
Universidade Estadual de Campinas
Instituto de Física Gleb Wataghin

Murilo Barbosa Alves

Linear optics and coupling corrections
applied to Sirius commissioning

Correções de ótica linear e acoplamento
aplicadas ao comissionamento do Sirius

Campinas

2021



Murilo Barbosa Alves

Linear optics and coupling corrections applied to
Sirius commissioning

Dissertação apresentada ao Instituto de
Física “Gleb Wataghin” (IFGW) da Univer-
sidade Estadual de Campinas (UNICAMP)
como parte dos requisitos exigidos para a
obtenção do título de Mestre em Física, na
área de Física.

Dissertation submitted to the “Gleb
Wataghin” Institute of Physics (IFGW) in
the University of Campinas (UNICAMP) in
partial fulfillment of the requirements for
the degree of Master in Physics, in the area
of Physics.

Supervisor/Orientador: Prof. Dr. Antonio Rubens Britto de Castro

Este exemplar corresponde à versão
final da dissertação defendida pelo
aluno Murilo Barbosa Alves, e
orientada pelo Prof. Dr. Antonio
Rubens Britto de Castro

Campinas
2021



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Física Gleb Wataghin
Lucimeire de Oliveira Silva da Rocha - CRB 8/9174

    
  Alves, Murilo Barbosa, 1996-  
 AL87L AlvLinear optics and coupling corrections applied to Sirius commissioning /

Murilo Barbosa Alves. – Campinas, SP : [s.n.], 2021.
 

   
  AlvOrientador: Antonio Rubens Britto de Castro.
  AlvDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Física Gleb Wataghin.
 

    
  Alv1. Projeto Sirius. 2. Fonte de luz síncrotron. 3. Método de ótica linear por

órbitas fechadas. 4. Comissionamento. 5. Ótica linear. 6. Acoplamento
bétatron. I. Castro, Antonio Rubens Britto de, 1940-. II. Universidade Estadual
de Campinas. Instituto de Física Gleb Wataghin. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Correções de ótica linear e acoplamento aplicadas ao
comissionamento do Sirius
Palavras-chave em inglês:
Sirius Project
Synchrotron light source
Linear optics from closed orbits method
Commissioning
Linear optics
Betatron coupling
Área de concentração: Física
Titulação: Mestre em Física
Banca examinadora:
Antonio Rubens Britto de Castro [Orientador]
Tiago Fiorini da Silva
Júlio Criginski Cezar
Data de defesa: 05-03-2021
Programa de Pós-Graduação: Física

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-4356-8248
- Currículo Lattes do autor: http://lattes.cnpq.br/4778579260807817  

Powered by TCPDF (www.tcpdf.org)



MEMBROS DA COMISSÃO JULGADORA DA DISSERTAÇÃO DE MESTRADO DE

MURILO  BARBOSA  ALVES RA:  230336 APRESENTADA  E  APROVADA  AO

INSTITUTO DE FÍSICA “GLEB WATAGHIN”, DA UNIVERSIDADE ESTADUAL DE

CAMPINAS, EM 05/03/2021.

COMISSÃO JULGADORA:

- Prof. Dr. Antonio Rubens Britto de Castro - (Presidente) - IFGW/UNICAMP

- Prof. Dr. Tiago Fiorini da Silva – IF/USP

- Prof. Dr. Júlio Criginski Cezar - LNLS/CNPEM

A Ata de Defesa, assinada pelos membros da Comissão Examinadora, consta no 

processo de vida acadêmica do aluno.

CAMPINAS
2021



Agradecimentos

Agradeço e dedico este trabalho aos meus pais, Elaine e Luciano, que sempre
acreditaram em mim em todas etapas da minha vida e sempre fizeram de tudo para que
nunca me faltasse nada. Agradeço à minha irmã Mirela pela curiosidade e interesse nas
suas perguntas e pela amizade que estamos desenvolvendo ao longo dos anos.

Agradeço ao Grupo de Física de Aceleradores do LNLS por todo suporte. Fun-
damentalmente tudo que sei nesta área, aprendi com vocês. Tenho muito orgulho e sou
grato por compartilhar dias e noites de muito trabalho, discussões e cafés com vocês.

Agradeço à Liu por todas as oportunidades, sobretudo a de trabalhar com este
tema, e também por sempre estar aberta a discussões e a compartilhar seu conhecimento
e experiência. Agradeço ao Fernando por ser um grande companheiro de trabalho desde
o início, com sua didática e empolgação para conversar sobre tudo, especialmente ciência.
Agradeço ao Ximenes pelas discussões, companhia nas aulas e pela ajuda na organização
dos códigos no ínicio das implementações. Agradeço à Ana pela ajuda e atenção, além de
suas excelentes interfaces gráficas que muito facilitam a operação e estudos de máquina
no Sirius.

Agradeço ao Prof. Rubens por ter aceitado ser meu orientador, pelo incentivo e
sugestões ao longo do trabalho.

Agradeço à Ana Clara por todo companheirismo e amor de todos esses anos.
Desde a época dos vestibulares até à pós-graduação, você sempre esteve comigo em cada
momento e os fez muito mais felizes. Sua companhia alegra e torna essa jornada mais leve.

Agradeço ao programa de pós-graduação do IFGW/UNICAMP, aos professores e
funcionários que realizam seus trabalhos de forma competente e exemplar, contribuindo
enormemente para o desenvolvimento da Física no Brasil.

Finalmente, agradeço ao LNLS/CNPEM e aos seus membros, por toda infraestru-
tura disponibilizada e todo trabalho coletivo de alto nível que resultou no Sirius, o maior
complexo científico brasileiro que possibilitou a existência deste mestrado.



Resumo
Sirius é a nova fonte de luz síncrotron de 4a geração e baixa emitância do La-

boratório Nacional de Luz Síncrotron (LNLS), onde elétrons de 3 GeV são mantidos em
condições estáveis, em ultra-alto vácuo ao longo de um anel de armazenamento de 518 m
de circunferência sob a ação de campos eletromagnéticos. A matriz resposta de órbita
devido a variações de campos dipolares localizados pode ser usada para ajustar a ótica
linear e termos de acoplamento bétatron de uma rede magnética a partir de um modelo,
usando o método chamado Linear Optics from Closed Orbits (LOCO). Neste trabalho, o
método LOCO foi estudado e implementado no anel de armazenamento do Sirius, a fim
de calibrar e corrigir ótica linear e acoplamento durante o comissionamento. Vários testes
foram realizados com o código implementado usando dados simulados e medidos, obtendo
resultados que verificaram a robustez do método. A escolha do algoritmo de minimiza-
ção e a inclusão de vínculos nas variações de gradientes nos quadrupolos foram fatores
importantes para a aplicação do método no Sirius. Os ajustes LOCO foram aplicados ite-
rativamente no anel de armazenamento, onde foi possível reduzir os erros entre a matriz
resposta medida e a matriz nominal para um décimo dos valores iniciais. Medidas inde-
pendentes foram realizadas a fim de comprovar os efeitos positivos das correções aplicadas:
as funções óticas medidas foram melhores ajustadas aos valores nominais, recuperando
parcialmente a simetria da máquina, o acoplamento bétatron global foi praticamente eli-
minado, houve aumentos substanciais de abertura dinâmica horizontal e de eficiência de
injeção. Os efeitos dos erros de alinhamento e distorções de órbita na ótica e acoplamento
do Sirius foram estudados e verificou-se que estes erros influenciam fortemente o desem-
penho do anel. Além disso, foi concluído que o nível das correções obtidas neste trabalho
está próximo do limite imposto pelas perturbações de ótica geradas pela órbita residual
presente no anel de armazenamento do Sirius.

Palavras-chaves: Sirius; LNLS; fonte de luz síncrotron; comissionamento; anel de arma-
zenamento; ótica linear; acoplamento bétatron; matriz resposta de órbita; LOCO; física
de aceleradores.



Abstract
Sirius is the new 4th generation low emittance synchrotron light source of Brazilian Syn-
chrotron Light Laboratory (LNLS), where 3 GeV electrons are kept in stable conditions in
ultra-high vacuum along a 518 m storage ring under the action of electromagnetic fields.
The orbit response matrix due to variations of localized dipolar fields can be used to
adjust the linear optics and coupling terms in the magnetic lattice from a model, us-
ing the method called Linear Optics from Closed Orbits (LOCO). In this work, LOCO
method was studied and implemented in the Sirius storage ring, in order to calibrate and
correct linear optics and coupling during commissioning. Several tests were performed
with the implemented code using simulated and measured data, obtaining results that
verified the method’s robustness. The minimization algorithm choice and the inclusion of
constraints in gradient variations on quadrupoles were important factors for the method
application on Sirius. LOCO fittings were iteratively applied on the storage ring, where
it was possible to reduce the errors between the measured response matrix and the nomi-
nal matrix to one-tenth of its initial values. Beam-based independent measurements were
performed to prove the positive effects of the applied corrections: the measured lattice
functions were better adjusted to the nominal values, partially restoring the machine sym-
metry, the global betatron coupling was practically eliminated, substantial improvements
in horizontal dynamic aperture and injection efficiency were obtained. The effects of orbit
distortions on Sirius optics and coupling were studied and it was found that these errors
strongly influence the storage ring performance. Besides, it was concluded that the level
of corrections obtained in this work is close to the limit imposed by the disturbances
generated by the residual orbit present in the Sirius storage ring.

Keywords: Sirius; LNLS; synchrotron light source; commissioning; storage ring; linear
optics; betatron coupling; orbit response matrix; LOCO; accelerator physics.
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1 Introduction

The Brazilian Synchrotron Light Laboratory (LNLS) is a National Laboratory,
located in Campinas-SP, responsible for the operation of the only synchrotron light source
in Latin America. The LNLS was created in 1986 to design and build a synchrotron light
source in Brazil. This goal was successfully achieved, resulting in the UVX, a second-
generation synchrotron light source designed and built in-house, open to users in 1997. The
idealization of LNLS as a National Laboratory represents a mark in the institutional design
of scientific research in Brazil, which enabled the construction and the implementation of
an open use research facility [5].

Currently, the LNLS is part of Brazilian Center for Research in Energy and Ma-
terials (CNPEM), a research and development center that operates under contract with
the Brazilian Ministry of Science, Technology and Innovations (MCTI). The CNPEM
gathers four open National Laboratories: LNLS, the Brazilian Nanotechnology National
Laboratory (LNNano), the Brazilian Biosciences National Laboratory (LNBio), and the
Brazilian Biorenewables National Laboratory (LNBR) [6].

After more than 20 years, the UVX experimental hall was completely filled with
17 beamlines that served more than a thousand Brazilian and foreign researchers per year
with more than 97% availability [7]. During these years, the community of LNLS users
and their scientific demands has grown, and the discussions related to a more competitive
machine started about 2008. After years of intense research and development in acceler-
ator technology and engineering, the discussions in LNLS evolved to a well-established
project in 2012, a 4th Generation Storage Ring (4GSR) named Sirius. During the Sir-
ius construction, most of the Sirius components were contracted from the local Brazilian
industry, with a nationalization index larger than 86% [7].

A new era for synchrotron light sources in Brazil has begun with the transition
between the end of UVX operation for user research activities on August 2nd, 2019 and
the commissioning of Sirius. Sirius is the most complex scientific infrastructure ever built
in Brazil, planned to put the country among the worldwide leadership in the field of
synchrotron light sources. This new synchrotron was designed to be the brightest one in
its energy class and to accommodate up to 40 beamlines, allowing for new researches in
many areas such as material science, nanotechnology, biotechnology and environmental
sciences [6]. At the time of this writing, Sirius is the only 4GSR in the southern hemisphere
and one of the three 4GSRs in operation in the world1.
1 The other two operating 4GSRs are located in Europe: MAX-IV in Lund/Sweden and ESRF-EBS in

Grenoble/France
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1.1 Dissertation Outline

This work is focused on the studies, measurements and corrections of linear optics
and betatron coupling applied during Sirius storage ring commissioning. The content of
this dissertation is the following:

• Chapter 1: an introduction to the general concepts related to synchrotron light
sources, the Sirius Project, the scientific background and main objectives.

• Chapter 2: the basic accelerator physics theory that is necessary for the development
of the work.

• Chapter 3: the theory related to the Linear Optics from Closed Orbits (LOCO)
method and the code implementation for Sirius.

• Chapter 4: the application of LOCO method with data obtained in Sirius storage
ring during commissioning, presenting and discussing the linear optics and coupling
measurements and its corrections.

In this chapter, general concepts and the terminology regarding synchrotron light
sources will be introduced in Section 1.2. The main information about the Sirius project
will be presented in Section 1.3. The scientific background related to the studies conducted
in this work is discussed in Section 1.4 and the goals are exhibited in the final Section 1.5.

1.2 Synchrotron Light Sources

Charged particles at relativistic speeds radiate synchrotron light when accelerated
perpendicularly to its direction of motion [8]. Synchrotron light sources are scientific
facilities where this effect is ultimately exploited in order to produce light with high
brightness and covering a broad energy range, with a spectrum from infrared light up to
hard X-rays. The synchrotron light sources are high quality and versatile scientific tools
that allow for a great diversity of high resolution experiments in several research areas,
such as materials sciences, condensed matter physics, nanotechnology and many others.

Generally a synchrotron light source is composed by three main systems2: the
injection system, the storage ring and the beamlines. Typically the charged particles used
in these facilities are electrons. A brief description of each subsystem can be made:

Injection system: composed by an electron source, a Linear Accelerator (LINAC), a
synchrotron, generally called booster, and transport lines connecting the accelera-

2 Throughout this dissertation the set of the accelerator systems in the synchrotron also may be referred
as the “machine”.
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tors. The electrons are emitted from an electron gun and accelerated by Radiofre-
quency (RF) structures along the LINAC. Then the electrons are injected in the
first circular accelerator, the booster, where their energy is ramped up to the stor-
age ring’s energy3.

Storage ring: after beam extraction from the booster ring, the ultra-relativistic electrons
are injected in the second circular accelerator, the storage ring, where electromag-
netic fields are used to confine the electrons in stable closed orbits for many hours
inside a vacuum chamber with ultra-high vacuum. In this approximated circular
orbits the electrons produce synchrotron light that is supplied to the beamlines.

Beamlines: experimental stations installed tangentially to the storage ring, where the
generated synchrotron light is used in a wide variety of scientific studies based on
the radiation-matter interactions.

Typical values for the “low” energy obtained in the LINAC are hundreds of MeV
and the “high” nominal energy in the storage ring are usually few GeV. The whole injection
process occurs with a repetition rate of a few Hz until the storage ring is filled with
electrons, reaching the operation current. The injection events might occur only in specific
times of the day and in this case the storage ring operates in the so-called decay mode.
The injection system may also fill the storage ring more frequently to keep the stored
current almost constant during operation, this is called top-up mode.

The quality of the radiation produced in synchrotron light sources can be measured
by the quantity called brightness. It is a measure of the radiation intensity, source size
and collimation for a given energy and can be defined as [9]:

𝐵(𝜔) = 𝐹 (𝜔)
Σ𝑥Σ𝑥′Σ𝑦Σ𝑦′ (Δ𝜔/𝜔) . (1.1)

The photon frequency 𝜔 and the photon energy are related by 𝐸 = ~𝜔. The photon
flux is represented by 𝐹 (𝜔) and it is the number of photons per second. The products
Σ𝑥Σ𝑥′ and Σ𝑦Σ𝑦′ are the photon beam volumes in the horizontal and vertical phase space,
respectively. The frequency bandwidth Δ𝜔/𝜔 considered in the brightness calculation is
typically 0.1%. The photon beam volume in phase space depends both on the photon
and the electron distributions. The electron beam volume in phase space is called beam
emittance and it is a property derived from the storage ring magnetic lattice.

In order to achieve high brightness for a synchrotron light source, one must increase
the photon flux by increasing the electron current and also minimizing the electron beam
emittance. Constant advances both in the theoretical and technological aspects have been
3 In some facilities, the beam is injected from the LINAC directly to the storage ring, where the energy

ramp is performed.
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made in the accelerator community in the last decades, allowing for tremendous gains in
brightness of synchrotron light sources [10,11].

Such great increments in brightness scales have made it possible to classify the syn-
chrotron light sources in generations. The 1st synchrotron light source generation appeared
in the early 1960’s as a parasitic effect from the bending magnets in particle colliders.
The 2nd generation in the 1980’s were dedicated light sources built for the production of
synchrotron radiation, generated mainly by bending magnets. The 3th generation light
sources in the 1990’s were optimized to produce synchrotron radiation with Insertion
Devices (IDs) installed in long straight sections in the storage ring [11]. The IDs are ar-
rays of magnetic blocks organized in an alternated manner such that the electron beam
follows a transversely undulating path when it passes through the device. The sequence
of transverse accelerations induce the electrons to radiate synchrotron light, which may
interfere to produce a photon beam with very high intensity and a sharp spectrum, as
compared to the light emitted at the dipoles. Depending on the magnetic fields in the ID,
the polarization of the emitted radiation can also be varied. The IDs types commonly
used in 3th synchrotrons are wigglers and undulators.

In 4GSRs, recent developments in the accelerator field have been applied to re-
duce the electron beam emittance by orders of magnitude as compared to the previous
generation, thus increasing the brightness accordingly. Modern undulators are also used
as IDs in the storage ring long straight sections. The beginning of the 4th generation of
synchrotron storage rings was marked by the commissioning of MAX-IV in 2015 [12], the
first 4GSR implemented. A brief overview about the main ideas applied in 4GSRs will be
given in Subsection 1.2.2.

1.2.1 Main Devices in a Storage Ring

Magnetic fields are used to deflect and focus the electron beam in the storage ring.
Each type of magnetic field is used for a certain purpose and is created by different types
of magnets installed around the ring, which form the so-called magnetic lattice. Typically
the magnetic lattice is composed by electromagnets with coils fed by power supplies but
it is also possible to use permanent magnets. The main magnets types and their functions
are:

Dipoles: bending magnets that create an approximated constant magnetic fields which
are used to radially deflect the electrons in curved paths, totalling a 2𝜋 rad deflection
in one turn and allowing for a closed orbit motion.

Quadrupoles: focusing magnets that provide magnetic fields whose intensity is linearly
dependent on the electron transverse deviations. These magnetic fields create a
deflection with a strength determined by the deviation from the reference orbit. From
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the Lorentz force expression it can be obtained that if a quadrupolar field is focusing
in one direction it is necessarily defocusing in the perpendicular direction. Thus, to
obtain a net focusing in both directions, an alternated focusing scheme must be used
with two types of quadrupoles: focusing and defocusing. The electron dynamics in
the presence of dipolar and quadrupolar fields is linear, then the magnetic lattice
constituted only by dipoles and quadrupoles is also denominated as a linear lattice.

Sextupoles: electrons with energy deviations from the storage ring nominal energy are
differently focused in a linear magnetic lattice. Since the electrons in a beam have an
energy distribution, chromatic aberrations effects may disturb the electrons stabil-
ity. The sextupoles create magnetic fields that depend quadratically on the electron
tranverse deviations, therefore it introduces focusing forces that depends on the
transverse displacements and allows for the correction of these chromatic aberra-
tions. However, the non-linear fields introduced by the sextupoles also change the
beam dynamics to a non-linear regime and the motion of electrons with sufficiently
large deviations may be unstable. The largest deviations that still produce a stable
motion define a region in the electron phase space called dynamic aperture. Hence,
more sextupoles must be included in the lattice in order to increase the stability
region, i.e., increase the storage ring dynamic aperture. For the same reason as for
the quadrupoles, two types of sextupoles, focusing and defocusing, are needed to
correct the chromatic effects in both transverse planes.

Figure 1 shows a schematic representation of the magnet blocks and the corre-
sponding field lines for each type of magnet. In these examples, the electron path points
inwards the paper (or screen), the radial positive direction is pointing to the left and
the vertical positive direction to the upper side. In this way, the exemplified quadrupoles
and sextupoles are defined as focusing (it focus the beam in the radial direction) and the
corresponding defocusing types are obtained by a 𝜋/2 rad rotation for quadrupoles and
𝜋/3 rad for sextupoles.

The electron beam centroid positions can be measured by devices called Beam
Position Monitors (BPMs), installed in the vacuum chamber at many locations around
the storage ring. The measurements can be performed in a turn-by-turn basis to access the
beam trajectories and also averaging the data over many turns to obtain the information
about the beam orbit. A simple scheme for a typical BPM device is shown in Figure 2,
where the electron path points outwards the paper.

The electron beam excites electromagnetic signals in the four BPM antennas. The
values of these four intensities measured at the antennas can be manipulated to calculate
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(a) Dipole (b) Quadrupole (c) Sextupole

Figure 1 – Schematic examples of magnets used in storage rings.

Figure 2 – BPM scheme. The A, B, C, D lines represent the device antennas. Adapted
from [1].

the transverse positions for the beam centroid:

𝑥 = 𝐾𝑥
(𝐴 + 𝐷)− (𝐵 + 𝐶)

ΣBPM
(1.2)

𝑦 = 𝐾𝑦
(𝐴 + 𝐵)− (𝐶 + 𝐷)

ΣBPM
, (1.3)

where ΣBPM = 𝐴 + 𝐵 + 𝐶 + 𝐷 is the sum signal from all BPM antennas and it is directly
proportional to the electron beam current. 𝐾𝑥 and 𝐾𝑦 are calibration factors dependent
of BPM geometry and the distances between antennas. This method of calculation is
called Δ/Σ and other methods are available [13].

The orbit distortions can be corrected by applying localized dipolar fields, called
dipolar kicks, to steer the beam at each turn and then steer the orbit towards a target.
Short dipoles, called orbit correctors or simply correctors, are added in the lattice to
produce the kicks that steer the orbit. There are two types of corretors: horizontal and
vertical. The horizontal correctors create vertical dipolar fields to deflect the beam in the
horizontal plane and the vertical correctors produce a horizontal dipolar fields to vertically
deflect the beam.
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The orbit correction can be performed by measuring the orbit distortions with the
BPMs and, based on these measurements, one can calculate and apply in the correctors the
corresponding kicks variations that produce an orbit change that minimizes the measured
distortion, thus steering the electron beam towards a target orbit.

Since the electrons lose energy by synchrotron radiation emission in every turn
around the storage ring, an energy gain process must occur to maintain the electrons in
stable motion. Ressonant cavities are used in storage rings to confine oscillating electro-
magnetic fields with a frequency in the RF range. These devices are called RF cavities
and they provide the energy gain to the electrons with longitudinal electric fields. There is
a fundamental principle, called phase stability, that ensures the synchronization between
the fields oscillation inside the cavity and the circulating periodic motion of the electrons.
This fundamental mechanism, that is further discussed on Chapter 2, is the origin for the
name “synchrotron”.

1.2.2 4th Generation Storage Rings

A magnetic lattice is composed by a sequence of magnets, called unit cells, that
are repeated around the storage ring. The unit cells are connected by straight sections,
without magnets. These straight sections are used for the installation of IDs. At the ends
of each unit cell there are quadrupoles for the optics functions matching in the straight
sections.

A new generation of synchrotron light sources emerged from the realization of
innovative magnetic lattices where very small emittances can be achieved. These magnetic
lattices are named Multi-Bend-Achromat (MBA), where dipoles are interspersed with
quadrupoles and sextupoles, forming the arc sections, without much drift spaces between
magnets. In the previous generation, the number of dipoles in a unit cell was less than
four, being usually Double or Triple-Bend-Achromat lattices. For MBA lattices there are
more than four dipoles per unit cell, which explains the term “Multi-Bend”. Since the
dipoles can be viewed as spectrometers as well, they introduce a dependence of electron
position with its energy. The focusing strengths in a MBA lattice are adjusted to locally
correct this dispersion effects, allowing for independence on position with energy in the
straight sections and this is what the term “Achromat” refers to.

The natural emittance of a storage ring depends on the electron energy and the
number of dipoles in the lattice roughly as 𝜖 ∝ 𝛾2/𝑁3

𝑏 . For a fixed circumference, more
dipoles in a magnetic lattice implies that the individual bending angles may be reduced,
therefore reducing the energy dispersion errors created by these magnets. The equilibrium
emittance depends on the dispersion effects at dipoles, so minimizing the dependence on
electron position with energy at the bending magnets is one of the key factors to reduce
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the natural emittance.

The seemingly simple idea related to the MBA magnetic lattice was proposed in the
early 1990’s [14] but it took more than 20 years to be implemented in practice due to the
related accelerator technology and engineering challenges that needed to be overcome [15].
The technical problems appear in a cascade-effect fashion. Quadrupoles with strong focus-
ing strengths are required in order to locally correct the energy dispersion errors created
by several dipoles in a compact arc section. With strong focusing strengths comes large
chromatic errors and to correct this geometric aberration, sextupoles with strong fields are
needed as well. However, strong sextupoles introduce strong non-linearities in the beam
dynamics that spoil the dynamic aperture, thus other strong sextupoles (even octupoles
in some cases) must be used to increase the beam stability region. To apply strong mag-
netic fields in the electron beam, the magnetic poles must be close to the beam, i.e., the
magnet gaps must be small. Consequently this limits the vacuum chamber radius. The
traditional approaches for local vacuum pumping are not sufficient for such small vacuum
chambers, so new approaches must be used such as Non-Evaporable Getter (NEG) [16]
coating inside the chambers for distributed vacuum pumping. The beam dynamics in the
presence of strong fields is also more sensitive to perturbations, such as field and align-
ments errors, so the related error tolerances for the devices fabrication, installation and
alignment must be very low to guarantee the beam stability.

The aforementioned topics are just a subset of a much larger set of scientific and
engineering challenges related to the 4th generation that justifies the time gap between
the theoretical proposal and the practical realization of MBA lattices [15,17]. At the end
of 2020, when this dissertation was written, there were only three 4GSRs in operation
around the world: MAX-IV in Lund/Sweden [18], Sirius in Campinas/Brazil [19], two
greenfield projects, and ESRF-EBS in Grenoble/France [20], an upgrade of a 3th generation
synchrotron.

1.3 The Sirius Project

The LNLS is one of the four national laboratories gathered in the CNPEM. The
first brazilian synchrotron light source was UVX, a 2nd generation light source with a
natural emittance of 100 nm rad at 1.37 GeV, designed and built by LNLS. UVX was
inaugurated in 1997 and it was the first synchrotron in the southern hemisphere. With
the increase of synchrotron users and new scientific demands in UVX and also with the
rise of new generations of light sources, around 2008 LNLS started the studies for a new
machine, which after a great amount of development and discussions4 resulted in Sirius,
4 For more detailed historical aspects of LNLS and Sirius, the author recommends the references [7,21,

22].
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Figure 3 – Sirius building layout [2].

a 4th generation light source [19]. The UVX shutdown occurred in August 2019, while the
Sirius commissioning was in progress.

The Sirius facility building layout is schematically shown in Figure 3. The injection
system is composed by a 150 MeV LINAC and a full-energy booster ring ramping from
150 MeV to 3 GeV. The injection frequency is 2 Hz and the planned injection mode for
Sirius is top-up. The booster shares the same tunnel with the storage ring and it has
an emittance of 3.5 nm rad at 3 GeV, which is a low emittance for a booster ring [23]
and this is required to optimize the off-axis injection efficiency in the storage ring with
a Non-Linear Kicker (NLK) [24]. The Sirius storage ring will be further detailed in the
next subsection.

1.3.1 Magnetic Lattice and Basic Parameters

The final design for Sirius magnetic lattice is represented in Figure 4. It is a 5BA
lattice with a natural emittance of 0.25 nm rad at 3 GeV for the bare lattice (without IDs).
With the installation of the planned IDs, the emittance is expected to be reduced as low
as 0.15 nm rad.

The optical lattice functions for one superperiod of the Sirius magnetic lattice are
plotted in Figure 5. The small values for the dispersion and betatron functions, especially
at the central bending magnet, are fundamental factors to obtain the low emittance in
Sirius storage ring. The zero dispersion and the low beta functions in the straight sections,
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Figure 4 – Sirius 5BA magnetic lattice cells. The magnets are represented by colored
blocks. Dipoles (B) are in blue, quadrupoles (Q) in orange and sextupoles (S)
in green. The cells are characterized by their straight sections types: high-beta
(A) or low-beta (B, P). The Sirius storage ring is composed by 5 super-periods,
each one composed by the four cells sequence A-B-P-B [2].

combined with the low emittance, are essential to obtain small beam sizes at beamlines.
The zero dispersion also is required to the possibility of emittance reduction after IDs
installation.

The Sirius magnetic lattice counts with 20 straight sections, being 5 with high
horizontal betatron fuction (A type) and 15 with low horizontal and vertical betatron
functions (B and P types). One of the main differentials of Sirius is having that many
low-beta straight sections around the storage ring. Regarding the linear lattice elements,
the B and P sections are identical and the difference is related to the sextupoles, i.e.,
second order elements. 17 out of 20 straight sections are available for IDs installation,
2 will be used for machine installations and 1 will be shared between a small ID and
machine installation [21].

