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Resumo

Neste trabalho estudamos as consequéncias da emissao de ondas gravitacionais a partir
de uma fonte compacta sem rotacao através do espaco-tempo de Robinson-Trautman.
Primeiro entendemos como usar o momento de Bondi e o grupo BMS para extrair e
controlar propriedades fisicas da fonte. Apds determinar explicitamente as expressoes de
energia e velocidade para a métrica de Robinson-Trautman, focamos no entendimento da
evolucao temporal e determinacao de condicdes iniciais apropriadas para serem analisadas.
Entao, descobrimos como lidar com o caso da fase pés-mesclagem de uma colisao frontal
de dois buracos negros em diferentes referenciais de Bondi, o que nos inspirou a propor
uma nova condi¢ao inicial que representa a colisao frontal de um ntmero qualquer de
buracos negros. Ao fim, usamos os algoritmos desenvolvidos com um método de Galerkin
para resolver a evolugao temporal, possibilitando explorar a eficiéncia da emissao de ondas
gravitacionais e velocidade de recuo de alguns dos sistemas propostos durante o texto.
Uma relagao qualitativa entre as propriedades fisicas da fonte e as assimetrias do aspecto

de massa de Bondi também foi explorado.

Palavras-chave: Ondas gravitacionais, Espago-tempo de Robinson-trautman, Colisao
frontal, Buraco negro, Condicao inicial de Brill-Lindquist, Recuo gravitacional, Relatividade

numérica, método de Galerkin.



Abstract

In this work we study the consequences of gravitational wave emission from a compact
source without rotation with aid of Robinson-Trautman spacetimes. First, we understand
how to use Bondi momentum and the BMS group in order to extract and control physical
properties of the source. After determining the explicit expressions of energy and velocity for
Robinson-Trautman metric, we focus on understanding time evolution and determination
of proper initial data to be analyzed. Then, we discover how to deal with the post merger
phase of a frontal collision of two black holes in different Bondi reference frames, which
inspired us to propose a new initial condition that represents the head-on collision of
any number of black holes. At the end, we use the algorithms developed with a Galerkin
method to solve time evolution, making possible to explore efficiency and kick velocity
for some of the systems proposed during the text. A qualitative relation between physical

properties of the source and the Bondi mass aspect asymmetries is also explored.

Keywords: Gravitational waves, Robinson-Trautman spacetimes, Head-on collision, Black
hole, Brill-Lindquist initial data, Gravitational recoil, Numerical relativity, Galerkin
method.
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Introduction

Let us start presenting a brief historical revision on the study of gravitational
waves (GWs), since the first attempts to understand their nature until the description
of the emission process for compact sources, with focus on Robinson-Trautman (RT)

spacetimes.

The interest in gravitational waves (GWs) started even before Einstein’s general
theory of relativity (GR), mainly by exploring the similarities between Coulomb’s and
Newton’s inverse square law and an electromagnetic analogy. The initial ideas to describe
the GW phenomena in this manner were introduced in 1893 by Heaviside [1], who dealt
with the gravitational interaction in total analogy with the electromagnetic case. Later
in 1905, Poincaré [2] proposed a more fundamental and simpler framework where GWs
propagated at the speed of light and, moreover, were emitted by accelerating massive
bodies. At the time, many physicists were skeptical about the existence of GWs due to
intrinsic differences between electromagnetism and gravity - as, for instance, the absence
of negative mass - and lack of experimental evidence. There were not even theoretical

proposals of physical apparatuses to measure such a low intensity predicted phenomena.

During the first years of Einstein’s GR, the difficulties in finding exact solutions
and their physical interpretation were a huge barrier to understand the gravitational
interaction, and so the progress on GW phenomena was rather slow. The earliest attempt
of a GW solution was a first order approximation by Einstein [3], who introduced the
linearized gravity approach as we have today [4], and claimed that three types of GW
perturbations would exist in Minkowski spacetime, but just one of them was transversal.
In fact, the other two types could have any velocity of propagation depending on the choice
of reference frame, i. e., they were just a consequence of the coordinate system adopted
in the calculations. Eddington, one of the most famous skeptical on GW, considered all
perturbation modes as unphysical. His comment that “gravitational waves propagate at
the speed of thought” [5] illustrates very well the mainstream position at the time. Another
important result was the first exact solution of Einstein’s equations containing GWs [6], a
situation with cylindrical symmetry where GWs are emanating from an infinite source.
Until the later fifties, the problem was far from being solved, since a crucial step was still
lacking: the development of a criterion to identify precisely the GW contents of a given

spacetime.

The elucidation of these questions started in 1957 with Pirani’s work [7], in

which he used the tetrad formalism to detect the presence of GWs as certain discontinuities

1" The fact that GWs are transverse waves is well known today, but it definitely was not at the time.
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of the Riemann tensor across specific three dimensional null hypersurfaces. Such definition
excluded any kind of longitudinal coordinate dependence for GWs. These results also
contributed to guide the physical interpretation of the Petrov classification of spacetimes
in different types of gravitational content [8]. Also in the work [7], Pirani discussed the
effect of GWs passing through a group of test particles via geodesic deviation equations,
explaining the behavior of GWs in regions far from the source. This was the key theoretical
tool to understand energy transport and development of measurement devices. In this
context, Feynman so-called “Sticky bead argument” [9] was very important at the time
to convince the remaining skeptical that GWs were indeed real. Later, a fundamental
theorem connecting the Petrov classification and the behavior of families of light rays
in spacetime (null congruences) was discovered by Goldberg and Sachs (GS) [10], which
helped to understand the physical properties of different gravitational field types.

Another important question in the discussion was the possibility of the source
“mass consumption” during radiation processes, since GWs do transport energy. The first
attempt to answer such question arised with the discovery of exact plane waves by Bondi,
Pirani and Robinson [11] in 1959, but these solutions could not describe properly any
emission of massive compact bodies since they were built between two sheets in Minkowiski
spacetime. This configuration is rather unphysical and the authors argued that only a
solution of a compact source of GWs would bring the discussion to an end. Within this
context, the sixties papers about GWs played a huge role to build methods to understand
the emission process and we will focus on their content now. For a deeper and longer
historical description, including the two Nobel prizes on GWs indirect and direct detection,

we recommend [9].

Inspired by the plane wave solutions, Robinison and Trautman published in
1960 a family of solutions with spherical GWs, which would be later called RT spacetimes
[12]. Tt was not clear at the time if these solutions could represent an isolated compact
source, because Schwarzschild metric was a special case of RT spacetimes, but the radiative
cases seemed to have singularities in their wave fronts, which was pointed by the authors
as possible ingoing mass flow in the system. Then, in the next year, Sachs formulated a
condition for GW fields to be only outgoing [13], and any algebraically special metric would
satisfy such condition. Since RT metric is algebraically special, it immediately become a
promising candidate to describe a physically reasonable spacetime with GW content. Also
in 1961, Newman and Penrose systematized and completed the ideas of the GS-Theorem
based on the spinor affine connection [14], in such a way that all characteristics of null
congruences were understood and the asymptotic behavior of asymptotically flat metrics
was investigated with Weyl scalars®. RT spacetimes could also be derived and studied with
this strategy [15].

2

The specific name “Weyl scalars” was not used in this first approach.
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In 1962, Robinson and Trautman presented a study about the details of vacuum
field equations to their solution [16], with explicit examples of constants of motion and
properties of the source and waves. In the same year, Bondi, van der Burg and Metzner
established a metric based formalism using the null geodesics of spacetime [17, 18]. They
defined the news function, which quantifies the GW flux at future null infinity, and used it
to show that a compact source with outgoing GWs loses mass during the emission process.
This result was really important, but the authors analyzed only axisymmetric systems,
and Sachs extended it for general isolated compact sources in sequence [19]. Sachs also
investigated a group of transformations which action remained the boundary conditions of
the metric unchanged, the Bondi-Metzner-Sachs (BMS) group, that is a generalization of
the Poincaré group and dictates asymptotic symmetries of asymptotically flat spacetimes.
These new strategies were firstly applied to RT spacetimes by Foster and Newman in 1967
[20], finding cases for which the Schwarzschild metric was the stationary solution in the
asymptotic future, but approximations were needed because of technical difficulties in

solving field equations.

Solution existence and convergence of general initial conditions for RT field
equations could only be well established at the beginning of the 90’s [21, 22, 23]. In these
works the authors showed the convergence of regular RT initial data to Schwarzschild
solution for positive time evolution. Then, the interpretation of RT spacetimes as a
perturbation of a spherical Black Hole (BH) was clarified. Even so, the equations were
difficult to handle and the problem of full field evolution was solved only in 1999, when
Prager and Lun proposed a spectral method to perform the task [24]. Since then, RT
metrics have been studied with the aid of this numerical method. Recent works have
presented the investigation of post-merger phase of binary collisions between Schwarzschild
BHs using RT spacetimes, making possible to calculate precise values of energy loss and

recoil due to GW emission with good precision [25, 26, 27, 28].

The main objective of this dissertation is to study the emission process of GWs
for compact sources without angular momentum. In chapter 1 some tools are presented in
order to understand properties of asymptotically flat metrics, with focus on a derivation of
the BMS group by a simple analysis of the future null infinite symmetries for Minkowiski
spacetime. In chapter 2 we use these tools to compute physical properties of RT spacetimes,
fixing all Bondi coordinates degrees of freedom. We also use a rotation and a Lorentz boost
in order to prove which is the right definition of velocity for the source. In chapter 3 the
full spectral method to solve RT equations based on an expansion of ordinary spherical
harmonics is developed, leading to a new strategy that is the most efficient one to solve
RT equations for a generic initial condition, without any known symmetry. Then, we prove
some properties of special cases, allowing us to classify axisymmetric and planesymmetric

initial data.
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After setting all strategies to perform time evolution and compute physical
properties of RT spacetimes, we start to analyze specific examples. In chapter 4 we study
Brill-Lindquist (BL) initial conditions for the ordinary axisymmetric case and extend it to
the non-axisymmetric case with a Lorentz boost. Then, we propose a generalization for this
type of initial data, which represents the post-merger phase of a head-on (frontal) collision of
any number of BHs. Also, we explore the connection between the inhomogeneities of Bondi
mass aspect and efficiency of GW emission. At the end, in chapter 5, we develop numerical
algorithms to investigate recoil of the source, always with the aid of systems proposed in
chapter 4. With these results, the relation between Bondi mass aspect asymmetries and
recoil direction is investigated. Throughout the entire text we will use geometric units

(¢ = G = 1) and the Einstein summation convention for repeated indices.
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1 Gravitational Waves and Compact Sources

Gravitational Waves (GWs) are transversal waves that carry information about
gravitational field changes and propagate at the speed of light, like photons, so they are
intimately related with the causal structure of spacetime, reaching regions that other kinds
of gravity ripples can not access. For this reason, their physical interpretation demands
many theoretical tools besides Einstein’s equations - as explained in the historical context
given in the introduction -, so a full development of all needed techniques is a long journey.
In this chapter, we will present the most important results about spacetimes containing
GWs, with focus on vacuum compact sources, always assuming elementary knowledge

about GR and differential geometry.

By compact sources we mean asymptotically flat spacetimes, the ones with a
metric that approaches Minkowski for regions far enough from the origin. For us, this
means that the metric can be written in usual spherical coordinates (t,r,6, ¢) and, for

large r values, its expression reads

r

ds* = —dt* + dr* + (r* + O (r)) d¥* + O <1> : (1.1)

where dQ)* = df* + sin® fd¢* and the terms of O(1/r) can be present in any component
of the metric, not only in the diagonal. In this work all spacetimes considered will be

asymptotically flat and the notation for coordinates introduced in (1.1) will be fixed.

1.1 Petrov’'s classification and Weyl scalars

Categorizing and understanding all kinds of gravitational content of a general
spacetime can be a challenging task, and the Petrov classification [8] is the best way of
doing it. To separate and study each one of them, the tetrad formalism may be introduced.
Different from the coordinate basis - usually represented as ¢, -, a tetrad is a general
collection of four linearly independent local vector fields éﬁ(x”) used as basis for the
tangent space, with capital Latin letters running from 0 to 3. The expression of the line
element is given by

ds® = Gudrtdx” = napélée? (1.2)

and a common choice of tetrad is an orthonormal one, which encodes all curvature

information in the basis itself, and the expression of the metric reduces to the same as
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Minkowski in Cartesian coordinate basis

-1 0 0 O

NAB = oo (1.3)
010
0 001

The Weyl tensor (C,qp) is the traceless part of Riemann tensor and it can be used to
investigate gravitational content as well, since the only information loss by the lack of

trace is about volume changes from tidal forces'. Its expression is

1 1
C,uuaﬁ = R,Lwaﬁ - 5 (g,u,[aRB]V - gu[aR,B],u) + gg,u[ag,é’]uRa (14>

with R, = R%,,

brackets mean antisymmetrization of the involved indices. For compact sources, as states

, and R = R° being the Ricci’s tensor and scalar. Also, the square
the Peeling Theorem, each Petrov type of gravitational field has a known asymptotic
behavior that can be used to decompose the Weyl tensor, since it is written in a specific

orthonormal tetrad, as:

(1.5)

N 117 D 17 I 1
Capep — ABCD ascp  Papep | lasep | fapep +O<T5>'

r2 r3 r3 e
Type N regions of spacetime indicate GW content; type 11 is associated with longitudinal
waves with frame dependent velocity; type D is called Coulomb field, with tidal forces
similar to the ones in Schwarzschild or Kerr solutions; type I is a general combination
of the previous ones and type I can degenerate in types Il or D. Regions where the
Weyl tensor is null are called O type. Adding the vacuum condition (R, = 0), we have
R0 = Cluap and the previous considerations are valid for the Riemann tensor as well.
The procedure to find the tetrad that leads to (1.5) is out of the scope of this work and it

is well explained in [29].

