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Resumo

Este trabalho ¢ dividido em duas partes. Na primeira parte, uma rede de correlagao é
construida baseada em um modelo de Ising em diferentes temperaturas, critica, subcri-
tica e supercritica, usando um algoritimo de Metropolis Monte-Carlo com dinamica de
single-spin-flip. Este modelo teodrico é comparado com uma rede do cérebro construida a
partir de correlagbes das séries temporais do sinal BOLD de fMRI de regioes do cérebro.
Medidas de rede, como coeficiente de aglomeracao, minimo caminho médio e distribuigcao
de grau sao analisadas. As mesmas medidas de rede sao calculadas para a rede obtida
pelas correlacoes das séries temporais dos spins no modelo de Ising. Os resultados da
rede cerebral sao melhor explicados pelo modelo tedrico na temperatura critica, sugerindo
aspectos de criticalidade na dinamica cerebral.

Na segunda parte, é estudada a dinamica temporal da atividade de um populacao
neural, ou seja, a atividade de células ganglionares da retina gravadas em uma matriz
de multi-eletrodos. Varios estudos tém focado em descrever a atividade de redes neurais
usando modelos de Ising com desordem, nao dando atencao a estrutura dinamica. Tra-
tando o tempo como uma dimensao extra do sistema, a dinamica temporal da atividade
da populagao neural é modelada. O principio de maxima entropia é usado para construir
um modelo de Ising com interacao entre pares das atividades de diferentes neurénios em
tempos diferentes. O ajuste do modelo é feito com uma combinacao de amostragem de
Monte-Carlo e método do gradiente descendente. O sistema é caracterizado pelos pa-
rametros aprendidos, questoes como balanco detalhado e reversibilidade temporal sao
analisadas e variaveis termodinamicas, como o calor especifico, podem ser calculadas para
estudar aspectos de criticalidade.



Abstract

This work is divided in two parts. In the first part, a correlation network is build based
on an Ising model at different temperatures, critical, subcritical and supercritical, using a
Metropolis Monte-Carlo algorithm with single-spin-flip dynamics. This theoretical model
is compared with a brain network built from the correlations of BOLD fMRI temporal
series of brain regions activity. Network measures, such as clustering coefficient, average
shortest path length and degree distributions are analysed. The same network measures
are calculated for the network obtained from the time series correlations of the spins in the
Ising model. The results from the brain network are better explained by the theoretical
model at the critical temperature, suggesting critical aspects in the brain dynamics.

In the second part, the temporal dynamics of the activity of a neuron population, that
is, the activity of retinal ganglion cells recorded in a multi-electrode array was studied.
Many studies have focused on describing the activity of neural networks using disordered
Ising models, with no regard to the dynamic nature. Treating time as an extra dimension
of the system, the temporal dynamics of the activity of the neuron population is modeled.
The maximum entropy principle approach is used to build an Ising model with pairwise
interactions between the activities of different neurons at different times. Model fitting is
performed by a combination of Metropolis Monte Carlo sampling with gradient descent
methods. The system is characterized by the learned parameters, questions like detailed
balance and time reversibility are analysed and thermodynamic variables, such as specific
heat, can be calculated to study critical aspects.
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Chapter 1

Introduction

In the last few years, with the increasing availability of large data sets and the advances
in computer power, the study of large networked systems has received the attention of
many scientific communities [1, 4, 16, 41, 42|. With its intrinsic interdisciplinary character,
network science is a fast-growing field flourishing across many areas of knowledge. Large
complex networks arise in a vast number of natural and artificial systems. Technological
networks, such as the Internet, are among the most studied networks. The brain is a
complex network where neurons are interconnected; in ecological networks, species interact
with each other and with elements of the environment. Different forms of relationship are
represented by links in social networks. Large infrastructure networks, such as power grids
or transport networks, are a major concern to modern society. To understand the behavior
and uncover the underlying laws governing these systems, researchers have systematically
studied connection patterns and the involved dynamical processes. Complex networked
systems have in common the fact that they cannot be well described by the sum of their
parts: non-linear features emerge from the collective behavior.

This kind of behavior associated with the large size and dynamic nature of these sys-
tems has attracted the attention of the statistical physics community. Statistical mechanics
provides a language for connecting the interactions among many microscopic degrees of
freedom to the collective macroscopic behavior. In this way, the study of large networked
systems has favored the use of techniques related to the analysis of non-linear, equilib-
rium, and non-equilibrium physical systems, which have generated results of conceptual
and practical relevance.

Within this context, the collective behavior of neural networks is a widely studied
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field with concepts of network science [54, 55]. The brain is genuinely a complex network,
with approximately 10'° neurons and an even greater number of connections between
them. Like other complex systems, its macroscopic features (such as memory, cognition
or vision) emerge from simple microscopic interactions (neurons).

A first question we might ask is what kind of dynamical regime can describe some
aspects of the collective behavior of such enormous network with astronomical dimensions
and with such a complex functionality. Empirical evidences from real neural network
measures together with analytical approaches based on statistical physics models and
network science suggest that the emergence of collective behavior in such systems might

be explained by a critical dynamics [6, 12, 13, 17, 19, 20, 22, 37, 38, 51, 57|.

1.1 Criticality

Before continuing with the main discussion, it is worth at this point to define what is crit-
icality. Critical behavior is associated with phase transition phenomena: the macroscopic
state behavior, or phase, of the system under study is changed as an external param-
eter (such as temperature or pressure in physical systems) is varied, and between two
phases there is a critical point. The critical point is marked by scaling and universality
phenomena, the system properties drastically alters [11]. Hallmarks of criticality are ob-
served such as the divergence of the correlation length, and other power-law divergence,
ergodicity breaking and fractal behavior.

1 —
0.9+
0.8
0.7}
0.6/

£05}
0.4!
0.3}
0.2
0.1}

Figure 1.1: Magnetization per spin in function of the temperature from a numerical simulation
of an Ising 2-D model in a lattice with size L = 100.

Let us consider the ferromagnetic phase transition, which is a second order, or continu-
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ous phase transition. Magnetic materials, from a microscopic point of view, are character-
ized by the presence of spins, which can be regarded as magnetic dipoles. In paramagnetic
materials, the magnetization is zero in the absence of external field A = 0, while the spins
align in the direction of any non-zero magnetic field i # 0. On the other hand, for fer-
romagnetic materials, even without the presence of an external field, neighbor spins tend
to align in the same direction. This happens when temperature approaches the critical
temperature 7. Below this temperature, the system has a non-zero magnetization. Thus,
the magnetization is the order parameter of the magnetic system. This is shown in Fig.
1.1, where a numeric simulation of an Ising model was performed for a square lattice of
size L = 100. The Ising model is a paradigmatic model used to describe not only ferro-
magnetic systems but many complex systems, such as neural networks. The model will
be mathematically defined in Chap. 3 and discussed all along this work. The spins in an
Ising model can assume two values (+1 or -1). Disregarding the effects of finite size in Fig.
1.1, we see that the order parameter is zero above the critical temperature (T, ~ 2.3),
a paramagnetic phase, and non zero below the critical temperature even with zero field
h =0, a ferromagnetic phase. Between these phases there is the critical point.

Subcritical itical

(a) T < T, (b) T~T, (c) T > T,

Figure 1.2: Three snapshots of a system for three different temperatures (subcritial, critial and
supercritical) from a numerical simulation of a 2-D Ising model with size L = 200.

In this example the order parameter is a function of temperature and the intensity of
the interactions. The situations are shown in Fig. 1.2, where three snapshots of a numerical
simulation of a two dimensional Ising model, a square lattice with size L = 200 (the total
number of spins is N = L x L), are presented for three temperatures: subcritial, critical
and supercritical. Above the critical temperature, the spins are flipping because of the
available energy. These thermal fluctuations counteract the alignment between spins and
the average sum of spin directions is zero, which can be regarded as a chaotic phase, the

supercritial phase, as in Fig. 1.2c. In contrast, below the critical temperature the spins are
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aligned and there is a ordered phase, the subcritial phase, as in Fig. 1.2a. Between these
two regimes the system lies at the critical point, as in Fig. 1.2b. The spins with the same
direction coalesce into large domains. This is the point where the largest fluctuations are
observed in the magnetization. The length of spatial correlation between spins diverge and
a power-law of this long-range correlation is observed. The divergence of the susceptibility
is also observed in a power-law. Even with a small but finite probability, the perturbation
of a single spin can propagate through the whole system as an avalanche, reshaping
the entire state of the system. It is important to observe that rigorously speaking, the
divergence only in the thermodynamic limit (N — o00). These are amongst the dynamical
properties that characterize the critical regime. Translating these terms to neural context,

these are suggestive properties to describe the cooperative behavior in neural networks.

