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Resumo

Neste trabalho estudamos as consequências da emissão de ondas gravitacionais a partir

de uma fonte compacta sem rotação através do espaço-tempo de Robinson-Trautman.

Primeiro entendemos como usar o momento de Bondi e o grupo BMS para extrair e

controlar propriedades físicas da fonte. Após determinar explicitamente as expressões de

energia e velocidade para a métrica de Robinson-Trautman, focamos no entendimento da

evolução temporal e determinação de condições iniciais apropriadas para serem analisadas.

Então, descobrimos como lidar com o caso da fase pós-mesclagem de uma colisão frontal

de dois buracos negros em diferentes referenciais de Bondi, o que nos inspirou a propor

uma nova condição inicial que representa a colisão frontal de um número qualquer de

buracos negros. Ao fim, usamos os algorítmos desenvolvidos com um método de Galerkin

para resolver a evolução temporal, possibilitando explorar a eficiência da emissão de ondas

gravitacionais e velocidade de recuo de alguns dos sistemas propostos durante o texto.

Uma relação qualitativa entre as propriedades físicas da fonte e as assimetrias do aspecto

de massa de Bondi também foi explorado.

Palavras-chave: Ondas gravitacionais, Espaço-tempo de Robinson-trautman, Colisão

frontal, Buraco negro, Condição inicial de Brill-Lindquist, Recuo gravitacional, Relatividade

numérica, método de Galerkin.



Abstract

In this work we study the consequences of gravitational wave emission from a compact

source without rotation with aid of Robinson-Trautman spacetimes. First, we understand

how to use Bondi momentum and the BMS group in order to extract and control physical

properties of the source. After determining the explicit expressions of energy and velocity for

Robinson-Trautman metric, we focus on understanding time evolution and determination

of proper initial data to be analyzed. Then, we discover how to deal with the post merger

phase of a frontal collision of two black holes in different Bondi reference frames, which

inspired us to propose a new initial condition that represents the head-on collision of

any number of black holes. At the end, we use the algorithms developed with a Galerkin

method to solve time evolution, making possible to explore efficiency and kick velocity

for some of the systems proposed during the text. A qualitative relation between physical

properties of the source and the Bondi mass aspect asymmetries is also explored.

Keywords: Gravitational waves, Robinson-Trautman spacetimes, Head-on collision, Black

hole, Brill-Lindquist initial data, Gravitational recoil, Numerical relativity, Galerkin

method.
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Introduction

Let us start presenting a brief historical revision on the study of gravitational

waves (GWs), since the first attempts to understand their nature until the description

of the emission process for compact sources, with focus on Robinson-Trautman (RT)

spacetimes.

The interest in gravitational waves (GWs) started even before Einstein’s general

theory of relativity (GR), mainly by exploring the similarities between Coulomb’s and

Newton’s inverse square law and an electromagnetic analogy. The initial ideas to describe

the GW phenomena in this manner were introduced in 1893 by Heaviside [1], who dealt

with the gravitational interaction in total analogy with the electromagnetic case. Later

in 1905, Poincaré [2] proposed a more fundamental and simpler framework where GWs

propagated at the speed of light and, moreover, were emitted by accelerating massive

bodies. At the time, many physicists were skeptical about the existence of GWs due to

intrinsic differences between electromagnetism and gravity - as, for instance, the absence

of negative mass - and lack of experimental evidence. There were not even theoretical

proposals of physical apparatuses to measure such a low intensity predicted phenomena.

During the first years of Einstein’s GR, the difficulties in finding exact solutions

and their physical interpretation were a huge barrier to understand the gravitational

interaction, and so the progress on GW phenomena was rather slow. The earliest attempt

of a GW solution was a first order approximation by Einstein [3], who introduced the

linearized gravity approach as we have today [4], and claimed that three types of GW

perturbations would exist in Minkowski spacetime, but just one of them was transversal1.

In fact, the other two types could have any velocity of propagation depending on the choice

of reference frame, i. e., they were just a consequence of the coordinate system adopted

in the calculations. Eddington, one of the most famous skeptical on GW, considered all

perturbation modes as unphysical. His comment that “gravitational waves propagate at

the speed of thought” [5] illustrates very well the mainstream position at the time. Another

important result was the first exact solution of Einstein’s equations containing GWs [6], a

situation with cylindrical symmetry where GWs are emanating from an infinite source.

Until the later fifties, the problem was far from being solved, since a crucial step was still

lacking: the development of a criterion to identify precisely the GW contents of a given

spacetime.

The elucidation of these questions started in 1957 with Pirani’s work [7], in

which he used the tetrad formalism to detect the presence of GWs as certain discontinuities

1 The fact that GWs are transverse waves is well known today, but it definitely was not at the time.
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of the Riemann tensor across specific three dimensional null hypersurfaces. Such definition

excluded any kind of longitudinal coordinate dependence for GWs. These results also

contributed to guide the physical interpretation of the Petrov classification of spacetimes

in different types of gravitational content [8]. Also in the work [7], Pirani discussed the

effect of GWs passing through a group of test particles via geodesic deviation equations,

explaining the behavior of GWs in regions far from the source. This was the key theoretical

tool to understand energy transport and development of measurement devices. In this

context, Feynman so-called “Sticky bead argument” [9] was very important at the time

to convince the remaining skeptical that GWs were indeed real. Later, a fundamental

theorem connecting the Petrov classification and the behavior of families of light rays

in spacetime (null congruences) was discovered by Goldberg and Sachs (GS) [10], which

helped to understand the physical properties of different gravitational field types.

Another important question in the discussion was the possibility of the source

“mass consumption” during radiation processes, since GWs do transport energy. The first

attempt to answer such question arised with the discovery of exact plane waves by Bondi,

Pirani and Robinson [11] in 1959, but these solutions could not describe properly any

emission of massive compact bodies since they were built between two sheets in Minkowiski

spacetime. This configuration is rather unphysical and the authors argued that only a

solution of a compact source of GWs would bring the discussion to an end. Within this

context, the sixties papers about GWs played a huge role to build methods to understand

the emission process and we will focus on their content now. For a deeper and longer

historical description, including the two Nobel prizes on GWs indirect and direct detection,

we recommend [9].

Inspired by the plane wave solutions, Robinison and Trautman published in

1960 a family of solutions with spherical GWs, which would be later called RT spacetimes

[12]. It was not clear at the time if these solutions could represent an isolated compact

source, because Schwarzschild metric was a special case of RT spacetimes, but the radiative

cases seemed to have singularities in their wave fronts, which was pointed by the authors

as possible ingoing mass flow in the system. Then, in the next year, Sachs formulated a

condition for GW fields to be only outgoing [13], and any algebraically special metric would

satisfy such condition. Since RT metric is algebraically special, it immediately become a

promising candidate to describe a physically reasonable spacetime with GW content. Also

in 1961, Newman and Penrose systematized and completed the ideas of the GS-Theorem

based on the spinor affine connection [14], in such a way that all characteristics of null

congruences were understood and the asymptotic behavior of asymptotically flat metrics

was investigated with Weyl scalars2. RT spacetimes could also be derived and studied with

this strategy [15].

2 The specific name “Weyl scalars” was not used in this first approach.
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In 1962, Robinson and Trautman presented a study about the details of vacuum

field equations to their solution [16], with explicit examples of constants of motion and

properties of the source and waves. In the same year, Bondi, van der Burg and Metzner

established a metric based formalism using the null geodesics of spacetime [17, 18]. They

defined the news function, which quantifies the GW flux at future null infinity, and used it

to show that a compact source with outgoing GWs loses mass during the emission process.

This result was really important, but the authors analyzed only axisymmetric systems,

and Sachs extended it for general isolated compact sources in sequence [19]. Sachs also

investigated a group of transformations which action remained the boundary conditions of

the metric unchanged, the Bondi-Metzner-Sachs (BMS) group, that is a generalization of

the Poincaré group and dictates asymptotic symmetries of asymptotically flat spacetimes.

These new strategies were firstly applied to RT spacetimes by Foster and Newman in 1967

[20], finding cases for which the Schwarzschild metric was the stationary solution in the

asymptotic future, but approximations were needed because of technical difficulties in

solving field equations.

Solution existence and convergence of general initial conditions for RT field

equations could only be well established at the beginning of the 90’s [21, 22, 23]. In these

works the authors showed the convergence of regular RT initial data to Schwarzschild

solution for positive time evolution. Then, the interpretation of RT spacetimes as a

perturbation of a spherical Black Hole (BH) was clarified. Even so, the equations were

difficult to handle and the problem of full field evolution was solved only in 1999, when

Prager and Lun proposed a spectral method to perform the task [24]. Since then, RT

metrics have been studied with the aid of this numerical method. Recent works have

presented the investigation of post-merger phase of binary collisions between Schwarzschild

BHs using RT spacetimes, making possible to calculate precise values of energy loss and

recoil due to GW emission with good precision [25, 26, 27, 28].

The main objective of this dissertation is to study the emission process of GWs

for compact sources without angular momentum. In chapter 1 some tools are presented in

order to understand properties of asymptotically flat metrics, with focus on a derivation of

the BMS group by a simple analysis of the future null infinite symmetries for Minkowiski

spacetime. In chapter 2 we use these tools to compute physical properties of RT spacetimes,

fixing all Bondi coordinates degrees of freedom. We also use a rotation and a Lorentz boost

in order to prove which is the right definition of velocity for the source. In chapter 3 the

full spectral method to solve RT equations based on an expansion of ordinary spherical

harmonics is developed, leading to a new strategy that is the most efficient one to solve

RT equations for a generic initial condition, without any known symmetry. Then, we prove

some properties of special cases, allowing us to classify axisymmetric and planesymmetric

initial data.
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After setting all strategies to perform time evolution and compute physical

properties of RT spacetimes, we start to analyze specific examples. In chapter 4 we study

Brill-Lindquist (BL) initial conditions for the ordinary axisymmetric case and extend it to

the non-axisymmetric case with a Lorentz boost. Then, we propose a generalization for this

type of initial data, which represents the post-merger phase of a head-on (frontal) collision of

any number of BHs. Also, we explore the connection between the inhomogeneities of Bondi

mass aspect and efficiency of GW emission. At the end, in chapter 5, we develop numerical

algorithms to investigate recoil of the source, always with the aid of systems proposed in

chapter 4. With these results, the relation between Bondi mass aspect asymmetries and

recoil direction is investigated. Throughout the entire text we will use geometric units

(c “ G “ 1) and the Einstein summation convention for repeated indices.
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1 Gravitational Waves and Compact Sources

Gravitational Waves (GWs) are transversal waves that carry information about

gravitational field changes and propagate at the speed of light, like photons, so they are

intimately related with the causal structure of spacetime, reaching regions that other kinds

of gravity ripples can not access. For this reason, their physical interpretation demands

many theoretical tools besides Einstein’s equations - as explained in the historical context

given in the introduction -, so a full development of all needed techniques is a long journey.

