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Resumo

Uma versao generalizada do método ‘coupled coherent states’ é desenvolvida para
estados coerentes associados a grupos de Lie arbitrarios. Em contraste com a aborda-
gem original, restrita a fungoes de base gaussianas, o método estendido é adequado para
propagacao de estados quanticos de sistemas exibindo propriedades fisicas destituidas de
analogo classico, tais como graus de liberdade de spin ou indistinguibilidade de particu-
las. A formulagdo para o caso de sistemas com um ntumero fixo de particulas idénticas
interagentes é examinada em detalhe, sendo este um caso relevante descrito em termos
de estados coerentes do grupo especial unitario. A técnica é ilustrada com aplicagoes
simples, envolvendo modelos de Hubbard bosonicos e fermionicos. Diversos aspectos da

implementagao numérica sao discutidos.

Palavras-chave: métodos numéricos, estados coerentes, métodos semiclassicos.



Abstract

A generalized version of the coupled coherent states method for coherent states of ar-
bitrary Lie groups is developed. In contrast to the original approach, which is restricted
to frozen-Gaussian basis sets, the extended method is suitable for propagating quan-
tum states of systems featuring non-classical physical properties, such as spin degrees
of freedom or particle interchange symmetry. The formulation for the relevant case of
number-conserving systems of interacting identical particles, most adequately described
in terms of coherent states of the special unitary group, is studied in detail. The tech-
nique is illustrated with applications to simple Hubbard-like models for both bosons and

fermions. Several aspects of the numerical implementation are discussed.

Keywords: numerical methods, coherent states, semiclassical methods.
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Introduction

A vast number of physical systems exhibit the property that some of their parts behave in a
sort of classical way, meaning that quantum effects play only a minor role in the description
of those parts. This distinctive classical character of specific degrees of freedom is a much
welcomed attribute, for it makes possible the development of tractable computational
approaches capable of carrying out the time-evolution of complex quantum systems, being
thus the fundamental property upon which time-dependent trajectory-guided methods are
based.

In this kind of technique quantum states are represented in terms of time-dependent
basis functions or ‘configurations’. Within a single configuration, those degrees of freedom
in which quantum effects are negligible are evolved according to classical equations of
motion. This classical dynamics may be prescribed in a number of different ways and
different choices correspond to different propagation schemes.

In spite of the fact that individual configurations have some of their parts bound to
obey classical laws, a complete quantum solution is in principle attainable by combining
many configurations. The key idea behind such ‘multiconfigurational’ approaches is that
trajectory-guided basis functions, if properly optimized, are more likely to remain in
the important regions of the Hilbert space, thus being more efficient at representing the
quantum state in the sense that a reduced number of basis elements is required in order
to achieve an accurate description. And it is precisely through a significant reduction in
the number of basis functions needed to propagate the system that one hopes to escape
the exponential scaling of basis-set size with dimensionality typical of standard static-
basis formulations. This ‘mixed quantum-classical’ picture is adopted in many methods
of quantum chemistry.

A recurrent theme in this field is the development of techniques which, by means
of equally simple recipes to guide the basis functions, would be readily applicable to
systems presenting authentically non-classical qualities, such as spin degrees of freedom or
particle exchange symmetry. Several works have been directed to that purpose, most often
aiming at a time-dependent description of the electronic structure of molecules during non-
adiabatic processes. One particular example of such a recipe is the classical model for
electronic degrees of freedom proposed by Miller and White~ where a second-quantized

fermionic Hamiltonian is properly reduced to a classical function wherein number and
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phase variables play the role of generalized coordinates. In contrast, a more ‘mechanistic’
approach to fermion dynamics is found on the multiconfigurational formula proposed by
Kirrander and Shalashilin” in which the basis functions consist of antisymmetrized frozen
Gaussians' guided by fermionic molecular dynamics.

Yet, if one seeks to describe non-classical degrees of freedom by means of classical-like
variables, then generalized coherent states — defined in the group-theoretical sense — are
undoubtedly among the most appropriate tools to be employed. There are many reasons
supporting this assertion.

First of all, coherent states are defined in terms of non-redundant parameters and
equations of motion for these parameters can be readily obtained from the time-dependent
variational principle.” In this way an optimized time evolution can be assigned to spe-
cific degrees of freedom in an unambiguous manner. Moreover, they are naturally able
to capture the desired symmetries of the system, and these are maintained during prop-
agation. Furthermore, the coherent-state parameters evolve in a classical phase space in
the strict sense of the word, hence we automatically have at our disposal the wealth of
analytical techniques applicable to Hamiltonian systems. At the same time, through this
intimate connection to classical dynamics, coherent states provide a compelling classical
interpretation to quantum phenomena, in so far as individual configurations are chosen to
represent familiar objects —i.e. in such a way that it is meaningful to discuss the dynamics
of the system in terms of their trajectories. To this extent, coherent states — which are
also minimum uncertainty states (as long as a proper meaning is assigned to the term
‘uncertainty’) “° — are valuable tools in enhancing our comprehension with respect to the
semiclassical features of the quantum system under investigation. In addition, and from
a more mathematical perspective, the group-theoretical formalism secures a well-defined
integral form for the coherent-state closure relation” — a crucial element to the develop-
ments presented in this work. This list of virtues is not exhausted and other advantages
of a generalized coherent-state representation will be evidenced throughout the thesis.

Along these lines, Van Voorhis and Reichman'’ have considered a number of al-
ternative representations of electronic structure making use of different coherent-state
parametrizations and also examined their adequacy to a variety of systems.! Within
the context of non-adiabatic molecular dynamics, a particularly interesting fermionic
coherent-state representation, known as ‘Thouless determinant’ in the field of quantum
chemistry, " is employed in the simplest and most throughly investigated version of the
Electron-Nuclear Dynamics theory, developed by Deumens, Ohrn and collaborators. '
The same kind of coherent state has been discussed at length, within the field of nuclear

physics, by Suzuki and Kuratsuji. """ (Thouless determinants will be studied in detail in

"More recently, Grossmann et. al.* have investigated, in a semiclassical context, whether propagation
with antisymmetrized basis states is essential for the description of electron scattering.

iTheir discussion is based on a rough extension of Solari’s semiclassical propagators''i'? — a rigorous
derivation of the generalized coherent-state propagator can be found in a recent work.
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the present work.)

Turning to bosonic dynamics, a semiclassical trajectory-based formula in the special
unitary group coherent-state representation has been recently derived and successfully
applied to a model of trapped bosons.”'** (The propagation methodology developed in
this thesis is also implemented with bosonic coherent states of the same kind.)

The aforementioned methods are representative of the kind of technique one has
in mind when a description of intrinsically quantum degrees of freedom in terms of
classical-like variables is desired. However, they either constitute approximate single-
configuration approaches ' " or involve complicated trajectories that live in a duplicated
phase space,” "~ sometimes relying on sophisticated root-search techniques in order to
determine them. """ It seems that a multiconfigurational, generalized coherent-state
approach, based on simple — as opposed to duplicated — phase-space trajectories would
be more in the spirit of the familiar time-dependent guided-basis methods of quantum
chemistry. This is precisely the direction we take here.

In this work a quantum initial-value representation method, which employs a general-
ized coherent-state basis set guided by classical trajectories, is formulated. The resulting
propagation scheme is regarded as a natural extension of the coupled coherent states
technique of Shalashilin and Child ™" in so far as (i) basis-set elements represent local-
ized quantum states; (ii) each element evolves independently in a generalized classical
phase space and carries an action phase; and (iii) the quantum amplitudes associated
with individual elements obey fully coupled equations of motion which present a number

of attractive qualities.

Thesis organization

We begin, at Chapter 1, with a review of two fundamental topics: the time-dependent
variational principle (TDVP) and the theory of generalized coherent states. The purpose
of this chapter is to demonstrate how the machinery of the TDVP works and, most
importantly, how it leads to classical equations of motion in a curved phase space when a
coherent state is taken as a trial function. Next, Chapters 2 and 3 are dedicated to bosonic
and fermionic coherent states, respectively. Their geometrical properties are reviewed and,
more specifically, their dynamics under certain prototype Hamiltonians is characterized.
These first three chapters have a preparatory objective where the essential tools required
for the subsequent developments are introduced.

It is at Chapter 4 that we set forth to derive the working equations of the generalized
coupled coherent states method. This is the central chapter of the thesis, where the main

theoretical constructs are presented. In particular, the discrete unitary version of the

e note that the approximations to the generalized coherent-state path integral considered by Ku-
ratsuji and Suzuki~’ — as well as specific formulations for Slater determinants “'’ — are very much akin
to the techniques develop in this paper.



14

method — the standard formulation — is throughly analyzed and a parallelization scheme
is devised for its numerical implementation. The technique is then put to use in Chapter 5
where model systems for bosons and fermions described by Hubbard-like Hamiltonians
are studied. The results obtained are compared against exact quantum data and general
trends of the methodology are identified.

At Chapter 6 we take on a more formal discussion. In this independent chapter, a
semiclassical approximation for the generalized coherent propagator is constructed.

This thesis was meant to have a general didactic tone and to be self-contained to
some degree. Since a lot of material has to be reviewed before the key developments are
considered, the end result was a rather lengthy manuscript. To partially alleviate this
inconvenience, we have marked with asterisks ‘*’ those sections of the body text that can
be skipped at a first reading. Also, the ‘thesis map’ displayed below is intended to aid the
reader. Finally, it also should be mentioned that several parts of this work were adapted

from Ref. [28] (including the introduction above).

Chapter 1
variational principle
& coherent states Appendix A
phase space
Chapter 2 & action
bosonic
(condensate) Chapter 3
} fermionic
Appendix B (Thouless)
bosonic survey
Appendix C
fermionic survey
Chapter 4
multiconfigurational
method
Chapter 5
applications

(Bose & Fermi Hubbard models)

Appendix D
diagonalization Appendix E
(Hubbard model) power spectrum

Chapter 6
semiclassical
approximation

Thesis map.
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Chapter 1

Time-dependent variational principle and

generalized coherent states

Overview. The time-dependent variational principle is reviewed. The pro-
cedure is first illustrated with unrestricted trial states; this establishes some
notation and terminology. A modified version of the principle, which includes a
normalization constraint, is then formulated and shown to be more convenient
when considering multiconfigurational trial functions. Generalized coherent
states are introduced and their basic geometrical properties are outlined. Seen
as special types of trial states, their dynamics under general Hamiltonians is
worked out from the basic Euler-Lagrange equations. The presentation mostly
follows the classic text by Kramer and Saraceno;” additional details are incor-

porated from Refs. [13;29].

1.1 Quantum equations from a minimum principle

The fundamental idea behind the time-dependent variational principle (TDVP) is that
approximate quantum solutions to a given problem can be obtained by optimizing a trial
state: a state that depends on a number of adjustable time-dependent parameters. The
optimization is effected by requiring that the trial state yields a stationary solution to a
certain action functional defined for a predetermined time interval.
Denoting the trial state by ¢ = 1(t), the total action functional A is:’
th

ATW}] - ST[qvb] - 5[10g<¢7|¢7> + 10g<¢0|¢0>}7 (11)

where the initial time is ¢ = 0 and the final time is t = 7 (for brevity, we occasionally
indicate specific time arguments with a subscript, e.g. |¢(0)) = |¢) and [(7)) = |[¢,)).

The reason why this functional incorporates unusual surface terms (the logarithmic terms)

In this thesis, ‘log’ is the natural logarithm of z. For complex z, ‘log 2’ refers to the principal
branch. Also, the complex conjugate of z will be indicated with an asterisk: z*.
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will be clarified in a moment — notice that the trial state is left unnormalized. The bare
action, or simply action S is the time integral of a Lagrangian function L,
ih ( d d*

sl = [ L) = [ar vy @l (5 - %) - Al (1.2)

where the conjugate derivative is meant to operate ‘backwards’, i.e. (¢|(d*/dt) = (dip/dt|.
We see that the Lagrangian is defined in terms of the mean value of an hermi-
tian version of the linear operator whose action upon a wavefunction |¥) produces the

Schrodinger equation,
Ld A
(m% — H)[W) = 0.
In this way the TDVP bears some resemblance to its more familiar time-independent
version.

Computing the mean value the Lagrangian is found to be:

L(¥)

. (1.3)

_ i @) = W) (W[H[Y)
2 (YY) W)

where a dot denotes differentiation with respect to the time variable ¢ — this will be a
recurrent notation throughout this work.

In performing the TDVP calculations, the ket state |1)) and bra state (i| shall be
regarded as independent quantities — only at the end we shall recognize them as dual
vectors, even though we still refer to ‘¢0” as the trial state. Correspondingly, the La-
grangian function should be understood as L(1), ¢*, ¥, w*), i.e. a function depending on
both variational parameters and their derivatives, as usual. We shall write simply L(v)),
for short.

A stationary point of the total action is associated with a path 1 (t), for 0 < ¢t < 7,
having the following property: when small displacements are effected at each time instant
of such path, ¥(t) — 1(t)+ 1 (t), the functional A is unchanged to first order. Therefore,
such stationary solutions can be found by enforcing the condition dA = 0, together with
fixed end-point boundary conditions, as is common practice in variational calculus.

The problem is thus formulated:

[V(8)) = [9(8) + [69:(2)) 01(0)) = 0
|

& 0A, =0 with: . (1.4)
W] = O]+ (09() (0v(1)| =0

Notice that the initial-time boundary condition is enforced on the ket |¢)g), whereas the
final-time condition is enforced on the bra (¢.|. The surface terms in A ensure the

consistency of this boundary-value problem,” as we will see.

iThroughout this thesis the terms ‘state’ and ‘wavefunction’ are used as synonyms.
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1.1.1 Unrestricted variations

In practice the trial state is invariably parametrized by a smaller number of variables than
that necessary to span the full Hilbert space where the exact quantum solution evolves —
otherwise the variational approach would not be justifiable in the first place. It is instruc-
tive, nevertheless, to see what happens when one is able to perform unrestricted variations
on ¥ (t), i.e. to effect displacements di(t) in the trial state as if it were completely flexible.

Let us begin by writing the first-order change of the total action,

5A, =88, — 2 _m , |
S = 2 i)+ i)~ 2 iy ot [ (Y
For unrestricted variations, the change in the bare action S can be expressed as:
oL oL
0S5, = — 1.6
e Loyt agoi+ 6ot + ]| o

In the above equation all terms are scalars, and derivatives with respect to bras and kets
should be understood as functional derivatives; for instance, using the position repre-
sentation, with ¢(x) = (x|¢) and ¢ (z)* = (Y|x), for « with the appropriate number of

dimensions, we would have:

OL(Y)
8|¢>‘ W) = / [ () O(z )]’ <5¢| /dx (W w(x)*}, etc.

Next, we proceed with the usual steps of time-dependent variational problems.”’ In-
tegrating by parts the |0¢)) and (8| terms of (1.6) we obtain:

(5S4t oo -5

The derivatives with respect to [¢)) and (4| are:

0
0S: = %| W <5¢’m

or  ih ) )
oW~ 2 Wiy (1.7a)
0L ih (Y]

3|”¢> =3 Y (1.7b)

Thus the factors removed from the time integral give

Bl , il vl

o] 1/’> (o) (dolto) (Urlbe) " (Wolto)

+ (6 ¢| |, (18)

3!@ < bl
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effectively canceling the first of the surface terms in Eq. (1.5). At this stage we have:

oL d oL 4 0L\ (Gl (ol
ar= | dt{{arw & o)+ 0 U dtaw}} M) T Colie)

=0

(1.9)
where we observe that the last factor vanishes by virtue of the boundary conditions, and
no quantities are left outside the integral sign. This overall cancellation, which is crucial
for reaching the conclusions stated in the next paragraph, would not occur without the
surface terms of A [cf. Eq. (1.1)], hence their importance.

Since |99(t)) and (d9(t)| are independent at each instant, the condition JA, = 0
implies that both factors multiplying these displacements inside the integral of Eq. (1.9)

must be zero; we thus arrive at the Euler-Lagrange equations:

oL d OL

— = = =0 10
ot aw’ , (1.10a)
oL d 8L

For clarity, let us compute all terms involved. Derivatives with respect to (1| and |¢)) are

OL _in |9) — Hly)  LlY)

B0 " 2 Wl W) (o) —
oL ih (b WA WIL
— = —— — — . 1.11b
o) 2 W Wld) Wl (D)
Meanwhile, differentiating Eqs. (1.7) with respect to t gives
d 9L ah ) iR (wld) + () )
T R e o s e e —
d 0L _ih (B inp{ld) + W) (v o
Ao "2 2l W) i (1-120)
Finally, collecting terms we find, from (1.10),
d N
(zh% - 71)|¢> = Hl1), (1.13a)
d* ~
(Wl(ih +2) = — (I, (1.13b)
where 4, and 45 are defined as:
bl @A) L) (wlA) )

W) Wy 2T e T Wl
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Up to this point |¢)) and (1| were regarded as independent quantities and therefore
41 and 45, the complex functions responsible for a gauge coupling between |¢)) and (¢| in
Egs. (1.13a) and (1.13b), are not supposed to be the conjugate of one another.

If, however, the Hamiltonian is hermitian (as it is in the vast majority of problems)
then there exists a subset of solutions where (1(¢)| = [|v(¢))]T, for 0 < t < 7.1 Recall
that the boundary conditions fix [g) and (¢;|, but not |1,) and (1y|. The subset of
solutions we are concerned with is defined by the extra requirement that the end-point
(1;| is fixed in such a way that when propagated backwards in time it matches [|1g)]'.
With an hermitian Hamiltonian, Eq. (1.13b) s the dual of Eq. (1.13a), and therefore the
requirement implies |¢,) = [(¢,|]T, and, consequently, ((t)| = [|1(¢))]" for all t. This
reasoning also applies to restricted trial states.!

Henceforth we shall always work with hermitian Hamiltonians and variational solutions
where [¢)) and (1| are dual vectors for all t. The boundary conditions are thus replaced
by simple initial conditions and, since the bra and ket equations are equivalent, we will
mostly work with the latter.

With these considerations in mind we rename the gauge factors, 41 = 4 and j, = 4%,
and rewrite Eq. (1.13a) as

(i~ 3)l) = Al). (1.15)

The scalar 4 can be removed by a simple transformation. Let us define the new, trans-

formed wavefunction |¥) according to:

) = [)ei. (1.16)
It follows immediately that |¥) satisfies the familiar Schrodinger equation,

B0 = H|D). (1.17)

Before drawing conclusions let us calculate the real and imaginary parts of +:

F+g i) — W) (WlH )

> T2 ) G
=47 h{gld) + (@fy) _ hdlog(yly)
2 2 Wk 2 dt
Hence, )
= L) + 2B, (119)

iThe hermitian adjoint of an object A is denoted by Af.

VThe preceding discussion may sound confusing, but this sort of analysis is typical in applications of
the TDVP. In semiclassical methods, for example, variational solutions where the distinction between bra
and ket variables is maintained prove to be both interesting and useful.
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and subsequent integration from 0 to ¢ yields (setting v(0) to zero):

V() = S(@) + ihlog \/(Y[¢). (1.20)
Putting this back in Eq. (1.16) we deduce the insightful result:

(Y1)

St

SW), (1.21)

Thus, the state |¥), which satisfies the usual Schrodinger equation, is just the original
unrestricted trial state, but properly normalized and with an action phase. The phase is
immaterial if |¥) stands for the state of the full system, since it represents only a global
phase in that case.

However, the fact the time-dependent variational principle attaches a phase to the
‘optimized’ state vector, as we shall call it, is not an exclusivity of the unrestricted
parametrization considered here — it is a general result, equally valid for other trial states.
And, in many situations, the variational phase does become important, as is the case
in guided-basis methods, where optimized states with restricted parametrizations (thus
incapable of representing the entire system by themselves) are combined together in order
to produce a more sophisticated total wavefunction. The technique developed in detail

at Chapter 4 is an example of such kind of method.

1.2 Norm-constrained form of the TDVP

Direct application of the TDVP in the form presented earlier, for general unnormal-
ized states, can be quite cumbersome in some cases, particularly when the trial state
is represented as a linear superposition of basis functions, that is, when it consists of
a multiconfigurational ansatz. To remedy this, we consider an alternative formulation,
where normalization is secured by enforcing a constraint in the variational problem. The
derivation below has been presented in Appendix A of Ref. [32] and is reproduced here
with more details.”

Let us define the modified Lagrangian £ and the squared-norm function N,

L = ih(p|d) — (Y| H|p), (1.22a)
N = (¥[). (1.22b)

VConstrained forms of the TDVP are studied in a series of papers by Ohta, beginning with Ref. [33].
However, in these works the issues regarding the consistency of boundary conditions in the variational
problem and the need for including surface terms in the action functional are not discussed. More details
on this subject are found in Refs. [13;29].
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We notice that the original Lagrangian can be written as:

L_é_@dlog/\/
TN 2 dt

(1.23)

In order to introduce the normalization constraint in the TDVP, we employ a real-valued
Lagrange multiplier A (because A is real) and reformulate the action functional (1.1) as

follows: T r
Al N = [ dt [ = AN = D] = inlog (i [v). (1.24)

where the total time derivative of Eq. (1.23) has been integrated and combined with the
surface terms of A. We shall refer to the functional given in Eq. (1.24) as the norm-
constrained action functional.

Evidently, imposition of a norm constraint is only feasible if free parameters, suitable
for this purpose, are available in the trial state. A state expressed as a linear superposition
of more elementary basis functions is the prototype trial state and fulfills this condition
— examples are given in subsequent sections. For now, let us work with a generic trial
state |1) and suppose that it copes with the above requirement. A small amount of
definitiveness is convenient, however, and thus we assume [¢)) is parametrized by a finite

set of n variables,

) = [9(€)) = [(&1, €25+ 6n)), (W] = (WD) = (W(&, &5+, &) (1.25)

Here, the parameters £ are not necessarily complex — one may think of the complex
conjugate sign as a device for distinguishing among ket parameters (§) and bra parameters

(&€*). In particular, displacements induced by variations ¢ and 0£* are:

(1.26)

r6w>:k§:1\8§k>5§k, (0] = Zw

where the bra and ket derivatives can be calculated from any specific representation of
[¥(€)), e.g. in position representation we would have ¥ (z;&) = (z|¢), and therefore
(2|00 /0&k) = 0 (x;€)/ Ok

In this way, the modified Lagrangian can be expressed as:

)= S (10008 En — (LY. (1.27)

k=1

Notice that £ is independent of £*.

Following these considerations, variation of the norm-constrained action functional
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with respect to the set of variables A, £ and &*, yields

5AT:6F+/Tdt (V= 1)3A]

C/./\/) d@(ﬁ/./\/) (9./\/
o) dtz{ o6 i og, oG

|6g, + oz | AL/N) AaN}}, (1.28)

oc; T og;

where we have already performed the partial integrations and collected surface terms into

the quantity 6I". Once more these terms cancel off by virtue of the boundary conditions:

n L/N

0T = Z 6@ — z‘hé(longle)) (1.29)
,; Wy, kz | <¢T|¢T> e
— < |57~p‘r> ¢0’5¢0 i wﬂ'lw’r w7’6w7>
a h[ < T’¢T> wO‘wO } h|: %WT %WT) }
5¢T|1/}7' 77b0|5¢0> _
0t Ty ) (130

where (1.4) has been invoked in the last line.
Since 0\, 6§ and 0&* are independent, the factors multiplying these variations under

the integral sign in (1.28) must vanish identically. We are thus left with the system of

equations:
oL d E)E ON
—_— — = A+ L)— =0 1.31
oL ON
—(A+ L =0, 1.31b
og ~ M Pag Lt
N—-1=0, (1.31c)

for 1 < k < n. By enforcing the additional requirement that |¢) and (| represent
dual vectors for all ¢, Egs. (1.31a) and (1.31b), despite their apparent difference, become
strictly equivalent (this can be easily verified for the examples given in the next two
subsections). In practice, Eq. (1.31b) is more convenient to work with, since there is no
need for computing total derivatives. Meanwhile, Eq. (1.31c) ensures norm conservation
of the trial state (in writing the system we have already put AN/ = 1 in the first two

equations).

1.2.1 Full variational equations with static basis functions

Let us exemplify the norm-constrained formulation by considering a widely used varia-

tional trial state:

- f: 67)c;, (1.32)
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with a static, non-orthogonal basis set spanned by m states |¢), whose projector is

m

P =33 16)(P il Py = (iloy). (1.33)

=1 75=1

Notice that the basis set is not assumed to be complete, i.e. in general P #£ 1. Variations
in the trial state are therefore restricted, with the complex amplitudes ¢ playing the role
of variables ¢ of the previous section. In what follows summation ranges are omitted.

The modified Lagrangian and squared norm are, respectively,
L= (ihei(@ilo;)e; — ciey(dilfl]6;), N =3 ci{dilose;, (1.34)
ij ij

and the Euler-Lagrange equation (1.31b) translates to:

oL ON

= . 1.
e A+ L) o (1.35)
Computing the required partial derivatives we arrive at:
D (ileg) (ih e — Leg) = S {dil Hldjhe; = XD (diley)e. (1.36)

J J J

The Lagrange multiplier can be easily determined. Multiplying the above equation by ¢,
summing on 4, and identifying £ and A from (1.34) in the resulting expression, one finds
A = 0. Moreover, the equation of motion can be further simplified by defining a new set

of amplitudes a, related to ¢ by a global phase as follows
a; = CjG%IOTth. (1.37)

Therefore, setting A = 0 and employing the new set of amplitudes, Eq. (1.36) reduces to:

ih) (bilég)a; =D _(bilH|b;)a;, (1.38)
J J
which is the well-known form assumed by the Schréodinger equation when a finite, static,
and non-orthogonal basis set is used to represent the quantum state |¢).

The system’s wavefunction with the phase-shifted amplitudes is:
) =S [6)a; = S lg)eser o E = fyyerfo (1.39)
J J

Note that the condition N = (¢[tp) = 1 implies (1p|¢)) purely imaginary (because dN /dt =
2 Re (¢|1)) = 0); thus £ is real and so is the accumulated phase between |¥) and [¢)).

Finally, we note that, in terms of |¥), the Euler-Lagrange equations can be summarized
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by
— > (ihai(@xloy)a; — aja; (6] H|6;)) = 0, (1.40)
T kj
or, more generally,
(00| [mi — H|[w) =0. (1.41)

This is the so-called Dirac-Frenkel version of the variational principle.”"

As we mentioned, Eq. (1.38) could have been worked out directly from the Schrodinger equa-
tion, and this makes the whole variational machinery seem unnecessary. The usefulness
of the TDVP can only be truly appreciated when it is applied to more sophisticated trial

states. Next we look at one such example.

