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Resumo

A Cromodinâmica Quântica (QCD) constitui a teoria quântica de campos da in-
teração forte. Apesar do seu sucesso na descrição de diversos processos envolvendo
hádrons, o espalhamento elástico ainda é um desafio para a teoria. Este processo é
caracterizado por pequeno momento transferido e, nessa escala, não é posśıvel utilizar
a abordagem perturbativa. Embora resultados não-perturbativos tenham sido obtidos
recentemente, ainda não possúımos uma descrição completa (para qualquer energia e
momento transferido) no âmbito da QCD para grandezas f́ısicas associadas ao espalha-
mento elástico, por exemplo, a seção de choque total (σtot), o parâmetro ρ, a seção de
choque elástica (σel) e a seção de choque diferencial.

As descrições dos dados experimentais associados baseiam-se em abordagens emṕıricas
e fenomenológicas tais como o Formalismo de Regge-Gribov e modelos inspirados em
QCD. Desde o ińıcio das operações do LHC, nós tivemos a oportunidade de estudar
essas grandezas nas energias mais altas dispońıveis em experimentos de aceleradores,
especificamente 7 e 8 TeV para o espalhamento próton-próton (pp).

Nesta tese, o interesse principal é a dependência com a energia de três grandezas,
especificamente a razão X = σel/σtot, σtot e o parâmetro ρ, ou seja, o comportamento
destas grandezas em energias altas e assintóticas, bem como a influência de contribuições
sub-dominantes para σtot. Estes tópicos estão divididos em três estudos independentes,
mas complementares, envolvendo aspectos emṕıricos, fenomenológicos e teóricos.

No primeiro tópico, desenvolvemos uma análise emṕırica da razão σel/σtot, a qual está
relacionada com a função perfil com parâmetro de impacto nulo (opacidade hadrônica cen-
tral). Através de parametrizações apropriadas, com um número pequeno de parâmetros
livres, obtivemos boas descrições dos dados experimentais dos espalhamentos pp e an-
tipróton-próton (p̄p). A partir dos ajustes aos dados utilizando quatro variantes, con-
clúımos que o cenário assintótico de disco negro não é a única solução e, além disso, os
resultados favorecem um cenário de disco cinza.

No segundo tópico, estudamos o crescimento de σtot em função da energia através
de parametrizações baseadas no formalismo de Regge-Gribov e testamos dois termos
dominantes, um logaritmo ao quadrado e um logaritmo elevado a um número real γ, onde
γ é um parâmetro livre de ajuste. Adicionalmente, discutimos dois métodos anaĺıticos
para conectar as partes real e imaginária da amplitude de espalhamento elástico, es-
pecificamente Relações de Dispersão Derivativas (RDD) e Unicidade Assintótica (UA),
os quais resultam em diferentes parametrizações para σtot e parâmetro ρ. Por sua vez,
essas diferenças são também discutidas. Os resultados favorecem a método RDD tanto
no contexto formal, quanto no contexto prático. A recente tensão entre os dados das
Colaborações TOTEM e ATLAS em 7 e 8 TeV também é discutida e considerada nas
reduções de dados.

No terceiro e último tópico, dois termos subdominantes de σtot obtidos em uma
abordagem não-perturbativa da QCD para o espalhamento elástico são considerados
em ajustes aos dados de pp e p̄p, bem como em ajustes aos dados de outras reações
bárion-bárion e méson-bárion. Nesta análise, com um parâmetro extra e com informações
teóricas adicionais, também obtemos um cenário assintótico de disco cinza.

Palavras-chave: F́ısica de altas energias; Fenomenologia de part́ıculas; F́ısica hadrônica;
Espalhamento elástico e difrativo.



Abstract

Quantum Chromodynamics (QCD) constitutes the quantum field theory of the strong
interaction. Despite the success of this theory in the description of several processes
involving hadrons, the elastic scattering is still a theoretical challenge. This process is
characterized by a small transferred momentum and, in this range, the perturbative
techniques are not applicable. Although nonperturbative results have been obtained
in recent years, we still do not have a full description within QCD of the quantities
related to the elastic scattering, valid for all the energies and transferred momentum,
for example, the total cross section (σtot), the ρ parameter, the elastic cross section (σel)
and the differential cross section.

The attempts to describe experimental data rely on empirical and phenomenological
approaches such as Regge-Gribov Formalism and QCD inspired models. Since the start
of Run 1 at the LHC, we have the opportunity to study the quantities above in the largest
energies available in accelerator experiments, namely 7 and 8 TeV for proton-proton
(pp) scattering.

In this thesis, the main interest is in the energy dependence of three quantities, the
ratio X = σel/σtot, the σtot and the ρ parameter, namely the behaviour at high and
asymptotic energies, as well as the influence of sub-leading contributions to σtot. These
topics are divided into three different, but complementary studies, involving empirical,
phenomenological and theoretical aspects.

In the first topic, we develop an empirical analysis on the ratio σel/σtot, a quantity
related to the profile function at impact parameter zero (the hadronic central opacity).
By means of suitable parameterizations, with a small number of free parameters, we
have obtained good descriptions of the experimental data on pp and antiproton-proton
(p̄p) data. From the fits with four variants, we conclude that the asymptotic black-disk
scenario is not a unique solution and, moreover, the results favour a grey-disk scenario.

In the second topic, we study the rise of σtot with the energy through parameteriza-
tions based on the Regge-Gribov formalism and we consider two options for the leading
terms: a log-square and a log-raised-to-γ, with γ a free fit parameter. In addition, we
discuss two analytic methods to connect the real and imaginary parts of the elastic
scattering amplitude, namely Derivative Dispersion Relations (DDR) and Asymptotic
Uniqueness (AU), which lead to different parameterizations for σtot and the ρ parameter;
these differences are critically discussed. The results favour the DDR method in both
formal and practical contexts. The recent tension between the TOTEM and ATLAS
data at 7 and 8 TeV is discussed and considered in the data reductions.

In the third topic, two sub-leading terms for σtot, obtained in a nonperturbative
QCD approach to the elastic scattering, are considered in fits to pp and p̄p data and also
in fits to data from meson-baryon and other baryon-baryon scattering. In this analysis,
with an extra parameter, and with theoretical inputs, we also obtain an asymptotic
grey-disk scenario for the colliding particles.

Keywords: High-energy physics; Particle phenomenology; Hadronic physics; Elastic
and diffractive scattering.
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Chapter 1

Introduction

The study of High-Energy Physics aims to describe the fundamental constituents

of matter and the interactions among them. The Standard Model constitutes today

the most accepted approach to describe the great amount of phenomena observed in

experiments. This model is the result of the combination of the Electroweak Theory and

Quantum Chromodynamics (QCD), aimed to describe the electromagnetic and weak

interactions (in a unified way) and strong interactions, respectively.

Among the processes that still lack description inside the theories of the Standard

Model, the elastic scattering of hadrons (for instance proton-proton scattering, as per-

formed in the Large Hadron Collider, LHC) does not have a full description based on

QCD. Although being a simple process, since no particle is produced in the final state

(i.e., the particles remain the same in the final state, only with the kinematic configu-

ration changed), elastic scattering is characterized by small scattering angles, therefore

small transferred momenta (|t|).
In this regime, we cannot apply the perturbative techniques of QCD, since the strong

coupling constant assumes large values [1] and, consequently, the perturbative expansion

does not converge. On the other hand, we do not have yet a full nonperturbative QCD

description, based on first principles of the theory, able to describe the amount of

experimental data presently available on elastic scattering. However, of interest here,

recent developments have been made by Giordano and Meggiolaro [2] in calculating the

forward elastic scattering amplitude in the asymptotic limit (limit of infinite energies)

based on a nonperturbative approach.

As a consequence, for finite values of the square of energy in the center of mass (s),

the energy dependence of the total cross section σtot(s) (related to the total number of

particles scattered) does not have a full description within QCD, since this quantity is

connected to the imaginary part of the elastic scattering amplitude through the optical

theorem. Elastic scattering is then usually treated by means of empirical studies and

phenomenological approaches such as the Regge-Gribov formalism and QCD inspired
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models.

Perturbative techniques can be applied only at large transferred momentum squared

(& 3 GeV2). In fact, Donnachie and Landshoff [3] have calculated the amplitude con-

sidering the exchange of three gluons between the partons. The result gives a |t|−8

behavior to the differential cross section. This behavior is indeed observed in experimen-

tal data [4]. Although successful, this result is not gauge invariant, since not all possible

gluon exchanges were considered in the calculation.

From the experimental side, the TOTEM Collaboration at the LHC has as its main

goals to measure diffractive scattering, which is related to scattering at small transferred

momenta (small angles). The quantities measured are, for instance, the total cross

section, the differential elastic cross section, the integrated elastic cross section, and the

single and double diffractive cross sections.

The first measurement of the differential cross section at 7 TeV as a function of the

transferred momentum is displayed in Figure 1.1, where the experimental data (solid

black line) is compared to predictions of several models [5–9] tunned with pre-LHC

experimental data. It is clear that all predictions miss the main features presented by

the data: the position of the dip (the minimum around 0.5 GeV2) and the behaviour

of the data at larger |t|, where the data show a smooth decrease, while some models

predict oscillations.

Figure 1.1: Comparison between differential cross section data at 7 TeV measured by
the TOTEM Collaboration and those predicted by several models. Figure taken from
Ref. [4].
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Measurements of σtot at 7 TeV were performed by TOTEM Collab. considering

different methods which all give compatible results [10–12]. At 8 TeV, σtot was also de-

termined [13]. Moreover, at this energy, data in the Coulomb-Nuclear interference region

was obtained allowing the determination of the ρ parameter [14], which is associated

with the forward phase of the elastic scattering amplitude.

Preliminary differential cross section data at 13 TeV by TOTEM present the same

features of the 7 TeV data [15, see slide 8]. Again, most models (now tunned with LHC

7 TeV data) present divergence with the experimental data, specially in what concerns

the large |t| behaviour: the data has a smooth decrease with |t| while most models show

oscillations.

The ATLAS Collaboration, with the ALFA detector, also measured the elastic dif-

ferential cross section, the total and the elastic cross sections at 7 and 8 TeV [16, 17].

As will be discussed in more detail through the text, there is a tension between the

total cross section measured at 7 TeV and mainly at 8 TeV by TOTEM and ATLAS

Collaborations.

Nevertheless, the amount of experimental information available since the start of

operation of the LHC has definitely allowed several interesting studies on elastic scat-

tering. The new data that will become available at 13 TeV will certainly shed light in

this subject.

In this thesis, we present phenomenological and empirical analyses on the elastic

hadron scattering, related to the energy dependence of three main physical quantities:

the total cross section (σtot) and the ρ parameter (forward amplitude) and the ratio

between the elastic and total cross section (σel/σtot). Although the main focus concerns

proton-proton (pp) and antiproton-proton (p̄p) scattering, one of the studies related to

σtot includes also meson-baryon and other baryon-baryon scattering. The energy interval

covers the region from 5 GeV up to 8 TeV.

Three different, but complementary, analyses are developed. A global description

and some of the main results are summarized in what follows.

The first analysis concerns an empirical study on the energy dependence of the ratio

σel/σtot (a quantity related to the evolution of the hadronic opacity), as well as the

asymptotic scenarios associated (s → ∞). The analysis on pp and p̄p data, through

suitable empirical parameterizations and data reductions, does not favor the black disk

limit (1/2) but a semi-transparent (grey) scenario at asymptotic energies (below 1/2).

Possible physical interpretations of the empirical parameterizations are discussed.

In the second analysis, based on the Regge-Gribov phenomenology, analyticity, cross-

ing and uniqueness concepts, we investigate the forward amplitude (σtot and ρ), related

to pp and p̄p scattering. The leading component for σtot(s) is expressed by lnγ s and

two variants are considered: either γ = 2 fixed (standard case) or γ as a free fit parame-
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ter. Simultaneously, two analytic methods to connect σtot(s) and ρ(s) are investigated:

Derivative Dispersion Relations (DDR) and Asymptotic Uniqueness (AU), which is

based on the Phragmén-Lindelöff theorems. The data reductions using DDR favor γ

values exceeding 2 and in case of AU values below 2. The results indicate that, on the

formal and practical contexts, the DDR method is more adequate for the energy interval

investigated than the AU approach.

In the third analysis, recent nonperturbative QCD results obtained by Giordano and

Meggiolaro in Ref. [2] are discussed, with focus on two subleading components predicted

for σtot(s). With two Reggeons, a critical Pomeron and ln2 s as leading component, the

two subleading contributions, given by ln s ln ln s and ln s, have been tested through

several fits to pp, p̄p, meson-baryon and other baryon-baryon data. Although the data

reductions do not allow to identify which of the two components is dominant at present

energies (with the available data), several characteristics related to the QCD spectrum

are inferred. Among them, it is shown that the 2++ glueball state leads to an asymptotic

prediction for the ratio σel/σtot consistent with a semi-transparent scenario (in accordance

with our first analysis).

The text is organized as follows. We begin presenting a short review on some basic

concepts in Chapter 2. In Chapter 3, we discuss the methodology employed through this

work, in all the analyses developed, presenting also some comments on the LHC data at

7 and 8 TeV. The three aforementioned analyses are presented in Chapters 4, 5 and 6,

respectively. Each one of these three Chapters ends with a summary and corresponding

conclusions. Ours final conclusions and final remarks are the contents of Chapter 7. In

Appendix A we show how the Derivative Dispersion Relations can be obtained from

the Integral Dispersion Relations. In Appendix B, we present a result of interest to this

work using the Mellin transform, concerning the relation between asymptotic behavior

of a function and the associated singularity. A list of publications related to this thesis

is presented in Appendix C.
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Chapter 2

Basic Concepts

In this chapter, we present basic concepts and definitions associated to the elastic

scattering that will be useful in the following chapters.

2.1 Elastic Scattering

In High-Energy Physics, elastic scattering is a particular case of diffractive processes,

which can be define as (quoting Barone and Predazzi [18])

“A reaction in which no quantum numbers are exchanged between the

colliding particles is, at high energies, a diffractive reaction.”

Therefore, the elastic scattering is the diffractive process in which the initial and final

particles are the same:

1 + 2 → 1′ + 2′, (2.1)

where ′ indicates that the particles in the final states are in a different kinematic config-

uration. On the other hand, it is important to stress that the final particles have the

same quantum numbers of the initial ones.

Besides the elastic scattering, we have two more particular types of soft diffractive

process1:

1. Single diffraction: when one of the initial particles remains the same (with only its

kinematic configurations altered) and the other gives origin to a bunch of particles

(or resonances) with the resulting quantum numbers equal to the initial particle,

1 + 2 → 1′ +X2; (2.2)

1We have one more type of diffractive process, called central diffraction, that does not constitute a
soft process.
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2. Double diffraction: the same as the above case, but now the two particles gives

origin to a bunch of particles (or resonances),

1 + 2 → X1 +X2. (2.3)

From the experimental point of view, the diffractive processes are characterized by

presenting a rapidity2 gap in the final state, i.e. a large angular separation between

the final states in the plot of the azimuthal φ angle versus rapidity y, as illustrated in

Fig. 2.1.

φ

φ

φ

0 5 10-5-10 y

0 5 10-5-10 y
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0

0
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Elastic Scattering

Single Diffraction

Double Diffraction
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1′

1′

2′

X1

X2

X2

Figure 2.1: Rapidity (y) gap present in soft diffractive process: elastic scattering, simple
and double diffraction (φ represents the azimuthal angle).

2Rapidity is given by y =
1

2
ln

(

E + pz
E − pz

)

where E is the energy of the particle and pz is the

component of the momentum of the particle in the beam direction. In the limit of large momenta
(compared to the particle mass) we have y ≈ η, where η = − ln[tan(θ/2)] is the pseudo-rapidity and θ
is the scattering angle.
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2.2 The Mandelstam Variables and the Center of

Mass System

Let us consider the following process

1 + 2 → 3 + 4, (2.4)

where each particle has a mass mi and a four-momentum pi = (Ei,pi), where Ei is the

energy and pi is the momentum. Therefore

p2i = m2
i (i = 1, . . . ,4). (2.5)

The Mandelstam variables are three relativistic invariants defined by [18]

s = (p1 + p2)
2, (2.6)

t = (p1 − p3)
2, (2.7)

u = (p1 − p4)
2. (2.8)

With energy-momentum conservation, one can show that

s+ t+ u =
4

∑

i=1

m2
i . (2.9)

Therefore, only two Mandelstam variables are independent. Usually, we chose s and

t to be independent, as we will see in the next section.

Let us consider the center of mass (c.m.) system, where

p1 + p2 = 0, (2.10)

therefore,

p1 = −p2 ≡ p. (2.11)

Of interest in this work, we shall consider particles with equal masses m. In this

case,

s = 4(|p|2 +m2), (2.12)

t = −2|p|2(1 − cos θ), (2.13)

u = −2|p|2(1 + cos θ), (2.14)

where θ is the scattering angle in the c.m. system defined in Figure 2.2.

Therefore, the variable s is equal to the square of the energy in the c.m. and t
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p1 p2

p3

p4

θ

Figure 2.2: Scattering in the center of mass system (c.m.).

corresponds to the momentum transferred squared

t = −q2.

The process of Eq. (2.4) is called s-channel.

We recall that in relativistic field theory, an incoming particle 1 with momentum p1

can be seen as an outgoing antiparticle 1̄ with momentum −p1. Therefore, if we change

the particles 2 and 3 of side in the s-channel reaction, Eq. (2.4), the reaction becomes

1 + 3̄ → 2̄ + 4 (2.15)

and we must also change the signs of the momenta in Eqs. (2.6)-(2.8). Consequently, t

now is the square of the energy in c.m. The process of Eq. (2.15) is called t-channel.

Analogously, we have the so-called u-channel: 1 + 4̄ → 2̄ + 3. These three reactions

are summarysed in Fig. 2.3.

1

2

3

4
s-channel

1

3̄

2̄

4
t-channel

1

4̄ 3

2̄

u-channel

Figure 2.3: s-, t- and u-channels.

From the physical conditions |p| ≥ 0 and −1 ≤ cos θ ≤ 1, we have the following

physical regions (see Fig. 2.4) for the Mandelstam variables for each of the channels

discussed above, considering particles with equal masses,

s ≥ 4m2; t ≤ 0; u ≤ 0 (s-channel), (2.16)

t ≥ 4m2; u ≤ 0; s ≤ 0 (t-channel), (2.17)

u ≥ 4m2; s ≤ 0; t ≤ 0 (u-channel). (2.18)
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Figure 2.4: Physical region (filled areas) of s-, t- and u-channels for particles with equal
masses.

2.3 Elastic Scattering Amplitude and Physical Quan-

tities

2.3.1 The Elastic Amplitude

The elastic scattering amplitude, F , is a complex-valued function and it is one of the

elements of the scattering matrix S, which is required to be relativistically invariant. As

a consequence, the elastic scattering amplitude must be written in terms of relativistic

invariants, chosen to be the Mandelstam variables, specifically s and t. Therefore

F = F (s,t).

Beyond the relativistic invariance, we have three postulates [18], listed below.

❼ Unitarity : The S matrix is required to be a unitary operator, i.e. SS† = 1, where

† is the Hermitian conjugate. This postulate is directly related to the conservation

of probability.

❼ Analyticity : It states that the amplitudes are analytic functions of its variables

when these are analytically continued to complex values. Moreover, the physical

amplitudes are the limits of these functions when the variables reduce to real

values. It is assumed that the only singularities of these analytic functions are
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those dictated by unitarity, namely, the poles and branch points associated with

the exchange of particles [18].

❼ Crossing symmetry : It states that the same amplitude describes the three different

channels discussed in the previous section, namely s-, t- and u-channels, and the

amplitudes for each process are obtained by means of analytical continuations from

one kinematic domain to the other.

These postulates are the basis of the study of the elastic scattering amplitude and,

consequently, the basis of several theoretical/formal results, for instance, the Froissart-

Lukaszuk-Martin bound and Dispersion Relations, just to keep within the topics of this

thesis.

2.3.2 Physical Quantities

Neglecting spin effects, the elastic hadron scattering at high energies is characterized

by seven physical quantities, expressed in terms of the scattering amplitude and denoted

as follows [18].

Elastic differential cross section

The elastic differential cross section is related to the absolute value of the elastic

amplitude, namely
dσ

dt
(s,t) =

1

16πs2
|F (s,t)|2. (2.19)

Elastic (integrated) cross section

The integral in t of dσ/dt gives the total elastic cross section as a function of the

energy

σel(s) =

∫ 0

−∞

dσ

dt
dt. (2.20)

Total cross section

The optical theorem connects the imaginary part of the elastic scattering amplitude

in the forward direction with the total cross section (σtot),

σtot(s) =
ImF (s,t = 0)

s
. (2.21)
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Inelastic (integrated) cross section

The total cross section, in turn, is associated with the total number of particles

scattered in elastic and inelastic events:

σtot = σel + σinel. (2.22)

The equation above is related to the unitarity principle, and from it, we can determine

the inelastic cross section

σinel = σtot − σel. (2.23)

Optical point and ρ parameter

The optical point is the differential cross section at t = 0. Using the optical theorem,

Eq. (2.21), and Eq. (2.19), it is expressed by

dσ

dt

∣

∣

∣

∣

t=0

=
1

16πs2
|ReF (s,0) + i ImF (s,0)|2

=
[ImF (s,0)]2

16πs2

[

(

ReF (s,0)

ImF (s,0)

)2

+ 1

]

.

In the above formula, the ratio between the real and imaginary parts of the amplitude

is related to the phase of the forward amplitude and is named ρ parameter

ρ(s) =
ReF (s,0)

ImF (s,0)
. (2.24)

With this definition the optical point reads

dσ

dt

∣

∣

∣

∣

t=0

=
σ2
tot(1 + ρ2)

16π
. (2.25)

Slope parameter

The logarithm of the differential cross section data in terms of t (linear scale) is

characterized by showing a sharp forward peak, called diffraction peak. Empirically, it

can be parametrized (for small values of transferred momenta) by

dσ

dt
=
dσ

dt

∣

∣

∣

∣

t=0

e−B|t| (2.26)

where B = B(s) is the (constant in t) forward slope.
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Comments on notation

Given the classification of diffractive processes discussed in Section 2.1, it is worth

making some comments on the notation used to refer to diffractive process in the text.

In general, we will refer to elastic scattering as those processes at which the internal

structure of the particles remain unchanged (no production of particles in the final state)

and inelastic scattering as those cases in which particles are produced in the final state.

Within this view, the single and double diffractive process are types of inelastic events.

Specifically, we can write the inelastic cross section as

σinel = σdiff + σnon-diff, (2.27)

i.e. a sum of two components: the diffractive one (diff), characterized by a rapidity

gap in the final state, and the non-diffractive one (non-diff) in which no rapidity gap is

observed. In turn, the diffractive cross section can be written as the sum of the central

and soft diffraction cross sections

σdiff = σcentral
diff + σsoft

diff , (2.28)

and the soft (inelastic) cross section includes single (sd) and double (dd) diffraction

σsoft
diff = σsd + σdd. (2.29)

At last, we can try to organize those types of events taking into account the presence

of a hard scale in QCD (i.e., a scale that allows the applicability of the perturbative

techniques). Non-diffractive inelastic events are grouped in what we call hard process

and it is possible to calculate the associated amplitude with perturbation theory. Elastic,

single and double diffractive events are grouped in the soft process. This classification

depends on the momentum exchanged between the interacting particles and the transi-

tion from one regime to the other (soft to hard, for instance) is not clear. This transition

may be referred as a semi-hard process and is model dependent. Within QCD language,

elastic and diffractive scattering are associated with colourless exchanges.

2.4 Profile Function and the Eikonal Representa-

tion

The elastic scattering amplitude can also be represented in the impact parameter

space (b) by the profile function Γ(s,b). The relation between F (s,t) and Γ(s,b) is given
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by the Fourier-Bessel transform (assuming azimuthal symmetry)

F (s,t) = 4πis

∫ ∞

0

bdbJ0(b
√
−t)Γ(s,b), (2.30)

where J0 is the Bessel function of first kind.

In terms of the profile function, the total, elastic and inelastic cross section read [18]

σtot(s) = 4π

∫ ∞

0

b db Re Γ(s,b), σel(s) = 2π

∫ ∞

0

b db |Γ(s,b)|2 (2.31)

and

σinel(s) = 2π

∫ ∞

0

b dbGinel(s,b), (2.32)

where

Ginel(s,b) = 2 Re Γ(s,b) − |Γ(s,b)|2 (2.33)

is the inelastic overlap function. The above relation also constitutes an unitarity relation.

We also introduce the eikonal representation, in which the profile function is written

as

Γ(s,b) ≡ 1 − eiχ(s,b), (2.34)

where χ(s,b) is a complex valued function called eikonal function. In terms of this

function, Eq. (2.33) reads

Ginel(s,b) = 1 − e−2 Imχ(s,b). (2.35)

From unitarity, Imχ(s,b) ≥ 0, we have Ginel(s,b) ≤ 1, which allows a probability

interpretation to the inelastic overlap function: Ginel gives the probability of an inelastic

event to happen at given s and b. From that, we may also associate the imaginary part

of χ(s,b) with absorption in the scattering process. For this reason, and using an optical

analogy, we introduce the opacity function

Ω(s,b) ≡ Imχ(s,b). (2.36)

Now, neglecting the real part of the elastic amplitude3, we see that Γ(s,b) is a real

valued function, and

Γ(s,b) = 1 − e−Ω(s,b). (2.37)

3As it will be shown in Chapter 5, in the present energies the real part is not zero yet, but it is small
enough to be neglected in a first approximation.
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Expanding the exponential, we have in first order

Γ(s,b) ≈ Ω(s,b). (2.38)

Therefore, the profile function is connected with the opacity function.

2.5 Simple Models for the Profile Function

Let us now discuss two simple and useful models for the profile function: the Grey-

Disk and the Gaussian profile.

Consider first the grey-disk (GD) model. Let R(s) be the radius of the disk. We

write the profile function as

ΓGD(s,b) =

{

Γ0(s), 0 ≤ b ≤ R(s)

0, b > R(s),
(2.39)

where Γ0(s) = Γ(s,b = 0) is the central value of profile function. In turn, the Gaussian

(G) profile is given by

ΓG(s,b) = Γ0(s)e
−b2/R2

. (2.40)

The elastic scattering amplitudes associated to them, calculated using Eq. (2.30),

read

FGD(s,t) = 4πisR(s)Γ0(s)
J1(R

√−t)√−t , (2.41)

FG(s,t) = 2πisR2(s)Γ0(s)e
−|t|R2

. (2.42)

Calculating σtot and σel by substituting Eqs. (2.39) and (2.40) in Eq. (2.31), we see

that the ratio σel/σtot is proportional to the profile function at the center Γ0(s) (and to

the central opacity, in first order as discussed in the previous section)

σel
σtot

(s) =

{

Γ0(s)/2, Grey-disk

Γ0(s)/4, Gaussian.
(2.43)

In the grey-disk model, the limit of the opacity going to infinity (Ω → ∞) is called

black-disk. In this case Γ0(s) → 1 and σel/σtot = 1/2.

It is important to stress that the connection of the ratio σel/σtot with the opacity or

profile function is only at zero impact parameter. When considering a grey-disk model,

we assume a constant value (in b) for the profile, Eq. (2.39). However this is a näıve

model and may not be the real case. For example, we may have a torus-like configuration,

as discussed by Dremin [19–21], in which at the center we have a more transparent/grey
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behaviour with some maximum value (maybe black) at some b 6= 0.

2.6 Relation between ratios σel/σtot and σtot/B

For further reference, let us recall the connection between the ratios involving σtot,

σel and B.

From Eqs. (2.20) and (2.26), we obtain

σel(s) =
(1 + ρ2)

B(s)

σ2
tot

16π
. (2.44)

Neglecting the value of the real part (1 + ρ2 ≈ 1), we obtain an approximate relation

between the ratios
σtot(s)

B(s)
≈ 16π

σel(s)

σtot(s)
. (2.45)

2.7 Froissart-Lukaszuk-Martin Bound

The Froissart-Lukaszuk-Martin (FLM) bound is one of the most important results

in hadronic scattering. First derived by Froissart using partial wave expansion for the

amplitude [22] and later re-derived by Martin twice (one in studies of analyticity of the

amplitude in the enlarged Lehmman ellipse [23] and other in the context of Axiomatic

Field Theory [24]), it states that the hadronic total cross section can grow asymptotically

at most as the square of the logarithm of the center of mass energy, namely

σtot(s) ≤ BFLM ln2(s/s0) (s→ ∞), (2.46)

where s0 is an undetermined energy scale and the coefficient BFLM is also bounded, being

its maximum value obtained by Martin and Lukaszuk [25]

BFLM ≤ π

m2
π

≈ 60 mb, (2.47)

with mπ denoting the mass of pion π0.

All these derivations consider the finite range of the strong interaction, the unitarity

principle and the assumption usually made that the elastic amplitude has a polynomial

bound in the asymptotic limit [26]

F (s,t) ∼ |s|N (s→ ∞), (2.48)

where N is some constant. This assumption is important, for instance, when dealing

with dispersion relations (these relations will be discussed in more details in Chapter 5).
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Recently, Azimov [27–29] discussed the implications of violating the FLM bound.

In Ref. [27], a re-derivation of the FLM bound with the smallest possible number

of assumptions is presented. The main assumptions, according to Ref. [27], are the

unitarity principle and the absence of massless intermediary states. Azimov argues that

the violation of the Froissart bound is not necessarily related to the violation of the

unitarity principle but with the violation of the polynomial bound in the non-physical

region.

Independent of this, we recall that the FLM bound gives us two bounds: an analytical

one and a numerical one, both up to some s0 scale. The analytical bound is in respect

to the maximum rate of increase of the total cross section and is represented by the ln2 s

itself. The numerical one is the combination of the analytical bound and the maximum

value allowed for the coefficient BFLM given by Eq. (2.47). For instance, for s0 = 1 GeV,

the maximum total cross section at 7 TeV is ∼ 103 mb, while the experimental data

is around 95 mb [10]. Therefore, even if we have a rise faster than ln2 s, we do not

necessarily exceed the numerical limit imposed by the FLM bound.

At last, for further reference, we mention that Martin has recently derived a similar

bound to the inelastic cross section [30]

σinel(s) ≤
1

4

π

m2
π

ln2(s/s0) (s→ ∞) (2.49)

with s0 undetermined.
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Chapter 3

Experimental Data and Fit Procedures

In this chapter, we present the experimental data used in the analyses (fits) discussed

in Chapters 4, 5 and 6. We also discuss general aspects of the methodology employed in

the fits performed. Specific details, as initial values for the free parameters in non-linear

data reductions, will be discussed separately in each case.

3.1 Experimental Data

In this section, we treat general information about the datasets used in the analyses

discussed in the thesis.

3.1.1 Cross sections and ρ Parameter from pp and p̄p Scattering

The total cross section, elastic cross section and ρ parameter are determined from

the differential elastic scattering data dσ/dt. The total cross sections are obtained from

the extrapolation to t = 0 of the fit to the diffraction peak (region of small t) using,

usually, Eq. (2.26) and the elastic cross section σel is obtained from the integral of dσ/dt

over an specific range of |t|.
On the other hand, in order to measure the ρ parameter, it is necessary to reach the

Coulomb-Nuclear interference region, typically with |t| < 0.01 GeV2. The experimental

data from pp and p̄p scattering of σtot and ρ parameter used in the analyses here discussed

are available in the Particle Data Group website [31]. We will consider data at
√
s ≥ 5

GeV, as used in the analyses by COMPETE Collab. [32] and PDG [33]. We will also

consider statistic and systematic uncertainties added in quadrature. We do not apply

any selective criteria to the datasets and we consider points at the same energy as being

independent.

Concerning σtot data in the LHC energies, we display in Table 3.1 all values considered

here with their uncertainties and the collaboration name with the reference. We also
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introduce a label that will be used for further references.

Table 3.1: Experimental data of σtot from pp scattering obtained by TOTEM and ATLAS
Collaborations at the LHC. Central values, statistic (∆σstat

tot ), systematic (∆σsyst
tot ) and

total uncertainties (∆σtot) are displayed with the references. In the first column, we
define a label that will be used in the text to refer to the data.

Label
√
s (TeV) σtot (mb) ∆σstat

tot (mb) ∆σsyst
tot (mb) ∆σtot (mb) Collaboration

T1 7 98.3 0.2 2.8 2.8 TOTEM [10]
T2 7 98.6 - 2.2 2.2 TOTEM [11]
T3 7 99.1 - 4.3 4.3 TOTEM [12]
T4 7 98.0 - 2.5 2.5 TOTEM [12]
T5 8 101.7 - 2.9 2.9 TOTEM [13]
T6 8 101.5 - 2.1 2.1 TOTEM [34]
T7 8 101.9 - 2.1 2.1 TOTEM [34]
T8 8 102.9 - 2.3 2.3 TOTEM [14]
T9 8 103.0 - 2.3 2.3 TOTEM [14]

A1 7 95.35 0.38 1.304 1.36 ATLAS [16]
A2 8 96.07 0.18 0.85 ± 0.31 0.92 ATLAS [17]

In the last years, the TOTEM Collaboration has published several values for σtot at

7 and 8 TeV using different methods. The measurements T1 [10] and T2 [11] at 7 TeV

were obtained through a luminosity-dependent method using as input for ρ value the

prediction of COMPETE highest-rank result [32]. To obtain the value T3 [12], TOTEM

Collab. has considered a ρ-independent method. Measurements T4 [12] and T5 [13] at 7

and 8 TeV, respectively, follow from a luminosity independent method, using again the

extrapolation for ρ from COMPETE. The values T6 and T7 at 8 TeV are reported in

Ref. [34], where they have observed a deviation from the pure exponential behaviour of

the diffraction peak (see in Ref. [35] a simple analysis that accounts for this deviation).

The values T6 and T7 are obtained considering two different forms of the argument of

the exponential: a polynomial of second and third degree, respectively. In both cases,

the value of ρ considered was again the extrapolation of the COMPETE result. In

Ref. [14], TOTEM Collaboration reported the first measurement of the ρ parameter at

the LHC by measuring the differential cross section in the Coulomb-Nuclear interference

region. At 8 TeV, this parameter reads

ρTOTEM (8 TeV) = 0.12 ± 0.03, (3.1)

and the total cross sections obtained in the analysis considering two different profiles

for the proton are T8 and T9. Although the value of σtot is affected by the choice of the

profile function, the value of ρ does not change. This measurement is compatible with

the prediction of the COMPETE preferred model, however it is interesting to note that

the central value of Eq. (3.1) is below this prediction.
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The ATLAS Collaboration also reported the total cross section measured by the

ALFA detector at 7 and 8 TeV. They considered the luminosity-dependent method and

used for the ρ value the extrapolation of COMPETE at 7 TeV and of PDG 2014 [36]

result at 8 TeV. These values are labeled in Table 3.1 by A1 and A2, respectively.

Cosmic-ray data were not included in the fits. It is not expected that their inclusion

would change the results since they have large uncertainties. Apart from that, we show

some of them in the figures of σtot to illustrate the trend of the data. We have considered

the experimental information reported by the ARGO-YBJ Collaboration [37], the Pierre

Auger Observatory [38], and the Telescope Array [39].

The datasets of σtot and ρ for pp and p̄p scattering are considered in Chapter 5. In

Chapter 6, we also used σtot data from pp and p̄p scattering.

3.1.2 σtot from other reactions

In Chapter 6, besides pp and p̄p data, we also consider σtot data from reactions

involving mesons and other baryons. These datasets are available at the PDG website [31].

