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Resumo

Nos focando em dois exemplos de matéria supercondutora topológica - isolantes topológicos dopados super-

condutores e supercondutores topológicos invariantes por reversão temporal - nós estudamos a estrutura dos

estados eletrônicos ligados a vórtices supercondutores. No contexto de isolantes topológicos dopados, nós apro-

fundamos o desenvolvimento da ideia de que a matéria eletrônica ligada à vórtices se comporta, efetivamente,

como supercondutores topológicos do tipo onda-p unidimensionais. Nós desenvolvemos soluções, tanto analíticas

quanto numéricas, para as funções de ondas deste problema e as utilizamos para estudar efeitos de movimento

quântico de ponto-zero dos vórtices na densidade local de estados eletrônicos no seu interior. Nós mostramos

como este problema pode ser conectado àquele de uma rede de supercondutores topológicos unidimensionais.

No que diz respeito a supercondutores topológicos invariantes por reversão temporal, nós estudamos uma ação

eletromagnética efetiva recentemente proposta para descrever a resposta elétrica destes sistemas. Esta ação

indica que supercondutores topológicos possuem vórtices com propriedades topológicas exóticas. Nós descobri-

mos e digredimos sobre um paradoxo neste problema, apresentando uma possível solução para ele. Os conceitos

de matéria topológica, modos-zero de Majorana, bombeamento quântico adiabático e anomalias quânticas são

centrais para as nossas discussões; deste modo, nós apresentamos uma abordagem compreensiva e pedagógica

para todos estes conceitos. Em particular, nós apresentamos uma discussão detalhada sobre as assinaturas de

modos-zero de Majorana via tunelamento quântico macroscópico em junções Josephson.

Summary

Focusing on two main examples of topological superconducting matter - superconducting doped topological

insulators and time-reversal invariant topological superconductor - we study the structure of electronic modes

bound to superconducting vortices. In the context of doped topological insulators, we further develop the

understanding that the electronic matter bound to vortices behaves, effectively, as one dimensional p-wave

topological superconductors. We compute approximate analytic and numerical solutions to the wavefunctions

of this problem and use them to study the effects of vortex quantum zero-point motion in the local electronic

density of states within the vortex core. We show how this problem can be connected to that of a network of

one dimensional topological superconductors. As for the case of vortices in time reversal invariant topological

superconductors, we study a recently proposed effective electromagnetic action which should describe the charge

response of these systems. Non-trivial topological properties of vortices are implied by such an action. We



discover and digress about a paradox in this problem, and present a possible solution to it. Central to all

the discussions throughout this work are the concepts of topological matter, Majorana zero-modes, adiabatic

quantum pumps and quantum anomalies; we provide a comprehensive and pedagogical approach to all of these

concepts. In particular, we provide also an in-depth discussion about signatures of Majorana zero-mode physics

in macroscopic quantum tunneling.
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Chapter 1

Introduction

From the several branches of “modern” mathematics (the concept of “modern mathematics” is highly science-

field dependent), nowadays, topology probably holds the youngest position in the rank of importance in physics.

While hints about the importance of the relationship between physics and topology exist since the decade of

1960 (with the measurement of the Aharonov-Bohm effect[1]), its true value in condensed matter physics has

only been recognized recently (in the last 10 years [2, 3, 4].)

Topology is a mathematical field which deals with the ’global’ classification of objects. Local geometry details

are not important. Instead, small sets of rules must be identified which create classes in which, apparently,

different objects satisfying the same rules must fit in. The simplest example deals with the number of “handles”

(holes) in surfaces of a given dimension. Such surfaces are assumed to be continuously deformable, as long as

one does not “act violently” putting an extra hole in the surface. In this context, donuts are equivalent to mugs,

while bottles are equivalent to spheres. The evident local differences in geometry are disregarded. Indeed, when

looked at from this point of view, this idea seems rather handy to apply in classifying phases of matter, in case

such a notion of topology can be properly defined in the condensed matter context.

Indeed, it can. While it is true that the usefulness of topology in the analysis of defects in solid state (and

soft-) matter has been recognized since at least the seventies [5], only in 1982 the first hints of its importance

in the study of electronic matter has been realized with the work of Thouless, Kohmoto, Nightingale and den

Nijs (TKNN) in the integer quantum Hall effect [6]. In fact, in the past 10 years we have seen the notion of

topological fermionic and bosonic states elevated to a point such as to demolish the completeness status of

Landau’s paradigmatic classification of the states of matter [7].

Landau’s classification scheme dictates that different states of matter exist such that they are defined by

a symmetry (continuous or discrete), and that accessing the different states demands the (spontaneous or

explicit) breaking of some of these symmetries[8, 9]. Canonical examples are the solid-liquid transition (in

which translational and rotational symmetries are broken) and, perhaps more exotically, superconductivity (in

which a charge conservation - U(1) - symmetry is broken.) It turns out that other, anti-unitary, symmetries

such as time-reversal and particle-hole conjugation have now been realized to ’protect’ novel electronic phases

in gapped systems.

We now explain what we mean by ’protecting’ a novel phase. In the paradigmatic, non-interacting, classifi-

cation of topological fermionic matter, a new set of ingredients is introduced. (i) Firstly, one only talks about

gapped systems. (ii) Secondly, a set of discrete symmetry operations must be defined, which will define the

topological classes. (iii) Thirdly, a real/momentum space dimensionality must be defined [10, 11].

Points (i)-(iii) fix classes of non-interacting electron Hamiltonians/evolution operators. The demand (i)

implicitly implies that, without loss of topological information, one can exchange any arbitrary gapped Hamil-

tonian, and its given set of bands, with another arbitrary Hamiltonian as long as one keeps the same number of

general bands and obeys the same symmetries defined by condition (ii). This process is known as “retracting”

the Hamiltonian; the most convenient retraction exchanges the arbitrarily curved bands by a set of positive

energy flat bands separated from a set of negative energy ones, without losing topological information. One can

10
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retract Hamiltonians even further, considering the flattened spectrum as completely degenerate into a set of,

say k conduction bands and n− k valence bands, for a system with a total of n bands. One can associate then,

each flattened Hamiltonian to its set of n eigenvectors (defining a U(n) matrix) modulo unitary transformations

within the conduction and valence bands,

Gn,k = U (n) /U (k) × U (n− k) . (1.1)

Each Hamiltonian defines a point in Gn,k, formally known as a Grassmanian manifold[12]. We do not want

to get too technical at this point, but together with a notion of ’stable equivalence’ (under addition of an

arbitrary number of extra trivial bands), this Grassmanian manifold defines a “classifying space” in which a

notion of equivalence can be defined. Then points (ii) and (iii) fix the final details defining the “base space”

and classifying space. First, point (iii) defines the “base space”, the simplest example being the Brillouin zone

in a given dimensionality (typically taken as a d-torus for d dimensions.) Second, point (ii) imposes constraints

in the classifying space. Due to the notion of equivalence classes of Grassmanians, maps from the base space to

the classifying space have topological content, and invariant numbers accounting for this can be defined.

For example, the originally considered symmetries were anti-unitary time-reversal operations (which we

represent by an operator Θ) and particle-hole conjugation (represented by Ξ), as well as the chiral symmetry

given by their product Π = ΘΞ. These can be thought of as reality constrains (in the complex analysis sense) in

the electronic Hamiltonians. These define what are known as the Altland-Zirnbauer classes of random matrices

[13].

Remarkably, the Altland-Zirnbauer analysis also fixes the critical behavior of surfaces of these gapped

systems under disorder. This is understood in the sense of allowing or not for topological terms in the non-

linear sigma model arising from a replica formalism[14]. As a direct consequence, insulating systems with

non-trivial topological invariants are seen to have non-trivial transport properties, despite a seemingly ’boring’

bulk. Notice, interestingly, that superconducting systems also represent a class of gapped systems - fixed by

the particle-hole conjugation Ξ above in the context of Bogoliubov-de Gennes Hamiltonians, as we will discuss

- having their place of right in this new concept of phase too. A summary of the different topological behaviors

in the 10 Altland-Zirnbauer classes is shown in Figure 1.1, where the entries 0,±1 under “Symmetry” refer

to whether the Hamiltonian does not respect the symmetry (0 entry) or respects the symmetry such that the

anti-unitary operator squares to ±1. Under d, the dimensionality of momentum space, 0 represent trivial phases

(no topological invariant), while Z and Z2 are phases with integer and integer mod 2 invariants, respectively.

For each dimension there will be always 5 topologically non-trivial phases, and as function of dimension, there is

a mod 8 periodicity (Bott periodicity.) Classes A and AIII are known as “complex” while the others are “real”

- as we mentioned, anti-unitary symmetries are reality constraints in the Hamiltonians.

Some examples come in hand. The first example constitutes the integer quantum Hall system. This is indeed

a gapped fermionic system which has no particle-hole symmetry and time-reversal symmetry is also broken (due

to the presence of an external magnetic field.) This corresponds to class A in d = 2, and one sees that there

is an integer invariant for this phase. This integer, in fact, counts the number of chiral edge modes along the

boundary of a Hall bar. This is the mentioned result of TKNN[6]. A second example is class AII in d = 3, which

corresponds to the so-called time-reversal invariant topological insulators. Similarly, AII in d = 2 corresponds

to the quantum spin Hall system, whose topological nature was first realized by Kane and Mele and triggered

most of the subsequent development in topological systems in the literature.

Nowadays, the set of discrete symmetries in fermionic one-body Hamiltonians has been enlarged. It now

contains mirror symmetries and even non-symmorphic ones (rotations plus half-lattice translations) [15, 16].

This concept of topological classification under the protection of a symmetry is indeed completely different from

that of Landau’s. In the topological reasoning, even if two gapped systems possess all the same symmetries,

still, a topological invariant may be defined which can tell us that distinct phases are realizable. As discussed,

physically, what distinguishes two distinct gapped phases with the same symmetries is typically a set of low-

energy (gapless) boundary modes. These modes are protected by the symmetries: they develop a strong
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anti-localization, even in the presence of disorder, as long as the disorder preserves the protecting symmetries.

This is also known as the “bulk-boundary correspondence” - a topologically non-trivial bulk has robust gapless

surface modes.

Recent developments in the field have been taking this topological classification idea beyond the notion

of non-interacting systems [17]. Introduction of interactions have shown that the periodic table above is not

complete, and several of the phases above are, nowadays, known to be more restricted (time-reversal invariant

superconductors in class D in d = 3, for example, have their classification reduced from Z to Z16 due to

interactions [18].) Importantly, these studies have shown that such topological matter displays intrinsically

quantum behavior [7]. The classification of topological states nowadays is known to comprehend two distinct

classes. The first contains the states with “true topological order”. These include, for example, the fractional

quantum Hall effect, in which a ground state degeneracy is associated with the real space sample topology and

there may be the development of fractionalization of constituent quasiparticles. These systems are defined by

developing long-range spatial entanglement in the ground state and are truly quantum (ground state cannot

be deformed in a product of states localized at each site). Different entanglement patterns can lead to distinct

phases in this case.

Topological matter from the context of the non-interacting classification above, falls in the second class.

These are known as symmetry protected topological phases. They do not develop a topology dependent ground

state degeneracy, and develop a short-range entangled ground state. Nevertheless, the presence of different

symmetries still allows for the definition of different phases (like the ones described by the non-interacting

periodic table), these contain ground states which cannot be deformed into the same product state if the

protecting symmetry is not broken. Also, such classes are not relevant only to the non-interacting limit; the

Haldane phase spin-1 chains (with spin 1/2 quasi-particles at the edges) comprises an example of an interacting

symmetry protected topological phase in 1D [19].

Having exposed the plethora of information known to date, as well as some of the challenges in this field, we

emphasize that advancing towards a complete classification of topological matter in the presence of interactions

is not our goal with the present work (although we may make some comments on a particular situation in

our the third chapter). Our objective is to study the known phases given by the periodic table beyond its

standard non-interacting scheme, but from a different perspective. Our goal is to study the physics of electronic

states bound to topological defects in these phases. Here defects must be understood as smooth disturbances

in the single-body fermionic Hamiltonians which encapsulate, in real space, regions of singular behavior. The

simplest example is the very surface of an insulator sample. It can be surrounded by a pair of points (spheres of

zero-dimension S0). Vortices in superconductors will be our main concern; they correspond to line-like defects,

which can be surrounded by circular, S1, loop surfaces. Systems with such defects are also subject to topological

classification, under given sets of symmetries. The manifestation of the bulk-boundary correspondence, in this

case, enforces the binding of low-energy degrees of freedom in the defects [12].

We focus on two related, yet distinct, scenarios, both related to superconductivity. Our first example lies

in class AII in 3D. This is a known topological insulator under time-reversal invariance. The first material

discovered to fall in this class is Bi2Se3 [20]. It turns out that, under doping (by Cux, optimal at x = 0.12), this

insulator becomes a metal. Even more interestingly, this metal, at low temperatures, develops a superconducting

phase [21, 22, 23, 24]. A simple question is, how conventional is a superconductor arising from a metallic doped

topological insulator parent metal? We will explore this question from the point of view of vortex electronic

matter. We touch the concept of vortex topological phase transitions [25, 26, 27] from a novel approach and

will study a proposal to measure the uncommon features of these electronic vortex bound states. This proposal

will further unfold into hinting for new signatures of topological superconductivity in 1D[28].

Our second point will focus on topological superconductivity itself. Among the gapped phases defined by the

topological classification above, we defend that superconducting phases really play a role which deserves special

attention. The topological superconducting phases (classes D, DIII, C and CI) are fixed by a particle-hole
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symmetry defined when writing fermionic Hamiltonians in the so-called Bogoliubov-de Gennes doubled form

H =
∑

i,j

c†
iHijcj

=
∑

i,j

(

c†
i , ci

)
(

Hij

−HT
ij

)(

cj

c†
j

)

. (1.2)

This particle-hole symmetry reads Ξ = ρxK or Ξ = iρyK (depending on whether it squares to +1 or −1,

respectively), where K represents complex conjugation and ρi are Pauli matrices acting in the so-called Nambu

space of
(

c†
i , ci

)

. The annihilation operators ci may have a multiple band internal structure. Due to the

particle-hole symmetry nature of this system, Bloch states of energy Ek and −E−k are identified. This leads to

a condition of “reality” (in the sense of complex numbers) on the states. In particular, surface (or other defects)

bound states develop a Majorana character. That means that their corresponding second quantized operators

are self-Hermitian, they create particles which are their own anti-particles. These particles, as being real, are

neutral, and do not couple to electromagnetism. They are elusive (in the sense that their physical signatures are

difficult to measure) and, sometimes as we will see, do not have a properly defined and understood description.

This thesis focus then on the unconventional physics of superconducting vortex bound states, in particular

Majorana bound states on what we call topologically non-trivial contexts (as to embrace both the previously

mentioned doped topological insulator and topological superconductor scenarios.) This leads us beyond the

non-interacting classification of topological phases in several different ways: from the interplay of “regular”

topological insulation and superconductivity, to the effective physics of “actual” topological superconductors

in 3D, defect bound states, ground state degeneracy, and a correct classification of the different phases in the

presence of interactions.

We separate our developments in three chapters. In Chapter 2, we will discuss the basic physics of the most

paradigmatic topological superconductor: the Kitaev p-wave chain in 1D[29]. We will use it to pedagogically

introduce and review all the ingredients necessary to understand the notion of topology in superconducting

gapped systems. We will talk about the relation of bulk topological invariants and boundary gapless modes and

the advent of Majorana fermions[30]. We will then talk about some standard signatures of Majorana fermions

and show our own proposals for their detection in 1D systems via fractional Josephson effects in SQUIDs[31, 32].

Chapter 3 will concern the study of vortex bound states in doped topological insulators. We will describe in more

detail the topological features of insulators and the Z2 invariant in 3D [33]. We connect, from our own point

of view, the physics of vortex bound states to the case described in the first chapter, discussing how vortices in

this unconventional superconductor behave effectively as Kitaev p-wave one-dimensional chains [26, 27, 25, 28].

We show how the physics of these may be unveiled by scanning tunneling microscopy measurements of the local

density of states of vortex cores. Finally, Chapter 4 is devoted to the study of actual topological superconductors.

We discuss the effective electromagnetism of this phase, discussing the Maxwell action which gets modified by

an axion-type term[34]. We show how such an action can lead to paradoxical results, with incurable quantum

anomalies at superconducting vortices. We show a possible way out of this problem in terms of a Cooper-pair

adiabatic quantum pump and degeneracy of ground state multiplets; this then connects the problem to that of

the classification of the topological phases and can be mapped into a novel type of fractional Josephson effect

[35], tying, again, back to the concepts introduced in Chapter 1. We finish with a chapter of conclusions. We

emphasize there are works published during the development of this Doctoral thesis which are not studied in

this present body of work.



Chapter 2

Topological superconductivity in 1D

2.1 Introduction

The main theme of this thesis is not topological superconductivity, but rather vortex electronic bound states

in superconducting topological matter. By superconducting topological matter we mean two different kinds of

systems: (i) superconducting systems whose metallic phase carries topological information from the underlying

band structure (ii) actual topological superconductors. Yet, both of these systems will be seen to share several

common physical properties and, as such, it will prove pedagogical to introduce the diverse phenomenological

and technical aspects of topological superconductivity in its simplest setting. This way, all the basic concepts

can be carried further into the following Chapters as they will be properly contextualized. We thus devote

this Chapter to a thorough introduction to the subject of topological superconductivity, choosing the basic 1D

setting for such pedagogical reasons. We will also make use of this chance to further explore the physics of

topological superconducting systems in 1D, demonstrating some proposals of our own to verify signatures of

such phases in the context of macroscopic quantum tunneling [36, 37].

2.2 Kitaev Chains

We will start our exposition on the relationship between superconducting vortices, vortex bound states and

topological matter, by considering a paradigm which summarizes the main remarkable phenomena that arise

when one joins superconductivity, topology and localized states.

We will talk about the simplest model of the so-called topological superconductivity. Topology is a branch of

mathematics which relies on the classification of quantities, typically surfaces in a broad sense, by a global anal-

ysis of the given quantities properties, as opposed to geometry which analyses surfaces locally. We will postpone

a more in-depth discussion about the mathematical details of topological classification of gapped systems to

the next chapter, where our initial discussion of topological insulators should settle down the mathematics with

some (physicist) details. For now, we will just consider the so called “Kitaev model”[29] explicitly, describing its

properties and trying to get a flavor of these notions of topology in the context of gapped (Bloch) Hamiltonians.

We follow the details from [30], with some of our own insights.

The Kitaev model describes a set of non-interacting fermions along a chain within the tight-binding ap-

proximation, under the influence of a p-wave superconducting pairing, in the mean-field approximation. The

Hamiltonian reads

HKit = −µ
∑

x

c†
xcx − 1

2

∑

x

(
tc†
xcx+1 + ∆eiφcxcx+1 + h.c.

)
, (2.1)

where x is summed overN sites. Here, µ is a chemical potential, t a hopping amplitude and ∆ represents a p-wave

(notice that it connects neighboring sites) type of superconducting pairing (with phase φ). Several attempts

were made in order to realize this model experimentally, with some remarkable advances and successes (as well

as failures and drawbacks. Check [38, 39] for a pair of relevant examples). Taking a unit lattice parameter, one

15
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can define a new set of fermionic operators ck, through the Fourier transform

cx =
1√
N

∑

k

eikxck, (2.2)

obtaining

HKit =
∑

k

c†
k (−µ− t cos k)
︸ ︷︷ ︸

ǫ(k)=ǫ(−k)

ck +
∆
2

∑

k

(

eiφeikckc−k + e−iφe−ikc†
−kc

†
k

)

. (2.3)

While the diagonalization of this second quantized Hamiltonian can be achieved by a Bogoliubov transformation,

the standard practice when talking about topology is slightly different - altbeit equivalent. First, using the

fermionic canonical anti-commutation relations

{

ck, c
†
k′

}

= δkk′ ; {ck, ck′} =
{

c†
k, c

†
k′

}

= 0, (2.4)

one rewrites the two terms in parenthesis above as

∑

k

ǫ (k) c†
kck =

1
2

∑

k

ǫ (k)

︸ ︷︷ ︸

E0

+
1
2

∑

k

ǫ (k)
(

c†
kck − ckc

†
k

)

(2.5)

and
∑

k

eiφeikckc−k + e−iφe−ikc†
−kc

†
k =

∑

k

i sin k
(

e−iφc†
kc

†
−k − eiφc−kck

)

. (2.6)

Now one introduces the so-called Nambu spinors C†
k =

(

c†
k c−k

)T

generating the Bogoliubov-de Gennes

(BdG) version of Kitaev’s Hamiltonian in momentum space, which up to an unimportant constant E0, can be

written as

HKit =
1
2

∑

k∈ZB
C†
kH

BdG
k Ck, (2.7)

HBdG
k =

(

ǫk ∆̃∗
k

∆̃k −ǫk

)

(2.8)

= ρzǫk +Re∆̃kρx + Im∆̃kρy. (2.9)

Here, ∆̃k = −i∆eiφ sin k exposes explicitly the p-wave nature of the superconducting pairing of this model and

the Pauli matrices ρi act in the Nambu space.

For future reference, let us consider the Hamiltonian above for small momentum,

HBdG
δk ≈ ρz

(

−µ− t+
t

2
δk2

)

− ρy∆eiφρzδk. (2.10)

Notice that this is a Dirac-like Hamiltonian in 1D for small enough δk (actually the superconducting phase here

can be interpreted in terms of geometric deformations in standard Dirac fermions in 1D, a subject which we

will actually not approach.) This type of Hamiltonian will appear many other times along the development of

this thesis, and it condenses most of the simple structure and notation which we will use. For now, however,

let us not focus on it, rather just keeping it in the back of our minds.

Back to the second quantized Hamiltonian, notice that Ck and C†
k are not independent operators now.

Indeed, they are related by
(

C†
k

)T

= ρxC−k. (2.11)

Accordingly, the first quantized Hamiltonian obeys an anti-unitary symmetry described by Ξ = ρxK, where K

is the complex conjugation operator . This is a particle-hole symmetry because it transforms the single-body
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Figure 2.1: Dispersion relation for the quasi-particles in Kitaev’s chain. The parameters used are t = 1 and
∆ = 1.7. Then we have, respectively, point-dashed (µ = −2), full red (µ = −1), dotted (µ = 0), full blue
(µ = 1) and dashed (µ = 2) curves. Notice that the system is gapless at µ = ±1, which define the topological
phase transition.

Hamiltonian as

ρxH
BdG∗
−k ρx = −HBdG

k , (2.12)

that is, it implies that the spectrum is symmetric with respect to Ek → −E−k. This is known also as a Nambu

constraint. We show how this works out explicitly in Section 2.4.1.

The BdG form of a superconductor Hamiltonian can be written for any pairing symmetry and dimensionality

and is convenient because of a few of reasons. Firstly, diagonalization is achieved by a standard unitary

transformation in HBdG
k . The extra, artificial, negative energy bands can be discarded by normal ordering

the new Hamiltonian with respect to a completely filled Fermi sea of negative energy modes. Secondly, the

introduction of artificial negative energy bands allows one to look at the problem as in an insulator, with a

valence and conduction bands; this opens space to treating superconducting Hamiltonians topologically in the

same way as done for regular insulators (other reasons exist which we will not explore right now, like rewriting

the Hamiltonian in a convenient form for functional integration, for example).

The application the Nambu constraint to the wavefunctions and operators recovers the standard result of

the Bogoliubov transformation with new Fermions,

ak = ukck + vkc
†
−k (2.13)

in terms of which the Hamiltonian simply reads

H =
∑

k

Ebulk (k) a†
kak, (2.14)

where

uk =
∆̃k
∣
∣∆̃k

∣
∣

√

Ebulk (k) + ǫk
√

2Ebulk (k)
; vk =

(
Ebulk (k) − ǫk

∆̃k

)

uk (2.15)

and the single-particle spectrum reads

Ebulk (k) =
√

ǫ2k +
∣
∣∆̃k

∣
∣
2
, (2.16)

and is illustrated in Fig.2.1.

As long as µ 6= ±t, the spectrum of this problem is fully gapped over the whole Brillouin zone. Phases

with µ < −t and µ > t are related by the particle-hole constraint and we can focus in the former case, for

concreteness. Let us study then the difference in the physics between the two distinct regimes µ < −t and

|µ| < t.

The BCS ground state may be written



CHAPTER 2. TOPOLOGICAL SUPERCONDUCTIVITY IN 1D 18

|g.s.〉 ∝
∏

0<k<π

[

1 + ϕC.p. (k) c†
−kc

†
k

]

|0〉

ϕC.p. (k) =
vk
uk

=
(
Ebulk (k) − ǫk

∆̃k

)

, (2.17)

where |0〉 is the empty state in Fock space. Here ϕC.p. (k) can be interpreted like a “Cooper pair wavefunction”.

We may study it in real space by Fourier transformation. First, one writes

ϕC.p. (k) =

√

ǫ2k +
∣
∣∆̃k

∣
∣
2 − ǫ (k)

∆̃k

= ie−iφ





√

(t cos k + µ)2 + ∆2 sin2 k + t cos k + µ

∆ sin k



 . (2.18)

Then,

ϕC.p. (x) =
ˆ π

−π
dkeikxϕC.p. (k) , (2.19)

and

|ϕC.p. (x)| =
ˆ π

−π
dk sin (kx)





√

(t cos k + µ)2 + ∆2 sin2 k + t cos k + µ

∆ sin k





︸ ︷︷ ︸

≡f(k)

. (2.20)

Some details of the k-space wavefunctions follow in Fig.(2.2)
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Figure 2.2: k-space wavefunction and Fourier transform details. Parameters are ∆ = 1.7 and t = 1 and (blue)
µ = −1.3 < −t and (red) |µ = −0.7| < t. The details explore the localization behavior of the Cooper pair
“wavefunctions” in k-space, as well as the integrand of the Fourier transform. The right most figure takes large
x = 20, showing that the integrand decays quickly to zero. This justifies enlarging the Fourier integration range
from −π → π to −∞ → ∞, for x large with respect to some characteristic length scale ζ. This is convenient
for analytical calculations.

For large enough x, with respect to some length scale ζ (related to the superconducting coherence length),

one can see that the integration range in the Fourier series can be extended to infinity. Accordingly, the integrals

can be computed analytically, resulting in

|ϕC.p. (x)| ∼







e−|x|/ζ , µ < −t (strong pairing)

const., |µ| < t (weak pairing)
. (2.21)

The first and second integrals can be understood by approximating the momentum space wavefunctions by,

respectively, 2/
(
1 + k2

)
(which is a good approximation for the tails but bad for the central part of the function)

and a Bessel function of order zero (or a Dirac delta function). The results of the Fourier transforms are

represented by the above equations. These details are illustrated in Fig.2.2
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Figure 2.3: Here we compare the Cooper pair Fourier transform integrands in momentum space with the
approximations described in the text; we use same parameters as in Fig.2.2 and values of the position variable
x = 20. The good approximations show that this value of x is much larger than the length scale ζ ∼ vF /∆ ∼ 1.
On the left, we have the weak pairing case with the integrand approximated by 5J0 (20 k). For strong pairing,we
use − cos (20 k) 2

1+k2 . Notice that these approximations are best where the weight of the integrands are largest.

This implies two very distinct behaviors for this problem, which we will represent as saying that this system

is in a Z2 class, that is integer modulo 2. In one case, Cooper pairs are small, with tightly bound constituents;

in the other, they are extended.

Indeed, we now show that the one-body Hamiltonian carries in itself information about these two behaviors.

First, notice that the BdG Hamiltonian can be written

HBdG
k = h (k) · ρ, (2.22)

where the h (k) vector is written in terms of ǫ (k) and ∆̃ (k). Now we apply the Nambu particle-hole constraint.

It results that the following relationships must be satisfied,

hx,y (k) = −hx,y (−k) , hz (k) = hz (−k) . (2.23)

This implies that it is enough to specify h (k) only in half of the Brillouin zone 0 ≤ k ≤ π. Furthermore, the

eigenvalues of the BdG Hamiltonian are± |h (k)| and, as long as h (k) 6= 0 throughout the Brillouin zone, the

system is completely gapped. One then defines the unit vector ĥ (k) which maps the Brillouin zone (here, a

circle)to the unit sphere. Due to the particle-hole symmetry relations above, this map is strongly constrained

at k = 0,±π, such that

ĥ (0) = s0ẑ, ĥ (π) = sπẑ

where s0 and sπ are the signs of the kinetic energy with respect to the Fermi energy at k = 0, π. This means

that, as one varies k : 0 → π, two possibilities arise. The first case would have ĥ (k) starting at a pole in the unit

sphere and ending at the same pole (i.e. s0 = sπ). The second case would have the opposite (i.e. s0 = −sπ)

behavior.

These signs s0 and sπ can be computed explicitly for the Kitaev model above, resulting in

s0 = − t+ µ

|t+ µ| (2.24)

sπ =
t− µ

|t− µ| . (2.25)

The different behaviors of hz are illustrated in Fig.2.4.

We can thus make explicit the topological analysis of a Hamiltonian explained in the Introduction. The

reasoning above associates with the Hamiltonian HBdG
k an integer mod 2 number

ν = s0sπ, (2.26)

which may be used to classify the two distinct phases. In practice, ν = +1 corresponds to the strong-pairing
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Figure 2.4: hz (k) for Kitaev’s p-wave chain. (red) trivial phase (blue) topological regime.

limit and is known as a topologically trivial phase. For ν = −1, we have the weak-pairing limit and this is

known as a topologically non-trivial phase. This is a mathematical topological notion which classifies the ways

one can map the 1D Brillouin zone (base space is a circle, k : 0 → 2π) into the space of Hamiltonians satisfying

the BdG particle-hole symmetry (classifying space.) The reason why ν defines a topological invariant in the

mathematical sense is that the space of Hamiltonians can be thought of as a surface which can be smoothly

deformed. The notion of smoothness here is fixed by the condition of not closing the gap. From a topology

point of view, closing the gap in a insulating Hamiltonian is equivalent to puncturing a sphere, adding a hole

to it.

This analysis above shows how convenient the BdG form of a superconducting Hamiltonian is to study this

type of physics. It immediately implements the notion that superconductors are similar to insulators, in the

sense of having massive quasi-particle excitations. All this discussion above is, therefore, also valid for regular

insulators in 1D. The caveat is that a different anti-unitary symmetry must be used in the latter case. The

one typically used to fulfill this role is the time-reversal symmetry, as we will discuss in the next chapter in the

context of 3D topological insulators. As topology is not the main theme of this thesis, we will avoid dwelling

further in this subject, postponing some more comments to Chapter 3. We will move now onto the different

physical signatures of these two quantum regimes.

2.3 Majorana fermion physics

Up to now, we have realized that the physics of the simple Hamiltonian 2.1 contains, in fact, two distinct

superconducting regimes. Physically, the two distinct superconducting regimes have Cooper pairs tightly or

loosely bound. We have seen that, from the non-interacting Hamiltonian point of view, these two distinct

behaviors are connected to a topological invariant; such a quantity that does not change as one tunes the

Hamiltonian parameters, as long as the system’s gap does not close. It is now our mission to discuss how could

one distinguish, experimentally or by phenomenology, these two situations. In the process, we will explore the

concept of bulk-boundary correspondence. We will keep on following, mostly, reference [30].

