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Vértice de três glúons não perturbativo a partir de identidades de

Slavnov-Taylor com massa dinâmica do glúon
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número 88881.188877/2018-01 para efetuar um estágio de pesquisa na Universidade de
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dade de Valência, e seus respectivos funcionários, pela estrutura e o suporte oferecidos.

Em particular, agradeço ao Centro de Computação John David Rogers, cujo sistema

de computação de alto desempenho permitiu a realização da etapa computacional desta

pesquisa.

Por fim, gostaria de agradecer à minha famı́lia pelo apoio para que eu pudesse prosse-

guir com meus estudos e, especialmente, à minha amada Betina Grosser Martins, quem
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Resumo

O vértice de três glúons não perturbativo desempenha um papel fundamental na ge-

ração dinâmica de massa efetiva para o glúon sem quebrar a simetria de gauge da QCD.

Isto é conseguido através do mecanismo de Schwinger pelo qual o vértice adquire po-

los longitudinalmente acoplados associados a excitações de estados ligados sem massa.

Neste contexto, uma aplicação ingênua da Técnica de Gauge na solução da identidade

de Slavnov-Taylor do vértice de três glúons distorce o seu conteúdo de polos, levando à

aparição de polos espúrios em projeções transversas deste vértice. Mostramos que uma

pequena modificação da Técnica de Gauge, levando em conta a longitudinalidade de seus

polos geradores de massa, restaura a estrutura anaĺıtica do vértice produzindo projeções

transversas regulares e em bom acordo com simulações na rede. Nossa construção é alcan-

çada separando a identidade de Slavnov-Taylor em duas equações análogas, uma satisfeita

pela parte regular do vértice, a outra pelos seus polos longitudinais, e sua principal con-

sequência operacional é a substituição do propagador completo do glúon pelo seu “termo

cinético” nas expressões clássicas de Ball-Chiu. Começamos com uma curta revisão do

aparato de Teoria de Campos de gauge não Abelianos, culminando na derivação da iden-

tidade de Slavnov-Taylor do vértice de três glúons. A seguir, discutimos brevemente o

papel do vértice de três glúons na geração dinâmica de massa do glúon e como esta afeta

as divergências infravermelhas das funções de Green da QCD. Contudo, enfatizamos que

devido aos ghosts permanecerem sem massa não-perturbativamente, divergências infra-

vermelhas originárias dos loops de ghosts podem persistir na teoria completa. A solução

de Ball-Chiu da identidade de Slavnov-Taylor é então discutida em detalhes, destacando

as modificações necessárias para preservar a longitudinalidade de seus polos geradores de

massa. Ato cont́ınuo, o kernel de espalhamento ghost-glúon é avaliado numericamente sob

um truncamento em um loop vestido de sua equação de Schwinger-Dyson e o resultado é

utilizado na Técnica de Gauge para determinar o vértice de três glúons não perturbativo

em cinemática Euclidiana geral. As principais caracteŕısticas do vértice de três glúons

resultante são a supressão e a divergência logaŕıtmica no infravermelho do fator de forma

que acompanha sua estrutura tensorial de ńıvel de árvore. Nossos resultados concordam

no infravermelho com simulações na rede e equações de Schwinger-Dyson e recuperam o

comportamento perturbativo no ultravioleta.



Abstract

The nonperturbative three-gluon vertex plays a key role in the dynamical generation

of an effective gluon mass without breaking the gauge symmetry of QCD. This is achieved

by the Schwinger mechanism via the formation of massless bound state excitations in the

three-gluon vertex which endow it with longitudinally coupled poles. In this context, a

naive application of the Gauge Technique solution to the Slavnov-Taylor identity of the

three-gluon vertex distorts its pole content, leading to the appearance of spurious poles

in transverse projections of this vertex. We show that a slight modification of the Gauge

Technique, accounting for the longitudinality of the mass-generating poles, restores the

analytic structure of the vertex, entailing transverse projections that are regular and in

good agreement with lattice simulations. Our construction is accomplished by splitting

the Slavnov-Taylor identity into two analogous equations, one satisfied by the regular

part of the vertex, and the other by its longitudinal pole part, and its main operational

outcome is the substitution of the full gluon propagator by its “kinetic term” in the classic

Ball-Chiu expressions. We begin with a short review of the field-theoretic apparatus

of non-Abelian gauge theories, culminating in the derivation of the three-gluon vertex

Slavnov-Taylor identity. Then, we briefly discuss the role of the three-gluon vertex in the

generation of dynamical gluon mass and how the later affects the infrared divergences of

QCD Green’s functions. It is emphasized, however, that because ghosts remain massless

nonperturbatively, infrared divergences originating from ghost loops may persist in the full

theory. The Ball-Chiu solution of the Slavnov-Taylor identity is then discussed in detail,

highlighting the modifications needed in order to account for the longitudinality of its

mass generating poles. Next, the ghost-gluon scattering kernel is computed numerically

under a one-loop dressed truncation of its Schwinger-Dyson equation, and the result is fed

into the Gauge Technique solution to determine the nonperturbative three-gluon vertex

in general Euclidean kinematics. The main features displayed by the resulting three-gluon

vertex are the infrared suppression and logarithmic divergence of the form factors that

accompany its tree-level tensor structure. Our results compare well in the infrared to

simulations on the lattice and Schwinger-Dyson equations and recover the perturbative

behavior in the ultraviolet.
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1

Introduction

One of the most eminent challenges of current theoretical physics is to understand

the highly nontrivial features of the strong nuclear interaction through the theory of

Quantum Chromodynamics (QCD) [11] and its fundamental degrees of freedom, gluons

and quarks. QCD is a Non-Abelian gauge theory, based on the group SU(3), with quarks

being fermions carrying fractional electric charges, and gluons being the gauge bosons

that mediate the strong force [11]. The Non-Abelian nature of this theory implies, among

other things, that the gluon field is self interacting, which makes it far more complex

than the Abelian Quantum Electrodynamics (QED). But even among the Non-Abelian

interactions of the Standard Model, QCD is distinguished by the fact that its interaction

is strong.

Indeed, while a perturbative implementation of QCD is still possible at high energies,

by virtue of its asymptotic freedom [12, 13], some of the most prominent features of this

theory manifest in the infrared (IR) where the interaction becomes strong and transcends

a perturbative analysis. Paramount among these phenomena are the confinement [14–

16] of quarks and gluons, which states that free quarks and gluons are not observed

at low energies; dynamical chiral symmetry breaking [2, 10, 17–26], the mechanism by

which quarks acquire effective masses that far exceed their perturbative values; dynamical

gluon mass generation [6, 27–35], through which the gluon propagator becomes IR finite,

without adding a mass term or Higgs field to the Lagrangian; and the formation of the

rich spectrum of hadrons [11, 36, 37]. Evidently, the description of these phenomena from

first principles is only possible with nonperturbative tools.

In the attempt to describe QCD nonperturbatively, many approaches aim to com-

pute its Green’s functions, i.e. its full propagators and vertices, which encode all the
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information about the theory. Indeed, while the Green’s functions are not physical ob-

servables, given that they are dependent on the gauge and renormalization scheme cho-

sen, they can be appropriately combined to compute observables, which are gauge and

Renormalization Group invariant. In particular, in spite of the gauge fixing, the gauge

invariance of the theory manifests itself in a series of relations among the different Green’s

functions called Slavnov-Taylor identities (STIs) [38, 39], which encode the Bechi-Rouet-

Stora-Tyutin (BRST) [40–42] generalization of the gauge transformation for the gauge

fixed Lagrangian.

In recent works, a particular Green’s function, the three-gluon vertex, has been the

object of intense research efforts [4, 7, 8, 43–60]. This vertex plays an essential role in

the gluon mass generation mechanism [6, 32, 61–63] and is an ingredient in the analysis

of several nonperturbative problems, such as the formation of gluonic bound states [5,

64–66], called glueballs [67–70], and hybrid states [71], constituted by valence gluons and

quarks. Especially, it has been noted that the transversely projected nonperturbative

three-gluon vertex in Landau gauge exhibits a marked suppression with respect to its

perturbative version [4, 7, 43–60] and the impact of this suppression in the behavior of

other Green’s functions, as well as the bound state spectrum, was analyzed in numerous

recent works [5, 6, 56, 57, 62, 63, 71].

In this thesis, we investigate the nonperturbative behavior of the three-gluon vertex.

We will restrict ourselves to the pure Yang-Mills theory, in which all the fundamental

features of the three-gluon vertex are already manifest, with quark effects furnishing

subleading quantitative corrections [7, 57]. It will be shown that a sufficient condition

for its characteristic suppression is the masslessness of the ghost fields [4, 52], whose

introduction is necessary in fixing the gauge covariantly [72]. Specifically, the masslessness

of the ghosts leads to the appearance of a logarithmic divergence [52] in the form factor

of the tree-level tensor structure of the transversely projected vertex. This divergence

forces the form factor to change sign for sufficiently small momenta, hence vanishing at

some intermediate point and being necessarily small in the neighborhood of that zero-

crossing [4, 52].

In contrast, the gluon propagator was found by the combined effort of several studies

to be IR finite and nonzero at the origin [6, 7, 30–35, 73–83]. Such a behavior of the

gluon field may be interpreted in terms of a dynamically generated effective gluon mass,
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as pioneered by Cornwall [27]. In this picture, the effective mass is generated without

breaking the gauge symmetry of the theory, nor changing the QCD Lagrangian in any

way, through the Schwinger mechanism [30–32, 34, 35, 62, 84–89]. As we will discuss,

this mechanism of dynamical gluon mass generation hinges on the appearance of massless

bound state excitations [27, 31, 32, 34, 35, 61, 62, 90] in the three-gluon vertex, which

acquires as a result a set of poles longitudinally coupled to the external gluon momenta.

These poles are responsible for the evasion of the so-called “seagull cancellation”which, in

the absence of such divergences, would force the gluons to remain massless under radiative

corrections [31, 32, 34, 35, 61]. Vitally, the longitudinality of these mass-generating poles

guarantees their decoupling from on-shell amplitudes [32, 86, 87, 89] and must be preserved

in any sound approximation scheme for the computation of the three-gluon vertex.

Among the nonperturbative methods which have become standard tools for analyzing

the IR behavior of QCD, we will be particularly concerned with the results of Monte Carlo

simulations on the lattice, and the Schwinger-Dyson equations (SDEs) and the Gauge

Technique in the continuum, each of which has a series of strengths and limitations.

Lattice QCD capitalizes on Wilson’s [14] formulation of gauge theories on a discretized

lattice of Euclidean space points and is suitable for numerical simulation of field configura-

tions [91], from which Green’s functions [7, 43–46, 48, 73–76, 78, 79, 81] and bound state

spectra [92, 93], among other things [94], can be calculated. The main power of lattice

simulations lies in the fact that it approximates the real, continuum theory, by in princi-

ple controllable and systematically improvable parameters, namely the lattice spacing and

volume, and the number of field configurations probed by the Monte Carlo method. In the

limit of vanishing lattice spacing, infinite volume and configuration sampling, the full the-

ory is recovered. In practice, lattice simulations are extremely computationally intensive,

requiring the disputed resource of supercomputer time. Moreover, lattice simulations

are intrinsically limited in what they can compute. In particular, they cannot handle

Minkowski space and can only directly evaluate connected Green’s functions, whereas for

many purposes it is important to understand the behavior of the one particle irreducible

(1PI) functions. An important example where this limitation is specially important is

in the study of the gluon mass generation mechanism. Given that the mass-generating

vertex poles of the Schwinger mechanism are longitudinally coupled, they do not appear

directly in the lattice observables of vertex functions.
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On the continuum front, the SDEs [95, 96] are the equations of motion of the complete

nonperturbative Green’s functions [97–100]. They constitute an infinite tower of coupled

nonlinear integral equations, valid at all momentum scales, which connect Green’s func-

tions of ever increasing order. The SDEs are valid in Euclidean as well as Minkowski

space [101–103], in principle, and can isolate 1PI functions. However, the infinite sys-

tem of coupled equations cannot generally be solved exactly. It is necessary to truncate

the tower of SDEs, retaining a finite, and usually small, subset of Green’s functions [98–

100, 104, 105]. This inevitable truncation is particularly problematic because there is no

parameter that controls the size of the ensuing error, and hence no a priori guarantee

that this error is small. Moreover, preserving the fundamental symmetries of the the-

ory - especially the gauge symmetry - under truncation is extremely difficult [2, 15, 25,

30, 59, 104–112], in general. Lastly, while the SDEs hold in principle in Minkowski, or

equivalently in the Euclidean space with complex momenta, most SDE studies are carried

out in the Euclidean metric. This is largely because the Green’s functions may contain

non-analiticities [101–103, 113–117] which must be dealt with carefully in the integrals

that the SDEs contain, complicating their solution. For Euclidean momenta the problem

is simplified because the non-analiticities of the Green’s functions that are most difficult

to handle are usually avoided.

Given that we lack an a priori systematically improvable truncation scheme for SDEs,

the success of their treatment is usually judged by the apparent convergence of the re-

sults obtained through ever more sophisticated truncations, and by their agreement to

the outputs of other methods, such as lattice QCD. In other words, one validates the

approximations employed a posteriori. In this context, it is important to enrich the reper-

toire of nonperturbative techniques we compare our results to, adding to the analysis the

outcomes of Gauge Technique, discussed below, Functional Renormalization Group [58,

60], the restrictions imposed by Operator Product Expansion [118], and others.

The focal point of this thesis is the analysis of the three-gluon vertex of QCD through

the Gauge Technique [119–123]. This approach consists of solving the STIs satisfied by

the Green’s functions of the theory to determine part of the form factors of one Green’s

function, usually a vertex [1, 4, 7, 124–128], in terms of the others that appear in the

identity. Naturally, since the STIs are valid nonperturbatively, the Gauge Technique

provides nonperturbative information on the vertex computed through it. Then, the
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Gauge Technique result can be used either as a nonperturbative Ansatz for the vertices

appearing in SDEs [2, 6, 10, 25, 107, 108, 119–122, 129–132], facilitating their truncation,

or as a point of comparison for the vertex computed by some other means.

However, in any Gauge Technique there will be a part of the vertex under consideration

that is left undetermined by the STI, which is a fundamental limitation of the method [106,

108, 131]. In this context, it is essential to preserve the analytic structure of the vertex

if this undetermined part is omitted in an approximation. This a nontrivial requirement,

because, as we will see in Chapter 4, a naive solution of the STI usually introduces

divergences, known as“kinematic divergences” [124–126], in certain kinematic limits. This

latter issue has been solved in classical works [124–126] under the assumption that the

vertex is regular. However, in the presence of dynamically generated gluon mass the

problem is aggravated, since in this case the vertex is actually required to have poles

which, as mentioned, must be longitudinally coupled [27, 31, 32, 34, 35, 61, 62, 90]. As

it turns out, a naive Gauge Technique construction of the three-gluon vertex gives rise

to poles that survive transverse projections of the vertex and are incompatible with the

required longitudinality of the vertex poles in the gluon mass generation mechanism [4].

Moreover, such transverse poles are decidedly not observed on the lattice [7, 43–49]. As

such, the usual Gauge Technique must be modified in the presence of dynamical gluon

mass generation, properly handling the longitudinality of the mass-generating poles.

The motivation of our study of the three-gluon vertex through the Gauge Technique

is threefold:

(i) On a purely theoretical side, we wish to demonstrate that a gauge technique solu-

tion of this vertex is perfectly consistent with gluon mass generation, once proper

account is taken of the requirement of longitudinally coupled vertex poles. Indeed,

the classical works of Ball-Chiu (BC) and others did not include the possibility of

dynamical mass generation, and a direct application of the BC solution is unsuit-

able in this case. The source of the difficulty in the dynamically massive case is

that the longitudinal vertex poles appear also in the tensor structures of the vertex

that contain the form factors that are left undetermined by the STI. As a result, if

the undetermined form factors are casually omitted in an approximation, the pole

structure of the vertex is distorted.

As we will show, a slight modification of the Gauge Technique construction is pos-
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sible, that takes explicitly into account the longitudinality of the vertex poles. The

fundamental step in this improved procedure is that the longitudinal pole structure

of the vertex is separated by splitting the STI into two equations, one involving only

the regular part of the vertex and one involving its pole content. The two result-

ing equations can then be solved separately. Surely enough, the Gauge Technique

vertex thus obtained still contains undetermined parts which, however, are regular,

and can be safely omitted without compromising the longitudinality of the poles

of the full vertex. Importantly, in the resulting solution the full gluon propagator

is substituted by its “kinetic term” only, which is defined by subtracting from the

inverse propagator its dynamical mass. Evidently, this means that in order to eval-

uate the Gauge Technique vertex, one must have knowledge of the dynamical gluon

mass, which must be computed by other means.

(ii) Then, we aim to connect the qualitative features of the nonperturbative three-gluon

vertex, its suppression with respect to the perturbative behavior, and its IR di-

vergences, to the behavior of the other Green’s functions that appear in its STI.

Namely, the gluon and ghost propagators and the ghost-gluon scattering kernel.

In particular, we will show that the kinetic term of the gluon propagator by itself

encodes most of the qualitative features of the three-gluon vertex, with the ghost

sector amounting to quantitative corrections.

(iii) Then, for a quantitative analysis, we explicitly compute an approximation to the

ingredients entering the STI of the nonperturbative three-gluon vertex, allowing us

to concretely evaluate its Gauge Technique solution including ghost sector correc-

tions, and contrast it to the results obtained for this vertex by other approaches.

Specifically, we use fits to lattice data for the ghost and gluon propagators that

are consistent with the gluon mass generation mechanism, whereas the ghost-gluon

scattering kernel is computed through a one-loop dressed truncation of its corre-

sponding SDE. We compare our Gauge Technique results for the three-gluon vertex

to lattice [44, 45] and SDE [53, 59] outputs obtained by other researchers and find

satisfactory agreement, indicating convergence of the state of the art nonperturba-

tive results for this function.

Beside achieving the above objectives, our work furnishes results that can be used
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as input for other computations that require knowledge about the three-gluon vertex.

Especially, recent work indicates that the nonperturbative behavior of this vertex plays

an important role in the description of glueballs [5] and hybrid states [71], and is a

crucial ingredient in the SDE of the gluon propagator itself, with important effects on the

generation of lattice-compatible gluon mass [6, 62, 63].

The material presented in this thesis is organized as follows:

In Chapter 2 we review some fundamental field theoretic concepts, such as the field

equations of motion, the definition of Green’s functions as expectation values of time-

ordered products of fields, the BRST symmetry of the gauge fixed Lagrangian, and present

a derivation of the STIs of QCD that will be used in this work. We end that chapter with

a short note on the renormalization of the Green’s functions related by the three-gluon

vertex STI.

The next chapter, 4, is devoted to reviewing the dynamical gluon mass generation and

some properties and implications of the ensuing IR finite gluon propagator. It is briefly

explained how gauge invariance enforces masslessness of the gauge fields in the absence

of poles in the vertices of the theory, and how the inclusion of such poles leads to the

generation of a dynamical mass. To simplify those computations whose details are not

essential to this work, while still being able to illustrate the main ideas, we cast the mass

generation mechanism in terms of scalar QED calculations. Still in Chapter 4, we show

that the dynamical gluon mass tends to reduce the degree of IR divergence of the QCD

Green’s functions, but that the nonperturbative masslessness of the ghost field implies

that some IR divergences survive [52], and in particular that the three-gluon vertex is

expected to have IR divergent form factors [52]. These divergence will be later connected

to the observed behavior of the three-gluon vertex at small momenta, including its IR

suppression and zero-crossing. Subsequently, we show that the IR divergences stemming

from the masslessness of the ghosts have important implications for the gluon propagator,

such as the existence of a maximum for this function and the divergence of its derivative.

We end by presenting an Ansatz for the gluon mass and kinetic term that capture the

main features of the gluon propagator and is consistent with the most up-to-date results

available for these functions.

Chapter 4 follows with a detailed discussion of the Gauge Technique solution of ver-

tices. To fix the ideas, we present first the case of scalar QED, where we can discuss more
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cleanly the problem of kinematic divergences and its resolution, as well as the modifica-

tions needed to perform the Gauge Technique in the presence of dynamically generated

gauge boson mass. Then, the BC solution for the three-gluon vertex and its modification

in the presence of dynamical gluon mass is presented. We conclude the chapter with an

explicit example of the appearance of spurious transverse poles in the vertex if the Gauge

Technique solution is applied in the dynamically massive case without the due account of

the special tensor structure of its pole content.

In Chapter 5 we analyze in detail the ghost-gluon scattering kernel, which is the most

complicated object appearing as ingredient in the Gauge Technique solution of the three-

gluon vertex. After recalling some of the fundamental properties of this scattering kernel

in the Landau gauge, specially its ultraviolet (UV) finiteness [39], we compute an approx-

imation for it, in general Euclidean kinematics, using a numerically solved truncation of

the SDE that it satisfies. The properties of the resulting ghost-gluon scattering kernel are

then analyzed in detail, with special attention to its IR divergences, and are compared to

results obtained by other means.

With all necessary ingredients at hand, we evaluate numerically the Gauge Technique

solution of the three-gluon vertex in general Euclidean kinematics in Chapter 6. We

discuss in depth the nonperturbative behavior of the vertex, as found in our solution, with

special attention to its IR divergences and its suppression in comparison to its perturbative

behavior. Then we compare our results to those obtained from SDE [53, 59] and lattice

simulations [44, 45], by other authors, and discuss their agreement.

We present our conclusions and the prospects of further applications of our results in

Chapter 7.

In addition, we include five appendices. Appendix A contains the Feynman rules con-

sistent with our conventions and notations; In Appendix B we collect one-loop calculations

that are used in the main text for comparison to nonperturbative results or illustration

of certain concepts; In Appendix C we give expressions for the projectors that extract

the scalar form factors of the ghost-gluon scattering kernel and three-gluon vertex. In

Appendix D we present our conventions for converting Minkowski space expressions to

Euclidean space; Lastly, in Appendix E we collect the lengthy expressions for the one-loop

dressed integrals that determine the form factors of the ghost-gluon scattering kernel in

general Euclidean kinematics.
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2

Slavnov-Taylor identities

In this chapter we briefly review the field theoretic foundations for the work to come,

aiming at the derivation of the STIs of the three-gluon vertex. We follow closely the

presentation in [133], but with adaptations in notations and conventions.

Before we start, let us set some common notations.

Throughout this work, we use the convention gµν = diag(1,−1,−1,−1) for the metric

and denote the derivative with respect to space-time coordinates by ∂µ. When products

of fields at different space-time points are differentiated, it becomes necessary to specify

which coordinate the fields are being differentiated with respect to. To that end, we add

the symbol of the coordinate being differentiated as an index to ∂. For example,

∂xµ =
∂

∂xµ
, ∂µx =

∂

∂xµ
. (2.1)

Since we will always denote Lorentz indices by Greek letters or explicit numbers, there is

no risk of confusing a spacetime coordinate with a Lorentz index. Finally, summation over

repeated indices is implied, except for those indices that denote a space-time coordinate,

e.g. in ∂µy ∂
y
µ summation over µ is implied, but not over y.

The content of this chapter is organized as follows. We review the quantization of the

pure Yang-Mills QCD theory in Section 2.1, following with the definition of the Green’s

functions as correlation functions of fields in Section 2.2. Next, we define the ghost-gluon

scattering kernel and prove its relation to the usual ghost-gluon vertex in Section 2.3.

In Section 2.4 we present the BRST transformations and derive the STIs of the gluon

propagator and three-gluon vertex. We close this chapter with a short discussion of the

constraint imposed by the three-gluon vertex STIs on the renormalization constants of
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the theory.

2.1 Pure Yang-Mills QCD

The fundamental fields of the pure Yang-Mills QCD are the gluon fields, to be denoted

by Aa
µ(x), which are associated with the fundamental representation of the group SU(3).

A Latin index of a field denotes its color degree of freedom.

Our starting point is the classical Lagrangian density for the pure Yang-Mills theory,

LYM(x) := −1

4
F µν
a (x)F a

µν(x) , (2.2)

where F a
µν(x) is called the “field strength tensor”. F a

µν(x) is defined in terms of the gluon

field, Aa
µ(x), by

F a
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x) + gfabcAb

µ(x)A
c
ν(x) , (2.3)

where g is the coupling constant and fabc are the structure constants of the SU(3) group,

which are anti-symmetric under the exchange of any two indices.

As all the theories describing the interactions of the Standard Model of particle physics,

QCD is a gauge theory. Specifically, the classical Lagrangian of Eq. (2.2) is invariant under

the local gauge transformation

Aa
µ(x) → A′ a

µ = Aa
µ(x) + gfabcδθb(x)A

c
µ(x)− δµδθa(x) , (2.4)

where δθa(x) is an infinitesimal function and the prime denotes the transformed field.

The last term in Eq. (2.3), gfabcAb
µ(x)A

c
ν(x), is of fundamental importance. It manifests

the non-Abelian character of the gauge group of QCD and enriches this theory with self

coupling of the gluon field.

In order to quantize the theory, we need to fix the gauge. In this work we will restrict

ourselves to the linear covariant gauges, which are defined by the Lorentz condition

∂µAa
µ(x) = 0 . (2.5)

At the level of the Lagrangian, the gauge fixing can be achieved by the method of Lagrange
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multipliers, adding to Eq. (2.2) the gauge fixing term

Lgf(x) := − 1

2 ξ
[∂µAa

µ(x)][∂
νAa

ν(x)] . (2.6)

The Lagrange multiplier ξ is called “gauge fixing parameter”.

However, while for QED gauge fixing as above is enough to allow a covariant quan-

tization of the theory, in non-Abelian gauge theories the S-matrix is not unitary when

Eq. (2.6) is added to the Lagrangian. To restore unitarity we have to introduce the

Faddeev-Popov ghosts term [72] to the Lagrangian. Specifically,

LFP(x) = −[∂µc̄a(x)][∂
µca(x) + gfabcAb

µ(x)cc(x)] , (2.7)

where ca(x) and c̄a(x) are the ghost and anti-ghost fields. The fields ca(x) and c̄a(x) must

be considered self-adjoint massless scalars that do not appear in the spectrum of final

states. Moreover, they violate the spin-statistics theorem, i.e. in spite of being scalars,

they anti-commute

{ca(x), cb(y)} := ca(x)cb(y) + cb(y)ca(x) = 0 , (2.8)

and similarly {c̄a(x), c̄b(y)} = 0 and {ca(x), c̄b(y)} = 0. Nevertheless, the ca(x) and c̄a(x)

fields commute with the gluons, i.e.

[ca(x), A
b
µ(y)] := ca(x)A

b
µ(y)− Ab

µ(y)ca(x) = 0 , (2.9)

as well as [c̄a(x), A
b
µ(y)] = 0.

The complete Lagrangian of pure Yang-Mills QCD is then given by

L(x) = LYM(x) + Lgf(x) + LFP(x) , (2.10)

which is suitable for covariant quantization.

The equations of motion of the fields can then be obtained from Eq. (2.10) using the

Euler-Lagrange equations,
∂L(x)
∂φ(x)

= ∂µ

(
∂L(x)

∂[∂µφ(x)]

)
, (2.11)

where φ(x) is to be substituted by each of the fields Aa
µ(x), ca(x) and c̄a(x). For the gluon
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field one then obtains

∂2Aa
µ(x) =

(
1− 1

ξ

)
∂µ[∂

νAa
ν(x)] + gfabc∂ν [Ab

µ(x)A
c
ν(x)] + gfabc∂ν [Ab

µ(x)]A
c
ν(x)

+gfabcAb
ν(x)∂

µ[Aν
c (x)] + g2fabef cdeAb

ν(x)A
ν
d(x)A

c
µ(x)

−gfabc[∂µc̄b(x)]cc(x) , (2.12)

where ∂2 := ∂µ∂µ.

To obtain the equations of motion for the ghost fields, we must set a consistent con-

vention for differentiation with respect to anti-commuting variables. In this work it will

be understood that a derivative with respect to an anti-commuting variable is to be taken

from the left. In particular, in taking derivatives of a product of anti-commuting vari-

ables, the variable that is being differentiated must be anti-commuted to the left before

differentiation. For example, if C1 and C2 are a pair of anti-commuting variables

∂[C1C2]

∂C1

= C2 ,
∂[C1C2]

∂C2

= −C1 . (2.13)

With this convention, Eq. (2.11) yields for the fields ca(x) and c̄a(x) the equations of

motion

∂2ca(x) = −gfabc∂µ[Ab
µ(x)cc(x)] , (2.14)

∂2c̄a(x) = −gfabcAb
µ(x)∂

µc̄c(x) . (2.15)

The quantization of the theory then proceeds by promoting the fields Aa
µ(x), ca(x) and

c̄a(x) to operators1 by prescribing their equal time commutation relations (ETCs). For

the gluon field the ETC reads

δ(x0 − y0)[A
a
µ(x), π

b
ν(x)] = iδabgµνδ

(4)(x− y) , (2.16)

where πb
ν(x) is the canonical momentum conjugate to Ab

ν(x), defined as

πb
ν(x) :=

∂L(x)
∂[∂0Aν

b (x)]
= ∂νA

0
b(x)− ∂0Ab

ν(x)− gf bdcA0
d(x)A

c
ν(x)−

1

ξ
g0ν∂

ρAb
ρ(x) . (2.17)

The gluon still commutes with itself at equal times, i.e. δ(x0 − y0)[A
a
µ(x), A

b
ν(y)] = 0, as

1More accurately, operator valued distributions [134].
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well as δ(x0 − y0)[π
a
µ(x), π

b
ν(y)] = 0.

One special case of the gluon field ETC that will be useful in this chapter is obtained

by setting µ = ν = 0 in Eqs. (2.16) and (2.17). Specifically, since f bdc is anti-symmetric,

then f bdcA0
d(x)A

c
ν(x) = 0, such that Eq. (2.17) reduces to

πb
0(x) = −1

ξ
∂ρAb

ρ(x) . (2.18)

Substituting the above result into Eq. (2.16) yields then

δ(x0 − y0)[A
a
0(x), ∂

ρAb
ρ(y)] = −iξδabδ(4)(x− y) . (2.19)

We must also prescribe ETCs for the ghost fields. First, let us define the canonical

momenta conjugate to the ca(x) and c̄a(x) fields by

σb(x) :=
∂L(x)

∂[∂0cb(x)]
= ∂0c̄b(x) ,

σ̄b(x) :=
∂L(x)

∂[∂0c̄b(x)]
= −[∂0cb(x) + gf bdcA0

d(x)cc(x)] , (2.20)

from which follows that

{ca(x), σb(y)} = {ca(x), ∂0c̄b(y)} , {c̄a(x), σ̄b(y)} = −{c̄a(x), ∂0cb(y)} . (2.21)

Now, we require that {ca(x), c̄b(x)} = 0 holds at all times [135]. Then,

∂0{ca(x), c̄b(x)} = 0 , (2.22)

which implies

{cb(x), ∂0c̄a(x)} = −{c̄a(x), ∂0cb(x)} . (2.23)

Hence, if we prescribe the ETC for the c̄a(x) field, that of the cb(x) field follows by

imposing Eq. (2.23).

Then, we prescribe

δ(x0 − y0){c̄a(y), ∂0cb(x)} = −δ(x0 − y0){∂0ca(y), c̄b(x)} = iδabδ(4)(x− y) , (2.24)
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which completes the quantization, for the purposes of this work.

2.2 Correlation functions

A quantum field theory is completely determined by the content of its Green’s func-

tions, which are given by the time-ordered correlation functions

〈0|T [φ1(x1)φ2(x2) . . . φn(xn)] |0〉 , (2.25)

where the φi(x) can be any of the fields of the theory, |0〉 is the ground state of the

Hamiltonian and T is the time ordering operator.

The action of T on a product of fields is to rearrange them in decreasing order of

the time components of their arguments, xi, reading from left to right. For example, the

time-ordered product of two fields is given by

T [φ1(x)φ2(y)] = θ(x0 − y0)φ1(x)φ2(y)± θ(y0 − x0)φ2(y)φ1(x) , (2.26)

where θ(x) is the Heaviside step function, and the relative sign between the products is

positive if the fields commute and negative if they anti-commute. It is a good moment to

recall that, regarding θ(x) as a distribution, its derivative is

dθ(x)

dx
= δ(x) . (2.27)

The correlation functions like Eq. (2.25) contain, however, somewhat redundant infor-

mation, including disconnected Feynman diagrams [136]. They can be decomposed into

the so-called connected Green’s functions, which are obtained by canceling from those of

Eq. (2.25) their disconnected parts [136].

In this work, we will use the notation

〈T [φ1(x1)φ2(x2) . . . φn(xn)] 〉 , (2.28)

to represent the connected counterpart to Eq. (2.25).

At this point, we emphasize that Lorentz invariance implies that the Green’s functions
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can only depend on the differences of the positions xi. More specifically,

〈T [φ1(x1)φ2(x2) . . . φn(xn)] 〉 = 〈T [φ1(x1 − z)φ2(x2 − z) . . . φn(xn − z)] 〉 , (2.29)

for any four-vector z.

Of special importance are the 2-point Green’s functions, called “propagators”. In the

pure Yang-Mills theory there are two to consider: the gluon propagator,

∆
ab

µν(x− y) := 〈T [Aa
µ(x)A

b
ν(y)] 〉 ; (2.30)

and the ghost propagator,

D
ab
(x− y) := −〈T [ca(x)c̄b(y)] 〉 . (2.31)

In practice, it is more convenient to work with the Green’s functions in momentum

space. Taking the Fourier transform of Eqs. (2.30) and (2.31), we define the momentum

space propagators as

∆ab
µν(q) = δab∆µν(q) :=

∫
d4x e−iq·x〈T [Aa

µ(x)A
b
ν(0)] 〉 , (2.32)

Dab(q) = δabD(q) := −
∫
d4x e−iq·x〈T [ca(x)c̄b(0)] 〉 , (2.33)

where we have used Eq. (2.29) to eliminate the integration over y. By Lorentz invariance

and the commuting nature of Aa
µ(x) and A

b
ν(0), it is easy to see that Eq. (2.32) implies

∆µν(q) = ∆νµ(q) = ∆µν(−q) . (2.34)

As for the ghost propagator, since the ca(x) and c̄b(0) fields are anti-commuting and

self-adjoint, Eq. (2.33) leads to

Dab(−q) = −[Dab(q)]† , (2.35)

where the † denotes Hermitian conjugation. Eq. (2.35) allows us to define the “ghost
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dressing function”, F (q2), which is a Lorentz scalar, by

Dab(q) = iδab
F (q2)

q2
. (2.36)

In general, the connected Green’s functions contain diagrams that are “one particle

reducible”. These are the diagrams that can be written as a product of two Green’s

functions by cutting a single line. The diagrams that cannot be decomposed in this way

are said to be 1PI. Clearly, the 1PI functions contain all the information about the theory,

since all other Green’s functions can be expressed in terms of the former.

In particular, a connected 3-point Green’s function is composed of the corresponding

1PI vertex multiplied by the propagators of each external line.

The focal point of this thesis is the three-gluon vertex,
Lαµν
abc (q, r, p). It is related to

the connected Green’s functions with three gluon fields by

Lα′µ′ν′

abc (q, r, p)∆α′α(q)∆µ′µ(r)∆ν′ν(p) :=

∫
d4x d4y e−iq·x−ir·y〈T [Aa

α(x)A
b
µ(y)A

c
ν(0)] 〉 ,

(2.37)

with momentum conservation expressed as q + p+ r = 0. It is often convenient to factor

out a color structure, defining

gfabc L
αµν(q, r, p) :=

Labc
αµν(q, r, p) . (2.38)

The full 1PI three-gluon vertex is represented diagrammatically2 in panel (a) of Fig. 2.1,

while the connected correlation of Eq. (2.37) is represented in panel (b) of that figure.

The reason for denoting the full three-gluon vertex by the double struck letter
L
will get

clearer in the next chapter. There, and in the subsequent treatment, it will be necessary

to separate the vertex into a part that contains poles and a part that is regular. Then, we

will employ the usual letter Γ to denote the regular part only, whereas the double struck

version will refer to the complete vertex, i.e. the sum of regular and pole parts.

Another 1PI function that will be important in this work is the ghost-gluon vertex,

Γabc
µ (q, p, r), which is defined as

Γabc
µ′ (q, p, r)D(q)D(p)∆µ′

µ (r) := −
∫
d4x d4y e−iq·x−ip·y〈T [Ac

µ(0)ca(x)c̄b(y)] 〉 . (2.39)

2All Feynman diagrams in this work have been drawn with JaxoDraw 2.0 [137].
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:=
Labc
αµν(q, r, p)

q

rp

a, α

b, µc, ν

(a)

q

rp

a, α

b, µc, ν

(b)

Figure 2.1: (a): Diagrammatic representation of the 1PI full three-gluon vertex. The
grey circle denotes that the vertex is 1PI and dressed, whereas the wavy line represents
a gluon field. The arrows denote momentum flow. (b): Diagrammatic representation of
the connected correlation function of Eq. (2.37). Blue circles represent full propagators.

Again, we factor out a color structure to write

− gfabcΓµ(q, p, r) := Γabc
µ (q, p, r) . (2.40)

We represent diagrammatically the full 1PI ghost-gluon vertex in panel (a) of Fig. 2.2,

while the connected Green’s function of Eq. (2.39) is represented in panel (b) of the same

figure.

:= Γabc
µ (q, p, r)

r

qp

c, µ

ab

(a)

r

qp

c, µ

ab

(b)

Figure 2.2: (a): Diagrammatic representation of the 1PI ghost-gluon vertex. The dashed
line represents a ghost field, and the arrowhead over the line represents ghost number flow.
(b): Diagrammatic representation of the connected correlation function of Eq. (2.39).

With the conventions laid down in this section, the Feynman rules for the Green’s

functions at lowest order in perturbation theory can be obtained. We collect them in

Appendix A.

2.3 The ghost-gluon scattering kernel

The STI that will be important in this thesis relates the three-gluon vertex to the

gluon and ghost propagators and a ghost-gluon interaction vertex. However, it is not

the ghost-gluon vertex of Eq. (2.39) that appears in this STI, but a close relative to it
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called “the ghost-gluon scattering kernel”, to be denoted by Habc
νµ (q, p, r). In this section

we present the definition of Habc
νµ (q, p, r) and demonstrate its relation to the ghost-gluon

vertex.

We can define the 1PI ghost-gluon scattering kernel as the sum of the diagrams on

the right hand side of Fig. 2.3. In those diagrams, a little black cross denotes that the

two fields meeting there are evaluated at the same space-time coordinate. The tree-level

value of Habc
νµ (q, p, r) is given by

H(0) abc
νµ (q, p, r) = −gfabcgνµ . (2.41)

It will be useful to have a more compact diagrammatic expression for Habc
νµ (q, p, r). Such

an expression is also shown in Fig. 2.3, but notice that the four point function denoted by

a black circle there is neither 1PI nor the full connected ghost-ghost-gluon-gluon function.

Habc
νµ (q, p, r) := :=

q

r

p

b

a, ν

c, µ

q

r

p

b

a, ν

c, µ

+

r

p

c, µ

b

q

a

+ +

r

p

c, µ

b

q

a

ν

r

p

c, µ

b

q

a

ν

(d1)νµ

(d2)νµ (d3)νµ

Figure 2.3: Diagrammatic definition of the ghost-gluon scattering kernel, Habc
νµ (q, p, r).

The first equation defines a compact diagrammatic representation in which the black circle
is not 1PI. The second equation expresses Habc

νµ (q, p, r) in terms of 1PI functions only. The
little black cross represents two fields evaluated at the same space-time coordinate.

