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Abstract

We studied the structure of states that saturate the bounded strong subbaditivity of von

Neumann entropy. This was done by rearranging the form of the measures presented in the

inequality, in such a way that the Petz theorem could be used. After the application of a recovery

map we see that the resulting states require the entanglement of formation for a tripartite and

bipartite case to be equal, or in other words, it requires monogamy of the entanglement of

formation. We also analyzed the implications of the bounded relation into the quantum data

processing inequality. It is seen that a bound is extended from the strong subbaditivity to the

data processing inequality, but with different terms, with further manipulations we show that

the bound can be expressed in terms of the net flow of locally inaccessible information in the

first stage and the net flow on the second stage. Were the difference between the coherent

information relative to two parties in the process of transmitting a state is lower bounded by

the difference on the net flows.

Keywords: Quantum information, Strong subadditivity, quantum channels.



Resumo

Estudamos a estrutura de estados que saturam a desigualdade de subaditividade forte da

entropia de von Neumann. Isto foi feito rearranjando a forma das medidas apresentadas na

desigualdade, de tal maneira que o teorema de Petz pudesse ser utilizado. Após a aplicação

de um mapa de recuperação, vemos que os estados resultantes requerem que o emaranhamento

de formação para um estado tripartido e para um estado bipartido sejam iguais, ou em outras

palavras, exige a existência de monogamia do emaranhamento de formação. Também foram

analisadas as implicações da relação de subaditividade na desigualdade de processamento de

dados quântica. Nós vemos que o limitante existente na relação anterior é estendido à desigual-

dade de processamento de dados, mas com uma forma diferente. Manipulando o limitante nós

conseguimos escreve-lo como sendo a diferença entre o fluxo resultante de informação local-

mente inacessível na primeira fase do processamento de dados e o fluxo resultante no segundo

estágio do processo. Isto mostra que a diferença entre a informação coerente em relação a duas

partes que estão processando um estado é limitada inferiormente pela diferença desses dois

fluxos.

Palavras-chave: Informação quântica, subaditividade forte, canais quânticos.
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Chapter 1

Introduction

Finding a way to send and receive messages is a primal factor for any society, from military

applications, safe bank transfers to simple communication between parts. So it is a logical

step to look for more efficient ways for the transmission of required information. For that it

is necessary to better understand the nature of information and the fundamental laws that its

processing obeys independently of the physical system employed. The first time that a mathe-

matical treatment for the transmission of information was presented was in Claude Shannon’s

work entitled "The Mathematical Theory of Communication" [1]. In this work Shannon defines

what is important in a general theory of information, stating what is a communication system

by its different parts:

• The source for information that will create the message;

• The transmitter that is going to transmit the message using some device;

• The method by which it is going to be sent and

• The receiver of the message.

For Shannon every message could be broken into simple yes or no questions, expressed by

the bit. The other important contribution was a quantity to measure the information produced

or the rate of the information. This measure is known today as the Shannon entropy

H(p1, p2..pn) = −
n

∑

i

pi log pi, (1.0.1)

being function of the probabilities for a certain random variable outcomes. This function was

chosen due to the properties that are expected from a measure of information. It is continuous

in the probabilities; it is a monotonic increasing function in n when p = 1
n
; and in a succession of

events, when one event is broken down into equal probabilities, the entropy H(p1, p2..pn) is the

weighted sum of the Shannon entropy of each value, given by the probabilities. In the recent
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years the interest on the capabilities for communication employing quantum systems grew

larger, giving origin to the field of quantum information science, that encompasses quantum

computation, quantum information theory and others. It is common to refer to Shannon’s

work as the classical part of the field of information. The quantum part also shares similar

elements from the classical part, needing a source for the states that are going to be sent, a

way to sent those, that are referred as quantum channels, channel or simply by maps. Also

in quantum information the agent is not the bit but the quantum bit, or simply the qubit,

with the main difference being that thanks to the superposition principle [2] the coding is not

only represented in terms of yes or no questions but in every possible superposition of them.

The channel or map are superoperators that take the states represented by density matrices

to density matrices. We are not going to give much attention to the classical part, besides for

intuition, since the quantum domain is the main focus of this work. Also, like the classical

part, quantum information has a measure of information, the von Neumann entropy,

S(ρ) = −Trρ log ρ. (1.0.2)

This function has similar properties to the Shannon entropy, but in relation to the density

operator ρ. Just to list a few, it is a concave function, it is nonnegative (were it is equal to zero

only if ρ is a pure state) and is an additive function.

Even though they share various similarities the differences that they hold give rise to unique

phenomena and turn the von Neumann entropy into an interesting measure. A lot of research

was done focusing on the properties of the von Neumann entropy, since those properties are

directly connected with the possibilities in quantum information theory, such as the proofs in

channel capacities [3], finding lower bound on the free energy [4], reconstruction of states [5]

and so on. Many properties were first presented by Delbrück and Molìiere [6] but the one in

particular that drew a great deal of attention, was the property of strong subadditivity. This

relation is an inequality relating the subparts of a tripartite system among themselves and in

relation to the global state. It was elusive for some time, first conjectured in 1968 [39], due to

the difficulty to perform a proof, even though it was easy for the Shannon entropy. It was only

demonstrated to hold for the von Neumann entropy in 1975 [41]. It is not very intuitive at first

sight but the strong subadditivity inequality turned to be very important because it establishes

connections to several other inequalities and results in quantum information theory and it is

even referred to as the only inequality in quantum information theory [9]. Recently with the

result of Omar Fawzi and Renato Renner [7] new interest arose for the conditional quantum

mutual information, which is equivalent to the strong subadditivity inequality.

It was in Hayden et al [8] that they studied the structure of states that would saturate this

important inequality. From the Markov condition for the tripartite state of a system and using

a recovery channel, they could describe the structure of the states that would saturate with
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equality the strong subadditivity. It was later seen that one of the corollaries of the result of

Hayden et. al. is the only known inequality to not come directly from the strong subadditivity.

It is a constrained inequality that is only true when certain conditions are met for any four

part system [9].

In 2011 the strong subadditivity was presented in a different way. Studying the monogamy

relations of Winter et al. [47], Fanchini et al [46] obtained the same relation with the adden-

dum of a possible lower bound for the inequality. This bound was dependent on the balance

of quantum correlations shared between subsystems of a tripartite state, measured by the en-

tanglement of formation and the quantum discord of those subsystems. The two measures are

related to different phenomena: the entanglement of formation is related to the entanglement

on the subsystems; and the quantum discord is associated to the quantumness presented on

the subsystems1. The latter is a measure on how much a bipartite quantum system is affected

by local measurements that can exist even in separable states, fact that is not possible with

entanglement measures. So the possibility of the lower bound depends on the difference of

the quantum correlations that are shared among parts of the subsystems in relation to those

measures. As the entanglement of formation can be greater, equal or less than the quantum

discord, this varies according to the state in question.

In this work it is asked the question: what is the structure of states that is going to saturate

the strong subadditivity given that bound that was achieved? We do that following a similar

reasoning to the work of Hayden et al. making use of a recovery channel after obeying equality

conditions due to a theorem from Dénes Petz [8]. We also analyze the implications of the

bounded relation on the data processing inequality [12]. The data processing inequality states

that during the processing of information, a process that can be characterized by the coding,

sending and decoding of a certain message, will always decrease the quantum correlations that

are carried during the transmission of that message [14, 15].

Now we are going to describe the content of each Chapter: In Chapter 2 we give an overview

of the classical and quantum theory of information. It introduces the Shannon and von Neu-

mann entropies, the conditional entropy, relative entropy and mutual information establishing

the base for the following chapters and results. In Chapter 3 we present the concept of en-

tanglement and quantum discord as a whole and how it is related to the quantum theory of

information. Some important measures of quantum correlations such the entanglement of for-

mation, entanglement cost, distillable entanglement and the context for their definition, shown

in terms of protocols of purification are also described. Chapter 4 is where we show the devel-

opment for the quantum operations formalism, through the trace of the environment after the

dynamics occurred to the description of the Kraus operators. We also introduce in this chapter

the concept of quantum channels and the quantum data processing inequality. Chapter 5 holds

1See however [32]
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the original results that were developed during this work, where we show the strong subad-

ditivity with bounds exploring the structure of states that saturates the inequality. We also

see the implications of this new bounded strong subadditivity in the quantum data processing

inequality. The last chapter is used to conclude this dissertation.
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Chapter 2

Entropies

2.1 Von Neumann Entropy

In order to better understand the von Neumann entropy, as the other entropies, we are always

going to start with its classical part, so we begin talking about the Shannon entropy. This

quantity is the answer for a number of questions, specifically if there is a way of conveying

a message with the shortest possible length of a string on average. More important to us is

that the Shannon entropy measures the information that we gain in learning the value of some

random variable X or analogously, the uncertainty that we have about X prior to learning

its value (also on average). A random variable is different from the normal variables that we

encounter because it does not take one single value but represents a set of different possible

values and each of those have probabilities associated with them. One simple example is a

random event like a coin toss where the possible results are heads or tails, if the coin is fair

each associated probability is 1/2, if not that changes. For a little more sophisticated example

lets suppose that we have a source that transmits messages in form of a random sequence

{x1, .., xn} and associated with every element of this sequence we have a probability distribution

{p1, .., pn}. Then the Shannon entropy of the random variable X that represents our random

sequence is given by

H(X) ≡ −
∑

i

pi log pi, (2.1.1)

where the logarithm is taken in base 2 since the messages will have binary representation and

for convention 0 log 0 ≡ 0. Further let us give values to that sequence, so suppose that we

have four events represented by the sequence {x1, x2, x3, x4} and for each event the respective

probability {1/3, 1/6, 1/4, 1/4}. We wish to send this sequence to another party. One possible

scheme could be
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x1 → 00, x2 → 10, x3 → 01, x4 → 11

so if we send the following message,

x1x2x1x4x3x1,

we would have to send the string

001000110100.

But is that the best possible string? The answer is no, we could use the likelihood of

appearance of each event to shorten our message in a process that is called data compression.

One possible way we could do that is in the following way

x1 → 0, x2 → 111, x3 → 10, x4 → 01,

then our string would be,

0111001100,

which is in fact smaller than the first one. Calculating the expected length of both strings we

see that the expected length of the second string is 1.8 bits as opposed to the first string that

was of 2 bits on average. Here we must notice that although this string is smaller than the first

calculating the Shannon entropy for it gives us a value of ≈ 1.95 which reflects the fact that

this string is not uniquely determined by the encoding that was done turning it not secure. We

should also note that H(X) ≥ 0 and that H(X) is a concave function.

There is a generalization of the Shannon entropy for quantum states and it is called von

Neumann entropy. For a density matrix ρ that lives in a Hilbert space H we have

S(ρ) ≡ −Trρ log ρ, (2.1.2)

where now the density operator ρ takes the place of the probability distribution p. It is easy

to see the relation between the Shannon entropy and the von Neumann entropy, one just need

to choose a base for the density matrix in which the density matrix is diagonal. In this base it

can be written in the form ρ =
∑

i pi |φi〉 〈φi|, then the equation (2.1.2) becomes

S(ρ) = −
∑

i

pi log pi, (2.1.3)

which has the same form of the Shannon entropy.

