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Abstract

Analogue models are a useful tool when one wants to understand or probe
phenomena in one physical system in terms of concepts from another, which may
be more familiar or more easily accessed by experiments. This work explores this
framework in the context of analogue models of gravity based on fluid dynamics.
Particularly, we are interested in providing an analogue model for a radial fluid flow
with a point source/sink at the origin.

We start by considering the case where the (radial) flow velocity is constant.
The resulting analogue model is then the Anti-de Sitter spacetime (AdS) which is
known to be non-globally hyperbolic. As a result, the dynamics of fields in this back-
ground is not well defined until extra boundary conditions at its spatial boundary
are prescribed. The fluid dynamics counterpart of these extra boundary conditions
provide an effective description of the point source/sink at the origin.

After that, we consider regularizations of this model near the source/sink
at the origin. We then impose conditions on them in order that the dynamics is
well defined so that no extra boundary conditions are required. We calculate how
physical quantities, like the phase difference between ingoing and outgoing scattered
waves are affected by the regularizations. These results are then compared with the
AdS case to understand the main implications of the regularization, which has the
effect of deforming the AdS space near its spatial infinity. We also show that, under
certain conditions, the phase difference obtained for these deformed AdS spaces
agrees with that obtained in the AdS case.

Key-words: Analogue models. General Relativity. Fluid dynamics.



Resumo

Os modelos análogos são uma ferramenta muito útil quando se quer entender
ou testar fenômenos de um sistema físico em termos e conceitos de outro, que podem
ser mais familiares ou mais facilmente reproduzíveis por experimentos. Este trabalho
explora esta questão no contexto de modelos análogos à gravitação baseados na
mecânica dos fluidos. Particularmente, estamos interessados em fornecer um modelo
análogo para um fluxo radial com uma fonte/sorvedouro na origem.

Começamos por considerar o caso em que a velocidade do fluxo (radial) é
constante. O modelo análogo resultante é então o espaço-tempo Anti-de Sitter (ou
AdS) que é conhecido por ser não-globalmente hiperbólico. Como resultado, a dinâ-
mica dos campos neste contexto não está bem definida até que sejam estabelecidas
condições adicionais na fronteira no infinito espacial do espaço–tempo AdS. A con-
trapartida destas condições de fronteira extras na mecânica dos fluidos proporciona
uma descrição efetiva da fonte/sorvedouro que está na origem.

Depois disso, nós consideramos regularizações para o modelo análogo perto
da fonte/sorvedouro na origem. Logo, impomos condições sobre eles, a fim de que a
dinâmica esteja bem definida de modo que não sejam mais necessárias as condições
na fronteira. Calculamos como as quantidades físicas, como a diferença de fase entre
as ondas que entram e saem, são afetadas pelas regularizações. Estes resultados são
então comparados com o caso AdS para compreender as principais implicações do
processo de regularização, que tem o efeito de deformar a região perto do infinito
espacial do AdS. Mostramos também que, sob certas condições, a diferença de fase
obtida para esses espaços deformados do AdS coincide com a obtida no caso do
espaço–tempo AdS.

Palavras-chaves: Modelos análogos. Relatividade Geral. Mecânica dos fluidos.
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1 Fluid dynamics

1.1 Introduction

In this chapter we present the basic aspects and equations which govern all phe-

nomena of fluids within the classical limit. This review contains some considerations which

will be necessary in order to derive hydrodynamic analogue models of gravity. We begin

our description of fluids by reviewing the physical ideas that are needed to understand

the general behavior of fluids. First, we can represent a fluid as a set of “fluid particles”

[1]. These are to be considered as a mathematical idealization of an entity with a suffi-

ciently large amount of fluid particles so that a classical (i.e, non-quantum) description

of this object is valid. The atoms inside a fluid particle do not have to be same as time

evolves, but the exchange of atoms between fluid particles should not drastically change

the number of atoms inside them. The last requirement we make is that the size of these

fluid particles is very small compared with the length scale of the system (the fluid flow),

so that they can be assigned particle-like characteristics.

Mathematically, a fluid can be characterized by three main quantities: its density 𝜌

which tells how the fluid mass is distributed over the fluid, the velocity 𝑣⃗ of fluid particles,

and the pressure 𝑝. All these quantities are defined at position 𝑟⃗ and at time 𝑡. When

they are known or given, the state of the fluid is entirely determined.

In order to find 𝜌, 𝑣⃗ and 𝑝, we need five (scalar) equations to relate them. As we

mentioned before, we restrict ourselves to classical physics so that those equations can

be derived from Newton laws (or more generally by using the principle of least action).

After that, such equations are identified as the continuity equation, the Navier–Stokes

equations and an additional equation which comes from thermodynamics (a constitutive

relation).

With respect to the energy of the fluid, in fluid dynamics we can also have conser-

vative and non-conservative systems. The case of non-conservative fluids are well described

in terms of another quantity, the viscosity. We are interested here in fluids with zero vis-

cosity and this kind of fluids are said to be ideal. We describe this case in more detail in

what follows.

1.2 Mathematical aspects of ideal fluids

Although there are no ideal fluids in nature, within certain regimes and conditions

a real fluid can be considered ideal and this is often useful for simplifying its description
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or approximating its behavior.

To proceed with the derivation of the fundamental equations for ideal fluids, we

first need to consider some conservation principles. To do that, consider some volume 𝑉

within the fluid. Given the mass density 𝜌, the total mass in this volume is

∫︁

𝑉
𝜌d𝑉.

The mass of fluid which passes through an element d𝑆 of surface 𝜕𝑉 is 𝜌𝑣⃗ ≤ d𝑆⃗, where

the module of d𝑆⃗ is d𝑆 and its direction is pointing along the normal direction of 𝜕𝑉 .

Consequently, the total mass per unit time is

⌊︁

𝜕𝑉
𝜌𝑣⃗ ≤ d𝑆⃗.

This mass flow changes the total mass in 𝑉 at the rate

⊗ 𝜕

𝜕𝑡

∫︁

𝑉
𝜌d𝑉.

Equating the last two expressions and using the divergence theorem, we get the continuity

equation [1]
𝜕𝜌

𝜕𝑡
+ ∇⃗ ≤ (𝜌𝑣⃗) = 0. (1.1)

The quantity 𝜌𝑣⃗ is called the mass flux density and it is denoted by 𝑗⃗. In this way, equation

(1.1) has the same form as the conservation of charge, just as expected.

The continuity equation, as we said before, is one of the five equations needed to

describe a fluid. The next three equations come from considering the fluid particle as a

point particle and applying the Newton second law. This leads to

d

d𝑡
(𝜌d𝑉 𝑣⃗) = ⊗∇⃗𝑝d𝑉 + 𝑓d𝑉, (1.2)

where 𝑝 is the pressure and 𝑓 is the external force density applied to the infinitesimal

fluid element. Considering 𝜌 = 𝜌(𝑟⃗(𝑡), 𝑡), and applying the chain rule on the left hand side

of equation (1.2) Euler equations arise

𝜕𝑣⃗

𝜕𝑡
+
(︁

𝑣⃗ ≤ ∇⃗
)︁

𝑣⃗ = ⊗1

𝜌
∇⃗𝑝+

1

𝜌
𝑓. (1.3)

This equation was first obtained by Euler in 1755 [2].

To explore further the meaning of the above equation, let us recall the fact that

there is no heat transfer in the ideal fluid case. Because of that, the motion of the fluid is

adiabatic. From thermodynamics, this fact implies that the entropy must remain constant.

Denoting by 𝑠 the entropy per unit mass, we get

d𝑠

d𝑡
= 0. (1.4)
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When 𝑠 = constant, the motion is said to be isentropic [1]. Once more, from thermody-

namics, the enthalpy 𝐻 in terms of entropy and pressure is given by

d𝐻 = 𝑇d𝑆 + 𝑉 d𝑝,

where 𝑝 is the pressure and 𝑇 the temperature of the system. Dividing this relation by

the mass contained in 𝑉 , the above expression can be written in terms of 𝑠, 𝜌, and 𝑝 as

follows:

dℎ = 𝑇d𝑠+
1

𝜌
d𝑝, (1.5)

where ℎ is the specific enthalpy (enthalpy per unit mass). Relation (1.4) implies

∇⃗ℎ =
1

𝜌
∇⃗𝑝. (1.6)

This can be used to rewrite the Euler equations as

𝜕𝑣⃗

𝜕𝑡
+
(︁

𝑣⃗ ≤ ∇⃗
)︁

𝑣⃗ = ⊗∇⃗ℎ+
1

𝜌
𝑓. (1.7)

To simplify this expression, we can use the following relation which comes from

vector analysis:

∇⃗
(︁

𝑎⃗ ≤ 𝑏⃗
)︁

=
(︁

𝑎⃗ ≤ ∇⃗
)︁

𝑏⃗+
(︁

𝑏⃗ ≤ ∇⃗
)︁

𝑎⃗+ 𝑎⃗×
(︁

∇⃗ × 𝑏⃗
)︁

+ 𝑏⃗
(︁

∇⃗ × 𝑎⃗
)︁

.

Making 𝑎⃗ = 𝑏⃗ = 𝑣⃗, substituting into equation (1.7) and taking the curl then leads to

𝜕

𝜕𝑡
∇⃗ × 𝑣⃗ = ∇⃗ ×

(︁

𝑣⃗ × ∇⃗ × 𝑣⃗
)︁

+ ∇⃗ ×
(︃

1

𝜌
𝑓

)︃

, (1.8)

which are the Euler equations expressed only in terms of 𝑣⃗ and the external force 𝑓 .

Another interesting result arises when 𝑓/𝜌 comes from a potential. Then, we can

write 𝑓 = ⊗𝜌∇⃗𝜙, with 𝜙 a scalar field. Then, the above relation is expressed solely in

terms of the fluid flow velocity. Using the previous vector relation for
(︁

𝑣⃗ ≤ ∇⃗
)︁

𝑣⃗ in equation

(1.7) then leads to

𝜕

𝜕𝑡
𝑣⃗ +

(︁

∇⃗ × 𝑣⃗
)︁

× 𝑣⃗ = ⊗∇⃗
(︂

1

2
𝑣2 + 𝜙+ ℎ

)︂

. (1.9)

We identify the expression 1
2
𝑣2 +𝜙+ℎ as the Bernoulli function and denote it by ℋ. This

function plays and important role in the study of energy of fluid flows.

The continuity equation along with the Euler equations give us four of the five

needed equations to describe the fluid. The fifth equation is a constitutive relation which

generally comes from thermodynamics.
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1.3 Energy and momentum flux

To find the energy flux of a fluid, we consider once again a volume 𝑉 in the fluid

with no external forces acting upon it. The energy density is then given by

1

2
𝜌𝑣2 + 𝑢,

where the first term represents the fluid kinetic energy and the second term its internal

energy. This internal energy can also be written in terms of the energy density per unit

mass 𝜀, i.e. 𝑢 = 𝜌𝜀. In this way, we can write energy flux as follows

𝜕

𝜕𝑡

(︂

1

2
𝜌𝑣2 + 𝜌𝜀

)︂

=
𝜕

𝜕𝑡

[︂

𝜌
(︂

1

2
𝑣2 + 𝜀

)︂⎢

=
𝜕𝜌

𝜕𝑡

(︂

1

2
𝑣2 + 𝜀

)︂

+ 𝜌𝑣⃗ ≤ 𝜕𝑣⃗
𝜕𝑡

+ 𝜌
𝜕𝜀

𝜕𝑡
.

(1.10)

To simplify this expression, we appeal to the continuity equation and the equations of

motion to obtain the derivatives 𝜕𝜌
𝜕𝑡

and 𝜕𝑣⃗
𝜕𝑡

. To calculate 𝜕𝜀
𝜕𝑡

, we use the first law of

thermodynamics, which in terms of specific quantities becomes

d𝜀 = 𝑇d𝑠+
𝑝

𝜌2
d𝜌 = dℎ⊗ 1

𝜌
d𝑝+

𝑝

𝜌2
d𝜌 = dℎ⊗ d

(︃

𝑝

𝜌

)︃

.

As a result, we get 𝜌𝜀 = 𝜌ℎ⊗ 𝑝 and, therefore, 𝜌𝜕𝜀
𝜕𝑡

is given by

𝜌
𝜕𝜀

𝜕𝑡
=
𝜕𝜌

𝜕𝑡
(ℎ⊗ 𝜀) ⊗ 𝜌𝑣⃗ ≤ ∇⃗ℎ+ 𝑣⃗ ≤ ∇⃗𝑝 =

𝜕𝜌

𝜕𝑡
(ℎ⊗ 𝜀) ⊗ 𝜌𝑣⃗ ≤

(︃

∇⃗ℎ⊗ 1

𝜌
∇⃗𝑝

)︃

,

where we used the equation (1.5). We realize that the second term will vanish for ideal

fluids leaving

𝜌
𝜕𝜀

𝜕𝑡
=
𝜕𝜌

𝜕𝑡
(ℎ⊗ 𝜀) .

Putting all together, the energy flux then becomes

𝜕

𝜕𝑡

(︂

1

2
𝜌𝑣2 + 𝜌𝜀

)︂

=
𝜕𝜌

𝜕𝑡

(︂

1

2
𝑣2 + ℎ

)︂

+ 𝜌𝑣⃗ ≤ 𝜕𝑣⃗
𝜕𝑡
.