In this chapter, we will present the most important results about spacetimes containing

GWs, with focus on vacuum compact sources, always assuming elementary knowledge

about GR and differential geometry.

By compact sources we mean asymptotically flat spacetimes, the ones with a

metric that approaches Minkowski for regions far enough from the origin. For us, this

means that the metric can be written in usual spherical coordinates (t, r, θ, φ) and, for

large r values, its expression reads

ds2 “ ´dt2 ` dr2 `
`

r2 ` O prq
˘

dΩ2 ` O

ˆ

1

r

˙

, (1.1)

where dΩ2 “ dθ2 ` sin2 θdφ2 and the terms of Op1{rq can be present in any component

of the metric, not only in the diagonal. In this work all spacetimes considered will be

asymptotically flat and the notation for coordinates introduced in (1.1) will be fixed.

1.1 Petrov’s classification and Weyl scalars

Categorizing and understanding all kinds of gravitational content of a general

spacetime can be a challenging task, and the Petrov classification [8] is the best way of

doing it. To separate and study each one of them, the tetrad formalism may be introduced.

Different from the coordinate basis - usually represented as Bµ -, a tetrad is a general

collection of four linearly independent local vector fields êA
µ pxνq used as basis for the

tangent space, with capital Latin letters running from 0 to 3. The expression of the line

element is given by

ds2 “ gµνdxµdxν “ ηAB êAêB (1.2)

and a common choice of tetrad is an orthonormal one, which encodes all curvature

information in the basis itself, and the expression of the metric reduces to the same as
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Minkowski in Cartesian coordinate basis

ηAB “

¨

˚

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‚

. (1.3)

The Weyl tensor (Cµναβ) is the traceless part of Riemann tensor and it can be used to

investigate gravitational content as well, since the only information loss by the lack of

trace is about volume changes from tidal forces1. Its expression is

Cµναβ “ Rµναβ ´ 1

2

`

gµrαRβsν ´ gνrαRβsµ

˘

` 1

3
gµrαgβsνR, (1.4)

with Rµν “ Rα
µαν and R “ Rα

α being the Ricci’s tensor and scalar. Also, the square

brackets mean antisymmetrization of the involved indices. For compact sources, as states

the Peeling Theorem, each Petrov type of gravitational field has a known asymptotic

behavior that can be used to decompose the Weyl tensor, since it is written in a specific

orthonormal tetrad, as:

CABCD “ NABCD

r
` IIIABCD

r2
` DABCD

r3
` IIABCD

r3
` IABCD

r4
` O

ˆ

1

r5

˙

. (1.5)

Type N regions of spacetime indicate GW content; type III is associated with longitudinal

waves with frame dependent velocity; type D is called Coulomb field, with tidal forces

similar to the ones in Schwarzschild or Kerr solutions; type II is a general combination

of the previous ones and type I can degenerate in types II or D. Regions where the

Weyl tensor is null are called O type. Adding the vacuum condition (Rµν “ 0), we have

Rµναβ “ Cµναβ and the previous considerations are valid for the Riemann tensor as well.

The procedure to find the tetrad that leads to (1.5) is out of the scope of this work and it

is well explained in [29].

A more direct way to understand compact sources is by studying the Weyl

scalars, what demands the use of a null orthonormal tetrad, which is possible only if we

admit complex valued vector fields as elements for the basis. The easiest way to construct

such basis is to start from a metric in spherical coordinates (t, r, θ, φ), find an orthonormal

tetrad têA
µ u and define:

kµ “ 1?
2

´

êt
µ ` êr

µ

¯

;

lµ “ 1?
2

´

êt
µ ´ êr

µ

¯

;

mµ “ 1?
2

´

êθ
µ ` iêφ

µ

¯

.

(1.6)

1 The Weyl tensor is invariant under comformal transformations and it only differs from the Reimann
tensor in the presence of matter, a case that we are not interested in this work.
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The basis is given by tkµ, lµ, mµ, m̄µu, where kµ is an outgoing vector, lµ an ingoing one

and the bar indicates complex conjugation. The metric expressed in this null tetrad reads

ηAB “

¨

˚

˚

˚

˚

˝

0 ´1 0 0

´1 0 0 0

0 0 0 1

0 0 1 0

˛

‹

‹

‹

‹

‚

. (1.7)

Then, the Weyl scalars are calculated:

Ψ0 “ Cµναβkµmνkαmβ; Ψ1 “ Cµναβkµlνkαmβ; Ψ2 “ Cµναβm̄µlνkαmβ;

Ψ3 “ Cµναβm̄µlνkαlβ; Ψ4 “ Cµναβm̄µlνm̄αlβ.
(1.8)

They are complex in general and, for compact sources, their asymptotic behavior is

Ψn “ O
`

rn´5
˘

[14]. Comparing the large r behaviour of (1.8) with (1.5), one can interpret

Ψ4 as the N type contribution for regions far from the source. Actually, it is possible to

write explicitly the lowest order approximation of Ψ4 as

Ψ
p0q
4 “ 1

r
lim
rÑ8

rΨ4, (1.9)

the outgoing GW content for large r. In the same way, asymptotic behavior of gravity can

be analyzed from Ψ1 and Ψ3 for outgoing and ingoing longitudinal waves; Ψ2 for Coulomb

type field; and Ψ0 for a combination of outgoing and ingoing modes of GW.

A useful feature of this approach is the ambiguity in the choice of basis, because

there are transformations that maintain (1.6) as a null orthonormal tetrad, and one can

have different Weyl scalars for each valid basis. The transformations of this kind that helps

in our purpose are the null rotations around lµ or kµ, given by2

l̃µ “ lµ;

m̃µ “ mµ ` alµ;

k̃µ “ kµ ` āmµ ` am̄µ ` aālµ

(1.10)

in the case of unchanged lµ. Here a is a complex parameter and the Weyl scalars transform

as follows:

Ψ̃0 “ Ψ0 ` 4aΨ1 ` 6a2Ψ2 ` 4a3Ψ3 ` a4Ψ4;

Ψ̃n “ 1

5 ´ n

BΨ̃n´1

Ba
; n “ t1, 2, 3, 4u,

(1.11)

To perform a null rotation around kµ the same procedure can be done, regarding that

interchanging kµ and lµ leads to Ψ1
n “ ´Ψ4´n.

The first expressions in (1.11) generates an algebraic equation Ψ̃0 “ 0 that has

solutions ta1, a2, a3, a4u, giving four specific new possibilities for k̃µ in general. Each one

2 Again, see [29] for the full development.
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of these k̃µ is called a principal null direction of spacetime. If all four roots are different,

another null rotation around k̃µ can be done to make Ψ4 “ 0 too, then only (Ψ1, Ψ2, Ψ3)

are not zero in this basis and, by the Peeling Theorem (1.5), spacetime is Petrov type I,

the most general example for the asymptotically flat case.

Any case with at least one root repetition is called algebraically special and,

when it happens, other Weyl scalars can be set to zero, making possible to determine into

each other Petrov type the gravitational field degenerates to, just by knowing its large r

behavior. The simplest occasion is when only one repetition occurs, so Ψ̃1 “ 0 too in that

direction, resulting in Petrov type II field. When there are two degenerated principal null

directions, each null rotation (around lµ and k̃µ) makes two scalars null, only Ψ2 survives

and the field is type D. Another possibility is for a solution with multiplicity three, then

only Ψ3 is not zero after the transformations and the field is type III. Only when all roots

coincide, all the scalars except Ψ4 are turned into zero by the first transformation, so the

null rotation around k̃µ does not change any Weyl scalar and the gravitational content is

type N . These results are gathered in Table 1 that follows.

Table 1 – Weyl scalars that are always non zero for each Petrov type.

Petrov type I II D III N

Weyl scalars Ψ2, Ψ3, Ψ4 Ψ2, Ψ3 Ψ2 Ψ3 Ψ4

In short, compact sources of GWs can express all Petrov types, but each

degenerated principal null direction restricts the possibilities for the gravitational field of

the system. Then, algebraically special spacetimes are simpler and represent the greatest

portion of known analytical solutions of Einstein’s equations. Some examples of them are

Schwarzschild and Kerr vacuums of type D, Kundt waves of type III and N , Bondi-Sachs

vacuum spacetimes of type II.

1.2 Foliations and Goldberg-Sachs theorem

To have GW emission, at least second order time derivatives of the components

of the metric must not be zero, then dynamical spacetimes are required to describe it, and

only a boundary condition as (1.1) is not enough to have a well-posed problem to Einstein’s

equations. To handle this, one can try to slice spacetime in different hypersurfaces and write

more boundary conditions with respect to some specific slices. A family of hypersurfaces

chosen to represent these slices, whose union covers all spacetime, is called a foliation. The

simplest way to find a foliation is with a non vanishing timelike vector field fµpλq, used to

generate a family of three dimension normal hypersurfaces Σλ. These Σλ are spacelike and

we call them a family of Cauchy surfaces if they intersect any timelike geodesic only once.

If a foliation of Cauchy surfaces exists, we say that spacetime is globally hyperbolic and λ
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and one can use the covariant derivative projected in this surface to understand local

behavior of kµ (or lµ in the same way). Explicitly, we write

hα
µ∇αkν “ ϑhµν ` σµν ` τµν , (1.13)

with ϑ being the trace of the decomposed tensor, σ its symmetric traceless part, τ its

antisymmetric part. The scalar ϑ is called the expansion of the congruence and measures

how much light rays are separating from each other; σµν is the shear tensor and τµν is the

twist tensor4, quantifying how much a two dimensional image on the spatial surface would

be locally distorted and rotated respectively. It is also possible to write all this optical

information with two complex scalars, according to spin coefficients formalism [14], in the

following way:

ϑpkq “ ´2Repρq; σµν “ ´σm̄µm̄ν ´ σ̄mµmν ; τµν “ Impρqpmµm̄ν ´ m̄µmνq, (1.14)

where ρ and σ are the complex divergence and shear respectively.

