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Abstract

Brownian motion is defined as the irregular motion of particles immersed in a fluid and can be obtained

by the continuum limit of the simple random walk. From the position probability density function of a particle

subjected to that motion, information about the fluid, such as its temperature, can be obtained. In this work,

we analyze the Brownian motion in the relativistic regime. Previous proposals for position and velocity proba-

bility distributions of the Brownian particle are analyzed and, particularly, we propose our own approach to the

problem based on the Jaynes maximal entropy principle. In addition, we analyze quantum walks, its asymptotic

limit, and the concept of temperature for two and three-state quantum walks. We calculate the Gibbs temper-

ature of the three-state quantum walk and checked that in the asymptotic limit it also respects the definition

of entanglement temperature. We also study the frontier of quantum and random walks through decoherence,

the connection between quantum walks and relativistic dynamics by means of the continuum limit, and the

mathematical connections between the diffusion and Schrodinger equation and between the telegraph and

Dirac equation.



Resumo

O movimento Browniano é definido como movimento irregular de partículas imersas em um fluido e pode

ser obtido a partir do limite continuo do passeio aleatório simples. A partir da função densidade de proba-

bilidade de posições de uma partícula sujeita a tal movimento, informações sobre o fluido, tal como sua tem-

peratura, podem ser obtidas. Neste trabalho analisamos o movimento Browniano no regime relativístico. Pro-

postas de distribuição de probabilidade de posição e velocidade da partícula Browniana são analisadas e, em

particular, propomos nossa própria abordagem para o problema, embasada no princípio de máxima entropia

de Jaynes. Além disso analisamos passeios quânticos, seu limite assintótico e o conceito de temperatura em

passeios de dois e três estados. Calculamos a temperatura temperatura de Gibbs para o passeio de três estados e

checamos que no limite assintótico esta tambem respeita a definição de temperatura de emaranhamento. Tam-

bém estudamos a fronteira entre passeios quânticos e passeios aleatórios através de decoerência, a conexão

entre passeios quânticos e a dinâmica relativística através do limite continuo e a conexão matematica entre as

equações de difusão e de Schrodinger e entre as equações do telegrafo e de Dirac.
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CHAPTER 1

Introduction

The Scottish botanist Robert Brown (1773-1858), when studying pollen particles suspended on water, no-

ticed an irregular motion. In 1828 he published his work, Brown (1828), suggesting that the motion was due to

the collisions with the smaller molecules of the liquid and not because it consisted of a living system, as it was

believed at that time. This discovery was the starting point for a series of studies and experiments. However,

it was only in 1905 that the so called Brownian motion was mathematically described. The explanation about

the origin of the random motion of the Brownian particles played an important role in the acceptance of the

existence of atoms and molecules, which is one of the most important human discoveries about Nature. The

atomic theory is so relevant that the physicist Richard Feynman wrote the following words in his book Feynman

Lectures of Physics, Feynman et al. (2011)

"If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed

on to the next generation of creatures, what statement would contain the most information in the

fewest words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it)

that all things are made of atoms — little particles that move around in perpetual motion, attracting

each other when they are a little distance apart, but repelling upon being squeezed into one another.

In that one sentence, you will see, there is an enormous amount of information about the world, if

just a little imagination and thinking are applied."

In addition to the consolidation of the atomic theory, the discussion that involves Brownian motion and its

connection with the diffusion theory has a fundamental role in the interpretation of several natural phenom-

ena, such as the propagation of heat, the comprehension of noise in electrical systems, and the dynamics of
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part of the scope of the dissertation. The numbers between parentheses indicate the chapters where we ana-

lyze the topics. In the next two chapters of the dissertation (2, 3) we cover the classical non-relativistic aspect of

Brownian motion and random walks. The second chapter is devoted to the introduction of some important def-

initions and some approaches to connect the simple random walk and Brownian motion, i.e, the asymptotic,

and continuum limits. The third chapter concerns the Brownian motion and we present different approaches

that lead to the same probability density function of positions, a Gaussian distribution.

The relativistic regime is treated in chapter 4. Since it is not possible to derive a continuous relativistic

Markov process in position space, the usual approaches found in the literature to analyze a relativistic version

of Brownian particle are

• Derivation of a relativistic diffusion propagator in position space;

• Generalization of the Langevin equation.

In section 4.1 we analyze attempts to describe the motion using the first strategy and propose our own attempt.

Our relativistic propagator, obtained by Jaynes principle, respects the limit of the speed of light and is equal to

the propagator obtained by Dunkel et al. (2006) plus a constant. This difference is discussed in the conclusions

of chapter 4. In section 4.2 using the second strategy we present the relativistic Langevin equation derived

by Dunkel and Hanggi (2005) and analyze the generalization of the relativistic binary collision model through

simulations. Our simulations seem to be in accordance with Jüttner distribution of velocities.

In what concerns the relativistic regime, at last, in chapter 5, we also analyze the mathematical resemblance

via analytic continuation between differential equations that describe the evolution of the probability distribu-

tion of stochastic processes with quantum evolution as given by the Schrödinger and Dirac equations.

The analyses of the quantum regime begin in chapter 6. The main applications of the research of quan-

tum walks involve building quantum algorithms. Search algorithms based on quantum walks are quadratically

faster than classical algorithms due to the fact that the standard deviation of a quantum walk grows linearly with

time, while for a classical random walk σ∝
p

t . We begin in chapter 6 by making an overview of the definition

of a discrete-time quantum walk on an infinite line and then, we study it as an open system, considering only

the coin space. In that context, we look for the asymptotic limit and study the meaning of an entanglement

temperature, i.e, a temperature associated with von Neumann’s entropy. From that analysis, an original work

was developed where we calculated the asymptotic reduced density matrix of a three-state quantum walk and

the asymptotic temperature in an analogous way. We checked that for the two and three state quantum walk,

in the asymptotic limit, the entanglement temperature is equivalent to the one of a Gibbs state. This happens

because the system achieves a thermal equilibrium with its environment respecting the canonical ensemble.

We analyzed the limit between quantum and random walks through decoherence processes (chapter 7). In

this part, our original contribution was the extension of decoherence models of the two-state quantum walk to



15

the three-state quantum walk. As in the two-state quantum walk, the decoherence makes the distribution of

the three-state walk transit to a Gaussian, however by introducing the decoherence by broken links we see that

the main property of the three-state quantum walk, which is the localization, is preserved.

In chapter 8 we analyzed the continuum limit of quantum walks with and without considering the inter-

ference term. Through the continuum limit of the discrete time quantum walk with the interference term, we

studied the mathematical connections between quantum walks and the relativistic quantum equations that

describe the motion of free particles. And finally in Chapter 8 we present our conclusions.
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CHAPTER 2

Stochastic Processes and Random Walks

This chapter is devoted to the introduction of concepts of the stochastic theory and the definition and analy-

sis of the random walk. The continuum and asymptotic limits of the random walk, presented in the last sections

of the chapter, connect the discrete random process with its continuum version, the Brownian motion.

The concepts introduced here will gain physical meaning in later chapters, but the mathematical structure

may have many other interpretations. This is why the theory of stochastic processes is useful in different areas

of research, such as chemistry, biology, engineering, and economy.

2.1 Definitions

The main goal of this section is to set the definitions of the concepts we will use later on. Although we might

have some intuition about some of these definitions and do not use them in a direct way, it is important to have

them well established as we go through the calculations.

A random variable is a (measurable) function from the space of possible results of an experiment, ǫ, to the

interval I = [0,1] ∈R,

X : ǫ−−−−−→
x 7→p(x)

I , (2.1)

with the probability of the whole set being p(ǫ) = 1.

A stochastic process is defined as a family of random variables X = {X t , t ∈ T }, where the index t represents

the random variable at different times. When the index t is discrete, we can classify the process as follows. It is

said to be a purely random process if the conditional probability density of X t does not depend on the values

Xi , i < t , of the random variable at earlier times. In this case, the conditional probability density can be written
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as

P (xt |xt−1, .., x1) = P (xt ). (2.2)

A stochastic process is said to be a Markov process if the conditional probability density depends only on

the last earlier time, such that

P (xt |xt−1, .., x1) = P (xt |xt−1). (2.3)

If the process depends on the last two most recent values of x it is called a second order Markov process.

Analogously, other higher order Markov processes can also be defined. The book Principles of Random Walk,

Spitzer (1970), defines a random walk in the following way:

Let R be a d-dimension space of integers, such that if x ∈ R we can write1

x = (x1, x2, ..., xd ),

than for each x,y ∈ R we define a real function, P(x,y), called transition function of the random walk with the

following property,














0 ≤P(x,y) =P(0,y−x) ;

∑

x∈R P(0,x) = 1,

(2.4)

where y−x = y i − xi , i = 1,2, ...,d . The property that P(x,y) = P(0,y−x), is called spacial homogeneity and it

shows that the transition function can be described by a single function p(x) = P (0,x), such that by consequence

of Eq.(2.4),














0 ≤ p(x) ;

∑

x∈R p(x) = 1.

(2.5)

Then a random walk is defined by a transition function, p(x), that has the properties (2.5) defined for each x

on R. This function represents the probability of a displacement x of a walker that walks on the elements of

R. The spacial homogeneity means that the probability is invariant for spacial translations, i.e, the probability

related to the movements of the walker depends only on the size of the step, but not on his previous location.

Comparing the transition function of the random walk with the definition of a Markovian stochastic process it

is easy to see that, by definition, a random walk is a stochastic Markov process.

Let us consider a random walker, who is initially at the origin of R. At each step he moves an amount

xn, chosen from the probability p(x) of Eq.(2.5), this means that the steps are independent and identically

distributed (iid). We can define a variable,

XN =
N
∑

n=0
xn, (2.6)

1The bold letters represent vectors on the d- dimensional space.
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The moments can be used to define physical coefficients such as the drift , D1, and diffusion, D2, coefficients

D1 =
m1

τ

D2 =
m2

2τ
,

(2.13)

where τ is the time variable. The moments of a variable with distribution P (x) can be obtained using the mo-

ment generating function, P̂ (k). In one dimension this function is given by (Mandel and Wolf (1995)),

P̂ (k) = 〈ekx〉 =
∫

P (x)ekx d x. (2.14)

Therefore, by expanding the exponential as a power series and integrating term by term we can write

P̂ (k) =
∞
∑

n=0

knmn

n!
, (2.15)

and the moments are found to be mn = (−i )n ∂nP̂

∂kn
(0). To define the moment generating function of a discrete

random variable we replace the integral by a sum over n,

P̂ (k) =
∞
∑

x=0
P (x)ekx . (2.16)

This equation generates the same moments as the continuous one.

The characteristic function, Ĉ (k), is defined as the Fourier transform of the probability distribution

Ĉ (k) = 〈e i kx〉 =
∫

P (x)e i kx d x. (2.17)

When P (x) is square integrable, the inverse Fourier transform also exists

P (x) = 1

2π

∫

Ĉ (k)e−i kx dk. (2.18)

Note that due to the similarity between the characteristic function and the moment generating function, the

moments can be derived from the characteristic function on a analogous way. However it is important to point

that the characteristic function exists even when the moments do not.

Cumulants are a certain nonlinear combinations of moments. They can be obtained considering a function

known as cumulant generating function. It is defined as the logarithm of the moment generating function

ψ(k) = log P̂ (k). (2.19)

And the power series of ψ(k) gives the coefficients known as cumulants, cn ,

ψ(k) =
∞
∑

n=1

cnkn

n!
. (2.20)
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The first four cumulants are

c1 =m1,

c2 =m2 −m2
1 =σ2,

c3 =m3 −3m1m2 +2m3
1,

c4 =m4 −3m2
2 −4m1m3 +12m2

1m2 −6m4
1.

(2.21)

We see that the first and second cumulants are the mean and variance, respectively. The third and fourth are

called skewness and kurtosis. An important property of the cumulants is its additivity. If we define ψ(k) to be

the cumulant generating function of the steps displacement, i.e, the cumulant generating function associated

to the transition function, and ψN (k) the cumulant generating function associated to the probabilities of final

position of a random walk, then

PN (x) =
∫

e−i k·x+Nψ(k) d d k

(2π)d

=
∫

e−i k·x+ψN (k) d d k

(2π)d
,

(2.22)

that is

ψN (k) = Nψ(k). (2.23)

So the i -th cumulant tensor for the position after N steps is N times the i -th cumulant,

ci ,N = N ci . (2.24)

Once the standard deviation (σ) is related to c2 by σ=p
c2, and it measures the width of the distribution, after N

steps σN will have evolved to
p

N c2 =σ
p

N . And we see that the random walk with iid has square root scaling.

This result is very important and will be better explored later on.

Another relevant definition is the one of central-moments, which are the expected value of a random vari-

able of a specified integer power of the deviation of the random variable from the mean, i.e.:

V (m)
x = 〈(x −〈x〉)m〉 =

∫

(x −〈x〉)m p(x)d x. (2.25)

It is easy to see that, for the simple and unbiased random walk the first three central moments are

V (0) =1

V (1) =0

V (2) =c2

(2.26)

The third and fourth central-moments are related to skewness and kurtosis, respectively.
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2.2 Asymptotic limit of the random walk

In this section, we derive some methods for approximate solutions of the random walk in the asymptotic

limit (N → ∞). The content of the analysis is based on the works of Rudnick and Gaspari (2004); Lawler and

Limic (2010); Bazant (2000); García-Palacios (2004).

2.2.1 Rayleigh’s Solution

The first time the term random walk was used was in 1905 by Karl Pearson in a letter to Nature (Bazant

(2000)). He wanted to know the distribution of mosquitos on a infestation considering that at each time step

the mosquito moves a fixed length at a random angle. Lord Rayleigh answered the letter showing that

PN (R) ≈ 2R

N
e−R2/N , (2.27)

where R is the distance and N the number of steps. Let us derive a generalization of Lord Rayleigh result for an

isotropic random walk with independent identically distributed (i.i.d.) displacements, where p(x) is a transition

function of the radial displacement r = |x| and there is no drift (〈∆xN〉 = 0). Therefore the following recursion

relation, known as Bachelier’s equation, applies

PN+1(R) =
∫

p(r)PN (R-r)d d r. (2.28)

Eq. (2.28) states that the number of particles at a distance R is given by the number of particles that move from

a previous position to another one that is at a distance R from the origin in the latest time step.

As N tends to infinity PN (r) varies on a length scale which is much larger than common values for r , so we

can Taylor expand PN inside the integral

PN+1(R) =
∫

p(r)

[

PN (R)− r ·∇PN (R)+ 1

2
r ·∇∇PN · r+ ...

]

d d r

=PN (R)−0+ 1

2

∑

i

∑

j
〈ri r j 〉

∂2PN

∂Ri∂R j
+ ...

=PN (R)+ 1

2d
〈r · r〉∇2PN (R).

(2.29)

Assuming the steps are taken at intervals τ such that t = Nτ, if we divide the expression by τ we have that

PN+1(R)−PN (R)

τ
= 〈r 2〉

2dτ
∇2PN (R). (2.30)

Defining PN (R) = ρ(R, Nτ), in the limit where N →∞, τ→ 0, and so

∂ρ

∂t
= D∇2ρ, (2.31)
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where D = 〈r 2〉
2dτ is the diffusion coefficient, d is the dimension of the problem and (2.31) is the diffusion equation.

To solve this partial differential equation with initial condition ρ(R,0) = δ(R) we take the Fourier Transform

ρ(k, t ) =
∫

e−i k·xρ(x, t )d d x, (2.32)

ρ(x, t ) = 1

(2π)d

∫

e i k· xρ(k, t )d d k, (2.33)

and obtain

ρ(R, t ) = e−R2/2〈r 2〉N

(2π〈r 2〉N /d)d/2
, (2.34)

or

PN (R) ≈ e−d R2/4Dt

(4πDt )d/2
. (2.35)

We conclude that the long time limit of PN (R) for an isotropic random walk tends to a Normal distribution, as

long as the second moment 〈r 2〉 exists.

2.2.2 Recursion relation

Let us call the number of walks that start at x and end up at y , C (N ; x, y). Using the notation of section 2.1

C (N ; x, y) =
(

N

n

)

. Clearly, this number depends on the number of walks whose paths passed to the neighbor-

hood of that point. Therefore if the step size is l we can write

C (N ; x, y) =C (N −1; x, y − l )+C (N −1; x, y + l ). (2.36)

To approximate this relation to a differential equation we write

C (N +1; x, y) =C (N ; x, y −1)+C (N ; x, y +1)+2C (N ; x, y)−2C (N ; x, y)

=l 2
[

C (N ; x, y −1)+C (N ; x, y +1)−2C (N ; x, y)

l 2

]

+2C (N ; x, y)

≈l 2 ∂
2C (N ; x, y)

∂y2
+2C (N ; x, y).

(2.37)

We can replace the number of possible walks by the probability that after N steps a walker starting at x ends up

at y , P (N ; x, y). To do that we use the fact that C (N ; x, y) = 2N P (N ; x, y), and

P (N +1; x, y)−P (N ; x, y) = l 2

2

∂2P (N ; x, y)

∂y2
. (2.38)

Now, taking the limit N →∞ and considering that P (N ; x, y) is a slowly varying function of N , we can approxi-

mate the left hand side of Eq. (2.38) to another derivative, arriving at

∂P (N ; x, y)

∂N
= l 2

2

∂2P (N ; x, y)

∂y2
, (2.39)
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which is again the diffusion equation, with Gaussian solution, analogous to Eq. (2.35).

P (N ; x, y) = 1
p

2πN
exp

[−(x − y)2

2l 2N

]

. (2.40)

Comparing this two equations we can identify N = 2Dt and by a simple calculation using the definition of

c2 of section 2.1.1 we arrive at the square root scaling again, that is, σ=
p

2Dt =
p

N .

2.2.3 Central Limit Theorem

The central limit theorem states that if x1, x2, ..., xN is a set of N independent random variables, each having

the same probability p(x) with mean µ and variance σ2, both being finite, then the random variable defined as

∑N
i=0 xi −µN

p
N

, (2.41)

has normal distribution with variance σ2 as N →∞ . Once we have enunciated the theorem, we shall proceed

to its proof. Our method leads to a multidimensional generalization of this theorem, which is very convenient

since we might treat random walk in dimensions greater than one.

Here we are interested in Markovian processes, that is, stochastic processes that are only influenced by its

immediate past. In the case of a random walk this means that the probability distribution after N steps, PN ,

depends only on the probability distribution of the former step, PN−1. So we write

PN (R) =
∫

pN (r|R− r)PN−1(R− r)d d r. (2.42)

Using the property of spacial homogeneity of the transition function pN (r) we arrive at the Bachelier’s equation

again

PN (R) =
∫

pN (r)PN−1(R-r)d d r. (2.43)

Denoting ∗ for a convolution it is clear that PN = pN ∗PN−1. Since the (2.28) is a recurrence formula

PN = pN ∗ ...∗p2 ∗p1 ∗P0, (2.44)

where P0 = δ(x), is the initial position.

The Convolution Theorem states that the Fourier transform of a convolution of the multiplication of two

functions is the multiplication of the Fourier transform of both functions, that is

F[ f ∗ g (x)] = F[ f (x)]F[g (x)]. (2.45)

Therefore we can write for the Fourier transform of the probability PN

P̂N (k) = p̂1(k)p̂2(k)...p̂N (k) =
N
∏

i=1
p̂i (k), (2.46)
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which for steps with identical probability distribution simplifies to P̂N (k) = (p̂(k))N . Using the inverse Fourier

transform we obtain the PDF of the walker’s position

PN (X) = 1

(2π)d

∫

e i k·X(p̂(k))N d d k. (2.47)

Is important to notice that there are two moment generating functions of interest, since p̂(k) is the characteristic

function for the displacement x and P̂N (k) for the position XN . Therefore we can define a cumulant generating

function for each one of this variables. For the steps this function is

ψ(k) = log p̂(k) =−i c1k− 1

2
k · c2 ·k+ ..., (2.48)

and looking at Eq. (2.46) the additive property of section 2.1.1 is clear.