We need one last step to give the final expression for the energy flux. Obtaining the time

derivatives of the density and the velocity flow from the continuity equation and Euler

equations, we write the energy flux as

𝜕

𝜕𝑡

(︂

1

2
𝜌𝑣2 + 𝜌𝜀

)︂

= ⊗∇⃗ ≤
[︂

𝜌𝑣⃗
(︂

1

2
𝑣2 + ℎ

)︂⎢

. (1.11)

To understand the physical meaning of this equation, we integrate it over the

volume 𝑉 , i.e.,

𝜕

𝜕𝑡

∫︁

𝑉

(︂

1

2
𝜌𝑣2 + 𝜌𝜀

)︂

d𝑉 = ⊗
∫︁

𝑉
∇⃗ ≤

[︂

𝜌𝑣⃗
(︂

1

2
𝑣2 + ℎ

)︂⎢

d𝑉 = ⊗
⌊︁

𝜕𝑉
𝜌𝑣⃗
(︂

1

2
𝑣2 + ℎ

)︂

≤ d𝑆⃗,
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where the divergence theorem was used. The right hand side of the last expression can be

interpreted as the amount of energy flowing throughout 𝜕𝑉 . On the other hand, the left

hand side, as mentioned before, is the energy rate that passes throughout 𝑉 per unit of

time. The quantity 𝜌𝑣⃗
(︁

1
2
𝜌𝑣2 + ℎ

)︁

is called the energy flux density vector.

We can also identify a momentum flux (similar to the energy flux) in the fluid. To

derive its mathematical expression, we first write the Euler equations in a simpler way

using index notation. We denote a vector 𝐴⃗ as 𝐴𝑖, where 𝑖 represents the 𝑖th component

of 𝐴⃗. Equations (1.3) then take the form

𝜕𝑡𝑣𝑖 + (𝑣𝑘𝜕𝑘)𝑣𝑖 = ⊗1

𝜌
𝜕𝑖𝑝,

where, for simplicity, the derivatives were written as 𝜕
𝜕𝑥i

⊃ 𝜕𝑖 and 𝜕
𝜕𝑡

⊃ 𝜕𝑡, and the

convention of summation over repeated indices was considered. After this, Euler equations

can be written as

𝜕𝑡(𝜌𝑣𝑖) = ⊗𝜕𝑘Π𝑖𝑘, (1.12)

where Π𝑖𝑗 is called the momentum flux density tensor, and is given by

Π𝑖𝑗 = 𝑝Ó𝑖𝑗 + 𝜌𝑣𝑖𝑣𝑗, (1.13)

where Ó𝑖𝑗 is the Kronecker delta.

Similarly to the energy flux, we can obtain the physical meaning of Π𝑖𝑗 by inte-

grating the above expression over a volume 𝑉 , i.e.,

𝜕𝑡

∫︁

𝑉
𝜌𝑣𝑖d𝑉 = ⊗

∫︁

𝑉
𝜕𝑗Π𝑖𝑗d𝑉 = ⊗

⌊︁

𝜕𝑉
Π𝑖𝑗d𝑆𝑗.

In contrast to the energy flux, we realize that there is a second rank tensor related to this

flux. Physically, Π𝑖𝑗 represents the momentum flux through a perpendicular surface to the

𝑥𝑗-axis per unit time. To sum up, we realize that the momentum flux is represented by a

second rank tensor and the energy flux by a vector (or first rank tensor). This notation and

expressions are useful when one needs to generalize the basic ideas we developed about

fluids. Moreover, these two quantities play an important role in the covariant formulation

of fluid dynamics.

1.4 Velocity gradient

Since fluids do not have a definite shape, concepts like deformation or rotation

have interesting implications. Consider once again a fluid flow with velocity 𝑣𝑖 and some

point 𝑋𝑖 in the fluid. The way how 𝑣𝑖 changes near this point gives rise to the concept of

velocity gradient. Consider a series expansion near 𝑋𝑖 of 𝑣𝑖:

𝑣𝑖(𝑥𝑖) = 𝑣𝑖(𝑋𝑖) + 𝜕𝑗𝑣𝑖Ó𝑥𝑗 + 𝒪(Ó𝑥2
𝑖 ),
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where Ó𝑥𝑖 = 𝑥𝑖 ⊗ 𝑋𝑖. The constant term 𝑣𝑖(𝑋𝑖) could be identified with the velocity of

a rigid translation of a fluid particle. The velocity gradient is the quantity defining the

second term, 𝜕𝑗𝑣𝑖. To obtain a physical interpretation for it, the velocity gradient can be

split into symmetric and antisymmetric part, i.e.,

𝜕𝑖𝑣𝑗 =
1

2
(𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖) +

1

2
(𝜕𝑖𝑣𝑗 ⊗ 𝜕𝑗𝑣𝑖) .

Let

𝐷𝑖𝑗 =
1

2
(𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖)

and

Ω𝑖𝑗 =
1

2
(𝜕𝑖𝑣𝑗 ⊗ 𝜕𝑗𝑣𝑖)

be the symmetric and antisymmetric part of the velocity gradient respectively. Consider

the distance 𝑠 between 𝑋𝑖 and 𝑥𝑖,

𝑠2 = Ó𝑥𝑖Ó𝑥𝑖.

The rate of change of this distance with time is

d𝑠2

d𝑡
= 2

dÓ𝑥𝑖
d𝑡

Ó𝑥𝑖 = 2Ó𝑥𝑖 [𝑣𝑖(𝑥𝑖) ⊗ 𝑣𝑖(𝑋𝑖)] = 2 (𝐷𝑖𝑗 + Ω𝑖𝑗) Ó𝑥𝑖Ó𝑥𝑗 = 2𝐷𝑖𝑗Ó𝑥𝑖Ó𝑥𝑗,

where in the last equality we used the fact that the contraction between symmetric

(Ó𝑥𝑖Ó𝑥𝑗) and antisymmetric (Ω𝑖𝑗) tensors vanish.

As Ó𝑥𝑖 is arbitrary, 𝐷𝑖𝑗 then encodes the variation in the distance between fluid

particles. Physically it is interpreted as a deformation on the fluid. The symmetric part

of velocity gradient (𝐷𝑖𝑗) is usually called deformation tensor.

For the antisymmetric part, we note that for any cyclic indexes 𝑖, 𝑗, 𝑘 the quantity

Ω𝑖𝑗 is the 𝑘th component of a vector æ𝑘 = 𝜖𝑖𝑗𝑘 (𝜕𝑖𝑣𝑗 ⊗ 𝜕𝑗𝑣𝑖), and that 𝜕𝑖𝑣𝑗 ⊗ 𝜕𝑗𝑣𝑖 in terms

of æ𝑘 is 1
2
𝜖𝑖𝑗𝑘æ𝑘. Moreover, the contraction of æ𝑖𝑗 with Ó𝑥𝑖 is

Ω𝑖𝑗Ó𝑥𝑖 =
1

2
𝜖𝑖𝑗𝑘æ𝑘Ó𝑥𝑖.

Now this term, in vector representation, reads

Ω ≤ Ó𝑥⃗ =
1

2
æ⃗ × Ó𝑥⃗. (1.14)

Note that in the left hand side of the above equation the dot does not mean scalar product,

since Ω is not a vector (it is a second rank tensor); this dot represents a contraction and

as result we get a cross product. We are all familiar with this expression in the context

of classical mechanics as it represents a rotation with angular velocity equals to 1
2
æ⃗.

The vector æ⃗ is called the vorticity and, physically, it quantifies the local spinning

motion of the fluid at some point. Furthermore, by using equation (1.8), we easily find

the evolution equation for the vorticity. By means of a simple substitution, we get

𝜕æ⃗

𝜕𝑡
= ∇⃗ × (𝑣⃗ × æ⃗) + ∇⃗ ×

∏︀

∐︁

𝑓

𝜌

∫︀

̂︀



Chapter 1. Fluid dynamics 19

or equivalently

𝜕æ⃗

𝜕𝑡
= 𝑣⃗ ×

(︁

∇⃗ × æ⃗
)︁

+ ∇⃗ ×
∏︀

∐︁

𝑓

𝜌

∫︀

̂︀ . (1.15)

A fluid with zero vorticity (æ⃗ = 0) is called an irrotational flow or potential flow,

because zero vorticity implies ∇⃗ × 𝑣⃗ = 0 and therefore 𝑣⃗ can be obtained from a scalar

potential field Ψ, i.e.,

𝑣⃗ = ∇⃗Ψ. (1.16)

Substituting both Ψ and ∇⃗ × 𝑣⃗ = 0 in equation (1.9), we obtain

𝜕Ψ

𝜕𝑡
+

1

2
𝑣2 + ℎ = 𝑔(𝑡), (1.17)

where 𝑔(𝑡) is some function of 𝑡.In the case of a steady flow, Ψ is independent of 𝑡. This

reads 1
2
𝑣2 + ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which physically means that this quantity will be constant

along a streamline.

When the density remains constant along the fluid and throughout its motion, the

fluid is said to be incompressible. In this case the continuity equation becomes ∇⃗ ≤ 𝑣⃗ = 0

and the equation of motion can be reduced to one single scalar equation, i.e.,

∇2Ψ = 0. (1.18)

1.5 Lagrangian formulation for ideal fluids

We now consider a Lagrangian formalism for fluid dynamics. Sometimes this per-

spective allows us to simplify the process of solving the equation of motion for fluids.

1.5.1 Incompressible fluid case

We restrict ourselves to isentropic fluids, which are characterized by the relation

∇⃗𝑝 = 𝜌∇⃗ℎ. According to the variational principle, the equations of motion for incom-

pressible fluids can be derived from an action [3]

𝑆 =
∫︁

𝐿d𝑡1...d𝑡𝑁 ,

where 𝐿 is the Lagrangian and 𝑡𝑖 are parameters that describe the evolution of the system.

In the presence of constrains, the Lagrangian must be modified accordingly. The complete

Lagrangian can then be written as 𝐿 +
√︁

𝑛 Ú𝑛𝐹𝑛, where 𝐹𝑛 is a function that represents

the constraints and Ú𝑛 are the Lagrange multipliers.

To construct the Lagrangian for fluids, let 𝑥𝑖 = 𝑥𝑖(𝑡, Ð1, Ð2, Ð3) be the coordinates

of a fluid particle. The equation of motion for a given fluid particle can be found by fixing

the values of Ð1, Ð2, Ð3. Then, the kinetic energy per unit mass is

𝑇 =
1

2

𝜕𝑥𝑖
𝜕𝑡

𝜕𝑥𝑖
𝜕𝑡
, (1.19)
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where, once again we use the summation convention. The constraint imposed on the fluid,

according to [3], has to be

d𝑚 = 𝜌d𝑥1d𝑥2d𝑥3 = dÐ1dÐ2dÐ3. (1.20)

This can be interpreted as the relation between point masses and fluid particles developed

in previous sections. For convenience, the constraint equation can also be written as

𝜕(𝑥1, 𝑥2, 𝑥3)

𝜕(Ð1, Ð2, Ð3)
=

1

𝜌
.

The action is then given by

∫︁

[︃

𝑇 + 𝑝

(︃

𝜕(𝑥1, 𝑦2, 𝑧3)

𝜕(Ð1, Ð2, Ð3)
⊗ 1

𝜌

)︃⟨

d𝑡dÐ1dÐ2dÐ3,

where 𝑝 is the Lagrange multiplier of (1.20), which will become the pressure. Consequently,

the Euler-Lagrange equations become

d2𝑥𝑖
d𝑡2

+
d

dÐ𝑗

[︃

𝑝
𝜕(𝑥1, 𝑥2, 𝑥3)

𝜕(Ð1, Ð2, Ð3)

⟨

dÐ𝑗
d𝑥𝑖

= 0,

which can be reduced to
d2𝑥𝑖
d𝑡2

+
𝜕(𝑝, 𝑥𝑗, 𝑥𝑘)

𝜕(Ð1, Ð2, Ð3)
= 0, (1.21)

with 𝑖, 𝑗, 𝑘 cyclic.

To identify the Euler equations from this expression, it is necessary to rewrite it

as follows

d2𝑥𝑖
d𝑡2

+
𝜕(𝑝, 𝑥𝑗, 𝑥𝑘)

𝜕(Ð1, Ð2, Ð3)
=

d

d𝑡

d𝑥𝑖
d𝑡

+
𝜕𝑝

𝜕Ð1

𝜕 (𝑥𝑗, 𝑥𝑘)

𝜕 (Ð2, Ð3)
+

𝜕𝑝

𝜕Ð2

𝜕 (𝑥𝑗, 𝑥𝑘)

𝜕 (Ð3, Ð1)
+

𝜕𝑝

𝜕Ð3

𝜕 (𝑥𝑗, 𝑥𝑘)

𝜕 (Ð1, Ð2)
= 0.

Next, we replace d𝑥i

d𝑡
by 𝑣𝑖 and 𝜕𝑝

𝜕Ðl
by 𝜕𝑝

𝜕𝑥i

𝜕𝑥i

𝜕Ðl
to obtain

d𝑣𝑖
d𝑡

+
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
= 0, (1.22)

which are the Euler equations since 𝑣𝑖 = 𝑣𝑖(𝑡, 𝑥𝑗(𝑡)).

