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Abstract

We studied the structure of states that saturate the bounded strong subbaditivity of von
Neumann entropy. This was done by rearranging the form of the measures presented in the
inequality, in such a way that the Petz theorem could be used. After the application of a recovery
map we see that the resulting states require the entanglement of formation for a tripartite and
bipartite case to be equal, or in other words, it requires monogamy of the entanglement of
formation. We also analyzed the implications of the bounded relation into the quantum data
processing inequality. It is seen that a bound is extended from the strong subbaditivity to the
data processing inequality, but with different terms, with further manipulations we show that
the bound can be expressed in terms of the net flow of locally inaccessible information in the
first stage and the net flow on the second stage. Were the difference between the coherent
information relative to two parties in the process of transmitting a state is lower bounded by

the difference on the net flows.

Keywords: Quantum information, Strong subadditivity, quantum channels.



Resumo

Estudamos a estrutura de estados que saturam a desigualdade de subaditividade forte da
entropia de von Neumann. Isto foi feito rearranjando a forma das medidas apresentadas na
desigualdade, de tal maneira que o teorema de Petz pudesse ser utilizado. Apds a aplicacao
de um mapa de recuperagao, vemos que os estados resultantes requerem que o emaranhamento
de formacao para um estado tripartido e para um estado bipartido sejam iguais, ou em outras
palavras, exige a existéncia de monogamia do emaranhamento de formacao. Também foram
analisadas as implicacoes da relagao de subaditividade na desigualdade de processamento de
dados quantica. Nos vemos que o limitante existente na relagdo anterior é estendido a desigual-
dade de processamento de dados, mas com uma forma diferente. Manipulando o limitante noés
conseguimos escreve-lo como sendo a diferenca entre o fluxo resultante de informagao local-
mente inacessivel na primeira fase do processamento de dados e o fluxo resultante no segundo
estagio do processo. Isto mostra que a diferenca entre a informacao coerente em relagao a duas
partes que estao processando um estado é limitada inferiormente pela diferenca desses dois

fuxos.

Palavras-chave: Informagao quantica, subaditividade forte, canais quanticos.
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Chapter 1
Introduction

Finding a way to send and receive messages is a primal factor for any society, from military
applications, safe bank transfers to simple communication between parts. So it is a logical
step to look for more efficient ways for the transmission of required information. For that it
is necessary to better understand the nature of information and the fundamental laws that its
processing obeys independently of the physical system employed. The first time that a mathe-
matical treatment for the transmission of information was presented was in Claude Shannon’s
work entitled "The Mathematical Theory of Communication" [1]. In this work Shannon defines
what is important in a general theory of information, stating what is a communication system

by its different parts:

The source for information that will create the message;

The transmitter that is going to transmit the message using some device;

The method by which it is going to be sent and

The receiver of the message.

For Shannon every message could be broken into simple yes or no questions, expressed by
the bit. The other important contribution was a quantity to measure the information produced

or the rate of the information. This measure is known today as the Shannon entropy

H(p1,p2--pn) = = 3_pilogpi, (1.0.1)

being function of the probabilities for a certain random variable outcomes. This function was

chosen due to the properties that are expected from a measure of information. It is continuous

in the probabilities; it is a monotonic increasing function in n when p = %; and in a succession of

events, when one event is broken down into equal probabilities, the entropy H(p1, p2..p,) is the

weighted sum of the Shannon entropy of each value, given by the probabilities. In the recent
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years the interest on the capabilities for communication employing quantum systems grew
larger, giving origin to the field of quantum information science, that encompasses quantum
computation, quantum information theory and others. It is common to refer to Shannon’s
work as the classical part of the field of information. The quantum part also shares similar
elements from the classical part, needing a source for the states that are going to be sent, a
way to sent those, that are referred as quantum channels, channel or simply by maps. Also
in quantum information the agent is not the bit but the quantum bit, or simply the qubit,
with the main difference being that thanks to the superposition principle [2] the coding is not
only represented in terms of yes or no questions but in every possible superposition of them.
The channel or map are superoperators that take the states represented by density matrices
to density matrices. We are not going to give much attention to the classical part, besides for
intuition, since the quantum domain is the main focus of this work. Also, like the classical

part, quantum information has a measure of information, the von Neumann entropy,

S(p) = —Trplog p. (1.0.2)

This function has similar properties to the Shannon entropy, but in relation to the density
operator p. Just to list a few, it is a concave function, it is nonnegative (were it is equal to zero

only if p is a pure state) and is an additive function.

Even though they share various similarities the differences that they hold give rise to unique
phenomena and turn the von Neumann entropy into an interesting measure. A lot of research
was done focusing on the properties of the von Neumann entropy, since those properties are
directly connected with the possibilities in quantum information theory, such as the proofs in
channel capacities [3], finding lower bound on the free energy [4], reconstruction of states [5]
and so on. Many properties were first presented by Delbriick and Moliiere [6] but the one in
particular that drew a great deal of attention, was the property of strong subadditivity. This
relation is an inequality relating the subparts of a tripartite system among themselves and in
relation to the global state. It was elusive for some time, first conjectured in 1968 [39], due to
the difficulty to perform a proof, even though it was easy for the Shannon entropy. It was only
demonstrated to hold for the von Neumann entropy in 1975 [41]. It is not very intuitive at first
sight but the strong subadditivity inequality turned to be very important because it establishes
connections to several other inequalities and results in quantum information theory and it is
even referred to as the only inequality in quantum information theory [9]. Recently with the
result of Omar Fawzi and Renato Renner [7] new interest arose for the conditional quantum
mutual information, which is equivalent to the strong subadditivity inequality.

It was in Hayden et al [8] that they studied the structure of states that would saturate this
important inequality. From the Markov condition for the tripartite state of a system and using

a recovery channel, they could describe the structure of the states that would saturate with
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equality the strong subadditivity. It was later seen that one of the corollaries of the result of
Hayden et. al. is the only known inequality to not come directly from the strong subadditivity.
It is a constrained inequality that is only true when certain conditions are met for any four
part system [9].

In 2011 the strong subadditivity was presented in a different way. Studying the monogamy
relations of Winter et al. [47], Fanchini et al [46] obtained the same relation with the adden-
dum of a possible lower bound for the inequality. This bound was dependent on the balance
of quantum correlations shared between subsystems of a tripartite state, measured by the en-
tanglement of formation and the quantum discord of those subsystems. The two measures are
related to different phenomena: the entanglement of formation is related to the entanglement
on the subsystems; and the quantum discord is associated to the quantumness presented on
the subsystems!. The latter is a measure on how much a bipartite quantum system is affected
by local measurements that can exist even in separable states, fact that is not possible with
entanglement measures. So the possibility of the lower bound depends on the difference of
the quantum correlations that are shared among parts of the subsystems in relation to those
measures. As the entanglement of formation can be greater; equal or less than the quantum

discord, this varies according to the state in question.

In this work it is asked the question: what is the structure of states that is going to saturate
the strong subadditivity given that bound that was achieved? We do that following a similar
reasoning to the work of Hayden et al. making use of a recovery channel after obeying equality
conditions due to a theorem from Dénes Petz [8]. We also analyze the implications of the
bounded relation on the data processing inequality [12]. The data processing inequality states
that during the processing of information, a process that can be characterized by the coding,
sending and decoding of a certain message, will always decrease the quantum correlations that

are carried during the transmission of that message [14, 15].

Now we are going to describe the content of each Chapter: In Chapter 2 we give an overview
of the classical and quantum theory of information. It introduces the Shannon and von Neu-
mann entropies, the conditional entropy, relative entropy and mutual information establishing
the base for the following chapters and results. In Chapter 3 we present the concept of en-
tanglement and quantum discord as a whole and how it is related to the quantum theory of
information. Some important measures of quantum correlations such the entanglement of for-
mation, entanglement cost, distillable entanglement and the context for their definition, shown
in terms of protocols of purification are also described. Chapter 4 is where we show the devel-
opment for the quantum operations formalism, through the trace of the environment after the
dynamics occurred to the description of the Kraus operators. We also introduce in this chapter

the concept of quantum channels and the quantum data processing inequality. Chapter 5 holds

1See however [32]
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the original results that were developed during this work, where we show the strong subad-
ditivity with bounds exploring the structure of states that saturates the inequality. We also
see the implications of this new bounded strong subadditivity in the quantum data processing

inequality. The last chapter is used to conclude this dissertation.
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Chapter 2

Entropies

2.1 Von Neumann Entropy

In order to better understand the von Neumann entropy, as the other entropies, we are always
going to start with its classical part, so we begin talking about the Shannon entropy. This
quantity is the answer for a number of questions, specifically if there is a way of conveying
a message with the shortest possible length of a string on average. More important to us is
that the Shannon entropy measures the information that we gain in learning the value of some
random variable X or analogously, the uncertainty that we have about X prior to learning
its value (also on average). A random variable is different from the normal variables that we
encounter because it does not take one single value but represents a set of different possible
values and each of those have probabilities associated with them. Omne simple example is a
random event like a coin toss where the possible results are heads or tails, if the coin is fair
each associated probability is 1/2, if not that changes. For a little more sophisticated example
lets suppose that we have a source that transmits messages in form of a random sequence
{z1,..,x,} and associated with every element of this sequence we have a probability distribution
{p1,.-,Pn}. Then the Shannon entropy of the random variable X that represents our random

sequence is given by

H(X) = =) pilogp;, (2.1.1)

where the logarithm is taken in base 2 since the messages will have binary representation and
for convention Olog0 = 0. Further let us give values to that sequence, so suppose that we
have four events represented by the sequence {z1, s, z3, 24} and for each event the respective
probability {1/3,1/6,1/4,1/4}. We wish to send this sequence to another party. One possible

scheme could be
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r1 — 00,29 = 10,23 — 01, 24 — 11

so if we send the following message,

T1T2X1X4T3T 1,

we would have to send the string

001000110100.

But is that the best possible string? The answer is no, we could use the likelihood of
appearance of each event to shorten our message in a process that is called data compression.

One possible way we could do that is in the following way

1 — 0,29 — 111, 23 — 10, 24 — 01,

then our string would be,

0111001100,

which is in fact smaller than the first one. Calculating the expected length of both strings we
see that the expected length of the second string is 1.8 bits as opposed to the first string that
was of 2 bits on average. Here we must notice that although this string is smaller than the first
calculating the Shannon entropy for it gives us a value of &~ 1.95 which reflects the fact that
this string is not uniquely determined by the encoding that was done turning it not secure. We
should also note that H(X) > 0 and that H(X) is a concave function.

There is a generalization of the Shannon entropy for quantum states and it is called von

Neumann entropy. For a density matrix p that lives in a Hilbert space H we have

S(p) = —Trplog p, (2.1.2)

where now the density operator p takes the place of the probability distribution p. It is easy
to see the relation between the Shannon entropy and the von Neumann entropy, one just need
to choose a base for the density matrix in which the density matrix is diagonal. In this base it

can be written in the form p =Y, p; [¢;) (¢;], then the equation (2.1.2) becomes

Sp) = —sz' log pi, (2.1.3)

which has the same form of the Shannon entropy.