Now Let us analyze what shape the distribution tends to as N →∞. To do it we use Laplace’s Method, which

consists on using the fact that for a large N the dominant part of the integral (2.49),

PN (X) = 1

(2π)d

∫

all k
e i k·X+Nψ(k)d d k, (2.49)

is around the origin. Thus we can write

PN (X) ≈ 1

(2π)d

∫

|k|<ǫ
e i k·X+Nψ(k)d d k. (2.50)

Taylor expanding ψ(k) around 0 leads to

PN (X) ≈ 1

(2π)d

∫

|k|<ǫ
e i k·XeN (−i c1k− 1

2 k·c2·k+...)d d k, (2.51)

and for sufficiently large N we can truncate the series after the second term.

PN (X) ≈ 1

(2π)d

∫

all k
e i k·(X−N c1)e

N
2 k·c2·kd d k (2.52)

If c2 is positive definite and symmetric, it is possible to define w ≡ k ·
p

N c2 such that d d w = |
p

N c2|d d k, where

if d > 1, |pc2| is the determinant of
p

c2. Then Eq. (2.52) becomes

PN (X) ≈ 1

(2π)d N d/2|c2|−1/2

∫

e i (X−N c1)·(N c2)1/2·we−
w2

2 d d w. (2.53)

Making use of the transformation Z ≡ X−N c1p
N c2

the integral reduces to

PN (X) ≈ 1

(2π)d N d/2|c2|−1/2

∫

e i Z·we−
w2

2 d d w, (2.54)

which is the expression in terms of the multivariate Gaussian distribution. It can be seen as the product of d

Gaussian distributions

PN (X) ≈ 1

N d/2|c2|−1/2

∫

e i Z1w1 e−
w2

1
2

d w1

2π
· · ·

∫

e i Zd wd e−
w2

d
2

d wd

2π
. (2.55)
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Those integrals are the inverse Fourier transform of the Gaussian, so we can write

PN (X) ≈ 1

N d/2|c2|−1/2





e−
Z 2

1
2

p
2π



 · · ·





e−
Z 2

d
2

p
2π



 . (2.56)

Noticing that the transformation from X to Z creates a new random variable and calling its probability density

function φN (Z) such that PN (X)d d X =φN (Z)d d Z we have that

φN (Z) ≈ e
−Z2

2

(2π)d/2
. (2.57)

This is the result of the Multidimensional Central Limit Theorem (CLT). In one dimension, making another

change from

Z = X −N c1p
N c2

→ Z ′ =
∑N

i=0 xi −µN
p

N
(2.58)

we recover the result enunciated on the beginning of this section. And making the change of variables back to

X we arrive at Eq. (2.40).

2.2.4 Edgeworth expansion

Now Let us see what is the result of the central limit theorem approximation in the one-dimensional case.

Equation (2.51) becomes

PN (x) ≈ 1

2π

∫

|k|<ǫ
e i kx eN (−i c1k− 1

2 k2c2+ i
3! c3k3+...)d d k. (2.59)

Making the changes of variables: k = w

σ
p

N
and z = x −N c1

σ
p

N
the new PDF is

φN (z) ≈ 1

2π

∫

|k|<ǫ
e i w z e−

w2

2 e

[

(i w)3λ3
3!
p

N
+...

]

d d k, (2.60)

where λi = ci /σi , i ∈N. Taylor expanding the exponential on the right of the integral,

φN (z) ≈ 1

2π

∫

|k|<ǫ
e i w z e−

w2

2

[

1+
(

(i w)3λ3

3!
p

N
+ ...

)

+ ...

]

d d k, (2.61)

and since the Hermite polynomials are defined as

d n

d zn
e−

z2

2 = (−1)n Hn(z)e−
z2

2 , (2.62)

and
∫∞

−∞
(i w)ne−i w z e−

w2

2 = (−1)n d n

d zn

∫∞

−∞
e−i w z e−

w2

2 , (2.63)

we can write the approximation for φN (z) on the asymptotic limit as

φN (z) ≈ e−
z2

2

p
2π

[

1+ λ3

3!
p

N
H3(z)+ λ4

4!N
H4(z)+ 1

2N

(

λ3

3!

)2

H6(z)+O

(

z6

N 3/2

)]

. (2.64)
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This relation, in one dimension, is called Edgeworth expansion. The analog expansion for more dimensions is

called Gram-Charlier expansion.

Since the third momentum of symmetric distributions is an integral of an odd function, λ3 = 0. Calculating

σ2 = 1 and m4 = 1 we get from Eq. (2.21) that λ4 =−2 for our case. This leads Eq. (2.64) to

φN (z) ≈ e−
z2

2

p
2π

[

1− 2

4!N
H4(z)

]

. (2.65)

2.2.5 The Saddle Point Method

Another way of deriving the asymptotic limit of the probability density function (PDF) of the random walk

is using the saddle point method. Considering a simple random walk in one dimension, that is, with transition

function, p(m), given by Eq. (2.7). The Bachelier’s equation in its discrete form is

PN (m) =
∞
∑

j=−∞
p( j )PN−1(m − j ), (2.66)

and the Fourier series of the transition function is

p̂(k) =
∞
∑

m=−∞
e i km p(m), (2.67)

where k is a continuous variable, so

p(m) =
∫π

π
e−i km p̂(k)

dk

2π
. (2.68)

Using Eq. (2.7) on the series we have

p̂(k) =
∞
∑

m=−∞
e i km 1

2
(δm,1 +δm,−1) = 1

2
(e i k +e−i k ) = cos(k) (2.69)

Due to the result of the convolution theorem, Eq. (2.46) , we can write P̂N (k) = cosN (k). Therefore

PN (m) = 1

2π

∫π

−π
e−i km cosN (k)dk. (2.70)

This integral can be evaluated using contour integration, which leads to the exact solution (2.10). On the

other side, to find the asymptotic limit of the integral (2.70) we first use the fact that the integral kernel, f (k) =

e−i km cosN (k), is 2π-periodic and f (k +π) = (−1)N+m f (k) to rewrite it as follows

PN (m) = 1

2π

∫ 3π
2

−π
2

e−i km cosN (k)dk = 1

2π

(

∫ π
2

−π
2

+
∫ 3π

2

π
2

)

e−i km cosN (k)dk

= [1+ (−1)N+m]

2π

∫ π
2

−π
2

e−i km cosN (k)dk

= [1+ (−1)N+m]

2π

∫ π
2

−π
2

e−N f (k,η)dk,

(2.71)

where f (k,η) = i kη−log[cos(k)] and η= m/N . Now we can use the saddle point method on the last integral. The

method consists of noticing that, as N →∞, the dominant contribution to the integral comes typically from the
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point where |e f | = eRe f attains its maximum. Of course, the imaginary factor can provide large cancellations,

so to overcome this issue we use Cauchy’s theorem to deform the path of the integral in such a way that Re f

attains its minimum at a point k0 and grows quickly as we move away from it. Besides that, we also want that in

at least a small section of the contour Im f stays constant. Once the contour is chosen the rest of the procedure

is analogous to Laplace’s Method used in section 2.2.3, so we will jump some steps.

Let us begin finding the dominant contribution. It happens at the end points or at a saddle point, but in our

case it is easy to see that the major contribution does not come from the end points, because log[cos(±π/2)] →

−∞. Therefore Let us find the minimum of f ,

d f

dk
= iη+ tan(k0) = 0 =⇒ tan[k0(η)] =−iη. (2.72)

Using the exponential form of the tangent and isolating k0 we find that

k0 =− i

2
log

(

1+η

1−η

)

+πl . (2.73)

Where l ∈ Z. Notice that the principal branch of the logarithmic is bounded for all η such that |η| < 1 . The

case where |η| = 1, however, needs to be handled separately, but that is not a big problem since we know that

PN (m = N ) = 1
2N . Now, following the steps of the method we find f (k0,η) and d 2 f (k0,η)

dk2 :















f (k0,η) = iηk0 − log[cos(k0)] = η
2 log

(

1+η
1−η

)

+ 1
2 log(1−η2),

d 2 f (k0,η)
dk2 =−sec2 k0 = 1−η2.

(2.74)

Taylor expanding f in the last integral of Eq. (2.71) we arrive at

PN (m) = [1+ (−1)N+m]

2π
e−N f (k0,η)

∫

e−
1
2 N (k−k0)2 d2 f (k0,η)

dk2 dk, (2.75)

where the solution of the integral is
√

√

√

√

2π

N
∣

∣

∣

d 2 f (k0,η)
dk2

∣

∣

∣

. (2.76)

Therefore we end up with the following Globally Valid Solution2

φz ≈
1

√

2π
(

1− z2

N

)

exp

[

− z
p

N

2
log

(p
N + z

p
N − z

)

− N

2
log

(

1− z2

N

)

]

, (2.77)

where, again, z = m/
p

N .

2For a more complete derivation see Bazant (2000)
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Recalling the Bachelier’s Equation (2.28) - Markov hypotheses - and Taylor expanding PN (R − r ) we have

PN+1(R) =
∫

p(r )PN (R − r )dr

=
∫∞

−∞
p(r )

∞
∑

n=0

(−r )n

n!

d n

dRn
[PN (R)]dr

=
∞
∑

n=0

(−1)n

n!
〈r n〉 d n

dRn
[PN (R)]

= PN (R)+
∞
∑

n=1

(−1)n

n!
〈r n〉 d n

dRn
[PN (R)].

(2.78)

In the last line we use the fact that 〈r 0〉 =
∫∞
−∞ p(r )dr = 1. Rearranging the terms and dividing both sides of the

equation by τ we have
PN+1(R)−PN (R)

τ
=

∞
∑

n=1

(−1)n

n!τ
〈r n〉 d n

dRn
[PN (R)]. (2.79)

Now calling Dn = 〈r n〉
n!τ and using the new variable ρ we arrive at a partial differential equation

∂ρ(R, t )

∂t
=

∞
∑

n=1
(−1)nDn

∂n

∂Rn
[ρN (R, t )]. (2.80)

This equation is known as Kramers-Moyall expansion for coefficients Dn that do not depend on the position,

R, ( Risken (1996)). Its general form is

∂ρ(R, t )

∂t
=

∞
∑

n=1
(−1)n ∂n

∂Rn
[DnρN (R, t )], (2.81)

and it is possible to show that this expansion is of order 1, 2 or ∞. This demonstration is presented in appendix

A.1. In the case when it has order 2 we call it Fokker-Planck equation.

∂p(x, t )

∂t
=− ∂

∂x
[D1(x, t )p(x, t )]+ 1

2!

∂2

∂x2
[D2(x, t )p(x, t )]. (2.82)

The coefficients D1 and D2 are known as drift and diffusion coefficients, respectively. Stochastic processes with

D1 = 0 and D2 constant are called Wiener processes and if both coefficients are constants but not null it is

called a Ornstein-Uhlembeck process.

Despite being useful, this form of Kramers-Moyal expansion is not the most correct form of expansion, since

errors are introduced on first order continuous time derivative on time. To correct this errors let us consider the

Taylor expansion of ρ(x, t ) around t = Nτ

PN+1(R)−PN (R)

τ
= ∂ρ

∂t
+

∞
∑

n=2

∂nρ

∂t n

τn−1

n!
, (2.83)

which leads to the complete partial differential equation equivalent to Bachelier’s equation

∂ρ

∂t
+

∞
∑

n=2

∂nρ

∂t n

τn−1

n!
=

∞
∑

n=1
(−1)nDn

∂n

∂Rn
[ρN (R, t )]. (2.84)

Making a scaling analysis with some change of variables it is possible to recover the Central Limit Theorem. For

the complete derivation, we refer to Bazant (2000).
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Another useful form of Kramers-Moyal equation is the one which uses cumulants instead of moments as co-

efficients. It can be obtained expanding the time derivatives in function of position derivatives and identifying

terms of momentum with cumulants, it is also done in Bazant (2000)

∂ρ

∂t
=

∞
∑

n=1
(−1)nD̂n

∂nρ

∂Rn
, (2.85)

where

D̂n = cn

n!τ
. (2.86)
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CHAPTER 3

Brownian Motion

Brownian motion is the name given to the irregular motion of particles immersed in a fluid. It was named

after Robert Brown (1773-1858), a botanist that was studying the behavior of pollen particles suspended on

the water surface with a microscope and noticed random movements. In 1828 he published his work Brown

(1828), explaining that the origin of such motion was due to collisions of the pollen with the smaller particles

of the liquid, and not because of some living force as it was believed until then. The molecules of the fluid are

constantly moving due to thermal energy, so to predict the exact trajectory of a Brownian particle it would be

necessary to know the momentum of all molecules of the fluid that collide with it. This is obviously impractica-

ble, so to overcome this issue we make use of stochastic methods Risken (1996); Crispin W. (1994); Mandel and

Wolf (1995). In this section, we present three different ways to approach the problem, all leading to the same

solution: A Gaussian probability distribution of positions.

The discussion of stochastic processes launched by the discovery of Brownian motion caused an impact on

many knowledge areas, such as physics, chemistry, biology, and economy. Due to its strong connection with

diffusion, on physics, the study of Brownian motion led to advances in the interpretation of several natural

phenomena - For example, heat propagation and noise in electric systems.

To analyze deterministically a particle suspended on a fluid we shall consider the damping force, −αv that

acts on it. So according to second Newton’s law

v̇ +kv = 0, (3.1)

where m is the mass of the particle, v the velocity, v̇ its time derivative, and k = α

m
, given in terms of the the
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damping constant α. The solution of Eq. (3.1) is given by

v(t ) = v(0)exp−kt . (3.2)

This solution is valid only when the mass of the particle is sufficiently large so we can disregard the changes

in velocity caused by thermal fluctuations. If we wish to consider the thermal phenomenon we have to add a

fluctuation term, F f (t ), called fluctuation force and define Γ(t ) = F f (t )
m , so that

v̇ +kv = Γ(t ). (3.3)

This equation is known as Langevin equation and F f (t ) is a random force, known as Langevin force.

Before we start to present some of the possible approaches to the problem, we state two hypotheses that are

always assumed to be true

• The motion of each of the Brownian particles is independent of the other ones. In this case, however, we

are considering the motion of only one Brownian particle

• There is no correlation between events that happened at different times, i.e.,

〈Γ(t1)Γ(t2)〉 = qδ(t1 − t2), (3.4)

where q = 2kKB T

m
can be obtained with the solution of (3.3) and the equipartition theorem.

In the next sections we will present Einstein’s and Langevin’s approaches to find the position probability

density function of the Brownian motion (section 3.1) and the Binary collision model (3.2), which is an simple

microscopic model, that is suitable for simulations and that can be generalized to the relativistic regime.

3.1 Einstein and Langevin Approaches

In 1905 Einstein (1905) published an article where the Brownian motion was treated in the following way.

Let N be the total number of suspended particles, dn the number of particles with displacement between ∆

and ∆+d∆ and f (x, t ) the number of particles per unit volume. The number of particles that are between the

planes x and x +d x at time t +τ are the ones that were at a distance ∆ from the x plane at time t and moved ∆

on the interval τ, where ∆ can be any distance. This is the same as writing

f (x, t +τ)d x = d x
∫∞

−∞
f (x +∆, t )p(∆)d∆, (3.5)

in terms of the probability distribution p(∆). Taylor expanding f (x, t +τ) and f (x +∆, t ), expression (3.5) be-

comes

f (x, t )+τ
∂ f

∂t
+ . . . = f (x, t )

∫∞

−∞
p(∆)d∆+ ∂ f (x, t )

∂x

∫∞

−∞
∆p(∆)d∆+ ∂2 f (x, t )

∂x2

∫∞

−∞

∆
2

2
p(∆)d∆+ . . . . (3.6)
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Since p(x) = p(−x) and the probability p(∆) is normalized the integrals of expression (3.6) are

For k = 0 :
∫∞

−∞
p(∆)d∆= 1;

For odd k :
∫∞

−∞
∆

k p(∆)d∆= 0;

For k = 2 :
∫∞

−∞
∆

2p(∆)d∆= 2τD2,

(3.7)

where the last expression is used to define the coefficient D2. Hence, considering only the first two terms in the

left hand side of the equation we find

f (x, t )+τ
∂ f

∂t
= f (x, t )+ ∂2 f (x, t )

∂x2
D2τ+ . . . =⇒ ∂ f

∂t
= D2

∂2 f (x, t )

∂x2
+ . . . . (3.8)

This expression is called Diffusion equation. We can identify D2 with the diffusion coefficient of the Fokker

Planck equation. The normalized solution is known to be

f (x, t ) = N
p

4πD2

exp
−x2

4D2 t

p
t

. (3.9)

At this point we call the attention to the similarity between this approach and the Rayleigh’s and Recursion

methods, presented in chapter 2, in the sense that all three approaches start from a Markovian expression and

Taylor expansion of it around zero.

Figure (3.1) shows the distribution of positions obtained by the solution of the diffusion equation for dif-

ferent times, with the initial condition being a delta function on position zero, i.e, the initial position of the

Brownian particle is completely known.

Treating now the case where there is only one Brownian particle, if we suppose that the diffusion coefficient

is time independent and substitute the solution found for f (x, y) in the definition of second moment, we get

〈x2〉 =
∫

d xx2 f (x, t ) =
∫

d xx2 1
p

4πD2

exp
−x2

4D2 t

p
t

= 2D2t . (3.10)

By symmetry, it is clear that 〈x〉 = 0. Therefore, from equations (3.9) and (3.10) we can note that the particles

on Brownian Motion are set to a normal distribution and that the coefficient D2 is related to the variation of

the curve width with time. In his paper Einstein finds an expression for the diffusion coefficient by using the

fact that in the dynamic equilibrium the Helmholtz free energy does not change. Langevin, on the other hand

found an equivalent result using equation (3.3). Solving it for v and taking the mean value of both sides the

fluctuation term vanishes, that is,

v(t ) = v0e−kt +e−kt
∫

F (t ′)ekt ′d t ′ =⇒< v(t ) >= v0e−kt . (3.11)

The variance of v is (∆v)2 =< v2 > − < v >2= C
2k , where C is an integration constant. So considering a Wiener

process for the long time limit < v >= 0, so using the equipartition theorem
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where the variable I indicates if there was a collision with the molecule indexed by ’r ’ in the interval, δt , or not,

i.e.

Ir =Θ(X −xr )Θ(x ′
r −X ′)−Θ(xr −X )Θ(X ′−x ′

r ) =















1 Collision occurred;

0 No collision occurred.

(3.18)

Substituting ∆Pr and considering M >> m, we find

δP (t ) ≈−2

[

∑

r

m

M
Ir

]

P (t )+2
∑

r
pr Ir . (3.19)

Interpreting the first term as the friction and the second one as noise, the equation (3.19) is equivalent to

Langevin equation (3.3). Although equation (3.19) may look complicated, because it uses the velocity of the

molecules of the fluid, those can be easily obtained by a velocity PDF that properly describes the fluid, i.e,

Maxwell-Boltzmann distribution.

The Binary Collision model was used to simulate Brownian motion. Figure 3.3 displays the result of the

simulations. In figure 3.3(a) the path of three Brownian particles in a two dimensional space is displayed. The

histogram on figure 3.3(b) accounts for the velocity occurrences after 50 collisions. The parameters used in the

simulation were

m = 10−22g;

M = 10−15g;

a =

√

KB T

m
= 100m/s,

(3.20)

To see the code of the simulation we refer to A.7. Note that, as expected, the shape of the histogram is consistent

with a Gaussian distribution.

In addition to the numerical results, it is also possible to obtain a Langevin equation, similar to (3.14) for

the momentum
dP (t )

d t
=−k(P )P +Γ(t ), (3.21)

with 〈Γ(t1)Γ(t2)〉 = q(P )δ(t1 − t2). Then, the specific function q(P ) and k(P ) need to be found using the features

of our model and bath. The function q(P ) is defined by q(P ) = k(P )MKB T — this is a generalization of eq. (3.4).

