








“Fall in love with some activity, and do it! Nobody ever figures

out what life is all about, and it doesn’t matter. Explore the

world. Nearly everything is really interesting if you go into it deeply

enough. Work as hard and as much as you want to on the things

you like to do the best. ”

Richard Feynman

“There is a time for everything, and a season for every activity

under the heavens:

a time to be born and a time to die,

a time to plant and a time to uproot,

a time to kill and a time to heal,

a time to tear down and a time to build,

a time to weep and a time to laugh,

a time to mourn and a time to dance,

a time to scatter stones and a time to gather them,

a time to embrace and a time to refrain from embracing ”

Ecclesiastes 3, 1-5

To my forever beloved parents and family.
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Resumo

Os antiferromagnetos de baixa dimensionalidade CuSb2O6 e CoSb2O6 foram investigados

com espectroscopia Raman polarizada. Foram obtidas informações sobre as propriedades mag-

néticas intrigantes e configurações orbitais. Pode-se fazer a atribuição dos modos fonônicos na

fase alta simetria tetragonal para ambos compostos. Para o CuSb2O6, uma transição estrutural

a TS = 397(3) K manifesta-se através da observação de um novo modo fonônico em ∼ 670 cm−1

e por uma grande anomalia na frequência do modo em ∼ 640 cm−1 na fase de baixa simetria

monoclínica, evidenciando uma hibridização aumentada das cadeias lineares de Cu-O-O-Cu

como resultado de ordenamento orbital dos elétrons 3d do Cu abaixo de TS. Foi observada

uma pronunciada forma de linha assimétrica Fano e comportamentos anômalos para a frequên-

cia e largura de linha como função da temperatura para o modo A1g em ∼ 515 cm−1 para o

composto CuSb2O6, indicando um forte acoplamento deste modo com excitações eletrônicas

(possivelmente orbitais). Finalmente, ambos os compostos apresentam anomalias de frequência

na maioria dos fônons abaixo de ∼ 100 K que foram interpretados em termos de acoplamento

spin-fônon, produzindo informações pertinentes sobre as correlações de curto alcance de baixa

dimensionalidade spin-spin. Demonstrou-se, portanto, que espectroscopia Raman fonônica é

uma ferramenta valiosa para investigar magnetos de baixa-dimensionalidade.

Palavras-chave: sistemas de spin de baixa dimensionalidade, espectroscopia Raman, acopla-

mento spin-fônon.



Abstract

The low-dimensional antiferromagnets CuSb2O6 and CoSb2O6 were investigated by polar-

ized phonon Raman spectroscopy, providing insights into their intriguing magnetic properties

and orbital configurations. An assignment of the observed phonon modes in the high-symmetry

tetragonal phase was performed for both compounds. For CuSb2O6, a structural transition at

TS = 397(3) K is manifested by the observation of a new phonon mode at ∼ 670 cm−1 and by

a large frequency anomaly of a mode at ∼ 640 cm−1 in the low-symmetry monoclinic phase,

evidencing an enhanced hybridization of the Cu-O-O-Cu linear chains as a result of orbital

ordering of Cu 3d electrons below TS. Pronounced asymmetric Fano lineshape and anomalous

frequency and linewidth behavior with temperature were observed for the ∼ 515 cm−1 A1g

mode for CuSb2O6, indicating a strong coupling of this mode with electronic (possibly orbital)

excitations. Finally, both compounds show frequency anomalies in most phonons below ∼

100 K that were interpreted in terms of the spin-phonon coupling, yielding relevant informa-

tion on the low-dimensional short-range spin-spin correlations. Phonon Raman spectroscopy is

therefore demonstrated to be a valuable tool to investigate low-dimensional magnets.

Keywords: Low dimensional spin systems, Raman spectroscopy, spin-phonon coupling.
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Chapter 1

Introduction

In this dissertation, we have experimentally studied the low-dimensional spin systems

MSb2O6 M = (Cu,Co) through a spectroscopic technique. The main motivation of this work

was to broaden and deepen the understanding of the magnetic correlations and its interaction

with the lattice in low-dimensional spin systems. Moreover, the compounds investigated in this

work were chosen to explore the effects of quantum magnetism. In particular, we investigated

the low-dimensional magnetism with a microscopic technique, capable of providing information

about the magnetic correlations between first neighbors.

The structure of this dissertation is as follows. In the introduction, we will give an overview

of low dimensional magnetism, coming from the early beginning until nowadays. Then, we will

present the specific problem carried out in this work. In Chapter 2, the theoretical background

needed for this dissertation will be discussed, starting from magnetism in solids as well as

quantum magnetism and the lattice dynamics are explained. In Chapter 3, the experimental

technique employed in this work will be addressed. Chapter 4 and Chapter 5 are devoted

to present the scientific case, results and discussions of the measurements for the compounds

CuSb2O6 and CoSb2O6, respectively. Finally, Chapter 6 gives a summary on general aspects

that have been highlighted in this dissertation as well as the conclusions and perspectives.

1.1 Low dimensional magnetism: State of the Art

The field of low-dimensional magnetism began in 1925, when Ernst Ising followed a sug-

gestion of his professor Lenz to investigate the one-dimensional model that is now well known

under his name [1]. In 1931, Hans Bethe [2] developed his method to find the exact quantum

mechanical eigenstates of the antiferromagnetic (AFM) one-dimensional version of Heisenberg’s

model. For the first 40 years, this field of research was completely theoretical, and scientists were



20

attracted by the possibility of finding new physics without having to deal with the complexity

of the three-dimensional model. During this period, they succeeded in extending the 1D case

to the 2D case, in calculating thermal properties of these models, and many other progresses

were achieved. Since these are many body systems with high symmetry, having Hamiltonians

with translational and rotational invariance[3], and their eigenstates can be determined exactly,

they keep attracting the interest of theoreticians.

In the end of 1960s and in the 1970s, it became apparent that a realization of one and two

dimensional systems could be obtained in 3D bulk materials[4], where the magnetic coupling is

anisotropic, being much stronger in one or two directions than in the remaining ones. Further-

more, bulk materials have a great advantage over 2D surfaces because they provide sufficient

intensity for experiments of thermal and dynamical properties.

Nowadays, low-dimensional spin systems can have a wide variety of applications, as in the

case of nanomagnets for quantum computer devices[3]. It is then possible to notice that in

approximately 90 years, since the beginning of this field of research, we have come from a

completely theoretical field to possible applications.

In addition, low-dimensional magnets represent the possibility to study ground and excited

states of quantum models, the interplay between quantum and thermal fluctuations as well as

new phases of matter like the spin liquids, for example. These compounds exhibit a wide variety

of properties as a result of the complex interplay of different interactions, mainly ligand-fields

and strong correlations effects. For these reasons, a considerable amount of research has been

carried out in this field and it was recently enhanced by the discovery of high-Tc superconductors

in layered cuprates[5]. According to the “Resonating Valence Bond”(RVB) state proposal, low

dimensionality, magnetic frustration and low-spin can favor an insulating phase in a metal-

insulator phase transition, making possible the appearance of superconductivity[5].

The dimensionality of the spins and its quantum number strongly determine the nature of

ground states and elementary excitations. Low dimensional systems with geometrical frus-

tration exhibit a wide variety of peculiar phenomena such as dimerization or spin-Peierls

transition[6], formation of energy-gap, degenerated ground states, and many others. Since

the on-site Coulomb repulsion in these compounds is much higher than the width of the energy

band, the spin dynamics is expected to be closely related to the orbital, charge and lattice

dynamics[7]. These systems are often found in transition-metal oxides, such as titanates, vana-

dates, cuprates and Cobalt oxides. This dissertation intends to contribute to the understanding

of spin correlations, orbital order and their coupling with the lattice vibrations in a specific class

of compounds, investigating the CuSb2O6 and CoSb2O6 with a spectroscopic probe, namely

Raman spectroscopy.
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of collective excitations as well as the interplay among them.
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Chapter 2

Theoretical Aspects

In this chapter, we shall give an overview of the theory used throughout this dissertation,

coming from the magnetism in solids to the theoretical description of low-dimensional quantum

spin systems. Moreover, this chapter is concerned with understanding the lattice dynamics of

materials, and a description about ab-initio lattice dynamical calculations will be addressed as

well.

2.1 Magnetism in Solids

Let us first consider the physics of isolated atoms and their interaction with an applied weak,

uniform and static magnetic field (B = ∇ ×A). We can write the perturbed Hamiltonian of

an atom under the application of a field as1:

Ĥ = Ĥ0 + µB(L+ gS).B+
e2

8me

Z
∑

i=1

(B× ri)
2 (2.1)

where Ĥ0 =
∑Z

i=1(
p2i
2m

+ Vi) is the unperturbed Hamiltonian, which we assume that has

known eigenstates and eigenvalues; L and S are the total angular momentum and total spin

operators, respectively; ri and pi are the position and the momentum operators of the ith

electron in the atom.

The dominant perturbation to the original Hamiltonian Ĥ0 is usually the second term in

Eq.2.1, µB(L+ gS).B, and it is known as the paramagnetic term. The third term is due to the

diamagnetic moment.

In general, for a linear material, we define the magnetic susceptibility χ in the presence of

1The underlying theory is discussed in detail in ref. [16] and [17]
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a magnetic field as χ = M
H

, where M is the magnetization (magnetic moment per volume),

H = B/µ0 (µ0 = 4π × 10−7Hm−1 is the permeability of free space), and M = −∂F
∂B

, where F

is the Helmholtz function.

Diamagnetism Consider the case of an atom with no unfilled electronic shells, so that the

second term in Eq.2.1 can be ignored. Suppose B||ẑ. The first order energy shift due to the

diamagnetic term for a spherically symmetric atom is

∆E0 =
e2B2

12me

Z
∑

i=1

〈0| r2i |0〉 (2.2)

where |0〉 is the ground-state wave function. The magnetization is then

M = −
∂F

∂B
= −

N

V

∂∆E0

∂B
= −

Ne2B

6meV

Z
∑

i=1

〈

r2i
〉

(2.3)

which gives a magnetic susceptibility χ = µ0M/B (assuming χ≪ 1)

χ = −
N

V

e2µ0

6me

Z
∑

i=1

〈

r2i
〉

(2.4)

known as the Larmor diamagnetic susceptibility2. We redefine
∑Z

i=1 〈r
2
i 〉 ≈ Zeffr

2, where

Zeff is the number of electrons in the outer shell of an ion and r is the ionic radius.

All materials show some degree of negative susceptibility (i.e., cases where the induced

moment is opposite to the applied field3). In a classical viewpoint, an external magnetic field

generates a back electromotive force, which opposes the magnetic field by Lenz’s law, thus

changing the magnetic dipole moment. Consequently, diamagnetism is present only when the

substance is exposed to an applied magnetic field. This effect is generally weak.

Paramagnetism 4

Now, we turn our attention to the second term of Eq.2.1, known as Zeeman term. So

far, we have considered materials which contained no unpaired electrons, and thus the atoms

or molecules had no magnetic moment unless a field was applied. Now, we will consider

atoms that have unpaired electrons and thus have a non-zero magnetic moment. There are two

distinguishable cases: if the shell has total angular momentum J = L+S = 0 or J = L+S 6= 0.

2It is also known as the core magnetic susceptibility.
3The prefix dia means across or against.
4The prefix para means with or along.
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• Van Vleck paramagnetism

If J = 0, the first order perturbation theory 〈0| (L+gS) |0〉 is zero. Second order perturbation

theory nevertheless predicts a magnetic susceptibility given by:

χ =
N

V

(

2µ2
B

∑

n

| 〈0| (L+ gS) |n〉 |2

En − E0

−
e2µ0

6me

∑

i

〈

r2i
〉

)

(2.5)

where the second term, already discussed, corresponds to the conventional Larmor dia-

magnetic susceptibility and the first term is positive (since En > E0) and therefore favors an

alignment of the magnetic moments parallel to the applied field. This term is known as the

Van Vleck paramagnetic term, and it is temperature independent.

• Curie paramagnetism

If the shell has J 6= 0, we have a non-zero first order term in the energy shift. In this case,

the ground-state is (2J + 1)-fold degenerate at zero field, and we have to diagonalize a (2J +

1)-dimensional square matrix 〈JLSJz| (L + gS) |JLSJ ′
z〉. Wigner-Eckart theorem states that

the matrix elements of any vector in the (2J + 1)-dimensional space of eigenstates of J2 and

Jz with a given value of J are proportional to the matrix elements of J:

〈JLSJz| (L+ gS) |JLSJ ′
z〉 = g(JLS) 〈JLSJz|J |JLSJ

′
z〉 (2.6)

The coefficient g(JLS) does not depend on Jz, and since the matrix is already diagonal

in the states of Jz, and the (2J+1)-fold degenerate ground-state is therefore split into states

with definite values of Jz whose energies are uniformly separated by g(JLS)µBH. The ground-

state (2J+1) degenerate in zero field are diagonal in J, L, and S and thus one can write

(L + gS) = g(JLS)J. Moreover, if the splitting between the zero-field atomic ground-state

multiplet and the first excited multiplet is large compared with kBT , then only the (2J + 1)

states in the ground-state will contribute appreciably to the free energy.

