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Abstract

Can we get a criteria to obtain stronger quantum correlations? In this thesis, we re-
produce the formalism of searching for a Bell inequality. However, instead of using the
common notion of nonlocality, we replaced it with a scenario in which the parts are able to
communicate with each other. This way, we have defined a new concept of “nonlocality”,
called super nonlocality, since now not all non-local behaviors in a Bell scenario without
communication will be strongly correlated to be also considered non-local in this new def-
inition. To exemplify this idea, we have found a Bell-type inequality that separates super
non-local behaviors from others. More interestingly, a violation of this inequality was
observed, reaffirming the advantage of quantum correlations upon classical ones. Also,
here the reader will find an exhaustive attempt to still use the facet enumeration method

for achieving Bell inequalities for high dimensional Bell scenarios.



Resumo

Podemos encontrar um critério para obter correlacoes quanticas mais fortes? Nesta tese,
reproduzimos o formalismo de procura por uma desigualdade de Bell. No entanto, ao
invés de usar a nocao comum de nao-localidade, substituimo-a por um cenario em que
as partes sao capazes de comunicar-se entre si. Dessa maneira, definimos um novo con-
ceito de “nao-localidade”, denominado super nao-localidade, ja que agora nem todos os
comportamentos nao-locais em um cenério de Bell sem comunicacao estarao fortemente
correlacionados para serem considerados nao-locais nesta nova definicao. Para exempli-
ficar esta ideia, encontramos uma desigualdade do tipo Bell que separa comportamentos
super nao-locais dos demais. Mais interessante ainda, descobrimos a violacao dessa de-
sigualdade, reafirmando a vantagem das correlacoes quanticas sobre as cldssicas. Além
disso, aqui o leitor encontrard uma tentativa exaustiva de uso do método de enumeracao

de facetas para obter desigualdades de Bell em cendrios de alta dimensao.
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Preface

Among all the advice that I was given before writing this document one of them was that
I should write It as the text I wish I had read before joining my master’s studies. I may
have taken this advice too seriously than I should, but now I definitely have the thesis I
wish I had read before all.

Firstly, I tried my best to write this text in a manner that any student in the last year
of its undergraduate studies could be able to read it. Unfortunately, this is not always
possible and in the moments in which you face this impossibility, then you should look
for the references or the textbooks. This way, the first chapter is entirely introductory,
so if you are familiar with the most basics concepts of quantum mechanics, then you can,
without a doubt, jump to the next chapter.

Chapter two is also introductory, but, instead of commenting on the basics of quantum
mechanics, it introduces the great area of study in which this thesis is based on: Bell
nonlocality. In this chapter I tried to be as short as I could and the things I have considered
not as immeadiate as the fundamentals of nonlocality, I have put in the appendices, as,
in a moment or another, these will be necessary concepts.

Finally, chapters three and four are dedicated to present my specific area of study and
the problem I aimed to approach, finishing the text presenting the results we got. If you
intend to read this text I appreciate it: it is difficult times for sharing knowledge in this

current world.
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The mathematical foundations of quantum mechanics

Like all revolutions, there is not a specific day when quantum mechanics began. Quantum
mechanics is an area that is still producing knowledge and is far from being considered
as solid as classical mechanics, for instance, as its foundations are still debated by the
community today [1, 2]. Thereby, it is impossible up to date to define quantum mechanics
in few words and in a manner that pleases every physicist.

In the late of 1920’s, quantum mechanics was associated as the field of physics whose
aim was to study the world of the tiny things, whose phenomena could not anymore be
explained by classical physics. However, this association is no longer true since there are
macroscopic phenomena that can only be described by quantum mechanics [3, 4]. Thus,
it is convenient on this work to stand up in a position in which quantum mechanics is the
set of mathematical tools used to develop physical concepts, among which we intend to
explore some.

This first chapter is dedicated to providing this presentation of concepts in the form
of postulates. At first, we will not take on any particular experiment, so that it will look
just like a collection of axioms. The introduction of a connection to physical reality will

be gradual as this chapter develops.

1.1 The postulates of quantum mechanics

As just presented, this is a sensible area, as there is no accordance on the foundations of
quantum mechanics. The number of postulates itself is not fixed and varies according to
your preferable bibliography. On Cohen-Tannoudji, Diu and Lal6e textbook, this number

corresponds to six [5]. The high number of postulates reinforces the idea of a collection of
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axioms as, in comparison to other fundamental areas of physics, their axiomatic structure
is not simple.

A reformulation of the axiomatic structure of quantum mechanics, although necessary,
is not the focus of this thesis. Here, we will move only with the postulates needed to the
rest of the work.

The canonical first postulate is commonly dedicated to present the state of the system
and the space in which these states belongs. We will call this the quantum realm postulate

as its intention is to present the stage in which the quantum phenomena happens.

Postulate 1.1 (quantum realm)

Every quantum system is associated to a complex vector space ‘H endowed with

an inner product and denominated Hilbert space. The state of the system is

represented by a normalized vector |1)) (reads as 1 ket) on this space.

In addition, for all |¢)) we can associate a dual element, named bra and denoted by
(¢|. If done so, the normalization rule defined by the inner product then imposes that

(¢|3p) = 1. This condition will be again explored on postulate 1.3.

1.1.1 Operators

Before introducing the second postulate, some brief definitions are needed. On classical
mechanics, the importance of the state space is not as great as in quantum mechanics.
While here we need to define it on a postulate, in Newtonian mechanics this postulate does
not even exist. This is related to our common sense which tends to relate the parameters
of the physical theory to be real quantities.

Otherwise on quantum mechanics, some quantities like momentum and position are
represented by operators which act on the state. The definitions involving these operators
will be multiplied according to the development of this work in such a way it is convenient
to quickly present some of these definitions on this subsection.

Firstly, let us assume that [¢)) = Y. ¢; |¢;), where ¢; € C, is a finite discrete vector
which can be spanned in the {|+/;)} basis. Similarly, let [¢/") = >". ¢} [¢;) be another finite
discrete vector characterized by coefficients ¢, € C. If A is an operator acting on |¢)) and

mapping it onto [¢)’), then A can be represented by a matrix whose elements are given by



Chapter 1. The mathematical foundations of quantum mechanics 16

A;j = (il Al;). So, the action of A implies

c; = (Wi |Y) = (Wi | A )
= (1] A (Z ¢ |1/1j>) = Z (i | Alj) ¢
= ZAijCj'

j

The first interesting property to be explored is the unitarity. An unitary operator A
is defined as the operator acting on [¢)) such that A : H, — Hy, where o)) € H,. If
A 1 |Y) = i), its inverse operator is given by the action A~ : [¢/) + |¢) such that

AA~! = 1. Some desirable properties of the unitaries worth to be mentioned:

1. Its inverse operator equals its complex and adjoint (also named Hermitian) conju-

gation: A1 = A* = AT

2. Unitaries are inner product preserving; if A : |¢)) — [¢') and A : |p) — |¢'), then
W) = (Wle);

3. Their eigenvalues {a;} are such that a; = e~ for some 6; € R, and their eigenvec-

tors {|a;)} are orthonormal;

4. The unitaries admit a spectral decomposition: A =>". a; |a;Xa;|.

As just mentioned on item 1 above, we can make a conjugation of A named Hermitian.
It is obtained just by transposing and taking the complex conjugate of the operator. The
notation is as defined earlier: Af is the Hermitian conjugate of A. Also, if A = AT,
the operator is said Hermitian. Like the unitaries, the Hermitians also admit a spectral
decomposition, but, since A is Hermitian, its eigenvalues {a;} are real.

It is also interesting to define the projector P, = |a;)a;| as the outer product with
itself. This way, we can write the spectral decomposition of A as A =), a;F,. Here, the
definition of a projector is the same as in linear algebra. P; is an operator whose action
projects the state |¢)) onto a subspace of Hy, then P;|¢) = |¢;). Any operator is easily
checked to be a projector if it satisfies P? = P;.

Finally, we can make a combination of projectors in such a way that this combination
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returns an operator which we will call observable. Let

0=Y aP,

where a; € R. Then, O is an observable if the above combination is such that O is

Hermitian.

Now, we can comfortably return to the postulates. The next immediate step is to define
the dynamics of the theory. By convenience, it will be assumed to act on a closed physical
system. A closed physical system is a system which cannot interact with others. However,
this definition lacks on real world applications as we cannot study any fully isolated
system. So, in the postulate below, it will be considered that a closed physical system is

the best approximation of a fully isolated system which is able to be studied.

Postulate 1.2 (dynamics)

A closed physical system can evolve subject to the action of a unitary transforma-

tion, represented by the unitary operator U, such that if |¢) is the state immediately
before the evolution and |¢) is the state immeaditely after, then [¢') = U |¢).

Note that the unitary operator does not specify that the evolution of the physical
system happens on time. However, we can extend this definition by introducing the
Hamiltonian operator H of [i(t)) if t is a parameter.

L0 (t))
ih 5

= HI[y(t)), (1.1)

which correspond to the known Schrodinger’s equation.

Postulates 1 and 2 are very mathematical rules. It does not say much about the
connection of the state with the real physical system and their measurable properties.
Maybe the most important postulate is the one which makes this remaining link. A
fundamental feature of quantum mechanics is that equation (1.1) was able to predict
the energies of certain physical system. The way we can understand it is seeing the

Hamiltonian operator as an observable, whose eigenvalues E corresponds to the energies
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of the physical system. If [¢)) is an eigenvector of H, so

Hy) = El).

Whereas H is an observable, we can assume it has an spectral decomposition in terms
of projectors. Let us say H = ) . E; [;)X¢;| or H = ), E;P;, where |1);) is the i-th
eigenvector of H.

When quantum mechanics was established in the early of 1920’s there was a clear
interpretation of the Hamiltonian’s eigenvalues, but the interpretation associated to the
eigenvector was suggested only in 1926 by Max Born [6] when he was working on the
problem of an electron scattering through a potential in which he aimed to calculate and
interpret the asymptotic state after the scattering. This interpretation in most known
nowadays as one of the standard postulates of quantum mechanics. It is a consensus and
you will see it whatever the textbook you prefer. It also has a special name which is

attributed to Max Born.

Postulate 1.3 (Born’s rule)

Associated to every observable eigenvector there is a probability, with magnitude

of

bi = | <¢i|¢> |2= (1-2)

to observe the i-th observable eigenvalue in a measurement of |¢).

So far, we have not mentioned anything about probabilities, but this specific postulate
turns quantum mechanics into a probabilistic theory. It is because of this result that
we impose that the state must be normalized, otherwise (1.2) would not represent a
probability.

If the eigenvectors of an observable H constitute a basis of H, we can write the state

as a linear combination of its basis,

) = ZCi i) (1.3)

(2

that is, [¢)) can be written in a superposition of the eigenvectors of H. On this ordinary

situation, it is easy to see that p; = |¢;|*, Vi, where the physical |¢) is normalized.
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Note that postulate 1.3 does not mention which of the eigenvalues of the observable
will be obtained once you perform a measurement of it. This is, obviously, expected
as the theory can only give probabilities; then the result of a measurement only can be
predicted with certainty if one of the p;’s equals to one. Postulate 1.3 is what gives
quantum mechanics the characteristic of being nondeterministic, differently of most of

the physical theories.

There is, still, a subtlety on postulate 1.3 which is so fundamental that deserves another
postulate for itself. Consider, for instance, the aforementioned observable H = ). E; P,
which can be written as a linear combination of projective operators. Once you perform
a measurement, one of the observable’s eigenvalues is picked at random and revealed. If,
just after the first measurement, you perform a second measurement equal to the first
one, then it is natural to expect that the result of this second projective measurement is
the same as before. This criterion is denominated as repeatability and its validity enables
us to consider that there is a well-defined post-measurement state. Its form is given on

the postulate below.

Postulate 1.4 (post-measurement state)

Given that the i-th eigenvalue of the observable being measured occurred, the state

of the quantum system immediately after the measurement is

P 0

VP

where the P; projects [¢)) onto the subspace spanned by the i-th eigenvector.

The whole set of operators {P;} and the process depicted on postulate 1.4 is also
known as a projective measurement or sharp measurement. This is not the only case to
be considered, but the most intuitive and simple to illustrate this postulate. However,
there can be other cases which depend on the experimental setup you are considering.
For instance, if |1)) represents a photon, the post-measurement state does not even exist -
as the measurement process destroys the photon - and the repeatability criterion can no

longer be assumed valid.
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1.1.2  Positive Operator-Valued Measure

For those cases where we cannot repeat a measurement, consider an operator slightly
different than the projectors P;. We will name it an effect and represent the set of effects
by {E;}. For each effect we will consider that it is a positive semi-definite operator, which

means that

(Y| Eilv) =0,

for all [¢) € H. The above property is also a projector property, otherwise the probabili-
ties given by equation (1.2) could be negative. We also want this property for the effects

in such a way we can define a Born’s rule for the effects!.

Note that equation (1.2) can be written as

pi = | (Wilt) P = (Wla)euly) = (DI Pil) .

So, if the i-th output of the measurement is observed, the same Born’s rule can be rewritten
as p; = (Y| E;|v). On this case, the post-measurement state corresponds to

B ) (1.5)

V/Di
Because E; is no longer a projector, not necessarily Eil/ * equal F; and if a second mea-
surement is taken, the post-measurement state is not necessarily equals to (1.5), thus this
measurement is not repeatable.

