.000.000.00451	0.647059	70.709.953.999.999.900
350	0.490909	90.000.000.000.000.00452	0.104575	81.469.234.000.000.000
351	0.27972	109.290.046.000.000.00453	0.061463	100.784.298.000.000.000

352	0.1	295.463.345.000.000	.00@54	0.041502	95.440.331.999.999.900
353	0.368664	298.810.793.999.999	.00@55	0.519481	188.130.101.999.999.000
354	0.25	304.380.344.999.999	.00456	0.56	202.833.654.000.000.000
355	0.272727	327.724.356.000.000	.00 4 57	0.557029	196.699.243.999.999.000
356	0.314241	332.241.459.000.000	.00 4 58	0.653061	236.309.932.000.000.000
357	0.153846	315.000.000.000.000	.00@59	0.571429	250.709.954.000.000.000
358	0.278075	148.240.520.000.000	.00 4 60	0.368664	250.709.954.000.000.000
359	0.241602	131.820.169.999.999	.00@61	0.534805	267.137.594.999.999.000
360	0.229768	152.241.458.999.999	.00@62	0.346667	255.963.756.999.999.000
361	0.103846	341.565.050.999.999	.00@63	0.28125	261.869.897.999.999.000
362	0.252874	330.255.118.999.999	.000464	0.454545	258.690.068.000.000.000
363	0.572681	322.696.052.000.000	.00@65	0.666667	275.710.593.000.000.000
364	0.449438	306.869.897.999.999	.00466	0.485294	259.215.702.000.000.000
365	0.577009	294.443.955.000.000	.00@67	0.670194	272.726.311.000.000.000
366	0.314286	295.463.345.000.000	.000468	0.639053	286.699.244.000.000.000
367	0.1875	290.854.458.000.000	.00@69	0.76	288.434.949.000.000.000
368	0.382979	135.000.000.000.000	.00 4 70	0.596491	272.862.405.000.000.000
369	0.738636	124.380.345.000.000	.000/71	0.744186	318.366.461.000.000.000
370	0.233844	136.468.801.000.000	.00072	0.145714	310.364.536.999.999.000
371	0.588235	139.635.462.999.999	.000473	0.133562	133.531.198.999.999.000
372	0.870629	166.607.502.000.000	.00074	0.340426	113.198.590.999.999.000
373	0.827998	146.976.132.000.000	.00@75	0.551724	10.784.298.000.000.000
374	0.72973	116.565.051.000.000	.00@76	0.169492	343.300.755.999.999.000
375	0.66129	118.810.794.000.000	.000477	0.139873	325.007.979.999.999.000
376	0.564744	130.364.537.000.000	.000478	0.052395	323.130.102.000.000.000
377	0.111111	208.810.793.999.999	.00@79	0.027778	143.130.101.999.999.000
378	0.094549	234.782.407.000.000	.00@80	0.228739	324.162.347.000.000.000
379	0.388889	63.434.949.000.000	.00@81	0.0375	297.645.975.000.000.000
380	0.428571	14.743.563.000.000	.00@82	0.055556	316.548.158.000.000.000
381	0.20125	113.198.590.999.999	.00@83	0.65625	81.869.898.000.000.000
382	0.295579	110.224.859.000.000	.00@84	0.717949	59.036.242.999.999.900
383	0.331439	155.556.045.000.000	.00@85	0.556725	51.709.837.000.000.000
384	0.173077	135.000.000.000.000	.00@86	0.619021	64.536.654.999.999.900
385	0.082707	90.000.000.000.000	.00@87	0.702948	2.862.405.000.000.000
386	0.056897	272.726.311.000.000	.00488	0.708333	338.198.591.000.000.000
387	0.361702	294.443.955.000.000	.00@89	0.104167	215.537.678.000.000.000
388	0.641026	290.854.458.000.000	.00@90	0.345085	14.743.563.000.000.000
389	0.425	284.036.243.000.000	.00@91	0.158361	2.726.311.000.000.000
390	0.394984	285.255.118.999.999	.00@92	0	90.000.000.000.000
391	0.481481	2.862.405.000.000	.00@93	0.169231	343.300.755.999.999.000
392	0.06422	11.309.932.000.000	.00@94	0.044776	351.469.233.999.999.000
393	0.092593	211.759.480.000.000	.00@95	0.14	164.054.604.000.000.000
394	0.55814	255.963.756.999.999	.00@96	0.114286	171.869.898.000.000.000