The central dipole BC is a permanent magnet with a strong peak field of 3.2 T
and longitudinal gradient. In the storage ring there are 20 of such superbends providing
X-rays with critical energy of 19.2 keV [25] and allowing for additional 20 beamlines. The
remaining four dipoles per arc, two B1 and two B2, are electromagnets with peak fields of
0.58 T. The total number of dipoles in the Sirius magnetic lattice is 5 × 20 = 100, being
20 permanent magnets (BC) and 80 electromagnets (B1 and B2).

The high-beta straight sections count with a quadrupole doublet (QFA, QDA)
for the optics matching. In low-beta straight sections quadrupole triplets are used for the
matching (QFB, QDB1, QDB2) for B-type section and other triplet (QFP, QDP1, QDP2)
for P-type sections. The quadrupoles in the arc sections are labeled as Q1, Q2, Q3 and
Q4. Thus, there are 12 families of quadrupoles in the Sirius magnetic lattice. Notice that
the quadrupole and dipole magnets in the arc have a mirror symmetry around the BC
magnet. The total number of quadrupoles in Sirius storage ring is 270.

In the Sirius lattice there are 21 families of sextupoles, whose names can be checked
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Figure 5 – Lattice functions for one 5BA cell for the Sirius storage ring with a high-beta
straight section in the left and a low-beta in the right.

in Figure 4. Sextupoles are used for the correction of chromatic errors and non-linear
dynamics optimization. The number of sextupole magnets in Sirius is 280.

For the slow orbit correction system, there are 8 BPMs per arc section, thus to-
talling 8×20 = 160 BPMs in the storage ring. There are 6 horizontal correctors (CH) and
7 vertical correctors (CV) per section, both types installed in sextupole magnets. There is
also 1 additional vertical corrector magnet installed per arc, then there are 6× 20 = 120
CHs and (7+1)×20 = 160 CVs in the storage ring. The orbit correction is presently con-
trolled by the in-house implemented system called Slow Orbit Feedback System (SOFB).

For the fast orbit correction system, there are 4 horizontal and 4 vertical fast
correctors (FCH and FCV, respectively) per sector, so 80 FCH and 80 FCV in total (there
are 2 FCH and 2 FCV per source point). The fast orbit correction will be controlled by
the Fast Orbit Feedback (FOFB) system.

The coupling control system counts with 4 skew quadrupoles5 (QS) per arc that
are achieve as additional coils in sextupole magnets and 1 additional QS in one fast
corrector per section. Hence, there are (4 + 1)× 20 = 100 QS in the storage ring. The 80
5 A skew quadrupole is basically a normal quadrupole rotated by a 𝜋/4 rad angle.
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Table 1 – Number of elements for each type in Sirius storage ring.

Element Type # of Elements
Dipole 100

Quadrupole 270
Sextupole 280

BPM 160
H. Slow Corrector 120
V. Slow Corrector 160
Skew Quadrupole 100
H. Fast Corrector 80
V. Fast Corrector 80

skew quadrupoles in sextupole magnets are already sufficient for coupling control and the
remaining 20 QS in the fast correctors are used for the process of Beam-Based Alignment
(BBA), where the electron beam is used to measure the center offsets between the BPMs
and the quadrupoles, in order to correct the orbit towards the magnets centers as close
as possible. The skew quadrupoles in fast correctors are useful for BBA since they are
positioned very close to the BPM right next the BC magnet.

Table 1 summarizes the number of elements for each type that are installed in
the Sirius storage ring. The main global parameters for the Sirius storage ring can be
found in Table 2, where the relevant parameters for each planned operation phase are
presented as well. Much more technical information about Sirius can be accessed in the
open website [2].

1.3.2 Commissioning

Between the assembly of the synchrotron light source components and the regular
operation of the facility there is a gap where a lot of parameters tuning and measurements
are made. The final goal is providing the conditions to reliably execute the electron beam
journey (from the electron gun at LINAC until the storage ring) and then to push the
machine performance and the electron beam properties to meet the design specifications,
reaching the ideal operation conditions. This gap is the commissioning6. The commis-
sioning also can be divided in stages: commissioning of the sub-systems, machine and
beamlines.

The realization of 4GSRs imposes challenges in its commissioning as well. For the
reasons discussed in Subsection 1.2.2, a MBA lattice rigorously limits the conditions to
store an electron beam. Therefore, studying the commissioning steps beforehand with
6 Actually, the stages of a synchrotron light source history usually have some overlaps and are not as

linear as expected.
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Table 2 – Main parameters of the Sirius storage ring. Adapted from [4].

Parameter Symbol Operation Phases Unit
Commiss. Phase 1 Phase 2

Energy 𝐸0 3.0 GeV
Gamma factor 𝛾 5871
Circumference 𝐿0 518.396 m
Revolution period 𝑇0 1.729 µs
Revolution frequency 𝑓0 578 kHz
Harmonic number ℎ 864
Momentum compaction 𝛼 1.636 · 10−4

Transverse tunes (H/V) 𝜈𝑥/𝑦 49.096/14.152
Energy loss per turn 𝑈0 471 keV
Natural emittance 𝜀0 251 pm rad
Natural energy spread 𝜎𝛿 8.5 · 10−4

Nominal total current 𝐼0 30 100 350 mA
RF cavity 1 7-Cell 2 SC-RF
Gap voltage 𝑉rf 1.8 3.0 MV
Natural bunch length 𝜎𝑧 3.2 (10.7) 2.5 (8.2) mm (ps)
Synchrotron tune 𝜈𝑧 3.56 · 10−3 4.6 · 10−3

simulations has become a standard practice at the design stage of 4GSRs [26–30], so the
challenges and its solutions can be foreseen.

The author contributed to the Sirius commissioning simulations studies, where
simulations for the commissioning procedures with realistic errors were developed and
applied both for Sirius booster and storage ring lattice models [31]. The studies results
served as guidelines and procedures that were successfully applied on Sirius commissioning
to accumulate a 10 mA electron beam at 3 GeV in the Sirius storage ring for the very first
time in February 20, 2020. The author had the singular opportunity to participate in the
commissioning stages that led to this achievement.

The commissioning phase in which coarse adjustments are made allowing the elec-
tron beam to reach its final condition in the storage ring for the first time is often called
early commissioning. At this stage, typically the machine performance optimization is not
a major concern, since the feasibility of each process is being proven in first place. There-
fore, it can be stated that the Sirius early commissioning has ended in February 20, 2020,
proving that were no severe conceptual design errors or problems in the machine assembly
that made impossible the electron beam accumulation in the storage ring. However, the
commissioning after that is not finished yet, since the errors that move away the actual
machine performance and beam properties from the expected and designed values are still
present and uncorrected at this stage.
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In order to optimize the machine performance, a second stage of the commissioning
is needed. At this phase, the electron beam is available for measurements. These machine
studies have been carried out by the Sirius commissioning team during the 2020 year. At
the time of writing the machine commissioning is currently in progress alongside with the
commissioning of 6 beamlines, 5 of them using non-definitive Adjustable Phase Undulators
(APUs) as the synchrotron radiation source, which were specifically installed in these
beamlines for the commissioning stage, and the remaining beamline uses a superbend BC
as the light source. Until the end of 2020, the Sirius operation shifts were alternating
between machine and beamline commissioning, where for the latter the storage ring was
delivering a 40 mA electron beam in decay-mode for the beamlines.

1.4 Scientific Background

The storage ring linear optics is fundamental to determine the electron beam
equilibrium distribution, then the beam size and divergence depends directly on the linear
optics. It also has an effect on the beam stability. Large deviations in the linear optics
compared to the nominal optics move away the beam properties from the design values or,
more drastically, these errors might preclude to store an electron beam. Typically, most
of the optics errors are found in the first commissioning stages of a new storage ring.

Linear optics errors can be caused by various sources. Strength errors in the
quadrupole magnets, horizontal orbit offsets in sextupoles, changing the effective focusing
on the beam, gradient errors in dipoles, errors in the magnets excitation curves – the
calibration between the current setting in the power supplies and corresponding magnetic
fields in the electromagnets. IDs may introduce gradient errors as well. Deviations in lin-
ear optics may break the lattice symmetry, which may introduce additional resonances in
the beam dynamics, thus increasing the chances of beam loss.

In a basic description of the transverse dynamics for electrons in a storage ring, the
horizontal and vertical motions are uncoupled, thus the transverse planes can be regarded
as independent. In this case, the theoretical vertical emittance is almost zero. However,
roll errors in the dipoles and quadrupoles, vertical orbit offsets in the sextupoles, random
skew gradients errors and IDs introduce coupling between the transverse planes. The roll
errors may also create a vertical dispersion function, which is nominally zero. Therefore,
coupling errors increase the vertical beam size and may have an effect on the injection
efficiency, by transferring part of the large horizontal amplitude of the injected beam into
the vertical plane.

Even if the errors sources are beforehand minimized as much as possible, with
magnets characterization, installation and alignment reaching the specifications, these
processes are limited by finite precision and the residual errors may still affect negatively
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the electron beam. Since the electron beam in a storage ring is a very sensible probe, beam-
based techniques are often used for characterization and optimization. Two approaches
can be made: (i) perform beam-based measurements related to the linear optics and
coupling, and guided by the accelerator physics theory, one can use the storage ring
model to calculate the corrections with the design values as the final target; (ii) consider
the storage ring as a black-box, then perform parameters variations with the goal to
improve a figure of merit constructed with beam-based data. The approach (i) is often
called beam-based corrections and the (ii) beam-based optimization [1].

Each approach has its pros and cons but their final goal is the same: improve the
machine performance. The beam-based correction approach has the conceptual advantage
that, based on the theory, it tries to increase the real accelerator performance by making
it as close as possible to the design accelerator. On the other hand, since this method is
model-dependent, i.e., it depends on the correspondence between the storage ring mod-
eling and the real storage ring, if the model fails to accurately describe the reality, the
corrections effectiveness is reduced or even worse, the intended corrections are manifested
as additional perturbations. The beam-based optimizations have the advantage of being
model-independent, however depending on the case, the optimization process might take
too much time to converge and it also might be more susceptible to noise and variations
in the measured data. Moreover, the final corrections obtained by the optimization must
be interpreted and explained afterwards, which may not be a trivial task in general.

Linear Orbit from Closed Orbits (LOCO) is a beam-based correction method im-
plemented by J. Safranek and first applied to the National Synchrotron Light Source
(NSLS) storage ring [32–34]. The ideas behind LOCO method were developed in pre-
vious works at Stanford Linear Accelerator Center (SLAC) [35, 36]. The main idea of
this method is to use the beam orbit response due to localized dipolar fields variations
to extract information about the linear optics and coupling in the real machine. This is
done by measuring the orbit response with the stored electron beam and then calibrating
the model machine to the data, i.e., changing the relevant parameters in the model until
the simulated orbit response matches the measured one. After this process, if the model
describes reasonably the real storage ring, the actual linear optics and coupling can be
derived and its deviations from the nominal values are obtained as well. Furthermore,
from the calibrated model it is also possible to calculate the variations for adjustable pa-
rameters in the real machine, which allows for the correction of linear optics and coupling
errors. In this way, LOCO method can be used both as a diagnostic and a correction tool.

The LOCO code was first implemented in FORTRAN language [37] and this ver-
sion was used to correct the optics in the NSLS X-ray ring [34] and debug problems in the
Advance Light Source (ALS) optics [38]. Several years later, LOCO code was implemented
in MATLAB [39,40] with a graphical user interface and compatible with the Accelerator
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Toolbox (AT), an accelerator modelling tool in MATLAB [41].

After that, LOCO has become a tool widely applied in many accelerators around
the world. UVX, the first synchrotron light source of LNLS, was amongst these facili-
ties [42]. Other improvements in the method were made, adding options of alternative
minimization methods and constraints to the fitting [43]. The author in [37] mentions
that, in 2007, after a search for “LOCO” in the text of papers on the Joint Accelerator
Conferences website [44], 107 papers were found. The same search made in 2020 yielded
510 results. This illustrates the impact of LOCO method in the accelerator community
over the years. LOCO has already been proven to be a useful tool for 4th generation light
sources as well, after being applied in MAX-IV first optics studies [45].

The effects of LOCO corrections on the machine can be checked by independent
beam-based measurements. It can be verified if the measured orbit response converged
to the expected orbit response from the nominal lattice. Changing a quadrupole strength
and measuring the corresponding shifts in the betatron tunes is a procedure to determine
the beta functions at quadrupoles. The beta function at the BPMs can be determined by
applying a fast dipolar impulse to the beam (for example with a pinger) and measuring
the Turn-by-Turn (TbT) response in the beam trajectory over time. The dispersion func-
tion at BPMs is determined by varying the RF frequency in the cavity and measuring
the variation in the beam orbit. Approximating the horizontal and vertical tunes and
measuring its minimum distance allows to determine the global betatron coupling. The
magnitude of the measured orbit response in one direction due to a dipolar variation in the
perpendicular plane provides the information about the coupling distribution along the
storage ring. The strength of the fast dipolar impulse can be increased until the electron
beam is partially or completely lost, providing information about the dynamic aperture
region. If a diagnostic beamline is available, beam emittance measurements can be per-
formed. The injection efficiency in the storage ring is also a good indicative of performance
improvement.

1.5 Objectives

The predominant programming language used in Sirius machine control system
is Python. After the design studies that resulted in the Sirius lattice and the commis-
sioning simulations, the Sirius models in MATLAB were not satisfactory explored by
the LNLS Accelerator Physics Group (APG) in the actual commissioning, mainly due to
inconveniences related to the different programming languages. Since there were acceler-
ator modeling and simulations Python frameworks developed in-house and in advanced
stages of implementation, the full migration of the Sirius to Python regarding the Accel-
erator Physics modeling and simulations were performed quite rapidly with only small
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adjustments.

Next to this, even though LOCO code is available in MATLAB, the LNLS APG was
also seeking for an expertise development related to the method proposed in LOCO for the
application on Sirius commissioning and later on the machine studies shifts. Moreover,
a code developed in-house is much more flexible to test new ideas and to implement
new functionalities. Considering the programming language migration as well, the idea
of studying LOCO method and implementing the code in Python came naturally. The
author had the opportunity to conduct this task, which derived in this master’s work.

The master’s main goals can be organized as follows:

• Study the Linear Optics From Closed Orbits (LOCO) method.

• Implement LOCO in Python for the Sirius storage ring model.

• Test the reliability of the implemented code with simulation studies.

• Implement a measurement script for the betatron function by tune shifts.

• Realize linear optics and coupling studies in the Sirius storage ring during the com-
missioning, performing measurements and corrections using the implemented codes.

To summarize, the dissertation gathers the author’s contributions to the Sirius
storage ring commissioning regarding the first studies and results related to the linear
optics and coupling measurements7 and corrections.

7 Some measurement scripts used in the dissertation are results from collective work of the APG, but
the reported measurements were performed by the author during the Sirius commissioning.
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2 Single Particle Dynamics

This chapter is dedicated to introduce the basic accelerator physics concepts and
the terminology required for this dissertation. For detailed discussions about the topics
presented here, the author recommends the references [46,47].

After the storage ring coordinate system definition in Section 2.1, the dynamics of
a single electron will be described in Sections 2.2 and 2.3. In Section 2.4, the perturbations
on the dynamics, that are fundamental to this work, are presented and discussed.

2.1 Coordinate System

To describe the motion of electrons in a storage ring, a coordinate system definition
is required and the concept of reference orbit is necessary. With proper initial conditions,
an ideal electron (also called synchronous electron), which has the storage ring nominal
energy 𝐸0, follows a closed orbit and this specific periodic path is defined as the reference
orbit. The motion of an arbitrary electron is then described in terms of small deviations
from the reference orbit, which is taken as the coordinate system origin.

The reference orbit is curved at dipoles and straight elsewhere. Generally, storage
rings are planar, i.e., they are designed so that dipoles deflect the electrons in just one
direction (called radial or horizontal), therefore the ideal orbit defines an orbital plane in
the storage ring. It is convenient to use a curvilinear and comoving coordinate system.
The longitudinal axis 𝑠 can be defined as tangent to the local orbit, the horizontal 𝑥 is
defined in the radial direction and the vertical 𝑦 is perpendicular to the orbital plane. A
graphical representation of this coordinate system can be seen in Figure 6.

Electrons in a storage ring are in the ultra-relativistic regime, where 𝐸 ≈ 𝑝𝑐 and
the major contribution to the total momentum is longitudinal 𝑝 =

√︁
𝑝2

𝑠 + 𝑝2
𝑥 + 𝑝2

𝑦 ≈ 𝑝𝑠.
It is assumed that transverse displacements (𝑥, 𝑦) of these electrons to the reference orbit
are small, then the ratios 𝑝𝑥/𝑝 and 𝑝𝑦/𝑝 are small as well and they can be related to
geometric quantities, namely angular deviations:

𝑥′ = d𝑥

d𝑠
≈ 𝑝𝑥

𝑝
,

𝑦′ = d𝑦

d𝑠
≈ 𝑝𝑦

𝑝
.

The approximations made above are called paraxial. The coordinates (𝑥, 𝑥′, 𝑦, 𝑦′)
define a four dimensional (4D) phase space, where the transverse dynamics is described.
Note that the displacements are functions of the longitudinal coordinate 𝑠, replacing the
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Figure 6 – Coordinate system used in storage rings [3].

time 𝑡 that is commonly used to describe the dynamics of a system. This substitution
is convenient since the 𝑠 coordinate is periodic for a storage ring and the transverse
coordinates derivatives can be interpreted geometrically.

To describe the longitudinal dynamics, one can define two more coordinates. The
first is the difference of longitudinal position 𝑠(𝑡) of a generic electron relative to the
position 𝑠sync(𝑡) of the synchronous electron:

𝑧(𝑡) := 𝑠sync(𝑡)− 𝑠(𝑡). (2.1)

The variable 𝑡 represents the wall-clock time. The coordinate 𝑧 can be used in time
units as well, represented by 𝜏 and the conversion is made by 𝜏(𝑡) = 𝑧(𝑡)/𝑐.

For the last coordinate, the electron relative momentum deviation from the nom-
inal momentum is used, which is also typically small:

𝛿 := 𝑝− 𝑝0

𝑝0
≈ 𝐸 − 𝐸0

𝐸0
, (2.2)

where the approximation follows from 𝐸 ≈ 𝑝𝑐.

Finally, (𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧, 𝛿) defines a six dimensional (6D) phase space where the trans-
verse and longitudinal dynamics of the electrons in a storage ring can be studied.

2.2 Transverse Dynamics

The transverse dynamics describes the motion of the electrons in the 4D phase
space (𝑥, 𝑥′, 𝑦, 𝑦′). In general, the typical time scale of the longitudinal dynamics is much
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larger than the transverse time scale and the two dynamics can be treated independently.
This is called the adiabatic approximation and is a good approximation to describe the
transverse motion in storage rings. In Sirius storage ring, while it takes around 200 turns
for an electron to perform one complete energy oscillation, in just one turn the same
electron completes 49 and 14 oscillations in 𝑥 and 𝑦 planes, respectively.

2.2.1 Betatron Oscillations

A simpler version of a magnetic lattice is composed by dipoles and quadrupoles
only. The dipoles bend the electrons path around the ring and define the ideal orbit. The
dipole field can be seen as the zeroth-order expansion of the lattice magnetic fields. The
next terms of the expansion are field gradients, mainly related to the quadrupoles. This
setup composes the linear magnetic lattice, where the magnetic field expansion is up to
first order.

Assuming this linear approximation and that the transverse directions are inde-
pendent, i.e., there is no transverse coupling terms, the Hamiltonian of an electron in the
storage ring is 1:

𝐻 ≈ 𝑥′2

2 + 𝑦′2

2 +
(︁
𝐾(𝑠)−𝐺2(𝑠)

)︁ 𝑥2

2 −𝐾(𝑠)𝑦2

2 −𝐺(𝑠)𝑥𝛿. (2.3)

𝐺(𝑠) is called curvature function and 𝐾(𝑠) is the focusing function, with the fol-
lowing expressions:

𝐺(𝑠) = 1
𝜌(𝑠) = 𝑒

𝑝0
𝐵(𝑠), (2.4)

𝐾(𝑠) = 𝑒

𝑝0

𝜕𝐵(𝑠)
𝜕𝑥

⃒⃒⃒⃒
⃒
𝑦=0

, (2.5)

where 𝑝0 is the ideal electron momentum. The dipole magnetic fields 𝐵(𝑠) must be in
the vertical direction to deflect the electrons horizontally. Observe that the function 𝐺(𝑠)
is the inverse of the radius of curvature of the electron path through the dipoles. 𝐺(𝑠)
and 𝐾(𝑠) are defined by the magnetic lattice and they are called lattice functions. For a
storage ring, these functions are periodic, i.e., 𝐺(𝑠) = 𝐺(𝑠 + 𝐿0) and 𝐾(𝑠) = 𝐾(𝑠 + 𝐿0),
where 𝐿0 is the storage ring circumference.

From the Hamiltonian in Eq. (2.3), the equations of motion are:

𝑥′′ +
(︁
𝐾(𝑠)−𝐺2(𝑠)

)︁
𝑥 = 𝐺(𝑠)𝛿, (2.6)

𝑦′′ −𝐾(𝑠)𝑦 = 0. (2.7)

1 The approximated transverse Hamiltonian is obtained from the Hamiltonian of a relativistic charged

particle on magnetic fields: 𝐻 = 𝑞𝜑 + 𝑐

√︂
𝑚2𝑐2 +

(︁
𝑝− 𝑞�⃗�

)︁
.
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From the adiabatic approximation, in this derivation it was considered that the
energy deviation 𝛿 is constant during the transverse motion. The equation of motion for
the horizontal plane contains a non-homogeneous term 𝐺(𝑠)𝛿 due to the dependence of
position with energy created at dipoles. This term couples the horizontal and longitudinal
motions.

If we consider only the homogeneous part, 𝑥 and 𝑦 equations can be cast in the
same form:

𝑢′′ + 𝐾𝑢(𝑠)𝑢 = 0, (2.8)

where 𝑢 = 𝑥 or 𝑦, 𝐾𝑥(𝑠) = 𝐾(𝑠)−𝐺2(𝑠) and 𝐾𝑦(𝑠) = −𝐾(𝑠). Note that 𝐾𝑥 ≈ −𝐾𝑦 if we
consider 𝐺2/𝐾 ≪ 1, which is a good approximation for strong-focusing magnetic lattices.
This reflects the fact that a focusing quadrupole in 𝑥 plane is necessarily defocusing in
the 𝑦 plane and vice-versa.

The homogeneous Eq. (2.8) is called Hill equation, which is similar to a simple har-
monic oscillator equation, except for the important fact that the term 𝐾𝑢 is 𝑠−dependent
and periodic. The authors in [48] proposed a pseudo-harmonic solution for the Hill equa-
tion, given by:

𝑢𝛽(𝑠) =
√︁

2𝐽𝑢𝛽𝑢(𝑠) cos (𝜙𝑢(𝑠)− 𝜑𝑢) . (2.9)

This solution describes the so-called betatron oscillations. 𝛽𝑢(𝑠) is the betatron
function and 𝜙𝑢(𝑠) is the betatron phase advance. Inserting this solution in the Hill
equation, it is obtained that the 𝛽𝑢(𝑠) must satisfy the following differential equation:

1
2𝛽𝑢𝛽′′

𝑢 −
(︃

𝛽′
𝑢

2

)︃2

+ 𝐾𝑢(𝑠)𝛽2
𝑢 = 1, (2.10)

and also that the betatron function and phase advance are related by

𝜙𝑢(𝑠) =
∫︁ 𝑠

0

1
𝛽𝑢(𝑠)d𝑠. (2.11)

In storage rings, the betatron function is a periodic solution for Eq. (2.10).

The parameters 𝐽𝑢 and 𝜑𝑢 are constants defined by the electron initial conditions.
One can show that the constant 𝐽𝑢 is written in terms of (𝑢, 𝑢′) as

2𝐽𝑢 = 𝛾𝑢𝑢2 + 2𝛼𝑢𝑢𝑢′ + 𝛽𝑢𝑢′2, (2.12)

for every longitudinal position 𝑠 and using the identities 𝛼𝑢(𝑠) = −𝛽′
𝑢(𝑠)/2 and 𝛾𝑢(𝑠) =

(1 + 𝛼2
𝑢(𝑠))/𝛽𝑢(𝑠). These three functions {𝛼𝑢(𝑠), 𝛽𝑢(𝑠), 𝛾𝑢(𝑠)} are called Twiss functions

and depend only on the magnetic lattice.

In Eq. (2.12) it is shown that, for each position 𝑠, the betatron oscillations per-
formed by the electrons in the storage ring over the turns draw a ellipse in the phase
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space (𝑢, 𝑢′). The ellipse shape varies with the longitudinal position 𝑠, however the ellipse
area is constant for every 𝑠. Since the assumptions made so far allow us to consider the
system as conservative, the ellipse area invariance in phase space is a direct consequence
of Liouville’s theorem. From Eq. (2.12), the ellipse area is 𝐴𝑢 = 2𝜋𝐽𝑢, following that 𝐽𝑢

is an invariant of motion. It is also possible to obtain this result applying the canonical
transformation of action-angle variables in the Hamiltonian of Eq. (2.3), identifying the
action as 𝐽𝑢 (in this case, it is an invariant by construction), and the phase variable as
𝜙𝑢.

Once these concepts are presented, we define the particle emittance as 𝜀𝑢 = 2𝐽𝑢.
In this way, the particle emittance can be interpreted as the area of the ellipse that the
electron follows in the 4D phase space during betatron oscillations, divided by 𝜋:

𝜀𝑢 = 𝐴𝑢

𝜋
. (2.13)

As discussed, it follows that the particle emittance is an invariant for the betatron
motion. From the ellipse equation analysis, the maximum values for 𝑢 and 𝑢′ are:

𝑢𝛽,max(𝑠) =
√︁

𝜀𝑢𝛽𝑢(𝑠), (2.14)

𝑢′
𝛽,max(𝑠) =

√︁
𝜀𝑢𝛾𝑢(𝑠). (2.15)

After obtaining the single particle parameters, one can introduce the excitation
and damping processes due to radiation in this description and then apply statistical
methods to obtain equilibrium parameters for an ensemble of non-interacting (indepen-
dent) electrons – the electron beam. The distribution of invariants 𝜀𝑢 leads to the natural
beam emittance 𝜀0, which for Sirius storage ring is 251 pm rad.

In a storage ring, the betatron phase advance accumulated over one turn is related
to the number of betatron oscillations completed by the electrons. This number is called
tune, given by

𝜈𝑢 = 1
2𝜋

∮︁ 1
𝛽𝑢(𝑠)d𝑠, (2.16)

where the closed integral represents an integration where the lower limit is an arbitrary 𝑠

and the upper limit is 𝑠 + 𝐿0, closing one turn around the ring.

The tune has an integer part (the number of complete betatron oscillations over
one turn) and a fractional part. Because of this fractional part the values of (𝑥, 𝑥′, 𝑦, 𝑦′)
at some 𝑠 may be different for each turn. The betraton oscillations peaks and valleys are
±
√︁

𝜀𝑢𝛽𝑢(𝑠). Therefore, the single particle emittance 𝜀𝑢 and the 𝛽𝑢(𝑠) function defines the
envelope of betatron oscillations.

The tune fractional part is closely related to resonances. If the fractional part
is zero, i.e., the tune is an integer number, in every turn the particles have the same
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coordinates (𝑢, 𝑢′) for every 𝑠. Then if there are dipolar field errors at the magnetic
lattice, these errors distort the electrons orbit in the same way at every turn, increasing
the distortion amplitude and leading to electron losses. If the fractional part is 1⁄2, the
resonance is excited by quadrupolar field errors. Generally, there are resonances that can
be excited if the tunes satisfy the relation

𝑚𝜈𝑥 + 𝑛𝜈𝑦 = 𝑟, (2.17)

where 𝑚, 𝑛, 𝑟 ∈ Z. The order of resonance is |𝑚|+ |𝑛| and the resonance strength decays
with the increase of its order, thus the lower order resonances are more harmful to the
beam stability. Eq. (2.17) determines resonance lines in the space (𝜈𝑥, 𝜈𝑦) that must be
avoided to prevent the electron beam from this type of instability. The tunes values must
be carefully chosen for the machine operation point. The Sirius storage ring design tunes
are 𝜈𝑥 = 49.0962 and 𝜈𝑦 = 14.1520.

2.2.2 Dispersion function

It can be seen from the radius of curvature created by the dipoles that an electron
with energy deviation 𝛿 is more deflected if 𝛿 < 0 and less deflected if 𝛿 > 0, compared to
the on-energy electron with 𝛿 = 0. Thus this energy difference is translated in different
horizontal displacements. This effect is represented by the non-homogeneous term 𝐺(𝑠)𝛿
in the horizontal equation of motion, which couples longitudinal and horizontal motions.