1.2.2 Full variational equations with time-dependent basis functions

Once again we consider the multiconfigurational trial state:

Zl% ¢, with: P = ZZI@ )i @il Pig = (il 9;)- (1.42)

=1 7=1

This time, however, the basis functions are assumed to be dynamic, i.e. each basis element
|¢;) depends on a s-dimensional array of parameters z; = z;(¢), and evolves in time

according to:
d S
95) = |9(z;)) = |9(zj1, j2, - - w55)) = %|¢j> = |0vdj)ij, (1<j<m), (143)
v=1

where a short-hand notation for partial derivatives is employed: 0,¢; = 0¢;/0x;,. In this
way, a more flexible wavefunction is produced and, in principle, more accurate solutions
can be achieved through the TDVP, since both amplitudes ¢ and basis-set variables x are
allowed to be adjusted.

The modified Lagrangian is:

L=> (ih ciej(oildy) + ih ciey 3o (0il0udy)a — ciej(6il HI ;). (1.44)

Similarly to the example developed earlier, one easily concludes that the multiplier asso-
ciated with the norm constraint is zero, and that the equations are simplified by adding
a global phase to the quantum state. In order to avoid repetitive arguments, instead of
starting from the Euler-Lagrange equations in the form (1.31), here we shall consider the
phase-shifted state,

ZI% — |¢)et o dE, (1.45)

and work directly from the Dirac-Frenkel variational equation (1.41), which in the present
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case reads

0 s ) s . « A
ae" >~ (ihai(oxlo;)a; + ihaja; > (0kl0,05) 35, — aias(én Hlo;)) =0, (1.46)
kj v
for &* = (24, a}), with 1 <i<m, 1 <p<s.
The equation for the set of amplitudes a is immediately found from (1.46) — setting

&* = a} and performing the partial derivatives we get:
i (diloi)a; = 3 (@il HIg;) — ih Y (1l0,05)¢5 ] ay. (1.47)
j j v

On the other hand, setting £&* = x;,,, and recalling that z;, must be a bra variable (we

are not supposed to differentiate with respect to z’s belonging to the ket |¥)) leads to:
iﬁzaf% Z<au¢i|au¢j>$.jv+mza u¢2|¢3 Za a;( u¢z|H|¢J> (1.48)
J v J

The latter equation takes on a much more illuminating form if we use the amplitude

equation to replace the terms containing a. For that purpose, we rewrite (1.47) as:

thaj = Z(P_l)jk[<¢k|]:]|¢l> - ihz<¢k|au¢l>ilu}al~ (1.49)

kl

Then we proceed with the following manipulations,

ihZa #(Mqﬁ] Za u¢l|¢1 )jk{<¢k‘ﬁ|¢l>_mz<¢k|au¢l>55lu}al
J v

jkl

=24 (0u0i] {Zm T)ik(onl P HIgn) — ik Y 0,60) |
l v
ZZ%%‘ 0,0 PH|¢;) —Zﬁzaf%‘ > (0.0l P10y &) dg,  (1.50)

where we have identified the basis projector P, defined in (1.42), and renamed dummy
indexes in the last line. Putting this in (1.48) yields (using |¢) = P|¢) on the right-hand
side):

zhz[ 0util (1 = P)|0,o)a;) 50 Za 0, (AP — PH)|¢;)a, (1.51)

The above result shows that, if the time evolution drives the system’s wavefunction to a
region in parameter space where (9,6;]0,¢;) = (9,6:| P|0,¢;) (i.e. a region where the basis-
set is effectively complete) the equations for the variables  become undetermined; in other
words, the dynamics of individual basis functions is immaterial during the times at which

the basis set projector P behaves as the identity operator — under such circumstances,
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the Hamiltonian will also commute with 15, and both sides of Eq. (1.51) approach zero.
As a final remark, we note that the multiconfigurational trial state (1.42) is actu-
ally ambiguous, with many possible values of parameters x and a representing the same
physical state. In conventional multiconfigurational techniques™ other constraints (of a
more complicated sort) are imposed (for example, the basis functions are assumed to
be orthonormal for all ¢, and non-holonomic constraints, involving conditions over time-
derivatives, are often employed) so that redundancies are lifted and the indeterminate
character of solutions is avoided. Nevertheless, this illustrative example provides many
insights concerning the TDVP. In this work, we shall not consider full-variational mul-
ticonfigurational methods any further, but the observations made here will be useful in

clarifying some aspects of the guided-basis technique to be developed at Chapter 4.

1.3 Generalized coherent states — overview

Coherent states are most elegantly discussed within the context of group theory; this is
the point of view advocated in this work. We shall not venture into the group-theoretical
formalism itself though — on that subject see Refs. [06;9;37-39]. In this thesis, we delib-
erately adopt a more pragmatic approach according to which a coherent state is given a
functional definition from where its fundamental geometrical properties can be straight-
forwardly derived. The functional form can also be worked down to a Hilbert space
expansion over a proper set of orthonormal basis functions, thus providing further insight
in what concerns the coherent-state’s structure.

For the moment, all such concepts shall be considered in broad terms only, since this
chapter is dedicated to a brief overview of the generalized formalism (although Glauber
coherent states are used in §1.3.4 to partially illustrate the discussion). The ideas pre-
sented here will truly materialize later in Chapters 2 and 3 where specific sets of coherent

states with non-trivial geometries are examined in detail. The development closely follows
Refs. [13;29].

1.3.1 Preliminaries

Coherent states are Hilbert space vectors labeled by a complex array z = (z1,...,2q).
They can be understood as the result of a z-parametrized displacement operator acting
on a reference state |®o) which should be adequately chosen among the basis vectors of the
Hilbert space in question, hereby denoted H — this is precisely the ‘functional definition’

mentioned earlier. The general non-normalized form is

2} = G(2)|®0), G(z=0)=1, (1.52)
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where 1 is the identity operator in 7. As shown above, the reference state is recovered
by setting all entries of z to zero.

A special notation is introduced in Eq. (1.52): a non-normalized coherent state will
be denoted as |z}. These curly ket states are analytical in z, while the bra states {z| are

analytical in the complex conjugate variable,

0{z|
024

dlz}
0z¢

[0}

0,

0, (1<a<d). (1.53)

Notice that the normalized state |z) is not analytical in z for it depends on z* through
the normalization factor {z|z}7%; an analogous observation applies to (z].

In this work, the following convention is adopted: entries of the coherent-state vector
z will be labeled by Greek letters, primarily «, 3,7 and secondarily u,r,n. Also, the
number of elements in the z array will be denoted d. In the next section this size will
be identified as the number of degrees of freedom of the classical phase space associated
with the coherent-state’s dynamics.

Let n be the dimension of H; this space is thus spanned by n orthonormal basis vectors

|®) (including the reference state) and the closure relation may be written as:

n—1
L=21®u)(@xl, (Pr|®) =0 (0<k,l<n—1). (1.54)
k=0
Since the set {|®g), |P1),...,|P,r_1)} is assumed to be complete, it is possible to reduce

the functional form of |z}, as given in Eq. (1.52), into a linear combination of the n basis
vectors,
n—1
|2} = [@o) + D |P4) Ci(2), (Cu(0) =0), (1.55)
k=1
with the coefficients Ci(2) usually being highly nonlinear functions of the complex variable
z; it is in this sense that one says coherent states constitute nonlinear parametrizations.
An important observation is that, in general, we have d < n, i.e. the dimension of z is
normally much less than the size of the Hilbert space where |z) lives, as we shall see.
Coherent states belonging to different groups are characterized by their distinct geo-
metrical properties. These, in turn, are described in terms of a function f related to the

scalar product between two non-normalized coherent states, defined by

f(z*,2") =log{z|-'}. (1.56)

This function is a central object of the formalism; it is called the Kdhler potential” (or

more correctly, its analytical continuation, since we have 2’ # z).
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For instance, in terms of f, the normalized state may be simply expressed as

|Z} 1 *
z) = = |zjexp | — 5f(2", 2)|. 1.57

Lets introduce further geometrical elements.

The classical phase-space metric g(z*, z)ap is an hermitian d x d matrix defined through
the cross derivatives of the real function f(z*, z) with respect to its complex arguments,
treating z and z* as independent variables:

2 f(
(2%, 2)ap = 8(9‘];();2’;) (1.58)
The one-to-one relation between coherent states and elements of well-defined quotient
spaces of Lie groups ensures that the z parametrization is non-redundant; and this, in
turn, ensures that ¢ is a non-degenerate matrix."

One of the most important results provided by the group-theoretical framework is the
existence of a resolution of the identity operator (1.54) in terms of coherent states. This
means that the non-orthogonal coherent states span an over-complete basis of H; the

closure relation is expressed in integral form:

i — /du(z*,z)|z>(z| — /d,u(z*,Z)e_f(z*’z)|z}{z|. (1.59)

The integration domain depends on the specific type of coherent state being considered —
for semisimple compact Lie Groups or the Heisenberg-Weyl group, for example, the do-
main extends over the entire d-dimensional complex plane. This includes the parametriza-
tions studied in Chapters 2 and 3. Thus, despite the fact that, usually, d < n (as men-
tioned earlier) it is generally possible to represent an arbitrary state belonging to H in
terms of coherent states using a continuous superposition of |z) vectors (or a judiciously
chosen discrete set).

The general form of the integration measure du(z*, z) in (1.59) is also found by group-
theory arguments; it is proportional to the metric’s determinant,

. . APz
du(=",2) = rdetlg(=", 2)) (1.60)
where the area element (written in abbreviated form in the above equation) may be

expressed in any of the following equivalent ways:

z Pz, & d(Rezy)d(Imz,) & dzadzd
= i

a=1 T a=1

1.61
21 ( )

By definition, the measure is invariant under group transformations of the z variables.
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These group transformations refer to the particular Lie group associated with the coherent
state description. They are induced on the parameters z by means of the action of group
operators (or rather, their Hilbert space realizations) upon the state |z). This attribute
is important for future developments in this work.

The constant  figuring in Eq. (1.60) is determined by normalization of the closure
relation (1.59) — e.g. by setting the expectation value of (1.59) in the reference state to
unity, (®o|1|®¢) = 1. Therefore, x depends on the quantum numbers that characterize H
(cf. Appendixes B and C for specific examples). Notice that, as indicated in (1.60), the
measure is a real function of both z and z*; however, in order to shorten the notation, we
shall write simply du(z).

Finally, let us consider arbitrary states [¢)) and (¢*|;" We may write, using (1.59),

v(w) = [ du(",2) {wlz} v(=") e, (1.622)

p(w) = [ du(z",2) o(2) {zlw} e ), (1.62b)

Notice that ¥ (z*) = {z]¢)) is an analytical function of z* and, conversely, p(z) = (¢*|z}

is analytical in z.” We shall put these identities to use later on, at Chapter 6.

1.3.2 Coherent states as trial functions

Let us now look at the coherent-state variables (z1, zs, . .., 24) as a set of time-dependent
parameters z(t) and investigate the consequences of taking |z} as a trial state in the TDVP.
The purpose here is to approximately describe the dynamics of a quantum system governed
by an Hamiltonian H (which is left unspecified). In the present case, it is convenient
to work with the standard form of the variational principle (i.e. without normalization
constraints).

We begin by writing the general form of the Lagrangian,

ih{{ZIZ} - {2|Z}} {412
2 {22} {22}

and by introducing some useful terminology. The first term of (1.63), the one containing

L(z) = (1.63)

the time-derivatives |2} and {Z|, will be referred to as the geometrical part of L(z).
Meanwhile, the second term, which is simply the coherent-state expectation value of
the Hamiltonian, will be referred to as the dynamical part; this part defines the energy

function,

E(z*,z) = %ﬂ? = (z|H|2), (1.64)

which is a real function, since H is hermitian.

ViThe asterisk on (p*| is simply meant to compensate for the complex conjugation of bra representa-
tions, for example: (p*|z) = p(z).
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By virtue of the coherent-state’s analytical property (1.53) the geometrical part of
the Lagrangian can be straightforwardly expressed in terms of derivatives of the Kéhler

potential f(z*, z) [cf. Eq. (1.56)], which we denominate Kdhler gradients; for example:

{zl2} _ zd: Olog{z|z} . _ zd: Of(z",2)

= o o 1.65
G~ R 0w A 0w (165)
Hence we find a workable formula for L(z),
ih & [Of (2%, 2) Of (2, 2)
L(z) =2 . | B2, 2). 1.66
@=5 3 (L, - ] - b (L6t

The action functional (1.1), for paths z(¢) with 0 < ¢ < 7, in the present case reads:
T ih . .
A,(2) :/0 dt L(z) = 5 [£(5,20) + (i, 20)]. (1.67)
The variational problem consists of finding paths that obey the stationary condition
dA.(z) = 0, together with boundary conditions (1.4), which here translate to [0z} = 0
and {dz;| = 0, thereby fixing the values of initial and final points, zo = z(0) and
2t = 2*(7), respectively.

The usual manipulations yield the Euler-Lagrange equations,

oL d oL
o drozn (1.68a)
oL d 0L

We recall that, in carrying out the calculations leading to Eqgs. (1.68), one pretends that |z}
and {z| are independent. However, following the prescription delineated earlier in §1.1.1,
once the Euler-Lagrange equations are found, attention shall be restricted to solutions
where the bra and ket states represent dual vectors, i.e. solutions where z(t) and z*(t) are
in fact related by complex conjugation. Then, Egs. (1.68a) and (1.68b) are equivalent —
we choose to work with the former.

The equations of motion for the coherent-state vector z are immediately obtained from
(1.68a) — computing the required derivatives and expressing these in terms of already
known geometrical ingredients, one arrives at:

d i OE(z*, z)
> i59(25, 2)pa = —r—=——, (1< a<d). (1.69)
5=l h 0z
Let us now make a few comments regarding this dynamical equation.
The group-theoretical formalism assures us that Eq. (1.69) describes a classical Hamil-

tonian system in a strict sense: the space spanned by z constitutes a phase space with d
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degrees of freedom which exhibits a symplectic structure, i.e. the equation of motion can
be written in terms of non-degenerate Poisson brackets.”

Moreover, the measure (1.60) that equips the coherent-state closure relation, is not
only invariant under group transformations but also invariant under the ‘classical flow’
produced by Eq. (1.69); that is, if z(¢) obeys the latter equation, then

dp(z(t2)) = du(z(t1)), (1.70)

for any two instants t; and ¢y — a property that we recognize as a generalized form of the
Liouville theorem. The above relation is proved in Appendix A. Remarkably, it remains
valid even when the system’s Hamiltonian has explicit time dependence.

An additional connection between the present framework and the classical Hamil-
tonian formalism is found by considering the action functional (1.67). It is shown in
Appendix A that, when A,(z) is evaluated over a trajectory z(t) satisfying (1.69), it be-
comes a complex-valued function whose ‘natural’ arguments are (z%, zp, 7), in the sense

that derivatives with respect to these variables are well defined and given by:

i 0A (27, 20)  Of(2],2) 1 0A(2],%0)  Of(25,20) 0A:(2], 20)
h 0z 9z, ' h Oz, Oz, or

™ ™

= —F(z, z;),
(1.71)

while derivatives with respect to z; and z, vanish. The above relations are the signature of
a properly defined classical action integral,'” and the function A,(z%, zp, 7) is thus called
the complex action. The relations listed in (1.71) are put to use in Chapter 6, where
further classical aspects of the coherent-state formalism (related to the system’s stability
matrix) are uncovered.

Going back to Eq. (1.69), another interesting point to be noticed is the fact that the
coherent-state geometry introduces a curvature in phase space by means of the metric
g(z*,2). One now can distinguish between two kinds of coupling between the components
of the vector z: a dynamical coupling via the energy function F(z*, z), and a geometrical
coupling induced by g(z*, z).

As previously mentioned, the metric is non-degenerate, meaning that it can always be

inverted. Thus we may rewrite (1.69) as below,"

. d
. 1 7 OF
Za = T L E : Ju )

et d 0z}

(1<a<d), (1.72)

where the arguments of F and g have been omitted for compactness. For the same reason,
we write g;BT instead of (77, — we shall recurrently employ this kind of notation, relying
on the context to prevent confusions. It is often found that considerable simplification is
achieved by effecting the multiplication that brings (1.69) to (1.72).

ViiThe transpose of a matrix A is denoted AT. The inverse transpose is abbreviated as A~7T.
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Finally, we note that the traditional time-independent variational principle is recovered

by considering critical points of (1.72). Indeed, putting Z = 0 in that equation we get:

OE(z*, z)

= <a< .
oo 0, (1<a<d), (1.73)

where the fact that g is non-degenerated has been invoked in order to eliminate it from
the above system."! Since the energy function is usually nonlinear in the coherent-state’s

parameters z, roots to Eq. (1.73) have to be found by iterative self-consistent techniques.

1.3.3 Classical propagation scheme

As previously discussed in §1.1, the TDVP not only provides equations of motion for the
trial state’s parameters but it additionally attaches a phase to the corresponding state
vector, which is simply the time integral of the Lagrangian function computed over the
stationary path. In the present case, the phase is the classical action,™ or simply action,

computed along the trajectory z(t) governed by Eq. (1.72) — explicitly:

SQwﬂ——ATﬁlX@—:/ t {Im[ - h}jaéia”'q-E@azﬁ, (1.74)

where 7 denotes the final time, and Eq. (1.66) has been substituted with a minor abbre-

viation. Thus the properly normalized and ‘optimized’ coherent-state is

S(zt)

|2 >eﬁ with 2 = 2(20,1), (1.75)

where time arguments have been written as subscripts.

Let us now consider the following situation. Suppose we are investigating a system
whose initial state [¢)y) can be prepared in such a way that it may be adequately repre-
sented by a coherent-state, i.e. [t)g) = |z;). Then we could attempt a crude dynamical
description by approximating [¢;), for t > 0 by a coherent state |z;); or, in other words, by
taking |z;) as a trial state subjected to the boundary condition |z9) = |z;) in the TDVP.

The approximate solution would be
W) = e 17 2) m |2,)en5C) | with 2 = 2(z;,1). (1.76)

The above equation, together with (1.72) and (1.74), defines a primitive propagation
method, the classical propagation scheme, according to the terminology of Ref. [29] (see

‘Appendix B’ of that work for a complementary discussion). The denomination stems from

ViliTt may be mathematically convenient, however, to keep g in (1.73) since it usually simplifies the
algebraic equation.
XWe shall always refer to the integral S(z;t) of Eq. (1.74) simply as the action; meanwhile the quantity
A(zf, z0) of Eq. (1.67) will always be referred to as the complex action.
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the fact that only classical ingredients (in the generalized sense) are present in Eq. (1.76).

Most often, the classical propagation scheme provides reasonable wavefunctions only
for very short propagation times — although, occasionally, mean-values computed with said
wavefunction may be surprisingly accurate. At any rate, the prescription summarized in
Eq. (1.76) serves as a reference method against which more sophisticated approaches (such
as that developed in Chapter 4) may be confronted, being thus useful, to that extent, for
identifying ‘non-classical’ behavior. Note that the meaning of ‘classical’, as the term is
understood here, depends on the particular coherent-state parametrization chosen for the
analysis of a given problem; e.g. for the bosonic and fermionic coherent states discussed in
Chapters 2 and 3, the classical scheme leads to mean-field solutions, equivalent to those
obtained through time-dependent Gross-Pitaevskii/Hartree-Fock equations when treating
bosonic/fermionic systems.

Finally, it should be pointed out that, if the Hamiltonian is an element of the Lie
algebra associated with the set of coherent states under consideration — i.e. when H is
linear in the group’s generators — then the time-evolution operator ‘exp(—%f] t)" merely
represents a group transformation — it simply maps one coherent state onto another. In
such a situation, the classical propagation scheme actually gives the exact wavefunction
for t > 0.

1.3.4 Example: Glauber’s coherent states/gaussian wavepackets

Lastly, we illustrate some of the concepts developed in this section using canonical coherent
states, or Glauber coherent states,””" as they are known in the field of Quantum Optics
— from where we borrow the physical background for the subsequent presentation.

Let us consider a system wherein photons can be excited at d optical frequencies,
or modes. In the language of second quantization, bosonic creation and annihilation
operators, al, and a, respectively, are assigned to each mode, with 1 < o < d. The

Hilbert space basis consists of occupation number eigenstates,

()™ (ab)™2 .. (ah)m
\/m1! m2! Ce md!

|ma,ma,...,mg) = 0), (1.77)
where |0) denotes the vacuum state. Since the number of photons is unrestricted (0 <
me < 00) the Hilbert space (in this case a bosonic Fock space) is infinite-dimensional.
The reference state is chosen to be the vacuum state, |®¢) = |0). Then the functional
definition of the non-normalized Glauber coherent state, parametrized by the vector z =

(z1,...,24) (whose length equals the number of optical modes), is:

|2} = exp [zzlzaau |0). (1.78)
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The decomposition of |z} in terms of basis elements |my, ma, ..., mg) is easily found by

expanding the above exponential and using the commutativity of the creation operators,

BED Y

mi ma . M4
l e M |] M, ma, . . ., ma). (1.79)
m1=0 mq=0

\/m1! m2! e My

These last two equations exemplify the general formulas (1.52) and (1.55).
Since the modes are assumed to be orthonormal, the overlap {z|z} is found without
difficulty from (1.79), the result being

{z]z} = exp ( z_:l z22a>. (1.80)

Thus we identify the Kéhler potential [cf. Eq. (1.56)] as

zd: ZpZa (1.81)

Whence we find that the metric [cf. Eq. (1.58)] for Glauber states is simply the identity

matrix,
(2%, 2)ap = Oap- (1.82)

The phase space is therefore flat, which means that the d degrees of freedom are not
‘geometrically coupled’, in the sense described earlier. From (1.82) it follows that the
measure [cf. Eq. (1.60)] is trivial:

 d?z

du(z) = ]

a=1

(1.83)
T
The physical interpretation of Glauber coherent states is based on the fact that each

entry z, is associated with the mean occupation of the corresponding mode,
(zlalaalz) = |zal?, (1.84)

where the normalized state is [2) = |2} exp(—2 32¢_, |z4|?). The relation (1.84) is easily
obtained from the formulas given above. It also follows from the well-known fact that |z)
is an eigenket of the annihilation operator, a,|z) = z,|2).

Gaussian wavepackets. The bosonic occupations can also be pictured as excitations
in a quantum harmonic oscillator with d degrees of freedom, whose ground-state wave-

function (the position representation of the vacuum state) is a d-dimensional Gaussian,

(]@o) = (17) ¥ exp | = 3 (wa/)?] (1.85)

a=1
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where x = (x1,29,...,24) and 7 is a length parameter (for a mechanical oscillator, -y
depends on its mass and natural frequency). From this point of view, the states in
(1.77) are proportional to the well-known eigenfunctions of the harmonic oscillator, whose
position representation is given in terms of Hermite polynomials.

We are interested in the position representation of the coherent state |z). In order to
find it, a well-known relation among the bosonic operators a, and a, and the elementary

position and momentum operators, @a and Pm is employed:

N vy t N ih
Qaziaa‘{'aaa Pa_
\/5( ) w2

Using the above formulas, together with the basic property a,|z) = z4|2), it is possible

(af, —a0) = [Qa,Ps] = ihdns. (1.86)

to determine the function (z|z)."" The calculation is straightforward, but we shall not go
into its details. As it turns out, the result is more conveniently expressed in terms of the

mean-values:

/y * A Zh *

—= (2t 2a)y Poa= (2|Fal2) = —=(25 — 24);
V2 W2

and, since ) and P are essentially the real and imaginary parts of z, we may re-label
the coherent state as |z) = |g(Q, P)). With this notation, the sought function is then

expressed as:

Qo = (2|Qal2) = (1.87)

(la(@. ) = ()2 T oo [ -2 225 S, = Qo) 4 gpmia . 0189

Thus, Glauber coherent states can also be understood as gaussian wavepackets. A notable

property of these states is that they satisfy, by construction, a minimum uncertainty

relation:
AQu=glQ2g) — @2 = L, AP, = \JiglP2g) - P2= " = AQ.aP, ="
« « \/§ a 7\/5 2
(1.89)

The equations of motion [cf. (1.72)] can be written in terms of the real parameters @

and P and they reduce to the familiar Hamilton equations of classical mechanics:

) oE . oF
— — _ < < . .
Qa_(‘?Pa’ P, = 90, (1<a<d) (1.90)

If the Hamiltonian has the usual form,

d_ p2
Z T\C} 1,Q2,. .., Qa), (1.91)

(for simplicity, we assume all particles have the same mass) the energy function in
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Eq. (1.90) is then given by:
E(Q,P)=FE,+ Z & + V(Q (1.92)

where E, is a constant. The effective potential V(Q) is the mean value V(Q) = (g|V(Q)|g),
which can be computed from the (diagonal) position representation V(z) = (z|V(Q)|x)

by insertion of the closure relation, 1 = [ dx |x)(z|; that is:

V(Q1,...,Qq) = (77?2 /(da:l cdrg) Vi, .. wg)e” Dam@=Qa?A (1 93)

Due to the finite width v of the Gaussians, the potential V(Q) results to be a smoothed-
out version of V' (x); this feature is sometimes interpreted as if ‘quantum corrections’ were
included in the otherwise purely classical system.

Gaussian wavepackets are ubiquitous in Quantum Chemistry, particularly in semi-
classical methods, where they are most often combined into an integral expression, or
‘initial-value representation’ (IVR) formula."" Individually, each wavepacket is suitable
for representing an ensemble of heavy, localized, and distinguishable particles (e.g. the
nuclei in a molecule) for its parameters () and P behave in a classical fashion while the
Gaussian width is kept constant — in this so-called ‘frozen-Gaussian representation’
the identity of each particle is preserved and the ‘interpretativeness’ of the problem in
such terms is ensured. Collectively, as in any IVR formula, the independently evolved
wavepackets are allowed to interfere with one another and are thus capable of producing

approximate quantum solutions.
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Chapter 2

Bosonic coherent states

QOverview. Bosonic coherent states of the special unitary group are re-
viewed. They are interpreted as Bose-Einstein condensate states, where all
particles occupy a single macroscopic mode. Their dynamics is first discussed
in general terms; later, equations of motion for a specific class of Hamilto-
nians are obtained and the connection with bosonic mean-field theories is
established. The effect that group transformations have on the coherent-state

parameters is also studied.!

2.1 The Bose-Einstein condensate parametrization

2.1.1 Preliminaries

Let us consider a single-particle space spanned by a finite set of orthonormal states, which

we shall refer to as ‘modes’ in the bosonic formalism. The projector onto this space is:

d
P =3 10){(0pl, dp(x) = (x|¢p), d=K—1. (2.1)

p=0
The K modes |¢) have been numbered from 0 to K — 1 = d. This notation is chosen in
view of the coherent-state framework — we shall find that d is the number of degrees of
freedom in the coherent-state description. As the number of modes is increased the limit

of a complete basis is approached,
P(x,x') = (x|P|x') "2 5(x — x). (2.2)

However, one almost invariably works with a truncated basis set under the assumption

that it suffices for an appropriate treatment of the physical situation.