The interpretation of the von Neumann entropy is very close to that that was given for the
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Shannon entropy. So let us consider two parties, Alice and Bob, each one being in different

laboratories. One of the parties, let us say Alice, can then prepare a state that we are going

to define ρBi according to some probability distribution pi. Before Bob receives the state his

expected density matrix is ρB =
∑

i piρ
B
i , so we see that the uncertainty of Bob is quantified by

the von Neumann entropy S(ρB). Some interesting properties [15] of the von Neumann entropy

are:

• S(ρ) ≥ 0 for any density matrix;

• S(ρ) = 0 only when ρ is pure;

• S(ρ⊗ σ) = S(ρ) + S(σ), the von Neumann entropy is additive;

• S(ρ) is concave, i.e S(
∑

i piρ
B
i ) ≥ ∑

i piS(ρBi ).

As we can have the marginal entropy for one of the systems we also can evaluate the entropy

of a joint state for a density matrix ρAB which lives in a bipartite Hilbert space HAB = HA⊗HB.

For this situation we have

S(ρAB) ≡ −TrρAB log ρAB. (2.1.4)

To get from the the joint entropy of our system to the marginal entropy of a subsystem

it is required to take a partial trace over one of the subsystems. The partial trace is going

to be denoted by a subscript that represents the space where the trace is acting, i.e, S(ρA) =

TrB{S(ρAB)} and ρA = TrB{ρAB}. Another characteristic of the von Neumann entropy is that

for a joint system described by ρAB the entropy is subadditive

S(ρAB) ≤ S(ρA) + S(ρB), (2.1.5)

where the equality is achieved if and only if ρAB = ρA⊗B, meaning that our systems are not

correlated. A useful and surprising property of the joint entropy is that S(ρAB) can be less

than the marginal entropies S(ρA) and S(ρB). This is surprising since the Shannon entropy

(classical entropy) of a joint probability distribution H(X, Y ) is always greater or equal to the

entropy of its marginals H(X) and H(Y ). For the proof we are going to need the conditional

Shannon entropy, a measure that is going to be presented in the next section.

Proof. Knowing that the conditional entropy is non-negative [14] H(X|Y ) ≥ 0, we have by the
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definition of the conditional entropy that

H(X|Y ) = −
∑

x,y

p(x, y) log p(x|y)

= −
∑

x,y

p(x, y) log
p(x, y)

p(y)

= −
∑

x,y

p(x, y)[log p(x, y)− log p(y)]

= −
∑

x,y

p(x, y) log p(x, y) +
∑

y

p(y) log p(y)

= H(X, Y )−H(Y ) ≥ 0, (2.1.6)

thus

H(X, Y ) ≥ H(Y ). (2.1.7)

So one would expect that to hold for the quantum case. In fact if the state ρAB is pure

we have that S(ρAB) = 0 and S(ρA) = S(ρB). This is because of the form of the spectral

decomposition that is taken by the marginal states. If |ρAB〉 (with ρ = |ρ〉 〈ρ|) can be written

as [15]

|ρAB〉 =
∑

i

√
c |xi〉A |yi〉B , (2.1.8)

where the kets |xi〉A and |xi〉B are orthonormal sets of vectors on systems A and B respectively,

then the reduced density matrices ρA and ρB are

ρA =
∑

i

ci |xi〉A 〈xi|A , (2.1.9)

ρB =
∑

i

ci |yi〉B 〈yi|B , (2.1.10)

so the spectral decomposition admits the same eigenvalues. This is a general property of the

joint entropy being respected not only for bipartite systems. We have that for a quadripartite

system where |ρ〉ABCD is pure that:

S(ρA) = S(ρBCD), (2.1.11)

S(ρAB) = S(ρCD), (2.1.12)

and

S(ρABC) = S(ρD). (2.1.13)
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2.1.1 Conditional Entropy

Usually we can have events that depend on the order in which we acquire the information. For

example, if we have a box with a certain number of red and blue balls the probability with

which we take each ball changes the probability for the next ball to be taken. We can describe

the box with red and blue balls using the random variables X and Y respectively, so that our

surprise on discovering the outcome of each measurement - the color of the ball - after each

ball that is taken, on average, is given by the classical conditional entropy

H(X|Y ) =
∑

x

pxH(Y = y), (2.1.14)

or expressing it in a more useful form

H(X|Y ) = H(XY )−H(Y ). (2.1.15)

In the quantum scenario we can also measure the entropy of knowing the values of one of

the subsystems prior to knowing the value of the other part of the system, this measure is

called quantum conditional entropy. There are two distinct shapes for the conditional entropy,

one that is similar to the classical conditional entropy and other that takes into account the

measurements done over the system. Firstly we are going to talk about the second version.

Like we said before the conditional entropy measures the uncertainty that we have about a

state, let us say A, after we learned the value of a second state B 1. There is nothing wrong with

this scenario classically, but when we are dealing with quantum mechanics this statement is

unclear [16] because we first need to establish the set of states B that are going to be measured.

So if we perform a measurement on the subsystem B that can be described by a complete von

Neumann measurement, {ΠB
j } 2 we will have as the result the state

ρA|ΠB
j

=
ΠB
j ρABΠB

j

Tr[ΠB
j ρABΠB

j ]
, (2.1.16)

with the probability being pj = Tr[ΠB
j ρABΠB

j ]. And the states ρA|ΠB
j

are then conditioned to

the result of the measurement done. Then we could define the conditional entropy as

S(ρA|{ΠB
j }) =

∑

j

pjS(ρjA), (2.1.17)

where the S(ρjA) is the information of the system A that we do not possess and the probability

gives the weight of each measurement. The problem with this definition is that there are infinite

1There is a discussion where it is made a connection to the classical conditional entropy and the uncertainty
of the measures and its link with classical discord in [32].

2This way of seeing things is part of a more general view of quantum operations, that is going to be examined
more carefully in Chapter 3.
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ways that we could define the measurement. One solution is to find the best possible set of

operators or, in other words, performing a minimization over all possible measurements, and

in doing so, removing the base dependence.

As said before, the other form is a generalization of the classical conditional entropy for two

random variables X and Y but for the density operators of our system

S(A|B) = S(ρAB)− S(ρB), (2.1.18)

and it is very useful because a lot of properties of the classical conditional entropy also hold

for that form of the quantum version, such as chaining rules, and the fact that conditioning

does not increase entropy [14]. The first departure of the classical theory also arises with

the quantum conditional entropy, the difference being that the quantum conditional entropy

admits negative values [13]. This is a divergence from the classical Shannon theory because

classically for two random variables X and Y the following inequality is true H(XY ) ≥ H(X)

and we can’t get H(X) or H(Y ) greater than the joint Shannon entropy. But this is not true

for the quantum realm; we can have more knowledge about the whole than we could have for

the parts and that is what happens for pure entangled states. In this situation the quantum

conditional entropy will be negative and the fact that is negative is also a sufficient criteria for

non-separability of a state. This fact is so important that the negative form of the quantum

conditional entropy received its own name, the coherent information:

Ic(A〉B) = S(B)− S(AB) = −S(A|B), if S(A|B) < 0. (2.1.19)

This measure first appeared in [12] as a measure of quantum correlations of a state in

various stages of a process, having a similar meaning to the classical mutual information. In

specific the type of quantum correlations that was addressed was the entanglement. Because

of the nature of the coherent information, since it is the negative of the conditional entropy

when the coherent information is positive is signal that the state is entangled, as it was said

before. A more complete explanation of the coherent information will be given in Chapter 3

after introducing quantum channels.

2.1.2 Mutual Information

The quantum mutual information is the standard measure of correlation, this implies both

classical and quantum correlation that the subsystems share. The form used here will be the

one that is analogous to the classical form of the mutual information given by

I(X;Y ) = H(X) +H(Y )−H(XY ). (2.1.20)
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It is immediately seen that this quantity is symmetric on the exchange between X and Y,

after all, we will learn as much about X measuring Y as we would going to discover about Y

measuring X. Replacing each Shannon entropy by the von Neumann entropy we have

I(A;B) = S(ρA) + S(ρB)− S(ρAB). (2.1.21)

It is also relevant to say that the quantum mutual information can be conditioned in obtaining

knowledge of a third system C. So for a tripartite state ρABC the information gained about ρAB

in knowing ρC is represented by the quantum conditional mutual information

I(A;C|B) = S(ρA|ρB) + S(ρC |ρB)− S(ρAC |ρB), (2.1.22)

or expanding the conditional entropies

I(A;C|B) = S(ρAB) + S(ρBC)− S(ρABC)− S(ρB). (2.1.23)

We can note that the last two parts of the mutual information (2.1.21) are in fact the quantum

conditional entropy, replacing it we get

I(A;B) = S(ρA)− S(A|B). (2.1.24)

In the previous section we saw that there are a couple of different ways to represent the con-

ditional entropy due to the strange character of quantum mechanics, that means that we could

write the conditional entropy seen in the mutual information to be measurement dependent.

So from the equation (2.1.17) we have

I = J(ρAB) = S(ρA)−
∑

j

pjS(ρjA). (2.1.25)

This new quantity is called classical correlation (CC) J and it was first presented by [11] as

a good measure for classical correlations because it respects certain expected properties for

its purposes. J = 0 for separable states, as separable states take the form of a product state

ρ = ρA ⊗ ρB they do not carry correlations3. The CC is non-increasing under local operations,

after all local transformations should not increase classical correlations and change in basis

won’t affect J . One example is for the state

ρAB =
∑

x

px |xA〉 〈xA| ⊗ ρxB, (2.1.26)

as it is a separable state there is zero entanglement and the mutual information for this par-

3We are going to see further on that in fact there are separable states that exhibit quantum correlations,
but for completeness the argument will be sustained in this section.
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ticular state is given by

I(A;B) = S(ρB)−
∑

x

pxS(ρxB). (2.1.27)

So as we know it the quantum mutual information measures the total correlations in a state,

for a state that do not have quantum correlations, the only thing that it shows is the classical

part of the correlations and it takes the same form of the CC that it was presented.

2.1.3 Relative Entropy

The quantum mutual information presented in the previous section is nothing but a particular

case of a more general measure, the quantum relative entropy. Being ρ and σ two density

matrices we have that the quantum relative entropy is

S(ρ||σ) = Tr{ρ log ρ− ρ log σ}. (2.1.28)

The relative entropy can be seen as a measure of the distance or the distinguishability between

two states even though it is not a real measure of distance since it does not respect the triangle

inequality and S(ρ||σ) 6= S(σ||ρ), in other words, it is not a symmetric measure. Also the

quantum relative entropy is only well defined if the support4 of ρ is contained in the support

of σ, supp ρ ⊆ kernel σ, otherwise S(ρ||σ) = +∞. This could be understood as follows, think

about a case where we have two states that are almost orthogonal to each other i.e 〈φ| η |φ〉 = α

where α is really small and the quantum states are |φ〉 and η. As the relative entropy is a sort

of distance between states this means that those semi-orthogonal states are as far apart as

they could be without being completely different, this indicates that the relative entropy will

be fairly big and as the difference grows smaller the entropy tends to ∞. Ensuring that the

support of ρ will be a subset of the support of σ takes care of that problem.