The function k(P ), on the other hand, can be found by the following criterion
〈

dP (t )

d t

∣

∣

∣

∣

P (t )=p

〉

=
〈

δP (t )

δt

∣

∣

∣

∣

P (t )=p

〉

, (3.22)

where the left hand side is obtained by the Langevin equation
〈

dP (t )

d t

∣

∣

∣

∣

P (t )=p

〉

=−
[

k(p)p − d p

d t
MKB T

]

. (3.23)

The right hand side is obtained by Taylor expanding Ir around δt = 0,

Ir (t ,δt ) ≈ δt

2
|vr −V |δ(xr −X ), (3.24)
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et al. (2006), where the authors showed that a solution to relativistic Brownian motion cannot be obtained from

the limit of a "relativistic random walk" as in the non-relativistic case. The proof is easily seen in the light of the

Central Limit Theorem (CLT) and we repeat it bellow.

Let us consider a 1-dimensional walk where each step occurs on a discrete time interval τi . The position

variable after N steps is

X (t ) = x0 +
N
∑

i=1
viτi , (4.1)

where vi is the constant velocity of the ’walker’ on an interval τi . The mean velocity along a path with N steps

is defined as

VN (t ) = X (t )−x0

t
= 1

t

N
∑

i=1
τi vi =

1

N

N
∑

i=1
vi , (4.2)

where t = ∑N
i=1τi . Therefore, if the variables vi are identically and independently distributed (iid), with zero

mean and finite variance, the CLT states that the distribution of ZN =
p

NVN converges to a Gaussian, as shown

in section 2.2.3. Hence, if we keep t fixed as N →∞, the mean velocity VN goes to zero and the first equality

of eq.(4.2) implies that X (t ) = x0. This means that the particle effectively does not move. Since for a relativistic

system the velocity is always bounded, the variance of vi is also bounded and we conclude that the only way to

escape from CLT consequences is to demand the process to be non Markovian. In other words, it is impossible

to find a non-trivial, continuous, relativistic Markov process in position space from the continuous limit.

The consequences of this result are very strong since the Markovian hypothesis is the starting point of some

very important tools used in the treatment of stochastic processes and in the approaches described in chapter 3.

In order to circumvent this issue, there are two possible strategies. One can consider a non-Markovian approach

to generalize the diffusion equation or a Markovian generalization of the Brownian motion can be constructed

in phase space, i.e, considering not only position and time variables but also the momentum.

In this chapter, we will analyze the relativistic Brownian motion using both strategies. The first strategy will

be studied in section 4.1, where we analyze three different approaches to derivate a relativistic generalization

of the diffusion propagator:

• The Telegraph equation;

• The generalized Diffusion Propagator;

• The propagator obtained by the maximization of entropy.

The results of the three approaches are consistent with the limits imposed by relativistic theory and ap-

proach the classical distribution in the asymptotic limit. The fist two were already presented in the literature,

here, therefore we content ourselves in just enunciate it here and the reader with more interest in the subject can find the demonstration

in the references.
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while the third represents our own contribution. The comparison between the resultant propagators is also

discussed. Since we are always considering that position of the particle at initial time (t0 = 0) is x0 = 0 with

probability 1, the propagator p(x, t |x0, t0) also represents the probability distribution p(x, t ),

p(x, t ) =
∫∞

−∞
d x0p(x, t |x0, t0)δ(x0). (4.3)

The second strategy is present at section 4.2, where we show an attempt to generalize Langevin’s equation

made by Dunkel and Hanggi (2005) and the generalization of the binary collision model (Dunkel and Hanggi

(2009)). The attempt to make a relativistic generalization of the Langevin equation is not unique. There are

other works that use different additive noise and a drift term, if the reader is interested in knowing these other

models we suggest the papers by Dunkel and Hanggi (2009); Debbasch (2004); Debbasch et al. (1997). The

advantage of approaching the problem through Langevin’s equations is that the stochastic dynamics, due to

the interactions with the reservoir, is more clear. Because of that, a knowledge of the properties of the heat bath

is required to derive Langevin’s equations in the relativistic regime. Particularly, on the binary collision model,

we made a simulation of the motion of the Brownian particle considering the hypotheses that the collision

between the Brownian particle and the molecules of the fluid are elastic and that the fluid molecules respect

Jüttner’s distribution. This led to a distributions of velocities (for the Brownian particle) that also converges to

Jüttner’s (see Appendix A.3), this is a good indication for the validity of the model.

The relativistic Brownian motion has application in modeling the thermalization process of quark-gluon

plasma produced in heavy-ion collisions, in the analyses of ultra-relativistic plasma beam collisions, and in

the general understanding of relativistic thermodynamics, Dunkel (2008). Once the right generalization of the

diffusion equation is found, if one writes its solution in a moving reference frame with respect to the rest frame

of the fluid, the standard deviation of this distribution can be used to find the temperature transformation,

because σ2 ∝ T . Particularly, if the distribution of positions of the Brownian particle on the point of view of a

moving observer, with respect to the lab frame, has a smaller (bigger) variance then the distribution from the

point of view of the rest frame of the fluid we could conclude that a body looks colder (hotter) for a moving

observer. For more on the issue of temperature transformations, we referee to Appendix A.4.

4.1 Relativistic Diffusion

As it was already mentioned, there are two suitable strategies to derivate the PDF’s of the stochastic motion

of a relativistic Brownian particle. This section is dedicated to approaches that generalize the diffusion equation

and/or propagator. Since those models analyze the problem in Minkowski space-time the resultant PDF cannot

be Markovian, in other words, the distributions necessarily do not respect Chappman-Kolmogorov equation

P (x, t |x0, t0) =
∫

d x1P (x, t |x1, t1)P (x1, t1|x0, t0), (4.4)
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for some value of t1 ∈ (t0, t ).

4.1.1 Telegraph equation (TE)

One of the alternatives to the diffusion equation is the telegraph equation. This equation presents appli-

cability in the descriptions of several phenomena besides diffusion, such as on the transmissions of electrical

signals, heat wave propagation, and the continuum limit of the model of the persistent random walk. An an-

alytic continuation connects the telegraph and Dirac equations in an analogous way that the diffusion and

Schrodinger equations are connected. The TE can be obtained considering one more term on Einstein deriva-

tion of diffusion equation (3.6) or by the model of persistent random walk. The usual form of the telegraph

equation is
1

h

∂p

∂t
+ ∂2p

∂t 2
= v2 ∂

2p(x, t )

∂x2
, (4.5)

where h is an additional relaxation time parameter and v a velocity parameter, both being positive. Notice

that considering only the first term on the right hand side of equation (4.5) it becomes the diffusion equation

and considering only the second term it becomes the wave equation. For h > 0, the TE is a differential linear

hyperbolic equation and its solution can be obtained by applying a Fourier and Laplace transform, on x and t ,

respectively on both sides of equation, Masoliver and Weiss (1999). If q(w, s) is the Fourier-Laplace transform

of p(x, t ), solving the differential equation to the variable q we find

q(w, s|x0) = (s +1/h)e−i w x0

s(s +1/h)+ v2w2
. (4.6)

Applying the inverse Fourier-Laplace transform, we get

p(x, t |x0) = e(− t
2h )

2
[δ(x −x0 − v t )+δ(x −x0 + v t )]

+e
( −t

2h

)

8v t

[

I0(φ)+ I1(φ)

2hφ

]

Θ(v t −|x −x0|) (4.7)

where φ=
p

v2t 2−(x−x0)2

2v t , and I0, and I1 are modified Bessel functions.

The solution (4.7) has the shape of a Gaussian truncated by the Heaviside function (Θ(x) = 1 for x > 0 and

Θ(x) = 0 if x < 0) on points located on a distance v t of the initial position x0. In each of these points, there is

a delta function with an amplitude that decays with time. An interesting feature of the solution is that it has a

shape composed by a union of the solutions of wave and diffusion equation, i.e., the central region of the PDF

has a Gaussian shape truncated at the limits x =±v t with delta functions at that limiting position decaying with

time. Figure (4.3) shows the solution of the telegraph equation with a sharp Gaussian initial condition used to

approximate the delta initial distribution. This approximation is useful to allow the computational calculation

of the solution of the differential equation and to allow us to visualize the behavior of the distribution without
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having to force the drawn of delta functions on the graph. We see that, for a fixed h, in small times the wave-like

behavior is strong and as we increase the time, the diffusive behavior is more present, making the distribution

to approach the Gaussian shape.

(a) t = 1. (b) t = 10. (c) t = 100.

Figure 4.3: Solution of the Telegraph Equation for a sharp Gaussian initial condition. The distribution is not

normalized and natural units are being considered (h = 1, v = c = 1).

The standard deviation of the probability density function can be obtained calculating the first and second

moments of the distribution. Since the solution is symmetric, the first moment is m1 = 〈x〉 = x0. The second

moment is found by multiplying both sides of expression (4.5) by x2 and integrating. This leads to

d 2m2

d t 2
+ 1

h

dm2

t
= 2v2. (4.8)

Considering the following initial conditions















m2(0) = x2
0 ;

dm2
d t

∣

∣

∣

t=0
= 0,

(4.9)

we find

σ2(t ) = m2(t )−m2
1(2) = 2v2h[t −h(1−e−t/h))]. (4.10)

Fig 4.4 displays the variance as a function of time for different values of the parameter h - we considered v = 1

in all cases.
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So v = x−x0
t−t0

, and

amin(x|x0) = (x −x0)2

2(t − t0)
. (4.12)

On the other hand, the maximum value of the action is unlimited. Therefore the propagator can be written as

p(x|x0) ∝
∫amax

amin

d ae−
a

2D =−2D[exp(−amax/2D)−exp(−amin/2D)], (4.13)

where p(x|x0) respects the normalization condition.

To obtain the relativistic generalization we just need to find the expressions of the integral limits, i.e., of

a+ ≡ amax and a− ≡ amin. The relativistic action based on the proper time of the particle is given by

a(x|x0) =−c2
∫t

t0

d t ′
(

1− v(t ′)2

c2

)1/2

, (4.14)

and analogous to the non-relativistic case the minimum value of the action is obtained substituting v = x−x0
t−t0

:

a−(x|x0) =−c2
[

(t − t0)2 −
( x −x0

c

)2
]1/2

. (4.15)

The maximum action for this case, on the other side, is limited by the velocity of light. From eq. (4.14) we see

that amax = 0 for this case. Then the relativistic propagator is

p(x|x0) = 2D

N
[e−a−/2D −1], (4.16)

where N is the normalization constant. This diffusion process is non-Markovian and (4.16) is the same for

higher dimensions. Moreover, the solution does not allow superluminal velocities and does not present sin-

gularities like the solution of the telegraph equation. Figure (4.5) shows the resultant PDF of this approach,

considering the initial state as δ(x −0). Note that on the long time limit the resultant distribution converges to

a standard Gaussian density function.

It is convenient to mention that (4.13) is part of a major class of diffusion processes defined by

pw (x|x0) = 1

N

∫a+

a−
d aw(a). (4.17)

The non-relativistic diffusion process has w(a) = e−a/2D , so it is a natural choice to denote the function w(a) of

the relativistic case in the same way, but there is still some arbitrariness on that choice. Making a graph of the

evolution of the variance of distribution (4.16) in time we see that, unlike the Gaussian distribution, for small

times the propagation behavior does not generate a variance larger than the light wave variance. Figure 4.6

(a) shows, in black, this result for different values of the diffusion coefficient D . The red curve is the variance

of a light wave propagating in the vacuum, displayed for comparison. On the other hand, figure 4.6 (b) shows

that the long time limit behavior of the variance of the distribution found by the relativistic propagator method

is a constant line parallel to the line correspondent to the non-relativistic result. For smaller values of D , the

difference between both variances is smaller, this is a consequence of the fact that in the low-temperature limit

the relativistic distribution converges to the Gaussian one faster.
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We will maximize the entropy under two constrains. The fist one is that p AB (k) is normalized

1 =
∑

k
p AB (k), (4.21)

and the second is set by the mean action, A AB

A AB =
∑

k
p AB (k)A AB (k). (4.22)

This means that the mean value of action is fixed. Now using Lagrange multiplier’s method to extremize the

Shannon entropy, as explained in appendix A.2, we write

δ[−HAB +λ
∑

k
p AB (k)+η

∑

k
p AB (k)A AB (k)] = 0, (4.23)

where λ and η are Lagrange multipliers. Deriving the whole expression with respect to p AB (k), and rearranging

terms we get the path probability

p AB (k) = e−ηA AB (k)

Q
. (4.24)

Where Q is the normalization constant.

It can be proven that if η> 0, the path distribution is stable with respect to action fluctuation of paths, Wang

(2005a). This means that if we cut all paths from A to B in half then the sum of the entropy of the two groups

does not increase with virtual changes of the two groups of paths. In this case, equation (4.24) implies that the

most probable paths are the ones with the least action. This can be interpreted as proof that the choice of the

mean action as a constraint implies a connection between the Jaynes Entropy Principle and the principle of

least action. However, it is important to point out that the principle of least action states that the path taken by

the system is the one for which the action is stationary to first order, not necessarily least. Therefore, it might

seem like the connection points out to a restriction in the principle, but it does not. Equation (4.24) states that

a stochastic system that has a stationary entropy will have a distribution where paths of least action occur with

higher probability.

At this point, it is important to reinforce the meaning of path probability. p AB (k) is the probability of the

system to go from the point A to B of phase space (when both are fixed) through the k trajectory. However, since

in our analyzes of the Brownian motion we are interested in knowing the position PDF of the Brownian particle

after a fixed time interval (τ), i.e., the probability that a particle that leaves point xa (fixed) of the coordinates

space will get to an arbitrary point xb , the path probability by itself, does not have much useful information.

The approach proposed by Wang (2006) to calculate the position PDF, pB |A (Probability of finding the particle

at position Xb knowing that it was initially in xa), is to maximize the Shannon entropy again, but now using the

entropy that concerns the choice of final position, that is,

HA =−
∑

b
pB |A ln pB |A . (4.25)
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Using as constraints the normalization of pB |A and the mean action A A =∑

b pB |A A AB and following Lagrange’s

multipliers method we arrive at the following probability distribution,

pB |A = e−αA AB

Z
, (4.26)

where Z is the normalization constant and α is the Lagrange multiplier. Thus, using Wang’s approach the only

thing left for us to do is to calculate A AB . Note that until now, no specification about the action was made, so

eq. (4.26) is valid to any regime. Moreover, the problem of finding the position PDF of a particle in relativistic

or non-relativistic Brownian motion consists in the calculation of the mean value of action through all possible

paths between points xa and xb . Let’s start by the non-relativistic case.

We used path integral to calculate the mean (4.22) over all possible paths between xa and xb (see appendix

A.5). The result obtained was

pB |A =
√

αm

2πτ
e−αAmin , (4.27)

where m is the particle’s mass and Amin is the least action between xa and xb ,

Amin = m(xb −xa)2

2τ
. (4.28)

Calculating the variance of final positions,
√

〈x2
b〉−〈xb〉2 and equating it to

p
2Dτ, where D is the diffusion

coefficient, we conclude that

α= 1

2mD
. (4.29)

This result matches the solution of the diffusion equation, which is a great indication of the validity of the

method to be further extended to the relativistic regime.

Now, the extension to the relativistic case is straightforward, in the sense that we just need to find the mean

value of action through all possible paths between points xa and xb .

The relativistic Lagrangian of a free particle is given by

L =−mc2

√

1− v2

c2
, (4.30)

where v is the velocity of the particle, c the velocity of light and the action of a path, k, is written as the integral

of the Lagrangian in an interval of time. As in the non relativistic case, to calculate the mean action through

all possible paths between xa and xb , we could, in principle, consider that those trajectories are composed by

small segments where the particle moves with constant speed. Therefore

A AB = 1

Q
lim
τ→0

∫∫

...
∫

−mc2





√

τ2 − (x1 −x0)2

c2
+

√

τ2 − (x2 −x1)2

c2
+ ...+

√

τ2 − (xn −xn−1)2

c2





×exp



φmc2





√

τ2 − (x1 −x0)2

c2
+

√

τ2 − (x2 −x1)2

c2
+ ...+

√

τ2 − (xn −xn−1)2

c2







d x1...xn−1,

(4.31)
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are restrained to the histograms of the velocity of the Brownian particle made out of simulations of the Binary

collision model.

4.2.1 Generalized Langevin Equation

Since the distribution of Brownian Motion can be derived using the Langevin equation, a possible approach

to find its relativistic generalization is by trying to generalize the Langevin equation either. We worked on an

attempt of generalization of the Langevin equation that used the four-vector of force instead of the usual non-

relativistic version of the second law of Newton. However after gaining knowledge of the work of Dunkel and

Hanggi (2005), we concluded that the challenge of making such a generalization had been overcame by the au-

thors. For this reason, and for completeness, we will present here a brief summary of the paper. The authors use

the fact that on the proper reference frame of the Brownian particle the relativistic equations must reduce to

Newtonian equations, therefore, writing, on the covariant form, the equations of motion on a reference frame

that is in temporary rest with respect to the particle is possible to generalize, term by term, the Langevin equa-

tion.

To generalize the viscosity force term, we write the coefficient of viscosity using an analogy with the pressure

tensor known on relativistic hydrodynamics of perfect fluids (Cf. Weinberg (1972)) as

ναβ = ν

(

ηαβ+
uαuβ

c2

)

, (4.33)

where (ηαβ) = (ηαβ) = diag(−1,1) is the (1+1)-dimensional Minkowski metric tensor, ν is the viscous coefficient

measured on the rest frame of the particle, c is the speed of light and uβ is the velocity of the particle. The

relativistic Langevin equation found by the authors was

d pα(τ) =−ναβ(pβ(τ)−mUβ)dτ+wα, (4.34)

where Uβ is the (1+1)-velocity of the heat bath and wα(τ) = dW α(τ) is the stochastic increment, characterized

by

〈wα(τ)〉 = 0

〈wα(τ)wβ(τ′)〉 =















0, τ 6= τ′;

Dαβ, τ= τ′,

(4.35)

where Dαβ is the stochastic term the characteristic correlation factor of a Wiener process. It is generalized to a

correlation tensor on a similar way to the viscosity coefficient,

Dαβ = 2Ddτ

(

ηαβ+
uαuβ

c2

)

. (4.36)

On the non relativistic limit (|v | << c) the usual Langevin equation is recovered.
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Once the Generalized Langevin equation (4.34) is obtained the problem is apparently solved. However,

since it is a stochastic differential equation there are different interpretations of the integral of the random term

that leads to different Fokker-Planck equations. In the original paper, besides the usual interpretations known

as Itô and Stratonovich stochastic differential equations, the authors propose a third discretization rule, known

as Hänggi-Klimontovich interpretation, see appendix A.6. The momentum density functions found solving

each Fokker-Planck equation are

PI (p) =C I

(

1+ p2

m2c2

)−1/2

exp



−β

√

1+ p2

m2c2



 ;

PS(p) =CS

(

1+ p2

m2c2

)−1/4

exp



−β

√

1+ p2

m2c2



 ;

PHK (p) =CHK exp



−β

√

1+ p2

m2c2



 ,

(4.37)

where the indexes I ,S and HK stands to Itô, Stratonovich and Hänggi-Klimontovich discretization rules and the

normalization constants are denoted by C I /S/HK . The parameter β, defined by Einstein relation, is a measure

of the ration between the rest mass and the thermal energy of the Brownian particle,

KB T = mc2

β
= D

mν
. (4.38)

Although all three results provide distributions without superluminal solutions, the Hänggi-Klimontovich

approach stands out from the others as the resultant distribution is equivalent to the Jüttner distribution pre-

sented in the appendix A.3. To see that, we change the variable of expressions (4.37) to find the velocity distri-

butions by

P(v) = P (p(v))

∣

∣

∣

∣

∂P

∂v

∣

∣

∣

∣

, (4.39)

where p(v) = mvγ(v), γ being the Lorentz factor. Figure (4.11) displays the three probability distributions of the

velocity of the Brownian particle for three different values of β. The results show that in the low-temperature

limit, (β>> 1), all three solutions approach a Gaussian profile, and as the temperature increases the differences

between the distributions are accentuated. The last Hänggi-Klimontovich interpretation seems to be more

interesting than the other two, due to the fact that it leads to a Jüttner distribution. However, which one is the

correct physical interpretation is an open question that probably depends of the microscopic structure of the

environment that the Brownian particle is embedded in.
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obtained the previously. This is done by switching the mass for the energy (Dunkel and Hanggi (2009))

q(P ) = 2k(P )E(P )KB T. (4.43)

Demanding the same condition as in the non-relativistic case,

〈

dP (t )
d t

∣

∣

∣

P (t )=p

〉

=
〈

δP (t )
δt

∣

∣

∣

P (t )=p

〉

, we find that the

coefficient k(p) respects the following differential equation

−k(p)p +KB T
d

d p
[k(p)E(p)] =K (p). (4.44)

Once again, if the solution of the ordinary differential equation is obtained, the function k(p) allows the

Langevin equation to be completely defined for the system. However sometimes the solution can be hard or

even impossible to be found. In this case, one has to appeal to approximations. In any case the method al-

low us to find a Langevin equation from the previous knowledge of the fluid and assumptions related to the

interactions between the Brownian particle and the molecules of the medium.