The interpretation of the von Neumann entropy is very close to that that was given for the
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Shannon entropy. So let us consider two parties, Alice and Bob, each one being in different
laboratories. One of the parties, let us say Alice, can then prepare a state that we are going
to define p? according to some probability distribution p;. Before Bob receives the state his
expected density matrix is p? = 3, p;p2, so we see that the uncertainty of Bob is quantified by
the von Neumann entropy S(p?). Some interesting properties [15] of the von Neumann entropy

are:

e S(p) > 0 for any density matrix;
« S(p) =0 only when p is pure;
e S(p®o)=S(p)+ S(0), the von Neumann entropy is additive;

« S(p) is concave, i.e S(3; pip?) > 3 piS(p2).

As we can have the marginal entropy for one of the systems we also can evaluate the entropy
of a joint state for a density matrix p4p which lives in a bipartite Hilbert space Hap = HA® Hp.

For this situation we have

S(pap) = —Trpaplog pap. (2.1.4)

To get from the the joint entropy of our system to the marginal entropy of a subsystem
it is required to take a partial trace over one of the subsystems. The partial trace is going
to be denoted by a subscript that represents the space where the trace is acting, i.e, S(p4) =
Trp{S(pap)} and ps = Trp{pap}. Another characteristic of the von Neumann entropy is that
for a joint system described by pap the entropy is subadditive

S(pas) < S(pa) + S(ps), (2.1.5)

where the equality is achieved if and only if p4ap = pa®p, meaning that our systems are not
correlated. A useful and surprising property of the joint entropy is that S(pap) can be less
than the marginal entropies S(p4) and S(pp). This is surprising since the Shannon entropy
(classical entropy) of a joint probability distribution H(X,Y) is always greater or equal to the
entropy of its marginals H(X) and H(Y'). For the proof we are going to need the conditional

Shannon entropy, a measure that is going to be presented in the next section.

Proof. Knowing that the conditional entropy is non-negative [14] H(X|Y) > 0, we have by the
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definition of the conditional entropy that

H(XY) = =) plz,y)logp(z|y)

L 7 ) og PLEY)
= %p( ,y) log 00)

= — Zp(a;y) log p(z,y) — log p(y)]

= —prylogpxy +Zp ) log p(y)
_ H(X,Y) - H(Y) >0, (2.1.6)
thus
H(X,Y)> H(Y). O (2.1.7)

So one would expect that to hold for the quantum case. In fact if the state pap is pure
we have that S(pap) = 0 and S(pa) = S(pp). This is because of the form of the spectral
decomposition that is taken by the marginal states. If |pag) (with p = |p) (p|) can be written
as [15]

pap) = Zflxz vi) s » (2.1.8)

where the kets |z;) , and |z;) 5 are orthonormal sets of vectors on systems A and B respectively,

then the reduced density matrices p4 and pp are

pa = Zci i) 4 (@il 4 » (2.1.9)

0B —Zcz Vi) g (Wil 5, (2.1.10)

so the spectral decomposition admits the same eigenvalues. This is a general property of the
joint entropy being respected not only for bipartite systems. We have that for a quadripartite

system where |p) 4o p is pure that:

S(pa) = S(pseb), (2.1.11)

S(pas) = S(pcp), (2.1.12)

and
S(papc) = S(pp). (2.1.13)
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2.1.1 Conditional Entropy

Usually we can have events that depend on the order in which we acquire the information. For
example, if we have a box with a certain number of red and blue balls the probability with
which we take each ball changes the probability for the next ball to be taken. We can describe
the box with red and blue balls using the random variables X and Y respectively, so that our
surprise on discovering the outcome of each measurement - the color of the ball - after each

ball that is taken, on average, is given by the classical conditional entropy

HXY) = ¥ p HY =), (2.1.14)
or expressing it in a more useful form
H(X|Y)=H(XY)—-H(Y). (2.1.15)

In the quantum scenario we can also measure the entropy of knowing the values of one of
the subsystems prior to knowing the value of the other part of the system, this measure is
called quantum conditional entropy. There are two distinct shapes for the conditional entropy,
one that is similar to the classical conditional entropy and other that takes into account the
measurements done over the system. Firstly we are going to talk about the second version.

Like we said before the conditional entropy measures the uncertainty that we have about a
state, let us say A, after we learned the value of a second state B . There is nothing wrong with
this scenario classically, but when we are dealing with quantum mechanics this statement is
unclear [16] because we first need to establish the set of states B that are going to be measured.
So if we perform a measurement on the subsystem B that can be described by a complete von

Neumann measurement, {II¥} * we will have as the result the state

H;'B PAB H}B

O 2.1.16
PAIS = T[[1B ) ,11F] (2.1.16)

with the probability being p; = Tr[II7papIIP]. And the states p ane are then conditioned to
J

the result of the measurement done. Then we could define the conditional entropy as

S(pal{II7}) = 3 piS(Ph). (2.1.17)

where the S(p,) is the information of the system A that we do not possess and the probability

gives the weight of each measurement. The problem with this definition is that there are infinite

!There is a discussion where it is made a connection to the classical conditional entropy and the uncertainty
of the measures and its link with classical discord in [32].

2This way of seeing things is part of a more general view of quantum operations, that is going to be examined
more carefully in Chapter 3.
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ways that we could define the measurement. One solution is to find the best possible set of
operators or, in other words, performing a minimization over all possible measurements, and
in doing so, removing the base dependence.

As said before, the other form is a generalization of the classical conditional entropy for two

random variables X and Y but for the density operators of our system
S(A|B) = S(par) — S(ps), (2.1.18)

and it is very useful because a lot of properties of the classical conditional entropy also hold
for that form of the quantum version, such as chaining rules, and the fact that conditioning
does not increase entropy [14]. The first departure of the classical theory also arises with
the quantum conditional entropy, the difference being that the quantum conditional entropy
admits negative values [13]. This is a divergence from the classical Shannon theory because
classically for two random variables X and Y the following inequality is true H(XY) > H(X)
and we can’t get H(X) or H(Y') greater than the joint Shannon entropy. But this is not true
for the quantum realm; we can have more knowledge about the whole than we could have for
the parts and that is what happens for pure entangled states. In this situation the quantum
conditional entropy will be negative and the fact that is negative is also a sufficient criteria for
non-separability of a state. This fact is so important that the negative form of the quantum

conditional entropy received its own name, the coherent information:

I(AYB) = S(B) — S(AB) = —S(A|B), if S(A|B) < 0. (2.1.19)

This measure first appeared in [12] as a measure of quantum correlations of a state in
various stages of a process, having a similar meaning to the classical mutual information. In
specific the type of quantum correlations that was addressed was the entanglement. Because
of the nature of the coherent information, since it is the negative of the conditional entropy
when the coherent information is positive is signal that the state is entangled, as it was said
before. A more complete explanation of the coherent information will be given in Chapter 3

after introducing quantum channels.

2.1.2 Mutual Information

The quantum mutual information is the standard measure of correlation, this implies both
classical and quantum correlation that the subsystems share. The form used here will be the

one that is analogous to the classical form of the mutual information given by

I(X;Y) = H(X)+ HY) — HXY). (2.1.20)
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It is immediately seen that this quantity is symmetric on the exchange between X and Y,
after all, we will learn as much about X measuring Y as we would going to discover about Y

measuring X. Replacing each Shannon entropy by the von Neumann entropy we have

I(A, B) = S(pA) + S(,OB) - S(PAB)- (2.1.21)

It is also relevant to say that the quantum mutual information can be conditioned in obtaining
knowledge of a third system C. So for a tripartite state p4pc the information gained about pap

in knowing p¢ is represented by the quantum conditional mutual information

I(A;C|B) = S(palps) + S(pclps) — S(paclps), (2.1.22)

or expanding the conditional entropies

I(A; C|B) = S(pas) + S(psc) — S(pasc) — S(ps). (2.1.23)

We can note that the last two parts of the mutual information (2.1.21) are in fact the quantum

conditional entropy, replacing it we get

I(A; B) = S(pa) — S(A|B). (2.1.24)

In the previous section we saw that there are a couple of different ways to represent the con-
ditional entropy due to the strange character of quantum mechanics, that means that we could
write the conditional entropy seen in the mutual information to be measurement dependent.

So from the equation (2.1.17) we have

I=J(pas) = S(pa) = 2 p;S(ph)- (2.1.25)

This new quantity is called classical correlation (CC) J and it was first presented by [11] as
a good measure for classical correlations because it respects certain expected properties for
its purposes. J = 0 for separable states, as separable states take the form of a product state
p = pa® pp they do not carry correlations®. The CC is non-increasing under local operations,
after all local transformations should not increase classical correlations and change in basis

won’t affect J. One example is for the state

pap = Y Da|ra) (wal © P, (2.1.26)

as it is a separable state there is zero entanglement and the mutual information for this par-

3We are going to see further on that in fact there are separable states that exhibit quantum correlations,
but for completeness the argument will be sustained in this section.
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ticular state is given by

I(A;B) = S(ps) — Y _paS(pp): (2.1.27)

So as we know it the quantum mutual information measures the total correlations in a state,
for a state that do not have quantum correlations, the only thing that it shows is the classical

part of the correlations and it takes the same form of the CC that it was presented.

2.1.3 Relative Entropy

The quantum mutual information presented in the previous section is nothing but a particular
case of a more general measure, the quantum relative entropy. Being p and o two density

matrices we have that the quantum relative entropy is

S(pllo) = Tr{plogp — plogc}. (2.1.28)

The relative entropy can be seen as a measure of the distance or the distinguishability between
two states even though it is not a real measure of distance since it does not respect the triangle
inequality and S(p|lo) # S(o]||p), in other words, it is not a symmetric measure. Also the
quantum relative entropy is only well defined if the support* of p is contained in the support
of o, supp p C kernel o, otherwise S(p||o) = +oo. This could be understood as follows, think
about a case where we have two states that are almost orthogonal to each other i.e (¢| 7 |¢) = «
where « is really small and the quantum states are |¢) and 7. As the relative entropy is a sort
of distance between states this means that those semi-orthogonal states are as far apart as
they could be without being completely different, this indicates that the relative entropy will
be fairly big and as the difference grows smaller the entropy tends to co. Ensuring that the
support of p will be a subset of the support of o takes care of that problem.

We can see that for the special case where p = pag and 0 = ps ® pg, where psand pp are

reduced density matrices from pspthe quantum relative entropy is

S(papllpa ® pp) = Tr{paplogpap — paplogps ® pp}
= —Trpaplogpa — Trpaplog pp + Trpaplogpan
= S(pa) +S(ps) — S(pap). (2.1.29)

The last line is exactly one of the definitions for the quantum mutual information (2.1.21).
Viewing like this the mutual information would be the difference between a certain bipartite

state pap and a separable state p4 ® pg. But perhaps one of the most important properties

4The support of a function is the vector space spanned by all non-zero values of that function.
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of the quantum relative entropy is that it is always positive, this is expressed in the theorem

below usually known as Klein’s inequality [10].

Theorem 1 (Klein’s inequality). The quantum relative entropy S(pl||o) is positive for any two

density operators p and o.
S(pllo) =0,
with equality if and only if p = o.