If we restrict ourselves to the case of closed Sk,l, we can fix kµ pointing outwards,

lµ inwards and write the restriction (1.1) in the following way:

ds2 “ ´du2 ´ 2dudr `
`

r2 ` O prq
˘

dΩ2 ` O

ˆ

1

r

˙

, (1.15)

where u is a retarded time coordinate, in the sense that u “ t ´ r for large r. Here we also

have kµ “ δµ
r for large r.

To end this section we present the theorem proved by Goldberg and Sachs in

1962 [10], written in a different way in other to be more direct for our purposes:

GS-Theorem. A vacuum metric, Rµν “ 0, have null Ψ0 and Ψ1 Weyl scalars if and only

if it has a shear-free, σ “ 0, null geodesic congruence.

This may look like a simple statement, but it gives a natural 2 ` 2 foliation of

spacetime, with spacelike surfaces normal to the tangent vector of the null congruence, say

kµ, that is a degenerated principal null direction of spacetime. In other words, we must

have Ψ0 “ Ψ1 “ 0 in the null tetrad induced by this foliation. This means that Petrov

types II, III and N must have one σ “ 0 null geodesic congruence and type D fields

always present two of them5. Then, it is possible to determine the Petrov type of the field

only by its Weyl scalars computed in this special basis, except when Ψ2 and Ψ3 are not

zero together, because it is not possible to distinguish if the gravitational content is type

D and III together, or just type II6.

4 Also called vorticity.
5 This is so powerful that made possible to find all type D vacuum solutions, see [31].
6 See Table 1.
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After all these considerations, we will follow now studying only Petrov type

II cases (or their degenerated cases), always having in mind their potential to describe

isolated massive bodies radiating GWs, since they can degenerate in Petrov types III, D

and N , but always with Ψ0 “ 0, i. e., no ingoing GWs.

1.3 Mass definitions for black holes

Even in vacuum solutions of Einstein’s equations there can still be gravitational

field, the case of black holes (BHs). They are spacetimes with curvature divergence

singularities and represent very dense massive objects, so dense that gravity is too strong

nearby them and even photons can not move away from their close surroundings. This

inspires the definition of an event horizon, the boundary of a region where information

will never be able to reach an external observer (photons can not get out of it). Also,

BHs are important cases of GW sources and a definition for mass, energy and momentum

associated with these objects is needed. In this section we will introduce two different

mass concepts for BHs with compact event horizons.

The first concept is the Arnowitt-Deser-Misner (ADM) mass [30] and its

definition is based on a foliation of Cauchy surfaces Σλ, introduced in section 1.2. ADM

mass is a measurement of the asymptotic behavior of gravity and it is given by the medium

extrinsic curvature of a two dimensional closed slice of each Σλ, in a region infinitely far

from the event horizons of any BH. To elucidate how this is done, we will evaluate ADM

4-momentum for Schwarzschild metric in usual spherical coordinates as a toy example,

like done in [32]. The metric reads

ds2 “ ´
ˆ

1 ´ 2M

r

˙

dt2 `
ˆ

1 ´ 2M

r

˙´1

dr2 ` r2dΩ2 (1.16)

and, since Bt is timelike, Σt can be used as Cauchy surface. Also, we just need to compute

how constant r surfaces vary for a distant observer, since spacetime is spherically symmetric.

The only possible variation in those surfaces is the area, so we expand its variation with

respect to proper radial distance for large r. The result is

dAprq
ds

“ dAprq
dr

dr

ds
“ 8πr

c

1 ´ 2M

r
“ 8πr ´ 8πM ` O

ˆ

1

r

˙

. (1.17)

The first term of the expansion will always be the flat space standard variation. The lowest

order contribution of spacetime curvature comes from the second term, so we define ADM

mass aspect (MADM) as [30]

dApt, r, θ, φq
ds

“ 8πr ´ 8πMADM pt, θ, φq ` O

ˆ

1

r

˙

, (1.18)
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which can be interpreted as the energy measured by an observer near spatial infinite. Then

we can define ADM 4-momentum in this frame as

P
µ
ADM ptq “ 1

4π

ż

2π

0

ż π

0

MADM pt, θ, φqjµ sin θdθdφ, (1.19)

with jµ “ p1, r̂q “ p1, sin θ cos φ, sin θ sin φ, cos θq. This quantity can be thought as some

kind of momentum of the center of mass frame, in the sense that it transforms as

an authentic 4-vector by action of translations, rotations and Lorentz boosts7 on the

asymptotic spatial frame (t, r). For the case of Schwarzschild, we have P
µ
ADM “ pM, 0, 0, 0q

with no time dependence or spatial part of momentum, as expected for a spherical black

hole at rest.

The only problem with ADM formalism is that it does not distinguish which

contributions come from GWs or from Coulomb type fields of their sources. This separation

can be a useful information to understand important properties of the system, as GW

recoil for example. To get this separation we use Bondi-Sachs formalism [33], which can be

seen as the same procedure, but changing the 3 ` 1 foliation by a 2 ` 2 one, in the sense

that the Bondi mass aspect will define the same physical entities as ADM, but only for

energy contributions that comes from the source.

The first step is to introduce the Bondi-Sachs metric in Bondi spherical coordi-

nates

GµνdXµdXν “ ´V

R
e2βdU2 ´ 2e2βdUdR ` R2qabpdXa ´ HadUqpdXb ´ HbdUq, (1.20)

where small Latin indices run through the usual angular coordinates (Θ and Φ), U is

a retarded time, R is the radius and the parameters are functions of all coordinates in

general. To have an asymptotically flat spacetime in the sense of (1.15), the following

boundary conditions for R Ñ 8 must be fulfilled:

β Ñ 0; Ha Ñ 0;
V

R
Ñ ζpU, Θ, Φq; qab Ñ fab, fabdXadXb “ dΘ2 ` sin2 ΘdΦ2, (1.21)

with positive definite qab. The null vector BR generates a shear-free geodesic congruence,

then this spacetime is Petrov type II by the GS-theorem and it can represent a compact

source surrounded by GWs. Also, constant U surfaces are spacelike and they are used to

generate the natural 2 ` 2 foliation.

As in ADM mass case, one can define the Bondi mass aspect (MB), given by

V “ ζpU, Θ, ΦqR ´ 2MBpU, Θ, Φq ` O

ˆ

1

R

˙

(1.22)

and Bondi 4-momentum is

P µpUq “ 1

4π

ż

2π

0

ż π

0

MBpU, Θ, Φqjµ sin ΘdΘdΦ, (1.23)

7 The Poincaré group.



Chapter 1. Gravitational Waves and Compact Sources 27

but now jµ components are written with respect to an asymptotic null asymptotic Bondi

frame (U, R).

Although the null surfaces do not tell us anything about GWs, we still have

the spacelike constant U surfaces to evaluate their effects. Then we look at the following

auxiliary tensor cab:

qab “ fab ` 1

R
cabpU, Θ, Φq ` O

ˆ

1

R2

˙

, (1.24)

which measures the constant U surface deviation from the sphere in the lowest order8. In

fact, this tensor is the first order deviation of qabR from the metric of the sphere

cab “ lim
RÑ8

Rpqab ´ fabq “ lim
RÑ8

pqab ´ fabq
1{R

. (1.25)

Since constant U surfaces are approximated by spheres for large R, we define the complex

dyad tma, m̄au as

ma “ 1?
2

ˆ

δa
Θ

` i

sin Θ
δa

Φ

˙

, (1.26)

and use (1.14) to compute the gravitational shear scalar near null infinite9, given by

σp0q “ ´mambcab. (1.27)

Any change in this quantity can only come from GW contributions, then we get to the

famous news function N “ BUσp0q. There is GW presence in the system if and only if the

news is not zero. Vacuum Einstein’s equations determines mass aspect time variation

BMB

BU
“ ´ }N}2 ` BUW pU, Θ, Φq, (1.28)

where W is a large expression that we are not interested in. The integration of (1.28) on

S2 leads to the Bondi conservation law10

dP µ

dU
“ ´ 1

4π

¿

S2

}N}2
jµdS. (1.29)

To simplify (1.29), we use RΨ
p0q
4 “ ´BUN̄ from [35] and, since we compute Weyl scalars

with the tetrad generated by the outgoing null vector BR, (1.29) becomes

dP µ

dU
“ ´R2

4π

ż

2π

0

ż π

0

›

›

›

›

›

ż U

U0

Ψ
p0q
4 pU 1, Θ, ΦqdU 1

›

›

›

›

›

2

jµ sin ΘdΘdΦ. (1.30)

Then, we conclude that an isolated compact source of gravitational waves (Petrov type II

field) loses mass in the emission process, because it is always taken a positive amount of

8 This is true because Ha is at least O

´

r´3

¯

due to condition (1.15).
9 The general gravitational shear as defined in (1.14) is zero, but its lowest order approximation for

large R might not be null.
10 Indeed, all contributions from W vanish after the integration. See [34] for full calculations.
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energy of the source during U evolution. We can also solve (1.30) and get to

P µpUq “ P µpU0q ´ R2

4π

ż U

U0

ż

2π

0

ż π

0

›

›

›

›

›

ż U 1

U0

Ψ
p0q
4 pU2, Θ, ΦqdU2

›

›

›

›

›

2

jµ sin ΘdΘdΦdU 1. (1.31)

The simplest non trivial example of a known Bondi frame is the Eddington-

Finkelstein outgoing coordinates for Schwarzschild spacetime

ds2 “ ´
ˆ

1 ´ 2M

r

˙

du2 ´ 2dudr ` r2dΩ2. (1.32)

Also MB coincides with MADM in this case, because (1.32) is static and the news function

is null, i. e., an inertial spherical BH does not emit GWs.

To use this formalism with a vacuum metric gµνpu, r, θ, φq that is not directly

expressed as (1.20), one can try to find a coordinate change that leads gµν into the form of

(1.20). The most general transformation from spherical coordinates tu, r, θ, φu to a Bondi

frame that keeps physical interpretations unchanged in momentum calculation is

U “ U0 ` U1

r
` U2

r2
` O

ˆ

1

r3

˙

;

R “ r

R-1
` R0 ` R1

r
` O

ˆ

1

r2

˙

;

Θ “ T0 ` T1

r
` T2

r2
` O

ˆ

1

r3

˙

;

Φ “ F0 ` F1

r
` F2

r2
` O

ˆ

1

r3

˙

,

(1.33)

where all coefficients are functions of (u, θ, φ). Also, the transformed metric must fulfill

the conditions

GUU “ GUΘ “ GUΦ “ 0; GΘΘGΦΦ ´
´

GΘΦ

¯2

“
`

R2 sin Θ
˘´2

;

GUR “ 1 ` OpR´2q; GRR “ ´ζ ` MB

R
` OpR´2q; GRΘ “ OpR´2q “ GRΦ.