Second-order perturbation theory applied in the Hamiltonian (Eq.2.1), gives:

∆En = µBB. 〈n|L+ gS |n〉+
∑

n′ 6=n

〈n|µBB.(L+ gS) |n′〉

En − En′

+
e2B2

12me

Z
∑

i=1

〈0| (r2i ) |0〉) (2.7)

The first term in Eq.2.7 is expressing the energy E = −~µ. ~B of the interaction of the

field with a magnetic moment that is proportional to the angular momentum of the ion, µ =

−g(JLS)µBJ. Due to the fact that the zero-field ground-state is degenerate, it is not possible
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to calculate the magnetic susceptibility by equating the free energy to the ground-state energy

as we did previously for the non-degenerate shells with J = 0. Considering that only the lowest

states are thermally excited with appreciable probability, it is possible to calculate the free

energy in the canonical ensemble and obtain the susceptibility:

χ =
1

3

N

V

µ2
Bp

2
eff

kBT
=
C

T
(2.8)

where C is a constant knows as Curie constant, peff = g(JLS)
√

J(J + 1) is the effective

moment and g(JLS) is the Lande g-factor given by:

g(JLS) =
3

2
+

1

2

S(S + 1)− L(L+ 1)

J(J + 1)
(2.9)

The Curie’s dependence of the magnetic susceptibility leads to χ ∝ 1/T . Room temperature

paramagnetic susceptibilities are of the order of 10−2 to 10−3 and its contribution completely

dominates the diamagnetic one. On the other hand, there are some conditions for the validity

of the Curie’s law: kBT ≫ ~µBB; the magnetic interaction between ions cannot be appreciable;

the J multiplet lying above the ground-state can not be close in energy. Indeed, the rare-earth’s

magnetism in an insulating solid are well described by treating them as isolated atoms, as one

can notice from Table 2.1.

Ion Shell S L J Term Calculated p pexp

Ce3+ 4f 1 1/2 3 5/2 2F5/2 2.54 2.51
Pr3+ 4f 2 1 5 4 3H4 3.58 3.56
Nd3+ 4f 3 3/2 6 9/2 4I9/2 3.62 3.3-3.7
Pm3+ 4f 4 2 6 4 5I4 2.68 -
Sm3+ 4f 5 5/2 5 5/2 6I5/2 0.85 1.74
Eu3+ 4f 6 3 3 0 7F0 0.0 3.4
Gd3+ 4f 7 7/2 0 7/2 8S7/2 7.94 7.98
Tb3+ 4f 8 3 3 6 7F6 9.72 9.77
Dy3+ 4f 9 5/2 5 15/2 6H15/2 10.63 10.63
Ho3+ 4f 10 2 6 8 5I8 10.60 10.4
Er3+ 4f 11 3/2 6 15/2 4I15/2 9.59 9.5
Tm3+ 4f 12 1 5 6 3H6 7.57 7.61
Y b3+ 4f 13 1/2 3 7/2 2F7/2 4.53 4.5
Lu3+ 4f 14 0 0 0 1S0 0.0 0.0

Tab. 2.1: The value of the effective moment obtained by the measured magnetic susceptibility
(Eq.2.8) compared with the calculated one p = peff/µB = gJ

√

J(J + 1) using Hund’s rules
predictions.
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In contrast, this is not the case for the transition metal ions. For these ions, although

the Curie Weiss’ law works fine, the value of the effective moment peff given by Eq.2.8 is not

correct. To obtain the correct value, one has to assume that although S is still given by Hund’s

law, the value of L must be 0, and hence J = S. This effect is known as the quenching of

the orbital angular moment. Table 2.2 demonstrates a much better degree of agreement when

considering the orbital quenching. This is a consequence of the fact that in these materials,

the crystal field effects, which will be discussed in the next section, are much higher than the

spin-orbit coupling. This is due to the fact that spin-orbit coupling is proportional to ∝ Z4

and therefore they are enhanced in the rare-earths, and additionally, their orbitals are much

less extended away from the nucleus so that the crystal field effects are much less important

than Hund’s third rule.

Ion Shell S L J Term Calculated p1 pexp Calculated p2
T i3+, V a4+ 3d1 1/2 2 3/2 2D3/2 1.55 1.70 1.73

V 3+ 3d2 1 3 2 3F2 1.63 2.61 2.83
Cr3+, V a2+ 3d3 3/2 3 3/2 4F3/2 0.77 3.85 3.87
Mn3+, Cr2+ 3d4 2 2 0 5D0 0 4.82 4.9
Fe3+ , Mn2+ 3d5 5/2 0 5/2 6S5/2 5.92 5.82 5.92

Fe2+ 3d6 2 2 4 5D4 6.7 5.36 4.9
Co2+ 3d7 3/2 3 9/2 4F9/2 6.63 4.9 3.87
Ni2+ 3d8 1 3 4 3F4 5.59 3.12 2.83
Cu2+ 3d9 1/2 2 5/2 2D5/2 3.55 1.83 1.73
Zn2+ 3d10 0 0 0 1S0 0 0 0

Tab. 2.2: Magnetic ground-state for transition metal 3d ions, demonstrating that the value of
the effective moment calculated by Hund’s prediction (p1) does not agree with the experimental
value. Better results are obtained assuming orbital quenching, p2.

2.1.1 Crystal Field effects

So far, we have deduced many magnetic properties without considering interactions between

atoms. Now, we will take into account the interactions between an atom and its environment,

considering a direct magnetic interaction between an atom in a crystal and its neighboring

atoms.

In order to understand the effect of the local environment due to the crystal on the energy

levels of an atom, let us first review the shapes of the s, p and d atomic orbitals, which are the

most important for this work. The angular dependences of the electron density of the atomic

orbitals are shown in Fig. 2.1.
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Exchange Interaction

The electrostatic energy differences between atomic states are typically of the order of sub

eV, and therefore they play an important role in the magnetism. Exchange interactions are

electrostatic interactions. For instance, let us first consider a simple model of two electrons.

The effective Hamiltonian is:

Ĥspin
1,2 = −2JS1.S2, J =

Es − Et

2
(2.11)

where s and t stands for singlet and triplet, respectively; J is the exchange constant. If

J > 0, then Es > Et and the triplet state S = 1 is favored (spins are oriented parallel). If,

instead, J < 0, Es < Et and the singlet state S = 0 is favored (spins are antiparallel). There

exists many types of exchange interactions:

• Direct exchange arises from the interaction of electrons on neighboring magnetic atoms,

occuring without the need for an intermediary. In many cases, direct exchange does not

play an important role on the observed magnetic properties, because there is no sufficient

overlap between neighboring electron densities.

• Superexchange occurs when the interaction between magnetic ions occurs via a non-

magnetic ion which is placed in between them. This type of interaction favors antiferro-

magnetic order.

• Ruderman, Kittel, Kasuya and Yosida (RKKY) or itinerant is an indirect exchange be-

tween magnetic ions which is mediated by conduction electrons in metals.

• Double exchange occurs in metals which shows mixed valency. This type of interaction

favors ferromagnetic order.

• Dzyaloshinsky-Moriya is an anisotropic interaction where the spin-orbit coupling couples

an excited state of one ion with the ground-state of another ion.

2.1.3 Antiferromagnetic order

Different types of magnetic ground-states can be produced by the interactions presented

previously, including ferromagnets, where all the spins are aligned in parallel, and antiferro-

magnets, where all the spins are antiparallel and many others. Here we will concentrate on the

antiferromagnetic order, which is the most relevant one for this work.

Eq.2.11 describes the spin Hamiltonian of a two-spins system. However, real systems are

usually many-body systems, and inspired by this Hamiltonian, we generalize that interactions
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Ĥ =
Ne
∑

i=1

( ~Pi

2

2m
+ V (~ri)

)

+
1

2

Ne
∑

i,j=1
j 6=i

U(~ri, ~rj) (2.17)

where ~Pi

2
/2m is the kinetic energy of each electron, V (~r) is the periodic lattice potential

and U(~r, ~r′) = e2

|~r−~r′|
is the Coulomb repulsion potential. This Hamiltonian takes the following

second quantized form:

Ĥ =
∑

σ=↑,↓

∫

d3rΨ̂†
σ(~r)

[ ~P 2

2m
+V (~r)

]

Ψ̂σ(~r)+
1

2

∑

σ,σ′=↑,↓

∫∫

d3rd3r′Ψ̂†
σ(~r)Ψ̂

†
σ′(~r

′)U(~r, ~r′)Ψ̂σ′(~r′)Ψ̂σ(~r)

(2.18)

where Ψ̂†
σ(~r) and Ψ̂σ(~r) are the field operators which create and annihilate an electron with

spin σ at the positions ~r, ~r′. The fields operators are written in terms of the Wannier function7,

Φα(~r − ~Rj):

Ψ̂†
σ(~r) =

N
∑

j=1

∑

α

Φ∗
α(~r − ~Rj)c

†
αj,σ (2.19)

where α is the band index, ~Rj is the jth site’s position vector and c†αj,σ is the operator

which creates an electron with spin σ at the site j and band α. The operator cα,j,σ satisfies

the Fermions commutation relations. Substituting Eq.2.19 in the Hamiltonian described by

Eq.2.18, one can obtain:

Ĥ =
N
∑

i,j=1

∑

α,σ

tαijc
†
αi,σcαj,σ +

1

2

∑

α,β,γ,δ

∑

i,j,k,l

∑

σ,σ′

Uαβγδ
ijkl c

†
αi,σc

†
βj,σ′cγk,σ′cδl,σ (2.20)

where

tαij =

∫

d3rΦ∗
α(~r − ~Ri)

[ ~P 2

2m
+ V (~r)

]

Φα(~r − ~Rj) (2.21)

is the hopping integral and represents the Tight Binding part of the Hamiltonian. This

term means that the electrons can hop/tunnel between the sites in the lattice: if tαij is very

large, the tunneling probability is very high. The second term in Eq.2.20 represents the

7Deeper insight on Wannier function can be found in reference [17]



37

Uαβγδ
ijkl =

∫∫

d3rd3r′Φ∗
α(~r − ~Ri)Φ

∗
β(~r

′ − ~Rj)
e2

|~r − ~r′|
Φγ(~r′ − ~Rk)Φδ(~r − ~Rl) (2.22)

which is known as the Coulomb integral. Let us make some approximations:

• We will consider a non-degenerate orbital per site, for simplicity. Then, we can neglect

the bands indexes α, β, γ and δ;

• We will assume that the density of probability of finding electrons at a certain position

is higher around the sites. This approximation is great for the d and f bands, and this

means that the hopping integrals are significative for first nearest neighbors (tij = −t for

first neighbors and tij = 0 otherwise);

• We will simplify inserting only an intra-site electrons repulsion, i.e. the dominant term

in the Coulomb integrals is the one where i = j = k = l and the others can be neglected.

In this way, the Hamiltonian takes the form:

Ĥ = −t
N
∑

i=1

∑

~δ

∑

σ

c†iσci+~δσ +
U

2

N
∑

j=1

∑

σ,σ′

c†jσc
†
jσ′cjσ′cjσ (2.23)

and by using the Fermionic commutation relations, one arrive at a Hamiltonian:

Ĥ = −t

N
∑

i=1

∑

~δ

∑

σ=↑,↓

c†iσci+~δσ + U

N
∑

i=1

n̂i↑n̂i↓ = Ĥ0 + Ĥ1 (2.24)

known as the Hubbard Hamiltonian. The vectors ~δ connect neighboring sites. For a one-

dimensional system, we have:

Ĥ = −t
N
∑

i=1

∑

σ=↑,↓

(c†iσc(i+1)σ + h.c.) + U
N
∑

i=1

n̂i↑n̂i↓ (2.25)

where h.c. denotes the Hermitian conjugate of the previous term. Let us analyze some

limits of this model:

• Non-interacting (U = 0): we discussed it corresponds to a Tight Binding band. If the

number of electrons is less than two times the number of sites, the band is half filled and

this is a metallic system.
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• If the interactions are so high that U
t
→ ∞, then Ĥ = Ĥ1, double occupied sites are

forbidden and the only possibilities are empty or single occupied sites. Moreover, if the

number of electrons is equal to the number of sites, i.e., there are only single occupied

sites, then since the repulsion approaches infinity, electrons can not move in the lattice,

and the system is therefore an insulating;

• For single occupied systems, if t
U
→ ∞, the system is metallic.