The different quantum regimes enforced by the Hamiltonian above are fixed for concreteness by







µ < −t , strong pairing, topologically trivial

|µ| < t , weak pairing, topologically non-trivial
. (2.27)

Let us study the two extreme limits, t = 0 and µ = 0. It is convenient to introduce a Majorana fermion operator

basis, by writing

cx =
e−iφ/2

2
(γB,x + iγA,x) . (2.28)

The γA,B,x operators are known as Majorana fermion operators. This decomposition implies that each site
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containing a “complex” Fermion is equivalent to a site containing a pair of Majorana fermions. They are “real”

operators, obeying,

γ†
α,x = γα,x, {γα,x, γα′,x′} =

1
2
δαα′δxx′ . (2.29)

This means that we are “breaking” each complex fermion cx in two real fermions γA,x and γB,x which will

couple according to the Hamiltonian. We do this in real space, as it will be simple in the two limits above. The

system can be thought of as a Majorana fermion chain with two atoms in the basis. A few important identities

read

c†
xcx =

1
2

(1 + iγB,xγA,x) ; (2.30)

c†
xcx+1 + h.c. =

i

2
(γB,xγA,x+1 − γA,xγB,x+1) ; (2.31)

eiφcxcx+1 + h.c. =
i

2
(γB,xγA,x+1 + γA,xγB,x+1) ; (2.32)

from which the Hamiltonian yields

HKit = −µ

2

N∑

x=1

(1 + iγB,xγA,x)

− i

4

N−1∑

x=1

[(∆ + t) γB,xγA,x+1 + (∆ − t) γA,xγB,x+1] . (2.33)

We take t = ∆ for concreteness. From this version of the Hamiltonian, the importance of the two limits above

is manifest. In the topologically trivial limit, t = 0, the Hamiltonian becomes

H = −µ

2

N∑

x=1

(1 + iγB,xγA,x) . (2.34)

One sees that this Hamiltonian induces hybridization betweenγA,x and γB,x, which are Majorana fermions

located at the same site. The ground state can be simply inferred from the Hamiltonian in the complex fermion

regime. It corresponds to a state with all cx states singly occupied. The spectrum is obviously gapped as adding

a spinless fermion to the ground state costs a finite energy |µ|. One can now move away from the t = ∆ and

µ = 0 regime and, as long as the gap does not close, the physics will be the same.

For the second (topological) limit, we use t = ∆ 6= 0 e µ = 0. The Hamiltonian becomes

HKit = −it1
2

N−1∑

x=1

γB,xγA,x+1, (2.35)

which now couples real fermions of adjacent sites. By redefining new complex fermionic operators,

dx =
1
2

(γA,x+1 + iγB,x) , (2.36)

we can write our steps backwards again, and the Hamiltonian reads

HKit = t

N−1∑

x=1

(

d†
xdx − 1

2

)

. (2.37)

The ground state can be described easily once again. The system is gapped in the bulk (by t now). This is

consistent with the solution with periodic boundary conditions as before. On the other hand, it is clear that

the fermions γ1 ≡ γA,1 and γ2 ≡ γB,N do not contribute to the Hamiltonian. The analysis is very similar to

the case of edge modes in the spinless Su-Schrieffer-Heegger chain [40] (some loosely think of this as a “half”
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Figure 2.5: Open Kitaev chain spectrum as function of µ. We use ∆ = t = 1. Notice the pair of degenerate
zero modes for |µ| < 1. In real space, they are localized at opposite edges of the chain.

spinless 1D chain). In the present case, however, the edge Majorana operators may be combined in a single,

highly non-local (in the thermodynamic limit) fermion,

f =
1
2

(γ1 + iγ2) (2.38)

whose occupation energy cost is zero. This means that the ground state is doubly degenerate. Explicitly, if

|0〉 is a ground state satisfying f |0〉 = 0 and dx |0〉 = 0, then |1〉 = f† |0〉 is also a ground state. For systems

with N0 Majorana zero modes, the corresponding ground states are known to be 2N0/2 degenerate. Moving

away from this extreme limit by tuning µ 6= 0 e t 6= ∆, without closing the gap, the Majorana zero-modes γ1

and γ2 start mixing with the bulk states and are not uniquely determined by γA,1 and γB,N anymore. Instead,

their wavefunctions decay exponentially into the bulk. The decay length is controlled by the bulk gap, a point

which will become important again in Chapter 3. For a finite chain, an overlap between the Majorana fermions

breaks the degeneracy of the |0〉 and |1〉 ground states. The energy scale of this energy gap is controlled by

e−L/ξ, where L is the chain’s length and ξ is the coherence length. In the thermodynamic limit, L ≫ ξ and

the energy splitting may be neglected. The spectrum of the open Kitaev chain, as function of the chemical

potential, follows in Fig. 2.5.

This is a convenient place for some final comments on the edge modes and topology. First of all, the existence

of zero energy states at the edge, which separates a topologically non-trivial phase from a topologically trivial

phase (the vacuum), is a manifestation of the so-called “bulk-boundary correspondence”. It states that at the

boundary between phases characterized by some non-trivial topological invariants, gapless modes arise. This

has no formal proof, although the result follows generally from the work of Teo and Kane which characterizes the

bound states and topology of fermionic phases in the presence of spatially smooth defects of different dimensions

(hedgehogs, vortices, surfaces, etc)[12]. The statement is generically true for non-interacting systems and also

applies in several systems where interactions are important. It may fail, however, when true topological order

arises (in sum, when the ground state degeneracy depends on the sample real space topology - sphere, torus,

etc. - like in fractional quantum Hall effect or Kitaev’s toric code[41]). A second, also important, point, is what

happens when one has mode degrees of freedom available. For example, let us allow for a spinful Kitaev chain.

In this case, when in the topological |µ| < t phase, each edge posses two Majorana zero modes. By the same

reasoning as before, this is equivalent to an ordinary zero-energy complex fermion at each edge. It turns out

that, as long as extra symmetries are not imposed, perturbations like spin-orbit coupling may shift the states

away from zero energy. Doubling the degrees of freedom trivializes the problem, which could be expected from

the Z2 invariant characterizing this problem. Topologically, having two Majorana zero modes is equivalent to

having none. As long as Kramers degeneracy is broken, one may freeze the spin degree of freedom and reduce

the discussion to the spinless case. Several attempts have been made recently in the direction of trying to realize
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the Kitaev p-wave chain experimentally [42, 30]. We will postpone the discussion on some of these until later;

they will not be the focus of our discussion in this thesis as we will describe our own system of interest which

realizes explicitly a Kitaev chain behavior in Chapter 3.

2.4 Signatures of Majorana zero-modes physics

While the existence of Majorana zero-modes localized at point defects (edges above) is definitely a hallmark of

topological superconductivity, finding experimental evidence of their existence turns out to be quite a formidable

task. To the present date, no unequivocal evidence of Majorana fermion physics has been found. The main

problem with this is two-fold. First of all, sub-gap states exist in several situations, as we will see in the next

chapter, and filtering the zero-mode is not easy as energy scales may not be very helpful. Also, several other

effects can give rise to zero-energy states which are not Majorana fermions [43, 44, 45, 31]. A second, perhaps

more fundamental problem, comes from the fact that Majorana fermions are “real” fermions. They do not

carry U(1) phases and, as such, no electromagnetic charge. They are neutral and blind to electromagnetic

interactions. Zero-bias peaks in tunneling experiments are then agreed to be inconclusive regarding Majorana

zero-mode detection, while typical linear responses are usually not even considered (an exception goes for thermal

transport, which can be thought of as computing gravitational responses, which couple to energy-momentum

tensors. These have been considered, but again, experimentally isolating the Majorana contributions is far from

trivial).

From some time now, the main sought-after signature of Majorana fermion physics, considered a smoking

gun if verified (which it has never been, so far, for reasons to be discussed) is called the “fractional Josephson

effect”[29, 31]. Let us start by reviewing the standard Josephson effect in the case of a linear Kitaev chain.

This will give reproduce all the standard results in the trivial regime, but not in the topological one. We will

then show how it is modified in the topological regime.

2.4.1 Regular Josephson effect

A Josephson junction consists of a pair of superconducting wires connected by a weak-link or insulating junction.

The Josephson effect consists in the phenomenon of finding a current across this junction even at zero-voltage-

bias. Such a current arises when the difference in the phase between the superconducting wires is finite. Let us

show how this behaves for a junction made out of Kitaev p-wave wires.

We start with the diagonalization of the BdG Hamiltonian in detail. First we write

UHBdG
k U† = Dk, (2.39)

where Dk is the diagonal matrix with eigenvalues ±Ebulk (k), Ebulk (k) =
√

ǫ2k +
∣
∣∆̃k

∣
∣
2

and

U =

(

u+,k v+,k

u−,k v−,k

)

, (2.40)

with

u+,k = e−iφsgnkvk, v+,k = uk

u−,k = −sgnke−iφuk v−,k = vk. (2.41)

and general functions uk and vk such that

uk =

√

1
2

(

1 − ǫ

Ebulk

)

, vk =

√

1
2

(

1 +
ǫ

Ebulk

)

. (2.42)
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The Bogoliubov quasi-particle operators in each energy branch are written now

a+,k = e−iφsgnkvkck + ukc
†
−k (2.43)

a−,k = −e−iφsgnkukck + vkc
†
−k. (2.44)

These ± states are related by the Nambu particle-hole constraint and are not independent. The physical ground

state is obtained by filling the negative energy modes

|N〉 =
∏

−π<k<π
a†

−,k |0〉 (2.45)

with respect to which, we normal order all the operators - like the Hamiltonian. This amounts to droping the

a−,k fermions.

Analogously, one may invert the relations of the original fermions and Bogoliubov quasiparticles,

ck = eiφsgnk [vka+,k − uka−,k] (2.46)

c†
−k = uka+,k + vka−,k. (2.47)

Now, if the original operators are to be related by Hermitian conjugation (and momentum inversion), this results

in

ck = −eiφsgnkuka−,k + eiφsgnkvka+,k (2.48)

ck = uka
†
+,−k + vka

†
−,−k, (2.49)

which my be solved by identifying

a†
−,−k = eiφsgnka+,k. (2.50)

In the Hamiltonian this leads to

HKit =
1
2

∑

k∈BZ
Ebulk

(

a†
+,ka+,k − a†

−,ka−,k
)

=
1
2

∑

k∈BZ
Ebulk

(

a†
+,ka+,k − a†

−,−ka−,−k
)

=
1
2

∑

k∈BZ
Ebulk

(

a†
+,ka+,k − a+,ka

†
+,k

)

=
∑

k∈BZ
Ebulk
︸ ︷︷ ︸

≡Ek

(

a†
+,ka+,k

)

+
∑

k∈BZ

Ebulk
2

︸ ︷︷ ︸

const.

, (2.51)

which demonstrates that one effectively excludes the negative energy modes.

After dropping unphysical modes, one may similarly drop the ± label and consider the general ground state

ak |0〉 = 0 (2.52)

and the physical one-body excited states with

|±q〉 = a†
±k |0〉 , (2.53)

and so on. The fermionic operators then read

ck = uka
†
−k + vke

iφsgnkak. (2.54)
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To study the Josephson junction physics in the trivial regime, we consider two bulk Kitaev superconductors

which we label L and R, coupled by a tunneling Hamiltonian. They are 1D p-wave systems with superconducting

phases φR and φL. As we will see, only their difference is important. The Hamiltonian reads

H = HKitR + HKitL + HT

HT =
∑

k,l

[

Tklc
†
L,kcR,l + T ∗

klc
†
R,lcL,k

]

. (2.55)

The tunneling matrix elements obey T−k,−l = T ∗
k,l. The interpretation of each fermion operator is evident in

the tunneling context. The ground state of HSR
+HSL

is given by

|0〉 = |0L〉 |0R〉 , (2.56)

Considering an average number NL/R of Cooper pairs in the L/R superconductor,∆N = NL−NR characterizes

the system, as the total number of Cooper pairs NL +NR is fixed. We are interested in studying the electron

tunneling at zero bias voltage.

The Josephson effect can be read from the correction to the ground state energy of the system in the presence

of the tunneling Hamiltonian, as it is characterized by the transition amplitude from a state with a fixed ∆N

to tunnel into another with ∆N + 1. So we compute the effective energy in the presence of tunneling to second

order perturbation theory

E
(2)
0 = 〈0| H(2) |0〉 =

∑

exc

〈0| HT
|exc〉 〈exc|
E − Eexc

HT |0〉 . (2.57)

Computing the variation of the energy with respect to the superconducting phase difference between the two

wires (which is conjugate to the difference of particle number) we can find the Josephson current.

First we start writing HT in terms of the quasi-particle Bogoliubov operators. Out of the four arising terms,

two of them actually introduce no net tunneling from one superconductor to the other. In the ground state

average these contribute only with a constant energy shift and no phase dependence. We neglect these, for

simplicity, as they are physically unimportant for the computation of the Josephson currents.

The remaining simplified Hamiltonian reads

H̃T =
∑

k,l

Tklαk,laL,−kaR,l +
∑

k,l

Tklβk,la
†
L,ka

†
R,−l, (2.58)

where

αk,l = eiφRsgnl (ukvl) + eiφLsgnk (vkul)

βk,l = e−iφLsgnk (vkul) + e−iφRsgnl (vluk)

Now we are ready to take the average of the second order simplified and projected tunneling Hamiltonian in

the ground state. Proper counting of quasi-particle number shows that, out of the four arising contributions,

only a single one is non-vanishing

E
(2)
0 = −

∑

exc

∑

k,l;k′ ,l′

T 2
kl

Eexc
αk,lβk′ ,l′ 〈0| aL,−kaR,l |exc〉 〈exc| a†

L,k′a
†
R,−l′ |0〉 (2.59)

Notice that the product of matrix elements is non-vanishing only for l = −l′ and k = −k′

. The excited

intermediate state contains, necessarily, two quasi-particles - one quasi-particle in each superconductor - such
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Figure 2.6: J0 (µ) in 2.64 (y axis) versus µ (x axis) for Tkl = δkl and t = 1. Notice that at µ = ±1 the divergent
behavior points the topological phase transition.

that Eexc = Ep + Eq, with p, q the momenta of the states in each wire. Putting all of this together leads to

E
(2)
0 =

∑

p,q

∑

k,l

T 2
kl

Ep + Eq
αk,lβ−k,−lδl,p, δ−k,q (2.60)

=
∑

k,l

T 2
kl

El + E−k
αk,lβ−k,−l. (2.61)

Considering the functions α, β explicitly, setting ∆φ = φR−φL and, again dropping the ∆φ independent terms,

we find

E(2) (φ) = J0 cos ∆φ, (2.62)

where and

J0 = −1
2

∑

k,l

sgnlsgnk
T 2
kl

El + Ek

√
√
√
√

[

1 −
(
ǫk
Ek

)2
][

1 −
(
ǫl
El

)2
]

(2.63)

= −∆2

2

∑

k,l

T 2
kl

El + Ek

sin k sin l
EkEl

. (2.64)

This is enough to demonstrate the existence of the “integer” Josephson effect. The effective Hamiltonian is

2π periodic in the superconducting phase difference between the two wires. As the superconducting phase is

conjugate to the particle number, differentiating with respect to the phase leads to a current due to Cooper

pairs tunneling between the two superconductors.

To further enrich the analysis, one may also study the coefficient J0. This coefficient is sensitive to the

chemical potential applied in the system µ (uniform through both superconductors for zero-bias voltage), and

the system behaves in two very distinct ways depending on the relation µ/t, namely the trivial µ < −t and

topological regimes |µ| < t. To compute J0,we need to model Tkl. This may be tricky and would demand

new microscopic calculations. Instead, let us consider a simple example, just to get a feeling of how J0 may be

sensitive to the topological phase transition. Any function Tkl with well defined parity in k or l (or both) will

give a vanishing result for J0 (just make, e.g., k → −k to see that.) An interesting non-vanishing situation is

such that Tkl ∝ δkl.This is a simple forward scattering between the two superconductors.

Figure 2.6 shows the result for J0 in this approximation. It shows a divergence in this coefficient as the

superconducting gap closes. In this case, J0 is seen to be sensitive to the topological regime. For very large and
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very small chemical potentials, the superconducting phase is not well established and the coefficient vanishes

accordingly.

2.4.2 Fractional Josephson effect

It turns out that the previous analysis is not sufficient in the case of a Kitaev chain in the topological regime.

The reason for that is that the presence of Majorana zero-modes at the edges allows novel single-electron

tunneling effects at the weak-link between the two chains. To see this explicitly, let us return to the real space

Hamiltonians and tune the Kitaev chains parameters deep into the topological regime, µ = 0, t = ∆. We have

H =
∑

a=L,R

Ha + HΓ, (2.65)

Ha = − t

2

N−1∑

x=1

(
c†
axcax+1 + eiφacaxcax+1 +H.c.

)
, (2.66)

HΓ = −Γ
(

c†
LNcR1 +H.c.

)

(2.67)

with HΓ describing the electronic tunneling across the barrier. Let us study these in the Majorana fermion

basis and show that first order perturbation theory changes in energy are finite now.

Rewriting H0 in terms of the Majorana operators cx = e−iφ/2

2

(

γx + iγ
′

x

)

, we have

H =
∑

a=L,R

Ha + HΓ, (2.68)

Ha = − it

2

N−1∑

x=1

(

γaxγ
′

ax+1

)

(2.69)

HΓ = − iΓ
2

(

sin
(
φL − φR

2

)[

γLNγR1 + γ
′

LNγ
′

R1

])

− iΓ
2

cos
(
φL − φR

2

)[

γLNγ
′

R1 − γ
′

LNγR1

]

(2.70)

Now, for x = 1, ..., N − 1, we apply the same trick as before and redefine the complex fermion operators as

dx = 1
2

(

γ
′

x+1 + iγx

)

and the Hamiltonian becomes

Ha = t

N−1∑

x=1

(

d†
axdax − 1

2

)

(2.71)

with the ground state of the two wires

dax |G.S.〉 = 0, x = 1, ..., N − 1, a = L,R (2.72)

with total energy −t (N − 1). The main point is that this ground state is actually degenerate, due to the

absence of the Majorana operators γ
′

a1 and γaN in Ha. As we have four Majorana fermions, there is a fourfold

degeneracy of the ground state. At the weak-link between the L and R chains, we define the complex, quasi-

non-local fermion

b =
1
2

(

γ
′

R1 + iγLN

)

. (2.73)

The effects of the superconducting phase difference across the weak-link will affect directly the occupancy

of this b mode. Fermion parity conservation dictates that the occupation of this b state is intertwined with

the occupation of the, more non-local, state b
′

= 1
2

(

γRN + iγ
′

L1

)

. Given a total fermionic parity, occupation/

unoccupation of b states will fix the occupation/unoccupation of the b
′

states, such that only a doubly degenerate

sub-manifold of ground states can be accessed; the good quantum number characterizing these two degenerate

ground states is the fermionic parity of, say, the b states. We then write the two ground states as |G.S.;µ〉 with
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µ = 0, 1 obeying

b |G.S.; 0〉 = 0

b† |G.S.; 1〉 = 0

|G.S.; 1〉 = b† |G.S.; 0〉 . (2.74)

In sum, we repeat. These b states are relevant due to the proximity of the end tips of the two SC at the junction.

There are also other, even more non-local, b
′

states made out of γ
′

L1 and γRN . These are further separated

for long chains, and their physics will not be important locally at the weak-link, where tunneling gives rise to

the Josephson effect. Their existence is however important as it is necessary for tuning between the different

parity states in the “weak-link fermion” b. This is so because total parity is conserved and the parity of the two

non-local states must be exchanged if we try to flip the parity of one of them, say the weak-link mode b, which

is exactly what will happen as a function of the superconducting phase difference, as we will see now.

Due to the absence of the end points Majorana fermions, the bulk Hamiltonian has no contribution from

the b fermions. As for the tunneling Hamiltonian, it becomes

HΓ = −iΓ
2

(

sin
(
φL − φR

2

)[

i
(
b† − b

)
i
(

d†
R1 − dR1

)

+
(

d†
LN−1 + dLN−1

) (
b† + b

)]
)

−iΓ
2

(

cos
(
φL − φR

2

)[

i
(
2b†b− 1

)
− i
(

d†
LN−1 + dLN−1

)(

d†
R1 − dR1

)])

. (2.75)

Now we compute the change in the ground state energy in perturbation theory again. Since the operators d1

and dN−1 annihilate the vacuum, it is easy to take matrix elements in this basis. Taking matrix elements with

{|G.S.; 0〉 , |G.S.; 1〉}, we start with first order (degenerate) perturbation theory. As parity is conserved, the

corresponding subspaces decouple,

∆E(1) = −Γ
2

cos
(
φL − φR

2

)(

1 0

0 −1

)

. (2.76)

So, after projection, the Hamiltonian is simply

Heff = Γ cos
(

∆φ
2

)

(n̂1 − 1/2) , (2.77)

where n̂1 = b†b.

In summary (and with the benefit of the hindsight), one may start from the original operators and define

the edge complex fermions

cLN =
e−iφL/2

2

(

γ1 + iγ
′

1

)

cR1 =
e−iφR/2

2

(

γ
′

2 + iγ2

)

. (2.78)

Low energy physics at the weak-link implies that the projection onto the zero energy subspace is equivalent to

simply writing

cLN → 1
2
e−iφL/2γ1, cR1 → 1

2
e−iφR/2γ2. (2.79)

The tunneling Hamiltonian then gives the previous result automatically

Heff = −Γ
2

cos
(

∆φ
2

)

iγ1γ2

= −Γ cos
(

∆φ
2

)

(n̂1 − 1/2) . (2.80)
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2. Finite size effects will inevitably lead to coupling of the outer Majorana fermions to the weak-link ones,

with characteristic energy δE ∝ e−L/ξ (L, size of topological regions, ξ topological phase coherence length).

Although exponentially suppressed, this spoils conservation of n̂1 and restores 2π periodicity. In order to

avoid this, to see the fermion parity pump, ∆φ should cycle on a time scale short compared to ~Γ/δE2

but long on the scale of the inverse bulk gap;

3. Inelastic processes involving stray quasi-particles (due to imperfect initialization of thermal excitations

or, simply, disorder, for example), may also switch n̂1; this is also a relaxion process which restores 2π

periodicity, if ∆φ cycles on scales longer than the typical switching time. This is known as quasi-particle

poisoning.[31]

In principle, one can proceed with a second order perturbation theory calculation in the topological regime

also. Although we will omit the results, the physics is simple. It generates another, regular, Josephson junction

contribution to the energy. This, as coming from second order perturbation theory, is sub-dominant to the

fractional Josephson effect for a simple Kitaev wire junction. A two fluid model for the physics in such junctions

seems to be reasonable from the phenomenological point of view and we will employ this idea in the next Section

in order to study how the unconventional physics in this system could be measured experimentally.

2.5 Macroscopic quantum tunneling and Majorana fermions

The superconducting state is a macroscopic quantum system. In particular, superconducting quantum interfer-

ence devices (SQUIDs) provide a standard device to study the macroscopic properties of the superconducting

state. It consists of a loop closed by a Josephson junction (JJ henceforth). Magnetic fluxes in superconducting

loops are quantized in units of the so called superconducting flux quantum Φ0 = hc/2e ≡ π. The weak-link

relaxes this quantization condition and allows for tunneling of flux tubes from outside of the SQUID to its

inside across the junction. This tunneling is accompanied by the appearance of a supercurrent along the device,

which is a macroscopic coherent behavior of the electronic Cooper pair condensate. The superconducting phase

difference across the junction, in this context, is controlled by an external flux bias through the SQUID. All of

the previous results are maintained, except that the superconducting phase should now be re-interpreted as a

magnetic flux through the broken-loop[49, 50, 51, 52, 36, 53].

As justified previously, a p-wave wire Josephson junction can be described by a fractional Josephson effect

energy term accompanied by a, sub-dominant, regular Josephson contribution. Realizing such p-wave wires is,

however highly non-trivial. The main experimental proposal for the realization of the fractional Josephson effect

in SQUIDs consists of building a regular s-wave SQUID with a semi-conductor wire traversing the weak-link

[38]. If the semi-conducting wire is subject to strong spin-orbit effects, an effective p-wave pairing develops,

induced by the bulk s-wave SQUID superconductivity. As the effective Kitaev wire sits on top of a larger

regular SQUID, the JJ should be described by a two fluid model with a regular Josephson effect dominating

the fractional Majorana one. Here we provide a phenomenological approach for the physics of macroscopic

quantum tunneling - described below - in such hybrid devices, in which regular and fractional Josephson effects

compete[37].

We start with a brief review of regular SQUID and macroscopic quantum tunneling phenomenology[36].

The physics of a regular SQUID ring is very successfully modeled by an RLC circuit with a JJ circuit element

as in Fig.2.8. This is known as the resistor-capacitor shunted junction (RCSJ) model. This model describes

the interplay of the capacitive (kinetic), resistive (from leads and normal current components going around the

loop), (self-)inductive and JJ current contributions to the flux going through the ring. Current conservation

through the circuit and Faraday’s law result in the equation of motion

CΦ̈ +
Φ̇
R

+ IC sin ∆φ (Φ) =
ΦX − Φ

L
+ ζ (t) , (2.82)

where C is the capacitance of the junction, R is its resistance in the normal state, IC is the junction critical
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Figure 2.12: Quantitative change in the oscillator frequencies ν0 = ω0/2π as a function of the saturation
value of η in the topological regime. We use real physical parameters for the SQUID as described in [55] and
ΦX/Φ0 = 0.52 for concreteness. Comparing βL = 1.7 (blue) and βL = 1.6 (red) shows that smaller βL gives
more expressive shifts in the frequency.

Figure 2.13: Quantitative change in the tunneling rates as a function of the maximum value of η. We use real
physical parameters for the SQUID as described in [55] and ΦX/Φ0 = 0.52. Comparison between βL = 1.7
(blue) and βL = 1.6 (red). Although less clear visually, smaller βL is again favored given bigger changes in
tunneling rates

standard procedure and adopt a “quadratic plus cubic” approximation for the potential,

Ueff (Φ) =
1
2
Cω2

0

[

Φ2 − Φ3

Φw

]

. (2.93)

This is a very reasonable approximation [57] and allows us to write the tunneling rate in terms of dimensionless

integrals as

B = 2Cω0Φ2
w

ˆ 1

0

dz
√

[z2 − z3]. (2.94)

The C factor is dimensionless and in the non-dissipative limit that we are considering is given by
√

60 ∼ 7.75

[57, 58].

Considering these, we may calculate numerically the minima and maxima from the original potential, from

which we can also extract Φw. The results are shown in Fig.2.13. Again, for different values of βL, the slopes of

the curves change and smaller values of βL produce more expressive changes in tunneling rates. In particular,

again for η = 0.05 (5% ratio between critical currents), the tunneling rate presents variations of ∼23 mHz.

Figures (2.12) and (2.13) are our main results. Although the topological effects are small, they definitely exist,

and these ideas work as proof of concept. The changes in the SQUID potential well parameters and tunneling
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rates are inside an experimentally accessible range, for the parameters we considered here, and one may hope

that these effects can be actually observed. One positive characteristic of these ideas is that the measurements

made are thermodynamic; they are equilibrium measurements and do not involve actual transport physics.

This means that, following this proposal, one avoids the issue of justifying zero-bias peaks and relating them,

unequivocally, to Majorana zero-modes. One negative point, which remains, is the necessity of fermionic parity

conservation. Avoiding quasi-particle poisoning is nearly impossible, due to disorder effects, and the fractional

Josephson effect is still very fragile. Comments regarding how the quasi-particle poisoning affects these results

will be omitted, to keep the discussion short, but we note in passing that, depending on the time scales for the

tunneling process (and feeding the SQUID back into the higher metastable well), such breaking of local parity

conservation might actually enhance the shifts of tunneling rates and energy quantization in the topological

regime (but the notion of topological regime will then be lost.)

2.6 Conclusions

With the discussions in this Chapter, we hope to have presented all the basics necessary to understand the

relations between topology and superconductivity we will discuss throughout this work. The main concepts to be

remembered are the notions of protecting symmetries, topological invariants, the bulk-boundary correspondence

and topological phase transitions between gapped systems. Also the Majorana, neutral fermion, nature of gapless

modes in superconducting scenarios must be remembered with due attention, as well as the phenomenon of

topological fractional Josephson junctions. We have also exposed our own points of view on simple physical

scenarios to verify such physics. Armed with these ideas and concepts, we now move on to higher dimensions

and the main theme of this Thesis, vortices in superconducting topological matter.



Chapter 3

Vortex modes in superconducting

doped topological insulators

3.1 Introduction

We have settled our knowledge of the effects of topology in superconductivity. We move now to one of our main

problems, that of superconductivity in doped topological insulators. As discussed, an important signature of

topological phases is the appearance of novel, low-energy, robust, edge states; one such state is the so-called

Majorana bound state at the edges of topological superconductors [59]. As ubiquitous signatures, the detection

of these neutral fermions has been the main trend in the characterization of particle-hole symmetric topological

phases. Although evidences of Majorana fermion physics have been identified in tunneling [60] and scanning

tunneling microscopy (STM) measurements[61], the interpretation of their signatures is controversial in many

cases, as the imprints from the topological regime are often mixed with signals from disorder and extra undesired

quasiparticles, as discussed.

While the aforementioned gapless edge states act as a signature of topologically non-trivial regimes, one can

shift perspectives and worry about the signatures of the transition from a topologically trivial to a topological

phase; these present themselves in the bulk by the closing and re-opening of the excitation energy gap[62, 63]. In

many of the proposed systems which can be tuned through such a topological phase transition (TPT), however,

the excitation gap is very small compared to experimental achievable resolutions and cannot be probed directly.

Here, we provide a discussion of these points in the context of the chemical potential induced topological

phase transition in vortices of superconducting doped topological insulators. We show that quantum fluctuations

in the vortex position can shift the spectral weight in the density of states of a given system before and after

a TPT to further separated energies and, as a result, magnify the change of the spectrum resulting from this

process. In this particular situation, we also demonstrate how the effects of Magnus forces on vortex dynamics[64]

display a novel signature in the spectral change at this TPT, exposing the pumping of vortex modes responsible

for the phase transition, as described below. Our results are general, however, and can be extended to other

types of topological phase transitions. To demonstrate this, we present a way to map the 3D situation into a

1D setting in terms of wire networks which may be used to probe for the topological phase transitions of actual

Kitaev chains, Su-Schrieffer-Heeger chains and other unidimensional topological chains.

To understand how quantum fluctuations affect vortices in superconducting doped topological insulators,

we start by shortly discussing how vortex quantum dynamics affect electronic vortex modes in regular super-

conductors [65, 66]. Within the BCS theory of superconductivity, an stationary vortex affects the spectrum of

the superconductor by generating in-gap modes localized around and along the vortex core [67]. The energy

of these discrete bound states, known as Caroli-de Gennes-Matricon (CdG) modes, is given by ǫl = ∆2

EF

(
l + 1

2

)

where ∆ is the size of the bulk superconducting gap, EF is the Fermi energy of the normal phase and l is an

integer. The signatures of these in-gap states have been experimentally observed by STM measurements[68, 69].

37
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In practice, however, even though the spatial resolution of STM is well within the size of the vortex modes[70],

given the small size of their so-called mini-gap, δ ≡ ∆2

EF
, the energy of each single mode is hard to be resolved

and usually multiple modes are observed together [68].

It is well known that the pinning of vortices is necessary for the stability of type-II superconductors. The

discussion above would be the final status of the problem for pinned vortices, were they absolutely static.

Although a pinned vortex has a fixed position at the sample, even at the lowest temperatures, their quantum

zero point motion cannot be ignored. Interestingly, it was shown that such quantum fluctuations affect the

quasiparticle spectrum, moving part of the spectral weights of the in-gap vortex modes into novel “satellite

peaks” at frequencies associated with vortex fluctuations[65, 66, 71]. We then contend that exploiting this

ubiquitous quantum mechanical phenomenon to probe for TPTs is a promising idea, leading to novel signatures

of these transitions.

To test this approach, superconducting doped topological insulators arise as the most natural test ground.