(1.34)

The only problem is to get the right expression for Bondi momentum conservation law in

the original reference frame. It is possible to determine (1.30) in pu, r, θ, φq coordinates,

but the final expression is not so easy to handle. It is given by

dP µ

du
“ ´ r2

4π

¿

S2

ˆBU

Bu

˙

›

›

›

›

›

ż u

u0

Ψ
p0q
4 pu1, θ, φqdu1

›

›

›

›

›

2

jµdS ` 1

4π

¿

S2

MBpu, θ, φqBjµ

Bu
dS. (1.35)

The second term in (1.35) is connected with the fact that jµ is related to one specific

Bondi observer and, as the metric changes with GW emission, the notion of asymptotic

Bondi frame also changes in time11.

11 In [36] the time dependence of this null vector is determined for the case of Vaidya solution.
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1.4 The BMS group

Compact sources must behave like flat spacetime when we observe events too

far from a fixed point. However, we need to understand how Minkowski itself looks like far

from its own origin to comprehend what it means in fact. In this section we will analyze

the set of future null infinite events (I`) of Minkowski, but in the perspective of different

observers, and then conclude how must be the symmetries of I
` for generic asymptotically

flat spacetimes.

Let us start with Minkowski in coordinates (u, r, θ, φ)12 defined in section 1.2.

Then we perform the most general coordinate change that keeps the metric in the form of

(1.15), given by (1.33) from the last section. Using the metric components transformations

Gµν “ BXµ

Bxα

BXν

Bxβ
gαβ, (1.36)

we get

GRR “ 2r
R-1,u

pR-1q3
` Opr0q;

GUR “ BuU0

R-1
` O

ˆ

1

r

˙

;

GUΘ “ BuT0

R-1
` O

ˆ

1

r

˙

;

GUΦ “ BuF0

R-1
` O

ˆ

1

r

˙

.

(1.37)

With restrictions (1.34), the only possibility is that the leading order coefficients can not

depend on u, resulting in

R-1 “ R-1pθ, φq;
U0 “ R-1pθ, φqu ` αpθ, φq;
Θ0 “ Θ0pθ, φq;
Φ0 “ Φ0pθ, φq,

(1.38)

where α is an arbitrary function on the sphere. With this approach, we can understand

which part of the general transformation really affects the behavior of events infinitely far

from the origin. The limit r Ñ 8 leads to

U “ R-1pθ, φqu ` αpθ, φq;

R “ r

R-1pθ, φq ;

Θ “ Θ0pθ, φq;
Φ “ Φ0pθ, φq.

(1.39)

12 These coordinates were chosen because the foliation generated by them is 2 ` 2, so large r is near I
`.







Chapter 1. Gravitational Waves and Compact Sources 32

(1.41) and calculate the respective Bondi mass aspect.

ds2 “ ´
ˆ

1 ´ 2M

r

˙

du2 ´ 2dudr ` r2dΩ2

γ2p1 ´ vn̂ ¨ r̂q2
;

MB “ M

γ3p1 ´ vn̂ ¨ r̂q3
,

(1.42)

Regarding the corrections of (u, r) to maintain the metric in Bondi coordinates (1.34), we

get the expected momentum for a boosted spherical BH, P µ “ γMp1, vn̂q.

As said in the beginning of this section, any region of an asymptotically flat

spacetime that is sufficiently far from a fixed point must look like Minkowski. Now we

know it means that I
` must remain unchanged by the action of the BMS group. In this

work we will only use simpler cases of this action, the ones connected to Poincaré group

and always written in specific frames of reference. If the reader is interested in studying

the BMS group and asymptotic flat spacetimes in a coordinate independent context, we

recommend [39], that is a good and modern approach of the subject with interesting

discussions about superrotations, which represent a natural extension of the Lorentz group

in this scenario.
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2 Robinson-Trautman Spacetimes

In this chapter we investigate the gravitational field content of Robinson-

Trautman (RT) spacetimes, with the aid of the Goldberg-Sachs Theorem and Weyl scalars.

Then, we also use Bondi-Sachs formalism to understand properties of the source of GWs. A

solid definition of the source’s instantaneous velocity is presented, in contrast with recent

attempts with different approaches. The evolution equation is introduced, its stationary

solution is given and the physical interpretation of the initial value problem is discussed.

2.1 General properties

RT spacetimes are the simplest vacuum solution of Einstein’s equations that

can represent compact sources surrounded by GWs. The standard form of the metric [25]

is

ds2 “ gµνdxµdxν “ ´
ˆ

Kpu, θ, φq ´ 2m0

r
´ rBu

`

ln Q2
˘

˙

du2 ´2dudr` r2dΩ2

Q2pu, θ, φq , (2.1)

where m0 is a constant, Q and K are smooth functions, dΩ2 is the unit sphere (S2) metric

in the usual spherical coordinates angles pθ, φq, r is a radial distance and u is a retarded

time.

Besides that, Br generates a shear-free null geodesic congruence, with r as affine

parameter, i. e., (2.1) is algebraically special and the natural 2 ` 2 foliation associated

with it is based on constant u surfaces with Gaussian curvature given by
K

r2
. The full

expression for Kpu, θ, φq is

K “ Q2

ˆ

1 ` 1

2
∇

2

Ω

`

ln Q2
˘

˙

“ Q2 ` Q∇
2

Ω
Q ´ p∇ΩQq2, (2.2)

where ∇Ω is the gradient operator on S2. The null tetrad induced by the foliation reads

kµ “ δµ
r ;

lµ “ δµ
u ` guu

2
δµ

r ;

mµ “ Q?
2r

ˆ

δ
µ
θ ` i

sin θ
δ

µ
φ

˙

.

(2.3)

Computing the Riemann tensor in this basis we have

RABCD “ NABCD

r
` IIIABCD

r2
` DABCD

r3
, (2.4)

with N , III and D covariantly constant along Br. This makes clear the interpretation of a

compact body surrounded by GWs. Then, one can compute the Weyl scalars with (2.3)
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like defined in (1.8):

Ψ0 “ Ψ1 “ 0;

Ψ2 “ ´m0

r3
;

Ψ3 “ ´ Q?
8r2

DK;

Ψ4 “ ´sin θ

4r2
D

˜

Q2Dguu

sin θ

¸

,

(2.5)

where D “ Bθ ´ i

sin θ
Bφ. As we already expected, Ψ0 “ Ψ1 “ 0 and there are no ingoing

GWs, then all GW content in spacetime was emitted by the compact source, which also

generates the Coulomb type field represented by Ψ2. The only case without GWs (Ψ4 “ 0)

occurs when K is constant, i. e., Ψ3 “ Ψ4 “ 0 and it is possible to recognize the Weyl

scalars for Schwarzschild solution with mass m0.

Using (1.33) and (1.34), we determine the transformation to Bondi coordinates

as

U “
ż u

u0

Qpu1, θ, φqdu1 ` αpθ, φq ` O

ˆ

1

r

˙

;

R “ r

Qpu, θ, φq ` O
`

r0
˘

;

pΘ, Φq “ pθ, φq ` O

ˆ

1

r

˙

,

(2.6)

where the leading order for angular coordinates was chosen to match the Lorentz frame

of the original coordinates with the Bondi frame. However, there is still a huge gauge

freedom to fix, since it is always possible to perform a supertranslation, parameterized by

α, which will determine all the higher order terms in (2.6). Then, we have

MBpu, θ, φq “ m0

Q3pu, θ, φq ` PpBaU0, BaBbU0; u, θ, φq (2.7)

where P is a homogeneous polynomial in xa “ pθ, φq derivatives of U0 “
ż u

u0

Qpu1, θ, φqdu1 `

αpθ, φq. To determine P at a generic instant of time u is a hard task1, so we choose

αpθ, φq “ u0, which makes P “ 0 at u0 and, consequently, all higher order terms besides

the leading order disappear in (2.6). Then, Bondi momentum at u0 reads

P µpu0q “
`

P 0pu0q, P pu0q
˘

“ m0

4π

¿

S2

p1, r̂q
Q3pu0, θ, φqdS, (2.8)

in a reference frame with all BMS group degrees of freedom fixed.

1 To know the explicit expression for P, see [34].
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Inspired by (1.42) - and as done previously in literature [25, 40]-, we define the

center of mass velocity in the Bondi frame as

vpu0q “ 1

P 0pu0qP pu0q. (2.9)

Since other recent works use different definitions2, we want to show that (2.9) is definitively

right, and no other option is better to measure the velocity of the source. Then we perform

the rotation that fix vpu0q “ vẑ and do a Lorentz boost of ´vẑ, as done in (1.42), which

transformation is given by

cos θ1 “ cos θ ` v

1 ` v cos θ
; φ1 “ φ; dΩ12 “ dΩ2

γ2p1 ` v cos θq2
, (2.10)

then we define3

Qboostpu0, θ, φq “ γp1 ` v cos θqQ
˜

u0, θ1 “ arccos

ˆ

cos θ ` v

1 ` v cos θ

˙

, φ

¸

, (2.11)

leading to the following spatial part of the Bondi momentum

P 1

boost
pu0q “ P 2

boost
pu0q “ 0, P 3

boost
pu0q “ m0

4π

¿

S2

cos θdS

Q3
boost

ˆ

u0, arccos
´

cos θ`v
1`v cos θ

¯

, φ

˙ . (2.12)

Doing the coordinate change that matches the expression (2.10) in the last integral, we

check that the momentum in z direction is also null

P 3

boost
pu0q “ γ

`

P 3pu0q ´ vP 0pu0q
˘

“ 0. (2.13)

This means that we were right, because ´vn̂ is the parameter of the Lorentz boost that

stops the system, so (2.9) is indeed the instantaneous velocity of the source.

It must be clear to the reader that definition (2.9) works for any reference

frame, but it is really hard to calculate it in a generic Bondi frame, where P can be

different from zero at u0 and the expression (2.8) does not work.