395	0.197802	289.290.046.000.000	.00497	0.198613	166.607.502.000.000.000
396	0.489796	303.023.867.999.999	.00498	0.444444	166.607.502.000.000.000
397	0.285714	281.888.658.000.000	.00499	0.447761	185.710.592.999.999.000

141.340.192.000.000.000	0.399093	108.434.949.000.000.00 6 00	0.142857	398
152.354.025.000.000.000	0.5775	145.619.654.999.999.00001	0.270833	399
16.699.244.000.000.000	0.216667	168.690.068.000.000.00 0 02	0.171569	400
90.000.000.000.000.000	0	193.392.497.999.999.00003	0.072917	401
21.801.409.000.000.000	0.135484	200.224.859.000.000.00004	0.118993	402
209.744.880.999.999.000	0.248804	201.801.409.000.000.000005	0.28	403
237.994.617.000.000.000	0.336842	171.869.898.000.000.00 0 06	0.190909	404
259.215.702.000.000.000	0.205128	190.784.298.000.000.00 0 07	0.184094	405
95.440.331.999.999.900	0.152979	204.227.745.000.000.00008	0.145191	406
41.185.924.999.999.900	0.241379	46.735.705.000.000.00009	0.184704	407
56.976.132.000.000.000	0.198511	41.820.169.999.999.90 0 10	0.325792	408
30.068.583.000.000.000	0.25731	40.100.907.999.999.90 0 11	0.347368	409
2.726.311.000.000.000	0.026316	41.633.538.999.999.90012	0.137731	410
185.710.592.999.999.000	0.097561	217.874.984.000.000.00013	0.23088	411
177.273.688.999.999.000	0.6	228.366.460.999.999.00 0 14	0.176471	412
204.227.745.000.000.000	0.557692	10.784.298.000.000.00015	0.113208	413
304.992.020.000.000.000	0.276596	16.699.244.000.000.00 0 16	0.104167	414
346.759.480.000.000.000	0.070234	90.000.000.000.000.00 6 17	0	415
193.392.497.999.999.000	0.211538	161.565.051.000.000.00018	0.043689	416
216.384.352.000.000.000	0.416667	130.596.973.935.445.00019	0.251594929	417
300.963.756.999.999.000	0.173077	235.007.980.000.000.00 6 21	0.293103	520
278.130.102.000.000.000	0.145833	212.275.644.000.000.00 6 22	0.628866	521
272.726.311.000.000.000	0.6	320.527.539.999.999.00 6 23	0.576923	522
264.805.570.999.999.000	0.488889	338.198.591.000.000.00 6 24	0.809524	523
266.987.212.000.000.000	0.5	11.309.932.000.000.00 6 25	0.684211	524
220.100.908.000.000.000	0.434286	5.710.593.000.000.00 6 26	0.671937	525
209.744.880.999.999.000	0.7	100.784.298.000.000.00 6 27	0.37931	526
203.198.590.999.999.000	0.55	90.000.000.000.000.00 6 28	0.424242	527
171.869.898.000.000.000	0.043478	90.000.000.000.000.00 6 29	0.236364	528
2.726.311.000.000.000	0.056628	81.869.898.000.000.00 6 30	0.226852	529
2.602.562.000.000.000	0.062382	79.695.154.000.000.00 6 31	0.269231	530
357.273.688.999.999.000	0.057471	77.195.734.000.000.00 6 32	0.184615	531
357.273.688.999.999.000	0.077135	66.801.409.000.000.00 6 33	0.196078	532
346.607.502.000.000.000	0.083777	60.255.119.000.000.00 6 34	0.173469	533
204.227.745.000.000.000	0.084615	54.462.322.000.000.00 6 35	0.21875	534
40.601.295.000.000.000	0.015152	233.972.626.999.999.00 6 36	0.025862	535
41.987.212.000.000.000	0.012658	225.000.000.000.000.00 6 37	0.560345	536
208.610.459.999.999.000	0.011628	205.463.345.000.000.00 6 38	0.563636	537
31.759.480.000.000.000	0.225806	220.364.537.000.000.00 6 39	0.332734	538
23.198.591.000.000.000	0.475	152.354.025.000.000.00 6 40	0.054054	539
13.392.498.000.000.000	0.335269	163.300.756.000.000.00 6 41	0.614035	540
10.784.298.000.000.000	0.043404	148.240.520.000.000.00 6 42	0.460931	541