The homogeneous equation was already solved in the last section, leading to be-
tatron oscillations 𝑥𝛽. Therefore the general solution to the horizontal plane is a combi-
nation of 𝑥𝛽 and a particular solution for the non-homogeneous equation. As discussed,
it is known that this particular solution must be a function of 𝑠 and 𝛿. From Eq. (2.6), it
can be seen that the particular solution for the non-homogeneous equation must be linear
with respect to the energy deviation 𝛿, therefore

𝑥(𝑠, 𝛿) = 𝑥𝛿(𝑠) = 𝜂(𝑠)𝛿, (2.18)

where the 𝑠-dependence is retained in the function 𝜂(𝑠), called dispersion function. In-
serting the proposed solution into the differential equation, it is obtained that 𝜂(𝑠) must
satisfy

𝜂′′ + 𝐾𝑥(𝑠)𝜂 = 𝐺(𝑠). (2.19)

For a periodic magnetic lattice as used in storage rings, 𝜂(𝑠) is a periodic solution
to this differential equation. We finally obtained the transverse displacement solutions to
the equations of motion, where 𝑥(𝑠) = 𝑥𝛽(𝑠) + 𝑥𝛿(𝑠) and 𝑦(𝑠) = 𝑦𝛽(𝑠).

Imperfections such as magnet misalignment or construction errors can introduce
horizontal dipolar and skew quadrupolar fields, generating a vertical dispersion function,
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i.e., a dependence on vertical position with energy as well. Nevertheless, in this case the
steps made to obtain the solution for 𝑥 plane can be reproduced to obtain a equivalent
solution to the 𝑦 plane. Moreover, typically it is desired to keep 𝜂𝑦(𝑠) as low as possible
and there are some strategies to achieve this goal, which will be discussed in this work.

2.3 Longitudinal dynamics

In the previous section it was considered that the electron energy remains constant
during the transverse motion typical time scale, which is a good approximation. On the
other hand, since electrons are charged particles and in a storage ring they are submitted
to centripetal acceleration at dipoles and IDs, synchrotron radiation is generated and
the electrons lose energy. The energy loss is then compensated by the accelerating fields
contained in the RF cavity. During this process the electron energy oscillates and this
motion is known as synchrotron oscillations.

2.3.1 Orbit Length

In dipoles, for an electron with nominal energy, the oscillations occur symmetrically
about 𝑥 = 0. In straight sections, the path length variation due to betatron oscillations is
proportional to the square of the betatron amplitude. Thus, when the electron trajectory
is integrated over one turn (which corresponds to several betatron cycles), the change in
the path length due to the betatron motion is zero in first order. On the other hand, the
horizontal energy-dependent term 𝑥𝛿(𝑠) = 𝜂(𝑠)𝛿 has a significant first-order contribution.

The momentum compaction factor is a parameter that depends on the magnetic
lattice and is fundamental to the longitudinal dynamics. This dimensionless parameter,
denoted as 𝛼 ∈ R, relates the electron energy deviation with its orbit length:

Δ𝐿

𝐿0
= 𝛼

Δ𝑝

𝑝0
= 𝛼𝛿. (2.20)

In terms of the period of electron motion around the ring, it is obtained that

Δ𝑇

𝑇0
=
(︃

𝛼− 1
(𝑣/𝑐)2𝛾2

)︃
𝛿, (2.21)

The term 𝛼 − 1
(𝑣/𝑐)2𝛾2 is known as slip factor and, for ultra-relativistic electrons, it is

very close to 𝛼. For example, on Sirius storage ring 𝛼 = 1.6×10−4, 𝑣/𝑐 ≈ 1 and 𝛾 = 5871,
so the difference between the slip factor and 𝛼 is only 3× 10−8. Therefore,

Δ𝑇

𝑇0
≈ 𝛼𝛿 (2.22)

is usually a good approximation.
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The momentum compaction can be obtained in terms of lattice functions as:

𝛼 = 1
𝐿0

∮︁
𝐺(𝑠)𝜂(𝑠)d𝑠. (2.23)

Typically 𝛼 > 0 in synchrotrons. In this case, from Eq. (2.20), an electron with
𝛿 > 0 follows an orbit with greater length, as compared to the nominal orbit length 𝐿0.
The opposite happens for an electron with 𝛿 < 0.

2.3.2 Synchrotron Oscillations

Consider the synchronous electron with the nominal energy 𝐸0, following the ideal
orbit through the storage ring. In each turn, this electron radiates synchrotron light,
losing the amount 𝑈0 of energy. 𝑈0 is typically much lower than the electron energy 𝐸0.
An electron with energy 𝐸0 but not following the ideal orbit performs several betatron
oscillations in one turn and the transverse displacements average to zero in first order.
Hence, in this case, the energy loss per turn is 𝑈0 too.

On the other hand, the energy loss per turn has a first order difference from 𝑈0

for an electron with energy deviation 𝛿. This off-energy electron follows an orbit displaced
horizontally by 𝜂(𝑠)𝛿 and the electron experiences different fields systematically along the
ring. Furthermore, the energy loss depends on the electron energy by itself. Accounting
for these two effects, the energy loss must be a function 𝑈rad(𝛿) satisfying 𝑈(0) = 𝑈0. It
is considered that 𝛿 ≪ 1 for electrons in a storage ring, so it is reasonable to keep only
the linear part of 𝑈rad(𝛿):

𝑈rad(𝛿) ≈ 𝑈0 + d𝑈rad

d𝛿
𝛿. (2.24)

The energy gain process concerns the RF accelerating system. The resonant cavity
installed in the storage ring receives a RF signal, creating an oscillating electric field
inside the cavity. This electric field has a longitudinal component that might accelerate
the electrons and allow for the electrons energy recovery.

The RF net voltage depends on the initial phase of the field when the particle
enters the cavity and can be obtained from the integral of longitudinal electric field along
the electron path. Since this potential is oscillating in time, the possible electron energy
gain per turn is also time dependent. In order to keep the electron energy stable, the
ideal electron energy balance must be zero, i.e., the energy gained by the RF cavity must
always be 𝑈0 at each turn, for the ideal electron. To achieve this, the ideal electron circular
motion must be synchronized to the RF voltage oscillation, and this is why ideal electrons
are also called synchronous electrons. This is equivalent to the requirement that the RF
cavity potential oscillating frequency 𝑓rf must be a multiple of the ideal electron revolution
frequency 𝑓0

𝑓rf = ℎ𝑓0, (2.25)
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where the integer ℎ is called harmonic number.

We are interested in deviations from the synchronous electron, then the absolute
time dependence of 𝑉rf(𝑡) can be replaced by the coordinate 𝜏(𝑡) = 𝑧(𝑡)/𝑐 that is the
relative difference to the ideal arrival time at the cavity. In this way, an electron energy
gain is given by 𝑒𝑉rf(𝜏) and for the ideal electron we require that 𝑒𝑉rf(0) = 𝑈0. Since the
longitudinal displacements 𝜏 are small as well, we may expand the energy gain in first
order:

𝑈rf(𝜏) = 𝑒𝑉rf(𝜏) ≈ 𝑈0 + 𝑒
d𝑉rf

d𝜏
𝜏. (2.26)

Now we are ready to obtain the differential equation for the longitudinal motion.
Observe that from Eq. (2.20) the orbit length (and the revolution time) depends on the
energy deviation 𝛿. Let the sub-index 𝑛 denote the turn number. In successive turns the
relative position 𝑧(𝑡) changes by Δ𝑧 = 𝑧𝑛+1 − 𝑧𝑛 = 𝛼𝛿𝑛𝐿0. Converting it to time vari-
ables, then Δ𝜏 = 𝛼𝛿𝑛𝑇0, where 𝑇0 is the revolution period. As mentioned, the longitudinal
dynamics time scale is much greater than the time involved in one turn, then longitudi-
nal changes in consecutive turns divided by the revolution time 𝑇0 can be regarded as
derivatives. Hence

d𝜏

d𝑡
= 𝛼𝛿. (2.27)

From the electron energy balance Δ𝐸 = 𝐸𝑛+1−𝐸𝑛 = 𝑒𝑉 (𝜏𝑛)−𝑈rad(𝛿𝑛). Dividing
by 𝑇0 and 𝐸0 we obtain:

d𝛿

d𝑡
= 𝑒𝑉rf(𝜏)− 𝑈rad(𝛿)

𝐸0𝑇0
.. (2.28)

The coupled differential equations Eq. (2.27) and Eq. (2.28) describe the longitudi-
nal dynamics in the phase space (𝜏, 𝛿). With the linear approximations made in equations
Eq. (2.24) and Eq. (2.26), the differential equations can be cast in the following form:

𝑣 + 2𝛼𝑧�̇� + 𝜔2
𝑧𝑣 = 0, (2.29)

where 𝑣 = 𝜏 or 𝛿 and the dot represents the time derivative. Eq. (2.29) describes a damped

harmonic oscillator, with frequency 𝜔𝑧 =
√︃

𝛼𝑒

𝐸0𝑇0

d𝑉rf

d𝜏
, called synchrotron frequency. The

term 𝛼𝑧 = 1
2𝑇0

d𝑈rad

d𝛿
is positive, represents the effect of radiation damping and it is

typically small.

In the small oscillation limit, the phase-space trajectories are ellipses with decreas-
ing radius towards 𝜏 = 𝛿 = 0. In the general case of large oscillations, the longitudinal
dynamics is not equivalent to a damped oscillator anymore and the dynamics is non-linear.
The electrons trajectories in phase space are divided in two classes: 1) closed, limited and
stable and 2) open, unlimited and unstable. The stable regions in the phase space are
called RF buckets and a separatrix delimits the stable from the unstable region, where
the limit is the stable trajectory with largest amplitudes.
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It is important to observe that to keep electrons oscillating longitudinally, it is

required that d𝑉rf

d𝜏

⃒⃒⃒⃒
⃒
𝜏=0

> 0, otherwise the synchrotron frequency would be an imaginary

number and the motion would be unstable. Note that while the “restoring force” for the
betatron oscillation comes from the focusing function (basically the field gradients), the
equivalent for the synchrotron oscillations comes from the RF potential derivative.

The typical RF potential is sinusoidal 𝑉rf(𝜏) = 𝑉rf sin (𝜔rf𝜏 + 𝜑𝑠) where 𝑉rf is the
peak RF potential. From the energy balance 𝑒𝑉rf(0) = 𝑈0 we obtain that sin(𝜑𝑠) = 𝑈0/𝑒𝑉rf

and 𝜑𝑠 is called, as expected, the synchronous phase.

Since 𝜔rf = ℎ𝜔0, where 𝜔0 is the angular revolution frequency, there are 2ℎ occur-
rences of 𝑒𝑉rf(0) = 𝑈0 during one revolution period but only in half of them the stability

condition d𝑉rf

d𝜏

⃒⃒⃒⃒
⃒
𝜏=0

> 0 is satisfied. Hence, there are ℎ RF buckets in the longitudinal

phase space, where electrons can be stored in bunches. For the Sirius storage ring, it is
possible to accumulate electrons in 864 bunches.

2.3.3 Phase Stability

The principle of phase stability is a fundamental concept to the realization of
synchrotrons. It establishes a mechanism that guarantees that electrons with energy or
longitudinal phase deviations are forced towards the synchronous condition.

Suppose an electron with energy deviation 𝛿 > 0 in a storage ring. From Eq. (2.22),
it takes more time to this electron perform one turn, to reach the RF cavity and from
the convention used to the coordinate definition, 𝜏 < 0 for this electron. Since the RF
potential derivative must be positive at 𝜏 = 0, the energy gain 𝑈rf for 𝜏 < 0 is lower
than 𝑈0; moreover, 𝑈rad > 𝑈0 for electrons with 𝛿 > 0. Thus, the energy balance for this
electron is negative, leading it to lower values of 𝛿 and also 𝜏 .

The analysis is basically the same for electrons initially with 𝛿 < 0. These electrons
perform each turn faster than the synchronous electron, having 𝜏 > 0 and gaining more
energy from the cavity than is lost by radiation. This positive energy balance increases
the values of 𝛿 and 𝜏 .

The phase stability principle ensures that the electrons oscillate around the lon-
gitudinal fixed point (𝜏 = 0, 𝛿 = 0). The radiation damping effect makes it possible to
the longitudinal deviations be damped to this fixed point. On the counterpart, the quan-
tum nature of radiation emission produces an excitation effect and the balance between
damping and excitation creates an equilibrium configuration.

Since the synchronous condition must be satisfied, from Eq. (2.22) it is obtained



Chapter 2. Single Particle Dynamics 41

that:
Δ𝑓rf

𝑓rf
= −Δ𝑇

𝑇0
≈ −𝛼𝛿. (2.30)

From this equation it can be seen that a change in the RF frequency forces the
electrons to follow an off-energy orbit. This principle also allows for increasing the electron
energy in synchrotrons. Increasing the magnetic fields forces the electrons to reach new
synchronous conditions related to higher energies. To achieve that, the electrons must
gain more energy from the RF cavity, and the phase stability principle drives this process
automatically. In Sirius booster, the electron energy ramp is performed from 150 MeV to
3 GeV.

2.4 Perturbations

The effects of magnets and field errors in the electron beam can be minimized with
increasingly advanced techniques for magnets construction and alignment. Nevertheless,
the errors are impossible to be completely eliminated in practice. Furthermore, the mag-
nets parameters are measured by bench devices that are less sensitive to errors than the
electron beam. Hence, deviations from ideal conditions must be considered in the accel-
erator physics studies in order to develop methods for their diagnostics and corrections.
In this section we will present the perturbations on the electron beam properties caused
by low-order errors that are found in storage rings.

2.4.1 Orbit

The first natural error type to be studied is the dipolar. Dipolar errors disturb
the closed orbit for the electron motion. Depending on the distribution and magnitude of
these errors, a closed orbit solution may not even exist, then, without corrections, it would
be impossible to keep electrons in stable conditions in the storage ring. Typically, even
considering that all the specifications regarding the magnets fabrication and alignment
were met, the dipolar errors might provide a closed orbit solution with large distortions
around the ring. Despite this, the orbit distortions can be measured by the BPMs and
minimized with dipolar correctors (or steering magnets).

The typical sources of dipolar errors are:

• dipolar fields from transverse alignment errors in quadrupoles. An electron with the
deviation 𝑥 passing through a focusing quadrupole perfectly aligned to the reference
orbit receives a force −𝐾𝑥 in the horizontal plane. If the quadrupole center is
misplaced from the center by 𝑥0, the focusing force is −𝐾(𝑥 − 𝑥0), therefore the
misalignment introduces an additional dipolar term 𝐾𝑥0 every time the electrons
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pass through this quadrupole. This is called feed-down effect2, in which alignment
errors in 𝑛-order fields produce (𝑛− 1)-order fields contributions;

• differences between ideal and real dipolar fields in dipole magnets, due to fabrication
errors or remnant fields. In the case of electromagnets, the excitation curve that
relates the applied current on the power supply and the magnetic fields in the
magnet must be well calibrated, otherwise the actual field in the magnets differ
from the expected;

• horizontal dipolar fields, which should be ideally zero, due to rotation errors in
dipole magnets;

• non-zero field integrals from IDs;

• spurious magnetic sources along the ring, such as current ripple from magnet power
supplies, ion pumps, leak fields from injection pulsed magnets, building and ground
position drifts due to temperature or ground settlement, girder vibration (due to
water flow, crane, pumps, etc), electromagnetic noise.

We will study how a dipolar error Δ𝐺𝑢 (where 𝑢 = 𝑥, 𝑦), localized in a small longitudinal
region Δ𝑠, affects the closed orbit solution. The additional term Δ𝐺𝑢 can be regarded as
a perturbation in the Hamiltonian of Eq. (2.3) for the transverse dynamics. An approxi-
mation can be made to consider the dipolar error as a localized “kick”:

lim
Δ𝑠→0

Δ𝐺𝑢(𝑠)Δ𝑠 = 𝜃𝑠0𝛿(𝑠− 𝑠0),

where 𝛿(𝑠− 𝑠0) is the Dirac delta distribution centered at 𝑠0, so in this way the quantity
Δ𝐺𝑢(𝑠)Δ𝑠 is finite in the limit Δ𝑠 → 0. This dipolar kick adds a sudden change in the
angle of the electron trajectory when it reaches 𝑠0, given by:

Δ𝑢′(𝑠0) = Δ𝐺𝑣(𝑠)Δ𝑠

= −
∮︁

𝜃𝑠0𝛿(𝑠− 𝑠0)d𝑠 = −𝜃𝑠0 .

If the dipolar field error is vertical, 𝑣 = 𝑦, the angle change is horizontal, 𝑢 = 𝑥

and the dipolar kick is also named as horizontal. If the field error is horizontal, 𝑣 = 𝑥, the
angle change is vertical, 𝑢 = 𝑦 and the kick is called vertical. The sign follows from the
angle coordinate definition, if Δ𝐺𝑦 > 0 then Δ𝑥′ < 0 and if Δ𝐺𝑥 > 0, then Δ𝑦′ > 0.

The angle change produces betatron oscillations in the electron motion, arriving
at the dipolar error in each turn with different positions and angles. After some time, the
transverse motion is damped to a distorted closed orbit.
2 The Appendix A is dedicated to brief discussions and derivations related to this effect.
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In the presence of this dipolar kick, the transverse equations of motion are:

𝑥′′ + 𝐾𝑥(𝑠)𝑥 = 𝐺𝑦(𝑠)𝛿 −Δ𝐺𝑦(𝑠), (2.31)
𝑦′′ + 𝐾𝑦(𝑠)𝑦 = Δ𝐺𝑥(𝑠). (2.32)

Remember that 𝑢′′ = Δ𝑢′

Δ𝑠
, then writing the above equations as Δ𝑢′ + 𝐾𝑢(𝑠)𝑢Δ𝑠 =

Δ𝐺𝑣(𝑠)Δ𝑠 and taking the limit Δ𝑠→ 0, Δ𝑢′ = 𝜃𝑢
𝑠0 is recovered.

With the kick approximation, the dipolar error can be viewed as an impulse term
in the linear differential equations for the transverse motion. Hence, the theory of Green’s
function can be applied. The solution obtained from this analysis is [47]:

Δ𝑢(𝑠) =

√︁
𝛽𝑢(𝑠)𝛽𝑢(𝑠0)
2 sin (𝜋𝜈𝑢) Δ𝐺𝑣(𝑠0)Δ𝑠 cos (|𝜙𝑢(𝑠)− 𝜙𝑢(𝑠0)| − 𝜋𝜈𝑢) , (2.33)

and this is the orbit distortion for a dipolar error localized in the position 𝑠0. The gener-
alization for a distribution of errors 𝜃𝑢(𝑠) is quite direct:

Δ𝑢(𝑠) =
∮︁ √︁

𝛽𝑢(𝑠)𝛽𝑢(𝑠)
2 sin (𝜋𝜈𝑢) 𝜃𝑢(𝑠) cos (|𝜙𝑢(𝑠)− 𝜙𝑢(𝑠)| − 𝜋𝜈𝑢) d𝑠. (2.34)

Note that the orbit distortion diverges if the tune is an integer. Here the connection
between dipolar fields errors and integer resonances becomes explicit. Moreover, it is very
important to point out that the orbit distortion depends on the betatron functions and
the betatron phase advances, i.e., it depends on the optics parameters of the magnetic
lattice.

2.4.2 Optics

Quadrupolar (or gradient) errors disturb the focusing functions in the magnetic
lattice, therefore perturb the storage ring linear optics. The typical sources of quadrupolar
errors are:

• differences between ideal and real gradient fields in the quadrupoles magnets, due
to fabrication errors or remnant fields. The excitation curve must be well calibrated
too, otherwise the actual field in the magnets differs from the expected;

• gradient fields in dipoles magnets that are not expected in the magnets field char-
acterization;

• feed-down effects from horizontal alignment errors in sextupoles magnets. An elec-
tron with the deviation 𝑥 passing through a focusing sextupole perfectly aligned to
the reference orbit receives a force −𝑆𝑥2 in the horizontal plane. If the sextupole
center is misplaced from the center by 𝑥0, the force is −𝑆(𝑥 − 𝑥0)2, therefore the
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misalignment introduces an additional horizontal focusing term 𝑆𝑥0𝑥, where the
focusing strength is given by 𝑆𝑥0, and a dipolar term −𝑆𝑥2

0, that influence the
electrons every time they pass through this sextupole.

A gradient error Δ𝐾𝑢 (where 𝑢 = 𝑥, 𝑦), localized in a small longitudinal region Δ𝑠,
changes the conditions that the betatron function must satisfy in Eq. (2.10). Therefore this
error disturbs the betatron function solution, consequently the betatron phase advance
and the betatron tunes.

An approximation can be made to consider the single gradient error as a thin
lens. The focal length added in this case is 1/𝑓𝑢 = Δ𝐾𝑢Δ𝑠. If the gradient error is on
a quadrupole with length 𝐿, the focal length is then obtained from the integrated field
along the quadrupole, 1/𝑓𝑢 = Δ𝐾𝑢𝐿. With this approximation the gradient error effect
can be regarded as an impulse 𝛿𝐾𝑢(𝑠) = Δ𝐾𝑢𝐿𝛿(𝑠− 𝑠0) located at 𝑠0.

Assuming the error Δ𝐾𝑢 is small, then only first order terms can be kept. The
correspondent change in the betatron tunes for a integrated gradient error Δ𝐾𝑢𝐿 located
at 𝑠0 can be obtained as

Δ𝜈𝑢 = 1
4𝜋

𝛽𝑢(𝑠0)Δ𝐾𝑢𝐿. (2.35)

For a quadrupole, Δ𝐾𝑥 = −Δ𝐾𝑦, then a positive error in the focusing strength
increases 𝜈𝑥 and decreases 𝜈𝑦. Note that the tune change depends on the non-perturbed
betatron function value at the error location.

For a general gradient error distribution around the ring, the tune change is:

Δ𝜈𝑢 = 1
4𝜋

∮︁
𝛽𝑢(𝑠)𝛿𝐾𝑢(𝑠)d𝑠. (2.36)

The solution for Eq. (2.10) in the presence of a distribution of gradient errors
provides the relative change in the betatron function given by

Δ𝛽𝑢(𝑠)
𝛽𝑢(𝑠) = 1

2 sin (2𝜋𝜈𝑢)

∮︁
𝛿𝐾𝑢(𝑠)𝛽𝑢(𝑠) cos (2 (|𝜙𝑢(𝑠)− 𝜙𝑢(𝑠)| − 𝜋𝜈𝑢)) d𝑠. (2.37)

The ratio Δ𝛽/𝛽 is called beta-beating and it is a measure of the betatron function
distortion. The beta-beating in a storage ring must be as low as possible, indicating that
the betatron function for the real machine is close to the nominal one. Observe that the
beta-beating diverges if the tune fractional part is a half-integer. Thus, the association
between gradient fields errors and half-integer resonances can be seen.

The dispersion function 𝜂(𝑠) may be changed in the presence of dipolar and
quadrupolar errors as well, since it must satisfy the differential Eq. (2.19), which de-
pends on the lattice functions 𝐺(𝑠) and 𝐾(𝑠). An analytical expression for the dispersion
variation in the presence of these errors is not very insightful to be presented here, but it
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is important to keep in mind that lattice imperfections may disturb the 𝜂(𝑠) function and
the most direct parameter that may be affected by these errors is the beam emittance.

2.4.3 Linear Coupling

There are some types of errors that couple the dynamics in the transverse planes.
The rotated quadrupolar fields are called skew gradients (the previous gradients intro-
duced are called normal). In this subsection we will study the effects of linear coupling on
the dynamics. Typical coupling sources are:

• rotation errors in the quadrupoles. These errors add skew gradients to the lattice:
focusing forces in the 𝑥 plane which are dependent on the 𝑦 displacements and
vice-versa;

• feed-down effects due to vertical alignment errors in sextupoles magnets. An electron
with the deviation 𝑥 and 𝑦 passing through a focusing sextupole perfectly aligned
to the reference orbit receives a force 𝑆(𝑥2 − 𝑦2) in the horizontal and 𝑆𝑥𝑦 in the
vertical plane. If the sextupole center is misplaced from the center by 𝑦0, the terms
𝑆𝑦0𝑦 and −𝑆𝑦2

0 are added in the horizontal, and the force 𝑆𝑦0𝑥 is added in the
vertical plane. Hence, there are focusing forces, with strength 𝑆𝑦0, in one transverse
plane that depends on position deviations in the perpendicular plane, i.e., skew
gradients;

We may consider the skew gradients distribution around the storage ring as small
perturbations to the electron dynamics. Suppose that this distribution is represented by
the lattice function 𝐾𝑆(𝑠), namely skew-focusing function, generated by rotated quadrupoles,
for example. The homogeneous equations of motion with these new fields are changed by

𝑥′′ + 𝐾𝑥(𝑠)𝑥 + 𝐾𝑆(𝑠)𝑦 = 0, (2.38)
𝑦′′ −𝐾𝑦(𝑠)𝑦 + 𝐾𝑆(𝑠)𝑥 = 0. (2.39)

Let the transverse Hamiltonian, without the energy dependent term, be

𝐻0 = 𝑥′2

2 + 𝑦′2

2 + 𝐾𝑥(𝑠)𝑥2

2 −𝐾𝑦(𝑠)𝑦2

2 ,

then the Hamiltonian for the linearly coupled motion is

𝐻 = 𝐻0 + 𝐾𝑆(𝑠)𝑥𝑦,

and the term 𝐻1 = 𝐾𝑆(𝑠)𝑥𝑦 can be treated as a perturbation Hamiltonian.
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Applying a convenient canonical transformation with the action-angle variables
(𝑎, 𝜑) in 𝐻1, it assumes the form [47]:

𝐻1 = 𝐾𝑆(𝑠)
2

√︁
𝛽𝑥(𝑠)𝛽𝑦(𝑠)√𝑎𝑥𝑎𝑦

∑︁
𝑙𝑥,𝑙𝑦∈(−1,1)

𝑒𝑖[𝑙𝑥(𝜙𝑥+𝜑𝑥)+𝑙𝑦(𝜙𝑦+𝜑𝑦)].

From this expression, we are able to separate constants and slowly varying terms
from fast oscillating terms. Using periodic properties for the functions in a storage ring,
we rewrite the Hamiltonian as:

𝐻1 =
√

𝑎𝑥𝑎𝑦

2
∑︁

𝑙𝑥,𝑙𝑦∈(−1,1)
𝐴𝑙𝑥,𝑙𝑦(𝑠)𝑒𝑖[(𝑙𝑥𝜈𝑥+𝑙𝑦𝜈𝑦)2𝜋𝑠/𝐿0+𝑙𝑥𝜑𝑥+𝑙𝑦𝜑𝑦 ],

where the factor 𝐴𝑙𝑥,𝑙𝑦(𝑠) contains the periodic functions:

𝐴𝑙𝑥,𝑙𝑦(𝑠) = 𝐾𝑆(𝑠)
√︁

𝛽𝑥(𝑠)𝛽𝑦(𝑠)𝑒𝑖[𝑙𝑥𝜙𝑥+𝑙𝑦𝜙𝑦−(𝑙𝑥𝜈𝑥+𝑙𝑦𝜈𝑦)2𝜋𝑠/𝐿0].

Since 𝐴𝑙𝑥,𝑙𝑦(𝑠) is periodic in 𝐿0, we are able to expand it in terms of Fourier series:

𝐴𝑙𝑥,𝑙𝑦(𝜙) = 2𝜋

𝐿0

∑︁
𝑞

𝜅𝑞,𝑙𝑥,𝑙𝑦𝑒𝑖𝑞𝑁2𝜋𝑠/𝐿0 .

The coupling coefficients are obtained as:

𝜅𝑞,𝑙 = 1
2𝜋

∮︁
𝐾𝑆(𝑠)

√︁
𝛽𝑥(𝑠)𝛽𝑦(𝑠)𝑒𝑖[𝜙𝑥+𝑙𝜙𝑦−(𝜈𝑥+𝑙𝜈𝑦−𝑞𝑁)2𝜋𝑠/𝐿0]d𝑠, (2.40)

where 𝑙 is an integer number that satisfy −1 ≤ 𝑙 ≤ 1 and it was used to substitute
𝑙𝑥, 𝑙𝑦. Generally the coupling coefficient is a complex number. This indicates that there
are two orthogonal and independent contributions, then two orthogonal and independent
knobs are necessary to correct the coupling. The corrections can be made by adding skew
(rotated) quadrupoles in the storage ring to compensate the unwanted skew gradients.

The linear coupling resonances occur when 𝑙 = ±1 and 𝜈𝑥 ± 𝜈𝑦 ≈ 𝑞𝑁 , 𝑞 and 𝑁

integers. These two resonances are called sum and difference coupling resonances. It can
be shown that in the difference resonance the sum of the resonance amplitudes 𝑎𝑥 + 𝑎𝑦 is
constant, therefore this coupled motion is stable.

