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Resumo

Essa tese é composta de dois grandes blocos, onde abordamos dois distintos fenômenos

exóticos em sistemas eletrônicos interagentes de baixa dimensionalidade. Na primeira parte

da tese, estudamos a anisotropia magnética observada experimentalmente nas moléculas

aromáticas. Nosso objetivo é formular um modelo microscópico mínimo capaz de descrever

a física desse curioso fenômeno que é alvo de muitas controvérsias na literatura. Mostramos

que, ao contrário do que diz o modelo RCM (do inglês Ring Current Model), apenas os

graus de liberdade dos elétrons π - ou seja, aqueles que ocupam os orbitais pz do anel

aromático - não são suficientes para uma descrição completa das propriedades magnética

desses sistemas. Derivamos, então, usando uma aproximação semelhante à aproximação

de Born-Oppenheimer, uma extensão do modelo de Hubbard onde uma interação efetiva

atrativa e do tipo momento-momento entre os elétrons π é mediada por excitações virtuais

dos elétrons mais localizados (porém não congelados) que compõem as ligações σ no plano

molecular.

Já na segunda metade da tese, estudamos a supressão da supercondutividade em um

supercondutor de duas bandas no regime onde uma delas é incipiente, ou seja, quando

uma das bandas está logo acima (ou logo abaixo) do nível de Fermi. Num supercondu-

tor de muitas bandas mais de uma banda de condução pode cruzar o nível de Fermi

simultaneamente, dando origem, para temperaturas abaixo da temperatura de transição

supercondutora (Tc), a um estado com múltiplos gaps supercondutores. A ocupação das

bondas, por sua vez, é controlada pela densidade de portadores de carga (n) presentes no

sistema. Suponhamos, por exemplo, que um determinado material supercondutor apresente

duas bandas de condução não degeneradas e que, inicialmente, apenas uma delas cruze o

nível de Fermi. Ao aumentarmos n, o que pode ser feito, por exemplo, através de dopagem

química, aumentamos a ocupação da banda de menor energia até que atingimos o fundo

da segunda banda que então começará a ser populada. Nesse caso, uma nova folha da

superfície de Fermi emerge, caracterizando uma transição de Lifshitz.

Uma transição de Lifshitz deixa uma assinatura no comportamento de Tc em função de

n. Curiosamente, ao contrário do que se esperava, foi observado em experimentos recentes

que Tc de dois exemplos paradigmáticos de supercondutores de muitas bandas - o SrTiO3

(STO) e a interface LaAlO3/SrTiO3 (LAO/STO) - sofre uma redução nas vizinhanças

da transição de Lifshitz. Utilizando uma teoria de campo médio, nós explicamos esse

comportamento não intuitivo como um efeito de impurezas não magnéticas presentes no

sistema. Mostramos que nas vizinhanças da transição de Lifshitz há uma competição entre

dois efeitos opostos: de um lado, Tc tende a aumentar como resultado da amplificação

da densidade de estados decorrente do aparecimento da nova banda. De outro lado,



espalhamentos de elétrons entre as bandas devido às impurezas quebram os pares de

Cooper, prejudicando a fase supercondutora. Quando as impurezas são fortes o suficiente,

o segundo efeito vence e, como resultado, Tc é suprimida. Nosso modelo aponta para uma

natureza não convencional do estado supercondutor em ambos STO e interface LAO/STO,

uma questão ainda em aberto na literatura. Além disso, também predizemos uma mudança

de simetria do estado supercondutor, de s�✁ para s��, em função da densidade eletrônica,

o que pode ser verificado experimentalmente. Esse trabalho foi feito na Universidade de

Minnesota, sob orientação do Prof. Rafael Fernandes e em colaboração com o pós-doc

Michael Schütt, durante um estágio de um ano financiado pelo projeto BEPE 2019/12874-3

concedido pela Fapesp.

Palavras-chave: Moléculas aromáticas. Correntes Persistentes. Anisotropia Magnética.

Diamagnetismo. Supercondutores de muitas bandas. Supercondutividade não convencional.

Desordem. Transição de Lifshitz.



Abstract

This thesis is organized in two big blocks, where we investigate two distinct exotic

phenomena in low-dimensional systems of interacting electrons. In the first half of this

thesis, we address the experimentally observed magnetic anisotropy of aromatic molecules.

Our goal is to formulate a microscopic minimal model to describe the fundamental physics

behind this curious and controversial phenomenon. We argue that, on the contrary of the

main idea of the Ring Current Model, the degrees of freedom of the π-electrons (i.e., those

occupying the pz orbitals of the aromatic ring) are not enough to properly describe the

magnetic properties of aromatic molecules. We derive an extension of the Hubbard model

where a momentum-momentum effective attractive interaction between the π-electrons is

mediated by virtual excitations of the σ-electrons (i.e., those occupying the sp2 hybridized

orbitals in the molecule’s plane).

In the second half of this thesis, we investigate the suppression of superconductivity

in a two-band superconductor in a regime where one of the bands is incipient, i.e., in

the limit where its bottom is just above (or below) the Fermi level. In a multiband

superconductor, multiple conduction bands can cross the Fermi level simultaneously,

originating, at a temperature below the superconducting transition temperature (Tc),

multiple superconducting gaps, one in each of the bands. By increasing the system’s

electronic density (n), such that a new band becomes populates, another Fermi pocket

emerges in the Fermi surface, signaling a Lifshitz transition. Such a transition leaves a

signature in the behavior of Tc♣nq. Contrary to what is expected, it was recently observed a

suppression of Tc close to a Lifshitz transition in two paradigmatic examples of multiband

superconductors, the SrTiO3 (STO) and the LaAlO3/SrTiO3 (LAO/STO) interfaces.

Using a mean-field approach, we explained this counter-intuitive result as an effect of

non-magnetic impurities, which, as evidenced by resistivity data, cannot be neglected in

these systems. We show that there is a competition between two opposite effects in the

vicinity of the Lifshitz transition of a two-band superconductor with dominant intraband

pairing interaction and subleading interband pairing interaction: on the one hand, Tc

tends to increase as a result of the enhancement of the system’s density of states as the

second band appears. On the other hand, interband electronic scattering processes due to

the presence of disorder start to happen as the second band becomes populated, which

breaks the Cooper pairs and, therefore, has a detrimental effect on superconductivity.

When disorder is strong enough, the second effect wins, resulting in a suppression of Tc.

Our model also suggests an unconventional nature for superconductivity in both STO

and LAO/STO interfaces, a topic that remains open and highly debated in the literature.

Furthermore, our model also predicts a change in the symmetry, from s�✁ to s��, of

the superconducting state as a function of n, which can be experimentally verified. This



work was done at the University of Minnesota, under the supervision of Professor Rafael

Fernandes and in collaboration with the Postdoctoral researcher Michael Schütt, during

the one-year scholarship supported by Fapesp BEPE fellowship No. 2016/12874-3.

Keywords: Aromatic molecules. Persistent currents. Magnetic anisotropy. Diamagnetism.

Multiband superconductors. Unconventional superconductivity. Disorder. Lifshitz transi-

tion.
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1 Introduction

In Condensed Matter Physics, there are several phenomena in which exotic

electronic states, with unique physical properties, arise as a consequence of either low-

dimensionality, strong inter-electronic interactions, or a combination of both. A few

paradigmatic examples [1] of such exotic phenomena are the unconventional supercon-

ductivity in the cuprates, where it is generally accepted that the fundamental physics is

described by that of a copper oxide plane (effective 2D system), the fractional Quantum

Hall effect, where the Hall resistance is quantized in non-integers multiples of h④e2, and

the recently observed correlated phases in twisted bilayer graphene, which compose a very

active research line nowadays [2, 3, 4].

In this thesis, we investigate two distinct exotic phenomena in low-dimensional

systems of interacting electrons: (a) the anisotropic magnetic response of aromatic molecules

(chapter 2) and (b) the suppression of superconductivity across the Lifshitz transition in

2D two-band superconductors (chapter 3).

Aromaticity is a very delicate concept that lies at the heart of chemistry since

the discovery of the benzene molecule by Michael Faraday [5] in 1825. It is generally

accepted that aromatic molecules are composed of a planar cyclic arrangement of carbon

atoms. In this configuration, each carbon atom has four valence orbitals: one pz orbital

and three sp2 orbitals, which originate from the hybridization of the s, px and py orbitals.

The electrons occupying the pz orbitals show large delocalization, being able to hop from

one atom to its closest neighbor, conferring extra stability to the molecule [6]. However,

up to this date, no smoking gun evidence could tell us if a given molecule is aromatic. In

other words, there is no single property which can be related to an unequivocal measure

of aromaticity [7, 8, 9]. On the contrary, along the years different criteria for aromaticity

were proposed, and, among them, one which became very popular is the magnetic criteria

for aromaticity [7].

In the decade of 1930s, it was experimentally verified that aromatic molecules

have a peculiar magnetic property: when a magnetic field is applied perpendicularly to

their planes, the induced magnetic moment is such that its component parallel to the field

is much more intense than the perpendicular components, reflecting in an anisotropy of

the molecules’ magnetic susceptibility (which we hereafter denote by ∆χ) [10]. As pointed

by Linus Pauling "the susceptibility ellipsoids of the aromatic molecules are found to be

approximately prolate ellipsoids of revolution, with the long axis normal to the plane of the

ring system" [11].

To explain this phenomenon, Linus Pauling [11], Fritz London [12, 13, 14] and





Chapter 1. Introduction 19

superconductor are completely different physical phenomena. When one thinks about

superconductivity, maybe the first thing that comes to mind is its perfect conductivity

(although it is not the most fundamental physical property of a superconductor1), but

dissipationless currents are also found in non-superconducting states. At the time that

the RCM model was formulated, it was not known that a normal metal ring supports

a persistent electric current, as long as it is small enough, clean enough, and is kept at

low temperatures. Such persistent current is an equilibrium phenomenon, resulting from

the quantum coherent motion of the electrons along the ring [20]. This is the type of

current we encounter in the aromatic molecules [21]. Hereafter, every time we say persistent

current, we mean the equilibrium dissipationless currents that are observed in normal

metal micro/mesoscopic rings.

Conversely, in a superconductor, the current-carrying states are not equilibrium

states of the system, but rather metastable states with a very long life-time [1]. There are

two more key differences between persistent current in normal metal rings and supercurrents

in superconductors:

• The persistent current ceases to exist once the external magnetic field is removed.

• A supercurrent is always diamagnetic, while the direction of the persistent current is

very sensitive to the number of electrons present in the system [9].

We mentioned above that there are some unjustified hypothesis in the foun-

dation of the RCM model [7]. One of them is that the σ-electrons - i.e., those in the

hybridized sp2 orbitals oriented in the molecular plane, see Fig. 4 - do not contribute

to the enhancement of the molecule’s induced magnetic moment in the direction of the

external magnetic field. We can wonder: is it really true that the degrees of freedom of the

π-electrons alone can account for the magnetic anisotropy of the aromatic molecules? We

argue that the answer is no!

As we show in Sec. 2.2, if we use a single-band Hubbard model (only one pz

orbital per atom of the aromatic ring) to describe the π electrons of a benzene molecule,

we obtain a ∆χ smaller than the experimental value. Even if we completely neglect the

inter-electronic interactions, so the aforementioned Hubbard model reduces to the Hückel

model (which is actually the model used in London’s conception of the RCM model), we

obtain a ∆χ which is not in good agreement with the experimental result.

We argue that it is necessary to take into account the degrees of freedom

of the σ-electrons for a proper description of the magnetic properties of the aromatic

molecules. In Sec. 2.3 we derive a possible minimal model that does it. Note that if the

1One cannot derive, from the perfect conductivity another fundamental property of the superconductors,
which is its perfect diamagnetism. But the contrary is true.
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sigma-electrons are kept static, frozen in the molecule’s σ-bonds, the only role they play

in the dynamics of the π-electrons, is the generation of a static charge density in the bonds,

which composes the periodic potential felt by the π-electrons. If, on the other hand, we

allow virtual excitations of the σ-electrons to happen, they modify the charge density

in the bonds and, consequently, the potential felt by the π-electrons as they move along

the ring. We show that such virtual excitations of the σ-electrons mediate an effective

attractive momentum-momentum interaction between the π-electrons, which promotes an

enhancement of the magnetic response of the aromatic rings. In the specific case of the

benzene molecule, the experimental value of ∆χ is recovered.

The second half of this thesis is dedicated to another exotic physical phe-

nomenon, which is unrelated to the magnetic anisotropy of aromatic molecules: the

suppression of superconductivity across the Lifshitz transition in a multiband supercon-

ductor.

In the opinion of this author, superconductivity is one of the most fascinating

topics of modern Physics. It was first observed by Kamerlingh Onnes, in 1911, while he

was studying the resistivity, as function of temperature, of a sample of mercury. Onnes

saw that, below a critical temperature (the superconducting transition temperature Tc),

the material’s resistivity suddenly dropped to zero, signaling a perfect conductance. It took

more than 50 years after the discovery of superconductivity for the development of the

first microscopical model that successfully describes this phenomenon: the BCS model,

named after John Bardeen, Leon Cooper, e John Robert Schrieffer.

Briefly speaking, the BCS model tells us that electrons in an underlying crystal

lattice experience an effective attractive interaction mediated by the phonons [22, 23].

Such attraction causes an instability in the system and promotes the formation of pairs

of electrons, denominated Cooper pairs, which condense in a state that becomes macro-

scopically occupied. Over the years, new superconductors were discovered, with increasing

values of Tc, where the aforementioned phononic mechanism could no longer account for

their physical properties. These superconductors are generically called unconventional

superconductors.

It remains an exciting open problem to elucidate the origin of superconductivity

in the unconventional superconductors: although it is generally accepted that in these

systems the electrons also bind in Cooper pairs, there is no consensus about the "glue"

that keeps them together. It might be the case that the microscopic mechanism for super-

conductivity is different for each of the distinct families of unconventional superconductors

(such as the cuprates, iron pnictides, organic superconductors, heavy fermions and so on).

Moreover, the phase diagram of unconventional superconductors is incredibly

rich. One often finds a plethora of different phases in the vicinity of superconductivity,

which can compete with the superconducting state or enhance it. These systems are a
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The multiband character of STO manifests in its phase diagram[31] - i.e., Tc as

a function of n - which exhibits a double dome shape, as shown in the inset in Fig. 2(a).

When n is smaller than a critical value nc,1, only the lower band is occupied and its Fermi

surface is (approximately) a small sphere. In this case, we are in the regime of single-band

superconductivity. As we increase n, Tc monotonically increases as a consequence of the

increasing density of states of the system. When n equals a critical value nc,1, we are

at the bottom of the second band, which now becomes populated, signaling a Lifshitz

transition (LT). In general, a LT is any change in a system’s Fermi surface as function of

the electronic density (or, equivalently, chemical potential), but in the specific context of

multiband superconductivity, it is characterized by the appearance of a new Fermi pocket

at the Fermi surface as a new band becomes populated.

For n → nc,1, the two lower bands are occupied and we are in the regime of

two-band superconductivity. If we continue increasing n, at n ✏ nc,2 we reach the bottom of

the third band and the system undergoes another Lifshitz transition. Finally, for n → nc,2,

we enter in the regime of three-band superconductivity. It is important to say that nc,1 and

nc,2 were measured for the first time through quantum oscillation experiments in 2014 [31].

Interestingly, if we focus on the low-density region of the phase diagram of

STO (region of the first SC dome in the inset in Fig.2(a)), we see that the maximum of the

superconducting dome coincides with the critical density nc,1 where the Lifshitz transition

takes place. This is unexpected and counter-intuitive. Since the system’s density of states

increases across the LT, we would expect Tc follow the same trend. As shown in Fig. 2(b),

the same non-monotonic behavior of Tc is observed in another multiband superconductor,

the LaAlO3/SrTiO3 interface[33], which, as a matter of fact, shows several similarities

with bulk STO.

Moreover, residual resistivity data [31, 34] reveals that STO and LAO/STO

interfaces are dirty systems: we show in Sec. 3.2 that such transport data allow us to

estimate the impurity scattering rate (τ✁1) for both STO and LAO/STO interfaces,

yielding τ✁1 ✓ 10Tc. Such a large scattering rate in comparison with Tc tells us that the

role of disorder cannot be neglected in the description of the physical properties of these

materials. Motivated by the aforementioned experimental results, in the second half of

this thesis we study the evolution of Tc of a dirty two-band superconductor, as a function

of the chemical potential, across the LT.

In this work, we take into account only non-magnetic disorder and we show that

interband scattering processes are strongly pair-breaking if the interband superconducting

pairing interaction is repulsive. Actually, in the vicinity of the Lifshitz transition, our

model reveals the competition between the tendency of increase of Tc, promoted by the

enhancement of the system’s density of states and the detrimental effects of the interband

scattering processes. Therefore, when disorder is strong enough, the second effect wins,
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resulting in a suppression of superconductivity across the Lifshitz transition in agreement

with the experimental phase diagrams of Fig. 2.

As explain in Sec.3.2, another two important outcomes of our model are (a)

evidence of an unconventional nature of superconductivity for both STO and LAO/STO

interfaces and (b) a prediction of crossover in the symmetry of the superconductor state,

which might explain why some recent experiments performed in STO showed signatures of

single-band superconductivity even in a doping region where it is known that multiple

bands crosses the Fermi level.

In this thesis, we focus on 2D bands, since this is the case where an analytic

calculation of Tc♣µq can be done, but we emphasize that the same qualitative behavior

holds for 3D conduction bands, as shown in Refs. [35, 36].

The order of the sections is outlined at the beginning of each of the subsequent

chapters. We emphasize that chapters 2 and 3 are independent, so the reader should feel

free to choose the order he/she prefers to read. This material was written with the purpose

to be accessible for a more general audience than Condensed Matter physicists. Therefore,

this thesis is made to be self-contained and fundamental concepts used here are presented

in detail. To not make the reading tedious for those who are already familiarized with the

formalism we use here, we provide a set of six appendices which complement the body of

the main text.
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2 The magnetic anisotropy of aromatic

molecules

In this chapter, we propose a minimal microscopic model (Eq.(2.91)) to describe

the exotic magnetic anisotropic response of the aromatic molecules. Our model

consists of an extension of the Hubbard model for the π-electrons (i.e., those

occupying the pz orbitals of the aromatic ring, as explained in Sec. 2.1), in which

an effective attractive momentum-momentum interaction between them is mediated

by virtual fluctuations of the σ-electrons (i.e., those occupying the hybridized sp2

orbitals in the plane of the aromatic molecule).

A description of the discrete microscopic rings we use as prototypes of aromatic

molecules is given in Sec. 2.1. In the subsequent Sec. 2.2, we motivate the need

for an extension of the Hubbard model by showing, explicitly, that the degrees of

freedom of the π-electrons alone cannot account for the anisotropy of the magnetic

susceptibility measured in the benzene molecule. We derive our model in Sec.2.3,

where all the assumptions and approximations are carefully discussed. In Sec.2.4,

two key assumptions of our model are justified. Our most important results are

summarized in Sec. 2.5.

A set of appendices (Appendix A to Appendix D) complements the body of this

chapter. Going through these appendices is not required to understand the ideas

presented in the main body of the thesis. Therefore they can be skipped if the reader

wishes so.

2.1 Prototypes of aromatic molecules

The systems we study in this chapter are small discrete rings, i.e., discrete 1D

lattices that obey periodic boundary conditions. We denote by N the number of sites of

the ring and by a its lattice spacing, so the ring’s length is simply L ✏ Na. These discrete

rings are sometimes called in the literature Hubbard rings[37], since their electronic degrees

of freedom are modeled by the Hubbard model or some extension of it, as is the case in

this thesis.

If we think of each of the ring’s sites as a carbon atom, we can interpret them

as prototypes of aromatic rings of real aromatic molecules 1. On the contrary of real-life

molecules, however, we impose the sites to be always static. That is because in this work

1Here, we refer to aromatic molecules whose rings are composed solely by carbon atoms.
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we focus solely on orbital electronic properties and, thus, we do not investigate effects

related to the ionic degrees of freedom, such as the molecular vibrational levels.

Recall that a neutral carbon atom has a total of six electrons, two of them in

the 1s shell, strongly bound to the atom’s nuclei, while the remaining four electrons are in

the outermost 2s and 2p orbitals. In the ring configuration, the 2s, 2px and 2py orbitals,

whose wave functions are expressed by [38]

①rθφ ⑤ sj ② ✏ fs♣jqY 0
0 ♣θj, φjq , (2.1)

①rθφ ⑤ px,j ② ✏ fpx
♣jq❄
2

✏
Y ✁1

1 ♣θj, φjq ✁ Y 1
1 ♣θj, φjq

✘
, (2.2)

①rθφ ⑤ py,j ② ✏ fpy
♣jq❄
2

✏
Y ✁1

1 ♣θj, φjq � Y 1
1 ♣θj, φjq

✘
, (2.3)

hybridize. It defines three orthonormal sp2 orbitals [16]:✞✞✞sp♣Iq2,j

❊
✏ 1❄

3
⑤sj② � 2❄

3
⑤px,j② , (2.4)

✞✞✞sp♣IIq
2,j

❊
✏ 1❄

3
⑤sj② ✁ 1❄

6
⑤px,j② � 1❄

2
⑤py,j② , (2.5)

✞✞✞sp♣IIIq
2,j

❊
✏ 1❄

3
⑤sj② ✁ 1❄

6
⑤px,j② ✁ 1❄

2
⑤py,j② . (2.6)

The pz orbitals, on the other hand,

①rθφ ⑤ pz,j ② ✏ fpz
♣jqY 0

1 ♣θ, φq , (2.7)

remains unchanged. In the previous equations Y m
l ♣θ, φq denotes the spherical harmonics2.

Besides j ✑ r✁Rj, are vector positions centered at the j-th site of the ring, with associates

polar and azimuthal angles 0 ↕ θj ↕ π, 0 ↕ φj ↕ 2π, respectively. Illustrations of the s, p

and hybridized sp orbitals are provided in Fig. 3. The vector Rj is the position of the j-th

site of the ring, which we discuss in more details below. Moreover, the specific functional

form of the radial component of the orbitals, fs♣jq, fpx
♣jq, fpy

♣jq and fpz
♣jq are discussed

in the Appendix A.

It is important to note that the sp2 orbitals are oriented along the ring’s plane

in such a way that there is an angular spacing of 2π④3 between them (see Fig. 3 (b) and

Fig. 4 (c)). The pz orbitals, on the other hand, are oriented perpendicularly to the ring’s

plane, as illustrated in Fig. 4 (b). The overlap between the sp2 orbitals of two adjacent

carbon atoms - as well as the overlap between an sp2 orbital of a carbon atom and the

2In our notation, Y m
l ♣θ, φq ✏ ♣✁1qm

❞
♣2l � 1q

4π

♣l ✁ mq!
♣l � mq!Plm♣cos θqeimφ, where Plm♣xq are the associ-

ated Legendre Polynomials, with l ✏ 0, 1, 2, ☎ ☎ ☎ and m ✏ ✁l,✁l � 1, ☎ ☎ ☎ , l ✁ 1, l.
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core electrons - and interact with each other through the Coulomb repulsion, which is

approximated to a purely local interaction U , called on-site Coulomb repulsion.

Here, we approximate tij by the first-neighbor hopping [39]: tij ✏ ✁t ♣δj,i�1 � δj,i✁1q,
with δi,j denoting the usual Kronecker delta, and

t ✏ ✁
➺
dr ϕ✝i ♣rq

✒
✁ ~

2

2m
∇

2 � Vc♣rq
✚
ϕj♣rq , (2.10)

where ϕi♣rq is the Wannier wave function of an electron in the pz orbital of site i, and

Vc♣rq. We emphasize that, although the hopping between second-neighbor sites (and even

more distant sites) can in principle happen, they are much smaller than t, since the overlap

between pz orbitals at different sites significantly decreases as the sites are more separated.

Furthermore, in terms of the aforementioned Wannier wave functions, the

on-site Coulomb repulsion takes the form

U ✏ e2

➺
dr

➺
dr✶

⑤ϕi♣rq⑤2 ⑤ϕi♣r✶q⑤2
⑤r ✁ r ✶⑤ , (2.11)

where e ✓ 1.602 ✂ 10✁19C (✓ 8.542 ✂ 10✁2, dimensionless in Natural Units5) is the

elementary charge6. If we set U ✏ 0, Eq.(2.9) reduces to a purely tight-binding Hamiltonian

known as Hückel Hamiltonian. For self-consistency purposes of this thesis, we provide a

careful derivation of Eq.(2.9) in Appendix A.

Note that, up to this point, we did not specify the functional forms of ϕj♣rq
and Vc♣rq. The specific angular and radial dependence of ϕj♣rq is important to calculate

the numerical values for the parameters t and U . An estimation of these parameters is

provided in Appendix B for the specific case of the prototype of benzene. Here, it is enough

to keep in mind that the deeper Vc♣rq is at the site positions, the larger is the tendency

of the electrons to localize around those sites and, therefore, the smaller is the hopping

amplitude. Bottom line is that, for now, we do not need to worry about neither Vc♣rq nor

ϕj♣rq, since in the calculations performed in this chapter, except when explicitly mentioned

otherwise, all physical quantities are given in units of t and/or U④t.