8.130.102.000.000.000	0.075472	115.201.123.999.999.00 6 43	0.514359	542
7.765.166.000.000.000	0.418605	111.801.409.000.000.00 6 44	0.269321	543
351.469.233.999.999.000	0.461361	121.759.480.000.000.00 6 45	0.469949	544
169.695.154.000.000.000	0.028424	114.227.745.000.000.00 6 46	0.115942	545

546	0.206897	8.972.626.999.999 <mark>.</mark> 99 6 47	0.414815	156.801.409.000.000.000
547	0.138947	306.384.351.999.999.00 6 48	0.36859	144.462.322.000.000.000
548	0.125	157.166.346.000.000.00 6 49	0.166667	161.565.051.000.000.000
549	0.121429	349.215.702.000.000.00 6 50	0.030612	240.945.395.999.999.000
550	0	90.000.000.000.000.00 6 51	0.32	233.130.101.999.999.000
551	0.610526	318.012.788.000.000.00652	0.442105	264.559.667.999.999.000
552	0.65	316.974.934.000.000.00 6 53	0.05148	87.137.595.000.000.000
553	0.510397	278.530.766.000.000.00 6 54	0.16	236.309.932.000.000.000
554	0.571429	290.854.458.000.000.00 6 55	0.157895	242.354.025.000.000.000
555	0.583333	270.000.000.000.000.00656	0	90.000.000.000.000
556	0.658009	275.440.332.000.000.00657	0.131707	70.709.953.999.999.900
557	0.482759	300.068.582.999.999.00 6 58	0.733333	165.963.756.999.999.000
558	0.419118	10.784.298.000.000.00 6 59	0.464286	156.801.409.000.000.000
559	0.078431	15.945.396.000.000.00 6 60	0.592593	177.137.595.000.000.000
560	0.068041	219.805.570.999.999.00 6 61	0.1875	161.565.051.000.000.000
561	0.101124	251.565.051.000.000.00 6 62	0.666667	345.963.756.999.999.000
562	0.333333	79.215.701.999.999.90 6 63	0.603226	331.189.206.000.000.000
563	0.326271	60.255.119.000.000.00 6 64	0.52	319.899.092.000.000.000
564	0.270588	46.636.577.000.000.00 6 65	0.120301	339.775.141.000.000.000
565	0.173578	34.992.019.999.999.90 6 66	0.432143	185.194.429.000.000.000
566	0.112245	37.303.947.999.999.90 6 67	0.337838	185.710.592.999.999.000
567	0.491005	20.854.458.000.000.00 6 68	0.486772	209.744.880.999.999.000
568	0.21875	90.000.000.000.000.00 6 69	0.281818	205.463.345.000.000.000
569	0.329752	87.273.689.000.000.00 6 70	0.295082	219.093.859.000.000.000
570	0.433333	38.290.163.000.000.00 6 71	0.149254	231.340.192.000.000.000
571	0.419753	160.709.954.000.000.00 6 72	0	90.000.000.000.000
572	0.288462	206.565.051.000.000.00 6 73	0.044341	217.303.947.999.999.000
573	0.075	209.744.880.999.999.00 6 74	0.290698	31.759.480.000.000.000
574	0.317867	38.990.994.000.000.00 6 75	0.037861	207.645.974.999.999.000
575	0.40597	14.036.243.000.000.00 6 76	0.073171	46.468.800.999.999.900
576	0.472826	345.963.756.999.999.00 6 77	0.064516	182.726.311.000.000.000
577	0.142857	354.559.667.999.999.00 6 78	0.299564	169.215.701.999.999.000
578	0.533333	185.194.429.000.000.00 6 79	0.3	156.801.409.000.000.000
579	0.222222	188.530.766.000.000.00 6 80	0.295455	165.963.756.999.999.000
580	0.109091	25.463.345.000.000.00 6 81	0.160417	151.189.206.000.000.000
581	0.196875	25.463.345.000.000.00 6 82	0.221286	49.398.705.000.000.000
582	0.027027	200.854.457.999.999.00 6 83	0.17004	48.012.788.000.000.000
583	0.642857	191.309.932.000.000.00 6 84	0.116265	49.398.705.000.000.000
584	0.74359	198.434.948.999.999.00 6 85	0.329004	25.346.176.000.000.000
585	0.416667	210.963.756.999.999.00 6 86	0.175469	27.645.975.000.000.000
586	0.559441	136.468.801.000.000.00 6 87	0.191011	51.340.192.000.000.000