In this coupled motion there are two normal modes of oscillation, which defines
new betatron frequencies (or tunes), given by:

𝜈1,2 = 𝜈𝑥,𝑦 ±
1
2
√︁

Δ2
𝑞,𝑙 + |𝜅𝑞,𝑙|2 ∓

1
2Δ2

𝑞,𝑙, (2.41)

where Δ𝑞,𝑙 = 𝜈𝑥 + 𝑙𝜈𝑦 − 𝑞𝑁 .

On the difference resonance, Δ𝑞,−1 ≈ 0, we obtain that 𝜈1 = 𝜈𝑥 + |𝜅𝑞,−1|/2 and
𝜈2 = 𝜈𝑦 − |𝜅𝑞,−1|/2. Since the difference resonance is stable, we are able to approximate
the tunes 𝜈𝑥 ≈ 𝜈𝑦, but there is a stop-band between the normal tunes given by

(𝜈1 − 𝜈2)min = |𝜅𝑞,−1|. (2.42)
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Therefore, measuring the minimum difference between the tunes is a direct mea-
surement of the coupling coefficient modulus, which is also called global betatron coupling.

Assuming that 𝜈𝑥 < 𝜈𝑦 as an example, the tunes approximation can be performed
by increasing a focusing quadrupole strength, in order to increase 𝜈𝑥 and decrease 𝜈𝑦. Note
that away from the coupling resonances, Δ𝑞,𝑙 ≫ |𝜅𝑞,𝑙| and from this we see that 𝜈1 ≈ 𝜈𝑥

and 𝜈2 ≈ 𝜈𝑦. Thus, while the tunes are away from each other, the normal and betatron
tunes are basically the same. When 𝜈𝑥 is close to 𝜈𝑦 the measured oscillating frequencies
are 𝜈1 and 𝜈2 which, in the presence of coupling, do not cross each other.
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3 Linear Optics from Closed Orbits Method

Linear Optics from Closed Orbits (LOCO), is a model-dependent algorithm with
the main objective of calibrating the accelerator model in order to reproduce an orbit
response matrix measured in the real machine. Once this correspondence is achieved, it
is considered that the calibrated model is a representation of the real machine in terms of
the linear response of the magnetic lattice. Therefore, one can access the information from
the real accelerator by analysing the model. The principal information that is studied in
this process is related to the linear optics functions (betatron and dispersion functions),
allowing for disturbances detection and, more importantly, to obtain the corrections that
bring the real machine parameters closer to the nominal.

This method has been applied to several synchrotrons over the years and has been
proven to be efficient both to detect optics perturbations and to correct the machine linear
optics [34,49,50]. Besides that, with the realization of 4th generation light sources, which
use innovative and very compact magnetic lattices and optics, some details and subtleties
of LOCO should be revisited to successfully apply the method in modern machines such
as the Sirius storage ring. This chapter is dedicated to present LOCO method and to
discuss the aforementioned details.

3.1 Orbit Response Matrix Analysis

If a 𝑗-th dipolar corrector strength is locally varied by the amount Δ𝜃𝑗, the electron
closed orbit is distorted. The horizontal and vertical distortions (Δ𝑥 and Δ𝑦) can be
measured by the BPMs. With the distortions measured by the 𝑖-th BPM, the following
quantities can be calculated in this process:

𝑀𝑢𝑣
𝑖𝑗 = Δ𝑢𝑖

Δ𝜃𝑣
𝑗

. (3.1)

If the corrector magnet is horizontal, 𝑣 = 𝑥 and if it is vertical, 𝑣 = 𝑦. For each
corrector varied, one can measure the corresponding positions variations at every BPM,
horizontally 𝑢 = 𝑥 and vertically 𝑢 = 𝑦. These values can be cast in an array M, called Or-
bit Response Matrix (ORM). Usually the element ordering in this matrix is the following:

M =
⎡⎣M𝑥𝑥 M𝑥𝑦

M𝑦𝑥 M𝑦𝑦

⎤⎦ . (3.2)

The sub-matrices M𝑥𝑥 and M𝑦𝑦 in the diagonal blocks are the elements with
larger values in the ORM. In a magnetic lattice with zero transverse coupling (such as
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the nominal magnetic lattice for Sirius storage ring) the sub-matrices M𝑥𝑦 and M𝑦𝑥 in
the off-diagonal blocks are zero. The order of magnitude of the elements in off-diagonal
blocks compared to the diagonal blocks is smaller by the same order of magnitude of the
transverse coupling, typically a few percent without corrections.

For the uncoupled case, it is possible to obtain an analytical expression for the ORM
elements in the diagonal blocks. In Eq. (2.34), the orbit distortion in the presence of a
given dipolar kick distribution 𝜃𝑢(𝑠) was shown. For the special case that the kick distribu-
tion is discrete, localized in the dipolar correctors positions 𝑠𝑗, with values Δ𝜃𝑢

𝑗 , Eq. (2.34)
is rewritten in the form:

Δ𝑢(𝑠𝑖) =
∑︁

𝑗

√︁
𝛽𝑢(𝑠𝑖)𝛽𝑢(𝑠𝑗)
2 sin (𝜋𝜈𝑢) Δ𝜃𝑢

𝑗 cos (|𝜙𝑢(𝑠𝑖)− 𝜙𝑢(𝑠𝑗)| − 𝜋𝜈𝑢) . (3.3)

The orbit distortions Δ𝑢(𝑠𝑖) are also measured in discrete and localized positions
𝑠𝑖, where the BPMs are installed. The above equation can be cast in the form Δ𝑢𝑖 =∑︀

𝑗 𝑀𝑢𝑢
𝑖𝑗 Δ𝜃𝑢

𝑗 , therefore the ORM elements can be recognized as:

𝑀𝑢𝑢
𝑖𝑗 =

√︁
𝛽𝑢(𝑠𝑖)𝛽𝑢(𝑠𝑗)
2 sin (𝜋𝜈𝑢) cos (|𝜙𝑢(𝑠𝑖)− 𝜙𝑢(𝑠𝑗)| − 𝜋𝜈𝑢) . (3.4)

Note that the ORM elements contain information about the local betatron function
at BPMs and correctors positions. It also encodes the relative betatron phase advance
between each pair of BPM and steering magnet and the ORM also depends on the betatron
tune, a global parameter.

Following the sorting used in the ORM, the orbit distortions and the dipolar kick
variations can be arranged in vectors

Δ�⃗� = (Δ𝑥1, . . . , Δ𝑥NBPM , Δ𝑦1, . . . , Δ𝑦NBPM) ,

Δ𝜃 =
(︁
Δ𝜃𝑥

1 , . . . , Δ𝜃𝑥
NCH

, Δ𝜃𝑦
1 , . . . , Δ𝜃𝑦

NCV

)︁
.

NBPM is the number of BPMs, NCH is the number of horizontal correctors (CH)
and NCV is the number of vertical correctors (CV). The orbit correction system for Sirius
storage ring has NBPM = 160, NCH = 120 and NCV = 160. In this vectorial form, Eq. (3.3)
is Δ�⃗� = MΔ𝜃, so the ORM has dimension 2NBPM × (NCH + NCV).

Suppose that the BPMs measure the orbit distortion �⃗�d. With the dipolar correc-
tors it is possible to produce an orbit variation that minimizes the 2-norm of the residual
orbit. From the minimization of ||�⃗�d−MΔ𝜃||2 with respect to Δ𝜃, the required kick varia-
tions are Δ𝜃 = −

(︁
MTM

)︁−1
MT�⃗�d. Since the actual problem is non-linear, the corrections

must be calculated and applied iteratively until convergence.

The pseudo-inverse of MTM can be obtained with the method of Singular Value
Decomposition (SVD) pseudo-inversion which is described in Appendix B. Using this
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method and, depending on the number of fit parameters compared to the number of data
points, it is also possible to minimize the correctors strengths required to minimize the
figure of merit, in this case, the orbit distortion 2-norm.

It is common to also include the RF frequency as a knob in the orbit correction
system. This can be done by adding in the last column of the ORM the orbit distortion
vector produced by a variation in the RF frequency. From Eq. (2.30) and using Δ𝑢𝑖 =
𝜂𝑢(𝑠𝑖)𝛿, we obtain:

Δ𝑢𝑖

Δ𝑓rf
= −𝜂𝑢(𝑠𝑖)

𝛼𝑓rf
. (3.5)

Adding this extra knob to the orbit correction system is very important to correct
beam energy variations through orbit length, which can be generated by thermal drifts of
the storage ring tunnel, tidal effects, etc. It is important to observe that the RF signature
in the orbit distortion is very different from the signature created by the correctors, since
the first depends on the dispersion function and the latter on the betatron function.

The ORM with the RF frequency column added is then a matrix with dimension
2NBPM × (NCH + NCV + 1). For the Sirius storage ring, the ORM is a 320 × 281 matrix.
Beyond the function of calculating the corrections for orbit distortions, the ORM contains
a lot of information about the uncoupled linear optics (betatron function, phase advance
and horizontal dispersion function) and the coupled linear optics (betatron coupling and
vertical dispersion function). LOCO method explores extensively the information con-
tained in the ORM.

3.2 Minimization Problem

To implement LOCO method, a storage ring model is required. In this model, it is
possible to calculate the nominal ORM. That can be done by simulating numerically the
measurement process which consists in varying the correctors strength and getting the
corresponding orbit distortion in all BPMs, for every corrector in the lattice. The nomi-
nal ORM calculation can be perfomed also using the transfer matrices of the lattice. In
this formalism, which is much faster computationally, the ORM elements can be obtained
by the composition of the transfer matrices of the elements between the correctors and
the BPMs. If non-linear effects in the orbit distortion can be disregarded (for example
using small kicks variations), the two calculation methods produce very similar ORMs,
thus, for the sake of sparing computation time, the transfer matrices approach is often
used.

The LOCO method can be viewed as a model-dependent minimization problem.
The main goal is to find a set of parameters in the computational model that best re-
produce the measured ORM. Equivalently, it seeks for the global minimum of the square
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differences:
𝜒2 =

∑︁
𝑖,𝑗

(︁
𝑀measured

𝑖𝑗 −𝑀model
𝑖𝑗

)︁2
=:

∑︁
𝑘=(𝑖,𝑗)

𝑉 2
𝑘 . (3.6)

The residue vector �⃗� has 2×NBPM× (NCH + NCV + 1) elements and it is obtained
by the vectorization transformation applied in the difference of ORMs. For example, the
vectorization of a 2× 2 matrix is:

A =
⎡⎣𝑎11 𝑎12

𝑎21 𝑎22

⎤⎦⇒ vec (A) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎11

𝑎12

𝑎21

𝑎22

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.7)

Let the dimension of �⃗� be denoted by Ndata. For the Sirius storage ring, Ndata =
2× 160× 281 = 89920. Note that 𝜒2 = �⃗� T�⃗� .

If the relative orbit response due to the RF frequency variation Δ𝑢𝑖

Δ𝑓rf
is included

as a ORM column, from Eq. (3.5), the minimization problem can be factored as

𝜒2
𝜂 =

∑︁
𝑖,𝑗

(︁
𝑀measured

𝑖𝑗 −𝑀model
𝑖𝑗

)︁2
+
(︃

𝑐𝑓rf ,𝜃

𝛼𝑓rf

)︃2∑︁
𝑖

(︁
𝜂measured

𝑖 − 𝜂model
𝑖

)︁2
, (3.8)

where 𝑐𝑓rf ,𝜃 is a conversion factor used to match the units of 𝜒𝜂 terms, 𝛼 is the momentum
compaction factor and 𝑓rf is the RF frequency.

The BPM index 𝑖 covers the horizontal dispersion function for 1 ≤ 𝑖 ≤ NBPM and
the range NBPM + 1 ≤ 𝑖 ≤ 2NBPM refers to the vertical dispersion. Therefore, in this way
the dispersion functions are also included in the fitting.

The minimization is performed by changing some parameters in the ring model,
so the model ORM Mmodel is also changed and the square difference 𝜒2, i.e., the 2-
norm of the residue vector �⃗� , might be reduced. Two minimization algorithms are com-
monly used to calculate the parameters variations that minimizes 𝜒2: Gauss-Newton (GN)
and Levenberg-Marquardt (LM).

Suppose that each element 𝑉𝑘 of the vector is a function of several parameters
𝑃 =

(︁
𝑃1, . . . , 𝑃Nparam.

)︁
. The number of fit parameters is represented by Nparam.. Then it is

possible to calculate the linear response of the vector elements for a given change in the
parameters:

Δ𝑉𝑘 =
∑︁

𝑙

𝜕𝑉𝑘

𝜕𝑃𝑙

Δ𝑃𝑙. (3.9)

The above equation can be cast in a vectorial form as well, with Δ�⃗� = JΔ𝑃 ,
where the matrix J is called LOCO jacobian and its elements are

𝐽𝑘𝑙 = 𝜕𝑉𝑘

𝜕𝑃𝑙

. (3.10)
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The ORM can be interpreted as a jacobian as well, if the orbit distortions are
viewed as a function of the dipolar kicks. So, if 𝑢𝑖 = 𝑢𝑖 (𝜃1, . . . , 𝜃Ncorrs), the ORM ele-
ments are 𝑀𝑖𝑗 = 𝜕𝑢𝑖

𝜕𝜃𝑗

. The LOCO jacobian is the derivative of the ORM relative to the

parameters 𝑃 , thus it is actually the second order derivative of the orbit distortion relative
to the dipolar kicks and the parameters, which can be written as a rank-3 tensor with
elements given by:

𝐽𝑖𝑗𝑙 = 𝜕2𝑢𝑖

𝜕𝑃𝑙𝜕𝜃𝑗

. (3.11)

The vectorization uses the indices (𝑖, 𝑗) of this rank-3 tensor to convert them in
one index 𝑘 = 𝑖⊗ 𝑗 and build a rank-2 tensor 𝐽𝑘𝑙, which is the LOCO jacobian matrix.

Depending on the parameter type, it is possible to calculate the LOCO jacobian
matrix analytically or numerically. The numerical jacobian calculation typically dominates
the running time for LOCO method.

3.2.1 Gauss-Newton Algorithm

The GN algorithm was already briefly presented in Section 3.1 while discussing
the calculation of kicks to correct the orbit distortion. This algorithm is generally used to
solve non-linear least squares problems [51].

Suppose that an ORM was measured in the real storage ring and the initial
model ORM is calculated with the initial parameters 𝑃0, so the initial residue vector
�⃗�0 is obtained. The goal is to apply variations in the residues such that ||�⃗�0 − JΔ𝑃 ||2

is minimized with respect to Δ𝑃 . We obtain the solution Δ𝑃0 = −
(︁
JTJ

)︁−1
JT�⃗�0, so

changing the parameters by 𝑃1 = 𝑃0 + Δ𝑃0 might reduce the 2-norm of the new residue
vector �⃗�1. Since the problem is typically non-linear, proceeding in that manner iteratively,
in principle the algorithm converges to the minimum of 𝜒2.

The LOCO jacobian matrix J dimension is Ndata × Nparam.. The number of data
points Ndata is much greater than the typical number of parameters Nparam.. Hence, J
is a rectangular matrix with much more rows than columns and the problem is highly
over-constrained. For Sirius Ndata = 89920 and Nparam ≈ 1000 for typical LOCO fittings.
As discussed in Appendix B, in this overdetermined case it is not possible to solve the
linear problem exactly, but the SVD method provides an approximate solution called least
squares solution.

The GN method seeks for the minimum of 𝜒2 by iteratively applying the parame-
ters variations, calculated in each step by

Δ𝑃 = −
(︁
JTJ

)︁−1
JT�⃗� . (3.12)

where �⃗� is the residue vector.
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It is important to mention that if the initial model ORM is far from the mea-
sured ORM, i.e., the actual and the model linear optics are very different, the algorithm
may not converge due to nonlinearities. Therefore, the Gauss-Newton convergence requires
a good initial model in order for the linear approximations to be valid. For the cases that
a good initial guess is not available, the Levenberg-Marquardt is then introduced as a
fitting option that is less dependent on the initial model.

3.2.2 Levenberg-Marquardt Algorithm

The LM algorithm is a damped least squares method. It is a combination between
the GN algorithm and the gradient descent, being more robust than GN since it converges
to the solution even if the initial guess is far from the final values [51].

While GN method solves the linear algebra problem given by JTJΔ𝑃 = −JT�⃗� for
a given residue vector �⃗� , the LM method solves the modified equation1:(︁

JTJ + 𝜆diag
(︁
JTJ

)︁)︁
Δ𝑃 = −JT�⃗� , (3.13)

where 𝜆 > 0 is a constant. The diagonal operator acts on a 2×2 matrix, for example, as:

A =
⎡⎣𝑎11 𝑎12

𝑎21 𝑎22

⎤⎦⇒ diag (A) =
⎡⎣𝑎11 0

0 𝑎22

⎤⎦ . (3.14)

Note that the diagonal elements of the matrix JTJ are increased by the scale 1+𝜆.
The interpolation between the GN algorithm and the gradient descent is controlled with
the parameter 𝜆. In the limit 𝜆≪ 1, Eq. (3.13) approaches the equation used in the GN
method. If 𝜆 ≫ 1, Eq. (3.13) describes the gradient descent method, where the changes
are made only in the direction of maximum variation of the function.

The parameter 𝜆 may be chosen in a heuristic manner for a specific problem. It also
can be changed during the fitting. The typical procedure used in LOCO algorithm [1,43]
is to begin with small values for 𝜆, around 10−3, decrease 𝜆 by a factor (for example,
by 10) if the iteration reduces 𝜒2 and increase 𝜆 by a scale if 𝜒2 is increased and keep
increasing this parameter until 𝜒2 is reduced or 𝜆 reaches a maximum threshold. In this
way, the methods GN and LM proceed basically in the same manner initially and in the
cases that GN fails to converge, the LM may continue the convergence by changing the
fitting method, making it closer to the gradient descent by increasing the value of 𝜆. One
disadvantage of the LM algorithm is that for large values of 𝜆, the algorithm convergence
is typically very slow. Therefore, once the fitting is reasonably close to the minimum, it
may be helpful to decrease the value of 𝜆 for the sake of increasing the convergence speed.
1 The method was proposed by K. Levenberg in the paper [52] originally as

(︀
JTJ + 𝜆I

)︀
Δ𝑃 = −JT�⃗� .

Later D. Marquardt in [53] replaced the identity matrix I by diag
(︀
JTJ

)︀
, making the method scale-

independent.
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3.3 Functionalities

LOCO can be configured for two purposes: to find the error sources or to calculate
linear optics and coupling corrections. Therefore, it can be used as a diagnostic or a
correction tool. In this section it will be discussed the common parameters types used
and how to setup LOCO for each purpose.

3.3.1 Fit Parameters

In order to determine the type of parameters to be included in the ORM fitting
it is useful to consult the sources of perturbations described in Section 2.4. The common
parameters that can be varied to fit the ORM are:

• Diagonal blocks M𝑥𝑥 and M𝑦𝑦

– quadrupolar gradients in quadrupole magnets;

– quadrupolar gradients in dipole magnets;

– quadrupolar gradients in sextupole magnets;

– BPMs gains;

– steering magnets gains.

• Off-diagonal blocks M𝑥𝑦 and M𝑦𝑥

– skew quadrupolar gradients in skew quadrupole magnets;

– skew quadrupolar gradients in quadrupole magnets;

– skew quadrupolar gradients in dipole magnets;

– skew quadrupolar gradients in sextupole magnets;

– BPMs roll angles.

The LOCO jacobian matrix for BPMs and corrector gains, and also for BPMs roll errors,
are the columns that can be calculated analytically, as shown in Appendix C. The columns
related to the other parameters are typically calculated by numerical derivatives with the
simulated storage ring model.

BPMs gains and rolls can be viewed as adjustments to the measurements given by
these devices, mapped with a linear transformation. Suppose that the actual orbit posi-
tions in the 𝑖-th BPM are (𝑥𝑖,real, 𝑦𝑖,real) but the BPM measures the values (𝑥i,meas., 𝑦i,meas.).
The real values can be obtained by the linear transformation:⎡⎣𝑥𝑖,real

𝑦𝑖,real

⎤⎦ =
⎡⎣ cos 𝛼𝑖 sin 𝛼𝑖

− sin 𝛼𝑖 cos 𝛼𝑖

⎤⎦⎡⎣𝑔BPM
𝑖,𝑥 0
0 𝑔BPM

𝑖,𝑦

⎤⎦ ⎡⎣𝑥𝑖,meas.

𝑦𝑖,meas.

⎤⎦ , (3.15)
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where 𝑔𝑖,𝑥 are the horizontal gains, 𝑔𝑖,𝑦 the vertical gains for the 𝑖-th BPM and 𝛼𝑖 is the
roll for this BPM. In that way, the BPM measurements �⃗�𝑖,meas. are adjusted to �⃗�𝑖,real,
rewriting Eq. (3.15) as:

�⃗�𝑖,real = RBPM (𝛼𝑖) GBPM
𝑖 �⃗�𝑖,meas., (3.16)

where R (𝛼𝑖) is a rotation matrix and GBPM
𝑖 the BPM gain matrix. Eq. (3.16) allows for

the jacobian matrix analytical calculation for the BPM gains and rolls, which is done in
details in Appendix C.

For the steering magnets the discussion is similar. Suppose that the 𝑗-th corrector
kick set in the storage ring control system is 𝜃𝑢

𝑗,applied, 𝑢 = 𝑥 for horizontal kicks and 𝑢 = 𝑦

for vertical. Let 𝜃𝑢
𝑗,real be the actual kick applied in the electron beam. These two values

may be different and can be related by a gain factor

𝜃𝑢
𝑗,applied = 𝑔corr

𝑗,𝑢 𝜃𝑢
𝑗,real. (3.17)

The gain definition for correctors and BPMs was different in order to obtain linear
analytical expressions for both jacobian matrices. Eq. (3.17) also allows for the jacobian
matrix analytical calculation for the steering magnets gains, which is also done in details
in Appendix C.

The jacobian matrix for the remaining parameters are calculated by numerical
derivatives:

𝐽𝑘𝑙 = 𝑉𝑘 (𝑃𝑙 + Δ𝑃𝑙)− 𝑉𝑘 (𝑃𝑙)
Δ𝑃𝑙

. (3.18)

The residue vector is �⃗� = vec
(︁
Mmeas. −Mmodel

)︁
. For these parameters, the de-

pendence of 𝑃𝑙 is contained only in the model ORM: Mmodel. The matrix Mmeas. contains
the data measured in the real storage ring, thus 𝜕Mmeas.

𝜕𝑃𝑙
= 0. In that way, the jacobian

elements are obtained by

𝐽𝑘𝑙 = −vec
(︃

𝑀model
𝑖𝑗 (𝑃𝑙 + Δ𝑃𝑙)−𝑀model

𝑖𝑗 (𝑃𝑙)
Δ𝑃𝑙

)︃
, (3.19)

remembering that the vectorization transforms the (𝑖, 𝑗) indices in the 𝑘 index.

This numerical calculation dominates the running time for LOCO, whereas for
each individual parameters that is varied, the model ORM must be calculated to obtain
the residue vector. The total jacobian calculation time is approximately Δ𝑡ORM×Nparam.,
where Δ𝑡ORM is the time required to calculate the ORM. Thus, optimizing the ORM
calculation directly reduces LOCO running time.

By default, the BPMs and steering magnets gains are always included as fit pa-
rameters, both for finding errors or calculating the corrections. The reason for this is that
the gains calibrations have a specific signature in the residue vector and not including the
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gains would force the other parameters to compensate these systematic errors. In this case,
even if the measured ORM is perfectly fitted, the adjusted parameters are unrealistic.

3.3.2 Finding Errors

The fit parameters to be included in LOCO method and its interpretation are
directly related to method’s goal. As discussed in Section 2.4, there are various sources of
errors that perturbs the storage ring linear optics: the betatron and dispersion functions.
The ORM depends on these functions, so fitting the measured ORM is fundamentally
equivalent to obtain a model that represents the linear response of the real machine on
the optics functions subject.

If the measured ORM is adjusted by varying in the model all the available fit
parameters, then the final values of these parameters are interpreted as the deviations
from ideal conditions represented by the nominal lattice, i.e., they represent the errors
sources.

Let’s use the fit parameters described in the previous subsection 3.3.1 as an exam-
ple for discussion. If all these parameters are adjusted, their variations may be interpreted
as:

• quadrupolar gradients in dipole and quadrupole magnets: differences between the
expected gradients in the magnet models in the simulated magnetic lattice and the
actual gradients affecting the beam;

• quadrupolar gradients in sextupole magnets: the major contribution is due to hori-
zontal transverse alignment errors or horizontal orbit distortions in the sextupoles,
leading to feed-down effects that produce normal gradients;

• skew quadrupolar gradients in quadrupole and dipole magnets: rotation errors the
corresponding magnets;

• skew quadrupolar gradients in sextupole magnets: the main contribution is due to
vertical transverse alignment errors or vertical orbit distortions in the sextupoles,
leading to feed-down effects that produce skew gradients.

The BPM gains, rolls and the steering magnets gains interpretation is the same for the two
purposes of the method. There is a question about the degeneracy between obtaining the
absolute BPM and correctors gains that is addressed in section 3.4, so in principle it is only
possible to obtain the relative gains. The BPMs roll angles are related to electrical coupling
between the device channels and cables and rotation errors in the devices installation.
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3.3.3 Correcting Errors

Finding the errors sources with LOCO method is a strategy to obtain a model
representation in the computer for the real storage ring. This LOCO functionality can
be used as a diagnostic tool, for example, after a machine shutdown in which there was
some interventions in the storage ring. Running LOCO after a shutdown including all
parameters in the fitting might show non-trivial problems in the machine that might per-
turb the beam. Thus LOCO analysis may point out specific errors and facilitate targeted
interventions to correct them.

Among the fit parameters described in section 3.3.1, there are some parameters
that cannot be directly varied in the real machine. In that way, even though the errors
sources are obtained, their corrections cannot be made by simply applying the opposite
variations in the machine. Therefore, to effectively correct the errors, a subset with ad-
justable fit parameters in the real storage ring must be used. This subset of adjustable
parameters are commonly called knobs.

The knobs final variations obtained with this LOCO setup are interpreted as the
effective corrections that restores the real storage ring to the nominal linear optics and
symmetry. The knobs used for correction of the linear optics are the quadrupoles trim
coils and the knobs used to correct the betatron coupling are the skew quadrupoles.

Suppose that LOCO provides the final values for the knobs

𝑃 model
final = 𝑃 model

initial + Δ𝑃LOCO. (3.20)

For LOCO method, the initial parameters 𝑃initial produce the nominal and symmet-
ric optics functions. The final parameters 𝑃final correspond to the distorted linear optics,
a representation to the actual optics functions in the real storage ring. To correct the
actual optics function the process is inverted: the initial linear optics is distorted and,
ideally, the final situation is the nominal symmetric optics functions. Therefore, the vari-
ations calculated by LOCO method is applied as corrections in the real machine with the
opposite sign

𝑃 real
final = 𝑃 real

initial −Δ𝑃LOCO. (3.21)

3.4 Degeneracies

Suppose that there are two fit parameters with the same signature in the ORM,
i.e., two degenerated parameters. Let 𝑃1 and 𝑃2 be these parameters, then the linear
change in the residue vector can be written as

Δ�⃗� = 𝜕�⃗�

𝜕𝑃1
Δ𝑃1 + 𝜕�⃗�

𝜕𝑃2
Δ𝑃2 +

∑︁
𝑙 ̸={1,2}

𝜕�⃗�

𝜕𝑃𝑙

Δ𝑃𝑙. (3.22)
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If 𝑃1 and 𝑃2 are degenerate with respect to �⃗� , in the LOCO jacobian matrix this
can be seen as two columns that are linearly dependent. For example, in the extreme case

that 𝜕�⃗�

𝜕𝑃2
= 𝜌

𝜕�⃗�

𝜕𝑃1
, where 𝜌 ∈ R is a constant, then

Δ�⃗� = 𝜕�⃗�

𝜕𝑃1
Δ𝑃1

(︃
1 + 𝜌

Δ𝑃2

Δ𝑃1

)︃
+

∑︁
𝑙 ̸={1,2}

𝜕�⃗�

𝜕𝑃𝑙

Δ𝑃𝑙. (3.23)

From Eq. (3.23) we observe that no matter how much the parameters 𝑃1 and 𝑃2

change, if the variations satisfy Δ𝑃1 = −𝜌Δ𝑃2, the variation Δ�⃗� is the same. If the
summation part keeps generating variations that reduce the residue vector, this allows for
large changes on the parameter 𝑃1 and consequently on the parameter 𝑃2, in the opposite
direction given by −𝜌, without increasing 𝜒2.

The degeneracy problem may lead to non-physical fit parameters. The effect may
still be problematic to the fitting for quasi-degenerate parameters, since it may be sus-
ceptible to noise in the measured data. For the exact degeneracy case, as exemplified in
the parameters 𝑃1 and 𝑃2, the LOCO jacobian matrix is rank deficient. In this case, as
discussed in the Appendix B, the SVD provides a null singular value. For quasi-degenerate
parameters, the SVD provides very small singular values, compared to the first one (the
maximum). These small singular values represent directions in the parameter space where
the parameters may be varied and there is no significant variation in the residue vector.