2.2.1 Energy spectrum

In the case of the Hückel model (Eq.(2.9) with U ✏ 0), we can easily determine

the energy levels and correspondent eigenstates of a generic ring with N sites and Ne

5The Natural Units are defined by ~ ✏ c ✏ 4πǫ0 ✏ 1 and the remaining units are given in terms
of electron-volt. For instance, length and time have dimension of inverse of energy (1④eV ), and electric
charge is dimensionless. Therefore, in this unit system the electric current has dimension of energy.

6Notice that every time e appears in this thesis’ equations, we mean e → 0. The negative sign of the
electronic charge is always explicitly included.
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independent electrons. We only need to apply the Fourier transform to the electronic

creation and annihilation operators,

c
✿
kσ ✏

1❄
N

N➳
j✏1

ei2πkj④Nc
✿
jσ , (2.12)

ckσ ✏
1❄
N

N➳
j✏1

e✁i2πkj④Ncjσ , (2.13)

where c✿kσ (ckσ) creates (annihilates) a electron with spin σ and quasi-momentum k (with

k ✏ 0, 1, ☎ ☎ ☎N ✁ 1). This way, we obtain the Hückel Hamiltonian in the Bloch basis

ĤHückel ✏ ✁2t
N✁1➳
k✏1

➳
σ✏Ò,Ó

cos
✂

2πk
N

✡
c
✿
kσckσ ✏

➳
k,σ

εkn̂k,σ , (2.14)

where n̂kσ ✏ c
✿
kσckσ is the number operator in Bloch basis and

εk ✑ ✁2t cos
✂

2πk
N

✡
(2.15)

denote its N single-particle energy levels7.

Therefore, in order to calculate the many-body ground state energy of a ring

with N sites and Ne independent electrons, among which NeÒ have spin up and NeÓ

have spin down, we just need to fill the levels k obeying the Pauli exclusion principle.

The corresponding ground state wave function is simply the Slater determinant of the

single-particle wave functions ⑤k, σ② ✑ c
✿
kσ ⑤0② (with ⑤0② denoting the electronic vaccum) of

each level k. It means that the many-body ground state and the corresponding energy are

given by ✞✞✞φ♣Hq
0

❊
✏

NeÒ✁1➵
k✏0

NeÓ✁1➵
q✏0

c
✿
kÒc

✿
qÓ ⑤0② , (2.16)

and

E
♣Hq
0 ✏

NeÒ✁1➳
k✏0

εk �
NeÓ✁1➳

q✏0

εq ✏ 2
N
♣✁q
e ✁1➳
k✏0

εk �
N
♣�q
e ✁1➳
N
♣✁q
e

εk , (2.17)

respectively. We define N ♣✁q
e ✑ mintNeÒ, NeÓ✉ and N ♣�q

e ✑ maxtNeÒ, NeÓ✉. The elementary

excitations of this model are usual particle-hole pairs, obtained by promoting an electron

from the level k to another previously unoccupied level q.

7Note that in order to derive Eq. (2.14), we used the sum rule that defines the Kronecker delta,

δk,q ✑ 1

N

N➳
j✏1

ei2π♣k✁qq④N .
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Unfortunately, such a simple picture does not hold for U ✘ 0. Since the kinetic

and the interaction parts of the Hubbard Hamiltonian Eq.(2.9) do not commute, there is

no basis where both are simultaneously diagonal. Consequently, apart from very particular

cases, such as a ring with N ✏ 3 sites and Ne ✏ 2 electrons, in which we can calculate

analytic expressions for the eigenvalues and eigenvectors of Ĥ0, our only hope to determine

its exact energy spectrum and corresponding states relies on numerical diagonalization.

However, this is not a trivial task, since the dimension d ✑ 2N !④r♣2N✁Neq!Ne!s
of the the Fock space where Ĥ0 is defined grows exponentially with the number of sites and

electrons in the ring. For instance, in the case of the prototype of benzene (N ✏ Ne ✏ 6),

d ✏ 924. It is important to note that, when dealing with large d (and we will encounter

d → 924 in subsequent sections), it is advisable to make use of the Hamiltonian’s symmetry

in order to rewrite it in a block-diagonal form, which reduces computational costs of the

diagonalization procedure. For instance, the spin operator

Ŝz ✏
N➳

j✏1

♣n̂jÒ ✁ n̂jÓq (2.18)

commutes with Ĥ0, meaning that the z-component of the total spin of the system (sz) is

a conserved quantity. In other words, each eigenstate of the Hubbard Hamiltonian has

a well defined value of sz, and the matrix element of Ĥ0 between two eigenstates of Ŝz

with different values of sz is identically zero. Consequently, in the basis spanned by the

eigenstates of Eq.(2.18), the Hubbard Hamiltonian acquires a block-diagonal form, and we

only need to diagonalize each block separately.

Hereafter, as a matter of personal taste, we choose to work in the site basis,

rather than in the Bloch basis. The former is spanned by

B0 ✏
★
⑤n1Òn1Ó ☎ ☎ ☎nNÒnNÓ② ④

➳
j,σ

njσ ✏ Ne and njσ ✏ 0 or 1

✰
, (2.19)

where[16] ⑤n1Òn1Ó ☎ ☎ ☎nNÒnNÓ② ✏ c
✿
NÓ ☎ ☎ ☎ c✿1Óc✿1Ò ⑤0②.

Fig. 7 shows some of the energy levels, as function of U④t, obtained through

numerical diagonalization of Eq.(2.9) for rings with (a) N ✏ 3, (b) N ✏ 4, (c) N ✏ 5 and

(d) N ✏ 6 sites. These energy spectra were calculated for the rings in the half-filling regime,

where N ✏ Ne. This choice is motivated by the electronic configuration of the benzene

molecule, where we have a total of six π-electrons occupying the the six pz orbitals of the

aromatic ring. Moreover panels (b)-(d) show just a few of the low-lying energy levels of the

systems. That is because their complete energy spectra are very large, and including all

the curves in the same panel results in quite confusing figures. For completeness, though,

the full energy spectra as function of U④t can be found in Fig. 34 at Appendix A.
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• Rings with N ✏ 4n, n P ◆ and n ➙ 1. The rings of this family show a paramegnetic

persistent current in the ground state.

• Rings with N ✏ 4n� 2, n P ◆ and n ➙ 1. The prototype of the benzene molecule

belongs to this family. It is the only family of microscopic rings for which the ground

state in non-degenerate at half-filling. Moreover, in the presence of an external

magnetic field, they show a diamagnetic persistent current in their ground state.

2.2.2 Persistent currents and magnetic susceptibility

What about the magnetic properties of the the rings described by Eq.(2.9)? To

answer this question, let’s imagine the following set up: keeping the ring in the xy plane, we

apply a magnetic field B along the z-axes passing through its center, but without touching

its perimeter. Such a field can be produced, for instance, by a thin infinitely-long solenoid.

In this case, we can neglect the contribution of the Zemman term - which describes the

coupling between the electrons total spin and the magnetic field - to the system’s total

Hamiltonian. As a consequence, the magnetic properties calculated within this setup are a

result of the orbital degree of freedom of the valence electrons solely.

In the presence of the field B, due to the minimal coupling P Ñ P � eA④c,
where B ✑ ∇ ✂ A is the vector potential associated with the magnetic field, e is the

elementary charge, and c is the speed of light, each electron acquires a component in its

momentum in the angular direction, which, in turn, induces a current loop around the

ring.

The aforementioned minimal coupling is expressed, in the language of second

quantization, as a local Gauge transformation in the electronic creation and annihilation

operators[41, 20],

c
✿
jσ Ñ e✁i2πf④Nc

✿
jσ , (2.20)

cjσ Ñ ei2πf④Ncjσ . (2.21)

Here f ✑ φ④φ0 represents the dimensionless magnetic flux that pierces the ring, and

φ0 ✏ 2π~c④e is the magnetic flux quantum. Plugging Eqs.(2.20) and (2.21) into Eq.(2.9),

we readily obtain the Hubbard Hamiltonian in an external magnetic field,

Ĥ0,♣magq ✏ ✁t
N➳

j✏1

➳
σ✏Ò,Ó

✁
ei2πf④Nc

✿
jσcj�1σ � h.c.

✠
� U

N➳
j✏1

n̂jÒn̂jÓ . (2.22)

Note that f shifts the single-particle energy levels defined in Eq.(2.15), which now take

the form

εk♣fq ✏ ✁2t cos
✂

2π♣k � fq
N

✡
. (2.23)
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Interestingly, Fig. 8 also shows that the amplitude of the oscillations of E0♣fq
get significantly reduced as we increase U④t. This is a manifestation of the tendency of

localization of the electrons at the ring’s sites: as U increases, an increasingly amount of

energy is required to promote double occupation of the sites - which inevitably happens

as the electrons move around in the half-filling regime.

Note that the value of the magnetic field we need to apply to the rings in order

to observe the periodicity of its ground state energy is ridiculously large. For instance,

for a ring with three sites and a lattice spacing of the order of 1Å, the magnitude of the

magnetic field we would need to apply in order to have a flux quantum piercing its area

would be of B ✓ 5.8 ✂ 105T , impossible to achieve in a laboratory. But we do not need to

worry about it, since here we are mostly interested in the low field response of the rings.

Another way to rationalize the periodicity of the equilibrium properties of the

ring is through band theory. Actually, there is a one-to-one correspondence between the

boundary conditions satisfied by the Bloch wave functions of an electron moving in an

external potential with periodicity 2π④φ0 and the boundary condition imposed by the

phase ei2πf④N in the Hamiltonian, meaning that the magnetic field creates micro-bands in

the single-particle spectrum. An electron in each of these micro-bands has a group velocity

which is proportional to the curvature of the band, and the sum of the contributions of all

the electrons in the system gives rise to a finite current along the ting. At zero-temperature

(T ✏ 0), it is given (in Natural Units) by

I0♣fq ✏ ✁ e

2π
❇E0♣fq
❇f , (2.24)

where E0 is the many-body ground-state energy. We emphasize that such an electric

current is persistent in the sense that it does not suffer the effect of dissipation, but it

vanishes if we turn off the magnetic field. Moreover it is an equilibrium property of the

ring, and should not be confused with the supercurrents in a superconducting loop, as

explained in Sec. 1.

It is worth saying that we can also express I0♣fq as the expectation value, in the

ring’s (many-body) ground state, here denoted by ⑤φ0♣fq②, of an electric current operator,

i.e., I0♣fq ✑
❆
φ0♣fq

✞✞✞Ĵ0

✞✞✞φ0♣fq
❊

. With the help of the Feynman-Hellman theorem, we can

write

❇E0♣fq
❇f ✏

❈
φ0♣fq

✞✞✞✞✞❇Ĥ0,mag

❇f

✞✞✞✞✞φ0♣fq
●

✏ ✁ i2πt
N

❈
φ0♣fq

✞✞✞✞✞
➳
j,σ

✁
ei2πf④Nc

✿
jσcj�1σ ✁ h.c.

✠✞✞✞✞✞φ0♣fq
●

. (2.25)
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periodicity of I0♣fq is, of course, the same as that of E0♣fq shown in Fig. 8. Moreover, the

magnitude of I0♣fq decreases with increasing U④t, signaling once again the tendency of

localization of the π-electrons at the ring’s sites.

The discontinuities in the curves I0♣fq at certain f indicates the existence

of degeneracy of the ring’s ground state at these values of flux: if the ground state is

degenerate (with a degeneracy, let’s say, g0), then any linear combination of these g0

orthonormal eigenstates is also a ground state of the systems. Moreover, each different

linear combinations can lead to different results for
❆
φ0♣fq

✞✞✞Ĵ0

✞✞✞φ0♣fq
❊

. As soon as the

magnetic field breaks the ground state degeneracy (when f → 0 in panels (a), (b) and

(c) from Fig.9, for instance), I0♣fq assumes a unique well defined value. In Fig. 9(a) and

9(c), we note that the discontinuities of I0♣fq at f ✏ 0 persist even when U④t ✘ 0, which

evidences that, as mentioned before, in these cases the on-site Coulomb repulsion does not

break the ground state’s degeneracy.

Differentiating I0♣fq with respect to f and taking the limit f Ñ 0 gives us the

system’s response to the external field, i.e., its magnetic susceptibility,

χ♣molq ✏ γ ♣Naq4 ❇I0♣fq
❇f

✞✞✞✞
fÑ0

, (2.28)

here expressed in units of cm3④mol. The quantity γ ✑ 106µ0NAe④♣128π4q is a numerical

constant, where NA denotes Avogadro number, and µ0 is the magnetic permeability.

We emphasize that χ♣molq corresponds to a theoretical calculation of the mag-

netic anisotropy of our prototypes of aromatic molecules, since Eq. (2.28) gives only

the contribution of the current loop to the system’s magnetic response. Recall that, as

explained at the begging of Sec. 2.2.2, we neglected the Zeeman splitting, so no spin

response is included in Eq. (2.28)! Therefore χ♣molq and ∆χ can be used interchangeably

along this chapter. Moreover, χ♣molq → 0 means that the current circulates in a direction

such that it generates a magnetic momentum in the same direction of B, and the ring is

called paramagnetic. Conversely, if χ♣molq ➔ 0 the magnetic momentum generated by the

current loop opposes the external field, and the ring is denominate diamagnetic.

Fig. 10 shows χ♣molq as function of U④t for rings with (a) N ✏ 3, (b) N ✏ 4, (c)

N ✏ 5 sites and (d) N ✏ 6 sites at half-filling. Note that the magnetic responses of the

ring with three and five sites are very similar, which is expected since they belong to the

same family, as discussed in Sec. 2.2.1. Moreover, all of these rings are diamagnetic when

U ✏ 0. This can be easily understood if we use once more the Feynman-Hellman theorem
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t, as shown in Fig. 11. In this case, we conclude that χ♣molq equals the experimental result

for a hopping parameter of t ✓ 4.2eV , which is unrealistic for benzene. This is the reason

why we argue that a description of the physics of the benzene molecule - and by extension,

that of larger aromatic molecules - through a single-band Hubbard model as defined in

Eq.(2.9) is not complete.

What could be missing in Eq.(2.9)? We argue that the dynamics of the σ-

electrons is the missing key! In the next section we show that, even if we want an effective

model only for the π-electrons, the effects of the local excitation of the binding electrons

must be taken into account. Imagine the following: suppose that we have a N ✏ 6 ring,

now with the sp2 orbitals unfrozen - see Fig. 5. Besides, let’s forget, for now, the π-electron

and focus on the two σ-electrons per bound, which gives us a total N ♣σq
e ✏ 12 electrons in

the ring’s hybridized sp2 orbitals. We can imagine, for an illustrative picture, each of the

six σ-bonds as a two-level system, independent of each other. So, the many-body ground

state, here denoted by
✞✞✞ϕ♣σq

0

❊
, corresponds to two σ-electrons, with opposite spins, in the

lowest level of each bond. It defines a charge density in the bonds

ρ0♣rq ✏ ✁e
➳

α✏Ò,Ó

❆
ϕ
♣σq
0

✞✞✞ψ̂♣σq ✿
α ♣rqψ̂♣σq

α ♣rq
✞✞✞ϕ♣σq

0

❊
, (2.31)

where ψ̂♣σq ✿
α ♣rq (ψ̂♣σq

α ♣rq) is the creation (annihilation) field operator that creates (anni-

hilates) a σ-electrons with spin α at the position r of the space. Following the notation

introduced in Appendix A it takes the form

ψ̂♣σq ✿
α ♣rq ✏

N➳
j✏1

➳
κ✏1,2

W ✝
j,κ♣rqdjκ;α , (2.32)

where the function Wj,κ♣rq denotes the Wannier wave function correspondent to the κ sp2

orbital (κ ✏ 1 for the right orbital and κ ✏ 2 for the left orbital - see Fig. 5) centered in

the site j.

The charge density in Eq.(2.31), in turn, renormalizes the periodic potential

due to the ring’s site,

V̄ ♣0q
c ♣rq ✏ Vc♣rq �

➺
dr✶

ρ0♣rq
⑤r ✁ r✶⑤ . (2.33)

Now, we introduce N ♣πq
e π-electrons in the ring’s pz orbitals, so we have a total

of Ne ✏ N ♣πq
e � N ♣σq

e electrons in the ring. Due to the Coulomb repulsion, these extra

π-electrons disturb the charge distribution in the σ-bonds, modifying the density (2.31).

In other words, the π-electrons induce excitations of the σ-electrons, which now can be

promoted to their first excited state
✞✞✞ϕ♣σq

1

❊
. According to the simplified picture where

each bond can be approximated by a two-level system, such state would correspond to

a configuration where five of the bonds have two electrons in its ground state, while in
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one of them one electron is promoted to the second energy-level. In this case, the charge

density in the bonds would change to

ρ1♣rq ✏ ✁e
➳

α✏Ò,Ó

❆
ϕ
♣σq
1

✞✞✞ψ̂♣σq ✿
α ♣rqψ̂♣σq

α ♣rq
✞✞✞ϕ♣σq

1

❊
, (2.34)

and, consequently, the π-electrons would feel a different external potential

V̄ ♣1q
c ♣rq ✏ Vc♣rq �

➺
dr✶

ρ1♣rq
⑤r ✁ r✶⑤ , (2.35)

which in turn defines a different hopping amplitude, so the σ-electrons excitations can

directly affect the dynamics of the π-electrons.

It does not seem absurd to think that such change in the external potential

could give rise to an effective interaction between the π-electrons, in a similar way as in a

conventional superconductor, the deviation of the ions from their equilibrium position,

due to an electron that just passed by, attracts another nearby electron, resulting in an

effective inter-electronic attraction mediated by phonons. We are not saying that a Cooper

pair will form in the ring, though!

If an effective interaction between the π-electrons, mediated by the σ-electrons

indeed exists, what would be its form? Would it be attractive or repulsive? And how would

it affect the magnetic properties of the rings? These are exactly the questions we address

in the next section.

2.3 Extended Hubbard model

The scenario we explored in the last paragraphs of Sec. 2.2.2 suggests a

separation of energy scales in the system. Because the σ electrons are localized in the

ring’s bonds, we expect that it would cost more energy to promote them to their first

excited state in comparison to the amount of energy needed to excite the π-electrons. In

other words, the energy scale separating the ground state and the first excited state of

the σ-electrons (let’s denote it by Λ) is expected to be larger than the typical excitation

energy of the π-electrons, which is set by the hopping parameter t defined in Eq.(2.10).

Therefore, recalling the uncertainty principle ∆E∆t ➙ ~④2, it implies that the σ-electrons

excitations happen in a much faster time scale than that associated with the motion of

the π-electrons around the ring.

We can thus think of two different "types" of electrons in the ring: the σ-electrons

are the fast electrons, whereas the π-electrons are the slow ones. This scenario resembles

the well-known Born-Oppenheimer approximation, introduced in several text-books - see,

for instance Ref. [16] - to decouple the nucleonic and the electronic degrees of freedom of

a molecule. Briefly speaking, due to the huge mass difference between the atomic nuclei
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and the electrons, the former moves around their equilibrium position much more slowly

than the time scale of the electronic motion. Then, the standard Born-Oppenheimer

approximation tells us that the electronic dynamics happens as if they were placed in a

static periodic potential generated by the nuclei in a particular frozen arrangement. For

each nuclei arrangement, we are then able to calculate the electronic eigenvalues which, in

turn, define an external potential for the nuclei themselves, and can be used to determine

the molecule’s vibrational levels.

Here, inspired by the energy scale separation between the σ-electrons and the

π-electrons, we use a perturbation approach which we call generalized Born-Oppenheimer

approximation, in the sense that in our case the degrees of freedom of the σ-electrons and the

π-electron are those to be decoupled. It is fundamental to note that, in our approximation,

contrary to the standard Born-Oppenheimer approximation, the ring’s sites remain static

all the time. No ionic degrees of freedom are addressed in our calculations!

2.3.1 Generalized Born-Oppenheimer approximation

Here, it is more convenient to return to first quantization where the complete

Hamiltonian of a ring with N sites and Ne ✏ N ♣πq
e �N ♣σq

e electrons is given by H ✏ Hp�Hb,

where

Hp ✏
N

♣πq
e➳

i✏1

✂
P2

i

2m
� Ṽc♣Riq

✡
� 1

2

➳
i✘j

U ♣Ri ✁ Riq (2.36)

describes the N ♣πq
e π-electrons, with momenta and positions denoted by Ri and Pi,

respectively (i ✏ 1, 2, ☎ ☎ ☎N ♣πq
e ). In this equation, U♣r, r✶q ✏ e2④ ⑤r ✁ r✶⑤ is the standard

Coulomb repulsion. Moreover, the Hamiltonian

Hb ✏
N

♣σq
e➳

α✏1

✂
p2

α

2m
� Ṽc♣rαq

✡
� 1

2

➳
α✘β

U ♣rα ✁ rβq �
➳
i,α

U ♣rα ✁ Riq (2.37)

accounts for either the degrees of freedom of the N ♣σq
e σ-electrons, with momenta and

positions denoted by rα and pα , respectively (α ✏ 1, 2, ☎ ☎ ☎N ♣σq
e ), as the coupling between

them and the π-electrons. Hereafter, we reserve Roman (Greek) characters as indexes for

quantities referring to π-electrons (σ-electrons). It is important to note that the periodic

potential Ṽc♣rq that appears in Eqs.(2.36) and (2.37) is not the same as Vc♣rq defined in

Eq.(2.10): while Vc♣rq is generated by the ring’s sites with both its core electrons and the

frozen σ-electrons in the bonds, Ṽc♣rq, on the other hand, does not include any contribution

of the σ-electrons. In other words, recalling our discussion at the end Sec. 2.2.2, Vc♣rq is

essentially Ṽc♣rq renormalized by the the static charge density in the bonds generated by

the σ-electrons in their many-body ground state.

In this section, we denote by ψ♣r,Rq the total many-body wave function,

where r stands for the entire set of positions of the σ-electrons tr1, r2, ☎ ☎ ☎ , rN
♣σq
e

✉, while
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R denotes the set of positions of the π-electrons, tR1,R2, ☎ ☎ ☎ ,RN
♣πq
e

✉. Our generalized

Born-Oppenheimer approximation consists in assuming that the total wave function has

the following separable form:

ψ♣r,Rq ✏
➳
ν

φν♣Rqϕν♣r,Rq , (2.38)

where φν♣Rq refers to the π-electrons wave functions, and ϕν♣r,Rq denotes the σ-electrons

wave functions for a frozen configuration of π-electrons (fixed R). The later obeys

the following Schrödinger equation:

Hb♣Rqϕν♣r,Rq ✏ λν♣Rqϕν♣r,Rq . (2.39)

We emphasize that R in Eq.(2.39) is an external parameter rather than a dynamical

variable. For each R, the Schrödinger equation (2.39) determines the σ-electrons eigenvalues

λν♣Rq (with quantum numbers ν ✏ 0, 1, 2 ☎ ☎ ☎ ), which, as it will shortly become clear, act

as extra external potentials for the π-electrons.

Substituting the ansatz (2.38) into the full time-independent Schrödinger

equation Hψ ✏ Eψ and using Eq.(2.39), we find that the π-electrons wave function must

obey

E
➳
ν

φν♣Rqϕν♣r,Rq ✏
➳
ν

★
rHpφν♣Rq � λν♣Rqφν♣Rqsϕν♣r,Rq �

� 1
2m

N
♣πq
e➳

j✏1

✏
P2

j ϕν♣r,Rq � 2 ♣Pj ϕν♣r,Rqq ☎ Pj

✘
φν♣Rq

✱✳
✲ . (2.40)

Now, multiplying Eq.(2.40) on the left by ϕ✝
µ♣r,Rq, integrating over the σ-electron positions,

and using the fact that ϕµ♣r,Rq defines an orthonormal basis, i.e.,

①ϕµ ⑤ϕν②r
✏
➺
drϕ✝

µ♣r,Rqϕν♣r,Rq ✏ δµ,ν , (2.41)

we rewrite Eq.(2.40) as the following set of coupled equations

rHp � λν♣Rqsφν♣Rq �
➳
µ

Aνµφµ♣Rq ✏ Eφν♣Rq . (2.42)

Note that, contrary to Eq.(2.39), R is now a dynamical variable. Moreover, the operator

Aνµ is responsible for coupling the π-electron wave functions with different µ and ν, and

it has the form

Aνµ ✏ fνµ♣Rq �
N

♣πq
e➳

j✏1

g♣jq
νµ♣Rq ☎ Pj , (2.43)
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that in the language of second quantization, H0 is a single-band Hubbard Hamiltonian

with a renormalized hopping amplitude t0. Similarly, H1 is a Hubbard Hamiltonian with

another hopping parameter t1.