In Table 3.2, we display the reactions considered, the energy range of each dataset, and

the number of points. Once more, we consider statistic and systematic uncertainties

added in quadrature, without selective criteria.

Table 3.2: Information of datasets from reactions involving mesons and baryons. We
show the minimum energy, maximum energy, and number of points for each dataset.

Reaction
√
smin (GeV)

√
smax (GeV) N➸ points

pn 5.30 26.40 34
p̄n 5.18 22.98 33
π+p 5.21 25.28 50
π−p 5.03 34.67 95
K+p 5.13 24.14 40
K−p 5.11 24.14 63
K+n 5.24 24.16 28
K−n 5.11 24.16 36

3.1.3 Ratio σel/σtot from pp and p̄p Scattering

The empirical analysis discussed in Chapter 4 consists in fits performed directly to

σel/σtot data. Our dataset, with minimum energy of 5 GeV, comprises values of this

ratio from pp and p̄p scattering with 29 and 13 points respectively (42 in total). In this

case, our selection criterion was to calculate the ratio using cross sections that were

determined in the same analysis, i.e. σtot and σel determined from the same dσ/dt data.

The cross sections used in these calculations are available at the PDG website [31] for
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5 GeV <
√
s ≤ 1.8 TeV. We show in Table 3.3 the experimental information at LHC

energies [10–13, 16]. Once more, we have considered each point as being independent,

and we added the statistic and systematic uncertainties in quadrature.

Table 3.3: Experimental data for ratio σel/σtot at the LHC energies (pp scattering). We
use the same label of Table 3.1.

Label
√
s (TeV) σtot (mb) σel (mb) σel/σtot Collaboration

T1 7 98.3 ± 2.8 24.8 ± 1.2 0.252 ± 0.014 TOTEM [10]
T2 7 98.6 ± 2.2 25.4 ± 1.1 0.258 ± 0.013 TOTEM [11]
T3 7 99.1 ± 4.1 25.4 ± 1.1 0.256 ± 0.015 TOTEM [12]
T4 7 98.0 ± 2.5 25.1 ± 1.1 0.256 ± 0.013 TOTEM [12]
T5 8 101.7 ± 2.9 27.1 ± 1.4 0.266 ± 0.016 TOTEM [13]
A1 7 95.4 ± 1.4 24.0 ± 0.6 0.252 ± 0.004 ATLAS [16]

It is also possible to estimate the ratio σel/σtot at 57 TeV, evaluated from the

experimental information on σtot and σinel obtained by the Pierre Auger Collaboration

[38]:

σel
σtot

(
√
s = 57 TeV) = 0.31+0.17

−0.19,

where statistical, systematic and Glauber uncertainties [38] have been added in quadra-

ture. We stress that this point did not take part of our data reductions. It will be

included in the figure as illustration.

3.2 Fit Procedures

All fits were done using the objects of the TMinuit class available in the ROOT

Framework (CERN) [40] considering a confidence level of 68% (1σ) [41]. The parameters

are determined from the minimization of the χ2 function, defined as

χ2 =
∑

i

[

yi − f(xi,a)

∆yi

]2

, (3.2)

where y ± ∆y denote the experimental data with its uncertainty, x is the independent

variable from which y depends on, f(x,a) is the parametrization, and the vector a

represents the free parameters. The sum runs over all data considered (index i). For

example, x can be the energy, and y, the total cross section.

We consider as a measure of goodness of fit the reduced χ2 given by the ratio

χ2/ν, where ν is the degree of freedom (the difference between the number of data

points considered in the fit and the number of free parameters). We also considered

the Estimated Distance to Minimum (EDM) [42, 43], which is an internal parameter of
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MINUIT. We say that the fit has converged when EDM ≤ 10−4 (considering a confidence

level of 1σ).

To be selected as the final result, the fit must have the smallest χ2 value, the

smallest EDM, and a positive-definite error matrix. We have tried to avoid the results

that have a non-positive definite error matrix since the error estimation in these cases

may have problems and, in general, we cannot trust the estimated uncertainties of the

parameters [42, 43].

Together with the error matrix, the code also provides the correlation matrix, whose

elements are the correlation between the fit parameters. In some cases, we will use these

values in the discussion of our results.

We also show in some cases an uncertainty region in the figures and predictions

for some quantities. In these cases, the errors were calculated using standard error

propagation [41] from the variances and covariances of the parameters determined in

the fit (error matrix). Therefore, they represent a confidence level of 1σ.

The integrated χ2 probability is also shown in some cases. This probability is given

by [41]

P (χ2,ν) =

∫ ∞

χ2

(x2)1/2(ν−2)e−x2/2

2ν/2Γ(ν/2)
(3.3)

where Γ(x) is the Gamma function. For a good fit with large ν (say, beyond 102), we

expect χ2/ν ∼ 1.0, corresponding to P (χ2,ν) ∼ 0.5.

It is important to note that the inclusion of systematic uncertainties in the fit puts

some limits in the interpretation of the χ2/ν and P (χ2,ν) values. The χ2 assumes that the

experimental value is Gaussian distributed, i.e., the uncertainty is directly correlated to

the confidence level of the measurement. On the other hand, the systematic uncertainty

follows a uniform distribution, meaning that the probability of the true value is constant

inside the error bars. Therefore, we will use these statistical parameters as a measure

that the fit is reasonable and that we have reached a minimum in the parameter space

and not to select a model or result based on small differences in these values. Of course,

large deviations from the expected χ2/ν value (close to zero or 2, for instance) is an

indication that we do not have a good result.

At last, there is an important aspect of the fits considered here that is their non-

linear dependence on the free parameters. In that case, it is important to give to the

code the initial values for the parameters. Since here we are dealing with different

parametrizations, we will explain the methodologies used for the initial value in each

analysis separately.

More discussion on experimental data, fits procedures and critical remarks can be

found in Refs. [44–47], in special Appendix A in Ref. [47].
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Chapter 4

Empirical Studies on the Ratio Between

Elastic and Total Cross Sections

4.1 Introduction

In this chapter, we discuss an empirical study of the ratio between the elastic (in-

tegrated) cross section (σel) and the total cross section (σtot), the first of three topics

that will be covered through the text. The chapter is based on the research presented

in Refs. [48–50].

Empirical approaches consist in the development of model-independent descriptions

of experimental data, in which we look for quantitative results that may work as an

effective bridge for further developments of QCD in the soft-scattering sector and even

selecting phenomenological pictures.

The ratio

X =
σel
σtot

, (4.1)

as a function of the c.m. energy
√
s, plays an important role for several reasons.

First, in the impact parameter representation (see Section 2.5), X is connected to

the opacity of the colliding hadrons and, in the cases of the grey/black disk or Gaussian

profiles, it is proportional to the central opacity (b = 0).

We recall that the s-channel unitarity states that σinel = σtot − σel. With this

equation, one can determine the inelastic cross section from the total and elastic cross

sections and this approach constitutes the less-biased way to obtain σinel since the direct

measurement involves model-dependent extrapolations. The same is true for the ratio

σinel/σtot = 1 −X, which can be associated with the inelasticity of the collision [51].

Moreover, empirical information on X(s) and 1 − X(s) at the highest s and as

s → ∞ can provide crucial information on the asymptotic properties of the hadronic

interactions, i.e. the information on how σtot and σel reach simultaneously their respec-
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tive unitarity bounds (which is one of the main prospects in the LHC forward-physics

program [52]). Empirical information on the asymptotic limit is also important in the

construction and selection of phenomenological models, including those based or inspired

in nonperturbative QCD.

Finally, the ratio X can be connected, through an approximated relation (see Sec-

tion 2.6), to the ratio between the total cross-section and the elastic slope parameter

(B)

Y (s) =
1

16π

σtot
B

(s) ≈ 16πX(s). (4.2)

This ratio plays an important role in the study of extensive air-showers (EAS)

[53], specially in the estimation of the proton-proton cross-section [54, 55] from the

proton-air production cross section at energies above 50 TeV. The interpretation of

the EAS development depends on extrapolations from theoretical formalisms that have

been tested only in the accelerator energy region, resulting in rather large theoretical

uncertainties, mainly in the estimation of the total cross-section. Therefore, model-

independent information on Y (s), from X(s), may be important in these extrapolations.

Moreover, the ratio Y gives also information on the connection between σtot and B at

the highest and asymptotic energies.

Our goal here is to obtain an empirical description of the ratio X and discuss the

implications of the results along the aforementioned lines, with main focus on asymptotic

scenarios (s→ ∞). We will consider data on X from pp and p̄p scattering above 5 GeV

(see Fig. 4.1), including all the TOTEM data at 7 and 8 TeV and also the ATLAS datum

at 7 TeV. References and further details of the dataset are given in Section 3.1.3.

We introduce four analytical parametrizations for X(s), looking for good descriptions

with an economic number of free parameter. We investigate all the three possible

asymptotic scenarios: either the standard black disk limit or scenarios above or bellow

that limit. The results for X(s) are extended to the inelastic channel (with the s-

channel unitarity), and we discuss the connection to dissociative processes (single, double

diffraction), including the Pumplin bound. We also treat the connection between X(s)

and the ratio Y (s), Eq. (4.2), together with discussions on the applicability of the results

in studies of extensive air showers in cosmic-ray experiments.

The chapter is organised as follows. In Section 4.2, ee start presenting the asymptotic

scenarios for X considered in our analysis. Next, in Section 4.3, we discuss our empirical

parametrization and the variants considered. In Section 4.4 we present the fit results,

which are compared and discussed in Section 4.5. Predictions and extensions to other

quantities are presented in Section 4.6. In Section 4.7, we discuss some possible physical

aspects related to the analytical structure of the empirical parametrizations, presenting

also comments on a semi-transparent asymptotic scenario. A summary and our final

conclusions are the contents of Section 4.9.
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Figure 4.1: Experimental data of the ratio X = σel/σtot used in this analysis, from pp
and p̄p elastic scattering in the energy region 5 GeV <

√
s ≤ 8 TeV (accelerator data).

At
√
s = 57 TeV we show, as illustration, the ratio obtained from the estimations of

σtot and σinel in a cosmic-ray experiment (Pierre Auger Observatory).

4.2 Asymptotic Scenarios

In order to build our analytical parametrizations, we will start with the asymptotic

scenarios considered in this analysis. Let A denote the asymptotic value of the ratio X:

lim
s→∞

X(s) ≡ A. (4.3)

Below we discuss and display some numerical values for A, which will be considered

as typical of each scenario to be investigated in this work.

4.2.1 The Black Disk

The black-disk limit represents a standard phenomenological expectation. It is typical

of eikonalized formalisms, as the traditional models by Chou and Yang [56], Bourrely,

Soffer and Wu [57–59], the hybrid approach by Block and Halzen [60] and a number of

models that have been continuously refined and developed (for example, [61–69]).
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As already mentioned in Section 2.5, this limit reads

A =
1

2
.

4.2.2 Above the Black Disk

Scenarios above the black disk can be inferred from theoretical results and appear

in some phenomenological approaches, as discussed below.

1. In the formal context, the s-channel unitarity,

σel
σtot

+
σinel
σtot

= 1, (4.4)

imposes an obvious maximum bound for X(s), namely

A = 1.

2. Two well known bounds have been established for the total cross-section [22,25]

and the inelastic cross-section [30,70] (see also Section 2.7),

σtot(s) <
π

m2
π

ln2(s/s0) and σinel(s) <
π

4m2
π

ln2(s/s0).

In case of simultaneous saturation of both bounds as s→ ∞, it is mathematically

possible that σinel/σtot → 1/4, which from unitarity, Eq. (4.4), implies in

A =
3

4
.

We note that this limit does not correspond to the usual interpretation of the

aforementioned asymptotic bounds. In fact, two fractions 1/2 are usually asso-

ciated with each bound, in place of 1/4 in the inelastic case (although without

formal derivation [30]), favouring the black-disk scenario [30, 71–73]. Even if a

simultaneous saturation of both bounds might be questionable [74], the number

0.75 can be considered as an instrumental choice for data reductions, lying between

the black disk and the maximum value allowed by unitarity.

3. In the phenomenological context, the U -matrix unitarization scheme by Troshin

and Tyurin predicts an asymptotic limit beyond the black disk [75, 76]. In this
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approach, the reflective scattering mode takes place at small values of the impact

parameter [77].

4.2.3 Below the Black Disk

Together with scenarios above the black-disk limit, there are also some results that

suggest and indicate asymptotic limits below the black disk.

1. In the publications of the TOTEM Collaboration, the authors quote the prediction

for the total cross-section obtained by the COMPETE Collaboration (in 2002),

with parametrization RRPL2, energy cutoff at 5 GeV and given by [32]

σCOMPETE
tot (s) = 42.6 s−0.46 − 33.4 s−0.545 + 35.5 + 0.307 ln2(s/29.1), (4.5)

where all coefficients are in mb and s is in GeV2. TOTEM Collaboration also

present a fit to the σel data above 10 GeV [13]

σTOTEM
el (s) = 11.7 − 1.59 ln(s) + 0.134 ln2(s). (4.6)

Using the above parametrizations, the ratio X for s→ ∞ reads

A = 0.436,

which suggests a scenario below the black disk.

2. Fagundes, Menon and Silva [44] and Menon and Silva [45,46] have developed several

analyses of the experimental data on σtot, the ρ parameter and σel, including the

TOTEM Collaboration results at 7 and 8 TeV. For our purposes, we recall that

the parametrization for the total cross section is expressed by

σtot(s) = Regge terms + α + β lnγ(s/sh)

where α, β and γ are free parameters. Fits to data on σtot and ρ (using derivative

dispersion relations) from pp and p̄p scattering above 5 GeV, have led to statistically

consistent solutions either with γ = 2 (fixed) or γ > 2 (free fit parameter). In

both cases, extension of the parametrization to σel data (same γ value) allowed to

extract the ratio X(s) and its asymptotic value A. In all cases we have obtained

A < 1/2, with lowest central value around 1/3 (see a summary of the results in [46],

figure 10). For future use, as a typical input in data reductions, we shall consider
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the lowest value obtained in these analyses, which, within the uncertainties, reads

A = 0.3.

4.3 Model-Independent Parametrization

We present in this Section a detailed discussion on the choices and steps that led us

to the construction of an empirical ansatz for X(s).

4.3.1 Empirical and Analytical Arguments

General Aspects

The available data for the ratio X are shown in Fig. 4.1. It is easy to see that as

the energy increases above 5 GeV, the X data decrease up to the CERN-ISR region (≈
20 - 60 GeV), where they remain approximately constant and then begin to increase

smoothly. From a strictly empirical point of view, this rise in the linear-log plot scale

may suggest a parabolic parametrization in terms of ln s, that is, a growth with positive

curvature. However, as discussed in Section 4.2, the Unitarity Principle demands the

obvious bound 1 for X(s) as s→ ∞ and finite values are also dictated by the Froissart-

Martin bounds and all phenomenological and empirical analysis, independently of the

asymptotic scenario considered. Therefore, except in case of existence of an unexpected

singular behaviour at some finite value of the energy, the above facts indicate a constant

finite asymptotic limit for the ratio X(s), i.e. a smooth saturation effect as s → ∞.

That in turn, demands a change in the sign of the curvature at some finite value of the

energy, so that X(s) goes asymptotically to a constant limit with negative curvature.

The above arguments suggest an analytical parametrization related to a sigmoid

function (“S-shaped” curve), in order to impose the change of the curvature sign and

an asymptotic limit (a constant). However, the behavior of the data at low energies and

the necessity to obtain the correct curvature to describe the experimental data, indicate

that deviations from the pure sigmoid function must be taken into account or, at least,

investigated. That led us to express the parametrization for X as a composite function

of the sigmoid S and some function f of the energy:

X(s) = AS(f), f = f(s), (4.7)

where, from Eq. (4.3),

lim
s→∞

S(f(s)) = 1.

Therefore, the point would be to test different forms for S(f) and f(s) through
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fits to the experimental data, looking for statistically consistent descriptions with an

economical number of free parameters. Obviously, the problem does not have a unique

solution and it is not possible to test all the analytical possibilities.

However, the use of different classes of sigmoid functions combined with different

classes of phenomenologically-based elementary functions is a way to take into account

the intrinsic uncertainty in the choice of the complete parametrization. With that in

mind, we shall select two forms for S(f), combined (each one) with two forms for f(s),

as explained in what follows.

Sigmoid Functions S(f)

Several classes of sigmoid functions have applications in different scientific contexts

and that includes the logistic, hyperbolic tangent, error function, algebraic ratios and

many others (see for example [78, 79]; we shall return to its applications in Section 4.7).

Here we consider two classes of sigmoid functions. One of them, already used in all our

previous analyses [48, 50, 80,81], is the Hyperbolic Tangent, denoted by

SHT (f) = tanh f =
1 − exp{−2f}
1 + exp{−2f} . (4.8)

In addition, we now consider a Logistic function, with notation

SL(f) =
1

1 + exp{−f} , (4.9)

which can be connected with SHT (f) by translation and scaling transformation.

Elementary Functions f(s)

We shall express f(s) in terms of elementary functions of the standard soft variable

ln (s/s0), (4.10)

where s0 is a fixed energy scale to be discussed later. Different functions and different

conditions have already been investigated in previous analyses [48, 50, 80, 81]. Here, we

first express f as a sum of two terms: a linear function of the standard variable ln(s/s0)

and a function g(s) which can account for possible deviations from linearity:

f(s) = α + β ln(s/s0) + γ g(s), (4.11)

where α, β and γ are real free fit parameters.

Different tests with distinct datasets (only pp or including p̄p) and different energy
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cutoffs led us to choose two typical forms in soft scattering for g(s): a Power-Law,

gPL(s) = lnδ(s/s0), (4.12)

where δ is an (additional) free fit parameter, and a Logarithmic-Law,

gLL(s) = ln ln(s/s0), (4.13)

without an additional parameter.

For each sigmoid function (logistic or hyperbolic tangent) we consider two variants

associated and denoted by the functions g(s). Throughout the chapter, we shall use the

notation defined below.

- Logistic (L) with variant Power-Law (PL)

XL
PL(s) =

A

1 + exp{−[α + β ln(s/s0) + γ lnδ(s/s0)]}
; (4.14)

- Logistic (L) with variant Logarithmic-Law (LL)

XL
LL(s) =

A

1 + exp{−[α + β ln(s/s0) + γ ln ln(s/s0)]}
; (4.15)

- Hyperbolic Tangent (HT ) with variant Power-Law (PL)

XHT
PL (s) = A tanh{α + β ln(s/s0) + γ lnδ(s/s0)}; (4.16)

- Hyperbolic Tangent (HT ) with variant Logarithmic-Law (LL)

XHT
LL (s) = A tanh{α + β ln(s/s0) + γ ln ln(s/s0)}; (4.17)

with the condition

s > s0.

At last, and still as a matter of a short notation, we shall refer to the sigmoid functions

as logistic or tanh and to the variants as PL (Power-Law) or LL (Logarithmic-Law).

4.3.2 Review on Previous Results

In this Section, we review some previous results obtained in fits with the tanh, special

cases of the variant PL and energy scales at 1 and 25 GeV2.

In the 2012 analysis by Fagundes and Menon [80,81], the dataset was restricted to

pp scattering above 10 GeV and included only the first TOTEM datum at 7 TeV. In
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order to infer uncertainty regions in the extrapolation to higher energies, two extreme

asymptotic limits have been tested by either fixing A = 1/2 (black-disk limit) or

A = 1 (maximum unitarity). The experimental data have been well described through

variant PL with fixed δ = 2, fixed s0 = 1 GeV2, and only three fit parameters: α, β and

γ (denoted γ1, γ2 and γ3 in Ref. [80]). Through the approximate relation Y ≈ 16πX

(discussed in Section 2.6), it was possible to extend the extrapolation of the uncertainty

regions to the ratio σtot/B, which, in the context of the Glauber model [80], plays

an important role in the determination of the pp total cross-section from proton-air

production cross-section in cosmic-ray experiments.

This empirical analysis was pushed forward in Refs. [48,50], where the energy cutoff

has been extended down to 5 GeV and the dataset included all the TOTEM measure-

ments at 7 and 8 TeV [48] and the ATLAS datum at 7 TeV [50]. Preliminary fits to

only pp data with variant PL, different A values and energy scale fixed in 25 GeV2

(the energy cutoff) led to solutions with the parameter δ consistent with 0.5, within the

uncertainties. Next, the δ parameter was fixed in 0.5 and new fits were developed with

the inclusion of p̄p data, considering, again, fits with either A fixed or A free. All data

reductions presented consistent descriptions of the experimental data analyzed and in

the case of the fit with A free, all fits converged to a unique solution with asymptotic

limit below the black disk, namely A = 0.332 ± 0.049 [50].

4.3.3 The Energy Scale

As discussed in the above section, different energy scales have been considered in

previous works: s0 = 1 GeV2 (which consists in an usual choice in phenomenology) in

Ref. [80,81] and s0 = 25 GeV2 (corresponding to the energy cutoff) in Refs. [48,50]. In

the present work, we will consider a third possibility that has a more physical meaning,

namely the energy threshold for the scattering states

s0 = 4m2
p,

where mp is the proton mass. We will show (Section 4.5.4) that the selected results do

not depend on the aforementioned choices.

Evidently, a more “general” result could be obtained by letting s0 be a free parameter.

However, this would introduce additional non-linearity in the fits that, in turn, would

led to additional correlations between the free parameters which are not easy to control.

For this reason, we decided to consider here only the case of a fixed energy scale.
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4.3.4 Constrained and Unconstrained Fits

For each combination of sigmoid and elementary function [see Eqs. (4.14), (4.15),

(4.16) and (4.17)], two types of fits will be considered: those with A as a fixed parameter

and those whith A as a free parameter. With that in mind, we introduce the following

notation that will be used in the discussion of the fit results.

❼ Constrained fit: consists in the fit in which the parameter A is fixed in one of

the values discussed in Section 4.2, therefore imposing an asymptotic scenario. In

the case of the variant PL there are four free parameters and in the case LL only

three free parameters.

❼ Unconstrained fit: the case in which A is a free parameter. This case has five

free parameters in the variant PL and four free parameters in the LL case.

In any case, these choices of sigmoids and elementary functions represent an economic

number of free parameters. For instance, compare with the individual fits to σtot and

σel, as those in Eqs. (4.5) and (4.6), which demand ten or more parameters for the ratio

X.

4.4 Fit Procedures and Results

4.4.1 Initial Values

The methodology used in the fits in order to select the best fit result, and also how

the uncertainties of the experimental data were taken into account, were discussed in

Chapter 3. Nevertheless, we recall that we use as a test of goodness of fit the reduced

chi-squared (χ2/ν) and the integrated probability P (χ2,ν).

In this section, our focus will be on the initial values used for the free parameters

in the fits. Given the non-linearity of the parametrizations, different initial values have

been tested in order to check the stability of the result. In this respect, we developed

the procedure described below.

For each sigmoid (logistic or tanh) and each variant (PL or LL), Eqs. (4.14) to (4.17),

we first develop the constrained fits (A fixed). In this case we consider the five numerical

values displayed in Section 4.2 as representative of the three scenarios investigated:

❼ above the black disk:

{

A = 1 (maximum unitarity)

A = 0.75 (a possible “formal” result)

❼ the black disk: A = 0.5;

❼ below the black disk:

{

A = 0.436 (from TOTEM/COMPETE, see Sect. 4.2.3)

A = 0.3 (lowest value of Refs. [44–46], see Sect. 4.2.3)
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For each fixed A, different initial values have been tested for the other parameters

(four with PL and three with LL), until convergence and consistent statistical results

have been reached.

In a second step, using the values of the parameters from the constrained fit result

as initial values, we have developed the unconstrained fits, with each A now as a free

parameter too.

As already stated, by fixing A we impose an asymptotic limit and by letting A as a

free fit parameter, we select an asymptotic scenario.

In the next section, we display the fit results beginning with those obtained with the

logistic function and followed by those with the hyperbolic tangent. All these results

will be discussed in Section 4.5.

4.4.2 Fit Results with the Logistic

We first present the constrained and unconstrained fit results with variant PL, fol-

lowed by those with variant LL.

The results and statistical information of each constrained fit with variant PL are

displayed in Table 4.1. The comparison of the corresponding curves with the experimen-

tal data are show in Fig. 4.2(a), where, for clarity, the plotted curves correspond only

to the central values of the free parameters (i.e. without the uncertainty regions).

With these results for the parameters as initial values, including each A value, the

unconstrained fits have been developed. The results are displayed in Table 4.2 and

show that all data reductions have approximately the same goodness of fit and the same

asymptotic central value, namely A = 0.292. Although, in each case, the values of the

parameters α, β, γ and δ may differ, once plotted together all curves corresponding to

the central values of the parameters overlap, see Fig. 4.2(b). In this figure, we display

the corresponding uncertainty region evaluated through error propagation from the fit

parameters (Table 4.2) within one standard deviation. For comparison, we also show the

ratio X(s) obtained through the TOTEM and COMPETE parametrizations, Eqs. (4.5)

and (4.6).

Table 4.1: Fit results with the logistic function, variant PL [Eq. (4.14)] and constrained
case (A fixed), ν = 38 (Fig. 4.2(a)).

A fixed α β γ δ χ2/ν P (χ2,ν)
0.3 125.5(1.5) 0.328(22) -123.7(1.5) 1.56(12)×10−2 0.811 0.790

0.436 169.12(10) 0.1828(72) -168.59(10) 6.62(30)×10−3 0.882 0.677
0.5 211.37(96) 0.1627(63) -211.156(95) 4.74(21)×10−3 0.899 0.647
0.75 69.517(80) 0.1315(51) -70.027(79) 1.148(52)×10−2 0.932 0.589
1.0 82.898(75) 0.1195(46) -83.825(73) 8.78(40)×10−3 0.944 0.568
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Table 4.2: Fit results with the logistic function, variant PL [Eq. (4.14)] and unconstrained
case (A free), ν = 37 (Fig. 4.2(b)).

A initial A free α β γ δ χ2/ν P (χ2,ν)

0.3 0.292(33) 125.6(1.5) 0.35(11) -123.6(1.5) 1.66(51)×10−2 0.831 0.756
0.436 0.292(33) 169.9(1.3) 0.35(11) -167.9(1.3) 1.22(38)×10−2 0.831 0.756
0.5 0.292(33) 212.2(1.2) 0.35(11) -210.2(1.2) 9.8(3.0)×10−3 0.831 0.757
0.75 0.292(32) 70.5(1.9) 0.36(12) -68.5(1.9) 2.98(91)×10−2 0.832 0.755
1.0 0.292(32) 70.5(1.9) 0.36(12) -68.5(1.9) 2.98(91)×10−2 0.832 0.755
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Figure 4.2: Fit results with the logistic function, variant PL [Eq. (4.14)]: (a) con-
strained case (A fixed, Table 4.1); (b) unconstrained case (A free, Table 4.2) with the
corresponding uncertainty region and the result from the TOTEM and COMPETE
parametrizations, Eqs. (4.5) and (4.6). Legend for data given in Figure 4.1.

The same procedure has been developed with the variant LL. In this case we have

only three parameters (A fixed) or four (A free). The constrained fit results are displayed

in Table 4.3 and Figure 4.3(a) and the unconstrained case in Table 4.4. Once more, all

fit results converged to the same solution in statistical grounds and in the values of all

the parameters. The corresponding curve including the uncertainty region is shown in

Figure 4.3(b).

Table 4.3: Fit results with the logistic function, variant LL [Eq. (4.15)] and constrained
case (A fixed), ν = 39 (Fig. 4.3(a)).

A fixed α β γ χ2/ν P (χ2,ν)
0.3 1.90(13) 0.324(22) -1.95(14) 0.789 0.824

0.436 0.534(79) 0.182(10) -1.122(78) 0.858 0.720
0.5 0.221(71) 0.1620(91) -1.005(69) 0.875 0.692
0.75 -0.503(58) 0.1302(71) -0.813(56) 0.907 0.638
1.0 -0.922(53) 0.1186(65) -0.742(51) 0.918 0.617
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Table 4.4: Fit results with the logistic function, variant LL [Eq. (4.15)] and unconstrained
case (A free), ν = 38 (Fig. 4.3(b)).

A initial A free α β γ χ2/ν P (χ2,ν)
0.3 0.293(26) 2.05(59) 0.346(87) -2.07(50) 0.808 0.794

0.436 0.293(26) 2.05(59) 0.346(88) -2.07(50) 0.808 0.794
0.5 0.293(26) 2.05(59) 0.346(88) -2.07(50) 0.808 0.794
0.75 0.293(26) 2.05(59) 0.346(88) -2.07(50) 0.808 0.794
1.0 0.293(26) 2.05(59) 0.346(88) -2.07(50) 0.808 0.794
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Figure 4.3: Fit results with the logistic function, variant LL [Eq. (4.15)]: (a) con-
strained case (A fixed, Table 4.3); (b) unconstrained case (A free, Table 4.4) with the
corresponding uncertainty region and the result from the TOTEM and COMPETE
parametrizations, Eqs. (4.5) and (4.6). Legend for data given in Figure 4.1.

4.4.3 Fit Results with the Hyperbolic Tangent

The same procedures discussed for the logistic function have been applied in the case

of the tanh. The fit results with the variant PL are displayed in Table 4.5 (constrained

case), Table 4.6 (unconstrained case) and Fig. 4.4. In turn, the results with the variant

LL are displayed in Table 4.7 (constrained case), Table 4.8 (unconstrained case), and

Fig. 4.5.

Table 4.5: Fit results with the tanh, variant PL [Eq. (4.16)] and constrained case (A
fixed), ν = 38 (Fig. 4.4(a)).

A fixed α β γ δ χ2/ν P (χ2,ν)

0.3 125.23(24) 0.13243(93) -123.95(24) 6.31(48)×10−3 0.818 0.780
0.436 169.21(13) 0.0588(35) -168.50(13) 2.23(15)×10−3 0.844 0.740
0.5 211.44(10) 0.0477(28) -210.83(10) 1.380(96)×10−3 0.853 0.724
0.75 68.06(14) 0.0283(16) -67.67(14) 2.56(18)×10−3 0.870 0.697
1.0 83.50(10) 0.0204(16) -83.22(10) 1.51(10)×10−3 0.875 0.687
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Table 4.6: Fit results with the tanh, variant PL [Eq. (4.16)] and unconstrained case (A
free), ν = 37 (Fig. 4.4(b)).

A initial A free α β γ δ χ2/ν P (χ2,ν)

0.3 0.31(10) 125.18(43) 0.12(11) -123.99(43) 5.7(4.9)×10−3 0.838 0.746
0.436 0.31(10) 169.45(43) 0.12(11) -168.25(42) 4.2(3.8)×10−3 0.838 0.746
0.5 0.312(49) 211.73(18) 0.118(52) -210.54(17) 3.3(1.4)×10−3 0.837 0.746
0.75 0.31(10) 68.42(48) 0.12(11) -67.23(48) 1.04(0.93)×10−2 0.838 0.745
1.0 0.31(10) 83.92(46) 0.12(11) -82.73(45) 8.5(7.4)×10−3 0.838 0.746
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Figure 4.4: Fit results with the tanh, variant PL [Eq. (4.16)]: (a) constrained case (A
fixed, Table 4.5); (b) unconstrained case (A free, Table 4.6) with the corresponding
uncertainty region and the result from the TOTEM and COMPETE parametrizations,
Eqs. (4.5) and (4.6). Legend for data given in Figure 4.1.

Table 4.7: Fit results with the tanh, variant LL [Eq. (4.17)] and constrained case (A
fixed), ν = 39 (Fig. 4.5(a)).

A fixed α β γ χ2/ν P (χ2,ν)
0.3 1.289(54) 0.1317(90) -0.786(58) 0.796 0.813

0.436 0.718(25) 0.0587(35) -0.358(25) 0.822 0.777
0.5 0.605(20) 0.0476(28) -0.291(20) 0.831 0.763
0.75 0.381(12) 0.0283(16) -0.174(12) 0.847 0.737
1.0 0.2811(89) 0.0204(11) -0.1259(87) 0.853 0.729

4.5 Discussion and Conclusions on the Fit Results

In this section we discuss all the fit results presented in the previous sections in a

comparative way with respect to: constrained/unconstrained fits (Section 4.5.1), logis-
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Table 4.8: Fit results with the tanh, variant LL [Eq. (4.17)] and unconstrained case (A
free), ν = 38 (Fig. 4.5(b)).

A initial A free α β γ χ2/ν P (χ2,ν)
0.3 0.312(35) 1.19(25) 0.117(37) -0.70(21) 0.815 0.783

0.436 0.312(48) 1.19(35) 0.117(51) -0.70(29) 0.815 0.783
0.5 0.312(35) 1.19(25) 0.117(36) -0.70(21) 0.815 0.783
0.75 0.312(35) 1.19(25) 0.117(37) -0.70(21) 0.815 0.783
1.0 0.312(35) 1.19(25) 0.117(37) -0.70(21) 0.815 0.783
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Figure 4.5: Fit results with the tanh, variant LL [Eq. (4.17)]: (a) constrained case (A
fixed, Table 4.7); (b) unconstrained case (A free, Table 4.8) with the corresponding
uncertainty region and the result from the TOTEM and COMPETE parametrizations,
Eqs. (4.5) and (4.6). Legend for data given in Figure 4.1.

tic/tanh (Section 4.5.2) and variants PL/LL (Section 4.5.3). At last, we present our

final conclusions on the fit results (Section 4.5.4).

4.5.1 Constrained and Unconstrained Fits

In the case of constrained fits (A fixed), the values of the parameters, statistical

information and curves are presented in Table 4.1, Fig. 4.2(a) (logistic - PL), Table 4.3,

Fig. 4.3(a) (logistic - LL), Table 4.5, Fig. 4.4(a) (tanh - PL) and Table 4.7, Fig. 4.5(a)

(tanh - LL). For clarity, we decided to not show the uncertainty regions of the constrained

fits, therefore the curves in the figures correspond to the central values of the parameters.

However, error propagation from the fit parameters lead to typical uncertainty regions

as those displayed in part (b) of each figure.

From the Tables, for ν = 38 or 39, the values of the χ2/ν lie in a typical interval

0.79 - 0.94 and those of the P (χ2, ν) in the corresponding interval 0.82 - 0.57, indicating,

therefore, statistically consistent fit results in all investigated cases. We also note that
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the corresponding curves are consistent with all the experimental data analysed (mainly

within the uncertainty regions, not shown in the figures).

In the case of unconstrained fits (A free), the value of the parameters, statistical

information and curves are presented in Table 4.2, Fig. 4.2(b) (logistic - PL), Table 4.4,

Fig. 4.3(b) (logistic - LL), Table 4.6, Fig. 4.4(b) (tanh - PL), Table 4.8, Fig. 4.5(b)

(tanh - LL).

Here we note that all fit results converged to practically the same solution, especially

in what concerns the asymptotic limit. These values are summarized in Table 4.9. Small

differences in the value of the other fit parameters are discussed in what follows.

Table 4.9: Summary of the asymptotic limits obtained in the unconstrained fits (A free)
with the logistic, tanh, variants PL, LL and the corresponding ν and χ2/ν. The values
of ν and χ2/ν are also shown in the case of the black disk (A = 0.5).

sigmoid: logistic tanh

variant: PL LL PL LL
A free 0.292(33) 0.293(26) 0.31(10) 0.312(48)
ν 37 38 37 38

χ2/ν 0.832 0.808 0.838 0.815
A fixed 0.5 0.5 0.5 0.5

ν 38 39 38 39
χ2/ν 0.899 0.875 0.853 0.831

4.5.2 Sigmoid Functions: Logistic and Hyperbolic Tangent

First, let us compare the constrained results in part (a) of Figs. 4.2 and 4.3 (logistic)

with those in part (a) of Figs. 4.4 and 4.5 (tanh). We note that, above the experimental

data, the rise of X(s) with the logistic function is faster than with the tanh one, and

the differences increase as A increases (from 0.3 up to 1.0). For example, in the case

of A = 1 (fixed), at
√
s = 107 GeV, X ≈ 0.55 with the logistic and X ≈ 0.45 with the

tanh in both variants, PL and LL.