For a spin-1
2

system, there are 2Ne possible states, which accounts for different spins config-

uration. If we consider strong U, this degeneration is broken by the hopping term, which can

be calculated to second order perturbation theory:

H
(2)
αβ =

∑

n

〈α|H0 |n〉 〈n|H0 |β〉

E0 − En

(2.26)

where α and β represent any states. The n states are generated by the application of the

hopping hamiltonian in the |σi..σN〉 single occupied subspace, and therefore they correspond to

the annihilation of an electron at one site and creation in the neighboring site. The EN energy

is U and E0 = 0. Therefore:

H
(2)
αβ = −

1

U

∑

n

〈α|H0 |n〉 〈n|H0 |β〉 (2.27)

The summation can now be extended to all the Hilbert space |m〉, since for all the non

double occupied states, the matrix element 〈m|H0 |β〉 = 0.

Hαβ = −
1

U

∑

m

〈α|H0 |m〉 〈m|H0 |β〉

= −
1

U

∑

m

〈α|H2
0 |m〉

(2.28)

Thus, let’s calculate H2
0 :

H2
0 = t2

∑

iδσ
jδσ′

(c†iσci+δ,σ + c†i+δ,σciσ)(c
†
jσ′cj+ρ,σ′ + c†j+ρ,σ′cjσ′) (2.29)

There will be terms: c†iσci+δ,σc
†
jσ′cj+ρ,σ′ . These terms will not vanish in the single occupied

state only if:

{

i = j + ~ρ

i+ ~δ = j
(2.30)
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Then, by performing some calculations, one can realize that:

H(2) =
4t2

U

∑

<ij>

~Si. ~Sj = −
∑

<ij>

J ~Si. ~Sj (2.31)

where Si = 1
2

∑

αβ c
†
iα~σαβciβ. One can notice that this is the Heisenberg Hamiltonian

(Eq.2.12), with

J = −
4t2

U
(2.32)

If J < 0, the system tends to antiferromagnetic order, and this indicates that the semi-filled

Hubbard model tends to this type of order[27].

In the next section, we shall give an overview of low-dimensional quantum spin systems,

since it is the case of the materials studied in this dissertation and study Eq.2.25 in greater

detail.

2.2 Low-Dimensional Quantum Magnetism

There are no experimental realization of exact low-dimensional magnetic materials. In

practical cases, however, a theoretical description of ideal systems provides a good starting

point to understand experimental results of quasi one-dimensional magnets. Before presenting a

theoretical description of a 1D antiferromagnetic system, let us introduce the Mermin-Wagner–

Berenzski theorem[28]:

“An infinite d dimensional lattice of localized spins cannot have long-range order (LRO) at

any finite temperature for d < 3 if the effective exchange interactions are isotropic and of finite

range ”.

In order to understand the coverage of this theorem, we will make several annotations:

• Even in the isotropic Heisenberg model, low-dimensional ferromagnets exhibit LRO at T

= 0, but antiferromagnets do not;

• When the interactions are of infinite range, for example, the dipolar interaction discussed

above, it is possible to find a critical temperature even in low-dimensionality;

• Anisotropic interactions can lead to LRO at finite temperatures;

• Square and hexagonal lattices present a ground-state with LRO for S ≥ 1[29, 30];

• There is a ground-state with LRO for Heisenberg 3D for spin ≥ 1
2
. [31]
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2.2.1 One-Dimensional Magnetism

As pointed out in the first chapter, in this dissertation we will study the spin-1
2

chain

CuSb2O6, and therefore we will concentrate our analysis on this magnetic ground-state.

Spin-1
2

chain

Let us consider a 1D spin-1
2

chain. On each site, there is a spin Si = σi/2 where σi are the

Pauli matrices. The three spin components obey the commutation relations:

[Sα, Sβ] = iǫαβγS
γ (2.33)

where ǫαβγ is the totally anti-symmetric tensor. The spins operators in different sites should

commute. Assuming that the spins interact only with their first neighbors described by the

Hamiltonian8:

H =
∑

i

Jxy(S
x
i+1S

x
i + Sy

i+1S
y
i ) + JzS

z
i+1S

z
i (2.34)

In this Hamiltonian, we have kept the rotation in the xy-plane, and chosen different exchange

couplings for the xy-plane and the z direction. This model is known as XXZ Hamiltonian. If

Jz = Jxy the interactions between spins is invariant by rotation and this is the Heisenberg

Hamiltonian. If J is positive, the energy is going to be minimum when neighboring spins point

in opposite directions, i.e., J > 0 favors antiferromagnetic order, as pointed out before. J < 0

favor ferromagnetic ordering of the spins. Working with spin operators is complicated because

of their commutation relations. Nevertheless, there are some mappings which are useful to treat

spin problems. In the first one, we can relate the creation and annihilation spin operators to

bosonic operators[21]: S+ → b† e S− → b. In order to have the right commutation relation, the

spin operator Sz must be the bosonic density: Sz = b†b− 1
2
. In this way, spins on different sites

commute, as it should be. However, the Fock space in one site is extremely large for bosons,

since the third commutation relation for bosons allows an arbitrary large number of bosons.

8Deeper insight can be found in ref [32]
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where E0 is the equilibrium lattice energy, which is the energy with all the atoms at rest.

There is no first order term because all residual forces are zero. The second order term is called

the harmonic energy. All higher order terms are classed together as the anharmonic energy. In

the harmonic approximation, we neglect all the anharmonic terms.

Let us consider a one-dimensional example with an arbitrary number of atoms where it is

allowed to extend the interactions beyond nearest neighbors. The energy is now written as [38]:

EJ =
1

2

∑

n,j′

Kj,j′,n(uj,0 − uj,n)
2 (2.39)

where K is the force constant, the sum over j’ is along the atoms in different unit cells and

n denotes which unit cell it is, and the sum over n includes the reference unit cell (labelled as

n = 0). The force on the atom is given by:

FJ = −
∂Ej

∂uj,0
= −

∑

n,j′

Kj,j′,n(uj,0 − uj′,n) = mj
∂2uj,0
∂t2

(2.40)

The solution of the harmonic equation of motion is a sinusoidal wave including the sum

over all possible modes. A wave with wave vector k and frequency ωk will cause an atom to be

displaced according to the ansatz:

uj,n =
∑

ν

ũj,νe
i(kna−ωνt) =

∑

ν

Aνm
−1/2
j ej,νe

i(kna−ωνt) (2.41)

where ũj,ν is the amplitude, a is the length of the unit cell, na is the position of the nth atom,

ν labels the mode (in a 1D system, there are as many modes as atoms in the unit cell), Aν is a

scale factor which is temperature dependent and ej,ν are normalized variables which contains

information about the relative displacements of the atoms due to the wave. Substituting the

wave equation into the force equation, one can see that, for each value of ν:

−m
1/2
j ej,νω

2
ν = −

∑

n,j′

Kj,j′,n(m
1/2
k ej,ν −m

1/2
j′ ej′,νe

ikna) (2.42)

We can generalize the results in a matrix form. If we define the N × 1 matrix eν as formed

from different components ej,ν , then:

eνω
2
ν = D× e (2.43)

where the N × N matrix D, which is called the dynamical matrix, has components
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Dj,j′ = (mjmj′)
−1/2

∑

n

Kj,j′,n(δj,j′ − eikna) (2.44)

It is also possible to form a matrix Ω with components ων,ν′ = ω2
νδν,ν′ . Thus, Ω is a diagonal

matrix whose components are the squares of the vibrational angular frequencies. The problem

can now be written as:

e×Ω = D× e ⇒ Ω = e−1 ×D× e (2.45)

This is an eigenvalue problem: the components of matrix Ω are the eigenvalues of D and e

contains the eigenvectors. This problem was optimized to be solved by performing calculations

with a computer. The task is to set up the dynamical matrix using individual interatomic

force constants, and then find its eigenvalues to get the mode frequencies. The mathematical

formalism described here can be extended for calculations on three-dimensional systems. The

term ikna in the exponential needs to be replaced by a ik.r where r is the vector between the

reference unit cell and its neighbor unit cell, and k is the 3D wave vector. Now, the three com-

ponents of the displacement vector has to be taken into account, and therefore each component

of the dynamical matrix will be replaced by a 3 × 3 matrix representing the combinations of the

components of each pair of displacements. Indeed, the frequency matrix Ω and the eigenvector

matrix e will become 3N × 3N matrices.

2.3.2 Quantization of lattice vibrations

Previously, we have investigated how the vibrations are distributed along the crystal, but

so far, we have not calculated the amplitudes of the vibrations. As one can expect, the vibra-

tion amplitude will strongly depend on temperature, and the proper treatment incorporates

quantum mechanics. The harmonic vibrations can be quantized in the same way that the

electromagnetic field is quantized into photons. The fundamental quanta of lattice vibrations

are the so called phonons. The zero point energy, i.e. the ground-state energy is equal to

E0 = 1
2
~ω, and its corresponding motions at T = 0K are called the zero point motions. The

mean energy of each vibrational mode is given by E = ~ω[1
2
+ n(ω, T )], where n(ω, T ) is the

number of phonons, often called as the phonon number.

Let us now develop the phonon hamiltonian in the harmonic approximation. Any wave

causes the atoms in the unit cell to be displaced by amounts given by the mode eigenvector

e(k,ν). Within the harmonic approximation, the eigenvectors will not depend on temperature.

However, we expect the resultant atomic displacement to depend on temperature. We therefore
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write the contribution of all normal modes to the displacement of the jth atom in the lth unit

cell:

u(jl) =
1

√

Nmj

∑

k,ν

e(j,k, ν)eik.r(jl)Q(k, ν) (2.46)

where r denotes the atom position, Q(k, ν) is called the normal mode coordinate and sub-

sumes the time and temperature dependence of the wave. The time dependence of Q is written

as Q̇(k, ν) = −iω(k, ν)Q(k, ν). By deriving Eq. 2.46 and substituting the value of Q̇(k, ν), its

possible to calculate velocity of an atom, and it is given by:

u̇(jl) =
−i

√

Nmj

∑

k,ν

ω(k, ν)eik.r(jl)Q(k, ν) (2.47)

The kinetic energy of the atom will be given by 1
2
mj|u̇(jl)|

2, and the total kinetic energy of

the crystal can be obtained by summing over all atoms:

1

2

∑

j,l

mj|u̇(jl)|
2 =

1

2N

∑

j,l

∑

k,k′

ν,ν′

ω(k, ν)ω(k′, ν ′)e(j,k, ν).e∗(j,k′, ν ′)

×ei(k−k′).r(jl)Q(k, ν)Q∗(k′, ν ′)

(2.48)

By using the definition of the Delta function, its possible to notice that the sum over l does

not vanish only if k = k′. Furthermore, by using the eigenvectors e normalization condition,

the kinetic energy can be simplified to:

1

2

∑

j,l

mj|u̇(jl)|
2 =

1

2

∑

k,ν

ω2(k, ν)|Q(k, ν)|2 (2.49)

Obviously, the the total phonon energy is the sum of the kinetic contribution and the

vibrational potential energy. In order to derive an expression for the potential energy, one has

to consider the dynamical matrix, but for instance, we will state that the average vibrational

potential energy is equal to the average of the kinetic term. Therefore, the phonon vibrational

energy is:

E =
∑

k,ν

= ω2(k, ν)
〈 ∣

∣Q(k, ν)
∣

∣

2
〉

=
∑

k,ν

~ω(k, ν)
(

n(ω(k, ν), T ) +
1

2

)

(2.50)

The number of phonons in thermal equilibrium is given by the Bose-Einstein distribu-

tion, derived from the partition function for phonons. In the high temperature limit, where
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kBT > ~ω, it is possible to expand the thermodynamic funtion as powers of ~ω/kBT , and

〈 |Q2(k, ν) | 2〉 = kBT
ω2(k,ν)

. The Hamiltonian of the crystal, in terms of the individual vibrations,

is given by:

Ĥvib =
1

2

∑

jl

mj|u̇(jl)|
2 +

1

2

∑

j,lj′,l′

∂2E

∂u(jl).∂u(j′l′)
u(jl).u(j′l′) (2.51)

From the analysis done above, it is possible to notice that the Hamiltonian can be written

as:

Ĥvib =
1

2

∑

k,ν

Q̇(k, ν)Q̇(−k, ν) +
1

2

∑

k,ν

ω2(k, ν)Q(k, ν)Q(−k, ν) (2.52)

2.3.3 Anharmonic interactions

The basic harmonic theory has proven to be successful to provide an understanding of some

phenomena regarding the interaction between light and matter. However, some phenomena

can not be explained within this approximation, for example, the temperature dependence

of phonon frequencies, thermal expansion, thermal conductivity etc. Let us now modify the

harmonic model in order to have a better understanding. The anharmonic terms in Eq.2.38

does not have an exact solution. An approximation that can be made is to consider that the

anharmonic terms are small compared to the harmonic ones, and thus they simply modify the

harmonic picture. This is the so called quasiharmonic approximation, in which the anharmonic

interactions are assumed to give rise to changes in the phonon frequencies due to the change in

the material structure. Moreover, the phonon frequencies can be modified through other effects

such as direct interaction between different phonons, the latter being known as the renormalized

phonon theory.