2.2 Time evolution

After all previous considerations about Bondi momentum, we are ready to

investigate vacuum Einstein’s equations for (2.1), that can be written as

6m0

B
Bu

ˆ

1

Q2

˙

“ ∇
2

Ω
K, (2.14)

2 In [26] the authors define the velocity of the source without taking P 0 into account.
3 The multiplicative factor in front of the following expression comes from dΩ2 transformation, see (2.15)

to be convinced that it is needed.
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in which the r coordinate does not appear anywhere, and we can state an initial value

problem just choosing a smooth Qpu “ u0, θ, φq, i. e., the time evolution is well defined

with the metric of a given surface that is a continuous deformation of the sphere

ds2|u“u0,r“1 “ dΩ2

Q2pu0, θ, φq , (2.15)

where the only restriction over Qpu0, θ, φq is that (2.8) converges in order to generate a

valid physical example. The integration of (2.14) over S2 gives a conserved quantity along

u evolution

q0 “
¿

S2

dS

Q2pu0, θ, φq , (2.16)

that represents the area of (2.15), and we will fix q0 “ 4π, so the area of the r constant

surfaces is 4πr2 at any instant of time. Now one can recognize (2.14) as a two dimensional

version of the Calabi flow associated to (2.15) [41], a known geometric flow that tends

to dissipate non-uniformities in curvature. Regarding the fact that (2.14) is not linear,

an interesting analogy can be done with the heat equation on S2, leading an initial

temperature distribution into a homogeneous one.

The stationary solution (u Ñ 8) must lead to a compact surface of positive

curvature such that ∇
2

Ω
K “ 0, then the only possibility is K “ 1 for S2 itself. The simplest

case is when the sphere is centered at the origin and we have Qpu Ñ 8, θ, φq “ 1. The

general solution is when the center of S2 is at p “ vn̂ with 0 ď v ă 1, resulting in

Qpu Ñ 8, θ, φq “ γ p1 ´ vn̂ ¨ r̂q , (2.17)

with γ “ p1 ´ v2q´1{2 and r̂ “ pcos φ sin θ, sin φ sin θ, cos θq. Substituting (2.17) in (2.1)

we get a spherical BH with constant velocity v, as argued in (1.42). Then, when Qpu, θ, φq
is smooth, we can interpret (2.1) as the metric of a deformation of Schwarzschild spacetime

for all u ě u0, i. e., a non-spherical BH which radiates GWs until all its curvature

inhomogeneities disappear4.

Since (2.14) is solved for a valid initial condition Qpu0, θ, φq, one can compute

Bondi 4-momentum to quantify physical changes in the properties of the source and

understand the emission process of GWs. Because spacetime is dynamical and U coordinate

changes during the evolution, we emphasize that (2.8) is valid just for u0, and it is necessary

to use the conservation law (1.35) to compare energy or momentum between different

instants of time. For this, we determine the lowest order approximation for Ψ4, given by

(1.9):

Ψ
p0q
4 “ ´sin θ

2r
D

˜

Q2

sin θ
DpBu ln Qq

¸

. (2.18)

4 Here is where the analogy with the heat equation must be clear to the reader.
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Regarding that Bu “ QBU for large r, we write5

1

R
BUN̄ “ 1

r
BuN̄ “ ´Ψ

p0q
4 pu, θ, φq

Q2
. (2.19)

Changing the order between the operators D and Bu in (2.18) and then integrating (2.19)

over u6, we get

Npu, θ, φq “ 1

Q

«

1

2

ˆ

Qθθ ´ Qθ

tan θ
´ Qφφ

sin2 θ

˙

` i

sin θ

ˆ

Qθφ ´ Qφ

tan θ

˙

ff

, (2.20)

with subscript coordinates representing partial derivatives. Finally, the conservation

equation (1.35) reads

dP µ

du
“ ´ 1

4π

¿

S2

jµ

Q

«

1

4

ˆ

Qθθ ´ Qθ

tan θ
´ Qφφ

sin2 θ

˙2

` 1

sin2 θ

ˆ

Qθφ ´ Qφ

tan θ

˙2
ff

dS

` 1

4π

¿

S2

MBpu, θ, φqBjµ

Bu
dS.

(2.21)

The second term has already been ignored in other references, as in [34], but we will show

that its contribution is not negligible in section 5.2, at least for one example of initial data.

If the second term was indeed zero, (2.21) would become a simple uncoupled ordinary

differential equation (ODE) system with direct solution.

To end all the problems to compute Bondi momentum changes, we use the

fact that the P expression in (2.7) is null for Schwarzschild, so we can always choose the

specific Bondi frame in which (2.8) is valid at the beginning of the evolution (at u “ u0),

and at the stationary solution (at u Ñ 8). Given all these considerations, we define the

fraction of energy emitted ∆ and kick velocity vk as

∆ “ P 0pu0q ´ P 0p8q
P 0pu0q ;

vk “ 1

P 0p8qP p8q ´ 1

P 0pu0qP pu0q.
(2.22)

It is really important to understand that our goal is to compute (2.22) for different systems

and compare them, but we can not get P µpu ě u0q without fully solving (2.21), and we

will not do it in this work.

2.3 Physical systems

As stated before, a proper initial condition Qpu0, θ, φq can be interpreted as a

deformation of a spherical BH, since RT spacetimes always evolves into Schwarzschild case

5 The extra Q´2 factor in (2.19) comes from the fact that we have calculated Ψ
p0q
4

with the tetrad
generated by Br, and not BR.

6 It is important to state that (2.20) admits an arbitrary additional constant term, but this would
represent a linear increase in σp0q for the stationary solution, which has no physical meaning.
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and, if (2.8) converges, we can assign a 4-momentum for this source that does not measure

any contribution from the GW content. However, there are three important restrictions

for the possible Schwarzschild perturbations which limit the real physical systems that

can be described by RT metrics.

The first one is that any kind of angular momentum in spacetime is forbidden,

because we can understand the metric as a covariantly extended version of (2.15) in the

null Br direction, i. e., photons always travel perpendicularly to u and r constant surfaces.

Since Br is torsion free, in the sense introduced in section 1.2, no rotations can appear.

This is illustrated by the fact that (2.14) does not depend on r.

The second - and strongest - restriction comes from the fact that Qpu, θ, φq must

be at least four times differentiable with respect to θ and φ for the u evolution to make

sense, so no discontinuities are allowed and (2.15) is indeed just a smooth deformation of

the sphere. Since outgoing photons travel in Br direction, any region that traps photons

will be connected, there can only be one event horizon and, consequently, it is only possible

to have just one BH on spacetime.

The third restriction says that the only way to start the evolution without any

GW content is with the stationary solution itself. This happens because whenever K is

not constant, Ψ4 is not zero and there must be GW presence in the system. This prohibits

any static initial configuration that is not Schwarzschild spacetime.

Then, we need to find an one body non rotating problem that represents a

compact source of GW emission in order to use all these tools developed until now. The

simplest example of such phenomenon is a frontal collision of spherical BHs, where all

the initial bodies merge with each other in a single BH. After this merging, since no

angular momentum appears and there were some previous GW emission, we must be

able to describe the system with RT metric. The hard task is to find an appropriate

initial condition that describes a post-merger phase of a collision, since there are too many

possibilities for Qpu0, θ, φq, but this will be discussed in chapter 4.

For now, let us think of a binary head-on (frontal) collision in a reference

frame such that the system is symmetric with respect to rotations around an axis, as

represented in Figure 4 below. This example makes clear the difference between the phases

of a BH merger because of the “antikick” property, that separates each of them [40].

Before they merge, while both BHs fall into each other, the smaller BH develops more

velocity, then it emits more GWs in comparison with the bigger one and the center of mass

frame feels a recoil in the direction of the smaller BH. After the merging, the resulting

non-spherical BH can be described as a RT spacetime and it certainly presents more

curvature inhomogeneity in the side that the smaller BH was before the collision, the

preferred direction of emission inverts itself and the system feels a decrease in the source

velocity, as illustrated in Figure 4.











43

3 Galerkin Method

In this chapter we describe how a Galerkin spectral method is used to solve

(2.14) numerically, with a standard spherical harmonics expansion of Qpu, θ, φq. We argue

why our strategy is more efficient than the previous attempts in the literature for the

general case of u evolution. Based on this strategy, we find some properties of initial

conditions with planar reflection and axis rotation symmetries. Also, all important features

about the structure of the codes used to present numerical examples of time evolution are

considered.

3.1 General case

Time evolution of RT spacetimes is described by (2.14), a nonlinear fourth

order partial differential equation (PDE), then there is no standard analytical method to

solve it. Interested in the u evolution generated from arbitrary Qpu0, θ, φq, one can use

a Galerkin spectral method [43] and change this PDE by an ODE system, with aid of

projections of the PDE on a basis of the space generated by some chosen functions. This

strategy introduces a new way to look at the problem, determining the evolution of each

term of a modal expansion for the quantity to be evolved.

The best way to understand the procedure is with an example and, in our case,

we can perform a spherical harmonics decomposition as follows

QN pu, θ, φq “
N
ÿ

l“0

l
ÿ

m“-l
bl

mpuqY m
l pθ, φq, (3.1)

where all u dependency is carried by the modal coefficients bl
mpuq. This is possible because

the spherical harmonics form an orthogonal basis for the space of functions on S2, so any

analytic function can be arbitrarily approximated by (3.1) for large N . The expression of

Y m
l adopted in this work is1

Y m
l pθ, φq “

d

pl ´ mq!
pl ` mq!P

m
l pcos θqeimφ, (3.2)

where P m
l pxq are the associated Legendre functions and the orthogonality relation reads

xY m
l , Y m1

l1 y “
¿

S2

Ȳ m
l Y m1

l1 dS “ 4π

2l ` 1
δll1δmm1 . (3.3)

1 This definition is known as Schimdt semi-normalization for spherical harmonics.
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Then, it is possible to write (2.14) as

BQpu, θ, φq
Bu

“
N
ÿ

l“0

l
ÿ

m“-l

9bl
mpuqY m

l pθ, φq “ ´ 1

12m0

Q3
∇

2

Ω
K, (3.4)

with dots representing u derivatives. Applying xY m
l , . y to both sides of (3.4), we get the

following pN ` 1q2 ODE system

9bl
m “ ´ 2l ` 1

48πm0

@

Y m
l , Q3

∇
2

Ω
K

D

, (3.5)

with l “ 0, 1, ..., N and ´l ă m ă l.