1.2 Critical Aspects in Brain Dynamics

The idea discussed in the last section can be transposed to the neural network context by
observing how a neural system works. Making a connection with the Ising model, where
spins have two possible states (41 or -1), neurons can be regarded as spins such that
they might be spiking (+1) or in silence (-1). This can be extended to brain regions in
coarse-grained approaches.

In this way, to have proper functionality, we cannot have a situation when almost all
neurons are firing, which would be a chaotic supercritical phase, neither when almost all
neurons are in a quiescent state, which would be a subcritical phase. There must be a
balance between these two situations. In terms of brain activity, when we are performing
some task, different brain areas are being continuously activated and deactivated, which
is analogous to the situation seen in Fig. 1.2b, where there is a large fluctuation of do-
mains formation. This is where the critical hypothesis comes in: to perform the complex
computations the brain must operate in a critical regime. Critical dynamics provides a
tenuous trade-off between a highly active and chaotic phase and a quiescent phase, which
would be impractical for living. It has also been argued that criticality implies optimal
computational capabilities [31], large network stability [7], maximal variety of memory

repertoires [5] and maximal sensitivity to stimuli [29].
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1.3 Time Series Comparison

In the first part of this work, a theoretical model for simulating time series from brain
activity is developed based on an Ising model [13, 19, 22|. It is then compared with
experimental data.

The time series from the brain are measured via functional magnetic resonance (fMRI)
in patients following a resting state protocol [18]. The brain is divided into many regions
and it is possible to compute the correlation between the activity of these different re-
gions. The experimental data is a work performed by Dr. Prof. Gabriela Castellano and
her student Raphael Fernandes Casseb from the Neurophysics group at University of
Campinas.

The theoretical model simulates this situation. We start with a two dimensional Ising
model an let the system evolve at a given temperature according to a Metropolis Monte-
Carlo dynamics, discussed in Chap. 3. After a certain period, there is a time series for
each spin. It is possible then to compute the correlations between the time series of each
spin. At the end, we have a correlation matrix of the brain and of the network model, and
analysis is performed. Quantities related to network theory are measured, like clustering
coefficient, degree distribution, average shortest path length, allowing the characterization
of the network. In general terms, what is observed in brain data is better explained by
the theoretical model at the critical temperature, showing evidences of criticality in brain

dynamics.

1.4 Maximum Entropy Models Inference

In the second part of this work, the temporal dynamics of the collective activity of a
neuron population recorded directly from physiological data is studied [33, 37|. Real neural
networks are complex networks that operate in a non-linear way. Neurons activities are
correlated with each other, meaning that the collective behavior is not well formulated by
the sum of its parts. In this way, physicists have been using statistical mechanics to study
these systems. The information of the neural activity is encoded in a sequence of spikes
and silences in time windows, forming a neural code-word. This suggests mapping the
state of a neuron to a classical Ising spin, with up and down spin states being spikes and

silences, and a code-word as being a state of the system. Studies have shown successful
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results in explaining how functions emerge collectively from a large neuron population
described by a disordered Ising model with pairwise couplings [20, 37, 51].

Many studies that have used the analogy of Ising models and neural networks have
focused on the distribution of code-words in a given time window, but with no regards
to the time dynamics of the neural activity. To address this issue, in the second part of
this work, time is treated as an additional dimension of the system. Thus, a model with
pairwise interactions between different neurons in different time windows is built.

The principle of maximum entropy is used to model the activity of retinal ganglion cells
recorded in a multi-electrode array [51]. To fit the model, a combination of Monte Carlo
sampling with gradient descent method is used. It is possible then to study thermodynamic
properties of the system. Questions like time-reversibility of neural activity, criticality and
detailed balance violation can be studied. This work was done during a six months research
internship at the Ecole Normale Supérieure of Paris under the supervision of Dr. Thierry

Mora.
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Correlation Network
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Chapter 2

Definitions

2.1 Adjacency Matrix

In general terms, a network is a system that can be represented in mathematical abstract
way by a set of nodes, or vertices, and a set of links, or edges, that are pairs of connected
nodes. The nodes are the elements of the network, such as neurons in neural networks,
people in social networks, or species in ecological networks. The links represent a relation
or interaction between the elements. Networks have been widely studied in graph theory
and there are many ways to represent them mathematically. In this work, the network will
be represented as an adjacency matrix. A network with N nodes will have a adjacency

matrix A with N x N dimension. The elements of the adjacency matrix are defined as

1 if thereisalink fromjoti
0 otherwise
In the following applications, we make two considerations. First, there are no auto-
links, that is, a node does not connect with itself, consequently the main diagonal is zero,
A = 0. Second, the links are not directed, that is, if there is a link from node 7 to node

J, the opposite is true. In terms of the adjacency matrix, A;; = Aj;, i.e., the adjacency

matrix is symmetric, which defines an undirected network.
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2.2 Mean Degree

The degree k; of node 7 is defined as the number of neighbors, or the number of links,
this node has k;. This can be calculated as the sum of the node’s respective row in the

adjacency matrix (or column in the case were the adjacency matrix is symmetric).
J

The mean degree of the network, in its turn, is the average degree of the network

nodes,

=+ Sk (2.3)

The mean degree is a measure of how connected the network is. In the case were all
nodes are connected to each other the mean degree is constant, and we have

(k) =k = (N> - w (2.4)

Another important concept regarding the degree definition is the degree distribution
P(k) of the network, which is a spectrum of how the vertices are related, or interact. In
the case of undirected networks, the degree distribution is the probability of choosing a

node at random that has degree k.

2.3 Clustering Coefficient

In complex networks as neural networks, we observe a clustering phenomenon which is
a tendency of nodes to form a clique around a giving node. In other words, if a node ¢
is connected to node j, and node j is also connected to another node [, there is a high
probability that nodes ¢ and [ are also connected. This can be quantified in undirected
networks by means of the clustering coefficient which measures the local group cohesive-
ness [59]. The clustering coefficient C; of a given node i, with degree k;, is defined as the

ratio of the number of links e; between the neighbors of ¢ and the total possible number

of such links (k),

2
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e
C;=——"—r. 2.5
ki(ki —1)/2 (25)
In terms of the adjacency matrix e; is expressed as,
1
€; = 5 Z AijAleli (26)
gl
so that,
G A A Ay
CZ' _ ZJZ JLg14 (27)
ki(k; — 1)

The clustering coefficient of the whole network is just the average clustering coefficient

of the nodes,

1
C= N;C’” (2.8)

2.4 Average Shortest Path Length

A path in a network is any sequence of nodes such that there is a link between a pair of
consecutive nodes in the sequence. The length of a path in a network is the number of
links traversed along the path. In terms of the adjacency matrix A, the total number /\/;(J-T)
of paths of length r from j to ¢ is

N = (AT (2.9)

¥

where (...);; denotes the ijth element of the adjacency matrix and A" is the product of
the adjacency matrix by itself r times.

Given two nodes 7 and j, the geodesic distance d;; between them will be defined as the
shortest path distance, that is, between all paths between ¢ and j in the network the one
with the shortest length. In mathematical terms, the geodesic distance between ¢ and j
is the smallest value of r such that (A");; > 0. Note that there might be more than one
path with the shortest length 7.

The average distance L; between node ¢ and all other nodes in the network is

1

JJF
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Consequently, the average shortest path length, or the characteristic path length of the

network is given by
1

In other words, the average shortest path length is the average of d;; over all possible pair

of nodes in the network
1
L =——— d;i. 2.12

Like the clustering coefficient, the average shortest path is a measure of connectivity
of the network. In fact, if all nodes of the network are connected L = 1. It is also worth
remarking that when a network has a small average shortest path and relative high clus-
tering coefficient we observe the so-called small-world effect [59]. This means that, to go
from one node of the network to any other node we must traverse a short path, or the

distance between any given pair of nodes is small.

2.5 Diameter

Using the definition of the shortest path distance, the diameter of the network is

2,]

2.6 Correlation Network

For certain systems, nodes as well as links are not self-evident and easily identifiable. This
is the case for functional networks of the brain, where time series of the activity of brain
regions are measured. One way to approach this situation is considering the correlations
between the time series, as done in [17, 19].

The network will be defined by means of the correlation coefficient r between nodes ¢

and j, defined as

0)20) = (a0 0) (2.14)

1
r(i,j) =
sdlzi(t)]sd[z;(t)]
which is the Pearson correlation, where (...) is the time average, sd is the standard
deviation sd?[z;(t)] = (22(t)) — (x;(t))? and w;(t) is the temporal series of the activity of

node i, which can be the activity of a brain region from data or the time series of a node
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in the theoretical model (see Chap. 3).