In this work, bosonic coherent states are introduced before their fermionic counterparts; this choice
was made because the latter are somewhat more intricate. The organization of this chapter, however, is
entirely inspired by that of Chapter 3 which, in turn, closely follows the exposition given in the review
article by Deumens et. al..
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Creation and annihilation operators are associated with each single-particle mode.

These operators obey the usual commutation rules:

= bil0 b, bi] =4
2 p‘ ) with: by q] b , 0<p,qg<d. (2.3)
<¢q| = <O|bq [bpa bq] = [b;rga bl}] =0

where [fl, é] = AB — BA. The bosonic field operators, defined over the truncated space,

h(x) = X0 dp(x)b, o b= Jdx 4 (x)(x)
PH(x) = S0 ¢ (x)b} b = [ dx ¢p(x)i (x)
They satisfy:

L 0<p<d  (24)

S A~ A~

[d(x), 91 (x)] = P(x,x), [d(x), d(x)] = [¢1(x), &' (x)] = 0. (2.5)

Let us now consider the bosonic many-body description. A complete set of basis

vectors is provided by the eigenstates of the number operator,
fip = blby, fplmo, ... mg) =my|mo,...,mg), 0<p<d. (2.6)

These states, labeled by an array of occupation numbers m = (mg, my,...,my), are

defined in terms of the basic creation operators according to

(B6)™ (b1)™ (B5)™2 . .. (bl)™

vmol milma! ... omy!

|m07m17m2)"'7md> = |0>, (27)
where |0) denotes the vacuum state.
We shall restrict our analysis to number-conserving systems. In this case the set of

occupation numbers corresponding to each bosonic state must comply with the condition:

mo+mi+mo+---+mg=N, (2.8)

where N is the total number of bosons present in the system; this constraint will sometimes
be abbreviated as |m| = N.

The dimension of the Fock space B(K, N), for a system of N bosons which are allowed
to occupy K single-particle modes, equals the number of possible sets m such that |m| =

N; combinatorics gives:

(N + K — 1)

(2.9)

The number-conserving restriction implies that the total particle number operator N
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is a constant of the motion,

N=Y"#, [H N]=0. (2.10)
p

Hamiltonians belonging to such a class can be expressed in terms of the bilinear forms
b;bq, which satisfy the following commutation relations:

[b1bg, biby] = bib, 64 — blbg 65y, 0 < p,q,7, s < d. (2.11)

r

A basis for the algebra su(K) of the special unitary group SU(K) may be written in terms
of these operators. This is the dynamical group we associate with the number-conserving

time evolution of a bosonic system.

2.1.2 Coherent states: definition and macroscopic mode

The bosonic coherent states we shall work with aim at describing Bose-Einstein conden-
sates. The appropriate physical context is that in which one of the single-particle modes,
taken to be |¢o) = b}|0), is macroscopically occupied most of the time' and only a rela-
tively small occupation of the remaining modes is expected. In this scenario, the reference

state in terms of which the coherent state is defined is

(bh)

10); (2.12)

i.e. the state in which all bosons are found in the ‘reference mode’, |¢o) = b}|0). This
mode is therefore special and we shall adapt our notation accordingly: distinct sets of
subscripts will be employed when referring to different index ranges, the convention being
as follows:

0<(p,q,rs) <d, 1< (u,v)<d. (2.13)

With that understanding we shall henceforth omit the limits in summations and products.

As an example, the basic commutation rules can be re-stated as:
Do, b] = 1, [by, b)) = Gy [bo, 0] = [, B8] = 0, [bo, bo] = [b,i, b] = 0. (2.14)

The unnormalized bosonic coherent state is defined in terms of a displacement operator

acting on the reference state according to:

|2} = exp (Z zltbLb()) |Dy). (2.15)

iThe term ‘macroscopic’ is loosely employed here; we simply mean that most of the particles occupy
the reference mode — we do not necessarily have N ~ 10?® (e.g. the numerical examples in Chapter 5 use
N ~ 40 — —100).
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These states are labeled by the complex array z = (21, 29, ..., 24) which we take to be a
column vector in the formalism to be developed below. Correspondingly, the complex-

*

conjugate array, z*, is to be understood as a row vector.”” We see that each entry z, is

related to the process of removing a boson from the reference mode and placing it at the
mode |¢,,).

Let us now work down the coherent state definition to a more comprehensible form.
We begin by noting that all terms in the exponent commute, i.e. [bLbo,b,T,bo] = 0, and
therefore the exponential can be factored into a product, [], eZublbo Now, suppose &7 is a
function of all creation operators, except b). This means that [bo, £T] = 0 and [b;,, ¢ =0.

Let us then evaluate the following commutator:

00 k
[esnthbo | (5 +€1)] =3 ;3? [ (0hbo)*, (B +€1)]
k=0 :
=5 Gy
k=0 '

= (2b1,) bkt (2.16)

where in going from the second to the third line we have used the relation [b%, b)] = kbf~*.

The latter result implies the identity:
e (b + 1) = (b) + €1 + z,b] e,

which can be iterated n times, by multiplying both sides from the right with (b + '),
leading to:
e (6] + €1)" = (B + €1 + z,])men e, (217)

With the help of this formula we are able to rewrite (2.15) as:
/_N!|z} _ ezdbLbO ezd,lbg_lbo o BZngbo ezlb{bo (bg)N|0>
— €zdb:;b0 ezd—lbL—lbo . eng;bo (bg + ZlbI)N 621b.{b0|0>

T T T T
— ezdbdbo ezd_lbdflbo - (bg + Zlbi + Zng)N 6Z2b2b0 621b1b0|0>

= (bg + Zlb]; + Zzbg + ...+ zde)N(@zdbgbO .. 621b1b0)|0>
= (b} + 21b] + 29b5 + ... + zab})N]0). (2.18)

iWe reserve the symbol ‘t’ for denoting either adjoint operators or the complex-transpose of matrices.



41

We thus arrive at the following expression for the unnormalized coherent state:

|2} = (\Q}))_ 0), where: (l(z) = bl + Zz# (2.19)

The newly defined operator Cg(z) is itself a bosonic creation operator. This can be
immediately verified by considering the adjoint (o(2*) = by + 3, b, 2% and evaluating, with
the help of (2.14), the commutators (here computed for possibly different coherent-state
labels):

[Go(2%), ¢ ()] = 1+ 27, (2.20a)
[Co(2%), Co(2)] = [ (=), ()] = 0. (2.20b)

The conclusion is that |z} represents a Bose-Einstein condensate in which all N particles
of the system occupy an effective single-particle mode which is parametrized by z. This
macroscopic mode, denoted by |¢o(2)} = ¢1(2)|0), corresponds to a simple (unnormalized)

superposition of the basic modes:
1Co(2)} = |90) + D_ 2uldp)- (2.21)
"
For future reference, we list some useful commutation rules:

bo.J] =1, [0}, ¢l =0, [bu.¢l] =24 [b],¢]=0. (2.22)

Let us next compute the overlap {z|z'}, which is the basic quantity required for con-
structing the coherent-state formalism. We note that from commutation rules (2.20) we

get, by simple induction,

(66 (2%), 63 (2)] = k(L + 2"2)¢5 7 (2"). (2.23)

Then, with some slightly abbreviations, we proceed as follows:

N1{z]2'} = (01¢" (¢'H)10) = (01(¢"¢'D) - (<)o)
0/{[¢3", <"l ’oco} (CON0)  (obs: (0]¢’h =0)
= N1+ 272016 (DY H0) = N(L+2"2){01(¢ <) - (¢HV*10)

= N(N = 1)(1+ 201G (D) 210)

{
=

= NI(1+ 22"V, (2.24)

i.e. the exponent of the operators (y and (’ (T) is decreased at each step, eventually leading
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to (0/0) = 1. Therefore, the unnormalized overlap is:
{22} = (1 4+ z*2")N. (2.25)

Finally, we remark that, by making use of the commutation rules listed in (2.22), one

is also able to find the Fock decomposition of |z}:

N

moml..-

9= 3

2
md) 272 2 Imo, ma, - ma). (2.26)
Im|=N

A detailed derivation of this result is found in Appendix B.

2.1.3 * Complementary modes and projectors

The vector z can also be used to define a set of d complementary modes,

[Cu(2%)} = 164) — 25l do), (2.27)
whose creation operators are:
(=) =bf, —zib, 1<p<d (2.28)

These operators, together with their respective adjoints, satisfy the commutation rela-

tions:

[5#(2)7 Ez]:(z*lﬂ = 5#1/ - Z,uz;t/, (229&)
[€u(2), G ()] = [¢(z"), (=) = 0. (2.29b)
By construction, all complementary modes, though not orthogonal amongst them-

selves, are orthogonal to the coherent-state’s macroscopic mode, provided both sets cor-

respond to the same coherent-state label, as can be seen from the overlap

{G(2)60()} = 24 — 7, (2.30)

which vanishes for 2/ = z.
The macroscopic and complementary modes taken together constitute again a com-
plete single-particle basis. In fact, starting from Egs. (2.21) and (2.27), we may write the

basis transformation rule in matrix form as follows:

¢ (ch) = el @l 6] [1 _] (2.31)
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from which the reverse transformation is obtained with the help of the matrix identity:

[1 0] _ {1 2 (14 2%2) 7t 0 ] {1 —z*]’ (2.32)
0 Id —z ]d

0 (Ig+22%)"Y |2 Iy
leading to:
bh= (¢ = Cla) (14 272) 7 (2.33a)
b, =3 (e + ) (Ta+ 227),,1 (2.33b)

14

Using the above relations one proves that both basis indeed span the same single-particle

space:

P = |go) (o] + Y |6u) (04l
= G314 2"2) " H{Col + D Gt Ta + 22%)0{G, (2.34)

with the projector splitting into two orthogonal and disjoint parts: the first referring to

the macroscopic mode and the second to the remaining complementary modes.

2.1.4 The geometry of bosonic coherent states
From Eq. (2.25) and definition (1.56) it follows that the Kahler potential for the bosonic
coherent state parametrization is:

f(z%,2") = Nlog(1+ z*2') = Nlog [1 + Zz:z;] (2.35)
I

We will be requiring the first gradients of f(z*,2’) later on — for future reference, they

are:

of(z*,2") Nz,

— I 2.36
02, 1+ 2%z ( a)
af(z%,2)) Nz,
= . 2.36b
8z; 14 z+2 ( )

The metric matrix elements are obtained by straightforward computation of the mixed
partial derivatives:
D% f(2,2) (14 2"2)0u — 2520

g@&M—é%&;:N (RN (2.37)
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The metric’s determinant can be found without difficulty by first writing g7 in matrix

form,
N
T * \—1 _x*
= I 1 —2z(1+
1 Z*Z<K1 Z( ZZ) Z)v

and invoking Sylvester’s theorem, which states that for any pair of matrices A and B,

9

of sizes n x m and m x n respectively, the following equality holds: det([,, + BA) =
det(l,, + AB). In the present case this means:

K-1
det g7 = (=Rl det(Txg_1 — 2(1+ 2" 2)7'2")
NKfl NKfl
_ (1 (1)) = 2.38

Hence, from definition (1.60), we get the integration measure that equips the bosonic

closure relation:

Kk NE-1 @’z (N+ K —1)! d*z
du(z) = 22 @2 WA Z )2 2
=) (14 z%2)K 74 NI(1+ z%2)K 7d’ (2:39)

where we have substituted the value of the normalization constant x, computed in Ap-
pendix B.
The inverse of g can be easily found with the help of the identities:

I 1 —2(1+2%2) 12" = (Ig g + 22) 71, (2.40a)
1—2"(Ig_1 +22%) e = (14 2%2)" L (2.40Db)
In particular, using the first of these expressions, the matrix g7 can be written as:

T N 1 _T:1+z*z

= Iy T = I ). 2.41
g 1+Z*Z(K1+ZZ) o Uk-1+227) (2.41)
Therefore the inverse matrix elements are:
1 14 2%z .
g2 ) = T(5W +252,). (2.42)

This result allows us to write the variational equation of motion for bosonic coherent

states — from the general form given in (1.72) we get:

. i (142%2) S OE(2*, 2)
2y = _ﬁT z]j:(dwj + Zuzy)aizj. (243)

Next we shall restrict attention to a specific type of Hamiltonian and further development

of this equation will become possible.

The product 2*z denotes a scalar product, i.e. 2*z = Zn Zpzn. Meanwhile, the juxtaposition zz*
stands for an exterior product, i.e. (22%) ., = z,2;.
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2.2 Mean-field dynamics of interacting bosons

Let us consider a system of N interacting bosons whose dynamics is described by a first-
quantized Hamiltonian containing one- and two-body terms; in position representation it

reads:
N

N
H(x) =Y h(x) + 133 Uxi,x;). (2.44)
i=1 i=1j=1

where h(x) includes both the kinetic energy term, —(h2/2m)V?2, and external potentials.
Since we are dealing with identical bosons the interacting potential U (x,x") must be

symmetric with respect to particle interchange.
The second-quantized form of the above Hamiltonian is found with the aid of the
field operators defined in (2.4). More conveniently, we shall confine the analysis to the
truncated-basis scheme, and work with A expressed in terms of the creators and annihi-

lators of the K single-particle modes |¢), in which case it takes the form:¥

H = hyblby+ 3> Upgsblbibsby, (2.45)
pq

pqgrs

where the one and two-body integrals are:

hpq = <¢pm|¢q> with: hpq = hZP (2.46)

Upr-qs = <¢p7 ¢T|ﬁ|¢qv ¢s> UPT'(IS = UTP'S‘I = U;S'PT = U:CI'TP

having the usual properties listed above.

2.2.1 The one-density

We are interested in the coherent-state expectation value of the many-body Hamiltonian.
We take |z} as given by Eq. (2.19), with |®g) being the state where all N particles occupy
the reference mode |¢g). A central object of the present formalism is the matrix I'(z*, 2),
the bosonic ‘one-density’, whose elements are defined according to

bib
L2, 2) = N_1<z|b;bq|z> = N‘lM, 0<p,q<d. (2.47)

{22} T

VNotice that b};bibsbq = b;@bqbibs - b;f,bsdqr, and H is a function of the basic bilinears, as it should be.
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In Appendix B these elements are computed using second-quantization techniques. The

result can be expressed in matrix form as below:

1 27 = -z
21 2121< ZIZ; cee 2122
1 *

I'(z*. 2) = = 29 Z9R{ RaRe 2%

’ * * * 1 2 d
1+ 2%z |2 22* 142721 + -+ 2524
|2d4 2421 Z4%Z5 242
(2.48)

The one-density is an hermitian matrix with the following properties:
tr[I'(2",2)] =1 and I'(z", 2)['(z%, 2) =T'(2", 2), (2.49)

which hold for all values of z. Moreover, each of the K diagonal elements is directly

related to the population of the corresponding mode:
ny(2) = (z|b£bp|z> = NT,,(2"2), X,np(z) =N. (2.50)

where the normalized trace assures that the populations correctly add to the total number
of particles.

The idempotency of I — the second of the properties listed in (2.49) — is characteristic
of projectors. Indeed, the one-density associated with a bosonic coherent state is nothing

but the matrix representation of the macroscopic mode projector (normalized to unity):
L(z",2) = [G(2) 1 + 2"2) 7 H{Go(2)] = 32 18p)Tng (27, 2) (4. (2.51)
Pq

Check. Multiplying the first form on the left and right sides with (¢,| and |¢,) one
gets Tpy(2*,2) = (14 2*2)"H¢p|Co(2) }H{Co(2)|@,); then, substituting the scalar products
(Dp|Co(2)} and {(o(2)|¢q) (straightforwardly computed from previous relations) one easily

recovers formula (2.48).

2.2.2 Energy function and mean-field dynamics

The one-density immediately gives the coherent-state matrix element of the one-body
part of H. In order to proceed we further require the expectation value of the two-body
interaction term. This quantity is also computed in Appendix B, and it turns out that it
can be directly expressed in terms of the one-density (for brevity, we omit the z arguments

from now on):

(2|b]blbsby|z) = N(N = 1) DTy = N(N — 1) T, Ty, (2.52)
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(both ways of writing it are equivalent, but we shall employ mostly the first, which proves
to be more convenient).

Combining the results (2.47), (2.48), and (2.52), we find that the energy function,
given by the relation E(z*,z) = (z|H|z), assumes the form:

E= NZ hpglgp + %N(N -1) Z UprgsU'srLgp

pq pqrs

=N [y + 3(N = 1) 3 Uprgal'r | T
pq TS

= N> (hpg + 30p9)Tgp = N tr[(h + )T (2.53)
pq

In the last line we have defined a new and very important quantity, the bosonic mean-field

matrix v, whose elements are:
Upg = (N - 1) Z Upr~qs Ly, VUpg = U:;p- (254)

The term ‘mean-field’” has the usual meaning: the matrix v, which depends on I', represents
an effective one-body potential constructed out of pairwise interactions by adding up all
second-particle contributions — this is mathematically accomplished by tracing the two-
body integrals over all secondary modes (indexes s and r) with the one-density playing
the role of a weight factor.

Our next task is to express the coherent-state equation of motion for the particular
Hamiltonian in question. For that purpose we require the derivative of the energy function
with respect to z*. Noticing that all dependence of E on both z and z* comes from I'(z*, 2)

we can make use of the chain rule to obtain:

Z Prq a * ) (255)

where the density-dependent matrix G, a key quantity that we shall denominate the

‘Gross-Pitaevskii matrix’, is simply:
Gpg(D') = hpg + vpg(L) = hpg + (N — 1) Z Upr-gsLsr- (2.56)

The gradients of I are computed in Appendix B. Substituting the appropriate formulas
in Eq. (2.55) and plugging the resulting expression into Eq. (2.43) one gets, after some
straightforward algebra,

ih ZH == G,uO + Z Guuzu - ZMGOO — Z'u Z GOV'ZV' (257)

Notice that this equation of motion is highly non-linear.
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Finally, let us consider the Lagrangian, which is obtained from (1.66) upon substitution
of F and 2, as given by Eqs. (2.53) and (2.57), as well as the Kéhler gradients listed in
(2.36). By means of these relations (and other connections involving the one-density
elements) the general expression can be worked down in terms of more basic ingredients
and it can be organized in many possible ways. We have found that a useful form for

practical purposes is:

L=-NGy — iNY (Gouzy + 2:Gro) + 3N S 0,0 (2.58)
o

pq

2.2.3 * Exact solutions for non-interacting systems

In order to gain some insight let us briefly discuss explicit solutions to the equation of
motion. As always, these are only available for non-interacting systems. In this special
case we conveniently assume that we are working with the specific set of single-particle
modes that diagonalizes the one-body integral. There is no loss of generality in doing so
for this can be accomplished through a simple unitary transformation of the basic set |¢).

We thus have v = 0 and h in the diagonal form:
h = diag(&?o, )\1, )\2, R ,)\d) (259)

(it is not important to our purposes whether degenerate eigenvalues occur or not). In
terms of this particular set of modes, and since we have G = h, Eq. (2.57) is dramatically

simplified and its solution can be written at once:

i

il =N\ —c0)2y = 2u(t) = 2,(0)e #Pum=0)t, (2.60)

Meanwhile, the Lagrangian is just L = —Ngj, and therefore the action evaluates to
S = —Neggt. Then, according to Eq. (1.75), the time-evolved state reads:

]zt>e%5t(z) = |z(z0, 1)) e #Not  where: 2,(20,t) = 20, e~ nQumeo)t, (2.61)

This exercise shows that, in the absence of interactions, the state remains coherent
throughout the dynamics, the only effect being a rotation of the argument of each el-

ement of the z vector and the accumulation of a global phase.

2.3 * More geometry: transformation of single-particle modes

In this last section we shall investigate the effect that a unitary transformation of the
underlying single-particle modes has on the coherent state. In other words, we seek to

understand the connection between coherent states defined over different sets of basis
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functions spanning the same space. This is useful since sometimes matrix elements of cer-
tain operators are more easily computed if their second-quantized expressions are written
in terms of a specific set, and that set may be different from the one which is more
appropriate to carry out the dynamics.

Let us then consider two sets of single-particle modes, |¢) and |x), with corresponding

creation operators b! and a':
|6p) = b;g|0> and [x,) = a;r)’()% 0<p<d (2.62)

Both sets are constituted by orthonormal functions and both span the same single-particle

space:

P =100l = X ) (- (2.63)

p

Denoting by X the transformation matrix of |¢) < |x) (b7 < a') and by Y its inverse

(which is equal to its adjoint) we establish the transformation rules:

D) = 224 [Xa) (XalPp) = g [Xa) Xap - b;ra = 2q agX with: vV = xT = x—1

IXp) = 2 9¢) (PalXp) = 2 [Pg) Yap a;f) =24 bqup
(2.64)
In particular, the connection involving creation and annihilation operators can be written
as:
bg = GE)XQO + Z CLZXVO (2658,)
b, = ab Xo, + Y al X, (2.65b)

Let us now substitute these relations in the coherent state definition, Eq. (2.19), to
see what happens once the original basic operators b and b', associated with the modes
|¢) that underly the state |z}4 (as explicitly indicated here), are replaced by a different

set; working down the expression we find:
VNI|z}o = (B + Z,zub ) 10)

= [(adXoo + X0} Xo0) + Syzu(@h X, + 0} X0 10)

[CLJ{) (Xoo + X, Xopzu) + 2,0 N( X0+ ZMXV,LZN)}NW

= (Xoo + 2, Xou2u) [ + 3,0 (X0 + 3, X0u2) (Xoo + ZHXOMZM)_l]N|O>

= (Xoo + X Xouz)™ (af + z,,a,,wy) 0), (2.66)
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where in the last line we have defined:
1
wy, = (Xl,o + Z XI,#Z#) (X()o + Z XOHZ#> . (267)
B B

Now, again from Eq. (2.19), we know that a coherent-state |w},, defined over the set |x)

(as indicated), has the form:
1 N
_ f T
lw}, = m(ao + ;ayw,,) 10). (2.68)
Comparing this with Eq. (2.66) we conclude that:
w}y = 12}6(Xoo + X Xopz) ™", (2.69)

with w given by (2.67). This is the connecting formula that we were seeking.
Similarly, had we considered the transformation in the opposite direction, it would
give:
|Z}¢> = |w}x(Y00 + ZuYOuwu)_Nv (2.70)

with 2z given in terms of w as:
-1
2, = (Yuo +3 wa,,) (YOO +3 Yoywy) . (2.71)
Note that Egs. (2.69) and (2.70) imply the equality:
(XDO + ZMXDMZM) = (}/00 + Zuybuwu)_la (272)

which is easily verifiable.
Let us now study the connecting formulas in terms of normalized states. The relation

between |z), and |w), is found by adding the respective normalization factors:
12)g = [w)y (Yoo + X, Youw,) N (1 + ww)N2(1 + 2*2) =N/, (2.73)

On the right side we opt to eliminate z in favor of w, which will lead us to a transformation
in the direction |2)4 < |w),. Using the complex conjugate of (2.70), and the fact the
X =Y, we write:

o Yt BYhw)  Xow+ S,wpXo,
P Yo+ S Yow  Xoo+ L,wiXeo

(2.74)
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and use this to evaluate the normalization factor involving z:
(Xow + 2,0y X)) (Yo + X0 Yurwy)
(Xoo + 2, w5 Xuo) (Yoo + 3, Yo wyr)
= (Xoo + X,w; X0) ™ (Yoo + Lo Yorrws) ™
X [(Xooyoo + 3, X0 Y0) + 2, (XooYor + 2, XopYw)w,
+ 2w} (XuoYoo + S XunYio) + Zowh(XooYow + 20 Xop Vi)
= (Xoo + 2wy X00) ™ (Yoo + Lo Yowrw, ) (1 + w'w). (2.75)

1+z*z:1—|—z
I

Putting this result into Eq. (2.73) we find:

;m+3@&ww_wlm+&mmym (276
— w), . .

Z)p = |W
e ’”L@+2%my Yoo + 2, Yo, 0

The complex quotient inside the brackets has unity modulus. Denoting its phase by ¢ we

conclude:

2y = lw), e N arg|(Yoo + >, Yoo w,
2)p = |w)y with: o = g[(Yoo + X, Yoowy)] ‘ (2.77)

’w>x = ’Z>¢€ZN¢ —arg[(Xoo + >, Xov2,)]

Notice that the equality (2.72) allows us to write the phase ¢ at our convenience, in terms
of either z or w.

The above formulas are the desired connections between coherent-state labels defined
over distinct sets of single-particle modes. They reveal that the unitary transformation
induces an holomorphic map on the coherent-state variable, and that a consequence of

such a map is the appearance of a phase factor on the transformed vector.
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Chapter 3

Fermionic coherent states

Overview. Fermionic coherent states of the special unitary group, also
known as Thouless determinants, are reviewed. They are understood in terms
of an underlying set of dynamical orbitals. Their dynamics is worked out for
general systems using the time-dependent variational principle. The important
class of Hamiltonians containing one- and two-body terms is then considered.
Equations of motion for this particular case are derived and the connection
to mean-field theories is established. Spin structure is explicitly examined.
Additional properties, concerning the effects of group transformations, are

investigated. The exposition closely follows that of Ref. [17].

3.1 Thouless determinants

3.1.1 Preliminaries

Once more we begin by introducing the single-particle space that underlies the many-body
problem. A finite set of K orthonormal states constitutes a basis for such space — the

projector is:

pP= Zl [Dp)(Dpls  Pp(x) = (X|0p)- (3.1)

In the fermionic framework the states |¢) are called ‘orbitals’. The formalism makes
no distinction between molecular and atomic orbitals — any set will do provided the
orthonormality requirement is observed. The limit of completeness is approached by

enlarging the basis set:
P(x,x) = (x| P|x') "2 §(x - x), (3.2)

although, in practice, a truncated basis is almost always employed, the accuracy of such
a description relying on physical considerations regarding the nature of the system and

the type of phenomena under investigation.
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It should be observed that, here, x denotes a conventional three-dimensional position
vector. Spin structure is of great relevance to any fermion system and more will be said
about it in a moment. For now it suffices to point out that, in the present scheme,
each function ¢,(x) is to be understood as a distinct spin component of an associated
‘spin-orbital’ (a more general and often employed kind of basis function).