To relate the ghost-gluon scattering kernel to a fully connected correlation function,

let us define the following Green’s functions

Habd
νρ (q, p, r) := −gfamn

∫
d4x d4y e−iq·x−ip·y〈T [Am

ν (x)cn(x)c̄b(y)A
d
ρ(0)] 〉 , (2.42)

Σab
ν (q)Dbc(q) := −gfamn

∫
d4x e−iq·x〈T [Am

ν (x)cn(x)c̄c(0)] 〉 , (2.43)
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in both of which we emphasize the presence of gluon and ghost fields meeting at the

same point, x. As usual, we can factor out the color structures, Σab
ν (q) = δabΣν(q) and

Habd
νµ (q, p, r) = −gfabdHνρ(q, p, r). The function Σab

ν (q) and the connected correlation of

Eq. (2.43) are represented diagrammatically in Fig. 2.4.

q

m, ν

n

a

q

b

:= Σab
ν (q)

(a)

q

m, ν

n

a

q

c b

(b)

Figure 2.4: (a): Diagrammatic representation of the 1PI function Σab
ν (q) appearing in the

Eq. (2.43). (b): The connected correlation function of Eq. (2.43).

Decomposing Eq. (2.42) into 1PI functions, we obtain the diagrams shown in Fig. 2.5.

In symbols, we write

Habd
νρ (q, p, r) =

[
Habc

νµ (q, p, r) + Σaf
ν (q)Dfe(q)Γebc

µ (q, p, r)
]
Dbg(p)∆µρ

cd (r) . (2.44)

Hence, the ghost-gluon scattering kernel is obtained from the connected Habd
νρ (q, p, r) of

Eq. (2.42) by removing the diagram containing the Σν(q) of Eq. (2.43) and amputating

the external legs.

Habd
νρ (q, p, r) =

r

p

d, ρ

b

q

q

am

n

ν

r

p

d, ρ

b

+
q

am

n

ν

Figure 2.5: Decomposition of Habd
νρ (q, p, r) into 1PI functions.

Now we want to establish the relation between the ghost-gluon scattering kernel and

the ghost-gluon vertex. Specifically, we will show that

qνHabc
νµ (q, p, r) = Γabc

µ (q, p, r) . (2.45)
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To this end, we must first demonstrate that qνΣν(q) equals the ghost “self-energy”, i.e.

qνΣν(q) = [D(0)(q)]−1 − [D(q)]−1 , (2.46)

where the superscript “(0)” denotes the tree-level value (see Appendix A).

To prove Eq. (2.46), we contract Eq. (2.43) with qν to obtain

qνΣab
ν (q)Dbc(q) = igfamn

∫
d4x e−iq·x ∂νx〈T [Am

ν (x)cn(x)c̄c(0)] 〉 . (2.47)

Next, we bring the derivative inside the time ordered correlation through

∂νx T [Am
ν (x)cn(x)c̄c(0)] = ∂νx [θ(x0)A

m
ν (x)cn(x)c̄c(0)− θ(−x0)c̄c(0)Am

ν (x)cn(x)]

= T
[
∂νx
(
Am

ν (x)cn(x)
)
c̄c(0)

]
, (2.48)

where we used Eq. (2.26) and the fact that cn(x) and c̄c(0) anti-commute. Then, Eq. (2.47)

reads

qνΣab
ν (q)Dbc(q) = igfamn

∫
d4x e−iq·x〈T

[
∂νx
(
Am

ν (x)cn(x)
)
c̄c(0)

]
〉 . (2.49)

Now, we invoke the equation of motion of Eq. (2.15) to rewrite

gfamn T
[
∂νx
(
Am

ν (x)cn(x)
)
c̄c(0)

]
= −T

[
∂2xca(x)c̄c(0)

]
. (2.50)

Moving the ∂2x outside the time-ordering operator using again Eq. (2.26) entails

T
[
∂2xca(x)c̄c(0)

]
= ∂2x T [ca(x)c̄c(0)]− δ(x0){c̄c(0), ∂0xca(x)} . (2.51)

The Eqs. (2.50) and (2.51), when used into Eq. (2.49), lead to

qνΣab
ν (q)Dbc(q) = −i

∫
d4x e−iq·x

(
∂2x〈T [ca(x)c̄c(0)] 〉 − δ(x0){c̄c(0), ∂0xca(x)}

)
. (2.52)

Finally, using the ETC of Eq. (2.24) into the Eq. (2.52) results in

qνΣab
ν (q)Dbc(q) = −δac + iq2

∫
d4x e−iq·x ∂νx〈T [ca(x)c̄c(0)] 〉 = −δac − iq2Dac(q) , (2.53)
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where the last equality is established by identifying the integral with that of Eq. (2.33).

From Eq. (2.53) the association (2.46) follows trivially.

With Eq. (2.53) in hands, we can proceed to derive Eq. (2.45). Contracting Eq. (2.44)

with qν and using Eq. (2.53) yields

[
qνHabc

νµ (q, p, r)− Γabc
µ (q, p, r)

]
Dbg(p)∆µρ

cd (r) = Habd
νρ (q, p, r) (2.54)

+iq2Γebc
µ (q, p, r)Dae(q)Dbg(p)∆µρ

cd (r) .

To evaluate the right hand side of Eq. (2.54), we contract Eq. (2.42) with qν to find

qνHabd
νρ (q, p, r) = igfamn

∫
d4x d4y e−iq·x−ip·y ∂νx〈T [Am

ν (x)cn(x)c̄b(y)A
d
ρ(0)] 〉

= igfamn

∫
d4x d4y e−iq·x−ip·y〈T

[
∂νx
(
Am

ν (x)cn(x)
)
c̄b(y)A

d
ρ(0)

]
〉 , (2.55)

after bringing the derivative inside the correlation appropriately. Using the equation of

motion, Eq. (2.15), into Eq. (2.55) and moving the derivatives outside the correlation,

leads to

qνHabd
νρ (q, p, r) = −i

∫
d4x d4y e−iq·x−ip·y〈T [∂2xca(x)c̄b(y)] 〉

= iq2
∫
d4x d4y e−iq·x−ip·y〈T [ca(x)c̄b(y)] 〉

= −iq2Γebc
µ (q, p, r)Dae(q)Dbg(p)∆µρ

cd (r) . (2.56)

To get the last equality in (2.56), we identify the integral appearing in this equation with

that of Eq. (2.33).

Using Eq. (2.56) into Eq. (2.54) it thus follows that

[
qνHabc

νµ (q, p, r)− Γabc
µ (q, p, r)

]
Dbg(p)∆µρ

cd (r) = 0 , (2.57)

from which Eq. (2.45) follows immediately.

2.4 BRST symmetry and the STIs

The Green’s functions, unlike physical observables, are gauge dependent objects. Nev-

ertheless, the gauge invariance of the theory is encoded into a series of relations among

the different Green’s functions. In Abelian theories, such as QED, these relations are the
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well known Ward identities (WIs), whereas in non-Abelian gauge theories the WIs are

generalized to the so-called STIs.

It is important to note, though, that since we had to fix the gauge in order to appro-

priately quantize the theory, the full Lagrangian of Eq. (2.10) is no longer invariant under

the gauge transformation of Eq. (2.4). However, it is possible to generalize Eq. (2.4) to

a transformation that includes the ghost fields, as discovered by Bechi, Rouet, Stora [40,

41] and Tyutin [42], under which the Lagrangian of the quantum theory is invariant. The

BRST transformation is the set of one-parameter variations

Aa
µ(x) → A′ a

µ = Aa
µ(x)− gωfabccb(x)A

c
µ(x) + ω∂µca(x) ; (2.58)

ca(x) → c′a(x) = ca(x)−
1

2
gωfabccb(x)cc(x) ; (2.59)

c̄a(x) → c̄ ′a(x) = c̄a(x) +
ω

ξ
∂µAa

µ(x) ; (2.60)

where ω is an anti-commuting constant. In particular, ω2 = 0. Moreover, ω anti-commutes

with ghost fields, and commutes with gluon ones, i.e.

[ω, Aa
µ(x)] ={ω, ca(x)} = {ω, c̄a(x)} = 0 ,

[ω, ∂xνA
a
µ(x)] ={ω, ∂xν ca(x)} = {ω, ∂xν c̄a(x)} = 0 . (2.61)

Using the above properties of ω it is easy to show that the transformed fields, A′, c′ and

c̄ ′, satisfy the same (anti-)commutation rules as the original ones.

Comparing the BRST transformation of the gluon field to Eq. (2.4) we notice that

Eq. (2.58) is a gauge transformation with θa(x) = −ωca(x). As such, the classical La-

grangian of Eq. (2.2) is clearly BRST invariant. Then, the variations of the gauge-fixing

and the Faddeev-Popov Lagrangian terms, Eqs. (2.6) and (2.7), respectively, can be shown

to cancel against each other [133] (up to a total divergence). Consequently, Eq. (2.10) is

symmetric under the combined transformations of Eqs. (2.58), (2.59) and (2.60).

2.4.1 STI of the gluon propagator

By taking advantage of the BRST transformations, we are now in position to derive

STIs. One of the most important and yet simplest to demonstrate is the STI satisfied by
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the gluon propagator, which reads

qµqν∆ab
µν(q) = −iξδab . (2.62)

Before proving Eq. (2.62), let us appreciate its significance. Specifically, the STI of

Eq. (2.62) allows us to perform our first example of a Gauge Technique implementation,

determining part of the nonperturbative propagator. We begin with the most general

Lorentz structure of ∆ab
µν(q), which is given by

∆ab
µν(q) = −iδab

[
Pµν(q)∆(q2) + qµqνE(q2)

]
, (2.63)

where ∆(q2) and E(q2) are scalar functions, which, by Lorentz symmetry, can only depend

on q2, and Pµν(q) is the transverse projector defined as

Pµν(q) := gµν −
qµqν
q2

. (2.64)

The STI of Eq. (2.62) is insensitive to, and hence does not determine, the function ∆(q2),

since qµPµν(q) = 0. However, combining Eqs. (2.63) and (2.62) we see that E(q2) = ξ/q4.

Therefore, the complete gluon propagator can be written as

∆ab
µν(q) = −iδab

[
Pµν(q)∆(q2) + ξ

qµqν
q4

]
. (2.65)

The physical significance of Eq. (2.65) is that the longitudinal part of the gluon propa-

gator retains its tree-level form (see Appendix A) to all orders and even nonperturbatively.

In particular, in the Landau gauge, defined by ξ = 0, the gluon propagator is fully trans-

verse, i.e. qµ∆ab
µν(q) = qν∆ab

µν(q) = 0.

Let us demonstrate Eq. (2.62) then. We begin by noticing that, since ghosts do not

appear in the spectrum, any correlation function with an unbalanced number of ghosts

and anti-ghosts vanishes. In particular,

〈T [∂µxA
a
µ(x)c̄b(y)] 〉 = 0 . (2.66)

Since the theory is BRST invariant, Eq. (2.66) must also hold if we transform the Aa
µ(x)
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and c̄b(y) fields in accordance with Eqs. (2.58) and (2.60). Therefore,

1

ξ
〈T [∂µ

xA
a
µ(x)∂

ν
yA

b
ν(y)− gfadc∂µ

x

(
cd(x)A

c
µ(x)

)
c̄b(y) + ∂2

xca(x)c̄b(y)] 〉 = 0 , (2.67)

where we used Eq. (2.66) and that ω2 = 0 to eliminate some terms.

The last two terms inside the time ordering operator in Eq. (2.67) cancel against each

other on invoking the equation of motion, Eq. (2.15). Thus,

〈T [∂µxA
a
µ(x)∂

ν
yA

b
ν(y)] 〉 = 0 . (2.68)

Moving the derivatives out of the time-ordered correlation then yields

0 = ∂µx∂
ν
y 〈T [Aa

µ(x)A
b
ν(y)] 〉+ ∂µx

(
δ(x0 − y0)〈T [Aa

µ(x), A
b
0(y)] 〉

)

−iδ(x0 − y0)〈T [Aa
0(x), ∂

ν
yA

b
ν(y)] 〉

= ∂µx∂
ν
y 〈T [Aa

µ(x)A
b
ν(y)] 〉+ iξδabδ(4)(x− y) , (2.69)

on using the gluon ETC of Eq. (2.19). Fourier transforming Eq. (2.69) and using the

Lorentz invariance of the Green’s functions leads to

qµpν
∫
d4x e−i(q+p)·x

∫
d4y eip·(x−y)〈T [Aa

µ(x− y)Ab
ν(0)] 〉 − iξδabδ(4)(q + p) = 0 . (2.70)

Now we can identify the integral in Eq. (2.70) with the definition of the momentum

space gluon propagator in Eq. (2.32), to obtain

[
qµpν∆ab

µν(−p)− iξδab
]
δ(4)(q + p) = 0 . (2.71)

Finally, δ(4)(q + p) enforces that p = −q and Eq. (2.62) follows.

2.4.2 Three-gluon vertex STI

We have now reached the culminating point of this chapter, which is to derive the STI

of the three-gluon vertex. We begin with the vanishing correlation

〈T [c̄a(x)A
b
µ(y)A

c
ν(z)] 〉 = 0 . (2.72)
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The same result must hold if we perform a BRST transformation on the fields. Hence,

using Eq. (2.72) we obtain

1

ξ
∂α
x 〈T [Aa

α(x)A
b
µ(y)A

c
ν(z)] 〉 = −gf bed〈T [Ae

µ(y)cd(y)c̄a(x)A
c
ν(z)] 〉

−∂y
µ〈T [cb(y)c̄a(x)A

c
ν(z)] 〉 (2.73)

−gf cgf〈T [Ag
ν(z)cf (z)c̄a(x)A

b
µ(y)] 〉

−∂z
ν〈T [cc(z)c̄a(x)A

b
µ(y)] 〉 , (2.74)

where we have used the anti-commutation properties of the ghost fields and of ω, and

moved the derivatives outside the time-ordering operation.

Next we Fourier transform the Eq. (2.74) and identify the resulting integrals with

Eqs. (2.37), (2.39) and (2.42), to obtain

iqα

ξ

Labc
α′µ′ν′(q, r, p)∆

α′

α (q)∆µ′

µ (r)∆
ν′

ν (p) = Hbac
µν (r, q, p) +Hcab

νµ (p, q, r)

+irµΓ
bac
ρ (r, q, p)D(r)D(q)∆ρ

ν(p)

+ipνΓ
cab
ρ (p, q, r)D(p)D(q)∆ρ

µ(r) . (2.75)

Now, we notice that the expression (2.65) for the full gluon propagator allows us to

write into Eq. (2.75)

qα∆α′

α (q) = −iξ q
α′

q2
. (2.76)

Then, we decompose H according to Eq. (2.44), use Eq. (2.36) and factor out the color

structures, to get

qα
L
αµ′ν′(q, r, p)∆

µ′

µ (r)∆
ν′

ν (p) =iF (q
2)
{ [
Hµρ(r, q, p) +

(
Σµ(r) + irµ

)
D(r)Γρ(r, q, p)

]
∆ρ

ν(p)

−
[
Hνρ(p, q, r) +

(
Σν(p) + ipν

)
D(p)Γρ(p, q, r)

]
∆ρ

µ(r)
}
.

(2.77)

On the left hand side of Eq. (2.77) the three-gluon vertex appears contracted with gluon

propagators, whereas we want an STI with qαΓαµ′ν′(q, r, p) in isolation. Fortunately, the

gluon propagator is invertible before we settle to Landau gauge. Specifically, it is easy to

verify from Eq. (2.65) that

∆−1
µρ (q)∆

ρν(q) = gνµ , (2.78)
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with

∆−1
µρ (q) = i

[
Pµρ(q)∆

−1(q2) +
1

ξ
qµqρ

]
. (2.79)

Then, contracting Eq. (2.77) with ∆−1µ
β (r)∆−1 ν

γ (p) leads to

qα
L
αβγ(q, p, r) = iF (q2)

{ [
Hµγ(r, q, p) +

(
Σµ(r) + irµ

)
D(r)Γγ(r, q, p)

]
∆−1µ

β (r)

−
[
Hνβ(p, q, r) +

(
Σν(p) + ipν

)
D(p)Γβ(p, q, r)

]
∆−1 ν

γ (p)
}
. (2.80)

Decomposing the inverse propagators according to Eq. (2.79) then yields

qα
L
αβγ(q, p, r) = F (q2)

{
∆−1(p2)Pν

γ(r)Hνβ(p, q, r)−∆−1(r2)Pµ
β(r)Hµγ(r, q, p)

−rβ
ξ

[
rµHµγ(r, q, p) +

(
rµΣµ(r) + ir2

)
D(r)Γγ(r, q, p)

]

+
pγ
ξ

[
pνHνβ(p, q, r) +

(
pνΣν(p) + ip2

)
D(p)Γβ(p, q, r)

] }
, (2.81)

where we have used the fact that, by Lorentz symmetry, Σµ(r) must be of the form

Σµ(r) = rµΣ(r
2), which does not survive contraction with Pµ

β(r).

Lastly, the terms proportional to 1/ξ in Eq. (2.81) vanish identically by virtue of

Eqs. (2.53) and (2.45). Hence, the final form of the STI for the three-gluon vertex is given

by [4, 126],

qα
L
αµν(q, r, p) = F (q2)[∆−1(p2)Pα

ν (p)Hαµ(p, q, r)−∆−1(r2)Pα
µ(r)Hαν(r, q, p)] , (2.82)

after some relabeling of indices. As a check on the result, we can use the Feynman rules

in Appendix A to verify that Eq. (2.82) is satisfied at tree level.

While we have derived the three-gluon vertex STI with
L
αµν(q, r, p) contracted with

the momentum qα, as in Eq. (2.82), there is nothing special about this momentum. In fact,

since the gluon fields commute,
Labc
αµν(q, r, p) is fully Bose-symmetric, i.e. it is invariant

under the permutation of any two of its legs, for example
Labc
αµν(q, r, p) =

Lacb
ανµ(q, p, r).

Hence, we must obtain STIs similar to Eq. (2.82), but with
L
αµν(q, r, p) contracted with

either rµ or pν .

Notice however, that since the structure constants fabc that we have factored out are

anti-symmetric, Bose symmetry of
Labc
αµν(q, r, p) requires that the Lorentz structure of the

vertex, i.e.
L
αµν(q, r, p), be anti-symmetric as well. Thus, the three-gluon vertex STIs with
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L
αµν(q, r, p) contracted with either other momentum correspond to cyclic permutations

of Eq. (2.82). Specifically,

rµ
L
αµν(q, r, p) =F (r2)[∆−1(q2)Pµ

α(q)Hµν(q, r, p)−∆−1(p2)Pµ
ν (p)Hµα(p, r, q)] , (2.83)

pν
L
αµν(q, r, p) =F (p2)[∆−1(r2)Pν

µ(r)Hνα(r, p, q)−∆−1(q2)Pν
α(q)Hνµ(q, p, r)] . (2.84)

2.4.3 The STI constraint of the ghost-sector

In addition to relating the three-gluon vertex to the gluon and ghost propagators and

the ghost-gluon scattering kernel, the STIs of Eqs. (2.82), (2.83) and (2.84) also provide a

constraint on the ghost sector functions by themselves. This constraint will be important

later, in Chapter 4, when we decompose the
L
αµν(q, r, p) and Hνµ(q, p, r) in their most

general Lorentz structures and solve the STIs in favor of the three-gluon vertex. For the

moment, let us just derive this additional constraint.

We begin by contracting Eq. (2.83) with pν , which yields

rµpν
L
αµν(q, r, p) = F (r2)∆−1(q2)pνPµ

α(q)Hµν(q, r, p) . (2.85)

Similarly, contracting Eq. (2.84) with rµ leads to

rµpν
L
αµν(q, r, p) = −F (p2)∆−1(q2)rµPν

α(q)Hνµ(q, p, r) . (2.86)

The left hand sides of Eqs. (2.85) and (2.86) are the same, and hence

pνPµ
α(q)F (r

2)Hµν(q, r, p) = −rµPν
α(q)F (p

2)Hνµ(q, p, r) . (2.87)

The Eq. (2.87) is an equation involving only ghost sector functions. We can bring it to

a more symmetric form by contracting Eq. (2.87) with pα, using momentum conservation

on the right hand side, i.e. p = −q − r, and relabeling dummy indices, to obtain

pµpαPν
α(q)F (r

2)Hνµ(q, r, p) = rµrαPν
α(q)F (p

2)Hνµ(q, p, r) , (2.88)

which can be readily verified at tree level using the Feynman rules of Appendix A.

In words, the Eq. (2.88) says that the combination rµrαPν
α(q)F (p

2)Hνµ(q, p, r) is sym-
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metric under the exchange of the momenta p and r. Recalling the diagrammatic repre-

sentation of Hνµ(q, p, r) in Fig. 2.3, we see that r and p correspond to the gluon and ghost

momenta, respectively. Thus, Eq. (2.88) imposes a nontrivial constraint on the gluon and

ghost legs of the ghost-gluon kernel. We emphasize, though, that Hνµ(q, p, r) is not itself

symmetric under the exchange of gluon and ghost legs, even at tree level where the gluon

leg has a Lorentz index, whereas the ghost leg has none. Instead, only the particular

combination given in Eq. (2.88), which contains a transverse projection of Hνµ(q, p, r)

combined with the ghost propagator, possesses this symmetry.

Finally, we point out that while we have derived Eq. (2.88) from the three-gluon vertex

STI, it can also be obtained more directly from an STI of the ghost sector alone [127].

2.5 The STIs and renormalization

As is well known, the STIs play a key role in the renromalizability of non-Abelian

gauge theories. In this work, we will not need to delve very deep into the renormalization

of QCD, thanks to the special property of the ghost-gluon scattering kernel being finite

in Landau gauge. Nevertheless, there is one aspect that we should discuss, which is the

limited freedom in defining the finite parts of the renormalization constants of the theory.

Let us define the gluon and ghost field strength renormalization constants, ZA and Zc,

respectively, by

∆(µ2) := Z−1
A ∆U(µ

2) , F (µ2) := Z−1
c FU(µ

2) , (2.89)

where the index “U” denotes an unrenormalized quantity. Then, the renormalization

constants of the ghost-gluon and three-gluon vertices are defined as

Γµ(q, p, r) := Z1 Γ
U

µ(q, p, r) ,
L
αµν(q, r, p) := Z3

L
U

αµν(q, r, p) . (2.90)

From Eq. (2.45) it is evident that Hνµ(q, p, r) must be renormalized with the same con-

stant, Z1, as the ghost-gluon vertex.

The STIs of the theory, in particular Eq. (2.82), are naturally satisfied by the un-

renormalized functions, provided a gauge invariant regularization, such as dimensional

regularization [138], is employed in their calculation. Now, we impose that the renormal-

ized functions also satisfy the STIs. Substituting the renormalized functions as defined in

Eqs. (2.89) and (2.90) into Eq. (2.82) and using the fact that the equation holds also for
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their unrenormalized counterparts we obtain [38, 39]

Z1

Z3

=
Zc

ZA

. (2.91)

In general, while the divergent parts of the renormalization constants are completely

fixed by the requirement that the divergences of the Green’s function be canceled, one

is still left with a freedom to define their finite parts. These can be defined by imposing

particular values for the Green’s functions at chosen kinematic configurations and an

overall scale.

For example, we will use extensively in this work the momentum subtraction schemes

(MOM) [139] in which we specify that the propagators attain their tree level values at the

Euclidean point q2 = −µ2, i.e.

∆(−µ2) = − 1

µ2
, F (−µ2) = 1 . (2.92)

However, Eq. (2.92) still does not define the finite parts of the vertex renormalization

constants. At this point, we can choose either
L
αµν(q, p, r) orHνµ(q, p, r) to reduce to tree-

level at some chosen kinematic configuration. Importantly, we cannot generally choose

both vertices to attain tree-level values simultaneously [139], due to Eq. (2.91). Instead,

once we have chosen to define either Z1 or Z3, the remaining renormalization constant

must be determined by imposing Eq. (2.91) [139].

In the Section B.4 we give explicit examples of the above procedure using the one-loop

results for
L
αµν(q, p, r) and Hνµ(q, p, r).
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3

Infrared properties of QCD with

dynamical gluon mass

It is well known that adding a gluon mass term to the Lagrangian of Eq. (2.2) explicitly

breaks gauge invariance. Nevertheless, Schwinger has shown [84, 85] that it is possible

in gauge theories for the gauge bosons to acquire effective masses dynamically, without

breaking gauge symmetry nor introducing a scalar Higgs field into the Lagrangian, if the

interaction is sufficiently strong. Specifically, the Schwinger model [85] consists of QED

in 1+1 dimensions, which is exactly solvable, and displays a dynamically massive photon.

Moreover, the fermions in the Schwinger model turn out to be confined [85], providing a

tempting analogy with QCD.

Schwinger’s notion of dynamically massive gauge bosons was then extended to Abelian

theories in more than 1+1 dimensions [86, 87] and non-Abelian theories followed [88–90].

In the 1980s Cornwall proposed [27] that the Schwinger mechanism is realized in QCD,

i.e. that the gluon develops, nonperturbatively, an effective mass [27–29]. The existence of

a gluon mass has several important phenomenological implications, such as the IR freezing

of the running coupling [140–149], glueball masses compatible with lattice results [5, 64,

66–68], a maximum wavelength of gluons [150], and may help resolving [151] the Gribov

problem [152]. For its phenomenological relevance and theoretical elegance the idea of

dynamically generated gluon mass was revived in the last 15 years [6, 30–35] and gained

impetus as large volume lattice simulations produced strong evidence of its reality [7,

73–77, 79–81].

In order to trigger the Schwinger mechanism in QCD it is necessary that certain ver-

tices of the theory develop special kinds of poles [27, 90], arising from nonperturbative
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effects. The existence of such poles fundamentally alters the Gauge Technique construc-

tion of the three-gluon vertex, requiring us to review the mass generation mechanism

before embarking on the solution of the STI of Eq. (2.82).

In this chapter, we briefly review the principles of the Schwinger mechanism, starting

by recalling the recent lattice evidence of its realization in QCD, namely the observation

of an IR finite gluon propagator [7, 73–81]. In Section 3.2 we present the so-called “seagull

cancellation”, which prevents the gauge boson propagators from acquiring masses in the

perturbative setting, and proceed to explain in Section 3.3 how the presence of poles in

vertices evades this cancellation. Next, in Section 3.4 we discuss how the presence of a

gluon mass attenuates the IR divergences of QCD, and how some such divergences persist

due to the nonperturbative masslessness of the ghosts. Then, in Section 3.5 we show that

the gluon mass picture causes the gluon propagator to develop a maximum in Euclidean

space, and that this feature implies positivity violation of the gluon spectral function.

Finally, in Section 3.6 we present an Ansatz that captures the known properties of the

Euclidean space gluon propagator and is in agreement with lattice and SDE results for

this function.

3.1 Infrared finite gluon propagator

Large volume lattice QCD simulations in the Landau gauge display a clearly finite and

nonzero value for the scalar function ∆(q2) of the gluon propagator at q2 = 0 [73–80]. In

fact, the finiteness of ∆(0) was more recently found to persist in the presence of dynamical

quarks [7, 81], for different values of the gauge fixing parameter [153, 154], ξ, as well as

for nonzero temperature [155–158]. For illustration, in Fig. 3.1 we show the propagator

obtained in pure Yang-Mills QCD of Refs. [73, 76] in the left panel, whereas on the right

one we show the corresponding results with three dynamical quarks of Ref. [7]. In both

cases the saturation of ∆(0) to a finite and nonzero value is clearly visible.

As we will show in this section, the finiteness of ∆(0) is a highly nontrivial feature of the

theory, which must be realized through nonperturbative effects. Indeed, in perturbation

theory ∆−1(0) = 0 [see the one loop propagator in Eq. (B.9)], such that ∆(0) is divergent.

The discussion of the IR finiteness of ∆(0) is better carried out by first defining the
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Figure 3.1: Left: Lattice results for the Landau gauge propagator of the gluon of pure
Yang-Mills QCD, from Ref. [73, 76]. Right: Gluon propagator in QCD with NF = 3 quark
flavors [7]. The renormalization point in both sets is µ = 4.3 GeV.

gluon self-energy, iΠab
µν(q), by

iΠµν(q) = ∆−1
µν (q)−∆(0)−1

µν (q) , (3.1)

where the common color factor δab has been extracted. It follows from the STI satisfied

by ∆µν(q), Eq. (2.62), that the gluon self-energy must be transverse, i.e. qµΠµν(q) = 0.

Hence, we may write

Πµν(q) = Pµν(q)Π(q
2) , (3.2)

where Π(q2) is a scalar with dimensions of mass squared. Combining Eqs. (3.1) and (3.2)

with Eq. (2.79) allows us to write

∆−1(q2) = q2 +Π(q2) . (3.3)

From Eq. (3.3) we see that the statement that ∆(0) is finite and nonzero amounts to

saying that Π(0) is finite and non-zero. Now, if Π(q2) were constant Eq. (3.3) would take

the form of massive tree-level propagator, ∆(1M)(q2) = 1/(q2−m2). Obviously, since QCD

is asymptotically free, in the UV Π(q2) must recover its perturbative behavior, which is

massless, from which follows that Π(q2) cannot be a constant. Notwithstanding that,

we may still say that the gluon propagator has a dynamical, i.e. momentum dependent,

mass, which falls off to zero in the UV.

In Fig. 3.2 we show the SDE for the gluon propagator in pure Yang-Mills QCD.
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Evidently, the gluon self-energy is given by the sum of the diagrams (ai), for i = 1, . . . 5,

of that figure. Hence, IR finiteness of the gluon propagator implies that the contributions

of the diagrams (ai) must add up to a finite nonzero value as q → 0.

=( )−1

+ + 1
6

(a3)µν (a4)µν

+ 1
2

(a5)µν

)−1( + 1
2 + 1

2

(a1)µν

(a2)µν
q

νµ

ba

Figure 3.2: Diagrammatic representation of the gluon SDE.

This statement may seem simple at first. However, as we will discuss in the next two

sections, the gauge invariance of the theory combined with an integral identity analytically

continued to arbitrary dimension, known as the “seagull identity”, requires that Π(0) = 0,

unless some of the vertices appearing in the SDE of Fig. 3.2 possess poles at q = 0.

3.2 The seagull cancellation

It is not the scope of this work to treat the generation of a dynamical gluon mass in

full detail, to which we refer the reader to the literature [31, 32, 34, 35], and we want to

cover only the ideas that will be necessary for the Gauge Technique construction of the

three-gluon vertex later. For this reason, we simplify the presentation of the Schwinger

mechanism by framing it as if it were to take place in scalar QED, adapting our discussion

from [34]. Naturally, it is not proposed here that the mechanism is actually realized in

scalar QED, which is to be understood as a “make-believe” theory, in which the concepts

and calculations we want to illustrate, but do not need in full depth, become simpler.

The SDE for the photon in scalar QED is shown in Fig. 3.3. Notice the appear-

ance of two kinds of vertices: the 3-point vertex, eGµ(q, r, p), and the 4-point vertex,

e2Gµν(q, r, s, p), represented diagramatically in Fig. 3.4, and denoting by e the electric

charge. The Feynman rules for these vertices are given by

G
(0)
µ (q, r, p) = −i(r − p)µ , G(0)

µν (q, r, s, p) = −2igµν . (3.4)
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Figure 3.3: Diagrammatic representation of the photon SDE. The zig-zag lines represent
photons, whereas the dashed double-lines represent scalar fields.

µ

q

= eGµ(q, r, p)
p r

(a)

= e2Gµν(q, r, s, p)
p s

µ ν

q r

(b)

Figure 3.4: (a): Diagrammatic representation of the 1PI 3-point vertex of scalar QED.
(b): Diagrammatic representation of the 1PI 4-point vertex of scalar QED.

The gauge invariance of scalar QED implies that the full photon propagator, denoted

by Bµν(q), satisfies a WI identical to Eq. (2.62), with ∆s substituted for Bs. Hence,

Bµν(q) = −i

[
Pµν(q)B(q2) + ξ

qµqν
q2

]
, (3.5)

with B(q2) scalar. Moreover, it follows from Eq. (3.5) that the photon self-energy, i Cµν(q),

given by the sum of diagrams (c1) and (c2) in Fig. 3.3, is transverse, i.e.

Cµν(q) = Pµν(q)C(q
2) , (3.6)

and

B−1(q2) = q2 + C(q2) . (3.7)

Evidently, C(q2) is the QED analog to the Π(q2) of Eq. (3.3).

We will then show that C(0) = 0, i.e. the photon in scalar QED remains massless in

spite of radiative corrections, unless Gµ(q, r, p) contains a special kind of pole at q → 0.

Using the above notation and the Feynman rules of Eq. (3.4), the photon SDE can be
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written as

iCµν(q) = e2
∫

k

D(k2)D(z2)(2k + q)νGµ(−q, q + k,−k)− 2e2gµν

∫

k

D(k2) , (3.8)

where z := q+k, D(k2) denotes the propagator of the scalar field and we use the shorthand

notation of Eq. (B.1) for the integral measure. At tree level

D(0)(k2) =
i

k2 −m2
s

, (3.9)

where ms is the mass of the scalar.

Now, the vertex Gµ(q, r, p) satisfies the WI

qµGµ(q, r, p) = D−1(p2)−D−1(r2) , (3.10)

which can be checked imediately at tree level using Eqs. (3.4) and (3.9). Differentiating

Eq. (3.10) with respect to q and taking the q → 0 limit, we obtain the special case

Gµ(0, r,−r) + lim
q→0

[
qρ
∂Gρ(q, r,−q − r)

∂qµ

]
=
∂D−1(r2)

∂rµ
, (3.11)

where we used momentum conservation to write p = −q − r. At this point, if we assume

Gρ(q, r,−q − r) does not have poles as q → 0, the term in square brackets in Eq. (3.11)

vanishes in the q = 0 limit. In this case we obtain1

Gµ(0, r,−r) =
∂D−1(r2)

∂rµ
. (3.12)

In particular, it is easy to verify that the tree-level vertex of Eq. (3.4) satisfies the no-pole

assumption, and that Eq. (3.12) holds at tree level.

Then, it is straightforward to show, by contracting Eq. (3.8) with qµ, that the WI of

Eq. (3.10) guarantees the transversality of Cµν(q), i.e. q
µCµν(q) = 0, such that Eq. (3.6)

holds, as it should. Consequently, to obtain C(q2) we contract Eq. (3.8) with Pµν(q),

1Ward’s original WI in spinor QED was actually of this form [159], and was later generalized to
unequal momenta by Takahashi [160].
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which leads to

i(d−1)C(q2) = 2e2
∫

k

D(k2)D(z2)kνP
µν(q)Gµ(−q, q+k,−k)−2e2(d−1)

∫

k

D(k2) , (3.13)

with d the space-time dimension.

Now, the qµqν part of Pµν(q) triggers the WI of Eq. (3.10), furnishing

i(d− 1)C(q2) = 2e2
∫

k

D(k2)D(z2)kµGµ(−q, q + k,−k)− 2e2qρ

q2

∫

k

kρD(k2)

+
2e2qρ

q2

∫

k

kρD(z2)− 2e2d

∫

k

D(k2) . (3.14)

The second term on the first line vanishes because it is odd in k. As for the first term in

the second line, Lorentz symmetry allows us to shift the integration variable by k → k−q,
yielding ∫

k

kρD(z2) =

∫

k

(k − q)ρD(k2) = −qρ
∫

k

D(k2) . (3.15)

Hence, Eq. (3.14) reads

i(d− 1)C(q2) = 2e2
∫

k

D(k2)D(z2)kµGµ(−q, q + k,−k)− 2e2d

∫

k

D(k2) . (3.16)

Having separated C(q2) from the tensor structure of Cµν(q), we may now set q = 0

safely in Eq. (3.16), which in this limit reads

i(d− 1)C(0) = 2e2
∫

k

D2(k2)kµGµ(0, k,−k)− 2e2d

∫

k

D(k2) ,

= 2e2
∫

k

D2(k2)kµ
∂D−1(k2)

∂kµ
− 2e2d

∫

k

D(k2) , (3.17)

where we used Eq. (3.12) to obtain the last line above.

Invoking the chain rule, the derivative term in Eq. (3.17) can be written as

∂D−1(k2)

∂kµ
= − 2kµ

D2(k2)

∂D(k2)

∂k2
. (3.18)

Inserting this result into Eq. (3.17) leads to

C(0) =
4ie2

d− 1

[∫

k

k2
∂D(k2)

∂k2
+
d

2

∫

k

D(k2)

]
. (3.19)
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To evaluate the integrals in Eq. (3.19), we transform to Euclidean space, following the

rules of Appendix D, and use spherical coordinates, such that

∫

k

=
iµ2ǫ

(2π)d

∫ ∞

0

d|k| |k|d−1

∫
dΩ =

iµ2ǫ

2(2π)d

∫ ∞

0

dy y
d
2
−1

∫
dΩ , (3.20)

where Ω is the solid angle, y := k2 and µ is the ’t Hooft mass scale, introduced to keep

the coupling, e, dimensionless [161] for any d. Then, since the integrands of the two terms

in Eq. (3.19) only depend on k2, the angular integration yields the same result for both,

leading to

∫

k

k2
∂D(k2)

∂k2
+
d

2

∫

k

D(k2) =

[∫ ∞

0

dy y
d
2
∂D(y)

∂y
+
d

2

∫ ∞

0

dy y
d
2
−1D(y)

]
iµ2ǫ

(2π)d

∫
dΩ .

(3.21)

Now we perform an integration by parts in the first integral of Eq. (3.21), to obtain

∫ ∞

0

dy y
d
2
∂D(y)

∂y
= y

d
2D(y)

∣∣∣
∞

0
− d

2

∫ ∞

0

dy y
d
2
−1D(y) . (3.22)

For sufficiently large space-time dimension, d, the surface term y
d
2D(y)|∞0 is undefined,

but so are the integrals in Eq. (3.21). In order to make sense of Eq. (3.21) we consider

d to be complex with Re(d) < dmax, where dmax is sufficiently small for the integrals in

Eq. (3.21) to be finite and for y
d
2D(y) → 0 as y → 0. For example, in the case of the

tree-level propagator of Eq. (3.9), the integrals in Eq. (3.21) are finite and the surface

term vanishes for Re(d) < 2, i.e. dmax = 2 for the tree level case.

Hence, for Re(d) < dmax, Eqs. (3.21) and (3.22) entail2

∫

k

k2
∂D(k2)

∂k2
+
d

2

∫

k

D(k2) = 0 . (3.23)

Since for Re(d) < dmax the Eq. (3.23) defines an analytic function of d, the analytic

continuation theorem guarantees that Eq. (3.23) holds for d general.

Finally, using Eq. (3.23) into Eq. (3.19) leads to the announced result,

C(0) = 0 . (3.24)

It is important to emphasize that the result C(0) = 0 is not realized diagram by

2For an alternative derivation that does no use integration by parts see [35].
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diagram. Instead, the two self-energy diagrams of Fig. 3.3 cancel against each other in

the q → 0 limit. The diagram (c2) of Fig. 3.3 is usually called the “seagull diagram”, and

is quadratically divergent, making its cancellation crucial for the renormalizability of the

theory. It is for enforcing the cancellation of the seagull diagrams that Eq. (3.23) is called

the seagull identity [35].

The crucial steps leading to C(0) = 0 are the gauge invariance of the theory, expressed

by the WI of Eq. (3.10), the no-pole assumption that led to Eq. (3.12), and finally the

seagull identity of Eq. (3.23).