CORRELATION HATRIX
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Figure 2.1: Examples of a correlation matrix (a) and a corresponding adjacency matrix (b).

In this framework, for a given correlation threshold p, a link between nodes ¢ and j
is established whenever the correlation between these nodes is greater or equal than the
threshold: r(i,j) > p = A;; = 1. By the same way, a node i of the network is a site with
non-zero number of links: k; = > i A;; # 0. This completes the definitions of the network
nodes and links. In fig. 2.1 is presented an example of a correlation matrix (Fig. 2.1a) and

a corresponding adjacency matrix (Fig. 2.1b) of a system with N nodes.
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Chapter 3

Correlation Network Framework

3.1 Brain Data

All the brain data used to compare with the theoretical model in this and the following
chapter (Chap. 4) is a work performed by Prof. Gabriela Castellano and her student
Raphel Fernandes Casseb from the Neurophysics group at University of Campinas. In the
following, for the sake of completeness, we will describe how the data is obtained and
processed.

The brain data is measured via functional magnetic resonance (fMRI). Subjects were
scanned following a typical resting state protocol, in which the individuals, while lying
in the scanner, are asked not to engage in any specific task (mind wondering condition),
to remain with their eyes closed, and to avoid falling asleep. Data were acquired for 27
subjects, in a Philips Achieva 3T machine; we obtained a structural (T1-weighted images;
isotropic voxels of Imm? and a voxel matrix of 240x240x180; TR/TE = 7/3.2 ms; flip angle
= 8°) and a functional MR image (180 volumes; T2*-weighted image; isotropic voxels of
3x3x3 mm?; gap of 0.6 mm; TR/TE = 2/0.03 s; and a voxel matrix of 80x80x40).

The brain activity is captured with the fMRI exam through the spatio-temporally
resolved blood-oxygen-level-dependent (BOLD) signal [32]. The central idea is that neu-
rons do not have an energetic reserve in the form of sugar and oxygen, both needed to
perform the neural activity. In this way, the energy (glucose) must be brought quickly by
the blood, and the oxygen is transported by the hemoglobin molecules. Through a pro-
cess called hemodynamic response, blood flow is increased in the areas where neurons are

more active. This process causes changes in the local rates of oxyhemoglobin and deoxyhe-
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moglobin, what is captured by the fMRI scan because the the oxy- and deoxyhemoglobin
have different magnetic properties.

The brain is divided in regions of interest (ROI), commonly called voxels, that are
the tridimensional pixels that conform the image from fMRI exam. The BOLD signal of
each voxel is recorded by the fMRI. In the end, we have a temporal series for each voxel,
which is the brain activity of each brain ROI. As we are interested in brain activity, our
analysis is restricted to the cerebral gray matter, since it is the tissue where the cell body
of the neurons, responsible for information processing, are located. Some preprocessing
steps (realignment of functional volumes; corregistration between the structural and the
functional image; segmentation; normalization; and smoothing) are necessary, because the
fMRI signal is weak and noisy. Afterwards, we apply a mask to exclude other tissues than
gray matter; regress out movement parameters and spurious signal (from white matter
and cerebrospinal fluid); remove linear trends of the signal; and use a bandpass filter to
obtain data exclusively in the range of 0.008 and 0.01 Hz [8].

The time series obtained after this processing are then used to compute the correlation
between each temporal series of the BOLD signal of each voxel by Eq. (2.14), where x;(t)
in this case is the BOLD signal of voxel i. Having the correlation matrix, the adjacency
matrix A is computed in function of a correlation threshold p with the method explained

in Sec. 2.6, in order to obtain the correlation network.

3.2 Theoretical Model

The theoretical model is a correlation network built from a two dimensional Ising model
[25]. The Ising model is a cornerstone in statistical physics approaches in complex systems.
Its application goes way beyond physics, being the basis of modeling in several areas, such
as social sciences, epidemics or neural networks. The Ising model is a structural lattice
where in each site a spin is placed. The lattice can have many structures with different
topologies, and may represent different situations where the links between sites can be real
(chemical) bonds, some relation or statistical interactions. In this work the lattice is a two
dimensional regular square lattice with periodic boundary conditions where each site has
four neighbors. Each node is a spin s; that can assume two values, +1 or -1. This can be

)

regarded as an approximation to describe the spin direction, that is, +1 “up”, -1 “down”.
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In the case of neural networks, it can be interpreted as +1 (active) and -1 (silence). The
lattice has dimension L and the total number of spins is N = L x L.

A system configuration is described by the states of all spins in that moment,

s={s1,82,...,8n} (3.1)

The interaction between spins is short-ranged, in order that the model includes only
terms proportional to s;s; in the Hamiltonian, coupled by pairwise interactions J;;. For
each configuration the system has an associated energy described by the function, or
Hamiltonian

E=—-% Jjss; (3.2)

(i)
where (ij) indicates that i and j are nearest neighbors. The couplings .J;; represent the
energy reduction if spins ¢ and j are aligned, that is J;; > 0. Thus, the above Hamiltonian
tells us that the minimum is at 7' = 0, when all spins are aligned, all spins up (s; = 1) or
all spins down (s; = —1). In the model used in this first part we consider that all couplings

are constant and equal to 1, J;; = J = 1, so that

E=-) sis;. (3.3)
(i)

The model described by the Hamiltonian of Eq. (3.3) has analytical solution in two
dimensions [23, 45|, and the critical temperature for J = kg = 1 is T, ~ 2.3, where kp is
the Boltzmann constant.

The final goal of the model is to build an adjacency matrix, as defined in sec. 2.1.
Given a certain temperature, we let the system defined above by the Ising model evolve
according to the Metropolis Monte-Carlo algorithm [35] and store different configurations
of the system. After a certain period of time there will be a time series for each spin
{s1(t), s2(t),...,sn(t)}, and it is possible to calculate the correlation r(i, j), as defined in
Eq. (2.14), between each pair of spins in order to have a correlation matrix. Once we have
the correlation matrix of the spins activity, we can compute the adjacency matrix given

a correlation threshold, which is a correlation network, as defined in sec. 2.6.



3.3. MONTE-CARLO SAMPLING 25

3.3 Monte-Carlo Sampling

In the theoretical model, many samples, or system configurations, were needed in order
to have temporal series of the spins. Those samples were obtained with a Monte-Carlo
method. The algorithm used to implement the Monte-Carlo sampling was the Metropolis
algorithm, which was introduced by Nicolas Metropolis and his co-workers in a 1953 paper
on simulations of hard-sphere gases [35].

The Monte-Carlo method is used to generate samples of system states, that is, given
a certain value of the external parameter, such as temperature, the algorithm generates a
configuration of the system that corresponds to some thermodynamic state with a certain
probability. In this way, if the system is in an initial state u, the transition probability
of generating a new state v from the old state p is P(u — v). To build a Monte-Carlo

algorithm, the transition probability is broken down into two parts [43],
P(p—v)=g(p—v)R(p—v), (3.4)

where g(p — v) is the selection probability and R(x — v) is the acceptance probability.
The selection probability is the probability that the algorithm will generate a new target
state v given an initial state pu. The acceptance probability, in its turn, says that, given
that the system is at the initial state p, the new configuration v will be accepted with
probability R(y — v), otherwise the system remains in the old configuration pu.

In the Metropolis algorithm, it is common to flip a single spin every iteration of the
algorithm to generate a new target state. An algorithm that uses this procedure is said to
have a single-spin-flip dynamics. The selection probabilities g(u — v) in the Metropolis
algorithm are all chosen to be equal for each of the possible states p, and zero for all the
other states. In a system with N spins, the algorithm can choose between N of the spins

to flip. Thus, the selection probability is given by

1

g(p—v) = N (3.5)

The Metropolis algorithm is then characterized by the acceptance probability. To

guarantee that the stationary distribution of the Markov chain is canonical, we must have
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the detailed balance condition, which is
puP (= v) =p,P(v — p). (3.6)

where p,, is the probability that the system is at a given state p. Equation (3.6) states
that the rate at which the system makes transition from a given state u to a new state
v must be equal to the rate at which it makes transition from v to u. We wish that the
equilibrium distribution to be the Boltzmann distribution, so that we choose the values
of p, to be the Boltzmann probabilities. The equation of the detailed balance condition

tells us that the transition probabilities should satisfy
=—=e : (3.7)

With the selection probabilities (3.5), the detailed balance condition, Eq. (3.7) takes

the form

Plp=v) _gu=v)Rp—v)  Rp—=v) w5 (3.8)
Plv—u glv—pwRv—pu) Rv—p) ' .

