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Resumo

Essa tese é composta de dois grandes blocos, onde abordamos dois distintos fen6menos
exoOticos em sistemas eletronicos interagentes de baixa dimensionalidade. Na primeira parte
da tese, estudamos a anisotropia magnética observada experimentalmente nas moléculas
aromaticas. Nosso objetivo é formular um modelo microscépico minimo capaz de descrever
a fisica desse curioso fenémeno que é alvo de muitas controvérsias na literatura. Mostramos
que, ao contrario do que diz o modelo RCM (do inglés Ring Current Model), apenas os
graus de liberdade dos elétrons 7 - ou seja, aqueles que ocupam os orbitais p, do anel
aromatico - nao sao suficientes para uma descricao completa das propriedades magnética
desses sistemas. Derivamos, entao, usando uma aproximacao semelhante a aproximacao
de Born-Oppenheimer, uma extensao do modelo de Hubbard onde uma interacao efetiva
atrativa e do tipo momento-momento entre os elétrons 7 ¢ mediada por excitacoes virtuais
dos elétrons mais localizados (porém nao congelados) que compoem as ligagoes o no plano

molecular.

Ja na segunda metade da tese, estudamos a supressao da supercondutividade em um
supercondutor de duas bandas no regime onde uma delas é incipiente, ou seja, quando
uma das bandas estd logo acima (ou logo abaixo) do nivel de Fermi. Num supercondu-
tor de muitas bandas mais de uma banda de conduc¢do pode cruzar o nivel de Fermi
simultaneamente, dando origem, para temperaturas abaixo da temperatura de transicao
supercondutora (7;), a um estado com multiplos gaps supercondutores. A ocupagao das
bondas, por sua vez, é controlada pela densidade de portadores de carga (n) presentes no
sistema. Suponhamos, por exemplo, que um determinado material supercondutor apresente
duas bandas de conducgao nao degeneradas e que, inicialmente, apenas uma delas cruze o
nivel de Fermi. Ao aumentarmos n, o que pode ser feito, por exemplo, através de dopagem
quimica, aumentamos a ocupacao da banda de menor energia até que atingimos o fundo
da segunda banda que entao comecara a ser populada. Nesse caso, uma nova folha da

superficie de Fermi emerge, caracterizando uma transicdo de Lifshitz.

Uma transicao de Lifshitz deixa uma assinatura no comportamento de 7, em funcao de
n. Curiosamente, ao contrario do que se esperava, foi observado em experimentos recentes
que T, de dois exemplos paradigmaticos de supercondutores de muitas bandas - o SrTiO3
(STO) e a interface LaAlO3/SrTiO3 (LAO/STO) - sofre uma redugao nas vizinhangas
da transicao de Lifshitz. Utilizando uma teoria de campo médio, nés explicamos esse
comportamento nao intuitivo como um efeito de impurezas nao magnéticas presentes no
sistema. Mostramos que nas vizinhangas da transicao de Lifshitz ha uma competicao entre
dois efeitos opostos: de um lado, T, tende a aumentar como resultado da amplificacao

da densidade de estados decorrente do aparecimento da nova banda. De outro lado,



espalhamentos de elétrons entre as bandas devido as impurezas quebram os pares de
Cooper, prejudicando a fase supercondutora. Quando as impurezas sao fortes o suficiente,
o segundo efeito vence e, como resultado, T, é suprimida. Nosso modelo aponta para uma
natureza nao convencional do estado supercondutor em ambos STO e interface LAO/STO,
uma questao ainda em aberto na literatura. Além disso, também predizemos uma mudanca
de simetria do estado supercondutor, de st~ para s™*, em funcao da densidade eletronica,
o que pode ser verificado experimentalmente. Esse trabalho foi feito na Universidade de
Minnesota, sob orientacdo do Prof. Rafael Fernandes e em colaboracdo com o poés-doc
Michael Schiitt, durante um estégio de um ano financiado pelo projeto BEPE 2019/12874-3

concedido pela Fapesp.

Palavras-chave: Moléculas aromaticas. Correntes Persistentes. Anisotropia Magnética.
Diamagnetismo. Supercondutores de muitas bandas. Supercondutividade nao convencional.

Desordem. Transicao de Lifshitz.



Abstract

This thesis is organized in two big blocks, where we investigate two distinct exotic
phenomena in low-dimensional systems of interacting electrons. In the first half of this
thesis, we address the experimentally observed magnetic anisotropy of aromatic molecules.
Our goal is to formulate a microscopic minimal model to describe the fundamental physics
behind this curious and controversial phenomenon. We argue that, on the contrary of the
main idea of the Ring Current Model, the degrees of freedom of the m-electrons (i.e., those
occupying the p, orbitals of the aromatic ring) are not enough to properly describe the
magnetic properties of aromatic molecules. We derive an extension of the Hubbard model
where a momentum-momentum effective attractive interaction between the m-electrons is
mediated by virtual excitations of the o-electrons (i.e., those occupying the spy hybridized

orbitals in the molecule’s plane).

In the second half of this thesis, we investigate the suppression of superconductivity
in a two-band superconductor in a regime where one of the bands is incipient, i.e., in
the limit where its bottom is just above (or below) the Fermi level. In a multiband
superconductor, multiple conduction bands can cross the Fermi level simultaneously,
originating, at a temperature below the superconducting transition temperature (7),
multiple superconducting gaps, one in each of the bands. By increasing the system’s
electronic density (n), such that a new band becomes populates, another Fermi pocket
emerges in the Fermi surface, signaling a Lifshitz transition. Such a transition leaves a
signature in the behavior of T.(n). Contrary to what is expected, it was recently observed a
suppression of T, close to a Lifshitz transition in two paradigmatic examples of multiband
superconductors, the SrTiO3 (STO) and the LaAlO3/SrTiO; (LAO/STO) interfaces.
Using a mean-field approach, we explained this counter-intuitive result as an effect of
non-magnetic impurities, which, as evidenced by resistivity data, cannot be neglected in
these systems. We show that there is a competition between two opposite effects in the
vicinity of the Lifshitz transition of a two-band superconductor with dominant intraband
pairing interaction and subleading interband pairing interaction: on the one hand, T,
tends to increase as a result of the enhancement of the system’s density of states as the
second band appears. On the other hand, interband electronic scattering processes due to
the presence of disorder start to happen as the second band becomes populated, which
breaks the Cooper pairs and, therefore, has a detrimental effect on superconductivity.
When disorder is strong enough, the second effect wins, resulting in a suppression of T,.
Our model also suggests an unconventional nature for superconductivity in both STO
and LAO/STO interfaces, a topic that remains open and highly debated in the literature.

+

Furthermore, our model also predicts a change in the symmetry, from s~ to s™", of

the superconducting state as a function of n, which can be experimentally verified. This



work was done at the University of Minnesota, under the supervision of Professor Rafael
Fernandes and in collaboration with the Postdoctoral researcher Michael Schiitt, during

the one-year scholarship supported by Fapesp BEPE fellowship No. 2016/12874-3.
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Multiband superconductors. Unconventional superconductivity. Disorder. Lifshitz transi-
tion.
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1 Introduction

In Condensed Matter Physics, there are several phenomena in which exotic
electronic states, with unique physical properties, arise as a consequence of either low-
dimensionality, strong inter-electronic interactions, or a combination of both. A few
paradigmatic examples [1] of such exotic phenomena are the unconventional supercon-
ductivity in the cuprates, where it is generally accepted that the fundamental physics is
described by that of a copper oxide plane (effective 2D system), the fractional Quantum
Hall effect, where the Hall resistance is quantized in non-integers multiples of h/e?, and
the recently observed correlated phases in twisted bilayer graphene, which compose a very

active research line nowadays [2, 3, 4].

In this thesis, we investigate two distinct exotic phenomena in low-dimensional
systems of interacting electrons: (a) the anisotropic magnetic response of aromatic molecules
(chapter 2) and (b) the suppression of superconductivity across the Lifshitz transition in

2D two-band superconductors (chapter 3).

Aromaticity is a very delicate concept that lies at the heart of chemistry since
the discovery of the benzene molecule by Michael Faraday [5] in 1825. It is generally
accepted that aromatic molecules are composed of a planar cyclic arrangement of carbon
atoms. In this configuration, each carbon atom has four valence orbitals: one p, orbital
and three spy orbitals, which originate from the hybridization of the s, p, and p, orbitals.
The electrons occupying the p, orbitals show large delocalization, being able to hop from
one atom to its closest neighbor, conferring extra stability to the molecule [6]. However,
up to this date, no smoking gun evidence could tell us if a given molecule is aromatic. In
other words, there is no single property which can be related to an unequivocal measure
of aromaticity [7, 8, 9]. On the contrary, along the years different criteria for aromaticity
were proposed, and, among them, one which became very popular is the magnetic criteria

for aromaticity [7).

In the decade of 1930s, it was experimentally verified that aromatic molecules
have a peculiar magnetic property: when a magnetic field is applied perpendicularly to
their planes, the induced magnetic moment is such that its component parallel to the field
is much more intense than the perpendicular components, reflecting in an anisotropy of
the molecules’ magnetic susceptibility (which we hereafter denote by Ay) [10]. As pointed
by Linus Pauling "the susceptibility ellipsoids of the aromatic molecules are found to be
approzimately prolate ellipsoids of revolution, with the long axis normal to the plane of the

ring system" [11].

To explain this phenomenon, Linus Pauling [11], Fritz London [12, 13, 14] and
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Kathleen Londsdale [15] developed a model known as Ring Current Model (RCM for
short). Although there are some differences in the formulation proposed by each of them
[7], they agree that the abnormally large induced magnetic momentum in the direction
of the external field has its origin in the high mobility of the electrons occupying the
p. orbitals of the aromatic ring, which are denominated m-electrons. The basic idea is
as follows: the m-electrons can move almost freely through the aromatic ring. Therefore,
when a magnetic field is applied perpendicularly to the molecular plane, they acquire a
component of momentum in the angular direction, which defines an electric current loop
along the aromatic ring. Such loop current, in turn, generates a magnetic momentum that

naturally points in the same direction of the field.

To understand the origin of the delocalization of the m-electrons, let’s take
a look into the didactic example of a benzene molecule. The overlap of the p, orbitals
forms three m-bonds between pairs of adjacent carbon atoms. There are two possible
configurations for such m-bonds, as shown in Fig. 1, and the molecule’s ground state
correspond to a linear combination of them, which make the m-electrons wave functions

extended in space [16].

Although the RCM model provides a very intuitive qualitative picture of the
physics behind the magnetic properties of the aromatic molecules, its original conception
is rooted in a series of unjustified hypothesis which originated several misunderstandings
and controversies along the years [7]. One of the major misunderstandings has to do with
the nature of the current loop that establishes in the aromatic ring: London called it
a "supracurrent" to emphasize that this loop current experiences no electric resistance
[12, 13, 14]. Over the years, this term evolved to "supercurrent" [17, 18, 19], leading
some people to believe that the current loops in aromatic molecules were essentially the
same phenomena as the superconducting currents in a superconducting ring, but this is

absolutely false!

The persistent currents in aromatic molecules and the supercurrents in a

Figure 1 — Resonating Kekulé structures for benzene. Illustration of the two differ-
ent distribution of the m-bonds between pairs of carbon atoms in a benzene
molecule. The double line represents double covalent bonds, composed by one
m-bond, due to the overlap of the p, orbitals, and one o-bond, due to the
overlap of neighboring spy orbitals. The single lines represent a single o-bond.
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superconductor are completely different physical phenomena. When one thinks about
superconductivity, maybe the first thing that comes to mind is its perfect conductivity
(although it is not the most fundamental physical property of a superconductor'), but
dissipationless currents are also found in non-superconducting states. At the time that
the RCM model was formulated, it was not known that a normal metal ring supports
a persistent electric current, as long as it is small enough, clean enough, and is kept at
low temperatures. Such persistent current is an equilibrium phenomenon, resulting from
the quantum coherent motion of the electrons along the ring [20]. This is the type of
current we encounter in the aromatic molecules [21]. Hereafter, every time we say persistent
current, we mean the equilibrium dissipationless currents that are observed in normal

metal micro/mesoscopic rings.

Conversely, in a superconductor, the current-carrying states are not equilibrium
states of the system, but rather metastable states with a very long life-time [1]. There are
two more key differences between persistent current in normal metal rings and supercurrents

in superconductors:

e The persistent current ceases to exist once the external magnetic field is removed.

e A supercurrent is always diamagnetic, while the direction of the persistent current is

very sensitive to the number of electrons present in the system [9].

We mentioned above that there are some unjustified hypothesis in the foun-
dation of the RCM model [7]. One of them is that the o-electrons - i.e., those in the
hybridized sps orbitals oriented in the molecular plane, see Fig. 4 - do not contribute
to the enhancement of the molecule’s induced magnetic moment in the direction of the
external magnetic field. We can wonder: is it really true that the degrees of freedom of the
mw-electrons alone can account for the magnetic anisotropy of the aromatic molecules? We

argue that the answer is no!

As we show in Sec. 2.2, if we use a single-band Hubbard model (only one p,
orbital per atom of the aromatic ring) to describe the 7 electrons of a benzene molecule,
we obtain a Ay smaller than the experimental value. Even if we completely neglect the
inter-electronic interactions, so the aforementioned Hubbard model reduces to the Hiickel
model (which is actually the model used in London’s conception of the RCM model), we

obtain a Ax which is not in good agreement with the experimental result.

We argue that it is necessary to take into account the degrees of freedom
of the o-electrons for a proper description of the magnetic properties of the aromatic

molecules. In Sec. 2.3 we derive a possible minimal model that does it. Note that if the

1One cannot derive, from the perfect conductivity another fundamental property of the superconductors,
which is its perfect diamagnetism. But the contrary is true.
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stgma-electrons are kept static, frozen in the molecule’s o-bonds, the only role they play
in the dynamics of the m-electrons, is the generation of a static charge density in the bonds,
which composes the periodic potential felt by the m-electrons. If, on the other hand, we
allow virtual excitations of the o-electrons to happen, they modify the charge density
in the bonds and, consequently, the potential felt by the m-electrons as they move along
the ring. We show that such virtual excitations of the o-electrons mediate an effective
attractive momentum-momentum interaction between the mw-electrons, which promotes an
enhancement of the magnetic response of the aromatic rings. In the specific case of the

benzene molecule, the experimental value of Ay is recovered.

The second half of this thesis is dedicated to another exotic physical phe-
nomenon, which is unrelated to the magnetic anisotropy of aromatic molecules: the
suppression of superconductivity across the Lifshitz transition in a multiband supercon-

ductor.

In the opinion of this author, superconductivity is one of the most fascinating
topics of modern Physics. It was first observed by Kamerlingh Onnes, in 1911, while he
was studying the resistivity, as function of temperature, of a sample of mercury. Onnes
saw that, below a critical temperature (the superconducting transition temperature 7T,),
the material’s resistivity suddenly dropped to zero, signaling a perfect conductance. It took
more than 50 years after the discovery of superconductivity for the development of the
first microscopical model that successfully describes this phenomenon: the BCS model,

named after John Bardeen, Leon Cooper, e John Robert Schrieffer.

Briefly speaking, the BCS model tells us that electrons in an underlying crystal
lattice experience an effective attractive interaction mediated by the phonons [22, 23].
Such attraction causes an instability in the system and promotes the formation of pairs
of electrons, denominated Cooper pairs, which condense in a state that becomes macro-
scopically occupied. Over the years, new superconductors were discovered, with increasing
values of T,, where the aforementioned phononic mechanism could no longer account for
their physical properties. These superconductors are generically called unconventional

superconductors.

It remains an exciting open problem to elucidate the origin of superconductivity
in the unconventional superconductors: although it is generally accepted that in these
systems the electrons also bind in Cooper pairs, there is no consensus about the "glue'
that keeps them together. It might be the case that the microscopic mechanism for super-
conductivity is different for each of the distinct families of unconventional superconductors

(such as the cuprates, iron pnictides, organic superconductors, heavy fermions and so on).

Moreover, the phase diagram of unconventional superconductors is incredibly
rich. One often finds a plethora of different phases in the vicinity of superconductivity,

which can compete with the superconducting state or enhance it. These systems are a
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playground to study highly correlated phases of matter.

A particularly interesting class of superconductors are the multiband ones. In
these materials the underlying crystal structure is such that multiple conduction bands can
cross the Fermi levels simultaneously, which originates, below T, multiple superconducting
(SC) gaps. For instance, multiband superconductivity should be common among materials
in which multiple electronic d orbitals are occupied. Examples of multiband superconductors
can be found among either conventional superconductors (MgBsy [24], NbSns [25], and
NbSe, [26]) and unconventional superconductors (such as BaFesAsy [27], SroRuOy4 [28],
and CeColns [29]).

Recent experiments also reveal multiband superconductivity in bulk SrTiOg
(STO for short) [30, 31]. It was the first oxide discovered to be superconductor, and, until
today, the nature and origin of its superconducting state remain an unsettled puzzle. STO
has three concentric conduction electron-like bands centered at the center of the Brillouin
zone, which originate from the ty, orbitals of the Ti atoms. Furthermore, the degeneracy

of these bands is lifted by a combination of spin-orbit interaction and crystal field [32].

The superconducting state in STO is established upon electron doping, which
increases the density (n) of charge carriers in the system. It can be done, for instance, by
replacing some of the titanium atoms by niobium (SrTi;_,Nb,O3) or by removing some of
the oxygen atoms (SrTiO3_g). Curiously, superconductivity was found to persist over a
wide range of electron doping - see Fig. 2(a) - even when a tiny amount of electrons is

present in the system, which makes STO an example of a dilute superconductor.

4 T T T T T
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Figure 2 — Experimental phase diagram of SrTiO; and LaAlQOg,
faces Panels (a) and (b) reproduce the experimental T, repor
and [33], respectively. In bulk STO (a), the carrier concentrat;
by chemical doping, and Lifshitz transitions take place at th
ne1 and neo (see inset). In LAO/STO (b), the occupation num
by the gate voltage V; and a Lifshitz transition happens at V.
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The multiband character of STO manifests in its phase diagram|31] - i.e., T, as
a function of n - which exhibits a double dome shape, as shown in the inset in Fig. 2(a).
When n is smaller than a critical value n.;, only the lower band is occupied and its Fermi
surface is (approximately) a small sphere. In this case, we are in the regime of single-band
superconductivity. As we increase n, T, monotonically increases as a consequence of the
increasing density of states of the system. When n equals a critical value n.;, we are
at the bottom of the second band, which now becomes populated, signaling a Lifshitz
transition (LT). In general, a LT is any change in a system’s Fermi surface as function of
the electronic density (or, equivalently, chemical potential), but in the specific context of
multiband superconductivity, it is characterized by the appearance of a new Fermi pocket

at the Fermi surface as a new band becomes populated.

For n > n.,, the two lower bands are occupied and we are in the regime of
two-band superconductivity. If we continue increasing n, at n = n. s we reach the bottom of
the third band and the system undergoes another Lifshitz transition. Finally, for n > n.,
we enter in the regime of three-band superconductivity. It is important to say that n.; and

n.2 were measured for the first time through quantum oscillation experiments in 2014 [31].

Interestingly, if we focus on the low-density region of the phase diagram of
STO (region of the first SC dome in the inset in Fig.2(a)), we see that the maximum of the
superconducting dome coincides with the critical density n.; where the Lifshitz transition
takes place. This is unexpected and counter-intuitive. Since the system’s density of states
increases across the LT, we would expect T, follow the same trend. As shown in Fig. 2(b),
the same non-monotonic behavior of T, is observed in another multiband superconductor,
the LaAlO3/SrTiO; interface[33], which, as a matter of fact, shows several similarities
with bulk STO.

Moreover, residual resistivity data [31, 34] reveals that STO and LAO/STO
interfaces are dirty systems: we show in Sec. 3.2 that such transport data allow us to
estimate the impurity scattering rate (7') for both STO and LAO/STO interfaces,
yielding 77 ~ 107,. Such a large scattering rate in comparison with 7, tells us that the
role of disorder cannot be neglected in the description of the physical properties of these
materials. Motivated by the aforementioned experimental results, in the second half of
this thesis we study the evolution of T, of a dirty two-band superconductor, as a function

of the chemical potential, across the LT.

In this work, we take into account only non-magnetic disorder and we show that
interband scattering processes are strongly pair-breaking if the interband superconducting
pairing interaction is repulsive. Actually, in the vicinity of the Lifshitz transition, our
model reveals the competition between the tendency of increase of T,., promoted by the
enhancement of the system’s density of states and the detrimental effects of the interband

scattering processes. Therefore, when disorder is strong enough, the second effect wins,
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resulting in a suppression of superconductivity across the Lifshitz transition in agreement

with the experimental phase diagrams of Fig. 2.

As explain in Sec.3.2, another two important outcomes of our model are (a)
evidence of an unconventional nature of superconductivity for both STO and LAO/STO
interfaces and (b) a prediction of crossover in the symmetry of the superconductor state,
which might explain why some recent experiments performed in STO showed signatures of
single-band superconductivity even in a doping region where it is known that multiple

bands crosses the Fermi level.

In this thesis, we focus on 2D bands, since this is the case where an analytic
calculation of T.(u) can be done, but we emphasize that the same qualitative behavior
holds for 3D conduction bands, as shown in Refs. [35, 36].

The order of the sections is outlined at the beginning of each of the subsequent
chapters. We emphasize that chapters 2 and 3 are independent, so the reader should feel
free to choose the order he/she prefers to read. This material was written with the purpose
to be accessible for a more general audience than Condensed Matter physicists. Therefore,
this thesis is made to be self-contained and fundamental concepts used here are presented
in detail. To not make the reading tedious for those who are already familiarized with the
formalism we use here, we provide a set of six appendices which complement the body of

the main text.
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2 The magnetic anisotropy of aromatic

molecules

In this chapter, we propose a minimal microscopic model (Eq.(2.91)) to describe
the exotic magnetic anisotropic response of the aromatic molecules. Our model
consists of an extension of the Hubbard model for the m-electrons (i.e., those
occupying the p, orbitals of the aromatic ring, as explained in Sec. 2.1), in which
an effective attractive momentum-momentum interaction between them is mediated
by virtual fluctuations of the o-electrons (i.e., those occupying the hybridized spy
orbitals in the plane of the aromatic molecule).

A description of the discrete microscopic rings we use as prototypes of aromatic
molecules is given in Sec. 2.1. In the subsequent Sec. 2.2, we motivate the need
for an extension of the Hubbard model by showing, explicitly, that the degrees of
freedom of the 7-electrons alone cannot account for the anisotropy of the magnetic
susceptibility measured in the benzene molecule. We derive our model in Sec.2.3,
where all the assumptions and approximations are carefully discussed. In Sec.2.4,
two key assumptions of our model are justified. Our most important results are
summarized in Sec. 2.5.

A set of appendices (Appendix A to Appendix D) complements the body of this
chapter. Going through these appendices is not required to understand the ideas
presented in the main body of the thesis. Therefore they can be skipped if the reader

wishes so.

2.1 Prototypes of aromatic molecules

The systems we study in this chapter are small discrete rings, i.e., discrete 1D
lattices that obey periodic boundary conditions. We denote by N the number of sites of
the ring and by a its lattice spacing, so the ring’s length is simply L = Na. These discrete
rings are sometimes called in the literature Hubbard rings[37], since their electronic degrees
of freedom are modeled by the Hubbard model or some extension of it, as is the case in
this thesis.

If we think of each of the ring’s sites as a carbon atom, we can interpret them
as prototypes of aromatic rings of real aromatic molecules *. On the contrary of real-life

molecules, however, we impose the sites to be always static. That is because in this work

'Here, we refer to aromatic molecules whose rings are composed solely by carbon atoms.
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we focus solely on orbital electronic properties and, thus, we do not investigate effects

related to the ionic degrees of freedom, such as the molecular vibrational levels.

Recall that a neutral carbon atom has a total of six electrons, two of them in
the 1s shell, strongly bound to the atom’s nuclei, while the remaining four electrons are in
the outermost 2s and 2p orbitals. In the ring configuration, the 2s, 2p, and 2p, orbitals,

whose wave functions are expressed by [38]

rbg|s;y = fs(;)Ys (05, ¢;) (2.1)
W901pes) = L2 [ 0,00) - V0, 00)] (22)
(o |py;) = fi}g) [Y:1(0;,0;) + Y7 (0;,¢;)] (2.3)

hybridize. It defines three orthonormal spy orbitals [16]:

I 1 2
Spga)'> VG |537 + 3 P2 (2.4)

(1)

) = 5 15 = g e+ 75 pus) (25)
i) = 159 = s = 5 ) (26)

The p, orbitals, on the other hand,
(r00 | psg) = Fo. ()Y (0, ) | (2.7)

remains unchanged. In the previous equations Y;”(f, ¢) denotes the spherical harmonics®.
Besides ; = r —R;, are vector positions centered at the j-th site of the ring, with associates
polar and azimuthal angles 0 < 8; < 7, 0 < ¢; < 2, respectively. Illustrations of the s, p
and hybridized sp orbitals are provided in Fig. 3. The vector R; is the position of the j-th
site of the ring, which we discuss in more details below. Moreover, the specific functional
form of the radial component of the orbitals, f;(;), fp.(;); fp,(;) and f,.(;) are discussed
in the Appendix A.

It is important to note that the spy orbitals are oriented along the ring’s plane
in such a way that there is an angular spacing of 27/3 between them (see Fig. 3 (b) and
Fig. 4 (c)). The p, orbitals, on the other hand, are oriented perpendicularly to the ring’s
plane, as illustrated in Fig. 4 (b). The overlap between the spy orbitals of two adjacent

carbon atoms - as well as the overlap between an spy orbital of a carbon atom and the

(204+1) (I —m)!
4 (I +m)!
ated Legendre Polynomials, with [ =0,1,2,--- and m = -, -l +1,--- ;I —1,1.