For the { E;} measurement, we call by the old fashioned name Positive Operator-Valued
Measure. This name is almost unused anymore in detriment of its acronym, POVM.
Like the projective measurement case, the effects of a POVM also satisfy a completeness
relation, ) . F; = 1. In a projective measurement, however, if all of the projectors are
one-dimensional operators, then this sum has d, terms, where d; is the dimension of H,,.
For the POV Ms, the number of possible outputs is no longer limited by the dimension of
the Hilbert space and the completeness relation can be a sum of an arbitrary number of

terms.

Until now, we have been discussing about a single physical system we described by the

'For an interesting discussion about the difference between measurements see [7].
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state |1). Still, we need, for the sake of completeness, consider a rule for what to do when
dealing with more than one physical system. The last postulate is no more than a recipe

for these cases (which are the huge majority in nature).

Postulate 1.5 (composite systems)

The Hilbert space H of a system composed by n parts, where H; is the Hilbert

space of the i-th part, for ¢ = 1, ..., n, is obtained by taking the tensor product
between the parts, such that H = H; @ Ho ® ... ® H,,.

In summary, for a composite physical system, where each of the parts are individually
prepared in a state |¢), , for ¢ = 1, ..., n, the joint state can be obtained by taking the
tensor product of the individual states. Altough we can affirm that |¢) = [¢), ®...® |¢),
is the composite state for this case?; it is not true for an arbitrary state, let say, |¢) € H,
that |p) = |p), ®...®|p),,, for |p), € H;, i =1, ..., n. In the first case 1)) is denominated
as a product state, whilst |¢) is entangled. This last definition will be presented in

more detail in section 1.4.

1.2 The qubit

This section is no more than an introduction to a generic physical system that will be
useful to illustrate the further concepts we will explore during this thesis. This system is
known as qubit - the abbreviation of quantum bit - and makes reference to the bit, the
basic unit of information in information theory.

A qubit can be seen as any two-level quantum system. So, suppose there is a generic
observable G which have two eigenvalues: the first one will be called g, as ground, and
the second one e, as excited. For each of these eigenvalues there will be an associated
orthonormal eigenvector, |g) and |e), respectively. A qubit is then any state |¢)) which
can be written as a superposition of |g) and |e), [¢)) = a'|g) + B |e), with |a]? 4 |5]* = 1.

The standard notation is to consider the observable G = o, where o, is the z Pauli
matrix. On this case, ¢ = 1 and e = —1 and the eigenvectors are [0) = [1 0]T and

|1) = [0 1]T. Tt is also useful to consider the Bloch sphere representation. Any qubit

2For discrete Hilbert spaces, the tensor product reduces to the Kronecker product. Worth mentioning
that the usual notation of composite systems omits the “®” symbol. If |1)) and |p) are two physical sys-
tems, and the joint state is a product state, then [i) |¢) is the notation used to evidence the composition.
Also, |¢, ) implicitly denotes the composite state.
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state can be parametrized as

[9) = cos (9/2) |0) + sin (9/2) €' |1) (1.6)

where 0 < 0 < 7 and 0 < ¢ < 27. This leads us to define a representation known as the
Bloch sphere. The Bloch sphere is an unit radius sphere and the geometric location of all

qubit states, that is, for each possible qubit state there are an associated 6 and .

A well known physical system which can be satisfactorily represented by a qubit is the

spin-1/2. The spin observable is written as a combination of the Pauli matrices,

0 1 0 —2 1 0
Op = . Oy = and o, = ,
10 v 0 0 -1
in the compact form, S = "2 o, where o = [0, 0,0,], a vector whose elements are

matrices. If one intends to measure the spin of a spin-1/2 particle so one needs to choose
an arbitrary direction in which the spin vector will be projected. By convention this
direction is named z. One could rotate the system and measure it on the x direction, for
instance. Now, the results of the measurement are the eigenvalues of the S, observable. As
the choice of the direction of such a measurement is always arbitrary, the diagonalization
of S, provides the same eigenvalues as for S, which is an important property of the Pauli
matrices: their eigenvalues are +1. Therefore, the spin state |s) can either be written in

these two forms

s) = a. M), +B8: 1),
= [, + 8.

where 1) and |]), are eigenvectors of S, and |1), and |]), are eigenvectors of S,. More-
over, O -, By, € C.

It is always possible to change the representation of a state as long as there are two
distinct observables. By its spectral decomposition, you can find two different basis and
rewrite the state. This brief example illustrate this changing for a spin-1/2 system. For

instance, in a composite two level system of two qubits, any state can be written as

[¥) = a|00) + 5[01) +~[10) + 6 [11),
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where |a|? + |38]2 + |7]? + |§]*> = 1. Or, alternatively, we can write it in the Bell basis.

) = o/ [U7) + B [U7) +9/|@F) + 6" [@7),

where the normalization is also valid for the prime indices and

oF) = \/L§(|OO>+!11>)
) = L (|00) —|11)) (1.7)
[wt) = L (lo1) +]10))
o) = L(jo1) - [10)).

For each of the elements in the Bell basis, the two qubits are configured in a way to present
entanglement. Entanglement is a quantum resource which can be used for quantum
information protocols. We will also address this quantum feature at this chapter, but,
before we go deeper into this amazing concept, let us introduce another approach to the
description of quantum systems that slightly differs from that made in terms of complex

vectors.

1.3 Density operator

In a given quantum experiment, it is desirable, for various purposes, to know what is the
state of a particular physical system. There are many situations that we could address,
but let us consider that either the state is already known by theoretical approaches or
that it is entirely unknown. If the situation is the first one, then the problem is solved
and we carry on with the experiment. However, if the situation is the second one, then
we must consider a source which produces a statistical ensemble of identical states. If the
measurement operators are wisely chosen, then it is possible to experimentally determine
the state of this ensemble by a process known as quantum tomography [8], which we will
not detail. Note that if there was a single copy of the state, then it would be destroyed
in the measurement process and the resultant state would be that given by postulate 1.4,
which is different from the original state.

Now, let us assume that there is a source which can produce several copies of

(100) 4 |01) 4 |10) + |11)).

N —

¥) =
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The statistics observed at the end of the experiment will allow the experimentalist to
conclude that the state is indeed a quantum superposition as in the equation above by
observing the probability /4 of obtaning any of the kets in the two-qubit basis.
Secondly, let us consider a source which produces, with 50% of probability, the state
|Ut) and |®T), with another 50% of probability. Altough we also obtain !/1 of probability
for each element of the two-qubit basis the resulting state is not a quantum superposition
of all of these states, like the first case. Instead, we have a kind of classical mixture
between states |U+) and |®T). For cases like this, we have a limitation on the notation.
Though we can denote the state of the first case as [¢), in the second case we are forced
to emphasize we have a combination of [¥*) and |®T) with 50% of probability for each.
We can formally differentiate the two cases by introducing an operator we will call
density and denote by p. In the first case, where the state |¢) is purely a quantum

superposition, the p operator will be obtained by

p =Xl (1.8)

This state is called pure. In the second case we must introduce the classical misture by

making a combination between |¥T) and |®T),
1
p=5 ([TXTT|+ [T

For a general case, we have

p= Zpi |¢>1<¢\@ ) (1.9)

where all the [1).(¢|, are pure states. Equation (1.9) is represented by a convex combi-
nation, that is, its weights are constrained by >, p; = 1 and p; > 0, for all 4. In this case,

we have a mixed state, where the weights are represented by the respective probabilities

Di-

1.3.1 The postulates for density operators

When considering an ensemble of physical systems, the density operator represents a
complete description of the systems, working as a proper representative state of this

ensemble. For the purpose of this thesis, the experiments treated here are represented by
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an ensemble of equally prepared experiments instead of a single round. Then, for the sake

of convenience, it is worth to rewrite the postulates in the density operator representation.

Now, we consider that the state of the physical system is represented by p € H2, a

complex matrix. The normalization condition now imposes
trp=1, (1.10)

where ‘tr’ denotes the sum over all diagonal elements of p. The action of any unitary
can be seen as a transformation on p, p’ = UpUT, where p is the state after the unitary

evolution. A generalization of equation (1.1) can also be obtained if we consider

ap i

5 = 7 Al (1.11)

where [A, B] = AB — BA denotes the commutator between operators A and B, and
H is the Hamiltonian description of p. Equation (1.11) is known as the Von-Neumann

equation and reduces to Schrodinger equation in the pure p case.

As in (1.10), the Born’s rule is now trace based. If a measurement is projective, then

the probabilities are obtained by

pi = tr (pF)
and the post-measurement state is given by

Pip P
tr (pf;)

Similarly, if a measurement is performed by a POVM, then

pi = tr (pk;)

and the post-measurement state is given by

E.1/2pE.‘1/2

7 1

tr (pE;)

The composition rule is trivially extended by the use of the tensor product between

the density matrices representing their respective subsystems.
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The density operator has some useful properties compared to the kets. You can easily
verify that p is pure by taking its square, then if p> = p, p is pure. Also, all density
operators are Hermitian, which suffices to say that their eigenvalues are real.

It is also convenient to define the partial trace operation. Let us say that p € HaQHp
and define {]a;)} and {|b;)} orthonormal basis of H4 and Hp, respectively. The partial
trace over the B system is defined as the mapping trg : AQ B — Atr B, for any A € H,

and B € Hp. The partial trace over the A system is defined similarly. If we decompose

P = ijw Pijkt |aifa;] © |be)bi|, then

pt = trpp =" piju (belbr) la;)a;| and
ijkl

pB = trpp= Zpijkl <az’|aj> |bk><bl| )
ijkl

where p? and p? are also called of reduced states.

1.4 Entanglement

Differently from the former sections, this one does not talk about textbook quantum
mechanics. Entanglement is a subject which is not studied in many undergraduate or even
graduate courses of quantum mechanics. The separation between this final section and the
others highlights this distinction: while the role of the former sections is to introduce the
fundamental ingredients needed to the development of this thesis, here we also introduces
one of these fundamental ingredients, but entanglement, despite being a fundamental
resource for the development of current physics [9], is regarded as a corollary of the other
fundamental principles, even though it is a present resource, among all physical theories,
only on quantum mechanics.

Historically, the study of entanglement starts in the seminal paper by Einstein, Podol-
sky and Rosen [10], which later came to be known as the enunciator of the EPR paradox.

In the language of EPR,

“the quantum-mechanical description of physical reality given by wave func-

tions is not complete”.

Though the content of the EPR article is much more intricate than the merely exposi-

tion of its conclusion, it was precisely this contradictory statement that motivated the
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investigation of the entanglement phenomenom.

As on EPR description, let us start with a two-part composite system. For these cases,
the definition of entanglement is as follows: a joint physical system is entangled if the

joint state p*B € H4 ® Hp cannot be written as a convex combination of product states,
AB Ao B
P #sz pi @ P (1.12)
i

where p € Ha, p2 € Hp and p; > 0 for all 5. These two parts, A and B, are convention-
ally called in the literature by Alice and Bob, respectively. If a third part, denominated
Charlie, is considered, definition (1.12) can be trivially extended by adding a third reduced
state p¢ on the summation. We can also specify (1.12) in order to make it immediately
recognizable for pure states. Again, consider {|a;)} a basis of H4 and {|b;)} a basis of

Hp. An entangled pure state 1) ,5 € Ha ® Hp is such that
) ap # Y cijlas) @ [by) (1.13)
.3

where there is a set of coeflicients a;, b; € C providing ¢;; = a;b;, Vi, j. Equation (1.13)
summarizes the case of all of the elements of the Bell basis, as (1.7). For this, (1.7) is also

denominated an entangled basis.

The magic of using entanglement as a resource for quantum information protocols can
be easily seen with an ordinary example. Consider that Alice and Bob share a two qubit

system known in the literature as singlet. It has exactly the same form as |¥~) state:

1

) NG

(|01) —|10)). (1.14)
The convention is to consider that the first qubit will be possessed by Alice, the second
one by Bob and so on. Then, if Alice measures her qubit on o, basis, she can get +1 or
-1 with 50% of probability each. Suppose the result +1 is achieved; then Bob’s reduced
state will be |1). If, instead, the result -1 is obtained, then Bob’s reduced state will be
|0).

At first sight, nothing too surprising can be deduced from this phenomenon, but there
are two points worth to be noted. The first one is that if the state is a product state,

then Alice cannot steer Bob’s state. From (1.13),
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1 1

[Bhap = D asby i) @ 1) =D asli) D_bili) = [} [¥) 5

i,j=0 =0
where [¢) , and [¢) 5 are the reduced states of Alice and Bob, respectively. Then, no
measurement done on Alice’s laboratory will influence Bob’s reduced state.

The second point is that Alice can exert influence on Bob’s reduced state just by
performing a measurement on her laboratory. This fact is quite obvious since the singlet
is produced anti correlated. What is not explicit is that this description of the experiment
does not take into account any dynamical description, that is, the laboratories of Alice
and Bob can be arbitrarily apart from each other and the description would still be the
same as presented above.

Although it smells like communication at a distance, note that neither Alice can choose
the result of her measurement nor force Bob to use a specific measurement direction, i.e.,
if Bob chooses to perform his measurement on o, basis, the best description that Alice
could obtain would be |0), with 50% of probability or |1), with another 50%.