On the other hand, in the unconstrained cases (part (b) of the same figures), these

differences are negligible, even in the asymptotic region. The small differences in the

central values of A (namely ≈ 0.29 for the logistic and ≈ 0.31 for the tanh) are also

negligible within the uncertainties in these parameters (Table 4.9).

4.5.3 Variants PL and LL

In the constrained fits, the values of the free parameters differ substantially with

variants PL and LL, in both cases: logistic (Tables 4.1 and 4.3) and tanh (Tables 4.5

and 4.7). Despite these differences, once plotted together, all curves overlap, as can be
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seen in parts (a) of Fig. 4.2 (PL) and Fig. 4.3 (LL) for the logistic and parts (a) of Fig.

4.4 (PL) and Fig. 4.5 (LL) for the tanh.

In the unconstrained case and variant PL (Table 4.2 for the logistic and Table 4.6 for

the tanh) all results lead to practically the same asymptotic values, namely A = 0.292

(logistic) and A = 0.31 (tanh), with some differences in the central values of the other

parameters. On the other hand, with variant LL the central values of the parameters

are all equal up to three figures with the two sigmoid functions considered (see Table 4.4

for the logistic and Table 4.8 for tanh). In each case, the goodness of fit presents this

same feature.

4.5.4 Conclusions on the Fit Results

Concerning constrained fits, given the relative large uncertainties in the experimental

data and the small differences in the values of χ2/ν and P (χ2, ν) for ν = 38 - 39,

we understand that all the fit results are statistically consistent with the dataset and

equally probable on statistical grounds, even in the extreme cases of A = 0.3 and A

= 1. In other words, despite the large differences in the extrapolated results (at the

highest and asymptotic energy regions), the constrained fits do not allow us to select an

asymptotic scenario. That leads to an important consequence: although consistent with

the experimental data, the black disk does not represent an unique or definite solution.

With regard to unconstrained fits, independently of the sigmoid function (logistic

or tanh) and variant (PL or LL), the data reductions lead to unique solutions within

the uncertainties, indicating a scenario below the black disk, with central value of A

around 0.29 (logistic) and around 0.31 (tanh), as summarized in Table 4.9. Given the

convergent character of these solutions, we consider the unconstrained fits as the preferred

results of this analysis. In other words, we understand that the data reductions favor a

semi-transparent (or grey) scenario.

As discussed in Section 4.3, we have chosen for this analysis two classes of sigmoid

functions and with two elementary functions based on their applicability in describing

soft processes. In the end, we have four empirical parametrizations formed by the

combination of the sigmoid and elementary functions. As can be seen in Table 4.9, we

have small differences among the four asymptotic results (value of A parameter). These

differences may be associated with a kind of “uncertainty” in the choices of S(f) and

f(s). In this sense, once constituting independent results, we can infer a global (g)

asymptotic value by considering the arithmetic mean and adding the uncertainties in

quadrature (Table 4.9):

Ag = 0.30 ± 0.12. (4.18)

It is important to notice that this result is consistent, within the uncertainties, with
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previous analyses using the tanh, δ = 0.5 (fixed) and energy scale at 25 GeV2 (the

energy cutoff), namely A = 0.36(8) in [48] and A = 0.332(49) in [50]. This suggests

that the convergent result does not depend on the energy scale. Moreover, within the

uncertainties, the above value is in plenty agreement with the limits obtained through

individual fits to σtot and σel data, using different variants and procedures (see Fig. 10

in Ref. [46]).

Concerning the variants PL and LL, given the goodness of fits, the same central

values of the parameters up to three figures and the smaller number of free parameters,

we select the variant LL as our representative result. From Table 4.9, we can also infer

another mean value now restricted (r) to variant LL and the two sigmoid functions:

Ar = 0.303 ± 0.055. (4.19)

Within the uncertainties, this result is also in plenty agreement with the aforementioned

analyses. In what follows we shall focus our discussion on predictions and extension to

other quantities, to this particular variant.

4.5.5 Selected Results and Scenarios

In the previous section, we have selected the LL variant as our representative result

and the grey-disk scenario as the favored one by the unconstrained fits (A free). On

the other hand, the black-disk case is also consistent with the experimental data ana-

lyzed (constrained case, A = 0.5 fixed). Given the importance of this scenario in the

phenomenological context, we will also consider it in the discussions below.

The comparison between grey and black-disk results together with the uncertainty

region for the LL variant is shown in Fig. 4.6.

Numerical predictions at some energies of interest for X(s) are shown in the third

column of Table 4.10 for the logistic (A = 0.293 and A = 0.5) and Table 4.11 for tanh

(A = 0.312 and A = 0.5).

It is interesting to note that, from Fig. 4.6, in the case of A free, the extrapolations

are consistent with our asymptotic value 0.303 ± 0.055 for energies above 103 TeV. This

suggests that the asymptotic region might already be reached around 103 TeV. On the

other hand, for the black disk case, the asymptotia is predicted to energies far beyond

1010 TeV.

Of interest to Run 2 of LHC, we display in Fig. 4.7 our predictions to X at 13

TeV. Although the error bars will not allow the selection between the two scenarios

when the data become available, the experimental value at this energy may indicate

some preference for one of them. In any case, this new data will be useful for a better

determination of the curvature of the parametrization and, consequently, to a better
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Figure 4.6: Selected fit results for X(s) with variant LL [Eq. (4.15)], A free (grey), A
fixed (black) and sigmoid: (a) logistic; (b) tanh.

Table 4.10: Predictions for different ratios at the LHC energy region and beyond, with
the logistic, variant LL, A = 0.293 (grey) and A = 0.5 (black).

A
√
s (TeV) σel/σtot σinel/σtot σdiff/σtot σtot/B

2.76 0.2408(37) 0.7592(37) 0.2592(37) 12.11(19)
8 0.2575(49) 0.7425(49) 0.2425(49) 12.94(25)

0.293 13 0.2637(65) 0.7363(65) 0.2363(65) 13.26(33)
57 0.278(13) 0.722(13) 0.222(13) 13.95(64)
95 0.281(15) 0.719(15) 0.219(15) 14.11(74)
2.76 0.2366(32) 0.7634(32) 0.2634(32) 11.89(16)
8 0.2625(44) 0.7375(44) 0.2375(44) 13.20(22)

0.5 13 0.2750(49) 0.7250(49) 0.2250(49) 13.82(25)
57 0.3141(64) 0.6859(64) 0.1859(64) 15.79(32)
95 0.3276(69) 0.6724(69) 0.1724(69) 16.46(34)

estimation of the uncertainties in the free parameters.

4.6 Extension to Other Quantities

With the selected results, let us present extensions and predictions to some other

quantities of interest, that did not take part in the data reductions.

4.6.1 Inelastic Channel: Ratios and Diffractive Dissociation

The ratio between the inelastic and total cross-section is directly obtained via uni-

tarity: 1 - X(s). The results are displayed in Fig. 4.8, together with the uncertainty

regions and the experimental data available. As expected, all cases present consistent
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Table 4.11: Predictions for different ratios at the LHC energy region and beyond, with
the tanh, variant LL, A = 0.312 (grey) and A = 0.5 (black).

A
√
s (TeV) σel/σtot σinel/σtot σdiff/σtot σtot/B

2.76 0.2404(36) 0.7596(36) 0.2596(36) 12.08(18)
8 0.2577(46) 0.7423(46) 0.2423(46) 12.95(23)

0.312 13 0.2647(58) 0.7353(58) 0.2353(58) 13.30(29)
57 0.282(11) 0.718(11) 0.218(11) 14.16(57)
95 0.286(13) 0.714(13) 0.214(13) 14.39(67)
2.76 0.2381(33) 0.7619(33) 0.2619(33) 11.97(17)
8 0.2612(42) 0.7388(42) 0.2388(42) 13.13(21)

0.5 13 0.2719(46) 0.7281(46) 0.2281(46) 13.66(23)
57 0.3038(57) 0.6962(57) 0.1962(57) 15.27(28)
95 0.3145(60) 0.6855(60) 0.1855(60) 15.81(30)

tot
σ /

el
σ

0.26 0.27 0.28 0.29

A = 0.293

A = 0.5

A = 0.312

A = 0.5

Figure 4.7: Predictions for the ratio X at 13 TeV, with variant LL, grey (A free) and
black (A = 0.5) scenarios and sigmoids logistic (circles) and tanh (squares).

descriptions of the experimental data. Numerical predictions at the energies of interest

for the ratio σinel/σtot are shown in the fourth column of Table 4.10 with logistic (A =

0.293 and A = 0.5) and Table 4.11 with tanh (A = 0.312 and A = 0.5).

In what concerns the asymptotic limit,

lim
s→∞

σinel
σtot

= 1 − A,

contrasting with the black disk (1/2), our global (g) and restricted (r) estimations,

Eqs. (4.18) and (4.19), predict

1 − Ag = 0.70 ± 0.12 and 1 − Ar = 0.697 ± 0.055.

Beyond elastic scattering, the soft inelastic diffractive processes (single and double

dissociation) play a fundamental role in the investigation of hadronic interactions. An



Chapter 4. Empirical Studies on σel/σtot 60

 (GeV)s
10

210
3

10 410
5

10
6

10 710
8

10

to
t

σ
 /

 
in

e
l

σ

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A = 0.5

A = 0.293

(a)

 (GeV)s
10

210
3

10 410
5

10
6

10 710
8

10

to
t

σ
 /

 
in

e
l

σ

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A = 0.5

A = 0.312

(b)

Figure 4.8: Predictions, via unitarity, for the ratio between the inelastic and total cross
sections, with variant LL [Eq. (4.15)], A free (grey), A fixed (black) and sigmoids: (a)
logistic; (b) tanh.

important formal result on the diffraction dissociation cross-section concerns the Pumplin

upper bound [82,83]:
σel
σtot

+
σdiff
σtot

≤ 1

2
, (4.20)

where σdiff stands for the soft inelastic diffractive cross section (the sum of the single and

double dissociation cross sections, see Eq. (2.28)). In this context, the black disk limit

(1/2) may be associated with a combination of the soft processes (elastic + diffractive),

giving room to a semi-transparent scenario.

In this respect, Lipari and Lusignoli have discussed the possibility that the Pumplin

bound may be already saturated in the LHC energies [84]. The argument is based on a

combination of the measurements by the TOTEM and ALICE Collaborations at 7 TeV,

which indicates

σdiff
σtot

≈ 0.24+0.05
−0.06,

σel + σdiff
σtot

= 0.495+0.05
−0.06,

σdiff
σel

= 0.952+0.20
−0.24,

suggesting therefore that the Pumplin bound is close to saturation.

In case of saturation, namely the equality in Eq. (4.20), it is possible to estimate

the ratio σdiff/σtot at the LHC energies and beyond. The numerical predictions for this

ratio are shown in the fifth column of Table 4.10 (logistic, A = 0.293 and A = 0.5)

and Table 4.11 (tanh, A = 0.312 and A = 0.5). Obviously, the asymptotic value of

this ratio is zero in the case of a black disk scenario strictly associated with the elastic

channel.

Moreover, using the Pumplin bound and Unitarity, we can also infer an upper bound
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for the ratio σdiff/σinel, namely

R(s) ≡ σdiff
σinel

≤ 1/2 −X(s)

1 −X(s)
.

The curves corresponding to this bound in all cases treated in this Section are shown

in Fig. 4.9, together with experimental data from pp [85–87] and p̄p [88–92] scattering.

Once more, contrasting with the asymptotic null limit in a black disk scenario, our global

and reduced estimations (Ag and Ar), lead to the predictions:

Rg = 0.29 ± 0.12 and Rr = 0.283 ± 0.055 for s→ ∞.
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Figure 4.9: Upper bounds for the ratio between the dissociative (single plus double) and
inelastic cross sections from the selected results for the grey and black scenarios (logistic
and tanh). Experimental information from pp scattering at 0.9, 2.76 and 7 TeV (black
marks) [85–87] and p̄p scattering at 0.2, 0.9 and 1.8 TeV (white marks) [88–92].

4.6.2 Ratio Y Associated with Total Cross-Section and Elastic

Slope

In cosmic-ray studies, the determination of the pp total cross-section from the proton-

air production cross-section is based on the Glauber formalism [53–55]. In this context,

the nucleon-nucleon impact parameter amplitude (profile function) constitutes an impor-

tant ingredient for the connection between hadron-hadron and hadron-nucleus scattering.
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The profile function is typically parametrized by

aj(s,~bj) =
[1 + ρ(s)]

4π

σtot(s)

B(s)
e−

~b2j/[2B(s)], (4.21)

where ρ, σtot and B demand inputs from models to complete the connection. However,

models have been tested only in the accelerator energy region and in general are char-

acterized by different physical pictures and different predictions at higher energies. As

a consequence, the extrapolations result in large theoretical uncertainties, as clearly

illustrated by Ulrich et al. [53]. From the above equation, any extrapolation is strongly

dependent on the ratio σtot/B, namely the unknown correlation between σtot and B in

terms of energy.

One way to overcome this difficulty is to estimate the ratio

Y (s) =
σtot
B

(s) (4.22)

through its approximate relation with the ratio X(s), treated in Section 2.6,

Y (s) ≈ 16πX(s). (4.23)

The behavior of Y (s) extracted in this way and in all cases treated in this Section are

shown in Fig. 4.10; the corresponding numerical predictions at the energies of interest

are displayed in the sixth column of Table 4.10 (logistic, A = 0.293 and A = 0.5) and

Table 4.11 (tanh, A = 0.312 and A = 0.5).
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Figure 4.10: Predictions for the ratio between the total cross sections and the elastic
slope, with variant LL, [Eq. (4.15)], A free (grey), A fixed (black) and sigmoid: (a)
logistic; (b) tanh.
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4.7 On Physical Interpretations

In this section, we discuss some possible physical concepts related to the results

obtained with the sigmoid ansatz. Our discussion is focused on the choices for the

sigmoid and elementary functions rather than a specific asymptotic scenario.

We treat two aspects: (1) the possible connection of X(s) with the contribution

of effective partonic interactions through the opacity concept; (2) the relation of this

process with a saturation effect associated to a change of curvature in X(s).

Sigmoid functions [78, 79] have great applicability in several topics of technology

and exact sciences, but not restrict to these areas. They are also applied in biological,

humanities and social sciences problems, for instance language change, diffusion of an

innovation and many others [93–95]. Of interest in high-energy physics, application

in unitarization schemes (eikonal/U -matrix have been considered by Cudell, Predazzi,

Selyugin [96,97] and also application related to polarized gluon density has been recently

discussed by Bourrely [98]).

In general, these sigmoid functions are associated with the Pearl-Verhulst logistic

processes, in which the growth of a population is bounded and proportional to its size,

as well as, to the difference between the size and its bound, resulting in the logistic

differential equation [93,94]
dN

dt
= rN

[

1 − N

M

]

, (4.24)

where N = N(t) is the population at a time t, M is its maximum value and r > 0 is

the intrinsic rate of growth. The equation has variable coefficients if r = r(t) and/or

M = M(t) [95].

In our case, the logistic ansatz for S(f), Eq. (4.9), is a trivial solution of the differential

equation
dS

df
= S [1 − S] . (4.25)

In terms of the ratio X, Eq. (4.7), and variable v ≡ ln s/s0 this differential equation

reads
dX

dv
=
df

dv
X

[

1 − X

A

]

, (4.26)

corresponding to a logistic equation with variable coefficient df/dv.

Therefore, the evolution of the ratio X with energy may be associated with a Pearl-

Verhulst logistic process. Now, in case of the elastic scattering and in what concerns

a corresponding “population growth”, it seems reasonable to think in terms of an

effective number of partonic interactions taking part in the collision process, as the

energy increases. In this respect we have the comments that follows.

In the phenomenological context, the QCD inspired models are, generally, based

on the concepts of semi-hard QCD or mini-jet models [99–107]. These models are
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constructed with the separation of soft and semi-hard contributions to the scattering

amplitude. The soft ones are treated on phenomenological grounds and the semi-hard

ones are determined with the parton model, probabilistic arguments, and perturbative

QCD calculations.

In terms of the opacity function (Ω) introduced in Section 2.4, the probability that

an inelastic event takes place at b and s is given by

Ginel(s,b) = 1 − e−2Ω. (4.27)

Now, denoting the probability that there are no soft (semi-hard) inelastic interaction

by P̄S (P̄SH), we can associate

Ginel(s,b) = 1 − P̄SP̄SH = 1 − e−2ΩSe−2ΩSH , (4.28)

so that the total opacity reads

Ω(s,b) = ΩS(s,b) + ΩSH(s,b). (4.29)

Now let us focus on the semi-hard opacity, which is constructed under probabilistic

arguments and the QCD parton model. Let n(s,b) be the average number of parton-

parton collisions at s and b, which is associated with the probability of semi-hard inelastic

scattering. Assuming that the parton-parton collisions are independent and that the

probability that n parton-parton collisions occur follows the Poisson distribution, the

probability that hadrons do not undergo semi-hard scattering can be expressed by

P̄SH = e−n(s,b).

Comparing with PSH = e−2ΩSH , we conclude that the semi-hard opacity reads

ΩSH(s,b) =
1

2
n(s,b). (4.30)

In the theoretical context, n(s,b) is expressed in terms of parton-parton cross section

and hadronic matter distribution, which is related to form factors in the q2-space (see,

for example, [108] for a recent version).

The key point here is the fact that the average number of partonic interactions is

clearly connected with the opacity and the profile functions and, consequently, with the

ratioX(s) (at least in what concerns the central opacity in grey disk and Gaussian profiles,

as discussed in Chapter 2). Therefore, this result corroborates the logistic interpretation

of Eq. (4.26) as associated with an effective number of partonic interactions taking part

in the collision process.
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Going one step further, we note that in this context, the change of curvature presented

by the sigmoid functions suggests a change in the rate of effective partonic interactions,

namely a fast rise at low energies is followed by a saturation effect starting at the

inflection point, which represents a change in the dynamics of the interaction. In order

to look for a quantitative connection, we have the comments that follows.

On the one hand, these inflection points (energies
√
sip at which the change of

curvature takes place) in terms of the asymptotic ratio A for all cases investigated are

displayed in Table 4.12. We see that despite the different values of A, the position of

the inflection point lies in a rather restrict interval:
√
sip ≈ 80 − 100 GeV.

Table 4.12: Inflection points: roots of the second derivative of X(
√
s) in GeV for each

fit developed.

logistic tanh

A PL LL PL LL
free 81.6 81.2 80.1 80.0
0.3 82.9 82.4 78.7 78.5

0.436 92.2 92.0 86.7 86.6
0.5 93.7 93.5 87.8 87.8
0.75 96.5 96.1 89.7 89.6
1.0 97.4 97.1 90.3 90.2

On the other hand, concerning this energy region, the UA1 Collaboration have

reported the measurement of low transverse energy clusters (mini-jets) in p̄p collisions at

the CERN Collider for
√
s: 200 - 900 GeV [109]. Extrapolation of the observed mini-jet

cross-section to lower energy (see Fig. 4.11) suggests that the region 80 - 100 GeV is

consistent with the beginning of the mini-jet production.

Now, the rise of the mini-jet cross-section has been associated with the observed faster

rise of the inelastic and, consequently the total cross-section [109] (see also references

there in). Therefore, once X = σel/σtot, it seems reasonable to associate this behavior

with a change of curvature in X and the beginning of a saturation effect.

Although suggestive, we stress that the above arguments are certainly limited as

effective physical interpretations of our analysis and results. However, we hope they

may be useful for further investigations.

4.8 On a Semi-Transparent Asymptotic Scenario

From the discussion in Section 4.5, our analysis favors the global result Ag = 0.30 ±
0.12 which means a scenario below the black disk.

This type of semi-transparent or grey scenario has already been suggested in the

past. For instance, in the mid-seventies, Fia lkowski and Miettinen suggested a semi-
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Figure 4.11: Minijet cross-section (σjet) from p̄p scattering measured by UA1 Collabora-
tion. Figure taken from Ref. [109].

transparent scenario in the context of a multi-channel approach [110]. Based on the

Pumplin bound, Sukhatme and Henyey [111] have also conjectured this scenario.

More recently, different authors have discussed this possibility, as pointed out below.

1. Lipari and Lusignoli [112] and Achilli et al. [113] have discussed the observed

overestimation of σel (or underestimation of σinel) in the context of one channel

eikonal models. That led Grau et al. [67] to re-interpret the Pumplin upper bound

as an effective asymptotic limit,

σel
σtot

+
σdiff
σtot

→ 1

2
as s→ ∞.

Based on the behavior of the experimental data of X(s) and a combination of the

results at 57 TeV by the Auger Collaboration together with the predictions by

Block and Halzen, Grau et al. have conjectured a rational limit 1/3 as a possible

asymptotic value for the ratio σel/σtot [67].

2. In the QCD-motivated model by Kohara, Ferreira and Kodama [114–117], the

scattering amplitude is constructed under both perturbative and non-perturbative

QCD arguments (related to extensions of the Stochastic Vacuum Model). The
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model leads to consistent descriptions of the experimental data on p̄p and pp elastic

scattering (forward quantities and differential cross sections) at energies above 20

GeV, including the LHC and with extensions to the cosmic-ray energy region. The

predictions for the asymptotic ratio X lie below 1/2 and are close to 1/3.

3. As already mentioned, the combination of the parametrizations by the COMPETE

(σtot) and TOTEM (σel) Collaborations indicates the asymptotic value A = 0.436.

Moreover, combination of the ATLAS parametrization (σel) [16] with that by

COMPETE reads A = 0.456. Both, therefore, below the black disk.

4. We stress that through a completely different approach, several individual and

simultaneous fits to σtot and ρ data, extended to fit the σel data [44–46], have

led to asymptotic ratios in plenty agreement with our inferred global limit Ag =

0.30 ± 0.12.

5. At last, we notice that more recent phenomenological analysis (2017) have also

pointed to a grey scenario, as discussed by Roy [118], Dremin [119] and Ko-

hara [120].

All the facts above corroborate the results and conclusions presented here, indicating

the semi-transparent limit as a possible asymptotic scenario for hadronic interactions.

4.9 Summary and Conclusions

We have presented a study on the asymptotic scenario of hadronic scattering through

an empirical analysis of the energy dependence of the ratio X = σel/σtot. Our study is

based on the choice of four analytical parametrizations written as a composite function

of sigmoid (S) and elementary functions of the energy (f(s)). The sigmoid functions

considered are the logistic and the hyperbolic tangent and the two elementary functions

are written in the variable ln s and consist in a linear term plus a power law (PL) or a

logarithmic law (LL). Another important ingredient is the asymptotic value A of the

ratio X, so that our parametrization is written as X(s) = AS(f(s)). Two types of fits

to pp and p̄p data were considered: one where A is fixed at some determined values

(constrained fits) and another one with A as a free parameter (unconstrained fits).

In the constrained fits, we covered all the range allowed for A by unitarity, with

representative values chosen from other empirical, theoretical and phenomenological

studies. The lowest value was 0.3 (based on results of Refs. [44–46]) and the highest

was 1 (the maximum value allowed by unitarity), passing through the black-disk (0.5)

scenario. All fits converged to statistically consistent solutions with good description of

the experimental data analysed (including data at LHC energies) and equivalent results
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on statistical grounds. As a consequence, this result indicates that the black-disk does

not constitute a unique or exclusive solution.

On the other hand, in the unconstrained variant, all fits converged to values com-

patible with a semi-transparent scenario, i.e. A < 0.5. A global average value of A

(considering all parametrizations) is Ag = 0.30 ± 0.12. Based on the number of free

parameters, we chose the LL variants as the preferable results. In this case, the average

value of A reads Ar = 0.303 ± 0.055 (restricted to LL variant).

In what concerns our empirical parametrizations, it seems important to stress their

efficiency in describing the experimental data analyzed, independently of the fixed

physical value of A. An important feature of our parametrizations is the small number

of free parameters. For example, the constrained black-disk fit with the variant LL

demands only three fit parameters and led to consistent description of all data. We

stress, once more, the contrast with ten or more parameters typical of individual fits to

σtot and σel data. All these features indicate the good quality of our analytical choices

for S(f) and f(s), on empirical and phenomenological grounds. Moreover, the simple

relations among X and other ratios, specially σtot/B, allow us to predict and extrapolate

quantities in a large range of energy.

We recall that sigmoid functions are characterized by having a change of curvature

at some point, which could indicate a change of dynamics. We have determined the

energy range at which this change of curvature occurs and, interesting enough, we found

energies close to the region where the mini-jet cross section starts to rise. Specifically,

all inflection points determined are in the energy range 80 - 100 GeV and the value

increases as the value of A increases.

Given the empirical efficiency of these analytical representations for X(s), we have at-

tempted to look for possible physical connections with the underline theory/phenomenology

of soft strong interactions. Presently, we can only devise some suggestive ideas relating a

“population growth”, represented by the logistic differential equation, with the number

of effective parton interactions taking part in the collision, which can be connected

to mini-jet and semi-hard QCD models. Despite suggestive, this conjecture is rather

limited on physical grounds and must be investigated in more detail.

At last, it is interesting to note that, when comparing the grey disk scenario from the

unconstrained fit (A free) and the black-disk scenario (A = 0.5 fixed), we see that they

differ in the energy at which the asymptotic region may be reached. For the grey-disk

case, asymptotia may already be reached around 103 TeV, and in case of the black disk,

only far beyond 1010 TeV.
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Chapter 5

Phenomenological Studies on the Rise of the

Total Cross-Section and the LHC Data

5.1 Introduction

This chapter is devoted to a phenomenological analysis on the problem of the rise

of hadronic cross section. It is based on the research presented in Refs. [47, 121]. As

discussed in Chapter 1, we do not have a full description for the energy dependence of

σtot from first principles of QCD, since this quantity is related to the elastic scattering

amplitude in the forward direction through the optical theorem [18]

σtot(s) =
ImF (s,t = 0)

s
(5.1)

and in the soft regime (limit of high energies and small momentum transfer) we cannot

apply perturbative techniques to calculate the amplitude. On the other hand, nonper-

turbative results are only available in the asymptotic limit [2], which is the topic of

Chapter 6.

In the last decades, among several phenomenological models (see, for instance, the

reviews [71, 122–124]), the Regge-Gribov formalism [18, 125, 126], a pre-QCD theory

to treat hadronic scattering, has shown to be useful in describing the main features

presented by the experimental data: the decrease of σtot until approximately 20 GeV

and the rise as the energy increases. Within the Regge-Gribov notation, the first regime

is described by the exchange of Reggeons, and the latter one by the exchange of the ad

hoc object called Pomeron. Although useful, the connection between these objects and

the QCD description in the soft regime is not clear [126].

Usually, the models are based on general results from axiomatic field theory and are

derived by using general concepts like analyticity and unitarity. The Froissart-Lukaszuk-

Martin (FLM) bound [22–25], already presented in Section 2.7, is an important example



Chapter 5. Phenomenological Studies on the Rise of the σtot and the LHC Data 70

of these results. It reads

σtot(s) < c ln2(s/s0) (s→ ∞) (5.2)

where s0 is an unspecified energy scale and the pre-factor on the right-hand side is

bounded by

c ≤ π

m2
π

≈ 60 mb, (5.3)

where mπ is the pion mass. We call to the attention that this bound is derived in the

limit of asymptotic energies (s→ ∞).

Still in the context of Regge-Gribov, the COMPETE Collaboration has performed

a complete and comprehensive study [32,127] of possible parametrizations of the total

cross section, testing several properties like factorization, universality of the leading

term, among others. By means of fits to experimental data of several reactions involving

hadrons and with a rank procedure, the highest-rank result has as its leading term the

ln2 s dependence, therefore in accordance with the FLM bound.

A similar analysis with the COMPETE highest-rank result is still performed by the

COMPAS Group (IHEP, Protvino) and published in the Review of Particle Physics

(RPP) edited by the Particle Data Group (PDG) every two-years [33, 36, 128,129].

In this chapter, we are interested in performing a forward-amplitude analyses. This

approach consists in analytic parametrizations for the total cross section, connected with

the ratio ρ between the real and imaginary parts of the forward amplitude,

ρ(s) =
ReF (s,t = 0)

ImF (s,t = 0)
, (5.4)

by means of analytic or numerical methods and simultaneous fits to the experimental

data available on these two quantities. For examples, see Refs. [32, 127,130–139].

Specifically, we will consider two types of leading terms: the ln2 s and the parametriza-

tion proposed by Amaldi et al. [130], namely lnγ s, where γ is a real free fit parameter.

Fits to experimental data performed by several authors with different datasets (in-

cluding recent studies with LHC data) point to a possible rise faster than ln2 s, i.e.

γ > 2 [44–46,130–132,140]. As already commented in Section 2.7, Azimov [27–29] has

argued that there is a possibility of a faster rise than ln2 s, without violating unitarity.

Moreover, as recalled above, the FLM upper bound is an asymptotic result (s → ∞)

and presently we investigate data up to ∼ 10 TeV.

We also compare two possible analytic methods to connect the real and imaginary

parts of the forward elastic amplitude (and consequently σtot and ρ): the Derivative

Dispersion Relations (DDR) and the Asymptotic Uniqueness (AU), which is based on

the Phragmén-Lindelöff theorems. The main point is to confront the DDR and AU
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methods with focus on the leading lnγ s contribution (γ real), as well as to stress the

importance of this component in the empirical and phenomenological contexts.

At last, we mention that all data on σtot and ρ obtained at the LHC by TOTEM

and ATLAS Collaborations at 7 and 8 TeV are included in the dataset. Moreover, we

take account of the tension observed in the measurements of σtot at 8 TeV by TOTEM

and ATLAS [17].

The chapter is organized as follows. In Section 5.2 we present a short review of results

from the Regge-Gribov formalism that are of interest here, including also some COM-

PETE and PDG results, as well as results obtained with the Amaldi et al. parametriza-

tion. In Section 5.3 we discuss the two methods employed in the analytical connection

between the real and imaginary parts of the amplitude and we derive the formulas from

which we will construct our parametrizations. The parametrizations (also called here

as Models) and their notation are defined in Section 5.4. Some critical comments on

experimental data presently available are presented in Section 5.5 and the fit results in

Section 5.6. In Section 5.7 we discuss and compare all the results obtained. Finally, a

summary and our conclusions are presented in Section 5.8.

5.2 Regge-Gribov Formalism

The Regge-Gribov formalism is based on the analytical continuation of the partial

wave expansion of the elastic scattering amplitude to complex angular momentum. This

process results in the so-called Watson-Sommerfeld transform. The main results of this

approach are usually used as parametrization to describe the energy dependence of the

total cross section.

This approach was first formulated by T. Regge at the end of 1950s, therefore before

the birth of QCD, for non-relativistic Quantum Mechanics. Later, in the 1960s, this

approach was generalized by V. Gribov, Chew and Frautschi and other authors to the

relativistic case.

In this Section, we present the main results that are of interest in this work. We refer

to classical texts, like Collins’ book [125], Svensson’s lectures [141] and also more recent

reviews by Barone and Predazzi [18] and Donnachie et al. [126] for further details. We

also discuss results that were obtained by other authors using parametrizations inspired

by Regge-Gribov results.

5.2.1 Main Results

While performing the analytical continuation to complex angular momentum ℓ values,

we assume the presence of simple poles in the plane, which we will denote by α(t). In

this framework, the elastic scattering amplitude in the asymptotic limit is expressed
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by [18,125]

F (s,t) =
∑

i

βi(t)ξi(t)s
αi(t), (5.5)

where the sum runs over all poles in the ℓ-plane, βi(t) is called the residue function

(strength) and ξi(t) the signature factor, given by

ξi(t) = −1 + ζie
−iπαi(t)

sin παi(t)
, (5.6)

with ζ = +1 or ζ = −1 for analytic continuations through even or odd integer values of

the angular momenta, respectively.

The poles α(t) are also called Regge trajectories or Reggeons and correspond to

objects that are exchanged in the t-channel between the interacting particles. Contrary

to electromagnetic interactions where an elementary particle is exchanged, the Reggeon

corresponds to a family of particles that may be exchanged, which have in common the

quantum numbers of the interaction. Chew and Frautschi realized [142, 143] that by

grouping mesons or baryons that have in common the same quantum numbers (except

spin) into families and ploting their spin as a function of their masses, a regularity can

be found. This plot, called Chew-Frautschi diagram, gives us the t-dependence of the

Regge trajectories, and they have approximately a linear dependence

α(t) = α(0) − α′t, (5.7)

where α(0) and α′ are the intercept and the slope of the Reggeon, respectively.

In Fig. 5.11, we show the Chew-Frautschi plot for the mesonic families a2/f2 (+) and

ρ/ω (−).

In what concerns the study of forward quantities like σtot, this linear dependence is

enough to describe the data. The non-linearity of the Regge trajectory is associated

with structures in the differential cross section at small |t| [35]. From the experimental

point of view, this structure has negligible effects on the total cross section [34].

One can show [18] that in the t-channel, where t > 0, the simple pole contribution

to the amplitude, namely
1

ℓ− α(t)
,

has the form of the Breit-Wigner amplitude for resonances when t equals the squared

mass of a particle lying on the Regge trajectory.

Next, we present the full contribution of a Reggeon to the elastic scattering amplitude

and discuss some particular cases.

1Reproduced with permission from Pomeron Physics and QCD by Sandy Donnachie, Guenter Dosch,
Peter Landshoff and Otto Nachtmann (Cambridge University Press, 2002).
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Figure 5.1: Chew-Frautschi plot for mesonic families a2/f2 and ρ/ω and the correspond-
ing trajectory α(t). Figure taken from Ref. [126].

5.2.2 Simple Pole Contributions to the Amplitude

In this section, we discuss in more detail the results from the Regge-Gribov formalism

and their connections with experimental data. Besides the Reggeon concept, we discuss

the Pomeron, a special Reggeon that was introduced to describe the rise of the total

cross section.

Reggeon Contribution

Let us consider the contribution of a single Reggeon exchange in Eq. (5.5) [18, 125]

F (s,t) = β(t)ξ(t)sα(t).

Recalling that the Reggeon can have an even (+) or odd (−) signature and writing

explicitly the signature factor, Eq. (5.6), for each case, we have

ξ+(t) = − cot
π

2
α(t) + i, (5.8)

ξ−(t) = − tan
π

2
α(t) − i, (5.9)

so that the forward (t = 0) complex even and odd amplitudes read

F+(s,0) = β+(0)
[

i− cot
π

2
α+(0)

]

sα+(0), (5.10)

F−(s,0) = −β−(0)
[

i+ tan
π

2
α−(0)

]

sα−(0). (5.11)
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These are crossing symmetric and antisymmetric functions of the energy,

F+(−s) = +F ∗
+(s), F−(−s) = −F ∗

−(s), (5.12)

where ∗ denotes complex conjugation. The physical amplitudes for pp and p̄p scattering

are given by [144],

Fpp = F+ + F−, Fp̄p = F+ − F−. (5.13)

Using the optical theorem (5.1) and denoting the strengths and intercepts by

β+(0) = a1, α+(0) − 1 = −b1, β−(0) = a2, α+(0) − 1 = −b2,

the Reggeons (R) contributions to the total cross section and ρ parameter [Eq. (5.4)]

are given by

σR(s) = a1s
−b1 + τa2s

−b2 , (5.14)

ρR(s) =
1

σR(s)

{

−a1 tan

(

πb1
2

)

s−b1 + τa2 cot

(

πb2
2

)

s−b2

}

(5.15)

where τ = −1 for pp and τ = +1 for p̄p.