In our notation, ¥;"(0, $) = (—1)™ Py (cos 0)e'™? | where P, () are the associ-
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s orbital of a hydrogen atom in the specific case of the benzene molecule, see Fig. 4(a) -
forms covalent bonds known as o-bonds. Moreover, the overlap between neighboring p.
orbitals forms the so-called m-bonds, a weaker type of covalent bond. Briefly speaking, the
m-bonds are weaker than the o-bonds because the overlap between adjacent p, orbitals are
much smaller than that of neighboring sps orbitals. Following the usual nomenclature, we
hereafter denominate the electrons at the sps orbitals by o-electrons, while those occupying

the p. orbitals are called w-electrons.

Along this chapter, we focus on microscopic rings with a small number of sites,
3 < N < 6, essentially because in these cases where we are able to perform an exact
diagonalization of the Hamiltonians we study in the subsequent sections. However, the
extended Hubbard model we derive in Sec. 2.3, which is one of the most important results

of this chapter, holds for any number of sites N and can also be extended to a 2D carbon

Figure 3 — Carbon atom’s valence orbitals. Panel (a) illustrates the angular depen-
dence of the 2s, 2p,, 2p, and 2p, carbon’s orbitals. Panel (b) illustrates the
three spy orbitals resulting from the hybridization of the 2s, 2p, and 2p, orbitals.
The spy orbitals are oriented in the zy plane with an angular spacing of 27/3
between them.

H H
\ /

—/ N\
N/

H

Figure 4 — Benzene molecule (CgHg). The panel (a) brings an illustration of the
chemical structure of the benzene molecule, where the single (double) lines
represent single (double) chemical bonds. Panels (b) and (c¢) show a didactic
sketch of the (b) p. orbitals, perpendicular to the molecular plane, and (c)
hybridized sps orbitals oriented in the molecule’s plane. Panel (c¢) also show
the s orbitals of the hydrogen atoms.
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lattice, as the graphene. Such generalization, however, is beyond the scope of this thesis

and is left for a future project.

We choose the rings’ plane coinciding with the xy plane, adopting the center
of the ring as the origin of the coordinate system. In this configuration, the position of the

j-th site of the ring is given by

a

R = 7/2 (1 — cos(2m/N))

cos ;T + sina; 9| 2.8
J j

with j =1,2,--- N. Here, o; = (j — 1)27/N denotes the site’s angular position, and a is
the lattice spacing. In analogy, to the real aromatic molecules, we consider three orbitals
per ring’s site: one p, orbital two spy orbitals. The third spy orbital on a given site, which
binds it to another atom (such as the hydrogen atom in the case of the benzene molecule)
is considered frozen, as explained in Appendix A.2, and therefore incorporated in the

ring’s sites. An illustration is shown in Fig. 5.

2.2 Single-band Hubbard model and Hiickel model

The RCM model provides a simple qualitative scenario to understand the mag-
netic anisotropy of aromatic molecules, where the loop current created by the delocalized
m-electrons is the origin of its exotic magnetic response. However, turning to a microscopic

point of view, is it really true that the m-electrons alone can account for this curious

N>

=

Figure 5 - Three-band model. Illustration of the orbital structure of the rings we
consider in this thesis. Each of the NV sites of the rings (N = 6 in this figure)
contains one p, orbital and two sps orbitals, which we denominate left spsy
orbital (L) and right sps orbital (R) according to the right-hand rule. The sites
are always enumerated in increasing order in the counter-clockwise direction.
The degrees of freedom of the third spy orbital of each site, as well as those of
the valence orbitals of another atom that might bond with it are frozen and
absorbed in the ring’s sites.
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magnetic property of aromatic molecules? To answer this question let’s take a step back
and investigate the magnetic properties of discrete rings with N sites, N, electrons, and,
following the ideas of the RCM model, with only one p. orbital per site. In other words, in
this section we freeze the degrees of freedom of the o-electrons, which are incorporated at
the ring’s sites (see Fig. 6), and thus contribute to the dynamics of the m-electrons only
though the the generation of a static charge density at the o-bonds encoded in the ring’s
periodic potential - see Eq.(A.1). We emphasize that the ring with N = N, = 6 is the

prototype of the benzene molecule.

The simplest model that describes the degrees of freedom of NV, itinerant and
interacting electrons in a single-orbital N-site lattice is the standard® single-band Hubbard
model[39],

N N
Hy = —tz Z (c}ocﬂlg + h.c.) + UZ ) (2.9)
j=1

j=1 o

where the operator c}a (¢jo) creates (annihilates) a electron with spin® o at the p, orbital

of the j-th site of the ring, and 7, = c;r-gcjg

essentially tells us that, in a lattice, electrons can hop from site ¢ to site j with a probability

is the number operator. Such Hamiltonian

amplitude ¢;; - which depends both on the overlap between the orbitals centered on

these sites and on the periodic potential generated by the lattice ions together with its

3

N>

>

Figure 6 — Single-band model. Illustration of the orbital structure of the rings we
consider in Sec. 2.2. Each of the N sites of the rings (N = 6 in this figure)
contains only one p,. The degrees of freedom of the sp, orbitals, as well as
those of the valence orbitals of another atom that might bond with it are frozen
and absorbed in the ring’s sites. The ring’s sites are always enumerated in a
crescent order in the counter-clockwise direction.

3 Along this thesis, by standard Hubbard model we mean the Hubbard Hamiltonian composed solely
by a hopping term and the on-site repulsion, as defined in Eq.(2.9) i.e., no second-neighbor hopping or
next-neighbor Coulomb repulsion.

“Note that ¢ are the eigenvalues of the projection of the spin operator in the z axis. Therefore, here
o =1 denotes a spin up, while ¢ =| denotes a spin down.
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core electrons - and interact with each other through the Coulomb repulsion, which is

approximated to a purely local interaction U, called on-site Coulomb repulsion.

Here, we approximate ¢;; by the first-neighbor hopping [39]: t;; = —t (0,41 + d;:-1),

with d; ; denoting the usual Kronecker delta, and
h2
t=— Jdr @ (r) [_2mV2 + Vc(r)] @;(r) , (2.10)

where ¢;(r) is the Wannier wave function of an electron in the p, orbital of site i, and
V.(r). We emphasize that, although the hopping between second-neighbor sites (and even
more distant sites) can in principle happen, they are much smaller than ¢, since the overlap

between p, orbitals at different sites significantly decreases as the sites are more separated.

Furthermore, in terms of the aforementioned Wannier wave functions, the

on-site Coulomb repulsion takes the form

v [ [ ar |soz-<7>|2 o) (2.11)

r—r’|

where e ~ 1.602 x 1077C (x~ 8.542 x 102, dimensionless in Natural Units®) is the
elementary charge’. If we set U = 0, Eq.(2.9) reduces to a purely tight-binding Hamiltonian
known as Hiickel Hamiltonian. For self-consistency purposes of this thesis, we provide a

careful derivation of Eq.(2.9) in Appendix A.

Note that, up to this point, we did not specify the functional forms of ¢, (r)
and V,(r). The specific angular and radial dependence of ¢;(r) is important to calculate
the numerical values for the parameters ¢ and U. An estimation of these parameters is
provided in Appendix B for the specific case of the prototype of benzene. Here, it is enough
to keep in mind that the deeper V.(r) is at the site positions, the larger is the tendency
of the electrons to localize around those sites and, therefore, the smaller is the hopping
amplitude. Bottom line is that, for now, we do not need to worry about neither V.(r) nor
©;(r), since in the calculations performed in this chapter, except when explicitly mentioned

otherwise, all physical quantities are given in units of ¢ and/or U/t.

2.2.1 Energy spectrum

In the case of the Hiickel model (Eq.(2.9) with U = 0), we can easily determine

the energy levels and correspondent eigenstates of a generic ring with N sites and N,

°The Natural Units are defined by h = ¢ = 4meg = 1 and the remaining units are given in terms
of electron-volt. For instance, length and time have dimension of inverse of energy (1/eV’), and electric
charge is dimensionless. Therefore, in this unit system the electric current has dimension of energy.

SNotice that every time e appears in this thesis’ equations, we mean e > 0. The negative sign of the
electronic charge is always explicitly included.
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independent electrons. We only need to apply the Fourier transform to the electronic

creation and annihilation operators,

1 X

(O i2nkj/N I

Cphy = —— E e’ , 2.12

ko /TV = ]CT ( )
N

c . 1 e—’i?ﬂ‘k‘j/NC (2 13)

ko = N 3 50 7 '
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where ¢} (c,,) creates (annihilates) a electron with spin o and quasi-momentum k (with
k=0,1,---N —1). This way, we obtain the Hiickel Hamiltonian in the Bloch basis

N-—1
2k
HHuCkel = -2t Z Z COs ( ]71-]— ) CooClle = ng‘nko' , (214)

k=1 o=1.] ko

where Ay, = cl_c,, is the number operator in Bloch basis and

2rk
g = —2t cos (;) (2.15)

denote its N single-particle energy levels.

Therefore, in order to calculate the many-body ground state energy of a ring
with IV sites and N, independent electrons, among which N, have spin up and N
have spin down, we just need to fill the levels k obeying the Pauli exclusion principle.
The corresponding ground state wave function is simply the Slater determinant of the
single-particle wave functions |k, o) = ¢l |0) (with |0) denoting the electronic vaccum) of
each level k. It means that the many-body ground state and the corresponding energy are

given by
Nep—1 Nej—1

‘d) > ]_[ Hcmcqi|()> (2.16)

9=

and

Nep—1 Ney—1 N NP
Z €k + Z €g =2 Z €L + Z €k » (2.17)
N

respectively. We define N = min{N,,, N.,} and N") = max{N,;, N,;}. The elementary
excitations of this model are usual particle-hole pairs, obtained by promoting an electron

from the level k to another previously unoccupied level q.

"Note that in order to derive Eq. (2.14), we used the sum rule that defines the Kronecker delta,

N
Sg = = 3 el
k,g = N €

Jj=1
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Unfortunately, such a simple picture does not hold for U # 0. Since the kinetic
and the interaction parts of the Hubbard Hamiltonian Eq.(2.9) do not commute, there is
no basis where both are simultaneously diagonal. Consequently, apart from very particular
cases, such as a ring with N = 3 sites and N, = 2 electrons, in which we can calculate
analytic expressions for the eigenvalues and eigenvectors of Hy, our only hope to determine

its exact energy spectrum and corresponding states relies on numerical diagonalization.

However, this is not a trivial task, since the dimension d = 2N!/[(2N — N,)!N.!]
of the the Fock space where Hy is defined grows exponentially with the number of sites and
electrons in the ring. For instance, in the case of the prototype of benzene (N = N, = 6),
d = 924. It is important to note that, when dealing with large d (and we will encounter
d > 924 in subsequent sections), it is advisable to make use of the Hamiltonian’s symmetry
in order to rewrite it in a block-diagonal form, which reduces computational costs of the

diagonalization procedure. For instance, the spin operator
N
Z jr —7j) (2.18)

commutes with [:[0, meaning that the z-component of the total spin of the system (s,) is
a conserved quantity. In other words, each eigenstate of the Hubbard Hamiltonian has
a well defined value of s,, and the matrix element of f[o between two eigenstates of S’Z
with different values of s, is identically zero. Consequently, in the basis spanned by the
eigenstates of Eq.(2.18), the Hubbard Hamiltonian acquires a block-diagonal form, and we

only need to diagonalize each block separately.

Hereafter, as a matter of personal taste, we choose to work in the site basis,

rather than in the Bloch basis. The former is spanned by

B, = {|n1mu .. 'nNTan>/ZnJU = N, and n;, = 0 or 1} , (2.19)

j7o—

where[16] |nipng - nynny) = C}LVL . -CLCIT |0>.

Fig. 7 shows some of the energy levels, as function of U/t, obtained through
numerical diagonalization of Eq.(2.9) for rings with (a) N =3, (b) N =4, (¢c) N =5 and
(d) N = 6 sites. These energy spectra were calculated for the rings in the half-filling regime,
where N = N,. This choice is motivated by the electronic configuration of the benzene
molecule, where we have a total of six m-electrons occupying the the six p, orbitals of the
aromatic ring. Moreover panels (b)-(d) show just a few of the low-lying energy levels of the
systems. That is because their complete energy spectra are very large, and including all
the curves in the same panel results in quite confusing figures. For completeness, though,

the full energy spectra as function of U/t can be found in Fig. 34 at Appendix A.
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We verified that although in some of the rings the on-site Coulomb repulsion

can break some of the levels degeneracy, such as the ring with N = N, = 3, the ground

state can remain degenerate (with a degeneracy four in the case of N = N, = 3) even for

finite U /t.

Interestingly, as already observed by other authors [37], the physical properties

of these discrete microscopic rings are very sensitive to either the number of sites and

electrons of the system. Actually, we can classify the rings in three distinct families, with

the components of each family (at half-filling) showing similar properties:

e Rings with N =2n+ 1, ne N and n > 1. As we see in the next subsection, in

the presence of an external magnetic field, the rings of this family show a periodicity

of half of a flux quanta in their equilibrium physical properties. The rings of the

other two families below, on the other hand, show a periodicity of an integer flux

quanta [37].

(a)

EJt
ES

0

EJt

Figure 7 -

Energy spectrum of the Hubbard Hamiltonian. The panels show the
energy levels, as function of U/t for rings with (a) N = 3 sites, (b) N = 4 sites,
(¢c) N =5sites and (d) N = 6 sites at the half-filling regime, i.e., N = N,. In
the panels (b) to (d), only a few of the low-lying energy levels are plotted. The
corresponding complete spectrum can be found in Appendix A.
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e Rings with N = 4n, n € N and n > 1. The rings of this family show a paramegnetic

persistent current in the ground state.

e Rings with N =4n + 2, ne N and n > 1. The prototype of the benzene molecule
belongs to this family. It is the only family of microscopic rings for which the ground
state in non-degenerate at half-filling. Moreover, in the presence of an external

magnetic field, they show a diamagnetic persistent current in their ground state.

2.2.2 Persistent currents and magnetic susceptibility

What about the magnetic properties of the the rings described by Eq.(2.9)? To
answer this question, let’s imagine the following set up: keeping the ring in the xy plane, we
apply a magnetic field B along the z-axes passing through its center, but without touching
its perimeter. Such a field can be produced, for instance, by a thin infinitely-long solenoid.
In this case, we can neglect the contribution of the Zemman term - which describes the
coupling between the electrons total spin and the magnetic field - to the system’s total
Hamiltonian. As a consequence, the magnetic properties calculated within this setup are a

result of the orbital degree of freedom of the valence electrons solely.

In the presence of the field B, due to the minimal coupling P — P + e¢A/c,
where B = V x A is the vector potential associated with the magnetic field, e is the
elementary charge, and c is the speed of light, each electron acquires a component in its
momentum in the angular direction, which, in turn, induces a current loop around the

ring.

The aforementioned minimal coupling is expressed, in the language of second
quantization, as a local Gauge transformation in the electronic creation and annihilation

operators[41, 20],

C;o' N efiwa/z\fC;(7 7 (2.20)
Cjy = eizwf/chU . (2.21)

Here f = ¢/¢o represents the dimensionless magnetic flux that pierces the ring, and
¢o = 2mhe/e is the magnetic flux quantum. Plugging Eqgs.(2.20) and (2.21) into Eq.(2.9),

we readily obtain the Hubbard Hamiltonian in an external magnetic field,

N N
Ho,(mag) = —tzl ZT:l (eZQ”f/chachU + h.c.) +U leﬁjTﬁjl . (2.22)
J=1lo=T7, Jj=

Note that f shifts the single-particle energy levels defined in Eq.(2.15), which now take

en(f) = —2t cos <W> . (2.23)

the form

N
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This is precisely the origin of the aforementioned periodicity of the equilibrium proper-
ties, such as ground state energy, persistent current and magnetic susceptibility, of our

microscopic rings.

Fig. 8, shows the many-body ground state energy (FEjy), obtained through exact
diagonalization of Eq.(2.22), as a function of the dimensionless magnetic flux f that pierces
aring with (a) N =3, (b) N =4, (¢) N =5 and (d) N = 6 sites. The different color curves
in each panel refers to different values of the ratio U/t, as indicated in the legend of panel
(a). Note that the periodicity of Ey(f), as anticipated in Sec. 2.2.1, is 1/2 (corresponding
to a half flux quantum, ¢q/2) for rings with an odd number of sites, and 1 (corresponding
to an integer flux quantum) for those with even number of sites. We verified, in agreement
with Ref.[37], that going away from the half-filling, the ground state energy periodicity is

always 1, independent of the number of sites in the ring.

-0.5 T T . 1
(a) (b)
AF ] ol
15} ]
\_/\_/\/\/ 3 |
~ ~
s -2F B =)
&3] ]
Uit 4
25} —0
—3
6 I
NNAN_A °
a5 . . . " , . .
-1 0.5 0 05 1 -1 05 0 05 1
f f
1 2
(c) (d)
2 31
-4 '_/\/\
3
£ =57 1
S -4t =)
& SN
5t ]
i M
-6 \Aw _8
7 : - ' 9 ' - .
1 0.5 0 05 1 -1 05 0 05 1
! f

Figure 8 - Ground state energy as function of magnetic flux. The panels show the
the ground state energy (Ej) of a ring with (a) N = 3 sites, (b) N = 4 sites, (c)
N = 5sites and (d) N = 6 sites, as function of the dimensionless magnetic flux
that pierces it (f = ¢/¢po) and for different values of the ratio U/t, as indicated
at the legend in panel (a). As in Fig. 7, all the rings are in the half-filling regime
(N. = N). The legend in panel (a) also apply for the panels (b)-(d).
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Interestingly, Fig. 8 also shows that the amplitude of the oscillations of Ey(f)
get significantly reduced as we increase U/t. This is a manifestation of the tendency of
localization of the electrons at the ring’s sites: as U increases, an increasingly amount of
energy is required to promote double occupation of the sites - which inevitably happens

as the electrons move around in the half-filling regime.

Note that the value of the magnetic field we need to apply to the rings in order
to observe the periodicity of its ground state energy is ridiculously large. For instance,
for a ring with three sites and a lattice spacing of the order of 1A, the magnitude of the
magnetic field we would need to apply in order to have a flux quantum piercing its area
would be of B ~ 5.8 x 10°T", impossible to achieve in a laboratory. But we do not need to

worry about it, since here we are mostly interested in the low field response of the rings.

Another way to rationalize the periodicity of the equilibrium properties of the
ring is through band theory. Actually, there is a one-to-one correspondence between the
boundary conditions satisfied by the Bloch wave functions of an electron moving in an
external potential with periodicity 27/¢¢ and the boundary condition imposed by the

27f/N in the Hamiltonian, meaning that the magnetic field creates micro-bands in

phase e
the single-particle spectrum. An electron in each of these micro-bands has a group velocity
which is proportional to the curvature of the band, and the sum of the contributions of all
the electrons in the system gives rise to a finite current along the ting. At zero-temperature

(T'=0), it is given (in Natural Units) by

e JEo(f)

b(f) =-5; of

(2.24)

where FEj is the many-body ground-state energy. We emphasize that such an electric
current is persistent in the sense that it does not suffer the effect of dissipation, but it
vanishes if we turn off the magnetic field. Moreover it is an equilibrium property of the
ring, and should not be confused with the supercurrents in a superconducting loop, as

explained in Sec. 1.

It is worth saying that we can also express Io(f) as the expectation value, in the
ring’s (many-body) ground state, here denoted by |¢o(f)), of an electric current operator,
ie., Iy(f) = <¢0(f) ‘jo‘ <;50(f)>. With the help of the Feynman-Hellman theorem, we can

)

> (ei27rf/NC§.acj+10 - h.c.) ‘ oo f)> . (2.25)

J7o-

6IA{O,mag
of

0Eo(f)
(s

127t

= - Lanlh)
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Therefore, substituting Eq.(2.25) into Eq.(2.24), we readly identify

., N
R t .
o= z; Z Z (emf/NC;UCjHU _ h.c.) ) (2.26)

.7:1 O'=T,i
Equivalently, the expression for Jo can also be derived using the continuity equation,

(—6)’)51,1-0. + 31’0’ - 3@'—10 =0 ) (227)

as discussed in details in Ref.[41]. Here, Jio defines the electric current per lattice site per

spin, and n;, =1 [HO,mag; nw].

Fig.9 shows the persistent current, as function of f, which establishes in the
ground state of a ring with (a) N =3, (b) N =4, (¢) N =5 and (d) N = 6 sites. The
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Figure 9 — Persistent current as function of magnetic flux. The panels show persis-
tent current (/) that establishes in the ground state of the ring with (a) N =3
sites, (b) N = 4 sites, (c) N = 5 sites and (d) NV = 6 sites, as function of the
dimensionless magnetic flux that pierces it (f = ¢/¢g) and for different values
of the ratio U/t, as indicated at the legend in panel (a). As in Fig. 8, all the
rings are in the half-filling regime (N, = N). The legend in panel (a) also apply
for the panels (b)-(d).
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periodicity of In(f) is, of course, the same as that of Ey(f) shown in Fig. 8. Moreover, the
magnitude of Iy(f) decreases with increasing U/t, signaling once again the tendency of

localization of the m-electrons at the ring’s sites.

The discontinuities in the curves Io(f) at certain f indicates the existence
of degeneracy of the ring’s ground state at these values of flux: if the ground state is
degenerate (with a degeneracy, let’s say, go), then any linear combination of these g
orthonormal eigenstates is also a ground state of the systems. Moreover, each different
linear combinations can lead to different results for <<;50( f) ‘jo‘ oo f)> As soon as the
magnetic field breaks the ground state degeneracy (when f > 0 in panels (a), (b) and
(c) from Fig.9, for instance), Io(f) assumes a unique well defined value. In Fig. 9(a) and
9(c), we note that the discontinuities of Iy(f) at f = 0 persist even when U/t # 0, which
evidences that, as mentioned before, in these cases the on-site Coulomb repulsion does not

break the ground state’s degeneracy.

Differentiating Io(f) with respect to f and taking the limit f — 0 gives us the

system’s response to the external field, i.e., its magnetic susceptibility,

0
X(mol) =7 (NCL)4 [ggpf) ) (228)

f—0

here expressed in units of em?®/mol. The quantity v = 10%uoNe/(1287*) is a numerical

constant, where N4 denotes Avogadro number, and p is the magnetic permeability.

We emphasize that x(me) corresponds to a theoretical calculation of the mag-
netic anisotropy of our prototypes of aromatic molecules, since Eq. (2.28) gives only
the contribution of the current loop to the system’s magnetic response. Recall that, as
explained at the begging of Sec. 2.2.2, we neglected the Zeeman splitting, so no spin
response is included in Eq. (2.28)! Therefore x(moy and Ay can be used interchangeably
along this chapter. Moreover, X(mo) > 0 means that the current circulates in a direction
such that it generates a magnetic momentum in the same direction of B, and the ring is
called paramagnetic. Conversely, if X (o) < 0 the magnetic momentum generated by the

current loop opposes the external field, and the ring is denominate diamagnetic.

Fig. 10 shows X(ma as function of U/t for rings with (a) N =3, (b) N =4, (c)
N = 5 sites and (d) N = 6 sites at half-filling. Note that the magnetic responses of the
ring with three and five sites are very similar, which is expected since they belong to the
same family, as discussed in Sec. 2.2.1. Moreover, all of these rings are diamagnetic when

U = 0. This can be easily understood if we use once more the Feynman-Hellman theorem
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Figure 10 — Magnetic susceptibility as function of U/t. The panels show the magnetic
susceptibility at low field (f — 0) as function of the ratio U/t for rings with
(a) N = 3 sites, (b) N =4, (¢) N =5 and (d) N = 6 sites, all of them in
the half-filling regime (N, = N). In panel (d) the red dashed line correspond
to the experimental value of the anisotropy of the magnetic susceptibility of

benzene.
o)

Z (ei2wf/Nc;acj+1a + h.c.) ‘ </>0(f)> , (2.29)

to write

2

of

0Lo(f)
0o

2met
= —=5 (@l

Jo

thus, when f — 0,

X(moly = 2meyN?a* <¢0 ‘FIHiickel

¢0> — 2meyN2ai B (2.30)

Recall that E(()H) is the Hiickel model ground state energy defined in Eq.(2.17), which, as

we can see from Fig. 7, is always negative.
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When U > 0, on the other hand, the diamagnetic responses of the rings with
N =3 and N = 5 rings is suppressed, while a paramegnetic response is induced in the

ring with N = 4 sites.

Now, let’s return to the prototype of the benzene molecule (N = N, = 6). In
Ref. [42], the authors estimated ¢ &~ 2.54e¢V and U ~ 10.1eV for this molecule by looking
at its experimental low-energy excitation spectrum. Moreover, the Coulomb interaction

between electrons in first-neighbor sites (VZ n;n;) is not negligible in benzene. However,

Z’J
we can still use the Hamiltonian defined in Eq.(2.9): in Ref. [40], the authors show that the
nearest-neighbor interaction V' has the effect of suppressing the on-site Coulomb repulsion
U. They thus derived an effective U/t &~ 1.2 for benzene, which gives U ~ 3.05¢V" if we

use t = 2.54eV . These are the values we adopt hereafter for the prototype of benzene.

Fig. 10(d) shows X(mo) (normalized by ¢) for the prototype of benzene as a
function of U/t. Note that U/t = 1.2 yields x(mo) =~ —3.79 x 10~%cm? /mol, which is
roughly 3/5 of experimental result of Ay = —6.49 x 10 °em?/mol reported in Ref.[43].
Even if we completely neglect the inter-electronic interactions (returning, therefore, to
the Hiickel model), this scenario does not get better: in this case we obtain X(mol) =
—3.96 x 10~ °cm?®/mol, still smaller than Ay.

Another thing we can do is fix U = 3.05e¢V and calculate (o) as function of
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Figure 11 — Magnetic susceptibility for the prototype of a benzene molecule.
Magnetic molar susceptibility for a ring with N = 6 sites and N, = 6
electrons as function of ¢t and with U = 3.048¢V fixed. The red dashed
line show the experimental value for the magnetic susceptibility of benzene
(Ax = —6.49 x 107°). The theoretical and experimental values agree for
t ~ 4.2eV.
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t, as shown in Fig. 11. In this case, we conclude that Xm0 equals the experimental result
for a hopping parameter of ¢ ~ 4.2eV, which is unrealistic for benzene. This is the reason
why we argue that a description of the physics of the benzene molecule - and by extension,
that of larger aromatic molecules - through a single-band Hubbard model as defined in

Eq.(2.9) is not complete.

