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Resumo

Uma versão generalizada do método Ścoupled coherent statesŠ é desenvolvida para

estados coerentes associados a grupos de Lie arbitrários. Em contraste com a aborda-

gem original, restrita a funções de base gaussianas, o método estendido é adequado para

propagação de estados quânticos de sistemas exibindo propriedades físicas destituídas de

análogo clássico, tais como graus de liberdade de spin ou indistinguibilidade de partícu-

las. A formulação para o caso de sistemas com um número Ąxo de partículas idênticas

interagentes é examinada em detalhe, sendo este um caso relevante descrito em termos

de estados coerentes do grupo especial unitário. A técnica é ilustrada com aplicações

simples, envolvendo modelos de Hubbard bosônicos e fermiônicos. Diversos aspectos da

implementação numérica são discutidos.

Palavras-chave: métodos numéricos, estados coerentes, métodos semiclássicos.



Abstract

A generalized version of the coupled coherent states method for coherent states of ar-

bitrary Lie groups is developed. In contrast to the original approach, which is restricted

to frozen-Gaussian basis sets, the extended method is suitable for propagating quan-

tum states of systems featuring non-classical physical properties, such as spin degrees

of freedom or particle interchange symmetry. The formulation for the relevant case of

number-conserving systems of interacting identical particles, most adequately described

in terms of coherent states of the special unitary group, is studied in detail. The tech-

nique is illustrated with applications to simple Hubbard-like models for both bosons and

fermions. Several aspects of the numerical implementation are discussed.

Keywords: numerical methods, coherent states, semiclassical methods.
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Introduction

A vast number of physical systems exhibit the property that some of their parts behave in a

sort of classical way, meaning that quantum effects play only a minor role in the description

of those parts. This distinctive classical character of speciĄc degrees of freedom is a much

welcomed attribute, for it makes possible the development of tractable computational

approaches capable of carrying out the time-evolution of complex quantum systems, being

thus the fundamental property upon which time-dependent trajectory-guided methods are

based.

In this kind of technique quantum states are represented in terms of time-dependent

basis functions or ŚconĄgurationsŠ. Within a single conĄguration, those degrees of freedom

in which quantum effects are negligible are evolved according to classical equations of

motion. This classical dynamics may be prescribed in a number of different ways and

different choices correspond to different propagation schemes.

In spite of the fact that individual conĄgurations have some of their parts bound to

obey classical laws, a complete quantum solution is in principle attainable by combining

many conĄgurations. The key idea behind such ŚmulticonĄgurationalŠ approaches is that

trajectory-guided basis functions, if properly optimized, are more likely to remain in

the important regions of the Hilbert space, thus being more efficient at representing the

quantum state in the sense that a reduced number of basis elements is required in order

to achieve an accurate description. And it is precisely through a signiĄcant reduction in

the number of basis functions needed to propagate the system that one hopes to escape

the exponential scaling of basis-set size with dimensionality typical of standard static-

basis formulations. This Śmixed quantum-classicalŠ picture is adopted in many methods

of quantum chemistry.1

A recurrent theme in this Ąeld is the development of techniques which, by means

of equally simple recipes to guide the basis functions, would be readily applicable to

systems presenting authentically non-classical qualities, such as spin degrees of freedom or

particle exchange symmetry. Several works have been directed to that purpose, most often

aiming at a time-dependent description of the electronic structure of molecules during non-

adiabatic processes. One particular example of such a recipe is the classical model for

electronic degrees of freedom proposed by Miller and White2 where a second-quantized

fermionic Hamiltonian is properly reduced to a classical function wherein number and
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phase variables play the role of generalized coordinates. In contrast, a more ŚmechanisticŠ

approach to fermion dynamics is found on the multiconĄgurational formula proposed by

Kirrander and Shalashilin3 in which the basis functions consist of antisymmetrized frozen

Gaussiansi guided by fermionic molecular dynamics.5

Yet, if one seeks to describe non-classical degrees of freedom by means of classical-like

variables, then generalized coherent states Ű deĄned in the group-theoretical sense Ű are

undoubtedly among the most appropriate tools to be employed. There are many reasons

supporting this assertion.

First of all, coherent states are deĄned in terms of non-redundant parameters and

equations of motion for these parameters can be readily obtained from the time-dependent

variational principle.6 In this way an optimized time evolution can be assigned to spe-

ciĄc degrees of freedom in an unambiguous manner. Moreover, they are naturally able

to capture the desired symmetries of the system, and these are maintained during prop-

agation. Furthermore, the coherent-state parameters evolve in a classical phase space in

the strict sense of the word, hence we automatically have at our disposal the wealth of

analytical techniques applicable to Hamiltonian systems. At the same time, through this

intimate connection to classical dynamics, coherent states provide a compelling classical

interpretation to quantum phenomena, in so far as individual conĄgurations are chosen to

represent familiar objects Ű i.e. in such a way that it is meaningful to discuss the dynamics

of the system in terms of their trajectories. To this extent, coherent states Ű which are

also minimum uncertainty states (as long as a proper meaning is assigned to the term

ŚuncertaintyŠ)7;8 Ű are valuable tools in enhancing our comprehension with respect to the

semiclassical features of the quantum system under investigation. In addition, and from

a more mathematical perspective, the group-theoretical formalism secures a well-deĄned

integral form for the coherent-state closure relation9 Ű a crucial element to the develop-

ments presented in this work. This list of virtues is not exhausted and other advantages

of a generalized coherent-state representation will be evidenced throughout the thesis.

Along these lines, Van Voorhis and Reichman10 have considered a number of al-

ternative representations of electronic structure making use of different coherent-state

parametrizations and also examined their adequacy to a variety of systems.ii Within

the context of non-adiabatic molecular dynamics, a particularly interesting fermionic

coherent-state representation, known as ŚThouless determinantŠ in the Ąeld of quantum

chemistry,14;15 is employed in the simplest and most throughly investigated version of the

Electron-Nuclear Dynamics theory, developed by Deumens, Öhrn and collaborators.16;17

The same kind of coherent state has been discussed at length, within the Ąeld of nuclear

physics, by Suzuki and Kuratsuji.18–20 (Thouless determinants will be studied in detail in

iMore recently, Grossmann et. al.4 have investigated, in a semiclassical context, whether propagation
with antisymmetrized basis states is essential for the description of electron scattering.

iiTheir discussion is based on a rough extension of Solari’s semiclassical propagators11;12 – a rigorous
derivation of the generalized coherent-state propagator can be found in a recent work.13
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the present work.)

Turning to bosonic dynamics, a semiclassical trajectory-based formula in the special

unitary group coherent-state representation has been recently derived and successfully

applied to a model of trapped bosons.21;22 (The propagation methodology developed in

this thesis is also implemented with bosonic coherent states of the same kind.)

The aforementioned methods are representative of the kind of technique one has

in mind when a description of intrinsically quantum degrees of freedom in terms of

classical-like variables is desired. However, they either constitute approximate single-

conĄguration approaches16;17 or involve complicated trajectories that live in a duplicated

phase space,21;22 sometimes relying on sophisticated root-search techniques in order to

determine them.10;23;24 It seems that a multiconĄgurational, generalized coherent-state

approach, based on simple Ű as opposed to duplicated Ű phase-space trajectories would

be more in the spirit of the familiar time-dependent guided-basis methods of quantum

chemistry.iii This is precisely the direction we take here.

In this work a quantum initial-value representation method, which employs a general-

ized coherent-state basis set guided by classical trajectories, is formulated. The resulting

propagation scheme is regarded as a natural extension of the coupled coherent states

technique of Shalashilin and Child25–27 in so far as (i) basis-set elements represent local-

ized quantum states; (ii) each element evolves independently in a generalized classical

phase space and carries an action phase; and (iii) the quantum amplitudes associated

with individual elements obey fully coupled equations of motion which present a number

of attractive qualities.

Thesis organization

We begin, at Chapter 1, with a review of two fundamental topics: the time-dependent

variational principle (TDVP) and the theory of generalized coherent states. The purpose

of this chapter is to demonstrate how the machinery of the TDVP works and, most

importantly, how it leads to classical equations of motion in a curved phase space when a

coherent state is taken as a trial function. Next, Chapters 2 and 3 are dedicated to bosonic

and fermionic coherent states, respectively. Their geometrical properties are reviewed and,

more speciĄcally, their dynamics under certain prototype Hamiltonians is characterized.

These Ąrst three chapters have a preparatory objective where the essential tools required

for the subsequent developments are introduced.

It is at Chapter 4 that we set forth to derive the working equations of the generalized

coupled coherent states method. This is the central chapter of the thesis, where the main

theoretical constructs are presented. In particular, the discrete unitary version of the

iiiWe note that the approximations to the generalized coherent-state path integral considered by Ku-
ratsuji and Suzuki20 – as well as specific formulations for Slater determinants18;19 – are very much akin
to the techniques develop in this paper.





15

Chapter 1

Time-dependent variational principle and

generalized coherent states

Overview. The time-dependent variational principle is reviewed. The pro-

cedure is Ąrst illustrated with unrestricted trial states; this establishes some

notation and terminology. A modiĄed version of the principle, which includes a

normalization constraint, is then formulated and shown to be more convenient

when considering multiconĄgurational trial functions. Generalized coherent

states are introduced and their basic geometrical properties are outlined. Seen

as special types of trial states, their dynamics under general Hamiltonians is

worked out from the basic Euler-Lagrange equations. The presentation mostly

follows the classic text by Kramer and Saraceno;6 additional details are incor-

porated from Refs. [13;29].

1.1 Quantum equations from a minimum principle

The fundamental idea behind the time-dependent variational principle (TDVP) is that

approximate quantum solutions to a given problem can be obtained by optimizing a trial

state: a state that depends on a number of adjustable time-dependent parameters. The

optimization is effected by requiring that the trial state yields a stationary solution to a

certain action functional deĄned for a predetermined time interval.

Denoting the trial state by å = å(𝑡), the total action functional 𝐴 is:i

𝐴á [å] = 𝑆á [å]⊗ 𝑖~

2

[︁

log⟨åá ♣åá ⟩+ log⟨å0♣å0⟩
]︁

, (1.1)

where the initial time is 𝑡 = 0 and the Ąnal time is 𝑡 = á (for brevity, we occasionally

indicate speciĄc time arguments with a subscript, e.g. ♣å(0)⟩ = ♣å0⟩ and ♣å(á)⟩ = ♣åá ⟩).
The reason why this functional incorporates unusual surface terms (the logarithmic terms)

iIn this thesis, ‘log 𝑥’ is the natural logarithm of 𝑥. For complex 𝑧, ‘log 𝑧’ refers to the principal
branch. Also, the complex conjugate of 𝑧 will be indicated with an asterisk: 𝑧*.
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will be clariĄed in a moment Ű notice that the trial state is left unnormalized. The bare

action, or simply action 𝑆 is the time integral of a Lagrangian function 𝐿,6

𝑆á [å] =
∫︁ á

0
𝑑𝑡 𝐿(å) ⊕

∫︁ á

0
𝑑𝑡 ⟨å♣å⟩⊗1⟨å♣

[︁𝑖~

2

(︁ 𝑑

𝑑𝑡
⊗ 𝑑*

𝑑𝑡

)︁

⊗ 𝐻̂
]︁

♣å⟩, (1.2)

where the conjugate derivative is meant to operate ŚbackwardsŠ, i.e. ⟨å♣(𝑑*/𝑑𝑡) = ⟨𝑑å/𝑑𝑡♣.
We see that the Lagrangian is deĄned in terms of the mean value of an hermi-

tian version of the linear operator whose action upon a wavefunctionii ♣Ψ⟩ produces the

Schrödinger equation,
(︁

𝑖~
𝑑

𝑑𝑡
⊗ 𝐻̂

)︁

♣Ψ⟩ = 0.

In this way the TDVP bears some resemblance to its more familiar time-independent

version.

Computing the mean value the Lagrangian is found to be:

𝐿(å) =
𝑖~

2

⟨å♣å̇⟩ ⊗ ⟨å̇♣å⟩
⟨å♣å⟩ ⊗ ⟨å♣𝐻̂♣å⟩⟨å♣å⟩ , (1.3)

where a dot denotes differentiation with respect to the time variable 𝑡 Ű this will be a

recurrent notation throughout this work.

In performing the TDVP calculations, the ket state ♣å⟩ and bra state ⟨å♣ shall be

regarded as independent quantities Ű only at the end we shall recognize them as dual

vectors, even though we still refer to ŚåŠ as the trial state. Correspondingly, the La-

grangian function should be understood as 𝐿(å, å*, å̇, å̇*), i.e. a function depending on

both variational parameters and their derivatives, as usual. We shall write simply 𝐿(å),

for short.

A stationary point of the total action is associated with a path å(𝑡), for 0 ⊘ 𝑡 ⊘ á ,

having the following property: when small displacements are effected at each time instant

of such path, å(𝑡)⊃ å(𝑡)+Óå(𝑡), the functional 𝐴 is unchanged to Ąrst order. Therefore,

such stationary solutions can be found by enforcing the condition Ó𝐴 = 0, together with

Ąxed end-point boundary conditions, as is common practice in variational calculus.

The problem is thus formulated:

⎧

⋁︁⨄︁

⋁︁⋃︁

♣å(𝑡)⟩ ⊃ ♣å(𝑡)⟩+ ♣Óå(𝑡)⟩
⟨å(𝑡)♣ ⊃ ⟨å(𝑡)♣+ ⟨Óå(𝑡)♣

⇔ Ó𝐴á = 0 with:

⎧

⋁︁⨄︁

⋁︁⋃︁

♣Óå(0)⟩ = 0

⟨Óå(á)♣ = 0
. (1.4)

Notice that the initial-time boundary condition is enforced on the ket ♣å0⟩, whereas the

Ąnal-time condition is enforced on the bra ⟨åá ♣. The surface terms in 𝐴 ensure the

consistency of this boundary-value problem,29 as we will see.

iiThroughout this thesis the terms ‘state’ and ‘wavefunction’ are used as synonyms.
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1.1.1 Unrestricted variations

In practice the trial state is invariably parametrized by a smaller number of variables than

that necessary to span the full Hilbert space where the exact quantum solution evolves Ű

otherwise the variational approach would not be justiĄable in the Ąrst place. It is instruc-

tive, nevertheless, to see what happens when one is able to perform unrestricted variations

on å(𝑡), i.e. to effect displacements Óå(𝑡) in the trial state as if it were completely Ćexible.

Let us begin by writing the Ąrst-order change of the total action,

Ó𝐴á = Ó𝑆á ⊗
𝑖~

2

[︁⟨åá ♣Óåá ⟩
⟨åá ♣åá ⟩

+
⟨Óå0♣å0⟩
⟨å0♣å0⟩

]︁

⊗ 𝑖~

2

[︁⟨Óåá ♣åá ⟩
⟨åá ♣åá ⟩

+
⟨å0♣Óå0⟩
⟨å0♣å0⟩

]︁

. (1.5)

For unrestricted variations, the change in the bare action 𝑆 can be expressed as:

Ó𝑆á =
∫︁ á

0
𝑑𝑡

⎟

𝜕𝐿

𝜕♣å⟩♣Óå⟩+
𝜕𝐿

𝜕♣å̇⟩♣Óå̇⟩+ ⟨Óå♣ 𝜕𝐿
𝜕⟨å♣ + ⟨Óå̇♣

𝜕𝐿

𝜕⟨å̇♣

]︃

. (1.6)

In the above equation all terms are scalars, and derivatives with respect to bras and kets

should be understood as functional derivatives; for instance, using the position repre-

sentation, with å(𝑥) = ⟨𝑥♣å⟩ and å(𝑥)* = ⟨å♣𝑥⟩, for 𝑥 with the appropriate number of

dimensions, we would have:

𝜕𝐿

𝜕♣å⟩♣Óå⟩ =
∫︁

𝑑𝑥
[︁Ó𝐿(å)

Óå(𝑥)
Óå(𝑥)

]︁

, ⟨Óå̇♣ 𝜕𝐿
𝜕⟨å̇♣ =

∫︁

𝑑𝑥
[︁

Óå̇(𝑥)* Ó𝐿(å)

Óå̇(𝑥)*

]︁

, etc.

Next, we proceed with the usual steps of time-dependent variational problems.30 In-

tegrating by parts the ♣Óå̇⟩ and ⟨Óå̇♣ terms of (1.6) we obtain:

Ó𝑆á =
𝜕𝐿

𝜕♣å̇⟩♣Óå⟩
⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

á

0

+⟨Óå♣ 𝜕𝐿
𝜕⟨å̇♣

⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

á

0

+
∫︁ á

0
𝑑𝑡

∮︁⎟

𝜕𝐿

𝜕♣å⟩ ⊗
𝑑

𝑑𝑡

𝜕𝐿

𝜕♣å̇⟩

]︃

♣Óå⟩+ ⟨Óå♣
⎟

𝜕𝐿

𝜕⟨å♣ ⊗
𝑑

𝑑𝑡

𝜕𝐿

𝜕⟨å̇♣

]︃⨀︀

.

The derivatives with respect to ♣å̇⟩ and ⟨å̇♣ are:

𝜕𝐿

𝜕⟨å̇♣ = ⊗𝑖~
2

♣å⟩
⟨å♣å⟩ , (1.7a)

𝜕𝐿

𝜕♣å̇⟩ =
𝑖~

2

⟨å♣
⟨å♣å⟩ . (1.7b)

Thus the factors removed from the time integral give

𝜕𝐿

𝜕♣å̇⟩♣Óå⟩
⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

á

0

+ ⟨Óå♣ 𝜕𝐿
𝜕⟨å̇♣

⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

á

0

=
𝑖~

2

[︁⟨åá ♣Óåá ⟩
⟨åá ♣åá ⟩

+
⟨Óå0♣å0⟩
⟨å0♣å0⟩

]︁

⊗ 𝑖~

2

[︁⟨Óåá ♣åá ⟩
⟨åá ♣åá ⟩

+
⟨å0♣Óå0⟩
⟨å0♣å0⟩

]︁

, (1.8)
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effectively canceling the Ąrst of the surface terms in Eq. (1.5). At this stage we have:

Ó𝐴á =
∫︁ á

0
𝑑𝑡

∮︁
[︁ 𝜕𝐿

𝜕♣å⟩ ⊗
𝑑

𝑑𝑡

𝜕𝐿

𝜕♣å̇⟩
]︁

♣Óå⟩+ ⟨Óå♣
[︁ 𝜕𝐿

𝜕⟨å♣ ⊗
𝑑

𝑑𝑡

𝜕𝐿

𝜕⟨å̇♣
]︁
⨀︀

⊗𝑖~
[︁ ⟨Óåá ♣åá ⟩
⟨åá ♣åá ⟩

+
⟨å0♣Óå0⟩
⟨å0♣å0⟩

⏟  ⏞  

=0

]︁

,

(1.9)

where we observe that the last factor vanishes by virtue of the boundary conditions, and

no quantities are left outside the integral sign. This overall cancellation, which is crucial

for reaching the conclusions stated in the next paragraph, would not occur without the

surface terms of 𝐴 [cf. Eq. (1.1)], hence their importance.29

Since ♣Óå(𝑡)⟩ and ⟨Óå(𝑡)♣ are independent at each instant, the condition Ó𝐴á = 0

implies that both factors multiplying these displacements inside the integral of Eq. (1.9)

must be zero; we thus arrive at the Euler-Lagrange equations:

𝜕𝐿

𝜕⟨å♣ ⊗
𝑑

𝑑𝑡

𝜕𝐿

𝜕⟨å̇♣ = 0, (1.10a)

𝜕𝐿

𝜕♣å⟩ ⊗
𝑑

𝑑𝑡

𝜕𝐿

𝜕♣å̇⟩ = 0. (1.10b)

For clarity, let us compute all terms involved. Derivatives with respect to ⟨å♣ and ♣å⟩ are

𝜕𝐿

𝜕⟨å♣ =
𝑖~

2

♣å̇⟩
⟨å♣å⟩ ⊗

𝐻̂♣å⟩
⟨å♣å⟩ ⊗

𝐿♣å⟩
⟨å♣å⟩ , (1.11a)

𝜕𝐿

𝜕♣å⟩ = ⊗𝑖~
2

⟨å̇♣
⟨å♣å⟩ ⊗

⟨å♣𝐻̂
⟨å♣å⟩ ⊗

⟨å♣𝐿
⟨å♣å⟩ . (1.11b)

Meanwhile, differentiating Eqs. (1.7) with respect to 𝑡 gives

𝑑

𝑑𝑡

𝜕𝐿

𝜕⟨å̇♣ = ⊗𝑖~
2

♣å̇⟩
⟨å♣å⟩ +

𝑖~

2

[︁⟨å♣å̇⟩+ ⟨å̇♣å⟩
⟨å♣å⟩

]︁ ♣å⟩
⟨å♣å⟩ , (1.12a)

𝑑

𝑑𝑡

𝜕𝐿

𝜕♣å̇⟩ =
𝑖~

2

⟨å̇♣
⟨å♣å⟩ ⊗

𝑖~

2

[︁⟨å♣å̇⟩+ ⟨å̇♣å⟩
⟨å♣å⟩

]︁ ⟨å♣
⟨å♣å⟩ . (1.12b)

Finally, collecting terms we Ąnd, from (1.10),

(︁

𝑖~
𝑑

𝑑𝑡
⊗ Ò̇1

)︁

♣å⟩ = 𝐻̂♣å⟩, (1.13a)

⟨å♣
(︁

𝑖~
𝑑*

𝑑𝑡
+ Ò̇2

)︁

= ⊗⟨å♣𝐻̂, (1.13b)

where Ò̇1 and Ò̇2 are deĄned as:

Ò̇1 = 𝑖~
⟨å♣å̇⟩
⟨å♣å⟩ ⊗

⟨å♣𝐻̂♣å⟩
⟨å♣å⟩ , Ò̇2 = ⊗𝑖~⟨å̇♣å⟩⟨å♣å⟩ ⊗

⟨å♣𝐻̂♣å⟩
⟨å♣å⟩ . (1.14)
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Up to this point ♣å⟩ and ⟨å♣ were regarded as independent quantities and therefore

Ò̇1 and Ò̇2, the complex functions responsible for a gauge coupling between ♣å⟩ and ⟨å♣ in
Eqs. (1.13a) and (1.13b), are not supposed to be the conjugate of one another.

If, however, the Hamiltonian is hermitian (as it is in the vast majority of problems)

then there exists a subset of solutions where ⟨å(𝑡)♣ = [♣å(𝑡)⟩]†, for 0 ⊘ 𝑡 ⊘ á .iii Recall

that the boundary conditions Ąx ♣å0⟩ and ⟨åá ♣, but not ♣åá ⟩ and ⟨å0♣. The subset of

solutions we are concerned with is deĄned by the extra requirement that the end-point

⟨åá ♣ is Ąxed in such a way that when propagated backwards in time it matches [♣å0⟩]†.
With an hermitian Hamiltonian, Eq. (1.13b) is the dual of Eq. (1.13a), and therefore the

requirement implies ♣åá ⟩ = [⟨åá ♣]†, and, consequently, ⟨å(𝑡)♣ = [♣å(𝑡)⟩]† for all 𝑡. This

reasoning also applies to restricted trial states.iv

Henceforth we shall always work with hermitian Hamiltonians and variational solutions

where ♣å⟩ and ⟨å♣ are dual vectors for all 𝑡. The boundary conditions are thus replaced

by simple initial conditions and, since the bra and ket equations are equivalent, we will

mostly work with the latter.

With these considerations in mind we rename the gauge factors, Ò̇1 = Ò̇ and Ò̇2 = Ò̇*,

and rewrite Eq. (1.13a) as:
(︁

𝑖~
𝑑

𝑑𝑡
⊗ Ò̇

)︁

♣å⟩ = 𝐻̂♣å⟩. (1.15)

The scalar Ò̇ can be removed by a simple transformation. Let us deĄne the new, trans-

formed wavefunction ♣Ψ⟩ according to:

♣Ψ⟩ ⊕ ♣å⟩𝑒 i
~
Ò. (1.16)

It follows immediately that ♣Ψ⟩ satisĄes the familiar Schrödinger equation,

𝑖~♣Ψ̇⟩ = 𝐻̂♣Ψ⟩. (1.17)

Before drawing conclusions let us calculate the real and imaginary parts of Ò̇:

Ò̇ + Ò̇*

2
=
𝑖~

2

⟨å♣å̇⟩ ⊗ ⟨å̇♣å⟩
⟨å♣å⟩ ⊗ ⟨å♣𝐻♣å⟩⟨å♣å⟩ = 𝐿(å),

Ò̇ ⊗ Ò̇*

2𝑖
=

~

2

⟨å♣å̇⟩+ ⟨å̇♣å⟩
⟨å♣å⟩ =

~

2

𝑑 log⟨å♣å⟩
𝑑𝑡

.

Hence,

Ò̇ = 𝐿(å) +
𝑖~

2

𝑑 log⟨å♣å⟩
𝑑𝑡

, (1.19)

iiiThe hermitian adjoint of an object 𝐴 is denoted by 𝐴†.
ivThe preceding discussion may sound confusing, but this sort of analysis is typical in applications of

the TDVP. In semiclassical methods, for example, variational solutions where the distinction between bra

and ket variables is maintained prove to be both interesting and useful.21;22;29;31
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and subsequent integration from 0 to 𝑡 yields (setting Ò(0) to zero):

Ò(𝑡) = 𝑆(å) + 𝑖~ log
√︁

⟨å♣å⟩. (1.20)

Putting this back in Eq. (1.16) we deduce the insightful result:

♣Ψ⟩ =
♣å⟩

√︁

⟨å♣å⟩
𝑒

i
~
𝑆(å). (1.21)

Thus, the state ♣Ψ⟩, which satisĄes the usual Schrödinger equation, is just the original

unrestricted trial state, but properly normalized and with an action phase. The phase is

immaterial if ♣Ψ⟩ stands for the state of the full system, since it represents only a global

phase in that case.

However, the fact the time-dependent variational principle attaches a phase to the

ŚoptimizedŠ state vector, as we shall call it, is not an exclusivity of the unrestricted

parametrization considered here Ű it is a general result, equally valid for other trial states.

And, in many situations, the variational phase does become important, as is the case

in guided-basis methods, where optimized states with restricted parametrizations (thus

incapable of representing the entire system by themselves) are combined together in order

to produce a more sophisticated total wavefunction. The technique developed in detail

at Chapter 4 is an example of such kind of method.

1.2 Norm-constrained form of the TDVP

Direct application of the TDVP in the form presented earlier, for general unnormal-

ized states, can be quite cumbersome in some cases, particularly when the trial state

is represented as a linear superposition of basis functions, that is, when it consists of

a multiconfigurational ansatz. To remedy this, we consider an alternative formulation,

where normalization is secured by enforcing a constraint in the variational problem. The

derivation below has been presented in Appendix A of Ref. [32] and is reproduced here

with more details.v

Let us deĄne the modified Lagrangian ℒ and the squared-norm function 𝒩 ,

ℒ = 𝑖~⟨å♣å̇⟩ ⊗ ⟨å♣𝐻̂♣å⟩, (1.22a)

𝒩 = ⟨å♣å⟩. (1.22b)

vConstrained forms of the TDVP are studied in a series of papers by Ohta, beginning with Ref. [33].
However, in these works the issues regarding the consistency of boundary conditions in the variational
problem and the need for including surface terms in the action functional are not discussed. More details
on this subject are found in Refs. [13;29].
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We notice that the original Lagrangian can be written as:

𝐿 =
ℒ
𝒩 ⊗

𝑖~

2

𝑑 log𝒩
𝑑𝑡

. (1.23)

In order to introduce the normalization constraint in the TDVP, we employ a real-valued

Lagrange multiplier Ú (because 𝒩 is real) and reformulate the action functional (1.1) as

follows:

𝐴á [å, Ú] =
∫︁ á

0
𝑑𝑡

[︁ ℒ
𝒩 ⊗ Ú(𝒩 ⊗ 1)

]︁

⊗ 𝑖~ log⟨åá ♣åá ⟩, (1.24)

where the total time derivative of Eq. (1.23) has been integrated and combined with the

surface terms of 𝐴. We shall refer to the functional given in Eq. (1.24) as the norm-

constrained action functional.

Evidently, imposition of a norm constraint is only feasible if free parameters, suitable

for this purpose, are available in the trial state. A state expressed as a linear superposition

of more elementary basis functions is the prototype trial state and fulĄlls this condition

Ű examples are given in subsequent sections. For now, let us work with a generic trial

state ♣å⟩ and suppose that it copes with the above requirement. A small amount of

deĄnitiveness is convenient, however, and thus we assume ♣å⟩ is parametrized by a Ąnite

set of 𝑛 variables,

♣å⟩ = ♣å(Ý)⟩ = ♣å(Ý1, Ý2, . . . , Ý𝑛)⟩, ⟨å♣ = ⟨å(Ý*)♣ = ⟨å(Ý*
1 , Ý

*
2 , . . . , Ý

*
𝑛)♣. (1.25)

Here, the parameters Ý are not necessarily complex Ű one may think of the complex

conjugate sign as a device for distinguishing among ket parameters (Ý) and bra parameters

(Ý*). In particular, displacements induced by variations ÓÝ and ÓÝ* are:

♣Óå⟩ =
𝑛∑︁

𝑘=1

⧹︃
⧹︃
⧹︃
𝜕å

𝜕Ý𝑘

̃︁

ÓÝ𝑘, ⟨Óå♣ =
𝑛∑︁

𝑘=1

ÓÝ*
𝑘

̃︀ 𝜕å

𝜕Ý*
𝑘

⧹︃
⧹︃
⧹︃, (1.26)

where the bra and ket derivatives can be calculated from any speciĄc representation of

♣å(Ý)⟩, e.g. in position representation we would have å(𝑥; Ý) = ⟨𝑥♣å⟩, and therefore

⟨𝑥♣𝜕å/𝜕Ý𝑘⟩ = 𝜕å(𝑥; Ý)/𝜕Ý𝑘.

In this way, the modiĄed Lagrangian can be expressed as:

ℒ(Ý) =
𝑛∑︁

𝑘=1

⟨å♣𝜕å/𝜕Ý𝑘⟩Ý̇𝑘 ⊗ ⟨å♣𝐻̂♣å⟩. (1.27)

Notice that ℒ is independent of Ý̇*.

Following these considerations, variation of the norm-constrained action functional
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with respect to the set of variables Ú, Ý and Ý*, yields

Ó𝐴á = ÓΓ +
∫︁ á

0
𝑑𝑡

[︁

(𝒩 ⊗ 1)ÓÚ
]︁

+
∫︁ á

0
𝑑𝑡

𝑛∑︁

𝑘=1

∮︁
[︁𝜕(ℒ/𝒩 )

𝜕Ý𝑘
⊗ 𝑑

𝑑𝑡

𝜕(ℒ/𝒩 )

𝜕Ý̇𝑘
⊗ Ú𝜕𝒩

𝜕Ý𝑘

]︁

ÓÝ𝑘 + ÓÝ*
𝑘

[︁𝜕(ℒ/𝒩 )

𝜕Ý*
𝑘

⊗ Ú𝜕𝒩
𝜕Ý*

𝑘

]︁
⨀︀

, (1.28)

where we have already performed the partial integrations and collected surface terms into

the quantity ÓΓ. Once more these terms cancel off by virtue of the boundary conditions:

ÓΓ =
𝑛∑︁

𝑘=1

𝜕(ℒ/𝒩 )

𝜕Ý̇𝑘
ÓÝ𝑘

⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

á

0

⊗ 𝑖~ Ó
(︁

log⟨åá ♣åá ⟩
)︁

(1.29)

= 𝑖~
𝑛∑︁

𝑘=1

⟨å♣(𝜕å/𝜕Ý𝑘)⟩ÓÝ𝑘
⟨å♣å⟩

⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

á

0

⊗ 𝑖~
𝑛∑︁

𝑘=1

[︁ÓÝ*
á𝑘⟨(𝜕åá/𝜕Ý*

á𝑘)♣åá ⟩
⟨åá ♣åá ⟩

+
⟨åá ♣(𝜕åá/𝜕Ýá𝑘)⟩ÓÝá𝑘

⟨åá ♣åá ⟩
]︁

= 𝑖~
[︁⟨åá ♣Óåá ⟩
⟨åá ♣åá ⟩

⊗ ⟨å0♣Óå0⟩
⟨å0♣å0⟩

]︁

⊗ 𝑖~
[︁⟨Óåá ♣åá ⟩
⟨åá ♣åá ⟩

+
⟨åá ♣Óåá ⟩
⟨åá ♣åá ⟩

]︁

= ⊗𝑖~
[︁⟨Óåá ♣åá ⟩
⟨åá ♣åá ⟩

+
⟨å0♣Óå0⟩
⟨å0♣å0⟩

]︁

= 0, (1.30)

where (1.4) has been invoked in the last line.

Since ÓÚ, ÓÝ and ÓÝ* are independent, the factors multiplying these variations under

the integral sign in (1.28) must vanish identically. We are thus left with the system of

equations:

𝜕ℒ
𝜕Ý𝑘
⊗ 𝑑

𝑑𝑡

𝜕ℒ
𝜕Ý̇𝑘
⊗ (Ú+ ℒ)

𝜕𝒩
𝜕Ý𝑘

= 0, (1.31a)

𝜕ℒ
𝜕Ý*

𝑘

⊗ (Ú+ ℒ)
𝜕𝒩
𝜕Ý*

𝑘

= 0, (1.31b)

𝒩 ⊗ 1 = 0, (1.31c)

for 1 ⊘ 𝑘 ⊘ 𝑛. By enforcing the additional requirement that ♣å⟩ and ⟨å♣ represent

dual vectors for all 𝑡, Eqs. (1.31a) and (1.31b), despite their apparent difference, become

strictly equivalent (this can be easily veriĄed for the examples given in the next two

subsections). In practice, Eq. (1.31b) is more convenient to work with, since there is no

need for computing total derivatives. Meanwhile, Eq. (1.31c) ensures norm conservation

of the trial state (in writing the system we have already put 𝒩 = 1 in the Ąrst two

equations).

1.2.1 Full variational equations with static basis functions

Let us exemplify the norm-constrained formulation by considering a widely used varia-

tional trial state:

♣å⟩ =
𝑚∑︁

𝑗=1

♣ã𝑗⟩𝑐𝑗, (1.32)
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with a static, non-orthogonal basis set spanned by 𝑚 states ♣ã⟩, whose projector is

𝑃 =
𝑚∑︁

𝑖=1

𝑚∑︁

𝑗=1

♣ã𝑖⟩(𝑃⊗1)𝑖𝑗⟨ã𝑗♣, 𝑃𝑖𝑗 = ⟨ã𝑖♣ã𝑗⟩. (1.33)

Notice that the basis set is not assumed to be complete, i.e. in general 𝑃 ̸= 1̂. Variations

in the trial state are therefore restricted, with the complex amplitudes 𝑐 playing the role

of variables Ý of the previous section. In what follows summation ranges are omitted.

The modiĄed Lagrangian and squared norm are, respectively,

ℒ =
∑︁

𝑖𝑗

(︁

𝑖~ 𝑐*
𝑖 ⟨ã𝑖♣ã𝑗⟩𝑐̇𝑗 ⊗ 𝑐*

𝑖 𝑐𝑗⟨ã𝑖♣𝐻̂♣ã𝑗⟩
)︁

, 𝒩 =
∑︁

𝑖𝑗

𝑐*
𝑖 ⟨ã𝑖♣ã𝑗⟩𝑐𝑗, (1.34)

and the Euler-Lagrange equation (1.31b) translates to:

𝜕ℒ
𝜕𝑐*

𝑖

= (Ú+ ℒ)
𝜕𝒩
𝜕𝑐*

𝑖

. (1.35)

Computing the required partial derivatives we arrive at:

∑︁

𝑗

⟨ã𝑖♣ã𝑗⟩(𝑖~ 𝑐̇𝑗 ⊗ ℒ 𝑐𝑗)⊗
∑︁

𝑗

⟨ã𝑖♣𝐻̂♣ã𝑗⟩𝑐𝑗 = Ú
∑︁

𝑗

⟨ã𝑖♣ã𝑗⟩𝑐𝑗. (1.36)

The Lagrange multiplier can be easily determined. Multiplying the above equation by 𝑐*
𝑖 ,

summing on 𝑖, and identifying ℒ and 𝒩 from (1.34) in the resulting expression, one Ąnds

Ú = 0. Moreover, the equation of motion can be further simpliĄed by deĄning a new set

of amplitudes 𝑎, related to 𝑐 by a global phase as follows

𝑎𝑗 = 𝑐𝑗𝑒
i
~

√︃ τ

0
𝑑𝑡 ℒ. (1.37)

Therefore, setting Ú = 0 and employing the new set of amplitudes, Eq. (1.36) reduces to:

𝑖~
∑︁

𝑗

⟨ã𝑖♣ã𝑗⟩𝑎̇𝑗 =
∑︁

𝑗

⟨ã𝑖♣𝐻̂♣ã𝑗⟩𝑎𝑗, (1.38)

which is the well-known form assumed by the Schrödinger equation when a Ąnite, static,

and non-orthogonal basis set is used to represent the quantum state ♣å⟩.
The systemŠs wavefunction with the phase-shifted amplitudes is:

♣Ψ⟩ =
∑︁

𝑗

♣ã𝑗⟩𝑎𝑗 =
∑︁

𝑗

♣ã𝑗⟩𝑐𝑗𝑒
i
~

√︃ τ

0
𝑑𝑡 ℒ = ♣å⟩𝑒 i

~

√︃ τ

0
𝑑𝑡 ℒ. (1.39)

Note that the condition𝒩 = ⟨å♣å⟩ = 1 implies ⟨å♣å̇⟩ purely imaginary (because 𝑑𝒩/𝑑𝑡 =

2 Re ⟨å♣å̇⟩ = 0); thus ℒ is real and so is the accumulated phase between ♣Ψ⟩ and ♣å⟩.
Finally, we note that, in terms of ♣Ψ⟩, the Euler-Lagrange equations can be summarized
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by
𝜕

𝜕𝑎*
𝑖

∑︁

𝑘𝑗

(︁

𝑖~ 𝑎*
𝑘⟨ã𝑘♣ã𝑗⟩𝑎̇𝑗 ⊗ 𝑎*

𝑘𝑎𝑗⟨ã𝑘♣𝐻̂♣ã𝑗⟩
)︁

= 0, (1.40)

or, more generally,

⟨ÓΨ♣
[︁

𝑖~
𝑑

𝑑𝑡
⊗ 𝐻̂

]︁

♣Ψ⟩ = 0. (1.41)

This is the so-called Dirac-Frenkel version of the variational principle.34;35

As we mentioned, Eq. (1.38) could have been worked out directly from the Schrödinger equa-

tion, and this makes the whole variational machinery seem unnecessary. The usefulness

of the TDVP can only be truly appreciated when it is applied to more sophisticated trial

states. Next we look at one such example.

1.2.2 Full variational equations with time-dependent basis functions

Once again we consider the multiconĄgurational trial state:

♣å⟩ =
𝑚∑︁

𝑗=1

♣ã𝑗⟩𝑐𝑗, with: 𝑃 =
𝑚∑︁

𝑖=1

𝑚∑︁

𝑗=1

♣ã𝑖⟩(𝑃⊗1)𝑖𝑗⟨ã𝑗♣, 𝑃𝑖𝑗 = ⟨ã𝑖♣ã𝑗⟩. (1.42)

This time, however, the basis functions are assumed to be dynamic, i.e. each basis element

♣ã𝑗⟩ depends on a 𝑠-dimensional array of parameters 𝑥𝑗 = 𝑥𝑗(𝑡), and evolves in time

according to:

♣ã𝑗⟩ = ♣ã(𝑥𝑗)⟩ = ♣ã(𝑥𝑗1, 𝑥𝑗2, . . . , 𝑥𝑗𝑠)⟩ ⇒
𝑑

𝑑𝑡
♣ã𝑗⟩ =

𝑠∑︁

Ü=1

♣𝜕Üã𝑗⟩𝑥̇𝑗Ü , (1 ⊘ 𝑗 ⊘ 𝑚), (1.43)

where a short-hand notation for partial derivatives is employed: 𝜕Üã𝑗 = 𝜕ã𝑗/𝜕𝑥𝑗Ü . In this

way, a more Ćexible wavefunction is produced and, in principle, more accurate solutions

can be achieved through the TDVP, since both amplitudes 𝑐 and basis-set variables 𝑥 are

allowed to be adjusted.

The modiĄed Lagrangian is:

ℒ =
∑︁

𝑖𝑗

(︁

𝑖~ 𝑐*
𝑖 𝑐̇𝑗⟨ã𝑖♣ã𝑗⟩+ 𝑖~ 𝑐*

𝑖 𝑐𝑗
∑︁

Ü

⟨ã𝑖♣𝜕Üã𝑗⟩𝑥̇𝑗Ü ⊗ 𝑐*
𝑖 𝑐𝑗⟨ã𝑖♣𝐻̂♣ã𝑗⟩

)︁

. (1.44)

Similarly to the example developed earlier, one easily concludes that the multiplier asso-

ciated with the norm constraint is zero, and that the equations are simpliĄed by adding

a global phase to the quantum state. In order to avoid repetitive arguments, instead of

starting from the Euler-Lagrange equations in the form (1.31), here we shall consider the

phase-shifted state,

♣Ψ⟩ =
∑︁

𝑗

♣ã𝑗⟩𝑎𝑗 = ♣å⟩𝑒 i
~

√︃ τ

0
𝑑𝑡 ℒ, (1.45)

and work directly from the Dirac-Frenkel variational equation (1.41), which in the present
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case reads

𝜕

𝜕Ý*
∑︁

𝑘𝑗

(︁

𝑖~ 𝑎*
𝑘⟨ã𝑘♣ã𝑗⟩𝑎̇𝑗 + 𝑖~ 𝑎*

𝑘𝑎𝑗
∑︁

Ü

⟨ã𝑘♣𝜕Üã𝑗⟩𝑥̇𝑗Ü ⊗ 𝑎*
𝑘𝑎𝑗⟨ã𝑘♣𝐻̂♣ã𝑗⟩

)︁

= 0, (1.46)

for Ý* = (𝑥𝑖Û, 𝑎*
𝑖 ), with 1 ⊘ 𝑖 ⊘ 𝑚, 1 ⊘ Û ⊘ 𝑠.

The equation for the set of amplitudes 𝑎 is immediately found from (1.46) Ű setting

Ý* = 𝑎*
𝑖 and performing the partial derivatives we get:

𝑖~
∑︁

𝑗

⟨ã𝑖♣ã𝑗⟩𝑎̇𝑗 =
∑︁

𝑗

[︁

⟨ã𝑖♣𝐻̂♣ã𝑗⟩ ⊗ 𝑖~
∑︁

Ü

⟨ã𝑖♣𝜕Üã𝑗⟩𝑥̇𝑗Ü
]︁

𝑎𝑗. (1.47)

On the other hand, setting Ý* = 𝑥𝑖Û, and recalling that 𝑥𝑖Û must be a bra variable (we

are not supposed to differentiate with respect to 𝑥Šs belonging to the ket ♣Ψ⟩) leads to:

𝑖~
∑︁

𝑗

𝑎*
𝑖 𝑎𝑗

∑︁

Ü

⟨𝜕Ûã𝑖♣𝜕Üã𝑗⟩𝑥̇𝑗Ü + 𝑖~
∑︁

𝑗

𝑎*
𝑖 ⟨𝜕Ûã𝑖♣ã𝑗⟩𝑎̇𝑗 =

∑︁

𝑗

𝑎*
𝑖 𝑎𝑗⟨𝜕Ûã𝑖♣𝐻̂♣ã𝑗⟩. (1.48)

The latter equation takes on a much more illuminating form if we use the amplitude

equation to replace the terms containing 𝑎̇. For that purpose, we rewrite (1.47) as:

𝑖~ 𝑎̇𝑗 =
∑︁

𝑘𝑙

(𝑃⊗1)𝑗𝑘
[︁

⟨ã𝑘♣𝐻̂♣ã𝑙⟩ ⊗ 𝑖~
∑︁

Ü

⟨ã𝑘♣𝜕Üã𝑙⟩𝑥̇𝑙Ü
]︁

𝑎𝑙. (1.49)

Then we proceed with the following manipulations,

𝑖~
∑︁

𝑗

𝑎*
𝑖 ⟨𝜕Ûã𝑖♣ã𝑗⟩𝑎̇𝑗 =

∑︁

𝑗𝑘𝑙

𝑎*
𝑖 ⟨𝜕Ûã𝑖♣ã𝑗⟩(𝑃⊗1)𝑗𝑘

[︁

⟨ã𝑘♣𝐻̂♣ã𝑙⟩ ⊗ 𝑖~
∑︁

Ü

⟨ã𝑘♣𝜕Üã𝑙⟩𝑥̇𝑙Ü
]︁

𝑎𝑙

=
∑︁

𝑙

𝑎*
𝑖 ⟨𝜕Ûã𝑖♣

{︁∑︁

𝑗𝑘

♣ã𝑗⟩(𝑃⊗1)𝑗𝑘⟨ã𝑘♣
}︁[︁

𝐻̂♣ã𝑙⟩ ⊗ 𝑖~
∑︁

Ü

♣𝜕Üã𝑙⟩𝑥̇𝑙Ü
]︁

𝑎𝑙

=
∑︁

𝑗

𝑎*
𝑖 𝑎𝑗⟨𝜕Ûã𝑖♣𝑃𝐻̂♣ã𝑗⟩ ⊗ 𝑖~

∑︁

𝑗

𝑎*
𝑖 𝑎𝑗

∑︁

Ü

⟨𝜕Ûã𝑖♣𝑃 ♣𝜕Üã𝑗⟩𝑥̇𝑗Ü , (1.50)

where we have identiĄed the basis projector 𝑃 , deĄned in (1.42), and renamed dummy

indexes in the last line. Putting this in (1.48) yields (using ♣ã⟩ = 𝑃 ♣ã⟩ on the right-hand

side):

𝑖~
∑︁

𝑗Ü

[︁

𝑎*
𝑖 ⟨𝜕Ûã𝑖♣(1̂⊗ 𝑃 )♣𝜕Üã𝑗⟩𝑎𝑗

]︁

𝑥̇𝑗Ü =
∑︁

𝑗

𝑎*
𝑖 ⟨𝜕Ûã𝑖♣(𝐻̂𝑃 ⊗ 𝑃𝐻̂)♣ã𝑗⟩𝑎𝑗. (1.51)

The above result shows that, if the time evolution drives the systemŠs wavefunction to a

region in parameter space where ⟨𝜕Ûã𝑖♣𝜕Üã𝑗⟩ = ⟨𝜕Ûã𝑖♣𝑃 ♣𝜕Üã𝑗⟩ (i.e. a region where the basis-

set is effectively complete) the equations for the variables 𝑥 become undetermined; in other

words, the dynamics of individual basis functions is immaterial during the times at which

the basis set projector 𝑃 behaves as the identity operator Ű under such circumstances,
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the Hamiltonian will also commute with 𝑃 , and both sides of Eq. (1.51) approach zero.

As a Ąnal remark, we note that the multiconĄgurational trial state (1.42) is actu-

ally ambiguous, with many possible values of parameters 𝑥 and 𝑎 representing the same

physical state. In conventional multiconĄgurational techniques36 other constraints (of a

more complicated sort) are imposed (for example, the basis functions are assumed to

be orthonormal for all 𝑡, and non-holonomic constraints, involving conditions over time-

derivatives, are often employed) so that redundancies are lifted and the indeterminate

character of solutions is avoided. Nevertheless, this illustrative example provides many

insights concerning the TDVP. In this work, we shall not consider full-variational mul-

ticonĄgurational methods any further, but the observations made here will be useful in

clarifying some aspects of the guided-basis technique to be developed at Chapter 4.

1.3 Generalized coherent states – overview

Coherent states are most elegantly discussed within the context of group theory; this is

the point of view advocated in this work. We shall not venture into the group-theoretical

formalism itself though Ű on that subject see Refs. [6;9;37Ű39]. In this thesis, we delib-

erately adopt a more pragmatic approach according to which a coherent state is given a

functional deĄnition from where its fundamental geometrical properties can be straight-

forwardly derived. The functional form can also be worked down to a Hilbert space

expansion over a proper set of orthonormal basis functions, thus providing further insight

in what concerns the coherent-stateŠs structure.

For the moment, all such concepts shall be considered in broad terms only, since this

chapter is dedicated to a brief overview of the generalized formalism (although Glauber

coherent states are used in ğ1.3.4 to partially illustrate the discussion). The ideas pre-

sented here will truly materialize later in Chapters 2 and 3 where speciĄc sets of coherent

states with non-trivial geometries are examined in detail. The development closely follows

Refs. [13;29].

1.3.1 Preliminaries

Coherent states are Hilbert space vectors labeled by a complex array 𝑧 = (𝑧1, . . . , 𝑧𝑑).

They can be understood as the result of a 𝑧-parametrized displacement operator acting

on a reference state ♣Φ0⟩ which should be adequately chosen among the basis vectors of the

Hilbert space in question, hereby denoted ℋ Ű this is precisely the Śfunctional deĄnitionŠ

mentioned earlier. The general non-normalized form is

♣𝑧♢ = 𝒢(𝑧)♣Φ0⟩, 𝒢(𝑧 = 0) = 1̂, (1.52)
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where 1̂ is the identity operator in ℋ. As shown above, the reference state is recovered

by setting all entries of 𝑧 to zero.

A special notation is introduced in Eq. (1.52): a non-normalized coherent state will

be denoted as ♣𝑧♢. These curly ket states are analytical in 𝑧, while the bra states ¶𝑧♣ are

analytical in the complex conjugate variable,

𝜕♣𝑧♢
𝜕𝑧*

Ð

= 0,
𝜕¶𝑧♣
𝜕𝑧Ð

= 0, (1 ⊘ Ð ⊘ 𝑑). (1.53)

Notice that the normalized state ♣𝑧⟩ is not analytical in 𝑧 for it depends on 𝑧* through

the normalization factor ¶𝑧♣𝑧♢⊗ 1

2 ; an analogous observation applies to ⟨𝑧♣.
In this work, the following convention is adopted: entries of the coherent-state vector

𝑧 will be labeled by Greek letters, primarily Ð, Ñ, Ò and secondarily Û, Ü, Ö. Also, the

number of elements in the 𝑧 array will be denoted 𝑑. In the next section this size will

be identiĄed as the number of degrees of freedom of the classical phase space associated

with the coherent-stateŠs dynamics.

Let 𝑛 be the dimension ofℋ; this space is thus spanned by 𝑛 orthonormal basis vectors

♣Φ⟩ (including the reference state) and the closure relation may be written as:

1̂ =
𝑛⊗1∑︁

𝑘=0

♣Φ𝑘⟩⟨Φ𝑘♣, ⟨Φ𝑘♣Φ𝑙⟩ = Ó𝑘𝑙 (0 ⊘ 𝑘, 𝑙 ⊘ 𝑛⊗ 1). (1.54)

Since the set ¶♣Φ0⟩, ♣Φ1⟩, . . . , ♣Φ𝑛⊗1⟩♢ is assumed to be complete, it is possible to reduce

the functional form of ♣𝑧♢, as given in Eq. (1.52), into a linear combination of the 𝑛 basis

vectors,

♣𝑧♢ = ♣Φ0⟩+
𝑛⊗1∑︁

𝑘=1

♣Φ𝑘⟩ 𝒞𝑘(𝑧), (𝒞𝑘(0) = 0), (1.55)

with the coefficients 𝒞𝑘(𝑧) usually being highly nonlinear functions of the complex variable

𝑧; it is in this sense that one says coherent states constitute nonlinear parametrizations.

An important observation is that, in general, we have 𝑑 ⪯ 𝑛, i.e. the dimension of 𝑧 is

normally much less than the size of the Hilbert space where ♣𝑧⟩ lives, as we shall see.

Coherent states belonging to different groups are characterized by their distinct geo-

metrical properties. These, in turn, are described in terms of a function 𝑓 related to the

scalar product between two non-normalized coherent states, deĄned by

𝑓(𝑧*, 𝑧′) = log¶𝑧♣𝑧′♢. (1.56)

This function is a central object of the formalism; it is called the Kähler potential 6 (or

more correctly, its analytical continuation, since we have 𝑧′ ̸= 𝑧).
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For instance, in terms of 𝑓 , the normalized state may be simply expressed as

♣𝑧⟩ =
♣𝑧♢

√︁

¶𝑧♣𝑧♢
= ♣𝑧♢ exp

[︁

⊗ 1
2
𝑓(𝑧*, 𝑧)

]︁

. (1.57)

Lets introduce further geometrical elements.

The classical phase-space metric 𝑔(𝑧*, 𝑧)ÐÑ is an hermitian 𝑑×𝑑 matrix deĄned through

the cross derivatives of the real function 𝑓(𝑧*, 𝑧) with respect to its complex arguments,

treating 𝑧 and 𝑧* as independent variables:

𝑔(𝑧*, 𝑧)ÐÑ =
𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧Ð𝜕𝑧*
Ñ

. (1.58)

The one-to-one relation between coherent states and elements of well-deĄned quotient

spaces of Lie groups ensures that the 𝑧 parametrization is non-redundant; and this, in

turn, ensures that 𝑔 is a non-degenerate matrix.6;9

One of the most important results provided by the group-theoretical framework is the

existence of a resolution of the identity operator (1.54) in terms of coherent states. This

means that the non-orthogonal coherent states span an over-complete basis of ℋ; the

closure relation is expressed in integral form:

1̂ =
∫︁

𝑑Û(𝑧*, 𝑧)♣𝑧⟩⟨𝑧♣ =
∫︁

𝑑Û(𝑧*, 𝑧)𝑒⊗𝑓(𝑧*,𝑧)♣𝑧♢¶𝑧♣. (1.59)

The integration domain depends on the speciĄc type of coherent state being considered Ű

for semisimple compact Lie Groups or the Heisenberg-Weyl group, for example, the do-

main extends over the entire 𝑑-dimensional complex plane. This includes the parametriza-

tions studied in Chapters 2 and 3. Thus, despite the fact that, usually, 𝑑 ⪯ 𝑛 (as men-

tioned earlier) it is generally possible to represent an arbitrary state belonging to ℋ in

terms of coherent states using a continuous superposition of ♣𝑧⟩ vectors (or a judiciously

chosen discrete set).

The general form of the integration measure 𝑑Û(𝑧*, 𝑧) in (1.59) is also found by group-

theory arguments; it is proportional to the metricŠs determinant,

𝑑Û(𝑧*, 𝑧) = Ù det[𝑔(𝑧*, 𝑧)]
𝑑2𝑧

Þ𝑑
, (1.60)

where the area element (written in abbreviated form in the above equation) may be

expressed in any of the following equivalent ways:

𝑑2𝑧

Þ𝑑
⊕

𝑑∏︁

Ð=1

𝑑2𝑧Ð
Þ

=
𝑑∏︁

Ð=1

𝑑(Re 𝑧Ð)𝑑(Im 𝑧Ð)

Þ
=

𝑑∏︁

Ð=1

𝑑𝑧Ð𝑑𝑧
*
Ð

2Þ𝑖
. (1.61)

By deĄnition, the measure is invariant under group transformations of the 𝑧 variables.
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These group transformations refer to the particular Lie group associated with the coherent

state description. They are induced on the parameters 𝑧 by means of the action of group

operators (or rather, their Hilbert space realizations) upon the state ♣𝑧⟩. This attribute

is important for future developments in this work.

The constant Ù Ąguring in Eq. (1.60) is determined by normalization of the closure

relation (1.59) Ű e.g. by setting the expectation value of (1.59) in the reference state to

unity, ⟨Φ0♣1̂♣Φ0⟩ = 1. Therefore, Ù depends on the quantum numbers that characterize ℋ
(cf. Appendixes B and C for speciĄc examples). Notice that, as indicated in (1.60), the

measure is a real function of both 𝑧 and 𝑧*; however, in order to shorten the notation, we

shall write simply 𝑑Û(𝑧).

Finally, let us consider arbitrary states ♣å⟩ and ⟨𝜙*♣;vi We may write, using (1.59),

å(𝑤*) =
∫︁

𝑑Û(𝑧*, 𝑧) ¶𝑤♣𝑧♢ å(𝑧*) 𝑒⊗𝑓(𝑧*,𝑧), (1.62a)

𝜙(𝑤) =
∫︁

𝑑Û(𝑧*, 𝑧) 𝜙(𝑧) ¶𝑧♣𝑤♢ 𝑒⊗𝑓(𝑧*,𝑧). (1.62b)

Notice that å(𝑧*) = ¶𝑧♣å⟩ is an analytical function of 𝑧* and, conversely, 𝜙(𝑧) = ⟨𝜙*♣𝑧♢
is analytical in 𝑧.6 We shall put these identities to use later on, at Chapter 6.

1.3.2 Coherent states as trial functions

Let us now look at the coherent-state variables (𝑧1, 𝑧2, . . . , 𝑧𝑑) as a set of time-dependent

parameters 𝑧(𝑡) and investigate the consequences of taking ♣𝑧♢ as a trial state in the TDVP.

The purpose here is to approximately describe the dynamics of a quantum system governed

by an Hamiltonian 𝐻̂ (which is left unspeciĄed). In the present case, it is convenient

to work with the standard form of the variational principle (i.e. without normalization

constraints).6

We begin by writing the general form of the Lagrangian,

𝐿(𝑧) =
𝑖~

2

[︁¶𝑧♣𝑧̇♢ ⊗ ¶𝑧̇♣𝑧♢
¶𝑧♣𝑧♢

]︁

⊗ ¶𝑧♣𝐻̂♣𝑧♢¶𝑧♣𝑧♢ , (1.63)

and by introducing some useful terminology. The Ąrst term of (1.63), the one containing

the time-derivatives ♣𝑧̇♢ and ¶𝑧̇♣, will be referred to as the geometrical part of 𝐿(𝑧).

Meanwhile, the second term, which is simply the coherent-state expectation value of

the Hamiltonian, will be referred to as the dynamical part; this part deĄnes the energy

function,

𝐸(𝑧*, 𝑧) =
¶𝑧♣𝐻̂♣𝑧♢
¶𝑧♣𝑧♢ = ⟨𝑧♣𝐻̂♣𝑧⟩, (1.64)

which is a real function, since 𝐻̂ is hermitian.

viThe asterisk on ⟨𝜙*♣ is simply meant to compensate for the complex conjugation of bra representa-
tions, for example: ⟨𝜙*♣𝑥⟩ = 𝜙(𝑥).
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By virtue of the coherent-stateŠs analytical property (1.53) the geometrical part of

the Lagrangian can be straightforwardly expressed in terms of derivatives of the Kähler

potential 𝑓(𝑧*, 𝑧) [cf. Eq. (1.56)], which we denominate Kähler gradients; for example:

¶𝑧♣𝑧̇♢
¶𝑧♣𝑧♢ =

𝑑∑︁

Ð=1

𝜕 log¶𝑧♣𝑧♢
𝜕𝑧Ð

𝑧̇Ð =
𝑑∑︁

Ð=1

𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧Ð
𝑧̇Ð. (1.65)

Hence we Ąnd a workable formula for 𝐿(𝑧),

𝐿(𝑧) =
𝑖~

2

𝑑∑︁

Ð=1

⎟

𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧Ð
𝑧̇Ð ⊗

𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧*
Ð

𝑧̇*
Ð

]︃

⊗ 𝐸(𝑧*, 𝑧). (1.66)

The action functional (1.1), for paths 𝑧(𝑡) with 0 ⊘ 𝑡 ⊘ á , in the present case reads:

𝐴á (𝑧) =
∫︁ á

0
𝑑𝑡 𝐿(𝑧)⊗ 𝑖~

2

[︁

𝑓(𝑧*
á , 𝑧á ) + 𝑓(𝑧*

0 , 𝑧0)
]︁

. (1.67)

The variational problem consists of Ąnding paths that obey the stationary condition

Ó𝐴á (𝑧) = 0, together with boundary conditions (1.4), which here translate to ♣Ó𝑧0♢ = 0

and ¶Ó𝑧á ♣ = 0, thereby Ąxing the values of initial and Ąnal points, 𝑧0 = 𝑧(0) and

𝑧*
á = 𝑧*(á), respectively.

The usual manipulations yield the Euler-Lagrange equations,

𝜕𝐿

𝜕𝑧*
Ð

⊗ 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑧̇*
Ð

= 0, (1.68a)

𝜕𝐿

𝜕𝑧Ð
⊗ 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑧̇Ð
= 0. (1.68b)

We recall that, in carrying out the calculations leading to Eqs. (1.68), one pretends that ♣𝑧♢
and ¶𝑧♣ are independent. However, following the prescription delineated earlier in ğ1.1.1,

once the Euler-Lagrange equations are found, attention shall be restricted to solutions

where the bra and ket states represent dual vectors, i.e. solutions where 𝑧(𝑡) and 𝑧*(𝑡) are

in fact related by complex conjugation. Then, Eqs. (1.68a) and (1.68b) are equivalent Ű

we choose to work with the former.

The equations of motion for the coherent-state vector 𝑧 are immediately obtained from

(1.68a) Ű computing the required derivatives and expressing these in terms of already

known geometrical ingredients, one arrives at:

𝑑∑︁

Ñ=1

𝑧̇Ñ𝑔(𝑧
*, 𝑧)ÑÐ = ⊗ 𝑖

~

𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧*
Ð

, (1 ⊘ Ð ⊘ 𝑑). (1.69)

Let us now make a few comments regarding this dynamical equation.

The group-theoretical formalism assures us that Eq. (1.69) describes a classical Hamil-

tonian system in a strict sense: the space spanned by 𝑧 constitutes a phase space with 𝑑
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degrees of freedom which exhibits a symplectic structure, i.e. the equation of motion can

be written in terms of non-degenerate Poisson brackets.9;29

Moreover, the measure (1.60) that equips the coherent-state closure relation, is not

only invariant under group transformations but also invariant under the Śclassical ĆowŠ

produced by Eq. (1.69); that is, if 𝑧(𝑡) obeys the latter equation, then

𝑑Û(𝑧(𝑡2)) = 𝑑Û(𝑧(𝑡1)), (1.70)

for any two instants 𝑡1 and 𝑡2 Ű a property that we recognize as a generalized form of the

Liouville theorem. The above relation is proved in Appendix A. Remarkably, it remains

valid even when the systemŠs Hamiltonian has explicit time dependence.29

An additional connection between the present framework and the classical Hamil-

tonian formalism is found by considering the action functional (1.67). It is shown in

Appendix A that, when 𝐴á (𝑧) is evaluated over a trajectory 𝑧(𝑡) satisfying (1.69), it be-

comes a complex-valued function whose ŚnaturalŠ arguments are (𝑧*
á , 𝑧0, á), in the sense

that derivatives with respect to these variables are well deĄned and given by:

𝑖

~

𝜕𝐴á (𝑧*
á , 𝑧0)

𝜕𝑧*
áÒ

=
𝜕𝑓(𝑧*

á , 𝑧á )

𝜕𝑧*
áÒ

,
𝑖

~

𝜕𝐴á (𝑧*
á , 𝑧0)

𝜕𝑧0Ò

=
𝜕𝑓(𝑧*

0 , 𝑧0)

𝜕𝑧0Ò

,
𝜕𝐴á (𝑧*

á , 𝑧0)

𝜕á
= ⊗𝐸(𝑧*

á , 𝑧á ),

(1.71)

while derivatives with respect to 𝑧*
0 and 𝑧á vanish. The above relations are the signature of

a properly deĄned classical action integral,13 and the function 𝐴á (𝑧*
á , 𝑧0, á) is thus called

the complex action. The relations listed in (1.71) are put to use in Chapter 6, where

further classical aspects of the coherent-state formalism (related to the systemŠs stability

matrix) are uncovered.

Going back to Eq. (1.69), another interesting point to be noticed is the fact that the

coherent-state geometry introduces a curvature in phase space by means of the metric

𝑔(𝑧*, 𝑧). One now can distinguish between two kinds of coupling between the components

of the vector 𝑧: a dynamical coupling via the energy function 𝐸(𝑧*, 𝑧), and a geometrical

coupling induced by 𝑔(𝑧*, 𝑧).

As previously mentioned, the metric is non-degenerate, meaning that it can always be

inverted. Thus we may rewrite (1.69) as below,vii

𝑧̇Ð = ⊗ 𝑖
~

𝑑∑︁

Ñ=1

𝑔⊗𝑇
ÐÑ

𝜕𝐸

𝜕𝑧*
Ñ

, (1 ⊘ Ð ⊘ 𝑑), (1.72)

where the arguments of 𝐸 and 𝑔 have been omitted for compactness. For the same reason,

we write 𝑔⊗𝑇
ÐÑ instead of (𝑔⊗𝑇 )ÐÑ Ű we shall recurrently employ this kind of notation, relying

on the context to prevent confusions. It is often found that considerable simpliĄcation is

achieved by effecting the multiplication that brings (1.69) to (1.72).

viiThe transpose of a matrix 𝐴 is denoted 𝐴𝑇 . The inverse transpose is abbreviated as 𝐴⊗𝑇 .
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Finally, we note that the traditional time-independent variational principle is recovered

by considering critical points of (1.72). Indeed, putting 𝑧̇ = 0 in that equation we get:

𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧Ð
= 0, (1 ⊘ Ð ⊘ 𝑑), (1.73)

where the fact that 𝑔 is non-degenerated has been invoked in order to eliminate it from

the above system.viii Since the energy function is usually nonlinear in the coherent-stateŠs

parameters 𝑧, roots to Eq. (1.73) have to be found by iterative self-consistent techniques.

1.3.3 Classical propagation scheme

As previously discussed in ğ1.1, the TDVP not only provides equations of motion for the

trial stateŠs parameters but it additionally attaches a phase to the corresponding state

vector, which is simply the time integral of the Lagrangian function computed over the

stationary path. In the present case, the phase is the classical action,ix or simply action,

computed along the trajectory 𝑧(𝑡) governed by Eq. (1.72) Ű explicitly:

𝑆(𝑧; á) =
∫︁ á

0
𝑑𝑡 𝐿(𝑧) =

∫︁ á

0
𝑑𝑡

{︁

Im
[︁

⊗ ~

𝑑∑︁

Ð=1

𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧Ð
𝑧̇Ð

]︁

⊗ 𝐸(𝑧*, 𝑧)
}︁

, (1.74)

where á denotes the Ąnal time, and Eq. (1.66) has been substituted with a minor abbre-

viation. Thus the properly normalized and ŚoptimizedŠ coherent-state is

♣𝑧𝑡⟩𝑒
i
~
𝑆(𝑧t), with 𝑧𝑡 = 𝑧(𝑧0, 𝑡), (1.75)

where time arguments have been written as subscripts.

Let us now consider the following situation. Suppose we are investigating a system

whose initial state ♣å0⟩ can be prepared in such a way that it may be adequately repre-

sented by a coherent-state, i.e. ♣å0⟩ = ♣𝑧𝑖⟩. Then we could attempt a crude dynamical

description by approximating ♣å𝑡⟩, for 𝑡 > 0 by a coherent state ♣𝑧𝑡⟩; or, in other words, by

taking ♣𝑧𝑡⟩ as a trial state subjected to the boundary condition ♣𝑧0⟩ = ♣𝑧𝑖⟩ in the TDVP.

The approximate solution would be

♣å𝑡⟩ = 𝑒⊗ i
~
𝐻̂𝑡♣𝑧𝑖⟩ ≡ ♣𝑧𝑡⟩𝑒

i
~
𝑆(𝑧t), with 𝑧𝑡 = 𝑧(𝑧𝑖, 𝑡). (1.76)

The above equation, together with (1.72) and (1.74), deĄnes a primitive propagation

method, the classical propagation scheme, according to the terminology of Ref. [29] (see

ŚAppendix BŠ of that work for a complementary discussion). The denomination stems from

viiiIt may be mathematically convenient, however, to keep 𝑔 in (1.73) since it usually simplifies the
algebraic equation.

ixWe shall always refer to the integral 𝑆(𝑧; 𝑡) of Eq. (1.74) simply as the action; meanwhile the quantity
𝐴(𝑧*

𝑡 , 𝑧0) of Eq. (1.67) will always be referred to as the complex action.
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the fact that only classical ingredients (in the generalized sense) are present in Eq. (1.76).

Most often, the classical propagation scheme provides reasonable wavefunctions only

for very short propagation times Ű although, occasionally, mean-values computed with said

wavefunction may be surprisingly accurate. At any rate, the prescription summarized in

Eq. (1.76) serves as a reference method against which more sophisticated approaches (such

as that developed in Chapter 4) may be confronted, being thus useful, to that extent, for

identifying Śnon-classicalŠ behavior. Note that the meaning of ŚclassicalŠ, as the term is

understood here, depends on the particular coherent-state parametrization chosen for the

analysis of a given problem; e.g. for the bosonic and fermionic coherent states discussed in

Chapters 2 and 3, the classical scheme leads to mean-Ąeld solutions, equivalent to those

obtained through time-dependent Gross-Pitaevskii/Hartree-Fock equations when treating

bosonic/fermionic systems.

Finally, it should be pointed out that, if the Hamiltonian is an element of the Lie

algebra associated with the set of coherent states under consideration Ű i.e. when 𝐻̂ is

linear in the groupŠs generators Ű then the time-evolution operator Śexp(⊗ 𝑖
~
𝐻̂𝑡)Š merely

represents a group transformation Ű it simply maps one coherent state onto another. In

such a situation, the classical propagation scheme actually gives the exact wavefunction

for 𝑡 > 0.

1.3.4 Example: Glauber’s coherent states/gaussian wavepackets

Lastly, we illustrate some of the concepts developed in this section using canonical coherent

states, or Glauber coherent states,40;41 as they are known in the Ąeld of Quantum Optics

Ű from where we borrow the physical background for the subsequent presentation.

Let us consider a system wherein photons can be excited at 𝑑 optical frequencies,

or modes. In the language of second quantization, bosonic creation and annihilation

operators, 𝑎†
Ð and 𝑎Ð respectively, are assigned to each mode, with 1 ⊘ Ð ⊘ 𝑑. The

Hilbert space basis consists of occupation number eigenstates,

♣𝑚1,𝑚2, . . . ,𝑚𝑑⟩ =
(𝑎†

1)
𝑚1(𝑎†

2)
𝑚2 . . . (𝑎†

𝑑)
𝑚d

√
𝑚1!𝑚2! . . . 𝑚𝑑!

♣0⟩, (1.77)

where ♣0⟩ denotes the vacuum state. Since the number of photons is unrestricted (0 ⊘
𝑚Ð <∞) the Hilbert space (in this case a bosonic Fock space) is inĄnite-dimensional.

The reference state is chosen to be the vacuum state, ♣Φ0⟩ = ♣0⟩. Then the functional

deĄnition of the non-normalized Glauber coherent state, parametrized by the vector 𝑧 =

(𝑧1, . . . , 𝑧𝑑) (whose length equals the number of optical modes), is:

♣𝑧♢ = exp
[︁ 𝑑∑︁

Ð=1

𝑧Ð𝑎
†
Ð

]︁

♣0⟩. (1.78)
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The decomposition of ♣𝑧♢ in terms of basis elements ♣𝑚1,𝑚2, . . . ,𝑚𝑑⟩ is easily found by

expanding the above exponential and using the commutativity of the creation operators,

♣𝑧♢ =
∞∑︁

𝑚1=0

. . .
∞∑︁

𝑚d=0

⎟

𝑧𝑚1

1 𝑧𝑚2

2 ≤ ≤ ≤ 𝑧𝑚d

𝑑√
𝑚1!𝑚2! ≤ ≤ ≤ 𝑚𝑑!

]︃

♣𝑚1,𝑚2, . . . ,𝑚𝑑⟩. (1.79)

These last two equations exemplify the general formulas (1.52) and (1.55).

Since the modes are assumed to be orthonormal, the overlap ¶𝑧♣𝑧♢ is found without

difficulty from (1.79), the result being

¶𝑧♣𝑧♢ = exp
(︁ 𝑑∑︁

Ð=1

𝑧*
Ð𝑧Ð

)︁

. (1.80)

Thus we identify the Kähler potential [cf. Eq. (1.56)] as:

𝑓(𝑧*, 𝑧) =
𝑑∑︁

Ð=1

𝑧*
Ð𝑧Ð. (1.81)

Whence we Ąnd that the metric [cf. Eq. (1.58)] for Glauber states is simply the identity

matrix,

𝑔(𝑧*, 𝑧)ÐÑ = ÓÐÑ. (1.82)

The phase space is therefore Ćat, which means that the 𝑑 degrees of freedom are not

Śgeometrically coupledŠ, in the sense described earlier. From (1.82) it follows that the

measure [cf. Eq. (1.60)] is trivial:

𝑑Û(𝑧) =
𝑑∏︁

Ð=1

𝑑2𝑧Ð
Þ

. (1.83)

The physical interpretation of Glauber coherent states is based on the fact that each

entry 𝑧Ð is associated with the mean occupation of the corresponding mode,

⟨𝑧♣𝑎†
Ð𝑎Ð♣𝑧⟩ = ♣𝑧Ð♣2, (1.84)

where the normalized state is ♣𝑧⟩ = ♣𝑧♢ exp(⊗1
2

∑︀𝑑
Ð=1 ♣𝑧Ð♣2). The relation (1.84) is easily

obtained from the formulas given above. It also follows from the well-known fact that ♣𝑧⟩
is an eigenket of the annihilation operator, 𝑎Ð♣𝑧⟩ = 𝑧Ð♣𝑧⟩.42

Gaussian wavepackets. The bosonic occupations can also be pictured as excitations

in a quantum harmonic oscillator with 𝑑 degrees of freedom, whose ground-state wave-

function (the position representation of the vacuum state) is a 𝑑-dimensional Gaussian,

⟨𝑥♣Φ0⟩ = (ÞÒ2)⊗𝑑/4 exp
[︁

⊗
𝑑∑︁

Ð=1

(𝑥Ð/Ò)2
]︁

, (1.85)
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where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) and Ò is a length parameter (for a mechanical oscillator, Ò

depends on its mass and natural frequency). From this point of view, the states in

(1.77) are proportional to the well-known eigenfunctions of the harmonic oscillator, whose

position representation is given in terms of Hermite polynomials.42

We are interested in the position representation of the coherent state ♣𝑧⟩. In order to

Ąnd it, a well-known relation among the bosonic operators 𝑎†
Ð and 𝑎Ð and the elementary

position and momentum operators, 𝑄̂Ð and 𝑃Ð, is employed:

𝑄̂Ð =
Ò√
2

(𝑎†
Ð + 𝑎Ð), 𝑃Ð =

𝑖~

Ò
√

2
(𝑎†
Ð ⊗ 𝑎Ð) ⇒ [𝑄̂Ð, 𝑃Ñ] = 𝑖~ ÓÐÑ. (1.86)

Using the above formulas, together with the basic property 𝑎Ð♣𝑧⟩ = 𝑧Ð♣𝑧⟩, it is possible

to determine the function ⟨𝑥♣𝑧⟩.43 The calculation is straightforward, but we shall not go

into its details. As it turns out, the result is more conveniently expressed in terms of the

mean-values:

𝑄Ð = ⟨𝑧♣𝑄̂Ð♣𝑧⟩ =
Ò√
2

(𝑧*
Ð + 𝑧Ð), 𝑃Ð = ⟨𝑧♣𝑃Ð♣𝑧⟩ =

𝑖~

Ò
√

2
(𝑧*
Ð ⊗ 𝑧Ð); (1.87)

and, since 𝑄 and 𝑃 are essentially the real and imaginary parts of 𝑧, we may re-label

the coherent state as ♣𝑧⟩ = ♣𝑔(𝑄,𝑃 )⟩. With this notation, the sought function is then

expressed as:

⟨𝑥♣𝑔(𝑄,𝑃 )⟩ = (ÞÒ2)⊗𝑑/4
𝑑∏︁

Ð=1

exp

⎟

⊗(𝑥Ð ⊗𝑄Ð)2

2Ò2
+
𝑖

~
𝑃Ð(𝑥Ð ⊗𝑄Ð) +

𝑖

2~
𝑃Ð𝑄Ð

]︃

. (1.88)

Thus, Glauber coherent states can also be understood as gaussian wavepackets. A notable

property of these states is that they satisfy, by construction, a minimum uncertainty

relation:

Δ𝑄Ð =
√︁

⟨𝑔♣𝑄̂2
Ð♣𝑔⟩ ⊗𝑄2

Ð =
Ò√
2
, Δ𝑃Ð =

√︁

⟨𝑔♣𝑃 2
Ð♣𝑔⟩ ⊗ 𝑃 2

Ð =
~

Ò
√

2
⇒ Δ𝑄ÐΔ𝑃Ð =

~

2
.

(1.89)

The equations of motion [cf. (1.72)] can be written in terms of the real parameters 𝑄

and 𝑃 and they reduce to the familiar Hamilton equations of classical mechanics:

𝑄̇Ð =
𝜕𝐸

𝜕𝑃Ð
, 𝑃̇Ð = ⊗ 𝜕𝐸

𝜕𝑄Ð

, (1 ⊘ Ð ⊘ 𝑑). (1.90)

If the Hamiltonian has the usual form,

𝐻̂ =
𝑑∑︁

Ð=1

𝑃 2
Ð

2𝑀
+ 𝑉 (𝑄̂1, 𝑄̂2, . . . , 𝑄̂𝑑), (1.91)

(for simplicity, we assume all particles have the same mass) the energy function in
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Eq. (1.90) is then given by:

𝐸(𝑄,𝑃 ) = 𝐸0 +
𝑑∑︁

Ð=1

𝑃 2
Ð

2𝑀
+ 𝑉 (𝑄), (1.92)

where 𝐸0 is a constant. The effective potential 𝑉 (𝑄) is the mean value 𝑉 (𝑄) = ⟨𝑔♣𝑉 (𝑄̂)♣𝑔⟩,
which can be computed from the (diagonal) position representation 𝑉 (𝑥) = ⟨𝑥♣𝑉 (𝑄̂)♣𝑥⟩
by insertion of the closure relation, 1̂ =

√︃

𝑑𝑥 ♣𝑥⟩⟨𝑥♣; that is:

𝑉 (𝑄1, . . . , 𝑄𝑑) = (ÞÒ2)⊗𝑑/2
∫︁

(𝑑𝑥1 . . . 𝑑𝑥𝑑) 𝑉 (𝑥1, . . . , 𝑥𝑑)𝑒
⊗
∑︀d

α=1
(𝑥α⊗𝑄α)2/Ò2

. (1.93)

Due to the Ąnite width Ò of the Gaussians, the potential 𝑉 (𝑄) results to be a smoothed-

out version of 𝑉 (𝑥); this feature is sometimes interpreted as if Śquantum correctionsŠ were

included in the otherwise purely classical system.27

Gaussian wavepackets are ubiquitous in Quantum Chemistry, particularly in semi-

classical methods, where they are most often combined into an integral expression, or

Śinitial-value representationŠ (IVR) formula.44 Individually, each wavepacket is suitable

for representing an ensemble of heavy, localized, and distinguishable particles (e.g. the

nuclei in a molecule) for its parameters 𝑄 and 𝑃 behave in a classical fashion while the

Gaussian width is kept constant Ű in this so-called Śfrozen-Gaussian representationŠ45

the identity of each particle is preserved and the ŚinterpretativenessŠ of the problem in

such terms is ensured. Collectively, as in any IVR formula, the independently evolved

wavepackets are allowed to interfere with one another and are thus capable of producing

approximate quantum solutions.
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Chapter 2

Bosonic coherent states

Overview. Bosonic coherent states of the special unitary group are re-

viewed. They are interpreted as Bose-Einstein condensate states, where all

particles occupy a single macroscopic mode. Their dynamics is Ąrst discussed

in general terms; later, equations of motion for a speciĄc class of Hamilto-

nians are obtained and the connection with bosonic mean-Ąeld theories is

established. The effect that group transformations have on the coherent-state

parameters is also studied.i

2.1 The Bose-Einstein condensate parametrization

2.1.1 Preliminaries

Let us consider a single-particle space spanned by a Ąnite set of orthonormal states, which

we shall refer to as ŚmodesŠ in the bosonic formalism. The projector onto this space is:

𝑃 =
𝑑∑︁

𝑝=0

♣ã𝑝⟩⟨ã𝑝♣, ã𝑝(x) = ⟨x♣ã𝑝⟩, 𝑑 ⊕ 𝐾 ⊗ 1. (2.1)

The 𝐾 modes ♣ã⟩ have been numbered from 0 to 𝐾 ⊗ 1 ⊕ 𝑑. This notation is chosen in

view of the coherent-state framework Ű we shall Ąnd that 𝑑 is the number of degrees of

freedom in the coherent-state description. As the number of modes is increased the limit

of a complete basis is approached,

𝑃 (x,x′) = ⟨x♣𝑃 ♣x′⟩ 𝐾⊃∞
= Ó(x⊗ x′). (2.2)

However, one almost invariably works with a truncated basis set under the assumption

that it suffices for an appropriate treatment of the physical situation.

iIn this work, bosonic coherent states are introduced before their fermionic counterparts; this choice
was made because the latter are somewhat more intricate. The organization of this chapter, however, is
entirely inspired by that of Chapter 3 which, in turn, closely follows the exposition given in the review
article by Deumens et. al..17
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Creation and annihilation operators are associated with each single-particle mode.