587	0.5375	123.690.068.000.000.00 6 88	0.013514	30.963.757.000.000.000
588	0.182292	136.636.576.999.999.00 6 89	0.021277	19.290.046.000.000.000
589	0.270833	110.854.457.999.999.00 6 90	0.212121	38.990.994.000.000.000
590	0.148438	138.012.788.000.000.00 6 91	0.421456	48.012.788.000.000.000
591	0.320755	124.992.020.000.000.00692	0.285714	87.397.437.999.999.900

109.290.046.000.000.00	0.421456	304.380.344.999.999.00 6 93	0.484848	592
135.000.000.000.000.00	0.305556	98.530.766.000.000.00 6 94	0.318182	593
307.303.947.999.999.00	0.038462	130.100.908.000.000.00 6 95	0.045714	594
321.709.836.999.999.00	0.680851	126.869.898.000.000.00 6 96	0.301587	595
326.309.932.000.000.00	0.225989	81.869.898.000.000.00 6 97	0.236559	596
124.380.345.000.000.00	0.129076	263.659.808.000.000.00 6 98	0.42328	597
119.054.604.000.000.00	0.080645	122.905.243.000.000.00699	0.617647	598
147.724.356.000.000.00	0.394009	113.198.590.999.999.00000	0.462185	599
168.111.342.000.000.00	0.607417	116.565.051.000.000.00001	0.190476	600
92.602.562.000.000.00	0.069767	90.000.000.000.000.000002	0	601
92.602.562.000.000.00	0.144165	356.987.212.000.000.00003	0.181488	602
92.862.404.999.999.90	0.096711	117.645.975.000.000.00004	0.246094	603
98.530.766.000.000.00	0.034	125.537.678.000.000.00005	0.233333	604
92.726.310.999.999.90	0.18315	119.744.881.000.000.00006	0.204969	605
72.474.431.999.999.90	0.070423	285.945.396.000.000.0000707	0.032258	606
62.354.025.000.000.00	0.15625	92.726.310.999.999.90008	0.151515	607
56.309.932.000.000.00	0.53125	92.602.562.000.000.00009	0.083176	608
16.699.244.000.000.00	0.428571	110.224.859.000.000.000710	0.021277	609
10.784.298.000.000.00	0.645	304.380.344.999.999.00 7 11	0.145455	610
2.602.562.000.000.00	0.511111	297.758.540.999.999.00 0 12	0.238806	611
5.440.332.000.000.00	0.693651	323.130.102.000.000.00013	0.325581	612
8.530.766.000.000.00	0.738462	354.289.406.999.999.00014	0.073171	613
354.805.570.999.999.00	0.606061	334.653.823.999.999.00015	0.199822	614
10.784.298.000.000.00	0.24	50.194.429.000.000.00 0 16	0.675439	615
345.963.756.999.999.00	0.444444	87.137.595.000.000.00 0 17	0.709459	616
301.429.566.000.000.00	0.62069	128.659.808.000.000.00018	0.387692	617
284.036.243.000.000.00	0.30303	90.000.000.000.000.000	0	618
90.000.000.000.000.00	0	333.434.949.000.000.00 0 20	0.3125	619
298.610.459.999.999.00	0.175	251.565.051.000.000.00 0 21	0.121212	620
300.963.756.999.999.00	0.243644	722		
111.801.409.000.000.000	0.171111	284.036.243.000.000.000742	0.262687	723
185.440.332.000.000.000	0.282051	310.601.294.999.999.000743	0.119565	724
164.054.604.000.000.000	0.396226	151.189.206.000.000.000744	0.096774	725
150.255.119.000.000.000	0.272727	177.273.688.999.999.000745	0.071429	726
164.054.604.000.000.000	0.330116	220.601.294.999.999.000746	0.463415	727
171.469.234.000.000.000	0.391917	208.810.793.999.999.000747	0.4	728
131.987.212.000.000.000	0.484536	236.976.132.000.000.000748	0.539423	729
310.601.294.999.999.000	0.113208	244.653.823.999.999.000749	0.578947	730
289.983.107.000.000.000	0.248337	264.559.667.999.999.000750	0.645161	731
297.645.975.000.000.000	0.104167	90.000.000.000.000.000751	0	732
151.189.206.000.000.000	0.018452	275.710.593.000.000.000752	0.040741	733
336.801.408.999.999.000	0.222222	104.036.243.000.000.000753	0.611111	734