What could be missing in Fq.(2.9)¢ We argue that the dynamics of the o-
electrons is the missing key! In the next section we show that, even if we want an effective
model only for the m-electrons, the effects of the local excitation of the binding electrons
must be taken into account. Imagine the following: suppose that we have a N = 6 ring,
now with the sps orbitals unfrozen - see Fig. 5. Besides, let’s forget, for now, the m-electron
and focus on the two o-electrons per bound, which gives us a total NV, e(") = 12 electrons in
the ring’s hybridized spy orbitals. We can imagine, for an illustrative picture, each of the
six o-bonds as a two-level system, independent of each other. So, the many-body ground
state, here denoted by ‘(péa)>, corresponds to two g-electrons, with opposite spins, in the

lowest level of each bond. It defines a charge density in the bonds

po®) = —¢ 3 (t”

a=1,]

SO )l ) (2.31)

where ) T(r) ({7 (r)) is the creation (annihilation) field operator that creates (anni-
hilates) a o-electrons with spin « at the position r of the space. Following the notation

introduced in Appendix A it takes the form
A N
wao-)T(r) = Z W;:n(r)dj’ﬁa ) (232>

where the function W; . (r) denotes the Wannier wave function correspondent to the x sps
orbital (k = 1 for the right orbital and k = 2 for the left orbital - see Fig. 5) centered in
the site j.

The charge density in Eq.(2.31), in turn, renormalizes the periodic potential

due to the ring’s site,

VO =V (r) + f a’ Lo) (2.33)
v — /|

Now, we introduce N, e(”) m-electrons in the ring’s p, orbitals, so we have a total
of N, = Ne(”) + Ne(“) electrons in the ring. Due to the Coulomb repulsion, these extra
m-electrons disturb the charge distribution in the o-bonds, modifying the density (2.31).
In other words, the m-electrons induce excitations of the o-electrons, which now can be
promoted to their first excited state ‘¢§”>>. According to the simplified picture where
each bond can be approximated by a two-level system, such state would correspond to

a configuration where five of the bonds have two electrons in its ground state, while in
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one of them one electron is promoted to the second energy-level. In this case, the charge

density in the bonds would change to

Z <90<a>

a=T,|

D7 ‘ <“>> (2.34)

and, consequently, the m-electrons would feel a different external potential

VO(r) = Vi(r) + J o' fl_(?,| , (2.35)
which in turn defines a different hopping amplitude, so the o-electrons excitations can

directly affect the dynamics of the m-electrons.

It does not seem absurd to think that such change in the external potential
could give rise to an effective interaction between the m-electrons, in a similar way as in a
conventional superconductor, the deviation of the ions from their equilibrium position,
due to an electron that just passed by, attracts another nearby electron, resulting in an
effective inter-electronic attraction mediated by phonons. We are not saying that a Cooper

pair will form in the ring, though!

If an effective interaction between the m-electrons, mediated by the o-electrons
indeed exists, what would be its form? Would it be attractive or repulsive? And how would
it affect the magnetic properties of the rings? These are exactly the questions we address

in the next section.

2.3 Extended Hubbard model

The scenario we explored in the last paragraphs of Sec. 2.2.2 suggests a
separation of energy scales in the system. Because the o electrons are localized in the
ring’s bonds, we expect that it would cost more energy to promote them to their first
excited state in comparison to the amount of energy needed to excite the m-electrons. In
other words, the energy scale separating the ground state and the first excited state of
the o-electrons (let’s denote it by A) is expected to be larger than the typical excitation
energy of the m-electrons, which is set by the hopping parameter ¢ defined in Eq.(2.10).
Therefore, recalling the uncertainty principle AEAt = h/2; it implies that the o-electrons
excitations happen in a much faster time scale than that associated with the motion of

the m-electrons around the ring.

We can thus think of two different "types" of electrons in the ring: the o-electrons
are the fast electrons, whereas the m-electrons are the slow ones. This scenario resembles
the well-known Born-Oppenheimer approximation, introduced in several text-books - see,
for instance Ref. [16] - to decouple the nucleonic and the electronic degrees of freedom of

a molecule. Briefly speaking, due to the huge mass difference between the atomic nuclei
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and the electrons, the former moves around their equilibrium position much more slowly
than the time scale of the electronic motion. Then, the standard Born-Oppenheimer
approximation tells us that the electronic dynamics happens as if they were placed in a
static periodic potential generated by the nuclei in a particular frozen arrangement. For
each nuclei arrangement, we are then able to calculate the electronic eigenvalues which, in
turn, define an external potential for the nuclei themselves, and can be used to determine

the molecule’s vibrational levels.

Here, inspired by the energy scale separation between the o-electrons and the
m-electrons, we use a perturbation approach which we call generalized Born-Oppenheimer
approzimation, in the sense that in our case the degrees of freedom of the o-electrons and the
m-electron are those to be decoupled. It is fundamental to note that, in our approximation,
contrary to the standard Born-Oppenheimer approximation, the ring’s sites remain static

all the time. No ionic degrees of freedom are addressed in our calculations!

2.3.1 Generalized Born-Oppenheimer approximation

Here, it is more convenient to return to first quantization where the complete
Hamiltonian of a ring with N sites and N, = N{™ 4+ N{?) electrons is given by H = H, + Hs,

where

N 2
Hy= (Pi n Vc(Rz-)) + ;2 U(R; - R)) (2.36)

2m i2j

describes the Ne(”) m-electrons, with momenta and positions denoted by R; and P;,
respectively (i = 1,2,--- N{™). In this equation, U(r,r') = €?/|r —r'| is the standard

Coulomb repulsion. Moreover, the Hamiltonian

N 2
My = O; <§:1 + Vc(ra)> + ;CZ;BU (ra —T5) + Za: U(ra —Ry) (2.37)
accounts for either the degrees of freedom of the N!*) g-electrons, with momenta and
positions denoted by r, and p, , respectively (o =1,2,--- Ne(")), as the coupling between
them and the m-electrons. Hereafter, we reserve Roman (Greek) characters as indexes for
quantities referring to m-electrons (o-electrons). It is important to note that the periodic
potential V,(r) that appears in Eqs.(2.36) and (2.37) is not the same as V,(r) defined in
Eq.(2.10): while V,(r) is generated by the ring’s sites with both its core electrons and the
frozen o-electrons in the bonds, Vc(r), on the other hand, does not include any contribution
of the o-electrons. In other words, recalling our discussion at the end Sec. 2.2.2, V,(r) is
essentially Vc(r) renormalized by the the static charge density in the bonds generated by

the o-electrons in their many-body ground state.

In this section, we denote by v(r,R) the total many-body wave function,

where r stands for the entire set of positions of the o-electrons {ry,ry, -, 1@}, while
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R denotes the set of positions of the m-electrons, {Ri, Ry, -+, Rym}. Our generalized
Born-Oppenheimer approzimation consists in assuming that the total wave function has

the following separable form:

P(r,R) = > 6 (R) o, (r,R) (2.38)

v

where ¢, (R) refers to the m-electrons wave functions, and ¢, (r, R) denotes the o-electrons
wave functions for a frozen configuration of m-electrons (fixed R). The later obeys

the following Schrodinger equation:

Hb(R)QDV(rv R) = /\V(R)Sou(n R) . (239>

We emphasize that R in Eq.(2.39) is an external parameter rather than a dynamical
variable. For each R, the Schrédinger equation (2.39) determines the o-electrons eigenvalues
A (R) (with quantum numbers v = 0,1,2-- ), which, as it will shortly become clear, act

as extra external potentials for the m-electrons.

Substituting the ansatz (2.38) into the full time-independent Schrodinger
equation Hvy = Ev and using Eq.(2.39), we find that the m-electrons wave function must
obey

E) 6.(R)p,(r,R) =) { [H,0,(R) + A\ (R)$,(R)] 9, (r, R) +
+2i,ln Z [P} ¢, (r,R) +2(P;p,(r,R)) - P;] 6, (R) ¢ - (2.40)

j=1

Now, multiplying Eq.(2.40) on the left by 7 (r, R), integrating over the o-electron positions,

and using the fact that ¢, (r, R) defines an orthonormal basis, i.e.,
Lo, = [ dreple Ryaur.R) = 6 (2.41)

we rewrite Eq.(2.40) as the following set of coupled equations

(M, + A(R)] 60(R) + D A, (R) = B, (R) . (2.42)

Note that, contrary to Eq.(2.39), R is now a dynamical variable. Moreover, the operator
A,,, is responsible for coupling the m-electron wave functions with different ; and v, and
it has the form

A = fru(R) + ) 85)(R) - P; (2.43)
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with
p2 N NG
al®) = 50 5 GV, == X [ RvineR), e
" ih in
LY (R) = “m AN T dr ¢, (r,R)V;p.(r.R) . (2.45)

Here V; denotes the gradient with respect to the position of the j-th m-electron (R;) of
the system.

In order to develop a more intuitive picture of the meaning of Eqs.(2.39) and
(2.42) let’s make a sketch of \,(R). Fig. 12(a) shows an illustration of three of these
eigenvalues as if they were a 1D function, in analogy with the standard Born-Oppenheimer
approximation, which we are more used to. In reality, of course A\, (R) defines a hypersurface
in the space configuration of the m-electrons. Hereafter, since we want to derive a low-energy
effective model for the mw-electrons, we focus only on the ground state and the first excited
state of the o-electrons, as illustrated in Fig. 12(b), i.e., we truncate the sum in Eq.(2.38)
at v = 1. In this case, Eq.(2.42) simplifies to a set of two coupled equations,

Ho pon(R) + Aot p12(R) = E, don(R) (2.46)

Hl ¢1,n(R) + AIO ¢O,n(R) = En ¢1,H(R) ) (247)

where the index n labels the quantum numbers which characterizes the system’s energy
levels. Besides, we define Hy = H,+Xo(R)+ Ao and H; = H,+ M1 (R)+Ai1. We emphasize

M(R) (a) Xa(R)
A
A1(R)
Ao(R)
» R

Figure 12 — Energy "surfaces" of the o-electrons. Illustration of the energy levels of
the o-electrons as function of the m-electrons configuration A,(R) as if they
were 1D function of R, in analogy to the simpler standard Born-Oppenheimer
approximation. Panel (a) represents the first three low-lying A,(R). Panel
(b) focus only in the first two o-electrons energy levels. In each of them, the
m-electron Hubbard spectrum is represented by the horizontal black lines. The
blue arrows indicates virtual excitations that can happen in the system if the
energy separation (A) between the two o-electron surfaces is comparable with
the m-electrons hopping amplitude.
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that in the language of second quantization, H is a single-band Hubbard Hamiltonian
with a renormalized hopping amplitude ¢y. Similarly, H; is a Hubbard Hamiltonian with

another hopping parameter t;.

In the limit that A\o(R) and A\;(R) are too far apart, energetically (A;o(R) =
M(R)—=Xo(R) » ty), Ay, becomes negligible. Consequently, Eqs.(2.46) and (2.47) decouple
and the system’s energy levels are just the set composed by the union of the egenvalues of
Ho and H;q, illustrated by the horizontal black lines in Fig. 12(b). Note that, in this limit,
the low-lying energy states of the systems are those of Hy, which means that the m-electrons
move along the ring as if the o-electrons were actually frozen in their ground state Ao(R),
recovering the standard Hubbard model we described in Sec.2.2. The interesting limit is
when A;(R) is still larger than ¢y, but they are of the same order (A;o(R) 2 to). This
is exactly the case of our rings, as we show in Sec.2.4, and in this limit 4,, cannot be
neglected. Actually, this operator mixes the eigenstates of Hy and H;. Let’s explore this

scenario in more details in the next paragraphs.

Isolating ¢, ,(R) in Eq.(2.47) and substituting it in Eq.(2.46), we obtain an

effective Schrodinger equation for ¢, (R),

[Ho + Aot (B — H1) ™' Aso] don(R) = E, don(R) . (2.48)

Note that
Werr(P,R) = Aoy (En —Ha) ' Ao (2.49)

which in general depends on both momenta and positions, defines an effective interaction
between the m-electrons, which carries information about the virtual excitations of the
o-electrons. Moreover, Eq.(2.48) is a self-consistent equation, since the potential defined
in Eq.(2.49) itself depends of the energy levels E,, we want to calculate. However, hope
is not lost, since we can approach Eq.(2.48) using perturbation theory, more specifically,

Wigner-Brillouin perturbation theory [44].

Let’s denote by (o,(R) and €9 (¢, ,,(R) and £{!) the eigenstates and corre-
spondent eigenvalues of the Hubbard-like Hamiltonian Ho (7). Both (o ,(R) and ¢; »,(R)

span an orthonormal basis, i.e.

Z |Cu,n> <<V,n| =1, (250)

(o

Com) = JdRC:n(R)C,,m(R) = On.m (2.51)

with v = 0,1 and {(o [C1m ) # Omn. Wigner-Brillouin Perturbation Theory tells us that
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¢on(R) and (p,(R), as well as E,, and ¢, are related through

Bon(R) = Gon(R) + > Com |Weff| C°"> CGom(R) + OW) | (2.52)
m#n
Ey = en +Lon Wessl Comy + OOWVZy) (2.53)
with
Com [Wersl Con) = JdR Com (B)Wers (P, R) Go.n(R) (2.54)

being the matrix element of the effective interaction (2.49) in the basis spanned by the
Con(R) states.

In zeroth order perturbation theory for the energy (E, ~ %), and neglecting
quadratic or higher orders of W,; in the perturbation expression for the eigenstates, we

obtain

Pon(R) = Con(R) + Z RON 0) <C0m ‘Am H1 «410‘ Co n>C0m , (2.55)

m#n <N

from which it is clear that the matrix element defined in Eq.(2.54) simplifies to
1
<C0,m |Weff| CO,TL> ~ _K <C0,m |AOIOnA10| CO,n> , (256>

where O,, is a complicated many-body operator defined as
-1

£(0) _ £(0)
Z (1 N nAm> C1im) <Cl,m|] . (2.57)

m

O, =

To derive Egs.(2.56) and (2.57), we use the closure relation in Eq.(2.50) to rewrite (0 — %,
in Eq.(2.55) as

g0 — Za V1Cmy (Cim| = Z ( ) |C1m) {Crm] (2.58)

Besides, we approximate the energy levels of H; as those of H displaced by the energy

separation between the two o-electrons energy surfaces, i.e.

et ~ e+ Ao(R) - (2.59)

Recall that we previously defined A; o(R) = A (R) — A\o(R). Interestingly, in Sec.2.4 we
show that such energy spacing between the o-electrons energy surface depend weakly on
R, so it is reasonable to approximate it by a constant, A; o(R) ~ A > 0, consistently with

the notation we have been using since the beginning if this section.

Unfortunately, even after the aforementioned approximations, the effective
interaction is still very complicated and, specially because we need to invert a many-body
operator in Eq.(2.57), it does not seem possible for us to derive an analytic expression
for Weys at this point. To proceed we need further simplifications, which are described in

detail in the subsequent subsection.
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2.3.2 Effective interaction in first quantization

The first thing we need to do is return to the expression of A,, defined in

Egs.(2.43)-(2.45) and find an approximate expression for it. Let’s start by studying g )(R).

Note that taking the gradient of Eq.(2.39) with respect to the position of the
j-th m-electron, multiplying the resulting, at the left, by ¢¥(r, R), and integrating over

the positions of the o-electrons, we obtain

1
n(R) = A(R)

| dr e RV, R) = | drete R) (V) R 200
Recall that R is merely an external parameter for Hy, and it appears only in the Coulomb

repulsion term - see Eq.(2.37) - therefore, it follows that

N r, — R;
VH,R) =€ > ———

3
= Ira — Ry

(2.61)

Our task now is to calculate the the integral over the positions of the o-electrons.
Since we have a term |r, — R;|* in the denominator of the integrand, the o-electrons
which are closer to the j-th m-electron are those who give the largest contribution to the
right-hand side of Eq.(2.60). Furthermore, as discussed in Sec. 2.1, we have two o-electrons
per bond. Consequently, for each m-electron localized at a given ring site, there are four
nearest neighbors o-electrons, here labeled by 1 to 4 for simplicity, that dominate the sum

in Eq.(2.61), which we can approximate as

f dr (e, R) (V) gu(r, R) ~

1 1
d R) + JR)+
f rQDl/ r, (|I'1 _ R]|2 |I'2 _ RJ|2) QOH(I' )

1 1
" [ (e R) (|r s+ |2) A (xR) (2.62)
3 J

-R;[" | —R

where we define
H(R)
dj

(Rj1 — Ry) (2.63)

IS

as the versor in the direction of the right o-bond, between the sites j and j + 1. Recall that
R; is the position of site j defined in Eq.(2.8). On the other hand, d%jL) denotes the versor
in the direction of the left o-bond and it is related with Eq.(2.63) through cig-L) = —czglj)l

Concerning the remaining integrals on the right-hand side of Eq.(2.62), if we
had |r, — R;| in the denominator, they would be of the order of the on-site Coulomb
repulsion between m-electrons and o-electrons, which, as we show in Appendix B, is of

the same order of the on-site repulsion (U) between the m-electrons. Moreover, it follows
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from the discussion in previous paragraph that |r, — R;| is of order of the lattice spacing.

Consequently, we can roughly estimate

1 U
2@M(I',R) ~ (264)

r1 — Ry @

¢ [ dr Lo Ry

and similarlly for the other integrals involving rs, r3 and ry. Therefore, Eq.(2.62) results
in

* U (5 UA
Jdr [0 (r, R)|* (V;Hy) pu(r,R) = 2— (ng CﬁR)) = 28— - (2.65)

Here 7; is the versor in the direction of the position of the site where the m-electron is

localized at, but pointing inwards and gy is the numerical factor

gN = \/2 + cos(2w/N)) . (2.66)

Substituting Eq.(2.65) into Eq.(2.60) and comparing it with (2.45) we readily
identify

ih 2U . .
O(R) ~ (d(R) _ d@) , 2.67
& (R) am A, (R) — A (R) \ 7~ %1 (2.67)

Besides, we neglect f,,(R), since this term doesn’t involve the 7m-electrons
momenta and, therefore, when included in Eq.(2.56) gives rise, in first order perturbation
theory, to a one-body term that can be incorporated in the hopping parameter. Therefore,
from Eq.(2.67) and, as in the previous section, assuming A;(R)—Xo(R) ~ A > 0 (constant),

we can approximate Ag; and Ajg by a simple one-body operator

25U gN "
Ay~ == 2 Zl ;- Pj (2.68)
(m)
2%ihUgNn "
AlO = mal 4 n; - Pj . (269)

At this point, we have almost everything we need we need to derive a simplified
expression for W,y in first quantization. Now, we need to come back to Eq.(2.57). If
O,, were a constant, it would generate a W, sy which would be just yhe product of two
one-body operators, and thus not a true two-body operator. The simplest assumption we
can make about Eq.(2.57) is that it has a two-body component which can correlate the

momentum operators that appear in Eqs.(2.68) and (2.69). In this case, we can write

()
1 [20Ugxn\> &
Wepp ~ —— < gN) > P OR, Ry, - Py (2.70)

which is genuinely a two-body operator. Note that since f; is a simple versor rather than

an operator, we can freely interchange it with the momentum operator, i.e. #;-P; = P; -7,
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and, therefore, define a tensor

which encodes the information about the ring’s o-bonds orientation through the versors

A

n;.

An effective momentum-momentum interaction with a similar form of Eq.(2.70)
already appeared in the literature some decades ago, when Bohm and Pines wrote the
seminal series of papers about the electron gas [45, 46, 47]. They were able to show that
there is an effective inter-electronic potential mediated by plasmons, which they recognized
as a Biot-Savart interaction. However, they argue that such interaction is negligible because
of screening effects. In our case, on the other hand, since we are dealing with a few body

system, screening effects are not strong enough to suppress this kind of interaction.

Furthermore Eq.(2.70) also resembles the form of the Breit-Darwin (or current-
current) interaction Hgp. In appendix D we show how to derive the second-quantized
expression for the Breit-Darwin Hamiltonian and, comparing Eq.(2.70) with Eq.(D.47), we
note that W, #¢ contains two of the processes that appear in the Breit-Darwin Hamiltonian.

However, these terms appear with different relative signs in Hpp and W, £

It worth noting that there is a crucial difference between our effective potential
and the Breit-Darwin Hamiltonian: while the later is a relativistic correction to the

Coulomb repulsion, W,s is a much more intense interaction.

2.3.3 Effective interaction in second quantization

In the previous section we showed that virtual excitations of the o-electrons
mediate an effective momentum-momentum attraction between the m-electrons, which, in
first quantization, is given by Eq.(2.70). Here, we derive its expression in the language
of second quantization. By adding the second-quantized W.s to Eq.(2.9), we derive an
extended Hubbard Hamiltonian for the degrees of freedom of the m-electrons alone, but
which takes into account the effects of the o-electrons in their dynamics. It is important
to note that in this section r no longer denotes the set of positions of the o-electrons, but

rather a generic position in space.

Since W,y in Eq.(2.70) is a two-body operator, the standard procedure to

determine its second-quantized expression is [22, 16]

Wogs = 5 30 [ [ae S0 BL60P - T er) P00, 272)

where, in coordinate representation, P = —iAV and P’ = —ihV’, with V' denoting
the gradient with respect to r’. Besides ¢! (r) (¢b,(r)) is the field operator that creates
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(annihilates) an electron with spin o at the position r. Since we are deriving an effective
model for the m-electrons alone, such field operator is defined only in terms of the Wannier
wave functions for the p, orbitals (¢;(r)), as shown in Eq.(A.5). Here the reader should
be warned not to confuse ¢,;(r) with the o-electrons wave functions ¢, (r, R) we defined
in Sec. 2.3.1.

Substituting Eq.(A.5) into Eq.(2.72) we find the second-quantized effective

interaction in the site basis,

Werr = T9A3 ( a ) ij;ﬂ (;wijkl CioCior Cho'Clor (2.73)

where w;jj; is the matrix element

wia = (ij [P T - P’

lh) = 1 f f drdr’ 91(v) g} (X)V - T (r,7') - Vg (v (x)
(2.74)

which we study in detail henceforth.

To start with, we apply two closure identities,

1= lijdGjl (2.75)

ij=1
between the momentum operators and the tensor (?, which give us

wig = 2, 2 i [Plivia) - (ivia [T | i ) - Ginga [P 1) (2.76)

1,12 J1,52
Note that P acts only on the first entry of a ket |ij), i.e.
(er' [Plijy = (r [Py [ ) (2.77)
Similarly, P’ acts only on the second entry of |ij). Therefore

Cij [Plivig) = (i [Pin){j | iz) = (i [Plir) 6, (2.78)

Gz [P1kY = G [P k) G | 1) = Gz [P K) 6, (2.79)

and, as a consequence of the orthonormality of the Wannier wave functions, Eq.(2.76)
becomes
N R o g
wiga = >, PGPy (i | T |12 ) - G [P ) (2.80)
11,52=1
Now, consistently with the standard approximations we used in appendix A to

derive single-band Hubbard Hamiltonian, we can show (see Appendix C) that momentum
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matrices elements appearing in Eq.(2.80) can be approximated by a term connecting only
nearest neighbor sites,
, , mit
@[P[j) ~ B (Ri — R;) 0j,iz1 - (2.81)
Recall that R; is the position if the i-th site of the ring given by Eq.(2.8), t is the hopping
parameter between two neighboring p. orbital, and m is the electron mass. Therefore,

substituting Eq.(2.81) into Eq.(2.80) we obtain four contributions for wjj:

mt 2 . .
Wik~ — <h> [(Ri CRi) - <z 41 “T"l k+ 1> (Risr — Ra)

+(Ri—Ri+1)'<i+1 J T\ k_1>'(Rk—1_Rk)
+(Ri—Ri—1)'<i_1 J T k+1>'(Rk+1_Rk)

<>

+(RZ~—R,»_1)-<@'—1 vl k—1>-(Rk_1—Rk)] L (2.82)

Concerning the matrix element of the tensor ?, we assume, as it is done with
the Coulomb repulsion matrix elements in the standard Hubbard model (see Appendix A),

that its leading contributions come from the on site terms. Mathematically, this means

<¢j “?‘ lk:> ~ T 6,000 (2.83)

where we define T'; = <m ‘(T)‘ zz> As it will soon become clearer (see Eq.(2.85)), T,
depends on the specific i-th site of the ring.