In the case of QCD, due to its non-Abelian nature, the demonstration that the gluon

is massless in perturbation theory is naturally more complicated and is better carried

out by taking advantage of the synthesis of the Pinch Technique [27, 162–167] and the

Background Field Method [133, 168–170], known in the literature as the Pinch Technique-

Background Field Method (PT-BFM) scheme [104, 105, 110], whose Green’s functions

satisfy Abelian-like WIs, rather than the complicated STIs. Nevertheless, the derivations

are ultimately analogous, in that the gauge symmetry of the theory triggers a set of seagull

cancellations, under similar no-pole assumptions on the vertices, such that Π(0) = 0 [32,

34, 35]. Hence, to generate a mass for the gauge bosons, without introducing a mass or

Higgs term in the Lagrangian, we must evade the seagull cancellation.

3.3 Evading the seagull cancellation

Consider now the possibility that qρ∂Gρ(q, r,−q − r)/∂qµ does not vanish as q → 0.

To this end, let us suppose that the vertex contains a pole term,

Gµ(q, r, p) = Gµ(q, r, p) +
qµ
q2
U(q, r, p) , (3.25)

where Gµ(q, r, p) and U(q, r, p) are regular at q → 0.

The onset of the pole term in Eq. (3.25) must be realized in a gauge invariant way,

such that the WI of Eq. (3.10) is preserved. Setting q = 0 in that equation and using

Eq. (3.25) leads to

U(0, r,−r) = 0 . (3.26)

Nevertheless, the derivatives of U(q, r, p) need not vanish. In fact, in the presence of the
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pole term in the vertex Gµ(q, r, p), the Eq. (3.11) now yields

lim
q→0

[
Gµ(q, r, p)−

qµ
q2
U(q, r, p)

]
= G(0, r,−r) = ∂D−1(r2)

∂rµ
−
[
∂U(q, r,−q − r)

∂qµ

]

q=0

,

(3.27)

instead of Eq. (3.12).

It is clear then, that if one repeats the calculations leading up to Eq. (3.24), the term

of Eq. (3.27) containing the derivative of D−1(k2) will still trigger the seagull identity of

Eq. (3.23), and cancel against the seagull diagram. However, the ∂U/∂qµ term survives,

yielding

C(0) = −2ie2

d

∫

k

D2(k2)

[
kµ
∂U(−q, q + k,−k)

∂qµ

]

q=0

. (3.28)

Hence, if the full, nonperturbative, vertex Gµ(q, r, p) contains a pole term as in Eq. (3.25),

with nonvanishing ∂U(q, r,−q − r)/∂qµ at q = 0, an effective mass is generated for the

gauge boson.

An important property of the pole term in Eq. (3.25) is that it is longitudinally coupled,

i.e. it does not survive a transverse projection. As a result, this pole does not appear in

on-shell amplitudes, since the latter contain transversely polarized photons (see e.g. [86],

although their discussion is for a theory with fermions).

The pole in the vertex Gµ(q, r, p) can be realized if a massless bound state of scalars

forms [32, 86–88, 90]. In this case, Eq. (3.25) can be represented by the two diagrams

in Fig. 3.5, where the second diagram contains the massless bound state, and the first

corresponds to the regular part, Gµ(q, r, p). In the massless bound state picture, the

longitudinality of the pole term in Eq. (3.25) is an immediate consequence of Lorentz

symmetry; the only possible Lorentz structure of the amplitude Mµ(q) of a photon to

transition to a massless bound state, shown to the left of the bracket in Fig. 3.5, is

qµM(q2).

Evidently, the formation of such massless bound states is not captured by perturbation

theory. Neither can it simply be put in by hand in the theory. Instead, like any bound

state, that which generates the qµU(q, r, p)/q
2 term in Eq. (3.25) is governed by a Bethe-

Salpeter equation (BSE), represented diagrammatically in Fig. 3.6. Hence, the Gµ(q, r, p)

will only acquire the pole term of Eq. (3.25) if the BSE admits nontrivial solutions, which

should only occur for sufficiently strong coupling.

We can thus summarize the ideas in this and the previous section as follows: if the
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Figure 3.5: Diagrammatic representation of Eq. (3.25) with the pole part qµU(q, r, p)/q2

corresponding to massless bound state excitations in the photon leg. The red circle rep-
resents the regular part, Gµ(q, r, p), the continuous double line represents a bound state
and A is the 1PI interaction vertex between the bound state and two scalar fields. The
bracket defines the transition amplitude,Mµ(q), from a photon to a massless bound state.
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Figure 3.6: BSE governing the amplitude A of Fig. 3.5. The black circle represents the
interaction kernel between four scalars and contains connected contributions.

interaction of the theory is sufficiently strong, massless bound states can arise in the

fundamental vertices, endowing them with longitudinally coupled poles which lead to a

nonzero self-energy at zero momentum, i.e. a mass for the gauge boson. This poles are

realized without violating the WIs, and without altering the Lagrangian of the theory by

introducing Higgs fields nor, gauge symmetry breaking, mass terms.

This scenario can be generalized to QCD [31, 32, 34, 35, 61]. Since QCD has a larger

number of fundamental vertices, the gluon dynamical mass can have contributions from

poles in the three-gluon [32], four-gluon [61] and ghost-gluon [62] vertices. Nevertheless,

it is the nontrivial pole structure of the three-gluon vertex that seems to be the domi-

nant ingredient for the Schwinger mechanism in QCD [62]. As such, we will restrict our

attention to
L
αµν(q, r, p).

We assume that massless bound states of two gluons are formed nonperturbatively,
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producing poles in the three-gluon vertex [32], such that we may write

L
αµν(q, r, p) = Γαµν(q, r, p) + Vαµν(q, r, p) , (3.29)

with Γαµν(q, r, p) regular and Vαµν(q, r, p) contains poles at zero momenta.

Since the pole part Vαµν(q, r, p) results from bound state excitations in each of the

channels, q, r and p, as shown in Fig. 3.7, it is necessarily longitudinally coupled. More

specifically, since the transition amplitude Iα(q) shown in Fig. 3.7 can only be of the form

qαI(q
2), the Lorentz tensor structure of Vαµν(q, r, p) must be

Vαµν(q, r, p) =

(
qα
q2

)
Rµν(q, r, p) +

(rµ
r2

)
Sαν(q, r, p) +

(
pν
p2

)
Tαµ(q, r, p) , (3.30)

for some tensor functions Rµν(q, r, p), Sµν(q, r, p) and Tµν(q, r, p). As a result of Eq. (3.30),

the pole term Vαµν(q, r, p) is annihilated by a totally transverse projection,

Pα
α′(q)P

µ
µ′(r)P

ν
ν′(p)Vαµν(q, r, p) = 0 , (3.31)

such that the poles in the three-gluon vertex do not appear in on-shell amplitudes [32,

89].

1/q2

+ c.p.
Iα(q)

Bµν

Bρσ

ρ′ σ′

ρ σ

ν

p r

µ

α

q

=

α

q

rp

µν

+

α

q

rp

µν

(b)

Figure 3.7: Diagrammatic representation of Eq. (3.29) with the pole part Vαµν containing
massless bound state excitations in each of the channels, q, r and p. The red circle repre-
sents the regular part, Γαµν . Diagram (b) represents the massless bound state excitation
on the q channel, with Iα(q) the transition amplitude from a gluon to a massless bound
state and Bµν the 1PI interaction vertex between two gluons and a massless bound state
excitation. The “c.p.” denotes the cyclic permutations of diagram (b).

Again, the dynamical onset of the pole part Vαµν of Eq. (3.29) is governed by a BSE [32]

and the existence of nontrivial solutions for it depends on the strength of the coupling.
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For illustration, in Fig. 3.8 we show the BSE satisfied by the transition amplitude Bµν ,

defined in Fig. 3.7, assuming that only the three-gluon vertex develops massless bound

state excitations. If the other fundamental vertices of the theory also contain longitudinal

pole parts [61, 62], analogous to V, then Fig. 3.8 must be substituted by a system of

coupled BSEs corresponding to the bound state amplitudes appearing in each of these

vertices [62].

=

r

p

q q
r

p

Bµν Bρσ

µ

ν

µ

ν

ρ

σ

Figure 3.8: BSE governing the amplitude Bµν of Fig. 3.7. The black circle represents the
interaction kernel between four gluons and contains connected contributions.

Since the pole part, Vαµν , of the vertex is produced dynamically, preserving the gauge

symmetry of QCD, the full vertex of Eq. (3.29) still satisfies the STI of Eq. (2.82). Then,

in complete analogy to the calculations leading to Eq. (3.28), the regular part, Γαµν , of

the three-gluon vertex triggers a series of seagull cancellations and does not contribute

to Π(0), whereas the pole part, Vαµν , evades the seagull identity, furnishing a nonzero

Π(0) [35].

Substituting Eq. (3.29) into the gluon propagator SDE of Fig. 3.2, it is natural to split

the contributions to ∆µν(q) coming from the regular and the pole parts of the vertices.

Then, we can associate the self-energy terms containing the pole vertices to a dynamical

gluon mass, m2(q2), and determine an SDE relating it to the pole part, Vαµν , of the

vertex [6, 61, 171], as represented diagrammatically in Fig. 3.9. With this splitting, the

gluon propagator may be written as

∆−1(q2) = q2J(q2)−m2(q2) , (3.32)

where q2J(q2) is called the “kinetic term” and contains all contributions from the regular

vertex terms. In particular, since the perturbative vertices do not contain the mass-

generating poles, J(q2) contains all the perturbative corrections to the propagator.

Combining Eqs. (3.29) and (3.32), we can split the STI of Eq. (2.82) into two equa-
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m2(q) =
1

q2
qµ× + ×qνµµ

V

ν

Figure 3.9: Diagrammatic representation of the dynamical gluon mass equation, derived
from the gluon SDE of Fig. 3.2 by separating from it the terms which contain the pole
part, Vαµν , of the full three-gluon vertex of Eq. (3.29). The dashed box emphasizes the
Vαµν , which is represented by a green circle.

tions3,

qαΓαµν(q, r, p) = F (q2)[p2J(p2)Pα
ν (p)Hαµ(p, q, r)− r2J(r2)Pα

µ(r)Hαν(r, q, p)] , (3.33)

and

qαVαµν(q, r, p) = F (q2)[m2(r2)Pα
µ(r)Hαν(r, q, p)−m2(p2)Pα

ν (p)Hαµ(p, q, r)] . (3.34)

Evidently, the cyclically permuted versions Eqs. (3.33) and (3.34) also hold [4], following

from Eqs. (2.83) and (2.84).

It remains, of course, to determine whether the QCD interaction is sufficiently strong

to trigger the Schwinger mechanism, i.e. for the BSEs governing the massless bound state

excitations, such as that of Fig. 3.8, to have nontrivial solutions. Indeed, it has been found

numerically that nontrivial solutions for bound state excitation in the three-gluon vertex

exist in pure Yang-Mill QCD [6, 32, 61, 62]. Moreover, the dynamical mass persists in

the presence of active quarks [33] and away from Landau gauge [172], in agreement with

lattice results [7, 73, 74, 76, 81, 153, 154].

Finally, the gluon mass solutions obtained numerically in Euclidean space are mono-

tonically decreasing functions of the Euclidean momentum q2 [6, 32, 61, 62]. Moreover,

in the far UV, the leading behavior of m2(q2) displays a power-law running [173]

m2(q2) ≃
q2→∞

λ4

q2
, (3.35)

3At first it seems this splitting may not be unique. However, when supplemented with renormalization
prescriptions for ∆(q2) and the vertices, it becomes uniquely defined [9].
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up to logarithmic corrections. Here, λ is a characteristic scale of the dynamical mass

running. This fast fall-off of the dynamical mass in the UV is in agreement with Operator

Product Expansion analysis of the gluon propagator [27, 174] and guarantees that the

asymptotically free perturbative behavior of QCD is recovered for large momenta [173].

Having discussed the gluon mass generation mechanism, we now move over to explore

some of the implications of the IR finiteness of the gluon propagator that will be important

in this work.

3.4 Infrared divergences in nonperturbative QCD

One of the most important implications of the IR finiteness of the gluon propagator

is its effect in taming numerous IR divergences in QCD. Specifically, several Green’s

functions that are IR divergent in perturbation theory become IR finite, or have their

degree of divergence reduced, e.g. from pole to logarithmic, in the presence of a gluon

mass.

An important example is the ghost dressing function, F (q2). Unlike the gluons, the

lattice results indicate quite clearly that ghosts remain massless nonpertubatively [73, 76,

78, 81, 148, 175–177], i.e. the ghost propagatorD(q2) diverges at q2 = 0. Nevertheless, the

presence of a gluon mass causes the ghost dressing function, F (q2), defined in Eq. (2.36),

to saturate to a finite value at zero momentum [30, 83, 148, 177–180].

For illustration, lattice results for F (q2) are shown in Fig. 3.10, for the case of pure

Yang-Mills [175] (left panel) and for NF = 3 quark flavors [148] (right panel). Indeed,

quantitative analysis of these results indicate they are consistent with a finite value at the

origin [30, 74, 178–180].

We can understand the saturation of F (0) through a semi-perturbative calculation. We

start with the SDE for the ghost propagator [180], shown diagrammatically in Fig. 3.11.

If the self energy diagram in Fig. 3.11 is computed with the Feynman rules of Appendix A,

one obtains the well-known result of Eq. (B.15), after renormalization, which has a log-

arithmic divergence of the form ln q2, as q2 → 0. Keeping the ghost propagator and the

ghost-gluon vertex at tree-level, but dressing the gluon propagator with the massive model

of Eq. (B.40), leads instead to

F−1(q2) = Zc − g2CA

∫

k

[k2q2 − (k · q)2]
q2k2(k + q)2(k2 +m2)

, (3.36)
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Figure 3.10: Left: Lattice results for the Landau gauge ghost dressing function, defined
in Eq. (2.36), of pure Yang-Mills QCD, from Ref. [175]. Right: Ghost dressing func-
tion in QCD with 3 dynamical quarks [148]. The renormalization point in both sets is
µ = 4.3 GeV.
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Figure 3.11: Diagrammatic representation of the ghost propagator SDE.

written here in Euclidean space, with CA = 3 the Casimir eigenvalue in the adjoint

representation, and Zc given by Eq. (B.13). The above integral can be computed with

standard Feynman parametrization [133], yielding in Euclidean space (see Appendix D)

F (q2) = 1 +
αsCA

16πm2q4

{
3m2q4 ln

(
µ2

m2

)
+ q6 ln

(
q2

m2

)

+(m2 + q2)

[
m2q2 − (m2 + q2)2 ln

(
q2 +m2

m2

)]}
, (3.37)

where αs := g2/(4π).

If we expand Eq. (3.37) around m2 = 0 the usual one-loop expression of Eq. (B.15) is

recovered. Expanding it instead around q2 → 0, for nonzero mass, leads to

F (0) = 1− 3αsCA

32π

[
2 ln

(
m2

µ2

)
+ 1

]
, (3.38)

which is indeed finite.
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Evidently, the above argument must be understood as a qualitative explanation, since

the hard mass of Eq. (B.40) breaks gauge invariance, and we have not considered the

quantitative effects of the dressings of the vertex and propagators entering the SDE of

Fig. 3.11. Nevertheless, the hard mass propagator of Eq. (B.40) is a useful model for

an assessment of the qualitative effect of the finiteness of ∆(0) on different Green’s func-

tions. For the case of F (q2), more sophisticated analyses including propagator and vertex

dressings [3, 30, 83, 178–181] lead to the same conclusion that F (0) is finite.

Similar reasoning can be applied to other diagrams containing internal gluon lines; the

gluon propagators may be substituted, at a qualitative level, by Eq. (B.40), producing

terms of the form 1/(k2 + m2) in the Euclidean space integrands, with k the virtual

momentum. Then, the presence of a gluon mass reduces the degree of IR divergence of

the diagram, in comparison to the corresponding perturbative one, which would contain

terms of the form 1/k2 instead.

However, not all IR divergences of QCD are tamed by the advent of the dynamical

gluon mass. Instead, since the ghosts remain massless, the IR divergences caused by

internal ghost lines, which are of the form 1/k2, persist nonperturbatively [52], albeit

with different coefficients, due to the various dressings of the propagators and vertices.

An important example of IR divergence that persist nonperturbatively appears in

the kinetic term of the gluon propagator, J(q2), defined in Eq. (3.32). Taking a closer

look at the gluon SDE of Fig. 3.2, we note that the diagram (a3) contains only ghost

lines in its loop, and explicit calculation [52] leads to a contribution of the form q2 ln q2.

The gluon propagator itself does not contain any IR divergence, since q2 ln q2 → 0 for

q2 = 0. However, factoring out the momentum q2, as required by Eq. (3.32), leads to a

logarithmically divergent J(q2).

More specifically, adding the IR finite terms coming from the diagrams that contain

internal gluon lines to the IR divergence produced by diagram (a3), implies the asymptotic

behavior [52]

J(q2) ≃
q2→0

a ln

(
q2

µ2

)
+ b . (3.39)

Moreover, the sign of the prefactor a can be determined by explicit calculation within the

PT-BFM scheme and is found to be positive [52]. Hence,

lim
q2→0

J(q2) = −∞ . (3.40)
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Now, in the UV the full gluon propagator must recover its perturbative behavior.

Then, using the one loop result for J(q2) of Eq. (B.14), we see that

lim
q2→∞

J(q2) = ∞ . (3.41)

Combining the two opposite limits of Eqs. (3.40) and (3.41), it follows that J(q2) must

change sign, and therefore contain a zero-crossing for some momentum q2
J
, i.e. J(q2

J
) = 0.

The logarithmic IR divergence of J(q2) has an important implication for the behavior

of the three-gluon vertex. Namely, Eq. (3.33) indicates that the regular part, Γαµν(q, r, p),

of the three-gluon vertex may also have logarithmic IR divergences in its form factors [52].

Indeed, although the complete SDE for the three-gluon vertex is lengthy and difficult to

analyze, it is clear that it contains the two ghost triangle diagrams shown in Fig. 3.12.

Then, since the ghosts remain massless nonperturbatively the two diagrams in Fig. 3.12

yield logarithmic IR divergences for Γαµν(q, r, p), just as indicated by the STI of Eq. (3.33)

and the divergence of J(q2).

⊃

α
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ν
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α

q

r

µ

p

ν

α

q

Figure 3.12: Ghost triangle diagrams contained in the full SDE of the regular part,
Γαµν(q, r, p), of the three-gluon vertex. Explicit minus signs for closed ghost loops have
been written to account for the Fermi statistics of the ghosts.

As a consequence of its logarithmic IR divergence, the Γαµν(q, p, r) is expected to

also display a zero-crossing [52], and consequent suppression with respect to tree-level.

Indeed, both features are observed on lattice simulations [7, 43–49] as well as continuum

results [4, 8, 50–60]. The ensuing suppression produced by the three-gluon vertex in the

integration kernels that it appears on is potentially phenomenologically relevant and has

been explored in several recent works [5, 6, 56, 57, 62, 63, 71].
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3.5 Maximum of the gluon propagator and positivity

violation

While the full gluon propagator is finite at zero momentum, the IR divergence of J(q2)

has an important implication for the qualitative behavior of ∆(q2). Namely, ∆(q2) has a

maximum in Euclidean space [52].

Following the Wick rotation prescriptions of Appendix D, the Eq. (3.32) is transformed

to

∆−1(q2) = q2J(q2) +m2(q2) , (3.42)

Differentiating Eq. (3.42) we find

− ∆′(q2)

∆2(q2)
= J(q2) + q2J ′(q2) + [m2(q2)]′ , (3.43)

where the prime denotes derivative with respect to q2. Then we consider the q2 limit of

Eq. (3.43). Using the asymptotic behavior of J(q2) given in Eq. (3.39), we see that

lim
q2→0

q2J ′(q2) = a . (3.44)

Assuming that the derivative of m2(q2) is finite at the origin, as found in previous numer-

ical studies [6, 32, 63, 182], we are led to the asymptotic form for the derivative of the

gluon propagator

∆′(q2) ≃
q2→0

−∆2(0)

[
a ln

(
q2

µ2

)
+ c

]
, (3.45)

with c := a + b + [m2(0)]′. Hence, the derivative of the gluon propagator diverges loga-

rithmically at the origin.

Now, given that a and ∆(0) are positive, Eq. (3.45) gives

lim
q2→0

∆′(q2) = ∞ . (3.46)

On the other hand, for large q2 the perturbative behavior sets in, and Eq. (B.14) leads to

∆′(q2)
∣∣∣
UV

< 0 , (3.47)
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which, in combination with Eq. (3.46), implies that ∆′(q2) changes sign. Hence, there

exists some Euclidean momentum qM such that ∆′(q2
M
) = 0, i.e. the gluon propagator

function ∆(q2) has an extremum. Moreover, qM must be a maximum, given the signs of

∆′(q2) in Eqs. (3.46) and (3.47).

The existence of a maximum of the gluon propagator has a deep theoretical implication;

that the gluon propagator violates positivity of the spectral function.

To see this, consider the standard Källén-Lehmann representation [183] of the gluon

propagator

∆(q2) =

∫ ∞

0

dt
ρ(t)

q2 + t
, (3.48)

where ρ(t) is the gluon spectral function. Differentiating Eq. (3.48) with respect to q2

leads to

∆′(q2) = −
∫ ∞

0

dt
ρ(t)

(q2 + t)2
, (3.49)

and it is evident that ∆′(q2) can only vanish if ρ(t) changes sign in the interval [0,∞].

The result that ρ(t) changes sign is called “positivity violation”, and entails that the

gluon field in Landau gauge does not satisfy the Osterwalder-Schrader axioms [184, 185],

which require that ρ(t) be nonnegative. The physical interpretation of positivity violation

is still discussed [15, 186, 187]. Nevertheless, the IR divergence of ∆′(q2), stated in

Eq. (3.46), and the consequent maximum of the gluon propagator in Euclidean space are

features that can be used to restrict the behavior of ρ(t) [114], which in turn can be used

to analytically continue the Euclidean space propagator to the Minkowski space.

3.6 A consistent Ansatz for J(q2) and m2(q2)

As we have seen throughout this chapter, the gluon propagator in QCD has a dy-

namically generated effective mass, and its kinetic term, J(q2), has an IR logarithmic

divergence. To undertake the Gauge Technique determination of the three-gluon vertex,

which is the main goal of this work, we will need inputs for the gluon propagator functions

J(q2) and m2(q2) that capture the aforementioned features and accurately describes the

lattice data for ∆(q2).

To begin, the existing results for the gluon dynamical mass [6, 32, 63, 182] can all be
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fitted accurately with the functional form [62]

m2(q2) =
m2

0

1 + (q2/ρ2m)
1+γ

, (3.50)

with constants m0, ρm and γ. Note that the above expression reproduces the power-law

running of Eq. (3.35) for large momenta, with small logarithmic corrections embedded in

γ, provided this parameter is small.

In contrast, the kinetic term J(q2) is very difficult to obtain from SDEs, given the need

to truncate the complicated SDE of the gluon propagator (see Fig. 3.2), which contains

various dressed vertices, in a way that preserves the transversality of the Landau gauge

∆µν(q) and its multiplicative renormalizability. Nevertheless, existing results [6] can be

fitted accurately with [4]

J(q2) = 1 +
CAαs

4π

(
1 +

τ1
q2 + τ2

)[
2 ln

(
q2 + ρm2(q2)

µ2

)
+

1

6
ln

(
q2

µ2

)]
, (3.51)

where m2(q2) is given in Eq. (3.50). Notice the presence of two kinds of logarithms in

Eq. (3.51): an “unprotected” logarithm, ln(q2/µ2), which captures the IR divergence of

J(q2), stemming from the ghost loop in the gluon SDE [cf. Eq. (3.39)]; and a “protected”

logarithm, ln[(q2 + ρm2(q))/µ2], which saturates to a finite value, ln(ρm2
0/µ

2), at the

origin and models the IR finite contributions from the gluon loops. The factors of 2 and

1/6 multiplying the protected and unprotected logarithms, respectively, can be justified

by a nonperturbative toy model calculation of the gluon SDE in the PT-BFM scheme [62].

Finally, for large q2, Eq. (3.51) recovers the one-loop behavior of J(q2), given in Minkowski

space in Eq. (B.14).

Combining Eqs. (3.50) and (3.51) into Eq. (3.42) provides a model for the Euclidean

gluon propagator [4] which can be fitted to the lattice data, shown in the left panel of

Fig. 3.1, and captures the qualitative properties of the nonperturbative ∆(q2) discussed

in this chapter, while recovering its perturbative behavior in the UV.

Naturally, due to truncation error in the dynamical equations governing the gluon

mass, different approximations [6, 32, 63, 182] lead to results for m2(q2) with slightly

different runnings. In order to accommodate the uncertainty in the gluon mass, we allow

the exponent γ in Eq. (3.50) to take on values in the interval γ ∈ [0, 0.3]. Moreover,

we fix the parameters m2
0 = 0.147GeV2 and ρ2m = 1.18GeV2, which are compatible with
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Figure 3.13: Left: Fit for the gluon propagator using Eqs. (3.42), (3.50) and (3.51) for
γ = 0, compared to the lattice results of Ref. [175]. The inset shows ∆−1(q2).

the various results for m2(q2) [6, 32, 63, 182]. Also, we fix the value of the strong cou-

pling to αs = 0.22, for µ = 4.3 GeV, found in previous analysis of the ghost propagator

SDE [180] and which is in agreement with lattice determinations of the coupling at this

renormalization point [188].

With the above restrictions, a least squares fit for the gluon propagator is obtained

for each value of γ = 0, 0.1, 0.2 and 0.3 using the Eqs. (3.50) and (3.51). At the level of

∆(q2), the different fits are visually indistinguishable and we show in Fig. 3.13 only the

result with γ = 0. It can be appreciated in Fig. 3.13 that the present model for the gluon

propagator has a maximum in the IR, more precisely at qM = 250 MeV. A maximum

around that same region is discernible in the lattice data [73, 76], shown in the same

figure, albeit with contamination of large noise in the IR.

The remaining parameters, ρ, τ1 and τ2, of Eq. (3.51) are found to depend smoothly

on γ according to

ρ(γ) = 100.8− 82.21γ1.28 ,

τ1(γ) = 9.87− 6.96γ ,

τ2(γ) = 0.80 + 0.11 exp(−10γ) , (3.52)

to very good approximation, as shown in Fig. 3.14, where the values of ρ, τ1 and γ for

γ = 0, 0.1, 0.2 and 0.3 are marked by stars, whereas the continuous curves represent

Eq. (3.52).

Using the sets of parameters given in the caption of Fig. 3.14 we obtain the J(q2) and
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Figure 3.14: Values of ρ (left), τ1 (center), and τ2 (right) for Eq. (3.51) that fit the lat-
tice data for the gluon propagator for γ = 0, 0.1, 0.2 and 0.3 are shown as stars; these
values are accurately described by the functional forms given in Eq. (3.52). The val-
ues marked by stars are given by [γ, ρ, τ1 (in GeV2), τ2 (in GeV2)]: [0, 100.8, 9.87, 0.91]
(blue stars), [0.1, 96.7, 9.15, 0.84] (red stars), [0.2, 90.3, 8.45, 0.81] (yellow stars), and
[0.3, 83.5, 7.84, 0.80] (purple stars).
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Figure 3.15: Left: kinetic term, J(q2), of the gluon propagator, defined in Eq. (3.51), for
γ = 0, 0.1, 0.2 and 0.3, corresponding to the blue continuous, red dashed, yellow dotted
and purple dot-dashed curves, respectively. Right: Gluon dynamical mass of Eq. (3.50),
with the same color coding for different values of γ as in the left panel.

m2(q2) shown in Fig. 3.15. The results for different values of γ are all qualitatively similar,

and J(q2), in particular, shows significant quantitative variations in the IR only. In partic-

ular, the different J(q2) of Fig. 3.15 have their zero-crossings located at qJ = 140, 166, 187,

and 202 MeV, for γ = 0, 0.1, 0.2, and 0.3, respectively.
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4

The gauge technique implementation

We have already seen the simplest instance of the Gauge Technique in Subsection 2.4.1,

where we determined the longitudinal part of the gluon propagator from the STI it satis-

fies, namely Eq. (2.62). However, it is in the study of the vertex functions that the Gauge

Technique really shines [1, 4, 7, 124–128], allowing part of the vertex tensor structures to

be determined from the STIs that connect them to other Green’s functions.

As we will discuss in detail throughout this chapter there are, in general, tensor struc-

tures of the vertices that satisfy the STIs trivially and are left undetermined by the Gauge

Technique. These are said to be the “transverse” vertex parts. Nevertheless, vertex ap-

proximations obtained through the Gauge Technique, neglecting the transverse pieces, can

be used as input to truncate SDEs for other Green’s functions, such as the propagators [2,

6, 25, 107, 108, 119–122, 130–132].

However, in order that the transverse pieces can be neglected safely it is fundamental

that the analytic structure of the vertices under consideration be preserved, at least as

far as their pole structures are considered, i.e. we must not introduce spurious poles

in the vertices when omitting the transverse pieces. In the absence of massless bound

state excitations in the vertices, a naive Gauge Technique solution may cause the vertex

approximation to have spurious poles in certain kinematic configurations [108, 124, 125],

known as “kinematic divergences”. These divergences have to be eliminated by a careful

rearrangement of the tensor bases, which we will refer to as the BC [125, 126] construction.

On the other hand, in the presence of massless bound state excitations, the vertex

is allowed to have poles, but it is fundamental that they remain longitudinally coupled.

In the case of the three-gluon vertex, the classical BC construction, which does not ac-

count for massless bound state excitations in the vertex, distorts the pole structure of the
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vertex when a massive gluon propagator is used, causing the poles to survive transverse

projections if the “transverse” tensor structures are neglected. We show that a slight

modification of the BC construction, which takes explicit advantage of the longitudinal

nature of the massless bound state excitation poles is possible, whose main upshot is the

substitution of the gluon propagator by its kinetic term only in the BC solution. This

procedure leads to self-consistent vertex approximations, even if the “transverse” pieces

are omitted.

We begin this chapter by reviewing in Section 4.1 the BC construction in scalar

QED [125], paying special attention to the problem of kinematic divergences and their

elimination. Then, in Section 4.2 we point out, still in scalar QED for illustration, how

the construction should be modified in the presence of massless bound state excitations.

Next, we discuss the BC construction of the regular part of the three-gluon vertex in

Section 4.3 and solve for the longitudinally coupled pole terms in Section 4.4. Finally, in

Section 4.5 we show, with analytic and numerical examples, that a naive application of the

BC construction for the three-gluon vertex, without proper account of the longitudinality

of the massless bound state poles, leads to poles that survive a transverse projection and

are not compatible with lattice simulations of this vertex.

4.1 Ball-Chiu construction in scalar QED

To fix the ideas before tackling the more complex Gauge Technique solution of the

three-gluon vertex, let us review the application of the method in scalar QED. We start

with the case where the vertex Gµ(q, r, p) has no massless poles, and follow the discussion

of BC of Ref. [125] with minor adaptations. We will see the modifications needed in the

presence of a longitudinally coupled pole term in the next section.

The most general Lorentz structure of the vertex Gµ(q, r, p) is given by

Gµ(q, r, p) = pµΨ1(q, r, p) + rµΨ2(q, r, p) , (4.1)

such that the determination of the full Gµ(q, r, p) amounts to evaluating two unknown

scalar functions, Ψ1(q, r, p) and Ψ2(q, r, p). Evidently, the WI of Eq. (3.10) allows us to

determine one of the above form factors. Choosing to eliminate Ψ1(q, r, p), we contract
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Eq. (4.1) with qµ and use Eq. (3.10) to obtain

Ψ1(q, r, p) =
D−1(p2)−D−1(r2)

q · p −
(
q · r
q · p

)
Ψ2(q, r, p) , (4.2)

such that Eq. (4.1) reads

Gµ(q, r, p) =
pµ
q · p [D

−1(p2)−D−1(r2)] +

[
rµ −

(
q · r
q · p

)
pµ

]
Ψ2(q, r, p) . (4.3)

Now, it may seem that with Eq. (4.3) we are finished. However, note the presence of

q ·p denominators in Eq. (4.3). For completely general Ψ2(q, r, p), these denominators lead

to kinematic divergences whenever q · p = 0. As we will just show, these divergences are

incompatible with the known q = 0 limit of the WI, given in Eq. (3.12). Hence Eq. (4.3)

does not solve the WI completely for unconstrained Ψ2(q, r, p) and it is necessary to impose

a restriction on this form factor to eliminate the divergence in q · p = 0.

Consider the q → 0 limit of Eq. (4.3). In addition, suppose we approach this limit

through a trajectory (in the space of values of q) such that q · p is non zero except at the

point q = 0. Then, since at q = 0 momentum conservation leads to r = −p, expanding
D−1(p2) in a Taylor series as

D−1(p2) = D−1(r2) + 2(q · r)∂D
−1(r2)

∂r2
, (4.4)

and setting q · r = −q · p, we obtain

Gµ(0, r,−r) = 2rµ
∂D−1(r2)

∂r2
, (4.5)

which is, correctly, equivalent to Eq. (3.12). In contrast, if we approach the q = 0 through

a trajectory where q and p are orthogonal, i.e. q · p = 0, the q → 0 limit of Eq. (4.3) is

undefined. This is not acceptable, since the q = 0 limit of the right hand side of the WI

of Eq. (3.10) is path independent.

To reconcile these results, we impose on the Ψ2(q, r, p) of Eq. (4.3) the restriction

lim
q·p→0

[(q · r)Ψ2(q, r, p)] = lim
q·p→0

[
D−1(p2)−D−1(r2)

]
, (4.6)

which eliminates the kinematic divergence. This constraint can be implemented easily be
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defining a new function Ψ2(q, r, p) by

Ψ2(q, r, p) :=
D−1(p2)−D−1(r2)

p2 − r2
+ (q · p)Ψ2(q, r, p) . (4.7)

Indeed, by momentum conservation p2 − r2 = −q · (p− r), which implies

lim
q·p→0

(p2 − r2) = q · r , (4.8)

such that Eq. (4.7) satisfies the constraint of Eq. (4.6) for any Ψ2(q, r, p) that is regular

at q · p→ 0. Then, substituting Eq. (4.7) into Eq. (4.3) yields

Gµ(q, r, p) = (r − p)µ
[D−1(p2)−D−1(r2)]

p2 − r2
+ [(q · p)rµ − (q · r) pµ]Ψ2(q, r, p) . (4.9)

The solution given by Eq. (4.9) is now free of kinematic divergences; there is still the

denominator p2 − r2, which vanishes when p2 = r2, but so does the numerator in this

case, yielding a regular result. In particular, the q = 0 limit of Eq. (4.5) is now path

independent, as required.

Moreover, the Eq. (4.9) is still free of kinematic divergences even if we neglect the un-

determined part, i.e. set Ψ2(q, r, p) = 0. This latter point is key for practical applications

of the Gauge Technique solution of Eq. (4.9). Given that the WI does not allow us to

determine the full tensor structure of the vertex, in practice, we usually need to neglect

the undetermined piece, which we can do safely, at least as far as kinematic divergences

are concerned, if we use Eq. (4.9). In contrast, if the naive solution of Eq. (4.3) was used,

and Ψ2(q, r, p) was set to zero, spurious kinematic divergences would have arisen.

As an overall check, we use the tree level value of the propagator, given in Eq. (3.9),

and set Ψ
(0)

2 (q, r, p) = 0, to obtain indeed the tree-level form of the vertex, given by

Eq. (3.4).

Finally, let us point out that if we had had the foresight of writing the most general

tensor structure of Gµ(q, r, p) as

Gµ(q, r, p) = (r − p)µΨ1(q, r, p) + [(q · p)rµ − (q · r) pµ]Ψ2(q, r, p) , (4.10)

which is also perfectly general, the solution of the WI of Eq. (3.10) would have led directly
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to

Ψ1(q, r, p) =
[D−1(p2)−D−1(r2)]

p2 − r2
. (4.11)

That is, we would have obtained Eq. (4.9) right away. Thus, we see that the appearance of

kinematic divergences to eliminate depends on the tensor basis chosen to begin the Gauge

Technique solution, and clever choices of bases can simplify the analysis considerably.

4.2 Ball-Chiu vertex with dynamical mass generation

Let us now reconsider the BC construction of Gµ(q, r, p) in the presence of massless

bound state excitations as in Eq. (3.25), which must be longitudinally coupled to the

photon momentum.

Evidently, in order for the solution (4.9) for the vertex Gµ(q, r, p) to have a 1/q
2 pole as

in Eq. (3.25), we must relax the condition that Ψ2(q, r, p) is regular. Instead, we substitute

in Eq. (4.9)

Ψ2(q, r, p) → Ψ̃2(q, r, p) = Ψ2(q, r, p) +
Ũ(q, r, p)

q2
, (4.12)

with Ũ(q, r, p) regular, such that we can keep using the symbol Ψ2(q, r, p) for the regular

part of this form factor.

Next, it is straightforward algebra to check the identity

(q · p)rµ − (q · r) pµ =
1

2
qµ(p

2 − r2)− 1

2
q2(r − p)µ . (4.13)

Then, using Eqs. (4.12) and (4.13) into the BC solution (4.9) entails

Gµ(q, r, p) = (r − p)µ

{
[D−1(p2)−D−1(r2)]

p2 − r2
− Ũ(q, r, p)

2

}

+[(q · p)rµ − (q · r) pµ]Ψ2(q, r, p) + qµ
(p2 − r2)Ũ(q, r, p)

2q2
. (4.14)

Comparing the above expression to Eq. (3.25), we can identify

Ũ(q, r, p) =
2U(q, r, p)

(p2 − r2)
, (4.15)
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such that Eq. (4.14) becomes

Gµ(q, r, p) = (r − p)µ
[D−1(p2)−D−1(r2)− U(q, r, p)]

p2 − r2
+ [(q · p)rµ − (q · r) pµ]Ψ2(q, r, p)

+
qµ
q2
U(q, r, p) . (4.16)

Importantly, the pole part in the last term of Eq. (4.16) is longitudinal, as it should.

Moreover, it remains so even if we omit the undetermined form factor Ψ2(q, r, p). Notice

that in the present case, the longitudinality of the pole part ensued without imposing any

additional restriction.

Remarkably, in Eq. (4.16) it is no longer the difference of two inverse propagators that

appears in the (r − p)µ term, as it was in Eq. (4.9), but D−1(p2)−D−1(r2)− U(q, r, p).

When we come to the case of QCD, the analog expression will have the full gluon propa-

gator substituted by its kinetic term, of Eq. (3.32), only!

With Eq. (4.16) at hand, if the scalar propagator D(q2) is known and given that

U(q, r, p) can be computed, in principle, from the massless bound state BSE through

Figs. 3.5 and 3.6, the full vertex Gµ(q, r, p) is determined, up to the “transverse” form

factor, Ψ2(q, r, p).

In the case of the three-gluon vertex of QCD the situation is considerably more com-

plicated, for two main reasons: (i) the tensor structure of
L
αµν(q, p, r) is much richer,

which naturally makes the analysis more difficult; and (ii) the propagator that appears

in the three-gluon vertex STI of Eq. (2.82) is that of the gluon itself. Since the gluons

acquire a dynamical mass through the pole content of the vertex, the analytic structure

of the three-gluon vertex STI is modified on both sides of the equation, whereas in our

make-believe theory of scalar QED only the left hand side, i.e. Gµ(q, r, p), is fundamen-

tally changed when massless bound state excitations are added. The consequence of these

additional complications, as we will see in Section 4.5, is that the longitudinality of the

three-gluon vertex poles within a BC solution with dynamical gluon mass is not auto-

matic as it was found above for scalar QED. Instead, cancellation of transverse vertex

poles in the case of the three-gluon vertex restricts the pole content of its corresponding

undetermined “transverse” part, analogous to Ψ2(q, r, p).