This kind of protocol is currently known as EPR steering as it was first suggested
in the EPR paper, which used, instead of qubits, the position and momentum basis of
two entangled particles. Despite being used as the motivating problem of this thesis, the
steering protocol is not our focus and the interested reader can consult [11]. There are
also many other protocols in which entangled pairs can exhibit non-classical features such
as this non-local steering example presented above. Again, for more detailed reading, see
this characterization of arbitrary protocols on reference [12].

A satisfactory answer to the EPR argument about the completeness of quantum me-
chanics was only possible on the 1964 paper by John Bell [13]. Bell cleverly reformulated
the local realism hypothesis originally coined by EPR which enabled an experimental test
based on a local hidden variables (LHV) model. A hidden variable model was a complete-
ness proposal suggested by David Bohm [14, 15], an Einstein’s pupil which continued
EPR’s result. On Bell’'s argument, any completion LHV based is wrong, that is, either
the LHV models are impossible or either they evolve non-locally. Our next immediate
step is to explore the modern view of Bell’s formulation, later known as nonlocality. In
the next chapter our approach, instead of focusing on a specific state and measurement
operators, will answer the question: for an arbitrary given state and POVM, can this set

exhibit nonlocality?
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Bell nonlocality

Picture a shoe factory with a weird behavior. Instead of just producing shoe pairs and
delivering them to the stores, this particular factory produces the pair and packages
each shoe in a box. The boxes are then delivered to two different stores: Alice’s store
and Bob’s store. The experiment finishes when either Alice and Bob open their boxes.
Without surprise, if Alice opens her box and finds a left shoe, then Bob will find a right
shoe.

This silly experiment can be seen in optics of a probabilistic description. Let us say
that the event where Alice finds a left shoe in her box is A;. The same way A, is the event
when Alice finds a right shoe. This notation will also be extended for Bob’s findings. It
is easy to check that A; and B, are not independent. In fact,

p(Al, BT) > p(Al)p(BT) (21)

If A; and A, are equiprobable - same for B; and B, - then, p(A;, B,) + p(A,, B)) =1
and p(A,, B,) = p(4;, B;) = 0, and you can easily check that p(4;, B,) = /2 and
p(A) p(B,) = s

Instead of considering the description of this experiment in terms of absolute proba-
bilities, we can express equation (2.1) by using conditionals. Once the producer of the
shoes finishes his job, he needs to make a choice and send for Alice and Bob one of the
boxes he knows that contains the right or left shoe. Suppose he chooses to send the left
shoe to Alice. This way, he has no alternative than sending Bob the right shoe, and the
equality on (2.1) is achieved, if conditioned to the choice of the producer.

This ordinary example can be summarized as follows [16]:
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Reichenbach’s common cause principle

Consider events A and B with causal dependency such as
p(A, B) > p(A)p(B).

Then, one of the following possibilities is true: either A is cause of B, or B is cause

of A, or there is a common cause to A and B, let us say C, such that

p(4, B|C) = p(A|C)p(B|C).

The above result is attributed to Hans Reichenbach on his posthumous work “The direc-
tion of time” published on 1956 [17].

A conclusion to this example cannot be other than infer that there is indeed a com-
mon cause to the dependency between A; and B, on (2.1). Although this conclusion is

supported by Reichenbach’s principle, it is due to the hypothesis of the example.

2.1 Bell scenario

Let us diverge a little the focus and start with another gedankenexperiment. This will
be baptized of Bell scenario. On a typical Bell scenario experiment we must have, like
the former case, more than one box, which are apart from each other in such a manner
that a box cannot send a signal to the others, i.e., the boxes are space-like separated. In
this case the boxes do not contain a shoe, but an unknown experiment. On each box we
can find some buttons and a display. Once you press one of the available buttons, the
experiment inside the box is performed yielding a result, which is displayed on the screen,
as in figure 2.1b.

Every Bell scenario can be easily referred as the triple of numbers (N, m, r), where
N indicates the number of boxes involved in the experiment. If the experiment is said
uniform, then the number of measurements m per part is the same for all boxes and the
number of results r per measurement, which is assumed to be discrete and finite, is the
same for all measurements as well.

As in the shoes box experiment, we will treat a Bell scenario with probabilities. Let

us say that Alice chooses a measurement x in the set of m measurements which provides
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sl

Alice’s lab Bob’s lab Alice’s lab Bob’s lab
(a) (b)

Figure 2.1: (a) A typical Bell scenario with two parts - Alice and Bob - and two measurements
per part. A condition needed for every Bell scenario is that the boxes need to be kept in a
distance d which is enough to secure that no signal can be sent from one of the parts to another.
(b) Encoding the choice of Alice, we attribute = variable to the measurement. The results of
Alice’s box are encoded by a. Bob’s measurement is represented by y variable while his result
is represented by b variable.

result a in a set of r possible results. For Bob, we will consider the same notation as
illustrated in figure 2.1b. The objective of the experiment conducted by Alice and Bob is
to check if their results are dependent from each other and, more specifically, if any causal
influence can be found on Bob’s results once Alice has already performed her experiment

or vice versa. Then, in the general case, for each round of the experiment

pla, blz, y) > plaz)p(bly). (2.2)

If (2.2) is strictly positive, than we say that Alice’s and Bob’s experiment are positively
correlated. Otherwise, if the equality is achieved, they are uncorrelated.

We also assumed that the boxes are far apart from each other and a restriction can be
obtained over the probabilities from this. If the marginal probabilities, p(a|x) and p(b|y),
can only be locally calculated then Alice’s free choice of measurement cannot influence

Bob’s marginal probability and vice versa. That is,

p(al.’L‘) = Zp(a,b|x,y):Zp(a,b|x,y')

bGT’y bGT‘y/
pbly) = > pla,blz,y)= > pla,bla’y)  Vabaxa yy, (2.3)
a€ry agr,/

where 7; is the set of results for the i-th measurement, for ¢ = x, 2/, y, ¢y/. This condition

is named as nonsignalling and is assumed for all Bell scenarios.
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2.2 Locality condition

Let us now make the assumption that there is a causal influence between Alice’s and
Bob’s experiment. Unlike the previous experiment where we supposed that there was a
producer of the shoes who is the responsible for sending the packages for Alice’s and Bob’s

store, here we have not even assumed what is the nature of the experiment conducted on

Alice’s and Bob’s box.

According to the Reichenbach’s principle, if the events are causally dependent, one
of the statements is true: either Alice’s experiment causally influences Bob’s experiment,
or Bob’s experiment causally influences Alice’s experiment, or there is a common cause
that influences both Alice’s and Bob’s experiment. By hypothesis, the first and second
sentences are not true. Still, we cannot establish, by elimination of alternatives, that the
last sentence states the correct causality among the events. The aim of this section is no
more than creating a model to verify plausibility of the existence of a common cause to
Alice’s and Bob’s experiment. We will name it as a local hidden variable (or, shortly,

LHV) model.

As we assumed nonsignalling between Alice and Bob, suppose there is an event A,
encoded by variable A, in the common past of Alice’s and Bob’s measurement events such

that
p(a, b|x, y, \) = pla|z, N)p(bly, A). (2.4)

At first, there is no need to know A, as the description of the experiment is made in terms

of p(a, bz, y). Thus let us marginalized (2.2) w.r.t \. With the aid of the Bayes’ rule,

pla,blz,y) = > pla, b, Az, y)
A

= > pla, blz, y, Np(A|z, y).
A
As A precedes the other events, p(A|z, y) = p(A). Using (2.4),
p(a, b|z, y) ZP |z, N)p(bly, N)p(A). (2.5)

The above equation is known, as suggested by the title of this section, as locality con-
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dition!. Every LHV model can be summarized in a probabilistic description satisfying

equations (2.3) and (2.5). In addition, in a LHV model,

Zp(a, blx,y) =1 and (2.6)

a,b

pla,blz,y) >0, Ya,b, x, vy, (2.7)

which are known as normalization and non-negativity conditions, respectively. While (2.6)
and (2.7) are trivial probability conditions, (2.3) represents the spatial separation between
the boxes. However, equation (2.5) is special. If any correlation between Alice’s and
Bob’s experiment can be localy explained, then its marginals, conditioned to an unknown
variable A\, can be localy calculated as well. As the marginals are still A-dependent we
cannot say much about their general shape. There is a little trick which is attributed to
Arthur Fine [18], where he proves that it is possible to obtain a deterministic LHV model
if p(a, b|x, y, \) is factorizable as in (2.4). Let A4 and Ap be random variables such that
for each combination of measurement, x and y, there is a distribution which is completely

determined. Then,

da(alz, Aa) = Oafa@ra)  and  dp(bly, o) = b p5y.0);

where f, and f, denotes the \,-th and \,-th deterministic assignment of x to a and y to
b, respectively. If so, there are r™ different assignments for both f, and f;, in such a way

we are able to write the marginals p(a|x, \) and p(b|y, \) as

(a]z, N) ZdA 2, Aa)p(Aa|X) and p(bly, A) = dp(bly, )p(A|A).  (2.8)
Ab
Substituting (2.8) in (2.5), then
pla,blz,y) = Y dalalz, Aa)dp(bly, X)p(ha| A)p(As | X)p(N)
AMaA
= Y dalalz, Aa)d(b]y, M) (Zp)\ [ A)p(As | A)p(A ))
AasAb

!The original locality condition, the one formulated by John Bell in 1964, consider the distribution
over the \'s as continuous. Actually there is no problem on considering A as a discrete variable and,
although the locality condition is written commonly with p(A) continuous, here we will adopt the discrete
notation for convenience, as you will see soon.
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= Z dA(a|x7 )\a)dB(b|ya )\b)p()‘m )\b)a (29)
)\a:)\b
where we defined the term in parenthesis as a new probability distribution which is A,, Ap-

dependent. Reshaping the pair (A,, Ap) into A, we got

,,,2m

pla, bl y) = 3 dalale, Nds(bly, Vp(N).

In other words, by considering the deterministic assigments d4 and dg, we can insert the
randomness of variables A 4 and Ap into the hidden variable A and write locality condition

in terms of a countable set, d4 and dp.

2.3 The local polytope

A very common way of understanding the probabilistic description of a Bell scenario
consists in a beautiful geometrical interpretation of its probabilities called local polytope,
attributed to Itamar Pitowsky [19]. To address this formalism, we will make a pause in
the description of a generic Bell scenario and make a simple specification to continue.
Consider a (2, 2, 2) Bell scenario. On this scenario, it is possible to perform rounds
of experiments and obtain a description in terms of 16 probabilities. We will group all of

these in a vector:
p = [p(0,0[0,0) p(0,1]0,0) ... p(1,1[1,1)], (2.10)

where a, b, x, y € {0,1}, such that p(0,0|0,0) denotes the probability of obtaining results
a,b = 0 if the zero-th measurement is performed both by Alice and Bob. It is worth noting
that this notation is no more than a label, which can be changed if convenient. The vector
built on (2.10) is known as correlation or behavior of the (2, 2, 2) Bell scenario and
describes the realization of the entire experiment after many rounds are performed in such
a way the statistics is big enough to establish the full description of the experiment in
function of its probabilities.

If settled as in (2.10), locality condition can be written as

p =" du(N) ® ds(Np(N), (2.11)
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where d 4 and d g represent the local deterministic behaviors of Alice and Bob, respectively.
The notation displayed in (2.11) induces us to see behaviors of a Bell scenario that satisfy
the locality condition as points p € R'¢ which can be written as a convex combination
weighted by the distribution of the hidden variables. This definition resembles the one of
polytopes, the multidimensional analogue of polygons and polyhedra. A polytope can be
thought as the geometrical site defined by the convex hull of a finite set of points. This
way, as the combination on (2.11) is convex, this inspires us to define the set of behaviors
which satisfy the locality condition as the local polytope.

Now, let p be a generic multidimensional point. According to Minkowsky-Weyl theo-

rem [20, 21] a polytope can be equivalently represented as

1. the convex hull of a finite number V' of points v;, these named as extremal points
or vertices. Formally, if D is the dimension of the space in which the polytope P

belongs then p € P if, and only if
1% v
p= ch-vi, with Zci =1 and ¢ >0 Vi (2.12)

This is defined as V-representation.

2. the intersection of a finite number H of hyperplanes or half-spaces - a space with
dimension D — 1 which divides the space in two halves. Thus, if p € P, then p
satisfies all H inequalities such as

where the pair (hj, h;) characterizes the j-th hyperplane. These hyperplanes are

named as the facets of the polytope and equation (2.13) is defined as H-representation.

At this point of the chapter, we can finally establish a clear way to decide whether a
specific behavior is or not explained by a LHV model. Once we picked a Bell scenario, it
is possible to obtain the deterministic assignments by finding all of the r?™ combinations
of extremal points in this scenario. Then, using the behavior of the experiment, we can
check the factibility of a convex combination of their extremal points. If there is such
a combination, then this behavior admits a LHV model, otherwise, LHV model will be

disproved.
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Despite the efficiency of the above method, there is a much more formal way which
we can decide analytically the plausability of a LHV model. Using the set of extremal
points we can convert the V-representation of the polytope to a H-representation by a
process named facet enumeration, which will be addressed in more detail on chapter 4. If
all of the facets of the local polytope provided by facet enumeration are satisfied by the
behavior of the experiment, then, again, it admits a LHV model.