A more direct way to understand compact sources is by studying the Weyl
scalars, what demands the use of a null orthonormal tetrad, which is possible only if we
admit complex valued vector fields as elements for the basis. The easiest way to construct
such basis is to start from a metric in spherical coordinates (¢, 7,6, ¢), find an orthonormal
tetrad {é;‘} and define:

(e (1.6)

1 The Weyl tensor is invariant under comformal transformations and it only differs from the Reimann

tensor in the presence of matter, a case that we are not interested in this work.
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The basis is given by {k", 1", m" m"}, where k, is an outgoing vector, [, an ingoing one

and the bar indicates complex conjugation. The metric expressed in this null tetrad reads

0 -1 00
-1 0 00
_ 1.7
NAB 0 0 1 (1.7)
0 10
Then, the Weyl scalars are calculated:
Uy = Capkm"k*m?; Uy = Cpapkl"k*m”; Uy = C,papm”1"k*m?; 18)

Uy = ngm“l”k:“lﬁ; v, = ngmﬂl”m“lﬁ.
They are complex in general and, for compact sources, their asymptotic behavior is
U, = O (r"°) [14]. Comparing the large r behaviour of (1.8) with (1.5), one can interpret
W, as the N type contribution for regions far from the source. Actually, it is possible to
write explicitly the lowest order approximation of ¥, as

1
U = = lim 10y, (1.9)

r r—00

the outgoing GW content for large r. In the same way, asymptotic behavior of gravity can
be analyzed from ¥; and W3 for outgoing and ingoing longitudinal waves; W, for Coulomb

type field; and ¥ for a combination of outgoing and ingoing modes of GW.

A useful feature of this approach is the ambiguity in the choice of basis, because
there are transformations that maintain (1.6) as a null orthonormal tetrad, and one can
have different Weyl scalars for each valid basis. The transformations of this kind that helps

in our purpose are the null rotations around I* or k*, given by?

=

Nz

mt =mt + al"; (1.10)
k= k" + am” + am” + aal”
in the case of unchanged [*. Here a is a complex parameter and the Weyl scalars transform
as follows:
Uy = Uy + 4aV; + 6a°Ty + 4a° Ty + o' Uy;

) L ed. (1.11)
\Pn = ; = 1727374 )
5—n da n=A{ }

To perform a null rotation around k" the same procedure can be done, regarding that

interchanging k" and [* leads to W/, = —W,_,,.

The first expressions in (1.11) generates an algebraic equation T, = 0 that has

solutions {aq, as, as, as}, giving four specific new possibilities for £ in general. Each one

2 Again, see [29] for the full development.
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of these k" is called a principal null direction of spacetime. If all four roots are different,
another null rotation around &* can be done to make ¥, = 0 too, then only (WUq, Wy, U3)
are not zero in this basis and, by the Peeling Theorem (1.5), spacetime is Petrov type I,

the most general example for the asymptotically flat case.

Any case with at least one root repetition is called algebraically special and,
when it happens, other Weyl scalars can be set to zero, making possible to determine into
each other Petrov type the gravitational field degenerates to, just by knowing its large r
behavior. The simplest occasion is when only one repetition occurs, so ¥, = 0 too in that
direction, resulting in Petrov type I field. When there are two degenerated principal null
directions, each null rotation (around * and k") makes two scalars null, only ¥, survives
and the field is type D. Another possibility is for a solution with multiplicity three, then
only W3 is not zero after the transformations and the field is type I11. Only when all roots
coincide, all the scalars except W, are turned into zero by the first transformation, so the
null rotation around &* does not change any Weyl scalar and the gravitational content is

type N. These results are gathered in Table 1 that follows.

Table 1 — Weyl scalars that are always non zero for each Petrov type.

Petrov type | I | II | D |II|N
Weyl scalars ‘ \112, \113, \If4 ‘ \112, \113 ‘ \112 ‘ ‘113 ‘ \114

In short, compact sources of GWs can express all Petrov types, but each
degenerated principal null direction restricts the possibilities for the gravitational field of
the system. Then, algebraically special spacetimes are simpler and represent the greatest
portion of known analytical solutions of Einstein’s equations. Some examples of them are
Schwarzschild and Kerr vacuums of type D, Kundt waves of type I11 and N, Bondi-Sachs

vacuum spacetimes of type I1.

1.2 Foliations and Goldberg-Sachs theorem

To have GW emission, at least second order time derivatives of the components
of the metric must not be zero, then dynamical spacetimes are required to describe it, and
only a boundary condition as (1.1) is not enough to have a well-posed problem to Einstein’s
equations. To handle this, one can try to slice spacetime in different hypersurfaces and write
more boundary conditions with respect to some specific slices. A family of hypersurfaces
chosen to represent these slices, whose union covers all spacetime, is called a foliation. The
simplest way to find a foliation is with a non vanishing timelike vector field f*(\), used to
generate a family of three dimension normal hypersurfaces >,. These X are spacelike and
we call them a family of Cauchy surfaces if they intersect any timelike geodesic only once.

If a foliation of Cauchy surfaces exists, we say that spacetime is globally hyperbolic and A
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represents time at each ). These Cauchy surfaces are the basis for the 3 + 1 formalism of
GR [30].

If spacetime is globally hyperbolic, it is also possible to find two orthogonal
null vector fields k" and [*, in the way that £k, = 1", = 0 and k"l = —1. These vectors
span a family of null surfaces NV, generating another type of foliation. The family of
curves that have k" or [* as tangent vectors are called null congruences and the family
of surfaces orthogonal to them are spacelike oriented surfaces Sy ;. If the congruences are
geodesics®, they represent all possible photon trajectories orthogonal to Sk, SO one can
think of N, being guided by light rays shot by lasers, each one orthogonally attached to
both sides of a specific spacelike surface of dimension two. GWs travel at the speed of light
and they are transversal, so these 2 + 2 foliations are natural to understand them. Also,
GWs only contribute with curvature change in Sy, 7. e., massive particle trajectories will
be changed by a passing GW, but light rays will not. To picture the difference between
the foliations, Figure 1 follows with an example of each of them for the case of a compact
source with one spatial dimension suppressed. In 1a this suppression is systematized in
each orange surface representing the Cauchy surfaces, different from 1b where the orange

null surfaces have two dimensions indeed.

(a) Cauchy foliation (b) Null foliation

Figure 1 — Two possibilities of foliation for a spacetime with a compact source represented
by the black worldtube. In this figure one spatial dimension is suppressed and
in (b) the past portion of each null surface is omitted for better visualization.

Notation similarity with the last section is not coincidence, because it is always
possible to find a dyad of complex null vectors m* and m* tangent to all Si; surfaces and
with m#m, = 1. Then, {k*, [*,m! m"} is a null tetrad associated with the foliation given

by N,. Also, the projector on Sy, can be defined as

h¥, = m"m, + m"m, (1.12)

3 The geodesic equations for k¥ are given by MV kY = 0, where V, represents the covariant derivative.
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and one can use the covariant derivative projected in this surface to understand local

behavior of k* (or {* in the same way). Explicitly, we write
ho‘uvak,, = Vhy + Op + Tuws (1.13)

with 1 being the trace of the decomposed tensor, ¢ its symmetric traceless part, 7 its
antisymmetric part. The scalar ¥ is called the expansion of the congruence and measures
how much light rays are separating from each other; o, is the shear tensor and 7, is the
twist tensor?, quantifying how much a two dimensional image on the spatial surface would
be locally distorted and rotated respectively. It is also possible to write all this optical
information with two complex scalars, according to spin coefficients formalism [14], in the

following way:
Yy = —2Re(p); o4 = —omyum, — omymy; 7, = Im(p)(mum, — m,m,), (1.14)

where p and o are the complex divergence and shear respectively.

If we restrict ourselves to the case of closed Sy, we can fix " pointing outwards,

[* inwards and write the restriction (1.1) in the following way:
1
ds® = —du® = 2dudr + (r* + O (1)) dQ* + O <> : (1.15)
r

where u is a retarded time coordinate, in the sense that u = ¢t — r for large r. Here we also

have k* = o0 for large .

To end this section we present the theorem proved by Goldberg and Sachs in

1962 [10], written in a different way in other to be more direct for our purposes:

GS-Theorem. A vacuum metric, R, = 0, have null ¥y and Uy Weyl scalars if and only

if it has a shear-free, o = 0, null geodesic congruence.

This may look like a simple statement, but it gives a natural 2 + 2 foliation of
spacetime, with spacelike surfaces normal to the tangent vector of the null congruence, say
k¥, that is a degenerated principal null direction of spacetime. In other words, we must
have Uy = ¥y = 0 in the null tetrad induced by this foliation. This means that Petrov
types II, II] and N must have one 0 = 0 null geodesic congruence and type D fields
always present two of them®. Then, it is possible to determine the Petrov type of the field
only by its Weyl scalars computed in this special basis, except when W, and W3 are not
zero together, because it is not possible to distinguish if the gravitational content is type
D and II1 together, or just type I1°.

Also called vorticity.
This is so powerful that made possible to find all type D vacuum solutions, see [31].
6 See Table 1.

5
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After all these considerations, we will follow now studying only Petrov type
I1 cases (or their degenerated cases), always having in mind their potential to describe
isolated massive bodies radiating GWs, since they can degenerate in Petrov types I11, D

and N, but always with ¥q = 0, 7. e., no ingoing GWs.

1.3  Mass definitions for black holes

Even in vacuum solutions of Einstein’s equations there can still be gravitational
field, the case of black holes (BHs). They are spacetimes with curvature divergence
singularities and represent very dense massive objects, so dense that gravity is too strong
nearby them and even photons can not move away from their close surroundings. This
inspires the definition of an event horizon, the boundary of a region where information
will never be able to reach an external observer (photons can not get out of it). Also,
BHs are important cases of GW sources and a definition for mass, energy and momentum
associated with these objects is needed. In this section we will introduce two different

mass concepts for BHs with compact event horizons.

The first concept is the Arnowitt-Deser-Misner (ADM) mass [30] and its
definition is based on a foliation of Cauchy surfaces X, introduced in section 1.2. ADM
mass is a measurement of the asymptotic behavior of gravity and it is given by the medium
extrinsic curvature of a two dimensional closed slice of each X, in a region infinitely far
from the event horizons of any BH. To elucidate how this is done, we will evaluate ADM
4-momentum for Schwarzschild metric in usual spherical coordinates as a toy example,
like done in [32]. The metric reads

r T

2M oM\
ds? = — (1 - ) d? + (1 - ) dr? + r?dQ? (1.16)

and, since ¢; is timelike, Y; can be used as Cauchy surface. Also, we just need to compute
how constant r surfaces vary for a distant observer, since spacetime is spherically symmetric.
The only possible variation in those surfaces is the area, so we expand its variation with

respect to proper radial distance for large r. The result is

dA(r) = dA(r) dr = SWT\/l—W =8mr —8tM + O ! : (1.17)
ds dr ds r r

The first term of the expansion will always be the flat space standard variation. The lowest

order contribution of spacetime curvature comes from the second term, so we define ADM

mass aspect (Mapys) as [30]

dA(t,r,0,0)

1
ds = 8mr — 87TMADM(t,(9, (b) + O <T’) y (118)
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which can be interpreted as the energy measured by an observer near spatial infinite. Then

we can define ADM 4-momentum in this frame as

1 2w T
Phou(t) = - fo L Mapai (1,0, 6)j" sin 6d6do, (1.19)

with 7# = (1,7) = (1,sinf cos ¢, sin 0 sin ¢, cos #). This quantity can be thought as some
kind of momentum of the center of mass frame, in the sense that it transforms as
an authentic 4-vector by action of translations, rotations and Lorentz boosts’ on the
asymptotic spatial frame (¢, 7). For the case of Schwarzschild, we have P}p,, = (M,0,0,0)
with no time dependence or spatial part of momentum, as expected for a spherical black

hole at rest.

The only problem with ADM formalism is that it does not distinguish which
contributions come from GWs or from Coulomb type fields of their sources. This separation
can be a useful information to understand important properties of the system, as GW
recoil for example. To get this separation we use Bondi-Sachs formalism [33], which can be
seen as the same procedure, but changing the 3 + 1 foliation by a 2 + 2 one, in the sense
that the Bondi mass aspect will define the same physical entities as ADM, but only for

energy contributions that comes from the source.

The first step is to introduce the Bondi-Sachs metric in Bondi spherical coordi-
nates
v
G dX"dX" = —EezﬁdU2 —2¢*PAUAR + R*qu(dX* — H*dU)(dX" — H"dU), (1.20)
where small Latin indices run through the usual angular coordinates (© and ®), U is
a retarded time, R is the radius and the parameters are functions of all coordinates in
general. To have an asymptotically flat spacetime in the sense of (1.15), the following

boundary conditions for R — oo must be fulfilled:

8 —0; H* - 0; ‘]; — (U,0,®); qup — far, fapdX*dX’ = dO? + sin® Odd?, (1.21)

with positive definite q,. The null vector dr generates a shear-free geodesic congruence,
then this spacetime is Petrov type II by the GS-theorem and it can represent a compact
source surrounded by GWs. Also, constant U surfaces are spacelike and they are used to

generate the natural 2 4+ 2 foliation.

As in ADM mass case, one can define the Bondi mass aspect (Mg), given by

V =((U,0,%)R — 2Mp(U,0,d) + O (;) (1.22)

and Bondi 4-momentum is

2T
P“(U)=417T L fo My (U, 0, &)} sin ©dOd, (1.23)

" The Poincaré group.
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but now j* components are written with respect to an asymptotic null asymptotic Bondi
frame (U, R).

Although the null surfaces do not tell us anything about GWs, we still have
the spacelike constant U surfaces to evaluate their effects. Then we look at the following

auxiliary tensor cu:

1 1
b = fab + —=Cap(U,0,P) + O : 1.24
o= Fat enl00.8)+ 0 () (124)
which measures the constant U surface deviation from the sphere in the lowest order®. In
fact, this tensor is the first order deviation of g, R from the metric of the sphere

Cab = }%i_IBOR<qg,b fap) = lim (qab fab)

fim e (1.25)

Since constant U surfaces are approximated by spheres for large R, we define the complex

dyad {m?* m"} as

a 1 a i a

and use (1.14) to compute the gravitational shear scalar near null infinite’, given by
o) = —m m’cyp. (1.27)

Any change in this quantity can only come from GW contributions, then we get to the
famous news function N = dyo(g). There is GW presence in the system if and only if the
news is not zero. Vacuum Einstein’s equations determines mass aspect time variation

OMp
oUu

—INI? + oW (U, ©,®), (1.28)

where W is a large expression that we are not interested in. The integration of (1.28) on

52 leads to the Bondi conservation law'°

dPH 1 .

To simplify (1.29), we use R\Ilflo) = —0y N from [35] and, since we compute Weyl scalars
with the tetrad generated by the outgoing null vector dg, (1.29) becomes

ol |

Then, we conclude that an isolated compact source of gravitational waves (Petrov type I

2
j" sin ©dOdo. (1.30)

f (U, 0, )
Ug

field) loses mass in the emission process, because it is always taken a positive amount of

®  This is true because H® is at least O (773) due to condition (1.15).

The general gravitational shear as defined in (1.14) is zero, but its lowest order approximation for
large R might not be null.
9" Indeed, all contributions from W vanish after the integration. See [34] for full calculations.