In anticipation of the issues that will arise in the BC solution of the three-gluon vertex,

we will now derive Eq. (4.16) by an alternative method, which is far more suitable for the
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QCD case. The essential feature of this method is that the WI is split into two equations,

one for the regular part of the vertex, and another for its pole term, qµU(q, r, p)/q2, taking

explicit advantage of the longitudinality of the latter.

We begin by splitting the scalar propagator D−1(q2) as

D−1(q2) = D−1
R
(q2) +D−1

P
(q2) , (4.17)

with D−1
R
(q2) and D−1

P
(q2) defined by requiring that the WI of Eq. (3.10) holds for the

regular and pole parts of the vertex in isolation, i.e.

qµGµ(q, r, p) = D−1
R
(p2)−D−1

R
(r2) ,

U(q, r, p) = D−1
P
(p2)−D−1

P
(r2) . (4.18)

Then, we can solve the two STIs of Eq. (4.18) separately.

In the case of scalar QED the second line of Eq. (4.18) already contains the explicit

solution for U(q, r, p). As for Gµ(q, r, p), the first line of Eq. (4.18) is formally identical to

the original WI of the full vertex, just with the substitution of D(q2) for DR(q
2). Moreover,

Gµ(q, r, p) is regular, by assumption. Therefore, the BC solution of Eq. (4.9) is perfectly

valid for Gµ(q, r, p) with D(q2) → DR(q
2), i.e.

Gµ(q, r, p) = (r − p)µ
[D−1

R
(p2)−D−1

R
(r2)]

p2 − r2
+ [(q · p)rµ − (q · r) pµ]Ψ2(q, r, p) . (4.19)

Combining Eq. (4.19) with Eq. (3.25) then yields for the full vertex

Gµ(q, r, p) = (r − p)µ
[D−1

R
(p2)−D−1

R
(r2)]

p2 − r2
+ [(q · p)rµ − (q · r) pµ]Ψ2(q, r, p)

+
qµ
q2
[D−1

P
(p2)−D−1

P
(r2)] . (4.20)

Clearly, the pole term on the last line of Eq. (4.20) is longitudinal. Moreover, using

Eqs. (4.17) and (4.18) we see that

D−1
R
(p2)−D−1

R
(r2) = D−1(p2)−D−1(r2)− U(q, r, p) , (4.21)

which substituted in Eq. (4.20) leads precisely to Eq. (4.16).

At this point, it may seem odd that the pole piece is not written in the same tensor
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basis as the regular part. We can, of course, use again the identity (4.13) to rewrite

Eq. (4.20) for the full vertex in the BC basis. Specifically

Gµ(q, r, p) = (r − p)µΨ̃1(q, r, p) + [(q · p)rµ − (q · r) pµ]Ψ̃2(q, r, p) , (4.22)

where

Ψ̃1(q, r, p) =
[D−1(p2)−D−1(r2)]

p2 − r2
,

Ψ̃2(q, r, p) = Ψ2(q, r, p) +
2[D−1

P
(p2)−D−1

P
(r2)]

q2(p2 − r2)
, (4.23)

Curiously, when the full vertex is written in the BC basis the two pieces of the scalar

propagator recombine in the form factor Ψ̃1(q, r, p) into the full D−1(q2), using Eq. (4.17),

whereas in Ψ̃2(q, r, p) it is the D−1
P
(q2) that appears. Moreover, in this form the pole

structure of the vertex would be missed if we were to omit Ψ̃2(q, r, p) entirely. Instead,

only Ψ2(q, r, p) can be omitted.

A few more clarifications about the solution in Eq. (4.23) are in order.

First, in Eq. (4.23) the pole in q2 appears in Ψ̃2(q, r, p), which accompanies the “trans-

verse” tensor [(q · p)rµ − (q · r) pµ], i.e. qµ[(q · p)rµ − (q · r) pµ] = 0, in Eq. (4.22). Yet, the

pole in the vertex is longitudinal. This is not a contradiction, but a semantic ambiguity.

The key observation is that [(q · p)rµ − (q · r) pµ] is not strictly transverse; it does vanish

when contracted with qµ, but contains qµ contributions nonetheless, as Eq. (4.13) shows.

In fact, the appearance of a pole term in Ψ̃2(q, r, p) is a crucial feature of the full

vertex in the BC basis. As we will see in Section 4.4, the same situation happens in the

three-gluon vertex. The important practical consequence is that only the regular part of

the transverse form factors may be omitted, and it may be better, in fact, to leave the

pole part in a basis that makes its longitudinality explicit.

4.3 Ball-Chiu solution for the three-gluon vertex

We consider then the gauge technique solution for the three-gluon vertex, first con-

structed by Kim and Baker [124], and further analyzed by BC [126]. Importantly, the

original BC construction was devised without considering the possibility of massless bound

state excitations in the three-gluon vertex. Hence, it must be modified to account for the
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pole structure of the full three-gluon vertex of QCD with dynamically generated gluon

mass.

Following the second method presented in the previous section, we separate the vertex
L
αµν(q, r, p) into its regular, Γαµν(q, r, p), and pole, Vαµν(q, r, p), parts and employ the split

STIs of Eqs. (3.33) and (3.34). Since Γαµν(q, r, p) is, by assumption, regular and satisfies

an STI that is formally identical to that of the full vertex, only with the substitution

∆−1(q2) → q2J(q2) [cf. Eqs. (3.33) and (2.82)], the BC solution can be safely applied

to the regular part of the STI. As for the pole vertex, it is better to exploit the strict

longitudinality of its tensor structure in the Gauge Technique solution and we postpone

its treatment to the next section.

In order to solve the STI of Eq. (3.33), we decompose the tensor functions appearing

in it in their most general Lorentz structures. For the ghost-gluon scattering kernel, which

appears on the right hand side of that equation, the most general form is given by

Hνµ(q, p, r) = gµνA1 + qµqνA2 + rµrνA3 + qµrνA4 + rµqνA5 , (4.24)

where the momentum dependence, Ai ≡ Ai(q, p, r), has been suppressed for compactness.

At tree level, only A
(0)
1 = 1 is non-zero. Note that in the Eq. (3.33), Hνµ(q, p, r) appears

contracted with Pν
α(q). As such, only the form factors A1, A3 and A4 can contribute to

the STI.

As for Γαµν(q, r, p), its most general Lorentz structure has 14 independent tensors.

Similarly to the case of scalar QED presented in Section 4.1, the STI of Eq. (3.33) does

not allow us to determine the full vertex, but only its “non-transverse” part, i.e. the part

that does not vanish upon contraction with the momenta qα, rµ and pµ. Specifically, we

can always write Γαµν(q, r, p) as

Γαµν(q, r, p) = Γαµν
STI

(q, r, p) + Γαµν
T

(q, r, p) , (4.25)

with the “transverse” part, Γαµν
T (q, r, p), annihilated by the contractions

qαΓ
αµν
T

(q, r, p) = rµΓ
αµν
T

(q, r, p) = pνΓ
αµν
T

(q, r, p) = 0 . (4.26)

Evidently, the term Γαµν
T (q, r, p) cannot be determined through the STI.
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We shall not reproduce here the lengthy algebra leading to the solution of the STI, and

will go straight to the results of BC [126] instead. A detailed resolution, but in different

notation, is given by Kim and Baker [124]. Nevertheless, it is instructive to count the

number of independent equations that the STI constitutes, since this is what determines

how many of the form factors of the vertex can be computed from the identity.

The left hand side of Eq. (3.33), namely qαΓαµν(q, r, p), is a function of two independent

momenta (one being dependent, since q+p+r = 0) with two free Lorentz indices. Hence,

it has 5 independent tensor structures, similarly to the Hνµ(q, p, r) of Eq. (4.24), yielding

thus 5 equations. Now, the cyclic permutations of Eq. (3.33) also hold, namely

rµΓαµν(q, r, p)=F (r2)[q2J(q2)Pµ
α(q)Hµν(q, r, p)− p2J(p2)Pµ

ν (r)Hµα(p, r, q)] ,

pνΓαµν(q, r, p)=F (p2)[r2J(r2)Pν
µ(r)Hνα(r, p, q)− q2J(q2)Pν

α(q)Hνµ(q, p, r)] , (4.27)

yielding 5 more equations each.

It may seem then that we have 15 equations for 14 tensors. However, not all of

these equations are independent. Instead, as we have seen in Subsection 2.4.3, if we

contract each of the STIs with one more momentum, each pair of identities leads to a

cyclic permutation of the constraint of Eq. (2.88), which involves only the ghost sector

functions, F (q2) and Hνµ(q, p, r), and does not determine form factors of the three-gluon

vertex. Using the tensor decomposition of Eq. (4.24), the constraint (2.88) can be written

in terms of the following ratio

R(q2, p2, r2) :=
F (r2)[A1(q, r, p) + p2A3(q, r, p) + (q · p)A4(q, r, p)]

F (p2)[A1(q, p, r) + r2A3(q, p, r) + (q · r)A4(q, p, r)]
= 1 . (4.28)

Since we can make three pairs of equations by contracting the three STIs with one of the

remaining momenta, there are two other constraints, namely, the Eq. (4.28) with cyclically

permuted arguments. Hence, out of the 15 equations encompassed by the three-gluon

vertex STI 3 are scalar constraints on the ghost sector. It is important to emphasize that

the existence of exact solutions to the STI is conditioned to the constraints of Eq. (4.28)

being satisfied.

Next, of the 12 remaining equations, there is one that appears three times, i.e. with

two redundant repetitions. Specifically, contracting any of the three STIs of Eqs. (3.33)

and (4.27) with the momenta and indices of the two remaining legs yields the exact same
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equation, qαrµpνΓαµν(q, r, p) = 0. Discounting the two redundancies leaves us with 10

independent equations, plus the aforementioned 3 constraints. Therefore, 10 form factors

can be determined from the STI, such that Γαµν
STI (q, r, p) can be parametrized in terms of

10 independent tensor structures, with the remaining 4 assigned to Γαµν
T (q, r, p).

A convenient tensor basis for the three-gluon vertex is that of BC [126]. For the 10

tensor structures of Γαµν
STI (q, r, p), one may write

Γαµν
STI

(q, r, p) =
10∑

i=1

Xi(q, r, p)ℓ
αµν
i , (4.29)

where the tensors ℓαµνi read

ℓαµν1 = (q − r)νgαµ , ℓαµν2 = −pνgαµ , ℓαµν3 = (q − r)ν [qµrα − (q · r)gαµ] ,
ℓαµν4 = (r − p)αgµν , ℓαµν5 = −qαgµν , ℓαµν6 = (r − p)α[rνpµ − (r · p)gµν ] ,
ℓαµν7 = (p− q)µgαν , ℓαµν8 = −rµgαν , ℓαµν9 = (p− q)µ[pαqν − (p · q)gαν ] ,
ℓαµν10 = qνrαpµ + qµrνpα .

(4.30)

As for the transverse part, the Lorentz decomposition is

Γαµν
T

(q, r, p) =
4∑

j=1

Yj(q, r, p)t
αµν
j , (4.31)

where the transverse tensors tαµνj read

tαµν1 =[(q · r)gαµ − qµrα][(r · p)qν − (q · p)rν ] ,

tαµν2 =[(r · p)gµν − rνpµ][(p · q)rα − (r · q)pα] ,

tαµν3 =[(p · q)gνα − pαqν ][(q · r)pµ − (p · r)qµ] ,

t4αµν =gµν [(r · q)pα − (p · q)rα] + gνα[(p · r)qµ − (q · r)pµ] + gαµ[(q · p)rν − (r · p)qν ]

+ rαpµqν − pαqµrν , (4.32)

and clearly vanish if contracted with qα, rµ or pν . Moreover, all the tαµνj → 0 if one of the

momenta q, r or p is set to zero. Comparing the above expressions to the tree-level form
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of the vertex, given in the Appendix A, we see that at tree level

X
(0)
1 (q, r, p) = X

(0)
4 (q, r, p) = X

(0)
7 (q, r, p) = 1 , (4.33)

with all other X
(0)
i = 0 and Y

(0)
j = 0.

A crucial property of the BC basis above is that its tensor structures have simple

transformations under the Bose symmetry exchanges of momenta and corresponding in-

dices. For example, under the simultaneous exchange q ↔ r and α ↔ µ the tensor ℓαµν1

is invariant, while ℓαµν4 ↔ ℓαµν7 . As a result, the form factors Xi and Yj also transform in

a simple fashion. Specifically, many of the Xi and Yj are related by cyclic permutations

of the arguments, namely

X4(q, r, p) = X1(r, p, q) , X7(q, r, p) = X1(p, q, r) ,

X5(q, r, p) = X2(r, p, q) , X8(q, r, p) = X2(p, q, r) ,

X6(q, r, p) = X3(r, p, q) , X9(q, r, p) = X3(p, q, r) ,

Y2(q, r, p) = Y1(r, p, q) , Y3(q, r, p) = Y1(p, q, r) . (4.34)

Moreover, the following transformations are easy to establish

X1(q, r, p) = X1(r, q, p) , X4(q, r, p) = X4(q, p, r) , X7(q, r, p) = X7(p, r, q) ,

X2(q, r, p) = −X2(r, q, p) , X5(q, r, p) = −X5(q, p, r) , X8(q, r, p) = −X8(p, r, q) ,

X3(q, r, p) = X3(r, q, p) , X6(q, r, p) = X6(q, p, r) , X9(q, r, p) = X9(p, r, q) ,

Y1(q, r, p) = Y1(r, q, p) , Y2(q, r, p) = Y2(q, p, r) , Y3(q, r, p) = Y3(p, r, q) ,

(4.35)

whereas X10(q, r, p) is anti-symmetric under the exchange of any two of its arguments and

Y4(q, r, p) is totally symmetric.

From Eq. (4.34), we see that only the form factors Xi for i = 1, 2, 3, 10 and the Yj

for j = 1, 4 need to be computed, the remaining ones being obtained by permuting the

arguments.

Accordingly to the above observation, we only need to state the solution for the form

factors Xi for i = 1, 2, 3, 10, with the Yj undetermined by the STIs, and the remaining
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Xi given by Eq. (4.34). Then, the BC solution may be written as [126]

X1(q, r, p) =
1

4
[2(apqr + aprq) + p2(bqrp + brqp) + 2( q · p dprq + r · p dpqr)

+ (q2 − r2)(brpq + bpqr − bqpr − bprq)] ,

X2(q, r, p) =
1

4
[2(aprq − apqr)− (q2 − r2)(bqrp + brqp) + 2( q · p dprq − r · p dpqr)

+ p2(bprq − bpqr + bqpr − brpq)] ,

X3(q, r, p) =
1

q2 − r2
[arpq − aqpr + r · p dqpr − q · p drpq] ,

X10(q, r, p) = −1

2
[bqrp + brpq + bpqr − bqpr − brqp − bprq] , (4.36)

where we employ the compact notation

aqrp ≡F (r)J(p)A1(p, r, q) ,

bqrp ≡F (r)J(p)A3(p, r, q) ,

dqrp ≡F (r)J(p)[A4(p, r, q)− A3(p, r, q)] , (4.37)

and emphasize that Eq. (4.36) solves the STIs of Eqs. (3.33) and (4.27) as long as the

constraint of Eq. (4.28) and its cyclic permutations are satisfied.

At this point it is easy to check that the BC solution satisfies automatically the ex-

change relations of Eq. (4.35). Moreover, Eq. (4.36) is clearly free of kinematic diver-

gences; the only non-constant denominator that appears in the solution, namely q2 − r2,

only vanishes when the numerator is also zero, yielding regular results.

Because Eq. (4.36) is Bose symmetric and free of kinematic divergences automatically,

independently of the Yi or the truncations used to evaluate F (q2) and Hνµ(q, p, r), it is

rather suitable for approximations, including neglecting the Yi, at least as far as these

fundamental properties are concerned.

A particularly useful approximation consists of setting the ghost sector functions ap-

pearing in Eq. (4.36) to tree level, i.e. F (q) → 1, A1 → 1 and A3, A4 → 0. In this case,

the form factors reduce to the “Abelianized” forms, denoted by X̂i(q, r, p),

X̂1(q, r, p) =
1

2
[J(r) + J(q)] , X̂3(q, r, p) =

[J(q)− J(r)]

q2 − r2
,

X̂2(q, r, p) =
1

2
[J(q)− J(r)] . X̂10(q, r, p) = 0 . (4.38)
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As it turns out, Eq. (4.38) is formally identical to performing a BC construction for an

analog of the three-gluon vertex with three “background” gluons, which satisfies Abelian-

like WI [127, 162, 189, 190], i.e. with no ghost sector functions. In fact, the only difference

between Eq. (4.38) and the alluded background three-gluon vertex, is that in the later

it is J(q)[1 + G(q)]−2, rather than J(q2), that appears, where 1 + G(q) is a fundamental

function of the PT-BFM formalism and has been studied extensively [30, 146, 147, 166,

170, 191].

Before long, let us point out that Eq. (4.36) holds for unrenormalized as well as renor-

malized ingredients, provided that a gauge invariant regularization scheme is employed. If

we use for the J(q2), F (q2) and Ai(q, r, p) data or expressions renormalized in some cho-

sen scheme, the Xi(q, r, p) obtained from Eq. (4.36) will be automatically consistent with

that choice, i.e. Eq. (2.91) will be satisfied. Then, if one wants the Xi(q, r, p) evaluated

in a different renormalization scheme, a finite renormalization of the ingredients will be

required. For example, if we set q, r and p in the symmetric configuration of Eq. (B.5),

there is no reason to expect that the Eq. (4.36) will yield X1(−µ2) = 1 in general. If one

wishes to transform to the scheme where X1(−µ2) = 1 by definition, it suffices to multiply

all the Xi (and Yj, if available) by the finite renormalization constant z3 = 1/X1(−µ2)

[see Section B.4 for concrete examples in perturbation theory].

4.4 The Gauge Technique solution of the pole vertex

Let us now solve the STI of Eq. (3.34) and its cyclic permutations. By virtue of the

strictly longitudinal tensor structure of Vαµν , given in Eq. (3.30), the Eq. (3.34) has a

unique solution, which can be obtained with relatively simple algebra [182].

We begin by noticing that the longitudinality condition of Eq. (3.31) can be written

as [182, 192]

Vαµν(q, r, p) =
[
gβαg

ρ
µg

σ
ν − Pβ

α(q)P
ρ
µ(r)P

σ
ν (p)

]
Vβρσ(q, r, p)

=

(
qαq

βgρµg
σ
ν

q2
+
rµr

ρgβαg
σ
ν

r2
+
pνp

σgβαg
ρ
µ

p2
− qαq

βrµr
ρgσν

q2r2
−
qαq

βpνp
σgρµ

q2p2

−
rµr

ρpνp
σgαβ

r2p2
+
qαq

βrµr
ρpνp

σ

q2r2p2

)
Vβρσ(q, r, p) , (4.39)

by simply expanding Pβ
α(q)P

ρ
µ(r)P

σ
ν (p). Separating from Eq. (4.39) the terms that con-
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tribute to each of the tensor structures in Eq. (3.30), we see that

Rµν(q, r, p) =

(
qβgρµg

σν − rµ
2r2

qβrρgσν − pν
2p2

qβpσgρµ +
rµpν
3r2p2

qβrρpσ
)
Vβρσ(q, r, p) , (4.40)

where the factor of 1/2 in the second term appears because qαrµ contributes to both

qαRµν(q, r, p) and rµSαν(q, r, p). Similarly, it is easy to confirm the presence of the factors

of 1/2 and 1/3 in the third and fourth terms, respectively.

Now, each of the contractions appearing in Eq. (4.40) can be evaluated by contracting

the STI of Eq. (3.34) (or its cyclic permutations) with the appropriate momenta. In

particular, the last term of that equation clearly vanishes. One thus obtains [4]

Rµν(q, r, p) =
F (q2)

2

{
m2(r2)Pρ

µ(r) [g
σ
ν + Pσ

ν (p)]Hρσ(r, q, p)

−m2(p2)Pρ
ν(p)

[
gσµ + Pσ

µ(r)
]
Hρσ(p, q, r)

}
. (4.41)

Naturally, repeating the same procedure for the cyclic permutations of Eq. (3.34) leads to

Sαν(q, r, p) =
F (r2)

2

{
m2(p2)Pρ

ν(p) [g
σ
α + Pσ

α(q)]Hρσ(p, r, q)

−m2(q2)Pρ
α(q) [g

σ
ν + Pσ

ν (p)]Hρσ(q, r, p)
}
,

Tαµ(q, r, p) =
F (p2)

2

{
m2(q2)Pρ

α(q)
[
gσµ + Pσ

µ(r)
]
Hρσ(q, p, r)

−m2(r2)Pρ
µ(r) [g

σ
α + Pσ

α(q)]Hρσ(r, p, q)
}
. (4.42)

It remains to verify that the solution in Eqs. (4.41) and (4.42) is Bose symmetric, i.e.

that the Vαµν(q, r, p) so constructed is anti-symmetric under the simultaneous exchange

of a pair of momenta and indices.

Let us consider the exchange q, α ↔ r, µ. It is immediate to see that Tαµ(q, r, p) is

anti-symmetric. Next, we show that the combination

(
qα
q2

)
Rµν(q, r, p) +

(rµ
r2

)
Sαν(q, r, p) , (4.43)

appearing in the full tensor structure of Vαµν(q, r, p) of Eq. (3.30), is also anti-symmetric.

To this end, note that the solution in Eqs. (4.41) and (4.42) for the functions Rαµν(q, r, p)
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and Sαµν(q, r, p) can be rewritten, with few algebraic rearrangements, as

(
qα
q2

)
Rµν(q, r, p) =

(
qα
q2

)
F (q2)

2

{
m2(r2)Pρ

µ(r) [g
σ
ν + Pσ

ν (p)]Hρσ(r, q, p)

−2m2(p2)Pρ
ν(p)Hρµ(p, q, r)

}

+

(
qαrµ
q2r2

)
m2(p2)rσPρ

ν(p)Hρσ(p, q, r) , (4.44)

(rµ
r2

)
Sαν(q, r, p) =

(rµ
r2

) F (r2)
2

{
−m2(q2)Pρ

α(q) [g
σ
ν + Pσ

ν (p)]Hρσ(q, r, p)

+2m2(p2)Pρ
ν(p)Hρα(p, r, q)

}

−
(
qαrµ
q2r2

)
m2(p2)qσPρ

ν(p)Hρσ(p, r, q) . (4.45)

At this point, it is clear that exchanging q, α ↔ r, µ the first two lines of Eq. (4.44)

transform to minus the first two lines of Eq. (4.45) and vice versa. That the third line of

each of the above equations also transform into minus the other is a result of the ghost

sector constraint, written in the form of Eq. (2.87). Notice that this constraint does not

involve the three-gluon vertex, and hence, is not modified by splitting the STI into regular

and pole parts. Thus, it follows that

(
qα
q2

)
Rµν(q, r, p) ↔ −

(rµ
r2

)
Sαν(q, r, p) , (4.46)

under the exchange q, α ↔ r, µ, which guarantees that Vαµν(q, r, p) = −Vµαν(r, q, p).
Identical arguments can be used to show that Vαµν(q, r, p) is anti-symmetric under the

exchange of any other pair of momenta and indices. Hence, the solution in Eqs. (4.41)

and (4.42) yields a Bose symmetric Vαµν(q, r, p).

Evidently, the solution in Eqs. (4.41) and (4.42) can be written in the BC basis of

Eqs. (4.29) and (4.31), if one so wishes, which can be achieved by contracting Vαµν(q, r, p)

with the projectors given in Section C.2. The resulting expressions with dressed ghost

sector are long and we will not use in this work. It will suffice to state the solution in

the Abelianized approximation, where we set to tree level the ghost sector functions in

Eqs. (4.41) and (4.42), i.e. F (q2) → 1 and Hνµ(q, p, r) → gνµ. Denoting by X̂V
i (q, r, p)
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and Ŷ V
j (q, r, p) the Abelianized form factors of Vαµν(q, r, p) in the BC basis, we have

X̂V
1 (q, r, p) = −m

2(q2)

2q2
− m2(r2)

2r2
, X̂V

2 (q, r, p) =
1

2

(
m2(r2)

r2
− m2(q2)

q2

)
,

X̂V
3 (q, r, p) =

q2m2(r2)− r2m2(q2)

q2r2 (q2 − r2)
, X̂V

10(q, r, p) = 0 ,

Ŷ V
1 (q, r, p) =

q2[−m2(p2) +m2(q2)−m2(r2)] + r2[m2(p2) +m2(q2)−m2(r2)]

p2q2r2 (q2 − r2)
,

Ŷ V
4 (q, r, p) =

q.r[−m2(p2) +m2(q2) +m2(r2)] + q2m2(r2) + r2m2(q2)

p2q2r2
, (4.47)

with the remaining X̂V
i (q, r, p) and Ŷ

V
j (q, r, p) given by cyclically permuting the indices,

as in Eq. (4.34).

Of fundamental importance in Eq. (4.47) is the fact that the Ŷ V
j (q, r, p) do not vanish,

in spite of them being associated to “transverse” tensor structures and the massless bound

state poles being longitudinal. As in Section 4.2, the resolution to this apparent paradox

is in the semantics of the term “transverse”, as applied to the tαµνj tensors of Eq. (4.32).

While these tensors vanish if contracted with qα, rµ or pν , they do contain contributions

proportional to these momenta, and hence contribute to Vαµν(q, r, p).

In fact, it is straightforward to check that if the Ŷ V
j (q, r, p) are neglected in Vαµν , i.e.

if we assume

Vαµν(q, r, p) → V ℓ
αµν(q, r, p) :=

10∑

i=1

X̂V
i (q, r, p)ℓ

αµν
i , (4.48)

and use Eq. (4.47), then the longitudinality of Vαµν(q, r, p) is lost, i.e.

Pα
β(q)P

µ
ρ(r)P

ν
σ(p)V

ℓ
αµν(q, r, p) 6= 0 . (4.49)

Hence, casually neglecting the Ŷ V
j (q, r, p) causes the pole part of the vertex to develop

spurious poles that are not longitudinally coupled. Instead, when the full tensor structure

is preserved, including the transverse pieces, then Pα
β(q)P

µ
ρ(r)P

ν
σ(p)Vαµν(q, r, p) = 0 as it

should.

4.5 Naive BC construction and its problems

We conclude this discussion by considering what would we have obtained had we used

the BC solution directly for the full vertex, in the presence of a dynamically massive

gluon propagator, without care about the longitudinality of the mass-generating poles of
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Vαµν(q, r, p). For simplicity, we focus on the Abelianized case, of Eq. (4.38), which already

captures the properties we wish to emphasize at the moment.

It is important to keep in mind that since the pole part Vαµν(q, p, r) is longitudinally

coupled, it should not appear in fully transverse projections of the three-gluon vertex. In

particular, Vαµν(q, p, r) cannot be directly probed in lattice simulations in Landau gauge,

which can only evaluate projections of the vertex that are fully transverse [7, 44–46, 48,

49], since the field theoretic quantities that the lattice evaluates are the connected Green’s

functions. Specifically, the lattice observable for the three-gluon vertex is the connected

function defined in Eq. (2.37), which has the vertex contracted with three gluon propa-

gators, which are transverse in Landau gauge. Consequently, lattice results for the three-

gluon vertex should not contain poles. Yet, as we will now show, a naive application of the

Gauge Technique leads to the appearance of spurious poles in the transversely projected

vertex, which are eliminated on proper account of the longitudinality of Vαµν(q, p, r).

To begin, it is clear that if we apply the BC construction to the complete STI of

Eq. (2.82), including pole part, we obtain results formally identical to Eq. (4.36), except

that J(q2) is substituted by ∆−1(q2)/q2. Importantly, J(q2) and ∆−1(q2)/q2 have com-

pletely different behaviors near q2 = 0 in the presence of a gluon mass; J(q2) is only

logarithmically divergent [see Eq. (3.39)], whereas ∆−1(q2)/q2 ∼ −m2(0)/q2, i.e. it be-

haves as a pole near q2 = 0. Let us see how these different analytic behaviors manifest in

a totally transverse projection of the three-gluon vertex.

Consider the totally symmetric kinematic configuration, defined in Eq. (B.5), and the

most general tensor structure of the three-gluon vertex in this limit, given in Eq. (B.24).

Contracting the latter equation with three transverse projectors and denoting

L
αµν(q, r, p) := Pβ

α(q)P
ρ
µ(r)P

σ
ν (p)

L
βρσ(q, r, p) , (4.50)

we obtain

L
βρσ(q, r, p) = Lsym(Q2)

L(0)

αµν(q, r, p)− T sym(Q2)(r − p)α(p− q)µ(q − r)ν , (4.51)

where Lsym(Q2) is defined in Eq. (B.24), and

T sym(Q2) :=
3

4
X3(Q

2) +
3Q2

8
Y1(Q

2)− 1

4
Y4(Q

2) . (4.52)
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Let us concentrate on the form factor Lsym(Q2), which has already been simulated on

the lattice [44, 45]. Its tree level, Lsym(Q2) = 1, is obtained by setting the Xi and Yi to

their tree levels.

Now, let us denote by double struck letters, e.g. Xi, the results for the form factors

as obtained with the direct application of the BC construction to the full vertex, and a

caret to denote the Abelianized approximation, where ghost sector functions are set to

their tree level values. Substituting J(q2) → ∆−1(q2)/q2 into Eq. (4.38), we have

X̂1(Q
2) =

∆−1(Q2)

Q2
, X̂3(Q

2) =
1

Q2

d∆−1(Q2)

dQ2
− ∆−1(Q2)

Q4
, (4.53)

where we made use of the fact that the expression for X̂3(q, r, p) in Eq. (4.38) becomes a

derivative in the symmetric limit, where, in particular, q2 = r2. Hence, in the Abelianized

approximation

L̂
sym(Q2) =

1

2

[
∆−1(Q2)

Q2
+
d∆−1(Q2)

dQ2

]
+
Q4

4
Ŷ1(Q

2) +
Q2

2
Ŷ4(Q

2) . (4.54)

Given that L̂
sym(Q2) is a transverse projection of the three-gluon vertex, it should

not contain poles, since these are assumed to be longitudinally coupled. Nonetheless,

the first term on the right hand side of Eq. (4.54) is a pole if the gluon propagator is

massive. Hence, there must be some other pole in the remaining terms to cancel that of

the first. Next, as we have seen in Section 3.5, the derivative of the gluon propagator

is only logarithmically divergent, such that the pole in Eq. (4.54) cannot be canceled

by d∆−1(Q2)/dQ2. As such, the pole in ∆−1(Q2)/Q2 can only be canceled by the Ŷi.

Specifically,

lim
Q2→0

[
∆−1(Q2)

Q2
− Q4

2
Ŷ1(Q

2)−Q2
Ŷ4(Q

2)

]
= 0 . (4.55)

Therefore, in order to guarantee the longitudinality of the poles of the full vertex, we must

split the Ŷj(Q
2) into

Ŷj(Q
2) = Ŷ P

j (Q2) + Ŷj(Q
2) , (4.56)

with Ŷj(Q
2) undetermined, but regular, and the Ŷ P

j (Q2) containing poles in Q2 satisfying

lim
Q2→0

[
∆−1(Q2)

Q2
− Q4

2
Ŷ P
1 (Q2)−Q2Ŷ P

4 (Q2)

]
= 0 . (4.57)
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At this point, we look back to the solution of the pole part of the vertex in Eq. (4.47),

for comparison. Taking the symmetric limit of the Ŷ V
j (q, r, p) yields

Ŷ V
1 (Q2) = −m

2(Q2)

Q6
+

2

Q4

dm2(Q2)

dQ2
, Ŷ V

4 (q, r, p)
3m2(Q2)

2Q4
, (4.58)

such that
Q4

2
Ŷ V
1 (Q2) +Q2Ŷ V

4 (Q2) =
m2(Q2)

Q2
+
dm2(Q2)

dQ2
. (4.59)

It should not come as a surprise, at this stage of the discussion, that Eq. (4.59) has exactly

the right pole structure to satisfy Eq. (4.55), since ∆−1(0) = −m2(0), and eliminate the

pole in Eq. (4.54). Therefore, we can choose Ŷ P
j (Q2) = Ŷ V

j (Q2) in Eq. (4.56). Using this

splitting, Eq. (4.54) becomes

L̂
sym(Q2) =

1

2

[
∆−1(Q2)

Q2
+
d∆−1(Q2)

dQ2

]
+
Q4

4
[Ŷ1(Q

2) + Ŷ V
1 (Q2)] +

Q2

2
[Ŷ4(Q

2) + Ŷ V
4 (Q2)] ,

(4.60)

with Ŷj(Q
2) undetermined. Then, using the explicit expression of Eq. (4.59), and that

∆−1(Q2) = Q2J(Q2)−m2(Q2), we obtain the final form of L̂sym(Q2),

L̂
sym(Q2) = J(Q2) +

Q2

2

J(Q2)

dQ2
+
Q4

4
Ŷ1(Q

2) +
Q2

2
Ŷ4(Q

2) , (4.61)

which is manifestly free of poles, and we can drop the double striking of L̂sym(Q2) alto-

gether, since Eq. (4.61) makes no explicit reference to the gluon mass.

The point we wish to emphasize, from the above discussion, is that if we had applied

the BC construction directly to the full vertex, we would not have been able to neglect

the undetermined “transverse” parts, Ŷj in Eq. (4.54), right away. Instead, we have to

first impose Eq. (4.55), in order to be consistent with the longitundinality of the massless

bound state poles, and only after reaching Eq. (4.61) could the undetermined terms be

omitted1.

In contrast, if we use the modified BC construction of Sections 4.3 and 4.4, which takes

advantage of the longitudinality of the pole part Vαµν(q, r, p) from the onset, the result

(4.61) is obtained right away. Indeed, since Vαµν(q, r, p) is strictly longitudinal, it does

not contribute to Lsym(Q2). Then, using the solution of the regular part of the vertex,

1See also Section VII of [4] for a distinct, but equivalent, treatment of the cancellation of poles in
Lsym(Q2) by the pole content of the Yi.
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Eq. (4.38), into Eq. (B.24) leads directly to Eq. (4.61), without a posteriori rearrangements

as we had to do in Eq. (4.54).

Clearly, the approach of splitting the STI into Eqs. (3.33) and (3.34), applying the

usual BC construction only for the regular part and taking advantage of the explicit

longitudinality of Vαµν(q, r, p), leads to the correct result more expeditiously and elegantly.

Finally, we explore the numerical impact of the proper elimination of the poles. Let

us consider two approximations to Lsym(Q2), in both of which we neglect the transverse

terms Yi. The first approximation, which we will call “naively Abelianized”, consists of

Eq. (4.54) with the Ŷi set to zero, i.e.

Lsym
NA

(Q2) :=
zNA

3

2

[
∆−1(Q2)

Q2
+
d∆−1(Q2)

dQ2

]
, (4.62)

with zNA

3 a finite renormalization constant, determined by imposing the renormalization

condition

Lsym
NA

(µ2) = 1 , (4.63)

at a scale µ2, usually employed on the lattice [44, 45]. The second truncation, to be

referred to as “properly Abelianized”, is obtained from the solution of the regular part of

the split STI in the Abelianized approximation, i.e. Eq. (B.24) with the Xi of Eq. (4.38)

and the Yj set to zero. Specifically,

Lsym
A

(Q2) := zA

3

[
J(Q2) +

Q2

2

dJ(Q2)

dQ2

]
, (4.64)

with zA

3 determined by the renormalization condition

Lsym
A

(µ2) = 1 . (4.65)

For the numerical analysis, Eqs. (4.62) and (4.64) must be understood as written in

Euclidean space, and µ is chosen at 4.3 GeV. As for the ingredients J(Q2) and ∆(Q2), we

use the Ansatz of Eqs. (3.51), (3.50) and (3.42).

The results of Eqs. (4.62) and (4.64) are compared to the lattice data for Lsym(Q2)

of Ref. [44, 45] in Fig. 4.1. It is clear from that figure that the qualitative behavior of

the naively Abelianized vertex is disfavored by the lattice results, which has no sign of

pole divergence, whereas the properly Abelianized model of Eq. (4.64) is in qualitative
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agreement with the lattice. At the quantitative level, the agreement is still unsatisfactory;

however, as we shall see in Chapter 6, quantitative agreement is obtained with the BC

construction when the ghost sector contributions are duly taken into account. This will

have to wait for the nonperturbative determination of the ghost-gluon scattering kernel,

which is the subject of the next chapter.
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Figure 4.1: Form factor Lsym(Q2) of the transversely projected three-gluon vertex of
Eq. (4.51). The circles represent the lattice results of [44, 45], with different colors for
each lattice setup therein. The blue continuous curve represents the naive and properly
Abelianized approximations of Eqs. (4.62) and (4.64), respectively.

In any case, Fig. 4.1 demonstrates quite clearly that the proper handling of the longi-

tudinal poles is necessary in a Gauge Technique Ansatz for the three-gluon vertex in the

presence of dynamical gluon mass generation through the Schwinger mechanism.

Lastly, one could posit that the IR finiteness of the gluon propagator is a result of

some mechanism other than the presence of massless bound state excitations described in

Chapter 3. In this case, the poles induced in the three-gluon vertex by the IR finiteness

of ∆−1(Q2)/Q2 might not be longitudinal, and could have appeared in the lattice results

for Lsym(Q2). As such, the absence of a pole behavior in the lattice data shown in Fig. 4.1

constitutes an evidence that the poles of the three-gluon vertex are indeed longitudinal,

and hence, strengthen the case for the realization of the Schwinger mechanism in QCD.
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5

The nonperturbative ghost-gluon

scattering kernel

In order to compute the three-gluon vertex through the BC solution of the previ-

ous chapter [see Eq. (4.36)], the most complex nonpertubative ingredient is the ghost-

gluon scattering kernel, Hνµ(q, p, r). Besides being an ingredient in the determination of

Γαµν(q, r, p), the scattering kernel is related to the ghost-gluon vertex through Eq. (2.45),

which is another fundamental vertex of QCD appearing in the SDEs of several Green’s

functions, including the gluon and ghost propagators [see Figs. 3.2 and 3.11]. As such,

Hνµ(q, p, r) is a central object of the ghost sector of QCD.

In this chapter we focus on the nonperturbative determination of the Landau gauge

ghost-gluon scattering kernel through its SDE truncated at the one-loop dressed level. We

begin by reviewing some exact special properties of Hνµ(q, p, r) valid in the Landau gauge,

namely, the ghost-anti-ghost symmetry, the Taylor theorem and the UV finiteness of this

Green’s function, in Section 5.1. Then, in Section 5.2 we discuss some general aspects

of the one loop dressed truncation for the SDE governing Hνµ(q, p, r), following with a

more detailed presentation of the approximations used for the inputs of that equation in

Section 5.3. In Section 5.4 we present our numerical results for Hνµ(q, p, r) in general

Euclidean kinematics, paying special attention to the IR divergences found for its form

factors. Moreover, we show that dressing the three-gluon vertex in the calculation of

Hνµ(q, p, r) tends to suppress the magnitude of its form factors. Then, in Section 5.5 we

use our results to calculate also the form factors of the ghost-gluon vertex, Γµ(q, p, r),

for which there is more extensive literature [43, 51, 55, 58, 60, 73, 118, 180, 193–197] to

compare our results to. In that section, we find a general agreement between our results
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and those of earlier studies. Finally, in Section 5.6 we show that the STI constraint over

the ghost sector, given by Eq. (4.28), is violated as a consequence of truncation. We

perform a quantitative comparison of the violation of the STI constraint for two different

approximations of Hνµ(q, p, r), allowing us to distinguish the truncation that minimizes

this problem in the IR.

5.1 Properties of the Landau gauge Hνµ(q, p, r)

In the Landau gauge, due to the transversality of the gluon propagator, the ghost-

gluon scattering kernel and vertex display some additional symmetries, which we can use

to guide and simplify the truncation of their SDEs. Let us take a moment to review these

Landau gauge special properties.