The discovery of superconductivity in doped topological insulators triggered several studies, particularly be-

cause of the suggestions that these materials might realize topological superconductivity [22, 23, 24, 21, 72].

Theoretical studies of superconductivity in the surface states of topological insulators started even before the

experimental realization of bulk superconductivity in the doped case, when it was shown that, theoretically, if

superconductivity is induced in their helical surface states, vortex modes will include a zero-energy Majorana

bound state [73]. In the context of bulk superconducting doped topological insulators, it was later shown that

the Majorana mode at the ends of a vortex line persist up to a critical value of doping in these systems as

well [25, 27, 26]. At this critical doping level, the two Majorana modes at the ends of the vortex hybridize and

become gapped. The presence or absence of Majorana modes at the end of the vortex line contrast two topo-

logically distinct phases. In fact, the vortex in doped superconducting topological insulator becomes effectively

equivalent to a Kitaev chain.

From the bulk-boundary correspondence, a signature of this TPT also shows up in the spectrum of the

states extended along the vortex. The original mechanism lies in the CdG modes. The important property of

these states is that they are gapped by the small energy scale of the mentioned mini-gap. This energy protects

the surface Majorana zero modes, confining them to the surface of the sample. Because of strong spin-orbit

coupling and the resulting band inversion of the insulator [74], the Fermi surface here has non-trivial topological

properties which show up as a non-zero Berry connection. The CdG modes then inherit this Berry phase as a

modification to their energy spectrum - which also separates in two sets due to the existence of two degenerate

Fermi surfaces - which becomes E±
l = ∆2

EF

(

l ∓ 1
2 ± Φb(µ)

2π

)

. Here Φb is the mentioned Berry phase around the

curve on the Fermi surface (this it is dependent on the chemical potential µ) defined by setting the wave-vector

along the vortex line equal to zero. In this case, when Φb = π, E±
0 = 0 and the zero energy surface Majorana

modes at the ends of the vortex can merge through the gapless l = 0 mode which is now extended along the

vortex.

We will thus study in this Chapter how the problem of quantum vortex motion affects the CdG modes

in doped topological superconductors and its influence on the associated topological phase transition. We

proceed, firstly, by describing 3D time-reversal invariant topological insulators. Following that, we will describe

the superconducting doped case and, subsequently, the vortex bound states physics and their corresponding

topological phase transition. We then discuss the signatures of this transition in energy space, and discuss

how the vortex zero-point motion may affect it. We show also how the physics in 3D can be transported to a,

perhaps simpler, 1D scenario.

3.2 topological insulators in 3D

As our system of interest consists of Copper doped Bismuth Selenide, we start by describing the minimal model

for such a 3D topological insulator. This way we may get more acquainted with the minimal Dirac fermion

physics all so ubiquitous to the physics of topological matter, as well as with the notion of the Z2 topological
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invariant.

Bismuth Selenide comprises the easiest-to-deal-with topological insulator [20, 33]. Its electronic properties

can be described solely by focusing on a single Dirac point (a point in k-space which is well approximated by a

Dirac Hamiltonian) at the Γ = (0, 0, 0) point of the Brillouin zone, as we will show. A minimal tight binding

model to describe its Brillouin zone is given by the following Bloch Hamiltonian (we start with no doping µ = 0)

Hk = τxs · dk +mkτz (3.1)

di
k

= 2t sin ki (3.2)

mk = M +m0

∑

i

cos ki. (3.3)

This corresponds to a cubic lattice model where ~τ and ~s Pauli matrices represent the orbital and spin degrees

of freedom. Time reversal symmetry acts as Θ = isyK and, at the Bloch Hamiltonian level,

syH
∗
−k
sy = Hk. (3.4)

Of fundamental interest are the so-called time-reversal-invariant-momenta, or TRIM. In the cubic lattice, there

are eight of them, namely Γi = (π, 0, 0) , ..., (π, π, 0) , ..., (π, π, π) and (0, 0, 0). Also, it is very important that

this Hamiltonian, as well as the Bi2Se3 composite itself, has an inversion symmetry. This is manifest as

H−k = τzHkτz. (3.5)

The electronic spectrum corresponding to this Hamiltonian contains a pair of doubly degenerate bands and

reads

E± = ±
√

|dk|2 +m2
k
. (3.6)

Whether or not this system is gapped and describes an insulator depends on the interplay between the param-

eters M and m0.

The interplay between these quantities also fix the topological regime of the system. The topological invariant

is related to the number of different ways in which one may map the Brillouin zone (a 3-torus T 3 as each

ki : −π → π) to the space of time-reversal invariant and inversion symmetric Hamiltonians which preserve the

gap separating positive and negative one-particle energies. In mathematical language, we identify T 3 as the base

space, while the Bloch Hamiltonian Hk (or rather its eigenvectors) fix the classifying space. For our specific

case, the base space can be simplified in the classification scheme to a sphere S3, if desired, as the “strong”

topological invariants which classify the spherical base space also classify the toroidal base spaces - although

there may exist further topological structure in T 3 which does not exist in S3; these are the so called “weak”

topological invariants, which we will overlook as unimportant to our present situation.

Our classifying space consists of a Hamiltonian which satisfies the time-reversal constrain (3.4) and belongs

to the so-called class AII in the Altland-Zirnbauer scheme [14]. It also satisfies the inversion symmetry condition

in (3.5). The corresponding “strong” topological invariant is very simple in this system. It is a Z2 (there are

only two distinct sets of Hamiltonians in the classifying space) number and may be written as

(−1)ν0 =
∏

i

δi (3.7)

δi =
N∏

m=1

ξ2m (Γi) , (3.8)

where we have 2N occupied bands (N = 1 for our particular case) and the product picks only a single element of

each Kramers degenerate pair ξ2m = ξ2m−1. Then, ξ2m (Γi) is the parity eigenvalue of the 2mth occupied energy

band at Γi. This is known as a “strong” topological invariant because it only depends on time-reversal symmetry.

Other invariants may be defined which corresponds to subsets of multiplications of parity eigenvalues according
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Figure 3.1: Topological regimes for inversion and time-reversal symmetric topological insulator in 3D. This
shows a strong topological behavior (ν0 = 1) at 1 < |M/m0| < 3.

to each of the three directions in 3D. These are known as “weak” invariants as they depend on corresponding

mirror symmetries - under the effects of spatial disorder the topology is broken with respect to this case, even

if time-reversal is left symmetric. We will not worry about these cases.

Notice that the inversion operator for us reads P = τz. At the TRIM, the only matrix in the Hamiltonian

which is even under such inversion symmetry corresponds to the one multiplying mk, which is P itself. We thus

know that in the present case

δi = −sgn (mk=Γi
) . (3.9)

If we order the TRIM as before, Γi = (π, 0, 0) , ..., (π, π, 0) , ..., (π, π, π) and (0, 0, 0), we have

δ1 = δ2 = δ3 = −sgn
(
mk=(π,0,0)

)
= −sgn (M +m0) (3.10)

δ4 = δ5 = δ6 = −sgn
(
mk=(π,π,0)

)
= −sgn (M −m0) (3.11)

δ7 = −sgn
(
mk=(π,π,π)

)
= −sgn (M − 3m0) (3.12)

δ8 = −sgn
(
mk=(0,0,0)

)
= −sgn (M + 3m0) . (3.13)

Thus,

(−1)ν0 = sgn (M +m0) sgn (M −m0) sgn (M − 3m0) sgn (M + 3m0)

= sgn
(
M

m0
+ 1
)

sgn
(
M

m0
− 1
)

sgn
(
M

m0
− 3
)

sgn
(
M

m0
+ 3
)

. (3.14)

We plot this as function of M/m0 in Fig. 3.1.

From the simplified structure of the topological invariant, one may come up with an easy rule to detect the

strong topological regimes. As we saw, we depend on the product of the sign of mk at the different points in

the Brillouin zone. Time-reversal symmetry implies that only half of the TRIM are important to compute the

topological invariant, say the Γ = (0, 0, 0) point and the (π, 0, 0) , (π, π, 0) and (π, π, π) points. This implies that

a single band inversion starting at the origin of the Brillouin zone and ending at any of its corners is enough to

fix the topological invariant. Indeed, this result is actually quite general, the strong topological regime demands

a band inversion when moving through the Brillouin zone from its origin along each of the base directions

towards its surfaces, showing that the contributions from the corners must be the same.

The above consideration implies that an isotropic analysis is enough to fix the topological invariant, which

leads us to a continuum theory close to the Γ = (0, 0, 0) point. In particular, the mass term mk becomes
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mk ≈ M +m0

(
3 − k2/2

)

= (M + 3m0) −m0k
2/2. (3.15)

This shows that if

M + 3m0 < 0 ⇒ M/m0 < −3, (3.16)

mk does not change sign as k ≡ |k| → ∞ while it has a single sign change if |M/m0| > 3.

We may then write a continuum model for a 3D topological insulator with inversion symmetry,

HTI = −ivDτxs.∇ + τz
(
m+ ǫ∇2

)
. (3.17)

In this case, studying band inversion reveals the two distinct topological behaviors as

mǫ > 0 strong topological insulator

mǫ < 0 trivial insulator.

In the absence of the ǫ term this system displays an emergent Lorentz symmetry and corresponds to Dirac

fermions in 3D.

One last, but fundamental, point,which we have not yet discussed is: how does these different topological

classes manifest themselves physically?

We again are supported by the bulk-boundary correspondence. The non-trivial topological regime is signaled

by gapless surface states which cannot be gapped if the symmetries (in this specific case, time-reversal symmetry

and U(1) electromagnetic charge conservation) are preserved. The existence of such surface states can be verified

by noticing that the different topological regimes are determined by the sign of m. So solving for the Hamiltonian

in the presence of a domain-wall in m (with ǫ = 0 for simplicity, this term is unimportant to compute differences

in topology; it is only relevant to compute the absolute topological regime of a phase) with m (z) > 0 for z > 0

and m (z) < 0 for z < 0, then states exponentially localized (as e−
´

dzm(z)/vD ) develop at the domain-wall and

one gets a projected surface Hamiltonian

Hsurf = −ivD (s̃x∂x + s̃y∂y) , (3.18)

where s̃ are Pauli matrices in the projected basis (and still describe the states spin content.) This means that at

the interface of a topologically non-trivial insulator and a trivial one (such as the vacuum itself), there develops

a single set of gapless relativistic fermions, also known as a Weyl fermion. Notice that the chirality (spin-

momentum locking) is fixed at a single value at a given surface, the opposite material surface would develop

Weyl modes with opposite chirality.

3.3 Doped superconducting topological insulators

We have seen that the simplest model of a topological insulator in 3D demands time-reversal and inversion

symmetry and is described by a quasi-Dirac Hamiltonian. This implies, as discussed, a pair of doubly degenerate

bands. Shifting the chemical potential away from the insulating gap, for example by doping, allows one to

develop a finite Fermi surface and and turn this system into a metal. Now with a finite density of states at the

Fermi level, such system’s ground state is subject to instabilities of several sorts.

For some time now it has been known that superconducting instabilities indeed develop when doping Bismuth

Selenide with Copper [22, 23, 24]. The composite CuxBi2Se3 can become superconducting at optimal doping

fraction x = 0.12. Table 3.1 summarizes the main superconducting parameters for this system.

Take particular notice of the Landau factor of approximately 53, much larger than 1/
√

2, showing a strong
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0, where µ, ν = 0, ..., 3 and a, b = 1, 2. Notice Σ commutes with the kinetic Hamiltonian and is not considered

a “mass” term (mass terms enhance the gap and must obey the Dirac algebra.) In our basis, a choice for the

representation follows

Γ = ρzτxs, Λ = ρτ0s0 (3.23)

Γ0 = ρzτzs0, Σ = ρzτ0s0, (3.24)

where we allowed for both real and imaginary terms in the superconducting pairing. From the anti-commuting

structure of the matrices, one sees that at k = 0 the spectrum is given by

E±±
k=0 = ±

√

|∆|2 + (m± µ)2
, (3.25)

with each sign being doubly degenerate. This way, in the absence of superconducting pairing, the chemical

potential can lead to a vanishing insulating gap as long as µ = m reaching the bottom of the conduction band.

If the system develops a superconducting instability it then remains gapped by the pairing strength.

This system is subject to the two anti-unitary time-reversal and particle-hole operators

Θ = iσyK (3.26)

Ξ = ρyσyK, (3.27)

with time-reversal only respected if the superconducting order parameter phase vanishes and there are no

external magnetic fields.

3.4 Doped superconducting topological insulators: vortex bound

states

Vortices are regions in the superconducting condensate where supercurrents develop around (quantized) mag-

netic flux tubes [75]. Such systems act, from the point of view of the fermionic underlying system, as a string-like

potential. The superconducting pairing vanishes at the vortex core (the length scale for this being fixed by the

coherence length ξ.) As such, the gapped bulk states tend to become gapless - less energetic - as they reach

closer and closer to the defect. As these are states with lower energy, the vortex is able to bind electrons to

itself.

Fermionic states bound to superconducting vortices are known as Caroli-de Gennes-Matricon (CdG) modes,

in the honor of their discoverers [67]. From the bulk of the system, they are inevitably gapped by a small

quantity called the “mini-gap”, δ1 = ∆2
0/EF , where ∆0 is the modulus of the superconducting gap in the bulk

and EF is the Fermi energy.

These bound states have a very unusual realization in the context of doped topological insulators. As we

have seen in previous sections, the surface of topological insulators is metallic. This means that, even if the

chemical potential is below the insulating gap, a topological insulator is always subject to superconducting

instabilities. If the chemical potential is below the gap, only the surface is metallic and may superconduct,

whereas for larger values of doping, the full bulk may also be a superconductor.

Superconducting surfaces of topological insulators consist of a very unusual electronic system. That is

because, as a (semi-)metal, it consists of a single 2D Weyl cone (odd numbers of Fermi points are usually

forbidden in condensed matter systems as the lattice demands that they appear in pairs, a feature known as

“Fermion doubling problem” or Nielsen-Ninomiya theorem.) As discussed before, such surface modes are gapless,

unless one breaks the time-reversal or electromagnetic U(1) protecting symmetries. Indeed, a superconducting

instability breaks the latter, and may gap the fermions in such a surface. More interestingly, the CdG modes
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spectrum at the surface may develop a zero-energy mode, which due to the Nambu particle-hole symmetry of

these systems is a Majorana fermion.

The remarkable physics in this problem appears when one realizes that, for large enough chemical potential,

the topological nature of the insulating bulk must become irrelevant, as the parity of the number of filled bands

changes and the Z2 invariant looses meaning and vanishes. In this case, the Majorana modes bound to vortices

in superconducting surfaces must also be unstable. As function of the chemical potential, a mechanism must

develop such that the Majorana zero-energy states can annihilate (always in pairs); furthermore this mechanism

must come from a bulk-condition, as the Majorana partners belong to opposite surfaces of the doped topological

insulator.

In what follows we will describe these points in detail, first deriving the Majorana surface bound states in

2D, then explaining the concept of a vortex phase transition and describing the mechanism through which it

occurs in terms of the 3D bulk CdG modes.

3.4.1 Majorana modes bound to superconducting topological insulator surfaces

Computing the wavefunctions and energies of such states is a very simple job [73]. One starts with the surface

Hamiltonian with a Bogoliubov-de Gennes grading

hBdG = −ivF ρ̃z (s̃x∂x + s̃y∂y) − ρ̃zµ+ ∆ · Λ̃, (3.28)

where at the surface we have

Λ̃ = (ρ̃x, ρ̃y) , (3.29)

(we use tildes whenever talking about surface projected quantities). We use the basis of operators ΨT =
(

ψ↑, ψ↓,
(

ψ†
↑, ψ↓

)

iσy

)

. This corresponds to a single superconducting Weyl fermion in 2D (superconducting

Weyl fermions will, again, be a subject of interest in Chapter 3, then in 3D.)

When the pairing is spatially homogeneous and the system is infinite, the spectrum reads

E±
k

= ±
√

(vF |k| − µ)2 + |∆|2. (3.30)

This means that the surface modes are gapped by the superconducting pairing, as it breaks the U(1) protecting

symmetry. We then allow for a winding in the superconducting pairing phase, ∆ = ∆0 (cos θ, sin θ). In this

case,

∆ · Λ̃ = ∆0Λ̃1e
iρ̃zθ. (3.31)

To unwind the angular dependence in the Hamiltonian, one writes

ψ (r, θ, z) = ei(l−
ρ̃z+s̃z

2 )θφ (r) .

Here, l is an integer, to satisfy periodic boundary conditions and we will focus at the µ = 0 limit, for concreteness

(we discuss the finite µ scenario below). The Schrödinger equation reduces to

[

−ivF ρ̃z
[

s̃x∂r + is̃y
l − (ρ̃z + s̃z) /2

r

]

+ ∆0ρ̃x

]

φn

= Elnφn. (3.32)

The lowest energies exist for l = 0. A zero-mode E0,n = 0 solution exists
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ψ0 (r, θ) = e−iπ/4 e
−
´ r

0
dr

′ ∆0
vF√

N
e−i( ρ̃z+s̃z

2 )θ









0

i

1

0









(3.33)

= e−iπ/4 e
−
´ r

0
dr

′ ∆0
vF√

N









0

i

1

0









, (3.34)

where N is a normalization factor and the phase e−iπ/4 is introduced as a simple gauge convenience.

Notice that the particle-hole operator again reads Ξ = ρ̃y s̃yK (where K is complex conjugation), and implies

Ξψ0 = ψ0. (3.35)

The corresponding second quantized operator implies

Ψ (x) =
∑

n

ψn (x) γn

⇒ γn =
ˆ

d2xψn (x)† Ψ (x) . (3.36)

Substituting Ψ in the equation above,

γ0 = 2πe−iπ/4

ˆ

rdr
e

−
´ r

0
dr

′ |∆|
vF√

N
[

ψ↓ + iψ†
↓

]

(3.37)

with fixed l = 0 for the angular momentum quantum number; this obeys γ†
0 = γ0.

This shows, as promised, that surfaces of topological insulators, when superconducting, may bind Majorana

fermions in vortices. Indeed, adding the chemical potential still leaves a zero-energy Majorana state, as can

be solved analytically in terms of Bessel functions for some specific radial structures in the pairing function.

This happens because for Majorana fermions to disappear, they must hybridize with other zero-modes. Partner

zero-modes exist only on the other side of the topological insulator bulk, at the opposite surface. This means

that local changes in the surface chemical potential cannot destabilize the Majorana states. It turns out that

bulk changes in the chemical potential can.

3.4.2 Vortex (topological) phase transition

The concept of a vortex phase transition is known for a while now [25]. As discussed before, changes in the

bulk system’s chemical potential change may fix the binding of Majorana surface states or not. The surface

zero modes must be able to tunnel through the bulk of the system as the chemical potential rises through the

zero-mode binding phase transition.

The hybridization of the Majorana states at opposite surfaces is deeply connected to the physics of the CdG

modes throughout the vortex. The CdG modes are extended states and are gapped by a mini-gap δ ∼ ∆2
0/EF .

The Majorana modes are exponentially localized at the surfaces and it is, in fact, the CdG mini-gap that

controls the localization length of the surface states. If one can show that the CdG energy spectrum depends

on the bulk doping level and, for some critical value of the latter, has a vanishing energy state, this means that

Majorana surface states can dive deep into the bulk of the material, connecting to their partners at the other

surface through the vortex.

This is the mechanism of the “vortex topological phase transition”, and implies that the vortex in the
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superconducting phase of a doped topological insulator effectively behaves as a 1D Kitaev linear p-wave system.

This mechanism has been demonstrated previously both analytically, and numerically in a lattice model [25,

26, 27]. Here we develop a novel numerical model in the continuum approximation, and provide an explicit

demonstration that the vortex in this system contains a channel of states which behave as if they were a Kitaev

chain.

Caroli de Gennes states in vortices of superconducting doped topological insulators The starting

point for this derivation is equation (3.22). We start with a procedure similar to as we did for the 2D surface of

the topological insulator. We focus on writing ∆ (r) = ∆0 (r) (cos θ, sin θ) and choose an specific radial profile

∆0 (r) = ∆0 tanh (r/ξ) profile, to be concrete.

The vortex runs along the z direction and translation invariance allows us to consider the kz momentum;

with the understanding that only kz = 0, π are topologically relevant, we start taking kz = 0 since we are

looking only for the low energy CdG modes [25]. The z momentum will be reintroduced perturbatively later.We

choose a cylindrical geometry.

The Hamiltonian commutes with the generalized angular momentum operator L̄z = −i∂θ − Sz+Σ
2 , where

ΓxΓy = iρ0τ0sz ≡ iSz. This allows writing the solution spinors as

χl,n (r) =
1√
2π
e−i(l− Sz+Σ

2 )θφl,n (r) , (3.38)

where l is an integer representing the standard angular momentum and n labels the many possible energies for a

given l. At kz = 0, the Hamiltonian obeys a further symmetry given by M = ρ0τzsz. Noticing that {Ξ,M} = 0

and naturally {Ξ, HBdG} = 0, we see that the eigenvalues of M also label particle and hole partners. This allows

one to separate φl,n (r) in four-spinors φ±
l,n (r), obeying corresponding Schrodinger’s equations with projected

Hamiltonians H±[25],

H±φ±
l,n = E±

l,nφ
±
l,n. (3.39)

We focus on φ+
l,n, noticing that φ−

l,n = Ξφ+
−l,n with E−

l,n = −E+
−l,n. The 4 × 4 reduced radial Hamiltonian reads

H+
⊥ = ρzνy

[

−i∂r + iνz
1
r

(

l − ρz + νz
2

)]

− µρz − ∆0 (r) ρx

+ρzνz

[

m+ ǫ

(

1
r
∂rr∂r − 1

r2

(

l − ρz + νz
2

)2
)]

. (3.40)

Here ν Pauli-matrices represent a spin-orbital coupled space. Noticing that

al =
(

∂r +
l

r

)

(3.41)

a†
l = −

(

∂r − l − 1
r

)

(3.42)

act as operators which lower and raise the level of Bessel functions (and a†
l al gives the Bessel differential operator

itself), it is easy to find a proper basis to expand the states. If ∆0 = 0, we recover a pair of topological insulator

Hamiltonians with spectra given by E±±
k = ±µ ±

√

k2 +m2
k, with mk = m − ǫk2 and k a “radial linear

momentum” quantum number. In the weak pairing approximation, since we are interested only in the lowest

energy modes, we solve for the eigenstates of the topological insulator Hamiltonian using the ladder operators

above and project out the bands from E++
k and E−−

k . Thus Fourier Bessel expanding the radial wavefunctions

as

φ+
l,n ≈

ˆ

dk

(

cnl,kfl,k (r)

dnl,kgl,k (r)

)

, (3.43)
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where

fl,k (r) =
1

√

N +
k,l

(

kJl−1 (kr)
(

mk −
√

m2
k + k2

)

Jl (kr)

)

(3.44)

gl,k (r) =
1

√

N −
k,l

( (

mk +
√

m2
k + k2

)

Jl (kr)

−kJl+1 (kr)

)

(3.45)

and N ±
k,l are normalization constants given by N ±

k = 2
(

k2 +m2
k ∓mk

√

m2
k + k2

)
´∞

0
rdrJl (kr) Jl (kr) .The

Schrodinger’s equation reduces to

(

T− ∆+−

∆+−T T+

)

Φ+
ln = E+

l,n (µ) Φ+
ln (3.46)

where

T∓
k,k′ =

(

∓µ±
√

k2 +m2
k

)

δ
(

k − k
′
)

, (3.47)

with respective signs,

∆+−
l,k,k′ =

ˆ

rdrfTl,k (r)

(

∆0 (r) 0

0 ∆0 (r)

)

gl,k′ (r) (3.48)

and the spinor is Φ+
ln = ({cnlk} , {dnlk})T .

In terms of our original variables, the wavefunctions are then written

χ+
ln (r) =

(

u+
ln (r)

v+
ln (r)

)

, (3.49)

where

u+
ln (r) =

ˆ

dk
cnlk

√

2πN +
k









e−i(l−1)θkJl−1 (kr)

0

0

e−ilθ
(

mk −
√

m2
k + k2

)

Jl (kr)









(3.50)

v+
ln (r) =

ˆ

dk
dnlk

√

2πN −
k









e−ilθ
(

mk +
√

m2
k + k2

)

Jl (kr)

0

0

ke−i(l+1)θJl+1 (kr)









(3.51)

and the mirror (particle-hole) partners are built from χ−
ln (r) = Cχ+

−ln (r).

We fix a finite radius R for the cylinder size which forces us to discretize k → αl,j/R where αl,j are the

j-th Bessel zeroes at each l subspace (Dirichlet boundary conditions.) We fix a UV cutoff at some (large)

N0-th Bessel zero. Diagonalizing the resulting Hamiltonian leads to the spectrum shown in 3.3 with parameters

defined therein. One sees two branches of in-gap modes, one corresponding to an outer-edge localized set of

modes, which we neglect, while the other corresponds to our desired vortex localized ones, as can be checked

by plotting their respective probability densities.

For the low energy states, n ≡ nCdG (a label which we drop from now on), one may plot the energies for

different values of the angular momentum l and check that the spectrum follows

E±
l =

∆2

EF

(

l ∓ 1
2

± φ (µ)
2π

)

(3.52)
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wavefunctions which satisfies their desired asymptotic behaviors. We have

χ+ = Ce− 2
vF

´ r
0
dr

′
∆
(
r

′)
(

f (θ, r)

g (θ, r)

)

, (3.53)

where

f (θ, r) =
1

√

2πN+
kF









e−i(l−1)θkFJl−1 (kF r)

0

0

e−ilθ
(

mkF
−
√

m2
kF

+ k2
F

)

Jl (kF r)









(3.54)

g (θ, r) =
1

√

2πN−
kF









e−ilθ
(

mkF
+
√

m2
kF

+ k2
F

)

Jl (kF r)

0

0

e−i(l+1)θkFJl+1 (kF r)









(3.55)

and the new normalization factors read

N±
kF

= 2
(

k2
F +m2

kF
∓mkF

√

m2
kF

+ k2
F

)

. (3.56)

Here, C is a normalization constant of order (kF /ξ)
1/2.

The CdG modes spectrum (3.52) is the main result of this sub-section. We have successfully demonstrated

a novel numerical approach to computing it in a continuum framework. We have also been able to demonstrate

a convenient approximation for the vortex modes eigenfunctions, namely (3.53), which captures with clarity

all the physical scales involved, set basically by kF and ξ (inside ∆ (r)evaluated calculated around the doped

topological insulator Fermi surface (they do not provide an explicit expression either, though.)

For the rest of this chapter, we will make extensive use of the results found here to (i) obtain insight in

the topological phase transition of the vortex bound modes, in particular showing that they are equivalent to a

Kitaev chain, and (ii) obtain insight on physical signatures of the topological phase transition.

Kitaev wires and CdG vortex modes Now that we can compute the wavefunctions and energies of

the radially bound vortex modes, we can study the dispersive physics along the vortex. We will do this

perturbatively. So, we start by restoring the kz dispersion in the Hamiltonian and write

H0
BdG = vDΓ · P⊥ − µΣ + Γ0

(
m− ǫP 2

⊥
)

− Λ · ∆ (r) + ΓzPz − Γ0ǫP
2
z (3.57)

≡ H0
BdG,⊥ +H0

BdG,z, (3.58)

where the ⊥ labels imply that only the r, θ component terms are taken.
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We are going to project this into the energy eigenfunctions χ±
ln (r). Explicitly,

χ+
ln (r) =

1√
2π

ˆ

dk




















cn
lk√
N +

k









e−i(l−1)θkJl−1 (kr)

0

0

e−ilθ
(

mk −
√

m2
k + k2

)

Jl (kr)









dn
lk√
N −

k









e−ilθ
(

mk +
√

m2
k + k2

)

Jl (kr)

0

0

ke−i(l+1)θJl+1 (kr)




























=

(

u+
ln (r)

v+
ln (r)

)

(3.59)

χ−
ln (r) =

1√
2π

ˆ

dk




















c̄n
lk√
N −

k









0

e−ilθ
(

mk +
√

m2
k + k2

)

Jl (kr)

e−i(l−1)θkJl−1 (kr)

0









d̄n
lk√
N +

k









0

e−i(l+1)θkJl+1 (kr)

e−ilθ
(

mk −
√

m2
k + k2

)

Jl (kr)

0




























=

(

u−
ln (r)

v−
ln (r)

)

. (3.60)

At finite z and low energies, we have χ±
ln (r) → χ±

lnCdG
(r) f±

l (z) choosing the CdG states with n = nCdG. We

will project the radial part the Hamiltonian to find out what Hamiltonian gives the equations of motion for f±
l .

Considering the ± sectors then we have

H̃ll′ = Proj [HBdG]ll′ (3.61)

=

(

E+
l 0

0 E−
l

)

δll′ (3.62)

+

(

H++
zll′

H+−
zll′

H−+
zll′

H−−
zll′

)

. (3.63)

To keep the notation short, we introduce 4 × 4 Dirac matrices α = τxσ and β = τzσ0 . It is easy to see that

terms linear in Pz contribute to the off-diagonals in the ± sectors while terms quadratic with P 2
z contribute

only to the diagonal elements. For these diagonal terms, we develop couplings

ǫ →







ǫ+l = ǫ
´

d2r
[
u+
l (r)

]∗
βu+

l (r) −
[
v+
l (r)

]∗
βv+

l (r)

ǫ−l = ǫ
´

d2r
[
u−
l (r)

]∗
βu−

l (r) −
[
v−
l (r)

]∗
βv−

l (r)
(3.64)

Importantly, the sign of these couplings is the same and the angular integration enforces l = l
′

. For the

off-diagonal terms we develop the couplings

∆̃l =
ˆ

d2r
[
u+
l (r)

]∗
αzu−

l (r) −
[
v+
l (r)

]∗
αzv−

l (r) (3.65)

Adding up the matrix elements above gives the projected Hamiltonian

H̃ll′ =

(

E+
l − ǫ+l ∂

2
z −i∆̃l∂z

−i∆̃l∂z E−
l + ǫ−l ∂

2
z

)

δll′ . (3.66)
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For the diagonal terms we may still use E−
−l = −E+

l to write

(

E+
l − ǫ+l ∂

2
z −i∆̃l∂z

−i∆̃l∂z E−
l + ǫ−l ∂

2
z

)

(3.67)

=

(

E+
l − ǫ+l ∂

2
z −i∆̃l∂z

−i∆̃l∂z −
(
E+

−l − ǫ−l ∂
2
z

)

)

. (3.68)

As the signs of ǫ±l are the same, one can easily see that the l = 0 Hamiltonian is essentially the same as a

Kitaev chain. For l 6= 0, on the other hand, the Hamiltonian does not describe a Kitaev chain. The PH symmetry

is only present when both ±l, besides the ± sectors of M, are taken into account. In this 1D projection, the

contributions of the states in the whole radial direction are taken into account. These considerations are more

clearly seen by writing

(

E+
l − ǫ+l ∂

2
z −i∆̃l∂z

−i∆̃l∂z E−
l + ǫ−l ∂

2
z

)

(3.69)

≈
(

E+
l − ǫl∂

2
z −i∆̃l∂z

−i∆̃l∂z −
(
E+

−l − ǫl∂
2
z

)

)

(3.70)

which leads to the main result of this sub-section,

H̃l =
E+
l − E+

−l
2

ρ0 + ρz

(

E+
l + E+

−l
2

− ǫl∂
2
z

)

+ ρx
(
−i∆̃l∂z

)
. (3.71)

The ρ0 term does not vanish here (unless l = 0), as usually happens in a regular superconducting BdG Hamilto-

nian (k-independent identity terms do not respect the Nambu constraint). To see that indeed the system is PH

symmetric, one has to take into account the full second quantized Hamiltonian with all ±l pairs. In particular,

compare,

H̃0 = ρz
(
E+

0 − ǫ0∂
2
z

)
+ ρx

(
−i∆̃0∂z

)
(3.72)

with equation (2.10), in kz-space. This is nothing but a Kitaev Hamiltonian with E+
0 (µ) playing the role of the

chemical potential itself.