Essentially, this is the last step that Galerkin method leads us and a numerical

integration of (3.5) is enough to find the u evolution. Then, an important obstacle appears

during the implementation of this strategy: the projections in (3.5) are given by integrals

of expressions depending on many P m
l functions, which oscillates a lot for high m modes,

so the numerical approach to determine the ODE system is not precise. To overcome this,

one can simplify the projections introducing a Galerkin decomposition2 for the Gaussian

curvature

KN pu, θ, φq “
2N
ÿ

l“0

l
ÿ

m“-l
al

mpuqY m
l pθ, φq (3.6)

and for Gpu, θ, φq “ Q3pu, θ, φq

GN pu, θ, φq “
3N
ÿ

l“0

l
ÿ

m“-l
cl

mpuqY m
l pθ, φq, (3.7)

as done in [27]. Joining (3.5) with all Galerkin expansions and the identity

∇
2

Ω
Y m

l pθ, φq “ ´lpl ` 1qY m
l pθ, φq, (3.8)

we have
9bl
m “ 2l ` 1

24m0

ÿ

l1,l2
m1,m2

l1pl1 ` 1qal1
m1

cl2
m2

C l
mpl1, m1; l2, m2q, (3.9)

where the summation is carried over the values 0 ď l1 ď 2N, 0 ď l2 ď 3N, ´li ď mi ď li,

and the coefficients C l
m are given by

C l
mpl1, m1; l2, m2q “ 1

2π

¿

S2

Y m1

l1
Y m2

l2
Ȳ m

l dS

“ δMm

d

pl ´ mq!
pl ` mq!

ż

1

-1
P m

l pxq
2

ź

i“1

d

pli ´ miq!
pli ` miq!

P mi

li
pxqdx,

(3.10)

where M “ m1 ` m2 and the resulting integrals are much easier to determine.

2 The following expansions run throughout higher order modes compared with the Q decomposition and
the reason will be clarified later.



Chapter 3. Galerkin Method 45

To proceed, we use (3.6) and (2.2) to write al
m as a function of bl

m. Using

identity (3.8) again, one has

al
m “2l ` 1

2

ÿ

l1,l2
m1,m2

bl1
m1

bl2
m2

„

`

1 ´ l2pl2 ´ 1q
˘

C l
mpl1, m1; l2, m2q`

´ Dl
mpl1, m1; l2, m2q ` m1m2E

l
mpl1, m1; l2, m2q



,

(3.11)

where the coefficients Dl
m and El

m are given by

Dl
mpl1, m1; l2, m2q “ δMm

d

pl ´ mq!
pl ` mq!

ż

1

-1
p1 ´ x2qP m

l pxq
2

ź

i“1

d

pli ´ miq!
pli ` miq!

dP mi

li
pxq

dx
dx, (3.12)

El
mpl1, m1; l2, m2q “ δMm

d

pl ´ mq!
pl ` mq!

ż

1

-1

P m
l pxq

p1 ´ x2q
2

ź

i“1

d

pli ´ miq!
pli ` miq!

P mi

li
pxqdx. (3.13)

In the same way, but now for cl
m, we write

cl
m “ 2l ` 1

2

ÿ

l1,l2,l3
m1,m2,m3

bl1
m1

bl2
m2

bl3
m3

F l
mpl1, m1; l2, m2; l3, m3q, (3.14)

with 0 ď li ď N , ´li ď mi ď li and

F l
mpl1, m1; l2, m2; l3, m3q “ δM̃m

d

pl ´ mq!
pl ` mq!

ż

1

-1
P m

l pxq
3

ź

i“1

d

pli ´ miq!
pli ` miq!

P mi

li
pxqdx, (3.15)

where M̃ “ m1 ` m2 ` m3. Then, to reach each new numerical integration step for the

pN ` 1q2 EDO’s (3.9), the evaluation of (3.11) and (3.14) is necessary. The good news

is that all the integrals required to compute (3.10), (3.12), (3.13) and (3.15) are easily

determined by an algebraic manipulation software. Even so, there are too many of them

(mainly the F ones) and the selection rules for null coefficients (B.2-B.4) of Appendix B

help a lot. Also, the rule (B.4) together with the expressions (3.11) and (3.14), determine

the order to stop the expansions (3.6) and (3.7), in order to discard all unused al
m and cl

m

in (3.5) for a given N , but without losing any information.

After handling all those wild integrals, the last simplification for a generic case

evolution comes from the fact that Qpu0, θ, φq is real (Q “ Q̄) and, because spherical

harmonics are orthogonal, the modal coefficients must obey

bl
-m “ p´1qmb̄l

m, (3.16)

so the evolution (3.9) can be expressed in terms of non negative m modes only, leading to

a NpN ` 1q{2 EDO system, reducing the computational time for u evolution. The same is

valid for (3.11) and (3.14), since K and G are also real. United with the selection rules

of Appendix B, this procedure is certainly faster than the previous strategy presented in
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the literature [27], that is based on the real spherical harmonics decomposition of Q to

perform the u integration.

For the stationary condition (2.17), we see that the only non vanishing final

modal coefficients must be b0

0
and b1

m. Then, in any Bondi frame, one has

γp8q “ b0

0
; vxp8q “ b1

1
` b̄1

1?
2b0

0

; vyp8q “ i
b1

1
´ b̄1

1?
2b0

0

; vzp8q “ ´b1

0

b0
0

. (3.17)

3.2 Planesymmetric case

If Qpu0, θ, φq has symmetry of reflection with respect to a plane, a useful

simplification in its expansion is possible and, in some sense, the motion stays in this

plane. In terms of spherical coordinates, we write the reflection with respect to y “ 0

as pθ, φq Ñ pθ, ´φ), which leads to Y m
l pθ, φq Ñ p´1qmY ´m

l pθ, φq. If we impose symmetry

with respect to this transformation over the initial condition, the modal coefficients obey

bl
-mpu0q “ p´1qmbl

mpu0q, (3.18)

which, together with (3.16), demands bl
mpu0q to be real. Then, combining (2.8) with

Qpu0, θ, φq “ Qpu0, θ, ´φq, we conclude that there is no initial Bondi momentum in the

ŷ direction. Since the coefficients of the ODE system (3.5) are also real, implying that

bl
mpuq must be real for u ą u0 too. This means that there is no Bondi momentum in the y

axis at any time, there is no velocity out of the plane y “ 0 and we will refer to this kind

of system just by planesymmetric ones from now on.

It is important to notice that we just showed that motion is stuck in y “ 0 for

QN defined in (3.1), but this also holds for any solution that is generated by an analytic

initial condition, since all spherical harmonics expansions can be done for arbitrarily

high N . As well, a planesymmetric Qpu0, θ, φq with respect to any plane must carry this

property, since it is always possible to change coordinates and put this specific plane at

y “ 0. Also, the stationary velocity given by (3.17) becomes

γp8q “ b0

0
; vxp8q “

?
2b1

1

b0
0

; vyp8q “ 0; vzp8q “ ´b1

0

b0
0

. (3.19)

Examples to illustrate the plane reflection symmetry condition can be found in

the end of section 4.3.

3.3 Axisymmetric case

Another special case is when the system has symmetry of rotation with respect

to the z axis (φ Ñ φ ` ǫ, ǫ P r0, 2πs), then only m “ 0 modes are not zero, the ones that
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do not depend on φ. This condition demands reflection symmetry with respect to both

x “ 0 and y “ 0 planes, so Bondi momentum of the source must remain in the intersection

of these planes, the z axis. Besides that, the spherical harmonics in (3.1) become ordinary

Legendre polynomials

QN pu, θq “
N
ÿ

l“0

blpuqPlpcos θq, (3.20)

all φ integrals are trivial and the normalization condition simplifies to

q0

2π
“

ż π

0

sin θ

Q2pu0, θqdθ “ 2. (3.21)

In this case, (3.5) can be determined by an algebraic manipulation software without too

many effort and, depending on the computational power available, there is no need to

introduce the expansions (3.6) and (3.7). Also, the stationary velocity given by (3.17)

becomes

γp8q “ b0; vxp8q “ 0; vyp8q “ 0; vzp8q “ ´b1

b0
. (3.22)

At last, it is possible to have any combination of planar reflection conditions,

resulting in other cases with even more simplifications compared to the axisymmetric case.

Any initial condition that is planesymmetric with respect to two intersecting planes will

also have linear momentum in just one direction, but it is also possible to end with no

velocity change at all. If we add one more plane of reflection that crosses the intersection

of the others at only one point, the system will not have a preferred direction of GW

emission and it can not present gravitational recoil. In this case, the spatial part of Bondi

momentum will always be null in the center of mass frame, there will be no kick velocity,

final energy is just m0 and the fraction of energy emitted becomes

∆ “ P 0pu0q ´ m0

P 0pu0q “ 1 ´ 4π

¨

˚

˝

¿

S2

dS

Q3pu0, θ, φq

˛

‹

‚

´1

, (3.23)

or even simpler when the system is also axisymmetric

∆ “ 1 ´ 2

ˆ
ż π

0

sin θdθ

Q3pu0, θq

˙´1

. (3.24)
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4 Initial Conditions and Analytic Cases

In this chapter we present the standard derivation of Brill-Lindquist (BL) initial

data for axisymmetric RT spacetimes. Our derivation includes the case of a post-merger

phase of a binary BH collision with different velocities for each BH, not just equal velocities

as in previous literature. With the aid of the BMS group, we perform Lorentz boosts in the

system to better understand properties of BL initial data. Then, inspired by the boosted

binary case, we claim a general initial condition for the post-merger phase of a head-on

collision involving any number of BHs. Also, all Bondi mass plots in green represent initial

data in its center of mass frame at u0.