For pp and p̄p scattering, the trajectories that contribute most to the amplitude

correspond to the non-degenerated a2/f2 and ω/ρ mesonic families with even and odd

signature, respectively. Additionally, from the Chew-Frautschi plot for the a2/f2 and

ω/ρ trajectories (see Fig. 5.1), b1 > 0 and b2 > 0 (approximately 1/2). Therefore, these

cross sections are decreasing functions of the energy, in agreement with the experimental

data for energies . 20 GeV (Fig. 5.3).

For further reference we note that the above results imply

ImF+(s) = a1s
−b1 > 0 and ImF−(s) = −a2s−b2 < 0. (5.16)

Associated with the τ values, we then have σp̄p > σpp in the energy region where these

cross sections are not equal, also in agreement with the experimental data.

Pomeron Contribution

The value of the intercept α(0) is bounded by Unitarity: α(0) ≤ 1 [18]. The

contribution ot the total cross section of this maximum-allowed value (α(0) = 1) reads

σmax
tot (s) ∼ asα(0)−1 = a. (5.17)

Therefore, it contributes as a constant to σtot and constitutes a special trajectory
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called critical Pomeron (or constant Pomeranchuk limit).

At the time (late 1960s), it was expected that the total cross section would assume a

constant value for high-enough energies [145]. Therefore, the idea of the critical Pomeron

was the perfect explanation: at low energies we have the dominance of the Reggeon

exchanges and for energies above 20 GeV the critical Pomeron becomes dominant and the

total cross section assumes a constant value. Moreove, according to the Pomenranchuck

theorem [18], the asymptotic value of particle-particle and antiparticle-particle total

cross sections should be the same indicating that the Pomeron must be associated to the

symmetric amplitude, having therefore an even signature. Since in the elastic scattering

the particles do not have their quantum numbers changed, the Pomeron carries the

quantum numbers of the vacuum.

This scenario changed in the 1970s when experimental results by the IHEP-CERN

Collaboration at Serpukhov and at the CERN-ISR indicated the rise of σtot above ∼ 20

GeV. To describe this rise within the Regge approach, an ad hoc trajectory has been

introduced, with intercept slightly greater than one, so that we have a contribution that

increases with the energy. This even trajectory (in order to account for an asymptotic

equality between pp and p̄p scattering) has been associated with a simple pole in the

amplitude, corresponding to a power law in s, with positive exponent slightly greater

than 0. This trajectory is called supercritical Pomeron or soft Pomeron.

Denoting the soft Pomeron (P) intercept αP(0) = 1 + ǫ (with ǫ & 0) and δ = βP(0)

the strength, we obtain for a simple pole (S) Pomeron:

ImFP

S (s)

s
= δsǫ, ǫ > 0, (5.18)

ReFP

S (s)

s
= δ tan

(πǫ

2

)

sǫ. (5.19)

Contrary to the Reggeon trajectories, the soft Pomeron trajectory does not have

any particle on it. Its intercept and slope are estimated from fits to σtot and dσ/dt

data [18, 126]: ǫ ∼ 0.08 and α′
P
∼ 0.25 GeV−2. The candidates to be in the Pomeron

trajectory, which must have the quantum numbers of the vacuum, are the glueballs.

With the above parameters, there is a glueball candidate (2++) [146] that may be on

the trajectory, as illustrated in Fig. 5.2.

Although above the limit imposed by unitarity for the intercept, the soft Pomeron

only violates the Froissart-Martin bound at asymptotic energies. At present energies

(LHC), this sǫ term is below the numerical limit given by Eqs. (5.2) and (5.3). Moreover,
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Figure 5.2: Soft Pomeron trajectory with parameters ǫ ∼ 0.08 and α′
P
∼ 0.25 GeV2 and

the 2++ glueball candidate [146].

the analytic model with two non-degenerated Regge trajectories and the soft Pomeron

σtot(s) = a1

[

s

s0

]−b1

+ τa2

[

s

s0

]−b2

+ δ

[

s

s0

]ǫ

, (5.20)

ρ(s) =
1

σtot(s)

{

−a1 tan

(

πb1
2

)[

s

s0

]−b1

+ τa2 cot

(

πb2
2

)[

s

s0

]−b2

+ δ tan
(πǫ

2

)

[

s

s0

]ǫ
}

,

(5.21)

with τ = −1(+1) for pp (p̄p) and where we have included the energy scale s0, present

consistent descriptions of the LHC data, as recently discussed by Donnachie and Land-

shoff [147] and also Menon and Silva [46].

A fundamental aspect of this simple pole Pomeron contribution is the fact that the

power law with positive exponent (ǫ ∼ 0.08 − 0.09, for example, [46, 147]) implies in a

strict rise of the associated cross section with energy. This behavior is directly related

to the standard or original concept of the super-critical (or soft) Pomeron, i.e. a rising

cross section. However, this is not the case in some amplitude analyses, in which this

behavior is not reproduced in the whole range of investigated energy (as will be discussed

in Section 5.2.4).

As mentioned in the introduction, a QCD description of the soft Pomeron is not yet

available. However, in the context of the perturbative QCD, the simplest picture of the

Pomeron is the exchange of two gluons [148,149]. Within this approach, nonperturbative

effects in the gluon propagator are usually included to obtain finite results for forward

quantities, see for instance Refs. [150–152]. Moreover, in the context of the BFKL

equation, the (hard) Pomeron corresponds to the exchange of a ladder of reggeized
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gluons between the partons [18].

5.2.3 Contributions of Higher-order Poles to the Amplitude

In the Regge context, we have worked with the presence of simple poles in the complex

ℓ-plane, which gives us the power-law contribution sα to the amplitude. Although not

entirely justified within the Regge-Gribov formalism, it is mathematical possible to have

poles of higher order in the complex plane [153]. As discussed in [126], these higher-order

poles are associated with the n-th derivative with respect to α, where n+ 1 is the order

of the pole. Specifically, the n-th derivative of a simple pole reads

dn

dαn

[

1

ℓ− α

]

= (−1)n−1 n!

[ℓ− α]n+1
, n = 1, 2, . . . , (5.22)

and for the power law,

dn

dαn
sα = sα lnn s, n = 1, 2, . . . . (5.23)

Therefore, associated with a pole of order N = n+ 1 (t-channel), the contribution to

the amplitude in the s-channel is sα lnN−1(s). Considering a Pomeron (P) with intercept

αP(0) = 1, the contribution to the total cross section is

σP(s) =
ImF (s)

s
∝ lnN−1 s.

Now, taking into account the Froissart-Lukaszuk-Martin bound, Eq. (5.2), the possi-

ble leading contributions are ln s (double pole) or ln2 s (triple pole).

We recall that in these cases, and yet in the context of Regge-Gribov, the real part

of the amplitude can be evaluated through a representation of the Watson-Sommerfeld

integral, introduced by Gribov and Migdal at the end of 1960s [154,155]. In the forward

direction, we have (see Eq. 44.b in Ref. [155])

ReF (s,0)

s
=
π

2

d

d ln s

[

ImF (s,0)

s

]

. (5.24)

As will be discussed in Section 5.3.2, this relation corresponds to the first order

series-expansion of a derivative dispersion relation for even amplitudes. For the double

pole (D) and triple pole (T ) we have, respectively

ImFP

D (s)

s
= β ln s → ReFP

D (s)

s
=
π

2
β, (5.25)

ImFP

T (s)

s
= β ln2 s → ReFP

T (s)

s
= πβ ln s. (5.26)
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It is important to note that the logarithmic laws demand an energy scale s0 for

consistency, implying in a null value at s = s0. More importantly, if the energy increases

in the region s < s0, the double-pole contribution increases through negative values and

the triple pole contribution decreases through positive values until s = s0. Obviously,

both a negative contribution and a decreasing contribution, as the energy increases are

not consistent with the standard super-critical (soft) Pomeron concept.

5.2.4 COMPETE and PDG Analyses

In this Section, we summarize two important analyses on the forward data performed

by the COMPETE Collaboration [32,127] and by the COMPAS Group (IHEP, Protvino)

published in the Review of Particle Physics (RPP) by the Particle Data Group (PDG) [33,

36,129].

These analyses consider parametrizations inspired by the Regge-Gribov formalism.

In special, the results obtained by COMPETE Collaboration have become a sort of a

guide to describe the energy evolution of σtot.

COMPETE Collaboration

The analysis made by the COMPETE Collaboration consisted in a great effort to

find the most suitable parametrization to describe the data of σtot and ρ for several

reactions available at the time (2002). They considered several parametrizations based

on Regge-Gribov Theory (for instance, soft Pomeron, double and triple-pole Pomeron)

and tested several properties, for instance, the hypothesis of factorization of the residues

of the Regge poles and universality of leading term, among others. To find the best

parametrization, they created a ranking procedure (see Ref. [127] for details), resulting

as the highest-rank the parametrization that corresponds to two Reggeon exchanges,

a critical Pomeron and a triple-pole Pomeron with αP(0) = 1, namely (using their

notation)

σ
a∓b
tot (s) = Y ab

1

(

s

s1

)α1(0)−1

± Y ab
2

(

s

s1

)α2(0)−1

+ Zab +B ln2

(

s

s0

)

, (5.27)

where we are considering the scattering between particles a and b and s1 = 1 GeV2.

The fits to σtot data were constrained to the real part of the forward elastic amplitude

through the ρ data (when available) using Derivative Dispersion Relations [156, 157]

(that will be discussed with more details in Section 5.3.2).

Their dataset (with cutoff energy
√
smin = 5 GeV) includes the following reactions:

σtot of pp, p̄p, π±p, K±p, Σ−p, γp, and γγ scatterings and ρ data for pp, p̄p, π±p, and

K±p scatterings. They also included cosmic-ray data for pp.
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As already mentioned in the previous section, the use of a logarithmic function

demands the inclusion of an energy scale. In COMPETE analysis, the energy scale s0 is

a free parameter and universal, i.e., does not depend on the scattering particles. As we

will see, different analyses consider different energy scales. Therefore, it is important to

keep in mind that the value of the energy scale inside the logarithmic term can affect the

value of the coefficient B obtained in the fit due the correlation among the parameters.

For further reference, the result obtained by COMPETE for their B and s0 parameter

are

BCOMPETE = 0.3152 ± 0.0095 mb and s0 = 34.0 ± 5.4 GeV2. (5.28)

We call the attention to the fact that the energy scale obtained by COMPETE

is greater than the energy cutoff considered, smin = 25 GeV2. As a consequence, the

leading term ln2(s/s0) decreases as the energy increases in the range smin ≤ s ≤ s0,

contradicting the standard soft Pomeron concept, as already mentioned in Section 5.2.2

and discussed in more detail by Menon and Silva in Ref. [45], Section 4.2.

COMPAS Group (PDG)

The fits to σtot and ρ data presented in the Review of Particle Physics (RPP) by

the Particle Data Group (PDG) [36] have been performed with the same highest rank

parametrization selected by COMPETE, except for some changes in the energy scale

that have been done in the last years.

Until the 2010 edition [128], they have used exactly the same highest-rank result

obtained by COMPETE. From the 2012 edition on, they introduced two modifications

in the parametrization. The first consists in the substitution of the energy scale s1 and

s0 appearing, respectively, in the Reggeons terms and in the leading ln2 s term by the

new scale sM given by

sM = (ma +mb +M)2, (5.29)

where ma and mb are the masses of the particles and M is a free universal parameter,

i.e. independent of the particles. Therefore, the energy scale is now reaction-dependent.

The second involves the pre-factor H of the ln2 s term. Although still universal, in 2012

edition, the authors have written it in terms of the new parameter M

HPDG2012 = π
(~c)2

M2
. (5.30)

We recall that in the 2010 edition, the H parameter was independent. This structure

was maintained in the subsequent editions, 2014 [36] and 2016 [33].

Concerning the dataset, they enlarged the one used by COMPETE including data

from pn, p̄n, pd, p̄d, π±d, K±d and γd, where d stands for the deuteron. Over the years,
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they have also updated the dataset with new experimental information for pp scattering:

cosmic-ray data at the energy range of RHIC (∼ 200 GeV) obtained by the ARGO-YBJ

Collab. [37] and the datum at 57 TeV by the Pierre Auger Observatory [38]. Of course,

they also added the data obtained at the LHC (TOTEM and ATLAS). These datasets

are available as ASCII files on the PDG website [31].

In particular, in the 2014 edition [36], they have explored the possibility to vary
√
smin, selecting three values: 5, 6 and 7 GeV. For 5 GeV (the same cutoff energy

used by COMPETE), the result does not describe the TOTEM data at 7 TeV, besides

presenting s0 > smin (decreasing Pomeron contribution). They argue that the best result

obtained is for
√
smin = 7 GeV, describing the aforementioned data at 7 TeV.

Their results for M , H and for sppM (pp and p̄p scattering) in these representative

cases are

√
smin = 5 GeV :











M = 2.127 ± 0.015 GeV,

HPDG2014 = 0.2704 ± 0.0038 mb,

sppM = 16.03 ± 0.12 GeV2,

(5.31)

√
smin = 7 GeV :











M = 2.076 ± 0.016 GeV,

HPDG2014 = 0.2838 ± 0.0045 mb,

sppM = 15.62 ± 0.13 GeV2.

(5.32)

In the last edition (2016), they have considered only one energy cutoff,
√
smin = 5 GeV.

The parameters of interest here are

M = 2.1206 ± 0.0094 GeV,

HPDG2016 = 0.2720 ± 0.0024 mb,

sppM = 15.977 ± 0.075 GeV2.

(5.33)

5.2.5 Parametrization by Amaldi et al.

In 1977, Amaldi et al. have proposed [130] an empirical parametrization for the

leading term of σtot in order to fit the data obtained in the ISR/CERN at the energies
√
s = 30.6, 44.7, 52.9, 62.4 GeV for pp scattering. In the fits, they considered data from

pp and p̄p scattering. The full parametrization, with their notation, for the total cross

section reads

σ± = C1E
−ν1 ∓ C2E

−ν2 + σ∞ (5.34)

σ∞ = B1 +B2{ln(s)}γ, (5.35)

where σ+ (σ−) denotes the total cross section for pp (p̄p) scattering, E is the energy in

the laboratory system and γ is a free parameter to be determined in the fit, allowed to

assume real values, and it is this parameter that consists in the novelty of the work. We
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note that this parametrization also considers that the pp and p̄p cross sections will be

equal at high energies, typical of an even contribution, like the Pomeron. Although not

mentioned by the authors, a scale fixed at 1 GeV2 in the logarithm is assumed.

The fits were constrained with the ρ parameter data. The connection between the real

and imaginary parts of the amplitude was done by using Integral Dispersion Relations

(see Section 5.3.1). As will be discussed later, the use of integral relations with a lnγ s

term demands numerical integration.

With data in the range 5 GeV <
√
s ≤ 62.4 GeV, Amaldi et al. obtained

γAmaldi = 2.10 ± 0.10. (5.36)

Two decades later, the UA4/2 Collaboration [131] performed fits with the same

Amaldi et al. parametrization, but now using an updated dataset (
√
smax = 546 GeV)

and energy scale explicitly fixed in 1 GeV2. Their result reads

γUA4/2 = 2.25+0.35
−0.31. (5.37)

Afterwards, a similar study was performed by Bueno and Velasco [132], in which two

parametrizations were considered: the Amaldi parametrization, Eqs. (5.34) and (5.35),

and the Donnachie-Landshoff parametrization [158], with the leading term corresponding

to the soft Pomeron, Eq. (5.18). Tests on the cutoff (
√
smin) were also done. For

√
smin = 5 GeV the same value of Eq. (5.37) was obtained and for

√
smin = 10 GeV the

result was:

γ = 2.64+0.50
−0.32. (5.38)

Once more, the energy scale was fixed, in an arbitrary way, at s0 = 1 GeV2.

In 2012, after the first measurement of the total cross section at 7 TeV by the

TOTEM Collaboration, Fagundes, Menon and Silva (hereafter FMS) developed an

amplitude analysis based on the parametrization introduced by Amaldi et al. for the

total cross section [140]. In this work, the data reductions were also limited to pp and p̄p

scattering. This analysis was then developed and extended in [44] and further updated

and discussed by Menon and Silva [45, 46], leading to values of γ in the interval 2.2 -

2.4 [45]. Including the first measurement at 8 TeV by the TOTEM Collaboration, the

simultaneous fit to σtot and ρ resulted in [46]

γ = 2.23 ± 0.11.

In these works, when the ρ data is predicted from fits to σtot [140] or included in

the fits [44–46], the analytic connection between the real and imaginary parts was done

using Derivative Dispersion Relations (Section 5.3.2).
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The COMPAS group also mentioned fits with this type of parametrization. They

quote a result obtained with a leading term lnc(s/sM) with c = 1.98 ± 0.01 without

further details of the analysis [33, 36].

5.3 Connecting the Real and Imaginary Parts of

Elastic Scattering Amplitude

As commented in the introduction of this chapter, we are interested in simultaneous

analyses of σtot and ρ parameter data. Therefore, we need to connect the imaginary

and real parts of the amplitude. In this section, we present three ways of attaining

this: Integral Dispersion Relations, Derivative Dispersion Relations, and Asymptotic

Uniqueness Relations. Precisely, what we do is to determine the real part from the

imaginary part, which, in turn, is given by the parametrization to σtot.

5.3.1 Integral Dispersion Relations and the High-Energy Ap-

proximation

Integral Dispersion Relations (IDR) are useful tools when dealing with complex func-

tions. They are derived from Analyticity and Causality and connect the real and imagi-

nary part of a complex-valued function by means of a Hilbert integral transform [159].

Here, after recalling the analytic result, we discuss the important concept of the high-

energy approximation, which led to the introduction of an effective subtraction constant

in the analyses by Fagundes, Menon and Silva, also employed in this thesis.

In high-energy forward (t = 0) scattering, these relations are written in terms of the

even/symmetric (+) and the odd/antisymmetric (−) amplitudes

F+(−s) = F+(seiπ) = F ∗
+(s),

F−(−s) = F−(seiπ) = −F ∗
−(s),

(5.39)

where the asterisk (*) denotes complex conjugation and for simplicity we have omitted

the argument t = 0. The hadronic amplitudes are recovered from the even and odd

amplitudes through the relations

Fpp(s) = F+(s) + F−(s),

Fp̄p(s) = F+(s) − F−(s).
(5.40)

Usually, in order to guarantee the convergence of the integral, the analysis of σtot

demands singly-subtracted integral dispersion relations, with the subtraction present

in the even part of the amplitude. In terms of the c.m. energy squared, the IDR
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read [160,161]

ReF+(s)

s
=
K

s
+

2s

π
P

∫ ∞

sth

ds′
[

1

s′2 − s2

]

ImF+(s′)

s′
, (5.41)

ReF−(s)

s
=

2

π
P

∫ ∞

sth

ds′
[

s′

s′2 − s2

]

ImF−(s′)

s′
, (5.42)

where P denotes the principal Cauchy value, K is the subtraction constant,2 and sth

denotes the physical threshold for scattering states. Here, we are interested in pp and

p̄p scattering, therefore from s = 2 mp(E +mp) and Eth = mp we have:

sth = 4m2
p ≈ 3.521GeV2.

In the application of IDR and also, as discussed in the next subsection, in the

replacement of IDR by Derivative Dispersion Relations (DDR) in amplitude analyses,

several authors consider the high-energy approximation, which consists in taking the

limit

sth → 0

in the above integrals. Although usual, this approximation is not well justified and some

comments are appropriate.

1. Experimental data of σtot from pp and p̄p are characterized by two different regions:

below
√
s ∼ 2 GeV the data show narrow peaks, caused by the formation of

resonances, while reaching the scattering region (sth = 4m2
p), σtot(s) presents a

smooth energy dependence. The total cross section decreases monotonically up to

∼ 20 GeV and then starts to rise. As discussed in the previous section, the region

of the smooth decrease is expected to be described by the Reggeon exchanges.

Therefore, the region s < 4m2
p corresponds to an unphysical region for scattering

states.

2. The usual dataset for amplitude analyses starts at
√
smin = 5 GeV (the energy

cutoff), which is not far above the threshold
√
sth ∼ 2 GeV. Or, in other words, for

fits with
√
smin = 5 GeV (as those by COMPETE and PDG) it seems unreasonable

to consider
√
sth ∼ 2 GeV as zero.

3. With respect to our parametrizations (FMS models, see Section 5.4.2) and in

all the data reductions developed in this chapter, the energy scale is assumed at

s0 = sth = 4m2
p and therefore this scale cannot be considered null.

2The subtraction constant corresponds to the real part evaluated at the subtraction point, usually
chosen in the non-physical region of the scattering amplitude.
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High-energy Approximation and the Effective Subtraction Con-

stant

Let us illustrate the application of IDR and the effects of not taking into account the

high-energy approximation, by considering a parametrization for σtot based on Reggeon

exchanges at low-energies and the simple-pole Pomeron contribution in high energies

(Section 5.2.2). For simplicity, we consider here the energy scale s0 = 1 GeV2:

σtot(s) = a1s
−b1 + τa2s

−b2 + δsǫ, (5.43)

where τ = −1 (+1) for pp (p̄p). Our goal is to determine the real parts (and consequently

ρ(s)) by means of the crossing relations, Eq. (5.40), and the IDR, Eqs. (5.41) and (5.42),

with sth 6= 0 fixed.

From Eq. (5.43), with the crossing relations Eq. (5.39), and the optical theorem

Eq. (5.1), we obtain

ImF+

s
= a1s

−b1 + δsǫ,

ImF−

s
= −a2s−b2 .

(5.44)

One can write the integrals appearing in Eqs. (5.41) and (5.42) as

∫ ∞

sth

ds′ =

∫ ∞

0

ds′ −
∫ sth

0

ds′ (5.45)

and substitute Eq. (5.44). The first integral in the RHS results in trigonometric functions

and the second one in hyper-geometric functions [157,162], that in turn can be written

as a series expansion [163,164]. We obtain for the even case

ReF+(s)

s
=
K

s
− a1 tan

(

πb1
2

)

s−b1 + δ tan
(πǫ

2

)

sǫ + ∆+, (5.46)

where

∆+ =
2

π

∞
∑

j=0

a1s
−b1
th

2j + 1 − b1

[sth
s

]2j+1

+
2

π

∞
∑

j=0

δsǫth
2j + 1 + ǫ

[sth
s

]2j+1

, (5.47)

and for the odd case

ReF−(s)

s
= −a2 cot

(

πb2
2

)

s−b2 − ∆−, (5.48)
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where

∆− =
2

πs

∞
∑

j=0

a2s
1−b2
th

2j + 2 − b2

[sth
s

]2j+1

. (5.49)

Therefore, denoting the “correction” term

∆ ≡ ∆+ + τ∆−,

the real parts of the pp and p̄p amplitudes can be expressed by

ReF (s)

s
=
K

s
− a1 tan

(

πb1
2

)

s−b1 + τa2 cot

(

πb2
2

)

s−b2 + δ tan
(πǫ

2

)

sǫ + ∆, (5.50)

where

∆ =
2

π

∞
∑

j=0

[

a1s
−b1
th

2j + 1 − b1
+

δsǫth
2j + 1 + ǫ

+ τ
1

s

a2s
1−b2
th

2j + 2 − b2

]

[sth
s

]2j+1

,

again with τ = −1 (+1) for pp (p̄p).

Note that if sth → 0, then ∆ → 0 and we recover the Regge-Gribov result for ρ,

Eq. (5.21), except for the subtraction constant in the form K/s present in Eq. (5.50).

That is the point we are interested in here. By expanding the correction term, ∆, we

obtain

∆ =
2

π

{[

a1s
1−b1
th

1 − b1
+
δs1+ǫ

th

1 + ǫ

]

1

s
+ τ

[

a2s
2−b2
th

2 − b2

]

1

s2
+

[

a1s
3−b1
th

3 − b1
+
δs3+ǫ

th

3 + ǫ

]

1

s3
+ τ

[

a2s
4−b2
th

4 − b2

]

1

s4
+ ...

}

.

Expressing the leading term in the above equation

2

π

[

a1s
1−b1
th

1 − b1
+
δs1+ǫ

th

1 + ǫ

]

≡ f(sth, a1, b1, δ, ǫ),

we have

∆ =
f(sth, a1, b1, δ, ǫ)

s
+ O(1/s2).

Therefore, in Eq. (5.50), this leading term can be absorbed in the subtraction con-

stant, defining an effective subtraction constant :

K + f(sth, a1, b1, δ, ǫ)

s
≡ Keff

s
, (5.51)

which is the same for pp and p̄p scattering.

With this concept and definition, we can re-express the IDR in the form (note the
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lower limits):

ReF+(s)

s
=
Keff

s
+

2s

π
P

∫ ∞

0

ds′
[

1

s′2 − s2

]

ImF+(s′)

s′
, (5.52)

ReF−(s)

s
=

2

π
P

∫ ∞

0

ds′
[

s′

s′2 − s2

]

ImF−(s′)

s′
. (5.53)

This result deserves some comments and explanations as follows.

1. If Keff = 0, the IDR correspond to the high-energy approximation, namely sth → 0.

It is important to stress this point: if in the data reductions with IDR (or DDR

as we shall see), the subtraction constant is omitted (which means to be assumed

zero), then the high-energy approximation is implicit and therefore the unphysical

region from 0 to sth is taken into account.

2. When Keff is considered as a free fit parameter in data reductions, it has a clear

and important physical meaning as a first-order contribution related to the finite

value of the lower limit (see Eq. (5.51)). Consequently, it improves the applicability

of the formalism in the regions of lower and intermediate energies.

3. According to Eq. (5.51), for the case of simple poles Keff is connected with the other

free parameters present in the analytic input for the total cross section. Moreover,

this connection involves not only the Reggeon parameters (a1, b1) but also those

related to the Pomeron contribution (δ, ǫ). As a consequence, in data reductions

we expect that the subtraction constant as a free fit parameter is correlated with

all the other parameters, including those associated with any form of the leading

Pomeron contribution (high-energy region). This can be seen in the analyses by

Fagundes, Menon and Silva [44] and Menon and Silva [45], where the correlation

matrices are shown and discussed.

4. The same interpretation of Keff can be extended to the replacements of IDR by

DDR, as we shall show in the next subsection.

5.3.2 Derivative Dispersion Relations with the Effective Sub-

traction Constant

Derivative Dispersion Relations are the method employed in the amplitude analyses

by Fagundes, Menon and Silva and play a fundamental role in this chapter. As we

shall show, one of the main points concerns the possibility to evaluate the ρ function

associated with the lnγ s form (γ real) in an analytical way (which is not the case with

IDR).
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Derivative Dispersion Relations (DDR) are usually obtained from IDR in the high-

energy limit (sth → 0). This is done with a change of variable s = sth e
ξ in the

integrands of Eqs. (5.41) and (5.42), which are then expanded in power series and, after

that, integrated by parts (see Appendix A for details). At last, the primitives are

evaluated at the upper and lower integration limits. The derivation can be found in

several works (see quoted papers below and references therein).

First, let us focus on the result by Bronzan, Kane, and Sukhatme that is based

on the high-energy approximation and does not have any reference to the subtraction

constant3 [156]. The results can be written in operational form with derivatives with

respect to the logarithm of the energy in the arguments of trigonometric operators. For

crossing even and odd amplitudes these singly-subtracted DDR are given by

ReF+(s)

s
= tan

[

π

2

d

d ln s

]

ImF+(s)

s
, (5.54)

ReF−(s)

s
= tan

[

π

2

(

1 +
d

d ln s

)]

ImF−(s)

s
. (5.55)

In practice, the trigonometric operators are expanded in power series and the deriva-

tives of the imaginary part are calculated term by term providing the corresponding real

parts by summing the series.

These relations were used, for instance, by the COMPETE Collaboration in their

amplitude analyses [127], and also by the COMPAS Group in the results reported by

RPP [129].

Up to our knowledge, the first results for the DDR taking into account the finite

lower limit (i.e. without the high-energy approximation) and the effect of the primitive

at both upper and lower limits were obtained by Ávila and Menon in 2005 [165, 166].

The correction term can be expressed as a double infinite series4.

For our purposes, the main point concerns the fact that for simple poles, this correc-

tion term can be also expressed as inverse powers of s, so that the leading contribution

can be absorbed by the subtraction constant [169]. This is analogous to the IDR cal-

culations and corresponds to the introduction of the effective subtraction constant as

a free fit parameter in data reductions. The complete practical equivalence in data

reductions between the IDR without the high-energy approximation and the DDR with

the subtraction constant as a free fit parameter is demonstrated by Ávila and Menon in

Refs. [157, 170,171] and in more detail by Ávila in Ref. [169]. The replacement of IDR

by DDR has been also discussed by Cudell, Martynov and Selyugin [172,173] and more

3In that work, the authors consider also an additional parameter, which, in fact, is not necessary
(see the details of the calculation and critical discussion by Ávila and Menon in Ref. [157]).

4Later, Ferreira and Sesma [167,168] have shown that it is possible to reduce the result to a single
series, using sum rules and the incomplete Gamma function.
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recently (2017) by Ferreira, Kohara and Sesma [174,175].

It is interesting to note that the IDR, Eqs. (5.41) and (5.42), have a non-local

character since, in order to obtain the real part of the amplitude, the imaginary part

must be known for all values of the energy. On the other hand, DDR present a nearly local

character. Moreover, in some cases the use of IDR can demand numerical integration,

as was the case of the analyses by Amaldi et al. [130], UA4/2 Collab. [131] and Bueno-

Velasco [132] discussed in Section 5.2.5. As already mentioned, contrary to this, the use of

DDR provides analytical expressions since the imaginary part of the amplitude depends

only on the variable ln s. In this case, the term lnγ s considered in the aforementioned

analyses has an analytical form for the real part, as we show in what follows.

In our analyses, we consider the operator expansion in the form introduced by Kang

and Nicolescu [176] in 1975 and discussed in [157,166] with the inclusion of the effective

subtraction constant. The even and odd relations are given by the operational forms:

ReF+(s)

s
=
Keff

s
+

[

π

2

d

d ln s
+

1

3

(

π

2

d

d ln s

)3

+
2

15

(

π

2

d

d ln s

)5

+ . . .

]

ImF+(s)

s
,

(5.56)

ReF−(s)

s
= −

∫
{

d

d ln s

[

cot

(

π

2

d

d ln s

)]

ImF−(s)

s

}

d ln s

= − 2

π

∫

{[

1 − 1

3

(

π

2

d

d ln s

)2
1

45

(

π

2

d

d ln s

)4

− . . .

]

ImF−(s)

s

}

d ln s.

(5.57)

As an example of the applicability of the above DDR, consider the parametrization

for σtot given by Eq. (5.43). Using Eq. (5.39) to obtain the imaginary part of even and

odd amplitudes and substituting them in Eqs. (5.56) and (5.57), it is easy to show that

the resulting infinite series has a closed form, so that

ReF+(s)

s
=
Keff

s
− a1s

−b1 tan

(

πb1
2

)

+ δsǫ tan
(πǫ

2

)

, (5.58)

ReF−(s)

s
= −a2s−b2 cot

(

πb2
2

)

, (5.59)

which corresponds to the results obtained with IDR, see Eqs. (5.46) and (5.48), apart

from the correction term (here included in Keff) and also to the results obtained directly

from the Regge-Gribov Formalism (Section 5.2.2) except for the presence here of the

subtraction constant.

Of interest here, let us consider the leading even contribution to σtot as introduced
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by Amaldi et al. [130] (discussed in Section 5.2.5)

σP(s) =
ImFP(s)

s
= α + β lnγ

(

s

s0

)

. (5.60)

From Eq. (5.56), the corresponding ρ parameter can be expressed as

ReFP(s)

s
= A lnγ−1

(

s

s0

)

+ B lnγ−3

(

s

s0

)

+ C lnγ−5

(

s

s0

)

+ . . . (5.61)

where

A =
π

2
β γ, B =

1

3

[π

2

]3

β γ [γ − 1][γ − 2],

C =
2

15

[π

2

]5

β γ [γ − 1][γ − 2][γ − 3][γ − 4], . . .
(5.62)

If we consider a double pole (D) in the complex angular momentum space, which

corresponds to γ = 1, we have A = π β/2, B = C = · · · = 0 and

ReFP

D (s)

s
=
π

2
β, (5.63)

and considering a triple pole (T ), γ = 2, A = π β, B = C = · · · = 0 and

ReFP

T (s)

s
= πβ ln

(

s

s0

)

, (5.64)

as obtained in the Regge-Gribov formalism, Eqs. (5.25) and (5.26). Therefore, Eqs. (5.60)-

(5.62) constitute a generalization of the ln2 s and ln s cases for real (not integer) exponents

of the logarithm.

In all analyses performed with the leading term given by Eq. (5.60), the data reduc-

tions, with γ as a real free fit parameter have shown that its value does not exceed ∼
2.5 [44–47,121,140]. Therefore, the expansion up to third order is enough to ensure the

convergence of the fit and higher orders do not affect the results. In the parametrization

to be considered in the next section, we will truncate the series after the third-order

term. Recall that for a leading contribution in the form lnγ(s/sth) the IDR can not

provide an analytic result, but that is not the case for the DDR, as shown above.

We want to stress two crucial advantages of this approach in amplitude analyses:

1. It provides analytic results in all cases of interest, which are adequate for data

reductions and allow standard statistical determination of the uncertainties in

all free fit parameters involved (and consequently, analytic propagation of the

uncertainties to the physical quantities).

2. With the subtraction constant as an additional free fit parameter, related to its
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effective character, the approach is not constrained by the high-energy approxi-

mation: its applicability covers, in principle, all the energies above the physical

threshold, without reference to the unphysical region.

5.3.3 Asymptotic Uniqueness and the Phragmén-Lindelöff The-

orems

Asymptotic Uniqueness, associated with Phragmén-Lindelöff theorems, constitute

another analytic way for the determination of the real part of the forward amplitude.

In this subsection we present the ideas and basic theorems osn which this approach is

based. To do that, we follow Section 7.1 of the book by Eden [144]. This subject is also

treated in Ref. [177] (Sect. 10.3) and in Ref. [178] (Sect. IV.D), but with a different

approach.

As we shall show, in case of the lnγ s law with γ real, the analytic results are not

equivalent to those obtained through DDR.

Basic Concepts

Asymptotic Uniqueness (AU) is based on the concepts of crossing symmetry and

analyticity, associated with the forward scattering amplitude in the complex-s plane. We

apply AU for even and odd amplitudes, Eq. (5.39), from which we recover the hadronic

amplitudes with Eq. (5.40).

Recall that in the polar form, F (s) = |F (s)|eiθ, the phase of the amplitude is given

by

θ = tan−1

[

ImF (s)

ReF (s)

]

. (5.65)

The asymptotic uniqueness constitutes a way to determine the phase of the ampli-

tudes, once given a real function related to its imaginary part as an input. Actually,

these asymptotic results provide the crossing even and odd amplitudes to within a ±
factor. The correct sign is determined by physical conditions involved [144]. Specifically,

from Eq. (5.40) and the optical theorem, Eq. (5.1),

ImF+(s)

s
=

1

2
{σpp + σp̄p} ,

ImF−(s)

s
=

1

2
{σpp − σp̄p} . (5.66)

Since σpp, σp̄p > 0, we have always ImF+(s) > 0. For the Reggeons contribution,

once associated with the region where σp̄p > σpp (low-energy, see Fig. 5.3) we have

ImF−(s) < 0, as discussed in Section 5.2.2. For the Pomeron contribution, dominating

the region where σp̄p = σpp, ImF−(s) = 0.