This projected Hamiltonian is then equivalent to a p-wave wire network. This is a very unusual network as PH

symmetry actually connects different wires while each wire has PH symmetry actually broken. Interestingly,

as commented, the channel with l = 0 represents our desired p-wave superconducting chain, showing that

the vortex in a superconducting doped topological insulator indeed corresponds to a Kitaev 1D topological

superconductor.

We have now finished our analysis of the CdG modes of superconducting doped topological insulators.

We have made an extensive study of all aspects of these modes in here, focusing on the chemical potential

dependence of their spectrum, showing that there are two sets of gapped modes which develop zero energy

states as function of the chemical potential. We have also shown that, including dispersion along the vortex,

the Hamiltonian obeyed is in fact a topological superconductor Hamiltonian in 1D. With these insights into

the existence of a topological phase transition along the vortex line, we now move towards studying physical

signatures of such a phase transition.

3.5 Probing the vortex topological phase transition

Knowledge of the vortex topological phase transition motivates one to try to measure it. Measuring the pres-

ence/absence of Majorana zero-modes at surfaces has proven to be a great challenge for the already discussed

reasons regarding the identification of the zero energy peak signatures as originating necessarily from Majorana

fermion physics. Also, we have understood now that a bulk criterion is available to identify the topological
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well within the resolution of STM.

To test for a ’proof of principle’ mechanism, we simplify imagining a sample thin enough so that only the

2D behavior of the modes is important while large enough so that the Majorana surface modes do not hybridize

strongly. STM probes the local density of states (LDOS) at a given region of a sample’s surface. The LDOS is

defined by

ρ (r, ω) =
∑

m,σ,l

∣
∣
∣

〈

ǫm

∣
∣
∣ψ

†
σ,l (r)

∣
∣
∣N0

〉∣
∣
∣

2

δ (ω − ǫm) , (3.73)

where |N0〉 is a N0-particle ground-state, |ǫm〉 is an (N0 + 1)-particle excited state (with generic quantum

numbers m) and ψ†
σ,l (r) is an electronic state creation operator at level l in sector σ. Using our vortex-modes

eigenbasis, this can be written, taking into account the effects of the vortex fluctuations perturbatively in terms

of a self-energy, as

ρ (r, ω) =
∑

σ=±
ρσ (r, ω) (3.74)

ρσ (r, ω) = − 1
π
Im
∑

l

|uσl (r)|2
ω − Eσl − Σσl + iǫ

. (3.75)

=
∑

l

|uσl (r)|2 δ (ω − Eσl − Σσl (ω)) . (3.76)

From (3.59) and (3.60), we see explicitly that, when looking at r = 0, only states with l = 0 and l = 1

contribute (notice only the uσl part of the Nambu spinor contribute to the LDOS). The state from l = −1

only starts contributing away from r = 0, as well as all the other states, and at a distance which goes as 1/kF
due to the wavefunction dependence above. This means, also, that the LDOS spectrum at the origin must be

particle-hole asymmetric in doped topological insulators. This is an unexpected signature of the unusual physics

induced by spin-orbit coupled orbitals from the doped topological insulator regime.

The idea of studying the effects of vortex position fluctuations in the LDOS in the vicinity of a vortex has

been considered before in the context of d-wave superconductivity. In that case, it is believed that a verified

suppression of a central vortex peak in the LDOS is due to the possibility of such position quantum fluctuations.

Vortex masses scale with the cross-sectional area of a vortex core, thus with the square of the coherence length

∼ ξ2. The small coherence lengths in cuprate superconductors imply that they are prime candidates to the

verification of this physics. The anisotropy of the superconducting gap in that case, however, makes the problem

much more demanding [65, 66].

For us, the simple s-wave nature of the superconducting phase, together with the larger coherence length,

implies the possibility of a simple perturbative treatment of the problem, which would be a poor approximation

for the d-wave case. The larger coherence length, however, also implies that the influence of the vortex motion

in our system is expected to be small. We verify this, nevertheless, with a two-fold motivation: first, as a proof

of principle that the topological phase transition is sensitive to such “external” fluctuations; second, as we know

that the vortex physics can be mapped to a 1D chain topological system, one can envisage mapping the effects

of the vortex position fluctuations into the context of 1D chains too, looking for a different realization of these

phenomena. We focus on effects of quantum zero-point motion of the vortex.

3.5.1 Fluctuating vortex model

Superconductivity and the vortex quantum phase transition (VQPT) in doped topological insulators may be

understood in the weak pairing limit (ξkF ≫ 1, where ξ is the SC coherence length)[25]. In this regime, a

gradient expansion can be deployed to study the effects of the fluctuating vortex position in the low-energy

spectrum[65]. We are, formally, treating the influence of the phase fluctuations of the superconducting order

parameter on the vortex LDOS encapsulating them in a collective coordinate, the position of the vortex.

We start with an action of the form S = SBdG + Svortexeff . The first term is a Bogoliubov-de Gennes (BdG)
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action for the superconducting doped TI,

SBdG =
1
2

ˆ

d2rdτΨ† (∂τ +HBdG) Ψ (3.77)

where HBdG corresponds to (3.22), now with a displaced position for the vortex, as

HBdG =

[

HTI − µ ∆ (r − R (τ))

∆† (r − R (τ)) −HTI + µ

]

. (3.78)

Here µ is the chemical potential and the effective low energy 3D TI Hamiltonian is given by (3.17) as before.

The Nambu spinor again reads Ψ =
(
ψ, isyψ

†)T where ψ = (ψA↑, ψA↓, ψB↑, ψB↓). A, B are orbital indices

and τi and si Pauli matrices act on orbital and spin Hilbert spaces, respectively. The superconducting pairing

∆ (r − R (τ)) contains a vortex profile centered at a fluctuating position R (τ) whose dynamics is governed

by[65]

Svortexeff =
mv

2

ˆ

dω

2π
R† (iω)

(

ω2 + ω2
0 ωcω

−ωcω ω2 + ω2
0

)

R (iω) . (3.79)

Physically, the action (3.79) describes a particle of mass mv oscillating in an harmonic trap of frequency ω0

which depends on the properties of the trapping potential [65]. This oscillator frequency dictates the qualitative

features of the energy peak distribution of the LDOS. Finally, ωc corresponds to a Magnus force acting on the

vortex[64]. The frequency ωc will be shown to play an essential role, introducing an energy scale for the chemical

potential in which we have distinguished signatures of the VQPT in the system’s LDOS.

To capture the coupling between electronic excitations and vortex fluctuations, we expand the superconduct-

ing pairing around the vortex rest position ∆ (r − R (τ)) ≈ ∆ (r) − ∂r∆ (r) · R (τ). Again, this approximation

is valid at weak-coupling [65], which is also the regime of validity of Hamiltonian (3.78). Within this formalism,

the full problem is described by a perturbative action S = S0 + Svortexeff + Sint. S0 is given by (3.77) with the

BdG Hamiltonian in the stationary vortex limit, R (τ) = 0 (explicitly given in (3.22)). The interaction term is

given by

Sint = −
ˆ

d2rdτR (τ) · Ψ†
(

0 ∂r∆

∂r∆† 0

)

Ψ. (3.80)

The interaction between vortex modes and the fluctuations in the vortex position leads to a self-energy correction

to the energy of the CdG modes.

Effective vortex modes interactions - self-energy Here we derive the effective interactions among vortex

modes. We further show that they can be perturbatively incorporated in the energy spectrum via a self-energy

term.

Assuming a singlet intra-orbital pairing for doped topological insulators, the VQPT was found originally by

an exact diagonalization of lattice toy models and a semi-classical study of the BdG mean-field Hamiltonian

[25], as well as numerically solving the self-consistent BdG equations [26]. In order to study the effects of

vortex fluctuations on the LDOS, it is convenient to use our basis basis (3.59) and (3.60) which diagonalizes

the Hamiltonian in the limit of a static vortex.

We expand the Grassmann fields in terms of eigenvectors of the static-vortex BdG Hamiltonian H0
BdG

as Ψ =
∑8
q=1

∑

ln χ
q
ln (r)ψqln (τ). The eight arising bands obey H0

BdGχ
q
ln (r) = Eqlnχ

q
ln (r) where l and n

labels conserved quantum numbers. At weak coupling, we further project into the two bands which cross

the doubly degenerate Fermi surface of HTI . Labeling these states by σ ≡ ±, we have, at low energies,

Ψ ≈ ∑ln χ
+
ln (r)ψ+

ln (τ) + χ−
ln (r)ψ−

ln (τ) with χ±
ln given by (3.59) and (3.60).

To study the VQPT we consider the lowest energy vortex modes. These are the CdG modes and allow fixing
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the label n → nCdG, which we drop from now onwards. The two sectors (labeled by σ = ±) are connected by

particle-hole (PH) conjugation as Ξχ+
l = χ−

−l. The energies of the CdG vortex modes in this case are as before

E±
l =

∆2

EF

(

l ∓ 1
2

± Φb (µ)
2π

)

, (3.81)

so that E+
l = −E−

−l. Here Φb (µ) is the Berry phase calculated around the Fermi surface on the curve with zero

wavevector along the vortex [25]. As the chemical potential increases, the Fermi surface enlarges and Φb (µ)

varies from 0 to 2π, defining a critical chemical potential such that Φb (µC) = π.

In terms of the CdG eigenstates, equation (3.80) is written

Sint = −
∑

l,l′ ,σ

ˆ

dτψ̄σl (τ)ψσ
l′

(τ) R (τ) · Mσ
l,l′
, (3.82)

where

Mσ
l,l′

=
ˆ

d2rχσl (r)†
(

0 ∂r∆

∂r∆† 0

)

χσ
l′

(r) . (3.83)

We integrate out the vortex modes. For this, we start with the vortex action (3.79) and work at zero-

temperature. Noticing that R† (iω) = R (−iω), we introduce a basis R± (iω) = Rx(iω)±iRy(iω)√
2

which diagonal-

izes the Lagrangian density as

Svortexeff =
ˆ

dω

2π

(

R†
− (iω) , R†

+ (iω)
)

D
v
0 (iω)−1

(

R− (iω)

R+ (iω)

)

, (3.84)

with

D
v
0 (iω) =

(

D−1
− 0

0 D−1
+

)

(3.85)

and the Green’s functions D∓ (iω) = mv

2

(

(ω ± iωc/2)2 + ω2
v

)

. This sets the two important energy scales

dictated by the vortex fluctuations as ωc, from the Magnus force, and ωv =
√

ω2
0 + ω2

c/4, from the harmonic

trap.

As discussed in the former section, the low-energy modes split into two Hilbert space sectors related by a

z-mirror/particle-hole symmetry. Each sector is subject to an effective potential arising after the integration of

the vortex 0D field theory. From equations 3.79 we may write:

e−V σ
eff [ψ̄σ

l ,ψ
σ
l ] ∝

ˆ

D [R] e
−Svortex

eff +
´

dτ
∑

l,l
′ R(τ)·Mσ

l,l
′ ψ̄

σ
l (τ)ψσ

l
′ (τ)

. (3.86)

Rewriting the scalar products in terms of the R± (iω) coordinates and using(3.49) reduces the matrix ele-

ments to Mα;σ = 1
2 (Mx + αiMy), with α = ±, where

M+;σ

l,l′
=
(

M−;σ

l′ ,l

)∗
=
ˆ

d2r
[

uσl (r)†
∂z̄∆vσ

l′
(r) + vσl (r)†

∂z̄∆†uσ
l′

(r)
]

. (3.87)

This allows for simple, although tedious, integration over the bosonic fields. As a result, the fermionic self-

interaction mediated by the fluctuating vortex position modes arises as

V σeff
[
ψ̄σl , ψ

σ
l

]
=

1
2

∑

l,l′ ,n,n′

ˆ

dω̃

2π

ˆ

dν̃

2π

ˆ

dν̃
′

2π
×

ψ̄σl (iν̃ + iω̃) ψ̄σn
(

iν̃
′ − iω̃

)

V σ
l,l′ ,n,n′ (iω̃)ψσ

l′
(iν̃)ψσ

n′

(

iν̃
′
)

(3.88)
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where

V σ
l,l′ ,n,n′ (iω̃) = − 1

mv

∑

α=±






(

Mα;σ

l,l′

)†
Mα;σ

n,n′

(

(ω̃ + αiωc/2)2 + ω2
v

)




 . (3.89)

The interaction potential (3.89) displays a retarded interaction. Effectively, this is similar to a “screened”

Coulomb interaction in frequency space. The GW approximation [76] then amounts to computing the spectral

effects of the ’screened’ interactions via a 1-loop self-energy

Σσl (iω̃) = −
∑

l′

V σ
l,l,l′ ,l′

(0)
ˆ

ω

G0σ
l (iω)

+
∑

l′

ˆ

ω

V σ
l,l′ ,l′ ,l

(iω̃ − iω)G0σ
l′

(iω) . (3.90)

The first term vanishes. The second must be considered with care as the pole structure is sensitive to the

structure of the energy levels. An integration over the complex plane gives the self-energy

Σσl (iω̃) =
∑

l′

∑

α=±

Aα;σ

l;l′
(

iω̃ −
(

sgn
(

Ξα;σ

l′

)

ωv + Eσ
l′

)

− αωc/2
) , (3.91)

where Aα;σ

l;l′
≡

∣
∣
∣M

α;σ

l,l
′

∣
∣
∣

2

mvωv
and Ξα;σ

l′
≡ Eσ

l′
+ αωc/2. The self-energy is real.

We can calculate the matrix elements analytically, making use of the Feynman-Hellman relations, adapted

to our Hamiltonian and in a finite cylinder geometry. A long calculation, which we omit, making full use of

Bessel function relations gives finally

M+;+

l,l′
=

δl′ ,l+1

2

∑

j,j′

clj

[(
E+
l+1 − E+

l

)
Kl+
j,j′ − Ll+

j,j′

]

cl+1j′

+
1
2

∑

j,j′

dlj

[(
E+
l+1 − E+

l

)
Kl−
j,j′ − Ll−

j,j′

]

dl+1j′ (3.92)

where we remember that the clj , dlj coefficients come from the numerical diagonalization giving (3.59) and

(3.60) with n = nCdG and with

Kl±
j,j′ = sgn (l + 1/2) (−1)j−j

′ αjlαj′ l+1

R
(

α2
j′ l+1

− α2
jl

)

M±
jlM±

j′ l+1
+
(
α

j
′

l+1

R

)2

√
((αjl

R

)2
+ M±

jl

)((
α

j
′

l+1

R

)2

+ M±
j′ l+1

) , (3.93)

and

Ll±
j,j′ = sgn (l + 1/2) (−1)j−j

′ 2ǫαjlαj′ l+1

R3

(
(l∓1)(l+1∓1)

R2 + M±
jlM±

j′ l′

)

√
((αjl

R

)2
+ M±

jl

)((
α

j
′

l+1

R

)2

+ M±
j′ l+1

) . (3.94)

Here, R is the finite cylinder radius, αjl is the j-th zero of the l-th Bessel function and M±
jl = m2

j,l ∓
mj,l

√

m2
j,l +

(αjl

R

)2
with mj,l = m− ǫαjl/R. The other matrix elements may be found from

Mα;−
l,l′

= −Mα;+

−l′ ,−l (3.95)

M−;σ

l,l′
=

(

M+;σ

l′ ,l

)∗
≡
(

M+;σ

l,l′

)†
. (3.96)
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In sum, vortex fluctuations generate the following self-energy for CdG vortex modes which we calculate

using the GW approximation[76]

Σσl (iω̃) =
∑

l′ ,α=±

Aα;σ

l;l′
(

iω̃ −
(

sgn
(

Ξα;σ

l′

)

ωv

)

− Ξα;σ

l′

) (3.97)

Here Aα;σ

l;l′
≡

∣
∣
∣M

α;σ

l,l
′

∣
∣
∣

2

mvωv
are reduced matrix elements with Mα;σ

l,l′
= 1

2 (Mx + αiMy)
σ
l,l′ and Ξα;σ

l′
≡ Eσ

l′
+ αωc/2.

For unit vorticity, angular momentum conservation implies that l is connected only to l
′

= l + α1 by such

interactions. The energy scale introduced by ωv ≡
√

ω2
0 + ω2

c/4 ( and dominated by ω0 as aforementioned),

represents a “magneto-plasma” frequency in an Einstein model [65].

Through the perturbative interaction, the energy density profile of CdG modes is modified with part of the

spectral weight from ω = Eσl being transfered to new “satellite” peaks in the LDOS[65] localized at the solutions

of

ω − Eσl − Σσl (ω) = 0. (3.98)

Both the spectrum Eσl and the profile of uσl (r) dramatically change the phenomenology described by (3.76)

when the parent metallic state of the superconductor comes from doped TIs, as compared with ordinary metals.

Tunneling Conductance Analysis STM experiments measure the local tunneling conductance of a system.

The latter is found, at low temperatures, by computing the convolution of the LDOS (3.76) with the derivative

of the Fermi distribution function as

G (r, ω) = −G0

ρ0

ˆ

dω
′

ρ
(

r, ω + ω
′
)

f
′
(

ω
′
)

. (3.99)

The normalization constant assumes an STM tip with constant DOS ρ0 = me/2π (for a free 2D electron gas)

with the corresponding tunneling conductance G0, and f (ω) is the Fermi-Dirac distribution. At very low

temperatures, the tunneling conductance is essentially a measurement of the LDOS, however still smoothed by

the finite temperature effects.

Given the atomic level resolution of STM, we can safely focus at the density of states at the vortex core

r = 0. As seen in (3.59) and (3.60), the wavefunction components may be expanded in terms of Bessel functions.

In particular, at r = 0, only Bessel functions of order zero have non-zero amplitude while all the other Bessel

functions vanish. From our Fourier-Bessel expansion of the CdG modes above, only l = 0 andd, as a result of

spin-orbit coupling, l = 1 modes have finite contributions in uσl (r) at the origin.

Focusing then on the contributions of l = 0, 1, let us study what are the consequences of equations (3.97)

and (3.98). From angular momentum conservation, M+;σ

l,l′
= δl′ ,l+1M

+;σ
l,l+1 and from A−;σ

l;l′
= A+;σ

l′ ;l
we can read

the corresponding result for α = −. These simplifications allow us to reduce the self-energy contributions to

just a couple of relevant pieces,

Σσ0 (ω) =
A+;σ

0;1
(
ω − sgn

(
Ξ+;σ

1

)
ωv − Eσ1 − ωc/2

) +
A+;σ

−1;0
(
ω − sgn

(
Ξ−;σ

−1

)
ωv − Eσ−1 + ωc/2

) (3.100)

and

Σσ1 (ω) =
A+;σ

1;2
(
ω − sgn

(
Ξ+;σ

2

)
ωv − Eσ2 − ωc/2

) +
A+;σ

0;1
(
ω − sgn

(
Ξ−;σ

0

)
ωv − Eσ0 + ωc/2

) . (3.101)

To find the positions of the peaks, one solves (3.98). The solutions are clearly sensitive to the sign of

Ξα;σ

l′
≡ Eσ

l′
+αωc/2. As we do not have an estimate for the actual strength of the Magnus effect, to be definite,

we take ωc = η∆2

µ . It is a simple job to notice that sgn
(
Ξ+;σ

1

)
= sgn

(
Ξ+;σ

2

)
= + and sgn

(
Ξ−;σ

−1

)
= −, for

any value of the chemical potential. The l = 0 states have energies Eσ0 = σ ∆2

EF

(

− 1
2 + φ(µ)

2π

)

. These energy

levels may flow from negative to positive values (and vice versa) by changing the chemical potential, evolving
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the Berry phase from 0 to 2π. The sign of Ξ−;σ
0 thus does depend on µ. This allows one to define a value µ̄σ at

which sgn
(
Ξ−;σ

0

)
changes. The structure of Σσ1 (ω) depends crucially on this. From the CdG spectrum (3.81),

we set Ξ−;σ
0 = 0 explicitly, finding

− σ +
(

σ
φ (µ̄σ)
π

− η

)

= 0

⇒ φ (µ̄σ)
π

= 1 + ησ, (3.102)

where φ (µ) is the Berry phase. As this phase grows monotonically from 0 to 2π, it is clear that the sector

σ = + has a sign change at values of µ larger than those of the σ = − sector, as long as η 6= 0. In sum, this

determines when each set of peaks will jump as function of µ.

From this discussion we see there is a change of sign in the factors of ωv in the self-energy given in 3.97

when l
′

= 0, which determines the energies of the satellite peaks. As a result, the topological phase transition

manifests itself by a discontinuous change in the density of states by energies of order ωv to energies of order

−ωv. As we desired, the physics of the topological phase transition is sensitive to the vortex fluctuations, and

vice-versa.

One also notes in passing that the Magnus force term associated with the vortex motion, whose amplitude is

proportional to ωc, breaks the z-mirror symmetry of our 2D planar limit. This symmetry also connects the two

particle-hole related sectors of the CdG modes. As a result, the discontinuous transition of energy of the CdG

modes from the two σ sectors does not happen simultaneously at the same value of doping for both sectors. The

content of this claim is what equation (3.102) implies, remembering that η controls the strength of ωc relative

to the CdG minigap. This effect is essential for the change in the LDOS to be seen in this context, as it provides

an energy window over which the density of states at the energy of vortex oscillations is remarkably modified

by the topological phase transition. As we see, the positions of the satellite peaks will move discontinuously,

but the ± sectors compensate each other through the phase transition. The two sectors have “jumping” peaks

which exchange place as they jump at the same value of the chemical potential if η = 0 in (3.102). For finite η

the jumping of the peaks from each sector can be potentially seen at different values of the chemical potential.

We stress that this jumping peaks physics are a manifestation of the closing and reopening of the CdG modes

gap as function of the chemical potential. It is a measurement that enforces that the CdG modes spectrum

display a very specific behavior as function of doping and, knowing that the gap closes and reopens points to a

signature of the topological phase transition for the non-interacting system. It is also important to note that for

other CdG modes (such as the mode with l = −1 whose maximum amplitude is at 1/kF ≈ 10Å away from the

center of the vortex) the discontinuous changes in satellite peaks will also happen. Given the spatial resolution

of STM, however, the different modes should be resolvable in the local tunneling conductance.

Figure 3.6 summarizes the main discussion above. It shows the differential conductivity at the vortex center

G (r = 0, ω). The numerical values are the same from the previous diagonalization and were chosen to make

the physics easier to discuss (they do not correspond to actual material values as we know that physically these

effects are indeed weak). The large peaks closest to ω = 0 correspond to ω ≈ Eσl=0,1 demonstrating that the

CdG LDOS spectrum at the vortex core display a particle-hole broken profile, with only peaks from l = 0 and

l = 1 (peaks are shifted to zero and positive energies without their negative ω counterparts). The inset displays

the satellite peaks. Angular momentum conservation implies that each non-interacting energy level unfolds into

a set of three (faint) peaks.

We present the tunneling conductance for three ranges of chemical potential µ < µ̄±, in blue, and µ̄− <

µ < µ̄+, in red, and µ > µ̄± in blue again, which appears to be identical to µ < µ̄±. This happens because the

separation of the central peaks from l = 1 is E+
1 −E+

1 = δ(−1/2 + φ(µ)/2π), which cannot be resolved close to

the phase transition (just as the peaks from l = 0 cannot be resolved at this situation). Having a finite ωc is

crucial to observe all peaks and the discontinuous effects of the topological phase transition. The pattern in the

LDOS should be of, for each l and σ sector, a large central peak located at Eσl with two satellite partners. The

partners are offset approximately by ±Ωσl with Ωσl =
√

(ωv + δ + ωc/2)2 + 2A+;σ
l . In our case, a total of 12
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Figure 3.6: Tunneling conductance for µ < µ̄±, and µ > µ̄± in blue, and µ̄− < µ < µ̄+, in red. The large central
peaks correspond to ω ≈ E±

l=0 and ω ≈ E±
l=1 (the energies of the CdG modes for stationary vortex). The inset

displays the effects of vortex fluctuations.The smaller sattelite peaks appear at energies close to ≈ ±ωv. Red
curves correspond to µ < µ̄− or µ > µ̄+.

peaks are expected for each value of the chemical potential (3 from l = 0, another 3 from l = 1 and twice this

due to the two sectors), not all of them being resolvable due to thermal effects. The strength of the respective

satellite peaks is suppressed by a ξ−5 factor, where ξ is the coherence length [65]. This is a general consequence

of our perturbative treatment and is also the reason why the satellite peaks are so faint for our system with

large coherence length.

The jumping behavior develops in the l = 1 satellite peaks (the rightmost small peaks at both negative and

positive frequencies as well as the lone blue peak.) This is evidenced by the solitary blue peak at positive ω.

It corresponds to the contribution coming from ω = E−
1 − Ω−

1 (right most peaks at negative energy), whose

position jumps from this value by approximately 2ωv as the chemical potential pumps the negative energy state

at E−
0 into positive energies after crossing µ̄−. Similarly, when µ moves above µ̄+, the peak from ω = E+

1 + Ω+
1

jumps by −2ωv. In appendix A we demonstrate the approximate positions of the l = 1 peaks analytically.

Concerning the magnitude of the Magnus effect, if η < 1, the effects from the Magnus force are sub-dominant

to the CdG energy gap and the sensibility to which one needs to tune the (zero-temperature) chemical potential

may again be beyond technical realization at the current time. If η > 1, on the other hand, as the evolution of

the Berry phase is from 0 to 2π, the critical chemical potentials µ̄σ may not be captured as one tune µ and one

will be always bound to the regime of µ̄− < µ < µ̄+, which is similar to the standard s-wave case (except for

the multiplicities of peaks and apparent breaking of the PH constraint.) This seems to critically constrain the

actual visualization of these effects in practice.

3.5.2 1D wire network

As a final analysis, we will condense our findings about effective Kitaev wires in superconducting vortices and

the effects of the vortex quantum motion in the vortex modes in a single scenario. We would like to use our

learnings to speculate about the realization of signatures of topological phase transitions by quantum motion

in truly 1D systems. We will thus use our concrete mapping between the vortex in superconducting doped

topological insulators and Kitaev wires in the perturbed model of (3.80). We will clearly identify the important

ingredients necessary to realize the discussed phenomena in the context of 1D topological systems.

We go back to our discussion following (3.58). Now we also keep the vortex fluctuations to first order in the



CHAPTER 3. VORTEX MODES IN SUPERCONDUCTING DOPED TOPOLOGICAL INSULATORS 60

gradient of the superconducting pairing. We have

HBdG = H0
BdG,⊥ +H0

BdG,z (3.103)

−R (τ) · [Λ · ∂r∆ (r)]

≡ H0
BdG +Hz + V (r) . (3.104)

We are going to project this onto the lowest energy sectors χ±
ln (r) from (3.59) and (3.60). At finite z, we

have χ±
ln (r) → χ±

lnCdG
(r) f±

l (z), choosing the CdG states with n = nCdG. We will project the radial part the

Hamiltonian to find out effective equations of motion for f±
l . Considering the ± sectors then we have

H̃ll′ = Proj [HBdG]ll′ (3.105)

=

(

E+
l 0

0 E−
l

)

δll′ (3.106)

+

(

H++
zll′

H+−
zll′

H−+
zll′

H−−
zll′

)

(3.107)

+

(

V ++
ll′

0

0 V −−
ll′

)

. (3.108)

We already know the results of projecting H0
BdG,⊥ +H0

BdG,z onto the vortex bound states basis. Now we project

the vortex fluctuation terms. Notice that as
〈
χ+
l |ρx|χ−

l

〉
=
〈
χ+
l |ρy|χ−

l

〉
= 0, the fluctuating vortex potential

becomes diagonal with respect to the ± sectors. This result is the same as we had found in our considerations

at vanishing kz and we already know what this term looks like,

(

V ++
ll′

0

0 V −−
ll′

)

= R (τ) · Mσ
l,l′

(3.109)

with

M+
l,l′

=
ˆ

d2r
[

u+
l (r)†

∂r∆v+
l′

(r) + v+
l (r)†

∂r∆†u+
l′

(r)
]

(3.110)

M−
l,l′

=
ˆ

d2r
[

v+
l (r)†

∂r∆u+
l′

(r) + u+
l (r)†

∂r∆†v+
l′

(r)
]

. (3.111)

Due to the vortex structure in ∆, we are only coupling l to l
′

= l ± 1.

Adding up the matrix elements from 3.109 to the Kitaev-chains network from 3.71 above gives the projected

Hamiltonian for a set of, now hybridized, wires network

H̃ll′ =

(

E+
l − ǫ+l ∂

2
z −i∆̃l∂z

−i∆̃l∂z E−
l + ǫ−l ∂

2
z

)

δll′ (3.112)

+

(

R (τ) · M+
l,l′

0

0 R (τ) · M−
l,l′

)

. (3.113)

For Hermiticity M±∗
l,l′

= M±
l′ ,l

. Thus, the vortex fluctuation physics gets mapped to a system of coupled 1D

wires.

Likewise as above, the fluctuations may be written

(

R (τ) · M+
l,l′

0

0 R (τ) · M−
l,l′

)

= (3.114)

R (τ) ·
(

M+
l,l′

+ M−
l,l′

2

)

ρ0 + R (τ) ·
(

M+
l,l′

− M−
l,l′

2

)

ρz.
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H l
Kit = −µl

∑

j

cl†j c
l
j − 1

2

∑

j

(

tlc
l†
j c

l
j+1 + ∆le

iφlcljc
l
j+1 +H.c.

)

, (3.115)

where µl are the chemical potentials, ∆l are superconducting pairings, with φl are the corresponding phases

and tl the hopping amplitude for each wire. The index l = 0, 1 labels the two chains. Upon BdG doubling, it

is easy to demonstrate that this reduces to (3.112) in k-space, without the ρ0 term.

As for the fluctuation part of the Hamiltonian, one may have simply

U =
∑

j

c0†
j Φ (τ) c1

j +H.c., (3.116)

for a fluctuating coupling Φ. This should lead to similar self-energy corrections to the wires energies as (3.100)

and (3.101), namely

Σσ0,k (ω) =
Aσ0;1

ω − sgn
(

E+;σ
1,k

)

ωv − Eσ1,k

(3.117)

and

Σσ1,k (ω) =
Aσ1;0

ω − sgn
(

E−;σ
0,k

)

ωv − Eσ0,k

, (3.118)

where σ gives the two Nambu components. The fluctuation frequency ωv of Φ determes the new large energy

scale. To find the positions of the peaks, one solves again

ω − Eσl,k − Σσl,k (ω) = 0 (3.119)

which now leads to a single satellite peak for each energy level. This situation is illustrated in Figure 3.7.

Importantly, the effects of a Magnus force analogous term are not necessary in the 1D scenario and, hence,

a single fluctuating parameter is enough (for the vortex position, notice we had two, positions x and y of the

vortex in the plane.) This happens because one may - by ramping up the chemical potential transversely to

the wires, for example - keep a single wire well away from the phase transition with a large gap. Suppose, for

example, wire l = 1 is kept with a large gap. In this case, the satellite peaks from the two sectors in this wire

will stay always far away from each other. This way, by tuning the chemical potential from wire l = 0, one can

verify its phase transition by probing for the jumping in the satellite peaks of wire l = 1.