Now, the the acceptance probabilities must be chosen to satisfy this equation. Given
a constraint like (3.7), to produce the most efficient algorithm the acceptance ratios must
be maximized. This is done by setting the largest of the two ratios the largest value —
namely 1 — and adjusting the other one to satisfy the constraint. Given the variation of

energy between states y and v, AE = F, — I, the optimal algorithm is defined by

e PAE if AE >0
R(pu—v) = (3.9)

1 otherwise,

where [ is the inverse temperature, for kg = 1 we have § = 1/T. What Eq. (3.9) says
is that whenever the energy of the new selected state v is lower than the old one, the
transition to the new state will always be accepted. Otherwise, there still a chance to
accept a new state with higher energy with probability given by the Boltzmann weights
o—BAE

, which is a function of the temperature. This defines the Metropolis algorithm used

to sample the system with a Monte-Carlo method.
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3.4 Algorithm

The Metropolis algorithm then consists in flipping a spin and testing the new configuration
according to Eq. (3.9). Every time a spin is flipped, which is a Monte-Carlo step, the change
in energy must be calculated. So, in a Monte-Carlo step a spin k is chosen at random
and then the algorithm decide to flip it or not. If the system is at an initial state p with
energy I, before flipping the spin and the energy of the new state v is F,, the change in
energy AFE due to the flip of a spin k is

AE=E, — E,
TSy
(i) (i5)
=— Z st (sg — st)- (3.10)

In the last line, ‘¢ n.n. k¥’ means the sum is over the ¢ nearest neighbors of spin £, and
it was also considered the fact that only the spin £ flips and all the others spins remain
unchanged, that is, s = s for ¢ # j. However, if s = —1, then after flipping, s} = +1
and (s} — si) = +2. On the other hand, if s} = +1, then after flipping, s} = —1 and

(sy — s}) = —2. Thus, we can write
(sp — sh) = —2sh (3.11)

and the change in energy is

AE =2 > sl (3.12)

The implementation of the Metropolis algorithm is the following
1. Choose a site (k) at random;

2. Calculate the change in energy AFE due to the flip of spin s;
3. If AE <0, accept the move and flip the spin: s, — —sy;

4. Else, if AE > 0, flip the spin with probability p = e #AF;

This is a Monte-Carlo step. For a system with N spins, when N Monte-Carlo steps are

performed, it is said that the algorithm completed one sweep of the lattice, which is on
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average giving the chance to every spin to flip. In the sampling process, for every sweep,
one configuration of the system is stored. If we want M configurations of the system then
the algorithm will perform M sweeps in the sampling process. The whole process is given

by
1. Sampling

Initialize the system: s; = 1 fori=1,..., N;
Thermalization: N? sweeps

Monte-Carlo sampling — M sweeps — temporal series
{s;s()} i=1,...,.N t=1,....M (3.13)

2. Correlation matrix
s (0) — (s (0) (s,(0))
0 = T O] (3.14)

3. Adjacency matrix (p)

1 if r(,7)>p
A = (.J) (3.15)

0 otherwise.
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Chapter 4

Results

4.1 Correlation Distribution

Three theoretical simulations were performed, one with the system at a subcritical tem-
perature (1" = 2), one with the system at a supercritical temperature (7" = 3), and one
at the critical temperature (7" = 2.3). In all cases, the lattice had a size of L = 100, that

is, a lattice with NV = 10000 spins. The sampling process was performed in order to have

2000 configurations of the system.

6 %10°
T=23
---T=2.0
0 Y A A T=3.0
Al [
>
o
f =
Y3
o
o
[ d
Al !
!
f \
1 !
r
!
I\
O - ind L. e — e
1 0.5 0 0.5 1

Figure 4.1: Correlation distribution for three temperatures: subcritical (black), critical (green)
and supercritical (red).

The plot in Fig. 4.1 shows the distributions of the correlations between the spin tem-

poral series for the three temperatures. It possible to observe that for the sub- and su-



4.2. MEAN DEGREE VS. CORRELATION THRESHOLD 30

percritical regimes the behavior of the correlations are similar. However, at the critical
temperature there is a noticeable increase in the variance of correlations. This behavior
is explained by the fact that it is only at the critical point that the spins with the same
direction coalesce and large domains emerge, the system experience the largest fluctuation

in this regime.

4.2 Mean Degree vs. Correlation Threshold

In Sec. 2.6 the correlation network was defined. The correlation network is represented
by its corresponding adjacency matrix. For each value of the correlation threshold p, a
different adjacency matrix is obtained and for each adjacency matrix the corresponding

correlation network has a different mean degree (k).

103,
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Figure 4.2: Mean degree (k) in function of the correlation threshold p for the theoretical model
network in three temperatures (subcritical (green), critical (red) and supercritical (black)), and
for the brain network of eleven subjects (blue curves).

The relation between the correlation threshold and the mean degree of the network is
shown in Fig. 4.2. The blue curves are brain networks of eleven subjects and the other
curves are the Ising correlation network at three temperatures, subcritical (green), critical
(red) and supercritical (black). The curves are related by an inverse relation, that is, as p
grows the mean degree gets smaller. In other words, higher correlation thresholds generate
networks with fewer connections and thus with a smaller mean degree. This pattern is

observed in the theoretical model and in the brain curves as well. It is also worth noticing
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that the red curve corresponding to the critical temperature is the one that has the closer

behavior to the brain set of curves.

4.3 Degree Distribution

The degree distribution of the network is one of the most important characteristics of the
network. It is the probability P(k) of choosing a vertex of the network at random and

that this vertex has degree k.
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Figure 4.3: Degree distributions of the theoretical model at three temperatures: (a) subcritical,

(b) critical and (c) supercritical, for networks with three mean degrees: (k) ~ 26 (green), (k) ~

127 (red), and (k) =~ 716 (black). At the bottom, (d) degree distribution of the brain network

with N = 12699 and three mean degrees: (k) ~ 27 (green), (k) ~ 127 (red), and (k) ~ 715
(black).

The degree distributions of the theoretical model network are shown in the top three
plots of Fig. 4.3 and the brain network distributions in the bottom. The degree distribution
of the theoretical model are presented for three mean degrees, (k) ~ 26 (green), 127
(red), and 716 (black), by setting appropriate values of p. In the same way, the bottom
graph shows the degree distribution of the brain network with N = 12699 for (k) ~
27 (green), 127 (red), and 715 (black). As expected, a drastic change in the behavior

of the theoretical Ising model is observed at the critical temperature. In Fig. 4.3b, at
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the criticality the system shows power-law tails with a cutoff, while at the subcritical
temperature in Fig. 4.3a and in the supercritical temperature in Fig. 4.3c the system
shows a Poisson distribution. Above all, the behavior observed in the theoretical model

is also observed in the distribution of the brain network.

4.4 Network Metrics

In Chap. 2 some network metrics were defined. Here the Ising correlation network met-
rics are compared with the brain network. The metrics were calculated using the Brain
Connectivity Toolbox [50]. The same metrics are also presented in the case of a random

network, that is, a randomized network with its degree distribution preserved.

Table 4.1: Network metrics of the Ising correlation network.

T N <k> C L D Cmmd med Drand
Ising Network
2.0 10000 197 0.078 2.06 3 0.022 2.01 3
2.3 10000 198 0.544 4.2 16 0.148 2.25 4
3.0 10000 195 0.091 2.09 3 0.021 2.01 3
Brain Network
12699 198 0.549 4.13 11 0.0658 2.26 4

The measures presented in Table 4.1 are the average degree (k), the clustering coef-
ficient C, the average shortest path length L, and the diameter D. Four situations are
considered in table 4.1, the Ising model in three regimes (critical, sub- and supercriti-
cal), and the brain network. In all cases, the correlation thresholds p were set in order
to have networks with the same average degree. The most remarkable aspect is the fact
that the theoretical network turns out to show a small-world behavior at criticality. In
this regime, a substantial grow is observed on the clustering coefficient while the average
shortest path length, in comparison, almost remains constant and the diameter also in-
creases. This is a consequence of the dynamics of the network, the fact that the system is
at the critical temperature. The same effect is not observed when the system time series
are randomized. Looking at the brain network metrics, they are in reasonable agreement
with what is observed in the theoretical model at criticality, a high clustering coefficient

and a comparatively small average shortest path length.
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The brain has a similar dynamics to the critical dynamics observed in the last sections
[12, 13, 19]. In order to compute tasks at the same time, even with the person at rest (it is
impossible to shutdown all our senses), some areas of the brain are being activated while
other areas must deactivate. This is something needed, there must be such a balance. It
is not viable to a healthy living animal to have all neurons in a quiescent state, this would
mean that the brain has stopped, neither all neurons in a super active state when they
are all firing. Although this might be intuitively trivial, the way the brain achieves this

balance is something complex and still lacking a good explanation.
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Chapter 5

Maximum Entropy Models Framework

The principle of maximum entropy (MaxEnt) was first announced by E. T. Jaynes in
two papers in 1957 [26, 27|, in which he makes a connection between information theory
and statistical mechanics. He was able to derive important probability distributions in
statistical mechanics by maximizing the Shannon entropy [53] subject to appropriate con-
straints. The method consist in inferring probability distributions consistent with limited
information and otherwise has the least bias as possible with the other degrees of freedom.