Having a Lagrangian for the ideal fluid, it is straightforward to write down the

energy-momentum tensor and then explore symmetries to obtain conservation laws. This

will be developed in the following chapters.
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2 Analogue models of gravity

2.1 Introduction

The aim of this chapter is to review analogue models based on the theory of General

Relativity (GR) and to discuss the main concepts and uses of this topic. There are many

instances wherein analogue models of gravity arise as an effective method for describing

physical phenomena. For instance, analogue models play an important role in fluid dy-

namics, Bose-Einstein condensates and quantum field theory in curved space-times. Here

we focus our attention on those models that can be at least partially reproduced by fluid

flows.

Given that mathematics is the main language used for describing nature, it is not to

be unexpected that phenomena in different areas of physics have a similar (or equivalent)

theoretical description. Mathematically speaking, an analogue model can be thought of as

a framework wherein a set of tools developed in a given context is used to solve problems

in another background. This gives problems a new perspective once they are solved.

Analogue models are also useful when they are used to probe phenomena that cannot be

directly accessed by means of experiments. Perhaps the most popular example is the case

of phenomena associated with black holes [4] (for instance, the Hawking radiation) for

which analogue models based on classical fluids [5, 6, 7, 8] and condensates [9, 10, 11, 12]

are employed.

2.2 Analogue models in physics

The first analogue model in general relativity was developed by Gordon in 1923

[13] who presented an analogue space-time based on optics. People rapidly lost interest

in it and it took many years for it to be revisited. This happened with Unruh in 1981

with the article [5], where an analogue black hole model was developed. The model was

based on fluid dynamics and its aim was to emulate aspects of the physics of black holes.

In a supersonic fluid, something similar to an event horizon takes place, wherein acoustic

excitations are not able to escape a horizon. The associated phenomenon was therefore

referred to as a “dumb hole”. It was not until one decade later that such models became

dominant and that interesting topics about dumb holes started to be studied.

The main idea here is to model a physical system as a background which is rep-

resented by an effective metric. Then, excitations can be studied perturbatively as they

propagate on this background. These excitations can be broadly classified into rays and



Chapter 2. Analogue models of gravity 22

waves. Ray-like phenomena have as excitations particles/quasi-particles which propagate

along geodesics of the effective metric. On the other hand, to describe wave excitations we

need to derive a field equation which is compatible with that background. As we will show

later, in many cases this equation can be reduced to a massless Kein-Gordon equation,

1√⊗𝑔𝜕Û
(︁√⊗𝑔𝑔ÛÜ𝜕Üå

)︁

= 0,

where 𝑔 = det 𝑔ÛÜ is the determinant of the effective metric. The scalar field å represents

the excitation (which could be sound waves or quantum fields, for example).

Since particles have less structure than waves, analogue models within the ray-limit

are simpler. We therefore consider them first in the following sections, and we reserve the

discussion about the wave-limit to the next chapter.

2.3 Analogue models in optics

We start by defining the notation that we are going to use in what follows. The

Minkowski metric is represented by

ÖÛÜ =

∏︀

∐︁

⊗1 0

0 Ó𝑖𝑗

∫︀

̂︀ .

Greek indices run from 0 to 3 while latin from 1 to 3. The 4-velocity, denoted by 𝑢Û, can

be written as

𝑢Û = Ò (𝑐light, 𝑣⃗) ,

where 𝑐light is the speed of light (that will be set to 1 for simplicity), 𝑣⃗ is the velocity of

the medium, and Ò =
(︁

1 ⊗ 𝑣2/𝑐2
light

)︁⊗1/2
.

Let 𝑛 be the refractive index of the medium. The Gordon metric is then defined

as

𝑔ÛÜ = ÖÛÜ +
(︂

1 ⊗ 1

𝑛2

)︂

𝑢Û𝑢Ü . (2.1)

When the medium is at rest, this metric reduces to

𝑔ÛÜ =

∏︀

∐︁

⊗ 1
𝑛2 0

0 Ó𝑖𝑗

∫︀

̂︀ , (2.2)

which yields

d𝑠2 = ⊗ 1

𝑛2
d𝑡2 + d𝑥⃗2. (2.3)

In the case of geometric optics the (light) rays move at light speed and, as such, they

satisfy d𝑠2 = 0. Therefore
⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

d𝑥⃗

d𝑡

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

=
1

𝑛
, (2.4)

which is a well-known relation from optics.
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The effective metric (2.2) describes light-rays in a medium with refractive index

𝑛. It is also possible to substitute ÖÛÜ by an arbitrary non-flat spacetime with metric ℎÛÜ .

From the point of view of geometrical optics, we could then write the Gordon metric as

follows:

𝑔ÛÜ = Ω2
[︂

ℎÛÜ +
(︂

1 ⊗ 1

𝑛2

)︂

𝑢Û𝑢Ü

⎢

, (2.5)

where Ω is a conformal factor. This expression, with all parameters depending on space

and time is the more general form of the Gordon metric.

Interesting applications of (2.5) and other effective metrics appear in metamate-

rials (materials obtained artificially in a laboratory with properties not usually found in

Nature). These materials can be synthetically produced in a way that their corresponding

effective metric emulates interesting examples of “physical spacetimes”.

As an application of the metric (2.5), let us set the conformal factor Ω as the

refractive index of the medium Ω = 𝑛(𝑥⃗). When the physical metric is the Minkowski

spacetime and the medium is at rest (𝑢Û = (1, 0⃗) = Ó0
Û), the Gordon metric then becomes

𝑔ÛÜ = 𝑛2
(︁

ÖÛÜ + Ó0
ÛÓ

0
Ü

)︁

⊗ Ó0
ÛÓ

0
Ü , (2.6)

which leads to the following line element:

d𝑠2 = ⊗d𝑡2 + 𝑛2d𝑥𝑖d𝑥
𝑖. (2.7)

From here, we can emulate different metrics by manipulating the refractive index 𝑛. For

instance, if the refractive index takes the form

𝑛(𝑟) =
𝑛0

1 + 𝑟2/𝑎2
,

then the line element (in spherical coordinates) becomes

d𝑠2 = ⊗d𝑡2 +
𝑛2

0

1 + 𝑟2/𝑎2

(︁

d𝑟2 + 𝑟2d𝜃2 + 𝑟2 sin2 𝜃dã2
)︁

. (2.8)

This is the metric of the Einstein static universe [14]. This opens the possibility of studying

several interesting examples of media with varying refractive index in terms of effective

metrics (see, for instance, [15]).

2.4 Analogue models in acoustics

Similarly to optics, acoustics can be described from two perspectives: geometrical

acoustics and physical acoustics. Here we focus on the first case (geometrical acoustics);

the second case will be discussed in detail in the following chapters.

Within the realm of geometrical acoustics, we can consider two cases: the classical

and the relativistic regimes.
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2.4.1 Classical regime

Most of the phenomena observed in the laboratory rarely reach relativistic veloc-

ities. In fact, relativistic acoustics are only manifested in astrophysical and cosmological

situations. In this way, an analogue model for acoustics within the classical limit is enough

for many experiments in laboratory. Here we make two considerations. First, let 𝑐 be the

speed of sound measured by an observer moving with the fluid, and 𝑣⃗ the fluid velocity

measured in the laboratory. Using the Galilean velocity addition law, the sound velocity

in the laboratory will be
d𝑥⃗

d𝑡
= 𝑐𝑛̂+ 𝑣⃗, (2.9)

where 𝑛̂ defines the direction of propagation of sound.

In the ray-limit, condition 𝑛̂2 = 1 allows one to write equation (2.9) as

(d𝑥⃗⊗ 𝑣⃗d𝑡)2 = 𝑐2d𝑡2,

which can be rearranged to

⊗
(︁

𝑐2 ⊗ 𝑣⃗2
)︁

d𝑡2 ⊗ 2𝑣⃗d𝑡 ≤ d𝑥⃗+ d𝑥⃗2 = 0. (2.10)

This expression shows that sound rays will travel along null geodesics of the effective

metric

𝑔ÛÜ = Ω2

∏︀

∐︁

⊗ (𝑐2 ⊗ 𝑣2) ⊗𝑣𝑗

⊗𝑣𝑖 Ó𝑖𝑗

∫︀

̂︀ ,

d𝑥Û = (d𝑡, d𝑥⃗).

(2.11)

Then, as expected

d𝑠2 = 𝑔ÛÜd𝑥
Ûd𝑥Ü = 0.

We note that, by inverting [𝑔ÛÜ ], we obtain the following expression for 𝑔ÛÜ

𝑔ÛÜ =
1

𝑐2Ω2

∏︀

∐︁

⊗1 ⊗𝑣𝑗

⊗𝑣𝑖 𝑐2Ó𝑖𝑗 ⊗ 𝑣𝑖𝑣𝑗

∫︀

̂︀ , (2.12)

so that 𝑔ÛÐ𝑔
ÐÜ = ÓÜÛ.

The metric defined above is called the acoustic metric or Unruh’s metric [16]. We

note that the conformal factor Ω present in the acoustic metric cannot be determined in

the geometrical acoustics limit. As we will see later, this is no longer the case when we

consider the physical acoustics limit.

2.4.2 Relativistic regime

The simplest way to obtain the general form for the acoustic metric is by noting

that it can also be written in a similar way to the Gordon metric. In order to do that we
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must make some sense of the“refractive index” in acoustics, by relating 𝑛 and 𝑐 in a kind

of “Gordon metric” for fluid mechanics. After tedious algebra considering the relativistic

equations of motion for fluids, one can show that that 𝑛 should be substituted by 𝑐light/𝑐.

In this way, the Gordon metric for geometrical acoustics has the following expression [16]

𝑔ÛÜ = Ω2

[︃

ℎÛÜ +

(︃

1 ⊗ 𝑐2

𝑐2
light

)︃

𝑢Û𝑢Ü

⟨

. (2.13)

Once again, the physical metric ℎÛÜ is arbitrary but when ℎÛÜ ⊃ ÖÛÜ and 𝑐 ⪯ 𝑐light, one

can show that the above expression reduces to (2.11).

The acoustic metrics (2.13) and (2.11), with Ω undetermined, is essentially all

that can be done within the geometrical acoustics limit. As mentioned before, in order

to determine Ω we must enter the physical acoustics realm. We will show later that the

conformal factor is important for the study of sound waves in the medium.

2.5 Bose-Einstein condensates in analogue models

Leaving classical systems aside, Bose-Einstein condensates (BECs) become rele-

vant when we want to illustrate some effective metrics in laboratory. BECs are relatively

accessible when it comes to their generation and manipulation. An interesting character-

istic about sound waves in BECs is that they have a very small speed compared with

the speed found in classical fluids. This fact facilitates, in principle, the production of

horizons and ergo–regions. The high degree of quantum coherence and low temperatures

of BECs show that they are also attractive to mimic aspects of semiclassical gravity such

as Hawking radiation and particle production (more details about this topic can be found

in [17, 18, 19]).

The derivation of an analogue model based on BECs starts by splitting the wave

function (of BEC) Ψ into a background part plus a fluctuation, i.e., Ψ = ⟨Ψ⟩+å. However,

å by itself, will not behave like an excitation over a background. Since

å = 𝑒⊗𝑖𝜃/~
(︃

1

2 ♣Ψ♣Ö ⊗ 𝑖
♣Ψ♣
~
Ý

)︃

, (2.14)

(where Ö and Ý are quantum fields) one can prove that Ý satisfy the massless Klein Gordon

equation, i.e.,
1√⊗𝑔𝜕Û

(︁√⊗𝑔𝑔ÛÜ𝜕ÜÝ
)︁

= 0.

The effective metric 𝑔ÛÜ here is similar to (2.11), with the difference that Ω, 𝑣⃗ and 𝑐 are
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now given by

Ω2 =
𝜌

𝑚𝑐
,

𝑣⃗ = ∇⃗𝜃/𝑚,

𝑐2 =
Ù(𝑎)𝜌

𝑚
.

where 𝜌 = ♣Ψ♣, 𝑚 is the mass and Ù(𝑎) is a characteristic parameter of BECs.

We refer the reader to [20] for additional information and references on analogue

models based on BECs.

2.6 Surface waves

Surface waves on interfaces have a complex theory. Their physical properties in

general have a strong dependence on the wave frequency. Some aspects of the theory may

be simplified by using analogue models wherein the effective metric has the frequency

as a parameter. The first works on this topic are [8, 21]. It is also possible to obtain a

description of surface waves within the geometrical limit, but some assumptions must be

made to that end. Once again, if the wavelength and period of the surface wave are small

compared to the system scale, we can successfully adopt the metric

d𝑠2 = Ω2
[︁

⊗𝑐2
swd𝑡2 + (d𝑥⃗⊗ 𝑣⃗d𝑡)2

]︁

,

where 𝑐sw is the speed of surface waves and 𝑣⃗ is the horizontal velocity of the surface. We

see that this metric is defined in a (2+1)-spacetime and that surface waves also travel along

null geodesics of that spacetime. Although the above expression for the effective metric

seems to be simple it might get increasingly complicated depending on the speed of surface

waves 𝑐sw. In the physical limit case (i.e., when one considers wave properties of surface

waves), the effective metric also contributes to wave properties through the conformal

factor Ω. With those considerations and after algebraic procedures, the expressions for the

effective metric for surface waves are similar in form to those obtained for the acoustics

case. This implies that they will have many features in common such as horizons and

ergo–regions. Some experimental results about this topic can be found in [22, 23].

2.7 Slow light in fluids

The electromagnetically induced transparency (EIT) is a technique which allows

one to manipulate the refractive index of a medium to drastically reduce the speed of light.