5.1.1 Ghost-anti-ghost symmetry

The ghost-gluon vertex, Γµ(q, p, r), defined in Eq. (2.39), has for its most general

Lorentz structure

Γµ(q, p, r) = B1(q, p, r)qµ +B2(q, p, r)rµ . (5.1)

Comparing Eq. (5.1) to the Feynman rule of Fig. A.2, we see that at tree level these

form factors reduce to B
(0)
1 (q, p, r) = 1 and B

(0)
2 (q, p, r) = 0. Note also that combining

Eq. (2.45) with Eqs. (4.24) and (5.1) allows us to relate the Bi to the form factors of

Hνµ(q, p, r). Specifically,

B1(q, p, r) = A1(q, p, r) + q2A2(q, p, r) + (q · r)A4(q, p, r) ;

B2(q, p, r) = (q · r)A3(q, p, r) + q2A5(q, p, r) . (5.2)

In the Landau gauge the form factor B1(q, p, r), and only this form factor, is invariant

under the exchange of the ghost and the anti-ghost momenta [15, 180], i.e.

B1(q, p, r) = B1(p, q, r) . (5.3)

We will refer to this invariance as “ghost-anti-ghost symmetry”.

We present here the proof of Eq. (5.3) given in [180]. We start with the SDE for the
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ghost propagator, shown in Fig. 3.11, which reads

D−1(q) = −iq2 − g2CA

∫

k

∆µν(k)D(q + k)(q + k)νΓµ(−q, q + k,−k) . (5.4)

Since in the Landau gauge kµ∆
µν(k) = kν∆

µν(k) = 0, using the Lorentz decomposition

(5.1) into Eq. (5.4) leads to

D−1(q) = −iq2 + g2CAqµqν

∫

k

∆µν(k)D(q + k)B1(−q, q + k,−k) , (5.5)

i.e. only the form factor B1 contributes to the ghost SDE.

As discussed in detail in [198] the SDEs for 1PI functions always have one of the exter-

nal legs with a bare vertex, to avoid overcounting of diagrammatic corrections. Moreover,

one can derive different SDEs for the same Green’s function, with each of the external

legs containing the bare vertex [198]. In the case of the ghost propagator, the SDE shown

in Fig. 5.1 is also valid, and differs from that of Fig. 3.11 only by the placing of the bare

vertex.

)−1 =
q

a b

( )−1 −
q

a b

(
q + k

k

a b

qq

µν

Figure 5.1: Alternative SDE for the ghost propagator, with the bare vertex on the right
leg [cf. Fig. 3.11].

Writing down the SDE of Fig. 5.1 and using the transversality of the Landau gauge

∆µν(k) furnishes

D−1(q) = −iq2 + g2CAqµqν

∫

k

∆µν(k)D(q + k)B1(−q − k, q, k) . (5.6)

Then, equating (5.5) and (5.6) requires

B1(−q, q + k,−k) = B1(−q − k, q, k) . (5.7)

Finally, since B1 is a Lorentz scalar, it is unchanged if we flip the signs of all its

momenta. Hence, Eq. (5.7) is equivalent to Eq. (5.3).
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5.1.2 Taylor theorem

We consider now the most important property of the Landau gauge Hνµ(q, p, r), known

as the Taylor theorem [39].

Habc
νµ (q, p, r) =

r
c, µ

p

b

ν

q

a
+

r

p

c, µ

b

q

a ρ σ

ℓ

ℓ+ p

Figure 5.2: Compact representation for the SDE of the ghost-gluon scattering kernel,
Hνµ(q, p, r), with the bare vertex on the ghost leg [cf. Fig. 2.3]. The black oval is not 1PI.

Similarly to the argument in the previous section, we can write the SDE of Fig. 2.3,

for the ghost-gluon scattering kernel, with the bare vertex on the ghost leg, as shown

compactly in Fig. 5.2. Then we can write

Hνµ(q, p, r) = gµν +

∫

ℓ

(p+ ℓ)ρ∆
ρσ(ℓ)D(p+ ℓ)Kνµσ(q, r,−ℓ, p+ ℓ) , (5.8)

for some four-point kernel Kνµσ(q, r,−ℓ, p+ ℓ) whose decomposition into 1PI functions is

unimportant for the present discussion. Now, in the Landau gauge the transversality of

the gluon propagator implies (p+ ℓ)ρ∆
ρσ(ℓ) = pρ∆

ρσ(ℓ), such that

Hνµ(q, p, r) = gµν + pρKνµρ(q, p, r) , (5.9)

with

Kνµρ(q, p, r) :=

∫

ℓ

∆σ
ρ(ℓ)D(p+ ℓ)Kνµσ(q, r,−ℓ, p+ ℓ) . (5.10)

Finally, setting p = 0 in Eq. (5.9), we obtain

Hνµ(q, 0,−q) = gµν , (5.11)

i.e. the ghost-gluon scattering kernel reduces to its tree level in the soft ghost limit (p = 0)

in the Landau gauge. This result is what we call the Taylor theorem [39].
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Now, using Eq. (2.45) to relate Hνµ(q, p, r) to the ghost-gluon vertex, we see that

Γµ(q, 0,−q) = qµ . (5.12)

Comparing Eq. (5.12) to the Lorentz decomposition of Γµ, given by Eq. (5.1), we find

that in the soft ghost configuration,

B1(q, 0,−1)− B2(q, 0,−q) = 1 . (5.13)

It is important to emphasize that the form factors B1(q, p, r) and B2(q, p, r) do not reduce

individually to their tree levels, only the combination in Eq. (5.13) does. Similarly, the

Ai(q, p, r) do not reduce to tree level individually in the soft ghost configuration, but

satisfy

A1(q, 0,−q) = 1 ; A2(q, 0,−q)+A3(q, 0,−q)−A4(q, 0,−q)−A5(q, 0,−q) = 0 . (5.14)

5.1.3 Renormalization

The Taylor theorem explained in the previous subsection has a crucial consequence for

the renormalization of the ghost-gluon vertex and scattering kernel. Specifically, since the

UV poles of Green’s functions are independent of the external momenta and Eq. (5.11)

is manifestly finite, then Hνµ(q, p, r) has to be UV finite in Landau gauge [39], in all

kinematic configurations. Evidently, by Eq. (2.45), the ghost-gluon vertex must be UV

finite as well.

Now, Eq. (5.12) is to be understood as unrenormalized, even though its subscript “U”

has been omitted for compactness. Renormalizing it according to Eq. (2.90) we obtain

for the renormalized vertex

Γµ(q, 0,−q) = Z1 qµ , (5.15)

and Z1 must be finite, since so is Γµ(q, 0,−q). In particular, if we choose as renormalization

condition for the vertex that Γµ(q, 0,−q) reduces to tree-level, then it follows that

Z1 = 1 . (5.16)

This choice of renormalization scheme is referred to as the “Taylor scheme” [4, 199, 200]
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throughout this work. Clearly, the renormalized Hνµ(q, p, r) also reduces to its tree level,

that is Hνµ(q, 0,−q) = gµν , in the Taylor scheme [3].

The above Eq. (5.16), sometimes called the “non-renormalization” theorem [179, 188,

199, 201], implies that the SDEs for the ghost-gluon scattering kernel and vertex can be

multiplicatively renormalized in practice [3, 179, 180, 188, 198], even with truncations.

In fact, the UV finiteness of the Landau gauge Γµ allows the ghost propagator SDE of

Eq. (5.5) to also be renormalized multiplicatively in practice [179, 180, 198]. In contrast,

the implementation of multiplicative renormalization in general truncated SDEs is an ex-

tremely difficult problem [106, 108, 202, 203], and usually prompts the use of additional

approximations [2, 6, 25, 109, 204]. Moreover, the Taylor theorem allows the definition

of an effective charge depending only on the propagators [144, 179, 188]. These simplifi-

cations regarding renormalization, enabled by the Taylor theorem, are among the many

reasons why the Landau gauge is a favorite in SDE analyses. In particular, the Taylor

scheme of Eq. (5.16) has been extensively employed in the SDE literature [3, 8, 179, 180,

188, 194, 198].

5.2 Truncation of the SDE for Hνµ(q, p, r)

Our starting point for the nonperturbative determination of the ghost-gluon scattering

kernel is its SDE of Fig. 2.3. We begin its treatment by assuming that the 1PI four-point

function appearing in diagram (d3)µν of Fig. 2.3 is subleading, as indicated by recent

numerical studies [59, 205], and omit that diagram entirely.

Next, for the three-gluon vertex appearing in diagram (d1)νµ we keep only its regular

part, Γαµν . Because the pole part Vαµν is longitudinally coupled and the Landau gauge

∆µν(q) is transverse, it is easy to see that the pole part would not contribute to the form

factors A1, A2 and A4. Hence, neglecting the pole part is only an additional approximation

for the form factors A3 and A5. In any case, if the pole structure of the three-gluon

vertex was kept, it would induce poles in Hνµ(q, p, r) which would also be longitudinal

to the gluon momentum, and might contribute to the gluon mass. Nevertheless, there is

numerical evidence that the contribution of poles in the ghost-gluon sector to the gluon

mass is subleading [62].

With the above approximations, the so-called one-loop dressed truncation, the ghost-

gluon scattering kernel SDE of Fig. 2.3 is substituted by Fig. 5.3. Specifically, with the
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Habc
νµ (q, p, r) =

(d1)νµ

p
+

r
c, µ

b

q
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q
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p
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c, µ

+

(d2)νµ

q
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c, µ

ℓ

ℓ

Figure 5.3: One loop dressed truncation of the ghost-gluon scattering kernel SDE. The
red circle represents the regular part of the three-gluon vertex, as in Fig. 3.7.

momentum routing indicated in that figure, we have

Hνµ(q, p, r) = gνµ + (d1)νµ + (d2)νµ , (5.17)

with

(d1)νµ =
1

2
CAg

2 pρ

∫

ℓ

∆ρ
ν(ℓ)D(ℓ+ p)D(ℓ− q)Γµ(q − ℓ, ℓ+ p, r)B1(−ℓ− p, p, ℓ) , (5.18)

(d2)νµ =
1

2
CAg

2 pρ

∫

ℓ

∆β
ν (ℓ)∆

αρ(ℓ+ r)D(ℓ− q)Γµαβ(r,−ℓ− r, ℓ)B1(q − ℓ, p, ℓ+ r) .

It is evident from Eq. (5.18) that the Taylor theorem is preserved in the one-loop dressed

truncation, since both diagrams (d1)νµ and (d2)νµ are proportional to the ghost momen-

tum, p.

Meanwhile, as a result of the truncation, the ghost-anti-ghost-symmetry of Eq. (5.3)

is explicitly broken if Eq. (5.17) is used to compute the form factor B1 through Eq. (5.2).

This issue arises because the corrections to the vertex in the anti-ghost leg in the full SDE

of Fig. 2.3 are allocated to the four-point function [198] present in diagram (d3), which we

omitted, ending up with corrections only to the vertex in the ghost leg. This problem can

be remedied by recalling that we might have derived the SDE shown in Fig. 5.3 with the

bare vertex on the ghost leg instead. Then, averaging the “ghost leg bare” and “anti-ghost

leg bare” SDEs restores the ghost-anti-ghost symmetry [198]. In practice, this procedure

amounts to the effective substitution in Eq. (5.18) of

B1(−ℓ− p, p, ℓ) → V1(ℓ, q, p, r) =
1

2
[B1(−ℓ− p, p, ℓ) + B1(q, ℓ− q,−ℓ)] ,

B1(q − ℓ, p, ℓ+ r) → V2(ℓ, q, p, r) =
1

2
[B1(q − ℓ, p, ℓ+ r) + B1(q, ℓ− q,−ℓ)] . (5.19)
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A similar procedure is commonly employed to restore Bose symmetry in analyses of the

gluonic vertices with truncated SDEs [53, 54, 206].

Finally, Eq. (5.17) must be consistently renormalized. To this end, we first multiply

that equation by Z1 and substitute all quantities appearing in Eq. (5.18) by their renor-

malized counterparts using Eqs. (2.89) and (2.90) and g = Z−1
1 Z

1/2
A Zc gU. Symbolically,

we find

Hνµ(q, p, r) = Z1

[
gµν + (d1)νµ +

(
Z1ZA

ZcZ3

)
(d2)νµ

]
,

= Z1 [gµν + (d1)νµ + (d2)νµ] , (5.20)

where we used the STI for the renormalization constants, Eq. (2.91), to obtain the last

line. At this point we may choose the renormalization prescription for the renormalized

quantities. Naturally, we will take advantage of the Taylor theorem and settle for the

Taylor scheme of Eq. (5.16). As for the gluon and ghost propagators that appear in

Eq. (5.18), we employ the common choice of Eq. (2.92), i.e. the MOM scheme.

A few additional approximations will be useful for numerical purposes, which we dis-

cuss in the next section.

5.3 Inputs and further approximations

In general, the SDEs are coupled integral equations that allow, in principle, the deter-

mination of all the Green’s functions of the theory. For example, the ghost-gluon scattering

kernel SDE of Eq. (5.18), if coupled to some truncated form of the gluon and ghost SDEs

of Figs. 3.2 and 3.11, respectively, and the three-gluon vertex SDE [53, 54], could be used

to determine all of these functions self-consistently. In practice, technical difficulties in

truncating these equations, as well as the intensive numerical effort necessary, prompts us

to adopt a different strategy.

Before stating the actual inputs used, we emphasize that we have found, by experiment,

that the STI constraint of Eq. (2.88) is violated in our numerical results for Hνµ(q, p, r).

This violation was found, after several numerical experiments and analytic calculations,

to not be a numerical issue, but an artifact of the truncation of the SDE. Moreover, the

issue is aggravated for large momenta if the inputs used for the propagators and vertices

contain their perturbative corrections. The reason for this behavior is that the one-loop
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dressed truncation contains two loop and higher corrections, but not all of them. As a

result, perturbative logarithms that should be canceled if all corrections were consistently

preserved end up uncanceled. These logarithms, which should be powers of ln(q2/µ2), are

likely negligible near the renormalization point, µ, and also probably subleading in the IR

where the gluon mass becomes the dominant scale. Nevertheless, for large momenta they

build up large violations of the symmetries of the theory, in particular the Eq. (2.88). A

workaround, which we have validated by experiment, is to use inputs for the propagators

and vertices appearing in Eq. (5.18) that tend to their tree levels in the UV. Evidently, the

reason this procedure works is that it results in Hνµ(q, p, r) recovering its one-loop behav-

ior, by construction, for large momenta. For definiteness, we shall denote the ingredients

that are used as inputs for the SDE of Hνµ(q, p, r) by a super/subscript “in”.

As was done in numerous previous works, e.g. Refs. [1, 2, 25, 171], we use for the gluon

propagator and ghost dressing function fits to the large volume lattice results available.

For the ghost dressing function, in particular, we use

F (q2) → Fin(q
2) = 1 +

σ1
q2 + σ2

, (5.21)

which fits the lattice data of [175] with the parameter values set to σ1 = 0.70 GeV2 and

σ2 = 0.39 GeV2. Clearly, limq2→∞ Fin(q
2) = 1, as discussed above. We compare the above

fit to the lattice data of [175] in Fig. 5.4, where we see that the IR structure of F (q2) is

still well captured by Fin.
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Figure 5.4: Comparison of the fit (red curve), Fin(q
2), given by Eq. (5.21), for the ghost

dressing function, F (q2), and the lattice data of Ref. [175] (circles).
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As for the gluon propagator, we substitute Eq. (3.42) for

∆−1(q2) → ∆−1
in
(q2) = q2Jin(q

2) +m2(q2) , (5.22)

with m2(q2) given by Eq. (3.50) and the input kinetic term has the parametrization

Jin(q
2) = 1 +

CAαs

4π

(
τ1

q2 + τ2

)[
2 ln

(
q2 + ρm2(q2)

µ2

)
+

1

6
ln

(
q2

µ2

)]
. (5.23)

Note that Eq. (5.23) differs from Eq. (3.51) by the substitution
(
1 + τ1

q2+τ2

)
→
(

τ1
q2+τ2

)
,

which guarantees that limq2→∞ Jin(q
2) = 1. The above model fits the gluon propagator

data of Ref. [73, 76, 175] for αs = 0.22, τ1 = 12.68 GeV2, τ2 = 1.05 GeV2 and ρ = 102.3,

whereas the mass parameters are unchanged, i.e. m2
0 = 0.147 GeV2, ρ2m = 1.18 GeV2 and

we choose γ = 0.

On the left panel of Fig. 5.5 we compare the fit ∆in(q
2) of Eq. (5.22) (blue curve) with

the lattice data of [175] (circles) and the fit composed of Eqs. (3.42), (3.50) and (3.51)

(red dashed line). On the right panel of that figure we compare the corresponding J(q2)

and Jin(q
2) of Eqs. (3.51) and (5.23), respectively. Notice that at the level of the gluon

propagator the ∆ and ∆in fits are visually indistinguishable, whereas the difference be-

tween J(q2) and Jin(q
2) increases in the UV, because for large q2 the Jin(q

2) sets in to

tree-level while J(q2) displays the characteristic one-loop logarithm.
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Figure 5.5: Left: comparison of fits for the gluon propagator using ∆in(q
2) (blue contin-

uous), of Eq. (5.22), and the ∆(q2) (red dashed), given by Eqs. (3.42), (3.50) and (3.51),
to the lattice data from Ref. [175]. Right: comparison of Jin(q

2) (blue continuous) and
J(q2) (red dashed), of Eqs. (3.51) and (5.23), respectively.

Moving on to the three-gluon vertex, appearing in diagram (d2)νµ of Fig. 5.3, we retain
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only the tensor structures that exist at tree level, which are expected to be dominant.

Moreover, we use the Bose symmetry relation of Eq. (4.34) to write the form factors X4

and X7 in terms of X1. Then, our Ansatz for the input three-gluon vertex reads

Γµαβ(r, v, ℓ) → Γin

µαβ(r, v, ℓ) =(r − v)βgµαX
in

1 (r, v, ℓ) + (v − ℓ)µgαβX
in

1 (v, ℓ, r)

+ (ℓ− r)αgβµX
in

1 (ℓ, r, v) . (5.24)

where v = −ℓ− r. Then, for the form factor X in

1 we use its Abelianized approximation of

Eq. (4.38), with J(q2) substituted by the Jin(q
2) of Eq. (5.23), i.e.

X in

1 (r, v, ℓ) =
1

2
[Jin(r

2) + Jin(v
2)] . (5.25)

While certainly a simplistic approximation, the Γin

µαβ(r, v, ℓ) of Eq. (5.24) captures the

logarithmic IR divergence and characteristic suppression of the three-gluon vertex that are

expected on general grounds and observed in numerous previous studies, as discussed in

Section 3.4 and the literature there cited. Also, Γin

µαβ(r, v, ℓ) preserves the Bose symmetry

of the three-gluon vertex.

Finally, we discuss the input for the ghost-gluon vertex. First of all, similarly to what

we do for the three-gluon vertex, we keep only the tree-level tensor structure of Γµ, such

that only the form factor B1 is taken into account. Notice that in the Landau gauge the

form factor B2 would only contribute to the A3 and A5 of Eq. (4.24). As such, setting

B2 → 0 is valid exactly, as far as A1, A2 and A4 are concerned. Then, to obtain a model

for B1, we run the SDE of Eq. (5.17) numerically with the above approximations and

setting additionally the input B1 → 1, i.e. its tree level. Then, we project from the result

the form factor B1 in the totally symmetric configuration of Eq. (B.5) (in Euclidean space,

of course) and fit the resulting data with the form

Bin

1 (Q
2) = 1 +

ω1Q
2

(1 + ω2Q2)λ1
, (5.26)

to force its UV tail to reduce to tree-level. The fitting parameters that result are given by

ω1 = 2.21 GeV−2, ω2 = 2.50 GeV−2 and λ1 = 1.68. In Fig. 5.6 the Bin

1 (Q
2) of Eq. (5.26)

(blue curve) is compared to the SDE result that it was fitted to (red dashed). Clearly,

the fit (5.26) is accurate in the IR, while forcing the tree level to be recovered for large
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momenta.
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Figure 5.6: Red dashed curve: Form factor B1(Q
2) in the totally symmetric configuration

of Eq. (B.5) obtained from the SDE of Eq. (5.17) with bare ghost-gluon vertex as input.
Blue curve: Fit, Bin

1 (Q
2), given by Eq. (5.26), for the B1(Q

2).

Finally, the form factors B1 that appear in the Eq. (5.18) are still functions of three

momenta. To reduce the complexity of the problem, we assume that all the B1 appearing

as inputs are functions of the corresponding gluon momentum only, i.e. its third argument,

and use Eq. (5.26). For example, B1(−ℓ−p, p, ℓ) → Bin

1 (ℓ
2). In particular, with the above

approximation, Eq. (5.19) reads

V1(ℓ, q, p, r) → V in

1 (ℓ, q, p, r) =B
in

1 (ℓ
2) ,

V2(ℓ, q, p, r) → V in

2 (ℓ, q, p, r) =
1

2

[
Bin

1 (v
2) + Bin

1 (ℓ
2)
]
. (5.27)

Implementing all the above approximations, the diagrams (d1)νµ and (d2)νµ of the

SDE for the ghost-gluon scattering kernel read

(d1)νµ =
i

2
CAg

2 pρ

∫

ℓ

∆in(ℓ
2)Fin(t

2)Fin(s
2)

t2 s2
Pρ
ν(ℓ) sµB

in

1 (r
2)V in

1 (ℓ, q, p, r) , (5.28)

(d2)νµ = − i

2
CAg

2 pρ

∫

ℓ

∆in(ℓ
2)∆in(v

2)Fin(s
2)

s2
Pβ
ν (ℓ)P

αρ(v)Γin

µαβ(r, v, ℓ)V in

2 (ℓ, q, p, r) ,

with s = q − ℓ, t = −ℓ− p.

One may then project out the form factors Ai using the projectors of Eq. (C.1) and

transform to Euclidean space using the rules of Appendix D. The resulting expressions

for the Ai are voluminous and are collected in Appendix E.

Lastly, the renormalization scale is set by the inputs themselves, which are all renor-
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malized at µ = 4.3 GeV, since Hνµ is not further renormalized when using the Taylor

scheme, as we do. For the strong charge we set αs = 0.22 [180, 188].

5.4 Numerical analysis

For the numerical analysis of the Eq. (5.28), it is convenient to employ spherical coordi-

nates and regard the anti-ghost and ghost momenta, q and p, respectively, as independent.

Then, using the notation of Eqs. (D.14) and (D.16), we see that the numerical evaluation

of the Ai(q
2, p2, θ), with θ the angle between q and p, consists of setting a discretized grid

of values for q2, p2 and θ, and compute a triple integral for each triple (q2, p2, θ). For the

squared momenta, we employed a logarithmically distributed grid of 96 values in the range

q2, p2 ∈ [5× 10−5 GeV2, 104 GeV2] . The extremities of this interval also set IR and UV

cutoffs for numerical integration. As for the angle θ, we set a uniform grid of 19 values in

the range [0, π]. Hence, since there are 5 different Ai, we have in total 962 × 19× 5 triple

integrals to evaluate.

An efficient and accurate numerical algorithm for evaluating these integrals is the

adaptative Gauss-Kronrod method of Ref. [207], employing an 11th degree polynomial

rule. Still, the numerical evaluation is quite time consuming and a parallelized computa-

tion is required. We implemented the numerical program in Fortran, using the Message

Passing Interface for parellelization and executed it in the Feynman Cluster of the John

David Rogers Computation Center (CCJDR) in the Institute of Physics “Gleb Wataghin”.

We present results first in general kinematics in Subsection 5.4.1, using 3D plots,

and then specialize to some notable kinematic limits for a more in depth analysis in

Subsection 5.4.2.

5.4.1 General kinematics

For a fixed angle θ, each Ai(q
2, p2, θ) consists of a surface in the (q2, p2) space. In

Figs. 5.7 and 5.8 we show all the Ai(q
2, p2, θ) for two choices of the angle, θ = 0 and π, in

order that the angular dependence can be appreciated.

Let us point out the features of the general kinematics Ai that can be seen in Figs. 5.7

and 5.8: (i) in the IR, all the Ai display significant deviations from their corresponding

tree-level values, but (ii) they all recover roughly their perturbative behaviors whenever

one momentum is large. This restoration of perturbation theory in the UV is, of course,

an automatic result of using inputs that tend to tree level for large momenta, as discussed
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Figure 5.7: The form factors A1(q
2, p2, θ) (top row) and A2(q

2, p2, θ) (bottom row) of the
ghost-gluon scattering kernel, for θ = 0 (left) and θ = π (right).

in the previous section. Also, (iii) the angular dependence of the Ai is mostly mild, with

the exception of A1 which is altogether larger than 1 for small θ, but develop a “valley”

for θ approaching π, with A1(q
2, p2, π) < 1 in the region determined approximately by the

triangle 0 < p2 < q2.

In what regards their deep IR behaviors, A1 is clearly IR finite, whereas the remaining

ones all display growths in magnitude consistent with logarithmic IR divergences. To

interpret this behaviors, we give in Section B.5 the Ai computed at one-loop with a hard

gluon mass, in the same spirit of the analyses presented in Section 3.4. In this semi-

perturbative analysis, we have found that the A1 and A4 turn out IR finite, while A2,

A3 and A5 are logarithmically divergent in the deep IR, as a result of the masslessness of

the ghosts. Moreover, these divergences stem from the diagram (d1)νµ of Fig. 5.3, which

has more ghost propagators than (d2)µν . Comparing our numerical results to the findings
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Figure 5.8: The form factors A3(q
2, p2, θ) (top row), A4(q

2, p2, θ) (middle row) and
A5(q

2, p2, θ) (bottom row) of the ghost-gluon scattering kernel, for θ = 0 (left) and θ = π
(right).

of Section B.5 we see that almost all of the Ai behave as expected on the basis of the

semi-perturbative calculations, with the surprising exception of A4.
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The unexpected divergence ofA4 was then investigated in more detail. First, by various

numerical experiments we have discarded the possibility that this behavior is a numerical

artifact. Then, by taking the zero momentum limit of the expression of Eq. (E.4) for

the contribution of the dressed diagram (d2)νµ to the form factor A4, we have found that

its logarithmic divergence is induced by the three-gluon vertex. Specifically, the input

three-gluon vertex of Eq. (5.24) contains logarithmic divergences in the X in

1 , since Jin

has an unprotected logarithm modeling the effect of massless ghosts (see Section 3.4),

and it is this divergence that contaminates A4. To be more precise, note that the three-

gluon vertex that appears in (d2)νµ depends on three momenta, including the integration

variable, such that Jin appears in (d2)νµ with three possible arguments, r2, ℓ2 and (ℓ+r)2.

Then, the logarithms of Jin that depend on the integration momentum are integrated an

yield finite results, whereas the logarithms that depend only on the external momentum,

r, are not affected by the integration and, thus, remain divergent. Symbolically, the terms

of Eq. (E.4) of the generic form

∫

ℓ

Jin(ℓ
2)f(q, p, ℓ) , and

∫

ℓ

Jin[(ℓ+ r)2]f(q, p, ℓ) , (5.29)

furnish IR finite contributions, whereas

∫

ℓ

J(r2)f(q, p, ℓ) , (5.30)

is logarithmically divergent as r2 → 0. Indeed, we have also confirmed this explanation

numerically, by setting the input three-gluon vertex to its tree-level in Eq. (5.24), in which

case A4 turns out IR finite as expected.

An important conclusion to be drawn from the above analysis is that the three-gluon

vertex can feed back additional IR divergences in Feynman diagrams of QCD. This ob-

servation, in turn, leads us to ask whether the IR divergences seen in A2, A3 and A5 in

Figs. 5.7 and 5.8 are exclusively due to the integration of massless ghost propagators,

or whether they also receive contributions from the divergence of the three-gluon ver-

tex1. Performing an analysis similar to the above, for the contribution in Eq. (E.4) for

the remaining form factors, we have found that indeed the IR divergence of A3 is also

1Of course, since the logarithmic divergence of X1 is itself a consequence of the masslessness of the
ghosts [52] (see also Section 3.4), all IR divergences considered here may be attributed to D(q2) being
divergent.
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contaminated by the divergence of the three-gluon vertex, while the A1, A2 and A5 are

not.

5.4.2 Special kinematic limits

Let us take a closer look into the nonperturbative behavior of the Hνµ(q, p, r), by

selecting from the previously discussed results for the Ai(q
2, p2, θ) some special kinematic

limits. In particular, we consider: the (i) soft gluon limit, defined by vanishing gluon

momentum, r = 0; the (ii) soft anti-ghost configuration, where q = 0; and the (iii)

totally symmetric limit, for which all momenta have the same magnitude, Q, as given (in

Minkowski space) by Eq. (B.5). For the configurations (i ) and (ii ), we show only the

form factors whose tensor structures survive in the corresponding limit. Naturally, the

vanishing of a given tensor structure does not imply that the corresponding form factor

itself vanishes, but its calculation becomes more difficult and we will not pursue in the

present work.

For all these limits, we show in each of Figs. 5.9, 5.10 and 5.11 four curves, turning off

gradually some of our ingredients to explore their effects. Specifically: (a) the blue con-

tinuous curves represent the corresponding result of the full nonperturbative calculation

of Hνµ(q, p, r), presented before as surfaces in Figs. 5.7 and 5.8; (b) the red dashed curves

resulting from our truncation when, in addition, we set the three-gluon vertex to tree

level, i.e. X in

1 → 1 in Eq. (5.24); (c) the one-loop massive results of Section B.5, which

are represented by green dot-dashed curves; and, (d) the true one-loop results, i.e. with

massless gluon propagators, of Section B.2. The comparison of cases (a) and (b) allows us

to distinguish the effect on the Ai of dressing the three-gluon vertex. In combination with

the set (c), we can also distinguish the IR divergence induced by the three-gluon vertex,

which is not accounted for in the one-loop massive calculation. Finally, comparison to

(d) allows us to see that the overall degree of IR divergence is reduced in the presence of

a gluon mass and to check that our results recover their perturbative behaviors, as they

should by construction with the inputs we are using.

Moreover, for the dimensionful form factors, Ai with i = 2, . . . , 5, we show in the

foreground of Figs. 5.9, 5.10 and 5.11 the dimensionless combinations t2Ai, with t an ap-

propriate external momentum in the kinematic limit at hand, such that the magnitudes

of the different form factors can be duly compared with each other. Simultaneously, for

the dimensionful form factors we also show insets where the Ai are displayed without
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multiplication by an external momentum. These insets allow the IR divergences to be ap-

preciated better; in the logarithmic scale employed, a logarithmic IR divergence manifests

as an asymptotically straight line.

(i ) Soft gluon limit: the configuration defined by r = 0 reads in our parametrization,

Ai(q,−q, 0) ≡ Ai(q
2, q2, π). As such, it can be obtained by setting q2 = r2 and θ = π

in Ai(q
2, p2, θ). That is, they correspond to the “slices” defined by the intersections

of the surfaces on the right columns of Figs. 5.7 and 5.8 with a vertical plane across

the diagonal of each 3D “box”. The tensors surviving in this limit carry the form

factors A1(q,−q, 0) and A2(q,−q, 0), which are shown in Fig. 5.9.

The main feature of the nonperturbative A1(q,−q, 0) and q2A2(q,−q, 0) of Fig. 5.9
is the presence of a pronounced peak, centered at about 1 GeV, for both quantities.

Next, we notice that the results with dressed three-gluon vertex (blue curves) are

suppressed with respect to those obtained with Γ
(0)
µαβ. In the inset, we see clearly that

the form factor A2, whose one-loop result of Eq. (B.21) has a pole in q2, becomes

only logarithmically divergent when a gluon mass is added, and remains so in the

full nonperturbative results. Finally, in the UV the one-loop behavior of Eq. (B.21)

is smoothly approached.
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Figure 5.9: (soft gluon kinematics) Left: Comparison between the A1(q,−q, 0) computed

using Γin

µαβ (blue continuous) and the one obtained when Γ
(0)
µαβ is used instead (red dashed).

The massless (purple dotted) and the massive (green dot-dashed) one-loop perturbative
results are given by Eqs. (B.21) and (B.44), after conversion to Euclidean space, respec-
tively. Right: Same comparison for the dimensionless combination q2A2(q,−q, 0). The
inset shows the corresponding A2(q,−q, 0) itself, using a logarithmic scale for q2, where
the IR divergences are clearly visible. Note that the purple dotted curve shows a much
steeper divergence, in fact a pole [see Eq. (B.21)].
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(ii ) Soft anti-ghost limit: this kinematic limit can be obtained by setting q2 = 0 in

our results2 for Ai(q
2, p2, θ). Note that this limit does not depend on θ, which, in

fact, becomes undefined. In this configuration we show the form factors A1(0,−r, r)
and A3(0,−r, r), whose tensor structures survive, in Fig. 5.10. This figure exhibits

qualitative behavior very similar to those of Fig. 5.9, of course with A3 in place of

A2. Dressing the three-gluon vertex furnishes an overall suppression of the result,

and the gluon mass leads to a reduction of the degree of IR divergence of A2, while

the one-loop behavior of Eq. (B.19) is restored for large r2.
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Figure 5.10: (soft gluon kinematics) Left: Comparison between the A1(0,−r, r) computed

using Γin

µαβ (blue continuous) and the one obtained when Γ
(0)
µαβ is used instead (red dashed).

The massless (purple dotted) and the massive (green dot-dashed) one-loop perturbative
results are given by Eqs. (B.19) and (B.43), after conversion to Euclidean space, respec-
tively. Right: Same comparison for the dimensionless combination r2A3(0,−r, r). The
inset shows the corresponding A3(0,−r, r) itself, using a logarithmic scale for r2, where
the IR divergences are clearly visible. Again, the purple dotted curve has a clear pole
divergence [see Eq. (B.19)].

(iii ) Totally symmetric limit: transforming Eq. (B.5) to Euclidean space, we see that

we can obtain the totally symmetric limit from our general kinematics data by

setting q2 = p2 = Q2, and θ = 2π/3. In this kinematic limit all tensor structures

of Hνµ(q, p, r) survive and the resulting form factors are shown in Fig. 5.11. In

particular, we gain access to the form factors A4 and A5, not previously discussed

in the items (i ) and (ii ).

For the form factors A1, A2 and A3, Fig. 5.11 displays the same patterns already

indicated in the previous items. Then, from the last plot, we see that A5 is also

2For evident practical limitations, we actually use the lowest q2 available, q2 = 5× 10−5 GeV2.
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logarithmically IR divergent, and is suppressed in magnitude when the three-gluon

vertex is dressed. The most interesting result in this kinematics is that of A4. We

can see quite clearly in the corresponding inset, that A4 is IR finite in the one-loop

massive result of Eq. (B.46) as well as in the nonperturbative result with Γ
(0)
µαβ.

However, when the three-gluon vertex is dressed, the IR behavior is dramatically

altered; its sign in the deep IR is flipped, from positive to negative, and it becomes

logarithmically divergent. Yet, as in all cases before, the degree of IR divergence

of A4 is still reduced in comparison to its one-loop result of Eq. (B.22), which is

restored for large Q2.

We summarize our observations about the presence and origin of the IR divergences

of our results for the Ai in Table 5.1.

Form one-loop massive SDE with Γ
(0)
µαβ SDE with Γin

µαβ

factors (d1)νµ (d2)νµ (d1)νµ (d2)νµ (d1)νµ (d2)νµ Total
A1 F F F F F F F
A2 LD F LD F LD F LD
A3 LD F LD F LD LD LD
A4 F F F F F LD LD
A5 LD F LD F LD F LD

Table 5.1: Summary of the infrared limits of the individual contributions of the diagrams
(d1) and (d2) of Fig. 5.3 to the form factors Ai of the ghost-gluon scattering kernel. The
letter “F” stands for “finite”, and the acronym “LD” for “logarithmically divergent”. The
limits are for (i) the one-loop massive results [see Eqs. (B.45), (B.43) and (B.46)]; (ii) the

nonperturbative result obtained when Γ
(0)
µαβ is used as input in the diagram (d2); and (iii)

the nonperturbative result obtained with Γin

µαβ.

Still regarding the IR divergences of the Ai, let us make two more remarks: (i ) because

the only Ai that are IR divergent are dimensionful, whereas Hνµ is dimensionless, and

given that the divergences are logarithmic and only occur when all q2 = p2 = r2 = 0, the

Hνµ(q, p, r) itself is IR finite. This is enforced by the fact that the momenta appearing

in the tensor structures that multiply the form factors [see Eq. (4.24)] vanish faster than

the Ai diverge. In particular, the divergences observed in the Ai in the present study do

not induce dynamical mass generation, which requires the vertices themselves, not just

certain form factors, to have longitudinally coupled poles. (ii ) In all cases, including A4,

the degree of IR divergence is reduced in the nonperturbative case in comparison to the

true one-loop behavior (with massless gluons). Indeed only logarithmic IR divergences
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Figure 5.11: (Totally symmetric limit) A1(Q
2) and the dimensionless combinations

Q2Ai(Q
2), for i = 2, . . . , 5, computed using Γin

µαβ (blue continuous) and Γ
(0)
µαβ (red dashed).

The purple dotted curves correspond to the one-loop results given in Eq. (B.22), while
the Q2 → 0 limits of the one-loop massive case are expressed by Eq. (B.46). The in-
sets show the Ai(Q

2) in logarithmic scale of Q2, where we can appreciate the logarithmic
divergences, when present, as well as the pole divergences of the massless one-loop result.

were found in our nonperturbative results, whereas the one-loop results of Section B.2

display poles in Ai for i = 2, . . . , 5.

Before closing this section, we make one final observation, now about the IR finite form
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factor A1. First, we can see from Figs. 5.9, 5.10 and 5.11, as well as from the surfaces

of Fig. 5.7, that in the nonperturbative results, as well as in the one-loop massive case,

A1(0, 0, 0) = 1, i.e. it tends to tree-level when all momenta vanish, independently of the

configuration from which the limit is approached. This observation contrasts with the one-

loop behavior, whose A1(0, 0, 0) limit, while finite, saturates to a different value for each

kinematic configuration of Figs. 5.9, 5.10 and 5.11. The result that the nonperturbative

A1(0, 0, 0) = 1 can also be understood in the general context of a reduction of the degree

of IR divergence in the presence of a gluon mass. Specifically, the derivative ∂A1/∂p
ρ, is

pole divergent at one-loop, and becomes either finite or logarithmically divergent with an

IR finite gluon propagator [see discussion surrounding Eq. (B.47)].

5.5 Results for the ghost-gluon vertex

With the general kinematics results for the Ai at hand, it is natural to use Eq. (5.2)

to compute also the form factors of the ghost-gluon vertex, B1 and B2. Since the focus of

this thesis is on the three-gluon vertex and its determination from Hνµ, we will not show

here all of our results for Γµ, which can be found in Ref. [3]. Instead, we highlight a few

findings that are relevant in the present context.

In Fig. 5.12 we show the resulting B1(Q
2) and B2(Q

2) in the totally symmetric config-

uration obtained from the Ai of Fig. 5.11 using Eq. (5.2). For the ghost-gluon vertex, no

IR divergences were found in our nonperturbative results, and we refrain from comparing

them to a one-loop massive calculation. Both form factors exhibit peaks around 1 GeV,

which are suppressed in amplitude3 by a factor of nearly 2.5 when the three-gluon vertex

is dressed. In the UV they both reduce to their one-loop results, which can be computed

easily from the results for A
(1)
i (Q2) of Eq. (B.22) using Eq. (5.2).