The main idea is that, in some situations, it is possible to accurately obtain mea-
sures from data, such as means, variances, etc., even without having the distribution that
characterizes the system. In this context, the MaxEnt principle is a strategy to find a
distribution consistent with these observed measures, but otherwise has as little structure
as possible.

Another important concept is the Kullback-Leibler divergence [30] that measures a
discrepancy, or the difference, between two distributions. The idea is to minimize the
distance between the real distribution of the system and the model distribution that
maximizes the entropy, by means of the empirical expected values. This concept is used

to implement the algorithm to find the model distribution.

5.1 Entropy

Entropy is a basic concept of information theory. It is a measure of uncertainty or ran-
domness of the probability distribution of the system. In terms of coding length, it is

closely related to the code length needed to characterize a random variable. The entropy
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S for a discrete random variable X with a distribution P is defined as

S[P] = — Z P(X =a;)log P(X = a;) (5.1)

where a; are the possible values of X.

0 1

Figure 5.1: The function f plotted in the interval |0,1]

An important property of the entropy is its concavity. Consider the function f

f(p) = —plogp,  for0<p<1 (5.2)

This is a nonnegative function that is zero for p = 0 and p = 1, and it is positive
for values in between, as plotted in Fig. 5.1. Moreover, we have f'(p) = —(1 + logp) and
f"(p) = —1/p. Thus, f(p) is a concave function of p. Since the sum of concave functions is
a concave function, the entropy S[P] =), f(P(X = a;)) is a concave function. This is a
very useful property, because a local maximum will be the global maximum for a concave

function subject to linear constraints.

5.2 Maximum Entropy

In situations in which data is limited and the system has many degrees of freedom, getting
a good estimate of the probability distribution from data can be impractical. Even though,
it might be possible to estimate with accuracy the average of chosen observables that
describe important properties of the system. In this way, the goal of the maximum entropy

method is to build a model for the distribution P(o) over the states of the system with
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N elements, 0 = {01, 09,...,0n}, that generate the correct values of the observables, but
otherwise the distribution is as random as possible [9, 10, 28, 36, 39, 47]. As an ingredient
there are M samples {o',02, ...,0M} from which the averages of the observables are
calculated. The observables will be represented by f = {fi, fo, ..., fi} where f, = f.(0).
This is an optimization problem where P (o) is the solution from maximizing the entropy
subject to constraints that give the correct expectation values.

Lets define the real, unknown, distribution of the system as

_ % > (o ") (5.3)

where §(a, b) is the Kronecker delta that is equal to one when a = b and zero otherwise.
The maximum entropy problem, then, is to find the model distribution P,,(¢) that

maximizes the entropy

Z P,.(0)log P, (o) (5.4)

subject to the normalization condition

> Pulo) =1, (5.5)

and the constraints

<fu(0)>m = <fu(‘7)>r‘ (5.6)

where (...),, stands for the expectation value with respect with the model distribution
and (...), with respect with the real distribution.

Using the technique of the Lagrange multipliers to maximize the entropy S[F,,], we
introduce the quantity S, with a Lagrange multiplier g, for each of the k constraints given

by Eq. (5.6) and another Lagrange multiplier A for the normalization condition Eq. (5.5).

ZP ) 1og Pou( [ZP -1] - Zgu[ZP — {fuds
(5.7)
where we used the fact that (f,)m =Y, Pn(0) fu(0).
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Maximizing .S,

0= = —log Pn(0) — (1 + \) — Zgufu (5.8)

pn=1

Rearranging the last equation,

log P(0) = —(1 4 )) Z gufu(o (5.9)
Pulole) = 77 exp [ Z Gutulo (5.10)
where {g1,92,...,gr} = g € R* are the Lagrange multipliers. As usual, from the normal-

ization condition (5.5), we have that exp (1+A) = > exp[—>_, g.fu(0)] = Z(g) is the
partition function that normalizes the distribution to one. Note that the constraints con-
ditions given by Eq. (5.6) are obtained by differentiating S with respect to the Lagrange
multipliers g,,. Thus, Eq. (5.10) gives us the form of the maximum entropy distribution.

At this point, it is worth noting that we can make use of an analogy with statistical
mechanics to introduce the concept of an energy function or the Hamiltonian of the
system. If the only constraint imposed was the expected value of the energy, f(0) = E(0),
the Boltzmann distribution, P,(c) = Z 'exp —B3E(0), is recovered. Where, in this case,
[ = 1/kT is the inverse temperature. In a more general way, the sum inside the exponential
in Eq. (5.10) can be interpreted as an energy function: E(o) = Z;’i:l gufu(o).

It is still missing to adjust the constants g, in order that the model distribution P, (o)
gives the correct expectation values measured from data. For this end, we need to match
the expectation values given by model distribution, (f,(¢))m = >_, Pm(0)fu.(c), with the
empirical expectation values (f,(o)),.

There is a unique set of Lagrange multiplier that satisfy all the constraints. But,
this is a computationally difficult inverse problem. Classically, we see direct problems in
statistical mechanics, i.e., given a set of parameters g = {g1, g2, - - ., g }, we ask what is the
probability of finding the system in a given state o = {01, 09,...,0x}, P(c]g). The inverse
problem is then: if we observe M independent samples of the system {o', o2 ... oM},
how do we estimate the parameters g that characterizes the Hamiltonian? The parameters

cannot be determined exactly with a finite amount of data. We need a probabilistic
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approach to estimate them. This is done by maximizing the likelihood function P(g|o)
or, in a more convenient way, the log-likelihood. In other words, we need to find the set
of parameters ¢ that make the obtained empirical values most likely.

In statistical mechanics, the logarithm of the partition function is the free energy of

the system and the derivative of the the free energy is a expectation value.

mmm—f%%@. G.1)

Thus, matching with the empirical expectation values means solving the equation

mw»:%ZmWF—@%¥2 (5.19)

where the upper index in ¢ means the nth sample.

Eq. (5.12) can be written as

1n 0 1 &9
Mqu(U):MZa—

n=1 g“ v=1 ag“
a 1 M k
0= — — —log Z(q) — L £ (o™
90, 11 2= gZ(g) ;g fu(0™)
0 1 < .
a—MM;IOng(U )
a M
—log [[ Pu(c™) =0 (5.13)
ag'u n=1

The quantity being maximized in Eq. (5.13) is the log-likelihood £ that the experi-

mental data was produced by the model, and it can be rearranged in a convenient way.

= Z log P,,,(c
=>"> 6(0,0")log P,y(0)

n=1 o

—MZP )log P, (o)
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L = M{S[P.(0)] — Dw1(P,|P,)} (5.14)

where Dy (P,|P,,) is a measure, from information theory, known as the Kullback-Leibler
(KL) divergence (Appendix A). It is a measure of the difference, or divergence, between
the distribution for which the system is built to work in a optimal way, the real distribution
in this case P,.(0), from an approximate or model distribution P,,(o). The KL divergence

is defined as
Pr(”)
Pm(‘7> .

DKL(PT’Pm) = ZPT(U) 10g (515)

Technically, the KL divergence measures the difference between the entropy of the real dis-
tribution, S[P,], and the cross-entropy of the real distribution and the model distribution,
S|P, P,,], which can easily been seen from Eq. (5.15).

Therefore, maximizing the log-likelihood, Eq. (5.13), is equivalent to minimizing the

KL divergence
ODkr(P:|Py)

09, = (ful@))m = (fu(o))s (5.16)
which ensures that the constraints are satisfied at the minimum. Between the properties
of the KL divergence, there is the convexity property (Appendix A) that establishes that
the local minimum is the global minimum [28]. To implement an algorithm that learns

the appropriate parameters, the gradient descent method is used [24].