In the limit that λ0♣Rq and λ1♣Rq are too far apart, energetically (Λ1,0♣Rq ✑
λ1♣Rq✁λ0♣Rq ✧ t0), Aνµ becomes negligible. Consequently, Eqs.(2.46) and (2.47) decouple

and the system’s energy levels are just the set composed by the union of the egenvalues of

H0 and H1, illustrated by the horizontal black lines in Fig. 12(b). Note that, in this limit,

the low-lying energy states of the systems are those of H0, which means that the π-electrons

move along the ring as if the σ-electrons were actually frozen in their ground state λ0♣Rq,
recovering the standard Hubbard model we described in Sec.2.2. The interesting limit is

when Λ1,0♣Rq is still larger than t0, but they are of the same order (Λ1,0♣Rq ➪ t0). This

is exactly the case of our rings, as we show in Sec.2.4, and in this limit Aνµ cannot be

neglected. Actually, this operator mixes the eigenstates of H0 and H1. Let’s explore this

scenario in more details in the next paragraphs.

Isolating φ1,n♣Rq in Eq.(2.47) and substituting it in Eq.(2.46), we obtain an

effective Schrödinger equation for φ0,n♣Rq,
✏
H0 � A01 ♣En ✁ H1q✁1

A10

✘
φ0,n♣Rq ✏ En φ0,n♣Rq . (2.48)

Note that

Weff ♣P,Rq ✏ A01 ♣En ✁ H1q✁1
A10 , (2.49)

which in general depends on both momenta and positions, defines an effective interaction

between the π-electrons, which carries information about the virtual excitations of the

σ-electrons. Moreover, Eq.(2.48) is a self-consistent equation, since the potential defined

in Eq.(2.49) itself depends of the energy levels En we want to calculate. However, hope

is not lost, since we can approach Eq.(2.48) using perturbation theory, more specifically,

Wigner-Brillouin perturbation theory [44].

Let’s denote by ζ0,n♣Rq and ε♣0qn (ζ1,n♣Rq and ε♣1qn ) the eigenstates and corre-

spondent eigenvalues of the Hubbard-like Hamiltonian H0 (H1). Both ζ0,n♣Rq and ζ1,n♣Rq
span an orthonormal basis, i.e.

➳
n

⑤ζν,n② ①ζν,n⑤ ✏ ✶ , (2.50)

①ζν,n ⑤ζν,m ② ✏
➺
dRζ✝ν,n♣Rqζν,m♣Rq ✏ δn,m , (2.51)

with ν ✏ 0, 1 and ①ζ0,n ⑤ζ1,m ② ✘ δm,n. Wigner-Brillouin Perturbation Theory tells us that
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φ0,n♣Rq and ζ0,n♣Rq, as well as En and εn are related through

φ0,n♣Rq ✏ ζ0,n♣Rq �
➳

m✘n

①ζ0,m ⑤Weff ⑤ ζ0,n②
En ✁ ε

♣0q
m

ζ0,m♣Rq � O♣W2
eff q , (2.52)

En ✏ εn � ①ζ0,n ⑤Weff ⑤ ζ0,n② � O♣W2
eff q , (2.53)

with

①ζ0,m ⑤Weff ⑤ ζ0,n② ✏
➺
dR ζ✝0,m♣RqWeff ♣P,Rq ζ0,n♣Rq (2.54)

being the matrix element of the effective interaction (2.49) in the basis spanned by the

ζ0,n♣Rq states.

In zeroth order perturbation theory for the energy (En ✓ ε♣0qn ), and neglecting

quadratic or higher orders of Weff in the perturbation expression for the eigenstates, we

obtain

φ0,n♣Rq ✓ ζ0,n♣Rq �
➳

m✘n

1

ε
♣0q
n ✁ ε

♣0q
m

❆
ζ0,m

✞✞✞A01

�
ε♣0qn ✁ H1

✟✁1
A10

✞✞✞ ζ0,n

❊
ζ0,m♣Rq , (2.55)

from which it is clear that the matrix element defined in Eq.(2.54) simplifies to

①ζ0,m ⑤Weff ⑤ ζ0,n② ✓ ✁ 1
Λ
①ζ0,m ⑤A01OnA10⑤ ζ0,n② , (2.56)

where On is a complicated many-body operator defined as

On ✑
✓➳

m

✂
1 ✁ ε♣0qn ✁ ε♣0qm

Λ

✡
⑤ζ1,m② ①ζ1,m⑤

✛✁1

. (2.57)

To derive Eqs.(2.56) and (2.57), we use the closure relation in Eq.(2.50) to rewrite ε♣0qn ✁H1

in Eq.(2.55) as

ε♣0qn ✶✁
➳
m

ε♣1qm ⑤ζ1,m② ①ζ1,m⑤ ✏
➳
m

�
ε♣0qn ✁ ε♣1qm

✟ ⑤ζ1,m② ①ζ1,m⑤ . (2.58)

Besides, we approximate the energy levels of H1 as those of H0 displaced by the energy

separation between the two σ-electrons energy surfaces, i.e.

ε♣1qm ✓ ε♣0qm � Λ1,0♣Rq . (2.59)

Recall that we previously defined Λ1,0♣Rq ✑ λ1♣Rq ✁ λ0♣Rq. Interestingly, in Sec.2.4 we

show that such energy spacing between the σ-electrons energy surface depend weakly on

R, so it is reasonable to approximate it by a constant, Λ1,0♣Rq ✓ Λ → 0, consistently with

the notation we have been using since the beginning if this section.

Unfortunately, even after the aforementioned approximations, the effective

interaction is still very complicated and, specially because we need to invert a many-body

operator in Eq.(2.57), it does not seem possible for us to derive an analytic expression

for Weff at this point. To proceed we need further simplifications, which are described in

detail in the subsequent subsection.
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2.3.2 Effective interaction in first quantization

The first thing we need to do is return to the expression of Aνµ defined in

Eqs.(2.43)-(2.45) and find an approximate expression for it. Let’s start by studying g♣jqνµ♣Rq.
Note that taking the gradient of Eq.(2.39) with respect to the position of the

j-th π-electron, multiplying the resulting, at the left, by ϕ✝ν♣r,Rq, and integrating over

the positions of the σ-electrons, we obtain➺
drϕ✝ν♣r,Rq∇jϕµ♣r,Rq ✏ 1

λµ♣Rq ✁ λν♣Rq
➺
drϕ✝ν♣r,Rq ♣∇jHbqϕµ♣r,Rq . (2.60)

Recall that R is merely an external parameter for Hb, and it appears only in the Coulomb

repulsion term - see Eq.(2.37) - therefore, it follows that

∇jHb♣Rq ✏ e2

N
♣σq
e➳

α✏1

rα ✁ Rj

⑤rα ✁ Rj⑤3
. (2.61)

Our task now is to calculate the the integral over the positions of the σ-electrons.

Since we have a term ⑤rα ✁ Rj⑤3 in the denominator of the integrand, the σ-electrons

which are closer to the j-th π-electron are those who give the largest contribution to the

right-hand side of Eq.(2.60). Furthermore, as discussed in Sec. 2.1, we have two σ-electrons

per bond. Consequently, for each π-electron localized at a given ring site, there are four

nearest neighbors σ-electrons, here labeled by 1 to 4 for simplicity, that dominate the sum

in Eq.(2.61), which we can approximate as➺
drϕ✝ν♣r,Rq ♣∇jHbqϕµ♣r,Rq ✓

e2d̂
♣Lq
j

➺
drϕ✝ν♣r,Rq

✂
1

⑤r1 ✁ Rj⑤2
� 1

⑤r2 ✁ Rj⑤2
✡
ϕµ♣r,Rq�

e2d̂
♣Rq
j

➺
drϕ✝ν♣r,Rq

✂
1

⑤r3 ✁ Rj⑤2
� 1

⑤r4 ✁ Rj⑤2
✡
ϕ♣σqµ ♣r,Rq , (2.62)

where we define

d̂
♣Rq
j ✑ 1

a
♣Rj�1 ✁ Rjq (2.63)

as the versor in the direction of the right σ-bond, between the sites j and j�1. Recall that

Rj is the position of site j defined in Eq.(2.8). On the other hand, d̂♣Lqj denotes the versor

in the direction of the left σ-bond and it is related with Eq.(2.63) through d̂
♣Lq
j ✏ ✁d̂♣Rqj✁1.

Concerning the remaining integrals on the right-hand side of Eq.(2.62), if we

had ⑤rα ✁ Rj⑤ in the denominator, they would be of the order of the on-site Coulomb

repulsion between π-electrons and σ-electrons, which, as we show in Appendix B, is of

the same order of the on-site repulsion (U) between the π-electrons. Moreover, it follows
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from the discussion in previous paragraph that ⑤rα ✁ Rj⑤ is of order of the lattice spacing.

Consequently, we can roughly estimate

e2

➺
dr rϕν♣r,Rqs✝ 1

⑤r1 ✁ Rj⑤2
ϕµ♣r,Rq ✒ U

a
, (2.64)

and similarlly for the other integrals involving r2, r3 and r4. Therefore, Eq.(2.62) results

in ➺
dr rϕν♣r,Rqs✝ ♣∇jHbqϕµ♣r,Rq ✓ 2

U

a

✁
d̂
♣Rq
j ✁ d̂

♣Rq
j✁1

✠
✏ 2gN

U

a
n̂j . (2.65)

Here n̂j is the versor in the direction of the position of the site where the π-electron is

localized at, but pointing inwards and gN is the numerical factor

gN ✏
❛

2 ♣1 � cos♣2π④Nqq . (2.66)

Substituting Eq.(2.65) into Eq.(2.60) and comparing it with (2.45) we readily

identify

g♣jqνµ♣Rq ✓ ✁ i~

am

2U
λµ♣Rq ✁ λν♣Rq

✁
d̂
♣Rq
j ✁ d̂

♣Rq
j✁1

✠
. (2.67)

Besides, we neglect fνµ♣Rq, since this term doesn’t involve the π-electrons

momenta and, therefore, when included in Eq.(2.56) gives rise, in first order perturbation

theory, to a one-body term that can be incorporated in the hopping parameter. Therefore,

from Eq.(2.67) and, as in the previous section, assuming λ1♣Rq✁λ0♣Rq ✓ Λ → 0 (constant),

we can approximate A01 and A10 by a simple one-body operator

A01 ✓ ✁2i~UgN

maΛ

N
♣πq
e➳

j✏1

n̂j ☎ Pj , (2.68)

A10 ✓ 2i~UgN

maΛ

N
♣πq
e➳

j✏1

n̂j ☎ Pj . (2.69)

At this point, we have almost everything we need we need to derive a simplified

expression for Weff in first quantization. Now, we need to come back to Eq.(2.57). If

On were a constant, it would generate a Weff which would be just yhe product of two

one-body operators, and thus not a true two-body operator. The simplest assumption we

can make about Eq.(2.57) is that it has a two-body component which can correlate the

momentum operators that appear in Eqs.(2.68) and (2.69). In this case, we can write

Weff ✓ ✁ 1
Λ3

✂
2~UgN

ma

✡2 N
♣πq
e➳

i,j✏1

Pi ☎ n̂iO♣Ri,Rjqn̂j ☎ Pj , (2.70)

which is genuinely a two-body operator. Note that since n̂j is a simple versor rather than

an operator, we can freely interchange it with the momentum operator, i.e. n̂j ☎Pj ✏ Pj ☎ n̂j,
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and, therefore, define a tensor

ÐÑ
T ♣Ri,Rjq ✑ n̂iO♣Ri,Rjqn̂j , (2.71)

which encodes the information about the ring’s σ-bonds orientation through the versors

n̂i.

An effective momentum-momentum interaction with a similar form of Eq.(2.70)

already appeared in the literature some decades ago, when Bohm and Pines wrote the

seminal series of papers about the electron gas [45, 46, 47]. They were able to show that

there is an effective inter-electronic potential mediated by plasmons, which they recognized

as a Biot-Savart interaction. However, they argue that such interaction is negligible because

of screening effects. In our case, on the other hand, since we are dealing with a few body

system, screening effects are not strong enough to suppress this kind of interaction.

Furthermore Eq.(2.70) also resembles the form of the Breit-Darwin (or current-

current) interaction ĤBD. In appendix D we show how to derive the second-quantized

expression for the Breit-Darwin Hamiltonian and, comparing Eq.(2.70) with Eq.(D.47), we

note that Ŵeff contains two of the processes that appear in the Breit-Darwin Hamiltonian.

However, these terms appear with different relative signs in ĤBD and Ŵeff .

It worth noting that there is a crucial difference between our effective potential

and the Breit-Darwin Hamiltonian: while the later is a relativistic correction to the

Coulomb repulsion, Ŵeff is a much more intense interaction.

2.3.3 Effective interaction in second quantization

In the previous section we showed that virtual excitations of the σ-electrons

mediate an effective momentum-momentum attraction between the π-electrons, which, in

first quantization, is given by Eq.(2.70). Here, we derive its expression in the language

of second quantization. By adding the second-quantized Weff to Eq.(2.9), we derive an

extended Hubbard Hamiltonian for the degrees of freedom of the π-electrons alone, but

which takes into account the effects of the σ-electrons in their dynamics. It is important

to note that in this section r no longer denotes the set of positions of the σ-electrons, but

rather a generic position in space.

Since Weff in Eq.(2.70) is a two-body operator, the standard procedure to

determine its second-quantized expression is [22, 16]

Ŵeff ✏ 1
2

➳
σ,σ✶

➺ ➺
dr dr✶ ψ̂✿

σ♣rq ψ̂✿
σ✶♣r✶qP ☎ ÐÑT ♣r, r✶q ☎P✶ ψ̂σ✶♣r✶qψ̂σ♣rq , (2.72)

where, in coordinate representation, P ✏ ✁i~∇ and P✶ ✏ ✁i~∇
✶, with ∇

✶ denoting

the gradient with respect to r✶. Besides ψ̂✿
σ♣rq (ψ̂σ♣rq) is the field operator that creates



Chapter 2. The magnetic anisotropy of aromatic molecules 50

(annihilates) an electron with spin σ at the position r. Since we are deriving an effective

model for the π-electrons alone, such field operator is defined only in terms of the Wannier

wave functions for the pz orbitals (ϕj♣rq), as shown in Eq.(A.5). Here the reader should

be warned not to confuse ϕj♣rq with the σ-electrons wave functions ϕν♣r,Rq we defined

in Sec. 2.3.1.

Substituting Eq.(A.5) into Eq.(2.72) we find the second-quantized effective

interaction in the site basis,

Ŵeff ✏ ✁ 1
2Λ3

✂
2~UgN

ma

✡2 N➳
i,j,k,l✏1

➳
σ,σ✶

wijkl c
✿
iσc

✿
jσ✶ckσ✶clσ , (2.73)

where wijkl is the matrix element

wijkl ✑
❆
ij
✞✞✞P ☎ ÐÑT ☎ P✶

✞✞✞ lk❊ ✏ ✁~2

➺ ➺
drdr✶ ϕ✝

i ♣rqϕ✝
j ♣r✶q∇ ☎ ÐÑT ♣r, r✶q ☎ ∇✶ϕk♣r✶qϕl♣rq ,

(2.74)

which we study in detail henceforth.

To start with, we apply two closure identities,

✶ ✏
N➳

i,j✏1

⑤ij② ①ij⑤ , (2.75)

between the momentum operators and the tensor
ÐÑ
T , which give us

wijkl ✏
➳
i1,i2

➳
j1,j2

①ij ⑤P⑤ i1i2② ☎
❆
i1i2

✞✞✞ÐÑT ✞✞✞ j1j2

❊
☎ ①j1j2 ⑤P✶⑤ lk② . (2.76)

Note that P acts only on the first entry of a ket ⑤ij②, i.e.

①rr✶ ⑤P⑤ ij② ✏ ①r ⑤P⑤ i② ①r✶ ⑤ j② . (2.77)

Similarly, P✶ acts only on the second entry of ⑤ij②. Therefore

①ij ⑤P⑤ i1i2② ✏ ①i ⑤P⑤ i1② ①j ⑤ i2② ✏ ①i ⑤P⑤ i1② δj,i2
, (2.78)

①j1j2 ⑤P✶⑤ lk② ✏ ①j2 ⑤P✶⑤ k② ①j1 ⑤ l② ✏ ①j2 ⑤P✶⑤ k② δj1,l , (2.79)

and, as a consequence of the orthonormality of the Wannier wave functions, Eq.(2.76)

becomes

wijkl ✏
N➳

i1,j2✏1

➳
①i ⑤P⑤ i1② ☎

❆
i1 j

✞✞✞ÐÑT ✞✞✞ l j2

❊
☎ ①j2 ⑤P✶⑤ k② . (2.80)

Now, consistently with the standard approximations we used in appendix A to

derive single-band Hubbard Hamiltonian, we can show (see Appendix C) that momentum



Chapter 2. The magnetic anisotropy of aromatic molecules 51

matrices elements appearing in Eq.(2.80) can be approximated by a term connecting only

nearest neighbor sites,

①i ⑤P⑤ j② ✓ imt

~
♣Ri ✁ Rjq δj,i✟1 . (2.81)

Recall that Ri is the position if the i-th site of the ring given by Eq.(2.8), t is the hopping

parameter between two neighboring pz orbital, and m is the electron mass. Therefore,

substituting Eq.(2.81) into Eq.(2.80) we obtain four contributions for wijkl:

wijkl ✓ ✁
✂
mt

~

✡2 ✑
♣Ri ✁ Ri�1q ☎

❆
i� 1 j

✞✞✞ÐÑT ✞✞✞ l k � 1
❊
☎ ♣Rk�1 ✁ Rkq

� ♣Ri ✁ Ri�1q ☎
❆
i� 1 j

✞✞✞ÐÑT ✞✞✞ l k ✁ 1
❊
☎ ♣Rk✁1 ✁ Rkq

� ♣Ri ✁ Ri✁1q ☎
❆
i✁ 1 j

✞✞✞ÐÑT ✞✞✞ l k � 1
❊
☎ ♣Rk�1 ✁ Rkq

� ♣Ri ✁ Ri✁1q ☎
❆
i✁ 1 j

✞✞✞ÐÑT ✞✞✞ l k ✁ 1
❊
☎ ♣Rk✁1 ✁ Rkq

✙
. (2.82)

Concerning the matrix element of the tensor
ÐÑ
T , we assume, as it is done with

the Coulomb repulsion matrix elements in the standard Hubbard model (see Appendix A),

that its leading contributions come from the on site terms. Mathematically, this means❆
ij
✞✞✞ÐÑT ✞✞✞ lk❊ ✓ ÐÑ

T i δj,iδk,iδl,i , (2.83)

where we define
ÐÑ
T i ✑

❆
ii
✞✞✞ÐÑT ✞✞✞ ii❊. As it will soon become clearer (see Eq.(2.85)),

ÐÑ
T i

depends on the specific i-th site of the ring.

Returning to the definition of
ÐÑ
T in Eq.(2.71), we can write

ÐÑ
T i ✏

➺ ➺
dr dr✶ ϕ✝i ♣rqϕ✝i ♣r✶qn̂O♣r, r✶qn̂✶ϕi♣r✶qϕi♣rq , (2.84)

with n̂ ✑ r④r and n̂✶ ✑ r✶④r✶. Moreover, since the Wannier wave functions are localized at

the ring’s sites,

ÐÑ
T i ✏ R̂i

✒➺ ➺
drr✶ϕ✝i ♣rqϕ✝i ♣r✶qO♣r, r✶qϕi♣r✶qϕi♣rq

✚
R̂i

✏ R̂i ①ii ⑤O⑤ ii② R̂i (2.85)

with R̂i ✏ Ri④ ⑤Ri⑤. Assuming, for simplicity, that the matrix element of O♣r, rq is

homogeneous, i.e. ①ii ⑤O⑤ ii② ✏ O0 is site independent, where O0 is a scalar presumably of
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The effective interaction Eq.(2.90) involves two types of processes, which we illustrate in

Fig. 13 The first one ✾c✿jσc
✿
j�1σ✶cjσ✶cj�1σ is what we called "bubble term", since it destroys

an electron in the site j and creates it in the site j � 1, but also destroys another electron

in the same j � 1 site and creates it in the site j. Thus, such term restricts the electronic

movement between two neighboring sites of the ring. The second term ✾c✿jσc
✿
j✁1σ✶cj✁2σ✶cj✁1σ,

on the other hand, involves two neighboring sites and favors the electron delocalization.

Combining Eq.(2.90) with Eq.(2.9), we find the following extended Hubbard

model for the π-electrons:

Ĥ ✏ ✁t
N➳

j✏1

➳
σ

✁
c
✿
jσcj�1σ � h.c.

✠
� U

N➳
j✏1

n̂jÒn̂jÓ

✁ λN

✂
U

t

✡2 N➳
j✏1

➳
σ,σ✶

✑✁
c
✿
jσc

✿
j�1σ✶cjσ✶cj�1σ � h.c.

✠
�
✁
c
✿
jσc

✿
j✁1σ✶cj✁2σ✶cj✁1σ � h.c.

✠
,

(2.91)

where we define the coupling constant

λN ✑ 2
t4

Λ3
O0

�
1✁ cos2♣2π④Nq✟ . (2.92)

Recall that Λ → 0 is the energy scale of the separation between the ground state and the

first excited state of the σ-electrons, which we approximate by a constant, i.e., independent

of the π-electron configuration. It is important to say that it is the relation between

the parameters t and Λ that will set the energy scale of the coupling λN . Hereafter, we

set 2O0♣1 ✁ cos2♣2π④Nqq ✒ 1 and, then, replace the coupling constant λN by simply

λ ✑ t4④Λ3 ➔ 1.

Eq. (2.91) is the central result of this chapter, and next we investigate the

physical properties arising from our model.

2.3.4 Results and discussion

Through exact diagonalization of the Hamiltonian in Eq.(2.91), similarly to

what we did in Sec. 2.2.1, we obtain its energy spectrum as function of U④t for a fixed λ④t.
For the results shown in Fig. 14, we choose λ④t ✏ 0.1. As in Fig. 7, we show only a few of

the low-lying energy levels rather than the full energy spectrum.

Comparing the new energy spectrum with that of the standard Hubbard model

(shown in dashed lines in the panels of Fig. 14), we can readily see that the effective

interaction significantly reduces the ground state energy of the rings as U becomes larger.

Interestingly, if we look closer at the spectrum of the ring with N ✏ 3 sites in panel (a), we

note that E0 first increase with U , and starts to decrease only for U④t → 4. Such behavior -

which is also observed in the spectrum of the larger rings as long as we use smaller values
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combinations of the sp2 orbitals of two neighboring ring’s sites, we can rewrite Eq.(2.94) as

Ĥsp2
✏

N➳
j✏1

t̃
✁
N̂a,j ✁ N̂b,j

✠
� Ũ1

4

N➳
j✏1

✒✁
N̂a,j � N̂b,j ✁ 1

✠2

� X̂2
j ✁ 1

✚

� Ũ2

4

N➳
j✏1

✑✁
N̂a,j � N̂b,j � X̂j

✠✁
N̂a,j✁1 � N̂b,j✁1 ✁ X̂j✁1

✠✙
. (2.98)

Here we define the number operators

N̂a,j ✑
➳
σ

a
✿
jσajσ , (2.99)

N̂b,j ✑
➳
σ

b
✿
jσbjσ . (2.100)

Additionally,

X̂j ✏
➳

σ✏Ò,Ó

✁
a
✿
jσbjσ � h.c.

✠
. (2.101)

Using the fermionic anti-commutation relations - see Eqs.(A.11)-(A.12) and

Eqs.(A.15)-(A.17) - we show that N̂j,a � N̂j,b commutes with Ĥ. It means that the total

number of σ-electrons per bond is a conserved quantity. In other words, we can look for

the eigenstates and eigenvalues of the three-band Hubbard Hamiltonian in a subspace

with a fixed number of σ-electrons per bond, and, once again inspired by the benzene

molecule, hereafter we consider the subspace of two σ-electrons per bond, where

Eq.(2.98) simplifies to

Ĥsp ✏
N➳

j✏1

✒
t̃
✁
N̂a,j ✁ N̂b,j

✠
� Ũ1

4
X̂2

j

✚
� Ũ2

4

N➳
j✏1

✑✁
2 � X̂j

✠✁
2 ✁ X̂j✁1

✠✙
. (2.102)

However, such three-band model brings some complications. In the first place,

the dimension of the Fock space where Ĥ is defined (let’s call it d) is huge! Since we are

considering σ-electrons and π-electrons as distinguishable particles, d is the product of the

dimension of the Fock space of the π-electrons (dπ) and the σ-electrons (dσ). As discussed

Sec. 2.2.1, dπ ✏ ♣2Nq!④♣Ne!♣2N ✁ N ♣πq
e q!q, with N ♣πq

e denoting the total number of the

π-electrons in the rings, while dσ ✏ 6N , as a consequence of having only two electrons per

bond8. For instance, for the prototype of the benzene molecule d is of order of 107, so an

exact diagonalization of the complete Ĥ does not seem possible even for the small rings

we consider here.

Furthermore, even if the exact diagonalization is feasible, it is not clear how

to derive an effective Hamiltonian for the π-electrons from Ĥ. That is why the general-

ized Born-Oppenheimer approximation we introduce in Sec. 2.3.1 seems to be the most

convenient approach for the purposes of this thesis.
8Therefore, the number of σ-electrons in the rings is Nσ ✏ 2N . The total number of electrons in the

ring is thus Ne ✏ N ♣πq
e �N ♣σq

e .