Facet enumeration process gives us two distinct kinds of facets. The first ones are the
trivial facets. These have already been shown in equation (2.7), so they are redundant.
In fact, when performing facet enumeration we must consider all constraints involved in
a Bell scenario: non-negativity, normalization, nonsignalling and, of course, locality. So,
it is expected the process returns trivial facets. The non-trivial facets receive a special

name, the celebrated Bell inequalities, our main interest of investigation.

2.3.1 A remarkable case: the CHSH scenario

The simplest Bell scenario we can approach was already mentioned in the beginning of
this section. The (2, 2, 2) Bell scenario is also given a special name in honor to Clauser,
Horne, Shimony and Holt (CHSH), the first who dedicated themselves to study it in
detail [22]. In simple terms, the CHSH scenario possesses a single inequality, known by
the homonym name, which represents the non-trivial facet of the local polytope of the (2,

2, 2) Bell scenario. It is given by the expression

[pla = bj0,0) — pla # b]0,0) + p(a = b[0, 1) — p(a # b[0, 1)
T pla=0]1,0) — pla # bJL,0) — pla = |1, 1) + pla £ D1, 1) | < 2, (2.14)

where a = b denotes the sum of terms a, b = {(0,0), (1,1)} and a # b denotes the sum of
a,b={(0,1),(1,0)}. In fact, all Bell inequalities - let it be represented by Ipe; - can be

written as

]Bell = Z Ca,b,ac,yp(aa b|$a y) =C-p S bla (215)

a,b,x,y
where the sum runs over all combinations of {a, b|z, y}. Once they are the representation
of the local polytope facets, then all Ig.; are linear on p and a single inequality can be
given by a vector of coefficients ¢ and a local bound ;.

Inequality (2.14), however, is not the most known form of CHSH inequality. Defining
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(A,By) = pla =b|z, y) — pla # b|x, y) we rewrite
| (AoBo) + (AoB1) + (A1By) — (A1By) | < 2. (2.16)

The interest feature on equation (2.16) is that, if you trust on textbook quantum

mechanics, we can easily disprove the LHV model for the CHSH scenario.

2.4 Bell's theorem

The aim of this entire section is to add one more assumption in a Bell scenario: the
experiment contained in the boxes possesses quantum nature. For this reason, let us
assume there is a two-part system described by p which is shared among Alice and Bob,
as in figure 2.2a. The most general case is to consider that the measurement performed

in both boxes is a POVM, then the probabilities obtained are given by
pla, bz, y) = tr (pAgz ® Byy) | (2.17)

where A, is the effect associated to the POVM {A,;} given by the choice x of Alice.
The same notation holds for Byj,.

If written in form (2.17), the correlations obtained by quantum measurements repro-

/Q

/

Alice’s lab Bob’s lab NS
(a) (b)

Figure 2.2: (a) Alice and Bob share the |¥T) state. The subindices A and B refer to the
qubits possessed by Alice and Bob, respectively. As |¥T) is pure, then a density matrix can
be represented by p = |[¥TXWU| (b) A bidimensional representation of local, quantum and
nonsignalling sets (£, @ and NS, respectively). The following inclusion relation is implicit:
L C Q@ C NS. For the sake of simplicity, we will represent £ as a square, although an actual
local polytope has tens of extremal points. As represented in figure, £ and N'S are polytopes.
Although Q may have several faces, its number of extremal points is not finite, then not being
a polytope.
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duce all correlations which satisfies equation (2.5). Let us suppose a separable state p?

is shared among Alice and Bob, as in (1.12). Then,

pla,b|z,y) = tr(pAas @ Byy)
_ tr[(zpip:‘mf) Au B,
= sztr pi Aalz) tr (97 Bajy)
_ sz alz, Dp(bly, ). (2.18)

The wise choice of p;', p? and measurements {A,,} and {By,}, for all i, z and y, enable
us to reproduce the local correlations. Quantum correlations also satisfy nonsignalling
conditions. We can always marginalize (2.17) by taking the sum over the other part’s

result and performing identity measurement, whatever is this result.

This way, let £ be the local polytope of an arbitrary scenario. £ is such that it con-
tains correlations satisfying equations (2.3), (2.5), (2.6) and (2.7), as already mentioned.
Similarly, we will define N'S as the nonsignalling set. NS is less restrictive than £, once
condition (2.5) is not required for correlations belonging to N'S. It is also known that the
NS also forms a polytope and some of its extremal points are coincident with £ [23]. The
other extremal points of the N'S polytope are known as PR boxes [24], a non-local cor-
relation which still satisfies nonsignalling condition. Finally, let Q be the set of quantum
correlations. By the previous considerations, then is possible to infer that £L C Q@ C N'S

as suggested in figure 2.2b. The intriguing question is that if £ D Q, or equivalently
L=0.

For this purpose, let us substitute (2.17) on (2.15). Thus, all Bell inequalities can be

written in the quantum regime as

Igen = Z Capay T (PAae @ Byy) = tr (pGpen) < by, (2.19)

a,b,xz,y

where we defined Gpen =), by Cabyy A, @ By, as the Bell observable. On notation

of equation (2.16), the Bell observable for the CHSH scenario can be written as

Gensau = Ao ®@ By + Ay ® By + A1 ® By — A1 @ By.
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If, for the CHSH scenario, we associate the following observables for Alice and Bob

1
E(Um - Uz)a

1
Ay=0,, Ai=0, By=-—4=(0,+0,) and Bj=

V2

and take the shared state among then as p = |[UTYWT| then, following the notation on
(2.19), we obtain
2\/5 > bl = 2,

which violates the CHSH local bound. This counterexample for the LHV model on the
CHSH scenario is conclusion of the Bell’s theorem. In other words, Bell’s theorem states
that a LHV model is not plausible for the CHSH scenario, but much more than a mere
conclusion for a single scenario: it breaks the logic behind the Reichenbach’s common
cause principle, that is, we established a pair of events which are correlated between and,
as one is spatially apart from the other, then the unique probable alternative, which would
be to explain the correlation by a common cause, is discarded by Bell’s theorem. This
phenomenon is called Bell? nonlocality and responds our question: £ 2 Q.

This result is so strong, that it changes the status of quantum mechanics from lo-
cal to nonlocal theory. That is, it still needed an experimental verification, which was
also performed many times since Bell’s theorem was enunciated in 1964. A satisfactory
end to the experimental verification to a violation of the CHSH inequality was only pro-
vided in 2015 with three independent significant®>-loophole-free experiments [25, 26, 27].
Previously, some honorable mentions are worth to be said.

The first experimental attempt to prove any violation of Bell inequalities was con-
ducted by Stuart Freedman and John Clauser (the ‘C’ of CHSH), who tried to find
violations of Clauser-Horne inequality - a variant by labels changing of CHSH inequality
[28]. They were followed by Alain Aspect and colleagues who found a violation of CHSH
inequality [29]. In Aspect’s experiment, two main loopholes were identified and pointed
out, these being the detection loophole and the locality loophole. The first one is related
to the fact that the detection is not fully efficient, and there may be undetected samples

that would compromise the value of the inequality beyond the local bound. Detection

2The use of the word ‘Bell’ preceding ‘nonlocality’ is made to differentiate an arbitrary non-local
action to the nonlocality allowed by quantum mechanics in the framework we have just presented.

3The suffix significant from significant-loophole-free, refers to detection and locality loopholes. You
might include as many loopholes as your paranoia allows you and, in some cases, they would not be
possible to be tested, therefore being not significant.
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loophole was completely closed on a 2001 experiment [30] which used detectors with effi-
ciency above 90%. The locality loophole remains in situations in which the parts of the
experiment could be close enough to the point that there could be some kind of informa-
tion exchange. It was closed in a 1998 experiment led by Anton Zeinlinger [31], where they
used a clever mechanism to ensure the choice of measurement was completely random,

then eliminating any correlation which could remain on the measurement apparatus.

2.4.1 How to achieve nonlocality?

We have just provided an example of a set of state and measurement operators which
are able to violate (2.16). Of course it was a not a shot or a set of operators selected
randomly, but a didactic model with all the ingredients needed to exemplify nonlocality,
leaving unanswered, therefore, the question that entitles this subsection.

These ingredients are two. The first of them, which must have already become obvious
at this point, is entanglement. This is clearly shown on equation (2.18), as a separable
state always provides a factorisable joint probability. Although entangled states are nec-
essary to obtain nonlocality, they are not sufficient as shown by Reinhard Werner [32].

The second one is also a necessary condition and was deducted by the aforementioned
A. Fine on [18]. The celebrated work of Fine demonstrates that, if a Bell inequality is
satisfied, then it must have a joint probability distribution for all the observables involved
in the experiment. In the CHSH scenario, for instance, if there exists a distribution
p(Ao, A1, By, By), the CHSH inequality is satisfied. Such a distribution is possible if,
and only if, all the observables are simultaneously measurable. In fact, the observables
possessed by Alice are always simultaneously measurable with the Bob’s observables.
Thus, the existence of such a distribution arises on the fact that Alice’s observables must
be mutually compatible among themselves. The same holds for Bob’s observables. Fine’s
condition can be summarized requiring that the observables of each of the parts are

necessarily incompatible with each other.

2.4.2 A limit for quantum violations

Let us proceed with another intriguing question. So far, we have shown that we indeed
can obtain non-local behaviors for a Bell scenario. However, a regular characterization of

this description must also include the question: how non-local can a behavior be? A gross
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maximization of (2.14) suggest that if all of the positive terms are equal to one and the
negative ones are zero, then we can achieve four on inequality. This is in fact achievable

by some of the extremal points of the N'S set; for instance, the behavior

pla, blx,y) = Yo ifa®b =y , (2.20)
0, otherwise
where the @ symbol denotes sum modulo two. Equation (2.20) represents one of the
aforementioned PR boxes, that is, one of the extremal points of the N'S polytope which
achieves the geometrical bound of the CHSH inequality.

Until now, we have shown that the inclusion relations between £, Q and NS are such
that £ € @ C NS and £ % Q. The result that will be presented in this subsection
resolves the inclusion relation @ » NS and it is known as Tsirelson’s bound [33]. Again,
let us start with the CHSH scenario and consider, as before, the Bell observable Gcpsn
where the spectrum of observables Ag, A;, By and B; corresponds to 1. The square of

Gcusg can be written as

Geysy = 4 X Lyxq + [Ao, A1] ® [Bo, Bi).

Now, consider that || Ay|| denotes the greatest eigenvalue of Ay. Then, the Cauchy-Scharwz
inequality applied to the commutator of Ay and A; produces ||[Ag, A1]l| < 2||Ao| | A1]. If
considered the similar inequality for By and By, then

|GEnsull < 4+ 4 Aol [Aw]l 1 Boll [ Bu]| < 8, and

|Gensul < 2v2. (2.21)

Despite this simple verification was not the original method used by Boris Csirel’son on
[33], it efficiently find out a quantum bound for quantum violations of CHSH inequality,

ie.,

b bq by
| (AoBo) + (AoBy) + (A1 Bo) — (A1B1)]| < 2 < 2v2 < 4,

where b;, b, and b, denotes the local, quantum and geometrical bounds, respectively.

2.5 What about Charlie?

All what we have been showing so far considered a Bell scenario composed by only two

parts. As the title of this thesis clearly refers to nonlocality on multipartite systems it is
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already time to present scenarios with more than two parts. By the way, it is suitable to
denote the common language for multipartite scenario. From now on, we will refer to the
two parts scenarios as bipartite. For a three parts scenario we will use the terminology

tripartite and so on.

The simplest tripartite Bell scenario is the (3, 2, 2). Like the CHSH scenario it also
receives a special name: the Sliwa scenario, due to the study conducted on [34] by Cezary
Sliwa. As it is composed of one more part, the degree of complexity of the Sliwa scenario
is much larger than its bipartite analogous. Indeed, the resolution of this scenario is far
more recent, it comes from 2003, while CHSH inequality dates from 1969. Unlike the
former case, which has a single non-trivial inequality, Sliwa scenario has 46 classes* which
will not be shown for obvious reasons. The interested reader could see, e.g., reference [34,

e-print].

There are some specificities which turn multipartite scenarios more interesting than
bipartite ones. Some of the constraints presented before are trivial and can be straightly

extended, such as locality condition for three parts,
pla, b, clz,y, z) =Y plalz, Np(bly, Mp(c|z Np(\), (2.22)
A

where the simple addition of a marginal for Charlie is needed. But some conditions change
a lot with the addition of the third part, so the extension is no longer trivial. For instance,

w.r.t. the nonsignalling condition,

plalz) = > pla,bclz,y, z)=> pla,bclz,y, )

e et

pbly) = > pla, b el y,2) =Y pla, b cla' y, ') (2.23)
acry aer, s
cET; cer,y

p(C|Z) - Zp(a,b,c\x,y,z):Zp(a,b,c|x’,y’,z) Va,b,c,x,x/,y,yl,z,z/,

a€ry Q€T
bery ber,,

where these are the nonsignalling for the single marginals. We can still consider a

4Check on appendix A for a clarifying discussion about classes of inequalities.
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nonsignalling condition for the marginals two by two, as it follows:

p(a7b|x7y> = Zp(a/7b7c|x7y7z>:Zp(a7b70|x7y72/)

cEry CET 1

pla, clz, z) = Zp(a, b, clz,y,z) = Z pla, b, clz, v, 2) (2.24)
bery bG'I’y/

p<b76’y7 Z) = Zp(a7 b7C’x7 y72> = Zp(a7 b7c|x/7 y72) va/7b7c7x7$/7y7y/7z7zl'
a€ry Q€T

Then, as you can see, with the addition of one more part, we obtain several more

nonsignalling equations than in the bipartite case.