We can see that for the special case where ρ = ρAB and σ = ρA ⊗ ρB, where ρAand ρB are

reduced density matrices from ρABthe quantum relative entropy is

S(ρAB||ρA ⊗ ρB) = Tr{ρAB log ρAB − ρAB log ρA ⊗ ρB}
= −TrρAB log ρA − TrρAB log ρB + TrρAB log ρAB

= S(ρA) + S(ρB)− S(ρAB). (2.1.29)

The last line is exactly one of the definitions for the quantum mutual information (2.1.21).

Viewing like this the mutual information would be the difference between a certain bipartite

state ρAB and a separable state ρA ⊗ ρB. But perhaps one of the most important properties

4The support of a function is the vector space spanned by all non-zero values of that function.
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of the quantum relative entropy is that it is always positive, this is expressed in the theorem

below usually known as Klein’s inequality [10].

Theorem 1 (Klein’s inequality). The quantum relative entropy S(ρ||σ) is positive for any two

density operators ρ and σ.

S(ρ||σ) ≥ 0,

with equality if and only if ρ = σ.

Proof 1. We start with two decomposed states ρ =
∑

i pi |i〉 〈i| and σ =
∑

j qj |j〉 〈j| and using

(2.1.28) we have

S(ρ||σ) = Tr
∑

i

pi |i〉 〈i| log(
∑

i′

pi′ |i′〉 〈i′|)− Tr
∑

i

pi |i〉 〈i| log(
∑

j

qj |j〉 〈j|)

= Tr
∑

i

pi |i〉 〈i| (
∑

i′

log pi′ |i′〉 〈i′|)− Tr
∑

i

pi |i〉 〈i| (
∑

j

log qj |j〉 〈j|)

=
∑

i

pi log pi −
∑

ij

pi|〈i|j〉 |2log qj

≥
∑

i

pi log pi −
∑

i

pi log ti

=
∑

i

pi log
pi
ti

(2.1.30)

= −
∑

i

pi log
ti
pi

(2.1.31)

≥ log

[

∑

i

pi
ti
pi

]

= 0, (2.1.32)

where ti =
∑

j|〈i|j〉 |2qj and |〈i|j〉 |2 is taken as one conditional probability of i conditioned to j

and it was used the fact that the logarithmic function is concave log (
∑

x pxqx) ≥
∑

x px log qx.
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Chapter 3

Quantum Operations

3.1 Measurements

In the previous Chapter we used on a few times some notions from measurement theory, without

explaining what we really meant. Here we are going to give a brief overview of it, firstly, let us

consider the measurement postulate of quantum mechanics [15]:

Definition. Quantum measurements are described by a set of operators {Mk} that act on the

state space of the system that is going to be measured. Each index k refers to the possible

outcomes of an experiment, due to the measurement. Then if the state of the quantum system

is |ψ〉 before the measurement the probability that k is the result is given by

pk = 〈ψ|M †
kMk |ψ〉 , (3.1.1)

the state of the system after the measurement is

Mk |ψ〉
√

〈ψ|M †
kMk. |ψ〉

(3.1.2)

where the measurement operator Mk form a complete set.

∑

k

M †
kMk = 1. (3.1.3)

3.1.1 Projective measurements

The measurement postulate of quantum mechanics given in this form is a more general descrip-

tion of measurements than what we need. Those of our interest are two important special cases

that are going to be discussed next, the von Neumann or projective measurements and positive

operator valued measurement or POVM.
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Definition. A projective measurement is characterized by a Hermitian operator M, that has a

spectral decomposition

M =
∑

k

kPk. (3.1.4)

The projector Pk acts on the eigenspace of the Hermitian operator M with eigenvalue k. As it

is said in the measurement postulate of quantum mechanics, the possible results correspond to

the values of k. The probability of getting such an outcome k, given the state of our system |ψ〉
is

pk = 〈ψ|Pk |ψ〉 , (3.1.5)

and the state of the system after that measurement, with outcome k, is

Pk |ψ〉
√

〈ψ|Pk |ψ〉
. (3.1.6)

It is a special case of the measurement postulate in the sense that the operators are orthogo-

nal in relation to each other, or in other words, they follow Mk′Mk = δk′,kMk and as commented

are Hermitian. It is useful to write this formalism in terms of density operators, considering

unitary evolutions for simplicity and for the state |ψ〉

ρ =
∑

i

pi |ψ〉 〈ψ| , (3.1.7)

with the evolution represented by U we would have

ρ′ = UρU †. (3.1.8)

If we are going to perform measurements described by the operators Pk, the probability of

getting k is

pk =
∑

i

pk|ipi

=
∑

i

pi 〈ψi|Pk |ψi〉

=
∑

i

piTr{Pk |ψi〉 〈ψi|}

= Tr{Pkρ}. (3.1.9)

With this we now can ask about the density matrix of the state after the result k. Even getting

the result k, we still have an ensemble of states weighted by the probability pi|k for the indexes

i, with this the density matrix is
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ρk =
∑

i

pi|k |ψi〉k 〈ψi|

=
∑

i

pi|k
Pk |ψi〉 〈ψi|Pk
〈ψi|Pk |ψi〉

=
∑

i

pk|ipi
pk

Pk |ψi〉 〈ψi|Pk
〈ψi|Pk |ψi〉

=
∑

i

pk|ipi
Tr(Pkρ)

Pk |ψi〉 〈ψi|Pk
pk|i

=
∑

i

pi
Pk |ψi〉 〈ψi|Pk

Tr(Pkρ)

=
PkρPk

Tr{Pkρ}
. (3.1.10)

In the third line it was used that pi|k = pipk|i
pk

, on the fourth line the equation (3.1.9) and that

pk|i = 〈ψi|Pk |ψi〉.

3.1.2 POVM

Projective measurements are useful as they give the post-measurement state, but it is not

always what we want, need or even can know the post-measurement state. Also the projective

measurements can be done innumerous times, and if for the first time the outcome was k, for

next it will be k and so on. In quantum information theory there are a lot o processes that

do not share this quality as the transmision of classical information through quantum channels

[14] and the optimal way to distinguish quantum states [15]. For those and other instances it

is used the formalism of POVM, we can define

Fk ≡M †
kMk. (3.1.11)

This is a complete set of operators {Fk}

∑

k

Fk = 1, (3.1.12)

and positive,

Fk ≥ 0. (3.1.13)

Also the probability of a certain outcome is going to be

pk = Tr{Fkρ}, (3.1.14)
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where ρ represents some mixed state. But this set is not necessarily orthogonal (i.e. in general

Tr{FkFk′} 6= 0) this is the only thing that really differs in terms of the properties between the

von Neumann measurements, or the "normal" view of measurements, and the POVM formalism.

It is interesting that the POVM formalism is associated to that of quantum operations being in

fact a precursor of what is going to be shown next. The part of quantum operations, in general,

appears because in nature we rarely will have a system that is isolated from the rest, the

environment. Usually some kind of interaction will occur and that interaction is represented by

noise. Knowing how to deal with the noise present in operations is essential to achieve reliable

quantum processing systems. And for that we need the formalism of quantum operations, or

more specifically for our purposes the formalism of quantum channels.

3.2 Classical Case

Before we talk about the quantum representation of certain processes is interesting to introduce

the classical part, usually referred as Markov processes.

3.2.1 Markov Processes

Let us start with the definition of a stochastic process:

Definition. A stochastic process is a family of functions f(X, t) where each function depends

on two variables X and t and X is a random variable and t ∈ IR.

There are two ways of using stochastic processes. Those processes can be viewed as a family of

realizations f(t) -where the variable is the time- or a family of random variables f(X) -where

each event is a variable- [23]. We also can have two types of stochastic processes

• Purely Random Processes;

in which each value that the function f(t) may assume is independent from the other real-

izations. That means that if you have a certain probability distribution p(x1, .., xn; t1, ..tn)

them

p(x1, .., xn; t1, ..tn) = p(x1, t1)p(x2, t2)...p(xn, tn), (3.2.1)

or they can be

• Markov Processes;

In that case the probability distribution will be

p(xn, tn|x1, .., xn−1; t1, ..tn−1) = p(xn, tn|xn−1, tn−1), (3.2.2)
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equation like (3.2.3)

ρ′ = E(ρ). (3.3.1)

There are two different views that in essence are equivalent. The first one is a little more

intuitive and the other a little more mathematical, but also more general.

3.3.1 Tracing the Environment

Imagine that we have a system represented by a density matrix ρA and some kind of interaction

occurs between our state and the environment so that we can consider the initial state as a

product state ρA ⊗ ρE, where ρE represents the state of the environment. We can represent

the interaction between our state and the environment with an operator U , that belongs to

the Hilbert space HA ⊗HE, that act on the product state. After this we want to know what

happened with our state, not what happened with the product state, that means that the

environment part is irrelevant to us. Not being of interest we can eliminate the environment.

That is done by performing a trace operation on the extraneous part. The product of those

manipulations are our final state, Figure 3.2. In mathematical terms this will look like

E(ρ) = TrE
[

U(ρ⊗ ρE)U †
]

. (3.3.2)

This describes the dynamics that are occurring on the system, which not necessarily is

unitary. It is good to clarify that the state ρE, the environment, is composed of the rest of the

universe besides our system in a way that together they are a closed system. As it is seeing

above we do not really care about the mechanism of the interaction, we only mind about the

resulting state and that is enough for this representation. Another remark is that a sufficient

condition that the operation (3.3.2) needs to characterize the transformation of the initial state

to the output state, is that given that the initial state lives in a Hilbert space with dimension

n the environment must live in a Hilbert space with no more than n2 dimensions [15]. We

can see an example [15] of this, let us say that our system is one qubit and the environment

is initially |φE〉 = |0〉 considering that the operator that acts on the system takes the form of

U = P0 ⊗ 1 + P1 ⊗X. This form is known also to be the representation of a control not gate

(CNOT) which acts on a two qubit system by flipping the second qubit if the first qubit is in

the state |1〉. Them by (3.3.2) we would have
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3.3.2 Kraus Operators

We can show that the relation presented above to deal with noise evolution of quantum systems

is equivalent to another relation, called operator sum representation or Kraus representation.

Starting from the last relationship

ρ′ = TrE
[

U(ρ⊗ ρE)U †
]

, (3.3.6)

and taking the partial trace

ρ′ =
∑

ǫ

[

〈ǫ|U(ρ⊗ ρE)U † |ǫ〉
]

=
∑

ǫ

[

〈ǫ|U(ρ⊗ |0〉 〈0|)U † |ǫ〉
]

=
∑

ǫ

[

〈ǫ|U |0〉 ρ 〈0|U † |ǫ〉
]

=
∑

ǫ

MǫρM
†
ǫ . (3.3.7)

Where Mǫ = 〈ǫ|U |0〉 are known as Kraus operators. Since the operator U is unitary, UU † = 1,

the set of Kraus operators are complete

∑

ǫ

MM † =
∑

ǫ

〈ǫ|U |0〉 〈0|U † |ǫ〉

= 〈0|U †U |0〉 = 1. (3.3.8)

Equation (3.3.7) defines a map, a linear map, that takes density matrices to density matrices.