These operators obey the usual commutation rules:

⎧

⋁︁⨄︁

⋁︁⋃︁

♣ã𝑝⟩ = 𝑏†
𝑝♣0⟩

⟨ã𝑞♣ = ⟨0♣𝑏𝑞
with:

⎧

⋁︁⨄︁

⋁︁⋃︁

[𝑏𝑝, 𝑏†
𝑞] = Ó𝑝𝑞

[𝑏𝑝, 𝑏𝑞] = [𝑏†
𝑝, 𝑏

†
𝑞] = 0

, 0 ⊘ 𝑝, 𝑞 ⊘ 𝑑. (2.3)

where [𝐴, 𝐵̂] = 𝐴𝐵̂ ⊗ 𝐵̂𝐴. The bosonic Ąeld operators, deĄned over the truncated space,

are: ⎧

⋁︁⨄︁

⋁︁⋃︁

å̂(x) =
∑︀𝑑
𝑝=0 ã𝑝(x)𝑏𝑝

å̂†(x) =
∑︀𝑑
𝑝=0 ã

*
𝑝(x)𝑏†

𝑝

⇔

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑏𝑝 =
√︃

𝑑x ã*
𝑝(x)å̂(x)

𝑏†
𝑝 =

√︃

𝑑x ã𝑝(x)å̂†(x)
, 0 ⊘ 𝑝 ⊘ 𝑑. (2.4)

They satisfy:

[å̂(x), å̂†(x′)] = 𝑃 (x,x′), [å̂(x), å̂(x′)] = [å̂†(x), å̂†(x′)] = 0. (2.5)

Let us now consider the bosonic many-body description. A complete set of basis

vectors is provided by the eigenstates of the number operator,46

𝑛̂𝑝 = 𝑏†
𝑝𝑏𝑝, 𝑛̂𝑝♣𝑚0, . . . ,𝑚𝑑⟩ = 𝑚𝑝♣𝑚0, . . . ,𝑚𝑑⟩, 0 ⊘ 𝑝 ⊘ 𝑑. (2.6)

These states, labeled by an array of occupation numbers 𝑚 = (𝑚0,𝑚1, . . . ,𝑚𝑑), are

deĄned in terms of the basic creation operators according to

♣𝑚0,𝑚1,𝑚2, . . . ,𝑚𝑑⟩ =
(𝑏†

0)
𝑚0(𝑏†

1)
𝑚1(𝑏†

2)
𝑚2 . . . (𝑏†

𝑑)
𝑚d

√
𝑚0!𝑚1!𝑚2! . . . 𝑚𝑑!

♣0⟩, (2.7)

where ♣0⟩ denotes the vacuum state.

We shall restrict our analysis to number-conserving systems. In this case the set of

occupation numbers corresponding to each bosonic state must comply with the condition:

𝑚0 +𝑚1 +𝑚2 + ≤ ≤ ≤+𝑚𝑑 = 𝑁, (2.8)

where𝑁 is the total number of bosons present in the system; this constraint will sometimes

be abbreviated as ♣𝑚♣ = 𝑁 .

The dimension of the Fock space ℬ(𝐾,𝑁), for a system of 𝑁 bosons which are allowed

to occupy 𝐾 single-particle modes, equals the number of possible sets 𝑚 such that ♣𝑚♣ =
𝑁 ; combinatorics gives:21

dim ℬ(𝐾,𝑁) =
(𝑁 +𝐾 ⊗ 1)!

(𝐾 ⊗ 1)!𝑁 !
. (2.9)

The number-conserving restriction implies that the total particle number operator 𝑁̂
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is a constant of the motion,

𝑁̂ =
∑︁

𝑝

𝑛̂𝑝, [𝐻̂, 𝑁̂ ] = 0. (2.10)

Hamiltonians belonging to such a class can be expressed in terms of the bilinear forms

𝑏†
𝑝𝑏𝑞, which satisfy the following commutation relations:

[𝑏†
𝑝𝑏𝑞, 𝑏

†
𝑟𝑏𝑠] = 𝑏†

𝑝𝑏𝑠 Ó𝑞𝑟 ⊗ 𝑏†
𝑟𝑏𝑞 Ó𝑠𝑝, 0 ⊘ 𝑝, 𝑞, 𝑟, 𝑠 ⊘ 𝑑. (2.11)

A basis for the algebra su(𝐾) of the special unitary group SU(𝐾) may be written in terms

of these operators. This is the dynamical group we associate with the number-conserving

time evolution of a bosonic system.29

2.1.2 Coherent states: definition and macroscopic mode

The bosonic coherent states we shall work with aim at describing Bose-Einstein conden-

sates. The appropriate physical context is that in which one of the single-particle modes,

taken to be ♣ã0⟩ = 𝑏†
0♣0⟩, is macroscopically occupied most of the timeii and only a rela-

tively small occupation of the remaining modes is expected. In this scenario, the reference

state in terms of which the coherent state is deĄned is

♣Φ0⟩ =
(𝑏†

0)
𝑁

√
𝑁 !
♣0⟩; (2.12)

i.e. the state in which all bosons are found in the Śreference modeŠ, ♣ã0⟩ = 𝑏†
0♣0⟩. This

mode is therefore special and we shall adapt our notation accordingly: distinct sets of

subscripts will be employed when referring to different index ranges, the convention being

as follows:

0 ⊘ (𝑝, 𝑞, 𝑟, 𝑠) ⊘ 𝑑, 1 ⊘ (Û, Ü) ⊘ 𝑑. (2.13)

With that understanding we shall henceforth omit the limits in summations and products.

As an example, the basic commutation rules can be re-stated as:

[𝑏0, 𝑏
†
0] = 1, [𝑏Û, 𝑏

†
Ü ] = ÓÛÜ , [𝑏0, 𝑏

†
Ü ] = [𝑏Û, 𝑏

†
0] = 0, [𝑏0, 𝑏0] = [𝑏Û, 𝑏Ü ] = 0. (2.14)

The unnormalized bosonic coherent state is deĄned in terms of a displacement operator

acting on the reference state according to:

♣𝑧♢ = exp
(︁∑︁

Û

𝑧Û𝑏
†
Û𝑏0

)︁

♣Φ0⟩. (2.15)

iiThe term ‘macroscopic’ is loosely employed here; we simply mean that most of the particles occupy
the reference mode – we do not necessarily have 𝑁 ≍ 1023 (e.g. the numerical examples in Chapter 5 use
𝑁 ≍ 40⊗⊗100).
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These states are labeled by the complex array 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑑) which we take to be a

column vector in the formalism to be developed below. Correspondingly, the complex-

conjugate array, 𝑧*, is to be understood as a row vector.iii We see that each entry 𝑧Û is

related to the process of removing a boson from the reference mode and placing it at the

mode ♣ãÛ⟩.
Let us now work down the coherent state deĄnition to a more comprehensible form.

We begin by noting that all terms in the exponent commute, i.e. [𝑏†
Û𝑏0, 𝑏

†
Ü𝑏0] = 0, and

therefore the exponential can be factored into a product,
√︂

Û 𝑒
𝑧µ𝑏

†
µ𝑏0 . Now, suppose Ý† is a

function of all creation operators, except 𝑏†
0. This means that [𝑏0, Ý

†] = 0 and [𝑏†
𝑝, Ý

†] = 0.

Let us then evaluate the following commutator:

[ 𝑒𝑧µ𝑏
†
µ𝑏0 , (𝑏†

0 + Ý†) ] =
∞∑︁

𝑘=0

𝑧𝑘Û
𝑘!

[ (𝑏†
Û𝑏0)

𝑘, (𝑏†
0 + Ý†) ]

=
∞∑︁

𝑘=0

(𝑧Û𝑏†
Û)𝑘

𝑘!
[𝑏𝑘0, 𝑏

†
0]

= 𝑧Û𝑏
†
Û ≤

∞∑︁

𝑘=1

(𝑧Û𝑏†
Û𝑏0)𝑘⊗1

(𝑘 ⊗ 1)!
= (𝑧Û𝑏

†
Û) 𝑒𝑧µ𝑏

†
µ𝑏0 , (2.16)

where in going from the second to the third line we have used the relation [𝑏𝑘0, 𝑏
†
0] = 𝑘 𝑏𝑘⊗1

0 .

The latter result implies the identity:

𝑒𝑧µ𝑏
†
µ𝑏0(𝑏†

0 + Ý†) = (𝑏†
0 + Ý† + 𝑧Û𝑏

†
Û)𝑒𝑧µ𝑏

†
µ𝑏0 ,

which can be iterated 𝑛 times, by multiplying both sides from the right with (𝑏†
0 + Ý†),

leading to:

𝑒𝑧µ𝑏
†
µ𝑏0(𝑏†

0 + Ý†)𝑛 = (𝑏†
0 + Ý† + 𝑧Û𝑏

†
Û)𝑛𝑒𝑧µ𝑏

†
µ𝑏0 . (2.17)

With the help of this formula we are able to rewrite (2.15) as:

√
𝑁 !♣𝑧♢ = 𝑒𝑧d𝑏

†

d
𝑏0 𝑒𝑧d⊗1𝑏

†

d⊗1
𝑏0 ≤ ≤ ≤ 𝑒𝑧2𝑏

†
2
𝑏0 𝑒𝑧1𝑏

†
1
𝑏0 (𝑏†

0)
𝑁 ♣0⟩

= 𝑒𝑧d𝑏
†

d
𝑏0 𝑒𝑧d⊗1𝑏

†

d⊗1
𝑏0 ≤ ≤ ≤ 𝑒𝑧2𝑏

†
2
𝑏0 (𝑏†

0 + 𝑧1𝑏
†
1)
𝑁 𝑒𝑧1𝑏

†
1
𝑏0♣0⟩

= 𝑒𝑧d𝑏
†

d
𝑏0 𝑒𝑧d⊗1𝑏

†

d⊗1
𝑏0 ≤ ≤ ≤ (𝑏†

0 + 𝑧1𝑏
†
1 + 𝑧2𝑏

†
2)
𝑁 𝑒𝑧2𝑏

†
2
𝑏0 𝑒𝑧1𝑏

†
1
𝑏0 ♣0⟩

...

= (𝑏†
0 + 𝑧1𝑏

†
1 + 𝑧2𝑏

†
2 + . . .+ 𝑧𝑑𝑏

†
𝑑)
𝑁(𝑒𝑧d𝑏

†

d
𝑏0 ≤ ≤ ≤ 𝑒𝑧1𝑏

†
1
𝑏0)♣0⟩

= (𝑏†
0 + 𝑧1𝑏

†
1 + 𝑧2𝑏

†
2 + . . .+ 𝑧𝑑𝑏

†
𝑑)
𝑁 ♣0⟩. (2.18)

iiiWe reserve the symbol ‘†’ for denoting either adjoint operators or the complex-transpose of matrices.
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We thus arrive at the following expression for the unnormalized coherent state:

♣𝑧♢ =
(Õ†

0)𝑁√
𝑁 !
♣0⟩, where: Õ†

0(𝑧) = 𝑏†
0 +

∑︁

Û

𝑧Û𝑏
†
Û. (2.19)

The newly deĄned operator Õ†
0(𝑧) is itself a bosonic creation operator. This can be

immediately veriĄed by considering the adjoint Õ0(𝑧*) = 𝑏0 +
∑︀

Ü 𝑏Ü𝑧
*
Ü and evaluating, with

the help of (2.14), the commutators (here computed for possibly different coherent-state

labels):

[Õ0(𝑧
*), Õ†

0(𝑧′)] = 1 + 𝑧*𝑧′, (2.20a)

[Õ0(𝑧
*), Õ0(𝑧

′)] = [Õ†
0(𝑧*), Õ†

0(𝑧′)] = 0. (2.20b)

The conclusion is that ♣𝑧♢ represents a Bose-Einstein condensate in which all 𝑁 particles

of the system occupy an effective single-particle mode which is parametrized by 𝑧. This

macroscopic mode, denoted by ♣Õ0(𝑧)♢ = Õ†
0(𝑧)♣0⟩, corresponds to a simple (unnormalized)

superposition of the basic modes:

♣Õ0(𝑧)♢ = ♣ã0⟩+
∑︁

Û

𝑧Û♣ãÛ⟩. (2.21)

For future reference, we list some useful commutation rules:

[𝑏0, Õ
†
0] = 1, [𝑏†

0, Õ
†
0] = 0, [𝑏Û, Õ

†
0] = 𝑧Û, [𝑏†

Û, Õ
†
0] = 0. (2.22)

Let us next compute the overlap ¶𝑧♣𝑧′♢, which is the basic quantity required for con-

structing the coherent-state formalism. We note that from commutation rules (2.20) we

get, by simple induction,

[Õ𝑘0 (𝑧*), Õ†
0(𝑧′)] = 𝑘(1 + 𝑧*𝑧′)Õ𝑘⊗1

0 (𝑧*). (2.23)

Then, with some slightly abbreviations, we proceed as follows:

𝑁 ! ¶𝑧♣𝑧′♢ = ⟨0♣Õ𝑁0 (Õ ′†
0)
𝑁 ♣0⟩ = ⟨0♣(Õ𝑁0 Õ ′†

0) ≤ (Õ ′†
0)
𝑁⊗1♣0⟩

= ⟨0♣
{︁

[Õ𝑁0 , Õ
′†
0]⊗ Õ ′†

0Õ
𝑁
0

}︁

≤ (Õ ′†
0)
𝑁⊗1♣0⟩

(︁

obs: ⟨0♣Õ ′†
0 = 0

)︁

= 𝑁(1 + 𝑧*𝑧′)⟨0♣Õ𝑁⊗1
0 (Õ ′†

0)
𝑁⊗1♣0⟩ = 𝑁(1 + 𝑧*𝑧′)⟨0♣(Õ𝑁⊗1

0 Õ ′†
0) ≤ (Õ ′†

0)
𝑁⊗2♣0⟩

= 𝑁(𝑁 ⊗ 1)(1 + 𝑧*𝑧′)2⟨0♣Õ𝑁⊗2
0 (Õ ′†

0)
𝑁⊗2♣0⟩

...

= 𝑁 !(1 + 𝑧*𝑧′)𝑁 , (2.24)

i.e. the exponent of the operators Õ0 and Õ ′†
0 is decreased at each step, eventually leading
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to ⟨0♣0⟩ = 1. Therefore, the unnormalized overlap is:

¶𝑧♣𝑧′♢ = (1 + 𝑧*𝑧′)𝑁 . (2.25)

Finally, we remark that, by making use of the commutation rules listed in (2.22), one

is also able to Ąnd the Fock decomposition of ♣𝑧♢:

♣𝑧♢ =
∑︁

♣𝑚♣=𝑁

(︃

𝑁

𝑚0 𝑚1 ≤ ≤ ≤ 𝑚𝑑

⎜ 1

2 [︁

𝑧𝑚1

1 𝑧𝑚2

2 ≤ ≤ ≤ 𝑧𝑚d

𝑑

]︁

♣𝑚0,𝑚1, . . . ,𝑚𝑑⟩. (2.26)

A detailed derivation of this result is found in Appendix B.

2.1.3 * Complementary modes and projectors

The vector 𝑧 can also be used to deĄne a set of 𝑑 complementary modes,

♣ȬÛ(𝑧*)♢ = ♣ãÛ⟩ ⊗ 𝑧*
Û♣ã0⟩, (2.27)

whose creation operators are:

Ȭ†
Û(𝑧*) = 𝑏†

Û ⊗ 𝑧*
Û𝑏

†
0, 1 ⊘ Û ⊘ 𝑑. (2.28)

These operators, together with their respective adjoints, satisfy the commutation rela-

tions:

[ȬÛ(𝑧), Ȭ†
Ü(𝑧

*′)] = ÓÛÜ ⊗ 𝑧Û𝑧*
Ü

′, (2.29a)

[ȬÛ(𝑧), ȬÜ(𝑧
′)] = [Ȭ†

Û(𝑧*), Ȭ†
Ü(𝑧

*′)] = 0. (2.29b)

By construction, all complementary modes, though not orthogonal amongst them-

selves, are orthogonal to the coherent-stateŠs macroscopic mode, provided both sets cor-

respond to the same coherent-state label, as can be seen from the overlap

¶ȬÛ(𝑧)♣Õ0(𝑧
′)♢ = 𝑧Û ⊗ 𝑧′

Û, (2.30)

which vanishes for 𝑧′ = 𝑧.

The macroscopic and complementary modes taken together constitute again a com-

plete single-particle basis. In fact, starting from Eqs. (2.21) and (2.27), we may write the

basis transformation rule in matrix form as follows:

[︁

Õ†
0 (Ȭ†

1, . . . , Ȭ
†
𝑑)

]︁

=
[︁

𝑏†
0 (𝑏†

1, . . . , 𝑏
†
𝑑)

]︁

⋃︀

⨄︀
1 ⊗𝑧*

𝑧 𝐼𝑑

⋂︀

⋀︀ , (2.31)
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from which the reverse transformation is obtained with the help of the matrix identity:

⋃︀

⨄︀
1 0

0 𝐼𝑑

⋂︀

⋀︀ =

⋃︀

⨄︀
1 𝑧*

⊗𝑧 𝐼𝑑

⋂︀

⋀︀

⋃︀

⨄︀
(1 + 𝑧*𝑧)⊗1 0

0 (𝐼𝑑 + 𝑧𝑧*)⊗1

⋂︀

⋀︀

⋃︀

⨄︀
1 ⊗𝑧*

𝑧 𝐼𝑑

⋂︀

⋀︀ , (2.32)

leading to:

𝑏†
0 = (Õ†

0 ⊗
∑︁

Ü

Ȭ†
Ü𝑧Ü)(1 + 𝑧*𝑧)⊗1, (2.33a)

𝑏†
Û =

∑︁

Ü

(Õ†
0𝑧

*
Ü + Ȭ†

Ü)(𝐼𝑑 + 𝑧𝑧*)⊗1
ÜÛ . (2.33b)

Using the above relations one proves that both basis indeed span the same single-particle

space:

𝑃 = ♣ã0⟩⟨ã0♣+
∑︁

Û

♣ãÛ⟩⟨ãÛ♣

= ♣Õ0♢(1 + 𝑧*𝑧)⊗1¶Õ0♣+
∑︁

ÛÜ

♣ȬÛ♢(𝐼𝑑 + 𝑧𝑧*)⊗1
ÛÜ ¶ȬÜ ♣, (2.34)

with the projector splitting into two orthogonal and disjoint parts: the Ąrst referring to

the macroscopic mode and the second to the remaining complementary modes.

2.1.4 The geometry of bosonic coherent states

From Eq. (2.25) and deĄnition (1.56) it follows that the Kähler potential for the bosonic

coherent state parametrization is:

𝑓(𝑧*, 𝑧′) = 𝑁 log(1 + 𝑧*𝑧′) = 𝑁 log
[︁

1 +
∑︁

Û

𝑧*
Û𝑧

′
Û

]︁

. (2.35)

We will be requiring the Ąrst gradients of 𝑓(𝑧*, 𝑧′) later on Ű for future reference, they

are:

𝜕𝑓(𝑧*, 𝑧′)

𝜕𝑧′
Û

=
𝑁𝑧*

Û

1 + 𝑧*𝑧′ , (2.36a)

𝜕𝑓(𝑧*, 𝑧′)

𝜕𝑧*
Û

=
𝑁𝑧′

Û

1 + 𝑧*𝑧′ . (2.36b)

The metric matrix elements are obtained by straightforward computation of the mixed

partial derivatives:

𝑔(𝑧*, 𝑧)ÛÜ =
𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧Û𝜕𝑧*
Ü

= 𝑁
(1 + 𝑧*𝑧)ÓÛÜ ⊗ 𝑧*

Û𝑧Ü

(1 + 𝑧*𝑧)2
. (2.37)
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The metricŠs determinant can be found without difficulty by Ąrst writing 𝑔𝑇 in matrix

form,iv

𝑔𝑇 =
𝑁

1 + 𝑧*𝑧
(𝐼𝐾⊗1 ⊗ 𝑧(1 + 𝑧*𝑧)⊗1𝑧*),

and invoking SylvesterŠs theorem, which states that for any pair of matrices 𝐴 and 𝐵,

of sizes 𝑛 × 𝑚 and 𝑚 × 𝑛 respectively, the following equality holds: det(𝐼𝑚 + 𝐵𝐴) =

det(𝐼𝑛 + 𝐴𝐵). In the present case this means:

det 𝑔𝑇 =
𝑁𝐾⊗1

(1 + 𝑧*𝑧)𝐾⊗1
≤ det(𝐼𝐾⊗1 ⊗ 𝑧(1 + 𝑧*𝑧)⊗1𝑧*)

=
𝑁𝐾⊗1

(1 + 𝑧*𝑧)𝐾⊗1
≤ (1⊗ 𝑧*(1 + 𝑧*𝑧)⊗1𝑧) =

𝑁𝐾⊗1

(1 + 𝑧*𝑧)𝐾
. (2.38)

Hence, from deĄnition (1.60), we get the integration measure that equips the bosonic

closure relation:

𝑑Û(𝑧) =
Ù 𝑁𝐾⊗1

(1 + 𝑧*𝑧)𝐾
𝑑2𝑧

Þ𝑑
=

(𝑁 +𝐾 ⊗ 1)!

𝑁 !(1 + 𝑧*𝑧)𝐾
𝑑2𝑧

Þ𝑑
, (2.39)

where we have substituted the value of the normalization constant Ù, computed in Ap-

pendix B.

The inverse of 𝑔 can be easily found with the help of the identities:

𝐼𝐾⊗1 ⊗ 𝑧(1 + 𝑧*𝑧)⊗1𝑧* = (𝐼𝐾⊗1 + 𝑧𝑧*)⊗1, (2.40a)

1⊗ 𝑧*(𝐼𝐾⊗1 + 𝑧𝑧*)⊗1𝑧 = (1 + 𝑧*𝑧)⊗1. (2.40b)

In particular, using the Ąrst of these expressions, the matrix 𝑔𝑇 can be written as:

𝑔𝑇 =
𝑁

1 + 𝑧*𝑧
(𝐼𝐾⊗1 + 𝑧𝑧*)⊗1 ⇒ 𝑔⊗𝑇 =

1 + 𝑧*𝑧

𝑁
(𝐼𝐾⊗1 + 𝑧𝑧*). (2.41)

Therefore the inverse matrix elements are:

𝑔⊗1(𝑧*, 𝑧)ÛÜ =
1 + 𝑧*𝑧

𝑁
(ÓÛÜ + 𝑧*

Û𝑧Ü). (2.42)

This result allows us to write the variational equation of motion for bosonic coherent

states Ű from the general form given in (1.72) we get:

𝑧̇Û = ⊗ 𝑖
~

(1 + 𝑧*𝑧)

𝑁

∑︁

Ü

(ÓÛÜ + 𝑧Û𝑧
*
Ü)
𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧*
Ü

. (2.43)

Next we shall restrict attention to a speciĄc type of Hamiltonian and further development

of this equation will become possible.

ivThe product 𝑧*𝑧 denotes a scalar product, i.e. 𝑧*𝑧 =
∑︀

Ö 𝑧
*
Ö𝑧Ö. Meanwhile, the juxtaposition 𝑧𝑧*

stands for an exterior product, i.e. (𝑧𝑧*)ÛÜ = 𝑧Û𝑧
*
Ü .
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2.2 Mean-field dynamics of interacting bosons

Let us consider a system of 𝑁 interacting bosons whose dynamics is described by a Ąrst-

quantized Hamiltonian containing one- and two-body terms; in position representation it

reads:

𝐻̂(x) =
𝑁∑︁

𝑖=1

ℎ̂(x𝑖) + 1
2

𝑁∑︁

𝑖=1

𝑁∑︁

𝑗=1

𝑈̂(x𝑖,x𝑗). (2.44)

where ℎ̂(x) includes both the kinetic energy term, ⊗(~2/2𝑚)∇2, and external potentials.

Since we are dealing with identical bosons the interacting potential 𝑈̂(x,x′) must be

symmetric with respect to particle interchange.

The second-quantized form of the above Hamiltonian is found with the aid of the

Ąeld operators deĄned in (2.4). More conveniently, we shall conĄne the analysis to the

truncated-basis scheme, and work with 𝐻̂ expressed in terms of the creators and annihi-

lators of the 𝐾 single-particle modes ♣ã⟩, in which case it takes the form:v

𝐻̂ =
∑︁

𝑝𝑞

ℎ𝑝𝑞𝑏
†
𝑝𝑏𝑞 + 1

2

∑︁

𝑝𝑞𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠𝑏
†
𝑝𝑏

†
𝑟𝑏𝑠𝑏𝑞, (2.45)

where the one and two-body integrals are:

⎧

⋁︁⨄︁

⋁︁⋃︁

ℎ𝑝𝑞 = ⟨ã𝑝♣ℎ̂♣ã𝑞⟩
𝑈𝑝𝑟≤𝑞𝑠 = ⟨ã𝑝, ã𝑟♣𝑈̂ ♣ã𝑞, ã𝑠⟩

with:

⎧

⋁︁⨄︁

⋁︁⋃︁

ℎ𝑝𝑞 = ℎ*
𝑞𝑝

𝑈𝑝𝑟≤𝑞𝑠 = 𝑈𝑟𝑝≤𝑠𝑞 = 𝑈*
𝑞𝑠≤𝑝𝑟 = 𝑈*

𝑠𝑞≤𝑟𝑝

, (2.46)

having the usual properties listed above.

2.2.1 The one-density

We are interested in the coherent-state expectation value of the many-body Hamiltonian.

We take ♣𝑧♢ as given by Eq. (2.19), with ♣Φ0⟩ being the state where all 𝑁 particles occupy

the reference mode ♣ã0⟩. A central object of the present formalism is the matrix Γ(𝑧*, 𝑧),

the bosonic Śone-densityŠ, whose elements are deĄned according to

Γ𝑞𝑝(𝑧
*, 𝑧) ⊕ 𝑁⊗1⟨𝑧♣𝑏†

𝑝𝑏𝑞♣𝑧⟩ = 𝑁⊗1¶𝑧♣𝑏†
𝑝𝑏𝑞♣𝑧♢
¶𝑧♣𝑧♢ , 0 ⊘ 𝑝, 𝑞 ⊘ 𝑑. (2.47)

vNotice that 𝑏†
𝑝𝑏

†
𝑟𝑏𝑠𝑏𝑞 = 𝑏†

𝑝𝑏𝑞𝑏
†
𝑟𝑏𝑠 ⊗ 𝑏†

𝑝𝑏𝑠Ó𝑞𝑟, and 𝐻̂ is a function of the basic bilinears, as it should be.
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In Appendix B these elements are computed using second-quantization techniques. The

result can be expressed in matrix form as below:

Γ(𝑧*, 𝑧) =
1

1 + 𝑧*𝑧

⋃︀

⨄︀
1 𝑧*

𝑧 𝑧𝑧*

⋂︀

⋀︀ =
1

1 + 𝑧*
1𝑧1 + ≤ ≤ ≤+ 𝑧*

𝑑𝑧𝑑

⋃︀

⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⨄︀

1 𝑧*
1 𝑧*

2 ≤ ≤ ≤ 𝑧*
𝑑

𝑧1 𝑧1𝑧
*
1 𝑧1𝑧

*
2 ≤ ≤ ≤ 𝑧1𝑧

*
𝑑

𝑧2 𝑧2𝑧
*
1 𝑧2𝑧

*
2 ≤ ≤ ≤ 𝑧2𝑧

*
𝑑

...
...

...
. . .

...

𝑧𝑑 𝑧𝑑𝑧
*
1 𝑧𝑑𝑧

*
2 ≤ ≤ ≤ 𝑧𝑑𝑧

*
𝑑

⋂︀

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︀

.

(2.48)

The one-density is an hermitian matrix with the following properties:

tr[Γ(𝑧*, 𝑧)] = 1 and Γ(𝑧*, 𝑧)Γ(𝑧*, 𝑧) = Γ(𝑧*, 𝑧), (2.49)

which hold for all values of 𝑧. Moreover, each of the 𝐾 diagonal elements is directly

related to the population of the corresponding mode:

𝑛𝑝(𝑧) = ⟨𝑧♣𝑏†
𝑝𝑏𝑝♣𝑧⟩ = 𝑁 Γ𝑝𝑝(𝑧

*, 𝑧),
∑︀

𝑝𝑛𝑝(𝑧) = 𝑁. (2.50)

where the normalized trace assures that the populations correctly add to the total number

of particles.

The idempotency of Γ Ű the second of the properties listed in (2.49) Ű is characteristic

of projectors. Indeed, the one-density associated with a bosonic coherent state is nothing

but the matrix representation of the macroscopic mode projector (normalized to unity):

Γ̂(𝑧*, 𝑧) = ♣Õ0(𝑧)♢(1 + 𝑧*𝑧)⊗1¶Õ0(𝑧)♣ =
∑︁

𝑝𝑞

♣ã𝑝⟩Γ𝑝𝑞(𝑧*, 𝑧)⟨ã𝑞♣. (2.51)

Check. Multiplying the Ąrst form on the left and right sides with ⟨ã𝑝♣ and ♣ã𝑞⟩ one

gets Γ𝑝𝑞(𝑧*, 𝑧) = (1 + 𝑧*𝑧)⊗1⟨ã𝑝♣Õ0(𝑧)♢¶Õ0(𝑧)♣ã𝑞⟩; then, substituting the scalar products

⟨ã𝑝♣Õ0(𝑧)♢ and ¶Õ0(𝑧)♣ã𝑞⟩ (straightforwardly computed from previous relations) one easily

recovers formula (2.48).

2.2.2 Energy function and mean-field dynamics

The one-density immediately gives the coherent-state matrix element of the one-body

part of 𝐻̂. In order to proceed we further require the expectation value of the two-body

interaction term. This quantity is also computed in Appendix B, and it turns out that it

can be directly expressed in terms of the one-density (for brevity, we omit the 𝑧 arguments

from now on):

⟨𝑧♣𝑏†
𝑝𝑏

†
𝑟𝑏𝑠𝑏𝑞♣𝑧⟩ = 𝑁(𝑁 ⊗ 1) Γ𝑞𝑝Γ𝑠𝑟 = 𝑁(𝑁 ⊗ 1) Γ𝑠𝑝Γ𝑞𝑟 (2.52)



47

(both ways of writing it are equivalent, but we shall employ mostly the Ąrst, which proves

to be more convenient).

Combining the results (2.47), (2.48), and (2.52), we Ąnd that the energy function,

given by the relation 𝐸(𝑧*, 𝑧) = ⟨𝑧♣𝐻̂♣𝑧⟩, assumes the form:

𝐸 = 𝑁
∑︁

𝑝𝑞

ℎ𝑝𝑞Γ𝑞𝑝 + 1
2
𝑁(𝑁 ⊗ 1)

∑︁

𝑝𝑞𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠Γ𝑠𝑟Γ𝑞𝑝

= 𝑁
∑︁

𝑝𝑞

[︁

ℎ𝑝𝑞 + 1
2
(𝑁 ⊗ 1)

∑︁

𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠Γ𝑠𝑟
]︁

Γ𝑞𝑝

= 𝑁
∑︁

𝑝𝑞

(ℎ𝑝𝑞 + 1
2
𝑣𝑝𝑞)Γ𝑞𝑝 = 𝑁 tr

[︁

(ℎ+ 1
2
𝑣)Γ

]︁

. (2.53)

In the last line we have deĄned a new and very important quantity, the bosonic mean-field

matrix 𝑣, whose elements are:

𝑣𝑝𝑞 = (𝑁 ⊗ 1)
∑︁

𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠 Γ𝑠𝑟, 𝑣𝑝𝑞 = 𝑣*
𝑞𝑝. (2.54)

The term Śmean-ĄeldŠ has the usual meaning: the matrix 𝑣, which depends on Γ, represents

an effective one-body potential constructed out of pairwise interactions by adding up all

second-particle contributions Ű this is mathematically accomplished by tracing the two-

body integrals over all secondary modes (indexes 𝑠 and 𝑟) with the one-density playing

the role of a weight factor.

Our next task is to express the coherent-state equation of motion for the particular

Hamiltonian in question. For that purpose we require the derivative of the energy function

with respect to 𝑧*. Noticing that all dependence of 𝐸 on both 𝑧 and 𝑧* comes from Γ(𝑧*, 𝑧)

we can make use of the chain rule to obtain:

𝜕𝐸

𝜕𝑧*
Û

=
∑︁

𝑝𝑞

𝐺𝑝𝑞
𝜕Γ𝑞𝑝
𝜕𝑧*

Û

, (2.55)

where the density-dependent matrix 𝐺, a key quantity that we shall denominate the

ŚGross-Pitaevskii matrixŠ, is simply:

𝐺𝑝𝑞(Γ) = ℎ𝑝𝑞 + 𝑣𝑝𝑞(Γ) = ℎ𝑝𝑞 + (𝑁 ⊗ 1)
∑︁

𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠Γ𝑠𝑟. (2.56)

The gradients of Γ are computed in Appendix B. Substituting the appropriate formulas

in Eq. (2.55) and plugging the resulting expression into Eq. (2.43) one gets, after some

straightforward algebra,

𝑖~ 𝑧̇Û = 𝐺Û0 +
∑︁

Ü

𝐺ÛÜ𝑧Ü ⊗ 𝑧Û𝐺00 ⊗ 𝑧Û
∑︁

Ü

𝐺0Ü𝑧Ü . (2.57)

Notice that this equation of motion is highly non-linear.
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Finally, let us consider the Lagrangian, which is obtained from (1.66) upon substitution

of 𝐸 and 𝑧̇, as given by Eqs. (2.53) and (2.57), as well as the Kähler gradients listed in

(2.36). By means of these relations (and other connections involving the one-density

elements) the general expression can be worked down in terms of more basic ingredients

and it can be organized in many possible ways. We have found that a useful form for

practical purposes is:

𝐿 = ⊗𝑁𝐺00 ⊗ 1
2
𝑁

∑︁

Û

(𝐺0Û𝑧Û + 𝑧*
Û𝐺Û0) + 1

2
𝑁

∑︁

𝑝𝑞

𝑣𝑝𝑞Γ𝑞𝑝. (2.58)

2.2.3 * Exact solutions for non-interacting systems

In order to gain some insight let us brieĆy discuss explicit solutions to the equation of

motion. As always, these are only available for non-interacting systems. In this special

case we conveniently assume that we are working with the speciĄc set of single-particle

modes that diagonalizes the one-body integral. There is no loss of generality in doing so

for this can be accomplished through a simple unitary transformation of the basic set ♣ã⟩.
We thus have 𝑣 = 0 and ℎ in the diagonal form:

ℎ = diag(𝜀0, Ú1, Ú2, . . . , Ú𝑑) (2.59)

(it is not important to our purposes whether degenerate eigenvalues occur or not). In

terms of this particular set of modes, and since we have 𝐺 = ℎ, Eq. (2.57) is dramatically

simpliĄed and its solution can be written at once:

𝑖~ 𝑧̇Û = (ÚÛ ⊗ 𝜀0)𝑧Û ⇒ 𝑧Û(𝑡) = 𝑧Û(0)𝑒⊗ i
~

(Úµ⊗𝜀0)𝑡. (2.60)

Meanwhile, the Lagrangian is just 𝐿 = ⊗𝑁𝜀0, and therefore the action evaluates to

𝑆 = ⊗𝑁𝜀0𝑡. Then, according to Eq. (1.75), the time-evolved state reads:

♣𝑧𝑡⟩𝑒
i
~
𝑆t(𝑧) = ♣𝑧(𝑧0, 𝑡)⟩ 𝑒⊗ i

~
𝑁𝜀0𝑡, where: 𝑧Û(𝑧0, 𝑡) = 𝑧0Û 𝑒

⊗ i
~

(Úµ⊗𝜀0)𝑡. (2.61)

This exercise shows that, in the absence of interactions, the state remains coherent

throughout the dynamics, the only effect being a rotation of the argument of each el-

ement of the 𝑧 vector and the accumulation of a global phase.

2.3 * More geometry: transformation of single-particle modes

In this last section we shall investigate the effect that a unitary transformation of the

underlying single-particle modes has on the coherent state. In other words, we seek to

understand the connection between coherent states deĄned over different sets of basis
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functions spanning the same space. This is useful since sometimes matrix elements of cer-

tain operators are more easily computed if their second-quantized expressions are written

in terms of a speciĄc set, and that set may be different from the one which is more

appropriate to carry out the dynamics.

Let us then consider two sets of single-particle modes, ♣ã⟩ and ♣ä⟩, with corresponding

creation operators 𝑏† and 𝑎†:

♣ã𝑝⟩ = 𝑏†
𝑝♣0⟩ and ♣ä𝑝⟩ = 𝑎†

𝑝♣0⟩, 0 ⊘ 𝑝 ⊘ 𝑑. (2.62)

Both sets are constituted by orthonormal functions and both span the same single-particle

space:

𝑃 =
∑︁

𝑝

♣ã𝑝⟩⟨ã𝑝♣ =
∑︁

𝑝

♣ä𝑝⟩⟨ä𝑝♣. (2.63)

Denoting by 𝑋 the transformation matrix of ♣ã⟩ ⊂ ♣ä⟩ (𝑏† ⊂ 𝑎†) and by 𝑌 its inverse

(which is equal to its adjoint) we establish the transformation rules:

⎧

⋁︁⨄︁

⋁︁⋃︁

♣ã𝑝⟩ =
∑︀

𝑞 ♣ä𝑞⟩⟨ä𝑞♣ã𝑝⟩ =
∑︀

𝑞 ♣ä𝑞⟩𝑋𝑞𝑝

♣ä𝑝⟩ =
∑︀

𝑞 ♣ã𝑞⟩⟨ã𝑞♣ä𝑝⟩ =
∑︀

𝑞 ♣ã𝑞⟩𝑌𝑞𝑝
⇒

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑏†
𝑝 =

∑︀

𝑞 𝑎
†
𝑞𝑋𝑞𝑝

𝑎†
𝑝 =

∑︀

𝑞 𝑏
†
𝑞𝑌𝑞𝑝

with: 𝑌 = 𝑋† = 𝑋⊗1.

(2.64)

In particular, the connection involving creation and annihilation operators can be written

as:

𝑏†
0 = 𝑎†

0𝑋00 +
∑︁

Ü

𝑎†
Ü𝑋Ü0 (2.65a)

𝑏†
Û = 𝑎†

0𝑋0Û +
∑︁

Ü

𝑎†
Ü𝑋ÜÛ (2.65b)

Let us now substitute these relations in the coherent state deĄnition, Eq. (2.19), to

see what happens once the original basic operators 𝑏 and 𝑏†, associated with the modes

♣ã⟩ that underly the state ♣𝑧♢ã (as explicitly indicated here), are replaced by a different

set; working down the expression we Ąnd:

√
𝑁 !♣𝑧♢ã =

(︁

𝑏†
0 +

∑︀

Û𝑧Û𝑏
†
Û

)︁𝑁 ♣0⟩

=
[︁

(𝑎†
0𝑋00 +

∑︀

Ü𝑎
†
Ü𝑋Ü0) +

∑︀

Û𝑧Û(𝑎†
0𝑋0Û +

∑︀

Ü𝑎
†
Ü𝑋ÜÛ)

]︁𝑁 ♣0⟩

=
[︁

𝑎†
0(𝑋00 +

∑︀

Û𝑋0Û𝑧Û) +
∑︀

Ü𝑎
†
Ü(𝑋Ü0 +

∑︀

Û𝑋ÜÛ𝑧Û)
]︁𝑁 ♣0⟩

= (𝑋00 +
∑︀

Û𝑋0Û𝑧Û)𝑁
[︁

𝑎†
0 +

∑︀

Ü𝑎
†
Ü(𝑋Ü0 +

∑︀

Û𝑋ÜÛ𝑧Û)(𝑋00 +
∑︀

Û𝑋0Û𝑧Û)⊗1
]︁𝑁 ♣0⟩

= (𝑋00 +
∑︀

Û𝑋0Û𝑧Û)𝑁
(︁

𝑎†
0 +

∑︀

Ü𝑎
†
Ü𝑤Ü

)︁𝑁 ♣0⟩, (2.66)
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where in the last line we have deĄned:

𝑤Ü =
(︁

𝑋Ü0 +
∑︁

Û

𝑋ÜÛ𝑧Û
)︁(︁

𝑋00 +
∑︁

Û

𝑋0Û𝑧Û
)︁⊗1

. (2.67)

Now, again from Eq. (2.19), we know that a coherent-state ♣𝑤♢ä, deĄned over the set ♣ä⟩
(as indicated), has the form:

♣𝑤♢ä =
1√
𝑁 !

(︁

𝑎†
0 +

∑︁

Ü

𝑎†
Ü𝑤Ü

)︁𝑁 ♣0⟩. (2.68)

Comparing this with Eq. (2.66) we conclude that:

♣𝑤♢ä = ♣𝑧♢ã(𝑋00 +
∑︀

Û𝑋0Û𝑧Û)⊗𝑁 , (2.69)

with 𝑤 given by (2.67). This is the connecting formula that we were seeking.

Similarly, had we considered the transformation in the opposite direction, it would

give:

♣𝑧♢ã = ♣𝑤♢ä(𝑌00 +
∑︀

Û𝑌0Û𝑤Û)⊗𝑁 , (2.70)

with 𝑧 given in terms of 𝑤 as:

𝑧Û =
(︁

𝑌Û0 +
∑︁

Ü

𝑌ÛÜ𝑤Ü
)︁(︁

𝑌00 +
∑︁

Ü

𝑌0Ü𝑤Ü
)︁⊗1

. (2.71)

Note that Eqs. (2.69) and (2.70) imply the equality:

(𝑋00 +
∑︀

Û𝑋0Û𝑧Û) = (𝑌00 +
∑︀

Û𝑌0Û𝑤Û)⊗1, (2.72)

which is easily veriĄable.

Let us now study the connecting formulas in terms of normalized states. The relation

between ♣𝑧⟩ã and ♣𝑤⟩ä is found by adding the respective normalization factors:

♣𝑧⟩ã = ♣𝑤⟩ä(𝑌00 +
∑︀

Û𝑌0Û𝑤Û)⊗𝑁(1 + 𝑤*𝑤)𝑁/2(1 + 𝑧*𝑧)⊗𝑁/2. (2.73)

On the right side we opt to eliminate 𝑧 in favor of 𝑤, which will lead us to a transformation

in the direction ♣𝑧⟩ã ⊂ ♣𝑤⟩ä. Using the complex conjugate of (2.70), and the fact the

𝑋 = 𝑌 †, we write:

𝑧*
Û =

𝑌 *
Û0 +

∑︀

Ü𝑌
*
ÛÜ𝑤

*
Ü

𝑌 *
00 +

∑︀

Ü𝑌
*

0Ü𝑤
*
Ü

=
𝑋0Û +

∑︀

Ü𝑤
*
Ü𝑋ÜÛ

𝑋00 +
∑︀

Ü𝑤*
Ü𝑋Ü0

, (2.74)
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and use this to evaluate the normalization factor involving 𝑧:

1 + 𝑧*𝑧 = 1 +
∑︁

Û

(𝑋0Û +
∑︀

Ü𝑤
*
Ü𝑋ÜÛ)(𝑌Û0 +

∑︀

Ü′𝑌ÛÜ′𝑤Ü′)

(𝑋00 +
∑︀

Ü𝑤*
Ü𝑋Ü0)(𝑌00 +

∑︀

Ü′𝑌0Ü′𝑤Ü′)

= (𝑋00 +
∑︀

Ü𝑤
*
Ü𝑋Ü0)

⊗1(𝑌00 +
∑︀

Ü′𝑌0Ü′𝑤Ü′)⊗1

×
[︁

(𝑋00𝑌00 +
∑︀

Û𝑋0Û𝑌Û0) +
∑︀

Ü(𝑋00𝑌0Ü +
∑︀

Û𝑋0Û𝑌ÛÜ)𝑤Ü

+
∑︀

Ü𝑤
*
Ü(𝑋Ü0𝑌00 +

∑︀

Û𝑋ÜÛ𝑌Û0) +
∑︀

Ü𝑤
*
Ü(𝑋Ü0𝑌0Ü +

∑︀

Û𝑋ÜÛ𝑌ÛÜ)𝑤Ü
]︁

= (𝑋00 +
∑︀

Ü𝑤
*
Ü𝑋Ü0)

⊗1(𝑌00 +
∑︀

Ü′𝑌0Ü′𝑤Ü′)⊗1(1 + 𝑤*𝑤). (2.75)

Putting this result into Eq. (2.73) we Ąnd:

♣𝑧⟩ã = ♣𝑤⟩ä
⎟

𝑋00 +
∑︀

Ü𝑤
*
Ü𝑋Ü0

𝑌00 +
∑︀

Ü𝑌0Ü𝑤Ü

]︃𝑁/2

= ♣𝑤⟩ä
⎟

𝑌00 +
∑︀

Ü𝑌0Ü𝑤Ü
𝑌 *

00 +
∑︀

Ü𝑌
*

0Ü𝑤
*
Ü

]︃⊗𝑁/2

. (2.76)

The complex quotient inside the brackets has unity modulus. Denoting its phase by 𝜙 we

conclude:

⎧

⋁︁⨄︁

⋁︁⋃︁

♣𝑧⟩ã = ♣𝑤⟩ä𝑒⊗𝑖𝑁𝜙

♣𝑤⟩ä = ♣𝑧⟩ã𝑒𝑖𝑁𝜙
with: 𝜙 =

⎧

⋁︁⨄︁

⋁︁⋃︁

arg[(𝑌00 +
∑︀

Ü𝑌0Ü𝑤Ü)]

⊗arg[(𝑋00 +
∑︀

Ü𝑋0Ü𝑧Ü)]
. (2.77)

Notice that the equality (2.72) allows us to write the phase 𝜙 at our convenience, in terms

of either 𝑧 or 𝑤.

The above formulas are the desired connections between coherent-state labels deĄned

over distinct sets of single-particle modes. They reveal that the unitary transformation

induces an holomorphic map on the coherent-state variable, and that a consequence of

such a map is the appearance of a phase factor on the transformed vector.
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Chapter 3

Fermionic coherent states

Overview. Fermionic coherent states of the special unitary group, also

known as Thouless determinants, are reviewed. They are understood in terms

of an underlying set of dynamical orbitals. Their dynamics is worked out for

general systems using the time-dependent variational principle. The important

class of Hamiltonians containing one- and two-body terms is then considered.

Equations of motion for this particular case are derived and the connection

to mean-Ąeld theories is established. Spin structure is explicitly examined.

Additional properties, concerning the effects of group transformations, are

investigated. The exposition closely follows that of Ref. [17].

3.1 Thouless determinants

3.1.1 Preliminaries

Once more we begin by introducing the single-particle space that underlies the many-body

problem. A Ąnite set of 𝐾 orthonormal states constitutes a basis for such space Ű the

projector is:

𝑃 =
𝐾∑︁

𝑝=1

♣ã𝑝⟩⟨ã𝑝♣, ã𝑝(x) = ⟨x♣ã𝑝⟩. (3.1)

In the fermionic framework the states ♣ã⟩ are called ŚorbitalsŠ. The formalism makes

no distinction between molecular and atomic orbitals Ű any set will do provided the

orthonormality requirement is observed. The limit of completeness is approached by

enlarging the basis set:

𝑃 (x,x′) = ⟨x♣𝑃 ♣x′⟩ 𝐾⊃∞
= Ó(x⊗ x′), (3.2)

although, in practice, a truncated basis is almost always employed, the accuracy of such

a description relying on physical considerations regarding the nature of the system and

the type of phenomena under investigation.
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It should be observed that, here, x denotes a conventional three-dimensional position

vector. Spin structure is of great relevance to any fermion system and more will be said

about it in a moment. For now it suffices to point out that, in the present scheme,

each function ã𝑝(x) is to be understood as a distinct spin component of an associated

Śspin-orbitalŠ (a more general and often employed kind of basis function).

Creation and annihilation operators are assigned to each orbital. They satisfy the

anti-commutation relations (anti-commutators are denoted by curly brackets, ¶𝐴, 𝐵̂♢ =

𝐴𝐵̂ + 𝐵̂𝐴):

⎧

⋁︁⨄︁

⋁︁⋃︁

♣ã𝑝⟩ = 𝑐†
𝑝♣0⟩

⟨ã𝑞♣ = ⟨0♣𝑐𝑞
with:

⎧

⋁︁⨄︁

⋁︁⋃︁

¶𝑐𝑝, 𝑐†
𝑞♢ = Ó𝑝𝑞

¶𝑐𝑝, 𝑐𝑞♢ = ¶𝑐†
𝑝, 𝑐

†
𝑞♢ = 0

, 1 ⊘ 𝑝, 𝑞 ⊘ 𝐾. (3.3)

The fermionic Ąeld operators, deĄned over the Ąnite single-particle space, are:

⎧

⋁︁⨄︁

⋁︁⋃︁

å̂(x) =
∑︀𝐾
𝑝=1 ã𝑝(x)𝑐𝑝

å̂†(x) =
∑︀𝐾
𝑝=1 ã

*
𝑝(x)𝑐†

𝑝

⇔

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑐𝑝 =
√︃

𝑑x ã*
𝑝(x)å̂(x)

𝑐†
𝑝 =

√︃

𝑑x ã𝑝(x)å̂†(x)
, 1 ⊘ 𝑝 ⊘ 𝐾. (3.4)

They obey:

¶å̂(x), å̂†(x′)♢ = 𝑃 (x,x′), ¶å̂(x), å̂(x′)♢ = ¶å̂†(x), å̂†(x′)♢ = 0. (3.5)

Notice that spin components of the Ąeld operators have not yet been distinguished Ű

spin-speciĄc formulas will be given later.

Let us now turn to the many-body problem. A complete set of basis vectors is supplied

by the eigenstates of the number operator,46

𝑛̂𝑝♣𝑛1, 𝑛2, . . . , 𝑛𝐾⟩ = 𝑛𝑝♣𝑛1, 𝑛2, . . . , 𝑛𝐾⟩, 𝑛̂𝑝 = 𝑐†
𝑝𝑐𝑝, 1 ⊘ 𝑝 ⊘ 𝐾. (3.6)

These states are given in terms of the basic creation operators,

♣𝑛1, 𝑛2, . . . , 𝑛𝐾⟩ = (𝑐†
1)
𝑛1(𝑐†

2)
𝑛2 . . . (𝑐†

𝐾)𝑛K ♣0⟩, 𝑛𝑝 ∈ ¶0, 1♢, 1 ⊘ 𝑝 ⊘ 𝐾, (3.7)

with ♣0⟩ being the vacuum state. As indicated, the label 𝑛 denotes a binary array of

occupation numbers, 𝑛 = (𝑛1, 𝑛2, . . . , 𝑛𝐾), with each 𝑛𝑝 being zero or unity in agreement

with the exclusion principle.

Once more we shall restrict attention to number-conserving Hamiltonians, so that the

possible sets of occupation numbers satisfy the constraint:

𝑛1 + 𝑛2 + ≤ ≤ ≤+ 𝑛𝐾 = 𝑁, (3.8)

or, in abbreviated form, ♣𝑛♣ = 𝑁 . Notice that the exclusion principle demands 𝐾 ⊙ 𝑁 .
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Since each orbital contains at most a single fermion the dimension of the Fock space

ℱ(𝐾,𝑁) is easily calculated; it is simply the number of possible ways of distributing 𝑁

indistinguishable objects into 𝐾 boxes:

dim ℱ(𝐾,𝑁) =
𝐾!

𝑁 !(𝐾 ⊗𝑁)!
. (3.9)

Under the enunciated conditions, the total particle number operator 𝑁̂ must be a

constant of motion:

𝑁̂ =
∑︁

𝑝

𝑛̂𝑝, [𝐻̂, 𝑁̂ ] = 0, (3.10)

and Hamiltonians subjected to this restriction can always be expressed in terms of the

bilinear forms 𝑐†
𝑝𝑐𝑞. These forms obey the following commutation rules:

[𝑐†
𝑝𝑐𝑞, 𝑐

†
𝑟𝑐𝑠] = 𝑐†

𝑝𝑐𝑠 Ó𝑞𝑟 ⊗ 𝑐†
𝑟𝑐𝑞 Ó𝑠𝑝, 1 ⊘ 𝑝, 𝑞, 𝑟, 𝑠 ⊘ 𝐾. (3.11)

A basis for the su(𝐾) algebra of the special unitary group SU(𝐾) can be written in terms

of these fermionic bilinears. This establishes the dynamical group associated with the

systemŠs Hamiltonian.

3.1.2 Coherent states: definition and dynamical orbitals

Following the general theory delineated in Chapter 1, we shall deĄne the fermionic co-

herent state in terms of a displacement operator acting on a reference state ♣Φ0⟩. This

state will be selected from the set of many-body conĄgurations that span the Fock space.

The choice is ultimately arbitrary, but a meaningful reference state is crucial for stability

in numerical calculations. We thus suppose there exists a certain hierarchy among the

𝐾 single-particle basis functions ♣ã⟩ which determines their indexation order. In treating

weakly interacting systems, for example, it is useful to think that orbitals are classiĄed

according to their energy expectation values, as computed from the non-interacting part

of the Hamiltonian, in ascending energy order (some auxiliary criteria may be needed

for handling degeneracies). In this case, an appropriate reference state would be that in

which the Ąrst 𝑁 orbitals, those with lowest energy, are Ąlled, while the remaining 𝐾⊗𝑁
are empty, i.e. the non-interacting ground state:

♣Φ0⟩ = 𝑐†
1𝑐

†
2 ≤ ≤ ≤ 𝑐†

𝑁 ♣0⟩ = ♣1, 1, . . . , 1
⏟  ⏞  

𝑁

, 0, 0, . . . , 0
⏟  ⏞  

𝑀

⟩, 𝑀 ⊕ 𝐾 ⊗𝑁. (3.12)

The above reference state is a Slater determinant in the orbitals ¶♣ã1⟩, ♣ã2⟩, . . . , ♣ã𝑁⟩♢
and, following common practice in quantum chemistry, each Fock conĄguration can be

visualized as an excitation of this determinant.47

As indicated in (3.12), the reference state divides the single-particle space into two
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sub-spaces: the Ąrst 𝑁 orbitals are said to belong to the Śoccupied spaceŠ; the remaining

𝑀 orbitals are said to belong to the Śvirtual spaceŠ Ű these are sometimes called the

ŚholeŠ and ŚparticleŠ spaces, respectively.15 This structure is ubiquitous in the fermionic

coherent-state formalism and we thus adopt a special notation: creation and annihilation

operators belonging to each sub-space are denoted by different letters, as detailed below:

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑎† = (𝑎†
1, 𝑎

†
2, . . . , 𝑎

†
𝑁) = (𝑐†

1, 𝑐
†
2, . . . , 𝑐

†
𝑁)

𝑏† = (𝑏†
1, 𝑏

†
2, . . . , 𝑏

†
𝑀) = (𝑐†

𝑁+1, 𝑐
†
𝑁+2, . . . , 𝑐

†
𝐾).

(3.13)

Likewise, occupied and virtual orbitals are distinguished according to the following scheme:

⎧

⋁︁⨄︁

⋁︁⋃︁

(ã∙
1, ã

∙
2, . . . , ã

∙
𝑁) = (ã1, ã2, . . . , ã𝑁)

(ã◇
1, ã

◇
2, . . . , ã

◇
𝑀) = (ã𝑁+1, ã𝑁+2, . . . , ã𝐾)

(3.14)

Ű the use of symbols Ś∙Š and Ś◇Š to label these orbitals is reminiscent of the notation

employed by Deumens and collaborators in several works.15;17

The above classiĄcation is further supported by a subscript convention: different sets

of Greek letters will be employed when referring to occupied and virtual index ranges,

⎧

⋁︁⨄︁

⋁︁⋃︁

1 ⊘ (Ð, Ñ, Ò) ⊘ 𝑁

1 ⊘ (Û, Ü, Ö) ⊘𝑀
and 1 ⊘ (𝑝, 𝑞, 𝑟, 𝑠) ⊘ 𝐾; (3.15)

the indicated Latin letters refer to the full range of single-particle states, as in the bosonic

case. Bearing in mind these conventions we shall henceforth omit the limits in sums and

products. To exemplify the new notation, we recast the basic anti-commutation rules:

¶𝑎Ð, 𝑎†
Ñ♢ = ÓÐÑ, ¶𝑏Û, 𝑏†

Ü♢ = ÓÛÜ , ¶𝑎Ð, 𝑏†
Ü♢ = ¶𝑏Û, 𝑎†

Ñ♢ = 0, ¶𝑎Ð, 𝑎Ñ♢ = ¶𝑏Û, 𝑏Ü♢ = 0. (3.16)

Let us now introduce the fermionic coherent state; its unnormalized form is:

♣𝑧♢ = exp
(︁∑︁

Û

∑︁

Ð

𝑧ÛÐ𝑏
†
Û𝑎Ð

)︁

♣Φ0⟩. (3.17)

Notice that the coherent-state label 𝑧 is best understood as a matrix of size 𝑀 ×𝑁 ,

𝑧 =

⋃︀

⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⨄︀

𝑧11 𝑧12 ≤ ≤ ≤ 𝑧1𝑁

𝑧21 𝑧22 ≤ ≤ ≤ 𝑧2𝑁

...
...

. . .
...

𝑧𝑀1 𝑧𝑀2 ≤ ≤ ≤ 𝑧𝑀𝑁

⋂︀

⎥
⎥
⎥
⎥
⎥
⎥
⋀︀

, 𝑧† =

⋃︀

⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⨄︀

𝑧*
11 𝑧*

21 ≤ ≤ ≤ 𝑧*
𝑀1

𝑧*
12 𝑧*

22 ≤ ≤ ≤ 𝑧*
𝑀2

...
...

. . .
...

𝑧*
1𝑁 𝑧*

2𝑁 ≤ ≤ ≤ 𝑧*
𝑀𝑁

⋂︀

⎥
⎥
⎥
⎥
⎥
⎥
⋀︀

, (3.18)

and, therefore, the number of degrees of freedom in the fermionic phase space is 𝑑 = 𝑀𝑁 .

In Eq. (3.18) we also display the adjoint 𝑁 ×𝑀 matrix 𝑧†. In most problems we have
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𝑀 > 𝑁 and these matrices are rectangular. From (3.17) we see that each matrix entry

𝑧ÛÐ is related to an excitation process, in which a fermion is transferred from the occupied

to the virtual space.

Following the same steps of the previous chapter we shall next work down the coherent

state deĄnition to a more tractable form. For that purpose we Ąrst note that the bilinears

in the exponent commute among themselves, [𝑏†
Û𝑎Ð, 𝑏

†
Ü𝑎Ñ] = 0. Moreover, it can be easily

demonstrated that [𝑏†
Û𝑎Ð, 𝑎

†
Ñ] = 𝑏†

ÛÓÐÑ. These observations permit us to expand (3.17) as

♣𝑧♢ = (1 +
∑︀

Û𝑧Û1𝑏
†
Û𝑎1)(1 +

∑︀

Û𝑧Û2𝑏
†
Û𝑎2) ≤ ≤ ≤ (1 +

∑︀

Û𝑧Û𝑁𝑏
†
Û𝑎𝑁) ≤ (𝑎†

1𝑎
†
2 ≤ ≤ ≤ 𝑎†

𝑁)♣0⟩
= (𝑎†

1 +
∑︀

Û𝑧Û1𝑏
†
Û𝑎1𝑎

†
1)(𝑎

†
2 +

∑︀

Û𝑧Û2𝑏
†
Û𝑎2𝑎

†
2) ≤ ≤ ≤ (𝑎†

𝑁 +
∑︀

Û𝑧Û𝑁𝑏
†
Û𝑎𝑁𝑎

†
𝑁)♣0⟩

= (𝑎†
1 +

∑︀

Û𝑧Û1𝑏
†
Û(1⊗ 𝑛̂1))(𝑎

†
2 +

∑︀

Û𝑧Û2𝑏
†
Û(1⊗ 𝑛̂2)) ≤ ≤ ≤ (𝑎†

𝑁 +
∑︀

Û𝑧Û𝑁𝑏
†
Û(1⊗ 𝑛̂𝑁))♣0⟩

= (𝑎†
1 +

∑︀

Û𝑧Û1𝑏
†
Û)(𝑎†

2 +
∑︀

Û𝑧Û2𝑏
†
Û) ≤ ≤ ≤ (𝑎†

𝑁 +
∑︀

Û𝑧Û𝑁𝑏
†
Û)♣0⟩

=
√︂

Ð(𝑎†
Ð +

∑︀

Û𝑏
†
Û𝑧ÛÐ)♣0⟩ (3.19)

(the trick in going from the third to fourth line is to realize that, evaluating the expression

from right to left one term at a time, the number operator 𝑛̂Ð always acts on a state in

which the Ð-th orbital is vacant). Equation (3.19) reveals that the unnormalized coherent

state can be transparently written in terms of a new set of fermionic creation operators:

♣𝑧♢ = Õ†
1Õ

†
2 ≤ ≤ ≤ Õ†

𝑁 ♣0⟩, Õ†
Ð(𝑧) = 𝑎†

Ð +
∑︁

Û

𝑏†
Û𝑧ÛÐ, 1 ⊘ Ð ⊘ 𝑁. (3.20)

These new operators and their adjoints obey anti-commutation rules of the general form:

¶ÕÐ(𝑧*), Õ†
Ñ(𝑧′)♢ = ÓÐÑ +

∑︁

Ü

𝑧*
ÜÐ𝑧

′
ÜÑ, (3.21a)

¶ÕÐ(𝑧*), ÕÑ(𝑧*′)♢ = ¶Õ†
Ð(𝑧), Õ†

Ñ(𝑧′)♢ = 0. (3.21b)

here displayed for possibly different coherent-state labels.

The above formulas show that ♣𝑧♢ is a general type of Slater determinant, deĄned in

terms of a non-orthogonal set of single-particle orbitals ♣Õ(𝑧)♢, called dynamical orbitals,17

parametrized by 𝑧 in terms of the unnormalized superposition:

♣ÕÐ(𝑧)♢ = ♣ã∙
Ð⟩+

∑︁

Û

♣ã◇
Û⟩𝑧ÛÐ, (3.22)

or, more explicitly,

♣𝑧♢ = 𝐴𝑁
∏︁

Ð

♣ÕÐ(𝑧)♢ = 𝐴𝑁
∏︁

Ð

[︁

♣ã∙
Ð⟩+

∑︁

Û

♣ã◇
Û⟩𝑧ÛÐ

]︁

, (3.23)
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where the symbol 𝐴𝑁 instructs anti-symmetrization of the product of 𝑁 single-particle

states. This type of parametrization for Slater determinants was Ąrst proposed by Thou-

less as a tool for studying the stability of Hartree-Fock equations, particularly in what

concerns collective modes of nuclear matter.14 It has since been known as a Thouless

determinant.

Before proceeding with the development of the coherent-state formalism, let us list,

for future reference, the useful anti-commutation rules:

¶𝑎Ð, Õ†
Ñ♢ = ÓÐÑ, ¶𝑎†

Ð, Õ
†
Ñ♢ = 0, ¶𝑏Û, Õ†

Ñ♢ = 𝑧ÛÑ, ¶𝑏†
Û, Õ

†
Ñ♢ = 0, (3.24)

which can be obtained without difficulty from the basic anti-commutators and the deĄ-

nition of Õ†.

Let us evaluate the overlap ¶𝑧♣𝑧′♢ between two Thouless determinants Ű this result is

easily found once we note that

¶ÕÐ(𝑧*)♣ÕÑ(𝑧′)♢ = (𝐼𝑁 + 𝑧†𝑧′)ÐÑ, (3.25)

for we may now invoke the fact that the overlap between two general Slater determinants

is just the determinant of the matrix deĄned by the overlaps of its occupied orbitals (this

holds even for non-orthogonal orbitals).48 Abbreviating somewhat the notation, we get

immediately:

¶𝑧♣𝑧′♢ = ⟨0♣(Õ𝑁 . . . Õ1)(Õ
′†
1 . . . Õ

′†
𝑁)♣0⟩ = det

1⊘Ð,Ñ⊘𝑁
¶ÕÐ(𝑧*)♣ÕÑ(𝑧′)♢ = det(𝐼𝑁 + 𝑧†𝑧′). (3.26)

Lastly, the Fock decomposition of ♣𝑧♢ can be computed with the help of the anti-

commutation rules stated in (3.24). The detailed calculation is found in Appendix C.

The Ąnal result, here translated to more conventional quantum chemistry language, is:i

♣𝑧♢ =
𝑁∑︁

𝑙=0

∑︁

Ð∈𝐶N
l

∑︁

Û∈𝐶M
l

♣Φ0
(Û1Û2≤≤≤Ûl)
(Ð1Ð2≤≤≤Ðl)

⟩ det[𝑧(Û1Û2≤≤≤Ûl)(Ð1Ð2≤≤≤Ðl)], (3.27)

where ♣Φ0
(Û1Û2≤≤≤Ûl)
(Ð1Ð2≤≤≤Ðl)

⟩ is an 𝑙-th order excited conĄguration, built from ♣Φ0⟩ by transferring

𝑙 fermions from occupied orbitals (ã∙
Ð1
, ã∙

Ð2
, ≤ ≤ ≤ , ã∙

Ðl
) to virtual orbitals (ã◇

Û1
, ã◇

Û2
, ≤ ≤ ≤ , ã◇

Ûl
)

by successive action of particle-hole creators (which commute):

♣Φ0
(Û1Û2≤≤≤Ûl)
(Ð1Ð2≤≤≤Ðl)

⟩ = (𝑏†
Û1
𝑎Ð1

)(𝑏†
Û2
𝑎Ð2

) ≤ ≤ ≤ (𝑏†
Ûl
𝑎Ðl

)♣Φ0⟩. (3.28)

iIn Appendix C the decomposition is given in terms of standard Fock states. The states ♣Φ0
(Û1Û2≤≤≤Ûl)
(Ð1Ð2≤≤≤Ðl)⟩,

in terms of which the result expressed in Eq. (3.27) is written, are defined according to a non-standard
operator ordering – see Eq. (3.28) below. The relative sign between both orderings precisely cancels the
signature factor (⊗)Þ of Eq. (C.32); this is why there is no such factor in Eq. (3.27).
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The sum in Eq. (3.28) is over all possible ways of selecting 𝑙 out of 𝑁 objects, i.e. over

all elements of the set of combinations 𝐶𝑁
𝑙 , times all possible ways of placing them into

𝑀 boxes, i.e. elements of the set of combinations 𝐶𝑀
𝑙 , with 𝑙 ranging from 0 to 𝑁 . An

important detail here is that combinations are ordered: if Ð ∈ 𝐶𝑁
𝑙 , then Ð1 < Ð2 < ≤ ≤ ≤ <

Ð𝑙, and similarly for Û ∈ 𝐶𝑀
𝑙 . In this way, all Fock states have a nonzero overlap with

♣𝑧♢, which is controlled by the quantity det[𝑧(Û1Û2≤≤≤Ûl)(Ð1Ð2≤≤≤Ðl)], i.e. the sub-determinant of

𝑧 computed with the indicated rows and columns.

3.1.3 * Complementary orbitals and projectors

A complementary set of𝑀 orbitals can also be deĄned using the 𝑧 matrix.17 Their creation

operators are:

Ȭ†
Û(𝑧*) = 𝑏†

Û ⊗
∑︁

Ñ

𝑧*
ÛÑ𝑎

†
Ñ, 1 ⊘ Û ⊘𝑀, (3.29)

with corresponding single-particle states:

♣ȬÛ(𝑧*)♢ = ♣ã◇
Û⟩ ⊗

∑︁

Ñ

♣ã∙
Ñ⟩𝑧*

ÛÑ. (3.30)

By construction, these states are orthogonal to the set ♣ÕÐ(𝑧)♢, since the overlap

¶ȬÛ(𝑧)♣Õ†
Ð(𝑧′)♢ = 𝑧ÛÐ ⊗ 𝑧′

ÛÐ, (3.31)

vanishes for 𝑧′ = 𝑧. Additionally, the complementary creation and annihilation operators

satisfy:

¶ȬÛ(𝑧′), Ȭ†
Ü(𝑧

*)♢ = ÓÛÜ ⊗
∑︁

Ñ

𝑧′
ÛÑ𝑧

*
ÜÑ, ¶ȬÛ(𝑧′), ȬÜ(𝑧)♢ = 0, (3.32)

showing that these complementary states are not orthogonal among themselves.

The sets ¶Õ(𝑧), Ȭ(𝑧)♢ and ¶ã∙, ã◇♢ span the same single-particle space. This can be

veriĄed as follows: with the aid of Eqs. (3.20) and (3.29) we write the basis transformation

in matrix form using creation operators,

[︁

Õ† Ȭ†
]︁

=
[︁

𝑎† 𝑏†
]︁

⋃︀

⨄︀
𝐼𝑁 ⊗𝑧†

𝑧 𝐼𝑀

⋂︀

⋀︀ . (3.33)

Next, we employ the matrix identity,

⋃︀

⨄︀
𝐼𝑁 0

0 𝐼𝑀

⋂︀

⋀︀ =

⋃︀

⨄︀
𝐼𝑁 𝑧†

⊗𝑧 𝐼𝑀

⋂︀

⋀︀

⋃︀

⨄︀
(𝐼𝑁 + 𝑧†𝑧)⊗1 0

0 (𝐼𝑀 + 𝑧𝑧†)⊗1

⋂︀

⋀︀

⋃︀

⨄︀
𝐼𝑁 ⊗𝑧†

𝑧 𝐼𝑀

⋂︀

⋀︀ , (3.34)
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to get the inverse:

𝑎†
Ð =

∑︁

Ñ

(Õ†
Ñ ⊗

∑︁

Ü

Ȭ†
Ü𝑧ÜÑ)(𝐼𝑁 + 𝑧†𝑧)⊗1

ÑÐ, (3.35a)

𝑏†
Û =

∑︁

Ü

(Ȭ†
Ü +

∑︁

Ñ

Õ†
Ñ𝑧

†
ÑÜ)(𝐼𝑀 + 𝑧𝑧†)⊗1

ÜÛ . (3.35b)

Expressing the above formulas in terms of orbitals, and making use of the auxiliary

relations

𝑧(𝐼𝑀 + 𝑧𝑧†)⊗1 = (𝐼𝑁 + 𝑧†𝑧)⊗1𝑧, 𝑧†(𝐼𝑀 + 𝑧𝑧†)⊗1 = (𝐼𝑁 + 𝑧†𝑧)⊗1𝑧†, (3.36)

one is able to write the single-particle projector as follows:

𝑃 =
∑︁

Ð

♣ã∙
Ð⟩⟨ã∙

Ð♣+
∑︁

Û

♣ã◇
Û⟩⟨ã◇

Û♣

=
∑︁

ÐÑ

♣ÕÐ♢(𝐼𝑁 + 𝑧†𝑧)⊗1
ÐÑ¶ÕÑ♣+

∑︁

ÛÜ

♣ȬÛ♢(𝐼𝑀 + 𝑧𝑧†)⊗1
ÛÜ ¶ȬÜ ♣, (3.37)

i.e. the projector splits into two orthogonal parts: the Ąrst consisting of dynamical orbitals

♣Õ(𝑧)♢, and the second consisting of complementary orbitals ♣Ȭ(𝑧)♢.

3.1.4 The geometry of Thouless states

Given the analytic expression for the overlap ¶𝑧♣𝑧′♢, Eq. (3.26), we get from deĄnition

(1.56) the Kähler potential

𝑓(𝑧*, 𝑧′) = log[det(𝐼𝑁 + 𝑧†𝑧′)], (3.38)

and proceed to evaluate several quantities involved in the dynamics of Thouless determi-

nants.

Recalling the prescriptions for computing derivatives of both determinants and inverse

matrices,

𝜕(det𝐴)

𝜕𝑥
= (det𝐴)

∑︁

𝑖𝑗

(𝐴⊗1)𝑗𝑖
𝜕𝐴𝑖𝑗
𝜕𝑥

,

𝜕(𝐴⊗1)𝑗𝑖
𝜕𝑥

= ⊗
∑︁

𝑘𝑙

(𝐴⊗1)𝑗𝑘
𝜕𝐴𝑘𝑙
𝜕𝑥

(𝐴⊗1)𝑙𝑖,

and also the so-called ŚWoodbury matrix identitiesŠ,

𝐼𝑀 ⊗ 𝑧(𝐼𝑁 + 𝑧†𝑧)⊗1𝑧† = (𝐼𝑀 + 𝑧𝑧†)⊗1, (3.40a)

𝐼𝑁 ⊗ 𝑧†(𝐼𝑀 + 𝑧𝑧†)⊗1𝑧 = (𝐼𝑁 + 𝑧†𝑧)⊗1, (3.40b)
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we obtain, through straightforward differentiation, the Ąrst-order gradients of 𝑓(𝑧*, 𝑧′),

𝜕𝑓(𝑧*, 𝑧′)

𝜕𝑧′
ÛÐ

= [𝑧†(𝐼𝑀 + 𝑧′𝑧†)⊗1]ÐÛ = [(𝐼𝑁 + 𝑧†𝑧′)⊗1𝑧†]ÐÛ, (3.41a)

𝜕𝑓(𝑧*, 𝑧′)

𝜕𝑧*
ÜÑ

= [𝑧′(𝐼𝑁 + 𝑧†𝑧′)⊗1]ÜÑ = [(𝐼𝑀 + 𝑧′𝑧†)⊗1𝑧′]ÜÑ, (3.41b)

as well as the metric matrix, following the deĄnition given in Eq. (1.58),

𝑔(𝑧*, 𝑧)ÛÐ,ÜÑ =
𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧ÛÐ𝜕𝑧*
ÜÑ

= [(𝐼𝑀 + 𝑧𝑧†)⊗𝑇 ]ÛÜ [(𝐼𝑁 + 𝑧†𝑧)⊗1]ÐÑ. (3.42)

It is helpful to express the latter in the form of a Kronecker product:

𝑔 = (𝐼𝑀 + 𝑧𝑧†)⊗𝑇 · (𝐼𝑁 + 𝑧†𝑧)⊗1, (3.43)

in which case 𝑔 is regarded as a 𝑑× 𝑑 (i.e. 𝑀𝑁 ×𝑀𝑁) matrix whose entries are indexed

as follows:

𝑔(𝑧*, 𝑧)ÛÐ,ÜÑ = [(𝐼𝑀 + 𝑧𝑧†)⊗𝑇 · (𝐼𝑁 + 𝑧†𝑧)⊗1]𝑁(Û⊗1)+Ð,𝑁(Ü⊗1)+Ñ. (3.44)

Writing 𝑔 as in Eq. (3.43) facilitates the computation of its determinant, since the

following identity is available for arbitrary matrices 𝐴 and 𝐵 of respective sizes 𝑛×𝑛 and

𝑚×𝑚,

det(𝐴·𝐵) = (det𝐴)𝑚(det𝐵)𝑛. (3.45)

Thus we conclude that:

det 𝑔 = [det(𝐼𝑀 + 𝑧𝑧†)]⊗𝑁 [det(𝐼𝑁 + 𝑧†𝑧)]⊗𝑀 = [det(𝐼𝑁 + 𝑧†𝑧)]⊗𝐾 , (3.46)

where SylvesterŠs theorem Ű enunciated in the previous chapter, when deriving Eq. (2.38)

Ű has been invoked once more.

Then, from Eq. (1.60), we obtain in closed form the integration measure that enters

in the expression for the coherent-state closure relation:

𝑑Û(𝑧*, 𝑧) ⊕ Ù(det 𝑔)
∏︁

Û

∏︁

Ð

(𝑑2𝑧ÛÐ/Þ) = Ù [det(𝐼𝑁 + 𝑧†𝑧)]⊗𝐾
∏︁

Û

∏︁

Ð

(𝑑2𝑧ÛÐ/Þ). (3.47)

The detailed calculation of the normalization constant Ù is performed in Appendix C; the

result can be written as:

Ù =
𝑁∏︁

𝑛=1

(𝐾 ⊗ 𝑛+ 1)!

(𝑁 ⊗ 𝑛+ 1)!
. (3.48)

The inverse of the metric matrix, in turn, is obtained without difficulty by means of
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the Kronecker product property

(𝐴·𝐵)⊗1 = 𝐴⊗1 ·𝐵⊗1, (3.49)

whence it follows immediately that

𝑔⊗1 = (𝐼𝑀 + 𝑧𝑧†)𝑇 · (𝐼𝑁 + 𝑧†𝑧),

or explicitly in terms of matrix elements:

𝑔⊗1
ÛÐ,ÜÑ = (𝐼𝑀 + 𝑧𝑧†)𝑇ÛÜ(𝐼𝑁 + 𝑧†𝑧)ÐÑ. (3.50)

Check. It is instructive to check the consistency of the subscripts used in these formulas

by evaluating the product below:

∑︁

Ö

∑︁

Ò

𝑔⊗1
ÛÐ,ÖÒ 𝑔ÖÒ,ÜÑ =

∑︁

Ö

∑︁

Ò

(𝐼𝑀 + 𝑧𝑧†)𝑇ÛÖ(𝐼𝑁 + 𝑧†𝑧)ÐÒ(𝐼𝑀 + 𝑧𝑧†)⊗𝑇
ÖÜ (𝐼𝑁 + 𝑧†𝑧)⊗1

ÒÑ = ÓÛÜÓÐÑ.