4.3 Conclusions

As explained in the introductory part of the chapter, it is impossible to find a relativistic non-trivial, con-

tinuous Markov process in position space. Due to this imposition, we studied in this chapter two strategies to

analyze relativistic Brownian motion. First, we analyzed approaches of non-markovian generalization of dif-

fusion propagator and then we analyzed models that take into account relativistic Brownian motion in phase

space.

Concerning the first strategy, three approaches where proposed. Figure 4.15 shows a comparison between

the PDFs obtained in section 4.1 and the Gaussian distribution, where we considered h = v = D = 1 because

this parameters generate a Gaussian with the same variance in the asymptotic limit (t →∞). From figure 4.15

we can infer that, in fact, all methods tend to a Gaussian in the asymptotic limit. For small times the distri-

butions have notable differences. The solution to the Telegraph equation imposes a big probability of finding

the particle with the speed of light and this is not suitable for a particle with mass. Thus, we conclude that the

best options for the generalized relativistic diffusion propagators are the ones obtained by Dunkel et al. (2006)

and by our approach of maximization of entropy. As we already discussed, both results are equal apart from

a constant shift, which is due to a contribution of the maximum action. Since our approach is only valid for

the equilibrium, where the distribution, in fact, has the maximum entropy and in that regime the difference

between both approaches are negligible we can affirm that our result is in accordance with Dunkel’s .

In section 4.2 we first analyzed a method to obtain a relativistic generalization of the Langevin equation by

generalizing term by term equation 3.3. Then we used a microscopic model to simulate the relativistic Brownian

motion by considering elastic collisions between the Brownian particle and the particles of the bath. Both
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(a) t = 3. (b) t = 10. (c) t = 100.

Figure 4.15: Comparison between the position PDF’s derived in the chapter. Natural units are being considered.

approaches lead to a stationary distribution that is in accordance with Jüttner distribution of velocities. This

is a good indicator of the validity of the methods, however, the real features of those methods depend on the

nature of the medium that the Brownian particle is embedded in.
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CHAPTER 5

Connection Between the Relativistic Stochastic Equations and Quantum Mechanics

It is well known that the diffusion equation is connected to the Schrodinger’s equation by an analytic con-

tinuation. In fact, this connection inspired the generalization of Wiener’s integral (Appendix A.5) to a new de-

scription of quantum mechanics via Feynman’s path integrals. In this chapter, we present connections between

a relativistic version of the Schrodinger’s equation, a "relativistic diffusion equation" and an analogous con-

nection between Dirac and the telegraph equations. Those connections are shown here to demonstrate the

mathematical resemblance between differential equations of the quantum, relativistic quantum, and classical

stochastic regimes. These connections are also useful because, knowing them, one can look for the solution of

a new mathematical issue in a relativistic context in the literature of the stochastic theory. The resemblances

also may directly allow one to use the results of the stochastic simulations to investigate of analogous relativistic

systems.

We assert here and reinforce it in other parts of the section, that there is no reasonable physical argument

to believe that just because an analytic continuation of Schrodinger’s equation leads to the diffusion equation,

this could be generalized to the relativistic regime. In fact, the result of section 5.1 shows the opposite, since the

"relativistic diffusion equation" derived by the analytic continuation of Schrodinger’s equation does not respect

the limits imposed by the relativistic theory.

5.1 Analytic Continuation of the Relativistic Schrodinger’s Equation

A different approach to find a ‘relativistic’ generalization of the diffusion equation was developed by Baeumer

et al. (2010). As mention before, Schrodinger’s equation is connected to the diffusion equation by an analytic
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continuation. To see that we write the first one as

iħ∂ψ
∂t

= −ħ2

2m
∆ψ, (5.1)

where m is the rest mass,
ħ2

∆

2m
= p2

2m
and p is the moment. Then the analytic continuation τ = i t leads to the

classical diffusion equation,

ħ∂ψ(x,τ)

∂τ
= ħ2

2m
∆ψ(x,τ), (5.2)

with the diffusion coefficient being D =ħ/2m. The main idea of this approach is to extrapolate this idea to the

relativistic context, i.e, to consider a relativistic version of Schrodinger’s equation and make the same transfor-

mation. To obtain this relativistic version we simply change the kinetic energy,
p2

2m
, from equation (5.1) to its

relativistic form
√

p2c2 +m2c4 −mc2, leading to

iħ∂ψ
∂t

= Eψ= [
√

p2c2 +m2c4 −mc2]ψ= [
√

−ħ2c2∇+m2c4 −mc2]ψ, (5.3)

Making the same analytic continuation, τ= i t , the relativistic Schrodinger’s equation becomes

∂ψ(x,τ)

∂τ
= [mc2 −

√

ħ2c2∇+m2c4]ψ(x,τ). (5.4)

Substituting m′ = mc2

ħ and t = τ we have

∂ψ(x, t )

∂t
= [m′−

√

m′2 − c2∇]ψ(x, t ). (5.5)

Which is - by considering that the connection of the non-relativistic case is also valid in this case - the relativistic

diffusion equation. Note that the expression contains a fractional derivative operator, ∇1/2. There are two ways

to contour this problem. The first one is by taking the Fourier transform and using the fact that if ψ̂(k, t ) =
∫

e−i k·xψ(x, t )d x is the Fourier transform of ψ(x, t ), then the transform of ∆ψ(x, t ) is −|k|ψ̂(k, t ). This leads to

ψ̂(k, t ) = exp[t (m′−
√

m′2 − c2|k|2)], (5.6)

that is the Fourier transform of a known probability density function called normal inverse Gaussian distribu-

tion (NIG).

The second way to deal with the problem is by finding an equivalent differential equation that does not

have fractional derivatives. To get to this equation we first take the Fourier transform with respect to the spacial

variable and the Laplace transform with respect to the time variable. This leads equation (5.5) to

sψ̄(k, s)− ψ̂0(k) = [m′−
√

m′2 − c2|k|2]ψ̄(k, s), (5.7)

where ψ̄(k, s) is the Fourier-Laplace transform of ψ(x, t ). Rearranging terms we obtain

ψ̄(k, s) = ψ̂0(k)

s −m′+
√

m′2 − c2|k|2
. (5.8)
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Multiplying the right hand side by
s −m′−

√

m′2 − c2|k|2

s −m′−
√

m′2 − c2|k|2
leads to

ψ̄(k, s) = [s −m′−
√

m′2 − c2|k|2]ψ̂0(k)

s2 −2m′s − c2|k|
, (5.9)

that can be reorganized as

− [s2ψ̄(k, s)− sψ̂0(k)− (m′−
√

m′2 − c2|k|2)ψ̂0(k)]+2m′[sψ̄(k, s)− ψ̂0(k)] =−c2|k|ψ̂0(k). (5.10)

Finally, dividing the whole expression by 2m′ and inverting the Fourier-Laplace transform we arrive to

− 1

2m′
∂2

∂t 2
ψ(x, t )+ ∂

∂t
ψ(x, t ) = c2

2m′∆ψ(x, t ). (5.11)

This differential equation is mathematically equivalent to the relativistic diffusion equation (5.5), but does not

contain any fractional calculus operator. The solution is given by Baeumer et al. (2010), as

ψ(x, t ) =
∫∞

0
p(x,τ)h(τ, t )dτ, (5.12)

where p(x,τ) is a Gaussian distribution

p(x,τ) =
exp

(

− x2

2c2t/m′

)

p
2πc2t/m′

, (5.13)

and h(τ, t ) is given by

h(τ, t ) = t

τ

exp
(

− (t−τ)2

2τ/m′

)

p
2πτ/m′

. (5.14)

Figure (5.1) shows the normal inverse Gaussian distribution, equation (5.12), for different values of mass

and time. Note that for small times the relativistic process approximates a Cauchy process and for long times the

distribution approximates a Gaussian. Analyzing the distribution for different masses we also find a transition

to the Cauchy distribution for small masses, m′ and, to the non-relativistic result for larger masses.
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connection between the diffusion equation and Schrodinger’s equation would also exist in the relativistic limit.

5.2 Analytic Continuation of the Dirac Equation

As demonstrated in the last section the Schrodinger’s equation is connected to the diffusion equation by an

analytic continuation. This continuation can be implemented by imaginary time, as in section 5.1, but also by

other transformations as imaginary ħ and imaginary mass. This fact is connected to the fact that Wiener’s and

Feynman’s integrals are also different only by an analytic continuation (see Appendix A.5). Gaveau et al. (1984)

extended these connections to the relativistic case and demonstrated that the Dirac equation is connected to

the Telegraph’s equation also by an analytic continuation.

Let us again consider a particle moving in a line with velocity v that from time to time changes its direction

of motion. Suppose that the reversal of direction is Poisson distributed, i.e., the probability of changing the

direction in the time interval d t is a d t . The master equation for this process is given by

P±(x, t +∆t ) = P±(x ∓∆x, t )(1−a∆t )+P∓)(x ±∆x, t )a∆t , (5.15)

where P+(x, t ) and P−(x, t ) correspond to the probability of the particle being in position x at time t moving to

the right and left, respectively. After some calculations, dividing the expression by ∆x∆t and taking the limits of

∆x → 0 and ∆t → 0, we find that
∂P±
∂t

=−a(P±−P∓)∓ v
∂P±
∂x

, (5.16)

where v = ∆x

∆t
. That are two coupled equations. To decouple them, we isolate the probability with respect to

one of the directions and substitute it in the other coupled equation. This results in

∂2P±
∂t 2

− v2 ∂
2P±
∂x2

=−2a
∂P±
∂t

, (5.17)

which is the Telegraph equation, again. Gaveau et al. (1984) demonstrated the connection between equation

5.16 and the Weyl representation of the Dirac equation,

iħ∂ψ
∂t

= mc2σxψ− i cħσz
∂ψ

∂x
. (5.18)

This is done by the transformation u(x, t ) = exp(i mc2t/ħ)ψ(x, t ). This leads to

∂u±
∂t

=∓c
∂u±
∂x

− i mc2

ħ
(u±−u∓), (5.19)

where the indexes + and − refer to the first and second components on the spinor, u, respectively. Identifying

c ↔ v and
i mc2

ħ
↔ a we see that the connection is indeed valid. The continuation can also be made by taking

the imaginary time, then v will have the imaginary factor as well, since v = d x
d t . The mathematical resemblance

extends to the path integral formulations, where the sum over paths are identical, but for an imaginary factor i .
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The conclusion we can take from those connections is that, mathematically, the structure of Brownian mo-

tion is related to Schrodinger’s equation the same way that a Poisson’s process is related to the Dirac equation.

Does this mean that the telegraph equation is the right candidate for a relativistic diffusion equation? Not nec-

essarily. This conclusion would represent an arbitrary extrapolation of the mathematical resemblance. First,

because we would have to assume that the Dirac equation is the correct relativistic extension of Schrodinger

equation, and not the relativistic Schrodinger’s equation presented in the last section, or other relativistic equa-

tion like Klein Gordon equation, for example, without mentioning masses and velocities. Secondly, we would

need to assume that the connection between Schrodinger and the diffusion equation is also valid in the rela-

tivistic context, that is, the relativistic Brownian motion is described by an equation that is an analytic continu-

ation of a relativistic version of Schrodinger’s equation. We should be careful when interpreting the mathemat-

ical resemblances studied in this and in the last section to not attribute more meaning then they already carry.

However, the analogy between both structures can be very useful to solve quantum mechanical problems with

small changes in the tools developed to the study of classical problems. Those types of connections are very

important to provide a better mathematical understanding of the quantum-classical-relativistic limits.

Once the relativistic regime has already been discussed, we devoted the next chapters to the analyzes of the

quantum generalization of the simple random walk.



67

CHAPTER 6

Quantum Walks

Quantum Walks form a wide group of dynamical systems that represent the time evolution of a walker

on a graph. Those are mainly divided in the Discrete-Time Quantum Walks (DTQW) and Continuous-Time

Quantum Walks (CTQW). In this work our main interest is related to Discreet Time Quantum Walks on a one-

dimension infinite lattice, therefore most part of the chapter is devoted to the introduction and analysis of

thermodynamic properties of this type of quantum walks. For completeness, in appendix A.8, we also present

an overview of the continuous-time quantum walk.

The study of Quantum Walks started as a generalization of the classical random walks to quantum systems.

However, some of their properties attracted the attention of researchers to the possibility of using them as a

mathematical tool to build quantum algorithms. Among those properties we can cite:

• The quantum walk in one dimension spreads ballistically, i.e, quadratically faster than the random walk.

This characteristic will be more emphasized in the next sections.

• The mixing time — amount of time taken to reach the limiting distribution — of a quantum walk is

quadratically faster than its classical counterpart.

• A quantum walk can have a hitting time smaller than the random walk, i.e, the time to reach a chosen site

can be small.

• It has been proved that Quantum Walks, under particular conditions, can be used to implement a model

of universal computation - Childs (2009); Lovett et al. (2009).
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• The quantum walk can be used to simulate analogous systems, such as relativistic quantum mechanical

systems See Chapter 8).

In the next sections, we will first give an overview of discrete-time quantum walks (Portugal (2013)) and

analyze the asymptotic limit of the coin state. Particularly, we prove that if a quantum walk respects the master

equation used to model quantum Brownian motion, in the asymptotic equilibrium the Hamiltonian of the coin

system depends on the initial conditions. Then, in sections 6.3 and 6.4 we analyze the thermodynamics of

the quantum walks calculating its entanglement entropy and temperature. As expected, our numerical results

imply that, in the asymptotic limit, the entanglement temperature converges to Gibbs temperature. At last, in

section 6.5, the calculations are extended to a three-state quantum walk, which is a quantum walk that accounts

also for the possibility that the walker stays at the same site. Our contribution related to this part of the work

consists of the analytic calculation of the reduced asymptotic density matrix of the coin and the calculation of

entropy and temperature of this type of walk. We conclude that in this case the entanglement temperature also

converges to a Gibbs temperature when the system is in equilibrium with the bath.

6.1 Discrete time Quantum walk: Overview

The Quantum Walk on the line is the quantum version of the simple random walk studied in Chapter 2.

Therefore its dynamics can be described by two operators, one representing the coin toss and the other, the

shift of the walker on the line. The difference between the random walk and its quantum version is that in the

second case the coin toss does not give a classical result such as heads or tails, but a superposition of both. In

that way, instead of taking a step to the right or to the left, the walker step is a superposition of both directions.

Figure 6.1 illustrates this difference using a Galton board.

The system is composed by a coin and a walker, therefore its Hilbert space is written as H = HC ⊗HP ,

where HC is the coin Hilbert space and HP the Hilbert Space associated with the positions of the walker in the

one dimensional infinite lattice. The state of the system at any time can be described as a spinor

|ψ(t )〉 =
∞
∑

n=−∞





an(t )

bn(t )



 |n〉 , (6.1)

where an and bn are the wave components correspondent to left and right chirality, respectively, i.e, with the

two possibles states of the coin.

As in its classical counterpart, each time step of the Quantum Walk dynamics is composed by two opera-

tions. A rotation in the coin (chirality) space (C ), followed by a shift (Sh) operation. Using the variableγ ∈ [0,π/2]
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(a) Random Walk (b) Quantum walk

Figure 6.1: Illustration of Random (a) and Quantum (b) Walk. Figure modified from Silberhorn (2020)

to determine the bias of the coin, the first operator can be written as

C =





cosγ sinγ

sinγ −cosγ



 . (6.2)

If γ=π/4 the coin is know as the Hadamard coin. On the other hand, the shift operator is

Sh =
( ∞

∑

n=−∞
|n −1〉〈n|⊗ |L〉〈L|

)

+
( ∞

∑

n=−∞
|n +1〉〈n|⊗ |R〉〈R|

)

. (6.3)

Therefore, using these two unitary operators the dynamics can be summarized to

|ψ(t )〉 = (Sh(C ⊗ I))t |ψ(0)〉 =U |ψ(0)〉 , (6.4)

where I stands for the identity in position space, and t is the time parametrized as the number of time steps. In

order to give some intuition about the evolution of the walk for the reader let us calculate here the first steps of

a Hadamard walk with initial condition

|ψ(0)〉 =





1

0



 |0〉 = |L〉⊗ |0〉 . (6.5)

The firs step leads to

|ψ(1)〉 = Sh(C ⊗ I) |L〉⊗ |0〉 = Sh

[ |L〉+ |R〉
p

2

]

⊗|0〉 = 1
p

2
(|L〉⊗ |−1〉+ |R〉⊗ |1〉). (6.6)
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To obtain the position probability distribution, such as shown in figure 6.3, the square of the amplitudes

a(x) and b(x) are taken in account. Mathematically speaking, this means that to analyze the behavior of the

walk on the position space only, a partial trace on the chirality space has to be done. The same can be made on

the other way, that is, we can take the partial trace on position space to get a two dimensional density matrix

and analyze the coin space. This approach is formalized by Romanelli (2010), where the global right and left

chirality distributions were defined as

PL(t ) =
∞
∑

n=−∞
|an(t )|2

PR (t ) =
∞
∑

n=−∞
|bn(t )|2,

(6.9)

and they represent the probabilities of the possible results of a measurement of the state of the coin. Using eq.

(6.8) the evolution of the global chirality distributions is obtained,





PL(t +1)

PR (t +1)



=





cosγ2 sinγ2

sinγ2 cosγ2









PL(t )

PR (t )



+Re(Q(t ))sin2γ





1

−1



 , (6.10)

where Q(t ) = ∑∞
n=−∞ b∗

n(t )an(t ) is a interference term, responsible for the quantum effects that differentiate it

from the random walk. If this term is left out, a classical Markovian process is recovered, Cf. Romanelli et al.

(2003). Taking the limit of t →∞ in eq. (6.10) the asymptotic global chiralities are found to depend exclusively

on the asymptotic value of Q:

lim
t→∞





PL(t )

PR (t )



≡





PL,∞(t )

PR,∞(t )



= 1

2





1+2Re(Q∞)/tanγ

1−2Re(Q∞)/tanγ



 , (6.11)

and the reduced density matrix at time t is

ρc (t ) = Trn(|ψ(t )〉〈ψ(t )|) =





PL(t ) Q(t )

Q(t )∗ PR (t )



 , (6.12)

The advantage of considering the reduced space of the quantum walk is that the final state is not pure due

to entanglement between the chirality and position space. This entanglement could be analyzed either way

using the reduced state of position or chirality, but the first one has infinity dimensions while the second has

only two – so, considering the reduced state of chirality can save much work in calculations. More aspects of

the entanglement will be analyzed in sections 6.3 and 6.4.