One interesting phenomenon which is not implicit in bipartite cases is that entangle-
ment and nonlocality are not limited to the parts two by two. The idea of entanglement

for any tripartite case can be obtained extending equation (1.12) for three parts,
p PO LD pipt @ pf @ pf . (2.25)

Despite of being the correct extended notion of tripartite entanglement, a stronger form

of equation (2.25) can be also obtained.
ptPC # Z (pil PP @ pf + iz p*C @ pP + pis pit @ pfc) , (2.26)

where ZZ] pij = 1,7 =1, 2, 3, and p;; > 0. This is the definition of genuinely tripartite
entanglement and attached to it is the concept of genuinely tripartite nonlocality,

that is, a behavior which does not admit a decomposition such

pla, b, clz, y, z) = p1p(a, blz, y)p(alz) + p2 p(a, c|z, 2)p(bly) + ps p(b, cly, 2)p(c|z),
(2.27)
where p; > 0 and ) . p;, = 1, for i =1, 2, 3. This definition is attributed to George
Svetlichny in his 1987 work [35].

Of course there is a huge path between establishing Bell inequalities - as the 46 classes
of Sliwa inequalities - and testifying the plausibility of nonlocality for each of them. Dif-
ferently of the CHSH case, where we could easily propose a set of state and measurement
operators which violates CHSH inequality, for a tripartite scenario this task is reasonably

hindered. There are, however, some numerical solutions you can check on appendix B.
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In 1987, Svetlichny proposed a pair of inequalities which could only be violated by a

genuine tripartite entangled state:

| (Ao BoCy) + (Ao BoCh) + (A1 BoCo) — (A1 BoCh) + (AgBiCo)
—(AyBiCY) — (A BiCy) — (A\BiCh) | <4 and
| (AoBoCy) — (AgBoCh) — (A1 BoCo) — (A, BoCh) — (AgBiCh)
— (ABiCy) — (A1 BiCy) + (A1 B Cy) | < 4. (2.28)

Inequalities (2.28) also belong to the (3, 2, 2) Sliwa scenario, but differently from the
remaining inequalities, any non-local behavior which violates the above expresssions must
be more strongly correlated than in (2.25).

This short description provided in the end of this chapter finishes our considerations
about multipartite nonlocality. Our next step will be the fully characterization of sce-
narios with causal relaxations, which is the main subject of this thesis. On this new
framework, all the interesting scenarios are multipartite and the immediate goal is to find

their inequalities.
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Super nonlocality

In the ending of last chapter we briefly presented a notion of nonlocality which is stronger
than the usual nonlocality idea in a tripartite scenario - the genuine multipartite nonlo-
cality. On this chapter, another concept of nonlocality, also stronger than the common
idea, will be presented with the - not that original - name of super nonlocality.

When studying tripartite scenarios an evident feature is its grown complexity. Whereas
in the bipartite CHSH scenario we have a single representative inequality, for the Sliwa
scenario this number grows to 46. This means not only an increase in the computational
complexity of a multipartite problem, but also in the characterization of a scenario, ac-
cording as more structure is added. For this reason, this chapter is intended to present
a framework known as causal relaxations which can be understood as a second layer of
causal structure in the standard Bell scenario.

To introduce this new and rich concept, chapter three will be divided in two parts: the
first one is dedicated to explore some preliminary concepts necessary to the introduction
of causal relaxations. The second half will explain the concept of causal relaxations and

the notion of nonlocality that emerges from it and entitles this chapter.

3.1 A sensible definition of causal structure

The concepts which will be addressed in this section are based in the seminal work by
Judea Pearl [36] and some other interesting related works, which will be opportunely
referred in the body of the text.

Up to this point, the reader must have already noted that this work is about inferring

causal correlations among a set of events. Given a pair of events, we may be interested in
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determining if they are directly correlated, i.e., one event causes the second, if they are
indirectly correlated, as in Reinchenbach’s principle, or even if they are anyway uncorre-
lated. We have already explored this question in section 2.4 and now we will provide it a
slightly different formalism.

Now we will encode the random variables by nodes in a graph. Whenever an event v,
direct influence an event vy, we will note it as v; — vy, the graphical representation of a
directed graph. A directed graph G = (V, FE) is a set of vertices V' (or nodes) combined
with a set of relating edges E. In a directed graph, such as v; — v,, v; is denoted as
source of e. Similarly, v, is denoted as target of e. The relation between v; and v, is also
named as follows: the set of parents of vs is represented as pa(vy) = {v1} and, similarly,
ch(vy) = {vy} denotes the set of children of v;.

In the language of [37, def. 3.1], a directed path between v; and v, is given by
a finite number N of nodes nq, ...,ny such that vy = ny — ... — ny — vy, where
vy, Vg, Ny, ...,ny € V. We can also use the shorthand v; ~» v, to indicate the existence
of a directed path between v; and vs. It also worth to include that if v; ~» vy then they

can be said transitive. In the light of these concepts one can state that

Definition 3.1 (causal structure) \

Any causal structure can be represented by a graph G = (V, E) such that v % v,

for all v € V. Such a graph is denoted as a directed acyclic graph (DAG). For the

non-transitivity of the vertices, zero length paths must not be implied.

. J

In summary, definition 3.1 claims that any causal structure cannot contain a cycle, in
such a way an event may be associated to its own cause. Henceforth, whenever a Bell
scenario is presented, there will be an associated DAG representing its causal structure.

But before we go into this, let us extract a second formalism from the causal structures.

3.1.1 Classical bayesian networks

In the Bell scenarios we have explored so far, the causal structure inherent to them
is already implicit. For instance, consider a generic bipartite Bell scenario, where the
locality condition is given by equation (2.5). Alice’s and Bob’s local distribution indicate
that a and b variables are directly influenced by = and y, respectively, and jointly by A,

as we can see in the associated DAG:
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|
“\ /b (3.1)

In this way, the locality condition is no more than a consequence of the LHV model causal
structure, reason why we can associate, for every locality condition, in any Bell scenario,
a respective DAG. We can attach these two concepts using a very convenient definition,

as in [38, 39]:

Definition 3.2 (bayesian networks)

1. (Markov condition) A DAG G(V, E) is Markov relative to a distribution p if

p(v, - Hp (v; | pa(vy)) (3.2)
where vy, ..., v, € V.
2. A classical Bayesian network is defined by a DAG G and its Markov related

distribution, p.

The application of definition 3.2 is straightforward. Again, for a bipartite Bell scenario,

we can use equations (3.2) and (3.1) to write

pla, b, z, y, A) = pla|x, A) p(bly, A) p(x) p(y) p(N).

Marginalizing over A and using Bayes’ rule gives us

plo e 0) = PR = 3 plol 2 0l N ), 33)

which equals equation (2.5).

3.2 Causal relaxations

Let us now put aside the causal structures for a moment and go back a few steps in the
formulation of a Bell gedankenexperiment. In a typical Bell scenario there are some causal
assumptions we make which are natural for the development of the concept, such as the

free will of Alice and Bob to choose their own measurements - an assumption we denote
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as measurement independence - and the locality assumption', which is implicit in the
nonsignalling conditions.

Several works aimed to investigate Bell scenarios when one of these causal assumptions
are given up totally or partially. A Bell scenario in which one of the causal assumptions is
omitted is said relaxed, thus giving rise to two new frameworks: locality causal relaxations
and measurement independence causal relaxations. While the latter is based on how much
independent Alice’s and Bob’s measurements must be in order to still achieve nonlocality
[40, 41], the former concerns on how communicating parts affect the result of a nonlocality
experiment, either simulating [42, 43] or quantifying it [44].

We can define a locality causal relaxation as any direct influence among the parts, like
the communication of one bit or any analogous strategy, which must be local to both of
the involved parts, and thus can be clearly represented by DAG’s. With respect to mea-
surement independence causal relaxation, its name is self-explanatory; any nonrandom
strategy of choice in the measurement set of observables or a hidden variables correlated
strategy may be considered measurement dependent [40)].

The formal description of a relaxed Bell scenario is provided by a Bayesian network.
Let us propose a scenario in which Alice classically communicates with Bob - but not

the opposite - which configures a locality causal relaxation. It can be represented by the

DAG

z Y

> 4
\./

= pla, bz, y) = > plalz, \)p(blz, y, \) p(\) (3.4)
A
where a red arrow was used to indicate the classical communication. Also, we must exclude

one of the nonsignalling equations, since Bob’s marginal is now z-dependent, p(b|z, y),

and the nonsignalling condition implies only

plalz) => pla,blz,y) = pla,blz,y)  Vabzyy. (3.5)

bery bE’r‘yl

IThere is also a third assumption, realism, which implies in the previous existence of a value for any
physical measurable quantities. This assumption is usually encompassed in the locality assumption under
the local-realism hypothesis. The overall conclusion in a Bell experiment is that you must either abdicate
of locality or realism. As we are not interested in this specificity, we shall consider the locality assumption
as one.
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In a scenario like the one depicted in the above relaxed DAG, equation (3.4) works
as a new locality-like condition which must be compatible with condition (3.5): we must
admit some of the nonsignalling correlations that are simulated by the communication
link from Alice to Bob. In this relaxed scenario, any non-local like behavior is considered
as super non-local and the set of correlations satisfied by this model will be referred as
the relaxed polytope. The relaxed polytope is no more than an inflated local polytope;
while condition (3.4) also admits the usual local behaviors, condition (3.5) abdicates of

some of the nonsignalling extremal points.

Also, the relaxed scenario on (3.4) is known in the literature as causal parameter-
dependent (CPD) model [44]. For the purpose of this thesis it also is appropriate to
characterize the CPD models as boring. For instance, in the (2, 2, 2) Bell scenario, all
of the nonsignalling correlations - including its extremal points, the PR boxes - can be
reproduced with the communication of a single classical bit between the parts [43]. Indeed,
for several bipartite cases similar to the CPD model, either the relaxed scenario can be
considered boring, for a practical number of inputs and outputs, or their characterization

based on relaxed Bell inequalities has already been explored [44].

3.2.1 Hierarchy for tripartite relaxed scenarios

However, in the tripartite case, the number of combinations of causal relaxations grows
severally as well as the number of possible resultant scenarios, thus there are many sce-
narios which remain unexplored. For this reason, it is necessary to establish some criteria
that reduce the total number of cases in a few representative ones. This is, briefly, the
result of [45] which creates a hierarchy of Bell relaxed scenarios in terms of the amount

of causal relaxations established among the variables.

Although the result of [45] is valid for the multipartite case, we will address specifically
the tripartite scenarios. The hierarchy is obtained by a couple of lemmas which are
based on the concept of nonsignalling equivalence. Let G; and G, be the DAG’s of
two distinct tripartite relaxed scenarios. If every nomnsignalling correlation produced by
the Bayesian network of G; is also produced by the Bayesian network of Gy, then G;
nonsignalling implies G and we denote as G; — G,. Moreover, if Go — G;, then G; and

G- are nonsignalling equivalent.
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(a) (b)

Figure 3.1: (a) Representation of lemma 3.3. Again, the red arrows represent the locality causal
relaxations among the parts. We can observe generic locality causal relaxations between parts 1
and 2 and 2 and 3, but not 3 and 1. Its nonsignalling equivalent graph is shown at its right, with
locality causal relaxations between 1 and as and 3 and a3 (b) Representation of lemma 3.4
with a single equivalence (also, we can consider the inverse of the left hand graph as equivalent,
pa(A) = {x1}). Now, the red arrows are representing a measurement independence causal
relaxation between the local variable A\ and the measurement free choice. Any measurement
independence causal relaxation is nonsignalling equivalent to the broadcasting of inputs among
the parts.

Consider a generic locality causal relaxation in a tripartite scenario?>. Worth to define
what do we mean by generic, i.e., a locality causal relaxation between parts ¢« and j such
that pa(z;) 2 {a;,z;} or pa(a;) 2 {a;,z;} for any i > j, with ¢,j = 1,2,3. (see figure

3.1a). This way we are able to enunciate the below lemma.

Any generic tripartite relaxed scenario between parts ¢ and j posses a nonsignalling

equivalent relaxed scenario which is obtained by performing a locality causal re-
laxation from the input measurement z; to its output response a; such that

pa(a;) 2 {z;}, as depicted in figure 3.1a.

\. J

Proof. As it involves parts ¢ and j we can consider the proof over the subgraph involving

only parts ¢ and j. A marginalization over A provides
plaj, a;| @y, m) = Y plaj, ai, A|zj, z;)
A
= D play, ai|zs, @i A p(A |2y, @),
A

where Bayes’ rule was used over A\. As z; is neither parent nor children of J, its influence

is trivial and

plaj, a;|xj, x;) = Zp(ag‘7 a; | g, zis A) p(A ;)
A

2For the enunciation of lemmas 3.3 and 3.4, we will use a slightly different notation for the parts. Let
1 be the measurement performed by the 1st part, Alice, and a; be the result of its measurement. A
similar notation holds for Bob and Charlie.
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>\ 3
= a; | aj, x;, a: |l z:. p(zi |A)
- ;p( Z‘ jy Lgy Ly )‘>p( ]’ Jyr Liy )\) p(xl) p()\),

where Bayes’ rule was used twice in p(A |z;) and p(a;, a; | z;, x;, A). We can associate the
randomness of a; to A and make a; deterministic to the choice of its measurement, z;,

then
p(xi |A)
p(ﬂ%)

plaj, a;|zj, x;) = ZP(CLH%', zi, A)plaj | zj, A) p(A).
A

Note that the above equation represents a Bayesian network associated to a generic relaxed
scenario as defined earlier. As A is parent of a; and pa(z;) 2 {a;,z;}, then we cannot
omit its influence over p(x; |\). Instead, consider a marginalization of p(x; |\) in terms of

a;; therefore, using Bayes’ rule one more time,

p(xi[N) = Y pli, a;| V)
= Y plxilaj, Np(a; | \)
= > plailagpla;| ),

since x; is neither parent nor children of \.