4.1 Axisymmetric binary collision

The example of the post-merger phase given in section 2.3 can be represented

by an axisymmetric Qpu0, θ, φq, given by a specific procedure that borrows the geometry of

a flat three dimensional space, and uses it to build a metric that approaches Schwarzschild

at large distances from the origin, the BL initial data. The derivation that follows is based

on the one in [27]. We use the bispherical coordinates of the three dimensional flat space

x “ a sin θ sinh η

cosh η ` cos θ sinh η
cos φ,

y “ a sin θ sinh η

cosh η ` cos θ sinh η
sin φ,

z “ ˘ a

cosh η ` cos θ sinh η
,

(4.1)

where 0 ď η ă 8, θ P r0, πs, φ P r0, 2πq and a ą 0. In these coordinates, the position

vector has length

ρpη, θq “ a

d

cosh η ´ cos θ sinh η

cosh η ` cos θ sinh η
(4.2)

and the line element for a flat space is given by

ds2

flat
“ c2

0

Φ4

´

dη2 ` psinh2 ηqdΩ2

¯

, (4.3)

where c0 is constant and

Φ “ Spη, θ, φ, n̂q “
a

cosh η ` pn̂ ¨ r̂q sinh η. (4.4)

Based on the (4.4), we choose a different expression for Φ to substitute in (4.3), given by

Φ´1 “ α1

Spη ` η1, θ, φ, ẑq ` α2

Spη ` η2, θ, φ, ´ẑq , (4.5)
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with αi ą 0, getting to a non-flat space that approaches a conformally flat geometry at

large distances, i. e.,

ds2 «

¨

˝1 ` α2

α1

e
η1´η2

2

d

cosh η ` cos θ sinh η

cosh η ´ cos θ sinh η

˛

‚

4

ds2

flat
(4.6)

for η " ηi. Also, when η " 1 too, the geometry approaches the spatial part of Schwarzschild

far from the origin, and the metric reads

gij «
"

1 ` 2M0

ρ

*

δij, (4.7)

where the scales have been fixed in the way that

a “ M0α1e
η2´η1

2

2α2

. (4.8)

Then, a surface of constant η “ η0 ą 0 can be used to generate an initial condition for

(2.14) as follows

Qpu0, θ, φq “
ˆ

α1

Spw1, θ, φ, ẑq ` α2

Spw2, θ, φ, ´ẑq

˙´2

“
˜

α1
a

γ1p1 ` w1 cos θq
` α2

a

γ2p1 ´ w2 cos θq

¸´2

“ Qpu0, θq
(4.9)

where 0 ď wi “ tanhpη0 ` ηiq ă 1 and γi “ p1 ´ w2

i q´1{2. This is the BL initial data and it

represents the post-merger phase of a head-on binary collision of black holes.

The physical interpretation of the control parameters in (4.9) is far from being

direct. If we take α1 “ 1 and α2 “ 0, the solution becomes a Schwarzschild black hole

with mass m0 and constant velocity w1. This induces us to associate the wi parameters

with some kind of velocities. In order to better understand the BL initial condition, we

will use a Bondi frame with fixed degrees of freedom for supertranslations, and perform

a Lorentz boost to go to the instantaneous rest frame of the system. First we determine

the velocity of the source v in the Bondi frame which (2.8) is valid, then we apply the

transformation given by (2.10) to stop the system at the initial time u0. The result reads

Q1pu0, θq “
˜

α1
a

γ1p1 ` w1 cos θ1q
` α2

a

γ2p1 ´ w2 cos θ1q

¸´2

γp1 ` v cos θq

“
˜

α1
a

γ1
1p1 ` w1

1 cos θq
` α2

a

γ1
2p1 ´ w1

2 cos θq

¸´2

“
ˆ

α1

Spw1
1, θ, φ, ẑq ` α2

Spw1
2, θ, φ, ´ẑq

˙´2

.

(4.10)

The parameters wi have been changed into w1
i “ wi ˘ v

1 ˘ vwi

, exactly as ordinary velocities

should do, so they may represent the kinematic properties of some entity of the system.
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the shape of the event horizon after merging, i. e., Figure 4b is intrinsically different from

Figure 10, and the procedure to determine the exact shape of the apparent horizon1 can be

found in [44]. Even so, MBpu, θ, φq must have the same overall symmetries as the horizons

and it also has its geometry very close to (2.15), so we will use its shape in the center of

mass frame in order to guide our intuition around GW emission from now on.

4.2 Non axisymmetric binary collision

The choice of antipodal n̂i in (4.4) to generate (4.9) is not arbitrary, any other

possibility would have a different kind of big η behavior apart from (4.7). In other words,

it is not easy to get a non-axisymmetric BL case by the same way done before. Even so, it

is possible to analyze (4.9) in different reference frames, we just need to perform a Lorentz

boost (1.41) in any direction orthogonal to ẑ. The transformation for a boost of vx̂ is

given by

cos θ1 “ cos θ

γp1 ´ v cos φ sin θq ;

cos φ1 sin θ1 “ cos φ sin θ ´ v

p1 ´ v cos φ sin θq ;

dΩ12 “ dΩ2

γ2p1 ´ v cos φ sin θq2
,

(4.11)

resulting in

Q1pu0, θ, φq “
˜

α1
a

γ1p1 ` w1 cos θ1q
` α2

a

γ2p1 ´ w2 cos θ1q

¸´2

γp1 ´ v cos φ sin θq

“
ˆ

α1

Spw1
1, θ, φ, n̂1

1q ` α2

Spw1
2, θ, φ, n̂1

2q

˙´2

,

(4.12)

which we call the general BL-2 initial data. In (4.12), the vectors wip˘ẑq were transformed

into w1
in̂

1
i “ pv, 0, ˘wi{γq, as ordinary velocities should do. Then, the association of ´wn̂i

with blob velocities is still valid. An example of the case α1 “ α2, w1 “ 0.7, w2 “ 0.5 with

a boost of 0.25x̂ follows in Figure 11. In this case both blobs earned kinetic energy with

the boost, and the system clearly lost its axial symmetry.

Here we can also solve all q “ 1 cases analytically with the same strategy used

in section 4.1. To do this, we define an initial condition with α1 “ α2, but with an angle

β between the vectors n̂1 and ´n̂2
2, then we perform a stopping boost and use (3.24)

to determine the fraction of energy emitted, since the system is axisymmetric in this

reference frame. Figure 12 below exhibits the values of ∆ in the case of equal intensity

blob velocities w for this case of BL-2 initial data. As β gets higher, the components of
1 Again, we are dealing with dynamical BH spacetimes, so it is easier to work with apparent horizons,

which definition can be also found in [44].
2 This means that blob velocities are antiparallel for β “ 0, orthogonal for β “

π

2
and parallel for β “ π.
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5 Numerical Results and Kick Velocity

In this chapter we solve the u evolution equations and extract quantitative

physical information about the source during the emission process. To integrate equation

(2.14), we use the spherical harmonics Galerkin decomposition developed in chapter 3 and

the specific initial conditions derived in chapter 4. To determine properties of the source,

we use Qpu ě u0, θ, φq found in the evolution to calculate (2.22). A specific example is

used to illustrate the problems around computing Bondi momentum u evolution. The

programs developed were divided in three different categories, one to solve the axisymmetric

case, other for planesymmetric initial data and another for a generic Qpu ě u0, θ, φq. All

programs were developed in python 3 and the source codes can be found at https:

//github.com/pivaps/Robinson-Trautman.

5.1 Strategies and uncertainties

There are two main algorithms for each one of the three categories of initial

conditions. Since all programs are extensive, it would be difficult to explain all their details

in this work, then we will briefly discuss the main ideas used to develop them and their

contributions for numerical errors.

The first goal is to determine the ODE system (3.5). To do this, we write the

expansion (3.1) with an algebraic manipulation software1, compute all integrals involved

and store the final results on a text file. This is direct for the axisymmetric case, in which

we actually use the simpler expression (3.20), but for the other cases it is important to

remember all considerations pointed in chapter 3, mainly the ones about the expansions

(3.6), (3.7) and selection rules in Appendix B. The choice of N (order of spherical harmonics

expansion) will dictate how good is the approximation of Qpu0, θ, φq by (3.1), and this

will set the main contribution to uncertainties in all calculations. Then, the best way to

estimate the error is with direct comparison between computations done with an initial

data evolved using order N and lower order expansions.

To get the u evolution, we need to compute the initial modal coefficients, given

by

bl
mpu0q “ 2l ` 1

4π
xY m

l , Qpu0qy “ 2l ` 1

4π

¿

S2

Ȳ m
l pθ, φqQpu0, θ, φqdS (5.1)

and evolve them with the ODE system determined in the previous stage. In the axisym-

metric case, all φ integrals will be trivial and both tasks can be done with precise standard

1 We used sympy python library for this task.
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integration methods2. The planesymmetric and generic cases demand to perform two

dimensional integrals to compute (5.1), so we need to be careful with the choice of sampling

points on the sphere in order to get enough precision. We will always use a method based

on the Fibonacci sequence to generate a good sample. This strategy was developed in [45]

and the final integration formula reads

¿

S2

fpθ, φqdS “
ż

1

´1

ż

2π

0

fps “ cos θ, φqdφds « π∆s

F
ÿ

j“0

r1 ` cospπsjqsˆ

ˆ
«

f

ˆ

πjF 1

F
, sj ` sinpπsjq

π

˙

` f

ˆ

π ` πjF 1

F
, sj ` sinpπsjq

π

˙

ff

,

(5.2)

where F 1 and F are consecutive Fibonacci numbers, ∆s “ 2{F and sj “ ´1 ` j∆s. With a

high value of F 3, all errors will be too small compared to the ones involved on the choice of

the expansion order N for (3.1). Actually, we have already used (5.2) in order to compute

all integrals involved in (2.22) calculations to plot Figure 14 and Figure 17 in section 4.3.

Determined Qpu ě u0, θ, φq, there are two main ways to control numerical

uncertainty: to use the known constant of motion (2.16), or the expression for the stationary

solution. With (2.17) and the expansion (3.1), it is easy to show that

rb0

0
p8qs2 ´ rb1

0
p8qs2 ´ 2|b1

1
p8q|2 “ 1;

bl
mp8q “ 0, if l ě 2

(5.3)

and the deviations from the expressions in (5.3) can also be used as numerical error

control. For actual calculations we will only present the uncertainty associated with the

first expression in (5.3), since the absolute value of the l ě 2 coefficients is typically way

smaller then other deviations at u Ñ 8.

As a first attempt to probe precision of the algorithms, we compute the u

evolution of a BL-2 axisymmetric initial data given by

Qp0, θq “
˜

q
a

γp1 ` w cos θq
` 1

a

γp1 ´ w cos θq

¸´2

(5.4)

with q “ 1 and w “ 0.5, which represents the post merger phase of a binary collision of

BHs. All results are presented in Table 2. Here, we solved the evolution ODE system with

the axisymmetric program and determined all the uncertainty control parameters. We also

used (3.24) to compute ∆ analytically, since the system has symmetry of reflection with

respect to z “ 0, finding ∆ “ 0.006482436p44 ˘ 5q4, which makes possible to calculate

2 We used numpy and scipy python library integration routines to calculate all one dimensional integrals
and also to solve all ODE systems.

3 We used F “ 23 for any integration on the sphere in this work, which means 28657 evaluation points.
4 This notation shows in a compact way the error bar in the last decimal places written. We will adopt

this notation from now on.
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to z “ 0, only bl
mpuq with even l ` m are not null.