Our approach will be to expand the anharmonic terms in the Hamiltonian of Eq.2.52:

Ĥvib =
1

2

∑

k,ν

Q̇(k, ν)Q̇(−k, ν) +
1

2

∑

k,ν

ω2(k, ν)Q(k, ν)Q(−k, ν)

+
1

3!

∑

k,k′,k′′

ν,ν′,ν′′

α
(3)

k,k′,k′′

ν,ν′,ν′′
Q(k, ν)Q(k′, ν ′)Q(k′′, ν ′′)∆(k+ k′ + k′′)

+
1

4!

∑

k,k′,k′′,k′′′

ν,ν′,ν′′,ν′′′

...

(2.53)
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the inverse of the phonon lifetime. The width of this peak will increase on heating, since

more phonons will emerge and therefore the probability of collisions and the process shown in

Fig.2.11 will increase. This effect is called phonon broadening.

Thermal Expansion

The volume thermal expansion coefficient β can be written as:

β =
1

V

(∂V

∂T

)

P
= KT

(∂P

∂T

)

V
(2.55)

where KT is the isothermal compressibility. Pressure is given by the derivative of the

free energy with respect to V, i.e. P = −
(

∂F
∂V

)

T
. The free energy in the high temperature

limit is: F = E + kBT
∑

j ln(
~ω
kBT

), where E is the lattice energy. Therefore, the pressure is

P = −∂E
∂V

− kBT
∑

j
1
ωj

∂ωj

∂V
. We now calculate β:

β = −KTkB
∑

j

1

ωj

∂ωj

∂V
(2.56)

Let us now define the Grueneisen parameter:

γj = −
V

ωj

∂ωj

∂V
= −

∂lnωj

∂lnV
(2.57)

and the Grueneisen parameter will be positive for the usual case where a mode frequency

increases as the volume decreases. The thermal expansion equation gets:

β =
KTkB
V

∑

j

γj =
3KTRγ

V
(2.58)

where γ is defined as the sum over the 3NA individual parameters.

The phonon frequency change due to the thermal expansion can approximated by Grueneisen

law, expressed by:

(∆ω

ω

)

= −γ
(∆V

V

)

(2.59)

Note that this law is applicable to crystal lattices which expand isotropically.

Temperature dependence of phonon frequencies

It is not possible to solve the Hamiltonian Eq.2.53 exactly, and then we will look for a

quasi-harmonic approximate solution, which retains the main features of the harmonic model.

We will assume that the temperature dependence of the phonon frequencies are only due to
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the dependence on the force constants with volume, i.e. will depend only on the crystal volume

dependence with temperature. In our approximation, we will consider the second and the

fourth term in the Hamiltonian Eq.2.53, neglecting the kinetic and the third term. We will

now neglect the fluctuations and use a mean-field approach:

Q(k′′, ν ′′)Q(k′′′, ν ′′′) → 〈Q(k′′, ν ′′)Q(k′′′, ν ′′′)〉

≈
kBT

ω2(k′′, ν ′′)
δk′′,−k′′′δν′′,ν′′′

(2.60)

where we have also assumed that we can work with the high-temperature limit, and the

delta in the k wave vector is expressing the conservation law and the delta in the ν express the

orthogonality condition. The Hamiltonian gets:

Ĥ =
1

2

∑

k,ν

ω2(k, ν)Q(k, ν)Q(−k, ν) +
kBT

4

∑

k,k′′

ν,ν′′

α
(4)

k,−k,k′′,−k′′

ν,ν,ν′′,ν′′

Q(k, ν)Q(−k, ν)

ω2(k′′, ν ′′)
(2.61)

There are six ways of selecting independent pairs for the second term, and this is why it

has been multiplied by six.

Ĥ =
1

2

∑

k,ν

(

ω2(k, ν) +
kBT

2

∑

k,k′′

ν,ν′′

α
(4)

k,−k,k′′,−k′′

ν,ν,ν′′,ν′′

ω2(k′′, ν ′′)

)

×Q(k, ν)Q(−k, ν)

=
1

2

∑

k,ν

ω̃2(k, ν)Q(k, ν)Q(−k, ν)

(2.62)

from where we take the renormalized phonon frequencies:

ω̃2(k, ν) = ω2(k, ν) +
kBT

2

∑

k′′,ν′′

α
(4)

k,−k,k′′,−k′′

ν,ν,ν′′,ν′′

ω2(k′, ν ′)
(2.63)

This gives a temperature dependence to all phonons. If the coefficients are positive, the

phonon frequencies will increase with temperature. Nevertheless, the effects of the thermal

expansion usually causes a decrease in the phonon frequency since the force constants decrease

as bonds increase in length, and this effect usually dominates. In the next Chapter (Section

3.2), we will address a calculation for the phonon frequency dependence with temperature which
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takes into account other effects such as magnetic coupling with the phonons.

2.3.4 Ab-initio lattice dynamical calculations

In order to investigate theoretically systems as complicated as molecular crystals, it is

necessary to model the interactions and it has to be as accurately as possible at the same time

as being computationally doable. The simplest approach is to use empirical potentials, but they

are limited and inadequate for calculating dynamical properties. Modeling interactions with

no a priori knowledge of empirical potentials require the usage of the sophisticated ab-initio

calculations, which attempt to solve the Schroedinger’s equation governing the dynamics of

electrons. The methodology for such calculations is the density functional theory (DFT)[39],

which will be described below. By solving the electronic structure of the system, a deeper

understanding of the system’s behavior including thermodynamical properties can be obtained

via simulation. Within the ab-initio 9lattice dynamical calculation, it is possible to determine

the symmetry of the lattice vibrations, i.e. how are the atomic motions at certain vibration

and it is also possible to obtain a simulation of the Raman spectra.

In principle, it is possible to obtain the ground state of a system by solving the quantum

mechanical wave equation governing the dynamics:

ĤΨ({ri}, {RI}) = EΨ({ri}, {RI}) (2.64)

where now Ψ({ri}, {RI}) is the many electron wavefunction, where ri denotes the electrons

position and RI denotes the nuclei positions. The Hamiltonian is therefore

Ĥ = Tn + Vnn + Te + Vee + Ven (2.65)

where T stands for kinetic energy, V for Coulomb potential energy, e for electrons, n for

nuclei and the electron-electron, nuclei-nuclei and electron-nuclei interactions are being rep-

resented by Vee, Vnn and Ven, respectively. This is a very complicated problem, since we

are dealing with a many body system. To solve this equation, one first needs to make the

Born-Oppenheimer approximation[26], i.e. the electron’s and atomic nuclei’s dynamics can be

decoupled, since the atomic nuclei is much heavier than the electrons. As a result of this approx-

imation, one can neglect the kinetic term Tn. Then, one has Ψ({ri}, {RI}) = Ψ({ri})Ψ({RI}).

This is still a complicated problem, and it is not possible to solve this equation for two reasons:

one mole of a solid contains N ∼ 1028 electrons, since the many electron wavefunction contains

3N degrees of freedom, this is intractable; moreover, the electron-electron interaction results in

9Ab-initio: from first principles.
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correlated electronic motions. Thus, one has to look for approximations that transform this in

a numerical tractable solution.

We now start the density functional theory approach and we define the electron density

n(r) = N

∫

d3r2...

∫

d3rNΨ
∗(r1, r2, ...rN)Ψ(r1, r2, ...rN) (2.66)

The electron density in DFT is the central variable rather than the many-body wave func-

tion, and this reduces the 3N variables to only 3 variables. Another approximation that we

use is the Hartree approximation, where the initial ansatz is to write the wavefunction as:

Ψ(r1, r2, ...rN) = ψ1(r1)ψ2(r2)...ψN(rN), which means that electrons are treated as being in-

dependent and only interacting via the mean-field Coulomb potential. Therefore, we redefine

the electron density in terms of the individual electron wave functions n(r) = 2
∑

i ψ
∗
i (r)ψi(r).

We consider here the Hohenberg-Kohn-Sham formulation of DFT [40, 41], and it is based upon

two remarkable theorems:

• First theorem: For any system of interacting particles in an external potential, the

ground state energy is a unique functional of the electron density n(r) : E = E[n(r)];

• Second theorem: The density that minimizes the total energy is the exact ground state

density.

Kohn and Sham put forward a new structure for the energy functional, and the functional

is split into 3 parts:

E[n(r)] = Te[n(r)] + EH [n(r)] + Exc[n(r)] (2.67)

where Te[n(r)] is the kinetic energy functional for a fictitious system of non-interacting

electrons producing the same density [n(r)]. EH [n(r)] is called the Hartree [42] energy and it

arises from the mutual Coulomb repulsion of all electrons (EH [n(r)] =
1
2

∫ ∫ n(r)n(r′)
|r−r′|

d3rd3r′)

and Exc is the exchange correlation functional. The first and second terms in the functional

equation are known, but the third is unknown, and hence we need to approximate it. A number

of approximations to the exchange-correlation functional have been derived by researchers,

including the Local Density Approximation (LDA)[43] which express the Exc in terms of a

density of a uniform electron gas and the Generalized Gradient Approximation (GGA)[44],

which takes into account n(r) inhomogeneities by including the gradient of the electron density.

The correlated nature of the electrons within a solid is not the only obstacle to solving the

Schroedinger’s equations for a condensed matter system: for solids, there are effectively an
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infinite number of electrons. One must appeal to Bloch’s theorem[17], which states that the

wave function of an electron within a periodic potential is:

ψj,k(r) = uje
ik.r (2.68)

where uj(r) is a functional that possesses the periodicity of the potential: uj(r) =
∑

G cje
iG.r

where G are the reciprocal lattice vectors G.R = eπm, where m is an integer, R is the real

space lattice vectors and cj is an expansion coefficient. Therefore,

Ψj,k =
∑

G

cje
i(k+G).r (2.69)

The net effect of Block’s theorem is to change the problem of an infinite number of electrons

to one of considering only the number of electrons in the unit cell (or half of it, depending if

the spins are degenerate or not) at a finite number of k-points chosen as to the Brillouin point

Zone. Numerically, this means that we have defined an energy cutoff Ecutoff = ~
2

2m
|k+G|2.

Although it was possible to solve the Kohn-Sham equations when expanding the wave func-

tions in terms of plane waves, an all-electron calculation including core and valence electrons,

along with the Coulomb potential of the nuclei would still be forbidden when using a set of plane

waves. This happens because the tightly bound core orbitals and highly oscillatory nature of

valence electrons demand a very high value for Ecutoff . We now introduce the pseudo-potential

approximation: the core and ionic potential are removed and replaced by a pseudo-potential

which acts on a set of pseudo-wave functions. Current DFT codes provide a library of pseudo-

potentials for each element in the periodic table.

Once the electron density is determined, it is possible to calculate the force acting on the

ions, and then it is possible to move along each ion and the ionic ground state can be calculated.

It is also possible to displace the ions from the ionic ground state and determine the force on

the other ions, thus obtaining dynamical matrices and vibrational frequencies.
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Chapter 3

Experimental Techniques

In this chapter, we will review the theoretical basis of Raman scattering on phonons and its

applications to study magnetic systems via the spin-phonon coupling. Finally, the experimental

setup will be outlined.

3.1 Phononic Raman Scattering

In 1928, Sir Chandrasekhra Venkata Raman discovered a phenomenon which nowadays

carries his name. In 1930, Sir Raman won the Nobel prize for his discovery[45]. Back then, Sir

Raman used the sunlight as the excitation source, a telescope as the collector and his eyes as

a detector. Considerable progress on instrumentation has been achieved since then. A typical

Raman scattering process is schematically shown in Fig.3.1-a): a laser with a well defined

wavelength ωi,ki and a polarization Pi comes and excites a sample. The light is scattered by

the sample with a wavelength ωf ,kf and polarization Pf and its intensity as a function of the

frequency change, i.e. its spectral density is measured with a detector. Since the wavelength

of the light is in the visible region of the electromagnetic spectrum, and therefore it is much

longer than the interatomic spacings, Raman spectroscopy can only measure phonons with wave

vectors close to zero. The scattered light consists of a component of the Rayleigh scattering,

which is an elastic contribution, the Stokes (ωf < ωi) component and the anti-Stokes component

(ωf > ωi), as shown in Fig.3.1-b).