With this, event horizons and ergo–regions (for the slowed light) are easier to reproduce.

Since the EIT technique is complicated, the theory to derive an analogue model for those
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cases is quite involved. However, in the end, the theory can be shown to yield the following

effective metric

𝑔ÛÜ =

∏︀

∐︁

⊗(1 + Ð𝑣2/𝑐2
light) ⊗Ð𝑣𝑗/𝑐2

light

⊗Ð𝑣𝑖/𝑐2
light Ó𝑖𝑗 ⊗ 4Ð𝑣𝑖𝑣𝑗/𝑐

2
light

∫︀

̂︀ , (2.15)

where Ð is a characteristic parameter of the experiment. Some exciting results based on

this field are found in [24, 25, 26].

The cases presented in this chapter are, in our view, the most relevant/interesting

examples that can be developed by means of analogue models of gravity. The remain-

ing models can be derived (or extended) from these fundamental examples. To obtain

additional information about other analogue models we refer to the reader to [20].

As a last remark, we note that among the effective metrics we mentioned, the

acoustic metric is more popular than others because of its simplicity and applicability

to a wide variety of experiments in the laboratory. Since our focus are analogue models

based on fluids, we provide a more detailed characterization of the metric (2.11) in the

next chapter.
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3 Analogue models in fluid dynamics

3.1 Introduction

As discussed in the previous chapters, analogue models are useful in many areas

of physics. They give a simplified description of phenomena and also illustrate aspects of

general relativity in the laboratory. Since Unruh’s first publication on the subject, many

authors studied different kinds of analog models in different contexts.

The analogue models considered before follow a certain general pattern. This can

be summarized in a two-step procedure: (1) the equations which characterize the system’s

background are obtained and (2) small perturbations on the main quantities involved are

considered (depending on the physical system, sometimes additional conditions are needed

in order to obtain the effective metric). For instance, in the vicinity of a black hole, the

accretion disc is described using relativistic hydrodynamics and the analogue description

of this system is still made by means of an effective metric. In this case, this effective

metric incorporates the physical metric due to the black hole and an acoustic metric

similar to (2.13). A detailed study of this subject can be found in [27]. In the same way,

one could construct analogue models that describe a wide variety of systems of almost

any area of physics.

As mentioned before, to derive an analogue model in fluid dynamics, whether

relativistic or not, there are different perspectives that could be adopted. Depending on

how one would like to study a physical system, a given perspective will be more convenient

than another. The simple perspective given by the case of the geometrical acoustic limit

was already considered in the previous chapter. Now we consider the case of physical

acoustics, which incorporates the wave properties of the perturbations in the analogue

model. For convenience, we restrict ourselves to non-relativistic velocities for the fluid

flow. Different properties of the acoustic metric will be discussed below, such as horizons,

ergo-regions and singularities. We also clarify an ambiguous definition of energy that

appears in this context and that will be important for the next chapter.

3.2 Effective field theory of ideal fluid

In order to construct an analogue model for fluids, we will first obtain a description

of fluid dynamics from the effective field theory perspective. Consider an ideal isentropic

fluid. We once again denote the density by 𝜌 and the velocity of the flow by 𝑣⃗. According

to Eckart’s variational principle [28], the Lagrangian density of a fluid flow with these
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characteristics may be written as

ℒ =
1

2
𝜌𝑣⃗2 ⊗ 𝜌𝜀+ Ψ

[︁

𝜕0𝜌+ ∇⃗ ≤ (𝜌𝑣⃗)
]︁

, (3.1)

where 𝜀 = 𝜀(𝜌) is the internal energy per unit mass, Ψ is the Lagrange multiplier associated

with the mass conservation constraint, and 𝜕
𝜕𝑡

⊃ 𝜕0. Variation of ℒ with respect to 𝑣⃗ yields

𝑣⃗ = ∇⃗Ψ, (3.2)

which implies that 𝑣⃗ is in fact irrotational. The Lagrange multiplier Ψ turns out to be the

scalar potential associated with the velocity of the fluid.

In this way, the Lagrangian density in terms of Ψ is given by

ℒ = ⊗𝜌
[︂

𝜕0Ψ +
1

2

(︁

∇⃗Ψ
)︁2

+ 𝜀
⎢

. (3.3)

Variation of ℒ with respect to 𝜌 then yields

𝜕0Ψ +
1

2

(︁

∇⃗Ψ
)︁2

+
𝜕𝜌𝜀

𝜕𝜌
= 0, (3.4)

where the third term on the left hand side is identified with the specific enthalpy ℎ, i.e.,

ℎ =
𝜕𝜌𝜀

𝜕𝜌
. (3.5)

Taking the gradient of the expression (3.4) and using standard thermodynamics

to relate the specific enthalpy to pressure, one arrives to the Euler equations

𝜕𝑣⃗

𝜕𝑡
+
(︁

𝑣⃗ ≤ ∇⃗
)︁

𝑣⃗ = ⊗1

𝜌
∇⃗𝑝,

as expected. With the Lagrangian density already defined, the energy-momentum tensor

and the energy of the fluid may be obtained in a straightforward way, by usual field

theoretical procedures.

3.3 Perturbations of the fluid flow and the Unruh’s metric

The second step to derive an analogue model is to split the system in question into

two sectors: a background part and a perturbative part. Let us write
∏︁

⨄︁

⋃︁

Ψ = Ψ0 + å,

𝜌 = 𝜌0 + 𝜚,
(3.6)

where Ψ0 and 𝜌0 represent the background and å and 𝜚 are the perturbations. Before

substituting these quantities in equation (3.3), we need to expand the internal energy

𝜌𝜀(𝜌) around 𝜌0. A Taylor series expansion applied 𝜌𝜀(𝜌) leads to

𝜌𝜀 = 𝜌0𝜀(𝜌0) + ℎ(𝜌0)𝜚+
1

2

𝜕ℎ

𝜕𝜌

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

𝜌0

𝜚2 + 𝒪
(︁

𝜚3
)︁

.
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To find ℎ(𝜌0) we use equations (3.2) and (3.4). The derivative of ℎ is obtained through

the relation d𝑝 = 𝜌dℎ. Writing
𝜕ℎ

𝜕𝜌
=

1

𝜌

𝜕𝑝

𝜕𝜌
,

and evaluating at 𝜌 = 𝜌0 gives

ℎ′(𝜌0) =
𝑐2

0

𝜌0

, (3.7)

where, for convenience, we define 𝑐0 as

𝑐2
0 ⊕ 𝜕𝑝

𝜕𝜌

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

𝜌0

. (3.8)

Substituting all these expressions (including the perturbed quantities) back into the La-

grangian density, and retaining terms up to second order, we get

ℒ ≡ ℒ0 ⊗ 𝜚𝜕0å ⊗ 1

2

𝑐2
0

𝜌0

𝜚2 ⊗ 1

2
𝜌0

(︁

∇⃗å
)︁2 ⊗ 𝜚∇⃗Ψ0 ≤ ∇⃗å, (3.9)

where the term ℒ0 represents the Lagrangian of the background. The remaining terms

can be identified with the Lagrangian for the perturbative terms, i.e.,

Óℒ ⊕ ⊗𝜚𝜕0å ⊗ 1

2

𝑐2
0

𝜌0

𝜚2 ⊗ 1

2
𝜌0

(︁

∇⃗å
)︁2 ⊗ 𝜚𝑣⃗ ≤ ∇⃗å, (3.10)

where 𝑣⃗ = 𝑣⃗0 = ∇⃗Ψ0. Consequently, the equation of motion for 𝜚 is

𝜚 = ⊗𝜌0

𝑐2
0

(︁

𝜕0å + 𝑣⃗ ≤ ∇⃗å
)︁

. (3.11)

Substituting this back into the Lagrangian density yields

Óℒ = ⊗1

2
𝜌0

(︁

∇⃗å
)︁2

+
1

2

𝜌0

𝑐2
0

(︁

𝜕0å + 𝑣⃗ ≤ ∇⃗å
)︁2
. (3.12)

In this form, the Lagrangian has only å as a parameter and its equation of motion becomes

(︁

𝜕0 + ∇⃗ ≤ 𝑣⃗
)︁ 𝜌0

𝑐2
0

(︁

𝜕0 + 𝑣⃗ ≤ ∇⃗
)︁

å ⊗ ∇⃗
(︁

𝜌0∇⃗å
)︁

= 0. (3.13)

After tedious algebra this equation can be written in matrix form,

( 𝜕0 𝜕𝑗 )

∏︀

∐︁

⊗𝜌0/𝑐
2
0 ⊗𝜌𝑣𝑗/𝑐2

0

⊗𝜌𝑣𝑖/𝑐2
0 𝜌0Ó𝑖𝑗 ⊗ 𝜌0𝑣𝑖𝑣𝑗/𝑐

2
0

∫︀

̂︀

∏︀

∐︁

𝜕0å

𝜕𝑖å

∫︀

̂︀ = 0. (3.14)

This matrix representation suggests that we introduce the so-called metric density

ℱÛÜ ⊕ 𝜌0

𝑐2
0

∏︀

∐︁

⊗1 ⊗𝑣𝑗
⊗𝑣𝑖 𝑐2

0Ó𝑖𝑗 ⊗ 𝑣𝑖𝑣𝑗

∫︀

̂︀ . (3.15)

It then follows from equation (3.13) that

𝜕Û (ℱÛÜ𝜕Üå) = 0.
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Now we note that, if we make the identification

ℱÛÜ =
√⊗𝑔𝑔ÛÜ , (3.16)

then the equation of motion for å becomes the wave equation in a curved space-time with

metric 𝑔ÛÜ , i.e.,
1√⊗𝑔𝜕Û

(︁√⊗𝑔𝑔ÛÜ𝜕Üå
)︁

= 0. (3.17)

To obtain the explicit form of 𝑔ÛÜ , we first need to compute 𝑔ÛÜ . Taking the determinant

of the metric density

♣ℱÛÜ ♣ = ⊗𝜌4
0

𝑐2
0

= (⊗𝑔)(1+𝑁)/2 ♣𝑔ÛÜ ♣ = ⊗(⊗𝑔)(𝑁⊗1)/2,

where 𝑁 represents the number of spatial dimensions, the acoustic metric 𝑔ÛÜ reduces to

𝑔ÛÜ =
1√⊗𝑔ℱÛÜ =

(︂

𝜌0

𝑐0

)︂⊗ 2
N⊗1

∏︀

∐︁

⊗1/𝑐2
0 ⊗𝑣𝑗/𝑐2

0

⊗𝑣𝑖/𝑐2
0 Ó𝑖𝑗 ⊗ 𝑣𝑖𝑣𝑗/𝑐

2
0

∫︀

̂︀ . (3.18)

Therefore, the acoustic metric takes the form

𝑔ÛÜ =
(︂

𝜌0

𝑐0

)︂
2

N⊗1

∏︀

∐︁

⊗(𝑐2
0 ⊗ 𝑣2) ⊗𝑣𝑗
⊗𝑣𝑖 Ó𝑖𝑗

∫︀

̂︀ , (3.19)

where, as usual, we took 𝑔ÛÜ = [𝑔ÛÜ ]⊗1 so that 𝑔ÛÐ𝑔
ÐÜ = ÓÜÛ. As a result, the line element

is given by

d𝑠2 =
(︂

𝜌0

𝑐0

)︂
2

N⊗1 [︁⊗
(︁

𝑐2
0 ⊗ 𝑣2

)︁

d𝑡2 ⊗ 2𝑣𝑖d𝑡d𝑥
𝑖 + Ó𝑖𝑗d𝑥

𝑖d𝑥𝑗
]︁

. (3.20)

As expected, this last result agrees with the one found in the geometrical acoustics limit.

Moreover, the conformal factor can now be unequivocally determined, ans is given by

Ω =
(︂

𝜌0

𝑐0

)︂
1

N⊗1

. (3.21)

We note in passing that, until now, we only considered non-relativistic fluids. To

obtain a general form of the acoustic metric including the relativistic case, one could start

from the relativistic energy-momentum tensor and follow the above steps. As a result,

one would find that the acoustic metric is changed only by its conformal factor, which

becomes

Ω =

[︃

𝑛2

𝑐0(𝜌0 + 𝑝0)

⟨
1

N⊗1

,

where 𝑛 is the particle density and 𝜌0 now represents the energy density. In addition, the

new acoustic metric will reduce to (3.19) when 𝑝0 ⪯ 𝜌0 and 𝜌0 ≡ 𝑚̄𝑛, where 𝑚̄ is the

average mass. For the present work, we are only interested in non-relativistic fluids, so

the expression (3.21) for Ω will be enough.
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The exciting part of constructing an analogue model appears when the effective

metric (the acoustic metric in this case) is viewed as a “physical metric” of some space-

time model along with its symmetries, possible ergo-regions, etc. Here we briefly consider

the meaning and implications of these concepts. Some of those topics will be further

developed in the following sections.

3.4 Some properties of the acoustic metric

Let us point out some features of the acoustic metric discussed above:

∙ It is Lorentzian, i.e., it has signature (⊗, +, +, +).

∙ In general relativity, a (3 + 1) Lorentzian metric has 6 degrees of freedom but the

acoustic metric is only defined by three scalar quantities, 𝜌0, Ψ0 and 𝑐0. This implies

that it is not possible to reproduce all aspects of a generic physical metric obtained

from Einstein’s field equations by means of analogue models.