5.3 Gradient Descent

The gradient descent approach consists in minimizing a function with respect to a pa-
rameter array or set. In our case, we want to minimize the KL divergence Dy (F,|P,,)
with respect to the Lagrange multipliers ¢ as in Eq. (5.16). Starting from an initial point
9(0), the function Dy (P:|P,,) is iteratively minimized by calculating its gradient at this
point and then moving to the steepest descent direction by a suitable distance. At this

new point, the procedure is repeated, and so on. For some ¢t > 0, we have

(5.17)

Ip=gu(t—1)

where the gradient is computed at the point g, (¢t — 1). The parameter 7 is the ‘learning

rate’ and gives the length of the step in the gradient direction. The iteration continues
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until some convergence criteria is reached. The convergence criteria will be defined in Sec.
7.2.
Using Eq. (5.16), it is more convenient to represent the update rule (5.17) in conformity

with programming languages,

9 g+ (fulo))r = (fu(0))m ] (5.18)

The inverse problem is in fact broken down into two tasks: (1) the direct problem of
estimating the expected values (f, (o)), with respect to the model distribution P, (o) for
a given set of parameters {g,}; and (2) the inverse problem of implementing an update
rule such as (5.18) that converges to the parameters {g,} that give the correct empirical
values (f,(c)),, which is a machine learning process. In principle, the direct problem
should be summed over all possible states of the system o, which makes it computationally
costly. Some approximate methods have been proposed to get around this problem. In this
work, Monte Carlo algorithms are used, but approximate analytic methods, such as high
temperature expansion or message-passing algorithms, were also developed and shown

good results. This subject will be addressed in Chap. 7.
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Chapter 6

Model Framework

In this chapter the theory from Chap. 5 is applied to the neural network. It is shown that
the system can be represented by an Ising model as the least structured model within the
experimental data framework.

Time is treated as an extra dimension in order to study the time dynamics of the
network. For this end, couplings between different neurons at different time moments are
defined.

As mentioned at the end of Chap. 5, the problem is broken down into two tasks, a
direct and an inverse problem. The expected values of the observables and the respective

Lagrange multipliers are defined with respect to the data from the neural network.

6.1 Experimental data

To understand how the collective behavior of neurons works, it is crucial having their
dynamics recorded simultaneously. Thus, the experimental data consists on physiological
data of retinal ganglion cells recorded from a multi-electrode array, which captures the
activity of all neurons simultaneously [33]. The recordings were performed on the rat
retina. The retina is isolated from the rat’s eye and the ganglion cell side is put against

the multi-electrode. This work is done by Olivier Marre at the Vision Institute in Paris.
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Figure 6.1: Example of a retinal patch over the multi-electrode.

The retina is an excellent system to record the neural population activity. It is a built-
in system that has a layer that captures visual inputs, encodes this information in the mid
layers and outputs the information in the form of a neural code, with spikes and silences.
The activity of nearby firing neurons are captured by one or more electrode. Hence, a
deconvolution step is needed. For this end, a spike sorting algorithm is used to sort the

record.
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Figure 6.2: Raster with temporal sequences of spikes and silences. Columns are time bins and
rows are neuron activities.

In the end, what we have is a raster, which is a temporal sequence of spikes and silences
of the neural activity as in Fig. 6.2. Each column is a time bin and each row is the activity

of a neuron.

6.2 Connection with statistical physics

The system is a network of N nodes. Each node ¢ can been regarded as a spin that
represents the activity of a neuron and it has a binary stochastic variable associated with
its state 0;. The values it can assume are o; = 0 for silence or o; = 1 for a spike. It can
also be seen as a spin up or down. At a given moment, we have a code word or the state
of the system o = {o;} where i =1,2,..., N.

Associated with the state o we can define an energy function or the Hamiltonian of the
system E(c). In the framework of maximum entropy models, we need to chose functions
fu(o) that describe interesting features of the system. Given that the state of the neurons

are binary, the system has 2%V possible states. Our hope is to find a much smaller number of
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functions, u = 1,2,...,k with ¥ << 2V, which will be sufficient to capture the collective
behavior of the neural population.

The idea of the maximum entropy principle is to build models that are consistent with
some measured observables from data, but otherwise have the little structures as possible.
In this sense, the first term we can think about for the energy function is the independent
firing of a neuron o; caused by an external input, or field, h;. Thus, our first choice of
function is equivalent to constraining the mean firing rate (o;), calculated from data.

Studies have shown that the activity of neurons are correlated [20, 51, 56, 57|, this
is also an intuitive idea for a complex network as the neural system. Thus, the second
simplest function is a pairwise correlation between two neurons o;0; coupled by a link
J;;. This is equivalent to constraining the correlation between these two neurons (o;0;).

Then, the energy function is given by

E(o) =— Z h;o; — Z Jij 0,05 (6.1)
i i<j

The Eq. (6.1) is the Hamiltonian of a pairwise Ising model. In statistical physics, the
first term is the Hamiltonian for paramagnetism and the second accounts for ferromag-
netism. Hence, we can make use of analogies from the Ising model to study our model of
the neural network, although what we really have is mathematical correspondence only.
In this theoretical framework, the statistical distribution of code words is studied in a
given time window. However, the activity of a neuron has correlation in time, with itself
and with other neurons. To study the time dynamics, time is regarded as an additional

dimension of the system.

6.3 Time as an extra dimension

Treating time as an extra dimension means that the states of the system are the entire
multi-neuron spike train o = {0;;} where i =1,...,N and ¢t = 1,..., L. The network is
regarded not as system of N spins, but as a network of size N x L, where L is the number
of time bins. This is done by establishing couplings between the activities of different
neurons at different moments. For each neuron ¢ at time ¢ it is associated the activity o,
(=0 or 1). Then, we have a coupling J;; ; between a neuron ¢ at time ¢ and a neuron j

at time t + 7. The parameter 7 can be seen as distance in the time dimension and its
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maximum absolute value is defined as w.

Following the same reasoning of last section, the energy function is defined as

N L N
1
TS 55 3) 3) SEAT I 5 oI 62)
t=1 i=1 j=1 7=—u t=1 =1
Note that 7 can assume positive and negative values, 7 = 0,%1,4+2,..., +u. By con-

struction, the system is time-invariant under time translation and the coupling matrix is
symmetric under time reversibility J;; , = Jj; _-.

The constraints are the mean firing rates

(Cit)r = (Oit)m (6.3)

and the correlation functions

<0i,t Uj,t+r>r = <Ui,t Jj,t+r>m- (6-4)

Using the technique of the Lagrange multipliers as shown in Chap. 6, we have that the

model distribution is given by

Po(0) = — exp [-E(0)] (6.5)

where E(0) is given by Eq. (6.2).

6.4 Direct Problem

The direct problem consists in estimating some functions given a set of parameters. In
this case, the set of parameters is ¢ = {h;, J;; -} and the set of observables being esti-
mated is f = {0:+,0::0j11-}. In order to take the averages we must have samples of the
theoretical model, which is done using a Metropolis Monte-Carlo method, which can be
seen as samples drawn from the distribution P, (o). In this way, the algorithm generates
n samples. If the experiment has a total time 7', then the time dimension is set to L to
have the identity nL. = T, so that an average take over nL summation is equivalent to

the average taken from experimental dataset. In this way, the model mean firing rate is
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given by
1 & 1 (1
i = (Giahm = 3 P(0) (z 2 0) ~n (z 2 0&) - (60)
o t=1
The real firing rate is given by,
1 X
mfeal = (0i4)r = T ZUi,t (6.7)
t=1
The model correlation is given by,
model 1 - 1 - wo_p
Cijr = <Ui,t<7j,t+r>m = o Z i3 Z 040441 (6.8)
pn=1 t=1

and the real correlation,

T
1
st = (0010 ar)r = - > oot (6.9)
t=1

The last function that is interesting in capturing the collective behavior of neural

network is the connected correlation

CCijir = (0540 147) — (050)(0j1)- (6.10)

6.5 Inverse Problem

The inverse problem is a learning process where, as opposed to last section, the parameters
{h;, Jij -} must be estimated from the observed states of the system {o;.} to give the
correct empirical values of the mean firing rates (o;;) and the correlations (0;:0; 1)
As discussed in Chap. 5, the learning process is implemented by the gradient descent
algorithm. The update learning rule (5.18) for the couplings is given by
real model

Jijﬂ— — Jijﬂ— + Oz[cij’T — Cij,‘r ] (611)
and for the fields

hi  —  hi +ry[miet — mmede], (6.12)

7
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Chapter 7

MaxEnt Algorithms

The method of making models with maximum entropy approach, in terms of computer
algorithm, has two main branches, the direct and the inverse problem, as exposed in
Chaps. 5 and 6. The direct problem is implemented with the Metropolis Monte Carlo
(MC) algorithm to produce samples, that we can think of as samples drawn from the
model distribution P,,(c), to estimate the functions {m;, ¢;;,, cc;;-} given the parameters
{hi, Jij - }. The inverse problem uses with the gradient descent algorithm to implement a

machine learning process with update learning rules.