339.145.541.999.999.000	0.523256	52.431.407.999.999.900754	0.790698	735
318.179.829.999.999.000	0.556701	95.194.429.000.000.000755	0.676923	736
293.198.591.000.000.000	0.467391	100.784.298.000.000.000756	0.723077	737
291.801.408.999.999.000	0.7	118.810.794.000.000.000757	0.94382	738

739	0.849057	104.036.243.000.000.000758	0.083333	301.759.480.000.000.000
740	0.989813	82.234.834.000.000.000		
741	0.21978	98.130.101.999.999.900		

ID.	Rocha	Localização/Elevação	Apatita
CR 1	granada biotita gnaisse	23K 0301928/7691053 - 921m	10 -20 grãos de apatita
CR 2	biotita gnaisse	23K 0305188/7700767 - 754m	10 -20 grãos de apatita
CR 3	Quartzito	23K 0295202/7721986 - 832m	Sem material
CR 4	básica/Ultrabásica	23K 0313981/7696536 - 837m	5 -10 grãos de apatita
CR 5	Gnaisse	23K 0317080/7697647 - 1023m	5 -10 grãos de apatita
CR 6	Gnaisse	23K 0316630/7697447 – 953m	5 -10 grãos de apatita
CR 7	Micaxisto	23K 0338132/7713336 - 717m	Sem material
CR 8	muscovita gnaisse	23K 0340479/772177 - 713	Sem material
CR 9	mica azul	23K 0313274/7746447 - 741m	Sem material
CR 10	mica azul	23K 0312502/7747279 - 700m	Sem material
CR 11	Gnaisse	S2131249W04685695 – 786m	5 -10 grãos de apatita Contagem problemática.
CR 12	Granito	S2136220W04694679 - 744m	5 -10 grãos de apatita
CR 13	Quartzito	S2093972W04695243 - 881m	Sem material
CR 14	Básica/ultrabásica	S2093972W04695243 - 881m	Sem material
CR 15	Filito	S2096918W04682014 - 1057m	Sem material
CR 16	Filito	S2099820W0466470 – 988m	Sem material
CR 17	Gnaisse	S2094984W04646733 – 1155m	10 -20 grãos de apatita
CR 18	argilito	S2087647W04639814 - 794m	Sem material
CR 19	A*granito B*micaxisto	S2064880W04685751 - 734m	10 -20 grãos de apatita
CR 20	Gnaisse	S2045099W04687994 - 717m	10 -20 grãos de apatita
CR 21	Arenito	S2025268W04695406 - 666m	Sem material
CR 22	quartzito	S2014235W04680095 - 1393m	Sem material
CR 23	quartzito	S2023219W4662551 – 1394m	Sem material
CR 24	Xisto	S2022955W04644586 - 1461m	Sem material
CR 25	Quartzito	S2025926W04640984 - 1210m	Sem material
CR 26	Básica/ultrabásica	S2033567W04627656 - 735m	Sem material

Tabela 7-Tabela com todas as amostras de rochas para TTF coletadas em campo.

CR 27	Gnaisse	S2049272W04560617 - 884m	Sem material
CR 28	Granito	S2037427W4536185 - 1022m	10 -20 grãos de apatita
CR 29	Gnaisse/básica ultrabásica	S200734W0446355 – 778m	Sem material
CR 30	Gnaisse	S1934167W044255 – 780m	10 -20 grãos de apatita
CR 31	Gnaisse	S2043984W04456238 - 800m	10 -20 grãos de apatita
CR 32	Granito	S2091859W04486828 - 962m	10 -20 grãos de apatita
CR 33	Básica/ultrabásica	S2091859W04486828 - 962m	10 -20 grãos de apatita
CR 34	Básica/ultrabásica	S2110749W04508996 - 839m	Sem material
CR 35	Gnaisse	S21022334W4517254 - 821m	10 -20 grãos de apatita
CR 36	Gnaisse	S2088636W4525036 – 896m	10 -20 grãos de apatita
CR 37		S2096838W04551286 - 820m	10 -20 grãos de apatita
CR 38	Gnaisse	S2124888W04551162 - 832m	10 -20 grãos de apatita
CR 39	Granito	S2142238W04549588 - 911m	10 -20 grãos de apatita
CR 40	Granito	S2155346W04545521 - 876m	10 -20 grãos de apatita
CR 41	Gnaisse	S2160185W04556772 - 834	Sem material
CR 42		S2172155W04592792 - 804m	Sem material
CR 43	Granito	S2166116W04616999 - 953m	Sem material
CR 44	Gnaisse	S2212497W04668855 - 874m	Sem material