The variational equation of motion is given in general form by Eq. (1.72); in the

present case, however, a slight modiĄcation is needed in order to account for the matrix-

like character of the coherent-state label. The adapted equation reads (note how the

indexes of 𝑔𝑇 are handled):

𝑧̇ÛÐ = ⊗ 𝑖
~

∑︁

Ñ

∑︁

Ü

𝑔⊗𝑇
ÛÐ,ÜÑ

𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧*
ÜÑ

= ⊗ 𝑖
~

∑︁

Ñ

∑︁

Ü

𝑔⊗1
ÜÑ,ÛÐ

𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧*
ÜÑ

, (3.51)

Substituting Eq. (3.50) into the latter expression leads to:

𝑧̇ÛÐ = ⊗ 𝑖
~

∑︁

Ü

∑︁

Ñ

(𝐼𝑀 + 𝑧𝑧†)ÛÜ
𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧*
ÜÑ

(𝐼𝑁 + 𝑧†𝑧)ÑÐ. (3.52)

In what follows we pursue further speciĄcation of this formula by restricting attention to

a particular family of many-body Hamiltonians.

3.2 Mean-field dynamics of interacting fermions

Let us consider the prototype Ąrst-quantized Hamiltonian,

𝐻̂(x) =
𝑁∑︁

𝑖=1

ℎ̂(x𝑖) + 1
2

𝑁∑︁

𝑖=1

𝑁∑︁

𝑗=1

𝑉 (x𝑖,x𝑗), (3.53)

for a system of𝑁 fermions. The one-body term ℎ̂(x) includes the kinetic energy, ⊗(~2/2𝑚)∇2,

as well as external potentials. Since particles are identical the interacting potential
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𝑉 (x,x′) must be symmetric with respect to particle interchange. Spin must be accounted

for in a Fermi system, thus both ℎ̂ and 𝑉 should be seen as operators in spin space

(diagonal in most cases).

The second-quantized form of the above Hamiltonian is obtained by means of fermionic

Ąeld operators which, under the truncated-basis description adopted here, are deĄned in

terms of a Ąnite set of 𝐾 single-particle orbitals ♣ã⟩, as depicted in Eq. (3.4). In this case,

the standard procedure leads to:46

𝐻̂ =
∑︁

𝑝𝑞

ℎ𝑝𝑞𝑐
†
𝑝𝑐𝑞 + 1

2

∑︁

𝑝𝑞𝑟𝑠

𝑉𝑝𝑟≤𝑞𝑠𝑐
†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞. (3.54)

The one- and two-body integrals are:

⎧

⋁︁⨄︁

⋁︁⋃︁

ℎ𝑝𝑞 = ⟨ã𝑝♣ℎ̂♣ã𝑞⟩
𝑉𝑝𝑟≤𝑞𝑠 = ⟨ã𝑝, ã𝑟♣𝑉 ♣ã𝑞, ã𝑠⟩

⇒

⎧

⋁︁⨄︁

⋁︁⋃︁

ℎ𝑝𝑞 = ℎ*
𝑞𝑝

𝑉𝑝𝑟≤𝑞𝑠 = 𝑉𝑟𝑝≤𝑠𝑞 = 𝑉 *
𝑞𝑠≤𝑝𝑟 = 𝑉 *

𝑠𝑞≤𝑟𝑝

, (3.55)

having the usual properties.ii

3.2.1 The one-density

We now turn to the coherent-state description of the system governed by Hamiltonian

(3.54). We assume that a reference state ♣Φ0⟩ is given as in Eq. (3.12) and orbitals are thus

classiĄed into occupied and virtual spaces, ♣ã⟩ = (♣ã∙⟩, ♣ã◇⟩), with corresponding creation

operators 𝑐† = (𝑎†, 𝑏†); furthermore, all notational conventions of ğ3.1 are adopted. A key

quantity, the reduced fermionic one-density matrix, is deĄned as the following expectation

value:17;48

Γ𝑞𝑝(𝑧
*, 𝑧) ⊕ ¶𝑧♣𝑐

†
𝑝𝑐𝑞♣𝑧♢
¶𝑧♣𝑧♢ = ⟨𝑧♣𝑐†

𝑝𝑐𝑞♣𝑧⟩, 1 ⊘ 𝑝, 𝑞 ⊘ 𝐾. (3.56)

In Appendix C the above matrix elements are computed using second-quantization tech-

niques. The result can be written in matrix form in several distinct and useful ways:

Γ =

⋃︀

⨄︀
(𝐼𝑁 + 𝑧†𝑧)⊗1 (𝐼𝑁 + 𝑧†𝑧)⊗1𝑧†

𝑧(𝐼𝑁 + 𝑧†𝑧)⊗1 𝑧(𝐼𝑁 + 𝑧†𝑧)⊗1𝑧†

⋂︀

⋀︀

=

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀ (𝐼𝑁 + 𝑧†𝑧)⊗1
[︁

𝐼𝑁 𝑧†
]︁

=

⋃︀

⨄︀
(𝐼𝑁 + 𝑧†𝑧)⊗1 0

0 (𝐼𝑀 + 𝑧𝑧†)⊗1

⋂︀

⋀︀

⋃︀

⨄︀
𝐼𝑁 𝑧†

𝑧 𝑧𝑧†

⋂︀

⋀︀ . (3.57)

The form used in the Ąrst line is the one straightforwardly obtained and most useful

for numerical purposes; the second form is convenient for analytic manipulations; the

iiNotice that 𝑐†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞 = 𝑐†

𝑝𝑐𝑞Ó𝑟𝑠⊗ 𝑐†
𝑝𝑐𝑠𝑐

†
𝑟𝑐𝑞; i.e. the Hamiltonian in Eq. (3.54) is a function of the basic

bilinears, as expected.
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factored form in the last line is reminiscent of the bosonic case and helps clarifying the

interpretation of Γ(𝑧*, 𝑧).

The fermionic one-density is an hermitian and idempotent matrix whose trace is nor-

malized to the total number of particles:

tr[Γ(𝑧*, 𝑧)] = 𝑁 and Γ(𝑧*, 𝑧)Γ(𝑧*, 𝑧) = Γ(𝑧*, 𝑧). (3.58)

Indeed, its diagonal elements are nothing but the average populations of each orbital ♣ã⟩:

𝑛𝑝(𝑧) = ⟨𝑧♣𝑐†
𝑝𝑐𝑝♣𝑧⟩,

∑︀

𝑝𝑛𝑝(𝑧) = 𝑁. (3.59)

The idempotency property listed in (3.58) allows for an appealing interpretation of Γ(𝑧*, 𝑧):

it is simply the matrix representation of the normalized projector onto the set of occupied

dynamical orbitals:17

Γ̂(𝑧*, 𝑧) =
∑︁

ÐÑ

♣ÕÐ(𝑧)♢(𝐼𝑁 + 𝑧†𝑧)⊗1¶ÕÑ(𝑧)♣ =
∑︁

𝑝𝑞

♣ã𝑝⟩Γ𝑝𝑞(𝑧*, 𝑧)⟨ã𝑞♣. (3.60)

Check. ŚSandwichingŠ this expression with ⟨ã𝑝♣ and ♣ã𝑞⟩ one Ąnds Γ𝑝𝑞 = ⟨ã𝑝♣Γ̂♣ã𝑞⟩ =
∑︀

ÐÑ⟨ã𝑝♣ÕÐ(𝑧)♢(𝐼𝑁 + 𝑧†𝑧)⊗1
ÐÑ¶ÕÑ(𝑧)♣ã𝑞⟩; then, substituting ⟨ã𝑝♣ÕÐ(𝑧)♢ and ¶ÕÑ(𝑧)♣ã𝑞⟩ from

previous equations, one easily recovers (3.57).

The fermionic one-density is naturally partitioned into occupied and virtual blocks.

Since we will often manipulate these individual blocks directly it is convenient to establish

the following notation:

Γ =

⋃︀

⨄︀
Γ11 Γ12

Γ21 Γ22

⋂︀

⋀︀ =

⋃︀

⨄︀
(𝐼𝑁 + 𝑧†𝑧)⊗1 (𝐼𝑁 + 𝑧†𝑧)⊗1𝑧†

𝑧(𝐼𝑁 + 𝑧†𝑧)⊗1 𝑧(𝐼𝑁 + 𝑧†𝑧)⊗1𝑧†

⋂︀

⋀︀ , (3.61)

where subscript Ś1Š refers to the occupied space, and subscript Ś2Š to the virtual space.

For transparency we give each blockŠs deĄnition in more detail:

(Γ11)ÐÑ = ⟨𝑧♣𝑎†
Ñ𝑎Ð♣𝑧⟩, (Γ12)ÐÜ = ⟨𝑧♣𝑏†

Ü𝑎Ð♣𝑧⟩, (Γ21)ÛÑ = ⟨𝑧♣𝑎†
Ñ𝑏Û♣𝑧⟩, (Γ22)ÛÜ = ⟨𝑧♣𝑏†

Ü𝑏Û♣𝑧⟩.
(3.62)

This partitioning is everywhere found in the present formalism, as it will be enforced in

several other matrices.

Before proceeding with the evaluation of the coherent-state expectation value of the

many-body Hamiltonian and subsequent particularization of the dynamical equations, we

shall take a brief detour in order to discuss important aspects of the Thouless parametriza-

tion which are pertinent to the fermionic problem; namely, the concept of intrinsic orbitals

and spin structure.
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3.2.2 Number density and intrinsic orbitals of the Thouless determinant

At this point it is convenient to discuss some features of the one-density and related con-

cepts. The number density of fermions in a Thouless determinant is 𝑛(x; 𝑧) = ⟨x♣Γ̂(𝑧*, 𝑧)♣x⟩,
where x is a position vector. In terms of the underlying basis functions we have

𝑛(x; 𝑧) =
∑︁

𝑝𝑞

ã𝑝(x)Γ𝑝𝑞(𝑧
*, 𝑧)ã*

𝑞(x). (3.63)

The one-density matrix is hermitian and therefore it can be diagonalized by a 𝑧-dependent

unitary matrix 𝑈 ,

Γ = 𝑈 diag(Ò1, Ò2, . . . , Ò𝐾) 𝑈 †, (3.64)

where the eigenvalues of Γ(𝑧*, 𝑧) have been denoted (Ò1, Ò2, . . . , Ò𝐾). By transforming the

original orbitals with the matrix 𝑈 a new set of basis functions is generated in such a way

that the number density reduces to the indicated form:

𝜙𝑞(x; 𝑧) =
∑︁

𝑠

ã𝑝(x) 𝑈𝑝𝑞(𝑧) ⇒ 𝑛(x; 𝑧) =
∑︁

𝑞

Ò𝑞(𝑧)♣𝜙𝑞(x; 𝑧)♣2. (3.65)

This simpliĄed formula for 𝑛(x; 𝑧) reminds us of the analogous expression for a system

of independent particles. The orbitals 𝜙 thus acquire a special meaning Ű we may say

they are the intrinsic orbitals of the Thouless determinant, with the eigenvalues Ò being

the corresponding intrinsic occupation numbers. The fundamental character of these

concepts stems from the fact that they are independent of the speciĄc single-particle

basis underlying the coherent-state description.iii

3.2.3 Spin structure of the Thouless determinant

The spin structure of the fermion problem deserves explicit consideration. Let us con-

centrate on the spin-1/2 case. As mentioned earlier, in our formalism spin information is

encoded within the label of each orbital, i.e. each orbital is associated with a speciĄc spin

component. Although not strictly necessary, we may imagine, for simplicity, that orbitals

come in pairs which share the same spacial function, but each element of the pair refers to

one of the spin projections, ≪ or ≫. If 𝑆 pairs are considered, a possible way of re-labeling

the basic orbitals is as follows:

𝐾 = 2𝑆, (ã1, ã2, . . . , ã𝐾)⊃ (ã≪1, ã≪2, . . . , ã≪𝑆, ã≫1, ã≫2, . . . , ã≫𝑆). (3.66)

iiiThe terminology employed here, i.e. the use of the word ‘intrinsic’ when referring to orbitals 𝜙 and
occupations Ò, is meant as an allusion to Löwdin’s profound concepts of ‘natural orbitals’ and ‘natural
occupation numbers’,48 quantities which are analogous to 𝜙 and Ò but calculated from a wavefunction
that represents an exact solution to the many-body problem.
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Then the one-density matrix can be divided into four spin blocks,

Γ =

⋃︀

⨄︀
Γ≪≪ Γ≪≫

Γ≫≪ Γ≫≫

⋂︀

⋀︀ , (3.67)

with each block being of size 𝑆 × 𝑆.

If we make spin projections ≪, ≫ explicit in the orbital labels in the manner of (3.66),

and, at the same time, use indexes 𝑖, 𝑗, 𝑘, 𝑙, running from 1 to 𝑆, in order to indicate the

distinct spacial functions, then the spin components of the Ąeld operators (3.4) can be

written as:

å̂à(x) =
∑︁

𝑖

ãà𝑖(x)𝑐à𝑖, å̂à(x) =
∑︁

𝑖

ã*
à𝑖(x)𝑐†

à𝑖, (à =≪, ≫), (3.68)

and their anti-commutation rules (3.5) become:

¶å̂à(x), å̂†
à′(x′)♢ = Óàà′𝑃 (x,x′), ¶å̂à(x), å̂à′(x′)♢ = ¶å̂†

à(x), å̂†
à′(x′)♢ = 0. (3.69)

Likewise, the spin-up and spin-down number densities are:

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑛≪(x; 𝑧) =
∑︀

𝑖𝑗 ã≪𝑖(x)[Γ≪≪(𝑧*, 𝑧)]𝑖𝑗ã*
≪𝑗(x)

𝑛≫(x; 𝑧) =
∑︀

𝑖𝑗 ã≫𝑖(x)[Γ≫≫(𝑧*, 𝑧)]𝑖𝑗ã*
≫𝑗(x)

. (3.70)

Notice that, although 𝑛(x; 𝑧) ̸= 𝑛≪(x; 𝑧) + 𝑛≫(x; 𝑧), the integral of the sum of these

densities correctly gives the total number of particles:

∫︁

𝑑x
[︁

𝑛≪(x; 𝑧) + 𝑛≫(x; 𝑧)
]︁

= tr
[︁

Γ≪≪(𝑧
*, 𝑧)

]︁

+ tr
[︁

Γ≫≫(𝑧
*, 𝑧)

]︁

= 𝑁≪ +𝑁≫ = 𝑁. (3.71)

Furthermore, notice that, in general, the intrinsic orbitals of the Thouless determinant

have no deĄnite spin projection:

⎧

⋁︁⨄︁

⋁︁⋃︁

𝜙𝑗(x; 𝑧) =
∑︀

𝑖 ã≪𝑖(x) [𝑈≪≪(𝑧)]𝑖𝑗 +
∑︀

𝑖 ã≫𝑖(x) [𝑈≫≪(𝑧)]𝑖𝑗

𝜙𝑆+𝑗(x; 𝑧) =
∑︀

𝑖 ã≫𝑖(x) [𝑈≫≪(𝑧)]𝑖𝑗 +
∑︀

𝑖 ã≪𝑖(x) [𝑈≫≫(𝑧)]𝑖𝑗
. (3.72)

To be sure, if no mixing of spin species occurs, i.e. Γ≪≫ = Γ≫≪ = 0, then consequently

𝑈≪≫ = 𝑈≫≪ = 0, and the intrinsic orbitals decouple into two sets corresponding to spin ≪
and ≫.

An important observation to be made is that the spin structure of the one-density

(and several other quantities pertaining to the coherent state formalism) is completely

independent of the occupied/virtual structure of the reference state. These partitions will

only coincide in problems with half-Ąlling, i.e. when 𝑁 = 𝑆 = 𝐾/2, and with a reference

state which involves only one spin species, e.g. ♣Φ0⟩ = 𝑎†
≪1𝑎

†
≪2 ≤ ≤ ≤ 𝑎†

≪𝑁 ♣0⟩. In all other cases
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they are completely disjoint.

⋃︀

⨄︀
Γ≪≪ Γ≪≫

Γ≫≪ Γ≫≫

⋂︀

⋀︀ L99 disjoint structures 99K

⋃︀

⨄︀
Γ11 Γ12

Γ21 Γ22

⋂︀

⋀︀ . (3.73)

Finally, it should be mentioned that in problems with no spin-dependent interactions

one can proĄt from combining the basic single-particle states into orbitals with a well-

deĄned total spin. Conservation laws will ensure that the dynamics takes place on a

restricted subspace and the size of the basis set may be decreased signiĄcantly. The num-

ber of degrees of freedom in the coherent-state description will also be smaller, facilitating

numerical calculations. We will not, however, Ąnd the opportunity to work out these de-

velopments Ű in the fermionic system studied in Chapter 5 different spin components are

coupled through two-body interaction terms.

3.2.4 Energy function and mean-field dynamics

Let us now return to the topic of dynamics. As in the bosonic case, in order to write

the energy function we require, besides the one-density, an explicit expression for the

coherent-state expectation value of the two-body interaction term. In Appendix C we

demonstrate that such expression is given in terms of Γ as follows (for brevity, we omit

the 𝑧 arguments from now on):

⟨𝑧♣𝑐†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞♣𝑧⟩ = Γ𝑞𝑝Γ𝑠𝑟 ⊗ Γ𝑠𝑝Γ𝑞𝑟. (3.74)

With Eqs. (3.56) and (3.74) the energy function, 𝐸 = ⟨𝑧♣𝐻̂♣𝑧⟩, can be computed:

𝐸 =
∑︁

𝑝𝑞

ℎ𝑝𝑞Γ𝑞𝑝 + 1
2

∑︁

𝑝𝑞𝑟𝑠

𝑉𝑝𝑟≤𝑞𝑠(Γ𝑞𝑝Γ𝑠𝑟 ⊗ Γ𝑠𝑝Γ𝑞𝑟)

=
∑︁

𝑝𝑞

ℎ𝑝𝑞Γ𝑞𝑝 + 1
2

∑︁

𝑝𝑞𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)Γ𝑠𝑟Γ𝑞𝑝

=
∑︁

𝑝𝑞

(ℎ𝑝𝑞 + 1
2
𝑣𝑝𝑞)Γ𝑞𝑝 = tr

[︁

(ℎ+ 1
2
𝑣)Γ

]︁

, (3.75)

where the fermionic mean-field matrix has been deĄned:

𝑣𝑝𝑞 =
∑︁

𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)Γ𝑠𝑟, 𝑣𝑝𝑞 = 𝑣*
𝑞𝑝. (3.76)

Similar to the bosonic case, the Γ-dependent mean-Ąeld 𝑣 stands for an effective one-body

potential experienced by each individual fermion due to an average Ąeld originated by the

remaining particles of the system by means of two-body interactions. If the formula-

tion takes place within the context of electronic structure, then 𝑣 is precisely the usual

mean-Ąeld from Hartree-Fock theory, the notable difference in relation to the traditional
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approach being the fact that here the one-density features a coherent-state parametriza-

tion. Indeed, in the electronic case, the dynamical equations for 𝑧 are equivalent, in

physical content, to those of time-dependent Hartree-Fock theory.

The equation of motion for 𝑧 is found by substitution of 𝐸(𝑧*, 𝑧), as given by Eq. (3.75),

in the general prescription (3.52); the required gradient with respect to 𝑧* is found using

the chain rule:
𝜕𝐸

𝜕𝑧*
ÛÐ

=
∑︁

𝑝𝑞

(ℎ𝑝𝑞 + 𝑣𝑝𝑞)
𝜕Γ𝑞𝑝
𝜕𝑧*

ÛÐ

=
∑︁

𝑝𝑞

𝐹𝑝𝑞
𝜕Γ𝑞𝑝
𝜕𝑧*

ÛÐ

. (3.77)

The density-dependent matrix 𝐹 is a new key quantity Ű following the terminology of

standard Hartree-Fock theory, this matrix is called the ŚFock matrixŠ; its elements are:

𝐹𝑝𝑞(Γ) = ℎ𝑝𝑞 + 𝑣𝑝𝑞(Γ) = ℎ𝑝𝑞 +
∑︁

𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)Γ𝑠𝑟. (3.78)

Meanwhile, the gradients of Γ are computed in Appendix C. Putting those formulas in

(3.77) and taking the result back to (3.52) we get, after some algebra:

𝑖~ 𝑧̇ÛÐ = (𝐹21)ÛÐ +
∑︁

Ü

(𝐹22)ÛÜ𝑧ÜÐ ⊗
∑︁

Ñ

𝑧ÛÑ(𝐹11)ÑÐ ⊗
∑︁

Ñ

∑︁

Ü

𝑧ÛÑ(𝐹12)ÑÜ𝑧ÜÐ, (3.79)

where the partitioning of 𝐹 is the same as that of Γ, depicted in (3.61). The above

equation can be more succinctly expressed in matrix form:17

𝑖~ 𝑧̇ = 𝐹21 + 𝐹22𝑧 ⊗ 𝑧𝐹11 ⊗ 𝑧𝐹12𝑧 =
[︁

⊗𝑧 𝐼𝑀
]︁

𝐹

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀ , 𝐹 = ℎ+ 𝑣. (3.80)

Once more we have at our hands a highly non-linear equation.

For completeness we also give an explicit expression for the Lagrangian, which is

obtained by the same procedure as that employed in the bosonic case, i.e. by plugging the

appropriate formulas into the general expression, Eq. (1.66). Among the many possible

ways of writing 𝐿 a particularly useful form is:

𝐿(𝑧) = ⊗tr(𝐹11)⊗ 1
2
tr(𝐹12𝑧 + 𝑧†𝐹21) + 1

2
tr(𝑣Γ). (3.81)

3.2.5 * Exact solutions for non-interacting systems

It is always instructive to examine exact solutions of dynamical equations when they are

available. In the absence of interactions, Eq. (3.80) can be greatly simpliĄed. In such

circumstances one may always elect a set of single-particle basis functions in terms of

which the one-body matrix ℎ takes a diagonal form, ℎ = diag(𝜀1, . . . , 𝜀𝑁 , Ú1, . . . , Ú𝑀).
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Since in this case 𝐹 = ℎ, the Fock matrix is diagonal and independent of 𝑧:

𝐻̂ =
∑︁

𝑝𝑞

(ℎ𝑝𝑝 Ó𝑝𝑞)𝑐
†
𝑝𝑐𝑞 =

∑︁

Ð

𝜀Ð𝑛̂Ð +
∑︁

Û

ÚÛ𝑛̂Û ⇒ 𝐹 = ℎ =

⋃︀

⨄︀
𝜀 0

0 Ú

⋂︀

⋀︀ . (3.82)

The equation of motion is then trivially solved:

𝑖~ 𝑧̇ÛÐ = (ÚÛ ⊗ 𝜀Ð)𝑧ÛÐ ⇒ 𝑧ÛÐ(𝑡) = 𝑧ÛÐ(0)𝑒⊗ i
~

(Úµ⊗𝜀α)𝑡. (3.83)

Meanwhile, the Lagrangian (3.81) reduces to 𝐿 = ⊗tr(𝐹11) = ⊗tr(𝜀), and hence the action

is just 𝑆 = ⊗
(︁
∑︀

Ð𝜀Ð
)︁

𝑡. Then, according to Eq. (1.75), the propagated state reads:

♣𝑧𝑡⟩𝑒
i
~
𝑆t(𝑧) = ♣𝑧(𝑧0, 𝑡)⟩ 𝑒⊗ i

~
(tr 𝜀)𝑡 where: 𝑧(𝑧0, 𝑡)ÛÐ = 𝑧0ÛÐ 𝑒

⊗ i
~

(Úµ⊗𝜀α)𝑡. (3.84)

Thus the state remains a Thouless determinant throughout its time evolution, with the

argument of each element of the initial 𝑧 vector being rotated at a rate which depends on

the eigenvalues of 𝐹 . Additionally, a global phase is accumulated.

3.3 More geometry: transformation of single-particle orbitals

Let us now consider unitary transformations of the underlying single-particle orbitals

and their effect on a coherent state. In particular, we are interested in establishing a

connection between coherent states deĄned over different sets of orbitals.

When this topic was addressed in a bosonic context in ğ2.3, we remarked on its use-

fulness in facilitating the evaluation of matrix elements, since second-quantized operators

sometimes have a simpler form when expressed in a speciĄc basis which may differ from

the one that is adequate for propagation. This is also true in the present case of Thouless

determinants, but here there is further reason to investigate the subject of such unitary

transformations and their effects.

In a Thouless determinant, Fock conĄgurations corresponding to low-lying excitations

of the chosen reference state Ű those which are ŚcloseŠ to ♣Φ0⟩ Ű are more efficiently approx-

imated than those which involve higher-order excitations, particularly those displaying a

signiĄcant occupation of virtual orbitals. Even if one properly chooses ♣Φ0⟩ as close as

possible to the initial state ♣𝑧0⟩ to be propagated, i.e. in such a manner that the parame-

ters 𝑧0 are smallest, the mean-Ąeld dynamics may drive the state away from the reference

conĄguration. This is problematic from a numerical point of view, since an appreciable

occupation of the virtual space requires large values of 𝑧, potentially leading to inaccura-

cies (due to numerical errors) in the time-evolved state ♣𝑧𝑡⟩. In this case the recommended

prescription is to perform a unitary transformation on the basic single-particle orbitals,

thereby changing the old reference conĄguration into a new one, more appropriate for
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representing the physical state at time 𝑡, and therefore regularizing the Thouless param-

eters, which are mapped into a new and more adequate set.17 Thus there is a strong

practical motivation for developing the ideas of this section, which will later be adapted

to a multiconĄgurational context at the end of Chapter 4.

Let us then introduce two sets of single-particle orbitals, ♣ã⟩ and ♣ä⟩, with correspond-

ing creation operators 𝑐† and 𝑐†:

♣ã𝑝⟩ = 𝑐†
𝑝♣0⟩ and ♣ä𝑝⟩ = 𝑐†

𝑝♣0⟩, 0 ⊘ 𝑝 ⊘ 𝑑. (3.85)

Both sets are orthonormal and span the same space:

𝑃 =
∑︀

𝑝♣ã𝑝⟩⟨ã𝑝♣ =
∑︀

𝑝♣ä𝑝⟩⟨ä𝑝♣. (3.86)

The unitary matrix of the transformation ♣ã⟩ ⊂ ♣ä⟩ (𝑐† ⊂ 𝑐†) is denoted by 𝑋, while its

inverse is denoted by 𝑌 ; we have:

⎧

⋁︁⨄︁

⋁︁⋃︁

♣ã𝑝⟩ =
∑︀

𝑞♣ä𝑞⟩⟨ä𝑞♣ã𝑝⟩ =
∑︀

𝑞♣ä𝑞⟩𝑋𝑞𝑝

♣ä𝑝⟩ =
∑︀

𝑞♣ã𝑞⟩⟨ã𝑞♣ä𝑝⟩ =
∑︀

𝑞♣ã𝑞⟩𝑌𝑞𝑝
⇒

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑐†
𝑝 =

∑︀

𝑞𝑐
†
𝑞𝑋𝑞𝑝

𝑐†
𝑝 =

∑︀

𝑞𝑐
†
𝑞𝑌𝑞𝑝

with: 𝑌 = 𝑋† = 𝑋⊗1.

(3.87)

Both sets are subdivided into occupied and virtual spaces according to:

𝑐 = (𝑐1, . . . , 𝑐𝐾) = (𝑎1, . . . , 𝑎𝑁 , 𝑏1, . . . , 𝑏𝑀), (3.88a)

𝑐 = (𝑐1, . . . , 𝑐𝐾) = (𝑎̃1, . . . , 𝑎̃𝑁 , 𝑏̃1, . . . , 𝑏̃𝑀), (3.88b)

and a corresponding blockwise partition of matrices 𝑋 and 𝑌 is also enforced. Using

creation operators, the transformation ♣ã⟩ ⊂ ♣ä⟩, can be written as:

𝑎†
Ð =

∑︁

Ñ

𝑎̃†
Ñ(𝑋11)ÑÐ +

∑︁

Ü

𝑏̃†
Ü(𝑋21)ÜÐ, (3.89a)

𝑏†
Û =

∑︁

Ñ

𝑎̃†
Ñ(𝑋12)ÑÛ +

∑︁

Ü

𝑏̃†
Ü(𝑋22)ÜÛ. (3.89b)

The Thouless determinant is deĄned in terms of 𝑁 dynamical orbitals ♣ÕÐ(𝑧)♢, which

are linear superpositions of the basic single-particle functions, as shown by Eq. (3.20).
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Let us see how the replacements of Eq. (3.89) affect their creation operators Õ†
Ð(𝑧):

Õ†
Ð(𝑧) = (𝑎†

Ð +
∑︀

Û𝑏
†
Û𝑧ÛÐ)

=
∑︀

Ñ𝑎̃
†
Ñ(𝑋11 +𝑋12𝑧)ÑÐ +

∑︀

Ü 𝑏̃
†
Ü(𝑋21 +𝑋22𝑧)ÜÐ

=
∑︀

Ñ

[︁

𝑎̃†
Ñ +

∑︀

Ü 𝑏̃
†
Ü [(𝑋21 +𝑋22𝑧)(𝑋11 +𝑋12𝑧)

⊗1]ÜÑ
]︁

(𝑋11 +𝑋12𝑧)ÑÐ

=
∑︀

Ñ(𝑎̃†
Ñ +

∑︀

Ü 𝑏̃
†
Ü𝑤ÜÑ)(𝑋11 +𝑋12𝑧)ÑÐ

=
∑︀

Ñ Õ̃
†
Ñ(𝑤)(𝑋11 +𝑋12𝑧)ÑÐ, (3.90)

where we have identiĄed Õ̃†
Ñ(𝑤) = (𝑎̃†

Ñ +
∑︀

Ü 𝑏̃
†
Ü𝑤ÜÑ) with the new label 𝑤 deĄned in terms

of 𝑧 through the connection:

𝑤 = (𝑋21 +𝑋22𝑧)(𝑋11 +𝑋12𝑧)
⊗1. (3.91)

The above calculation shows that the coherent-state ♣𝑧♢ã, whose underlying single-particle

states are ♣ã⟩, can be written as:

♣𝑧♢ã =
∏︁

Ð

Õ†
Ð(𝑧)♣0⟩ =

∏︁

Ð

[︁
∑︀

Ñ Õ̃
†
Ñ(𝑤)(𝑋11 +𝑋12𝑧)ÑÐ

]︁

♣0⟩ =
[︁∏︁

Ð

Õ̃†
Ð(𝑤)♣0⟩

]︁

det(𝑋11 +𝑋12𝑧),

(3.92)

where the operator version of the basic determinant property, det(𝐴𝐵) = det(𝐴) det(𝐵),

has been invoked in the last passage. Finally, identifying the new parametrization, ♣𝑤♢ä =
√︂

Ñ Õ̃
†
Ñ(𝑤)♣0⟩ and re-organizing the expression, we arrive at the desired result:

♣𝑤♢ä = ♣𝑧♢ã[det(𝑋11 +𝑋12𝑧)]
⊗1. (3.93)

The reverse formula is immediately found by interchanging 𝑧 ≺ 𝑤 and 𝑋 ≺ 𝑌 :

♣𝑧♢ã = ♣𝑤♢ä[det(𝑌11 + 𝑌12𝑤)]⊗1, (3.94)

with 𝑧 given in terms of 𝑤 by:

𝑧 = (𝑌21 + 𝑌22𝑤)(𝑌11 + 𝑌12𝑤)⊗1. (3.95)

Note that Eqs. (3.93) and (3.94) suggest the identity:

(𝑋11 +𝑋12𝑧) = (𝑌11 + 𝑌12𝑤)⊗1, (3.96)

which is found to hold by substituting either 𝑧 or 𝑤 and noting that 𝑋𝑌 = 𝐼𝐾 .

The next step is to recast these connecting formulas in terms of normalized states.
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Inclusion of normalization factors into Eq. (3.94) leads to:

♣𝑧⟩ã = ♣𝑤⟩ä det[(𝑌11 + 𝑌12𝑤)⊗1] det[(𝐼𝑁 + 𝑧†𝑧)⊗1(𝐼𝑁 + 𝑤†𝑤)]1/2. (3.97)

Our goal is to eliminate 𝑧 from the above relation. As it turns out, the product of

normalization factors gives

(𝐼𝑁 + 𝑧†𝑧)⊗1(𝐼𝑁 + 𝑤†𝑤) = (𝑌11 + 𝑌12𝑤)†(𝐼𝑁 + 𝑤†𝑤)⊗1(𝑌11 + 𝑌12𝑤)(𝐼𝑁 + 𝑤†𝑤), (3.98)

and hence:

det[(𝐼𝑁 + 𝑧†𝑧)⊗1(𝐼𝑁 + 𝑤†𝑤)]1/2 = ♣ det(𝑌11 + 𝑌12𝑤)♣. (3.99)

Taking this result back to (3.97), we deduce:

⎧

⋁︁⨄︁

⋁︁⋃︁

♣𝑧⟩ã = ♣𝑤⟩ä𝑒⊗𝑖𝜙

♣𝑤⟩ä = ♣𝑧⟩ã𝑒𝑖𝜙
with: 𝜙 =

⎧

⋁︁⨄︁

⋁︁⋃︁

arg[det(𝑌11 + 𝑌12𝑤)]

⊗arg[det(𝑋11 +𝑋12𝑧)]
, (3.100)

where the identity (3.96) allows the phase 𝜙 to be written in terms of either 𝑧 or 𝑤,

depending on the direction we perform the transformation.

The above formulas therefore show that a unitary transformation of the basic orbitals

induce a holomorphic map on the coherent-state label; at the same time, a geometrical

phase is acquired by the transformed vector.

In what concerns the regularization of the coherent-state dynamics, we see that an

adjustment of the reference state can be achieved with a simple prescription, summarized

by Eqs. (3.91), (3.95), and (3.100). Notice that, when changing single-particle orbitals

at some point of the time evolution, one must also be sure to carry out the appropriate

transformation of the Hamiltonian Ű we leave this matter to be addressed later at ğ4.6.

Finally, we note that, in practice, these rules should also be equipped with a protocol

for deciding whether regularization is needed at any given instant, together with an algo-

rithm that produces the most adequate transformation Ű these topics were left out of the

discussion, since such amendments may vary from problem to problem.

3.3.1 * Alternative expressions for the transformation rule

For completeness, we list below alternative versions of the formulas connecting the coherent-

state labels 𝑧 and 𝑤, whose respective sets of underlying single-particle orbitals are related

as explained above.

Consider the following identity, valid for any 𝑀×𝑁 matrix á and matrices 𝐴, 𝐵, such
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that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝐾 :

á𝐼𝑁 = 𝐼𝑀á ⇒
[︁

⊗á 𝐼𝑀
]︁

⋃︀

⨄︀
𝐼𝑁

á

⋂︀

⋀︀ = 0 or:
[︁

⊗á 𝐼𝑀
]︁

(𝐴𝐵)

⋃︀

⨄︀
𝐼𝑁

á

⋂︀

⋀︀ = 0, for 𝐴𝐵 = 𝐼𝐾 .

(3.101)

Expanding the matrix product we get

(𝐴22𝐵21 + 𝐴21𝐵11) + (𝐴22𝐵22 + 𝐴21𝐵12)á

⊗ á(𝐴12𝐵21 + 𝐴11𝐵11)⊗ á(𝐴12𝐵22 + 𝐴11𝐵12)á = 0,

which can be reorganized as follows:

(𝐴22 ⊗ á𝐴12)(𝐵21 +𝐵22á) = ⊗(𝐴21 ⊗ á𝐴11)(𝐵11 +𝐵12á). (3.102)

In terms of coherent-state labels and transformation matrices, the above is valid for

either of the two cases: (i) á = 𝑤, 𝐴 = 𝑋, 𝐵 = 𝑌 ; or (ii) á = 𝑧, 𝐴 = 𝑌 , 𝐵 = 𝑋; thus we

establish:

(𝑌21 + 𝑌22𝑤)(𝑌11 + 𝑌12𝑤)⊗1 = ⊗(𝑋22 ⊗ 𝑤𝑋12)
⊗1(𝑋21 ⊗ 𝑤𝑋11), (3.103a)

(𝑋21 +𝑋22𝑧)(𝑋11 +𝑋12𝑧)
⊗1 = ⊗(𝑌22 ⊗ 𝑧𝑌12)

⊗1(𝑌21 ⊗ 𝑧𝑌11). (3.103b)

This allows us to write the connecting formulas, (3.91) and (3.95), as:

𝑧 = (𝑌21 + 𝑌22𝑤)(𝑌11 + 𝑌12𝑤)⊗1 = ⊗(𝑋22 ⊗ 𝑤𝑋12)
⊗1(𝑋21 ⊗ 𝑤𝑋11), (3.104a)

𝑤 = (𝑋21 +𝑋22𝑧)(𝑋11 +𝑋12𝑧)
⊗1 = ⊗(𝑌22 ⊗ 𝑧𝑌12)

⊗1(𝑌21 ⊗ 𝑧𝑌11). (3.104b)

Using the relation 𝑋† = 𝑌 we Ąnd, additionally,

𝑧† = (𝑋11 + 𝑤†𝑋21)
⊗1(𝑋12 + 𝑤†𝑋22) = ⊗(𝑌12 ⊗ 𝑌11𝑤

†)(𝑌22 ⊗ 𝑌21𝑤
†)⊗1, (3.105a)

𝑤† = (𝑌11 + 𝑧†𝑌21)
⊗1(𝑌12 + 𝑧†𝑌22) = ⊗(𝑋12 ⊗𝑋11𝑧

†)(𝑋22 ⊗𝑋21𝑧
†)⊗1. (3.105b)
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Chapter 4

Multiconfigurational method

Overview. The trajectory-guided multiconĄgurational method based on

generalized coherent states is formulated and thoroughly discussed. The ap-

proach is seen as an extension of the Gaussian-based coupled coherent states

(CCS) technique of Shalashilin and Child,25–27 and derivation of the basic

equations proceeds along the same lines of the original formulation. The

method is Ąrst derived in continuum form, so that the newly incorporated

geometrical features can be better studied. Next, the discrete unitary version

is considered Ű this is the standard form of the method. Several aspects relat-

ing to its numerical implementation are examined in detail, and a paralleliza-

tion strategy, suitable for certain classes of problems, is proposed. Finally,

an ŚextendedŠ scheme, speciĄcally designed for fermionic coherent states, is

advanced. The developments of this chapter constitute the Śtheoretical coreŠ

of the present thesis.

4.1 The continuum version

We begin by considering the coherent-state decomposition of an arbitrary quantum state,

♣å⟩ =
∫︁

𝑑Û(𝑧)♣𝑧⟩⟨𝑧♣å⟩ =
∫︁

𝑑Û(𝑧0)♣𝑧⟩⟨𝑧♣å⟩, (4.1)

which follows from the closure relation (1.59). It is assumed that 𝑧 = 𝑧(𝑡) is bound to obey

the classical equations of motion (1.72). By virtue of phase-space volume conservation,

c.f. Appendix A, we are allowed to transfer the integration measure to the initial instant

and conveniently integrate over initial conditions 𝑧0 = 𝑧(0), as indicated in the second

equality in (4.1). The derivation of the CCS equations amounts to Ąnding a solution of

the Schrödinger equation

𝑖~♣å̇⟩ = 𝐻̂♣å⟩, (4.2)
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for ♣å⟩ in the form given by (4.1) with the ansatz :

⟨𝑧♣å⟩ = 𝐶(𝑧)𝑒
i
~
𝑆(𝑧), (4.3)

where 𝑆(𝑧) is the action deĄned in (1.74). In other words, we seek an equation of motion

for the time-dependent amplitude 𝐶(𝑧) that solves (4.2). Let us make a few observations

regarding this particular choice of solution.

First, all quantities that specify ♣å⟩ Ű i.e. ♣𝑧⟩, 𝐶(𝑧) and 𝑆(𝑧) Ű are to be regarded

as functions of the initial conditions 𝑧0. Methods belonging to such a class, where the

wavefunction is expressed in terms of an integral over initial conditions of classical tra-

jectories (here, in a generalized sense), are known as initial-value representations. They

are familiar from the Ąeld of quantum chemistry and usually constitute semiclassical ap-

proximations designed for the study of time-dependent phenomena, e.g. non-adiabatic

transitions in molecules. The present method is thus conceived as a quantum initial value

representation from the onset Ű in spite of its semiclassical character.

Second, it follows from (4.3) that 𝐶(𝑧) depends on the initial state ♣å0⟩ = ♣å(0)⟩
through the relation 𝐶(𝑧0) = ⟨𝑧0♣å0⟩. In numerical applications, the phase-space integral

in (4.1) has to be approximated somehow. The typical procedure is to sample initial con-

ditions 𝑧0 in phase space with the overlap modulus ♣⟨𝑧0♣å0⟩♣ playing the role of a weight

function, though a variety of alternative sampling strategies are possible49;50. Despite the

inherent ambiguity of overcomplete basis sets in what concerns wavefunction representa-

tions, once the 𝑧0Šs have been properly selected in an approximated integral the values of

the corresponding 𝐶(𝑧0)Šs are uniquely deĄned.

Third, the motivation behind the factorization of ⟨𝑧♣å⟩ into a complex amplitude times

an action exponential comes from a general result of semiclassical theory, according to

which the classical action provides a Ąrst-order approximation to the phase of a quantum

state29;43;51 (see also the discussion in ğ6.2, in the next chapter). Since this phase accounts

for most of the wavefunctionŠs oscillatory behavior, 𝐶(𝑧) is expected to present a rather

smooth time dependence, thus facilitating numerical treatment.

Having made the above remarks, we now proceed to look for a differential equation for

𝐶(𝑧). Taking the total time derivative of (4.3) and making use of the Schrödinger equa-

tion, we Ąnd (after rearranging terms):

𝑖~ 𝐶̇(𝑧) =
[︁

𝑖~⟨𝑧̇♣å⟩+ ⟨𝑧♣𝐻̂♣å⟩+ 𝐿(𝑧)⟨𝑧♣å⟩
]︁

𝑒⊗ i
~
𝑆(𝑧). (4.4)

Next, we factor out ♣å⟩ by separating the scalar products on the right-hand side of the

equation with the help of the closure relation 1̂ =
√︃

𝑑Û(𝑧′)♣𝑧′⟩⟨𝑧′♣, with 𝑧′ = 𝑧′(𝑡), which

leads to:

𝑖~ 𝐶̇(𝑧) =
∫︁

𝑑Û(𝑧′
0)⟨𝑧♣𝑧′⟩Δ(𝑧*, 𝑧′)𝐶(𝑧′)𝑒

i
~

(𝑆(𝑧′)⊗𝑆(𝑧)). (4.5)
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Here we have already shifted the integration measure of primed variables to the initial

instant [𝑧′
0 = 𝑧′(0)] and replaced the ⟨𝑧′♣å⟩ that appeared under the integral sign for

𝐶(𝑧′)𝑒
i
~
𝑆(𝑧′).

A key quantity of the present method has been deĄned in Eq. (4.5): the CCS coupling

Δ(𝑧*, 𝑧′), whose explicit expression is given by

Δ(𝑧*, 𝑧′) = 𝑖~
⟨𝑧̇♣𝑧′⟩
⟨𝑧♣𝑧′⟩ + 𝐸(𝑧*, 𝑧′) + 𝐿(𝑧), (4.6)

where the non-diagonal matrix element

𝐸(𝑧*, 𝑧′) =
¶𝑧♣𝐻̂♣𝑧′♢
¶𝑧♣𝑧′♢ =

⟨𝑧♣𝐻̂♣𝑧′⟩
⟨𝑧♣𝑧′⟩ , (4.7)

is an analytical function of 𝑧* and 𝑧′ that can be directly obtained by analytical continu-

ation of the energy function (1.64) (i.e. by simply making the change (𝑧*, 𝑧)⊃ (𝑧*, 𝑧′) in

the function).

The object Δ(𝑧*, 𝑧′) earns its name, ŚCCS couplingŠ, from the fact that it is the

quantity responsible for correlating the time evolution of amplitudes 𝐶(𝑧) and 𝐶(𝑧′). In

must be kept in mind, though, that the actual coupling strength between these amplitudes

is further modulated by the overlap ⟨𝑧♣𝑧′⟩, as evidenced in Eq. (4.5).

Let us now work on the raw formula (4.6) with the purpose of expressing it in terms

of readily computable quantities. Since ⟨𝑧♣ = 𝑒⊗ 1

2
𝑓(𝑧*,𝑧)¶𝑧♣ we observe that the Ąrst term

can be rewritten as
⟨𝑧̇♣𝑧′⟩
⟨𝑧♣𝑧′⟩ =

¶𝑧̇♣𝑧′♢
¶𝑧♣𝑧′♢ ⊗

1

2

𝑑

𝑑𝑡
𝑓(𝑧*, 𝑧).

In turn, the total time derivative of 𝑓(𝑧*, 𝑧) is simply

𝑑

𝑑𝑡
𝑓(𝑧*, 𝑧) =

𝑑∑︁

Ð=1

⎟

𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧*
Ð

𝑧̇*
Ð +

𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧Ð
𝑧̇Ð

]︃

,

while the remaining term involving ¶𝑧̇♣ can be recast as

¶𝑧̇♣𝑧′♢
¶𝑧♣𝑧′♢ =

𝑑∑︁

Ð=1

𝜕𝑓(𝑧*, 𝑧′)

𝜕𝑧*
Ð

𝑧̇*
Ð,

owing to the analyticity of ¶𝑧♣ on 𝑧*. Hence, collecting together the above results and

making the necessary replacements in (4.6), we Ąnd that the coupling takes the form:

Δ(𝑧*, 𝑧′) = 𝐸(𝑧*, 𝑧′)⊗ 𝐸(𝑧*, 𝑧) + 𝑖~
𝑑∑︁

Ð=1

𝑧̇*
Ð

⎟

𝜕𝑓(𝑧*, 𝑧′)

𝜕𝑧*
Ð

⊗ 𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧*
Ð

]︃

, (4.8)

which, we note, is an analytic function on 𝑧′. Further substitution of 𝑧̇*
Ð by means of the
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dynamical equation (1.72) [or rather (1.69)] produces:

Δ(𝑧*, 𝑧′) = 𝐸(𝑧*, 𝑧′)⊗𝐸(𝑧*, 𝑧)⊗
𝑑∑︁

Ð,Ñ=1

⎟

𝜕𝑓(𝑧*, 𝑧′)

𝜕𝑧*
Ð

⊗ 𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧*
Ð

]︃

𝑔(𝑧*, 𝑧)ÐÑ
𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧Ñ
, (4.9)

which makes all dependence on 𝑧* and 𝑧 explicit.

We remark that, if one performs a series expansion of Δ(𝑧*, 𝑧′) for small ♣𝑧′ ⊗ 𝑧♣, one

Ąnds that it begins with a second-order term. In the generalized coherent state case, this

expansioni is complicated by the non-Ćat geometry of the phase space and it does not

coincide with the second- and higher-order terms in the Taylor series of 𝐸(𝑧*, 𝑧′) (as is

does for canonical coherent states). Nevertheless, the second-order character of Δ(𝑧*, 𝑧′),

as understood in energy terms, becomes quite apparent when speciĄc Bose and Fermi

Hamiltonians, e.g. those considered in Chapters 2 and 3, are substituted into Eq. (4.9) Ű

this will be the subject of ğ4.3.

By integrating equation (4.5), the amplitudes at time 𝑡 > 0 can be determined from

their initial values. Once the amplitudes are known, we can reconstruct the quantum

state with the prescription of Eqs. (4.3) and (4.1), that is,

♣å⟩ =
∫︁

𝑑Û(𝑧0)♣𝑧⟩𝐶(𝑧)𝑒
i
~
𝑆(𝑧). (4.10)

The integro-differential equation (4.5) Ű with Δ(𝑧*, 𝑧′) given by (4.8) Ű relates directly

to the gaussian-wavepacket version of the CCS method27 and shares some of its attractive

characteristics, namely: (i) in the semiclassical regime, according to reasons mentioned

earlier, the amplitude 𝐶(𝑧) is expected to have a smooth time dependence; (ii) because

of the coherent-state overlap ⟨𝑧♣𝑧′⟩, the 𝑧′ integral is mostly localized around 𝑧;ii and (iii)

the integrand is identically zero when 𝑧′ = 𝑧 (precisely because of the included action

phase).

Thus, the kernel which correlates amplitudes of different basis elements decreases fast

as the distance ♣𝑧′ ⊗ 𝑧♣ grows, on account of the overlap ⟨𝑧♣𝑧′⟩. In other words, the

coupling strength between amplitudes 𝐶(𝑧) and 𝐶(𝑧′), associated with ♣𝑧⟩ and ♣𝑧′⟩, is

appreciable only if 𝑧′ lies on the neighborhood of 𝑧, though the size of such neighborhood

may vary depending on some of the aspects of the problem at hand. Nevertheless, one

may anticipate that the method achieves its maximum efficiency if the system evolves

under a semiclassical regime, where coherent-state overlaps are intensely localized and

the amplitude corresponding to a given coherent state would only change as a result of

correlations developed among the latter and other basis elements located in its immediate

neighborhood.

iA similar expansion is carried out in full detail at Chapter 6
iiFor coherent states other than canonical, ♣⟨𝑧♣𝑧′⟩♣ is no longer a gaussian distribution, but is still

localized in phase space.
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4.2 Discrete unitary version

Let us now derive the CCS equations using a Ąnite discrete basis. This section deals with

the unitary version of the resulting propagation scheme; a less sophisticated non-unitary

formula (which can be obtained as a special case) is discussed later.

The Ąrst thing one must recognize is that, generally speaking, a basis set constructed

with a Ąnite number of coherent states will only provide an approximate description of the

full Hilbert space wherein the systemŠs wavefunction evolves. This means that the CCS

method, in its discrete version, will not solve the Schrödinger equation exactly, unless

the number of basis elements is properly increased to the point where the phase space is

completely covered, and the Hilbert space closure relation can be emulated by the basis set

projector. Despite this limitation, one Ąnds that, in many cases, the quantum evolution

takes place in a restricted region of Hilbert space (at least for sufficiently short propagation

time), allowing almost exact results to be obtained with a reasonably small basis set Ű

this signalizes a ŚbreachŠ in quantum dynamics, and the CCS method is precisely designed

to take advantage of it.

Having made these clariĄcations, we shall go through essentially the same steps delin-

eated in ğ4.1, only this time considering a basis set of size 𝑚, whose projector is

Ω̂ =
𝑚∑︁

𝑖=1

𝑚∑︁

𝑗=1

♣𝑧𝑖⟩Ω⊗1
𝑖𝑗 ⟨𝑧𝑗♣. (4.11)

Here, a new notational convention is introduced: Latin letters 𝑖, 𝑗, 𝑘, 𝑙 will be used for

labeling basis-set elements and, for convenience, we henceforth abbreviate basis-set sum-

mations by omitting their range (which is always from 1 to 𝑚). Notice that, since each

♣𝑧𝑖⟩ = ♣𝑧𝑖(𝑡)⟩ evolves independently according to classical equations (1.72), the space

spanned in (4.11) changes with 𝑡, i.e. the projector itself is time-dependent, Ω̂ = Ω̂(𝑡).

The projectorŠs matrix elements deĄne the 𝑚×𝑚 overlap matrix:

Ω𝑖𝑗 = ⟨𝑧𝑖♣Ω̂♣𝑧𝑗⟩ = ⟨𝑧𝑖♣𝑧𝑗⟩. (4.12)

For the moment, we shall not concern ourselves with the particular way the basis el-

ements are chosen (this will be the subject of ğ4.4) but we observe that the overlap

matrix is assumed to be sufficiently well-conditioned during the time interval upon which

the propagation takes place, to the extent that operations involving its inverse produce

sensible results Ű otherwise Eq. (4.11) would be ill-deĄned.

The Ąnite-basis restriction amounts to the following approximation for the quantum

state ♣å⟩:
♣å⟩ ≡ Ω̂♣å⟩ =

∑︁

𝑖𝑗

♣𝑧𝑖⟩Ω⊗1
𝑖𝑗 ⟨𝑧𝑗♣å⟩. (4.13)



78

Following the recipe of the previous section, an amplitude and action phase are assigned to

each orbit: 𝐶𝑖 = 𝐶(𝑧𝑖) and 𝑆𝑖 = 𝑆(𝑧𝑖), respectively, with 1 ⊘ 𝑖 ⊘ 𝑚. The coherent-state

representation of ♣å⟩ is then written according to the ansatz :

⟨𝑧𝑖♣å⟩ = 𝐶𝑖𝑒
i
~
𝑆i . (4.14)

Next, using the above relation, we differentiate 𝐶𝑖 with respect to time, leading to:

𝑖~ 𝐶̇𝑖 =
[︁

𝑖~⟨𝑧̇𝑖♣å⟩+ 𝑖~⟨𝑧𝑖♣å̇⟩+ 𝐿𝑖⟨𝑧𝑖♣å⟩
]︁

𝑒⊗ i
~
𝑆i , (4.15)

where 𝐿𝑖 = 𝐿(𝑧𝑖) is the Lagrangian calculated over the 𝑖-th orbit. As before, an equation of

motion for 𝐶𝑖 is obtained by decomposing the terms on the right-hand side of (4.15) in the

coherent-state basis. But, while the last term can be exactly replaced as ⟨𝑧𝑖♣å⟩ = ⟨𝑧𝑖♣Ω̂♣å⟩,
the same is not true of the other two. Unlike the continuous case, we must rely again on

(4.13) in order to approximate the terms involving time-derivatives:

♣å⟩ ≡ Ω̂♣å⟩ ⇒ ⟨𝑧̇𝑖♣å⟩ ≡ ⟨𝑧̇𝑖♣ [Ω̂♣å⟩], 𝑖~⟨𝑧𝑖♣å̇⟩ = ⟨𝑧𝑖♣𝐻̂♣å⟩ ≡ ⟨𝑧𝑖♣𝐻̂ [Ω̂♣å⟩] (4.16)

(obs: notice that ♣𝑧̇𝑗⟩ ≠ Ω̂♣𝑧̇𝑗⟩ Ű the derivative of a state is generally not restricted to the

same sub-space as the state). As a result we get:

𝑖~ 𝐶̇𝑖 ≡
∑︁

𝑗𝑘

[︁

𝑖~⟨𝑧̇𝑖♣𝑧𝑗⟩Ω⊗1
𝑗𝑘 ⟨𝑧𝑘♣å⟩+ ⟨𝑧𝑖♣𝐻̂♣𝑧𝑗⟩Ω⊗1

𝑗𝑘 ⟨𝑧𝑘♣å⟩+ 𝐿𝑖⟨𝑧𝑖♣𝑧𝑗⟩Ω⊗1
𝑗𝑘 ⟨𝑧𝑘♣å⟩

]︁

𝑒⊗ i
~
𝑆i

=
∑︁

𝑗𝑘

⟨𝑧𝑖♣𝑧𝑗⟩
⎟

𝑖~
⟨𝑧̇𝑖♣𝑧𝑗⟩
⟨𝑧𝑖♣𝑧𝑗⟩

+ 𝐸(𝑧*
𝑖 , 𝑧𝑗) + 𝐿𝑖

]︃

Ω⊗1
𝑗𝑘 ⟨𝑧𝑘♣å⟩𝑒⊗ i

~
𝑆i

=
∑︁

𝑗𝑘

(Ω𝑖𝑗 Δ𝑖𝑗) Ω⊗1
𝑗𝑘 𝐶𝑘 𝑒

i
~

(𝑆k⊗𝑆i), (4.17)

where we made the replacements: ⟨𝑧𝑖♣𝑧𝑗⟩ = Ω𝑖𝑗 and ⟨𝑧𝑘♣å⟩ = 𝐶𝑘𝑒
i
~
𝑆k . Also, the expression

for the CCS coupling, Δ𝑖𝑗 = Δ(𝑧*
𝑖 , 𝑧𝑗), has been identiĄed within the square brackets at

the second line, c.f. Eq. (4.6). For later reference, the reduced form of the coupling is

repeated below, this time with discrete basis labels 𝑖, 𝑗:

Δ𝑖𝑗 = 𝐸(𝑧*
𝑖 , 𝑧𝑗)⊗ 𝐸(𝑧*

𝑖 , 𝑧𝑖) + 𝑖~
𝑑∑︁

Ð=1

⎟

𝜕𝑓(𝑧*
𝑖 , 𝑧𝑗)

𝜕𝑧*
𝑖Ð

⊗ 𝜕𝑓(𝑧*
𝑖 , 𝑧𝑖)

𝜕𝑧*
𝑖Ð

]︃

𝑧̇*
𝑖Ð. (4.18)

4.2.1 * Accumulated error in the CCS propagation

Because the approximations displayed at (4.16) were required in deriving the equation of

motion for 𝐶𝑖, Eq. (4.17), the amplitude accumulates an error. Before proceeding with

the present development, it is instructive to take a brief look on this matter.

The error just mentioned, which we may denote as 𝜖̇, can be formally expressed if we
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introduce the complementary projector Ξ̂, deĄned by the relations:

1̂ = Ω̂ + Ξ̂, with: Ξ̂Ω̂ = 0, (4.19)

i.e. Ξ̂ projects on a space orthogonal to the one spanned by the CCS basis. Then, starting

again from Eq. (4.15), with 𝑖~♣å̇⟩ = 𝐻̂♣å⟩, we see that the exact value of 𝐶̇𝑖 can be written

as follows:

𝑖~ 𝐶̇𝑖 =
[︁

𝑖~⟨𝑧̇𝑖♣å⟩+ ⟨𝑧𝑖♣𝐻̂♣å⟩+ 𝐿𝑖⟨𝑧𝑖♣å⟩
]︁

𝑒⊗ i
~
𝑆i

=
[︁

𝑖~⟨𝑧̇𝑖♣(Ω̂ + Ξ̂)♣å⟩+ ⟨𝑧𝑖♣𝐻̂(Ω̂ + Ξ̂)♣å⟩+ 𝐿𝑖⟨𝑧𝑖♣Ω̂♣å⟩
]︁

𝑒⊗ i
~
𝑆i , (4.20)

or:

𝑖~ 𝐶̇𝑖 = 𝜖̇𝑖 +
∑︁

𝑗𝑘

(Ω𝑖𝑗 Δ𝑖𝑗) Ω⊗1
𝑗𝑘 𝐶𝑘 𝑒

i
~

(𝑆k⊗𝑆i), (4.21)

where:

𝜖̇𝑖 = 𝑖~⟨𝑧̇𝑖♣Ξ̂♣å⟩+ ⟨𝑧𝑖♣𝐻̂Ξ̂♣å⟩ =
[︁

𝐻̂♣𝑧𝑖⟩ ⊗ 𝑖~♣𝑧̇𝑖⟩
]︁†[︁

Ξ̂♣å⟩
]︁

. (4.22)

This little exercise shows that the error implicit in Eq. (4.17) has two interdependent

sources: a non-zero component of ♣å⟩ lying outside the space spanned by the basis set, and

the violation of SchrödingerŠs equation by individual basis elements. Moreover, Eq. (4.22)

conĄrms that the method can be made exact regardless of the dynamics prescribed for

each ♣𝑧⟩, as long as the full Hilbert space is contemplated by the basis set, in which case

Ξ̂ = 0 and hence 𝜖̇𝑖 = 0.

Bearing in mind these fundamental limitations of the discrete formulation, we hence-

forth denote the CCS wavefunction by ♣å⟩; when necessary, the exact wavefunction will

be indicated by ♣åexact⟩.

4.2.2 Auxiliary amplitudes

Turning back to the methodŠs derivation, we now address the issue of the inverse overlap

matrix Ąguring in several formulas. In practice, Ω⊗1 is never explicitly computed; rather,

one introduces a set of auxiliary amplitudes 𝐷𝑗, deĄned according to:

∑︁

𝑗

Ω𝑖𝑗𝐷𝑗𝑒
i
~

(𝑆j⊗𝑆i) = 𝐶𝑖. (4.23)

Then, the equation of motion for 𝐶𝑖, Eq. (4.17), can be recast as:

𝑖~ 𝐶̇𝑖 =
∑︁

𝑗

[︁

Ω𝑖𝑗 Δ𝑖𝑗 𝑒
i
~

(𝑆j⊗𝑆i)
]︁

𝐷𝑗. (4.24)

Thus, at every time step (or, better said, at every evaluation of 𝐶̇) the auxiliary amplitudes

𝐷 are obtained from 𝐶 by means of the intermediate equation (4.23) Ű an operation that
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requires solving a linear system of size 𝑚. In most applications this procedure constitutes

the main computational bottleneck of the technique. Investigations carried out with the

Gaussian-based method showed that there are ways of evading this obstacle by introducing

low-level parallelization schemes.52 An alternative, high-level parallel approach, suitable

for basis-set sizes on the order of a few hundred, is proposed and explained at ğ4.5.

4.2.3 Norm conservation

Let us next demonstrate the unitary property of the present method. This may not be

obvious at Ąrst sight in view of the approximations made and the fact that the matrix

that governs the amplitudeŠs time evolution Ű whose 𝑖, 𝑘 entry, according to Eq. (4.17), is
∑︀

𝑗(Ω𝑖𝑗Δ𝑖𝑗)Ω
⊗1
𝑗𝑘 𝑒

i
~

(𝑆k⊗𝑆i) Ű is not hermitian (the latter feature, though, is just a consequence

of using non-orthogonal basis functions).

For developing the subsequent formulas, it is convenient to introduce the Śphased

overlapŠ (and its inverse):

æ𝑖𝑗 ⊕ 𝑒⊗ i
~
𝑆iΩ𝑖𝑗𝑒

i
~
𝑆j , (æ⊗1)𝑖𝑗 = 𝑒⊗ i

~
𝑆i(Ω⊗1)𝑖𝑗𝑒

i
~
𝑆j , (4.25)

in terms of which the CCS equations, (4.23) and (4.24), can be more compactly expressed:

𝑖~ 𝐶̇𝑖 =
∑︁

𝑗

(æ𝑖𝑗 Δ𝑖𝑗)𝐷𝑗,
∑︁

𝑗

æ𝑖𝑗𝐷𝑗 = 𝐶𝑖. (4.26)

Similarly, from Eqs. (4.13) and (4.14), the CCS wavefunction is:

♣å⟩ =
∑︁

𝑖𝑗

♣𝑧𝑖⟩Ω⊗1
𝑖𝑗 𝐶𝑗𝑒

i
~
𝑆j =

∑︁

𝑖𝑗

♣𝑧𝑖⟩(æ⊗1
𝑖𝑗 𝐶𝑗)𝑒

i
~
𝑆i =

∑︁

𝑖

♣𝑧𝑖⟩𝐷𝑖𝑒
i
~
𝑆i . (4.27)

Let us then calculate the rate of change of the squared norm,

⟨å♣å⟩ =
∑︁

𝑖𝑗

𝐷*
𝑖æ𝑖𝑗𝐷𝑗 =

∑︁

𝑖𝑗

𝐶*
𝑖 æ

⊗1
𝑖𝑗 𝐶𝑗 =

∑︁

𝑖

𝐶*
𝑖𝐷𝑖 (4.28)

Ű taking the time derivative one Ąnds, with the aid of (4.26),

𝑑

𝑑𝑡
⟨å♣å⟩ =

∑︁

𝑖𝑗

(︁

𝐶̇*
𝑖 æ

⊗1
𝑖𝑗 𝐶𝑗 + 𝐶*

𝑖 æ
⊗1
𝑖𝑗 𝐶̇𝑗 ⊗ 𝐶*

𝑖 (æ⊗1æ̇æ⊗1)𝑖𝑗𝐶𝑗
)︁

=
∑︁

𝑖

𝐶̇*
𝑖𝐷𝑖 +

∑︁

𝑗

𝐷*
𝑗 𝐶̇𝑗 ⊗

∑︁

𝑖𝑗

𝐷*
𝑖 æ̇𝑖𝑗𝐷𝑗 = ⊗

∑︁

𝑖𝑗

𝐷*
𝑖

(︁

æ̇𝑖𝑗 + 𝑖
~
(Δ𝑖𝑗 ⊗Δ*

𝑗𝑖)æ𝑖𝑗
)︁

𝐷𝑗.

(4.29)

Meanwhile, by differentiating the phased overlap (4.25) with respect to 𝑡 we get

æ̇𝑖𝑗 = ⊗ 𝑖
~

[︁

𝐿(𝑧𝑖) + 𝑖~
⟨𝑧̇𝑖♣𝑧𝑗⟩
⟨𝑧𝑖♣𝑧𝑗⟩

+ 𝑖~
⟨𝑧𝑖♣𝑧̇𝑗⟩
⟨𝑧𝑖♣𝑧𝑗⟩

⊗ 𝐿(𝑧𝑗)
]︁

æ𝑖𝑗 = ⊗ 𝑖
~

(Δ𝑖𝑗 ⊗Δ*
𝑗𝑖)æ𝑖𝑗, (4.30)
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where we have added and subtracted the hermitian term 𝐸(𝑧*
𝑖 , 𝑧𝑗) inside the square brack-

ets, so that the result could be expressed in terms of the coupling Δ𝑖𝑗 and its complex

transpose Δ*
𝑗𝑖. Putting (4.30) into (4.29) we conclude:

𝑑

𝑑𝑡
⟨å♣å⟩ = 0, (4.31)

proving that norm is indeed conserved.

Notice that this result is always valid, regardless of the basis set restrictions, just as

long as the overlap matrix remains well-conditioned (we have relied on the deĄniteness of

its inverse several times). Therefore, if norm Ćuctuation happens to be observed during

applications, it should be interpreted as a residue of numerical errors; these, in turn, are

either caused by ill-conditioning of the overlap matrix, leading to inaccurate solutions of

the linear system (4.23), or by an inadequacy of the stepper routine used for obtaining

𝐶(𝑡+ℎ) from 𝐶(𝑡), most likely due to a too large time increment ℎ (this includes possible

errors during the evolution of individual basis elements).

4.2.4 * The variational picture

We have used SchrödingerŠs equation to get the CCS formulas in a discrete unitary frame-

work. That route was deliberately chosen so that some subtleties of the method could

be brought to discussion. Alternatively we could have advanced the problem from a

variational perspective, starting from a trial wavefunction:

♣å⟩ =
∑︁

𝑗

♣𝑧𝑗⟩𝑎𝑗. (4.32)

This type of trial state was discussed in Chapter 1. The situation here is different,

though, since we are not looking for a Śfull variationalŠ approach, but rather a more

simplistic guided-basis propagation scheme. From a TDVP standpoint, this means that,

in Eq. (4.32), the only variables that should be regarded as variational parameters are the

amplitudes 𝑎𝑗. The basis elements ♣𝑧𝑗⟩, in contrast, are to be understood as mere time-

dependent functions Ű they are not free to vary since their dynamics has been assigned

beforehand.

Nevertheless, the equation of motion for 𝑎 is the same in both cases. Thus, the Śnorm-

constrained formŠ of the TDVP, discussed in ğ1.2, yields:

𝑖~
∑︁

𝑖

⟨𝑧𝑖♣𝑧𝑗⟩𝑎̇𝑗 =
∑︁

𝑗

[⟨𝑧𝑖♣𝐻̂♣𝑧𝑗⟩ ⊗ 𝑖~⟨𝑧𝑖♣𝑧̇𝑗⟩]𝑎𝑗, (4.33)

which is just Eq. (1.47) translated to the present context. By performing the change of

variables, 𝑎𝑗 = 𝐷𝑗𝑒
i
~
𝑆j (the action phase 𝑆𝑗 is, again, just a time-dependent factor), we
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get:

𝑖~
∑︁

𝑗

æ𝑖𝑗𝐷̇𝑗 =
∑︁

𝑗

æ𝑖𝑗Δ
′
𝑖𝑗𝐷𝑗, (4.34)

where we have multiplied both sides by 𝑒⊗ i
~
𝑆i . Observe that, here, a linear system has to

be solved in order to get the time derivatives 𝐷̇ Ű the bottleneck operation persists. Also,

notice that the coupling Δ′
𝑖𝑗 appearing in Eq. (4.34) is nothing but the complex transpose

of the standard CCS coupling (4.18), i.e.

Δ′
𝑖𝑗 = 𝐸(𝑧*

𝑖 , 𝑧𝑗)⊗ 𝑖~
⟨𝑧𝑖♣𝑧̇𝑗⟩
⟨𝑧𝑖♣𝑧𝑗⟩

+ 𝐿(𝑧𝑗)

= 𝐸(𝑧*
𝑖 , 𝑧𝑗)⊗ 𝐸(𝑧*

𝑗 , 𝑧𝑗)⊗ 𝑖~
𝑑∑︁

Ð=1

⎟

𝜕𝑓(𝑧*
𝑖 , 𝑧𝑗)

𝜕𝑧𝑗Ð
⊗ 𝜕𝑓(𝑧*

𝑗 , 𝑧𝑗)

𝜕𝑧𝑗Ð

]︃

𝑧̇𝑗Ð = Δ*
𝑗𝑖. (4.35)

The equation of motion (4.34), which involves the 𝐷 amplitudes only, is precisely

equivalent to the CCS formulas (4.26) deduced earlier. In order to establish this equiva-

lence, we note that one immediately implies the other Ű for instance:

𝐶̇𝑖 =
𝑑

𝑑𝑡

(︁∑︁

𝑗

æ𝑖𝑗𝐷𝑗

)︁

=
∑︁

𝑗

æ𝑖𝑗𝐷̇𝑗 +
∑︁

𝑗

æ̇𝑖𝑗𝐷𝑗

= ⊗ 𝑖
~

∑︁

𝑗

æ𝑖𝑗Δ
′
𝑖𝑗𝐷𝑗 ⊗

𝑖

~

∑︁

𝑗

æ𝑖𝑗(Δ𝑖𝑗 ⊗Δ*
𝑗𝑖)𝐷𝑗 = ⊗ 𝑖

~

∑︁

𝑗

æ𝑖𝑗Δ𝑖𝑗𝐷𝑗,

(4.36)

where (4.30) was used.

The connection with the TDVP exposed above provides additional insight into the

CCS method. It reveals that the approximations (4.16), that we were forced to make

earlier in order to get the equation of motion for 𝐶, are automatically built into the

variational problem, where the wavefunction is understood as an approximate trial state

from the beginning. Furthermore, the equivalence of both derivations, together with the

fact that Eq. (4.34) was obtained with the TDVP version of ğ1.2, where normalization is

imposed as a constraint, contributes yet another way of understanding how, despite the

restrictions of the Ąnite basis set, the unitarity of the quantum time evolution is preserved.

Finally, we note that the Ś𝐷-amplitudeŠ version of the method, based on Eq. (4.34),

is the one most often employed in the recent CCS-related literature. Certainly, when

evaluating matrix elements of typical operators, 𝐷 is far more useful than 𝐶. And, since 𝐷

can be propagated on its own, that would seem to render a more efficient implementation.

However, it is our experience that 𝐷 is a poor dynamical variable, whereas 𝐶 is a good

one. There are mainly two reasons.iii

iiiA third but less important reason is that, given a basis set ♣𝑧𝑖⟩, initialization is easier with 𝐶: for a
initial state ♣å0⟩ the amplitudes at 𝑡 = 0 are just 𝐶(𝑧𝑖) = ⟨𝑧𝑖♣å0⟩; however, if 𝐷 is used one has to solve
∑︀

𝑖⟨𝑧𝑖♣𝑧𝑗⟩𝐷𝑗 = ⟨𝑧𝑗 ♣å0⟩.
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First, the modulus of 𝐷𝑖 is not bounded, while, by deĄnition, that of 𝐶𝑖 is, for

Eq. (4.14) shows that 0 ⊘ ♣𝐶𝑖♣ ⊘ 1. Second, the considerations of ğ4.1, regarding inclusion

of an action phase and the resulting ŚsmoothnessŠ of the CCS amplitude associated with

each basis element, apply to 𝐶 only. The method formulated in terms of 𝐶 is therefore

expected to be more stable than the 𝐷-based version. (Indeed, we observe in our simula-

tions that 𝐷 sometimes displays quite an erratic time behavior; 𝐶, on the other hand, is

always a smooth function of time).

It is thus why we insist in using the 𝐶-based version of the method,iv though, we

must admit that if serious ill-conditioning of the basis set occurs Ű the major source of

instabilities Ű both formulations break down.

4.2.5 A remark on energy conservation

The variational approach shows that the standard CCS method, by construction, con-

serves the norm of the propagated quantum state. However, approximating the identity

operator by a Ąnite basis set consisting of randomly distributed coherent states affects

another important property of the quantum evolution: the total energy of an initial state

𝐸0 = ⟨å0♣𝐻̂♣å0⟩ is not generally maintained during CCS applications.

Let us then evaluate the rate of change of total energy. For this brief calculation, 𝐻̂

is assumed to be time-independent and the simpliĄed notation of Eq. (4.32) is employed.

Differentiating 𝐸(å) = ⟨å♣𝐻̂♣å⟩ with respect to time we get:

𝑑𝐸

𝑑𝑡
= ⟨å♣𝐻̂♣å̇⟩+ ⟨å̇♣𝐻̂♣å⟩

=
∑︁

𝑖𝑗

[︁

𝑎*
𝑖 ⟨𝑧𝑖♣𝐻̂♣𝑧𝑗⟩𝑎̇𝑗 + 𝑎̇*

𝑖 ⟨𝑧𝑖♣𝐻̂♣𝑧𝑗⟩𝑎𝑗 + 𝑎*
𝑖 ⟨𝑧𝑖♣𝐻̂♣𝑧̇𝑗⟩𝑎𝑗 + 𝑎*

𝑖 ⟨𝑧̇𝑖♣𝐻̂♣𝑧𝑗⟩𝑎𝑗
]︁

. (4.37)

Substituting the amplitude derivatives, obtained from Eq. (4.33) and its complex conju-

gate,

𝑎̇𝑗 = ⊗ 𝑖
~

∑︁

𝑘𝑙

(Ω⊗1)𝑗𝑘[⟨𝑧𝑘♣𝐻̂♣𝑧𝑙⟩ ⊗ 𝑖~⟨𝑧𝑘♣𝑧̇𝑙⟩]𝑎𝑙, (4.38a)

𝑎̇*
𝑖 =

𝑖

~

∑︁

𝑘𝑙

𝑎*
𝑙 [⟨𝑧𝑙♣𝐻̂♣𝑧𝑘⟩+ 𝑖~⟨𝑧̇𝑙♣𝑧𝑘⟩](Ω⊗1)𝑘𝑖, (4.38b)

ivNote that the ability to conveniently calculate observables is not lost – while not playing the role of
a dynamical variable, 𝐷 is still available at every time step (it is a simple matter of storing them after
the linear system (4.23) is solved).
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and identifying the projector Ω̂ =
∑︀

𝑖𝑗 ♣𝑧𝑖⟩(Ω⊗1)𝑖𝑗⟨𝑧𝑗♣, we Ąnd:

𝑑𝐸

𝑑𝑡
=

∑︁

𝑖𝑗

𝑎*
𝑖

[︁

⟨𝑧𝑖♣(𝐻̂ ⊗ 𝐻̂Ω̂♣𝑧̇𝑗⟩+ ⟨𝑧̇𝑖♣(𝐻̂ ⊗ Ω̂𝐻̂)♣𝑧𝑗⟩
]︁

𝑎𝑗

= 2 Re
∑︁

𝑖𝑗

⟨𝑧𝑖♣(Ω̂𝐻̂ ⊗ 𝐻̂Ω̂)♣𝑧̇𝑗⟩𝐷*
𝑖𝐷𝑗𝑒

i
~

(𝑆j⊗𝑆i). (4.39)

Therefore, the rate of change of𝐸 is essentially controlled by the matrix elements ⟨𝑧𝑖♣[Ω̂, 𝐻̂]♣𝑧̇𝑗⟩
which, as expected, become identically zero in the limit of a complete basis Ω̂⊃ 1̂.

The intimate relation between energy conservation and the exactness of CCS results

has been pointed out by Habershon in Ref. [53]. Thus, by monitoring the value of total

energy, one can make an Śon-the-ĆyŠ diagnosis as regards to the quality of CCS results.

This is illustrated in Chapter 5 with numerical examples.

4.2.6 * Non-unitary case

It may be of interest sometimes Ű particularly when the system under study has only one

or two degrees of freedom Ű to attempt a more straightforward discrete approximation to

the coherent-state closure relation, by writing the basis projector as

Ω̂ ≡
𝑚∑︁

𝑘=1

♣𝑧𝑘⟩Ú𝑘⟨𝑧𝑘♣, (4.40)

with Ú𝑘 approximating the integration measure 𝑑Û(𝑧𝑘) at each phase-space point.

The equation of motion for 𝐶 in this case can be obtained at once from (4.24) by

setting (Ω⊗1)𝑗𝑘 = Ú𝑗Ó𝑗𝑘, which leads to:

𝑖~ 𝐶̇𝑖 =
∑︁

𝑗

Ú𝑗
[︁

Ω𝑖𝑗 Δ𝑖𝑗 𝑒
i
~

(𝑆j⊗𝑆i)
]︁

𝐶𝑗. (4.41)

Similarly, the quantum state in this case is approximated by:

♣å⟩ ≡
∑︁

𝑘

Ú𝑘♣𝑧𝑘⟩𝐶𝑘𝑒
i
~
𝑆k . (4.42)

This propagation scheme is computationally less demanding than the standard unitary

version of CCS Ű if the basis-set size is kept the same Ű, since there is no need to solve

a linear system at each time step to get the auxiliary amplitudes 𝐷. On the other hand,

a larger basis set (usually constructed as a grid in phase space) may be necessary to

converge the results if the approximated closure relation (4.40) is employed. Moreover,

the norm of the propagated quantum state is not automatically conserved, meaning that

results must be normalized on output. Further observations regarding this version of the

method in a Gaussian-based framework are made by Shalashilin and Child in Ref. [27].

This non-unitary propagation scheme, as formulated in terms of the bosonic parametriza-
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tion of Chapter 2, has been tested in Ref. [28], where it was applied to a model system

of interacting bosons trapped in a double-well potential. In that problem, the approach

is quite feasible since the phase space has a single degree of freedom. Different dynam-

ical regimes have been studied, with the number of particles 𝑁 varying in the range

100 ⊗ 5000 (while other parameters were held Ąxed). All runs used roughly the same

number of basis elements and a improvement of results with increasing 𝑁 was observed,

in accordance with the idea that the CCS method is best suited for describing systems

evolving under semiclassical conditions Ű in that case, the classical limit corresponds to

the thermodynamical limit, 𝑁 ⊃∞ (see Ref. [28] for more details).