The Stokes component corresponds to phonon emission, while the anti-Stokes correspond to

phonon absorption. An anti-Stokes process will only be present if there are phonons present in

the material before the light is incident. Therefore, the probability that an anti-Stokes process

occur at cryogenics temperatures is low. In contrast, the Stokes process does not require a

phonon to be present and thus can occur at any temperature.
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where

ĤAA =
e2

2mc2

∑

ki,ωi

∑

kf ,ωf

N(−ki + kf )A(ki, ωi).A
∗(kf , ωf ) (3.4)

and

ĤA =
e

mc

∑

ki,ωi

p(−ki).A(ki, ωi) (3.5)

where A(ki, ωi) and A∗(kf , ωf ) are the amplitudes of the Fourier components of the potential

vector of the incident and scattered photons, and where:

N(−ki + kf ) =
∑

j

ei(ki−kf ).rj

p(−ki + kf ) =
∑

j

ei(ki−kf ).rjpj

(3.6)

where rj and pj are the position and momentum operators of the jth electron. N(−ki + kf )

and p(−ki + kf ) are the Fourier transform of the many-particle number and momentum oper-

ators.

The contribution of the electrons to the transition electric susceptibility involves a two

photon process, where the incident photon is destroyed and the scattered photon is created.

The differential cross-section in terms of the matrix elements of the transition susceptibility

operator is:

d2σ

dΩdωf

=
(ωf

c

)4 ωi

ωf

V 2
∑

i,f

P (Ei)δ{
(Ei − Ef )

~
− ω}.|êf . 〈f | δχµν |i〉 .êi|

2 (3.7)

where

〈f | δχµν |i〉 =
e2

m2ω2
fV

{−m 〈f |N(−ki + ki) |i〉}+
∑

b

[
〈f | pµ(kf ) |b〉 〈b| pν(−ki) |i〉

Eb − Ei − ~ωi

+
〈f | pν(−ki) |b〉 〈b| pµ(kf ) |i〉

Eb − Ei + ~ωf

]

(3.8)

where |i〉 , |f〉 |b〉 represents the initial, final and intermediate states, and V is the scattering

volume. In order to calculate the matrix elements in Eq.3.8, one has to separate the electronic

and ionic motions as well as the electronic single particle and collective coordinates in adiabatic

approximations. Its non-zero components are determined by symmetry properties of the three
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interaction, which occur by their coupling differentiating in the two different ways described

above: phonons coupling to electronic states with the same occupancy, and phonons coupling to

occupied and unoccupied states. We have briefly talked about selection rules. Eq.3.7 requires

that:

êf . 〈f | δχµν |i〉 .êi 6= 0 (3.9)

and this determines the selection rules on the polarizations of the incident and scattered

light.

3.2 Spin-phonon coupling

The question we try to address in this section is how can one obtain information about

the magnetic correlations with Raman spectroscopy through the investigation of phonons. In

magnetic materials, the temperature dependence of the frequency of the α-phonon is expressed

by2:

ωα(T )− ωα(T0) = ∆ωα(T ) = (∆ωα)thermal + (∆ωα)anhar + (∆ωα)ren + (∆ωα)s−p (3.10)

The first term in Eq.3.10 is the thermal expansion (explained in Chapter 2, Section 2.3).

The second term is the anharmonic contribution at a constant volume. The third term refers

to a renormalization of the electronic states at a critical temperature. Finally, the spin-phonon

contribution is caused by the modulation of the spin coupling energy, as highlighted in the

previous Chapter - Subsection 2.2.1. This contribution was first studied by Baltensperger and

Helman for the specific case of EuO[48]. Let us study this interaction, assuming that the mag-

netic Hamiltonian is the Heisenberg one - Eq.2.31. We consider here any exchange mechanism

where the exchange integral can be modulated by atomic displacements, thus excluding cou-

plings via delocalized electrons. The exchange integral depends on the spatial positions of the

magnetic ions i and j, as well as the positions of any ion which is sitting on the integral path

between the two magnetic ions. Let us expand Jij in terms of the nuclear position of a given

ion k3:

∆Jij(uk) = [uk.~∇k]Jij +
1

2!
[uk.~∇k]

2Jij + ... (3.11)

2We are following ref. [47]
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where uk is the displacement vector with respect to the equilibrium position of the k ion

at a given temperature. Let us write the displacement vector uk as a static component, which

accounts for a change of the equilibrium displacements with temperature, and a dynamical

component, which accounts for the fluctuation of the equilibrium positions due to the vibrations:

uk = u0
k + uk(t) (3.12)

where u0
k and uk(t) are the static and dynamical components. Now, Eq.3.11 can be sepa-

rated in static and dynamical contributions:

∆Jij(uk(t)) = [u0
k.
~∇k]Jij +

1

2
[u0

k.
~∇k]

2Jij +
1

2
[uk(t).~∇k]

2Jij + ... (3.13)

Static terms on the right-side of this equation give origin to an accommodation on the

equilibrium position of some ions around the spin order temperature, which is known as the

exchange striction. This effect will be taken into account in the term (∆ωα)thermal. On the

other hand, the dynamical term will be responsible for the spin-phonon coupling. The change

in the exchange integral due to harmonic displacements is given by:

∆Jij(t) =
1

2

∑

k

[uk(t).~∇k]
2Jij (3.14)

where the sum is over all atoms in the crystal. Therefore, the variation in the exchange

energy(Eq.2.31) due to the vibration will be:

∆Ĥspin−phonon = −
1

2

∑

i,j>i

∑

k

[uk(t).~∇k]
2Jij 〈Si.Sj〉

= −
1

2

(

∑

k

[uk(t).~∇k]
2
)(

∑

i,j>i

Jij 〈Si.Sj〉
)

(3.15)

Since this equation involves quadratic terms of the ionic displacements, one can write:

∆Ĥspin−phonon =
1

2

∑

k

uk(t)Dk
spinuk(t) (3.16)

where Dk
spin is a 3×3 tensor, whose components are the second derivatives of the integral

exchange Jij times de spin correlation function summed over the magnetic ions:

3We are assuming adiabatic approximation.
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(Dk
spin)l,m = −

∑

i,j>i

∂2Jij
∂(uk)l∂(uk)m

〈Si.Sj〉 (3.17)

It is possible to notice that there will be a change in the magnetic energy and a change

in the elastic energy, as well as a change in the eigenfrequencies of some phonons. Indeed, by

referring to Eq.2.39, the elastic potential of the ions can be written as:

U elastic =
1

2

∑

k,k′

uk(t)Dk,k′

elasticu′
k(t) (3.18)

and we write

Dk,k′

elastic = δk,k′
∑

k′′

Φk,k′′ + Φk,k′

(Φk,k′)l,m =
∂2φk,k′

∂(rk,k′)l∂(rk,k′)m

(3.19)

where φk,k′ is the potential energy between the k and k’ ions, and (rk,k′)l is the lth component

of the position vector between the two ions k and k’. Then, the harmonic potential is given by:

Uharm = U elastic +∆Ĥspin−phonon =

=
1

2

∑

k

uk(t)(Dk,k′

elastic +Dk
spin)uk(t) +

1

2

∑

k,k′ 6=k

uk(t)Dk,k′

elasticu′
k(t)

(3.20)

Since the Dk
spin tensor elements are composed by terms which are proportional to 〈Si.Sj〉,

this tensor vanishes for temperatures well above the ordering temperature. Thus, we expect that

the frequencies of some phonon modes, which participates in the magnetic coupling, deviate for

T < TC . If the value of Ĥspin−phonon is negative for T < TC , this phonon will be contributing

to the stabilization of magnetic coupling. The mean potential energy and the kinetic energy of

this phonon will be reduced, and this is a softening. Therefore:

• phonon softening ⇔ magnetic ordering stabilization by the vibration;

• phonon hardening ⇔ magnetic ordering destabilization by the vibration.

The correction to Eq.2.40 due to the spin-phonon coupling will give a new motion equation

for the k ion which is given by:

Mkük = −~∇kU
harm = −

∑

k′ 6=k

(Delastic
k,k′ + δk′,kDk

spin)uk′ (3.21)
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we look for plane wave solutions:

uk(t) = ǫke
i(KR−ωt) (3.22)

where R are the Brillouin lattice vectors, and ǫk are vectors which are identical for atoms

which occupy the same point in different unit cells, i.e. ǫk = ǫk′ for rk = rk′ +R. Let N be the

number of ions per unit cell, we then have to solve the set of 3N equations:

Mkω
2ǫk =

N
∑

k′′=1

(Dk,k′′

elastic(K) + δk′′,kDk
spin)ǫk′′ (3.23)

where

Delastic
k,k′′ (K) ≡

∑

R

Delastic
k,k′(R,k′′) (3.24)

In these equations, the index k” denotes an ion inside the unit cell, and therefore it can

vary from 1 to N, and l’ indicates any other ion inside the crystal, thus k′ = k′(R, k′′). Let us

compact Eq.3.23:

(Delastic +Dspin)ǫ = ω2ǫ (3.25)

where the vector ǫ is composed by the vectors ǫk, Delastic and Dspin are composed by the

tensors 1
Mk

Dk,k′′

elastic(K) and 1
Mk

Dk
spin. Diagonalizing the tensor Delastic + Dspin, one can

obtain its eigenvalues, which are the square of the frequencies and its eigenvectors, i.e. the

normal vibrational modes at the center of the Brillouin zone.

It is possible to separate the spin term contribution, considering that it is much weaker

than the one from the elastic term. From Eq.3.23, one can obtain:

ω2
α = ǫ̂αD

elasticǫ̂α + ǫ̂αD
spinǫ̂α (3.26)

where ǫ̂α.ǫ̂α = 1. Therefore, the change in the phonon frequency due to the spin-phonon

coupling will be:

∆ωspin−phonon
α =

1

2ωα

ǫ̂αD
spinǫ̂α (3.27)

It is therefore possible to obtain quantitative information about the magnetic correlations

through the investigation of the phonon frequency as a function of temperature.
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3.3 Experimental Setup

Fig,3.3 illustrates schematically the experimental setup for Raman Spectroscopy. The ex-

perimental setup is mounted on an optical table made up of granite, in order to avoid vibrations

instabilities. Conventional Raman spectroscopy makes use of a continuum laser in visible light

as the excitation source. Ar/Kr laser are widely used for that since they provide a significant

number of possible wavelengths in the visible spectrum, and have high power. In particular,

for this work, we used a wavelength of 487.99 nm, which is a blue line. The Ar laser emission

is mostly in the blue and green line, while the Kr provides red and yellow wavelengths. Unfor-

tunately, one drawback of this type of lasers is the presence of plasma lines, which arises from

atomic transitions of the gases. This effect can be reduced by putting a pre-monochromator

and an iris diaphragm. The pre-monochromator is also used in order to select an extremely

fine wavelength, and it consists of a diffraction grating which disperses the non wished light

coming in. The iris diaphragm will stop the unwished dispersed light. For polarized Raman

spectroscopy, a polarization rotator is added just after the pre-monochromator. After that,

the beam goes through a path consisting of mirrors and the beam needs to be focused on the

sample: that is achieved by placing a lens with focus length of f = 10cm. The focused beam is

incident on the sample with a spot size of ∼ 200 µm in a quasi-backscattering geometry - the

angle between the Poyinting vectors of incident and scattered beams is ∼ 160°± 15°. The laser

power on the sample is ∼ 10 mW. The scattered light coming from the sample is captured by

a commercial camera lens (f = 8 cm) which focus and send the beam into the spectrometer.

For polarized Raman spectroscopy, a polarizer is placed in front of the spectrometer.

A schematic view of the Jobin Yvon spectrometer T64000 is depicted in Fig.3.4. The

spectrometer can work on three different configurations: simple, double subtractive and triple

additive. We used the double subtractive mode, where the first stage consists of two diffracting

gratings with 1800 lines/mm which act as a filter, removing the elastic signal. The first slit

width is (S1 = 200 µm). The second slit is large (S2 = 2000 µm). The third slit width is

S3 = 100 µm. The third grating disperses the filtered beam directly to an area detector-

Charge coupled device (CCD) with 512× 256 pixels, which is cooled with liquid Nitrogen. The

signal is processed with the Software LabSpec.