Following Ref. [144], let us consider the following corollary that provides the essential

concept and role for the determination of the phase of the amplitude:
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Corollary. “If f(z) is bounded by a polynomial, and f(z) tends to the limits L1 and L2

along the rays z = x+ i0 as x→ +∞ and −∞, then we must have L1 = L2.”

The above statement, where z = x + i0 denotes the limit from the upper half

plane, says that it is possible to obtain the phase of the function f(z) for all z from its

asymptotic limits.

In our case, f(z) corresponds to the forward elastic scattering amplitude, namely

f(z) = F (s,0). Furthermore, as commented in Section 2.7, to have the amplitude

bounded by a polynomial is a usual assumption for the elastic scattering amplitude.

Therefore, the corollary can be applied to determine the forward phase of F (s) = F (s,0).

Below, we illustrate in detail the use of AU by applying the method to simple-poles

contributions to even and odd amplitudes (that corresponds to Power Laws), triple-

pole contribution to even amplitude (Log-squared Law) and to Log-raised-to-γ Law,

Eq. (5.60).

Power Law (Simple Poles)

We begin with the simple-pole contribution to the total cross section. From Regge

theory, we know that the simple pole contributes to the total cross section as βsα−1, so

that

ImF (s) = βsα. (5.67)

In order to apply the corollary, let us consider the complex function

F (s)

sα
,

which is bounded by a polynomial. Therefore, if in the limit s→ ∞ we have

F (s)

sα
→ L1 ≡Meiθ,

and
F (seiπ)

[seiπ]α
→ L2,

then, by the Corollary, we must have L2 = L1 and therefore,

F (s) = Msαeiθ and F (seiπ) = Msαei(θ+πα).

Considering a symmetric/even (+) amplitude, using Eq. (5.39) and the above result,

we have

Msα+ei(θ++πα+) = +Msα+e−iθ+ .



Chapter 5. Phenomenological Studies on the Rise of the σtot and the LHC Data 92

Therefore, we can calculate the phase explicitly :

θ+ = nπ − πα+

2
(n = 0,± 1,± 2, . . . ),

Using the optical theorem, Eq. (5.1), and Eqs. (5.65) and (5.67) and denoting

ImF+(s) = β+s
α+ , β+ > 0, the real part of the amplitude reads:

ReF+(s) =
ImF+

tan θ+
=

β+s
α+

− tan(πα+/2)
= −β+ cot

(πα+

2

)

sα+ ,

leading to the complex symmetric amplitude:

F+(s) = β+

[

i− cot
πα

2

]

sα+ . (5.68)

Now, if we consider an antisymmetric/odd (−) amplitude, the procedure is analogous.

From Eq. (5.39)

Msα−ei(θ−+πα−) = −Msα−e−iθ− .

With −1 = eiπ, we can obtain again the phase explicitly, but now it reads

θ− = nπ +
π

2
(1 − α−) (n = 0,±1,±2, . . . ).

As commented above (see Eq. (5.66)), in the odd case we have to consider the

solution with the minus sign in order to obtain a positive cross section. Therefore, we

have ImA− = −β−s−α− , with β− > 0. From Eq. (5.65), we obtain

ReF−(s) =
ImF−

tan θ−
= − β−s

α−

tan(π/2 − πα/2)
= −β− tan

(πα

2

)

sα− ,

and the complex antisymmetric amplitude:

F−(s) = −β−
[

i+ tan
πα−

2

]

sα− . (5.69)

We note that the asymptotic results Eqs. (5.68) and (5.69) are exactly the same

as those obtained in the Regge-Gribov formalism for the even and odd amplitudes

(Section 5.2.2) and also through dispersion relations, Eqs. (5.58) and (5.59), without the

subtraction constant.

Therefore, the full expressions for σtot and ρ for pp and p̄p scattering associated with

an even and an odd contribution for Reggeons and with the simple-pole (even) Pomeron,
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are the same as Eqs. (5.20) and (5.21) (including the energy scale):

σtot(s) = a1s
−b1 + τa2s

−b2 + δsǫ,

ρ(s) =
1

σtot(s)

{

−a1 tan

(

πb1
2

)

s−b1 + τa2 cot

(

πb2
2

)

s−b2 + δ tan
(πǫ

2

)

sǫ
}

,

with τ = −1 for pp and τ = +1 for p̄p.

Log-squared Law (Triple Pole)

Let us discuss now the case of a Triple Pole. Once it represents the Pomeron (even

signature), we consider here only the symmetric relation in Eq. (5.39). We will use the

index T standing for triple-pole leading contribution at high energies.

Consider σT (s) = β ln2 s, so that ImF T (s) = βs ln2(s). As it was done in the case

of Power Laws, we use the corollary to obtain the asymptotic behavior

F T (s) = Ms ln2(s)eiθ and F T (seiπ) = Ms ln2(seiπ)ei(θ+π). (5.70)

Using the symmetric relation of Eq. (5.39) to connect the two limits above (and

omitting the index +, for simplicity)

ln2(seiπ)ei(θ+π) = ln2(s)e− iθ.

One can write

ln2(seiπ) = ln2(s)

[

1 + i
π

ln(s)

]2

,

extract the square root from both sides, and, finally, take the complex conjugate to

obtain

eiθ = ±
[ π

ln s
+ i

]

.

Contrary to what happens in the case of Power Laws, here we cannot determine the

phase explicitly, since we have the eiπ factor in the argument of the logarithm. In this

case, from F T (s) in Eq. (5.70), denoting M = β and choosing the + sign in order to

have ImF T (s) > 0, we obtain the complex amplitude

F T (s)

s
= β[π ln(s) + i ln2(s)]. (5.71)

Therefore, as obtained in the Regge-Gribov and dispersion formalisms (Sections 5.2

and 5.3), the Pomeron contribution associated with a triple pole reads

σT = β ln2(s), ρT =
1

σT
P

[βπ ln(s)] =
π

ln(s)
. (5.72)
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Log-raised-to-γ Law

Now we turn to the main focus of this work: ImF (s) = βs lnγ(s), with γ a real

number. For simplicity, we shall omit any index in the amplitude.

We first present the derivation of an exact result (introduced in Ref. [47]), which

is used in the data reductions developed here (Sects. 5.4 and 5.6). After that we

discuss a high-energy approximation and comparison with other results, followed by

the particular case in which γ = 2 and another analytic result obtained by means of a

binomial expansion.

❼ Exact Result

We follow the same steps used above and we use the corollary to write

F (s) = Ms lnγ(s)eiθ and F (seiπ) = Ms lnγ(seiπ)ei(θ+π). (5.73)

Again, since this term corresponds to an even contribution to the amplitude, we

use the symmetric relation in Eq. (5.39),

lnγ(seiπ)ei(θ+π) = lnγ(s)e− iθ. (5.74)

As before, we can write

lnγ(seiπ) = lnγ(s)

[

1 + i
π

ln(s)

]γ

,

and we obtain

e−i(2θ+π) =

[

1 + i
π

ln(s)

]γ

, (5.75)

or

e−i(2θ+π) =

[

1 +
π2

ln2(s)

]γ/2

eiγφ(s), (5.76)

where

φ(s) = tan−1

[

π

ln(s)

]

. (5.77)

By extracting the square root,

e−i(θ+π/2) = ± 1

lnγ/2(s)

[

ln2(s) + π2
]γ/4

eiγφ/2,
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we obtain

lnγ(s)eiθ = ± lnγ/2(s)
[

ln2(s) + π2
]γ/4

e−i[γφ+π]/2.

Now, from Eq. (5.73) we have asymptotically F (s) = Ms lnγ(s)eiθ. Denoting

M = β > 0, and under the condition ImF (s) > 0, the above equation provides

the exact result for the complex amplitude:

F (s)

s
= β lnγ/2(s)

[

ln2(s) + π2
]γ/4

[

sin

(

γφ

2

)

+ i cos

(

γφ

2

)]

, (5.78)

where φ = φ(s) is given by Eq. (5.77).

❼ Approximate Result

At sufficiently high energies and since γ < 3 from the data reductions [44,45,140],

we can approximate

tanφ =
π

ln(s)
≈ φ, sin

(

γφ

2

)

≈ γφ

2
=

γπ

2 ln(s)
, cos

(

γφ

2

)

≈ 1

and
[

ln2(s) + π2
]γ/4

= lnγ/2(s)

[

1 +
π2

ln2(s)

]γ/4

≈ lnγ/2(s).

Substituting in Eq. (5.78) we obtain the approximate result

F (s)

s
≈ β lnγ(s)

[

γπ

2 ln(s)
+ i

]

, (5.79)

which corresponds to the first-order result obtained with DDR, Eqs. (5.61) and

(5.62).

❼ AU Result for γ = 2.

Now we turn to the comparisons between the results obtained with DDR and AU.

Let us first consider the exact AU result given by Eq. (5.78). For γ = 2, we obtain

F γ=2(s)

s
= β ln(s)

[

ln2(s) + π2
]1/2

[sinφ+ i cosφ] , (5.80)

which does not correspond to the triple-pole contribution, Eq. (5.71).

On the other hand, from the high-energy approximate result (5.79) for γ = 2,

we obtain the triple-pole contribution (5.71). Moreover, as commented above,
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Eq. (5.79) in the general case corresponds to the first-order expansion for ρ(s)

obtained in the DDR approach.

❼ Binomial Expansion

Next, we present another result for the amplitude, without the explicit determina-

tion of the phase, but by using a binomial expansion. We also compare the results

obtained with AU and DDR.

Returning to Eq. (5.75) and extracting the square root, we can express

eiθ = ±
[

1 − i
π

ln(s)

]γ/2

.

Consider now the binomial expansion,

(1 + x)p = 1 +
∑

k=1

1

k!
p(p− 1)(p− 2) · · · (p− [k − 1])xk

in the variable

x = −i π

ln s
.

Since from Eq. (5.73) F (s)/s = β ln(s)eiθ, for ImF (s) > 0, we obtain the complex

amplitude in the form of a series expansion:

F (s)

s
= β

{

γ

1!

[π

2

]

lnγ−1(s) − γ(γ − 2)(γ − 4)

3!

[π

2

]3

lnγ−3(s)

+
γ(γ − 2)(γ − 4)(γ − 6)(γ − 8)

5!

[π

2

]5

lnγ−5(s) + . . .

}

+ i β

{

lnγ(s) − γ(γ − 2)

2!

[π

2

]2

lnγ−2(s)

+
γ(γ − 2)(γ − 4)(γ − 6)

4!

[π

2

]4

lnγ−4(s) + . . .

}

.

(5.81)

We note that for γ = 2, we recover

ImFP(s)

s
= β ln2(s),

ReFP(s)

s
= πβ ln(s).

Comparing Eq. (5.81) with the leading contribution obtained in the DDR approach,

Eqs. (5.60)-(5.62), the results are the same only in first order

ImFP(s)

s
∼ β lnγ(s),

ReFP(s)

s
= βγ

π

2
lnγ−1(s).
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We summarise in Table 5.1 all analytical results of interest obtained for the L2 and

Lγ laws through DDR and AU. From the Table we see that in case of the Lγ law,

the analytic results through DDR and AU are distinct, including the imaginary parts

(total cross section). We shall return to this important point in Section 5.7. In the next

section, we define the analytic models considered in the data reductions.

Table 5.1: Summary of results obtained with DDR and AU for the L2 and Lγ law. The
constant factors A, B and C are given in Eq. (5.62) and the function φ = φ(s) is given
by Eq. (5.77). The energy scale s0 has been omitted for clarity.

(a) Imaginary Part

L2 Lγ Lγ with γ = 2

DDR β ln2 s β lnγ s β ln2 s

AU β ln2 s β lnγ/2(s)[ln2 s+ π2]γ/4 cos (γφ/2) β ln(s)[ln2 s+ π2]1/2 cos (φ)

(b) Real Part

L2 Lγ Lγ with γ = 2

DDR πβ ln s A lnγ−1 s+ B lnγ−3 s+ C lnγ−5 s πβ ln s

AU πβ ln s β lnγ/2(s)[ln2 s+ π2]γ/4 sin (γφ/2) β ln(s)[ln2 s+ π2]1/2 sin (φ)

5.4 Analytic Models

In this section we introduce the analytic parametrizations for σtot(s) and ρ(s) that

will be used in our data reductions. They are based on the analytic results discussed in

the previous section.

We start with the definition of a useful notation for models (Sect. 5.4.1). Next

we present the analytic parametrizations for σtot(s) and ρ(s) constructed through two

methods: the DDR approach (Sect. 5.4.2) and the AU approach (Sect. 5.4.3). The data

reductions with these models are the subject of Sect. 5.6. For convenience, we repeat

some equations already presented in the previous sections.

5.4.1 Notation

The parametrizations of interest have a structure similar to that selected by COM-

PETE and following their notation, could be represented by RRPL2 and RRPLγ, where

R stands for the Regge contribution, P for the constant Pomeranchuk term (critical

Pomeron), L2 for the ln2 s contribution, i.e. the triple-pole Pomeron, and Lγ for the

generalization lnγ s proposed by Amaldi et al. (see Section 5.2.5). Now, for simplicity,
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we can omit from the notation the RR and P, since the Regge and constant Pomeranchuk

contributions are the same in all cases. On the other hand, as discussed in the previous

section, in case of Lγ, the way to construct the parametrizations for σtot(s) and mainly

the connections with ρ(s) are different in the DDR and AU approaches and the analytic

expressions. Moreover, the relations between the L2 and the Lγ terms are also not the

same in these two methods.

Based on these details, we consider two aspects related to the DDR and AU ap-

proaches for the definition of a notation:

1. Since the previous FMS analyses with the Lγ term [44–46,140] are based on DDR

with some specific assumptions, namely to consider the DDR series up to the

third order and the inclusion of the effective subtraction constant, we shall adopt

here these FMS parametrizations as representative of the DDR approach (in what

concerns the leading Lγ). For that reason, the DDR parametrizations will be

denoted as FMS-Lγ model and FMS-L2 model.

2. As discussed in Sect. 5.3.2, within the DDR approach, the FMS-L2 model is

nothing more than the FMS-Lγ model for γ = 2, i.e. a particular case. However,

setting γ = 2 in the result for Lγ within AU does not correspond to the L2 result,

as can be seen in Eq. (5.80) and Table 5.1. Therefore, in order to refer to a specific

model in the AU approach we need to distinguish these three cases, namely Lγ, Lγ

for γ = 2 and L2. To this end, we will adopt the following short notation: AU-Lγ

model, AU-Lγ=2 model and AU-L2 model, respectively.

All these analytical parametrizations can are summarized as follows:

DDR Approach







FMS-Lγ Model

FMS-L2 Model
AU Approach



















AU-L2 Model

AU-Lγ Model

AU-Lγ=2 Model

The corresponding formulas, displayed in the next sections, are constructed with the

results discussed in the previous sections together with the optical theorem, Eq. (5.1),

and the definition of ρ parameter, Eq. (5.4).
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5.4.2 Derivative Dispersion Relation Approach

FMS-Lγ Model

The total cross section is given by the parametrization introduced by Amaldi et al.

[130]. Following the notation of Refs. [44, 140], we write:

σtot(s) = a1

[

s

s0

]−b1

+ τ a2

[

s

s0

]−b2

+ α + β lnγ

(

s

s0

)

, (5.82)

where τ = -1 (+1) for pp (p̄p) scattering, while a1, b1, a2, b2, α, β, γ are real free fit

parameters. The energy scale is fixed at the physical threshold for scattering states

s0 = 4m2
p, (5.83)

with mp the proton mass. In Section 5.6.1, we discuss this choice for the energy scale.

The ρ(s) dependence is analytically determined through DDR using the Kang and

Nicolescu representation [176] (see Sect. 5.3.2 for details):

ρ(s) =
1

σtot(s)

{

Keff

s
+ TR(s) + TP(s)

}

, (5.84)

whereKeff is the effective subtraction constant and the terms (T ) associated with Reggeon

(R) and Pomeron (P) contributions read

TR(s) = −a1 tan

(

π b1
2

)[

s

s0

]−b1

+ τ a2 cot

(

π b2
2

)[

s

s0

]−b2

(5.85)

TP(s) = A lnγ−1

(

s

s0

)

+ B lnγ−3

(

s

s0

)

+ C lnγ−5

(

s

s0

)

, (5.86)

where

A =
π

2
β γ, B =

1

3

[π

2

]3

β γ [γ − 1][γ − 2],

C =
2

15

[π

2

]5

β γ [γ − 1][γ − 2][γ − 3][γ − 4].
(5.87)
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FMS-L2 Model

In the particular case of γ = 2, from Eq. (5.87), we have A = πβ, B = C = 0 and

through Eqs. (5.82)-(5.86):

σtot(s) = a1

[

s

s0

]−b1

+ τ a2

[

s

s0

]−b2

+ α + β ln2

(

s

s0

)

, (5.88)

ρ(s) =
1

σtot(s)

{

Keff

s
− a1 tan

(

π b1
2

)[

s

s0

]−b1

+ τ a2 cot

(

π b2
2

)[

s

s0

]−b2

+ πβ ln

(

s

s0

)

}

.

(5.89)

These analytic expressions for σtot(s) and ρ(s), Eqs. (5.88) and (5.89), have solid basis

on the Regge-Gribov formalism and Eq (5.89) can be directly obtained from Eq. (5.88)

using DDR.

PDG-L2 Model

We recall that Eqs. (5.88) and (5.89) have also the same analytic structure as those

selected by the COMPETE Collaboration and used in the successive editions by the

PDG, except for modifications in the energy scale and the pre-factor β, as discussed in

Section 5.2.4. We shall refer as PDG-L2 model the L2 model without the subtraction

constant and with the two constraints given by Eqs. (5.29) and (5.30).

5.4.3 Asymptotic Uniqueness Approach

AU-L2 Model

From Section 5.3.3, see Eq. (5.71), this model has the same structure obtained with

the Regge-Gribov and DDR formalisms (except, in the last case, for the subtraction

constant). Although the formulas correspond to Eqs. (5.88) and (5.89), without Keff,

we display the results for future reference:

σtot(s) = a1

[

s

s0

]−b1

+ τ a2

[

s

s0

]−b2

+ α + β ln2

(

s

s0

)

, (5.90)

ρ(s) =
1

σtot(s)

{

−a1 tan

(

π b1
2

)[

s

s0

]−b1

+ τ a2 cot

(

π b2
2

)[

s

s0

]−b2

+ πβ ln

(

s

s0

)

}

,

(5.91)

where, as before, τ = -1 (+1) for pp (p̄p) scattering.
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AU-Lγ Model

From Section 5.3.3, the AU approach applied to Reggeons and the lnγ term leads to:

σtot(s) = a1

[

s

s0

]−b1

+ τ a2

[

s

s0

]−b2

+ α + β cos

(

γφ

2

)

lnγ/2

(

s

s0

)[

ln2

(

s

s0

)

+ π2

]γ/4

,

(5.92)

ρ(s) =
1

σtot(s)

{

−a1 tan

(

π b1
2

)[

s

s0

]−b1

+ τ a2 cot

(

π b2
2

)[

s

s0

]−b2

+ β sin

(

γφ

2

)

lnγ/2

(

s

s0

)[

ln2

(

s

s0

)

+ π2

]γ/4
}

, (5.93)

where

φ = φ(s) = tan−1

(

π

ln(s/s0)

)

. (5.94)

AU-Lγ=2 Model

For γ = 2, Eqs. (5.92) and (5.93) read

σtot(s) = a1

[

s

s0

]−b1

+τ a2

[

s

s0

]−b2

+α+β cos (φ) ln

(

s

s0

)[

ln2

(

s

s0

)

+ π2

]1/2

, (5.95)

ρ(s) =
1

σtot(s)

{

−a1 tan

(

π b1
2

)[

s

s0

]−b1

+ τ a2 cot

(

π b2
2

)[

s

s0

]−b2

+ β sin (φ) ln

(

s

s0

)[

ln2

(

s

s0

)

+ π2

]1/2
}

, (5.96)

with φ = φ(s) given by Eq. (5.94).

We stress that, differently from the FMS-Lγ and FMS-L2 models, this AU-Lγ=2

model does not correspond to the AU-L2 model, given by Eqs. (5.90)-(5.91). In Sect. 5.7.1

the analytic similarities and main differences between the AU and DDR approaches,

related to L2 and Lγ models are discussed in more detail.

5.5 Experimental Data

In this analysis we are interested in comparing two approaches connecting the real

and imaginary parts of the amplitude, and in studying the behavior of σtot and ρ at high

and asymptotic energies. To do that, we will consider reactions that have available data
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in the largest energy range: pp and p̄p scattering, as done in Refs. [44–46, 140]. This

choice allows the investigation of possible high-energy effects that may be unrelated to

the trends of the lower-energy data of other reactions.

Our dataset on σtot and ρ comprises all the accelerator data from pp and p̄p elastic

scattering above 5 GeV [31] (same cutoff used in the COMPETE and PDG analyses),

including all published results at the energies 7 and 8 TeV by the TOTEM and ATLAS

Collaborations (see Chapter 3). The data on σtot at the highest-energy region are

displayed in Table 5.2 together with information about the uncertainties associated. The

recent measurement of ρ at 8 TeV by the TOTEM Collaboration [14] is also included

in the dataset. All these data and information on σtot and ρ are shown in Figure 5.3,

where we can see the incompatibility between TOTEM and ATLAS measurements at

8 TeV.

Although not taking part in the data reductions, we display in the figures, as illus-

tration, some estimations of the σtot from cosmic-ray experiments: ARGO-YBJ results

at ∼ 100 - 400 GeV [37], Auger result at 57 TeV [38] and Telescope Array (TA) result

at 95 TeV [39].

Note that at 8 TeV, from Table 5.2, from [14] (TOTEM) and [17] (ATLAS)

σTOTEM
tot − σATLAS

tot

∆σTOTEM
tot

=
103 − 96.07

2.3
= 3.0 (5.97)

and

σTOTEM
tot − σATLAS

tot

∆σATLAS
tot

=
103 − 96.07

0.92
= 7.5. (5.98)

In order to explore the different scenarios given by TOTEM and ATLAS data, we

will consider three ensembles of experimental data in our fits. They have in common

the accelerator data above 5 GeV and below the LHC energies, and differ by the LHC

data included, following the notation defined below.

❼ Ensemble T: accelerator data above 5 GeV and below the LHC including only

the TOTEM data.

❼ Ensemble A: same as above but now including the ATLAS data in place of

TOTEM data.

❼ Ensemble T+A: all data available, i.e. accelerator data below LHC with

TOTEM and ATLAS data.
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Figure 5.3: Accelerator data on (a) σtot and (b) ρ from pp and p̄p scattering used in this
analysis. Some estimations for the pp total cross section from cosmic-ray experiments
(ARGO-YBJ, Auger and TA) are also displayed. The symbols here defined are assumed
in all figures.

Table 5.2: Experimental information on measurements of the p̄p and pp total cross
section at the highest energies from collider experiments (CERN-SPS, Fermilab-Tevatron
and CERN-LHC): central value (σtot), statistical uncertainties (∆σstat.

tot ), systematic
uncertainties (∆σsyst.

tot ), total uncertainty from quadrature (∆σtot) and total relative
uncertainty (∆σtot/σtot).

reaction
√
s σtot ∆σstat.

tot ∆σsyst.
tot ∆σtot ∆σtot/σtot Collaboration

(collider) (TeV) (mb) (mb) (mb) (mb) (× 100) % [reference]

p̄p (SPS) 0.546 61.9 1.5 1.0 1.8 2.9 UA4 [179]
p̄p (Tevatron) 0.546 61.26 0.93 - 0.93 1.5 CDF [92]

p̄p (SPS) 0.900 65.3 0.7 1.55 1.66 2.5 UA5 [88]
p̄p (Tevatron) 1.80 72.8 3.1 - 3.1 4.3 E710 [180]
p̄p (Tevatron) 1.80 80.03 2.24 - 2.24 2.8 CDF [92]
p̄p (Tevatron) 1.80 71.42 1.55 2.6 3.03 4.2 E811 [181]

pp (LHC) 7.0 98.3 0.2 2.8 2.8 2.9 TOTEM [10]
pp (LHC) 7.0 98.6 - 2.2 2.2 2.2 TOTEM [11]
pp (LHC) 7.0 98.0 - 2.5 2.5 2.6 TOTEM [12]
pp (LHC) 7.0 99.1 - 4.3 4.3 4.3 TOTEM [12]
pp (LHC) 7.0 95.35 0.38 1.304 1.36 1.4 ATLAS [16]
pp (LHC) 8.0 101.7 - 2.9 2.9 2.9 TOTEM [13]
pp (LHC) 8.0 101.5 - 2.1 2.1 2.1 TOTEM [34]
pp (LHC) 8.0 101.9 - 2.1 2.1 2.1 TOTEM [34]
pp (LHC) 8.0 102.9 - 2.3 2.3 2.2 TOTEM [14]
pp (LHC) 8.0 103.0 - 2.3 2.3 2.2 TOTEM [14]
pp (LHC) 8.0 96.07 0.18 0.85 ± 0.31 0.92 1.0 ATLAS [17]
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5.6 Data Reductions and Results

In order to confront the DDR and AU approaches with L2 and Lγ models, four

parametrizations for σtot and ρ are considered: FMS-L2 and FMS-Lγ models, Eqs. (5.82)-

(5.87) (since L2 is the particular case of Lγ for γ = 2), AU-Lγ=2 model, Eqs. (5.95)-(5.96)

and AU-Lγ model, Eqs. (5.92)-(5.94) (since the L2 is not a particular case of Lγ for γ

= 2).

For each model, we develop fits to pp and p̄p data with the three ensembles defined

in the previous section: T, A and T+A.

5.6.1 Fit Procedures

An important aspect of the parametrizations considered in this study is the presence

of nonlinearity in some parameters. This aspect demands a methodology for the choice

of the initial values (IV) of the free parameters. We choose as initial values the central

values reported by the PDG in their most recent data reductions. Here we use the values

of the parameters published in the 2016 edition, which for the pp and p̄p scattering

read [33]:

a1 = 13.07 ± 0.17 mb, b1 = 0.4473 ± 0.0077, a2 = 7.394 ± 0.081 mb,

b2 = 0.5486 ± 0.0049, α = 34.41 ± 0.13 mb, β = 0.2720 ± 0.0024 mb,

s0 = 15.977 ± 0.075 GeV2.

(5.99)

Recall that these results were obtained with the PDG-L2 model (Sect. 5.4.2) from

fits to data comprising several reactions and not only to pp and p̄p data. Also, the

dataset did not include the latest TOTEM measurements and the ATLAS result at 8

TeV. For future discussion, we display in Figure 5.4 the corresponding results for σtot(s)

and ρ(s) with the PDG-L2 model (2016), for pp and p̄p scattering [33], together with

the experimental data used here.

Specifically, we used the PDG2016 results (central values) as initial values for the fits

with γ = 2 fixed (FMS-L2 and AU-Lγ = 2). Since the subtraction constant is absent in

the PDG parametrization, we have considered the initial value 0 for Keff. The next step

is to let γ be a free parameter. For that, we use in each case the resulting central values

of the free parameters as initial values for data reductions with the corresponding Lγ

models. These fit procedures are summarized in the scheme below

PDG-L2, Eq. (5.99)
IV−→







fit FMS-L2 model
IV−→ fit FMS-Lγ model

fit AU-Lγ=2 model
IV−→ fit AU-Lγ model.

These procedures have been used with each one of the three ensemble: T, A and T+A.
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Figure 5.4: PDG-L2 results from the PDG 2016 [33], parameters from Eq. (5.99),
compared with pp and p̄p data. The insert shows the σtot data and curve in the region
6 - 10 TeV.

Statistical parameters and details of the minimization code are discussed in Chapter 3.

Energy Scale

Besides the nonlinearity of the parametrizations, the energy scale appearing in the

power and logarithmic laws also demands some comments. In this analysis, following

Refs. [45,46] we choose to fix this parameter at the physical energy threshold, Eq. (5.83),

s0 = 4m2
p ∼ 3.521 GeV2,

instead of fixing it at arbitrary values, for instance 1 GeV2, or even to fix it at the cutoff

energy, smin.

Of course, we could also consider s0 as a free parameter. However, letting s0 be free

adds additional nonlinearity in the fits that, at a first moment, we prefer to avoid. In

Refs. [45, 46], fits with a free energy scale were considered and the implications on the

parameter correlations are discussed.

Next, we present the fit results with the DDR Approach (Sect. 5.6.2) followed by

those with the AU approach (Sect. 5.6.3). A detailed discussion on all these results is

the content of Sect. 5.7.2.
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5.6.2 FMS-L2 and FMS-Lγ models

The fit results obtained with models FMS-L2 and FMS-Lγ are displayed in Table 5.3,

including statistical information on the quality of the fit. The corresponding results for

σtot(s) and ρ(s) with ensembles T, A and T+A, together with the experimental data

analyzed, are shown in Fig. 5.5 with the FMS-L2 model and in Fig. 5.6 with the FMS-Lγ

model.

Table 5.3: Fit results with the FMS-L2 and FMS-Lγ models, Eqs. (5.82)-(5.87), to
ensembles T, A and T+A. Energy scale fixed, s0 = 4m2

p = 3.521 GeV2. Also displayed
is the statistical information on the quality of the fits (chi-squared per degree of freedom
and integrated probability). Parameters a1, a2, α and β are given in mb, Keff in mbGeV2

and b1, b2, γ are dimensionless.

Ensemble: TOTEM ATLAS TOTEM + ATLAS

Model: L2 Lγ L2 Lγ L2 Lγ
a1 32.11(60) 31.5(1.3) 32.39(86) 32.4(1.0) 32.16(67) 31.60(98)
b1 0.381(17) 0.528(57) 0.435(19) 0.438(57) 0.406(16) 0.484(84)
a2 16.98(72) 17.10(74) 17.04(72) 17.04(72) 17.01(72) 17.07(73)
b2 0.545(13) 0.546(13) 0.545(13) 0.545(13) 0.545(13) 0.546(13)
α 29.25(44) 34.0(1.1) 30.88(35) 31.0(2.1) 30.06(34) 32.8(2.2)
β 0.2546(39) 0.103(29) 0.2347(35) 0.231(83) 0.2451(28) 0.151(71)
γ 2 (fixed) 2.301(98) 2 (fixed) 2.01(12) 2 (fixed) 2.16(16)
Keff 50(17) 109(36) 74(20) 75(27) 61(17) 90(42)
ν 242 241 235 234 244 243

χ2/ν 1.09 1.07 1.08 1.09 1.15 1.14
P (χ2) 0.150 0.213 0.177 0.166 0.059 0.063

5.6.3 AU-L2 and AU-Lγ Models

The fit results are displayed in Table 5.4 and the corresponding results for σtot(s)

and ρ(s) with ensembles T, A and T+A, together with the experimental data analyzed,

are shown in Fig. 5.7 with the AU-Lγ = 2 model and in Fig. 5.8 with the AU-Lγ model.

5.7 General Discussion and Comments

In this section, we critically discuss all the results obtained in this analysis taking into

account the analytic and conceptual differences between the DDR and AU approaches

related to L2 and Lγ models (Sect. 5.7.1) and the corresponding fit results with ensembles

T, A and T+A (Sect. 5.7.2). We proceed presenting our partial conclusions (Sect. 5.7.3)

and some further comments on the log-raised-to-γ law (Sect. 5.7.4).
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Figure 5.5: Fit results with the FMS-L2 model to ensembles T, A and T+A, Eqs. (5.82)-
(5.87)), Table 5.3.
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Figure 5.6: Fit results with the FMS-Lγ model to ensembles T, A and T+A, Eqs. (5.82)-
(5.87), Table 5.3.

5.7.1 Analytic and Conceptual Differences

Let us compare the analytic results presented in Sect. 5.4, namely the FMS-L2, FMS-

Lγ models, Eqs. (5.82)-(5.87) and the AU-Lγ=2, Eqs. (5.95)-(5.96), AU-Lγ, Eqs. (5.92)-

(5.94) models. Our focus here concerns the analytic and conceptual differences among

them.
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Table 5.4: Data reductions with the AU-Lγ=2 model, Eqs. (5.95)-(5.96) and AU-Lγ
model, Eqs. (5.92)-(5.94), to ensembles T, A and T+A. Energy scale fixed, s0 = 4m2

p =
3.521 GeV2. For the parameter dimensions, see Table 5.3. In the 5th column, n.p.d.
stands for non-positive definite error matrix. See text for further comments.

Ensemble: TOTEM ATLAS TOTEM + ATLAS

Model: AU-Lγ = 2 AU-Lγ AU-Lγ = 2 AU-Lγ [n.p.d.] AU-Lγ = 2 AU-Lγ

a1 31.42(47) 31.5(3.1) 30.87(54) 38.09(38) 31.10(50) 34.0(3.1)
b1 0.355(14) 0.353(60) 0.394(14) 0.2944(46) 0.376(13) 0.326(44)
a2 17.30(72) 17.30(73) 17.45(73) 17.28(62) 17.38(72) 17.28(72)
b2 0.553(13) 0.553(13) 0.557(13) 0.552(11) 0.555(13) 0.553(13)
α 28.61(43) 28.5(3.9) 30.14(33) 21.60(24) 29.46(32) 25.9(3.7)
β 0.2584(38) 0.26(14) 0.2395(33) 0.661(17) 0.2483(27) 0.39(16)
γ 2 (fixed) 1.99(17) 2 (fixed) 1.6763(97) 2 (fixed) 1.85(13)

ν 243 242 236 235 245 244
χ2/ν 1.125 1.130 1.152 1.128 1.191 1.188
P (χ2) 0.0878 0.0809 0.0538 0.0872 0.0217 0.0232
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Figure 5.7: Fit results with the AU-Lγ=2 model to ensembles T, A and T+A. Eqs. (5.95)-
(5.96), Table 5.4.

First, we note that all models present the same Reggeon contributions (related to the

parameters a1, b1 and a2, b2) and the same critical Pomeron contribution (α). Beyond

the presence of the effective subtraction constant in the FMS models (not in the AU

cases), a central point in these parametrizations concerns the log-raised-to-γ term and

the corresponding connection between σtot and ρ.
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Figure 5.8: Fit results with the AU-Lγ model to ensembles T, A and T+A. Eqs. (5.92)-
(5.94), Table 5.4.

DDR Approach

The general analytic expressions of the FMS-Lγ model are given by Eqs. (5.82)-(5.87).

As we showed in Sect. 5.4.2, the FMS-L2 model is a particular case for γ = 2. This

specific case has the same analytic structure as the PDG-L2 model and the COMPETE

parametrizations RRPL2 for σtot and ρ, except for the absence of a constraint connecting

β andM (PDG), the fixed scale s0 = 4m2
p, and for the presence of the effective subtraction

constant, Keff.

We recall that this approach is based on the use of DDR without the high-energy

approximation since Keff is considered as a free parameter and it takes into account, at

least in first order, the correction term for not taking the aforementioned limit.

We stress that these L2 models (both PDG and FMS) are constructed in accordance

with the Regge-Gribov theory (as shown in Section 5.2). In this context, the parameters

a1, a2, α and β correspond to the strengths of the Reggeons and of the Pomerons (critical

and triple pole) and they are constant factors at t = 0 (independent of the energy).