A common strategy to avoid the negative effect of degeneracies is the singular value
selection. This can be done by explicitly removing the singular values in the singular
matrix in the pseudo-inversion process. Alternatively, one can use a criteria that the
singular values that satisfy 𝜎𝑖

max (𝜎𝑖)
< Δ may be removed, for a minimum threshold Δ.

Another strategy to circumvent the degeneracy problems is including constraints in the
minimization problem. This will be discussed in the next section.

There is a well-known degeneracy related to the BPM and steering magnets gains.
The transformation that applies the gains in the measured ORM is given by

Mreal = GBPMMmeas.G−1
corr. (3.24)

This transformation changes the ORM elements by 𝑀𝑖𝑗 → 𝑔BPM
𝑖 𝑔corr

𝑗 𝑀𝑖𝑗. There-
fore, if the BPM gain is scaled up by 𝑔BPM

𝑖 → 𝜌𝑔BPM
𝑖 , and the corrector gain is scale

down by 𝑔corr
𝑗 → 𝑔corr

𝑗 /𝜌, the ORM remains the same. That degeneracy limits LOCO to
determine only the relative gains for BPMs and steering magnets. The degeneracy be-
tween BPM and correctors gains is manifested as two very small singular values in LOCO
jacobian matrix SVD, one for each plane, horizontal and vertical.

Including the orbit response due to a variation in the RF frequency as a column
in the ORM matrix may break the gain degeneracy. The variation in the RF frequency in
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storage rings is extremely precise, so the correspondent measured orbit response contains
basically only the errors related to the BPM gains. This additional column depends on the
dispersion function 𝜂(𝑠), as can be seen in Eq. (3.5). Since ideally the vertical dispersion
function is zero, including this column in the ORM may break the degeneracy between
horizontal BPM and correctors gains and its absolute values may be determined. In the
case that there is a substantial vertical dispersion function 𝜂𝑦(𝑠), it may be possible to
determine the absolute gains for vertical BPMs and correctors as well. Actually, increasing
intentionally the vertical dispersion function and performing LOCO analysis is a possible
strategy to determine the absolute gains for both planes.

3.5 Constraints and Weights

The first common example where the degeneracy becomes a problem is when the
fit parameters are quadrupoles. The trims coils in quadrupoles are used to correct the
storage ring linear optics and the expected strengths variations required to achieve that
goal are typically less than a few percent. This expectation is commonly based on magnetic
measurements and alignment specifications. Thus, the fit quadrupoles variations obtained
from LOCO method must be compatible to this range of values.

For compact magnetic lattices, as can be found in 4th generation synchrotron light
sources, some adjacent quadrupoles may be very close to each other. If the betatron phase
advance between these quadrupoles is small, a localized error in one quadrupole perturbs
the linear optics with a signature that is very similar to the signature generated by its
neighbor. Hence, these fit parameters may be quasi-degenerate and LOCO method may
fit the measured ORM by the cost of finding large variations for quadrupole’s trim coils.
Typically these large variations are unrealistic.

As discussed, singular values selection may be a strategy to circumvent the de-
generacy problem. However, finding the best set of selected singular values may be a
very heuristic and time consuming process [49]. A more effective approach is including
the quadrupoles variations in the minimization problem as a constraint. In that way,
the LOCO goal is fitting the measured ORM with a solution that also minimizes the
quadrupoles variations.

Let the fit parameters that represents the quadrupole variation be 𝐾𝑞, where 𝑞 is
the sub-index satisfying 1 ≤ 𝑞 ≤ Nquads. The constraints are included in the minimization
problem by:

𝜒2
𝑐 = 𝜒2 + 1

𝜎2
Δ𝐾

∑︁
𝑞

(𝑤𝑞Δ𝐾𝑞)2 =:
∑︁

𝑘=(𝑖,𝑗,𝑞)
𝑉 2

𝑘 , (3.25)

where 𝜎Δ𝐾 is a normalization constant, 𝑤𝑞 are individual weights factors and 𝜒2 is defined
in Eq. (3.6). If the dispersion function is included in the fitting, it is used 𝜒2

𝜂 from Eq. (3.8)
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instead. One can control the constraint on specific quadrupole variations Δ𝐾𝑞 by adjusting
the individual weights 𝑤𝑞.

Let �⃗� =
(︁
𝐾1, . . . , 𝐾Nquads

)︁
be the vector that represents the quadrupoles parame-

ters. The constraint may be implemented by extending the residue vector and the LOCO
jacobian matrix:

�⃗�𝑐 =
⎡⎣ �⃗�

�⃗�Δ𝐾

⎤⎦ , (3.26)

J𝑐 =
⎡⎣ J
JΔ𝐾

⎤⎦ , (3.27)

where 𝑉Δ𝐾,𝑞 = 𝑤𝑞

𝜎Δ𝐾

Δ𝐾𝑞. From the relation 𝐽Δ𝐾
𝑞,𝑞 = 𝜕𝑉Δ𝐾,𝑞

𝜕 (Δ𝐾𝑞)
it is obtained the matrix

elements 𝐽Δ𝐾
𝑞,𝑞 = 𝑤𝑞

𝜎Δ𝐾

. Note that JΔ𝐾 is a block-diagonal Nquads ×Nparams. matrix, where
the elements are all zero except for the Nquads × Nquads diagonal block.

The constrained residue vector dimension is Ndata+Nquads and new LOCO jacobian
matrix dimension is (Ndata + Nquads) × Nparam.. Observe that the figure of merit can be
factored as

𝜒2
𝑐 = �⃗� T

𝑐 �⃗�𝑐 = �⃗� T�⃗� + �⃗� T
Δ𝐾 �⃗�Δ𝐾

= 𝜒2 + 𝜒2
Δ𝐾 .

It is important to mention that the vector Δ�⃗� contains the predicted quadrupoles
variations and satisfies �⃗�𝑛+1 = �⃗�𝑛 + Δ�⃗�, where �⃗�𝑛 quadrupole strengths in the iter-
ation 𝑛 and �⃗�𝑛+1 in the next step 𝑛 + 1. In that sense the constrained fitting problem
calculates, at each iteration step, the quadrupoles changes that produce a better fit to the
measured ORM and also minimize the changes themselves.

For non-zeros 𝑤𝑞 and finite 𝜎Δ𝐾 , the solution for 𝜕𝜒2
Δ𝐾

𝜕 (Δ𝐾𝑞)
= 0 is Δ𝐾𝑞 = 0 for

every 𝑞, therefore the additional elements �⃗�Δ𝐾 for the residue vector must be zeros. The
additional jacobian 𝐽Δ𝐾 must be kept in the calculation, since it is independent of Δ�⃗�.
This allows us to conclude that the Δ𝐾 constraint does not change the global minimum,
since 𝜒2

𝑐 = 𝜒2 and the problem dimension is unchanged. On the other hand, the constraint
does change the convergence path, allowing for a convergence with smaller step sizes.

The constrained version for the GN method calculates the parameters variations
Δ𝑃 by solving

JT
𝑐 J𝑐Δ𝑃 = −JT

𝑐 �⃗�𝑐, (3.28)

since JT
Δ𝐾JΔ𝐾 is diagonal and �⃗�Δ𝐾 = 0⃗, it is obtained that(︁

JTJ + diag
(︁
JT

Δ𝐾JΔ𝐾

)︁)︁
Δ𝑃 = −JT�⃗� . (3.29)
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Observe that the Δ𝐾 constraints modify the GN method with the same math-
ematical structure used in the LM method. The main difference is that the constraints
include a gradient-descent component in the parameters Δ𝐾, while the LM method in-
clues that component in all directions given by the columns of J. The importance of the
constraint component to the fitting is controlled by the magnitude of JΔ𝐾 , i.e., by the
constraint weights 𝑤𝑞 and the normalization factor 𝜎Δ𝐾 .

The diagonal elements added in JTJ by the constraints and by the LM contribu-
tion are manifested as a regularization for small singular values in the SVD decomposi-
tion [1], which is necessary for the pseudo-inversion of JTJ. The pseudo-inversion in the
GN method calculates parameters variations that depends on terms 1/𝜎𝑖, where 𝜎𝑖 is a
singular value. If JTJ is rank deficient, there are null or very small singular values, thus
1/𝜎𝑖 may be a very large number and the parameters calculation may be problematic.
The singular values regularization substitutes 1/𝜎𝑖 by 𝜎𝑖/ (𝜎2

𝑖 + 𝜆2
𝑖 ), thus it may prevent

the small singular values damage by an appropriated choice for the factors 𝜆𝑖. When
𝜆𝑖 =

√
𝜆 for every 𝑖, the regularization is related to the non-scaled LM factor 𝜆, where

JTJ is modified to JTJ + 𝜆I.

From Eq. (3.29), it can be seen that the constraints can be implemented by keeping
unchanged the jacobian matrix J and the residue vector �⃗� , but adding only the contri-
bution JT

Δ𝐾JΔ𝐾 to the parameters calculations. Since the constraints do not change the
minimization problem dimension, maintain the jacobian and the residue vector dimen-
sions while applying the constraint is conceptually more appropriated. In that way, the
LM method with constraints determines Δ𝑃 solving the following problem(︁

JTJ + 𝜆diag
(︁
JTJ

)︁
+ diag

(︁
JT

Δ𝐾JΔ𝐾

)︁)︁
Δ𝑃 = −JT�⃗� , (3.30)

and in the limit 𝜆 = 0, the LM and GN methods coincide again.

Adding constraints on the parameters variations and using the LM method provide
a convergence path with small step sizes, but for different reasons. The constraints limit
the step sizes by construction and the LM method calculates variations in the direction
that reliably minimizes 𝜒2 (the negative gradient direction), which also are typically small
changes.

The minimization problem in LOCO method can be adapted to use other types of
weights factors too. The weights in BPMs and steering magnets are applied in the same
manner that the gains. Let �⃗� BPM and �⃗�corr be the weight vectors, whose elements are
𝑤BPM

𝑖 and 𝑤corr
𝑗 , respectively, where 1 ≤ 𝑖 ≤ 2NBPM and 1 ≤ 𝑗 ≤ NCH + NCV + 1. The

weights are inserted in the minimization problem by the transformation

𝑀𝑖𝑗 → 𝑤BPM
𝑖 𝑀𝑖𝑗𝑤

corr
𝑗 , (3.31)

applied in the model and measured ORMs. The weights change the residue vector and
consequently the LOCO jacobian matrix as well, as derived in Appendix C.
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A common weight used for the BPMs is the following. Suppose that 𝑤BPM
𝑖 =

1/𝜎BPM
𝑖 , where 𝜎BPM

𝑖 is the measured noise level for the 𝑖-th BPM. With this weight, the
minimization problem is:

𝜒2 =
∑︁
𝑖,𝑗

(︃
𝑀measured

𝑖𝑗 −𝑀model
𝑖𝑗

𝜎BPM
𝑖

)︃2

. (3.32)

This was the original figure of merit proposed by the author in [34]. The ideia
behind including these weights is that data obtained with BPMs with larger measurement
noises should be less important to the fitting.

The correctors weights can be used mainly to control the importance of the dis-
persion function in the fitting. This is done by changing the value of the last element of
�⃗� corr. Since the last column in the ORM corresponds to the RF frequency orbit response,
changing the last corrector weight denoted by 𝑤𝜂 changes the minimization problem in
Eq. (3.8), where the dispersion contribution to the figure of merit is then multiplied by
the factor 𝑤𝜂.

One can use a combination of BPM and correctors weights to prioritize the certain
parts of the ORM. For example, if the first NBPM weights in �⃗� BPM and the first NCH

weights in �⃗�corr are set to be larger than the remaining weights, the horizontal block M𝑥𝑥

dominates the LOCO fitting. Other three independent combinations of weights can be
performed to increase the importance of each block M𝑦𝑦, M𝑥𝑦 or M𝑦𝑥.

3.6 Code Implementation for Sirius

This section is dedicated to the discussion about LOCO method implementation
for Sirius storage ring, using Python as the programming language. Some tests were per-
formed to check the reliability of the implemented code and also to understand the par-
ticularities related to the application on Sirius. The results are presented in Appendix D.

3.6.1 Accelerator Physics Codes

The Python frameworks mentioned in Section 1.5 for the accelerator physics stud-
ies are related to the accelerator modelling, the so-called tracking simulations and optics
calculations. The corresponding packages developed and currently used by the LNLS APG
are described as follows.

PyModels: Python modelling for the accelerator where each element is defined with sev-
eral properties: device type (magnet, diagnostic, etc), length, strength, pass method,
etc. The element pass method is the rule that the tracking code uses to evolve in
time the particle’s phase-space coordinates. The code access is open and it contains
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versions for the models of Sirius accelerators: LINAC, transport lines, booster and
storage. ring [54]

TrackCpp: tracking code implemented in C++ language. Together with the accelerator
model, this library can be used to study the single particle dynamics numerically.
Each lattice element can be represented by the on-linear map 𝒯 (𝑠|𝑠0) that affects
the particle coordinates �⃗�0 = (𝑥0, 𝑥′

0, 𝑦0, 𝑦′
0, 𝑧0, 𝛿0) at 𝑠0 by changing the coordinates

to �⃗� = 𝒯 (𝑠|𝑠0)�⃗�0. The map approach2 is extremely useful for numerical calculations
and its linearized form takes advantage on linear algebra conveniences, for exam-
ple the fact that the transformation compositions are translated simply as matrix
multiplications. For circular accelerators, the whole lattice transformation, called
the one-turn map, is very useful for deriving global lattice properties, verify long-
term stability conditions, obtain fixed points for the map, etc. The one-turn map
may include only the linear contributions or non-linear effects. In TrackCpp, explicit
symplectic integrators are applied to approximate the solutions of the equations of
motions for the particles in the lattice in a systematic way. TrackCpp is an open-
source code developed in-house and based on Tracy [55]. The code can be accessed
in [56].

PyAccel: Python integration between the accelerator modelling in PyModels and the
structures and calculations implemented in TrackCpp. The package provides the
interface to obtain the optics functions and the results of particle tracking performed
in TrackCpp. With PyAccel the equilibrium parameters (emittance, bunch length,
beam sizes, lifetime, etc.) are calculated with analytical expressions for a given
accelerator model. With this package it is also possible to manipulate the models,
setting and getting the elements properties. The open code can be accessed in [57].

Since PyAccel can be seen as a “high-level” interface for the calculations performed
in the background by TrackCpp, the accelerator physics simulations are conducted with
the combined use of PyModels and PyAccel packages.

3.6.2 Orbit Response Matrix Calculation

LOCO method requirements are basically a simulated model for the accelerator
and a framework to perform the ORM calculations in the model. The numerical tools re-
quired for LOCO, such as matrix multiplications and SVD, are all covered by NumPy [58],
a Python package largely used in scientific computing.

PyModels provides the accelerator modelling for Sirius storage ring and the ORM
calculation was already implemented by LNLS APG, where the transfer matrices between
2 Regarding the linear dynamics, the correspondence between the matrix formalism (linearized maps)

and the analytical description presented in Chapter 2 was developed by Courant & Snyder in [48].
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Table 3 – Fit parameters used in LOCO for Sirius storage ring.

Fit parameter # of elements
Normal quadrupole gradient 270

H. BPM gain 160
V. BPM gain 160

H. Corrector gain 120
V. Corrector gain 160

Skew quadrupole gradient 80
BPM roll angle 160

Total 1110

BPMs and correctors are used to obtain the corresponding ORM elements. This approach
assumes linearity, which is typically a good approximation for small variations in the
correctors kicks and orbit distortions. The ORM calculation from the transfer matrices
also has the advantage of being fast: it takes about 500 ms to obtain the Sirius storage
ring ORM on the computers used by LNLS APG.

3.6.3 LOCO Implementation in Python

Currently the LOCO code for Sirius is a Python package. This package is imported
in a Python script that gathers the necessary input data, starts the fitting process and
saves the output. At the time of writing, this script was executed via terminal. The
detailed implementation of LOCO Python package is completely open for access in its
GitHub Repository website [59]. A functional and tested code version was obtained during
this master’s work, however the LOCO code is susceptible to changes and improvements
based on the experience acquired during the application in Sirius commissioning and
machine studies. The upcoming versions will be constantly updated in the website [59],
open to the community access.

The LOCO implementation in Python realized by the author follows the pseudo-
algorithm described in Algorithm 1 that can be found in Appendix E. When the LM
minimization method is used, there is an inner loop to deal with the parameter 𝜆 for the
case of 𝜒2 reduction failure. This LM loop is described in Algorithm 2, also in Appendix E.

The fit parameters that have been used in regular LOCO analysis performed in
Sirius storage ring are organized in Table 3. The first 5 parameters refer to the fitting
of ORM diagonal blocks, related to the linear optics. The remaining 2 fit parameters
between horizontal lines are related to ORM off-diagonal blocks adjustment, which corre-
spond to the linear coupling errors. Typically complete matrix is included in the fitting,
thus the total number of fit parameters for LOCO in Sirius Storage ring is 1110.
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(a) Levenberg-Marquardt.
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(b) Δ𝐾 constraint, 𝑐Δ𝐾 = 𝑤Δ𝐾/𝜎Δ𝐾 .

Figure 7 – Effect of LM method and Δ𝐾 constraint on singular values of LOCO jacobian
matrix.

3.6.4 Jacobian Matrix Analysis

Based on the discussion made in Section 3.4, the singular matrix analysis provided
by SVD of LOCO jacobian matrix may shed some light on the degeneracies of the problem.

The complete LOCO jacobian matrix was calculated for the Sirius storage ring,
producing a 89920 × 1110 matrix. From Eq. (3.30), given a residue vector �⃗� , one can
calculate the fit parameters with

Δ𝑃 = −
(︁
JTJ + 𝜆diag

(︁
JTJ

)︁
+ diag

(︁
JT

Δ𝐾JΔ𝐾

)︁)︁−1
JT�⃗� .

From this expression, it can be seen that the SVD must be applied in two matri-
ces: J for the case of singular value selection and JTJ + 𝜆diag

(︁
JTJ

)︁
+ diag

(︁
JT

Δ𝐾JΔ𝐾

)︁
in order to also apply the singular value selection but, most importantly, to obtain its
pseudo-inverse. The minimization method to calculate the parameters is controlled by the
parameter 𝜆: if 𝜆 = 0 the GN method is used and if 𝜆 ̸= 0, the LM is chosen.

The matrix JΔ𝐾 is a diagonal matrix with elements given by �⃗�Δ𝐾 = �⃗�Δ𝐾/𝜎Δ𝐾 ,
where �⃗�Δ𝐾 is the weight vector for the Δ𝐾 constraint. Controlling the values of �⃗�Δ𝐾 one
controls the constraints importance in the problem. The unconstrained case is obtained
with �⃗�Δ𝐾 = 0⃗.

To study the LOCO jacobian matrix, SVD was applied in the matrix JTJ +
𝜆diag

(︁
JTJ

)︁
+ diag

(︁
JT

Δ𝐾JΔ𝐾

)︁
for several values of 𝜆 and 𝑐Δ𝐾 , independently. The re-

sults are shown in Figure 7, where the singular values were normalized by the maximum
value and plotted in log scale.

The jacobian matrix in this analysis includes the RF response elements, i.e., the
horizontal dispersion function is included, so the very low singular value ∼ 10−21 for
𝜆 = 0 is related to the degeneracy between the vertical BPMs and correctors gains. With
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𝜆 = 10−5 this low singular value is already increased to ∼ 10−12 and the decreasing
singular values around 10−9 in the blue line are also raised.

In the literature [9,43], it is recommended to start the fitting with 𝜆 = 10−3. From
Figure 7a it can be seen that this value raises the singular value at the low end. Increasing
𝜆 even further raises most of the singular values. Therefore using 𝜆 = 10−3 should prevent
the problems related to the low singular values while greater values for 𝜆 produce changes
in the singular values that may slow the solution convergence.

Figure 7b shows the singular values for several constraint magnitudes. The weight
vector was set as unity for every element and the normalization constant 𝜎Δ𝐾 was changed
from 0 to 10−4. The case 𝑐Δ𝐾 = 0 coincide with 𝜆 = 0 in the Figure 7a. The normalization
𝜎Δ𝐾 can be interpreted as the limit of step variation in Δ𝐾. The typical values for the
quadrupole gradients in Sirius storage ring are on the order of 10−2. Then setting the
constraint on step size to Δ𝐾 ∼ 10−2 does not really limits the gradients variations and
this can be seen in the similar singular values distributions for 𝑐Δ𝐾 from 0 to 102. Only
with 𝑐Δ𝐾 = 103 the changes in singular values are substantial. Notice that some singular
values at low end are also raised with the Δ𝐾 constraints, these low singular values are
related to the quasi-degeneracies between quadrupoles that may lead to large excursions
in quadrupole gradients when no constraints are used.

Limiting too much the Δ𝐾 step variation may increase unnecessarily the number
of iterations required for LOCO convergence. Hence, in the literature [9, 43] it is recom-
mended to use the maximum value of 𝜎Δ𝐾 that still produces a significant change in
the singular values, aiming to balance the Δ𝐾 constraints and the number of iterations,
therefore reducing LOCO running time whenever it is worth it. For Sirius storage ring,
the optimum value was determined to be 𝜎Δ𝐾 = 10−3, thus 𝑐Δ𝐾 = 103.

Notice that with 𝑐Δ𝐾 = 103 the last singular value was relatively smaller compared
to the unconstrained case. This can be solved by combining the constrained case with
the LM minimization, given that it was seen that the LM contribution raises the singular
values. The singular values distribution for the chosen values of 𝜆 and 𝑐Δ𝐾 compared to
the original distribution are shown in Figure 8. The last singular value is associated with
the gain degeneracy between vertical BPMs and correctors, so, in principle, it is the only
singular value that should be removed.
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4 Applications on Sirius Storage Ring

This final chapter is dedicated to the application to Sirius storage ring of the theory
and the code presented and discussed in the previous chapters.

During the Sirius commissioning in 2020, the implemented LOCO code had al-
ready been proven to be useful to correct Sirius linear optics and coupling, improving the
machine performance. The optics and coupling corrections obtained with LOCO method
also contributed for smooth operation recoveries after five IDs installations. Only the ID
installed in a high-beta section required localized gradients compensation of 0.5 % for the
defocusing quadrupoles (QDA). The IDs installed in low-beta sections did not perturb
the storage ring in a level that could be measured.

A few tests were performed with measured ORMs using the electron beam in
the storage ring and they are reported in Section 4.1. The stored current used during the
measurements was around 10 mA, which is a value that provides a good accuracy for BPM
readings and the beam stability is guaranteed as well.

The studies reported in this chapter were performed in a philosophy of scientific
case. The main objective is, starting from a storage ring without any optics and coupling
corrections, iteratively perform LOCO procedure and apply the calculated corrections
until convergence is reached. The results from this process are presented and discussed
in Section 4.2. From this point, independent optics and coupling measurements were
performed to characterize the storage ring before and after the corrections to determine
how much the study improved Sirius parameters and performance towards the expected
values. Section 4.3 is dedicated to this part.

The ORM measurement procedure was controlled by SOFB, the same software
that drives the orbit correction. Both horizontal and vertical kicks variations used for
the measurements were Δ𝜃𝑥 = Δ𝜃𝑦 = 15 µrad and the variation in RF frequency was
Δ𝑓rf = 80 Hz. These variations are intermediate in the sense that they provide a compro-
mise between sufficient orbit distortion for accurate BPM measurements and also keep
variations small enough to avoid non-linear effects. Nominally, the peak orbit distortions
at BPMs for these corrector variations are Δ𝑥 = 196 µm and Δ𝑦 = 134 µm. The peak
horizontal distortion for the variation in RF frequency is Δ𝑥 = 38 µm. The ORM typical
measurement time for Sirius storage ring is 25 minutes.

Sirius storage ring status when these studies were performed was: four undulators
were installed, one in a high-beta section and three in low-beta sections; the BBA proce-
dured was applied to obtain BPMs offsets relative to quadrupoles centers and these offsets



Chapter 4. Applications on Sirius Storage Ring 69

were used as the target orbit for orbit correction. The standard deviation (std) of residual
orbit obtained in both planes was around 30 µm. During commissioning, operating the
machine with nominal betatron tunes (𝜈𝑥 = 49.096 and 𝜈𝑦 = 14.152) produced a very low
injection efficiency (less than 10%). After scanning the tunes, the values that provided
a better injection efficiency were 𝜈𝑥 = 49.075 and 𝜈𝑦 = 14.134. Therefore, tunes close to
these values were used throughout the commissioning and this study as well. Nevertheless,
without optics and coupling correction the injection efficiency was only 20% on average,
with large pulse-by-pulse variations.

4.1 Tests with Measured Data

A few tests were performed with data measured in the actual storage ring to check
the method reliability in practice as well. Moreover, some tests allowed to confirm the code
setup, related to the minimization method and constraints on quadrupoles variations. The
tests also provided information about random errors of fit parameters.

The beam orbit was measured with BPMs during 10 s with a measurement rate
of 25 Hz. The average variation obtained for each plane was 𝜎BPM,𝑥 = (0.162± 0.006) µm
and 𝜎BPM,𝑦 = (0.233± 0.007) µm. These values represent the noise level of positions mea-
surements provided by BPMs in Sirius storage ring. This means that even if the machine
matched the model perfectly, this level of discrepancy in the ORM residue is expected.

4.1.1 Relevance of Constraints

From tests with simulated model and jacobian matrix analysis discussed in Sub-
section 3.6.4, the chosen LOCO configuration was: 1) include the parameters presented in
Table 3 in the fitting, 2) use LM method as the minimization algorithm setting initially
𝜆 = 10−3, 3) use the Δ𝐾 constraints with weight 𝑐Δ𝐾 = 103, 4) remove only the last
singular value for pseudo-inversion of LOCO jacobian matrix.

In order to check if this setup is appropriated for LOCO analysis in the actual
Sirius storage ring a simple test was performed. Without any optics or coupling corrections
applied in the storage ring, an ORM was measured and it was used to apply LOCO fitting
with two setups: without any modification (using GN method and no constraint on Δ𝐾)
and with the chosen configuration. The initial 𝜒 for the measured ORM was 24.6 µm
and for both LOCO fittings, 𝜒 converged to values close to 0.9 µm. However there is a
great difference between the two calibrated models regarding the quadrupole deviations
from the nominal values. As discussed in Chapter 3, without constraints on Δ𝐾, the
LOCO process tries to minimize 𝜒 without any concern on the quadrupoles deviations
magnitudes, which may lead to large excursions in these parameters due to the quasi-
degeneracies in LOCO jacobian. With constraints on Δ𝐾, the convergence path for 𝜒 is



Chapter 4. Applications on Sirius Storage Ring 70

0.0 0.5 1.0 1.5 2.0
||∆K/K|| [%]

0

5

10

15

20

25

χ
[µ

m
]

λ = 0, unconstrained

λ = 10−3, constrained

Figure 9 – 𝜒 versus ||Δ𝐾/𝐾|| throughout 10 LOCO iterations. The gray dashed horizon-
tal line corresponds to 𝜒 = 0.91 µm, the value used as reference for convergence.
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Figure 10 – Comparison of quadrupoles variations obtained from LOCO with two calcu-
lation methods.

changed in order to minimize the step size of quadrupole deviations. This difference in
the fitting behavior can be revealed with a plot of 𝜒 versus the std of quadrupole changes
over iterations, as presented in Figure 9. The comparison of final fit variations for the 270
quadrupoles in Sirius storage ring in this test is plotted in Figure 10.

Previous magnetic measurements and characterizations indicate a good gradient
field quality for quadrupoles, satisfying the specification of 0.05 % in gradient errors. More-
over, it can be seen that some adjacent quadrupoles have large variations with opposite
signs, which are related to the quasi-denegeracies discussed in Section 3.4. Nevertheless,
the large quadrupoles variations represented in Figure 10 were applied in the storage
ring and, after that, it was observed that the errors of measured optics parameters were
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actually increased. This is a strong evidence that the large variations reaching 7.5 % are
unrealistic. The solution obtained with constraints demands much less of quadrupole vari-
ations and also adjusts the measured ORM in the same level. Applying the quadrupole
variations obtained with constraints resulted in positive effects on the storage ring optics.
The variations obtained for the other fit parameters included in the fitting agree for the
two setups within the error bars, which was expected since basically the major difference
is related to the constraints on quadrupoles strengths.