7.1 Metropolis Monte-Carlo

The network has N L nodes, or spins. After performing N L Monte Carlo steps, we say we
have completed one sweep of the network. It means that each spin o0, is given a chance
to flip (6;+ — 1 — 0;4) on average. Periodic boundary conditions were used in the time

dimension to avoid boundary effects.

Sweep:
fori=1,...,NL

Choose a site (k,t) at random;

Calculate the change in energy AE due to the flip of spin oy, using Eq. (6.2)

AFE = 20kt_1 (Z Z kaTUgt—i-T"'hk:) (71)

j=1 7=—u
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If AE <0, accept the new configuration and flip the spin: o3 — 1 — 0% 43

Else, if AE > 0, flip the spin with probability P = e 2F, otherwise keep the

old configuration;

The whole Metropolis algorithm consists in many sweeps. First, there is a thermaliza-
tion period and afterwards n sweeps are performed to computed the expected values of
the functions.

Inputs:

number of spins: V;
time dimension: L;
thermalization sweeps: T

system sweeps: n;
Algorithm:
initialize system with random spins
fori=1,...,T
system sweep
fori=1,...,n
system sweep

calculate correlations and firing rates

7.2 Machine learning

The machine learning process uses both the gradient descent algorithm, to update the
parameters, and the Metropolis Monte Carlo algorithms, to run the sweeps of the system.

Input

real Creal .
i “igT

empirical observations: m
parameters:

number of spins: V;

time dimension: L;
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thermalization sweeps: T

system sweeps: n;

maximum correlation distance on time: u;
coupling learning rate: o;

field learning rate: ~;

precision: p;

check point: checkpt;
Algorithm:
initialize parameters {h;, J;;,}

initialize model expected values {model cmodel

i 0 CGir
initialize system with random spins
fori=1,...,T

system sweep

do

update parameters {h;, J;; -} < {h;i +vAh;, Jijr +aAJ;j .}

model __ model __
reset expected values {m =0, ¢f39% = 0}

foryj=1,....n
system sweep
compute functions {o;, 054011+ }

calculate expected values {mmodel  cmodel

i Cir
while(check if precision < p)

After every Monte Carlo run, the program checks if the precision of the program
p is within the precision p wanted. The precision of the program is calculated as the
relationship between two errors. One is the error between the ‘real’ and ‘model’ expected
values (E,cq). The other is the error associated with the inherent stochasticity of the

Monte Carlo method (Ejy¢), which is the error of two consecutive Monte Carlo runs with
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the same parameters. The precision is given by p = F,cq/Enc. The algorithm is made
in order that the program stops when p = Fyeq;/Epe < p. The two errors E,.q and Fy o
are the mean absolute error, which is the mean absolute value of the difference between
the two values being compared. As an example, the error between the ‘real’ and ‘model’

mean firing rate is given by
| N
Erea({mi}) = N Z (M) — (M) (7.2)

i=1

The errors are calculated for the mean firing rates {m;} and the correlation functions

{cijrt-

Checking process algorithm:
if (checkpt)
calculate the learning errors (Feq)
run a MC algorithm with the same parameters for test

calculate MC test errors (Eyc)

compare errors with precision: p = E/FEyc <p?
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Chapter 8

Results

Before running the program with the real data, some tests were made with synthetic data
and analytic approximations. First, the Metropolis Monte Carlo algorithm was loaded
with artificial values of couplings and fields, and the estimated connected correlation
was compared with the high temperature expansion analytical approximation [14, 52|.
Then, the machine learning algorithm was tested against synthetic data produced from
the Metropolis algorithm to see if it was giving the correct parameters to reproduce the
measured values from the synthetic data. Once the program was tested and it has given

reliable parameters, the real data was analyzed.

8.1 Synthetic data

The synthetic data is produced by the Metropolis Monte Carlo algorithm with artificial
values of couplings and fields. We are in a regime of weak interactions. The couplings
were, therefore, drawn from a Gaussian distribution with zero mean and a small standard
deviation sd. A separate process is done for the fields. The fields were made constant and
their values were calculated with the approximation of weak interactions, i.e., considering
Jij- =01in Eq. (6.2). They are calculated as follows.

The probability of finding the system in a specific state {o;;} factorizes over neurons

and over time, and reads
L N
T4t 1- —0i,t
{O-Zt} Hsz q'L (81)
t=1 i=1

where p; is the probability of neuron ¢ with a firing rate r; spiking in a time bin dt,
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pi = r;0t, and ¢; = 1 — p;. But, from Eq. (5.10) and using the approximation J;;, ~ 0,

the distribution is also equal to

P({o::}) = % exp

- Z Z hz‘Uz‘,t] . (8.2)

t=1 i=1

Taking the log and equating the probabilities,

Z[O-i,t log pi/q; +log q;) = Z hioiy —log Z. (8.3)
it

it
Comparing both sides and considering constant firing rates r; = r

r ot
1—rdt

hi = h =log (8.4)

To perform the simulations it was considered a firing rate of » = 10 Hz and time bins
of t =10 ms, which gives h ~ —2.2.
The high temperature expansion approximation was used to compare the connected

correlation estimated from the Monte Carlo algorithm. It is given by
Ji T

8.1.1 Metropolis Monte-Carlo: direct problem

The Metropolis Monte Carlo algorithm for the given theoretical framework was tested
with many configurations of synthetic data. Scatter plots compare the connected correla-
tion estimated from the Monte Carlo algorithm (Simulation) with the high temperature

expansion analytical approximation (8.5) (Theoretical).
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Figure 8.1: Comparison between the connected correlation estimated from the Monte Carlo
algorithm (Simulation) and the high temperature expansion (Theoretical) with time correlation
distances of (a) 7 =0 and (b) 7 = 1.

As an example, it is presented in Fig. 8.1 a configuration with N=10 neurons, a time
dimension of L=1000 time bins, a maximum distance of interaction in the time dimension
of u=1, n=20000 sweeps, sd=0.1 and time correlation distance of 7 = 0 in Fig. 8.1a
and 7 = 1 in Fig. 8.1b. The scatter plot shows that the algorithm is estimating correct

expected values withing the theoretical approximation considered.

8.1.2 Machine learning: inverse problem

The machine learning algorithm was tested with many configurations as well. Scatter
plots show a comparison between the synthetic data (Data) and the data inferred from
the model (Model). As an example, it is shown a configuration of N=100, L=1000, u=1,
n=3800 every MC run, sd=0.04, and learning rates a=0.85 for the interactions and v=0.025
for the fields. Finding learning rate values that give appropriate steps towards the mini-
mum of the Kullback-Leibler divergence is a difficult task, it has to be done in an empirical

way.
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Figure 8.2: Scatter plot of (a) mean firing rates {m;} and (b) fields {h;}.
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The scatter plots of Figs. 8.2-8.4 show that the machine learning algorithm is giving
reliable values of couplings and fields since it is reproducing the synthetic mean firing
rates and connected correlations. The fields were made constant and it is not expected
that the algorithm set them all to a constant value. The scatter plot of Fig. 8.2a shows

that field values are very close to the expected value (h ~ —2.2) within an error.

8.2 Real data

The real data spike train {o;,} is obtained from the flickering checkerboard stimuli pro-

jected on the retina, with time bins ¢ = 10 ms. Three configurations were analyzed
N =185, L = 185000;
N =97, L = 185000;
N =61, L = 185000;

where N is number of neurons and L is the time dimension, i.e., the total time of the

experiment is T = Lot.

8.2.1 Time range u=>5

Time interaction distances from 7 = 0 to 7 = 5 were studied. Here is presented the
largest range studied with « = 5 and with the configuration N=185 neurons, L=>500 time
dimension, n=360 sweeps every MC run, a=0.25 couplings learning rate, y=0.025 field

learning rate and precision p=3.
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Figure 8.5: Scatter plot of (a) mean firing rates and (b) fields distribution.
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o6

It can be seen from Fig. 8.5 that the algorithm is estimating the firing rates with good

accuracy, making the fields values to be reliable.
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Figure 8.6: Scatter plots of connected correlation with 7 ranging from 0 to 5.