Chapter 2. The magnetic anisotropy of aromatic molecules 63

readily obtained:

Ĥ♣Cq ✏
N➳

j✏1

✒
t̃
✁
N̂a,j ✁ N̂b,j

✠
� Ũ1

4
X̂2

j ✁
Ũ2

4
X̂jX̂j✁1 � Vj♣Cq

✁
X̂j ✁ X̂j✁1

✠✚
�K♣Cq ,

(2.105)

with

Vj♣Cq ✏ Ũ2 � Uc

➳
σ

njσ , (2.106)

K♣Cq ✏ f♣Cq ✁ Ũ2 � 2
N➳

j✏1

Vj♣Cq . (2.107)

Fig. 20 illustrates four possible families of π-electrons configurations for the

prototype of the benzene molecule. It is important to note that Vj♣Cq and K♣Cq are

invariant by global spin flip, so all configurations obtained from those shown in Fig. 20 by

reversing all the spins results in the same ĤC and are, therefore, equivalent. Moreover,

the configurations obtained by applying the benzene’s point group symmetry to Fig. 20

are also equivalent. However, we emphasize that Fig. 20 does not present all the possible

π-electron configurations, a lot of them are omitted for simplicity.

In the remaining part of this section, we study Eq.(2.105) for the prototype of

the benzene molecule. For simplicity, we set Ũ1 ✏ Ũ2 ✏ Uc ✏ U . This is justified by our

estimation of these parameters in Appendix B: there, using an approximation of localized

orbitals we show that the aforementioned interaction parameters are indeed very close to

each other.

Fig. 21 shows Λ (normalized by the hopping t̃ between sp2 orbitals) as a function

of U④t̃ for each of the π-electrons configurations shown in Fig. 20 (the same color code is

used in both figures). For comparison purposes, in each panel we also show Λ♣Uq when

no π-electron is present in the ring (black dashed lines), i.e., the excitation energy of the

σ-electrons alone.

The first thing we should notice is that for small U④t̃, Λ④t̃ ✓ 1.5, i.e., Λ is of

the same order as t̃, which is surely larger than the pz orbital hopping t (although not

much larger than that), so we are safe to assume that Λ ➪ t.

Furthermore, except for Fig. 21(d), the curves Λ♣Uq with (solid line) and

without (dashed line) π-electrons show an astonishing agreement, pointing out that Λ

indeed doesn’t depend much on the π-electron configuration. Concerning the panel (d)

of the same figure, we see that the deviation between the lines becomes considerable as

we increase U④t̃. But, for benzene, recalling the estimations of the authors in Ref. [40],

U④t̃ ➔ U④t ✏ 1.2, where the agreement between the solid and dashed lines is still quite

good. Therefore we are also safe to approximate Λ by a constant.
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The same qualitative results hold for the other configurations omitted in Fig.

20 and for rings with N ✘ 6.

2.5 Conclusions - Part I

In this chapter, we study the physical properties of rings with 3 ↕ N ↕ 6 sites,

Ne electrons, and three orbitals per site, which we interpret as prototypes of aromatic

molecules. In particular, we focus on their energy spectrum, and their magnetic response

in the presence of an external magnetic field applied perpendicularly to their plane.

The magnetic field induces a persistent current in the ring’s ground state,

which in turn, generates a magnetic moment in the same direction of the field. It is

accepted that this is the physics happening in the aromatic rings of real-life aromatic

molecules: the persistent current that establishes in the aromatic ring is the origin of the

experimentally observed magnetic anisotropy in these molecules. Let us emphasize here

that such persistent current is an equilibrium property of the system and ceases to exist if

the field is removed. Therefore it should not be confused with a superconducting current

in a superconducting ring.

The question which remains is which electrons contribute to the above mentioned

persistent current? According to the RCM model, the answer would be the π-electrons

alone, since they are highly delocalized, while the σ-electrons, localized in the σ-bonds, are

considered frozen. However, we show, by describing these π-electron through the standard

Hubbard model, that for realistic values of the hopping (t ✓ 2.54eV ) and on-site repulsion

(U ✓ 3.05eV ) [40] the calculated anisotropy in the magnetic susceptibility (∆χ) is only

3④5 of the experimental value. We, therefore, argue that a minimal model to explain the

magnetic properties of the aromatic molecules should also include the degrees of freedom

of the σ-electrons.

Although it is true that the σ-electrons are more localized than the π-electrons,

they can undergo local excitations in the σ-bonds, which, in turn, modify the electron

charge density in the bonds and, therefore modify the periodic potential felt by the π-

electrons. We show that if we allow excitations of the σ-electrons to happen, they mediate

an attractive momentum-momentum effective interaction between the π-electrons Ŵeff

defined in Eq.(2.70), which bears some similarities with the Breit-Darwin interaction and

with the Biot-Savart interaction derived by Pines and Bohm.

We obtain such effective momentum-momentum interaction through a gen-

eralized Born-Oppenheimer approximation, which, motivated by a natural energy scale

separation between the σ-electrons and the π-electrons, allow us to decouple their de-

grees of freedom in a wave function ansatz similar to that used in the usual text-book

Born-Oppenheimer approximation.
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The central result of this chapter is our minimal effective model for the π-

electrons, which corresponds to an extended Hubbard model where Ŵeff is added to

Eq.(2.9). We verified that the main effect of our effective momentum-momentum interaction

is to amplify the magnetic response of the rings. In particular, for the prototype of the

benzene molecule (N ✏ N ♣πq
e ✏ 6), Weff favors diamagnetism and recover the experimental

∆χ if we choose a coupling constant of λ④t ✓ 0.18, consistent with the approximations we

used in Sec. 2.3.1 to derive Weff .

Although it is beyond the scope of this thesis, we emphasize that microscopic

model we propose holds for any number of sites N and can also be extended to more

complex systems, such as the graphene.
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3 The Suppression of Superconductivity near

a Lifshitz Transition

In this chapter, we study the effect of non-magnetic impurities in a two-band

superconductor in the regime where the second band is incipient, i.e., when its

bottom is just below (or just above) the Fermi level. In particular, we investigate

the evolution of the superconducting transition temperature (Tc) as a function of

the chemical potential (µ) as we go through a Lifshitz transition characterized here

by the appearance of a new Fermi pocket in the Fermi surface when the second

band becomes populated.

In Sec. 3.1 we review some results already known about Tc♣µq of a two-band

clean superconductor. We show how to derive its coupled self-consistent gap equations

and how to analytically solve them in the particular case of 2D bands. In Sec. 3.2, we

calculate Tc♣µq for the same two-band superconductor but, this time, in the presence

of randomly distrubuted non-magnetic impurities. We show that, in the vicinity

of the Lifshitz transition, there is a competition between two effects: on the one

hand, Tc tends to increase because of the enhancement of the electronic density of

states promoted by the appearance of the second Fermi pocket. On the other hand,

the interband scattering processes induced by disorder break the Cooper pairs and

suppress superconductivity. When disorder is strong enough, the second effect wins

and Tc♣µq decreases, in agreement with the experimental results of two paradigmatic

examples of multiband superconductors: SrTiO3 and the LaAlO3/SrTiO3 interface.

Finally, in Sec. 3.3 we summarize our principal results.

As in Chapter 2, the body of the text is complemented with Appendices. The

results presented in this chapter were recently published in Physical Review Letters

[35] and Physical Review B [36], and the order of the sections here follows that of

Ref. [36].

3.1 Clean Multiband Superconductors

In a multiband superconductor, more than one conduction band crosses the

Fermi levels simultaneously. These bands can be either electron-like, hole-like or a mixture

of these two types. Here we focus on the case of a superconductor with two parabolic and

concentric electron-like bands. Its effective Hamiltonian, similarly to Ref. [48], is given by

H0 ✏
➳

k,i,σ

ξi,k c
✿
i,kσci,kσ �

➳
k,k✶,i,j

Vijc
✿
i,kÒc

✿
i,✁kÓcj,✁k✶Ócj,k✶Ò . (3.1)
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which gives rise to different superconducting states, as will be explained later in this

chapter. Note that we are considering momentum-independent pairing interactions, which

leads to isotropic superconducting gaps (s-wave superconductivity). A discussion about

the microscopic origin of Vij is beyond the scope of this thesis.

How do we calculate Tc of a multiband superconductor? Within a mean-field

approach, it is actually not a complicated task. There will be some complications arising

from the fact that we are close to the bottom of the bands, but we will get there. We start

by decoupling (3.1) in the Cooper channel, in a similar way it is done in a single-band

superconductor. It corresponds to replace cj,✁kÓcj,kÒ in Eq.(3.1) by its expectation value

①cj,✁kÓcj,kÒ② plus fluctuations. Neglecting terms that are quadratic or higher orders in the

fluctuations, we thus obtain

H0 ✏
➳

k,i,σ

ξi,k c
✿
i,kσci,kσ ✁

➳
k,i

✁
∆i c

✿
i,kÒc

✿
i,✁kÓ � h.c.

✠
, (3.2)

where

∆i ✏ ✁
➳
k,j

Vij ①cj,✁kÓcj,kÒ② . (3.3)

is the isotropic superconducting gap in band i.

There are several ways to derive the self-consistent equations for the gaps ∆i

- see for instance a review on Ref.[49]. Here, it is more convenient to work with Green’s

function in Nambu space, since this formalism proves to very useful in Sec. 3.2, when we

introduce disorder in the system. Defining the Nambu spinor ψ̂✿
k
✏
✁
c
✿
1,kÒ c1,✁kÓ c

✿
2,kÒ c2,✁kÓ

✠
,

we can rewrite Eq.(3.2) in a matrix form

H0 ✏
➳
k

ψ̂
✿
k
ξ̄k ψ̂k

, (3.4)

where

ξ̄k ✏

☎
✝✝✝✝✝✝✆

ξ1,k ✁∆1 0 0

✁∆1 ✁ξ1,k 0 0

0 0 ξ2,k ✁∆2

0 0 ✁∆2 ✁ξ2,k

☞
✍✍✍✍✍✍✌

, (3.5)

and, from Eq. (3.4), we can readily calculate the system’s bare Green’s function [22, 56]:

Ĝ0♣k, ωnq ✏ ♣iωn✶✁ ξ̄kq✁1, where ω ✏ ♣2n� 1qπT (with n P ◆) are the usual Matsubara

frequencies and ✶ is the identity matrix in Nambu space. Performing a simple matrix

inversion, we obtain

Ĝ0♣k, ωnq ✏

☎
✝✝✝✝✆

G1,0 F1,0 0 0

F1,0 ✁G✝
1,0 0 0

0 0 G2,0 F2,0

0 0 F2,0 ✁G✝
2,0

☞
✍✍✍✍✌ , (3.6)
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where

Gi,0♣k, ωnq ✏ ✁ iωn � ξi,k

ω2
n � ξ2

i,k �∆2
i

, (3.7)

and

Fi,0♣k, ωnq ✏ ∆i

ω2
n � ξ2

i,k �∆2
i

(3.8)

are, respectively, the normal and the anomalous components of the Green’s function.

Note that it is the anomalous Green’s function which gives us information

about the superconducting gap: since ①ci,✁kÓci,kÒ② ✏ T
➳
n

Fi,0♣k, ωnq, when combining Eqs.

(3.3) and (3.8) we find the self-consistent gap equations:

∆i ✏ πT
➳
j,n

λij∆j

❇
1

ω2
n � ξ2 �∆2

j

❋Ω0

j

. (3.9)

Here, in order to shorten the notation, we define

①O♣ξq②ξc

i ✑ 1
πρi,0

ξc➺
Wi

dξρi♣ξqO♣ξq , (3.10)

with O♣ξq denoting an arbitrary function of energy, and ξc denoting the upper cutoff

for the integral. We also define the dimensionless coupling constants λij ✏ ✁ρj,0Vij. It is

important to note that in our notation λij ➔ 0 means a repulsive interaction, while λij → 0

means an attractive interaction. Besides, ρi♣ξq corresponds to the density of states per

spin of band i, while ρi,0 ✑ ρi♣Wi � ε0q is the density of states at an energy ε0 above the

bottom of the band. In the particular case of parabolic 2D bands, the density of states is a

constant: ρi♣ξq ✏ ρi,0 ✏ mi④♣2πq. Finally, Ω0 is the energy scale of the pairing interactions,

which plays a similar role as the Debye frequency in the standard BCS superconductors.

Before proceeding, let’s take a closer look at the self-consistency equations and

highlight their major differences with that of a usual BCS single-band superconductor. In

the usual BCS approach, what is often done in integrals such as Eq.(3.10) is to approximate

the density of states by a constant (which is its value at the Fermi level) and calculate the

remaining integral between ✟✽. That is essentially because the Fermi energy is much larger

than the paring interaction cutoff. Here, on the other hand, since we are in the vicinity

of the bottom of the bands the Fermi energy is much smaller than Ω0 (also ε0 ✦ Ω0). In

this regime, which is called dilute superconductivity, we cannot make the aforementioned

approximations: ρi♣ξq must be kept in the integrand and the limits of the integral carry

information about the bottom of the band through Wi. Luckily, for 2D bands we can still

analytically evaluate the energy integrals that appear in the model, because the density of

states is already a constant in this case.
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Close to Tc, ∆i are very small. Consequently, we can expand the right-hand

side of Eq.(3.9) in powers of ∆i. Neglecting quadratic and higher orders, we obtain the

linearized gap equations, which written in a matrix form, become✄
∆1

∆2

☛
✏
✄
λ11 λ12

λ21 λ22

☛
Âclean♣µ, Tcq

✄
∆1

∆2

☛
. (3.11)

The matrix elements of Âclean are functions of µ and Tc, and carry information about the

bottom of the bands:

✁
Âclean

✠
ij
✏ δijπTc

➳
n

❇
1

ω2
n � ξ2

❋Ω0

i

✏ δij

π

2

❇
1
ξ

tanh
✂

ξ

2Tc

✡❋Ω0

i

. (3.12)

To obtain the second equality on the right-hand side of Eq.(3.12), we need to calculate

the Matsubara sum1

Tc

➳
n

1

r♣2n� 1qπTcs2 � ξ2
✏ 1

2ξ
tanh

✂
ξ

2Tc

✡
. (3.13)

From Eq.(3.11), it is evident that the the self-consistent gap equations are

coupled through λ12 and λ21, which are equal only if the density of states of the two bands

coincide: recall that from our definition of the dimensionless coupling constants it follows

that λ21④λ12 ✏ ρ1,0④ρ2,0. However, they have the same sign, which is set by the sign of

V12 ✏ V21.

Still looking at Eq.(3.11), it is also evident that finding its solution corresponds

to solving an eigenvalue problem: Tc♣µq is determined when the largest eigenvalue of

λ̂Âclean equals one, i.e.

➵
i✏1,2

✑✁
Âclean

✠
ii

det
✁
λ̂
✠
✁ λī̄i

✙
✏ λ12λ21 , (3.14)

as long as det
✁
λ̂
✠
✏ λ11λ22 ✁ λ12λ21 ✘ 0. Here λ̂ is the coupling matrix, with matrix

elements ♣λ̂qij ✏ λij. Besides, we define ī ✏ 1 (̄i ✏ 2) for i ✏ 2 (i ✏ 1). Furthermore,

Eq.(3.11) tells us that the behavior of Tc♣µq, for a clean two-band SC is independent of the

sign of the interband pairing interaction, since Eq.(3.14) depends on them only through

λ12λ21.

The sign of λ12 sets the relative sign of the SC gaps, and, consequently, the

symmetry of the superconducting state:

1In this chapter, every time we write a Matsubara sum with unspecified limits (
➳
n

), we mean n P ◆
ranging from ✁✽ to ✽.



Chapter 3. The Suppression of Superconductivity near a Lifshitz Transition 71

• For an attractive interband coupling (λ12 → 0), the eigenvector of λ̂Âclean is such

that ∆1 and ∆2 have the same sign. Such superconductor state is denominated s��

state.

• For a repulsive interband coupling (λ12 ➔ 0), on the other hand, ∆1 and ∆2 acquire

opposite signs, which corresponds to an unconventional s�✁ superconducting state.

Another important detail is that the chemical potential that appears in Eq.(3.11)

is also a function of the superconducting temperature µ♣Tcq and, as shown in Ref.[50], in

the proximity of a Lifshitz transition µ♣Tcq does not coincide with the chemical potential

at zero temperature. To solve this issue, we express Tc as function of the total number

of electrons in the system, hereafter denote by N , which is determined by the normal

components of the Green’s function Eq.(3.6): recall that we can write

N ✏
➳

k,i,σ

❆
c
✿
i,kσci,kσ

❊
✏
➳
i,k

✁
1 ✁

❆
ci,kÒc

✿
i,kÒ

❊
�
❆
c
✿
i,✁kÓci,✁kÓ

❊✠
, (3.15)

and since
❆
ci,kσc

✿
i,kσ

❊
✏ ✁T

➳
n

Gi,0♣k, ωnq, and
❆
c
✿
i,✁kσci,kσ

❊
✏ T

➳
n

G✝
i,0♣k, ωnq, it follows

that

N ✏ 2
➳
k

✓
1 ✁ Tc

➳
j,n

ξj,k

ω2
n � ξ2

j,k

✛
✏ 2πA

2➳
j✏1

ρj,0

❇
1

1 � e ξ④Tc

❋Λ

j

, (3.16)

where A denotes the total area of the system 2.

The simultaneous numeric solution of Eqs.(3.14) and (3.16) yields Tc♣Nq shown

in Fig. 23(a), from which we can see that Tc♣Nq is enhanced across the Lifshitz transition

(which, in our notation, happens at N ✏ Nc). That is because as we go across the LT, the

system’s density of states sharply increases due to the appearance of the new Fermi pocket.

Therefore, more electronic states contributes to the superconducting condensate, which

makes Tc go up. Moreover in agreement with Ref. [48], the larger is ⑤λ12⑤, the sharper is

the enhancement of Tc.

As mentioned before, for the particular case of 2D bands we can solve Eq.(3.14)

analytically. That is what we do in Sec. 3.1.1, which is specially important to set the stage

for the calculations we perform in Sec. 3.2.1 and Sec. 3.2.2, where the analytic investi-

gation provides valuable insights about the physics of dirty multiband superconductors.

Furthermore, since the behavior of Tc♣Nq is not dramatically different than the behavior

of Tc♣µq in the vicinity of the Lifshitz transition, as shown in Fig. 23 (b), for simplicity we

focus on an analytic expression for Tc as function of the chemical potential, rather than as

function of the total number of electrons in the system.

2For the case of 3D bands, AÑ V is the total volume of the system - see Ref. [36].
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each region of Fig. 24, we obtain

✁
Âclean

✠
11
✒ 1

2

✩✬✬✬✫
✬✬✬✪

ln
✂
κΩ0

Tc

✡
� µ

2Tc

, region I

ln
✂
κ2Ω0µ

T 2
c

✡
, otherwise

, (3.20)

and

✁
Âclean

✠
22
✒ 1

2

✩✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✪

ln
✂

Ω0

ε0 ✁ µ

✡
, regions I and II

ln
✂
κΩ0

Tc

✡
� ♣µ✁ ε0q

2Tc

, region III

ln
✂
κ2Ω0♣µ✁ ε0q

T 2
c

✡
, region IV

. (3.21)

Now that we have an analytic expression for
✁
Âclean

✠
ij

, solving Eq.(3.14)

simplifies to finding a solution of a transcendental equation, which results in an asymptotic

Tc♣µq in each of the four regions of Fig. 24. Note that it is in contrast with the full

numerical solution, which involves the numerical calculation of either the Matsubara sum

or the energy integral in Eq.(3.12).

Fig. 25(a) shows a comparison between the analytic and the numeric solutions

of the coupled gap equations. We can see that our asymptotic analysis captures the

behavior of Tc♣µq across the Lifshitz transition with great accuracy. A zoom-in in the

vicinity of the Lifshitz transition shown in Fig. 25(b) reveals that the asymptotic Tc♣µq is

not continuous across the boundaries of the different regions of Fig. 24, which has to do

with the own nature of the asymptotic method. Furthermore, as highlighted in the same

figure, some of the asymptotic solutions show diverging behavior near the boundaries.

However, the ranges of µ for which the asymptotic solutions do not behave well are very

small - too small to be shown in the scale of panel (a), and are thus omitted in that plot.

3.2 Dirty Multiband Superconductors

Resistivity measurements elucidate the importance of disorder in both STO

and LAO/STO interfaces. The low-temperature electric resistivity, when extrapolated to

zero-temperature, results in a constant called residual resistivity (ρ0). From the residual re-

sistivity, together with the electron density (n) obtained from Hall resistivity measurements,

we can estimate the impurity scattering rate (i.e. the average number of electron-impurity

collisions per unit time) using the Drude formula:

τ✁1 ✏ ρ0ne
2

me

. (3.22)
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how does the behavior of Tc♣Nq - and also that of Tc♣µq - change if we include non-

magnetic disorder in the system? Does it change at all? At first glance, we could think

that the answer is no, since there is a theorem named after the physicist Philip Anderson

[52], which tells us that a superconductor with an isotropic gap is insensitive to non-

magnetic disorder - see also Ref. [49]. However, multiband superconductors exhibit novel

physical phenomena in comparison to their single-band counterparts, and their response

to disorder is no exception.

As we will see in Sec. 3.2.1, in a two-band superconductor Anderson’s theorem

only applies when the SC gap in both bands are equal ∆1 ✏ ∆2, which only occurs in

the high-density limit and for specific choices of the coupling constants and density of

states. Interestingly, it was shown [53, 61] that there is a similarity between multiband

superconductors, with different superconducting gaps in each of the bands, and a anisotropic

single-band superconductor, where the Anderson theorem loses its validity: the larger is

the difference between ∆1 and ∆2, the larger is the impact of disorder in Tc.

Here we show that the suppression of Tc is much stronger if we have a repulsive

interband interaction. It shows us that studying the effects of disorder in a given super-

conductor is an powerful tool to investigate the nature of the superconducting state: if the

phase diagram is sensitive to non-magnetic disorder, odds are that the superconductor

belongs to the family of unconventional superconductors.

We include disorder in our model by adding to Eq.(3.1) the following impurity

Hamiltonian

Himp ✏
➳

k,k✶,σ

➳
α,β

Wαβ♣k ✁ k✶qc✿α,kσcβ,k✶σ , (3.23)

where Wαβ♣qq denotes the impurity potential, which works as an external potential for

the electrons. Since we are in the vicinity of the bottom of the bands, and, consequently,

we have a small Fermi surface, we can focus on small-momentum impurity scattering.

Hereafter, we denote by v ✑ W11 ♣0q ✏ W22 ♣0q the intraband impurity potential, which

scatters electrons within the same band, and by u ✑ W12 ♣0q ✏ W21 ♣0q the interband

impurity potential, which scatters electrons between the bands. Note that, for simplicity

we choose equal interband scattering potentials and equal intraband scattering potentials.

However, we emphasize that the qualitative behavior of Tc♣µq we describe below does not

depend on this assumption.

The impurity potential also depends on the set of positions of each impurity, here

denoted by tR✉ ✑ tR1,R2, ☎ ☎ ☎ ,RN imp✉, where Nimp ✧ 1the total number of impurities,

and since we are dealing with random disorder, Rj are random variables. Therefore, the

impurities define a configuration-dependent external potential for the electrons, which

breaks the translational symmetry of the system. As a consequence, the impurity self-energy

not only depends parametrically on tR✉ but also is a function of two momentum variables:
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Σ̂♣k,k✶, ωn; tR✉q. The same is true for the system’s total Green’s function, which obeys

the Dyson’s equation

Ĝ✁1♣k,k✶, ωn; tR✉q ✏ Ĝ✁1
0 ♣k, ωnq ✁ Σ̂♣k,k✶, ωn; tR✉ . (3.24)

However, since we want to calculate Tc, which is a thermodynamical property

of the system, instead of studying the local effects of disorder, we can take an average of

Wαβ, Σ̂ and Ĝ over all possible impurity configurations, which have equal probabilities

since, as we said before, the impurities are randomly distributed in the system. This is a

well known procedure called self-averaging and it restores the translational symmetry of

the system [57, 23].

The self-averaged self-energy is

Σ̂♣k, ωnq ✑
❆

Σ̂♣k,k✶, ωn; tR✉q
❊

imp
✏
➺ Nimp➵

j✏1

dRj

A
Σ̂♣k,k✶, ωn; R1, ☎ ☎ ☎ ,RNimp

q , (3.25)

where A is the total area of the system A similar expression holds for the self-averaged

Green’s function, and the Dyson equation simplifies

Ĝ✁1♣k, ωnq ✏ Ĝ✁1
0 ♣k, ωnq ✁ Σ̂♣k, ωnq , (3.26)

as usual in translational invariant systems. Hereafter, every time we write Ĝ, Σ̂ and Wαβ,

we mean the correspondent self-averaged quantities.

The self-averaged self-energy is represented diagrammatically in Fig. 27(a).

Among the diagrams, those that, like the first, contain only one dashed line emerging from

an impurity circle, can be renormalized away by introducing a constant in the Hamiltonian

and hence they can be neglected. Furthermore, the diagrams with more than two dashed

lines per impurity circle represent processes of multiple scattering per impurity and we

also neglect them, since we are dealing with weak impurities.