It is important to point out that the convergence criteria for 𝜒 should avoid the
cases of over-fitting. In addition to spare LOCO running time, the most important reason
is to prevent the method from increasing the quadrupoles strengths to produce a negligible
reduction in 𝜒. In Figure 9 it can be seen that for the unconstrained case, the last three
iterations increased ||Δ𝐾/𝐾|| considerably while 𝜒 was basically the same. The over-
fitting is more serious for the unconstrained case indeed, since each iteration may produce
large variations on quadrupoles but it may also be a problem even for the constrained
case, since accumulated small step sizes may also produce large and unnecessary variations
in the final values. The convergence criteria can be controlled by defining a minimum
acceptable change in the residue, given by 𝜒step, and a minimum level for the residue,
given by 𝜒min. For LOCO fittings performed in Sirius storage ring, the values used was
𝜒step = 0.01 µm and 𝜒min = 0.25 µm, where the value for 𝜒min was defined based on Sirius
BPMs accuracy. The final residue of 0.91 µm obtained in these fittings is still 3.6 times
larger than the BPM accuracy and a possible explanation for this limit of convergence will
be discussed in Section 4.4. Nevertheless, a calibrated model with an ORM that agrees
with the measured in the sub-𝜇m level typically corresponds to a good fitting [34].

4.1.2 Random Errors

As mentioned in [34]: “the easiest way to determine how much the set of fit param-
eters vary due to random errors in the measurements is simply to measure many ORM,
analyze each one separately, and see how much variation there is between fit parameters
for the different data sets”. Therefore, to access the random errors associated with the
fit parameters presented in Table 3, the aforementioned procedure was applied in Sirius
storage ring, where 10 ORMs were measured sequentially.

LOCO analysis was performed in these 10 measured ORMs with the configuration
described in Subsection 4.1.1 and the results are organized in Table 4 with the root-
mean-square (rms) variations. The average initial residue for these 10 realizations was
𝜒initial = (9.2± 0.4) µm and after the convergence the average final residue was 𝜒final =
(1.04± 0.02) µm. For each fit parameter, the std variation obtained in the set of 10 LOCO
realizations was used to define the corresponding error bars. For each calibrated model
obtained with LOCO, the lattice functions and its variations in this set of 10 values were
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Table 4 – Variations in fit parameters from LOCO analysis of 10 ORM measurements
performed in Sirius storage ring.

Parameter mean rms rms variation Unit
Quadrupole Relative Strength 0.17 0.13 %

H. BPM Gain 96.5 0.2 %
H. Corrector Gain 92.4 0.6 %

V. BPM Gain 96 4 %
V. Corrector Gain 94 4 %

Skew Quadrupole Strength 7.5 · 10−4 3.4 · 10−4 m−1

BPM roll angle 3.1 0.8 mrad

Table 5 – Variations in lattice functions obtained from LOCO calibrated models from 10
ORM measurements performed in Sirius storage ring.

Lattice function error mean rms rms variation Unit
Δ𝛽𝑥/𝛽𝑥 0.8 0.5 %
Δ𝛽𝑦/𝛽𝑦 0.5 0.4 %

Δ𝜂𝑥 2.5 0.5 mm
Δ𝜂𝑦 12.6 1.6 mm

also calculated. The results are organized in Table 51.

The variations for dispersion function are calculated as absolute values because
𝜂𝑥 is zero in the straight sections, so the division to obtain a finite relative variation is
not possible. In the case of betatron functions, which always assume positive values by
definition, it is possible to obtain the relative variations.

4.1.3 Initial Condition Dependence

The ORM fitting for Sirius storage ring with LOCO can be viewed as finding
a minimum of a function 𝜒

(︁
𝑃
)︁

with 1110 variables, the fit parameters. A strategy to
explore the topology of local minima in the solution space is beginning the fitting with
different initial conditions and then check the final solution obtained. If the final results
are fairly independent on the initial guess, one has an indicative that, at least inside the
region covered by the initial guesses range, the obtained solution is the best minimum.
For a given problem, if the initial guesses cover a broad range of feasible values for fit
parameters, this process indicates that, amongst the doable solutions, the found solution
is the best one.

The initial condition dependence test was applied in LOCO code. An ORM mea-
1 The initial 𝜒 and the values for normal and skew quadrupoles variations in Table 5 are relatively low

because this repeatability test was performed after the LOCO corrections application to the storage
ring.
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Figure 11 – 𝜒 convergence for different initial conditions. The zero initial guess conver-
gence is represented by the orange curve.

sured in Sirius storage ring was used as input for LOCO fitting. Twenty different ini-
tial conditions, regarding only the quadrupole strengths, were used to adjust the mea-
sured ORM. The initial guesses varied with a random normal distribution with 𝜎 = 0.5%
and one 𝜎 cutoff, with respect to the nominal gradients. Larger values of 𝜎 were tested
but they produced unstable dynamics in the model or, for the stable cases, the algorithm
did not converge. Thus 0.5% was chosen since it allowed for the largest feasible initial
conditions.

All the 20 initial conditions produced a greater initial 𝜒 as compared to the nominal
initial guess. The minimum initial 𝜒 was 25.2 µm while with zero initial condition it was
24.6 µm. The 𝜒 convergence for all the 20 realizations and the zero initial guess are plotted
in Figure 11. The initial 𝜒 in this test was (47± 28) µm and after 10 iterations, the final
was (0.98± 0.07) µm. Therefore, all the realizations converged to the same fitting level.

Figure 12 shows the gradient solutions obtained with these 20 different initial
conditions and the solution obtained with zero initial guess as well. The relative variations
were calculated comparing the final results with the nominal strengths. Although the
initial spread in gradients was 0.5%, the final spread in the fitted solutions is 0.2%.
The spread in the obtained solution by varying the initial conditions are within the fit
parameters error bars. Moreover, the correlation between the mean of solutions and the
solution obtained with zero initial guess was 98.5% and the std difference is only 0.06%.
For the realizations individually, the maximum and minimum correlations was 90% and
71%, respectively. With this test, one can conclude that the solution obtained with the
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Figure 12 – Quadrupoles variations for 20 different initial guesses compared to zero initial
condition.
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Figure 13 – Difference between quadrupole variations obtained from two ORM fittings,
one ORM measured with an intentional change in the 161th quadrupole and
the other ORM measured without it.

nominal model as the starting point (zero initial guess) is fairly independent of initial
conditions. Therefore, given the explored range in the solutions space with random initial
conditions, this solution is the unique local minimum.

4.1.4 Finding Planted Error

There is another insightful test, suggested and performed in [34], with the goal of
showing that quadrupole gradients can be accurately predicted with LOCO method. The
test is quite simple: measure an ORM, then change an individual quadrupole strength (in
the case of Sirius, change the current of a trim-coil) and re-measure the ORM. Each ORM
is adjusted with LOCO and the difference between the two sets of fitted quadrupole
gradients should reveal the intentional change.

The test was also performed in Sirius storage ring. The trim-coil current of a
QFA quadrupole was varied to produce a −1.19% change in its gradient strength. This
quadrupole is placed in a high-beta straight section. Following the quadrupoles ordering
around the storage ring, this corresponds to the 161th quadrupole out of 270. Figure 13
shows the test results.

The target gradient error in the 161th quadrupole was −1.19%. With LOCO, it
was found a (−1.17± 0.09) % variation in this quadrupole. Using the 3𝜎 as the criteria
for detecting outliers, one could also state that the 0.5% variation in the 160th quadrupole



Chapter 4. Applications on Sirius Storage Ring 75

is another possible intentional change. This indicates that there is a residual degeneracy
between adjacent quadrupoles that the Δ𝐾 constraints could not eliminate completely.
Even so, the change in the 161th quadrupole stands out as a 13𝜎 variation. From this test,
it can be concluded that LOCO analysis can accurately predict the quadrupole gradient
errors in Sirius storage ring.

4.2 Optics Correction with LOCO

After several tests to check the reliability of LOCO code and to define the fitting
setup, the method was finally used to fit the measured ORM, calculate the necessary
corrections and apply them in Sirius storage ring normal quadrupole trim-coils and skew
quadrupoles. The process was repeated until measured and nominal ORM coincide in a
satisfactory level.

The first ORM was measured in Sirius storage ring with a 10 mA stored electron
beam and the orbit corrected to the BBA orbit. The operation tunes were around 𝜈𝑥 =
49.07 and 𝜈𝑦 = 14.13, the quadrupole trim coils and skew quadrupoles currents were
all set to zero. LOCO fitting was performed, starting from the nominal model to obtain
the fit parameters presented in Table 3 that best explain the measured ORM. Since the
aforementioned tunes provide a better injection efficiency, it was decided that LOCO
corrections should not move the measured tunes towards the nominal values. Therefore,
the nominal model used as the initial model for LOCO had its betatron tunes shifted to
match the measured values. In this way, the gradient variations should keep the tunes
unchanged.

Based on previous tests performed with measured data, it was observed that only
including the orbit response related to RF frequency variation in the ORM, i.e., including
the dispersion function in the fitting, was not sufficient to produce the correspondence
between predicted and measured dispersion functions, both horizontal and vertical. The
conversion factor of Eq. (3.8) used was 𝑐𝑓rf ,𝜃 = Δ𝑓rf/Δ𝜃 = 80 Hz/15 µrad. It was necessary
to include a weight factor of 2 in the dispersion term to obtain a better fitting of the
measured dispersion. In principle, if optics distortions are caused solely by gradient errors
on quadrupoles, once the measured ORM is adjusted with the model, i.e., the beta function
and phase advances in BPMs and correctors are fitted, the predicted dispersion function
from this model should be very close to the measured dispersion. The need for this weight
on dispersion is important and will be further discussed in Section 4.4.

The initial difference between measured and nominal ORM produced 𝜒 = 24.6 µm.
After LOCO fitting, the calibrated model produced an ORM whose difference to the
measured one was 𝜒 = 0.9 µm. The minimum 𝜒 obtained from LOCO fitting was almost
4 times greater than the measured BPM accuracy. Even though the obtained 𝜒 around
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(a) BPM gains and roll angles.
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Figure 14 – Fitted values for BPM gains, roll errors and correctors (CH and CV) gains.

1 µm represents a good level of fitting, the factor 4 difference from the BPM accuracy
values indicates that there are still some systematic errors influencing the measurements,
as discussed in [34].

4.2.1 BPM and Corrector Gains

BPMs gains, roll errors and correctors gains are parameters that are related to the
correspondent devices, thus it should be independent of the machine optics and coupling.
Furthermore, typically these parameters should not vary significantly, especially in a short-
term period. Therefore, it is reasonable to include the gains and roll errors as LOCO fit
parameters in the first iteration and use these obtained values as initial conditions for the
following fittings. It is expected that the gains do not deviate too much from the fit values
obtained in the first step. From the first LOCO iteration on Sirius, the BPM gains, roll
errors and correctors gains obtained are shown in Figure 14.

The values in format (average ± std) for each parameter presented in Figure 14 are:
0.966± 0.007 for horizontal BPM gain, 0.973± 0.008 for vertical BPM gain, 0.94± 0.03
for CH gain, 0.94± 0.04 for CV gain and (−1± 3) mrad for BPM roll error. As discussed
in Appendix C, it was defined that the interpretations for BPM and correctors gains are
opposite, in the sense that for BPMs the fitted gains represents the corrections factors that
should be applied in the measurements to explain correctly the actual orbit distortions,
while it is the inverse of correctors gains that should be used in the kicks applied to obtain
the actual kicks that affected the beam. Therefore, this fitting indicates that the actual
BPMs measurements are around 3% lower than the actual values and the actual kicks
that distort the beam orbit are 6% greater than the kicks variations (15 µrad) considered
by the control system during ORM measurement. It also can be observed that the spread
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between BPM gains is one order of magnitude lower than the spread between correctors
and this difference was already expected.

In Figure 14b it can be observed a 20-fold periodic pattern in correctors gains. This
signature following the storage ring period is also correlated to the topic of Section 4.4.
It also can be seen two outliers in CV gains in 82th and 158th vertical correctors. These
correctors were later examined on site but this initial survey did not reveal any anomaly.
The cause for these outliers in CV gains is still under investigation and they did not
compromise the following results.

As already mentioned, the fitted gains obtained from the first LOCO iteration
and presented in Figure 14 were used as initial values for the following iterations. For
this study, the obtained values were not used in the control system to correct the BPM
measurements nor the correctors excitation curves. This was decided since the fitted gains
are close to unity and they do not compromise greatly the orbit correction system and
the ORM measurement. For machine studies in the future, when much finer tuning in the
storage ring and control system will be performed, the fitted gains and roll errors may
also be included as correction factors for BPMs and correctors.

4.2.2 Quadrupoles Gradients

Normal and skew gradients were also included as LOCO fit parameters to adjust
the measured ORM. The normal gradients are associated to the corrections that can be
applied in 270 quadrupoles trim-coils in Sirius storage ring and skew gradients to the 80
skew quadrupoles coils installed in sextupoles magnets.

The LOCO fitting changes the quadrupole gradients in the model to calibrate
the measured ORM, so the integrated gradients are changed by KLnominal → KLnominal +
ΔKLLOCO. The same is valid for KsL, the skew gradients strength, however the difference
is that initially the skew gradients are zero, since in the nominal model the coupling is zero
as well. Ideally, KLactual = KLnominal + ΔKLLOCO represents the actual focusing strengths
affecting the electron beam in the actual storage ring. Once the parameters of the real
machine are calibrated, we are able to correct it to correspond to the nominal model or
any other model of interest. In this way, it is possible to calculate the corrections that
change the focusing strengths along the real storage ring to produce a linear optics close
to the nominal.

The process of measuring an ORM, fitting it with LOCO and applying the cor-
rections to the machine was realized only twice and the convergence was reached. The
corrections distribution history both for normal quadrupoles and skew quadrupoles are
shown in Figure 15. The standard deviations of these corrections for each LOCO iteration
are organized in Table 6.
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Figure 15 – Normal and skew quadrupoles strength variations throughout LOCO itera-
tions.

Table 6 – Corrections strengths variation for each LOCO iteration.

Knobs variation (std) corr. #1 corr. #2 corr. #3 Unit
Quadrupoles 0.33 0.21 0.07 %

Skew Quadrupoles 2.7 · 10−3 5 · 10−4 4 · 10−4 m−1

From Figure 15 and the values in Table 6 it can be seen that the corrections
calculated in the third LOCO iteration and the respective parameters variations obtained,
presented in Table 4, are commensurable. Therefore, it was considered that in the third
set of corrections the process already converged and this last set was not applied.

4.2.3 Deviations from Nominal

The figure of merit to be minimized with LOCO method is the difference be-
tween measured and calculated ORM in each iteration, by changing the storage ring
model. As LOCO corrections are applied in the machine elements, it is expected that
the measured ORM converges to the nominal ORM. Table 7 shows the progress of ORM
differences (represented by 𝜒) throughout LOCO corrections applied to the machine and
also the fitting level for each particular iteration.

The LOCO corrections applied to Sirius storage ring decreased the difference be-
tween measured and nominal ORM from 24.6 µm to 2.1 µm, which is almost a factor 12
of reduction.

For a global view of measured ORM convergence towards the nominal, Figure 16
shows the histogram of errors for each LOCO iteration. The error histograms are divided
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Table 7 – ORM fitting progress.

LOCO iteration Initial 𝜒 [µm] Final 𝜒 [µm]
#1 24.6 0.94
#2 2.7 0.90
#3 2.1 0.92
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Figure 16 – Histogram for the errors between measured and nominal orbit response ma-
trices for each LOCO iteration. The blue data refers to the measured ORM
without corrections applied. The orange data was obtained after the first ap-
plication of LOCO corrections. The green data is related to the second and
last LOCO round applied.

in four parts, following the four ORM blocks: 𝑀𝑥𝑥, 𝑀𝑦𝑦 (diagonal) and 𝑀𝑥𝑦, 𝑀𝑦𝑥 (off-
diagonal).

It can be seen that initially the order of magnitude of errors are basically the same
for all blocks. The off-diagonal errors (related to coupling errors) are slightly greater than
the diagonal errors. After the first correction application in the storage ring, the errors
in the four blocks were already greatly reduced. After the second and final corrections
the std errors were reduced by the following factors:

𝜎initial
𝑥𝑥 /𝜎final

𝑥𝑥 = 9.8, 𝜎initial
𝑥𝑦 /𝜎final

𝑥𝑦 = 21.9,

𝜎initial
𝑦𝑥 /𝜎final

𝑦𝑥 = 18.0, 𝜎initial
𝑦𝑦 /𝜎final

𝑦𝑦 = 8.6.
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Figure 17 – ORM rows for the first CH and CV. The blue curve is the nominal ORM, the
orange curve represents the measured ORM before LOCO corrections and
the green curve is from measured ORM after LOCO.

The off-diagonal errors were reduced by a factor of 2 greater than the diagonal
errors.

Two ORM columns were taken to exemplify typical differences between measured
and nominal matrices, before and after LOCO corrections and the results are presented in
Figure 17. The first column is related to a horizontal corrector signature and the second
one to a vertical corrector. Multiplying the ORM columns by the kicks Δ𝜃𝑥 and Δ𝜃𝑦, one
can obtain the orbit distortion signature Δ𝑥 and Δ𝑦.

In this example it can be seen that the off-diagonal elements are greatly reduced
and are close to zero after corrections. The diagonal elements for measured and nomi-
nal ORM are practically overlapped.

4.2.4 Final Corrections

Adding up the corrections sets for normal and skew quadruploles gradients in the
two LOCO iterations, the total corrections were obtained and plotted in Figure 18.

The final quadrupole gradients variations covers the range of ±2%, while the skew
quadrupole strengths are between ±5 · 10−3 m−1. Based only on magnetic characterization
of quadrupoles fields, variations of 2% are large, since the specifications for gradient
errors were 0.05%. On the other hand, it is important to remember that these quadrupole
variations are corrections for gradient errors along the whole storage ring. Thus, it is more
likely that these corrections are compensating for other sources of gradient errors. The
most important contribution is additional fields in quadrupoles and sextupoles caused
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Figure 18 – Normal and skew quadrupoles final corrections.
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Figure 19 – Quadrupoles families final variations after two LOCO iterations. The continu-
ous lines indicate the family average variation and the dashed lines correspond
to ± std.

by the feed-down effect (Appendix A for details) due to magnet misalignment and orbit
distortions. These other sources of gradient errors may accumulate in such a way that
quadrupole variations on the order of 2% might be necessary for compensation.

An interesting way to visualize the quadrupole variations is dividing them following
the 12 quadrupoles families in storage ring. The magnets that make up each family were
selected to minimize the spread in gradient strengths within the families and to satisfy
the 0.05% specification on gradient errors. The results of this rearrangement in families
are shown in Figure 19. The statistics for these quadrupole variations divided by families
are organized in Table 8.

Mechanically, three types of quadrupoles were used in Sirius storage ring, namely
Q14, Q20 and Q30. The number in the name indicates the magnet length, 14 cm, 20 cm and
30 cm, respectively. The shorter quadrupoles, Q14, were used as defocusing quadrupoles.
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Table 8 – Quadrupole families corrections.

Quad. Family mean [%] std [%] peak-to-valley [%]
QDA 0.45 0.71 2.02
QDB1 0.31 0.68 3.00
QDB2 -0.14 0.55 2.57
QDP1 -0.05 0.45 1.48
QDP2 -0.18 0.39 1.25
QFA 0.31 0.16 0.48
Q1 0.30 0.31 1.19
Q2 0.05 0.20 0.77
Q3 -0.08 0.38 1.66
Q4 0.17 0.33 1.55

QFB -0.31 0.11 0.45
QFP -0.07 0.08 0.29

Q20 were used as quadrupoles in arc sections and for focusing quadrupoles in high-beta
straight sections. The longest quadrupoles, Q30, were used as focusing quadrupoles in low-
beta sections, in order to provide a larger integrated gradient field to focus the betatron
functions in the straight sections. The quadrupole families information in Table 8 are
divided with horizontal line into three groups, following each magnet type to which each
corresponding family.

For Sirius quadrupoles, the integrated gradient strength increases with the quadrupole
length. Suppose that the variations ΔKL calculated with LOCO are on the same order
of magnitude for all quadrupoles. Thus, the relative change ΔKL/KL is smaller as the
quadrupole’s integrated gradient is larger, as can be confirmed in Table 8. This indicates
that there is no systematic problems in specific quadrupoles types and families.

4.2.5 Calibrated Model Parameters

Once the measured ORM is adjusted, with the obtained calibrated model one can
calculate lattice functions (beta and dispersion), and global parameters, such as betatron
tunes and emittances. If the model describes accurately the real machine, this provides
an indirect estimate of corresponding actual parameters.

A function that is related to the storage ring linear optics errors and asymmetries
is the betatron function relative error Δ𝛽(𝑠)/𝛽(𝑠), called beta-beating. The beta-beating
is a 𝑠-dependent function but it is common to use its standard deviation value as a
characteristic parameter for the optics errors level. The dispersion function std deviation
from nominal values is an usual parameter to indicate the optics error as well. In Table 9,
the std values for beta-beating and dispersion errors are shown for each of the LOCO fits.
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Table 9 – Lattice functions errors from calibrated model throughout LOCO fittings.

Parameter (std) fitting #1 fitting #2 fitting #3 Unit
Δ𝛽𝑥/𝛽𝑥 11.2 1.3 1.1 %
Δ𝛽𝑦/𝛽𝑦 7.9 0.9 1.6 %

Δ𝜂𝑥 10.1 1.6 1.4 mm
Δ𝜂𝑦 3.1 1.4 0.5 mm

Table 10 – Predicted fractional tunes from calibrated model compared to the measured
ones for each LOCO fitting.

Parameter fitting #1 fitting #2 fitting #3
measured 𝜈𝑥 0.076 0.076 0.076

model 𝜈𝑥 0.079 0.075 0.075
measured 𝜈𝑦 0.134 0.138 0.136

model 𝜈𝑦 0.135 0.137 0.133

Table 11 – Emittances from calibrated model throughout LOCO fittings.

Parameter fitting #1 fitting #2 fitting #3 Unit
𝜖0 283.4 250.4 251.6 pm rad
𝜖𝑥 280.7 250.0 251.5 pm rad
𝜖𝑦 2.65 0.37 0.07 pm rad

𝜖𝑦/𝜖𝑥 0.94 0.15 0.03 %

The results in Table 9 indicate that Δ𝛽𝑥/𝛽𝑥 in the calibrated models could have
been reduced to one tenth of its initial value. Δ𝛽𝑦/𝛽𝑦 was reduced by a factor 5. The
reduction factors for horizontal and vertical dispersion errors were 7 and 6, respectively.
However, independent measurements performed in the storage ring indicate that the actual
error reductions were lower than predicted with LOCO models, as presented in the next
section.

From the calibrated model, the calculated fractional tunes agreed quite well with
the measured ones as can be seen in Table 10. The differences between the measured and
predicted tunes from LOCO are on the order of 1 · 10−3 for both planes.

Finally, with the calibrated models the emittances were also calculated and the
results are presented in Table 11. Initially the model indicated that the natural emittance
was 13% higher than the nominal value of 251 pm rad. The vertical emittance generated
an emittance coupling ratio of 0.94%. The natural emittance obtained with the final
calibrated model was very close to the nominal and the vertical emittance was very close
to zero.
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4.3 Independent Measurements

Some measurements can be performed to check independently the impact of LOCO
corrections on Sirius storage ring. Lattice functions, betatron and dispersion, are measured
to verify the machine linear optics and its deviations from the nominal functions. Mea-
suring the closest betatron tunes approximation provides information about the global
betatron coupling. To check the performance in beam dynamics, one can measure the
dynamic aperture and injection efficiency, two typically correlated quantities. When these
studies were performed, the Sirius diagnostic beamline was not installed yet, so it was not
possible to perform beam size and emittance measurements.

4.3.1 Dispersion Function

The information about dispersion function is already encoded in one of ORM
columns. A column of this matrix is the orbit response due to a variation in RF frequency.
From Eq. (3.5), the dispersion function at the BPMs positions can be calculated as:

𝜂𝑢(𝑠𝑖) = −𝛼𝑓rf
Δ𝑢𝑖

Δ𝑓rf
, (4.1)

where 𝑢 = 𝑥, 𝑦 and 𝛼 is the momentum compaction factor. Thus, given the RF frequency
used in ORM measurements, the dispersion is obtained with the corresponding ORM
column.

In this case, the dispersion function is not exactly an independent measurement,
since it is included in LOCO fitting. For Sirius, it was required to include a weight factor
to force the matching between measured and calculated dispersion function. It was verified
that if this factor was not used, the measured ORM was adjusted except for the dispersion
column. Applying the gradients variations calculated by LOCO actually increased 𝜂(𝑠)
errors, especially in the vertical plane. On the other hand, if the weight factor was further
increased, the measured 𝜂(𝑠) was better explained with the model however the ORM
fitting quality was lowered.

With the measured ORMs before and after LOCO corrections, 𝜂𝑥 and 𝜂𝑦 at BPMs
were calculated and compared with the nominal function. The results are shown in Fig-
ure 20.

It can be observed that the horizontal dispersion errors were greatly reduced,
especially in straight sections, were 𝜂𝑥 = 0 nominally. However, the errors in vertical
dispersion could not be reduced with the same effectiveness. This was already expected,
since the LOCO calibrated models predicted 𝜂𝑦 functions very different from the measured
ones. Initially the std error for 𝜂𝑥 was 10.2 mm and after the corrections it was reduced to
1.6 mm. For 𝜂𝑦, these errors were 2.8 mm before and 1.9 mm after LOCO. From Table 9,
it is seen that LOCO model accurately predicted the values obtained in the actual storage
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Figure 20 – Measured dispersion functions on BPMs and its differences from nominal
values.

ring for 𝜂𝑥. On the other hand, even though the initial predicted and measured 𝜂𝑦 are in
concordance, the final 𝜂𝑦 error calculated with the calibrated model is about 4 times lower
than the corresponding measured error. This incompatibility will be further discussed in
Section 4.4.

4.3.2 Betatron Function

There is a quite simple method for measuring the betatron function. In Subsec-
tion 2.4.2 it is discussed how gradient errors perturb the linear optics on a storage ring.
In Appendix F the effect of a single gradient error in a quadrupole of length 𝐿 on the
betatron tunes, given the beta function, is calculated. The process can be reversed: in-
tentionally changing the integrated gradient of a single quadrupole by a small amount
ΔKL and measuring the corresponding tune shift, the integral of beta function along the
quadrupole is calculated as:

1
𝐿

∫︁ 𝐿

0
𝛽𝑢(𝑠)d𝑠 = 4𝜋

Δ𝜈𝑢

ΔKL , (4.2)



Chapter 4. Applications on Sirius Storage Ring 86

Table 12 – Variations in lattice functions for 10 sequential measurements performed in
Sirius storage ring.

Lattice function error mean rms rms variation peak-to-valley rms Unit
Δ𝛽𝑥/𝛽𝑥 3.9 0.8 4.3 %
Δ𝛽𝑦/𝛽𝑦 4.1 0.5 4.2 %

Δ𝜂𝑥 1.6 0.2 0.9 mm
Δ𝜂𝑦 1.9 0.3 1.3 mm

where 𝑢 = 𝑥, 𝑦. This method has the disadvantage that the gradient variation ΔKL applied
in the quadrupole must be well known, otherwise this introduces systematic errors in beta
calculation. Since the tune measurements are typically very precise, the contribution of
the error of Δ𝜈𝑢 to the beta function measurement is negligible.

This process, which will be called beta measurement by individual quadrupole
variation, can be performed for each quadrupole to measure the betatron functions around
the storage ring. Then, the obtained values can be compared to the nominal ones, which
is calculated numerically with the model, simulating the described process, or evaluated
with analytical expressions, derived in Appendix F.

The author implemented the beta measurement for Sirius storage ring in a Python
script and the code can be accessed in its GitHub Repository [60]. The script also performs
the data analysis and evaluates the beta integrals for a given Sirius storage ring model,
returning both measured and model beta integrals at quadrupoles for comparison.

The measurement process was tested and adjusted several times. After 10 ORMs
were measured to obtain the fit parameters variations as discussed in Subsection 4.1.2, 10
sequential beta measurements were performed as well2. Calculating the dispersion function
from the 10 measured ORMs, the variations for lattice functions measurements in Sirius
storage ring were obtained and the results are organized in Table 12.

The std variations for each point were used to define the related error bars, which
is this case are related to random errors. Note that dispersion function measurement
variations are low, due to the fact that RF frequency changes are precise and well-known.
On the other hand, variations in beta measurement are on the order of few percent. The
main cause for this is hysteresis in the quadrupoles gradient fields. It is desirable to correct
the storage ring linear optics in the level of the measurement’s errors. From simulations
with random errors in the model, it was possible to obtain beta-beatings std as low as
1%.

The implemented script was applied to obtain the Sirius beta functions before and
after the application of LOCO corrections in quadrupole’s trim-coils and the results are
2 Again, the repeatability test for optics function measurements was performed after LOCO corrections.
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Figure 21 – Nominal (blue) and measured (orange) betatron functions before and after
LOCO corrections.
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Figure 22 – Comparsion of beta-beating before and after optics corrections.

shown in Figure 21. The corresponding beta-beatings for the measured values are plotted
in Figure 22.

Before LOCO corrections, measured horizontal and vertical beta-beatings (std)
were (12.8± 0.8) % and (10.4± 0.5) %, respectively. With new gradients settings these
values were reduced to (3.9± 0.8) % and (4.1± 0.5) %.