∙ There is a correspondence between “steady flow” and “static metric” in general

relativity.

∙ Similarly to general relativity, it is possible to define the 4-velocity and proper time

as

𝑢Û =

(︃

𝑐0

𝜌0

)︃
1

N⊗1

(1/𝑐0, 𝑣⃗/𝑐0), á =
∫︁ 1

𝑐0

(︃

𝑐0

𝜌0

)︃
1

N⊗1

d𝑡,

respectively. However, these are not as relevant concepts as in the theory of relativity.

This is because the relevant physical quantities here are the perturbations of the

system and these are represented by the quantities å and 𝜚.

∙ Notice that the “real physical metric of the system” is the Euclidean (or Minkowski)

metric. However, everything happens as if the perturbations propagate as waves in

an effective metric described by 𝑔ÛÜ .

∙ It is important to emphasize that a physical metric obtained by solving the Einstein’s

field equations relates the mass distribution to the spacetime curvature. However,

the acoustic metric does not relate any physical quantity with the space geometry;

it appears here only as a mathematical tool.

3.5 Killing vectors and the acoustic metric

Other interesting concepts related to Lorentzian spacetimes are horizons and ergo-

surfaces. In the case of a physical system such as a spinning black hole, these regions play

an important role because they change the spacetime structure in a radical way. In this
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way, it is to be expected that in the case of the acoustic metric these regions should play

an important role.

We start by classifying a metric according to how it depends on the time coordi-

nate. A metric is said to be stationary, if there is a reference frame where the metric is

time independent, i.e.,

𝜕0𝑔ÛÜ = 0. (3.22)

Otherwise it is said to be non-stationary.

We know that invariance of a physical quantity under some coordinate change

often gives rise to a conservation law. Consider an infinitesimal coordinate transformation

𝑥Û
′

= 𝑥Û + ÝÛ. Under this coordinate change the metric transforms to

𝑔Û
′Ü′

(𝑥à
′

) =
𝜕𝑥Û

′

𝜕𝑥Ð
𝜕𝑥Ü

′

𝜕𝑥Ñ
𝑔ÐÑ(𝑥à) ≡ 𝑔ÛÜ(𝑥à) + 𝑔ÛÐ𝜕ÐÝ

Ü + 𝑔ÜÐ𝜕ÐÝ
Û. (3.23)

To evaluate the change in the metric we compute the numerical value of both 𝑔Û
′Ü′

(𝑥à)

and 𝑔ÛÜ(𝑥à) in the coordinates 𝑥à, i.e.,

𝑔Û
′Ü′

(𝑥à
′

) = 𝑔Û
′Ü′

(𝑥à + Ýà) ≡ 𝑔ÛÜ(𝑥Û) + 𝑔ÛÐ𝜕ÐÝ
Ü + 𝑔ÜÐ𝜕ÐÝ

Û. (3.24)

Taylor expanding 𝑔Û
′Ü′

in terms of 𝑥à then gives

𝑔Û
′Ü′

(𝑥à) ≡ 𝑔ÛÜ(𝑥à) + 𝑔ÛÐ𝜕ÐÝ
Ü + 𝑔ÜÐ𝜕ÐÝ

Û ⊗ Ýà𝜕à𝑔
ÛÜ

= 𝑔ÛÜ + Ó𝑔ÛÜ ,
(3.25)

where Ó𝑔ÛÜ ⊕ 𝑔ÛÐ𝜕ÐÝ
Ü +𝑔ÜÐ𝜕ÐÝ

Û⊗Ýà𝜕à𝑔
ÛÜ . This can also be expressed in a covariant form

(using ∇ÛÝÜ = 𝑔Ûà𝜕àÝ
Ü + 𝑔ÛàΓÜàÐÝ

Ð) as

Ó𝑔ÛÜ = ∇ÛÝÜ + ∇ÜÝÛ. (3.26)

Or, equivalently,

Ó𝑔ÛÜ = ⊗∇ÛÝÜ ⊗ ∇ÜÝÛ. (3.27)

We note that the form of the metric will not change under infinitesimal trans-

formations if Ó𝑔ÛÜ = 0. If 𝑔ÛÜ does not depend on time, it does not change under the

transformation
∏︁

⨄︁

⋃︁

𝑡 ⊃ 𝑡+ 𝜖,

𝑥⃗ ⊃ 𝑥⃗,
(3.28)

i.e., 𝑥Û ⊃ 𝑥Û + 𝜖ÓÛ0 . Taking

ÝÛ = ÓÛ0 , (3.29)

it is straightforward to check that this vector in any coordinate then satisfies

∇ÛÝÜ + ∇ÜÝÛ = 0. (3.30)
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In this way, we get Ó𝑔ÛÜ = 0 as we expected.

Any vector ÝÛ satisfying (3.30) is then called a Killing vector field. We see that

the symmetries of space are manifested mathematically by means of Killing vector fields.

Hence, the Killing vector shown in (3.29) encodes the time translation symmetry of the

acoustic metric.

Returning to stationary metrics, there is an additional classification to consider.

The metric can be “static” or “non-static”. Mathematically speaking, if there is a coordi-

nate transformation for which the metric assumes the form

d𝑠2 = (ÝÛÝ
Û)⊗1 dá 2 + 𝑔𝑖𝑗d𝑥

𝑖d𝑥𝑗, (3.31)

where ÝÛ is a timelike Killing vector, then the metric is said to be static.

For the acoustic effective metric, we see that if it is possible to find a coordinate

transformation

dá = d𝑡+
𝑣⃗ ≤ d𝑥⃗

𝑐2
0 ⊗ 𝑣2

, (3.32)

then the acoustic metric is static.

Looking closely at equation (3.32), we note that the new time coordinate á mixes 𝑡

and 𝑥⃗. This leads to an important implication when we talk about conservation of energy

in this context. In fact, since energy is not a (Lorentz) scalar, conservation of energy in

one frame does not imply that it is conserved in all frames. We note, however, that in the

acoustic context not all frames of reference are (physically) equivalent: unlike in general

relativity, the laboratory reference is a preferred frame in this case.

The acoustic metric also allows us to define, just as in general relativity, the con-

cepts of ergo–regions and horizons. These are defined as follows:

∙ An ergo-region is formed when the timelike Killing vector ÝÛ becomes spacelike, and

this occurs when ♣𝑣⃗♣ ⊙ 𝑐0.

∙ Horizons are surfaces from where null geodesics cannot escape, i.e., for which ♣𝑣⃗⊥♣ =

𝑐0.

3.6 Conservation laws in acoustics

Noether’s Theorem relates conservation laws to symmetries of the action. Here we

use this to derive conservation laws for sound waves.

Let us rewrite the Lagrangian density for sound waves as

ℒ = ⊗1

2
𝜌0

(︁

∇⃗å
)︁2

+
1

2

𝜌0

𝑐2
0

(︁

𝜕0å + 𝑣⃗ ≤ ∇⃗å
)︁2
,
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where, for the sake of simplicity, the term Ó of the left hand side of (3.12) was dropped.

Rearranging this Lagrangian, we get

ℒ =
√⊗𝑔1

2
𝑔ÛÜ𝜕Ûå𝜕Üå, (3.33)

where 𝑔ÛÜ is the contravariant acoustic metric and 𝑔 = det 𝑔ÛÜ . As a result, the action

associated to this Lagrangian density is given by

𝑆 =
∫︁ 1

2
𝑔ÛÜ𝜕Ûå𝜕Üå

√⊗𝑔d4𝑥. (3.34)

This shows that the term
1

2
𝑔ÛÜ𝜕Ûå𝜕Üå

is indeed the Lagrangian of a scalar field in curved space-time with zero potential energy.

A general expression for the action will depend on 𝑔ÛÜ , å, and 𝜕Ûå, i.e., 𝑆 =

𝑆 [𝑔ÛÜ , å, 𝜕Ûå]. The principle of least action (Ó𝑆 = 0) then leads to

Ó𝑆 =
∫︁

d4𝑥

(︃

Ó𝑆

Ó𝑔ÛÜ
Ó𝑔ÛÜ +

Ó𝑆

Óå
Óå +

Ó𝑆

Ó𝜕Ûå
𝜕ÛÓå

)︃

= 0. (3.35)

For convenience, we split the terms of the above equation as follows:

Ó𝑆 =
∫︁

d4𝑥
√⊗𝑔

(︃

1√⊗𝑔
Ó𝑆

Ó𝑔ÛÜ
Ó𝑔ÛÜ

)︃

+
∫︁

d4𝑥
√⊗𝑔

(︃

1√⊗𝑔
Ó𝑆

Óå
Óå

)︃

+
∫︁

d4𝑥
Ó𝑆

Ó𝜕Ûå
𝜕ÛÓå.

Integrating by parts, using the divergence theorem, and imposing that Óå vanishes on the

boundary, the third term will vanish. The second term vanishes by virtue of the equation

of motion for å, i.e., Ó𝑆
Óå

= 0. Therefore, the variation of the action reduces to

Ó𝑆 =
∫︁

d4𝑥
√⊗𝑔

(︃

1√⊗𝑔
Ó𝑆

Ó𝑔ÛÜ
Ó𝑔ÛÜ

)︃

. (3.36)

Now we explore the symmetries of the action. Consider an infinitesimal translation

expressed as a coordinate transformation 𝑥Û
′

= 𝑥Û⊗ 𝜖Û. From the previous discussion, the

metric 𝑔Û′Ü′ changes from 𝑔ÛÜ to 𝑔ÛÜ + Ó𝑔ÛÜ , where

Ó𝑔ÛÜ = ∇Û𝜖Ü + ∇Ü𝜖Û. (3.37)

Substituting this back into equation (3.36) yields

∫︁

d4𝑥
√⊗𝑔 (∇Û𝜖Ü)

2√⊗𝑔
Ó𝑆

Ó𝑔ÛÜ
=
∫︁

d4𝑥
√⊗𝑔𝜖Ü∇Û

(︃

2√⊗𝑔
Ó𝑆

Ó𝑔ÛÜ

)︃

= 0, (3.38)

where we used the fact that

∇Û

(︃

𝜖Ü
1√⊗𝑔

Ó𝑆

Ó𝑔ÛÜ

)︃

= (∇Û𝜖Ü)
1√⊗𝑔

Ó𝑆

Ó𝑔ÛÜ
+ 𝜖Ü∇Û

(︃

1√⊗𝑔
Ó𝑆

Ó𝑔ÛÜ

)︃

.
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The second part of equation (3.38) leads to a first conservation laws. Defining

𝑇 ÛÜ =
2√⊗𝑔

Ó𝑆

Ó𝑔ÛÜ
, (3.39)

which is called the pseudo energy-momentum tensor, it follows from (3.38) that

∇Û𝑇
ÛÜ = 0. (3.40)

This expression encodes local conservation of energy-momentum. Such statement is not

enough to obtain a global conservation law unless the spacetime has a Killing vector ÝÛ.

In that case it follows at once that if 𝑇 ÛÜ is conserved, then the quantity 𝑇 ÛÜÝÜ is also

conserved, i.e.,

∇Û (𝑇 ÛÜÝÜ) = 0. (3.41)

Moreover,
1√⊗𝑔𝜕Û

(︁√⊗𝑔𝑇 ÛÜÝÜ
)︁

= 0. (3.42)

If we denote the 4-vector density
√⊗𝑔𝑇 ÛÜÝÜ by 𝒬Û, the above expression reduces into

𝜕Û𝒬Û = 0, (3.43)

And the following quantity is then conserved in time
∫︁

𝑆
𝒬Û𝑛Ûd3𝑥, (3.44)

where 𝑛Û denotes the normal to 𝑆 (which is a spacelike surface).

We now proceed to compute the conservation laws for sound waves. Equation

(3.34) represents the action of a scalar field for which the Lagrangian is given by

𝐿 =
1

2
𝑔ÛÜ𝜕Ûå𝜕Üå.

Its corresponding canonical momentum is

ÞÛ =
𝜕𝐿

𝜕(𝜕Ûå)
= 𝜕Ûå. (3.45)

The energy–momentum tensor for this Lagrangian can then be written as follows [29]

𝑇 ÛÜ = ÞÛ𝜕Üå ⊗ 𝑔ÛÜ𝐿, (3.46)

where 𝑔ÛÜ is the acoustic metric. Substituting ÞÛ and 𝐿 into this energy–momentum tensor

we get

𝑇 ÛÜ = 𝜕Ûå𝜕Üå ⊗ 𝑔ÛÜ
(︂

1

2
𝑔ÐÑ𝜕Ðå𝜕Ñå

)︂

. (3.47)

In the case of the acoustic metric, the Killing vector associated to the conservation

of energy was (3.29). Thus

𝒬Û =
√⊗𝑔𝑇 ÛÐ𝑔ÐÑÓÑ0 =

𝜌2
0

𝑐0

𝑇 ÛÐ𝑔Ð0. (3.48)
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Substituting the expression for 𝑇 ÛÜ we get

𝒬0 =
1

2
𝜌0

(︁

∇⃗å
)︁2

+
1

2

𝜌0

𝑐2
0

(𝜕0å)2 ⊗ 1

2

𝜌0

𝑐2
0

(︁

𝑣⃗ ≤ ∇⃗å
)︁2
, (3.49)

and we identify this as the energy density of sound waves. Thus

𝐸 =
∫︁

𝒬0d3𝑥 (3.50)

is conserved and

𝐸 =
∫︁

[︃

1

2
𝜌0

(︁

∇⃗å
)︁2

+
1

2

𝜌0

𝑐2
0

(𝜕0å)2 ⊗ 1

2

𝜌0

𝑐2
0

(︁

𝑣⃗ ≤ ∇⃗å
)︁2
⟨

d3𝑥 (3.51)

will be the total energy.