The dominant diagrams are then those with two dashed lines per impurity

circle. Among them, those that contains crossing lines, like the fifth diagram of Fig.27(a),

are subleading and also neglected. This is called non-crossing approximation [23]. As

a result, only the family of diagrams shown in Fig. 27(b) contributes to the impurity

self-energy, which becomes

Σ̂♣k, ωnq ✏ nimp

➺
ddk✶

♣2πqd
Ŵk✶✁kĜ♣k✶, ωnqŴk✁k✶ , (3.27)

with

Ŵk,k✶ ✏

☎
✝✝✝✝✆
v 0 u 0

0 ✁v 0 ✁u
u 0 v 0

0 ✁u 0 ✁v

☞
✍✍✍✍✌ . (3.28)
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for the aforementioned renormalized quantities:

ω̃n,i ✏ ωn �
➳

j

τ✁1
ij ω̃n,j

2

❈
1

ω̃2
n,j � ♣ξ � hn,jq2 � ∆̃2

j

●Λ

j

, (3.29)

∆̃i ✏ ∆i �
➳

j

τ✁1
ij ∆̃j

2

❈
1

ω̃2
n,j � ♣ξ � hn,jq2 � ∆̃2

j

●Λ

j

, (3.30)

hn,i ✏ ✁
➳

j

τ✁1
ij

2

❈
ξ � hn,j

ω̃2
n,j � ♣ξ � hn,jq2 � ∆̃2

j

●Λ

j

. (3.31)

Here, Λ is the band width, which we consider to be the same for both bands and, hereafter,

equal to the pairing interaction cutoff (Λ ✏ Ω0). Besides, τ✁1
ij denotes the impurity

scattering rates, which we define as

τ✁1
ij ✏ 2πnimpρj,0

�⑤v⑤2δi,j � ⑤u⑤2δī,j

✟
. (3.32)

Once again we use the notation ī ✏ 1♣2q if i ✏ 2♣1q. Note that τ11 and τ22 (τ12 and τ21)

define the intraband (interband) impurity scattering rates.

At Tc we can linearize Eqs.(3.29)-(3.31), similarly as we did with the gap

equations in Sec. 3.1. In this case, we can readily see that Eq.(3.30) decouples from Eqs.

(3.29) and (3.31). The former, written in a matrix form, becomes

✄
∆̃1

∆̃2

☛
✏
✄

∆1

∆2

☛
� 1

2

☎
✆τ✁1

11 B
♣nq
1 τ✁1

12 B
♣nq
2

τ✁1
21 B

♣nq
1 τ✁1

22 B
♣nq
2

☞
✌✄∆̃1

∆̃2

☛
, (3.33)

where we define

B
♣nq
i ✑

❇
1

ω̃2
n,i � ♣ξ � hn,iq2

❋Ω0

i

. (3.34)

Besides, performing a simple two-by-two matrix inversion, we can rewrite Eq.(3.33) as✄
∆̃1

∆̃2

☛
✏ 1
Dn

M̂n

✄
∆1

∆2

☛
, (3.35)

where the matrix elements of M̂n are given by

✁
M̂n

✠
ij
✏
☎
✆1 ✁ τ✁1

ī̄i

2

❈
1

ω̃2
n,̄i
� �ξ � hn,̄i

✟2

●Λ

ī

☞
✌δi,j �

τ✁1
ij

2

❈
1

ω̃2
n,j � ♣ξ � hn,jq2

●Λ

j

δī,j ,

(3.36)

while

Dn ✏ 1 ✁
➳

i

τ✁1
ii

2

❈
1

ω̃2
n,i � ♣ξ � hn,iq2

●Λ

i

� det ♣τ̂✁1q
4

➵
i

❈
1

ω̃2
n,i � ♣ξ � hn,iq2

●Λ

i

. (3.37)
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denotes its determinant. Here, to shorten the notation we define the scattering rate matrix�
τ̂✁1

✟
ij
✑ τ✁1

ij .

Note that Eq. (3.35) is not the self-consistency equation for the superconducting

gaps yet! Similarly as we did in Sec. 3.1, using the anomalous part of the total Green’s

function to calculate the expected values that appear in Eq.(3.3), we obtain✄
∆1

∆2

☛
✏
✄
λ11 λ12

λ21 λ22

☛✄
B

♣nq
1 0

0 B
♣nq
2

☛✄
∆̃1

∆̃2

☛
. (3.38)

The self-consistent gap equations for a dirty two-band superconductor are determined

when we combine Eqs.(3.35) and (3.38), which gives us an eigenvalue problem with same

form as Eq.(3.11), but with the matrix Âclean replaced by Âdirty, which has more complex

matrices elements: ✁
Âdirty

✠
ij
✏ πTc

➳
n

B
♣nq
i

Dn

✁
δij � C

♣nq
ij

✠
, (3.39)

with B
♣nq
i defined in Eq.(3.34), and

C
♣nq
ij ✏ ✁δi,j

τ✁1
ī̄i

2

❈
1

ω̃2
n,̄i
� �ξ � hn,̄i

✟2

●Λ

ī

� δī,j

τ✁1
ij

2

❈
1

ω̃2
n,j � ♣ξ � hn,jq2

●Λ

j

. (3.40)

In contrast to Âclean, Âduty is a non-diagonal matrix. Moreover, it carries information about

either the bottom of the bands, through its dependence of Wi, and about disorder, though

its dependence on the scattering rates τ✁1
ij .

Furthermore, the equation that gives the total number of electrons in the

systems also changes in order to incorporate the effects of disorder. Through the same

procedure we described in Sec. 3.1 to derive Eq.(3.16), here we obtain

N ✏ 2
➳
k

✓
1✁ Tc

➳
j,n

♣ξj,k � hn,jq
ω̃2

n,j � ♣ξj,k � hn,jq2
✛

. (3.41)

Therefore, in the case of dirty multiband superconductors, we need to simultaneously solve

Eq.(3.11) with Âclean Ñ Âdirty, and Eqs.(3.29) (3.31), Eq.(3.41) to calculate Tc as function

of N . Similarly to Sec. 3.1, we can achieve this goal numerically or analytically, through

an asymptotic study. Below we show and compare the results in both cases.

Let’s start by the full numerical solution. Fig. 28 shows the phase diagram

(Tc♣Nq) for a two-band superconductor with (a) repulsive interband coupling (λ12 ➔ 0)

and (b) attractive interband coupling (λ12 → 0). The different color lines refers to different

values of the impurity scattering rates, as indicated in the label of panel (b). For simplicity,

in these figures we choose the same value for the interband and intraband scattering

rates τ✁1
ii ✏ τ✁1

12 ✏ τ✁1
21 (point-like impurities), as well as a dominant intraband pairing
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Comparing panels (a) and (b) in Fig.28, we conclude that the effect of disorder

is stronger when the interband pairing interaction is repulsive. It can be rationalized in

terms of Anderson’s theorem: the differences between ∆1 and ∆2 are larger when λ12 ➔ 0,

and, as in an anisotropic single-band superconductor, the effects of non-magnetic disorder

are more significant. Conversely, if ∆1 ✏ ∆2, which happens in the high-density limit if

the interband pairing interaction is attractive, Anderson’s theorem is recovered and Tc♣Nq
no longer changes if we increase or reduce disorder. That’s why we see the curves of Fig.

28(b) collapsing into the same line as N increases.

If we perform the full numerical calculations with τ✁1
12 ✏ τ✁1

21 ✏ 0, we find,

independently of the values we choose for intraband scattering rates, the same qualitative

behavior of Fig. 23(a). In other words, we verified that the effect of intraband scattering on

Tc♣Nq is minor, which is, once again, a consequence of Anderson’s theorem. The interband

scattering processes, on the other hand, are the responsible for breaking the Cooper pairs

and, consequently, suppress superconductivity. Our results show that what happens in

a dirty multiband superconductor is a competition between two opposite effects in the

vicinity of the Lifshitz transition: on the one hand, Tc tends to increase as the second

band becomes populated as a consequence of the enhancement of the system’s density of

states. On the other hand, when the second band appears, impurities can scatter electron

from band 1 to band 2 and vice-versa, which breaks the Cooper pairs and therefore is

detrimental to superconductivity. When disorder are strong enough, the second effect wins

and Tc gets reduce.

Importantly, as explained in Ref. [35], we also did the full numerical calculations

for 3D bands, where the same qualitative behavior of Fig. 28 was found, with the difference

that the suppression of Tc is smoother for 3D bands as a consequence of a vanishing density

of states in the bottom of the bands. Moreover, our theoretical phase diagrams (for both

2D and 3D) for a repulsive interband pairing exhibit a great qualitative agreement with

the experimental phase diagrams of STO [31] and LAO/STO interfaces [33] - compare

Fig. 2 with Fig.28. It suggests an unconventional nature for superconductivity in these two

materials, a topic highly debated in the literature.

Looking at the eigenvectors4 ∆̂ of the coupled gap equation ∆̂ ✏ λ̂Âdirty∆̂, we

find another important result. In Sec. 3.1 we explained that the sign of the interband

pairing interaction λ12 and λ21 sets the relative sign of the superconducting gaps in each of

the bands. Recall that, there, an attractive inter-bad pairing leads to a s�� superconducting

state, where ∆1 and ∆2 have the same sign, while a repulsive interband interaction leads

to an unconventional s�✁ state, characterized by opposite sign gaps. When disorder comes

in play, this scenario changes a bit: while in the attractive interband pairing situation

the state is always s��, a crossover s�✁ Ñ s�� can happen when the interband pairing

4We denote by ∆̂ the vector such that
✁

∆̂
✠

i
✏ ∆i, with i ✏ 1, 2.
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superconductivity are stronger in two-band superconductors with a dominant attractive

intraband pairing and subleading repulsive interband superconducting pairing. In the next

subsections we see how this result appears in an asymptotic study of the coupled gap

equations ∆̂ ✏ λ̂Âdirty∆̂ and the self-consistent Eqs.(3.29) and (3.31). Note that to avoid

cumbersome notations, hereafter we denote by Tc

�
τ̂✁1 ✏ 0

✟ ✑ Tc,0 the superconducting

transition temperature in the absence of disorder. Besides, Âdirty ✑ Âd, and Âclean ✏ Âc

3.2.1 Asymptotic solution in the high-density limit

In the remaining part of this chapter, let’s look for analytic expressions for the

matrix elements of Âd. Besides, since the general function for Tc

�
τ̂✁1

✟
has no analytic

form, hereafter we focus on the behavior for weak disorder and compute ❇Tc④❇τ✁1
ij .

A very convenient way of calculating ❇Tc④❇τ✁1
ij is making use of the Feynman-

Hellmann theorem - see for instance Refs. [59, 60]. Denoting by α ♣T q the largest eigenvalue

of
✁
λ̂Âd

✠
for a given temperature T and by α0 ♣T q the largest eigenvalue of

✁
λ̂Âc

✠
, with

correspondent left and right eigenvectors
❆
α
♣0q
L

✞✞✞ and
✞✞✞α♣0qR

❊
, respectively, the Feynman-

Hellmann theorem tells us that that

❇α
❇τ✁1

ij

✞✞✞✞
τ✁1

ij
✏0

✏

❇
α
♣0q
L

✞✞✞✞❇♣λ̂Âdq
❇τ✁1

ij

✞✞✞✞α♣0qR

❋
❆
α
♣0q
L

✞✞✞α♣0qR

❊ . (3.42)

It is important to emphasize that here we need both the left and right eigenvectors of λ̂Âc

and λ̂Âd because these matrices are nonsymmetric. Now, recalling that at each fixed value

of the chemical potential µ the SC transition temperature is given by α♣Tcq ✏ 1, we find,

using the Maxwell relations, that

❇Tc

❇τ✁1
ij

✞✞✞✞
τ✁1

ij
✏0

✏ ✁

❇
α
♣0q
L

✞✞✞✞❇♣λ̂Âdq
❇τ✁1

ij

✞✞✞✞α♣0qR

❋
❆
α
♣0q
L

✞✞✞α♣0qR

❊ 1
♣❇α0④❇T q⑤T✏Tc

. (3.43)

This is the general formalism we use in this and in the next subsection.

It is enlightening to start by the high-density regime, where the role of the

interband scattering is highlighted. In this case, µ ✧ tΩ0, ε0✉ and we recover the standard

BCS approximation (for both 2D and 3D bands, the results of this subsection are the

same!): the density of states appearing inside the energy integrals like Eq.(3.10) can be

approximated by its value at the Fermi surface (ρi,F ) and the integration limits become

symmetric:

①O♣ξq②ξc

i ✑ ρi,F

πρi,0

ξc➺
✁ξc

dξO♣ξq . (3.44)
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Note that the energy cutoff ξc can assume the values Ω0 or Λ depending on what we are

calculating. For instance, when we calculate B♣nq
i defined in Eq.(3.34), ξc ✏ Ω0. When

calculating C♣nq
i defined in Eq.(3.40), on the other hand, ξc ✏ Λ.

Since tΛ,Ω✉ ✧ Tc, ξc④Tc Ñ ✽, so the energy integration are performed from

✁✽ to ✽, which give us simple expressions

❇
1

ω̃2
n,i � ξ2

❋Ω0

i

✏
❇

1
ω̃2

n,i � ξ2

❋Λ

i

✏ ρi,F

ρi,0⑤ω̃n,i⑤ . (3.45)

Now, substituting Eq.(3.45) into Eq.(3.29), we find

⑤ω̃n,i⑤ ✏ ⑤ωn⑤ � 1
2

➳
j

τ✁1
ij , (3.46)

where we incorporate the ratios ρi,F ④ρi,0 in the definitions of the pairing couplings and

impurity scattering rates 5 (
ρi,F

ρi,0

τ✁1
ij Ñ τ✁1

ij and
ρi,F

ρi,0

λij Ñ λij). Moreover, in the high-

density limit, the renormalization in the bands’ dispersion vanishes hn,i Ñ 0.

Therefore, substituting Eq.(3.46) into Eqs.(3.34), (3.37) and (3.40), we obtain

the following results:

B
♣nq
i

Dn

✏

✂
⑤ωn⑤ � 1

2

➦
j

τ✁1
īj

✡

⑤ωn⑤
✂
⑤ωn⑤ � 1

2

➦
j

τ✁1
jj̄

✡ (3.47)

B
♣nq
i

Dn

C
♣nq
ij ✏

�✁δi,jτ
✁1
ī̄i
� δī,jτ

✁1
īi

✟
2 ⑤ωn⑤

✂
⑤ωn⑤ � 1

2

➦
j

τ✁1
jj̄

✡ , (3.48)

and

Dn ✏
⑤ωn⑤

✂
⑤ωn⑤ � 1

2

➦
j

τ✁1
jj̄

✡
➧

i

✂
⑤ωn⑤ � 1

2

➦
j

τ✁1
ij

✡ . (3.49)

which, after some simple algebra, can be rearranged into✁
Âd

✠
ij
✏ δi,jPi � δī,jQi (3.50)

with

5Note that it corresponds to using the density of states at the Fermi level ρi,F , instead of ρi,0,
in the the definitions of the pairing couplings and impurity scattering rates, i.e. λij ✏ ✁ρj,F Vij and
τ✁1

ij ✏ 2πnimpρj,F

�⑤v⑤2δi,j � ⑤u⑤2δī,j

✟
.
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Pi ✏ ln
✂
κΩ0

Tc

✡
✁ ρī,F

ρ1,F � ρ2,F

✒
ψ

✂
1
2
� τ✁1

inter

2πTc

✡
✁ ψ

✂
1
2

✡✚
, (3.51)

Qi ✏
ρī,F

ρ1,F � ρ2,F

✒
ψ

✂
1
2
� τ✁1

inter

2πTc

✡
✁ ψ

✂
1
2

✡✚
. (3.52)

Here, there are two important details. First, we can see that the dependence of Eqs.(3.47)-

(3.49) with the intraband scattering rates is such that they exactly cancel out when plugged

into the expression for Âd, which then becomes a function only of the interband scattering

rates, τ✁1
inter ✑

1
2

�
τ✁1

12 � τ✁1
21

✟
. It means that in the high-density limit the impact of disorder

in Tc comes solely from the interband scattering processes.

Second, in order to derive Eqs.(3.51) and (3.52), we use the result (see Appendix

E) ➳
n

1
⑤ωn⑤ � x

✓ 1
πTc

✒
ln
✂

Γc

2πTc

✡
✁ ψ

✂
1
2
� x

2πTc

✡✚
, (3.53)

where Γc is the upper cutoff of the Matsubara sum, needed for convergence (Γc ✏ Ω0 ✧ Tc

for the B♣nq
i terms), and ψ♣xq is the digamma function.

As in Sec. 3.1.1, once we have the analytic expression for the matrix elements Âd,

solving the coupled gap equations ∆̂ ✏ λ̂Âd∆̂ corresponds to solve a set of transcendental

equations, which, in this case, give us Tc as function of τ✁1
inter.

Instead of calculating Tc♣τ✁1
interq, let’s investigate the behavior of ❇Tc④❇τ✁1

inter using

Eq.(3.43). First of all, substituting Eq.(3.45) into Eq.(3.12), it is straightforward to derive

that the largest eigenvalue of λ̂Âc is

α0 ✏ λ� ln
✂
κΩ0

Tc

✡
, (3.54)

with

λ� ✏ λ0 �
❝
δλ2 � 1

r
λ2

12 , (3.55)

while its correspondent right and left eigenvectors are given by, respectively

✞✞✞α♣0qR

❊
✏

☎
✝✆ δλ�

❝
δλ2 � 1

r
λ2

12

1
r
λ12

☞
✍✌ , (3.56)

and

❆
α
♣0q
L

✞✞✞ ✏
☎
✆ δλ�

❝
δλ2 � 1

r
λ2

12

λ12

☞
✌

T

. (3.57)
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In Eqs.(3.54)-(3.57), we introduce the following definitions: λ12④λ21 ✏ τ✁1
12 ④τ✁1

21 ✏ r,

λ0 ✏ 1
2
♣λ11 � λ22q and δλ ✏ 1

2
♣λ11 ✁ λ22q. Furthermore, noting that ∆̂ is proportional to✞✞✞α♣0qR

❊
, we can clearly see from Eq.(3.57) that sgn♣∆1④∆2q ✏ sgn♣λ12q, so an attractive

λ12 promotes equal sign gaps, while a repulsive λ12 promote opposite sign gaps, as we

explained in Sec. 3.1.

Secondly, from Eq.(3.50), we readily find

❇
✁
λ̂Âd

✠
❇τ✁1

inter

✞✞✞✞✞✞
τ✁1

inter
✏0

✏ 1
♣1� rq

π

4Tc,0

✄
λ12 ✁ rλ11 ✁λ12 � rλ11

λ22 ✁ λ12 ✁λ22 � λ12

☛
. (3.58)

So, substituting Eqs.(3.54)-(3.58) into Eq.(3.43), we finally find, if we set r ✏ 1 i.e., if

λ12 ✏ λ21 and τ✁1
12 ✏ τ✁1

21 , which in turn is achieved if we assume equal density of states

for both bands,

❇Tc

❇τ✁1
inter

✞✞✞✞
τ✁1

inter
✏0

✏ ✁π
8

✔
✖✖✕1✁ sgn ♣λ12q❝✁

λ11✁λ22

2λ12

✠2

� 1

✜
✣✣✢ . (3.59)

This expression reveals important properties of impurity scattering in multiband

superconductors. The first thing we should notice is that non-magnetic disorder affects

both s�✁ and s�� superconducting states! Although the effect is much stronger in s�✁

states (λ12 ➔ 0), Fig. 30(a) shows that Tc of an s�� superconducting state is suppressed

as long as λ11 ✘ λ22. We can understand why that is returning to Eq. (3.56): there, we

can see that λ11 ✏ λ22 (and therefore δλ ✏ 0) leads to ∆1 ✏ ∆2. In this case, as we said

before, Anderson’s theorem holds and Tc becomes insensitive to non-magnetic disorder.

Returning to the λ12 ➔ 0 case, we can compare the role of non-magnetic

disorder in multiband superconductors with the role of magnetic disorder in single-

band superconductors. For a single-band s-wave superconductor with magnetic disorder

characterized by a scattering rate τ✁1
mag,✂ ❇Tc

❇τ✁1
mag

✡
AG

✏ ✁π
4

. (3.60)

This is known as Abrikosov-Gor’kov result - see Ref. [49]. Comparing Eqs.(3.59) and (3.60),

we conclude that for a two-band superconductor, in the high-density regime and with

repulsive interband pairing interaction,

✞✞✞✞ ❇Tc

❇τ✁1
inter

✞✞✞✞ ↕
✞✞✞✞ ❇Tc

❇τ✁1
mag

✞✞✞✞, as evidenced in Fig. 30(a).

Alternatively, we can calculate ❇Tc④❇τ✁1
inter as function of r by setting λ11 ✏ λ22

in Eq.(3.58). We thus obtain

❇Tc

❇τ✁1
inter

✞✞✞✞
τ✁1

inter
✏0

✏ ✁π
8

✒
1✁ 2

❄
r sgn ♣λ12q
1� r

✚
, (3.61)
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3.2.2 Asymptotic solution in the dilute regime

Let’s now return to the low-density regime, where µ ✦ Ω0. Here, unfortunately,

the energy integrals apearing in Eqs.(3.29)-(3.31) and Eq.(3.39) are not so simple as

Eqs.(3.45), but we can still solve the gap equations and the self-consistent equations for

the renormalized Matsubara frequencies, bands dispersion, and superconducting gaps in

the limit of weak disorder.

As in Sec. 3.1.1, we investigate Tc as a function of µ, rather than a function of

N . Here, motivated by the result of Sec. 3.2.1, we neglect the intraband scattering rates

by setting τ✁1
11 ✏ τ✁1

22 ✏ 0. Moreover, for simplicity, we also set hn,i ✏ 0. In the end, we

can compare our analytic Tc♣µq with out numeric results to conclude if these are indeed

good approximations.

Expanding Eq.(3.29) up to linear order in the interband scattering rates, we

find

ω̃n,i ✏ ωn

✂
1� 1

2π
τ✁1

īi
fn,̄i

✡
, (3.62)

where we defined the function

fn,i ✑ 1
ωn

✒
arctan

✂
Ω0

ωn

✡
✁ arctan

✂
Wi

ωn

✡✚
, (3.63)

which came from the result of the energy integration. Recall that ī ✏ 1♣2q for i ✏ 2♣1q.
Moreover, evaluating the energy integrals in Eq.(3.39) and also expanding the resulting

expression in linear order in τ✁1
īi

yields

Âd ✏ Âc � τ✁1
interδÂ , (3.64)

where Âc is the clean-case diagonal matrix defined in Eq.(3.12), and, once more, τ✁1
inter ✑

1
2

�
τ✁1

12 � τ✁1
21

✟
denotes the average interband impurity scattering. The matrix elements of

δÂ carries complicated Matsubara sums:✁
δÂ

✠
ij
✏ 1

2π

✏
Riδij � S

�✁δi,j � δī,j

✟✘
, (3.65)

with

Ri ✏ ✁Tc

➳
n

✂
Λ

Λ2 � ω2
n

✁ Wi

W 2
i � ω2

n

✡
fn,̄i, (3.66)

S ✏ Tc

➳
n

fn,1fn,2 . (3.67)

To derive Eqs.(3.66) and Eqs.(3.67) we made two simplifications: we set the

density of states of the two bands to be equal, ρ1,0 ✏ ρ2,0, and considered Ω0 ✏ Λ. It
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is importnat to emphasize that the main results presented here do not rely on these

simplifications.

To determine analytic asymptotic expressions for the matrix elements of Âd,

we follow the same asymptotic procedure explained in Sec. 3.1.1. The calculation is

straightforward and, as shown in Appendix F, it results in long expressions for R1, R2,

and S.

Recalling that α♣T q, denotes the largest eigenvalue of λ̂Âd, where Âd is de-

fined in Eq.(3.64), it follows that, similarly to Sec.3.1.1, finding Tc♣µq involves solving a

transcendental algebraic equation α ✏ 1, with:

α ✏ 1
2

✑
a11 � a22 �

❛
♣a11 ✁ a22q2 � 4a12a21

✙
, (3.68)

where we defined, in terms of the analytic expressions for Ri and S calculated in Appendix

F:

a11 ✏ λ11

✒
A1 � τ✁1

inter

2π
♣R1 ✁ Sq

✚
� τ✁1

inter

2π
λ12S

a12 ✏ λ12

✒
A2 � τ✁1

inter

2π
♣R2 ✁ Sq

✚
� τ✁1

inter

2π
λ11S

a21 ✏ λ12

✒
A1 � τ✁1

inter

2π
♣R1 ✁ Sq

✚
� τ✁1

inter

2π
λ22S

a22 ✏ λ22

✒
A2 � τ✁1

inter

2π
♣R2 ✁ Sq

✚
� τ✁1

inter

2π
λ12S , (3.69)

with A1 ✏
✁
Âc

✠
11

and A2 ✏
✁
Âc

✠
22

.