Returning to the definition of 7T in Eq.(2.71), we can write
T, = JJdr dr’ f (r)pf (£ )YRO(r, v')d i (r')pi(r) | (2.84)

with 72 = r/r and 7’ = r'/r’. Moreover, since the Wannier wave functions are localized at

the ring’s sites,
7= | [ [t e @06 w)em | R
— R (i |O| i) R, (2.85)

with R; = Ri/|Ri|. Assuming, for simplicity, that the matrix element of O(r,r) is

homogeneous, i.e. (ii |O|iiy = Oy is site independent, where Oy is a scalar presumably of
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order one, we rewrite Eq.(2.82) as

2
mt ~
Wijk X — (7) Oo [(Rz —Rit1) Rit1 (Riv1 —Ry) - Ris1 0554101410k

+ (Ri = Rig1) - Rigr (Riz1 — Riya) - Ris1 0ji1101i410ki12
+(Ri —Ri-1) - Ri1 (Ri—1 —Ri—2) - Ris 05,i—101,i—10k,i—2

+(Ri = Riz1) - Rict (Ricy — Ry) - 7€i—15j,i—15l,i—15k,i] . (2.86)

Now, note that

~ a

R R = \2(1 = cos(27/N)) (2.87)
A a 2
Riz1-Ri = \/2 T —cos @) cos (W) ; (2.88)

recalling that a is the system’s lattice spacing. Therefore, Eq.(2.86) simplifies to

(mt)2 a’Op (1 — cos(27/N))
Wijkt = \ &

7 5 [0,i+100,i+10k + 04100410k i42

+0;,i—101,i—10k,i—2 + 6j,i—15l,i—15k,i] . (2.89)

Substituting Eq.(2.89) into Eq.(2.73) we find, after a few changes of variables,

N
Weff = (t/(\]) 200 (1 — COoS (27T/N)) Z Z I:(C;racj—&-la 1Cig1Cit1o + hC)

+(c;[,c; 107Cj—201Cj— 1U+h.c.)] . (2.90)

j—2

t ot i
CioCit10/Cjo'Ci+1o CjocCj_10'Cj—20'Cj—10

Figure 13 — Effective interaction. Illustration of two types of two-body processes that
appear in the effective interaction Eq.(2.90). (a) is the "Bubble term", while
(b) is the extended term that favors the electron delocalization. The Hermitian
conjugates of (a) and (b) just reverse the direction of the arrows.
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The effective interaction Eq.(2.90) involves two types of processes, which we illustrate in
Fig. 13 The first one occ}ac; 110'CjorCj410 18 What we called "bubble term', since it destroys
an electron in the site j and creates it in the site j + 1, but also destroys another electron
in the same j + 1 site and creates it in the site j. Thus, such term restricts the electronic
movement between two neighboring sites of the ring. The second term occ;ac;;lg,cj_%,cj_la,
on the other hand, involves two neighboring sites and favors the electron delocalization.
Combining Eq.(2.90) with Eq.(2.9), we find the following extended Hubbard

model for the m-electrons:

N N
=t Y)Y (ot + he) +U Y] gy,

j=1¢ =1

U\NZ o
A Tt
— Ay (t) Z Z [(cjacjﬂa,cjg,cjﬂg + h.c.) + (cjacjfla,cj_%,cj_lg + h.c.) ,
j=1lo,0’
(2.91)

where we define the coupling constant

Ay = 2}5\2(90 (1 —cos*(2m/N)) . (2.92)
Recall that A > 0 is the energy scale of the separation between the ground state and the
first excited state of the o-electrons, which we approximate by a constant, i.e., independent
of the m-electron configuration. It is important to say that it is the relation between
the parameters ¢t and A that will set the energy scale of the coupling \y. Hereafter, we
set 20y(1 — cos*(2r/N)) ~ 1 and, then, replace the coupling constant Ay by simply
A=tt/A% < 1

Eq. (2.91) is the central result of this chapter, and next we investigate the

physical properties arising from our model.

2.3.4 Results and discussion

Through exact diagonalization of the Hamiltonian in Eq.(2.91), similarly to
what we did in Sec. 2.2.1, we obtain its energy spectrum as function of U/t for a fixed \/t.
For the results shown in Fig. 14, we choose A/t = 0.1. As in Fig. 7, we show only a few of

the low-lying energy levels rather than the full energy spectrum.

Comparing the new energy spectrum with that of the standard Hubbard model
(shown in dashed lines in the panels of Fig. 14), we can readily see that the effective
interaction significantly reduces the ground state energy of the rings as U becomes larger.
Interestingly, if we look closer at the spectrum of the ring with N = 3 sites in panel (a), we
note that Ey first increase with U, and starts to decrease only for U/t > 4. Such behavior -

which is also observed in the spectrum of the larger rings as long as we use smaller values
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for X - reflects a competition between the the on-site Coulomb repulsion and the effective
interaction Weys: on the one hand, the on-site Coulomb repulsion helps the electron to
localize at the ring’s sites, avoiding double occupancy. The effective momentum-momentum
attraction, on the other hand, favors the electron delocalization. Both of these interactions
depend on U. However, while the on-site Coulomb interaction has a linear dependence on
U, Weys depends quadratically on this parameter, via AU 2 Therefore, for small U, the

linear term wins, but it is overcome by the quadratic term as U increases.

In the presence of an external magnetic field, again perpendicular to the ring’s

(@) go°

B/t

U/t U/t

Figure 14 — Energy spectrum of the extended Hubbard Hamiltonian. The panels
show the energy levels of Eq.(2.91), as function of U/t for rings with (a) N =3
sites, (b) N = 4 sites, (¢) N = 5 sites and (d) N = 6 sites at half-filling
regime (N = N,) and with A/t = 0.1. In the panels (b) to (d), only a few of
the low-lying energy levels are plotted. The dashed lines correspond A = 0,
i.e., the spectrum of the standard Hubbard model defined in Eq.(2.9).
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plane, Eq.(2.91) needs to be modified accordingly,

N
mag tZZ(enwf/N jO’ j+10+ hC) +UZ”JTnJl

Jj=1 7=1

(?) Z Z [(CJU j+10’ o'“j+1lo + hC) + ( . f/N T ; 16'Cj—20'Cj—10 + hC)] s

j=lo,0’

(2.93)

as explained in Sec. 2.2.2. Once again, the ground state energy of the ring and its persistent
current are periodic with the magnetic flux, as we can see from Fig. 15 and Fig. 16,
respectively. In these two figures, the different color curves refer to different values of the

ratio A\/t, as indicated in the figures’ labels and both follow the same color code. Moreover,

0 T ; T 0 T T T
\_/\/ \_/\/ e
2t (a 1 b
) o |
4t
~ 6f - -20
E Alt E
8 —0 I
——0.01 -30
10+ 0.1
40t
12t
-14 : ‘ ‘ -50 : :
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1
f f
-3.5 T T T -5.5
() (d)
RNANNANNAS -
=45 3.
S S 6.5
5 -7
550 . . . /1 75 . . :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
f f

Figure 15 — Ground state energy as function of the magnetic flux. The panels
show the the ground state energy (FEj) of a ring with (a) N = 3 sites, (b)
N = 4 sites, (¢) N = 5 sites and (d) N = 6 sites all in the half-filling regime,
as function of the dimensionless magnetic flux that pierces it (f = ¢/¢p) and
for different values of the ratio A\/t, as indicated at the legend in panel (a).
The parameter U is fixed. In each of the panels we have, (a) U/t = 8, (b)
U/t =8, (c) U/t =2and (d) U/t =1.2.
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Figure 16 — Persistent current as function of the magnetic flux. The panels show
persistent current (/) that establishes in the ground state of the ring with (a)
N = 3 sites, (b) N = 4 sites, (¢) N =5 sites and (d) N = 6 sites, as function
of the dimensionless magnetic flux that pierces it (f = ¢/¢o) and for different
values of the ratio A\/t, as indicated at the legend in panel (a). The values of
U/t in each panel are the same as in Fig. 8.

the ratio U/t is fixed in each panel, as described in the legend.

In each panel of Fig. 15 U/t was chosen in such a way to guarantee that, for
the largest ratio of A/t considered in these plots (A/t = 0.1 corresponding to the yellow
curves), the effects of W, overcome those of the on-site Coulomb repulsion. This way,
we can verify once more that our effective momentum-momentum interaction has the
effect of lower significantly the ring’s ground state energy. Moreover, we note a significant
difference in the periodicity of Fy(f) in comparison with our results of Sec. 2.2.2. While in
the standard Hubbard model Ey(f) (and by extension Iy(f)) has the periodicity of half of
a flux quantum for rings with and odd number of sites (in the half-filling regime), here

Wesr imposes a periodicity of an integer number of flux quanta - see Fig. 15(a) and (c).

Furthermore, as we can see in Fig. 16, W, amplifies the persistent current in

the rings, and, as a consequence, enhances their magnetic responses. Fig. 17 shows the
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magnetic susceptibility, as function of U/t for rings with (a) N =3, (b) N =4, (¢c) N =5
and (d) N = 6 sites, all of them in the half-filling regime. We can see that for large enough
A/t, our effective interaction favors diamagnetism for all the rings but the one with N = 4
sites, where paramagnetism is enhanced. Such result reinforces the sensitivity of the ring’s

properties on its number of sites and electrons.

Most importantly, for our prototype of the benzene molecule, we recover the
experimental Ay if we choose A/t ~ 0.18, as shown in Fig. 18. Recalling that A = ¢t*/A®
and using t = 2.54eV, a ratio A/t ~ 0.18 sets the energy scale of the separation between

the two low-lying energy levels of the o-electrons in A ~ 4.5¢V . It agrees with A estimated
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Figure 17 — Magnetic susceptibility as function of U/t. The panels show the magnetic
susceptibility at low field (f — 0) as a function of the ratio U/t for rings with
(a) N = 3sites, (b) N =4, (¢) N =5and (d) N = 6 sites, all of them in the
half-filling regime (N. = N). The different color curves in each panel refer
to different values of A\/t, as indicated in the legend of panel (a). The blue
dashed line in panel (d) mark the experimental value of the anisotropy of the
magnetic susceptibility of benzene.
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Figure 18 — Magnetic susceptibility for the prototype of a benzene molecule.
Magnetic molar susceptibility for a ring with N = 6 sites and N, = 6 electrons
as function of A/t and with U = 3.048¢V fixed. The red dashed line show
the experimental value for the magnetic susceptibility of benzene (Ay =
—6.49 x 107" notmalized by t = 2.54eV'). The theoretical and experimental
values agree for \/t ~ 0.18.

in Sec. 2.4, evidencing that the approximations we used to derive Eq.(2.91) are consistent.

2.4 Hubbard Hamiltonian for the o-electrons

In Sec. 2.3 we used the natural energy scale separation of our system to derive,
via a generalized Born-Oppenheimer approximation, an effective interaction between the
m-electrons mediated by virtual excitations of the o-electrons. Conversely, we could derive
a three-band Hubbard model for our rings, obtaining a Hamiltonian that accounts for the

degrees of freedom of these two types of electrons on equal footing.

As carefully derived in Appendix A, such three-band Hubbard Hamiltonian has
the form A = H, + H,, + H., where H, is the Hamiltonian for the degrees of freedom of
the m-electrons only, which has the same form as in Eq.(2.9). We emphasize that similarly
to Sec. 2.3, the charge density in the bonds generated by the o-electrons do not contribute
to the hopping parameter in flp. Additionally,

N N
HSP =—t Z Z (d;,ladj+1,2cr + d;r‘,Qadj—ma) + Z [Ul Z ﬁj,nTﬁj,nl + Us Z ﬁj,laﬁj,Qa
j=1 o j=1 K o0’
(2.94)

is the Hubbard Hamiltonian of the o-electrons, where d! (d

ko (dj.,) creates (annihilates) an

electron with spin o in the & spy orbital centered in the j-th site of the ring (k = 1 for the
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right orbital and xk = 2 for the left orbital - see Fig. 5).

In Eq. (2.94), the parameter ¢ denotes the hopping amplitude (a) between the
right spo orbital of the site j and the left spy orbital of site j + 1 and (b) between the the
left spy orbital of site j and the right sps of site j — 1. Moreover, U, is the intra-orbital
on-site repulsion, associated with the Coulomb repulsion between two electrons in the
same sp, orbital of site j, while the parameter U, is the inter-orbital on-site repulsion
and describes the Coulomb repulsion between two electrons at different spy orbitals of

the same site j of the ring. See Fig. 19 for an illustrative picture.

Lastly,

N
Hc = Uc Z Z ﬂja (ﬁj,lo’ + ﬁj,Qo’) (295)
j=1lo,0’
accounts for the density-density coupling between the o-electrons and the m-electrons. In
Eqgs.(2.94) and (2.95) ftj e = d;,mdj’m is the number operator associated with the spy

orbitals.

Defining new bond fermionic operators

1

a;{a = ﬁ (d;,la + d}+1,2a) ) (296)
1

b;a = % <d;',1a - d;+1,2a) ’ (2.97)

which creates, respectively, an electron with spin ¢ in a symmetric and anti-symmetric

(a)

Z

Figure 19 — Illustration of the parameters in the multiband Hubbard model. In
panel (a) we illustrate the hopping between p, orbitals (), the on-site repulsion
between m-electrons (U) and the coupling between m-electrons and o-electrons
(U,). In panel (b), we illustrate the hopping between sp, orbitals (£), as well
as the intra-orbital (U,) and inter-orbital (U;) on-site repulsion between the
o-electrons.
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combinations of the sps orbitals of two neighboring ring’s sites, we can rewrite Eq.(2.94) as

. U, & R . 2
i, Z ( —Nbvj)+42[<Na7j+Nb7j—1) +Xf—1]
=1

7=1

Uy & . NN . .
f Z [( j T Noj + XJ') (Na,jfl + Npj1— qu)] : (2.98)

J=1

Here we define the number operators

Yal,a, (2.99)

Ny, = Z R (2.100)
Additionally,
X, = ( al b, + h. c) . (2.101)
o=1,{

Using the fermionic anti-commutation relations - see Eqs.(A.11)-(A.12) and
Eqgs.(A.15)-(A.17) - we show that Nm + Nﬂ, commutes with H. It means that the total
number of o-electrons per bond is a conserved quantity. In other words, we can look for
the eigenstates and eigenvalues of the three-band Hubbard Hamiltonian in a subspace
with a fixed number of o-electrons per bond, and, once again inspired by the benzene
molecule, hereafter we consider the subspace of two o-electrons per bond, where
Eq.(2.98) simplifies to

o Ui go]  Uo A
A, = JZI [t (Fas = Nog) + . Xj] iy Z 2+%) (2-%4)] . 102
However, such three-band model brings some complications. In the first place,
the dimension of the Fock space where H is defined (let’s call it d) is huge! Since we are
considering o-electrons and w-electrons as distinguishable particles, d is the product of the
dimension of the Fock space of the m-electrons (d,) and the o-electrons (d,). As discussed
Sec. 2.2.1, dy = (2N)!/(N(2N — NI, with N{™ denoting the total number of the
m-electrons in the rings, while d, = 6", as a consequence of having only two electrons per
bond®. For instance, for the prototype of the benzene molecule d is of order of 107, so an
exact diagonalization of the complete H does not seem possible even for the small rings

we consider here.

Furthermore, even if the exact diagonalization is feasible, it is not clear how
to derive an effective Hamiltonian for the m-electrons from H. That is why the general-
ized Born-Oppenheimer approximation we introduce in Sec. 2.3.1 seems to be the most

convenient approach for the purposes of this thesis.

8Therefore, the number of g-electrons in the rings is N, = 2N. The total number of electrons in the
ring is thus N, = Ne(”) + Ne(“).
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However, we can use the aforementioned three-band model to verify the validity
of two important assumptions we made in Sec. 2.3.1, at which our central result Eq.(2.70)

relies on:

e Assumption 1: the energy separation between the ground state and first excited
state of the o-electrons, denoted by A, is not much larger than the m-electrons
hopping amplitude, i.e., A = t. Recall that if, on the other hand, A » ¢, the dynamics
of the m-electrons would happen as if the o-electrons were frozen in their ground
state and we would recover the usual single-band Hubbard Hamiltonian discussed in
Sec. 2.2.

e Assumption 2: A depends weakly on the configuration of the electrons in the
m-orbitals. Recalling our discussion in Sec. 2.3.1, such energy scale is actually
dependent on the m-electrons configurations: A = Ay o(R) = A (R) — A(R), where
A (R) are the eigenvalues of Eq.(2.37) for a fixed set of positions of m-electrons,
R={R; - 7RN§”)}' However, along our calculations in Sec. 2.3.1, we approximate

it by a constant.

To test the validity of the assumptions listed above, we perform an exact
diagonalization of H= lffp + ﬁsp + H. for fixed configurations of m-electrons and study
its resulting eigenvalues. In this case, since the 7- electrons are kept static at a chosen

configuration, the hopping term of PAIp vanishes and the number operators 7, = c}acja

must be replaced by scalars nj,, which can assume the values zero or one. Therefore, the

on-site Coulomb repulsion term of Flp turns into a configuration-dependent constant

N
FC) =U Y njmy, (2.103)

J=1

SIDIOID:

Figure 20 — Different configurations of six 7 electrons in a six site ring. [llustration
with four of the many possible configurations of six m-electrons occupying the
p- orbitals of the prototype of the benzene molecule. The configuration Cy, with
{niynyy - -nyny} = {1,0,1,0,1,0,1,0,1,0,1,0} has no double occupation of
orbitals, while Cy, with {1,1,0,0,1,0,1,0,1,0,1,0} has one double occupation,
Cs, with {1,1,0,0,0,0,1,0,1,0,1, 1} has two double occupations and C4, with
{1,1,0,0,0,0,0,0,1,1, 1,1} has three double occupations.
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Figure 21 — Excitation energy of the o-electrons as function of U for the pro-
totype of benzene. We show the energy difference (A) between the first
excited state of H(C) defined in Eq.(2.105) and its ground state as a function
of the on-site Coulomb repulsion U for four distinct configurations of the six
m-electrons in a six site ring: configuration C; in panel (a), Co in panel (b), Cs
in panel (c), and C4 in panel (d). These configurations are illustrated in Fig.
20. In all the panels, the dashed black lines corresponds to A in the absence
of m-electrons. Here we set Uy = Uy = U, = U. Besides, both A and U are
normalized by the hopping between sp, orbitals, .

while Eq.(2.95) simplifies to

A

N
ﬁC(C) = CZanU |:4+Xj—Xj_1:| .
=10

(2.104)

We emphasize that in Eqs.(2.103) and (2.104) C labels the specific configuration of 7-

electrons we taken into account, which is parametrized by the set {nisni| - -nyny} of

zeros and ones. The resulting configuration-dependent Hamiltonian for the o-electrons is
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readily obtained:

A

N i i
HEC) =) [’? (Nw- - Nb,j) + Zlf(f - %Xjf(j—l +V;(C) (Xj - Xj—l)] + K(C) ,
j=1

4
(2.105)

with
Vi(C) = U+ U. Y nyjo (2.106)
K(C)=f(C)—Uy+2 i V;(C) . (2.107)

=1

Fig. 20 illustrates four possible families of 7-electrons configurations for the
prototype of the benzene molecule. It is important to note that V;(C) and IC(C) are
invariant by global spin flip, so all configurations obtained from those shown in Fig. 20 by
reversing all the spins results in the same H¢ and are, therefore, equivalent. Moreover,
the configurations obtained by applying the benzene’s point group symmetry to Fig. 20
are also equivalent. However, we emphasize that Fig. 20 does not present all the possible

m-electron configurations, a lot of them are omitted for simplicity.

In the remaining part of this section, we study Eq.(2.105) for the prototype of
the benzene molecule. For simplicity, we set U; = Uy = U, = U. This is justified by our
estimation of these parameters in Appendix B: there, using an approximation of localized
orbitals we show that the aforementioned interaction parameters are indeed very close to

each other.

Fig. 21 shows A (normalized by the hopping # between sp, orbitals) as a function
of U/t for each of the m-electrons configurations shown in Fig. 20 (the same color code is
used in both figures). For comparison purposes, in each panel we also show A(U) when
no m-electron is present in the ring (black dashed lines), i.e., the excitation energy of the

o-electrons alone.

The first thing we should notice is that for small U/t, A/t ~ 1.5, i.e., A is of
the same order as £, which is surely larger than the p, orbital hopping ¢ (although not

much larger than that), so we are safe to assume that A > ¢.

Furthermore, except for Fig. 21(d), the curves A(U) with (solid line) and
without (dashed line) m-electrons show an astonishing agreement, pointing out that A
indeed doesn’t depend much on the m-electron configuration. Concerning the panel (d)
of the same figure, we see that the deviation between the lines becomes considerable as
we increase U/t. But, for benzene, recalling the estimations of the authors in Ref. [40],
U/t < U/t = 1.2, where the agreement between the solid and dashed lines is still quite

good. Therefore we are also safe to approximate A by a constant.
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The same qualitative results hold for the other configurations omitted in Fig.
20 and for rings with N # 6.

2.5 Conclusions - Part |

In this chapter, we study the physical properties of rings with 3 < N < 6 sites,
N, electrons, and three orbitals per site, which we interpret as prototypes of aromatic
molecules. In particular, we focus on their energy spectrum, and their magnetic response

in the presence of an external magnetic field applied perpendicularly to their plane.

The magnetic field induces a persistent current in the ring’s ground state,
which in turn, generates a magnetic moment in the same direction of the field. It is
accepted that this is the physics happening in the aromatic rings of real-life aromatic
molecules: the persistent current that establishes in the aromatic ring is the origin of the
experimentally observed magnetic anisotropy in these molecules. Let us emphasize here
that such persistent current is an equilibrium property of the system and ceases to exist if
the field is removed. Therefore it should not be confused with a superconducting current

in a superconducting ring.

The question which remains is which electrons contribute to the above mentioned
persistent current? According to the RCM model, the answer would be the m-electrons
alone, since they are highly delocalized, while the o-electrons, localized in the o-bonds, are
considered frozen. However, we show, by describing these m-electron through the standard
Hubbard model, that for realistic values of the hopping (¢ ~ 2.54eV’) and on-site repulsion
(U =~ 3.05eV) [40] the calculated anisotropy in the magnetic susceptibility (Ay) is only
3/5 of the experimental value. We, therefore, argue that a minimal model to explain the
magnetic properties of the aromatic molecules should also include the degrees of freedom

of the o-electrons.

Although it is true that the o-electrons are more localized than the 7-electrons,
they can undergo local excitations in the o-bonds, which, in turn, modify the electron
charge density in the bonds and, therefore modify the periodic potential felt by the -
electrons. We show that if we allow excitations of the o-electrons to happen, they mediate
an attractive momentum-momentum effective interaction between the m-electrons We ff
defined in Eq.(2.70), which bears some similarities with the Breit-Darwin interaction and

with the Biot-Savart interaction derived by Pines and Bohm.

We obtain such effective momentum-momentum interaction through a gen-
eralized Born-Oppenheimer approximation, which, motivated by a natural energy scale
separation between the o-electrons and the m-electrons, allow us to decouple their de-
grees of freedom in a wave function ansatz similar to that used in the usual text-book

Born-Oppenheimer approximation.
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The central result of this chapter is our minimal effective model for the 7-
electrons, which corresponds to an extended Hubbard model where Wef 7 is added to
Eq.(2.9). We verified that the main effect of our effective momentum-momentum interaction
is to amplify the magnetic response of the rings. In particular, for the prototype of the
benzene molecule (N = N, e(”) = 6), W,y favors diamagnetism and recover the experimental
Ay if we choose a coupling constant of A/t ~ 0.18, consistent with the approximations we

used in Sec. 2.3.1 to derive Wyy.

Although it is beyond the scope of this thesis, we emphasize that microscopic
model we propose holds for any number of sites N and can also be extended to more

complex systems, such as the graphene.



66

3 The Suppression of Superconductivity near

a Lifshitz Transition

In this chapter, we study the effect of non-magnetic impurities in a two-band
superconductor in the regime where the second band is incipient, i.e., when its
bottom is just below (or just above) the Fermi level. In particular, we investigate
the evolution of the superconducting transition temperature (7;) as a function of
the chemical potential (1) as we go through a Lifshitz transition characterized here
by the appearance of a new Fermi pocket in the Fermi surface when the second
band becomes populated.

In Sec. 3.1 we review some results already known about 7,(u) of a two-band
clean superconductor. We show how to derive its coupled self-consistent gap equations
and how to analytically solve them in the particular case of 2D bands. In Sec. 3.2, we
calculate T,(u) for the same two-band superconductor but, this time, in the presence
of randomly distrubuted non-magnetic impurities. We show that, in the vicinity
of the Lifshitz transition, there is a competition between two effects: on the one
hand, T, tends to increase because of the enhancement of the electronic density of
states promoted by the appearance of the second Fermi pocket. On the other hand,
the interband scattering processes induced by disorder break the Cooper pairs and
suppress superconductivity. When disorder is strong enough, the second effect wins
and T,.(u) decreases, in agreement with the experimental results of two paradigmatic
examples of multiband superconductors: SrTiO3 and the LaAlO3/SrTiO3 interface.
Finally, in Sec. 3.3 we summarize our principal results.

As in Chapter 2, the body of the text is complemented with Appendices. The
results presented in this chapter were recently published in Physical Review Letters
[35] and Physical Review B [36], and the order of the sections here follows that of
Ref. [36].

3.1 Clean Multiband Superconductors

In a multiband superconductor, more than one conduction band crosses the
Fermi levels simultaneously. These bands can be either electron-like, hole-like or a mixture
of these two types. Here we focus on the case of a superconductor with two parabolic and
concentric electron-like bands. Its effective Hamiltonian, similarly to Ref. [48], is given by

_ i T i
Hy = Z ik CikoCiko + Z ViiCixtCimx) Cj—w 1 Cixrt - (3.1)
k,i,o k, k' i,j
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Here cz’ka (¢iko) creates (annihilates) an electron with momentum k and spin o in band 4
(with i = 1,2), which has dispersion & ) = k*/2m; + W}, as illustrated in Fig. 22(a). The
bottom of the bands are separated by an energy scale ¢y > 0. Hereafter, we denote by
W1 = —pu the bottom of band 1, and by Wy = —u + ¢ the bottom of band 2, where 1 > 0

is the chemical potential, which controls occupation of the bands.

For p < €p, only the lower band is occupied and we have a simple single-
band superconductor. By increasing the density of electrons in the system, p increases,
until it reaches the bottom of the second band. At this point the system undergoes a so
called Lifshitz transition (LT), which, in the context of multiband superconductivity, is
characterized by the appearance of a new Fermi pocket at the FS as a new band becomes
populated. Note that, in the case of our parabolic bands, as u goes across ¢y the FS
changes from a single sphere (1 < g¢) to two concentric spheres (> ¢y), as illustrated in
Fig. 22(b). We can wonder: Is there any signature of the Lifshitz transition in the system’s
phase diagram (which corresponds to the superconducting transition temperature (T,) as

function of the p)? As we will shortly see, the answer is yes!

In Eq.(3.1) V;; describes the pairing interaction matrix: Vi; and Vs, are the
intraband pairing interactions, while V5 = V5 are the interband pairing interactions.
Regarding the sign of the pairing interactions, we consider V;; > 0 and V53 > 0 always
attractive, otherwise we would not find superconductivity when only band 1 is occupied

(1 < e9). The interband pairing, on the other hand, can be either attractive or repulsive,

(b)
Vig = Vau
‘< Vaa
Za)
Vit

Figure 22 — Two-band superconductor. (a) Illustration of two electron-like parabolic
and concentric bands displaced by an energy ¢, > 0. Their occupations are
controlled by the chemical potential 1+ > 0. When 1 becomes larger than ¢, the
second band becomes populated, signaling a Lifshitz transition (LT). Qg » &g
is the pairing interaction energy cutoff, which plays a similar role as the Debye
frequency in conventional superconductors. (b) Illustration of the pairing
interactions we consider in our model. Vj; > 0 and V5, > 0 are intraband
pairing interactions, while Vj5 = V5, are interband pairing interactions. The
later can be either attractive or repulsive. The yellow sphere corresponds to
the Fermi pocket of band 1, while the green one is the Fermi pocket of band 2.
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which gives rise to different superconducting states, as will be explained later in this
chapter. Note that we are considering momentum-independent pairing interactions, which
leads to isotropic superconducting gaps (s-wave superconductivity). A discussion about

the microscopic origin of V;; is beyond the scope of this thesis.