9
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energy of the source during U evolution. We can also solve (1.30) and get to

- ]

The simplest non trivial example of a known Bondi frame is the Eddington-

2
J#sin ©dedddU’.  (1.31)

f v (U, e,d)du"
Uo

Finkelstein outgoing coordinates for Schwarzschild spacetime

2M
ds® = — (1 - r) du® — 2dudr + r*dQ?. (1.32)

Also Mp coincides with M apys in this case, because (1.32) is static and the news function

is null, 7. e., an inertial spherical BH does not emit GWs.

To use this formalism with a vacuum metric g, (u, r, 6, ¢) that is not directly
expressed as (1.20), one can try to find a coordinate change that leads g, into the form of
(1.20). The most general transformation from spherical coordinates {u,r,0, ¢} to a Bondi

frame that keeps physical interpretations unchanged in momentum calculation is

u, U 1
U= U0+1+2+(9<r3);

r2
1
R = —+RO+&+O ;
R_l 7”2
T ) (1.33)
0= T0++r2+(9< )

F,  F 1
o = F0++2+O< )
where all coefficients are functions of (u, 0, ¢). Also, the transformed metric must fulfill
the conditions
2
GUU — GUe — qU® — (), GOOG®® — (Ge<1>> — (R?sin @)*2;
(1.34)

M
GUE =14+ 0O(R™?); GRR = —( + fB +O(R™?); G = O(R™?) = G

The only problem is to get the right expression for Bondi momentum conservation law in
the original reference frame. It is possible to determine (1.30) in (u, 7,6, ¢) coordinates,

but the final expression is not so easy to handle. It is given by

P N o, ,
= - (au) J, wato.oan

The second term in (1.35) is connected with the fact that j* is related to one specific

2
dS + ~ ffMB(u 0.2 s, (1.35)
4T T o
SQ

Bondi observer and, as the metric changes with GW emission, the notion of asymptotic

Bondi frame also changes in time''

' In [36] the time dependence of this null vector is determined for the case of Vaidya solution.
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1.4 The BMS group

Compact sources must behave like flat spacetime when we observe events too
far from a fixed point. However, we need to understand how Minkowski itself looks like far
from its own origin to comprehend what it means in fact. In this section we will analyze
the set of future null infinite events (Z*) of Minkowski, but in the perspective of different
observers, and then conclude how must be the symmetries of Z* for generic asymptotically

flat spacetimes.

Let us start with Minkowski in coordinates (u, 7,0, )'? defined in section 1.2.
Then we perform the most general coordinate change that keeps the metric in the form of

(1.15), given by (1.33) from the last section. Using the metric components transformations

,  O0XFOXV
G = a5 A (1.36)
we get
R
GRE — or —% 1L O(r%);
(R—1>3 ( )
GUR—-aJ%~+C)(1);
f " 1.37)
GUG) aUTO +0 1 . ( '
B R_l T ’
Ou F 1
GU‘I)_ ut’0 of:=
Ry (J

With restrictions (1.34), the only possibility is that the leading order coefficients can not

depend on u, resulting in

R-l = R-1(97¢ )

Uy = R0, 9)u + (6, 9); (1.38)
@0 = 90(‘97 ¢)7

(I)O = ®0(97¢)a

where « is an arbitrary function on the sphere. With this approach, we can understand
which part of the general transformation really affects the behavior of events infinitely far

from the origin. The limit r — oo leads to

U= R1(0,9)u+ b, ¢);

R=—"

R.(0,0) (1.39)
O = @0(07¢);
O = Py(6,9).

12 These coordinates were chosen because the foliation generated by them is 2 + 2, so large r is near Z+.
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Because GR is frame independent, we know Z= must remain the same after a coordinate
change, what indicates that (1.39) is the action of a symmetry group of Z*. This group is
called Bondi-Metzner-Sachs (BMS) group, composed by rotations, Lorentz boosts and the

supertranslations, a generalization of ordinary translations given by
U=u+ a0, o). (1.40)

Time translations are easily recognized by the case of constant a, but BMS group has
infinite dimension and the interpretation of all « possibilities is not simple. The idea is
that all observers in any specific direction (6, ¢) at Z* are very far from each other, they
do not have any causal connection and one can think of (1.40) as a change in calibration of
all their clocks. To give more intuition about it, we will find which of the « cases represent
spatial translations with help of Alice, Bob and a great amount of Charlies’®. Suppose all
of them are in flat space, Alice is at the origin, Bob is at dr and all Charlies are infinitely
far from them, one for each (6, ¢). Then, both Alice and Bob emit a spherical pulse of
light at the same time. To Alice, all Charlies will measure her pulse at u, and Bob’s
pulse at u,, — 07 - 7. Bob disagrees and says that they will receive his own pulse at u,
but Alice’s pulse will get to them at u,, + dr - 7. All the situation is pictured in Figure 2
below. At the end, the reader should be very glad that all Charlies are too far away, so

A

Figure 2 — Alice in the origin of the blue axis emitted the blue pulse and Bob in the origin
of the black axis emitted the orange pulse. Here the red arrow represents 7.

they will never tell Alice and Bob at which time they measured each pulse, and we can
agree with both Alice and Bob despite of a new calibration of each Charlies’ clock, which
can be interpreted in two ways. The passive view states that Alice can move the origin
of her reference frame by o7, resulting in U = u + 7 - 7, but the same expression works
for the active view, in the sense that all spacetime is rigidly translated by —dr. Both

interpretations are very similar and they always differ from each other by a change of sign.

About the Lorentz group, rotations are the usual unitary transformations over

r and the bigger problem lies on understanding the boosts. Then, we will count with the

13 For the formal development of the following example with Penrose diagrams, see [37].
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help of the same people used to comprehend translations in order to perform boosts. The
procedure is to put Bob at the origin and Alice running with velocity v in the direction of
n, over a straight line that passes through Bob. At the moment Alice reaches the origin,
Bob emits a spherical pulse. Bob knows that every Charlie will receive his pulse at .,
but he could swear Alice thinks they will see the pulse at u = u,y(1 + vne - 7). He is so
confused about the situation that he also claims Alice would not even agree with which
specific photon will be measured by each Charlie. “This can only be a light aberration”,
he guesses. The same thoughts with changed sign for v are also disturbing Alice. Even so,
for our luck, they are too stubborn and will never abandon their inertial frame to lose the
discussion, so there will not be any argument'*. Saying goodbye to our helpers we can

write the boost of vn for all spacetime as

,
R = .

V(I —vh- ) (1.41)
S PETE Y

(1—vn-7) Y1 —ovn - 7)

where time and angle changes were derived in Appendix A. The R expression comes from
(1.39), since we need the final coordinates to represent a proper Bondi reference frame. It
is important to be clear that (1.41) is the active view of Bob’s new calibration for Charlies’
clocks, i. e., spacetime is being boosted to Alice’s velocity, so the minus sign in v needs to

appear. To help with the visualization of the entire situation, Figure 3 follows below.

(a) Bob’s perspective (b) Alice’s perspective

Figure 3 — Perspectives of the system for each observer. Bob sees the orange pulse and he
is located at the origin of the black axis. Alice sees the blue pulse and she is
located at the origin of the blue axis. Here the red vector represents Alice’s
frame velocity.

As an example, we can perform a Lorentz boost in Schwarzschild spacetime.

The procedure is to transform the angular part of the metric with the last expression in

14 All physical results used in this derivation came directly from the twin paradox and aberration of
light. See Appendix A for the time arrival formula for the pulse and [38] for the explanation of the
disagreements between Alice and Bob.
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(1.41) and calculate the respective Bondi mass aspect.

r2dQO? ‘
Y21 —vn - 7)?

ds® = — (1 — W) du® — 2dudr +

r

M
V(1 —on-7)3

(1.42)
MB =

Regarding the corrections of (u,r) to maintain the metric in Bondi coordinates (1.34), we

get the expected momentum for a boosted spherical BH, P* = yM (1, vn).

As said in the beginning of this section, any region of an asymptotically flat
spacetime that is sufficiently far from a fixed point must look like Minkowski. Now we
know it means that Z* must remain unchanged by the action of the BMS group. In this
work we will only use simpler cases of this action, the ones connected to Poincaré group
and always written in specific frames of reference. If the reader is interested in studying
the BMS group and asymptotic flat spacetimes in a coordinate independent context, we
recommend [39], that is a good and modern approach of the subject with interesting
discussions about superrotations, which represent a natural extension of the Lorentz group

in this scenario.
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2 Robinson-Trautman Spacetimes

In this chapter we investigate the gravitational field content of Robinson-
Trautman (RT) spacetimes, with the aid of the Goldberg-Sachs Theorem and Weyl scalars.
Then, we also use Bondi-Sachs formalism to understand properties of the source of GWs. A
solid definition of the source’s instantaneous velocity is presented, in contrast with recent
attempts with different approaches. The evolution equation is introduced, its stationary

solution is given and the physical interpretation of the initial value problem is discussed.

2.1 General properties

RT spacetimes are the simplest vacuum solution of Einstein’s equations that
can represent compact sources surrounded by GWs. The standard form of the metric [25]
is
r2d§)?

Q*(u,0,6)’

where my is a constant, Q and K are smooth functions, dQ? is the unit sphere (S?) metric

2m0

ds* = g datds” = — <K(Ua 0,9) - T 10y (ln Q2)> du’ = 2dudr + (2.1)

in the usual spherical coordinates angles (6, ¢), r is a radial distance and u is a retarded

time.
Besides that, 0, generates a shear-free null geodesic congruence, with r as affine
parameter, 7. e., (2.1) is algebraically special and the natural 2 + 2 foliation associated

K
with it is based on constant u surfaces with Gaussian curvature given by —. The full
r

expression for K (u, 0, ¢) is

1
K =q? (1 + §V?z (In QQ)) = Q*+ QVHQ — (VaQ)?, (2.2)
where Vg, is the gradient operator on S?. The null tetrad induced by the foliation reads
B 3
Guu
= §H 4 TU s
Q i
I R VA
" Vor \? * sing ¢
Computing the Riemann tensor in this basis we have
Risop — Napep N II1spcD N DABCD’ (2.4)

r2 3
with N, I'I1 and D covariantly constant along ¢,. This makes clear the interpretation of a

compact body surrounded by GWs. Then, one can compute the Weyl scalars with (2.3)
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like defined in (1.8):

\IJO = \111 = 07
m[).
‘112 = _Fa
Ty = @ IK; (2.5)

_\/grz
. 2
v, = _sm@@ (Q @guu> ’

42 sin @

?

where 9 = 0y —

Oy. As we already expected, Uy = ¥ = 0 and there are no ingoing
sin
GWs, then all GW content in spacetime was emitted by the compact source, which also

generates the Coulomb type field represented by Ws. The only case without GWs (¥4 = 0)
occurs when K is constant, 7. e., U35 = W, = 0 and it is possible to recognize the Weyl

scalars for Schwarzschild solution with mass m.

Using (1.33) and (1.34), we determine the transformation to Bondi coordinates

U = Lt Q. 0,¢)du’ + a(, ) + O <i> :
R = W +0 (r); (2.6)
(0,8) = (6,0) + O C) ,

where the leading order for angular coordinates was chosen to match the Lorentz frame
of the original coordinates with the Bondi frame. However, there is still a huge gauge
freedom to fix, since it is always possible to perform a supertranslation, parameterized by

«, which will determine all the higher order terms in (2.6). Then, we have

Mp(u,0,¢) = Q?)(Z“M + P(0uUo, 2dyUo; 1, 0, &) (2.7)

where P is a homogeneous polynomial in 2% = (0, ¢) derivatives of Uy = | Q(u/, 0, ¢)du’ +

ug
a(f,¢). To determine P at a generic instant of time u is a hard task', so we choose
a(f, ¢) = up, which makes P = 0 at uo and, consequently, all higher order terms besides

the leading order disappear in (2.6). Then, Bondi momentum at wu, reads
P*(ug) = (Po(u ), P(u )) — mO%MdS (2.8)
’ YT i ] Q3. 0,9) |
SQ

in a reference frame with all BMS group degrees of freedom fixed.

1" To know the explicit expression for P, see [34].
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Inspired by (1.42) - and as done previously in literature [25, 40]-, we define the

center of mass velocity in the Bondi frame as

1

o) P(up). (2.9)

v(up) =
Since other recent works use different definitions®, we want to show that (2.9) is definitively
right, and no other option is better to measure the velocity of the source. Then we perform
the rotation that fix v(ug) = vZ and do a Lorentz boost of —vZ, as done in (1.42), which

transformation is given by

cos @ + v d?
f = ————: ¢ =¢; dV? = 2.10
cos 1 +wvcosf’ o= Y2(1 + vcos)?’ (2.10)
then we define®
cosf + v
008 ,Q, = 1 0 ,6), = — |, s 2.11
Qboost (1o, 0, ¢) = v(1 + vcosh)Q (uo arccos <1 - vcos@) gb) ( )
leading to the following spatial part of the Bondi momentum
m cos 0dS
Pk}oost(u0> = Plgoost(u0> = 07 PSoost(uO) = 473% (212)

3 cos 0+v
52 Qboost (uO? arccos (1+v cos@) ) ¢)

Doing the coordinate change that matches the expression (2.10) in the last integral, we

check that the momentum in z direction is also null
Plfoost<u0) =7 (P3<u0) - UPO(“O)) = 0. (213)

This means that we were right, because —vn is the parameter of the Lorentz boost that

stops the system, so (2.9) is indeed the instantaneous velocity of the source.

It must be clear to the reader that definition (2.9) works for any reference
frame, but it is really hard to calculate it in a generic Bondi frame, where P can be

different from zero at uy and the expression (2.8) does not work.

2.2 Time evolution

After all previous considerations about Bondi momentum, we are ready to

investigate vacuum Einstein’s equations for (2.1), that can be written as

o (1 ,
In [26] the authors define the velocity of the source without taking P° into account.

The multiplicative factor in front of the following expression comes from d2? transformation, see (2.15)
to be convinced that it is needed.

2
3
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in which the r coordinate does not appear anywhere, and we can state an initial value
problem just choosing a smooth Q(u = ug, 8, @), i. e., the time evolution is well defined

with the metric of a given surface that is a continuous deformation of the sphere

d?
Q2 (’LL(), 07 ¢) ’

where the only restriction over Q(ug, 8, ¢) is that (2.8) converges in order to generate a

ds®lucugr=1 = (2.15)

valid physical example. The integration of (2.14) over S? gives a conserved quantity along

dS
qo _SﬂgQQ(UOM’ (2.16)

that represents the area of (2.15), and we will fix g = 47, so the area of the r constant

u evolution

surfaces is 47r% at any instant of time. Now one can recognize (2.14) as a two dimensional
version of the Calabi flow associated to (2.15) [41], a known geometric flow that tends
to dissipate non-uniformities in curvature. Regarding the fact that (2.14) is not linear,
an interesting analogy can be done with the heat equation on S2, leading an initial

temperature distribution into a homogeneous one.