AU Approach

Now, let us turn our attention to the models L2, Lγ=2, and Lγ obtained with the

AU approach, showed in Section 5.4.3 and derived in Section 5.3.3. Although the AU-L2

model can also be deduced in this context, a crucial point is the fact that for γ = 2

the Lγ model does not correspond to the L2. The essential difference appears in the

Pomeron contributions to σtot and ρ.
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In the AU-L2 model, the Pomeron contributions (P) to the imaginary and real parts

of the amplitude are given by Eqs. (5.90) and (5.91) (omitting the arguments s and

t = 0 of the amplitude),

ImFP

L2

s
= α + β ln2

(

s

s0

)

, (5.100)

ReFP

L2

s
= πβ ln

(

s

s0

)

. (5.101)

With the AU-Lγ model for γ = 2 (Lγ=2 model), the contributions from Eqs. (5.95) and

(5.96) read

ImFP

Lγ=2

s
= α + β cos(φ) ln

(

s

s0

)[

ln2

(

s

s0

)

+ π2

]1/2

, (5.102)

ReFP

Lγ=2

s
= β sin(φ) ln

(

s

s0

)[

ln2

(

s

s0

)

+ π2

]1/2

. (5.103)

The essential difference between Eqs. (5.100) and (5.101) and Eqs. (5.102) and (5.103)

is the presence in the latter of trigonometric functions, which depend on the energy

through φ = φ(s), as given by Eq. (5.94). Although in the asymptotic limit (s→ ∞),

φ→ 0, cos(φ) → 1, sin(φ) → 0,

that is not the case in the finite energy-interval investigated (5 GeV - 8 TeV), in which,

even if limited to the interval [−1, 1], both cosine and sine can, in principle, take on

negative, null and positive values (depending on the ratio s/s0 in Eq. (5.94)).

However, up to our knowledge, this analytic dependence on the energy does not

have an interpretation or justification in Regge-Gribov context. In special, it is not

clear how we could, for instance, associate the cosφ factor with β giving rise to an

energy-dependent Pomeron strength in (5.102). The same applies to the real part of the

amplitude (note also the ln s dependence in (5.101) contrasting with the ln2 s in (5.103)),

as well as to the more general AU-Lγ model.

We illustrate this effect in Fig. 5.9, using the AU-Lγ=2 and AU-Lγ models from the

fits to ensemble T+A (Table 5.4). In this figure, three dimensionless terms associated

with the Pomeron component to σtot are shown. Note that in this case, the energy scale

is fixed at the physical threshold s0 = 4m2
p, a relatively small value which attenuates

the oscillation. That, however, is not the case for larger values of s0, as can be easily

verified.

Therefore the AU approach for Lγ and Lγ=2 models introduces energy-dependent

functions in the parametrization for σtot(s) which are not present in the original input,
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Eq. (5.82).
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Figure 5.9: Dimensionless contributions to the leading Pomeron component in (a) AU-
Lγ=2 and (b) AU-Lγ models, from fits to ensemble T+A, Table 5.4.

5.7.2 Fit Results

We have developed data reductions using four models (FMS-L2, FMS-Lγ, AU-Lγ=2

and AU-Lγ) and three ensembles (T, A and T+A). The fit results with the FMS models

are presented in Table 5.3 and Figures 5.5 and 5.6 and those with the AU models in

Table 5.4 and Figures 5.7 and 5.8. We call the attention to the fact that the fit performed

with AU-Lγ model to ensemble A showed in Table 5.4 has a non-positive definite error

matrix. Therefore it does not constitute a reliable result as discussed in Chapter 3. In

what follows, we shall not include this result in our discussion.

Let us discuss all the fit results, by comparing separately the following aspects:

ensembles T, A and T+A, L2 and Lγ models with the DDR approach, Lγ models with

the DDR and AU approaches.

Ensembles T, A and T+A

Within all models, the goodness-of-fit is slightly better with ensemble T than with

A or T+A: χ2/ν ∼ 1.07 − 1.13 (T), χ2/ν ∼ 1.08 − 1.15 (A) and χ2/ν ∼ 1.14 − 1.19

(T+A), where the smallest χ2/ν values are associated with FMS models.

From the figures, all TOTEM data are quite well described with ensemble T, but

in case of ensemble T+A all curves lie between the data points, barely reaching the

extrema of the uncertainty bars. ATLAS data are also well described with ensemble A.
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Ensemble T indicates a rise of the total cross section faster than ensembles A and

T+A, as shown by the extrapolated curves and, for example, by the γ values with the

FMS-Lγ model: γ ∼ 2.30 ± 0.10 (T), γ ∼ 2.01 ± 0.12 (A) and γ ∼ 2.16 ± 0.16 (T+A).

The ATLAS datum at 8 TeV is not described by any fit result to ensembles T and

T+A: all curves lie above this point within the uncertainties.

We recall that the result AU-Lγ with ensemble A has a non-positive definite error

matrix and we will not include it in our discussions.

FMS-L2 and FMS-Lγ Models

Taking into account the distinct characteristics of ensembles T, A and T+A, both

models present agreement with the experimental data analyzed and cannot be distin-

guished on statistical grounds: with ensemble T, χ2/ν = 1.09 (L2) and 1.07 (Lγ), with

ensemble A χ2/ν = 1.08 (L2) and 1.09 (Lγ) and with ensemble T+A, χ2/ν = 1.15 (L2)

and 1.14 (Lγ).

With ensemble T, the Lγ results confirm our previous determination of the parameter

γ. The slightly high value, γ ∼ 2.30±0.10 (as compared with the previous 2.23±0.11 [46])

is a consequence of the latest TOTEM data at 8 TeV. On the other hand, with ensemble

A we have a lower value for γ, namely 2.01±0.12, indicating a slower rise of σtot compared

to the result with ensemble T.

We also note the anti-correlation between the parameters β and γ: β ∼ 0.25 mb for

γ = 2 and β ∼ 0.10 mb for γ ∼ 2.3 (T) (see discussion in the next section).

FMS-Lγ and AU-Lγ Models

With respect to fits with ensembles T and T+A, the resulting γ-values with FMS

are higher than with AU: within ensemble T, γ ∼ 2.3± 0.1 (FMS) and ∼ 2.0± 0.2 (AU)

and within ensemble T+A, γ ∼ 2.2 ± 0.2 (FMS) and ∼ 1.9 ± 0.1 (AU). With ensemble

A and FMS model, we get a γ value compatible with 2, γ ∼ 2.0 ± 0.1.

Moreover, taking into account the uncertainties of all γ values determined in the fits,

we may infer a range of possible values of this parameter for the present energies. From

fits with ensembles T, A and T+A with the FMS model, we have 1.9 . γ . 2.4, and

from fits with ensembles T and T+A with AU model, 1.7 . γ . 2.2.

5.7.3 Partial Conclusions

On the basis of the discussions in Sects. 5.7.1 and 5.7.2, we are led to the partial

conclusions that follow.

1. In what concerns the Lγ models (and the energy-interval investigated), the DDR

approach is consistent with the Regge-Gribov theory: (1) the derivative dispersion
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relations apply to any function of interest in amplitude analyses (power or loga-

rithmic laws); (2) the triple-pole contribution is nothing more than a particular

case of Lγ for γ = 2; (3) with the FMS models, given a parametrization for σtot(s),

the determination of ρ(s) does not involve the high-energy approximation (due

to the effective subtraction constant) and therefore, most importantly, it is not

associated with the asymptotic condition (s → ∞) being adequate for the finite

energy interval investigated.

On the other hand, the AU approach leads to analytic results for both σtot(s)

and ρ(s) with oscillatory energy-dependent factors in the leading term, which do

not have justifications in the Regge-Gribov context. Moreover, the AU-Lγ does

not reproduce the AU-L2 model for γ = 2 and this model, AU-Lγ=2, has also

oscillatory terms.

Therefore, we conclude that, regarding Lγ, the FMS models are more consistent in

the formal context and adequate for the energy interval investigated than the AU

models.

2. Taking into account all the experimental data presently available (ensemble T+A),

the discrepancy between the TOTEM and ATLAS data does not allow a high-

quality fit on statistical grounds.

3. Both FMS-L2 and FMS-Lγ models present agreement with the experimental data

analyzed and cannot be discriminated on statistical grounds.

4. The fit results indicate that the TOTEM data and the ATLAS data favor different

scenarios for the asymptotic rise of the total cross section.

Predictions of the FMS-L2 and FMS-Lγ models (ensembles T, A and T+A) for σtot(s)

and ρ(s) at 13, 14, 57 and 95 TeV are presented in Tables 5.5 and 5.6, respectively.

Table 5.5: Predictions for σtot and ρ with the FMS-L2 model.

Ensemble: TOTEM ATLAS TOTEM + ATLAS
√
s (TeV) σtot (mb) ρ σtot (mb) ρ σtot (mb) ρ

13 108.94(86) 0.1296(10) 104.31(81) 0.12489(92) 106.76(61) 0.12740(75)
14 110.28(88) 0.12915(96) 105.55(83) 0.12447(91) 108.04(63) 0.12694(74)
57 137.8(1.3) 0.11980(73) 130.9(1.2) 0.11625(69) 134.51(92) 0.11813(57)
95 148.8(1.5) 0.11646(66) 141.0(1.4) 0.11324(63) 145.1(1.0) 0.11494(52)

5.7.4 Further Comments on the Log-raised-to-γ Law

Presently, we do not have yet a clear and direct justification for the lnγ s term within

the Regge-Gribov formalism. However, this function has an empirical motivation in the
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Table 5.6: Predictions for σtot and ρ with the FMS-Lγ model.

Ensemble: TOTEM ATLAS TOTEM + ATLAS
√
s (TeV) σtot (mb) ρ σtot (mb) ρ σtot (mb) ρ

13 110.7(1.2) 0.1417(47) 104.34(97) 0.1251(44) 107.39(94) 0.1333(63)
14 112.1(1.3) 0.1413(47) 105.6(1.0) 0.1247(44) 108.8(1.0) 0.1329(64)
57 143.4(2.8) 0.1337(52) 131.0(2.2) 0.1165(51) 137.0(2.8) 0.1251(73)
95 156.2(3.6) 0.1306(52) 141.2(2.8) 0.1135(52) 148.4(3.7) 0.1221(75)

sense that it can be used to check, from fits to data, how close the rise of σtot is from

the FLM bound. Perhaps, if not speculative, this real exponent could be seen as a kind

of effective contribution, similar to an effective exponent in the power law associated

with the simple-pole Pomeron. Despite this limitation, to treat the exponent γ as a

free fit parameter leads to some interesting consequences and useful results, including

a possible mathematical connection with a branch point singularity. We discuss these

aspects in what follows.

1. In the general case, data reductions with this term involve three free parameters,

β, γ and s0, which are strongly correlated as demonstrated in the Appendix of

Ref. [44] and also discussed in [45] (see Sect. 4.2 and Table 6). For s0 fixed, as

assumed in this analysis, β and γ are anti-correlated. For example, from Tables 5.3

and 5.4:

γ ∼ 2.3 (FMS) ⇐⇒ β ∼ 0.10 mb (T)

γ ∼ 2.2 (FMS) ⇐⇒ β ∼ 0.15 mb (T+A)

γ = 2.0 (FMS, AU) ⇐⇒ β ∼ 0.26 mb (T), β ∼ 0.25 mb (T+A)

γ ∼ 1.85 (AU) ⇐⇒ β ∼ 0.39 mb (T+A)

(5.104)

These different values associated with γ and β may have some connections with

recent phenomenological and theoretical ideas and results, as discussed in the next

item.

2. In the phenomenological context, a real (not-integer) exponent in the interval

1 < γ < 2 is predicted in the QCD mini-jet model with soft gluon re-summation

[67,108]. As commented in [33,36], a rise slower than L2 is also predicted in the

Cheng and Wu formalism [182].

We may also associate the effective real exponent character to the presence of

sub-leading contributions, beyond the leading log-squared component.

As commented in Chapter 1, a result on the rise of total cross section in the

asymptotic limit has been recently obtained in a nonperturbative approach to soft
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scattering by Giordano and Meggiolaro [2, 183]. This topic will be our focus in

Chapter 6, where we will discuss the details. For now, we only recall the points

of interest here. In Ref. [2], the hadronic total cross section behaves, under some

specific assumptions, as

σtot(s) ∼ B ln2 s+ C ln s · ln ln s (s→ ∞),

where the coefficients B and C are universal (independent of the properties of the

scattered particles). Instead, this coefficients are related to the QCD spectrum.

Of interest here, by considering the spectrum of stable particles in the unquenched

QCD, the B factor reads,

Bth ≃ 0.22 mb,

while in the case of quenched QCD (q), the estimated lower value (among all

possibilities) reads

Bq
th ≃ 0.42 mb.

These two results indicate that the inclusion of dynamical fermions (full QCD)

has a pronounced influence in the (universal) value of B, a result in contrast with

the usual phenomenological models which consider that this asymptotic behavior

is governed by the gluonic sector of QCD.

From Tables 5.3 and 5.4 (and estimates in Eq. (5.104)), the β results from models

with γ = 2 (FMS and AU) are in agreement with the full QCD prediction (as well

as the PDG-L2 result, Eq. (5.99)), while the AU-Lγ result favors the quenched

case. The smallest β value (0.10 mb) was obtained from FMS-Lγ with ensemble

T, and corresponds to a mass

M =

√

π

β
∼ 3.5 GeV.

3. An important and interesting aspect related to a leading Lγ component of σtot

(DDR approach),

σP(s) = α + β lnγ

(

s

s0

)

, (5.105)

concerns the slope (S) and curvature (C) of σP in terms of the variable ln s. Indeed,

in the particular case of a L2 model (or in the asymptotic FLM bound), we have

SL2(ln s) = 2β ln

(

s

s0

)

(linear), (5.106)

CL2(ln s) = 2β (constant), (5.107)
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while in the general case (γ real),

SLγ(ln s) = βγ lnγ−1

(

s

s0

)

, (5.108)

CLγ(ln s) = β γ(γ − 1) lnγ−2

(

s

s0

)

, (5.109)

both, therefore, energy dependent. This means that any deviation from a linear

rate of change of σtot(ln s) and from a constant curvature (2β) can be “detected”

by a Lγ model, Eq. (5.105). Moreover, Eqs. (5.108) and (5.109) allows to quantify

the differences in the rate of rise of σtot from the TOTEM and ATLAS data.

For example, at 8 TeV and with the Lγ model, the fits with ensembles T and A

(Table 5.3) predict: S ∼ 9.3 ± 0.2 mb (T) and S ∼ 7.9 ± 0.3 mb (A), indicating,

therefore, a faster rise of σtot(s) from the TOTEM data than from the ATLAS

data.

We note that in case of a AU approach, the analytic structure and oscillatory

terms do not allow this simple interpretation.

4. The dependence of the parametrization (5.105) with the energy scale s0 is another

interesting aspect that deserves some comments. The presence of a real (not-

integer) exponent of ln(s/s0) in the total cross section puts some constraints

on the definition of this parametrization. In order to obtain positive values of

ln(s/s0) and consequently real (physical) values for the total cross section, we must

have s ≥ s0. Otherwise, we would get a free power of a negative number and,

consequently, a complex value for σtot, which has no physical mean.

Therefore, Eq. 5.105 “starts” at s = s0 (and here we chose the threshold for

scattering states, 4m2
p) with

σP(s0) = α,

and from this point on, σP(s) increases as the energy increases according to

α + β lnγ(s/s0) and in accordance with the concept of a super-critical Pomeron.

In case of the same energy scale for the Reggeon components, as in the FMS-Lγ

model, Eq. (5.82), at s = s0 the contributions to the pp and p̄p total cross section

read

σR

pp(s0) = a1 − a2 σR

p̄p(s0) = a1 + a2

and from this point on, σR

pp(s) and σR

p̄p(s) decrease as the energy increases.

It is interesting to investigate these quantities at the threshold points as well as

their evolution with the energy. For example, from our fit results with the FMS-Lγ
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model to ensemble T+A (all data presently available), the numerical results are

(Table 5.3):

σP(s0) ∼ 32.8 mb, σR

pp(s0) ∼ 14.5 mb, σR

p̄p(s0) ∼ 48.7 mb.

Therefore, at s = s0 σ
R

pp(s0) < σP(s0) < σR

p̄p(s0) and above s0, the Reggeon

contributions decrease and the Pomeron one increases as s increases. Therefore,

besides being a leading contribution at high energies, the Pomeron component is

also significant at low energies, as illustrated in Fig. 5.10. Note that σP(s) is the

leading contribution for all s above the energy cutoff,
√
smin. From Tables 5.3 and

5.4, this effect is also present in all fit results, independently of model or ensemble.
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Figure 5.10: Reggeon components, σR

pp(s), σ
R

p̄p(s) and Pomeron component, σP(s), of
σtot(s) for pp and p̄p scattering, above the physical threshold

√
s0 = 2mp ∼ 1.9 GeV2.

Results obtained with the FMS-Lγ model and ensemble T+A (energy cutoff at
√
smin

= 5 GeV).

5. Even if we do not have a complete interpretation of lnγ s within the Regge-Gribov

approach, a natural question is what kind of singularity in the complex angular-

momentum ℓ-plane could be associated with this asymptotic contribution. This can

be investigated, in a mathematical context, by means of the Mellin transform [184],

which can correlate the asymptotic behaviour of a real function of a real variable

with the singularities of a real function of a complex variable.
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As demonstrated and discussed in Appendix B, the Mellin transform of lnγ s reads

Γ(γ + 1)

(ℓ− 1)γ+1
(5.110)

for γ > −1, Re[ℓ − 1] > 0, where Γ is the Euler gamma function. The above

equation indicates that for γ real (not-integer), the lnγ s is associated with a branch

point at ℓ = 1 in the complex ℓ plane. For γ = 2 and γ = 1, the singularities

reduce to a triple and double pole, respectively, as expected from Regge theory.

At this point, it is worth noting that branch points with the attached cut also

appear in Regge Theory. However, in this case the branch point is associated with

the exchange of two or more Reggeons (or Pomerons) and the contribution to the

total cross-section, in case of N exchanges, reads [18]

σN
cut(s) ∼

sαcut(t=0)−1

lnN−1(s)
, with γ > 0,

where αcut(t) is an effective trajectory associated with the exchanged objects. The

result above is obtained with the Gribov Calculus, which is based on perturbative

techniques. We note that, since N ≥ 2, the logarithmic term always appears in

the denominator and, at t = 0, this contribution tends to tame the power rise of

σtot. Contrasting with this behaviour, in the Lγ law we have γ > 0 and the term

lnγ s in the numerator explicitly rise with the energy. Therefore, the branch point

associated with Lγ cannot be related to the exchange of two or more Pomerons.

On the other hand, given the nonperturbative character of σtot(s), it seems rea-

sonable to think that the Lγ law and associated branch point might be related to

some (unknown) nonperturbative effect.

At last, we note that the analytic connection between the Lγ law and the associated

branch point, can be demonstrated through generalizations of Eqs. (5.22) and (5.23)

from integer order derivatives to real order derivatives. The approach, based on

Fractional Calculus, employs the non-local Caputo fractional derivative and is

discussed in Ref. [185].

6. Recent fits with the Lγ parametrization to only total cross section data within

ensemble T+A (all data presently available) and fixed energy scale (s0 = 4m2
p)

indicate γ = 2.21 ± 0.14 [185], which is 1.5σ above the value γ = 2.
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5.8 Summary and Conclusions

We presented in this chapter a comparative study on some parametrizations for

the forward elastic scattering amplitude related to methods of connecting the real and

imaginary parts, together with fits to pp and p̄p data in the energy region 5 GeV - 8

TeV.

The analytic parametrizations for the imaginary part of the amplitude (σtot ∼
ImF (s,t = 0)) were based on the Regge-Gribov formalism, in which the low-energy

behaviour of σtot is described by the exchange of Reggeons, while the high-energy do-

main is determined by Pomeron exchange. Two leading terms were considered: the

triple-pole Pomeron (log-squared term) and the empirical ansatz introduced by Amaldi

et al. in the 1970s [130] given by a log-raised-to-γ term, where γ is a real free parameter.

We denote the two terms by L2 and Lγ, respectively.

Alongside, two analytical ways of relating the real and imaginary parts of the elastic

scattering amplitude in the forward direction were explored: the Derivative Disper-

sion Relations (DDR) and the Asymptotic Uniqueness (AU), the latter based on the

Phragmén-Lindelöff theorems.

DDR are derived from the Integral Dispersion Relations (IDR) in the so-called high-

energy limit. However, the consideration of the effective subtraction constant (Keff),

as introduced in Section 5.3.2, takes into account the corrections to this limit, at least

in first order. Applying DDR in the Lγ model gives us analytical results for the real

part5, which recover the L2 equations when γ is fixed to the value 2. Therefore, we can

understand the Lγ model in the DDR approach as a generalization of the L2 model for

a real exponent of ln s. Given the introduction of the Keff, we denote these models as

FMS-L2 and FMS-Lγ.

On the other hand, even if the AU approach allows for an analytic determination

of the real and imaginary parts from a real-valued function, this method is based on

the behaviour of the chosen function in the asymptotic limit (s → ∞). Moreover,

the resulting amplitude from a lnγ s function has oscillatory energy-dependent factors

appearing in front of the leading term lnγ s, which do not have an interpretation within

Regge-Gribov formalism. Another drawback is the fact that setting γ = 2 in the Lγ

model does not recover the L2 result in this approach, resulting in a conceptual difference

between AU and DDR approaches (in what concerns Lγ law). Since fixing γ = 2 in the

Lγ model does not recover the L2 model, we have three models in this approach that we

denote AU-L2, AU-Lγ and AU-Lγ = 2. In what concerns the fit to experimental data

and the AU approach, we have considered only the last two models.

Based on these considerations, we conclude that the DDR approach with the effective

5We recall that Amaldi et al. [130] have considered IDR, which demand numerical integration for
functions like lnγ s.
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subtraction constant is, at least from the analytical point of view and considering the

Regge-Gribov interpretation, the appropriate way to connect real and imaginary parts

of the forward amplitude.

We performed simultaneous fits to σtot and ρ data including recent data obtained in

the LHC by TOTEM and ATLAS Collaborations. We also took into account the present

discrepancies in the TOTEM and ATLAS σtot measurements at 7 and 8 TeV by means of

different ensembles of data. Up to the Tevatron energy (1.8 TeV), all ensembles comprise

the same data (collected from the PDG website). Three ensembles were considered: one

including only TOTEM data (denoted T), one including only ATLAS data (denoted A)

and another one with all available data included (denoted T+A).

All data reductions led to consistent description of the experimental data analysed,

with reduced chi-squared smaller for FMS models than those for AU models. Interesting

enough, all fits with FMS models have γ central values ≥ 2, while fits with AU models

give γ central values < 2. Of course, considering the associated uncertainties, the results

obtained with FMS-Lγ with ensembles A and T+A and AU-Lγ with ensemble T are

compatible with 2. Another interesting fact is the similarity between the result from

FMS-Lγ with ensemble T+A (γ = 2.16 ± 0.16) and the result obtained by Amaldi et

al. (2.10 ± 0.10). At last, we may infer a range of possible values for the γ parameter:

1.9 . γ . 2.4 in the FMS approach and 1.7 . γ . 2.2 in AU approach.

Another advantage of FMS-Lγ model is to have the slope and curvature (in respect

of the variable ln s) energy dependent. Using the parameters obtained in the fit, it is

clear that TOTEM data points to a faster rise of σtot than ATLAS data.

We also mention that even if the lnγ s term with γ > 2 may indicate a faster rise than

allowed by the FML bound, this theoretical bound is for asymptotic energies (s→ ∞)

and here we analysed energies up to 8 TeV. This rise faster than ln2 s may be a local

effect, and the ln2 s behaviour may be recovered as energy get larger. Nonetheless, we

recall that even with γ > 2, the values of σtot are less than the numerical limit given by

Eq. (5.3).

At last, we note that most analyses with the Lγ law, with γ as a free fit parameter,

favor real (not integer) γ values (above or below 2). If that is really the case, the

associated singularity cannot be a triple pole (γ = 2), but, as we have shown, a branch

point singularity.

In the next chapter, we will focus on the subleading terms to the total cross section

based on recent nonperturbative QCD results by Giordano and Meggiolaro [2].
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Chapter 6

Studies on Subleading Contributions to the

Hadronic Total Cross-Section

6.1 Introduction

In the previous chapter, we focused on the leading behaviour of the total cross

section at high energies and two approaches to connect the real and imaginary parts of

the amplitude by means of fits to experimental data. Two leading terms were considered:

a log-squared term (ln2 s) and a log-raised-to-γ term (lnγ s). The parametrizations were

based on the Regge-Gribov Phenomenology.

As discussed along the text, the energy dependence of σtot is an intrinsically nonper-

turbative QCD problem, since it is connected to the elastic scattering amplitude at zero

transferred momentum through the optical theorem, Eq. (5.1). In this chapter, based

on a nonperturbative QCD approach for the elastic scattering at asymptotic energies,

our focus concerns the subleading contributions to the hadronic total cross sections. By

means of fits to experimental data, we will estimate and compare the contribution, at

the present energies, of two subleading terms predicted in the aforementioned approach.

The chapter is based on the research presented in Ref. [186].

This study is based on the nonperturbative approach proposed by Nachtmann [187] to

describe elastic scattering of quarks. This approach was extended by several authors [188–

191] to describe elastic scattering of composite particles (hadrons). Specifically, we start

from the recent results obtained by Giordano and Meggiolaro [2], which connect the

coefficients of the asymptotic leading (∼ ln2 s) and subleading (∼ ln s ln ln s) terms with

the QCD spectrum. As will be show later, these two coefficients are universal, in the

sense that they do not depend on the properties of the particles involved in the scattering

process. On the other hand, a second subleading term is obtained (∼ ln s). However,

this contribution is reaction dependent.

In order to compare the two subleading terms, we performed fits to σtot data con-
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sidering several variants of the parametrizations, in what concerns the presence or not

of these terms. As the leading term, we considered only the ln2 s contribution which

emerges in a QCD approach under specific assumptions. Two different datasets were

also considered. First, only fits do pp and p̄p data were taken into account. After that,

to test the universality of some terms, we included data from other meson-baryon and

baryon-baryon scattering.

The chapter is organized as follows. In Section 6.2 we present a summary of theoretical

results of interest for this work, namely a nonperturbative QCD approach to elastic

hadronic scattering. In Section 6.3 we discuss our choice to parametrize σtot followed by

a description of our dataset and our methodology in Section 6.4. The results of fits to

experimental data are presented and discussed in Section 6.5. Finally, the conclusions

are the contents of Section 6.6.

6.2 A Nonperturbative Approach to Hadronic Elas-

tic Scattering

6.2.1 Hadron-hadron scattering

Otto Nachtmann proposed, in his seminal paper [187] back in 1991, a nonperturba-

tive approach in the framework of QCD, using functional integral techniques to describe

quark-quark elastic scattering in the large s and small |t| ≪ s regime (eikonal approxima-

tion). In this case, the quarks may be described as traveling on their classical and almost

unperturbed trajectories and the amplitude describing the elastic scattering depends on

the properly normalized correlation function of two infinite lightlike Wilson lines that,

in turn, run along the above-mentioned classical trajectories [192–196].

This formalism was pushed forward to describe meson-meson elastic scattering. In

this case, the amplitude depends on the correlation function of two Wilson loops [188–

191] that run along the trajectories of the colliding hadrons. Specifically, these Wilson

loops correspond to two colour dipoles of fixed transverse size Ri⊥ and fixed longitudinal-

momentum fractions fi (i = 1, 2). The correlation function gives us the amplitude

describing the scattering of two dipoles, F dd(s,t; ν1,ν2), where νi ≡ (Ri⊥,fi) is a short

notation for the dipole variables. We then need to fold the dipole-dipole scattering

amplitude with the meson wave functions ψi(Ri⊥,fi) in order to obtain the hadron-

hadron scattering amplitude

F ab(s,t) =

∫

d2R1⊥

∫ 1

0

df1|ψ1(R1⊥,f1)|2
∫

d2R2⊥

∫ 1

0

df2|ψ2(R2⊥,f2)|2F dd(s,t; ν1,ν2)

≡ 〈〈F dd(s,t; ν1,ν2)〉〉,
(6.1)



Chapter 6. Studies on Subleading Contributions to the Hadronic σtot 123

where 〈〈 〉〉 denotes the integral with the wave functions in the dipole variables Ri and

fi . We also consider normalized wave functions

∫

d2Ri⊥

∫ 1

0

dfi|ψi(Ri⊥,fi)|2 = 1 (i = 1, 2), so that 〈〈1〉〉 = 1. (6.2)

The Wilson loops are defined in Minkowski space and run in the paths formed by

the classical trajectories of the quark and antiquark that constitute the mesons. These

loops form a hyperbolic angle in the longitudinal plane

χ ≃ ln(s/mamb).

Cuts in the paths at proper times ±T are introduced in order to regularize infrared

divergences and in these cuts the loop is closed by straight-lines to preserve gauge

invariance. At some point, we take the limit T → ∞. Meggiolaro and collaborators have

showed that the Minkowskian correlation function GM(χ;T ; z⊥; ν1,ν2) can be obtained

from the Euclidean correlation function of two Euclidean Wilson loops by means of

analytic continuation [197–201]. This correlation function reads

GE(θ;T ; z⊥; ν1,ν2) ≡
〈WE[C(T )

1 ]WE[C(T )
2 ]〉E

〈WE[C(T )
1 ]〉E〈WE[C(T )

2 ]〉E
− 1, (6.3)

where 〈 〉E means the average in the sense of the Euclidean QCD functional integral

and z⊥ is the impact parameter. In turn, the Euclidean Wilson loop along a path C is

defined by

WE[C] ≡ 1

Nc

Tr P̂ exp

{

−ig
∮

C

AEµ(xE)dxEµ

}

, (6.4)

with Nc denoting the number of colours, P̂ the path-ordering operator (with larger values

of the path parameters on the left), AE(xE) the gauge field in the Euclidean space and

xE the coordinates in Euclidean space. The relevant Wilson loops that contribute to

the correlation function are shown in Figure 6.1. For more details about how the paths

Ci are defined see Ref. [2].

We denote the correlators, after taking the limit T → ∞, as

CE(θ,z⊥; ν1,ν2) ≡ lim
T→∞

GE(θ;T ; z⊥; ν1,ν2), (6.5)

CM(χ,z⊥; ν1,ν2) ≡ lim
T→∞

GM(χ;T ; z⊥; ν1,ν2). (6.6)

The angle θ appearing in the Euclidean correlation function is inside the range

θ ∈ (0,π) and the analytic continuation consists in taking the limit of θ going to complex

values, θ → −iχ, with χ ≃ ln(s/mamb) ∈ R
+. Therefore, we have CM(χ) = CE(θ →

−iχ).
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Figure 6.1: The relevant Wilson loops (in Euclidean space) to the elastic scattering
amplitude. Figure taken from Ref. [2].

Finally, the dipole-dipole scattering amplitude in terms of the correlation function

reads

F dd(s,t) ≡ −2is

∫

d2z⊥e
iq⊥·z⊥CM(χ; z⊥; ν1,ν2), (6.7)

where q⊥ is the transferred momentum (t = −|q⊥|2).
Taking advantage of invariance under rotation of Minkowskian theory, we get for the

hadron-hadron scattering amplitude [2]

F ab(s,t) = −4πis〈〈
∫ ∞

0

bdbJ0(b
√
−t)CM(χ;b⊥; ν1,ν2)〉〉0, (6.8)

where the subscript 0 indicates the assumption that the wave functions are rotational

invariant and b⊥ = (b,0) with b = |z⊥| is the impact parameter rotated to coincide with

the Euclidean “time”. Comparing with Eq. (2.30) we see that, apart from the folding

with the mesons wave functions, the equation above is the Fourier-Bessel transform

relating the amplitude with the profile function. Therefore, the Wilson loop correlation

function is related to the profile function.

6.2.2 Connecting σtot(s) to the QCD Spectrum

In Ref. [2], Giordano and Meggiolaro have connected the asymptotic behaviour of the

total cross section with the QCD spectrum. In this section, we summarize the results
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obtained in this approach.

To be able to connect the formalism discussed in the previous section, we need to

consider the Wilson loop operator ŴE in Euclidean space, defined by

ŴE[C] ≡ 1

Nc

Tr T̂ P̂ exp

{

−ig
∮

C

ÂEµ(xE)dxEµ

}

, (6.9)

where T̂ represents the time-ordering operator (acting on the Euclidean time) and the hat

symbol indicates an operator. Now, the average of one or more Wilson loops appearing

in the correlation function is rewritten as a vacuum expectation value of the Wilson

loop operators

〈WE[C1] . . .WE[Cn]〉E = 〈0|T̂
{

ŴE[C1] . . . ŴE[Cn]
}

|0〉. (6.10)

This relation works as a bridge between the functional-integral formalism and the

operator formalism. Finally, the correlation function reads

GE(θ;T ; b; ν1,ν2) ≡
〈0|T̂

{

ŴE[C(T )
1 ]ŴE[C(T )

2 ]
}

|0〉E
〈0|ŴE[C(T )

1 ]|0〉E〈0|ŴE[C(T )
2 ]|0〉E

− 1. (6.11)

The time-ordering operator appearing in the equation above may be dropped if one

considers loops that do not overlap in Euclidean time. This will be the case if the impact

parameter is larger than some b0(ν1,ν2) that depends only on the dipoles variables. In

Ref. [2] this assumption was made, therefore, in what follows, the time-ordering operator

will not be necessary anymore.

To calculate the vacuum-expectation values, we introduce a complete set of states

in Eq. (6.11). Consider the projector for the n-particle states (in a representative form,

for more detail see Ref. [2])

|n〉〈n| ≡ 1

n!

∑

α

δNα,nPα

∑

{s}α

∫

dΩα|α,{p}α,{s3}α〉〈α,{p}α,{s3}α|, (6.12)

where |α,{p}α,{s3}α〉 represents the asymptotic states of the theory, which contains any

number of particles (including bound states) with non-zero mass. The index α contains

information about the particle content of the state, {p}α and {s3}α represent the sets

of all momenta and all third component of spin of the particles in the state, respectively.

We also have in Eq. (6.12) a sum over the particle content of state |α, . . . 〉, the total

number of particles Nα in state |α, . . . 〉, a combinatorial factor Pα, the sum over the

spins of the particles of the state |α, . . . 〉 and an integration over the phase space dΩα.

It follows that (noting that the n = 0 term cancels with the −1 appearing in
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Eq. (6.11))

GE(θ;T ; b; ν1,ν2) =
∞
∑

n=1

〈0|ŴE[C(T )
1 ]|n〉

〈0|ŴE[C(T )
1 ]|0〉

〈n|ŴE[C(T )
2 ]|0〉

〈0|ŴE[C(T )
2 ]|0〉

=
∞
∑

n=1

1

n!
Gn(θ;T ; b; ν1,ν2),

(6.13)

where Gn(θ;T ; b; ν1,ν2) contains all the information about the Wilson-loop matrix ele-

ments

W (T )
α ({p}α,{s3}α; νi) =

〈0|ŴE[C(T )
i ]|α,{p}α,{s3}α〉

〈0|ŴE[C(T )
i ]|0〉

, (6.14)

W
(T )

α ({p}α,{s3}α; νi) =
〈α,{p}α,{s3}α|ŴE[C(T )

i ]|0〉
〈0|ŴE[C(T )

i ]|0〉
. (6.15)

The next important step is to continue analytically the correlator from Euclidean to

Minkowskian space, with the limit T → ∞ taken. For this, two crucial assumptions are

made:

❼ the analytic continuation can be done term by term, i.e., for each state contribution

separately;

❼ the Wilson loop matrix elements are analytic in θ, in a complex domain that

includes the real segment (0,π) and the negative imaginary axis.