As a final comment, out of the p-wave superconductivity context, one might work similarly with a set of

Su-Schrieffer-Heeger spinless wires. In this case, the Hamiltonian will be similar to as the BdG Hamiltonian

considered so far, with the caveat that the Nambu spinor now should be substituted by an ordinary spinor for

a sublattice pseudo-spin degree of freedom. The gapping parameters in this case will be given by staggered

hopping amplitudes and chemical potentials. Formally, the problem is the same and one may extend the results

discussed so far to this situation.

3.6 Conclusions

Quantum fluctuations of vortex positions are ubiquitous and should manifest themselves at very low tempera-

tures. We found out that, in the context of doped three dimensional topological insulators these fluctuations

may be exploited to magnify the signatures of topological vortex quantum phase transitions. This displays, at

the LDOS at the vortex core, energy peaks which discontinuously jump as function of the chemical potential.

This finding also determined characteristic features of the low-energy Caroli-de Gennes-Matricon modes in this

system which make them stand out as very distinct from standard s-wave Caroli-de Gennes modes, such as

their spatial distribution and effects in the LDOS at the vortex core. Finally, our results also point to the

possibility of capturing the effects of Magnus forces acting on the vortices, whose magnitude is directly related

to the chemical potential values in which the topological phase transition induces peak position shifts.
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The frequency of the position fluctuations plays an important role as it sets the scale of the peak jumps. In

the context of high temperature superconductors, there are reports of this energy scale going up to meV [79]. It

is important to point out that this frequency can be controlled to some extent and indeed increased depending

on the properties of the vortex pinning potential. Recent developments in doping TIs with Niobium, which leads

to the formation of magnetic moments in the bulk superconducting TI, can provide stronger pinning and so

larger frequencies for the vortex fluctuation [80]. Measured physical values of the vortex fluctuation frequencies

and Magnus force frequency in this system are not known to us at this point.

Cryogenic STM measurements are fundamental to uncover the discussed signatures. Situations with lighter

and smaller vortices, whose zero-point motion effects would be stronger, could also be arranged as the vortex

size is known to be strongly sensitive to temperature and magnetic field strength [81]. For vortices of too minute

sizes, however, the Taylor expansion method deployed here to derive the interactions is not precise. In such

cases, different approaches to the problem, such as used in [66], are necessary in order to obtain trustworthy

predictions. Also, a proper account for the effects of dispersion along the vortex may need detailed attention.

It is beyond the scope of this work to consider these.

Finally, we studied the local physics along the vortex core. Projecting the Hamiltonian with the Caroli-de

Gennes-Matricon wavefunctions we demonstrated explicitly that the vortex line behaves as a Kitaev chain,

with the corresponding topological phase transition. Further studying how the vortex position fluctuations are

projected onto this system allowed us to find some key ingredients which one may use to obtain new signatures

of topological phase transitions in one-dimension. A promising scenario lies in the study of the density of states

upon fluctuations of the transverse coupling between a pair of neighboring gapped wires. Again, effects of

dispersion along the wires still deserve proper attention.

This completes our thorough study of electronic vortex bound states in superconducting doped topological

insulators.



Chapter 4

Vortex modes and topological

superconductivity

We now move into the subject of topological superconductivity. As discussed, superconductors are gapped phases

of matter and admit a topological classification of their distinct Hamiltonians at the mean-field level. Up to now

we have discussed the 1D Kitaev p-wave superconducting chain as an example, as well as a manifestation of this

same system in the context of doped topological insulators. We now turn to actual topological superconductivity

in 3D.

We will stick to three spatial dimensions under time-reversal invariance, known as class DIII and Z classified

(check the table at the introduction for reference). Our goal is to study the nature of the vortex bound modes

in these systems, then following to a proposed effective (topological in nature) field theory description of this

phase [34]. We will see that when both points of view are brought together, microscopy and field theory do not

describe the same physics and a paradox arises. We offer a possible explanation for the paradox, based on the

accepted notion that effective topological field theories should capture the most basic physical properties of a

topological system, even in the interacting limit. Our approach, as usual, will not be general, considering the

most arbitrary superconducting mean-field Hamiltonians. Instead we will introduce the important points out

of a physical example and move from there.

4.1 Time-reversal invariant topological superconductivity

In three dimensions, under time-reversal invariance, topological superconductors consist of Hamiltonians in the

so-called class DIII. These Hamiltonians are Z classified, the invariant counting the number of Majorana-Dirac

cones on the sample 2D surfaces. Line defects - vortices - in these systems break time-reversal invariance and

Hamiltonians in the presence of such defects also admit a topological classification [12]. They are then in class

D, due to the broken time-reversal invariance and are again integer classified, the integer counting the number

of Majorana chiral modes along a given vortex.

A representative Hamiltonian in class DIII is given by

H =
1
2

∑

k

(

c†
k
, c−k

)
(

hk ∆k

∆†
k

−hT−k

)(

ck

c†
−k

)

(4.1)

where hk, ∆k are N × N matrices respecting T †h∗
k
T = h−k and T †∆∗

k
T = ∆−k . Here T = T K is the time-

reversal operator with K being complex conjugation and T is the corresponding time-reversal Bloch matrix, a

representation for which will be shown specifically below.

A topological invariant characterizing such Hamiltonians can be simply defined in the weak pairing limit

[82]. One assumes that the pairing strength is small as compared to the kinetic energy hk. This justifies

studying the low energy physics close to the different Fermi surfaces. The topological invariant characterizing

64
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the Hamiltonian in this case may be computed as

N =
1
2

∑

n

C1nsgn (∆nk) (4.2)

where C1n are so-called the Chern numbers,

C1n =
1

2π

ˆ

Σn

dΩij (∂iaj − ∂jai) , (4.3)

fixed by the momentum-space Berry phase with connection ai = 〈nk| ∂ki
|nk〉. Most importantly,

∆nk = T ({〈nk|}) ∆k |nk〉 , (4.4)

is a projected superconducting pairing at the Fermi surface of the non-interacting Hamiltonian. The choice

T ({〈nk|}) for wavefunction at −k avoids the ambiguity in gauge choice of the wavefunction, making ∆nk a

real quantity. This quantity does not change sign, on a given Fermi surface, as function of k in a fully gapped

superconductor (notice that there is an ambiguity in defining T → −T . This makes topological superconductors

with N and −N equivalent physically.)

The minimal model now is given by a 2 × 2 (in spin space) p-wave Hamiltonian

hk =
k2

2m
− µ+ ασ · k (4.5)

∆k = i∆0σyσ · k. (4.6)

Here, α 6= 0 lifts the degeneracy between the two Fermi surfaces but is not a mandatory parameter. The

time-reversal Bloch matrix is implemented by T = iσy while Nambu particle-hole comes from ρx.

As a check for time-reversal symmetry,

T †h∗
kT = −iσy

[
k2

2m
− µ+ ασ · k

]∗
iσy

= σy

[
k2

2m
− µ+ ασ

∗ · k

]

σy

=
k2

2m
− µ− ασ · k

= h−k. (4.7)

Similarly,

T †∆∗
k
T = −iσy [i∆0σyσ · k]∗ iσy

= σy [i∆0σyσ
∗ · k]σy

= − [i∆0σyσ · k]

= ∆−k. (4.8)

Physically, if α = 0, this is the Helium-3B Hamiltonian [83]. That works in the context of superfluidity.

We will keep in mind a solid state realization of this Hamiltonian, for example in the context of the recently

discovered Weyl semi-metallic systems [84]. For this, we may enforce the weak-pairing condition, looking for a

minimal low-energy description. We may, thus, diagonalize the normal part of the BdG Hamiltonian above -
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The states then satisfy σ · k |k±〉 = ± |k| |k±〉. This fixes the computation of the Chern number automatically

and C1,± = ±1. As for the “time-reversal projected pairing,

∆±,k = T ({〈±,k|}) ∆k |±,k〉
= 〈±,−k| (−iσy) i∆0σyσ · k |±,k〉

= ∓ ∆0k
2
z

2
(
k2
x + k2

y

)4 , (4.17)

which, as promised, has definite sign throughout the k-space, fixed by the sign of ∆0 (an extra minus sign can

be absorbed in the definition of the time-reversal operator, as discussed.)

Now that we know that the weak-pairing limit of the BdG Hamiltonian generated by (4.5) and (4.6) indeed

satisfies our topological criteria, we may push the description of this system at low-energy further. First we

have a “regular” projection of the pairing terms (i.e. no application of time reversal operation, as in (4.4), just

regular perturbation theory)

∆k±
F

=
〈
±k±

F

∣
∣∆kF

∣
∣±k±

F

〉

=
〈
±k±

F

∣
∣ i∆0σyσ · kF

∣
∣±k±

F

〉

= ±∆0k
±
F iσy. (4.18)

The metallic Hamiltonian, then projected at each band E±
k

close to its respective Fermi energy, k = k±
F + δk,

gives to first order in the momenta

(

E+
k

E−
k

)

≈




(1 + αm) k

+
F

·δk

m

(1 − αm) k
−
F

·δk

m





=

(

(1 + αm)
[
v+
F k − µ+

]

(1 − αm)
[
v−
F k − µ−]

)

(4.19)

where µ± ≡ v±
F k

±
F . Linearly dispersing Fermi surfaces with non-trivial Chern numbers are equivalent to Weyl

fermions (“half” a massless Dirac fermion.) The present Fermi surfaces are clear examples, with fixed spin

helicity.

Renaming the two Fermi surfaces by + ≡ R and − ≡ L, the weakly-coupled and low-energy limit of the

Hamiltonians (4.5) and (4.6) is then summarized by the following Hamiltonians

H =

(

HR

HL

)

, (4.20)

where

HR =
∑

k

ψ†
Rk

[
vRFσ · k − µR

]
ψRk

+
1
2

∑

k

[

∆Rψ
†
R−k

iσyψ
†
Rk

+H.c.
]

(4.21)

HL =
∑

k

ψ†
Lk

[
−vLFσ · k − µL

]
ψLk

+
1
2

∑

k

[

∆Lψ
†
L−k

iσyψ
†
Lk

+H.c.
]

. (4.22)
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This implies that the low energy physics of time-reversal invariant topological superconductors can be captured

by a pair of Weyl fermions gapped by s-wave superconductivity. The recent experimental observation of Weyl

semi-metals, allied to the fact that s-wave superconducting pairings are the least exotic in 3D, implies that

this is a convenient platform to study topological superconductivity at the present times. The caveat is that

the topological regime is fixed by the relative phases of ∆R and ∆L. For ∆R ∼ ∆L, the system is trivial,

while ∆R ∼ −∆L the system is topologically non-trivial. This behavior is more exotic. This is the solid state

realization of topological superconductivity that we will keep in mind.

Notice that a very unusual scenario thus arises. Superconductivity is a phase of matter whose interpretation

“a la Landau” (that is, spontaneous symmetry breaking) is that of U(1) symmetry breaking. Given a set of

fermionic metallic degrees of freedom, there is a single definition of electric charge, and a single U(1) symmetry

which can be broken. Therefore, the phases of ∆R and of ∆L must be locked to each other. In principle,

a constant full π phase-shift between the two projected pairings is not prohibited throughout the system.

Yet, what would happen at the interface between a topologically trivial and another topologically non-trivial

superconductor in class DIII (or even the vacuum)?

A first possibility would come from the vanishing of all Chern numbers in the trivial side of the interface.

This allows for a change in the topological invariant (4.2) from a given finite value, at the topological side,

to zero in the trivial side. A topological phase transition for a gapped Hamiltonian, however, only happens

under the closing and subsequent reopening of the bulk system’s gap. Another way to think of this, is that the

protection of Weyl points in semi-metals is local, not global as in insulators - that is, for insulators, topology

arises from the full Brillouin zone - such that the distinction between the inside and outside of a topological

semi-metal is not the same as for an insulator. The superconducting system is gapped, and at the surface,

gapless modes must arise, the bulk band Weyl points having no relation to this.

The only possibility for the trivialization of the topological invariant at a surface of a topological supercon-

ductor is then if the sign of one of the superconducting pairings, say ∆L, changes as one crosses the surface’s

interface. The sign of the pairing projected at the other surface, say ∆R, cannot change together, as the topo-

logical invariant would then remain the same [82]. One can say that the surface of a topological superconductor

“deconfines” the phases of the superconducting pairings. In particular, one can envisage using these deconfined

phases to create so-called “chiral vortices”, that is, superconducting vortices in which the pairing projected at

only a single Fermi surface winds [34].

Our objective now is to explore this notion of deconfined phases from the projected pairings focusing on

chiral vortices. This concept is exotic and its understanding and realization meets inconsistencies. We will

try to solve these or analyze them, in order to realize if this scenario is possible or not, and also if they say

something more profound about these states of matter.

As a final comment, let us introduce the BdG representation of our superconducting gapped Weyl modes.

The Hamiltonians read, respectively

HR
BdG =

1
2

Ψ†
R

[
vRFΓ · k − ρzµR + ∆RΛ1

]
ΨR (4.23)

HL
BdG =

1
2

Ψ†
L

[
−vLFΓ · k − ρzµL + ∆LΛ1

]
ΨL (4.24)

where the Nambu spinors are (omitting the spin d.o.f.) ΨT
i =

(

ψi,k, iσyψ
†
i,−k

)

, i = R,L, and the matrix

representation is given by

Γ = ρzσ (4.25)

Λ1 = ρxσ0 (4.26)

Λ2 = ρyσ0. (4.27)
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In this basis, TR is given by Θ = iσyK and PH is expressed by Ξ = ρyσyK. These have become what may be

called “Nambu-Dirac” fermions, that is, massive Dirac Fermions (at vanishing doping) whose gap is given by a

superconducting pairing. In the high-energy literature, an equivalent system is known as a “Weyl fermion with

Majorana mass”. Such a description may be obtained by decomposing the complex Dirac fields into Majorana

operators as was done in the Kitaev chain context.

4.1.1 Class DIII defect bound states

Most important for the discussions to come are the bound states for the class DIII topological superconductors in

(3+1)D. These appear at defect structures, regions of the space in which the superconducting pairing may vanish

and arise as a realization of the bulk-boundary correspondence. We study, quite generally, the Hamiltonian of

a single Fermi surface with a space-time dependent pairing term,

hBdG = vFΓ · P − ρzµ+ ∆ (X) · Λ, (4.28)

where P and X are the momentum and position operators. The signs of vF and overall phase of ∆ then fix the

different chiralities/Fermi surfaces.

When the pairing is spatially homogeneous and the system is infinite, the spectrum reads

E±
k

= ±
√

(vF |k| − µ)2 + |∆|2. (4.29)

This is equivalent to a topological insulator surface gapped by superconductivity, with the caveats that for a

bulk Weyl semi-metal we have a pair of Dirac cones and that the momentum-space is 3D. The chemical potential

is meaningless, from the topological point of view. As we show in Appendices B and C, towers of CdG vortex

bound states arise in this system for any value of the chemical potential, so we drop µ generally in the present

simple discussions. This, of course, is valid only for such doping values so that the band structure maintains its

Weyl semi-metal spectrum.

As a warm-up, we will thus consider states bound to domain-wall structures in ∆ (X), showing the Ma-

jorana character of the surface gapless states. The most important bound states for us, however, arise at

line-defects, vortices in the superconducting pairing, our already discussed Caroli-de Gennes modes, which we

discuss subsequently.

4.1.1.1 Domain-wall/surface bound states

To study surface states, as usual in the context of topological insulators, one studies an homogeneous and

isotropic Hamiltonian in two directions, say yz, while introducing a kink in the “mass term” along the third

direction. This simulates the closing and re-opening of the bulk gap across the surface. For the present case,

we write (we emphasize, for a single Fermi surface)

h̃BdG = −ivFΓx∂x + ∆Λ1e
iρzφ, (4.30)

where we took a vanishing chemical potential µ = 0. Here ∆y/∆y = tanφ gives the superconducting phase

phase. A domain wall is simulated by having, for exaple φ (r) : π → 0 as x : −∞ → ∞. For simplicity, let us

just consider φ = π, if x < 0 and φ = 0 if x > 0 such that

∆ →







∆ , x > 0

−∆ , x < 0
. (4.31)

Then one looks for eigenstates such that

h̃BdGψ (x) = Ẽnψ (x) . (4.32)
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The most interesting states are the zero-energy ones, which obey

[

∂x − ∆x

vF
ρyσx

]

ψ (x) = 0. (4.33)

This suggests two possibilities, from eigenmodes with negative eigenvalues of ρyσx,

ψ1 (x) = e−iπ/4 e
−
´ x dx

′ ∆(x)
vF√

N









0

i

1

0









, (4.34)

ψ2 (x) = e−iπ/4 e
−
´ x dx

′ ∆(x)
vF√

N









1

0

0

−i









. (4.35)

The arbitrary global phases e−iπ/4 were introduced by convenience, such that Particle-hole symmetry implies

Ξψ1 = ψ1 (4.36)

Ξψ2 = ψ2. (4.37)

Notice that, fundamentally, the full system with two Fermi surfaces should have two low energy states to

generate the Majorana cone. Indeed, a domain-wall at a single Fermi surface is enough to provide with the

necessary modes.The pairing of only one of the Fermi surfaces may be allowed to change sign across the surface(

we stress again, otherwise equation (4.2) would give topologically non-trivial regimes on both sides of the gap

kink.)

For completeness, let us study the second quantized operators associated with these. For an infinite system

in y, z, we may expand

Ψ (x) =
∑

n

ˆ

k

ψn (x) ei(kyy+kzz)γnk (x)

≈
ˆ

k

ψ1 (x) ei(kyy+kzz)γ1k (x) (4.38)

+
ˆ

k

ψ2 (x) ei(kyy+kzz)γ2k (x) , (4.39)

keeping only the low energy sector of bound states. This implies

γ1k (x) =
ˆ

dydzψ†
1 (x) Ψ (x) e−ik·x (4.40)

γ2k (x) =
ˆ

dydzψ†
2 (x) Ψ (x) e−ik·x (4.41)

with k = (ky, kz) only. This means

γ1k (x) = eiπ/4 e
−
´ x

0
dx

′ ∆(x)
vF√

N
[

−iψ↓k (x) + ψ†
↓−k

(x)
]

(4.42)

γ2k (x) = eiπ/4 e
−
´ x

0
dx

′ ∆(x)
vF√

N
[

ψ↑k (x) − iψ†
↑−k

(x)
]

(4.43)
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The Majorana character of these operators is clear. One has that

γ†
1k

= γ1−k (4.44)

γ†
2k

= γ2−k, (4.45)

as desired.

Expanding the field operators in this low-energy sector leads to the projected surface Hamiltonian

h0
surface = vF [τxky − τzkz] , (4.46)

where τ Pauli matrices live in the space of the two Majorana modes. The corresponding second quantized

Hamiltonian reads

H0
surface =

ˆ

d2xΓT−k
vF [τxky − τzkz] Γk (4.47)

where Γk = (γ1k, γ2k)T . This Hamiltonian describes “Majorana Weyl cones” at the sample surface; Weyl as

there is a single chirality of Fermions, cone due to the linearly dispersion gapless spectrum and Majorana due

to the Hermiticity conditions on the fermion operators.

4.1.1.2 Vortices bound states: chiral-modes

Vortices develop as string-like defects in the pairing. These can only happen, in principle, for both Fermi surfaces

at the same time, as there is a single U(1) symmetry for both Fermi surfaces. As we explained, however, there

is a proposal to deconfine the vortex lines from the R and L contributions (using the interfaces of topological

and trivial s-wave superconductors [34].) We will then consider what type of bound states arises in vortices for

each Fermi surface separately. We start considering only the lowest energy states.

Let us focus on a single Fermi surface with a vortex along the z direction and at vanishing chemical potential

µ, for simplicity. We will ignore the possible effects of magnetic fields inside the vortices. This can be justified

in the extreme type-II superconductor limit, which is usually consider for studying Caroli-de Gennes modes.

The justification is as follows. The vortex core size scales as the coherence length ∼ ξ. Supercurrents around

vortices in type II superconductors decay with the London length λ. The standard computation by Abrikosov

for extreme type II SCs says that, around a vortex, the magnetic field follows a profile

B (r) =
Φ0

2πλ2
K0 (r/λ) , (4.48)

where K0 is a Bessel function of the second kind. For large distances compared to the coherence length, this

decays as
√

λ/re−r/λ [75]. For smaller distances, ξ < r < λ, this has a log-behavior which diverges as r → 0.

In reality, however, for r . ξ

H (0) ≈ Φ0

2πλ2
ln κ = const. (4.49)

where κ = λ/ξ. This regime with constant field is the one of our concern for the analysis of electronic bound

states inside the vortex region. One then has to compare energy scales. From dimensional grounds, electromag-

netic gauge field behaves as A ∼ Hr. Then, A/∇θ → eA/c~∇θ ∼ (H/Φ0) r2. For our regime r . ξ

eA/c~∇θ ∼ (H/Φ0) ξ2 ∼ H/Hc2, (4.50)

where Hc2 is the upper critical field. In the extreme type-II limit, H/Hc2 ≪ 1 and the effects of external

magnetic fields can be neglected [67].

We can follow the calculation of the zero-energy bound modes without further worries. The pairing reads,

in the presence of a vortex

∆ · Λ = |∆| Λ1e
iρzθ, (4.51)
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where θ is the polar angle of cylindrical coordinates and |∆| has some tanh profile, for concreteness. The

spin-orbit and superconducting phase dependencies in θ may be unwound by

ψ (r, θ, z) = ei(l−
ρz+σz

2 )θeikzzφ (r) . (4.52)

To satisfy the periodic boundary conditions ψ (r, θ + 2π) = ψ (r, θ), we have integer values l. Turning off kz to

focus on the planar bound states, the BdG equations reduce to

[

−ivF ρz
[

σx∂r + iσy
l − (ρz + σz) /2

r

]

+ |∆| ρx
]

φn

= Elnφn. (4.53)

Again, we are particularly interested in the very lowest degrees of freedom. We thus may set l = 0. Zero-energy

solutions again exist. We thus solve

[

∂r +
ρzσz + 1

2r
− |∆|
vF

ρyσx

]

φ (r) = 0. (4.54)

A single wavefunction solution exists (in contrast to the single Fermi surface analysis of domain walls)

ψ0 (r, θ) = e−iπ/4 e
−
´ r

0
dr

′ |∆|
vF√

N
e−i( ρz+σz

2 )θ









0

i

1

0









(4.55)

= e−iπ/4 e
−
´ r

0
dr

′ |∆|
vF√

N









0

i

1

0









. (4.56)

Again,

Ξψ0 = ψ0. (4.57)

Recovering a finite kz, the second quantized operator corresponding to this state reads

γkz (r) =
e

−
´ r

0
dr

′ |∆|
vF√

N
e−iπ/4

[

ψ↓kz
+ iψ†

↓−kz

]

, (4.58)

with fixed l = 0 for the angular momentum quantum number, and obeys γ†
kz

= γ−kz . The corresponding

projected Hamiltonian into this low-energy sector is chiral and reads

h0
vrtx = −ivF∂z. (4.59)

This is what happens for a winding of the superconducting pairing projected at a single Fermi surface. Our

minimal model has two disconnected contributions R and L, with opposite chirality in the kinetic terms and a

possible π phase difference between the superconducting pairings of the two Fermi surfaces. This means that

the introduction of a vortex in the superconducting pairing for the other Fermi surface can be accounted for

with another bound state substituting |∆| → − |∆| and vF → −vF in the solutions above. We see that the

result for the lowest energy bound state is the same.

From the same arguments above, if the pairing in the other Fermi surface also winds, applying vF → −vF
in (4.59) gives a counter propagating mode. This means that for vortices, the nature of the bound states can

be separated in two distinct situations:

• Regular vortices
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For regular vortices, the projections of the superconducting pairing at both Fermi surfaces wind together. This

leads to a pair of counter propagating states with Hamiltonian

hv =
ˆ

dz
(

γR γL

)
(

−ivR∂z M

M∗ +ivL∂z

)(

γR

γL

)

. (4.60)

As time-reversal symmetry is broken due to the vortex, a finite backscattering probability may exist, leading

to a finite mass M . The Majorana modes can be mixed and gapped. This is the same as saying that a regular

vortex corresponds to a trivial class D system.

• Chiral vortices

For chiral vortices the situation is different from the one above. Again time-reversal symmetry is broken by

vorticity, but the single chiral Majorana mode that arises is protected from back scattering (as there is no

counter propagating mode to scatter into.) The Hamiltonian reads

hiv =
ˆ

dzγi (−ivi∂z) γi, (4.61)

where vi = vR or vi = −vL for a given chirality label i. Only a single of them will exist at a time and this

corresponds to a non-trivial class D system, with a protected chiral vortex modes which cannot backscatter.

Our previous results call for an “index theorem”. These are topological numbers which count the number of

chiral modes for Dirac-like operators. For the states along our vortices, we may write that the total number of

chiral modes Nv are determined by

Nv = C1RNR + C1LNL, (4.62)

where C1,R/L are the first Chern numbers from the Weyl parent metal and NR/L are the phase windings of the

SC phase at each Fermi surface. From Nielsen-Ninomiya’s theorem, we know that C1R = −C1L and we may

summarize this as

Nv = C1R (NR −NL) . (4.63)

Indeed, this quantity was actually previously known in the high energy community and is called the “Weinberg

index”.

Actually, our analysis of regular vortices leaves some untied points. In particular, the Hamiltonian (4.60)

implies that regular vortices inserted in topological superconductors in the non-trivial and trivial phases have

no distinct behavior (notice that it makes no sense to talk about chiral vortices in topologically trivial and

non-trivial scenarios, as they exist at the interface of both). This is a proper place for an analysis of open

systems now (along the vortex direction) to try and make a distinction between these. This will be qualitative.

Vortices in real materials must terminate at a surfaces. While they are exponentially localized in the bulk

due to the superconducting gap, one can imagine tracing continuations of the vortex bound states at the surface.

These must exist because there will be paths along the surface through which the value of the superconducting

phase will be arbitrarily close to the time-reversal invariant values of 0 and π. Interestingly, these define chiral

vortices at the surfaces, as sketched in Figs. (4.2) and (4.3). On surfaces, however, the pairing phases fluctuate

away from these time-reversal respecting special values and one can imagine that the lines of chiral modes are

more diffuse (in the sense of having families of co-propagating modes).
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Figure 4.4: Numerically derived spectrum of the vortex-bound states as function of kz, details follow in the
appendix. We show the states corresponding to l = −2,−1, 0, 1, 2. l = 0 has a chiral behavior. The level spacing
is set by the mini-gap δ1 = ∆2

0/EF . The blue dots correspond to numerical solutions of the planar “Nambu-
Dirac” Hamiltonian in the presence of a vortex, while the full lines follow from our perturbative arguments and
the Hamiltonian h̃z.

single Weyl cone is given by

En ≈ ∆e

kF
n ≡ ∆2

e

EF
n. (4.64)

This result is shown to be true for any value of chemical potential. In Appendix C we also demonstrate the

result for finite kz (which is treated perturbatively), reading

h̃z =
ˆ

dkzγ−kzγkzkz (4.65)

+
∑

n>0

ˆ

dkzc
†
kzn

ckzn

√

(kz)
2 + δ2

n (4.66)

−
∑

n<0

ˆ

dkzc
†
kzn

ckzn

√

(kz)
2 + δ2

n. (4.67)

Here, δn = n × ∆2
0/EF with integer n describes the Caroli-de Gennes minigap and we set, for convenience,

the velocities to 1 (the correct values for the projected velocities can be found in the appendix, but are not

important.) In Fig. 4.4 we plot the spectrum with dispersion along the vortex direction for a few of the tower

of bound states.

From this spectrum, it is important to notice that one has a set of (mini-)gapped hyperbolic-dispersing

modes. One can think of this as a set of massive Dirac fermions in 1D. Even more important is the n = 0 mode.

This mode has two important points. First, it consists of a set of Majorana modes, γ†
kz

= γ−kz . Second, they

are chiral-dispersing, with energies ∼ kz, along the vortex. These are the previously discussed “Majorana chiral

modes”.

Dirac equations in the presence of string-like defects in the mass (known as axion fields in the high-energy

physics community) are known to bind chiral complex fermionic modes [85]. The superconducting Weyl modes

described by (4.28) indeed correspond to a set of massive Dirac fermions. The caveat is that the particle-hole

constraint from the BdG Hamiltonian cuts the number of degrees of freedom in by half, with respect to regular

Dirac particles. The chiral complex fermionic modes, in this context, become real (one may neglect, say, the

imaginary part of the complex fermion operators.) As such, we have the above Majorana chiral modes.

The interplay of bulk scattering states, line-defect chiral modes and electromagnetism is very rich. Such is

the subject of “axion electrodynamics” and the Callan-Harvey “anomaly-inflow” mechanism [86, 85]. These,

in the context of superconductivity (or Majorana-like mass for Weyl fermions) will be the subject of the next

sections.
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4.2 Electrodynamics and vortex modes

We have learned that vortices in topological superconductors bind a set of states which extend along the vortex.

The winding of the superconducting phases leads to a tower of such states and dispersion along the vortex

indicates that each Fermi surface contributes with a set of (mini-)gapped modes with hyperbolic dispersion,

plus a chiral “real” fermionic mode. For chiral vortices, a single chiral mode exists, while, for regular vortex,

the lowest energy states will have two opposite-moving branches and will be non-chiral.

Let us move into discussing the interaction between these electronic bound modes and electromagnetism.

As we emphasized, the chiral modes, the lowest energy states, are described by “real” operators. The fact

that their creation and annihilation operators are equivalent implies that these states are electromagnetically

neutral. This can be seen by minimally coupling the Hamiltonian to the electromagnetic potentials as

hBdG = vFΓ · P + ∆ (X) · Λ (4.68)

−vF eρzΓ · A + eρzA0. (4.69)

We repeat the in-plane zero-energy state from before,

ψ0 (r, θ) = eiπ/4 e
−
´ r

0
dr

′ |∆|
vF√

N









0

1

−i
0









. (4.70)

This can be used to project the Hamiltonian as

h̃z,0 = vF kz − vF e 〈ρzΓ · A〉 + e 〈ρzA0〉 . (4.71)

Defining the spinor,

u1 =
1√
2









0

i

1

0









, (4.72)

however, shows that

u†
1ρzu1 = u†

2ρzu2 = 0 (4.73)

u†
1ρzΓu1 = u†

2ρzΓu2 = 0. (4.74)

This means that the chiral modes along the vortex do not couple to electromagnetism. Indeed, a complete

projection with the gapped vortex modes (see Appendix C) reads

h̃z =
∑

kz

kzc
†
kz0τzckz0 (4.75)

+
∑

l>0

∑

kz

c†
kzl
τ0ckzl

√
(
kz + Ãz

)2
+ δ2

l (4.76)

−
∑

l<0

∑

kz

c†
kzl
τ0ckzl

√
(
kz − Ãz

)2
+ δ2

l . (4.77)

Here, Ãz is the corresponding component of the vector potential averaged in the planar direction perpendicular

to the vortex (assumed along z) and we absorbed the charges in the definition of the gauge field.

In what follows, we will describe a general effective field theory to describe the bulk of class DIII supercon-
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ductors in the presence of electromagnetic interactions and vortices. Importantly, an “axion-electrodynamics”

term (E · B action) arises, with the superconducting phase difference between the different Fermi surfaces play-

ing the role of the axion field. We will then show that this effective theory is anomalous at chiral vortex cores.

While for regular Dirac fermions such anomaly can typically be canceled by the, also anomalous, 1D chiral

theory along the line-defect, in the present situation, the neutrality of the chiral modes will render the theory

ill defined.