The stationary solution (u — o) must lead to a compact surface of positive
curvature such that V3K = 0, then the only possibility is K = 1 for S? itself. The simplest
case is when the sphere is centered at the origin and we have Q(u — 0,6, ¢) = 1. The

general solution is when the center of S? is at p = vfv with 0 < v < 1, resulting in
Qu— %,0,6) = (1 — v 7), (2.17)

with v = (1 —v?)""? and # = (cos ¢ sin@,sin¢ sin6,cosd). Substituting (2.17) in (2.1)
we get a spherical BH with constant velocity v, as argued in (1.42). Then, when Q(u, 6, ¢)
is smooth, we can interpret (2.1) as the metric of a deformation of Schwarzschild spacetime
for all u > wug, 7. e., a non-spherical BH which radiates GWs until all its curvature

inhomogeneities disappear®.

Since (2.14) is solved for a valid initial condition Q(uo, 6, ¢), one can compute
Bondi 4-momentum to quantify physical changes in the properties of the source and
understand the emission process of GWs. Because spacetime is dynamical and U coordinate
changes during the evolution, we emphasize that (2.8) is valid just for ug, and it is necessary
to use the conservation law (1.35) to compare energy or momentum between different
instants of time. For this, we determine the lowest order approximation for W, given by

(1.9):

o sin @

gl _ sl (2@((9“ In Q)) . (2.18)

4 Here is where the analogy with the heat equation must be clear to the reader.
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Regarding that 0, = Qdy for large r, we write®

Changing the order between the operators & and 0, in (2.18) and then integrating (2.19)

over uﬁ, we get

11 Qo Qe ¢ _ @
Nu.6.0) =5 [2 (Q"@ tan 0 sin29) " sing <Q"¢’ tan9>] ’ (2.20)

with subscript coordinates representing partial derivatives. Finally, the conservation

equation (1.35) reads

dPH 1 (7|1 Qo Qoo \° 1 Qs \’

—=——0= |- — - - d

du dr J Q [4 (Q% tanf  sin?6 - sin? 0 oo tan 6 5
S2

| ok
2

(2.21)

The second term has already been ignored in other references, as in [34], but we will show
that its contribution is not negligible in section 5.2, at least for one example of initial data.
If the second term was indeed zero, (2.21) would become a simple uncoupled ordinary

differential equation (ODE) system with direct solution.

To end all the problems to compute Bondi momentum changes, we use the
fact that the P expression in (2.7) is null for Schwarzschild, so we can always choose the
specific Bondi frame in which (2.8) is valid at the beginning of the evolution (at u = wy),
and at the stationary solution (at u — o). Given all these considerations, we define the
fraction of energy emitted A and kick velocity vy as
PP (ug) — P(0).

PO(ug) ’
1

1
o Py ) By

A —
(2.22)
P(uy).

It is really important to understand that our goal is to compute (2.22) for different systems
and compare them, but we can not get P*(u > ug) without fully solving (2.21), and we

will not do it in this work.

2.3 Physical systems

As stated before, a proper initial condition Q(ug, 8, ¢) can be interpreted as a

deformation of a spherical BH, since RT spacetimes always evolves into Schwarzschild case

® The extra Q™2 factor in (2.19) comes from the fact that we have calculated \I/flo) with the tetrad
generated by 0., and not Og.

It is important to state that (2.20) admits an arbitrary additional constant term, but this would
represent a linear increase in o) for the stationary solution, which has no physical meaning.

6
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and, if (2.8) converges, we can assign a 4-momentum for this source that does not measure
any contribution from the GW content. However, there are three important restrictions
for the possible Schwarzschild perturbations which limit the real physical systems that
can be described by RT metrics.

The first one is that any kind of angular momentum in spacetime is forbidden,
because we can understand the metric as a covariantly extended version of (2.15) in the
null 0, direction, 7. e., photons always travel perpendicularly to u and r constant surfaces.
Since 0, is torsion free, in the sense introduced in section 1.2, no rotations can appear.
This is illustrated by the fact that (2.14) does not depend on r.

The second - and strongest - restriction comes from the fact that Q(u, 6, ¢) must
be at least four times differentiable with respect to 6 and ¢ for the u evolution to make
sense, so no discontinuities are allowed and (2.15) is indeed just a smooth deformation of
the sphere. Since outgoing photons travel in 0, direction, any region that traps photons
will be connected, there can only be one event horizon and, consequently, it is only possible

to have just one BH on spacetime.

The third restriction says that the only way to start the evolution without any
GW content is with the stationary solution itself. This happens because whenever K is
not constant, W, is not zero and there must be GW presence in the system. This prohibits

any static initial configuration that is not Schwarzschild spacetime.

Then, we need to find an one body non rotating problem that represents a
compact source of GW emission in order to use all these tools developed until now. The
simplest example of such phenomenon is a frontal collision of spherical BHs, where all
the initial bodies merge with each other in a single BH. After this merging, since no
angular momentum appears and there were some previous GW emission, we must be
able to describe the system with RT metric. The hard task is to find an appropriate
initial condition that describes a post-merger phase of a collision, since there are too many
possibilities for Q(ug, 8, ¢), but this will be discussed in chapter 4.

For now, let us think of a binary head-on (frontal) collision in a reference
frame such that the system is symmetric with respect to rotations around an axis, as
represented in Figure 4 below. This example makes clear the difference between the phases
of a BH merger because of the “antikick” property, that separates each of them [40].
Before they merge, while both BHs fall into each other, the smaller BH develops more
velocity, then it emits more GWs in comparison with the bigger one and the center of mass
frame feels a recoil in the direction of the smaller BH. After the merging, the resulting
non-spherical BH can be described as a RT spacetime and it certainly presents more
curvature inhomogeneity in the side that the smaller BH was before the collision, the
preferred direction of emission inverts itself and the system feels a decrease in the source

velocity, as illustrated in Figure 4.
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//a/v

/V

(a) Before the merging (b) After the merging

Figure 4 — Two stages of a head-on binary collision of spherical black holes. Here red
wave regions represent higher front wave densities compared to blue regions
for each source. The velocity and acceleration of the center of mass frame are
represented with blue and red arrows respectively.

This deceleration, called the “antikick”, can be found in more complex situations,
as in the case of collisions of spinning BHs [42], but the descriptions of such systems are done
by full numerical (3 4 1) integration of Einstein’s equations, without any simplification
as (2.14). Then, it is interesting to know that the post-merger phase can show this kind
of effect even in simpler cases, including the ones that RT spacetimes describe and give
intuition. A quantitative discussion about the relation between the “antikick” and the

curvature of the resulting apparent horizon” after the merger can be found in [40].

2.4 About the causal structure

Here we briefly discuss the difficulties on understanding RT global causal
structure, and how they can lead to the misinterpretation that RT is just a white hole
spacetime without any promise to describe real systems. This section is independent from
the rest of the work, but it gives a natural argument for the necessity of using Bondi
4-momentum to guide any physical interpretation around the properties of the source.
The main point is that the Calabi flow given by (2.14) is not well defined backward in
time. We will not prove this statement, but we know that any regular initial data will

evolve into a stationary Schwarzschild BH, then the system will not have any dynamics

7 Because we are dealing with dynamical BH spacetimes, it is easier to define the local analogue of event

horizon, the apparent horizon.
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for forward or backward u evolution, and it is not possible to recover initial data. The
situation is analogous to the heat equation again: in the same way that one can not decide
from which initial condition an object started in order to get to a specific temperature

distribution, we can not compute which Q(u < uy,0, ¢) led the system into Q(us, 0, ).

This problem introduces two restrictions. Directly, it is not possible to access
the past null infinite (Z7) of any given initial data. Indirectly, since (2.1) is written with
a retarded time, the range of our coordinates run only through the white hole and the
asymptotically flat regions of the solution, without access to the future event horizon.
This is an indirect implication because if we try to change variables to an advanced time
u — —u, the u partial derivative in (2.14) changes sign, the evolution turns to be defined
only backward in time and we will only be able to get the apparent horizon of a BH that
has started as Schwarzschild and has been absorbing GWs from uv — —oo0 until v = wy,

which is really different from the system we are studying.

To illustrate these facts we can build a sketch of the Penrose diagram for a RT

spacetime, which follows in Figure 5. Just by looking at Figure 5, one could argue that

Figure 5 — Sketch of the Penrose diagram for a RT spacetime. Here Z7 is the future null
infinity (in blue), H~ is the past horizon (in orange), i* is the future timelike
infinity (red dot), GWs are represented by green arrows and negative r denotes
an antipodal point on (6, ¢) for the same r value.

(2.1) is not a good metric candidate to describe the post-merger phase of a BH collision,
since only a past apparent horizon® (H~) can be computed from it [40]. However, the
solution evolves into Schwarzschild for © — o and no collapse took place, so there must
have been a BH region from somewhere in time during the evolution, even though we can

not determine its shape with our restricted range solution.

Then, we may look at a sketch of a collapse of two BHs, followed by their
collision, represented in Figure 6. Comparing both diagrams, we see that an observer

out of the horizons and above the thick black line may not tell the difference between a

8 The apparent horizon of a white hole region of spacetime.



Chapter 2. Robinson-Trautman Spacetimes 41

Figure 6 — Sketch of the Penrose diagram for a binary collision of BHs, each one generated
by its own gravitational collapse. Here Z* and Z~ are future and past null
infinities (in blue), H* is the future horizon (in orange), i* and i~ are the
future and past timelike infinities (red dots), i° is the spacelike infinity (black
dots), GWs are represented by green arrows, the worldtubes of matter content
are drawn in gray and negative r denotes an antipodal point on (6, ¢) for the
same 7 value.

full collapse/collision spacetime and a RT solution just by measuring the gravitational
interaction in it. With the right initial condition Q(ug, @, ¢), even their GW content can
be identical, and the observer would need to interact with light rays or test particles
coming from his past light cone in order to decide in which spacetime is him. Since we use
Bondi 4-momentum to infer physical properties of the source in the whole work, only the
curvature near Z" is used in the computations and we do not need to concern with the

non physical white hole region in Figure 5.

It is important to state that this argument is not new, since we are used to
describe the exterior region of a single spherical BH that came from a gravitational collapse
using Schwazschild metric, which maximal extension has a white hole region, as we can
see in Figure 7 below. The main difference from our case is that the right initial data must
be chosen for RT to represent the post-merger phase of a BH collision, and we will discuss

about this choice in chapter 4.



Chapter 2. Robinson-Trautman Spacetimes 42

>
»

g

N
1

(a) Schwarzschild i
(b) BH collpase

Figure 7 — Penrose diagrams of Schwarzschild and a single spherical BH collapse. Here
Z* and Z~ are future and past null infinities (in blue), ™ and H~ are the
future and past horizons (in orange), i* and i~ are the future and past timelike
infinies (red dots), i is the spacelike infinity (black dots), the worldtube of
matter content is drawn in gray and negative r denotes an antipodal point on
(0, ¢) for the same r value.



43

3 Galerkin Method

In this chapter we describe how a Galerkin spectral method is used to solve
(2.14) numerically, with a standard spherical harmonics expansion of Q(u, 6, ¢). We argue
why our strategy is more efficient than the previous attempts in the literature for the
general case of u evolution. Based on this strategy, we find some properties of initial
conditions with planar reflection and axis rotation symmetries. Also, all important features
about the structure of the codes used to present numerical examples of time evolution are

considered.

3.1 General case

Time evolution of RT spacetimes is described by (2.14), a nonlinear fourth
order partial differential equation (PDE), then there is no standard analytical method to
solve it. Interested in the u evolution generated from arbitrary Q(ug,f, ¢), one can use
a Galerkin spectral method [43] and change this PDE by an ODE system, with aid of
projections of the PDE on a basis of the space generated by some chosen functions. This
strategy introduces a new way to look at the problem, determining the evolution of each

term of a modal expansion for the quantity to be evolved.

The best way to understand the procedure is with an example and, in our case,

we can perform a spherical harmonics decomposition as follows

QN<U7 0, (b) = Z Z blm(u)yzm(ev ¢)7 (31)

where all u dependency is carried by the modal coefficients bﬁn(u) This is possible because
the spherical harmonics form an orthogonal basis for the space of functions on S?, so any
analytic function can be arbitrarily approximated by (3.1) for large N. The expression of
Y;™ adopted in this work is'

(Il —m)!

VP0.0) =y eos6)e™, 32)

where P"(z) are the associated Legendre functions and the orthogonality relation reads

/ — / 47
YY) = oYY dS = ——0uwdmm- :
S2

1 This definition is known as Schimdt semi-normalization for spherical harmonics.
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Then, it is possible to write (2.14) as

0 A N I

=0 m=-1

with dots representing u derivatives. Applying (Y;™, . ) to both sides of (3.4), we get the
following (N + 1)? ODE system

mo 487rm

Y™ QVEK), (3-5)

with [ =0,1,..., N and -l <m < .

Essentially, this is the last step that Galerkin method leads us and a numerical
integration of (3.5) is enough to find the u evolution. Then, an important obstacle appears
during the implementation of this strategy: the projections in (3.5) are given by integrals
of expressions depending on many P functions, which oscillates a lot for high m modes,
so the numerical approach to determine the ODE system is not precise. To overcome this,
one can simplify the projections introducing a Galerkin decomposition? for the Gaussian
curvature

2N 1
Ky(u,0,0) => > al, ) (3.6)
1=0 m=-1
and for G(u,0,6) = Q*(u,0, )
Gn(u,0,0) =

2 L B), (3.7)

as done in [27]. Joining (3.5) with all Galerkin expansions and the identity

: Mz

we have ol 4 1
: +
o= 2L S 1l L 0 ), 39

where the summation is carried over the values 0 < l; < 2N,0 <[, <3N, —[; < m; < [;,

and the coefficients C’Tln are given by

1
Cl (ll,ml, lg,mg) §Y2T1Ym2ymds

(3.10)

(I —m)! (li =mg)! .
= Oam (I +m)! JPI (L; +my)! G m e @,

1=

where M = m; + my and the resulting integrals are much easier to determine.