4.2.7 The standard form of the generalized CCS method: a few remarks

The propagation scheme whereby the wavefunction, written as

♣å⟩ =
𝑚∑︁

𝑖=1

♣𝑧𝑖⟩𝐷𝑖𝑒
i
~
𝑆i , (4.43)

evolves in time according to Eqs. (1.72), (1.74) and (4.26) Ű with Δ𝑖𝑗 and æ𝑖𝑗 respec-

tively given by Eqs. (4.18) and (4.25) and Ű represents the discrete unitary version of

the generalized CCS method. This is the standard form of the generalized coherent-state

guided-basis approach developed in this work. In what follows we make some additional

remarks.

Initial state. In theory, the method is able to propagate any initial state ♣å0⟩ once a

suitable basis set is provided Ű as we have seen earlier, the initial condition for the 𝐶

amplitudes is, in this case, 𝐶0(𝑧𝑖) = ⟨𝑧0𝑖♣å0⟩. However, sampling a basis set capable of

adequately representing an arbitrary quantum state is not an easy task, and this problem

often requires a methodology of its own Ű one example would be the diffusion Monte Carlo

strategy developed in Ref. [54]. A throughout examination of such kinds of techniques

is out of the scope of the present work, since our interest is towards the time evolution

itself. We shall, therefore, avoid altogether the difficulties associated with an arbitrary

♣å0⟩ by restricting the analysis to the case where the initial state is a coherent state, i.e.

♣å0⟩ = ♣𝑧0⟩ ⇒ 𝐶0(𝑧𝑖) = ⟨𝑧𝑖0♣𝑧0⟩. (4.44)

Sampling of basis elements is simpler in this case, for it can be achieved by random

generation of 𝑧 vectors which are accepted or rejected according to criteria based on

coherent-state scalar products, Ω(𝑧*, 𝑧′) = ⟨𝑧♣𝑧′⟩, a quantity whose analytical expression

is known. Also, the fact that ♣Ω(𝑧*, 𝑧′)♣ decreases fast as ♣𝑧 ⊗ 𝑧′♣ grows allows for simple

sampling strategies that result in basis elements being mostly concentrated in a neigh-

borhood of the initial state ♣𝑧0⟩, a region from where the most important contributions

to the integral formula are expected to arise, at least for short times. A general sampling
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algorithm, designed for this purpose is presented in ğ4.4.

It should be mentioned that this restriction on initial states does not necessarily implies

a loss of generality, for once an arbitrary ♣å0⟩ is expressed as a superposition of static

coherent states, then each of its components can be independently propagated with the

CCS method, and the disjoint solutions can be recombined later to give the complete

time-evolved wavefunction.

Classical propagation. Finally, a special case of the generalized CCS method is worth

of mention: that whereupon a single coherent-state basis element is employed in the

wavefunction representation. If this single basis element is made to coincide with the

initial state, which is assumed to be ♣å0⟩ = ♣𝑧0⟩, then, by setting 𝑚 = 1 in the CCS

formulas, the approximated quantum state at 𝑡 > 0 is:

♣å(𝑡)⟩ = ♣𝑧1(𝑡)⟩𝑒
i
~
𝑆1(𝑡), with: 𝑧1(0) = 𝑧0. (4.45)

This is so because the right-hand side of Eq. (4.24) vanishes for 𝑚 = 1, implying 𝐶̇1 = 0

and hence 𝐶1(𝑡) = 𝐶1(0) = ⟨𝑧1(0)♣𝑧0⟩ = 1. Equation (4.45) is nothing but the Śclassical

propagation schemeŠ discussed in ğ1.3.3.

What is to gain by adopting a trajectory-guided methodology? The whole point of using

time-dependent basis functions in representing an evolving quantum state is that they are

potentially more efficient for such a task than a static basis set would be; this is meant in

the sense that an accurate description of the system can be achieved with a lesser number

of basis elements if these are allowed to vary with time. Evidently, this claim rests on the

assumption that the dynamics of each basis element can be assigned in a such a way as

to drive the quantum wavefunction to the most important regions of the Hilbert space Ű

a poor dynamical prescription would only misguide the system (hence the caveat in the

Ąrst sentence, embodied in the word ŚpotentiallyŠ). This latter requirement is ensured in

a full variational treatment, such as that outlined in ğ1.2.2, by the very nature of the

variational principle.

The trajectory-guided technique, on the other hand, further relies on the assumption

that, under certain regimes, each optimized basis state is able to capture most of the

wavefunctionŠs behavior; in other words, that under the appropriate circumstances the

evolution of individual basis states is qualitatively similar to that of the entire system.

In the generalized coherent-state context, where we have identiĄed single coherent-states

as classical approximations, such Śappropriate circumstancesŠ that justify the trajectory-

guided strategy constitute what we have called the Śsemiclassical regimeŠ.

Thus, if a properly constructed trajectory-guided scheme is implemented for a system

that evolves under the adequate dynamical regime, it would not only be more efficient

than a traditional static-basis approach Ű it would also provide results as accurate as those

that would have been obtained by a full variational method (at least for a sufficiently short
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propagation time), but at a much less expensive computational cost, if the basis set size

is the same in both cases.

When is the generalized CCS advantageous? The methodology developed in this sec-

tion utilizes a time-dependent basis set with 𝑚 elements to represent the systemŠs wave-

function. In order to carry out the time evolution, a set of differential equations that

couples the amplitudes of different basis elements has to be integrated. This integration

proceeds step-by-step, and a linear system of size 𝑚 has be solved at each step. The

computational cost of this latter operation (measured in CPU time) scales roughly as

≍ 𝑚3. Thus we may say that the computational cost of the discrete unitary version of

the generalized CCS method goes as ≍ 𝑚3 per time step.v

Meanwhile, the standard numerical approach to quantum problems is based on di-

agonalization of the matrix representation of the Hamiltonian operator 𝐻̂ in a complete

orthonormal basis, say ♣Φ⟩.vi If 𝑛 denotes the size of the Hilbert space in question, the

diagonalization procedure has a computational cost which scales as ≍ 𝑛3. For time-

independent Hamiltonians this operation has to be carried out a single time only; once

the eigen-energies and eigenstates have been determined any initial wavefunction repre-

sented in the ♣Φ⟩ basis may be straightforwardly decomposed in terms of the systemŠs

eigenstates and propagation is then trivial.

Therefore, in order to be competitive against the traditional approach Ű judging in

terms of CPU time Ű the overall computational cost of CCS has to be small enough to

compensate for the time spent on a single diagonalization of the quantum Hamiltonian.

Such a condition is quite hard to meet if the dimension of the Hilbert space 𝑛 is comparable

to the CCS basis-set size 𝑚.

However, it is a well-know fact that the dimensionality of a quantum problem scales

exponentially with the systemŠs size. For deĄniteness, we may picture a system of 𝑁

distinguishable and structureless particles moving inside a box. The dimension of the

conĄguration space is 3𝑁 . Suppose we establish that a satisfactory description is achieved

if 𝐿 basis functions are employed for each position variable. In that case, the total size of

the Hilbert space is 𝑛 = 𝐿3𝑁 ; it grows exponentially as more particles are added to the

system.

Similarly, for systems of indistinguishable particles we have seen that the number of

dimensions of the Fock space grows fast (in a factorial fashion) with both the number of

particles 𝑁 and the number of underlying single-particle states 𝐾 used in the description,

as shown by Eq. (2.9) for bosons and by Eq. (3.9) for fermions. Thus, the standard

quantum approach easily becomes intractable, even for moderately sized systems.

vIn asserting this we presume that the linear system, required for computing the amplitude derivative,
stands as the computational ‘bottleneck’ of the method. This is the usual situation encountered in
practice. However, other scenarios are possible – see §4.5 for a more throughout discussion.

viIn practice one always works with a finite set of basis functions; in other words, here, the term
‘complete’ should be understood as ‘complete for practical purposes’.
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At the same time, some systems exhibit an interesting property: depending on the

dynamical regime in which they are found, they behave Śmore classicallyŠ as they grow

larger (e.g. bosonic systems approaching the thermodynamical limit). This sort of prop-

erty invites treatments such as CCS, which has a strong semiclassical character.

Indeed, some of the CCS propagations presented at Chapter 5 (those involving systems

of comparatively large sizes) took less overall CPU time than the one-time diagonalization

of the quantum Hamiltonian operator.vii

Now, leaving aside questions regarding the ŚclassicalityŠ of the system being described,

we may argue that the true advantage of the CCS method is revealed when Hamiltonians

with explicit time dependence are considered.

This is so because, for time-dependent Hamiltonians, one cannot rely on the concept

of stationary states and the exact quantum propagation has to be conducted by means

of some kind of short-time evolution operator, 𝑈̂(𝑡 + á, 𝑡), where á denotes a small time

displacement.

A popular form of writing the matrix representation of 𝑈̂(𝑡+á, 𝑡) Ű using the ♣Φ⟩ basis,

for instance Ű is according to the Crank-Nicholson recipe:55

𝑈𝑘𝑙(𝑡+ á, 𝑡) =
𝑛∑︁

𝑗=1

(︁

𝐼𝑛 + 𝑖
2~
𝐻(𝑡)á

)︁⊗1

𝑘𝑗

(︁

𝐼𝑛 ⊗ 𝑖
2~
𝐻(𝑡)á

)︁

𝑗𝑙
, (4.46)

where the entries of the Hamiltonian matrix are 𝐻𝑘𝑙(𝑡) = ⟨Φ𝑘♣𝐻̂(𝑡)♣Φ𝑙⟩. This expression

is unitary and correct to order 𝑂(á 2); it thus leads to a norm-conserving and numeri-

cally stable propagation for sufficiently small á . Under this framework, the wavefunc-

tion Ψ𝑘(𝑡) = ⟨Φ𝑘♣Ψ(𝑡)⟩ is obtained at instants 𝑡 = (á, 2á, 3á, . . . ) by repeated action of

𝑈(𝑡+ á, 𝑡):

Ψ𝑘(𝑡+ á) =
𝑛∑︁

𝑙=1

𝑈𝑘𝑙(𝑡+ á, 𝑡)Ψ𝑙(𝑡).

Since the Hamiltonian changes with 𝑡, the evolution operator must be reconstructed at

every time step of the propagation. As Eq. (4.46) shows, this requires a matrix inversion

(or some operation of equivalent complexity) to be carried out at each step, and the

computational cost of such operation scales roughly as ≍ 𝑛3.

Therefore, for systems governed by time-dependent Hamiltonians, the CCS method

(whose formulation is, by the way, equally valid in such cases) competes directly with

the quantum approach described above, since both schemes are limited by a bottleneck

operation that takes place wherever the wavefunction is evolved by a small time interval.

Ignoring other possible technical difficulties, we may assert that the computational

cost per time step associated with the short-time evolution operator methodology goes as

≍ 𝑛3, while that of CCS goes as ≍ 𝑚3. Now, the Hilbert space size 𝑛 scales exponentially

with system size; in contrast, a much less dramatic increase of the basis set size 𝑚 is

viiThese simulations were also aided by a parallelization scheme – cf. §4.5.
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expected from CCS, as discussed previously. We thus conclude that, in the majority of

problems involving large systems we have: 𝑛3 ⪰ 𝑚3. Therefore, the CCS method is

expected to be much more efficient if 𝐻̂ = 𝐻̂(𝑡).

Despite this conclusion, in this thesis we do not perform simulations with time-

dependent Hamiltonians. This is because, in order to access the accuracy of the general-

ized CCS method, all results reported in Chapter 5 are compared against exact quantum

calculations. Thus, if we intended to do the same sort of analysis for time-dependent

systems, we would also have to carry out the full quantum propagation and face the

computational difficulties exposed above; this, in turn, would require the development of

sophisticated quantum propagation algorithms, a task which would fall out of the scope

of the present work.

4.3 The CCS coupling for specific parametrizations

In this section we provide formulas for the CCS coupling, as computed for the coherent-

state descriptions discussed in Chapters 2 and 3, which apply to standard many-particle

Hamiltonians with one- and two-body terms. Before giving the equations for the bosonic

and fermionic cases, however, let us recover, from the general formulas the expression for

Gaussian wavepackets (i.e. Glauber states) Ű this is for didactic purposes only.

If we substitute in Eq. (4.9) [or its discrete version, Eq. (4.18)] the canonical, Ćat-

geometry ingredients, (𝜕𝑓(𝑧*
𝑖 , 𝑧𝑗)/𝜕𝑧

*
𝑖Ð) = 𝑧𝑗Ð and 𝑔(𝑧*

𝑖 , 𝑧𝑗)ÐÑ = ÓÐÑ, we get at once:

Δ𝑖𝑗 = 𝐸(𝑧*
𝑖 , 𝑧𝑗)⊗

⎟

𝐸(𝑧*
𝑖 , 𝑧𝑖) +

𝑑∑︁

Ð=1

(𝑧𝑗 ⊗ 𝑧𝑖)Ð
𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧Ð

]︃

= 1
2

∑︁

ÐÑ

(𝑧𝑗 ⊗ 𝑧𝑖)Ð
𝜕2𝐸(𝑧*, 𝑧)

𝜕𝑧Ð𝜕𝑧Ñ
♣𝑧i

(𝑧𝑗 ⊗ 𝑧𝑖)Ñ + . . . (4.47)

showing that the analytical structure of the coupling, seen as a series expansion of 𝑧𝑗

around 𝑧𝑖, is such that it starts with a second-order energy term. This result does not

exactly extend to other classes of coherent-states; nonetheless, it is demonstrated below

that the interpretation of Δ𝑖𝑗 as a second-order energy deviation is also possible in the

speciĄc boson and fermion systems considered here.

4.3.1 The bosonic case

Let us consider the bosonic parametrization of Chapter 2, and a system whose dynamics

is dictated by a prototype Hamiltonian as that of Eq. (2.45). By substituting the relevant

quantities in Eq. (4.18) we may work the speciĄc formula of the CCS coupling for this

case. This short derivation is delineated below.

It is convenient to introduce a shorthand notation for the analytically-continued one-
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density element corresponding to the reference mode 𝑏†
0,

Γ𝑖𝑗00 =
¶𝑧𝑖♣𝑏†

0𝑏0♣𝑧𝑗♢
¶𝑧𝑖♣𝑧𝑗♢

= (1 + 𝑧*
𝑖 𝑧𝑗)

⊗1 ⊕ Ò𝑖𝑗. (4.48)

In this way, the Kähler gradients in (4.18) are abbreviated and the coupling becomes:

Δ𝑖𝑗 = (𝐸𝑖𝑗 + 𝑖~𝑁Ò𝑖𝑗
∑︁

Ü

𝑧𝑗Ü 𝑧̇
*
𝑖Ü)⊗ (𝐸𝑖𝑖 + 𝑖~𝑁Ò𝑖𝑖

∑︁

Ü

𝑧𝑖Ü 𝑧̇
*
𝑖Ü). (4.49)

Next, we replace 𝑧̇*
𝑖 using the complex-conjugate of the mean-Ąeld equation of motion,

Eq. (2.57). Adapting the notation, we have:

⊗𝑖~ 𝑧̇*
𝑖Ü = 𝐺𝑖𝑖

0Ü ⊗𝐺𝑖𝑖
00𝑧

*
𝑖Ü +

∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
ÛÜ ⊗

∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
Û0𝑧

*
𝑖Ü . (4.50)

Let us then evaluate the non-diagonal term involving 𝑧̇*
𝑖 Ű the expression is organized as

follows:

𝑖~𝑁Ò𝑖𝑗
∑︁

𝑛𝑢

𝑧𝑗Ü 𝑧̇
*
𝑖Ü = 𝑁(𝐺𝑖𝑖

00 +
∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
Û0)

∑︁

Ü

𝑧𝑗ÜÒ𝑖𝑗𝑧
*
𝑖Ü

⊗𝑁
∑︁

Ü

𝑧𝑗ÜÒ𝑖𝑗 𝐺
𝑖𝑖
0Ü ⊗𝑁

∑︁

ÜÛ

𝑧𝑗ÜÒ𝑖𝑗𝑧
*
𝑖Û 𝐺

𝑖𝑖
ÛÜ . (4.51)

In the Ąrst line of the above equation we put

∑︁

Ü

𝑧𝑗ÜÒ𝑖𝑗𝑧
*
𝑖Ü =

𝑧*
𝑖 𝑧𝑗

1 + 𝑧*
𝑖 𝑧𝑗

= 1⊗ Ò𝑖𝑗, (4.52)

and proceed with the following identiĄcations,

𝑖~𝑁Ò𝑖𝑗
∑︁

𝑛𝑢

𝑧𝑗Ü 𝑧̇
*
𝑖Ü = 𝑁(𝐺𝑖𝑖

00 +
∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
Û0)

⊗𝑁Ò𝑖𝑗 𝐺𝑖𝑖
00 ⊗𝑁

∑︁

Ü

Ò𝑖𝑗𝑧
*
𝑖Ü 𝐺

𝑖𝑖
Ü0 ⊗𝑁

∑︁

Ü

𝑧𝑗ÜÒ𝑖𝑗 𝐺
𝑖𝑖
0Ü ⊗𝑁

∑︁

ÜÛ

𝑧𝑗ÜÒ𝑖𝑗𝑧
*
𝑖Û 𝐺

𝑖𝑖
ÛÜ

= 𝑁(𝐺𝑖𝑖
00 +

∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
Û0)⊗𝑁

(︁

Γ𝑖𝑗00𝐺
𝑖𝑖
00 +

∑︁

Ü

Γ𝑖𝑗0Ü𝐺
𝑖𝑖
Ü0 +

∑︁

Ü

Γ𝑖𝑗Ü0𝐺
𝑖𝑖
0Ü +

∑︁

ÜÛ

Γ𝑖𝑗ÜÛ 𝐺
𝑖𝑖
ÛÜ

)︁

= 𝑁(𝐺𝑖𝑖
00 +

∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
Û0)⊗𝑁

∑︁

𝑝𝑞

𝐺𝑖𝑖
𝑝𝑞Γ

𝑖𝑗
𝑞𝑝. (4.53)

Meanwhile, the analytically-continued energy function, here conveniently written in terms

of the Gross-Pitaevskii matrix and the mean-Ąeld matrix (compare Eqs. (2.53) and (2.56)),

is:

𝐸𝑖𝑗 = 𝑁
∑︁

𝑝𝑞

(𝐺𝑖𝑗
𝑝𝑞 ⊗ 1

2
𝑣𝑖𝑗𝑝𝑞)Γ

𝑖𝑗
𝑞𝑝. (4.54)
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Combining this with the result (4.53) yields:

𝐸𝑖𝑗+𝑖~𝑁Ò𝑖𝑗
∑︁

Ü

𝑧𝑗Ü 𝑧̇
*
𝑖Ü = 𝑁(𝐺𝑖𝑖

00+
∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
Û0)+𝑁

∑︁

𝑝𝑞

(𝐺𝑖𝑗
𝑝𝑞⊗𝐺𝑖𝑖

𝑝𝑞)Γ
𝑖𝑗
𝑞𝑝⊗ 1

2
𝑁

∑︁

𝑝𝑞

𝑣𝑖𝑗𝑝𝑞Γ
𝑖𝑗
𝑞𝑝. (4.55)

The diagonal form is immediately obtained by setting 𝑗 = 𝑖,

𝐸𝑖𝑖 + 𝑖~𝑁Ò𝑖𝑖
∑︁

Ü

𝑧𝑖Ü 𝑧̇
*
𝑖Ü = 𝑁(𝐺𝑖𝑖

00 +
∑︁

Û

𝑧*
𝑖Û𝐺

𝑖𝑖
Û0)⊗ 1

2
𝑁

∑︁

𝑝𝑞

𝑣𝑖𝑖𝑝𝑞Γ
𝑖𝑖
𝑞𝑝. (4.56)

The coupling is simply the difference between (4.55) and (4.56):

Δ𝑖𝑗 = 𝑁
∑︁

𝑝𝑞

(𝐺𝑖𝑗
𝑝𝑞 ⊗𝐺𝑖𝑖

𝑝𝑞)Γ
𝑖𝑗
𝑞𝑝 ⊗ 1

2
𝑁

∑︁

𝑝𝑞

(𝑣𝑖𝑗𝑝𝑞Γ
𝑖𝑗
𝑞𝑝 ⊗ 𝑣𝑖𝑖𝑝𝑞Γ𝑖𝑖𝑞𝑝). (4.57)

Noting that 𝐺𝑖𝑗
𝑝𝑞⊗𝐺𝑖𝑖

𝑝𝑞 = 𝑣𝑖𝑗𝑝𝑞⊗𝑣𝑖𝑖𝑝𝑞 (the one-body integrals do not depend on 𝑧 and therefore

they cancel off) the above expression can be reorganized according to:

Δ𝑖𝑗 = 1
2
𝑁

∑︁

𝑝𝑞

[︁

(𝑣𝑖𝑗𝑝𝑞 ⊗ 𝑣𝑖𝑖𝑝𝑞)Γ𝑖𝑗𝑞𝑝 ⊗ 𝑣𝑖𝑖𝑝𝑞(Γ𝑖𝑗𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝)
]︁

. (4.58)

This can be further reduced by making explicit the 𝑧-independent two-body integrals

embedded in the mean-Ąelds. The Ąrst part gives:

∑︁

𝑝𝑞

(𝑣𝑖𝑗𝑝𝑞 ⊗ 𝑣𝑖𝑖𝑝𝑞)Γ𝑖𝑗𝑞𝑝 = (𝑁 ⊗ 1)
∑︁

𝑝𝑞𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠(Γ
𝑖𝑗
𝑠𝑟 ⊗ Γ𝑖𝑖𝑠𝑟)Γ

𝑖𝑗
𝑞𝑝, (4.59)

while the second part can be recast as follows:

∑︁

𝑝𝑞

𝑣𝑖𝑖𝑝𝑞(Γ
𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝) = (𝑁 ⊗ 1)

∑︁

𝑝𝑞

∑︁

𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠Γ
𝑖𝑖
𝑠𝑟(Γ

𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝)

= (𝑁 ⊗ 1)
∑︁

𝑟𝑠

∑︁

𝑝𝑞

𝑈𝑟𝑝≤𝑠𝑞(Γ
𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝)Γ

𝑖𝑖
𝑠𝑟

= (𝑁 ⊗ 1)
∑︁

𝑝𝑞𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠(Γ
𝑖𝑗
𝑠𝑟 ⊗ Γ𝑖𝑖𝑠𝑟)Γ

𝑖𝑖
𝑞𝑝, (4.60)

where the interchange symmetry of 𝑈𝑝𝑟≤𝑞𝑠 has been used.

Finally, combining the above relations into Eq. (4.58) we arrive at the desired formula:

Δ𝑖𝑗 = 1
2
𝑁(𝑁 ⊗ 1)

∑︁

𝑝𝑞𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠(Γ
𝑖𝑗
𝑠𝑟 ⊗ Γ𝑖𝑖𝑠𝑟)(Γ

𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝). (4.61)

One cannot help noticing the similarity between this expression and a second-order energy

variation induced by Ąrst-order density Ćuctuations:

𝐸(Γ0 + ÓΓ)⊗ 𝐸(Γ0) = 𝑁
∑︁

𝑝𝑞

𝐺(Γ0)𝑝𝑞 ÓΓ𝑞𝑝 + 1
2
𝑁(𝑁 ⊗ 1)

∑︁

𝑝𝑞𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠ÓΓ𝑠𝑟ÓΓ𝑞𝑝. (4.62)
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In this case, the energy change would be that induced by an analytic continuation, 𝑧𝑖 ⊃ 𝑧𝑗,

in the one-density, ÓΓ𝑖𝑗 = Γ(𝑧*
𝑖 , 𝑧𝑗)⊗Γ(𝑧*

𝑖 , 𝑧𝑖), and we identify: 𝐸⊗𝐸0 = Ó𝐸+ Ó2𝐸, with

Ó2𝐸𝑖𝑗 = 1
2
𝑁(𝑁 ⊗ 1)

∑︁

𝑝𝑞𝑟𝑠

𝑈𝑝𝑟≤𝑞𝑠ÓΓ
𝑖𝑗
𝑠𝑟ÓΓ

𝑖𝑗
𝑞𝑝 = Δ𝑖𝑗. (4.63)

This provides a transparent physical interpretation of the CCS coupling. Later we will

simplify this even further by considering simple Hubbard models.

4.3.2 The fermionic case

The CCS coupling for the femionic parametrization of Chapter 3 and Hamiltonians such

as (3.54) can also be worked down to a much simpler and physically appealing form. The

same kind of manipulations operated in the bosonic case are repeated here.

We begin with the replacement of the Kähler gradients, thus rewriting (4.18) as:

Δ𝑖𝑗 =
[︁

𝐸𝑖𝑗 + 𝑖~ tr
(︁

𝑧𝑗(𝐼𝑁 + 𝑧†
𝑖 𝑧𝑗)

⊗1𝑧̇†
𝑖

)︁]︁

⊗
[︁

𝐸𝑖𝑖 + 𝑖~ tr
(︁

𝑧𝑖(𝐼𝑁 + 𝑧†
𝑖 𝑧𝑖)

⊗1𝑧̇†
𝑖

)︁]︁

. (4.64)

Lets us consider the 𝑧̇†
𝑖 factor. Taking the adjoint of Eq. (3.80),

𝑧̇†
𝑖 =

𝑖

~

[︁

𝐼𝑁 𝑧†
𝑖

]︁

𝐹 𝑖𝑖

⋃︀

⨄︀
⊗𝑧†

𝑖

𝐼𝑀

⋂︀

⋀︀ , 𝐹 𝑖𝑖 = ℎ+ 𝑣𝑖𝑖, (4.65)

(recall 𝐹 † = 𝐹 ) and writing

𝑧𝑗 =
[︁

0 𝐼𝑀
]︁

⋃︀

⨄︀
𝐼𝑁

𝑧𝑗

⋂︀

⋀︀ , (4.66)

we are able to handle the trace as follows:

𝑖~ tr
(︁

𝑧𝑗(𝐼𝑁 + 𝑧†
𝑖 𝑧𝑗)

⊗1𝑧̇†
𝑖

)︁

= ⊗tr

⎧

⨄︁

⋃︁

[︁

0 𝐼𝑀
]︁

⋃︀

⨄︀
𝐼𝑁

𝑧𝑗

⋂︀

⋀︀ (𝐼𝑁 + 𝑧†
𝑖 𝑧𝑗)

⊗1
[︁

𝐼𝑁 𝑧†
𝑖

]︁

𝐹 𝑖𝑖

⋃︀

⨄︀
⊗𝑧†

𝑖

𝐼𝑀

⋂︀

⋀︀

⎫

⋀︁

⋂︁

= ⊗tr

⎧

⨄︁

⋃︁
𝐹 𝑖𝑖

⋃︀

⨄︀
0 ⊗𝑧†

𝑖

0 𝐼𝑀

⋂︀

⋀︀ Γ𝑖𝑗
⎫

⋀︁

⋂︁

= tr(𝐹 𝑖𝑖
11𝑧

†
𝑖Γ

𝑖𝑗
21 ⊗ 𝐹 𝑖𝑖

12Γ
𝑖𝑗
21) + tr(𝐹 𝑖𝑖

21𝑧
†
𝑖Γ

𝑖𝑗
22 ⊗ 𝐹 𝑖𝑖

22Γ
𝑖𝑗
22), (4.67)

where the analytically continued one-density, Γ𝑖𝑗 = Γ(𝑧*
𝑖 , 𝑧𝑗), has been identiĄed with the

second form given in Eq. (3.57). Next, we note that:

𝑧†
𝑖Γ

𝑖𝑗
21 = 𝐼𝑁 ⊗ Γ𝑖𝑗11 and 𝑧†

𝑖Γ
𝑖𝑗
22 = 𝑧†

𝑖 ⊗ Γ𝑖𝑗12. (4.68)
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Putting these relations in the respective traces of Eq. (4.67) we get:

𝑖~ tr
(︁

𝑧𝑗(𝐼𝑁 + 𝑧†
𝑖 𝑧𝑗)

⊗1𝑧̇†
𝑖

)︁

= tr(𝐹 𝑖𝑖
11)⊗ tr(𝐹 𝑖𝑖

11Γ
𝑖𝑗
11 + 𝐹 𝑖𝑖

12Γ
𝑖𝑗
21) + tr(𝐹 𝑖𝑖

21𝑧
†
𝑖 )⊗ tr(𝐹 𝑖𝑖

21Γ
𝑖𝑗
12 + 𝐹 𝑖𝑖

22Γ
𝑖𝑗
22)

= tr(𝐹 𝑖𝑖
11 + 𝐹 𝑖𝑖

21𝑧
†
𝑖 )⊗ tr(𝐹 𝑖𝑖Γ𝑖𝑗). (4.69)

Adding the energy factor, conveniently written in terms of the analytically-continued Fock

matrix and mean-Ąeld matrix as

𝐸𝑖𝑗 = tr[(ℎ+ 1
2
𝑣𝑖𝑗)Γ𝑖𝑗] = tr(𝐹 𝑖𝑗Γ𝑖𝑗)⊗ 1

2
tr(𝑣𝑖𝑗Γ𝑖𝑗), (4.70)

gives the non-diagonal part of (4.64):

𝐸𝑖𝑗 + 𝑖~ tr
(︁

𝑧𝑗(𝐼𝑁 + 𝑧†
𝑖 𝑧𝑗)

⊗1𝑧̇†
𝑖

)︁

= tr(𝐹 𝑖𝑖
11 + 𝐹 𝑖𝑖

21𝑧
†
𝑖 ) + tr[(𝐹 𝑖𝑗 ⊗ 𝐹 𝑖𝑖)Γ𝑖𝑗]⊗ 1

2
tr(𝑣𝑖𝑗Γ𝑖𝑗)

= tr(𝐹 𝑖𝑖
11 + 𝐹 𝑖𝑖

21𝑧
†
𝑖 ) + 1

2
tr[(𝑣𝑖𝑗 ⊗ 𝑣𝑖𝑖)Γ𝑖𝑗]⊗ 1

2
tr(𝑣𝑖𝑖Γ𝑖𝑗).

(4.71)

Setting 𝑗 = 𝑖 yields:

𝐸𝑖𝑖 + 𝑖~ tr
(︁

𝑧𝑖(𝐼𝑁 + 𝑧†
𝑖 𝑧𝑖)

⊗1𝑧̇†
𝑖

)︁

= tr(𝐹 𝑖𝑖
11 + 𝐹 𝑖𝑖

21𝑧
†
𝑖 )⊗ 1

2
tr(𝑣𝑖𝑖Γ𝑖𝑖). (4.72)

Subtracting (4.72) from (4.71) produces the formula:

Δ𝑖𝑗 = 1
2
tr[(𝑣𝑖𝑗 ⊗ 𝑣𝑖𝑖)Γ𝑖𝑗 ⊗ 𝑣𝑖𝑖(Γ𝑖𝑗 ⊗ Γ𝑖𝑖)]. (4.73)

Once more, we pursue further simpliĄcation by considering the two-body integrals

explicitly; the two traces involved in (4.73) are rewritten according to:

tr[(𝑣𝑖𝑗 ⊗ 𝑣𝑖𝑖)Γ𝑖𝑗] =
∑︁

𝑝𝑞𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)(Γ𝑖𝑗𝑠𝑟 ⊗ Γ𝑖𝑖𝑠𝑟)Γ
𝑖𝑗
𝑞𝑝, (4.74)

and:

tr[𝑣𝑖𝑖(Γ𝑖𝑗 ⊗ Γ𝑖𝑖)] =
∑︁

𝑝𝑞

∑︁

𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)Γ𝑖𝑖𝑠𝑟(Γ𝑖𝑗𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝)

=
∑︁

𝑟𝑠

∑︁

𝑝𝑞

(𝑉𝑟𝑝≤𝑠𝑞 ⊗ 𝑉𝑟𝑝≤𝑞𝑠)(Γ
𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝)Γ

𝑖𝑖
𝑠𝑟

=
∑︁

𝑝𝑞𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)(Γ𝑖𝑗𝑠𝑟 ⊗ Γ𝑖𝑖𝑠𝑟)Γ
𝑖𝑖
𝑞𝑝, (4.75)

which leads at once to the desired result:

Δ𝑖𝑗 = 1
2

∑︁

𝑝𝑞𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)(Γ𝑖𝑗𝑠𝑟 ⊗ Γ𝑖𝑖𝑠𝑟)(Γ
𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝). (4.76)
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As in the bosonic case this can be interpreted in energy terms; the energy difference

due to density Ćuctuation is found from Eq. (3.75) to be

𝐸(Γ0 + ÓΓ)⊗ 𝐸(Γ0) =
∑︁

𝑝𝑞

𝐹 (Γ0)𝑝𝑞 ÓΓ𝑞𝑝 + 1
2

∑︁

𝑝𝑞𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)ÓΓ𝑠𝑟ÓΓ𝑞𝑝. (4.77)

In this case the energy change would be that induced by an analytic continuation, 𝑧𝑖 ⊃ 𝑧𝑗,

in the one-density, ÓΓ𝑖𝑗 = Γ(𝑧*
𝑖 , 𝑧𝑗)⊗ Γ(𝑧*

𝑖 , 𝑧𝑖); writing 𝐸 ⊗ 𝐸0 = Ó𝐸 + Ó2𝐸 we identify:

Ó2𝐸𝑖𝑗 = 1
2

∑︁

𝑝𝑞𝑟𝑠

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)ÓΓ𝑖𝑗𝑠𝑟ÓΓ𝑖𝑗𝑞𝑝 = Δ𝑖𝑗. (4.78)

This provides the fermionic CCS coupling with a sound physical interpretation. Further

speciĄcation of 𝑉𝑝𝑞≤𝑞𝑠 (e.g. when the system can be described by simple Hubbard models)

allows for an even more reduced expression.

4.4 Sampling protocol

In the remainder of this chapter we shall be concerned with some computational aspects of

the discrete unitary CCS method. We begin by outlining a general algorithm for carrying

out the Ąrst stage of any application Ű basis set sampling at 𝑡 = 0.

The procedure hereby explained assumes that the initial wavefunction is a coherent

state, i.e. ♣å0⟩ = ♣𝑧0⟩, and it applies to any type of coherent-state parametrization ♣𝑧⟩
once two geometry-dependent ingredients are provided: adequate sampling coordinates,

𝑞 = 𝑓(𝑧), with a known inverse, 𝑧 = 𝑓⊗1(𝑞), and a weight distribution function 𝑤(𝑞),

according to which these coordinates are to be randomly selected. In particular, the

coordinate associated with the initial state is denoted by 𝑞0 = 𝑓(𝑧0) and 𝑤(𝑞0) is a global

maximum of the weight distribution. The sampling strategy follows a very simple Śone-by-

oneŠ protocol, which draws inspiration from previously developed basis set conditioning

techniques.53

One begins by taking ♣𝑧0⟩ (the initial state itself) as the Ąrst basis element Ű the initial

state will always be part of the basis set, with the corresponding amplitude having the

maximum value, 𝐶(𝑧0) = 1. This is crucial for accuracy of short-time results and also

secures that the initial norm is unity, regardless of how the remaining basis elements turn

out to be distributed in phase space. Then the sampling loop starts Ű each iteration

amounts to three steps:

1. Using the appropriate sampling coordinates 𝑞 and weight function 𝑤(𝑞), randomly

select a new basis element 𝑧𝑖 = 𝑓⊗1(𝑞𝑖) and temporarily add ♣𝑧𝑖⟩ to the basis set.

2. Compute the overlap matrix Ω and evaluate its conditioning factor,

Ñ(Ω) = Úmax/Úmin, (4.79)
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where Úmax and Úmin are the largest and smallest eigenvalues of Ω, respectively.viii

3. If Ñ is less than some threshold value Ñlim, accept ♣𝑧𝑖⟩, permanently adding it to the

basis set, whose size increases by unity. Else, discard the selected basis element,

in which case the basis-set size does not change. (Additional conditions can be

enforced; for instance, one may require minimum/maximum overlap with the initial

state or some other, problem-speciĄc restriction, e.g. an energy cut-off). In either

case, return to the Ąrst step.

The above sequence of operations is then repeated until either a predetermined basis-

set size 𝑚 is achieved or saturation occurs, meaning that the algorithm is unable to select

a new ♣𝑧𝑖⟩ that satisĄes the Ñ threshold condition (a certain maximum number of attempts

may be stipulated). How fast saturation takes place will depend upon the systemŠs dimen-

sionality, the threshold value Ñlim, the coherent-state parameters and the details of the

sampling distribution 𝑤(𝑞). Typically, we take Ñlim ≍ 108⊗1013, and, after some test-runs

for determining the threshold size, settle for a basis-set just below the saturation point,

thus ensuring a dense swarm of initial conditions (since signiĄcant overlapping of basis

elements is essential for an accurate propagation) but with a reasonably well-conditioned

overlap matrix at 𝑡 = 0.

Although nothing prevents that an initially well-conditioned overlap matrix becomes

singular at some later time Ű a known weakness of methods formulated with non-orthogonal

basis sets56 Ű we observe in practice that the time-dependent conditioning factor,

Ñ(Ω(𝑡)) = Úmax(𝑡)/Úmin(𝑡), (4.80)

Ű which, together with total energy and norm, is one of the default quantities monitored

during propagation Ű tends to decrease over time, specially for systems with a large number

of degrees of freedom (this behavior is nonetheless observed in the two-dimensional system

studied at ğ5.3). This is a consequence of the non-linear dynamics of the 𝑧 variables:

trajectories tend to spread over the phase space, and a sparse basis is likely to yield a

small conditioning factor.

This also leads to an interesting observation. A possible scenario is the one where,

after a long propagation time, the non-diagonal entries of the overlap matrix Ω become

negligible, with Ñ(Ω(𝑡)) approaching unity. According to Eq. (4.26) this means that

amplitudes decouple and therefore ŚfreezeŠ on their current values, say 𝐶 and 𝐷̄. The

result is that the CCS wavefunction reduces to a incoherent mixture of classically driven,

viiiThe overlap matrix is hermitian and positive-definite, meaning that its eigenvalues are real and posi-
tive, though numerical diagonalization may produce null or very small negative eigenvalues. Alternatively,
one could employ a singular value decomposition and carry on the sampling procedure using the singular
values rather than the eigenvalues.
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independent basis states:

♣å(𝑡)⟩ ⊃
∑︁

𝑖

𝐷̄𝑖 ♣𝑧𝑖(𝑡)⟩𝑒
i
~
𝑆i(𝑡), (𝑑/𝑑𝑡)𝐷̄𝑖 ≡ 0, Ñ(Ω(𝑡)) ≡ 1.

Clearly, under such circumstances, the CCS solution has long ceased to give satisfactory

results.

Nonetheless, in the event that Ω becomes singular at some instant 𝑡 > 0 one should

take appropriate measures before resuming the time evolution. In this regard, a partic-

ularly interesting methodology has been developed by Habershon in Ref. [53]. In that

work a Śbasis set adaptationŠ algorithm is designed which simultaneously remedies both

the ill-conditioning of the overlap matrix and Ąxes an eventual poor representation of the

wavefunction, by dynamically re-sampling the basis set. HabershonŠs method is formu-

lated for gaussian wavepackets, but it applies equally well to the generalized coherent-state

case.

However, in the model problems considered in Chapter 5, the so-called Śsingularity

problemŠ, associated with ill-conditioning of the basis set, did not occur. On the other

hand, in virtually all simulations performed, the CCS wavefunction was observed to be-

come less accurate for sufficiently long propagation times, precisely due to the spreading

of trajectories mentioned earlier Ű no effort to ŚadaptŠ the basis set was made, though; at

this stage we simply terminate the calculation.

Finally, we note that our sampling protocol requires the eigenvalues of the overlap ma-

trix to be computed at every iteration. However, that does not compromise the methodŠs

overall efficiency since the initial sampling is performed only once. Moreover, the overlap

matrix typically does not grow too large; this assertion holds even for multidimensional

systems, as long as the sampling distribution is kept sufficiently localized around the

initial-state coordinate 𝑧0, from where the most relevant contributions to the initial value

representation formula are expected to originate.

4.5 A ‘pave-the-way’ parallelization scheme

In this section we put forward a parallelization scheme for the standard CCS method

(i.e. the discrete unitary version). The technique developed here was used in the simula-

tions of Chapter 5 and has proved its effectiveness Ű indeed, results would otherwise have

been much harder to obtain.

The methodology is rather unusual in that parallel operations are distributed across

the time domain with the help of Śtime-chunkŠ buffers. In order to put ideas into perspec-

tive, we begin by highlighting some general aspects of the numerical implementation of
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the CCS method. Let us recall the fundamental sizes involved:

⎧

⋁︁⋁︁⋁︁⋁︁⨄︁

⋁︁⋁︁⋁︁⋁︁⋃︁

𝑚 basis-set size (number of trajectories).

𝑑 degrees of freedom (length of complex z vectors).

𝑛 number of time steps.

(4.81)

The Ąrst thing to be noticed is that propagation of the CCS wavefunction consists of

two parts: the evolution of individual orbits 𝑧𝑖, which obey

𝑑𝑧𝑖Ð
𝑑𝑡

= ⊗ 𝑖
~

𝑑∑︁

Ñ=1

𝑔⊗𝑇
ÐÑ (𝑧*

𝑖 , 𝑧𝑖)
𝜕𝐸(𝑧*

𝑖 , 𝑧𝑖)

𝜕𝑧*
𝑖Ñ

, for 1 ⊘ 𝑖 ⊘ 𝑚, (4.82)

and the marching of amplitudes 𝐶𝑖, whose dynamics is governed by the pair of equations:

𝑚∑︁

𝑘=1

æ𝑗𝑘𝐶𝑘 = 𝐷𝑗,
𝑑𝐶𝑖
𝑑𝑡

= ⊗ 𝑖
~

𝑚∑︁

𝑗=1

(æ𝑖𝑗Δ𝑖𝑗)𝐷𝑗, (4.83)

with the overlap matrix æ𝑖𝑗 and the CCS coupling Δ𝑖𝑗 given by Eqs. (4.25) and (4.18).

Let us then pictorically represent the operations required for advancing the wavefunc-

tion by one time step:

1. 𝑧̇𝑖(𝑡) = 𝑓(𝑧𝑖(𝑡)), 𝑧𝑖(𝑡+ ℎ) = 𝑔(ℎ, 𝑧̇𝑖(𝑡)), (1 ⊘ 𝑖 ⊘ 𝑚);

2. Ċ(𝑡) = F(z(𝑡),C(𝑡)), C(𝑡+ ℎ) = G(ℎ, Ċ(𝑡)).

Here, the time increment is ℎ and boldface quantities are𝑚-sized arrays: C = (𝐶1, . . . , 𝐶𝑚)

and z = (𝑧1, . . . , 𝑧𝑚), with each 𝑧𝑖 being itself a 𝑑-sized vector.

The meaning of the above scheme is as follows. The function 𝑓 represents the equation

of motion (4.82), it takes 𝑧(𝑡) as input and returns the time-derivative 𝑧̇(𝑡). Meanwhile

𝑔 symbolizes an ordinary differential equation (ODE) stepper routine, which takes the

time increment ℎ and the computed 𝑧̇(𝑡) as inputs and returns the time-evolved variable,

𝑧(𝑡 + ℎ). Similarly, F represents the pair of equations in (4.83); this function, which

takes arguments z(𝑡) and C(𝑡), builds the required matrices æ𝑖𝑗 and Δ𝑖𝑗, solves the linear

system for D and produces the amplitude derivative Ċ(𝑡). In turn, the application G

uses ℎ and the computed Ċ(𝑡) to advance the amplitude, returning C(𝑡+ℎ). The scheme

is merely illustrative since stepper routines usually require derivatives to be evaluated

at several instants, but it is nevertheless useful for discussing the computational effort

involved in each operation.

Integration of Eqs. (4.82) can be made with standard ODE routines equipped with

step-size adaptation and error control. Ignoring possible complications associated with

unstable orbits, we may assume that the computational effort (measured in CPU time)

per trajectory per time step scales linearly with the number of degrees of freedom, 𝑑.
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Thus, we may say that the cost for advancing all basis elements through operations 𝑓 and

𝑔 goes as ≍ 𝑚𝑑.

In the majority of situations, the most expensive operation per time step is the inter-

mediate calculation of D amplitudes, which requires solution of the linear system in (4.83).

This is achieved by 𝐿𝑈 decomposition of the overlap matrix and subsequent backward

substitution. Ignoring matrix building (which scales as ≍ 𝑚2), the CPU time expend in

this operation goes roughly as ≍ 𝑚3. Since this procedure is conducted by the function

F we attach the computational cost of ≍ 𝑚3 to the latter Ű also, we henceforth refer to

it as the bottleneck operation.

4.5.1 * Implementation types – a few examples

Next, let us provide two basic examples of implementation and make some remarks on

how they administer the operations described above. All numerical effort associated with

secondary tasks, such as monitoring and diagnosis, calculation of observables and output

writing will be ignored.

Simplest approach. The propagation scheme which is perhaps the easiest to pro-

gram is the one where z and C are treated on the same footing, i.e. derivatives ż and

Ċ are computed simultaneously and the entire set of variables is advanced together. In

more elaborated versions of CCS, like the gaussian-wavepacket-based multiconĄgurational

Ehrenfest method (MCE),57;58 this may be the only viable approach, for in that case tra-

jectories actually couple to their amplitudes. However, it is a poor approach to standard

CCS, where the z parameters obey separate equations. This is so because the presence of

a single unstable orbit will require more ODE calls, with all derivatives being calculated.

Thus many operations will be carried out unnecessarily, including the expensive factor-

ization of the overlap matrix, slowing down the time evolution. Nevertheless, it is simple

and the difficulties just mentioned are alleviated when considering a small phase space,

few basis elements and short propagation times. It has been successfully used in Ref. [28]

in the study of a bosonic triple-well system. The same problem is analyzed in ğ5.3 with

the more sophisticated parallel scheme devised here.

Two-stage approach. The fact that CCS trajectories evolve independently brings the

possibility of a two-stage strategy. First, orbits are evolved and their coordinates are

saved in hard-disk at predetermined instants. Later, this information is loaded and used

to build the require matrices for the propagation of amplitudes. The Ąrst-stage can be

fully parallelized, and unstable orbits do not pose a problem for the overall efficiency.

This approach has the interesting advantage of allowing a more sophisticated ŚsamplingŠ

of trajectories, since their entire history is known, and one may choose which orbits are

more adequate for the problem at hand. However, the bottleneck problem is not addressed

under this scheme. There is also a drawback concerning memory usage: for a system with

𝑑 degrees of freedom, the memory needed for storing 𝑚 orbits evaluated at 𝑛 time steps
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goes as 𝑛𝑚𝑑; this can be huge. Also, loading from hard-disk is slow. Nonetheless, the

two-stage methodology is useful when individual trajectories are propagated at a very

expensive computational cost. This situation is found when analytical Hamiltonians are

not available. This is usual in quantum chemistry problems studied with the Gaussian-

based ab initio MCE technique,59–63 where each basis element represents a molecular

geometry. In order to determine the forces that act on the system, an electronic structure

calculation must be performed at every time step. Indeed, in this kind of problem, the

cost per trajectory obliterates everything else Ű the factorization of the overlap matrix

becomes a minor issue.

Let us mention that one possible way of dealing with the bottleneck operation in the

standard CCS method is through parallelization of the algorithm used in the factorization

of the overlap matrix. This could be implemented with either of the approaches discussed

above and the required sub-routines are available in some scientiĄc libraries. If the 𝐿𝑈

decomposition of æ is performed in a multi-threaded fashion the cost of the operation

would be diminished from 𝑚3 to ≍ 𝑚3/𝑝, where 𝑝 is the number of processors. The

problem is that this becomes advantageous only if 𝑚 is very large, say 𝑚 ≍ 103, which

leads to other difficulties. Alternative low-level schemes are discussed in Ref. [52].

4.5.2 The three-stage ‘pave-the-way’ implementation

The discussion so far was meant to give a general idea of the sort of difficulties to be

overcome when designing a parallel CCS algorithm. Having prepared the terrain, we now

set out to formulate the so called Śpave-the-wayŠ approach.

Let us consider the intermediate situation wherein trajectories are reasonable cheap to

compute, so that the operations involved in the integration of Eq. (4.82) can be handled by

a single processor. For deĄniteness we may imagine 𝑑 = 10. Also, we assume a moderate

basis-set size; a representative number of basis elements would be 𝑚 = 100. Under these

circumstances, the low-level parallelization of the bottleneck operation (mentioned earlier

as a possible way of dealing with the problem) is not proĄtable, hardly compensating

for the setting up of the required multi-thread environment. Therefore we must look for

alternative solutions.

We propose a three-stage procedure based on parallel tasks distributed over a range of

sequential time intervals. This means that the full timespan of the propagation is sliced

into pieces of size 𝑛′ < 𝑛. Again, for deĄniteness, let us take the total number of time

steps 𝑛 = 2000; we could then work with one-hundred time slices of size 𝑛′ = 20. We call

the workspace associated with each time slice a time chunk.

Only one time chunk is needed in the program Ű it is used for propagating time slices

one after the other. The time chunk must allocate sufficient memory for storing 𝑛′ copies

of the CCS workspace, which consists essentially of the basis vector array z Ű of size 𝑚𝑑 Ű

and 𝑚×𝑚 matrices ω and X Ű the latter being deĄned through the relation 𝑋𝑖𝑗 = æ𝑖𝑗Δ𝑖𝑗,
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i.e. it is the matrix that multiplies D in Eq. (4.83). For simplicity we ignore other auxiliary

quantities.

Hence the memory required per time step is ≍ (𝑚𝑑 + 2𝑚2). The memory associated

with the time chunk is then ≍ 𝑛′(𝑚𝑑 + 2𝑚2). This can be quite big, but the strategy is

already effective for 𝑛′ of the same order of the number of processors, hereby denoted 𝑝,

and which is usually ≍ 10, so that we do not need a too large time-chunk (though the

method is more proĄtable for larger 𝑛′). Also, notice that this refers to RAM memory,

meaning that reading and writing operations are fast.

Let us set 𝑝 = 10. The three stages of the Śpave-the-wayŠ scheme are as follows.

1. Basis elements are propagated in parallel during the timespan which is currently

contemplated by the time chunk. Let us think this is the Ąrst time slice, so the

timespan is: 0 ⊘ 𝑡 ⊘ 𝑛′ℎ. As each trajectory evolves its coordinates are stored in

the appropriate slots of the z array corresponding to instants 𝑡 = 0, ℎ, 2ℎ, . . . , 𝑛′ℎ.

This is straightforward parallelism without any interdependencies whatsoever. The

computational cost associated with trajectory propagation is thus reduced from the

assumed ≍ 𝑚𝑑 to ≍ 𝑝⊗1𝑚𝑑. Moreover, since most orbits behave similarly, the

workload is well-balanced among processors.ix

2. Once all trajectory information during the interval 0 ⊘ 𝑡 ⊘ 𝑛′ℎ is stored in the

time chunk, each processor is then assigned to work on one of the 𝑛′ instants, with

tasks distributed as in a Śparallel-forŠ loop. Each thread reads the z array from a

speciĄc time instant, builds the matrices ω and X and, Ąnally, conducts the 𝐿𝑈

decomposition of the matrix ω, which can be stored in the same matrix space used

by the overlap matrix corresponding to that instant. Since a moderate basis-set

size 𝑚 was assumed, this calculation should be handled without difficulty by a

single processor. Once again this is dependency-free parallelism with nearly perfect

workload balance. The overall effect is that the time required for carrying out the

𝑛′ bottleneck operations for the current time slice has been reduced from ≍ 𝑛′𝑚3

to ≍ 𝑝⊗1𝑛′𝑚3. In other words, instead of focusing on a single time step, we took

advantage of the fact that the 𝑧 vectors can be independently evolved, in order to

conduct the 𝐿𝑈 decompositions in parallel at adjacent time instants.

3. The last stage concerns propagation of amplitudes during the time chunkŠs span.

This stage is performed in a serial fashion using a forth-order Runge-Kutta stepper

routine (the G operations in the Śpictorical schemeŠ).x Notice that, with the 𝐿𝑈 -

factorized form of the overlap matrix at our disposal, the D(𝑡) amplitudes at each

ixIn our codes the evolution of basis elements is performed with the general-purpose ‘Runge-Kutta-
Fehlberg (4,5)’ integrator, with error control and adaptive step size, as implemented in the GNU Scientific
Library;64 however, since coherent-state variables evolve in a classical phase-space, one would perhaps
prefer a symplectic integrator.

xThe general-purpose forth-order Runge-Kutta stepper was chosen because it delivers good balance
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instant 𝑡 are obtained from C(𝑡) by simple backward substitution, with computa-

tional cost scaling as ≍ 𝑚2. The algorithm yields C(ℎ),C(2ℎ),C(3ℎ), . . . ,C(𝑛′ℎ)

and the propagation on the current time-slice is completed.

Following this last stage, the time chunk is reseted and propagation on the subsequent

time slice begins (the last instant stored in the time chunk is re-allocated, becoming the

Ąrst instant for the next round).

Below, we provide a descriptive scheme of the three stages enumerated above, as

implement with a time chunk of size 𝑛′ = 5, for a wavefunction with 𝑚 = 8 basis elements,

and 𝑝 = 3 processors (these are indicated by the letter 𝑃 ). An additional detail, which

was left out of the previous explanation is illustrated: the fact that, in the last stage, each

integration step usually requires more than one evaluation of the derivative function F .

� 1

𝑃0 ⇒ 𝑧1(𝑡0) 99K 𝑧1(𝑡1) 99K 𝑧1(𝑡2) 99K 𝑧1(𝑡3) 99K 𝑧1(𝑡4)

𝑃1 ⇒ 𝑧2(𝑡0) 99K 𝑧2(𝑡1) 99K 𝑧2(𝑡2) 99K 𝑧2(𝑡3) 99K 𝑧2(𝑡4)

𝑃2 ⇒ 𝑧3(𝑡0) 99K 𝑧3(𝑡1) 99K 𝑧3(𝑡2) 99K 𝑧3(𝑡3) 99K 𝑧3(𝑡4)

𝑃0 ⇒ 𝑧4(𝑡0) 99K 𝑧4(𝑡1) 99K 𝑧4(𝑡2) 99K 𝑧4(𝑡3) 99K 𝑧4(𝑡4)

𝑃1 ⇒ 𝑧5(𝑡0) 99K 𝑧5(𝑡1) 99K 𝑧5(𝑡2) 99K 𝑧5(𝑡3) 99K 𝑧5(𝑡4)

𝑃2 ⇒ 𝑧6(𝑡0) 99K 𝑧6(𝑡1) 99K 𝑧6(𝑡2) 99K 𝑧6(𝑡3) 99K 𝑧6(𝑡4)

𝑃0 ⇒ 𝑧7(𝑡0) 99K 𝑧7(𝑡1) 99K 𝑧7(𝑡2) 99K 𝑧7(𝑡3) 99K 𝑧7(𝑡4)

𝑃1 ⇒ 𝑧8(𝑡0) 99K 𝑧8(𝑡1) 99K 𝑧8(𝑡2) 99K 𝑧8(𝑡3) 99K 𝑧8(𝑡4)

⇓ ⇓ ⇓ ⇓ ⇓
� 2 𝑃0 𝑃1 𝑃2 𝑃0 𝑃1

≫ ≫ ≫ ≫ ≫
𝐿𝑈 [æ(𝑡0)] 𝐿𝑈 [æ(𝑡1)] 𝐿𝑈 [æ(𝑡2)] 𝐿𝑈 [æ(𝑡3)] 𝐿𝑈 [æ(𝑡4)]

← ≫ ↘ ← ≫ ↘
𝑖Ċ = F(z,C) 𝑖Ċ = F(z,C)

� 3 ≫ ≫
𝑃0 ⇒ 𝐶(𝑡0) 99K G(ℎ, Ċ) 99K 𝐶(𝑡2) 99K G(ℎ, Ċ) 99K 𝐶(𝑡4)

The whole strategy is based on the idea of Śpaving the wayŠ for the integration of the

amplitudeŠs equation of motion, hence the chosen name. Finally, we emphasize once more

that this technique was crucial in accelerating the simulations of Chapter 5.

between simplicity of implementation and overall accuracy – the latter meant in the sense that propagation
remains stable even for reasonably large time increments ℎ. Ideally, however, one would prefer a more
sophisticated algorithm, specifically designed for propagating quantum states represented in terms of
non-orthogonal, time-dependent basis functions; such a scheme is developed in Ref. [65].
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4.6 * Extensions of the multiconfigurational method

In this last section we speciĄcally consider the CCS method as formulated with the

fermionic coherent states (Thouless determinants) of Chapter 3. Earlier, at ğ3.3, we

analyzed the relation between different Thouless representations (i.e. whose parameters

are deĄned with respect to different reference determinants) of a same physical state

and found that the corresponding coherent-state labels are connected by an analytical

map [cf. Eq. (3.95)]. We also discussed how such map can be useful in regularizing the

coherent-state variables. Here, we shall introduce these ideas in the context of the multi-

conĄgurational formula Ű the resulting CCS framework, where conĄgurations are allowed

to change reference state at any instant during propagation, will be referred to as Śex-

tendedŠ.xi

4.6.1 * Extended overlap

Suppose each Thouless conĄguration participating in the CCS wavefunction is deĄned

with respect to a (possibly) distinct reference state. The Ąrst issue that arises concerns

the overlap between any two such conĄgurations.

In order to establish the extended formulas we employ the idea of a ŚdefaultŠ reference

state, i.e. we presume there exists a set of single-particle operators, 𝑐 and 𝑐†, in terms of

which the operators corresponding to the 𝑖-th and 𝑗-th conĄgurations can be written as

𝑐(𝑖)
𝑝

†
=

∑︁

𝑞

𝑐†
𝑞 𝑌

(𝑖)
𝑞𝑝 , 𝑐(𝑖)

𝑝 =
∑︁

𝑞

𝑋(𝑖)
𝑝𝑞 𝑐𝑞; 𝑐†

𝑝 =
∑︁

𝑞

𝑐(𝑖)
𝑞

†
𝑋(𝑖)
𝑞𝑝 , 𝑐𝑝 =

∑︁

𝑞

𝑌 (𝑖)
𝑝𝑞 𝑐(𝑖)

𝑞 ; (4.84a)

𝑐(𝑗)
𝑝

†
=

∑︁

𝑞

𝑐†
𝑞 𝑌

(𝑗)
𝑞𝑝 , 𝑐(𝑗)

𝑝 =
∑︁

𝑞

𝑋(𝑗)
𝑝𝑞 𝑐𝑞; 𝑐†

𝑝 =
∑︁

𝑞

𝑐(𝑗)
𝑞

†
𝑋(𝑗)
𝑞𝑝 , 𝑐𝑝 =

∑︁

𝑞

𝑌 (𝑗)
𝑝𝑞 𝑐(𝑗)

𝑞 ; (4.84b)

for 1 ⊘ 𝑖, 𝑗 ⊘ 𝑚. The transformation matrices are unitary and, as in ğ3.3, 𝑌 denotes the

inverse of 𝑋,

𝑌 (𝑖) = [𝑋(𝑖)]⊗1 = 𝑋(𝑖)†
; 𝑌 (𝑗) = [𝑋(𝑗)]⊗1 = 𝑋(𝑗)†

. (4.85)

We adopt the following convention: conĄgurations deĄned in terms of the default set

are labeled with the letter 𝑧, whereas modiĄed conĄgurations are labeled with the letter

𝑤; thus,

⟨𝑧𝑖♣ ⊕ ⟨𝑧𝑖; 𝑐♣, ♣𝑧𝑗⟩ ⊕ ♣𝑧𝑗; 𝑐⟩; and ⟨𝑤𝑖♣ ⊕ ⟨𝑤𝑖; 𝑐(𝑖)♣, ♣𝑤𝑗⟩ ⊕ ♣𝑤𝑗; 𝑐(𝑗)⟩, (4.86)

and likewise for non-normalized states Ű to alleviate the notation we omit the operator

indication inside kets and bras from now on.
xiA similar scheme may be devised for the bosonic coherent states of Chapter 2, since the trans-

formations involved are entirely analogous to the fermionic case. However, the flexibility brought by
the extended framework is much more pertinent to the fermion problem – in order to avoid repetitive
arguments, we only discuss the latter.
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As we know from previous analysis (cf. ğ3.3), variables 𝑧 and 𝑤 are linked by the

relations:

𝑤𝑗 = (𝑋(𝑗)
21 +𝑋

(𝑗)
22 𝑧𝑗)(𝑋

(𝑗)
11 +𝑋

(𝑗)
12 𝑧𝑗)

⊗1; (4.87a)

𝑤†
𝑖 = (𝑌 (𝑖)

11 + 𝑧†
𝑖𝑌

(𝑖)
21 )⊗1(𝑌 (𝑖)

12 + 𝑧†
𝑖𝑌

(𝑖)
22 ); (4.87b)

whose inverse form is

𝑧𝑗 = (𝑌 (𝑗)
21 + 𝑌

(𝑗)
22 𝑤𝑗)(𝑌

(𝑗)
11 + 𝑌

(𝑗)
12 𝑤𝑗)

⊗1; (4.88a)

𝑧†
𝑖 = (𝑋(𝑖)

11 + 𝑤†
𝑖𝑋

(𝑖)
21 )⊗1(𝑋(𝑖)

12 + 𝑤†
𝑖𝑋

(𝑖)
22 ). (4.88b)

In particular, the non-normalized state vectors are connected by

♣𝑧𝑗♢ = ♣𝑤𝑗♢[det(𝑌 (𝑗)
11 + 𝑌

(𝑗)
12 𝑤𝑗)]

⊗1; (4.89a)

¶𝑧𝑖♣ = [det(𝑋(𝑖)
11 + 𝑤†

𝑖𝑋
(𝑖)
21 )]⊗1¶𝑤𝑖♣, (4.89b)

whence we obtain the scalar product:

¶𝑤𝑖♣𝑤𝑗♢ = [det(𝑋(𝑖)
11 + 𝑤†

𝑖𝑋
(𝑖)
21 )][det(𝐼𝑁 + 𝑧†

𝑖 𝑧𝑗)][det(𝑌 (𝑗)
11 + 𝑌

(𝑗)
12 𝑤𝑗)]. (4.90)

In order to derive a sensible formula we must replace the 𝑧Šs by 𝑤Šs. Using (4.88) we Ąnd:

𝐼𝑁 + 𝑧†
𝑖 𝑧𝑗 = 𝐼𝑁 + (𝑋(𝑖)

11 + 𝑤†
𝑖𝑋

(𝑖)
21 )⊗1(𝑋(𝑖)

12 + 𝑤†
𝑖𝑋

(𝑖)
22 )(𝑌 (𝑗)

21 + 𝑌
(𝑗)

22 𝑤𝑗)(𝑌
(𝑗)

11 + 𝑌
(𝑗)

12 𝑤𝑗)
⊗1

= (𝑋(𝑖)
11 + 𝑤†

𝑖𝑋
(𝑖)
21 )⊗1(𝑊 (𝑖,𝑗)

11 +𝑊
(𝑖,𝑗)
12 𝑤𝑗 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
21 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
22 𝑤𝑗)(𝑌

(𝑗)
11 + 𝑌

(𝑗)
12 𝑤𝑗)

⊗1.

Above, a new matrix 𝑊 (𝑖,𝑗) has been deĄned in terms of its occupied, virtual and mixed

blocks Ű in full form it is simply the product of transformation matrices belonging to the

conĄgurations involved:

𝑊 (𝑖,𝑗) ⊕ 𝑋(𝑖)𝑌 (𝑗). (4.91)

Substitution of the latter result into (4.90) leads to:

¶𝑤𝑖♣𝑤𝑗♢ = det(𝑊 (𝑖,𝑗)
11 +𝑊

(𝑖,𝑗)
12 𝑤𝑗 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
21 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
22 𝑤𝑗), (4.92)

whose normalized version is the extended overlap we were seeking:

⟨𝑤𝑖♣𝑤𝑗⟩ =
det(𝑊 (𝑖,𝑗)

11 +𝑊
(𝑖,𝑗)
12 𝑤𝑗 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
21 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
22 𝑤𝑗)

√︁

det(𝐼𝑁 + 𝑤†
𝑖𝑤𝑖) det(𝐼𝑁 + 𝑤†

𝑗𝑤𝑗)
. (4.93)

This derivation provides an idea of the kind of method we intend to formulate.
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4.6.2 * Extended configurations

Our goal is to write the CCS wavefunction in terms of extended conĄgurations,

♣å⟩ =
∑︁

𝑗

♣𝑧𝑗⟩𝐷(𝑧𝑗)𝑒
i
~
𝑆(𝑧j) =

∑︁

𝑗

♣𝑤𝑗⟩𝐷̃(𝑤𝑗)𝑒
i
~
𝑆(𝑤j). (4.94)

The next issue to be addressed is how the change of variables 𝑧 ⊃ 𝑤 affects the action

and amplitude of each basis element. Let us begin with the former. In what follows,

transformed quantities will be indicated with a tilde, e.g. 𝑆𝑗 = 𝑆(𝑤𝑗) and 𝐷̃𝑗 = 𝐷̃(𝑤𝑗).

We know from ğ3.3 that holomorphic transformations of the coherent-state variable

such as those exempliĄed in Eqs. (4.87) and (4.88) result in a relative phase between the

corresponding normalized coherent state vectors [cf. Eq. (3.100)],

♣𝑧⟩ = ♣𝑤⟩𝑒⊗𝑖𝜙, 𝜙 = arg[det(𝑌11 + 𝑌12𝑤)], (4.95)

where matrix 𝑌 is any of the 𝑌 (𝑗) above Ű for the purposes of this subsection we may

focus in a single conĄguration, omitting the basis set-label.

In a time-dependent scenario, the relative phase leads to an accumulated phase differ-

ence between action integrals computed along orbits 𝑧(𝑡) and 𝑤(𝑡); this phase difference

can be found by considering the Lagrangians of each description, which are connected by

𝐿(𝑧) =
𝑖~

2

[︁

⟨𝑧♣𝑧̇⟩ ⊗ ⟨𝑧̇♣𝑧⟩
]︁

⊗ ⟨𝑧♣𝐻̂♣𝑧⟩

=
𝑖~

2

[︁

⟨𝑤♣𝑤̇⟩ ⊗ ⟨𝑤̇♣𝑤⟩
]︁

⊗ ⟨𝑤♣𝐻̂♣𝑤⟩+ ~ 𝜙̇ = 𝐿̃(𝑤) + ~ 𝜙̇. (4.96)

Thus, integrating from 𝑡0 to 𝑡, we obtain:

𝑆(𝑧; 𝑡, 𝑡0) = 𝑆(𝑤; 𝑡, 𝑡0) + ~𝜙(𝑤; 𝑡)⊗ ~𝜙(𝑤; 𝑡0). (4.97)

Notice we have speciĄed the initial and Ąnal time instants.

Taking into account both effects Ű the relative phase between state vectors and accu-

mulated action phase Ű we Ąnd that, at time 𝑡 > 𝑡0, default and extended conĄgurations

are related as follows:

♣𝑧(𝑡)⟩𝑒 i
~
𝑆(𝑧;𝑡,𝑡0) = ♣𝑤(𝑡)⟩𝑒⊗𝑖𝜙(𝑤;𝑡)𝑒

i
~
𝑆(𝑤;𝑡,𝑡0)𝑒𝑖(𝜙(𝑤;𝑡)⊗𝜙(𝑤;𝑡0)) = ♣𝑤(𝑡)⟩𝑒 i

~
𝑆(𝑤;𝑡,𝑡0)𝑒⊗𝑖𝜙(𝑤;𝑡0).

(4.98)

We see that the form of the conĄguration is not preserved, due to the factor 𝑒⊗𝑖𝜙(𝑤;𝑡0).

At Ąrst sight, this would seen to hinder the extended method inviable, since in the

CCS wavefunction conĄgurations interfere with one another, meaning that their relative

phases are crucial. In other words, transformations of coherent-state variables midway

through propagation are only acceptable if the total phase of each conĄguration is pre-
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served. (Notice that this is not an issue in a mean-Ąeld description Ű i.e. where the total

wavefunction is represented by a single Thouless determinant Ű because, in that case, the

coherent-stateŠs phase is just an immaterial global phase.)

As it turns out, however, this problem can be easily solved. Consider, from a compu-

tational perspective, the following situation. An initial conĄguration ♣𝑧(𝑡0)⟩ is propagated

in time. It acquires a phase 𝑆(𝑧; 𝑡, 𝑡0). This phase is accumulated into a variable 𝜃(𝑡). At

some instant 𝑡1 > 𝑡0 the conĄgurationŠs reference state requires changing and its underly-

ing orbitals are thus subjected to an unitary transformation 𝑋. Integration is halted and

the new, regularized variables 𝑤 are obtained from 𝑧 according to the usual prescription:

𝑤 = (𝑋21 +𝑋22𝑧)(𝑋11 +𝑋12𝑧)
⊗1 (at 𝑡 = 𝑡1). (4.99)

At the same time, we cause a discontinuity in the cumulative variable 𝜃, setting:

𝜃(𝑡1)⊃ 𝜃(𝑡1)⊗ ~𝜙(𝑤; 𝑡1) (at 𝑡 = 𝑡1), (4.100)

where, in terms of matrix𝑋, the discontinuity angle is 𝜙(𝑤; 𝑡1) = arg[det(𝑋†
11+𝑋†

21𝑤(𝑡1))].

Integration is then resumed, and 𝜃(𝑡) now accumulates the action 𝑆(𝑤; 𝑡, 𝑡1), computed

with the new variables 𝑤 (the equation of motion for 𝑤 has precisely the same form as

that for 𝑧, provided the Hamiltonian is transformed as well Ű see below for more details).

The net result is this: at time 𝑡 > 𝑡1 the accumulated phase is

𝜃(𝑡) = 𝑆(𝑤; 𝑡, 𝑡1) + 𝑆(𝑧; 𝑡1, 𝑡0)⊗ ~𝜙(𝑤; 𝑡1) (at 𝑡 > 𝑡1). (4.101)

Therefore, after regularization, the state is represented as:

♣𝑤(𝑡)⟩𝑒 i
~
𝜃(𝑡) = ♣𝑧(𝑡)⟩𝑒𝑖𝜙(𝑤;𝑡) 𝑒

i
~

(𝑆(𝑤;𝑡,𝑡1)+𝑆(𝑧;𝑡1,𝑡0)⊗~𝜙(𝑤;𝑡1)). (4.102)

But, from (4.97) (replacing 𝑡0 ⊃ 𝑡1 in that formula),

𝑆(𝑤; 𝑡, 𝑡1) = 𝑆(𝑧; 𝑡, 𝑡1)⊗ ~𝜙(𝑤; 𝑡) + ~𝜙(𝑤; 𝑡1). (4.103)

Putting this in Eq. (4.102), and recalling the cumulative property of the action integral:

𝑆(𝑧; 𝑡, 𝑡0) = 𝑆(𝑧; 𝑡, 𝑡1) + 𝑆(𝑧; 𝑡1, 𝑡0), we get:

♣𝑤(𝑡)⟩𝑒 i
~
𝜃(𝑡) = ♣𝑧(𝑡)⟩𝑒 i

~
𝑆(𝑧;𝑡,𝑡0). (4.104)

In other words, provided the Ś𝜃(𝑡)-discontinuityŠ protocol of Eq. (4.100) is enforced, the

same conĄguration will be represented by the new variables, including its phase, as if it

were computed with the default reference state all along. Clearly, this works just the same

if new transformations take place at future instants 𝑡2, 𝑡3, etc., and even if conĄgurations
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start off with different reference states.

In short, the fact that a cumulative phase variable 𝜃(𝑡) is used, which is always com-

puted from the Lagrangian that is currently appropriate for the timespan between trans-

formations, and the fact that a phase discontinuity is introduced by hand at each regular-

ization event Ű these procedures compensate both the state vectorŠs phase shift induced by

the change of variables and the associated action difference. Since in practice we compute

𝜃(𝑡) rather than 𝑆(𝑡), the extended methodŠs conĄgurations will be written as ♣𝑤(𝑡)⟩𝑒 i
~
𝜃(𝑡)

for the remainder of this section.

4.6.3 * CCS amplitudes in the extended framework

An important conclusion can be immediately drawn from the developments discussed

above: amplitudes 𝐶 and 𝐷 are not affected by the transformation of coherent-state

variables. This is evident since Eq. (4.104) implies:

𝐶(𝑤𝑗) = 𝑒⊗ i
~
𝜃j⟨𝑤𝑗♣å⟩ = 𝑒⊗ i

~
𝑆(𝑧j)⟨𝑧𝑗♣å⟩ = 𝐶(𝑧𝑗). (4.105)

Likewise, for the phased overlap we obtain:

æ𝑖𝑗 = 𝑒⊗ i
~
𝑆(𝑧i)⟨𝑧𝑖♣𝑧𝑗⟩𝑒

i
~
𝑆(𝑧j) = 𝑒⊗ i

~
𝜃i⟨𝑤𝑖♣𝑤𝑗⟩𝑒

i
~
𝜃j = æ̃𝑖𝑗. (4.106)

These two results combined imply the invariance of 𝐷, since

𝐶(𝑤𝑗) =
∑︁

𝑗

æ̃𝑖𝑗𝐷̃(𝑤𝑗) =
∑︁

𝑗

æ𝑖𝑗𝐷̃(𝑤𝑗) = 𝐶(𝑧𝑗) ⇒ 𝐷̃(𝑤𝑗) = 𝐷(𝑧𝑗). (4.107)

Therefore, the CCS wavefunction may be written in terms of extended conĄgurations as

♣å⟩ =
∑︁

𝑗

♣𝑧𝑗⟩𝐷(𝑧𝑗)𝑒
i
~
𝑆(𝑧j) =

∑︁

𝑗

♣𝑤𝑗⟩𝐷̃(𝑤𝑗)𝑒
i
~
𝜃j , (4.108)

and this equality actually holds term by term. We have thus established the viability of

the extended method.

Check. If amplitudes are unmodiĄed in the extended framework, then this can only

be true if the coupled equation which they obey is also unaffected by the fact that each

conĄguration is possibly deĄned in terms of different reference states. In order to conĄrm

this equivalence we need to examine the CCS coupling. Using the raw expression (4.6)
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we Ąnd that the coupling transforms as follows:

Δ𝑖𝑗 =
⟨𝑧𝑖♣𝐻̂♣𝑧𝑗⟩
⟨𝑧𝑖♣𝑧𝑗⟩

+ 𝑖~
⟨𝑧̇𝑖♣𝑧𝑗⟩
⟨𝑧𝑖♣𝑧𝑗⟩

+ 𝐿(𝑧𝑖)

=
𝑒𝑖𝜙i⟨𝑤𝑖♣𝐻̂♣𝑤𝑗⟩𝑒⊗𝑖𝜙j

𝑒𝑖𝜙i⟨𝑤𝑖♣𝑤𝑗⟩𝑒⊗𝑖𝜙j
+ 𝑖~

⎟

𝑒𝑖𝜙i⟨𝑤̇𝑖♣𝑤𝑗⟩𝑒⊗𝑖𝜙j

𝑒𝑖𝜙i⟨𝑤𝑖♣𝑤𝑗⟩𝑒⊗𝑖𝜙j
+ 𝑖𝜙̇(𝑤)

]︃

+ [𝐿̃(𝑤𝑖) + ~𝜙̇(𝑤𝑖)]

=
⟨𝑤𝑖♣𝐻̂♣𝑤𝑗⟩
⟨𝑤𝑖♣𝑤𝑗⟩

+ 𝑖~
⟨𝑤̇𝑘♣𝑤𝑗⟩
⟨𝑤𝑘♣𝑤𝑗⟩

+ 𝐿̃(𝑤𝑖) = Δ̃𝑖𝑗. (4.109)

Then, since æ𝑖𝑗 = æ̃𝑖𝑗,

𝑖~ 𝐶̇𝑖 =
∑︁

𝑗

(æ𝑖𝑗Δ𝑖𝑗)𝐷𝑗 =
∑︁

𝑗

(æ̃𝑖𝑗Δ̃𝑖𝑗)𝐷𝑗, (4.110)

conĄrming the invariance of the equation of motion.

4.6.4 * Matrix elements

Even though Eq. (4.109) tells us that the extended CCS coupling assumes the same values

as in the default formulation Ű despite the fact that the fermionic conĄgurations involved

might be deĄned in terms of distinct single-particle orbitals Ű, the actual expression for

matrix elements is different in the latter case. This is because the calculation of non-

diagonal quantities, such as 𝐸̃(𝑤*
𝑖 , 𝑤𝑗), is now complicated by the fact that the extended

overlap involves the matrix 𝑊 (𝑖,𝑗) of Eq. (4.91). In particular, the simpliĄed expressions

for Δ𝑖𝑗 found in ğ4.3 are not valid in the extended framework. Thus, if a workable formula

is to be developed, one must start again from the bare deĄnition (4.18) Ű this subsection

is dedicated to that purpose and some useful results are derived along the way.

Let us Ąrst consider the extended, analytically-continued one-density matrix,

Γ̃(𝑤*
𝑖 , 𝑤𝑗)𝑝𝑞 =

¶𝑤𝑖♣𝑐(𝑖)
𝑝

†
𝑐(𝑗)
𝑞 ♣𝑤𝑗♢

¶𝑤𝑖♣𝑤𝑗♢
. (4.111)

An expression for its elements can be obtained by the procedure employed in the default

formulation, depicted in Appendix C. That derivation still holds for the present case,

provided one replaces the quantity 𝜚(𝑧*
𝑖 , 𝑧𝑗) = 𝐼𝑁 + 𝑧†

𝑖 𝑧𝑗, used in those calculations, by its

extended counterpart:

𝜚(𝑤*
𝑖 , 𝑤𝑗) = 𝑊

(𝑖,𝑗)
11 +𝑊

(𝑖,𝑗)
12 𝑤𝑗 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
21 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
22 𝑤𝑗 =

[︁

𝐼𝑁 𝑤†
𝑖

]︁

𝑊 (𝑖,𝑗)

⋃︀

⨄︀
𝐼𝑁

𝑤𝑗

⋂︀

⋀︀ , (4.112)

which allows the non-normalized extended overlap to be expressed as:

¶𝑤𝑖♣𝑤𝑗♢ = det 𝜚(𝑤*
𝑖 , 𝑤𝑗). (4.113)
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Then, the same steps leading to the expression of the default one-density yield:

Γ̃(𝑤*
𝑖 , 𝑤𝑗) =

¶𝑤𝑖♣𝑐(𝑖)
𝑝

†
𝑐(𝑗)
𝑞 ♣𝑤𝑗♢

¶𝑤𝑖♣𝑤𝑗♢
=

⋃︀

⨄︀
𝐼𝑁

𝑤𝑗

⋂︀

⋀︀ [𝜚(𝑤*
𝑖 , 𝑤𝑗)]

⊗1
[︁

𝐼𝑁 𝑤†
𝑖

]︁

. (4.114)

These same considerations apply to two-body matrix elements, which are thus given by

the general expression:

¶𝑤𝑖♣𝑐(𝑖)
𝑝

†
𝑐(𝑖)
𝑟

†
𝑐(𝑗)
𝑠 𝑐(𝑗)

𝑞 ♣𝑤𝑗♢
¶𝑤𝑖♣𝑤𝑗♢

= Γ̃𝑞𝑝(𝑤
*
𝑖 , 𝑤𝑗)Γ̃𝑠𝑟(𝑤

*
𝑖 , 𝑤𝑗)⊗ Γ̃𝑞𝑟(𝑤

*
𝑖 , 𝑤𝑗)Γ̃𝑠𝑝(𝑤

*
𝑖 , 𝑤𝑗). (4.115)

The above formulas permit us to write extended versions for coherent-state expectation

values of one- and two-body operators.