Creation and annihilation operators are assigned to each orbital. They satisfy the
anti-commutation relations (anti-commutators are denoted by curly brackets, {fl, B} =
AB + BA):

6 =l0)  [lencl} = b

1<pg< K. (3.3)
(0l = {Oleg {cpregy = {c,cl} =0

The fermionic field operators, defined over the finite single-particle space, are:

QZAJ(X) = 25:1 (bp(X)Cp Cp = f dx (b;(X)(ﬁ(X)
=

) ) , 1<p<K. (3.4)
Di(x) = S0 p(x)cf o), = [ dx ¢p(x)1'(x)

They obey:

A~

{d(x),91(x)} = P(x,x), {d(x),d(x)} = {¢'(x),d'(x)} = 0. (3:5)

Notice that spin components of the field operators have not yet been distinguished —
spin-specific formulas will be given later.
Let us now turn to the many-body problem. A complete set of basis vectors is supplied

by the eigenstates of the number operator,
Np|n1, Moy . NE) = Np|na,Na,y ... NEK), Ty = cTcp, 1<p<K. (3.6)
These states are given in terms of the basic creation operators,
In1,m9, ... nk) = ()™ ()™ ... (ch)m<]0), n, € {0,1}, 1 <p <K, (3.7)

with |0) being the vacuum state. As indicated, the label n denotes a binary array of
occupation numbers, n = (ny, no, ..., nk), with each n, being zero or unity in agreement
with the exclusion principle.

Once more we shall restrict attention to number-conserving Hamiltonians, so that the

possible sets of occupation numbers satisfy the constraint:
ny+mng+---+ng =N, (38)

or, in abbreviated form, |n| = N. Notice that the exclusion principle demands K > N.



o4

Since each orbital contains at most a single fermion the dimension of the Fock space
F(K,N) is easily calculated; it is simply the number of possible ways of distributing N

indistinguishable objects into K boxes:

K!
dim F(K,N) = ————. 3.9
Under the enunciated conditions, the total particle number operator N must be a

constant of motion:

N=Y"n, [HN]=0, (3.10)

and Hamiltonians subjected to this restriction can always be expressed in terms of the

bilinear forms c;cq. These forms obey the following commutation rules:

[c;cq, cley] = c;cs Sgr — Chyg bsp, 1< p,q,7,8 < K. (3.11)
A basis for the su(K) algebra of the special unitary group SU(K') can be written in terms
of these fermionic bilinears. This establishes the dynamical group associated with the

system’s Hamiltonian.

3.1.2 Coherent states: definition and dynamical orbitals

Following the general theory delineated in Chapter 1, we shall define the fermionic co-
herent state in terms of a displacement operator acting on a reference state |®g). This
state will be selected from the set of many-body configurations that span the Fock space.
The choice is ultimately arbitrary, but a meaningful reference state is crucial for stability
in numerical calculations. We thus suppose there exists a certain hierarchy among the
K single-particle basis functions |¢) which determines their indexation order. In treating
weakly interacting systems, for example, it is useful to think that orbitals are classified
according to their energy expectation values, as computed from the non-interacting part
of the Hamiltonian, in ascending energy order (some auxiliary criteria may be needed
for handling degeneracies). In this case, an appropriate reference state would be that in
which the first V orbitals, those with lowest energy, are filled, while the remaining K — N

are empty, i.e. the non-interacting ground state:

@) = cleh--- |0y =|1,1,...,1,0,0,...,0), M=K—N. (3.12)
N M

The above reference state is a Slater determinant in the orbitals {|¢1),|d2), ..., |¢n)}
and, following common practice in quantum chemistry, each Fock configuration can be
visualized as an excitation of this determinant.

As indicated in (3.12), the reference state divides the single-particle space into two
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sub-spaces: the first NV orbitals are said to belong to the ‘occupied space’; the remaining
M orbitals are said to belong to the ‘virtual space’ — these are sometimes called the
‘hole’ and ‘particle’ spaces, respectively.'® This structure is ubiquitous in the fermionic
coherent-state formalism and we thus adopt a special notation: creation and annihilation

operators belonging to each sub-space are denoted by different letters, as detailed below:

aT:(aLa;,...,aR,) = (CLCE,...,C;\,)

(3.13)
bT = (biv b;» R b}r\/[) = (C}r\f—&-l? CJ][V—f—Qv s 701{)'
Likewise, occupied and virtual orbitals are distinguished according to the following scheme:

(¢;7¢57 . 7¢;\/) - (¢17¢2; cee 7¢N)
(¢T7¢§7 = '7¢?\/[) = (¢N+17¢N+27 e '7¢K)

— the use of symbols ‘e’ and ‘o’ to label these orbitals is reminiscent of the notation

(3.14)

employed by Deumens and collaborators in several works.
The above classification is further supported by a subscript convention: different sets

of Greek letters will be employed when referring to occupied and virtual index ranges,

1<(a,8,7) <N
< (@.68,7) and 1< (p,q,r,s) < K; (3.15)
1

(w,v,m) <M

IN

the indicated Latin letters refer to the full range of single-particle states, as in the bosonic
case. Bearing in mind these conventions we shall henceforth omit the limits in sums and

products. To exemplify the new notation, we recast the basic anti-commutation rules:

{aaaaTﬁ} = lap; {bu,bj}} = O {ambl} = {buvaz’} =0, {aaaaﬁ} = {bu?blf} = 0. (3.16)

Let us now introduce the fermionic coherent state; its unnormalized form is:

|z} = exp (Z > zmblaa) |Dg). (3.17)

I

Notice that the coherent-state label z is best understood as a matrix of size M x N,

* * *
211 %12 " ZIN 211 91 T ZAM
* * *
221 k22 "t Z2N t Zia  Zag  tct Zpe
Z = . . . y R = . . . ) (318)
* * *
ZM1 <ZM2 ' ZMN ZIN ZaN T ZMN

and, therefore, the number of degrees of freedom in the fermionic phase space is d = M N.

In Eq. (3.18) we also display the adjoint N x M matrix zf. In most problems we have
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M > N and these matrices are rectangular. From (3.17) we see that each matrix entry
Zua 1s Telated to an excitation process, in which a fermion is transferred from the occupied
to the virtual space.

Following the same steps of the previous chapter we shall next work down the coherent
state definition to a more tractable form. For that purpose we first note that the bilinears
in the exponent commute among themselves, [bf,aq,bfas] = 0. Moreover, it can be easily

demonstrated that [bf,aq, aﬁ] bl,0ap. These observations permit us to expand (3.17) as

2} =010+ zuleal)(l +3 Zu2bT as)---(1+ ZuZuNbLaN) . (aJ{ag . a}v)|0)
( T+ zule alal)(az +3 Zu2bT agaQ) (a}, + ZuzuNbLaNajv)m)
= (al + 3,2ab],(1 — 7)) (ad + X, 200b], (1 — 2)) -+ (aly + 3,281 (1 — 7iy))|0)
= (al + X250} ) ad + X, 200]) -+ (a + 3, 200)]0)
[.(al, + 32, NZW)](D (3.19)

a
a

(the trick in going from the third to fourth line is to realize that, evaluating the expression
from right to left one term at a time, the number operator n, always acts on a state in
which the a-th orbital is vacant). Equation (3.19) reveals that the unnormalized coherent

state can be transparently written in terms of a new set of fermionic creation operators:
2} =l ko), chz) =al+ 3 blau, 1<a <N (3.20)
o

These new operators and their adjoints obey anti-commutation rules of the general form:

{Ga(z), ¢h(=)} = bas + Z B0 (3.21a)
{Ga(2),Gs(=™)} = {¢l(2), ¢h(=N} = 0. (3.21b)

here displayed for possibly different coherent-state labels.
The above formulas show that |z} is a general type of Slater determinant, defined in
terms of a non-orthogonal set of single-particle orbitals |((z)}, called dynamical orbitals,

parametrized by z in terms of the unnormalized superposition:
Ca(2)} = 165) + D 190) 2uas (3.22)
o
or, more explicitly,

|2} = ANH\@ )} = ANH[W + 3165 2a (3.23)

I
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where the symbol Ay instructs anti-symmetrization of the product of N single-particle
states. This type of parametrization for Slater determinants was first proposed by Thou-
less as a tool for studying the stability of Hartree-Fock equations, particularly in what
concerns collective modes of nuclear matter. " It has since been known as a Thouless
determinant.

Before proceeding with the development of the coherent-state formalism, let us list,

for future reference, the useful anti-commutation rules:

{aav C};} = 50&5’ {aTou CE} =0, {blm Cg} = Zup> {bju CE} =0, (324)

which can be obtained without difficulty from the basic anti-commutators and the defi-
nition of (7.
Let us evaluate the overlap {z|z'} between two Thouless determinants — this result is

easily found once we note that

{Ga(@IGs (=)} = (In + 272", (3.25)

for we may now invoke the fact that the overlap between two general Slater determinants
is just the determinant of the matrix defined by the overlaps of its occupied orbitals (this
holds even for non-orthogonal orbitals).”” Abbreviating somewhat the notation, we get
immediately:

{212} = Ol - )(CT - 10y = det {Ca(2")[¢s(2)} = det(Ty + 212'). (3.26)

1<a,B<N

Lastly, the Fock decomposition of |z} can be computed with the help of the anti-
commutation rules stated in (3.24). The detailed calculation is found in Appendix C.

The final result, here translated to more conventional quantum chemistry language, is:!

N
|2} = Z Z Z |¢OEZ§Z§’;’3> det[Z(uluz~~m)(alaz~~az)]7 (3.27)
=0 aeClN ,LLECZM
where |(I)OE$Z§ZIZ))> is an [-th order excited configuration, built from |®g) by transferring
[ fermions from occupied orbitals (@5, , 5, -+, ¢5,) to virtual orbitals (¢, , é;,, -+, ¢5,)
by successive action of particle-hole creators (which commute):
(Bap2--p)
[P0 t) = (bl 1) (b, @az) - - (b, a,)| @) (3.28)
In Appendix C the decomposition is given in terms of standard Fock states. The states |‘I’Oggiﬁ’il,))>v

in terms of which the result expressed in Eq. (3.27) is written, are defined according to a non-standard
operator ordering — see Eq. (3.28) below. The relative sign between both orderings precisely cancels the
signature factor (—)™ of Eq. (C.32); this is why there is no such factor in Eq. (3.27).
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The sum in Eq. (3.28) is over all possible ways of selecting [ out of N objects, i.e. over
all elements of the set of combinations C¥, times all possible ways of placing them into
M boxes, i.e. elements of the set of combinations CM, with [ ranging from 0 to N. An
important detail here is that combinations are ordered: if a € CZN ,then oy <y < -+ <
oy, and similarly for p € CM. In this way, all Fock states have a nonzero overlap with
|z}, which is controlled by the quantity det[2(,, us-u)(a1a2--ap)], i-€. the sub-determinant of

z computed with the indicated rows and columns.

3.1.3 * Complementary orbitals and projectors

A complementary set of M orbitals can also be defined using the z matrix. ' Their creation

operators are:
(L") =0, = > zrsal, 1< <M, (3.29)
B

with corresponding single-particle states:
Cu(z)} = 160) = D 1oB)2is. (3.30)
B
By construction, these states are orthogonal to the set |(,(2)}, since the overlap

{G@IC (N} = 2ua = Zpa (3.31)

vanishes for 2’ = z. Additionally, the complementary creation and annihilation operators
satisfy:
{Gu(2): )Y = 0w = D zpzise {G(2),G(2)} =0, (3.32)
B

showing that these complementary states are not orthogonal among themselves.
The sets {((2),((2)} and {¢®,¢°} span the same single-particle space. This can be
verified as follows: with the aid of Egs. (3.20) and (3.29) we write the basis transformation

in matrix form using creation operators,

z IM

o al =l v [ 2 539

Next, we employ the matrix identity,

[[N 0] _ [IN zT] (Iy + 2t2)! 0 ] [IN —ZT (334
0 IM —Z [M

0 (Ing + 22071 | 2 Iy
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to get the inverse:

al, =Y (Ch =" Cave) (In + 272) 52, (3.35a)
5 v

b, =3 (¢ + S ¢hel, ) (I + 227, (3.35b)
B

v

Expressing the above formulas in terms of orbitals, and making use of the auxiliary

relations
2y + 220V = Iy +272)7 2, 2Ty + 2207 = (Iy + 272) 7127, (3.36)
one is able to write the single-particle projector as follows:
P =3 l6) 0 + LAl
= Zﬁ [Cad(In + 2T2) 55 {Cs] + ; G (Inr + 221 G, (3.37)

i.e. the projector splits into two orthogonal parts: the first consisting of dynamical orbitals
|¢(2)}, and the second consisting of complementary orbitals |¢(z)}.

3.1.4 The geometry of Thouless states

Given the analytic expression for the overlap {z|z'}, Eq. (3.26), we get from definition
(1.56) the Kéhler potential

f(z*,2) = log[det(Iy + 2'2)], (3.38)

and proceed to evaluate several quantities involved in the dynamics of Thouless determi-
nants.

Recalling the prescriptions for computing derivatives of both determinants and inverse

matrices,
J(det A) . O0A;;
———~ = (det A AT, =
ax ( € );( )J 8.’]3 )
(A1), 1y O0Aw
— == (AT (AT,
ox " " oz
and also the so-called ‘Woodbury matrix identities’,
Iy — 2(Iy 4 2'2) 72t = (I + 2207, (3.40a)

In — 2" (I + 2207 te = (In + 272) 7, (3.40b)
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we obtain, through straightforward differentiation, the first-order gradients of f(z*,2’),

aféj’%) - [ZT(IM + Z,ZT)_I]au =[x+ ZTZ’)_IZT]QW (3.41a)
M = [Z(In +212) Mg = [T + 2'21) 7215, (3.41D)
0z

as well as the metric matrix, following the definition given in Eq. (1.58),

. O f(2*, = 3 B
9(2", 2)paws = azf ( = ) = (s + 22 Tl (I 4 212) s (3.42)
o<y

It is helpful to express the latter in the form of a Kronecker product:
g=(Iy+22N"TeUy+22)7", (3.43)

in which case g is regarded as a d x d (i.e. M N x M N) matrix whose entries are indexed

as follows:

g(z*, Z)MOC7V/3 = [(IM + ZZT)_T ® (IN + ZTZ)_1]N(M71)+Q7N(l,,1)+5. (344)

Writing ¢ as in Eq. (3.43) facilitates the computation of its determinant, since the
following identity is available for arbitrary matrices A and B of respective sizes n x n and
m X m,

det(A ® B) = (det A)™(det B)". (3.45)

Thus we conclude that:
det g = [det(Ip; + 22" Ndet(Iy + 272)] 7™ = [det(Iy + 272)] 7K, (3.46)

where Sylvester’s theorem — enunciated in the previous chapter, when deriving Eq. (2.38)
— has been invoked once more.
Then, from Eq. (1.60), we obtain in closed form the integration measure that enters

in the expression for the coherent-state closure relation:

du(z*, z) = k(det g) HH 2ua)m) = K [det(Iy + 272)| T * [T TI(@* 200 /7). (3.47)

[

The detailed calculation of the normalization constant x is performed in Appendix C; the

result can be written as:

N -n !
! g\([ — 1 3' (3.48)

The inverse of the metric matrix, in turn, is obtained without difficulty by means of
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the Kronecker product property
(A B '=A1'® B, (3.49)
whence it follows immediately that
g = Iy + 22N @ (Iy + 272),
or explicitly in terms of matrix elements:
Gy = (Ing + 22, (In + 272)ap. (3.50)

Check. 1t is instructive to check the consistency of the subscripts used in these formulas

by evaluating the product below:
Z Z g;im,y Iy = Z Z([M + ZZT)z;n([N + ZTZ)Q,Y(IM + ZZT);VT([N + ZTZ);Bl = 5HV(SQ5.
n o no

The variational equation of motion is given in general form by Eq. (1.72); in the
present case, however, a slight modification is needed in order to account for the matrix-
like character of the coherent-state label. The adapted equation reads (note how the

indexes of g7 are handled):

OE(z*, z)

8E(z 2) ’
:—722 ,u,az/B * - ZZ Vﬁlua 82*5 , (351)

Substituting Eq. (3.50) into the latter expression leads to:

0E(z*, z)

(In +2'2)ga (3.52)
ZVB

2o = _%ZZ(IM + ZZT)
v B

In what follows we pursue further specification of this formula by restricting attention to

a particular family of many-body Hamiltonians.

3.2 Mean-field dynamics of interacting fermions

Let us consider the prototype first-quantized Hamiltonian,

N N N
Zh X; —|—%ZZ (x:, %), (3.53)

i=1j=1

for a system of N fermions. The one-body term /(x) includes the kinetic energy, —(h2/2m)V2,

as well as external potentials. Since particles are identical the interacting potential
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A

V(x,x’) must be symmetric with respect to particle interchange. Spin must be accounted
for in a Fermi system, thus both h and V should be seen as operators in spin space
(diagonal in most cases).

The second-quantized form of the above Hamiltonian is obtained by means of fermionic
field operators which, under the truncated-basis description adopted here, are defined in
terms of a finite set of K single-particle orbitals |¢), as depicted in Eq. (3.4). In this case,

the standard procedure leads to:

H= > hpqc;cq +3> VpT.qsc;cIcscq. (3.54)
P

pgrs

The one- and two-body integrals are:

hpg = <¢p|ﬁ|¢q> - hpg = h:;p

. : (3.55)
‘/pr-qs = <¢p7 ¢T|V’¢q7 ¢5> Vpr-qs = V;’p-sq = ‘/qz-pr = ‘/st]-rp

having the usual properties.!

3.2.1 The one-density

We now turn to the coherent-state description of the system governed by Hamiltonian
(3.54). We assume that a reference state |®) is given as in Eq. (3.12) and orbitals are thus
classified into occupied and virtual spaces, |¢) = (|¢°), [¢°)), with corresponding creation
operators ¢! = (a, b'); furthermore, all notational conventions of §3.1 are adopted. A key
quantity, the reduced fermionic one-density matrix, is defined as the following expectation
value: et}

Lp(z%,2) = {;%Vq} = (z|cfe l2), 1<pg<K. (3.56)
In Appendix C the above matrix elements are computed using second-quantization tech-

niques. The result can be written in matrix form in several distinct and useful ways:

2(In +272)7Y 2(Iy + 2T2) 712t

I
(Iy + 212)71 0 In 2t
0 (Ing + 22771 .

F:[ (Iy +272)71 (]N+2Tz)1zT]

(In + 212)7! [[N ZT]

(3.57)

z ZZ]L

The form used in the first line is the one straightforwardly obtained and most useful

for numerical purposes; the second form is convenient for analytic manipulations; the

iiNotice that c;c;(cscq = c;f)cq(srs - c;f,cscicq; i.e. the Hamiltonian in Eq. (3.54) is a function of the basic
bilinears, as expected.



63

factored form in the last line is reminiscent of the bosonic case and helps clarifying the
interpretation of I'(z*, z).
The fermionic one-density is an hermitian and idempotent matrix whose trace is nor-

malized to the total number of particles:
tr[I'(2*, 2)] = N and T'(z", 2)['(z%, 2) =T'(z", 2). (3.58)

Indeed, its diagonal elements are nothing but the average populations of each orbital |¢):

np(z) = <z|c;cp\z>, >pnp(z) = N. (3.59)

The idempotency property listed in (3.58) allows for an appealing interpretation of I'(z*, z):
it is simply the matrix representation of the normalized projector onto the set of occupied

dynamical orbitals:
D(z",2) = 3 16a(2)}(In + 272) 7 {Gs(2)] = D 10p) Tpa(2", 2) (- (3.60)
af rq

Check. ‘Sandwiching’ this expression with (¢,| and |¢,) one finds Tp, = (¢,|T']¢,) =

Yap(PplCa(2)}(In + 212)55{Cs(2)|¢); then, substituting (f,[Ca(2)} and {Cs(2)|¢g) from
previous equations, one easily recovers (3.57).

The fermionic one-density is naturally partitioned into occupied and virtual blocks.
Since we will often manipulate these individual blocks directly it is convenient to establish

the following notation:
ra, r
ro |t )
Loy T

where subscript ‘1’ refers to the occupied space, and subscript ‘2’ to the virtual space.

(In+272)71 (Iny + 272) 712t

, 3.61
2(In +272)7Y 2(Iy + 2T2) 712t (3.61)

For transparency we give each block’s definition in more detail:

(Cit)ap = (labtale), (Tizdas = (2llaals), (Tai)s = Glabbuled, (o) = (lBL0,12).

(3.62)
This partitioning is everywhere found in the present formalism, as it will be enforced in
several other matrices.

Before proceeding with the evaluation of the coherent-state expectation value of the
many-body Hamiltonian and subsequent particularization of the dynamical equations, we
shall take a brief detour in order to discuss important aspects of the Thouless parametriza-
tion which are pertinent to the fermionic problem; namely, the concept of intrinsic orbitals

and spin structure.
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3.2.2 Number density and intrinsic orbitals of the Thouless determinant

At this point it is convenient to discuss some features of the one-density and related con-
cepts. The number density of fermions in a Thouless determinant is n(x; z) = (x|['(z*, 2)|x),

where x is a position vector. In terms of the underlying basis functions we have
z) = Z Op(x)Lpg (27, 2)¢Z<X)- (3.63)
P4

The one-density matrix is hermitian and therefore it can be diagonalized by a z-dependent
unitary matrix U,
I' = U diag(v1,72, - - -, V&) U, (3.64)

where the eigenvalues of I'(z*, z) have been denoted (1,72, .. .,7k). By transforming the
original orbitals with the matrix U a new set of basis functions is generated in such a way

that the number density reduces to the indicated form:
z) = Z¢p(x) Upg(2) = n(x;z) Z’Vq Mg (x; 2] (3.65)

This simplified formula for n(x;z) reminds us of the analogous expression for a system
of independent particles. The orbitals ¢ thus acquire a special meaning — we may say
they are the intrinsic orbitals of the Thouless determinant, with the eigenvalues v being
the corresponding intrinsic occupation numbers. The fundamental character of these
concepts stems from the fact that they are independent of the specific single-particle

basis underlying the coherent-state description.™

3.2.3 Spin structure of the Thouless determinant

The spin structure of the fermion problem deserves explicit consideration. Let us con-
centrate on the spin-1/2 case. As mentioned earlier, in our formalism spin information is
encoded within the label of each orbital, i.e. each orbital is associated with a specific spin
component. Although not strictly necessary, we may imagine, for simplicity, that orbitals
come in pairs which share the same spacial function, but each element of the pair refers to
one of the spin projections, 1 or |. If S pairs are considered, a possible way of re-labeling

the basic orbitals is as follows:

K = 257 (¢17¢27‘ . 7¢K) — (¢T17¢T27‘ . '7¢TS7 ¢¢17¢i27 cee 7¢¢S)- (366)

HiThe terminology employed here, i.e. the use of the word ‘intrinsic’ when referring to orbitals ¢ and
occupations v, is meant as an allusion to Lowdin’s profound concepts of ‘natural orbitals’ and ‘natural
occupation numbers’,”® quantities which are analogous to ¢ and = but calculated from a wavefunction
that represents an exact solution to the many-body problem.
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Then the one-density matrix can be divided into four spin blocks,
v+ T
I = { i “] , (3.67)
Ty Ty

with each block being of size S x S.

If we make spin projections 1, explicit in the orbital labels in the manner of (3.66),
and, at the same time, use indexes i, j, k, [, running from 1 to S, in order to indicate the
distinct spacial functions, then the spin components of the field operators (3.4) can be

written as:
Vo(x) = 3 00i(X)cois Uo(x) = 30 05,(x)chi, (0 =1.4), (3.68)
and their anti-commutation rules (3.5) become:

{1 (), 05 ()} = o P, %), {0(x), 00 (x)} = {$](x), 05 (x)} = 0. (3.69)

Likewise, the spin-up and spin-down number densities are:

n4(x;2) = 3255 (X)L (27, 2)]i5 07, (x)
ny(x;2) = 355 ¢u(x) [ (27, 2)i; 07, (x)

(3.70)

Notice that, although n(x;z) # n4(x;2) + n(x;z2), the integral of the sum of these

densities correctly gives the total number of particles:
/dx [nT(x; z) +ny(x; z)} = tr [FTT<Z*, z)} + tr[l“u(z*, z)} =N+ N, =N. (3.71)

Furthermore, notice that, in general, the intrinsic orbitals of the Thouless determinant

have no definite spin projection:

©;(x;2) = 225 01(X) [Up(2)]i + 225 04i(x) [Uyr(2)]is

(3.72)
Ps14(X;2) = 225 01i(x) [Ups(2)]i5 + 225 d1a(x) [Uyy(2)]3

To be sure, if no mixing of spin species occurs, i.e. I'y; = ')y = 0, then consequently
Uy, = U = 0, and the intrinsic orbitals decouple into two sets corresponding to spin 1
and |.

An important observation to be made is that the spin structure of the one-density
(and several other quantities pertaining to the coherent state formalism) is completely
independent of the occupied/virtual structure of the reference state. These partitions will
only coincide in problems with half-filling, i.e. when N = S = K/2, and with a reference

state which involves only one spin species, e.g. |®g) = a%ak > ~a$ ~10). In all other cases
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they are completely disjoint.

(3.73)

I‘21 I—‘22

[FTT Iy
Ly Iy

] «-- disjoint structures --» [Fll FlZ] .

Finally, it should be mentioned that in problems with no spin-dependent interactions
one can profit from combining the basic single-particle states into orbitals with a well-
defined total spin. Conservation laws will ensure that the dynamics takes place on a
restricted subspace and the size of the basis set may be decreased significantly. The num-
ber of degrees of freedom in the coherent-state description will also be smaller, facilitating
numerical calculations. We will not, however, find the opportunity to work out these de-
velopments — in the fermionic system studied in Chapter 5 different spin components are

coupled through two-body interaction terms.

3.2.4 Energy function and mean-field dynamics

Let us now return to the topic of dynamics. As in the bosonic case, in order to write
the energy function we require, besides the one-density, an explicit expression for the
coherent-state expectation value of the two-body interaction term. In Appendix C we
demonstrate that such expression is given in terms of I" as follows (for brevity, we omit

the z arguments from now on):
(z|c;cicscq|z> =Tl — Tyl (3.74)
With Eqs. (3.56) and (3.74) the energy function, E = (z|H|z), can be computed:

E= Z hpqrqp + % Z Vpr~q8(rqprsr’ - Fszvrqr)
Pq

pqrs
= hpelop+ 3D Virags — Vorsg) Tsr Tap
rq pqrs
= (hpg + 5Upg)Tgp = t {(h + %U)F}a (3.75)
Pq

where the fermionic mean-field matrix has been defined:

Upg = Z(%T-qs — Virsg)Usry Upg = U;p' (3.76)
Similar to the bosonic case, the I'-dependent mean-field v stands for an effective one-body
potential experienced by each individual fermion due to an average field originated by the
remaining particles of the system by means of two-body interactions. If the formula-
tion takes place within the context of electronic structure, then v is precisely the usual

mean-field from Hartree-Fock theory, the notable difference in relation to the traditional
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approach being the fact that here the one-density features a coherent-state parametriza-
tion. Indeed, in the electronic case, the dynamical equations for z are equivalent, in
physical content, to those of time-dependent Hartree-Fock theory.