64

Optical measurements are conducted on the sample placed in a closed-cycle helium cryo-

stat (Advanced Research Systems). The sample space allows for optical access via an optical

window. A copper finger is used for mounting the sample holder. The sample is glued on the

evacuated cold finger with a Silver paint, in order to obtain a great thermal contact. A vacuum

of the about 10−5 Torr is obtained with a turbomolecular pump (Edwards). The temperature

is measured by a calibrated silicon diode sensor (accuracy of ± 12 mK) and controlled by a 100

Ω resistance heater anchored in the cold finger.
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Chapter 4

Spin-1
2

chain CuSb2O6

This chapter presents a Raman scattering study of the layered Copper oxide CuSb2O6.

This compound is a prototype of a low dimensional spin system which presents a spin-Peierls

transition. Extensive theoretical and experimental studies have been performed in order to un-

derstand its unusual magnetic behavior. Firstly, an introduction to the scientific study will be

presented. A preliminary characterization with X-ray diffraction was performed to determine

the sample orientation and it has confirmed the presence of twinning and bicrystallinity. Fur-

ther, our Raman scattering results will be discussed. Polarized Raman spectroscopy was used

to determine the symmetry of the phonon modes. Most interestingly, the temperature depen-

dence and lattice dynamical calculations are presented and its association with the magnetic

properties will be addressed in a possible scenario for interpretations.

4.1 Crystal structure and magnetic properties

CuSb2O6 has a monoclinic trirutile crystal structure of space group P21/n with lattice

parameters a = 4.6349 Å, b = 4.6370 Å, c = 9.2931 Å and β = 91.124°[49]. At T ≈ 390 K,

a second order phase transition from monoclinic β-CuSb2O6 to tetragonal α-CuSb2O6 takes

place. The Cu2+ ions sits in the center of the octahedra with oxygens in their corners, as

in Fig.2.2. Above ∼ 390 K, dynamic Jahn-Teller effect is possibly realized in the tetragonal

phase leading to fast dynamic exchange between the two different possibilities for elongation,

resulting in average compressed octahedra. Below the phase transition, Jahn-Teller effect is

leading to a CuO6 elongated octahedra[12]. This structural phase transition is accompanied by

a formation of crystallographic twins, which will be discussed in Section 4.3.1.

The spin-1
2

Cu2+ ions form a square lattice in the ab-plane and another Cu2+ ion is sitting

in the center of the unit cell, and forming a square lattice with the same ion from neighboring
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unit cells. The magnetic ion’s outer 9 electrons are in the 3d shell, such that there is one

unpaired electron lying in the eg orbital. The angular momentum is quenched and therefore it

has a moment composed only by spin S = 1
2
. Magnetic susceptibility on powder samples have

confirmed it by fitting the experimental high temperature susceptibility with the Curie-Weiss

law, obtaining peff = 1.758µB[50], close to the expected value from Tab.2.2.

The magnetic cation sublattice is that of the K2NiF4, which includes many examples of

square lattices exhibiting 2D antiferromagnetism, including La2CuO4. Surprisingly, as pointed

out in the Introduction, this system presents a magnetic susceptibility which fits extremely

well over a large temperature range to a Heisenberg S = 1
2

1D Bonner Fisher fit, with an

exchange constant ranging from -86 K to -98 K [51, 52, 49, 53, 54]. Moreover, low temperature

susceptibility measurements show a sharp drop at TN ≈ 8.5 K, indicating a transition to long

range AFM order. This transition is believed to occur as a result of the dimerization of the

spins, known as spin Peierls transition, which is caused by the coupling of one-dimensional

Jordan-Wigner transformed fermions with the three-dimensional phonons. Thus, the contrast

of the 2D lattice and the 1D magnetic behavior in this compound has been inferred as a result

of an unusual orbital ordering, as better explained in the next Subsection 4.1.1.

The coupling strengths have been investigated[50] in β-CuSb2O6 by calculating the spin

correlation interaction energies of two adjacent spins. A strong antiferromagnetic coupling

is predicted to be along the [1 1 0] direction, i.e. the superexchange pathway is along the

Cu-O-O-Cu bond, where the bond angle is 180°, as shown in Fig.4.1. The nearest neighbor

interaction at z=0.5 is relatively smaller, and the Cu-O-Cu bond angle is close to 90°. The

interchain-to-intrachain coupling ratio was estimated at 2× 10−3.

The reports on magnetic structure and magnetic susceptibility anisotropy are controver-

sial. Neutron diffraction experiments revealed a long-range ordered magnetic structure at low

temperatures with a magnetic propagation vector (1/2,0,1/2)[51, 53, 54] and a small ordered

magnetic moment of ∼ 0.5µB per Cu, suggesting that quantum fluctuations are present. Mag-

netic moments are aligned into ferromagnetic lines along the b-axis, and antiparallel along a

and c-axis. Different orientations of magnetic moments with respect to crystal axes are reported

in the literature. Another neutron powder diffraction study [51] has revealed spins to be in

the ab-plane, but were not able to distinguish between collinear alignment of the spins at z=0

and z=0.5 and canted spins. Single crystal neutron diffraction studies have proposed magnetic

moments canted away from the b axis towards the a axis with different canting at z=0 and

z=0.5[54]. This canting was based on the magnetic susceptibility anisotropy published on the

same paper. In contrast, two other single crystal neutron diffraction studies have shown that

collinear antiferromagnetic order is realized with magnetic moments aligned along the b-axis,
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(meV) t1 t2 t3 t4 t5 t6 t7

dx2−y2 -20 - 17.5 20.8 3.8 - -1.86

d3z2−r2 9.52 -197 -13.1 -3.86 - -17.9 -

(K) J1 J2 J3 J4 J5 J6 J7

dx2−y2 4.23 - 3.15 4.46 0.15 - 0.04

d3z2−r2 0.93 400 1.76 0.15 - 3.32 -

Tab. 4.1: Hopping parameters and its correspondent coupling strengths obtained by a two-site-
one-band TBM fit. The hopping paths are: t1 (0 0 0) → (1 0 0), t2 (0 0 0) → (1 1 0), t3 (0
0 0) → (-1 1 0), t4 (0 0 0) → (0 0 1), t5 (0 0 0) → (1 0 1), t6 (0 0 0) → (1

2
1
2
1
2
), t7 (0 0 0) →

(3
2
1
2
1
2
). Taken from ref.[5]

The exchange constants are obtained from the hopping integral value using Eq.2.32, where it

was used an effective value for the Coulomb integral of Ueff = 4.5 eV. The hopping parameters

obtained for the dx2−y2 band are all similar in magnitude, implying that the interactions are

approximately equal along all the main hopping paths t1, t2, t3 and t4. This is indicating a three-

dimensional magnetic ordering, which is incompatible with the experimental data of magnetic

susceptibility and neutron diffraction. The d3z2−r2 band fit provided an exchange coupling J2
which is much higher than the other ones, corresponding to hopping path t2 which is along

the [1 1 0] direction and so through the out-of-plaquette oxygens, which is compatible with the

experimental neutron diffraction data. The calculated J2 value is overestimated when compared

to the experimental value (by a factor of four) due to possible ferromagnetic contributions.

In summary, the presence of a quite regular octahedra in the crystal structure introduces

a competition between the eg orbitals for the ground state in this compound, as depicted

in Fig.4.3-a). Correlations drive the electronic structure to a unique d3z2−r2 orbital ordering

(Fig.4.3-c), which leads to a one-dimensional magnetic ordering.

Although electronic structure calculations and TBM fit performed in ref [5] have revealed

an orbital ordering which drives the magnetic correlations to one-dimensional ordering, an

experimental evidence of such orbital ordering is still missing in the literature.
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4.3.2 Raman scattering study

Vibrational normal modes

The tetragonal trirutile α-CuSb2O6 crystal structure belongs to the space group P42/mnm

(136) and it presents two formula units per unit cell. Therefore, a total of 54 modes are expected

to be present. The sites symmetries for Cu is 2a, for Sb is 4e, and for O are 4f and 8j. The

factor group analysis is presented in Tab.4.21, and it corresponds to the following irreducible

representations for the Raman active modes at the center of the Brillouin zone:

Γ = 4A1g + 2B1g + 4B2g + 6Eg (4.1)

Polarization Raman Active modes Expected number of phonon modes

-Z(YY)Z A1g 4

B1g 2

-Z(XY)Z B2g 4

-Z(Y’Y’)Z A1g 4

B2g 4

-Z(X’Y’)Z B1g 2

Tab. 4.2: Polarization rules for α-CuSb2O6. In this notation, the laser propagation direction at
the entrance is -Z and at the exit is Z. The polarizations are indicated inside the parenthesis, and
the first indicated value is the polarization at the entrance, while the second is exit polarization.
X||~a, Y||~b e Z||~c, where ~a,~b and ~c are the lattice vectors. The polarizations X’ and Y’ indicate
45 ° rotation with respect to the original polarizations X and Y around the Z-axis.

Fig.4.6 displays Raman spectra in different polarizations at 420 K.

1Appendix A addresses the selection rules calculations shown in Tab.4.2.
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Fig. 4.6: Raman spectra of α-CuSb2O6 in different polarizations at T = 420 K.

Noticeably, the A1g modes are not completely disappearing for crossed polarizations -

Z(XY)Z and -Z(X’Y’)Z as expected from the group factor analysis (Tab.4.2). This is ascribed

to a twinning of the single crystal on a microscopic level and/or the presence of crystal domains

with distinct orientations (bi-crystals), as discussed in Subsection 4.3.1. Nevertheless, it was

possible to identify the symmetry of the modes, and a second confirmation is obtained with

the simulated Raman Spectra from the lattice dynamical calculations, as it will be addressed

in the next Subsection 4.3.2.

Ab-initio Lattice Dynamical calculation

The study of vibrational properties was done using Ab-initio methods of Density Functional

Theory (DFT), with the Quantum Espresso code [56]. The electronic wavefunction was de-

scribed using plane waves with kinetic energy cutoff 50 Ry, and the charge density cutoff was 300

Ry. The atomic inputs for each atomic position was taken from reference [57] and the values for

the α-CuSb2O6 were used for simplicity. Exchange correlation effects were treated within the

Generalized Gradient Approximation (GGA) with the functional proposed by Perdew-Burke-

Ernzerhof. The Standard Solid State pseudo-potential (SSSP) is employed in this work. The

phonon energies were calculated for the Γ point of the Brillouin zone, accessed by our Raman

scattering experiment.

The calculations were performed in two steps. First, no relaxation of the structure was
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The A1g mode at ∼ 515 cm−1 is a stretching vibrational mode of the oxygen atoms against

copper in a breathing configuration. In the phonon mode at ∼ 652 cm−1, the in-plaquette

oxygens vibrate in a different direction than the bonding one, and the upper oxygens vibrates

in opposite directions. The out-of-plaquette oxygens vibrates along the bond in this mode. At

∼ 729 cm−1, vibrations of the out of plaquette against the Cu ion takes place, as well as upper

in-plaquette oxygens vibrating in opposite directions. At ∼ 316 cm−1, there is a bending mode,

where all oxygens vibrate in a direction different from the bonding. At ∼ 240 cm−1, there are

Sb vibrations included and the oxygens in intermediary positions between z=0 and z=0.5 are

vibrating along the c-direction. The oxygens at z=0 and z=0.5 are vibrating along the bond

direction. The vibrational mode at ∼ 592 cm−1is a stretching mode where the out-of-plaquette

vibrates along the bond direction and there is a small contribution of the in-plaquette oxygens

vibrating agains each other in the c-direction. In the vibrational mode observed at ∼ 825 cm−1,

the out-of-plaquette oxygens are vibrating along the bond and the in-plaquette oxygens vibrate

in a direction that is not along their bonding to the copper atom inside the octahedra.

Structural phase transition

At TS ≈ 397 K, a second order structural phase transition takes place, and this can be seen

in the Raman spectra as the emergence of a new intense peak at ∼ 670 cm−1 at the β-CuSb2O6

phase shown in Fig.4.9.

Fig. 4.9: a) Unpolarized Raman spectra at temperatures close to the structural transition α-
CuSb2O6 ⇒ β-CuSb2O6. b) Evolution of the ∼ 640 cm−1 and ∼ 670 cm−1 modes which are
sensitive to the structural lattice distortion.

Phonon frequencies of both peaks at ∼ 670 cm−1 and ∼ 640 cm−1 are plotted in Fig.4.10.

One can notice that the behavior of these two peaks as a function of temperature indicate that
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they are related, getting closer to each other at the transition.

Fig. 4.10: Phonon frequencies of peaks at ∼ 670 cm−1 and ∼ 640 cm−1 as a function of
temperature indicating that these peaks are correlated.

The intensity of peak ∼ 670 cm−1 divided by the intensity ∼ 640 cm−1 is plotted in Fig.4.11.