In this last expression, we note that there are additional second order terms con-

tributing to the total energy such as 𝜕0å. It could be difficult to figure out that 𝜕0å or

𝑣⃗ ≤ ∇⃗å would contribute to the total energy had we not followed the action approach

considered above.

The energy is a crucial quantity which identifies in many cases whether solutions

of specific systems make sense physically. These criteria will be useful ahead to impose

conditions on solutions we find for the physical systems considered here.
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4 Analogue Model for Radial Flow

4.1 Introduction

We now use the tools developed in the previous chapters to study the case of an

ideal fluid flow with cylindrical symmetry, with velocity field given by 𝑣⃗ = 𝑣(𝑟)𝑒𝑟. We will

limit our analysis to the subsonic case, i.e., to 𝑣(𝑟) < 𝑐, where 𝑐 is the speed of sound

when the fluid is at rest.

The case of a constant radial velocity was studied in [30]. This is the case where

𝑣⃗ = Ð𝑐𝑒𝑟, with constant ♣Ð♣ < 1. The resulting effective metric then turns out to be that of

𝐴𝑑𝑆2 ×𝑆1, where 𝐴𝑑𝑆2 is the two-dimensional Anti-de Sitter (AdS) space. As well known,

the AdS space is nonglobally hyperbolic [4]. On nonglobally hyperbolic spacetimes, the

evolution of the wave equation is not completely determined by initial conditions (since,

by definition, the space does not admit a Cauchy surface in this case). Some kind of

boundary conditions is then needed in order to one obtain a deterministic solution to the

wave equation. In the case of AdS, extra boundary conditions should be specified at its

spatial infinity. As we shall see, this spatial infinity is mapped to the origin of the space

in the fluid dynamics analogy. In this way, the lack of global hyperbolicity of AdS can

be interpreted as the need to provide a description of how sound waves interact with the

point source/sink of the fluid. Such description is made by means of a phase difference

between ingoing and outgoing scattered waves.

Here we propose an alternative solution to this issue of extra boundary conditions.

This is done by regularizing the velocity profile of the fluid near the origin. After this

regularization, the resulting effective metric can be interpreted as that of a deformed AdS

spacetime.

4.2 Wave equation for sound waves

We start by studying sound waves in two dimensional ideal fluid flows. As discussed

above, we are interested in the case where the velocity can be written as

𝑣⃗ = 𝑣(𝑟)𝑒𝑟. (4.1)

The acoustic metric for the fluid flow then takes the form

𝑔ÛÜ =
à2

𝑐2

∏︀

̂︁

̂︁

̂︁

∐︁

⊗(𝑐2 ⊗ 𝑣(𝑟)2) ⊗𝑣(𝑟) 0

⊗𝑣(𝑟) 1 0

0 0 𝑟2

∫︀

̂︂

̂︂

̂︂

̂︀

, (4.2)
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where à = à(𝑟) is the mass density and 𝑐 the speed of sound.

The continuity equation provides and additional relation between the mass density

and the velocity of the fluid:

𝜕

𝜕𝑟
[𝑟à(𝑟)𝑣(𝑟)] = 0, (4.3)

à(𝑟) =
𝐴

𝑟𝑣(𝑟)
, (4.4)

where 𝐴 is an integration constant.

As noted before, the continuity equation requires the mass density to have the

form à(𝜌) ∝ 1
𝜌𝑣(𝜌)

. Although this flow is somehow exotic, it will perfectly work for us as a

toy model in our context [30]. The line element is then given by

d𝑠2 =
à2

𝑐2

[︁

⊗
(︁

𝑐2 ⊗ 𝑣2
)︁

d𝑡2 ⊗ 2𝑣d𝑡d𝑟 + d𝑟2 + 𝑟2d𝜃2
]︁

. (4.5)

As shown in previous chapters, when the fluid is irrotational, we can obtain the

fluid velocity from the gradient of a scalar field. We observe that the fluid velocity (4.1)

is indeed irrotational, so that we can represent it in terms of a scalar field Ψ.

The next step is to consider a perturbation on this scalar field, i.e.,

Ψ(𝑡, 𝑟, 𝜃) = Ψ0(𝑟) + å(𝑡, 𝑟, 𝜃), (4.6)

where å(𝑡, 𝑟, 𝜃) is the scalar field associated with the perturbation velocity.

According to (3.17), it is straightforward to write down the wave equation for

å(𝑡, 𝑟, 𝜃) with 𝑔ÛÜ defined by equation (4.2). Before doing that, we take advantage of the

fact that the acoustic metric is static and use equation (3.32) to construct the transfor-

mation
∏︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋃︁

dá = d𝑡+ 𝑣
𝑐2⊗𝑣2 d𝑟,

d𝜌 = d𝑟,

dã = d𝜃,

(4.7)

In this way, we can express the acoustic metric in static coordinates as

𝑔Û′Ü′ =
à(𝜌)2

𝑐2

∏︀

̂︁

̂︁

̂︁

∐︁

⊗ (𝑐2 ⊗ 𝑣(𝜌)2) 0 0

0 𝑐2

𝑐2⊗𝑣(𝜌)2 0

0 0 𝜌2

∫︀

̂︂

̂︂

̂︂

̂︀

. (4.8)

Using relations (3.17) and (4.4) we see that the wave equation in the new coordi-

nates is then given by

𝜕2å

𝜕á 2
= 𝑐2

(︁

1 ⊗ 𝑣2/𝑐2
)︁2 𝜕2å

𝜕𝜌2
⊗ 𝑐2 1 ⊗ 𝑣4/𝑐4

𝑣

d𝑣

d𝜌

𝜕å

𝜕𝜌
⊗ 𝑐2 ⊗ 𝑣2

𝜌2

𝜕2å

𝜕ã2
, (4.9)

where 𝑣 = 𝑣(𝜌) and å = å(á, 𝜌, ã).
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𝜌

𝑣(𝜌)

𝛼𝑐

𝜌=0

Figure 1 – Fluid flow with constant subsonic velocity, ♣Ð♣ < 1. 𝑐 is the speed of sound.

In order to solve this equation we use separation of variables and consider å(á, 𝜌, ã) =

𝑇 (á)𝑅(𝜌)𝑃 (ã). In this way, (4.9) is split into three equations:
∏︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋃︁

d2

dá2𝑇 (á) + æ2𝑇 (á) = 0,

(1 ⊗ 𝑣2/𝑐2)
2 d2

d𝜌2𝑅(𝜌) ⊗ 1⊗𝑣4/𝑐4

𝑣
d𝑣
d𝜌

d
d𝜌
𝑅(𝜌) +

(︁

𝑐2⊗𝑣2

𝜌2
Ù2

𝑐2 + æ2

𝑐2

)︁

𝑅(𝜌) = 0,
d2

dã2𝑃 (ã) + Ù2𝑃 (ã) = 0,

(4.10)

where æ and Ù are the separation constants.

It immediately follows that the solutions for 𝑇 (á) and 𝑃 (ã) are 𝑒∘𝑖æá and 𝑒∘𝑖Ùã

respectively. To proceed with the calculation we must specify the form of the background

velocity 𝑣(𝑟) in the differential equation for 𝑅(𝜌).

The simplest case corresponds to a constant velocity profile, i.e., 𝑣(𝜌) = Ð𝑐, with

♣Ð♣ < 1 (see figure (1)). In this case, the effective metric reduces to

d𝑠2 =
𝐴2

Ð2𝑐4𝜌2

[︃

⊗𝑐2
(︁

1 ⊗ Ð2
)︁

dá 2 +
d𝜌2

1 ⊗ Ð2
+ 𝜌2dã2

⟨

. (4.11)

Before continuing this analysis we pause to discuss the geometry of the Anti-de

Sitter space, for reasons that will soon become obvious.

4.3 The Anti-de Sitter spacetime

We start by considering the 𝑛-dimensional Anti-de Sitter spacetime AdS𝑛. This

can be defined as a hyperboloid of radius 𝑅 [31]

⊗
(︁

𝑋0
)︁2

+
𝑛⊗1
∑︁

𝑘=1

(︁

𝑋𝑘
)︁2 ⊗ (𝑋𝑛)2 = ⊗𝑅2, (4.12)

embedded in R
𝑛+1 endowed with the (flat) metric,

d𝑠2 = ⊗
(︁

d𝑋0
)︁2

+
𝑛⊗1
∑︁

𝑘=1

(︁

d𝑋𝑘
)︁2 ⊗ (d𝑋𝑛)2 . (4.13)





Chapter 4. Analogue Model for Radial Flow 42

We see from the above expression that we have a single time, 𝑡, in AdS, as expected. We

note that 𝑟 = 0 is a singular point in these coordinates.

We see that the spatial boundary of the AdS spacetime is mapped to 𝑟 = 0 in

the above coordinates. It is a well-known fact that the AdS spacetime in nonglobally

hyperbolic, so that extra boundary conditions must be specified at its spatial boundary

in order for one to solve the wave equation [32]. Therefore, we already expect some kind

of problem in solving the wave equation near 𝑟 = 0 in the coordinates above. We will

arrive at this same conclusion, by an independent analysis, in the sections that follow.

Returning to the analogue model of the previous sections and comparing the met-

rics (4.11) and (4.16), we can identify that the underlying spacetime in this case is given

by 𝐴𝑑𝑆2 × 𝑆1. Therefore, the acoustic metric which represents the radial fluid flow with

constant radial velocity has the above mentioned properties of AdS. In particular, sound

waves will now need the above mentioned extra boundary condition at the origin (𝜌 = 0).

Physically speaking, the specification of an extra condition at the origin can be inter-

preted as the need to provide a description of how sound waves interact with the point

source/sink.

4.4 The extra condition problem in the analogue model

We now return to the radial equation (4.10) which, for the constant radial velocity

profile 𝑣(𝜌) = Ð𝑐), reduces to

(︁

1 ⊗ Ð2
)︁2 d2

d𝜌2
𝑅(𝜌) +

(︃

1 ⊗ Ð2

𝜌2
Ù2 +

æ2

𝑐2

)︃

𝑅(𝜌) = 0. (4.17)

Let us consider its axisymmetric solutions, which correspond to the case when

Ù is equal to zero. The differential equation (4.17) then has as solutions 𝑒
∘𝑖 ωρ

c(1⊗α2) . The

complete solution for å(á, 𝜌) is thus

å(á, 𝜌) =
(︂

Ö𝑒
⊗𝑖 ωρ

c(1⊗α2) + Ý𝑒
𝑖 ωρ

c(1⊗α2)

)︂

𝑒⊗𝑖æá , (4.18)

where Ö and Ý are constants. We note that this solution is composed by ingoing and

outgoing circular waves.

This solution in coordinates (𝑡, 𝑟, 𝜃) can be written as å = Öå⊗ + Ýå+, where

å∘ = 𝑒∘𝑖 ωr
c(1∘α) 𝑒⊗æ𝑡.

Computing the energy for each solution (using the relation (3.51)), we note that both

å+ and å⊗ have finite energy. In this way there is no canonical choice of a unique linear

combination of å+ and å⊗ that determines a solution to this problem. In order to specify

such a distinguished linear combination of å∘ we need to provide a relation between Ö and







Chapter 4. Analogue Model for Radial Flow 45

constant value Ð𝑐 for 𝑣 for large 𝜌. We see that 𝜌0 is related with the width of the region

wherein 𝑣(𝜌) is not constant, and that 𝑛 determines how fast 𝑣(𝜌) grows near the origin.

4.5.1 Solutions to wave equation near the origin

To simplify future expressions, let us introduce a dimensionless radial coordinate

𝑥 = 𝜌/𝜌0 and a dimensionless frequency 𝑚 = æ𝜌0/𝑐. With 𝑣(𝜌) given by (4.22), the radial

part of the wave equation (4.10) in terms of 𝑥 and 𝑚 is then given by
(︁

1 ⊗ Ð2𝑥2𝑛
)︁2
𝑅′′(𝑥) ⊗ 𝑛

𝑥

(︁

1 ⊗ Ð4𝑥4𝑛
)︁

𝑅′(𝑥) +𝑚2𝑅(𝑥) = 0. (4.23)

Notice that the above equation is meaningful only for 𝑥 < 1. We also note that 𝑥 = 0

is a singular regular point of this ordinary differential equation. We can then use the

Frobenius method to write a solution of (4.23) as follows

𝑅(𝑥) = 𝑥𝑠
∞
∑︁

𝑘=0

𝑎𝑘𝑥
𝑘. (4.24)

Substituting this into equation (4.23) we find that 𝑠 = 𝑛 + 1 or 𝑠 = 0. For 𝑠 = 𝑛 + 1 we

obtain a first solution:

𝑅1(𝑥) = 𝑥𝑛+1
∞
∑︁

𝑘=0

𝑎𝑘𝑥
𝑘. (4.25)

The case when 𝑠 = 0 does not correspond to a solution in the form (4.24). The reason is

that this is the tricky case of the Frobenius method for which the difference between the

two roots of the indicial polynomial is an integer. However, in this case one can construct

a second solution from 𝑅1(𝑥) as follows [34]

: 𝑅2(𝑥) = 𝑝𝑅1(𝑥) ln 𝑥+
∞
∑︁

𝑘=0

𝑏𝑘𝑥
𝑘, (4.26)

where 𝑝 is a constant.