How do we calculate T, of a multiband superconductor? Within a mean-field
approach, it is actually not a complicated task. There will be some complications arising
from the fact that we are close to the bottom of the bands, but we will get there. We start
by decoupling (3.1) in the Cooper channel, in a similar way it is done in a single-band
superconductor. It corresponds to replace ¢; k cjkt in Eq.(3.1) by its expectation value
{¢;j—x,Cjxr) plus fluctuations. Neglecting terms that are quadratic or higher orders in the

fluctuations, we thus obtain

HO = Z é-iak C'—if,ka'c'i,ka - Z (A’L C}-:kTC;_ki« + hC) s (32)
k.o k,i
where
Ay == Vig (i) - (3.3)
k7j

is the isotropic superconducting gap in band 1.

There are several ways to derive the self-consistent equations for the gaps A;
- see for instance a review on Ref.[49]. Here, it is more convenient to work with Green’s
function in Nambu space, since this formalism proves to very useful in Sec. 3.2, when we
introduce disorder in the system. Defining the Nambu spinor ] = (c}kT 1 x| cgva Co x i)v

we can rewrite Eq.(3.2) in a matrix form
Ho =) dicbicth (3.4)
k

where

0 0 —-Ay —&i

and, from Eq. (3.4), we can readily calculate the system’s bare Green’s function [22, 56]:
Go(k, wy) = (iwnl — &)1, where w = (2n + 1)aT (with n € N) are the usual Matsubara
frequencies and 1 is the identity matrix in Nambu space. Performing a simple matrix

inversion, we obtain

Gio Fio 0 0
R Fio —Gf 0 0
gO(k7 wn) = o b
0 0  Goo Fap
0 O ..F270 _g;io
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where . ¢
WWn, + i,k
. k == — 2 .
gz,O( 7wn) (U,r% + gzk + AZQ ) (3 7)
and A
Fiolk, wy) = Z’ (3.8)

are, respectively, the normal and the anomalous components of the Green’s function.

Note that it is the anomalous Green’s function which gives us information

about the superconducting gap: since {¢; _x|Cixt) = TZ Fio(k,wy), when combining Eqgs.
n

(3.3) and (3.8) we find the self-consistent gap equations:

1 o
A;i=71T Y A ———— ) .
m ]Zn J J<WT2L+§2+A32>]‘ (39)
Here, in order to shorten the notation, we define
éc
) = —— [ 06 . .10

i

with O(§) denoting an arbitrary function of energy, and &, denoting the upper cutoff
for the integral. We also define the dimensionless coupling constants \;j = —p;oVi;. It is
important to note that in our notation \;; < 0 means a repulsive interaction, while A;; > 0
means an attractive interaction. Besides, p;(§) corresponds to the density of states per
spin of band ¢, while p; o = p;(W; + €¢) is the density of states at an energy ¢, above the
bottom of the band. In the particular case of parabolic 2D bands, the density of states is a
constant: p;(§) = pio = m;/(2m). Finally,  is the energy scale of the pairing interactions,

which plays a similar role as the Debye frequency in the standard BCS superconductors.

Before proceeding, let’s take a closer look at the self-consistency equations and
highlight their major differences with that of a usual BCS single-band superconductor. In
the usual BCS approach, what is often done in integrals such as Eq.(3.10) is to approximate
the density of states by a constant (which is its value at the Fermi level) and calculate the
remaining integral between +oo. That is essentially because the Fermi energy is much larger
than the paring interaction cutoff. Here, on the other hand, since we are in the vicinity
of the bottom of the bands the Fermi energy is much smaller than € (also gg « ). In
this regime, which is called dilute superconductivity, we cannot make the aforementioned
approximations: p;(£) must be kept in the integrand and the limits of the integral carry
information about the bottom of the band through W;. Luckily, for 2D bands we can still
analytically evaluate the energy integrals that appear in the model, because the density of

states is already a constant in this case.
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Close to T,, A; are very small. Consequently, we can expand the right-hand
side of Eq.(3.9) in powers of A;. Neglecting quadratic and higher orders, we obtain the

linearized gap equations, which written in a matrix form, become

Av) _ (A A Adtean (10, T2) Ar) (3.11)
Ay Ao1 A2 Ao

The matrix elements of flclean are functions of 4 and 7T,, and carry information about the
bottom of the bands:

X 1A\™ T /1 €\ \
(Aclean> i = 5ij7TTcZ m ' = 5ij 5 Etanh 2Tc . (312)

7

To obtain the second equality on the right-hand side of Eq.(3.12), we need to calculate

the Matsubara sum"

1 1 ¢
TCZ (on s DT v e 2£tanh (QTC) : (3.13)

n

From Eq.(3.11), it is evident that the the self-consistent gap equations are
coupled through A5 and A9y, which are equal only if the density of states of the two bands
coincide: recall that from our definition of the dimensionless coupling constants it follows
that Ao1/A12 = p10/p20. However, they have the same sign, which is set by the sign of
Vig = Vay.

Still looking at Eq.(3.11), it is also evident that finding its solution corresponds

to solving an eigenvalue problem: T.(u) is determined when the largest eigenvalue of

AAdean €quals one, i.e.

H [(Aclean)“ det (A> - AE] = Ai2Aar (3.14)

i=1,2

as long as det (5\) = A1A22 — A12Ao; # 0. Here \ is the coupling matrix, with matrix
elements (A);; = A;;. Besides, we define i = 1 (i = 2) for i = 2 (i = 1). Furthermore,
Eq.(3.11) tells us that the behavior of T.(u), for a clean two-band SC' is independent of the

sign of the interband pairing interaction, since Eq.(3.14) depends on them only through
A2 o1

The sign of A5 sets the relative sign of the SC gaps, and, consequently, the

symmetry of the superconducting state:

In this chapter, every time we write a Matsubara sum with unspecified limits (Z ), we mean n € N

n
ranging from —oo to oo.
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e For an attractive interband coupling (A5 > 0), the eigenvector of S\Ad,san is such
that A; and Ay have the same sign. Such superconductor state is denominated s™*

state.

e For a repulsive interband coupling (A2 < 0), on the other hand, A; and A, acquire

opposite signs, which corresponds to an unconventional st~ superconducting state.

Another important detail is that the chemical potential that appears in Eq.(3.11)
is also a function of the superconducting temperature u(7.) and, as shown in Ref.[50], in
the proximity of a Lifshitz transition u(7.) does not coincide with the chemical potential
at zero temperature. To solve this issue, we express T, as function of the total number
of electrons in the system, hereafter denote by N, which is determined by the normal

components of the Green’s function Eq.(3.6): recall that we can write

N = Z <C;‘r,kaci,ka> = Z (1 - <Ci,kTCZkT> + <C},—klci,7kl>) ; (3.15)
k,i,o i,k

and since <ci7kac£ka> = —TZ Gio(k,wy), and <C;‘r,—kaci,ka> = TZ Gio(k,wy), it follows
that ! '

jn n , j=

k J

where A denotes the total area of the system 2.

The simultaneous numeric solution of Eqs.(3.14) and (3.16) yields T.(N) shown
in Fig. 23(a), from which we can see that 7.(IV) is enhanced across the Lifshitz transition
(which, in our notation, happens at N = N,.). That is because as we go across the LT, the
system’s density of states sharply increases due to the appearance of the new Fermi pocket.
Therefore, more electronic states contributes to the superconducting condensate, which
makes T, go up. Moreover in agreement with Ref. [48], the larger is |A12], the sharper is

the enhancement of T..

As mentioned before, for the particular case of 2D bands we can solve Eq.(3.14)
analytically. That is what we do in Sec. 3.1.1, which is specially important to set the stage
for the calculations we perform in Sec. 3.2.1 and Sec. 3.2.2, where the analytic investi-
gation provides valuable insights about the physics of dirty multiband superconductors.
Furthermore, since the behavior of T.(N) is not dramatically different than the behavior
of T.(i) in the vicinity of the Lifshitz transition, as shown in Fig. 23 (b), for simplicity we
focus on an analytic expression for T, as function of the chemical potential, rather than as

function of the total number of electrons in the system.

2For the case of 3D bands, A — V is the total volume of the system - see Ref. [36].
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Figure 23 — Phase diagram of the clean two-band superconductor with 2D
bands. Panel (a) shows T, as function of the occupation number N for
several values of the parameter Aj5. In panel (b), we compare T, as a function
of N with T, as a function of the chemical potential x(7,.) with |Aj2| = 0.013.
In both panels, A1 = Ay2 = 0.13 and p2 ¢ = p1o. Note that T, is normalized

by the energy displacement between the bands ¢y, and N is normalized by the
critical occupation number N, at which the Lifshitz transition takes place.

3.1.1 Asymptotic solution of the gap equation

Let’s return to Eq.(3.12). First, note that if we are in the high-density limit, in
which the Fermi energy is much larger than Qg (x> ) then

Qo QO/TC

Q
fdfpi(f)%tanh (2§ ) = Pi.F J dyétanh (%) = p; rln (HTO) (3.17)
0

i
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and we recover the usual BCS solution:
A pi,F A
Acean) :5,( : )m( ) 3.18
( ean ) Pi0 T. (3.18)

Here, k = 2¢” /7 &~ 1.13, with  denoting Euler’s constant, and p; p is the density of states

of band 7 at the Fermi level.

In the-low density regime, on the other hand, in order to capture the behavior
of T.(1t) across the Lifshitz transition, we calculate the energy integral in Eq.(3.12) before

the Matsubara sum, obtaining

N 1 Q W;
(Aclean) L= TCZ w—n [arctan (w_:) — arctan (w—n)] ) (3.19)

Regarding the Matsubara sums in Eq.(3.19), there are two asymptotic regimes, for each
band, where we can calculate them analytically: |W;| « T, and |W;| » T., but still
|Wi| « Q. It defines four different regions in the system’s phase diagram, as illustrated in

Fig. 24, at which we can find analytic expressions for (3.19):

e In region I, we have —W; < T, and W5 > T,, which corresponds to p ranging from

zero to a critical py, such that ui ~ T, (u}).

e In region II, we have —W; > T, and Wy > T,, which corresponds to p} < p < ps.

Here 25 ~ & — T, (23).

Tc/50 (X 1073)

LK ] A | 1 | 1
0 0.5 1.0 1.5 2.0 2.5 3.0

/€0

Figure 24 — Regions of the phase diagram for the asymptotic studies. [llustration
of the regions of the (u,T') phase diagram of a two-band superconductor for
the calculation of the asymptotic behavior of T.(x) in the clean and dirty
regimes. The size of the regions are exaggerated for schematic purposes. The
precise definition of each region is given in the main text.
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e In region III, we have —W; > T, and |W5| < T.. This region corresponds to

py < g < py, with p3 ~ e + T, (p3).
e In region IV, we have —W; > T, and —W5, > T. This region corresponds to p > pj.
As we show in Appendix E, by expanding the summand of Eq.(3.19) in Taylor series in
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Figure 25 — Comparison between the numerical (symbols) and asymptotic analytical results
(solid curve) for T,, as function of the chemical potential y, for the 2D clean
system across the Lifshitz transition at g = g¢. Panel (b) is a zoom of panel (a)
that highlights the very narrow range of p for which the asymptotic solutions
start to fail (gray dashed area). The parameters used here are the same as in
Fig. 23(b).
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each region of Fig. 24, we obtain

Q
; . In (HTCO> + 2/;,6, region |
( clean) 1 ~ 5 ( y (320)

and

Q
0 ) , regions I and II

Q _
KTC(]) + (MQTC&O)’ region III . (3.21)

In (KQQO(Mz_ gl
L T

) , region IV

Now that we have an analytic expression for (fldean) ~, solving Eq.(3.14)
simplifies to finding a solution of a transcendental equation, which resglts in an asymptotic
T.(1) in each of the four regions of Fig. 24. Note that it is in contrast with the full
numerical solution, which involves the numerical calculation of either the Matsubara sum

or the energy integral in Eq.(3.12).

Fig. 25(a) shows a comparison between the analytic and the numeric solutions
of the coupled gap equations. We can see that our asymptotic analysis captures the
behavior of T.(u) across the Lifshitz transition with great accuracy. A zoom-in in the
vicinity of the Lifshitz transition shown in Fig. 25(b) reveals that the asymptotic T, () is
not continuous across the boundaries of the different regions of Fig. 24, which has to do
with the own nature of the asymptotic method. Furthermore, as highlighted in the same
figure, some of the asymptotic solutions show diverging behavior near the boundaries.
However, the ranges of u for which the asymptotic solutions do not behave well are very

small - too small to be shown in the scale of panel (a), and are thus omitted in that plot.

3.2 Dirty Multiband Superconductors

Resistivity measurements elucidate the importance of disorder in both STO
and LAO/STO interfaces. The low-temperature electric resistivity, when extrapolated to
zero-temperature, results in a constant called residual resistivity (po). From the residual re-
sistivity, together with the electron density (n) obtained from Hall resistivity measurements,
we can estimate the impurity scattering rate (i.e. the average number of electron-impurity

collisions per unit time) using the Drude formula:

1 pone’

Me

(3.22)
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Figure 26 - Impurity scattering rate across the Lifshitz transition. We show the
impurity scattering rate (77') as a function of the electronic density (n) for
STO in the low-density regime (blue points). It was estimated from residual
resistivity data taken from Ref. [34]. For comparison purpose, in the same
panel we show the experimental T.(n) for STO (orange points) according
to Ref. [31]. The units system was chosen such that both 7, and 7' are
expressed in Kelvin.

! as a function of

Here e is the electron charge and m, is its rest mass. Figure 26 shows 7~
n, for STO in the low-density region of its phase diagram, where we plugged into Eq.(3.22)
po and n reported in Ref. [34]. Note that the units were chosen such that both 7, and 7"

could be expressed in Kelvin °.

For comparison purposes, also in Fig. 26 we show the experimental 7, as a
function of n for bulk STO from Ref. [31]. There are two important features to be observed
in this figure: in the first place, note that the scattering rate is much larger than T, roughly
771 ~ 107, for the density range considered. It tells us that disorder plays an important

role in the system and, therefore, cannot be neglected.

Secondly, although 77! shows a strong density dependence in the two-band
regime of the phase diagram (green region in Fig. 26), it does not vary much in the vicinity
of the Lifshitz transition, which is emphasized by the dashed vertical black line in Fig. 26.
Therefore, since we are mostly interested in the physics of a multiband superconductor
in the vicinity of a Lifshitz transition, we approximate the impurity scattering rate by a
constant in this chapter. We also emphasize that a similar calculation of 77!(n) can be
done for LAO/STO interfaces [51], yielding the same qualitative behavior of Fig. 26.

Once experimental data evidences the importance of disorder in two important

examples of multiband superconductor, we ask ourselves the following generic questions:

3771 has dimensions of the inverse of time, which corresponds to Electron-Volt in the Natural Units

system. Besides, Electron-Volt and Kelvin are related by the Boltzmann constant.
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how does the behavior of T.(N) - and also that of T.(1) - change if we include non-
magnetic disorder in the system? Does it change at all? At first glance, we could think
that the answer is no, since there is a theorem named after the physicist Philip Anderson
[52], which tells us that a superconductor with an isotropic gap is insensitive to non-
magnetic disorder - see also Ref. [49]. However, multiband superconductors exhibit novel
physical phenomena in comparison to their single-band counterparts, and their response

to disorder is no exception.

As we will see in Sec. 3.2.1, in a two-band superconductor Anderson’s theorem
only applies when the SC gap in both bands are equal A; = Ay, which only occurs in
the high-density limit and for specific choices of the coupling constants and density of
states. Interestingly, it was shown [53, 61] that there is a similarity between multiband
superconductors, with different superconducting gaps in each of the bands, and a anisotropic
single-band superconductor, where the Anderson theorem loses its validity: the larger is

the difference between A; and A,, the larger is the impact of disorder in T..

Here we show that the suppression of T, is much stronger if we have a repulsive
interband interaction. It shows us that studying the effects of disorder in a given super-
conductor is an powerful tool to investigate the nature of the superconducting state: if the
phase diagram is sensitive to non-magnetic disorder, odds are that the superconductor

belongs to the family of unconventional superconductors.

We include disorder in our model by adding to Eq.(3.1) the following impurity

Hamiltonian

Hinp = > > Was(k = X)e] 1pCores 5 (3.23)

kKo a8

where W,5(q) denotes the impurity potential, which works as an external potential for
the electrons. Since we are in the vicinity of the bottom of the bands, and, consequently,
we have a small Fermi surface, we can focus on small-momentum impurity scattering.
Hereafter, we denote by v = Wy (0) = Wy (0) the intraband impurity potential, which
scatters electrons within the same band, and by u = Wi, (0) = W (0) the interband
impurity potential, which scatters electrons between the bands. Note that, for simplicity
we choose equal interband scattering potentials and equal intraband scattering potentials.
However, we emphasize that the qualitative behavior of T.(x) we describe below does not

depend on this assumption.

The impurity potential also depends on the set of positions of each impurity, here
denoted by {R} = {Ry,Ra, -+ , Ryimp}, where N, » 1the total number of impurities,
and since we are dealing with random disorder, R; are random variables. Therefore, the
impurities define a configuration-dependent external potential for the electrons, which
breaks the translational symmetry of the system. As a consequence, the impurity self-energy

not only depends parametrically on {R} but also is a function of two momentum variables:
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S (k, k', w,; {R}). The same is true for the system’s total Green’s function, which obeys

the Dyson’s equation

Gk, K wn; {R}) = Gy Mk, w,) — B(k, K, wn; {R) (3.24)

However, since we want to calculate T,, which is a thermodynamical property
of the system, instead of studying the local effects of disorder, we can take an average of
Wags, 3 and G over all possible impurity configurations, which have equal probabilities
since, as we said before, the impurities are randomly distributed in the system. This is a
well known procedure called self-averaging and it restores the translational symmetry of
the system [57, 23].

The self-averaged self-energy is

Nimp

~ ~ dR; ~
Yk, wn) = <E(k,k’,wn; {R})>imp= f 11 S0k K wi Ry, Ry,,,) o (3.25)
j=1

where A is the total area of the system A similar expression holds for the self-averaged

Green’s function, and the Dyson equation simplifies

Gk, w,) = Gyt (k, wy) — Bk, wy) (3.26)

as usual in translational invariant systems. Hereafter, every time we write G, ¥ and Wz,

we mean the correspondent self-averaged quantities.

The self-averaged self-energy is represented diagrammatically in Fig. 27(a).
Among the diagrams, those that, like the first, contain only one dashed line emerging from
an impurity circle, can be renormalized away by introducing a constant in the Hamiltonian
and hence they can be neglected. Furthermore, the diagrams with more than two dashed
lines per impurity circle represent processes of multiple scattering per impurity and we

also neglect them, since we are dealing with weak impurities.

The dominant diagrams are then those with two dashed lines per impurity
circle. Among them, those that contains crossing lines, like the fifth diagram of Fig.27(a),
are subleading and also neglected. This is called non-crossing approximation [23]. As
a result, only the family of diagrams shown in Fig. 27(b) contributes to the impurity

self-energy, which becomes

~ dek . ~ ~
E(k, wn) = Mimp f ka/_kg(kl, wn)Wk_k/ y (327)
with
v 0 uw O
A 0 —v 0 —u
Wi = 3.28
ok v 0 v O ( )
0O —u 0 —wv
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Note that Fig.27(b) contains a sum over infinite diagrams. Therefore, the self-energy
depends on the total Green’s functions, and the Dyson’s equation Eq.(3.26), which is
represented diagrammatically in Fig. 27(c), needs to be solved self-consistently. This is

the reason why the method just described is called self-consistent Born approximation.

To proceed, we parametrize G by the same matrix structure than Gy in Eq. (3.6),
but replacing wy, &k and A; by renormalized Matsubara frequencies @, ;, energy dispersion
gJ}k = ¢k + hy; and superconducting gaps Aj. Substituting such G into Eq.(3.27) and

plugging the resulting expression into Eq. (3.26), we find a set of self-consistent equations
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Figure 27 — Diagrammatic expansion of the self-averaged self-energy and
Green’s function. In panel (a) some of the diagrams that contribute to
the self-energy summation are shown. In panel (b) we show the diagrammatic
expansion for the self-energy in the self-consistent Born approximation and in
(¢) the Dyson equation for the total Green’s function is shown according to the
self-consistent Born approximation. The solid single lines represent the bare
Green’s function Gy, while the dashed lines refer to the impurity potential in

Nambu space Wi_w and the gray circle represent the impurity concentration
nimp = szp/A
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for the aforementioned renormalized quantities:

wn]
_n—|-
? Z < (f+hna
A=A, + ”
Z (£+hn3 +A2

T E+ hnj >
P o mo_ N (3.31)
; 2 \@2,+ (E+hay)+ A2 ;

Here, A is the band width, which we consider to be the same for both bands and, hereafter,

equal to the pairing interaction cutoff (A = €)). Besides, 7;; ~! denotes the impurity

(3.29)

(3.30)

scattering rates, which we define as

Ty = 2mippso (020 + [ul*6 ;) - (3.32)

)

Once again we use the notation i = 1(2) if i = 2(1). Note that 71; and 7oy (712 and 7o;)

define the intraband (interband) impurity scattering rates.

At T, we can linearize Eqs.(3.29)-(3.31), similarly as we did with the gap
equations in Sec. 3.1. In this case, we can readily see that Eq.(3.30) decouples from Egs.

(3.29) and (3.31). The former, written in a matrix form, becomes
A, (A . 1 TﬁlBYL) TfQIBén) Ay (3.33)
Ay Ay 2 7-2_llB§”) 7'2_2135”) Ay)

(n) _ 1 .
B = @2+ (E+ g2/, (3.54)

Besides, performing a simple two-by-two matrix inversion, we can rewrite Eq.(3.33) as

A, 1~ (A
il R ' : 3.35

where the matrix elements of M, are given by

=t 1 : e 1 !
Mn) (1= Sus+ -4 - 5
(i), 2 <wz,;+<s+hn,i)2>i b <w%,j+<f+hn,j>2>j )

(3.36)

where we define

while

A A
Tt 1 det
D,=1- o . (3.37
ZZ,: 2 \ @2+ (E+ hn’i)2>i H< §+ i)’ >Z (3:37)




Chapter 3. The Suppression of Superconductivity near a Lifshitz Transition 81

denotes its determinant. Here, to shorten the notation we define the scattering rate matrix
A1y 1
<T )ij =Tij -
Note that Eq. (3.35) is not the self-consistency equation for the superconducting

gaps yet! Similarly as we did in Sec. 3.1, using the anomalous part of the total Green’s

function to calculate the expected values that appear in Eq.(3.3), we obtain

M) (8 (3) .
AQ )\21 /\22 0 BQ A2

The self-consistent gap equations for a dirty two-band superconductor are determined
when we combine Eqs.(3.35) and (3.38), which gives us an eigenvalue problem with same
form as Eq.(3.11), but with the matrix Adean replaced by /Aldirty, which has more complex

matrices elements:
(n)

(Aany), = 7.3 5 (35 +C5) (3.39)

n n

A A
oW~ 5 T ! v5 To ! (3.40)
T 2 NG (G +hg) /T 2 \S ey

In contrast to Adean, flduty is a non-diagonal matrix. Moreover, it carries information about
either the bottom of the bands, through its dependence of W;, and about disorder, though

its dependence on the scattering rates 7'1;1.

Furthermore, the equation that gives the total number of electrons in the
systems also changes in order to incorporate the effects of disorder. Through the same

procedure we described in Sec. 3.1 to derive Eq.(3.16), here we obtain

(& + o)
N=2N|1-7,Y kT ln . (3.41)
Zk: ;} @p i+ (G + hnj)?

Therefore, in the case of dirty multiband superconductors, we need to simultaneously solve
Eq.(3.11) with Adean — fldirty, and Eqgs.(3.29) (3.31), Eq.(3.41) to calculate T, as function
of N. Similarly to Sec. 3.1, we can achieve this goal numerically or analytically, through

an asymptotic study. Below we show and compare the results in both cases.

Let’s start by the full numerical solution. Fig. 28 shows the phase diagram
(T.(N)) for a two-band superconductor with (a) repulsive interband coupling (A2 < 0)
and (b) attractive interband coupling (A12 > 0). The different color lines refers to different
values of the impurity scattering rates, as indicated in the label of panel (b). For simplicity,
in these figures we choose the same value for the interband and intraband scattering

P S B ST . w . . -
rates ;' o 51 (point-like impurities), as well as a dominant intraband pairin
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interaction A;; = Ayy = 0.13 and subleading interband pairing interaction. However, the
results are qualitatively the same for other values of 7'51, as long as the interband scattering

rate remains finite and [Aja| € A1, Aga.

We can clearly see that non-magnetic impurities reduces 7T, (specially in the
vicinity of the Lifshitz transition) in both the attractive and repulsive interband coupling
cases. Moreover, the larger is 77!, the sharper is the suppression of superconductivity

across the Lifshitz transition.
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Figure 28 — Superconducting transition temperature T, as function of the oc-
cupation number N for 2D bands. A Lifshitz transition takes place at ..
Different point-like impurity scattering rates 7' are shown for an interband
pairing interaction A5 that is either (a) repulsive or (b) attractive. In these
figures we used dominant attractive intraband pairing A1 = Ags = 0.13 and
subleading interband pairing interaction |Aj2| = 0.013. We also set p19 = pap
and Qo/&) = 5.
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Comparing panels (a) and (b) in Fig.28, we conclude that the effect of disorder
is stronger when the interband pairing interaction is repulsive. It can be rationalized in
terms of Anderson’s theorem: the differences between A; and Ay are larger when A5 < 0,
and, as in an anisotropic single-band superconductor, the effects of non-magnetic disorder
are more significant. Conversely, if A; = Ay, which happens in the high-density limit if
the interband pairing interaction is attractive, Anderson’s theorem is recovered and T,(N)
no longer changes if we increase or reduce disorder. That’s why we see the curves of Fig.