The main value of computing the Bi in the context of this thesis is that it allows us to

compare our results to those obtained by other authors, using different methods. Indeed

Hνµ(q, p, r) has not been studied much before, except in pertubation theory [126, 208],

whereas the ghost-gluon vertex has. In particular, the soft gluon, r = 0, configuration of

the form factor B1(q, p, r) has been previously studied in various approaches, including

lattice simulation [73, 193], Operator Product Expansion [118], SDEs [55, 180, 194, 195],

Functional Renormalization Group [58, 60] and the Refined Gribov-Zwanziger method [51,

3By amplitude, we mean the value of peak subtracted by the tree-level, either B
(0)
1 = 1 or B

(0)
2 = 0,

of the corresponding form factor.
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Figure 5.12: Form factors B1(Q
2) and B2(Q

2) of the ghost-gluon vertex, in the totally
symmetric configuration.

196, 197].
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Figure 5.13: Form factor B1(q,−q, 0) of the ghost-gluon vertex in the soft gluon configura-
tion. Our results are shown in blue, whereas [118] is represented by the green dot-dashed
curve, those of [195] by the red dashed, and those of [196] by the purple dotted. The
lattice data is from Refs. [73, 193].

In Fig. 5.13 we compare our results for the soft gluon B1(q,−q, 0) (blue continuous

curve) to the lattice data of [73, 193] (circles) and continuum results of [118, 195, 196]

(green dot-dashed, red dashed and purple dotted, respectively). Clearly, our results are in

qualitative agreement with those of the cited literature. In particular, all studies compared

display a peak for B1 around 1 GeV, and are all within the noise of the available lattice

data. In addition, all results considered are consistent with B1(0, 0, 0) = 1.

Let us point out that we have also compared our results to those obtained on SU(2)

lattice simulations [43] and Functional Renormalization Group results [58], both of which

contain other kinematic configurations, and found qualitative agreement as well. However,
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we do not include the results of these references in Fig. 5.13 because, for [43] a quantitative

comparison between our SU(3) results with SU(2) lattice data is evidently inappropriate4,

whereas the results of [58] are renormalized in a very different scale and Ref. [60] considered

the three-dimensional theory.

5.6 Failure of the STI constraint

It is well known that truncating SDEs often breaks the symmetries of the theory,

specially when diagrams are omitted, as is the diagram (d3)νµ of Fig. 2.3 in our truncation

(cf. Fig. 5.3). As such, we do expect that some symmetry has been sacrificed in our

results for Hνµ(q, p, r), in spite of our efforts to retain as much as possible its fundamental

properties in the truncated SDE. Indeed, we found that the constraint of Eq. (4.28) is

violated, as we now discuss.

To quantify the violation of the constraint, we can use the ratio R(q2, p2, r2) itself,

defined in Eq. (4.28). If R(q2, p2, r2) 6= 1, it will manifest a breaking of the gauge sym-

metry, since Eq. (4.28) is a consequence of the STIs of the theory (see Subsection 2.4.3).

In addition, different truncations can lead to values of R which differ from unity by more

or less. Hence the quality of different truncations can be compared quantitatively.

For the ghost dressing function, F (q2), appearing in Eq. (4.28), we shall not use the

Fin(q
2) of Eq. (5.21). Since we used inputs that tend to tree level in the UV for our

computation of Hνµ, the latter recover its one-loop behavior for large momenta, as we

have seen in Section 5.4.2. As such, it is important that the F (q2) used to evaluate R also

contains its one-loop UV tail. For that matter, a fit for F (q2) that reduces to one-loop

for large q2 is given by [2]

F−1(q2) = 1 +
9CAαs

48π

[
1 + d exp

(
−ρ4q2

)]
ln

(
q2 + ρ3M

2(q2)

µ2

)
, (5.31)

with

M2(q2) =
m2

1

1 + q2/ρ22
, (5.32)

and parameters m2
1 = 0.16GeV2, ρ22 = 0.69GeV2, ρ3 = 0.89, ρ4 = 0.12GeV−2, d = 2.36,

and µ = 4.3GeV. In Fig. 5.14, we compare the fit of Eq. (5.31) (black dashed) to the

lattice data of [175] (circles) and the Fin(q
2) of Eq. (5.21) (red continuous). Clearly,

4In [198] we have computed B1 also for SU(2), finding rough quantitative agreement. Nevertheless,
there we used more rudimentary truncation and numerical methods.
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both fits capture the behavior of the lattice results in the IR, but differ from each other

increasingly in the UV.

10
-3

10
-2

10
-1 1 10 10

2
0.5

1

1.5

2

2.5

3

Figure 5.14: Comparison of the fit with UV logarithms given by Eq. (5.31) (black dashed)
to the SDE input Fin(q

2) (red curve), of Eq. (5.21), for the ghost dressing function, F (q2).
The lattice data of Ref. [175] is also shown as circles.

Now, let us emphasize that Eq. (4.28) is satisfied trivially whenever the ghost and

gluon momenta have the same magnitude, i.e. p2 = r2. To see this, set p2 = r2 into that

equation to find

R(q2, p2, p2) =
A1(q, r, p) + p2A3(q, r, p)− (q2/2)A4(q, r, p)

A1(q, p, r) + p2A3(q, p, r)− (q2/2)A4(q, p, r)
, (5.33)

where we used momentum conservation to write q · r = (p2 − q2 − r2)/2 and similarly

q · p = (r2 − q2 − p2)/2. Then, since the Ai are Lorentz scalars, they can only depend on

the invariants q2, p2, and r2, i.e. Ai(q, p, r) ≡ Ãi(q
2, p2, r2), for some function Ãi(q

2, p2, r2).

Hence it follows from Eq. (5.33) that R(q2, p2, p2) = 1. In particular, the constraint is

satisfied trivially in the totally symmetric (q2 = p2 = r2) and soft anti-ghost (q = 0)

limits. As such, we concentrate on configurations where p2 6= r2.

We will consider two different kinematic limits of R(q2, p2, r2). Moreover, we provide

a concrete example of the usage of R to compare the quality of different approximations

of Hνµ(q, p, r), by comparing two slightly different versions of our truncated SDE. Specif-

ically, in Fig. 5.15 we show the ratio R for (i ) the configuration defined by q2 = p2 and

r2 = 3p2, such that we may write R(q2, p2, r2) = R(Q2, Q2, 3Q2), denoting the common

scale by Q (left panel); and (ii ) the limit q2 = Q2, p2 = 3Q2 and r2 = 4Q2 (right panel).

For both of the configurations shown in Fig. 5.15 we present theR corresponding to two

different approximations for Hνµ : (a) our full nonperturbative result (blue continuous),
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Figure 5.15: The ratio R(q2, p2, r2) defined in Eq. (4.28), in two different kinematic con-
figurations: q2 = p2 = Q2 and r2 = 3Q2 (left), and q2 = Q2, p2 = 3Q2 and r2 = 4Q2

(right). The blue continuous curve corresponds to our full nonperturbative Hνµ(q, p, r)
result, whereas the red dashed is obtained from our SDE truncation setting all vertices to
tree-level. The black dotted line represents the STI requirement R = 1.

using Eq. (5.28); and, (b) the result of Eq. (5.28) when in addition all the ghost-gluon

and three-gluon vertices appearing in it are set to tree-level (red dashed), i.e. Bin

1 → 1

and X in

1 → 1. For reference, we also show the STI requirement R = 1 (black dotted),

which would be satisfied by the ideal Hνµ(q, p, r) and F (q
2).

The first observation we make from Fig. 5.15, is that for each truncation the corre-

sponding curve on the right panel, R(Q2, 3Q2, 4Q2), deviates less from its ideal value than

the curve on the left, R(Q2, Q2, 3Q2), i.e.

|R(Q2, 3Q2, 4Q2)− 1| < |R(Q2, Q2, 3Q2)− 1| . (5.34)

This observation is in line with the discussion surrounding Eq. (5.33), according to which

the constraint is satisfied trivially when r2/p2 = 1. Indeed, in the configuration shown in

the right side of Fig. 5.15 we have r2/p2 = 4/3, whereas on the left r2/p2 = 3.

Next, it is clear from Fig. 5.15 that the maximum violation of the constraint, to be

denoted δRmax := |R − 1|, is reduced when the vertices are dressed. Specifically, we see

in the left panel of Fig. 5.15 that the maximum deviation of R(Q2, Q2, 3Q2) occurs in

the range Q = 1 - 1.5 GeV, and that δRmax(Q
2, Q2, 3Q2) is reduced from about 9% with

tree-level vertices to less than 5% with dressed Γin

µαβ and Bin

1 . Then, we can appreciate

that in the right panel of Fig. 5.15 the position of maximum violation of R(Q2, 3Q2, 4Q2)

from unity is shifted slightly to the IR, occurring in the range 0.8 - 1.1 GeV. Neverthe-
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less, δRmax(Q
2, 3Q2, 4Q2) exhibits the same overall behavior of δRmax(Q

2, Q2, 3Q2) under

dressing of the vertices appearing in the SDE. Specifically, while the truncation with

dressed vertices furnishes less than 1% maximum violation in the constraint, the result

with bare vertices gives almost δRmax(Q
2, 3Q2, 4Q2) = 3%.

Also, it is seen in Fig. 5.15 that the full nonperturbative result has a larger violation

than the result with bare vertices for Q ' 2 GeV. Since in this thesis we are mainly

interested in the IR behavior of the QCD Green’s functions, this fact is not a major con-

cern for us. In fact, for the purposes of this work, it is natural to opt for the truncation

that minimizes the violation of the STI constraint in the IR. Hence, for the Gauge Tech-

nique determination of the three-gluon vertex in the following chapter, we will use the

Hνµ(q, p, r) obtained with dressed vertices5.

To wrap up this discussion, we point out that when Hνµ(q, p, r) is computed using

our one loop dressed truncation, but with propagators and vertices that contain their one

loop UV tails, the large momentum behavior of the Rs shown in Fig. 5.15 is substantially

worsened. Instead of slowly approaching the ideal value for large Q2 as the blue continuous

and red dashed curves in Fig. 5.15 do, the results would appear to deviate increasingly

from unit in the UV, at a characteristically logarithmic rate. This is the main reason we

opted to use the “in” fits presented in Section 5.3.

5In Ref. [4] some global measures of the violation of R = 1 were considered and also favor the result
with dressed vertices.
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6

The nonperturbative three-gluon vertex

We are finally in position to explore numerically the Gauge Technique construction

of the three-gluon vertex, discussed in Chapter 4. As we have already covered the main

theoretical concepts in previous chapters, the present one is almost entirely occupied with

numerical results.

We begin in Section 6.1 with an overview of the remaining calculations needed to eval-

uate the regular part of the three-gluon vertex, Γαµν(q, r, p), using the BC construction,

pointing out the limitations of our approach and the precautions needed in comparing our

results to those obtained by other means, specially regarding the vertex renormalization.

Then, we present our general Euclidean kinematics results, by means of 3D plots, and dis-

cuss the main features observed in the Xi(q, r, p) form factors in Section 6.2. In Section 6.3

we select two special kinematic limits of our Xi(q, r, p) and compare them to their one-loop

counterparts of Section B.3, showing a general agreement in the UV regime. To study

the IR behavior of our solution in more depth, we compare our results to SDE [53, 59]

and lattice [44, 45] simulations in Section 6.4, where we note satisfactory agreement, thus

demonstrating the adequacy of the Gauge Technique vertex when properly accounting

for the longitudinality of the mass-generating poles in the BC construction, as discussed

throughout Chapter 4.

6.1 General consideration

Using the BC solution of Eq. (4.36) for the STI of the regular part of the three-gluon

vertex, we compute the form factors Xi(q, r, p) [see Eqs. (4.29) and (4.31)] of Γαµν(q, r, p)
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that contribute to said STI. Evidently, the “transverse” form factors, Yi, cannot be de-

termined through the Gauge Technique and are not covered in this thesis, except for the

perturbative results in Appendix B. Moreover, we focus our presentation on the form

factors Xi(q, r, p) for i = 1, 2, 3 and 10, since the remaining Xi(q, r, p) can be calculated

from the former by cyclic permutations of their arguments, as in Eq. (4.34).

To evaluate the solutions of Eq. (4.36) numerically, we use for the gluon kinetic term,

J(q2), and ghost dressing function, F (q2), the fits to lattice data of Eqs. (3.51) and (5.31),

respectively. As anticipated in Subsection 3.6, to model the uncertainty in the running of

the dynamical gluon mass and the subsequent uncertainty in the kinetic term, we have

repeated the calculation for all the J(q2) obtained by using each of the four values of the

exponent γ = 0, 0.1, 0.2 and 0.3 in Eq. (3.51). We emphasize that for this calculation

the fits used, Eqs. (3.51) and (5.31), are the ones that recover the corresponding one-loop

behaviors of the propagators in the UV.

For the ghost-gluon scattering kernel form factors, Ai, for i = 1, 3 and 4, which appear

in Eq. (4.36), we use the nonperturbative results of Chapter 5. More specifically, we use

our most complete Ansatz, of Eq. (5.28), with dressed vertices.

Given that the validity of the BC solution of Eq. (4.36) is conditioned by the constraint

(4.28), and given that our nonperturbative Hνµ violates this condition, depending on the

kinematic configuration (see Section 5.6), it is important also to discuss the effect of this

symmetry breaking on the Xi to be obtained. In particular, the ensuing Xi will necessarily

not satisfy the STI exactly.

Notwithstanding that, we expect our results to still capture the main features of the

STI part of the three-gluon vertex, since the STI will be approximately satisfied. More-

over, we recall from Section 5.6 that the violation of the constraint by our results of

Hνµ(p1, p2, p3) becomes smaller as the ghost and gluon momenta, p2 and p3, respectively,

become closer in magnitude. Because the Ai appear in Eq. (4.36) in several permutations

of their arguments, it is not possible to characterize the effect of the violation of Eq. (4.28)

on the Xi(q, r, p) in terms of two momenta only. Nevertheless, it is clear that the problem

will be smaller when all three arguments of the Xi(q, r, p) have similar magnitudes, in

which case all the Ai that appear in Eq. (4.36) will have their respective gluon and ghost

arguments close in magnitude as well. In particular, in the totally symmetric configura-

tion, q2 = r2 = p2 = Q2, the Ai appearing in the calculation of the Xi(Q
2) satisfy the
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constraint trivially. In contrast, whenever two of the momenta in Xi(q, r, p) have very

different magnitudes, say q2 ≫ p2, one may expect the violation of the constraint by the

input Ai to translate into some additional error in the three-gluon vertex results.

It is important to emphasize that, unlike the ghost-gluon scattering kernel, the three-

gluon vertex in Landau gauge is an UV divergent function [133, 139, 208], which must be

renormalized nontrivially in general. Since we use as input for the evaluation of the form

factors Xi the ghost-gluon scattering kernel renormalized within the Taylor prescription of

Eq. (5.16), our Gauge Technique three-gluon vertex results are automatically renormalized

in this same scheme, as discussed in the end of Section 4.3. Evidently, in comparing our

results to calculations performed in different schemes, finite renormalizations may be

necessary, in order to have the different results in the same prescription. We will point

out explicitly when this is done in this thesis.

As for the numerical methods necessary, the most difficult task was the evaluation of

the Ai, already discussed in the previous chapter. Now, given the tabulated data for these

form factors, the BC solution for the Eq. (4.36) at a certain triple (q, p, r) may require

values of the Ai at points not existent in the table. When these points are between

tabulated data we use the tensor product of B-splines method [209] for interpolation.

Yet, Eq. (4.36) could require the evaluation of Ai for momenta beyond the range originally

computed. To avoid this issue, we took the precaution of computing the Ai in a range much

larger than that intended for the evaluation of theXi. Specifically, as stated in Section 5.4,

the Ai were computed for squared momenta in the range [5× 10−5 GeV2, 104 GeV2] ,

whereas we will evaluate the Xi for squared momenta between [10−3 GeV2, 103 GeV2] .

6.2 General kinematics results

To present our results in general Euclidean kinematics, we will resort again to 3D plots,

on the lines of those of Subsection 5.4.1, using again the spherical coordinates notation

similar to Eq. (D.16), i.e. Xi(q, r, p) ≡ Xi(q
2, r2, θ). Notice that θ now stands for the

angle between q and r, and is not necessarily equal to the angle between q and p. The

effect of varying the parameter γ in Eq. (3.51) turns out to not be appreciable in the 3D

plots and we have thus chosen to present only the surfaces corresponding to γ = 0.

In the Figs. 6.1, 6.2 and 6.3, we show surfaces for the Xi(q
2, r2, θ), for i = 1, 2 and 3,

as functions of q2 and r2 and fixed θ. To cover the angular dependence, we show three
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Figure 6.1: Three-gluon vertex form factorX1(q
2, r2, θ) for θ = 0 (top left), π/3 (top right)

and 2π/3 (bottom left). The Abelianized X̂1(q
2, r2, θ) is shown on the bottom right.

plots for each Xi, with θ = 0, π/3 and 2π/3.

In order to assess the effect of the ghost-sector in the BC solution for each Xi, we

also show in the bottom right panel of each of Figs. 6.1, 6.2 and 6.3 the corresponding

Abelianized approximation, X̂i, of Eq. (4.38), for which Hνµ and F (q2) are set to their

tree level values. Notice that the Abelianized approximation satisfies the constraint of

Eq. (4.28) trivially. In addition, the Abelianized form factors X̂i have no dependence on

the angle, so we only need to show them for θ = 0.

For the form factors Xi, for i = 1, 2 and 3, it is clear from Figs. 6.1, 6.2 and 6.3 that

the angular dependence is mild and their (anti-)symmetries with respect to the exchange

q2 ↔ r2, expressed by Eq. (4.35), are preserved. Moreover, we see that the Abelianized

approximations, X̂i, already capture the main qualitative features of the results, albeit

quantitatively different. In particular, we see that X1(q
2, r2, θ) and X2(q

2, r2, θ) diverge
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Figure 6.2: Three-gluon vertex form factorX2(q
2, r2, θ) for θ = 0 (top left), π/3 (top right)

and 2π/3 (bottom left). The Abelianized X̂2(q
2, r2, θ) is shown on the bottom right. For

better visibility, the q2 and r2 axes in this figure are rotated by π/2 with respect to the
other 3D figures.

logarithmically as either q2 or r2 tends to zero. This behavior is solely determined by the

logarithmic IR divergence of J(q2), which in turn is a consequence of the masslessness

of the ghosts (see Section 3.4), and for this reason is present already in the Abelianized

versions, X̂1(q
2, r2, θ) and X̂2(q

2, r2, θ).

In contrast, the form factor X3 exhibits a much steeper divergence in comparison with

X1(q
2, r2, θ) and X2(q

2, r2, θ). In fact, the divergence of X3 is a simple pole when all

momenta vanish, and for this reason, we chose to render Fig. 6.3 with logarithmic scale

in the vertical axis as well.

It is seen clearly in Fig. 6.3 that the steeper divergence of X3(0, 0, 0) is present already

at the Abelianized level, i.e. X̂3(0, 0, 0) is also a pole. Consequently, this behavior cannot
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Figure 6.3: Three-gluon vertex form factorX3(q
2, r2, θ) for θ = 0 (top left), π/3 (top right)

and 2π/3 (bottom left). The Abelianized X̂3(q
2, r2, θ) is shown on the bottom right.

be caused by the ghost sector dressings, F (q2) and Ai, and we can analyze it in the simpler

Abelianized approximation.

To study the X̂3(0, 0, 0) behavior we start by setting q2 = r2 in Eq. (4.38), that is, we

approach the all momenta vanishing limit along the diagonal of the blue surface in the

bottom right panel of Fig. 6.3. Evidently, due to the q2 − r2 denominator, the expression

for X̂3(q
2, r2, p2) in Eq. (4.38) for q2 = r2 becomes a derivative, which in Euclidean space

reads

X̂3

(
q2, q2, 2q2(1 + cos θ)

)
= −dJ(q

2)

dq2
, (6.1)

where we used momentum conservation to write p2 = 2q2(1 + cos θ). Then, it is obvious

that since J(q2) is logarithmically IR divergent, i.e. contains an “unprotected” ln(q2/µ2),

the X̂3

(
q2, q2, 2q2(1+ cos θ)

)
of Eq. (6.1) contains a simple pole, of the form 1/q2. Hence,
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the pole divergence observed in Fig. 6.3 for X3 when all momenta vanish is a consequence

of the logarithmic IR divergence of the J(q2), which in turn is the result of the masslessness

of the ghosts (see Section 3.4). In particular, for the fit (3.51), the Eq. (6.1) reads

X̂3(q
2, q2, 2q2(1 + cos θ)

)
= −CAαs

24π

[
1

q2

(
1 +

τ1
q2 + τ2

)
− τ1

(q2 + τ2)2
ln

(
q2

µ2

)]
+ · · · ,

(6.2)

where the ellipses denote IR finite terms. Note that Eq. (6.2) contains in addition a

logarithmic divergence, which is however, subleading.

Given the importance of pole divergences in vertices in this work, it is necessary to

clarify the implications of the divergence ofX3 and distinguish it from the mass-generating

poles discussed in Chapter 3 (see also [4]).

Firstly, the pole divergence of X3(0, 0, 0) does not produce a pole in the three-gluon

vertex itself. In particular, it does not in any way contradict our assertion that we

are determining the regular part, Γαµν(q, p, r), of the vertex. Indeed, a pole in a given

form factor does not necessarily imply a pole in the vertex itself, since the form factors

come accompanied by tensor structures that, in general, contain momenta. The X3,

in particular, appears in the BC basis of Eq. (4.29) multiplied by the tensor ℓ3αµν of

Eq. (4.30), which contains three momenta. Given that the pole divergence of X3 happens

when all momenta vanish, the tensor ℓ3αµν goes to zero faster than enough to cancel the

1/q2 divergence of the form factor.

Consequently, since Γαµν(q, p, r) remains regular, the simple pole in X3 is not the kind

of divergence that triggers the gluon mass generation mechanism, explained in Chapter 3,

which requires the vertex itself to contain (longitudinal) poles. Finally, the divergence in

X3 does not in any way appear as a pole in the transversely projected vertex discussed in

Section 4.5. Indeed, since the derivative of J(Q2) appears multiplied by Q2 in Eq. (4.61),

its contribution to Lsym(Q2) is IR finite.

Another important point we would like to discuss is the IR suppression of the three-

gluon vertex with respect to its tree level, which has been the subject of much recent

interest [4, 7, 8, 43–60] for its phenomenological and theoretical implications [5, 6, 56,

57, 62, 63, 71]. It is clear from Fig. 6.3 that the form factor X1, which accompanies the

tree-level tensor structure of the vertex, is suppressed with respect to its tree-level value,

X
(0)
1 = 1, over a large region in the IR before its logarithmic divergence flips its sign.
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Additionally, we notice that the Abelianized approximation, X̂1 is even more suppressed

in the same region than the full result Xi. From this comparison we can conclude that the

IR suppression of the three-gluon vertex, at the level of the Gauge Technique solution, is

dominated by the corresponding suppression of the kinetic term of the gluon propagator,

J(q2).

Now, it may be argued that the one-loop result already displays IR suppression with

respect to tree level, since it is also logarihtmically divergent, as is clear from the expression

in Eq. (B.3). Nevertheless, we find that the nonperturbative X1 is much more suppressed

than the one-loop result. For a concrete demonstration of this assertion, we computed

the one-loop version of X1(q
2, r2, θ) for general q2 and r2, where we chose θ = π/2, such

that q · r = 0, to simplify the calculation a little. The result is given (in Minkowski space)

in Eq. (B.29); note that the one-loop expression must be renormalized in the Taylor

scheme by using Eq. (B.34), to compare to our nonperturbative X1. Then, in Fig. 6.4

we contrast our Gauge Technique X1 (heat-mapped surface) to the one-loop result of

Eq. (B.29) (cyan transparent surface). The comparison of the two surfaces shows clearly

that the suppression of the nonperturbative X1 is much stronger than that of its one-loop

counterpart.
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Figure 6.4: Left: Comparison of the nonperturbative (heat-mapped surface) X1(q
2, r2, θ),

for θ = π/2, to its one-loop counterpart (cyan surface) of Eq. (B.29). Right: Special
kinematic cases of the nonperturbative X1(q

2, r2, π/2). The blue continuous curve corre-
sponds to the diagonal q2 = r2. The red dashed, yellow dotted and purple dot-dashed are
obtained by fixing q2 and varying r2.

It is also interesting to notice that X1(q
2, r2, θ) is largest along the diagonal q2 = r2,

decreasing as we keep one momentum fixed and vary the other. On the right panel of
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Fig. 6.4 we illustrate this behavior by comparing slices of the surface on the left, and it is

seen more clearly that q2 = r2 yields the highest curve.

Figure 6.5: Three-gluon vertex form factor X10(q
2, r2, θ) for θ = 0 (top left), π/3 (top

right), 2π/3 (bottom left) and π/2 (bottom right).

Finally, in Fig. 6.5 we show the form factor X10(q
2, r2, θ). Since for this function

the corresponding Abelianized approximation of Eq. (4.38) vanishes identically, we fill

in the bottom right panel of Fig. 6.5 with an additional angle, θ = π/2. Interestingly,

this form factor was found by Davydychev, Osland and Tarasov1, to vanish identically

at one loop [208]. In our nonperturbative results, X10 does not vanish identically; but is

extremely suppressed in comparison to the other Xi. Moreover, our X10 shows no sign

of IR divergence, in spite of the logarithmic divergences of the ingredients appearing in

Eq. (4.36), namely A3 (see Table 5.1) and J(q2), which indicates a strong cancellation of

the inputs in the BC solution.

1Also by BC [126], in the Feynman gauge, ξ = 1.
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6.3 Special kinematic configurations

We consider now two special kinematic limits for which we may perform additional

comparisons to the one-loop behavior of Γαµν(q, r, p). Given the focus of this section on

the behavior of the nonperturbative Xi for large momenta, we will restrict ourselves to

the γ = 0 results, since the different values of γ furnish nearly identical UV tails for the

J(q2) (see Fig. 3.15) and hence the Gauge Technique three-gluon vertex.

The first configuration we consider is the totally symmetric limit defined in Minkowski

space in Eq. (B.5). Specifically, the totally symmetric configuration is obtained by ex-

tracting the q2 = r2 diagonals from the θ = 2π/3 surfaces of Figs. 6.1, 6.2, 6.3 and 6.5.

Evidently, by Bose symmetry, the form factors X2(Q
2) and X10(Q

2) vanish identically in

this kinematic limit, such that we focus on X1(Q
2) and X3(Q

2).

In Fig. 6.6, the nonvanishing Xi(Q
2) are represented by blue continuous curves and are

compared to their one-loop values of Eq. (B.25), after conversion to Euclidean space and

renormalization in the Taylor scheme using Eq. (B.34), represented by red dashed lines. In

this figure we can see again and in more detail some of the features of X1 and X3 already

discussed in the previous sections; especially, (a) the logarithmic and pole IR divergences

of X1 and X3, respectively, and (b) the stronger suppression of the nonperturbative X1

than exhibited by its one-loop counterpart, with respect to the tree-level value X
(0)
1 = 1.

Next, we notice that while in the IR both the nonperturbative X1 and X3 deviate

substantially from their corresponding one-loop results, they approach their perturbative

behaviors for large Q2.

Still in Fig. 6.6 we show a physically motivated fit for the nonperturbative X1(Q
2)

(purple dotted line) given by,

X1(Q
2) =1 +

CAαs

96π

[
1 +

κ1
1 + (Q2/κ2)

]{
33 ln

[
Q2 + ρℓm

2(Q2)

µ2

]
+ ln

(
Q2

µ2

)}

+
CAαs

16π
(1− I) , (6.3)

with m2(Q2) given by Eq. (3.50) with γ = 0, the constant I is defined in Eq. (B.7) and

the fitting parameters are κ1 = 135.3, κ2 = 0.086 GeV2, and ρℓ = 140.4. The above fit

was designed to reproduce the one-loop behavior of X1(Q
2) for large Q2.

The second kinematic configuration we consider is the asymmetric limit, defined by
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Figure 6.6: Left: Nonperturbative form factor X1(Q
2) in the totally symmetric configura-

tion (blue continuous) compared to its one-loop counterpart of Eq. (B.25) (red dashed).
Also shown is the fit of Eq. (6.3) (purple dotted) for the nonperturbative result. Right:
Same comparison but for the X3(Q

2). For this form factor we have not constructed a fit.

setting the momentum p = 0. Note that in our spherical coordinates notation this

limit corresponds to r2 = q2 with the angle θ = π. Hence we may write equiva-

lently Xi(q,−q, 0) or Xi(q
2, q2, π). In this kinematic configuration, only the form factors

X1(q
2, q2, π) and X3(q

2, q2, π) are nonvanishing and the corresponding one-loop results are

given by Eq. (B.28), after duly renormalizing with Eq. (B.34) and converting to Euclidean

space.

The Gauge Technique and one-loop Xi(q
2, q2, π) are represented in Fig. 6.7, by blue

continuous and red dashed curves, respectively. Clearly, the asymmetric X1 and X3

exhibit the same overall features of the symmetric case of Fig. 6.6. The only additional

comment we should make is that in the asymmetric limit the nonperturbative Xi seem to

not recover exactly the UV tails of their one-loop results, but run parallel to them, with

small offsets at large momenta.

This small discrepancy is likely due to the fact that the input Ai violate the STI

constraint of Eq. (4.28) in this kinematics. Indeed, since p = 0, the asymmetric limit

corresponds to the most extreme instance of unequal scales for the arguments of the

Xi(q, r, p). As we have discussed in Section 6.1, this is precisely the situation where the

violation of the constraint is expected to manifest in our computation of the Xi. In

contradistinction, the symmetric limit of Fig. 6.6 has the constraint of Eq. (4.28) satisfied

trivially for all the Ai appearing in the BC solution. Anyhow, the nonperturbative and

one-loop Xi(q
2, q2, π) still agree satisfactorily for most purposes.
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Figure 6.7: Left: Nonperturbative form factor X1(q
2, q2, π) in the asymmetric configura-

tion (blue continuous) compared to its one-loop counterpart of Eq. (B.28) (red dashed).
Right: Same comparison but for the X3(q

2, q2, π).

6.4 Comparison to other nonperturbative results

While the results of the previous section establishes that the nonperturbative BC

construction of Γαµν adequately reproduces the perturbative regime for large momenta,

it is instructive to compare our results to those obtained by different nonperturbative

methods that probe the IR. In this section, we compare our three-gluon vertex results to

SDE solutions [53, 59] and lattice simulations [44, 45].

Because different authors have used various tensor bases, and correspondingly different

definitions of form factors, a direct comparison of their results to our Xi is not generally

possible. Nevertheless, certain transverse projections of the three-gluon vertex, which

can be written as linear combinations of the Xi and, in general, also the Yi, have been

studied previously. Since in the Gauge Technique the “transverse” form factors, Yi, are

undetermined, in the projections appearing below that involve these quantities we have

no option at this point but to resort to the additional approximation Yi = 0. Evidently,

this constitutes an additional source of error, whose impact on the results cannot be fully

addressed at the moment.

The transverse projections we shall consider can all be written in the general form

L(q, r, p) =
W αµν(q, r, p)

L
αµν(q, r, p)

Wαµν(q, r, p)Wαµν(q, r, p)
, (6.4)

for some Wαµν(q, r, p) which depends on the particular choice or needs of the different

authors. In Eq. (6.4), we use again an overline to denote contraction with three transverse
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projectors, i.e.
L
αµν(q, r, p) := Pβ

α(q)P
ρ
µ(r)P

σ
ν (p)

L
βρσ(q, r, p) . (6.5)

Moreover, we recall that the double struck
L
αµν represents the full vertex, including

pole part. However, since the pole term Vαµν(q, p, r) in Eq. (3.29) is strictly longitudinal

[Eq. (3.31)], it decouples from the transversely projected vertex, such that the Eq. (6.4)

may as well be cast as

L(q, r, p) =
Wαµν(q, r, p)Γαµν(q, r, p)

Wαµν(q, r, p)Wαµν(q, r, p)
. (6.6)

Importantly, since the pole part Vαµν(q, p, r) does not appear in projections of the form of

Eq. (6.6), calculations of the vertex that restrict themselves to such transverse projection

cannot directly access the pole structure of the vertex.

6.4.1 Comparison to SDE results

In Refs. [53, 59] the three-gluon vertex SDE was solved numerically under certain

approximations. More specifically, the authors considered the transverse projection of

Eq. (6.6) with

Wαµν(q, r, p) → W SDE

αµν (q, r, p) := Γ
(0)

αµν(q, r, p) . (6.7)

We denote this particular definition of L(q, r, p) by LSDE(q, r, p).

Substituting the BC basis expression for Γαµν(q, p, r) given by Eqs. (4.31), (4.29)

and (4.25) into Eq. (6.6) and using the above definition of W SDE

αµν (q, r, p), the L
SDE(q, r, p)

can be expressed in terms of the form factors Xi(q, r, p) and Yi(q, r, p). The resulting

expressions are rather lengthy in general kinematics, but simplify considerably for certain

limits which we consider next.

(i) Totally symmetric configuration: In the totally symmetric limit defined by Eq. (B.5),

the LSDE(q, r, p) reads (in Euclidean space)

LSDE(Q2) = X1(Q
2)− 10

11
Q2X3(Q

2) +
5

11
Q4Y1(Q

2)− 4

11
Q2Y4(Q

2) . (6.8)

As we will have to omit the undetermined Yi(Q
2) from Eq. (6.8) in our comparison,
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let us at least note that at one-loop, Eq. (B.25) yields

5

11
Q4Y

(1)
1 (Q2)− 4

11
Q2Y

(1)
4 (Q2) = 0.039 . (6.9)

using αs = 0.22 as in the rest of this work. The smallness of the one-loop value of

the Yi(Q
2) terms suggests that their omission from Eq. (6.8) should be forgivable at

a first approximation.

(ii) Orthogonal symmetric configuration: Setting the momenta q and r to be orthogonal,

θ = π/2, with equal magnitudes, q2 = r2, one obtains

LSDE(r2, r2, π/2) =
1

7
[X1(r

2, r2, π/2) + 6X1(2r
2, r2, 3π/4)− r2X3(r

2, r2, π/2)

− 8r2X3(2r
2, r2, 3π/4) + r4Y1(r

2, r2, π/2) + 4r4Y1(2r
2, r2, 3π/4)

− 3r2Y4(r
2, r2, π/2)] . (6.10)

Note that in this configuration p2 = 2r2.

(iii) Asymmetric limit: In the p = 0 limit, equivalently q2 = r2 with θ = π, LSDE(q, r, p)

attains its simplest form, namely

LSDE(q2) = X1(q
2, q2, π)− q2X3(q

2, q2, π) . (6.11)

In Ref. [53, 59] this configuration is referred to as “orthogonal soft” and defined

by letting q = 0 with θ = π/2. However, by virtue of the Bose symmetry of the

three-gluon vertex, LSDE(q, r, p) reduces to an expression exactly equivalent [4] to

Eq. (6.11) whichever momentum q, r or p is set to zero, with only the substitution

of q2 by r2 or p2.

A remarkable property of the asymmetric configuration is that it does not involve

“transverse” form factors, Yi, which is due to the fact that the transverse tensors

tjαµν of Eq. (4.32) all vanish if any one of q, r or p is set to zero.

Naturally, to compare our results, which are given in the Taylor renormalization

scheme, to the SDE solution of Ref. [53, 59], the two sets of data must be renormal-

ized in the same scheme. To ensure that this is the case, we rescale all sets of results
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Figure 6.8: Comparison of the results for LSDE using our Gauge Technique three-gluon
vertex (blue continuous) to the SDE results of Refs. [53, 59] (red dashed). The kinematic
configurations shown are: (i) the totally symmetric (top left), Eq. (6.8), the (ii) orthogonal
symmetric (top right), Eq. (6.10), and the (iii) asymmetric (bottom), Eq. (6.11).

such that LSDE(q, r, p) reduces to tree-level at a point Q2 = µ2 in the totally sym-

metric configuration. That is, we compute our version of LSDE(q, r, p) and rescale it,

LSDE(q, r, p) → zSDE

3 LSDE(q, r, p), by the finite zSDE

3 such that

LSDE(µ2) = 1 . (6.12)

The exact same procedure is then applied for the SDE data set. As such, both sets agree

exactly at the point LSDE(µ2), and can be compared fairly.

The comparison of our results to the SDE solution of Ref. [53, 59] is shown in Fig. 6.8,

represented by blue continuous and red dashed curves, respectively. For this analysis, we

chose to present our results in the case γ = 0.2, although other values of γ lead to similar

curves. It is clear from this figure that the Gauge Technique and SDE solutions have

similar shapes, but differ significantly in the region of momenta about 0.1 - 1 GeV. In the
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asymmetric case the range over which the results differ is even longer and extends to the

UV. Nevertheless, it is remarkable that the positions of the zero-crossings of the Gauge

Technique and SDE results almost coincide.

6.4.2 Comparison to lattice simulations

Lastly, we compare our Gauge Technique results to the lattice simulations of [44, 45].

In Refs. [44, 45] two kinematic configurations were considered, which give rise to two

different projections of the form (6.6).

The first configuration is again the totally symmetric limit of Eq. (B.5). However, the

projection considered on the lattice simulation is different from that treated in the SDE

analysis of [53, 59], furnishing a linear combination of Xi(Q
2) and Yi(Q

2) different from

Eq. (6.8). Specifically, the projection performed on the lattice is given by substituting [44,

45]

Wαµν(q, r, p) → W sym
αµν (q, r, p) = Γ

(0)

αµν(q, r, p) +
1

2r2
(r − p)α(p− q)µ(q − r)ν , (6.13)

into Eq. (6.6).

In this case, the appropriate combination of BC basis form factors reads

Lsym(Q2) = X1(Q
2)− Q2

2
X3(Q

2) +
Q4

4
Y1(Q

2)− Q2

2
Y4(Q

2) , (6.14)

which is the Euclidean space version of Eq. (B.24). Once again, we will have to omit the

“transverse” form factors Yi(Q
2). We nonetheless mention that at one-loop the results in

Eq. (B.25) yield, for αs = 0.22, the small constant value

Q4

4
Y

(1)
1 (Q2)− Q2

2
Y

(1)
4 (Q2) = 0.08 . (6.15)

The second kinematic limit considered on the lattice is the asymmetric limit, p = 0,

with the projection [44, 45]

Wαµν(q, r, p) → W asym
αµν (q, r, p) = 2qνPαµ(q) . (6.16)
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With the above substitution into Eq. (6.6) one finds in the asymmetric limit

Lasym(q2) = X1(q
2, q2, π)− q2X3(q

2, q2, π) . (6.17)

Notice that the lattice projection Lasym(q2) leads to the exact same combination of Xi as

the LSDE(q2) of Eq. (6.11).

The lattice data of [44, 45] is renormalized in two different schemes for each of the

above configurations. Specifically, the symmetric configuration data is renormalized such

that Lsym(µ2) = 1, whereas the asymmetric data is renormalized with Lasym(µ2) = 1,

where µ = 4.3 GeV. In order to compare our Gauge Technique results fairly to the lattice,

we rescale our expressions for Lsym(Q2) and Lasym(q2) by

Lsym(Q2) → zsym3 Lsym(Q2) , Lasym(q2) → zasym3 Lasym(q2) , (6.18)

with the finite renormalization constants defined by the prescriptions

Lsym(µ2) = 1 ; Lasym(µ2) = 1 . (6.19)

Note that the constants zsym3 and zasym3 have different numerical values, namely zsym3 = 0.95

and zasym3 = 0.93. Nevertheless, they both differ only slightly from unit, as is expected for

MOM schemes in general [139].
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Figure 6.9: Comparison of our Gauge Technique results for Lsym(Q2) (left) given by
Eq. (6.14), with Yi(Q

2) → 0, and for Lasym(q2) (right) of Eq. (6.17) to the corresponding
lattice data of Refs. [44, 45] (circles). The blue continuous, red dashed, yellow dotted and
purple dot-dashed curves correspond to γ = 0, 0.1, 0.2 and 0.3, respectively, in Eq. (3.51).