Let us consider the one-body operator 𝐴 which, in the default representation, reads:

𝐴 =
∑︁

𝑝′𝑞′

𝐴𝑝′𝑞′ 𝑐†
𝑝′𝑐𝑞′ , 𝐴𝑝′𝑞′ = ⟨ã𝑝♣𝐴♣ã𝑞⟩. (4.116)

Using Eqs. (4.84) we obtain:

𝐴 =
∑︁

𝑝𝑞

⋃︀

⨄︀
∑︁

𝑝′𝑞′

𝑋
(𝑖)
𝑝𝑝′ 𝐴𝑝′𝑞′ 𝑌

(𝑗)
𝑞′𝑞

⋂︀

⋀︀ 𝑐(𝑖)
𝑝

†
𝑐(𝑗)
𝑞 =

∑︁

𝑝𝑞

𝐴(𝑖,𝑗)
𝑝𝑞 𝑐(𝑖)

𝑝

†
𝑐(𝑗)
𝑞 , (4.117)

where the extended form of the one-body integral is:

𝐴(𝑖,𝑗)
𝑝𝑞 = ⟨ã(𝑖)

𝑝 ♣𝐴♣ã(𝑗)
𝑞 ⟩ =

∑︁

𝑝′𝑞′

𝑋
(𝑖)
𝑝𝑝′ ⟨ã𝑝′♣𝐴♣ã𝑞′⟩ 𝑌 (𝑗)

𝑞′𝑞 . (4.118)

Notice that these integrals depend on indexes 𝑖, 𝑗 (because of the transformation ma-

trices attached to each conĄguration) but not on the labels 𝑤*
𝑖 , 𝑤𝑗. The coherent-state

expectation value is then immediately found with the help of (4.114):

𝐴(𝑤*
𝑖 , 𝑤𝑗) =

¶𝑤𝑖♣𝐴♣𝑤𝑗♢
¶𝑤𝑖♣𝑤𝑗♢

=
∑︁

𝑝𝑞

𝐴(𝑖,𝑗)
𝑝𝑞 Γ̃(𝑤*

𝑖 , 𝑤𝑗)𝑞𝑝. (4.119)

Meanwhile, the two-body term will transform according to

𝐵̂ =
∑︁

𝑝,𝑞,𝑟,𝑠

𝐵𝑝𝑟≤𝑞𝑠 𝑐
†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞 =

∑︁

𝑝,𝑞,𝑟,𝑠

𝐵̃(𝑖,𝑗)
𝑝𝑟≤𝑞𝑠 𝑐

(𝑖)
𝑝

†
𝑐(𝑖)
𝑟

†
𝑐(𝑗)
𝑠 𝑐(𝑗)

𝑞 , (4.120)

where the extended two-body integrals are:

𝐵̃(𝑖,𝑗)
𝑝𝑟≤𝑞𝑠 =

∑︁

𝑝′𝑞′𝑟′𝑠′

𝑋
(𝑖)
𝑝𝑝′𝑋

(𝑖)
𝑟𝑟′ 𝐵𝑝′𝑟′≤𝑞′𝑠′ 𝑌

(𝑗)
𝑞′𝑞 𝑌

(𝑗)
𝑠′𝑠 . (4.121)

Again, these depend on conĄguration indexes, but not on the variables 𝑤𝑖 and 𝑤𝑗. Using
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Eq. (4.115) we obtain:

𝐵̃(𝑤*
𝑖 , 𝑤𝑗) =

¶𝑤𝑖♣𝐵̂♣𝑤𝑗♢
¶𝑤𝑖♣𝑤𝑗♢

=
∑︁

𝑝𝑞𝑟𝑠

𝐵̃(𝑖,𝑗)
𝑝𝑟≤𝑞𝑠

[︁

Γ̃𝑞𝑝(𝑤
*
𝑖 , 𝑤𝑗)Γ̃𝑠𝑟(𝑤

*
𝑖 , 𝑤𝑗)⊗ Γ̃𝑞𝑟(𝑤

*
𝑖 , 𝑤𝑗)Γ̃𝑠𝑝(𝑤

*
𝑖 , 𝑤𝑗)

]︁

=
∑︁

𝑝𝑞𝑟𝑠

(︁

𝐵̃(𝑖,𝑗)
𝑝𝑟≤𝑞𝑠 ⊗ 𝐵̃(𝑖,𝑗)

𝑝𝑟≤𝑠𝑞
)︁

Γ̃𝑞𝑝(𝑤
*
𝑖 , 𝑤𝑗)Γ̃𝑠𝑟(𝑤

*
𝑖 , 𝑤𝑗). (4.122)

Thus, analytically-continued energy functions 𝐸̃(𝑤*
𝑖 , 𝑤𝑗) can be computed as before,

provided the properly transformed density and extended one- and two-body integrals are

employed,

𝐸̃(𝑤*
𝑖 , 𝑤𝑗) =

∑︁

𝑝𝑞

ℎ̃(𝑖,𝑗)
𝑝𝑞 Γ̃(𝑤*

𝑖 , 𝑤𝑗)𝑞𝑝 +
∑︁

𝑝𝑞𝑟𝑠

(︁

𝑉 (𝑖,𝑗)
𝑝𝑟≤𝑞𝑠 ⊗ 𝑉 (𝑖,𝑗)

𝑝𝑟≤𝑠𝑞
)︁

Γ̃𝑞𝑝(𝑤
*
𝑖 , 𝑤𝑗)Γ̃𝑠𝑟(𝑤

*
𝑖 , 𝑤𝑗). (4.123)

The other ingredient required for expressing the CCS coupling, as deĄned by Eq. (4.18),

is the extended Kähler potential,

𝑓(𝑤*
𝑖 , 𝑤𝑗) = log[det 𝜚(𝑤*

𝑖 , 𝑤𝑗)], (4.124)

or, more speciĄcally, its gradients with respect to 𝑤*
𝑖 and 𝑤𝑗. Despite the extra terms

introduced by the matrix 𝑊 (𝑖,𝑗) (implicit in the quantity 𝜚(𝑤*
𝑖 , 𝑤𝑗)) the calculation is

straightforward, leading to:

𝜕𝑓(𝑤*
𝑖 , 𝑤𝑗)

𝜕𝑤𝑗≤ÛÐ
= [𝜚(𝑤*

𝑖 , 𝑤𝑗)
⊗1(𝑊 (𝑖,𝑗)

12 + 𝑤†
𝑖𝑊

(𝑖,𝑗)
22 )]ÐÛ, (4.125a)

𝜕𝑓(𝑤*
𝑖 , 𝑤𝑗)

𝜕𝑤*
𝑖≤ÛÐ

= [(𝑊 (𝑖,𝑗)
21 +𝑊

(𝑖,𝑗)
22 𝑤𝑗)𝜚(𝑤

*
𝑖 , 𝑤𝑗)

⊗1]ÐÛ. (4.125b)

Therefore, with the aid of Eqs. (4.123) and (4.125), we Ąnd a workable formula for the

extended CCS coupling:

Δ̃𝑖𝑗 = 𝐸̃(𝑤*
𝑖 , 𝑤𝑗)⊗ 𝐸(𝑤*

𝑖 , 𝑤𝑖)⊗ 𝑖~ tr[ 𝑤𝑖 (𝐼𝑁 + 𝑤†
𝑖𝑤𝑖) 𝑤̇

†
𝑖 ]

+ 𝑖~ tr[ (𝑊 (𝑖,𝑗)
21 +𝑊

(𝑖,𝑗)
22 𝑤𝑗) (𝑊 (𝑖,𝑗)

11 +𝑊
(𝑖,𝑗)
12 𝑤𝑗 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
21 + 𝑤†

𝑖𝑊
(𝑖,𝑗)
22 𝑤𝑗)

⊗1 𝑤̇†
𝑖 ],

(4.126)

where we have substituted the explicit form of 𝜚(𝑤*
𝑖 , 𝑤𝑗), Eq. (4.112). Notice, however,

that not all dependence on the transformation matrices is explicit, for 𝐸̃(𝑤*
𝑖 , 𝑤𝑗) is a

function of the extended one-density, which depends on 𝑊 (𝑖,𝑗). The manipulations that

earlier led to reduced forms of the coupling in the default formulation become quite

cumbersome in the present case and we do not pursue further simpliĄcation of the result

(4.126).

Lastly, we return to a point raised at ğ3.3 and left to be addressed later. It concerns the

transformation of the Hamiltonian (and possibly other observables) that must accompany
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the change of variables 𝑤 ⊂ 𝑧,

𝑤 = (𝑋21 +𝑋22𝑧)(𝑋11 +𝑋12𝑧)
⊗1,

of individual basis elements. The required formulas can be obtained at once from the

general analytically-continued results given in this section by setting 𝑖 = 𝑗 (therefore ren-

dering the conĄguration subscript unnecessary). Thus, the transformed energy function

is:

𝐸̃(𝑤*, 𝑤) =
∑︁

𝑝𝑞

ℎ̃𝑝𝑞 Γ̃𝑞𝑝 +
∑︁

𝑝𝑞𝑟𝑠

(︁

𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞
)︁

Γ̃𝑞𝑝Γ̃𝑠𝑟, (4.127)

with one- and two-body integrals given by:

ℎ̃𝑝𝑞 =
∑︁

𝑝′𝑞′

𝑋𝑝𝑝′ ℎ𝑝′𝑞′ 𝑌𝑞′𝑞 and 𝑉𝑝𝑟≤𝑞𝑠 =
∑︁

𝑝′𝑞′𝑟′𝑠′

𝑋𝑝𝑝′𝑋𝑟𝑟′ 𝑉𝑝′𝑟′≤𝑞′𝑠′ 𝑌𝑞′𝑞𝑌𝑠′𝑠. (4.128)

Since, for diagonal elements 𝑊 = 𝐼𝐾 , the transformed one-density is:

Γ̃(𝑤*, 𝑤) =

⋃︀

⨄︀
𝐼𝑁

𝑤

⋂︀

⋀︀

[︁

𝐼𝑁 𝑤†
]︁

= 𝑋

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀

[︁

𝐼𝑁 𝑧†
]︁

𝑌 = 𝑋Γ(𝑧*, 𝑧)𝑌. (4.129)

The second half of this equation can be demonstrated without difficulty using the analytic

connections compiled at the end of ğ3.3. Notice that the last equality shows that the

new density Γ̃(𝑤*, 𝑤) can be obtained directly from the old one Γ(𝑧*, 𝑧) by a similarity

transform, without need of operating with the basic Thouless parameters, 𝑧.

As one would expected, the mean-Ąelds transform as one-body operators; this can be

straightforwardly deduced from the relations given above:

𝑣(Γ̃)𝑝𝑞 =
∑︁

𝑠𝑟

(𝑉𝑝𝑟≤𝑞𝑠 ⊗ 𝑉𝑝𝑟≤𝑠𝑞)Γ̃𝑠𝑟

=
∑︁

𝑝′𝑞′

𝑋𝑝𝑝′

[︁∑︁

𝑟′𝑠′

(𝑉𝑝′𝑟′≤𝑞′𝑠′ ⊗ 𝑉𝑝′𝑟′≤𝑠′𝑞′)
(︁∑︁

𝑠𝑟

𝑌𝑠′𝑠Γ̃𝑠𝑟𝑋𝑟𝑟′

)︁]︁

𝑌𝑞′𝑞 =
(︁

𝑋𝑣(Γ)𝑌
)︁

𝑝𝑞
, (4.130)

which means that the Fock matrix as a whole transforms according to the recipe:

𝐹 (Γ̃) = ℎ̃+ 𝑣(Γ̃) = 𝑋
(︁

ℎ+ 𝑣(Γ)
)︁

𝑌 = 𝑋 𝐹 (Γ) 𝑌. (4.131)

The transformed Fock matrix, by its turn, enters in the equation of motion obeyed by æ,

𝑖~ 𝑤̇ =
[︁

⊗𝑤 𝐼𝑀
]︁

𝐹

⋃︀

⨄︀
𝐼𝑁

𝑤

⋂︀

⋀︀ , (4.132)

which has precisely the same structure as that for 𝑧 variables, Eq. (3.80), for the Śmachin-

eryŠ of the time-dependent variational principle is insensitive to the choice of reference

state. (The invariance of the mean-Ąeld equation of motion can be directly demonstrated
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by effecting the 𝑧 ⊂ 𝑤 change of variables, although this is complicated by the time-

derivative 𝑧̇, which must be written in terms of 𝑤̇ an 𝑤). Finally, the same conclusion

holds for the action phase, integrated from

𝑆̇(𝑤) = ⊗tr(𝐹11)⊗ 1
2
tr(𝐹12𝑤 + 𝑤†𝐹21) + 1

2
tr(𝑣Γ̃), (4.133)

and whose value should be accumulated into a variable 𝜃(𝑡), as explained earlier. This

completes the list of ingredients required for implementation of extended CCS method.
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Chapter 5

Applications in test-systems

Overview. The dynamics of individual coherent states as governed by

Hubbard-like Hamiltonians is examined. After this preliminary discussion,

we proceed to investigate the capability of the multiconĄgurational approach

developed in Chapter 4. This is done by considering two model problems:

Ąrst, a system of spinless bosons trapped in a triple-well potential and in-

teracting through contact forces; second, a system of electrons conĄned to a

one-dimensional circular chain of atoms where they experience tight-binding

hopping and on-site repulsion, and are further subjected to an external mag-

netic Ąeld. Both problems are studied for various sets of parameter values and

general conclusions concerning the effectiveness of the proposed methodology

are drawn.

5.1 Mean-field dynamics with Hubbard-like Hamiltonians

In Chapters 2 and 3 we have considered Ű from a coherent-state perspective Ű the dynamics

of many-particle systems as governed by prototype Hamiltonians containing one- and two-

body terms. A wide range of problems, though, can be described by a more simplistic

class of Hamiltonians, having the following parametrization:

𝐻̂ =
𝐾∑︁

𝑝,𝑞=1

ℎ𝑝𝑞 𝑎
†
𝑝𝑎𝑞 + 1

2

𝐾∑︁

𝑝,𝑞=1

𝑢𝑝𝑞 𝑎
†
𝑝𝑎

†
𝑞𝑎𝑞𝑎𝑝, (5.1)

i.e. which exhibit a diagonal interaction term. In the above equation [and also, below, at

Eq. (5.3)] 𝑎 and 𝑎† stand for either boson or fermion operators whose associated single-

particle basis states are ♣Ý𝑝⟩ = 𝑎†
𝑝♣0⟩, 1 ⊘ 𝑝 ⊘ 𝐾. If 𝐻̂ is hermitian then the 𝐾 × 𝐾

matrices ℎ and 𝑢 must satisfy the requirements:

⎧

⋁︁⨄︁

⋁︁⋃︁

ℎ𝑝𝑞 = ℎ*
𝑞𝑝

𝑢𝑝𝑞 = 𝑢*
𝑞𝑝 = 𝑢𝑞𝑝 = 𝑢*

𝑝𝑞 (also 𝑢𝑝𝑝 = 0 for fermions).
(5.2)
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Thus ℎ is complex and hermitian; 𝑢 is real and symmetric. In the fermionic case, the

diagonal elements of 𝑢 play no role in the dynamics (since the product of creation and

annihilation operators gives zero) and we may safely put 𝑢𝑝𝑝 = 0.

Hamiltonians with the particular structure displayed at Eq. (5.1) are interesting be-

cause the mean-Ąelds of the coherent-state description are very simple to compute, owing

to the fact that costly manipulations of two-body integrals are avoided.

However, in most situations, the single-particle states ♣Ý⟩ that bring 𝐻̂ to the form

of Eq. (5.1) are very speciĄc; and it is often the case that the coherent-state dynamics

should be carried out with a different underlying set, one which conforms to a physically

motivated choice of reference state rather than a mathematically convenient one. This

precise situation will be encountered later in this chapter, when we apply the general-

ized CCS methodology to a fermionic model-system; we shall postpone until there this

discussion concerning the single-particle basis.

Before proceeding to detailed applications, let us work out the mean-Ąeld equations

of motion for a Hubbard-like Hamiltonian having the special form of Eq. (5.1) Ű we thus

seek speciĄc expressions for the two-body part of the energy function, hereby denoted 𝐸2,

according to the following deĄnitions,

𝐸 = 𝐸1 + 𝐸2, 𝐸1 =
∑︁

𝑝𝑞

ℎ𝑝𝑞⟨𝑧♣𝑎†
𝑝𝑎𝑞♣𝑧⟩, 𝐸2 = 1

2

∑︁

𝑝𝑞

𝑢𝑝𝑞⟨𝑧♣ 𝑎†
𝑝𝑎

†
𝑞𝑎𝑞𝑎𝑝 ♣𝑧⟩, (5.3)

and also for the CCS coupling Δ𝑖𝑗 [cf. Eqs. (4.61) and (4.76)]. This is done next in two

short subsections.

5.1.1 Bosonic case

We Ąrst consider the Hubbard two-body interaction term for bosons. It is a peculiarity

of the bosonic description that the coherent-state expectation value can be arranged in

two different manners; denoting the bosonic operators as 𝑏† and 𝑏 we have:

𝐸2 = 1
2

∑︁

𝑝𝑞

𝑢𝑝𝑞⟨𝑧♣ 𝑏†
𝑝𝑏

†
𝑞𝑏𝑞𝑏𝑝 ♣𝑧⟩ =

⎧

⋁︁⨄︁

⋁︁⋃︁

1
2
𝑁(𝑁 ⊗ 1)

∑︀

𝑝𝑞 𝑢𝑝𝑞 Γ𝑝𝑝Γ𝑞𝑞
1
2
𝑁(𝑁 ⊗ 1)

∑︀

𝑝𝑞 𝑢𝑝𝑞 Γ𝑝𝑞Γ𝑞𝑝
. (5.4)

These are equivalent ways of writing 𝐸2 since Γ𝑝𝑝Γ𝑞𝑞 = Γ𝑝𝑞Γ𝑞𝑝, as one easily veriĄes by

inspecting the deĄnition of Γ [cf. Eq. (2.48)]. Consequently there are two different Ű but

physically indistinguishable Ű ways of expressing the mean-Ąelds:

𝐸2 = 1
2
𝑁

∑︁

𝑝𝑞

𝑣𝑝𝑞Γ𝑞𝑝 with: 𝑣𝑝𝑞 =

⎧

⋁︁⨄︁

⋁︁⋃︁

(𝑁 ⊗ 1) (
∑︀

𝑠 𝑢𝑝𝑠 Γ𝑠𝑠) Ó𝑝𝑞 (A)

(𝑁 ⊗ 1) 𝑢𝑝𝑞 Γ𝑝𝑞 (B)
. (5.5)
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The form (A) is appealing because it is diagonal, whereas (B) is interesting since it is

straightforward to compute; both lead to the same equation of motion:

𝑖~ 𝑧̇Û = ℎÛ0 +
∑︁

Ü

ℎÛÜ𝑧Ü ⊗
(︁

ℎ00 +
∑︁

Ü

ℎ0Ü𝑧Ü
)︁

𝑧Û

+ 1
2
(𝑢ÛÛ ⊗ 𝑢00)𝑧Û + (1 + ♣𝑧♣2)⊗1(𝑁 ⊗ 1)

[︁

(𝑢Û0 ⊗ 𝑢00) +
∑︁

Ü

(𝑢ÛÜ ⊗ 𝑢0Ü)𝑧
*
Ü𝑧Ü

]︁

𝑧Û. (5.6)

Finally, combining Eq. (4.61) with the mean-Ąelds of Eq. (5.5) we arrive at the bosonic

CCS coupling for the Hubbard model:

Δ𝑖𝑗 =

⎧

⋁︁⨄︁

⋁︁⋃︁

1
2
𝑁(𝑁 ⊗ 1)

∑︀

𝑝𝑞 𝑢𝑝𝑞(Γ
𝑖𝑗
𝑝𝑝 ⊗ Γ𝑖𝑖𝑝𝑝)(Γ

𝑖𝑗
𝑞𝑞 ⊗ Γ𝑖𝑖𝑞𝑞) (A)

1
2
𝑁(𝑁 ⊗ 1)

∑︀

𝑝𝑞 𝑢𝑝𝑞(Γ
𝑖𝑗
𝑝𝑞 ⊗ Γ𝑖𝑖𝑝𝑞)(Γ

𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝) (B)

. (5.7)

We shall adopt the (A) version, for it is more convenient to work solely with the diagonal

elements of the analytically-continued density matrix.

5.1.2 Fermionic case

Let us now consider the Hubbard interaction for fermions. In this case there is no am-

biguity as how to write the coherent-state matrix element 𝐸2 (the ambiguity is lifted by

the exchange energy, which was absent in the bosonic problem):

𝐸2 = 1
2

∑︁

𝑝𝑞

𝑢𝑝𝑞⟨𝑧♣ 𝑐†
𝑝𝑐

†
𝑞𝑐𝑞𝑐𝑝 ♣𝑧⟩ = 1

2

∑︁

𝑝𝑞

𝑢𝑝𝑞 (Γ𝑝𝑝Γ𝑞𝑞 ⊗ Γ𝑝𝑞Γ𝑞𝑝) = 1
2

∑︁

𝑝𝑞

𝑣𝑝𝑞Γ𝑞𝑝. (5.8)

In the above formula, the mean Ąeld is:

𝑣𝑝𝑞 = (
∑︀

𝑠𝑢𝑝𝑠Γ𝑠𝑠)Ó𝑝𝑞 ⊗ 𝑢𝑝𝑞Γ𝑝𝑞 =

⎧

⋁︁⨄︁

⋁︁⋃︁

∑︀

𝑠 ̸=𝑝𝑢𝑝𝑠Γ𝑠𝑠 if 𝑝 = 𝑞

⊗𝑢𝑝𝑞Γ𝑝𝑞 if 𝑝 ̸= 𝑞
. (5.9)

Note that diagonal entries 𝑢𝑝𝑝, even if non-zero, end up not contributing to the mean Ąeld

Ű as we pointed out earlier, such terms cannot play a role in the dynamics. Indeed, we

may write the two-body part of the Hamiltonian as:

𝐻̂2 = 1
2

∑︁

𝑝𝑞

𝑢𝑝𝑞 𝑐
†
𝑝𝑐

†
𝑞𝑐𝑞𝑐𝑝 = 1

2

∑︁

𝑝𝑞

𝑢𝑝𝑞 𝑛̂𝑝𝑛̂𝑞 (if 𝑢𝑝𝑝 = 0). (5.10)

This is a more familiar form, associated with standard fermionic Hubbard models.

Because the Thouless one-density matrix is considerably more complicated than its

bosonic counterpart, the mean-Ąeld equation of motion for the Hubbard-like Hamilto-

nian looks no more simple than Eq. (3.80), which was previously derived from the more

general 𝐻̂ studied in Chapter 3. Since it gives no new insights we shall not present the

particularized form of the equation.
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Finally, combining Eq. (4.76) with the mean-Ąeld of Eq. (5.9), one Ąnds the fermionic

multiconĄgurational coupling for a Hubbard-like Hamiltonian is

Δ𝑖𝑗 = 1
2

∑︁

𝑝𝑞

𝑢𝑝𝑞
[︁

(Γ𝑖𝑗𝑝𝑝 ⊗ Γ𝑖𝑖𝑝𝑝)(Γ
𝑖𝑗
𝑞𝑞 ⊗ Γ𝑖𝑖𝑞𝑞)⊗ (Γ𝑖𝑗𝑝𝑞 ⊗ Γ𝑖𝑖𝑝𝑞)(Γ

𝑖𝑗
𝑞𝑝 ⊗ Γ𝑖𝑖𝑞𝑝)

]︁

. (5.11)

As we shall see later the above expression can be recast in an even more simple form in

the case of spin-1
2

fermions.

5.2 On the purpose of the results compiled in this work

In what follows we present a compilation of results obtained with the generalized CCS

approach for two model systems Ű the Ąrst deals with bosons in a trapping potential, the

second with electrons in a one-dimensional ring of atoms.

It is important to make it clear that the results reported here are only meant to

exemplify general trends and overall behavior of the proposed methodology. In absolutely

no way the content below is to be understood as a throughout investigation of any of the

aforementioned model problems Ű that would require a systematic numerical study and

careful analysis of the data; that is to say: it would require another thesis.

The main objective of this work, we emphasize, is the development and validation of

the generalized CCS technique as such. From this perspective, the simple application

examples that follow have more of an illustrative character and they should be regarded

as preliminary tests of the trajectory-guided propagation scheme put forward here.

And hence the reason we opted for simple models in the Ąrst place: for, being as such,

they fulĄll a threefold purpose: (i) crude as they are, they provide a context wherein

technical aspects of the CCS strategy can be probed; (ii) they avoid eventual complications

inherent to more sophisticated models, whose only effect here would be to obscure the

discussion; and Ąnally, (iii) their simplicity allows for exact quantum solutions against

which we may compare our CCS results. This does not mean, however, that the chosen

models are ŚtrivialŠ Ű as a matter of fact, they give rise to rich quantum dynamics whose

accurate description proves to be quite challenging.

5.3 Bose-Einstein condensate in a symmetric triple-well

5.3.1 Three-mode approximation

Let us consider a simpliĄed model describing an 𝑁 -particle Bose-Einstein condensate

trapped in a symmetric triple-well potential, where individual bosons are assumed to

interact by contact forces Ű i.e. the interaction energy has the form 𝑈(x,x′) ∝ Ó(x⊗ x′).

The main ideas involved are as follows: the triple-well trapping potential, under suitable

conditions, can be approximated by an harmonic expansion around each of its three
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(symmetrically located) minima. The three-fold degenerate fundamental states of this

approximated problem can be determined without difficulty. It is then assumed that

the dynamical regime is such that the energy eigenspace spanned by these three local

modes is sufficiently isolated from the rest of the single-particle spectrum, so that at low

temperatures they alone provide an adequate description of the system. For more details

on the derivation and particularities of this model, see Refs. [66;67].

Let 𝑎1, 𝑎2 and 𝑎3 denote the annihilation operators associated with the aforementioned

fundamental single-particle modes, related to the locally approximated wells. In terms of

these bosonic operators, the Śthree-mode approximationŠ67 to the Hamiltonian is (units

are such that ~ = 1):

𝐻̂ = Ω
∑︁

1⊘𝑖̸=𝑗⊘3

𝑎†
𝑖𝑎𝑗 +

ä

𝑁 ⊗ 1

3∑︁

𝑖=1

𝑛̂𝑖(𝑛̂𝑖 ⊗ 1), 𝑛̂𝑖 = 𝑎†
𝑖𝑎𝑖, (5.12)

where Ω is the tunneling rate between adjacent wells, and ä is the collision parameter, that

controls the strength of two-body interactions within the same well.i Owing to particle

number conservation, this system is suitably described in terms of SU(3) bosonic coherent

states ♣𝑧⟩ = ♣𝑧1, 𝑧2⟩, which represent a particular case of the coherent states discussed at

Chapter 2.

5.3.2 SU(3) bosonic coherent-state description

In the coherent-state description we must choose one of the three modes to be macroscopi-

cally occupied in the reference state ♣Φ0⟩. Since the triple-well is symmetric all choices are

equivalent; we take mode 𝑎3 as the reference mode and adapt our notation accordingly:

(𝑏1, 𝑏2, 𝑏0) = (𝑎1, 𝑎2, 𝑎3). (5.13)

Thus the reference state is:

♣Φ0⟩ =
(𝑏†

0)
𝑁

√
𝑁 !
♣0⟩. (5.14)

Notice that ♣Φ0⟩ is not a non-interacting groundstate. On the contrary, it is an stationary

state of the interacting part of the Hamiltonian, with energy 𝐸(Φ0) = 𝑁ä.

With the new labeling of modes, the Hamiltonian of Eq. (5.12) reads

𝐻̂ = Ω
∑︁

0⊘𝑝̸=𝑞⊘2

𝑏†
𝑝𝑏𝑞 +

ä

𝑁 ⊗ 1

2∑︁

𝑝=0

𝑏†
𝑝𝑏

†
𝑝𝑏𝑝𝑏𝑝. (5.15)

iWe note that in the triple-well model, the energy difference between the groundstate and doubly
degenerate excited eingenstates of the non-interacting Hamiltonian is ♣3Ω♣ – within the three-mode ap-
proximation these stationary states span the same eigenspace as the local modes associated with operators
𝑎1, 𝑎2 and 𝑎3.67 Also, cross-collision terms, which arise from the interaction between bosons in different
wells, are neglected in (5.12).
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Comparing with (5.1) we identify the basic Hubbard matrices:

ℎ = Ω

⋃︀

⋁︀
⋁︀
⋁︀
⨄︀

0 1 1

1 0 1

1 1 0

⋂︀

⎥
⎥
⎥
⋀︀
, 𝑢 =

2ä

𝑁 ⊗ 1

⋃︀

⋁︀
⋁︀
⋁︀
⨄︀

1 0 0

0 1 0

0 0 1

⋂︀

⎥
⎥
⎥
⋀︀
. (5.16)

In this case 𝑢 is diagonal and the ambiguity in the deĄnition of mean-Ąelds, discussed at

ğ5.1.1, does not arise Ű both choices give the same 𝑣. The Gross-Pitaevskii matrix 𝐺 is

then found to be:

𝐺 = ℎ+ 𝑣(Γ) = Ω

⋃︀

⋁︀
⋁︀
⋁︀
⨄︀

0 1 1

1 0 1

1 1 0

⋂︀

⎥
⎥
⎥
⋀︀

+
2ä

1 + 𝑧*
1𝑧1 + 𝑧*

2𝑧2

⋃︀

⋁︀
⋁︀
⋁︀
⨄︀

1 0 0

0 𝑧*
1𝑧1 0

0 0 𝑧*
2𝑧2

⋂︀

⎥
⎥
⎥
⋀︀
. (5.17)

From (5.6) the equations of motion are:

𝑖𝑧̇1 = Ω(1 + 𝑧2)⊗ Ω(𝑧1 + 𝑧2)𝑧1 ⊗
2ä𝑧1(1⊗ ♣𝑧1♣2)
1 + ♣𝑧1♣2 + ♣𝑧2♣2

, (5.18a)

𝑖𝑧̇2 = Ω(1 + 𝑧1)⊗ Ω(𝑧1 + 𝑧2)𝑧2 ⊗
2ä𝑧2(1⊗ ♣𝑧2♣2)
1 + ♣𝑧1♣2 + ♣𝑧2♣2

, (5.18b)

and the action 𝑆 can be integrated with the help of the Lagrangian given in Eq. (2.58).

(Notice that 𝑧 = 0 is not an stationary point of the classical system, even in the absence

of collisions).

It is instructive to examine the explicit form of the energy function:

𝐸 = 𝑁Ω
(𝑧*

1𝑧2 + 𝑧*
2𝑧1 + 𝑧*

1 + 𝑧1 + 𝑧*
2 + 𝑧2)

1 + 𝑧*
1𝑧1 + 𝑧*

2𝑧2

+𝑁ä
(𝑧*

1𝑧1)2 + (𝑧*
2𝑧2)2 + 1

(1 + 𝑧*
1𝑧1 + 𝑧*

2𝑧2)2
. (5.19)

Note that the extensive character of 𝐸 is due to the (𝑁 ⊗ 1)⊗1 scaling of the collision

parameter in the two-body term of (5.15). This is also why the equations of motion (5.18)

do not depend on 𝑁 , and hence the classical system is well-deĄned in the limit 𝑁 ⊃∞.

Finally, since 𝑢 is proportional to the identity matrix, the multiconĄgurational coupling

(5.7) for this particular problem is very simple to express:

Δ𝑖𝑗 = 𝑁ä
[︁

(Γ𝑖𝑗00 ⊗ Γ𝑖𝑖00)
2 + (Γ𝑖𝑗11 ⊗ Γ𝑖𝑖11)

2 + (Γ𝑖𝑗22 ⊗ Γ𝑖𝑖22)
2
]︁

, (5.20)

which clearly shows the symmetrical nature of the triple-well potential.

5.3.3 Exact quantum propagation

The CCS results for the triple-well system are compared with exact data obtained by

trivial propagation in the eigenstate basis of the quantum Hamiltonian. The latter is
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constructed in the bosonic Fock space representation using the basic local modes according

to the matrix-element rules presented in Appendix D.2. The initial state, which is taken to

be a coherent state (see below), is Ąrst projected on Fock space Ű using the decomposition

given in Eq. (2.26) Ű and then projected onto the eigenstates of 𝐻̂ (computed during the

diagonalization procedure), at which point propagation can be started.

5.3.4 Monitored quantities

In the simulations reported below the following quantities are computed as functions of

time: the norm of the CCS wavefunction 𝒩 (å); the basis-set conditioning factor Ñ(Ω),

discussed in ğ4.4 (this factor depends solely on the overlap matrix Ω); the total energy

𝐸(å); an the populations 𝑝0(å), 𝑝1(å) and 𝑝2(å) of the local modes (𝑏0, 𝑏1, 𝑏2). The

formulas are:

𝒩 (å) = ⟨å♣å⟩ =
∑︁

𝑖

𝐶*
𝑖𝐷𝑖, (5.21a)

Ñ(Ω) = Úmax(Ω)Ú⊗1
min(Ω), (5.21b)

𝐸(å) = ⟨å♣𝐻̂♣å⟩ = 𝑁
∑︁

𝑖𝑗

𝐷*
𝑖æ𝑖𝑗𝐷𝑗

∑︁

𝑝𝑞

[ℎ𝑝𝑞 + 1
2
𝑣𝑝𝑞(𝑧

*
𝑖 , 𝑧𝑗)]Γ𝑞𝑝(𝑧

*
𝑖 , 𝑧𝑗), (5.21c)

𝑝𝑞(å) = ⟨å♣𝑏†
𝑞𝑏𝑞♣å⟩ = 𝑁

∑︁

𝑖𝑗

𝐷*
𝑖æ𝑖𝑗𝐷𝑗Γ𝑞𝑞(𝑧

*
𝑖 , 𝑧𝑗), 𝑞 = 0, 1, 2. (5.21d)

The expression for the mean-Ąeld 𝑣𝑝𝑞 is found implicit in Eq. (5.17).

Additionally, the auto-correlation function 𝑎(å; 𝑡) (ACF) is computed,

𝑎(å; 𝑡) = ⟨å0♣å𝑡⟩ =
𝑚∑︁

𝑗=1

⟨𝑧0♣𝑧𝑗⟩𝐷𝑗𝑒
𝑖𝑆j . (5.22)

As discussed in Appendix E, the spectral density can be obtained from the ACF by a

Fourier transform:

𝐼𝑔(å;𝐸) = Þ⊗1
∫︁ ∞

0
𝑑𝑡 𝑔(𝑘)

á (𝑡) Re [ 𝑎(å; 𝑡)𝑒
i
~
𝐸𝑡 ], (5.23)

where 𝑔(𝑘)
á (𝑡) is a window function of the form given in Eq. (E.10). The spectral density

indicates which energy eigenstates play a role in the dynamics.

5.3.5 Opposite-phase mode and population imbalance

The classical system deĄned in (5.18) has three dynamically equivalent invariant sub-

spaces, speciĄed by the constraints: 𝑧1 = 𝑧2, 𝑧1 = 1 and 𝑧2 = 1. These correspond to

so-called twin-condensate regimes.67 Let us concentrate on the Ąrst subspace (𝑧1 = 𝑧2)

and refer to it as the Λ1 surface.
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Now, consider the set of operators 𝑏̃0, 𝑏̃1 and 𝑏̃2, deĄned by the canonical transforma-

tion:

𝑏̃0 = 𝑏0, (5.24a)

𝑏̃1 = 1√
2
(𝑏1 + 𝑏2), (5.24b)

𝑏̃2 = 1√
2
(𝑏1 ⊗ 𝑏2). (5.24c)

It can be demonstrated that Λ1 is an SU(2) subspace whose associated single-particle

modes are: 𝑏̃0 and 𝑏̃1: the solitary mode and the identical-phase mode, respectively. Mean-

while, the 𝑏̃2 mode, which is empty at Λ1, describes an opposite-phase oscillation of the

twin-condensate.67

Under the classical propagation scheme detailed in ğ1.3.3 Ű where the systemŠs wave-

function is approximated by a single conĄguration Ű any initial SU(3) coherent state

prepared at Λ1 will have zero occupation of the opposite-phase mode 𝑏̃2 for any 𝑡 > 0; as

a matter of fact, the expectation value

𝑝2(𝑧) = ⟨𝑧♣𝑏̃†
2𝑏̃2♣𝑧⟩ =

𝑁

2

(𝑧*
1 ⊗ 𝑧*

2)(𝑧1 ⊗ 𝑧2)

1 + 𝑧*
1𝑧1 + 𝑧*

2𝑧2

, (5.25)

is identically null in the classically invariant surface Λ1, where 𝑧1 = 𝑧2.

This conclusion, however, does not apply to the actual quantum problem: if the initial

state ♣å0⟩ has null occupation in the opposite-phase mode 𝑏̃2, this situation will not be

preserved as the system evolves in time Ű while the quantum evolution preserves the

equality between the populations of the local modes 𝑏1 and 𝑏2 [that is: 𝑝1(å) = 𝑝2(å)

for all 𝑡 > 0], the populations of the identical-phase and opposite-phase modes change in

time.67 It is precisely this Śnon-classical behaviorŠ Ű i.e. the classically forbidden occupation

of the opposite-phase mode, which lies beyond a mean-Ąeld description Ű that we wish to

describe using the SU(3) CCS method.

With that goal in mind, we observe that the reference state is precisely located on

the classical invariant surface Λ1; therefore, we may conveniently take ♣Φ0⟩ as the initial

state; that is, we put ♣å0⟩ = ♣𝑧′
1, 𝑧

′
2⟩, with

𝑧′
1 = 𝑧′

2 = 0.

This state will be propagated with the discrete unitary method of ğ4.2.

In view of the above discussion, two other expectation values shall be computed in ad-

dition to the quantities listed in (5.21): the opposite mode population 𝑝2(å) = ⟨å♣𝑏̃†
2𝑏̃2♣å⟩,
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which in terms of the local-mode variables 𝑧 is given by

𝑝2(å) =
∑︁

𝑖𝑗

𝐷*
𝑖𝐷𝑗æ𝑖𝑗

⎟

¶𝑧𝑖♣𝑏̃†
2𝑏̃2♣𝑧𝑗♢
¶𝑧𝑖♣𝑧𝑗♢

]︃

=
∑︁

𝑖𝑗

𝐷*
𝑖æ𝑖𝑗𝐷𝑗

⎟

𝑁

2

(𝑧*
𝑖,1 ⊗ 𝑧*

𝑖,2)(𝑧𝑗,1 ⊗ 𝑧𝑗,2)
1 + 𝑧*

𝑖,1𝑧𝑗,1 + 𝑧*
𝑖,2𝑧𝑗,2

]︃

, (5.26)

and the population imbalance 67 between the identical-phase and solitary modes, 𝑏̃1 and 𝑏̃0

respectively, which in terms of the local-mode coherent-state parameters 𝑧 reads:

𝐽(å) = 𝑁⊗1⟨å♣(𝑏̃†
1𝑏̃1 ⊗ 𝑏̃†

0𝑏̃0)♣å⟩ = 𝑁⊗1⟨å♣
[︁

1
2
(𝑏†

1𝑏1 + 𝑏†
2𝑏2)⊗ 𝑏†

0𝑏0

]︁

♣å⟩

= 1
2

∑︁

𝑖𝑗

𝐷*
𝑖æ𝑖𝑗𝐷𝑗

⎟

(𝑧*
𝑖,1 + 𝑧*

𝑖,2)(𝑧𝑗,1 + 𝑧𝑗,2)⊗ 2

1 + 𝑧*
𝑖,1𝑧𝑗,1 + 𝑧*

𝑖,2𝑧𝑗,2

]︃

. (5.27)

5.3.6 Basis set sampling

In order to construct the initial CCS basis set, it is necessary to choose adequate sampling

variables. In the present case we opt for angular variables (𝜃1, ã1, 𝜃2, ã2) deĄned by:

𝑧1 = tan(𝜃1/2)𝑒⊗𝑖ã1 , 𝑧2 = tan(𝜃2/2)𝑒⊗𝑖ã2 . (5.28)

The initial conditions 𝑧(0) are then randomly sampled around the origin from normal

distributions expressed in terms of these angular variables; that is, at 𝑡 = 0 each pair of

angles (𝜃, ã) is selected according to probabilities:

𝑃 (𝜃) ∝ exp(⊗𝜃2/2𝑤2
𝜃); 𝑃 (ã) ∝ exp(⊗ã2/2𝑤2

ã). (5.29)

Notice that the widths of these distributions, 𝑤𝜃 and 𝑤ã, are adjustable parameters of

the method; in all simulations, the widths are the same for both entries 𝑧1(0) an 𝑧2(0).

The actual sampling procedure Ű which also comprises speciĄc criteria for accepting and

neglecting candidate basis elements Ű was described in ğ4.4.

5.3.7 A note on dynamical regimes

Before considering the bosonic CCS results we must point out the following: the triple-well

dynamics Ű as observed with the parameter values used in our simulations Ű experiences a

qualitative change after a certain propagation time. In the ŚĄrst dynamical regimeŠ, as we

shall call it, the population imbalance 𝐽(å) relaxes while the opposite-mode population

𝑝2(å) builds up a non-zero value. During this Ąrst stage, the local populations oscillate

with a natural period of (2Þ/3♣Ω♣) ≡ 2.094 (which is determined by the energy gap of

3♣Ω♣ between the single-particle ground-state and a degenerate pair of excited modes, as

computed from Ąrst-order perturbation theory on the potential strength, ignoring two-
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5.3.8 Runs: general remarks

The tripe-well simulations presented below, four in total, were all performed with Ω =

⊗1.0 and ä = ⊗0.50; these runs differ in their values of the total particle number, namely:

𝑁 = 100, 80, 70, 40; the size 𝑓 of the bosonic Fock spaces, in the corresponding order,

are: 𝑓 = 5151, 3321, 2556, 861. These values are indicated in the graphs of each run

together with the size 𝑚 of the employed basis set. The sampling was carried out with the

same values of the conditioning threshold, which was set to 1013. Additionally, a limiting

value for the overlap with the initial state was established: only those initial conditions

𝑧𝑖(0) satisfying ⟨𝑧𝑖(0)♣Φ0⟩ < 0.98 were accepted (see captions for more speciĄc details).

The Ąnal propagation time was set to ♣Ω♣𝑡final = 80.0 for all runs.

The overall behavior observed is as follows: a steep drop of the basis-set condition-

ing factor Ñ(Ω) occurs as soon as propagation starts. This means that trajectories are

quickly spreading on the SU(3) phase space. This is not surprising because this is not a

perturbative problem, and neither is ♣Φ0⟩ a non-interacting ground-state. As discussed in

ğ4.4, this is a very unfavorable scenario for the CCS method, posing a stringent test to

the trajectory-based methodology. The total energy 𝐸(å) Ćuctuates, as expected, indi-

cating the inability of the basis set projector Ω̂(𝑡) of representing the identity operator,

as discussed in ğ4.2.5.

Nevertheless, the CCS method produces accurate results up to ♣Ω♣𝑡 ≡ 40.0 for all runs.

This time should be compared to the natural oscillation period of the Ąrst dynamical

regime of the system, which, as mentioned earlier, is ≡ 2.094. Thus, during the timespan

0 ⊘ ♣Ω♣𝑡 . 40.0 the system undergoes approximately 19 natural oscillations, and a mostly

satisfactory description is maintained during this interval, which is quite reasonable for

a trajectory-based technique. In particular, the equality of average populations 𝑝1(å)

and 𝑝2(å), which is guaranteed in the exact quantum propagation, is not enforced by

any means in the CCS wavefunction Ű rather, it depends on a very delicate interference

among different conĄgurations. The fact that the populations remain correctly equal after

roughly 19 natural oscillations under such unfavorable circumstances is worth of mention.

The same can be said regarding the mean values of the population imbalance 𝐽(å) and

the opposite-phase occupation 𝑝2(å). To be sure, the run with 𝑁 = 40 is visually less

accurate than the others Ű this is expected since for smaller 𝑁 the SU(3) coherent states

become less localized, and the trajectory picture less appropriate.

The auto-correlation function proves to be an exception to the above observations, for

it departs signiĄcantly from the exact time signal at a much earlier time, somewhere in

the range 20 . ♣Ω♣𝑡 . 30 for different runs. Nevertheless, for all runs the CCS-computed

spectral density 𝐼𝑔(å) is almost indistinguishable from the exact one.

In the next few pages results are presented without further analysis Ű some additional

information is found in each ĄgureŠs caption.
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with opposite spins occupying the same localized molecular orbital experience Coulomb

repulsion, described Śà la HubbardŠ, with strength controlled by a parameter 𝑈 . Both á

and 𝑈 are positive and have the dimension of energy. Figure 5.19 illustrates the basic

features of the model for rings of different sizes.

The above description amounts to a standard Hubbard Hamiltonian:68

𝐻̂ = ⊗á
∑︁

𝑗à

(𝑐†
à𝑗𝑐à(𝑗+1) + 𝑐†

à(𝑗+1)𝑐à𝑗) + 𝑈
∑︁

𝑗

𝑛̃≪𝑗𝑛̃≫𝑗, (5.31)

where it is understood that 𝑐à(𝑆+1) = 𝑐à1.

However, we shall introduce a further element: a magnetic Ąeld B = 𝐵ẑ, perpendicular

to the molecular plane. In that case, new terms should be added to the Hamiltonian:68;69

𝐻̂ = ⊗á
∑︁

𝑗à

(𝑐†
à𝑗𝑐à(𝑗+1)𝑒

⊗𝑖𝜃 + 𝑐†
à(𝑗+1)𝑐à𝑗𝑒

𝑖𝜃)⊗ Û0𝐵
∑︁

𝑗

(𝑛̃≪𝑗 ⊗ 𝑛̃≫𝑗) + 𝑈
∑︁

𝑗

𝑛̃≪𝑗𝑛̃≫𝑗. (5.32)

Let us brieĆy comment on the additional parameters.

The second term in (5.32) accounts for the interaction of each electronŠs magnetic

moment with the Ąeld 𝐵, giving rise to the well-known Zeeman effect.42 It lifts the spin

degeneracy of each single-particle state. The constant Û0 is Bohr’s magneton, which is

expressed in terms of ~, the fundamental electric charge 𝑒, and the electron mass 𝑚𝑒:

Û0 = 𝑒~/𝑚𝑒 = 5.788 382× 10⊗5 eV ≤ T⊗1. (5.33)

The phase 𝜃 in the kinetic term of (5.32) is the so-called ŚPeierls phaseŠ,68 which orig-

inates from the gauge coupling between the magnetic Ąeld and the electronic momentum.

It depends on the number of sites 𝑆 and the magnetic Ćux Φ through the ring Ű following

Ref. [69] this Ćux is computed as if the ring were a circle, leading to the formula:

𝜃 ⊕ 2Þ

𝑆
(Φ/Φ0) =

𝑎2𝐵𝑆

2Φ0

.
[︁

Φ = 𝐵 ≤ (ringŠs area) = 𝐵Þ(𝑎𝑆/2Þ)2
]︁

(5.34)

Here, Φ0 denotes the magnetic flux quantum, a fundamental quantity which is expressed

in terms of ~, 𝑒, and the speed of light in vacuum 𝑐,

Φ0 = 2Þ~𝑐/𝑒 = 2.067 834× 10⊗15 T ≤m2. (5.35)

The Hamiltonian of Eq. (5.32) is the model we shall study. In everything that follows,
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the tight-binding hopping constant á and the arc-length 𝑎 will be held Ąx at the valuesiii

á = 1.00 eV, 𝑎 = 1.40× 10⊗10 m, (Ąxed parameters) (5.36)

and we shall investigate a number problems for different values of: the number of sites 𝑆,

the number of electrons 𝑁 , the Coulomb strength 𝑈 , and the magnetic Ąeld 𝐵.

As indicated in the previous formulas, we take as basic units: Tesla (T), meter (m)

and electron-volts (eV). In this system the natural time unit is Ś~ ≤ eV⊗1Š, but our results

will be reported in femtoseconds; the conversion factor is: ~ ≤ eV⊗1 = 0.6582120 fs.

Let us now put the Hamiltonian in the standard form of ğ5.1. For that purpose,

we denote the total number of single-particle states by 𝐾 = 2𝑆 and rename the basic

operators as follows:

ä̃à𝑗 : (𝑐≪1, 𝑐≪2, ≤ ≤ ≤ , 𝑐≪𝑠, 𝑐≫1, 𝑐≫2, ≤ ≤ ≤ , 𝑐≫𝑠)⊃ ä̃𝑝 : (𝑐1, 𝑐2, ≤ ≤ ≤ , 𝑐𝑠, 𝑐𝑠+1, 𝑐𝑠+2, ≤ ≤ ≤ , 𝑐𝐾). (5.37)

Thus, the lattice representation is organized according to spin components, in the way of

ğ3.2.3. We recall that this spin structure should not be confused with the occupied-virtual

partitioning of the Thouless determinants, which will be introduced shortly. Notice that,

here, the particular ordering of orbitals within spin blocks is unimportant since sites can

be interchanged without affecting the Hamiltonian.

The new indexation is also assigned to the basis functions:

♣ä̃𝑝⟩ = 𝑐†
𝑝♣0⟩, 𝑃ä̃ =

𝐾∑︁

𝑝=1

♣ä̃𝑝⟩⟨ä̃𝑝♣. (5.38)

Henceforth, the conventions of Chapter 3 are adopted: subscripts 𝑝, 𝑞, 𝑟, 𝑠 will always

range from 1 to 𝐾, and summation limits will be omitted.

In this way we are able to write the Hamiltonian in the lattice representation, with

the help of matrices 𝜀 and 𝑢̃,

𝐻̂ =
∑︁

𝑝𝑞

(𝜀𝑝𝑞 𝑐
†
𝑝𝑐𝑞 + 1

2
𝑢̃𝑝𝑞 𝑛̃𝑝𝑛̃𝑞), (5.39)

as in ğ5.1.2. These matrices should obey the properties listed in (5.2). In order to illustrate

the parametrization, we consider a ring with 𝑆 = 4 (𝐾 = 8). In this case, the one-body

iiiFor reference, the carbon-carbon bound length in a benzene molecule is ≍ 1.400Å; in our problem:
𝑏(𝑆 = 6) ≍ 1.337Å, so our 6-site ring is just a bit smaller than a benzene. Although we chose to keep 𝑎
fixed, and not 𝑏, the variation of the latter is very small for 𝑆 > 6; this is compatible with the fixed value
of the hopping constant (which is expected to depend on the bond-length).
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matrix is:

𝜀 =

⋃︀

⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⨄︀

⊗Û0𝐵 ⊗á𝑒⊗𝑖𝜃 0 ⊗á𝑒𝑖𝜃 0 0 0 0

⊗á𝑒𝑖𝜃 ⊗Û0𝐵 ⊗á𝑒⊗𝑖𝜃 0 0 0 0 0

0 ⊗á𝑒𝑖𝜃 ⊗Û0𝐵 ⊗á𝑒⊗𝑖𝜃 0 0 0 0

⊗á𝑒⊗𝑖𝜃 0 ⊗á𝑒𝑖𝜃 ⊗Û0𝐵 0 0 0 0

0 0 0 0 Û0𝐵 ⊗á𝑒⊗𝑖𝜃 0 ⊗á𝑒𝑖𝜃
0 0 0 0 ⊗á𝑒𝑖𝜃 Û0𝐵 ⊗á𝑒⊗𝑖𝜃 0

0 0 0 0 0 ⊗á𝑒𝑖𝜃 Û0𝐵 ⊗á𝑒⊗𝑖𝜃

0 0 0 0 ⊗á𝑒⊗𝑖𝜃 0 ⊗á𝑒𝑖𝜃 Û0𝐵

⋂︀

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︀

. (5.40)

while the interaction matrix is:

𝑢̃ = 𝑈

⋃︀

⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⨄︀

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

⋂︀

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︀

. (5.41)

Notice that the external Ąeld does not modify the latter.

The reason why the lattice representation is useful is precisely because matrix 𝑢̃ is so

simple to express (this leads to a particularly simple mean-Ąeld in the lattice representa-

tion Ű see Eq. (5.59) below). However, since we want to describe the weakly interacting

regime, where 𝑈 ⪯ á , we must deĄne our coherent states in terms of the reciprocal space

representation discussed next.

5.4.2 Reciprocal space

Let us consider the one-body part 𝐻̂1 of the Hamiltonian (5.32),

𝐻̂1 = ⊗á
∑︁

𝑗à

(𝑐†
à𝑗𝑐à(𝑗+1)𝑒

⊗𝑖𝜃 + 𝑐†
à(𝑗+1)𝑐à𝑗𝑒

𝑖𝜃)⊗ Û0𝐵
∑︁

𝑗

(𝑛̃≪𝑗 ⊗ 𝑛̃≫𝑗). (5.42)

This operator can be diagonalized by changing to the reciprocal basis ♣ãà𝑘⟩,

♣ãà𝑘⟩ = 𝑐†
à𝑘♣0⟩, 𝑃ã =

𝑆⊗1∑︁

𝑘=0

∑︁

à=≪,≫
♣ãà𝑘⟩⟨ãà𝑘♣, å̂à(x) =

𝑆⊗1∑︁

𝑘=0

ãà𝑘(x)𝑐à𝑘, (5.43)
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whose associated creation and annihilation operators, 𝑐†
à𝑘 and 𝑐à𝑘 (no tildes), are related

to the original lattice operators, 𝑐†
à𝑗 and 𝑐à𝑗, as follows:69

𝑐𝑗à = 𝑆⊗1/2
𝑆⊗1∑︁

𝑘=0

𝑐𝑘à𝑒
𝑖(2Þ/𝑆)𝑘𝑗, 𝑐†

𝑗à = 𝑆⊗1/2
𝑆⊗1∑︁

𝑘=0

𝑐†
𝑘à𝑒

⊗𝑖(2Þ/𝑆)𝑘𝑗. (1 ⊘ 𝑗 ⊘ 𝑆) (5.44)

Notice that the reciprocal-basis subscript 𝑘 is deĄned in the range 0 to 𝑆 ⊗ 1. Evidently,

both lattice and reciprocal orbitals span the same single-particle space.

The transformation (5.44) brings the non-interacting Hamiltonian to the form 𝐻̂1 =
∑︀

𝑘à 𝜀à𝑘𝑛à𝑘 with energies

𝜀à𝑘 = ⊗2á cos
(︁2Þ𝑘

𝑆
⊗ 𝜃

)︁

⊗ àÛ0𝐵, (5.45)

for 𝑘 = 0, . . . , (𝑆 ⊗ 1); in the above formula, the spin label should be understood as a

sign: à = (≪, ≫) = (+1,⊗1), meaning that the energy of spin-up levels is lowered and that

of spin-down levels is raised.

From Eq. (5.45) we see that the presence of a non-zero magnetic Ąeld leads to a well-

deĄned hierarchy of levels, for, once the degeneracies are removed, these can be sorted

according to their non-interacting energies. (Note that the phase 𝜃 is also essential for

this purpose.) This fact allows an unambiguous deĄnition of the Thouless reference state,

which we shall later take to be the non-interacting ground-state.

Therefore, in contrast to the lattice representation case, the re-labeling of the reciprocal

space orbitals ♣ã⟩, is based on a speciĄc criterion: labels 1 to 𝐾 are assigned in ascending

order of the non-interacting energy 𝜀à𝑘:

ãà𝑘 : (𝑐≪0, ≤ ≤ ≤ , 𝑐≪(𝑆⊗1), 𝑐≫0, ≤ ≤ ≤ , 𝑐≫(𝑆⊗1))
sorted⊗⊗⊗⊗⊃ ã𝑝 : (𝑐1, ≤ ≤ ≤ , 𝑐𝑆, 𝑐𝑆+1, ≤ ≤ ≤ , 𝑐𝐾), (5.46)

The new indexation is also enforced upon the basis functions:

♣ã𝑝⟩ = 𝑐†
𝑝♣0⟩, 𝑃ã =

𝐾∑︁

𝑝=1

♣ã𝑝⟩⟨ã𝑝♣, (5.47)

which are thus organized in such a way that:

𝜀(ã1) < 𝜀(ã2) < ≤ ≤ ≤ < 𝜀(ã𝐾). (5.48)

Let us now look at the interacting part of (5.32) (the Coulomb repulsion term); using

the transformation (5.44) we Ąnd that it assumes the form:

𝑈
∑︁

𝑗

𝑛̃≪𝑗𝑛̃≫𝑗 =
𝑈

𝑆

∑︁

𝑘

∑︁

𝑘′

∑︁

𝑙

∑︁

𝑙′
(Ó𝑘+𝑙,𝑘′+𝑙′) 𝑐

†
≪𝑘𝑐

†
≫𝑙𝑐≫𝑙′𝑐≪𝑘′ . (5.49)
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This means that the full reciprocal-space Hamiltonian has the general prototype form

studied in Chapter 3 (the only simpliĄcation being the diagonal one-body term):

𝐻̂ =
∑︁

𝑝𝑞

𝜀𝑝 𝑐
†
𝑝𝑐𝑝 + 1

2

∑︁

𝑝𝑞𝑟𝑠

𝑉𝑝𝑟≤𝑞𝑠𝑐
†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞. (5.50)

The two-body matrix elements 𝑉𝑝𝑟≤𝑞𝑠 constitute a sparse array, whose entries are directly

related to the Kronecker deltas on the right-hand side of expression (5.49) (where several

spin Kronecker deltas are implicit). Still, it is convenient to avoid dealing with the two-

body integrals; for this reason we adopt a Śtwo-representation strategyŠ.

5.4.3 Two-representation strategy for trajectory propagation

In the case of weak interactions, 𝑈/á ⪯ 1, the most physically appropriate reference state

for the Thouless parametrization is the non-interacting ground-state, which is straight-

forwardly constructed from creation operators 𝑐† associated with orbitals ♣ã⟩ belonging

to the reciprocal representation. Following the prescription of Chapter 3, the single-

particle space is partitioned into occupied and virtual subspaces, of respective sizes 𝑁

and 𝑀 ⊕ 𝐾 ⊗𝑁 ,

(𝑐1, ≤ ≤ ≤ , 𝑐𝑁 , 𝑐𝑁+1, ≤ ≤ ≤ , 𝑐𝐾)⊃ (𝑎1, ≤ ≤ ≤ , 𝑎𝑁 , 𝑏1, ≤ ≤ ≤ , 𝑏𝑀). (5.51)

Therefore, the reference state is:

♣Φ0⟩ = 𝑎†
1𝑎

†
2 ≤ ≤ ≤ 𝑎†

𝑁 ♣0⟩, (5.52)

and the (unnormalized) Thouless determinant is written as:

♣𝑧♢ = exp
(︁∑︁

Ð

∑︁

Û

𝑧ÛÐ𝑏
†
Û𝑎Ð)♣Φ0⟩. (5.53)

The dynamics of 𝑧 under Hamiltonians such as that of Eq. (5.50) was examined in detail

at Chapter 3; let us recall the essential formulas.iv

The key quantity is the reciprocal-space one-density matrix, which is obtained from 𝑧

according to the recipe:

Γ =

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀ 𝜚⊗1
[︁

𝐼𝑁 𝑧†
]︁

, with: 𝜚 ⊕ 𝐼𝑁 + 𝑧†𝑧. (5.54)

The Fock matrix 𝐹 depends on the one-density through the mean-Ąelds 𝑣; in the reciprocal

ivThe dynamical equations were given before; they are reproduced here for mere convenience.
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space representation their elements are given by

𝐹𝑝𝑞 = 𝜀𝑝Ó𝑝𝑞 + 𝑣𝑝𝑞(Γ), with: 𝑣𝑝𝑞 =
∑︁

𝑠𝑟

𝑉𝑝𝑟≤𝑞𝑠Γ𝑠𝑟, (5.55)

where 𝜀𝑝 are the sorted eigenvalues of Eq. (5.45) and 𝑉𝑝𝑟≤𝑞𝑠 are the two-body integrals

implicit in Eq. (5.50), which should result in the interaction term in the right-hand side

of Eq. (5.49) (as we have mentioned, the purpose of the present methodology is precisely

to avoid dealing with this quantity). Once the Fock matrix is constructed, the equations

of motion for 𝑧 are expressed as:

𝑖~𝑧̇ = 𝐹21 + 𝐹22𝑧 ⊗ 𝐹11𝑧 ⊗ 𝑧𝐹12𝑧 (5.56)

(recall the blockwise occupied/virtual space partitioning of Chapter 3). Finally, the action

𝑆 is integrated from

𝑆̇ = ⊗tr(𝐹11)⊗ 1
2
tr(𝐹12𝑧 + 𝑧†𝐹21) + 1

2
tr(𝑣Γ). (5.57)

This summarizes the dynamics for the reciprocal-space Thouless parameters.

Now, while the mean-Ąeld 𝑣 of the reciprocal representation has the general form

depicted in (5.55), the lattice representation mean-Ąeld, denoted 𝑣, is particularly easy

to compute Ű the expression is given in Eq. (5.9), where the Hubbard-model matrix 𝑢̃ Ű

exempliĄed for the speciĄc case 𝑆 = 4 in Eq. (5.41) Ű must be substituted. The simplicity

of the resulting formula is best appreciated if the spin structure of the lattice-space one-

density matrix, denoted Γ̃, is considered; in the manner of ğ3.2.3, we have

Γ̃ =

⋃︀

⨄︀
Γ̃≪≪ Γ̃≪≫

Γ̃≫≪ Γ̃≫≫

⋂︀

⋀︀ , (5.58)

where the spin blocks are of size 𝑆×𝑆. Then, putting Eq. (5.9) in matrix form, one Ąnds,

in the case 𝑆 = 3, for instance, that the lattice-space mean-Ąeld matrix is

𝑣 = 𝑈

⋃︀

⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⋁︀
⨄︀

(Γ̃≫≫)11 0 0 ⊗(Γ̃≪≫)11 0 0

0 (Γ̃≫≫)22 0 0 ⊗(Γ̃≪≫)22 0

0 0 (Γ̃≫≫)33 0 0 ⊗(Γ̃≪≫)33

⊗(Γ̃≫≪)11 0 0 (Γ̃≪≪)11 0 0

0 ⊗(Γ̃≫≪)22 0 0 (Γ̃≪≪)22 0

0 0 ⊗(Γ̃≫≪)33 0 0 (Γ̃≪≪)33

⋂︀

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⋀︀

. (5.59)

Evidently, this simple form is due to the uncomplicated nature of the basic Hubbard

matrix 𝑢̃.

Hence, there is an obvious motivation for seeking a connection between the reciprocal
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and lattice mean-Ąelds, 𝑣(Γ) and 𝑣(Γ̃), respectively. For that purpose, it is convenient

to write the transformation (5.44) in an abbreviated manner, using subscripts 𝑝, 𝑞 in the

range 1 to 𝐾:

𝑐†
𝑝 =

∑︁

𝑞

𝑐†
𝑞𝑌𝑞𝑝, 𝑐𝑝 =

∑︁

𝑞

𝑋𝑝𝑞𝑐𝑞 or ♣ä𝑝⟩ =
∑︁

𝑞

♣ã𝑞⟩𝑌𝑞𝑝, ⟨ä𝑝♣ =
∑︁

𝑞

𝑋𝑝𝑞⟨ã𝑞♣, (5.60)

where 𝑌 = 𝑋⊗1 = 𝑋†. Notice that the unitary matrices 𝑋 and 𝑌 are constructed from

the Fourier coefficients of Eq. (5.44).v

Let us Ąrst consider the one-body term; using (5.60) we easily Ąnd the connection

between lattice and reciprocal representations:

∑︁

𝑝𝑞

𝜀𝑝𝑞 𝑐
†
𝑝𝑐𝑞 =

∑︁

𝑝𝑞

𝜀𝑝𝑞
∑︁

𝑝′𝑞′

(𝑐†
𝑝′𝑌𝑝′𝑝)(𝑋𝑞𝑞′𝑐𝑞′) =

∑︁

𝑝′𝑞′

(︁∑︁

𝑝𝑞

𝑌𝑝′𝑝𝜀𝑝𝑞𝑋𝑞𝑞′

)︁

𝑐†
𝑝′𝑐𝑞′ ⇒ 𝜀 = 𝑌 𝜀𝑋,

(5.61)

which is written in matrix form on the right (since 𝜀 is diagonal we see that 𝑋 is the

matrix whose columns are the eigenvectors of 𝜀).

The transformation rule for any two-body operator is easily obtained by a similar

calculation; the result is:

𝑉𝑝𝑟≤𝑞𝑠 =
∑︁

𝑝′𝑞′𝑟′𝑠′

𝑌𝑝𝑝′𝑌𝑟𝑟′ 𝑉𝑝′𝑟′≤𝑞′𝑠′ 𝑋𝑞′𝑞𝑋𝑠′𝑠. (5.62)

Next, we analyze the one-density. Its transformation rule can be derived in many ways.

The most straightforward approach consists of using the connection formulas (3.100),

which relate coherent-states ♣𝑤⟩ä and ♣𝑧⟩ã deĄned over distinct sets of single-particle

orbitals, ♣ä⟩ and ♣ã⟩, respectively Ű this is the precise situation found here. Then, starting

from the one-density deĄnition, Eq. (3.56), and using the connection formulas (3.100)

together with relations (5.60) we obtain:

Γ̃𝑞𝑝 = ⟨𝑤♣𝑐†
𝑝𝑐𝑞♣𝑤⟩ =

∑︁

𝑝′𝑞′

𝑒⊗𝑖𝜙⟨𝑧♣(𝑐†
𝑝′𝑌𝑝′𝑝)(𝑋𝑞𝑞′𝑐𝑞′)♣𝑧⟩𝑒𝑖𝜙 =

∑︁

𝑝′𝑞′

𝑋𝑞𝑞′Γ𝑞′𝑝′𝑌𝑝′𝑝,

where 𝜙 is simply a geometrical phase [cf. ğ3.3]. In matrix form the above reads:

Γ̃ = 𝑋 Γ 𝑌. (5.63)

We are now ready to derive the transformation rule for the mean-Ąelds. Starting from

vAll transformation rules studied in this section were previously obtained, in a more general form, at
§4.6; we find, however, that reproducing some of those calculations here, in a more restricted context, is
less confusing than to invoke the results derived earlier.
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the deĄnition of in the reciprocal representation, we proceed as follows:

𝑣𝑝𝑞 =
∑︁

𝑠𝑟

𝑉𝑝𝑟≤𝑞𝑠Γ𝑠𝑟 =
∑︁

𝑝′𝑞′𝑟′𝑠′

𝑌𝑝𝑝′𝑉𝑝′𝑟′≤𝑞′𝑠′

(︁∑︁

𝑠𝑟

𝑋𝑠′𝑠Γ𝑠𝑟𝑌𝑟𝑟′

)︁

𝑋𝑞′𝑞

=
∑︁

𝑝′𝑞′

𝑌𝑝𝑝′

(︁∑︁

𝑟′𝑠′

𝑉𝑝′𝑟′≤𝑞′𝑠′Γ̃𝑠′𝑟′

)︁

𝑋𝑞′𝑞 =
∑︁

𝑝′𝑞′

𝑌𝑝𝑝′𝑣𝑝′𝑞′𝑋𝑞′𝑞,

where (5.63) was substituted in passing to the second line. We therefore conĄrm the

expected result that mean-Ąelds transform as one-body operators; in matrix form:

𝑣 = 𝑌 𝑣𝑋. (5.64)

The above equation allows the reciprocal-space mean-Ąeld 𝑣 to be obtained from the much

more simple lattice-representation 𝑣, whose expression is exempliĄed in Eq. (5.59), by a

simple similarity transform Ű this approach to the computation of 𝑣 is much more efficient

than building and handling the two-body integrals of the reciprocal representation.

Thus, the strategy to carry out the time evolution of individual Thouless determinants

Ű which are elements of the guided-basis set employed in the multiconĄgurational formula

that we shall apply to the Hubbard ring problem Ű can be summarized as follows:

1. Input: 𝑧.

2. Build the one-density matrix in reciprocal representation ã:

Γ =

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀ 𝜚⊗1
[︁

𝐼𝑁 𝑧†
]︁

and store both Γ and the auxiliary quantity 𝜚 = 𝐼𝑁 + 𝑧†𝑧 for later purposes. The

required inverse, 𝜚⊗1, is computed by Cholesky decomposition.64

3. Use transformation matrix 𝑋 (and its hermitian-conjugate 𝑌 ) to get the one-density

in the lattice representation ä:

Γ̃ = 𝑋 Γ 𝑌

and store Γ̃ for later purposes.

4. Use the Hubbard model matrix 𝑢̃ together with Γ̃ to build the mean-Ąeld matrix in

the lattice representation ä:

𝑣𝑝𝑞 = (
∑︀

𝑠𝑢̃𝑝𝑠Γ̃𝑠𝑠)Ó𝑝𝑞 ⊗ 𝑢̃𝑝𝑞Γ̃𝑝𝑞
obs: see matrix form exempliĄed in Eq. (5.59).

5. Use the reciprocal-space energies 𝜀 together with previously computed quantities to

construct both the mean-Ąeld and Fock matrices in the reciprocal representation ã:

𝑣 = 𝑌 𝑣 𝑋

𝐹 = 𝜀+ 𝑣
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6. Use 𝐹 and 𝑣 and previously computed quantities to evaluate 𝑧̇ and 𝑆̇:

𝑖~ 𝑧̇ = 𝐹21 + 𝐹22𝑧 ⊗ 𝑧𝐹11 ⊗ 𝑧𝐹12𝑧

𝑆̇ = ⊗tr(𝐹11)⊗ 1
2
tr(𝐹12𝑧 + 𝑧†𝐹21) + 1

2
tr(𝑣Γ)

This is the basic routine used in the ordinary-differential equation solver that propa-

gates individual Thouless determinants in the fermionic version of the multiconĄgurational

method. Additionally, as explained in ğ4.5, each trajectory is independently integrated

in a parallel fashion according to the Śpave-the-wayŠ scheme (this is the Ąrst stage of the

scheme).

5.4.4 Two-representation approach to the multiconfigurational propagation

Let us now describe how the two-representation strategy is implemented with respect to

the propagation of quantum amplitudes 𝐶 in the multiconĄgurational method.

We have seen earlier, at ğ4.6, that some of the basic ingredients of the fermionic

CCS method are invariant by unitary transformations of the single-particle orbitals.vi In

particular, it was established that the CCS coupling matrix Δ has the same numerical

value if evaluated in terms of coherent states deĄned over distinct sets of underlying

orbitals Ű in the case of the lattice and reciprocal representations, which is of our concern

here, this property is mathematically stated as follows:

Δ𝑖𝑗 = Δ(𝑧*
𝑖 , 𝑧𝑗) = Δ̃(𝑤*

𝑖 , 𝑤𝑗) = Δ̃𝑖𝑗. (5.65)

This means that, even if the coherent-state basis functions ♣𝑧𝑖⟩ are deĄned in terms of

reciprocal space orbitals ã, their quantum amplitudes 𝐶𝑖 = ⟨𝑧𝑖♣å⟩𝑒⊗ i
~
𝑆i can be obtained

by means of an ŚhybridŠ equation of motion:

𝑖~ 𝐶̇𝑖 =
∑︁

𝑗

æ𝑖𝑗Δ̃𝑖𝑗𝐷𝑗, (5.66)

where Δ̃𝑖𝑗 is constructed using the lattice representation ä.

This is of great advantage since the coupling can be easily computed in the lattice

representation Ű starting from the fermionic Hubbard-like expression (5.11), substituting

the model matrix 𝑢̃ exempliĄed in Eq. (5.41), and once more invoking the spin structure

(5.58) of the lattice-space one-density Γ̃, one Ąnds that the matrix elements of Δ̃ can be

obtained from:

Δ𝑖𝑗 = 𝑈
𝑆∑︁

𝑛=1

[︁

(Γ̃𝑖𝑗≪≪ ⊗ Γ̃𝑖𝑖≪≪)𝑛𝑛(Γ̃𝑖𝑗≫≫ ⊗ Γ̃𝑖𝑖≫≫)𝑛𝑛 ⊗ (Γ̃𝑖𝑗≪≫ ⊗ Γ̃𝑖𝑖≪≫)𝑛𝑛(Γ̃𝑖𝑗≫≪ ⊗ Γ̃𝑖𝑖≫≪)𝑛𝑛
]︁

. (5.67)

viThe discussion at §4.6 addresses the more general scenario where distinct sets of orbitals can be used
for ket and bra coherent states. The situation here is more simple and the results enunciated below are
adapted accordingly.
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Above, we have abbreviated: Γ̃𝑖𝑗àà′ = Γ̃(𝑤*
𝑖 , 𝑤𝑗)àà′ , where variables 𝑤 refer to Thouless

parameters deĄned over lattice-space orbitals ♣ä⟩ Ű these auxiliary variables are never

handled explicitly since the lattice one-density Γ̃𝑖𝑗 can be directly obtained by a similarity

transform (see Śstep 4Š in the algorithm described below). Notice that, in the present

context, labels 𝑖𝑗 refer to the coherent-state basis elements (and not to atomic sites as in

ğ5.4.1), ranging from 1 to 𝑚 (the basis-set size).

The lattice-space coupling (5.67) can be written in an even more compact form if we

deĄne a set of auxiliary vectors:

ÓÒ̃𝑖𝑗≪≪ = diag(Γ̃𝑖𝑗≪≪ ⊗ Γ̃𝑖𝑖≪≪), ÓÒ̃𝑖𝑗≪≫ = diag(Γ̃𝑖𝑗≪≫ ⊗ Γ̃𝑖𝑖≪≫),

ÓÒ̃𝑖𝑗≫≪ = diag(Γ̃𝑖𝑗≫≪ ⊗ Γ̃𝑖𝑖≫≪), ÓÒ̃𝑖𝑗≫≫ = diag(Γ̃𝑖𝑗≫≫ ⊗ Γ̃𝑖𝑖≫≫), (5.68)

whose components are the diagonals of the spin blocks of the lattice-space difference

matrix Γ̃(𝑤*
𝑖 , 𝑤𝑗)⊗ Γ̃(𝑤*

𝑖 , 𝑤𝑖). In this way, Eq. (5.67) reduces to

Δ𝑖𝑗 = 𝑈(ÓÒ̃𝑖𝑗≪≪ ≤ ÓÒ̃𝑖𝑗≫≫ ⊗ ÓÒ̃𝑖𝑗≪≫ ≤ ÓÒ̃𝑖𝑗≫≪), (5.69)

where the Ś≤Š denotes a standard 𝑆-dimensional scalar vector product. This represents

a huge simpliĄcation if compared with the general fermionic form of Eq. (4.76). The

multiconĄgurational algorithm is summarized below, in two separate stages.

Stage 1. The phased overlap and coupling matrices, æ and Δ̃, are constructed element-

wise:

1. Inputs (previously computed during trajectory propagation):

i) ¶𝑧𝑖, 𝑆𝑖♢ and ¶𝑧𝑗, 𝑆𝑗♢ (ã-representation).

ii) 𝜚𝑖𝑖, 𝜚𝑗𝑗 (ã-representation).

ii) ã and ä diagonal one-densities: ¶Γ𝑖𝑖,Γ𝑗𝑗♢ and ¶Γ̃𝑖𝑖, Γ̃𝑗𝑗♢.

2. Compute mixed density 𝑖𝑗 entry in ã-representation:

Γ𝑖𝑗 =

⋃︀

⨄︀
𝐼𝑁

𝑧𝑗

⋂︀

⋀︀ 𝜚⊗1
𝑖𝑗

[︁

𝐼𝑁 𝑧†
𝑖

]︁

,

and store auxiliary quantity: 𝜚𝑖𝑗 = 𝐼𝑁 + 𝑧†
𝑖 𝑧𝑗. The required inverse (𝜚𝑖𝑗)⊗1 is explic-

itly computed (𝐿𝑈 decomposition is used). vii

3. Compute 𝑖𝑗 entry of the phased overlap [𝐿𝑈 decomposition is used to evaluate

det(𝜚𝑖𝑗)]

æ𝑖𝑗 = [det(𝜚𝑖𝑗)/
√︁

det(𝜚𝑖𝑖) det(𝜚𝑗𝑗)] 𝑒
i
~

(𝑆j⊗𝑆i).

viiExplicit inverses should always be avoided; this is a rule of thumb in numerics. However, this
operation does not bring difficulties to our simulations, since the size of matrix 𝜚 is 𝑁 ×𝑁 , and we have
work with 𝑁 ⊘ 4.
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4. Using 𝑋 and 𝑌 compute the 𝑖𝑗 entry of the mixed one-density in ä-representation:

Γ̃𝑖𝑗 = 𝑋 Γ𝑖𝑗 𝑌 .

5. Using the Hubbard matrix 𝑢̃ and the above quantities, compute the 𝑖𝑗 entry of the

CCS coupling:

Δ̃𝑖𝑗 = 𝑈(ÓÒ̃𝑖𝑗≪≪ ≤ ÓÒ̃𝑖𝑗≫≫ ⊗ ÓÒ̃𝑖𝑗≪≫ ≤ ÓÒ̃𝑖𝑗≫≪),

where the vectors ÓÒ̃𝑖𝑗 are deĄned in Eq. (5.68).

Stage 2. Once æ and Δ̃ are completed, amplitude propagation is performed in the following

way:

1. Input (vector/matrix form):

¶𝐶, æ,Δ♢.

2. Compute auxiliary amplitude 𝐷 by solving linear system:

æ 𝐷 = 𝐶.

obs: this is done by 𝐿𝑈 decomposition of æ.

3. Compute 𝐶̇ from:

𝑖~ 𝐶̇𝑖 =
∑︀

𝑗 Ω𝑖𝑗 Δ𝑖𝑗 𝐷𝑗.

The computed derivatives are then used in a fourth-order Runge-Kutta stepper rou-

tine. As explained in ğ4.5, the code additionally implements a Śpave-the-wayŠ parallel

scheme.

5.4.5 Initial state and sampling

As discussed earlier, in order to avoid complications associated with the sampling of the

initial conditions for a generic initial wavefunction, we shall take the initial state to be

itself a coherent state. In the present fermionic context this means that ♣å0⟩ is simply a

Thouless determinant ♣𝑧0⟩.
Since we are considering the weak-coupling regime, it would be natural to take the

initial state as the reference state ♣Φ0⟩ = ♣𝑧0 = 0⟩ for all runs. However, we observe that

the ensuing dynamics turns out to be uninteresting, since the wavefunction most often

departs very little from the non-interacting ground-state ♣𝑧0 = 0⟩. The propagation is

simply not challenging enough Ű it would be a poor way of testing the CCS methodology.