Also the connected correlation are being estimated with good accuracy (see Figs. 8.6a—
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8.6f). Nevertheless, it can be observed that there are many outliers for the larger absolute
values. Those outliers are a result of the high self correlation, although it is not clear why

are self correlations so high.
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Figure 8.7: Interactions distributions with 7 ranging from 0 to 5.

The interactions distributions, Figs. 8.7a-8.7f, show that they are picked around zero,

in other words, the interactions are weak. In spite of that, there are many outliers for larger
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absolute values, what is consistent with the connected correlations in Figs. 8.6a-8.6f.

8.2.2 Couplings range

It is expected that there is a time-scale on which the time auto-correlation falls off. For
time differences 7 larger than the time auto-correlation, the activities of neurons are not
correlated anymore. This is observed in real data in terms of the decay of the coupling

range.
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Figure 8.8: Standard deviation of the couplings distribution in function of 7 of the real data
(blue) and the randomized data (red). (N=185, L=>500, u=5, a=0.25, v=0.025): (a) complete,
(b) without main diagonal, (c¢) only main diagonal.

As the time distance 7 of interaction increases, the couplings range decreases. This
can be observed in Fig. 8.8, where the standard deviation of the couplings of real data
(blue line) decreases. In Fig. 8.8a all interactions are present, and there is an increase in
the coupling range from 7 = 0 to 7 = 1, because in this case there is no self correlation at
7 =0 (Jiipo = 0), in terms of neuron activity, which are responsible for most of the outliers.
In Fig. 8.8b the main diagonal was removed and the curve is monotonically decreasing. In
Fig. 8.8c there is only the main diagonal and the values are much higher than the other
two graphs. Moreover, in Fig. 8.8, the red line stands for the standard deviation of the
couplings of the randomized data, that is, every neurons has its time series randomized in
the original experimental dataset. It is observed that the blue line approaches the red line

as 7 increases. Therefore, it is expected that, for large 7, the correlations goes to zero.

8.2.3 Detailed balance

The system studied is out of equilibrium. In general, out of equilibrium systems do not

obey a detailed balance equation. It can also be regarded as an irreversibility on time.
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Thus, the detailed balance can be studied be means of the interactions J;;,, because of

the time symmetry property Jij,T = inﬁr
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The graphs in Fig. 8.9 are scatter plots of the interactions matrix J;; . and the trans-
posed matrix Jj; , for 7 = 1,2, 3,4, 5. Although we cannot make conclusion yet, the system
does not seem to obey the detailed balance. This must be investigated with more careful
and quantified methods.

Another remarkable point is that there is always the question if the measured data is
not completely random, i.e., that neurons are spiking with no correlation. To investigate
this, the real data was randomized in the time dimension. The code word of each neuron
is maintained with the same number of zeros and ones, but the order is randomized, and
the machine learning process performed again. If the real data is random, it should be
indistinguishable from the randomized data. In all graphs of Fig. 8.9 the red dots stands
for the randomized data, and they are all concentrated at the center of the scatter plots.
This shows that the real data is not a product of a dynamics of random spiking neurons.
It is also possible to observe that the real data gets closer to the randomized data as 7

grows.

8.2.4 Thermodynamic Variables

Once the system is characterized by the learned parameters {h;;J;; .}, it is possible to
calculate thermodynamic variables by considering an artificial temperature. The model

distribution is than given by,
1
P(o) =  exp—BE(0), (8.6)

where § = 1/T is the inverse temperature and it has no direct physical significance, it is
just an external parameter.

In the way that the model was built, the temperature of the system is T' = 1. So that,
thermodynamic variables can be compared to different temperatures and 7" = 1 is the
system temperature, or the temperature of operation of the system. For each temperature
variables can be calculated using a Monte-Carlo method to give n samples. The energy is

given by,

E(T) = % > E,(0.7). (8.7)
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The magnetization can be calculated,

(1)) = -3 m,(T) (53)
v=1
where, for s, = +1,
(1) = <+ 3 sty = 1= 31— 208) = 1 - 2(at) (89)
my, = NI a Sit = NI a 0ry) = O .
We can also define a specific heat,
1 (0E*(T))

where, 0E(T) = E(T) — (E(T)).

These are thermodynamic variables that have a specific behavior at the critical point.
The magnetization is the system order parameter and the specific heat diverges at the
critical point. The analysis of these variables will allow us to characterize the criticality

of the system. This work is the object of a future project.
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Chapter 9

Conclusion

This work was divided in two parts. In this first part, a theoretical model was developed to
simulate the brain network built from measured BOLD temporal series. A computer sim-
ulation of a spin lattice was performed and the system evolved according to a Metropolis
algorithm with single-spin-flip dynamics. Using the Monte-Carlo sampling method, each
spin had a time series in the end. Correlations between each pair of spin time series were
obtained and a correlation network was build for the Ising model. The simulations were
performed in three temperatures, critical, subcritial, and supercritical. Network measures
were also calculated and analysed. A comparison between the brain network of the ex-
perimental results from the Neurophysics group at University of Campinas and the Ising
correlation network showed that what was observed in brain data was better explained by
the theoretical model when it was at the critical temperature. This shows evidences that
the brain operates in a critical regime, or that critical aspects are present in the brain
dynamics.

The next steps of this work is to enhance the model. A first approach would be to
include a field term in the Hamiltonian. Another approach is to work with a variable
with more than two dynamical states as the spin, given that the experimental data from
brain has temporal series with a continuous signal which can assume arbitrary values in
principle. Something that is also possible and somehow equivalent is to study different
topologies in the original lattice, other than a square lattice. Finally, we intend to in-
vestigate theoretical models to simulate brain data from subjects with pathologies, like
epilepsy.

In the second part, maximum entropy models approach was used to study the collective
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dynamics of a large neuron population. This work was performed during a six months
internship at the Ecole Normale Supérieure of Paris under the supervision of Dr. Thierry
Mora, and the data was obtained from his collaborator Dr. Olivier Marre from the Vision
Institute of Paris. Data was recorded directly from the activity of the retina of mice. A
movie was projected on the retina and the activity of ganglion cells was recorded by a
multi-electrode array. In the end, the dataset is a raster of time bins of the whole system
where each neuron can be spiking or in silence in that time bin, which is a code-word.
Mapping each neuron into a classic spin with two states, “up” (spike) or “down” (silence),
it was possible to construct an Ising model with pairwise interactions.

Many works have studied this kind of dynamics, but no attention was given to the
temporal dynamics, considering each code-word as time independent. In this work, to
study the temporal dependence, an Ising model was built treating time as an extra di-
mension of the system, putting interactions between different spins at different moments
of time. Using a Monte-Carlo sample method together with a gradient descent algorithm
a machine learning process was used in model fitting, and the system was characterized
by the parameters learned from the computer program. Aspects of the dynamics, such as
the interactions range on time and detail balance are being studied.

The work is in progress and now we are looking to improve the learning process in
order to have more reliable parameters. Thermodynamics variables will be calculated,
such as the specific heat and magnetization, which show a specific diverging behavior at
criticality, so that the critical hypothesis can be studied.

In a collaboration with the Neurophysics group at University of Campinas, we consider
to apply this framework to brain data. Near-infrared spectroscopy (NIRS) together with
fMRI are being used to capture brain activity, which can be studied with the maximum

entropy inference approach.
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Appendix A

Kullback-Leibler divergence

Given two probability distributions, P, and F,,, the Kullback-Leibler (KL) divergence is
defined as

Dyi(P.|Py) ZP 8. (A.1)

It is a non-symmetric measure of discrepancy or divergence between two distributions.

In terms of code length, if a system is built to operate optimally with a given distribution,
say P,., the KL divergence measures the extra length of bits that must be coded by the
system to operate with the other distribution, P,, in Eq. (A.1), and produce the same
message. Technically speaking, the KL divergence measures the difference between the

entropy of the optimal distribution, S[P,], and the cross-entropy of P, and P,,, S[P,, P,,] =
=2, Fr(0)log Py (o).
Dy (P.|P,) ZP ) log Py +ZP )log P,(0) (A.2)

= S|P, P, — S[P,]. (A.3)

Between the properties of the KL. divergence, some of them are worth mentioning here:
1. non-negativity: Dy (P:|P,) > 0;

2. identity: Dk (P:|P,y) = 0 if, and only if, P, = P,,;

3. continuity: Dy (P.|Py,) is a continuous function of P, and P,,;

4. convexity: Dgr(P,|Py) is a convex function of both P, and P,,.
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Properties (1) and (2) are essential for any measure of discrepancy or divergence.
Property (4) ensures that the local minimum is the global minimum, which is used as
convergence property of the process of finding the appropriate Lagrange multiplier for the

model distribution P, (o).