Recall that 𝑛 is fixed but arbitrary. For each value of 𝑛 the coefficients of the above

series expansions may be then computed in recursive form. However, there is no closed

form for them in general.

As an example, for 𝑛 = 1 the solutions can be shown to take the form:

𝑅1(𝑥) = 𝑥2 +
(︁

Ð2

2
⊗ 𝑚2

8

)︁

𝑥4 + 1
164

(𝑚4 ⊗ 28𝑚2Ð2 + 64Ð4)𝑥6 + 𝒪 (𝑥7) ,

𝑅2(𝑥) = 1 ⊗ 1
2
𝑚2ln(𝑥)𝑥2 ⊗ 𝑚2

64
(3𝑚2 + 12Ð2 ⊗𝑚2ln 𝑥+ 16Ð2ln 𝑥)𝑥4 + 𝒪 (𝑥5) ,

and their corresponding plots are shown in figure (5). We chose the parameters in these

solutions so that the values of 𝑅1(0) and 𝑅2(0) are zero and one respectively.

Having solved the above equation near the origin we can write the complete solu-

tion of å as a function of á and 𝑥 = 𝜌/𝜌0 as

å(á, 𝑥) = 𝐴å1(á, 𝑥) +𝐵å2(á, 𝑥), (4.27)
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frame; this will depend on the coordinates in which it is measured. The “physical frame”

in which we should measure the energy, in our case, is the laboratory frame.

Another consequence of having a non-homogeneous transformation for the time

coordinate is that á does not represent the real (laboratory) time anymore. Quantities

in this coordinate system do not represent a direct physical meaning. For instance, 𝒬0

represents the acoustic energy density, but 𝒬0′

does not because, in these coordinates,

∇⃗′å is not the sound wave velocity. This will be important when we examine the energy

of the sound waves.

From the results of the previous section, we can now write å𝑘 back in the coordi-

nates (𝑡, 𝑟, 𝜃) by using (4.7). Next we compute the total energy for each solution (å1(𝑡, 𝑟)

and å2(𝑡, 𝑟)) using equation (3.51)1. By doing this, we arrive at the conclusion that for

𝑛 < 1, both solutions å1(𝑡, 𝑟) and å2(𝑡, 𝑟) carry finite energy. On the other hand, only

å1(𝑡, 𝑟) carries a finite energy for 𝑛 ⊙ 1. We refer the reader to appendix B for approxi-

mated expressions of this energy.

In this way, for 𝑛 ⊙ 1 the second solution of the wave equation does not fulfill the

finite energy condition and should be disregarded. This eliminates the ambiguity related

to the need of an extra boundary condition at the origin. We are therefore compelled to

work with regularizations for which 𝑛 lies in the interval [1,∞). It is interesting to note,

in passing, that this is precisely the condition that makes the velocity profile not only

continuous but also differentiable at the origin.

To sum up, a regularized 𝑣(𝜌) provides the fluid flow with an adequate behavior

at 𝜌 = 0, but this is not sufficient to provide a unique dynamical evolution for sound

waves because of the arbitrariness of the regularization. The finite energy condition plays

an important role to limit that arbitrariness. Particularly, only the regularizations which

behave as (4.22) near the origin and with 𝑛 ⊙ 1 are capable to determine uniquely the

dynamical evolution of sound waves.

4.6 Global solution to the wave equation

With the results found above, we are ready to solve the wave equation in the whole

space. We already noticed that, when 𝑛 ⊙ 1, 𝑅1(𝑥) (or equivalently å1(á, 𝑥)) is the only

physically allowed solution. For instance, if 𝑛 = 1, then 𝑣(𝑥) ≡ Ð𝑐𝑥 for 𝑥 ⪯ 1. We note

that 𝑛 could also take non-integer values such as 3
2

or 5
2
.

There are, of course, many transitions that satisfy a fluid flow behavior in such a

way that 𝑣(𝑥) = Ð𝑐𝑥𝑛 (𝑛 ⊙ 1) near the origin and 𝑣(𝑥) = Ð𝑐 far from the origin. Some

of those could lead to an analitic solutions of the wave equation and some could not. The

1 The energy density was integrated over a disc of radius 𝑟0 in such a way 𝑟0 ≡ 0 just as 𝜌0.
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Region 𝑣(𝑥) Solution for 𝑅(𝑥)

0 ⊘ 𝑥 < 𝜖 Þ
2
Ð𝑐𝑥𝑛 𝑅1(𝑥)

𝜖 ⊘ 𝑥 < 1 Ð𝑐 sin
(︁

Þ
2
𝑥𝑛
)︁

𝑅N(𝑥), to be solved numerically

1 ⊘ 𝑥 < ∞ Ð𝑐 𝑅(𝑥) = Ö𝑒
⊗𝑖 mx

1⊗α2 + Ý𝑒
𝑖 mx

1⊗α2 , 𝑚 = æ𝜌0/𝑐

In this way, for the second region (𝜖 ⊘ 𝑥 < 1), we should impose the following

initial conditions
∏︁

⨄︁

⋃︁

𝑅N(𝜖) = 𝑅1(𝜖),

𝑅′
N

(𝜖) = 𝑅′
1(𝜖).

(4.31)

Likewise, the solution for the region 1 ⊘ 𝑥 < ∞ should satisfy

∏︁

⨄︁

⋃︁

𝑅N(1) = Ö𝑒
⊗𝑖 m

1⊗α2 + Ý𝑒
𝑖 m

1⊗α2 ,

𝑅′
N

(1) = ⊗𝑖 𝑚
1⊗Ð2Ö𝑒

⊗𝑖 m

1⊗α2 + 𝑖 𝑚
1⊗Ð2 Ý𝑒

𝑖 m

1⊗α2 .
(4.32)

Once again, we can use the phase difference between ingoing and outgoing waves

to analyse the physical process that occurs near the origin. Since this requires one to

know the solution for the 𝑥 > 1 region, the phase difference must be computed in that

region. The phase difference as a function of the dimensionless frequency 𝑚 = æ𝜌0/𝑐 is

Ó(𝑚) = arg (Ý/Ö). To find the coefficients Ö and Ý, we consider the relations (4.32). The

phase difference then becomes

Ó(𝑚) = arg

[︃

𝑒
⊗𝑖 2m

1⊗α2

(︃ 𝑖𝑚𝐵
1⊗Ð2 ⊗ 1
𝑖𝑚𝐵
1⊗Ð2 + 1

)︃⟨

, (4.33)

where

𝐵 ⊕ ⊗𝑅N(1)

𝑅′
N(1)

. (4.34)

Using (4.31) we can then compute (numerically) the solution 𝑅N(𝑥) and then 𝐵.

Figure (7) shows a particular solution to the wave equation (for 𝑚 = 10 and Ð = 1/2).

We note 𝑅N(𝑥) fits nicely to the other regions and that the amplitude and frequency of

sound waves are constant outside the transition region of 𝑣(𝑥).

If we look at the definition of 𝐵, we note it depends (implicitly) on the frequency

𝑚. For this reason, the phase difference defined in (4.33) cannot be plotted directly. In this

way, we must construct 𝐵 by computing 𝑅N(1) and 𝑅′
N(1) for different values of 𝑚 and

only then we can obtain an interpolated function for 𝐵(𝑚). Once calculated 𝐵 = 𝐵(𝑚)

numerically, we can then plot the phase difference Ó(𝑚), The result is shown in figure (8).

To summarize, the regularized 𝑣(𝑟) we considered led to a certain behavior for

the solution near the origin. This yielded a unique dynamical evolution for the sound

waves. In figure (8) we observe that this leads to a phase difference (between ingoing and

outgoing waves) with periodic behavior.
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According to results from the previous sections, the fluid flow (4.35) belongs to

the regularization class where 𝑛 = 1, so that it fulfills the necessary conditions near the

origin.

Going back to the analogue model, the velocity profile given by (4.35) leads to the

following radial equation (4.10):

(︁

1 ⊗ Ð2 tanh2 𝑥
)︁2 𝑑2𝑅

𝑑𝑥2
⊗ 1 ⊗ Ð4 tanh4 𝑥

sinh 𝑥 cosh 𝑥

𝑑𝑅

𝑑𝑥
+𝑚2𝑅 = 0. (4.36)

The solutions to this equation can be analytically obtained and are given by

𝑅∘ = exp

[︃

⊗ 𝑖𝑚ÐÙ(𝑥)

2(1 ⊗ Ð2)

⟨

exp

[︃

∘𝑖𝑚ä(𝑥)

1 ⊗ Ð2

⟨

2𝐹1

(︃

𝑎∓ +
1

2
, 𝑎∓ ⊗ 1

2
, 𝑐∓,⊗

csch2𝑥

1 ⊗ Ð2

)︃

. (4.37)

We see that its first term is composed of two exponential functions while its second term

is given by a hypergeometric function [35]. The functions Ù(𝑥), ä(𝑥) and the parameters

𝑎∘, 𝑐∘ are given by

Ù(𝑥) = ln (1 ⊗ Ð2 + csch2𝑥),

ä(𝑥) = ln sinh 𝑥,

𝑎∘ =
1

2
∘ 𝑖𝑚/2

1 ∘ Ð
,

𝑐∘ = 1 ∘ 𝑖𝑚

1 ⊗ Ð2
,

(4.38)

where, as before, 𝑥 = 𝜌/𝜌0 and 𝑚 = æ𝜌0/𝑐.

As already discussed, these solutions must reduce to ingoing and outgoing waves

when 𝑥 ⊃ ∞. It is straightforward to show that, indeed, 𝑅∘ ∝ exp
(︁

∘𝑖 𝑚𝑥
1⊗Ð2

)︁

for 𝑥 large.

Let us write the complete solution to the wave equation as a linear combination

of 𝑅+ and 𝑅⊗, i.e.,

𝑅(𝑥) = 𝐴𝑅+(𝑥) +𝐷𝑅⊗(𝑥), (4.39)

where 𝐴 and 𝐷 are constants to be determined. Here we appeal to the Frobenius solutions

found in previous sections to select the physically accepted solution. From the analysis of

section 4.5, we see that

𝑅(0) = 𝐴𝑅⊗(0) +𝐷𝑅+(0) = 0 (4.40)

is the condition that must be used to obtain the desired solution. Thus, without consid-

ering global constant phases, 𝐴 and 𝐷 can then be written as follows

𝐴 = +𝑅+(0) =
exp

[︁

⊗ 𝑖𝑚 ln (1⊗Ð2)
2(1⊗Ð)

]︁

Γ
(︁

1 ⊗ 𝑖𝑚
1⊗Ð2

)︁

Γ
(︁

1 ⊗ 𝑖𝑚/2
1⊗Ð

)︁

Γ
(︁

1 ⊗ 𝑖𝑚/2
1+Ð

)︁ ,

𝐷 = ⊗𝑅⊗(0) = ⊗
exp

[︁

𝑖𝑚 ln (1⊗Ð2)
2(1+Ð)

]︁

Γ
(︁

1 + 𝑖𝑚
1⊗Ð2

)︁

Γ
(︁

1 + 𝑖𝑚/2
1⊗Ð

)︁

Γ
(︁

1 + 𝑖𝑚/2
1+Ð

)︁ .

(4.41)
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These constants encode the information about the regularization made at the origin.

Having obtained these expressions for 𝐴 and 𝐷, the solution 𝑅(𝑥) now provide a

complete description for circular waves moving on this fluid. In particular, the way by

which the waves interact with the source/sink located at 𝑥 = 0 (or equivalently 𝑟 = 0) is

also encoded in 𝑅(𝑥).

Our next step is to obtain the phase difference Ó(𝑚) for this solution. We must,

therefore, obtain an asymptotic expression for 𝑅(𝑥) for large 𝑥. In order to do that, we

define

𝜖 ⊕ csch 𝑥, (4.42)

which goes to zero when 𝑥 ⊃ ∞, and take the asymptotic limit for the hypergeometric

function as 𝜖 ⊃ 0. Expanding the hypergeometric function in terms of this quantity we

get

2𝐹1

(︃

𝑎∓ +
1

2
, 𝑎∓ ⊗ 1

2
, 𝑐∓,⊗

𝜖2

1 ⊗ Ð2

)︃

= 1 +
1 ⊗ 4𝑎2

∓
4 (1 ⊗ Ð2) 𝑐∓

𝜖2 + 𝒪
(︁

𝜖4
)︁

. (4.43)

Next, we compute the asymptotic limit for Ù(𝑥) and ä(𝑥). Using again the param-

eter 𝜖, we obtain

exp

[︃

⊗𝑖 𝑚Ù(𝑥)

2(1 ⊗ Ð)

⟨

=
(︁

1 ⊗ Ð2 + 𝜖2
)︁⊗𝑖 m

2(1⊗α)

≡ exp

[︃

⊗𝑖𝑚 ln (1 ⊗ Ð2)

2(1 ⊗ Ð)

⟨(︃

1 ⊗ 𝑖𝑚𝜖2

2(1 ⊗ Ð)(1 ⊗ Ð2)
+ 𝒪

(︁

𝜖4
)︁

)︃ (4.44)

and

exp

[︃

∘𝑖𝑚ä(𝑥)

1 ⊗ Ð2

⟨

≡ exp

[︃

∘𝑖𝑚(𝑥⊗ ln 2)

1 ⊗ Ð2

⟨

= exp

[︃

∓𝑖 𝑚 ln 2

1 ⊗ Ð2

⟨

exp
[︂

∘𝑖 𝑚𝑥

1 ⊗ Ð2

⎢

.