4.2.1 Class DIII electromagnetic response

Coupling the class DIII topological superconductor to electromagnetism allows us to study the system from

an effective field theory point of view. In principle, in the presence of vortices and if the fluctuations of the

superconducting density magnitude are suppressed, one may approximate the partition function of this problem,

in the presence of an electromagnetic gauge field as

Z [A] ≈ Zbulk [A] Zvortex [A] . (4.78)

This is true for weak enough electromagnetic fields; in this case, scattering between the largely gapped scattering

states from the bulk and the mini-gapped bound states are not promoted. One may separate the contributions

from the corresponding partition functions.

Reference [34] proposes an effective action for the bulk terms. It is given by the following expression

Seff−bulk [A,Φ] =
ˆ

x

[
ǫσµλν

2 × 8π2
∂σ (θL − θR)Aµ∂λAν + J cos (θL − θR)

+
1
2
ρL (∂µθL − 2Aµ)2 +

1
2
ρR (∂µθR − 2Aµ)2 − 1

4e2
FµνF

µν

]

. (4.79)

The second line contains the regular Higgs and Maxwell terms for a superconductor. The first line contains a

pair of unusual contributions. The first term corresponds to the expected “axion-electrodynamics” contribution,

expected from the Weyl fermions at the bulk. The second term is a Josephson like term which binds and confines

the phases of the pairing projected at the two Fermi surfaces. This term would arise from studying the action at

larger energy scales and considering the coupling between the two Fermi surfaces. The mass scale of the mode

θL − θR is m2 ∼ 2J/ρ. For the action to be valid, this mass must be smaller than the pairing strengths at the

two Fermi surfaces (notice that only the difference θL − θR is massive, phases can fluctuate in separate at low

energy cost, as long as they do not excite this mode.) On interfaces between topologically distinct phases, one

enforces that J change signs.

Two comments are in order, regarding this action. Firstly, it was derived by [34] via an indirect “dimensional-

reduction” argument, that is, not through actual fermionic integration given a microscopic model in the presence

of the gauge field. Second, the axion term carries an extra factor of 1/2 with respect to the typical result for,

say, topological insulators.

As for Zvortex [A] , our previous discussion about the electric neutrality of the chiral modes shows that at

very low energy (neglecting the mini-gapped states), the action for the vortex bound states is simply described

by

SvrtxZM =
∑

j

ˆ

d2xγj [i∂t + ivj∂z] γj , (4.80)

where j is summed over all the Fermi surfaces, vj has a sign which depends on the chirality of the Fermi surface

and γj are Majorana Fermion (real) Grassmann variables. As the Fermions are neutral, integration over the

Grassman fields give no contribution to the electromagnetic action whatsoever. Notice that the other mini-

gapped modes are charged and do interact with the electromagnetic fields; as they are not chiral, however, we

do not expect them to contribute in any special way to the full electromagnetic action that was not included in



CHAPTER 4. VORTEX MODES AND TOPOLOGICAL SUPERCONDUCTIVITY 78

(4.79) .

It is worth to point out that chiral (Weyl) fermions are typically U(1) anomalous. This means that, although

their Hamiltonians obey a U(1) charge conservation symmetry, quantum fluctuations (fermionic Jacobian from

U(1) transformations, mathematically) generates electromagnetic gauge dependent terms. From the point of

view of the continuity equation, charge conservation is broken, and charge accumulates in the system with time.

Such chiral theories, fortunately, do not arise by themselves in nature, only in defects embedded in larger

systems. In such cases, the content of the so called “Callan-Harvey mechanism” is that the seemingly anomalous

chiral theory is actually receiving charge from the larger bulk in which it is embedded [85]. For this to happen,

the axion term from the bulk and the gauge anomalous term from the defect in (4.78) must compensate each

other.

A problem arises now. For complex fermions, the charge non-conserving terms due to anomalous chiral

theories and bulk axionic terms indeed cancel each other, giving a well-defined theory. In the present super-

conducting context, however, the bulk term Saxion will imply charge pumped at the vortex. The vortex chiral

modes, however, are neutral, and do not couple to electromagnetism, they do not see this charge build up. This

is a paradox. We explain this in details in what follows.

Full electromagnetic action - gauge paradox Let us study once again the effects of the axion electrody-

namics action proposed by [34] in this superconducting context. The equations of motion,

δSeff [A,Φ]
δAµ

= 0, (4.81)

should give Maxwell’s equations and matter currents. Due to the Meissner effect (Higgs modes), of the vortex

cores the FµνFµν term may be discarded. The equations of motion then imply, in the vicinities of the vortices

−2ρL (∂µθL − 2Aµ) − 2ρR (∂µθR − 2Aµ) (4.82)

+
1

8π2
ǫµνλρ∂ν (θL − θR) ∂λAρ = 0. (4.83)

From the physics in the absence of the topological term, one may identify the electromagnetic current

〈Jµ〉 = 2ρL (∂µθL − 2Aµ) + 2ρR (∂µθR − 2Aµ) (4.84)

and the equations of motion reads

〈Jµ〉 =
1

8π2
ǫµνλρ∂ν (θL − θR) ∂λAρ. (4.85)

Vortices or domain walls fix the behavior of the superconducting phase. We focus in the different vortex

scenarios (all along the z direction):

• Regular vortex

[∂x, ∂y] θR = 2πδ (x) δ (y) (4.86)

[∂x, ∂y] θL = 2πδ (x) δ (y) (4.87)

• Chiral L vortex (similar for chiral R vortex)

[∂x, ∂y] θR = 0 (4.88)

[∂x, ∂y] θL = 2πδ (x) δ (y) . (4.89)

Now we can remind ourselves of some facts of axion electrodynamics. In terms of the electromagnetic fields,
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the current can be written

〈Jµ〉 =
1
2

1
8π2

ǫµνλρ∂ν (θL − θR)Fλρ. (4.90)

From the point of view of the continuity equation, this reads

∂µ 〈Jµ〉 =
1
2

1
8π2

ǫµνλρ∂µ∂ν (θL − θR)Fλρ. (4.91)

≡ 1
2

1
4π
Jλρv Fλρ, (4.92)

where we write generally Jλρv = 1
2π ǫ

µνλρ∂µ∂ν (θL − θR) for the vortex current. Integrating this expression out

we have
ˆ

d4x∂µ 〈Jµ〉 =
1
2

1
4π

ˆ

d4xJλρv Fλρ

⇒ Q (tf ) −Q (ti) +
ˆ

dtd~S ·
〈

~J
〉

=
1
2

1
4π

ˆ

d4xJλρv Fλρ. (4.93)

For an infinite system, we neglect
´

dtd~S ·
〈

~J
〉

= 0. Also, for vortices along z, Jz0
v = −J0z

v and Jµνv = 0

otherwise.

For regular vortices,
1

4π
Jλρv Fλρ,=

1
2π

[
δ2 (x) − δ2 (x)

]
F0z = 0. (4.94)

No charge is induced at the vortex by the axionic term and the total charge in the system is conserved

Q (tf ) = Q (ti) . (4.95)

On the other hand, for an L chiral vortex, J0z
v = δ2 (x) and

∂µ 〈Jµ〉 =
1
2

1
2π

[
δ2 (x)

]
F0z. (4.96)

Integrating, again in infinite space,

Q (tf ) −Q (ti) =
1
2

ˆ

dtdz

2π
Ez (0, 0, z, t) . (4.97)

Indeed, chiral vortices violate charge conservation in the presence of an electric field along the vortex line.

This is actually a known result of axion electrodynamics. Piercing an axion string with an electric field

induces accumulation of charge in the system. This charge is well localized at the string position. Typically,

chiral charged modes see this accumulation of charge, manifesting it in the form of an anomalous partition

function. Notice that under a gauge transformation A → A+ ∂χ, the axion action changes as

δSeff [A, θ] = −1
2

1
4π

ˆ

dzdtχF0z

−1
2

1
8π2

lim
ρ→0

ˆ

dSµǫ
σµλν (χ∂σθ∂λAν)

= −1
2

1
4π

ˆ

dzdtχF0z. (4.98)

Indeed, we verify that gauge invariance is broken at the vortex line.

Another point that we have not discussed comes from the, apparently innocuous, factor of 1/2 present in the

axion term in (4.79). The typical axion electrodynamics has a twice as large coefficient. In the original work

regarding the electromagnetic response in class DIII in 3D[34], this factor of 1/2 was said to indicate that only

“half” a fermion exists in the vortex, in the form of a Majorana fermion. We have seen that, although true, this
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is not a good enough justification for the validity of the action (4.79), the Callan-Harvey anomaly inflow is not

at play in this situation. We will see that this factor hints to a possible solution for this paradox and a proper

justification for such an effective electromagnetic action.

4.3 Vortex linking and Z4 pumps

In order to explore the paradoxical result of charge non-conservation at a chiral vortex implied by the effective

electromagnetic action (4.79), let us consider a topological superconductor in class DIII in 3D with a single

chiral vortex line pierced by a uniform and constant electric field. Quite generally, the Hamiltonian for the

tower of vortex bound states reads

h̃z =
∑

kz

kzc
†
kz0τzckz0 (4.99)

+
∑

l>0

∑

kz

c†
kzl
τ0ckzl

√

(kz + Et)2 + δ2
l (4.100)

−
∑

l<0

∑

kz

c†
kzl
τ0ckzl

√

(kz − Et)2 + δ2
l , (4.101)

where E is the magnitude of the electric field along z.

The main difference between the Majorana case, versus regular complex chiral modes, is that in the latter

case, the chiral part of the Hamiltonian would also have kz → kz+Et. This is the fundamental point of anomaly

inflow. On the one hand, the bulk action induces a charge current into the string defect, when in the presence

of an electric field along the defect (as suggested by (4.97), remembering that in the complex case, there is one

less factor of 1/2 in the expression). On the other hand, the 1D localized states would have their momenta

shifted by the constant electric field. While the gapped hyperbolic states will move conserving the number of

occupied modes, the chiral states move in a single k-direction, in such a way that the system has to build up

charge (received from the bulk) to keep the same number of states occupied. This is the microscopic concept

of anomaly inflow that justifies the anomalous chiral theories in 1D, when embedded in a larger (3D) system.

There have been suggestions in high energy physics that, cosmologically, this could be a possible mechanism to

explain baryogenesis (see [87] for recent considerations and [83] for a condensed matter point of view.)

In the present situation, the chiral modes are neutral. Their momenta do not flow with the action of a

constant electric field. As we discuss now, however, the fact that the chiral modes are neutral does not mean

that they are blind to the presence of the electric field through the chiral vortex.

The charge non-conservation equation reads

∆tQ =
1
2

ˆ

dtdz

2π
Ez. (4.102)

In a periodic system, the momenta are discretized. In fact, comparing the charge of the system at different

times only makes sense if the Hilbert space is the same. This thus defines a period for time evolution of the

system in the presence of an electric field, in which we have to consider the imbalance from (4.102). From the

gapped vortex modes, the period for time evolution of the Hamiltonian is T = 2π~c
eEL , where E is the magnitude

of the electric field and L is the size of the system along the vortex direction. This is the time which shifts the

momenta of the gapped modes along the loop, kz = n2π/L, by exactly one quantum, leaving the Hilbert space

invariant. Plugging in ΦB =
´

B · dS for a magnetic flux around the vortex, and using Faraday’s law, one may

rewrite the charge variation as

∆tQ =
e

2
∆tΦB

2π
, (4.103)

where hc/2e ≡ π the superconducting flux quantum. Here, the flux is considered in a surface around the

loop (half a cross section of the sample.) We are, thus, exchanging the physics of a constant field along the
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vortex by that of building up in time a magnetic flux around the vortex. In fact, ∆tΦB = ELT . This

corresponds to building a ∆tΦB = 2π ~c
e = hc/e = 2π flux around the vortex. Encircling the vortex with twice

the superconducting flux quantum completes a ’pumping’ cycle for the momenta of the “mini-gapped” vortex

states.

In sum, following the charge build up, the lattice implies a period of time evolution which shows that, at

each cycle, a total of ∆TQ = e/2 is generated. It is only reasonable to compare the charge in the system after

such periodic time evolutions. So the gapped modes seem to show that half-charges are pumped into the vortex

at each cycle, even though the neutral modes of the vortex do not see this. This reasoning relies, however, only

on the periodic evolution defined by the (mini-)gapped modes. What can we say about the Majorana chiral

modes?

The effect of piercing a loop of chiral Majorana fermions by a unit of the superconducting magnetic flux

quantum is known to induce a change in the periodicity of the fermionic functions, from anti-periodic to periodic

[30]. Thus, the introduction of a pair of fluxes seems to also create a cycle in which anti-periodic boundary

conditions change into periodic ones (which allows for a kz = 0 mode) and back to its original anti-periodic value.

The question would then be, is the new ground state the same as the original one? In fact, Majorana fermions

must always exist in pairs (in our geometry, an anti-vortex is assumed at radial infinity.) Such an evolution

between different boundary conditions changes the parity of the ground state. This effect is very similar to the

discussion of Majorana modes bound to weak links in Josephson junctions, which define 4π periodic Josephson

effects. This comes from the fact that the existence of Majorana zero-mode pairs define non-locally a pair of

degenerate ground states (indexed by the, conserved, system’s parity). In this case, it could be expected that

the true period for time evolution of our system, due to the Majorana chiral mode, would be twice as large,

such that

∆TQ = e. (4.104)

As regular superconducting vortices carry π fluxes, we can think of a vortex linking picture. A single linking

of the vortices correspond to a time evolution over T/2 and implies a change in the Majorana fermions boundary

conditions. A double linking (link and unlink) would correspond to a time evolution over a time equals to T

above. This means that a 4-fold linking (corresponding to a 4π flux or 2T time-period) is necessary to return

the ground state to its original profile.

This hints at a promising idea to solve the paradox. Effective topological actions are known to describe the

true quasi-particle structure of topological phases, even in the presence of interactions. All of our discussions

up to now where in the non-interacting limit. If there exists any constraint in the ground state of this problem

which defines a true 4T periodicity in the time evolution, a total of 2e charge can be pumped through the

system. Indeed, such a charge can be absorbed by the superconducting condensate, and corresponds to a

“no pump” effect. This could solve the apparent ill definition of (4.79). In other words, if the Hilbert space

structure defines that pumped charges can only be compared at each cycle of 8π flux quanta, we see that the

effective action (4.79) is actually well defined, as it implies pumps of Cooper pairs, which can be absorbed in

the superconducting condensate.

To be able to look for such physics, we need to define a “parity pump”, which requires another set of Majorana

modes, to realize a two-level system. The encircling magnetic field picture for the constant electric field scenario

supplies for this second set of modes (technically a regular magnetic flux carries non-chiral fermions, but the

two chiralities have disjoint Hilbert spaces only ’half ’of the regular vortex modes overlap with the original chiral

vortex fermions.)

The linking of a pair of chiral Majorana fermions is known to be equivalent to the π flux piercing and lead

to a change in the boundary conditions along the loop [88, 30]. Dynamically, the boundary conditions change

from periodic to anti-periodic and vice-versa, upon linking, due to the tunneling of zero-modes from one loop

into the other. This means that upon linking, modes with kz = 0 (truly Majorana zero-modes) can be generated

and destroyed, which leads to the enlarged periodicity, just as in the Josephson junction scenario. Figure 4.5

describes the problem as we see it.
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The boundary conditions are then imposed by the equations of motion. We so write

S = S0 +
ˆ

dtLb (4.107)

Lb = −iavψL (0)ψR (0) + ibvψL (L)ψR (L) . (4.108)

The equations of motion read, by varying ψR,

i (∂t + v∂x)ψR = iv [ψR − ψLb] δ (x− L)

+iv [ψLa− ψR] δ (x) . (4.109)

These imply, at the edges

ψR (0) = aψL (0) , ψR (L) = bψL (L) , (4.110)

as desired. The equations of motion for ψL give the same equations with R and L reversed and, as such,

consistency demands that a2 = 1 and b2 = 1.

We expect that if we have an even number of vortices inside the loop, ab = −1 and, if we have an odd

number, ab = 1. The introduction of a vortex in an initial situation with an odd number of vortices amounts to

the introduction of a branch cut along the Majorana loop. It is convenient to introduce in the squashed picture

the branch cut through one of the edges. The situations with a = −b = 1 and −a = b = 1 are equivalent (with

the latter being preferred due to CFT conventions). Then, going into a = b = 1or a = b = −1 depends on

which end the vortex is being introduced.

Let us start assuming a single vortex inside the loop. Assume that it carries a zero-mode ψ0. We then bring

this zero-mode close to the boundary of the loop, for definiteness at the point that corresponds to x = 0 in

the squashed geometry. We start with a = b = 1 and the goal is to show that tunneling will change this to

a = −b = 1. The Lagrangian with the tunneling term between the zero-mode and the loop reads

S = S0 +
ˆ

dtLb +
ˆ

dtLh (4.111)

Lh = iψ0∂tψ0 + ihψ0 [ψR (0) + ψL (0)] , (4.112)

where h is the amplitude for the tunneling. The relative sign in the terms in square-brackets is fixed by the

boundary condition (a = 1 when h = 0). The magnitude of h is fixed by the distance between the vortex and

edge; at large distances r, one has h ∼ e−∆r/v, where ∆ is the bulk energy gap. The action is quadratic and

equations of motion give the full quantum solution. The equations of motion at x = 0 reduce to

2∂tψ0 = h [ψR (0) + ψL (0)] (4.113)

vψR (0) = vψL (0) + hψ0 (4.114)

vψL (0) = vψR (0) − hψ0. (4.115)

Going into frequency space

iωψ0 =
h

2
[ψR (0) + ψL (0)] (4.116)

ψ0 =
v

h
(ψR (0) − ψL (0)) . (4.117)

The last two equations are actually the same. Defining ω0 = h2/2v leads to

ψR (0, ω) =
ω + iω0

ω − iω0
ψL (0, ω) . (4.118)

If the vortex is very distant from the edge, h ∼ 0 and ω0 ∼ 0, such that the boundary conditions are as in

the beginning, with a = 1. As the vortex approaches, h grows and with it ω0, such that a → −1. The latter
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strongly coupling, ω0 → ∞, limit is the DC limit.

There are some time scales to be considered. At t = 0 the vortex close to the edge is strongly scattered

by the edge modes. At short times t ≪ ω−1
0 , there are little effects on the edge modes, but for t ≫ ω−1

0 , a

π phase-shift is induced in the Majorana field at the boundary. The other important time scale is set by the

system size, tL = L/v, which is the time it takes for an edge disturbance to circumnavigate the loop. For

t ≪ tL, the phase shift is “local” an has no influence at the boundary at x = L. In the DC limit, t → ∞
(before the thermodynamic limit tL → ∞), the net effect of the crossover induced by the the coupling between

the vortex and edge is a global change in boundary conditions upon the circumnavigation from periodic to

anti-periodic. In this DC limit, the point at which the fermion changes sign can be placed wherever one prefers

(by a static gauge transformation); x = 0 is the most convenient choice in the squashed geometry as we used it.

It is important to notice that the phase-shift in the DC limit is independent of the impurity strength h. This is

contrasted with the case of a Dirac fermion scattering from an impurity. In this case, it is only when the energy

of the impurity is fine-tuned to zero that the phase shift is also equals π. As ψ2
0 = 1, a chiral Majorana fermion

is always on-resonance, and no fine tuning is required.

We have thus seen that the linking between a pair of loops carrying Majorana zero modes leads to a change

in the boundary conditions, from periodic to anti-periodic. This destroys the zero-modes in both loops. It is

important to emphasize that the zero-modes now are with respect to the momenta along the loops. Effectively,

the change of boundary conditions implies that solutions with kz = 2nπ/L (for integer n and a vortex along

the z-axis under periodic boundary conditions) change into kz = (2n+ 1)π/L. In the first case one can have

kz = 0, in the second not. This process enforces the change of parity in the double loop ground state. We will

now see that the double Majorana loop linking problem can be interpreted as a Josephson junction problem.

The Majorana zero-mode disappearance and reappearance under double-linking is a manifestation of the 4π

periodic anomalous Josephson effect. We will then see that, under interactions, this anomalous effect actually

becomes 8π periodic.

4.3.2 Quantum spin Hall effect, Josephson junctions, Majorana loop linking

We now study the double Majorana loop problem itself. We will show how linking such loops is equivalent to

a superconducting phase slip in a Josephson junction mediated at the edge of a quantum spin-Hall insulator.

The double Majorana fermion loops have a Hamiltonian

Hlinks =
v

2πR

ˆ 2π

0

dθ (Γ1,Γ2)

(

−i∂θ
−i∂θ

)(

Γ1

Γ2

)

(4.119)

=
v

R

∑

l

(Γ1,−l,Γ2,−l)

(

l

l

)(

Γ1l

Γ2l

)

, (4.120)

where Γ†
i = Γi, R is the radius of the loop and v the velocity of the Fermions. We have assumed that the loops

are of the same size and that the modes are co-propagating. These points are not important and one looses no

generality by this choice (at the end this will be a matter of gauge choice).

Following the single loop plus zero-mode problem from the past section, we can squash the loops and write

the corresponding action,

S0 = v

ˆ

d2x [iγ1R∂+γ1R + iγ1L∂−γ1L] (4.121)

+v
ˆ

d2x [iγ2R∂+γ2R + iγ2L∂−γ2L] (4.122)

where x : 0 → L = πR and ∂± = v−1∂t ± ∂x.
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Boundary conditions are implemented by augmenting the action with boundary terms as

S = S0 +
ˆ

dtLb (4.123)

Lb = −iavγ1L (0) γ1R (0) + ibvγ1L (L) γ1R (L) (4.124)

−iavγ2L (0) γ2R (0) + ibvγ2L (L) γ2R (L) . (4.125)

Notice that the factors a = ±1 and b = ±1 fix the periodic and anti-periodic boundary conditions for each loop,

and are the same for both loops, as follows from fermion parity conservation.

Remarkably, the boundary action Lb introduced previously is not the most general possible. To simulate

the possibility of linking the loops, we can relax the boundary tunneling terms allowing, for example, for terms

like γ1L (0) γ2R (0), etc.

To be general, we then rewrite the boundary Lagrangian as

Lb = −ivδ (x) aijγiLγjR + ivδ (x− L) bijγiLγjR. (4.126)

Applying the equations of motion and fixing the problem at x = 0 leads to

γ (0) = Aγ (0) (4.127)

where

A =









a11 a21

a12 a22

a11 a12

a21 a22









(4.128)

and γ = (γ1R, γ2R, γ1L, γ2L)T . A similar result can be found for bij at x = L. We have to fix the most general

possibility for the entries in this A matrix. From γ = Aγ, one imposes the condition

A2 = I4×4. (4.129)

This suggests the parametrization

a11 = cosϕ

a22 = ± cosϕ

a12 = − sinϕ

a21 = ± sinϕ. (4.130)

The relative signs in a22 and a21 can be fixed by remembering that, at ϕ = 0, we have our original boundary

conditions for the two unlinked loops. As fermion parity conservation fixes that boundary conditions are either

simultaneously periodic or anti-periodic in both loops, we fix

a11 = cosϕ

a22 = cosϕ

a12 = − sinϕ

a21 = sinϕ. (4.131)

Since we would like to understand the linking between the two vortices, it is enough to consider constricting

the problem at a single point, which we chose as x = 0, thus keeping the boundary condition at x = L fixed,
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say simply take b = 1 in (4.125). The most general boundary term thus reads

Lb = −iv [cosϕ (γ1Lγ1R + γ2Lγ2R) − sinϕ (γ1Lγ2R − γ2Lγ1R)] δ (x) (4.132)

+iv [γ1Lγ1R + γ2Lγ2R] δ (x− L) . (4.133)

Clearly, ϕ parametrizes the double loop linking. The boundary conditions at x = 0 then read, explicitly,

γ1R = cosϕγ1L + sinϕγ2L (4.134)

γ2R = − sinϕγ1L + cosϕγ2L. (4.135)

At ϕ = 0,we have

γ1R = γ1L (4.136)

γ2R = γ2L. (4.137)

This means that both loops are uncoupled and have periodic boundary conditions, and thus a pair of zero

modes. At ϕ = π

γ1R = −γ1L (4.138)

γ2R = −γ2L. (4.139)

Now we have anti-periodic boundary conditions and no zero modes.

At ϕ = π/2,

γ1R = γ2L (4.140)

γ2R = −γ1L. (4.141)

Here the modes from the two wires are exactly exchanged. The boundary conditions at x = L is fixed at

γ1,2R = γ1,2L overall.

In sum, at ϕ = 0, we have fixed periodic boundary conditions in both loops, corresponding to the situation

in which each loop carries a Majorana zero mode. This is the linked loops limit. At ϕ = π/2, boundary

conditions determine complete scattering at the line edges from one loop into the other. We have a system

which is equivalent to a single doubly long loop winding around itself. Finally, at ϕ = π, boundary conditions

are anti-periodic. We have a mapping:

Complex fermion representation

Interestingly, the squashed loops picture deforms the two Majorana chiral modes into four Majorana non-chiral

modes under appropriate boundary conditions. We can combine such Majorana fermions in a convenient way,

forming complex Dirac fermions. We write

ψR =
γ1R + iγ2R√

2
, ψ†

R =
γ1R − iγ2R√

2
(4.142)

ψL =
iγ1L + γ2L√

2
, ψ†

L =
−iγ1L + γ2L√

2
(4.143)

where {γi, γj} = 2δij and
{

ψi, ψ
†
j

}

= δij .
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The kinetic part then becomes

S0 = v

ˆ

d2xi
[

ψ†
R∂+ψR + ψR∂+ψ

†
R

]

(4.144)

+v
ˆ

d2xi
[

ψ†
L∂−ψL + ψL∂−ψ

†
L

]

. (4.145)

Even more remarkably, the boundary terms now read

Lb = 2
[

ψLψR∆ (x) − ψ†
Lψ

†
R∆ (x)∗

]

, (4.146)

where

∆ (x) =
v

2
[bδ (x− L) − aδ (x)] , (4.147)

where a = e−iϕa and b = e−iϕb come from the phases introduced by the generalized, ’inter-loop’, boundary

conditions (we had previously set ϕb = 0, as we generally will.)

Write the complex fermion in a convenient (and, by now, recurrent) Nambu spinor, Ψ =
(

ψR, ψL,
(

ψ†
R, ψ

†
L

)

iσy

)T

=
(

ψR, ψL, ψ
†
L,−ψ†

R

)T

the double loop Hamiltonian, with the boundary fixing terms become

H2loop =
ˆ

d2xΨ† [−ivρzτz∂x + ρx∆1 + ρy∆2] Ψ. (4.148)

where

∆ (x) = ∆1 + i∆2 (4.149)

=
v

2
[bδ (x− L) − aδ (x)] (4.150)

and a and b are the previous complex numbers of unit modulus. also, ~τ and ~ρ are Pauli matrices in the L,R

and Nambu spaces, respectively.

This Hamiltonian has been considered previously. It corresponds to a Josephson junction created by adding

a pair of superconductors to the 1D edge of a 2D topological insulator (known as a quantum spin Hall insulator.)

Such insulators, in their topologically non-trivial phases, have helical edge modes, that is, counter propagating

metallic edge states which are time-reversal invariant from one another. Indeed, in the absence of imaginary

terms in the superconducting pairing, the Hamiltonian H2loop respects time-reversal symmetry under

Θ = iτyK. (4.151)

In the present model, the superconductors at the edges have zero length, while the loop consists of the Josephson

weak-link. We have topologically deformed the problem of Majorana loop linking to a problem of Josephson

junction in helical metals. In fact, we have

π flux insertion in loop = 1 loop link = π phase slip across junction. (4.152)

Figure 4.6 summarizes this idea.

Z4 Josephson effect - interactions in topological Josephson junctions

Our final discussion will regard the so called Z4 Josephson effect. We have seen in Chapter 1 that Josephson

junctions in the presence of Majorana fermions are 4π periodic with respect to the phase difference across

the junction. It has been recently claimed that, in fact, the presence of interactions could enforce a further

enlargement to 8π on the periodicity of the problem on the superconducting phase difference, due to many-body

effects [35]. We will have a brief discussion about this in our system.

We start by studying the many-body spectrum of (4.148). In the bulk, the problem is solved trivially. By
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ϕ allows for a gradual interpolation between the linked and unlinked regimes.

Now we want to write the second quantized problem. We need to use the time-reversal and particle-hole

operations

Θ = iτyK, Ξ = ρyτyK (4.161)

to constrain the spinors and fields. This reads, in first and second quantized languages,

Ψ =









ψR

ψL

ψ†
L

−ψ†
R









⇒
(
Ψ†)T = ρyτyΨ (4.162)

Ξφn,σ = φ−n,−σ ⇒ ρyτyφn,σ = φ∗
−n,−σ. (4.163)

Now we expand

Ψ =
∑

nσ

φn,σcn,σ

⇒ cn,σ =
ˆ

dxφ†
n,σΨ. (4.164)

This implies

c−n,−σ = e−iϕc†
n,σ. (4.165)

This is the Nambu constraint which gets rid of the BdG degeneracy. We can now write

Ψ =
∑

nσ

φn,σcn,σ

=
∑

σ

φ0,σc0,σ +
∑

n>0,σ

(

φn,σcn,σ + φ−n,σc
†
n,−σ

)

. (4.166)

In particular,

ψR = u0,+c0,+ +
∑

n>0

(

un,+cn,+ − eiϕv∗
n,−c

†
n,−
)

(4.167)

ψL = u0,−c0,− +
∑

n>0

(

un,−cn,− + eiϕv∗
n,+c

†
n,+

)

. (4.168)

Now we can expand the Hamiltonian in the new basis. We find

H =
∑

σ

[

E0,σ (ϕ) c†
0,σc0,σ +

∑

n>0

(

En,σ (ϕ) c†
n,σcn,σ + E−n,σ (ϕ) cn,−σc

†
n,−σ

)
]

=
∑

σ

[

E0,σ (ϕ) c†
0,σc0,σ +

∑

n>0

(

En,σ (ϕ) c†
n,σcn,σ + E−n,σ (ϕ) c†

−n,σc−n,σ
)
]

. (4.169)

To remove the Nambu doubled states, the ground state consists of all the negative energy modes occupied. This

means

|0〉 = c†
0,−

∏

n<0

c†
n,σ

∣
∣0̃
〉
, (4.170)

where
∣
∣0̃
〉

is the empty state. Thus, normal ordering removes the negative n part of the Hamiltonian, as well
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correspond to a pair of one-body occupied states and another pair of two-body occupied states. The two-body

states contain a filled n = 0 mode c†
0,+, which adds nothing to the energy at this phase. We may write

|µ = 1〉 = c†
0,+ |0〉 (4.177)

while

|µ = 0〉 = |0〉 . (4.178)

These correspond to two degenerate ground states at ϕ = 0, fixed by the fermionic parity (−1)c
†
0,+c0,+ = µ. We

define the first excited states at ϕ = 0 as

|σµ〉 = c†
1σ |µ〉 . (4.179)

Here, σ fixes Kramers degenerate modes. The gapping of this fourfold degenerate point is our final card. One

notices that we can compare the ground state with itself after 2π evolutions of the phase across the junction.