Proof 1. We start with two decomposed states p = 3=, p; |i) (i| and o = 32, q; |7) (j| and using
(2.1.28) we have

Spllo) = Tr3_pili) {illog(X_ p |1') (7'l) — Tr)_ pili) (il log(>_ ¢; 17) (41)
= T3 _pili) (il (2 logpy |1) (8'1) — T pili) (il (3 _log ;1) (41)
= Zpi log p; — sz|<l|J> |210gCIj

> Zpi log p; — Zpi logt;

= Yp log% (2.1.30)
ti
= —> pilog— (2.1.31)

> log lZpiti] 0, (2.1.32)

where t; = 3;|(i|7) [*q; and [(i|) |? is taken as one conditional probability of i conditioned to j

and it was used the fact that the logarithmic function is concave log (X, prs) = >p Pel0g qe. [
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Chapter 3

Quantum Operations

3.1 Measurements

In the previous Chapter we used on a few times some notions from measurement theory, without
explaining what we really meant. Here we are going to give a brief overview of it, firstly, let us

consider the measurement postulate of quantum mechanics [15]:

Definition. Quantum measurements are described by a set of operators { My} that act on the
state space of the system that is going to be measured. FEach index k refers to the possible
outcomes of an experiment, due to the measurement. Then if the state of the quantum system

is 1) before the measurement the probability that k is the result is given by

pr = (| MIM;, ) (3.1.1)

the state of the system after the measurement is

M,
kTW) (3.1.2)
Vil MM )
where the measurement operator My form a complete set.
ST MM, =1. (3.1.3)
k

3.1.1 Projective measurements

The measurement postulate of quantum mechanics given in this form is a more general descrip-
tion of measurements than what we need. Those of our interest are two important special cases
that are going to be discussed next, the von Neumann or projective measurements and positive

operator valued measurement or POVM.



Chapter 3.  Quantum Operations 24

Definition. A projective measurement is characterized by a Hermitian operator M, that has a

spectral decomposition

M => kP, (3.1.4)

The projector Py, acts on the eigenspace of the Hermitian operator M with eigenvalue k. As it
is said in the measurement postulate of quantum mechanics, the possible results correspond to
the values of k. The probability of getting such an outcome k, given the state of our system |1)

1S

pr = (Y| P [¥) (3.1.5)

and the state of the system after that measurement, with outcome k, is

Py |¢)

—_— 3.1.6
(V| Py |v) ( )

It is a special case of the measurement postulate in the sense that the operators are orthogo-
nal in relation to each other, or in other words, they follow M, M}, = 6y 1, M), and as commented
are Hermitian. It is useful to write this formalism in terms of density operators, considering

unitary evolutions for simplicity and for the state |¢)
o= nil) (vl, (31.7)
with the evolution represented by U we would have
P =UpUT. (3.1.8)

If we are going to perform measurements described by the operators P, the probability of

getting k is
Pk = D DiiDi
= Z::pz (03] P [3)
=2 piTr{ P [hi) (il}
_ Tzr{Pkp} (3.1.9)

With this we now can ask about the density matrix of the state after the result k. Even getting
the result k, we still have an ensemble of states weighted by the probability p;. for the indexes

1, with this the density matrix is
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pr = Zpi\k |1hi)y, (il

o T
T

PrepPy

=TT (3.1.10)

In the third line it was used that p;; = %}fli, on the fourth line the equation (3.1.9) and that
Prji = (Ui| Pe |13)-

3.1.2 POVM

Projective measurements are useful as they give the post-measurement state, but it is not
always what we want, need or even can know the post-measurement state. Also the projective
measurements can be done innumerous times, and if for the first time the outcome was k, for
next it will be k and so on. In quantum information theory there are a lot o processes that
do not share this quality as the transmision of classical information through quantum channels
[14] and the optimal way to distinguish quantum states [15]. For those and other instances it

is used the formalism of POVM, we can define

F, = M} M,. (3.1.11)
This is a complete set of operators {F}
Y Fy=1, (3.1.12)
k
and positive,
F, > 0. (3.1.13)

Also the probability of a certain outcome is going to be

pr. = Tr{Fip}, (3.1.14)
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where p represents some mixed state. But this set is not necessarily orthogonal (i.e. in general
Tr{FF} } # 0) this is the only thing that really differs in terms of the properties between the
von Neumann measurements, or the "normal" view of measurements, and the POVM formalism.
It is interesting that the POVM formalism is associated to that of quantum operations being in
fact a precursor of what is going to be shown next. The part of quantum operations, in general,
appears because in nature we rarely will have a system that is isolated from the rest, the
environment. Usually some kind of interaction will occur and that interaction is represented by
noise. Knowing how to deal with the noise present in operations is essential to achieve reliable
quantum processing systems. And for that we need the formalism of quantum operations, or

more specifically for our purposes the formalism of quantum channels.

3.2 Classical Case

Before we talk about the quantum representation of certain processes is interesting to introduce

the classical part, usually referred as Markov processes.

3.2.1 Markov Processes
Let us start with the definition of a stochastic process:

Definition. A stochastic process is a family of functions f(X,t) where each function depends
on two variables X and t and X is a random variable and t € IR.

There are two ways of using stochastic processes. Those processes can be viewed as a family of
realizations f(t) -where the variable is the time- or a family of random variables f(X) -where

each event is a variable- [23]. We also can have two types of stochastic processes
e Purely Random Processes;

in which each value that the function f(#) may assume is independent from the other real-
izations. That means that if you have a certain probability distribution p(z1, .., x,;t1,..t,)
them

(1, ., ety o tn) = p(ry, t)p(22, t2)..p(Tn, ), (3.2.1)

or they can be
e Markov Processes;

In that case the probability distribution will be

p(xna tn|x17 -0y Lp—1; tl; "tn—1> = p(xm tn’xn—17 tn—1>7 (322)
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KD ¥

Figure 3.1: A circuit with two NOT-gates and their outputs

thus each event is independent of what happened before with the exception from the event that
just preceded it, in other words, the value of the conditional probability in ¢, will only depend
on the values of x,,_; and ¢,,_;. In a certain way it is a memoryless process. In this scenario we

have what is called a Markov chain denoted by:

X—=Y =7

being X, Y and Z random variables. They are connected by some stochastic process that
lead one to another, a physical example may help with the understanding. From Figure 3.1
suppose we want to send a message to another party but the only way we can do this is with
a compromised circuit that will add noise to the system and the input is represented by the
random variable X that has to pass by one of the elements of the circuit, a NOT-gate, which
cannot work properly. The function of this logically gate is to transform 0 — 1 and 1 — 0. In
passing through that gate it is going to be generated a bit represented by a random variable
Y, further this bit will pass through another NOT-gate, that also can or not work properly,
generating Z. As each gate is independent from the other this sequence is going to be a Markov
chain. In the theory of Markov chains we can describe the output of this random process using

a matrix 7" with the transition probabilities of each event called transition matrix. This would
look like

p=17. (3.2.3)

We can see that there is a linear relationship between the output probability p"and the input
probability ¢. In general we would expect that if we sum the elements of each row or column
the result of the sum must be 1. Of course each of those representations must accompany a
change in multiplication of the probability vectors and the matrices, that must be true, for the

matrix to represent a valid probability distribution.

3.3 Quantum Case

Noise in quantum system is going to work in a similar way that it does classically, with some

operator acting on your initial state p and resulting in some output state p/, resulting in a
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equation like (3.2.3)

o =E(p). (3.3.1)

There are two different views that in essence are equivalent. The first one is a little more

intuitive and the other a little more mathematical, but also more general.

3.3.1 Tracing the Environment

Imagine that we have a system represented by a density matrix p4 and some kind of interaction
occurs between our state and the environment so that we can consider the initial state as a
product state ps ® pg, where pg represents the state of the environment. We can represent
the interaction between our state and the environment with an operator U, that belongs to
the Hilbert space Hy ® Hpg, that act on the product state. After this we want to know what
happened with our state, not what happened with the product state, that means that the
environment part is irrelevant to us. Not being of interest we can eliminate the environment.
That is done by performing a trace operation on the extraneous part. The product of those

manipulations are our final state, Figure 3.2. In mathematical terms this will look like

E(p) = Trp [U(p® pr)UY|. (3.3.2)

This describes the dynamics that are occurring on the system, which not necessarily is
unitary. It is good to clarify that the state pg, the environment, is composed of the rest of the
universe besides our system in a way that together they are a closed system. As it is seeing
above we do not really care about the mechanism of the interaction, we only mind about the
resulting state and that is enough for this representation. Another remark is that a sufficient
condition that the operation (3.3.2) needs to characterize the transformation of the initial state
to the output state, is that given that the initial state lives in a Hilbert space with dimension
n the environment must live in a Hilbert space with no more than n? dimensions [15]. We
can see an example [15] of this, let us say that our system is one qubit and the environment
is initially |¢g) = |0) considering that the operator that acts on the system takes the form of
U=F®1+ P, ®X. This form is known also to be the representation of a control not gate
(CNOT) which acts on a two qubit system by flipping the second qubit if the first qubit is in
the state [1). Them by (3.3.2) we would have
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PE

Figure 3.2: Schematic representation of quantum open system

E(p) =Trp [U(p® pi)U]
=Trp[(F®1+ P X)(p®0)(0)(F®l+ P X))
= Trg [PopFPy ® |0) (0] + PopPr @ (0) (0| X + PipFPy ® X |0) (0] + PipPr @ X |0) (0] X]
= Trg [PopPo ®[0) (0] + FopPy @ [0) (1] + PipFy @ |1) (0] + PrpPr @ 1) (1]]
= PypPy + P,pP;. (3.3.3)

We can know show the connection that was mentioned before, between the POVM formalism
and that of quantum operations. Since the trace is invariant under cyclic permutations we can

move the operator in (3.3.2) and the probability will be

P(z) = Trg [(p® pp)U' (1 & E,)U|. (3.3.4)

The operator (1 ® E,) describes the measurement that is done on the system. If we say that
|x) is an orthonormal base for the system, and |3) an orthonormal base to the environment.
The probability will then be

P(x) = (8l (x| [(p® pp)UT(1 ® E)U] [x) |8)

Bx
= (Z Bl (xI [(1 @ pr)UH(1 @ E)U] |5>) x)
B
Z (x| pF [X) = Te{pF,}. (3.3.5)

Which is the same of the probability for the POVM presented before.
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3.3.2 Kraus Operators

We can show that the relation presented above to deal with noise evolution of quantum systems
is equivalent to another relation, called operator sum representation or Kraus representation.