The comparison of our results to those of the lattice, from [44, 45], is shown in Fig. 6.9.
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We focus on the IR behavior and show our results for each value of γ = 0, 0.1, 0.2 and 0.3

by blue continuous, red dashed, yellow dotted and purple dot-dashed curves, respectively.

It is clear from Fig. 6.9 that our Gauge Technique results capture the qualitative be-

havior of the Lsym(Q2) and Lasym(q2) rather well and even agree satisfactorily at a quan-

titative level. In particular, both lattice and Gauge Technique results exhibit distinguish-

ably a zero-crossing for each of the kinematic limits considered, Lsym(Q2) and Lasym(q2).

Naturally, the presence of the zero-crossing is accompanied by an overall suppression of

Lsym(Q2) and Lasym(q2) in the IR, with respect to their tree-level values [L(0) = 1, for

both projections], and is consistent with the prediction in Section 3.4 based on the non-

perturbative masslessness of the ghosts [52].

The agreement between our Gauge Technique and the lattice results in Fig. 6.9 is to be

contrasted with the clear incompatibility of the Naive Gauge Technique construction with

the lattice data, as had been shown in Fig. 4.1. When the longitudinality of the massless

excitations of the three-gluon vertex, responsible for generating the dynamical gluon mass,

is properly taken into account in the Gauge Technique construction, as done in this thesis,

not only is the spurious pole seen in Fig. 4.1 eliminated entirely, but, with proper ghost

sector corrections, even quantitative agreement is obtained in Fig. 6.9. Surely enough,

the agreement seen in Fig. 6.9 is the most important result in this work.

Let us make a few more observations regarding our results:

(i) The main manifestation of the uncertainty in the running of the gluon mass, modeled

in our analysis by varying the exponent γ in Eqs. (3.50) and (3.51), is in the position

of the zero-crossings of Lsym(Q2) and Lasym(q2). Specifically, the positions of the

zero-crossings, for both Lsym(Q2) and Lasym(q2), moves towards larger momenta as

the mass runs faster, i.e. for larger values of γ. Comparing to Fig. 3.15, we see that

this positive correlation between γ and the position of the zero-crossing is already

present in the input J(q2).

(ii) Since the L projections of Eqs. (6.14) and (6.17) involve different combinations of

X1 and X3, and each of these involves various combinations of Ai and F (q2), in

addition to J(q2) in the BC solution of Eq. (4.36), there is no reason to expect

the crossings of Lsym(Q2) and Lasym(q2) to coincide with that of the kinetic term.

In Table 6.1, we give exact values for the positions of the zero-crossings of J(q2),

Lsym(Q2) and Lasym(q2) obtained in our calculations. Indeed, from this table we



6.4 Comparison to other nonperturbative results 134

γ qJ Qsym
L qasymL

[in MeV] [in MeV] [in MeV]
0 140 109 180
0.1 166 128 204
0.2 187 143 221
0.3 202 155 237

Table 6.1: Comparison of the zero-crossing positions qJ , Q
sym
L and qasymL , of the input

J(q2), the Lsym(Q2), and the Lasym(q2), respectively, for each value of γ.

see that the zero-crossings of these three functions are different, even for fixed γ.

Specifically, the crossing of Lsym(Q2) is shifted by about 20% towards the IR with

respect to that of J(q2), whereas the crossing of Lasym(q2) is shifted about 20% to

the UV.

(iii) We also point out that the Gauge Technique and lattice results for Lsym(Q2), seen in

Fig. 6.9, agree acceptably in spite of the fact that we have omitted the “transverse”

form factors, Yi(Q
2), in Eq. (6.14). This observation provides a posteriori evidence

that the transverse form factors are subleading in the IR.
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7

Discussion and Conclusions

We performed a detailed analysis of the implementation of the Gauge Technique for the

three-gluon vertex in the presence of dynamical gluon mass generation. We have demon-

strated that a proper Gauge Technique construction, in this context, requires additional

care to retain the longitudinality of the massless bound state vertex poles associated with

gluon mass generation in the Schwinger mechanism. Since the presence of longitudinally

coupled vertex poles was not entertained in the classical works [124, 126], a naive appli-

cation of the BC solution with massive gluon propagators distorts the pole content of the

vertex, causing the poles to spuriously survive transverse projections [4]. Nevertheless, we

demonstrated that a proper account of the longitudinal nature of the vertex poles in the

BC construction cures this issue entirely, furnishing results for the transversely projected

three-gluon vertex that are free of poles, as they should.

The crucial step of the Gauge Technique with dynamically massive gluons is to split

the original STI into two analogous equations, one governing the regular part of the vertex,

and the other relating its pole content to the gluon dynamical mass [4]. The net effect

of this construction is that in the BC solution for the regular part of the vertex the full

gluon propagator should be substituted by its kinetic term only [4].

Beyond establishing the theoretical viability of the Gauge Technique construction in

the presence of dynamical gluon mass, we have concretely evaluated the three-gluon ver-

tex with modern nonperturbative ingredients for the ghost propagator, gluon kinetic term

and ghost-gluon scattering kernel [3]. We observed satisfactory agreement, both quali-

tative and quantitative, to SDE [53, 59] and lattice [44, 45] results in the IR, while the

perturbative behavior of the vertex is recovered for large momenta. In this respect, it is

interesting to note that the effect of the ghost sector functions appearing in the Gauge
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Technique solution for the three-gluon vertex amounts to quantitative corrections only,

albeit relevant ones. Indeed, the Abelianized approximation of the vertex, where only

the kinetic term of the gluon propagator is retained in the calculation, already captures

the main features of the more complete result, although we emphasize that quantitative

agreement requires the ghost sector to be taken into account [4].

Of particular importance for future works is the observed IR suppression of the three-

gluon vertex with respect to its tree level [4, 7, 43–60]. We have demonstrated that

the suppression of the nonperturbative vertex is much stronger than that of its one-loop

counterpart. Moreover, we have shown that in the Gauge Technique this suppression is

dominantly due to the kinetic term of the gluon propagator, which is itself suppressed in

comparison to its respective tree level value.

Within this thesis, we have explored the effect of the three-gluon vertex suppression

on the nonperturbative ghost-gluon scattering kernel. As shown in detail in Chapter 5,

dressing the three-gluon vertex that appears in the SDE governing Hνµ tends to reduce the

magnitude of the form factors of the ghost-gluon scattering kernel and vertex. Neverthe-

less, in our truncation of the Hνµ SDE we have modeled the three-gluon vertex dressing by

retaining only its tree-level tensor structures and approximated the corresponding form

factors by their Abelianized forms. Importantly, while it is natural to expect that the

dominant effect of the three-gluon vertex is encoded into its tree-level tensor structures,

the form factors that vanish at tree-level are found to be non-zero nonperturbatively. As

such, considering only the tree-level tensor structure of the three-gluon vertex could over-

estimate the overall suppression, which may be partially compensated by the remaining

form factors. Therefore, it would be instructive to explore the impact of the full tensor

structure of the three-gluon vertex in the ghost-gluon interaction, which we would like to

do in the near future.

Similarly, other studies [5, 6, 56, 57, 62, 63, 71] have investigated the impact of the

three-gluon vertex suppression on various quantities of theoretical and phenomenological

interest, such as gluon mass generation and gluonic bound states spectra, mostly also

resorting to very simplified models of the three-gluon vertex. Given the importance of

this effect in the recent literature, it would be interesting to reassess the implications of

the three-gluon vertex suppression with more complete models. In this regard, our Gauge

Technique results could provide useful input.
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Another aspect to which we have devoted special attention is the survival of some IR

divergences in QCD in spite of the IR finiteness of the gluon propagator. Specifically, the

nonperturbative masslessness of the ghost field is known to imply [52] that loop integrals

containing ghost propagators can be IR divergent. We have shown that some form factors

of the ghost-gluon scattering kernel and of the three-gluon vertex exhibit IR divergences

of precisely this origin. Moreover, we have distinguished these set of divergences from

the mass-generating vertex poles, emphasizing that the divergence of some form factors

of a given vertex does not necessarily imply the divergence of the vertex as whole. In

particular, the Hνµ and the regular part of the three-gluon vertex, Γαµν , are IR finite, in

spite of containing IR divergent form factors, due to the momenta in their tensor structures

vanishing in the limits where their form factors diverge.

As a consequence of the IR divergence of its form factors, the transversely projected

three-gluon vertex displays a characteristic zero-crossing in the deep IR, which is shared

by the kinetic term of the gluon propagator. The latter fact has important implications

for the gluon propagator, namely, the divergence of its derivative at the origin, and the

existence of a maximum in Euclidean space, with ensuing positivity violation [7, 52], as

discussed in Section 3.5. Combined, these two properties can help reconstruct the gluon

propagator in the complex plane [114].

Given that the gluon kinetic term encodes such critical information about the behavior

of the gluon propagator, it is clearly deserving of more extensive studies. Yet, its SDE is

extremely difficult to truncate and renormalize consistently, while lattice simulations can

only access the full propagator, with no direct handle over its kinetic and dynamical mass

components.

A rather enticing implication of this work is that our Gauge Technique construction

may as well be “inverted”; instead of using the propagator functions to compute the three-

gluon vertex, we could use the lattice results for the latter to determine the so-far elusive

gluon kinetic term. Indeed, we have been exploring this possibility, with a groundwork

study published [8] and a more extensive analysis recently submitted [9].

Now, our analysis has evidently been carried out under approximations and simplifi-

cations, whose impact should be addressed by further work.

To begin with, this study was carried out in the more strict context of pure Yang-Mills

QCD, for simplicity, but dynamical quarks should eventually be included in the analysis
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in order to accurately describe the physical world. In this context, it is important to

stress that although in this thesis we have derived the three-gluon vertex STI from the

pure Yang-Mills Lagrangian, that relation remains formally identical in the presence of

dynamical quarks [38, 39, 124, 126, 133]. As such, our analysis could be carried out

without major modification in the“unquenched”context, i.e. with quarks. To that end, it

would suffice to use as ingredients the correspondingly unquenched functions J(q2), F (q2)

and Hνµ(q, p, r). The latter two are expected to be only mildly affected by unquenching

effects [81], since ghosts do not couple directly to quarks. Consequently, we expect that the

leading unquenching effect on the Gauge Technique three-gluon vertex should be encoded

in the kinetic term of the gluon propagator, which is sensitive to the quark content of

the calculation [33, 210]. In fact, in a recent study we have performed such a partial

unquenching of the Gauge Technique three-gluon vertex, including quark effects on J(q2)

only, and found satisfactory agreement to unquenched lattice results [7].

Another limitation of our approach lies in the fact that the Hνµ we have used as input

for the Gauge Technique construction violates the STI constraint of Eq. (4.28), as a result

of the truncation of its SDE [3], which implies that our numerical results for the three-

gluon vertex only approximately satisfy the STI. It is important to emphasize, however,

that the breaking of symmetry associated with the violation of Eq. (4.28) is not related

to the presence of a gluon mass, but to the practical need to truncate the SDE. Indeed,

similar violation of the STI constraint would be obtained in a massless solution of the SDE,

under similar truncation, and, in fact, even in a perturbative calculation beyond one loop

if the diagrammatic corrections associated with (d3)νµ were omitted, as we had to do in

the present treatment. As such, we expect that this issue does not compromise the main

conclusion of this work that the Gauge Technique vertex is consistent with dynamically

generated gluon mass.

Yet, it would be interesting to develop a truncation of the SDE of Hνµ that satisfies

Eq. (4.28). Such a truncation would require a more sophisticated Ansatz for the vertices

that appear as inputs in the full SDE of Fig. 2.3. In particular, it would be necessary

to account for the ghost-ghost-gluon-gluon vertex appearing in diagram (d3)νµ of that

equation. Granted that the overall quantitative impact of this four-point function should

be small [59, 205], its inclusion in some form is needed to preserve gauge symmetry.

Perhaps, a Gauge Technique construction for that four-point function would be possible,
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on the lines of Ref. [211].

The most fundamental drawback of the Gauge Technique framework is that it leaves

the transverse form factors undetermined. For the purpose of this work, whose main

objective was to establish the adequacy of a Gauge Technique construction of the three-

gluon vertex in the presence of dynamical gluon mass, this issue is a minor concern.

Indeed, the uncertainty on the Yi form factors only affects our analysis inasmuch as we

need to compute certain linear combinations of Xi and Yi to compare to the results

obtained by different authors, using other tensor bases, and the lattice data, which is

necessarily transversely projected in Landau gauge. In fact, if we could compare our

results for the Xi directly to data obtained by other methods for these form factors, the

indetermination of the Yi in our analysis would not be a concern at all.

However, in application of our results to the evaluation of other quantities that depend

on the three-gluon vertex, e.g. Green’s functions obtained by SDEs and bound state

problems treated by BSEs, the omission of the transverse form factors, Yi, could be more

problematic. Case in point, it is well known from QED studies [106, 108, 111] that the

omission of the transverse part of the photon-fermion vertex in the fermion SDE frustrates

the cancellation of certain divergences, fundamentally distorting the UV behavior of the

resulting fermion propagator and compromising its multiplicative renormalizability [2, 25,

106, 108, 109, 111]. It is only natural to suspect that similar problems could arise in SDE

treatments of functions involving the three-gluon vertex, such as the dynamical gluon

mass equation [6, 212], if only the Gauge Technique vertex is used.

Hence, it is imperative that the transverse part of the vertex be studied in more depth,

which can only be accomplished by using other techniques, such as SDEs [50, 53, 54, 59].

Indeed, we have an ongoing investigation on the subject whose results we hope to make

public soon.



140

A

Feynman rules

In this appendix we collect the Feynman rules of pure Yang-Mills QCD, consistent

with the conventions adopted throughout this thesis.

The tree-level gluon and ghost propagators are given in Table A.1. The Feynman rules

for the vertices are given in Table A.2.

In addition to the expressions in Figs. A.1 and A.2 one must also account for: (i)

a minus sign for closed ghost loops, due to their Fermi statistics [133, 213]; and (ii)

the appropriate symmetry factors of diagrams that are unchanged by permuting internal

lines [213].

a b

µ ν

q

∆(0) ab
µν(q) = −iδab

[
Pµν(q)∆

(0)(q2) + ξ
qµqν
q2

]
∆(0)(q2) =

1

q2

a b
q

D
(0)
ab (q) = iδab

F (0)(q2)

q2
F (0)(q2) = 1

Figure A.1: Feynman rules for the tree-level gluon and ghost propagators.
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µ, c

ab

r

qp
−gfabcΓ(0)

µ (q, p, r) Γ(0)
µ (q, p, r) = qµ

µ, c

ν, a

b

r

q

p
−gfabcH(0)

νµ (q, p, r) H(0)
νµ (q, p, r) = gνµ

q

α, a

µ, bν, c

rp
gfabcL(0)

αµν(q, r, p)
L(0)
αµν(q, r, p) =gαµ(q − r)ν + gµν(r − p)α

+ gνα(p− q)µ

ρ, rσ, s

µ,m ν, n

Γ(0)mnrs
µνρσ(q, r, p, t)

Γ(0)mnrs
µνρσ = −ig2[fmsef ern (gµρgνσ − gµνgρσ)

+fmnef esr (gµσgνρ − gµρgνσ)

+fmref esn (gµσgνρ − gµνgρσ)]

Figure A.2: Feynman rules for the ghost-gluon, three-gluon and four-gluon vertices, as
well as for the ghost-gluon scattering kernel at tree-level; we choose the convention in
which all momenta are entering in the vertices. Note that at tree-level the four gluon
vertex is momentum independent.
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B

Some perturbative results

We collect here the one-loop results used throughout the text for the ghost-gluon

scattering kernel and the three-gluon vertex. The calculations presented in this appendix

were performed with the aid of Package X [214, 215].

All calculations have been carried out in Landau gauge, ξ = 0, using the Feynman

rules of Appendix A. We employ dimensional regularization [161, 216] with d = 4 − 2ǫ,

and use the shorthand notation for the integral measure

∫

ℓ

:=
µ2ǫ

(2π)d

∫
ddℓ , (B.1)

where µ is the ’t Hooft mass, introduced in order to keep the coupling constant, g, di-

mensionless [161] for any d.

With the above conventions, the UV divergences that appear at one-loop are all pro-

portional to
1

ǫ̃
:=

1

ǫ
− γE + ln(4π) , (B.2)

where γE ≈ 0.57722 is the Euler-Mascheroni constant.

An integral that is ubiquitous in the one loop calculation of 3-point functions is

ϕ(q, p, r) :=
−i(4π)d/2

η

∫

ℓ

1

(q + ℓ)2(p− ℓ)2ℓ2
, (B.3)

where,

η :=
Γ2(1− ǫ)Γ(1 + ǫ)

Γ(1− 2ǫ)
, (B.4)

and Γ(z) is the Euler function. The triangle integral of Eq. (B.3) is finite in four dimen-

sions and attains a particularly simple closed form in the totally symmetric configuration,
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defined in Minkowski space by

q2 = p2 = r2 = Q2 ,

q · p = q · r = p · r = −Q
2

2
. (B.5)

Specifically,

lim
q2=p2=r2=Q2

ϕ(q, p, r) := ϕ(Q2) =
I
Q2

, (B.6)

where

I :=
1

3

[
ψ1

(
1

3

)
− ψ1

(
2

3

)]
≈ 2.34391 , (B.7)

and ψ1(z) is the trigamma function, defined as

ψ1(z) :=
d2

dz2
ln[Γ(z)] . (B.8)

Notice that in Eq. (B.6) we simplify the functional dependence of scalar functions of three

momenta to the single scale, Q, when we specialize to the symmetric configuration.

Finally, the results in this appendix are given in Minkowski metric. They can be

transformed to Euclidean space using the rules of Appendix D.

The material in this Appendix is organized as follows. In Section B.1 we recall the

one loop results for the ghost and gluon propagators. In Sections B.2 and B.3 we give one

loop results for the ghost-gluon scattering kernel and the three-gluon vertex, respectively.

In Section B.4 we discuss the renormalization of Hνµ(q, p, r) and
L
αµν(q, r, p) consistent

with the STI of Eq. (2.91). Lastly, in Section B.5 we extend the one loop calculation of

Hνµ(q, p, r) to include a hard gluon mass as a regulator to study the IR divergences of its

form factors.

B.1 Propagators

At one loop, the gluon propagator is given by the well-known form [133]

∆
(1) ab
U µν(q) = −iδab Pµν(q)

1

q2J
(1)
U (q2)

, (B.9)

where we defined

∆
(1)
U (q2) =

1

q2J
(1)
U (q2)

, (B.10)
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and the unrenormalized J
(1)
U (q2) is given by

J
(1)
U (q2) = 1− αsCA

144π

{
78

[
1

ǫ̃
− ln

(
− q2

µ2

)]
+ 97

}
, (B.11)

with CA = 3 the Casimir eigenvalue in the adjoint representation. As for the ghost

dressing function, we have [133]

F
(1)
U (q2) = 1 +

αsCA

16π

{
3

[
1

ǫ̃
− ln

(
− q2

µ2

)]
+ 4

}
. (B.12)

Renormalizing Eqs. (B.9) and (B.12) in the MOM scheme of Eq. (2.92), the renormal-

ization constants defined in Eq. (2.89), are found to be

ZA = 1 +
αsCA

144π

(
78

ǫ̃
+ 97

)
,

Zc = 1 +
αsCA

16π

(
3

ǫ̃
+ 4

)
. (B.13)

Hence, the renormalized J (1)(q2) and F (1)(q2) reduce to

J (1)(q2) = 1 +
13αsCA

24π
ln

(
− q2

µ2

)
, (B.14)

F (1)(q2) = 1− 3αsCA

16π
ln

(
− q2

µ2

)
. (B.15)

B.2 Ghost-gluon scattering kernel

The Feynman diagrams for the ghost-gluon scattering kernel are shown in Fig. B.1,

where it is understood that the color factor −gfabc is extracted.

+

rµ

+

(d1)νµ (d2)νµ

rµ rµ

l

l

p p pν
q

ν
q

ν
q

H(1)
νµ (q, p, r) =

Figure B.1: Feynman diagrams for the ghost-gluon scattering kernel at one loop.

The results for the ghost-gluon scattering kernel are all found to be UV finite, in agree-
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ment with the Taylor theorem [39] (see Section 5.1.2). To avoid too much repetition, we

show here the results renormalized up to a choice of the finite part of the renormaliza-

tion constant (see Sections 2.5 and B.4 for more details on this freedom). Evidently, at

order g2 the multiplication of the renormalization constant Z1 with the unrenormalized

Hνµ(q, p, r) only yields contributions to the part that was nonzero at tree level. As such,

we write Z1 multiplying only the tree level term.

Below, we present results for four kinematics configurations, recalling that the most

general Lorentz structure of Hνµ(q, p, r) is given in Eq. (4.24).

1. Soft ghost limit: This kinematic configuration is defined by setting the momentum

of the ghost to p = 0, which implies, by momentum conservation, r = −q. The

tensorial decomposition of Hνµ(q, p, r) of Eq. (4.24) in this case collapses to

H(1)
νµ (q, 0,−q) = A

(1)
1 gµν + [A

(1)
2 + A

(1)
3 − A

(1)
4 − A

(1)
5 ] qµqν , (B.16)

where we omitted the functional dependence of the form factors on the remaining

momentum to make Eq. (B.16) compact.

In this kinematic limit, due to the Taylor theorem (see Section 5.1.2) the unrenor-

malized ghost-gluon scattering kernel reduces to tree level. Then, the form factors

are necessarily given by [cf. Eq. (5.14)]

A
(1)
1 (q, 0,−q) = Z1 ;

A
(1)
2 (q, 0,−q) + A

(1)
3 (q, 0,−q)− A

(1)
4 (q, 0,−q)− A

(1)
5 (q, 0,−q) = 0 ; (B.17)

with Z1 finite in Landau gauge and defined in Eq. (2.90).

2. Soft anti-ghost limit: This limit is defined by letting the anti-ghost momentum

vanish, i.e. q = 0. In this case, the tensorial structure of H
(1)
νµ (q, p, r) becomes

H(1)
νµ (0,−r, r) = A

(1)
1 (0,−r, r) gµν + A

(1)
3 (0,−r, r) rµrν , (B.18)

with the two surviving form factors given by

A
(1)
1 (0,−r, r) = Z1 +

11αsCA

32π
; A

(1)
3 (0,−r, r) = −11αsCA

32πr2
. (B.19)
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3. Soft gluon limit: This kinematic configuration is defined by r = 0, i.e. vanishing

gluon momentum. In this limit the tensorial structure of Hνµ(q, p, r) reduces to

H(1)
νµ (q,−q, 0) = A

(1)
1 (q,−q, 0)gµν + A

(1)
2 (q,−q, 0)qµqν , (B.20)

and the form factors attain the forms

A
(1)
1 (q,−q, 0) = Z1 ; A

(1)
2 (q,−q, 0) = 3αsCA

16πq2
. (B.21)

Curiously, the result for A
(1)
1 (q,−q, 0) in Eq. (B.21) differs from its tree-level value,

A
(0)
1 (q,−q, 0) = 1, only by the finite renormalization. Thus, its urenormalized value,

A
(1)
1U
(q,−q, 0) = 1, is just its tree level value. We emphasize that this result is not

an example of the Taylor theorem, which applies to the soft ghost, i.e. p = 0,

configuration, and holds to all orders (see Section 5.1.2). Instead, the fact that the

one-loop soft gluon result is A
(1)
1U
(q,−q, 0) = 1 may be a casual coincidence. At

this level, the contributions of diagrams (d1)νµ and (d2)νµ of Fig. B.1 to the form

factor A1 happen to cancel in the soft gluon configuration. This cancellation seems

to occur only because the gluon propagator scalar function, ∆(q2), and the ghost

propagator, D(q), differ only by a −i at tree level, i.e. ∆(0)(q2) = −iD(0)(q), and

would be easily spoiled by further dressing the vertices or the propagators.

4. Symmetric configuration: In the totally symmetric configuration, defined in the

Eq. (B.5), all tensor structures of the ghost-gluon scattering kernel survive, and the

form factors Ai are given by

A
(1)
1 (Q2) =Z1 +

αsCA

96π
(9 + I) , A

(1)
2 (Q2) =

αsCA

48πQ2
(4 + I) ,

A
(1)
3 (Q2) =− αsCA

96πQ2
(4 + 9 I) , A

(1)
4 (Q2) = − αsCA

48πQ2
(1 + 2 I) ,

A
(1)
5 (Q2) =

αsCA

48πQ2
(2− I) , (B.22)

with I the constant defined in Eq. (B.7).
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B.3 Three-gluon vertex

For the three-gluon vertex at one loop the Feynman diagrams are given in Fig. B.2.

Notice that diagrams (e2)αµν and (e3)αµν contain closed loops of ghosts, which lead to a

minus sign from the Fermi statistics of these fields. Moreover, the swordfish diagrams,

(e4)αµν , (e5)αµν and (e6)αµν , have a symmetry factor of 1/2, since, for each of these, the

two internal lines can be exchanged without changing the content of the diagram.

Labc
αµν(q, r, p) = +

(e1)αµν

(e2)αµν (e3)αµν

(e4)αµν

+
1

2
+
1

2
+
1

2

p, ν, c

p, ν, c

r, µ, b

r, µ, b

q, α, a

(e5)αµν (e6)αµν

q, α, a q, α, a q, α, a

p, ν, c r, µ, b

q, α, a

−−

q, α, a

p, ν, c r, µ, b

q, α, a

p, ν, c r, µ, b

r, µ, bp, ν, c p, ν, c r, µ, b

Figure B.2: Feynman diagrams for the three-gluon vertex at one loop.

In each of the kinematic configurations that we considered, the tensor structure of

the three-gluon vertex collapses to only a few independent tensors, instead of the 14 of

Eqs. (4.30) and (4.32). Consequently, some form factors appear in linear combinations,

making it impossible to determine the individual Xi and Yj from the final, collapsed,

expressions. Instead, to compute the individual form factors, they must first be separated

from the general kinematics result, and the desired kinematic limit be taken only as

the last step of the calculation. This procedure is facilitated by using the projectors of

Section C.2.

Unlike the ghost-gluon scattering kernel,
L
αµν(q, p, r) is found to be UV divergent in

Landau gauge. Importantly, in our one loop calculations we only find such divergences in
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the form factors that are non-zero at tree-level, namely X1, X4 and X7 [see Eq. (4.33)].

This had to be the case, since the other form factors cannot pick-up a renormalization at

order g2. Thus the finiteness of the non-tree-level form factors constitutes a sanity check

on our results.

We consider four kinematic limits and, again, we give the results renormalized, up to

a choice of the finite part of the renormalization constant.

1. Symmetric configuration: In the kinematic limit of Eq. (B.5) the tensor structure

of the three-gluon vertex collapses to [139, 208]

L
αµν(q, r, p) = Lsym(Q2)

L(0)
αµν(q, r, p)

−
[
X3(Q

2) +
Q2

2
Y1(Q

2)

]
(r − p)α(p− q)µ(q − r)ν (B.23)

+

[
X3(Q

2) +
Q2

2
Y1(Q

2) + Y4(Q
2)

]
(qνrαpµ − qµrνpα) .

with

Lsym(Q2) = X1(Q
2) +

Q2

2
X3(Q

2) +
Q4

4
Y4(Q

2) +
Q2

2
Y4(Q

2) . (B.24)

Then, the one loop results for the form factors are

X
(1)
1 (Q2) = Zfin

3 +
αsCA

144π

[
51 ln

(
−Q

2

µ2

)
− 52− 9 I

]
, X

(1)
2 (Q2) = 0 , (B.25)

X
(1)
3 (Q2) =

αsCA

48πQ2
(38− 7 I) , X

(1)
10 (Q

2) = 0 ,

Y
(1)
1 (Q2) = − αsCA

432πQ4
(587− 193 I) , Y

(1)
4 (Q2) =

αsCA

864πQ2
(365 + 179 I) ,

with I defined in Eq. (B.7) and Zfin
3 the finite part of the three-gluon vertex renor-

malization constant, Z3, defined by

Zfin
3 := Z3 −

17αsCA

48π ǫ̃
. (B.26)

The remaining form factors are all obtained from the above by Bose symmetry using

Eq. (4.34).

Notice that the vanishing of the form factors X2 and X10 in the symmetric config-
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uration is required by them being anti-symmetric under the exchange of q ↔ r [see

Eq. (4.35)].

2. Asymmetric configuration: The asymmetric configuration is defined by setting one

of the gluon momenta to zero, specifically we choose p = 0. By Bose symmetry,

similar results, with permuted arguments, would be obtained if we chose a different

leg to carry zero momentum. The tensor structure of the three-gluon vertex in this

kinematics reduces to [208]

L
αµν(q,−q, 0) = 2gαµqν [X1(q,−q, 0) + q2X3(q,−q, 0)]− 2qαqµqνX3(q,−q, 0)

−(qαgµν + qµgαν)[X1(0, q,−q)−X2(0, q,−q)] . (B.27)

Then, at one-loop the surviving form factors read

X
(1)
1 (q,−q, 0) = Zfin

3 +
αsCA

144π

[
51 ln

(
− q2

µ2

)
− 61

]
,

X
(1)
3 (q,−q, 0) = 37αsCA

96πq2
,

X
(1)
1 (0, q,−q)−X

(1)
2 (0, q,−q) = X

(1)
1 (q,−q, 0) . (B.28)

Individually, the terms X
(1)
1 (0, q,−q) and X(1)

2 (0, q,−q) both have a ln(0) IR diver-

gence in this kinematics. Nevertheless, their difference is finite.

3. General orthogonal configuration: In this configuration, the momenta q and r have

independent magnitudes, q2 and r2, but are set to be orthogonal, i.e. q · r = 0.

Consequently, by momentum conservation p2 = q2 + r2. For this kinematic limit we

have computed only the form factor X1, which is given by

X1(q
2, r2, π/2) =Zfin

3 +
αsCA

2304πq2r2

{
6
(
9q4 + 128q2r2 + 3r4

)
ln

(
− q2

µ2

)

+ 6
(
3q4 + 128q2r2 + 9r4

)
ln

(
− r2

µ2

)
− 72

(
q4 + 10q2r2 + r4

)
ln

(−q2 − r2

µ2

)

− 9i
(q2 + r2)√

q2r2

(
q2 − r2

)2
[
Li2 (−z)− Li2 (z) + Li2

(
z−1
)
− Li2

(
−z−1

) ]

− 4(9q4 + 172q2r2 + 9r4)

}
, (B.29)
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with z =
(√

−q2 − i
√
−r2

)
/
(√

−q2 + i
√
−r2

)
, and

Li2(z) = −
∫ z

0

ln(1− t)

t
dt , (B.30)

the dilogarithm (or Spence function). Notice that the above expression is symmetric

under the exchange q2 ↔ r2, as it should be from Bose-symmetry [see Eq. (4.35)].

4. Orthogonal symmetric configuration:

In the special case of Eq. (B.29) with q2 = r2, we obtain

X1(q
2, q2, π/2) = Zfin

3 +
αsCA

288π

[
102 ln

(
− q2

µ2

)
− 108 ln(2)− 95

]
. (B.31)

Combining the above results with those of Sections B.1 and B.2, we can then check

that the BC solution of Eq. (4.36) for the STI is satisfied in the special case of the X1

form factor in the symmetric configuration, as long as the renormalization constants Z1

and Z3 satisfy Eq. (2.91). Specifically, in this limit Eq. (4.36) reduces to

X1(Q
2) = F (Q2)J(Q2)

[
A1(Q

2) +Q2A3(Q
2)− Q2

2
A4(Q

2)

]
, (B.32)

which can be promptly verified to order αs from our results. More extensive checks of

the STI, which confirm the correctness of our results, have been carried out, but are not

detailed here.

Finally, we compared our results to those of Refs. [139, 208] and found them to agree

after taking into account the differences in conventions.

B.4 Consistent renormalization schemes

As discussed in Section 2.5, we have the freedom to choose the finite part of one more

renormalization constant, i.e. either Z1 or Zfin
3 , but not both, since Eq. (2.91) must be

satisfied. We now discuss a few possible choices of renormalization schemes and their

consistency with Eq. (2.91).

Given that the ghost-gluon scattering kernel is UV finite in Landau gauge, we may

simply choose to set Z1 = 1. This choice amounts to the so-called Taylor scheme (see

Section 5.1.3), and in this case the form factor A1(q, p, r) reduces to tree level to all orders
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in the soft ghost kinematics, p = 0. With this choice, we impose that Eq. (2.91) is satisfied

to determine Z3, using Eq. (B.13). Thus, we obtain

Z3 = 1 +
αsCA

144π

(
51

ǫ̃
+ 61

)
, (B.33)

such that Eq. (B.26) yields

Zfin
3 = 1 +

61αsCA

144π
. (B.34)

Alternatively, one may choose to define Zfin
3 by requiring that the form factorX1(q, r, p)

reduces to its tree level, X
(0)
1 (q, r, p) = 1, at some desired kinematic limit. For example,

we can choose the totally symmetric configuration X
(1)
1 (Q2) of Eq. (B.25) to reduce to tree

level at the Euclidean momentum Q2 = −µ2. We will call this choice the X1-symmetric

scheme and denote the corresponding renormalization constants by a caret. In this case,

Ẑfin
3 = 1 +

αsCA

144π
(52 + 9 I) , (B.35)

such that

Ẑ3 = 1 +
αsCA

144π

(
51

ǫ̃
+ 52 + 9 I

)
. (B.36)

Then, using Eq. (2.91) one finds

Ẑ1 = 1 +
αsCA

16π
(I − 1) , (B.37)

which is different from the Taylor scheme value of Z1 = 1.

The fact that the Eq. (2.91) leads to Ẑ1 6= Z1 shows that we could not have chosen

them independently, as explained in Section 2.5. Let us consider one more case.

One might as well have chosen to define the value of Z1 by requiring that the ghost-

gluon scattering kernel form factor A1 in the totally symmetric configuration, A1(Q
2), of

Eq. (B.22), reduces to tree level at the Euclidean point Q2 = −µ2, i.e. A1(−µ2) = 1. Let

us call this choice the A1-symmetric scheme and use a tilde to denote its corresponding

renormalization constants. In this case one obtains

Z̃1 = 1− αsCA

96π
(9 + I) , (B.38)
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Table B.1: Comparison of numerical values of the form factors of Hνµ and
L
αµν that

exist at tree level, in different renormalization schemes, namely: (i) The Taylor scheme,
where A1 is set to tree level in the soft ghost kinematics; (ii) The A1-symmetric scheme;
and (iii) the X1-symmetric scheme. We used αs = 0.22 for this example.

Scheme A1(µ, 0,−µ) A1(µ
2) X1(µ

2)
Taylor 1 1.025 0.982

A1-Symmetric 0.975 1 0.958
X1-Symmetric 1.018 1.042 1

Using Eqs. (B.38) and (B.13) into Eq. (2.91) yields

Z̃3 = 1 +
αsCA

288π

(
102

ǫ̃
+ 95− 3 I

)
, Z̃fin

3 = 1 +
αsCA

288π
(95− 3 I) . (B.39)

Clearly, Z̃1 is different from both, Z1 and Ẑ1.

Finally, the different choices of renormalization scheme discussed in this section lead

to slightly different numerical values for those form factors of Hνµ(q, p, r) and
L
αµν(q, r, p)

that exist at tree level. We illustrate this effect in Table B.1, where it is shown the value of

the form factors A1(q, p, r) and X1(q, r, p) in different configurations, as computed in each

of the renormalization schemes above. Evidently, the numerical value of these form factors

in different renormalization schemes depends on the value αs. For constructing Table B.1

we used the value αs = 0.22, which is used throughout the main text. Notice then, from

Table B.1, that the different choices of renormalization scheme lead to variations of a few

percent in the numerical values of the form factors.

B.5 One loop massive results

Although a hard mass term in the Lagrangian breaks the gauge symmetry of the

theory, we can often gain a better understanding of the qualitative behavior of the Green’s

functions of QCD from one loop calculations with a massive gluon propagator. For the

special case of the ghost-gluon scattering kernel, we can see from the results of Section B.2

that the form factors Ai, for i = 2, . . . , 5, all diverge as poles in the limit when all momenta

tend to zero. In the presence of an IR finite gluon propagator, it is expected that these

divergences would be attenuated, or even eliminated.

We now study the IR divergences of the Ai in the presence of an IR finite gluon

propagator. To this end, we repeat the calculations of Section B.2 using the hard mass
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gluon propagator, which, in Landau gauge reads

∆(1M)
µν (q) = −iPµν(q)∆

(1M)(q2) , (B.40)

with

∆(1M)(q2) =
1

q2 −m2
, (B.41)

The soft ghost configuration still retains the values in Eq. (B.17). We consider then

the other configurations presented in Section B.2.

1. Soft anti-ghost limit: In the q = 0 kinematics, we obtain

A
(1M)
1 (0,−r, r) =Z1 −

CAαs

192πm6r4

{
− 2m8r2 − 23m6r4

− r6
(
2m4 + 6m2r2 + r4

)
ln

(
− r2

m2

)

+ (r8 + 6m2r6 − 40m4r4)
√
r4 − 4m2r2 ln

[(√
r4 − 4m2r2 + r2

)

2m2
+ 1

]

+ 2
(
m2 − r2

)2 (
m6 + 13m4r2 − 7m2r4 − r6

)
ln

(
m2

m2 − r2

)}
,

A
(1M)
3 (0,−r, r) = CAαs

192πm6r6

{
− 20m6r4 − 6m4r6 − r6

(
8m4 + r4

)
ln

(
− r2

m2

)

+ (r8 + 6m2r6 − 40m4r4)
√
r4 − 4m2r2 ln

[(√
r4 − 4m2r2 − r2

)

2m2
+ 1

]

− 8m8r2 + 2
(
m2 − r2

)2 (
4m6 + 16m4r2 − 4m2r4 − r6

)
ln

(
m2

m2 − r2

)}
.

(B.42)

Taking the m → 0 limit of the above expressions we recover the one-loop result of

Eq. (B.19). On the other hand, in the limit r2 → 0, Eq. (B.42) leads to

lim
r2→0

A
(1M)
1 (0,−r, r) =Z1 ,

lim
r2→0

A
(1M)
3 (0,−r, r) =− CAαs

288πm2

[
12 ln

(
− r2

m2

)
− 31

]
. (B.43)

Then, in the presence of a massive gluon propagator, A
(1M)
1 is infrared finite, whereas

A
(1M)
3 has a logarithmic IR divergence.
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2. Soft gluon limit: In the r = 0 limit, the one loop massive result is

A
(1M)
1 (q,−q, 0) =Z1 −

αsCA

192πm4q4

[
(10m8 − 8m6q2) ln

(
m2

m2 − q2

)
− 10m6q2+

3m4q4 − 2m2q6 − (4m2q6 + 2q8) ln

(
− q2

m2 − q2

)]
,

A
(1M)
2 (q,−q, 0) = αsCA

96πm4q6

[
−20m6q2 + 15m4q4 + q6

(
4q2 +m2

)
ln

(
− q2

m2

)

+
(
20m8 − 25m6q2 +m2q6 + 4q8

)
ln

(
m2

m2 − q2

)
− 4m2q6

]
.

(B.44)

In the m → 0 limit of Eq. (B.44), one recovers the one-loop results of Eq. (B.21).