A comparison between the analytic and numeric Tc♣µq is presented in Fig. 31,

for the cases of attractive and repulsive interband pairing interactions. As in the clean case,

we can see an excellent agreement the two methods, except in very narrow regions where

the asymptotic approximation fails. Similarly to Fig. 25, these regions are too narrow

compared to the scale of the plots and are thus not shown in the plots. Moreover, the

agreement between the asymptotic solution and the numerical results near the Lifshitz

transition improves as the scattering rates becomes smaller, which makes sense since, as

we said in the beggining of this subsection, our asymptotic study holds for weak disorder.

As in Sec. 3.2.1, here we are also interested in the behavior of ❇Tc④❇τ✁1
inter

obtained through Eq.(3.43). It is straightforward to calculate, in terms of the functions

R1, R2 and S,❈
α
♣0q
L

✞✞✞✞✞❇♣λ̂Âdq
❇τ✁1

inter

✞✞✞✞✞α♣0q
R

●
✏ ✥♣1 ✁ λ11A2q

✏♣R1 ✁ Sq♣λ11 ✁ λ2
11A2 � λ2

12A2q � λ12S♣1 � λ11A1q
✘

�λ2
12A1♣R2 ✁ S � λ12SA2q

✭ 1
2π

, (3.70)









Chapter 3. The Suppression of Superconductivity near a Lifshitz Transition 95

solution of the dirty gap equations shown in Fig. 28.

3.3 Conclusions - part II

In this Chapter we investigated the evolution of the superconducting transition

temperature Tc of a two-band superconductor as a function of the chemical potential µ,

which controls the bands occupation. We give special attention to the limit where we are

close to the bottom of the bands, so by varying µ we can go from the case where only one

band crosses the Fermi level (single-band superconductivity) to the situation where both

bands are populated, characterizing the regime of multiband superconductivity.

Particularly, when µ reaches the bottom of the second band which then becomes

populated, making a new Fermi pocket appear in the Fermi surface, the system undergoes

a so called Lifshitz transition, which leaves signatures in the behavior of Tc♣µq. It is

well known in the literature that Tc tends to increase across a Lifshitz transition, simply

because of the enhancement of the system’s density of states as the second band becomes

populated: a larger density of states implies that more electronic states will be available

for composing the superconducting condensate and as a result Tc increases.

We show, both numerically and analytically, that this is the case for 2D bands.

We observe a sharp enhancement of Tc across the Lifshitz transition for both attractive and

repulsive interband superconducting pairing. In a clean multiband superconductor, Tc♣µq
doesn’t depend on the sign of the interband pairing, which, in turn, only sets the symmetry

of the resulting superconductor state: an attractive interband pairing (λ12 → 0) generates a

state with equal sign gaps denominate s�� state. An repulsive interband pairing (λ12 ➔ 0),

on the other hand, generates an unconventional sign changing gaps states, the s�✁ state.

However, recent experimental evidences show that Tc actually reduces across

the Lifshitz transition of two paradigmatic examples of multiband superconductors: the

SrTiO3 and the LaAlO3/SrTiO3 interfaces. In these system’s phase diagrams, one can see

a superconducting dome, peaked at the Lifshitz transition, even without any other nearby

order to compete with superconductivity. Motivated by these results, we investigated a

possible origin for this curious behavior.

It so happens that residual resistivity data reveal that both STO and LAO/STO

are dirty systems, so we decided to investigate the effect of non-magnetic disorder in a

model two-band superconductor.

We show, again both analytically and numerically, that in contrast to single-

band superconductors, in a multiband dilute superconductor non-magnetic disorder can

suppress Tc of both s�✁ and s�� states. Our asymptotic study reveals that the key for the

suppression of superconductivity across the Lifshitz transition is the interband electronic
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scattering promoted by the impurities, which are strongly pair-breaking. Actually, we show

that what happens in the vicinity of the Lifshitz transition is a competition of two opposite

effects: one the one hand, there is the tendency of increase of Tc due to the enhancement

of the density of states. On the other hand, when the second band becomes populated

the aforementioned interband scattering starts happening, destroying, in turn, the Cooper

pairs. When disorder is strong enough, the detrimental effect of disorder wins and, as a

result, Tc is reduced, generating a non-monotonic behavior of Tc♣µq across the Lifshitz

transition.

Our asymptotic study also shows that the pair-breaking effect of non-magnetic

disorder is stronger for a multiband superconductor with dominant intraband pairing

interactions (λ11 and λ22) and subleading repulsive interband interaction (⑤λ12⑤ ✦ tλ11, λ22✉,
with λ12 ➔ 0), and the theoretical phase diagram obtained in this case is in agreement

with the experimental phase diagram of the LAO/STO interfaces and thin films of STO.

Therefore, out work suggests an unconventional nature for the superconducting state in

these systems, which is a long-standing and puzzling open question in the literature.

Another astonishing consequence of our model is a change in the symmetry of

the superconducting state, from s�✁ to s��, as a function of the electronic density (n) for

a fixed impurity scattering rate and for the λ12 ➔ 0 case. Such result allows us to predict

that in the aforementioned phase diagrams of STO and LAO/STO interfaces, we would

have, at the left side of the superconducting dome (before the Lifshitz transition), an s�✁

state, while on the right side of the dome, as n (or µ) increases, the symmetry of the state

would change to s��.

Interestingly, such crossover can be observed experimentally, since it leaves

signatures in the spectroscopic and thermodynamic properties of the system. In particular,

for densities close to the onset of such symmetry crossover, the superconducting gap in

one of the bands is very small and, thus, could not be identified by some probes, which

would in turn, measure a signal consistent with a single-band superconductor even though

more than one band crosses the Fermi level. As a matter of fact, that is exactly what

happened in a recent optical conductivity experiment performed in doped STO.

It is important to emphasize that in this thesis we focused on the case of 2D

bands because the density of states of each band is a constant, and an analytic solution

of the gap equations is feasible. However, in Ref. [35], we show that the same qualitative

behavior described here holds for 3D bands, where the structure of a superconducting

dome is more apparent. Therefore, our model can explain the features of both the phase

diagrams of LAO/STO hetero-structures and bulk STO.
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APPENDIX A – Derivation of the Hubbard

Hamiltonian

Here we provide a detailed derivation of both the single-band Hubbard Hamil-

tonian defined in Eq.(2.9), and the three-band Hubbard Hamiltonian defined in

Eqs.(2.94) and (2.95), which we use in the main text of this thesis. This appendix

is divided in three sections. In Sec. A.1 we derive Eq.(2.9), while in in Sec. A.2 we

show how this Hamiltonian needs to be modified to account for multiple orbitals

per site.

A.1 Single-band Hubbard Hamiltonian

Proposed by John Hubbard in 1963 to describe electrons correlations in narrow

bands[39], the Hubbard model is the simplest model available to study interacting electrons

in a lattice with either one orbital per site (single-band model) or multiple orbitals per site

(multiband model). We first show how to derive the single-band Hubbard Hamiltonian for

a 1D lattice with periodic boundary conditions.

The starting point is the complete Hamiltonian of Ne interacting electrons in

first quantization, which is given by

H0 ✏
Ne➳
i✏1

✂
p2

i

2m
� Vc♣riq

✡
� 1

2

Ne➳
j✘i✏1

e2

⑤ri ✁ rj⑤ . (A.1)

Here, pi and ri denote, respectively, the momentum and the position of the i-th electron

of the system, while e is the elementary charge. The information about the existence of an

underlying lattice enters in Vc♣rq, which is the periodic generated by the lattice ions and

its core electrons. Here we make an approximation by assuming that the lattice is static,

so Vc♣rq does not change in time.

In the specific case of our rings, since here we are deriving a model only for the

degrees of freedom of the π-electrons, the biding σ-electrons, frozen in the sp2 orbitals,

also contributes to Vc♣rq through a static charge density in the σ-bonds. This scenario

changes in Sec.A.2.

The next step is to rewrite the Hamiltonian in Eq.(A.1) in second quantization
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[22],

Ĥ0 ✏
➳

σ✏Ò,Ó

➺
dr ψ̂✿

σ♣rqh♣rq ψ̂σ♣rq

� 1
2

➳
σ,σ✶

➺
dr

➺
dr✶ ψ̂✿

σ♣rq ψ̂✿
σ✶♣r✶qu♣r, r✶q ψ̂σ✶♣r✶q ψ̂σ♣rq , (A.2)

where

h♣rq ✑ P2

2m
� Vc♣rq ✏ ✁ ~

2

2m
∇

2 � Vc♣rq , (A.3)

corresponds the single-particle Hamiltonian, while

u♣r, r✶q ✏ e2

⑤r ✁ r✶⑤ , (A.4)

is the standard Coulomb repulsion between the electrons. Besides, ψ̂✿
σ♣rq (ψ̂σ♣rq) is the

field operator that creates (annihilates) an electron with spin σ at the position r of the

real space,

ψ̂✿
σ♣rq ✏

➳
j

ϕ✝j ♣rqc✿jσ . (A.5)

Note that it is given in terms of the single-particle states ϕj♣rq ✑ ①r ⑤j ②, which are the

eigenstates of the single-particle Hamiltonian defined in (A.3). Moreover, the annihilation

operator ψ̂σ♣rq is readily obtained by taking the Hermitian conjugate of Eq.(A.3).

Choosing ϕj♣rq to be the Wannier wave functions, which are centered at the

position of the j-th site of the ring, we obtain the field operators in the site basis1, meaning

that the index j runs from one to the total number of sites N of the ring and the operator

c
✿
jσ (cjσ) creates (annihilates) one electron with spin σ in the site j. Moreover, since we

are dealing with a sing system, periodic boundary conditions apply, i.e. c✿j�Nσ ✏ c
✿
jσ. More

details about the functional form of ϕj♣rq is provided later in this Appendix.

Substituting Eq.(A.5) into Eq.(A.2), we find

Ĥ0 ✏
N➳

i,j✏1

➳
σ✏Ò,Ó

tij c
✿
iσcjσ �

1
2

N➳
i,j,k,l✏1

➳
σ,σ✶✏Ò,Ó

Uijkl c
✿
iσc

✿
jσ✶ckσ✶clσ . (A.6)

Here tij is the hopping parameter

tij ✑ ①i ⑤h⑤ j② ✏
➺
dr ϕ✝i ♣rqh♣rqϕj♣rq , (A.7)

1Alternatively, we could have chosen the single-particle wave functions to be the Bloch states. In this
case we would find the field operator in the Bloch bases basis. The field operators, and consequently the
second-quantized Hamiltonians in the site basis and in the Bloch basis are related by a simple discrete
Fourier transform.



APPENDIX A. Derivation of the Hubbard Hamiltonian 104

which gives the probability amplitude of an electron to hop between the sites i and j, and

Uijkl ✑ ①ij ⑤u⑤ lk② ✏
➺
dr

➺
dr✶ ϕ✝i ♣rqϕ✝j ♣rqu♣r, r✶qϕk♣r✶qϕl♣rq (A.8)

is the Coulomb repulsion in the site basis.

The Hamiltonian (A.6) is still very generic and complex and, in order to obtain

the standard single-band Hubbard Hamiltonian, two important approximations must

be done [39]. First, we should note that, for narrow orbitals, the overlap between the

Wannier wave-functions centered at different sites of the ring will be negligible for sites

well-separated from one another, meaning that the most significant contribution for tij
comes from nearest neighbor sites, i.e.,

tij ✓ ①i ⑤h⑤ i� 1② δj,i�1 � ①i ⑤h⑤ i✁ 1② δj,i✁1 ✏ ✁t ♣δj,i�1 � δj,i✁1q , (A.9)

where we define a uniform hopping amplitude ①i ⑤h⑤ i� 1② ✏ ①i ⑤h⑤ i✁ 1② ✑ ✁t, (with t → 0).

Note that a non-uniform hopping would break the discrete rotation symmetry of the rings.

Furthermore the above choice of the minus sign in the definition hoping amplitude is

purely for convenience. The 1D Hubbard model has a tÑ ✁t symmetry.

The second approximation consists in transforming the two-body interaction

Eq.(A.8) into a purely local term, called on-site Coulomb repulsion,

①ij ⑤u⑤ lk② ✓ ①ii ⑤u⑤ ii② δj,iδj,iδk,iδl,i ✑ Uδj,iδj,iδk,iδl,i , (A.10)

with U → 0. Therefore, substituting Eqs.(A.9) and (A.10) into Eq.(A.6), and using the

fermionic anti-commutation relations,✦
ciσ, c

✿
jσ✶

✮
✏ δi,jδσ,σ✶ , (A.11)

✥
ciσ, cjσ✶

✭ ✏ ✦
c
✿
iσ, c

✿
jσ✶

✮
✏ 0 , (A.12)

we find the standard Hubbard Hamiltonian for a ring with N sites, Ne electrons and only

one orbital per site:

Ĥ0 ✏ ✁t
N➳

j✏1

➳
σ

✁
c
✿
jσcj�1σ � h.c.

✠
� U

N➳
j✏1

n̂jÒn̂jÓ . (A.13)

Here, “h.c.” denotes the Hermitian conjugate of c✿jσcj�1σ and n̂jσ ✏ c
✿
jσcjσ is the number

operator. Although the Hamiltonian (A.13) looks simple, the calculation of its energy

levels and corresponding eigenstates is not a trivial task. For small enough systems, as is

the case in this thesis, an exactly diagonalization of Eq.(A.13) can be done. However, for

large lattice systems, an analytic solution for the Hubbard Hamiltonian exists only for 1D

lattice via Bethe ansatz [41].
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the field operator takes the form

ψ̂✿σ♣rq ✏
N➳

j✏1

✓
ϕ✝j ♣rqc✿jσ �

2➳
κ✏1

W ✝
j,κ♣rqd✿jκ;σ

✛
, (A.14)

where Wj,κ♣rq ✑ ①r ⑤Wj,κ②, with κ ✏ 1 (κ ✏ 2), denotes the Wannier wave function of

the right (left) sp2 orbital centered in the j-th site of the ring, while ϕj♣rq continues to

represent the Wannier correspondent to the pz orbitals. Consistently, here d✿jκ;σ (djκ;σ)

creates (annihilates) one electron with spin σ in the κ-th sp2 orbital of the j✁th site of

the ring, and c
✿
jσ (cjσ) creates (annihilates) one electron with spin σ at the pz orbital of

the same site. Later in this appendix, we explicit write Wj,κ♣rq .

Hereafter, we treat the electrons in the pz and sp2 orbitals as distinguishable

particles. This is one of the assumptions of our model which, at first glance, this might

look a bit harsh. However, it is justified by separation of the energy scales of the system,

as discussed in Sec.2.3.1. As a consequence the creation and annihilation operators in the

sp2 orbitals obey the following anti-commutation relations:

tdi,κσ, d
✿
j,γσ✶✉ ✏ δi,jδκ,γδσ,σ✶ , (A.15)

td✿i,κσ, d
✿
j,γσ✶✉ ✏ tdi,κσ, dj,γσ✶✉ ✏ 0 , (A.16)

tdi,κσ, c
✿
j,σ✶✉ ✏ tdi,κσ, cj,σ✶✉ ✏ 0 . (A.17)

Substituting Eq.(A.14) into Eq.(A.2), we obtain Ĥ ✏ ĤK � Ĥint, where the

kinetic component,

ĤK ✏
N➳

i,j✏1

➳
σ

✓
tijc

✿
iσcjσ �

2➳
κ✏1

✁
t̄κijc

✿
iσdjκ;σ � h.c.

✠
�

2➳
κ,γ✏1

¯̄tκ,γ
ij d

✿
iκ;σdjγ;σ

✛
, (A.18)

describes three processes: (a) the hopping between pz orbitals of different sites as defined

in Eq.(A.7), (b) the hopping between the pz and sp2 orbitals of distinct sites,

t̄κij ✑ ①ϕi ⑤h⑤Wj,κ② ✏
➺
drϕ✝i ♣rqh♣rqWj,κ♣rq , (A.19)

and (c) the hopping between distinct sp2 orbitals,

¯̄tκ,γ
ij ✑ ①Wi,κ ⑤h⑤Wj,γ② ✏

➺
drW ✝

i,κ♣rqh♣rqWj,γ♣rq . (A.20)

Recall that h♣rq is defined in Eq.(A.3). The interaction part of the Hamiltonian, Ĥint,

on the other hand, accounts for all possible matrix elements of the Coulomb repulsion

involving (a) four pz orbitals, (b) three pz orbitals and one sp2, (c) two pz and two sp2

orbitals, (d) one pz orbital and three sp2 orbitals, and finally (d) four sp2 orbitals. Its full
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expression is very long and, since its straightforward obtained by substituting Eq.(A.14)

into the interacting part of (A.2), it is unnecessary explicitly shown Ĥint here.

Similarly as we did in Sec. A.1, we apply Hubbard-like approximations to

simplify Ĥ. The first one is to neglect the hopping between pz and sp2 orbitals. This is

justified by the symmetry properties of h♣rq, ϕj♣rq and Wj,κ♣rq. Here we approximate the

single-particle wave-functions as hydrogen-like orbitals,

ϕj♣rq ✏ ϕ♣r✁Rjq ✏ R1♣jqY 0
1 ♣θj, φjq , (A.21)

Wj,κ♣rq ✏ Wκ♣r✁Rjq ✏ 1❄
12π

R0♣jq � 2R1♣jqRe
✏
cj,κY

✁1
1 ♣θj, φjq

✘
, (A.22)

where Rj is the position of the j-th site of the ring, already defined in Eq.(2.8), j ✑ r✁Rj,

with θj and φj denoting its polar and azimuthal angles, and Y m
l ♣θ, φq are the spherical

harmonics. Regarding the radial part of these functions

R0♣rq ✏ 1❛
2a3

0

✂
1✁ r

2a0

✡
e✁r④2a0 (A.23)

is the radial part of the wave function of an electron in the shell characterized by the

principal quantum number n ✏ 2 - since in the carbon atoms the valence electron are

those in the n ✏ 2 shell - and by the angular momentum number l ✏ 0, which refers to an

s-type orbital [38]. In addition,

R1♣rq ✏ r❛
24a5

0

e✁r④2a0 (A.24)

is the radial part of the wave function of an electron in a shell with n ✏ 2 and l ✏ 1. Recall

that a0 denotes the Bohr radius. Moreover, the constants

cj,1 ✏ 1❄
3
ei♣αj�2π④3q , (A.25)

cj,2 ✏ 1❄
3
ei♣αj✁2π④3q , (A.26)

encodes the spacial orientation of the sp2 orbitals. Here αj ✏ ♣j ✁ 1q2π④N is the angular

position of the j-th site of the ring.

We can readily see that Eqs.(A.21) and (A.22) are odd and even, respectively,

under the transformation θj Ñ π ✁ θj, while φj remains unchanged, which corresponds to

a reflection in the xy plane (z Ñ ✁z). That is because Y 0
1 ♣π✁ θj, φjq ✏ ✁Y 0

1 ♣θj, φjq ,while

Y ✟1
1 ♣π ✁ θj, φjq ✏ Y ✟1

1 ♣θj, φjq. The single-particle Hamiltonian h♣rq, on the other hand, is

always even under such reflection, because the periodic potential Vc exhibits this symmetry.

As a consequence the integrand in Eq.(A.19) is odd under xy-plane reflection, which causes

t̄κij to vanish. In the same way, the hopping between a pz and a s hydrogen-like orbital is

also zero, as we mention in Sec.2.1.
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The second approximation has to do with the hopping between sp2 orbitals,

we assume that the nearest-neighbor sites give the major contribution to ¯̄tκγ
ij . Therefore, in

Eq.(A.20), we only take into account the hoppings (a) between the right sp2 orbital of site

j and the left sp2 orbital of the site j � 1 and (b) between the left sp2 orbital of the site j

and the right orbital of the site j ✁ 1. Mathematically, such approximation is

¯̄tκ,γ
ij ✓ ✁t̃ rδj,i�1δκ,1δγ,2 � δj,i✁1δκ,2δγ,1δs . (A.27)

Here, we define ①Wi,1 ⑤h⑤Wi�1, 2② ✏ ①Wi,2 ⑤h⑤Wi✁1, 1② ✑ ✁t̃ (with t̃ → 0), independent of

the rings site. Note that, since the overlap between first neighbors sp2 orbitals is typically

larger the overlap between pz orbitals, we have t̃ → t.

The next set of approximation involves the interaction part of the the Hamilto-

nian Ĥint. Similarly to Sec. A.1, we keep only on-site Coulomb repulsion, which, as we

show in Appendix B, are those that give the leading contributions to the matrices elements

of Ĥint. Under these assumptions, the interaction part of the Hamiltonian takes the form

Ĥint ✏ 1
2

➳
σ,σ✶

N➳
j✏1

★
①ϕjϕj ⑤u⑤ϕjϕj② c✿jσc

✿
jσ✶cjσ✶cjσ

�
➳

κ1,κ2,κ3,κ4

①Wj,κ1
Wj,κ2

⑤u⑤Wj,κ4
Wj,κ3

② d✿jκ1,σd
✿
jκ2,σ✶djκ3,σ✶djκ4,σ

� 2
➳
κ

①ϕjϕj ⑤u⑤Wj,κϕj②
✁
c
✿
jσc

✿
jσ✶cjσ✶djκ,σ � h.c.

✠

� 2
➳

κ1,κ2,κ3

①Wj,κ1
Wj,κ2

⑤u⑤Wj,κ3
ϕj②

✁
d
✿
jκ1,σd

✿
jκ2,σ✶cjσ✶djκ3,σ � h.c.

✠

�
➳

κ1,κ2

①ϕjϕj ⑤u⑤Wj,κ1
Wj,κ2

②
✁
c
✿
jσc

✿
jσ✶djκ2,σ✶djκ1,σ � h.c.

✠

�
➳

κ1,κ2

①ϕjWj,κ1
⑤u⑤Wj,κ2

ϕj②
✁
c
✿
jσd

✿
jκ1,σ✶cjσ✶djκ2,σ � h.c.

✠

�
➳

κ1,κ2

①ϕjWj,κ1
⑤u⑤ϕjWjκ2

②
✁
c
✿
jσd

✿
jκ1,σ✶djκ2,σ✶cjσ � h.c.

✠✰
(A.28)

Note that because the Wannier wave functions in Eqs.(A.21) and (A.22) are real, the

interaction matrices elements are also real and the following identities hold:

①ϕjϕj ⑤u⑤Wj,κϕj② ✏ ①ϕjϕj ⑤u⑤ϕjWj,κ② , (A.29)

①Wj,κ1
Wj,κ2

⑤u⑤Wj,κ3
ϕj② ✏ ①Wj,κ2

Wj,κ1
⑤u⑤ϕjWj,κ3

② , (A.30)

①ϕjϕj ⑤u⑤Wj,κ1
Wj,κ2

② ✏ ①ϕjWj,κ2
⑤u⑤Wj,κ1

ϕj② , (A.31)

①ϕjWj,κ1
⑤u⑤ϕjWjκ2

② ✏ ①Wj,κ1
ϕj ⑤u⑤Wjκ2

ϕj② . (A.32)
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Again due to symmetry arguments, the interaction matrices elements involving

only one pz orbital or only one sp2 are identically zero. Moreover, as we show in Appendix

B for the specific case of the prototype of the benzene molecule, ①ϕjϕj ⑤u⑤Wj,κ1
Wj,κ2

② is

subleading and can be neglected. Thus Ĥint can be further simplified as a contribution of

only four terms ,

Ĥint ✏ 1
2

N➳
j✏1

★
Uc

✿
jσc

✿
jσ✶cjσ✶cjσ � Ũ1

➳
κ

d
✿
jκ,σd

✿
jκ,σ✶djκ,σ✶djκ,σ

� Ũ2

➳
κ

d
✿
jκ,σd

✿
jκ̄,σ✶djκ̄,σ✶djκ,σ � Uc

➳
κ

✁
c
✿
jσd

✿
jκ,σ✶djκ,σ✶cjσ � h.c.

✠✰
(A.33)

where κ̄ ✏ 2 (κ̄ ✏ 1) if κ ✏ 1 (κ ✏ 1). In Eq.(A.33), the term proportional to U is the

usual on-site Coulomb repulsion between two electrons in the pz orbital, the same that

appears in Eq.(A.13). The term proportional to Ũ1 (Ũ2), on the other hand, describes

the intra-orbital (inter-orbital) on-site Coulomb repulsion between two σ electrons in the

same (in different) sp2 orbitals of the same ring site. The last term, proportional to Uc

describes a density-density coupling between σ-electrons and π-electrons, as will become

more evident in Eq.(A.35).