Starting from the last relationship

P ="Trp [U(p® pp)U'] (3.3.6)

and taking the partial trace

=3 [(dU(p® pp)U"|e)]
=2 [Ulee 0 0DU" j9)]
Z[ €| U10)p (0| U [e)]

=" MpM]. (3.3.7)

Where M, = (e| U |0) are known as Kraus operators. Since the operator U is unitary, UUT = 1,

the set of Kraus operators are complete

> MM =3 (e U]0) (0] UT[e)

€

= (0| UU |0) = 1. (3.3.8)

Equation (3.3.7) defines a map, a linear map, that takes density matrices to density matrices.
The dynamics presented above are what is called trace preserving because of the property of
equation (3.3.8), a broader requirement would be that the set of operators can be smaller than

unity

S MM <1, (3.3.9)

and we say that those operators are non-trace preserving, that happens in instances that addi-
tional knowledge is gained from the measurement apparatus [24]. A usual nomenclature used
in quantum information theory to differentiate those two sets are quantum operations for those
that do not preserve trace and quantum channels for those that do preserve the trace. Apart
from that both are completely positive. Positivity is a characteristic that every map should
have, this guarantees that the output £(p) is going to be a positive operator when its input p

is also a positive operator. This ensures that the map is always going to take density matrices
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to density matrices. Completely positive maps reflect the fact that a map of the form (1, ®E)p
for any k that is finite, where Hy ® Hp and 1; lives in Hg and & lives in H, is going to be a
positive operator if the input p is a positive operator. This requirement for a quantum channel
to be completely positive comes from the fact that if we have a density matrix on a bipartite
system H 4 ® Hpg and for some reason the system H 4 evolves while Hpg does not, then we expect
that the channel take the initial density matrix to a final density matrix.

As our interest lies in quantum channels we are going to delve further on completely positive

trace preserving (CPTP) maps.

3.4 Quantum Channels

Quantum channels are used to transmit information among parties, with this information being
coded by quantum or classical ways. Also they represent the most general representation of
the evolution of a quantum state. The equation presented earlier is an example of a quantum

channel

E(p) = Trp [U(p® pr)UT]. (3.4.1)

From this equation we can see that a trace preserving quantum operation can always be un-
derstood in terms of a unitary evolution where the system interacts with an environment. It
is reasonable to ask if something happens with the information that is transmitted through a
channel and this will depend on what type of channel is going to be used. More specifically it
will depend on what kind of operation that it is going to perform. Two canonical examples are

the bit flip and the phase flip channels, the bit flip is represented by the operators, respectively.

-l

0 1
E1 =V 1-— P .
10
As a result of those operators the y axis and z axis of the representation of the density operator
of our system in a Bloch Sphere are compressed while the x axis is left as it is. The phase flip

is represented by

Eo:\/ﬁll 0]’

01

Elzmll 0].

0 —1
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Figure 3.3: Representation of a quantum channel consisted of two stages, where Bob decides
to process his part of the system.

It effect is a little different from the bit flip, where it leaves the z axis unchanged, and compress
the diagonal elements x and y of the Bloch Sphere. One important characteristic of quantum
channels in general is that they obey a quantum data processing inequality.

The quantum data processing inequality was first introduced by Schumacher and Nielsen

[12], where they introduce a measure for quantum correlations, the coherent information

I(A)B) = S(AB) — S(B). (3.4.2)

The coherent information is a measure of entanglement since its form is equal to the negative
of a quantity known as conditional information. In classical information theory this quantity
will always be greater than zero, but in quantum information theory that does not hold, as
it was commented in Chapter 2. When the coherent information is positive it is a sign of
"quantumness' in the system. In the work of Schumacher and Nielsen it is argued that the
coherent information is the quantum analogue of mutual information. One of the main points
is that the mutual information obeys a data processing inequality for three random variables
that form a Markov chain, and they show that the coherent information also obeys a inequality

for a noisy quantum channel

1.(A)B1) — 1.(A)By) > 0. (3.4.3)

In Figure 3.3 it is shown a two stage process where Alice and Bob share a bipartite quantum
system p4p. For some reason Bob decides to operate in his part of the system where it interacts

with a environment E, in what we are going to call first stage of the processing, this could be
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represented by a encoding some message in his part of the state. After that the state is sent
to the second stage of the processing, where it is going to interact with another environment
E5, this part can be the decoding of the message. In essence the inequality (3.4.3) shows that
processing our quantum system will always decrease quantum correlations. It is good to note
that the initial state shared between Alice and Bob is pure and in each stage the evolution of the
state is unitary, with environments initially in pure states. Thanks to that we can assure that
in each stage the state is pure, this fact is important to obtain the quantum data processing

inequality as it is going to be important in Chapter 5 where we are going to discuss our results.
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Chapter 4

Quantum correlation

4.1 What is entanglement

A pure bipartite state |¢pap) living in Hap is said to be separable, if it can be written as a

product state of pure states |¢4) and |¢p) living in H4 and Hp respectively

[$aB) = |¢4) ® |65) - (4.1.1)

Of course this definition can be extended for multipartite mixed states, so in a more general
fashion, for a quantum state p that lives in H = ®§V:1 H; and for each Hj is associated a
sequence of density operators pj»v for each N and each j and with a sequence of probabilities p;,

we have that

k

p=> pilpi@p;®.@p "t ®p)). (4.1.2)
1=0

Any state that cannot be expressed in the same manner is called entangled [18]. Entanglement
reflects a purely quantum phenomena, in other words, an entangled state reflects nonclassical

correlations that are shared between two systems A and B. Examples of entangled states are
the Bell states

1

6) = 5(100) + [11), (4.1.3)
_ 1

67 = 75(100) = [11), (4.1.4)

) = ——(j01) + [10)), (4.1.5)

2

Sl
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1
V2

The Bell states form a family of mutually orthogonal states and each one of those are

™) (101) — [10)). (4.1.6)

maximally entangled. Maximally entangled means that if those states represent the spin of a
particle measuring the spin in any given axis will give a random outcome, meaning that it is
equally likely to obtain a component up as it is to obtain the down component. It is readily
seen that those states are entangled for our incapability to decompose them in product states.

If the have two states represented by

a1 0) + az [0) (4.1.7)

and
Brl1) + B2 (1), (4.1.8)

the tensor product of both is going to depend upon the product of the o and [ coefficients

04151 |00> + 04162 |01> + 04261 |10> —+ 06252 |11> > (419)

states like the Bell states would require some of the cross products to be zero while the other

not, so we can not guarantee that |a;|+|as|= 1 while |51 |+|82|= 1.

With product states we can always make a measurement in a certain fashion that if we
are describing a measure by the operator Pyg = P4 ® Pp the result is that each part of the
operator in the product state is only going to act on the state that lives in the respective
Hilbert space (i.e if Plx) = |y) then P4|z), ® |x)5 = |y) ® |z)z). So we can see each state
separately of each other. That does not mean that they cannot be correlated with each other,
but for entanglement this correlation is different. For entangled states like the Bell states every
measure done in one part of the state is going to affect the other part of the state, but this effect
on the other part cannot be explained by classical ways. Any kind of correlation that cannot
be described by just classical probability theory will then be pertained as quantum correlation.
It is not always simple to check if a certain state is or is not separable and for that there exists

separability tests such as the Peres—Horodecki criterion [19, 20].

It is of interest within quantum information to quantify entanglement and there are many
different forms of doing that. Each of them has an operational meaning since entanglement
is viewed as a resource to be used in several protocols. For each measure of entanglement it
is demanded that they satisfy certain properties, one important property is that entanglement
between two systems cannot be increased without quantum interactions. If there are two
parties and they are separated physically the entanglement they share cannot increase even if

they are allowed to communicate classically (e.g. via telephone), this scenario have a name
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Figure 4.1: Representation of two parties Alice and Bob that want to transform M ebits in N
arbitrary mixed states p4p by LOCC.

Local Operations and Classical Communication or simply LOCC. Now we are going to present

a few measures of entanglement.

4.1.1 Entanglement of Formation

There also exist a difference between measures of entanglement for pure and mixed states, for
clarity, let us consider first the pure state case. Let us call again for two parties, Alice and Bob,
as is represented in Figure 4.1. In this scheme Alice and Bob share various copies of maximally
entangled pure states that we are going to call ebits. The ebits are going to work as the unit
for entanglement in the sense that it represents a state with entanglement equal to one, or the
state that have one ebit of entanglement, and every other pure state can be related to that
state by some fraction of the entanglement contained in the qubit. Sharing those copies Alice
and Bob can ask themselves how many copies of the ebits that they share, they need to create
n copies of another pure state |¢) ,5. The restriction are the ones given by LOCC protocols,
only classical communication is allowed between Alice and Bob and they manipulate their part
of the states locally. It turns out that the answer is that they are going to need nS(¢4) [28],
where S(¢4) is the von Neumann entropy of one of the reduced density matrices of the state
that they want to create.

Now we can see that if S(¢4) = 1 then to create 2000 copies of the pure state Alice and
Bob are going to need 500 singlets. But if they are trying to create many copies of an arbitrary
mixed state p4p the von Neumann entropy is not a good measure anymore because even though
the entropy of the subsystems are greater than zero the system is not necessarily entangled,
leading to the wrong result. What they can do is to write a decomposition of the mixed state

pap in terms of pure states

N
PAB = sz‘ |¢z> <¢z| ) (4-1-10)
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for each index they are going to create n pure states |¢;) weighted by the probability of those.
By the same reasoning used before they will use np;S(¢;) singlets. In the beginning it was said
that the objective was to obtain a final mixed state, so any knowledge about the state must be
erased. This is done by "forgetting" the indexes. Then the number of singlets used must take

into account that the pure states could have any of the indexes so

N
Number of Singlets = ani5(¢i)

But as commented in Chapter 2, quantum states can be decomposed in several ways, so
the number of singlets could in principle change for each decomposition. This is not a desired
characteristic for a measure of entanglement. The solution is to perform a minimization over
all pure state ensembles, in this way the entanglement of formation is defined as the conversion
rate between the number of singlets used m and the number of singlets obtained n to perform

this conversion of quantum states

Ei(pap) = minzpi5(¢i>- (4.1.11)

4.1.2 Entanglement Cost

The motivation behind the entanglement cost is the same that was presented for the entan-
glement of formation. We wish to convert m ®* initial states into p n mixed final states by
applying a certain LOOC operation defined by A. For those large numbers m and n the ratio
of conversion will be r = ™, so the largest ratio possible will give the entanglement content
of the two states. This processing can be done considering perfect transformations that would
be represented by r. this restriction is very demanding, although interesting results can be ob-
tained by studying this case. So it is better to consider non perfect transformation and demand
that in the asymptotic limit when n — oo they become precise, in such a way that the errors
can be neglected. The rate r will be called achievable if for the conversion of those p®" initial
states, that will reach a final state, the end state is very close to the desired final state for large

m. In this case the entanglement cost is
Ec(p) = inf{r: lim (nAlfTr\pm - A(CD}")D - o}, (4.1.12)

where it is used the trace norm distance as a measure of difference between both states i.e.
D(«, 8) = Tr|a — B|. The relation between entanglement of formation and the entanglement

cost was established in [21] where it was shown that the entanglement cost is equal to the
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regularized version of the entanglement of formation

E
Ec = E¥ = lim ~.. (4.1.13)

n—oo n
This is connected with the problem of additivity of the entanglement of formation. For a long
time it was thought that this measure was additive i.e F(c®") = nFE(c) although a proof
was not known, if turned out to be true in general, it would imply that the entanglement of
formation is equal to the entanglement cost. But in [22] was proved using a counterexample
that in fact this conjecture was not true. The entanglement cost automatically, by being the
regularized version of the entanglement of formation, satisfies the additivity criteria. In fact the
regularization of various measures is used as an artifact to solve the problems with additivity

as with some others "problems".