Returning to, p(a;, a; | xj, ;),

p(zi|a})
plaj, ai|zj, ;) = ZP(GH%A zi, A) plaj|zj, N) Wfﬁ(“} [ A) p(A),
)\,aj ¢

note that, from Bayes’ rule, the following identity

plaj | z:) pa:) plxi|aj) — plaj|z:)

p(aj) ple:) — pla))

(| d5) =
equals one; once pa(a;) 2 i, p(a | v;) = p(a}) and
plaj, a;|zj, x;) = Zp(az‘fﬂfj, zi, A) plag |z, A)p(a} [ A) p(\)
Aa

J
= Zp(az’$j7 Ly, )\)p<a]‘x]? )\)p()\)7
A
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where we can infer that pa(a;) 2 x;. |

Lemma 3.3 reduces all of the generic locality relaxed scenarios to a single relaxation
among the involved parts which are sourced from an input measurement and targeted
to another part’s result. It simplifies a lot the total number of combinations of locality
causal relaxations, but it does not address other important case when we have a causal
relaxation between the hidden variable A and the choice of a measurement for the j-th
part, that is, it does not consider any measurement independence causal relaxation, which

is the subject of the next lemma.

~

Consider three different tripartite relaxed Bell scenarios. The first and second

scenarios are such that posses a single relaxation, pa(z;) = {\} and pa(\) = {z;},
for ¢ = 1,2,3. The third one is such that z; € pa(a;) for j = 1,2,3. These three

scenarios are nonsignalling equivalent, as indicated on figure 3.1b.

Proof. Consider the condition produced by the Bayesian network associated to the right
hand graph on figure 3.1b:

play, az, azlzy, x2, 73) = Zp(a1|x1, A) paz|z1, z2, A) plas|ai, z3, A) p(A).
A

As we did on (2.9), consider the deterministic assignments to each of the marginals

involved,

dl(a1|$1,)\1) - 5111,f1(90,)\1)’
do(ag|xy, 29, A2) = 5a2,f2(x1,x2,>\2) and

d3(a3|x1,x3, )‘3) = 5a37f3(931,$37>\3)?

where f; denotes the \;-th deterministic assignment of x; to a; and f; denotes the \;-
th deterministic assignment of x; and xz; to a;, for ¢« = 2,3. The above deterministic

assignments provide

T1 1
plar|z, A) = Zd1(a1|$17)\1)p(/\1|)\);
A1
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mi1 Xmg
T2

plag|zy, 2, A) = Z do(az|z1, 2, A2)p(A2| A)
A2

m1 ><'rn3
T3

plagley, ws, A) = Y dy(ag| @, @, As)p(As | N),

A3

where m; is the measurement set of the i-th part and r; is the associated result set to the
m;-th measurement of the ¢-th part, for i = 1,2, 3.

Similarly to (2.9), the former definitions yield,

plar, az, azlzy, x2, x3) = Z plar|z1, A) plaz|z, x2, A) plas|zi, x5, A) p(A)
A

= Z dl((h |931, )\1) d2(a2 |£E1, T2, )\2) d3(a3|$1, xs, )\3)1?()\17 A2, )\3)-

A1,A2,A3

Now, note that fixing \; and x1, f; becomes a single argument assignment function of

mi1 Xm;
%

x; into a;, for ¢ = 2,3. Once \; and x; posses r and m, different values respectively,

miy Xm;
i

then fixing \; and x; produces r xmy /r" same single argument assignment function

of x; into a;. Thus, let us relabel

f@'*<xi7 )\;k) = fi(xl, Xy, )\1> with )\;k = )\:(Slfl, )\1),

mi1Xm;

i X myq, 1nto

for © = 2,3, where A\ maps all of the different pairs of \; and x;, r

different 7" single argument assignment functions, f/. Then,
play, az, az | 1, 72, x3)

= Z di(ar|z1, Ai) da(az |1, T2, A2) d3(az|z1, w3, A3) p(A1; Az, Az)

A1,A2,A3
= Z dl(a1 |$1, )\1) dz(a2 |$1, T2, )\3) d3(<l3|$17 I3, A;)p(/\h A2, >\3)
ALAS N
XA}, i=2,3
= Z di(ar| @1, M) da(az |21, 22, A3) ds(az |z, 3, A3) Z p(A1; Az, A3)
ALAZAS XiiA;
i=2,3
= Z di(ar|@1, A1) da(ag| w1, T2, A3) ds(as| @1, 23, A3) p* (A1, A3, Az| @),
ALAS N

where p* denotes the normalized conditional probability w.r.t. p(A1, A2, A3). The above
condition represents the decomposition in deterministic assignments of a tripartite relaxed

scenario in which pa(\) = {x;}. The scenario corresponding to the inverse measurement
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independence causal relaxation, pa(z;) = {\}, can be obtained by using Bayes’ rule,
p (a1, az, az|zy, T2, T3)

= Z di(ar|z1, Av) da(az |z, T2, A3) d3(as|x1, 23, A3) p* (A1, A3, Ajl21)

A1,A5,A%

* . *(rq |\ ’)\*7 X
= E di(ay|x1, M) da(az |21, 22, \5) d3(as|x1, x3, )‘3)p (1] A1, A5, A3)
AL p(a)

P (A1, A3, A3). A

If used together, lemmas 3.3 and 3.4 shows an equivalence of any kind of tripartite
relaxed scenario with another tripartite relaxed scenario with the latter possessing a causal
relaxation of locality sourced in an input measurement and targeted in other part’s output

result. This conclusion motivates definition 3.5, as follows:

Defintion 3.5 N

Each tripartite relaxed scenario possessing only locality causal relaxation sourced

in an input measurement and targeted in other part’s output result defines a causal
class of tripartite relaxed scenarios. It is represented by its associated Bayesian
network and an input-to-output Bell DAG (I0O-BDAG), as in figure 3.2. A causal
class contains all of the nonsignalling equivalents scenarios as well as those obtained
by relabeling parts, measurements and results. All of the IO-BDAG’s and its asso-
ciated Bayesian networks and scenarios are ranked by the number of locality causal

relaxations, forming an hierarchy.

Definition 3.5 enable us to reduce the amount of tripartite relaxed scenarios in a total
of 16, divided into six levels of a hierarchy. Furthermore, we can distinct each class of the
hierarchy as being boring - in the case that the class reproduce all of the nonsignalling
correlations for its scenario, independent of the number of inputs per part and outputs per
measurement, as defined earlier - and interesting. An interesting class may behave as
boring for certain relaxed scenarios, but this is not true when considered for an arbitrary
number of inputs and outputs. More importantly, no boring class may present super

nonlocality, neither one can assure an interesting class possesses super nonlocality.

The main result of [45], which is summarized in its theorem 4, is to categorize the 16
causal classes among boring or interesting. Among the 16 classes, 6 are definitely boring
and 6 others are definitely interesting, that is, there were already known examples of

super nonlocality (see figure 3.2). With respect to the four remaining classes, three of
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them are nonsignalling equivalent and referred as to star class, as the output result ag is
causally connected to all of the others possible variables - the rays of the “star”. The last

remaining causal class will be referred as to circle. Both star and circle classes were not
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Figure 3.2: The complete causal hierarchy of relaxed tripartite scenarios containing all of the
16 classes of IO-BDAG’s. The boxed I0-BDAG’s into a continuum square are known to satisfy
Svetilchny’s inequality [46], which, on the other hand, is known to be violated by quantum
correlations [35]; therefore, these classes are indeed interesting. All of the dashed boxes indicates
that the IO-BDAG’s contained into are boring, as shown in [45]. The box filled in light orange
contains the class that will be referred to as the circle. The three remaining boxes, filled in light
purple were shown to be nonsignalling equivalent [45] and will be referred to as the star class.
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known to be interesting or boring so far.

3.2.2 In the search of super nonlocality in star and circle classes

Before finishing this chapter, let us clarify about the situation of star and circle classes.
In [45], it was discovered the star class is boring in a tripartite relaxed (3, 2, 2) scenario.

However, it was also found they satisfy a family of inequalities expressed by

Iy = I(A, B) + (A", C) + I(B', C") < b, + 2b,, (3.6)

where b; and b, denote the local and geometrical bounds of I5, an arbitrary bipartite Bell
expression such that I, < b; constitutes a Bell inequality. The above inequality express a
scenario in which each part’s output may be indexed in two different labels, for instance,
A and A’ are two different labels of Alice’s results. Remarkably, not only the star class
has been found to be interesting, but examples of quantum violations of (3.6) were found,
but with a high number of inputs per part and outputs per measurement.

With respect to circle class, a Bell inequality was found in [45], but no quantum
violations of this inequality were verified.

Finally, we are in a condition to expose the main goal of this thesis: firstly, verify if
the circle class is indeed interesting or not and, in the affirmative case, find an example of
super nonlocality in it. Secondly, we want to find other examples of super nonlocality in
the star class, but these in simpler relaxed scenarios, i.e., with a smaller number of inputs
and outputs. Although this is the subject of next chapter, we were able to testify that

the circle class is interesting and find examples of its super nonlocality.
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Methods and results

In this last chapter, we will expose our methods and the obtained results. We have made
two main attempts in order to find examples of super nonlocality in the circle class.

The first obvious method we have used was the facet enumeration. Although it is
capable of providing some ordinary results, such as the full characterization of the CHSH
and Sliwa scenarios, it has proved to be impracticable for the purpose of this thesis.
Secondly, we have started to develop a method based on reference [47] and a result of
convex optimization known as separating hyperplane theorem [48, sec. 2.5], method
which culminated in our main results.

This chapter is organized as follows: firstly, we present both methods as well as a short

theoretical introduction and then finalize with the results.

4.1 Facet enumeration

As already mentioned in section 2.3, the Minkowsky-Weyl theorem states that every poly-
tope is finitely generated and can be equivalently represented either by its extremal points
(or vertices) or by its facets. Now, if we stick to the definition of what is facet enumer-
ation, any method which is able to obtain the whole set of facets of a specific polytope
from more fundamental information about it can be understood as facet enumeration.
However, in the study on Bell nonlocality, this more fundamental information of the
polytope use to be its vertices, which are, in general, easily obtainable. This way, the
method must be understood here as the usage of Minkowsky-Weyl: the conversion of a
V-representation to a H-representation of the same polytope. Worth to mention that the

inverse problem is also relevant for some cases and, although we will not address it here,
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it is known as vertex enumeration.

The first step in order to perform facet enumeration of a given polytope is to identify
their vertices. We know, beforehand, that the vertices of the local polytope are expressed
by their deterministic behaviors, as in equation (2.11), for a generic bipartite scenario.
Thus, all of the work that must be done is to list all the ™ deterministic assignments
for each of the parts and combining them as in (2.11), where m is the part’s number of
measurements and r is the number of output results for each possible measurement. Care
must be taken when listing the deterministic assignments of a relaxed scenario such as
the ones depicted in figure 3.2, where a part’s output receives a signal from other part’s

i X

input. In this case, there are r;"""" deterministic assignments for each part, where i
and j indicate the involved parts. Also, attention must be paid when assembling the
deterministic assignments; equation (2.11) is no longer valid, but the condition obtained
by the associated Bayesian network.

Once this process is done, r*™ extremal points are obtained for a bipartite uniform
scenario. The task is continued by inputing all of the extremal points in a polytope
representation conversion software. There are several of these, for instance, the polymake
[49], the Irs [50], the Parallel AdjaceNcy Decomposition Algorithm (PANDA) [51] and the
POlyhedron Representation Transformation Algorithm (PORTA) [52], being the latter
two the mainly explored in this thesis.

Both PORTA and PANDA are optimized implementations of the Fourier-Motzkin
elimination method, a method for solving a system of linear inequalities which consists on
eliminating a single variable for each iteration of the algorithm. A detailed explanation
about the Fourier-Motzkin elimination may be found on [53]. Also, the PANDA allow
the user to input information about the symmetries of the polytope, which enables the
software to find not only the whole wanted facets but also a representative for each class

of them (see appendix A).

4.1.1 Some preliminary results with facet enumeration

Using the facet enumeration method we were able to quickly reproduce some known
results, such the entire set of 24 inequalities in the CHSH scenario (with trivial inequalities
included), as well as the 53 856 inequalities of the Sliwa scenario belonging to 46 distinct

classes [54].
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Our next natural step was, of course, to address the circle class, represented by the
orange filled DAG in figure 3.2. In this step of the thesis we considered, for simplicity,
the circle class in the (3, 2, 2) scenario. Some glaring differences were already manifested
at the beginning of our study such as the number of extremal points, for instance. While
CHSH and Sliwa scenario posses 16 and 64 extremal points, respectively, the circle class
has a total of 4096 extremal points. Its study quickly proved to be difficult when we tried
to enumerate its facets. For most of our executions of PANDA and PORTA, a 16 cores
processor equipped with 32 GB of RAM was used [55]. For CHSH and Sliwa scenarios,
we were able to enumerate all facets in a single round of few seconds. The same execution

for the circle class took 4 days and returned no practical result.