The dynamics presented above are what is called trace preserving because of the property of

equation (3.3.8), a broader requirement would be that the set of operators can be smaller than

unity

∑

ǫ

MM † ≤ 1, (3.3.9)

and we say that those operators are non-trace preserving, that happens in instances that addi-

tional knowledge is gained from the measurement apparatus [24]. A usual nomenclature used

in quantum information theory to differentiate those two sets are quantum operations for those

that do not preserve trace and quantum channels for those that do preserve the trace. Apart

from that both are completely positive. Positivity is a characteristic that every map should

have, this guarantees that the output E(ρ) is going to be a positive operator when its input ρ

is also a positive operator. This ensures that the map is always going to take density matrices
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to density matrices. Completely positive maps reflect the fact that a map of the form (1i⊗E)ρ

for any k that is finite, where HA ⊗HB and 1i lives in HB and E lives in HA is going to be a

positive operator if the input ρ is a positive operator. This requirement for a quantum channel

to be completely positive comes from the fact that if we have a density matrix on a bipartite

system HA⊗HB and for some reason the system HA evolves while HB does not, then we expect

that the channel take the initial density matrix to a final density matrix.

As our interest lies in quantum channels we are going to delve further on completely positive

trace preserving (CPTP) maps.

3.4 Quantum Channels

Quantum channels are used to transmit information among parties, with this information being

coded by quantum or classical ways. Also they represent the most general representation of

the evolution of a quantum state. The equation presented earlier is an example of a quantum

channel

E(ρ) = TrE
[

U(ρ⊗ ρE)U †
]

. (3.4.1)

From this equation we can see that a trace preserving quantum operation can always be un-

derstood in terms of a unitary evolution where the system interacts with an environment. It

is reasonable to ask if something happens with the information that is transmitted through a

channel and this will depend on what type of channel is going to be used. More specifically it

will depend on what kind of operation that it is going to perform. Two canonical examples are

the bit flip and the phase flip channels, the bit flip is represented by the operators, respectively.

E0 =
√
p





1 0

0 1



 ,

E1 =
√

1− p




0 1

1 0



 .

As a result of those operators the y axis and z axis of the representation of the density operator

of our system in a Bloch Sphere are compressed while the x axis is left as it is. The phase flip

is represented by

E0 =
√
p





1 0

0 1



 ,

E1 =
√

1− p




1 0

0 −1



 .
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represented by a encoding some message in his part of the state. After that the state is sent

to the second stage of the processing, where it is going to interact with another environment

E2, this part can be the decoding of the message. In essence the inequality (3.4.3) shows that

processing our quantum system will always decrease quantum correlations. It is good to note

that the initial state shared between Alice and Bob is pure and in each stage the evolution of the

state is unitary, with environments initially in pure states. Thanks to that we can assure that

in each stage the state is pure, this fact is important to obtain the quantum data processing

inequality as it is going to be important in Chapter 5 where we are going to discuss our results.
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Chapter 4

Quantum correlation

4.1 What is entanglement

A pure bipartite state |φAB〉 living in HAB is said to be separable, if it can be written as a

product state of pure states |φA〉 and |φB〉 living in HA and HB respectively

|φAB〉 = |φA〉 ⊗ |φB〉 . (4.1.1)

Of course this definition can be extended for multipartite mixed states, so in a more general

fashion, for a quantum state ρ that lives in H =
⊗N

j=1 Hj and for each Hj is associated a

sequence of density operators ρNj for each N and each j and with a sequence of probabilities pj,

we have that

ρ =
k

∑

i=0

pi(ρ
1
i ⊗ ρ2

i ⊗ ..⊗ ρN−1
i ⊗ ρNi ). (4.1.2)

Any state that cannot be expressed in the same manner is called entangled [18]. Entanglement

reflects a purely quantum phenomena, in other words, an entangled state reflects nonclassical

correlations that are shared between two systems A and B. Examples of entangled states are

the Bell states

|φ+〉 =
1√
2

(|00〉+ |11〉), (4.1.3)

|φ−〉 =
1√
2

(|00〉 − |11〉), (4.1.4)

|ψ+〉 =
1√
2

(|01〉+ |10〉), (4.1.5)
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|ψ−〉 =
1√
2

(|01〉 − |10〉). (4.1.6)

The Bell states form a family of mutually orthogonal states and each one of those are

maximally entangled. Maximally entangled means that if those states represent the spin of a

particle measuring the spin in any given axis will give a random outcome, meaning that it is

equally likely to obtain a component up as it is to obtain the down component. It is readily

seen that those states are entangled for our incapability to decompose them in product states.

If the have two states represented by

α1 |0〉+ α2 |0〉 (4.1.7)

and

β1 |1〉+ β2 |1〉 , (4.1.8)

the tensor product of both is going to depend upon the product of the α and β coefficients

α1β1 |00〉+ α1β2 |01〉+ α2β1 |10〉+ α2β2 |11〉 , (4.1.9)

states like the Bell states would require some of the cross products to be zero while the other

not, so we can not guarantee that |α1|+|α2|= 1 while |β1|+|β2|= 1.

With product states we can always make a measurement in a certain fashion that if we

are describing a measure by the operator PAB = PA ⊗ PB the result is that each part of the

operator in the product state is only going to act on the state that lives in the respective

Hilbert space (i.e if P |x〉 = |y〉 then PA |x〉A ⊗ |x〉B = |y〉 ⊗ |x〉B). So we can see each state

separately of each other. That does not mean that they cannot be correlated with each other,

but for entanglement this correlation is different. For entangled states like the Bell states every

measure done in one part of the state is going to affect the other part of the state, but this effect

on the other part cannot be explained by classical ways. Any kind of correlation that cannot

be described by just classical probability theory will then be pertained as quantum correlation.

It is not always simple to check if a certain state is or is not separable and for that there exists

separability tests such as the Peres–Horodecki criterion [19, 20].

It is of interest within quantum information to quantify entanglement and there are many

different forms of doing that. Each of them has an operational meaning since entanglement

is viewed as a resource to be used in several protocols. For each measure of entanglement it

is demanded that they satisfy certain properties, one important property is that entanglement

between two systems cannot be increased without quantum interactions. If there are two

parties and they are separated physically the entanglement they share cannot increase even if

they are allowed to communicate classically (e.g. via telephone), this scenario have a name





Chapter 4. Quantum correlation 37

for each index they are going to create n pure states |φi〉 weighted by the probability of those.

By the same reasoning used before they will use npiS(φi) singlets. In the beginning it was said

that the objective was to obtain a final mixed state, so any knowledge about the state must be

erased. This is done by "forgetting" the indexes. Then the number of singlets used must take

into account that the pure states could have any of the indexes so

Number of Singlets =
N

∑

i

npiS(φi)

But as commented in Chapter 2, quantum states can be decomposed in several ways, so

the number of singlets could in principle change for each decomposition. This is not a desired

characteristic for a measure of entanglement. The solution is to perform a minimization over

all pure state ensembles, in this way the entanglement of formation is defined as the conversion

rate between the number of singlets used m and the number of singlets obtained n to perform

this conversion of quantum states

Ef (ρAB) = min
N

∑

i

piS(φi). (4.1.11)

4.1.2 Entanglement Cost

The motivation behind the entanglement cost is the same that was presented for the entan-

glement of formation. We wish to convert m Φ+ initial states into ρ n mixed final states by

applying a certain LOOC operation defined by Λ. For those large numbers m and n the ratio

of conversion will be r = m
n

, so the largest ratio possible will give the entanglement content

of the two states. This processing can be done considering perfect transformations that would

be represented by re this restriction is very demanding, although interesting results can be ob-

tained by studying this case. So it is better to consider non perfect transformation and demand

that in the asymptotic limit when n → ∞ they become precise, in such a way that the errors

can be neglected. The rate r will be called achievable if for the conversion of those ρ⊗n initial

states, that will reach a final state, the end state is very close to the desired final state for large

m. In this case the entanglement cost is

EC(ρ) = inf
{

r : lim
n→∞

(

inf
Λ

Tr|ρ⊗n − Λ(Φ+
2rn)|

)

= 0
}

, (4.1.12)

where it is used the trace norm distance as a measure of difference between both states i.e.

D(α, β) = Tr|α − β|. The relation between entanglement of formation and the entanglement

cost was established in [21] where it was shown that the entanglement cost is equal to the
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regularized version of the entanglement of formation

EC = E∞f = lim
n→∞

Ef
n
. (4.1.13)

This is connected with the problem of additivity of the entanglement of formation. For a long

time it was thought that this measure was additive i.e E(σ⊗n) = nE(σ) although a proof

was not known, if turned out to be true in general, it would imply that the entanglement of

formation is equal to the entanglement cost. But in [22] was proved using a counterexample

that in fact this conjecture was not true. The entanglement cost automatically, by being the

regularized version of the entanglement of formation, satisfies the additivity criteria. In fact the

regularization of various measures is used as an artifact to solve the problems with additivity

as with some others "problems".

4.1.3 Distillable Entanglement

It is feasible to ask about the reverse problem considered for the entanglement of formation and

the entanglement cost. In other words, given n mixed initial states (the final states from the

previous case) is it possible to get m pure maximally entangled states being this conversion rate

arbitrarily good in the asymptotic limit? The measure that gives this rate is called distillable

entanglement [25]

ED(ρ) = inf
{

r : lim
n→∞

(

inf
Λ

Tr|Λ(ρ⊗n)− Φ+
2rn|

)

= 0
}

. (4.1.14)

Again the trace norm distance is used, and it is easy to see the similarity between both defini-

tions. Of course as it is for the entanglement of formation and entanglement cost this measure

is equal to the von Neumann entropy for pure states [26]. Also, it is known that the distill-

able entanglement is going to be less or equal to the entanglement cost EC ≥ ED, revealing

some kind of irreversibility in processes that convert ebits to mixed states and mixed states

to ebits [27]. The process that can achieve the result of converting mixed states into pure

maximally entangled states is called entanglement distillation, entanglement concentration or

even entanglement purification protocols [28].

4.1.4 Purification protocol

The first purification protocol was presented in [29] where they propose a protocol that uses

the four Bell states (4.1.3) as basis in a LOCC protocol. In this protocol two experimenters

Alice and Bob start by converting a bipartite mixed state ρ into a Werner state [30]. Given

that a bipartite state with dimensions d × d, a Werner state is a state that is invariant under
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unitary operations of the kind U ⊗ U . The transformation in done applying random bilateral

rotations composed by the operators I, Bx, By and Bz resulting in

WF = F |ψ−〉 〈ψ−|+ 1− F
3

(

|ψ+〉 〈ψ+|+ |φ−〉 〈φ−|+ |φ+〉 〈φ+|
)

. (4.1.15)

The effects of the bilateral rotation on each Bell state is represented on Table 4.1. On the above

state we have F = 〈ψ−| ρ |ψ−〉 as the fidelity of the state in respect to the singlet state. This

means that for a fidelity close to one F ≈ 1 the state in question is going to be very close to

the singlet state. This vision of fidelity is general and it is used to see the proximity of different

states in comparison with each other. For example if we had F = 1
3

the state would read

W 1

3

=
1

3
|ψ−〉 〈ψ−|+ 2

9

(

|ψ+〉 〈ψ+|+ |φ−〉 〈φ−|+ |φ+〉 〈φ+|
)

, (4.1.16)

meaning that this Werner state can be regarded as a mixture of 1
3

of a singlet state and 2
3

of a

triplet state, a classical mixture. We could say that the Werner state is different from the initial

state used and consequently this process would not be valid. But as the singlet is invariant

under bilateral rotations and the Werner state is symmetric the fidelity of both states is the

same. Also for two different mixed states if they can be represented by the same density matrix

they are also physically identical, since if we measure a mixed state σ in a orthonormal basis

|χ〉 the outcome will be |χ〉 with probability 〈χ|σ |χ〉.