The equation of motion for z is found by substitution of E(z*, z), as given by Eq. (3.75),
in the general prescription (3.52); the required gradient with respect to z* is found using

the chain rule:
oF

92+ :Z(hpq"‘ pq (9 * Z pqa . (3-77)
po

Pq

The density-dependent matrix F' is a new key quantity — following the terminology of

standard Hartree-Fock theory, this matrix is called the ‘Fock matrix’; its elements are:
qu(F) = hpg + qu<F> = hpq + Z(V;n“qs - V;Jr'sq)rsr- (3-78)

Meanwhile, the gradients of I' are computed in Appendix C. Putting those formulas in
(3.77) and taking the result back to (3.52) we get, after some algebra:

ih 2#04 - <F21>,ua + Z(F22>,szya Z Zup Fll Z Z Zup F12 BvRvas (379)

where the partitioning of F' is the same as that of I, depicted in (3.61). The above
equation can be more succinctly expressed in matrix form:

In

ihz = Fy + Fpz— 2Fyy — 2Fpz = [~z Iy| F . F=h+v. (3.80)

z

Once more we have at our hands a highly non-linear equation.

For completeness we also give an explicit expression for the Lagrangian, which is
obtained by the same procedure as that employed in the bosonic case, i.e. by plugging the
appropriate formulas into the general expression, Eq. (1.66). Among the many possible

ways of writing L a particularly useful form is:
L(z) = —tr(F1) = jtr(Fioz + 2"Fy) + jtr(ol). (3.81)

3.2.5 * Exact solutions for non-interacting systems

It is always instructive to examine exact solutions of dynamical equations when they are
available. In the absence of interactions, Eq. (3.80) can be greatly simplified. In such
circumstances one may always elect a set of single-particle basis functions in terms of

which the one-body matrix h takes a diagonal form, h = diag(ey,...,en, A1, ..., Aym).
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Since in this case F' = h, the Fock matrix is diagonal and independent of z:

0
H= thpépqccq Zsana+2)\ n, = F=h= [g )\]. (3.82)
The equation of motion is then trivially solved:
ih e = (M= a)2pa = Zualt) = Zua(0)e FO=)", (3.83)

Meanwhile, the Lagrangian (3.81) reduces to L = —tr(Fy;) = —tr(e), and hence the action
is just S = —(Zaea)t. Then, according to Eq. (1.75), the propagated state reads:

|zt>e;vst( ) = |2(z0,t)) €~ R where: 2(20,t) po = Zopa € “r et (3.84)

Thus the state remains a Thouless determinant throughout its time evolution, with the
argument of each element of the initial z vector being rotated at a rate which depends on

the eigenvalues of F. Additionally, a global phase is accumulated.

3.3 More geometry: transformation of single-particle orbitals

Let us now consider unitary transformations of the underlying single-particle orbitals
and their effect on a coherent state. In particular, we are interested in establishing a
connection between coherent states defined over different sets of orbitals.

When this topic was addressed in a bosonic context in §2.3, we remarked on its use-
fulness in facilitating the evaluation of matrix elements, since second-quantized operators
sometimes have a simpler form when expressed in a specific basis which may differ from
the one that is adequate for propagation. This is also true in the present case of Thouless
determinants, but here there is further reason to investigate the subject of such unitary
transformations and their effects.

In a Thouless determinant, Fock configurations corresponding to low-lying excitations
of the chosen reference state — those which are ‘close’ to |®y) — are more efficiently approx-
imated than those which involve higher-order excitations, particularly those displaying a
significant occupation of virtual orbitals. Even if one properly chooses |®¢) as close as
possible to the initial state |z9) to be propagated, i.e. in such a manner that the parame-
ters zo are smallest, the mean-field dynamics may drive the state away from the reference
configuration. This is problematic from a numerical point of view, since an appreciable
occupation of the virtual space requires large values of z, potentially leading to inaccura-
cies (due to numerical errors) in the time-evolved state |z;). In this case the recommended
prescription is to perform a unitary transformation on the basic single-particle orbitals,

thereby changing the old reference configuration into a new one, more appropriate for
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representing the physical state at time ¢, and therefore regularizing the Thouless param-
eters, which are mapped into a new and more adequate set.'’ Thus there is a strong
practical motivation for developing the ideas of this section, which will later be adapted
to a multiconfigurational context at the end of Chapter 4.

Let us then introduce two sets of single-particle orbitals, |¢) and |x), with correspond-
ing creation operators c' and &'

|6p) = c}|0) and |x,) =f|0), 0<p<d (3.85)

P

Both sets are orthonormal and span the same space:

pP= Zp|¢p><¢p’ = Ep|Xp> <Xp‘- (3.86)

The unitary matrix of the transformation |¢) < |x) (¢ < &) is denoted by X, while its

inverse is denoted by Y'; we have:

|¢p> = Zq|Xq><Xq|¢p> = Zq|XQ>XQP - C; = qujzqu with: V = Xt = x-1

IXp) = Eq‘¢q><¢q’Xp> = Zq’¢Q>Y;1p 6; = chz];Y;Ip
(3.87)
Both sets are subdivided into occupied and virtual spaces according to:
c=(c1,...,cx) = (ar,...,an,b1,...,bnr), (3.88a)
&= (Cy,...,¢5) = (G, ..., an, b1, ..., bys), (3.88b)

and a corresponding blockwise partition of matrices X and Y is also enforced. Using

creation operators, the transformation |¢) <— |x), can be written as:

al, = 3 ah(Xu)pa + 2 bH(Xa1)va (3.89a)
E

bl =D @h(Xi2)s + D bl (Xoz)uy (3.89h)
B v

The Thouless determinant is defined in terms of N dynamical orbitals |(,(z)}, which

are linear superpositions of the basic single-particle functions, as shown by Eq. (3.20).
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Let us see how the replacements of Eq. (3.89) affect their creation operators ¢ (2):

Ch(z) = (al, + b} %)
= Zﬁd;(Xll + X122)ga + ZVB,T,(Xm + X992)va
= gl + B [(Xa1 + X222)(Xu1 + X122) s ] (X1 + X122) 50
= ZB(&; + Zugiwuﬁ)(Xll + X122) 8a
= Z,ng(w)(Xll + X12%) ga, (3.90)

where we have identified @;(w) = (&I; + 3, bhw,3) with the new label w defined in terms

of z through the connection:
w = (XQl + XQQZ) (XH —+ Xlgz)_l. (391)

The above calculation shows that the coherent-state |z },, whose underlying single-particle

states are |¢), can be written as:

|2}y = HCL(Z)|O> = H {25@3( ) (X1t + Xp22) 5a] |0) = [HCT } det(X71 + Xi22),
(3.92)

where the operator version of the basic determinant property, det(AB) = det(A) det(B),
has been invoked in the last passage. Finally, identifying the new parametrization, |w}, =

[1s fg(wﬂ()) and re-organizing the expression, we arrive at the desired result:

lw}y = |2}gldet(Xq1 + Xi22)]~ L (3.93)
The reverse formula is immediately found by interchanging z <+ w and X < Y

|2} = [w}y[det(Yin + Yiw)] ™, (3.94)
with z given in terms of w by:

z = (Yo + Yoow)(Y1y + Yigw) ™. (3.95)
Note that Eqs. (3.93) and (3.94) suggest the identity:

(X11 + X122) = (Yo + Yiow) ™!, (3.96)

which is found to hold by substituting either z or w and noting that XY = I.

The next step is to recast these connecting formulas in terms of normalized states.
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Inclusion of normalization factors into Eq. (3.94) leads to:
|2)p = |w)y det[(Yi1 + Yiow) ™ det[(Iy + 272) 7 (I + wlw)]/2. (3.97)

Our goal is to eliminate z from the above relation. As it turns out, the product of

normalization factors gives
(In + 272) Y Iy + whw) = (Y, + Yiow) (Iy + w'w) "1 (Y1 + Yiow)(Iy + wiw), (3.98)

and hence:
det[(In + 272) " (Iy + wiw)]? = | det(Yi1 + Yiow)|. (3.99)

Taking this result back to (3.97), we deduce:

2V = lw),e arg|det(Y7; + Yiow
| ><z> | >x | with: ¢ = g[ ( 11 12 )] ’ (3.100)
|w>x = |z>¢ew —arg[det(X11 + Xi22)]

where the identity (3.96) allows the phase ¢ to be written in terms of either z or w,
depending on the direction we perform the transformation.

The above formulas therefore show that a unitary transformation of the basic orbitals
induce a holomorphic map on the coherent-state label; at the same time, a geometrical
phase is acquired by the transformed vector.

In what concerns the regularization of the coherent-state dynamics, we see that an
adjustment of the reference state can be achieved with a simple prescription, summarized
by Eqgs. (3.91), (3.95), and (3.100). Notice that, when changing single-particle orbitals
at some point of the time evolution, one must also be sure to carry out the appropriate
transformation of the Hamiltonian — we leave this matter to be addressed later at §4.6.
Finally, we note that, in practice, these rules should also be equipped with a protocol
for deciding whether regularization is needed at any given instant, together with an algo-
rithm that produces the most adequate transformation — these topics were left out of the

discussion, since such amendments may vary from problem to problem.

3.3.1 * Alternative expressions for the transformation rule

For completeness, we list below alternative versions of the formulas connecting the coherent-
state labels z and w, whose respective sets of underlying single-particle orbitals are related
as explained above.

Consider the following identity, valid for any M x N matrix 7 and matrices A, B, such
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that AB = BA = Ig:

I I
Ty =Tyt = [-7 Iy [ N] =0 or: -1 Iy](AB) || =0, for AB=Ix.
T T
(3.101)
Expanding the matrix product we get
(A92By1 + A1 B11) + (A2 Boy + Ay Bio)T
- T(A12BQ1 + A11B11) - T(A12322 + A11312)7' =0,
which can be reorganized as follows:
(A22 — TAlg)(321 + BQQ’T) = —(Agl — TAH)(BH + BlgT). (3102)

In terms of coherent-state labels and transformation matrices, the above is valid for
either of the two cases: (i) 7 =w, A=X,B=Y;or (ii)T=2 A=Y, B= X, thus we
establish:

(Yar + Yaow)(Yiy + Yipw) ™h = —(Xog — wXi19) 1 (Xoy — wX1y), (3.103a)
(Xgl + XQQZ)(Xll + X12z)*1 == —(3/22 — 25/12)71(}/21 — Z}/il). (3103b)

This allows us to write the connecting formulas, (3.91) and (3.95), as:

Z = (}/21 + Y'QQUJ)(Y'H -+ 1/1211))71 = _(X22 — ’UJXIQ)il(XQl — ’UJXH), (3104&)
w = (X21 + XQQZ)(XH + X122>_1 = —(YQQ — 21/12)_1(}/21 — Z)/H). (3104b)

Using the relation X' =Y we find, additionally,

ZJf = (XH + wTXgl)_l(Xlg + wTXQQ) == —(3/12 — }/lle)()/QQ - Ygl’wT)_l, (3105&)
wh = (Y11 + ZTYQl)_l(Ym + ZTYQQ) = —(X12 — X112’T)(X22 - X21ZT)_1- (3.105Db)
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Chapter 4

Multiconfigurational method

Overview. The trajectory-guided multiconfigurational method based on
generalized coherent states is formulated and thoroughly discussed. The ap-
proach is seen as an extension of the Gaussian-based coupled coherent states
(CCS) technique of Shalashilin and Child,”” " and derivation of the basic
equations proceeds along the same lines of the original formulation. The
method is first derived in continuum form, so that the newly incorporated
geometrical features can be better studied. Next, the discrete unitary version
is considered — this is the standard form of the method. Several aspects relat-
ing to its numerical implementation are examined in detail, and a paralleliza-
tion strategy, suitable for certain classes of problems, is proposed. Finally,
an ‘extended’ scheme, specifically designed for fermionic coherent states, is
advanced. The developments of this chapter constitute the ‘theoretical core’

of the present thesis.

4.1 The continuum version

We begin by considering the coherent-state decomposition of an arbitrary quantum state,

) = [ du(2)I2) (a1 = [ dulzo)lz)elw), (4.1)

which follows from the closure relation (1.59). It is assumed that z = z(t) is bound to obey
the classical equations of motion (1.72). By virtue of phase-space volume conservation,
c.f. Appendix A, we are allowed to transfer the integration measure to the initial instant
and conveniently integrate over initial conditions zyp = z(0), as indicated in the second
equality in (4.1). The derivation of the CCS equations amounts to finding a solution of

the Schrodinger equation

inl) = Hy), (4.2)
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for |¢) in the form given by (4.1) with the ansatz:
(20} = C(2)e"®), (4.3)

where S(z) is the action defined in (1.74). In other words, we seek an equation of motion
for the time-dependent amplitude C(z) that solves (4.2). Let us make a few observations
regarding this particular choice of solution.

First, all quantities that specify [¢0) — ie. |z), C(z) and S(z) — are to be regarded
as functions of the initial conditions z5. Methods belonging to such a class, where the
wavefunction is expressed in terms of an integral over initial conditions of classical tra-
jectories (here, in a generalized sense), are known as initial-value representations. They
are familiar from the field of quantum chemistry and usually constitute semiclassical ap-
proximations designed for the study of time-dependent phenomena, e.g. non-adiabatic
transitions in molecules. The present method is thus conceived as a quantum initial value
representation from the onset — in spite of its semiclassical character.

Second, it follows from (4.3) that C(z) depends on the initial state |19) = [¢(0))
through the relation C'(z9) = (z0|t)0). In numerical applications, the phase-space integral
in (4.1) has to be approximated somehow. The typical procedure is to sample initial con-
ditions 2y in phase space with the overlap modulus |(zo]10)| playing the role of a weight
function, though a variety of alternative sampling strategies are possible *"". Despite the
inherent ambiguity of overcomplete basis sets in what concerns wavefunction representa-
tions, once the zy’s have been properly selected in an approximated integral the values of
the corresponding C'(zp)’s are uniquely defined.

Third, the motivation behind the factorization of (z|1) into a complex amplitude times
an action exponential comes from a general result of semiclassical theory, according to
which the classical action provides a first-order approximation to the phase of a quantum
state """ (see also the discussion in §6.2, in the next chapter). Since this phase accounts
for most of the wavefunction’s oscillatory behavior, C(z) is expected to present a rather
smooth time dependence, thus facilitating numerical treatment.

Having made the above remarks, we now proceed to look for a differential equation for
C(z). Taking the total time derivative of (4.3) and making use of the Schrodinger equa-

tion, we find (after rearranging terms):
ih C(z) = [ih(2$) + (2| H|¥) + L(2)([y))] e 56, (4.4)

Next, we factor out [¢)) by separating the scalar products on the right-hand side of the
equation with the help of the closure relation 1 = [du(2')|2')(2'|, with 2’ = 2/(t), which
leads to:

ihC(z) = / du(2) (2| ZVA (2, YO () ek S5, (4.5)
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Here we have already shifted the integration measure of primed variables to the initial
instant [z, = 2/(0)] and replaced the (2'[¢)) that appeared under the integral sign for
C(2)ensE),

A key quantity of the present method has been defined in Eq. (4.5): the CCS coupling

A(z*,Z"), whose explicit expression is given by

A
A7) = ih<z|zl> + E(z%,2") + L(2), (4.6)
where the non-diagonal matrix element

{z|]} (=)
{12} (2]2")

is an analytical function of z* and 2z’ that can be directly obtained by analytical continu-

E(z*,2) =

(4.7)

ation of the energy function (1.64) (i.e. by simply making the change (z*,2) — (2%, 2') in
the function).

The object A(z*,z') earns its name, ‘CCS coupling’, from the fact that it is the
quantity responsible for correlating the time evolution of amplitudes C(z) and C(z'). In
must be kept in mind, though, that the actual coupling strength between these amplitudes
is further modulated by the overlap (z|z'), as evidenced in Eq. (4.5).

Let us now work on the raw formula (4.6) with the purpose of expressing it in terms

of readily computable quantities. Since (z| = e2f (#"2) 2| we observe that the first term
Gl {2z} 1d
(z|2) {22’} 2dt

In turn, the total time derivative of f(z*, z) is simply

can be rewritten as

d S ECERCE]
% 7 _g a+ aza za 9

while the remaining term involving {Z| can be recast as

G} & of(r, )
EE i Y et

o

owing to the analyticity of {z| on 2z*. Hence, collecting together the above results and

making the necessary replacements in (4.6), we find that the coupling takes the form:

of(z%,2)  Of(z*,2)
ozt 0z ’

«

A", 2= E(z*,7) — E(z%, 2 —|—th2

(4.8)

which, we note, is an analytic function on z’. Further substitution of Z% by means of the
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dynamical equation (1.72) [or rather (1.69)] produces:

. .y ' Lo[of(=r ) of(z2)] L OE(2,2)
A(z*,2") = E(z",2')—E(z ,z)—a%; g ox g(z ’Z)QBTZ/;’ (4.9)

which makes all dependence on z* and z explicit.

We remark that, if one performs a series expansion of A(z*,2’) for small |2 — z|, one
finds that it begins with a second-order term. In the generalized coherent state case, this
expansion' is complicated by the non-flat geometry of the phase space and it does not
coincide with the second- and higher-order terms in the Taylor series of E(z*,2') (as is
does for canonical coherent states). Nevertheless, the second-order character of A(z*, 2’),
as understood in energy terms, becomes quite apparent when specific Bose and Fermi
Hamiltonians, e.g. those considered in Chapters 2 and 3, are substituted into Eq. (4.9) —
this will be the subject of §4.3.

By integrating equation (4.5), the amplitudes at time ¢ > 0 can be determined from
their initial values. Once the amplitudes are known, we can reconstruct the quantum
state with the prescription of Eqgs. (4.3) and (4.1), that is,

) = [ diu(z0)[2)C(2)et5. (4.10)

The integro-differential equation (4.5) — with A(z*, ') given by (4.8) — relates directly
to the gaussian-wavepacket version of the CCS method“* and shares some of its attractive
characteristics, namely: (i) in the semiclassical regime, according to reasons mentioned
earlier, the amplitude C(z) is expected to have a smooth time dependence; (ii) because
of the coherent-state overlap (z|2’), the 2’ integral is mostly localized around z;" and (iii)
the integrand is identically zero when 2z’ = z (precisely because of the included action
phase).

Thus, the kernel which correlates amplitudes of different basis elements decreases fast
as the distance |z’ — z| grows, on account of the overlap (z|z’). In other words, the
coupling strength between amplitudes C'(z) and C(2'), associated with |z) and |2'), is
appreciable only if 2’ lies on the neighborhood of z, though the size of such neighborhood
may vary depending on some of the aspects of the problem at hand. Nevertheless, one
may anticipate that the method achieves its maximum efficiency if the system evolves
under a semiclassical regime, where coherent-state overlaps are intensely localized and
the amplitude corresponding to a given coherent state would only change as a result of
correlations developed among the latter and other basis elements located in its immediate

neighborhood.

A similar expansion is carried out in full detail at Chapter 6
iiFor coherent states other than canonical, |(z|2’)| is no longer a gaussian distribution, but is still
localized in phase space.
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4.2 Discrete unitary version

Let us now derive the CCS equations using a finite discrete basis. This section deals with
the unitary version of the resulting propagation scheme; a less sophisticated non-unitary
formula (which can be obtained as a special case) is discussed later.

The first thing one must recognize is that, generally speaking, a basis set constructed
with a finite number of coherent states will only provide an approximate description of the
full Hilbert space wherein the system’s wavefunction evolves. This means that the CCS
method, in its discrete version, will not solve the Schrodinger equation exactly, unless
the number of basis elements is properly increased to the point where the phase space is
completely covered, and the Hilbert space closure relation can be emulated by the basis set
projector. Despite this limitation, one finds that, in many cases, the quantum evolution
takes place in a restricted region of Hilbert space (at least for sufficiently short propagation
time), allowing almost exact results to be obtained with a reasonably small basis set —
this signalizes a ‘breach’ in quantum dynamics, and the CCS method is precisely designed
to take advantage of it.

Having made these clarifications, we shall go through essentially the same steps delin-

eated in §4.1, only this time considering a basis set of size m, whose projector is

0= ZZ|Z, zj| (4.11)

=1 j=1

Here, a new notational convention is introduced: Latin letters i, 7, k,[ will be used for
labeling basis-set elements and, for convenience, we henceforth abbreviate basis-set sum-
mations by omitting their range (which is always from 1 to m). Notice that, since each
|z;) = |z(t)) evolves independently according to classical equations (1.72), the space
spanned in (4.11) changes with ¢, i.e. the projector itself is time-dependent, Q = Q(¢).

The projector’s matrix elements define the m x m overlap matriz:
Qi = (2lQz;) = (zilz)). (4.12)

For the moment, we shall not concern ourselves with the particular way the basis el-
ements are chosen (this will be the subject of §4.4) but we observe that the overlap
matrix is assumed to be sufficiently well-conditioned during the time interval upon which
the propagation takes place, to the extent that operations involving its inverse produce
sensible results — otherwise Eq. (4.11) would be ill-defined.

The finite-basis restriction amounts to the following approximation for the quantum
state [¢):

[4) = Q) = Z 2525 (2319). (4.13)
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Following the recipe of the previous section, an amplitude and action phase are assigned to
each orbit: C; = C(z;) and S; = S(z;), respectively, with 1 < i < m. The coherent-state

representation of |¢) is then written according to the ansatz:
(zily) = CietS:. (4.14)
Next, using the above relation, we differentiate C; with respect to time, leading to:
ih C; = [ih(&[) + ih{z] ) + Lia|w)] e 75, (4.15)

where L; = L(z;) is the Lagrangian calculated over the i-th orbit. As before, an equation of
motion for C; is obtained by decomposing the terms on the right-hand side of (4.15) in the
coherent-state basis. But, while the last term can be exactly replaced as (z1) = (z]|Q),
the same is not true of the other two. Unlike the continuous case, we must rely again on

(4.13) in order to approximate the terms involving time-derivatives:

)~ Q) = (4l) ~ (&l Q) ih(zld) = (@l H 1Y) ~ (] Q)] (4.16)

(obs: notice that |2;) # Q|2;) — the derivative of a state is generally not restricted to the

same sub-space as the state). As a result we get:
ih C; ~ Z [ih<2z’|zj‘>Qj_k1<Zk|1/}> + <Zz|ﬁ|Z]>Q]_k1<Zk|1/J> + LZ<ZZ|ZJ>QJ_]€1<Z]€|1/}>} e~ wSi
jk

L (Zil7) . _ _ig
— S alsy) W %) | par, 5) + Lo| Q5 (s fp)e S
Jk

zilz)

{
= (5 Ay) Q! Cp en S5, (4.17)

jk

where we made the replacements: (z;|z;) = Q;; and (z|¢) = CreiSk. Also, the expression
for the CCS coupling, A;; = A(z}, 2;), has been identified within the square brackets at
the second line, c.f. Eq. (4.6). For later reference, the reduced form of the coupling is
repeated below, this time with discrete basis labels ¢, 5:

Zd Of(27,2)  0f(z, )
Ai‘ = E * L) — E * i h Wy 79 % )
’ Mk () 41 a=1 0z}, 0z “ia

(4.18)

e

4.2.1 * Accumulated error in the CCS propagation

Because the approximations displayed at (4.16) were required in deriving the equation of
motion for C;, Eq. (4.17), the amplitude accumulates an error. Before proceeding with
the present development, it is instructive to take a brief look on this matter.

The error just mentioned, which we may denote as ¢, can be formally expressed if we
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introduce the complementary projector é, defined by the relations:

A

1=0+2, with: 20 =0, (4.19)

ie 2 projects on a space orthogonal to the one spanned by the CCS basis. Then, starting
again from Eq. (4.15), with ih[¢)) = H[1), we see that the exact value of C; can be written

as follows:

ih C; = [ih(zlv) + (al H 1) + Li{zl)] e

= |if{&|(Q+ 2)]y) + <zi|H<Q+E>|¢>+Li<zi|fz|¢>} TS (4.20)
or:
ihC; = el—i-z JAVE ij Ch e (Sk= Si), (4.21)
ik
where:
. ce e 1A A ~ T B S
& = ih(&|E[w) + (] HE|Y) = [H]z) —ih|z)] [ Zly) |- (4.22)

This little exercise shows that the error implicit in Eq. (4.17) has two interdependent
sources: a non-zero component of [¢) lying outside the space spanned by the basis set, and
the violation of Schrodinger’s equation by individual basis elements. Moreover, Eq. (4.22)
confirms that the method can be made exact regardless of the dynamics prescribed for
each |z), as long as the full Hilbert space is contemplated by the basis set, in which case
= = 0 and hence ¢ = 0.

Bearing in mind these fundamental limitations of the discrete formulation, we hence-

forth denote the CCS wavefunction by [¢)); when necessary, the exact wavefunction will
be indicated by |[Yexact)-

4.2.2 Auxiliary amplitudes

Turning back to the method’s derivation, we now address the issue of the inverse overlap
matrix figuring in several formulas. In practice, Q7! is never explicitly computed; rather,

one introduces a set of auxiliary amplitudes D;, defined according to:

> QyDer S = ¢, (4.23)
J

Then, the equation of motion for C;, Eq. (4.17), can be recast as:

ihC; = Z [ AV e (5; 5)} D;. (4.24)

Thus, at every time step (or, better said, at every evaluation of C) the auxiliary amplitudes

D are obtained from C' by means of the intermediate equation (4.23) — an operation that
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requires solving a linear system of size m. In most applications this procedure constitutes
the main computational bottleneck of the technique. Investigations carried out with the
Gaussian-based method showed that there are ways of evading this obstacle by introducing
low-level parallelization schemes.”” An alternative, high-level parallel approach, suitable

for basis-set sizes on the order of a few hundred, is proposed and explained at §4.5.

4.2.3 Norm conservation

Let us next demonstrate the unitary property of the present method. This may not be
obvious at first sight in view of the approximations made and the fact that the matrix
that governs the amplitude’s time evolution — whose 7, k entry, according to Eq. (4.17), is
Zj(Qiinj)Q kleé(s’f 5i) —is not hermitian (the latter feature, though, is just a consequence
of using non-orthogonal basis functions).

For developing the subsequent formulas, it is convenient to introduce the ‘phased

overlap’ (and its inverse):
wij = e Qyer Y, () = e TEH Q) e, (4.25)
in terms of which the CCS equations, (4.23) and (4.24), can be more compactly expressed:
ih C; =Y (wi; Aij)Dj, > wiD; = Ci. (4.26)
J J
Similarly, from Eqs. (4.13) and (4.14), the CCS wavefunction is:

= 3 [2)95' Cye® = 3 |z) (wis Oy e z—zm iehs, (4.27)
ij

ij

Let us then calculate the rate of change of the squared norm,
(YY) = ZD*% ZC* 50 = ZC* (4.28)
— taking the time derivative one finds, with the aid of (4.26),

d . : .o
) =3 (Crwy O + Clwyg! € = Ol (W™ haw™),,C;)
j
_ZC*D +ZD Cy = Y DDy = =" D; (@i + £(Aij — Af )iy ) D;.
ij j

(4.29)

Meanwhile, by differentiating the phased overlap (4.25) with respect to t we get

i

7

wij _ —E[L(ZZ) + Zh<zz’ZJ> _I_,Lh<zz’23> . L(Zjﬂwij _ _

Ay — Afwij, 4.30
h (zilz) (zi|z;) J Ji)Wis (4.30)
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where we have added and subtracted the hermitian term E(z}, z;) inside the square brack-
ets, so that the result could be expressed in terms of the coupling A;; and its complex
transpose AJ;. Putting (4.30) into (4.29) we conclude:

d
o) =0, (4.31)

proving that norm is indeed conserved.