Combining Eqs.(A.18) and (A.33) and using the fermionic anti-commutation

relations, we can write the three-band Hubbard Hamiltonian as Ĥ ✏ Ĥp� Ĥsp� Ĥc, where

Ĥp is the Hubbard Hamiltonian for the degrees of freedom of the π-electrons only identical

to Eq.(A.13), with the only difference that here, contrary to the case of the Appendix A.1,

the σ-electrons do not contribute to the ring periodic potential. Besides,

Ĥsp ✏ ✁t̃
N➳

j✏1

➳
σ

✁
d
✿
j,1σdj�1,2σ � d

✿
j,2σdj✁1,1σ

✠
�

N➳
j✏1

✓
Ũ1

➳
κ

n̂j,κÒn̂j,κÓ � Ũ2

➳
σ,σ✶

n̂j,1σn̂j,2σ

✛

(A.34)

is the Hubbard Hamiltonian for the σ-electrons degrees of freedom, and

Ĥc ✏ Uc

N➳
j✏1

➳
κ

➳
σ,σ✶

n̂jσn̂j,κσ✶ (A.35)

express the coupling between these two "kinds" of electron. In Eqs.(A.34) and (A.35), we

n̂j,κσ ✏ d
✿
j,κσdj,κσ are the number operators associated with the sp2 orbitals.
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APPENDIX B – Estimation of the on-site

Coulomb repulsion

In this appendix we estimate the matrix elements of the on-site Coulomb repul-

sion that appears in the interaction segment of the multiband Hubbard Hamiltonian

we derive in Appendix A - see Eq.(A.33). Here in the ring with six sites at the

half-filling regime (prototype of the benzene molecule) and, in order to be able

to solve the integrals analytically, we approximate the Wannier wave functions by

hydrogen-like orbitals.

Let’s start by calculating the Coulomb repulsion between two π-electrons at the

j-th site of the ring. Recall that such on-site interaction is characterized by the parameter

U ✑ ①ϕjϕj ⑤u⑤ϕjϕj② ✏ e2

➺ ➺
drdr✶

⑤ϕj ♣rq⑤2 ⑤ϕj ♣r✶q⑤2
⑤r ✁ r✶⑤ , (B.1)

where ϕj♣rq is the Wannier function for the pz orbitals, which, in the localized orbital

approximation takes the form of Eq.(A.21).

Making the change of variables y ✏ r ✁ Rj and y✶ ✏ r✶ ✁ Rj, where Rj is the

position of the j-th site of the ring defined in Eq.(2.8), and using spherical Harmonics

expansion [63],

1
⑤y ✁ y✶⑤ ✏ 4π

✽➳
l✏0

l➳
m✏✁l

1
2l � 1

yl
➔

yl�1
→

Y m
l ♣θ, φqY m ✝

l ♣θ✶, φ✶q , (B.2)

we can rewrite Eq.(B.1) as

U ✏ 4πe2
✽➳

l✏0

l➳
m✏✁l

1
2l � 1

✽➺
0

dy

✽➺
0

dy✶y2y✶2
yl
➔

yl�1
→

R2
1♣yqR2

1♣y✶q Iang♣l,mq . (B.3)

Here, y➔ ✏ minty, y✶✉ (y→ ✏ maxty, y✶✉) is the smaller (larger) of the absolute value of y

and y✶. Moreover θ and φ (θ✶ and φ✶) are the polar and azimuthal angles associated with

the vector y (y✶). The angular integration in Eq.(B.3),

Iang♣l,mq ✏
➺
dΩY m

l ♣θ, φq ✏Y 0
1 ♣θ, φq

✘2

➺
dΩ✶Y m ✝

l ♣θ✶, φ✶q ✏Y 0
1 ♣θ✶, φ✶q

✘2
(B.4)

can be calculated analytically: since 1
✏
Y 0

1 ♣θ, φq
✘2 ✏ Y 0

2 ♣θ, φq④
❄

5π � Y 0
0 ♣θ, φq④

❄
4π, the

orthonormality relation of the spherical Harmonics yields

Iang♣l,mq ✏
✂
δl,2

5π
� δl, 0

4π

✡
δm,0 . (B.5)

1Another useful spherical Harmonics multiplications that we encounter in the calculation of
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Therefore, substituting Eq.(B.5) into Eq.(B.3), we find

U ✏ e2

✂
I
✏
R2

1♣yq, R2
1♣y✶q, 0

✘� 4
25

I
✏
R2

1♣yq, R2
1♣y✶q, 2

✘✡ ✏ 501
2560

e2

a0

✓ 0.196
e2

a0

, (B.6)

recalling that a0 denotes the Bohr radius. Besides, here we define

I rF1♣yq, F2♣y✶q, ls ✏
✽➺
0

dy

✽➺
0

dy✶ y2y✶ 2 yl
➔

yl�1
→

F1♣yqF2♣y✶q (B.7)

✏
✽➺
0

dy

y➺
0

dy✶
y✶ l�2

yl✁1
F1♣yqF2♣y✶q �

✽➺
0

dy

✽➺
y

dy✶
yl�2

y✶ l✁1
F1♣yqF2♣y✶q , (B.8)

for any functions F1♣yq and F2♣y✶q of y and y✶, respectively.

Let’s turn to the interaction matrix elements in Eq.(A.33). The procedure

is analogous to what we just shown to calculate U , so we skip the intermediary steps.

Here, however, we have an explicit dependence of the Wannier wave functions on the

sites positions. Such dependence occurs via the constants cj,κ - see Eqs.(A.22), (A.25) and

(A.26). Therefore hereafter the focus in the prototype of the benzene molecule (N ✏ 6).

As we mention in Appendix A,

①ϕjϕj ⑤u⑤Wj,κϕj② ✏ e2

➺ ➺
drdr✶

ϕ✝j ♣rqWj,κ♣rq ⑤ϕj♣r✶q⑤2
⑤r ✁ r✶⑤ ✏ 0 , (B.9)

for the localized orbital approximation, Eqs.(A.21) and (A.22). That is simply because

from the angular over θ and φ we find contributions as➺
dΩY m

l ♣θ, φqY 0
1 ♣θ, φq ✏ δl,1δm,0 (B.10)

and ➺
dΩY m

l ♣θ, φqY 0
1 ♣θ, φqY ✟1

1 ♣θ, φq ✏
❝

3
20π

➺
dΩY m

l ♣θ, φqY ✟1
2 ♣θ, φq

✏
❝

3
20π

♣✁1qmδl,2δm,✟1 , (B.11)

while from the angular integral over θ✶ and φ✶ we find a different set of Kronecker deltas➺
dΩ✶ rY m

l ♣θ✶, φ✶qs✝ ✏Y 0
1 ♣θ, φq

✘2 ✏ 1❄
5
δl,2δm,0 � 1❄

4π
δl,0δm,0 . (B.12)

this Appendix: Y 0
1 ♣θ, φqY ✟1

1 ♣θ, φq ✏
❝

3

20π
Y ✟1

2 ♣θ, φq, Y ✟1
1 ♣θ, φqY ✟1

1 ♣θ, φq ✏
❝

3

10π
Y ✟2

2 ♣θ, φq and

Y 1
1 ♣θ, φqY ✁1

1 ♣θ, φq ✏ 1❄
20π

Y 0
2 ♣θ, φq ✁ 1❄

4π
Y 0

0 ♣θ, φq.
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Since these different angular integrals appear as a product in the matrix element Eq.(B.9),

the result is identically zero, for all κ. Similarly, ①Wj,κ1
Wj,κ2

⑤u⑤Wj,κ3
ϕj② ✏ 0 for all κ1, κ2

and κ3.

Now, concerning

①ϕjϕj ⑤u⑤Wj,κ1
Wj,κ2

② ✏ ①ϕjWj,κ2
⑤u⑤Wj,κ2

ϕj② ✏ e2

➺ ➺
drdr✶ ϕj♣rqϕj♣r✶qWj,κ1

♣rqWj,κ2
♣r✶q

⑤r ✁ r✶⑤ ,

(B.13)

we can write it in a matrix form:

①ϕjϕj ⑤u⑤Wj,κ1
Wj,κ2

② ✑ ♣M1qκ1,κ2
, (B.14)

where

♣M1qκ1,κ2
✏ e2

✧
1
9

I rR0♣yqR1♣yq, R0♣y✶qR1♣y✶q, 1s � 6
25
Re
✏♣cj,κ1

q✝ cj,κ2

✘
I
✏
R2

1♣yq, R2
1♣y✶q, 2

✘✯
,

(B.15)

and, again, the radial integrals can be calculated analytically. Interestingly, the dependence

on j of ♣cj,κ1
q✝ cj,κ2

vanishes and the resulting matrix is site independent:

M1 ✏ e2

a0

☎
✝✆

43
2560

1
160

1
160

43
2560

☞
✍✌✓ e2

a0

☎
✆0.017 0.006

0.006 0.017

☞
✌ .s (B.16)

Similarly,

①ϕjWj,κ1
⑤u⑤ϕjWj,κ2

② ✏ e2

➺ ➺
drdr✶ϕ

2
j♣rqWα

i,κ1
♣r✶qWi,κ2

♣r✶q
⑤r ✁ r✶⑤ ✑ ♣M2qκ1,κ2

, (B.17)

with

♣M2qκ1,κ2
✏e2

✧
1
3

I
✏
R2

1♣yq, R2
0♣y✶q, 0

✘� 4
25
Re
✏
cj,κ1

♣cj,κ2
q✝✘ I

✏
R2

1♣yq, R2
1♣y✶q, 2

✘

✁2Re
✏
cj,κ1

♣cj,κ2
q✝✘ I

✏
R2

1♣yq, R2
1♣y✶q, 0

✘✯
, (B.18)

which in turn results in

M2 ✏ e2

a0

☎
✝✆

1309
7680

✁ 1
240

✁ 1
240

1309
7680

☞
✍✌✓ e2

a0

☎
✆ 0.170 ✁0.004

✁0.004 0.170

☞
✌ . (B.19)

The most complicated matrix element is

①Wj,κ1
Wj,κ2

⑤u⑤Wj,κ3
Wj,κ4

② ✏ e2

➺ ➺
drdr✶Wj,κ1

♣rqWj,κ3
♣rqWj,κ2

♣r✶qWj,κ4
♣r✶q

⑤r ✁ r✶⑤ ✑✑ ♣M3qm,n ,

(B.20)
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which can also be written in a matrix form if we define the basis t⑤11② , ⑤12② , ⑤21② , ⑤22②✉,
in this order and identify ♣M3q1,2 ✏ ①11 ⑤M3⑤ 12② ✑ ①Wj,1Wj,1 ⑤u⑤Wj,1Wj,2②. Therefore,

①κ1κ2 ⑤M3⑤κ3κ4② ✏ e2

✧
1
9

I
✏
R2

0♣yq, R2
0♣y✶q, 0

✘� 2Re
✏
cj,κ2

♣cj,κ3
q✝✘

3
I
✏
R2

0♣yq, R2
1♣y✶q, 0

✘

� 2Re
✏
cj,κ1

♣cj,κ4
q✝✘

3
I
✏
R2

1♣yq, R2
0♣y✶q, 0

✘
� 4Re

✏
cj,κ2

♣cj,κ3
q✝✘Re ✏cj,κ1

♣cj,κ4
q✝✘ I

✏
R2

1♣yq, R2
1♣y✶q, 0

✘
� 2Re

✏♣cj,κ1
� cj,κ4

q ♣cj,κ2
� cj,κ3

q✝✘
9

I rR0♣yqR1♣yq, R0♣y✶qR1♣y✶q, 1s

� 4Re
✏♣cj,κ1

cj,κ4
q ♣cj,κ2

cj,κ3
q✝✘

25
I
✏
R2

1♣yq, R2
1♣y✶q, 2

✘

� 4Re
✏
cj,κ2

♣cj,κ3
q✝✘Re ✏cj,κ1

♣cj,κ4
q✝✘

25
I
✏
R2

1♣yq, R2
1♣y✶q, 2

✘✯
, (B.21)

and we find

M3 ✏ e2

a0

☎
✝✝✝✝✝✝✝✝✆

4649
23040

✁ 13
5760

✁ 13
5760

287
23040

✁ 13
5760

3587
23040

287
23040

✁ 13
5760

✁ 13
5760

287
23040

3587
23040

✁ 13
5760

287
23040

✁ 13
5760

✁ 13
5760

4649
23040

☞
✍✍✍✍✍✍✍✍✌
✓ e2

a0

☎
✝✝✝✝✝✝✆

0.202 ✁0.002 ✁0.002 0.012

✁0.002 0.156 0.012 ✁0.002

✁0.002 0.012 0.156 ✁0.002

0.012 ✁0.002 ✁0.002 0.202

☞
✍✍✍✍✍✍✌

.

(B.22)

Comparing Eqs.(B.16), (B.19) and (B.22) we can readily see that their diagonal

elements are the dominant ones. Moreover, the diagonal elements of M1 are much smaller

than those of M2 and M3, and also much smaller than U . As a consequence, we can

completely neglect M1.

Neglecting both M1 and the off-diagonal elements of M2 and M3, Eq.(A.28)

reduces to Eq.(A.33), where

Ũ1 ✏ ①Wj,κWj,κ ⑤u⑤Wj,κWj,κ② ✏ ①11 ⑤M3⑤ 11② ✏ ①22 ⑤M3⑤ 22② ✓ 0.202
e2

a0

, (B.23)

Ũ2 ✏ ①Wj,κWj,κ̄ ⑤u⑤Wj,κWj,κ̄② ✏ ①12 ⑤M3⑤ 12② ✏ ①21 ⑤M3⑤ 21② ✓ 0.156
e2

a0

, (B.24)

Uc ✏ ①ϕjWj,κ ⑤u⑤ϕjWj,κ② ✏ ①11 ⑤M2⑤ 11② ✏ ①22 ⑤M2⑤ 22② ✓ 0.170
e2

a0

, (B.25)

are all of the same order of the π-electrons on-site Coulomb repulsion. Recall that,

consistently with the notation we used before, κ̄ ✏ 1 (κ̄ ✏ 2) if κ ✏ 2 (κ ✏ 1). Similar

results holds for rings with N ✘ 6.
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Finding estimations for the hopping parameter between pz orbitals (t) and sp2

orbitals (t̃) is a much more complex task for two reasons: (a) first, we need the precise

form of the periodic potential and (b) the integrals we need to solve involves Wannier

functions centered at different sites, with makes the changes of variables we introduced in

this Appendix, and also the subsequent analytic approach unfeasible. Therefore, we do

not provide estimations for neither t nor t̃. For the purposes of this thesis, we use, when

dealing with the prototype of the benzene molecule, the values t ✏ 2.54eV and U④t ✏ 1.2,

obtained by the authors in Refs.[40, 42]. We also keep in mind that t̃ → t, since the overlap

between neighbors sp2 orbitals is larger than the overlap between pz orbitals. In most of

the calculations shown in this work, we are careful to present the physical observables in

units of t and/or t̃.
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APPENDIX C – Matrix element of P in the

site basis

In this Appendix we derive the approximate expression for the matrix element

of the electronic momentum P, in the site basis, shown in Eq.(2.81).

The first thing we should note is that V ✑ P④m, where m denotes the electron

mass, is simply the electron velocity operator, which is related to the system’s single-particle

Hamiltonian though the commutator

V ✏ 1
i~

rR, hs . (C.1)

Here, we denote by R the electron position operator and we recall that the single particle

Hamiltonian, in coordinate representation, is given by Eq.(A.3).

Calculating the expected value of Eq.(C.1) in the single-particle Wannier wave

functions ϕj♣rq ✏ ①r⑤ϕj②, we obtain❇
j1

✞✞✞✞ 1
i~

rR, hs
✞✞✞✞ j2

❋
✏ 1
m

①j1 ⑤P⑤ j2② ✏ 1
i~

♣①j1 ⑤Rh⑤ j2② ✁ ①j1 ⑤hR⑤ j2②q . (C.2)

Now, inserting the closure relation

✶ ✏
N➳

j✏1

⑤j② ①j⑤ (C.3)

between the R and h operators on the right-hand side of Eq.(C.2) and approximating the

position expected values as

①j1 ⑤R⑤ j2② ✓ Rj2
①j1 ⑤ j2② ✏ Rj2

δj1,j2
, (C.4)

which is justified by the fact that the Wannier function ϕj♣rq is localized about the j-th

site of the ring, whose position we denote by Rj, we readily find

1
m

①j1 ⑤P⑤ j2② ✏ 1
i~

♣Rj1
✁ Rj2

q ①j1 ⑤h⑤ j2② . (C.5)

Finally, recalling that ①j1 ⑤h⑤ j2② ✏ tj1,j2
gives the hopping between the sites j1

and j2, which, in the nearest-neighbor approximation simplifies to

①j1 ⑤h⑤ j2② ✓ ✁tδj2,j1✟1 , (C.6)

we obtain Eq.(2.81):

①j1 ⑤P⑤ j2② ✏ ✁mt
i~

♣Rj1
✁ Rj2

q δj2,j1✟1 . (C.7)
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APPENDIX D – Breit-Darwin Hamiltonian

in second quantization

In this Appendix, for the purpose of comparison with our effective momentum-

momentum interaction Weff , we derive the expression for the Breit-Darwin interac-

tion in the Second Quantization formalism.

The Breit-Darwin Hamiltonian is a relativistic correction to the Coulomb

repulsion of a system of Ne interacting electrons [63]. Roughly speaking, an electron

moving with a velocity v, generates a magnetic field, which is felt by another electron in

this system through a Lorentz force. The Hamiltonian describing such collective interaction

is

HBD ✏ ✁ 1
2c2

➺ ➺
drdr✶ J♣r q ☎ ÐÑG ♣r ✁ r✶q ☎ J♣r ✶q . (D.1)

Note that Eq.(D.1) is a very weak interaction proportional to v2④c2, where c is the light

speed, justifying the denomination of relativistic correction. Our effective momentum-

momentum interaction, on the other hand, having a completely different origin than HBD

is a much larger magnitude, as we discuss in Sec. 2.3.4.

In Eq.(D.1), J♣rq is the electric current operator, which in coordinate represen-

tation takes the form

J♣rq ✏ ~

2mi

Ne➳
j✏1

r∇j δ ♣r ✁ rjq � δ ♣r ✁ rjq ∇js . (D.2)

Here ∇j indicates the gradient with respect to the position rj of the j-th electron of the

system, while Ne denotes the total number of electrons. Moreover,
ÐÑ
G is a tensor, whose

components are

Gµν♣r ✁ r ✶q ✏ e2

2

✓
δµ,ν

⑤r ✁ r ✶⑤ �
�
rµ ✁ r✶µ

✟ ♣rν ✁ r✶νq
⑤r ✁ r ✶⑤3

✛
, (D.3)

with µ, ν ✏ x, y, z.

There are two ways of deriving the second quantized expression of HBD: (a)

we can second-quantize the the current operator in Eq.(D.2) and substitute the resulting

expression into Eq.(D.1) imposing normal ordering of the creation and annihilation

fermionic operators in order to avoid non-physical one-body terms, which would appear

just as a consequence of the anti-commutation relations. The other option (b) is to
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substitute Eq.(D.2) into Eq.(D.1) and second-quantize the resulting full two-body operator.

We verified that both approaches give exactly the same result and here, for simplicity, we

follow the procedure (a), since it is the simplest one.

As any other one-body operator, the second-quantized form of Eq.(D.2) is

Ĵ♣rq ✏ ~

2mi

➳
σ✏Ò,Ó

➺
d3r✶ψ̂✿

σ♣r ✶q r∇✶δ ♣r ✁ r ✶q � δ ♣r ✁ r ✶q∇✶s ψ̂σ♣r ✶q , (D.4)

where ∇
✶ denotes the gradient with respect to r✶, and ψ̂✿

σ♣rq (ψ̂σ♣rq) is the field operator

that creates (annihilates) one electron with spin σ in the pz orbital of the j-th site of the

ring, as defined in Eq.(A.5). Note that here we are considering only one pz orbital per

site instead of the full three-orbital model. That is simply because we want to compare

the Breit-Darwin interaction with the effective interaction Weff we derived in Sec. 2.3.3,

which is an effective interaction between the π-electrons only.

Substituting Eq.(A.5) into Eq.(D.4), we find

Ĵ♣rq ✏ ~

2mi

N➳
i,j✏1

➳
σ

✏
ϕ✝

i ♣rq
�
∇ϕj♣rq

✟✁ ϕj♣rq ♣∇ϕ✝
i ♣rqq

✘
c
✿
iσcjσ , (D.5)

where we used the integration by parts➺
dr✶ f♣r ✶q∇✶ rδ ♣r ✁ r ✶q g♣r ✶qs ✏

➺
dr✶∇✶ rδ ♣r ✁ r ✶q f♣r ✶qg♣r ✶qs

✁
➺
dr✶δ ♣r ✁ r ✶q g♣r ✶q r∇✶f♣r ✶qs ✏ ✁g♣rq∇f♣rq . (D.6)

Now, substituting Eq.(D.5) into Eq.(D.1), and asking for the normal ordering

of the fermionic operators, i.e. [22]

: c✿iσcjσc
✿
kσ✶clσ✶ :✏ c

✿
iσc

✿
kσ✶clσ✶cjσ , (D.7)

we readily obtain

ĤBD ✏ ~
2

8m2c2

➳
µ,ν

➳
i,j,k,l

➳
σ,σ✶

♣Aijkl �Bijkl ✁ Cijkl ✁Dijklq c✿iσc✿kσ✶clσ✶cjσ . (D.8)
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with 1

Aijkl ✏
➺➺

drdr✶ ϕ✝
i ♣rq ♣❇µ ϕj♣rqqGµν ♣r ✁ r ✶qϕ✝

k♣r ✶q ♣❇✶
ν ϕl♣r ✶qq , (D.9)

Bijkl ✏
➺➺

drdr✶ ϕj♣rq ♣❇µ ϕ
✝
i ♣rqqGµν ♣r ✁ r ✶qϕl♣r ✶q ♣❇✶

ν ϕ
✝
k♣r ✶qq , (D.10)

Cijkl ✏
➺➺

drdr✶ ϕ✝
i ♣rq ♣❇µ ϕj♣rqqGµν ♣r ✁ r ✶qϕl♣r ✶q ♣❇✶

ν ϕ
✝
k♣r ✶qq , (D.11)

Dijkl ✏
➺➺

drdr✶ ϕj♣rq ♣❇µ ϕ
✝
i ♣rqqGµν ♣r ✁ r ✶qϕ✝

k♣r ✶q ♣❇✶
ν ϕl♣r ✶qq . (D.12)

Note that Eq.(2.46) is equivalent to

Aijkl ✏ ✁ 1
~2

❆
ik
✞✞✞Ĝµν♣X1,X2qP̂ ♣1q

µ P̂ ♣2q
ν

✞✞✞ jl❊ . (D.13)

The superscript index 1 (2) in the momentum operator denote that it acts in the first

(second) entrance of the ket ⑤i, j② ✏ ✞✞i②â ⑤j② , where ⑤i② which in coordinate representation

gives the Wannier function ϕi♣rq. Eq.(D.13) is easy to show: first recognizing that

❇µϕi,α♣rq ✏ i

~

❆
r

✞✞✞P̂µ

✞✞✞ iα❊ , (D.14)

❇µϕ
✝
i,α♣rq ✏ ✁ i

~

❆
iα
✞✞✞P̂µ

✞✞✞ r❊ , (D.15)

we can rewrite Eq.(D.9) as

Aijkl ✏
➺➺

drdr✶ Gµν ♣r ✁ r ✶q ①r ⑤Pµ⑤ j② ①r ✶ ⑤Pν ⑤ l② ①i ⑤r② ①k ⑤r ✶ ②

✏
➺➺

drdr✶ Gµν ♣r ✁ r ✶q ❅rr ✶
✞✞P ♣1q

µ P ♣2q
ν

✞✞ jl❉ ①ik ⑤rr ✶ ② . (D.16)

Moreover, Gµν♣r ✁ r ✶q can be seen as the coordinate representation of the Hermitian

operator Ĝµν♣X1,X2q, where X1 (X2) is the position operator of the particle 1 (particle

2), i.e.,

Gµν ♣r ✁ r ✶q ①ik ⑤rr ✶ ② ✏
❆
ik
✞✞✞Ĝµν♣X1 ✁ X2q

✞✞✞ rr ✶
❊

. (D.17)

Therefore, substituting Eq.(D.17) into Eq.(D.16) and using the closure relation

✶ ✏
➺➺

d3dr✶ ⑤rr ✶② ①rr ✶⑤ ,

we recover Eq.(D.13).