Table 4.1: Bilateral rotations
Source Bx By Bz

ψ+ → φ+ φ− ψ+

φ− → φ− ψ+ φ+

ψ− → ψ− ψ− ψ−

φ+ → ψ+ φ+ φ−

Besides the Bilateral Rotation or π/2 rotations other operation are used on this purification

protocol. Unilateral Pauli Rotations or rotation of π radians that are represent by the Pauli

matrices (σx, σy, σz) are used too, their action is shown on Table 4.2. And Bilateral XOR

operations Table 4.3, this operation is a controlled NOT gate that is applied bilaterally by

both parts in the protocol. Using a source state depending on its spin orientation the chosen

target state is going to have its spin flipped. And it is bilateral because it is going to operate

in two pairs shared between the two members Alice and Bob, where one of the parts (Alice)

can act upon spins 1 and 3 and the second part (Bob) on spins 2 and 4. As an example if we

have a source state |ψ−〉 and the target state |φ+〉 like |ψ−〉 |φ+〉, applying the Bilateral XOR

(BXOR) operation will proceed:
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BXOR[|ψ−〉 |φ+〉] =
1

2
BXOR(|0〉 |1〉 − |1〉 |0〉)(|0〉 |0〉+ |1〉 |1〉)

=
1

2
BXOR(|0〉 |1〉 |0〉 |0〉+ |0〉 |1〉 |1〉 |1〉 − |1〉 |0〉 |0〉 |0〉 − |1〉 |0〉 |1〉 |1〉)

=
1

2
(|0〉 |1〉 |0〉 |1〉+ |0〉 |1〉 |1〉 |0〉 − |1〉 |0〉 |1〉 |0〉 − |1〉 |0〉 |0〉 |1〉)

=
1

2
(|0〉 |1〉 − |1〉 |0〉)(|0〉 |1〉+ |1〉 |0〉)

= |ψ−〉 |ψ+〉 . (4.1.17)

Recalling that the spin 1 will only act on spin 3 and spin 2 only on spin 4. Our two experimenters

Alice and Bob will also measure their system along the z axis. The utility of performing this

measurement on this axis is because it allows Alice and Bob to differentiate between the states

ψ and φ. So it follows that they first perform a unilateral rotation along the y axis on two pairs

in accord with the Table 4.2. This will convert any ψ− states into φ+, after that a BXOR will

be performed on the φ+ states followed by local measurements on the z axis of the target pair.

If this results in parallel spin

Table 4.2: Unilateral Pauli rotations
Source σx σy σz

ψ+ → φ+ φ− ψ−

φ− → ψ− ψ+ φ+

ψ− → φ− φ+ ψ+

φ+ → ψ+ ψ− φ−

Table 4.3: Action of the bilateral XOR rotations according to the source and target states

Source Target Source after Target after

ψ
+

− ψ+ → ψ
+

− ψ+

φ
+

− ψ+ → φ
+

− φ+

φ
+

− ψ− → φ
−

+ φ−

ψ
+

− ψ− → ψ
−

+ ψ−

ψ
+

− φ+ → ψ
+

− φ+

φ
+

− φ+ → φ
+

− ψ+

φ
+

− φ− → φ
−

+ ψs

ψ
+

− φ− → ψ
−

+ φ−

it means that the states are φ+ states. Being that true, Alice or Bob, depending on which hold

the source and target pair, can send a message by classical means to the other party informing
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the result. If they are φ+ states the source pair is kept if not it is going to be discarded, because

it is a φ state. Originally this was done because the state φ+ is invariant under BXOR when

used as source or target, and being invariant makes the calculations easier. So if the state was

kept, another Pauli rotation σy would be perform to convert the φ+ to a ψ−, them this singlet

would be made symmetric by bilateral rotations. This process alone guarantees that if F > 1
2

then F ′ > F and the fidelity of the final state equal to

F ′ =
F 2 + 1

9
(1− F )2

F 2 + 2
3
F (1− F ) + 5

9
(1− F )2

. (4.1.18)

At that point this initial procedure does not give a significant yield in the asymptotic limit,

but if after getting those prepurified states φ+ and start a BXOR test the yield can be assured.

This test works like a parity test to distinguish the states and find the ψ states. So the protocol

consists of applying the BXOR operation on part of the source states that weren’t transformed

by the previous steps to find every ψ states, them by them performing unilateral rotations σy

Alice and Bob transform all ψ to φ states. Notice that they do not know if the states are
+−

but as the former states are all related to the later states by those rotations we can guarantee

to have only φ
+

− after that. But it is desired to obtain only φ+ so the next step is to find

those states among the φ
+

−, applying Bilateral rotations By on this set will change every φ−

to ψ+ but won’t change the φ+ states. Finally the ψ+ are found by doing a BXOR test and

transformed into φ+ by σx rotations. The yield obviously is given by the ratio of initial and

final states r = m
n

. Since them a lot of other purification protocols have been made like the

One way hashing protocol or more general protocols [31].

4.2 Quantum Discord

In Chapter 2 we discussed about two measures of correlations. The quantum mutual information

would represent the total correlations of a certain bipartite system and the classical correlations,

like the name suggest, would be the classical correlations of a certain system when you extract

the information due to measurements on part of the system. As it was mentioned those two

measures are different in general and the difference between those two ways of writing the mutual

information is a measure known as Quantum Discord (QD) [34]. For a bipartite quantum system

HAB

δ(ρ←AB) = I(ρAB)− J(ρ←AB). (4.2.1)

The quantum discord is considered a pure quantum mechanical quantity and defines the quan-

tumness present on a system, or the total quantum correlations that exist on that system, the

← indicates the direction of the operation so that in the equation above B is performing the
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measurements. The later definition of discord is straightforward since the quantum mutual

information quantifies the total correlations on a bipartite system and the classical correlation

the total classical correlations on the same system. Taking the difference must result on the

quantum correlations that are present. As the shape of the state depends on the base that we

choose to take the measurement that quantity can give different values for different decompo-

sitions, so we are always concerned with the set of operators {ΠB
i } that are going to minimize

the discord

δ(ρ←AB) = min
ΠB

i

[I(ρAB)− J(ρ←AB)]. (4.2.2)

This concern open up the second interpretation for discord, that discord represents how affected

by measurements one state is, so doing the minimization guarantees to find the measurement

that is going to disturb the least the chosen state but at the same time is capable of extracting

information from it.

We can remember that entanglement is also a measure of the quantum type present on

nonseparable states. Quantum Discord on the other hand differs from entanglement on that

aspect because even separable states can manifest discord. An example is given on the original

paper from Harold Ollivier and Wojciech H. Zurek [34], for the Werner state

ρ = z |ψ−〉 〈ψ−|+ 1− z
4

1, (4.2.3)

with 0 ≤ z ≤ 1. In Figure 4.2 is shown a reproduction of the behavior of the quantum discord

for the Werner state above varying the parameter z. It is know that for that specific Werner

state its separability depends on the value of the parameter z. We can see that for values

smaller than z = 1
3

the state is separable and for values greater than z = 1
3

the state is not

separable, or in other words, entangled. It is clearly shown that, even thought being smaller

in the region corresponding to the separable Werner state than it is for nonseparable part, the

state still exhibit discord for both regimes of the Werner state, that is separated by the vertical

dotted line. It is good to notice that for this state discord is not going to depend on the basis

of measurement since the Werner state used is invariant under rotations.

We will present a few properties of discord that are worth of mentioning, the first one is

that discord is nonnegative

δ(ρ←AB) ≥ 0. (4.2.4)

This follows from the fact that [34]

∑

i

piS(ρiB) ≥ S(ρAB)− S(ρB). (4.2.5)
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ρǫBC = ΠǫρBCΠǫ =
∑

i,j

ρǫij |Fǫi〉 〈Fǫj| ⊗ |Hǫi〉 〈Hǫj|

and

ρAB =
∑

ǫ,i

ρǫjqǫ ⊗ |Fǫi〉 〈Fǫi|

By undoing the measurements we get

ρAB =
∑

ǫ

qǫρA|ǫ ⊗ ρǫB

so we them diagonalize ρǫB and relabel the indices

ρAB =
∑

i

piρA|i ⊗ |λi〉 〈λi| (4.2.6)

In [37] Vedral et. al. proved that this last relation can be further generalized by showing

that the condition (4.2.6) can be expressed as

L
∑

n=1

cn(
∑

k

ΠkSnΠk)⊗ Fn =
L

∑

n=1

cnSn ⊗ Fn, (4.2.7)

with Sn =
∑

n′ Unn′An′ and Fm =
∑

m′ Wmm′Bm′ . So they write the state ρ in a new basis

where: it assumes the form ρ =
∑L
n=1 cnSn⊗Fn; U and W are orthogonal square matrices; and

n = 1...d2
A and m = 1...d2

B, being d2
A the dimension of U and d2

B the dimension of W . With all

this the condition (4.2.7) is obtained, and it is equivalent to

∑

k

ΠkSnΠk = Sn, n = 1...L. (4.2.8)

As the set {Sn} have eigenbasis defined by {Πk}. The condition δ(ρ←AB) = 0 happens if and

only if

[Sn, Sm] = 0, n,m = 1...L. (4.2.9)

The two last things that are good to mention is that quantum discord can be larger, equal

or smaller than the entanglement of formation [36]; even though there is no entanglement if

there is zero discord.

Usually in the classical case the discord is going to be zero because there is no difference on

the conditional information as it is usually written and taken into account in measurements.

This means that it is accepted that classical systems are not vastly affected by measurements

on one’s system. So how Bob would choose to measure his part of a bipartite system shared
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with Alice, in principle should not affect greatly the amount of information that Alice could

obtain from her part of the system conditioned to Bob’s part. But this is not generally true

since we cannot say that all possible measurements that Bob can perform are perfect, it is

possible to take into account imperfect measurements due to noise, creating a classical discord

[32].

4.3 Locally Inaccessible Information

There is yet another way to think about the quantum discord. Depending on the choice of basis

that we could choose, the amount of information extracted from a system can vary. Even when

the choice of basis is really good it is possible to not being able to access all the information

shared between subsystems. The measure used for that is the quantum mutual information.