Notice that this result is always valid, regardless of the basis set restrictions, just as
long as the overlap matrix remains well-conditioned (we have relied on the definiteness of
its inverse several times). Therefore, if norm fluctuation happens to be observed during
applications, it should be interpreted as a residue of numerical errors; these, in turn, are
either caused by ill-conditioning of the overlap matrix, leading to inaccurate solutions of
the linear system (4.23), or by an inadequacy of the stepper routine used for obtaining
C(t+h) from C(t), most likely due to a too large time increment h (this includes possible

errors during the evolution of individual basis elements).

4.2.4 * The variational picture

We have used Schrodinger’s equation to get the CCS formulas in a discrete unitary frame-
work. That route was deliberately chosen so that some subtleties of the method could
be brought to discussion. Alternatively we could have advanced the problem from a

variational perspective, starting from a trial wavefunction:
W) =" |z)a;. (4.32)
J

This type of trial state was discussed in Chapter 1. The situation here is different,
though, since we are not looking for a ‘full variational’ approach, but rather a more
simplistic guided-basis propagation scheme. From a TDVP standpoint, this means that,
in Eq. (4.32), the only variables that should be regarded as variational parameters are the
amplitudes a;. The basis elements |z;), in contrast, are to be understood as mere time-
dependent functions — they are not free to vary since their dynamics has been assigned
beforehand.

Nevertheless, the equation of motion for a is the same in both cases. Thus, the ‘norm-
constrained form’ of the TDVP, discussed in §1.2, yields:

J

ih Z(zﬂzj)aj = > [l Hlz) — ih(zi)|2)]a;, (4.33)

which is just Eq. (1.47) translated to the present context. By performing the change of

variables, a; = Dje%sj (the action phase S; is, again, just a time-dependent factor), we
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get:

ih Zwiij = ZwijAngj, (434)
J J

where we have multiplied both sides by e~ 75, Observe that, here, a linear system has to
be solved in order to get the time derivatives D — the bottleneck operation persists. Also,
notice that the coupling Aj; appearing in Eq. (4.34) is nothing but the complex transpose
of the standard CCS coupling (4.18), i.e

ro_ _— (21]%)
Aij - E<Zi7ZJ) Zﬁ<22|2’]> +L( )
Of(zF, 2 )_8f(z;-‘,zj) .
j

8Z]a 8zja

= E(2], %) — E(2], 25) —@hz

o= A (4.35)

The equation of motion (4.34), which involves the D amplitudes only, is precisely
equivalent to the CCS formulas (4.26) deduced earlier. In order to establish this equiva-

lence, we note that one immediately implies the other — for instance:
d : )
= %(sz’ij) => wyDj+ > wyD
J J J
0 1
= =3 2 wiAyD; — 3 > wii(Aiy — Af) wa
J J

(4.36)

where (4.30) was used.

The connection with the TDVP exposed above provides additional insight into the
CCS method. It reveals that the approximations (4.16), that we were forced to make
earlier in order to get the equation of motion for C, are automatically built into the
variational problem, where the wavefunction is understood as an approximate trial state
from the beginning. Furthermore, the equivalence of both derivations, together with the
fact that Eq. (4.34) was obtained with the TDVP version of §1.2, where normalization is
imposed as a constraint, contributes yet another way of understanding how, despite the
restrictions of the finite basis set, the unitarity of the quantum time evolution is preserved.

Finally, we note that the ‘D-amplitude’ version of the method, based on Eq. (4.34),
is the one most often employed in the recent CCS-related literature. Certainly, when
evaluating matrix elements of typical operators, D is far more useful than C. And, since D
can be propagated on its own, that would seem to render a more efficient implementation.

However, it is our experience that D is a poor dynamical variable, whereas C'is a good

one. There are mainly two reasons.™

A third but less important reason is that, given a basis set |2;), initialization is easier with C: for a
initial state |1g) the amplitudes at ¢ = 0 are just C(2;) = (zi|tbo); however, if D is used one has to solve

>_i(#il25)Dj = (zj|vo).
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First, the modulus of D; is not bounded, while, by definition, that of C; is, for
Eq. (4.14) shows that 0 < |C;] < 1. Second, the considerations of §4.1, regarding inclusion
of an action phase and the resulting ‘smoothness’ of the CCS amplitude associated with
each basis element, apply to C only. The method formulated in terms of C' is therefore
expected to be more stable than the D-based version. (Indeed, we observe in our simula-
tions that D sometimes displays quite an erratic time behavior; C', on the other hand, is
always a smooth function of time).

It is thus why we insist in using the C-based version of the method,"” though, we
must admit that if serious ill-conditioning of the basis set occurs — the major source of

instabilities — both formulations break down.

4.2.5 A remark on energy conservation

The variational approach shows that the standard CCS method, by construction, con-
serves the norm of the propagated quantum state. However, approximating the identity
operator by a finite basis set consisting of randomly distributed coherent states affects
another important property of the quantum evolution: the total energy of an initial state
Eo = (| H|1o) is not generally maintained during CCS applications.

Let us then evaluate the rate of change of total energy. For this brief calculation, H
is assumed to be time-independent and the simplified notation of Eq. (4.32) is employed.
Differentiating E (1) = (¢|H 1)) with respect to time we get:

dE

—r = (D) + W)

—z[ (il H|z)a; + a7zl H z)a; + )z H 2)a; + a (s H 2] (4.37)

Substituting the amplitude derivatives, obtained from Eq. (4.33) and its complex conju-
gate,

:_fz Yl Hz) — iz 20, (4.38a)

%:al (20 H|2e) + ih{ 2| 2] (i, (4.38b)

VNote that the ability to conveniently calculate observables is not lost — while not playing the role of
a dynamical variable, D is still available at every time step (it is a simple matter of storing them after
the linear system (4.23) is solved).
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and identifying the projector {2 = >ii 12 (07135 (2;], we find:

—2Re Y (z|(QH — HQ)|2,) D; D;er(Si=5, (4.39)
ij
Therefore, the rate of change of E is essentially controlled by the matrix elements (z;][Q, H]|%;)
which, as expected, become identically zero in the limit of a complete basis O -1
The intimate relation between energy conservation and the exactness of CCS results
has been pointed out by Habershon in Ref. [73]. Thus, by monitoring the value of total
energy, one can make an ‘on-the-fly’ diagnosis as regards to the quality of CCS results.

This is illustrated in Chapter 5 with numerical examples.

4.2.6 * Non-unitary case

It may be of interest sometimes — particularly when the system under study has only one
or two degrees of freedom — to attempt a more straightforward discrete approximation to

the coherent-state closure relation, by writing the basis projector as

O~ > ) ez, (4.40)
k=1
with A\, approximating the integration measure dju(z;) at each phase-space point.
The equation of motion for C' in this case can be obtained at once from (4.24) by
setting (271) ;5 = \;0;, which leads to:

ihCy =3 N [ Ay en 5] ¢, (4.41)
J
Similarly, the quantum state in this case is approximated by:
[0) = 37 M| zk) Cret 5. (4.42)
k

This propagation scheme is computationally less demanding than the standard unitary
version of CCS — if the basis-set size is kept the same —, since there is no need to solve
a linear system at each time step to get the auxiliary amplitudes D. On the other hand,
a larger basis set (usually constructed as a grid in phase space) may be necessary to
converge the results if the approximated closure relation (4.40) is employed. Moreover,
the norm of the propagated quantum state is not automatically conserved, meaning that
results must be normalized on output. Further observations regarding this version of the
method in a Gaussian-based framework are made by Shalashilin and Child in Ref. [27].

This non-unitary propagation scheme, as formulated in terms of the bosonic parametriza-
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tion of Chapter 2, has been tested in Ref. [28], where it was applied to a model system
of interacting bosons trapped in a double-well potential. In that problem, the approach
is quite feasible since the phase space has a single degree of freedom. Different dynam-
ical regimes have been studied, with the number of particles N varying in the range
100 — 5000 (while other parameters were held fixed). All runs used roughly the same
number of basis elements and a improvement of results with increasing N was observed,
in accordance with the idea that the CCS method is best suited for describing systems
evolving under semiclassical conditions — in that case, the classical limit corresponds to

the thermodynamical limit, N — oo (see Ref. [28] for more details).

4.2.7 The standard form of the generalized CCS method: a few remarks

The propagation scheme whereby the wavefunction, written as
W)y =3 |25) Dye %, (4.43)
i=1

evolves in time according to Egs. (1.72), (1.74) and (4.26) — with A;; and w;; respec-
tively given by Egs. (4.18) and (4.25) and — represents the discrete unitary version of
the generalized CCS method. This is the standard form of the generalized coherent-state
guided-basis approach developed in this work. In what follows we make some additional
remarks.

Initial state. In theory, the method is able to propagate any initial state |¢g) once a
suitable basis set is provided — as we have seen earlier, the initial condition for the C'
amplitudes is, in this case, Cy(z;) = (20:|¢0o). However, sampling a basis set capable of
adequately representing an arbitrary quantum state is not an easy task, and this problem
often requires a methodology of its own — one example would be the diffusion Monte Carlo
strategy developed in Ref. [51]. A throughout examination of such kinds of techniques
is out of the scope of the present work, since our interest is towards the time evolution
itself. We shall, therefore, avoid altogether the difficulties associated with an arbitrary

|tg) by restricting the analysis to the case where the initial state is a coherent state, i.e.

[Yo) = |20) = Co(2) = (zio|20)- (4.44)

Sampling of basis elements is simpler in this case, for it can be achieved by random
generation of z vectors which are accepted or rejected according to criteria based on
coherent-state scalar products, Q(z*, z') = (z|2’), a quantity whose analytical expression
is known. Also, the fact that |2(z*, 2’)| decreases fast as |z — 2/| grows allows for simple
sampling strategies that result in basis elements being mostly concentrated in a neigh-
borhood of the initial state |z), a region from where the most important contributions

to the integral formula are expected to arise, at least for short times. A general sampling
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algorithm, designed for this purpose is presented in §4.4.

It should be mentioned that this restriction on initial states does not necessarily implies
a loss of generality, for once an arbitrary |i¢y) is expressed as a superposition of static
coherent states, then each of its components can be independently propagated with the
CCS method, and the disjoint solutions can be recombined later to give the complete
time-evolved wavefunction.

Classical propagation. Finally, a special case of the generalized CCS method is worth
of mention: that whereupon a single coherent-state basis element is employed in the
wavefunction representation. If this single basis element is made to coincide with the
initial state, which is assumed to be [¢g) = |zo), then, by setting m = 1 in the CCS

formulas, the approximated quantum state at ¢ > 0 is:
(1)) = |z (8))erS @ with: 2,(0) = z. (4.45)

This is so because the right-hand side of Eq. (4.24) vanishes for m = 1, implying C,=0
and hence C1(t) = C1(0) = (21(0)|z0) = 1. Equation (4.45) is nothing but the ‘classical
propagation scheme’ discussed in §1.3.3.

What is to gain by adopting a trajectory-quided methodology? The whole point of using
time-dependent basis functions in representing an evolving quantum state is that they are
potentially more efficient for such a task than a static basis set would be; this is meant in
the sense that an accurate description of the system can be achieved with a lesser number
of basis elements if these are allowed to vary with time. Evidently, this claim rests on the
assumption that the dynamics of each basis element can be assigned in a such a way as
to drive the quantum wavefunction to the most important regions of the Hilbert space —
a poor dynamical prescription would only misguide the system (hence the caveat in the
first sentence, embodied in the word ‘potentially’). This latter requirement is ensured in
a full variational treatment, such as that outlined in §1.2.2, by the very nature of the
variational principle.

The trajectory-guided technique, on the other hand, further relies on the assumption
that, under certain regimes, each optimized basis state is able to capture most of the
wavefunction’s behavior; in other words, that under the appropriate circumstances the
evolution of individual basis states is qualitatively similar to that of the entire system.
In the generalized coherent-state context, where we have identified single coherent-states
as classical approximations, such ‘appropriate circumstances’ that justify the trajectory-
guided strategy constitute what we have called the ‘semiclassical regime’.

Thus, if a properly constructed trajectory-guided scheme is implemented for a system
that evolves under the adequate dynamical regime, it would not only be more efficient
than a traditional static-basis approach — it would also provide results as accurate as those

that would have been obtained by a full variational method (at least for a sufficiently short
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propagation time), but at a much less expensive computational cost, if the basis set size
is the same in both cases.

When is the generalized CCS advantageous? The methodology developed in this sec-
tion utilizes a time-dependent basis set with m elements to represent the system’s wave-
function. In order to carry out the time evolution, a set of differential equations that
couples the amplitudes of different basis elements has to be integrated. This integration
proceeds step-by-step, and a linear system of size m has be solved at each step. The
computational cost of this latter operation (measured in CPU time) scales roughly as
~ m?3. Thus we may say that the computational cost of the discrete unitary version of
the generalized CCS method goes as ~ m? per time step."

Meanwhile, the standard numerical approach to quantum problems is based on di-
agonalization of the matrix representation of the Hamiltonian operator H in a complete
orthonormal basis, say |®)."" If n denotes the size of the Hilbert space in question, the
diagonalization procedure has a computational cost which scales as ~ n®. For time-
independent Hamiltonians this operation has to be carried out a single time only; once
the eigen-energies and eigenstates have been determined any initial wavefunction repre-
sented in the |®) basis may be straightforwardly decomposed in terms of the system’s
eigenstates and propagation is then trivial.

Therefore, in order to be competitive against the traditional approach — judging in
terms of CPU time — the overall computational cost of CCS has to be small enough to
compensate for the time spent on a single diagonalization of the quantum Hamiltonian.
Such a condition is quite hard to meet if the dimension of the Hilbert space n is comparable
to the CCS basis-set size m.

However, it is a well-know fact that the dimensionality of a quantum problem scales
exponentially with the system’s size. For definiteness, we may picture a system of N
distinguishable and structureless particles moving inside a box. The dimension of the
configuration space is 3N. Suppose we establish that a satisfactory description is achieved
if L basis functions are employed for each position variable. In that case, the total size of
the Hilbert space is n = L3V; it grows exponentially as more particles are added to the
system.

Similarly, for systems of indistinguishable particles we have seen that the number of
dimensions of the Fock space grows fast (in a factorial fashion) with both the number of
particles N and the number of underlying single-particle states K used in the description,
as shown by Eq. (2.9) for bosons and by Eq. (3.9) for fermions. Thus, the standard

quantum approach easily becomes intractable, even for moderately sized systems.

VIn asserting this we presume that the linear system, required for computing the amplitude derivative,
stands as the computational ‘bottleneck’ of the method. This is the usual situation encountered in
practice. However, other scenarios are possible — see §4.5 for a more throughout discussion.

Viln practice one always works with a finite set of basis functions; in other words, here, the term
‘complete’ should be understood as ‘complete for practical purposes’.
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At the same time, some systems exhibit an interesting property: depending on the
dynamical regime in which they are found, they behave ‘more classically’ as they grow
larger (e.g. bosonic systems approaching the thermodynamical limit). This sort of prop-
erty invites treatments such as CCS, which has a strong semiclassical character.

Indeed, some of the CCS propagations presented at Chapter 5 (those involving systems
of comparatively large sizes) took less overall CPU time than the one-time diagonalization
of the quantum Hamiltonian operator.*!

Now, leaving aside questions regarding the ‘classicality’ of the system being described,
we may argue that the true advantage of the CCS method is revealed when Hamiltonians
with explicit time dependence are considered.

This is so because, for time-dependent Hamiltonians, one cannot rely on the concept
of stationary states and the exact quantum propagation has to be conducted by means
of some kind of short-time evolution operator, U (t 4+ 7,t), where 7 denotes a small time
displacement.

A popular form of writing the matrix representation of U/ (t+7,t) — using the |®) basis,
for instance — is according to the Crank-Nicholson recipe:

n 4 -1 .

Up(t +7,1) = ]Zl (In + 5 H(t)7T) . (1. - %H(t)T)jl, (4.46)
where the entries of the Hamiltonian matrix are Hy(t) = (®4|H(t)|®,). This expression
is unitary and correct to order O(72); it thus leads to a norm-conserving and numeri-
cally stable propagation for sufficiently small 7. Under this framework, the wavefunc-
tion Wy (t) = (Px|W(t)) is obtained at instants ¢ = (7,27,37,...) by repeated action of
U(t+7,1):

n
Uit +7) =S Un(t + 7, 6)0(t).
=1
Since the Hamiltonian changes with ¢, the evolution operator must be reconstructed at
every time step of the propagation. As Eq. (4.46) shows, this requires a matrix inversion
(or some operation of equivalent complexity) to be carried out at each step, and the
computational cost of such operation scales roughly as ~ n3.

Therefore, for systems governed by time-dependent Hamiltonians, the CCS method
(whose formulation is, by the way, equally valid in such cases) competes directly with
the quantum approach described above, since both schemes are limited by a bottleneck
operation that takes place wherever the wavefunction is evolved by a small time interval.

Ignoring other possible technical difficulties, we may assert that the computational
cost per time step associated with the short-time evolution operator methodology goes as
~ n3, while that of CCS goes as ~ m3. Now, the Hilbert space size n scales exponentially

with system size; in contrast, a much less dramatic increase of the basis set size m is

ViiThese simulations were also aided by a parallelization scheme — cf. §4.5.
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expected from CCS, as discussed previously. We thus conclude that, in the majority of
problems involving large systems we have: n® > m3. Therefore, the CCS method is
expected to be much more efficient if A = H(t).

Despite this conclusion, in this thesis we do not perform simulations with time-
dependent Hamiltonians. This is because, in order to access the accuracy of the general-
ized CCS method, all results reported in Chapter 5 are compared against exact quantum
calculations. Thus, if we intended to do the same sort of analysis for time-dependent
systems, we would also have to carry out the full quantum propagation and face the
computational difficulties exposed above; this, in turn, would require the development of
sophisticated quantum propagation algorithms, a task which would fall out of the scope

of the present work.

4.3 The CCS coupling for specific parametrizations

In this section we provide formulas for the CCS coupling, as computed for the coherent-
state descriptions discussed in Chapters 2 and 3, which apply to standard many-particle
Hamiltonians with one- and two-body terms. Before giving the equations for the bosonic
and fermionic cases, however, let us recover, from the general formulas the expression for
Gaussian wavepackets (i.e. Glauber states) — this is for didactic purposes only.

If we substitute in Eq. (4.9) [or its discrete version, Eq. (4.18)] the canonical, flat-

geometry ingredients, (0f (2], z;)/0%%,) = 2zja and g(2, 2;)ap = dap, We get at once:

« « d OFE (2", 2

Ny = B, 2) — B 2) + 3 (= a2
a=1 «

OPE(z, 2

EPICEDRESEE

(25— 2i)g+ ... (4.47)

showing that the analytical structure of the coupling, seen as a series expansion of z;
around z;, is such that it starts with a second-order energy term. This result does not
exactly extend to other classes of coherent-states; nonetheless, it is demonstrated below
that the interpretation of A;; as a second-order energy deviation is also possible in the

specific boson and fermion systems considered here.

4.3.1 The bosonic case

Let us consider the bosonic parametrization of Chapter 2, and a system whose dynamics
is dictated by a prototype Hamiltonian as that of Eq. (2.45). By substituting the relevant
quantities in Eq. (4.18) we may work the specific formula of the CCS coupling for this
case. This short derivation is delineated below.

It is convenient to introduce a shorthand notation for the analytically-continued one-
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density element corresponding to the reference mode bg,

{Zz|bob0|zy}
{zilz}

In this way, the Kéhler gradients in (4.18) are abbreviated and the coupling becomes:

Ty = = (1+272)" = (4.48)

Next, we replace Z; using the complex-conjugate of the mean-field equation of motion,
Eq. (2.57). Adapting the notation, we have:

—ih 2, = Gg, — z + Z ZWGZV Z ZWG“ 2z (4.50)

Let us then evaluate the non-diagonal term involving 27 — the expression is organized as

follows:

. ko ’L i1 *
ih Nvyig Y 2, = Z 2,6 Z 21 i %
nu

— NZ ZivYij - N Z 2y YijZiy G” (4.51)
In the first line of the above equation we put

. 252
Vi = =] — 4.52

and proceed with the following identifications,

il Ny %: ZjuZy, = o + Z 2 G o)
— N - N Z%J 2y, Goo — N Z Zju i - N Z 2 Yij % Gl
b+ Z 2,Gio) — N(THGH + Z Iy Gl + Z TG, + > T, Gi)
v
o + Z 2,Go) Z GuTo. (4.53)

Meanwhile, the analytically-continued energy function, here conveniently written in terms
of the Gross-Pitaevskii matrix and the mean-field matrix (compare Egs. (2.53) and (2.56)),
1s:

E;; = NZ (GY — Lyu\ria, (4.54)
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Combining this with the result (4.53) yields:

Ey+ihNvi; Y 225, = Zo—i-z 2,Glo)+N D (G —Gh Ty — NZU;{]FZJP (4.55)
v pq
The diagonal form is immediately obtained by setting j = 1,
Ey+ih Ny Yz i, = N(Ghy + Z 2,Glo) — 3N Z o 0. (4.56)
The coupling is simply the difference between (4.55) and (4.56):
Ay =N (GI —GiTd — fNZ v T — ol T ). (4.57)
Pq

Noting that G” G“ = U” —v¥ g (the one-body integrals do not depend on z and therefore

they cancel off) the above expression can be reorganized according to:
= 1NZ (vl — vl )T — il (T —Ti)]. (4.58)

This can be further reduced by making explicit the z-independent two-body integrals
embedded in the mean-fields. The first part gives:

Z(u;',g — v;iq)rgj =(N=1)) Upgs(T% = T% )r;ﬂp, (4.59)

pq pqrs

while the second part can be recast as follows:

Z,Un Fz] _ Fu _ _ 1 ZZU}?T qsru 1—\1] _ Fu)

pqg TS
= (N =133 Upsg(T, =TT,
rs  pq
= (N = 1) 3" Uppgo(T9 — THT% (4.60)
pqrs

where the interchange symmetry of U,,.,s has been used.

Finally, combining the above relations into Eq. (4.58) we arrive at the desired formula:

Aij = 3NN = 1) Uppgs(TL —T0) (T2 —T7). (4.61)
pgrs

One cannot help noticing the similarity between this expression and a second-order energy

variation induced by first-order density fluctuations:

E(ly+060) — E(g) = N> G(L0)pg 0Tgp + 5 N(N — 1) Y Uprgs0T50T . (4.62)

) pqrs
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In this case, the energy change would be that induced by an analytic continuation, z; — z;,
in the one-density, 6T = I'(z}, z;) — ['(2}, 2;), and we identify: E— Ey = §E + 0°E, with

B2Ey; = LN(N = 1) Y Uy udT0TH = A, (4.63)

pars
This provides a transparent physical interpretation of the CCS coupling. Later we will
simplify this even further by considering simple Hubbard models.
4.3.2 The fermionic case

The CCS coupling for the femionic parametrization of Chapter 3 and Hamiltonians such
as (3.54) can also be worked down to a much simpler and physically appealing form. The
same kind of manipulations operated in the bosonic case are repeated here.

We begin with the replacement of the Kéhler gradients, thus rewriting (4.18) as:
Ny = By +ihtr(z(Iy + 2)2) 72| = [Ba+ihtr(z(Iy + 2l2) 72| (464)

Lets us consider the z factor. Taking the adjoint of Eq. (3.80),

. 1]
4L ] i | i i
zi—h[IN A F ol Fit = b4+ 0", (4.65)
(recall FT = F) and writing )
I
zj = [0 IM] N} , (4.66)
L%

we are able to handle the trace as follows:

ihtr(zj([]v + zjzj)_lzl-T) = —tr { {0 IM} [[N (In + 212)7! []N zﬂ F"

l

Zj
o =2
= —tr< I “i|
0 Iy
= tr(F{i2/T5) — F3T39) + tr(Fj2{T% — FTs),  (4.67)

where the analytically continued one-density, '/ = T'(z}, z;), has been identified with the

second form given in Eq. (3.57). Next, we note that:

T8 =TIy —T% and 2T =21 — 1%, (4.68)
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Putting these relations in the respective traces of Eq. (4.67) we get:

ihtr(z(In + 2[2) 7 8]) = we(F}}) — e (F{TH + FiTS) + tr(Fii2]) — s3I + Flh)
= tr(Fi 4+ F2 20 — tr(FPTY). (4.69)

Adding the energy factor, conveniently written in terms of the analytically-continued Fock

matrix and mean-field matrix as
Ey; = tr[(h + 20")IY] = tr(FYTY) — Ltr(vVTY), (4.70)
gives the non-diagonal part of (4.64):

Eyj+ihtr(z(Iy + 212) &) = tr(F} + Fiiz)) + te[(FY — F)Y) — Ler(uVT7)
= tr(Fﬁ + Fgllzj) + %tr[(vij _ Uii)rij] _ %tr(v“l“ij),

(4.71)
Setting j = 7 yields:
E;; +ih tr(zi(]N + zjzz)_lzj) — tr(F¥ 4 Flizh) — Str(o"T™). (4.72)
Subtracting (4.72) from (4.71) produces the formula:
Ay = Lr[(v7 —o")IY —o"(TY = T)]. (4.73)

Once more, we pursue further simplification by considering the two-body integrals

explicitly; the two traces involved in (4.73) are rewritten according to:

tr[(v7 = )] = 3 (Vorgs = Vorsg) (U = 5T, (4.74)

qp>
pqrs

and:

[0 (07 =T = 323 (Vorgs = Vorsg) U (T, = T5,)

pq s
= 2 2 Vi = Vip) (T = T
rs pq
= 3= (Vs = Vo) (T2 = TE)T, (4.75)
pgrs

which leads at once to the desired result:

Aij = 5D Vorgs = Vorsg) (T4 = T5) (T, = TG,). (4.76)

pgrs
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As in the bosonic case this can be interpreted in energy terms; the energy difference

due to density fluctuation is found from Eq. (3.75) to be

E(og+6L) — E(To) =Y F(T0)pg 6Lgp + 3> (Virgs — Virsg) 0L 570 . (4.77)
P4 pars
In this case the energy change would be that induced by an analytic continuation, z; — z;,
in the one-density, I = I'(z}, 2;) — ['(2}, 2;); writing E — Ey = 6E + §°E we identify:

FEij =5 (Vorgs — Vorsg) ST 5010, = Ay (4.78)

pgrs
This provides the fermionic CCS coupling with a sound physical interpretation. Further
specification of Vs (€.g. when the system can be described by simple Hubbard models)

allows for an even more reduced expression.