A richer dynamics can be achieved if the initial wavefunction is taken to be a random

Thouless determinant, with the 𝑧0 variables sampled around the origin; that is, with the

initial conĄguration still rather close to the non-interacting ground-state, but overlaping

with a larger number of excited Fock conĄgurations.
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This, in turn, raises the question of how to generate the random initial state and the

surrounding initial conditions. Adequate coordinates must be chosen for that purpose.

We have found that hyper-spherical angles propitiate a satisfactory sampling: when these

coordinates are employed, a steady increase in the overlap matrix conditioning factor

Ñ(Ω) is observed as more basis functions are added, eventually reaching the saturation

point, deĄned by a threshold value of the basis set conditioning. This indicates that the

phase-space region in the vicinities of the reference state is being efficiently populated

with basis functions.

In our simulations, 𝑀 -dimensional hyper-spherical parametrizations are used for each

column of the Thouless array 𝑧, with independent sets of angles being assigned for the

real and imaginary parts of the column entries; mathematically:

𝑞1,Ð = tan(Θ(𝑞)
Ð /2) cos(𝜙(𝑞)

1,Ð)

𝑞2,Ð = tan(Θ(𝑞)
Ð /2) sin(𝜙(𝑞)

1,Ð) cos(𝜙(𝑞)
2,Ð)

𝑞3,Ð = tan(Θ(𝑞)
Ð /2) sin(𝜙(𝑞)

1,Ð) sin(𝜙(𝑞)
2,Ð) cos(𝜙(𝑞)

3,Ð)

...

𝑞𝑀⊗1,Ð = tan(Θ(𝑞)
Ð /2) sin(𝜙(𝑞)

1,Ð) sin(𝜙(𝑞)
2,Ð) ≤ ≤ ≤ sin(𝜙(𝑞)

𝑀⊗2,Ð) cos(𝜙(𝑞)
𝑀⊗1,Ð)

𝑞𝑀,Ð = tan(Θ(𝑞)
Ð /2) sin(𝜙(𝑞)

1,Ð) sin(𝜙(𝑞)
2,Ð) ≤ ≤ ≤ sin(𝜙(𝑞)

𝑀⊗2,Ð) sin(𝜙(𝑞)
𝑀⊗1,Ð),

where 𝑞ÛÐ = ¶Re(𝑧ÛÐ), Im(𝑧ÛÐ)♢, with 1 ⊘ Û ⊘ 𝑀 and 1 ⊘ Ð ⊘ 𝑁 . Notice that the

hyper-radius of each column Ð is also parametrized by an angle, Θ(𝑞)
Ð . The ranges of these

ŚpolarŠ and ŚaxialŠ angles are: 0 ⊘ Θ ⊘ Þ and 0 ⊘ 𝜙 < 2Þ.

The same procedure is adopted when generating the initial state angles and the basis

set initial conditions; it can be summarized as follows: each angle of the set (Θ, 𝜙),

corresponding to either the real or imaginary part of one of the columns of 𝑧, is chosen

from a normal distribution according to the prescriptions:

𝑃 (Θ) ∝ exp
[︁

⊗ (Θ⊗Θ𝑐)
2/2𝑤2

Θ

]︁

, 𝑃 (𝜙) ∝ exp
[︁

⊗ (𝜙⊗ 𝜙𝑐)2/2𝑤2
𝜙

]︁

, (5.70)

where 𝑃 (Θ) and 𝑃 (𝜙) stand for the probability of choosing particular values for Θ and 𝜙.

The width parameters, 𝑤Θ and 𝑤𝜙, are the same for all the columns of the 𝑧 array. For

the initial state 𝑧0, which is sampled around the origin, we have: Θ𝑐 = 0 and 𝜙𝑐 = 0 for

all entries. For the initial conditions, which, in turn, are sampled around the initial state,

we have Θ𝑐 = Θ0 and 𝜙𝑐 = 𝜙0 for all entries, that is, the central coordinates of the normal

distribution are the initial-state angles. The sampling widths 𝑤Θ and 𝑤𝜙 for initial state

generation have different values than those employed in the sampling of initial conditions.

The hyper-spherical angles represent the ŚadequateŠ sampling coordinates mentioned

in ğ4.4; the normal distributions shown in (5.70) are the Śweight functionsŠ. The above

formulas are implemented within the sampling protocol explained in ğ4.4.
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5.4.6 Exact quantum propagation (Full-CI)

The CCS results are compared with exact quantum data obtained by trivial propagation

in the eigenstate basis of the quantum Hamiltonian. The latter is constructed in the lattice

representation according to the matrix-element rules presented in ğD.1 Ű this is the so-

called ŚFull ConĄguration InteractionŠ (Full-CI) Hamiltonian. The randomly generated

initial Thouless determinant ♣𝑧0⟩ is Ąrst projected in reciprocal occupation number space,

using the Fock decompositon of Eq. (3.27). The resulting Fock state is transformed

to lattice occupation number space using the transformation formulas given in ğD.1.2.

Finally, the lattice-space vector is projected into the Hamiltonian eigenstates, at which

point propagation can be started.

5.4.7 Monitored quantities

In the simulations reported below the following quantities are computed as functions of

time: the squared norm of the CCS wavefunction 𝒩 (å); the basis set conditioning factor

Ñ(Ω), discussed in ğ4.4 (which depends solely on the overlap matrix Ω); the total energy

𝐸(å); and the expectation value of the diagonal entries of the reciprocal-space one-density,

i.e. the populations 𝑛𝑞(å) of each reciprocal orbital ♣ã𝑞⟩, hereby called the Śtight-binding

populationsŠ, 𝑛𝑞(å). The formulas are:

𝒩 (å) = ⟨å♣å⟩ =
∑︁

𝑖

𝐶*
𝑖𝐷𝑖, (5.71a)

Ñ(Ω) = Úmax(Ω)Ú⊗1
min(Ω), (5.71b)

𝐸(å) = ⟨å♣𝐻̂♣å⟩ =
∑︁

𝑖𝑗

𝐷*
𝑖æ𝑖𝑗𝐷𝑗

∑︁

𝑝𝑞

[𝜀𝑝Ó𝑝𝑞 + 1
2
𝑣𝑝𝑞(𝑧

*
𝑖 , 𝑧𝑗)]Γ𝑞𝑝(𝑧

*
𝑖 , 𝑧𝑗), (5.71c)

𝑛𝑞(å) = ⟨å♣𝑐†
𝑞𝑐𝑞♣å⟩ =

∑︁

𝑖𝑗

𝐷*
𝑖æ𝑖𝑗𝐷𝑗Γ𝑞𝑞(𝑧

*
𝑖 , 𝑧𝑗), 𝑞 = 1, 2, . . . , 𝐾. (5.71d)

Additionally, the auto-correlation function 𝑎(å; 𝑡) (ACF) is computed through the

formula 𝑎(å; 𝑡) = ⟨å0♣å𝑡⟩ =
∑︀𝑚
𝑗=1⟨𝑧0♣𝑧𝑗⟩𝐷𝑗𝑒

𝑖𝑆j . As discussed in Appendix E, the spectral

density can be obtained from the ACF by a Fourier transform:

𝐼𝑔(å;𝐸) = Þ⊗1
∫︁ ∞

0
𝑑𝑡 𝑔(𝑘)

á (𝑡) Re [ 𝑎(å; 𝑡)𝑒
i
~
𝐸𝑡 ], (5.72)

where 𝑔(𝑘)
á (𝑡) is a window function of the form given in Eq. (E.10). This quantity indicates

which energy eigenstates of the quantum system play a role in the dynamics.
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5.4.8 Runs: general remarks

We report a total of six runs, organized according to the size of the fermionic Fock space

𝑓 , which takes the values: 𝑓 = 220, 495, 560, 816, 2024, 4845; in each of these runs,

the number of degrees of freedom on a given CCS basis element is, correspondently:

𝑑 = 27, 32, 39, 45, 63, 64. The simulations were performed with different settings for

most of the systemŠs parameters Ű these are indicated in the graphs and Ągure captions,

together with the size of the employed CCS basis set 𝑚, the phase-space dimension 𝑑,

and other quantities.

At each run, the number of electrons 𝑁 is either 3 or 4, and the number of sites 𝑆

is kept in the range 6 ⊘ 𝑆 ⊘ 12. These restrictions on the system size were necessary

for two reasons: (i) so that exact quantum results could be computed; and (ii) so that

the number of basis elements 𝑚 required for each CCS run did not exceed ≡ 400 Ű after

this threshold the propagation is slow, even when implemented with the Śpave-the-wayŠ

parallelization scheme (the machine where calculations were performed had 8 independent

cores). Notice that setting 𝑁 = 1 is not interesting since the mean-Ąeld approximation

is exact in this case. At the same time, systems with only 𝑁 = 2 electrons (for 𝑆 in

the range mentioned earlier) are simply two small: the basis set ends up Ąlling the entire

Hilbert space, with 𝑚 = 𝑓 at the saturation point, meaning that there is nothing to gain

from using the CCS method Ű hence, we work with 𝑁 = 3, 4. Meanwhile, the Coulomb

repulsion strength varies slightly across runs, staying in the range 0.22 eV ⊘ 𝑈 ⊘ 0.44 eV.

The magnetic Ąeld is set to 𝐵 = 3000 T in all but the Ąrst and last simulations.

The time increment for the CCS propagation was the same in all runs: ℎ = 0.020 ~ ≤
eV⊗1 = 1.32×10⊗2 fs. Also, the random angular coordinates for real and imaginary parts

were selected from normal distributions with the same width (speciĄc sampling details

are given in the corresponding Ągure). In addition to the basis-set conditioning criterion

for sampling, initial conditions 𝑧𝑖(0) had to display a minimum overlap with ♣𝑧0⟩ in order

to be accepted, i.e. they had to satisfy ⟨𝑧𝑖(0)♣𝑧0⟩ > 10⊗3.

The overall behavior is as follows: the basis set retains a high conditioning factor

throughout all propagations. This means that basis elements maintain a signiĄcant over-

lap with each other, despite the fact that the phase-space dimensions 𝑑 involved are quite

large Ű this suggests that fermionic coherent states of the special unitary group, despite

their intrinsic minimum uncertainty property, are much more spread-out in phase-space

than their bosonic counterparts, at least in the vicinities of the reference state.

In accordance with the above, only small energy Ćuctuations are observed, meaning

that, for each run, the basis set projector is providing a reasonable representation of the

identity operator. This is reĆected in the accuracy of the average tight-binding populations

𝑛𝑞(å) and auto-correlation functions 𝑎(å); these results are in excellent agreement with

those obtained from the Full-CI approach for the runs where the two-body interaction
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strength 𝑈 is weaker, but they are still good for the runs having larger values of this

parameter (the less accurate runs were terminated earlier, though) Ű evidently, this general

trend is expected. We observe that, in all runs, tight-binding populations for most of the

virtual orbitals are too small to be seen at the corresponding ĄgureŠs scale.

An interesting comparison is made for the run with 𝑆 = 9 sites and 𝑁 = 3 electrons.

Here, CCS results are compared to the mean-Ąeld prediction, i.e. results calculated with

the Śclassical propagation schemeŠ, which, in the present case, is equivalent to a time-

dependent Hartree-Fock calculation. The comparison shows how Śbeyond mean-ĄeldŠ

effects are incorporated into the CCS wavefunction (which, we recall, is constructed from

a superposition of mean-Ąeld solutions).

In the next few pages results are presented without further analysis Ű some additional

information is found in each ĄgureŠs caption.
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Chapter 6

Semiclassical initial-value representation

Overview. A semiclassical approximation for the generalized coherent-state

propagator is devised. The resulting expression is recognized as a semiclassical

initial-value representation formula, which involves a phase-space integral over

a swarm of initial conditions, each spawning a classical trajectory with an

associated complex amplitude. The overall strategy adopted here is parallel

to that of earlier works based on Gaussian wavepackets, particularly Ref. [70].

The present derivation, however, is conducted with a greater level of detail if

compared to previous treatments, with emphasis given to certain points which

are commonly overlooked. Following this calculation, aspects of the numerical

implementation of the semiclassical approach are discussed, and a particularly

convenient propagation scheme is advanced.

6.1 The stability matrix

In what follows we shall adopt a Śphase-space ĆowŠ picture of classical dynamics, where-

upon the coordinates of a given trajectory at time 𝑡 > 0 are seen as functions of the initial

conditions at time 𝑡 = 0. For convenience, we introduce the shorthand notation

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑧𝑡Ð = 𝑧Ð(𝑧*
0 , 𝑧0, 𝑡)

𝑧*
𝑡Ð = 𝑧*

Ð(𝑧*
0 , 𝑧0, 𝑡)

for 1 ⊘ Ð ⊘ 𝑑, (6.1)

where the time label is indicated as the leftmost subscript. We work with complex nota-

tion, treating 𝑧 and 𝑧* as independent variables.

Roughly stated, the idea of stability relates to the question of how neighbour points

in phase space move over time Ű whether they get closer or farther apart as the Ćow

develops. Let us then inquire on how small deviations of initial conditions (Ó𝑧0, Ó𝑧
*
0),

centred at some reference orbit 𝑧(𝑡), evolve into deviations (Ó𝑧á , Ó𝑧*
á ) at a later instant á .
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Embracing the Ćow picture and using the chain rule we obtain:

Ó𝑧áÐ =
∑︁

Ñ

𝜕𝑧áÐ
𝜕𝑧0Ñ

Ó𝑧0Ñ +
∑︁

Ñ

𝜕𝑧áÐ
𝜕𝑧*

0Ñ

Ó𝑧*
0Ñ,

Ó𝑧*
áÐ =

∑︁

Ñ

𝜕𝑧*
áÐ

𝜕𝑧0Ñ

Ó𝑧0Ñ +
∑︁

Ñ

𝜕𝑧*
áÐ

𝜕𝑧*
0Ñ

Ó𝑧*
0Ñ.

Introducing the column vectors Ó𝑧 = (Ó𝑧1, Ó𝑧2, . . . , Ó𝑧𝑑)𝑇 and Ó𝑧* = (Ó𝑧*
1 , Ó𝑧

*
2 , . . . , Ó𝑧

*
𝑑)
𝑇

the latter can be organized in matrix form:

⎛

∐︁
Ó𝑧á

Ó𝑧*
á

⎞

̂︀ = 𝑀(á)

⎛

∐︁
Ó𝑧0

Ó𝑧*
0

⎞

̂︀ =

⎛

∐︁
𝑀11(á) 𝑀12(á)

𝑀21(á) 𝑀22(á)

⎞

̂︀

⎛

∐︁
Ó𝑧0

Ó𝑧*
0

⎞

̂︀ , (6.2)

where the 2𝑑× 2𝑑 matrix 𝑀 and its 𝑑× 𝑑 blocks were given an implicit deĄnition.i The

matrix 𝑀 is called the stability matrix Ű it connects small deviations at initial and Ąnal

times and in this way encompasses information about the neighborhood of the reference

orbit Ű this will be better appreciated when we discuss the semiclassical approximation.

Evidently, 𝑀(0) = 𝐼2𝑑.

Excluding the case of very simple systems, the elements of the stability matrix cannot

be computed explicitly; rather, one must compute them numerically for each individual

orbit by integrating, in addition to the orbitŠs classical equations of motion, a linear

system of equations Ű one that we now proceed to Ąnd.

Let us consider the classical equations [cf. Eqs. (1.72)] from the Ćow perspective:

𝑑𝑧𝑡Ð
𝑑𝑡

= ⊗ 𝑖
~

∑︁

Ò

𝑔⊗𝑇
ÐÒ (𝑧*

𝑡 , 𝑧𝑡)
𝜕𝐸(𝑧*

𝑡 , 𝑧𝑡)

𝜕𝑧*
𝑡Ò

= 𝑧̇Ð(𝑧*
0 , 𝑧0, 𝑡) = 𝑧̇𝑡Ð, (6.3a)

𝑑𝑧*
𝑡Ð

𝑑𝑡
=
𝑖

~

∑︁

Ò

𝑔⊗1
ÐÒ (𝑧*

𝑡 , 𝑧𝑡)
𝜕𝐸(𝑧*

𝑡 , 𝑧𝑡)

𝜕𝑧𝑡Ò
= 𝑧̇*

Ð(𝑧*
0 , 𝑧0, 𝑡) = 𝑧̇*

𝑡Ð. (6.3b)

Thus 𝑧̇𝑡Ð and 𝑧̇*
𝑡Ð are also to be understood as implicit functions of the initial conditions

through the variables 𝑧𝑡 = 𝑧(𝑧*
0 , 𝑧0, 𝑡) and 𝑧*

𝑡 = 𝑧*(𝑧*
0 , 𝑧0, 𝑡), and the same abbreviated

notation is assigned to these quantities. Next we note that derivatives taken with respect

to 𝑡 commute with those taken with respect to components of either 𝑧0 or 𝑧*
0 ; so, for

example, if we differentiate (6.3a) with respect to 𝑧0Ñ we obtain:

𝜕

𝜕𝑧0Ñ

𝑑𝑧𝑡Ð
𝑑𝑡

=
∑︁

Ò

𝜕𝑧̇𝑡Ð
𝜕𝑧𝑡Ò

𝜕𝑧𝑡Ò
𝜕𝑧0Ñ

+
∑︁

Ò

𝜕𝑧̇𝑡Ð
𝜕𝑧*

𝑡Ò

𝜕𝑧*
𝑡Ò

𝜕𝑧0Ñ

=
𝑑

𝑑𝑡

𝜕𝑧𝑡Ð
𝜕𝑧0Ñ

= 𝑀̇11(𝑡)ÐÑ,

with the derivatives of 𝑧̇𝑡Ð and 𝑧̇*
𝑡Ð explicitly given by (with time labels momentarily

iThe convention is that index ‘1’ refers to variable 𝑧, whereas index ‘2’ refers to the complex conjugate
variable 𝑧*; thus𝑀11(á)ÐÑ = (𝜕𝑧áÐ/𝜕𝑧0Ñ), 𝑀21(á)ÐÑ = (𝜕𝑧*

áÐ/𝜕𝑧0Ñ), and so on. Also, the stability matrix
is often called ‘tangent matrix’ or, if the reference trajectory is periodic, the ‘monodromy matrix’.
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omitted):

𝜕𝑧̇Ð
𝜕𝑧Ò

= ⊗ 𝑖
~

∑︁

Ò′

(︃

𝜕𝑔⊗𝑇
ÐÒ′

𝜕𝑧Ò

𝜕𝐸

𝜕𝑧*
Ò′

+ 𝑔⊗𝑇
ÐÒ′

𝜕2𝐸

𝜕𝑧*
Ò′𝜕𝑧Ò

⎜

,

𝜕𝑧̇Ð
𝜕𝑧*

Ò

= ⊗ 𝑖
~

∑︁

Ò′

(︃

𝜕𝑔⊗𝑇
ÐÒ′

𝜕𝑧*
Ò

𝜕𝐸

𝜕𝑧*
Ò′

+ 𝑔⊗𝑇
ÐÒ′

𝜕2𝐸

𝜕𝑧*
Ò′𝜕𝑧*

Ò

⎜

.

Expressions for the time derivatives of the remaining elements of the stability matrix are

found in a similar fashion; the complete system is:

𝑀̇11(𝑡)ÐÑ =
∑︁

Ò

𝜕𝑧̇𝑡Ð
𝜕𝑧𝑡Ò

𝑀11(𝑡)ÒÑ +
∑︁

Ò

𝜕𝑧̇𝑡Ð
𝜕𝑧*

𝑡Ò

𝑀21(𝑡)ÒÑ, (6.4a)

𝑀̇21(𝑡)ÐÑ =
∑︁

Ò

𝜕𝑧̇*
𝑡Ð

𝜕𝑧𝑡Ò
𝑀11(𝑡)ÒÑ +

∑︁

Ò

𝜕𝑧̇*
𝑡Ð

𝜕𝑧*
𝑡Ò

𝑀21(𝑡)ÒÑ, (6.4b)

𝑀̇12(𝑡)ÐÑ =
∑︁

Ò

𝜕𝑧̇𝑡Ð
𝜕𝑧𝑡Ò

𝑀12(𝑡)ÒÑ +
∑︁

Ò

𝜕𝑧̇𝑡Ð
𝜕𝑧*

𝑡Ò

𝑀22(𝑡)ÒÑ, (6.4c)

𝑀̇22(𝑡)ÐÑ =
∑︁

Ò

𝜕𝑧̇*
𝑡Ð

𝜕𝑧𝑡Ò
𝑀12(𝑡)ÒÑ +

∑︁

Ò

𝜕𝑧̇*
𝑡Ð

𝜕𝑧*
𝑡Ò

𝑀22(𝑡)ÒÑ. (6.4d)

The above equations can be integrated alongside the trajectoryŠs equation of motion from

a given initial condition (𝑧0, 𝑧
*
0) together with 𝑀(0) = 𝐼2𝑑. Notice that the sub-blocks are

coupled only in pairs: 𝑀11 and 𝑀21; 𝑀12 and 𝑀22 Ű this is just a consequence of our choice

to work with complex variables, a choice that brings some redundancies, e.g. 𝑀22 = 𝑀*
11,

and 𝑀12 = 𝑀*
21. So, in principle, there are just 2𝑑2 free complex parameters in 𝑀 .

The linear system (6.4) is best expressed in matrix form as:

⎛

∐︁
𝑀̇11(𝑡) 𝑀̇12(𝑡)

𝑀̇21(𝑡) 𝑀̇22(𝑡)

⎞

̂︀ =

⎛

∐︁
𝑅11(𝑡) 𝑅12(𝑡)

𝑅21(𝑡) 𝑅22(𝑡)

⎞

̂︀

⎛

∐︁
𝑀11(𝑡) 𝑀12(𝑡)

𝑀21(𝑡) 𝑀22(𝑡)

⎞

̂︀ , (6.5)

or more succinctly:

𝑀̇(𝑡) = 𝑅(𝑡)𝑀(𝑡) with 𝑀(0) = 𝐼2𝑑, (6.6)

with the matrix 𝑅 and its blocks implicitly deĄned by (6.4) and (6.5) Ű 𝑅 is nothing

but the Jacobian matrix of the classical dynamical system. Again, the complex notation

brings with it some redundancies; in this case: 𝑅22 = 𝑅*
11, and 𝑅21 = 𝑅*

12.

6.1.1 Symplectic properties

As a result of the Hamiltonian structure of the equations of motion the stability matrix

has a number of interesting properties. For instance, it can be shown to satisfy the

constraint:29

𝑀

⎛

∐︁
0 ⊗𝑔⊗𝑇

0

𝑔⊗1
0 0

⎞

̂︀𝑀𝑇 =

⎛

∐︁
0 ⊗𝑔⊗𝑇

𝑡

𝑔⊗1
𝑡 0

⎞

̂︀ , (6.7)
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where we abbreviate: 𝑀 = 𝑀(𝑡), 𝑔0 = 𝑔(𝑧*
0 , 𝑧0), and 𝑔𝑡 = 𝑔(𝑧*

𝑡 , 𝑧𝑡). We recognize (6.7) as

a curved-phase-space version of the symplectic condition obeyed by the stability matrix

of canonical, i.e. Ćat-phase-space, classical systems (a case which is recovered by putting

𝑔 = 𝐼𝑑).

Relations amongst individual blocks can be directly deduced from (6.7):

𝑀12 𝑔
⊗1
0 𝑀𝑇

11 ⊗𝑀11 𝑔
⊗𝑇
0 𝑀𝑇

12 = 0, (6.8a)

𝑀11 𝑔
⊗𝑇
0 𝑀𝑇

22 ⊗𝑀12 𝑔
⊗1
0 𝑀𝑇

21 = 𝑔⊗𝑇
𝑡 , (6.8b)

showing that there are actually less than 2𝑑2 free complex parameters in 𝑀 . A comple-

mentary set of relations can also be found by further manipulating (6.7): multiplying on

the left by 𝑀⊗1 and on the right by 𝑀⊗𝑇 , and subsequently inverting both sides of the

resulting equation leads to:

𝑀𝑇

⎛

∐︁
0 𝑔𝑡

⊗𝑔𝑇𝑡 0

⎞

̂︀𝑀 =

⎛

∐︁
0 𝑔0

⊗𝑔𝑇0 0

⎞

̂︀ , (6.9)

which in blockwise form reads:

𝑀𝑇
11 𝑔𝑡𝑀21 ⊗𝑀𝑇

21 𝑔
𝑇
𝑡 𝑀11 = 0, (6.10a)

𝑀𝑇
11 𝑔𝑡𝑀22 ⊗𝑀𝑇

21 𝑔
𝑇
𝑡 𝑀12 = 𝑔0. (6.10b)

Moreover, we note that identity (6.7) also unlocks an explicit expression for the inverse

of the stability matrix; multiplying on the left by 𝑀⊗1 and performing the straightforward

inversion of the matrix with off-diagonal blocks ⊗𝑔⊗𝑇
𝑡 and 𝑔⊗1

𝑡 we get:

𝑀⊗1 =

⎛

∐︁
0 ⊗𝑔⊗𝑇

0

𝑔⊗1
0 0

⎞

̂︀𝑀𝑇

⎛

∐︁
0 𝑔𝑡

⊗𝑔𝑇𝑡 0

⎞

̂︀ (6.11)

Ű that is, the inverse of 𝑀 can be easily obtained from its transpose.

Lastly, it follows from (6.7) that, even though we cannot, in the general case, obtain

explicit expressions for the elements of the stability matrix, its determinant is always

given by:

det𝑀(𝑡) =
det 𝑔(𝑧*

0 , 𝑧0)

det 𝑔(𝑧*
𝑡 , 𝑧𝑡)

. (6.12)

This result can also be derived through an alternative approach Ű see Eq. (A.5) in Ap-

pendix A.



164

6.2 Integral expression for the coherent-state propagator

Our purpose is to Ąnd a semiclassical expression for the time evolution operator 𝑈̂(á),

with á denoting the elapsed time.ii The starting point is the coherent-state propagator

𝐾, the transition amplitude between two coherent states, here labeled 𝑧0 and 𝑤:

𝐾(𝑤*, 𝑧0; á) = ⟨𝑤♣𝑈̂(á)♣𝑧0⟩
= ¶𝑤♣𝑈̂(á)♣𝑧0♢ 𝑒⊗ 1

2
𝑓(𝑤*,𝑤)⊗ 1

2
𝑓(𝑧*

0
,𝑧0) ⊕ 𝐾̃á (𝑤

*, 𝑧0) 𝑒
⊗ 1

2
𝑓(𝑤*,𝑤)⊗ 1

2
𝑓(𝑧*

0
,𝑧0). (6.13)

Most of the time we shall Ąnd more convenient to work with the quantity 𝐾̃á (𝑤*, 𝑧0), which

is analytic in both its complex arguments Ű this is just the usual propagator striped from

unimportant normalization factors.

In keeping with the spirit of the techniques so far presented we seek to express the

propagator in terms of a basis set guided by classical trajectories Ű i.e. as an initial-value

representation. This can be accomplished with the help of the closure relation written in

the speciĄc form:

1̂ =
∫︁

𝑑Û(Õá )♣Õá ⟩⟨Õá ♣ =
∫︁

𝑑Û(Õ0)♣Õá ⟩⟨Õá ♣, (6.14)

where Õá is a time-dependent coherent-state label, bound to obey the equation of motion

(1.72) and evaluated at 𝑡 = á , the Ąnal propagation time. In accordance with the Ćow

picture discussed previously, this should be understood as Õá = Õá (Õ*
0 , Õ0). As indicated,

the integral is to be performed with the phase-space measure evaluated at initial time

𝑡 = 0. Since the measure is invariant under the classical Ćow this change of integration

domain comes at no expense Ű i.e. the Jacobian of the transformation from 𝑑Û(Õá ) to

𝑑Û(Õ0) is unity Ű cf. Appendix A.

We then proceed by inserting the identity (6.14) into the matrix element that deĄnes

𝐾̃ in Eq. (6.13) and performing the following sequence of manipulations:

𝐾̃á (𝑤
*, 𝑧0) =

∫︁

𝑑Û(Õ0)¶𝑤♣Õá ⟩⟨Õá ♣𝑈̂(á)♣𝑧0♢

=
∫︁

𝑑Û(Õ0)¶𝑤♣Õá ⟩
[︁⟨Õá ♣𝑈̂(á)♣𝑧0♢
⟨Õ0♣𝑧0♢

]︁

⟨Õ0♣𝑧0♢ ⊕
∫︁

𝑑Û(Õ0)¶𝑤♣Õá ⟩ 𝒰á (𝑧0; Õ
*
0 , Õ0) ⟨Õ0♣𝑧0♢.

(6.15)

The implicitly deĄned function 𝒰á (𝑧0; Õ*
0 , Õ0) Ű analytic in 𝑧0 and independent of the end-

point variable 𝑤* Ű will be the object of our considerations henceforth.

iiFor brevity we write the time operator with a single time label, 𝑈̂(á), or sometimes even ‘exp(⊗ 𝑖
~
𝐻̂á)’.

However, the derivation is also valid for Hamiltonians with explicit time dependence.
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6.2.1 * Classical propagator and zeroth-order semiclassical approximation

In order to gain some insight, let us momentarily consider the case of a Hamiltonian 𝐻̂0

which is a linear function of the group generators of the chosen coherent-state represen-

tation Ű for both bosonic and fermionic representations that were studied in detail in

previous chapters, this translates to the case of a non-interacting Hamiltonian.

In such systems the time evolution operator, denoted 𝑈̂ (0)(á) = exp(⊗ 𝑖
~
𝐻̂0á), is in fact

an element of the coherent-stateŠs group, and we have seen at Chapter 1 that the effect

of 𝑈̂ (0)(á) upon an initial coherent state ♣Õ0⟩ is exactly given by:

𝑈̂ (0)(á)♣Õ0⟩ = ♣Õá (Õ0)⟩𝑒
i
~
𝑆τ (Õ), (6.16)

with Õá being a holomorphic function of Õ0 and the accumulated phase 𝑆á (Õ) being pre-

cisely the classical action (1.74) evaluated over the trajectory Õá (Õ0). Concrete examples

of this kind of dynamics were discussed in ğ2.2.3 and ğ3.2.5.

Using the unitary property of the evolution operator the latter equation may be rewrit-

ten as ⟨Õá ♣𝑈̂ (0)(á) = 𝑒
i
~
𝑆τ (Õ)⟨Õ0♣, whence we Ąnd

[⟨Õá ♣𝑈̂ (0)(á)] ≤ ♣𝑧0♢
⟨Õ0♣𝑧0♢

=
𝑒

i
~
𝑆τ (Õ)⟨Õ0♣𝑧0♢
⟨Õ0♣𝑧0♢

⇒ 𝒰 (0)
á (Õ*

0 , Õ0) = 𝑒
i
~
𝑆τ (Õ). (6.17)

Check. Before commenting on this result let us evaluate the consistency of the inte-

gral expression (6.15) for this particular scenario Ű according to (6.16) we must obtain

𝐾(0)(𝑤*, 𝑧0; á) = ⟨𝑤♣𝑈̂ (0)(á)♣𝑧0⟩ = ⟨𝑤♣𝑧á (𝑧0)⟩𝑒
i
~
𝑆τ (𝑧). For this purpose we write the (un-

normalized) non-interacting propagator as

𝐾̃(0)
á (𝑤*, 𝑧0) =

∫︁

𝑑Û(Õ0)𝛶 (𝑤*; Õ)¶Õ0♣𝑧0♢𝑒⊗𝑓(Õ*
0
,Õ0), (6.18)

where we have deĄned the auxiliary quantities:

𝛶 (𝑤*; Õ) = ¶𝑤♣Õá (Õ0)♢ 𝑒Ò(Õ) and Ò(Õ) =
𝑖

~
𝐴á (Õ

*
á , Õ0)⊗ 𝑓(Õ*

á , Õá ), (6.19)

with 𝐴á (Õ*
á , Õ0) being the complex action of Eq. (1.67), whose derivatives are listed in

Eq. (1.71). We notice that consistency will be ensured through the reproducing kernel

property (1.62b) as long as 𝛶 (𝑤*; Õ) is analytic on the variable Õ0. Since in the present

case we know Õá (Õ0) is holomorphic Ű and therefore so is ¶𝑤♣Õá (Õ0)♢ Ű it remains to be

checked whether the phase Ò(Õ) shares this attribute. And, as it turns out, its derivatives

with respect to the components of the complex conjugate vector Õ*
0 all vanish identically:

𝜕Ò(Õ)

𝜕Õ*
0Û

=
∑︁

Ü

⎟(︃

𝑖

~

𝜕𝐴á (Õ*
á , Õ0)

𝜕Õ*
áÜ

⊗ 𝜕𝑓(Õ*
á , Õá )

𝜕Õ*
áÜ

⎜

𝜕Õ*
áÜ

𝜕Õ*
0Û

⊗ 𝜕𝑓(Õ*
á , Õá )

𝜕ÕáÜ

𝜕ÕáÜ
𝜕Õ*

0Û

]︃

= 0, (6.20)
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for the terms inside the parenthesis cancel due to (1.71) and the last term disappears

because we know (𝜕Õá/𝜕Õ*
0 ) = 0. Thus 𝛶 (𝑤*; Õ) is analytic in Õ0 and by the reproducing

kernel property the integral (6.18) reduces to:

𝐾̃(0)
á (𝑤*, 𝑧0) = 𝛶 (𝑤*; Õ0)♣Õ0=𝑧0

. (6.21)

The expression for the non-interacting propagator 𝐾(0)
á (𝑤*, 𝑧0; á) is then obtained by

inserting normalization factors and reorganizing the exponentials:

𝐾(0)
á (𝑤*, 𝑧0; á) = [¶𝑤♣𝑧á (𝑧0)♢𝑒

i
~
𝐴τ (𝑧*

τ ,𝑧0)⊗𝑓(𝑧*
τ ,𝑧τ )] 𝑒⊗ 1

2
𝑓(𝑤*,𝑤)⊗ 1

2
𝑓(𝑧*

0
,𝑧0)

= 𝑒⊗ 1

2
𝑓(𝑤*,𝑤)¶𝑤♣𝑧á (𝑧0)♢𝑒⊗ 1

2
𝑓(𝑧*

τ ,𝑧τ )𝑒
i
~
𝐴τ (𝑧*

τ ,𝑧0)⊗ 1

2
𝑓(𝑧*

τ ,𝑧τ )⊗ 1

2
𝑓(𝑧*

0
,𝑧0)

= ⟨𝑤♣𝑧á (𝑧0)⟩𝑒
i
~
𝑆τ (𝑧), (6.22)

which is in agreement with the result expected from (6.16).

We now come back and explore Eq. (6.17). In Chapter 1, single coherent-state trial

functions have been identiĄed as classical approximations [cf. ğ1.3.3] (as previously men-

tioned, in the context of the bosonic and fermionic coherent states analyzed at Chapters 2

and 3, this is the same as identifying the mean-Ąeld description as a classical approxi-

mation). In conformity with this view, we deĄne the classical propagator 𝐾𝑐𝑙, as an

approximated propagator for a general system:

𝐾𝑐𝑙(𝑤*, 𝑧0; á) = ⟨𝑤♣𝑧á (𝑧0)⟩𝑒
i
~
𝑆τ (𝑧). (classical propagator) (6.23)

Thus the digression made earlier showed that whenever the Hamiltonian is linear in the

group generators the exact propagator reduces to the classsical one (this is just another

way of explaining what we mean by ŚclassicalŠ).

Now, consider the following possibility. One may attempt a new approximative scheme

by replacing the function 𝒰 appearing inside the generally valid integral expression (6.15)

by the Śnon-interactingŠ result (6.17) Ű this procedure gives rise to a slightly more sophis-

ticated formula which we shall denominate (in lack of a better term) the ‘zeroth-order’

semiclassical propagator :

𝐾𝑠𝑐⊗0(𝑤*, 𝑧0; á) =
∫︁

𝑑Û(Õ0)⟨𝑤♣Õá ⟩𝑒
i
~
𝑆τ (Õ)⟨Õ0♣𝑧0⟩. (semiclassical, zeroth-order)

(6.24)

Of course, the reproducing kernel property cannot be invoked here since for general sys-

tems Õá depends on both Õ0 and Õ*
0 . An interesting feature of (6.24) is that ⟨𝑤♣ and

♣𝑧0⟩ can be deleted leading to a Śzeroth-orderŠ semiclassical approximation for the time

evolution operator itself:

𝑈̂(á) ≡ 𝑈̂ 𝑠𝑐⊗0(á) =
∫︁

𝑑Û(Õ0)♣Õá ⟩𝑒
i
~
𝑆τ (Õ)⟨Õ0♣. (6.25)



167

This latter result is reminiscent of HellerŠs Śfrozen GaussianŠ propagator,45 a well-known

approach of wavepacket-based semiclassical theory. The result (6.25), particularized for

the case of fermionic coherent states, has been studied by Suzuki in the context of nuclear

dynamics.18

6.3 Semiclassical amplitude

The signiĄcance of the result (6.17) lies in the fact that it strongly hints on the form

and properties that the function 𝒰 must possess in the semiclassical regime which we are

interested. In other words, the semiclassical formula we wish to develop for the propagator

should represent an improvement over the result expressed in Eq. (6.24). Thus we set out

to look for a semiclassical expression for 𝒰 by means of the following ansatz :

𝒰á (𝑧0; Õ
*
0 , Õ0) =

⟨Õá ♣𝑈̂(á)♣𝑧0⟩
⟨Õ0♣𝑧0⟩

= 𝐷á (𝑧0; Õ
*
0 , Õ0)𝑒

i
~
𝑆τ (Õ*

0
,Õ0), (6.26)

where the new and key element is the complex amplitude, henceforth abbreviated𝐷á (𝑧0; Õ),

which is assigned to each orbit that participates in the integral expression (6.15) of the

propagator.

It should be emphasized that this does not amount to a meaningless redeĄnition of 𝒰 ;

the crucial point here is that, in a semiclassical context, and in view of the considerations

made earlier, the amplitude 𝐷á (𝑧0; Õ) Ű i.e. the speciĄc combination of factors that it

stands for as in (6.26) Ű can be regarded as a smooth function of the initial conditions

(Õ*
0 , Õ0) (at least during a sufficiently short interval 0 ⊘ 𝑡 ⊘ á) thus providing a route to

conduct the required approximations.

In preparation for the subsequent stages of our derivation, we use (6.26) to organize

the integral expression (6.15) in the following way:

𝐾̃á (𝑤
*, 𝑧0) =

∫︁

𝑑Û(Õ0)𝐷á (𝑧0; Õ)¶𝑤♣Õá ⟩⟨Õ0♣𝑧0♢𝑒
i
~
𝑆τ (Õ)

=
∫︁

𝑑Û(Õ0)𝐷á (𝑧0; Õ)¶𝑤♣Õá♢¶Õ0♣𝑧0♢𝑒
i
~
𝐴τ (Õ*

τ ,Õ0)⊗𝑓(Õ*
τ ,Õτ )⊗𝑓(Õ*

0
,Õ0)

=
∫︁

𝑑Û(Õ0)𝐷á (𝑧0; Õ)𝑒
𝐹τ (𝑧0,𝑤*;Õ). (6.27)

Here, things have been arranged so as to make the complex action 𝐴á (Õ*
á , Õ0) appear

explicitly, since we intent to take advantage of its well-deĄned properties Ű recall the

relation between 𝑆á (Õ) and 𝐴á (Õ*
á , Õ0), displayed at Eq. (1.67). Also, at the last line, all

factors multiplying 𝐷á (𝑧0; Õ) have been combined into a complex phase 𝐹 ,

𝐹á (𝑧0, 𝑤
*; Õ) =

𝑖

~
𝐴á (Õ

*
á , Õ0) + 𝑓(𝑤*, Õá )⊗ 𝑓(Õ*

á , Õá ) + 𝑓(Õ*
0 , 𝑧0)⊗ 𝑓(Õ*

0 , Õ0). (6.28)

So far we know that the amplitude 𝐷á (𝑧0; Õ) should comply with a few requirements:
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it must be unity at initial time Ű so that 𝐾(𝑤*, 𝑧0; 0) correctly reduces to ⟨𝑤♣𝑧0⟩; it must

remain unity whenever the Hamiltonian is linear in the coherent-stateŠs group generators

Ű hence its time derivative must vanish identically in those cases; and, Ąnally, it must be

a smooth function of the initial variables (Õ*
0 , Õ0). The next step is to enforce a dynamical

condition upon 𝐷á (𝑧0; Õ).

6.3.1 Equation of motion for the amplitude

As is well-known, the exact time-evolution operator satisĄes SchrödingerŠs equation:

𝑑𝑈̂(á)

𝑑á
+
𝑖

~
𝐻̂ 𝑈̂(á) = 0. (6.29)

In terms of the non-normalized propagator the above reads:

𝑑𝐾̃á (𝑤*, 𝑧0)

𝑑á
= ¶𝑤♣𝑑𝑈̂(á)

𝑑á
♣𝑧0♢ = ⊗ 𝑖

~
¶𝑤♣𝐻̂ 𝑈̂(á)♣𝑧0♢. (6.30)

By enforcing this condition, and using the propagatorŠs integral expression (6.27), we shall

derive an equation of motion for the amplitude 𝐷á (𝑧0; Õ).

Inserting the closure relation (6.14) on the right-hand side of the latter equation, we

Ąnd:

𝑑𝐾̃á (𝑤*, 𝑧0)

𝑑á
= ⊗ 𝑖

~

∫︁

𝑑Û(Õ0)¶𝑤♣𝐻̂♣Õá ⟩⟨Õá ♣𝑈̂(á)♣𝑧0⟩

= ⊗ 𝑖
~

∫︁

𝑑Û(Õ0)¶𝑤♣Õá ⟩⟨Õ0♣𝑧0♢
[︁¶𝑤♣𝐻̂♣Õá♢
¶𝑤♣Õá♢

]︁[︁⟨Õá ♣𝑈̂(á)♣𝑧0⟩
⟨Õ0♣𝑧0⟩

]︁

= ⊗ 𝑖
~

∫︁

𝑑Û(Õ0)¶𝑤♣Õá ⟩⟨Õ0♣𝑧0♢𝐸(𝑤*, Õá )𝐷á (𝑧0; Õ)𝑒
i
~
𝑆τ (Õ)

= ⊗ 𝑖
~

∫︁

𝑑Û(Õ0)𝐸(𝑤*, Õá )𝐷á (𝑧0; Õ)𝑒
𝐹τ (𝑧0,𝑤*;Õ), (6.31)

where 𝐸(𝑤*, Õá ) is the off-diagonal energy function, obtained by analytic continuation

of its real-valued counterpart (a quantity which we are acquainted with from previous

chapters).

On the other hand, differentiating with respect to á under the integral sign of (6.27),

we get:

𝑑𝐾̃á (𝑤*, 𝑧0)

𝑑á
=

∫︁

𝑑Û(Õ0)
[︁

𝐷̇á (𝑧0; Õ) + 𝐹̇á (𝑧0, 𝑤
*; Õ)𝐷á (𝑧0; Õ)

]︁

𝑒𝐹τ (𝑧0,𝑤*;Õ), (6.32)

where the total time derivative of the phase 𝐹 [cf. Eq. (6.28)] is computed using the
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complex actionŠs properties (1.71) and applying the chain rule as follows:

𝐹̇á (𝑧0, 𝑤
*; Õ) =

𝑖

~

𝜕𝐴á (Õ*
á , Õ0)

𝜕á
+
𝑖

~

∑︁

Ð

𝜕𝐴á (Õ*
á , Õ0)

𝜕Õ*
áÐ

Õ̇*
áÐ

+
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
Õ̇áÐ ⊗

𝜕𝑓(Õ*
á , Õá )

𝜕ÕáÐ
Õ̇áÐ ⊗

𝜕𝑓(Õ*
á , Õá )

𝜕Õ*
áÐ

Õ̇*
áÐ

]︃

= ⊗ 𝑖
~
𝐸(Õ*

á , Õá ) +
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
⊗ 𝜕𝑓(Õ*

á , Õá )

𝜕ÕáÐ

]︃

Õ̇áÐ. (6.33)

Finally, equating (6.31) and (6.32), and substituting (6.33), we arrive at the desired

expression:

𝑖~
∫︁

𝑑Û(Õ0)𝐷̇á (𝑧0; Õ)𝑒
𝐹τ (𝑧0,𝑤*;Õ) =

∫︁

𝑑Û(Õ0)Δ
′(𝑤*; Õ*

á , Õá )𝐷á (𝑧0; Õ)𝑒
𝐹τ (𝑧0,𝑤*;Õ), (6.34)

where the coupling kernel Δ′ has emerged:

Δ′(𝑤*; Õ*
á , Õá ) = 𝐸(𝑤*, Õá )⊗ 𝐸(Õ*

á , Õá )⊗ 𝑖~
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
⊗ 𝜕𝑓(Õ*

á , Õá )

𝜕ÕáÐ

]︃

Õ̇áÐ, (6.35)

which is precisely the coupling Δ′ of Eq. (4.35), that arises when the CCS method is

considered from a variational perspective [cf. ğ4.2.4].

Before proceeding we must bring attention to a detail which, in what follows, will

have a pivotal role: the fact that the amplitude 𝐷á (𝑧0; Õ), as deĄned in Eq. (6.26), is

independent of the propagatorŠs end-point label 𝑤*. In other words, solutions to (6.34) are

the same for different end-points and therefore we are free to choose 𝑤* at our convenience

Ű we shall Ąnd that by exercising this freedom our equations can be greatly simpliĄed.

6.4 Semiclassical approximation

The basic idea underlying the semiclassical approximation is very intuitive: it is assumed

that, in the semiclassical regime, the important contributions to the integrals over initial

conditions (Õ*
0 , Õ0) appearing in both sides of Eq. (6.34) come from the immediate neigh-

borhood of the point (𝑧*
0 , 𝑧0). The trajectory spawned by this speciĄc point is therefore

special and shall be henceforth denominated the reference trajectory:

Õ0 = 𝑧0, Õ*
0 = 𝑧*

0 , with Õ(𝑧*
0 , 𝑧0, 𝑡) = 𝑧𝑡. (reference trajectory) (6.36)

Furthermore, in view of the arguments presented earlier, we suppose that under semiclas-

sical conditions both the amplitude 𝐷 and its time derivative 𝐷̇ are sufficiently smooth

functions of (Õ*
0 , Õ0), so that within the neighborhood of (𝑧*

0 , 𝑧0), and during the timespan
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0 ⊘ 𝑡 ⊘ á , they can be approximated by its reference-trajectory value:

𝐷á (𝑧0; Õ) ≡ 𝐷á (𝑧0; Õ)♣Õ=𝑧 = 𝐷á (𝑧); (6.37)

𝐷̇á (𝑧0; Õ) ≡ 𝐷̇á (𝑧0; Õ)
⧹︃
⧹︃
⧹︃
Õ=𝑧

= 𝐷̇á (𝑧). (6.38)

If these assumptions hold then it is legitimate to expand both the phase and prefactors

of the integrands in (6.34) around (𝑧*
0 , 𝑧0). The expansions are to be carried out up to

second order in the deviations

Ö0 = Õ0 ⊗ 𝑧0, Ö*
0 = Õ*

0 ⊗ 𝑧*
0 , (6.39)

leading to Gaussian integrals whose explicit solution is known. The procedure, however,

is not completely straightforward Ű there is a certain protocol one must follow in order to

maintain the consistency of the approximation; this is explained next in detail.

6.4.1 The expansion protocol

The protocol is based on two Śguiding principlesŠ. The Ąrst is that deviations from the

reference trajectory at different time instants are to be treated at the level of linearized

dynamics; thus the Ąnal and initial deviations are related through:

ÕáÛ(Õ*
0 , Õ0) ≡ 𝑧áÛ(𝑧*

0 , 𝑧0) +
𝜕ÕáÛ(Õ*

0 , Õ0)

𝜕Õ0Ü

♣𝑟(Õ0Ü ⊗ 𝑧0Ü) +
𝜕ÕáÛ(Õ*

0 , Õ0)

𝜕Õ*
0Ü

♣𝑟(Õ*
0Ü ⊗ 𝑧*

0Ü), (6.40)

Õ*
áÛ(Õ*

0 , Õ0) ≡ 𝑧*
áÛ(𝑧*

0 , 𝑧0) +
𝜕Õ*

áÛ(Õ*
0 , Õ0)

𝜕Õ0Ü

♣𝑟(Õ0Ü ⊗ 𝑧0Ü) +
𝜕Õ*

áÛ(Õ*
0 , Õ0)

𝜕Õ*
0Ü

♣𝑟(Õ*
0Ü ⊗ 𝑧*

0Ü), (6.41)

where quantities evaluated at (𝑧*
0 , 𝑧0) are indicated with the right-sided bar Ś♣𝑟Š Ű a con-

vention that is adopted hereon. The above relations can be organized as

⎛

∐︁
Öá

Ö*
á

⎞

̂︀ =

⎛

∐︁
𝑀11(á) 𝑀12(á)

𝑀21(á) 𝑀22(á)

⎞

̂︀

⎛

∐︁
Ö0

Ö*
0

⎞

̂︀ = 𝑀(á)

⎛

∐︁
Ö0

Ö*
0

⎞

̂︀ , with

⎧

⋁︁⨄︁

⋁︁⋃︁

Öá = Õá ⊗ 𝑧á
Ö*
á = Õ*

á ⊗ 𝑧*
á

, (6.42)

where 𝑀 denotes the stability matrix associated with the reference trajectory 𝑧á (𝑧*
0 , 𝑧0).

Essentially, this means that the same stability matrix is assigned to all orbits whose

initial conditions are located within the neighborhood of the reference trajectory; or,

translating into practical terms: while performing the required expansions, whenever one

encounters derivatives of Õá or Õ*
á with respect to either Õ0 or Õ*

0 , these should be understood

as

𝜕Õá
𝜕Õ0

≡ 𝜕Õá
𝜕Õ0

♣𝑟 =
𝜕𝑧á
𝜕𝑧0

= 𝑀11(á),
𝜕Õá
𝜕Õ*

0

≡ 𝜕Õá
𝜕Õ*

0

♣𝑟 =
𝜕𝑧á
𝜕𝑧*

0

= 𝑀12(á), etc; (6.43)

i.e. they should be approximated to zeroth order and, therefore, second-order derivatives
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of this kind should be neglected Ű this gives our Ąrst rule, mathematically expressed as:

𝜕2Õá
𝜕Õ0𝜕Õ0

≡ 0,
𝜕2Õá
𝜕Õ0𝜕Õ*

0

≡ 0,
𝜕2Õá
𝜕Õ*

0𝜕Õ
*
0

≡ 0, etc. (rule one)

The second principle is that a certain hierarchy should be observed when considering

the second-order expansion of the integrands of (6.34). Consider, for example, the Kähler

potential 𝑓(Õ*, Õ); its second-order expansion around (𝑧*, 𝑧) reads:

𝑓(Õ*, Õ) ≡ 𝑓(𝑧*, 𝑧) +
∑︁

Û

𝜕𝑓

𝜕𝑧Û
(Õ ⊗ 𝑧)Û +

∑︁

Û

𝜕𝑓

𝜕𝑧*
Û

(Õ* ⊗ 𝑧*)Û +
∑︁

ÛÜ

(Õ ⊗ 𝑧)Û
𝜕2𝑓

𝜕𝑧Û𝜕𝑧*
Ü

(Õ* ⊗ 𝑧*)Ü

+
1

2

∑︁

ÛÜ

(Õ ⊗ 𝑧)Û
𝜕2𝑓

𝜕𝑧Û𝜕𝑧Ü
(Õ ⊗ 𝑧)Ü +

1

2

∑︁

ÛÜ

(Õ* ⊗ 𝑧*)Û
𝜕2𝑓

𝜕𝑧*
Û𝜕𝑧

*
Ü

(Õ* ⊗ 𝑧*)Ü (6.44)

where all derivatives are computed at (𝑧*, 𝑧) Ű the time label is not important for devel-

oping the present argument since different instants are connected by the stability matrix

evaluated at the reference trajectory. The point to be noticed is that, amidst the var-

ious quantities composing the integrands in (6.34), we Ąnd some which are written in

terms of derivatives of 𝑓 , such as the metric matrix 𝑔 and the gradients appearing in the

coupling kernel Δ′. Thus, if we let 𝑓 belong to a certain category of functions whose

phase-space derivatives up to second order should not be discarded, then, according to

(6.44), Ąrst-order gradients of 𝑓 should be approximated as:

𝜕𝑓(Õ*, Õ)

𝜕ÕÛ
≡ 𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧Û
+

∑︁

Ü

𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧Û𝜕𝑧Ü
(Õ ⊗ 𝑧)Ü +

∑︁

Ü

𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧Û𝜕𝑧*
Ü

(Õ* ⊗ 𝑧*)Ü (6.45)

𝜕𝑓(Õ*, Õ)

𝜕Õ*
Û

≡ 𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧*
Û

+
∑︁

Ü

𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧*
Û𝜕𝑧Ü

(Õ ⊗ 𝑧)Ü +
∑︁

Ü

𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧*
Û𝜕𝑧

*
Ü

(Õ* ⊗ 𝑧*)Ü , (6.46)

whereas second-order gradients should be approximated as

𝜕2𝑓(Õ*, Õ)

𝜕ÕÛ𝜕ÕÜ
≡ 𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧Û𝜕𝑧Ü
,
𝜕2𝑓(Õ*, Õ)

𝜕ÕÛ𝜕Õ*
Ü

≡ 𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧Û𝜕𝑧*
Ü

,
𝜕2𝑓(Õ*, Õ)

𝜕Õ*
Û𝜕Õ

*
Ü

≡ 𝜕2𝑓(𝑧*, 𝑧)

𝜕𝑧*
Û𝜕𝑧

*
Ü

. (6.47)

Moreover, when expanding the integrands in (6.34), whenever higher-order derivatives of

𝑓 are encountered they should be neglected, providing us with a second expansion rule:

𝜕3𝑓(Õ*, Õ)

𝜕ÕÒ𝜕ÕÛ𝜕ÕÜ
≡ 0,

𝜕3𝑓(Õ*, Õ)

𝜕Õ*
Ò𝜕ÕÛ𝜕Õ

*
Ü

≡ 0, etc. (rule two)

An immediate consequence is that the metric matrix elements shall be approximated

to order zero:

𝑔(Õ*
0 , Õ0)ÐÑ =

𝜕2𝑓(Õ*
0 , Õ0)

𝜕Õ0Ð𝜕Õ*
0Ñ

≡ 𝜕2𝑓(𝑧*
0 , 𝑧0)

𝜕𝑧0Ð𝜕𝑧*
0Ñ

= 𝑔(𝑧*
0 , 𝑧0)ÐÑ, (6.48)
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which implies that the determinant of 𝑔(Õ*
0 , Õ0) is to be approximated as:

det 𝑔(Õ*
0 , Õ0) ≡ det 𝑔(𝑧*

0 , 𝑧0). (6.49)

Besides the Kähler potential 𝑓 , other quantities pertaining to such category of func-

tions Ű those whose derivatives up to second-order are to be accounted for in the expansions

Ű are the complex action 𝐴 and the energy function 𝐸. The deĄning characteristic of all

these quantities being the fact that they are on the same footing as the phase 𝐹 with

regards to phase-space derivatives, as suggested by Eqs. (6.28) and (1.71).

Thus, consider next the Õ̇á appearing in the deĄnition of Δ′, Eq. (6.35). Its explicit

expression (written below without time labels) involves the metric matrix 𝑔 as well as a

Ąrst-order gradient of the energy function 𝐸, and therefore it is to be understood as

Õ̇Ð = ⊗ 𝑖
~

∑︁

Ò

𝑔⊗𝑇
ÐÒ (Õ*, Õ)

𝜕𝐸(Õ*, Õ)

𝜕𝑧*
Ò

≡ ⊗ 𝑖
~

∑︁

Ò

𝑔⊗𝑇
ÐÒ (𝑧*, 𝑧)

⎟

𝜕𝐸(𝑧*, 𝑧)

𝜕𝑧*
Ò

+
∑︁

Ü

𝜕2𝐸(𝑧*, 𝑧)

𝜕𝑧*
Ò𝜕𝑧Ü

(Õ ⊗ 𝑧)Ü +
∑︁

Ü

𝜕2𝐸(𝑧*, 𝑧)

𝜕𝑧*
Ò𝜕𝑧

*
Ü

(Õ* ⊗ 𝑧*)Ü

]︃

.

(6.50)

Hence, should we encounter derivatives of Õ̇á with respect to either Õá or Õ*
á , these are to

be regarded as zeroth-order approximations:

𝜕Õ̇áÐ
𝜕ÕáÑ

≡ ⊗ 𝑖
~

∑︁

Ò

𝑔⊗𝑇
ÐÒ (𝑧*

á , 𝑧á )
𝜕2𝐸(𝑧*

á , 𝑧á )

𝜕𝑧*
áÒ𝜕𝑧áÑ

, (6.51)

𝜕Õ̇áÐ
𝜕Õ*

áÑ

≡ ⊗ 𝑖
~

∑︁

Ò

𝑔⊗𝑇
ÐÒ (𝑧*

á , 𝑧á )
𝜕2𝐸(𝑧*

á , 𝑧á )

𝜕𝑧*
áÒ𝜕𝑧

*
áÑ

, (6.52)

which means that higher-order derivatives of this kind must also be neglected, giving a

third rule:
𝜕2Õ̇Ð
𝜕ÕÑ𝜕ÕÒ

≡ 0,
𝜕2Õ̇Ð
𝜕ÕÑ𝜕Õ*

Ò

≡ 0. (rule three)

In the previous section we established that the amplitude 𝐷 deĄned in (6.26) should

be approximated by its value on the reference trajectory; for the sake of completeness we

now incorporate that fact into our expansion protocol, translating it as the following rule:

𝜕𝐷á (𝑧0; Õ)

𝜕Õ0

≡ 0,
𝜕𝐷á (𝑧0; Õ)

𝜕Õ*
0

≡ 0; and
𝜕𝐷̇á (𝑧0; Õ)

𝜕Õ0

≡ 0,
𝜕𝐷̇á (𝑧0; Õ)

𝜕Õ*
0

≡ 0. (rule zero)

Finally, let us rewrite the equation of motion (6.34) in view of the observations made

so far. From (6.49) the measure 𝑑Û(Õ0) appearing on both sides of (6.34) is approximated
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according to [recalling the deĄnitions given in Eqs. (1.60) and (1.61)]:

𝑑Û(Õ0) = Ù det 𝑔(Õ*
0 , Õ0)

𝑑∏︁

Ð=1

𝑑Õ0Ð𝑑Õ
*
0Ð

2Þ𝑖

≡ Ù det 𝑔(𝑧*
0 , 𝑧0)

𝑑∏︁

Ð=1

𝑑Ö0Ð𝑑Ö
*
0Ð

2Þ𝑖

⊕ (2Þ𝑖)⊗𝑑 Ù det 𝑔(𝑧*
0 , 𝑧0) 𝑑

2Ö0, (6.53)

where integration variables have been changed from (Õ0, Õ
*
0 ) to the deviations (Ö0, Ö

*
0)

deĄned in (6.39), and the abbreviation 𝑑2Ö0 has been introduced to denote the 2𝑑-

dimensional area element. This, together with Śrule zeroŠ, reduces the equation of motion

(6.34) to the form:

𝑖~ 𝐷̇𝑠𝑐
á (𝑧)

[︁ ∫︁

𝑑2Ö0 𝑒
𝐹τ (𝑧0,𝑤*;Õ)

]︁

= 𝐷𝑠𝑐
á (𝑧)

[︁ ∫︁

𝑑2Ö0 Δ′(𝑤*; Õ*
á , Õá )𝑒

𝐹τ (𝑧0,𝑤*;Õ)
]︁

(6.54)

Ű notice how constant factors multiplying both sides have been canceled out of the ex-

pression. Henceforth we begin denoting the semiclassical amplitude with a superscript

indication, 𝐷𝑠𝑐
á (𝑧). The task now is to expand Δ′ and 𝐹 under the integral signs, observing

the rules stated above.

6.4.2 First order derivatives and tuning of 𝑤

The Ąrst order derivatives of the phase 𝐹 , viz. Eq. (6.28), with respect to phase-space

variables Õ0 and Õ*
0 are computed as follows:

𝜕𝐹á (𝑧0, 𝑤
*; Õ)

𝜕Õ0Û

=
∑︁

Ð

𝑖

~

𝜕𝐴á (Õ*
á , Õ0)

𝜕Õ*
áÐ

𝜕Õ*
áÐ

𝜕Õ0Û

+
𝑖

~

𝜕𝐴(Õ*
á , Õ0)

𝜕Õ0Û

⊗ 𝜕𝑓(Õ*
0 , Õ0)

𝜕Õ0Û

+
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ

𝜕ÕáÐ
𝜕Õ0Û

⊗ 𝜕𝑓(Õ*
á , Õá )

𝜕ÕáÐ

𝜕ÕáÐ
𝜕Õ0Û

⊗ 𝜕𝑓(Õ*
á , Õá )

𝜕Õ*
áÐ

𝜕Õ*
áÐ

𝜕Õ0Û

]︃

=
∑︁

Ð

𝜕ÕáÐ
𝜕Õ0Û

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
⊗ 𝜕𝑓(Õ*

á , Õá )

𝜕ÕáÐ

]︃

, (6.55a)

𝜕𝐹á (𝑧0, 𝑤
*; Õ)

𝜕Õ*
0Û

=
∑︁

Ð

𝑖

~

𝜕𝐴á (Õ*
á , Õ0)

𝜕Õ*
áÐ

𝜕Õ*
áÐ

𝜕Õ*
0Û

+
𝜕𝑓(Õ*

0 , 𝑧0)

𝜕Õ*
0Û

⊗ 𝜕𝑓(Õ*
0 , Õ0)

𝜕Õ*
0Û

+
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ

𝜕ÕáÐ
𝜕Õ*

0Û

⊗ 𝜕𝑓(Õ*
á , Õá )

𝜕ÕáÐ

𝜕ÕáÐ
𝜕Õ*

0Û

⊗ 𝜕𝑓(Õ*
á , Õá )

𝜕Õ*
áÐ

𝜕Õ*
áÐ

𝜕Õ*
0Û

]︃

=
∑︁

Ð

𝜕ÕáÐ
𝜕Õ*

0Û

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
⊗ 𝜕𝑓(Õ*

á , Õá )

𝜕ÕáÐ

]︃

+
𝜕𝑓(Õ*

0 , 𝑧0)

𝜕Õ*
0Û

⊗ 𝜕𝑓(Õ*
0 , Õ0)

𝜕Õ*
0Û

. (6.55b)

The properties of the complex action, listed in Eqs. (1.71), have been employed in both

of the above calculations.

Derivatives of Δ′ with respect to the initial points Õ0 and Õ*
0 , in turn, are obtained
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from derivatives with respect to Õá and Õ*
á through the chain rule:

𝜕Δ′(𝑤*; Õ*
á , Õá )

𝜕Õ0Ü

=
∑︁

Û

⎟

𝜕Δ′(𝑤*; Õ*
á , Õá )

𝜕ÕáÛ

𝜕ÕáÛ
𝜕Õ0Ü

+
𝜕Δ′(𝑤*; Õ*

á , Õá )

𝜕Õ*
áÛ

𝜕Õ*
áÛ

𝜕Õ0Ü

]︃

,

𝜕Δ′(𝑤*; Õ*
á , Õá )

𝜕Õ*
0Ü

=
∑︁

Û

⎟

𝜕Δ′(𝑤*; Õ*
á , Õá )

𝜕ÕáÛ

𝜕ÕáÛ
𝜕Õ*

0Ü

+
𝜕Δ′(𝑤*; Õ*

á , Õá )

𝜕Õ*
áÛ

𝜕Õ*
áÛ

𝜕Õ*
0Ü

]︃

Ű from (6.35), we have:

𝜕Δ′(𝑤*; Õ*
á , Õá )

𝜕ÕáÛ
=
𝜕𝐸(𝑤*, Õá )

𝜕ÕáÛ
⊗ 𝜕𝐸(Õ*

á , Õá )

𝜕ÕáÛ
⊗ 𝑖~

∑︁

Ð

⎟

𝜕2𝑓(𝑤*, Õá )

𝜕ÕáÐ𝜕ÕáÛ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÛ

]︃

Õ̇áÐ

⊗ 𝑖~
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
⊗ 𝜕𝑓(Õ*

á , Õá )

𝜕ÕáÐ

]︃

𝜕Õ̇áÐ
𝜕ÕáÛ

, (6.56a)

𝜕Δ′(𝑤*; Õ*
á , Õá )

𝜕Õ*
áÛ

= ⊗𝜕𝐸(Õ*
á , Õá )

𝜕Õ*
áÛ

+ 𝑖~
∑︁

Ð

𝜕2𝑓(Õ*
á , Õá )

𝜕Õ*
áÛ𝜕ÕáÐ

Õ̇áÐ ⊗ 𝑖~
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
⊗ 𝜕𝑓(Õ*

á , Õá )

𝜕ÕáÐ

]︃

𝜕Õ̇áÐ
𝜕Õ*

áÛ

= ⊗𝑖~
∑︁

Ð

⎟

𝜕𝑓(𝑤*, Õá )

𝜕ÕáÐ
⊗ 𝜕𝑓(Õ*

á , Õá )

𝜕ÕáÐ

]︃

𝜕Õ̇áÐ
𝜕Õ*

áÛ

. (6.56b)

In this last expression the Ąrst couple of terms on the upper line add to zero by virtue of

the equation of motion (6.3a).

The above derivatives are to be evaluated at the reference trajectory. We Ąnd, however,

that no signiĄcant simpliĄcation of these expressions is achieved by setting Õ0 = 𝑧0; for

instance, Eqs. (6.55a) and (6.55b) assume the form:

𝜕𝐹á (𝑧0, 𝑤
*; Õ)

𝜕Õ0Û

♣𝑟 =
∑︁

Ð

(𝑀𝑇
11)ÛÐ

⎟

𝜕𝑓(𝑤*, 𝑧á )

𝜕𝑧áÐ
⊗ 𝜕𝑓(𝑧*

á , 𝑧á )

𝜕𝑧áÐ

]︃

,

𝜕𝐹á (𝑧0, 𝑤
*; Õ)

𝜕Õ*
0Û

♣𝑟 =
∑︁

Ð

(𝑀𝑇
12)ÛÐ

⎟

𝜕𝑓(𝑤*, 𝑧á )

𝜕𝑧áÐ
⊗ 𝜕𝑓(𝑧*

á , 𝑧á )

𝜕𝑧áÐ

]︃

,

the only noticeable change being the cancellation of the last terms in (6.55b). The same

goes to Eqs. (6.56a) and (6.56b) Ű they experience no simpliĄcations whatsoever.

Now, this situation, albeit undesirable, does not prevent one from performing the

required integrals Ű explicit solutions for Gaussian integrals with non-zero linear terms, on

both the exponent and prefactor, are available Ű though they are somewhat cumbersome.

Fortunately, as argued earlier, we have the freedom to choose the propagatorŠs end-

point 𝑤* at our convenience, since the amplitude 𝐷 does not depend on its value; and it

is easy to see that by tuning this parameter with the choice:

𝑤* = 𝑧*
á (𝑧

*
0 , 𝑧0), (parameter tuning) (6.57)

all of the above derivatives vanish.iii Indeed, since it leads to the vanishing of the expo-

iiiOne detail has been left out here. The choice 𝑤* = 𝑧*
á makes the propagator’s end point á -dependent,



175

nentŠs Ąrst-order derivatives:

𝜕𝐹á (𝑧0, 𝑧
*
á ; Õ)

𝜕Õ0Û

♣𝑟 = 0,
𝜕𝐹á (𝑧0, 𝑧

*
á ; Õ)

𝜕Õ*
0Û

♣𝑟 = 0, (6.58)

such a choice for 𝑤* makes the reference trajectoryŠs initial condition (𝑧*
0 , 𝑧0) a stationary

point of the integrands in (6.34). Simultaneously, both Δ′ and its Ąrst-order derivatives

die off:

Δ′(𝑧*
á ; Õ

*
á , Õá )♣𝑟 = 0,

𝜕Δ′(𝑧*
á ; Õ

*
á , Õá )

𝜕Õ0Û

♣𝑟 = 0,
𝜕Δ′(𝑧*

á ; Õ
*
á , Õá )

𝜕Õ*
0Û

♣𝑟 = 0. (6.59)

These two facts combined enormously simplify the subsequent calculations Ű therefore, in

everything else that follows, the parameter tuning expressed in (6.57) is adopted.iv

In this way, the semiclassical expansions around the reference orbit yield the following

expression for the phase 𝐹 :

𝐹á (𝑧0, 𝑧
*
á ; Õ) ≡

𝑖

~
𝐴á (𝑧

*
á , 𝑧0)⊗

1

2

(︁

Ö𝑇0 Ö*𝑇
0

)︁

⎛

∐︁
𝑈11 𝑈12

𝑈21 𝑈22

⎞

̂︀

⎛

∐︁
Ö0

Ö*
0

⎞

̂︀ , (6.60)

where the second-order derivatives of 𝐹 with respect to Õ0 and Õ*
0 have been organized

into the implicitly deĄned matrix 𝑈 Ű the minus sign in its deĄnition is just a convenience.

Similarly, for the coupling Δ′ we have:

Δ′(𝑧*
á ; Õ

*
á , Õá ) ≡

1

2

(︁

Ö𝑇á Ö*𝑇
á

)︁

⎛

∐︁
𝑉11 𝑉12

𝑉21 𝑉22

⎞

̂︀

⎛

∐︁
Öá

Ö*
á

⎞

̂︀ =
1

2

(︁

Ö𝑇0 Ö*𝑇
0

)︁

⋃︀

⨄︀𝑀𝑇

⎛

∐︁
𝑉11 𝑉12

𝑉21 𝑉22

⎞

̂︀𝑀

⋂︀

⋀︀

⎛

∐︁
Ö0

Ö*
0

⎞

̂︀ ,

(6.61)

where the matrix 𝑉 contains the second-order derivatives of Δ′ with respect to Õá and Õ*
á ,

and 𝑀 denotes the stability matrix, which connects the deviations (Öá , Ö*
á ) and (Ö0, Ö

*
0) at

Ąnal and initial times. All of the above matrices Ű 𝑀 , 𝑈 and 𝑉 Ű are calculated at the

reference orbit 𝑧(𝑡).

The resulting complex Gaussian integral can be solved explicitly,43 leading to:

𝑖~ 𝐷̇𝑠𝑐(𝑧) = 1
2
tr(𝑈⊗𝑇𝑀𝑇𝑉𝑀)𝐷𝑠𝑐(𝑧). (6.62)

This is the Śraw formŠ of the equation of motion satisĄed by the semiclassical amplitude,

with initial condition 𝐷𝑠𝑐
0 = 1. (In what follows we omit the time variable). All left to do

meaning that the total derivatives of Eqs. (6.31) and (6.32) should have operated on 𝑤* as well. However,
the new terms arising from ¶𝑤̇♣ and

∑︀

Ü 𝑤̇
*
Ü(𝜕𝐹á/𝜕𝑤

*
Ü) cancel off, and one is led again to Eq. (6.34).

ivOne may object that, although 𝐷, as defined in (6.26), is assuredly independent of 𝑤*, this ceases to
be true once the approximations that shape the semiclassical formula are introduced. It is not difficult
to show though, that the semiclassical amplitude’s first-order derivatives with respect to 𝑤* vanish for
𝑤* arbitrary but close to 𝑧*

á – as long as the extra ‘interpolation terms’ that arise in the approximated
formula are also consistently expanded around 𝑧*

á . This, however, is a lengthy and unnecessary calculation
and we prefer not to include it here.
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is to compute matrices 𝑈 and 𝑉 .

6.4.3 * Second-order derivatives

The second-order derivatives of 𝐹 , computed with the tuning (6.57), are:

𝜕2𝐹á (𝑧0, 𝑧
*
á ; Õ)

𝜕Õ0Û𝜕Õ0Ü

=
∑︁

ÐÑ

𝜕ÕáÐ
𝜕Õ0Û

⎟(︃

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÑ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÑ

⎜

𝜕ÕáÑ
𝜕Õ0Ü

⊗ 𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÑ

𝜕Õ*
áÑ

𝜕Õ0Ü

]︃

,

(6.63a)

𝜕2𝐹á (𝑧0, 𝑧
*
á ; Õ)

𝜕Õ0Û𝜕Õ*
0Ü

=
∑︁

ÐÑ

𝜕ÕáÐ
𝜕Õ0Û

⎟(︃

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÑ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÑ

⎜

𝜕ÕáÑ
𝜕Õ*

0Ü

⊗ 𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÑ

𝜕Õ*
áÑ

𝜕Õ*
0Ü

]︃

,

(6.63b)

𝜕2𝐹á (𝑧0, 𝑧
*
á ; Õ)

𝜕Õ*
0Û𝜕Õ

*
0Ü

=
∑︁

ÐÑ

𝜕ÕáÐ
𝜕Õ*

0Û

⎟(︃

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÑ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÑ

⎜

𝜕ÕáÑ
𝜕Õ*

0Ü

⊗ 𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÑ

𝜕Õ*
áÑ

𝜕Õ*
0Ü

]︃

+
𝜕2𝑓(Õ*

0 , 𝑧0)

𝜕Õ*
0Û𝜕Õ

*
0Ü

⊗ 𝜕2𝑓(Õ*
0 , Õ0)

𝜕Õ*
0Û𝜕Õ

*
0Ü

. (6.63c)

Notice how some terms have been neglected in accordance with Śrule oneŠ established

earlier. Evaluating the above expressions at the reference orbit and accounting for the

minus sign in (6.60), we obtain the elements of matrix 𝑈 :

(𝑈11)ÛÜ = ⊗𝜕
2𝐹á (𝑧0, 𝑧

*
á ; Õ)

𝜕Õ0Û𝜕Õ0Ü

♣𝑟 =
∑︁

ÐÑ

𝜕𝑧áÐ
𝜕𝑧0Û

𝜕2𝑓(𝑧*
á , 𝑧á )

𝜕𝑧áÐ𝜕𝑧*
áÑ

𝜕𝑧*
áÑ

𝜕𝑧0Ü

= (𝑀𝑇
11𝑔á𝑀21)ÛÜ , (6.64a)

(𝑈12)ÛÜ = ⊗𝜕
2𝐹á (𝑧0, 𝑧

*
á ; Õ)

𝜕Õ0Û𝜕Õ*
0Ü

♣𝑟 =
∑︁

ÐÑ

𝜕𝑧áÐ
𝜕𝑧0Û

𝜕2𝑓(𝑧*
á , 𝑧á )

𝜕𝑧áÐ𝜕𝑧*
áÑ

𝜕𝑧*
áÑ

𝜕𝑧*
0Ü

= (𝑀𝑇
11𝑔á𝑀22)ÛÜ = (𝑈21)ÜÛ,

(6.64b)

(𝑈22)ÛÜ = ⊗𝜕
2𝐹á (𝑧0, 𝑧

*
á ; Õ)

𝜕Õ*
0Û𝜕Õ

*
0Ü

♣𝑟 =
∑︁

ÐÑ

𝜕𝑧*
áÑ

𝜕𝑧*
0Û

𝜕2𝑓(𝑧*
á , 𝑧á )

𝜕𝑧*
áÑ𝜕𝑧áÐ

𝜕𝑧áÐ
𝜕𝑧*

0Ü

= (𝑀𝑇
22𝑔

𝑇
á𝑀12)ÛÜ . (6.64c)

In turn, the second-order derivatives of Δ′ Ű again embodying (6.57) Ű are worked out

below:

𝜕2Δ′(𝑧*
á , Õá )

𝜕ÕáÛ𝜕ÕáÜ
=
𝜕2𝐸(𝑧*

á , Õá )

𝜕ÕáÛ𝜕ÕáÜ
⊗ 𝜕2𝐸(Õ*

á , Õá )

𝜕ÕáÛ𝜕ÕáÜ
⊗ 𝑖~

∑︁

Ð

⎟

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÛ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÛ

]︃

𝜕Õ̇áÐ
𝜕ÕáÜ

⊗ 𝑖~
∑︁

Ð

⎟

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÜ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÜ

]︃

𝜕Õ̇áÐ
𝜕ÕáÛ

, (6.65a)

𝜕2Δ′(𝑧*
á , Õá )

𝜕Õ*
áÛ𝜕ÕáÜ

= ⊗𝑖~
∑︁

Ð

⎟

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÜ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÜ

]︃

𝜕Õ̇áÐ
𝜕Õ*

áÛ

, (6.65b)

𝜕2Δ′(𝑧*
á , Õá )

𝜕Õ*
áÛ𝜕Õ

*
áÜ

= 𝑖~
∑︁

Ð

𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÜ

𝜕Õ̇áÐ
𝜕Õ*

áÛ

. (6.65c)

Once more, notice how we have employed the protocol Ű namely, Śrule twoŠ and Śrule threeŠ
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Ű, neglecting various derivatives. Evaluating at the reference orbit we Ąnd:

(𝑉11)ÛÜ =
𝜕2Δ′(𝑧*

á , Õá )

𝜕ÕáÛ𝜕ÕáÜ
♣𝑟 = 0, (6.66a)

(𝑉12)ÛÜ =
𝜕2Δ′(𝑧*

á , Õá )

𝜕ÕáÛ𝜕Õ*
áÜ

♣𝑟 = (𝑉21)ÜÛ = 0, (6.66b)

(𝑉22)ÛÜ =
𝜕2Δ′(𝑧*

á , Õá )

𝜕Õ*
áÛ𝜕Õ

*
áÜ

♣𝑟 = 𝑖~
∑︁

Ð

𝜕2𝑓(𝑧*
á , 𝑧á )

𝜕𝑧*
áÜ𝜕𝑧áÐ

𝜕𝑧̇áÐ
𝜕𝑧*

áÛ

= 𝑖~ (𝑔𝑇á 𝑅12)ÜÛ (6.66c)

Ű i.e. the matrix 𝑉 displays only a single nonzero block, which leads to a particularly

simple expression for the trace in Eq. (6.62), as we shall soon verify.

At this point all ingredients needed for writing the equation of motion satisĄed by

the semiclassical amplitude are available. Before proceeding though, and for the sake of

transparency, we conduct simple checks on the mixed derivatives of 𝐹 and Δ′.

Check 1. We got to (6.63b) starting from (6.55a) and differentiating with respect to

Õ*
0Ü . The same answer, with transposed indexes, must be obtained if we calculate the

mixed derivative in the opposite order, starting from (6.55b) and deriving with respect to

Õ0Ü ; the latter procedure yields:

𝜕2𝐹á (𝑧0, 𝑧
*
á ; Õ)

𝜕Õ*
0Û𝜕Õ0Ü

=
∑︁

ÐÑ

𝜕ÕáÐ
𝜕Õ*

0Û

(︃

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÑ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÑ

⎜

𝜕ÕáÑ
𝜕Õ0Ü

⊗
∑︁

ÐÑ

𝜕ÕáÐ
𝜕Õ*

0Û

𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÑ

𝜕Õ*
áÑ

𝜕Õ0Ü

⊗ 𝜕2𝑓(Õ*
0 , Õ0)

𝜕Õ*
0Û𝜕Õ0Ü

. (6.67)

This result is exactly equivalent to (6.63b), even though this is not obvious at Ąrst sight.