One can note that this value is approaching zero, which indicates that the peak at ∼ 670 cm−1

is emerging in the Raman spectrum at TS.

(a) (b)

Fig. 4.11: a) Integrated intensity of peak at ∼ 670 cm−1 divided by the integrated intensity
of peak ∼ 640 cm−1 as a function of temperature is graphed in order to investigate if peak at
∼ 670 cm−1 is emerging at the structural phase transition. b) Zoom of Graph depicted in a)
showing a transition temperature of TS = 397(3) K. The solid line is to guide the eye.
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Fig. 4.12: Temperature dependence of the phonon frequency difference of peaks at ∼ 670 cm−1

and ∼ 640 cm−1 minus the difference at the phase transition at TS ≈ 397 K. The solid line
is a polynomial fit. Notice that this quantity is decreasing continuously to zero at the phase
transition, emphasizing its second order phase transition feature.

In addition, the temperature dependence of the phonon frequency difference of peaks at

∼ 670 cm−1 and ∼ 640 cm−1 minus the difference value at the transition temperature is

plotted in Fig.4.12. One can notice that this quantity is rising from zero below the critical

temperature TS ≈ 397 K and therefore it looks like an order parameter of a second order phase

transition.

Temperature dependence of phononic excitations

In order to investigate the spin correlations, as explained in Chapter 3, several spectra in

different temperatures were taken and are shown in Fig.4.13. Let us follow the behavior of each

peak as a function of temperature.

Upon cooling, several distinctive features show up. First, several new phonon modes become

visible in the spectra. At T ≈ 160 K, a phonon mode at ∼ 435 cm−1 appears, and at T ≈ 200

K, we see two additional modes at ∼ 658 cm−1 and ∼ 705 cm−1. In addition, almost all phonon

modes become sharper and more intense, as depicted in Fig.4.13 for the phonon mode at 825

cm−1.
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(a) (b)

Fig. 4.13: a) Unpolarized Raman spectra with incident beam direction along ~c crystallographic
axis in different temperatures. b) Evolution of the ∼ 825 cm−1 mode.

Several phonon modes undergo a substantial shift in energy, as depicted for each specific

mode in the next graphs. Let us concentrate on the behavior of each phonon as a function of

temperature. Each phonon mode is then fitted considering the Pseudovoigt function, which is a

combination of the Lorentzian and Gaussian functions. The error bars included in the following

graphs are purely statistical and come from the fitting process. The error in temperature can

be considered as 1 K and it is not displayed in the figures.

The temperature dependence of the ∼ 825 cm−1 mode is graphed in Fig.4.14. With decreas-

ing temperature from 350 K, this mode undergoes an appreciable hardening of approximately

10 cm−1 and then is saturates around T ≈ 115 K. Upon cooling, there is a tiny jump at T ≈ 110

K.
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Fig. 4.14: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 825 cm−1 phonon mode.

The violet line is a fitting down to 115 K and extrapolated to lower temperatures considering

the anharmonic decay of optical phonons processes which includes higher order terms involving

cubic and quartic anharmonicity[58] rather than Eq.2.63:

ω(T ) = ω0 + A

(

1 +
2

e
~ω0

2kBT − 1

)

+B

[

1 +
3

e
~ω0

2kBT − 1
+

3

(e
~ω0

2kBT − 1)2

]

(4.2)

where ωo is the phonon frequency, A and B are adjustable parameters.

It is possible to notice that the extrapolation of the fit to lower temperatures is fitting quite

well. It is noticeable that there is a considerable broadening of the phonon and a decrease of

the integrated intensity as the temperature increases.

The next mode depicted in Fig.4.15 shows the behavior of the vibrational mode at ∼ 729

cm−1. Upon cooling, again there is an increase of the phonon frequency until it saturates at

about T ≈ 115 K. Upon further cooling, they slightly soften while showing a tiny jump at 110
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K. It should be noted that this softening takes place for temperatures whose energy scale is

comparable to the low dimensional exchange constant J ∼ 105 K and where the Curie law is

reported to deviate due to the low dimensional behavior[6]. Such an anomalous evolution of

phonon modes has been interpreted in terms of spin-phonon coupling.

Fig. 4.15: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 730 cm−1 phonon mode.

A similar behavior is observed for the phonon at ∼ 677 cm−1, as shown in Fig.4.16. Notice

that this phonon is also sensitive to the structural transition, as discussed in Section 4.3.2.
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Fig. 4.16: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 677 cm−1 phonon mode.

The temperature dependence of the frequency for the phonon mode at ∼ 635 cm−1 shows

a softening upon cooling in all the entire measured temperature range. Again, an anomaly

associated with the spin-phonon coupling is showing up at T ≈ 110 K, where the frequency

slightly shifts towards a higher value and then it softens more. This is the second mode

participating in the structural phase transition. It should be noted that the phonon broadening

effect with increasing temperature as well as the decrease in the integrated intensity can be

observed for this phonon as well.
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Fig. 4.17: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 635 cm−1 phonon mode.

The phonon mode at ∼ 589 cm−1, shows a tiny hardening upon cooling from 450 K down

to 115 K of approximately 1.2 cm−1, where it starts softening after a jump at 110 K. The size

of the anomaly associated with the low dimensional behavior compared to the energy size of

the anharmonic decay is the highest of spectra. The width is increasing and the integrated

intensity is decreasing with increasing temperature.
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Fig. 4.18: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 589 cm−1 phonon mode.

An even more intriguing behavior is taking place for the phonon mode at ∼ 515 cm−1. Upon

cooling, an anomalous softening of the order of 10 cm−1 is occurring. At T ≈ 110 K, a slight

increase in frequency is taking place. A pronounced Fano asymmetric line shape is observed for

this mode, which suggests an interference between the phonon and the electronic excitations.
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Fig. 4.19: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 515 cm−1 phonon mode. In the inset of b), a fit of the Fano line shape
(violet line) -Eq.4.3 to the phonon mode (circles) for T = 90 K.

Therefore, this peak was fitted using a Breit-Wigner Fano line shape[59]:

I = I0 +H
(1 + ω−ω0

qΓ
)2

1 + (ω−ω0

Γ
)2

(4.3)

where I0 is an offset, ω0 is the phonon frequency, H is height, Γ is the width and q is the

asymmetry parameter.

In addition, with increasing temperature, the broadening of the phonon is taking place

up to approximately 240 K where it saturates. The temperature where this second anomaly

manifested in the phonon width occurs is not associated to spin-phonon coupling and neither

to any transition temperature reported in the literature.
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Fig. 4.20: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 429 cm−1 phonon mode.

Fig.4.20 shows the evolution of the vibration at ∼ 429 cm−1 as a function of temperature.

It is possible to notice that this vibration does not show spin-phonon coupling and the phonon

exists until approximately 200 K.

The phonon modes at ∼ 311 cm−1 and ∼ 318 cm−1 are depicted in Fig.4.21. These two

phonon modes present very similar behavior: spin-phonon coupling occurring for T < 110 K,

phonon broadening effect and a decrease in the integrated intensity with increasing temperature.
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Fig. 4.21: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 311 cm−1 and ∼ 318 cm−1 phonon modes.

The phonon mode at ∼ 285 cm−1 is shown in Fig.4.22. It is possible to notice that at

T ≈ 115 K there is a distinct jump from the anharmonic decay at the temperature associated

with the one-dimensional behavior from the magnetic susceptibilities due to the renormalization

of the phonon energy via spin-phonon coupling.
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Fig. 4.22: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 285 cm−1 phonon mode.

The phonon mode at ∼ 240 cm−1 is depicted in Fig.4.23. Upon cooling, a hardening of

approximately 6 cm−1 until T ≈ 115 K is followed by a jump of approximately 1 cm−1 and

a softening of this jump for lower temperatures. This anomaly is again due to spin-phonon

coupling.
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Fig. 4.23: Temperature dependence of (a) the phonon frequency (b) peak width and (c) inte-
grated intensity of the ∼ 240 cm−1 phonon mode.

4.4 Discussion

The intriguing structural transition signature in the Raman spectra is the emergence of a

new phonon mode at ∼ 670 cm−1 in the β phase (P21/n). This phonon mode not only appears

in this phase due to the symmetry change, but is also related to a previous phonon mode at

∼ 640 cm−1 (Fig.4.10). Moreover, an explanation stating degenerate modes which would split

into two when the symmetry breaks is not satisfactory, because this would in turn lead to equal

intensities for the two split peaks close to TS.However, from Fig.4.11 b), one can see that the

phonon mode at ∼ 670 cm−1 is approaching zero intensity at the phase transition, and thus we

can infer the transition temperature as ≈ 397 K.

One possible interpretation to explain this intriguing behavior is depicted in Fig.4.24.
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also performed and the calculated frequencies were fairly consistent with the measured values,

helping in the mode identification. An structural phase transition from the highest symmetry

α-CuSb2O6 to the lowest symmetry phase β-CuSb2O6 at T ≈ 397 K is manifested as the ap-

pearance of a new phonon mode at ∼ 670 cm−1. Since the emergent peak is not only emerging

but is related to its neighboring phonon mode at ∼ 640 cm−1, and since they are not degenerate

modes, we suggest that they come from the same type of vibration but with central octahedra

vibrating out-of-phase for neighboring unit cells. Thus, we suggest a doubling of the unit cell

in the monoclinic structure, which remains to be confirmed by X-ray diffraction. Furthermore,

we suggest this structural transition is also associated with an orbital ordering of the Cu2+

d3z2−r2 orbital. Indeed, lattice dynamical calculations reveal that this vibration includes a mo-

tion of the oxygens out-of-plaquette against the Cu ion. As a perspective for this work, an

investigation of superstructure peaks with X-ray diffraction will be performed.

In order to investigate the low dimensional behavior, several spectra were taken at temper-

atures between 20 K and 450 K. It was possible to observe a softening of some phonon modes

at temperatures T ≈ 110 K whose energy scale is comparable to the low dimensional exchange

constant J. Such an anomalous evolution has been interpreted in terms of a renormalization of

the phonon energy via spin-phonon coupling. In addition, we observed a width anomaly for a

stretching mode at ∼ 515 cm−1 at T ≈ 210 K, which could not be attributed to spin-phonon

coupling. Since this phonon has a Fano line shape, an interference between the electronic ex-

citations and the phonon is believed to be taking place. As a possible scenario, we suggest

this anomaly is associated to an orbital flip from the d3z2−r2 and dx2−r2 , since the phonon

includes a strong vibration of the in-plaquette oxygens against copper. As a perspective, we

suggest to apply pressure on this system, since this can possibly flip the balance between the

two competing orbitals and decouple the phonon and the orbital excitation.

Our results nicely demonstrate how Raman spectroscopy can be used to investigate magnetic

properties of low-dimensional antiferromagnets.
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Chapter 5

Spin-3
2

system CoSb2O6

In this chapter, we report Raman scattering measurements of the low-dimensional antiferro-

magnet CoSb2O6. Firstly, an introduction to the scientific case will be addressed. In addition,

our Raman scattering results will be discussed: polarized Raman spectroscopy was used to

identify the symmetry of the phonon modes; temperature dependence measurements and its

association to magnetic properties are presented.

5.1 Crystal Structure and magnetic properties

CoSb2O6 crystallizes in a tetragonal trirutile structure with space group P42/mnm and

lattice parameters a = 4.6495 Å and c = 9.2763 Å [14]. It is an electrical insulator and the

electrical conductivity is ≤ 10−7(Ωcm)−1 at 295 K[60]. Long-range order occurs below Néel

temperature TN = 13.45 K, and the magnetic susceptibility data from reference[14] appears

consistent with a two-dimensional Ising model. The magnetic structure displays superexchange

pathways along the [1 1 0] direction, i.e. along the Co-O-O-Co bonds, and the proposed

magnetic structure is similar to the one proposed to FeTa2O6. However, two different magnetic

structures have been proposed for the latter compound[14]. One of the proposed structures is

identical to the two-sublattice model described in Chapter 4 - section 4.1, and this is apparently

the most appropriate one for CoSb2O6. In contrast to the two dimensional Ising model from

reference[14], anisotropic magnetocaloric effect has revealed the presence of one-dimensional

magnetic chains[15], and this seems to be the most widely accepted scenario at present. So far,

there are no estimates for J/J⊥ for CoSb2O6. In contrast to the case of CuSb2O6, there are no

band structure calculations revealing the driving force which leads to one-dimensional chains

for CoSb2O6.