Once the analytic continuation is done and the large b and large s limits are taken,

the Wilson loop correlator can be written in a general way as

CM(χ; b; ν1,ν2) ∼ g(w; ν1,ν2) − 1 (s→ ∞), (6.16)

where w is a specific combination of the hyperbolic angle χ = χ(s) ∼ ln(s/mamb) and b,

w(χ,b) ≡ e(s̃−1)χe−m̃b

√
m̃b

. (6.17)

In the above equation, s̃ and m̃ are respectively the spin and mass of the state that

maximizes the following ratio involving the spin s and mass m

l ≡ s− 1

m
(6.18)

considering the QCD-stable spectrum1 (excluding, however, particles with spin 0 and 1

and zero mass). At last, g is a power series of w whose coefficients depend on the dipole

variables. From unitarity we also have |g| ≤ 1.

1By QCD stable, we mean all particles that are stable under strong interactions.



Chapter 6. Studies on Subleading Contributions to the Hadronic σtot 127

To obtain the dependence with s of the elastic scattering amplitude and then calculate

the asymptotic limit of σtot, some assumptions on the asymptotic behaviour of this

function g are necessary. Below, we describe the cases considered in Ref. [2] and the

corresponding result obtained for the total cross section.

1. g → 0 or g oscillates as its argument goes to ∞. Both cases lead to the following

behaviour

σab
tot(s) →

2π

m̃2
η2 + O(η), (6.19)

with

η =
1

2
W (2e2(s̃−1)χ) = (s̃− 1)χ− 1

2
ln[(s̃− 1)χ] +

ln[(s̃− 1)χ]

4(s̃− 1)χ
+ . . . , (6.20)

where W is the Lambert W function [202] and the O(η) depends on the dipole

variables.

Therefore, this result has a leading term ln2(s/mamb) which is in agreement with

Froissart-Martin bound, and its coefficient is universal, in the sense that it does

not depend on the scattered particles (since it does not depend on νi).

2. g → g∞(ν1,ν2) as its argument goes to ∞, i.e., g goes to a constant value that in

principle can depend on νi. From the bound |g| ≤ 1, we can write g∞(ν1,ν2) =

e−ρ∞(ν1,ν2)eiφ∞(ν1,ν2), with ρ∞(ν1,ν2) > 0. From analyticity and crossing symmetry

of the amplitude, we have φ∞(ν1,ν2) = 0 or π, therefore independent of the dipole

variables. The total cross section then reads

σab
tot(s) →

2π

m̃2
κabη2 + O(η), (6.21)

where κab ≡ 1 ∓ 〈〈e−ρ∞(ν1,ν2)〉〉. This case breaks the universality of the previous

cases since, in principle, κab may depend on the colliding particles. The universality

would be preserved if, at the same time, ρ∞(ν1,ν2) = ρ̄∞, independently of the

dipole variables νi. Therefore, κab → κ ≡ 1 ∓ e−ρ̄∞ , independent of νi. The cross

section then reads (using Eq. (6.20) to expand η)

σab
tot(s) → κ

[

Bth ln2

(

s

mamb

)

+ Cth ln

(

s

mamb

)

ln ln

(

s

mamb

)]

+ O(η), (6.22)

with

Bth = 2π
(s̃− 1)2

m̃2
, (6.23)

Cth = −2π
(s̃− 1)

m̃2
(6.24)
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and ratio
Bth

Cth

= 1 − s̃. (6.25)

Therefore, we have a leading term and a subleading term, both with universal

coefficients, to the total cross section for s→ ∞. The equation above reduces to

the one obtained in case 1 when κ = 1. In any case, analyticity requires κ to be

real, and unitarity requires that κ ∈ [0,2].

We also want to mention another subleading term of order O(η), i.e., Qab ln(s/mamb)

found in Ref. [2] (see Eq. (6.22)). Contrary to the leading term and the subleading term

discussed above, this subleading term has a coefficient Qab that depends on the colliding

particles, since it is related to the integral of the correlator over the dipole variables [2],

even if our assumption on κ is met.

Summarizing, we have the following general result for the leading and two subleading

components at asymptotic energies

σab
tot(s) ∼ κ

[

Bth ln2

(

s

mamb

)

+ Cth ln

(

s

mamb

)

ln ln

(

s

mamb

)]

+Qab ln

(

s

mamb

)

(6.26)

Values of Bth and Cth

Considering the QCD-stable spectrum, the particle with spin greater than 1 that

maximizes Eq. (6.18) is the Ω± baryon, with mass mΩ± ≈ 1.67 GeV and spin 3/2, that

gives

BΩ
th = 0.22 mb and CΩ

th = −2BΩ
th = −0.44 mb. (6.27)

Now, if one considers the quenched limit of the theory (or the limit of large number of

colours Nc), only the glueball states need to be considered. Of interest here (for details

see ref. [2]) are the glueball states 2++, with mass mg2++ ≈ 1.40 GeV, and 3+−, with

mass mg3+− ≈ 3.55 GeV (both calculated in the quenched approximation), for which

one finds:

Bg2++

th = 0.42 mb and Cg2++

th = −Bg2++

th = −0.42 mb, (6.28)

Bg3+−

th = 0.78 mb and Cg3+−

th = −Bg3+−

th /2 = −0.39 mb. (6.29)

The value calculated for the Ω± baryon is the closest to the value determined in

the fits to forward quantities (with
√
s ≥ 5 GeV) published in the Review of Particle

Physics by the Particle Data Group in 2014: BPDG2014 = 0.2704 ± 0.0038 mb [36]. A

fit with
√
s ≥ 7 GeV was also performed and the result is BPDG2014 = 0.2838 ± 0.0045

mb.
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Further comments on κ

With the formalism discussed above, we can also obtain the leading behaviour of the

elastic scattering amplitude in the limit s→ ∞. In the cases considered above, we have

F ab(s,t) ∼ 4πisκ
( η

m̃

)2 J1(x)

x
, with x = η

√
−t/m̃ (s→ ∞). (6.30)

Here, we have assumed the universality of the leading term, hence κ does not depend

on the scattering particles and this result corresponds to the case 2 discussed above. If

κ = 1, we recover the case 1. The equation above has a very familiar form: it represents

the black-disk behaviour (if κ = 1) or a grey disk (if κ < 1).

If we integrate Eq. (6.30) in t, we obtain (assuming that the small-t region gives the

dominant contribution) the asymptotic integrated elastic cross section (σel) and, using

the result obtained for the total cross section, we get for the asymptotic value for the

ratio σel/σtot
σel
σtot

∼ κ

2
(s→ ∞). (6.31)

Therefore, recalling our discussion in Section 4.2, if κ = 1 we have indeed a black

disk (σel/σtot = 1/2), if κ < 1 a grey disk (σel/σtot < 1/2) and if κ > 1 we have the

antishadowing regime (σel/σtot > 1/2) [75, 76].

Moreover, following the discussion in Section 2.5 and comparing the equation above

with Eq. (2.43) for the grey-disk model, we identify κ ↔ Γ0, i.e. κ is connected to the

central value of the profile function and, at least in first order, to the central opacity of

the colliding particles.

Along the chapter, we will assume that κ is independent of the dipole variables

νi. A more general analysis should have this parameter to be particle dependent and,

moreover, to be a free parameter. In this case, the universality, if true, should be present

in the fit results. However, to have κab free would increase the number of free parameter.

Therefore, we shall consider κ to be a universal parameter.

6.2.3 Subleading Term of σtot from Other Analyses

A subleading term to σtot in the form ln s ln ln s has appeared before in other analyses.

In this section we list these works and present some differences and connections with

the result discussed in the previous sections.

❼ Martin and Roy (MR) published in 2014 a bound to the mean value of σtot [203]

σ̄tot(s,∞) ≡ s

∫ ∞

s

ds′
σtot(s

′)

s′2
≤ π

m2
π

[ln(s/s0) +
1

2
ln ln(s/s0) + 1]2 (6.32)
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with s0 = m2
π/(17π

√

π/2) ≈ 2.72 × 10−4 GeV2 for π0π0 scattering. Therefore

σ̄tot(s,∞) ≤ π

m2
π

[ln2(s/s0) + ln(s/s0) ln ln(s/s0) + . . . ] (6.33)

being, in respect to our notation, BMR = CMR = π/m2
π and

BMR

CMR

= 1. (6.34)

❼ In a recent work based in AdS/CFT, Dı́ez et al. [204] (AdS/CFT) presented an

improvement in the Froissart bound that reads

σ
AdS/CFT
tot (s) ≤ π

M2
1

[

1

4
ln2(s/s0) + β ln(s/s0) − ln(s/s0) ln ln(s/s0)

]

, (6.35)

where M1 and β depend on the parameters of the model and s0 = 2m2
p. In this

case we have BAdS/CFT = π/4M2
1 and CAdS/CFT = −π/M2

1 , therefore

BAdS/CFT

CAdS/CFT

= −1

4
. (6.36)

It is important to note that the authors do not address the dependence of the

leading and subleading terms on the colliding particles.

❼ Nastase and Sonnenschein (NS) have published [205] a revision of Heisenberg’s

model [206] that admits the Froissart bound to be saturated. In their calculations,

they determine a correction for the leading term of σtot at asymptotic energies

σNS
tot(s) ∼

π

4m2
π

[

ln2(s/s0) − 2 ln(s/s0) ln ln(s/s0) + ln2(ln(s/s0))
]

, (6.37)

giving BNS = π/4m2
π, CNS = −π/2m2

π and

BNS

CNS

= −1

2
. (6.38)

We would like to point out that the π/4m2
π factor appearing in σNS

tot(s) is four times

smaller than the maximum value determined by Lukaszuk and Martin [25]. In

the NS paper, s0 is equal to 〈k0,π〉, the average emitted energy per pion [205],

calculated in the context of Heisenberg’s model.

Regarding the result obtained by Giordano and Meggiolaro (GM), the ratio Bth/Cth,

Eq. (6.25), depends on the spin s̃ of the QCD-stable particle that maximizes the ratio



Chapter 6. Studies on Subleading Contributions to the Hadronic σtot 131

of Eq. (6.18). To be able to reproduce the above-reported ratios, we would need s̃ = 0

for the MR case and this is not supported by GM calculations since particles with spin

0 and 1 are excluded. Also the AdS/CFT case is not supported by GM calculations,

since it would require the unphysical value s̃ = 5/4. Instead, the NS case is consistent

with the GM calculations, provided that s̃ = 3/2 (the spin of the Ω± baryon). However,

the coefficients multiplying the ln2 s and ln s ln ln s terms are different, since in GM the

mass of the Ω± baryon is used, while in NS appears the pion mass.

6.3 Parametrization for the Total Cross Section

In this section, we present the parametrization used in the fits to the total cross

section data.

For clarity and future reference, we will divide the total cross section in two parts:

the contribution to low energies (LE) and to high energies (HE), so that

σtot(s) = σLE(s) + σHE(s). (6.39)

Similar to Chapter 5, we parametrize the low-energy dependence of σtot(s) in the

scattering region by means of a Reggeon exchange in the t−channel, following Regge

Theory [18,125]. From our discussion in Section 5.2 and with a suitable notation here,

this contribution reads

Rab
i (s) = Aab

i

(

s

sab0

)−bi

(i = 1, 2), (6.40)

where Aab
i is associated to the residue function and bi to the intercept of the Reggeon

trajectory αi(t), i.e. bi = 1 − αi(0). We consider two Reggeon contributions: one

corresponding to a trajectory with even signature (i = 1) and another one with odd

signature (i = 2). The latter contributes with a minus sign to ab scattering and with

a plus sign to the crossed channel, āb. Summarizing, the low-energy parametrization

reads2

σa±b
LE (s) = Aab

1

(

s

sab0

)−b1

∓ Aab
2

(

s

sab0

)−b2

. (6.41)

The high-energy contribution is parametrized by a Pomeron exchange. We consider

a critical Pomeron with αP(0) = 1, which contributes as a constant, and a triple pole

with αP(0) = 1, giving a log-squared contribution to σtot(s) that is in accordance with

the leading term obtained in [2] and with the Froissart-Martin upper bound for the

total cross section (see Section 2.7). We include the two subleading terms discussed in

2In LHS of the equations, a+ ≡ a, representing a positive charged particle, and a− ≡ ā corresponds
to its antiparticle.
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Section 6.2.2: ∼ ln s · ln ln s and ∼ ln s. Therefore, the high-energy term reads

σa±b
HE (s) = Aab

P
+ κ

[

B ln2

(

s

sab0

)

+ C ln

(

s

sab0

)

ln ln

(

s

sab0

)]

+Qab ln

(

s

sab0

)

(6.42)

where, following the analysis of Ref. [2] (see Sect. 6.2), B and C are treated as universal

parameters, while Qab, as well as Aab
1 , Aab

2 and Aab
P

, are reaction-dependent. As already

said at the end of Sect. 6.2.2, we will also assume (as in Ref. [2]) that κ is independent

of the properties of the scattering particles. The energy scale is a fixed parameter and

depends only on the masses of the scattering particles3

sab0 = mamb. (6.43)

Moreover, Qab is taken to be crossing-symmetric, i.e., Qāb = Qab. This means that we

are neglecting here a possible Odderon contribution4 to the total cross sections. Notice

that also the PDG and the highest-rank COMPETE parametrizations of the total cross

sections are crossing-symmetric.

Summarizing, the parameters Aab
i (mb), bi (dimensionless) [i = 1, 2] and Aab

P
(mb)

are always free parameters to be determined in the fits. The parameters B (mb), C

(mb), Qab (mb) and κ (dimensionless) can be either fixed or free, as detailed below in

the descriptions of our variants of fits.

The names of the variants are written using the following notation:

❼ LT stands for Leading Term and SLT for Sub-Leading Term;

❼ the subscript “th” refers to the case where we fix B (LTth) or both B and C

(SLTth) to the theoretical values discussed in Section 6.2.2;

❼ the subscript “κ”, after the first subscript and separated by a comma, indicates

that the parameter κ is free (for instance, SLTth,κ);

❼ by default, the coefficient Qab of the logarithmic term is fixed to zero: in those

cases in which a nonzero logarithmic term is considered (Qab free), we shall add a

“Q” in front of the variant name (for instance, QLTth).

The main variants considered here are described below.

❼ LT: κ = 1, C = 0 and Q = 0 are fixed parameters, while B is free. This

case (in which the subleading terms are absent) corresponds analytically to the

3Note that this scale is different from what was used in the previous chapter. Here, we followed the
scale used in [2].

4The Odderon is the odd “version” of the Pomeron. It carries the quantum numbers of the vacuum
but has an odd signature.
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parametrization used by the PDG in their analysis of forward data [33] and to the

highest-rank result obtained by the COMPETE Collaboration [32,127] (see below

for more details). As mentioned above, when Q is included as a free parameter, we

shall denote this variant as QLT. The same rule also applies to the other variants.

❼ SLT: κ = 1 and Q = 0 are fixed parameters, while B and C are free parameters.

This case corresponds to the previous parametrization with the inclusion of the

subleading term.

❼ LTth: κ = 1, B = Bth, C = 0 and Q = 0 are fixed parameters. This variant has B

fixed to the theoretical values discussed in Sect. 6.2.2 and no subleading term is

included.

❼ SLTth: κ = 1, B = Bth, C = Cth and Q = 0 are fixed parameters. This variant

has both B and C fixed to the theoretical values discussed in Sect. 6.2.2.

❼ SLTth,κ: B = Bth, C = Cth and Q = 0 are fixed parameters, while κ is a free

parameter.

The main difference between our LT parametrization, the highest-rank result by

COMPETE, and the PDG parametrization is in the energy scale appearing in the

leading term ln2 s. In the COMPETE analysis, the energy scale s0 is a free parameter,

which does not depend on the scattering particles. Our energy scale, on the other hand,

is fixed and depends only on the masses of the scattering particles, sab0 = mamb. In

the PDG analysis this scale depends on the masses of the colliding particles and on

a universal mass scale also entering their parametrization of the coefficient B, so it

contains both a fixed and a free part.

6.4 Dataset and Methodology

In this section, we present our dataset and the methodology used in our fits.

6.4.1 Dataset

Our dataset comprises data from meson-baryon and baryon-baryon scattering, namely

pp, p̄p, pn, p̄n, π±p, K±p and K±n, in the center of mass energy range 5 GeV ≤ √
s ≤

8 TeV. Specifically, for pp scattering in the LHC energies, we have included in the fits

the data5 T1-T5, T8, T9 and A1 of Table 3.1. More details are given in Section 3.1.

We considered in the fits only data from accelerator experiments. However, some

cosmic-ray data [37–39] are shown in the figures just to illustrate the trend with the

5This analysis was developed before the publication of the ATLAS measurement at 8 TeV.
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energy, but they were not included in the fits. Since their uncertainties are large, we do

not expect great deviation from the results obtained without them.

In all cases, we have treated the data points as independent, including those that have

the same energy. For all data we have considered statistic and systematic uncertainties

added in quadrature.

We stress that we are not including data from reactions that involve photons or

deuterons and we do not constrain our fits using the data for the ρ parameter, as done

in the previous chapter and by COMPETE and PDG.

Finally, we mention that there are nine points available for Σ−p scattering in the

energy region of interest [31]. Including these points makes the fits more unstable (due

to the absence of data in the corresponding crossed channel). On the other hand, these

data present large errors and they do not affect the final result. Therefore, in what

follows we will consider only fits without this dataset.

6.4.2 Methodology

As discussed in Sect. 6.2, the leading and subleading terms were obtained for meson-

meson scattering. The authors in Ref. [2] argue that they expect that the leading term

would be the same if one does the calculation for meson-baryon and baryon-baryon

scattering. Here, we also assume that the same is true for the subleading terms, at least

in the phenomenological context. This assumption has also a practical motivation: we

expect that the subleading term becomes important only at high energies and we have

data for meson-baryon scattering only up to mid energies (around 25 GeV). Just for

pp and p̄p (therefore baryon-baryon scattering) we have data available at the TeV scale

thanks to Tevatron (p̄p) and to LHC (pp).6 For this reason, we consider first only fits

using Eqs. (6.39), (6.41), (6.42) to pp and p̄p data and after that, we study fits to all

reactions (Table 3.2).

In order to start from a solid and updated result, we decided to use as initial values

for the LT fit the results reported in the 2016 edition of the Review of Particle Physics

by PDG [33], and then use the results of LT fits as initial values for the SLT fits. In

this way, fitting first LT (that essentially corresponds to the PDG parametrization) we

create a reference for discussing differences when we include the subleading terms as

well (SLT, QLT), instead of comparing directly with the PDG result. However, this

procedure presented some problems when considering the fit to all hadronic data (see

below in Sect. 6.5.2). In that case, we decided to use as initial values for the parameters

B and C in the SLT fit to all data the results obtained in the SLT fit to pp/p̄p data.

For the other parameters, we used the results obtained in the LT fit to all data. The

detailed scheme is shown in Fig. 6.2, where X → Y means that the results of variant X

6Remember that we are not considering data from cosmic-rays in the data reductions.
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were used as initial values for the fit with variant Y .

As discussed in Chapter 3, we use the reduced chi-squared as a measure of goodness

of fit [41, 42].

At last, we note that the variant LTth,κ is the same as LT, except for a rescaling of the

parameter B → κBth. Therefore, it will not bet considered in our fits and discussions.

PDG 2016

LT

SLT

LTth

QLT, QLTth

SLTth, SLTth,κ

QSLT, QSLTth, QSLTth,κ

Figure 6.2: Initial-value scheme used in the fits.

6.5 Fit Results

In this section, we present the results obtained in the fits, first to pp and p̄p data

only and after that to all reactions, considering all the variants. Finally, we compare

and discuss the obtained results.

6.5.1 Fits to pp and p̄p Data

The parameters obtained in fits to pp and p̄p data with LT, SLT and QLT are shown

in Table 6.1, those with LTth, SLTth and SLTth,κ in Table 6.2 and those with QLTth,

QSLTth and QSLTth,κ in Table 6.3. The curves calculated with the parameters of LT,

SLT and QLT are compared to the experimental data in Fig. 6.3, and those of SLTth,κ

and QSLTth,κ in Fig. 6.4. Below we discuss the results that we have obtained using the

different variants, first without the inclusion of the ln s term, Q = 0 (itens a, b and c)

and after that by including it (item d).

a) Fits with LT (κ = 1, B free, C = 0, Q = 0) and SLT (κ = 1, B and C free,

Q = 0)

The results obtained with variants LT and SLT present good description of data.

There is a small decrease in the value of χ2/ν going from LT to SLT. However, as

discussed in Section 6.4.2, we cannot favour one variant with respect to the other on the

basis of this value. Given that both are . 1, we can say that both variants result in

good fits to data.
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In SLT, we have obtained C < 0 as expected and C 6= 0 within the uncertainty.

The negative value of C causes an increase in the B parameter and also in AP. The

uncertainty in AP increases one order of magnitude, but the relative uncertainty is still

small (∼ 5.6%).

Given the small difference between the values of χ2/ν of LT and SLT mentioned

above, we cannot claim that the fit with the subleading term represents an improvement

with respect to the fit without it. We can only say that we are able to estimate the

value of C.

Regarding the Reggeon trajectories, b2 is practically stable and we see an increase

of b1 when C is a free parameter. The values of b1 and b2 in SLT are compatible within

the uncertainties. Therefore, we may suppose that the presence of the subleading term

turns the intercept of the trajectories degenerate αR1(0) ≈ αR2(0), at least within the

errors. Observe that we also see an increase in A1 while A2 is stable. A similar effect was

observed by COMPETE in Ref. [127] when discussing their highest-rank result (similar

to LT). In that case, the degeneracy of the Reggeon intercepts was attributed to a

decreasing contribution of the log-squared term for s < sh, where sh is the energy scale

determined in the fit.

It is important to stress that the values of b1 and b2 obtained in LT are not far from

the values obtained by the PDG and also in other analyses (for instance, the one by

Menon and Silva in Ref. [46] and those presented in Chapter 5).

Table 6.1: Results of fits with LT (κ = 1, B free, C = 0, Q = 0), SLT (κ = 1, B and C
free, Q = 0) and QLT (κ = 1, B free, C = 0, Q free) to σtot data of pp and p̄p scattering.
Parameters A1, A2, AP, B, C and Q are in mb, while b1, b2 and κ are dimensionless.

Fits to σtot
LT SLT QLT

B 0.2269(38) 0.349(29) 0.311(19)
C 0 (fixed) -0.95(21) 0 (fixed)
κ 1 (fixed) 1 (fixed) 1 (fixed)
Q 0 (fixed) 0 (fixed) -2.40(48)
b1 0.342(15) 0.560(76) 0.586(89)
b2 0.539(15) 0.541(16) 0.541(16)
A1 56.8(1.7) 64.4(8.2) 60.6(8.7)
A2 35.2(2.5) 35.6(2.5) 35.6(2.5)
AP 24.77(60) 35.7(2.0) 41.7(3.0)
χ2/ν 0.972 0.933 0.934
ν 165 164 164

As already commented in Section 6.2.3, the subleading term ∼ ln s·ln ln s also appears

in other approaches. In Ref. [204], this term arises from an AdS/CFT approach together

with a ∼ ln s term [see Eq. (6.35)]. The authors also perform fits to σtot data from pp

and p̄p scattering in order to determine what is the dominant subleading contribution to
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The values of B and C calculated with the mass and spin of Ω± baryon are

displayed in Eq. (6.27), namely Bth = 0.22 mb and Cth = −0.44 mb. In LTth,

we have B = Bth and C = 0 fixed. This result is close to the one obtained

using LT. This can be seen by the value of B in the second column in Table 6.1:

0.2269 mb ∼ 0.23 mb, very close to Bth. The other parameters and the value of

χ2/ν present small variations compared to LT. We also have a good description

of the experimental data, not shown in figures.

On the other hand, in SLTth, where now C = Cth is fixed, the result is not

satisfactory as the previous variant. In fact, the value of χ2/ν is considerably high,

indicating a poor description of the data. We would like to point out that we

have practically no change in the parameters associated with the odd signature

Reggeon contribution, while the intercept of the even trajectory increases going

from LTth to SLTth. The same happens to the A1 parameter.

❼ Bth and Cth for glueball 2++ state

In this case, we consider the (quenched) mass and spin of the glueball 2++ state,

giving Bth = −Cth = 0.42 mb [Eq. (6.28)]. In both variants we get a poor

description of the data with χ2/ν ∼ 3. The intercept of the even Reggeon trajectory

is too small when compared with other cases and we have a negative “constant”

Pomeron contribution (AP < 0). Besides, the fits present a non-positive definite

error matrix. In this case, although the fit has converged, the error matrix may

have some calculation problems and we cannot fully trust in the estimation of

uncertainties of the free parameters [42]. For this reason, we decided not to show

these results in Table 6.2.

The description of data are similar for the two variants, with overestimation of

σtot at LHC energies.

❼ Bth and Cth for glueball 3+− state

Considering the glueball 3+− state, we have (using again the quenched mass)

Bth = 0.78 mb and Cth = − 0.39 mb [Eq. (6.29)]. In these cases, the minimizer

did not converge and, therefore, no solution was obtained.

c) Fits with SLTth,κ (κ free, B = Bth, C = Cth, Q = 0)

In these variants, we consider both B and C fixed with κ free. The parameters

obtained in the fits are shown in Table 6.2 and the corresponding curves for the three

states in Fig. 6.4 (a). With these variants, we may infer the asymptotic scenario for the

colliding particle, since according to Eq. (6.31), the asymptotic ratio between σel and

σtot is given by κ/2.
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Table 6.2: Results of fits with LTth (κ = 1, B = Bth, C = 0, Q = 0), SLTth (κ = 1,
B = Bth, C = Cth, Q = 0) and SLTth,κ (κ free, B = Bth, C = Cth, Q = 0) to σtot
data of pp and p̄p scattering. The values of B and C are fixed to the theoretical values
calculated with the masses and the spins of the Ω± baryon, the 2++ glueball state and
the 3+− glueball state (quenched values), while the parameter Q is fixed to zero. For
the units of measurement of the parameters, see Table 6.1.

Ω± baryon 2++ glueball 3+− glueball
LTth SLTth SLTth,κ SLTth,κ SLTth,κ

Bth 0.22 (fixed) 0.22 (fixed) 0.22 (fixed) 0.42 (fixed) 0.78 (fixed)
Cth 0 (fixed) -0.44 (fixed) -0.44 (fixed) -0.42 (fixed) -0.39 (fixed)
κ 1 (fixed) 1 (fixed) 1.377(18) 0.6159(96) 0.3097(51)
Q 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
b1 0.365(10) 0.743(20) 0.458(20) 0.385(17) 0.361(17)
b2 0.539(15) 0.528(16) 0.540(15) 0.539(15) 0.539(15)
A1 58.5(1.7) 115.3(8.5) 57.5(3.2) 56.0(2.2) 56.3(2.0)
A2 35.3(2.5) 33.7(2.4) 35.4(2.5) 35.3(2.4) 35.2(2.4)
AP 25.75(21) 35.862(74) 32.17(29) 28.13(46) 26.38(55)
χ2/ν 0.987 3.59 0.937 0.957 0.965
ν 166 166 165 165 165

In all the cases considered forBth and Cth values, the fits have good quality (χ2/ν . 1)

with small differences in the χ2 value among them. We see small variations of some

parameters, for instance, A1, b1 and AP. Apart from these differences, the description of

data is the same in the fitted energy range for all cases. As can be seen in Figure 6.4 (a),

the difference at the LHC energies is very small and the results start to be different only

at cosmic-ray energies.

Regarding the value of κ, using the values of Bth and Cth from the Ω± baryon, we

get κ > 1, therefore an antishadowing scenario. For the glueball cases, we get κ < 1,

hence a grey-disk scenario, being the value from the 2++ case larger than the value from

the 3+− case. The connection with the ratio σel/σtot will be discussed in Section 6.5.3.

d) Fits with the inclusion of the logarithmic term (QLT, QSLTth, QSLTth)

In this section, we discuss the effects of including the logarithmic term (Q as a free

parameter) in the fits discussed above. The fit results are displayed in Table 6.3 and

the curves for the three states and variant QSLTth,κ (discussed below) in Fig. 6.4(b).

Considering first the variants with B and/or C as free parameters, the logarithmic

term (in variant QLT) describes the data in the same way as SLT, i.e., with the same

χ2/ν, as can be seen in Table 6.1 and in Fig. 6.3. However, the case in which both

subleading terms are present (QSLT) did not converge when considering only pp and p̄p

data. Given that the ln s term and the ln s · ln ln s term describe the data in similar ways,

we attribute the non-convergence to a competition between these two contributions.
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Table 6.3: Results of fits with QLTth (κ = 1, B = Bth, C = 0, Q free), QSLTth (κ = 1,
B = Bth, C = Cth, Q free) and QSLTth,κ (κ free, B = Bth, C = Cth, Q free) to σtot
data of pp and p̄p scattering. The values of B and C are fixed to the theoretical values
calculated with the masses and the spins of the Ω± baryon, the 2++ glueball state and the
3+− glueball state (quenched values). For the units of measurement of the parameters,
see Table 6.1.

Ω± baryon 2++ glueball 3+− glueball
QLTth QSLTth QSLTth,κ QSLTth,κ QSLTth,κ

Bth 0.22 (fixed) 0.22 (fixed) 0.22 (fixed) 0.42 (fixed) 0.78 (fixed)
Cth 0 (fixed) -0.44 (fixed) -0.44 (fixed) -0.42 (fixed) -0.39 (fixed)
κ 1 (fixed) 1 (fixed) 1.53(10) 0.771(49) 0.407(25)
Q 0.19(12) 1.86(13) -0.69(41) -1.58(45) -2.00(47)
b1 0.335(21) 0.311(18) 0.566(82) 0.576(86) 0.581(88)
b2 0.539(15) 0.538(14) 0.541(16) 0.541(16) 0.541(16)
A1 57.9(1.5) 63.3(1.3) 63.2(8.0) 61.8(8.3) 61.2(8.5)
A2 35.2(2.5) 35.1(2.3) 35.6(2.5) 35.6(2.5) 35.6(2.5)
AP 23.4(1.6) 16.0(1.8) 37.4(3.0) 39.6(3.0) 40.7(3.0)
χ2/ν 0.977 0.985 0.933 0.934 0.934
ν 165 165 164 164 164

a) Fits with LT (κ = 1, B free, C = 0, Q = 0) and SLT (κ = 1, B and C free,

Q = 0)

The results are presented in Table 6.4. With respect to LT, we have a good description

of data with χ2/ν ∼ 1. The same is true for SLT, that we now discuss. When considering

this variant, more care was needed regarding the initial values. Following the same

scheme for the choice of initial values as in the analysis of pp and p̄p data (see Fig. 6.2),

the resulting fit has a non-positive definite error matrix. In order to obtain a more

reliable result (with an accurate error matrix), we changed the initial value for the

parameters B and C: we used the values obtained in the fit to pp and p̄p data with SLT

(Table 6.1) in place of the values obtained in the fits to all reactions with LT. Namely,

B = 0.349 mb and C = −0.95 mb instead of B = 0.2433 mb and C = 0. With this

choice we obtained a more reliable result with an accurate error matrix.

The result presents C < 0 as expected, but with smaller magnitude and uncertainty

than in the SLT fit to pp and p̄p data, although the relative uncertainty is the same

(∼ 22%). We attribute this to the presence of more data at low-energies. On the other

hand, the χ2/ν is practically the same. It is important to mention that here we are

increasing the effect of low-energy data in the estimation of C compared to the pp/p̄p fits,

since we have more low-energy than high-energy data points in the present dataset. In

fact, we have nonzero correlation coefficients between low- and high-energy parameters,

indicating the influence of the low-energy data in the determination of C in the fit. In

Eq. (6.44) we show some correlation coefficients that illustrate this point (see also table
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6 in Ref. [45]):

corr(C,b1) = 0.946, corr(C,App
1 ) = 0.757, corr(C,Aπp

1 ) = 0.822. (6.44)

Apart from these general aspects of the fits, there is still one point that demands

some comments. This point concerns the negative value of the parameter Aπp
P

that

appears in LT, while it changes to a positive value in SLT. This is the only negative

critical Pomeron contribution (although with large errors) in this set of fits. Taking into

account the property of factorization of the residues of the Regge poles [18] (see also the

comments in Ref. [127]), this parameter should be positive. However, factorization is

only proven for simple poles and is valid when only one trajectory dominates [18]. Note

that in this analysis the dominant term is the triple-pole Pomeron (ln2 s) and not the

critical Pomeron. In any case, the value of AP is affected by the choice of the energy

scale in the leading and subleading terms in Eq. (6.42). Therefore, we cannot exclude

this result based on factorization. On the other hand, even with Aπp
P
< 0, we do not

have a negative Pomeron contribution (from the combination of this constant term plus

the ln2 s term) in LT.

b) Fits with LTth (κ = 1, B = Bth, C = 0) and SLTth (κ = 1, B = Bth, C = Cth)

We now discuss the results obtained with B and/or C fixed at the theoretical values

discussed in Section 6.2.2 in the fits to all data.

❼ Bth and Cth for Ω± baryon

The results (2nd and 3rd columns of Table 6.5) obtained in this case are satisfactory

for LTth. In the first case, we have a small increase of the χ2/ν value in comparison

with LT, although this variation is small. For SLTth, we get χ2/ν ∼ 2 while in

SLT we have ∼ 1. However, this increase is less than that observed in the fits to

pp and p̄p data only. Contrary to the fit LT, here in LTth we have that all Ai
P
> 0.

❼ Bth and Cth for glueball 2++ state

The results obtained here with LTth and SLTth have the same features of the fits

to pp and p̄p data, for example, the small b1 parameter. We also note that almost

all Ai
P
< 0. The χ2/ν values are around 1.5, with similar description of data for

both variants. Regarding pp and p̄p, the fits overestimate the data at the LHC

energies, reaching the upper error bar of the TOTEM data. Additionally, both

fits have a non-positive definite error matrix.

❼ Bth and Cth for glueball 3+− state

Again, using the mass and spin of the glueball 3+− state, the fits did not converge.
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Table 6.4: Results of fits with LT (κ = 1, B free, C = 0, Q = 0), SLT (κ = 1, B and C
free, Q = 0), QLT (κ = 1, B free, C = 0, Q free) and QSLT (κ = 1, B, C and Q free)
to σtot (all data). For the units of measurement of the parameters, see Table 6.1.