2 The following expansions run throughout higher order modes compared with the @ decomposition and

the reason will be clarified later.
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To proceed, we use (3.6) and (2.2) to write a!, as a function of b . Using

identity (3.8) again, one has

20+ 1
a{m = l;— Z bll le [(1 — lg(lg — 1)) Cim(llaml;l27m2)+

miTm2
l1,l2

mi,ma (3.11)

— Dfn(ll, my; l2, m2) + mlmQEyln(lb ma; l?? mQ)]a

where the coefficients D! and E' are given by

—m) (l; —my) 'del
(1—x*)P" 12
D, (I, my; 1y, ms) = l—l—m J )P, L 4/ (I 5 my) dx (3.12)
E! (L, my;la,mg) =68 (L= m). J (l; = m,). P (z)dx (3.13)
1, M5 b2, 2 = UMm l+m 1_1;2 L l +mz . .

In the same way, but now for cm, we write

20+ 1
d = ; STt b b L (L ms b, mas L, m), (3.14)
l1,l2,l3
mi,m2,m3
with 0 <[; < N, —I; < < [; and

3
F, (ll7ml7 l2; mao; l3; m3 Mm l T TTL E/\ / mpll Z(CE)dCE, (315)

where M = m; 4+ ms + ms. Then, to reach each new numerical integration step for the
(N +1)? EDO’s (3.9), the evaluation of (3.11) and (3.14) is necessary. The good news
is that all the integrals required to compute (3.10), (3.12), (3.13) and (3.15) are easily
determined by an algebraic manipulation software. Even so, there are too many of them
(mainly the F' ones) and the selection rules for null coefficients (B.2-B.4) of Appendix B
help a lot. Also, the rule (B.4) together with the expressions (3.11) and (3.14), determine
the order to stop the expansions (3.6) and (3.7), in order to discard all unused @', and ¢!,

in (3.5) for a given N, but without losing any information.

After handling all those wild integrals, the last simplification for a generic case
evolution comes from the fact that Q(ug, 6, ¢) is real (Q = Q) and, because spherical

harmonics are orthogonal, the modal coefficients must obey

v, = (—1)"b, (3.16)

m

so the evolution (3.9) can be expressed in terms of non negative m modes only, leading to
a N(N + 1)/2 EDO system, reducing the computational time for u evolution. The same is
valid for (3.11) and (3.14), since K and G are also real. United with the selection rules

of Appendix B, this procedure is certainly faster than the previous strategy presented in
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the literature [27], that is based on the real spherical harmonics decomposition of @) to

perform the u integration.

For the stationary condition (2.17), we see that the only non vanishing final

modal coefficients must be b)) and b’ . Then, in any Bondi frame, one has

b by bl — b}

Y(00) = bY; va(0) = TR v,(0) =i TR ve(0) = =75 (3.17)

3.2 Planesymmetric case

If Q(up,0,¢) has symmetry of reflection with respect to a plane, a useful
simplification in its expansion is possible and, in some sense, the motion stays in this
plane. In terms of spherical coordinates, we write the reflection with respect to y = 0
as (0,¢) — (0, —¢), which leads to Y, (6, ¢) — (—=1)"Y,"™(6, ¢). If we impose symmetry

with respect to this transformation over the initial condition, the modal coefficients obey
o, (ug) = (=1)"b}, (uo), (3.18)

which, together with (3.16), demands b (ug) to be real. Then, combining (2.8) with
Q(ug,0,¢) = Q(ug, 8, —¢), we conclude that there is no initial Bondi momentum in the
¢ direction. Since the coefficients of the ODE system (3.5) are also real, implying that
b (u) must be real for u > g too. This means that there is no Bondi momentum in the y
axis at any time, there is no velocity out of the plane y = 0 and we will refer to this kind

of system just by planesymmetric ones from now on.

It is important to notice that we just showed that motion is stuck in y = 0 for
@y defined in (3.1), but this also holds for any solution that is generated by an analytic
initial condition, since all spherical harmonics expansions can be done for arbitrarily
high N. As well, a planesymmetric Q(uo, 8, ¢) with respect to any plane must carry this
property, since it is always possible to change coordinates and put this specific plane at

y = 0. Also, the stationary velocity given by (3.17) becomes

V/2b} bt
Y(0) = bY; v,(00) = Wl; v, (0) = 0; v,(0) = —b—g. (3.19)

Examples to illustrate the plane reflection symmetry condition can be found in
the end of section 4.3.

3.3 Axisymmetric case

Another special case is when the system has symmetry of rotation with respect

to the z axis (¢ — ¢ + ¢, € € [0,27]), then only m = 0 modes are not zero, the ones that
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do not depend on ¢. This condition demands reflection symmetry with respect to both
x = 0 and y = 0 planes, so Bondi momentum of the source must remain in the intersection
of these planes, the z axis. Besides that, the spherical harmonics in (3.1) become ordinary

Legendre polynomials

Zbl )P,(cos @), (3.20)

all ¢ integrals are trivial and the normalization condition simplifies to

sin

Q Uo,

In this case, (3.5) can be determined by an algebraic manipulation software without too

d6 — 2. (3.21)

many effort and, depending on the computational power available, there is no need to
introduce the expansions (3.6) and (3.7). Also, the stationary velocity given by (3.17)
becomes .
v(0) = % v,(0) = 0; v,(0) = 0; v, () = —20‘ (3.22)
At last, it is possible to have any combination of planar reflection conditions,
resulting in other cases with even more simplifications compared to the axisymmetric case.
Any initial condition that is planesymmetric with respect to two intersecting planes will
also have linear momentum in just one direction, but it is also possible to end with no
velocity change at all. If we add one more plane of reflection that crosses the intersection
of the others at only one point, the system will not have a preferred direction of GW
emission and it can not present gravitational recoil. In this case, the spatial part of Bondi
momentum will always be null in the center of mass frame, there will be no kick velocity,

final energy is just mg and the fraction of energy emitted becomes
-1

PO —
—(uo) o _ 1—4r

8= PO(UO) i@g(ul)?e?gb) ’

(3.23)

or even simpler when the system is also axisymmetric

™ sinfdd \
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4 |nitial Conditions and Analytic Cases

In this chapter we present the standard derivation of Brill-Lindquist (BL) initial
data for axisymmetric RT spacetimes. Our derivation includes the case of a post-merger
phase of a binary BH collision with different velocities for each BH, not just equal velocities
as in previous literature. With the aid of the BMS group, we perform Lorentz boosts in the
system to better understand properties of BL initial data. Then, inspired by the boosted
binary case, we claim a general initial condition for the post-merger phase of a head-on
collision involving any number of BHs. Also, all Bondi mass plots in green represent initial

data in its center of mass frame at uyg.

4.1 Axisymmetric binary collision

The example of the post-merger phase given in section 2.3 can be represented
by an axisymmetric Q(uo, 8, ¢), given by a specific procedure that borrows the geometry of
a flat three dimensional space, and uses it to build a metric that approaches Schwarzschild
at large distances from the origin, the BL initial data. The derivation that follows is based

on the one in [27]. We use the bispherical coordinates of the three dimensional flat space

a sin @ sinh 7 s
T = cos
coshn + cosfsinhn ’

a sin 6 sinh 7
= i 4.1
Y= cosh n + cos @ sinhn sing, (1)

a

=+
“coshn + cosfsinhn’

where 0 < n < o, § € [0,7], ¢ € [0,27) and a > 0. In these coordinates, the position

vector has length

coshn — cos O sinhn

0) = 4.2
pln.6) a\/coshn + cos @ sinhn (42)

and the line element for a flat space is given by

2 < 2 1.2 2
dSha = o (dn + (sinh” n)dQ ) : (4.3)
where ¢g is constant and

® = S(n,0,p,7) = \/coshn + (7 - #)sinh 7. (4.4)

Based on the (4.4), we choose a different expression for ® to substitute in (4.3), given by

aq %)

—~ IS
S(n+771707¢7z) S(n+n2707¢7 _Z)

P! = (4.5)



Chapter 4. Initial Conditions 49

with a; > 0, getting to a non-flat space that approaches a conformally flat geometry at
large distances, 7. e.,

4

14 Qg mon coshn + cos 6 s%nhn ds2 (4.6)
o coshn — cosfsinhn

ds® ~

for n » n;. Also, when 1 » 1 too, the geometry approaches the spatial part of Schwarzschild

far from the origin, and the metric reads
2 M
gij ~ {1 + p“} 8ijs (4.7)

where the scales have been fixed in the way that

n2—"M1
M()Oéle 2

a (4.8)

20[2

Then, a surface of constant n = 1y > 0 can be used to generate an initial condition for
(2.14) as follows

2
(07] Q2
Q(Uo,e, Cb) = (S(w1707¢7 2) * S<w2797 ¢7 _2>>

(4.9)

B (\/’71(1 + wq cos 6) - \/72(1 —w26080)> = Q(uo, 0)

where 0 < w; = tanh (1o +7;) < 1 and v; = (1 — w?)~Y2. This is the BL initial data and it

represents the post-merger phase of a head-on binary collision of black holes.

The physical interpretation of the control parameters in (4.9) is far from being
direct. If we take oy = 1 and ay = 0, the solution becomes a Schwarzschild black hole
with mass mg and constant velocity w;. This induces us to associate the w; parameters
with some kind of velocities. In order to better understand the BL initial condition, we
will use a Bondi frame with fixed degrees of freedom for supertranslations, and perform
a Lorentz boost to go to the instantaneous rest frame of the system. First we determine
the velocity of the source v in the Bondi frame which (2.8) is valid, then we apply the

transformation given by (2.10) to stop the system at the initial time ug. The result reads

o n (&%)
\/fyl(l + wq cos @) \/72(1 — wsy cos O

Q' (uo,0) = ( )) v(1 +vcosh)

—2
_ a N Qs (4.10)
VAL +wicos)  4/45(1 — whcos )

. 631 n %) -
a S(wllaevqswﬁ) S(wé797¢a_2) .

w; T

v . "
, exactly as ordinary velocities
1+ VW;

should do, so they may represent the kinematic properties of some entity of the system.

The parameters w; have been changed into w) =
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Before trying to understand which entity the w; parameters represent, it is
important to notice that the special case oy = ag always demands w] = ws in (4.10), since
it is the only way to set (2.8) to zero. Because there is symmetry of reflection with respect
to the plane z = 0 in the center of mass frame, an initial condition with a; = s can only
represent a binary collision of two equal mass BHs. As seen in section 3.3, there is no kick
velocity in this case and we use (3.24) to determine the fraction of energy emitted (A). All

A values for a; = as follow in Figure 8. From the graph we see that emission is symmetric

00 02 04 06 08 1.0
Parameter w

(a) All A values (b) Cases w = w1 = wo

Figure 8 — Fraction of energy emitted A for each case of (4.9) with oy = as.

by interchanging w; and wy. Also A always get higher when w; or wy grows. Since the
system does not have recoil in any Lorentz frame, the energy loss can only mean that GWs
indeed consume mass from the source of GW emission, as discussed in Introduction and
proved with (1.29).

To illustrate the stopping procedure done in all calculations when wy, # ws,,
Figure 9 follows with the plot of Bondi mass aspect before and after the performed boost

for the example of w; = 0.7 and wy = 0.5.

g °

(a) Before the boost (b) After the boost

Figure 9 — Bondi mass aspect of a BL initial condition with a;; = a5 and velocities w; = 0.7,
wy = 0.5. The velocity of the system before the stopping boost is represented
by the red arrow.

When a; # as, the system has asymmetries in the instantaneous rest frame
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too, mass differences take part in the discussion and there is no way to compute energy
loss ratio (A) or kick velocity (v) analytically. To understand this kind of initial data, we
propose that —w;Z and w92 parameters measure initial velocities of the entities which
we call blobs, inohomogeneities on the horizon which come from the colliding black holes
after merging. These blobs are represented qualitatively in Figure 4b. In previous works,
«; parameters are usually taken as mass portion of each initial colliding BH [28], in the
sense that the mass ratio of them should be given by the asymmetry parameter ¢ = ay/as,
but no quantitative connection with physical properties is clear. Here we just state that ¢
is an indicative of different masses associated to each blob when ¢ # 1. Also, we are not
concerned with the quantitative mass ratio measurement, because even if we could precisely
determine mass asymmetry, we would only be able to calculate it from wuq until the system
gets to the stationary solution, but no information about the initial colliding BHs would
be available. This happens because Calabi flow has the same trouble of backward time

integration as parabolic equations do, as explained in section 2.4.

The case of initial data with ¢ = 0.5 and w; = ws = 0.7 is shown in Figure 10

below. This example helps us to understand how to comprehend the interpretation around

(a) Before the boost (b) After the boost

Figure 10 — Bondi mass aspect of a BL initial condition with as/a; = 0.5 parameters and
velocities w; = we = 0.7. The velocity of the system before the stopping boost
is represented by the red arrow.

the defined blobs with Bondi mass aspect plots. First we remember that the angular
distribution of energy coincides with Bondi mass aspect in the Bondi frame where (2.8) is
valid, then we see how the stopping boost gave kinetic energy to the smaller blob, while
lowered velocity of the bigger blob. This compensated the mass difference between the
blobs and brought the system to the center of mass frame. We can interpret Figure 9 in
the same way, since asymmetry parameter is ¢ = 1, blobs have equal mass but different
velocities (wy = 0.7 and wy = 0.5), so a boost that forces them to have the same velocity

is needed for the system to be in the rest frame.

Now we are confident about our interpretations for the definition of blobs, but

it is important to be clear that all Bondi mass aspect plots in this chapter do not represent
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the shape of the event horizon after merging, i. e., Figure 4b is intrinsically different from
Figure 10, and the procedure to determine the exact shape of the apparent horizon' can be
found in [44]. Even so, Mp(u, 0, ) must have the same overall symmetries as the horizons
and it also has its geometry very close to (2.15), so we will use its shape in the center of

mass frame in order to guide our intuition around GW emission from now on.

4.2 Non axisymmetric binary collision

The choice of antipodal 7; in (4.4) to generate (4.9) is not arbitrary, any other
possibility would have a different kind of big 1 behavior apart from (4.7). In other words,
it is not easy to get a non-axisymmetric BL case by the same way done before. Even so, it
is possible to analyze (4.9) in different reference frames, we just need to perform a Lorentz
boost (1.41) in any direction orthogonal to 2. The transformation for a boost of v& is
given by

cosf
cosd =

v(1 — vcosgbsin@);
cos¢psinf — v

cosgsinf = (1-— vcosgzﬁsin@); (4.11)
2
dQ? = ds . ,
v2(1 — v cos ¢ sin 0)?
resulting in
—2
a1 (6] .
Q' (ug, 0, ¢) = < = + = ) (1 — v cos ¢ sin b)

\/71(1+w16080) \/72(1—1020086) (4.12)

o oy -2
) (S(wa,e, 0. 75) " S(uh,0.6, ﬁa>> |
which we call the general BL-2 initial data. In (4.12), the vectors w;(£2) were transformed
into w;n; = (v,0, +w;/7), as ordinary velocities should do. Then, the association of —w#;
with blob velocities is still valid. An example of the case a; = g, w; = 0.7, wy = 0.5 with
a boost of 0.25& follows in Figure 11. In this case both blobs earned kinetic energy with

the boost, and the system clearly lost its axial symmetry.