An alternative method to measure beta functions can be performed by apply-
ing Principal Component Analysis (PCA) in TbT position measurements from BPMs.
The beam trajectory can be perturbed with a dipolar impulse, applied by an element
in the storage ring called pinger, that excites betatron oscillations that can be acquired
with BPMs. The oscillation harmonics encoded in the BPM data can be identified and
separated with PCA. The two main components for each plane of oscillation are related
to the betatron motion and from these two main harmonics it is possible to extract the
beta functions and the phase advances in BPMs. For more details about the method, the
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Figure 23 – Horizontal beta-beating comparison between predicted beta with LOCO
model and beta measurements: at quadrupoles based on tune shifts and at
BPMs based on PCA applied on TbT data.

author recommends the reference [1].

In Sirius storage ring, the dipolar kicker, used for on-axis injection, can also be
used as a horizontal pinger. When these measurements were conducted, a vertical pinger
was not available, so it was possible to measure only the horizontal beta function in BPMs
using PCA method. These measurements were done before and after LOCO corrections,
using a small kick of 100 µrad and analysing the TbT data for 4000 turns. The horizontal
beta-beatings obtained were compared with measurements by individual quadrupole vari-
ation and with the predicted beta-beating from LOCO calibrated models. These results
are plotted in Figure 23.

Before LOCO corrections, the three measurements agreed quite well. The corre-
lation between LOCO and PCA beta-beating signatures is 91% and between LOCO and
tune shifts is 86%. On the other hand, it can be seen that after the corrections, the LOCO
model fails to predict the measured beta-beating in storage ring. In this situation, the
correlation between LOCO and PCA values is 39% and LOCO and tune shifts it is only
8%. The same is valid for std beta-beating, before corrections the values were; LOCO:
11.3 %, tune shift: 12.8 %, PCA: 11.5 % and after corrections; LOCO: 1.0 %, tune shift:
3.3 %, PCA: 3.0 %. Then, in the latter case, the calibrated model predicted a horizontal
beta-beating that is 3 times smaller than the measured values in Sirius storage ring. At
this stage, this was an indication that the correspondence between the model and the
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actual ring was no longer valid. This will be further discussed in Section 4.4.

4.3.3 Betatron Coupling

In Subection 2.4.3 the effect of skew gradients on betatron coupling was briefly
discussed. It was shown that a global parameter |𝜅|, called global betatron coupling, can be
measured by approximating the betatron tunes, taking advantage on the fact that the tune
difference resonance is stable. In the presence of coupling, the transverse tunes 𝜈𝑥 and 𝜈𝑦

are replaced by two normal tunes 𝜈1 and 𝜈2, also called eigentunes. This coupling problem
can be formulated to be mathematically equivalent to the avoided-crossing problem in a

two-level system in quantum mechanics. In this case, the matrix C =
⎡⎣𝜈𝑥 𝜅

𝜅 𝜈𝑦

⎤⎦ takes the

place of the two-state hamiltonian and its eigenvalues are calculated as:

𝜈1 = 𝜈𝑥 + 𝜈𝑦

2 + 1
2

√︃(︂
𝜈𝑥 − 𝜈𝑦

2

)︂2
+ 4𝜅2, (4.3)

𝜈2 = 𝜈𝑥 + 𝜈𝑦

2 − 1
2

√︃(︂
𝜈𝑥 − 𝜈𝑦

2

)︂2
+ 4𝜅2. (4.4)

The equations above are equivalent to Eq. (2.41). In the limit 𝜈𝑥 = 𝜈𝑦, we also
obtain that 𝜈1 − 𝜈2 = |𝜅|.

The tunes approximation can be performed by changing the focusing strengths in
the storage ring. In Sirius, the fractional horizontal tune is lower than the vertical tune,
thus the tunes can be approximated by increasing a focusing quadrupole strength. The
QFB family was chosen for this experiment. If the current that feeds this quadrupole
family is changed by Δ𝐼QFB > 0, there is a corresponding change in horizontal tune
Δ𝜈𝑥 > 0 and vertical tunes Δ𝜈𝑦 < 0. In this way, the tune sum and the difference can be
viewed as functions of QFB current.

The measurement script and analysis was implemented by the APG and used by
the author in Sirius storage ring to obtain the global betatron tunes before and after
LOCO corrections. The results are shown in Figure 24. The gray curve presented in
Figure 24 was obtained by plugging the measured 𝜈𝑥, 𝜈𝑦 for each current 𝐼QFB in matrix
C, diagonalizing it and fitting the parameter 𝜅 and the offsets (𝜈𝑥 + 𝜈𝑦)/2 that minimize
the quadratic difference to the data.

For LOCO coupling corrections applied on skew quadrupoles, the residues used for
minimization were 𝑀𝑥𝑦 and 𝑀𝑦𝑥, the ORM off-diagonal elements, which are related to the
local coupling along storage ring. However, the minimum tune difference measurements
showed that the global betatron coupling was reduced as well, from the initial value of
(0.78± 0.04) % to (0.07± 0.01) %.
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Figure 24 – Global betatron coupling before and after LOCO corrections.

It is important to mention the goal coupling for Sirius storage ring is not neces-
sarily small. The coupling parameter is somewhat a free parameter that can be varied
to suit other purposes, for example to increase the beam lifetime or the vertical beam
size. Neverthless, a common procedure is to first reduce the betatron coupling as much
as possible, then increase the coupling towards the goal value in a controlled manner.
With these studies, it was proved that LOCO is a robust method to minimize the off-
diagonal ORM elements and in this process the global betatron coupling is consequently
reduced. However, even though the measured betatron coupling is near zero, since the
vertical dispersion function could not be reduced with LOCO corrections, it is likely that
the vertical beam emittance is still about 1% of the horizontal emittance, as calculated
with the first LOCO calibrated model.

4.3.4 Horizontal Dynamic Aperture

The horizontal pinger can also be used to apply dipolar impulses in the stored
electron beam with increasing amplitudes until the beam is partially or totally lost. Mea-
suring with BPMs the transverse oscillations over the turns, one can obtain how much
beam is lost as a function of the transverse positions. This is basically the dynamic aper-
ture measurement. Since only the horizontal pinger was available in Sirius storage ring,
only the horizontal dynamic aperture could be measured.

Figure 25 shows the measurement results before and after optics and coupling
corrections. Setting 5% as the beam loss limit to estimate the dynamic aperture, after the
application of LOCO corrections on linear optics and coupling, the horizontal dynamic
aperture was increased from 7.6 mm to 8.3 mm, which is an improvement of approximately
10%.

The horizontal dynamic aperture is important for Sirius injection, given that
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Figure 25 – Comparison of horizontal dynamic aperture measurement before and after
LOCO corrections.

a NLK is used to perform the off-axis injection in the storage ring. The off-axis injec-
tion occurs at 𝑥 = −8 mm from the vacuum chamber center, because at that location
the NLK field is maximum. The NLK field rapidly decays as the position approaches
𝑥 = 0, causing no effect on the stored beam. More information about off-axis injection
with NLK can be found in [24,61].

To efficiently inject electrons from Booster with NLK, the storage ring dynamics at
𝑥 = −8 mm must be stable. From the simulations with Sirius storage ring model, including
alignment and field errors (satisfying the specifications), the dynamic aperture obtained
was 𝑥 = −9.5 mm. Therefore, even with the improvement obtained with LOCO correc-
tions, the measured horizontal dynamic aperture is still about 15% lower than expected
from simulations.

It is worth to mention that beam dynamics in Sirius storage ring depends strongly
of non-linear effects, which is well-known for 4GSRs. At the time of writing, non-linear
optimizations were not carried out in Sirius yet. This kind of optimization is one example of
accelerator physics studies that might improve the storage ring dynamic aperture towards
design values.

4.3.5 Injection Efficiency

To close this section of independent measurements, the injection efficiency in the
storage ring was recorded before and after linear optics and coupling corrections. The data
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Figure 26 – Beam accumulation before and after LOCO corrections.

is presented in Figure 26. A linear fitting was applied on the data. The angular coefficient
increased from 196 µAs−1 to 677 µAs−1. The Sirius injection rate is 2 Hz and the current
delivered by booster to the storage ring is 500 µA on average, i.e, with an injection without
any losses, the accumulation rate would be approximately 1 mAs−1. Therefore, with optics
and coupling corrections, the average injection efficiency was increased from 20% to 68%,
which is an improvement of a factor 3.4. During the commissioning, large pulse-by-pulse
variations on injection efficiency have been observed. The changes in injection efficiency
recorded were as high as 20%. This problem might be related to the dynamic aperture,
since its measured value indicates that the electron beam had to be injected in the dy-
namic aperture edge in order to receive the required kick from NLK. In this situation, any
change of a few percent in the injection condition leads to electron losses. Leak fields from
the injection pulsed magnets were also measured with the stored beam during the com-
missioning and shielding schemes are being studied to minimize their negative effects on
injection. For the top-up injection mode on Sirius, an injection efficiency higher than 95%
with small pulse-by-pulse variation is required, so Sirius injection efficiency optimization
was a work in progress at the time of writing.

4.4 Orbit Effect on Optics and Coupling

Orbit correction on Sirius storage ring was performed as follows: the BPM offsets
with respect to quadrupoles centers were measured to define the BBA orbit, then this
orbit was used as the target for orbit correction. In this process, it was not possible to
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Figure 27 – Residual orbit in Sirius storage ring.

use all 281 singular values available in ORM in the corrections, otherwise the correctors
strengths would surpass the kick limits: ±330 µrad. Thus, it was necessary to use only 180
singular values in orbit correction and the final residual orbit, represented in Figure 27,
was obtained.

The std values for the distortions in Figure 27 are 31 µm in horizontal plane and
32 µm in vertical. The peak-to-valley values are 312 µm and 184 µm for 𝑥 and 𝑦, respec-
tively. From simulations, with alignment and field errors (within specified tolerances) on
storage ring model, the orbit correction performance was better than the obtained in the
actual ring, with std of 17 µm in the horizontal plane and nanometric std orbit vertically.
This is an indicative that the real alignment errors are greater than the specifications.

It is well-known that the magnetic fields in a storage ring depend on the relative
transverse position of the beam with respect to the magnets centers. This is the feed-down
effect that was already mentioned throughout this work and it is discussed in Appendix A.
Since very strong quadrupoles and sextupoles are used in Sirius MBA lattice, it is expected
that the dependencies of linear optics and coupling related to orbit distortions might play
an important role.

To study the contribution of orbit distortion on optics and coupling, the residual
orbit in the storage ring was reproduced in the nominal model. At this stage, the betatron
tunes were 𝜈𝑥 = 48.917 and 𝜈𝑦 = 13.961, and the tunes were corrected to the nominal
values. Note that the distorted orbit produced large tune shifts of Δ𝜈𝑥 = −0.18 and
Δ𝜈𝑦 = −0.19. An ORM was calculated with this model and was used as input for a
LOCO fitting with the same configuration used for the fitting of measured ORMs. The
initial difference between this ORM and the nominal was 𝜒 = 8.7 µm. After the fitting,
the final difference was 𝜒 = 0.7 µm. Considering the measured Sirius BPM accuracy of
0.25 µm approximately, a rough estimate of this noise effect on data would increase the
final 𝜒, being closer to the same level obtained in LOCO fittings from measured ORM in
the storage ring (about 0.95 µm).

The qualitative behavior of LOCO fitting in this test was very similar to the
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(a) BPM gains and roll angles.
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Figure 28 – Fitted values for BPM gains, roll errors and correctors (CH and CV) gains
for model with perturbed orbit.

fittings performed with the measured ORM. The fitted ORM was adjusted in a very good
level, both in diagonal and off-diagonal blocks. It was necessary to include the dispersion
function in the fitting with weight 2, otherwise the horizontal dispersion obtained with
the calibrated model would not match the dispersion from the perturbed orbit model.
The vertical dispersion function could not be reproduced with LOCO model as well.

Although there was no errors in BPM gains and roll angles and correctors gains,
during the fitting these parameters were changed to adjust the ORM. The results for these
fit parameters are shown in Figure 28.

One can note the periodic signature in the gains. Even though the absolute values
are smaller than the gains obtained in the previous fitting (Figure 14), the periodic sig-
nature observed previously (especially for correctors) can be related to the ones obtained
here. The BPM roll angles adjusted in this test were also on the order of ±10 mrad. Thus
the values obtained previously probably are not related to the BPM roll errors and the
major contribution might be from the orbit distortion.

The beta-beatings caused by the residual orbit were also calculated and compared
with the first LOCO fitting reported in Section 4.2. The results are presented in Figure 29.
The disturbed orbit produced std beta-beatings of 8.6 % in horizontal and 3.0 % in vertical
plane. It can be seen that the orbit contributions to the beta-beating in some locations
are commensurable to the ones obtained from the calibrated model. The fact that the
predicted beta-beating is larger than the one caused by orbit distortion is reasonable,
since in the actual storage ring there are other sources of optics perturbations.

Another comparison was performed between the dispersion functions from the
perturbed orbit model and the measurements realized on storage ring before LOCO cor-
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Figure 30 – Comparison between dispersion functions at BPMs obtained perturbed orbit
model with measurement before optics corrections.

rections, plotted in Figure 30. Once again, the actual errors are larger than the ones
generated by the feed-down effect, as expected. The vertical dispersion signature similar-
ities draw attention. It is clear that the errors in 𝜂𝑦 caused by orbit distortion explain
a substantial part of the measured 𝜂𝑦. The correlation between measured Δ𝜂𝑥 and the
calculated with orbit distortions is 76% and for Δ𝜂𝑦 the correlation is 53%. The main
sources of 𝜂𝑦 are vertical bendings created by vertical orbit distortions on quadrupoles.

Finally, the variations in normal and skew quadrupoles obtained in this test were
compared with LOCO corrections applied in storage ring, as can be seen in Figure 31.

The order of magnitude of variations in both cases are very similiar. For quadrupoles,
the std variations are 0.36 % for orbit perturbed model and 0.33 % for LOCO corrections.
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Figure 31 – Normal and skew quadrupoles variation for perturbed orbit model and the
first LOCO calibrated model.

Table 13 – Optics errors before and after LOCO corrections applied on perturbed model.

Parameter (std) before corr. after corr. Unit
Δ𝛽𝑥/𝛽𝑥 8.6 1.8 %
Δ𝛽𝑦/𝛽𝑦 3.0 1.5 %

Δ𝜂𝑥 3.3 1.6 mm
Δ𝜂𝑦 1.7 1.9 mm

For skew quadrupoles, the std variations are 2.4 · 10−3 m−1 for orbit perturbed model
and 2.7 · 10−3 m−1 for LOCO corrections. When these corrections were applied in the per-
turbed model, the ORM errors were greatly reduced, the optics errors are reduced (except
for 𝜂𝑦) but could not be eliminated, exactly as observed in the actual storage ring. The
results of optics corrections on perturbed model is organized on Table 13.

From these results, it can be seen that, even with nominal gradients on the lattice,
the linear optics perturbations generated by orbit distortions could be reduced but there
is a limitation for this scheme of correction. The off-diagonal elements in ORM can be
greatly reduced with skew quadrupoles, however since the vertical dispersion function
could not be adjusted with LOCO fitting, it could not be corrected as well (in fact, the
error was even increased).

The qualitative behavior of LOCO analysis using an ORM calculated from a model
with the same residual orbit as measured in Sirius storage ring reproduces the behavior
that is observed with measured ORM. Since in the real machine other errors also per-
turb the linear optics, it is expected that the minimum level of optics correction with a
disturbed orbit is higher than the level obtained in this test.

This test raises a hypotheses for the incapacity of LOCO fitting to predict ac-
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curately the storage ring optics. LOCO, as included in the method name, is a process
to obtain the linear optics (regarding dipoles and quadrupoles). However, it was verified
that the feed-down effects in quadrupoles and sextupoles (due to residual orbits) play an
important role in the Sirius optics. An origin for this residual orbit might be the mag-
nets misalignment in the storage ring, which was already confirmed with measurements
performed by LNLS Alignment Group. Another explanation for these problems might be
the incompatibility between the storage ring model and the actual storage ring regarding
the elements longitudinal positions (specially from girders misalignment). In this case, the
model would not accurately describe the storage ring.

The betatron function depends basically on the focusing strengths introduced
by quadrupoles, while the dispersion function depends both on focusing and deflecting
forces. Orbit distortions in quadrupoles introduce additional dipolar fields and in sex-
tupoles extra focusing are introduced by the feed-down effect. With LOCO fitting, only
the quadrupoles are varied to fit the linear optics. So, if the quadrupoles are used to com-
pensate the gradients in sextupoles to fix the betatron function, the additional dipolar
fields in quadrupole are changed as well, perturbing the dispersion function. On the other
hand, if the quadrupoles are used to compensate the dipolar fields in quadrupoles and
fix the dispersion function, the focusing strengths along the ring are changed and the
betatron functions are perturbed. Therefore, in the presence of large orbit distortions,
it is only possible to balance the correction of betatron function without perturbing the
dispersion (or vice-versa), reaching a limited level of correction effectiveness.

Furthermore, this type of correction that uses quadrupoles to compensate for per-
turbations generated by orbit distortion is inadequate. The actual solution is to minimize
the alignment problems that limit the residual orbit, so the orbit can be best corrected
to the magnetic centers, reducing its effect on linear optics. After that, the LOCO cor-
rections should fix these deviations and the optics errors should be corrected to a better
level. A realignment campaign in Sirius is scheduled for January 2021. In this campaign,
the devices longitudinal positions will also be measured and will be used to improve the
storage ring model. After that, the machine will be re-commissioned and it is expected
that LOCO analysis can be performed again to obtain a better level of correction for the
storage ring linear optics.
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Conclusions

In this work, the Linear Optics from Closed Orbit (LOCO) method was studied
and implemented as a Python package for the Sirius storage ring. The code was submit-
ted to several tests, using Orbit Response Matrices (ORM) obtained with simulations
and measurements performed in the storage ring as well. The tests validated that the im-
plemented method is robust and reliable. In these tests, the use of Levenberg-Marquardt
(LM) minimization algorithm instead of Gauss-Newton (GN) proved to be the best choice
to facilitate the singular values selection process required for fit parameters calculations.
With this choice, only the last singular value, which is related to the well-known gain
degeneracy in the vertical plane, should be removed. The LM algorithm has proved to
be a great alternative for the time-consuming process of trial and error to determine the
best set of singular values to be used in the fitting with GN algorithm. Another very
important feature for the method was the constraints in quadrupole’s strengths. With-
out constraints, the fitting converges to unrealistic solutions with large deviations on the
gradients in quasi-degenerated quadrupoles (with similar signatures on ORM). Including
constraints in step sizes, the solutions obtained reached the same quality of fitting with
the advantage of providing much more realistic and feasible gradients variations.

LOCO method was applied to Sirius storage ring to correct the linear optics and
coupling. The fit parameters error bars were obtained by measuring and fitting 10 ORMs.
An individual quadrupole gradient in the lattice was intentionally changed, the ORM
was measured and adjusted to prove that the method was able to accurately recover the
localized variation. The ORM measured without optics and coupling corrections on storage
ring were adjusted with LOCO with 20 different initial conditions on the quadrupoles
gradients and all solutions obtained virtually converged to the same setting of quadrupoles,
within the parameters error bars, indicating that the solution found provides the best
ORM fit available. With two LOCO iterations, where the corrections were applied in
quadrupoles trim-coils and skew quadrupoles at Sirius storage ring, another ORM was
measured and adjusted with the method. The measured and nominal ORM difference was
reduced from 𝜒 = 24.6 µm to 2.1 µm. The errors of diagonal ORM blocks were reduced
to about 1⁄9 from its initial values and the off-diagonal blocks related to the coupling
were greatly reduced to approximately 1⁄20 of the initial errors. While the measured BPM
accuracy was around 0.2 µm, the LOCO fitting level for the ORM in these iterations was
about 0.9 µm. Although a sub-µm level of fitting is already satisfactory, this factor of 4
larger than the BPM accuracy indicates that there are still some systematic errors in
the storage ring contributing to the ORM measurement that should be investigated. The
dispersion functions had to be included in the fitting with a weight factor, otherwise,
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Table 14 – Summary of storage ring parameters before and after LOCO corrections

Parameter Before Corr. After Corr. Unit Improvement Factor
Δ𝛽𝑥/𝛽𝑥 (std) 12.8± 0.8 3.9± 0.8 % 3.3
Δ𝛽𝑦/𝛽𝑦 (std) 10.4± 0.5 4.1± 0.5 % 2.5

Δ𝜂𝑥 (std) 10.2± 0.2 1.6± 0.2 mm 6.4
Δ𝜂𝑦 (std) 2.8± 0.3 1.9± 0.3 mm 1.5

H. Dynamic Aperture 7.6 8.3 mm 1.1
Injection Efficiency (mean) 20 68 % 3.4

the differences between measured and fitted horizontal dispersion were very large. The
measured vertical dispersion function could not be explained with the calibrated model.

The final corrections applied in Sirius storage ring for normal gradients covered a
range of ±2 % and for skew gradients, the range was ±5 · 10−3 m−1. Some independent
measurements were performed to characterize the storage ring optics, coupling and per-
formance before and after corrections. A summary of the obtained results is presented in
Table 14.

Regarding the coupling, the measured global betatron coupling was reduced from
(0.78± 0.04) % to (0.07± 0.01) %, proving that LOCO is a robust tool to minimize both
the off-diagonal ORM components and the global coupling as well. Initially, the calibrated
LOCO model predicted the optics functions quite well compared to the measured values
(except for the vertical dispersion). In the last fitting, after corrections application, this
correspondence was not observed anymore.

The orbit contribution to the optics and coupling on Sirius storage ring was also
studied. The measured residual orbit with respect to the BBA orbit was reproduced in the
model. An ORM was calculated in this perturbed model and adjusted with LOCO. The
model behavior, in this case, was similar to the obtained in the first iteration in the actual
storage ring. The obtained optics errors caused by the orbit distortion in the model via the
feed-down effect were on the same order compared to the errors measured in the storage
ring without corrections. The horizontal and vertical dispersion function errors in both
cases presented a substantial correlation. It was also necessary to include the dispersion
function in the fitting with a weight factor to adjust the perturbed model dispersion.
The vertical dispersion also could not be explained with LOCO model. The changes in
quadrupole gradients and skew quadrupoles to fit the perturbed ORM were also on the
order of magnitude of the corrections applied to the machine. All these results indicate
that the residual orbit present in Sirius storage ring was perturbing considerably the
optics and coupling by feed-down effect on quadrupoles and sextupoles. Moreover, the
corrections calculated with LOCO and applied to the machine might be compensating
for these errors generated by the orbit distortion. We concluded that the storage ring
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status obtained reached the limit allowed for this kind of compensation. To improve
even further the parameters, the feed-down effect must be minimized by reducing the
residual orbit. At the time of writing, the orbit correction was limited by the correctors
kicks thresholds ±330 µrad, which should be sufficient to correct the orbit at the BPMs
in a better level, considering the magnet alignment errors tolerances. Measurements in
the storage ring indicated that the actual errors were not meeting specifications and a
realignment campaign was scheduled for January 2021. After that, it is expected that the
residual orbit can be greatly reduced, consequently the related optics perturbations and,
applying the LOCO method implemented in this work, the storage ring linear optics and
performance might be further improved towards design values.

Future Activities

The Sirius commissioning is a work in progress and there are many subsequent
activities related to this work. As already mentioned, the analysis and corrections of
storage ring optics and coupling will be performed after the machine realignment. Once
the diagnostic beamline is available, it will be possible to use beam size and emittance
measurements as an independent verification for the effect of the corrections on the beam.

The Python code is planned to be generalized in the way of being able to run
with any given lattice model, not only for the Sirius storage ring model. There is also
an idea of implementing a graphical user interface in Python for the developed LOCO
code, compatible with Sirius control system, then facilitating LOCO configuration setup,
fitting, analysis, visualization of results and corrections application to the machine. This
would make this LOCO Python version an user-friendly helpful tool for regular operations
and machine studies on Sirius.

LOCO analysis can be performed with ORM measured with different conditions on
Sirius storage ring. Different kicks amplitudes can be used in ORM measurements to check
the non-linear contributions to the matrix. The effects of measuring ORMs with different
energy deviations (off-energy orbits) may also be studied. The sextupoles setup can be
varied to change the betatron tunes dependence with energy deviations (the chromaticity)
in the ORM measurements and LOCO fittings.

Since the ORM measurement process takes about 25 minutes, the obtained data
is subjected to drifts in the machine which may add errors to the ORM. Other facilities
implemented a much faster and accurate ORM measurement, exciting the beam orbit with
different known frequencies oscillations on corrector’s kicks. Applying Fourier analysis
on the data, the ORM elements can be obtained. With this method the ORM can be
measured in a few minutes and LOCO analysis can be applied, then reducing the overall
time required for Sirius optics studies.
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ORM can be measured with different currents per bunch in the electron beam.
The corresponding LOCO fitting for each measurement can provide information about
the transverse impedance distribution around Sirius storage ring. Another branch of study
is to benchmark LOCO results and corrections with other methods, for example, methods
based on TbT data acquired from BPMs, such as PCA and Independent Component
Analysis (ICA), which also fit optics functions in the lattice model and provides variations
in fit parameters that can be applied as corrections on the machine.
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A Feed-down Effect

The magnetic fields in a storage ring acting on the electron beam depends on the
deviation between the beam position transverse position and the magnet magnetic center.
If there this type of deviation is present, for example from magnets misalignment or beam
orbit distortions, the so-called feed-down effect takes place. The largest the transverse
deviations and the magnetic field strengths in a storage ring, the higher is the feed-down
effect that, uncontrolled, spoils the beam dynamics. Since this effect should be mitigated
as much as possible, this is one of the main reasons behind the very strict magnets
alignment specifications in a storage ring, specially for 4th generation machines. With
transverse displacements, when the beam reaches a magnet which the main field order is
𝑛 (for 𝑛 > 1), the electrons will also be affected by all fields of order 𝑛 − 1. The main
contributions to the feed-down effect in a storage ring usually come from quadrupoles and
sextupoles.

The effect for quadrupoles can be derived from the hamiltonian in Eq. (2.3), where
it is assumed that the reference orbit are localized at 𝑥 = 𝑦 = 0.

𝐻0 = 𝑥′2

2 + 𝑦′2

2 +
(︁
𝐾(𝑠)−𝐺2(𝑠)

)︁ 𝑥2

2 −𝐾(𝑠)𝑦2

2 −𝐺(𝑠)𝑥𝛿. (A.1)

If the reference orbit is transformed by 𝑥(𝑠)→ 𝑥(𝑠)−𝑥0(𝑠) and 𝑦(𝑠)→ 𝑦(𝑠)−𝑦0(𝑠),
the corresponding change in the hamiltonian is

𝐻0 → 𝐻0 −𝐾(𝑠) (𝑥0𝑥− 𝑦0𝑦) + 𝐾(𝑠)
2

(︁
𝑥2

0 − 𝑦2
0

)︁
. (A.2)

Thus, it can be seen that dipolar contributions both in horizontal and vertical
planes appear, whose bending magnitudes are given by 𝐾(𝑠)𝑥0 and 𝐾(𝑠)𝑦0, respectively.
Horizontal displacements in quadrupoles produce additional horizontal bending and the
vertical displacement in quadrupoles creates vertical bending in the storage ring. The
additional constant terms in the hamiltonian do not contribute to the equations of motion.
The additional horizontal bending may perturb the horizontal dispersion function 𝜂𝑥 and
also distort the closed orbit. The vertical contribution creates a vertical dispersion 𝜂𝑦,
which might increase the vertical beam emittance, decrease the light source brightness
and disturb the closed orbit as well.

The other important contribution comes from sextupoles. The non-linear trans-
verse hamiltonian in the presence of sextupoles is given by [47]:

𝐻𝑆 = 𝐻0 + 𝑆(𝑠)
6

(︁
𝑥3 − 3𝑥𝑦2

)︁
, (A.3)
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where 𝑆(𝑠) is the sextupolar function around the storage ring.

Applying the coordinate transformation 𝑥(𝑠) → 𝑥(𝑠) − 𝑥0(𝑠), one can calculate
that the related change in the hamiltonian is

𝐻𝑆 → 𝐻𝑆 −
𝑆(𝑠)𝑥0

2
(︁
𝑥2 − 𝑦2

)︁
+ 𝑆(𝑠)𝑥2

0
2 𝑥− 𝑆(𝑠)𝑥3

0
6 . (A.4)

Therefore, horizontal displacements in sextupoles produce additional focusing forces,
changing the focusing function by 𝐾(𝑠) → 𝐾(𝑠)− 𝑆(𝑠)𝑥0(𝑠) and perturbing the storage
ring linear optics, i.e., betatron and dispersion functions. These deviations in sextupoles
also create dipolar contributions but its strength depends on 𝑥2

0(𝑠), so this is a second
order effect. Again, the additional constant term does not affect the dynamics.