The equivalence rests on one of the identities satisĄed by the stability matrix elements

Ű namely, the transposed version of Eq. (6.10b), (𝑔𝑇0 + 𝑀𝑇
12𝑔á𝑀21)ÛÜ = (𝑀𝑇

22𝑔
𝑇
á𝑀11)ÛÜ ,

which in terms of Õ reads:

𝜕2𝑓(Õ*
0 , Õ0)

𝜕Õ*
0Û𝜕Õ0Ü

+
∑︁

ÐÑ

𝜕ÕáÐ
𝜕Õ*

0Û

𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÑ

𝜕Õ*
áÑ

𝜕Õ0Ü

=
∑︁

ÐÑ

𝜕Õ*
áÐ

𝜕Õ*
0Û

𝜕2𝑓(Õ*
á , Õá )

𝜕Õ*
áÐ𝜕ÕáÑ

𝜕ÕáÑ
𝜕Õ0Ü

.

The last pair of terms in (6.67) can be replaced by the right-hand side of the latter

expression, leading to (after some rearrangement):

𝜕2𝐹á (𝑧0, 𝑧
*
á ; Õ)

𝜕Õ*
0Û𝜕Õ0Ü

=
∑︁

ÐÑ

𝜕ÕáÑ
𝜕Õ0Ü

⎟(︃

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÑ𝜕ÕáÐ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÑ𝜕ÕáÐ

⎜

𝜕ÕáÐ
𝜕Õ*

0Û

⊗ 𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÑ𝜕Õ*
áÐ

𝜕Õ*
áÐ

𝜕Õ*
0Û

]︃

,

(6.68)

which is precisely Eq. (6.63b), only with indexes Û and Ü interchanged.

Check 2. The same procedure is applied to the coupling Δ′ Ű the result (6.65b) was

obtained from (6.56b) by taking the second derivative with respect to ÕáÜ ; now we start
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from (6.56a) and differentiate with respect to Õ*
áÜ :

𝜕2Δ′(𝑧*
á , Õá )

𝜕ÕáÛ𝜕Õ*
áÜ

= ⊗𝜕
2𝐸(Õ*

á , Õá )

𝜕ÕáÛ𝜕Õ*
áÜ

⊗ 𝑖~
∑︁

Ð

⎟

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÛ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÛ

]︃

𝜕Õ̇áÐ
𝜕Õ*

áÜ

+ 𝑖~
∑︁

Ð

𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÜ

𝜕Õ̇áÐ
𝜕ÕáÛ

= ⊗𝑖~
∑︁

Ð

⎟

𝜕2𝑓(𝑧*
á , Õá )

𝜕ÕáÐ𝜕ÕáÛ
⊗ 𝜕2𝑓(Õ*

á , Õá )

𝜕ÕáÐ𝜕ÕáÛ

]︃

𝜕Õ̇áÐ
𝜕Õ*

áÜ

+
𝜕

𝜕ÕáÛ

⎟

𝑖~
∑︁

Ð

𝜕2𝑓(Õ*
á , Õá )

𝜕ÕáÐ𝜕Õ*
áÜ

Õ̇áÐ ⊗
𝜕𝐸(Õ*

á , Õá )

𝜕Õ*
áÜ

]︃

⊗ 𝑖~
∑︁

Ð

𝜕3𝑓(Õ*
á , Õá )

𝜕ÕáÛ𝜕ÕáÐ𝜕Õ*
áÜ

,

where, in passing to the second line, we have factored out (𝜕/𝜕ÕáÛ) Ű the term between

brackets, the one upon which this derivative thereafter operates, vanishes identically in

view of the equation of motion (6.3a) for Õ. At the same time, the last term is a third-

order derivative of the function 𝑓 and should be neglected according to our expansion

protocol. This leaves only the Ąrst term, in complete agreement with (6.65b) (again, with

indexes Û and Ü interchanged).

6.5 The semiclassical time-evolution operator

Having the second-order matrices computed we now seek to determine a workable expres-

sion for the trace in the amplitudeŠs equation of motion, Eq. (6.62). Henceforth, except

when otherwise indicated, all quantities are evaluated at time 𝑡, being computed on the

reference trajectory 𝑧(𝑡). We Ąrst note that the matrix 𝑈 , whose individual blocks are

given in Eqs. (6.64), can be written in the form of a product:

𝑈 =

⎛

∐︁
𝑀𝑇

11 0

0 𝑀𝑇
22

⎞

̂︀

⎛

∐︁
0 𝑔

𝑔𝑇 0

⎞

̂︀

⎛

∐︁
𝑀11 𝑀12

𝑀21 𝑀22

⎞

̂︀ . (6.69)

In this way, the required inverse-transpose is easy to express:

𝑈⊗1 = 𝑀⊗1

⎛

∐︁
0 𝑔⊗𝑇

𝑔⊗1 0

⎞

̂︀

⎛

∐︁
𝑀⊗𝑇

11 0

0 𝑀⊗𝑇
22

⎞

̂︀ ⇒ 𝑈⊗𝑇 =

⎛

∐︁
𝑀⊗1

11 0

0 𝑀⊗1
22

⎞

̂︀

⎛

∐︁
0 𝑔⊗𝑇

𝑔⊗1 0

⎞

̂︀𝑀⊗𝑇 .

(6.70)

Now, in a most crucial step, the inverse-transpose of the stability matrix 𝑀⊗𝑇 (which

springs from 𝑈⊗𝑇 , as shown above) is compensated by the 𝑀𝑇 in the matrix product

𝑈⊗𝑇𝑀𝑇𝑉𝑀 appearing in (6.62). This striking simpliĄcation, together with the fact that

the matrix 𝑉 Ű depicted in Eqs. (6.66) Ű has a very simple structure,

𝑉 =

⎛

∐︁
0 0

0 𝑖~ 𝑔𝑇𝑅12

⎞

̂︀ , (6.71)



179

results in a straightforward evaluation of the aforementioned product:

𝑈⊗𝑇𝑀𝑇𝑉𝑀 = 𝑖~

⎛

∐︁
𝑅12𝑀21𝑀

⊗1
11 𝑅12𝑀21𝑀

⊗1
22

0 0

⎞

̂︀ . (6.72)

Tracing this last matrix we arrive at the desired form of the equation of motion:

𝐷̇𝑠𝑐 = 1
2
tr(𝑅12𝑀21𝑀

⊗1
11 )𝐷𝑠𝑐, (6.73)

which can be numerically integrated from the initial condition 𝐷𝑠𝑐(0) = 1, together with

Eqs. (6.3a) and (6.6), with 𝑀21(0) = 0𝑑 and 𝑀11(0) = 𝐼𝑑.

Owing to the linearity of (6.73) explicit expressions for the semiclassical amplitude

can be worked out analytically; a particularly interesting form is found by noticing that,

from (6.4a),

𝑀̇11 = 𝑅11𝑀11 +𝑅12𝑀21 ⇒ 𝑅12𝑀21𝑀
⊗1
11 = 𝑀̇11𝑀

⊗1
11 ⊗𝑅11; (6.74)

hence we may write, as long as the determinant of 𝑀11 does not vanish,

𝐷̇𝑠𝑐 = 1
2
tr(𝑀̇11𝑀

⊗1
11 ⊗𝑅11)𝐷

𝑠𝑐, (6.75)

whose time-integrated form (at Ąnal instant á) is:

𝐷𝑠𝑐
á (𝑧) = (det𝑀11(á))1/2 exp

[︂

⊗1
2

∫︁ á

0
𝑑𝑡 tr(𝑅11(𝑡))

]︂

. (6.76)

This is the sought semiclassical amplitude, here expressed in closed form.

In applications, however, it is more practical to numerically integrate Eq. (6.73) rather

than employ the latter formula. The reason for this stems from the fact that phase

correlations among basis elements are crucial in the IVR formula, and it is therefore

essential that the overall phase associated with each element be a continuous function of

time. Now, if one chooses to compute the semiclassical amplitude at speciĄc instants using

Eq. (6.76), one must keep track of the phase of the complex determinant Śdet(𝑀11)Š in

order to make sure that the correct branch of the square root is followed, so that the phase

can be later ŚunwrappedŠ into a continuous function of time. This requires evaluation of

the determinant at short time intervals, which can be computationally demanding for

systems with a large number of degrees of freedom.

Such difficulties are avoided if, instead, the amplitude is integrated from the initial

condition 𝐷𝑠𝑐
0 (𝑧) = 1 using the differential equation (6.73), although in that case one

must deal with the inverse 𝑀⊗1
11 , which has to be computed at every evaluation of the

amplitudeŠs derivative Ű a potentially effective way of handling this problem is discussed
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in ğ6.6 below.v Nevertheless, Eq. (6.76) enables direct inspection of some of the properties

of the semiclassical amplitude, as we shall see in a moment.

As a Ąnal and important step, the semiclassical result, speciĄcally obtained for the

reference trajectory 𝑧(𝑡), is extended for all orbits Õ(𝑡) that participate in the propagatorŠs

𝐾̃(𝑤*, 𝑧0) integral expression, Eq. (6.27). This can be mathematically stated as follows:

𝐷á (𝑧0; Õ) ≡ 𝐷𝑠𝑐
á (𝑧)♣𝑧=Õ = 𝐷𝑠𝑐

á (Õ) [in Eq. (6.27)]. (6.77)

Therefore, the integral form of the semiclassical coherent-state propagator becomes (adding

the appropriate normalization factors):

𝐾𝑠𝑐
á (𝑤*, 𝑧0) =

∫︁

𝑑Û(Õ0)⟨𝑤♣Õá ⟩𝐷𝑠𝑐
á (Õ) ⟨Õ0♣𝑧0⟩𝑒

i
~
𝑆τ (Õ), (6.78)

which, together with the prescription (6.73), summarizes the semiclassical approximation.

We now proceed to discuss some of its properties.

The Ąrst thing to note is that, since the amplitude depends neither on 𝑤* or 𝑧0, we

might erase ⟨𝑤♣ and ♣𝑧0⟩ from this expression (just like in the Śzeroth-orderŠ case of ğ6.2.1)

leading to an initial-value representation for the semiclassical time-evolution operator

itself:

𝑈̂ 𝑠𝑐(á) =
∫︁

𝑑Û(Õ0)♣Õá ⟩𝐷𝑠𝑐
á (Õ)𝑒

i
~
𝑆τ (Õ)⟨Õ0♣. (6.79)

This approximated operator is not unitary,

[𝑈̂ 𝑠𝑐(á)]†𝑈̂ 𝑠𝑐(á) ̸= 1̂, (6.80)

except in simple cases where the time evolution amounts to a group transformation.

In the particular case of Glauber coherent states (Gaussian wavepackets Ű cf. ğ1.3.4)

the result expressed in Eq. (6.79) reduces to SolariŠs propagator,11 which is a 𝑄-form

versionvi of the more popular Herman-Kluk formula.72–74 The same result was found by

Martin-Fierro and Llorente.75 In these works, strategies completely different than the

one followed here were used. The generalized result (6.79) has been derived by Viscondi

starting from a primitive, Śduplicated phase-spaceŠ propagator29 (see ğ6.5.1 for additional

remarks on this regard). The derivation presented here may be seen as complementary

to the latter, thus providing support to a point emphasized by Kay in Ref. [44]: that

semiclassical IVR formulas, although fundamentally connected to primitive root-search

propagators, stand as semiclassical approximations in their own right.

vA strategy for dealing with the phase unwrapping problem, which is also based on solving a differential
equation rather than computing the semiclassical amplitude directly, is developed in Ref. [71].

viThe energy function defined as 𝐸(𝑧*, 𝑧) = ⟨𝑧♣𝐻̂♣𝑧⟩ is known as the ‘𝑄-symbol’ of the Hamiltonian.
Solari uses this form of the energy function (the same we employ everywhere in this work). On the other
hand, the Herman-Kluk propagator is formulated with a symmetrized version of the energy function,
known as the ‘Weyl-symbol’ – see Ref. [43] for more details on this subject.



181

Let us now make some comments regarding the amplitude 𝐷𝑠𝑐
á (𝑧), which is the distin-

guishing object of the semiclassical time-evolution operator of Eq. (6.79).

Consistency. According to the adopted expansion protocol, derivatives of 𝐷𝑠𝑐 with

respect to initial conditions 𝑧0 and 𝑧*
0 should be proportional to high-order terms; from

Eq. (6.76) we get:

𝜕𝐷𝑠𝑐
á (𝑧)

𝜕𝑧0Ò

=
1

2
𝐷𝑠𝑐
á (𝑧)

∑︁

ÐÑ

∮︁

(𝑀⊗1
11 )ÐÑ

𝜕2𝑧áÑ
𝜕𝑧0Ð𝜕𝑧0Ò

+
∫︁ á

0
𝑑𝑡

[︁ 𝜕2𝑧̇𝑡Ð
𝜕𝑧𝑡Ð𝜕𝑧𝑡Ñ

(𝑀11)ÑÒ +
𝜕2𝑧̇𝑡Ð

𝜕𝑧𝑡Ð𝜕𝑧*
𝑡Ñ

(𝑀21)ÑÒ
]︁
⨀︀

.

Consistency is therefore ensured by rules ŚoneŠ and ŚthreeŠ of ğ6.4.1, for they state that the

mixed derivatives on the right-hand side should be ignored during the semiclassical ex-

pansion. The same holds for 𝜕𝐷𝑠𝑐
á (𝑧)/𝜕𝑧*

0Ò; similar analysis shows that 𝜕𝐷̇𝑠𝑐
á (𝑧)/𝜕𝑧0Ò and

𝜕𝐷̇𝑠𝑐
á (𝑧)/𝜕𝑧*

0Ò are also high-order, which is consistent with the zeroth order approximation

for the amplitudeŠs time derivative.

Focal points. A major feature of traditional (Gaussian-based) semiclassical IVR for-

mulas is the fact that they are not directly affected by Śfocal pointsŠ of the classical Ćow.

This also holds for the generalized coherent-state propagator of Eq. (6.78). In the present

context, focal points are phase-space points where ♣ det(𝑀11)♣ ⊃ 0. The time-integrated

form of the amplitude [Eq. (6.76)] reveals that 𝐷𝑠𝑐
á (𝑧) ⊃ 0 as ♣ det(𝑀11)♣ ⊃ 0, meaning

that trajectories going through a focal point end up giving a negligible contribution to

the integral formula for that particular instant á , despite the indeterminate character

exhibited by the equation of motion (6.73) at such instant (because of the inverse matrix

block 𝑀⊗1
11 ). Below, at ğ6.6, we brieĆy comment on how focal points may indirectly affect

the integration of the semiclassical amplitude.

Linear Hamiltonians. We known from ğ6.2.1 that the classical propagator is exact

for Hamiltonians which are linear in the coherent-stateŠs group generators. Hence, for

such systems, it must result from the more general semiclassical scheme that 𝐷𝑠𝑐
á (𝑧) = 1

for all á > 0 (for then the classical formula is recovered). This means that the right-

hand side of (6.73) must vanish identically in those cases (recall the initial condition on

amplitudes: 𝐷𝑠𝑐
0 (𝑧) = 1). This is exempliĄed in the context of the bosonic and fermionic

parametrizations of Chapters 2 and 3: in the case of linear Hamiltonians, both Fock and

Gross-Pitaevskii matrices Ű 𝐹 and 𝐺, respectively Ű Ąguring in the equations of motion

(2.57) and (3.52) reduce to the 𝑧-independent one-body matrix ℎ. Both equations take

the general form

𝑖~ 𝑧̇ = ℎ21 + ℎ22𝑧 ⊗ 𝑧ℎ11 ⊗ 𝑧ℎ12𝑧,

whence we immediately conclude that 𝑅12 = 𝜕𝑧̇/𝜕𝑧* = 0; therefore (𝑑/𝑑𝑡)𝐷𝑠𝑐
𝑡 (𝑧) = 0, as

expected.
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6.5.1 * Alternative expression

The integral expression (6.79) for the semiclassical time-evolution operator was previ-

ously derived via a different approach by Viscondi.29 His starting point is a general-

ized coherent-state semiclassical propagator formulated in terms of complex trajectories

Ű i.e. trajectories that live in an analytically-continued phase space, with twice the num-

ber of degrees of freedom. This latter Śroot-searchŠ propagator, in turn, is obtained by

a coherent-state path-integral formulation followed by a stationary phase approximation.

The fact that the result displayed at Eqs. (6.79) and (6.76) can also be found by means

of such well-established techniques strengthens our more pedestrian derivation.vii

However, the time-integrated version of the semiclassical amplitude presented here

differs in appearance from the one given in ViscondiŠs thesis. It is quite simple, though,

to demonstrate the equivalence of both expressions; to end this section we perform this

little calculation.

Starting from (6.76) we notice that, since tr(𝑅) = tr(𝑅11 +𝑅22), we may write:

exp
[︂

⊗1
2

∫︁ á

0
𝑑𝑡 tr(𝑅11)

]︂

= exp
[︂

⊗1
4

∫︁ á

0
𝑑𝑡 tr(𝑅)

]︂

exp
[︂

1
4

∫︁ á

0
𝑑𝑡 tr(𝑅22 ⊗𝑅11)

]︂

. (6.81)

On the other hand, Eq. (A.4) (cf. appendix A), which is reproduced below, relates the

trace of 𝑅 with determinants of the metric matrix 𝑔:

𝑑

𝑑𝑡
log (det 𝑔) = ⊗tr(𝑅) ⇒ exp

[︂

⊗
∫︁ á

0
𝑑𝑡 tr(𝑅)

]︂

=
det 𝑔(á)

det 𝑔(0)
.

Using this in (6.81) and taking the resulting formula into (6.76) one Ąnds that the semi-

classical amplitude at Ąnal time á may be written as:

𝐷𝑠𝑐
á (𝑧) =

⎟

det 𝑔(á)

det 𝑔(0)

]︃1/4

(det𝑀11(á))1/2 exp
[︂

1
4

∫︁ á

0
𝑑𝑡 tr(𝑅11(𝑡)⊗𝑅22(𝑡))

]︂

, (6.82)

exactly as in Ref. [29]. This is also how Solari writes the semiclassical amplitude of

his SU(2) coherent-state propagator.12 When dealing with real trajectories, as opposed

to analytically continued ones, this way of expressing 𝐷𝑠𝑐 has the advantage that, since

𝑅22 = 𝑅*
11 and the metric matrix 𝑔 is hermitian (meaning that its determinant is real) a

explicit polar form is obtained:

𝐷𝑠𝑐
á (𝑧) =

⎟

det 𝑔(á)

det 𝑔(0)

]︃1/4

♣ det𝑀11(á)♣1/2 exp
[︂

𝑖
2

(︁

à11(á) + Im
∫︁ á

0
𝑑𝑡 tr𝑅11(𝑡)

)︁]︂

, (6.83)

viiInterestingly, the hypothesis Ù⊃ 1 (Ù being the normalization constant of the coherent state closure
relation), which is required in Ref. [29] in order to get a convergent expression for the preliminary ‘root-
search’ form of the semiclassical propagator, and which is therefore built-in the final integral expression
for the time-evolution operator, was not needed in our derivation, since all constant factors stemming
from the phase-space integrals in Eq. (6.34) cancel off.
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where à11 = arg(det𝑀11) must be evaluated in such a way as to make the semiclassical

amplitude a continuous function of time.

6.6 The 𝑍 matrix

Looking back at the equation of motion (6.73) we realize that the time-dependent trace,

which ŚdrivesŠ the dynamics of 𝐷𝑠𝑐, depends not on the stability matrix as a whole but

only on the speciĄc quotient of its two independent blocks, 𝑀21𝑀
⊗1
11 . Here we explore this

idea; we shall Ąnd that this observation allows an alternative approach to the semiclassical

equation that potentially leads to signiĄcant computational savings when implementing

the method. Since there is no longer any chance for confusion, we will drop the superscript

Ś𝑠𝑐Š of the semiclassical amplitude from now on.

We begin with Eq. (6.73), where a new dynamical quantity, the 𝑑 × 𝑑 matrix 𝑍, is

deĄned:

𝐷̇ = 1
2
tr(𝑅12𝑍)𝐷; 𝑍 ⊕𝑀21𝑀

⊗1
11 . (6.84)

Clearly, since at initial time 𝑀21(0) = 0𝑑 an 𝑀11(0) = 𝐼𝑑, we have 𝑍(0) = 0𝑑. Moreover,

an equation of motion for 𝑍 is easily found by differentiating the above deĄnition with

respect to 𝑡:

𝑑

𝑑𝑡
𝑀21𝑀

⊗1
11 = 𝑀̇21𝑀

⊗1
11 ⊗𝑀21𝑀

⊗1
11 𝑀̇11𝑀

⊗1
11

= (𝑅21𝑀11 +𝑅22𝑀21)𝑀
⊗1
11 ⊗𝑀21𝑀

⊗1
11 (𝑅11𝑀11 +𝑅12𝑀21)𝑀

⊗1
11

= 𝑅21 +𝑅22(𝑀21𝑀
⊗1
11 )⊗ (𝑀21𝑀

⊗1
11 )𝑅11 ⊗ (𝑀21𝑀

⊗1
11 )𝑅12(𝑀21𝑀

⊗1
11 ). (6.85)

where Eqs. (6.5) have been used in substituting 𝑀̇11 and 𝑀̇21. From this we conclude

that 𝑍 obeys the following Ąrst-order nonlinear equation:

𝑍̇ = 𝑅21 +𝑅22𝑍 ⊗ 𝑍𝑅11 ⊗ 𝑍𝑅12𝑍, (6.86)

which, together with 𝑍(0) = 0𝑑, can be integrated by standard numerical techniques.

Thus the amplitude can be simultaneously evolved alongside with the 𝑍 matrix, rather

than with the pair of independent stability matrix blocks, 𝑀11 and 𝑀21. This brings two

advantages. First, the system is half the size: 𝑍 has 𝑑2 complex entries, whereas 𝑀11

and 𝑀21 combined have 2𝑑2 complex entries. Secondly, direct integration of 𝑍 avoids the

troublesome inversion of 𝑀11 (or some alternative procedure of equivalent complexity), an

operation that has to be carried out at each time step in order to get 𝐷̇ from Eq. (6.73).

There is a possible drawback, though, concerning the numerical stability of Eq. (6.86).

Due to the nonlinearity of this equation, 𝑍 is expected to behave in a more complicated

way than 𝑀21 and 𝑀11 (which, in contrast, obey linear dynamics). Also, the existence

of focal points, where 𝑀11 becomes singular, is bound to lead to instabilities during the
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integration of 𝑍 [however, this sort of obstacle also occurs if Eq. (6.73) is employed].

And, although such difficulties end up being alleviated, since 𝐷 ⊃ 0 when det(𝑀11)⊃ 0,

as discussed earlier, there might be some problems when trajectories go through regions

near the focal point. We have not had the opportunity to investigate these issues more

profoundly Ű this is why the reserved statement was made earlier, that the present scheme

ŚpotentiallyŠ leads to savings in computational effort.

6.6.1 * Semiclassical phase correction and modulation

So far two different time-integrated expressions for the semiclassical amplitude have been

discussed, Eqs. (6.76) and (6.82). Yet, perhaps the most straightforward way of writing

𝐷 is:

𝐷(á) = exp
[︂

1
2

∫︁ á

0
𝑑𝑡 tr(𝑅12𝑍)

]︂

. (6.87)

From this perspective, it is interesting to separate the real and imaginary parts of the

complex phase. In order to do so, we introduce the following deĄnitions:

𝑍 = 𝑋 + 𝑖𝑌, 𝑅11 = 𝐴11 + 𝑖𝐵11, and 𝑅12 = 𝐴12 + 𝑖𝐵12, (6.88)

by means of which Eq. (6.87) assumes the form:

𝐷(á) = exp
[︂

1
2

∫︁ á

0
𝑑𝑡 tr(𝐴12𝑋 ⊗𝐵12𝑌 )

]︂

exp
[︂

𝑖
2

∫︁ á

0
𝑑𝑡 tr(𝐴12𝑌 +𝐵12𝑋)

]︂

(6.89)

⊕ exp
[︁

𝑖𝜃(á) + Ò(á)
]︁

, (6.90)

where two real dimensionless quantities, 𝜃 and Ò, have been implicitly deĄned. The Ąrst

is simply a phase correction, whereas the second gives a logarithmic modulation factor

which can be either positive or negative.

Meanwhile, by splitting the real and imaginary parts of Eq. (6.86) one Ąnds:

𝑋̇ = 𝐴12 + (𝐴11𝑋 ⊗𝑋𝐴11) + (𝐵11𝑌 + 𝑌 𝐵11)

⊗ (𝑋𝐴12 ⊗ 𝑌 𝐵12)𝑋 + (𝑋𝐵12 + 𝑌 𝐴12)𝑌, (6.91a)

𝑌̇ = ⊗𝐵12 + (𝐴11𝑌 ⊗ 𝑌 𝐴11)⊗ (𝐵11𝑋 +𝑋𝐵11)

⊗ (𝑋𝐴12 ⊗ 𝑌 𝐵12)𝑌 ⊗ (𝑋𝐵12 + 𝑌 𝐴12)𝑋, (6.91b)

where the relations 𝑅21 = 𝑅*
12 and 𝑅22 = 𝑅*

11 have been used. The initial condition

𝑍(0) = 0𝑑 implies 𝑋(0) = 0𝑑 and 𝑌 (0) = 0𝑑. At the same time, the factors 𝜃 and Ò can

be integrated from:

𝜃 = 1
2
tr(𝐴12𝑌 +𝐵12𝑋), (6.92a)

Ò̇ = 1
2
tr(𝐴12𝑋 ⊗𝐵12𝑌 ), (6.92b)
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with initial conditions 𝜃(0) = 0 and Ò(0) = 0.

Under this scheme, the semiclassical time evolution operator is simply expressed as:

𝑈̂(á) =
∫︁

𝑑Û(𝑧0)♣𝑧á ⟩ 𝑒Òτ 𝑒
i
~

(𝑆τ +~ 𝜃τ ) ⟨𝑧0♣. (6.93)

6.7 * Invariance under group transformations

The semiclassical amplitude 𝐷 features a very appealing property: it is invariant under

restricted group transformations of the coherent-state, where by ŚrestrictedŠ we mean

that the transformation has no explicit time-dependence. In Chapters 2 and 3, we saw

examples of such transformations, where they were shown to materialize as holomorphic

maps of the coherent-state label. Thus, in order to prove the invariance property, we

consider two different descriptions, in which states are labeled by complex vectors 𝑧 and

𝑤, and we suppose both sets of variables are related by an invertible map as follows:viii

⎧

⋁︁⨄︁

⋁︁⋃︁

𝑤 = 𝑤(𝑧) with 𝜕𝑤/𝜕𝑧* = 0 and 𝜕𝑤/𝜕𝑡 = 0,

𝑧 = 𝑧(𝑤) with 𝜕𝑧/𝜕𝑤* = 0 and 𝜕𝑧/𝜕𝑡 = 0.
(holomorphic and restricted). (6.94)

Several relations follow immediately from (6.94). For instance, in the context of the Ćow

picture, where 𝑤 = 𝑤á (𝑤*
0, 𝑤0) and 𝑧 = 𝑧á (𝑧*

0 , 𝑧0), derivatives of 𝑤 with respect to 𝑤0 and

𝑤*
0 can be expressed in terms of similar derivatives belonging to the 𝑧-label description:

𝜕𝑤áÐ
𝜕𝑤0Ñ

=
∑︁

ÒÒ′

𝜕𝑤áÐ
𝜕𝑧áÒ

𝜕𝑧áÒ
𝜕𝑧0Ò′

𝜕𝑧0Ò′

𝜕𝑤0Ñ

,
𝜕𝑤*

áÐ

𝜕𝑤0Ñ

=
∑︁

ÒÒ′

𝜕𝑤*
áÐ

𝜕𝑧*
áÒ

𝜕𝑧*
áÒ

𝜕𝑧0Ò′

𝜕𝑧0Ò′

𝜕𝑤0Ñ

, (6.95a)

𝜕𝑤áÐ
𝜕𝑤*

0Ñ

=
∑︁

ÒÒ′

𝜕𝑤áÐ
𝜕𝑧áÒ

𝜕𝑧áÒ
𝜕𝑧*

0Ò′

𝜕𝑧*
0Ò′

𝜕𝑤*
0Ñ

,
𝜕𝑤*

áÐ

𝜕𝑤*
0Ñ

=
∑︁

ÒÒ′

𝜕𝑤*
áÐ

𝜕𝑧*
áÒ

𝜕𝑧*
áÒ

𝜕𝑧*
0Ò′

𝜕𝑧*
0Ò′

𝜕𝑤*
0Ñ

. (6.95b)

Notice how these expressions owe their remarkable simplicity to the analytic property of

the maps 𝑤(𝑧) and 𝑧(𝑤). The above relations become more manageable if we introduce

the transformationŠs Jacobian matrix Λ (and its inverse) through:

ΛÐÑ =
𝜕𝑤Ð
𝜕𝑧Ò

, Λ⊗1
ÐÑ =

𝜕𝑧Ð
𝜕𝑤Ò

. (6.96)

Thence, if we denote by 𝑀 the 𝑧-label stability matrix and, correspondingly, by 𝑀̃ the

𝑤-label stability matrix, Eqs. (6.95) read:

𝑀̃11 = Λá𝑀11Λ
⊗1
0 , 𝑀̃21 = Λ*

á𝑀21Λ
⊗1
0 , 𝑀̃12 = Λá𝑀12Λ

*
0

⊗1, 𝑀̃22 = Λ*
á𝑀22Λ

*
0

⊗1; (6.97)

viiiIf the map 𝑧 ⊃ 𝑤 is parametrized by a set of 𝑠 parameters, collectively denoted by 𝑎, as in 𝑤 = 𝑤(𝑧; 𝑎),
then the explicit time-dependence is encoded in the partial derivative 𝜕𝑤/𝜕𝑡 =

∑︀𝑠
𝑗=1(𝜕𝑤/𝜕𝑎𝑗)𝑎̇𝑗 ; thus

the ‘restricted’ condition translates into: 𝑎̇𝑗 = 0, for 1 ⊘ 𝑗 ⊘ 𝑠; the nomenclature is borrowed from the
classical theory of canonical transformations.
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i.e. they tell us how the stability matrix transforms under the map 𝑧 ⊃ 𝑤. In what

follows, we carry on with this notation: a tilde is used to indicate quantities belonging to

the 𝑤-label description, whereas ŚuntildedŠ quantities refer to the 𝑧-label description.

Our goal is to show that 𝐷̃ = 𝐷. For that purpose we shall consider the quantity

Śtr(𝑍𝑅12)Š Ąguring in Eq. (6.84) Ű if this trace is unchanged by the transformation then it

follows that the amplitudes in both descriptions are equal, since in that case they satisfy

the same equation of motion with the same initial condition.

We begin with matrix 𝑍 Ű using (6.97) together with the deĄnition (6.84) one easily

Ąnds:

𝑍 = 𝑀̃21𝑀̃
⊗1
11 = (Λ*

á𝑀21Λ
⊗1
0 )(Λ0𝑀

⊗1
11 Λ⊗1

á ) = Λ*
á (𝑀21𝑀

⊗1
11 )Λ⊗1

á = Λ*
á𝑍Λ⊗1

á . (6.98)

Next we inquire about the systemŠs Jacobian matrix block 𝑅12; let us consider its 𝑤-

label description, i.e. (𝑅̃12)ÐÑ = (𝜕𝑤̇Ð/𝜕𝑤*
Ñ). The Ąrst thing to notice is that the time

derivative 𝑤̇ does not inherit the transformationŠs holomorphic property; nevertheless, it

can be expressed as a function of 𝑧 and 𝑧* in a tractable manner:

𝑑

𝑑𝑡
𝑤Ð =

∑︁

Ò

𝜕𝑤Ð
𝜕𝑧Ò

𝑧̇Ò ⇒ 𝑤̇ = 𝑤̇(Λ(𝑧), 𝑧̇(𝑧*, 𝑧)) (6.99)

(remember: 𝜕𝑤/𝜕𝑡 = 0). This enables application of the chain rule in the following way:

𝜕𝑤̇Ð
𝜕𝑤*

Ñ

=
∑︁

Ò

𝜕𝑤Ð
𝜕𝑧Ò

𝜕𝑧̇Ò
𝜕𝑤*

Ñ

+
∑︁

Ò

𝑧̇Ò
𝜕2𝑤Ð
𝜕𝑧Ò𝜕𝑤*

Ñ

=
∑︁

ÒÒ′

𝜕𝑤Ð
𝜕𝑧Ò

(︁ 𝜕𝑧̇Ò
𝜕𝑧Ò′

𝜕𝑧Ò′

𝜕𝑤*
Ñ

⏟  ⏞  

0

+
𝜕𝑧̇Ò
𝜕𝑧*

Ò′

𝜕𝑧*
Ò′

𝜕𝑤*
Ñ

)︁

+
∑︁

Ò

𝑧̇Ò
𝜕

𝜕𝑧Ò

(︁ 𝜕𝑤Ð
𝜕𝑤*

Ñ
⏟  ⏞  

0

)︁

=
∑︁

ÒÒ′

𝜕𝑤Ð
𝜕𝑧Ò

𝜕𝑧̇Ò
𝜕𝑧*

Ò′

𝜕𝑧*
Ò′

𝜕𝑤*
Ñ

(6.100)

(note how the independence of 𝑤 and 𝑤* eliminates the second-order derivative). The

transformation relations for the remaining 𝑅 blocks can be found in a similar fashion; the

result is:

𝑅̃11 = Λá𝑅11Λ
⊗1
á , 𝑅̃12 = Λá𝑅12Λ

*
á

⊗1, 𝑅̃21 = Λ*
á𝑅21Λ

⊗1
á , 𝑅̃22 = Λ*

á𝑅22Λ
*
á

⊗1. (6.101)

Finally, combining (6.97) and (6.101), we Ąnd that under the map 𝑧 ⊃ 𝑤 the trace term

at issue behaves as follows:

tr(𝑍𝑅̃12) = tr(Λ*
á𝑍Λ⊗1

á ≤ Λá𝑅12Λ
*
á

⊗1) = tr(𝑍𝑅12), (6.102)

showing that ˙̃𝐷 = 𝐷̇. Therefore, in view of the reasons mentioned earlier, the semiclassical

amplitude is invariant: 𝐷̃ = 𝐷, as we intended to demonstrate.

Check. The fact that 𝐷 is unaffected by the map 𝑧 ⊃ 𝑤 can also be proved by consid-
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ering the time-integrated form of the semiclassical amplitude, as displayed in Eq. (6.76).

We shall present this alternative proof as a check, but also because it brings attention to

an interesting property of the class of transformations depicted in (6.94).

Looking at expression (6.76) we see that the terms that must be examined are Śdet(𝑀11)Š

and Śtr(𝑅11)Š. The latter is easily shown to be invariant; with the help of (6.101) we obtain:

tr(𝑅̃11) = tr(Λá𝑅11Λ
⊗1
á ) = tr(𝑅11). (6.103)

On the other hand, from (6.97) we deduce that the determinant term transforms according

to:

det(𝑀̃11) = det(Λá𝑀11Λ
⊗1
0 ) = det(𝑀11) ≤ det(Λá )[det(Λ0)]

⊗1. (6.104)

Thus in order to conĄrm the amplitudeŠs invariance we must show that the product of

the last two determinants on the right side of the above formula is unity.

For that purpose let us compute the following time derivative:

𝑑

𝑑𝑡
det(Λ) = det(Λ)tr(Λ̇Λ⊗1) (6.105)

Ű as it turns out, a detailed analysis of the trace factor reveals that:

(Λ̇Λ⊗1)ÐÑ =
∑︁

Ò

[︁ 𝑑

𝑑𝑡

(︃

𝜕𝑤Ð
𝜕𝑧Ò

⎜
]︁ 𝜕𝑧Ò
𝜕𝑤Ñ

=
∑︁

ÒÒ′

[︁ 𝜕2𝑤Ð
𝜕𝑧Ò𝜕𝑧′

Ò

𝑧̇Ò′

]︁ 𝜕𝑧Ò
𝜕𝑤Ñ

=
∑︁

Ò′

𝑧̇Ò′

[︁ 𝜕

𝜕𝑧Ò′

(︃
∑︁

Ò

𝜕𝑤Ð
𝜕𝑧Ò

𝜕𝑧Ò
𝜕𝑤Ñ

⎜

⊗
∑︁

Ò

𝜕𝑤Ð
𝜕𝑧Ò

𝜕2𝑧Ò
𝜕𝑤Ñ𝜕𝑧Ò′

]︁

=
∑︁

Ò′

𝑧̇Ò′

[︁ 𝜕

𝜕𝑧Ò′

∑︁

Ò

ΛÐÒ(Λ
⊗1)ÒÑ

⏟  ⏞  

Óαβ

⊗
∑︁

Ò

𝜕𝑤Ð
𝜕𝑧Ò

𝜕

𝜕𝑤Ñ

(︁ 𝜕𝑧Ò
𝜕𝑧Ò′

⏟  ⏞  

Óγγ′

)︁]︁

= 0. (6.106)

Hence we conclude that transformations of the type described in Eqs. (6.94) have the

interesting property that the determinant of their Jacobian matrix Λ does not change

with time, implying that their value at any given instant á is the same as at 𝑡 = 0, or:

det(Λá ) = det(Λ0). Therefore, Eq. (6.104) actually states that:

det(𝑀̃11) = det(𝑀11); (6.107)

and this, together with (6.103) Ű and in view of Eq. (6.76) Ű conĄrms that the semiclassical

amplitude 𝐷 is the precisely the same in both descriptions.

Extended semiclassical initial-value representation. We have seen earlier that the mul-

ticonĄgurational method of Chapter 4, when constructed in terms of fermionic basis states

(Thouless determinants), admits an ŚextendedŠ formalism wherein conĄgurations may be

subjected to group transformations at speciĄc instants during the propagation Ű which
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have the purpose of regularizing their dynamics (cf. ğ3.3 and ğ4.6). In particular, we

have introduced the notion of Śextended conĄgurationsŠ: basis states carrying an action

phase that changes discontinuously when a group transformation is applied to the state,

in such a way that geometrical phases acquired in the process are balanced out; and

we have demonstrated that quantum amplitudes associated with such conĄgurations are

unaffected by the group transformation. What we have shown now is that the semiclas-

sical amplitude inherits this ŚinvarianceŠ property. Therefore, the same kind of extended

formalism is also possible in a semiclassical context. In other words, the content of this

section lays the ground for an extended (fermionic) semiclassical initial-value representa-

tion; one based on Thouless determinants that can be independently regularized during

their time evolution without compromising the delicate phase correlations of the integral

formula.

6.8 Semiclassical IVR: complete scheme

In this Ąnal section, we delineate a general scheme for implementing the semiclassical

method; for future reference, we compile its basic equations in an organized manner.

Let us assume, for the sake of deĄniteness, that one seeks to obtain an approximation

to a correlation function of the following type:

𝐶𝑎𝑏(𝑡) = ⟨å𝑎♣𝑈̂(𝑡)♣å𝑏⟩, (6.108)

where ⟨å𝑎♣ and ♣å𝑏⟩ are Ąxed, arbitrary states. In the above formula, we shall substitute

the quantum time evolution operator 𝑈̂(𝑡) for its semiclassical approximation. In practice,

the phase-space integral over initial conditions, Ąguring on Eq. (6.79), should be replaced

with a discrete sum. Leaving aside technical details concerning the basis-set construction,

the semiclassical version of (6.108) used in applications reads:

𝐶𝑠𝑐
𝑎𝑏(𝑡) = 𝑛𝑡

𝑚∑︁

𝑘=1

Ú𝑘⟨å𝑎♣𝑧𝑡𝑘⟩ 𝑒Òk+𝑖𝜃k𝑒
i
~
𝑆k ⟨𝑧0𝑘♣å𝑏⟩, (6.109)

where 𝑚 is the number of basis elements. We chose to represent the semiclassical am-

plitude in the way of ğ6.6.1, in terms of Śphase correctionŠ and ŚmodulationŠ variables, 𝜃

and Ò respectively. In writing (6.109), we have resorted to the same kind of discretization

employed in ğ4.2.6, where the weight Ú𝑘 associated with each orbit is supposed to ap-

proximate the invariant measure evaluated at the point 𝑧0𝑘, that is Ú𝑘 ≡ 𝑑Û(𝑧0𝑘) (this is

straightforward when initial conditions are arranged on a regular grid, but more involved

options Ű e.g. based on Monte Carlo sampling Ű are possible). As we have seen earlier, the

unitary property of the time evolution is lost within the semiclassical framework. For that

reason, the above formula contains an overall time-dependent factor 𝑛𝑡 whose purpose is



189

to normalize any results obtained from 𝐶𝑠𝑐
𝑎𝑏(𝑡).

The differential equations needed for computing the ingredients that go into Eq. (6.109)

are scattered along the present chapter. In what follows, we merely display them in a

more comprehensible way. For porpuses of diversity, however, we shall give such equations

in terms of real variables. In order to do so, we decompose each coherent-state parameter

vector 𝑧 into its (dimensionless) real and imaginary parts, according to

𝑧Ð = (𝑞Ð + 𝑖𝑝Ð)/
√

2, 1 ⊘ Ð ⊘ 𝑑 (6.110)

(the basis-set subscript will be omitted when referring to individual trajectories). The

form of this latter expression, as well as the (𝑞, 𝑝) notation, are reminiscent from the

canonical coherent-state case, where these real parameters reduce to familiar coordinate

and momentum variables Ű evidently, this interpretation is devoid of meaning in a gener-

alized description.

Let us begin by considering the energy function 𝐸(𝑧*, 𝑧). Since this function is real,

writing it in terms of (𝑞, 𝑝) amounts to relabeling its arguments:

𝐸(𝑧*, 𝑧) = ⟨𝑧♣𝐻̂♣𝑧⟩ ⊃ 𝐸(𝑞, 𝑝). (6.111)

The same goes for the Kähler potential 𝑓(𝑧*, 𝑧) = log¶𝑧♣𝑧♢; we simply reinterpret it as:

𝑓(𝑧*, 𝑧)⊃ 𝑓(𝑞, 𝑝). (6.112)

The remaining geometrical ingredients are easily recast in terms of (𝑞, 𝑝). Using (6.110)

and the chain rule, the complex gradients of 𝑓 become:

𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧Ð
=

1√
2

(︃

𝜕𝑓(𝑞, 𝑝)

𝜕𝑞Ð
⊗ 𝑖𝜕𝑓(𝑞, 𝑝)

𝜕𝑝Ð

⎜

,
𝜕𝑓(𝑧*, 𝑧)

𝜕𝑧*
Ð

=
1√
2

(︃

𝜕𝑓(𝑞, 𝑝)

𝜕𝑞Ð
+ 𝑖

𝜕𝑓(𝑞, 𝑝)

𝜕𝑝Ð

⎜

.

(6.113)

Meanwhile, the phase-space metric 𝑔(𝑧*, 𝑧) is split into real and imaginary parts, which

are conveniently named 𝑔𝑅(𝑞, 𝑝) and 𝑔𝐼(𝑞, 𝑝) Ű these are implicitly deĄned below; starting

from (1.58) and using the chain rule we get (arguments are omitted for brevity):

𝑔ÐÑ =
1

2

(︃

𝜕2𝑓

𝜕𝑞Ð𝜕𝑞Ñ
+

𝜕2𝑓

𝜕𝑝Ð𝜕𝑝Ñ

⎜

+
𝑖

2

(︃

𝜕2𝑓

𝜕𝑞Ð𝜕𝑝Ñ
⊗ 𝜕2𝑓

𝜕𝑝Ð𝜕𝑞Ñ

⎜

⊕ (𝑔𝑅 + 𝑖𝑔𝐼)ÐÑ. (6.114)

Since 𝑔 is hermitian, it follows that 𝑔𝑅 is a symmetric matrix, whereas 𝑔𝐼 is antisymmetric.

We are now ready to list the basic equations of the semiclassical approach.

In terms of the real-valued coherent-state parameters (𝑞, 𝑝) the classical equations of
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motion [cf. Eq.(1.69)] can be put in the following matrix form:

~

⎛

∐︁
𝑞

𝑝̇

⎞

̂︀ =

⎛

∐︁
𝑔𝑅 𝑔𝐼

⊗𝑔𝐼 𝑔𝑅

⎞

̂︀

⊗1 ⎛

∐︁
𝜕𝐸/𝜕𝑝

⊗𝜕𝐸/𝜕𝑞

⎞

̂︀ , (6.115)

with each trajectory being spawned from one of the initial points 𝑧0𝑘 = (𝑞0𝑘, 𝑝0𝑘), for

1 ⊘ 𝑘 ⊘ 𝑚. Notice that, here, all quantities are dimensionless, except for the energy

function 𝐸 and the time variable 𝑡 (with ~ connecting the time and energy scales).

The action phase, in turn, is integrated from

𝑆̇ =
~

2

𝑑∑︁

Ð=1

(︃

𝜕𝑓

𝜕𝑝Ð
𝑞Ð ⊗

𝜕𝑓

𝜕𝑞Ð
𝑝̇Ð

⎜

⊗ 𝐸, (6.116)

the right-hand side being simply the (𝑞, 𝑝)-version of the Lagrangian deĄned in Eq. (1.66).

The phase 𝜃 and modulation Ò, related to the semiclassical amplitude (6.87), depend

on the Śsecond-order dynamicsŠ built into the matrix 𝑍, introduced in ğ6.6. The re-

quired real and imaginary parts of the Jacobian matrices 𝑅11 and 𝑅12 Ű the quantities

¶𝐴11, 𝐵11, 𝐴12, 𝐵12♢ deĄned in Eq. (6.88) Ű can be computed from:

(𝐴11)ÐÑ =
1

2

(︃

𝜕𝑞Ð
𝜕𝑞Ñ

+
𝜕𝑝̇Ð
𝜕𝑝Ñ

⎜

, (𝐵11)ÐÑ =
1

2

(︃

𝜕𝑝̇Ð
𝜕𝑞Ñ
⊗ 𝜕𝑞Ð
𝜕𝑝Ñ

⎜

, (6.117a)

(𝐴12)ÐÑ =
1

2

(︃

𝜕𝑞Ð
𝜕𝑞Ñ
⊗ 𝜕𝑝̇Ð
𝜕𝑝Ñ

⎜

, (𝐵12)ÐÑ =
1

2

(︃

𝜕𝑞Ð
𝜕𝑝Ñ

+
𝜕𝑝̇Ð
𝜕𝑞Ñ

⎜

. (6.117b)

In order to express the equations of motion for 𝑋 and 𝑌 Ű the real and imaginary parts

of 𝑍, as denoted in Eq. (6.88) Ű it is convenient to deĄne the following auxiliary matrices:

𝐹1 = 𝐴12 + 𝐴11𝑋 ⊗𝑋𝐴11 +𝐵11𝑌 + 𝑌 𝐵11, (6.118a)

𝐹2 = ⊗𝐵12 + 𝐴11𝑌 ⊗ 𝑌 𝐴11 ⊗𝐵11𝑋 ⊗𝑋𝐵11, (6.118b)

𝐺1 = 𝑋𝐴12 ⊗ 𝑌 𝐵12, (6.118c)

𝐺2 = 𝑌 𝐴12 +𝑋𝐵12. (6.118d)

Then, according to (6.91), 𝑋 and 𝑌 can be integrated from:

𝑋̇ = 𝐹1 ⊗𝐺1𝑋 +𝐺2𝑌, (6.119a)

𝑌̇ = 𝐹2 ⊗𝐺1𝑌 ⊗𝐺2𝑋, (6.119b)

with initial conditions 𝑋0 = 𝑌0 = 0.

The auxiliary quantities 𝐺1 and 𝐺2 of (6.118) can then be re-utilized in the equations
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of motion for the semiclassical corrections, 𝜃 and Ò, in which case Eq. (6.92) reads:

Ò̇ = 1
2
tr(𝐺1), (6.120a)

𝜃 = 1
2
tr(𝐺2). (6.120b)

These variables should be initialized to zero: Ò0 = 𝜃0 = 0.

Finally, the semiclassical correlation function can be compactly expressed if we put

𝐽𝑘(𝑎, 𝑏) = ⟨å𝑎♣𝑧𝑡𝑘⟩⟨𝑧0𝑘♣å𝑏⟩, (6.121)

which encloses all dependence on the boundary states å𝑏 and å𝑎. In this way, the end

result takes the form:

𝐶𝑠𝑐
𝑎𝑏(𝑡) = 𝑛𝑡

𝑚∑︁

𝑘=1

Ú𝑘 𝐽𝑘(𝑎, 𝑏) 𝑒
Òk+𝑖𝜃k𝑒

i
~
𝑆k . (6.122)

This completes the raw scheme of the semiclassical initial-value representation method

for generalized coherent-states.
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Concluding remarks

In this work we have formulated a multiconĄgurational, trajectory-guided quantum prop-

agation scheme whose distinctive feature consists in employing generalized coherent states

as basis elements. In this sense, the technique is seen as a natural extension of the cou-

pled coherent states method of Shalashilin and Child25–27 whereupon frozen Gaussians

are replaced by more general conĄgurations. At the same time, the main qualities of the

original CCS are retained: quantum amplitudes obey an integro-differential equation (or

a linear matrix equation, in the case of discrete basis sets) where the strength of their

mutual coupling is controled by a localized overlap function; moreover, these amplitudes

present a smooth time dependence, owing to their oscillatory behavior being partially

compensated by the classical motion of the basis elements and their action phases.

The preparatory exposition of Chapters 1, 2 and 3 was deliberately constructed in

such a way that no deep understanding of group-theory concepts was necessary, neither

to derive the basic equations of the method nor to implement it numerically Ű we have

seen that all geometrical ingredients that enter the basic formulas can be straightforwardly

evaluated from the coherent-state overlap function alone. Also, the single-conĄgurational

dynamics of both bosonic and fermionic systems, formulated in terms of coherent states

of the special unitary group, were identiĄed with well-known mean-Ąeld theories.

At Chapter 4, three versions of the generalized CCS method have been devised: con-

tinuum, non-unitary and unitary. The continuum version most evidently displays the

novel elements due to the non-Euclidean geometry associated with the generalized coher-

ent states and it serves primarily as a starting point for a number of possible analytical

approximations. The non-unitary version, which is only brieĆy discussed in this work,

can be understood as a direct attempt to reproduce the continuum formulas by reducing

phase-space integrals into Ąnite sums.

The discrete unitary version, meanwhile, is the standard form of the method, being

the most adequate for the majority of practical applications. Its working equations do

not differ in overall structure from their analogue expressions of the original gaussian-

wavepacket approach. This is due to the fact that all information concerning distinct

coherent-state geometries is encoded in a small number of key elements, namely: the

overlap, the phase-space metric and the classical equations of motion Ű a most desirable

feature for programming purposes, for it means that the core subroutines of the method
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are essentially independent of the particular type of coherent-state parametrization chosen

for the problem at hand.

The discrete version was studied in great detail and several aspects of its numerical

implementation were examined. In particular, an interesting parallelization scheme was

proposed and its efficiency validated.

In Chapter 5 we have illustrated the general aspects of the proposed technique with

applications to simple models of bosonic and fermionic systems, governed by prototype

Hubbard-like Hamiltonians. The generalized trajectory-based methodology proved to be

a viable numerical approach for solving both model problems.

Finally, the results of Chapter 6 can be immediately combined with the coherent-state

parametrizations studied in Chapters 2 and 3. This leads to a trajectory-based semiclassi-

cal approach to bosonic and fermionic systems Ű one which properly accounts for particle

interchange symmetry. This opens a wide range of possible applications in what concerns

time-dependent many-body problems, provided these can be suitably treated from a semi-

classical perspective. For bosons, this adequacy is found in systems composed of a large

number of particles. For fermions, on the other hand, such ŚclassicalityŠ criteria seem to

involve considerations of a more complicated sort.76 We may nevertheless conjecture that,

whenever mean-Ąeld calculations are capable of producing reasonably accurate results for

a given Fermi system, then a semiclassical treatment (in this case, constructed from a

swarm of such mean-Ąeld solutions) will most likely be justiĄed. In this work, however,

we do not explore such possibilities Ű they are delegated to future investigation.
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Appendix A

Phase-space volume conservation

and properties of the complex action

A.1 Invariance of the phase-space measure under classical flow

Let us consider the phase-space metric at two distinct instants, 𝑡 and 0; since the Jacobian

matrix of the transformation from 𝑧(𝑡) to 𝑧(0) is the stability matrix 𝑀(𝑡) itself, we have:

𝑑Û(𝑧(𝑡)) = Ù det 𝑔(𝑡)
𝑑∏︁

Ð=1

𝑑𝑧Ð(𝑡)𝑑𝑧*
Ð(𝑡)

2Þ𝑖
= Ù det 𝑔(𝑡) det𝑀(𝑡)

𝑑∏︁

Ð=1

𝑑𝑧Ð(0)𝑑𝑧*
Ð(0)

2Þ𝑖
. (A.1)

Recall that 𝑀 satisĄes the linear equation

𝑀̇(𝑡) = 𝑅(𝑡)𝑀(𝑡), 𝑀(0) = 𝐼2𝑑,

with the time-dependent matrix 𝑅 deĄned according to Eqs. (6.4) and (6.5); therefore,

differentiating the determinantŠs logarithm with respect to 𝑡 we get:

𝑑

𝑑𝑡
log (det𝑀) = Tr(𝑀⊗1𝑀̇) = Tr𝑅. (A.2)

On the other hand, the metricŠs time derivative can be written as follows:

𝑔̇ÐÑ =
∑︁

Ò

(︃

𝜕𝑔ÐÑ
𝜕𝑧Ò

𝑧̇Ò +
𝜕𝑔ÐÑ
𝜕𝑧*

Ò

𝑧̇*
Ò

⎜

=
∑︁

Ò

(︃

𝜕(𝑧̇Ò𝑔ÒÑ)

𝜕𝑧Ð
+
𝜕(𝑔ÐÒ 𝑧̇*

Ò)

𝜕𝑧*
Ñ

⊗ 𝜕𝑧̇Ò
𝜕𝑧Ð

𝑔ÒÑ ⊗ 𝑔ÐÒ
𝜕𝑧̇*

Ò

𝜕𝑧*
Ñ

⎜

= ⊗ 𝑖
~

(︃

𝜕2𝐸

𝜕𝑧Ð𝜕𝑧*
Ñ

⊗ 𝜕2𝐸

𝜕𝑧*
Ñ𝜕𝑧Ð

⎜

⊗
∑︁

Ò

(︃

𝜕𝑧̇Ò
𝜕𝑧Ð

𝑔ÒÑ + 𝑔ÐÒ
𝜕𝑧̇*

Ò

𝜕𝑧*
Ñ

⎜

,

where Ű and this is the crucial step Ű the classical equations of motion (6.3) have been

substituted in the second line. Evidently, the second-order derivatives of the energy cancel
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off leaving:

𝑔̇ = ⊗(𝑅𝑇
11𝑔 + 𝑔𝑅22) ⇒ 𝑔⊗1𝑔̇ = ⊗(𝑔⊗1𝑅11𝑔 +𝑅22). (A.3)

Tracing this last equation yields:

Tr(𝑔⊗1𝑔̇) = ⊗(Tr𝑅11 + Tr𝑅22) = ⊗Tr𝑅 ⇒ 𝑑

𝑑𝑡
log (det 𝑔) = ⊗Tr𝑅. (A.4)

Thence, we may connect formulas (A.2) and (A.4), establishing the relation:

𝑑

𝑑𝑡
log (det𝑀) = ⊗ 𝑑

𝑑𝑡
log (det 𝑔).

Integrating from 0 to 𝑡, exponentiating and using the fact that det𝑀(0) = 1, we conclude:

log

⎟

det𝑀(𝑡)

det𝑀(0)

]︃

= ⊗ log

⎟

det 𝑔(𝑡)

det 𝑔(0)

]︃

⇒ det𝑀(𝑡) =
det 𝑔(0)

det 𝑔(𝑡)
. (A.5)

Finally, using this result in (A.1) we see that:

𝑑Û(𝑧(𝑡)) = 𝑑Û(𝑧(0)), (A.6)

which proves our claim that phase-space volume is preserved under the generalized clas-

sical dynamics. Notice that this is true even in the case of driven systems, when the

Hamiltonian displays explicit time dependence. This result can also be reached in a

different way, cf. Appendix C of Ref. [29].

A.2 The complex action

The complex action of Eq. (1.67), computed over a classical trajectory 𝑧(𝑡) that obeys

the classical equations (1.72), has a interesting functional structure, as shown by the

derivatives listed in Eqs. (1.71). Here, for the sake of completeness, we shall demonstrate

those relations, but in a slightly more general form: we will allow for speciĄc initial and

Ąnal time arguments, labeled 𝑡𝑎 and 𝑡𝑏 respectively, in which case the complex action

reads

𝐴(𝑧; 𝑡𝑏, 𝑡𝑎) =
∫︁ 𝑡b

𝑡a
𝑑𝑡 𝐿(𝑧)⊗ 𝑖~

2

[︁

𝑓(𝑧*
𝑏 , 𝑧𝑏) + 𝑓(𝑧*

𝑎, 𝑧𝑎)
]︁

, (A.7)

where 𝑧𝑎 = 𝑧(𝑡𝑎) and 𝑧𝑏 = 𝑧(𝑡𝑏). The calculation follows that given at Chapter 3 of Ref. [

29].

Let us Ąrst consider the variation of the action when the end-points of the trajectory

(𝑧(𝑡), 𝑧*(𝑡)) are displaced by small amounts, (Ó𝑧′
𝑎, Ó𝑧

*
𝑎

′) at 𝑡𝑎 and (Ó𝑧′
𝑏, Ó𝑧

*
𝑏

′) at 𝑡𝑏. During

this preliminary calculation we shall hold the time interval Ąxed, i.e. the time instants 𝑡𝑏

and 𝑡𝑎 are kept frozen (this is similar to what we do when deriving the Euler-Lagrange
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equations). Denoting this variation by Ó𝐴′, the usual procedure gives:i

Ó𝐴′ = ⊗𝑖~
2

[︁𝜕𝑓(𝑧*
𝑏 , 𝑧𝑏)

𝜕𝑧𝑏
Ó𝑧′

𝑏 +
𝜕𝑓(𝑧*

𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

Ó𝑧*
𝑏

′
]︁

⊗ 𝑖~

2

[︁𝜕𝑓(𝑧*
𝑎, 𝑧𝑎)

𝜕𝑧𝑎
Ó𝑧′

𝑎 +
𝜕𝑓(𝑧*

𝑎, 𝑧𝑎)

𝜕𝑧*
𝑎

Ó𝑧*
𝑎

′
]︁

+
𝜕𝐿

𝜕𝑧̇
Ó𝑧′

⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

𝑡b

𝑡a

+
𝜕𝐿

𝜕𝑧̇* Ó𝑧
*′
⧹︃
⧹︃
⧹︃
⧹︃
⧹︃

𝑡b

𝑡a

+
∫︁ 𝑡b

𝑡a
𝑑𝑡

[︁(︁𝜕𝐿

𝜕𝑧
⊗ 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑧̇

)︁

Ó𝑧′ +
(︁ 𝜕𝐿

𝜕𝑧* ⊗
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑧̇*

)︁

Ó𝑧*′
]︁

. (A.8)

Since the Euler-Lagrange equations are satisĄed along the classical trajectory, the terms

inside the integral vanish. Moreover, substituting the derivatives of 𝐿 in the surface terms

we Ąnd without difficulty:

𝑖

~
Ó𝐴′ =

𝜕𝑓(𝑧*
𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

Ó𝑧*
𝑏

′ +
𝜕𝑓(𝑧*

𝑎, 𝑧𝑎)

𝜕𝑧𝑎
Ó𝑧′

𝑎. (A.9)

As expected, the action is stationary under virtual displacements, as long as the boundary

conditions Ó𝑧*
𝑏

′ = Ó𝑧′
𝑎 = 0 are met.

Next we consider the scenario where only the initial and Ąnal instants are altered by

small amounts, Ó𝑡𝑎 and Ó𝑡𝑏, respectively. Due to their time-dependence, variables 𝑧 and 𝑧*

cannot remain Ąxed under such displacements and the following changes are induced upon

them: Ó𝑧′′
𝑎 = 𝑧̇𝑎Ó𝑡𝑎 and Ó𝑧′′

𝑏 = 𝑧̇𝑏Ó𝑡𝑏, and likewise for the complex conjugates. Denoting

the corresponding variation in the action function by Ó𝐴′′ we get:

Ó𝐴′′ = 𝐿(𝑧𝑏) Ó𝑡𝑏 ⊗ 𝐿(𝑧𝑎) Ó𝑡𝑎

⊗ 𝑖~

2

[︁𝜕𝑓(𝑧*
𝑏 , 𝑧𝑏)

𝜕𝑧𝑏
𝑧̇𝑏 +

𝜕𝑓(𝑧*
𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

𝑧̇*
𝑏

]︁

Ó𝑡𝑏 ⊗
𝑖~

2

[︁𝜕𝑓(𝑧*
𝑎, 𝑧𝑎)

𝜕𝑧𝑎
𝑧̇𝑎 +

𝜕𝑓(𝑧*
𝑎, 𝑧𝑎)

𝜕𝑧*
𝑎

𝑧̇*
𝑎

]︁

Ó𝑡𝑎, (A.10)

and substituting the Lagrangians 𝐿(𝑧𝑏) and 𝐿(𝑧𝑎), computed at different times, we get:

𝑖

~
Ó𝐴′′ =

[︁𝜕𝑓(𝑧*
𝑎, 𝑧𝑎)

𝜕𝑧𝑎
𝑧̇𝑎 +

𝑖

~
𝐸(𝑧*

𝑎, 𝑧𝑎)
]︁

Ó𝑡𝑎 +
[︁𝜕𝑓(𝑧*

𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

𝑧̇*
𝑏 ⊗

𝑖

~
𝐸(𝑧*

𝑏 , 𝑧𝑏)
]︁

Ó𝑡𝑎. (A.11)

Now, the total variation of the action Ó𝐴, which contemplates small changes in the

initial and Ąnal instants followed by small and independent virtual displacements of the

end-points of the trajectory, is the sum of Ó𝐴′ and Ó𝐴′′:

𝑖

~
Ó𝐴 =

𝜕𝑓(𝑧*
𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

Ó𝑧*
𝑏

′ +
𝜕𝑓(𝑧*

𝑎, 𝑧𝑎)

𝜕𝑧𝑎
Ó𝑧′

𝑎

+
[︁𝜕𝑓(𝑧*

𝑎, 𝑧𝑎)

𝜕𝑧𝑎
𝑧̇𝑎 +

𝑖

~
𝐸(𝑧*

𝑎, 𝑧𝑎)
]︁

Ó𝑡𝑎 +
[︁𝜕𝑓(𝑧*

𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

𝑧̇*
𝑎 ⊗

𝑖

~
𝐸(𝑧*

𝑏 , 𝑧𝑏)
]︁

Ó𝑡𝑏.

However, here we are not interested in virtual displacements (Ó𝑧′, Ó𝑧*′). We want to know

how the action changes when dynamical variations (Ó𝑧, Ó𝑧*) take place; to Ąrst order, both

iHere a vector notation is used.
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types of perturbations are related as:

⎧

⋁︁⨄︁

⋁︁⋃︁

Ó𝑧𝑎 = Ó𝑧′
𝑎 + 𝑧̇𝑎Ó𝑡𝑎

Ó𝑧*
𝑎 = Ó𝑧*

𝑎
′ + 𝑧̇*

𝑎Ó𝑡𝑎
,

⎧

⋁︁⨄︁

⋁︁⋃︁

Ó𝑧𝑏 = Ó𝑧′
𝑏 + 𝑧̇𝑏Ó𝑡𝑏

Ó𝑧*
𝑏 = Ó𝑧*

𝑏
′ + 𝑧̇*

𝑏 Ó𝑡𝑏
. (A.12)

Putting these relations in the previous equation yields:

𝑖

~
Ó𝐴 =

𝜕𝑓(𝑧*
𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

Ó𝑧*
𝑏 +

𝜕𝑓(𝑧*
𝑎, 𝑧𝑎)

𝜕𝑧𝑎
Ó𝑧𝑎 +

𝑖

~
𝐸(𝑧*

𝑎, 𝑧𝑎)Ó𝑡𝑎 ⊗
𝑖

~
𝐸(𝑧*

𝑏 , 𝑧𝑏)Ó𝑡𝑏, (A.13)

which reveals that the functional structure of the complex action is 𝐴 = 𝐴(𝑧*
𝑏 , 𝑧𝑎; 𝑡𝑏, 𝑡𝑎).

Equation (A.13) gives the partial derivatives of the complex action; they are:

𝑖

~

𝜕𝐴(𝑧*
𝑏 , 𝑧𝑎; 𝑡𝑏, 𝑡𝑎)

𝜕𝑧*
𝑏Ò

=
𝜕𝑓(𝑧*

𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏Ò

,
𝑖

~

𝜕𝐴(𝑧*
𝑏 , 𝑧𝑎; 𝑡𝑏, 𝑡𝑎)

𝜕𝑧𝑎Ò
=
𝜕𝑓(𝑧*

𝑎, 𝑧𝑎)

𝜕𝑧𝑎Ò
, (A.14)

and
𝜕𝐴(𝑧*

𝑏 , 𝑧𝑎; 𝑡𝑏, 𝑡𝑎)

𝜕𝑡𝑏
= ⊗𝐸(𝑧*

𝑏 , 𝑧𝑏),
𝜕𝐴(𝑧*

𝑏 , 𝑧𝑎; 𝑡𝑏, 𝑡𝑎)

𝜕𝑡𝑎
= 𝐸(𝑧*

𝑎, 𝑧𝑎). (A.15)

Furthermore,
𝜕𝐴(𝑧*

𝑏 , 𝑧𝑎; 𝑡𝑏, 𝑡𝑎)

𝜕𝑧*
𝑎Ò

= 0,
𝜕𝐴(𝑧*

𝑏 , 𝑧𝑎; 𝑡𝑏, 𝑡𝑎)

𝜕𝑧𝑏Ò
= 0. (A.16)

It is useful to clarify that, if (𝑧*
𝑏 , 𝑧𝑎) are chosen as independent arguments, the quan-

tities on the right-hand side of Eqs. (A.14) should also be understood as functions of

these arguments; for instance, ignoring the time parameters and subscripts, the Ąrst of

Eqs. (A.14) should be read as:

𝑖

~

𝜕𝐴(𝑧*
𝑏 , 𝑧𝑎)

𝜕𝑧*
𝑏

=
𝜕𝑓(𝑧*

𝑏 , 𝑧𝑏(𝑧
*
𝑏 , 𝑧𝑎))

𝜕𝑧*
𝑏

,

This seems a bit exotic since we always treat complex conjugate variables computed at

the same instant as independent quantities. Nevertheless, relations (A.14) are still helpful

when more usual situations are considered. For example, if we take (𝑧*
𝑎, 𝑧𝑎) (the initial

conditions) as basic variables derivatives can be computed using the chain rule in the

following way,

𝑖

~

𝜕𝐴(𝑧*
𝑏 , 𝑧𝑎)

𝜕𝑧𝑎
=
𝑖

~

⎟

𝜕𝐴(𝑧*
𝑏 , 𝑧𝑎)

𝜕𝑧*
𝑏

𝜕𝑧*
𝑏

𝜕𝑧𝑎
+
𝜕𝐴(𝑧*

𝑏 , 𝑧𝑎)

𝜕𝑧𝑎

]︃

=
𝜕𝑓(𝑧*

𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

𝜕𝑧*
𝑏

𝜕𝑧𝑎
+
𝜕𝑓(𝑧*

𝑎, 𝑧𝑎)

𝜕𝑧𝑎

𝑖

~

𝜕𝐴(𝑧*
𝑏 , 𝑧𝑎)

𝜕𝑧*
𝑎

=
𝑖

~

⎟

𝜕𝐴(𝑧*
𝑏 , 𝑧𝑎)

𝜕𝑧*
𝑏

𝜕𝑧*
𝑏

𝜕𝑧*
𝑎

,+
𝜕𝐴(𝑧*

𝑏 , 𝑧𝑎)

𝜕𝑧*
𝑎

]︃

=
𝜕𝑓(𝑧*

𝑏 , 𝑧𝑏)

𝜕𝑧*
𝑏

𝜕𝑧*
𝑏

𝜕𝑧*
𝑎

.

where 𝑧𝑏 = 𝑧𝑏(𝑧*
𝑎, 𝑧𝑎) and 𝑧*

𝑏 = 𝑧*
𝑏 (𝑧

*
𝑎, 𝑧𝑎), whose derivatives with respect to the indicated

initial conditions are nothing but elements of the stability matrix introduced in Chapter 6.
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Appendix B

Bosonic coherent states: survey

B.1 Condensate density matrix

The explicit form of the one-body density matrix for a system of 𝑁 bosons allowed to

occupy 𝐾 modes, conveniently deĄned as the normalized mean-value:

Γ𝑞𝑝(𝑧
*, 𝑧) ⊕ 𝑁⊗1⟨𝑧♣𝑏†

𝑝𝑏𝑞♣𝑧⟩ = 𝑁⊗1¶𝑧♣𝑏†
𝑝𝑏𝑞♣𝑧♢
¶𝑧♣𝑧♢ , 0 ⊘ 𝑝, 𝑞 ⊘ 𝑑 ⊕ 𝐾 ⊗ 1, (B.1)

is straightforwardly obtained by considering the action of a 𝑝-mode bosonic annihilator

𝑏𝑝 upon an 𝑁 -particle (non-normalized) coherent state ♣𝑁 ; 𝑧♢. With help of the formula

[𝑏𝑝, (Õ
†
0)𝑛] = 𝜃𝑝𝑛(Õ†

0)𝑛⊗1, 𝜃𝑝 =

⎧

⋁︁⨄︁

⋁︁⋃︁

1 if 𝑝 = 0

𝑧Û if 𝑝 = Û = 1, . . . , 𝑑
(B.2)

Ű easily proved by induction from the basic commutators listed in (2.22) Ű we Ąnd:

𝑏𝑝♣𝑁 ; 𝑧♢ = 𝑏𝑝
(Õ†

0)𝑁√
𝑁 !
♣0⟩ = 𝜃𝑝𝑁

(Õ†
0)𝑁⊗1

√
𝑁 !
♣0⟩ =

√
𝑁𝜃𝑝♣𝑁 ⊗ 1; 𝑧♢, (B.3)

where 𝜃𝑝 is deĄned according to (B.2). As one would expect, 𝑏𝑝 removes one particle

from the condensate, giving a factor of
√
𝑁 times the amplitude associated with the 𝑝-th

mode in the linear combination that parametrizes the macroscopically occupied state (the

action of a creation operator 𝑏†
𝑝 upon ♣𝑁 ; 𝑧♢ is, however, not trivial).

B.1.1 One-body density

The above result, together with its conjugate version, allows us to write:

⟨𝑧♣𝑏†
𝑝𝑏𝑞♣𝑧⟩ =

¶𝑁 ; 𝑧♣𝑏†
𝑝𝑏𝑞♣𝑁 ; 𝑧♢

¶𝑁 ; 𝑧♣𝑁 ; 𝑧♢ = 𝑁𝜃𝑞𝜃
*
𝑝

¶𝑁 ⊗ 1; 𝑧♣𝑁 ⊗ 1; 𝑧♢
¶𝑁 ; 𝑧♣𝑁 ; 𝑧♢ ;
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and, since ¶𝑁 ; 𝑧♣𝑁 ; 𝑧♢ = (1 + 𝑧*𝑧)𝑁 , it follows immediately that the elements of the

one-density matrix are expressed in terms of 𝑧 as:

Γ𝑞𝑝(𝑧
*, 𝑧) =

𝜃𝑞𝜃
*
𝑝

1 + 𝑧*𝑧
,

with 𝜃𝑞 and 𝜃*
𝑝 again deĄned according to Eq. (B.2). In matrix form this is simply:

Γ(𝑧*, 𝑧) =
1

1 + 𝑧*𝑧

⋃︀

⨄︀
1 𝑧*

𝑧 𝑧𝑧*

⋂︀

⋀︀ (obs: (𝑧𝑧*)ÛÜ = 𝑧Û𝑧
*
Ü). (B.4)

B.1.2 Two-body matrix element

Next we consider the action of a second annihilation operator upon the condensate state

♣𝑁 ; 𝑧♢ Ű employing Eq. (B.3) twice we get:

𝑏𝑠𝑏𝑞♣𝑁 ; 𝑧♢ =
√
𝑁𝜃𝑞 ≤ 𝑏𝑠♣𝑁 ⊗ 1; 𝑧♢ =

√︁

𝑁(𝑁 ⊗ 1) 𝜃𝑞𝜃𝑠♣𝑁 ⊗ 2; 𝑧♢.

This immediately gives the coherent-stateŠs mean-value for the two-body interaction term:

⟨𝑧♣𝑏†
𝑝𝑏

†
𝑟𝑏𝑠𝑏𝑞♣𝑧⟩ = 𝑁(𝑁 ⊗ 1)𝜃𝑞𝜃𝑠𝜃

*
𝑟𝜃

*
𝑝

¶𝑁 ⊗ 2; 𝑧♣𝑁 ⊗ 2; 𝑧♢
¶𝑁 ; 𝑧♣𝑁 ; 𝑧♢ = 𝑁(𝑁 ⊗ 1)

𝜃𝑞𝜃𝑠𝜃
*
𝑟𝜃

*
𝑝

(1 + 𝑧*𝑧)2
,

which can be simply expressed in terms of the one-body density:

⟨𝑧♣𝑏†
𝑝𝑏

†
𝑟𝑏𝑠𝑏𝑞♣𝑧⟩ = 𝑁(𝑁 ⊗ 1) Γ𝑞𝑝Γ𝑠𝑟 = 𝑁(𝑁 ⊗ 1) Γ𝑞𝑟Γ𝑠𝑝. (B.5)

B.1.3 Gradients of the density matrix

For completeness we also list the gradients of the density matrix which are required in

deriving the bosonic mean-Ąeld equations of motion. Straightforward differentiation with

respect to components of the complex vector 𝑧 yields:

𝜕Γ00

𝜕𝑧Ü
= ⊗ 𝑧*

Ü

(1 + 𝑧*𝑧)2
, (B.6a)

𝜕Γ0Ö′

𝜕𝑧Ü
= ⊗ 𝑧*

Ü𝑧
*
Ö′

(1 + 𝑧*𝑧)2
, (B.6b)

𝜕ΓÖ0

𝜕𝑧Ü
=

(1 + 𝑧*𝑧)ÓÜÖ ⊗ 𝑧*
Ü𝑧Ö

(1 + 𝑧*𝑧)2
=
¶(𝐼𝑑 + 𝑧𝑧*)⊗1♢ÖÜ

1 + 𝑧*𝑧
, (B.6c)

𝜕ΓÖÖ′

𝜕𝑧Ü
=
𝑧*
Ö′ [(1 + 𝑧*𝑧)ÓÜÖ ⊗ 𝑧*

Ü𝑧Ö]

(1 + 𝑧*𝑧)2
=
𝑧*
Ö′¶(𝐼𝑑 + 𝑧𝑧*)⊗1♢ÖÜ

1 + 𝑧*𝑧
. (B.6d)
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Similarly, differentiation with respect to 𝑧* leads to:

𝜕Γ00

𝜕𝑧*
Ü

= ⊗ 𝑧Ü
(1 + 𝑧*𝑧)2

, (B.7a)

𝜕Γ0Ö′

𝜕𝑧*
Ü

=
(1 + 𝑧*𝑧)ÓÜÖ′ ⊗ 𝑧Ü𝑧*

Ö′

(1 + 𝑧*𝑧)2
=
¶(𝐼𝑑 + 𝑧𝑧*)⊗1♢ÜÖ′

1 + 𝑧*𝑧
, (B.7b)

𝜕ΓÖ0

𝜕𝑧*
Ü

= ⊗ 𝑧Ü𝑧Ö
(1 + 𝑧*𝑧)2

, (B.7c)

𝜕ΓÖÖ′

𝜕𝑧*
Ü

=
[(1 + 𝑧*𝑧)ÓÜÖ′ ⊗ 𝑧Ü𝑧*

Ö′ ]𝑧Ö
(1 + 𝑧*𝑧)2

=
¶(𝐼𝑑 + 𝑧𝑧*)⊗1♢ÜÖ′𝑧Ö

1 + 𝑧*𝑧
. (B.7d)

In these sets of equations the identity (2.40) has been used in recognizing the elements of

the inverse matrix (𝐼𝑑 + 𝑧𝑧*)⊗1.

B.2 Normalization of the bosonic closure relation

The constant Ù that normalizes the bosonic closure relation, is most easily computed by

sandwiching the identity (1.59) with the reference state ♣Φ0⟩; since ⟨Φ0♣𝑧♢ = 1 we get:

Ù⊗1 =
∫︁

[
√︂

Û(𝑑2𝑧Û/Þ)] det 𝑔(𝑧*, 𝑧)𝑒⊗𝑓(𝑧*,𝑧).

Using the determinant given in Eq. (2.38), together with 𝑒⊗𝑓(𝑧*,𝑧) = (1 + 𝑧*𝑧)⊗𝑁 , we get

a simpliĄed expression for Ù:

Ù⊗1 = 𝑁𝐾⊗1 × Þ⊗𝐾+1
∫︁

(𝑑2𝑧1𝑑
2𝑧2 . . . 𝑑

2𝑧𝐾⊗1)(1 + 𝑧*𝑧)⊗(𝐾+𝑁). (B.8)

Since a similar integral also comes up in the process of calculating the closureŠs nor-

malization constant in the fermionic case, we will Ąnd convenient to deĄne:

ℐ(𝑚, 𝑙) ⊕ Þ⊗𝑚
∫︁

(𝑑2𝑤1𝑑
2𝑤2 . . . 𝑑

2𝑤𝑚)(1+ ♣𝑤1♣2 + ♣𝑤2♣2 + ≤ ≤ ≤+ ♣𝑤𝑚♣2)⊗𝑙, 𝑙 > 𝑚 ⊙ 1, (B.9)

which accounts for an arbitrary number of complex variables 𝑚 and exponent 𝑙 > 𝑚 (this

last condition assures convergence).