At the ordering temperature, long range AFM phase transition revealed as a rapid drop
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Γ = 4A1g + 2B1g + 4B2g + 6Eg (5.1)

Polarization Raman Active modes

-X(ZZ)X A1g

-X(YY)X A1g, B1g

-X(ZY)X Eg

-X(Z’Z’)X A1g, B1g, Eg

-X(Z’Y’)X A1g, B1g

Tab. 5.1: Polarization rules for CoSb2O6. In this notation, the laser propagation direction at the
entrance is -X and at the exit is X. The polarizations are indicated inside the parenthesis, and
the first indicated value is the polarization at the entrance, while the second is exit polarization.
X||~a, Y||~b e Z||~c, where ~a,~b and ~c are the lattice vectors. The polarizations X’ and Y’ indicate
45 ° rotation with respect to the original polarizations X and Y.

Fig. 5.2: Raman spectra of CoSb2O6 in different polarizations at room temperature.

Fig.5.2 displays Raman spectra in -X(ZZ)X, -X(ZY)X, -X(Z’Z’)X, -X(Z’Y’)X, -X(YY)X

polarizations and unpolarized. We observed 5 modes at room temperature in the plane, YZ

correspondent to the lattice plane bc. Noticeably, in contrast to α-CuSb2O6, the modes assign-

ment perfectly followed the factor group analysis, thus enforcing that twinning associated with





97

For both degenerate Eg mode at ∼ 450 cm−1, the in-plaquette oxygens vibrate in a bending

mode. For the first mode depicted in Fig.5.4, the out-of-plaquette oxygens vibrate in opposite

directions along ~c.

The first degenerate Eg mode at ∼ 280 cm−1includes contributions of motions on the Sb

ions, as well as a bending motion of the in-plaquette oxygens along the ~c direction. The second

Eg degenerate mode at ∼ 280 cm−1 also has contributions of Sb vibrations and a bending

motion of in-plaquette oxygens parallel to the (ab)-plane.

5.3.2 Spin correlations investigation

In order to investigate the magnetic correlations, we took several spectra in different tem-

peratures and they are being shown in Fig.5.5.

(a) (b)

Fig. 5.5: a) Several unpolarized Raman spectra taken for temperatures between 350 K and 20
K. b) Evolution of the peak at ∼ 665 cm−1.

With decreasing temperature, nearly all phonon modes become sharper and more intense.

A noticeably shift in energy is detected, as depicted in Fig.4.11 b) for the mode at ∼ 665 cm−1.

Additionally, at approximately 240 K, a new phonon mode at ∼ 560 cm−1 is taking place.

Fig.5.6 shows the evolution of the phonon frequency, width and intensity dependence with

temperature of the A1g mode around 730 cm−1. This phonon mode exhibits a hardening with

decreasing temperature until approximately 80 K. The violet line is a fitting down to 80 K

and extrapolated to lower temperatures considering the anharmonic decay of optical phonons

processes from Eq.4.2. Upon further cooling from 80 K, a deviation from the anharmonic decay

is manifested as a softening of approximately 0.5 cm−1. The anomaly in the phonon frequency
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is interpreted in terms of spin-phonon coupling. Moreover, the phonon becomes sharper and

more intense with decreasing temperature.

Fig. 5.6: Evolution of a) peak position b) phonon width and c) intensity for the phonon mode
at ∼ 730 cm−1.

In Fig.5.7, the frequency, phonon width and integrated intensity of the A1g mode around

665 cm−1 are plotted as a function of temperature. Upon cooling, this phonon mode undergo

approximately 3 cm−1 of hardening in energy, and a deviation from the anharmonic decay takes

place where the Curie law starts deviating. This is again interpreted in terms of a renormal-

ization of the phonon energy due to spin-phonon coupling. The phonon width decreases and

the intensity increases with decreasing temperature.
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Fig. 5.7: Evolution of a) peak position b) phonon width and c) intensity for the phonon mode
at ∼ 665 cm−1.

Fig.5.8 shows the temperature dependence of the phonon frequency, width and integrated

intensity for the A1g phonon mode at ∼ 530 cm−1. A hardening of approximately 2.6 cm−1is

taking place upon cooling from 350 K until 80 K. At 70 K, a softening associated with the spin-

phonon coupling is taking place. The phonon width is increasing and the integrated intensity

is decreasing with increasing temperature. In contrast to the correspondent phonon mode at

∼ 515 cm−1 of compound CuSb2O6, notice that here we do not encounter any anomaly in the

phonon width, neither this peak has a Fano line shape, neither it presents a softening in all the

entire range of temperature.
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Fig. 5.8: Evolution of a) peak position b) phonon width and c) intensity for the phonon mode
at ∼ 530 cm−1.

For the Eg phonon mode at ∼ 450 cm−1, depicted in Fig.5.9, the spin-phonon coupling

below 80 K is extremely tiny, and even imperceptible. Again, the phonon broadening and

decrease of intensity is taking place with increasing temperature.
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Fig. 5.9: Evolution of a) peak position b) phonon width and c) intensity for the phonon mode
at ∼ 450 cm−1.

Upon cooling from 350 K to 80 K, the phonon mode at ∼ 319 cm−1 undergo a hardening of

approximately 1.5 cm−1. Upon further cooling, it softens approximately 1 cm−1. The phonon

width is almost constant over the entire temperature range, and the intensity slightly increases

with decreasing temperature, as it can be seen in Fig.5.10.
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Fig. 5.10: Evolution of a) peak position b) phonon width and c) intensity for the phonon mode
at ∼ 319 cm−1.

The Eg phonon mode at ∼ 285 cm−1 is depicted in Fig.5.11 and it shows a hardening of about

1.5 cm−1 from 350 K down to 80 K, where it softens approximately 0.6 cm−1. This deviation

from the anharmonic decay is interpreted in terms of spin-phonon coupling. The phonon width

and intensity are apparently showing a slight decrease with increasing temperature.
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Fig. 5.11: Evolution of a) peak position b) phonon width and c) intensity for the phonon mode
at ∼ 285 cm−1.

5.4 Discussion

It was possible to observe an anomalous softening for T < 80 K, which was attributed to

spin-phonon coupling, since this temperature matches to the temperature where the Curie-

Weiss law deviates to establish the low-dimensional AFM. Similarly to the case of CuSb2O6,

there are softening for temperatures where the low-dimensional AFM behavior takes place for

most observed phonon modes, but for CoSb2O6, there are no tiny jumps.

Fig.5.12 shows a comparison between the totally symmetric octahedra breathing mode for

the compounds CuSb2O6 and CoSb2O6. Since the crystal structures for these compounds are

very similar, this remarkably confirms that the anomaly observed in the case of the CuSb2O6 is

entirely associated with the electronic structure, thus enforcing the possible scenario discussed

in Section 4.4.
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this compound are reported here, and unlike CuSb2O6, it was possible to completely identify

the symmetry of the modes via polarized Raman spectroscopy. No evidence of twinning nei-

ther bicrystallinity were detected with this technique. Furthermore, this compound does not

present any structural transition, belonging to the tetragonal P42/mnm space group over all

the entire range of temperature. In addition, the temperature dependence of phononic excita-

tions have showed a softening of some phonon modes for temperatures below 80 K, and since

this temperature scales with the temperature where the one-dimensional behavior starts taking

place, we have interpreted this anomaly in terms of a renormalization of the phonon energy

via spin-phonon coupling. In addition, the previous anomaly observed in the width at T ≈ 240

K for the correspondent phonon of CuSb2O6, was not apparent for CoSb2O6, evidencing their

different electronic structure and magnetic behavior.
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Chapter 6

Conclusions and Perspectives

This masters dissertation has addressed the study of low-dimensional spin systems using

Raman spectroscopy. The main purpose of this work is to broaden and deepen the under-

standing of the spin correlations in low dimensional systems, exploring the effects of quantum

magnetism. These systems can be characterized by their spin liquid ground state, exotic mag-

netic excitations and spin-phonon coupling. In particular, we have investigated the systems

MSb2O6, M=(Cu, Co) with a spectroscopic technique which was capable of providing us local

information about the magnetic correlations between first neighbors. The high sensitivity to

spin and lattice dynamics through spin-phonon coupling, as well as its unprecedented energy

resolution makes Raman spectroscopy an excellent probe for studying such systems. Finally,

let us summarize the main results:

Spin-1
2

chain CuSb2O6

CuSb2O6 can be well described as a one-dimensional antiferromagnet spin-1
2

Heisenberg

chain. A theoretical work has proposed that the quasi one-dimensional behavior is being

driven by an unusual orbital ordering. Raman spectra shows a structural transition from

tetragonal P42/mnm to monoclinic P21/n as the emergence of a new phonon mode at ∼ 670

cm−1 at TS = 397(3) K. This emergent phonon mode is associated to its neighboring phonon

peak at ∼ 640 cm−1, although they are not degenerate modes. In fact, lattice dynamical

calculations have revealed that the phonon mode at ∼ 640 cm−1 includes a vibration of the

out-of-plaquette oxygens against the ion Cu2+ in a breathing configuration. We suggest that

this intriguing structural transition is associated with phonon modes which present the same

type of vibration, but with central octahedra vibrating out-of-phase for neighboring unit cells

for the emergent phonon mode at 670 cm−1. This phonon mode would correspond to a mode

at the border of the tetragonal Brillouin zone. In the monoclinic phase, this would become
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zone-center and therefore would be Raman active due to a possible folding of the Brillouin zone

associated with a doubling of the unit cell. In this way, we are indeed suggesting the presence

of superstructure, which still has to be confirmed with X-ray diffraction. Additionally, it was

possible to observe anomalies from the anharmonic decay of optical phonons at temperatures

T ≈ 110 K, whose energy scale is comparable to the low-dimensional exchange J. Thus, such

anomalous behavior has been interpreted in terms of a renormalization of the phonon energy

via spin-phonon coupling. Furthermore, it was possible to observe a phonon width anomaly

at 240 K, which could not be attributed to spin-phonon coupling. This phonon has a Fano

line shape, which suggests an interference between the phonon and electronic excitation. One

possible excitation which might be occurring is an orbital flip, since this vibration involves

a totally symmetric octahedra breathing mode configuration where the in-plaquette oxygens

vibrate against the Cu2+ ion.

Spin-3
2

system CoSb2O6

Unambiguous identification regarding the magnetic properties of CoSb2O6 has been chal-

lenging. Although a two dimensional Ising like has been proposed for this compound, the one-

dimensional spin-3
2

behavior revealed by anisotropic magnetocaloric effect is the most widely

accepted nowadays. This compound does not present any structural transition, belonging to the

tetragonal P42/mnm space group, with similar crystal structure of α-CuSb2O6. At T ≈ 13.5

K, a rapid drop in the magnetic susceptibility has been interpreted in terms of spin-Peierls

transition, although a complete understanding of this kind of transition in S = 3
2

systems has

not emerged yet. Our temperature dependence of phononic excitations have shown softening of

phonon modes at temperatures below 80 K, which has been interpreted in terms of spin-phonon

coupling. Furthermore, we report different behavior for the correspondent phonon modes at

∼ 515 cm−1 and ∼ 530 cm−1 of CuSb2O6 and CoSb2O6, respectively. For the case of CoSb2O6,

we did not observe the same frequency and width anomaly, which enforces its association with

an unique electronic and phononic excitation interference for the previous studied compound.

Thus, we could experimentally access the different electronic structures leading to different

electronic excitations for these compounds.

Future Perspectives

In general, the structural transition is believed to be associated with an orbital ordering

which is believed to be the driving force to the one-dimensional antiferromagnet behavior

in CuSb2O6. Our suggested scenario includes the formation of superstructure in the lowest

symmetry phase, which has to be confirmed with X-ray diffraction. In addition, for the same
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compound, an intriguing behavior for the phonon mode at ∼ 515 cm−1 has been interpreted in

terms of a resonance between the phonon and an electronic excitation. One possibility for this

excitation is an orbital flip, which could be also induced and investigated by the application

of pressure. Our results elucidates the different nature of the electronic behavior for both

compounds.

Furthermore, an investigation of the long-range ordered states at T ≈ 8 K and T ≈ 13 K

for CuSb2O6 and CoSb2O6 is also a perspective.

Our results nicely demonstrate the viability of Raman spectroscopy to study low-dimensional

spin antiferromagnets. By an analysis of the phonon frequency anomalies, one has direct access

to the short-range spin-spin correlation 〈Si.Sj〉, which is a quantity not easily obtainable by

other experimental techniques. In this way, hopefully this work will motivate future works on

novel low-dimensional spins systems.
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For example, for the polarization −Z(XX)Z, the A1g mode is active:

[

1 0 0
]







a 0 0

0 a 0

0 0 b













1

0

0






= a

In contrast, the E(1)
g mode is forbidden:

[

1 0 0
]







0 0 0

0 0 e

0 e 0













1

0

0






= 0

Therefore, by performing the matrices calculations, one can arrive at the selection rules

showed in Tab.4.2 and Tab.5.1.