With the transformation in the vertical plane 𝑦(𝑠) → 𝑦(𝑠) − 𝑦0(𝑠), the change in
the non-linear hamiltonian is

𝐻𝑆 → 𝐻𝑆 + 𝑆(𝑠)𝑦0𝑥𝑦 − 𝑆(𝑠)𝑦2
0

2 𝑥, (A.5)

which allows us to conclude that vertical deviations in sextupole produce coupled terms
that add skew gradients in the storage ring, introducing perturbations in the lattice related
to the transverse betatron coupling. Once again, there is a dipolar perturbation, which
depends on 𝑦2

0(𝑠) and is typically less important.
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B Singular Value Decomposition - SVD

Let M be a real 𝑚 × 𝑛 matrix. The Singular Value Decomposition (SVD) is
a factorization that generalizes the eigenvalues decomposition and it states that every
matrix can be decomposed in the following form:

M = UΣVT, (B.1)

where U is a 𝑚 × 𝑚 matrix, V is a 𝑛 × 𝑛 matrix and Σ is a 𝑚 × 𝑛 positive-definite
rectangular diagonal matrix. U and V are orthogonal matrices:

UUT = UTU = I𝑚 (B.2)
VVT = VTV = I𝑛. (B.3)

Manipulating the equation (B.1) and using the matrices properties we obtain

MMT = UΣ2UT (B.4)
MTM = VΣ2VT. (B.5)

From this, we observe that the diagonal elements of Σ2 are eigenvalues of MMT

and MTM, which are called row-wise correlation and column-wise correlation matrices,
respectively. Since UT = U−1 and VT = V−1, the columns of U are the eigenvectors of
MMT and the columns of V are the eigenvectors of MTM.

The diagonal elements 𝜎𝑖 := Σ𝑖𝑖 ≥ 0 are called singular values. The SVD of a
matrix is unique up to permutations and a default choice is to arrange the decomposition
in such a way that the singular values are sorted in descending order, 𝜎𝑖 ≥ 𝜎𝑗 for 𝑖 < 𝑗.
The number of non-zero singular values is exactly the rank of matrix M. Thus, the SVD
of a rank deficient matrix will result in zero or numerically very small singular values.

A common procedure to avoid degeneracies in the calculations is the singular
values selection. This can be done by setting explicitly the unwanted singular values to
zero. This can be done in a more insightful way by defining a minimum threshold Δ and
setting to zero the singular values that satisfy 𝜎𝑖

max (𝜎𝑖)
< Δ. This methods eliminates

the less important directions defined by the columns of U and V as compared to the
direction with higher singular values.

Since Σ is a diagonal matrix, its inverse is obtained simply by Σ−1
𝑖𝑖 = 1/𝜎𝑖. For the

case that 𝜎𝑖 = 0, one can define Σ−1
𝑖𝑖 = 0. Hence, the matrix 𝑛×𝑚

M−1 = VΣ−1UT, (B.6)



Appendix B. Singular Value Decomposition - SVD 105

is a pseudo-inverse of M as can be checked by

M−1M =
(︁
VΣ−1UT

)︁ (︁
UΣVT

)︁
= I𝑛 (B.7)

MM−1 =
(︁
UΣVT

)︁ (︁
VΣ−1UT

)︁
= I𝑚. (B.8)

The matrix M−1 is also known as Moore-Penrose pseudo-inverse [51].

A useful version of SVD is the so-called “economy SVD”. Let 𝑟 = min (𝑚, 𝑛), then
one can observe that Σ𝑖𝑗 = 0 for 𝑖 > 𝑟 or 𝑗 > 𝑟. In this way, all these zero rows or columns
in the rectangular 𝑚 × 𝑛 matrix Σ can be removed to build a smaller square matrix Σ̂
with dimension 𝑟 × 𝑟. If 𝑚 > 𝑛, then 𝑟 = 𝑛 and this allows for reducing the dimension
of U as well, obtaining a rectangular 𝑚× 𝑟 matrix Û and the matrix V is unchanged. If
𝑚 < 𝑛, then 𝑟 = 𝑚 and the transpose case occurs, so V can be reduced to a 𝑟×𝑛 matrix
and U is unchanged. Let’s assume 𝑚 > 𝑛, which is the case for the matrices in this work.
In this situation, the new matrix Û is semi-orthogonal, i.e., ÛTÛ = I𝑟 but ÛÛT ̸= I𝑚 in
general. The economy SVD is very interesting for numerical purposes, since it is common
that 𝑚 ≫ 𝑛 or 𝑚 ≪ 𝑛, then using only the minimum useful data contained in the SVD
matrices is very computationally beneficial.

The SVD pseudo-inversion is a powerful tool to solve generic linear systems of
equations given by

A�⃗� = �⃗�, (B.9)

where A is a 𝑚× 𝑛 matrix, �⃗� a 𝑛× 1 column vector and �⃗� a 𝑚× 1 column vector. The
case that 𝑚 = 𝑛 may be exactly solvable, if det (A) ̸= 0 the exact solution is obtained by
normal inversion. Other two cases that may not have an exact solution occur:

• Underdeterminated: 𝑚 < 𝑛 and the system has infinitely many solutions, given a
generic vector �⃗�. The system does not have enough information given by the elements
of �⃗� to obtain the exact unknowns �⃗�. With the pseudo-inversion it is possible to
obtain a solution �⃗�𝑠 to the linear system such that |�⃗�𝑠|2 = ∑︀𝑛

𝑖=1 𝑥2
𝑠,𝑖 is minimized.

This is called the minimum-norm solution.

• Overdeterminated: 𝑚 > 𝑛 and the system has no solution, given a generic vector
�⃗�. The system has more equations than unknowns, so the system is overconstrained
and it is not possible to satisfy exactly and simultaneously all the equations. In
this case, with the pseudo-inversion it is obtained an approximate solution �⃗�𝑠 that
minimizes the difference |A�⃗�𝑠 − �⃗�|. This is called the least squares solution.

The idea in LOCO algorithm is applying linear approximations to convert a least
squared minimization problem in a linear algebra problem, obtaining a linear system of
equations. In this process there is much more data points than unkowns to be determined,
thus LOCO algorithm is characterized as an overdetermined problem.
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C BPMs and Correctors Gains

The starting point to obtain LOCO jacobian matrix for the BPMs gains and rolls
is the linear transformation:

�⃗�𝑖,real = RBPM (𝛼𝑖) GBPM
𝑖 �⃗�𝑖,meas.. (C.1)

If the orbit vector is viewed as a function �⃗�𝑖 = �⃗�𝑖 (𝜃𝑗, 𝛼𝑖, 𝑔𝑖,𝑥, 𝑔𝑖,𝑦), the ORM is
�⃗�𝑖𝑗 = 𝜕�⃗�𝑖

𝜕𝜃𝑗

. The vector is just a notation to use �⃗�𝑖 = (𝑥𝑖, 𝑦𝑖) and �⃗�𝑖𝑗 =
(︁
𝑀𝑥

𝑖𝑗, 𝑀𝑦
𝑖𝑗

)︁
.

Moreover, the matrices R (𝛼𝑖) and GBPM
𝑖 satisfies

𝜕RBPM (𝛼𝑖)
𝜕𝜃𝑗

= 𝜕GBPM
𝑖

𝜕𝜃𝑗

= 0.

Thus it is possible to obtain from (C.1) that

�⃗� real
𝑖𝑗 = RBPM (𝛼𝑖) GBPM

𝑖 �⃗�meas.
𝑖𝑗 . (C.2)

The transformation represented in equation (C.2) must be applied in the measured
ORM as LOCO algorithm updates the values of (𝛼𝑖, 𝑔𝑥,𝑖, 𝑔𝑦,𝑖).

The residue vector is defined as �⃗� = vec
(︁
Mmeas. −Mmodel

)︁
. Since Mmeasured must

be corrected by the transformation that includes BPM gains and rolls, the new residue
vector is elements are

𝑉 real
𝑘 = RBPM (𝛼𝑖) GBPM

𝑖 𝑀meas.
𝑖𝑗 −Mmodel

𝑖𝑗 , (C.3)

where the index 𝑘 is obtained from 𝑖 and 𝑗 by the vectorization.

To calculate LOCO jacobian matrix one needs to calculate the derivatives of �⃗� real

relative to the fit parameters (𝛼𝑖, 𝑔𝑥,𝑖, 𝑔𝑦,𝑖), which are assumed to be independent param-
eters, obtaining:

𝐽BPMroll
𝑘𝑙 = 𝜕𝑉 real

𝑘

𝜕𝛼𝑙

= 𝛿𝑖𝑙
dRBPM (𝛼𝑖)

d𝛼𝑙

GBPM
𝑖 𝑀meas.

𝑖𝑗 , (C.4)

𝐽BPMgain
𝑘𝑙 = 𝜕𝑉 real

𝑘

𝜕𝑔𝑙,𝑢

= 𝛿𝑖𝑙RBPM (𝛼𝑖) 𝑀meas.
𝑖𝑗 , (C.5)

where 𝛿𝑖𝑙 is the Kronecker delta and

dRBPM (𝛼𝑖)
d𝛼𝑖

=
⎡⎣− sin 𝛼𝑖 cos 𝛼𝑖

− cos 𝛼𝑖 − sin 𝛼𝑖

⎤⎦ .
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Due to the sorting used in the ORM that the horizontal measurements are in the
upper blocks and the vertical measurements are in the lower blocks, the transformation
matrices of gains and rolls are reorganized as

RBPM
𝛼 =

⎡⎣ C𝛼 S𝛼

−S𝛼 C𝛼

⎤⎦ ,

dRBPM
𝛼

d𝛼
=
⎡⎣−S𝛼 C𝛼

−C𝛼 −S𝛼

⎤⎦ ,

GBPM =
⎡⎣G𝑥 G𝑦

G𝑥 G𝑦

⎤⎦ ,

formed with diagonal sub-matrices 𝐶𝛼
𝑖𝑖 = cos 𝛼𝑖, 𝑆𝛼

𝑖𝑖 = sin 𝛼𝑖, 𝐺𝑥
𝑖𝑖 = 𝑔𝑖,𝑥, 𝐺𝑦

𝑖𝑖 = 𝑔𝑖,𝑦. The
transformation in this form is very useful to be applied directly in the measured ORM
and to calculate the jacobian matrix elements:

Mreal = RBPM
𝛼 GBPMMmeas., (C.6)

𝐽BPMroll
𝑘𝑙 = 𝛿𝑖𝑙

(︃
dRBPM

𝛼

d𝛼
GBPMMmeas.

)︃
𝑖𝑗

, (C.7)

𝐽BPMgain
𝑘𝑙 = 𝛿𝑖𝑙

(︁
RBPM

𝛼 Mmeas.
)︁

𝑖𝑗
, (C.8)

the index 𝑖 is related to BPM index (rows of ORM) and it is used to be compared with
the index 𝑙 of the jacobian matrix columns. Again, 𝑖 and 𝑗 are converted by vectorization
to obtain the index 𝑘.

For the steering magnets gain the analysis is straightforward. The transformation
is

𝜃𝑢
𝑗,applied = 𝑔corr

𝑗,𝑢 𝜃𝑢
𝑗,real, (C.9)

where the “applied” sub-index is the equivalent for the “measured” in BPMs.

This transformation can be also cast in a matrix form, with diagonal gain matrices.
However, since the kicks are in the denominator of the ORM with 𝑀𝑖𝑗 = Δ𝑢𝑖

Δ𝜃𝑗

, the correct
way to implement the corrector gain transformation in the ORM is by its inverse

Mreal = G−1
corrMmeas.. (C.10)

Since the steering magnet gain was defined by equation (C.9), the diagonal ele-
ments of Gcorr are 𝐺corr

𝑖𝑖 = 1/𝑔𝑖 so the inverse elements are 𝑔𝑖. This is convenient to obtain
the jacobian matrix elements in a linear form, in the same manner that was obtained for
the BPMs gains:

𝐽corr−gain
𝑘𝑙 = 𝛿𝑗𝑙𝑀

meas.
𝑖𝑗 . (C.11)

The index 𝑗 is related to correctors index (columns of ORM) and it is used to
be compared with the index 𝑙 of the jacobian matrix columns. Once again, 𝑖 and 𝑗 are
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converted by vectorization to obtain the index 𝑘. Since the correctors is sorted column-

wise in the ORM, the related gains blocks are organized as Gcorr =
⎡⎣G𝑥 G𝑥

G𝑦 G𝑦

⎤⎦.

If the corrector gain was defined alternatively as 𝜃𝑢
𝑗,real = 𝑔corr

𝑗,𝑢 𝜃𝑢
𝑗,applied, the jacobian

matrix would contain non-linear elements like −1/𝑔2
𝑖 , obtained from the derivative of 1/𝑔𝑖.

The final transformation, containing the BPMs and correctors gains and also the
BPM roll is

Mreal = RBPM
𝛼 GBPMMmeas.G−1

corr. (C.12)

In each iteration of LOCO algorithm, the gains and rolls parameters are updated
and the transformation described in equation (C.12) must be applied.

The matrix multiplication order is important, since the ORM dimension is 2NBPM×
Ncorr, the BPM-related matrices dimensions are 2NBPM×2NBPM and the correctors-related
matrix dimension is Ncorr × Ncorr.
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D Code Validation

In order to check the reliability of the implemented LOCO code and also to develop
an intuition on the method behavior for the Sirius storage ring (before actual applications),
a series of tests were performed. In this appendix these tests and the results obtained are
reported.

D.1 Detecting Distributed Errors

The first test to check the implemented code consists in perturbing the simulated
storage ring model, obtain the corresponding ORM and then trying to determine the
input errors from the fit parameters with LOCO analysis.

It is important to point out that this test should work properly if the errors are
included in the elements that are used as fit parameters in LOCO method. For example, if
gradient errors are added in the sextupoles but only quadrupoles strengths are fitted, the
quadrupoles will be changed to best fit the ORM. Thus, even if the 𝜒2 is reduced, the final
quadrupoles variations will not match the planted gradient errors in the sextupoles, since
these elements are in different positions around the ring, with different phase advances. In
this case, the fitted values must be interpreted only as the gradient changes in quadrupoles
that best explain the perturbed ORM. Clearly this type of compensation should reach
a limit of fitting effectiveness. Therefore, whenever it is possible, the most appropriated
approach is to identify and then to minimize the errors sources not covered by LOCO
and, only after that, apply LOCO analysis to obtain appropriated corrections.

A hundred sets of errors were generated following a random normal distribution
with 3𝜎 cutoff. These errors were included in the simulated model and then the corre-
sponding hundred ORMs were calculated. LOCO analysis were performed for these ORMs,
fitting all the parameters described in Table 3. The std 𝜎 used in the normal distribution
to generate random errors for each parameter are presented in Table 15.

Table 15 – Random errors included in the simulated model (3𝜎 cutoff).

Parameter 𝜎 of distribution Unit
Normal quadrupole gradient 0.1 %

H. and V. BPM gain 2.5 %
H. and V. Corrector gain 5.0 %
Skew quadrupole gradient 10−3 m−1

BPM roll angle 10 mrad
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Table 16 – Differences (normalized by 𝜎) between planted errors and fitted variations
obtained from LOCO analysis for 100 sets of random errors.

Parameter std difference/𝜎 peak-to-valley difference/𝜎
Normal quadrupole gradient 1.1 · 10−2 5.9 · 10−2

H. BPM gain 2.8 · 10−4 1.6 · 10−3

H. Corrector gain 1.0 · 10−4 5.5 · 10−4

V. BPM gain 7.8 · 10−4 3.2 · 10−3

V. Corrector gain 7.9 · 10−4 3.2 · 10−3

Skew quadrupole gradient 4.9 · 10−3 2.3 · 10−2

BPM roll angle 4.7 · 10−3 2.2 · 10−2
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(b) Fitting mismatch versus fitting level.

Figure 32 – Fitting over 100 random ORM obtained from the simulated model.

The goal of this test is to compare the fitted variations determined from LOCO
with the random errors included in the model. The statistics related to the differences
between these two sets of values are presented in Table 16, where the difference was
normalized by the std 𝜎 used to generate the random errors.

From the results in Table 16 it can be seen that for the normal quadrupoles, skew
quadrupoles and BPM roll angles, target and obtained errors normalized by 𝜎 agrees to
within a few percent. For the gains of horizontal correctors and BPM, the difference is a
few parts in ten thousand and for the vertical ones, it is a few parts in a thousand. The
dispersion function was included in the fitting to break the horizontal gains degeneracy,
which explains the fact that the gains determination for the horizontal plane was more
efficient than the obtained in the vertical plane. The average initial 𝜒 for these 100 sets of
random errors was 11.6 µm and after the fitting, the average final 𝜒 was 6.2 nm. Such level
of fitting is only possible because in these tests the ORM was obtained without any noise in
the data and the process is not subjected to measurement errors. For real measurements,
it is desired to achieve a final value for 𝜒 that is close to the BPM accuracy, which with
the current technology is typically from hundreds of nanometers to a few micrometers.
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In Figure 32a the convergence of 𝜒 for the 100 fittings is presented. The maximum
number of iterations was limited to 25. It can be seen that at about 15 iterations 𝜒

already converged for all the 100 cases. Figure 32b shows the relation between the fitting
level, represented by the ratio 𝜒final/𝜒initial, and the fitting mismatch for each realization,
obtained by

√︁∑︀
𝑝 𝑑2

𝑝, where 𝑑𝑝 is the difference between target and fitted errors normalized
by 𝜎 for the parameter 𝑝 covering all the 7 fit parameters used in LOCO runs. The
mismatch in the fitting grows linearly with the fitting level, with a proportionality factor of
about 50. The code would be unreliable if the fitting level was good but the corresponding
mismatch was large. Such cases were not observed in the 100 random realizations.

D.2 Detecting Localized Errors

Detecting single errors is very useful to identify, in a more specific way, malfunc-
tioning elements or a problematic region in the storage ring. A functional diagnostic tool
that provides this localized detection can spare a considerable amount of time in the in-
vestigation of problems that are degrading the machine performance, thus being a helpful
tool for the commissioning stage and regular operation of a synchrotron light source as
well, since installation and maintenance intervention occurs several times during the ma-
chine lifetime. The goal of the tests reported in the present subsection is to check LOCO
ability to identify localized errors on quadrupoles, BPMs and correctors.

D.2.1 Single Gradient

Suppose that amongst random gradient errors in quadrupoles, there is a single
quadrupole with a large deviation from its nominal value. Single quadrupole errors are not
naturally expected, since magnetic measurements are performed before the assembly in
storage ring to guarantee that mechanical and magnetic properties meet the specifications
for all magnets. However, after the magnets assembly some kind of problem in a specific
magnet coils or in its power supply may appear and lead to localized errors.

The following error distribution was generated and applied in Sirius storage ring
model: gaussian random errors in gradient strengths with std 𝜎 = 0.25 % and 2.0 % of
error in the 215th quadrupole. Errors in others parameters were not included. An ORM
was calculated with this perturbed model and it was used as input for LOCO analysis,
including all fit parameters. The results for variations in quadrupoles fitted by LOCO
compared to the target errors are in Figure 33.

From Figure 33 it can be seen that the input errors were accurately determined,
including the single large gradient error. The maximum difference between fitted and
target error for quadrupoles was 1 · 10−8. The final value of 𝜒 in this fitting was very low,
around 1 · 10−6 µm. The variations on the remaining fit were in a much lower level, the
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Figure 33 – Fitted and target quadrupoles variations, including a higher error of 2% in
the 215th quadrupole.

maximum variation of BPM gains and correctors was 3 · 10−6 and for skew quadrupoles
strengths 1 · 10−16 m−1, on the order of computer numeric precision.

It is clear that this level of error determination is only possible for tests in the
simulated model, when the goal ORM was obtained without noise and measurement
errors. Nevertheless, in the limit that these practical limitations are set as low as possible
in real measurements, it would still be possible to identify single errors with reasonable
accuracy.

D.2.2 Single Gain

The same tests were performed with BPMs and correctors gains. Such type of error
in gains may be associated with malfunctioning in BPMs antennas, electrical interference
or software issues. For correctors the outliers in gains may indicate problems in the magnet
coils or in its power supplies. For BPMs, the problems are typically easier to detect since
they can be identified directly from unrealistic position measurements. For correctors,
the effect on the beam produced by localized problems may be more subtle to identify
directly. Measuring the ORM and performing LOCO analysis is usually a good indirect
procedure to detect the aforementioned errors.

Gaussian random errors with std 𝜎 = 10 % were applied both for horizontal and
vertical gains. BPM roll angle errors were included following a gaussian random distri-
bution with std 𝜎 = 1 mrad. The corresponding gains for 7th BPM, CH and CV were
increased by a 1.5 factor. This means that the nominal ORM, after applying the random
gains errors, had the 7th and 167th rows (for the 7th BPM) and 7th and 127th columns (for
the 7th CH and CV) multiplied by 1.5. This altered ORM were set as the goal matrix for
LOCO fitting, where all fit parameters were included again. The fitting results for this
test are shown in Figure 34.

Once again, the input errors were determined precisely and the larger planted gains
were identified, both for BPM and correctors. The maximum difference between fitted and
target error for horizontal gains (BPM and CH) was 0.2 % and for vertical gains (BPM and
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(a) BPM gains and roll angles.
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Figure 34 – Fitted values for BPM gains, roll errors and correctors (CH and CV) gains,
where the 7th BPM, CH and CV gains are greater by a 1.5 factor. Gray ×
represents the target errors.

CV) was 0.1 %. The other parameters were changed again in a lower level, the maximum
variation for quadrupoles was 2 · 10−6 and for skew quadrupoles 4 · 10−9 m−1.
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E LOCO pseudo-algorithm

The pseudo-algorithm for LOCO fitting is presented in this appendix. For the
Python implementation, the GitHub Repository [59] should be consulted.

Algorithm 1: LOCO pseudo-algorithm
Result: Fitted model, 𝜒2 at each step
Get LOCOInput: measured ORM, Δ𝜃𝑥, Δ𝜃𝑦, Δ𝑓rf , 𝜈𝑥, 𝜈𝑦 and 𝜎BPM.
Define LOCOConfig: fit parameters, minimization method, singular values
selection, constraints, weights, 𝑛steps, 𝜒2

min, 𝜒2
step, initial 𝜆, 𝜆min, 𝜆max.

Change model tunes to match the measured values.
Obtain initial model ORM.
Calculate or load LOCO jacobian matrix.
Perform SVD and singular values filtering on jacobian matrix to obtain its
pseudo-inverse.

Calculate initial reference residue vector �⃗�0 and 𝜒2
0.

𝑛← 0
while 𝑛 ≤ 𝑛steps do

With �⃗�0, calculate parameters variations Δ𝑃 .
Apply Δ𝑃 to the model and obtain new ORM.
Calculate new residue vector �⃗� and 𝜒2.
if 𝜒2 > 𝜒2

0 or 𝜒2 < 𝜒2
min then

if 𝜒2 > 𝜒2
min and LM method then

LM Fail ← LM Loop().
if LM Fail then

Stop
end

else
Stop

end
else

if 𝜒2
0 − 𝜒2 < 𝜒2

step then
Stop

else
Update parameters 𝑃 ← 𝑃 + Δ𝑃 .
Update model.
Update references �⃗�0 ← �⃗� and 𝜒2

0 ← 𝜒2.
if LM method then

Decrease 𝜆 and recalculate the jacobian pseudo-inverse
end

end
end
𝑛← 𝑛 + 1

end
Save output.
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The additional loop for the case of Levenberg-Marquardt minimization algorithm
usage in LOCO fitting is presented in the Algorithm 2 below.

Algorithm 2: LM Loop pseudo-algorithm
Result: LM Fail
LM Fail ← True
while 𝜆 > 𝜆min and 𝜆 < 𝜆max do

Increase 𝜆.
Recalculate the jacobian pseudo-inverse.
Recalculate parameters variations Δ𝑃 .
Apply Δ𝑃 to the model and obtain new ORM.
Calculate new residue vector �⃗� and 𝜒2.
if 𝜒2 < 𝜒2

0 then
Update parameters 𝑃 ← 𝑃 + Δ𝑃
Update model
Update references �⃗�0 ← �⃗� and 𝜒2

0 ← 𝜒2

LM Fail ← False.
Stop.

end
end
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F Integral of Beta in Quadrupoles

The tune shift caused by a gradient error distribution 𝑘(𝑠) is, from Eq. (2.36):

Δ𝜈𝑢 = 1
4𝜋

∮︁
𝛽𝑢(𝑠)𝑘(𝑠)d𝑠. (F.1)

A gradient error distributed along a quadrupole can be modeled as

𝑘(𝑠) =

⎧⎪⎨⎪⎩ΔK for 𝑠 ∈ [0, 𝐿],

0 for 𝑠 /∈ [0, 𝐿]
, (F.2)

where 𝐿 is the quadrupole length. The tune shift in this case is

Δ𝜈𝑢 = ΔK
4𝜋

∫︁ 𝐿

0
𝛽𝑢(𝑠)d𝑠. (F.3)

If a quadrupole strength is intentionally changed by the amount Δ𝐾 and the
corresponding tune shift is measured with the beam, the integral of beta function in the
quadrupole can be calculated: ∫︁ 𝐿

0
𝛽𝑢(𝑠)d𝑠 = 4𝜋

Δ𝜈𝑢

ΔK . (F.4)

Typically it is convenient to use the integrate quadrupole strength ΔKL, in this
way, the quantity that is calculated is the integral of beta function along the quadrupole
normalized by the quadrupole length:

1
𝐿

∫︁ 𝐿

0
𝛽𝑢(𝑠)d𝑠 = 4𝜋

Δ𝜈𝑢

ΔKL . (F.5)

In the approximated case when the beta function is considered constant along
the quadrupole, we obtain that 𝛽𝑢(𝑠𝑞) = 4𝜋

Δ𝜈𝑢

ΔKL , where 𝑠𝑞 is the varied quadrupole
longitudinal position.

It is important to notice that considering ΔKL > 0 increases the focusing forces in
the horizontal plane, thus necessarily decreases the focusing forces in the vertical plane.
With this strength change we will obtain Δ𝜈𝑥 > 0 and Δ𝜈𝑦 < 0. Since the beta function
is always positive, in this case the ΔKL sign must be negative for the vertical betatron
function calculation to cancel the Δ𝜈𝑦 sign.

The tune-shift approach is used for the measurement of the integral of betatron
functions in the quadrupoles in a storage ring.

To calculate the same quantities in the storage ring model there are a numerical
and an analytical approach. The numerical approach basically reproduces the measure-
ment procedure performed in the real storage ring. It may include non-linear effects due
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to the gradient variation but it also has the disadvantage of computing time. For ev-
ery quadrupole in the storage ring, the Twiss functions after the gradient variation must
be calculated, depending on the time required to calculate the storage ring Twiss func-
tions and on the number of quadrupoles in the lattice, the calculation time may be an
inconvenient for a practical use of this numerical approach.

It is also possible to calculate an analytical expression for the beta integral along
the quadrupole. Let the Twiss parameters be (𝛽0, 𝛼0, 𝛾0) at the quadrupole entrance. The
beta function in a position 𝑠 along the quadrupole can be propagated as

𝛽(𝑠) = 𝛽0𝐶
2(𝑠)− 2𝛼0𝐶(𝑠)𝑆(𝑠) + 𝛾0𝑆

2(𝑠), (F.6)

where the functions 𝐶(𝑠) and 𝑆(𝑠) are

𝐶(𝑠) =

⎧⎪⎨⎪⎩cos(
√

𝐾𝑠) for 𝐾 > 0,

cosh(
√︁
|𝐾|𝑠) for 𝐾 < 0,

𝑆(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
1√
𝐾

sin(
√

𝐾𝑠) for 𝐾 > 0,

1√
|𝐾|

sinh(
√︁
|𝐾|𝑠) for 𝐾 < 0.

Therefore, calculating the 𝛽(𝑠) integral, we obtain the following results.

For 𝐾 > 0: ∫︁ 𝐿

0
𝛽(𝑠)d𝑠 = 𝐿

2 (𝛽0 + 𝛾0/𝐾)

+
sin

(︁
2
√

𝐾𝐿
)︁

4
√

𝐾
(𝛽0 − 𝛾0/𝐾)

− 𝛼0

𝐾
sin2

(︁√
𝐾
)︁

.

For 𝐾 < 0: ∫︁ 𝐿

0
𝛽(𝑠)d𝑠 = 𝐿

2 (𝛽0 + 𝛾0/𝐾)

+
sinh

(︁
2
√︁
|𝐾|𝐿

)︁
4
√︁
|𝐾|

(𝛽0 − 𝛾0/𝐾)

− 𝛼0

|𝐾|𝐿
sinh2

(︂√︁
|𝐾|

)︂
.

It is worth to mention again that 𝐾 > 0 for the 𝑥 plane corresponds to 𝐾 < 0 for
the 𝑦 plane.

With the analytical approach, the Twiss parameters calculation is required only
once to obtain (𝛽0, 𝛼0, 𝛾0) at the quadrupoles entrances, and with the quadrupole strength
𝐾 and length 𝐿, the integrals are calculated with the above presented formulae.
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