LT SLT QLT QSLT
B 0.2433(46) 0.2652(96) 0.1646(73) 0.363(28)
C 0 (fixed) -0.200(44) 0 (fixed) -1.32(16)
κ 1 (fixed) 1 (fixed) 1 (fixed) 1 (fixed)
b1 0.222(11) 0.2420(85) 0.2536(92) 0.545(79)
b2 0.5128(99) 0.513(11) 0.530(11) 0.532(11)
App

1 47.86(62) 44.33(91) 69.8(1.7) 64.8(1.7)
App

2 30.8(1.4) 30.8(1.5) 33.73(1.7) 34.2(1.7)
App

P
19.0(1.1) 22.61(22) 6.5(1.3) 33.2(2.6)

Qpp 0 (fixed) 0 (fixed) 2.10(15) 0.94(17)
Apn

1 47.2(1.1) 43.6(1.3) 43.7(5.8) 33.2(7.3)
Apn

2 27.4(1.5) 27.5(1.6) 29.6(1.8) 29.9(1.8)
Apn

P
19.2(1.1) 22.86(36) 22.1(3.8) 40.2(2.5)

Qpn 0 (fixed) 0 (fixed) 0.48(41) 0.025(0.24)
Aπp

1 70.37(99) 67.9(1.7) 63.3(2.3) 69(13)
Aπp

2 15.7(1.0) 15.8(1.1) 16.6(1.2) 16.9(1.2)
Aπp

P
-3.3(1.3) 0.80(31) 1.4(1.1) 24.3(2.1)

Qπp 0 (fixed) 0 (fixed) 0.49(12) -0.28(10)

AKp
1 3.42(57) 30.31(73) 26.3(2.2) 16.8(2.4)

AKp
2 17.54(91) 17.56(96) 18.9(1.1) 19.1(1.1)

AKp
P

1.77(85) 5.09(11) 6.1(1.1) 17.13(92)
QKp 0 (fixed) 0 (fixed) 0.31(13) 0.496(79)
AKn

1 32.72(73) 28.76(77) 16.8(1.3) 7.4(4.4)
AKn

2 9.28(69) 9.30(71) 10.15(77) 10.28(79)
AKn

P
1.93(84) 5.22(14) 10.81(70) 18.1(1.0)

QKn 0 (fixed) 0 (fixed) -0.159(33) 0.35(11)
χ2/ν 1.060 1.063 0.791 0.766
ν 532 531 527 526

c) Fits with SLTth,κ (κ free, B = Bth, C = Cth)

Finally, we discuss the results of the fits with κ as a free parameter. We show in

4th, 5th and 6th columns of Table 6.5 all the parameters determined in the fits with

SLTth,κ. The χ2/ν values are close to 1, indicating that a minimum has been reached.

Furthermore, we get a good description of data in all cases. As in the fit with SLT, the

subleading term Aπp
P

is positive, except when we consider the glueball 3+− state, which

has a negative central value and, considering its uncertainty, is compatible with zero.

The description of data (Fig. 6.5) is also similar to the result of the fit to pp and p̄p

data: in the energy range of the fit, all cases give the same description, presenting small

differences in the extrapolation. We may say that all cases are compatible.

Concerning the κ value, we have κ > 1 for the Ω± baryon and κ < 1 for the glueball
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Table 6.5: Results of fits with LTth (κ = 1, B = Bth, C = 0, Q = 0), SLTth (κ = 1,
B = Bth, C = Cth, Q = 0) and SLTth,κ (κ free, B = Bth, C = Cth, Q = 0) to σtot (all
data). The values of B and C are fixed to the theoretical values calculated with the
masses and the spins of the Ω± baryon, the 2++ glueball state and the 3+− glueball
state (quenched values), while the parameters Qab are fixed to zero. For the units of
measurement of the parameters, see Table 6.1.

Ω± baryon 2++ glueball 3+− glueball
LTth SLTth SLTth,κ SLTth,κ SLTth,κ

Bth 0.22 (fixed) 0.22 (fixed) 0.22 (fixed) 0.42 (fixed) 0.78 (fixed)
Cth 0 (fixed) -0.44 (fixed) -0.44 (fixed) -0.42 (fixed) -0.39 (fixed)
κ 1 (fixed) 1 (fixed) 1.439(23) 0.653(12) 0.3303(64)
Q 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
b1 0.2744(66) 0.554(13) 0.292(14) 0.249(13) 0.234(12)
b2 0.5141(97) 0.515(11) 0.514(10) 0.513(11) 0.513(11)
App

1 47.04(71) 59.0(2.7) 37.99(87) 43.12(57) 45.54(58)
App

2 31.0(1.4) 31.4(1.6) 30.9(1.4) 30.8(1.5) 30.8(1.5)
App

P
23.40(24) 35.159(77) 29.22(51) 23.76(82) 21.29(98)

Apn
1 46.3(1.2) 57.8(3.2) 37.3(1.2) 42.4(1.1) 44.9(1.1)

Apn
2 27.6(1.5) 27.9(1.7) 27.5(1.6) 27.5(1.6) 27.4(1.6)

Apn
P

23.64(37) 35.24(15) 29.44(56) 24.01(87) 21.5(1.0)
Aπp

1 73.5(1.5) 136.9(8.2) 64.8(2.3) 67.0(1.5) 68.6(1.2)
Aπp

2 16.11(98) 16.7(1.1) 16.1(1.0) 15.9(1.1) 15.8(1.1)
Aπp

P
19.84(28) 15.921(83) 8.27(65) 20.8(1.0) -0.69(1.2)

AKp
1 32.53(51) 28.1(1.4) 22.61(49) 28.95(47) 31.68(54)

AKp
2 17.67(88) 17.66(98) 17.57(92) 17.55(96) 17.54(97)

AKp
P

5.39(18) 15.450(48) 11.09(37) 6.15(64) 3.90(78)
AKn

1 30.89(72) 23.8(1.8) 20.86(64) 27.38(71) 30.16(72)
AKn

2 9.35(69) 9.43(73) 9.33(70) 9.30(71) 9.29(72)
AKn

P
5.48(20) 15.388(71) 11.18(36) 6.27(64) 4.04(77)

χ2/ν 1.108 1.966 1.071 1.062 1.061
ν 533 533 532 532 532

states 2++ and 3+−, being the latter smaller than the former, as obtained from fits to pp

and p̄p data only, but with different central values. The connection with ratio σel/σtot

will be discussed in Section 6.5.3.

d) Fits with inclusion of the logarithmic term (QLT, QSLT, QSLTth, QSLTth,κ)

Overall, the inclusion of the logarithmic term in the fits to all reactions decreases the

value of χ2/ν from about 1 (for the SLT fit) to about 0.8 (for the QLT and QSLT fits),

as can be seen in Table 6.4. Of course, some care is needed in judging the implications

of this change in the χ2/ν. Following the approach of Ref. [2], the coefficient of the

logarithmic term, differently from B and C, is expected to be reaction dependent. This

means the inclusion of only one more free parameter when analysing the pp/p̄p case, but
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Figure 6.5: Results of fits with SLTth,κ (κ free, B = Bth, C = Cth, Q = 0) to all data
for Bth and Cth calculated from the Ω± baryon, and the 2++ and 3+− glueball states.
The legend for the curves is shown in the top-left panel. For the legend of pp and p̄p
data see Figure 6.3.

when we consider all other reactions we have to include one free parameter for each pair

of crossed channels, therefore five new free parameters. Analysing the values of Qab (see

Table 6.4), we see that some of them change their sign when going from QLT to QSLT.

We understand that the presence of the subleading term of type ln s · ln ln s creates some

competition between the two subleading contributions. We recall that the fit QSLT to
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Table 6.6: Results of fits with QLTth (κ = 1, B = Bth, C = 0, Q free), QSLTth (κ = 1,
B = Bth, C = Cth, Q free) and QSLTth,κ (κ free, B = Bth, C = Cth, Q free) to σtot
(all data). The values of B and C are fixed to the theoretical values calculated with
the masses and the spins of the Ω± baryon, the 2++ glueball state and the 3+− glueball
state (quenched values). For the units of measurement of the parameters, see Table 6.1.

Ω± baryon 2++ glueball 3+− glueball
QLTth QSLTth QSLTth,κ QSLTth,κ QSLTth,κ

Bth 0.22 (fixed) 0.22 (fixed) 0.22 (fixed) 0.42 (fixed) 0.78 (fixed)
Cth 0 (fixed) -0.44 (fixed) -0.44 (fixed) -0.42 (fixed) -0.39 (fixed)
κ 1 (fixed) 1 (fixed) 1.54(11) 0.774(51) 0.408(23)
b1 0.331(20) 0.307(18) 0.565(93) 0.576(92) 0.582(80)
b2 0.531(11) 0.531(11) 0.532(11) 0.532(11) 0.532(11)
App

1 57.5(1.4) 63.0(1.2) 62.3(8.7) 61.0(8.8) 60.4(7.8)
App

2 33.9(1.7) 33.9(1.7) 34.2(1.8) 34.2(1.8) 34.2(1.8)
App

P
23.2(1.5) 15.8(1.8) 37.5(3.3) 39.8(3.1) 40.9(2.7)

Qpp 0.20(12) 1.88(13) -0.71(46) -1.61(47) -2.03(42)
Apn

1 32.9(8.8) 38.3(9.0) 30.4(9.8) 29(10) 28(10)
Apn

2 29.7(1.8) 29.7(1.8) 29.9(1.8) 29.9(1.8) 29.9(1.8)
Apn

P
34.7(5.4) 28.3(5.0) 44.0(3.2) 46.1(3.0) 47.1(2.7)

Qpn -1.11(53) 0.49(57) -1.57(47) -2.45(47) -2.86(44)
Aπp

1 52.7(3.1) 57.7(2.6) 66.7(1.5) 65.6(1.5) 65(13)
Aπp

2 16.7(1.2) 16.7(1.2) 16.9(1.2) 16.8(1.2) 16.8(1.2)
Aπp

P
16.6(1.7) 9.6(2.0) 28.6(2.8) 30.8(2.7) 31.9(2.3)

Qπp -1.28(15) 0.36(16) -1.94(40) -2.84(42) -3.26(38)

AKp
1 17.0(2.7) 21.9(1.2) 12.7(3.5) 10.4(3.6) 9.3(3.6)

AKp
2 19.0(1.1) 19.0(1.1) 19.1(1.1) 19.1(1.1) 19.1(1.1)

AKp
P

15.6(1.4) 10.10(99) 21.0(1.6) 23.0(1.5) 24.0(1.3)
QKp -1.04(15) 0.481(91) -1.11(27) -1.98(30) -2.39(27)
AKn

1 8.7(5.1) 13.5(5.2) 25.6(6.7) 0.036(7.1) -1.2(6.9)
AKn

2 10.21(81) 10.20(80) 10.28(81) 10.27(81) 10.27(81)
AKn

P
18.5(2.3) 13.4(2.6) 22.0(1.6) 24.0(1.5) 24.9(1.4)

QKn -1.36(27) 0.13(29) -1.25(27) -2.12(29) -2.53(27)
χ2/ν 0.778 0.781 0.764 0.764 0.764
ν 528 528 527 527 527

only pp and p̄p data did not converge.

The fit results obtained with B and/or C fixed are shown in Table 6.6. We see that

these cases present the same features of the fits to only pp and p̄p data, but with a

decrease of the χ2/ν values. When κ is considered as a free parameter, we obtain the

same scenarios that have been obtained without the logarithmic term, but now with a

slightly larger central value for the parameter κ.
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Figure 6.6: Results of fits with QSLTth,κ (κ free, B = Bth, C = Cth, Q free) to all data
for Bth and Cth calculated from the Ω± baryon, and the 2++ and 3+− glueball states.
The legend for the curves is shown in the top-left panel. For the legend of pp and p̄p
data see Figure 6.3.

6.5.3 Asymptotic Results for the Ratio σel/σtot from the Pa-

rameter κ

In Section 6.2.2, we showed that the asymptotic ratio between the integrated elastic

cross section and the total cross section is related to the parameter κ through a simple
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relation
σel
σtot

∼ κ

2
(s→ ∞). (6.45)

Therefore, it is straightforward to obtain these asymptotic values from the fits

discussed in the previous sections.

In Table 6.7 we summarize all the resulting values for the ratio σel/σtot = κ/2

(together with the corresponding uncertainties, calculated via standard error propaga-

tion). From our discussion on the asymptotic scenarios (Section 4.2), the fits with the

Ω± baryon values indicate an asymptotic scenario in the anti-shadowing regime, since

σel/σtot > 0.5. On the other hand, the values inferred from the fits with B and C fixed

to the values obtained from the 2++ glueball state indicate a grey-disk scenario, with

σel/σtot ∼ 0.31 ÷ 0.38. This value is in agreement with the asymptotic ratio obtained in

other studies, as discussed in Section 4.8.

Using the mass and spin of the 3+− glueball state, we also get a grey-disk scenario:

however, the resulting asymptotic value is smaller than the experimental data available

so far. From Table 6.7, we see that the value for this ratio is around 0.16 ÷ 0.20, while

the experimental value at the highest energy reached in accelerator experiments (namely

8 TeV) is approximately 0.27. Since till now the data indicate a rising trend with energy

(see for instance Fig. 4.1), this means that if this scenario is reliable, then the data should

present a local maximum and then decrease as the energy increases until reaching the

asymptotic value. Although there seems to be no theoretical reason to exclude this type

of behavior, it seems quite unlikely to happen, and we would rather expect a smooth

rise with energy until the asymptotic value is reached.

Table 6.7: Ratio σel/σtot = κ/2 with κ determined from the fits SLTth,κ and QSLTth,κ

to pp and p̄p data only, and also from fits to data from all reactions. Uncertainties are
calculated with standard error propagation.

σel/σtot = κ/2 Fits to pp/p̄p data only Fits to all reactions
SLTth,κ QSLTth,κ SLTth,κ QSLTth,κ

Ω± baryon 0.6885(91) 0.765(50) 0.720(12) 0.770(55)
2++ glueball 0.3080(48) 0.385(25) 0.3265(60) 0.387(26)
3+− glueball 0.1548(26) 0.203(13) 0.1652(32) 0.204(12)

We can also evaluate the value of the B parameter using the values of κ obtained

from the fits with Bth and the relation B = κBth. These values are shown in Table 6.8.

We notice that the inclusion of the logarithmic term (Q 6= 0) leads to B values slightly

larger than in the case of Q = 0. Moreover, the B values associated with the 2++ glueball

and variant SLTth,κ, namely ∼ 0.25 − 0.27 mb are consistent with the PDG 2016 result,

B ∼ 0.27 mb (Eq. (5.33)) and the fit results discussed in Chapter 5 to ensemble T+A

through the FMS-L2 and AU-Lγ = 2 models, ∼ 0.25 mb (Tables 5.3 and 5.4).
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Table 6.8: Value of the coefficient B = κBth in mb with κ determined from the fits
SLTth,κ and QSLTth,κ to pp and p̄p data only, and also from fits to data for all reactions.
Uncertainties are calculated with standard error propagation.

B = κBth (mb) Fits to pp/p̄p data only Fits to all reactions
SLTth,κ QSLTth,κ SLTth,κ QSLTth,κ

Ω± baryon 0.303(4) 0.337(22) 0.317(5) 0.339(24)
2++ glueball 0.259(4) 0.324(21) 0.274(5) 0.325(21)
3+− glueball 0.242(4) 0.317(20) 0.258(5) 0.318(18)

6.6 Summary and Conclusions

In this chapter, we performed a phenomenological analysis of total cross section data

from hadronic scattering in order to estimate the contribution of a subleading term to

σtot of type ln s · ln ln s, recently obtained in a nonperturbative QCD approach [2] (see

also Refs. [203–205] for similar results). An important feature of the results of Ref. [2]

is that the coefficient of this subleading term together with the coefficient of the leading

term (∼ ln2 s) are universal (i.e. independent of colliding particles) and are connected

with the stable spectrum of QCD. Besides this, another subleading term is present in the

form ∼ ln s. Contrary to the previous one, this term is reaction-dependent. Precisely, we

have considered as parametrization to the total cross section in the high-energy domain

σab
tot(s) ∼

s→∞
B ln2

(

s

sab0

)

+ C ln

(

s

sab0

)

ln

[

ln

(

s

sab0

)]

+Qab ln

(

s

sab0

)

, (6.46)

where sab0 = mamb. As usual, we used Reggeon exchange contributions to σtot to describe

its behavior at low energies. We performed fits to pp and p̄p scattering with
√
s > 5 GeV

including the data obtained at the LHC by the TOTEM and the ATLAS Collaborations.

In order to test the universality of both leading and subleading terms, we have also

included data from other meson-baryon and baryon-baryon scattering.

In general, we have obtained a good description of the data with parametrizations

that generalise the highest-rank result of the COMPETE Collaboration, by including a

ln s and/or a ln s · ln ln s term besides the ln2 s term. However, with the dataset presently

available and as discussed in Section 6.5 (see, in particular, the results of the fits LT,

SLT, QLT and QSLT in Tables 6.1 and 6.4 and in Figure 6.3), this type of analysis,

in which B, C and Q are treated as free parameters, was not conclusive, because of

the “competition” between the two subleading terms ln s · ln ln s and ln s in the range of

energy considered. The same conclusion was obtained in Ref. [204], in which an analysis

similar to ours was performed. In particular, the quality of the fits to pp and p̄p data

(i.e., the dataset more sensitive to the high-energy behavior) with only one of the two

subleading terms or without any of them are comparable, so that we cannot decide
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which one is the best. When fitting our parametrizations to all reactions, the value of

χ2/ν decreases from about 1, for the SLT fit, to about 0.8, for the QLT and QSLT fits,

but, again, no conclusive statement can be made. In fact, this decrease in the χ2/ν can

be attributed to the addition of five new free parameters Qab. We expect that further

studies, including more recent results at 2.76 TeV (TOTEM) and 8 TeV (ATLAS), as

well as new measurements at 13 TeV may provide new insights to this topic.

Nonetheless, we took advantage of the fact that the universal coefficients are con-

nected with the QCD spectrum to write B = κBth and C = κCth, where Bth and Cth are

the theoretical values related to the spectrum and κ is connected with the asymptotic

value of the ratio σel/σtot (Section 6.2). We then performed fits where Bth and Cth are

fixed at the values discussed in Section 6.2.2 and κ is either fixed at 1 (corresponding

to a black disk) or considered a free parameter.

As showed in Section 6.5.3, the results obtained with the Ω± baryon values indicate

an asymptotic scenario in the anti-shadowing regime, i.e. σel/σtot > 0.5, while with the

glueball states 2++ and 3+−, the grey-disk scenario was obtained. In the case of the 2++

glueball state, we have σel/σtot ∼ 0.31÷ 0.38, in agreement with the results of Chapter 4

and other studies [19–21, 44–46, 115, 208, 209]. On the other hand, with the 3+− state

the asymptotic result indicates σel/σtot ∼ 0.16 ÷ 0.20, which is below the experimental

values measured at the LHC (∼ 0.27 at 8 TeV).

Of course, we cannot claim that this semi-transparent result confirms the results of

the other approaches. However, it is interesting to note that a similar value for this

ratio is obtained from an analysis of only the total cross section, provided that some

theoretical input on Bth (and Cth) is considered. Moreover, we recall that the 2++

glueball state is also a “historical” candidate for the soft (standard) Pomeron trajectory

(simple pole), as commented in Section 5.2.2.
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Chapter 7

Conclusions

In this thesis, we were interested in the elastic scattering of hadrons at high-energies,

especially in proton-proton and antiproton-proton scattering. Given the nonperturbative

character of the elastic scattering (small transferred momenta) and the still absence of a

full nonperturbative QCD description, elastic scattering is studied by means of empirical

and phenomenological analyses, some of them presenting a basis on QCD.

The measurements performed at the LHC by the TOTEM and ATLAS Collaborations

at the energies of 7 and 8 TeV for pp scattering were very important to test the models

constructed in the last decades, as well as to refine these models and their predictions

for higher energies.

Here we have presented studies on physical quantities related to the elastic scattering

with focus on cross-sections, namely the ratio σel/σtot, and the energy dependence of

σtot, which is related to the elastic scattering amplitude by the optical theorem and

the ρ parameter. Along the text, we have discussed an empirical analysis of the ratio

σel/σtot [49], a phenomenological study of the rise of the total cross section based on the

Regge-Gribov formalism [47,121], and finally, the study of the subleading contributions

to σtot based on recent asymptotic results obtained in a nonperturbative QCD approach

[186]. In what follows, we highlight the main results of each chapter.

The empirical analysis of the ratio X = σel/σtot was presented in Chapter 4. We

have considered four empirical parametrizations for fits to the available experimental

data on that ratio, including those obtained at the LHC. The asymptotic value of

the ratio X is represented by the A parameter. In what concerns this parameter, two

types of fits were performed. In the constrained fit, A was fixed at some chosen values

inspired by empirical, phenomenological, and theoretical results. From these fits, all

statistically equivalent, we were able to conclude that the black-disk scenario (A = 0.5)

is not the only possible solution considering the available data. In the other type of fit,

named unconstrained, we let A be a free parameter. The results are compatible with a

semi-transparent scenario, with average value Ag = 0.30± 0.12. In this case, the proton
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may behave asymptotically as a grey disk.

We stress that this novel result (first obtained in Ref. [44]) contrasts with the usual

phenomenological picture predicting an asymptotic black disk and is in agreement with

the results obtained in other subsequent analyses.

In Chapter 5, we presented a phenomenological study on the energy dependence of

the total cross section and the ρ parameter. The parametrizations considered are based

on the Regge-Gribov formalism [18,125,126]. Two leading terms were considered: the

ln2 s term (that corresponds to a triple-pole Pomeron contribution and was denoted by

L2 model) and the lnγ s term (introduced by Amaldi et al. [130], denoted Lγ model),

where γ is a real free parameter. Given the tension between the 8 TeV σtot measurements

by TOTEM and ATLAS, we have considered three ensembles of data (besides the data

above 5 GeV and below the LHC energies): one in which only TOTEM data were

included, another one in which only ATLAS data were included and a third one that

comprises all data available (TOTEM + ATLAS). We performed fits to σtot and ρ data

and we explored two analytical approaches to connect the real and imaginary parts

of the elastic scattering amplitude: Derivative Dispersion Relations (DDR) with the

introduction of the effective subtraction constant (called FMS approach) and Asymptotic

Uniqueness (AU approach).

We noticed that the analytic result obtained for Lγ models in the FMS approach

can be understood as a generalization of the L2 model for a real exponent of the ln s.

The same is not true for the AU approach, in which oscillatory energy-dependent factors

appear in front of the lnγ term. The presence of such factors is difficult to interpret

within Regge-Gribov formalisms. Furthermore, the approach which was used seems to

affect the value obtained for the γ parameter. In the FMS approach, we have γ & 2

while AU leads to values of γ . 2. Taking the two possible scenarios for the rise of σtot

showed by TOTEM and ATLAS data, we can infer a range of possible values of γ taking

into account the estimated parameter uncertainties: 1.9 . γ . 2.4 in FMS approach

and 1.7 . γ . 2.2 in AU approach. At last, we recall that when considering TOTEM

and ATLAS data separately, TOTEM data indicates a faster rise than ATLAS data.

We stress that in all known analysis with γ as a free fit parameter and data reduction

to both σtot and ρ data the results do not favor γ = 2, but real values (above or below

2). If that is really the case, the associated singularity cannot be a triple pole. In a

mathematical context, we have shown that a branch point can be associated with a real

(not-integer) γ value.

Finally, in Chapter 6, we studied the subleading contributions to σtot. The study is

based on the recent results by Giordano and Meggiolaro [2], in which a nonperturbative

approach for the elastic scattering is employed. The asymptotic result predicts that σtot

has a leading term ln2 s with universal coefficient B and a subleading term ln s ln ln s,
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also with a universal coefficient C. In turn, these two coefficients are related to the

spectrum of QCD. Another subleading term ln s is also infered, however, its coefficient

Q is reaction dependent. We developed several fits to experimental data on pp and

p̄p scattering and also to data from meson-baryon and other baryon-baryon scattering,

in order to estimate the contribution of these two subleading terms. We identified a

competition between the two subleading terms that does not allow us to state which

is dominant one at the present energies. We also explored the presence of an extra

parameter κ to write B = κBth and C = κCth, where Bth and Cth are the values given

by the QCD spectrum. In this case, we were able to infer the asymptotic scenario

for the colliding particles, since κ/2 corresponds to the ratio X = σel/σtot. We tested

three possible theoretical inputs for Bth and Cth. In one of them, related to the 2++

glueball state, we get a grey disk scenario with X ∼ 0.3, in accordance with the results

presented in Chapter 4 and quoted analyses. We recall that the 2++ glueball is a

historical candidate for the soft (simple-pole) Pomeron trajectory (see Fig. 5.2).

We understand that the results obtained here provided new insights on the study of

the hadronic cross sections at high and asymptotic energies. Despite the present tension

between the TOTEM and ATLAS results, the expected new reanalysis of data from

Run 1 and new data from Run 2 at 13 TeV can shed some light on the subject, allowing

further developments along the lines presented and discussed in this study. Moreover,

new experimental data from other soft scattering states (single and double dissociation),

and the study of these processes can certainly contribute to a better understanding of

the QCD soft sector.
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Appendix A

From Integral to Derivative Dispersion

Relations

In this appendix, we show how the Derivative Dispersion Relations (DDR) used in

Chapter 5 can be obtained from the Integral Dispersion Relations (IDR).

Following Ref. [157], let us consider the IDR for the even amplitude, given by

Eq. (5.41),

ReF+(s) = K +
2s2

π
P

∫ ∞

sth

ds′
[

1

s′2 − s2

]

ImF+(s′)

s′
, (A.1)

where K is the subtraction constant and P denotes the Cauchy principal value.

Making the change of variable s′ = eξ
′
, s = eξ and defining g(ξ′) ≡ ImF+(eξ

′
)/ξ′,

the above equation reads

ReF+(eξ) −K =
2e2ξ

π
P

∫ ∞

ln s0

g(eξ
′
)eξ

′

e2ξ′ − e2ξ
dξ′

=
eξ

π
P

∫ ∞

ln s0

g(eξ
′
)

sinh(ξ′ − ξ)
dξ′. (A.2)

If g is an analytical function of its argument, we can write g(ξ′) as a power series of

ξ′

g(ξ′) =
∞
∑

n=0

g(n)(ξ)

n!
(ξ′ − ξ)n (A.3)

and calculate the integral in Eq. (A.2) term by term. Moreover, we consider the high-

energy limit (see Sect. 5.3.1), which consists in taking the limit s0 → 0, i.e. ln s0 → −∞.

Therefore,

ReF+(eξ) −K =
eξ

π

∞
∑

n=0

g(n)(ξ)

n!
P

∫ ∞

−∞

(ξ′ − ξ)n

sinh(ξ′ − ξ)
dξ′. (A.4)
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Considering a new change of variable x = ξ′ − ξ, we can rewrite the above equation

ReF+(eξ) −K = eξ
∞
∑

n=0

g(n)(ξ)

n!
In, (A.5)

where

In =
1

π

∫ ∞

−∞

xn

sinh x
dx. (A.6)

For n even, we have In = 0. For n odd, we calculate this integral with the auxiliary

integral

J(a) =
1

π
P

∫ ∞

−∞

eax

sinh x
dx = tan

(aπ

2

)

, (A.7)

such that

In =
dn

dan
J(a)

∣

∣

∣

∣

a=0

. (A.8)

Therefore,

ReF+(eξ) −K = eξ
∞
∑

n=0

g(n)(ξ)

n!

dn

dan
tan

(πa

2

)

∣

∣

∣

∣

a=0

= eξ tan

(

π

2

d

dξ

)

g(ξ), (A.9)

where the series expansion is implicit in the tangent operator. Finally, we can rewrite

this equation in the variable s as

ReF+(s)

s
=
K

s
+ tan

(

π

2

d

d ln s

)

ImF+(s)

s
. (A.10)

A similar procedure can be done for the odd amplitude, Eq. (5.42), and we obtain

ReF−(s)

s
= tan

[

π

2

(

1 +
d

d ln s

)]

ImF−(s)

s
. (A.11)

For practical use, it is convenient to consider the series expansion around the origin

of the trigonometric operators. Moreover, for the odd case, we have to consider the

substitution

tan

[

π

2

(

1 +
d

d ln s

)]

→ − cot

[

π

2

d

d ln s

]

.
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In this way, the series expansions read

ReF+(s)

s
=
K

s
+

[

π

2

d

d ln s
+

1

3

(

π

2

d

d ln s

)3

+
2

15

(

π

2

d

d ln s

)5

+ . . .

]

ImF+(s)

s
,

ReF−(s)

s
= −

∫
{

d

d ln s

[

cot

(

π

2

d

d ln s

)]

ImF−(s)

s

}

d ln s

= − 2

π

∫

{[

1 − 1

3

(

π

2

d

d ln s

)2
1

45

(

π

2

d

d ln s

)4

− . . .

]

ImF−(s)

s

}

d ln s.

which correspond to relations introduced by Kang and Nicolescu [176], Eqs. (5.56) and

(5.57).
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Appendix B

The Mellin Transform: Singularities and

Asymptotics

In this appendix, we discuss the singularity that may be associated with the Lγ law

by means of the Mellin transform (see, for example, Ref. [210], Sect. 2.8). This subject

is treated in more detail in Ref. [185].

The Mellin transform connects a function f(x) defined on the positive real axis

0 < x < ∞ to a function F (z) defined on the complex plane throught the relation

[184,211]

F (z) = M[f(x); z] =

∫ ∞

0

f(x)xz−1dx. (B.1)

We call F (z) the Mellin transform of f(x). The above integral exists in the so-called

strip of definition a1 < Re[z] < a2, where the real numbers a1 and a2 depend on the

function f(x).

The inverse is given by

f(x) =
1

2πi

∫ a+i∞

a−i∞

F (z)x−zdz, (B.2)

where a is some Re[z] inside strip of definition.

An interesting result concerning the Mellin transform, which is our interest here, is

the relation between the asymptotic behavior of f(x) and the associated singularity in

the complex plane (see, for example, Ref. [211]). This can be attained calculating the

Mellin transform of f .

Before applying it to our case, let us first recall a property of the Mellin transform.

If we make z → −z in Eq. (B.1), we get

F (−z) = M[f(1/x); z]. (B.3)
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Defining F (−z) ≡ G(ℓ), where ℓ is the complex angular momentum, and by changing

the variable x = 1/s, we get

G(ℓ) =

∫ ∞

0

s−ℓ−1f(1/s)ds. (B.4)

Following Ref. [210], we are interested in the singularity associated with the (s/s0)
α lnγ(s/s0)

contribution to the total cross section, with s0 = 4m2
p and γ a real (not integer) number.

As discussed in Section 5.7.4, this function is defined for s ≥ s0. Denoting s̃ = s/s0, we

can write

f(1/s̃) = θ(s̃− 1)s̃α lnγ s̃, (B.5)

there θ is the Heavside function.

The Mellin transform of this function is given by

G(ℓ) =

∫ ∞

0

s̃−ℓ−1θ(s̃− 1)s̃α lnγ s̃ ds̃

=

∫ ∞

1

s̃α−ℓ−1 lnγ s̃ ds̃.

With the change of variable s̃ = 1/ξ, we obtain

G(ℓ) =

∫ 1

0

ξ(ℓ−α)−1 lnγ

(

1

ξ

)

dξ.

From Ref. [163], page 550, formula 4.272.6, we obtain

G(ℓ) =
Γ(γ + 1)

(ℓ− α)γ+1
, (B.6)

for γ > −1, Re[ℓ− α] > 0 and where Γ is the Euler gamma function.

Therefore, according to Eq. (B.6), for γ real (not integer), the function defined in

Eq. (B.5) is associated to a branch point at ℓ = α. When γ = n, with n > 0 an integer,

we have a pole of order n+ 1.
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Appendix C

Related Publications

In this appendix, we list the publications related to the development of this research

program. The publications are organised in those directly related to the thesis, those

produced in the period, but do not correspond to the main part of the thesis, and the

proceedings publications.

C.1 Main publications

❼ “Exploring central opacity and asymptotic scenarios in elastic hadron

scattering”

D.A. Fagundes, M.J Menon and P.V.R.G. Silva

Nucl. Phys. A 946 (2016) 194-226; arXiv:1509.04108 [hep-ph]

Related to Chapter 4.

❼ “Bounds on the rise of total cross section from LHC7 and LHC8 data”
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Nucl. Phys. A 966 (2017) 185-196; arXiv:1703.07486 [hep-ph]

Related to Chapter 5.
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dispersion relations and asymptotic uniqueness”
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❼ “Investigation of the leading and subleading high-energy behavior of

hadron-hadron total cross sections using a best-fit analysis of hadronic
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(Diffraction 2014): Primošten, Croatia, September 10-16, 2014.

❼ “Updating an empirical analysis on the proton’s central opacity and

asymptotia”

D.A. Fagundes, M.J Menon and P.V.R.G. Silva

J. Phys. Conf. Ser. 706 (2016) no.5, 052027; arXiv:1505.01233 [hep-ph]

Proceedings of 13th International Workshop on Hadron Physics: Angra dos Reis,

Rio de Janeiro, Brazil, March 22-27, 2015.


	Introduction
	Basic Concepts
	Elastic Scattering
	The Mandelstam Variables and the Center of Mass System
	Elastic Scattering Amplitude and Physical Quantities
	The Elastic Amplitude
	Physical Quantities

	Profile Function and the Eikonal Representation
	Simple Models for the Profile Function
	Relation between ratios el/tot and tot/B
	Froissart-Lukaszuk-Martin Bound

	Experimental Data and Fit Procedures
	Experimental Data
	Cross sections and  Parameter from pp and p Scattering
	tot from other reactions
	Ratio el/tot from pp and p Scattering

	Fit Procedures

	Empirical Studies on el/tot
	Introduction
	Asymptotic Scenarios
	The Black Disk
	Above the Black Disk
	Below the Black Disk

	Model-Independent Parametrization
	Empirical and Analytical Arguments
	Review on Previous Results
	The Energy Scale
	Constrained and Unconstrained Fits

	Fit Procedures and Results
	Initial Values
	Fit Results with the Logistic
	Fit Results with the Hyperbolic Tangent

	Discussion and Conclusions on the Fit Results
	Constrained and Unconstrained Fits
	Sigmoid Functions: Logistic and Hyperbolic Tangent
	Variants PL and LL
	Conclusions on the Fit Results
	Selected Results and Scenarios

	Extension to Other Quantities
	Inelastic Channel: Ratios and Diffractive Dissociation
	Ratio Y Associated with Total Cross-Section and Elastic Slope

	On Physical Interpretations
	On a Semi-Transparent Asymptotic Scenario
	Summary and Conclusions

	Phenomenological Studies on the Rise of the tot and the LHC Data
	Introduction
	Regge-Gribov Formalism
	Main Results
	Simple Pole Contributions to the Amplitude
	Contributions of Higher-order Poles to the Amplitude
	COMPETE and PDG Analyses
	Parametrization by Amaldi et al. 

	Connecting the Real and Imaginary Parts of Elastic Scattering Amplitude
	Integral Dispersion Relations and the High-Energy Approximation
	Derivative Dispersion Relations with the Effective Subtraction Constant
	Asymptotic Uniqueness and the Phragmén-Lindelöff Theorems

	Analytic Models
	Notation
	Derivative Dispersion Relation Approach
	Asymptotic Uniqueness Approach

	Experimental Data
	Data Reductions and Results
	Fit Procedures
	FMS-L2 and FMS-L models
	AU-L2 and AU-L Models

	General Discussion and Comments
	Analytic and Conceptual Differences
	Fit Results
	Partial Conclusions
	Further Comments on the Log-raised-to- Law

	Summary and Conclusions

	Studies on Subleading Contributions to the Hadronic tot
	Introduction
	A Nonperturbative Approach to Hadronic Elastic Scattering
	Hadron-hadron scattering
	Connecting tot(s) to the QCD Spectrum
	Subleading Term of tot from Other Analyses

	Parametrization for the Total Cross Section
	Dataset and Methodology
	Dataset
	Methodology

	Fit Results
	Fits to pp and p Data
	Fits to All Reactions
	Asymptotic Results for the Ratio el/tot from the Parameter 

	Summary and Conclusions

	Conclusions
	Bibliography
	From Integral to Derivative Dispersion Relations
	The Mellin Transform: Singularities and Asymptotics
	Related Publications
	Main publications
	Other Publications
	Proceedings