28(b) collapsing into the same line as N increases.

If we perform the full numerical calculations with 7,0 = 7,," = 0, we find,
independently of the values we choose for intraband scattering rates, the same qualitative
behavior of Fig. 23(a). In other words, we verified that the effect of intraband scattering on
T.(N) is minor, which is, once again, a consequence of Anderson’s theorem. The interband
scattering processes, on the other hand, are the responsible for breaking the Cooper pairs
and, consequently, suppress superconductivity. Our results show that what happens in
a dirty multiband superconductor is a competition between two opposite effects in the
vicinity of the Lifshitz transition: on the one hand, T, tends to increase as the second
band becomes populated as a consequence of the enhancement of the system’s density of
states. On the other hand, when the second band appears, impurities can scatter electron
from band 1 to band 2 and vice-versa, which breaks the Cooper pairs and therefore is
detrimental to superconductivity. When disorder are strong enough, the second effect wins

and T, gets reduce.

Importantly, as explained in Ref. [35], we also did the full numerical calculations
for 3D bands, where the same qualitative behavior of Fig. 28 was found, with the difference
that the suppression of T, is smoother for 3D bands as a consequence of a vanishing density
of states in the bottom of the bands. Moreover, our theoretical phase diagrams (for both
2D and 3D) for a repulsive interband pairing exhibit a great qualitative agreement with
the experimental phase diagrams of STO [31] and LAO/STO interfaces [33] - compare
Fig. 2 with Fig.28. It suggests an unconventional nature for superconductivity in these two

materials, a topic highly debated in the literature.

Looking at the eigenvectors® A of the coupled gap equation A= Xfldirtyﬁ, we
find another important result. In Sec. 3.1 we explained that the sign of the interband
pairing interaction A5 and A9y sets the relative sign of the superconducting gaps in each of
the bands. Recall that, there, an attractive inter-bad pairing leads to a s*" superconducting
state, where A; and A, have the same sign, while a repulsive interband interaction leads
to an unconventional s™~ state, characterized by opposite sign gaps. When disorder comes
in play, this scenario changes a bit: while in the attractive interband pairing situation

the state is always s**, a crossover st~ — s™* can happen when the interband pairing

4We denote by A the vector such that (A) = A, withi=1,2.

K3
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interaction is repulsive.

Such a crossover is shown in Fig.29, where we plot 2arctan(A;/As)/7 (mod 7
to deal with the freedom in choosing the global sign of A) as function of N/N, (recalling
that N. is the critical number of electrons at which the Lifshitz transition takes place).
When sign(A;) = sign(Ay), arctan(A;/As) < 7/2, which corresponds to the blue region
in Fig. 29. Conversely, when sign(A;) = —sign(A,), arctan(A;/Ay) > 7/2, and we are in
the red region of the same figure. We can see that for weak disorder we never leave the red

= with the evolution

region as N increases, meaning that the symmetry of the remains s
of N. For strong disorder, on the other hand, we go from the red to the blue region as N

increases after the Lifshitz transition, signaling the crossover s~ — s as function of N.

A crossover from a superconducting s*~ state to a sTT state was previously
observed [55], but as a function of the impurity strength rather than as a function of the
electron density with a fixed disorder strength, as is our case. Interestingly, such crossover
can leave signatures in the system’s spectroscopic and thermodynamic properties. For
electronic densities close to that where the crossover takes place, the gap in the incipient
band (Ay) is very small and, as a consequence, it could be not identified by some probes.
As a result, a signal consistent with single-band superconductivity would be measured. As
a matter of fact, recent optical conductivity data for doped STO showed a signature of
single-band superconductivity in a doping region where it is known that more than one

conduction band crosses the Fermi level [58].

As we mentioned before, the detrimental effects of interband scattering to

\
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Figure 29 — Ratio between the two isotropic SC gaps in bands 1 and 2 (A; and
A,, respectively) across the Lifshitz transition at N = N.. This plot
refers to the 2D bands case shown in Fig. 28. For sufficiently large impurity
scattering rate, the relative sign of the two SC gaps change for N > N,
signaling a crossover from an s*~ SC state to an s™* one.
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superconductivity are stronger in two-band superconductors with a dominant attractive
intraband pairing and subleading repulsive interband superconducting pairing. In the next
subsections we see how this result appears in an asymptotic study of the coupled gap
equations A = Mgy A and the self-consistent Eqs.(3.29) and (3.31). Note that to avoid
cumbersome notations, hereafter we denote by 7, (f'_l = O) = T¢ the superconducting

transition temperature in the absence of disorder. Besides, Agirty = Aq, and Agean = A

3.2.1 Asymptotic solution in the high-density limit

In the remaining part of this chapter, let’s look for analytic expressions for the
matrix elements of A,. Besides, since the general function for T, (%_1) has no analytic

form, hereafter we focus on the behavior for weak disorder and compute 07,/07,;".

A very convenient way of calculating 07,/ 57’1»;1 is making use of the Feynman-
Hellmann theorem - see for instance Refs. [59, 60]. Denoting by « (7') the largest eigenvalue
of (S\/Ald) for a given temperature 7" and by ag (T") the largest eigenvalue of (5\/1@), with

correspondent left and right eigenvectors <oz(LO)‘ and ‘agg)>, respectively, the Feynman-

Hellmann theorem tells us that that

0) |0 AA 0
50& <a/(L) E?Tf;i) a%)>
= i (3.42)
o=t < <o>‘ <o>> ' ‘
2 Tij =0 O[L OfR

It is important to emphasize that here we need both the left and right eigenvectors of A,
and AA, because these matrices are nonsymmetric. Now, recalling that at each fixed value
of the chemical potential x the SC transition temperature is given by «(7,) = 1, we find,

using the Maxwell relations, that

a(AA
PR (3.3)
T'=0 - <a(LO) ag)> (aaO/aTNT:TC . .

This is the general formalism we use in this and in the next subsection.

oT.

-1
ot

It is enlightening to start by the high-density regime, where the role of the
interband scattering is highlighted. In this case, u » {Q0, 0} and we recover the standard
BCS approximation (for both 2D and 3D bands, the results of this subsection are the
same!): the density of states appearing inside the energy integrals like Eq.(3.10) can be
approximated by its value at the Fermi surface (p; ) and the integration limits become

symmetric:
&e
€ _ Pk
O = L [ acoge). (3.41)

c
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Note that the energy cutoff &. can assume the values €2y or A depending on what we are
calculating. For instance, when we calculate BZ-(n) defined in Eq.(3.34), & = Q. When
calculating C™ defined in Eq.(3.40), on the other hand, &. = A.

Since {A,Q} » T, ./T. — o0, so the energy integration are performed from

—o0 to oo, which give us simple expressions

_ PiyF
< +52> < +52> Pi0|@nil (3.45)

Now, substituting Eq.(3.45) into Eq.(3.29), we find

- 1 _
|@nji| = |wal + 527'@'1 ) (3.46)
J

where we incorporate the ratios p; r/p;o in the definitions of the pairing couplings and

PiF - Pi,F
5(1 b 7 and &
sz

i 17
density limit, the renormalization in the bands’ dlspersmn vanishes h,, ; — 0.

impurity scattering rates Aij = Aij). Moreover, in the high-

Therefore, substituting Eq.(3.46) into Eqs.(3.34), (3.37) and (3.40), we obtain

the following results:

B(n) <|wn| + éZszl)
L= 2 (3.47)

D _

i C(") ( 573 +52J7—u ) (348)

D K _ ’
n 2 Lo (|wn| ; ;ZTJ.;)
J

wal (|wn| " z)

and

D, = (3.49)
I (|wn| + ;ZTU1>
i J
which, after some simple algebra, can be rearranged into
(Ad) =010+ 0;,;Q; (3.50)
1)

with

®Note that it corresponds to using the density of states at the Fermi level pi.r, instead of p; o,
in the the definitions of the pairing couplings and impurity scattering rates, i.e. A\j; = —p; rV;; and

75 = 2T nimppsp ([70i + [ul?67 ;).
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K€ PiF 1 Tier 1
P =1 __ - Y 51
' n( T ) p1F + p2F [¢<2+27TT0 v 2] (3:51)
PiF 1 Ti;tler 1
P Y T 3.52
“ pLF + P2.F [w(Q 27TTC) ¢(2 (3.52)

Here, there are two important details. First, we can see that the dependence of Eqgs.(3.47)-
(3.49) with the intraband scattering rates is such that they exactly cancel out when plugged
into the expression for Ay, which then becomes a function only of the interband scattering

. 1

rates, T .. = 5 (7’1_21 + 7'2_11). It means that in the high-density limit the impact of disorder

s 'inter

in T, comes solely from the interband scattering processes.

Second, in order to derive Egs.(3.51) and (3.52), we use the result (see Appendix

1 1 r 1z
SO P (S RN 3.53
; wal + 2 7T, ln (%Tc) 4 (2 * 27rTC)] ’ (8:53)

where T, is the upper cutoff of the Matsubara sum, needed for convergence (I'. = Qg » T,

for the Bi(n) terms), and ¢ (x) is the digamma function.

Asin Sec. 3.1.1, once we have the analytic expression for the matrix elements Ay,
solving the coupled gap equations A = A, A corresponds to solve a set of transcendental

equations, which, in this case, give us T, as function of 7, .

1), let’s investigate the behavior of 0T,/0T, L using
Eq.(3.43). First of all, substituting Eq.(3.45) into Eq.(3.12), it is straightforward to derive
that the largest eigenvalue of M, is

QO
ap = A\, In (“TO) : (3.54)

Instead of calculating T,.(7; .

with

1
Ay =g +4/0AN + ;A%Q : (3.55)

while its correspondent right and left eigenvectors are given by, respectively

[ 1
ON+A[ON2 + = )\?
‘a§§>> - P (3.56)

1

—A12

r
and

T
1
SN2 4 D)2
<ag))‘ _ | OAFAJON+ T)\12 ' (3.57)

)\12
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In Egs.(3.54)-(3.57), we introduce the following definitions: Ajo/Ao1 = 715" /7o = 7,
()\11 + Ag2) and dA = ()\11 — Ag2). Furthermore, noting that A is proportional to

‘ > we can clearly see from Eq.(3.57) that sgn(A;/A) = sgn(A2), so an attractive
A2 promotes equal sign gaps, while a repulsive A\ promote opposite sign gaps, as we

explained in Sec. 3.1.

Secondly, from Eq.(3.50), we readily find

g (/\Ad) 1 ™ ( )\12 - 7"/\11 —>\12 + 7’)\11 )

(3.58)

aTlnter ) a (1+7) 4T Ao — Az =2 + Ap2

Tmtcr:O

So, substituting Eqs.(3.54)-(3.58) into Eq.(3.43), we finally find, if we set r = 1 i.e., if
Aa = A1 and 71_21 = 72_11, which in turn is achieved if we assume equal density of states
for both bands,

(?Tc - sgn (A12)

T
oL, 1 g -8 2
inter L= A1—X
( 121)\1222) + 1

This expression reveals important properties of impurity scattering in multiband

(3.59)

superconductors. The first thing we should notice is that non-magnetic disorder affects
both s*~ and s™* superconducting states! Although the effect is much stronger in s*~
states (A2 < 0), Fig. 30(a) shows that T, of an s™" superconducting state is suppressed
as long as A\j; # Ag. We can understand why that is returning to Eq. (3.56): there, we
can see that A\j; = A\yp (and therefore A = 0) leads to A; = As. In this case, as we said

before, Anderson’s theorem holds and 7, becomes insensitive to non-magnetic disorder.

Returning to the A2 < 0 case, we can compare the role of non-magnetic
disorder in multiband superconductors with the role of magnetic disorder in single-

band superconductors. For a single-band s-wave superconductor with magnetic disorder

-1
mag?

oT.. T
(87‘ : ) -1 (3.60)
AG

mag

characterized by a scattering rate T,

This is known as Abrikosov-Gor’kov result - see Ref. [49]. Comparing Eqs.(3.59) and (3.60),

we conclude that for a two-band superconductor, in the high-density regime and with

oT. oT,
repulsive interband pairing interaction, | ——| < |5s—1|, as evidenced in Fig. 30(a).
aTinter 6Tmag

Alternatively, we can calculate 07T,/07,,., as function of r by setting Aj; = Moo

in Eq.(3.58). We thus obtain

1nter

6Tc
orL

inter

3

1+7r

_ .7 ll _ WW] , (3.61)

Tlnter =0
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from which we can see that the difference between the density of states of the bands plays
a similar role as the asymmetry between the intraband pairing interactions \j; — Ago. Fig.
30(b) shows that the suppression of 7, is zero (maximum) when = 1 for a superconductor
with attractive (repulsive) interband pairing. Our results are in agreement with previous
works such as Refs. [61, 55, 62].

@)
I
-
-3
| 8 - .
el 0.4 —_— )2 >0
" — A2 <0
n 4;3 _06F = = = Abrikosov-Gor’kov |

0k i
(b)
—-0.2 -
|
-8
I8 _ = .
o 0.4
-3 _ogl i
|1 = 0-6
BB
e LU e T T —— —
| | |
0.1 1.0 2.0 3.0 4.0
Tr
Figure 30 — The rate of suppression of T. by interband non-magnetic impurity
. oT .
scattering 7.} , 6% . These figures account for repulsive (A3 < 0,
inter 7—_1 =0

inter

red curves) and attractive (Ao > 0, blue curves) interband pairing interactions,
in the high-density regime. In panel (a), the density of states of the two bands
are set to be the same, but the intraband pairing interactions of the two
bands, A\j; and Ay, are allowed to be different. In panel (b), A\j; is set to be
the same as Ao, but the two density of states are allowed to be different,
with 7 = pa p/p1,r. In both panels, the suppression rates are normalized by
the magnitude of the Abrikosov-Gor’kov value of —7/4 corresponding to the
suppression rate of T, of a single-band superconductor by magnetic impurity
scattering.
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3.2.2 Asymptotic solution in the dilute regime

Let’s now return to the low-density regime, where p « 2y. Here, unfortunately,
the energy integrals apearing in Egs.(3.29)-(3.31) and Eq.(3.39) are not so simple as
Eqgs.(3.45), but we can still solve the gap equations and the self-consistent equations for
the renormalized Matsubara frequencies, bands dispersion, and superconducting gaps in

the limit of weak disorder.

As in Sec. 3.1.1, we investigate T, as a function of p, rather than a function of
N. Here, motivated by the result of Sec. 3.2.1, we neglect the intraband scattering rates
by setting 7,,' = 755" = 0. Moreover, for simplicity, we also set hyi = 0. In the end, we
can compare our analytic T.(u) with out numeric results to conclude if these are indeed

good approximations.

Expanding Eq.(3.29) up to linear order in the interband scattering rates, we
find

1
~nz’: n 1 = :1 3 5 .62
WOpi =W ( + 5T fm) (3.62)

where we defined the function

1 Q ;
fri=— larctan (0) — arctan (VVZ)] ) (3.63)

which came from the result of the energy integration. Recall that i = 1(2) for i = 2(1).
Moreover, evaluating the energy integrals in Eq.(3.39) and also expanding the resulting
expression in linear order in TZ{.I yields

Ayj= A, + 121 5A | (3.64)

inter

where A, is the clean-case diagonal matrix defined in Eq.(3.12), and, once more, 7, =
1

3 (71_21 + 72_11) denotes the average interband impurity scattering. The matrix elements of

§A carries complicated Matsubara sums:

N 1
((5A) =5 |Ridij + S (=055 +63)] (3.65)

v

with

2
—\A2+w?2 WP+ w2

S=T.> fuifaz - (3.67)

To derive Egs.(3.66) and Egs.(3.67) we made two simplifications: we set the
density of states of the two bands to be equal, p; o = p20, and considered 2y = A. It



Chapter 3. The Suppression of Superconductivity near a Lifshitz Transition 91

is importnat to emphasize that the main results presented here do not rely on these

simplifications.

To determine analytic asymptotic expressions for the matrix elements of fld,
we follow the same asymptotic procedure explained in Sec. 3.1.1. The calculation is

straightforward and, as shown in Appendix F, it results in long expressions for Ry, Rs,
and S.

Recalling that o(T), denotes the largest eigenvalue of AAg, where Ay is de-
fined in Eq.(3.64), it follows that, similarly to Sec.3.1.1, finding 7.(x) involves solving a

transcendental algebraic equation o = 1, with:

1

a=3 [all + a2 + \/(an — a)? + 40612@21] 5 (3.68)

where we defined, in terms of the analytic expressions for R; and S calculated in Appendix
F:

ajl = )\11 _Al + itler (Rl — S)_ + itler)\lgs
| 2m | 2m
r —1 1 1

19 = )\12 AQ + 12n;-er (RQ S) 12n;:r )\HS
r 1 1 !

as = A2 | A1 + %(Rl - 9)

+ —g‘;:r Ao S

B —1 ] —1

99 = )\22 A2 + IQH;:r (RQ S) TiQn;:r )\123 s (369)

with Al = (Ac) and AQ = (Ac) .
11 22

A comparison between the analytic and numeric T,(u) is presented in Fig. 31,
for the cases of attractive and repulsive interband pairing interactions. As in the clean case,
we can see an excellent agreement the two methods, except in very narrow regions where
the asymptotic approximation fails. Similarly to Fig. 25, these regions are too narrow
compared to the scale of the plots and are thus not shown in the plots. Moreover, the
agreement between the asymptotic solution and the numerical results near the Lifshitz
transition improves as the scattering rates becomes smaller, which makes sense since, as

we said in the beggining of this subsection, our asymptotic study holds for weak disorder.

As in Sec. 3.2.1, here we are also interested in the behavior of 0T,./07,

mter

obtained through Eq.(3.43). It is straightforward to calculate, in terms of the functions
Rl, R2 and S,

<O>> {(1 =M1 A) [(Ry = 8) (M1 — A2 Ag + A2 A5) + AinS(1+ AiAy)]

1
AL AR = 5+ M2SAo)} o (3.70)
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and
day 1 2 OA:-
) - M1 — A A+ \2A) =L , 3.71
T |r_r, 2= (A + Ay) j=1( H He 2 ]) T |, (37)
as well as
OZ(O) Oé(o) = (1 — )\11142)2 + )\2 A1A2 s (372)
L | R 12

which we can substitute in Eq.(3.43) and determine 07,/07,

nter

in each of the four regions

2.0 T T T T
(@) 5
__15F ' .
‘? i
= E s
— H
\>_</ Lo W
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w i
iy :
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E ® o o o numeric
E asymptotic
0 1 i 1 ]
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Figure 31 — Comparison between the numerical (symbols) and asymptotic an-
alytical results (solid curves) for T., as function of the chemical
potential u, for the 2D dirty system across the Lifshitz transition
at n = E&g-. Here we set £1,0 = P2,0, )\11 = )\22 = 013, and |)\12 = 0013, with
A12 < 0 (repulsive interband pairing interaction) in panel (a) and A5 > 0
(attractive interband pairing interaction) in panel (b). The interband impurity

scattering 7, is set to 7.\ /g0 = 1075,
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of the phase diagram in Fig. 24. This result, as function of the chemical potential, is shown
in Fig. 32 for the case of a two-band superconductor with (a) attractive, and (b) repulsive

interband pairing interaction.

In Fig. 32, we normalize 07T,/07;,., by the Abrikosov-Gor’kov suppression rate
—m /4. Moreover, the insets in each panel display zooms of the behaviors of the asymptotic
solutions near the Lifshitz transition, where, similarly as the clean case in Sec. 3.1.1, the

asymptotic solutions show discontinuities across the boundaries of the regions of Fig. 24.

(a) 0 T

@ —o2p N -
. ~0.05 ., | -
— g \l
|8 —04F 010k 1
l‘ )
i —0.15 | 4]
J.g —06
I~ ! —020 -
o ¥
S -—08}F | |
< & ~0.25
0.990 0.995 1.000 1.005 1.010

o~ § i
R -08 [ N
© S 0.995 1.000 1.005 1.010
<& —08f i
e S S -
1 | | | |
0.8 0.9 1.0 1.1 1.2 1.3 14
1/ €0
Figure 32 — The rate of suppression of T. by interband impurity scattering,
0T,
P . These figures account for attractive (Ao > 0, panel (a)) and
Ti

nter 'rA_tler=0
repulsivlé (A2 < 0, panel (b)) interband pairing interactions, in the dilute
regime. The insets highlight the asymptotic behaviors across the boundaries
of regions II, III, and IV of Fig. 24. In both panels, the suppression rates
are normalized by the absolute value of the Abrikosov-Gor’kov suppression
rate of —m/4, corresponding to the case of a single-band superconductor
by magnetic impurity scattering. The parameters used here are p; o = pap,

)\11 = /\22 = 013, and )\12 = Agl, with |/\12| = 0.013.
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Figure 33 — Rate of enhancement of T. by changes in the chemical potential,
0T,

, for the clean 2D system. The parameters are the same as those used

in Fig. 32. To make the comparison with that figure more transparent, we
also normalize the rate of change of T, by /4.

The results far from the Lifshitz transition are not surprising: before the Lifshitz
transition, when only one band is present, 07./07,.. is very small, since the second band is
sunk below the Fermi level. After the Lifshitz transition, when the second band is no longer
incipient, we approach the high-density limit and, consequently, 7./,  approaches
—m/4 for repulsive interband interaction and 0 for attractive interband pairing interaction,

in agreement with our discussion in Sec. 3.2.1.

The interesting behaviors of 07T,/ take place in the vicinity of the Lifshitz
transition. For the repulsive case (A2 < 0), we can see a sharp increase of the magnitude of
the suppression rate, despite the fact that the second band is only incipient. On the other
hand, for the attractive case (A;2 > 0), the magnitude of the suppression rate displays a
rather mild maximum when the second band crosses the Fermi level, which agrees with

our numerical phase diagrams shown in Fig. 28.

So we can conclude that the fate of the evolution of 7. in the dirty system
across the Lifshitz transition depends then on the competition between two opposite effects:
the suppression of 7T, due to the pair-breaking promoted by interband impurity scattering,
and the enhancement of T, promoted by the new electronic states that become part of the
superconducting state once the second band crosses the Fermi level. The latter effect is
illustrated in Fig. 33, where 0T./du obtained from the asymptotic analytical solution of
the clean system is shown. Generally, one expects that, for sufficiently strong disorder,
and for a repulsive interband interaction, the former effect wins, such that 7, displays a

maximum at the Lifshitz transition, which is indeed what we observed in the full numerical



Chapter 3. The Suppression of Superconductivity near a Lifshitz Transition 95

solution of the dirty gap equations shown in Fig. 28.

3.3 Conclusions - part |l

In this Chapter we investigated the evolution of the superconducting transition
temperature T, of a two-band superconductor as a function of the chemical potential p,
which controls the bands occupation. We give special attention to the limit where we are
close to the bottom of the bands, so by varying p we can go from the case where only one
band crosses the Fermi level (single-band superconductivity) to the situation where both

bands are populated, characterizing the regime of multiband superconductivity.

Particularly, when p reaches the bottom of the second band which then becomes
populated, making a new Fermi pocket appear in the Fermi surface, the system undergoes
a so called Lifshitz transition, which leaves signatures in the behavior of T.(u). It is
well known in the literature that 7, tends to increase across a Lifshitz transition, simply
because of the enhancement of the system’s density of states as the second band becomes
populated: a larger density of states implies that more electronic states will be available

for composing the superconducting condensate and as a result T, increases.

We show, both numerically and analytically, that this is the case for 2D bands.
We observe a sharp enhancement of T, across the Lifshitz transition for both attractive and
repulsive interband superconducting pairing. In a clean multiband superconductor, 7T, (u)
doesn’t depend on the sign of the interband pairing, which, in turn, only sets the symmetry
of the resulting superconductor state: an attractive interband pairing (A12 > 0) generates a
state with equal sign gaps denominate s** state. An repulsive interband pairing (A2 < 0),

on the other hand, generates an unconventional sign changing gaps states, the s™~ state.

However, recent experimental evidences show that T, actually reduces across
the Lifshitz transition of two paradigmatic examples of multiband superconductors: the
SrTiOs and the LaAlO3/SrTiO3 interfaces. In these system’s phase diagrams, one can see
a superconducting dome, peaked at the Lifshitz transition, even without any other nearby
order to compete with superconductivity. Motivated by these results, we investigated a

possible origin for this curious behavior.

It so happens that residual resistivity data reveal that both STO and LAO/STO
are dirty systems, so we decided to investigate the effect of non-magnetic disorder in a

model two-band superconductor.

We show, again both analytically and numerically, that in contrast to single-
band superconductors, in a multiband dilute superconductor non-magnetic disorder can
suppress T, of both st~ and s™" states. Our asymptotic study reveals that the key for the

suppression of superconductivity across the Lifshitz transition is the interband electronic
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scattering promoted by the impurities, which are strongly pair-breaking. Actually, we show
that what happens in the vicinity of the Lifshitz transition is a competition of two opposite
effects: one the one hand, there is the tendency of increase of T, due to the enhancement
of the density of states. On the other hand, when the second band becomes populated
the aforementioned interband scattering starts happening, destroying, in turn, the Cooper
pairs. When disorder is strong enough, the detrimental effect of disorder wins and, as a
result, T, is reduced, generating a non-monotonic behavior of T,(u) across the Lifshitz

transition.

Our asymptotic study also shows that the pair-breaking effect of non-magnetic
disorder is stronger for a multiband superconductor with dominant intraband pairing
interactions (A1 and \y2) and subleading repulsive interband interaction (|\12| < {A11, A2a},
with A1 < 0), and the theoretical phase diagram obtained in this case is in agreement
with the experimental phase diagram of the LAO/STO interfaces and thin films of STO.
Therefore, out work suggests an unconventional nature for the superconducting state in

these systems, which is a long-standing and puzzling open question in the literature.