6.2 Asymptotic Limit

There is a method developed by Nayak and Vishwanath (2000) to calculate analytically the chirality compo-

nents of the state, a(t ) and b(t ), of a quantum walk with a Hadamard coin. Despite the complicated calculation,

the idea is very simple. It consists in applying the Fourier transform on the position space, diagonalizing the
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unitary matrix responsible for the dynamics in one time step and returning to the position space through the

inverse Fourier transform. First we note that the state of the system can be written as

ψ(x, t +1) =





0 0

1/
p

2 −1/
p

2



ψ(x −1, t )+





1/
p

2 1/
p

2

0 0



ψ(x +1, t )

≡ M+ψ(x −1, t )+M−ψ(x +1, t ),

(6.13)

where the matrices M+ and M− are defined in eq. (6.13). Then consider the Fourier space of the position

components of the state,

|k〉 =
∞
∑

x=−∞
e i kx |x〉 , (6.14)

where k ∈R and k ∈ [−π,π]. Therefore

ãk =〈k,L|ψ〉 , and b̃k = 〈k,R|ψ〉 ,

ãk =
∑

x
e−i kx ax , and b̃k =

∑

x
e−i kx bx ,

(6.15)

where R and L stand for right and left, respectively. The total state can be written as

|ψ〉 =
∫π

π

dk

2π
|k〉⊗ (ãk |R〉+ b̃k |L〉). (6.16)

Using equations (6.13) and (6.14) we are able to write the evolution of the Fourier state

ψ̃(k, t +1) =M+e i kψ̃(k, t )+M−e−i kψ̃(k, t ) = 1
p

2





e−i k e−i k

e i k −e i k



ψ̃(k, t ). (6.17)

The eigenvectors of this matrix are

|Φ(1)
k 〉 =αk





uk

vk ,



 |Φ(2)
k 〉 =βk





uk

wk



 , (6.18)

with

αk = 1
p

2
(1+cosk2 −cosk

√

1+cosk2)1/2,

βk = 1
p

2
(1+cosk2 +cosk

√

1+cosk2)1/2,

uk = e−i k ,

v =
p

2e−iωk −e−i k ,

wk =−
p

2e iωk −e i k ,

sinωk = sink
p

2
,

(6.19)

and the eigenvalues are λ1
k = e iωk and λ2

k = e i (π+ωk ). Therefore, we can write the state vector as

|ψ̃(k, t )〉 =U t
k |ψ̃(k,0)〉 = [(λ1

k )t |Φ(1)
k 〉〈Φ(1)

k |+ (λ2
k )t |Φ(2)

k 〉〈Φ(2)
k |] |ψ̃(k,0)〉 , (6.20)
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To return to the position space, the inverse Fourier transform has to be applied. This calculation can be done,

at least numerically, to any value of time, however, it might be too time-consuming. On the other hand, the

asymptotic limit solution is much simpler and can be solved using the method of stationary points. Abal et al.

(2005) calculated the global chirality distributions as well as variable Q, for the asymptotic limit. Here we sim-

ply place the results, more details of the calculations can be seen on the reference. Considering a initial state

localized on position |0〉, i.e,

|ψ(n,0)〉 =





cos(θ/2)

sin(θ/2) e iφ



 |0〉 (6.21)

the global left chirality distribution is

PL,∞ =
(

1

2
−
p

2

4

)

(2+
p

2+cosθ+ sinθcosφ), (6.22)

the global right chirality distribution is 1−PL and the interference term is

Q∞ =
(

1

2
−
p

2

4

)

(cosθ+ sinθ(cosφ− i
p

2sinφ)) (6.23)

Those limits are in accordance with the relation found in eq. (6.11). In order to graphically see those results, the

reduced density matrix eq. (6.12) can be written as a function of the Bloch vector and Pauli matrices

ρc =
1

2
(I +B ·σ) = 1

2





1+Bz Bx − i By

Bx + i By 1−Bz



 . (6.24)

Comparing (6.12) and (6.24) the Bloch vector is obtained in terms of PL and Q

B = 2(Re(Q),−Im(Q),PL −1/2). (6.25)

Figure 6.5 shows the evolution of the Bloch vector as a function of time and the asymptotic solution calculated

analytically, for an arbitrary initial condition. Both results have a good match.

To understand the asymptotic behavior of the Bloch vectors as a function of the initial condition the graphs

shown in figure 6.6 were plotted. From them we can infer that in the limit of longer times the initial conditions

(θ = π/4, φ = π) and (θ = 3π/4, φ = 0) generate states with the norm of Bloch vector (|B | =
√

B 2
x +B 2

y +B 2
z )

tending to zero, i.e., maximally mixed. The final surface, made by the asymptotic limit of all initial conditions,

is on a plane normal to the vector (−1,0,1).

The final surface can indicate features about the Hamiltonian responsible for the dynamics of the system.

To analyze that, let us consider that the reduced coin system can be modeled by the quantum Brownian motion

as in the reference Romanelli (2011). Thus, the quantum Liouville equation can be reduced to the following

master equation (for a more detailed demonstration we refer to Toda et al. (1991))

∂ρc

∂t
=− i

ħ
[Hc ,ρc ]+Γρc , (6.26)
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This is possible because the set composed by the Pauli matrices with the identity are a basis for the space of 2×2

matrices. In this case, however, the identity does not have to be taken into account because it would only add a

constant to the energy eigenvalues and we are interested on the energy gap between the two possible states.

By definition, if the system achieves equilibrium in the asymptotic limit,
∂ρc,∞
∂t

= 0. However, Toda et al.

(1991)(Pg. 88) also showed that if the asymptotic state is in accordance with the Canonical ensemble, then

Γρc,∞ = 0 as well. This implies that [H ,ρc,∞] = 0, which implies that Beq and v are parallel. The demonstration

is very simple

0 = [H , ρc,∞] = [v ·σ,
B ·σ

2
] =

∑

i , j
[vi σi , B j σ j ]

= 1

2

∑

i , j
vi B j [σi ,σ j ] =

∑

i , j
i vi B j ǫi j k σk

=
∑

k
i (v×B)k σk

. (6.28)

The Pauli matrices are a set of linearly independent matrices, therefore the only possibility that satisfies eq.

(6.28) is (v×B)k = 0 for every k. Looking again to the final surface of figure 6.6 we conclude that the effective

Hamiltonian for the coin derived in that fashion depends on the initial conditions of the reduced system.

6.3 Entanglement Entropy

From figure 6.5 we can see that the Bloch vector starts at the surface of the sphere at the initial time and

oscillates to a interior point, indicating that in the beginning of the walk the state was pure and as the time

evolves it tends to a mixed state. This behavior is due to the entanglement between position and chirality

spaces which can be quantified by the entanglement entropy, or von Neumann entropy

S =−Tr(ρc logρc ). (6.29)

In terms of the Bloch components this is written as

S =−
(

1+B

2

)

log

(

1+B

2

)

−
(

1−B

2

)

log

(

1−B

2

)

. (6.30)

For the case of the Hadamard walk, the entanglement entropy was calculated. Figure 6.7 shows the time

evolution of the entropy for two different initial conditions. Although the convergence velocity is different for

each initial condition, for all initial conditions the entropy has a convergence value. Figure 6.8 presents color

maps with the values of the entropy depending on the initial conditions for different times. Comparing these

maps with the one that shows the asymptotic limit of the entanglement entropy, fig. 6.9, we see that the calcu-

lations match again.

Another important feature to notice is that since the von Neumann entropy is a measure of how far from

the pure state the system is, the maximum value of the entropy corresponds to the maximally mixed state, i.e.,
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and the Global chirality probabilities are also defined in an analogous way to the two-state walk, eq. (6.9)

PL(t ) =
∞
∑

n=−∞
|an(t )|2,

PS(t ) =
∞
∑

n=−∞
|bn(t )|2,

PR (t ) =
∞
∑

n=−∞
|cn(t )|2.

(6.45)

Therefore, the recurrence relation of the GCP is easily obtained from eq. (6.4)













PL(t +1)

PS(t +1)

PR (t +1)













= 1

9













1 4 4

4 1 4

4 4 1

























PL(t )

PS(t )

PR (t )













+ Re[Q1(t )]

9













−4

−4

8













+Re[Q2(t )]

9













−4

8

−4













+ Re[Q3(t )]

9













−8

−4

−4













, (6.46)

where the interference terms are

Q1(t ) =
∞
∑

n=−∞
an(t )b∗

n(t ),

Q2(t ) =
∞
∑

n=−∞
an(t )c∗n (t ),

Q3(t ) =
∞
∑

n=−∞
bn(t )c∗n (t ).

(6.47)

Hence, the reduced density matrix is

ρc (t ) =













PL(t ) Q1(t ) Q2(t )

Q∗
1 (t ) PS(t ) Q3(t )

Q∗
2 (t ) Q∗

3 (t ) PR (t )













. (6.48)

Using these recurrence relations it is easy to simulate the position probability density function of the three-state

quantum walk. Figure 6.14 shows the result of these simulations for two different initial conditions. It is possible

to see that a different behavior emerges from this walk, which is localization for some initial conditions.

To deduce the asymptotic state of the walk, again a method similar to the one used to the two-state quan-

tum walk is used. Considering the Fourier transform of the wave function of the system,Ψ̃(k, t ), the equation

describing the dynamics of the walk is

Ψ̃(k, t +1) = M̃ t
Ψ̃(k,0), (6.49)

where in its diagonal form M̃ has two time dependent eigenvalues (λ2, λ3) and a constant one (λ1 = 1) Inui et al.

(2005); Falkner and Boettcher (2014). The constant eigenvalue is responsible for the main difference in behavior
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asymptotic limit, is given by

P (0, t =∞) =
(

a∗ b∗ c∗
)

U †
1U1













a∗

b∗

c∗













= (5−2
p

6)[(2a +b)a∗+ (a +b + c)b∗+ (b +2c)c∗], (6.56)

where a,b and c are the initial chirality components. Therefore, all the initial conditions of the type (6.55) have

localization 10−4
p

6 ≈ 0.2. This means that, although both features depend on the initial condition, there is no

direct connection between the localization of the walk and its entanglement entropy.

The energy of the system is given by (Inui et al. (2005))

E =〈H〉 = Tr[Hρs] = Tr[−(v ·λ)
1

3
(Id+

p
3B ·λ)]

=−Tr

[

− (v ·λ)

3

]

− 1
p

3
Tr[(v ·λ)(B ·λ)] = −1

p
3

∑

i,j
viBjTr[λiλj]

=−1
p

3

∑

i , j
vi B j 2δi j =

−2
p

3
v ·B.

(6.57)

Hence the entanglement temperature, given by definition, (6.35) is

1

TE
= ∂Sv N

∂E
= −

p
3

2v

∂Sv N

∂B

∂B

∂B||
. (6.58)

The problem in calculating the entanglement temperature in the case of the three-state quantum walk is

that the mean value of another observable, besides the energy, is needed to be used as a constraint, Vallejo

et al. (2020b). This means that, unlike the two-state case, we will not be able to calculate the entanglement

temperature at any time. In the asymptotic limit, however, this restriction is surpassed and we see that if we

assume that the system converges to a Gibbs state, then we can calculate it. We also check that, in this case, the

Gibbs temperature also respects the definition 6.58, i.e, it is equivalent to the entanglement temperature.

Let us start by assuming that when the system (chirality) achieves equilibrium with the bath (walker), the

eigenvalues of the density matrix are given by

τ j =
e−βǫ j

Z
= e−βǫ j

e−βǫ1 +e−βǫ2 +e−βǫ3
, (6.59)

where the index j stands for 1,2 or 3, and the Gibbs temperature per difference of energy can be obtained

dividing any two of the three eigenvalues as

TG

ǫ′j −ǫ j
= 1

log
(

τ j

τ j ′

) . (6.60)

In this case, however, since there are three different ways of defining the temperature per difference of energy,

it is more convenient to define the Gibbs temperature per mean energy. To derive this definition we use the fact

that the mean energy is given by

E = Tr[Hρs] = ǫ1τ1 +ǫ2τ2 +ǫ3τ3, (6.61)
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and that, since we chose to define H =−v ·λ as a traceless operator, the sum of the three eigenenergies is zero,

ǫ1 +ǫ2 +ǫ3 = 0. (6.62)

Dividing expressions (6.59) of τ1 by the other two eigenvalues we find

τ1

τ2
= e−β(ǫ1−ǫ2) = e−β(2ǫ1+ǫ3),

τ1

τ3
= e−β(ǫ1−ǫ3),

(6.63)

where we used that 1 = τ1 +τ2 +τ3 in the first line. Then, multiplying both expressions we get

τ2
1

τ2τ3
= e−β(3ǫ1) =⇒ ǫ1 =−TG

3
log

(

τ2
1

τ2τ3

)

. (6.64)

Following an analogous procedure we obtain the expressions of the other eigenenergies

τ2ǫ2 =−TG

3
τ2 log

(

τ2
2

τ1τ3

)

,

τ3ǫ3 =−TG

3
τ3 log

(

τ2
3

τ1τ2

)

.

(6.65)

Now the mean energy (6.61) can be written as a function of the temperature and the eigenvalues of the density

matrix only

E =−TG

3

[

τ1 log

(

τ2
1

τ2τ3

)

+τ2 log

(

τ2
2

τ1τ3

)

+τ3 log

(

τ2
3

τ2τ1

)]

, (6.66)

which leads to the final expression for the temperature per mean energy

T = TG

E
=−3

[

τ1 log

(

τ2
1

τ2τ3

)

+τ2 log

(

τ2
2

τ1τ3

)

+τ3 log

(

τ2
3

τ2τ1

)]−1

. (6.67)

Figure 6.18 shows the result of |T | for two types of initial conditions.

Manipulating expression (6.66) we can write E as a function of the von Neumann Entropy and of Z =

Tr[e−βH ], as

E =− TG

3

[

τ1 log(τ2
1)−τ1 log(τ2τ3)+τ2 log(τ2

2)−τ2 log(τ1τ3)+τ3 log(τ2
3)−τ3 log(τ1τ2)

]

=− TG

3

[

−2S −τ1 log(τ2τ3)−τ2 log(τ1τ3)− (1−τ2 −τ1) log(τ1τ2)
]

=− TG

3
[ −2S −τ1 log(τ2)−τ1 log(τ3)−τ2 log(τ1)−τ2 log(τ3)− log(τ1τ2)

+τ2 log(τ1)+τ2 log(τ2)+τ1 log(τ1)+τ1 log(τ2) ]

=− TG

3

[

−2S −τ1 log(τ3)− (1−τ1 −τ3) log(τ3)− log(τ1τ2)+τ2 log(τ2)+τ1 log(τ1)
]

=− TG

3

[

−2S −τ1 log(τ3)− log(τ3)+τ1 log(τ3)+τ3 log(τ3)− log(τ1τ2)+τ2 log(τ2)+τ1 log(τ1)
]

=− TG

3

[

−3S + log

(

1

τ1τ2τ3

)]

=−TG

3

[

−3S + log

(

Z 3

e−β(ǫ1+ǫ2+ǫ3)

)]

=−TG

3

[

−3S +3log(Z )
]

,

(6.68)
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The last part of the chapter contains our main results. We calculated the asymptotic reduced density matrix

for the three-state quantum walk, calculated the von Neumann entropy and the Gibbs temperature. The sys-

tem only achieves the Gibbs temperature in the asymptotic limit, if it is in thermal equilibrium with the bath.

Therefore our assumption is that that the three state quantum walk achieve a state of thermal equilibrium in the

asymptotic limit. Questions concerning the reason why, when the system evolves into the thermal equilibrium

with the bath, the state is described by the canonical ensemble are a much more fundamental whose answer

connects quantum mechanics with the foundation of quantum statistical mechanics. For a more complete

discussion on that, we refer to Yuan et al. (2009).

In our calculations we only assumed that the total energy of the system is zero and this does not imply in

any loss of generality because the difference between the eigenenergies is the relevant physical quantities, not

their absolute value. Hence our expression for the temperature per mean energy extends to the general case of

a three-state system that achieves equilibrium with the reservoir, not just the reduced state of the three-state

quantum walk. This is in full agreement with the more general result proved by Vallejo et al. (2020b). We also

point to the fact that the relation obtained between the energy and entropy for the three-state quantum walk

in the asymptotic limit, (6.69), is in accordance with the entropy-energy inequality discussed by Man’ko and

Markovich (2016).

This closes our analyses of the entanglement between the two spaces of the quantum walk. In the next

section we shall again consider the quantum walk as an open system, but this time we look to the whole space of

the quantum walk and consider external influences, not just the reduced space. In other words, in this chapter,

we considered the complete system of the quantum walk as an isolated “universe” and analyzed the coin space

as our principal system, while the position space was seen as a bath. In the next chapter, we will treat the

problem from a different perspective, including the whole system of the quantum walk as the principal system

(H =HC ⊗HP ) and the bath is composed by an environment (or uncontrolled degrees of freedom).
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CHAPTER 7

Decoherence in Discrete Time Quantum Walks

It is important to clarify a very important difference between random and quantum walks. Randomness

plays a clear role at each time step of the random walk, in the sense that we do not know what will be the

result of the coin toss. On the other hand, in the quantum walk, the position of the walker is unknown, but

the state of the system is always known. The result of the coin toss is perfectly predictable and the dynamics

of the system is governed by a unitary evolution, which means that if the initial state is pure it will remain

pure. The randomness of the quantum walk is uniquely due to the measurement process. This means that

the name ”Quantum Walk” is more appropriate to the type of process we were dealing with in the last chapter

than ”Quantum Random Walk”. There is, however, another factor that can add randomness to the quantum

walk – the decoherence. Decoherence is a key element to understand the limit between classical and quantum

phenomena and it happens when we consider interaction between the environment and the system. Until now

we considered the quantum walk as an isolated system, however, sometimes it can be useful to recognize the

system we are analyzing to be immersed in an environment, Kendon (2003).

The first reason why is important to consider environmental effects on the quantum walk is that the most

important application of this system is on the development of quantum algorithms, and since quantum com-

puters are physical objects they are always subjected to some level of noise and dissipation. Therefore, dealing

with decoherence is inevitable to build the quantum computers that will perform the quantum walk. Besides

that, another important feature of decoherence is that the evolution of a system under decoherence is not nec-

essarily described by unitary operators, therefore we could use external interactions to control a new class of

evolutions that lead to different behaviors of the walk. Decoherence can be physically introduced in the system

by many different phenomena, therefore we can account for such interactions by different mathematical ap-
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proaches. Here we will consider a Hadamard walk with an initial condition that generates a symmetrical walk,

i.e,
1
p

2

(

1 i
)T

or
1
p

2

(

1 −i
)T

.

This section is subdivided into five parts. At each of the first four parts, we consider one method of account-

ing for decoherence, and in the last section, we develop a generalization of these models for the three-state

quantum walk. In the first part, we introduce the Kraus operator that can be used to model phase and am-

plitude damping decoherence, in the second part we present the decoherence by unitary noise, and at last, in

the third and fourth parts, we analyze decoherence by broken links and periodic measurements and look to

the resemblance of those processes with classical Brownian motion. It is important to point out that there are

other methods for simulating decoherence, such as changing the coin operator at each time step and the im-

plementation of decoherence via master equations. For more information about other methods to implement

decoherence in discrete and continuous-time quantum walks we refer to Kendon (2006).

7.1 Kraus Operators

One method to introduce decoherence on the walk is by adding extra non-unitary operators known as Kraus

operators, K j , to describe the effects of noise and other external effects. Hence, the recurrence relation re-

spected by the evolution of the system becomes

ρ(t +1) =
∑

j
K jUρ(t )U †K †

j . (7.1)

This expression is completely equivalent to consider a unitary evolution on the total space composed by the

system and the environment and taking the partial trace of the environment, Nielsen and Chuang (2010).

The Kraus operators can account for different effects – here we explore the operators associated with phase

and amplitude damping on the coin space, Diniz (2016); Nielsen and Chuang (2010). The phase damping is

modeled by the Kraus operators of the form K j = I⊗E j , where j = 0,1, I is the identity in the position space and

E0 =





1 0

0
√

1−γ



 ;

E1 =





0 0

0
p
γ



 .