4.1.3 Distillable Entanglement

It is feasible to ask about the reverse problem considered for the entanglement of formation and
the entanglement cost. In other words, given n mixed initial states (the final states from the
previous case) is it possible to get m pure maximally entangled states being this conversion rate
arbitrarily good in the asymptotic limit? The measure that gives this rate is called distillable

entanglement [25]

Ep(p) = inf {r : lim <ir/{f Tr|A(p®") — ®F.n ) = 0} . (4.1.14)

n—oo

Again the trace norm distance is used, and it is easy to see the similarity between both defini-
tions. Of course as it is for the entanglement of formation and entanglement cost this measure
is equal to the von Neumann entropy for pure states [26]. Also, it is known that the distill-
able entanglement is going to be less or equal to the entanglement cost Ec > Ep, revealing
some kind of irreversibility in processes that convert ebits to mixed states and mixed states
to ebits [27]. The process that can achieve the result of converting mixed states into pure
maximally entangled states is called entanglement distillation, entanglement concentration or

even entanglement purification protocols [28].

4.1.4 Purification protocol

The first purification protocol was presented in [29] where they propose a protocol that uses
the four Bell states (4.1.3) as basis in a LOCC protocol. In this protocol two experimenters
Alice and Bob start by converting a bipartite mixed state p into a Werner state [30]. Given

that a bipartite state with dimensions d x d, a Werner state is a state that is invariant under
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unitary operations of the kind U ® U. The transformation in done applying random bilateral

rotations composed by the operators I, B,, B, and B, resulting in

We = F ) @]+ 22 (100 (0t 4 167) (971 +10%) (67]). (4115)

The effects of the bilateral rotation on each Bell state is represented on Table 4.1. On the above
state we have F' = (¢~ | p|i)™) as the fidelity of the state in respect to the singlet state. This
means that for a fidelity close to one F' & 1 the state in question is going to be very close to
the singlet state. This vision of fidelity is general and it is used to see the proximity of different

states in comparison with each other. For example if we had F = % the state would read

Wy = 207 w4 2 (67 71+ 167) 4|+ 167) (9°1) (4.1.16)

meaning that this Werner state can be regarded as a mixture of % of a singlet state and % of a
triplet state, a classical mixture. We could say that the Werner state is different from the initial
state used and consequently this process would not be valid. But as the singlet is invariant
under bilateral rotations and the Werner state is symmetric the fidelity of both states is the
same. Also for two different mixed states if they can be represented by the same density matrix
they are also physically identical, since if we measure a mixed state o in a orthonormal basis

|x) the outcome will be |x) with probability (x| |x).

Table 4.1: Bilateral rotations

Source B, B, B,
AN R Chs
¢~ = o7 YT 9T
(I U
A A A

Besides the Bilateral Rotation or 7/2 rotations other operation are used on this purification
protocol. Unilateral Pauli Rotations or rotation of 7 radians that are represent by the Pauli
matrices (0, 0y, 0,) are used too, their action is shown on Table 4.2. And Bilateral XOR
operations Table 4.3, this operation is a controlled NOT gate that is applied bilaterally by
both parts in the protocol. Using a source state depending on its spin orientation the chosen
target state is going to have its spin flipped. And it is bilateral because it is going to operate
in two pairs shared between the two members Alice and Bob, where one of the parts (Alice)
can act upon spins 1 and 3 and the second part (Bob) on spins 2 and 4. As an example if we
have a source state [¢)~) and the target state |¢1) like [¢)7) |¢T), applying the Bilateral XOR
(BXOR) operation will proceed:
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1

BXOR[[y)16")] = 3 BXOR(0) [1) = 1) 0))(100) + [1)]1)
= S BXOR(0) [1)]0Y]0) +10) 1) 1) [1) ~ 1)]0) 10) o) — |1} 0} 1) |1)
= S (0)[1)10) 1) + 10} [1)[1)]0) 1) [0} [1)[0) ~ [1) 0} [0} 1))
= 20} 1) 1) 0))([0) 1) +]1) o)
— ) o). (4.1.17)

Recalling that the spin 1 will only act on spin 3 and spin 2 only on spin 4. Our two experimenters
Alice and Bob will also measure their system along the z axis. The utility of performing this
measurement on this axis is because it allows Alice and Bob to differentiate between the states
¥ and ¢. So it follows that they first perform a unilateral rotation along the y axis on two pairs
in accord with the Table 4.2. This will convert any v~ states into ¢*, after that a BXOR will
be performed on the ¢* states followed by local measurements on the z axis of the target pair.

If this results in parallel spin

Table 4.2: Unilateral Pauli rotations

Source oy Oy O
A R U
- = YT T gt
L A A
A A

Table 4.3: Action of the bilateral XOR. rotations according to the source and target states

Source Target Source after Target after
Ve Pt
o Wt o ¢ o
o v o 6
vy ot -
vt oy o
N gt
R S v
. o

it means that the states are ¢ states. Being that true, Alice or Bob, depending on which hold

the source and target pair, can send a message by classical means to the other party informing
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the result. If they are ¢™ states the source pair is kept if not it is going to be discarded, because
it is a ¢ state. Originally this was done because the state ¢ is invariant under BXOR when
used as source or target, and being invariant makes the calculations easier. So if the state was
kept, another Pauli rotation o, would be perform to convert the ¢ to a ¢/, them this singlet
would be made symmetric by bilateral rotations. This process alone guarantees that if F' > %
then F’ > F and the fidelity of the final state equal to

B F?+3(1-F)?
P2+ iF(1-F)+3(1-F)*

/

(4.1.18)

At that point this initial procedure does not give a significant yield in the asymptotic limit,
but if after getting those prepurified states ¢ and start a BXOR test the yield can be assured.
This test works like a parity test to distinguish the states and find the 1 states. So the protocol
consists of applying the BXOR operation on part of the source states that weren’t transformed
by the previous steps to find every ¢ states, them by them performing unilateral rotations o,
Alice and Bob transform all ¥ to ¢ states. Notice that they do not know if the states are :
but as the former states are all related to the later states by those rotations we can guarantee
to have only ¢i after that. But it is desired to obtain only ¢ so the next step is to find
those states among the gbt, applying Bilateral rotations B, on this set will change every ¢~
to 1 but won’t change the ¢* states. Finally the 1™ are found by doing a BXOR test and
transformed into ¢+ by o, rotations. The yield obviously is given by the ratio of initial and
final states r = . Since them a lot of other purification protocols have been made like the

One way hashing protocol or more general protocols [31].

4.2 Quantum Discord

In Chapter 2 we discussed about two measures of correlations. The quantum mutual information
would represent the total correlations of a certain bipartite system and the classical correlations,
like the name suggest, would be the classical correlations of a certain system when you extract
the information due to measurements on part of the system. As it was mentioned those two
measures are different in general and the difference between those two ways of writing the mutual
information is a measure known as Quantum Discord (QD) [34]. For a bipartite quantum system
Hyp

5(p5s) = [(pan) — J(p5). (4.2.1)

The quantum discord is considered a pure quantum mechanical quantity and defines the quan-
tumness present on a system, or the total quantum correlations that exist on that system, the

<+ indicates the direction of the operation so that in the equation above B is performing the
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measurements. The later definition of discord is straightforward since the quantum mutual
information quantifies the total correlations on a bipartite system and the classical correlation
the total classical correlations on the same system. Taking the difference must result on the
quantum correlations that are present. As the shape of the state depends on the base that we
choose to take the measurement that quantity can give different values for different decompo-
sitions, so we are always concerned with the set of operators {II?} that are going to minimize
the discord

0(piap) = minll(pan) — J(pap)]- (4.2.2)

(3

This concern open up the second interpretation for discord, that discord represents how affected
by measurements one state is, so doing the minimization guarantees to find the measurement
that is going to disturb the least the chosen state but at the same time is capable of extracting

information from it.

We can remember that entanglement is also a measure of the quantum type present on
nonseparable states. Quantum Discord on the other hand differs from entanglement on that
aspect because even separable states can manifest discord. An example is given on the original
paper from Harold Ollivier and Wojciech H. Zurek [34], for the Werner state

p=2l97) o+ 10, (4.2.3)

with 0 < z < 1. In Figure 4.2 is shown a reproduction of the behavior of the quantum discord
for the Werner state above varying the parameter z. It is know that for that specific Werner
state its separability depends on the value of the parameter z. We can see that for values
smaller than z = % the state is separable and for values greater than z = % the state is not
separable, or in other words, entangled. It is clearly shown that, even thought being smaller
in the region corresponding to the separable Werner state than it is for nonseparable part, the
state still exhibit discord for both regimes of the Werner state, that is separated by the vertical
dotted line. It is good to notice that for this state discord is not going to depend on the basis

of measurement since the Werner state used is invariant under rotations.

We will present a few properties of discord that are worth of mentioning, the first one is

that discord is nonnegative

5(p'y) = 0. (4.2.4)

This follows from the fact that [34]

>_piS(pp) = S(pas) — S(ps)- (4.2.5)
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Figure 4.2: The values of quantum discord for the Werner state (4.2.3), varying the parameter
z. The blue line marks the value for which the state in question stops being separable. Adapted
from [34].

So the nonnegativity follows.
And discord is zero only when there are no quantum correlations on the state. The following

proof and theorem are due to [35]

Theorem 2. 0(p5z) = 0 if and only if the state pap is block diagonal in its own eigenbasis,
that is

PAB = Z PipapP;

Proof 2. We can write a decomposition of the Hilbert space Hp as

]lB :ZHe:ZHeL®HER

With 1111\ = 6.\1Ily, so given a papc that is invariant under the exchange of B and C, we

can use Theorem 5 this state is

PABC — Z qePAle & peBC

so for projectors

we have
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Ppc = eppclle = sze‘j | Fei) <F6j| ® [Hei) (Hejl
i?j

and
pAB = 054 @ |Fai) (Fuil

€,1

By undoing the measurements we get
PAB = 26: qeP Al @ P
so we them diagonalize pz and relabel the indices
PAB = ZpiPAﬁ ® | Ai) (N (4.2.6)

]

In [37] Vedral et. al. proved that this last relation can be further generalized by showing
that the condition (4.2.6) can be expressed as

L L
n=1 k

n=1
with S, = >, U A and F,, = >, Wi Br. So they write the state p in a new basis
where: it assumes the form p = 3 ¢,S, ® F,; U and W are orthogonal square matrices; and
n = 1...d4 and m = 1...d%, being d% the dimension of U and d% the dimension of W. With all
this the condition (4.2.7) is obtained, and it is equivalent to

k

As the set {5, } have eigenbasis defined by {II;}. The condition (p%z) = 0 happens if and
only if

[Sn, Sm] =0, n,m =1...L. (4.2.9)

The two last things that are good to mention is that quantum discord can be larger, equal
or smaller than the entanglement of formation [36]; even though there is no entanglement if
there is zero discord.

Usually in the classical case the discord is going to be zero because there is no difference on
the conditional information as it is usually written and taken into account in measurements.
This means that it is accepted that classical systems are not vastly affected by measurements

on one’s system. So how Bob would choose to measure his part of a bipartite system shared
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with Alice, in principle should not affect greatly the amount of information that Alice could
obtain from her part of the system conditioned to Bob’s part. But this is not generally true
since we cannot say that all possible measurements that Bob can perform are perfect, it is

possible to take into account imperfect measurements due to noise, creating a classical discord
[32].