This impediment motivated us to look for alternatives for the circle class. Remember
that in any relaxed scenario of the causal hierarchy, like the ones depicted in figure 3.2,
we are considering that a part’s choice of measurement is able to signalize to other part’s
result, which implies that some of the behaviors contained in the relaxed politope are
actually outside of the nonsignalling polytope, as in figure 4.1a. Since Q@ C NS, these
signalling behaviors are not interesting for our investigation. Indeed, all of the interest-
ing information about the circle class is contained in an intersection of the relaxed and
nonsignalling polytopes, which, in turn, was termed as the signalling-local polytope, or

siglocal, for short, as suggested by figure 4.1b.

Using this insight, we performed some attempts to still enumerate the facets of the
circle class. Firstly, consider this new representation (see appendix A) for the behaviors

in a relaxed scenario:

(A =D abaess (Bloy =D 0Poys (C)ye =D cPelyes
a b c

<AB>x7yyZ = Z abpa,b\x,y,za <A0>x7y7z = Z AC Paclz,y,z» (41)

a,b

(BC),,.= Z beprelay, and (ABC), . = Z abe Papclw,y,z

b,c a,b,c

where a, b, c € {—1, 1}, x, y, z € {0, 1}. It can be inverted for the probabilities if

Puetes = g1+ (C1 (A), + (1P (B),,, + (1) (C),,.

+ (_1)a+b <AB>m,y,z + (_1)a+c <Bc>x,y,z + (_1)b+c <BO>m,y,z
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Figure 4.1: (a) The construction of the relaxed polytope (a bidimensional representation). In
a scenario whose nonsignalling conditions are relaxed, we must consider some of the signalling
extremal points - the extremal distributions of the signalling polytope, represented by the S
hexadecagon in orange - as the extremal of the relaxed polytope. This way the relaxed polytope
can be seen as the convex hull of the local and the additional signalling extremal points. (b)
The bidimensional representation of the signalling-local polytope, or siglocal, for short. This
new polytope is the intersection of the relaxed and the nonsignalling polytopes. The advantage
of using this polytope instead of the relaxed one is that its dimension is smaller than the former.
However, its obtainment can be even more difficult.

+(=1)(ABC),, ] (42)

Note that, for equation (4.1) running upon all of the subindices, there are 44 correlators,
while in the former representation of probabilities we had 64 possible variables. The
correlation vector is now described by 44 grouped signalling correlators'. This reduction
of 20 dimensions in the representation is a consequence that in the circle class some - but
not all - nonsignalling conditions are relaxed. That is, other signalling are still possible,
but not present in circle class.

This way, the polytope with causal relaxations of circle class is 44-dimensional. Once
the extremal points of the polytope with causal relaxations were obtained in this new
representation, we continued with facet enumeration. However, for a second time, the ex-
ecution of the facet enumeration software proved once again to be inconveniently long and
for one more time we could not proceed with facet enumeration even with the reduction of
20 dimensions of the problem. It turns out that for the Sliwa scenario we were able to solve
the enumeration of facets even using the 64-dimensional representation of probabilities.

However, Sliwa’s local polytope has fewer extremal points and has dimension 26. That is,

1Remember that the Sliwa polytope is a 26-dimensional object. This is easily checked if the dimension
of the correlator vector is counted, which corresponds to 64. Then, subtracting the 8 normalizations and
the 30 nonsignalling conditions (equations (2.23) and (2.24)) - considering that each constraint reduces
a single dimension - we got 26. This same counting for the relaxed polytope reaches 44.
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the main determinant for the execution of the enumeration of facets is the effective size
of the polytope, not the representation used. Thus, the following attempts were made to
reduce the practical number of points or the effective dimension of the polytope.

It is a fact that we are not looking for the facets of the relaxed polytope, but rather, its
intersection with the nonsignalling polytope, the siglocal polytope - as both are virtually
the same problem. Thus, we built an algorithm which aimed to perform the intersection
given only the vertices of the relaxed one. The central idea of this algorithm is based on
the fact that the relaxed polytope has dimension 44 and the nonsignalling polytope, 26.
Therefore, the nonsignalling polytope is contained in 18 hyperplanes more than the relaxed
polytope, if we take into account the representation of signalling correlators. We started
by dividing the extremal points of the relaxed polytope in three groups. Picking one of
the aforementioned 18 hyperplanes in which the nonsignalling polytope is contained, we
grouped the extremal points of the relaxed polytope among those above this particular
hyperplane, those below and those accidentally contained in the hyperplane.

From the groups of points above and below one of the hyperplanes, we take the convex
combination among them, two by two. The point of intersection of each line segment
with the hyperplane is maintained and the points above and below the hyperplane are

discarded, as explained in figure 4.2a. The repetition of this procedure for each of the

(]
— —
( J
Relaxed
polytope

(a) (b)

Figure 4.2: (a) Tridimensional illustration of the intersection algorithm. The groups of points
above and below the plane are in black joined by line segments. The light blue points are those
already contained in the plane - they do not participate in this iteration of the algorithm. The
red points represent the intersection of the segment with the plane. While the black dots are
discarded, the red ones take their place in the next iteration of the algorithm. (b) Bidimensional
illustration of the second algorithm. The same color pattern as the figure 4.1a is used here.
The line secant to all polytopes represents one of Sliwa’s inequalities. The points in red are the
extremal points of the smaller polytope separated by the inequality. The black points are the
other extremal of the relaxed polytope. All points below the line are local w.r.t this specific
inequality.
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hyperplanes gives us the extremal points of the desired intersection polytope.

This approach, despite returning extremal points at the intersection of the two de-
sired polytopes, also returns points on the facets of the intersecting polytope, which are
redundant. Then, for each iteration, the number of points increased dramatically and,
even taking the convex hull among all the resulting points in each iteration, the execution
time also proved to be excessively long and this procedure was also abandoned.

The last addressed attempt was to section the relaxed polytope into pieces. The
procedure consisted of dividing the polytope using the known Sliwa’s inequalities. Since
the interest is to find out only super non-local behaviors, then it is trivial that these
behaviors are above the Bell’s inequalities for the corresponding scenario. Thus, the
“nucleus” of the polytope is uninteresting. This way, the problem was broken into pieces.
Each Bell’s inequality for the Sliwa scenario cuts the relaxed polytope in two haves. The
extremal points above or contained in the hyperplane designated by a single Bell inequality
forms a smaller polytope than the original, as in figure 4.2b. Nevertheless, even for this
“small” polytope, the process of facet enumeration proved to be unproductive. The
number of extremal points for this new polytope has not decreased considerably, which

has not changed the conditions for the execution of the facet enumeration software.

4.2 Linear programming

After several failed trials to find out any super non-local behavior (as we had not even
got close to the inequalities), we considered a more radical changing in our original plans.
Instead of insisting in the facet enumeration process, we picked the separating hyperplane
theorem as our current method.

Before going deeper into this theorem, let us, firstly, introduce the base needed to
address the separating hyperplane method, which corresponds to linear programming.
More generally, linear programming is a class of problems we denote as an optimization

problem. Every optimization problem can be immediately recognized as

minimize  o(x)

subject to ci(x)<b;, i=1,.., N, (4.3)

where o : R™ — R is denoted as the objective and the N inequalities ¢; : R” — R bounded
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respectively by b; € R are denoted as the constraints of the problem. For every x which
satisfies all of the N constraints, we denote it as a feasible point and, if the problem is
not infeasible, i.e., the solution x* of (4.3) can be obtained, then x* is the optimal point
of o(x). It is worth noting that the restrictions should not necessarily be an inequality.
An equality constraint also constitutes a valid restriction.

In this way, for different forms of the functions o(x) and c¢;(x), we establish a different
class of problems. Naturally, if o(x) and ¢;(x) are linear w.r.t. x, then the task defined
in (4.3) is regarded as linear program.

In a more pleasant manner, every linear program can be written as

minimize 0-X

subject to Cx <b, (4.4)

where b € RY is the vector containing the b; bounds of (4.3) and o € R™ and C' € RV*"
now represent the objective and the constraints, respectively. Also, in a linear program,
if there is x*, then the set F of feasible points is represented by a convex polytope, being
x* an extremal point of F.

Seeing this way, optimization problems and, specifically, linear programming seem to
enjoy a common solving method, which is not true. Actually, for a specific optimization
problem, there can be several applicable methods. For linear programming, the most used
algorithm is known as Dantzig’s simplex algorithm [56] whose operation is based on the
fact that if an extremal point does not reach the maximum (or minimum) of the objective,
then its value can always be increased (or decreased) by walking along an edge containing
the initial extremal point and ending on a second one [57, sec. 3.8]. The execution is
finished when this process reaches a maximum (or minimum) value of o - x or when the
current edge is unbounded, in the case that the problem has no solution.

There are several applications of linear programs that can be used in the study of
nonlocality. The following linear program, for instance, can be used to determine whether

a given point p is or not within a polytope whose vertices are expressed by v;. Then,

maximize E a;

subject to Zai <1, Zaivi <p, a; >0 Vi, (4.5)
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If the answer of the objective function is equal to 1, then p is inside the given polytope.

Every linear program such (4.4) may be also referred as the primal form of the
problem, that is, we can also establish a second linear program, which is known as the

dual and may be written as

maximize b-v

subject to Cv >o. (4.6)

where v € RY. We say that a linear program is strongly dual if both of its solutions, x*
and v* - the primal and the dual, respectively -, are such that both of the objective are
equal, i.e., o-x* = b-v*. Additionally, if the program is strongly dual, then if the primal

is infeasible, the dual is unbounded and vice versa.

Another good application of linear programs in nonlocality is that we can compute
the distance of a point p to a given polytope with N vertices v;, or, more interestingly,

obtain, by its dual form, the separating hyperplane between them by writing

minimize al- 19)
a

subject to al-v;>1, a>0, i=1,.., N, (4.7)

where a > 0 must be understood as element wise and a € R" represent the coefficients
obtained by optimization which characterizes the hyperplane a’ - x > 1, for x € R".
Note that, here, we are interested on finding the hyperplane a*T - x > 1 which maximally

separates the point p from the vertices v;.

The above result is supported by a theorem known in the literature as the separating
hyperplane theorem. It can be generically enunciated by the existence of a* such that

T.x = 1 separates two given convex sets A and B, with AN B = @.

the hyperplane a*
As this is a result of convex optimization, which, in its turn, is not contained in our main
topic of investigation, it will suffice to enunciate it. The interested reader can consult
a judicious proof of it on [48 ex. 2.22] as well as a richer introduction to optimization

problems.
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4.2.1 A super non-local behavior

In light of the concepts just shown, we can finally present our main results. The original
inspiration was a work by Cope and Colbeck [47] which is, in its turn, based on the follow-
ing insight: every local behavior is contained in a convex set (the local polytope) which is
contained in another convex set, the nonsignalling polytope. The extremal behaviors of
the NS set are either outside the local polytope or are also extremal of the local polytope
[23].

Once we can check whether an extremal point is or not within the local polytope, by
using (4.5), then one is able to filter only the disjoint extremal behaviors of the N'S set
and L. Therefore, the idea is use (4.7) systematically to obtain the separating hyperplane
between the extremal nonsignalling behaviors which are disjoint to the local set £. The
minimization over a' - p force this hyperplane to be a face of £ and a later verification
distinguishes the facets from the faces.

This systematical usage of (4.7) is performed in [47] considering that not only the
extremal behaviors are able to be used. Note that, since you have got a single separating
hyperplane by performing a single iteration of (4.7), then you can select extremal local
behaviors which lie on the obtained hyperplane. Any convex combination of these still
yield an outsider point, w.r.t. the local polytope. This specific method is able to find
hundreds of thousands of Bell inequalities in an acceptable running time of the algorithm.

Despite of the potential to find out several new Bell inequalities, we actually solved
our problem with a single iteration of the Cope and Colbeck method. The first step of
implementation consists on obtaining the extremal behaviors of the nonsignalling polytope
for the desired scenario: circle class in the (3, 2, 2) configuration. Alternatively, it is
possible to generate some random nonsignalling points outside of £, but as the extremal
points of N'S are an already known result [58], we could start straightly from (4.5).

The (3, 2, 2) N'S polytope possesses 53 856 extremal points, belonging to 46 inequiva-
lent classes?. Running (4.5) for a representative of each of the classes, we concluded that
the 27th, 29th, 43rd and 44th of the classes defined in [58] are not within the (3, 2, 2) re-
laxed polytope for the circle configuration. If the Cope and Colbeck method is employed,
then these special points are the starting iteration of the method. It happened that the

2Coincidence or not, this is also the number of Bell inequalities for this Bell scenario: 53 856 inequal-
ities, belonging to 46 inequivalent classes
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behavior associated to the 29th class provided the following separating hyperplane:

(Ao + ()11 + (Bloo + (B)yy +(Chgg + (C)yy + (AB)ggg + 2(AB) gy
—2 <AB>101 - <AB>111 + <AC>000 +2 <AC>010 —2 <AC>011 - <AC>111
+(BC)gpg + 2(BC) g9 — 2(BC) 110 — (BC) 1, — (ABC) oy — (ABC)yy; <12, (4.8)

which is a facet of the relaxed polytope.