(4.45)

As a result, when 𝑥 ⊃ ∞ we can write the asymptotic solution as

å(á, 𝑥) ⊃
[︂

𝐵+(𝜖)𝐴exp
(︂⊗𝑖𝑚𝑥

1 ⊗ Ð2

)︂

+𝐵⊗(𝜖)𝐷exp
(︂

𝑖𝑚𝑥

1 ⊗ Ð2

)︂⎢

𝑒⊗𝑖æá , (4.46)

where global phases were dropped and the parameters 𝐵∘ are

𝐵∘(𝜖) = exp

[︃

∘𝑖 𝑚 ln 2

1 ⊗ Ð2

⟨

∏︀

∐︁1 +

(︁

1 + 4𝑎2
∓

)︁

𝜖2

4 (1 ⊗ Ð2) 𝑐∓
⊗ 𝑖𝑚𝜖2

(1 ⊗ Ð) (1 ⊗ Ð2)
+ 𝒪

(︁

𝜖4
)︁

∫︀

̂︀ .

These parameters encode all the asymptotic limit results. From (4.46) we are able to

identify the coefficients of ingoing and outgoing scattered waves and write the phase

difference. This yields

Ö ⊕ 𝐵+(𝜖)𝐴,

Ý ⊕ 𝐵⊗(𝜖)𝐷.
(4.47)
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and find the limit of small 𝑚 that should be compared to the AdS case. We note that

the behavior of Ó(𝑚) agrees with the result found in [30]. If we compare both results up

to first order in 𝑚, we may then conclude that this regularization attributes a certain

definite value to Ñ (defined in (4.20)), which is given by

Ñ = ln

(︃

2√
1 ⊗ Ð2

)︃

. (4.49)

Figure (11) shows an agreement between the phase difference obtained from regu-

larizing 𝑣(𝑥) and that obtained from using the extra boundary condition (4.21). In order

for us to understand physically the implications of such agreement, let us go back to

dimensionful quantities. The dimensionless frequency 𝑚 is then written as

𝑚 = æ𝜌0/𝑐 = 2Þ𝜌0/Ú,

where we used the fact that Ú𝑐 = 2Þæ, Ú being the wavelength of the sound wave. Recall

that the parameter 𝜌0 represents the region where 𝑣(𝜌) raises from zero to its constant

value. We see that, for small 𝑚, the sound wavelength is much larger than 𝜌0 (the radius

which is related with the region where 𝑣(𝜌) is not constant). Physically speaking, within

this limit, the sound waves cannot properly probe the region for which 𝑣(𝜌) is not constant

and, as a result, the results found in [30] are approximatelly valid.
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5 Conclusions

Analogue models of gravity have become an important tool for exploring different

aspects of general relativity in terms of concepts associated with other physical systems.

Here we studied an analogue model based on classical fluid dynamics. We were specially

interested in the case of a constant radial fluid flow with a point source/sink at the origin.

We showed that the resulting effective metric corresponds in this case to an 𝐴𝑑𝑆2 × 𝑆1

spacetime. It is well known that the 𝐴𝑑𝑆 spacetime is nonglobally hyperbolic. This implies

that the dynamics of fields in this background is not well defined unless extra boundary

conditions are prescribed (in this case at the spatial boundary of AdS). On the analogue

model end this implies that one needs to specify extra boundary conditions at the origin.

This corresponds to an effective description of how the field interacts with the point

source/sink of the flow.

We also considered regularizations of the fluid velocity near the source/sink at the

origin. By imposing physical conditions on the system (a finite energy condition for sound

waves), we found that a certain class of regularizations leads to a well defined dynamics for

sound waves without the need of extra boundary conditions. On the effective spacetime

end this corresponds to the introduction of a deformation of AdS near its spatial infinity.

When compared to the results found in the AdS case, we found that the reg-

ularization attributes a periodic behavior to the phase difference between ingoing and

outgoing waves. We also showed that, when the wavelength of the sound is much larger

than the effective radius set by the regularization, the effects of the latter are negligible,

as expected.
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APPENDIX A – Viscosity in fluids

The ideal fluid model is the simplest description one could adopt for studying fluid

dynamics. Sometimes this is good enough, sometimes we need more. The next simplest

model arises when we take into account another property of fluids, which is their viscosity.

Consider the volume 𝑉 shown in figure (12). In the case of an ideal fluid, the force

density á⃗ is always normal to the surface 𝜕𝑉 . In the case of real fluids, one also has a

tangential component, which gives rise to a momentum transfer between two adjacent

surfaces similar to 𝜕𝑉 . Mathematically, this momentum transfer is described by means

of a tensor á𝑖𝑗 (the viscosity stress tensor) which is added to the stress tensor of the ideal

fluid:

à𝑖𝑗 ⊕ ⊗𝑝Ó𝑖𝑗 + á𝑖𝑗. (A.1)

The momentum flux density tensor then becomes

Π𝑖𝑗 = ⊗à𝑖𝑗 + 𝜌𝑣𝑖𝑣𝑗. (A.2)

As the viscosity is related to the momentum transfer, it should be expressed in

terms of the velocity gradient 𝜕𝑖𝑣𝑗. It can be shown that, under appropriate physical

assumptions [1],

á𝑖𝑗 = Ö
(︂

𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖 ⊗ 2

3
Ó𝑖𝑗𝜕𝑘𝑣𝑘

)︂

+ ÝÓ𝑖𝑗𝜕𝑘𝑣𝑘, (A.3)

where Ö and Ý (independent of 𝑣𝑖) are called coefficients of viscosity and they are non-

negative.

fluid flow dS
𝝉

V

Figure 12 – Some region of volume 𝑉 inside a fluid flow. There is a force per unit area á⃗ (called shear

stress) acting on a surface element d𝑆 of 𝜕𝑉 .
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It is straightforward to find the equations of motion once we have the expression

for Π𝑖𝑗. It follows from (1.12) that

𝜕𝑡𝑣𝑖 + (𝑣𝑘𝜕𝑘) 𝑣𝑖 = ⊗1

𝜌
𝜕𝑖𝑝+

Ö

𝜌
𝜕𝑙𝜕𝑙𝑣𝑖 +

1

𝜌

(︂

Ö +
1

3
Ý
)︂

𝜕𝑖𝜕𝑘𝑣𝑘. (A.4)

If the fluid is incompressible, the Navier–Stokes equations arises:

𝜕𝑡𝑣𝑖 + (𝑣𝑘𝜕𝑘) 𝑣𝑖 = ⊗1

𝜌
𝜕𝑖𝑝+

Ö

𝜌
𝜕𝑙𝜕𝑙𝑣𝑖, (A.5)

i.e.,

𝜕𝑡𝑣⃗ +
(︁

𝑣⃗ ≤ ∇⃗
)︁

𝑣⃗ = ⊗1

𝜌
∇⃗𝑝+

Ö

𝜌
∇2𝑣⃗. (A.6)

We note that when the fluid has zero viscosity, the above equations reduce to the

Euler equations (1.3).
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APPENDIX B – An approximation for com-

puting the energy for sound

waves near the origin

Before computing the energy for sound waves, we need to derive expressions for

å𝑘(𝑡, 𝑥) near the origin. To do that, we first solved the radial part of the wave equation

shown in (4.23). The solutions can be expressed in a simple way if we consider only the

first two terms in powers of 𝑥:

𝑅1(á, 𝑥) = 𝑥𝑛+1 + 𝑎1𝑥
𝑛+2 + 𝒪

(︁

𝑥𝑛+3
)︁

,

𝑅2(á, 𝑥) = 1 + (𝑏1 + 𝑐1 ln 𝑥)𝑥2 + 𝒪
(︁

𝑥3
)︁

.
(B.1)

As long as 𝑥 is small, this approximation is valid.

We note that, no matter what is the value of 𝑛, at 𝑥 = 0 we get

𝑅1(0) = 0,

𝑅2(0) = 1,
(B.2)

which is also an important result for one to identify the solutions only by checking its

value at origin.

The solutions to the wave equation near the origin are then written as å(á, 𝑥) ≡
𝐴å1(á, 𝑥) +𝐷å2(á, 𝑥), where

å1(á, 𝑥) =
(︁

𝑥𝑛+1 + 𝑎1𝑥
𝑛+2

)︁

𝑒⊗𝑖æá ,

å2(á, 𝑥) =
[︁

1 + (𝑏1 + 𝑐1 ln 𝑥)𝑥2
]︁

𝑒⊗𝑖æá .
(B.3)

As we mentioned before, the energy is supposed to be measured in the laboratory

frame, i.e., in coordinates (𝑡, 𝑟, 𝜃). Thus, we should express the solutions of sound waves

back into coordinates (𝑡, 𝑟, 𝜃). Since the relation between 𝑥 and 𝑟 is linear, for simplicity,

we could maintain 𝑥 as the radial coordinate (where 𝑥 = 𝜌/𝜌0 = 𝑟/𝑟0). For the time

coordinate, however, we need to transform it through the relations (4.7). For the fluid

flow shown in (4.22), this transformation for á yields

á = 𝑡+
∫︁ Ð𝑐𝑥𝑛

𝑐2 ⊗ Ð2𝑐2𝑥2𝑛
𝑟0d𝑥. (B.4)

Therefore

á = 𝑡+
Ð𝑟0𝑥

𝑛+1

𝑐(𝑛+ 1)
2𝐹1

(︂

1,
𝑛+ 1

2𝑛
,
3𝑛+ 1

2𝑛
, Ð2𝑥2𝑛

)︂

. (B.5)
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Using the same approximation as that used for 𝑅𝑘(𝑥), the above relation can be written

as

á ≡ 𝑡+
Ð𝑟0𝑥

𝑛+1

𝑐(𝑛+ 1)
.

We emphasize that this approximations are used only to illustrate how the results behave

near the origin. The solutions (B.3) in coordinates (𝑡, 𝑥, 𝜃) then reduce to

å1(𝑡, 𝑥) =
(︁

𝑥𝑛+1 + 𝑎1𝑥
𝑛+2

)︁

exp

[︃

⊗𝑖æÐ𝑟0𝑥
𝑛+1

𝑐(𝑛+ 1)

⟨

𝑒⊗𝑖æ𝑡,

å2(𝑡, 𝑥) =
[︁

1 + (𝑏1 + 𝑐1 ln 𝑥)𝑥2
]︁

exp

[︃

⊗𝑖æÐ𝑟0𝑥
𝑛+1

𝑐(𝑛+ 1)

⟨

𝑒⊗𝑖æ𝑡.

(B.6)

We can also obtain, in a similar way, formal results for the total energy for different

values of 𝑛:

∙ For 𝑛 = 1/2

𝐸1 ≡ 3𝐴 cos2(æ𝑡)

20Ð𝑐𝑟0

𝑥3/2
(︁

3Ð2𝑥+ 5
)︁⧹︃

⧹︃

⧹︃

1

0
,

𝐸2 ≡ 𝐴𝑟0æ
2(1 ⊗ cos(2æ𝑡))

6Ð𝑐3

√
𝑥
(︁

Ð2𝑥+ 3
)︁⧹︃

⧹︃

⧹︃

1

0
.

∙ For 𝑛 = 1

𝐸1 ≡ 𝐴(1 + cos(2æ𝑡))

2Ð𝑐𝑟0

𝑥2
⧹︃

⧹︃

⧹︃

1

0
,

𝐸2 ≡ 𝐴𝑟0æ
2 sin2(æ𝑡)

2Ð𝑐3
ln 𝑥♣10 .

∙ For 𝑛 = 3/2

𝐸1 ≡ 5𝐴(1 + cos(2æ𝑡))

8Ð𝑐𝑟0

𝑥5/2
⧹︃

⧹︃

⧹︃

1

0
,

𝐸2 ≡ 𝐴𝑟0æ
2(cos(2æ𝑡) ⊗ 1)

2Ð𝑐3
√
𝑥

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

1

0

.

∙ For 𝑛 = 2

𝐸1 ≡ 3𝐴(1 + cos(2æ𝑡))

4Ð𝑐𝑟0

𝑥3

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

1

0

,

𝐸2 ≡ 𝐴𝑟0æ
2(cos(2æ𝑡) ⊗ 1)

4Ð𝑐3𝑥

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

1

0

.

∙ For 𝑛 = 3

𝐸1 ≡
𝐴
[︁

1 + cos
(︁

2æ𝑡+ Þæ𝑟0

3
√

3 3√Ð𝑐

)︁]︁

Ð𝑐𝑟0

𝑥4
⧹︃

⧹︃

⧹︃

1

0
,

𝐸2 ≡ ⊗
𝐴𝑟0æ

2 sin2
(︁

æ𝑡+ Þæ𝑟0

6
√

3 3√Ð𝑐

)︁

4Ð𝑐3𝑥2

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

⧹︃

1

0

.
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Looking at these results for the energy, we observe that when 𝑛 ⊙ 1 the energy for

the second solution (å2(𝑡, 𝑥)) is not finite near the origin, so that å2(𝑡, 𝑥) does not fulfill

the finite energy condition. In this way, the second solution should be discarded and, as

a result, no extra boundary conditions are required.
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