4.3 Locally Inaccessible Information

There is yet another way to think about the quantum discord. Depending on the choice of basis
that we could choose, the amount of information extracted from a system can vary. Even when
the choice of basis is really good it is possible to not being able to access all the information
shared between subsystems. The measure used for that is the quantum mutual information.
So we see that there are different kinds of information that are locally accessible for each party
and locally inaccessible, were both are present on the mutual information. The thing is that
the classical correlation for its character is a measure that represents the locally accessible
information present in a subsystem. It is straightforward to see that the quantum discord
must them be the amount of locally inaccessible information (LII) from the subsystem that is

performing the measurement. For

S(0'ts) = minll(pa) — J(ps)) (4.3.1)

(3

or even rephrasing in terms of the conditional entropies the discord is

5(ps) = S(pasl{IIP}) — S(A|B). (4.3.2)

It is easy to see the if all information about A is locally accessible through measurements
by B the conditional entropies are going to be equal. The less that the system is disturbed by
this measurement the smaller the discord is corroborating with the interpretation given before.

The measurements do not need to be done only by one side, this could be done by the

opposite side

0(ppa) = minlI(ppa) = J(ppa)l (4.3.3)

k3

But the discord is not a symmetric function d(p%z) # 0(p54) and we see that the information
that is not accessible through local measurements from A is different from the inaccessible
information from B’s point of view. Given a tripartite system Happ it is possible to perform

sequential measurements, Figure 4.3, in a closed form i.e. £ — B — A or in the opposite
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Figure 4.3: Hlustration of the flux of locally inaccessible information due to pairwise measure-
ments from and to different systems measured by quantum discord in a tripartite system.

direction i.e. A — B — FE of the quantum discord for pairwise contributions

;CE_)B_>A — 6§E + 6;4_B + 6<E_A’ (434)

As the quantum discord reflects the locally accessible information the sequential measure-
ments from one system to other will them represent the flux of locally inaccessible information
L on the tripartite system. These last forms will be relevant for interpretation given in the

next chapter.
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Chapter 5

Bounded Strong Subadditivity

5.1 From weak monotonicity to b-SSA

Among all those properties of the von Neumann entropy there is one in particular that is very
important, it relates subsystem in a tripartite system characterized by the state papc. The

strong subadditive of the von Neumann entropy (SSA):

S(pasc) +S(ps) < S(pas) + S(pse). (5.1.1)

Some further understanding of the meaning of this inequality can come if we rewrite it in terms

of the conditional entropies

S(A|B) > S(A|BC), (5.1.2)

we see that the uncertainty about system A is not decreased by knowing the system C if we
already had knowledge about the system B [17]. Its importance comes from the fact that we
can get all quantum information inequalities from it. So its applications go from the Holevo
bound [38] to the quantum data processing inequality, and channel capacities. Until now there
is only one inequality not been related to it [9]. The SSA was conjectured first in 1968 in [39]
a few years before the appearance of its actual proof by Lieb and Ruskai in 1973 [40] and [41].
The proof relied on a theorem proved by Lieb [42] about the concavity of functions of hermitian
matrices. There are various ways of demonstrating the strong subadditivity property of the
von Neumann entropy, one of those is by using the fact that the quantum relative entropy is

monotone under quantum operations. This is also known as Ulhmann’s theorem as follows

Theorem 3. For any two states pap and cap the quantum relative entropy S(pag||loas) can

only decrease under the application of a noisy map I’

S(plle) = S(T'p[[To). (5.1.3)
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But we are not going to take this path for the proof since originally the monotonicity of
the quantum relative entropy was proven at a later point than the strong subadditivity, so we
are going to preserve the chronological order and give the original proof. Starting with the

concavity theorem of Lieb, as it is an important step for the proof of the SSA.
Theorem 4. For any three R,S,T > 0
1 1
T
S+zx21 S+l

where it is not necessary that R,S and T commute, for the equality condition to happen.

)
TrelonglogSJrlogT < T’I”/ R d;C,
0

Proof 3. We know that for any hermitian matriz K the following function
F(A) = Treftlos 4 (5.1.4)

is concave in A > 0. But if F(A) is concave and homogeneous (i.e. F(rA)=zF(A)) we have
that

lim F(A+aB)— F(A)

z—0 x

making the substitutions A = S, B=T ¢ K = log R - log S we get

> F(B), (5.1.5)

T’I"elOg R—log S+log(S+zT) __ TrR

Trelos filos S+log T < iy (5.1.6)
z—0 €T
For simplicity let us define
Z, = log(S + 2T) — | (S)—/OO Lo L (5.1.7)
1=008 * )=y Sl S aT +ul ™ o
Then we will end up with
log R+Z1 __
TrelosR-tog s +losT < piyy 17 Ik (5.1.8)
z—0 x
Separating the exponential and doing a Taylor expansion, we see that
S| 1
Tre s R+2 — TrR TR/ T d 5.1.9
re rR+ Tr ; S—i—u]lx S ul u, ( )
therefore
Trelogfi=logS+logT < / “ret ol g o (5.1.10)
- 0 S+ul S+ul

This theorem is the right expansion for a tripartite system of the Golden-Thompson-

Symanzik inequality [43-45].

Tre*B < Trede?, (5.1.11)
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where A and B are Hermitian matrices and now the equality is only satisfied if A and B

commute. Armed with this result we can tackle the strong subadditivity.

Proof 4 (Strong Subadditivity). The elements of the SSA are

S(pas) + S(ppc) — S(papc) — S(pB)- (5.1.12)

Rewritting it in terms of their definitions we get

TrABCpABC[log paBc + log PB — log PAB — log pBC]- (5.1.13)

The Klein’s theorem have as one of its consequences the following inequality

Trp(logp —logo) > Tr(p — o). (5.1.14)

Making p = papc and e'°erap=logpstlogrnc yeo get

Trpapc(log papc — log elogpAB*IngBHngBc) > Tr(papc — 610gPAB*10gPB+lngBC>7 (5.1.15)

as we seen the elements in (5.1.12) take the form of the quantum conditional mutual information
(2.1.23) so we have that

[(A, C|B) Z TTABC’[pABC — elngAB_long+10ngc]. (5116)

Applying the concavity theorem from Lieb

1 1

d 5.1.17
pBer]lpBCpB—i—:p]l Z, ( )

I(A;C|B) > Trapepasc — TTABC/O PAB
and taking the partial trace on systems A and C

1 1
B +x]lpoB + 1

[(A:C|B) > 1— T, /OO 0B d. (5.1.18)
o p

Therefore

I(A:C|B)>1— Trgpp =1—1=0. (5.1.19)

Then is straightforward to see that

S(pag) + S(psc) > S(pasc)+ S(ps). O (5.1.20)

We can see that the fact that the von Neumann entropy is subadditive implies the positivity

of the quantum conditional mutual information. This is an important remark and shall be used
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again. The last important result was obtained in [8] and it describes the structure of states

that saturates the strong subadditivity of the von Neumann entropy.

Theorem 5. A state papc on Hy ® Hg ® He satisfies strong subadditivity with equality if and

only if there is a decomposition of system B as

J

into a direct sum of tensor products, such that

PABC = @CijAbJL X pbfa
J

with states pypr on Ha @ Hye and pyre on Hyr @ He, and probability distribution {q;}.
J J J J

The requirement for this structure of states may be a bit elusive for the reader, further
information about those requirements can be found in Appendix A. Also for completeness we
will give an example for one of the applications for this theorem, that can be found on the
original paper [8]. Rephrasing the coherent information in terms of a pure entangled state o,

an operation ¢ that acts on just half of o and n” that is a purification of o to system A we have

Le(0)¢(0)) = S(¢(0)) = S((Ta ® d)117). (5.1.21)

If and only I.(0)¢(0)) = S(0) it is know to exist a quantum operation ¢ for which

(La® op)n” =11°. (5.1.22)

We can express the coherent information and the von Neumann entropy in a such a way that
I.(0)p(0)) = S(o) is going to be satisfied if and only if I(A; BC') = I(A : B). By the theorem

above we know that for states of the form

p =B apa @ prc, (5.1.23)
J

The relation I(A; BC) = I(A : B) will be satisfied and this problem, that is related with
quantum error correction and the capability of perfectly reversing a quantum operation, is
solved.

As it was stated this is a very important inequality and in [46], two relations that were first
brought up by Koashi and Winter [47] were studied further. The first one is an equality relating
the entanglement of formation (Eof), the Classical Correlations (CC) and the von Neumann

entropy of the commom subsystem, in a tripartite pure state papc

Eup + JXC = S(,OA). (5.1.24)
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It is possible to see that this relation imposes restrictions on the amount of correlation that
system A can share in a tripartite system Hapc. If a system can hold up to S(pa) of correlation,
the amount of quantum correlations, measured by entanglement with BC, that the system can
share with other parts is limited by the classical correlations present on that system. Adding
the mutual information of the subsystem H4c, the I(pac), on both sides of the equation we

get

Eap = 0% + S(A|0), (5.1.25)

which also can be written in terms of others parts of our tripartite pure state pspc. For
example, if we write it in terms of system B, substituting the system A, we get Fsc = 055 +
S(A|B). Those relations reveals some connection between the entanglement of formation of a
bipartition of any tripartite state and the quantum discord of one of the subsystems, of the same
bipartition, in relation to the third part of the global state that was not taken into account for
the entanglement of formation. Or in other words, the amount of entanglement in a bipartite
state limits the quantum discord that can be shared by those systems with a third. Since the

state is pure

S(A|C) = Sac — Sc = Sg — Sap = —S(A|B), (5.1.26)

where it was used the property of the joint entropy (2.1.11). Adding the expression (5.1.25)

taken into consideration the systems A and C and A and B it is obtained

Eip+ Euc I(SXB—F(SXB (5127)

This is argued to be a conservation relation for the distribution of the entanglement and the
quantum discord in a pure tripartite system. According to the authors [46]: Given an arbitrary
tripartite pure system, the sum of all possible bipartite entanglement shared with a particular
subsystem, as given by the EOF, can not be increased without increasing, by the same amount,
the sum of all QD shared with this same subsystem. A very similar analysis can be done to
the same relation (5.1.24), with one differential, the global state now is mixed. When this is

the case the Koashi-Winter relation ceases to be an equality, becoming:

Eup §5AC+S(A‘C) (5.1.28)

Again it is possible to write the relation above switching the state B for the state C. If both
inequalities, the one with the entanglement of formation in terms of the state p4p and the one

with the entanglement of formation in terms of the state p4c are summed, we are going to have

Sc+ S+ Eag+ Eac —dac — 0ap < Sac + Sas, (5.1.29)
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defining the difference between the Eof and the QD as A we get

Sc+ S+ A < Ssc+ Sas. (5130)