Algorithms for generic Qpu0, θ, φq evolution were built with the same structure

used in planesymmetric ones, but all modal coefficients may be complex and it demands

approximately twice computational time in comparison with planesymmetric codes. Because

we will only investigate systems with at least one plane of reflection for initial data, we will

not use them in this work and computations will always be done with the simplest program

available. Also, uncertainties about physical computations will not be discussed from now

on, since all programs are considerably precise for high order in the modal expansion.

Just for the sake of completeness we choose an initial condition to compare

the planesymmetric and generic algorithms. We solve the BL-4 regular tetrahedron6 with

α2 “ α3 “ α4 “ 2α1, n̂1 “ ẑ and wi “ 0.5 using both programs for order N “ 7. Then we

get ∆ “ 0.000361p7 ˘ 4q and vk “ ´0.000053p2 ˘ 2qẑ. The uncertainty was estimated with

the absolute difference between results, and a rotation of π{2 with respect to the z axis

was performed in the planesymmetric initial data to be evolved by the generic algorithm.

5.2 About Bondi momentum evolution

Our goal in this section is to use the axisymmetric algorithms developed in this

work, in order to help us to understand the difficulties involved in the process of computing

momentum evolution for RT spacetimes. Momentum rate of change is given by (2.21) and,

because we do not know how to solve the second term of it, we will assume it is zero and

see the consequences of our act. This simplification turns (2.21) into an uncoupled ODE

system with direct solution, which reads

P µpuq “ P µpu0q `
ż u

u0

dP µpu1q
du1

du1. (5.6)

Using the Bondi frame where P µpu0q is given by (2.8), we get the energy and momentum

evolution for initial data (5.4) with q “ 0.5 and w “ 0.5. They are represented by the

orange curves in Figure 22 below. Just by looking at these curves we can not notice

anything wrong, but the final momentum and velocity do not match with direct numerical

computations using just the expressions (3.22). Then, we perform a supertranslation

in order to fix it, getting to the green curves. In our case, a supertranslation is just a

shift in the graph because momentum time derivative in (5.6) is computed only using

Qpu ě u0, θ, φq, without any frame dependence, i. e., since only the initial momentum

expression changes in (5.6), we just add an offset constant term to the graph. This gives a

different initial Bondi momentum P µpu0q to compare with the stationary solution. This

means that one of the following sentences is true: either we can not compute Bondi

momentum with (2.8) at u0, or (5.6) is not the proper momentum evolution. For the

6 See Figure 15b.
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Conclusion

In this work we studied compact sources of GWs, with focus on physical

properties of RT spacetimes and their changes due to GW emission. We started with a

historical introduction about the subject, that helped us to understand which tools we

would need to develop in order to get the right calculations, and to interpret their physical

meaning properly. We introduced those tools in chapter 1 starting by Weyl scalars in

section 1.1, that helped us to determine which metrics could indeed represent an isolated

system emitting GWs. In section 1.2 GS-Theorem and (2 + 2) foliations gave us a natural

coordinate system to study GWs, and also allowed us to understand the role of shear and

twist of null congruences in spacetime. Then, in section 1.3, the asymptotic behavior of

shear led us to Bondi 4-momentum definitions and conservation laws, which showed us

how to compute physical properties of the source. Finally, the most powerful tool studied

was the BMS group in section 1.4, which taught us the right way to fix all degrees of

freedom in our initial data in order to determine Bondi momentum, and also explained

how to perform any action of the Poincaré group on any asymptotically flat metric that

can be written in Bondi coordinates.

In chapter 2 we restricted ourselves to the simplest solution of Einstein’s

equations for a compact body surrounded by GWs, the case of RT spacetimes. With the

aid of rotations and Lorentz boots generated by the BMS group, a definition of source

velocity based on Bondi momentum was verified to be right in section 2.1. Using the

natural (2 + 2) foliation for the metric, we could look at RT equations as the evolution

of an initial value problem in section 2.2, and also presented its stationary solution, a

Schwarzschild BH with constant velocity. In section 2.3 we explained which kind of real

systems could be described by RT spacetimes, and also got motivated with the “antikick”

phenomenon for the post-merger phase of a binary collision of BHs. In section 2.4 we briefly

discuss the main restrictions on probing the global causal structure of RT spacetimes.

The last technical issue was the solution of the non-linear PDE evolution

equation, and it was handled with a Galerkin spectral method in chapter 3. Spherical

harmonics were crucial not just to develop all strategies to build an algorithm that solves

generic cases of initial conditions, but also to help understand any kind of simplifications

that come from the symmetries of the system. Without the considerations stated in this

chapter, any numerical calculation would take much more computational time and many

results could not be attainable.

In chapter 4 we discussed initial data, which encodes all connection with real

physical systems. The BL initial data is the most well known case studied, representing the
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post-merger phase of a binary head-on collision of BHs, so we started from it in order to

investigate possibilities of real systems. In section 4.1 we introduced the definition of blobs

- based on their velocities - in order to better understand the axisymmetric case. Then, in

section 4.2, we used the Lorentz boost to analyze this binary collision in any reference

frame, concluding that there was a mistake about the study of non-head-on collisions in

previous literature, since the initial data studied in some works was just the frontal case,

but written in a frame where the symmetry was not trivially recognized. In section 4.3

we proposed an extension of previous initial conditions by adding more blobs to it, the

BL-n systems, that represent the post-merger phase of a head-on collision of n BHs. Along

chapter 4, we also calculated the fraction of energy emitted by GWs for many systems

without recoil, computing mass consumption during the process. In each calculation we

pointed direct connections between efficiency and curvature inhomogeneities, indicated by

deviations from the sphere in Bondi mass aspect angular distributions in the center of

mass frame.

In the last chapter, we settled down all strategies to develop the algorithms

for numerical calculations and analyzed uncertainties involved in these computations

(section 5.1). In section 5.2, we used the programs to understand the importance of

time variation in the notion of asymptotic reference frame during the emission process,

which makes Bondi momentum comparisons really difficult to be evaluated for finite

time distances. This effect has not being taken into consideration in some of numerical

calculations in previous literature, leading to wrong physical interpretations. Then, in

section 5.3, we solved the BL-2 efficiency and recoil for all possible range of parameters,

and also examined kick velocity and fraction of energy emitted for several BL-n systems,

getting some interesting cases involving inversion of recoil direction if the mass of some of

the BHs involved were chosen to be smaller. All those examples led us to the connection

between gravitational recoil and asymmetries in Bondi mass aspect angular distribution.

Finally, it is important to let it clear that we think BL-n is a natural extension

of ordinary BL initial data, since blob velocities transform exactly as ordinary velocities

should do after Lorentz boosts, in the same way that happens for BL-2. Even so, we

point the necessity of future works around BL-n examples, in order to help probing their

physical interpretation and potential to describe real systems.
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with r̂ being the unitary radial vector.

With the information that speed of light is the same in all inertial frames, we

can derive the spatial shape of the pulse A believes that B sees. Since

L

T
“ L1

T 1
“

a

pL{γq2 cos2 θ ` L2 sin2 θ

Tγp1 ` v cos θq “ L

T

?
1 ´ v2 cos2 θ

γp1 ` v cos θq , (A.4)

we have that
?

1 ´ v2 cos2 θ “ γp1 ` v cos θq, leading (A.1) into

sin θ1 “ sin θ

γp1 ` v cos θq , (A.5)

and this is the angle change between the frames for light rays. Using the fundamental

equation of trigonometry, we write another equation

cos θ1 “ cos θ ` v

p1 ` v cos θq . (A.6)

This makes possible to find an expression for the angular change in the light rays direction

when B has velocity vn̂ in any direction

r̂1 “ pn̂ ¨ r̂q ` v

p1 ` vn̂ ¨ r̂qn̂ ` r̂ ´ pn̂ ¨ r̂qn̂
γp1 ` vn̂ ¨ r̂q , (A.7)

which gives the predicted shape of the spherical pulse seen by B, but in the perspective of

A.
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APPENDIX B – Selection rules for

integration of the multiplication of many

spherical harmonics

The integration of a product of N ě 1 spherical harmonics on the sphere,

I “
ż

2π

0

ż π

0

N
ź

i“1

Y mi

li
pθ, φq sin θdθdφ, (B.1)

has the following selection rules for non zero value of I:

L “
N
ÿ

i“1

li is even, (B.2)

N
ÿ

i“1

mi “ M “ 0, (B.3)

maxtliu ď L{2. (B.4)

The rules (B.2) and (B.3) are easy to justify by performing the φ integration and the

coordinate change x “ cos θ, leading to

I “ 2πδM,0

ż

1

´1

N
ź

i“1

d

pli ´ miq!
pli ` miq!

P mi

li
pxqdx, (B.5)

with M “
N
ÿ

i“1

mi. It is clear that (B.5) ends as an integral over the symmetric interval

r´1, 1s and the integrand has the same parity of L, then only the even case is not null.

To prove (B.4) we need to consider 4 cases. For N “ 1 we know that only

l1 “ 0 is not null, so l1 ď l1{2 works. For N “ 2, the orthogonality relation (3.3) demands

l1 “ l2 ùñ maxpl1, l2q “ l1 ` l2

2
ď l1 ` l2

2
. For N “ 3 we use

Y m1

l1
pθ, φqY m2

l2
pθ, φq “

l1`l2
ÿ

k“|l1´l2|

xl1, 0, l2, 0|k, 0yxl1, m1, l2, m2|k, nyY n
k pθ, φq, (B.6)

where the bracket terms are the usual Clebsch–Gordan coefficients, leading (B.1) to

I “ 4πp´1qm3

2l3 ` 1
xl1, 0, l2, 0|l3, 0yxl1, m1, l2, m2|l3, ´m3y (B.7)

with the famous selection rules |l1 ´ l2| ď l3 ď l1 ` l2, which are equivalent to (B.4).

For N ą 3 we first demand, without loss of generality, l1 ď l2 ď ... ď lN , than let
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k1 “ l1, n1 “ m1 and one can write

I “ 4πp´1qmN

2lN ` 1

ÿ

tkju

N´2
ź

i“1

xki, 0, li`1, 0|ki`1, 0yxki, ni, li`1, mi`1|ki`1, ni`1y (B.8)

where 2 ď j ď N ´ 2, kN´1 “ lN and nN´1 “ ´mN . Then, from each pair of Clebsch-

Gordan coefficients we have ki`1 ď li`1 ` ki ùñ lN ď
N´1
ÿ

i“1

li ùñ (B.4).
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