The integral (B.9) is solved by changing to real variables (𝑢, 𝜙) deĄned as: 𝑤Û =
√
𝑢Û𝑒

𝑖𝜙µ , (for 1 ⊘ Û ⊘ 𝑚), with each 𝑢 ranging from 0 to ∞ and each 𝜙 ranging from 0

to 2Þ. The angular integrals are trivial, with Þ⊗𝑚 times the transformationŠs Jacobian

canceling the 2Þ factors; meanwhile the radial part can be solved through the following
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recursive technique:

ℐ(𝑚, 𝑙) =
∫︁

𝑑𝑢𝑚 . . .
∫︁

𝑑𝑢1(1 + 𝑢1 + . . .+ 𝑢𝑚)⊗𝑙

=
∫︁

𝑑𝑢𝑚 . . .
∫︁

𝑑𝑢2

⎟

⊗(1 + 𝑢1 + . . .+ 𝑢𝑚)⊗(𝑙⊗1)

(𝑙 ⊗ 1)

]︃𝑢1=∞

𝑢1=0

= (𝑙 ⊗ 1)⊗1
∫︁

𝑑𝑢𝑚 . . .
∫︁

𝑑𝑢2(1 + 𝑢2 + . . .+ 𝑢𝑚)⊗(𝑙⊗1)

= [(𝑙 ⊗ 1)(𝑙 ⊗ 2)]⊗1
∫︁

𝑑𝑢𝑚 . . .
∫︁

𝑑𝑢3(1 + 𝑢3 + . . .+ 𝑢𝑚)⊗(𝑙⊗2)

= [(𝑙 ⊗ 1)(𝑙 ⊗ 2) . . . (𝑙 ⊗𝑚+ 1)]⊗1
∫︁

𝑑𝑢𝑚(1 + 𝑢𝑚)⊗(𝑙⊗𝑚+1)

= [(𝑙 ⊗ 1)(𝑙 ⊗ 2) . . . (𝑙 ⊗𝑚)]⊗1,

hence establishing the desired identity:

ℐ(𝑚, 𝑙) =
(𝑙 ⊗𝑚⊗ 1)!

(𝑙 ⊗ 1)!
. (B.10)

In Eq. (B.8) we have the case 𝑚 = 𝐾 ⊗ 1 and 𝑙 = 𝐾 +𝑁 ; thus:

Ù =
(𝑁 +𝐾 ⊗ 1)!

𝑁𝐾⊗1𝑁 !
, (B.11)

which is the result we were seeking.

It is interesting to examine the behavior of Ù for large 𝑁 ; abbreviating 𝑑 = 𝐾 ⊗ 1,

taking the logarithm and employing StirlingŠs formula we Ąnd:

log Ù = log(𝑁 + 𝑑)!⊗ log𝑁 !⊗ log𝑁𝑑

≡ (𝑁 + 𝑑) log(𝑁 + 𝑑)⊗ (𝑁 + 𝑑)⊗𝑁 log𝑁 +𝑁 ⊗ 𝑑 log𝑁 (for 𝑁 ⪰ 1)

= 𝑁

(︃

1 +
𝑑

𝑁

⎜

log

(︃

1 +
𝑑

𝑁

⎜

⊗ 𝑑 ≡ 𝑑2

𝑁
=

(𝐾 ⊗ 1)2

𝑁
. (for 𝑁 ⪰ 𝐾)

We thus see that, in the limit𝑁 ⪰ 𝐾, Ślog ÙŠ goes to zero, meaning that Ù itself approaches

unit:

Ù⊃ 1 for 𝑁 ⪰ 𝐾. (B.12)

This conclusion applies to the thermodynamic limit, when 𝑁 ⊃∞ (with 𝐾 Ąnite).77
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B.3 Fock projection of a condensate state

In deriving the Fock projection of a bosonic coherent state we shall rely heavily on the

following identity, valid for any two operators whose commutator is proportional to the

identity operator through a complex number 𝑐:78

if [𝐴, 𝐵̂] = 𝑐 1̂ and 𝑛,𝑚 ⊙ 1 ⇒ [𝐴𝑚, 𝐵̂𝑛] =
min(𝑛,𝑚)

∑︁

𝑘=1

𝑘! 𝑐𝑘
(︃

𝑚

𝑘

⎜(︃

𝑛

𝑘

⎜

𝐵̂𝑛⊗𝑘 𝐴𝑚⊗𝑘. (B.13)

The identity holds when considering the annihilators 𝑏0, 𝑏1, . . . , 𝑏𝑑, of the 𝐾 single-particle

modes that span the bosonic Fock space (recall: 𝑑 = 𝐾 ⊗ 1) together with the creation

operator Õ†
0 of the condensateŠs macroscopic mode, since [𝑏0, Õ

†
0] = 1 and [𝑏Ü , Õ

†
0] = 𝑧Ü , for

Ü = 1, . . . , 𝑑. Thus, for any 𝑚0,𝑚Ü ⊙ 1, Eq. (B.13) gives:

𝑏𝑚0

0 (Õ†
0)𝑛 =

𝑛!

(𝑛⊗𝑚0)!
(Õ†

0)𝑛⊗𝑚0 + (Õ†
0)𝑛𝑏𝑚0

0 +
min(𝑛,𝑚0)

∑︁

𝑘 ̸=𝑚0

𝑘!

(︃

𝑚0

𝑘

⎜(︃

𝑛

𝑘

⎜

(Õ†
0)𝑛⊗𝑘𝑏𝑚0⊗𝑘

0 ,

𝑏𝑚ν

Ü (Õ†
0)𝑛 =

𝑛! 𝑧𝑚ν
Ü

(𝑛⊗𝑚Ü)!
(Õ†

0)𝑛⊗𝑚ν + (Õ†
0)𝑛𝑏𝑚ν

Ü +
min(𝑛,𝑚ν)

∑︁

𝑘 ̸=𝑚ν

𝑘! 𝑧𝑘Ü

(︃

𝑚Ü

𝑘

⎜(︃

𝑛

𝑘

⎜

(Õ†
0)𝑛⊗𝑘𝑏𝑚ν⊗𝑘

Ü .

These expressions have been organized in a suggestive way: in both formulas, the Ąrst

term on the right-hand side, which has been singled-out from the summation, is free

of annihilation operators; the remaining terms, in turn, display rightmost annihilators.

This means that the products on the left-hand side, when acting on the vacuum, give a

straightforward result:

𝑏𝑚0

0 (Õ†
0)𝑛♣0⟩ =

𝑛!

(𝑛⊗𝑚0)!
(Õ†

0)𝑛⊗𝑚0♣0⟩, (B.14a)

𝑏𝑚ν

Ü (Õ†
0)𝑛♣0⟩ =

𝑛! 𝑧𝑚ν
Ü

(𝑛⊗𝑚Ü)!
(Õ†

0)𝑛⊗𝑚ν ♣0⟩, (B.14b)

that is also explicitly valid for the trivial cases, 𝑚0 = 0 and 𝑚Ü = 0.

In order to compute the projection of the non-normalized coherent state ♣𝑧♢ = 1√
𝑁 !

(Õ†
0)𝑁 ♣0⟩

onto the occupation number eigenstate

♣𝑚⟩ = ♣𝑚0,𝑚1,𝑚2, . . . ,𝑚𝑑⟩ =
(𝑏†

0)
𝑚0(𝑏†

1)
𝑚1(𝑏†

2)
𝑚2 . . . (𝑏†

𝑑)
𝑚d

√
𝑚0!𝑚1!𝑚2! . . . 𝑚𝑑!

♣0⟩, 𝑁 =
𝑑∑︁

𝑗=0

𝑚𝑗,



210

all we have to do is employ Eqs. (B.14a) and (B.14b) recursively, as follows:

√︁

𝑚0! . . . 𝑚𝑑! ⟨𝑚♣𝑧♢ = 1√
𝑁 !
⟨0♣(𝑏𝑚d

𝑑 ≤ ≤ ≤ 𝑏𝑚1

1 ) ≤ 𝑏𝑚0

0 (Õ†
0)𝑁 ♣0⟩

=
1√
𝑁 !

𝑁 !

(𝑁 ⊗𝑚0)!
⟨0♣(𝑏𝑚d

𝑑 ≤ ≤ ≤ 𝑏𝑚2

2 ) ≤ 𝑏𝑚1

1 (Õ†
0)𝑁⊗𝑚0 ♣0⟩

=

√
𝑁 !

(𝑁 ⊗𝑚0)!

(𝑁 ⊗𝑚0)! 𝑧
𝑚1

1

(𝑁 ⊗𝑚0 ⊗𝑚1)!
⟨0♣(𝑏𝑚d

𝑑 ≤ ≤ ≤ 𝑏𝑚3

3 ) ≤ 𝑏𝑚2

2 (Õ†
0)𝑁⊗𝑚0⊗𝑚1♣0⟩

=

√
𝑁 ! 𝑧𝑚1

1 𝑧𝑚2

2

(𝑁 ⊗𝑚0 ⊗𝑚1 ⊗𝑚2)!
⟨0♣(𝑏𝑚d

𝑑 ≤ ≤ ≤ 𝑏𝑚4

4 ) ≤ 𝑏𝑚3

3 (Õ†
0)𝑁⊗𝑚0⊗𝑚1⊗𝑚2♣0⟩

...

=

√
𝑁 ! 𝑧𝑚1

1 𝑧𝑚2

2 ≤ ≤ ≤ 𝑧𝑚d

𝑑

(𝑁 ⊗𝑚0 ⊗ . . .⊗𝑚𝑑)!
⟨0♣(Õ†

0)𝑁⊗𝑚0⊗...⊗𝑚d ♣0⟩ =
√
𝑁 ! 𝑧𝑚1

1 𝑧𝑚2

2 ≤ ≤ ≤ 𝑧𝑚d

𝑑

Ű hence the projection is:

⟨𝑚♣𝑧♢ =

(︃

𝑁 !

𝑚0!𝑚1! ≤ ≤ ≤ 𝑚𝑑!

⎜ 1

2

𝑧𝑚1

1 𝑧𝑚2

2 ≤ ≤ ≤ 𝑧𝑚d

𝑑 , (B.15)

and the complete expansion for a normalized coherent state ♣𝑧⟩ reads:

♣𝑧⟩ =
∑︁

♣𝑚♣=𝑁
♣𝑚0,𝑚1, . . . ,𝑚𝑑⟩

√
𝑁 ! (1 + 𝑧*𝑧)⊗ N

2

𝑧𝑚1

1 𝑧𝑚2

2 . . . 𝑧𝑚d

𝑑√
𝑚0!𝑚1! ≤ ≤ ≤ 𝑚𝑑!

. (B.16)

Check. The overlap between bosonic coherent states expressed in Eq. (2.25), which

was previously computed by second-quantization techniques, can be obtained at once

from (B.15); using the completeness of the occupation number states we have:

¶𝑧♣𝑧′♢ =
∑︁

♣𝑚♣=𝑁
¶𝑧♣𝑚0, . . . ,𝑚𝑑⟩⟨𝑚0, . . . ,𝑚𝑑♣𝑧′♢

=
∑︁

♣𝑚♣=𝑁

(︃

𝑁

𝑚0 ≤ ≤ ≤𝑚𝑑

⎜
[︁

1𝑚0 ≤ (𝑧*
1𝑧

′
1)
𝑚1(𝑧*

2𝑧
′
2)
𝑚2 ≤ ≤ ≤ (𝑧*

𝑑𝑧
′
𝑑)
𝑚d

]︁

= (1 + 𝑧*
1𝑧

′
1 + 𝑧*

2𝑧
′
2 + . . .+ 𝑧*

𝑑𝑧
′
𝑑)
𝑁 = (1 + 𝑧*𝑧′)𝑁 ,

where the multinomial theorem has been used in reverse in the last passage.
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Appendix C

Fermionic coherent states: survey

C.1 Thouless density matrix

Let us start by systematically expressing anti-commutation rules (3.24) in terms of a

rectangular matrix 𝜃 of size 𝐾 ×𝑁 :

¶𝑐𝑝, Õ†
Ð♢ = 𝜃𝑝Ð, 𝜃 =

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀ . (C.1)

It also proves convenient to introduce the matrix 𝜚,

𝜚 ⊕ (𝐼𝑁 + 𝑧†𝑧), ¶𝑧♣𝑧♢ = det 𝜚, (C.2)

whose determinant is precisely the overlap between two non-normalized Thouless states.

C.1.1 One-body density

Let us evaluate the action of an annihilator 𝑐𝑝 upon ♣𝑧♢ = Õ†
1Õ

†
2 ≤ ≤ ≤ Õ†

𝑁 ♣0⟩; using (C.1) we

obtain:

𝑐𝑞♣𝑧♢ =
∑︀

Ò𝜃𝑞Ò(⊗)Ò⊗1(. . . [Õ†
Ò] . . .)♣0⟩,

¶𝑧♣𝑐†
𝑝 =

∑︀

Ò′⟨0♣(. . . [ÕÒ′ ] . . .)(⊗)Ò
′⊗1𝜃*

𝑝Ò′ ,

where a special notation is introduced to indicate those operators left out of a given

product, i.e. (. . . [Õ†
Ò] . . .) ⊕ Õ†

1 . . . Õ
†
Ò⊗1Õ

†
Ò+1 . . . Õ

†
𝑁 and (. . . [ÕÒ] . . .) ⊕ Õ𝑁 . . . ÕÒ+1ÕÒ⊗1 . . . Õ1.

The latter formulas enable calculation of the mean-value ¶𝑧♣𝑐†
𝑝𝑐𝑞♣𝑧♢; the sequence of
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steps is depicted below:

¶𝑧♣𝑐†
𝑝𝑐𝑞♣𝑧♢ =

∑︀

ÒÒ′(𝜃𝑞Ò𝜃
*
𝑝Ò′)⟨0♣(. . . [ÕÒ′ ] . . .)(. . . [Õ†

Ò] . . .)♣0⟩(⊗)Ò+Ò′

=
∑︀

ÒÒ′(𝜃𝑞Ò𝜃
*
𝑝Ò′)Minor(𝜚)Ò′;Ò(⊗)Ò+Ò′

=
∑︀

ÒÒ′(𝜃𝑞Ò𝜃
*
𝑝Ò′)(det 𝜚)𝜚⊗1

ÒÒ′

= ¶𝑧♣𝑧♢∑︀ÒÒ′𝜃𝑞Ò𝜚
⊗1
ÒÒ′𝜃

†
Ò′𝑝. (C.3)

Here, ŚMinor(𝜚)Ò′;ÒŠ denotes the determinant of the sub-matrix of 𝜚 obtained by removal of

line Ò′ and column Ò; in going from the second to the third line we made use of ŚCramerŠs

ruleŠ,

Minor(𝐴)𝑖;𝑗 = (det𝐴)(𝐴⊗1)𝑗𝑖(⊗)𝑖+𝑗,

which holds for any invertible matrix 𝐴; at the last passage, Śdet 𝜚Š has been identiĄed as

the coherent-state overlap ¶𝑧♣𝑧♢.
Finally, substitution of Eqs. (C.1) and (C.2) into (C.3) yields the desired result:

Γ𝑞𝑝(𝑧
*, 𝑧) = ⟨𝑧♣𝑐†

𝑝𝑐𝑞♣𝑧⟩ =
∑︀

ÒÒ′𝜃𝑞Ò𝜚
⊗1
ÒÒ′𝜃

†
Ò′𝑝 =

⎧

⨄︁

⋃︁

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀ (𝐼𝑁 + 𝑧†𝑧)⊗1
[︁

𝐼𝑁 𝑧†
]︁

⎫

⋀︁

⋂︁

𝑞𝑝

. (C.4)

C.1.2 Two-body matrix element

In order to compute the two-body mean-value ¶𝑧♣𝑐†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞♣𝑧♢ a similar reasoning is em-

ployed. We begin by establishing the relations:

𝑐𝑠𝑐𝑞♣𝑧♢ =
∑︀

ÒÓ𝜃𝑠Ó𝜃𝑞Ò[∘Ò>ÓÒ<Ó](⊗)Ò+Ó(. . . [Õ†
ÓÕ

†
Ò] . . .)♣0⟩, (C.5)

¶𝑧♣𝑐†
𝑝𝑐

†
𝑟 =

∑︀

Ò′Ó′⟨0♣(. . . [ÕÒ′ÕÓ′ ] . . .)[∘Ò′>Ó′

Ò′<Ó′ ](⊗)Ò
′+Ó′

𝜃*
𝑝Ò′𝜃*

𝑟Ó′ , (C.6)

which, of course, presuppose 𝑠 ̸= 𝑞 and 𝑝 ̸= 𝑟; the notation (. . . [ÕÒ′ÕÓ′ ] . . .) means that

both ÕÒ′ and ÕÓ′ are absent from the product. There is now one additional detail to be

accounted for: in (C.5), the second annihilation operator to act upon ♣𝑧♢, while making its

way towards the vacuum state, will have to go over a gap left in the product of Õ†Šs due to

the action of the Ąrst operator, and hence an extra negative sign appears which depends

on the orbital indexations; this is why a new symbol is introduced, [∘Ò>ÓÒ<Ó], meaning (+1)

if Ò > Ó and (⊗1) if Ò < Ó. Similar considerations apply to (C.6).

With the help of these new relations we are able to perform the following manipula-
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tions:

¶𝑧♣𝑐†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞♣𝑧♢ =

∑︀

Ò′Ó′ÓÒ(𝜃
*
𝑝Ò′𝜃*

𝑟Ó′𝜃𝑠Ó𝜃𝑞Ò)[∘Ò>ÓÒ<Ó][∘Ò
′>Ó′

Ò′<Ó′ ]⟨0♣≤ [ÕÒ′ÕÓ′ ]≤ [Õ†
ÓÕ

†
Ò]≤ ♣0⟩(⊗)Ò+Ò′+Ó+Ó′

=
∑︀

Ò′Ó′ÓÒ(𝜃
*
𝑝Ò′𝜃*

𝑟Ó′𝜃𝑠Ó𝜃𝑞Ò)[∘Ò>ÓÒ<Ó][∘Ò
′>Ó′

Ò′<Ó′ ]Minor(𝜚)Ó′Ò′;ÓÒ(⊗)Ò+Ò′+Ó+Ó′

=
∑︀

Ò′Ó′ÓÒ(𝜃
*
𝑝Ò′𝜃*

𝑟Ó′𝜃𝑠Ó𝜃𝑞Ò)(det 𝜚)(𝜚⊗1
ÓÓ′𝜚⊗1

ÒÒ′ ⊗ 𝜚⊗1
ÓÒ′𝜚⊗1

ÒÓ′)

= ¶𝑧♣𝑧♢
[︁

(
∑︀

ÒÒ′𝜃𝑞Ò𝜚
⊗1
ÒÒ′𝜃

†
Ò′𝑝)(

∑︀

ÓÓ′𝜃𝑠Ó𝜚
⊗1
ÓÓ′𝜃

†
Ó′𝑟) . . .

⊗ (
∑︀

ÒÓ′𝜃𝑞Ò𝜚
⊗1
ÒÓ′𝜃

†
𝑟Ó′)(

∑︀

ÓÒ′𝜃𝑠Ó𝜚
⊗1
ÓÒ′𝜃

†
𝑝Ò′)

]︁

= ¶𝑧♣𝑧♢(Γ𝑞𝑝Γ𝑠𝑟 ⊗ Γ𝑞𝑟Γ𝑠𝑝). (C.7)

At the second line, ŚMinor(𝜚)Ó′Ò′;ÓÒŠ stands for the determinant of the sub-matrix of 𝜚

obtained by removing the pair of lines Ó′, Ò′ and the pair of columns Ó, Ò; in going from

the second to the third line we made use of the identityi

[∘𝑖>𝑗𝑖<𝑗][∘𝑘>𝑙𝑘<𝑙]Minor[𝐴(𝑖,𝑗);(𝑘,𝑙)] = (det𝐴)[(𝐴⊗1)𝑘𝑖(𝐴
⊗1)𝑙𝑗 ⊗ (𝐴⊗1)𝑘𝑗(𝐴

⊗1)𝑙𝑖](⊗)𝑖+𝑗+𝑘+𝑙;

then, after collecting terms, we recognize at the last passage the one-body density matri-

cesŠ elements.

From (C.7) we immediately arrive at the result:

⟨𝑧♣𝑐†
𝑝𝑐

†
𝑟𝑐𝑠𝑐𝑞♣𝑧⟩ = Γ𝑞𝑝Γ𝑠𝑟 ⊗ Γ𝑞𝑟Γ𝑠𝑝. (C.8)

C.1.3 Gradients of the density matrix

Gradients of Γ(𝑧*, 𝑧) with respect to either 𝑧* or 𝑧 are more easily computed if, instead

of directly differentiating its explicit form (C.4), we start from the bare deĄnition of ♣𝑧♢
and note that:

♣𝑧♢ = exp
(︁∑︁

Ñ

∑︁

Ü

𝑧ÜÑ𝑏
†
Ü𝑎Ñ

)︁

♣Φ0⟩ ⇒
𝜕♣𝑧♢
𝜕𝑧ÛÐ

= 𝑏†
Û𝑎Ð♣𝑧♢,

𝜕¶𝑧♣
𝜕𝑧*

ÛÐ

= ¶𝑧♣𝑎†
Ð𝑏Û. (C.9)

iBoth determinantal identities employed in this section are particular cases of the ‘generalized Cramers’
rule’.
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Thus if the derivative of element Γ𝑞𝑝 with respect to 𝑧*
ÛÐ is to be taken, it is possible, with

help of the above relations, to proceed as follows:

𝜕Γ𝑞𝑝
𝜕𝑧*

ÛÐ

=
𝜕¶𝑧♣
𝜕𝑧*

ÛÐ

𝑐†
𝑝𝑐𝑞♣𝑧♢
¶𝑧♣𝑧♢ ⊗

¶𝑧♣𝑐†
𝑝𝑐𝑞♣𝑧♢
¶𝑧♣𝑧♢2

𝜕¶𝑧♣
𝜕𝑧*

ÛÐ

♣𝑧♢

= ⟨𝑧♣𝑎†
Ð𝑏Û𝑐

†
𝑝𝑐𝑞♣𝑧⟩ ⊗ ⟨𝑧♣𝑐†

𝑝𝑐𝑞♣𝑧⟩⟨𝑧♣𝑎†
Ð𝑏Û♣𝑧⟩

= ⟨𝑧♣𝑎†
Ð¶𝑏Û, 𝑐†

𝑝♢𝑐𝑞♣𝑧⟩+ ⟨𝑧♣𝑐†
𝑝𝑎

†
Ð𝑏Û𝑐𝑞♣𝑧⟩ ⊗ ⟨𝑧♣𝑐†

𝑝𝑐𝑞♣𝑧⟩⟨𝑧♣𝑎†
Ð𝑏Û♣𝑧⟩

= Γ𝑞Ð𝐼Û𝑝 + (Γ𝑞𝑝ΓÛÐ ⊗ Γ𝑞ÐΓÛ𝑝)⊗ Γ𝑞𝑝ΓÛÐ

= Γ𝑞Ð(𝐼Û𝑝 ⊗ ΓÛ𝑝), (C.10)

where 𝐼 stands for the 𝐾×𝐾 identity matrix (with 𝐼Û𝑝 =
{︁[︁

0 𝐼𝑀
]︁}︁

Û𝑝
) and the two-body

matrix element at the third line has been replaced by the result (C.8). In matrix form

Eq. (C.10) reads:

𝜕Γ𝑞𝑝
𝜕𝑧*

ÛÐ

=

⎧

⨄︁

⋃︁

⋃︀

⨄︀
Γ11

Γ21

⋂︀

⋀︀

⎫

⋀︁

⋂︁

𝑞Ð

≤
{︁[︁

⊗Γ21 (𝐼𝑀 ⊗ Γ22)
]︁}︁

Û𝑝
. (C.11)

Rewriting the blocks of Γ according to

Γ11 = (𝐼𝑁 + 𝑧†𝑧)⊗1,

Γ21 = 𝑧(𝐼𝑁 + 𝑧†𝑧)⊗1 = (𝐼𝑀 + 𝑧𝑧†)⊗1𝑧,

Γ22 = 𝑧(𝐼𝑁 + 𝑧†𝑧)⊗1𝑧† = 𝐼𝑀 ⊗ (𝐼𝑀 + 𝑧𝑧†)⊗1,

and rearranging terms, we are Ąnally able to express the result in its most useful form:

𝜕Γ𝑞𝑝
𝜕𝑧*

ÛÐ

=

⎧

⨄︁

⋃︁

⋃︀

⨄︀
𝐼𝑁

𝑧

⋂︀

⋀︀ (𝐼𝑁 + 𝑧†𝑧)⊗1

⎫

⋀︁

⋂︁

𝑞Ð

≤
{︁

(𝐼𝑀 + 𝑧𝑧†)⊗1
[︁

⊗𝑧 𝐼𝑀
]︁}︁

Û𝑝
. (C.12)

The procedure works similarly if differentiation is with respect to 𝑧ÛÐ; alternatively

one may use the hermitian property of Γ to establish the relation

𝜕Γ𝑞𝑝
𝜕𝑧ÛÐ

=

(︃

𝜕Γ𝑝𝑞
𝜕𝑧*

ÛÐ

⎜*
,

and hence conclude from (C.12) that:

𝜕Γ𝑞𝑝
𝜕𝑧ÛÐ

=

⎧

⨄︁

⋃︁

⋃︀

⨄︀
⊗𝑧†

𝐼𝑀

⋂︀

⋀︀ (𝐼𝑀 + 𝑧𝑧†)⊗1

⎫

⋀︁

⋂︁

𝑞Û

≤
{︁

(𝐼𝑁 + 𝑧†𝑧)⊗1
[︁

𝐼𝑁 𝑧†
]︁}︁

Ð𝑝
. (C.13)
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C.2 Normalization of the fermionic closure relation

In the same manner as in the bosonic case (cf. B.2), the normalization constant for the

fermionic closure relation is computed by sandwiching the identity with the reference state

♣Φ0⟩:
Ù⊗1 =

∫︁

[
√︂

Ð

√︂

Û(𝑑2𝑧ÛÐ/Þ)] det 𝑔(𝑧*, 𝑧)𝑒⊗𝑓(𝑧*,𝑧).

The metric (3.42) can be written in direct product form:

𝑔 = (𝐼𝑀 + 𝑧𝑧†)⊗1 · (𝐼𝑁 + 𝑧†𝑧)⊗1,

and by means of the identity: det(𝐴·𝐵) = (det𝐴)𝑚(det𝐵)𝑛, valid for arbitrary matrices

𝐴 and 𝐵 of sizes 𝑛× 𝑛 and 𝑚×𝑚, respectively, we conclude that:

det 𝑔 = [det(𝐼𝑀 + 𝑧𝑧†)]⊗𝑁 [det(𝐼𝑁 + 𝑧𝑧†)]⊗𝑀 = [det(𝐼𝑁 + 𝑧†𝑧)]⊗𝐾 , (C.14)

where SylvesterŠs determinant theorem has been employed (viz. arguments leading to

Eq. (2.38) at Chapter 2). Then since 𝑒⊗𝑓(𝑧*,𝑧) = [det(𝐼𝑁 + 𝑧†𝑧)]⊗1 we have:

Ù⊗1 =
∫︁

[
√︂

Ð

√︂

Û(𝑑2𝑧ÛÐ/Þ)][det(𝐼𝑁 + 𝑧†𝑧)]⊗(𝐾+1). (C.15)

The integration is going to be carried out through a systematic change of variables,

which involves manipulation of individual columns of the 𝑀 × 𝑁 matrix 𝑧. For this

purpose it is convenient to introduce new notation; denoting by 𝑣Ð the Ð-th column of 𝑧

we write this matrix as:

𝑧 = [𝑣1, 𝑣2, . . . , 𝑣𝑁 ], (C.16)

with an obvious meaning. Furthermore, we introduce 𝑁 rectangular matrices á deĄned

according to the recipe:

áÐ ⊕ [𝑣Ð, 𝑣Ð+1, . . . , 𝑣𝑁 ] , 1 ⊘ Ð ⊘ 𝑁 ; (C.17)

i.e. áÐ is the sub-matrix of 𝑧 constructed by removing columns 1 to Ð ⊗ 1. Thus á1 = 𝑧

is of size 𝑀 × 𝑁 ; then á2 is a matrix of size 𝑀 × (𝑁 ⊗ 1), and so on; the last matrix

á𝑁 = 𝑣𝑁 is just a vector of size 𝑀 × 1.

Using this new notation, expression (C.15) reads:

Ù⊗1 =
∫︁

[
√︂𝑁
Ð=1(Þ

⊗𝑀 𝑑2𝑀𝑣Ð)][det(𝐼𝑁 + á †
1á1)]

⊗𝑠 with 𝑠 ⊕ 𝐾 + 1, (C.18)

where the determinantŠs exponent has been abbreviated to 𝑠. A sequential transformation
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of variables 𝑣 ⊃ 𝑤 that disentangles the integral is the one given below:

⎧

⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑤1 = (𝐼𝑀 + [𝑣2, . . . , 𝑣𝑁 ][𝑣2, . . . , 𝑣𝑁 ]†)⊗ 1

2𝑣1 = (𝐼𝑀 + á2á
†
2)⊗ 1

2𝑣1

𝑤2 = (𝐼𝑀 + [𝑣3, . . . , 𝑣𝑁 ][𝑣3, . . . , 𝑣𝑁 ]†)⊗ 1

2𝑣2 = (𝐼𝑀 + á3á
†
3)⊗ 1

2𝑣2

...

𝑤𝑁⊗2 = (𝐼𝑀 + [𝑣𝑁⊗1, 𝑣𝑁 ][𝑣𝑁⊗1, 𝑣𝑁 ]†)⊗ 1

2𝑣𝑁⊗2 = (𝐼𝑀 + á𝑁⊗1á
†
𝑁⊗1)

⊗ 1

2𝑣𝑁⊗2

𝑤𝑁⊗1 = (𝐼𝑀 + 𝑣𝑁𝑣
*
𝑁)⊗ 1

2𝑣𝑁⊗1 = (𝐼𝑀 + á𝑁á
†
𝑁)⊗ 1

2𝑣𝑁⊗1

𝑤𝑁 = 𝑣𝑁

. (C.19)

Its inverse can be computed by the algorithm:

⎧

⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑣𝑁 = 𝑤𝑁

𝑣𝑁⊗1 = (𝐼𝑀 + 𝑣𝑁𝑣
*
𝑁)

1

2𝑤𝑁⊗1 = (𝐼𝑀 + á𝑁á
†
𝑁)

1

2𝑤𝑁⊗1

𝑣𝑁⊗2 = (𝐼𝑀 + [𝑣𝑁⊗1, 𝑣𝑁 ][𝑣𝑁⊗1, 𝑣𝑁 ]†)
1

2𝑤𝑁⊗2 = (𝐼𝑀 + á𝑁⊗1á
†
𝑁⊗1)

1

2𝑤𝑁⊗2

...

𝑣2 = (𝐼𝑀 + [𝑣3, . . . , 𝑣𝑁 ][𝑣3, . . . , 𝑣𝑁 ]†)
1

2𝑤2 = (𝐼𝑀 + á3á
†
3)

1

2𝑤2

𝑣1 = (𝐼𝑀 + [𝑣2, . . . , 𝑣𝑁 ][𝑣2, . . . , 𝑣𝑁 ]†)
1

2𝑤1 = (𝐼𝑀 + á2á
†
2)

1

2𝑤1

(C.20)

Ű notice that operations must be performed according to the indicated order.

The trick is to change variables one at a time Ű starting with the 𝑣1 subspace:

Ù⊗1 =
∫︁

[
√︂𝑁
Ð=2(Þ

⊗𝑀 𝑑2𝑀𝑣Ð)] ≤
∫︁

(Þ⊗𝑀 𝑑2𝑀𝑣1)[det(𝐼𝑁 + á †
1á1)]

⊗𝑠. (C.21)

Noticing that

𝐼𝑁 + á †
1á1 =

⋃︀

⨄︀
1 + 𝑣*

1𝑣1 𝑣*
1á2

á †
2𝑣1 𝐼𝑁⊗1 + á †

2á2

⋂︀

⋀︀ ,

we may, with the help of the identity

det

⋃︀

⨄︀
𝐴 𝐵

𝐶 𝐷

⋂︀

⋀︀ = det𝐷 × det(𝐴⊗𝐵𝐷⊗1𝐶),

separate the integrandŠs determinant as follows:

det(𝐼𝑁 + á †
1á1) = det(𝐼𝑁⊗1 + á †

2á2)× (1 + 𝑣*
1𝑣1 ⊗ 𝑣*

1á2(𝐼𝑁⊗1 + á †
2á2)

⊗1á †
2𝑣1)

= det(𝐼𝑁⊗1 + á †
2á2)× [1 + 𝑣*

1(𝐼𝑀 ⊗ á2(𝐼𝑁⊗1 + á †
2á2)

⊗1á †
2)𝑣1]

= det(𝐼𝑁⊗1 + á †
2á2)× [1 + 𝑣*

1(𝐼𝑀 + á2á
†
2)⊗1𝑣1]

= det(𝐼𝑁⊗1 + á †
2á2)× (1 + 𝑤*

1𝑤1),
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where identities (3.40) have been used, as well as the deĄnition of 𝑤1. Next, we compute

the Jacobian of the 𝑣1 ⊃ 𝑤1 transformation, bearing in mind that all other variables re-

main Ąxed during this integration (this is an important and subtle point of the procedure)

Ű then, since:

(𝜕𝑣1/𝜕𝑤1) = (𝜕𝑤1/𝜕𝑣1)
⊗1 = (𝐼𝑀 + á2á

†
2)

1

2 ,

we have (once more invoking SylvesterŠs theorem):

𝑑2𝑀𝑣1 = ♣ det(𝜕𝑣1/𝜕𝑤1)♣2 𝑑2𝑀𝑤1 = det(𝐼𝑁⊗1 + á †
2á2) 𝑑

2𝑀𝑤1. (C.23)

Combining the above ingredients we Ąnd that the 𝑤1 integral has been successfully dis-

entangled:

Ù⊗1 =
∫︁

[
√︂𝑁
Ð=2(Þ

⊗𝑀 𝑑2𝑀𝑣Ð)][det(𝐼𝑁⊗1 + á †
2á2)]

⊗𝑠+1 ≤
∫︁

(Þ⊗𝑀 𝑑2𝑀𝑤1)(1 +𝑤*
1𝑤1)

⊗𝑠. (C.24)

This integral, in turn, is of the same kind encountered when computing the bosonic

closureŠs normalization constant at ğB.2; in fact, using the formula given in Eq. (B.9), we

see that:
∫︁

(Þ⊗𝑀 𝑑2𝑀𝑤1)(1 + 𝑤*
1𝑤1)

⊗𝑠 = ℐ(𝑀, 𝑠),

which conforms with the condition 𝑠 > 𝑀 ⊙ 1, since 𝑠 = 𝐾 + 1 = 𝑀 +𝑁 + 1.

The thing to be notice is that the same operations used to disentangle this Ąrst integral

can now be applied to the next, and so on. Thus the remaining variables are disentangled,

one at a time, with the exponent 𝑠 decreasing at each step of the iterative process. This

leads to a sequence of simpliĄcations which is delineated below:

Ù⊗1 = ℐ(𝑀, 𝑠) ≤
∫︁

[
√︂𝑁
Ð=2(Þ

⊗𝑀 𝑑2𝑀𝑣Ð)][det(𝐼𝑁⊗1 + á †
2á2)]

⊗(𝑠⊗1)

= ℐ(𝑀, 𝑠) ≤
∫︁

(Þ⊗𝑀𝑑2𝑀𝑤2) (1 + 𝑤*
2𝑤2)

⊗(𝑠⊗1) ≤
∫︁

[
√︂𝑁
Ð=3(Þ

⊗𝑀 𝑑2𝑀𝑣Ð)][det(𝐼𝑁⊗2 + á †
3á3)]

⊗(𝑠⊗2)

...

= ℐ(𝑀, 𝑠) ≤ ℐ(𝑀, 𝑠⊗ 1) ≤ ≤ ≤ ℐ(𝑀, 𝑠⊗𝑁 + 2) ≤
∫︁

[(Þ⊗𝑀 𝑑2𝑀𝑣𝑁)](1 + 𝑤*
𝑁𝑤𝑁)⊗(𝑠⊗𝑁+1)

= ℐ(𝑀, 𝑠) ≤ ℐ(𝑀, 𝑠⊗ 1) ≤ ≤ ≤ ℐ(𝑀, 𝑠⊗𝑁 + 2) ≤ ℐ(𝑀, 𝑠⊗𝑁 + 1). (C.25)

Notice how the convergence condition is respected all the way through the last integral,

where the exponent modulus is (𝑠⊗𝑁 + 1) = 𝑀 + 2, and thus still greater than 𝑀 .

Finally, invoking Eq. (B.10) and reorganizing expression (C.25) we reach the result:

Ù =
𝑁∏︁

𝑛=1

(𝐾 ⊗ 𝑛+ 1)!

(𝑁 ⊗ 𝑛+ 1)!
. (C.26)

Unlike the bosonic case, there is no well-deĄned limit for this normalization constant
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when 𝑁 grows large (recall that the Pauli principle imposes the condition 𝐾 ⊙ 𝑁). A

proper understanding of the classical limit of Thouless states seems to require a more

sophisticated approach; an instructive analysis in this direction is presented be Öhrn and

Deumens in Ref. [76].

C.3 Fock projection of a Thouless state

Any particular 𝑁 -electron Fock state, deĄned over a set of 𝐾 single-particle spin-orbitals,

can be generated from a reference determinant ♣Φ0⟩ by moving 𝑙 electrons from its occupied

to its virtual space. If the size of the virtual space, given by 𝑀 = 𝐾 ⊗𝑁 , is larger than

the number of electrons, then 𝑙 ranges from 0 to 𝑁 (with 𝑙 = 0 the reference state

is recovered).ii Adding up all possible electron reallocations Ű
(︁
𝑁
𝑙

)︁

ways of selecting

electrons from the occupied space orbitals and
(︁
𝑀
𝑙

)︁

ways of placing them into the virtual

space orbitals Ű we Ąnd, with the help of ŚVandermondeŠs identityŠ, a total of

𝑁∑︁

𝑙=0

(︃

𝑁

𝑙

⎜(︃

𝑀

𝑙

⎜

=

(︃

𝐾

𝑁

⎜

(C.27)

possible states, in agreement with the fact that
(︁
𝐾
𝑁

)︁

is precisely the dimension of the Fock

space.

Fock conĄgurations may be labeled by simply listing their Ąlled orbitals; in order to

distinguish between those orbitals belonging to the occupied and virtual spaces of ♣Φ0⟩,
we introduce ordered arrays 𝑥 and 𝑦, whose respective lengths are 𝑁 ⊗ 𝑙 and 𝑙,

1 ⊘ (𝑥1 < 𝑥2 < ≤ ≤ ≤ < 𝑥𝑁⊗𝑙) ⊘ 𝑁, 1 ⊘ (𝑦1 < 𝑦2 < ≤ ≤ ≤ < 𝑦𝑙) ⊘𝑀, (C.28)

with 𝑥 being a member of the set 𝐶𝑁
𝑁⊗𝑙, of all possible combinations of 𝑁 objects taken

𝑁⊗𝑙 at a time; and 𝑦, similarly, being a member of the set 𝐶𝑀
𝑙 , of all possible combination

of 𝑀 objects taken 𝑙 at a time. Using this scheme we may write any given occupation

number eigenstate as:

♣𝑛1, 𝑛2, . . . , 𝑛𝐾⟩ = ♣𝑛(𝑥, 𝑦)𝑙⟩ = 𝑎†
𝑥1
𝑎†
𝑥2
. . . 𝑎†

𝑥N⊗l
𝑏†
𝑦1
𝑏†
𝑦2
. . . 𝑏†

𝑦l
♣0⟩, 0 ⊘ 𝑙 ⊘ 𝑁. (C.29)

Notice that the label 𝑙 establishes a hierarchy of Fock states Ű with respect to ♣Φ0⟩, usually

a lowest energy conĄguration, states with the same 𝑙 are referred to as Ś𝑙-tuply excited

determinantsŠ.

We proceed by introducing the complementary array 𝑥̄, build from the 𝑙 occupied-space

iiIn the less usual case where 𝑀 < 𝑁 then 𝑙 ranges from 0 to 𝑀 and everything derived here works
the same.
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indexes absent from 𝑥:

𝑥̄ ∩ 𝑥 = ∅ : 1 ⊘ (𝑥̄1 < 𝑥̄2 < ≤ ≤ ≤ < 𝑥̄𝑙) ⊘ 𝑁. (C.30)

Thus, 𝑥̄ is a member of the set 𝐶𝑁
𝑙 of possible combinations of 𝑁 objects taken 𝑙 at a

time, and every 𝑥 deĄnes a unique 𝑥̄.iii

The last ingredient we require is the 𝑁 -element permutation Þ(𝑥), constructed via

juxtaposition of 𝑥 and its corresponding 𝑥̄:

Þ(𝑥) =

⎛

∐︁
1 2 . . . 𝑁 ⊗ 𝑙 𝑁 ⊗ 𝑙 + 1 . . . 𝑁 ⊗ 1 𝑁

𝑥1 𝑥2 . . . 𝑥𝑁⊗𝑙 𝑥̄1 . . . 𝑥̄𝑙⊗1 𝑥̄𝑙

⎞

̂︀ . (C.31)

The signature of this permutation can be obtained from the formula:

Þ(𝑥) =
∑︀𝑁⊗𝑙
𝑖=1 dim¶𝑥̄ ♣ 𝑥̄ < 𝑥𝑖♢ =

∑︀𝑁⊗𝑙
𝑖=1 (𝑥𝑖 ⊗ 𝑖), (C.32)

i.e. by counting the number of entries of 𝑥̄ which are smaller than a given component

of 𝑥, and adding up these numbers while going through all components of 𝑥 (the second

equality gives the explicit result).

The permutation Þ(𝑥), connected to a given Fock state ♣𝑛(𝑥, 𝑦)⟩, is interesting because

it rearranges the anti-commuting operators Õ† of a Thouless conĄguration in a very useful

way:

♣𝑧♢ = (Õ†
1 . . . Õ

†
𝑁)♣0⟩ = (⊗)Þ(𝑥)(Õ†

𝑥1
. . . Õ†

𝑥N⊗l
)(Õ†

𝑥̄1
. . . Õ†

𝑥̄l
)♣0⟩.

This, in turn, allows us to write its Fock projection as below:

⟨𝑛(𝑥, 𝑦)𝑙♣𝑧♢ = (⊗)Þ(𝑥)⟨0♣(𝑏𝑦l
. . . 𝑏𝑦1

)(𝑎𝑥N⊗l
. . . 𝑎𝑥2

𝑎𝑥1
Õ†
𝑥1
Õ†
𝑥2
. . . Õ†

𝑥N⊗l
)(Õ†

𝑥̄1
. . . Õ†

𝑥̄l
)♣0⟩.

Now, the product of operators at the center of this expression can be effectively replaced

by unity because 𝑎𝑥1
Õ†
𝑥1

= 1⊗ Õ†
𝑥1
𝑎𝑥1

(since 1 ⊘ 𝑥1 ⊘ 𝑁) and, once at the right side of Õ†
𝑥1

,

the annihilation operator 𝑎𝑥1
will anti-commute its way towards the vacuum, and that

term will give no contribution. Next, the same will happen with 𝑎𝑥2
Õ†
𝑥2

, and so forth.

Thus, the expression simpliĄes to:

⟨𝑛(𝑥, 𝑦)𝑙♣𝑧♢ = (⊗)Þ(𝑥)⟨0♣(𝑏𝑦l
. . . 𝑏𝑦1

)(Õ†
𝑥̄1
. . . Õ†

𝑥̄l
)♣0⟩ = (⊗)Þ(𝑥) det⟨ã(𝑦1,...,𝑦l)♣Õ(𝑥̄1,...,𝑥̄l)♢.

Finally, using the fact that ⟨ãÛ♣ÕÐ♢ = 𝑧ÛÐ, we arrive at:

⟨𝑛(𝑥, 𝑦)𝑙♣𝑧♢ = det[𝑧(𝑦1,𝑦2,...,𝑦l)(𝑥̄1,𝑥̄2,...,𝑥̄l)](⊗)Þ(𝑥), (C.33)

iiiIn the quantum chemistry literature ‘𝑙-tuply excited’ Fock configurations are most commonly denoted
in terms of 𝑥̄ and 𝑦; for instance, the state in Eq. (C.29) – apart from a possible sign – would be written
as ♣Φ(𝑦1,𝑦2,...,𝑦l)

(𝑥̄1,𝑥̄2,...,𝑥̄l)⟩.
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with the signature computed by means of Eq. (C.32). Hence the projection of a Thouless

conĄguration, deĄned over a reference state ♣Φ0⟩, into an Ś𝑙-tuply excitedŠ Fock state is

related to an 𝑙-sized sub-determinant of the 𝑧 matrix.

The complete Fock-space expansion for a normalized Thouless conĄguration reads:

♣𝑧⟩ =
𝑁∑︁

𝑙=0

∑︁

𝑥̄∈𝐶N
l

∑︁

𝑦∈𝐶M
l

♣𝑛(𝑥, 𝑦)𝑙⟩(⊗)Þ(𝑥) det[𝑧(𝑦1,𝑦2,...,𝑦l)(𝑥̄1,𝑥̄2,...,𝑥̄l)]
√︁

det(𝐼𝑁 + 𝑧†𝑧)
. (C.34)

Check. Eq. (C.33) provides an alternative way of calculating the fermionic coherent-

state overlap ¶𝑧♣𝑧′♢, as expressed in Eq. (3.26); using the completeness of the occupation

number basis we write:

¶𝑧♣𝑧′♢ =
𝑁∑︁

𝑙=0

∑︁

𝑥̄∈𝐶N
l

∑︁

𝑦∈𝐶M
l

¶𝑧♣𝑛(𝑥, 𝑦)𝑙⟩⟨𝑛(𝑥, 𝑦)𝑙♣𝑧′♢

=
𝑁∑︁

𝑙=0

∑︁

𝑥̄∈𝐶N
l

∑︁

𝑦∈𝐶M
l

det[𝑧*
(𝑦1,𝑦2,...,𝑦l)(𝑥̄1,𝑥̄2,...,𝑥̄l)

] det[𝑧′
(𝑦1,𝑦2,...,𝑦l)(𝑥̄1,𝑥̄2,...,𝑥̄l)

]

=
𝑁∑︁

𝑙=0

∑︁

𝑥̄∈𝐶N
l

{︁ ∑︁

𝑦∈𝐶M
l

det[𝑧†
(𝑥̄1,𝑥̄2,...,𝑥̄l)(𝑦1,𝑦2,...,𝑦l)

] det[𝑧′
(𝑦1,𝑦2,...,𝑦l)(𝑥̄1,𝑥̄2,...,𝑥̄l)

]
}︁

=
𝑁∑︁

𝑙=0

∑︁

𝑥̄∈𝐶N
l

det[(𝑧†𝑧′)(𝑥̄1,𝑥̄2,...,𝑥̄l)(𝑥̄1,𝑥̄2,...,𝑥̄l)].

where a general property of minors79 ensures the validity of the last step.

The above formula involves the principal minors of the 𝑁 × 𝑁 matrix (𝑧†𝑧′) Ű the

innermost sum is over all principal minors of a given rank 𝑙; the outermost sum is over

all possible ranks, from 0 to 𝑁 (the 𝑙 = 1 term is the trace while the 𝑙 = 𝑁 term is the

determinant of the full matrix; the 𝑙 = 0 term is deĄned as unity). Now, for any given

𝑛× 𝑛 matrix 𝐴 the following holds79

det(𝐼 + 𝐴) =
𝑛∑︁

𝑙=0

∑︁

𝑥∈𝐶n
l

det[𝐴(𝑥1,𝑥2,...𝑥l)≤(𝑥1,𝑥2...,𝑥l)],

and this identity leads us straight to:

¶𝑧♣𝑧′♢ = det(𝐼𝑁 + 𝑧*𝑧′),

in agreement with the result obtained in Chapter 3.



221

Appendix D

Hubbard model – standard diagonalization

Overview. Exact dynamical solutions to the simple Hubbard models dis-

cussed in this work are straightforwardly obtained by the standard expedient:

(1) compute the HamiltonianŠs eigenvalues and eigenvectors; (2) project the

initial state onto the eigenvector basis; and (3) perform a trivial time evolu-

tion. The Ąrst step is to write the Hamiltonian matrix in Fock representation.

The rules for computing matrix elements of the Hubbard Hamiltonian between

Fock states of both Fermi and Bose systems are given below. Also, the trans-

formation of Fock conĄgurations induced by an unitary transformation of the

underlying single-particle states is derived for both cases.

D.1 Fermi systems

A Fock conĄguration of 𝑁 fermions occupying 𝐾 single-particle orbitals is labeled by a

𝐾-sized binary string 𝑛 = (𝑛1, 𝑛2, . . . , 𝑛𝐾) (i.e. each 𝑛𝑝 is either 0 or 1) and is expressed in

terms of the creation operators 𝑐†, associated with a deĄnite set of single-particle orbitals,

♣𝑛𝑖⟩ = (𝑐†
1)
𝑛i

1(𝑐†
2)
𝑛i

2 ≤ ≤ ≤ (𝑐†
𝐾)𝑛

i
K ♣0⟩, with

𝐾∑︁

𝑝=1

𝑛𝑖𝑝 = 𝑁, for 1 ⊘ 𝑖 ⊘ 𝐾!
𝑁 !(𝐾⊗𝑁)!

. (D.1)

These conĄgurations are thus simultaneous eigenstates of the operators 𝑛̂𝑝 = 𝑐†
𝑝𝑐𝑝, for

1 ⊘ 𝑝 ⊘ 𝐾, and are orthonormal ⟨𝑛𝑖♣𝑛𝑗⟩ = Ó𝑖𝑗.

D.1.1 Matrix elements

We consider the speciĄc family of Hubbard Hamiltonians, with one- and two-body terms,

parame-trized according to

𝐻̂ = 𝐻̂1 + 𝐻̂2, with: 𝐻̂1 =
∑︁

𝑝𝑞

𝜀𝑝𝑞 𝑐
†
𝑝𝑐𝑞, 𝐻̂2 = 1

2

∑︁

𝑝𝑞

𝑢𝑝𝑞 𝑐
†
𝑝𝑐

†
𝑞𝑐𝑞𝑐𝑝 = 1

2

∑︁

𝑝𝑞

𝑢𝑝𝑞 𝑛̂𝑝𝑛̂𝑞, (D.2)
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where, without loss of generality, the condition 𝑢𝑝𝑝 = 0 is assumed for the interacting

part.

Diagonal matrix elements of the one-body part are trivial since orthogonality of the

Fock states ensures that ⟨𝑛𝑖♣𝑐†
𝑝𝑐𝑞♣𝑛𝑖⟩ is zero except if 𝑝 = 𝑞, hence:

⟨𝑛𝑖♣𝐻̂1♣𝑛𝑖⟩ =
∑︁

𝑝

𝜀𝑝𝑝 𝑛
𝑖
𝑝. (one-body, diagonal) (D.3)

In order to compute non-diagonal one-body elements we introduce the notion of Śneigh-

bor conĄgurationsŠ and Ślinking stateŠ: ♣𝑛𝑖⟩ and ♣𝑛𝑗⟩ are neighbor conĄgurations when they

differ by the placement of one fermion and are in this way linked by an unique (𝑁 ⊗ 1)-

particle state ♣𝑛̃⟩; thus ♣𝑛𝑖⟩ = (⊗)àr 𝑐†
𝑟 ♣𝑛̃⟩ and ♣𝑛𝑗⟩ = (⊗)às 𝑐†

𝑠 ♣𝑛̃⟩. Here à𝑟 and à𝑠 account

for the sign chance due to the anti-commutations needed to factor out the creation op-

erators of the differing orbitals Ű note that both orbitals 𝑠 and 𝑟 must be empty in ♣𝑛̃⟩.
This means that

⟨𝑛𝑖♣𝐻̂1♣𝑛𝑗⟩ = (⊗)àr+às
∑︁

𝑝𝑞

𝜀𝑝𝑞⟨𝑛̃♣ 𝑐𝑟𝑐†
𝑝𝑐𝑞𝑐

†
𝑠 ♣𝑛̃⟩, (D.4)

and, with 𝑟 ̸= 𝑠 (otherwise 𝑛𝑖 and 𝑛𝑗 would coincide), there is only a single non-vanishing

contraction:
∑︁

𝑝𝑞

𝜀𝑝𝑞⟨𝑛̃♣ 𝑐𝑟𝑐†
𝑝𝑐𝑞𝑐

†
𝑠 ♣𝑛̃⟩ = 𝜀𝑟𝑠⟨𝑛̃♣(1⊗ 𝑛̂𝑟)(1⊗ 𝑛̂𝑠)♣𝑛̃⟩ = 𝜀𝑟𝑠.

Thus we arrive at the following recipe for non-diagonal matrix elements of the non-

interacting part of the Hamiltonian:

if

⎧

⋁︁⨄︁

⋁︁⋃︁

♣𝑛𝑖⟩ = (⊗)àr 𝑐†
𝑟 ♣𝑛̃⟩

♣𝑛𝑗⟩ = (⊗)às 𝑐†
𝑠 ♣𝑛̃⟩

⇒ ⟨𝑛𝑖♣𝐻̂1♣𝑛𝑗⟩ = 𝜀𝑟𝑠(⊗)àr+às . (one-body, off-diagonal) (D.5)

The two-body interacting part is trivially evaluated since the Fock conĄgurations are

eigenstates of the occupation number operators in the chosen representation:

⟨𝑛𝑖♣𝐻̂2♣𝑛𝑖⟩ = 1
2

∑︁

𝑝𝑞

𝑢𝑝𝑞 𝑛
𝑖
𝑝𝑛

𝑖
𝑞. (two-body, diagonal) (D.6)

D.1.2 Transformation of fermionic Fock states

Using the above formulas the Hamiltonian matrix for the Hubbard model can be con-

structed in the particular representation where the two-body interaction term is diagonal.

It is sometimes useful, however, to work with a different set of underlying single-particle

orbitals related to the original set by an unitary transformation. The question then arises

on how the many-body conĄgurations transform as a consequence of the change of single-

particle basis.

Let us consider the single-particle transformation ä⊃ ã, induced by an unitary matrix
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𝑋 of size 𝐾 ×𝐾. In terms of the corresponding creation operators we have:

if ♣ã𝑝⟩ = 𝑐†
𝑝♣0⟩ and ♣ä𝑝⟩ = 𝑑†

𝑝♣0⟩, then: ♣ã𝑝⟩ =
∑︀

𝑞♣ä𝑞⟩𝑋𝑞𝑝 ⇒ 𝑐†
𝑝 =

∑︀

𝑞𝑑
†
𝑞𝑋𝑞𝑝. (D.7)

In what follows it is convenient to employ the following ŚĄlled-orbitalŠ notational scheme

when referring to the many-body states:

♣Ù⟩ã = ♣Ù1, Ù2, ≤ ≤ ≤ , Ù𝑁⟩ = 𝑐†
Ù1
𝑐†
Ù2
≤ ≤ ≤ 𝑐†

ÙN
♣0⟩, (D.8a)

♣Ö⟩ä = ♣Ö1, Ö2, ≤ ≤ ≤ , Ö𝑁⟩ = 𝑑†
Ö1
𝑑†
Ö2
. . . 𝑑†

ÖN
♣0⟩, (D.8b)

where the array Ù lists the 𝑁 occupied ã-orbitals in a given Fock state; likewise Ö lists

the 𝑁 occupied ä-orbitals in a speciĄc conĄguration.

Using the transformation rule (D.7) we are able to write ♣Ù⟩ as follows:

♣Ù⟩ã = 𝑐†
Ù1
𝑐†
Ù2
≤ ≤ ≤ 𝑐†

ÙN
♣0⟩ =

∑︁

𝑗1

∑︁

𝑗2

≤ ≤ ≤
∑︁

𝑗N

𝑑†
𝑗1𝑑

†
𝑗2 . . . 𝑑

†
𝑗N
♣0⟩𝑋𝑗1Ù1

𝑋𝑗2Ù2
. . . 𝑋𝑗NÙN

,

where each of the 𝑗 indexes runs over the whole range, from 1 to 𝐾. At each term of

the above sum the product of 𝑑† operators appears in no particular order, and several

terms involve the same combination of operators. If the factors multiplying identical

combinations are assembled together, with the corresponding operators permuted to the

conventional order, we arrive at:

♣Ù⟩ã =
∑︁

Ö1<Ö2<≤≤≤<ÖN

𝑑†
Ö1
𝑑†
Ö2
. . . 𝑑†

ÖN
♣0⟩

∑︁

𝑃∈𝑆N

(⊗)𝑃𝑋ÖP1
Ù1
𝑋ÖP2

Ù2
. . . 𝑋ÖPN

ÙN
,

where the second sum is over all permutations 𝑃 of 𝑁 objects. This sum, which involves

products of 𝑋-matrix elements, is nothing but the determinant of the 𝑁 ×𝑁 sub-matrix

of 𝑋 build out from rows (Ö1, Ö2, . . . , Ö𝑁) and columns (Ù1, Ù2, . . . , Ù𝑁). At the same time,

the ordered product of 𝑑† operators constitutes the Fock conĄguration ♣Ö⟩; therefore we

establish the result:

♣Ù1, Ù2, ≤ ≤ ≤ , Ù𝑁⟩ã =
∑︁

Ö1<≤≤≤<ÖN

♣Ö1, Ö2, ≤ ≤ ≤ , Ö𝑁⟩ä det[𝑋(Ö1,Ö2,≤≤≤ ,ÖN ),(Ù1,Ù2,≤≤≤ ,ÙN )]. (D.9)

As a check, we note that the number of possible 𝑁 ×𝑁 sub-matrices of a 𝐾 ×𝐾 matrix

is
(︁
𝐾
𝑁

)︁

, which is exactly the size of the Fermi-Fock space.

D.2 Bose systems

A Fock conĄguration of 𝑁 bosons distributed on 𝐾 single-particle modes is labeled by the

set of 𝐾 integers 𝑚 = (𝑚0,𝑚2, . . . ,𝑚𝐾⊗1) that specify the population of each mode Ű for

deĄniteness the indexation of modes is the same as that adopted when studying bosonic
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coherent states. These occupation number eigenstates are written in terms of creation

operators 𝑏†, associated with a particular set of single-particle modes:

♣𝑚𝑖⟩ =
(𝑏†

0)
𝑚i

0(𝑏†
1)
𝑚i

1 ≤ ≤ ≤ (𝑏†
𝐾⊗1)

𝑚i
K⊗1

√︁

𝑚𝑖
0! 𝑚

𝑖
1! ≤ ≤ ≤ 𝑚𝑖

𝐾⊗1!
♣0⟩, with

𝐾⊗1∑︁

𝑝=0

𝑚𝑖
𝑝 = 𝑁, for 1 ⊘ 𝑖 ⊘ dim ℬ(𝐾,𝑁),

(D.10)

where the dimension of the bosonic Fock space at issue is21

dim ℬ(𝐾,𝑁) =
(𝐾 +𝑁 ⊗ 1)!

(𝐾 ⊗ 1)!𝑁 !
. (D.11)

These conĄgurations are orthonormal, i.e. ⟨𝑚𝑖♣𝑚𝑗⟩ = Ó𝑖𝑗, and we recall the well-known

relations:
⎧

⋁︁⋁︁⋁︁⋁︁⨄︁

⋁︁⋁︁⋁︁⋁︁⋃︁

𝑏𝑝♣𝑚𝑖⟩ =
√︁

𝑚𝑖
𝑝 ♣𝑚𝑖

0,𝑚
𝑖
1, . . . , (𝑚

𝑖
𝑝 ⊗ 1), . . . ,𝑚𝑖

𝐾⊗1⟩
𝑏†
𝑝♣𝑚𝑖⟩ =

√︁

𝑚𝑖
𝑝 + 1 ♣𝑚𝑖

0,𝑚
𝑖
1, . . . , (𝑚

𝑖
𝑝 + 1), . . . ,𝑚𝑖

𝐾⊗1⟩
𝑛̂𝑝♣𝑚𝑖⟩ = 𝑚𝑖

𝑝 ♣𝑚𝑖⟩
. (D.12)

D.2.1 Matrix elements

Again we consider the family of Hamiltonians with the general form:

𝐻̂ = 𝐻̂1 + 𝐻̂2, with: 𝐻̂1 =
∑︁

𝑝𝑞

𝜀𝑝𝑞 𝑏
†
𝑝𝑏𝑞, 𝐻̂2 = 1

2

∑︁

𝑝𝑞

𝑢𝑝𝑞 𝑏
†
𝑝𝑏

†
𝑞𝑏𝑞𝑏𝑝 = 1

2

∑︁

𝑝𝑞

𝑢𝑝𝑞 (𝑛̂𝑝𝑛̂𝑞 ⊗ 𝑛̂𝑝Ó𝑝𝑞).

(D.13)

Let us Ąrst look at the one-body term 𝐻̂1. Diagonal matrix elements are elementary since

⟨𝑚𝑖♣𝑏†
𝑝𝑏𝑞♣𝑚𝑖⟩ vanishes if 𝑝 ̸= 𝑞; hence:

⟨𝑚𝑖♣𝐻̂1♣𝑚𝑖⟩ =
∑︁

𝑝

𝜀𝑝𝑝 𝑚
𝑖
𝑝. (one-body, diagonal) (D.14)

As in the fermionic case, in order to get the non-diagonal elements one must realize

that the only way ⟨𝑚𝑖♣𝑏†
𝑝𝑏𝑞♣𝑚𝑗⟩ is non-zero is if the pair of conĄgurations ♣𝑚𝑖⟩ and ♣𝑚𝑗⟩

differs by the placement of a single boson, in such a way that they are generated by the

action of creation operators on a common (𝑁⊗1)-particle Fock state ♣𝑚̃⟩. Mathematically,

if these ŚĄrst-neighborŠ conĄgurations differ by the occupation of their 𝑟 and 𝑠 modes one

may write: ♣𝑚𝑖⟩ = (𝑚𝑖
𝑟)

⊗1/2 𝑏†
𝑟 ♣𝑚̃⟩ and ♣𝑚𝑗⟩ = (𝑚𝑗

𝑠)
⊗1/2 𝑏†

𝑠 ♣𝑚̃⟩, and one may convince

oneself that the Ślinking stateŠ ♣𝑚̃⟩ is uniquely deĄned for each such a pair. Thus from

the above considerations we have:

⟨𝑚𝑖♣𝐻̂1♣𝑚𝑗⟩ = (𝑚𝑖
𝑟 𝑚

𝑗
𝑠)

⊗1/2
∑︁

𝑝𝑞

𝜀𝑝𝑞⟨𝑚̃♣ 𝑏𝑟𝑏†
𝑝𝑏𝑞𝑏

†
𝑠 ♣𝑚̃⟩. (D.15)

For 𝑟 ̸= 𝑠 (so that 𝑚𝑖 differs from 𝑚𝑗) there is only one possible contraction of operators,
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and the sum evaluates to:

∑︁

𝑝𝑞

𝜀𝑝𝑞⟨𝑚̃♣ 𝑏𝑟𝑏†
𝑝𝑏𝑞𝑏

†
𝑠 ♣𝑚̃⟩ = 𝜀𝑟𝑠⟨𝑚̃♣(𝑛̂𝑟 + 1)(𝑛̂𝑠 + 1)♣𝑚̃⟩ = 𝜀𝑟𝑠(𝑚̃𝑟 + 1)(𝑚̃𝑠 + 1) = 𝜀𝑟𝑠𝑚

𝑖
𝑟 𝑚

𝑗
𝑠.

Hence the desired non-diagonal matrix element is given by the recipe:

if

⎧

⋁︁⨄︁

⋁︁⋃︁

♣𝑚𝑖⟩ = (𝑚𝑖
𝑟)

⊗1/2 𝑏†
𝑟 ♣𝑚̃⟩

♣𝑚𝑗⟩ = (𝑚𝑗
𝑠)

⊗1/2 𝑏†
𝑠 ♣𝑚̃⟩

⇒ ⟨𝑚𝑖♣𝐻̂1♣𝑚𝑗⟩ = 𝜀𝑟𝑠(𝑚
𝑖
𝑟𝑚

𝑗
𝑠)

1/2. (one-body, off-diagonal)

(D.16)

Finally, the two-body term, which involves only occupation number operators, is di-

agonal in the chosen representation, giving the trivial result:

⟨𝑚𝑖♣𝐻̂2♣𝑚𝑖⟩ = 1
2

∑︁

𝑝𝑞

𝑢𝑝𝑞 𝑚
𝑖
𝑝𝑚

𝑖
𝑞 ⊗ 1

2

∑︁

𝑝

𝑢𝑝𝑝 𝑚
𝑖
𝑝. (two-body, diagonal) (D.17)

D.2.2 Transformation of bosonic Fock states

Once more we investigate the effect that unitary transformations on the single-particle

space have on many-body states, this time with bosons. The analysis, however, is much

more complicated than in the fermionic case, since the occupation of each of the 𝐾

available modes may exceed unity.

Let us begin by establishing some notation:

if ♣ã𝑗⟩ = 𝑎†
𝑗♣0⟩ and ♣ä𝑗⟩ = 𝑏†

𝑗♣0⟩, then: ♣ã𝑗⟩ =
∑︀𝐾
𝑖=1♣ä𝑖⟩𝑋𝑖𝑗 ⇒ 𝑎†

𝑗 =
∑︀𝐾
𝑖=1𝑏

†
𝑖𝑋𝑖𝑗. (D.18)

Thus, the transformation ä⊃ ã is given in terms of a𝐾×𝐾 unitary matrix𝑋, with 𝑎† and

𝑏† being the creation operators associated with modes of type ã and ä, respectively. In this

subsection, for clarity of exposition, we shall depart from the convention (motivated by

the coherent-state formalism) of labeling the single-particle modes from 0 to 𝑑 = 𝐾 ⊗ 1;

in what follows, the more usual labeling, with indexes from 1 to 𝐾, is employed, as

anticipated in (D.18).

Furthermore, we write bosonic states deĄned in terms of different single-particle modes

as:

♣𝑚⟩ã = ♣𝑚1,𝑚2, . . . ,𝑚𝐾⟩ã = (𝑚!)⊗1/2(𝑎†
1)
𝑚1(𝑎†

2)
𝑚2 ≤ ≤ ≤ (𝑎†

𝐾)𝑚K ♣0⟩, (D.19a)

♣𝑛⟩ä = ♣𝑛1, 𝑛2, . . . , 𝑛𝐾⟩ä = (𝑛!)⊗1/2(𝑏†
1)
𝑛1(𝑏†

2)
𝑛2 ≤ ≤ ≤ (𝑏†

𝐾)𝑛K ♣0⟩. (D.19b)

where we have abbreviated: 𝑚! = (𝑚1!𝑚2! ≤ ≤ ≤𝑚𝐾 !), and similarly, 𝑛! = (𝑛1!𝑛2! ≤ ≤ ≤𝑛𝐾 !).

Now, with the help of the multinomial theorem, each of the factors in (D.19a) can be
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expressed in terms of the 𝑏† operators:

(𝑎†
𝑗)
𝑚j =

(︁∑︁

𝑖

𝑏†
𝑖𝑋𝑖𝑗

)︁𝑚j

=
∑︁

à1j

∑︁

à2j

≤ ≤ ≤
∑︁

àKj

(︃

𝑚𝑗

à1𝑗 ≤ ≤ ≤ à𝐾𝑗

⎜

(𝑏†
1𝑋1𝑗)

à1j (𝑏†
2𝑋2𝑗)

à2j . . . (𝑏†
𝐾𝑋𝐾𝑗)

àKj ≤ Ó
(︁
∑︀𝐾
𝑖=1à𝑖𝑗,𝑚𝑗

)︁

,

where all sums range from 0 to 𝑁 Ű we have purposely introduced a Kronecker delta

in order to assure that the àŠs add to the correct value (they cannot exceed 𝑁 since

0 ⊘ 𝑚𝑗 ⊘ 𝑁 , with 1 ⊘ 𝑗 ⊘ 𝐾). The choice of notation for the sumsŠ indexes is no

accident, as will become evident in a moment.

When all factors of (D.19a) are put in the form shown above, we get, after some

adjustments,

♣𝑚⟩ã =
√
𝑚!

∑︁

à

Ó(
∑︀

𝑖à𝑖1,𝑚1)Ó(
∑︀

𝑖à𝑖2,𝑚2) ≤ ≤ ≤ Ó(
∑︀

𝑖à𝑖𝐾 ,𝑚𝐾)

×
(︁𝑋à11

11

à11!

𝑋à21

21

à21!
≤ ≤ ≤ 𝑋

àK1

𝐾1

à1𝐾 !

)︁(︁𝑋à12

12

à12!

𝑋à22

22

à22!
≤ ≤ ≤ 𝑋

àK2

𝐾2

à𝐾2!

)︁

≤ ≤ ≤
(︁𝑋à1K

1𝐾

à1𝐾 !

𝑋à2K

2𝐾

à2𝐾 !
≤ ≤ ≤ 𝑋

àKK

𝐾𝐾

à𝐾𝐾 !

)︁

× (𝑏†
1)

(
∑︀

j
à1j) (𝑏†

2)
(
∑︀

j
à2j) ≤ ≤ ≤ (𝑏†

𝐾)(
∑︀

j
àKj)♣0⟩. (D.20)

Notice that the multinomial factors have been dismantled; the product appearing in the

numerator, (𝑚1!𝑚2! . . .𝑚𝐾 !), has been factored out of the sum Ű hence the
√
𝑚! in front of

the expression Ű while the à! terms appearing in the denominator have been distributed

among the 𝑋 matrix elements. Also, the commuting operators 𝑏† have been grouped

together.

The sum in (D.20) is over all 𝐾×𝐾 matrices à whose entries are non-negative integers

less than or equal to 𝑁 .i The delta functions, however, Ąlter out a special set of matrices,

namely, those whose column sums are equal to the occupations (𝑚1,𝑚2, . . . ,𝑚𝐾) of the

ã-mode state. Thus we deduce that the à matrices that give a non-vanishing contribution

in (D.20) have the property that the sum of all of their elements adds up to 𝑁 , since:

∑︀

𝑖à𝑖𝑗 = 𝑚𝑗 ⇒
∑︀

𝑖𝑗à𝑖𝑗 = 𝑁, (D.21)

for the set of occupation numbers satisĄes:
∑︀

𝑗𝑚𝑗 = 𝑁 . Meanwhile, the exponent of each

𝑏†
𝑖 in Eq. (D.20) is just the sum of the entries of the 𝑖-th row of matrix à. Denoting these

row sums by 𝑛1, 𝑛2, . . . , 𝑛𝐾 , we see that (D.21) immediately implies:

𝑛𝑖 =
∑︀

𝑗à𝑖𝑗 ⇒
∑︀

𝑖𝑛𝑖 = 𝑁. (D.22)

We therefore conclude that, in Eq. (D.20), each product of 𝑏†Šs that acts on the vacuum

iNotice that, if a given entry of the transformation matrix is null then the set of à matrices that
contribute in (D.20) is restricted to those with a zero in the corresponding entry.
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originates a speciĄc ä-mode Fock state with a total of 𝑁 bosons. Our task now is to

further disentangle the summation, in such a way that all matrices à with fixed row sums

are collected together, allowing us to factor out the ä-mode conĄgurations.

With that purpose in mind, let us denote by 𝒜(𝑚;𝑁,𝐾) the set of all 𝐾 × 𝐾

matrices whose entries are integers ranging from 0 to 𝑁 and whose column sums are

𝑚1,𝑚2, . . . ,𝑚𝐾 , respectively; for compactness, we write simply 𝒜(𝑚), omitting the pa-

rameters 𝑁,𝐾.

The key point is that matrices belonging to 𝒜(𝑚) can be unambiguously classiĄed

according to their row sums; in other words, the set is made out of non-overlaping subsets

ℬ(𝑛,𝑚), each of which is composed of matrices with speciĄc column and row sums,

(𝑚1,𝑚2, . . . ,𝑚𝐾) and (𝑛1, 𝑛2, . . . , 𝑛𝐾), respectively; thus any sum over all à ∈ 𝒜(𝑚) can

be safely partitioned as below:

∑︁

à∈𝒜(𝑚)

(≤ ≤ ≤ ) =
∑︁

♣𝑛♣=𝑁

⎧

⨄︁

⋃︁

∑︁

à∈ℬ(𝑚,𝑛)

(≤ ≤ ≤ )
⎫

⋀︁

⋂︁
.

In what concerns Eq. (D.20) this observation leads to:

♣𝑚⟩ã =
√
𝑚!

∑︁

♣𝑛♣=𝑁

⎧

⨄︁

⋃︁

∑︁

à∈ℬ(𝑚,𝑛)

[︁
√︂

𝑖𝑗(𝑋
àij

𝑖𝑗 /à𝑖𝑗!)
]︁

(𝑏†
1)
𝑛1(𝑏†

2)
𝑛2 ≤ ≤ ≤ (𝑏†

𝐾)𝑛K ♣0⟩
⎫

⋀︁

⋂︁

We have thus accomplished our goal: all terms giving rise to the same row sums are

grouped together. Finally, using deĄnition (D.19b) and factoring out the ä-mode bosonic

Fock states, we arrive at the desired formula:

♣𝑚1,𝑚2, . . . ,𝑚𝐾⟩ã =
√
𝑚!

∑︁

♣𝑛♣=𝑁

√
𝑛!

⎧

⨄︁

⋃︁

∑︁

à∈ℬ(𝑚,𝑛;𝑁,𝐾)

[︁
√︂

𝑖𝑗(𝑋
àij

𝑖𝑗 /à𝑖𝑗!)
]︁

⎫

⋀︁

⋂︁
♣𝑛1, 𝑛2, . . . , 𝑛𝐾⟩ä.

(D.23)

Since 𝑁 is often very large (if not macroscopic) with 𝐾 typically in the range ≍ 10⊗ 100,

the dimension of the bosonic Fock space is usually extremely large; therefore so is the

number of à matrices that have to be constructed for a generic term in (D.23), rendering

numerical implementation of this result intractable for most problemsii (except, perhaps,

those with 𝐾 small). There was no need, though, for carrying out such Fock-space

transformations in this work.

iiMatrices with definite row and column sums are mathematical objects known as ‘contingency tables’
and play a central role in statistical analysis. The problem of finding the total number of tables for
definite row and column marginals, when the latter are large, is by itself a formidable one; let alone the
problem of listing all such tables.
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Appendix E

Spectral analysis

E.1 Auto-correlation function and spectral density

Let us consider a closed quantum system described by a Hamiltonian 𝐻̂, living in a Hilbert

space of dimension 𝑛. Let ♣å0⟩ be the state of the system at 𝑡 = 0. The probability

amplitude for recurrence of the initial state at time 𝑡 > 0 is

𝑎(å; 𝑡) = ⟨å0♣å𝑡⟩ = ⟨å0♣𝑒⊗ i
~
𝐻̂𝑡♣å0⟩. (E.1)

This quantity is known as the auto-correlation function (ACF).i

The ACF contains information about stationary energies of the system. In order to

appreciate this we introduce the function 𝐼(å;𝐸), the spectral density (also known as

Śpower spectrumŠ) given in units of inverse energy:

𝐼(å;𝐸) ⊕ ⟨å0♣Ó(𝐸 ⊗ 𝐻̂)♣å0⟩. (E.2)

If we denote an eigenstate of 𝐻̂ with energy 𝐸𝑚 by ♣𝐸𝑚⟩, and make use of the closure

relation:
∑︀𝑛
𝑚=1 ♣𝐸𝑚⟩⟨𝐸𝑚♣ = 1̂, we are able to express (E.2) as:

𝐼(å;𝐸) =
𝑛∑︁

𝑚=1

♣⟨𝐸𝑚♣å0⟩♣2 Ó(𝐸 ⊗ 𝐸𝑚). (E.3)

In this way, we see that the eigenstates that participate in the dynamics give rise to

energy peaks in the graph of 𝐼(å;𝐸). The greater the intensity of the peak the greater

the overlap between ♣å0⟩ and the corresponding eigenstate (or collection of degenerate

eigenstates). Notice that for a closed system the time label of ♣å⟩ in Eq. (E.3) is arbitrary

Ű we prefer, for the sake of deĄniteness, to write everything in terms of the initial state.

iThis Appendix is essentially a transcript of Section 1.3 of H.-D. Meyer’s lecture notes on the MCTDH
method, cf. Ref. [80]; this topic is covered here for the sake of completeness.
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The spectral density is related to the ACF by a simple energy-time Fourier transform:

𝐼(å;𝐸) = ⟨å0♣Ó(𝐸 ⊗ 𝐻̂)♣å0⟩

= (2Þ~)⊗1
∫︁ +∞

⊗∞
𝑑𝑡 ⟨å0♣𝑒

i
~

(𝐸⊗𝐻̂)𝑡♣å0⟩ = (2Þ~)⊗1
∫︁ +∞

⊗∞
𝑑𝑡 𝑎(å; 𝑡)𝑒

i
~
𝐸𝑡,

where we adopt the following convention for Fourier integrals:

𝑓(𝑡) =
∫︁ +∞

⊗∞

𝑑æ

2Þ
𝑓(æ)𝑒⊗𝑖æ𝑡, 𝑓(æ) =

∫︁ +∞

⊗∞
𝑑𝑡 𝑓(𝑡)𝑒𝑖æ𝑡, (E.4)

and thus: Ó(æ ⊗ æ′) = (2Þ)⊗1
√︃ +∞

⊗∞ 𝑑𝑡 𝑒𝑖(æ⊗æ′)𝑡.

The propagation of ♣å0⟩ is most often conducted forward in time. It is therefore more

appropriate to get rid of the integral over negative 𝑡. Since 𝐻̂ is hermitian, the equality

𝑎(å;⊗𝑡) = 𝑎(å; 𝑡)* holds; straightforward manipulations in the time integral then enable

𝐼(å;𝐸) to be rewritten as80

𝐼(å;𝐸) = (Þ~)⊗1
∫︁ +∞

0
𝑑𝑡 Re[ 𝑎(å; 𝑡)𝑒

i
~
𝐸𝑡 ]. (E.5)

However, in order for this expression to be useful we must account for the fact that

the Ąnal propagation time, hereby denoted á , is Ąnite. The recommended procedure is to

employ a Świndow functionŠ 𝑔á (𝑡) according to the prescription:

𝐼𝑔(å;𝐸) = (Þ~)⊗1
∫︁ ∞

0
𝑑𝑡 𝑔á (𝑡) Re [ 𝑎(𝑡)𝑒

i
~
𝐸𝑡 ]. (E.6)

The (real and dimensionless) function 𝑔á (𝑡) must satisfy:80

𝑔á (𝑡) = 0, for ♣𝑡♣ > á ; 𝑔á (0) = 1, 𝑔á (𝑡) = 𝑔á (⊗𝑡); 0 ⊘ 𝑔á (𝑡) ⊘ 1. (E.7)

The purpose of the window function is to ensure that the time signal terminates in a

smooth fashion, thus avoiding spurious oscillations that would otherwise be caused by a

sharp cutoff.

Now, (E.6) implies 𝐼𝑔(å;𝐸) = (2Þ~)⊗1
√︃ +∞

⊗∞ 𝑑𝑡 𝑔á (𝑡) 𝑎(å; 𝑡)𝑒
i
~
𝐸𝑡, and, denoting the

Fourier transform of 𝑔á (𝑡) by 𝑔á (æ), we observe that 𝐼𝑔(å;𝐸) can be written in terms of

a convolution product:

𝐼𝑔(å;𝐸) =
∫︁ +∞

⊗∞

𝑑æ

2Þ
𝑔á (æ)𝐼(𝐸 ⊗ ~æ). (E.8)

Substitution of (E.3) in the above expression reveals that the net result is that the delta
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