This inequality is the weak monotonicity of the von Neumann entropy [15], besides the
A which serves as a bound. The weak monotonicity is known to be equivalent to the more
interesting inequality the strong subadditivity. If there is an equivalence between those two
inequalities there must be a equivalency from the equation (5.1.30) to a bounded strong subad-
ditivity. The next step then is to derive the SSA with the new bound. We start by expanding
the tripartite system papc to a quadripartite pure state papcgr so that for the tripartite part

of the state papr we have

SR+SB+EAB+EAR_5AR_5ABSSAR+SAB- (5.1.31)

With this we can manipulate the entropies of the weak monotonicity changing Sr = Sapc and
Sar = Spc, resulting in

Sapc+ Sp+ FEap+ EFap — 0ar — 04 < Spc + Sap. (5.1.32)

We can see that the entropies already agree with the form of the SSA, but we still have to deal
with the balance of quantum correlations A. For this we use the conservation relation (5.1.27)

for the pure tripartite state pspc)r resulting in

Ear + Ease) = 0ap + 52(30)7
Ear — 04p = 52(30) — Eapoy). (5.1.33)

Then the equation (5.1.32) turns into

Sapc + S+ Eap + 52(30) — EA(BC) —0a < Spc + Sus. (5.1.34)

Defining a new delta A’ for the balance of quantum correlations as

A/:EAB‘F(SX(BC) _EA(BC) —5,43, (5.1.35)

we get

SABC+SB+A/§SBC+SAB- (5136)

This relation is the strong subadditivity lower bounded by A’, that translates to a lower bounded
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quantum conditional mutual information

I(A;C|B) > A (5.1.37)

It is good to point out that in principle A can be greater, smaller, or equal to zero. This is
due to the fact that for some states the entanglement of formation of a given bipartite state can
surpass the quantum discord for the same state, this can depend on the type of the state or the
mixing, for example in certain Werner or Quasi-Werner states where the factor F' is the mixing.
Depending on the distribution of quantum correlations the bound gives different conditions for
the equation (5.1.36). In the case that the Eof is equal to QD the bound becomes A = 0 and
we recover the usual strong subadditivity; if the Eof is greater than QD we have A > 0, then
we can get a stronger SSA, stronger is considered in the sense that the usual inequality only
states that the quantum conditional mutual information must be greater than zero, and a value
above that implies on a more restrictive bound, therefore, a stronger bound. Or a weaker SSA,
when the Eof smaller than QD and A < 0, where weaker means that every value below zero is
already considered in the original inequality, then it can render less restrictive bounds. With
A" we have a similar situation but the balance shifts and the positivity is dependent on the
difference between the QD, since the difference in entanglement for this case is going to give a

value smaller than zero.

5.2 Structure of States

Given that the result obtained by Hayden et al. [8], about the structure of states that saturates
the SSA and the SSA gave rise to a lot of important results it is of interest to see what type of
states will saturate the inequality (5.1.36). We start by noticing that the strategy applied by

Hayden et al. was based on the quantum relative entropy and the theorem [51, 52] below.

Theorem 6 (Petz’s theorem). Given two density operator p and o,

S(plle) = S(Tpl|To),
if and only if, there exists a quantum operation T, such that

TTp = p,

and
TTo = o.
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The quantum operation T for the density operators p and o, explicitly, is

=

Tp=o02T'((To)2p(To)?)o?. (5.2.1)

We will explore a little further this theorem up ahead.

With this approach in mind we shall find representations for the quantities of equation
(5.1.36) in terms of relative entropies. Then the above mentioned theorem will be useful to
determine the states that will saturate the b-SSA by applying the right quantum operation
T. There are three elements that need to be investigated for this, the quantum conditional
mutual information, the entanglement of formation and the quantum discord. The quantum

conditional mutual information follows trivially since

I(A;C|B) = S(pascllpa ® pc) — S(pasllpa ® ps). (5.2.2)

So let us first turn our attention to the quantum discord, remembering that the quantum

discord for a bipartite system is

0(piap) = minlI(pan) = J(pap)]- (5.2.3)

K3

Again the mutual information comes easy as it is a special case for the relative entropy, I(pap) =

S(pag|lpa ® pp). For the classical correlation
J(pip) = at [Sa =D piS(palp)], (5.2.4)
B i

it is possible to use the states ®p(pp) = s pi [¢¥) 5 (V] and Pp(pa) = X pip's @ |¥) 5 (Y|

J(pap) = S(pa) — sz-S(pZIH"B)
= S(pa) = 2_piS(p4|llp) + H(X) — H(X)

= Sa+ S(¢B(pB)) — S(é5(paB))
= S(¢B(paB)llpa ® ¢B(pB)), (5.2.5)

where H(X) is the Shannon entropy written in terms of the probability distributions p;. Then
the QD is going to be

0(pap) = rgi_Bn[S(pABHpA ® pg) — S(¢B(pas)llpa ® ¢B(pB))], (5.2.6)

3
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and with a very similar analysis we can get the QD to the extended system

5(Pacpey) = Iglgg[*g(PABCHPA ® ppc) — S(¢sc(pasc)|lpa ® ¢s(psc))]. (5.2.7)

7

Now we turn our eyes to the entanglement of formation

E¢(pap) = min ZPiS(Pix)- (5.2.8)
{pilvi)}

From the previously development we already know that the RHS of equation (5.2.8) is

>_piS(pla) = S(é5(p5)) — S(d5(pas))

= —[S(¢B(par)) — S(¢B(pB))]
= —S(n(pa)|65(p5)). (5.2.9)

This is not exactly the form that we want, it is necessary to connect the conditional entropy

and the relative entropy. We are going to use the next relation for that purpose

S(¢B(pa)loB(pr)) = —S(¢8(pap)|la ® ép(pB)), (5.2.10)

Proof. We start expanding the conditional entropy (5.2.9)

S(¢B(ﬁA>‘¢B(pB)) = S(¢B(PAB)) - S(¢B(PB))
= —Tr{ép(pap)log dp(par)] + Trigs(ps)log ou(ps)], (5.2.11)

adding and subtracting Tri¢pp(pp)logla @ ¢p(ps)]:

S(¢B(pa)los(ps)) = —Trigp(par)log ¢p(par)] + Tri¢r(ps)log d5(pB)]
+ Tripp(pp)logla @ ¢p(pp)] — Tri¢s(ps)logla @ ¢p(pr)], (5.2.12)

and using that log 14 ® ¢p(pp) =log(ls) @ 1p + 14 ® log(pp) we get

S(¢B(pa)los(ps)) = —Trigp(par)log ¢s(pas)] + Tri¢s(ps)log d5(ps)]
+ Trl¢s(ps)log 14 ® ¢5(ps)] — Trallog ds(ps) Tral¢s(pas)]]
= —Tr{¢p(pan) log 9p(pap)] + Trldp(pas) logla @ dp(pp)]
= —{Trép(pap)|log(par) +1og1a ® ¢5(pr)|}
= —S(¢5(pap)|la ® ¢5(pB))- (5.2.13)
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With this we have both our relations for the Eof

E¢(pa) = S(¢p(pan)|la ® ¢5(pn)), (5.2.14)

and for the extended system

Es(paey) = S(¢po(pasc)|la @ ¢pclpse))- (5.2.15)

We are omitting the minimizations of the entanglement of formation and for the quantum
discord, because the form obtained for both measures, as the derivation of those forms is
independent of the minimizations performed. It is possible to realize the minimizations over
the respective operators, but it is not necessary for the continuity of our discussion. Uniting
equations (5.2.6), (5.2.7), (5.2.14) and (5.2.15) back into (5.2.9) we get:

I(A;C|B) 25(®5(pan)||1a ® ®p(pr)) — S(®ac(pasc)||la ® ®pe(ppe))
+ [S(pascllpa @ pre) — S(Ppc(pase)llpa @ @polpspe))] (5.2.16)
— [S(pasllpa ® ps) = S(®5(pas)llpa @ P5(ps))]-
Now we can ask when does that inequality will be saturated. We notice that when the conditions

that

S(®s(pan)llpa @ ®(pr)) = S(Ppc(pasc)llpa @ Peclpse)), (5.2.17)

and

S(@p(pan)||la® Pp(pr)) = S(Prc(panc)||la® Pre(pre)), (5.2.18)

are satisfied for the bounded relation, it will render saturation. Now we are in position to
apply Petz’s theorem, by finding the quantum operation that will make equations (5.2.17) and
(5.2.18) happen. The quantum operation T that is considered in Petz’s theorem is called a
transpose channel or more usually a recovery map [51] Rp_,pc that takes the system B to BC,
as the notation implies. For the state in question ¢g(pap), that was utilized in the conversion

of the measures into relative entropy forms we are going to have

Rp_pclop(pas)l = Re—pc Zpiﬂfq ® [¥) g (V]

Ppc(pasc) = P @ Y piirh © Wj)biL (5] ® wyre, (5.2.19)
7 )

where wyre € Hyr @ He, |1/;J'>b.L € Hyp and Hg = Hy,r ® Hyr. This is the state which gives
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Eap = Max \‘ Eapr =i

Alice Carrie

Figure 5.1: Diagram to represent the monogamy of entanglement between Alice and Bob given
a third part Carrie. Adapted from [49].

saturation to the bounded SSA. We can see that saying that the state ¢ppc(papc) is recoverable
from the state ¢p(pap) may be considered a sufficient condition to name states of this kind as
short quantum Markov chains, fact shared to the structure of states conceived by Hayden et al.
for the unbounded SSA. Reviewing the conditions (5.2.17) and (5.2.18) they are in fact requiring
that Er(pase)) = Er(pas) and that J(pipey) = J(pip). The later relation states that the
classical correlation between A and BC remain equal to A and B, which is not unheard of, but
the former establishes the same ties to the entanglement of formation of those bipartitions. This
implies, especially for cases where this relation is nearly achieved, certain limitations in how
the entanglement of A can be shared among the subsystems B and C revealing a monogamous

character [48] for the entanglement of formation.