4.4 Sampling protocol

In the remainder of this chapter we shall be concerned with some computational aspects of
the discrete unitary CCS method. We begin by outlining a general algorithm for carrying
out the first stage of any application — basis set sampling at ¢t = 0.

The procedure hereby explained assumes that the initial wavefunction is a coherent
state, i.e. |thg) = |20), and it applies to any type of coherent-state parametrization |z)
once two geometry-dependent ingredients are provided: adequate sampling coordinates,
q = f(z), with a known inverse, z = f~'(q), and a weight distribution function w(q),
according to which these coordinates are to be randomly selected. In particular, the
coordinate associated with the initial state is denoted by qo = f(29) and w(qo) is a global
maximum of the weight distribution. The sampling strategy follows a very simple ‘one-by-
one’ protocol, which draws inspiration from previously developed basis set conditioning
techniques.

One begins by taking |z) (the initial state itself) as the first basis element — the initial
state will always be part of the basis set, with the corresponding amplitude having the
maximum value, C'(z9) = 1. This is crucial for accuracy of short-time results and also
secures that the initial norm is unity, regardless of how the remaining basis elements turn
out to be distributed in phase space. Then the sampling loop starts — each iteration

amounts to three steps:

1. Using the appropriate sampling coordinates ¢ and weight function w(q), randomly

select a new basis element z; = f~!(¢;) and temporarily add |z;) to the basis set.

2. Compute the overlap matrix €2 and evaluate its conditioning factor,

ﬁ(Q) = /\max//\mim (479)
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where Apax and Amin are the largest and smallest eigenvalues of 2, respectively. Vil

3. If 5 is less than some threshold value fy,, accept |z;), permanently adding it to the
basis set, whose size increases by unity. Else, discard the selected basis element,
in which case the basis-set size does not change. (Additional conditions can be
enforced; for instance, one may require minimum /maximum overlap with the initial
state or some other, problem-specific restriction, e.g. an energy cut-off). In either

case, return to the first step.

The above sequence of operations is then repeated until either a predetermined basis-
set size m is achieved or saturation occurs, meaning that the algorithm is unable to select
anew |z;) that satisfies the 5 threshold condition (a certain maximum number of attempts
may be stipulated). How fast saturation takes place will depend upon the system’s dimen-
sionality, the threshold value By, the coherent-state parameters and the details of the
sampling distribution w(q). Typically, we take Sy, ~ 10210, and, after some test-runs
for determining the threshold size, settle for a basis-set just below the saturation point,
thus ensuring a dense swarm of initial conditions (since significant overlapping of basis
elements is essential for an accurate propagation) but with a reasonably well-conditioned
overlap matrix at t = 0.

Although nothing prevents that an initially well-conditioned overlap matrix becomes
singular at some later time — a known weakness of methods formulated with non-orthogonal

basis sets”” — we observe in practice that the time-dependent conditioning factor,

B(Qt) = Amax(t)/Amin (1), (4.80)

— which, together with total energy and norm, is one of the default quantities monitored
during propagation — tends to decrease over time, specially for systems with a large number
of degrees of freedom (this behavior is nonetheless observed in the two-dimensional system
studied at §5.3). This is a consequence of the non-linear dynamics of the z variables:
trajectories tend to spread over the phase space, and a sparse basis is likely to yield a
small conditioning factor.

This also leads to an interesting observation. A possible scenario is the one where,
after a long propagation time, the non-diagonal entries of the overlap matrix {2 become
negligible, with 3(€(t)) approaching unity. According to Eq. (4.26) this means that
amplitudes decouple and therefore ‘freeze’ on their current values, say C' and D. The

result is that the CCS wavefunction reduces to a incoherent mixture of classically driven,

ViiiThe overlap matrix is hermitian and positive-definite, meaning that its eigenvalues are real and posi-
tive, though numerical diagonalization may produce null or very small negative eigenvalues. Alternatively,
one could employ a singular value decomposition and carry on the sampling procedure using the singular
values rather than the eigenvalues.
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independent basis states:

() = 32D |=()er* O, (d/dt)Di =0, HQE) ~ L.

Clearly, under such circumstances, the CCS solution has long ceased to give satisfactory
results.

Nonetheless, in the event that €2 becomes singular at some instant ¢ > 0 one should
take appropriate measures before resuming the time evolution. In this regard, a partic-
ularly interesting methodology has been developed by Habershon in Ref. [53]. In that
work a ‘basis set adaptation’ algorithm is designed which simultaneously remedies both
the ill-conditioning of the overlap matrix and fixes an eventual poor representation of the
wavefunction, by dynamically re-sampling the basis set. Habershon’s method is formu-
lated for gaussian wavepackets, but it applies equally well to the generalized coherent-state
case.

However, in the model problems considered in Chapter 5, the so-called ‘singularity
problem’; associated with ill-conditioning of the basis set, did not occur. On the other
hand, in virtually all simulations performed, the CCS wavefunction was observed to be-
come less accurate for sufficiently long propagation times, precisely due to the spreading
of trajectories mentioned earlier — no effort to ‘adapt’ the basis set was made, though; at
this stage we simply terminate the calculation.

Finally, we note that our sampling protocol requires the eigenvalues of the overlap ma-
trix to be computed at every iteration. However, that does not compromise the method’s
overall efficiency since the initial sampling is performed only once. Moreover, the overlap
matrix typically does not grow too large; this assertion holds even for multidimensional
systems, as long as the sampling distribution is kept sufficiently localized around the
initial-state coordinate zg, from where the most relevant contributions to the initial value

representation formula are expected to originate.

4.5 A ‘pave-the-way’ parallelization scheme

In this section we put forward a parallelization scheme for the standard CCS method
(i.e. the discrete unitary version). The technique developed here was used in the simula-
tions of Chapter 5 and has proved its effectiveness — indeed, results would otherwise have
been much harder to obtain.

The methodology is rather unusual in that parallel operations are distributed across
the time domain with the help of ‘time-chunk’ buffers. In order to put ideas into perspec-

tive, we begin by highlighting some general aspects of the numerical implementation of
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the CCS method. Let us recall the fundamental sizes involved:

m  basis-set size (number of trajectories).
d  degrees of freedom (length of complex z vectors). (4.81)

n  number of time steps.

The first thing to be noticed is that propagation of the CCS wavefunction consists of

two parts: the evolution of individual orbits z;, which obey

025

dzia _ 1
d Z 17 Z

, for 1 <i<m, (4.82)

and the marching of amplitudes C;, whose dynamics is governed by the pair of equations:

ZijCk = Dj, t = Z ww (483)
k=1 j=1

with the overlap matrix w;; and the CCS coupling A;; given by Eqgs. (4.25) and (4.18).
Let us then pictorically represent the operations required for advancing the wavefunc-

tion by one time step:

L z(t) = f(zi(t), z(t+h)=g(h z(t), (1<i<m);
2. C(t) = F(2(t), C(t)), C(t+h)= G(h,C(2)).

Here, the time increment is h and boldface quantities are m-sized arrays: C = (C4,...,Cp,)
and z = (21,...,2n,), with each z; being itself a d-sized vector.

The meaning of the above scheme is as follows. The function f represents the equation
of motion (4.82), it takes z(t) as input and returns the time-derivative Z(t). Meanwhile
g symbolizes an ordinary differential equation (ODE) stepper routine, which takes the
time increment h and the computed 2(t) as inputs and returns the time-evolved variable,
z(t + h). Similarly, F' represents the pair of equations in (4.83); this function, which
takes arguments z(t) and C(t), builds the required matrices w;; and A;;, solves the linear
system for D and produces the amplitude derivative C (t). In turn, the application G
uses h and the computed € (t) to advance the amplitude, returning C(t+h). The scheme
is merely illustrative since stepper routines usually require derivatives to be evaluated
at several instants, but it is nevertheless useful for discussing the computational effort
involved in each operation.

Integration of Eqs. (4.82) can be made with standard ODE routines equipped with
step-size adaptation and error control. Ignoring possible complications associated with
unstable orbits, we may assume that the computational effort (measured in CPU time)

per trajectory per time step scales linearly with the number of degrees of freedom, d.
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Thus, we may say that the cost for advancing all basis elements through operations f and
g goes as ~ md.

In the majority of situations, the most expensive operation per time step is the inter-
mediate calculation of D amplitudes, which requires solution of the linear system in (4.83).
This is achieved by LU decomposition of the overlap matrix and subsequent backward
substitution. Ignoring matrix building (which scales as ~ m?), the CPU time expend in
this operation goes roughly as ~ m3. Since this procedure is conducted by the function
F we attach the computational cost of ~ m3 to the latter — also, we henceforth refer to

it as the bottleneck operation.

4.5.1 * Implementation types — a few examples

Next, let us provide two basic examples of implementation and make some remarks on
how they administer the operations described above. All numerical effort associated with
secondary tasks, such as monitoring and diagnosis, calculation of observables and output
writing will be ignored.

Simplest approach. The propagation scheme which is perhaps the easiest to pro-
gram is the one where z and C are treated on the same footing, i.e. derivatives z and
C are computed simultaneously and the entire set of variables is advanced together. In
more elaborated versions of CCS, like the gaussian-wavepacket-based multiconfigurational
Ehrenfest method (MCE),”"*" this may be the only viable approach, for in that case tra-
jectories actually couple to their amplitudes. However, it is a poor approach to standard
CCS, where the z parameters obey separate equations. This is so because the presence of
a single unstable orbit will require more ODE calls, with all derivatives being calculated.
Thus many operations will be carried out unnecessarily, including the expensive factor-
ization of the overlap matrix, slowing down the time evolution. Nevertheless, it is simple
and the difficulties just mentioned are alleviated when considering a small phase space,
few basis elements and short propagation times. It has been successfully used in Ref. [25]
in the study of a bosonic triple-well system. The same problem is analyzed in §5.3 with
the more sophisticated parallel scheme devised here.

Two-stage approach. The fact that CCS trajectories evolve independently brings the
possibility of a two-stage strategy. First, orbits are evolved and their coordinates are
saved in hard-disk at predetermined instants. Later, this information is loaded and used
to build the require matrices for the propagation of amplitudes. The first-stage can be
fully parallelized, and unstable orbits do not pose a problem for the overall efficiency.
This approach has the interesting advantage of allowing a more sophisticated ‘sampling’
of trajectories, since their entire history is known, and one may choose which orbits are
more adequate for the problem at hand. However, the bottleneck problem is not addressed
under this scheme. There is also a drawback concerning memory usage: for a system with

d degrees of freedom, the memory needed for storing m orbits evaluated at n time steps
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goes as nmd; this can be huge. Also, loading from hard-disk is slow. Nonetheless, the
two-stage methodology is useful when individual trajectories are propagated at a very
expensive computational cost. This situation is found when analytical Hamiltonians are
not available. This is usual in quantum chemistry problems studied with the Gaussian-
based ab initio MCE technique,” "’ where each basis element represents a molecular
geometry. In order to determine the forces that act on the system, an electronic structure
calculation must be performed at every time step. Indeed, in this kind of problem, the
cost per trajectory obliterates everything else — the factorization of the overlap matrix
becomes a minor issue.

Let us mention that one possible way of dealing with the bottleneck operation in the
standard CCS method is through parallelization of the algorithm used in the factorization
of the overlap matrix. This could be implemented with either of the approaches discussed
above and the required sub-routines are available in some scientific libraries. If the LU
decomposition of w is performed in a multi-threaded fashion the cost of the operation
would be diminished from m? to ~ m?/p, where p is the number of processors. The
problem is that this becomes advantageous only if m is very large, say m ~ 10%, which

leads to other difficulties. Alternative low-level schemes are discussed in Ref. [52].

4.5.2 The three-stage ‘pave-the-way’ implementation

The discussion so far was meant to give a general idea of the sort of difficulties to be
overcome when designing a parallel CCS algorithm. Having prepared the terrain, we now
set out to formulate the so called ‘pave-the-way’ approach.

Let us consider the intermediate situation wherein trajectories are reasonable cheap to
compute, so that the operations involved in the integration of Eq. (4.82) can be handled by
a single processor. For definiteness we may imagine d = 10. Also, we assume a moderate
basis-set size; a representative number of basis elements would be m = 100. Under these
circumstances, the low-level parallelization of the bottleneck operation (mentioned earlier
as a possible way of dealing with the problem) is not profitable, hardly compensating
for the setting up of the required multi-thread environment. Therefore we must look for
alternative solutions.

We propose a three-stage procedure based on parallel tasks distributed over a range of
sequential time intervals. This means that the full timespan of the propagation is sliced
into pieces of size n’ < n. Again, for definiteness, let us take the total number of time
steps n = 2000; we could then work with one-hundred time slices of size n’ = 20. We call
the workspace associated with each time slice a time chunk.

Only one time chunk is needed in the program — it is used for propagating time slices
one after the other. The time chunk must allocate sufficient memory for storing n’ copies
of the CCS workspace, which consists essentially of the basis vector array z — of size md —

and m x m matrices w and X — the latter being defined through the relation X;; = w;; A;;,
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i.e. it is the matrix that multiplies D in Eq. (4.83). For simplicity we ignore other auxiliary
quantities.

Hence the memory required per time step is ~ (md + 2m?). The memory associated
with the time chunk is then ~ n/(md + 2m?). This can be quite big, but the strategy is
already effective for n’ of the same order of the number of processors, hereby denoted p,
and which is usually ~ 10, so that we do not need a too large time-chunk (though the
method is more profitable for larger n'). Also, notice that this refers to RAM memory,
meaning that reading and writing operations are fast.

Let us set p = 10. The three stages of the ‘pave-the-way’ scheme are as follows.

1. Basis elements are propagated in parallel during the timespan which is currently
contemplated by the time chunk. Let us think this is the first time slice, so the
timespan is: 0 < t < n’h. As each trajectory evolves its coordinates are stored in
the appropriate slots of the z array corresponding to instants t = 0, h, 2h, ..., n'h.
This is straightforward parallelism without any interdependencies whatsoever. The
computational cost associated with trajectory propagation is thus reduced from the
assumed ~ md to ~ p~imd. Moreover, since most orbits behave similarly, the

workload is well-balanced among processors.™

2. Once all trajectory information during the interval 0 < ¢ < n'h is stored in the
time chunk, each processor is then assigned to work on one of the n’ instants, with
tasks distributed as in a ‘parallel-for’ loop. Each thread reads the z array from a
specific time instant, builds the matrices w and X and, finally, conducts the LU
decomposition of the matrix w, which can be stored in the same matrix space used
by the overlap matrix corresponding to that instant. Since a moderate basis-set
size m was assumed, this calculation should be handled without difficulty by a
single processor. Once again this is dependency-free parallelism with nearly perfect
workload balance. The overall effect is that the time required for carrying out the

n’ bottleneck operations for the current time slice has been reduced from ~ n'm?

3. In other words, instead of focusing on a single time step, we took

to ~ p~in'm
advantage of the fact that the z vectors can be independently evolved, in order to

conduct the LU decompositions in parallel at adjacent time instants.

3. The last stage concerns propagation of amplitudes during the time chunk’s span.
This stage is performed in a serial fashion using a forth-order Runge-Kutta stepper
routine (the G operations in the ‘pictorical scheme’).* Notice that, with the LU-

factorized form of the overlap matrix at our disposal, the D(t) amplitudes at each

*In our codes the evolution of basis elements is performed with the general-purpose ‘Runge-Kutta-
Fehlberg (4,5)" integrator, with error control and adaptive step size, as implemented in the GNU Scientific
Library;"" however, since coherent-state variables evolve in a classical phase-space, one would perhaps
prefer a symplectic integrator.

*The general-purpose forth-order Runge-Kutta stepper was chosen because it delivers good balance
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instant ¢ are obtained from C(t) by simple backward substitution, with computa-
tional cost scaling as ~ m?. The algorithm yields C(h), C(2h), C(3h),..., C(n'h)

and the propagation on the current time-slice is completed.

Following this last stage, the time chunk is reseted and propagation on the subsequent
time slice begins (the last instant stored in the time chunk is re-allocated, becoming the
first instant for the next round).

Below, we provide a descriptive scheme of the three stages enumerated above, as
implement with a time chunk of size n’ = 5, for a wavefunction with m = 8 basis elements,
and p = 3 processors (these are indicated by the letter P). An additional detail, which
was left out of the previous explanation is illustrated: the fact that, in the last stage, each

integration step usually requires more than one evaluation of the derivative function F.
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The whole strategy is based on the idea of ‘paving the way’ for the integration of the

amplitude’s equation of motion, hence the chosen name. Finally, we emphasize once more

that this technique was crucial in accelerating the simulations of Chapter 5.

between simplicity of implementation and overall accuracy — the latter meant in the sense that propagation
remains stable even for reasonably large time increments h. Ideally, however, one would prefer a more
sophisticated algorithm, specifically designed for propagating quantum states represented in terms of
non-orthogonal, time-dependent basis functions; such a scheme is developed in Ref. [65].
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4.6 * Extensions of the multiconfigurational method

In this last section we specifically consider the CCS method as formulated with the
fermionic coherent states (Thouless determinants) of Chapter 3. Earlier, at §3.3, we
analyzed the relation between different Thouless representations (i.e. whose parameters
are defined with respect to different reference determinants) of a same physical state
and found that the corresponding coherent-state labels are connected by an analytical
map [cf. Eq. (3.95)]. We also discussed how such map can be useful in regularizing the
coherent-state variables. Here, we shall introduce these ideas in the context of the multi-
configurational formula — the resulting CCS framework, where configurations are allowed
to change reference state at any instant during propagation, will be referred to as ‘ex-
tended’™

4.6.1 * Extended overlap

Suppose each Thouless configuration participating in the CCS wavefunction is defined
with respect to a (possibly) distinct reference state. The first issue that arises concerns
the overlap between any two such configurations.

In order to establish the extended formulas we employ the idea of a ‘default’ reference
state, i.e. we presume there exists a set of single-particle operators, ¢ and ¢f, in terms of

which the operators corresponding to the i-th and j-th configurations can be written as

ot i i i DT v D) (i),
=AYy, =YX =) XY), =3V ) (484a)
q q q q

D =S @ =S X e =S X = v s
q q q q
for 1 <4,j5 < m. The transformation matrices are unitary and, as in §3.3, Y denotes the
inverse of X,

.|.

YO = [xO]71 = x0T, y0) = [x0]71 = x0F (4.85)

We adopt the following convention: configurations defined in terms of the default set
are labeled with the letter z, whereas modified configurations are labeled with the letter

w; thus,
(zil = (zisc|, |75) = |z5:0); and (w;| = (wi;c(i)|, lw;) = ]wj;c(j)>, (4.86)

and likewise for non-normalized states — to alleviate the notation we omit the operator

indication inside kets and bras from now on.

XA similar scheme may be devised for the bosonic coherent states of Chapter 2, since the trans-
formations involved are entirely analogous to the fermionic case. However, the flexibility brought by
the extended framework is much more pertinent to the fermion problem — in order to avoid repetitive
arguments, we only discuss the latter.
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As we know from previous analysis (cf. §3.3), variables z and w are linked by the

relations:
_ X(j) X(J) X(j) X(j) N1, 4.87
(Xa1 + Xoy ;) (Xq1 + X19'25) (4.87a)
wl = (Y + ) (v + V), (4.87b)
whose inverse form is
= (V) + Y w)) (V7 + Vi w) 7 (4.882)
A= (x4 wl X)X D 4wl X)), (4.88h)

In particular, the non-normalized state vectors are connected by

|2} = Jw; Hdet(V + v w;)] (4.892)
{z] = [det (X1 + wi XS] {wi, (4.89D)

whence we obtain the scalar product:
{wifwg} = [det (X3 + w] Xp))][det(Ly + 2]2;)][det(Vi{’ + Vi wy)] (4.90)
In order to derive a sensible formula we must replace the z’s by w’s. Using (4.88) we find:

I+ 2lz; = Iy + (X + wl X871 (XT + wl XE) (V) + Vel wy) (VY + Vi w;) ™!
= (X1 + X)) VY + W wy + oW 4wl Wi wp) (K] + Vi)
Above, a new matrix W) has been defined in terms of its occupied, virtual and mixed

blocks — in full form it is simply the product of transformation matrices belonging to the

configurations involved:
W) = xOy @, (4.91)

Substitution of the latter result into (4.90) leads to:
{wilw;} = det W7 + WD, + wiwit? + wiwiw,), (4.92)
whose normalized version is the extended overlap we were seeking:

det(Wl(? + W12 wj + wTWQ + w;rwzéj)wy)
\/det Iy + wlw;) det(Iy + wj-wj)

(4.93)

(wifw;) =

This derivation provides an idea of the kind of method we intend to formulate.
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4.6.2 * Extended configurations

Our goal is to write the CCS wavefunction in terms of extended configurations,
Z |z;) D eﬁS(ZJ) = Z |lw;) D eﬁs(wﬂ) (4.94)

The next issue to be addressed is how the change of variables z — w affects the action
and amplitude of each basis element. Let us begin with the former. In what follows,
transformed quantities will be indicated with a tilde, e.g. S; = S(w;) and D; = D(wy).
We know from §3.3 that holomorphic transformations of the coherent-state variable
such as those exemplified in Eqs. (4.87) and (4.88) result in a relative phase between the

corresponding normalized coherent state vectors [cf. Eq. (3.100)],
2) = [w)e™#, ¢ = arg[det(Y; + Yiow)], (4.95)

where matrix Y is any of the YU) above — for the purposes of this subsection we may
focus in a single configuration, omitting the basis set-label.

In a time-dependent scenario, the relative phase leads to an accumulated phase differ-
ence between action integrals computed along orbits z(t) and w(t); this phase difference

can be found by considering the Lagrangians of each description, which are connected by

L(z) = D[(ele) — ¢2la)] — (2112
= D whi) — (ofo)] — (wl Ahe) + 5o = Liw) + B (4.96)

Thus, integrating from ¢y to ¢, we obtain:
S(z;t,to) = S(w;t, to) + lip(w; t) — hp(w; to). (4.97)

Notice we have specified the initial and final time instants.
Taking into account both effects — the relative phase between state vectors and accu-
mulated action phase — we find that, at time t > ty, default and extended configurations

are related as follows:

|Z(t)>e%5(z,t,t0) _ |w(t)>€fi<p(w it) %S‘(w;t,to)ei(Lp(w;t)fga(w;to)) _ |w(t)>€%S(w7t’t0)€7i¥7(w;t0)_
(4.98)
We see that the form of the configuration is not preserved, due to the factor e=#(wito),
At first sight, this would seen to hinder the extended method inviable, since in the
CCS wavefunction configurations interfere with one another, meaning that their relative
phases are crucial. In other words, transformations of coherent-state variables midway

through propagation are only acceptable if the total phase of each configuration is pre-



105

served. (Notice that this is not an issue in a mean-field description — i.e. where the total
wavefunction is represented by a single Thouless determinant — because, in that case, the
coherent-state’s phase is just an immaterial global phase.)

As it turns out, however, this problem can be easily solved. Consider, from a compu-
tational perspective, the following situation. An initial configuration |z(¢y)) is propagated
in time. It acquires a phase S(z;t,ty). This phase is accumulated into a variable 6(¢). At
some instant t; > ty the configuration’s reference state requires changing and its underly-
ing orbitals are thus subjected to an unitary transformation X. Integration is halted and

the new, regularized variables w are obtained from z according to the usual prescription:

w = (X21 + XQQZ)(XH + Xlgz)_l (at t= tl). (499)

At the same time, we cause a discontinuity in the cumulative variable 6, setting:
0(t1) = 0(t1) — hp(w; ty)  (at t = t1), (4.100)

where, in terms of matrix X, the discontinuity angle is ¢(w; ¢;) = arg[det(XT, +X3,w(t1))].
Integration is then resumed, and 6(t) now accumulates the action S(w:t,t;), computed
with the new variables w (the equation of motion for w has precisely the same form as
that for z, provided the Hamiltonian is transformed as well — see below for more details).

The net result is this: at time ¢ > ¢; the accumulated phase is
O(t) = S(w;t, t) + S(z;t,to) — hp(w;ty)  (at t > ty). (4.101)
Therefore, after regularization, the state is represented as:

|w(t)>6%9(t) = |2(t))e"ewt) o (S(wit,t1)+8 (25t to) —hep(wit1)) (4.102)

But, from (4.97) (replacing typ — ¢; in that formula),

S(wit,tr) = S(z;t,t1) — ho(w;t) + hp(w;t). (4.103)

Putting this in Eq. (4.102), and recalling the cumulative property of the action integral:
S(zitto) = Szt 1) + Sz, ko), we get:

lw(t))er?® = |z(t))erSEtto), (4.104)

In other words, provided the ‘0(t)-discontinuity’ protocol of Eq. (4.100) is enforced, the
same configuration will be represented by the new variables, including its phase, as if it
were computed with the default reference state all along. Clearly, this works just the same

if new transformations take place at future instants t,, t3, etc., and even if configurations
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start off with different reference states.

In short, the fact that a cumulative phase variable 6(¢) is used, which is always com-
puted from the Lagrangian that is currently appropriate for the timespan between trans-
formations, and the fact that a phase discontinuity is introduced by hand at each regular-
ization event — these procedures compensate both the state vector’s phase shift induced by
the change of variables and the associated action difference. Since in practice we compute
0(t) rather than S(¢), the extended method’s configurations will be written as |w(t))er?®

for the remainder of this section.

4.6.3 * CCS amplitudes in the extended framework

An important conclusion can be immediately drawn from the developments discussed
above: amplitudes C' and D are not affected by the transformation of coherent-state

variables. This is evident since Eq. (4.104) implies:
C(wy) = e 1 (wjlyp) = ™15 (z;]4)) = C(2)). (4.105)

Likewise, for the phased overlap we obtain:

i i

Wij = e’ﬁs(zi)(zl-\zﬂeés(zj) = e’lﬁai(wi|wj)eh I =@y (4.106)
These two results combined imply the invariance of D, since
Clwy) = @yD(wy) = Y wiD(w;) = C(z) = D(wy) = D(z). (4.107)
J J

Therefore, the CCS wavefunction may be written in terms of extended configurations as

[9) = 3212 D(2)e RS = 37 juwy) Dlw;)e”, (4.108)

J j
and this equality actually holds term by term. We have thus established the viability of
the extended method.