Here we can also solve all ¢ = 1 cases analytically with the same strategy used
in section 4.1. To do this, we define an initial condition with a; = s, but with an angle
3 between the vectors 7, and —#,%, then we perform a stopping boost and use (3.24)
to determine the fraction of energy emitted, since the system is axisymmetric in this
reference frame. Figure 12 below exhibits the values of A in the case of equal intensity

blob velocities w for this case of BL-2 initial data. As [ gets higher, the components of

1

Again, we are dealing with dynamical BH spacetimes, so it is easier to work with apparent horizons,

which definition can be also found in [44].

2 This means that blob velocities are antiparallel for 5 = 0, orthogonal for 3 = g and parallel for g = .
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(a) Before the boost (b) After the boost

Figure 11 — Bondi mass aspect of a BL-2 initial condition with as/c; = 1 and blob
velocities wy; = 0.7 and wy = 0.7. The center of mass velocity of the system is
represented by the red arrow. The boost done was 0.252.

3 0 4 0.6 0.8 1.0

Figure 12 — Fraction of energy emitted A for each case of (4.12) with oy = ag, w = wy = wy
and [ the angle between fi; and —7,.

the blob velocities in the direction of the collision are smaller and energy emission is less
efficient. A approaches zero as [ approaches 7, the parallel case with no collision, and the

maximum of A is for the axisymmetric case, when g = 0.

The conclusion about the equal mass case of generic BL-2 is that only the
intensity of the blob velocities in the center of mass frame contributes to determine GW
emission efficiency, what reinforces the idea that w; controls the kinetic energy of the
colliding BHs right before the merger in some sense. When ¢ # 1, we will have a preferred
direction of GW emission, this reference frame will be dynamical and other contributions
may appear. A last important comment is that we can not assume [ values different from
£ =0 or 8 =mx to be the angle between BH velocities before the collision, since during
the merging process the geometry of the system may change and, consequently, velocities
of the blobs and initial BHs might not match their direction.

The general BL-2 initial condition (4.12) was already studied in previous

works, but some of them have interpreted it as a non-head-on collision [26, 27, 28]. This
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interpretation can only be wrong, since RT spacetimes can not describe any system with
angular momentum in it. Our way of deriving (4.12) makes clear that it is just an ordinary

axisymmetric case, but in a reference frame where the symmetry is not trivially recognized.

4.3 Collisions involving more BHs

Inspired by (4.12), we propose a new initial condition for the post-merger phase
of a frontal collision involving more BHs. We do this just by adding new blobs to BL-2

and name it the BL-n initial condition. The expression reads

Q(0,0, ¢) = (Z 5 wZ,H ¢ nz>> . (4.13)

All —w;n; vectors also transform as ordinary velocities, and the asymmetry parameters
between blobs are given by the fractions ¢;; = a;/c;. It is important to state that (4.13) is
constructed based on gluing n boosted Schwarzschild spacetimes, but this is done in a very
specific way, in order to have some initial GW content and maintain the interpretation
of blob velocities from BL-2. Because of that, we can only see this initial data as the
post-merger phase of a collision of n BHs at the same instant of time, and no sequence of

non-simultaneous collisions can be described by BL-n.

Our first example is the equal masses BL-3 case (a1 = ap = a3), with Bondi

mass aspect is illustrated in Figure 13 below. In the same way that generic BL-2 cases are

(a) Before the boost (b) After the boost

Figure 13 — Bondi mass aspect of a BL-3 initial condition with equal «; parameters and
final velocities w] = wh = w; = 0.7. The center of mass velocity in (a) is
represented by the red arrow, with value of —0.354.

just axisymmetric systems analyzed by different observers, the BL-3 initial condition will
always be planesymmetric in its center of mass frame. This statement is true because it is
always possible to find a Lorentz boost that sets three velocity vectors in the plane, i. e.,
all head-on collisions which are not planesymmetric in any reference frame must have at
least four BHs.
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The condition for the general BL-n initial data to do not present recoil is not so
simple as in the binary case, since we can still have a preferred direction of GW emission
even in the center of mass frame of a collision with only equal a; parameters. As stated
in section 3.3, we need planar reflection symmetry with respect to at least three planes,
which intersection is given by just one point. It will happen if ¢;; = 1, w; = w; V ¢,
and the vectors n; are disposed at the vertices of a regular polygon or polyhedron in the
center of mass frame. Using (3.23), we can compute A for all these analytically solvable

cases, and the plot of A calculations from two until twenty blobs follows in Figure 14. The

8 I « Regular Polygons
* Regular Polyhedra
6
'OE‘
> 4
2 ® o o0 0 0 00 00 0 00 00 00
0 | L . . i *
2 5 10 15 20

Number of vertices

Figure 14 — Values of A for some cases without recoil up to twenty blobs with all w; =
0.8 and equal «; parameters. The vectors n; are disposed at the vertices of
regular polygons or polyhedra.

degenerated case with two vertices is just the ordinary BL initial data seen in section 4.1
and the polyhedra are the platonic solids: tetrahedron, octahedron, cube, icosahedron and
dodecahedron respectively. To picture the situation, Figure 15 follows with the Bondi mass

aspect plots of the two BL-4 initial data present in Figure 14. As the number of vertices

(a) BL-4 square (b) BL-4 tetrahedron

Figure 15 — Bondi mass aspect of two BL-4 initial conditions with equal «; parameters
and blob velocities w; = wy = w3 = wy = 0.8. Black arrows represent the
71; vectors out of scale. In (a) the f; vectors are disposed on the vertices of
square, while in (b) they are aligned with the vertices of a tetrahedron.

of the polygons grows, the system gets rounder and curvature inhomogeneities diminishes,
making the emission of GWs to be less efficient, and A converges to the emission rate of
some kind of “thick disk” BH collapsing into its own gravitational field. For the polyhedra,

initial data is even closer to a sphere and A is always smaller compared to the case of a
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polygon with the same number os vertices. This fact is expected since V3K is the term
that dictates the evolution of (2.15).

Another interesting family of Q(ug, 8, ¢) is the generalization of the octahedron,
double pyramids with regular polygon basis. The simpler examples of these initial data are

represented in Figure 16 below. Looking at the planes of symmetry in orange, we conclude

(a) BL-5 double pyramid (b) BL-6 octahedron

Figure 16 — Bondi mass aspect of two BL-n double pyramid initial conditions with w; = 0.8
and equal «; parameters. Black arrows represent the 7; vectors out of scale.
The planes of reflection associated with these initial conditions are represented
in orange.

they do not present recoil when all ¢;; = 1 and blob velocities have the same module. Then,
we compute (3.23) for all BL-n double pyramids until thirty vertices and plot the results in

Figure 17. The square is also a degenerated case of double pyramid, then it is represented

2.00{ 3
175 ® 2000000000000 00000000000s
1.50
-§ 1.25 Laeentt
:1'1.00 S
0.75 . ot
0.50{ .*° < Double Pyramids
0.25 — ! * Regular Polygons
4 10 15 20 25 30

Number of vertices

Figure 17 — Values of A for all cases without recoil up to thirty blobs with all w; = 0.8
and equal a; parameters. The vectors 7i; are disposed at the vertices of regular
polygons or double pyramids.

in Figure 17 too. In comparison with regular polygons, double pyramids always have lower
A, since the two added BHs in the system help to get Q(ug, 6, #) rounder”. Also A seems

to be approaching some value, since there is an upper bound and it is increasing with n.

Again, all cases of (4.13) with any ¢;; # 1 can have non zero kick velocity, but

some systems may not have enough symmetry even if all ¢;; = 1, then they will present
3

Notice the difference between Mp plots of Figure 15a and Figure 16b.
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recoil as well. Examples follow in Figure 18. In Figure 18a the sum of the blob velocities

(a) BL-3 isosceles triangle (b) BL-5 pyramid

Figure 18 — Bondi mass aspect of two BL-n initial conditions with equal «; parameters in
the rest frame at ug. Black arrows represent the n; vectors out of scale. In
(a) we have w; = 0.6 and wy = w3 = 0.8, while in (b) w; = 0.8 for all 7. The
planes of reflection associated with these initial conditions are represented in
orange.

—w;N; is zero, but the w; parameters are different. In Figure 18b, even though the n;
vectors cancel out and all w; parameter are equal, the source still presents recoil, as seen
in section 5.4. These systems are not axisymmetric, but their momentum is restricted to
only an axis, the one given by the intersection of the planes of reflection in orange. Also,
Figure 18 let it explicit the reason why ¢;; can not represent mass ratio of the isolated BHs
before the collision, since these examples of initial data do not present enough symmetry

to have the same GW emission rate for each blob, even when all ¢;; = 1.
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5 Numerical Results and Kick Velocity

In this chapter we solve the u evolution equations and extract quantitative
physical information about the source during the emission process. To integrate equation
(2.14), we use the spherical harmonics Galerkin decomposition developed in chapter 3 and
the specific initial conditions derived in chapter 4. To determine properties of the source,
we use Q(u = uyg, 0, ¢) found in the evolution to calculate (2.22). A specific example is
used to illustrate the problems around computing Bondi momentum w evolution. The
programs developed were divided in three different categories, one to solve the axisymmetric
case, other for planesymmetric initial data and another for a generic Q(u = ug, 0, ¢). All
programs were developed in python 3 and the source codes can be found at https:

//github.com/pivaps/Robinson-Trautman.

5.1 Strategies and uncertainties

There are two main algorithms for each one of the three categories of initial
conditions. Since all programs are extensive, it would be difficult to explain all their details
in this work, then we will briefly discuss the main ideas used to develop them and their

contributions for numerical errors.

The first goal is to determine the ODE system (3.5). To do this, we write the
expansion (3.1) with an algebraic manipulation software', compute all integrals involved
and store the final results on a text file. This is direct for the axisymmetric case, in which
we actually use the simpler expression (3.20), but for the other cases it is important to
remember all considerations pointed in chapter 3, mainly the ones about the expansions
(3.6), (3.7) and selection rules in Appendix B. The choice of N (order of spherical harmonics
expansion) will dictate how good is the approximation of Q(uo,6,®) by (3.1), and this
will set the main contribution to uncertainties in all calculations. Then, the best way to
estimate the error is with direct comparison between computations done with an initial

data evolved using order N and lower order expansions.

To get the u evolution, we need to compute the initial modal coefficients, given
by
20+1

b, (o) = pp

m 2041 (o0
Qo = L P00 n.0is 6
S2
and evolve them with the ODE system determined in the previous stage. In the axisym-

metric case, all ¢ integrals will be trivial and both tasks can be done with precise standard

1 We used sympy python library for this task.
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integration methods®. The planesymmetric and generic cases demand to perform two
dimensional integrals to compute (5.1), so we need to be careful with the choice of sampling
points on the sphere in order to get enough precision. We will always use a method based
on the Fibonacci sequence to generate a good sample. This strategy was developed in [45]

and the final integration formula reads

ﬁf(@,(b)dS = J J ’ f(s =cosb,¢)dpds ~ WASZ[l + cos(ms;)] x
e —-1J0 j=0

(5.2)
F (WjF/,Sj N sin(;rrsj)) y (7r N 7%5/73]‘ N sin(wsﬁ)] 7

F T

where F' and F are consecutive Fibonacci numbers, As = 2/F and s; = —1+ jAs. With a
high value of F3, all errors will be too small compared to the ones involved on the choice of
the expansion order N for (3.1). Actually, we have already used (5.2) in order to compute

all integrals involved in (2.22) calculations to plot Figure 14 and Figure 17 in section 4.3.

Determined Q(u = ug, 0, ¢), there are two main ways to control numerical
uncertainty: to use the known constant of motion (2.16), or the expression for the stationary
solution. With (2.17) and the expansion (3.1), it is easy to show that

[66(o0)]* — [Bo(0)]* — 2[by (o) * = 1;

(5.3)
bl (0) =0, ifl =2

and the deviations from the expressions in (5.3) can also be used as numerical error
control. For actual calculations we will only present the uncertainty associated with the
first expression in (5.3), since the absolute value of the [ > 2 coefficients is typically way

smaller then other deviations at u — .

As a first attempt to probe precision of the algorithms, we compute the u

evolution of a BL-2 axisymmetric initial data given by

(5.4)

_ q ! -
Q(0,6) = (\/’y(l + wcos 0) " V(1 —wcos@))

with ¢ = 1 and w = 0.5, which represents the post merger phase of a binary collision of
BHs. All results are presented in Table 2. Here, we solved the evolution ODE system with
the axisymmetric program and determined all the uncertainty control parameters. We also
used (3.24) to compute A analytically, since the system has symmetry of reflection with
respect to z = 0, finding A = 0.006482436(44 + 5)*, which makes possible to calculate

2

We used numpy and scipy python library integration routines to calculate all one dimensional integrals
and also to solve all ODE systems.

We used F' = 23 for any integration on the sphere in this work, which means 28657 evaluation points.
This notation shows in a compact way the error bar in the last decimal places written. We will adopt
this notation from now on.
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Table 2 — Determination of A and error estimations for the u evolution from ug = 0 to
= (24mg)~" of (5.4) initial data with ¢ = 1, w = 0.5 and 2000 integration
steps with the axisymmetric algorithms.

N | [(go/2m) = 2| ||(1°)° = (b')* — A Uk

2 | 4x10? 2 x107* 0.006(40 £ 9) 0

3| 4x10™* 2 x 107* 0.006(40 +£9) | 7x 107"
5| 4x107° 2 x 107° 0.00648(1 +1) | 2x 107"
71 2x1077 1x1077 0.0064824(9 £ 6) | 3 x 107
9 | 8x107® 4 %1078 0.0064824(2 +2) | 9 x 1071
10| 2x107® 1x107® 0.0064824(30 + 6) | 2 x 107"

the full numerical error associated with A in Table 2 as the absolute difference with

the analytical value. We know that kick velocity is zero for this case with ¢ = 1, then

the calculated values of vy = |vg| from the codes can also be used as a last uncertainty

parameter.