1Hereafter we use the notation ∇ ✏
➳
µ

❇
❇rµ

êµ ✏
➳
µ

❇µêµ and ∇ ✶ ✏
➳
µ

❇
❇r✶

µ

êµ ✏
➳
µ

❇✶
µêµ.
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Correspondingly, Eqs.(D.10)-(D.12) are equivalent to

Bijkl ✏ ✁ 1
~2

❆
ik
✞✞✞P̂ ♣1q

µ P̂ ♣2q
ν Ĝµν♣X1,X2q

✞✞✞ jl❊ , (D.18)

Cijkl ✏ 1
~2

❆
ik
✞✞✞P̂ ♣2q

ν Ĝµν♣X1,X2qP̂ ♣1q
µ

✞✞✞ jl❊ , (D.19)

Dijkl ✏ 1
~2

❆
ik
✞✞✞P̂ ♣1q

µ Ĝµν♣X1,X2qP̂ ♣2q
ν

✞✞✞ jl❊ . (D.20)

Now, note that the set t⑤ij②✉ constitutes an orthonormal basis, with closure

relation

✶ ✏
N➳

i,j✏1

⑤ij② ①ij⑤ . (D.21)

So inserting identities Eq.(D.21) between the momentum operators and Ĝµ,ν in Eq.(D.13)

and Eqs.(D.18)-(D.20), and approximating the matrices elements of Ĝµ,ν by a purely local

term, i.e. ❆
ij
✞✞✞Ĝµν♣X1 ✁ X2q

✞✞✞ kl❊ ✓
❆
ii
✞✞✞Ĝµν♣X1 ✁ X2q

✞✞✞ ii❊ δi,jδi,kδi,l , (D.22)

where we define T ♣iqµν ✑
❆
ii
✞✞✞Ĝµν♣X1 ✁ X2q

✞✞✞ ii❊, those matrices elements simplify to

Aijkl ✏ ✁ 1
~2
T ♣iqµν

❆
i
✞✞✞P̂µ

✞✞✞ j❊❆i ✞✞✞P̂ν

✞✞✞ l❊ δi,k ✏ ✁ 1
~2

①i ⑤P⑤ j② ☎ ÐÑT ♣iq ☎ ①i ⑤P⑤ l② δk,i , (D.23)

Bijkl ✏ ✁ 1
~2
T ♣jqµν

❆
i
✞✞✞P̂µ

✞✞✞ j❊❆k ✞✞✞P̂ν

✞✞✞ j❊ δj,l ✏ ✁ 1
~2

①i ⑤P⑤ j② ☎ ÐÑT ♣jq ☎ ①k ⑤P⑤ j② δj,l , (D.24)

Cijkl ✏ 1
~2
T ♣iqµν

❆
i
✞✞✞P̂µ

✞✞✞ j❊❆k ✞✞✞P̂ν

✞✞✞ i❊ δi,l ✏ 1
~2

①i ⑤P⑤ j② ☎ ÐÑT ♣iq ☎ ①k ⑤P⑤ i② δi,l , (D.25)

Dijkl ✏ 1
~2
T ♣jqµν

❆
i
✞✞✞P̂µ

✞✞✞ j❊❆j ✞✞✞P̂ν

✞✞✞ l❊ δj,k ✏ 1
~2

①i ⑤P⑤ j② ☎ ÐÑT ♣jq ☎ ①j ⑤P⑤ l② δk,j . (D.26)

We can further simplify the previous equations using the nearest-neighbor

approximation for the momentum matrix elements, Eq.(2.81). In this case, substituting

Eq.(2.81) into Eqs.(D.23)-(D.26) and plugging the resulting expressions back into Eq.(D.18),

we find, after a few change of variables,

ĤBD ✏ 1
8m2c2

✂
mt

~

✡2 N➳
j✏1

➳
σ,σ✶

✑
♣Rj ✁ Rj�1q ☎ ÐÑT ♣iq ☎ ♣Rj ✁ Rj�1q Ĉ♣1q

j

� ♣Rj ✁ Rj�1q ☎ ÐÑT ♣iq ☎ ♣Rj ✁ Rj✁1q Ĉ♣2q
j

♣Rj ✁ Rj✁1q ☎ ÐÑT ♣iq ☎ ♣Rj ✁ Rj�1q Ĉ♣3q
j

♣Rj ✁ Rj✁1q ☎ ÐÑT ♣iq ☎ ♣Rj ✁ Rj✁1q Ĉ♣4q
j

✙
, (D.27)
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with

Ĉ
♣1q
j ✏

✁
c
✿
jσc

✿
jσ✶cj�1σ✶cj�1σ � h.c.

✠
✁
✁
c
✿
jσc

✿
j�1σ✶cjσ✶cj�1σ � h.c.

✠
, (D.28)

Ĉ
♣2q
j ✏

✁
c
✿
jσc

✿
jσ✶cj✁1σ✶cj�1σ � h.c.

✠
✁
✁
c
✿
jσc

✿
j✁1σ✶cjσ✶cj�1σ � h.c.

✠
, (D.29)

Ĉ
♣3q
j ✏

✁
c
✿
jσc

✿
jσ✶cj�1σ✶cj✁1σ � h.c.

✠
✁
✁
c
✿
jσc

✿
j�1σ✶cjσ✶cj✁1σ � h.c.

✠
, (D.30)

Ĉ
♣4q
j ✏

✁
c
✿
jσc

✿
jσ✶cj✁1σ✶cj✁1σ � h.c.

✠
✁
✁
c
✿
jσc

✿
j✁1σ✶cjσ✶cj✁1σ � h.c.

✠
. (D.31)

D.1 Estimation of
ÐÑ

T
♣iq

Similarly to what what we do in Appendix B, we can estimate
ÐÑ
T

♣iq
. Substituting

Eq.(D.3) into Eq.(D.22), we realize that we can separate T ♣iq
µν into two components:

ÐÑ
T

♣iq ✏ Pi✶�ÐÑ
Q

♣iq
, where

Pi ✏ e2

2

➺ ➺
drdr✶

⑤ϕi♣rq⑤2 ⑤ϕi♣r ✶q⑤2
⑤r ✁ r ✶⑤ , (D.32)

and

ÐÑ
Q

♣iq ✏ e2

2

➺ ➺
drdr✶

♣r ✁ r ✶q ♣r ✁ r ✶q
⑤r ✁ r ✶⑤3 ⑤ϕi♣rq⑤2 ⑤ϕi♣r ✶q⑤2

✏ e2

➺ ➺
drdr✶

r ♣r ✁ r ✶q
⑤r ✁ r ✶⑤3 ⑤ϕi♣rq⑤2 ⑤ϕi♣r ✶q⑤2 . (D.33)

Comparing Eq.(D.32) with Eq.(B.1), we readily find that Pi ✏ U④2. Moreover, using a

localized approximation for the pz orbitals, i.e., assuming that ϕj♣rq has the functional

form of Eq.(A.21), we can move on to calculate the tensor
ÐÑ
Q

♣iq
.

In the same way as in Sec. B we start with the change of variables y ✏ r ✁ Ri

and y ✶ ✏ r ✶ ✁ Ri, recalling that Ri denotes the ring’s i-th site position. Thus Eq.(D.33)

reduces to
ÐÑ
Q

♣iq
➺➺

dydy✶
y ♣y ✁ y ✶q
⑤y ✁ y ✶⑤3 ⑤ϕ♣yq⑤2 ✞✞ϕ♣y ✶q✞✞2 . (D.34)

Now, recalling that

∇

✂
1

⑤y ✁ y ✶⑤
✡
✏ ✁ y ✁ y ✶

⑤y ✁ y ✶⑤3 , (D.35)

and using into the expansion in spherical harmonics defined in Eq.(B.2) we can rewrite

Eq.(D.34) as

ÐÑ
Q

♣iq ✏ ✁4πe2
✽➳

l✏0

l➳
m✏✁l

1
♣2l � 1q

➺ ➺
dydy✶ ⑤ϕ♣yq⑤2 ⑤ϕ♣y✶q⑤2 rY m

l ♣θ✶, φ✶qs✝ y ∇

✂
yl
➔

yl�1
→

Y m
l ♣θ, φq

✡
.

(D.36)
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The angular integral associated with y✶ can be readily calculated using the spherical

harmonics orthonormality,

Iang♣y✶q ✑
➺
dΩ✶ ⑤ϕ♣y✶q⑤2 rY m

l ♣θ✶, φ✶qs✝

✏ R2
1♣y✶q

✒
1❄
5π
δl,2δm,0 � 1❄

4π
δl,0δm,0

✚
, (D.37)

and if we write the gradient ∇ explicit in terms of spherical coordinates,

∇ ✏ ❇
❇y ŷ �

1
y

❇
❇θ θ̂ �

1
ysinθ

❇
❇φφ̂ , (D.38)

Eq.(D.36) becomes

ÐÑ
Q

♣iq ✏ ✁4πe2
✽➳

l✏0

l➳
m✏✁l

1
♣2l � 1q

✽➺
0

dy✶ y✶2Iang♣y✶q
✔
✕ ✽➺

0

dyy3 ❇
❇y
✂
yl
➔

yl�1
→

✡➺
dΩϕ✝α♣yqϕγ♣yqY m

l ♣θ, φqŷŷ

�
✽➺
0

dyy2 y
l
➔

yl�1
→

➺
dΩϕ✝α♣yqϕγ♣yq

✂ ❇
❇θY

m
l ♣θ, φq

✡
ŷθ̂

�
✽➺
0

dyy2 y
l
➔

yl�1
→

➺
dΩϕ✝α♣yqϕγ♣yq

1
sinθ

✂ ❇
❇φY

m
l ♣θ, φq

✡
ŷφ̂

✜
✢ . (D.39)

Here,

ŷŷ ✏

☎
✝✝✝✆

sin2θ cos2 φ sin2θsinφ cosφ sinθ cos θ cosφ

sin2θsinφ cosφ sin2θsin2φ sinθ cos θsinφ

sinθ cos θ cosφ sinθ cos θsinφ cos2 θ

☞
✍✍✍✌ , (D.40)

ŷθ̂ ✏

☎
✝✝✝✆

sinθ cos θ cos2 φ sinθ cos θsinφ cosφ ✁sin2θ cosφ

sinθ cos θsinφ cosφ sinθ cos θsin2φ ✁sin2θsinφ

cos2 θ cosφ cos2 θsinφ ✁sinθ cos θ

☞
✍✍✍✌ , (D.41)

and

ŷφ̂ ✏

☎
✝✝✝✆
✁sinθsinφ cosφ sinθ cos2 φ 0

✁sinθsin2φ sinθsinφ cosφ 0

✁ cos θsinφ cos θ cosφ 0

☞
✍✍✍✌ . (D.42)

Despite Eq.(D.39) looks complicated, we can calculate it analytically, obtaining

ÐÑ
Q

♣iq ✏ e2

a0

☎
✝✝✝✝✝✆

993
35840

0 0

0
993

35840
0

0 0
1521
35840

☞
✍✍✍✍✍✌ , (D.43)
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APPENDIX E – Matsubara sums for the

clean case

Here we provided a detailed derivation of the the analytic expressions for

the matrix elements of Âclean defined in Eqs.(3.20) and (3.21). This Appendix is

reproduced from Ref. [36].

Deriving an analytic expression for the matrix elements
✁
Âclean

✠
ij

involves

calculating, analytically, Matsubara sums of the type

➳
n

1
ωn

arctan
✂
y

ωn

✡
✏ sign♣yq

Tc

s1

✂ ⑤y⑤
Tc

✡
, (E.1)

where the quantity y can assume the values Ω0, W1 ✏ ✁µ or W2 ✏ ✁µ� ε0, and

s1♣⑤x⑤q ✑ 2
✽➳

n✏0

1
♣2n� 1qπarctan

✂ ⑤x⑤
♣2n� 1qπ

✡
. (E.2)

We calculate an approximate expression for s1♣⑤x⑤q, taking advantage of the

asymptotic behavior of arctan
✂ ⑤x⑤
♣2n� 1qπ

✡
in two regimes: ⑤x⑤ ✦ 1 and ⑤x⑤ ✧ 1. If ⑤x⑤ ✦ 1,

⑤x⑤
♣2n� 1qπ ✦ 1 for all n, and a Taylor expansion of arctan

✂ ⑤x⑤
♣2n� 1qπ

✡
leads to

s1♣⑤x⑤ ✦ 1q ✏ 2
✽➳

l✏0

♣✁1qlζ♣2l � 2q ✏22l�2 ✁ 1
✘

♣2l � 1q♣2πq2l�2
⑤x⑤2l�1 , (E.3)

where we used the fact that

✽➳
n✏0

1

r♣2n� 1qπsk ✏
�
2k ✁ 1

✟
ζ♣kq

♣2πqk , (E.4)

with integer k ➙ 2 and ζ♣kq denoting the Riemann zeta function. The leading term is

clearly the l ✏ 0:

s1♣⑤x⑤ ✦ 1q ✒ ⑤x⑤
4

. (E.5)

On the other hand, if ⑤x⑤ ✧ 1,
⑤x⑤

♣2n� 1qπ ✧ 1 for small values of n, but the

ratio decreases with increasing n, until it eventually behaves as
⑤x⑤

♣2n� 1qπ ✦ 1 for large
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enough n. Denoting by N✝ the value of n such that ♣2N✝ � 1qπ ✏ ⑤x⑤, i.e. N✝ ✏ ⑤x⑤
2π

✁ 1
2

,

we approximate arctan
✂ ⑤x⑤
♣2n� 1qπ

✡
by its Taylor expansion in powers of 1④⑤x⑤ when

0 ➔ n ➔ N✝, and by its Taylor expansion in powers of ⑤x⑤ when N✝ � 1 ➔ n ➔ ✽. The

result is

s1♣⑤x⑤ ✧ 1q ✏
N✝➳
n✏0

1
2n� 1

✁ 2
✽➳

l✏0

♣✁1ql
♣2l � 1q⑤x⑤2l�1

N✝➳
n✏0

r♣2n� 1qπs2l

� 2
✽➳

l✏0

♣✁1ql⑤x⑤2l�1

♣2l � 1q
✽➳

n✏N✝�1

1

r♣2n� 1qπs2l�2
. (E.6)

The sums over n that appear in Eq.(E.6) can be evaluated analytically:

N✝➳
n✏0

1

r♣2n� 1qπsk ✏

✩✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✪

♣2k ✁ 1qζ♣kq
♣2πqk � 1

♣2πqk♣⑤k⑤ � 1qB⑤k⑤�1

✂
1� ⑤x⑤

2π

✡
, if k ↕ 0

1
2π

✒
ψ

✂
1� ⑤x⑤

2π

✡
✁ ψ

✂
1
2

✡✚
, if k ✏ 1

♣2k ✁ 1qζ♣kq
♣2πqk ✁ 1

♣k ✁ 1q!
✂✁1

2π

✡k

ψ♣k✁1q

✂
1� ⑤x⑤

2π

✡
, if k → 1

, (E.7)

and
✽➳

n✏N✝�1

1

r♣2n� 1qπsk ✏
1

♣k ✁ 1q!
✂✁1

2π

✡k

ψ♣k✁1q

✂
1� ⑤x⑤

2π

✡
, if k ➙ 2 , (E.8)

where ψ♣kq♣xq, ψ♣xq ✏ ψ♣0q♣xq and Bk♣xq are, respectively, the polygamma function of k-th

order, the digamma function, and the Bernoulli polynomials. In the limit ⑤x⑤ ✧ 1, a Taylor

expansion, up to order O

✂
1

⑤x⑤k
✡

leads to:

N✝➳
n✏0

1

r♣2n� 1qπsk ✒

✩✬✬✫
✬✬✪

1
2π

ln ♣κ⑤x⑤q , if k ✏ 1

♣2k ✁ 1qζ♣kq
♣2πqk ✁ 1

2π♣k ✁ 1q⑤x⑤k✁1
, if k ↕ 0 or k → 1

, (E.9)

and
✽➳

n✏N✝�1

1

r♣2n� 1qπsk ✒
1

2π♣k ✁ 1q⑤x⑤k✁1
, if k ➙ 2 . (E.10)

Here, we defined the constant κ ✏ 2eγ④π ✓ 1.13, with γ denoting Euler’s constant.

Substituting Eqs.(E.9) and (E.10) into Eq.(E.6), we find that its second and

third terms result in the same constant
✽➳

l✏0

♣✁1ql
π♣2l � 1q2 ✏ C

π
(C ✓ 0.92 is the Catalan’s

constant), differing only by a minus sign. Thus, they cancel out, and we obtain:

s1♣⑤x⑤ ✧ 1q ✒ 1
2

ln ♣κ⑤x⑤q . (E.11)





126

APPENDIX F – Matsubara sums for the

dirty case

Here we provided a detailed derivation of the the analytic expressions for the

matrix elements of Âdirty defined in Eq.(3.64). This Appendix is reproduced from

Ref. [36].

In the case of a dirty two-band superconductor, there are two distinct types of

Matsubara sums that we need to calculate for δÂ, as shown in Eq. (3.64). The first are

sums of the type:

➳
n

1
ωn

arctan
✂
y1

ωn

✡
y2

y2
2 � ω2

n

sign♣y1y2q
T 2

c

s2

✂ ⑤y1⑤
Tc

,
⑤y2⑤
Tc

✡
, (F.1)

where we define:

s2♣⑤x1⑤, ⑤x2⑤q ✑ 2
✽➳

n✏0

1
♣2n� 1qπarctan

✂ ⑤x1⑤
♣2n� 1qπ

✡ ⑤x2⑤
⑤x2⑤2 � r♣2n� 1qπs2 . (F.2)

The other sum is➳
n

1
ω2

n

arctan
✂
y1

ωn

✡
arctan

✂
y2

ωn

✡
✏ sign♣y1y2q

T 2
c

s3

✂ ⑤y1⑤
Tc

,
⑤y2⑤
Tc

✡
, (F.3)

where we define:

s3♣⑤x1⑤, ⑤x2⑤q ✑ 2
✽➳

n✏0

1

r♣2n� 1qπs2 arctan
✂ ⑤x1⑤
♣2n� 1qπ

✡
arctan

✂ ⑤x2⑤
♣2n� 1qπ

✡
. (F.4)

In these expressions, both y1 and y2 can assume the values Ω0 ✏ Λ, W1 ✏ ✁µ, or

W2 ✏ ✁µ� ε0.

To proceed with the calculation of (F.2) and (F.4), we use an asymptotic

approach similar to that described in Appendix E. In each of the four regions of the

two-dimensional parameter space ⑤x1⑤ ✂ ⑤x2⑤ bounded by the lines ⑤x1⑤ ✏ 1 and ⑤x2⑤ ✏ 1

(see Fig.37), we substitute arctan
✂ ⑤xi⑤
♣2n� 1qπ

✡
and

⑤xi⑤
⑤xi⑤2 � r♣2n� 1qπs2 by their Taylor

expansions in powers of ⑤xi⑤ if ⑤xi⑤ ✦ 1, or 1④⑤xi⑤ if ⑤xi⑤ ✧ 1.

When ⑤xi⑤ ✧ 1 we decompose the sums over n into two contributions,

✽➳
n✏0

f♣nq ✏
N✝

i➳
n✏0

f♣nq �
✽➳

n✏N✝
i
�1

f♣nq , (F.5)
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plane:

s2♣⑤x1⑤ , ⑤x2⑤q ✓

✩✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✪

0 , if ⑤x1⑤ , ⑤x2⑤ ✦ 1

κ✶ ⑤x2⑤ , if ⑤x1⑤ ✧ 1, ⑤x2⑤ ✦ 1

1
2 ⑤x2⑤ ln ♣κ ⑤x➔⑤q ✁ ⑤x1⑤

2 ⑤x→⑤2
� ⑤x2⑤ θ ♣⑤x1⑤ ✁ ⑤x2⑤q

4 ⑤x1⑤2
, if ⑤x1⑤ , ⑤x2⑤ ✧ 1

0 , if ⑤x1⑤ ✦ 1, ⑤x2⑤ ✧ 1

,

(F.8)

and

s3♣⑤x1⑤ , ⑤x2⑤q ✓

✩✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✪

0 , if ⑤x1⑤ , ⑤x2⑤ ✦ 1

κ✶ ⑤x2⑤ , if ⑤x1⑤ ✧ 1, ⑤x2⑤ ✦ 1

π2

16
✁♣⑤x1⑤ � ⑤x2⑤q

2 ⑤x1⑤ ⑤x2⑤ ln♣κ ⑤x➔⑤q✁ 1
2 ⑤x➔⑤ �

⑤x➔⑤
2 ⑤x→⑤2

, if ⑤x1⑤ , ⑤x2⑤ ✧ 1

κ✶ ⑤x1⑤ , if ⑤x1⑤ ✦ 1, ⑤x2⑤ ✧ 1

.

(F.9)

Here, we defined the constant κ✶ ✏ 7ζ♣3q
8π2

✓ 0.11 and defined ⑤x➔⑤ ✏ mint⑤x1⑤, ⑤x2⑤✉ and

⑤x→⑤ ✏ maxt⑤x1⑤, ⑤x2⑤✉. Recall that ζ♣xq is the zeta function, θ ♣xq is the Heaviside step

function and κ ✓ 1.13 is the constant defined in Appendix E.

It is important to note that we treat the approximations we use during the

derivation of Eqs.(F.8) and (F.9) consistently: in all the four regions of the parameter

space shown in Fig.37, we kept only terms up to order O♣⑤x⑤2q, with ⑤x⑤ ✦ 1. Note that

there is a small sliver region around ⑤x1⑤ ✏ ⑤x2⑤ in region 3 where this approximation loses

precision as compared to the other regions of the (⑤x1⑤,⑤x2⑤) plane.

The matrix elements of δÂ, defined in Eq. (3.64), are given by combinations

of (F.8) and (F.9). In each region of the phase diagram shown in Fig.24, the leading

contributions yield for R1:
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R1 ✒✩✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✪

Ω0 � µ✁ ε0

2Ω2
0

� 1
2Ω0

ln
✂
ε0 ✁ µ

Ω0

✡
, region I

4Ω0 � µ✁ 2ε0

4Ω2
0

� µ θ ♣ε0 ✁ 2µq
4 ♣ε0 ✁ µq2 ✁ ε0 ✁ µ

2W 2
→

� 1
2Ω0

ln
✂
ε0 ✁ µ

Ω0

✡
✁ 1

2µ
ln
✂

µ

W➔

✡
, region II

4Ω0 ✁ µ

4Ω2
0

✁ 1
2µ

ln
✂
κµ

Tc

✡
� 1

2Ω0

ln
✂
κΩ0

Tc

✡
, region III

4Ω0 � µ✁ 2ε0

4Ω2
0

� µ✁ ε0

2µ2
✁ 1

2µ
ln
✂
κ2µ ♣µ✁ ε0q

T 2
c

✡
✁ 1

2Ω0

ln
✂
κ2Ω0 ♣µ✁ ε0q

T 2
c

✡
, region IV

.

(F.10)

For R2, we find:

R2 ✒
✩✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✪

ε0 ✁ µ

4Ω2
0

� 1
2 ♣ε0 ✁ µq ln

✂
κ ♣ε0 ✁ µq

Tc

✡
✁ 1

2Ω0

ln
✂
κΩ0

Tc

✡
, region I

µ� ε0

4Ω2
0

✁ µ

2W 2
→

� ♣ε0 ✁ µq θ ♣2µ✁ ε0q
4µ2

� 1
2 ♣ε0 ✁ µq ln

✂
κ2 ♣ε0 ✁ µqW➔

T 2
c

✡
✁ 1

2Ω0

ln
✂
κ2µΩ0

T 2
c

✡
, region II

Ω0 � µ

2Ω2
0

� 2κ✶ ♣ε0 ✁ µq
T 2

c

✁ 1
2Ω0

ln
✂
κ2µΩ0

T 2
c

✡
, region III

µ� ε0

4µ2
� µ� ε0 � 4Ω0

4Ω2
0

✁ 1
2Ω0

ln
✂
κ2Ω0µ

T 2
c

✡
✁ 1
µ✁ ε0

ln
✂
κ ♣µ✁ ε0q

Tc

✡
, region IV

,

(F.11)

and for S:

S ✒✩✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✪

1
2 ♣ε0 ✁ µq ✁

ε0 ✁ µ

2Ω2
0

� 1
2 ♣ε0 ✁ µq ln

✂
κ ♣ε0 ✁ µq

Tc

✡
✁ 1

2Ω0

ln
✂

κΩ2
0

♣ε0 ✁ µqTc

✡
, region I

2µ✁ ε0

2µ ♣ε0 ✁ µq✁
ε0 ✁ 2µ

2Ω2
0

� 1
2W➔

✁ W➔

2W 2
→

� ε0

2µ ♣ε0 ✁ µq ln
✂
κW➔

Tc

✡
✁ 1

2µ
ln
✂
κµ

Tc

✡
� 1

2 ♣ε0 ✁ µq ln
✂
κ ♣ε0 ✁ µq

Tc

✡
✁ 1

2Ω0

ln
✂

κ2Ω2µ

♣ε0 ✁ µqT 2
c

✡
, region II

π2

8Tc

✁ 2κ✶ ♣ε0 ✁ µq
T 2

c

✁ 1
2µ

� µ

2Ω2
0

✁ 1
2µ

ln
✂
κµ

Tc

✡
✁ 1

2Ω0

ln
✂
κ3Ω2

0µ

T 3
c

✡
, region III

π2

4Tc

✁ 1
µ✁ ε0

✁ ε0

2µ2
� 2µ✁ ε0

2Ω2
0

✁ 1
2Ω0

ln
✂
κ4Ω2

0µ ♣µ✁ ε0q
T 4

c

✡
✁ 1

2µ
ln
✂
κ2µ ♣µ✁ ε0q

T 2
c

✡
✁ 1
µ✁ ε0

ln
✂
κ ♣µ✁ ε0q

Tc

✡
, region IV

,

(F.12)

where, W➔ ✑ mint⑤W1⑤, ⑤W2⑤✉ and W→ ✑ maxt⑤W1⑤, ⑤W2⑤✉. The order of the terms in the

expressions for R1, R2 and S are also consistent with those in Eqs.(F.8) and (F.9).
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