(7.2)

The parameter γ ∈ [0,1] is the strength of the channel, and the matrices E0 and E1 can be obtained if one consid-

ers a rotation of a random angle (Gaussian distributed) in the coin space and evaluate the mean over all angles.

This noise process describes the quantum loss of information without loss of energy. Physically, the action of

this operator on a two-level system can be used to describe the phenomenon where a photon scatters randomly

as it travels through a wave guide or the perturbations of electronic states in an atom due to interaction with
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distant electrical charges. The energy eigenstates of the quantum system are constant in such a evolution, but

as time passes there is an accumulation of phase which is proportional to the eigenvalue. Hence, as the system

evolves the information about the relative phase between the energy eigenstates is lost.

Another type of decoherence that can be described by the Kraus operators is the amplitude damping. The

operators in this case have the same format as the ones presented to phase damping decoherence (K j = I⊗E j ),

however in this case

E0 =





1 0

0
√

1−γ



 ;

E1 =





0
p
γ

0 0



 .

(7.3)

This type of decoherence describes a process with energy dissipation. For instance, a system with an atom

emitting a photon, a spin system at high temperature approaching equilibrium with its environment and a

photon on a cavity subjected to scattering and attenuation can be approximately described using the amplitude

damping noise. We can see that the difference between this decoherence and the phase damping is in the

operator E1.

To understand the behavior of the walk subjected to those types of decoherence we made the graphics of

figure 7.1 that display the probability distribution of the walker’s displacement after 100 time steps for different

values of the parameter γ. We can see that for both types of damping, as γ increases the distribution approxi-

mates to a Gaussian one, and when γ = 0 the coherent quantum walk behavior is recovered, as expected. The

difference between phase and amplitude damping decoherence is in how the transition from quantum to classi-

cal behavior occurs. While on the case of phase damping the transitions occur symmetrically, on the amplitude

damping decoherence the transition is not symmetric. This is due to the fact that the operator E1 of eq.(7.3)

destroys the left chirality state and changes the right state to a left one as equation (7.4) shows.

E1 |L〉 =





0
p
γ

0 0









1

0



=





0

0



 ,

E1 |R〉 =





0
p
γ

0 0









0

1



=





p
γ

0



=p
γ |L〉 .

(7.4)

A parameter that can be used to analyze the distance of the incoherent quantum walk to the quantum or

classical walks is the standard deviation. Figure (7.2) shows the standard deviation of the position probability

distributions as a function of time. As we expected, for both cases, γ = 0 gives a line (σ∝ t ) and for γ = 1 we

achieve the classical behavior (σ∝
p

t ).

Figure (7.3) displays the evolution of the von Neumann entropy of the coin for the quantum walk with initial
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can imagine that the answer is that the behavior will be something in the way between the quantum walk

and its classical counterpart. To analyze the transition behavior between both walks Romanelli et al. (2005)

proposed a model where periodic measurements are made, i.e, the state is measured after every T time steps.

The measurement of the coin state is made by a projection with the σy operator to preserve the symmetry of

the evolution.

Let us consider a Hadamard walk with an initial condition that generates a symmetric walk, e.g,
1
p

2
(1, i )T .

After the first period of T time steps the probability that the position measurement results in n is qn = Pn(T ).

Then the wave function collapses to the measurement value and evolves again in a unitary way. The probability

density function repeats itself, however, now, centered on the measured position.

We will consider that measurements are performed on the times t = T,2T,3T, ..,τT . On the interval between

any two consecutive measurements the position probability distribution respects the following master equation

Pn(t +T ) =
n+T
∑

j=n−T
qn− j P j (t ). (7.15)

Using the definitions of the first, M1, and second moments, M2, presented on section 2 and eq. (7.15) we find















M1(t +T ) = M1(t )+M1q (T );

M2(t +T ) = M2(t )+2M1(t )M1q (T )+M2q (T ),

(7.16)

where M1q (T ) = ∑T
−T nqn and M2q (T ) = ∑T

−T n2qn are the moments associated with the unitary evolution be-

tween measurements. Hence, if the associated variance is σ2
q (T ) = M2q (T )−M 2

1q (T ), the variance is

σ2(t +T ) =σ2(t )+σ2
q (T ). (7.17)

Since the diffusion coefficient is Dpm = ∆σ2

2∆t , considering the time interval as ∆t = τT , we have that

Dpm =
σ2

q (T )

2T
= K T

2
, (7.18)

where K is a constant. This means that the diffusion coefficient depends inversely on the frequency of mea-

surements f = 1

T
.

Figure (7.12) shows the variance of the walk as a function of time for different frequencies of measurements.

Note that between measurements the walker spreads ballistically, however taking into account only the values

of variance on times that measurements occurred the variance seams to evolve classically. On the limit where

the measurement is performed at each time step, T = 1, we have that σ2 ∝ t , and when no measurement is

performed at the time interval considered, T = 120, the quantum feature is recovered. Note that this result is

independent of how the chirality measurement is done because the variance of the quantum walk does not

depend on the initial chirality condition, just on the parameters of the coin.
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7.5 Three-state Quantum Walk

In this section, we extend the methods explained in the last sections to the case of a discrete-time quantum

walk with a three-state coin. Since the main difference between the behavior of this walk and the two-state

quantum walk is the localization generated by some initial conditions, we extend the methods and simulate the

decoherent walk with and without localization. The initial conditions chosen to represent both behaviors are

the same ones used to graphic the position probability distribution in figures 6.14, i.e, |ψ(0)〉 = 1
p

2
(i ,0,1)T and

|ψ(0)〉 = 1
p

6
(1,−2,1)T .

7.5.1 Kraus Operators

The first methods we use to introduce decoherence in the two-state quantum walk consisted in apply Kraus

operators on the evolution of the system, as exposed in equation (7.1). In this case, since we are dealing with a

three level system, we will need Kraus operators of a single qutrit. The phase damping operators of a qutrit are

(C.f. Ramzan and Khan (2011))

E0 =
√

1−γ













1 0 0

0 1 0

0 0 1













; E1 =
p
γ













1 0 0

0 ω 0

0 0 ω2













, (7.22)

where ω= e2πi /3. The walk with and without localization was simulated considering the phase damping oper-

ators, result is presented in figure 7.13. In both cases the effect of the decoherence is similar to the effect in the

two-state walk in the sense that there is a transition to the classical behavior. The main difference in the case

of the three-state walk is that the transition occurs as the strength parameter, γ, increases, but the Gaussian

curve is achieved for γ = 0.5, instead of 1 and for γ > 0.5 the distribution starts to transit back to the quantum

behavior. This means that the distribution of walks with γ= 0.5−x and γ= 0.5+x are equal (0 < x < 0.5).

On the other side, the amplitude damping operators of a qutrit are (C.f. Ramzan and Khan (2011))

E0 =













1 0 0

0
√

1−γ 0

0 0
√

1−γ













; E1 =













0
p
γ 0

0 0 0

0 0 0













E2 =













0 0
p
γ

0 0 0

0 0 0













. (7.23)

Figure 7.14 shows the resultant distribution of the three-state quantum walk with amplitude damping for

the two initial conditions we are considering in this section. In this case, the transition to a Gaussian shape

distribution occurs in a similar way to the two-state case. The walk with strength γ= 0 represents the walk with

no decoherence and as γ increases the classical distribution is recovered, but with a shift in the position lattice.
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same site. The resultant expressions are

an(t +1) = 1

3
(−an+1(t )+2bn+1(t )+2cn+1(t ));

bn(t +1) = 1

3
(2an(t )−bn(t )+2cn(t ));

cn(t +1) = 1

3
(−an(t )+2bn(t )+2cn(t )).

(7.26)

Analogous the recurrences relations in the case that there is a broken link on the right of site n are

an(t +1) = 1

3
(2an(t )+2bn(t )− cn(t ));

bn(t +1) = 1

3
(2an(t )−bn(t )+2cn(t ));

cn(t +1) = 1

3
(2an−1(t )+2bn−1(t )− cn−1(t )).

(7.27)

Finally, if both links that connect site n with its neighbors are broken, the relations became

an(t +1) = 1

3
(2an(t )+2bn(t )− cn(t ));

bn(t +1) = 1

3
(2an(t )−bn(t )+2cn(t ));

cn(t +1) = 1

3
(−an(t )+2bn(t )+2cn(t )).

(7.28)

Using those relations to simulate the three-state quantum walk with decoherence we calculate the position

probability distribution of the walk after 50 and 200 and time steps. Figures 7.16 and 7.18 show the mean result

of 1000 simulations for two initial conditions, one that generates localization,
1
p

2
(i ,0,1)T , and one that does

not
1
p

6
(1,−2,1)T . As in the other cases of decoherence, we see a transition from the quantum distribution

to a Gaussian, however in this case and interesting feature differentiates the effect of the decoherence. When

the initial conditions generate localization, the broken links conserve the localization, changing only the other

regions of the distribution. Figure 7.17 is a zoom of the left-hand side graph in figure 7.16, where we can see

clearly that outside the localization region the blue and orange curves approach a Gaussian shape and in the

central region of the three curves present the localized shape.
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CHAPTER 8

Continuum Limit of the Discrete Time Quantum Walk

8.1 Continuum Limit of the Quantum Walk without Interference

As it was already demonstrated in chapter 6, the recurrence relations of the discrete-time quantum walk

can be manipulated in a way that separates the term responsible for interference. In this section we are going

to consider the continuum limit of the discrete time quantum walk without taking into account those inter-

ference terms, C.f. Romanelli et al. (2003). If we remind the recurrence expressions (6.8) for the right and left

components of the state of the system

an(t +1) = an+1(t )cosγ+bn+1(t )sinγ

bn(t +1) = an−1(t )sinγ−bn−1(t )cosγ,
,

and if we define PL(n, t ) = |an(t )|2 and PR (n, t ) = |bn(t )|2 as the probability of finding the walker at position n,

at time t and the coin in state left or right, respectively, the recurrence relations can be written as

PL(n, t +1) = PL(n +1, t )cos2γ+PR (n +1, t )sin2γ+q(n +1, t )sin2θ,

PR (n, t +1) = PL(n −1, t )sin2γ+PR (n −1, t )cos2γ−q(n −1, t )sin2θ,
(8.1)

where q(n, t ) = Re[an(t )b∗
n(t )] is the interference term. Again, we easily manage to identify it in the equation,

so, as stated above we are not going to consider this term. Since P (n, t ) = PL(n, t )+PR (n, t ), summing both

equations we have that the recurrence relation for the position probability defines a second order Markov pro-

cess

P (n, t +1) = [P (n +1, t )+P (n −1, t )]cos2γ−P (n, t −1)cos2γ. (8.2)



8.2. MATHEMATICAL RESEMBLANCE WITH RELATIVISTIC QUANTUM MECHANICS 110

Before taking the continuum limit, we manipulate the expression by adding and subtracting 2P (n, t )cos2γ and

P (n, t )sin2γ, in addition to replacing the distance between two positions on the lattice by ∆n and the time

between two steps by ∆t . We find

0 =[P (n, t +∆t )−P (n, t )]sin2γ+ [P (n, t )−P (n, t −∆t )]sin2γ

+ [P (n, t +∆t )−2P (n, t )+P (n, t −∆t )]cos2γ− [P (n +∆n, t )−2P (n, t )+P (n −∆n, t )]cos2γ.
(8.3)

Dividing both sides of the equation by (∆t∆n)2 we end up with

0 = [P (n, t +∆t )−P (n, t )]

∆t

sin2γ

∆t∆n2
+ [P (n, t )−P (n, t −∆t )]

∆t

sin2γ

∆t∆n2

+ [P (n, t +∆t )−2P (n, t )+P (n, t −∆t )]

∆t 2

cos2γ

∆n2
− [P (n +∆n, t )−2P (n, t )+P (n −∆n, t )]

∆n2

cos2γ

∆t 2
.

(8.4)

Now, we can take the continuum limit in two different ways. If the limits ∆t → 0 and ∆n → 0 are taken in

such a way that the velocity v =∆n/∆t and the ratio sinγ2/∆t are considered constants we find the Telegraph

equation

∂P

∂t
= ∆t cot2γ

2

[

v2 ∂
2P

∂n2
− ∂2P

∂t 2

]

. (8.5)

On the other hand, if we consider (∆x)2/∆t constant, the limit leads to the Diffusion equation

∂P

∂t
= ∆t cot2γ

2
v2 ∂

2P

∂n2
. (8.6)

Note that, in this case, the diffusion coefficient is D = ∆t cot2 γ
2 v2. The diffusion coefficient obtained in chapter

3 was D2 = KB T
mk , hence, due to the equipartition theorem D2 = 〈v2〉

k . We want to use this system to simulate the

Brownian motion, so we compare both expressions and identify the viscosity coefficient with 2tan2 γ
∆t . For the

Hadamard walk with position and time increment equals to 1, the classical value of the diffusion coefficient for

the random walk is recovered, D = 1

2
.

8.2 Mathematical Resemblance with Relativistic Quantum Mechanics

The dynamics of the quantum walk is very simple and easy to implement computationally. Therefore it can

be used to simulate analogous systems. In this section, we present some resemblances between the mathe-

matical structure of quantum walks and relativistic quantum mechanics. This makes it possible to relate some

relativistic problems with the discrete-time quantum walk and, furthermore, to simulate them using quantum

walks.

We divided this section in three parts. In the first one, we demonstrate, by taking the continuum limit,

that the decoupled form of the equation of motion of the quantum walk is equivalent to the Klein-Gordon

equation of a free particle with spin 0. In the second part, we show that the coupled form for the dynamics of

the quantum walk is analogous to the Dirac equation of a particle of spin 1/2. In the third part, we analyze the
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resemblance between the Dirac Hamiltonian and the Hamiltonian of the discrete-time quantum walk. Those

demonstrations were first derived by Chandrashekar et al. (2010) and to a more detailed calculation, we refer to

Diniz (2016).

First let us introduce a different notation for the discrete time quantum walk than the one used in chapter 6.

Both notations are very similar, however in this one the coin operator has complex elements which can generate

different inferences from the ones on the quantum walk with a real coin. The state of the system at time t and

position n is composed by the left (a(n, t )) and right (b(n, t )) components

ψ(n, t ) =





a(n, t )

b(n, t )



 . (8.7)

With the coin operator of the form

C (θ) =





cosθ −i sinθ

−i sinθ cosθ



 , (8.8)

and the shift operator is defined by the pair of operators e±i P̂ as

S =





e i P̂ 0

0 e−i P̂



 , (8.9)

where e±i P̂ψ(n, t ) =ψ(n±, t ). Once the shift and coin operators are well defined, the evolution of the state (8.7)

on one time step is given by equation (6.4), i.e,





a(n, t +1)

b(n, t +1)



=





cosθe i P̂ −i sinθe i P̂

−i sinθe−i P̂ cosθe−i P̂









a(n, t )

b(n, t )



 . (8.10)

Then, we obtain the following recurrence relations

a(n, t +1) = a(n +1, t )cosθ− i b(n +1, t )sinθ

b(n, t +1) = b(n −1, t )cosθ− i a(n −1, t )sinθ.
(8.11)

In next sections we use relations (8.11) to show how the quantum walk relates with the Klein-Gordon and the

Dirac equations.

8.2.1 Decoupled discrete-time Quantum Walk equation in Klein-Gordon form

To decouple the variables a and b in equation (8.11), let us start by isolating the left component of the

second line of the recurrence relation,

a(n −1, t ) = i

sinθ
[b(n, t +1)−cosθb(n −1, t )]. (8.12)
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By making the transformations (n, t ) → (n +1, t +1) and (n, t ) → (n +2, t ) we find














a(n, t +1) = i
sinθ [b(n +1, t +2)−cosθb(n, t +1)];

a(n +1, t ) = i
sinθ [b(n +2, t +1)−cosθb(n +1, t )];

(8.13)

that can be substituted in the first line of the recurrence relation to get an equation that depends only on the

right chirality components,

b(n, t +1)+b(n, t −1) = cosθ[b(n +1, t )+b(n −1, t )]. (8.14)

If the same procedure had been done to get the decoupled equation with respect to a, the result would be

completely analogous,

a(n, t +1)+a(n, t −1) = cosθ[a(n +1, t )+a(n −1, t )]. (8.15)

Therefore, from now on, instead of carrying two identical equations we define the variable Λ(n, t ) that can

represent a(n, t ) or b(n, t ) and write

Λ(n, t +1)+Λ(n, t −1) = cosθ[Λ(n +1, t )+Λ(n −1, t )]. (8.16)

Subtracting 2Λ(n, t )+2cosθΛ(n, t ) from both sides of the equation above we find

[Λ(n, t +1)−2Λ(n, t )+Λ(n, t −1)]−2cosθΛ(n, t ) = cosθ[Λ(n +1, t )−2Λ(n, t )+Λ(n −1, t )]−2Λ(n, t ). (8.17)

Now, the decoupled equations are in the format we need to take the continuum limit. Since the first and second

differential operators of an arbitrary function, f , are

∇y f (x, y) = f (x, y +ǫ/2)− f (x, y −ǫ/2)

ǫ
,

∇2
y f (x, y) = f (x, y +ǫ)−2 f (x, y)+ f (x, y −ǫ)

ǫ2
,

(8.18)

where for ǫ= 1, ∇y =
∂

∂y
and ∇2

y =
∂2

∂y2
, the continuum limit of eq. (8.17) is

[

cosθ
∂2

∂n2
− ∂2

∂t 2

]

Λ(n, t ) = 2[1−cosθ]Λ. (8.19)

Comparing it with the Klein-Gordon equation
[

∇2 − 1

c2

∂2

∂t 2

]

φ=µ2φ, (8.20)

where c is the velocity of light, µ= mc
ħ and m is the mass, the analogy is clear. Making the following associations

c =
p

cosθ; m =

√

2(secθ−1)

cosθ
; (8.21)

and considering ħ= 1, we see that the chirality components a(n, t ) and b(n, t ) have a free spin-0 particle char-

acter. Note that c = 1 corresponds to θ = 0, and consequently, m = 0 as is required by the relativity theory. The

condition θ = 0 corresponds to the case where two peaks move away from each other without interference, i.e,

there is no coin.
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8.2.2 Coupled discrete-time quantum walk equation in Dirac form

To show the mathematical equivalence between the discrete-time quantum walk and the Dirac equation

we start again from the expressions (8.11), but without decoupling them this time. In the matrix form we have




a(n, t +1)

b(n, t +1)



= cosθ





1 0

0 1









a(n +1, t )

b(n −1, t )



+ sinθ





0 −i

−i 0









a(n −1, t )

b(n +1, t )





= (cosθ I+ sinθσzσ+ y)





a(n +1, t )

b(n −1, t )



− sinθσy





a(n +1, t )−a(n −1, t )

b(n +1, t )−b(n −1, t )



 .

(8.22)

Subtracting





a(n, t )

b(n, t )



+ (cosθ I+ sinθσzσ+ y)





a(n, t )

b(n, t )



 from both sides of the expression we obtain





a(n, t +1)−a(n, t )

b(n, t +1)−b(n, t )



=(cosθ I+ sinθσzσ+ y)





a(n +1, t )−a(n, t )

b(n −1, t )−b(n, t )





+ (cosθ I+ sinθσzσ+ y − I)





a(n, t )

b(n, t )





− sinθ





a(n +1, t )−a(n −1, t )

b(n +1, t )−b(n −1, t )



 .