So we see that there are different kinds of information that are locally accessible for each party

and locally inaccessible, were both are present on the mutual information. The thing is that

the classical correlation for its character is a measure that represents the locally accessible

information present in a subsystem. It is straightforward to see that the quantum discord

must them be the amount of locally inaccessible information (LII) from the subsystem that is

performing the measurement. For

δ(ρ←AB) = min
ΠB

i

[I(ρAB)− J(ρ←AB)], (4.3.1)

or even rephrasing in terms of the conditional entropies the discord is

δ(ρ←AB) = S(ρAB|{ΠB
j })− S(A|B). (4.3.2)

It is easy to see the if all information about A is locally accessible through measurements

by B the conditional entropies are going to be equal. The less that the system is disturbed by

this measurement the smaller the discord is corroborating with the interpretation given before.

The measurements do not need to be done only by one side, this could be done by the

opposite side

δ(ρ←BA) = min
ΠA

i

[I(ρBA)− J(ρ←BA)] (4.3.3)

But the discord is not a symmetric function δ(ρ←AB) 6= δ(ρ←BA) and we see that the information

that is not accessible through local measurements from A is different from the inaccessible

information from B’s point of view. Given a tripartite system HABE it is possible to perform

sequential measurements, Figure 4.3, in a closed form i.e. E → B → A or in the opposite
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Chapter 5

Bounded Strong Subadditivity

5.1 From weak monotonicity to b-SSA

Among all those properties of the von Neumann entropy there is one in particular that is very

important, it relates subsystem in a tripartite system characterized by the state ρABC . The

strong subadditive of the von Neumann entropy (SSA):

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (5.1.1)

Some further understanding of the meaning of this inequality can come if we rewrite it in terms

of the conditional entropies

S(A|B) ≥ S(A|BC), (5.1.2)

we see that the uncertainty about system A is not decreased by knowing the system C if we

already had knowledge about the system B [17]. Its importance comes from the fact that we

can get all quantum information inequalities from it. So its applications go from the Holevo

bound [38] to the quantum data processing inequality, and channel capacities. Until now there

is only one inequality not been related to it [9]. The SSA was conjectured first in 1968 in [39]

a few years before the appearance of its actual proof by Lieb and Ruskai in 1973 [40] and [41].

The proof relied on a theorem proved by Lieb [42] about the concavity of functions of hermitian

matrices. There are various ways of demonstrating the strong subadditivity property of the

von Neumann entropy, one of those is by using the fact that the quantum relative entropy is

monotone under quantum operations. This is also known as Ulhmann’s theorem as follows

Theorem 3. For any two states ρAB and σAB the quantum relative entropy S(ρAB||σAB) can

only decrease under the application of a noisy map Γ

S(ρ||σ) ≥ S(Γρ||Γσ). (5.1.3)
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But we are not going to take this path for the proof since originally the monotonicity of

the quantum relative entropy was proven at a later point than the strong subadditivity, so we

are going to preserve the chronological order and give the original proof. Starting with the

concavity theorem of Lieb, as it is an important step for the proof of the SSA.

Theorem 4. For any three R,S,T > 0

TrelogR−logS+log T ≤ Tr
∫ ∞

0
R

1

S + x1
T

1

S + x1
dx,

where it is not necessary that R,S and T commute, for the equality condition to happen.

Proof 3. We know that for any hermitian matrix K the following function

F (A) = TreK+logA, (5.1.4)

is concave in A > 0. But if F(A) is concave and homogeneous (i.e. F(xA)=xF(A)) we have

that

lim
x→0

F (A+ xB)− F (A)

x
≥ F (B), (5.1.5)

making the substitutions A = S, B=T e K = log R - log S we get

TrelogR−logS+log T ≤ lim
x→0

TrelogR−logS+log(S+xT ) − TrR

x
. (5.1.6)

For simplicity let us define

Z1 ≡ log(S + xT )− log(S) =
∫ ∞

0

1

S + u1
xT

1

S + xT + u1
du. (5.1.7)

Then we will end up with

TrelogR−logS+log T ≤ lim
x→0

TrelogR+Z1 − TrR

x
. (5.1.8)

Separating the exponential and doing a Taylor expansion, we see that

(5.1.9 )TrelogR+Z1 = TrR + TrR
∫ ∞

0

1

S + u1
xT

1

S + u1
du,

therefore

TrelogR−logS+logT ≤ Tr
∫ ∞

0
R

1

S + u1
T

1

S + u1
du (5.1.10)

This theorem is the right expansion for a tripartite system of the Golden-Thompson-

Symanzik inequality [43–45].

TreA+B ≤ TreAeB, (5.1.11)
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where A and B are Hermitian matrices and now the equality is only satisfied if A and B

commute. Armed with this result we can tackle the strong subadditivity.

Proof 4 (Strong Subadditivity). The elements of the SSA are

S(ρAB) + S(ρBC)− S(ρABC)− S(ρB). (5.1.12)

Rewritting it in terms of their definitions we get

TrABCρABC [log ρABC + log ρB − log ρAB − log ρBC ]. (5.1.13)

The Klein’s theorem have as one of its consequences the following inequality

Trρ(log ρ− log σ) ≥ Tr(ρ− σ). (5.1.14)

Making ρ = ρABC and elog ρAB−log ρB+log ρBC we get

TrρABC(log ρABC − log elog ρAB−log ρB+log ρBC ) ≥ Tr(ρABC − elog ρAB−log ρB+log ρBC ), (5.1.15)

as we seen the elements in (5.1.12) take the form of the quantum conditional mutual information

(2.1.23) so we have that

I(A;C|B) ≥ TrABC [ρABC − elog ρAB−log ρB+log ρBC ]. (5.1.16)

Applying the concavity theorem from Lieb

I(A;C|B) ≥ TrABCρABC − TrABC

∫ ∞

0
ρAB

1

ρB + x1
ρBC

1

ρB + x1
dx, (5.1.17)

and taking the partial trace on systems A and C

I(A;C|B) ≥ 1− Tr2

∫ ∞

0
ρB

1

ρB + x1
ρB

1

ρB + x1
dx. (5.1.18)

Therefore

I(A;C|B) ≥ 1− TrBρB = 1− 1 = 0. (5.1.19)

Then is straightforward to see that

S(ρAB) + S(ρBC) ≥ S(ρABC) + S(ρB). (5.1.20)

We can see that the fact that the von Neumann entropy is subadditive implies the positivity

of the quantum conditional mutual information. This is an important remark and shall be used
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again. The last important result was obtained in [8] and it describes the structure of states

that saturates the strong subadditivity of the von Neumann entropy.

Theorem 5. A state ρABC on HA⊗HB ⊗HC satisfies strong subadditivity with equality if and

only if there is a decomposition of system B as

HB =
⊕

j

HbL
j
⊗HbR

j
,

into a direct sum of tensor products, such that

ρABC =
⊕

j

qjρAbL
j
⊗ ρbR

j
C ,

with states ρAbL
j

on HA ⊗HbL
j

and ρbR
j
C on HbR

j
⊗HC, and probability distribution {qj}.

The requirement for this structure of states may be a bit elusive for the reader, further

information about those requirements can be found in Appendix A. Also for completeness we

will give an example for one of the applications for this theorem, that can be found on the

original paper [8]. Rephrasing the coherent information in terms of a pure entangled state σ,

an operation φ that acts on just half of σ and ησ that is a purification of σ to system A we have

Ic(σ〉φ(σ)) = S(φ(σ))− S((1A ⊗ φ)ησ). (5.1.21)

If and only Ic(σ〉φ(σ)) = S(σ) it is know to exist a quantum operation φ̂ for which

(1A ⊗ φ̂φ)ησ = ησ. (5.1.22)

We can express the coherent information and the von Neumann entropy in a such a way that

Ic(σ〉φ(σ)) = S(σ) is going to be satisfied if and only if I(A;BC) = I(A : B). By the theorem

above we know that for states of the form

ρ =
⊕

j

qjρAbL
j
⊗ ρbR

j
C , (5.1.23)

The relation I(A;BC) = I(A : B) will be satisfied and this problem, that is related with

quantum error correction and the capability of perfectly reversing a quantum operation, is

solved.

As it was stated this is a very important inequality and in [46], two relations that were first

brought up by Koashi and Winter [47] were studied further. The first one is an equality relating

the entanglement of formation (Eof), the Classical Correlations (CC) and the von Neumann

entropy of the commom subsystem, in a tripartite pure state ρABC

EAB + J←AC = S(ρA). (5.1.24)
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It is possible to see that this relation imposes restrictions on the amount of correlation that

system A can share in a tripartite system HABC . If a system can hold up to S(ρA) of correlation,

the amount of quantum correlations, measured by entanglement with BC, that the system can

share with other parts is limited by the classical correlations present on that system. Adding

the mutual information of the subsystem HAC , the I(ρAC), on both sides of the equation we

get

EAB = δ←AC + S(A|C), (5.1.25)

which also can be written in terms of others parts of our tripartite pure state ρABC . For

example, if we write it in terms of system B, substituting the system A, we get EAC = δ←AB +

S(A|B). Those relations reveals some connection between the entanglement of formation of a

bipartition of any tripartite state and the quantum discord of one of the subsystems, of the same

bipartition, in relation to the third part of the global state that was not taken into account for

the entanglement of formation. Or in other words, the amount of entanglement in a bipartite

state limits the quantum discord that can be shared by those systems with a third. Since the

state is pure

S(A|C) = SAC − SC = SB − SAB = −S(A|B), (5.1.26)

where it was used the property of the joint entropy (2.1.11). Adding the expression (5.1.25)

taken into consideration the systems A and C and A and B it is obtained

EAB + EAC = δ←AB + δ←AB. (5.1.27)

This is argued to be a conservation relation for the distribution of the entanglement and the

quantum discord in a pure tripartite system. According to the authors [46]: Given an arbitrary

tripartite pure system, the sum of all possible bipartite entanglement shared with a particular

subsystem, as given by the EOF, can not be increased without increasing, by the same amount,

the sum of all QD shared with this same subsystem. A very similar analysis can be done to

the same relation (5.1.24), with one differential, the global state now is mixed. When this is

the case the Koashi-Winter relation ceases to be an equality, becoming:

EAB ≤ δAC + S(A|C). (5.1.28)

Again it is possible to write the relation above switching the state B for the state C. If both

inequalities, the one with the entanglement of formation in terms of the state ρAB and the one

with the entanglement of formation in terms of the state ρAC are summed, we are going to have

SC + SB + EAB + EAC − δAC − δAB ≤ SAC + SAB, (5.1.29)
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defining the difference between the Eof and the QD as ∆ we get

SC + SB + ∆ ≤ SAC + SAB. (5.1.30)

This inequality is the weak monotonicity of the von Neumann entropy [15], besides the

∆ which serves as a bound. The weak monotonicity is known to be equivalent to the more

interesting inequality the strong subadditivity. If there is an equivalence between those two

inequalities there must be a equivalency from the equation (5.1.30) to a bounded strong subad-

ditivity. The next step then is to derive the SSA with the new bound. We start by expanding

the tripartite system ρABC to a quadripartite pure state ρABCR so that for the tripartite part

of the state ρABR we have

SR + SB + EAB + EAR − δAR − δAB ≤ SAR + SAB. (5.1.31)

With this we can manipulate the entropies of the weak monotonicity changing SR = SABC and

SAR = SBC , resulting in

SABC + SB + EAB + EAR − δAR − δAB ≤ SBC + SAB. (5.1.32)

We can see that the entropies already agree with the form of the SSA, but we still have to deal

with the balance of quantum correlations ∆. For this we use the conservation relation (5.1.27)

for the pure tripartite state ρA(BC)R resulting in

EAR + EA(BC) = δ←AR + δ←A(BC),

EAR − δ←AR = δ←A(BC) − EA(BC). (5.1.33)

Then the equation (5.1.32) turns into

SABC + SB + EAB + δ←A(BC) − EA(BC) − δAB ≤ SBC + SAB. (5.1.34)

Defining a new delta ∆′ for the balance of quantum correlations as

∆′ = EAB + δ←A(BC) − EA(BC) − δAB, (5.1.35)

we get

SABC + SB + ∆′ ≤ SBC + SAB. (5.1.36)

This relation is the strong subadditivity lower bounded by ∆′, that translates to a lower bounded
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quantum conditional mutual information

I(A;C|B) ≥ ∆′. (5.1.37)

It is good to point out that in principle ∆ can be greater, smaller, or equal to zero. This is

due to the fact that for some states the entanglement of formation of a given bipartite state can

surpass the quantum discord for the same state, this can depend on the type of the state or the

mixing, for example in certain Werner or Quasi-Werner states where the factor F is the mixing.