Another astonishing consequence of our model is a change in the symmetry of
the superconducting state, from s™~ to s™*, as a function of the electronic density (n) for
a fixed impurity scattering rate and for the A5 < 0 case. Such result allows us to predict
that in the aforementioned phase diagrams of STO and LAO/STO interfaces, we would
have, at the left side of the superconducting dome (before the Lifshitz transition), an s~
state, while on the right side of the dome, as n (or u) increases, the symmetry of the state

would change to s*+.

Interestingly, such crossover can be observed experimentally, since it leaves
signatures in the spectroscopic and thermodynamic properties of the system. In particular,
for densities close to the onset of such symmetry crossover, the superconducting gap in
one of the bands is very small and, thus, could not be identified by some probes, which
would in turn, measure a signal consistent with a single-band superconductor even though
more than one band crosses the Fermi level. As a matter of fact, that is exactly what

happened in a recent optical conductivity experiment performed in doped STO.

It is important to emphasize that in this thesis we focused on the case of 2D
bands because the density of states of each band is a constant, and an analytic solution
of the gap equations is feasible. However, in Ref. [35], we show that the same qualitative
behavior described here holds for 3D bands, where the structure of a superconducting
dome is more apparent. Therefore, our model can explain the features of both the phase
diagrams of LAO/STO hetero-structures and bulk STO.
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APPENDIX A - Derivation of the Hubbard

Hamiltonian

Here we provide a detailed derivation of both the single-band Hubbard Hamil-
tonian defined in Eq.(2.9), and the three-band Hubbard Hamiltonian defined in
Eqgs.(2.94) and (2.95), which we use in the main text of this thesis. This appendix
is divided in three sections. In Sec. A.1 we derive Eq.(2.9), while in in Sec. A.2 we
show how this Hamiltonian needs to be modified to account for multiple orbitals

per site.

A.1 Single-band Hubbard Hamiltonian

Proposed by John Hubbard in 1963 to describe electrons correlations in narrow
bands[39], the Hubbard model is the simplest model available to study interacting electrons
in a lattice with either one orbital per site (single-band model) or multiple orbitals per site
(multiband model). We first show how to derive the single-band Hubbard Hamiltonian for

a 1D lattice with periodic boundary conditions.

The starting point is the complete Hamiltonian of /N, interacting electrons in

first quantization, which is given by

Ne p2 1 Ne 62

i=1 j#i=1 il

Here, p; and r; denote, respectively, the momentum and the position of the i-th electron
of the system, while e is the elementary charge. The information about the existence of an
underlying lattice enters in V,(r), which is the periodic generated by the lattice ions and
its core electrons. Here we make an approximation by assuming that the lattice is static,

so V.(r) does not change in time.

In the specific case of our rings, since here we are deriving a model only for the
degrees of freedom of the m-electrons, the biding o-electrons, frozen in the sp, orbitals,
also contributes to V.(r) through a static charge density in the o-bonds. This scenario

changes in Sec.A.2.

The next step is to rewrite the Hamiltonian in Eq.(A.1) in second quantization
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22],
7, = Z fdr zﬂl(r) h(r) f@a(r)
o=1.4
e 3 [ [ 600 Bt ) ) ) (A2)
where , ,
h®55;+%®=—;§ﬂ+%®, (A.3)

corresponds the single-particle Hamiltonian, while

u(r,r') = (A4)

r—r'|

is the standard Coulomb repulsion between the electrons. Besides, ¢ (r) (¢, (r)) is the
field operator that creates (annihilates) an electron with spin ¢ at the position r of the

real space,

Wg22@®¢. (A.5)

Note that it is given in terms of the single-particle states ¢;(r) = (r|j ), which are the
eigenstates of the single-particle Hamiltonian defined in (A.3). Moreover, the annihilation

operator @U(r) is readily obtained by taking the Hermitian conjugate of Eq.(A.3).

Choosing ¢;(r) to be the Wannier wave functions, which are centered at the
position of the j-th site of the ring, we obtain the field operators in the site basis', meaning
that the index j runs from one to the total number of sites NV of the ring and the operator
c}a (cj,) creates (annihilates) one electron with spin o in the site j. Moreover, since we
are dealing with a sing system, periodic boundary conditions apply, i.e. c} iNo = c;(,. More

details about the functional form of ¢;(r) is provided later in this Appendix.
Substituting Eq.(A.5) into Eq.(A.2), we find

Z tl] i jO’ + - Z Z kal C’Lo’ jo./ck.o.lclo_ . <A6>

Lo=tl bL,ykl=1 o,0'=1,|

H'Mz

Here t;; is the hopping parameter

by =Gl = | dr o1 () o5(e) (A7)

! Alternatively, we could have chosen the single-particle wave functions to be the Bloch states. In this
case we would find the field operator in the Bloch bases basis. The field operators, and consequently the
second-quantized Hamiltonians in the site basis and in the Bloch basis are related by a simple discrete
Fourier transform.
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which gives the probability amplitude of an electron to hop between the sites ¢ and 7, and
Uiji = (i |ul k) = Jdr f dr’ @ (r)gj (r) u(r,r’) oi(r')pi(r) (A.8)

is the Coulomb repulsion in the site basis.

The Hamiltonian (A.6) is still very generic and complex and, in order to obtain
the standard single-band Hubbard Hamiltonian, two important approximations must
be done [39]. First, we should note that, for narrow orbitals, the overlap between the
Wannier wave-functions centered at different sites of the ring will be negligible for sites
well-separated from one another, meaning that the most significant contribution for ¢;;

comes from nearest neighbor sites, i.e.,

ti ~ iR+ 1601 + G Rl — 158,501 = —t (411 + 6j4m1) (A.9)

where we define a uniform hopping amplitude (i |h|i + 1) = (i |h|i — 1) = —t, (with ¢ > 0).
Note that a non-uniform hopping would break the discrete rotation symmetry of the rings.
Furthermore the above choice of the minus sign in the definition hoping amplitude is

purely for convenience. The 1D Hubbard model has a t — —t symmetry.

The second approximation consists in transforming the two-body interaction

Eq.(A.8) into a purely local term, called on-site Coulomb repulsion,

<l] |U| lk> ~ <lZ |U| ZZ> 5j,i5j,i5k,i6l,i = U5]725],15k,,51ﬂ s (A10>

with U > 0. Therefore, substituting Eqs.(A.9) and (A.10) into Eq.(A.6), and using the

fermionic anti-commutation relations,

{Cm’ ]a} 0;,j00,0 (A.11)
{qm%a}={dw§d}—0 (A.12)

we find the standard Hubbard Hamiltonian for a ring with N sites, N, electrons and only

one orbital per site:
N
__tZZ<JU Ciy10 T hc)—i—UZn]Tn]i (A.13)
j=1 o

and i, = ¢! ¢. is the number

Here, “h.c.” denotes the Hermitian conjugate of ¢ ioCio

JU i+10
operator. Although the Hamiltonian (A.13) looks simple, the calculation of its energy
levels and corresponding eigenstates is not a trivial task. For small enough systems, as is
the case in this thesis, an exactly diagonalization of Eq.(A.13) can be done. However, for
large lattice systems, an analytic solution for the Hubbard Hamiltonian exists only for 1D

lattice via Bethe ansatz [41].
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A.1.1 Complete energy spectrum

In Fig. 7 at Sec. 2.2.1 of this thesis, we show the energy spectrum, as function
of U/t, of rings with 3 < N < 6 sites, all of them in the half-filling regime (N = N.). For
those rings with N > 4 sites we show only a few of the lowest energy levels, since the
complete spectrum involves too many levels and the figures end up looking a little bit

confusing. Here, however, we add these figures for completeness.

12

(a)

101

8t

Figure 34 — Energy spectrum of the Hubbard Hamiltonian The panels show the
energy levels of Eq.(2.9), as function of U/t for rings with (a) N = 3 sites, (b)
N = 4 sites, (¢) N = 5 sites and (d) N = 6 sites at the half-filling regime, i.e.,
N = N,.

A.2 Multiband Hubbard Hamiltonian

The field operator defined in Eq.(A.5) involves only one single-particle wave
function ¢;(r), which describes a p, orbital centered in the j-th site of the ring. If, on
the other hand, we want to consider multiple orbitals per site, the field operator must be
modified accordingly to incorporate these extra degrees of freedom. In particular for the

case where we have two sp, orbitals and one p, orbital per site, as illustrated in Fig. 5,
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the field operator takes the form

N
= > JG+Z do | (A.14)

J=1

where W, .(r) = (r |W;,), with k = 1 (k = 2), denotes the Wannier wave function of
the right (left) sps orbital centered in the j-th site of the ring, while ¢;(r) continues to
represent the Wannier correspondent to the p, orbitals. Consistently, here d;,w (dj0)
creates (annihilates) one electron with spin ¢ in the k-th sps orbital of the j—th site of
the ring, and c}a (cj,) creates (annihilates) one electron with spin ¢ at the p. orbital of

the same site. Later in this appendix, we explicit write W .(r) .

Hereafter, we treat the electrons in the p, and sp, orbitals as distinguishable
particles. This is one of the assumptions of our model which, at first glance, this might
look a bit harsh. However, it is justified by separation of the energy scales of the system,
as discussed in Sec.2.3.1. As a consequence the creation and annihilation operators in the

spo orbitals obey the following anti-commutation relations:

{diorr Ao} = 0i30n 00t (A.15)

{dz KO ]'ycr’} = {dz KO ]’YO'} (A16)
y _

{di,no’cj,o"} - {dz KO ]o} =0. (A17)

Substituting Eq.(A.14) into Eq.(A.2), we obtain H = Hyx + H;y, where the

kinetic component,

N
= Z Z [twcwcﬂ, 22: (t’fj Iadj,w + h.c.> Z i Vdj,w . U] , (A.18)
ij—1 0 K=1

Kyy=1

describes three processes: (a) the hopping between p, orbitals of different sites as defined

in Eq.(A.7), (b) the hopping between the p, and spy orbitals of distinct sites,
= (o W30 = | de G @h@Won(r). (A.19)
and (c) the hopping between distinct spy orbitals,

(5= W W W) = [ W2, bW r) (A.20)

Recall that h(r) is defined in Eq.(A.3). The interaction part of the Hamiltonian, H,,
on the other hand, accounts for all possible matrix elements of the Coulomb repulsion
involving (a) four p, orbitals, (b) three p, orbitals and one sps, (¢) two p, and two sps

orbitals, (d) one p, orbital and three spy orbitals, and finally (d) four sps orbitals. Its full
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expression is very long and, since its straightforward obtained by substituting Eq.(A.14)

into the interacting part of (A.2), it is unnecessary explicitly shown H,,, here.

Similarly as we did in Sec. A.1, we apply Hubbard-like approximations to
simplify H. The first one is to neglect the hopping between p, and spy orbitals. This is
justified by the symmetry properties of h(r), ¢;(r) and W ,.(r). Here we approximate the

single-particle wave-functions as hydrogen-like orbitals,
pi(r) = p(r = R;) = Ri(})Y{ (0, ¢;) , (A.21)

Wjk(r) = We(r—R;) = Ro(;) + 2R1(j)Re [¢;c Yy (05, 05)] (A.22)

1
V127
where R; is the position of the j-th site of the ring, already defined in Eq.(2.8), ; =r—TR;,
with 6; and ¢; denoting its polar and azimuthal angles, and Y;"(6, ¢) are the spherical

harmonics. Regarding the radial part of these functions

1 T
Ry(r) = 1——— ) e"/?® A.23
o= (17 50) (A23)
is the radial part of the wave function of an electron in the shell characterized by the
principal quantum number n = 2 - since in the carbon atoms the valence electron are
those in the n = 2 shell - and by the angular momentum number [ = 0, which refers to an

s-type orbital [38]. In addition,

Ri(r) = — ¢ /20 (A.24)

£/ 24a3
is the radial part of the wave function of an electron in a shell with n = 2 and [ = 1. Recall
that ay denotes the Bohr radius. Moreover, the constants

1 .
= ia+27/3) A.25
Ci1 = e , .

j71 \/g ( )

L ita,—2mp)

N , (A.26)

Cj72 =
encodes the spacial orientation of the spy orbitals. Here a; = (j — 1)27/N is the angular

position of the j-th site of the ring.

We can readily see that Eqgs.(A.21) and (A.22) are odd and even, respectively,
under the transformation 6; — m — 6;, while ¢; remains unchanged, which corresponds to
a reflection in the xy plane (z — —z). That is because Y,)(1 — 6;, ¢;) = —Y*(0;, ¢;) ,while
Yt (= 0;,¢;) = Y71 (0;, ¢;). The single-particle Hamiltonian A(r), on the other hand, is
always even under such reflection, because the periodic potential V.. exhibits this symmetry.
As a consequence the integrand in Eq.(A.19) is odd under xy-plane reflection, which causes
f?j to vanish. In the same way, the hopping between a p, and a s hydrogen-like orbital is

also zero, as we mention in Sec.2.1.
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The second approximation has to do with the hopping between sps orbitals,
we assume that the nearest-neighbor sites give the major contribution to ;f;’ Therefore, in
Eq.(A.20), we only take into account the hoppings (a) between the right spy orbital of site
j and the left spy orbital of the site j + 1 and (b) between the left sps orbital of the site j
and the right orbital of the site 7 — 1. Mathematically, such approximation is

l??ﬂ =~ —t~ [6j,i+1614,15'y,2 + (53",'_15,{72(5 ’15] . (A27)

J

Here, we define (W1 [h|Wii1,2) = (Wia |h|W;_1,1) = —t (with ¢ > 0), independent of
the rings site. Note that, since the overlap between first neighbors sps orbitals is typically

larger the overlap between p, orbitals, we have ¢ > .

The next set of approximation involves the interaction part of the the Hamilto-
nian H,,,. Similarly to Sec. A.1, we keep only on-site Coulomb repulsion, which, as we
show in Appendix B, are those that give the leading contributions to the matrices elements

of Hn. Under these assumptions, the interaction part of the Hamiltonian takes the form

ZZ{<%% |U|<PJ%> Cjo ]a CiorCj

g,0’ j

+ Z Wies Wiy [l Wi, W, a3> i d

JK1,0 Jng o' Vjk3,0" VY jka,0
K1,k2,R3,K4

+ 22 <()0]g0‘7 |u| W] ,‘QSOJ> (C‘]a. jO' ]U,deU + hC)

+ 2 Z Wi Wi [u| Wi ks (oljm1 odT@ o' Cior Qs o T h.c.>

K1,R2,R3

+ Z <90j90j |U| Wj,’il WJ,H2> <C]U jO"d]HQ J’d]nl ot hC)

R1,R2

+ Z <80]'I/th7l‘€1 |U,| Wj7f{290j> < djlfl o' jO"d]ng - + hC)

K1,R2

+ Z <()0] JiK1 |U’| (pJ ]H2> < ;(ad;m o' Yjka,0! jO’ + h C. )} (A28)

K1,k2

Note that because the Wannier wave functions in Eqs.(A.21) and (A.22) are real, the

interaction matrices elements are also real and the following identities hold:

{pjioj|ul Wikwi) = {piejlul oiWje) (A.29)
Wiss Wiio [t Wy 05) = Wa Wiy (1] 05Wiis) (A.30)
<SOJQOJ |u| W, mWJ,n2> <30J Jik2 |u| W;, /i190]> ) (A.31)

oWk [t 0iWiky) = Wi 0 |u| Wik, 05) (A.32)
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Again due to symmetry arguments, the interaction matrices elements involving
only one p, orbital or only one sp, are identically zero. Moreover, as we show in Appendix
B for the specific case of the prototype of the benzene molecule, {p;p; |u| W; ., W; ., is
subleading and can be neglected. Thus ﬁmt can be further simplified as a contribution of

only four terms ,

H Z{UC]O'C]O"C]U,C]G' + UIZ ]RO’ ]I{O’ jH O"djlia'

+U2Z jK,0 ]ﬁa ]na ]no—i_UZ(;ad}Lma jr,o! ]a+ hC)} (A33)

where k =2 (k =1)if k =1 (k = 1). In Eq.(A.33), the term proportional to U is the
usual on-site Coulomb repulsion between two electrons in the p, orbital, the same that
appears in Eq.(A.13). The term proportional to U; (Us), on the other hand, describes
the intra-orbital (inter-orbital) on-site Coulomb repulsion between two o electrons in the
same (in different) spy orbitals of the same ring site. The last term, proportional to U..
describes a density-density coupling between o-electrons and m-electrons, as will become
more evident in Eq.(A.35).

Combining Eqs.(A.18) and (A.33) and using the fermionic anti-commutation
relations, we can write the three-band Hubbard Hamiltonian as H= ffp + I:ISP + ]:Ic, where
I:Ip is the Hubbard Hamiltonian for the degrees of freedom of the m-electrons only identical
to Eq.(A.13), with the only difference that here, contrary to the case of the Appendix A.1,

the o-electrons do not contribute to the ring periodic potential. Besides,

N N
Hsp = _tZ Z (d},ladj—&-lﬂa + d},?adj—l,la) + Z
j=1 0o j=1

U, Z Aty + Us Z 167,20
(A.34)
is the Hubbard Hamiltonian for the o-electrons degrees of freedom, and

N
He=Uo Y 0D fijoltpor (A.35)

j=1 k o0’

express the coupling between these two "kinds" of electron. In Eqs.(A.34) and (A.35), we

Nj ko = dJ xol; o are the number operators associated with the spy orbitals.
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APPENDIX B - Estimation of the on-site

Coulomb repulsion

In this appendix we estimate the matrix elements of the on-site Coulomb repul-
sion that appears in the interaction segment of the multiband Hubbard Hamiltonian
we derive in Appendix A - see Eq.(A.33). Here in the ring with six sites at the
half-filling regime (prototype of the benzene molecule) and, in order to be able
to solve the integrals analytically, we approximate the Wannier wave functions by

hydrogen-like orbitals.

Let’s start by calculating the Coulomb repulsion between two m-electrons at the

j-th site of the ring. Recall that such on-site interaction is characterized by the parameter

U ={p;e;jlul o) = ezfjdl‘dr' o () I (') : (B.1)

v — |

where ¢;(r) is the Wannier function for the p, orbitals, which, in the localized orbital

approximation takes the form of Eq.(A.21).
Making the change of variables y = r — R, and y’ = r' — R;, where R; is the
position of the j-th site of the ring defined in Eq.(2.8), and using spherical Harmonics

expansion [63],

[ee] l
|y y | 47TZ Z 2[ + 1 l+1 lm (97 ¢) Y}m * (017 ¢/) ) (B2)
I=0m=

we can rewrite Eq.(B.1) as

defdyy 2 @{:1 R2(y)R2(Y') Lang(1,m) . (B.3)
0

Here, y. = min{y,y'} (y~ = max{y,y'}) is the smaller (larger) of the absolute value of y
and y'. Moreover # and ¢ (6 and ¢') are the polar and azimuthal angles associated with

the vector y (y’). The angular integration in Eq.(B.3),
Lang(l,m) = jdmfz (0, 0) [Y1'(0,0)] fdQ'Yz ¢, ") [, 0] (B.4)

can be calculated analytically: since ' [Y{(6), ¢)]2 = Y (0, 9)/V5m + Yy (0, ¢)/v/4m, the

orthonormality relation of the spherical Harmonics yields

) 0L, 0
e e L (.5)

! Another useful spherical Harmonics multiplications that we encounter in the calculation of
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Therefore, substituting Eq.(B.5) into Eq.(B.3), we find

U=e¢ (Z[Ri(y),R(Y),0]+ 4I[R2( ), Ri(y).2] ) = 501 ¢* ~ 0 1966—2 (B.6)
15 25 177 2560ay  ag '

recalling that ay denotes the Bohr radius. Besides, here we define

TR W), Ba(y). 1] = f dy f dy oy ;{:1 Fy(9) Fo(y) (B.7)
- [a f AW R + [a] dy';’,finy)FQ(y'), (B.8)

for any functions Fi(y) and Fy(y') of y and 3/, respectively.

Let’s turn to the interaction matrix elements in Eq.(A.33). The procedure
is analogous to what we just shown to calculate U, so we skip the intermediary steps.
Here, however, we have an explicit dependence of the Wannier wave functions on the
sites positions. Such dependence occurs via the constants c;, - see Egs.(A.22), (A.25) and

(A.26). Therefore hereafter the focus in the prototype of the benzene molecule (N = 6).

As we mention in Appendix A,

2 (0) W (r) oo ()]
{pj5 [ul Wi sy = € f J drdr’ =~ |Jr -~y :

~0, (B.9)

for the localized orbital approximation, Eqs.(A.21) and (A.22). That is simply because

from the angular over § and ¢ we find contributions as
[a0vi0.0v70.0) = b6 (B.10)

and

3
| davme.0700.00v10,0) =55 | a2 6.0 6.0
ql 3 m512(5m+1, (Bll)

while from the angular integral over #’ and ¢’ we find a different set of Kronecker deltas

! mynl  INT* 0 2 1 1
J A 0] [P0 = biadno+ = brodma (B.12)
this Appendix: Y26, 9)Yi% (0,60) = \[5o-Yi (6,0), ViF' (0,00 (0,0) = 41 ¥i(6,0) and
1 —1 _ 1 0 _L 0
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Since these different angular integrals appear as a product in the matrix element Eq.(B.9),
the result is identically zero, for all . Similarly, (W, .., Wj ., |u| W e,5) = 0 for all Ky, ko

and k3.

Now, concerning

(1) (XYW, (1) Wiy (1)

Y

SO .
(oss [l Wi Wins) = oWy [l Winaioy) = € f J drdr’ ¥

T

(B.13)

we can write it in a matrix form:

<S0j90j |u| M/J}mm/j,m> = (Ml)nh@ ) (B14>
where
1 6 N

(]\41),{1,“2 = 62 {9I [RO(y)Rl(y)7 RO(y,)Rl (?/)7 1] + %Re [(Cj,m) Cj,m] 7 [R%(y% R%(y,)7 2]} 9

(B.15)

and, again, the radial integrals can be calculated analytically. Interestingly, the dependence

on j of (¢jx, )" ¢jx, vanishes and the resulting matrix is site independent:

43 1
2 | 5570 Tan 2 (0.017 0.006
M, = e 25160 14630 ~ & (B.16)
o 60 2560 @ \0.006 0.017
Similarly,
2 for / !
3 ()W, () Wi, (r)
<90jo7“1 |U| gpijj,HZ> = 62fjdrdr, : |I' _ I./| : = (M2)I€1,H2 ) (B17)

with

(Ma),, ., =€ {;I [RY(y), R3(y'),0] + ;5Re [Cjm (cims)™] Z[RI(y), RI(Y), 2]
—2Re [¢j (cj) "] T[Ri(), RI(Y), 0]} : (B.18)

which in turn results in

1509 ! 0.170 0.004
R ey 2 [ 0. —0.

My =" | 7680 240 |~ = . (B.19)

o ~510 7630 o \ —0.004 0.170

The most complicated matrix element is
K K W; K ! K !
<Wj,l-€1 Wj,fiz |u| Wj,:‘% Wj,:‘i4> = 62 J J dI‘dI‘I VVL 1(r)WJ’ 3|(r) J;| 2(r )WL 4(r ) == (M3)m n o
r—r ’

(B.20)
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which can also be written in a matrix form if we define the basis {|11),|12),|21),]22)},
in this order and identify (M), , = (11|M;|12) = (W;1Wjy [u| W;1W;2). Therefore,

2Re [Cj,@ (Cj,fi3 ) *]
3

<"<51"<52 |M3| K3’€4> = 62 {;I [Rg(y)7 Rg(yl)v 0] + z [Rg(y)7 R%(y/)a O]

N 2Re [Cj’né (cj,,%)*]

+ 4Re [cjn, (cims)"| Re [cjm (e1n)™] T[Ri(Y), Ri(Y), 0]

2Re [(Cj,fil + Cj,fi4) (CJ}@ 1 Cjrs
* 9

+ 4Re [(Cj,/ﬂcjﬂ;zlg (Cjﬁzcj,fﬂs) ] T [R%(y), Rf(y'), 2]

n 4Re [Cj7“2 (Cj’,%,)*] Re [Cj,nl (Cj,m;)*]
25

I|R:(y), R5(y),0]

/] Z[Ro(y)Ri(y), Ro(y)R1(y'), 1]

I[R?(y),R%(y')ﬂ]} ., (B.21)

and we find

4649 B 13 B 13 287
23040 5760 5760 23040 0.202 —0.002 -—0.002 0.012
13 3587 287 13

Mgze— TE760 23040 23040 5760 2 1 —0.002 0.156 0.012 —0.002

~
~

aw | 13 287 3587 13 g
5760 23040 23040 5760
287 13 13 4649 0.012 —0.002 —0.002 0.202
23040 5760 5760 23040

—0.002 0.012  0.156 —0.002

(B.22)

Comparing Eqs.(B.16), (B.19) and (B.22) we can readily see that their diagonal
elements are the dominant ones. Moreover, the diagonal elements of M; are much smaller
than those of My and Ms, and also much smaller than U. As a consequence, we can

completely neglect M.

Neglecting both M; and the off-diagonal elements of My and M3, Eq.(A.28)
reduces to Eq.(A.33), where

2
Uy = (W, Wi 1| Wi Wi = (11 [Ms] 115 = (22| M| 22) ~ 0.202 — ,  (B.23)
Qo
2
Uy = (W, Wi 1| Wi Wi = (12 [Ms] 12) = (21 | M| 21 ~ 0.156 — ,  (B.24)
Qo
2
(&
Ue = {piWin lul 0Wi) = (11| M| 11) = (22[My] 22) ~ 0.170 — (B.25)
0

are all of the same order of the m-electrons on-site Coulomb repulsion. Recall that,
consistently with the notation we used before, k = 1 (k = 2) if K = 2 (k = 1). Similar
results holds for rings with NV # 6.
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Finding estimations for the hopping parameter between p, orbitals (¢) and sps
orbitals (%) is a much more complex task for two reasons: (a) first, we need the precise
form of the periodic potential and (b) the integrals we need to solve involves Wannier
functions centered at different sites, with makes the changes of variables we introduced in
this Appendix, and also the subsequent analytic approach unfeasible. Therefore, we do
not provide estimations for neither ¢ nor . For the purposes of this thesis, we use, when
dealing with the prototype of the benzene molecule, the values t = 2.54eV and U/t = 1.2,
obtained by the authors in Refs.[40, 42]. We also keep in mind that £ > ¢, since the overlap
between neighbors sp, orbitals is larger than the overlap between p, orbitals. In most of
the calculations shown in this work, we are careful to present the physical observables in

units of ¢ and/or .
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APPENDIX C - Matrix element of P in the

site basis

In this Appendix we derive the approximate expression for the matrix element

of the electronic momentum P, in the site basis, shown in Eq.(2.81).