(8.23)

Finally, to take the continuum limit we use the same approach as used in the last section, which led us to
[

∂

∂t
− (cosθσz −3sinθσy )

∂

∂n
− (cosθ I+ sinθσzσy − I)

]

ψ(n, t ) = 0. (8.24)

Now considering θ = 0, i.e, cosθ = 1, and multiplying both sides of the equation by iħ we find
[

iħ ∂

∂t
− iħσz

∂

∂n

]

ψ(n, t ) = 0. (8.25)

Therefore, we can compare it with the 1+1 dimensional Dirac equation which is given by
[

iħ ∂

∂t
− iħcα̂

∂

∂x
− β̂mc2

]

ψ(x, t ) = 0, (8.26)

where m is the rest mass, c is the speed of light, iħ∂/∂x is the momentum operator, x and t are the space and

time coordinates and the matrices α̂ and β̂ are Hermitians, satisfying the following properties

α̂2 = β̂2 = Id ;

α̂β̂=−β̂α̂.
(8.27)

Comparing equation (8.25) with the Dirac equation, we see that the coupled equations of the quantum walk

are mathematically equivalent to the massless spin-1/2 particle Dirac equation if θ = 0, c = 1 and α̂=−σz . This

is again the case of the quantum walk without interference, that is, without the coin. It is important to mention

that for other values of θ the matrix β̂ does not respect conditions (8.27), therefore the resemblance is not valid

anymore.
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8.2.3 The Hamiltonian of the Walk

In this section the resemblance of the discrete time quantum walk with the Dirac equation is explored by

the analysis of the Hamiltonian of the system. The following discussion is based on the work of Diniz (2016). To

find the Hamiltonian of the walk we consider the base of eigenstates of σz (we also change the notation making

n = z) and recall equation (6.4) that describes the dynamics of the walk,

|ψ(t )〉 = (Sh(C ⊗ I))t |ψ(0)〉 =Q t |ψ(0)〉 . (8.28)

The Hamiltonian is associated to the evolution operator by Q = e−i H , and therefore we can find an expression

for H by taking the logarithm of this expression

H = i logQ = iV logΛV −1, (8.29)

where Λ is the diagonal form of Q and V is the matrix composed of the eigenvalues of Q as its columns. Then

the operator responsible for one time step is

Q = Sh(C ⊗ I) =
∑

z





cosγ sinγ

0 0



⊗|z −1〉〈z|+





0 0

−sinγ cosγ



⊗|z +1〉〈z| . (8.30)

If we use the momentum operators Pz to rewrite the shift operators we find

Q =





cosγe−i Pz sinγe−i Pz

−sinγe i Pz cosγe i Pz



 , (8.31)

Now, to find the Hamiltonian of the system, the only thing left for us to do is to find the eigenvalues and

eigenvectors of Q and use equation (8.29). The eigenvalues are

Λ= cosγcosPz ±
√

cos2γcos2 Pz −1 = cosωz ± i sinωz = e±iωz , (8.32)

where we have defined the operator cosωz = cosγcosPz . Hence the matrices logΛ, V and V −1 are

logΛ=





−iωz 0

0 iωz





V = 1

sinγe i Pz





cosγe i Pz −e−iωz cosγe i Pz −e iωz

sinγe i Pz sinγe i Pz



 ,

V −1 = 1

2i sinωz





sinγe i Pz e iωz −cosγe i Pz ,

−sinγe i Pz −e−iωz +cosγe i Pz



 .

(8.33)

Finally we can write the Hamiltonian as

H = ωz

sinωz





cosγsinPz −i sinγe−i Pz

−i sinγe i Pz −cosγsinPz



 (8.34)
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Now we perform the continuous approximations part by part of the Hamiltonian. This is done by studying

the effect of the operators e±i Pz and sinPz on the state a/b(z, t ) =ψ(z, t ):

sinPzψ(z, t ) = i
e−i Pz −e+i Pz

2
ψ(z, t ) = −i

2
(ψ(z +1, t )−ψ(z −1, t )) ≈−i

∂ψ(z, t )

∂z
≡ Pzψ(z, t ),

e±i Pzψ(z, t ) =ψ(z ±1, t ) =ψ(z ±1, t )−ψ(z, t )+ψ(z, t ) ≈
(

± ∂

∂z
+1

)

ψ(z, t ).
(8.35)

Hence

sinPz ≈−i
∂

∂z
≡ Pz ,

e±i Pz ≈
(

± ∂

∂z
+1

)

.
(8.36)

Those expressions can be seen as first-order expansions. Ignoring higher order terms in the expansion of sinPz ,

we find
ωz

sinωz
≈ 1. (8.37)

Substituting the expansions on (8.34) leads to the following Hamiltonian

H =−i





cosγ sinγ

sinγ −cosγ





∂

∂z
−





0 −i

i 0



sinγ=−iαz
∂

∂z
+ sinγβz , (8.38)

where

αz = cosγσz + sinγσx ;

βz =−σy .
(8.39)

The Dirac Hamiltonian is

HD =−iħcα
∂

∂z
+βmc2, (8.40)

where c is the speed of light, m is the mass of the particle and the matrices are Hermitian and satisfy the condi-

tions (8.27). Although αz and βz are hermitian and also satisfy (8.27), the comparison would be more consistent

if α and β were Pauli matrices. To solve this issue and be able to compare both Hamiltonians, without loss of

generality, we can perform a rotation Ry (γ/2) = e−i γ

2 σy

H̄ = R†
y (γ/2)HRy (γ/2) =−iσz

∂

∂z
− sinγσy . (8.41)

Identifying m =−sinγ and c = 1 we see that H̄ and the Dirac Hamiltonian are identical.
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CHAPTER 9

Conclusions

This work can be divided into three main parts that describe the classical, relativistic, and quantum aspects

of random walks and Brownian motion. In the first part, we introduced stochastic methods, random walks,

Brownian motion, and analyzed the mathematical limit between the simple random walk and the Brownian

motion. As mentioned before, the tools introduced in this part of the dissertation have applications in different

areas of human knowledge, such as physics, chemistry, biology, mathematics, engineering, and sociology.

The second part of the dissertation concerns the relativistic regime of the Brownian motion. The probability

distribution of positions, found by the methods of chapter 3, implies that the Brownian particle has a non-null

probability of being outside the light cone, i.e., of having a speed larger than the speed of light. Therefore,

the main goal of chapter 4 is to find a probability distribution that is in agreement with the relativistic theory.

Finding the PDF that better describes the relativistic Brownian motion has applications in astrophysics, the

physics of the early universe, and in the analysis of the collisions of heavy particles.

A natural guess at how to proceed generalizing the Brownian motion to the relativistic regime is to repeat

the approach of chapter 2, that is, propose a relativistic random walk and analyze its continuum time limit.

Unfortunately, there are two problems with this approach. First, since random walks are mathematical discrete

dynamic systems, assign physical properties to it, such as bath temperature, and generalize them does not

make much sense. Besides that, it was proved by Dunkel et al. (2006) that it is impossible to find a nontrivial,

continuous, relativistic Markov process in Minkowski space.

The restriction that the Markov hypotheses cannot be used is very strong and there are two strategies to

overcome the issue. One can try to find a relativistic diffusion non-Markovian propagator in Minkowski space

or derive a Markov model in phase space. Regarding the first strategy, we analyzed the telegraph’s propagator,
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the generalization of the diffusion propagator proposed by Dunkel et al. (2006), and proposed our approach

to derive a propagator. The solution to the telegraph equation excludes superluminal positions but implies

sharp fronts of particles traveling with the speed of light, therefore we conclude that the propagator derived by

the method of maximization of entropy and Dunkel’s propagator give the best probability distributions. Both

propagators are almost equal, the only difference is the subtraction of a constant term, which is negligible in

the range of times that the assumption that the system has maximum entropy is valid. This means that after

a transition period of time, when the probability distribution of position of the Brownian particle achieves a

stationary regime, our solution is correct, and in accordance with Dunkel’s propagator.

The second strategy was to discuss the generalization of Langevin’s equation. This approach is useful be-

cause the information about the heat bath is less hidden, therefore it can be more easily suited to describe

the Brownian motion in different mediums. The Relativistic Langevin equation derived by Dunkel and Hanggi

(2005) provides a reasonable distribution of velocities for the Brownian particle and, if Hanggi’s discretization

rule is considered, it is in accordance with Jüttner’s velocity distribution. The microscopic model that considers

elastic collisions between the Brownian particle and the molecules of the bath was also analyzed, with other

assumptions about the fluid it is immersed in a relativistic Langevin equation can also be derived using the

model. Particularly, we made simulations assuming that the interval between the collisions of the Brownian

particle is constant and calculated the velocity of the particle after a fixed number of collisions. The results

of the simulations provided histograms of probability of finding the particle with certain velocity that are in

accordance with Jüttner’s distribution as well.

In the last part of the relativistic analyses (chapter 5), we discussed the following connections by analytic

continuation

Diffusion equation ←→ Schrödinger equation

"Relativistic Diffusion equation" ←→ Relativistic Schrödinger equation

Telegraph equation ←→ Dirac equation.

We concluded that the methods based on analytic continuation should only be considered as mathematical

tools to deal with the simulation of analogous systems and to increase the comprehension of the mathematical

resemblances between the three regimes covered in this dissertation.

In the third, and last, part of this work we studied quantum walks – systems that have been of great interest

to researchers in the field of quantum computation, because the spread of a quantum walk is faster than the

random walk and this makes it an important tool in the development of quantum search algorithms.

First, we analyzed the asymptotic limit of quantum walks, reaching the counter-intuitive conclusion that

the Hamiltonian of the reduced coin system depends on the initial conditions. Then we calculated the entan-

glement entropy and temperature of the two-state quantum walk, discussed the meaning of those variables
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and concluded that the entanglement temperature has a thermodynamic meaning, in the sense that, in the

asymptotic limit, it is in accordance with the temperature derived assuming that the reduced system of the coin

respects a Gibbs distribution. The analysis was extended to the three-state quantum walk. We calculated the

Gibbs temperature of the three-state quantum walk and, as expected, this led to an equivalence with the entan-

glement temperature. This conclusion is in accordance with other results in the literature, Vallejo et al. (2020b);

Man’ko and Markovich (2016), and applies to other three-state systems, besides the quantum walk.

The limit between the random and quantum walk in an infinite line was analyzed in chapter 7 using four

types of decoherence: Kraus Operators, Unitary Noise, Broken Links, and Periodic measurements. In all four

types of decoherences, we showed the transition behavior for the displacement variance and the position dis-

tribution of the walk. The study of these types of phenomena is important for two reasons: to deal with the

dissipations in real systems (quantum computers), since it is impossible to completely exclude external inter-

action in real systems, and to control non-unitary evolutions. The original result of this part of the work is

the analysis of decoherence in three-state quantum walks. We generalize the models of decoherence by Kraus

Operators, Unitary Noise and Broken Links to a three-state system (qutrit) and calculated the probability dis-

tribution of the position of the walker for different parameters of decoherence. In all cases, we saw that the

introduction of the decoherence causes a transition to classical behavior, but the transitions are different for

each model. The most interesting result was obtained by the generalization of the model of broken links. We

observed that, in the case where an initial condition that generates localization is considered, the localization

is preserved in the system with decoherence.

In the last chapter of the dissertation, we analyzed the mathematical resemblance of the discrete-time

quantum walk and Dirac and Klein Gordon equations. Despite being only a revision of the literature, this part

was introduced in the dissertation for completeness. In some sense, those results connect the second and third

parts of this work, since, because of that connection, quantum walks can be used to simulate a relativistic sys-

tem.
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APPENDIX A

Appendix

A.1 Kramers-Moyall Expansion

The Kramers-Moyall expansion, 2.80, has infinite order,

∂ρ(R, t )

∂t
=

∞
∑

n=1
(−1)nDn

∂n

∂Rn
[ρN (R, t )].

However, it can be finite if Dr = 0 to r > N , N ∈N. In this section we show that if Kramers-Moyall expansion has

finite order, then it has order 1 or 2. To show that we start from Schwarz inequality (Mandel and Wolf (1995)),

that states that for any two integers r1 and r2,

[∫

(∆x)r1 (∆x)r2 P (x +∆x, t +δt |x, t )d∆x

]2

≤
∫

(∆x)2r1 P (x +∆x, t +δt |x, t )d∆x

×
∫

(∆x)2r2 P (x +∆x, t +δt |x, t )d∆x.

(A.1)

Using the definition of the coefficients Dr we see that the Schwarz inequality implies that

D2
r1+r2

≤ D2r1 D2r2 , (A.2)

for any r1,r2. Therefore if we chose if r1 = 1 and r2 = N −1

D2
N ≤ D2D2N−2. (A.3)

Suppose that for r > N , Dr vanishes. Then the Kramers-Moyall equation becomes a expansion of N order.

Particularly if N ≥ 3, since 2N −2 ≥ N +1, both DN+1 and D2N−2 vanish. However, from the inequality (A.3) we

see that if D2N−2 = 0, then DN = 0. It follows that if the coefficient DN = 0, then DN−1 also vanishes. Repeating
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this argument recursively we conclude that all terms of the expansion are zero. Only if N = 1 or N = 2 the

argument breaks down. The conclusion is that the Kramers-Moyall expansion has order 1, 2 or ∞. When N = 2

the equation is known as Fokker-Planck equation.

A.2 Lagrange Multipliers

The method of Lagrange multipliers is a technique used to find the local extremes (maximum and mini-

mum) of a function subjected to constraints. In other words, the goal of the method is to maximize or minimize

a function f (x1, ..., xn) knowing that gi (x1, ..., xn) = 0, for i = 1, ...m, where m is the number of constraints. The

Lagrange multipliers method uses the fact that if a direction is perpendicular to all gradients of the constraints

than it will also be perpendicular to the gradient of the function.

To demonstrate how to use the method let’s take as an example the Shannon entropy of a source X =

(x1, x2, ..., xn), Desurvire (2009),

S(X ) =−
n
∑

i=1
p(xi ) log p(xi ) (A.4)

If we consider the normalization condition,
∑

p(xi ) = 1, as the only constraint then the method consists in

defining the functions f with the parameter λ, known as Lagrangian multipliers

f = S(X )+λ
∑

i
p(xi ). (A.5)

To find the extreme value of f we take the derivative with respect to p(xi )

d f

d p(x j )
= d

d p(x j )

(

−
∑

i
p(xi ) log p(xi )+λ

∑

i
p(xi )

)

=− log p(x j )−1+λ= 0

(A.6)

This implies that p(x j ) = eλ−1, which is the uniform distribution, since λ is a constant.

If, we wanted two consider another constraint such as the mean value of the distribution,
∑

i xi p(xi ) = N

definition of function f would need to have one more term

f = S(X )+λ1
∑

i
p(xi )+λ2

∑

i
xi p(xi ). (A.7)

Again we take the derivative with respect to p(x j )

d f

d p(x j )
= d

d p(x j )

(

−
∑

i
p(xi ) log p(xi )+λ1

∑

i
p(xi )++λ2

∑

i
xi p(xi )

)

=− log p(x j )−1+λ+λ2x j = 0

(A.8)
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The probability distribution that satisfies this equality is

p(x j ) = eλ2x j

e1−λ1
, (A.9)

which under certain circumstances is the Bose Einstein distribution.

A.3 Jüttner Distribution

Because of velocity limit imposed by relativity theory it is clear that Maxwell Boltzmann velocity distribution

is not appropriate. One of the first attempts to solve this inconsistency was made by Jüttner Jüttner (2006) in

1911. The method used to derive the distribution was the maximization of Boltzmann entropy,

S = KB logW. (A.10)

KB is the Boltzmann Constant and W the number of micro-states. The constraints considered on the maxi-

mization were the total number of molecules

N =
∫

F d w (A.11)

of the gas an the total energy

E = mc2
∫

γF d w, (A.12)

where F is a distribution function, d w = d xd yd zd vx d vy d vz , γ= (1− ṙ2/c2)−1/2, r = (x, y, z) and vx = ẋγ, vy =

ẏγ, vz = żγ.

The final expression obtained by Jüttner’s for the relativistic generalization of Maxwell velocity distribution

was

F = mdγ2+d

Z
e−βmc2γ. (A.13)

with β= 1
KB T , where T is the temperature.

Figure (A.1) shows the distribution for different masses. The dotted line is the distribution of the heaviest

one and the solid of the lightest one. It can be seen that for heavy particles it approximates to Maxwell Boltz-

mann distribution, while for small masses it approximates to the solution of the wave equation.

Jüttner distribution can also be written in terms of momentum as

1

Z ′ exp[−βc
√

m2c2 +p2], (A.14)

where Z is the normalization constant. Now, if one use the distribution (A.1) to rewrite entropy and calculate
(

∂S
∂V

)

E
= P

T , we get

PV = KB N T. (A.15)
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A.4 Temperature Transformations

Soon after Einstein et al. (1905) published his article about relativity, questions about how this would affect

other areas of physics emerged. In thermodynamics, since we deal with extensive quantities, the adaptation of

the theory to a relativistic regime is not trivial. In fact, several authors tried to formulate it - Güémez (2011);

Hanggi et al. (2009); Nakamura (2012); Debbasch (2009); Wang (2013) - in different ways, but unfortunately

different formulations many times causes contradictory results. For example, how temperature should be rede-

fined on the relativistic regime is a question that still open today -Ott (1963); M. Schwartz (1977); Kibble (1966);

Farías et al. (2017); Callen and Horwitz (1971); Eimerl (1975); Israel (1976); van Kampen (1968). Figure (A.3)

shows a table made by Nakamura (2012) that summarizes transformation rules proposed in the 1960s.

Figure A.3: Transformation rules proposed in the 1960s.

Since our goal here isn’t to present arguments in favor of all proposals, we preset only the three following
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At this point, to prove that entropy is invariant under change of reference, Einstein cites a verbatim of the

work of Planck (1907) where he argues that if we suppose, for example, that S′
1 > S1, this would mean that the

entropy of a body is bigger for a moving observer. If this is true, then it also must be true that S′
2 < S2, but

this contradicts equality (A.18). Using an analogous argument supposing S′
1 < S1 we find that the only possible

alternative is that

S′
1 = S1

, i. e. S = S0.

Since we are talking about a reversible process, it holds that dS = dQ
T , which means that dQ and T have to

change according to the same transformation law. To find out such a transformation we substitute on (A.17)

the known transformations of p, dV , dE and d p

P = P0

dV = dV0

γ

dE = γ

[

mc2 +dE0 +
( v

c

)2
P0dV0

]

d p = γv

[

m +
(

dE0 +P0dV0

c2

)]

(A.19)

This leads to

dQ = 1

γ
(dE0 +P0dV0) = dQ0

γ
, (A.20)

and consequently

T = T0

γ
. (A.21)

Thus, the temperature of a body appears to be colder from the point o view of a moving observer.

A.4.2 Ott’s result

One of the first attempts to reconsider relativistic thermodynamics after Planck and Einstein’s approach was

made by Ott (1963) in 1963. In his work he also considered that first (Eq.(A.17)) and second law of thermody-

namics are correct for any referential frame. The difference in this approach is that he argued that if the rest

energy of a system is E0, then the amount of work required to accelerate it to a velocity u is

d

[

E0

(1−u2)1/2

]

= E0dγ. (A.22)

Then he choose the natural extension of the definition of internal energy to be

E = γE0(V0,P0). (A.23)
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Since the work, dWV , is the work done when the system expands and such work is typically measured as the

increase of mechanical energy of a second system, we have that

dWV = γdWV 0. (A.24)

For the reason explained in the previous section Ott agrees that S0 = S. Therefore T and dQ transform

according to the same law. Substituting (A.23) and (A.24) on first law (A.17) we conclude that

dQ = γdQ0 (A.25)

And therefore

T = γT0, (A.26)

that is, the of a body appears to be hotter from the point of view of a moving observer.

A.4.3 Van Kampen’s result

In his work, Kampen (1968) argued that the difference between Einstein’s and Ott’s approaches is that Ott’s

is valid for the gas inside a box and Einstein’s for the gas alone. When the box is at rest these considerations

doens’t change the result, but for a moving system, it does.

Van Kampen proposed a third form of relativistic thermodynamics by replacing the first Law with a covari-

ant form expressing energy and momentum conservation. Here we summarize his demonstration.