After finding (4.8), no further iterations were needed to show that it can be violated.

We can do so considering the projection of (4.8) onto the nonsignalling polytope, then

(Ag) 4+ (A1) 4+ (Bo) + (B1) + (Co) + (C1) + 3 (Ao Bo)
—2 <AlBo> — <A1B1> + 3 <AOCO> - 2 <A001> - <A101>
+3(ByCo) — 2 (B1Co) — (B1Cy) — (Ao BoCo) — (A1 B1C4) < 12 (4.9)

and equation (4.8) can be written in nonsignalling correlators representation, such as
equation (2.16). Now, let
Ao = Bojo = Copp = [0X0],

A1|0 = B1|0 = 01\0 = |1><1|

be the projective measurement operators related to measurement x, y, 2 = 0 and

Aojr = Bojp = Cop = Xl

Ap=Bip=Cp=1- Xl

be the projective measurement operators related to measurement x, y, 2 = 1, where

lp) = cos (g) 0) + sin (g) 11).

It p = )], with

|1)) = cos a[cos 3|000) + sin 3]111)] + sin « [cos v |[Wo) + siny |[W1)],

where o & 1/100, 5 & 57 /6, v & 57 /3 and

[Wo) = 1/v3(]100) +[010) + |001)),
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|W1) =1/v3(|011) + |101) + |110)),

then, using the NPA hierarchy (see appendix B), inequality (4.9) can be violated up to
13.897.
This result confirms that the circle class, for the (3, 2, 2) Bell scenario, is indeed

interesting and finishes our presentation of results so far.

4.3 Final considerations

This thesis aimed to answer some questions opened in [45]. The main of them is if the
circle class, as defined in figure 3.2, level #3, is interesting or boring. By using a method

slightly based on the Cope and Colbeck method [47], we derived the following inequality

(Ao) 4 (A1) + (Bo) + (B1) + (Co) + (C1) + 3 (Ao Bo)
-2 <AlB()> — <A1B1> +3 <A()C()> -2 <A001> — <A101>
+3(BoCo) — 2 (B1Co) — (B1Ch) — (Ao BoCo) — (A1 B1Ch) < 12,

which can be violated up to 13.897 as verified by the NPA hierarchy.

The above inequality represents a facet of the relaxed polytope of the (3, 2, 2) Bell
scenario in the just mentioned circle configuration. Its violation represents that there
can be quantum correlations which cannot be simulated even when the parts signal their
measurements input to one of its neighbor, in a cyclical manner. Because the set of
correlations simulated in this classical configuration is not the local set anymore, but a
larger one, we classified this strong quantum correlation as super non-local.

Furthermore, a result which is not explicit on the main text is that the facet enu-
meration is not anymore a recommended method for obtaining practical results on Bell
scenarios, i.e., facet enumeration effectively can reproduce lots of known results, but when

applied in new scenarios it hardly produce something new.
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Transformations in a Bell inequality

Every reader slightly acquainted with the concept of Bell inequalities should be able to
recognize the following inequality as the standard form of the CHSH inequality [22]:

| (AoBo) + (AoB1) + (A1 Bo) — (A1 B1) | <2, (A1)

where the mathematical entity defined by (A4, B,) = p(a=b|x, y)—p(a#b|z, y) is known
as the correlator between Alice’s and Bob’s choice of measurement and a, b, x, y €

{0, 1}. Hence, a trivial expansion of A.1 in terms its probabilities yields

+p(070|170) +p(17 1|170) —p(O, 1|170) _p<1a O|170)

which is no more than (A.1) but written in an extensive manner and representing the
same Bell inequality as in [22].
The first appearance of (A.1) in the literature was in the aforementioned work by

Clauser, Horne, Shimony and Holt in 1969 in the - not that familiar - form of
| (AoBo) — (AoB1) | <2 = (A1 Bo) — (A1 B1) (A.3)

where the correlator is now written as (A, B,) = >, ,(=1)*""p(a, b|z, y), with a, b €
{1, 2}. A few years later, in 1974 two of the same authors of the CHSH inequality stated

68
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what would come to be known as CH inequality [59] for the (2, 2, 2) Bell scenario. It can

be written as

using the same labels as (A.3), where the subindex A and B denotes the marginal prob-
ability of Alice and Bob, respectively. Both (A.1), (A.2), (A.3) and (A.4) are different
representations of the same Bell inequality of the (2, 2, 2) scenario, which was already

mentioned as being unique.

It turns out that every single Bell inequality can be differently written as to consider
the convenience of the problem being adressed. This way, in a scenario such as (2, 2,
2), where there is a single representative Bell inequality, one can write several different

versions of this same expression.

Briefly, there are three different ways we can transform a given inequality. Firstly, we
are able to use any of the normalization and nonsignalling constraints. For a bipartite
Bell scenario, for instance, there are m” (where N is the number of parts and m the
number of measurements per part) normalization conditions of the form (2.6) that can be
used for this purpose. In (A.4) we can retrieve (A.2) by using the fact that every marginal
related to a measurement set defines a nonsignalling restriction over the probabilities and

then p4 can be written as pa(a|z) =), p(a, b|z, y), Vy.

Secondly, we are also free to change the labels of the Bell scenario. There are also three
kinds of relabelings that can be done, which consists on changing the names of the parties,
the label of the measurements and the label of results. An example can be pictured by
using, again, the CHSH inequality, as in (A.1). Actually this inequality possesses quite
a lot of simmetry and some of the changings will not be effective. For instance, turning
(A, By) into (B;A,) has the same effect than changing Bob’s and Alice’s measurements

and the Bell observable will remain unchanged

Gpen = AoBy + AogB1 + A1By + A1B1  — BoAg + BoAi + B1Ao + B1 Ay = Gpen, (AD)

since (B,A,) = (A,B,). However, if only Alice’s (or Bob’s) measurement is relabeled,
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then we achieve a new inequality:

(AogBo) 4+ (AoB1) + (A1Bo) — (A1 By) <2 — (A1By) + (A1 By) + (Ao By) — (AgB1) < 2.

(A.6)
Indeed, the above inequality is not (physically) different of (A.1) as we expect that an
arbitrary change in the labels of Alice’s measurement will not generate a new scenario.
Actually, there are others changings which can be done in (A.1) that provide new inequal-
ities. Exclusively for (A.1), we have eight different inequalities that can be obtained by a
similar changing of labels. As they are the same inequality up to this changing, we denote
that these eight belong to the same class® of inequalities.

CHSH scenario possesses a single non-trivial class, which is represented by its homonym
inequality, and a trivial class which can be written as p(a, b|x, y) > 0, V a, b, x and y.
Similarly, Sliwa scenario possesses 46 classes, which one of them is trivial.

Finally, it is also possible to change the representation of a inequality. We have already
done it by transforming (A.1) into (A.2). While equation (A.1) is said to be represented
in the correlators representation, (A.2) representation is named as a probabilistic.

The importance of changing the representation of a inequality does not lie only in the
fact that we are able to write the inequality in a shorthand manner. Also, we achieve
a reduction of the redundancies in the multidimensional space in which the polytope is
contained. For instance, in the (2, 2, 2) Bell scenario the local polytope is contained
in a 16-dimensional space in the probabilistic representation as each behavior is entirely
described by a 16-component real vector pyon = [p(0,0]0,0) p(0,0]0,1) ]T When in
the correlators representation we can say that the behavior is now represented by a 8-

component real vector
Peorr = [(AoBo) ... (A1B1) (Ao) (A1) (Bo) (BU)], (A7)

where (A, B,) = >, abp(a, b|z, y), (As) =3, apla|z) and (B,) = >, bp(b|y) if we
label a, b € {—1, 1}.

The dimension of the subspace defined by the correlators representation is precisely
the subspace spanned by the nonsignalling subspace. It considers the nonsignalling con-

ditions in its composition by adopting the marginals of the probabilities in the marginal

!For those who are familiar with group theory the preferable name is orbit.
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correlators (A,) and (B,). This is less redundant as for each measurement set of each
marginal we have a corresponding nonsignalling condition.

This trick is also explored in a third representation known in the literature as the
Collins-Gisin representation [60]. In this representation, the behavior is written by omit-
ting the probabilities of the results a = b =1 (could be a = b = 0, as well) and including
the marginals related to the results a = b = 0 of Alice and Bob (again, could be a = b = 1):

PG = [pa(0[0) pa(0[1) ps(0]0) ps(0[1); p(0,0[0,0) p(0,00, 1); p(0,0[1,0) p(0,0[1, 1)]" .
(A.8)
It has a clear advantage on the correlators representation as it does not require that the
results of each measurements to be dichotomous.
The way we can see a representation changing is as a coordinate changing in the space
of the probabilities. As we can transform the coordinates of the space of probabilities, we
are able to do that in a form that some of the coordinates become redundant. This way

we can focus in the subspace which excludes the redundancy.
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Numerical ways to verify a quantum violation

Once you got a new Bell inequality is desirable to know if this inequality is or not violated
by the quantum mechanics and quantify this violation. Moreover, we are interested to
find out, if there is a quantum violation, then what is the maximum amount we can achive

for it.

For an arbitrary scenario, given a Bell observable Gg.p, is quite easy to determine its
value for a given state p and POVMs {A,;}, {Byy}, {Ce2}, ... . All we got to do is to
substitute these quantities in the desired observable and calculate its value. However, it is
not possible to garantee, obviously, that the random initial choice of state and POVMs will
reach the local bound of the inequality. Fortunately, there are two numerical approaches
which accomplish this task. Both of them, the see-saw algorithm and the NPA hierarchy

are based in a optimization problem known as semi-definite programming.

Like linear programs, semi-definite programs (SDPs) are a class of optimization prob-
lems which share a common property between them: the optimization the objective func-
tion, which is also linear, is taken over the intersection of the positive semidefinite cone of

matrices with the problem space. Typically, every SDP may be written in the following

form:
mingnize tr (CX)
subject to tr(4;X) <b;, i=1, .., N. (B.1)
X >0,
where X, C' anb B; are square complex matrices with d lines and b; € C, fort =1, ..., N.
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Here, such as in the linear programming case, we also establish a strong duality of the
SDPs, i.e., the optimal solution of (B.1) applied in its objective function must be equal

to the optimal value of the dual objective function.

See-saw algorithm works by using SDPs for several times [61]. Defined the inequality
you aim to explore and the dimension of the state and POVMs, you randomly pick
positive semi-definite matrices to represent the POVMs. The next step is to express your
Bell observable Gge in terms of the matrices you have picked the step before. With
Ogen in hands, is possible to obtain its eigenvectors and define p as the state composed
by the eigenvector [¢)) possessing the biggest eigenvalue, that is, p = |¢) (¢|. Now, we
maximize tr(pGgen) w.r.t the first POVM, let us say {A,,}, as in equation (2.19). This
step is iterated for all of the parts and repeated until it converges to a local maximum.
Threfore, is recommended to run the algorithm more than once, considering different
starting matrices in a way you will be achieving more probably a global maximum value

for the desired inequality.

Similarly, to the see-saw algorithm the NPA hierarchy also provides a bound to the
violation of a desired inequality, but instead of a maximization of the Bell observable, it
provides a superior bound for the violation, being, thus, complementary to the see-saw

optimization.

Let M = {M,, ..., M,} be a set of linear operators acting in the Hilbert space H of

p. Then, let us define the matrix I' whose components are written as
If written such (B.2), I' matrix is a semi-definite matrix, as for all |¢)) € H,

W IT ) = witr (pM; M) 1),

i’j

= tr (pz M, Z quMj) : (B.3)

T
As (Z i ijj) = > . ¥rM;, the whole argument of the above expression is positive
semi-definite [7, ex. 2.25].

Now, suppose that the set o linear operators is given by MM = {1, {A, tazs {Bojy toy}
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for the first level of the hierarchy. If considered so, then some of the components of matrix

'™ are easily calculated as the components of the behavior:

FS) = tr (pAakU ® Bb\y) = p((l, b | &€, y)a (B4)

511 z-, are undefined: Fi,l ;, =

while for some other components, let us say ¢ and j’, T’
tr (pAa|$ ®Aa\x)- The method works by ensuring that if the behavior p is a quan-
tum behavior, then ') is a positive semi-definite matrix [62, criterion 6]. Although this
is a necessary condition for the existence of ' > 0, it is not sufficient, then some of the
behaviors which turns '™ positive semi-definite are not contained in the set of quantum
correlations and we denote the set of all p such that ™ = 0 as QM.

The following level is repeated but considering M® = M1 y {{AeAvie bazar s
{BuyBuy toyvrs {AaeBily}apey} and a second set 0@ is obtained associated to the
second level. The method provides that each set Q™+ is contained on its precursor Q"

and in the limit that n — oo,

lim Q™ = Q, (B.5)

n—oo

the hierarchy yields the set Q of quantum behaviors.
Obviously, there is no need to evaluate several levels of this hierarchy and reach the
quantum set. As it is an exterior approximation of Q, then a few levels of the hierarchy

must provide a good superior bound to the violation we aim to find out.
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