Depending on the distribution of quantum correlations the bound gives different conditions for

the equation (5.1.36). In the case that the Eof is equal to QD the bound becomes ∆ = 0 and

we recover the usual strong subadditivity; if the Eof is greater than QD we have ∆ > 0, then

we can get a stronger SSA, stronger is considered in the sense that the usual inequality only

states that the quantum conditional mutual information must be greater than zero, and a value

above that implies on a more restrictive bound, therefore, a stronger bound. Or a weaker SSA,

when the Eof smaller than QD and ∆ < 0, where weaker means that every value below zero is

already considered in the original inequality, then it can render less restrictive bounds. With

∆′ we have a similar situation but the balance shifts and the positivity is dependent on the

difference between the QD, since the difference in entanglement for this case is going to give a

value smaller than zero.

5.2 Structure of States

Given that the result obtained by Hayden et al. [8], about the structure of states that saturates

the SSA and the SSA gave rise to a lot of important results it is of interest to see what type of

states will saturate the inequality (5.1.36). We start by noticing that the strategy applied by

Hayden et al. was based on the quantum relative entropy and the theorem [51, 52] below.

Theorem 6 (Petz’s theorem). Given two density operator ρ and σ,

S(ρ||σ) = S(Tρ||Tσ),

if and only if, there exists a quantum operation T̂ , such that

T̂ Tρ = ρ,

and

T̂ Tσ = σ.
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The quantum operation T̂ for the density operators ρ and σ, explicitly, is

T̂ ρ = σ
1

2T †((Tσ)
1

2ρ(Tσ)
1

2 )σ
1

2 . (5.2.1)

We will explore a little further this theorem up ahead.

With this approach in mind we shall find representations for the quantities of equation

(5.1.36) in terms of relative entropies. Then the above mentioned theorem will be useful to

determine the states that will saturate the b-SSA by applying the right quantum operation

T̂ . There are three elements that need to be investigated for this, the quantum conditional

mutual information, the entanglement of formation and the quantum discord. The quantum

conditional mutual information follows trivially since

I(A;C|B) = S(ρABC ||ρA ⊗ ρBC)− S(ρAB||ρA ⊗ ρB). (5.2.2)

So let us first turn our attention to the quantum discord, remembering that the quantum

discord for a bipartite system is

δ(ρ←AB) = min
ΠB

i

[I(ρAB)− J(ρ←AB)]. (5.2.3)

Again the mutual information comes easy as it is a special case for the relative entropy, I(ρAB) =

S(ρAB||ρA ⊗ ρB). For the classical correlation

J(ρ←AB) = max
{Πi

B}
[SA −

∑

i

piS(ρiA|Πi
B)], (5.2.4)

it is possible to use the states ΦB(ρB) =
∑

i pi |ψ〉B 〈ψ| and ΦB(ρAB) =
∑

i piρ
i
A ⊗ |ψ〉B 〈ψ|

J(ρ←AB) = S(ρA)−
∑

i

piS(ρiA|Πi
B)

= S(ρA)−
∑

i

piS(ρiA|Πi
B) +H(X)−H(X)

= SA + S(φB(ρB))− S(φB(ρAB))

= S(φB(ρAB)||ρA ⊗ φB(ρB)), (5.2.5)

where H(X) is the Shannon entropy written in terms of the probability distributions pi. Then

the QD is going to be

δ(ρ←AB) = min
ΠB

i

[S(ρAB||ρA ⊗ ρB)− S(φB(ρAB)||ρA ⊗ φB(ρB))], (5.2.6)
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and with a very similar analysis we can get the QD to the extended system

δ(ρ←A(BC)) = min
ΠBC

i

[S(ρABC ||ρA ⊗ ρBC)− S(φBC(ρABC)||ρA ⊗ φB(ρBC))]. (5.2.7)

Now we turn our eyes to the entanglement of formation

Ef (ρAB) = min
{pi,|ψi〉}

∑

i

piS(ρiA). (5.2.8)

From the previously development we already know that the RHS of equation (5.2.8) is

∑

i

piS(ρiA) = S(φB(ρB))− S(φB(ρAB))

= −[S(φB(ρAB))− S(φB(ρB))]

= −S(φB(ρA)|φB(ρB)). (5.2.9)

This is not exactly the form that we want, it is necessary to connect the conditional entropy

and the relative entropy. We are going to use the next relation for that purpose

S(φB(ρA)|φB(ρB)) = −S(φB(ρAB)|1A ⊗ φB(ρB)), (5.2.10)

Proof. We start expanding the conditional entropy (5.2.9)

S(φB(ρA)|φB(ρB)) = S(φB(ρAB))− S(φB(ρB))

= −Tr[φB(ρAB) log φB(ρAB)] + Tr[φB(ρB) log φB(ρB)], (5.2.11)

adding and subtracting Tr[φB(ρB) log1A ⊗ φB(ρB)]:

S(φB(ρA)|φB(ρB)) = −Tr[φB(ρAB) log φB(ρAB)] + Tr[φB(ρB) log φB(ρB)]

+ Tr[φB(ρB) log1A ⊗ φB(ρB)]− Tr[φB(ρB) log1A ⊗ φB(ρB)], (5.2.12)

and using that log1A ⊗ φB(ρB) = log(1A)⊗ 1B + 1A ⊗ log(ρB) we get

S(φB(ρA)|φB(ρB)) = −Tr[φB(ρAB) log φB(ρAB)] + Tr[φB(ρB) log φB(ρB)]

+ Tr[φB(ρB) log1A ⊗ φB(ρB)]− TrB[log φB(ρB)TrA[φB(ρAB)]]

= −Tr[φB(ρAB) log φB(ρAB)] + Tr[φB(ρAB) log1A ⊗ φB(ρB)]

= −{TrφB(ρAB)[log(ρAB) + log1A ⊗ φB(ρB)]}
= −S(φB(ρAB)|1A ⊗ φB(ρB)). (5.2.13)
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With this we have both our relations for the Eof

Ef (ρAB) = S(φB(ρAB)|1A ⊗ φB(ρB)), (5.2.14)

and for the extended system

Ef (ρA(BC)) = S(φBC(ρABC)|1A ⊗ φBC(ρBC)). (5.2.15)

We are omitting the minimizations of the entanglement of formation and for the quantum

discord, because the form obtained for both measures, as the derivation of those forms is

independent of the minimizations performed. It is possible to realize the minimizations over

the respective operators, but it is not necessary for the continuity of our discussion. Uniting

equations (5.2.6), (5.2.7), (5.2.14) and (5.2.15) back into (5.2.9) we get:

I(A;C|B) ≥S(ΦB(ρAB)||1A ⊗ ΦB(ρB))− S(ΦBC(ρABC)||1A ⊗ ΦBC(ρBC))

+ [S(ρABC ||ρA ⊗ ρBC)− S(ΦBC(ρABC)||ρA ⊗ ΦBC(ρBC))]

− [S(ρAB||ρA ⊗ ρB)− S(ΦB(ρAB)||ρA ⊗ ΦB(ρB))].

(5.2.16)

Now we can ask when does that inequality will be saturated. We notice that when the conditions

that

S(ΦB(ρAB)||ρA ⊗ ΦB(ρB)) = S(ΦBC(ρABC)||ρA ⊗ ΦBC(ρBC)), (5.2.17)

and

S(ΦB(ρAB)||1A ⊗ ΦB(ρB)) = S(ΦBC(ρABC)||1A ⊗ ΦBC(ρBC)), (5.2.18)

are satisfied for the bounded relation, it will render saturation. Now we are in position to

apply Petz’s theorem, by finding the quantum operation that will make equations (5.2.17) and

(5.2.18) happen. The quantum operation T̂ that is considered in Petz’s theorem is called a

transpose channel or more usually a recovery map [51] RB→BC that takes the system B to BC,

as the notation implies. For the state in question φB(ρAB), that was utilized in the conversion

of the measures into relative entropy forms we are going to have

RB→BC [φB(ρAB)] = RB→BC

[

∑

i

piρ
i
A ⊗ |ψ〉B 〈ψ|

]

ΦBC(ρABC) =
⊕

j

qj
∑

i

pj|iρ
i
A ⊗ |ψ̃j〉bL

i
〈ψ̃j| ⊗ ωbR

i
C , (5.2.19)

where ωbR
i
C ∈ HbR

i
⊗ HC , |ψ̃j〉bL

i
∈ HbL

i
and HB = HbL

i
⊗ HbR

i
. This is the state which gives
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Figure 5.1: Diagram to represent the monogamy of entanglement between Alice and Bob given
a third part Carrie. Adapted from [49].

saturation to the bounded SSA. We can see that saying that the state φBC(ρABC) is recoverable

from the state φB(ρAB) may be considered a sufficient condition to name states of this kind as

short quantum Markov chains, fact shared to the structure of states conceived by Hayden et al.

for the unbounded SSA. Reviewing the conditions (5.2.17) and (5.2.18) they are in fact requiring

that Ef (ρA(BC)) = Ef (ρAB) and that J(ρ←A(BC)) = J(ρ←AB). The later relation states that the

classical correlation between A and BC remain equal to A and B, which is not unheard of, but

the former establishes the same ties to the entanglement of formation of those bipartitions. This

implies, especially for cases where this relation is nearly achieved, certain limitations in how

the entanglement of A can be shared among the subsystems B and C revealing a monogamous

character [48] for the entanglement of formation.

Monogamy of measures that express quantum correlations, is the implication that we cannot

share those correlations as we wish between various parties. In a way that if there is some

amount o quantum correlations that is divided between two parties the amount that we can

share with a third party is limited (this can be seen in Figure 5.1). The picture contains Bob,

who shares an entangled state with Alice and there is Carrie who wants to share an entangled

state with Bob. If the state that is shared between Alice and Bob is maximally entangled

then Bob cannot share his entangled state with Carrie, but if it is not then some amount of

entanglement can be shared depending on how much his part is entangled with Alice’s part. Of

course this property is valid for every part in the scheme above. Monogamy is a useful quality

for quantum cryptography, like in quantum key distribution [50], where we want to limit the

access of third parties in two way communications. As this state may exhibit monogamy it

may be useful in quantum cryptography protocols.
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information from system A and B after the second stage will be

Ic(A〉B2) = SB2
− SAB1

= SAE1E2
− SE1E2

. (5.3.4)

Were again the notation used is to clarify when we are talking about the first part of the

processing, by using a 1 index, and the second part of the processing where we use a 2 index.