We write

|0, 0 < ϕ < 2π〉 = c†
0,− (ϕ)

∏

σ,n<0

c†
n,σ (ϕ)

∣
∣0̃
〉
, (4.180)

such that

|0, 2π < ϕ < 4π〉 = c†
0,− (2π < ϕ < 4π)

∏

σ,n<0

c†
n,σ (2π < ϕ < 4π)

∣
∣0̃
〉

= c†
−1,− (0 < ϕ < 2π)

∏

n<0

c†
n+1,+ (0 < ϕ < 2π)

∏

n<0

c†
n−1,− (0 < ϕ < 2π)

∣
∣0̃
〉

∝ c0,− (ϕ) c†
0,+ (ϕ) |0, 0 < ϕ < 2π〉 , (4.181)

with meaningless a proportion constant equals to plus or minus 1. The general rule then states

|0, 2π < ϕ < 4π〉 ∝ c0,− (ϕ) c†
0,+ (ϕ) |0, 0 < ϕ < 2π〉 . (4.182)

Notice that although we evolve the phase continuously, the ground state acquires a c†
0+ filling. We then have

three features upon such 2π evolution:

1. The filling of c†
0 changes, such that the parity (−1)c

†
0+c0+ flips;

2. The total ground state energy is fixed;

3. The total charge is fixed;

This shows that 2π evolutions of the phase across the junction do not lead the ground state back to its original

value, implying at least a 4π periodicity in phase slips. The introduction of interactions, however, may gap

this four-fold degeneracy. We will not enter into this subject in detail, but in fact, it was shown in [35] ( in a

more well behaved Josephson junction than our infinitely long link scenario) that interactions which preserve

time-reversal invariance may lead to a Z4 periodic junction.

Bosonization techniques may be applied to study this problem which corroborates to this conclusion. In

these systems, interactions lead to the possibility of the existence of e/2 charged quasi-particles tunneling across

the junction (as opposed to Cooper pairs in the regular Josephson effect and electrons in the Z2 fractional

Josephson effect.) The present work is in its final stages of development, but the arguments given up to now

should be enough to convince the reader that this is a concrete possible way out of the paradox introduced by

the action (4.79).
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4.4 Conclusions

We studied vortices in class DIII topological superconductors in 3D. We have thoroughly analyzed the physical

properties of the vortex bound states in all the different vortex regimes and regarding the full spectrum and its

electromagnetic properties. The effective action for such a phase in the presence of the exotic chiral vortices is

seen to lead to an unusual axion-electrodynamics problem, in which the charge pumped into the axion string (in

the presence of an electric field along the line-defect) is finite and given naively in units of e/2, while the chiral

modes along the string are neutral and do not see this charge pumping. In order to solve this paradox, we assume

that, possibly, charges are pumped in units of 2e, the charge of a Cooper pair which can condense. The constant

electric field along the vortex line can be thought of as being generated by a time-evolving magnetic flux around

the chiral vortex, which leads to a vortex linking picture.We demonstrate that periodic boundary conditions

along the vortex direction, corresponding to this problem of Majorana chiral loop linking, is equivalent to the

problem of Josephson junctions at the edges of quantum spin Hall systems in 2D. These problems demonstrate

a Z4 periodic Josephson effect, under the effects of interactions.

Our findings have several important aspects. While helping in understanding the finer details of topological

superconductivity, and pointing to unconventional aspects of the idea of such a phase, our results demonstrates

that the “topological” axion term in the effective electromagnetic response of this system carries, within it,

details of the effects of interactions. Such is the nature of topological field theories: even if derived in the non-

interacting limit, they are known to describe the deeper subtleties of the quasi-particle structure of topological

phases. Under interactions, the classification of bulk class DIII topological superconductors is known to break

from Z to Z16. It is our belief that our findings in the context of chiral vortices in class DIII are related to this

issue, but these are points which we have not finished investigating

As a final point, we emphasize that our results here were developed under the assumption that the action

(4.79) proposed by [34] is indeed correct. As mentioned, their derivation of their effective action did not rely

on a bona fide fermionic integration of the underlying microscopic theory. This opens the question: are their

arguments correct?

In appendix D, we perform the fermionic integration for the bulk Weyl fermions coupled to the electromag-

netic gauge field and in the presence of a superconducting mass with an attached vortex, explicitly computing

the effective partition function. Interestingly, this calculation relies on a 1-loop Feynman diagram, the anoma-

lous “triangle diagram”. There are two such diagrams which display anomalous behavior, the so called AVV

and AAA diagrams. This nomenclature is used to fix the vertices, which contain axial (A) or vector (V) fields.

The regular anomaly of a topological insulator comes from an AVV type of graph. This gives the famous

“theta-term” with a quantized axion field θ = 0, π. Interestingly, we show that the BdG doubled Weyl fermions

turn the AVV diagram, effectively, in a AAA type of loop. Such diagrams are known to evaluate to 1/3 of

the value of the AVV case; this implies that the correct factor in front of the axial terms in (4.79) should get

another factor of 1/3, as we demonstrate in the mentioned appendix.

Whether or not the results of [34] are correct remain an open question, whose answer we are still pursuing.



Chapter 5

Conclusions

These are our concluding remarks and final words. As of the beginning of the development of this Ph.D. thesis,

we had in mind exploring different properties of emergent relativistic physics in condensed matter. In fact,

our studies started in photon wavefunctions - trying to study decoherence in turbulent media - then moving to

transport in graphene physics [89], finally moving into topological matter and, in particular, superconductivity

in topological matter. In this last term, we focused in studying different aspects of defect bound states and

Majorana fermion physics[90, 28]. With the benefit of hindsight, it is clear that vortex bound matter was the

unifying point of our studies, and this body of work was written with this idea in mind.

As our main achievements, we developed different techniques to explore in full detail the local physics of

electronic vortex bound states, both analytically and numerically. With these tools, we explored the physics for

a pair of different scenarios: that of quantum motion of vortices in doped topological insulators, in which our

goal was to verify physical signatures of vortex topological phase transitions, and that of axion electrodynamics

in time-reversal invariant topological superconductors in 3D. The effective 1D physics along the vortex lines

kept our ideas always close to that of Kitaev p-wave wires, in which we had a contribution in the study of the

fractional Josephson effect via macroscopic quantum tunneling [37].

As of the end of this writing, a few of our works remain unpublished , some related to the matter treated

in this thesis and some, mostly, unrelated. Yet, we believe that our already published works settle down our

contributions in the area of topological matter, which is likely to remain as the center of our interests in the

years to come.
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Appendix A

Peak analysis

Here we describe in some detail the determination of the relative sizes and positions of the tunneling conductance

peaks. We start rewriting,

ρ (r, ω) =
∑

σ=±
ρσ (r, ω) (A.1)

ρσ (r, ω) = − 1
π
Im
∑

l

|uσl (r)|2
ω − Eσl − Σσl + iǫ

, (A.2)

using the vortex-modes eigenbasis. STM measurements probe the tunneling conductance

G (r, ω) = −G0

ρ0

ˆ

dω
′

ρ
(

r, ω + ω
′
)

f
′
(

ω
′
)

, (A.3)

where f (ω)is the Fermi distribution.

At zero-temperature this reduces simply to the LDOS, up to a constant. At finite small temperatures we

may write

G (r, ω) /G0 = − 1
ρ0

∑

l,σ=±

∑

i

|uσl (r)|2
∣
∣
∣
∣
1 − ∂Σσ

l (ωi
l,σ,0)

∂ω

∣
∣
∣
∣

(A.4)

×f ′ (
ωil,σ,0 − ω

)
, (A.5)

where ωil,σ,0 is the i-th solution to

ω − Eσl − Σσl (ω) = 0. (A.6)

This represents a cubic equation. For our parameters, three solutions always exist. While (A.6) determines

where are the relative positions of the peaks in energy space, the derivatives
∂Σσ

l (ωi
l,σ,0)

∂ω will fix the peaks relative

sizes.

We focus most of our analysis at |r| = 0, which, from (3.49), means that only the states with l = 0, 1

give non-vanishing contributions. The relevant self-energy contributions were considered in the main text in

equations (3.100) and (3.101). To determine the relative sizes and positions of the peaks, we examine the

derivatives of the self-energy, as well as equation (A.6) explicitly.

Peak sizes

The derivatives of the self-energies read, after some simplification
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dΣσ1 (ω)
dω

= −
A+;σ

1;2

(∆ωσ1 − δ − ωc/2 − ωv)
2 −

A+;σ
0;1

(∆ωσ1 + δ + ωc/2 − σsgn (µ− µ̄σ)ωv)
2 (A.7)

dΣσ0 (ω)
dω

= −
A+;σ

0;1

(∆ωσ0 − δ − ωc/2 − ωv)
2 −

A+;σ
−1;0

(∆ωσ0 + δ + ωc/2 + ωv)
2 , (A.8)

where ∆ωσl = ω − Eσl and δ is the mini-gap.

The matrix elements are much smaller than the other physical quantities. Dimensional analysis and explicit

manipulation of (3.87) shows that, at constant ωv/∆0, these overlaps sizes depend on the coherence length as

ξ−5[65]. The peak sizes, nevertheless, are going to be sensitive to Aα;σ

l;l′
. As will be seen in the next subsection,

the satellite peaks positions are dominated by the vortex oscillation frequency ωv. Plugging ∆ωσl ≈ 0 or

∆ωσl ≈ ±ωv one sees that dΣσl (ω) /dω is small (concretely it is∝ A+;σ

l,l′
/ω2

v ≪ 1) at ∆ω+
0 ≈ 0 while it may be

larger at ∆ωσ0 ≈ ±ωv, going as ∼ −A+;+
0;1

[
1
s2

]
, where s = δ+ωc/2

2ωv
. The latter case reduces greatly the size of the

satellite peaks from l = 0, similarly as pointed by Bartosch et al.[65].

peak positions

Our last goal is to explain the positions of the peaks as function of the chemical potential, demonstrating that

they are much less sensitive to the matrix elements than the peak sizes and that they are mainly fixed by the

vortex fluctuation frequency, which might be much larger than the other energy scales of the problem.

Simplifying the self-energy and plugging into (A.6), shows that independent of chemical potential, for l = 0

we have

∆ωσ0
[

(∆ωσ0 )2 − (δ + ωc/2 + ωv)
2 +

(
Aσ;+

0;1 +Aσ;+
−1;0

)]

+ (ωv + δ + ωc/2)
(
Aσ;+

0;1 −Aσ;+
−1;0

)
= 0.

(A.9)

Using Aσ;+
0;1 ≈ Aσ;+

−1;0 we get results similar to reference [65] for ordinary s-wave superconductor. Since the

matrix elements are much smaller than the other parameters, we can neglect them in above equation. We then

get

∆ωσ0
[

(∆ωσ0 )2 − (δ + ωc/2 + ωv)
2
]

= 0, (A.10)

for any µ. This gives a central and two satellite peaks at, respectively

∆ωσ0 = 0 (A.11)

∆ωσ0 = (ωv + δ + ωc/2) (A.12)

∆ωσ0 = − (ωv + δ + ωc/2) . (A.13)

For l = 1, we may as well neglect the contributions from the matrix elements. For µ < µ̄−,

∆ω−
1

[(
∆ω−

1 − ωv
)2 − (δ + ωc/2)2

]

= 0 (A.14)

∆ω+
1

[(
∆ω+

1

)2 − (ωv + δ + ωc/2)2
]

= 0. (A.15)

So we have peaks at
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∆ω−
1 = 0 (A.16)

∆ω−
1 = ωv + (δ + ωc/2) (A.17)

∆ω−
1 = ωv − (δ + ωc/2) (A.18)

and

∆ω+
1 = 0 (A.19)

∆ω+
1 = (ωv + δ + ωc/2) (A.20)

∆ω+
1 = − (ωv + δ + ωc/2) . (A.21)

For µ > µ̄+ the role of + and − in above equations are exchanged. Since the total density is the sum of

contributions form both σ = ± sectors, and the gap between E+
1 and E−

1 goes as δ(1/2 − φ/2π), the LDOS in

the two regimes of µ < µ̄− and µ > µ̄+ look the same.

We now get to the most important regime of µ̄− < µ < µ̄+. The position of the peaks for both σ = ±
sectors are at

∆ωσ1 = 0 (A.22)

∆ωσ1 = (ωv + δ + ωc/2) (A.23)

∆ωσ1 = − (ωv + δ + ωc/2) . (A.24)

Clearly, as µ crossed µ̄− the third peak for σ = − sector is shifted by −2ωv and this leads to a clear

modification of LDOS which persists up the µ = µ̄+ at which the peak form the σ = + sector moves by 2ωv
and recovers the original LDOS.

The “creation” of a satellite peak at positive energy should not happen without an accompanying compen-

sation of a positive energy peak jumping into negative energies. Indeed, such a compensation does occur for the

contribution of l = −1 (which exchanging angular momentum with the vortex motion is connected to l = −2

and l = 0, the latter giving the jump.) It just turns out that, since the spatial dependence of the LDOS is

determined by uσl (r), as can be seen from (A.4), the peaks from l = −1 do not contribute to the LDOS at the

center of the vortex, r = 0. The peaks from l = −1 should contribute to the LDOS at a distance ∼ k−1
F from

the vortex center, which should be of the order of ten Angstroms in a superconducting TI. This can be resolved

with the current STM technology.



Appendix B

Caroli-de Gennes modes in class DIII:

analytic full spectrum

We demonstrate explicitly that a set of vortex bound modes exists, for any value of the chemical potential,

and that they are gapped by ∆2
0/EF , as usually for Caroli-de Gennes states. We are able to compute the

modes beyond the zero-energy one. We introduce a simple model for the pairing with a vortex along the z

direction follows as ∆ (r) = ∆0

ξ (x− iy). This will be valid for wavefunctions ψ (k) smooth on the scale ξ−1 of

the coherence length. The first quantized Hamiltonian then reads

H0 =

[

H − µ ∆0

ξ (x− iy)
∆0

ξ (x+ iy) −H + µ

]

. (B.1)

In k-space it reads

H0 =

[

Hk − µ i∆0

ξ

(
∂kx

− i∂ky

)

i∆0

ξ

(
∂kx + i∂ky

)
−Hk + µ

]

. (B.2)

Let us first diagonalize Hk. It reads

Hk = σ · k. (B.3)

We separate the contributions from kz from the others and from now on k = (kx, ky). We then write

H0 = H0⊥ + H0z (B.4)

with the first quantized Hamiltonians

H0⊥ =

[

σ · k − µ i∆0

ξ

(
∂kx

− i∂ky

)

i∆0

ξ

(
∂kx

+ i∂ky

)
−σ · k + µ

]

(B.5)

H0z =

[

kzσz 0

0 −kzσz

]

. (B.6)

Let us neglect, as usual H0z; we recover its contributions later. The perpendicular part of the metallic Hamil-

tonian has a single pair of eigenvalues E±
⊥k

= ±k = ±
√

k2
x + k2

y with corresponding eigenstates

∣
∣
∣ϕ±
kxky

〉

=
1√
2

(

1

±eiθ

)

(B.7)
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[
∣
∣
∣ϕ±
kxky

〉

= 1√
2

(

∓e−iθ

−1

)

for the PH sector

]

where tan θ = ky/kx. As the chemical potential crosses a single

band of the metallic Hamiltonian, we may project into the states with E±
k

∼ µ. Taking, for concreteness, a

positive chemical potential, this means we may project into the
∣
∣
∣ϕ+
kxky

〉

subspace. The wavefunctions are

ψ → 1√
2









(

1

±eiθ

)

ψ1

(

∓e−iθ

−1

)

ψ2









(B.8)

We are then left with a Hamiltonian for (ψ1 ψ2)T ,

H+
0⊥ ≈









k − µ ∆e

(

i
(
∂kx

− i∂ky

)

+A+
x − iA+

y

)

∆e

(

i
(
∂kx + i∂ky

)

+A+
x + iA+

y

)

−k + µ









, (B.9)

where we defined ∆e = ∆0

ξ and a U(1) Berry connection A+ =
〈
ϕ+

k
|i∇k|ϕ+

k

〉
.

The Hamiltonian may be written

H+
0⊥ ≈

[

Ek − µ ∆e

(
i
(
Dkx − iDky

))

∆e

(
i
(
Dkx + iDky

))
−Ek + µ

]

, (B.10)

where we introduced the covariant derivative D = ∂ − iA. So if we look at k as a position operator, this is like

a particle in real space in the presence of a gauge field. The Berry curvature reads, by definition

F = dA (B.11)

or, in components

Fz ≡ Fxy = ∂xAy − ∂yAx. (B.12)

Exchanging x with k, this is effectively a quantum Hall problem and we may expect a similar spectrum.

For our single Fermi surface at µ = |k| = kF with rotational symmetry,

kx + iky = keiθ (B.13)

∂kx − i∂ky = e−iθ
(

∂k − 1
k
∂θ

)

(B.14)

Ax − iAy = e−iθ (Ak − iAθ) . (B.15)

(Notice that the vector field components are with lower indices as they are summed with the gradients, and

transform like so. Also notice that Aθ is has dimension of 1/k and we are writing, A = Akk̂+Aθ θ̂, incorporating

the 1/k from θ̂ in Aθ.)

Since only Fz 6= 0, one may choose a gauge with Ak = 0 and Aθ = Aθ (k). The curl in polar coordinates

then gives

1
k
∂k (kAθ) − 1

k
∂θAk = Fz

⇒ ∂k (kAθ) = kFz

⇒ kAθ =
ˆ k

0

dk
′

k
′

Fz

(

k
′
)

(B.16)

or

⇒ 2πkAθ = 2π
ˆ k

0

dk
′

k
′

F3

(

k
′
)

. (B.17)
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We identify the left-hand-side. with the Berry connection line-integrated over a circle of radius 2πk, that is,

the Berry phase along this circle. For an insulating system, this value is dependent on the chemical potential.

For the present system, however, we know we have metallic bands with well defined chirality, as

Aθ = i
1
k

〈
ϕ+

k
|∂θ|ϕ+

k

〉

= i
1
k

1
2

(
1 e−iθ)

(

0

ieiθ

)

= − 1
2k

(B.18)

and, hence,

2πkAθ = −1 × π, (B.19)

as expected. This is independent of the chemical potential.

The first quantized Hamiltonian becomes,

H0⊥ =

[

Ek − µ i∆ee
−iθ (∂k −

(
i
k∂θ +Aθ

))

i∆ee
iθ
(
∂k +

(
i
k∂θ +Aθ

))
−Ek + µ

]

. (B.20)

We now unwind the θ phase with

W =

[

eiθ/2

e−iθ/2

]

, (B.21)

such that

H̃0⊥ = W−1H0⊥W (B.22)

= (Ek − µ) ρz (B.23)

+∆e

(

ρxi∂k − ρy

(
1
k

(

−i∂θ − ρz
1
2

)

−Aθ

))

.

This new Hamiltonian clearly commutes with −i∂θ, such that the original one obeys

[
H0⊥, L̃z

]
= 0, (B.24)

with L̃z = −i∂θ − 1
2ρz. So we finish unwinding by writing

ψ = W−1ψ̃

ψ̃ = einθφ. (B.25)

Then

ψ =

(

ei(n−1/2)θφ1 (k)

ei(n+1/2)θφ2 (k)

)

. (B.26)

The wavefunctions ψ must obey periodic boundary conditions around θ, so n is a half-integer here. We thus

want to solve

[

(Ek − µ) ρz + ∆e

(

ρxi∂k − ρy

(
1
k

(

n− ρz
1
2

)

−Aθ

))]

φn = Enφn. (B.27)

We may play with this unitary transformation to find more convenient forms of the Hamiltonian. The
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normalization condition,

ˆ 2π

0

dθ

ˆ ∞

0

kdk |ψ|2 = 1

⇒
ˆ ∞

0

kdk |φ|2 =
1

2π
, (B.28)

for example, suggests the introduction of factors of
√
k which compensate the shifts ρz/2. In general, the two

most convenient transformation reads

Wph =
1√
k

[

ei(n−1)θ

ieinθ

]

, (B.29)

which lead us to

H0⊥ =




Ek − µ ∆e

(

∂k + n− 1
2

k −Aθ

)

∆e

(

−∂k + n− 1
2

k −Aθ

)

−Ek + µ



 , (B.30)

now with n an integer. We stick to the latter case.

The wavefunction reads, generally,

ψ = Wph

(

u (k)

v (k)

)

. (B.31)

From our previous considerations, Aθ = −1/2k. Then,

H0⊥ = ρz (Ek − µ) + ρx
∆e

k
n+ ρy∆ei∂k. (B.32)

The functions u (k) and v (k) are centered around kF . We may thus approximate this as

H0⊥ ≈ ρz (Ek − µ) + ρx
∆e

kF
n+ ρy∆ei∂k. (B.33)

This is equivalent to the Jackiw-Rebbi model in k-space. Kinks in the “soliton field”, whose role here is played

by Ek − µ ≡ k − kF , gives mid-gap states (bound to the kink). For whatever value of the chemical potential,

such kink always exists. The energies are

En ≈ ∆e

kF
n (B.34)

For n = 0, we always have a zero-energy eigenstate, as promised.

Normalization demands that ZMs appear alone. The general form is

u (k) = e
´ k

µ−E
k

′

∆e
dk

′

(B.35)

v (k) = u (k) , (B.36)

with the energy a monotonically increasing function of k. Notice that if Ek is close to the Fermi energy we may

approximate µ− Ek′ ≈ ~vF k and u (k) will be a Gaussian with width
√

∆e/ (~vF ) ≈
√

∆0/ (~vF ξ).

Quite generally then

ψn = einθ
e
´ k

µ−E
k

′

∆e
dk

′

√
2πk

(

e−iθ

i

)

. (B.37)

Now, ψ0 corresponds to the zero-energy eigenstate. A feature to notice here is that the spinor is an eigenstate

of t · ρ with t a vector which is tangent to the FS at (kF , θ) this pseudo-spin locking to the momentum gives

the π phase around the Fermi surface and allows generalization for more complicated Fermi surfaces.



Appendix C

Caroli-de Gennes spectrum in class

DIII: numerics and dispersion

We may use the same method considered in the case of vortex modes of doped topological insulators to numer-

ically compute the full spectrum at arbitrary µ for vortex modes in class DIII topological superconductors. We

will also treat the kz dispersion perturbatively. Back to the Hamiltonian, after Fourier transforming in the z

direction and rotating out the angular dependence, the wave functions read

ψl (r, θ) = ei(l−
ρz+σz

2 )θφ (r) , (C.1)

where φ (r) satisfies

[

−ivF ρz
[

σx∂r + iσy
l − (ρz + σz) /2

r

]

+ vF ρzσzkz − ρzµ+ |∆| ρx
]

φ (r) = Elφ (r)

⇒










vF kz − µ −ivF
[
∂r + l

r

]
|∆|

−ivF
[

∂r − (l−1)
r

]

−vF kz − µ |∆|
|∆| −vF kz + µ ivF

[

∂r + (l+1)
r

]

|∆| ivF
[
∂r − l

r

]
vF kz + µ










φnl (r) = Enlφnl (r) .(C.2)

For each given value of l, we may have many (labeled by n) eigenstates. Let us start by making kz = 0. We

thus have










−µ −ivF
[
∂r + l

r

]
|∆|

−ivF
[

∂r − (l−1)
r

]

−µ |∆|
|∆| µ ivF

[

∂r + (l+1)
r

]

|∆| ivF
[
∂r − l

r

]
µ










φnl (r) = Enlφnl (r) . (C.3)

Let us rescale the energies by the gap strength ∆0 and lengths by the coherence length vF /∆0. Then, labeling

the dimensionless variables by bars,










−µ̄ −i
[
∂r̄ + l

r̄

] ∣
∣∆̄
∣
∣

−i
[

∂r̄ − (l−1)
r̄

]

−µ̄
∣
∣∆̄
∣
∣

∣
∣∆̄
∣
∣ µ̄ i

[

∂r̄ + (l+1)
r̄

]

∣
∣∆̄
∣
∣ i

[
∂r̄ − l

r̄

]
µ̄










φnl (r̄) = Enlφnl (r̄) . (C.4)

In what follows we omit the bars to avoid cluttering.
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Define the kinetic Hamiltonian

Kl ≡
(

−µ −i
[
∂r + l

r

]

−i
[

∂r − (l−1)
r

]

−µ

)

. (C.5)

We expand the wavefunctions in terms of Bessel functions. Noticing the following recurrence relations

(

∂r +
l

r

)

Jl (kr) = kJl−1 (kr) , (C.6)
(

∂r − l

r

)

Jl (kr) = −kJl+1 (kr) , (C.7)

we may define the raising and lowering operators

al =
(

∂r +
l

r

)

(C.8)

a†
l = −

(

∂r − l − 1
r

)

. (C.9)

They naturally act as

alJl (kr) = kJl−1 (kr) (C.10)

a†
lJl−1 (kr) = kJl (kr) . (C.11)

This allows writing the Bessel equation naturally as

a†
l alJl (kr) = k2Jl (kr) . (C.12)

The kinetic Hamiltonian reads

Kl ≡
(

−µ −ial
ia†
l −µ

)

. (C.13)

With this we may guess eigenstates of the kinetic part of the Hamiltonian

Kl

(

αJl−1 (kr)

βJl (kr)

)

=

(

−µα− ikβ 0

0 ikα− µβ

)(

Jl−1 (kr)

Jl (kr)

)

(C.14)

= λ

(

αJl−1 (kr)

βJl (kr)

)

. (C.15)

This implies
(

−µ− λ −ik
ik −µ− λ

)(

α

β

)

= 0 (C.16)

Solutions give energies λ±
l (k) = −µ± k. The corresponding coefficients are

(

α±

β±

)

=
1√
2

(

1

±i

)

. (C.17)

We thus write

χ±
kl =

1√Nk

(

Jl−1 (kr)

±iJl (kr)

)

. (C.18)
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The normalization factor reads

Nk =
ˆ ∞

0

rdrJl (kr) Jl (kr) . (C.19)

Notice that in this continuum limit

ˆ ∞

0

rdrJl (kr) Jl
(

k
′

r
)

(C.20)

=
ˆ ∞

0

rdrJl+1 (kr) Jl+1

(

k
′

r
)

(C.21)

=
δ
(

k − k
′
)

k
. (C.22)

These normalization factors will be regularized in the case of having a finite cylinder.

The Nambu partners are solved similarly by diagonalizing −Kl+1. The states read

χ̃±
kl =

1
√

Ñ ±
k

(

Jl (kr)

±iJl+1 (kr)

)

(C.23)

with energies λ̃±
l (k) = µ± k. Notice λ̃±

l = −λ±
l . We take the same label l in the eigenvalues λ for both Nambu

sectors as we will sum over the same values of k (even in the finite radius.)

The eigenstates of the vortex BdG Hamiltonian are thus

ψnl (r, θ) = ei(l−
ρz+σz

2 )θφnl (r) , (C.24)

where

φnl (r) =

(
´

dk
[
cn+
lk χ

+
kl + cn−

lk χ
−
kl

]

´

dk
[
dn+
lk χ̃

+
kl + dn−

lk χ̃
−
kl

]

)

. (C.25)

The radial BdG equation will read

(

Kl |∆|
|∆| −Kl+1

)(
´

k

[
cn+
lk χ

+
kl + cn−

lk χ
−
kl

]

´

k

[
dn+
lk χ̃

+
kl + dn−

lk χ̃
−
kl

]

)

(C.26)

= Enl

(
´

k

[
cn+
lk χ

+
kl + cn−

lk χ
−
kl

]

´

k

[
dn+
lk χ̃

+
kl + dn−

lk χ̃
−
kl

]

)

. (C.27)
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Taking the scalar product with φnl with a
´

rdr measure, we have

〈

nl

∣
∣
∣
∣
∣

(

Kl |∆|
|∆| −Kl+1

)∣
∣
∣
∣
∣
nl

〉

=
ˆ ∞

0

rdrφ+
nl (r)

†
(

Kl |∆|
|∆| −Kl+1

)

φ+
nl (r) (C.28)

=
ˆ

k

[
cn+∗
lk cn+

lk λ
+
lk + cn−∗

lk cn−
lk λ

−
lk

]

+
ˆ

k

[
dn+∗
lk dn+

lk λ̃
+
l+1k + dn−∗

lk dn−
lk λ̃

−
l+1k

]

+
ˆ

k′

ˆ

k

ˆ ∞

0

rdr |∆|
[

cn+∗
lk′ dn+

lk χ
+†
k′ l
χ̃+
kl + cn−∗

lk′ dn+
lk χ

−†
k′ l
χ̃+
kl

]

+
ˆ

k′

ˆ

k

ˆ ∞

0

rdr |∆|
[

cn+∗
lk′ dn−

lk χ
+†
k′ l
χ̃−
kl + cn−∗

lk′ dn−
lk χ

−†
k′ l
χ̃−
kl

]

+ h.c.

=
ˆ

k,k′

(

cn+
lk cn−

lk dn+
lk dn−

lk

)∗









λ+
lkδkk′ |∆|++

l,kk′ |∆|+−
l,kk′

λ−
lkδkk′ |∆|−+

l,kk′ |∆|−−
l,kk′

|∆|++
l,kk′ |∆|−+

l,kk′ −λ+
lkδkk′

|∆|+−
l,kk′ |∆|−−

l,kk′ −λ−
lkδkk′

















cn+
lk′

cn−
lk′

dn+
lk′

dn−
lk′









(C.29)

where we used
ˆ ∞

0

rdrχ̃σ
′ †
k′ l
χ̃σkl = δσσ′ δ

(

k − k
′
)

(C.30)
ˆ ∞

0

rdrχσ
′ †
k′ l

|∆| χ̃σkl =
1

√

N σÑ σ′

ˆ ∞

0

rdr |∆|
[

Jl−1

(

k
′

r
)

Jl (kr)

+σσ
′

Jl

(

k
′

r
)

Jl+1 (kr)
]

≡ |∆|σσ
′

l,kk′ . (C.31)

We end at the problem

ˆ

k,k′









cn+
lk

cn−
lk

dn+
lk

dn−
lk









†







(
λ+
lk − Enl

)
δkk′ |∆|++

l,kk′ |∆|+−
l,kk′

(
λ−
lk − Enl

)
δkk′ |∆|−+

l,kk′ |∆|−−
l,kk′

|∆|++
l,k′k

|∆|−+
l,k′k

(
−λ+

lk − Enl
)
δkk′

|∆|+−
l,k′k

|∆|−−
l,k′k

(
−λ−

lk − Enl
)
δkk′

















cn+
lk′

cn−
lk′

dn+
lk′

dn−
lk′









= 0.

(C.32)

Take a positive value for the chemical potential µ. The states with λ− above are then high energy and do

not cross the Fermi energy for any value of k. They are not relevant for the low energy excitations. One may

then neglect the unnecessary coefficients, arriving at

φnl (r) =

(
´

dk
[
cn+
lk χ

+
kl

]

´

dk
[
dn+
lk χ̃

+
kl

]

)

(C.33)

in which case the eigenvalue problem simplifies to

ˆ

k,k′

(

cn+
lk dn−

lk

)
( (

λ+
lk − Enl

)
δkk′ |∆|++

l,kk′

|∆|++
l,k′k

(
−λ+

lk − Enl
)
δkk′

)(

cn+
lk′

dn+
lk′

)

= 0. (C.34)

We know that the solution consists of Enl ∼ ∆0, which correspond to scattering states and EnCdGl =
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hBdG = vFΓ · (−i∇) + Λx∆0 (r) eiρzθ (C.39)

−vF ρzΓ · A + ρzA0 (C.40)

= vFΓ · (−i∇)⊥ + Λx∆0 (r) eiρzθ (C.41)

+vFΓz (−i∂z) (C.42)

−vF ρzΓ · A + ρzA0 (C.43)

≡ h⊥ + hz + hEM . (C.44)

We will consider A = (0, 0, Et), which is the main case of interest. As this is independent of z, kz stays a good

quantum number in this situation.

We now expand,

Ψ =
∑

kz,n,l

eikzzφnl (r, θ) fkznl. (C.45)

We have

φnl (r) =

(
´

dk
[
cn+
lk χ

+
kl + cn−

lk χ
−
kl

]

´

dk
[
dn+
lk χ̃

+
kl + dn−

lk χ̃
−
kl

]

)

(C.46)

≡
(

u+
ln (r, θ) + u−

ln (r, θ)

v+
ln (r, θ) + v−

ln (r, θ)

)

. (C.47)

From our previous arguments, one might expect that u− ≈ v− ≈ 0. The complete basis for expansion, however

is this one, and might prove necessary for the complete expansion of the fermionic operator.