The first thing we should note is that V = P/m, where m denotes the electron
mass, is simply the electron velocity operator, which is related to the system’s single-particle

Hamiltonian though the commutator

1
V= —[R.A] . (C.1)

1

Here, we denote by R the electron position operator and we recall that the single particle

Hamiltonian, in coordinate representation, is given by Eq.(A.3).

Calculating the expected value of Eq.(C.1) in the single-particle Wannier wave

functions ¢,(r) = (r|¢;), we obtain

G IR ) = oGPy = o (G RAL G BRI . (€2

(i
1

Now, inserting the closure relation

1= 315l (C3)

between the R and h operators on the right-hand side of Eq.(C.2) and approximating the

position expected values as
G Rl j2) = Ry, Gl J2) = Ry 1o (C4)

which is justified by the fact that the Wannier function ¢,(r) is localized about the j-th

site of the ring, whose position we denote by R;, we readily find
1. . 1 . .
Pl = o (R~ Ry) G bl ) (©5)

Finally, recalling that {jy |h| j2) = t;, j, gives the hopping between the sites j;

and js, which, in the nearest-neighbor approximation simplifies to
<j1 |h|]2> ~ _t5j2,j1i1 ) (06)

we obtain Eq.(2.81):

mit

(1 |Pl g2y = o (Rjy — Ryjp) O ju+1 - (C.7)
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APPENDIX D - Breit-Darwin Hamiltonian

in second quantization

In this Appendix, for the purpose of comparison with our effective momentum-
momentum interaction W,¢¢, we derive the expression for the Breit-Darwin interac-

tion in the Second Quantization formalism.

The Breit-Darwin Hamiltonian is a relativistic correction to the Coulomb
repulsion of a system of N, interacting electrons [63]. Roughly speaking, an electron
moving with a velocity v, generates a magnetic field, which is felt by another electron in
this system through a Lorentz force. The Hamiltonian describing such collective interaction
is

Hpp = —2162 JJ drdr' J(r)- G(r—r') - J(x') . (D.1)

Note that Eq.(D.1) is a very weak interaction proportional to v?/c?, where c is the light
speed, justifying the denomination of relativistic correction. Our effective momentum-
momentum interaction, on the other hand, having a completely different origin than Hpgp

is a much larger magnitude, as we discuss in Sec. 2.3.4.

In Eq.(D.1), J(r) is the electric current operator, which in coordinate represen-

tation takes the form
hoS
) = 5 = 3 G —n) +d(c—1) G . (D2)
j=1

Here V; indicates the gradient with respect to the position r; of the j-th electron of the
system, while N, denotes the total number of electrons. Moreover, G isa tensor, whose

components are

2 5 o )
g [l (rru’ TM) (TVg rl/) : (D3)
2 [ |r—r'| lr —r/|

with pu, v = 2,9, 2.

There are two ways of deriving the second quantized expression of Hgp: (a)
we can second-quantize the the current operator in Eq.(D.2) and substitute the resulting
expression into Eq.(D.1) imposing normal ordering of the creation and annihilation
fermionic operators in order to avoid non-physical one-body terms, which would appear

just as a consequence of the anti-commutation relations. The other option (b) is to
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substitute Eq.(D.2) into Eq.(D.1) and second-quantize the resulting full two-body operator.
We verified that both approaches give exactly the same result and here, for simplicity, we

follow the procedure (a), since it is the simplest one.

As any other one-body operator, the second-quantized form of Eq.(D.2) is

2mz Z Jd3r’wT Vd([‘—r)_Fé’(r_r/)vl]z/Ajo(r/) : (D4)

where V' denotes the gradient with respect to r', and ¢} (r) (10, (r)) is the field operator
that creates (annihilates) one electron with spin ¢ in the p, orbital of the j-th site of the
ring, as defined in Eq.(A.5). Note that here we are considering only one p, orbital per
site instead of the full three-orbital model. That is simply because we want to compare
the Breit-Darwin interaction with the effective interaction W,y we derived in Sec. 2.3.3,

which is an effective interaction between the m-electrons only.

Substituting Eq.(A.5) into Eq.(D.4), we find

Z Dl ) (Vep;(r) = ¢;(x) (Vi ()] ey, (D.5)
2mz

i,j=1 0O

where we used the integration by parts
[ 1691 0= 1) 0] = [V 5 - ) e
- s =) g (V6] =~V () . (DO

Now, substituting Eq.(D.5) into Eq.(D.1), and asking for the normal ordering

of the fermionic operators, i.e. [22]

CIUCJJCJIE:G’CIU’ = CZUCLUICZU,CjU ) (D7)
we readily obtain
Hpp = i Z Z Z(A + Biji — Cijrt — Dijwt) chocl_iepic (D.8)
BD = Qm2c2 e ijkl igkl ijkl ijkl) CioClo! Clo' Cjo - .
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with !
A = | [ e’ 520 @010100) G (0 = 1) 616 (2 1) (D.9)
Bt = | [ drar’ ¢,(6) 00 (6)) G (5 = 1) 1(x") (2 2(67) (D.10)
Comt = | [ e’ 61 (x) (B0 01(8)) G (5 = 1) 1(6") (L (6") (D.11)
Do = | | dvd o,(0) (0, 61 0) G = ¥') 52 (@ e (D.12)

Note that Eq.(2.46) is equivalent to

1 . o
Aijt = =7 <m ‘GW(XI,XQ)P;UPV(?)‘ jl> . (D.13)

The superscript index 1 (2) in the momentum operator denote that it acts in the first
(second) entrance of the ket i, j) = |i) (X) |5, where |iy which in coordinate representation
gives the Wannier function ¢;(r). Eq.(D.13) is easy to show: first recognizing that

7 ~
Ouia(r) = ?L <r B,

ia> , (D.14)

A

w

5ugpza(r)=—% i r>, (D.15)

we can rewrite Eq.(D.9) as
A = U drdr’ G, (£ — 1) (e [P 350! [P Iy Gi ey KR e

= Jf drdr’ G, (r —r') (rr’ ‘Plgl)Py(z)‘jD (ik |rr”) . (D.16)

Moreover, G, (r —r') can be seen as the coordinate representation of the Hermitian
operator CA?W(Xl, Xs), where X; (Xy) is the position operator of the particle 1 (particle
2), ie.,

G (v — ') ik rr’ = <m ‘GW(X1 - X2)‘ rr’> . (D.17)

Therefore, substituting Eq.(D.17) into Eq.(D.16) and using the closure relation
1= fj d*dr’ ey (x|

we recover Eq.(D.13).

0 0
IHereafter we use the notation V = Z %é# = Z 0péy, and V' = Z 3 ey = Z 0;@“
Iz H M H Iz
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Correspondingly, Eqgs.(D.10)-(D.12) are equivalent to

1 - A .

Big = =5 (ik | PO PG (X1, X)) (D.18)
1 A ra .

Cign = 73 <zk PG, (X4, X,) PV ]z> , (D.19)
1 ra .

Dijut = 25 (ik | P0G (X0, Xo) P2 1) (D.20)

Now, note that the set {|ij)} constitutes an orthonormal basis, with closure
relation
N
1= 3 il (D.21)
ij=1
So inserting identities Eq.(D.21) between the momentum operators and G, ,, in Eq.(D.13)
and Egs.(D.18)-(D.20), and approximating the matrices elements of CA}“,V by a purely local

term, i.e.

<ij ‘éW(Xl _ Xg)‘ kl> ~ <zz ‘G‘W(Xl _ XQ)‘ 7,2> 5ii0ixdi | (D.22)

where we define T’ F(ij) = <u ‘CAJW(XI — XQ)‘ ii>, those matrices elements simplify to

A = ——T;) z>m iz G- TGPl b, (D23)
By = = s GIPLY T k[P 650 (D22)
Cijri = *T(Z il = 33 <Z|P|J> T <k3|P|Z> 0il (D.25)
Dija = < \P\ ><y z>ajk SR TV GIPID 6oy (D20)

We can further simplify the previous equations using the nearest-neighbor
approximation for the momentum matrix elements, Eq.(2.81). In this case, substituting
Eq.(2.81) into Egs.(D.23)-(D.26) and plugging the resulting expressions back into Eq.(D.18),

we find, after a few change of variables,

£ (4) N
HBD 8m262 ( ) Z Z |: R Rj+1 ? . (R] _ Rj+]_) C](l)

j=1lo,0'
+(Rj — Rj41) T (Rj —Rj1) C'](Q)

<> (1) A
(R =Rjm1) - T+ (R = Ryia) CF
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with
CA’JQ) = (cjac;g,cﬁlgfcjua +h. C) — (cjac;rﬂg,cj(,l 1o T h-C-) ) (D.28)
CY]('Q) = (CEJC;G i—107Cjt10 T 10 C) (C;roc;[ 16'Cjo’ Cjt1o T h-C'> ) (D.29)
C’j(g) = (cjacja,cﬂla,c 1o T+ h.c.) — (cjac;fﬂa,c-alcj_lo + h-C-) ) (D.30)
CA'j(-4) = (cjo_c;(,,c]_lg,cj_lg +h C) - (c}ac; 16/CjorCi—10 T+ h.c.) . (D.31)

D.1 Estimation of (T)(Z)

Similarly to what what we do in Appendix B, we can estimate T Substltutlng
Eq.(D.3) into Eq (D.22), we realize that we can separate TlS’V) into two components:
(T)()—P]l—l—Q where

2 [ [ararlEE .

and

A 2 — —r'/
3= [ [ :jf,|3 i) ot

-] e ) i) Lo (D.33)

Comparing Eq.(D.32) with Eq.(B.1), we readily find that P, = U/2. Moreover, using a
localized approximation for the p, orbitals, i.e., assuming that ¢;(r) has the functional

form of Eq.(A.21), we can move on to calculate the tensor (@)(i).

In the same way as in Sec. B we start with the change of variables y = r — R;
and y’' = r’ — R, recalling that R; denotes the ring’s i-th site position. Thus Eq.(D.33)

reduces to

7" || dydy'” ’/|> o) o) - (D.34)

1 _ /
v(|y—y'|> -y (D-35)

and using into the expansion in spherical harmonics defined in Eq.(B.2) we can rewrite
Eq.(D.34) as

Now, recalling that

dydy |o ) lo(y)F [ (@, )] y ¥ ( Yy, ¢>) .
=0 m=— >

(D.36)
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The angular integral associated with y’ can be readily calculated using the spherical

harmonics orthonormality,

Long(¥/) = f 4 [y (Y78 )]
9, 1 1
= Rl(y) [\/5?5172@”,0 + E

and if we write the gradient V explicit in terms of spherical coordinates,

51705m,0:| , (D.37)

= -0 0, (D.38)

Eq.(D.36) becomes

o 1 < <
T =3} % s [t | [ w5, (55) [ aocze v o
=om=- 0 0
Y 0
+ w5 [aoge,on ( Gyrme.0) i
f .y 1 /0 )
+[an s [avee oy (Srre.o)i| . o3
0
Here,
sin?@cos? ¢ sin®fsing cos ¢ sinf cos f cos ¢
99 = | sin®fsinpcos¢  sin’fsin®¢ sinf) cos fsing | , (D.40)
sinfl cos 6 cos ¢  sinf cos fsing cos®
sinf cos @ cos®> ¢ sinf cosfsing cos ¢ —sin>6 cos ¢
90 = | sinf cosfsinpcos¢  sinfcosfsin®p  —sinfsing | | (D.41)
cos® 6 cos ¢ cos® fsing —sinf cos 6
and

—sinfsinpcos¢  sinfcos’¢ 0
Jo = —sinfsin®¢  sinfsingcos¢ 0 | . (D.42)
— cos fsing cosfcosp 0

Despite Eq.(D.39) looks complicated, we can calculate it analytically, obtaining

993
2 0
, | 35840 003
(i)
-——1 0o — o0 |, D.43
¢ ag 35840 o1 (D-43)
0 0
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and, consequently

225 0

| L | 1792 s 064 0 0
TO-C| o =22 o |~u| 0 o064 0 (D.44)

o 1792
0 1257 0 0 072
8960
Because of the matrix structure of (T)(i), it readily follows that
<> (1) <> (1)
(Rj - Rj-i—l) - T . (RJ — Rj+1) = (Rj — Rj_l) - T . (R] — Rj—l) x 0640,2U 3

(D.45)

Ry =Rye)) TV (R = Rym) = (R = Rya) - T+ (Ry = Ry) ~ 06400 cos (N
(D.46)

Finally, substituting Eqs.(D.45) and (D.46) into Eq.(D.27) and recollecting the terms, we

obtain
. 0.64U (at)? &
BD ZW Z Z I:(C.I-O.C;U/Cj_i_lo./c‘j_,’_lo. + hC) - (C;-"-].O’C;O'/Cj-i-lo"cjo' + hC)
j=1lo,0’
2m 2m
— COS (W) (c;f-ﬂgc;_la,cja,cjo + h.c.) + cos (W) (c}ac}_la,cj_%, i 10 T hec.)
(D.47)

Four different processes contributes to Hy b, two "bubbles" and two extended processes, as

illustrated in Fig. 35.

(a) (b) () @~ (d) g~ |
S ; . J -
JH1 A JHL e - J+1 Q’ J e
1 ‘\\‘ 1 \\‘\ s “ \\‘
) P J T ] ‘, .'
j—1 Jj—2
CT CT C C CT CJr C C CT CT C C C'r CT C C
jo“jo’ “j+lo’ V410 jo“j+1lo’“jo' j+1o j+lo~j—1o’“jo'“jo jo“j—1lo'~j—20'~j—10

Figure 35 — Breit-Darwin interaction. Illustration of the four types of two-body pro-
cesses that appear in the second-quantized Breit-Darwin interaction Eq.(D.47).
1C:

(a) i+10/Cj 410 and (b) CJT-HUCL,CjHU/ng are the two "Bubble-type" terms,
while (c) c} e

Tt
Cjacja +1lo’%j+1o

i 10/CjorCie and (d) c;r.gc;_lgl i—20/Cj_1, are the extended terms.
The Hermitian conjugate of (a)-(d) just reverse the direction of the arrows.

27r>
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APPENDIX E - Matsubara sums for the

clean case

Here we provided a detailed derivation of the the analytic expressions for
the matrix elements of Agean defined in Eqs.(3.20) and (3.21). This Appendix is
reproduced from Ref. [36].

Deriving an analytic expression for the matrix elements (Aclean) involves
ij

calculating, analytically, Matsubara sums of the type

1 :
Zn: w—narctan (i) = Slg;c(y) s1 <|§{c|) : (E.1)

where the quantity y can assume the values Qy, W, = —p or Wy = —pu + €9, and
(o) =2y, ———arctan (2 (52)
si(lz]) = ————arctan | ——— ] . )
! 4 (2n+ D) (2n + D)7

We calculate an approximate expression for s;(|z|), taking advantage of the

||

(2"‘1)) in two regimes: |z| « 1 and |z| » 1. If |z] « 1,
n T

asymptotic behavior of arctan (

(2n|—3|v—|1)7r « 1 for all n, and a Taylor expansion of arctan ((2n|—:(ii|1)77) leads to
S 2l + 2) [22l+2 — 1] 20+1
si(lz] « 1) = 2% 2l TDEnTe |z 21 (E.3)
where we used the fact that
= 2F — 1) C(k
N TC) -
n=0 [(2n +1 (2m)

with integer £ > 2 and ((k) denoting the Riemann zeta function. The leading term is
clearly the [ = 0:

si(|z] « 1) ~ |Z| . (E.5)

||

On the other hand, if |z| » 1, @n+

» 1 for small values of n, but the

|

m « 1 for large
n ™

ratio decreases with increasing n, until it eventually behaves as
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1
enough n. Denoting by N* the value of n such that (2N* + )7 = |z|, i.e. N* = |2$| — 5
T
we approximate arctan & by its Taylor expansion in powers of 1/|xz| when
(2n+ D)7

0 <n < N* and by its Taylor expansion in powers of |z| when N* + 1 < n < o0. The

result is
3 SIEEGIE .
1) = -2y —— 2 1
1(|I| > ) =~ ;} 2l + 1)|$|2l+1 Z [( n+ )ﬂ—]
|I|2l+1 o 1
+ 2 ) E.6
;) 2l 1) @t D7) (E6)
The sums over n that appear in Eq.(E.6) can be evaluated analytically:
(28 —1)¢(k) 1 |z :
B 1+ — <
o o) ([k| + 1 o) RSO
A O T R
N*
1 1 |z 1 .
————F =1 5 I+ —) - = fk=1
2;[@n+1)] < mer( +2W) ¢<2>], ifh=1, (E7)
(2* —1)¢(k) L =1\ o [\ .
(2n)F Gonilar ) v \ITgy ) A=
and
Y 1 1 (=" i,
= — 14+ — if k> 2, E.8
WQ;H[@H+-DWV (k—lﬂ(Qﬂ) v ( +2W)’ 1 (E8)

where ™ (z), ¢ (x) = @ (x) and By(x) are, respectively, the polygamma function of k-th

order, the digamma function, and the Bernoulli polynomials. In the limit |z| » 1, a Taylor

1
expansion, up to order O <k> leads to:

|z

1 .
N7 %ln (/€|£E|) ) ifk=1
Z ) ; (E.9)
= [(2n + )7 (2" = 1)¢(k) 1 .
i (2m)k N 2k — 1)z k1’ ifk<Oork>1

and
ith>2. (E.10)

R [+ )t 2= DT

Here, we defined the constant k = 2¢”/m ~ 1.13, with 7 denoting Euler’s constant.
Substituting Eqgs.(E.9) and (E.lO) into Eq.(E.6), we find that its second and
(él—?l) fr (C ~ 0.92 is the Catalan’s

constant), differing only by a minus sign. Thus they cancel out, and we obtain:

third terms result in the same constant Z

si(lz] » 1) ~ ;ln (k|z]) . (E.11)
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I I — I
0.6} i | // i
i i “ 1
L ()
l v
i VA _
Ol Tah
; /i
0.2 i i _
| E ] E |
% 1 2 3 4

Figure 36 — Numerical and asymptotic solutions for the Matsubara sum (E.2). The dot-
dashed blue and red lines are the asymptotic solutions for |z| « 1 and |z| » 1,
while the solid line is the numerical result. The dashed vertical lines delimit
the region where the asymptotic approximation begins to fail.

To summarize, combining Eqgs.(E.5) and (E.11), we have

% : if |z] « 1
s1(|x]) ~ : (E.12)
iln (klz|) , if|z|>»1

Note that s;(Jz|] — 17) # si(Jx|] — 17). This is because the asymptotic
approach we described begins to fail for |z| of order one, as we can see in Fig.36. As a
consequence, the asymptotic expressions for 7,(u) deviate from the numeric results when
w approaches the boundaries pf, u3 and u3 of the regions of the phase diagram illustrated
in Fig. 24. At these points, either |[W;| or |Ws| becomes of the order of T..
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APPENDIX F - Matsubara sums for the

dirty case

Here we provided a detailed derivation of the the analytic expressions for the
matrix elements of /Aldirty defined in Eq.(3.64). This Appendix is reproduced from
Ref. [36].

In the case of a dirty two-band superconductor, there are two distinct types of
Matsubara sums that we need to calculate for 6A, as shown in Eq. (3.64). The first are

sums of the type:

] .
Z—arctan (yl) Yo sign(yi1yz) 32(|y1| |y2|) : (F.1)

Wh wn) Y3 +w2 T2 T. T.

n

where we define:

S 1 |21 |22

So(|x], |T2]) =2 ————arctan . F.2

The other sum is
1 .
Zn: w—%arctan <fi) arctan (ii) = Slgn;?1y2)53 <|gi| , |37/i|) , (F.3)

where we define:

s3(|xa], |z2]) = 2 i 1arctan<|x1|) arctan(|$2|> (F.4)

s = [@2n+ Dr)? (2n + )m (2n+ D7) '
In these expressions, both y; and y, can assume the values g = A, Wy, = —pu, or
W@ = —U + €p.

To proceed with the calculation of (F.2) and (F.4), we use an asymptotic
approach similar to that described in Appendix E. In each of the four regions of the

two-dimensional parameter space |x1| x |x2| bounded by the lines |x;| = 1 and |z5] = 1

(see Fig.37), we substitute arctan (mr) and P [Zi PEpWE by their Taylor

expansions in powers of |z;| if |z;| « 1, or 1/|z;| if |z;| » 1.

When |z;| » 1 we decompose the sums over n into two contributions,

0

f<n>=zf<n>+ S i) (F.5)

n=0 = n=Nf+1
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A |xll=|w2| ’/,'

E2Y
5

0 1
|z1

Figure 37 — Different regions of the two-dimensional parameter space |z1| x |z5| in which
the analytic expansions are performed. In region 3, the silver area around the
line |z1| = |xo| indicates the region where the approximations lose precision,

1 2
since the neglected terms of order O ( (|x<|> ), 7 = 1,2, become more

[ \ ||
important.

11
where f(n) denotes any function of n. As in Appendix E, N} = |2$—‘ . is defined such that

7r
(2N} + 1)m = |x;|. When both |z1]| » 1 and |z3] » 1, on the other hand, the decomposition
is such that
o N NE 0
2Fm) =20+ Y S+ Y [, (F.6)
n=0 n=0 n=N¥+1 n=N¥+1
with NX = min{ N}, NS} and NZ = max{N;, N;}. Therefore, besides the sums already
calculated in Egs. (E.4), (E.9) and (E.10), we also need, for |z;| » 1,

1 |$2‘ .
* —In (= fk=1
% 1 o (|xl\>’ '
[(2n + 1)7r]k 1 l 1 1

n=N#¥ —
' om(k — 1) [z [F1 JaofbT

(F.7)

], ifk<0ork>1

After a straightforward calculation, we then find the following asymptotic

approximations for (F.2) and (F.4) in each of the four asymptotic regions of the (|z1|, |x2])
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plane:
0, if |5U1|a |552|<<1
/€/|£I?2| 7 if |1‘1| » 1, |.CI?2| «1
sa2(|z1], [22]) = 4 ’
L, |21 22| 0 (|21] — |22]) £
Sk fe]) = o o il el > 1
2 |2 2|z~ 4[]
0. if |z « 1, |z » 1
(F.8)
and
.
0 i Jaal 2] < 1
K |xo| if Joa > 1, |og| «1
s3(|1], |w2]) =
7T2 (|ZL’1| + |ZL‘2|) 1 |CL’<| :
———————n(k|r])— 5o i o], |22 > 1
16 2|z | |22 2|x| 2|7 |
el £l <1, oo » 1
(F.9)

7¢3)
2
|z~ | = max{|z1|, |x2|}. Recall that ((z) is the zeta function, 6 (x) is the Heaviside step

Here, we defined the constant £’ = ~ 0.11 and defined |z.| = min{|x,|, |z2|} and

function and k ~ 1.13 is the constant defined in Appendix E.

It is important to note that we treat the approximations we use during the
derivation of Eqgs.(F.8) and (F.9) consistently: in all the four regions of the parameter
space shown in Fig.37, we kept only terms up to order O(|z|*), with |z| « 1. Note that
there is a small sliver region around |z;| = |z3| in region 3 where this approximation loses

precision as compared to the other regions of the (|z1|,|z2|) plane.

The matrix elements of § A, defined in Eq. (3.64), are given by combinations
of (F.8) and (F.9). In each region of the phase diagram shown in Fig.24, the leading

contributions yield for R;:
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Ry ~
(o + p—¢o 1 o — [ .
—— + —1 , I
202 20 n o region
40 +p—2e0  pb(eg—21) e9—p 1 €0 — I 1 1
— +—1 ——In{—], ion II
407 Leo—p? 22 20, T\ )2 \wo) o TER
4 )
400 — i 1 Kl 1 ko .
——— ——In{— ) +—1 , 111
402 24 . (TC 2€ . T, resion
40 +pn—280  p—go 1 K2 (= €o) 1 Q0 (1 — €9)
+ ——Ih|(———F ) ——n(|——"rr—>) , ion IV
A0 262 2 T2 20 T2 resion
(F.10)
For R,, we find:
Ry ~
(€0 — 1 1 Kk (g0 — 1) 1 N ,
1 - —1 I
493 + 5 (50 — ,u) n < T. ) 20, n T. , region
pteo  p (e0—p) 0(2p — o) 1 K? (g0 — ) Wo 1 K2 S :
— 1 ——1 I
07 oz 422 MTER T2 20, "\ 12 ) T8
.<
Qo+pn 26 (50— p) 1 K210 . ’
20 T ~ 30, In 5 , region I1I
e+ egg+ 40 1 K2Qo 1 K (1 — o) .
——1 - 1 v
e + 102 50, n 72 i — 2 n T. , region
(F.11)
and for S:
S~
1 €0 —p 1 k(g0 — 1) 1 K2 .
2(c0— 1) - 202 + 20— 1) In ( T > - TZO In ((50 — :) Tc> R region I
2u—¢gg €0 — 2 1 W €0 KW 1 Kb 1 K (g0 — 1) 1 K2Q%u .
e m rawme e () wn(F) e s () (@) - e
72 2 (eg—p) 1 m 1 o 1 K32 - ’
G ey (7)) (1) reston 1
2 1 g0 2u—e& 1 K20 (1 — o) 1 K2u (1 — €o) 1 K (1 — o) )
(F.12)

where, W_ = min{|W|, |[W2|} and W~ = max{|W|, |IW2|}. The order of the terms in the
expressions for Ry, Ry and S are also consistent with those in Eqs.(F.8) and (F.9).
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