Monogamy of measures that express quantum correlations, is the implication that we cannot
share those correlations as we wish between various parties. In a way that if there is some
amount o quantum correlations that is divided between two parties the amount that we can
share with a third party is limited (this can be seen in Figure 5.1). The picture contains Bob,
who shares an entangled state with Alice and there is Carrie who wants to share an entangled
state with Bob. If the state that is shared between Alice and Bob is maximally entangled
then Bob cannot share his entangled state with Carrie, but if it is not then some amount of
entanglement can be shared depending on how much his part is entangled with Alice’s part. Of
course this property is valid for every part in the scheme above. Monogamy is a useful quality
for quantum cryptography, like in quantum key distribution [50], where we want to limit the
access of third parties in two way communications. As this state may exhibit monogamy it

may be useful in quantum cryptography protocols.
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Figure 5.2: Representation o a bipartite state where one of the parts, Bob, decides to operate
in his part of system. Adapted from [14]

5.3 Quantum channels with bounds

Now we are going to look to the implication of the bounded strong subadditivity in the quantum

data processing inequality. As said before the quantum data processing inequality is

L(A)By) > L(A)By). (5.3.1)

This inequality shows that processing a quantum system through a channel will always decrease
quantum correlations. And the aim is to determine how the bound on the SSA will affect this
inequality. The first step is to deduce the quantum data processing inequality from the strong
subadditivity using a suitable notation. For the first stage of the process we will have the global
state as AB;FEq, for the second stage it will be AByF; Es, and the indexes are used to establish
which part of the processing is been considered. Then F; and F5 are going to represent the first
and second environments respectively, B; is going to represent Bob’s state the operations in
the first stage, i = 1, and the second stage i = 1. As the state from Alice is not been operated
on, different pats of the processing are not going to change Alice’s state and the indexes will
not be used. Defining the state that we are going to take into consideration as the tripartite

state pag, g,, the quantum conditional mutual information is

[(A, E2|E1) = SAE1 + SE1E2 — SEl — SAE1E2a (532)

with the same ordering of equation (5.2.9). Since the global state pap, g, on the first stage after
B processed his part of the system is pure we can write the coherent information between the

system A and B as

1.(A)B1) = Sp, — Sap, = Sap, — Sg, (5.3.3)

and the same is valid for the second state of the processing, pap, g, g, is pure, and the coherent
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information from system A and B after the second stage will be

I.(A)Bs) = Sp, — Sap, = Sap,m — SE1Bs- (5.3.4)

Were again the notation used is to clarify when we are talking about the first part of the
processing, by using a 1 index, and the second part of the processing where we use a 2 index.
Uniting equations (5.3.3) and (5.3.4) it is clear that

1.(A)B1) — I.(A)Ba) = I(A; Eo| Ev). (5.3.5)

Paying close attention to the parts of the stages that are pure, we can use the conservation
relation (5.1.27) leaving the quantum discord and the entanglement of formation in terms of

the same systems of the coherent information. Therefore

Eap, — EA(EIEQ) + 51<4_(E1E2) - 5;1_E1 = Eap, — Eap, — 5;1_132 + 5;1_131- (5-3~6)

Substituting the results above in equation (5.2.9) we obtain

1.(A)By) — 1.(A)B2) =2 Eap, — Eap, — 044p, + 4p, (5.3.7)

or reordering the terms on the RHS

1(A)By) = 1.(A)Ba) = (Eap, — 04p,) — (Eap, — 04p,)- (5.3.8)

The bound on the strong subadditivity will then translate into a lower bound for the quantum
data processing inequality, bound that is the difference between the quantum discord and
entanglement of formation for the first stage and the difference between those measures in the
second stage. As it was said, it is not clear whether or not the difference in parentheses in
equation (5.3.8) is positive, zero or negative. If we have a balance of quantum correlations such
that the lower bound is greater than zero for the quantum data processing inequality would
make a stricter bound than the usual implying that the quantum correlations carried trough
different stages would improve along with the processing of quantum data, in other words, it
would suggest that the processing of quantum states through channels can be improved. As
there is an independent proof for the quantum data processing inequality, perhaps quantum
discord has something to contribute on the exchange of correlations during such process, in a
way that could compensate for the loss of entanglement and the improvement could be achieved,
or this result is simply not physical when the bound resumes to a stricter value than zero. Let

us go further on the difference between those two measures. Using yet again the conservation
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relation, but for different parts of the global pure state pap g, g.)

EABZ + EA(E1E2) = 6232 + 5X(E1E2)’ (539)
Ep,a+ Epy(5i5y) = 0pya + 055y 1) (5.3.10)

and
B g)a + Epymim) = 6(E1E2)A + 5B2 (E1E2)" (5.3.11)

Adding those relations we get

2(EaB, — 04p,) = Opya — Oap, + 0 m) — O(Brma)A T OBy (miEs) — OB E) B
1

Eap, — 04p, = 3 ('C(ElEQ)—)A%B - £B—>A—>(E1E2)) ' (5.3.12)

Where it was used the definitions (4.3.4) and (4.3.5). The Lg, g, .4 p is the flux of locally in-
accessible information that is going out the environment after both stages and the Lp_, 4 (g, )
is the flux of locally inaccessible information into the environment. Then the difference between
the measures is equal to the difference of the LII, in that way we can define the net flow of

locally inaccessible information in the second stage as
1
§(£E1EQ~>A~>B — LB oAsEE) (5.3.13)

Then the relation (5.3.8) can be written as

£R{E1 Eo} =

L(A)By) — I.(A)YBy) > Lugpy — Lrip,- (5.3.14)

Relation (5.3.14) brings some intuition, because it shows that the quantum data processing
inequality is lower bounded by the net flux of locally inaccessible information through both
stages when measurements are performed in Bob’s system. It is expected that the difference in
flow of the locally inaccessible information is greater if taken into account both stages of the
processing, because through the processing of the state on both stages the information that Bob
can extract locally should be less than the information only extractable in the first stage. Of
course that it depends on how we choose to measure our states on each step of the processing,
or equivalently, how much the state in question is going to be disturbed by those measurements.
Being true this tells the bound should be positive and the data processing greater than zero.

If the net flux is zero between both stages than the normal bound, zero, is recovered.
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Chapter 6
Conclusions

The strong subadditivity is a key inequality in quantum information theory being the link
among multiple inequalities and non trivial results inside quantum information and apart,
for example, in many-body physics. The investigation of the structure of states that would
saturate this inequality was done by Hayden et al. were they find the structure to be of the
short quantum Markov chains, this result was far-reaching given the importance of the strong
subadditivity itself.

In examining the two Koashi-Winter monogamic relations Fanchini et al. brought to light a
conservation relation between the entanglement of formation and the quantum discord in a tri-
partite pure state that show that for any bipartition of a tripartite pure state the entanglement
of formation would decrease or increase by the same amount that the quantum discord of the
same bipartition would. Together with that result a different proof for the weak monotonicity
of the von Neumann entropy appeared but bringing a possible lower bounds with it. The struc-
ture of states that saturated the SSA helped with other results, since the weak monotonicity
is a equivalent inequality to the SSA it was asked in this work what is the structure of states
that are going to saturate the equivalently bounded SSA.

We first derived a bounded strong subadditivity from that inequality, this bound depended
on the balance of quantum correlations that are shared in a system measured by the entan-
glement of formation and the quantum discord. We saw that if the Eof is equal to the QD
the bounded SSA becomes again the SSA; if the Eof is greater than the QD the bounded SSA
gets more strict than the usual inequality, and if the Eof is smaller than the QD that bound is
weaker. We then investigated the structure of states that render the bounded strong subaddi-
tivity of the von Neumann entropy with equality. For this firstly we found a way to express the
whole inequality in terms of relative entropies. This included the two measures for quantum
correlations: the entanglement of formation and the quantum discord. With that result we
used the Petz’s theorem to find the condition for equality among the measures, and applying

a recovery map we found the states that would saturate the bounded inequality. Those states
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like the states that saturates the SSA can be called short quantum Markov chains, in the sense
that the tripartite state can be completely recovered by acting on one system of the bipartite
state. Also those states require the entanglement of formation to respect monogamic relations.
Monogamy of entanglement limits the amount of entanglement that can be distributed among
different parties, if maximum entanglement is shared between Alice and Bob further entangle-
ment, from Alice or Bob, cannot be shared with a third party Carrie. This is an important
element in a quantum cryptographic scenario, where we want to limit the access of alien parties
on two way protocols.

We saw that the bound on the SSA is translated on a bound on the data processing in-
equality, a lower bound dependent on the difference between the entanglement measured by
the entanglement of formation and the quantum discord on the first and second stages of the
processing of quantum information. It is not clear whether or not this difference, the lower
bound, is going to be positive, negative or zero. For the two latter cases not much is acquired
because it is already expected that the data processing inequality is a non-negative inequality,
but if the bound is positive that would imply in a processing of quantum information that
would strengthen the quantum correlations when passing a state trough a channel. With this
quantum correlation being maybe an exchange of entanglement for discord. But since there
is a separate proof for the quantum data processing inequality, it is possible that this is not
a physical case. We also find that this inequality is connected by a lower bound with the net
flow of the locally inaccessible information in and out of the environment that is used in each
stage of the process of sending a certain state. This brings an intuition that, depending on the
measurements performed in each step it is possible to increase or decrease the lower bound of
the inequality.

A few questions arise from the work, like in which protocols the above state can be imple-
mented? Can the lower bounded conditional mutual information be used in some protocol of
state redistribution? We also infer that the bound on that strong subadditivity can be con-
nected with the reason behind the monogamy of the squashed entanglement. And why it is so
that the bound in the data processing inequality cannot be greater than zero, since there are

situations were the quantum discord is greater than the entanglement of formation.
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Appendix A

Koashi-Imoto Theorem

In this Appendix our main objective is to give context for the derivation of the Theorem 5,
elucidating the form taken by the states, by showing a proof for the Koashi-Imoto theorem [53].
This result is the backbone for the structure of states which was presented, and the proof will
follow similarly to the one given in [21], and for all the calculations the Hilbert spaces used will

be considered to have finite dimension.

Al

We start with the definition given in [21] for the result of Koashi-Imoto:

Theorem 7 (Koashi-Imoto). Associated to the states py,...px there exists a decomposition of
H as

J

into a direct sum of tensor products, such that the states py decompose as
Pk = @kapj\k ® wy,
J

where pji; is a state on Jy, w; is a state on K; and q;, s a probability distribution. And for

every T which leaves the py invariant, every associated unitary has the form
U=P1, @ Uge,
k
with unitaries Uk, e that salisfy

Vi Tre(Ug,e(w; ® e)U}}jS) = wj.
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The structure of states saturating the bounded-SSA as the structure of states saturating
the regular SSA is based on the condition that we can recover the density matrix in question

using a quantum operator GG that can be described as part of a set
G = {G - VEk ka = pk}, (A.l.l)

of all those operators that leave the states p; invariant. For each G is associated another set

Ag

Ag = {X € B(H) : F*(X) = X}, (A.1.2)

formed by all the operators X that are not changed by the action of G*. The quantum operation

G will have a conditional expectation of the form

P = tm LS (G, (A.13)

M— o0
m=1

in case the set defined by Ag is a *-subalgebra of B(H). It is possible to see that Ag is in
fact a *-subalgebra, using the Kraus representation. First we notice that G*(X) = X and
(G*(X))* = X*, applying the inequality

G*(X*X) > G*(X*)G*(X), (A.1.4)

that is a Schwarz type inequality [54] we get that

G*(X*X)— X*X > 0. (A.1.5)

Then utilizing a faithful state, or in other words, a state that has strictly positive eigenvalues
that is also invariant, makes G*(X*X) = X*X as well X*X = 0 and the inequality above equal
to zero. Which in turn tells that the set Ag is a *-subalgebra of By.

For Hilbert spaces with finite dimension Ag has a representation in form of a direct sum

[55], such that, for the decomposition of the Hilbert spaces

Hﬁ :@Hﬁ,l®Hﬁ,27 (A16)

J

we have

As =D B(Hp1) ® 1. (A.1.7)
J
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With any CP-map from B(Hgs;) to Az having the form

P*(X) = @TI‘@Q(HjXHj(]lBJ & Wj)) & ]1572. (A18)
J

For one given element of Gy € G, is possible to associate one element of Ay € Ag, that is

an intersection of every Ag, and of course a Fy. For this element we have

Ayg = @B(Hbjp) ® Lyr, (A.1.9)

J

so that for the density matrices py

pe = Polp) = D Tryn(ipe]Ly) @ wj = P gipsn @ wj. O (A.1.10)
j j
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