We can not directily compute error contributions associated with the choice

of N in Qn(u,0,¢), but it is possible to illustrate the convergence of the expansion in

this example with Figure 20, a plot of b'(u
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> uyg) for (5.4) with N = 10. In Figure 20 we
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Figure 19 — Modal coefficients of the u evolution for (5.4) initial data with ¢ = 1, w = 0.5.
The axisymmetric algorithm with N = 10 was used with 2000 integration

steps.

can see that Qy(u = ug, #) has symmetry of reflection with respect to z = 0, as expected,

since all odd b are null throughout the evolution and, because of that, computing an odd

N order is almost the same as computing N — 1. This is the explanation for lines N = 2
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and N = 3 to be almost equal in Table 2. Since we are satisfied with precision acquired

with N = 10, we will only use this order to evolve axisymmetric initial data from now on.

Using now ¢ = w = 0.5, we solve (5.4) as the first non analytical case in this
work. The uncertainty control parameters take values in the same order of magnitude
as in Table 2 and the fraction of energy emitted and kick velocity for N = 10 are
A = 0.004788(308 + 9) and v, = 0.000464557(11 + 3), with error estimation based on
absolute deviations from N = 9 calculations, since we do not have an analytical value to
compare when ¢ # 1 Here A is lower than in the case of ¢ = 1 because mass asymmetry
indicates that one of the blobs may have less energy to contribute to the process. Also,
v, = —vp2 points to the direction where My is rounder in the center of mass frame®,
opposite to the side of higher intensity of GW emission. The modal coefficients evolution

plot follows in Figure 20. In this case all b' are non-zero since there is no additional
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Figure 20 — Modal coefficients of the u evolution for (5.4) initial data with ¢ = w = 0.5.
The axisymmetric algorithm with N = 10 was used with 2000 integration
steps.

symmetry in the system.

To quantify uncertainty for the planesymmetric programs, we could also com-
pute comparisons with an analytical solution, but we will use the previous calculations for
(5.4) as reference. The most interesting way of doing it is to solve an axisymmetric initial

data rotated by some angle with respect to the y axis. Initial data (5.4) rotated by 7/2 is

> See Figure 10b to get better geometric intuition about curvature inhomogeneities involved.
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-2
_ q 1
Q(0,0) = <\/7(1+wcos¢sin0)+\/1_wcowsme> : (5.5)

given by

Now we use (5.5) to compute values of A and vy, for ¢ = w = 0.5 with the planesymmetric
algorithms and compare them with previous results of axisymmetric programs with N = 10.

Table 3 follows with all information and uncertainty parameters. Calculations for orders

Table 3 — Determination of A, v, and error estimation for the u evolution from ug = 0
to u = (24mg)~" of (5.5) initial data with ¢ = 1, w = 0.5 and 2000 integration
steps with the planesymmetric algorithms.

N | [(qo/m) — 4] | |(B5)* = (09)* — 2(by)* — 1 A Uk

2 | 5x107° 1x107° 0.00(51 + 3) 0.00(42 + 4)
3 1x107° 3x107* 0.004(84 +6) | 0.000(5+ 1)
4| 8x107° 2 x 1077 0.0047(95+7) | 0.000(3 £ 1)
5| 3x107° 9 x107° 0.00478(6 +2) | 0.0004(5 + 1)
6| 6x107° 2 x 107° 0.00478(7 £ 1) | 0.00046(5 + 1)
71 1x107° 3x107° 0.00478(7 £ 1) | 0.000464(6 + 1)

higher then seven take too much computational time and we are also satisfied with
precision achieved in Table 3, then we will set N = 7 for all numerical computations with
planesymmetric programs. A plot of modal coefficients evolution for the first four orders is

presented in Figure 21 below. Since initial data (5.5) has reflection symmetry with respect
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Figure 21 — First modal coefficients of the u evolution for (5.5) initial data with ¢ = 1,
w = 0.5. The planesymmetric algorithm with N = 7 was used with 2000
integration steps.
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to z = 0, only b (u) with even I 4+ m are not null.

Algorithms for generic Q(ug, 6, ) evolution were built with the same structure
used in planesymmetric ones, but all modal coefficients may be complex and it demands
approximately twice computational time in comparison with planesymmetric codes. Because
we will only investigate systems with at least one plane of reflection for initial data, we will
not use them in this work and computations will always be done with the simplest program
available. Also, uncertainties about physical computations will not be discussed from now

on, since all programs are considerably precise for high order in the modal expansion.

Just for the sake of completeness we choose an initial condition to compare
the planesymmetric and generic algorithms. We solve the BL-4 regular tetrahedron® with
s = ag = ay = 20, Iy = 2 and w; = 0.5 using both programs for order N = 7. Then we
get A = 0.000361(7+4) and v = —0.000053(2 + 2)£. The uncertainty was estimated with
the absolute difference between results, and a rotation of 7/2 with respect to the z axis

was performed in the planesymmetric initial data to be evolved by the generic algorithm.

5.2 About Bondi momentum evolution

Our goal in this section is to use the axisymmetric algorithms developed in this
work, in order to help us to understand the difficulties involved in the process of computing
momentum evolution for RT spacetimes. Momentum rate of change is given by (2.21) and,
because we do not know how to solve the second term of it, we will assume it is zero and
see the consequences of our act. This simplification turns (2.21) into an uncoupled ODE
system with direct solution, which reads
“dPH(u)

T du'. (5.6)

P*(u) = P"(ug) + J

uo

Using the Bondi frame where P*(ug) is given by (2.8), we get the energy and momentum
evolution for initial data (5.4) with ¢ = 0.5 and w = 0.5. They are represented by the
orange curves in Figure 22 below. Just by looking at these curves we can not notice
anything wrong, but the final momentum and velocity do not match with direct numerical
computations using just the expressions (3.22). Then, we perform a supertranslation
in order to fix it, getting to the green curves. In our case, a supertranslation is just a
shift in the graph because momentum time derivative in (5.6) is computed only using
Q(u = wyg, 0, ¢), without any frame dependence, i. e., since only the initial momentum
expression changes in (5.6), we just add an offset constant term to the graph. This gives a
different initial Bondi momentum P*(ug) to compare with the stationary solution. This
means that one of the following sentences is true: either we can not compute Bondi

momentum with (2.8) at g, or (5.6) is not the proper momentum evolution. For the

6 See Figure 15b.
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Figure 22 — Bondi energy and momentum « evolution for (5.4) initial data with ¢ = w = 0.5
and 250 integration steps from ug = 0 until v = 0.125/24mg. The orange
and green curves are the solutions of (5.6) for (5.4) in different Bondi frames
of reference. The blue curves were built with direct calculation of Bondi
momentum with the formula (2.8).

sake of comparison we also plot a couple of blue curves, representing direct momentum

calculations with (2.8) formula for each u > uy.

To let it clear where the problem is, we perform a boost in (5.4) initial data
in order to stop the system’. Then, we evolve the stopped system Q'(u > wug,6) and
compute the same graphs for Bondi momentum evolution in Figure 23 as done before.

A big contradiction turns to be evident: the evolved quantities can not be compatible

1.005 —T— — 0.0 -
o
— 1.004 mE -0.1
o o
E 1.003 —— Momentum formula = —0.2 —— Momentum formula
3 ODE system € ODE system
=]
; 1.002 —— Frame ajustment = -0.3 —— Frame ajustment
< [}
i
1.001 —
é 0.4
1.000 -05
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time [u/24mg] Time [u/24mg]
(a) Energy evolution (b) Momentum evolution

Figure 23 — Bondi energy and momentum u evolution for stopped (5.4) initial data with
g = w = 0.5 and 250 integration steps from ug = 0 until v = 0.125/24m.
The orange and green curves are the solutions of (5.6) for (5.4) in different
Bondi frames of reference. The blue curves were built with direct calculation
of Bondi momentum with the formula (2.8).

with both final Schwarzschild momentum and the initial null velocity. This means that we
indeed need the second term in (2.21) in order to evolve Bondi momentum for a general
initial data Q(u, 0, ¢), i. e., the notion of asymptotic frame j* presented in section 1.3

changes significantly during the emission process. The reader may notice that even the

7 See the end of section 2.1 for the stopping procedure.
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blue curves are wrong and they are presented just for the sake of comparison, since (2.8)

is only valid at u = ug and u — oo.

The mistake of computing momentum evolution by the wrong methods led
numerical results into misleading interpretations in some works before. In [27, 26, 28],
the general BL-2 case (4.12) has been associated with a non-head-on collision, an initial
condition impossible to be analyzed with RT spacetimes because of the presence of angular
momentum. To avoid making any false assumption, we are satisfied with (2.22) calculations
in this work. A complete discussion about Bondi momentum change for finite time distances

is presented in [36].

5.3 Kick velocity

If RT initial data does not have enough symmetry in its center of mass frame,
the source has a preferred direction of GW emission, leading to recoil felt by the source.
Since analytical results are not available for any of these cases, we will investigate recoil
properties with numerical calculations of kick velocity (vg), defined in (2.22). In Figure 24,

we compute vy = —vp2 and A for BL-2 using (5.4) initial data stopped at ug = 0. When
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Figure 24 — Numerical calculations of A and vy for (5.4) initial data with w = 0.5 for 50
values of ¢q. The evolution was done with 2000 integration steps from ug = 0
until u = (24mg)~".

q = 0 we just have the stationary solution from the beginning of evolution, then v, and
A are both null. For ¢ = 1 we have the equal mass collision case, there is no kick and A
has its highest value. Between ¢ = 0 and ¢ = 1 recoil is present, the maximum of vy is at
q = 0.4(2 + 2) and A strictly increases.

To understand vy, in all different reference frames, we perform Lorentz boosts
in all physical quantities computed and plot it in Figure 25 below. Observers in other
Lorentz frames always see a lower kick because of the transformation rules applied to

initial and final velocities of the source. Kick velocity never changes its sign®, but it goes
8

Here the recoil is always of “antikick” type, since the smaller blob velocity is aligned with vg. We
remember the reader that the “antikick” phenomenon is defined and explained in section 2.3.
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Figure 25 — Kick velocity values for results in Figure 24a boosted in the direction of the
axis of symmetry (a) and in a perpendicular direction (b).

to zero when the system is boosted with arbitrarily high velocities in the direction of the
symmetry axis. A does not change for any boost in Figure 25b, but it is slightly altered
by boosts in Figure 25a, mainly in the region near ¢ = 1. All v associated with any BL-2
general initial condition (4.12) are represented by one of the points in Figure 25, then
the binary case is fully solved here and, joining results with the ones in section 4.1, we

conclude that emission is more efficient for higher blob velocities in the center of mass

frame and for asymmetry parameter ¢ closer to unity.

Adding one blob, we can study the BL-3 initial data for w;n; vectors disposed

at the vertices of an equilateral triangle. We choose the case where a; = gas = gag and

1 = 2, that follows in Figure 26. The kick velocity v, = —v,2 is qualitatively the same,
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Figure 26 — Numerical calculations of A and v, for BL-3 equilateral equilateral triangle
initial data with all w; = 0.5 for 50 values of ¢q. The evolution was done with
2000 integration steps from ug = 0 until u = (24mg) .

but with maximum at ¢ = 0.2(8 & 2), since the geometry has changed. Also, the amount of
kick is lower because emission is less directed and less efficient in this system. As discussed
in section 4.3, if initial data has less curvature inhomogeneities, A will be smaller, which
is illustrated by Figure 26b since A is maximum at ¢ = 0, the BL-2 initial condition.

In this case we also have the effect of “antikick” too, since the smaller blob velocity is
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directed at —2, the same direction as the change in velocity. Then, we should see the
system decelerating after merger in such situation.

Figure 27 shows results of Figure 26a boosted in two different directions. All
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Figure 27 — Kick velocity values for results in Figure 26a boosted in the direction of the
axis contained by the planes of symmetry (a) and in a normal direction (b).

previous considerations about vy and A due to frame changing are true again, but this
time the graph does not contemplate all range of possible parameters for blob velocities

w; of this initial condition and more scenarios are needed to be considered, but we are not
worried in fully solving BL-3 here.

Another interesting case to investigate is BL-4 initial data with a; = gag =
qas = qay and all w; = 0.5. To fix the other parameters, let us take 7fi; vectors disposed at

the vertices of a tetrahedron with n; = 2. Values of v, = —v,2 and A for this system
follow in Figure 28. Maximum vy is at ¢ = 0.3(4 + 2) and now the kick is even smaller
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Figure 28 — Numerical calculations of A and v, for BL-4 tetrahedron initial data with

blob velocities w; = 0.5 for 50 values of ¢. The evolution was done with 2000

integration steps from ug = 0 until u = (24mg)~".

because another blob is involved, the emission is, once again, less directed and A is lower.

Since vy, is parallel with the velocity of the less massive blob, this system also suffers an

“antikick”.
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Trying to understand the role of blob velocities in the kick, we build initial
data based on the case illustrated in Figure 18a. We take BL-3 with a; = qas = qas,

wy = 0.5, wy = w3 = 0.4, n; = 2 and demand that blob velocities cancel out. In this case

we find vy, = —v,2 and A values plotted in Figure 29. Here, we used different blob velocity
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Figure 29 — Numerical calculations of A and v, for a BL-3 initial data with w; = 0.5,
we = w3 = 0.4 and 50 values of ¢q. The evolution was done with 2000 integration
steps from up = 0 until u = (24mg) "

intensities in order to build a system with changing sign v, and we found some cases
without “antikick”. Recoil is not of “antikick” type for values higher than ¢ = 0.2(6 + 2),
the case for which vy, is zero. For free, we also get an example with non monotonic A, with
minimum at the same value of ¢ for null recoil. The maximum of A is at ¢ = 1 in this case,
since the blob associated with 741 has a considerably higher blob velocity (w; > we = w3),
adding more kinetic energy to the initial condition and, consequently, to the amount of

energy emitted through GWs.