Check. If amplitudes are unmodified in the extended framework, then this can only
be true if the coupled equation which they obey is also unaffected by the fact that each

configuration is possibly defined in terms of different reference states. In order to confirm

this equivalence we need to examine the CCS coupling. Using the raw expression (4.6)
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we find that the coupling transforms as follows:

Ay = (il Hlz) L Gilz) b L)

(2i2)) ) (2i2))
104 . N\ p—tpj i (o). NP5 .
=g e 9] B + )
(il Hwy) o inbwn) g A (4.109)
(wilw;) (wi|wy)
Then, since Wi; = (:Jij,
ihC; = Z(Wiinj)Dj = Z(%AU)DJ‘» (4.110)
J J

confirming the invariance of the equation of motion.

4.6.4 * Matrix elements

Even though Eq. (4.109) tells us that the extended CCS coupling assumes the same values
as in the default formulation — despite the fact that the fermionic configurations involved
might be defined in terms of distinct single-particle orbitals —, the actual expression for
matrix elements is different in the latter case. This is because the calculation of non-
diagonal quantities, such as E(w;‘, wj;), is now complicated by the fact that the extended
overlap involves the matrix W) of Eq. (4.91). In particular, the simplified expressions
for A;; found in §4.3 are not valid in the extended framework. Thus, if a workable formula
is to be developed, one must start again from the bare definition (4.18) — this subsection
is dedicated to that purpose and some useful results are derived along the way.

Let us first consider the extended, analytically-continued one-density matrix,

N
. {sl e}
F(wiawj)z?q = {ZJ|15}

i| Wy

(4.111)

An expression for its elements can be obtained by the procedure employed in the default
formulation, depicted in Appendix C. That derivation still holds for the present case,
provided one replaces the quantity o(2], z;) = In + Zj zj, used in those calculations, by its

extended counterpart:

i
Wi

o(w;, w;) = 1(17]) + W1(27])wj + @UZTW2(1’]) + ijz(z’j)wj = {IN wq W) [ N] , (4.112)
which allows the non-normalized extended overlap to be expressed as:

{w;|w;} = det p(w;, w;). (4.113)
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Then, the same steps leading to the expression of the default one-density yield:

f(wrv wj) =

w;| DT e |y N
= m o(wfw)] " [ wf]. (@114)

These same considerations apply to two-body matrix elements, which are thus given by
the general expression:
{uief el ey}

{wilw;}

= Dop(w}, w) (Wi, w;) — Ty (w], 0)Tp(wf, wy).  (4.115)

The above formulas permit us to write extended versions for coherent-state expectation
values of one- and two-body operators.

Let us consider the one-body operator A which, in the default representation, reads:

1= Apy c;,cq,, Apg = (o] Aloy). (4.116)

r'q

Using Eqgs. (4.84) we obtain:

DTl — ZA(” (4.117)

=2 [Z Xy Ay Y
pq p'q
where the extended form of the one-body integral is:
AL = (a1 Aloy) ZX (o Aldg) Y, (4.118)

Notice that these integrals depend on indexes i, (because of the transformation ma-

trices attached to each configuration) but not on the labels w, w;. The coherent-state

79

expectation value is then immediately found with the help of (4.114):

{wilAlw;}

{wilw;}

A(w},wy) = Z AW T(w}, w)) gp- (4.119)

Meanwhile, the two-body term will transform according to

B=3 By cicicse,= S B 0700, (4.120)

pr-gs p
p,q,7,8 p,q,7,s

where the extended two-body integrals are:

pr qs - Z X 'r'r’ pT -q's’ Y:](/J(])Y;(IJS) (4121)

quS

Again, these depend on configuration indexes, but not on the variables w; and w;. Using
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Eq. (4.115) we obtain:

> {wl|B|w } 7 T T- * - * - *
B(w;, w;) = W > B[(n"qu{ wi, wi) e (W], wy) = L (w], wy)Dgp(wy, wj)}
L V) pqrs
= Z ( PT qs B;(;"]s)q)r ( :7wj)rsr(w;awj)- (4122)
pqrs

Thus, analytically-continued energy functions F (w},w;) can be computed as before,
provided the properly transformed density and extended one- and two-body integrals are

employed,

thrwz,w] Jap + 2 (Vi) = VDT gy (], w)) Do (w7 ). (4.123)

pgrs

The other ingredient required for expressing the CCS coupling, as defined by Eq. (4.18),
is the extended Kahler potential,

f(w},w;) = log[det g(w}, w;)], (4.124)

or, more specifically, its gradients with respect to w; and w;. Despite the extra terms
introduced by the matrix W@/ (implicit in the quantity g(w},w;)) the calculation is
straightforward, leading to:

af(w;kv wj)

o = 8wl w) " T wl W (4.1250)
M — [(W (4,9) + W(lj ) (w wj)—l]a“. (4125[))
awz -

Therefore, with the aid of Eqs. (4.123) and (4.125), we find a workable formula for the
extended CCS coupling:

Aij = E(w;“,wj) — E(w!,w;) —ihtr]w; (In + iji) wT]

(2

ik te[ (W + Wi w;) (WY + WisPw, + wlWi? + wiwl?w;) = il ],

(2

(4.126)

where we have substituted the explicit form of g(w},w;), Eq. (4.112). Notice, however,
that not all dependence on the transformation matrices is explicit, for E(w;*,wj) is a
function of the extended one-density, which depends on W), The manipulations that
earlier led to reduced forms of the coupling in the default formulation become quite
cumbersome in the present case and we do not pursue further simplification of the result
(4.126).

Lastly, we return to a point raised at §3.3 and left to be addressed later. It concerns the

transformation of the Hamiltonian (and possibly other observables) that must accompany
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the change of variables w + z,
w = (XQl + XQQZ)(XH + Xlgz)_l,

of individual basis elements. The required formulas can be obtained at once from the
general analytically-continued results given in this section by setting ¢ = j (therefore ren-
dering the configuration subscript unnecessary). Thus, the transformed energy function
is:
E’(w*, w) = Z ;qu 1;qp + Z (‘7177"-118 - ‘N/pmq) fqpfsra (4.127)
P4 pars

with one- and two-body integrals given by:

ﬁpq — Zpr/ hp/q/ }/q/q and ‘7prq5 = Z pr’XTT’ ‘/plrl,qlsl Yq/qYSIS. (4128)

p/ql plq/,r,/s/

Since, for diagonal elements W = I, the transformed one-density is:

['(w*,w) = []N] Iy wi=X [I:] Iy 2|V =XT(" 2)Y. (4.129)

The second half of this equation can be demonstrated without difficulty using the analytic
connections compiled at the end of §3.3. Notice that the last equality shows that the
new density T'(w*,w) can be obtained directly from the old one I'(z*, z) by a similarity
transform, without need of operating with the basic Thouless parameters, z.

As one would expected, the mean-fields transform as one-body operators; this can be

straightforwardly deduced from the relations given above:

5(F)pq = Z(Vzm‘qs - V;?%sq)rsr

= Z pr’ [Z (Vp’r’~q’5’ - Vp"f"S’q’) (ZYS’sfSTXTT’HYq’q = (XU(F)Y) ] (4'130)
r'q sT

el pq

which means that the Fock matrix as a whole transforms according to the recipe:

F(D)=h+o(T)=X(h+oI))Y =X FI)Y. (4.131)
The transformed Fock matrix, by its turn, enters in the equation of motion obeyed by w,

In

ih = [—w Iy| F )

: (4.132)

which has precisely the same structure as that for z variables, Eq. (3.80), for the ‘machin-
ery’ of the time-dependent variational principle is insensitive to the choice of reference

state. (The invariance of the mean-field equation of motion can be directly demonstrated
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by effecting the z <+ w change of variables, although this is complicated by the time-
derivative Z, which must be written in terms of w an w). Finally, the same conclusion

holds for the action phase, integrated from
S(w) = —tr(Fyy) — %tr(ﬁlgw +wiFy) + %tr(ﬁf), (4.133)

and whose value should be accumulated into a variable 0(t), as explained earlier. This

completes the list of ingredients required for implementation of extended CCS method.
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Chapter 5

Applications in test-systems

Overview. The dynamics of individual coherent states as governed by
Hubbard-like Hamiltonians is examined. After this preliminary discussion,
we proceed to investigate the capability of the multiconfigurational approach
developed in Chapter 4. This is done by considering two model problems:
first, a system of spinless bosons trapped in a triple-well potential and in-
teracting through contact forces; second, a system of electrons confined to a
one-dimensional circular chain of atoms where they experience tight-binding
hopping and on-site repulsion, and are further subjected to an external mag-
netic field. Both problems are studied for various sets of parameter values and
general conclusions concerning the effectiveness of the proposed methodology

are drawn.

5.1 Mean-field dynamics with Hubbard-like Hamiltonians

In Chapters 2 and 3 we have considered — from a coherent-state perspective — the dynamics
of many-particle systems as governed by prototype Hamiltonians containing one- and two-
body terms. A wide range of problems, though, can be described by a more simplistic

class of Hamiltonians, having the following parametrization:

K K
H= Z g a;aq +% Z Upq azazaqap, (5.1)
p,q=1 p,q=1

i.e. which exhibit a diagonal interaction term. In the above equation [and also, below, at
Eq. (5.3)] @ and a' stand for either boson or fermion operators whose associated single-

particle basis states are |¢,) = af|0), 1 < p < K. If H is hermitian then the K x K

matrices A and u must satisfy the requirements:

o0 = Vo (5.2)
Upg = Us, = Ugp = U, (also uy, = 0 for fermions).
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Thus h is complex and hermitian; v is real and symmetric. In the fermionic case, the
diagonal elements of u play no role in the dynamics (since the product of creation and
annihilation operators gives zero) and we may safely put u,, = 0.

Hamiltonians with the particular structure displayed at Eq. (5.1) are interesting be-
cause the mean-fields of the coherent-state description are very simple to compute, owing
to the fact that costly manipulations of two-body integrals are avoided.

However, in most situations, the single-particle states |£) that bring H to the form
of Eq. (5.1) are very specific; and it is often the case that the coherent-state dynamics
should be carried out with a different underlying set, one which conforms to a physically
motivated choice of reference state rather than a mathematically convenient one. This
precise situation will be encountered later in this chapter, when we apply the general-
ized CCS methodology to a fermionic model-system; we shall postpone until there this
discussion concerning the single-particle basis.

Before proceeding to detailed applications, let us work out the mean-field equations
of motion for a Hubbard-like Hamiltonian having the special form of Eq. (5.1) — we thus
seek specific expressions for the two-body part of the energy function, hereby denoted Fs,

according to the following definitions,
E = E, + Es, thq |a aq|2) Zupq aqap |2), (5.3)

and also for the CCS coupling A;; [cf. Egs. (4.61) and (4.76)]. This is done next in two

short subsections.

5.1.1 Bosonic case

We first consider the Hubbard two-body interaction term for bosons. It is a peculiarity
of the bosonic description that the coherent-state expectation value can be arranged in

two different manners; denoting the bosonic operators as b and b we have:

%NUV — 1) 3 pq tpg Tipleq

X (5.4)
NN = 1) 30 upg Dpgl'gp

= % Zum<z| b;bj]bqbp |2) =
pg

These are equivalent ways of writing Fs since I'),,I'y, = I'yyl'p, as one easily verifies by
inspecting the definition of I' [cf. Eq. (2.48)]. Consequently there are two different — but
physically indistinguishable — ways of expressing the mean-fields:

N-1 o) 0, (A
By =1N Y v,y with: v, = ( ) (st Tes) Oy (A) : (5.5)
Pq (N = 1) upg I'yg (B)
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The form (A) is appealing because it is diagonal, whereas (B) is interesting since it is

straightforward to compute; both lead to the same equation of motion:
ih Z'u = huO + Z h,ulxzu - (hOO + Z hOZ/ZI/) m

+ 3 (W — 00) 2 + (14 [2%) MV = 1) [(u0 — t00) + D (= 10,) 2520 ] 2 (5.6)

Finally, combining Eq. (4.61) with the mean-fields of Eq. (5.5) we arrive at the bosonic
CCS coupling for the Hubbard model:

A — %N(N —1) > pq uPQ<F;]1‘D - Ffuip) (F% - Ff]iq) (A) (5.7)
ij = By y . 3 : :
%N(N -1) 2 pq upq(rgq - ng)(rsz - Ff;p) (B)

We shall adopt the (A) version, for it is more convenient to work solely with the diagonal

elements of the analytically-continued density matrix.

5.1.2 Fermionic case

Let us now consider the Hubbard interaction for fermions. In this case there is no am-
biguity as how to write the coherent-state matrix element Fy (the ambiguity is lifted by

the exchange energy, which was absent in the bosonic problem):
Ey = % Zupq<z| CLCECqCp |z) = %Z Upg (Upplaq — Tpgl'qp) = %vaqrqp' (5.8)
pq Pq pq
In the above formula, the mean field is:

Zs;épupsrss if pP=4q

Upg = (Zstpslss)Opg — Upgl'pg = (5.9)

—Upgl'pg if p#£gq
Note that diagonal entries u,,, even if non-zero, end up not contributing to the mean field

— as we pointed out earlier, such terms cannot play a role in the dynamics. Indeed, we

may write the two-body part of the Hamiltonian as:

H, = 2>y, c;cgcqcp = 1wy iy (if uyy = 0). (5.10)
pd P4
This is a more familiar form, associated with standard fermionic Hubbard models.
Because the Thouless one-density matrix is considerably more complicated than its
bosonic counterpart, the mean-field equation of motion for the Hubbard-like Hamilto-
nian looks no more simple than Eq. (3.80), which was previously derived from the more
general H studied in Chapter 3. Since it gives no new insights we shall not present the

particularized form of the equation.



115

Finally, combining Eq. (4.76) with the mean-field of Eq. (5.9), one finds the fermionic

multiconfigurational coupling for a Hubbard-like Hamiltonian is
Nij =52 g | (T = D) (T = Ta) = (T = L) (05, = D)) (5.1)
pq

As we shall see later the above expression can be recast in an even more simple form in

the case of spin—% fermions.

5.2 On the purpose of the results compiled in this work

In what follows we present a compilation of results obtained with the generalized CCS
approach for two model systems — the first deals with bosons in a trapping potential, the
second with electrons in a one-dimensional ring of atoms.

It is important to make it clear that the results reported here are only meant to
exemplify general trends and overall behavior of the proposed methodology. In absolutely
no way the content below is to be understood as a throughout investigation of any of the
aforementioned model problems — that would require a systematic numerical study and
careful analysis of the data; that is to say: it would require another thesis.

The main objective of this work, we emphasize, is the development and validation of
the generalized CCS technique as such. From this perspective, the simple application
examples that follow have more of an illustrative character and they should be regarded
as preliminary tests of the trajectory-guided propagation scheme put forward here.

And hence the reason we opted for simple models in the first place: for, being as such,
they fulfill a threefold purpose: (i) crude as they are, they provide a context wherein
technical aspects of the CCS strategy can be probed; (ii) they avoid eventual complications
inherent to more sophisticated models, whose only effect here would be to obscure the
discussion; and finally, (iii) their simplicity allows for exact quantum solutions against
which we may compare our CCS results. This does not mean, however, that the chosen
models are ‘trivial’ — as a matter of fact, they give rise to rich quantum dynamics whose

accurate description proves to be quite challenging.

5.3 Bose-Einstein condensate in a symmetric triple-well

5.3.1 Three-mode approximation

Let us consider a simplified model describing an N-particle Bose-Einstein condensate
trapped in a symmetric triple-well potential, where individual bosons are assumed to
interact by contact forces — i.e. the interaction energy has the form U(x,x’) & §(x — x').
The main ideas involved are as follows: the triple-well trapping potential, under suitable

conditions, can be approximated by an harmonic expansion around each of its three
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(symmetrically located) minima. The three-fold degenerate fundamental states of this
approximated problem can be determined without difficulty. It is then assumed that
the dynamical regime is such that the energy eigenspace spanned by these three local
modes is sufficiently isolated from the rest of the single-particle spectrum, so that at low
temperatures they alone provide an adequate description of the system. For more details
on the derivation and particularities of this model, see Refs. [(66;67].

Let a1, as and a3 denote the annihilation operators associated with the aforementioned
fundamental single-particle modes, related to the locally approximated wells. In terms of
these bosonic operators, the ‘three-mode approximation’”’ to the Hamiltonian is (units
are such that i = 1):

H=Q Z aaj—l—iz:nl n; — 1), ﬁi:aiai, (5.12)

1<i#5<3
where € is the tunneling rate between adjacent wells, and y is the collision parameter, that
controls the strength of two-body interactions within the same well.! Owing to particle
number conservation, this system is suitably described in terms of SU(3) bosonic coherent

states |z) = |21, z2), which represent a particular case of the coherent states discussed at
Chapter 2.

5.3.2 SU(3) bosonic coherent-state description

In the coherent-state description we must choose one of the three modes to be macroscopi-
cally occupied in the reference state |®g). Since the triple-well is symmetric all choices are

equivalent; we take mode a3 as the reference mode and adapt our notation accordingly:

(b17b2ybo) = (a17a2,a3)- (5~13)

Thus the reference state is:

| Do) = (\/)— 10). (5.14)

Notice that |®g) is not a non-interacting groundstate. On the contrary, it is an stationary
state of the interacting part of the Hamiltonian, with energy E(®y) = Ny.
With the new labeling of modes, the Hamiltonian of Eq. (5.12) reads

=Q > bly, +—Zb*b;bpbp. (5.15)

0<p#q<2

"'We note that in the triple-well model, the energy difference between the groundstate and doubly
degenerate excited eingenstates of the non-interacting Hamiltonian is |3Q2| — within the three-mode ap-
proximation these stationary states span the same eigenspace as the local modes associated with operators
ai, ag and az.”’ Also, cross-collision terms, which arise from the interaction between bosons in different
wells, are neglected in (5.12).
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Comparing with (5.1) we identify the basic Hubbard matrices:

2
b) u ==

¥ (5.16)

>=

I

2
e =)
=
O = =
o O =
S = O
_ O O

In this case u is diagonal and the ambiguity in the definition of mean-fields, discussed at
§5.1.1, does not arise — both choices give the same v. The Gross-Pitaevskii matrix G is
then found to be:

011 5 1 0 0
G=h+v[)=Q[1 0 1|+——X |0 2t 0 (5.17)
1 + le]_ + 2222
1 10 2529
From (5.6) the equations of motion are:
. 2vz1(1 — |27
iz = Q1+ 20) — Q21 + 22)21 — 1>j_ |1?E1|2 +| |lz|2|)2’ (5.18a)
, 2xz2(1 — |29]?
129 = Q14 21) — Q21 + 22)20 — 1>—<F |22(’1|2 +‘ |2z‘2|)2’ (5.18b)

and the action S can be integrated with the help of the Lagrangian given in Eq. (2.58).
(Notice that z = 0 is not an stationary point of the classical system, even in the absence
of collisions).

It is instructive to examine the explicit form of the energy function:

E:NQ(

Zizo+ 2521 + 2F + 21+ 25+ 29) N (2721)% + (2322)* + 1
14 221 + 232 X (14 2f21 + 2522)%

(5.19)

Note that the extensive character of F is due to the (N — 1)~! scaling of the collision
parameter in the two-body term of (5.15). This is also why the equations of motion (5.18)
do not depend on N, and hence the classical system is well-defined in the limit N — oo.

Finally, since u is proportional to the identity matrix, the multiconfigurational coupling

(5.7) for this particular problem is very simple to express:
Ay = Nx[(Th — Tip)? + (0% = T)? + (T — T%,)?], (5.20)
which clearly shows the symmetrical nature of the triple-well potential.

5.3.3 Exact quantum propagation

The CCS results for the triple-well system are compared with exact data obtained by

trivial propagation in the eigenstate basis of the quantum Hamiltonian. The latter is
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constructed in the bosonic Fock space representation using the basic local modes according
to the matrix-element rules presented in Appendix D.2. The initial state, which is taken to
be a coherent state (see below), is first projected on Fock space — using the decomposition
given in Eq. (2.26) — and then projected onto the eigenstates of H (computed during the

diagonalization procedure), at which point propagation can be started.

5.3.4 Monitored quantities

In the simulations reported below the following quantities are computed as functions of
time: the norm of the CCS wavefunction N (1)); the basis-set conditioning factor (),
discussed in §4.4 (this factor depends solely on the overlap matrix 2); the total energy
E(v); an the populations po(v), p1(¢)) and pa(v) of the local modes (b, by, bs). The

formulas are:

N(@) = (W) = ZC* i (5.21a)
5(9) = )‘max(Q))‘r;iln(Q)v (5'21b)
E(y) = <w|g|¢ NZ Diwi;D; Z hipq + qu(fzz 2 Lap(27 5 25), (5.21c)

ij
pe(V) = <w|b;bqw = NZDz’ Wiijqu(Zi ) Zj)v q=0,1,2. (5.21d)

ij

The expression for the mean-field v,, is found implicit in Eq. (5.17).
Additionally, the auto-correlation function a(¢;t) (ACF) is computed,

m

a(¥;t) = (Yolthy) = Z 20]2;) D;e"® (5.22)

As discussed in Appendix E, the spectral density can be obtained from the ACF by a

Fourier transform:
I,(65 B) =7 [ dt g% (¢) Re [a(w; e, (5.23)
0

where g*)(t) is a window function of the form given in Eq. (E.10). The spectral density

T

indicates which energy eigenstates play a role in the dynamics.

5.3.5 Opposite-phase mode and population imbalance

The classical system defined in (5.18) has three dynamically equivalent invariant sub-
spaces, specified by the constraints: z; = 29, 27 = 1 and 2z, = 1. These correspond to
so-called twin-condensate regimes.”” Let us concentrate on the first subspace (z; = z3)

and refer to it as the A; surface.
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Now, consider the set of operators 50, b, and 52, defined by the canonical transforma-

tion:

bo = bo, (5.24a)
by = Z5(bi + bs), (5.24b)
ZN?Q == %(bl - bg) (5240)

It can be demonstrated that A; is an SU(2) subspace whose associated single-particle
modes are: by and b;: the solitary mode and the identical-phase mode, respectively. Mean-
while, the by mode, which is empty at A;, describes an opposite-phase oscillation of the
twin-condensate.

Under the classical propagation scheme detailed in §1.3.3 — where the system’s wave-
function is approximated by a single configuration — any initial SU(3) coherent state
prepared at A; will have zero occupation of the opposite-phase mode by for any ¢ > 0; as
a matter of fact, the expectation value

N (2] — 23)(21 — 22)

5y (2) = (2|biby|2) = — 5.25
P2(2) = (2|bybe|2) 2 1t mn A (5.25)

is identically null in the classically invariant surface A, where z; = 2z».

This conclusion, however, does not apply to the actual quantum problem: if the initial
state |t)p) has null occupation in the opposite-phase mode bs, this situation will not be
preserved as the system evolves in time — while the quantum evolution preserves the
equality between the populations of the local modes by and by [that is: pi(¢) = pa(¥)
for all ¢ > 0], the populations of the identical-phase and opposite-phase modes change in
time."" It is precisely this ‘non-classical behavior’ —i.e. the classically forbidden occupation
of the opposite-phase mode, which lies beyond a mean-field description — that we wish to
describe using the SU(3) CCS method.

With that goal in mind, we observe that the reference state is precisely located on
the classical invariant surface Ay; therefore, we may conveniently take |®() as the initial

state; that is, we put [1g) = |2}, 25), with

This state will be propagated with the discrete unitary method of §4.2.
In view of the above discussion, two other expectation values shall be computed in ad-
dition to the quantities listed in (5.21): the opposite mode population py()) = (w@@]w,
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which in terms of the local-mode variables z is given by

{Zi@gﬂzj}]
{zilz}

N (25 — 25 (21 — 2;
ij

5 * *
2 1 + Z’i,lzj71 + Zi,22j72

mwzzmm%[

ij

and the population imbalance”’ between the identical-phase and solitary modes, by and by

respectively, which in terms of the local-mode coherent-state parameters z reads:

J(@) = N7\ (bIby = bibo) ) = N7 (| |5 (b1br + bhbs) — Blbo] )

* *
— 1N DD (201 + 202) (21 + 2j2) — 2
ij Zi 1741 T % 2%j2

(5.27)

5.3.6 Basis set sampling

In order to construct the initial CCS basis set, it is necessary to choose adequate sampling

variables. In the present case we opt for angular variables (01, ¢1, 65, ¢2) defined by:
21 = tan(0;/2)e ", 2y = tan(6y/2)e” %2, (5.28)

The initial conditions z(0) are then randomly sampled around the origin from normal
distributions expressed in terms of these angular variables; that is, at t = 0 each pair of

angles (0, ¢) is selected according to probabilities:
P(6) o exp(—0?/2wj); P(¢) x exp(—¢*/2w3). (5.29)

Notice that the widths of these distributions, wy and wg, are adjustable parameters of
the method; in all simulations, the widths are the same for both entries z1(0) an 25(0).
The actual sampling procedure — which also comprises specific criteria for accepting and

neglecting candidate basis elements — was described in §4.4.

5.3.7 A note on dynamical regimes

Before considering the bosonic CCS results we must point out the following: the triple-well
dynamics — as observed with the parameter values used in our simulations — experiences a
qualitative change after a certain propagation time. In the ‘first dynamical regime’, as we
shall call it, the population imbalance J(v) relaxes while the opposite-mode population
P2(10) builds up a non-zero value. During this first stage, the local populations oscillate
with a natural period of (27/3|Q2]) ~ 2.094 (which is determined by the energy gap of
3|92| between the single-particle ground-state and a degenerate pair of excited modes, as

computed from first-order perturbation theory on the potential strength, ignoring two-
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body interactions — see Ref. [67] for more details). The reference mode population po(1))
decreases while p;(¢) and py(v), which are always equal, increase (in average).

The systems eventually reaches a second dynamical regime, where the three local-mode
populations oscillate (with a much larger period) around a mean value which is roughly
one-third the total number of particles. This is illustrated in Figs. 5.1 and 5.2, where
long-time exact results are shown for the case N = 100 (with: © = —1.0 and y = —0.50).

This dynamical change calls for a reformulation of the CCS approach, meaning that
probably the best way to proceed beyond the transition point would be to halt the CCS
propagation, perform a new basis set sampling and start off again. Since we have not
developed the tools required for this ‘re-adaptation’ of the CCS wavefunction as a whole,
we shall concentrate in the first dynamical regime, i.e. our simulations are terminated

before the dynamical transition is completed.!

100 [

exact pg
exact pq
exactpp

N=100, x=-0.50, f=5151

populations (local modes)

100 150 200

ot

Figure 5.1: Long-time behavior of local populations pg(1), p1(¥), p2(¥) exemplified for a
system with N = 100 particles (exact quantum result). The quantum dynamics is such
thay p1(¢) = pa() for all times. In the reference state (also the initial state) all particles
occupy the zeroth mode (obs: f denotes the dimension of the bosonic Fock space).
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Figure 5.2: Long-time behavior of the population imbalance J(¢)) (left panel) and the
opposite-phase mode occupation pa(1)) (right panel). Same run as that of Fig. 5.1.

i'We should mention that this same triple-well model was studied with the bosonic CCS method in
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