On the other hand, in the limit q2 → 0, Eq. (B.44) yields

lim
q2→0

A
(1M)
1 (q,−q, 0) =Z1 ,

lim
q2→0

A
(1M)
2 (q,−q, 0) = αsCA

576πm2

[
6 ln

(
− q2

m2

)
− 59

]
. (B.45)

Therefore, in the presence of a massive gluon propagator, A
(1M)
2 has a logarithmic

IR divergence.

3. Symmetric configuration: In the symmetric limit of Eq. (B.5) the expressions for

the form factors for general Q2 and m2 are rather long and we choose to not report

them here. Instead, we give the Q2 → 0 limit only,

lim
Q2→0

A
(1M)
1 (Q2) =Z1 ,

lim
Q2→0

A
(1M)
2 (Q2) =

CAαs

576πm2

[
6 ln

(
−Q

2

m2

)
− 65

]
,

lim
Q2→0

A
(1M)
3 (Q2) =− CAαs

144πm2

[
6 ln

(
−Q

2

m2

)
− 23 + 3 I

]
,

lim
Q2→0

A
(1M)
4 (Q2) =

CAαs

48πm2
,

lim
Q2→0

A
(1M)
5 (Q2) =− CAαs

192πm2

[
6 ln

(
−Q

2

m2

)
− 1 + 4 I

]
. (B.46)

The above results for A
(1M)
1 and A

(1M)
4 are IR finite, whereas the A

(1M)
2 , A

(1M)
3 and

A
(1M)
5 are logarithmically divergent.
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Comparing the above one loop massive results with the expressions of Section B.2,

obtained with massless gluons, we conclude that the introduction of a gluon mass reduces

the degree of IR divergence of the form factors Ai, for i = 2, 3 and 5, from poles to

logarithms, while A4 becomes altogether finite in the massive one loop result, and A1 is

IR finite in both cases.

Furthermore, we have verified that all the IR divergences found in the one loop massive

H
(1M)
νµ (q, p, r) originate from the diagram (d1)νµ of Fig. B.1, i.e. the triangle with two

internal ghost lines. Indeed, the diagram (d2)νµ turns out IR finite contributions to

all five Ai in the presence of a gluon mass. On the other hand, (d1)νµ contains only

one internal massive propagator. Consequently, although the degree of IR divergence of

(d1)νµ is reduced from pole to logarithmic, with respect to the result with massless gluons,

some divergences persist due to the masslessness of the ghosts. Our finds are in perfect

agreement with the discussion in Section 3.4.

Another qualitative feature we would like to emphasize is that in the massive gluon

results the form factor A1 reduces to tree level (up to the finite renormalization) when all

momenta are set to zero, as can be seen from Eqs. (B.43), (B.45) and (B.46). In contrast,

with a massless gluon propagator, the value of A1(0, 0, 0) depends on the configuration

from which the limit is approached [cf. Eqs. (B.17), (B.19), (B.21) and (B.22)]. This

behavior can be understood from the factorization of the ghost momentum demonstrated

in Section 5.1.2, which leads to the Taylor theorem. This factorization implies

A1(q, p, r) = Z1 + pρ Iρ(q, p, r) , (B.47)

where Iρ(q, p, r) is some loop integral. For a massless gluon, Iρ(q, p, r) happens to develop

a pole in 1/p, when all momenta tend to zero, and Eq. (B.47) yields a finite, but path

dependent value. On the other hand, in the presence of a gluon mass, Iρ(q, p, r) diverges

only logarithmically as all momenta tend to zero, such that pρ Iρ(q, p, r) → 0 as p → 0,

independently of the path. Alternatively, it is clear from Eq. (B.47), that if Iρ(q, p, r)

has a pole in 1/p when all momenta vanish, then the derivative of A1 with respect to p is

divergent. On the other hand, in the presence of a gluon mass this derivative becomes IR

finite.

Lastly, we point out that the soft gluon kinematics A
(1M)
1 (q,−q, 0) no longer reduces

to tree level in the presence of a gluon mass [cf. Eqs. (B.44) and (B.21)], except at q = 0,
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as the cancellation between (d1)νµ and (d2)νµ, discussed below Eq. (B.21) is spoiled. In

contrast, the Taylor theorem still holds in the massive case, since it is a consequence

of the Landau gauge gluon transversality alone (see Section 5.1.2), not depending on a

cancellation between the diagrams contributing to Hνµ.
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C

Projectors

For some calculations it is convenient to have explicit algebraic projectors that extract

the form factors of vertex functions. In this appendix we present the projectors that

isolate the form factors of the ghost-gluon scattering kernel and the three-gluon vertex

from the general tensorial structures of Hνµ(q, p, r) and
L
αµν(q, r, p), respectively.

We express the equations in this appendix in Minkowski space.

C.1 Ghost-gluon scattering kernel form factors

The form factors Ai, for i = 1, . . . , 5, of the ghost-gluon scattering kernel may be ex-

tracted from the general Lorentz decomposition of Hνµ(q, p, r) given in Eq. (4.24) through

the projections [3]

Ai(q, p, r) =
T µν
i (q, r)Hνµ(q, p, r)

2h2(q, r)
, (C.1)

where

T µν
1 (q, r) =h(q, r) [h(q, r)gµν + hµν(q, r)] ,

T µν
2 (q, r) =− h(q, r)r2gµν − 2h(q, r)rµrν − 3r2hµν(q, r) ,

T µν
3 (q, r) =T µν

2 (r, q) ,

T µν
4 (q, r) =h(q, r)(r · q)gµν + 2h(q, r)qµrν + 3(r · q)hµν(q, r) ,

T µν
5 (q, r) =T µν

4 (r, q) , (C.2)

and

h(q, r) = q2r2 − (q · r)2 , hµν(q, r) = (q · r) [qµrν + qνrµ]− r2qµqν − q2rµrν . (C.3)
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Notice that the h(q, r) and hµν(q, r) of Eq. (C.3) are symmetric under the exchange of

q ↔ r, and that hµν(q, r) is symmetric under µ↔ ν. Moreover, by momentum conserva-

tion, q + p+ r = 0, it is easy to show that

h(q, r) = h(q, p) = h(p, r) ,

hµν(q, r) = hµν(q, p) = hµν(p, r) . (C.4)

C.2 Three-gluon vertex form factors

The form factors Xi(q, r, p) and Yj(q, r, p) of the three-gluon vertex can be obtained

by projecting
L
αµν(q, r, p) through

Xi(q, r, p) = X αµν
i (q, r, p)

L
αµν(q, r, p) , (C.5)

for i = 1, . . . , 10, and

Yj(q, r, p) = Yαµν
j (q, r, p)

L
αµν(q, r, p) , (C.6)

for j = 1, . . . , 4.

The expressions for the X αµν
i (q, r, p), for i = 1, 2, 3 and 10, read

X αµν
1 (q, r, p) =

1

8h2(q, r)

{
(q · r)3 (2qαgµν − 2rµgαν)− 3r4qα (qνrµ + qµrν)

+ (q · r)2
[
q2rνgαµ − q2rµgαν + qν

((
q2 − r2

)
gαµ + 2rαrµ

)

+ qα
(
−6qνrµ + qµ (4qν − 2rν) + q2gµν + 6rµrν + r2gµν

)
− 4rαrµrν

− r2rνgαµ − r2rµgαν
]
+ q · r

[
r2
(
3qµrα (qν + rν) + rµ

(
3qνrα + 2q2gαν

)

+ qα
(
−6qνrµ + qµ (6qν − 3rν)− 2q2gµν + 6rµrν

) )

− 3q2 (rµ (2qα (qν − rν)− rα (qν − 2rν)) + qµ (qνrα + rν (qα + rα)))
]

+ q4
[
qν
(
3rαrµ − r2gαµ

)
+ qα

(
3rµrν − r2gµν

)
+ r2 (rµgαν − rνgαµ)

]

+ q2r2
[
qν
(
rαrµ + r2gαµ

)
− qα

(
3qνrµ + qµ (rν − 2qν)− 3rµrν + r2gµν

)

− 2rαrµrν + r2rνgαµ + r2rµgαν
]}

, (C.7)
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X αµν
2 (q, r, p) =

1

8h2(q, r)

{
− 2(q · r)3 (qν + rν) gαµ − 3r4qα (qνrµ + qµrν)

− (q · r)2
[
4qνrαrµ − 6qµrα (qν + rν) + r2qνgαµ − q2rµgαν + q2rνgαµ

+ qα
(
−6qνrµ + 4qµ (qν + rν) + q2gµν − 6rµrν − r2gµν

)

+ q2qνgαµ + 4rαrµrν + r2rµgαν + r2rνgαµ
]

+ q · r
[
3q2 (qµ (qνrα + rν (qα + rα)) + rµ (2qαqν − rα (3qν + 2rν)))

+ r2
(
3qνrαrµ + 3qµrα (qν + rν) + qα (6rµrν − 3qµ (2qν + 3rν))

+ 2q2rνgαµ + 2q2qνgαµ
)]

+ q2r2
[
qν
(
rαrµ + r2gαµ

)
+ qα

(
3qνrµ

+ qµ (rν − 2qν) + 3rµrν − r2gµν
)
− 2rαrµrν + r2rνgαµ + r2rµgαν

]

+ q4
[
qν
(
r2gαµ − 3rαrµ

)
+ qα

(
r2gµν − 3rµrν

)
+ r2 (rνgαµ − rµgαν)

]}
,

X αµν
3 (q, r, p) =− (qν + rν)

2 (q2 − r2)h2(q, r)

{
3r4qαqµ + q4

(
3rαrµ − r2gαµ

)
+ (q · r)2

×
[
− 4qµrα + 2qα (qµ − 2rµ) + q2gαµ + 2rαrµ + r2gαµ

]
+ q · r

×
[
r2
(
−3qµrα + qα (6qµ − 3rµ)− 2q2gαµ

)
− 3q2 (qµrα + rµ (qα − 2rα))

]

+ q2r2
[
− 2qµrα + qα (qµ − 2rµ) + rαrµ − r2gαµ

]
+ 2(q · r)3gαµ

}
,

X αµν
10 (q, r, p) =

1

4h2(q, r)

{
3q · r

[
qµ (qνrα + rν (rα − qα))− qνrαrµ

]

+ (q · r)2
[
− qνgαµ + qαgµν − rνgαµ + rµgαν

]
+ 3q2rµ (qαrν − qνrα)

+ r2
[
q2 (qνgαµ + rνgαµ − rµgαν) + qα

(
3qνrµ − 3qµrν − q2gµν

) ]}
, (C.8)

where h(q, r) is defined in Eq. (C.3).

The remaining Xi are given by cyclically permuting the arguments and Lorentz indices,

simultaneously, of Eqs. (C.7) and (C.8) [see Eq. (4.34)]. Specifically,

X αµν
4 (q, r, p) = X µνα

1 (r, p, q) , X αµν
7 (q, r, p) = X ναµ

1 (p, q, r) ,

X αµν
5 (q, r, p) = X µνα

2 (r, p, q) , X αµν
8 (q, r, p) = X ναµ

2 (p, q, r) ,

X αµν
6 (q, r, p) = X µνα

3 (r, p, q) , X αµν
9 (q, r, p) = X ναµ

3 (p, q, r) . (C.9)
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The form factors Yj, for j = 1 and 4, are then given by

Yαµν
1 (q, r, p) =

1

2 (q2 − r2)h3(q, r)

{
− 2 (qν + rν) gαµ(q · r)4 + (q · r)3

[
− 2qνrαrµ

− 2rαrνrµ + q2gανrµ − r2gανrµ − q2qνgαµ + r2qνgαµ + q2rνgαµ − r2rνgαµ

+ qµ
(
4qνrα + 4rνrα +

(
r2 − q2

)
gαν
)
+ q2rαgµν − r2rαgµν

+ qα
(
4qνrµ + 4rνrµ − 2qµ (qν + rν)− q2gµν + r2gµν

) ]

+ (q · r)2
[
(qνgαµ + qµgαν + qαgµν) r4 −

(
− 4qνrαrµ + q2gανrµ − 3q2qνgαµ

− 3q2rνgαµ + qµ
(
2qνrα − 4rνrα + q2gαν

)
+ q2rαgµν

+ qα
(
2qνrµ − 4rνrµ + 4qµ (qν + 2rν) + q2gµν

) )
r2 + q2

(
− 8qνrαrµ

+ 2qα (2qν − rν) rµ − 4rαrνrµ + q2gανrµ + qµ (4qνrα + 2 (2qα − rα) rν)

+ q2rνgαµ + q2rαgµν
)]

+ q · r
[
− q4

(
5qαrµrν − 5rαrµrν + r2gαµrν

+ qν
(
5rαrµ − r2gαµ

)
+ r2rµgαν + qµ

(
5rαrν − r2gαν

)
− r2qαgµν

+ r2rαgµν
)
+ q2r2

(
7qνrαrµ − 3rαrνrµ + r2gανrµ − r2qνgαµ + r2rνgαµ

+ qµ
(
qνrα + rνrα − r2gαν

)
+ r2rαgµν + qα(qνrµ + rνrµ + qµ (7rν − 3qν)

− r2gµν)
)
+ 5r4 (qα (qµ (qν − rν)− qνrµ)− qµqνrα)

]
+ 5r6qαqµqν

+ q6
(
rα
(
5rµrν − r2gµν

)
− r2 (rνgαµ + rµgαν)

)
+ q4r2

[
3qνrαrµ − rαrνrµ

+ r2gανrµ − r2qνgαµ − r2rνgαµ + qµ
(
qνrα − 3rνrα + qαrν + r2gαν

)

+ r2rαgµν + qα
(
qνrµ − 3rνrµ + r2gµν

) ]
− q2r4

[
qµ
(
3qνrα − rνrα + r2gαν

)

+ qν
(
r2gαµ − rαrµ

)
+ qα

(
3(qνrµ − qµrν)− rνrµ + qµqν + r2gµν

) ]}
,

Yαµν
4 (q, r, p) =− 1

4h3(q, r)

{
(q · r)4

[
qνgαµ + 2qµgαν + qαgµν − rνgαµ − rµgαν − 2rαgµν

]

+ (q · r)3
[
5qνrαrµ + 2r2qνgαµ + qµ

(
−5qνrα − 5qαrν + 5rαrν + 2r2gαν

)

+ qα
(
−2qνrµ + 2rµrν + 2r2gµν

)
− 2q2rµgαν − 2q2rνgαµ − 2q2rαgµν

]

+ (q · r)2
[
q2 (7qνrαrµ + rν (10qµrα + rµ (7qα − 8rα)))

+ r2
(
qα (qµ (8qν − 7rν)− 7qνrµ) + 2q2rαgµν − 2qµ

(
5qνrα + q2gαν

)) ]

+ q · r
[
− 10q4rαrµrν − 2r4

(
q2 (qνgαµ + qµgαν) + qα

(
q2gµν − 5qµqν

))

+ q2r2
(
5qνrαrµ + 8qαrµ (rν − qν)− 5qµ (qνrα + rν (qα − rα)) + 2q2rµgαν

+ 2q2rνgαµ + 2q2rαgµν
)]

+ q2r2
[
q2rµ (3qνrα + rν (3qα − 2rα)) + r2

×
(
q2 (rνgαµ + rµgαν − qνgαµ)− qα

(
3(qνrµ + qµrν)− 2qµqν + q2gµν

)) ]}
.

(C.10)
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Finally, the remaining Yi are given by cyclically permuting the arguments and Lorentz

indices, simultaneously, of Eqs. (C.10) [see Eq. (4.34)]. Namely,

Yαµν
2 (q, r, p) = Yµνα

1 (r, p, q) , Yαµν
3 (q, r, p) = Yναµ

1 (p, q, r) . (C.11)
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D

Euclidean space

In order to transform expressions given in Minkowski metric to Euclidean space, the

time component of any four vector, q = (q0, q1, q2, q3), becomes imaginary, i.e.

q → (iqE0 , q
E
1 , q

E
2 , q

E
3 ) , (D.1)

where the qEi are real and a sub/superscript “E” denotes the Euclidean version of a quan-

tity. Simultaneously, the metric is transformed to gµν → δµν . Consequently, q2
E
= −q2.

Additionally, the integral measure of Eq. (B.1) becomes

∫

k

→ i

∫

kE

. (D.2)

For most of the scalar functions used in this work, we define their Euclidean versions

by just substituting the momenta in their arguments by i times their Euclidean versions,

e.g.

FE(q
2
E
) := F

(
(iqE)

2
)
= F (−q2

E
) = F (q2) . (D.3)

Then, the form factors Aj, for j = 1, . . . , 5, of the ghost-gluon scattering kernel are written

as

AE

j (qE, pE, rE) := Aj(iqE, ipE, irE) , (D.4)

and similar definitions are used for the scalar form factors of other vertex functions.

An exception to the above rule is the gluon propagator scalar function ∆(q2). It is

convenient to define its Euclidean space version with an extra sign,

∆E(q
2
E
) := −∆

(
(iqE)

2
)
= −∆(q2) , (D.5)



D.1 Spherical coordinates 163

such that it is positive for q2
E
> 0, e.g. ∆

(0)
E (q2

E
) = 1/q2

E
.

D.1 Spherical coordinates

To evaluate loop integrals numerically, it is convenient to parametrize the momenta

in spherical coordinates. Moreover, in practice we set the space time dimension to d = 4.

In this case the internal momentum, kE, is expressed as

kE = |kE|(cosϕ1, sinϕ1 cosϕ2, sinϕ1 sinϕ2 cosϕ3, sinϕ1 sinϕ2 sinϕ3) , (D.6)

where |kE| :=
√
k2

E
is the Euclidean modulus of kE. Then, the integral measure of Eq. (D.2)

reads explicitly

∫

kE

=
1

(2π)4

∫ ∞

0

d|kE| |kE|3
∫ π

0

dϕ1 sin
2 ϕ1

∫ π

0

dϕ2 sinϕ2

∫ 2π

0

dϕ3 . (D.7)

Consider next a scalar integral of the form

∫

kE

f(qE, kE) , (D.8)

for some scalar function f(qE, kE) of an external momentum qE and the loop momentum

kE. Without loss of generality, we can do the integral in the rest frame of qE, i.e.

qE = |qE|(1, 0, 0, 0) . (D.9)

Since f(qE, kE) is scalar, it can only depend on q2
E
, k2

E
and qE · kE = |qE||kE| cosϕ1. Hence,

the integrals over ϕ2 and ϕ3 can be performed analytically, yielding

∫

kE

f(qE, kE) =
2

(2π)3

∫ ∞

0

d|kE| |kE|3
∫ π

0

dϕ1 sin
2 ϕ1f(qE, kE) . (D.10)

In the evaluation of 3-point functions it is necessary to deal with scalar integrals

depending on two external momenta, say qE and pE, such as

∫

kE

g(qE, pE, kE) . (D.11)

To compute these, we may still use the parametrization of Eq. (D.9) for qE. As for pE, we
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may choose without loss of generality

pE = |pE|(cos θ, sin θ, 0, 0) , (D.12)

where θ is the angle between qE and pE, and is then limited to the interval [0, π]. Then, a

scalar function g(qE, pE, kE) can depend on q2
E
, p2

E
, k2

E
, as well as on the inner products

qE · pE = |qE| |pE| cos θ ,

qE · kE = |qE| |kE| cosϕ1 ,

pE · kE = |pE| |kE|(cos θ cosϕ1 + sin θ sinϕ1 cosϕ2) . (D.13)

Hence, in Eq. (D.11) we can generally only perform analytically the integration over ϕ3,

yielding

∫

kE

g(qE, pE, kE) =
1

(2π)3

∫ ∞

0

d|kE| |kE|3
∫ π

0

dϕ1 sin
2 ϕ1

∫ π

0

dϕ2 sin
2 ϕ2 g(qE, pE, kE) .

(D.14)

In all above integrals, it may be convenient to perform the change of variables y := k2
E
,

such that ∫ ∞

0

d|kE| |kE|3 =
1

2

∫ ∞

0

dy y . (D.15)

Let us also take the chance to define a notation that will be employed in the presenta-

tion of numerical results in general kinematics. For any scalar form factor that depends

on three-external momenta, e.g. AE

j (qE, pE, rE), momentum conservation, qE+pE+ rE = 0,

implies that only two of the momenta are independent, say qE and pE. Then, using the

parametrization of Eqs. (D.9) and (D.12), we can always express the functional depen-

dence of AE

j on the momenta in terms of their squares, q2
E
and p2

E
, and the angle between

them, θ = arccos[(qE · pE)/(|qE| |pE|)]. Therefore, we can express the AE

j as

AE

j (qE, pE, rE) ≡ AE

j (q
2
E
, p2

E
, θ) . (D.16)

We will use the two notations in Eq. (D.16) interchangeably in the main text.

Finally, the subscripts “E”will be omitted outside the present appendix, for compact-

ness. It will be clear, either by context, or by explicit assertion, when expressions are

written in Euclidean space.
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E

Expressions for the Euclidean space Ai

In this appendix we present the expressions obtained for the form factors Ai of the

ghost-gluon scattering kernel by projecting Eq. (5.17) with the projectors of Eq. (C.1).

We use the approximations discussed in Section 5.3 and transform to Euclidean space

using the rules of Appendix D. The lengthy Lorentz algebra was done using Package X

[214, 215].

We will express the Ai as the sum of their tree-level values and the contributions

from each of the diagrams (d1)νµ and (d2)νµ, which will be specified by a superscript, i.e.

Ai = A
(0)
i + A

(d1)
i + A

(d2)
i .

To make the expressions somewhat more compact we introduce the auxiliary variables

s = q − ℓ , t = −ℓ− p , u = −p− q , and v = −ℓ+ p+ q, with the notation a1 = ℓ · p ,
a2 = ℓ · q , a3 = p · q , for the inner products, and define

T1 := hpq + 3(p2 + a3)
2 , T2 := hpq + 3(q2 + a3)

2 ,

T3 := −p2q2 + p4 − 2a3(q
2 + a3) , T4 := −p2q2 + q4 − 2a3(p

2 + a3) ,

T5 := p2a22 + q2a21 − 2a1a2a3 . (E.1)

Also, the arguments of the various functions appearing in the expressions are denoted as

a super/subscript, e.g. f(x, y, z) = fxyz and f(x, y, z) = fxyz.

Lastly, all the propagator and vertex form factors are understood to mean their“input”

approximations, namely ∆in(q), X
in

1 (r, t, ℓ), Fin(q), and B
in

1 (Q), presented in Section 5.3.
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Then, the contributions from diagram (d1)νµ to each form factor read

A
(d1)
1 =

ig2CA

4

∫

ℓ

K(d1)

{
a1 [hpq ℓ

2 − T5]

hpq ℓ2

}
,

A
(d1)
2 = − ig

2CA

4

∫

ℓ

K(d1)

h2pq ℓ
2

{
hpqℓ

2
[
a1
(
4a3 + p2 + 3q2

)
− 2a2

(
a3 + p2

)
+ 2hpq

]

− a1

[
a22hpq − 2a2

(
p2
(
3a1a3 + 2a1q

2 + hpq
)
+ a3

(
4a1a3 + 3a1q

2 + hpq
))

+a1
(
q2
(
6a1a3 + a1p

2 + 3a1q
2 + 2hpq

)
+ 2a3(a1a3 + hpq)

)
+ 3a22

(
a3 + p2

)2 ]}
,

A
(d1)
3 =

i g2CA

4

∫

ℓ

K(d1)

h2pq ℓ
2

{
3a31q

4 + a1q
2
[
a2
(
a2p

2 − 6a1a3
)
− 3hpqℓ

2
]

+2a2a3
(
a1a2a3 + hpqℓ

2
)}

,

A
(d1)
4 = − i g

2CA

4

∫

ℓ

K(d1)

h2pq ℓ
2

{
hpqℓ

2
[
3a1
(
a3 + q2

)
− 2a2

(
a3 + p2

)
+ 2hpq

]

+ a1
[
−a1q2

(
3a1a3 + 3a1q

2 − 6a2a3 + 2hpq
)
+ 2a2a3(2a1a3 − a2a3 + hpq)

−a2p2
(
q2(a2 − 2a1) + 3a2a3

)]}
,

A
(d1)
5 =

i g2CA

4

∫

ℓ

K(d1)

h2pq ℓ
2

{
a1

[
a2(a2 − 2a1)

(
3a23 + hpq

)
+ 3a1q

2
(
a1a3 + a1q

2 − 2a2a3
)

+ 3a22a3p
2
]
− hpqℓ

2
[
a3(a1 − 2a2) + 3a1q

2
] }

, (E.2)

where

K(d1) :=
∆ (ℓ2)F (t2)F (s2)B1(s,−t, u)V1(ℓ, q, p, r)

s2 t2
. (E.3)

The contributions of diagram (d2)νµ may be written as

A
(d2)
i =

ig2CA

2

∫

ℓ

KℓuvS
ℓuv
i +KuvℓS

uvℓ
i +KvℓuS

vℓu
i

h2pq ℓ
2

, (E.4)

with

Kxyz :=
∆ (ℓ2)∆ (v2)F (s2)V2(ℓ, q, p, r)X1

xyz

s2 v2
. (E.5)

Then, the Si are given by

Sℓuv
1 = −hpq

{
a1
[(
a3 + q2

) (
T5 + hpq ℓ

2
)
− a2

(
ℓ2
(
2a3
(
a3 + p2

)
+ hpq

)
+ T5

)]

+a21
[
a3 ℓ

2
(
a3 + q2

)
− T5

]
+
(
a3 + p2

) [
−a2 T5 + a2 ℓ

2
(
a2 p

2 − hpq
)
+ hpq ℓ

4
]}

,

Suvℓ
1 = −hpq(a1 + a2)

(
−a1 + a3 + p2

) [
hpq ℓ

2 − T5
]
,



167

Svℓu
1 = −hpq

{
T5

[
a21 + a1

(
a2 − a3 − q2

)
+ a2

(
a3 + p2

)]
+ a1hpq ℓ

4 − ℓ2
[
a21(hpq − 2a2a3)

+a1q
2
(
a21 − hpq

)
+ a1hpq(a2 − a3) + a2 p

2(a1a2 + hpq) + a2a3hpq

]}
, (E.6)

Sℓuv
2 = −a41 T2 + a31

[
3a2
(
2a3
(
a3 + p2

)
+ p2q2 − q4

)
+
(
a3 + q2

) (
3
(
a3 + q2

)2
+ hpq

)]

− a21

[
3a22 T3 + a2

(
q2
(
20a23 + 17a3p

2 + p4
)
+ 2a23

(
5a3 + 4p2

)
+ q4

(
9a3 + 7p2

))

− ℓ2
(
3a3
(
3q2
(
a3 + p2

)
+ a3p

2 + q4
)
+ 2hpq

(
p2 + 2q2

)) ]
+
(
ℓ2 − a2

) (
a3 + p2

)

×
[
a22T1 − hpqℓ

2
(
2a3 + p2 + q2

) ]
− a1

[
a32 T1 + hpqℓ

2
(
a3 + q2

) (
2a3 + p2 + q2

)

− a22
(
p2
(
20a23 + 17a3q

2 + q4
)
+ 2a23

(
5a3 + 4q2

)
+ p4

(
9a3 + 7q2

))

+ a2ℓ
2
(
p2
(
15a23 + 8a3q

2 − q4
)
+ a23

(
10a3 + 7q2

)
+ 3p4

(
2a3 + q2

)) ]
,

Suvℓ
2 = a21

[
3a22T3 + a2

(
6a3p

4 + p2
(
15a23 + 9a3q

2 − hpq
)
+ hpq

(
5q2 − 2a3

)

− 3a3q
2
(
a3 + q2

) )
− hpq

(
ℓ2
(
4a3 + p2 + 3q2

)
+ 2

(
a3 + q2

)
(p+ q)2

) ]

+ a31

[
q4
(
3a2 − 3a3 + p2

)
− 2a3

(
p2(3a2 + a3) + 3a3(a2 + a3)

)

− q2
(
3p2(a2 + a3) + 10a23 + p4

) ]
+ a41T2

+ a1

[
a32T1 + a22

(
p2
(
14a23 + 5a3q

2 + 4q4
)
+ 2a23

(
5a3 + q2

)
− p4

(
3a3 + 5q2

)
− 3p6

)

+ a2hpq
(
ℓ2
(
−2a3 + p2 − 3q2

)
+ 2

(
p2 − q2

)
(p+ q)2

)
+ hpqℓ

2
(
a3 + p2

)
(p+ q)2

]

+ a2
(
a3 + p2

) [
(p+ q)2

(
hpqℓ

2 + 2a2hpq − 3a22p
2
)
+ 2a2hpq

(
ℓ2 − a2

)]
,

Svℓu
2 = a41T2 + a31

[
3a2T4 −

(
a3 + q2

) (
3
(
a3 + q2

)2
+ hpq

)]
+ a21a2

[
3a2T3

+ 2a23
(
5a3 + 4p2

)
+ q4

(
9a3 + 7p2

) ]
+ ℓ2

[
a1

(
a2hpq

(
−2a3 + 3p2 − 5q2

)

+ 3hpq
(
a3 + q2

)
(p+ q)2 − a22T1

)
+ a21

(
p2
(
6a2a3 + 4a2q

2 − hpq
)

+ q2(6a2a3 − 5hpq) + 2a3(4a2a3 − 3hpq)
)
− a31T2 + a2hpq

(
a3 + p2

)

×
(
4a2 − 3(p+ q)2

) ]
+ a1a

2
2

[
a2T1 − 2a23

(
5a3 + 4q2

)
− p4

(
9a3 + 7q2

)]

+ a1a2
[
20a23

(
a1q

2 − a2p
2
)
+ 17a3p

2q2 (a1 − a2) + p2q2
(
p2a1 − q2a2

)]

+ hpqℓ
4
[
a1
(
4a3 + p2 + 3q2

)
− 2a2

(
a3 + p2

)]
+ a32T1

(
a3 + p2

)
, (E.7)
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Sℓuv
3 = 3a31q

6 − 2a22a
2
3

[
a21 + a1a2 − a1a3 + a2a3 + a2p

2 − ℓ2
(
a3 + p2

)]

− a1q
4
[
3a1
(
a21 + a1a2 − a1a3 + 3a2a3

)
+ ℓ2

(
−3a1a3 − 3a1p

2 + hpq

)
− a22p

2
]

− q2
[
− ℓ2

(
hpq

(
a21 + a1(a2 − a3) + a2a3

)
+ a2p

2
(
−6a1a3 + a2a3 + a2p

2 + hpq

)

− 6a1a2a
2
3

)
+ hpqℓ

4
(
a3 + p2

)
+ a2

(
a2p

2
(
a21 + a1a2 − 7a1a3 + a2a3 + a2p

2
)

+ a1(a
2
3(9a1 − 8a2)− 6a1a3(a1 + a2) + 3a1hpq)

)]
,

Suvℓ
3 = (a1 + a2)

[
2a2
(
a23(a1a3 + hpq) + q2

(
a3(a1(a3 − 3a1) + hpq) + 2a1p

2
(
a3 + q2

)))

− a1q
2
(
q2
(
a1
(
−3a1 + 3a3 + p2

)
+ 2hpq

)
+ 2a3(a1a3 + hpq)

)

+ a22
((
a1 − p2

) (
3a23 + hpq

)
− 3a33 − 5a3hpq

) ]
+ 2h2pqℓ

4 + ℓ2
[
q2
(
a1a

2
3(5a1 + 3a2)

+ a3hpq(3a1 + a2) + 2h2pq

)
+ 2a3

(
− a2a

2
3(2a1 + a2) + h2pq + a3hpq(a1 + a2)

)

+ p2
(
q2
(
2a2a3(2a1 + a2) + hpq(a1 − 3a2)− a1q

2(5a1 + 3a2)
)
− 2a2a3hpq

) ]
,

Svℓu
3 = −3a31q

6 + q2
[
a2p

2
(
a21(a2 + a3) + a1

(
a22 − 6a2a3 − hpq

)
+ a22a3 + a22p

2
)

+ a1a3
(
a21(a3 − 6a2) + a1

(
−6a22 + 7a2a3 + hpq

)
− 2a2(4a2a3 + hpq)

) ]

+ a2a3

[
a3
(
a21(2a2 − a3) + a1

(
2a22 − 3a2a3 − hpq

)
+ a2(2a2a3 + hpq)

)

+ a2p
2(2a2a3 + hpq)

]
+ ℓ2

[
− a3

(
a1a3(a2(2a2 + a3) + hpq) + (2a2a3 + hpq)

2
)

+ q2
(
3a1q

2
(
hpq − a21

)
+ p2

(
a1(a2(a3 − a2) + hpq)− a1q

2(2a1 + 5a2)

+a2(4a2a3 + hpq)) + 3a3hpq(a1 − a2) + a1a3(2a1(3a2 + a3) + 5a2a3)− h2pq

)]

+ a1q
4
[
− p2(a1 − a2)

2 + a1(−3a3(a1 − 3a2) + 3a1(a1 + a2) + hpq)
]

− hpqℓ
4
(
−3a1q

2 + 2a2a3 + hpq
)
, (E.8)

Sℓuv
4 = −

[
a21 + a1

(
a2 − a3 − q2

)
+ a2

(
a3 + p2

)] [
a22
(
3a3
(
a3 + p2

)
+ hpq

)

− 2a1a2
(
3a3
(
a3 + q2

)
+ hpq

)
+ 3a21q

2
(
a3 + q2

) ]
− hpqℓ

4
(
a3 + p2

) (
a3 + q2

)

− ℓ2
[
a1
(
a3 + q2

) (
q2
(
−3a1a3 − 4a1p

2 + hpq
)
+ a3(a1a3 + hpq)

)

+ a2

(
− p2

(
q2
(
−7a1a3 + a1q

2 + hpq
)
+ a3(hpq − 4a1a3)

)

+ a3
(
q2(7a1a3 − hpq) + a3(5a1a3 − hpq)

)
+ 2a1p

4q2
)

− a22
(
a3 + p2

) (
3a3
(
a3 + p2

)
+ hpq

) ]
,
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Suvℓ
4 = 2h2

pqℓ
4 + (a1 + a2)

[
a1q

2
(
a3
(
3a21 − 7a1a3 − 4hpq

)
+ p2

(
−3a1a3 + a1q

2 − 2hpq

)

+ q2(3a1(a1 − a3)− 2hpq)
)
+ a22

(
2a1a

2
3 + a1p

2
(
3a3 + q2

)
− hpq

(
2a3 + p2

)

− 3a3p
2
(
2a3 + p2 + q2

) )
+ 2a2

(
a3
(
2a3
(
−a21 + 2a1a3 + hpq

)
+ p2(2a1a3 + hpq)

)

+ q2
(
a1

((
a3 + p2

)2 − a1
(
3a3 + p2

))
+ a3hpq

)
+ 2a1p

2q4
)]

+ ℓ2
[
q2
(
−5a21hpq + 3a1a3(a2a3 + hpq) + hpq(a2a3 + 2hpq)

)
− 3a1a2a

3
3

+ a3hpq

(
−3a21 + 7a1a3 + a2(2a2 + 3a3)

)
− 2a2p

4
(
hpq − a1q

2
)
+ 4a3h

2
pq

− p2
(
q2
(
−3a1a2a3 + 3a1a2q

2 + a1hpq + 3a2hpq

)
+ a1a3(2a2a3 − 3hpq)

+ hpq(3a2a3 − 2hpq)
)]
,

Svℓu
4 =

[
a21 + a1

(
a2 − a3 − q2

)
+ a2

(
a3 + p2

)] [
3a21q

2
(
a3 + q2

)
− 2a1a2

(
3a3
(
a3 + q2

)

+ hpq

)
+ a22

(
3a3
(
a3 + p2

)
+ hpq

) ]
− ℓ2

[
a21

(
q2
(
3hpq − 2a2

(
3a3 + p2

))

+ a3(3hpq − 4a2a3)
)
+ a1

(
a22
(
3a3
(
a3 + p2

)
+ hpq

)
+ a2

(
3a3 − 2p2 + 5q2

)
hpq

− 3hpq
(
a3 + q2

)2 )
+ 3a31q

2
(
a3 + q2

)
+ a2hpq

(
a3 + p2

) (
3
(
a3 + q2

)
− 4a2

) ]

− hpqℓ
4
[
2a2
(
a3 + p2

)
− 3a1

(
a3 + q2

)]
, (E.9)

Sℓuv
5 = −

[
a21 + a1

(
a2 − a3 − q2

)
+ a2

(
a3 + p2

)] [
− 2a1a2

(
3a3
(
a3 + q2

)
+ hpq

)

+ 3a21q
2
(
a3 + q2

)
+ a22

(
3a3
(
a3 + p2

)
+ hpq

) ]
− hpqℓ

4
(
a3 + p2

) (
a3 + q2

)

− ℓ2
[
a2

(
− p2

(
q2
(
−7a1a3 + a1q

2 + hpq
)
+ a3(hpq − 4a1a3)

)
+ 2a1p

4q2

+ a3
(
q2(7a1a3 − hpq) + a3(5a1a3 − hpq)

) )
− a22

(
a3 + p2

) (
3a3
(
a3 + p2

)
+ hpq

)

+ a1
(
a3 + q2

) (
q2
(
−3a1a3 − 4a1p

2 + hpq
)
+ a3(a1a3 + hpq)

)]
,

Suvℓ
5 = (a1 + a2)

{
3a31q

2
(
a3 + q2

)
− a21

(
2a2 + a3 + q2

) [
2a23 + q2

(
3a3 + p2

)]

+ a1

[
a22
(
3a3
(
a3 + p2

)
+ hpq

)
+ 2a2

(
a3 + q2

) (
3a3
(
a3 + p2

)
+ 2hpq

)

+
(
a3 + q2

) (
−3ℓ2hpq − 2hpq

(
a3 + q2

)) ]
−
(
a3 + p2

) [
ℓ2
(
a3(2a2a3 − hpq)

− q2
(
2a2p

2 + hpq
) )

+ a2
(
2hpq

(
a2 − a3 − q2

)
+ 3a2p

2
(
a3 + q2

)) ]}
,
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Svℓu
5 = −a31

[
q2
(
3q2
(
−a2 + 2a3 + q2

)
+ 3a3(a2 + a3) + 2a2p

2 + hpq

)
+ a3(4a2a3 + hpq)

]

− a21

[
− a2

(
4a33 + p2

(
5a3q

2 + hpq + 4q4
)
+ a3q

2
(
14a3 + 9q2

))
− hpq

(
a3 + q2

)2

+ a22
(
3a3
(
a3 − p2 + 2q2

)
+ hpq

) ]
− ℓ2

[
a3

(
2a2a3

(
−2a21 + a1(a2 + a3) + 2a2a3

)

+ a2p
2(3a1a2 − a1a3 + 3hpq) + a3hpq(a1 + 7a2)

)

+ a1q
4
(
3a21 + p2(4a1 + 5a2)− 3hpq

)
+ h2

pq(p+ q)2

− q2
(
p2
(
2a21a2 − a1a2

(
a2 + p2

)
+ 4a1hpq + a2hpq

)
+ a1a

2
3(4a1 + 5a2)

+ a3
(
−3a31 + 6a21a2 + 2a2p

2(a1 + 2a2) + 6a1hpq − 3a2hpq

) )]
+ 3a41q

2
(
a3 + q2

)

− a1a2

[
a2p

2
(
8a23 + 11a3q

2 + q4 + p2q2
)
+ a2a

2
3

(
7a3 + 8q2

)
− a22

(
3a3
(
a3 + p2

)

+ hpq

)
+ 2hpq

(
a3 + p2

) (
a3 + q2

) ]
+ hpqℓ

4
[
a3(a1 − 2a2 + a3) + q2

(
3a1 − p2

)]

+ a22
(
a3 + p2

) [
a2
(
3a3
(
a3 + p2

)
+ hpq

)
+ hpq

(
a3 + p2

)]
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