Uniting equations (5.3.3) and (5.3.4) it is clear that

Ic(A〉B1)− Ic(A〉B2) = I(A;E2|E1). (5.3.5)

Paying close attention to the parts of the stages that are pure, we can use the conservation

relation (5.1.27) leaving the quantum discord and the entanglement of formation in terms of

the same systems of the coherent information. Therefore

EAE1
− EA(E1E2) + δ←A(E1E2) − δ←AE1

= EAB2
− EAB1

− δ←AB2
+ δ←AB1

. (5.3.6)

Substituting the results above in equation (5.2.9) we obtain

Ic(A〉B1)− Ic(A〉B2) ≥ EAB2
− EAB1

− δ←AB2
+ δ←AB1

, (5.3.7)

or reordering the terms on the RHS

Ic(A〉B1)− Ic(A〉B2) ≥ (EAB2
− δ←AB2

)− (EAB1
− δ←AB1

). (5.3.8)

The bound on the strong subadditivity will then translate into a lower bound for the quantum

data processing inequality, bound that is the difference between the quantum discord and

entanglement of formation for the first stage and the difference between those measures in the

second stage. As it was said, it is not clear whether or not the difference in parentheses in

equation (5.3.8) is positive, zero or negative. If we have a balance of quantum correlations such

that the lower bound is greater than zero for the quantum data processing inequality would

make a stricter bound than the usual implying that the quantum correlations carried trough

different stages would improve along with the processing of quantum data, in other words, it

would suggest that the processing of quantum states through channels can be improved. As

there is an independent proof for the quantum data processing inequality, perhaps quantum

discord has something to contribute on the exchange of correlations during such process, in a

way that could compensate for the loss of entanglement and the improvement could be achieved,

or this result is simply not physical when the bound resumes to a stricter value than zero. Let

us go further on the difference between those two measures. Using yet again the conservation
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relation, but for different parts of the global pure state ρAB(E1E2)

EAB2
+ EA(E1E2) = δ←AB2

+ δ←A(E1E2), (5.3.9)

EB2A + EB2(E1E2) = δ←B2A
+ δ←B2(E1E2), (5.3.10)

and

E(E1E2)A + EB2(E1E2) = δ←(E1E2)A + δ←B2(E1E2). (5.3.11)

Adding those relations we get

2(EAB2
− δ←AB2

) = δ←B2A
− δ←AB2

+ δ←A(E1E2) − δ←(E1E2)A + δ←B2(E1E2) − δ←(E1E2)B2

EAB2
− δ←AB2

=
1

2

(

L(E1E2)→A→B − LB→A→(E1E2)

)

. (5.3.12)

Where it was used the definitions (4.3.4) and (4.3.5). The LE1E2→A→B is the flux of locally in-

accessible information that is going out the environment after both stages and the LB→A→(E1E2)

is the flux of locally inaccessible information into the environment. Then the difference between

the measures is equal to the difference of the LII, in that way we can define the net flow of

locally inaccessible information in the second stage as

LR{E1E2} ≡
1

2
(LE1E2→A→B − LB→A→E1E2

). (5.3.13)

Then the relation (5.3.8) can be written as

Ic(A〉B1)− Ic(A〉B2) ≥ LR{E1E2} − LR{E1}. (5.3.14)

Relation (5.3.14) brings some intuition, because it shows that the quantum data processing

inequality is lower bounded by the net flux of locally inaccessible information through both

stages when measurements are performed in Bob’s system. It is expected that the difference in

flow of the locally inaccessible information is greater if taken into account both stages of the

processing, because through the processing of the state on both stages the information that Bob

can extract locally should be less than the information only extractable in the first stage. Of

course that it depends on how we choose to measure our states on each step of the processing,

or equivalently, how much the state in question is going to be disturbed by those measurements.

Being true this tells the bound should be positive and the data processing greater than zero.

If the net flux is zero between both stages than the normal bound, zero, is recovered.
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Chapter 6

Conclusions

The strong subadditivity is a key inequality in quantum information theory being the link

among multiple inequalities and non trivial results inside quantum information and apart,

for example, in many-body physics. The investigation of the structure of states that would

saturate this inequality was done by Hayden et al. were they find the structure to be of the

short quantum Markov chains, this result was far-reaching given the importance of the strong

subadditivity itself.

In examining the two Koashi-Winter monogamic relations Fanchini et al. brought to light a

conservation relation between the entanglement of formation and the quantum discord in a tri-

partite pure state that show that for any bipartition of a tripartite pure state the entanglement

of formation would decrease or increase by the same amount that the quantum discord of the

same bipartition would. Together with that result a different proof for the weak monotonicity

of the von Neumann entropy appeared but bringing a possible lower bounds with it. The struc-

ture of states that saturated the SSA helped with other results, since the weak monotonicity

is a equivalent inequality to the SSA it was asked in this work what is the structure of states

that are going to saturate the equivalently bounded SSA.

We first derived a bounded strong subadditivity from that inequality, this bound depended

on the balance of quantum correlations that are shared in a system measured by the entan-

glement of formation and the quantum discord. We saw that if the Eof is equal to the QD

the bounded SSA becomes again the SSA, if the Eof is greater than the QD the bounded SSA

gets more strict than the usual inequality, and if the Eof is smaller than the QD that bound is

weaker. We then investigated the structure of states that render the bounded strong subaddi-

tivity of the von Neumann entropy with equality. For this firstly we found a way to express the

whole inequality in terms of relative entropies. This included the two measures for quantum

correlations: the entanglement of formation and the quantum discord. With that result we

used the Petz’s theorem to find the condition for equality among the measures, and applying

a recovery map we found the states that would saturate the bounded inequality. Those states
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like the states that saturates the SSA can be called short quantum Markov chains, in the sense

that the tripartite state can be completely recovered by acting on one system of the bipartite

state. Also those states require the entanglement of formation to respect monogamic relations.

Monogamy of entanglement limits the amount of entanglement that can be distributed among

different parties, if maximum entanglement is shared between Alice and Bob further entangle-

ment, from Alice or Bob, cannot be shared with a third party Carrie. This is an important

element in a quantum cryptographic scenario, where we want to limit the access of alien parties

on two way protocols.

We saw that the bound on the SSA is translated on a bound on the data processing in-

equality, a lower bound dependent on the difference between the entanglement measured by

the entanglement of formation and the quantum discord on the first and second stages of the

processing of quantum information. It is not clear whether or not this difference, the lower

bound, is going to be positive, negative or zero. For the two latter cases not much is acquired

because it is already expected that the data processing inequality is a non-negative inequality,

but if the bound is positive that would imply in a processing of quantum information that

would strengthen the quantum correlations when passing a state trough a channel. With this

quantum correlation being maybe an exchange of entanglement for discord. But since there

is a separate proof for the quantum data processing inequality, it is possible that this is not

a physical case. We also find that this inequality is connected by a lower bound with the net

flow of the locally inaccessible information in and out of the environment that is used in each

stage of the process of sending a certain state. This brings an intuition that, depending on the

measurements performed in each step it is possible to increase or decrease the lower bound of

the inequality.

A few questions arise from the work, like in which protocols the above state can be imple-

mented? Can the lower bounded conditional mutual information be used in some protocol of

state redistribution? We also infer that the bound on that strong subadditivity can be con-

nected with the reason behind the monogamy of the squashed entanglement. And why it is so

that the bound in the data processing inequality cannot be greater than zero, since there are

situations were the quantum discord is greater than the entanglement of formation.
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Appendix A

Koashi-Imoto Theorem

In this Appendix our main objective is to give context for the derivation of the Theorem 5,

elucidating the form taken by the states, by showing a proof for the Koashi-Imoto theorem [53].

This result is the backbone for the structure of states which was presented, and the proof will

follow similarly to the one given in [21], and for all the calculations the Hilbert spaces used will

be considered to have finite dimension.

A.1

We start with the definition given in [21] for the result of Koashi-Imoto:

Theorem 7 (Koashi-Imoto). Associated to the states ρ1, ...ρk there exists a decomposition of

H as

H =
⊕

j

Jj ⊗Kj

into a direct sum of tensor products, such that the states ρk decompose as

ρk =
⊕

j

qj|kρj|k ⊗ ωj,

where ρj|k is a state on Jk, ωj is a state on Kj and qj|k is a probability distribution. And for

every T which leaves the ρk invariant, every associated unitary has the form

U =
⊕

k

1Jj
⊗ UKjE ,

with unitaries UKjE that satisfy

∀j TrE(UKjE(ωj ⊗ ǫ)U∗KjE
) = ωj.
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The structure of states saturating the bounded-SSA as the structure of states saturating

the regular SSA is based on the condition that we can recover the density matrix in question

using a quantum operator G that can be described as part of a set

G = {G : ∀k Gρk = ρk}, (A.1.1)

of all those operators that leave the states ρk invariant. For each G is associated another set

AG

AG = {X ∈ B(H) : F ∗(X) = X}, (A.1.2)

formed by all the operators X that are not changed by the action of G∗. The quantum operation

G will have a conditional expectation of the form

P ∗ = lim
M→∞

1

M

M
∑

m=1

(G∗)m, (A.1.3)

in case the set defined by AG is a *-subalgebra of B(H). It is possible to see that AG is in

fact a *-subalgebra, using the Kraus representation. First we notice that G∗(X) = X and

(G∗(X))∗ = X∗, applying the inequality

G∗(X∗X) ≥ G∗(X∗)G∗(X), (A.1.4)

that is a Schwarz type inequality [54] we get that

G∗(X∗X)−X∗X ≥ 0. (A.1.5)

Then utilizing a faithful state, or in other words, a state that has strictly positive eigenvalues

that is also invariant, makes G∗(X∗X) = X∗X as well X∗X = 0 and the inequality above equal

to zero. Which in turn tells that the set AG is a *-subalgebra of BH .

For Hilbert spaces with finite dimension AG has a representation in form of a direct sum

[55], such that, for the decomposition of the Hilbert spaces

Hβ =
⊕

j

Hβ,1 ⊗Hβ,2, (A.1.6)

we have

Aβ =
⊕

j

B(Hβ,1)⊗ 1β,2. (A.1.7)
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With any CP-map from B(Hβ,1) to Aβ having the form

P ∗(X) =
⊕

j

Trβ,2(ΠjXΠj(1β,1 ⊗ ωj))⊗ 1β,2. (A.1.8)

For one given element of G0 ∈ G, is possible to associate one element of A0 ∈ AG, that is

an intersection of every AGn
and of course a P0. For this element we have

A0 =
⊕

j

B(HbL
j
)⊗ 1bR

j
, (A.1.9)

so that for the density matrices ρk

ρk = P0(ρk) =
⊕

j

TrbR
j
(ΠjρkΠj)⊗ ωj =

⊕

j

qjρj|k ⊗ ωj. (A.1.10)
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