Then we see a pattern, when a system does not present recoil and we start
shrinking one of its blobs, emission is more efficient in the direction of this smaller blob
and the source suffers an “antikick”. Guided by our geometric intuition, we conjecture
this as true. We call the attention of the reader to the hypothesis of shrinking only one
blob for this to be true, since we can also show an example of sign change in v, shrinking
two blobs at the same time, and the rule will not be applied. As an example, we choose
qap = ap = ag and all w; = 0.5 for the BL-3 equilateral triangle with 72, = 2. The values
of vy = v.2 and A follow in Figure 30. Now we shrank both blobs related to 7fio and 73
with the same ¢ parameter and two effects competed with each other to determine the
direction of recoil. For values higher than ¢ = 0.4(3 + 1), the direction of vy, is opposite
to the blob velocity vector of the bigger blob, then it is “antikick” type, the same as for
the case of only one smaller blob. But, if the shrinking blobs get too small, the stopping
boost demands too big intensity, and they will acquire a very high initial velocity in the
center of mass frame. Because of this great kinetic energy compared with the bigger blob,
the Bondi mass distribution is closer to the case with only one less massive blob, the kick

inverts and v, changes its sign. The highest value of A and vy with “antikick” is in the case
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Figure 30 — Numerical calculations of A and v for a BL-3 equilateral triangle initial data
with blob velocities w; = 0.5 for 100 values of ¢. The evolution was done with
2000 integration steps from ug = 0 until u = (24my) .

q = 0.6(6 + 1), while for the other regime the maximum recoil intensity is at ¢ = 0.1(7+1).

We end this section stating that kick velocity is directly connected with inho-
mogeneities in the geometry of initial data to be evolved [44], then asymmetries in Mp
angular distribution in the center of mass frame can be used as a qualitative guide to

predict when and to which direction will a system present recoil.

5.4 BL-n Pyramids

An interesting fact about BL-n initial conditions is that these systems may
present new physical properties as we add more blobs to it. For example, recoil is always
“antikick” type for BL-2, but adding just one blob we can produce different kinds of kick.
Also, in the center of mass frame, the BL-2 case is always axisymmetric, BL-3 may be
planesymmetric and BL-4 might have no symmetry at all. Adding one more blob to BL-4
also gives us a new feature, but to see it we need to look at a specific family of initial data,

the BL-n pyramids, which are illustrated below with two examples in Figure 31. To build

(a) BL-4 regular pyramid (b) BL-5 pyramid

Figure 31 — Bondi mass aspect of two BL-n pyramid cases with w; = 0.8 and equal «;
parameters. Black arrows represent the 7fi; vectors out of scale and planes of
reflection in (b) are represented in orange.
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a BL-n pyramid we just need a regular BL-(n — 1) polygon with 7; vectors in the z = 0
plane, and then we add a new blob with velocity in the direction of Z, which can be seen

as an apex of a regular basis pyramid.

The new feature of those systems is that we can have an example with all
¢;; = 1, equal blob velocity intensities (w; = w; V 1, j), 7; vectors summing up to zero and
still get recoil. The tetrahedron itself (Figure 31a) is a triangular based pyramid, but it is
also a regular polyhedron and does not present recoil. The simplest case that fulfills all
requirements above and also has v, # 0 is the BL-5 pyramid, represented in Figure 31b.
As done in section 5.3, we choose a; = qas = qaz = qay = qas, set iy = £ as the apex
and solve Figure 18b initial data with all w; = 0.5. Values for vy, = —vx2 and A follow
in Figure 32. When ¢ = 0 we just have the ordinary BL-4 square, then vy = 0 and GW

175 0.14
£15.0 0.12
X125 0.10
%‘10.0 = 0.08
§22Z
% 25 0.04
~ 00 0.02
0.0 02 04 06 08 10 0.0 02 04 06 08 10
Parameter q Parameter g
(a) Kick velocity (b) Energy emission

Figure 32 — Numerical calculations of A and v, for BL-5 pyramid initial data with blob
velocities w; = 0.5 for 50 values of ¢q. The evolution was done with 2000
integration steps from wug = 0 until u = (24mg)~".

emission is most efficient. Between ¢ = 0 and ¢ = 1 recoil is present, as expected. The
maximum of vy is at ¢ = 0.(50 + 2) and A strictly increases as we add mass to the smaller
blob. The main difference in this case is that we have recoil for ¢ = 1, since we have broken
the symmetry of reflection with respect to z = 0 of the BL-4 basis by adding an apex to
it. Also, because the velocity of the smaller blob is aligned with the kick, we have again

the “antikick” phenomenon for all values between ¢ = 0 and ¢ = 1.

To end the examples, all values of v, and A for BL-n pyramids initial data
with equal «; and w; parameters up to thirty vertices follow in Figure 33. In the graph,
BL-3 is a degenerated case of pyramid and BL-8 has the highest recoil intensity. As stated
in the end of section 4.3 for double pyramids, A seems to slowly approach some value, but
here we know that, even for arbitrarily large n, A will always be a finite amount lower
than the regular polygons case, since some of the energy of the system must produce kick

and the final Schwarzschild BH will have some kinetic energy at u — oo.
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Figure 33 — Numerical calculations of A and v for BL-n pyramid initial data with blob
velocities w; = 0.8 up to n = 30. The evolution was done with 2000 integration
steps from 1y = 0 until u = (24mg) .



72

Conclusion

In this work we studied compact sources of GWs, with focus on physical
properties of RT spacetimes and their changes due to GW emission. We started with a
historical introduction about the subject, that helped us to understand which tools we
would need to develop in order to get the right calculations, and to interpret their physical
meaning properly. We introduced those tools in chapter 1 starting by Weyl scalars in
section 1.1, that helped us to determine which metrics could indeed represent an isolated
system emitting GWs. In section 1.2 GS-Theorem and (2 4 2) foliations gave us a natural
coordinate system to study GWs, and also allowed us to understand the role of shear and
twist of null congruences in spacetime. Then, in section 1.3, the asymptotic behavior of
shear led us to Bondi 4-momentum definitions and conservation laws, which showed us
how to compute physical properties of the source. Finally, the most powerful tool studied
was the BMS group in section 1.4, which taught us the right way to fix all degrees of
freedom in our initial data in order to determine Bondi momentum, and also explained
how to perform any action of the Poincaré group on any asymptotically flat metric that

can be written in Bondi coordinates.

In chapter 2 we restricted ourselves to the simplest solution of Einstein’s
equations for a compact body surrounded by GWs, the case of RT spacetimes. With the
aid of rotations and Lorentz boots generated by the BMS group, a definition of source
velocity based on Bondi momentum was verified to be right in section 2.1. Using the
natural (2 4+ 2) foliation for the metric, we could look at RT equations as the evolution
of an initial value problem in section 2.2, and also presented its stationary solution, a
Schwarzschild BH with constant velocity. In section 2.3 we explained which kind of real
systems could be described by RT spacetimes, and also got motivated with the “antikick”
phenomenon for the post-merger phase of a binary collision of BHs. In section 2.4 we briefly

discuss the main restrictions on probing the global causal structure of RT spacetimes.

The last technical issue was the solution of the non-linear PDE evolution
equation, and it was handled with a Galerkin spectral method in chapter 3. Spherical
harmonics were crucial not just to develop all strategies to build an algorithm that solves
generic cases of initial conditions, but also to help understand any kind of simplifications
that come from the symmetries of the system. Without the considerations stated in this
chapter, any numerical calculation would take much more computational time and many

results could not be attainable.

In chapter 4 we discussed initial data, which encodes all connection with real

physical systems. The BL initial data is the most well known case studied, representing the
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post-merger phase of a binary head-on collision of BHs, so we started from it in order to
investigate possibilities of real systems. In section 4.1 we introduced the definition of blobs
- based on their velocities - in order to better understand the axisymmetric case. Then, in
section 4.2, we used the Lorentz boost to analyze this binary collision in any reference
frame, concluding that there was a mistake about the study of non-head-on collisions in
previous literature, since the initial data studied in some works was just the frontal case,
but written in a frame where the symmetry was not trivially recognized. In section 4.3
we proposed an extension of previous initial conditions by adding more blobs to it, the
BL-n systems, that represent the post-merger phase of a head-on collision of n BHs. Along
chapter 4, we also calculated the fraction of energy emitted by GWs for many systems
without recoil, computing mass consumption during the process. In each calculation we
pointed direct connections between efficiency and curvature inhomogeneities, indicated by
deviations from the sphere in Bondi mass aspect angular distributions in the center of

mass frame.

In the last chapter, we settled down all strategies to develop the algorithms
for numerical calculations and analyzed uncertainties involved in these computations
(section 5.1). In section 5.2, we used the programs to understand the importance of
time variation in the notion of asymptotic reference frame during the emission process,
which makes Bondi momentum comparisons really difficult to be evaluated for finite
time distances. This effect has not being taken into consideration in some of numerical
calculations in previous literature, leading to wrong physical interpretations. Then, in
section 5.3, we solved the BL-2 efficiency and recoil for all possible range of parameters,
and also examined kick velocity and fraction of energy emitted for several BL-n systems,
getting some interesting cases involving inversion of recoil direction if the mass of some of
the BHs involved were chosen to be smaller. All those examples led us to the connection

between gravitational recoil and asymmetries in Bondi mass aspect angular distribution.

Finally, it is important to let it clear that we think BL-n is a natural extension
of ordinary BL initial data, since blob velocities transform exactly as ordinary velocities
should do after Lorentz boosts, in the same way that happens for BL-2. Even so, we
point the necessity of future works around BL-n examples, in order to help probing their

physical interpretation and potential to describe real systems.
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APPENDIX A - Aberration of light effect

The aberration of light effect is a direct consequence of Lorentz spatial con-
traction and time dilation. It states that measurements of angles of light ray trajectories
change for different inertial observers in Minkowski spacetime, even if their basis vectors
(2,9, 2) are aligned. To deduce it, we use a static rigid rod of length L seen by an inertial
observer A. In the reference frame of A the rod is placed with one of its endings at the
origin and with an angle # with respect to £. An observer B with constant velocity vZ
with respect to A will see the z component of this rod with smaller length, as pictured in
Figure 34 bellow.

xr xr
A A
7 | 7 i
~ i ~ / i
| 0 =
0 —— : i >z
L cost (L/v)cosb
(a) A’s perspective (b) B’s perspective

Figure 34 — Perspectives of the rod for each observer. The picture illustrates the change
in angle to each observer’s perspective.

The new angle 0’ that the rod makes with z will be given by

sind — Lsin6 B sin 6 - sin 6
A/ L2sin? 0 + (L/y)2cos26  /sin?0 + (1 —v2)cos20 V1 —v?cos?f

where v = (1 —v?)7%2 is the Lorentz factor.

L (A1)

Because of this fact, observers in different inertial frames will not agree with
the predicted trajectory of light ray paths in each other frames. To see this, let A observe
a spherical pulse of light emitted at the origin. He waits T" seconds in order to the pulse
radius to be at a distance L = T". We know that B will see a spherical pulse as well, but
using Lorentz transformations we can determine how would A guess that B sees the pulse.

The predicted angular distribution of the time that light rays arrive at L is
T' = ~4(T +vLcos®) = ~vT(1 + vcosh). (A.2)
Rotating v2 to a general direction vfi, (A.2) becomes

T' = AT(1 + viv - #), (A.3)

Remember the speed of light is always set as ¢ = 1 in this work.

1
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with # being the unitary radial vector.

With the information that speed of light is the same in all inertial frames, we

can derive the spatial shape of the pulse A believes that B sees. Since

L L' /(L/y)?cos?0+ L?sin?0  L~/1—v%cos?f

22 A4
T T Tv(1+vcosb) - T y(1+wcosh)’ (A4)

we have that /1 — 02 cos? 0 = y(1 4+ vcosf), leading (A.1) into
sinf = __sinb (A.5)

Y(1 4+ vecosh)’

and this is the angle change between the frames for light rays. Using the fundamental

equation of trigonometry, we write another equation

cost) = M. (A.6)
(14 vcosh)

This makes possible to find an expression for the angular change in the light rays direction

when B has velocity vfi in any direction

:>

)+v (n-7)
- fﬁ)"+7(1+ o7’ (A7)

o (A

(1 + v
which gives the predicted shape of the spherical pulse seen by B, but in the perspective of
A.
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APPENDIX B - Selection rules for

integration of the multiplication of many

spherical harmonics

The integration of a product of N > 1 spherical harmonics on the sphere,

I = L " J Z]_[sz ) sin 0dOdg, (B.1)

has the following selection rules for non zero value of I:

L= i l; is even, (B.2)
max{l } < L)2. (B.4)

The rules (B.2) and (B.3) are easy to justify by performing the ¢ integration and the

coordinate change x = cos#, leading to

Ui = mi)! o ) g, (B.5)

I—Q?T(SMof l er’)' i

—-1;=1

N

with M = 2 m;. It is clear that (B.5) ends as an integral over the symmetric interval
i=1

[—1,1] and the integrand has the same parity of L, then only the even case is not null.

To prove (B.4) we need to consider 4 cases. For N = 1 we know that only
Il = 0is not null, so l; < 1;/2 works. For N = 2, the orthogonality relation (3.3) demands

l [ [ l
1;— 2< 1—; 2 For N = 3 we use

ll = l2 — max(ll,lg) =

I+l
}/an (97¢)}/2;n2(67¢) = Z <l1707l270’k7 O><l17m17l27m2‘k7n>ykn(07¢)7 (B6)

k=1 —lz|
where the bracket terms are the usual Clebsch-Gordan coefficients, leading (B.1) to

Ar(— )

I =
2l3 +

<l170 l2a0|l3aO><l17m17l27m2|l37 m3> <B7)

with the famous selection rules |l; — lo| < I3 < lj + l5, which are equivalent to (B.4).

For N > 3 we first demand, without loss of generality, I; < lo < ... < [y, than let
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ki1 =11, n; = my and one can write

Am(=1)™y Y
= et Z H<ki,0,li+170|ki+1, 0>k, iy Ligr, Mg |Rig1, i) (B.8)
N {k;} i=1
where 2 < j < N —2, ky_1 = Iy and ny_1 = —my. Then, from each pair of Clebsch-

N-1
Gordan coefficients we have k; .1 < l;11 + ki = Iy < Z l; = (B.4).
i=1



	First page
	Title page
	Catalographic data
	Approval
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of abbreviations and acronyms
	Contents
	INTRODUCTION
	Gravitational Waves and Compact Sources
	Petrov's classification and Weyl scalars
	Foliations and Goldberg-Sachs theorem
	Mass definitions for black holes
	The BMS group

	Robinson-Trautman Spacetimes
	General properties
	Time evolution
	Physical systems
	About the causal structure

	Galerkin Method
	General case
	Planesymmetric case
	Axisymmetric case

	Initial Conditions
	Axisymmetric binary collision
	Non axisymmetric binary collision
	Collisions involving more BHs

	Numerical Results
	Strategies and uncertainties
	About Bondi momentum evolution
	Kick velocity
	BL-n Pyramids

	CONCLUSION
	Bibliography
	Appendix
	Aberration of light effect
	Selection rules for integration of the multiplication of many spherical harmonics