Taking each contribution h⊥ + hz + hEM separately,

H =
ˆ

d3xΨ†hBdGΨ

=
∑

kz,n,l

∑

k′
z,n

′ ,l′

ˆ

d3xf†
k′

zn
′ l′
e−ik′

zzφ†
n′ l′

(r, θ)hBdGeikzzφnl (r, θ) fkznl

=
∑

kz,n,l

∑

k′
z,n

′ ,l′

ˆ

d3xf†
k′

zn
′ l′
e−ik′

zzφ†
n′ l′

(r, θ)h⊥e
ikzzφnl (r, θ) fkznl

+
∑

kz,n,l

∑

k′
z,n

′ ,l′

ˆ

d3xf†
k′

zn
′ l′
e−ik′

zzφ†
n′ l′

(r, θ)hzeikzzφnl (r, θ) fkznl

+
∑

kz,n,l

∑

k′
z,n

′ ,l′

ˆ

d3xf†
k′

zn
′ l′
e−ik′

zzφ†
n′ l′

(r, θ)hEMeikzzφnl (r, θ) fkznl

=
∑

kz,n,l

f†
kznl

fkznlEnl (C.48)

+
∑

kz,n,l

∑

n′ ,l′

f†
kzn

′ l′
h̃n

′
l
′
,nl

z fkznl (C.49)

+
∑

kz,n,l

∑

n′ ,l′

f†
kzn

′ l′
h̃n

′
l
′
,nl

EM fkznl, (C.50)

where

h̃n
′
l
′
,nl

z = vF kz

ˆ

d2rφ†
n′ l′

(r, θ) Γzφnl (r, θ) (C.51)

h̃n
′
l
′
,nl

EM = −vFAz
ˆ

d2rφ†
n′ l′

(r, θ) ρzΓzφnl (r, θ) . (C.52)
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Let us compute these explicitly. First, notice that

φnl (r, θ) =
ˆ

dkei(l−
ρz+σz

2 )θ









cn+
lk√Nk

(

Jl−1 (kr)

iJl (kr)

)

+ cn−
lk√Nk

(

Jl−1 (kr)

−iJl (kr)

)

dn+
lk√Nk

(

Jl (kr)

iJl+1 (kr)

)

+ dn−
lk√Nk

(

Jl (kr)

−iJl+1 (kr)

)









, (C.53)

and that the exponential factor ei(l−
ρz+σz

2 )θ commutes with both Γz and ρzΓz. We safely write then

φnl (r, θ) = ei(l−
ρz+σz

2 )θφ̃nl (r) (C.54)

and notice that
〈

nl|Γz|n
′

l
′
〉

= δll′

ˆ

rdrφ̃†
n′ l

(r) Γzφ̃nl (r) (C.55)

and similarly for ρzΓz. Variables with tilde will be taken for when neglecting the θ contributions. Now

ˆ

rdrφ̃†
n′ l

(r) Γzφ̃nl (r)

=
∑

σ,σ′ =±

ˆ

rdr
(

ũσ
′

ln′

)†
σzũ

σ
ln

−
ˆ

rdr
(

ṽσ
′

ln′

)†
σzṽ

σ
ln. (C.56)

Now we have
ˆ

rdr
(

ũσ
′

ln′

)†
σzũ

σ
ln

=
ˆ

dkdk
′ cn

′
σ

′

lk′ cnσlk
√

Nk′ Nk

ˆ

rdr
(

Jl−1

(

k
′

r
)

− iσ
′

Jl

(

k
′

r
))
(

Jl−1 (kr)

−iσJl (kr)

)

=
ˆ

dkdk
′ cn

′
σ

′

lk′ cnσlk
√

Nk′ Nk

ˆ

rdr
[

Jl−1

(

k
′

r
)

Jl−1 (kr) − σ
′

σJl

(

k
′

r
)

Jl (kr)
]

. (C.57)

Now
ˆ ∞

0

rdrJl (kr) Jl
(

k
′

r
)

=
δ
(

k − k
′
)

k
. (C.58)

Then,

ˆ

rdr
(

ũσ
′

ln′

)†
σzũ

σ
ln =

ˆ

dkdk
′ cn

′
σ

′

lk′ cnσlk
√

Nk′ Nk

δ
(

k − k
′
)

k

[

1 − σ
′

σ
]

=
[

1 − σ
′

σ
] ˆ

dkcn
′
σ

′

lk cnσlk

= (1 − δσσ′ )
ˆ

dkcn
′
σ

′

lk cnσlk . (C.59)

Similarly,
ˆ

rdr
(

ṽσ
′

ln′

)†
σzṽ

σ
ln = (1 − δσσ′ )

ˆ

dkdn
′
σ

′

lk dnσlk . (C.60)
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Thus

〈

nl|Γz|n
′

l
〉

= 2
ˆ

dk
[

cn
′
+

lk cn−
lk + cn

′ −
lk cn+

lk

]

−2
ˆ

dk
[

dn
′
+

lk dn−
lk + dn

′ −
lk dn+

lk

]

(C.61)

≡ ṽnn
′

l (C.62)
〈

nl|ρzΓz|n
′

l
〉

= 2
ˆ

dk
[

cn
′
+

lk cn−
lk + cn

′ −
lk cn+

lk

]

+2
ˆ

dk
[

dn
′
+

lk dn−
lk + dn

′ −
lk dn+

lk

]

(C.63)

≡ q̃nn
′

l . (C.64)

In this new basis we thus have

H =
∑

kz,l,n,n
′

f†
kzln

[

Enlδnn′ + vF

(

kz ṽ
nn

′

l − q̃nn
′

l Az

)]

fkzln
′ . (C.65)

Coefficients analysis

To try and evaluate ṽ and q̃ explicitly in some cases of interest, let us try to relate the coefficients c± and d±

Let us first check PH symmetry properties. The operator reads Ξ = ρyσyK. We have

Ξψnl =









−1

1

1

−1









ˆ

dk√Nk









cn+
lk

(

ei(l−1)θJl−1 (kr)

ieilθJl (kr)

)

+ cn−
lk

(

ei(l−1)θJl−1 (kr)

−ieilθJl (kr)

)

dn+
lk

(

eilθJl (kr)

iei(l+1)θJl+1 (kr)

)

+ dn−
lk

(

eilθJl (kr)

−iei(l+1)θJl+1 (kr)

)









∗

=
ˆ

dk
1√Nk









dn+∗
lk

(

ie−i(l+1)θJl+1 (kr)

e−ilθJl (kr)

)

+ dn−∗
lk

(

−ie−i(l+1)θJl+1 (kr)

e−ilθJl (kr)

)

cn+∗
lk

(

−ie−ilθJl (kr)

−e−i(l−1)θJl−1 (kr)

)

+ cn−∗
lk

(

ie−ilθJl (kr)

−e−i(l−1)θJl−1 (kr)

)









(C.66)

∝ ψn′ ,−l, (C.67)

as {Lz,Ξ} = 0. Now,

ψn,−l = i

ˆ

dk
(−1)l√Nk









cn+
−lk

(

ie−i(l+1)θJl+1 (kr)

e−ilθJl (kr)

)

+ cn−
−lk

(

ie−i(l+1)θJl+1 (kr)

−e−ilθJl (kr)

)

dn+
−lk

(

−ie−ilθJl (kr)

−e−i(l−1)θJl−1 (kr)

)

+ dn−
−lk

(

−ie−ilθJl (kr)

e−i(l−1)θJl−1 (kr)

)









(C.68)

where we used J−l = (−1)l Jl for l integer as is the case. As the coefficients are real, the constant of proportion

is −i and

dn
′
+

lk = cn+
−lk (−1)l (C.69)

dn
′ −
lk = −cn−

−lk (−1)l (C.70)

with matching signs.

Interestingly, as the vortex bound modes decouple from the others, we may expect that

dnCdG+
lk = cnCdG+

−lk (−1)l

dnCdG−
lk = −cnCdG−

−lk (−1)l
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Then, for the CdG modes, (for these we omit the n labels)

ψnCdGl (r, θ) =
ˆ

dk
1√Nk









c+
lk

(

ei(l−1)θJl−1 (kr)

ieilθJl (kr)

)

+ c−
lk

(

ei(l−1)θJl−1 (kr)

−ieilθJl (kr)

)

c+
−lk (−1)l

(

eilθJl (kr)

iei(l+1)θJl+1 (kr)

)

− c−
−lk (−1)l

(

eilθJl (kr)

−iei(l+1)θJl+1 (kr)

)









(C.71)

Focus in the ψ0 term

ψnCdG0 (r, θ) =
ˆ

dk√Nk









( (
c+

0k + c−
0k

)
e−iθJ1 (kr)

(
c+

0k − c−
0k

)
iJ0 (kr)

)

( (
c+

0k − c−
0k

)
J0 (kr)

(
c+

0k + c−
0k

)
ieiθJ1 (kr)

)









. (C.72)

In this case,

ˆ

rdrψ†
nCdG0ΓzψnCdG0

=
ˆ

dk
′

dk
√

Nk′ Nk

ˆ

rdr
[(

c+
0k′ + c−

0k′

) (
c+

0k + c−
0k

)
J1

(

k
′

r
)

J1 (kr) −
(

c+
0k′ − c−

0k′

) (
c+

0k − c−
0k

)
J0

(

k
′

r
)

J0 (kr)
]

−
ˆ

dk
′

dk
√

Nk′ Nk

ˆ

rdr
[(

c+
0k′ − c−

0k′

) (
c+

0k − c−
0k

)
J0

(

k
′

r
)

J0 (kr) −
(

c+
0k′ + c−

0k′

) (
c+

0k + c−
0k

)
J1

(

k
′

r
)

J1 (kr)
]

=
ˆ

dk
[(
c+

0k + c−
0k

)2 −
(
c+

0k − c−
0k

)2
]

−
ˆ

dk
[(
c+

0k − c−
0k

)2 −
(
c+

0k + c−
0k

)2
]

= 4
ˆ

dkc+
0kc

−
0k. (C.73)

Similarly,

ˆ

rdrψ†
nCdG0ρzΓzψnCdG0

=
ˆ

dk
[(
c+

0k + c−
0k

)2 −
(
c+

0k − c−
0k

)2
]

+
ˆ

dk
[(
c+

0k − c−
0k

)2 −
(
c+

0k + c−
0k

)2
]

= 0. (C.74)

This shows explicitly that the CdG modes from l = 0 do not couple to the EM field.

Numerics

To implement the numerical diagonalization, we set a finite size in the cylinder radius R. The wavefunction

expansion then reads

φnl (r) =





∑

j

[

cn+
jl χ

+
jl

]

∑

j

[

dn+
jl χ̃

+
jl

]



 (C.75)

with

χ±
lj =

1
√

Nlj

(

Jl−1

(αljr
R

)

±iJl
(αljr
R

)

)

(C.76)

and

χ̃±
lj =

1
√

Nlj

(

Jl
(αljr
R

)

±iJl+1

(αljr
R

)

)

. (C.77)

Now we normalize. We need



APPENDIX C. CAROLI-DE GENNES SPECTRUM IN CLASS DIII: NUMERICS AND DISPERSION 110

ˆ c

0

rdrJl (ar) Jl (br) =
c

a2 − b2
[Jl (ar) ∂rJl (br) − ∂rJl (ar) Jl (br)]r=c

=
c

a2 − b2

[

bJl (ac) J
′

l (bc) − aJ
′

l (ac)Jl (bc)
]

, a 6= b (C.78)

and

ˆ c

0

rdrJl (ar)
2 =

c2

2

[

Jl (ac)
2 − Jl−1 (ac) Jl+1 (ac)

]

. (C.79)

Notice that

J
′

l (x) =
n

x
Jl (x) − Jl+1 (x) . (C.80)

Then

ˆ R

0

rdrJl (ar) Jl (br) =
R

a2 − b2

[

bJl (aR) J
′

l (bR) − aJ
′

l (aR) Jl (bR)
]

=
R

a2 − b2

[

bJl (aR)
( n

bR
Jl (bR) − Jl+1 (bR)

)

− a

(
l

aR
Jl (aR) − Jl+1 (aR)

)

Jl (bR)
]

=
1

a2 − b2
[(aR) Jl+1 (aR) Jl (bR) − (bR) Jl (aR) Jl+1 (bR)] (C.81)

+
l

a2 − b2
[Jl (aR) Jl (bR) − Jl (aR) Jl (bR)] (C.82)

=
1

a2 − b2
[(aR) Jl+1 (aR) Jl (bR) − (bR) Jl (aR) Jl+1 (bR)] (C.83)

So we have,

ˆ R

0

rdrχ+†
j′ l
χ+
jl

=
R2

√NljNlj′

ˆ 1

0

xdx
[

Jl−1 (αljx)Jl−1

(

αlj′x
)

+ Jl (αljx) Jl
(

αlj′x
)]

=
1

√NljNlj′

[
ˆ 1

0

xdxJl−1 (αljx) Jl−1

(

αlj′x
)

+
1
2
δjj′Jl+1 (αlj)

2

]

. (C.84)

One still needs to evaluate

ˆ 1

0

xdxJl−1 (αljx)Jl−1

(

αlj′x
)

=
1

α2
lj − α2

lj′

[

αljJl (αlj) Jl−1

(

αlj′

)

− αlj′Jl−1 (αlj)Jl
(

αlj′

)]

= 0 (C.85)

(in this limit one should actually be careful about the neglected terms) and

ˆ 1

0

rdrJl−1 (αljr)
2 =

1
2

[

Jl−1 (αlj)
2 − Jl−2 (αlj) Jl (αlj)

]

(C.86)

1
2

[

Jl−1 (αlj)
2
]

. (C.87)
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So we have

ˆ 1

0

xdxJl (αljx) Jl
(

αlj′x
)

=
1
2
δjj′Jl+1 (αlj)

2 (C.88)

ˆ 1

0

xdxJl−1 (αljx) Jl−1

(

αlj′x
)

=
1
2
δjj′Jl−1 (αlj)

2 (C.89)

Using that

Jl+1 (αlj) =
2l
αlj

Jl (αlj) − Jl−1 (αlj) (C.90)

= −Jl−1 (αlj) , (C.91)

the normalization factors reads

Nlj =
R2

2

[

Jl−1 (αlj)
2 + Jl+1 (αlj)

2
]

= R2Jl+1 (αlj)
2
. (C.92)

Then we have, finally,

Nlj = |RJl+1 (αlj)|2 (C.93)

The index j is an integer and is summed from −N0/2 up to N0/2 fixed at a starting value Ni which fixes

αlNi
/R ∼ kF . Similar considerations may be applied to the χ̃ spinors, the normalization factor is easily seen to

be the same.

The matrix elements now read approximately

ˆ R

0

rdrχ+†
j′ l
χ+
jl =

ˆ R

0

rdrχ̃+†
j′ l
χ̃+
jl

= δjj′ (C.94)
ˆ R

0

rdrχσ
′ †
k′ l

|∆| χ̃σkl

=

´ 1

0
xdx |∆ (xR)|

√

Jl+1 (αlj)
2
Jl+1

(

αlj′

)2

[

Jl−1

(

αlj′x
)

Jl (αljx) (C.95)

+σσ
′

Jl

(

αlj′ r
)

Jl+1 (αljr)
]

≡ |∆|σσ
′

l,jj′ . (C.96)

and

|∆ (r)| = ∆0 tanh
(
r

ξ

)

(C.97)

⇒ |∆ (xR)| = ∆0 tanh
(

x
R

ξ

)

(C.98)

where ξ = vFπ/∆0 is the SC coherence length and ∆0 is the magnitude of the SC pairing.

Thus, defining

Φln =
(
cn+

1l ...c
n+
N0l

, dn+
1l ...d

n+
N0l

)
, (C.99)
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where

Φ†
lnΦln′ = δnn′ , (C.100)

the eigenvalue problem becomes completely algebraic

(

Tl ∆l

∆T
l −Tl

)

Φln = El,nΦln (C.101)

where

Tl =







λ+
l1

. . .

λ+
lN0







(C.102)

and

∆l =







|∆|++
l,11 |∆|++

l,1N0

. . .

|∆|++
l,N01 |∆|++

l,N0N0






. (C.103)

So all we have to do is to compute the following integrals,

I1
jj′ =

ˆ 1

0

xdx |∆ (xR)|
[

Jl−1

(

αlj′x
)

Jl (αljx)
]

(C.104)

I2
jj′ =

ˆ 1

0

xdx |∆ (xR)|
[

Jl

(

αlj′x
)

Jl+1 (αljx)
]

(C.105)

such that

|∆|++
l,jj′ =

[

I1
jj′ + I2

jj′

]

√NjNj′

. (C.106)

We fix

R = 1000 (C.107)

Ni = 450 (C.108)

N0 = 120 (C.109)

α = 0.05 (C.110)

µ = 1 (C.111)

m = 1 (C.112)

∆0 = 0.05 (C.113)

The spectrum follows

The projection coefficients may be found exactly in the same way as we did for the infinite radius case, and

reads
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Figure C.2: Energy levels in the 2D plane. On the left we have the separate energies for l = −2, ..., 2 while on
the right we have the same energies collapsed at a single line for illustration. Our approximation El = ∆2

0

EF
l is

reasonably decent. A tendency for increasing values of the minigap is seen on the right figure. This might be a
finite size effect or our approximation was not exact.

ṽnn
′

l = 2
∑

j

[

cn
′
+

lj cn−
lj + cn

′ −
lj cn+

lj

]

−2
∑

j

[

dn
′
+

lj dn−
lj + dn

′ −
lj dn+

lj

]

(C.114)

q̃nn
′

l = 2
∑

j

[

cn
′
+

lj cn−
lj + cn

′ −
lj cn+

lj

]

+2
∑

j

[

dn
′
+

lj dn−
lj + dn

′ −
lj dn+

lj

]

(C.115)

Reminding ourselves again that, for the CdG modes

dnCdG+
lk = cnCdG+

−lk (−1)l

dnCdG−
lk = −cnCdG−

−lk (−1)l

and that their subspace is separated from the rest of the gapped modes for n 6= nCdG,

ṽnCdG

l = 2
∑

j

[

cnCdG+
lj cnCdG−

lj + cnCdG−
lj cnCdG+

lj

]

−2
∑

j

[

dnCdG+
lj dnCdG−

lj + dnCdG−
lj dnCdG+

lj

]

(C.116)

q̃nCdG

l = 2
∑

j

[

cnCdG+
lj cnCdG−

lj + cnCdG−
lj cnCdG+

lj

]

+2
∑

j

[

dnCdG+
lj dnCdG−

lj + dnCdG−
lj dnCdG+

lj

]

(C.117)

and
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ṽnCdG

l = 4
∑

j

[

cnCdG+
lj cnCdG−

lj

]

+4
∑

j

[

cnCdG+
−lj cnCdG−

−lj

]

(C.118)

q̃nCdG

l = 4
∑

j

[

cnCdG+
lj cnCdG−

lj

]

−4
∑

j

[

cnCdG+
−lj cnCdG−

−lj

]

(C.119)

which implies q̃nCdG

l=0 = 0.

Vortex bound states and perturbation theory

We have found that the original Hamiltonian for a cylindrical DIII TSC in 3D in the presence of a chiral vortex

may be written

H =
∑

kz,l,n,n
′

f†
kzln

[

Enlδnn′ + vF

(

kz ṽ
nn

′

l − q̃nn
′

l Az

)]

fkzln
′ , (C.120)

for one Fermi surface. (the other Fermi surface contains only contributions of states gapped by the SC gap)

Let us neglect the effects of the vector potential for now, and analyze how is the spectrum of this system as

function of kz. We have then,

H =
∑

kz,l,n,n
′

f†
kzln

[
Enlδnn′ + vF ṽ

l
nn′kz

]
fkzln

′ (C.121)

where (I modified the notation slightly)

ṽl
n′n

= 2
∑

j

[

cn
′
+

lj cn−
lj + cn

′ −
lj cn+

lj

]

−2
∑

j

[

dn
′
+

lj dn−
lj + dn

′ −
lj dn+

lj

]

(C.122)

q̃l
n′n

= 2
∑

j

[

cn
′
+

lj cn−
lj + cn

′ −
lj cn+

lj

]

+2
∑

j

[

dn
′
+

lj dn−
lj + dn

′ −
lj dn+

lj

]

(C.123)

and cn±
lj and dn±

lj are the coefficients of the wavefunctions

φnl (r, θ) =
∑

k

1
√

Nj









cn+
lj

(

ei(l−1)θJl−1

(αlj

R r
)

ieilθJl
(αlj

R r
)

)

+ cn−
lj

(

ei(l−1)θJl−1

(αlj

R r
)

−ieilθJl
(αlj

R r
)

)

dn+
lj

(

eilθJl
(αlj

R r
)

iei(l+1)θJl+1

(αlj

R r
)

)

+ dn−
lj

(

eilθJl
(αlj

R r
)

−iei(l+1)θJl+1

(αlj

R r
)

)









(C.124)

that diagonalize the planar part of the Hamiltonian in a finite radius R with energies Enl. The coefficients cn−
lj

and dn−
lj are expected to be small, in the limit of weak pairing, in comparison with cn+

lj and dn+
lj .

So we have the first quantized Hamiltonian

hl (kz) = Enlδnn′ + vF ṽ
l
nn′kz. (C.125)

Now it makes sense to compute the effects of kz in the energy at fixed n = nCdG and given l in perturbation
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theory.

We start focusing in the subspace of CdG modes

h0
l = EnCdGl = l × ∆2

0

EF
≡ δl. (C.126)

These states are non-degenerate in l and perturbation theory is computed easily. The first order corrections in

kz read

h0
nCdGl

= vF ṽ
l
nCdGnCdG

kz, (C.127)

where

ṽlnCdGnCdG
= 4

∑

j

[

cnCdG+
lj cnCdG−

lj − dnCdG+
lj dnCdG−

lj

]

(C.128)

= 4
∑

j

[

cnCdG+
lj cnCdG−

lj + cnCdG+
−lj cnCdG−

−lj

]

. (C.129)

Now, to second order, we have

h0
nCdGl

= (vF kz)
2
∑

n 6=nCdG

ṽlnCdGn
ṽlnnCdG

EnCdGl − Enl
. (C.130)

For a fixed angular momentum l, the states labeled by n 6= nCdG separate in states of positive energy and states

of negative energy, which we label as n±, respectively. These states have energies of the order of the SC gap

∆0. We may then write

1
m̃l

≡
∑

n 6=nCdG

ṽlnCdGn
ṽlnnCdG

EnCdGl − Enl

=
∑

n+

ṽlnCdGn+
ṽln+nCdG

EnCdGl − En+l

+
∑

n−

ṽlnCdGn−
ṽln−nCdG

EnCdGl − En−l
. (C.131)

Let us focus shortly at m̃0. In this case, since particle-hole symmetry sends l = 0 → 0, we can safely say

thatEn−l = −En+l and ṽln+nCdG
= ṽln−nCdG

(up to a sign factor which cancels in the multiplication by the

conjugation transpose.) Then

1
m̃0

= −
∑

n+

ṽlnCdGn+
ṽln+nCdG

En+l

−
∑

n−

ṽlnCdGn−
ṽln−nCdG

En−l

= −
∑

n+

ṽlnCdGn+
ṽln+nCdG

En+l

+
∑

n−

ṽlnCdGn+
ṽln+nCdG

En+l
= 0. (C.132)

The l = 0 states receive no contribution to second order in perturbation theory.

Let us make also a crude analysis of the energy denominator. We may write the contributions approximately

as
1

ǫ− ∆0
+

1
ǫ+ ∆0

≈ 2ǫ
∆2

0

, (C.133)

where ǫ represents the mini-gap energies of the CdG modes and∆0 represents the energies of the gapped higher

energy modes. We clearly see that the sign of ml depends on the sign of the CdG mode energies. Thus an
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analysis of the energy denominator also suggests that if l > 0 then ml > 0 and if l < 0 then ml < 0.

Notice that for the charge elements q̃l, the arguments above follow much in the same way. So we may write

EnCdGl ≈ δl + ṽlnCdGnCdG
[vF kz] +

[vF kz]
2

m̃l
. (C.134)

We may extrapolate this perturbative expression of powers of the momentum as an expansion of a hyperbola.

Taking into account the signs of masses and charges and the zero mode. A very likely Hamiltonian describing

the physics at the vortex is given by

h̃z =
ˆ

dkzkzγ−kz0γkz0 (C.135)

+
∑

l>0

ˆ

dkzc
†
kzl
ckzl

√

(kz + Et)2 + δ2
l (C.136)

−
∑

l<0

ˆ

dkzc
†
kzl
ckzl

√

(kz − Et)2 + δ2
l (C.137)



Appendix D

Goldstone-Wilczek axion calculation

for a class DIII system

Let us start rewriting the BdG Hamiltonian from a single Weyl fermion,

hBdG = vFα · P + ∆ (X) · Λ, (D.1)

in a different language. We write ∆ (X) = vF (Φ1,Φ2). The second quantized BdG equation may be written

HBdG/vF =
ˆ

d3xΨ† [α · P + Φ1Λx + Φ2Λy] Ψ (D.2)

where again ΨT =
(
ψ, iσyψ

†). We bear in mind that we actually have two of these, one for each Fermi surface.

Also bear in mind that the fermionic representation is then constrained and Ψ† is not independent of Ψ but

rather Ψ† = [iρxσyΨ]T .

Using our representation

α = ρzσ (D.3)

Λ1 = ρxσ0 (D.4)

Λ2 = ρyσ0, (D.5)

we then write the action in relativistic form

SBdG =
ˆ

d4xΨ̄
[
iΓµ∂µ −

[
Φ1 + iΓ̄Φ2

]]
Ψ, (D.6)

where we rescaled vF t → x0 and

Γ0 = ρxσ0 (D.7)

Γi = −iρyσi = Γ0αi (D.8)

Γ̄ = ρzσ0 = iΓ0Γ1Γ2Γ3. (D.9)

We use the metric ηµν = diag (1,−1,−1,−1)This matches notation in [85]. The superconducting phase fluctu-

ations are identified with what is called an “axion string”. They are fixed by the phase of Φ = Φ1 + iΦ2.

The partition function for the gapped part of the superconducting spectrum in the presence of an electro-
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This is given by

iSaxion [A,Φ] = −1
2

1
3
Tr
[(
G0

(
Γ̄ΓµAµ + iΓ̄Φ2

))3
]

(D.17)

= −1
2
Tr
[
G0

(
Γ̄ΓµAµ

)
G0

(
Γ̄ΓµAµ

)
G0

(
iΓ̄Φ2

)]

where

G0 (x− y) =
1

iΓµ∂µ −m
δ (x− y) . (D.18)

In momentum space, the capital trace becomes

Saxion [A,Φ] = −1
2

ˆ

k,q

Aµ (q − k)Aν (k) Φ2 (−q) (D.19)
ˆ

p

tr
[
Γ̄ΓµG0 (p+ k) Γ̄ΓνG0 (p) Γ̄G0 (p+ q)

]

where
´

k
≡
´

d4k
(2π)4 and tr runs over the internal degrees of freedom only. This last p integral and trace represents

the actual “bubble” diagram. We call

Iµν =
ˆ

p

tr
[
Γ̄ΓµG0 (p+ k) Γ̄ΓνG0 (p) Γ̄G0 (p+ q)

]
. (D.20)

We deploy the gradient expansion in the “external momenta” k, q,

G0 (p+ k) =
Γµ (pµ + kµ) +m

(p+ k)2 −m2

≈ G0 (p) +
Γµkµ
p2 −m2

− 2p · k
(p2 −m2)2 . (D.21)

Terms odd in p in the numerator (such as from p · k) vanish from the angular integrals. One has to be careful

with the tracing also. We have

tr
[
Γ̄Γµ (Γ · (p+ k) +m) Γ̄Γν (Γ · p+m) Γ̄ (Γ · (p+ q) +m)

]

= m
{
tr
[
Γµ (Γ · (p+ k)) Γν (Γ · p) Γ̄

]

+tr
[
Γµ (Γ · (p+ k)) Γν Γ̄ (Γ · (p+ q))

]

−tr
[
ΓµΓν (Γ · p) Γ̄ (Γ · (p+ q))

]}

= m
{
tr
[
Γµ (Γ · (p+ k)) Γν (Γ · p) Γ̄

]

+tr
[
Γµ (Γ · (2p+ k)) Γν Γ̄ (Γ · (p+ q))

]}

= m
{

(pλ + kλ) (pσ) tr
[
ΓµΓλΓνΓσΓ̄

]
+ (2pλ + kλ) (pσ + qσ) tr

[
ΓµΓλΓν Γ̄Γσ

]}

= m {− (pλ + kλ) (pσ) + (2pλ + kλ) (pσ + qσ)} tr
[
ΓµΓνΓλΓσΓ̄

]

= −i4ǫµνλσm {2pλqσ + kλqσ}
= −i4mǫµνλσ {2pλqσ + kλqσ} , (D.22)

where we used that

tr
[
ΓσΓµΓλΓν Γ̄

]
= −4iǫσµλν . (D.23)

As a result
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Iµν = −i4mǫµνλσkλqσ
ˆ

p

1

(p2 −m2)3 (D.24)

+i16mǫµνλσqσ (k + q)ρ
ˆ

p

pλpρ

(p2 −m2)4 (D.25)

= −i4mǫµνλσ
[

kλqσ

ˆ

p

1

(p2 −m2)3 − 4qσ (k + q)ρ
ˆ

p

pλpρ

(p2 −m2)4

]

(D.26)

Now, upon Wick rotation p0 = −ip0E and

ˆ

p

1

(p2 −m2)3 = −i 1
32π2

1
m2

(D.27)

ˆ

p

pλpρ

(p2 −m2)4 = −igλρ
1
6

1
32π2

1
m2

(D.28)

Hence

Iµν = −1
3

1
8π2

1
m
ǫµνλσkλqσ. (D.29)

Thus

Seff = −1
2

1
3

1
8π2m

ˆ

k.q

ǫµνλσkλqσAµ (q − k)Aν (k) Φ2 (−q)

=
1
2

1
3

1
8π2

ˆ

x

ǫσµλν
∂σΦ2

Φ1
Aµ∂λAν (D.30)

Fourier transforming to real-space and noticing m = Φ1 we have, up to surface terms,

Saxion [A,Φ] = −1
3

1
2
ǫσµλν

8π2

ˆ

x

∂σΦ2

Φ1
Aµ∂λAν . (D.31)

This is not symmetric between Φ1 and Φ2 because we favored fluctuations in Φ2 in the beginning. It is easy to

recover the axial symmetry, in which case we have

Saxion [A,Φ] = −1
3

1
2
ǫσµλν

8π2

ˆ

x

Φ1∂σΦ2 − Φ2∂σΦ1

|Φ|2
Aµ∂λAν . (D.32)

Recovering the original physical parameters (x0 = vF t, Aµ = eAphysµ , we drop the phys label and ∆ (X) =

vF (Φ1,Φ2)) and rewriting,

Saxion [A,Φ] = −e2 1
2

1
3
ǫσµλν

8π2

ˆ

x

ǫab∆a∂σ∆b

|∆|2
Aµ∂λAν . (D.33)

To finish, one may remember that ∆ = |∆| eiθ for a vortex. Also remembering that we have a pair of Fermi

surfaces, with opposite chirality (this implies that to find the result for the other Fermi surfaces, it is enough to

multiply all Green’s functions by −1 to consider the second Fermi surface. As the vortex induced current goes

as G3
0, this gives an overall −1 factor.)

These arguments imply that the result of [34] may be off by a factor of 1/3.
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