Let uµ = (γ;γu) be the four-velocity of the system and Eµ = uµE0 = (mγ;γmu) its energy-momentum four-

vector. Then the first law can be replaced by the following covariant equation

dQµ = dEµ+dWµ, (A.27)

with dQµ being defined as the “thermal energy-momentum transfer”. Thus, the “heat supply” is defined as the

component of the four vector along the four-velocity dQ = uµdQµ. Therefore it is a scalar which implies it is

invariant under reference change. The second law, again, implies that the heat supply and temperature have

the same transformation law, so the temperature is also invariant.

After demonstrating this result, van Kampen also verifies it for heat transfers between systems with the same

velocity (Homotachic) and between systems with different velocities (Heterotachic).

Another interesting proposition that, besides being completely different from this one, also arrive at in-

variant temperature was derived using Jüttner’s velocity distribution by Dunkel (2008). This approach con-

sists in define a microcanonic temperature, τMC using the mean of p · v. Considering the Hamiltonian H =
∑N (m2c4 +p2c2)1/2 and calculating the mean on the microcanonic ensemble we get

< p ·v >=< p
∂H

∂p
>=

[

∂ logΩ

∂e

]−1

= KBτ
MC . (A.28)
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Now considering two relativistic gases in thermodynamic equilibrium, but moving with respect to each

other, using the distributions depicted in figures (A.1) and (A.2) to calculate the temperature. The conclusion is

that, when defined this way, it is a Lorentz invariant. Figure (A.5) shows this result.

Figure A.5: Microcanonic temperature calculated for different velocities. Figure taken from Dunkel (2008).

A.4.4 Remarks

Although the four-vector formalism, proposed by van Kampen, might look more elegant from the mathe-

matical point of view, this should not be considered as a complete proof that the invariant temperature result

is the right one. As showed by Nakamura (2012), a similar formalism can be used to derive all three results.

The main problem of trying to find the right temperature transformation is in the fact that temperature is

not well defined in the relativistic regime. This means that some thermodynamic definitions that might seem

well established in the rest frame generate ambiguity for moving frames. Here we list some of this ambiguities

• The transfer of heat and work between moving systems implies a transfer of mass, and as a consequence,

momentum.

• In the relativistic case the internal energy can’t be decomposed in a term of kinetic energy and one term

that depends only on the internal state of the gas because the mass also depends on the velocity (m =

m0γ).

• The definition of three-dimensional volume in the Minkowski space is frame-dependent, therefore the

total energy-momentum within the volume depends on the choice of the frame when there is an energy-

momentum flow. This difference is relevant when the gas is inside a finite container under pressure

Gamba (1966).

All the debate generated by questions such as ’what’s the best way to define temperature?’ And ’how does

the temperature change for a moving observer?’ still not a consensus among the researchers.
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There are some authors, such as Landsberg (2004); Landsberg and Matsas (1996); Sewel (2008), that defend

the idea that there is no universal relativistic temperature transformation. Landsberg’s argument for that is that

a moving observer in a heat reservoir can’t detect a black-body spectrum and hence can’t identify a parameter

like a temperature. However, this didn’t stop researchers from trying to find a transformation to other systems.

The problem remains open.

A.5 Path Integrals or Wiener Integrals

The method of path integrals used to sum over all possible paths were first introduced by Norbert Wiener

to solve problems related to Brownian motion, Wiener (1938). However, since the Schrodinger equation can

be obtained by an analytic continuation of the diffusion equation it is possible to obtain the solution of quan-

tum mechanical problems using an analytic continuation of the method proposed by Wiener. This among

other factors made possible to Richard Feynman the creation of a new way of interpreting quantum mechanics,

Feynman et al. (2010).

In this section, we give a brief explanation —with an example— of the method of functional integration

used to account the integral of a variable over all possible paths that go from a fixed initial point to a fixed final

point.

Lets suppose we want to find out the sum of some arbitrary variable , φ(x(t )), over all possibles paths that

goes from an initial point x0 to a final point xN in the time interval [t0, tN ]. The number of paths from x0 to

xN are, of course, infinite; however, with the path integral method this calculation is possible. First, we chose

a subset of all possible paths by dividing the time interval in small intervals of size [ti , ti+1(= ǫ and addressing

a point xi to each ti , i = 0,1, ..., N . The path is constructed by connecting all the points (xi , ti ). Then, to define

the sum over all paths we integrate over all values of xi and take the limit of ǫ→ 0, as shown in eq. (A.29)

lim
ǫ→0

∫

· · ·
∫∫

φ(x(t ))d x1d x2 . . .d xN−1, (A.29)

the only values of x that are not integrated in are the initial and final point, since both of them are fixed. Figure

(A.6) illustrates the procedure of construction of the path integral.

To illustrate the idea of the path integral method we take as an example the integral calculated in section

4.1.3 to find the mean on equation (4.22),

A AB =
∑

k
p AB (k)A AB (k) =

∑

k A AB (k)e−ηA AB (k)

∑

k e−ηA AB (k)
= M

Q
, (A.30)

where the letter k represents the possible paths. Lets start by calculating the normalization constant, Q,

Q = lim
ǫ→0

∫∫

· · ·
∫∞

−∞

N
∏

i=1
exp

(−ηm

2ǫ
(xi −xi−1)2

)

d x1d x2 . . .d xN−1 (A.31)
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where ms− lim is the mean square limit that is defined such that

ms− lim
n→∞

Xn = X ⇔ lim
n→∞

〈(Xn −X )2〉 = 0. (A.43)

The dilemma here emerges from the fact that the choice of τi can generate different results. While Itô’s inter-

pretation is based on a pre-point discretization rule, τi = ti−1, i.e,
∫t

t+0
b(t ′)dW (t ′) = ms− lim

n→∞

[

n
∑

i=1
b(ti−1)(W (ti )−W (ti−1))

]

, (A.44)

Stratonovich’s approach considers a midpoint discretization rule, τi =
ti + ti−1

2
, i.e,

∫t

t+0
b(t ′)dW (t ′) = ms− lim

n→∞

[

n
∑

i=1
b((ti + ti−1)/2)(W (ti )−W (ti−1))

]

. (A.45)

Both interpretations lead to the same Fokker-Plank equation for constant b, however if b is not constant the

results diverge. Those are the two most common interpretations of the dilemma; Stratonovich’s is usually more

used in physical procedures while Itô’s is usually used in mathematics and financial problems. Another pos-

sible interpretation is the one presented on chapter 4, named Hänggi-Klimontovich approach, that is based

on a post-point discretization rule, i.e, τi = ti . With this interpretation the definition of the stochastic integral

becomes
∫t

t+0
b(t ′)dW (t ′) = ms− lim

n→∞

[

n
∑

i=1
b(ti )(W (ti )−W (ti−1))

]

. (A.46)

A.7 Simulations of the binary collision models

In sections 3.2 and 4.2.2 we made simulations of the Brownian motion considering the model of binary

collisions. The simulations were made in the simplest possible way. On the non-relativistic case, we considered

that, at each time step of the simulation, the particle suffers a collision with one of the molecules of the fluid,

having it’s momentum changed as expressed in equation (3.19). The momentum of the molecule of the fluid

that suffers the collision is drawn from Maxwell’s distribution. The code used to make the histograms of section

3.2 is presented below.

import matplotlib . pyplot as p l t

import numpy as np

from scipy import s t a t s

M = 10**(−15)#mass of the molecule of the f l u i d

m = 10**(−22)#mass of the Brownian p a r t i c l e

a = 100 #(KB*T/m) * * 0 . 5

N = 50 #number of c o l l i s i o n s

num = 10000 #number of simulations used to make the histogram
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F = [ ]

k = 0

c l a s s deterministic_gen ( s t a t s . rv_continuous ) :

def _pdf ( s e l f , v ) :

return (np . exp(−(v * * 2 ) / ( 2 * a * * 2 ) ) / ( a*np . sqrt (2*np . pi ) ) )

Max = deterministic_gen (name=" deterministic " ) # Defining Maxwell ’ s d i s t r i b u t i o n

for part icula in range (num) :

Px = [ 0 ]

px = 0

x = [ 0 ]

print ( part icula )

#theta = random ( [N] ) * 2 * np . pi

for i in range (N) :

i f ( i > 0 ) :

v = Max. rvs ( )

px= v * m

DeltaPx = ( ( 2 *M*px ) − ( Px [ i −1]*2*m) ) / (M+m)

Px . append( Px [ i −1] +DeltaPx )

# print ( Px [ i ] )

F . append( Px [ i ] /M)

print ( len (F ) )

( values , bins , _ ) = p l t . h i s t (F , i n t (np . sqrt (num) ) , histtype = ’ step ’ , color= ’ black ’ , lw = 2 , density=True )

mean = np .mean(F)

variance = np . var (F)

sigma = np . sqrt ( variance )

bin_centers = 0 . 5 * ( bins [ 1 : ] + bins [ : −1 ] )

pdf = s t a t s .norm. pdf ( x = bin_centers , loc=mean, scale=sigma ) #Compute probabi l i ty density function

p l t . plot ( bin_centers , pdf , l ab e l ="PDF" , color = ’ r ’ ) # Plot PDF

p l t . x label ( ’ v [m/ s ] ’ , s i z e = 15)

# p l t . y label ( ’ Occurrences ’ , s i z e = 15)

p l t . locator_params ( axis = ’x ’ , nbins =4)

p l t . locator_params ( axis = ’y ’ , nbins =4)

p l t . x t i c k s ( s i z e = 15)

p l t . y t i c k s ( s i z e = 15)

cur_axes = p l t . gca ( )

#cur_axes . axes . get_yaxis ( ) . s e t _ t i c k s ( [ ] )

p l t . show ( )
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Tho run the relativistic simulations, the procedure is very similar, the main differences are that the equation

used to quantify the momentum increment at each collision is 4.41 and that the speed of the molecules of the

fluid are distributed according with Jüttner’s distribution.The code used to make the histograms of section 4.2.2

is presented below.

from scipy import s t a t s

import matplotlib . pyplot as p l t

import numpy as np

from scipy import special

from scipy import integrate

c = 1

beta = 10

m = 10**(−6)

M = 1

dt = 1

Zd = 2*m* special . kv ( 1 , beta *m) # Normalization constant

def gamma( v ) :

return (1/np . sqrt (1 − v ** 2 ) )

c l a s s deterministic_gen ( s t a t s . rv_continuous ) :

def _pdf ( s e l f , p ) :

return (np . exp(−beta *np . sqrt (m**2 + p * * 2 ) ) /Zd)

J = deterministic_gen (name=" deterministic " )

N = 100 #Number of c o l l i s i o n s

num = 1000 # Number of simulations used to make the histogram

luz = [ 0 ]

F = [ ]

for j in range (num) :

print ( j )

Px = [ ]

px = [ ]

x = [ 0 ]

e = [ ]

E = [ ]

tempo = [ 0 ]

for i in range ( 0 ,N, 1 ) :

i f ( i == 0 ) :

Px . append ( 0 )
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p = J . rvs ( ) #momentum of the molecules of the f l u i d

px . append(p)

E . append(np . sqrt (M**2 + Px [ i ] * * 2 ) )

e . append(np . sqrt (m ** 2 + px [ i ] ** 2 ) )

u = ( Px [ i ]+px [ i ] ) / ( E[ i ]+e [ i ] )

DeltaPx = (( −2*(gamma(u ) * * 2 ) * e [ i ] * Px [ i ] ) + ( 2 * (gamma(u ) * * 2 ) * E[ i ] * px [ i ] ) ) / ( E[ i ]+e [ i ] )

Px . append( Px [ i ] + DeltaPx )

i f ( Px [ i +1] > 0 ) :

v = 1/np . sqrt (1 + (M/Px [ i + 1 ] ) * * 2 )

e l i f ( Px [ i + 1] < 0 ) :

v = − 1 / np . sqrt (1 + (M / Px [ i + 1 ] ) ** 2)

x . append( x [ i ] + v * dt )

F . append( v )

( values , bins , _ ) = p l t . h i s t (F , i n t (np . sqrt (num) ) , histtype = ’ step ’ , color= ’ black ’ ,

lw = 2 , density= True , l a b el = ’ $\\ beta$ = %i ’ %beta )

p l t . legend ( )

var1 = np . var (F)

M = (M + m)/2

def f ( v ) :

return (M * (gamma( v ) ** 3) * np . exp(−beta *M * gamma( v ) ) )

def m2( v ) :

return (M * (gamma( v ) ** 3) * np . exp(−beta *M * gamma( v ) ) ) * ( v * * 2 )

norm, er = integrate . quad( f , −c , c )

var2 = integrate . quad(m2, −c , c ) [ 0 ] /norm

print ( var1 , var2 )

x = np . arange (−1.1 , 1 . 1 , 0.001)

p l t . plot ( x , f ( x )/norm, color = ’ r ’ )

x = np . arange (−1.1 , 1 . 1 , 0.001)

p l t . plot ( x , ( 2 *M * (gamma( x ) ** 3) * np . exp(−beta *2*M * gamma( x ) ) ) / norm, color = ’g ’ )

p l t . x label ( ’ v ’ , s i z e = 15)

p l t . y label ( ’ Occurrences ’ , s i z e = 15)

p l t . locator_params ( axis = ’x ’ , nbins =4)

p l t . locator_params ( axis = ’y ’ , nbins =4)

p l t . x t i c k s ( s i z e = 15)

p l t . y t i c k s ( s i z e = 15)

p l t . show ( )
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A.8 Continuous-time QW

Just like in the discrete case, the continuous quantum walk is also defined using a classical random process

as a base. In this case, the definition is based on the continuous-time version of the random walk, i.e, on a

continuous-time Markov chain.

The continuous time Markov process can be described by a transition matrix M , such that the probability

distribution at time t depend on M(t ) and the initial distribution, that is,

p(t ) = M(t )p(0) (A.47)

the elements of M are

Mi j (ǫ) =































1−d jγ ǫ+O (e2), if i = j ;

γ ǫ+O (e2), if i 6= j and adjacent;

0, if i 6= j and non- adjacent,

(A.48)

where γ is the transition rate from vertex x j to vertex xi , when the vertexes are neighbors and d j is the degree

of vertex x j . Since the elements, Mi j , are the probabilities of going from x j to xi the sum of the elements of a

row is 1.

Assuming the initial condition M(0) = δi j it is easy to prove, Portugal (2013), that

M(t ) = e−H t . (A.49)

H is an auxiliary matrix called generating matrix, defined as

Hi j (ǫ) =































d jγ if i = j ;

−γ, if i 6= j and adjacent;

0, if i 6= j and non- adjacent.

(A.50)

To define the continuous time Quantum Walk we convert the probability distribution to a state vector,

p(t ) → |ψ(t )〉, and the transition matrix to an equivalent unitary, M → U . Looking to equation (A.49) we see

that M is not unitary. So to make it be unitary we simply multiply H by the imaginary number i . Therefore

U (t ) = e−i H t . (A.51)

The operator H can be called Hamiltonian with no lost of generality. And the dynamics of the system is

described by the equation analogous to (A.47)

|ψ(t )〉 =U (t ) |ψ(0)〉 (A.52)
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A.9 Gell-Mann matrices

The Gell-Mann matrices are a set of eight linear independent square matrices that together with the Iden-

tity span the space of 3x3 matrices. In physics and information theory, these matrices are usually used as a

generalization of the Pauli matrices. The matrices are presented at eq. (A.54), bellow

λ1 =













0 1 0

1 0 0

0 0 0













; λ2 =













0 −i 0

i 0 0

0 0 0













; λ3 =













1 0 0

0 −1 0

0 0 0













; λ4 =













0 0 1

0 0 0

1 0 0













;

λ5 =













0 0 −i

0 0 0

i 0 0













; λ6 =













0 0 0

0 0 1

0 1 0













; λ7 =













0 0 0

0 0 −i

0 i 0













; λ8 =
1
p

3













1 0 0

0 1 0

0 0 −2













.

(A.54)

The main features that influenced the choice of this set to be the generalization of the Pauli matrices are

that they are Hermitian, traceless and obey the following trace orthonormality condition

Tr(λiλ j ) = 2δi j . (A.55)

A important property of Gell-Mann matrices, used in the demonstration of equation (6.54), is that commutator

relation of two elements of the set is give by

[λ1,λ j ] = 2i
∑

k
f i j kλk , (A.56)

where f i j k are structure constants, asymmetric in all indexes. Most of the constants are null, except from the

ones in eq (A.57) and their corresponding permutations

f 123 = 1

f 147 = f 165 = f 246 = f 257 = f 345 = f 376 = 1

2

f 458 = f 678 =
p

3

2
.

(A.57)

A.10 Asymptotic reduced density matrix of the three-state QW

Here we present the asymptotic reduced density matrix of the three-state quantum walk calculated with

Wolfram Mathematica, Inc. (2020) with the help of the complement material of Falkner and Boettcher (2014)

paper. This matrix was used to calculate the asymptotic results of the three-state quantum walk shown in chap-

ter 6. The reduced density matrix has the following form
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ρc,∞ =













ρ∞,11 ρ∞,12 ρ∞,13

ρ∞,21 ρ∞,22 ρ∞,23

ρ∞,31 ρ∞,32 ρ∞,33













. (A.58)

where the matrix elements are presented in equation (A.59)
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ρ∞,11 =
1

48
(((48−11

p
6)a +6(−8+3

p
6)b + (−48+19

p
6)c)a∗

+2(3(−8+3
p

6)a +
p

6(3b + c))b∗

+ ((−48+19
p

6)a +
p

6(2b +5c))c∗)

ρ∞,12 =
1

24
((3(−8+3

p
6)a +96b −39

p
6b +144c −59

p
6c)a∗

+ (3∗
p

6a +24b −10
p

6b +48c −19
p

6c)b∗

+
p

6(a −b + c)c∗)

ρ∞,13 =
1

48
(((−48+19

p
6)a +288b −118

p
6b +576c −235

p
6c)a∗

+2(
p

6a +48b −19
p

6b +144c −59
p

6c)b∗

+ (5
p

6a +2
p

6b −48c +19
p

6c)c∗)

ρ∞,21 =
1

24
((3(−8+3

p
6)a +

p
6(3b + c))a∗

− (−96a +39
p

6a −24b +10
p

6b +
p

6c)b∗

+ (144a −59
p

6a +48b −19
p

6b +
p

6c)c∗)

ρ∞,22 =
1

24
((3

p
6a +24b −10

p
6b +48c −19

p
6c)a∗

+2((12−5
p

6)a −3(−4+
p

6)b + (12−5
p

6)c)b∗

+ (48a −19
p

6a +24b −10
p

6b +3
p

6c)c∗)

ρ∞,23 =
1

24
((
p

6a +48b −19
p

6b +144c −59
p

6c)a∗

− (
p

6a −24b +10
p

6b −96c +39
p

6c)b∗

+ (
p

6a +3
p

6b −24∗ c +9
p

6c)c∗)

ρ∞,31 =
1

48
(((−48+19

p
6)a +

p
6(2b +5c))a∗

+2(144a −59
p

6a +48∗b −19
p

6b +
p

6c)b∗

+ (576a −235
p

6a +288b −118
p

6b −48c +19
p

6c)c∗)

ρ∞,32 =
1

24
(
p

6(a −b + c)a∗

+ (48a −19
p

6a +24b −10
p

6b +3
p

6c)b∗

+ (144a −59
p

6a +96b −39
p

6b −24c +9
p

6c)c∗)

ρ∞,33 =
1

48
((5

p
6a +2

p
6∗b −48c +19

p
6c)a∗

+2(
p

6a +3
p

6b −24c +9
p

6c)b∗

+ ((−48+19
p

6)a +6(−8+3
p

6)b + (48−11∗
p

6)c)c∗)

(A.59)
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Where a,b and c are the chirality initial conditions

|ψ(0)〉 =













an(t )

bn(t )

cn(t )













|0〉 . (A.60)

As expected, the matrix is Hermitian and Tr(ρc,∞) = |a|2 +|b|2 +|c|2 = 1.
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