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Resumo

Neste trabalho estudamos a sincronização de osciladores de Kuramoto sujeitos a forças externas
em redes modulares complexas. A motivação está na dinâmica neuronal que ocorre durante o
processamento de informação no córtex cerebral que parece estar relacionada ao disparo síncrono
de grupos de neurônios. A organização dos neurônios é modular, com agrupamentos associados a
diferentes funções e estruturas cerebrais, e precisa responder constantemente a estímulos externos.
Anormalidades no processo de sincronização, como a ativação de múltiplos módulos têm sido
associadas à doenças como epilepsia e Alzheimer. Nesse contexto, estudamos o comportamento
de osciladores de Kuramoto forçados, onde apenas uma fração deles é submetida a uma força
externa periódica. Quando todos os osciladores recebem o estímulo externo o sistema sempre
sincroniza com a força externa se a sua intensidade for suĄcientemente grande. Mostramos que as
condições para a sincronização global dependem da fração de nós forçada e da topologia da rede
e das intensidades do acoplamento interno e da força externa. Desenvolvemos cálculos numéricos
e analíticos para a força crítica que leva a rede à sincronização global em função da fração de
osciladores forçados. Como uma aplicação estudamos a resposta da rede de junções elétricas do
C. elegans ao estímulo externo usando o modelo de Kuramoto parcialmente forçado, aplicando a
força a grupos especíĄcos de neurônios. Os estímulos foram aplicados a três módulos topológicos,
dois gânglios, especiĄcados por sua localização anatômica, e aos grupos funcionais compostos por
todos os neurônios sensoriais e motores. Encontramos que os módulos topológicos não contêm
grupos puramente anatômicos ou classes funcionais e que estimular diferentes classes neuronais
leva a respostas muito diferentes, medidas em termos de sincronização e correlações de velocidade
de fase. Em todos os casos a estrutura modular impede a sincronização global, protegendo o
sistema de falhas. As respostas aos estímulos aplicados aos módulos topológicos e funcionais
mostram padrões pronunciados de correlação ou anti-correlação com outros módulos que não foram
observados quando o estímulo foi aplicado a um gânglio com neurônios funcionais mistos. Todos
os códigos e dados utilizados nesta tese estão disponível em [1].



Abstract

In this work we study the synchronization of Kuramoto oscillators driven by external forces
in complex modular networks. The motivation is the neuronal dynamics that takes place during
information processing in the neural cortex, which seems to be related to the synchronous Ąring
of groups of neurons. The neuron organization is modular, with clusters associated to different
functions and brain structures, and need to constantly respond to external stimuli. Abnormalities
in the process of synchronization, such as the activation of multiple modules, have been associated
with epilepsy and AlzheimerŠs disease. In this context, we study the behavior of forced Kuramoto
oscillators where only a fraction of them is subjected to a periodic external force. When all
oscillators receive the external drive the system always synchronize with the periodic force if its
intensity is sufficiently large. We show that the conditions for global synchronization depend
on the fraction of nodes being forced and on network topology, strength of internal couplings and
intensity of external forcing. We develop numerical and analytical calculations for the critical force
for global synchronization as a function of the fraction of forced oscillators. As an application we
study the response of the electric junction C. elegans network to external stimuli using the partially
forced Kuramoto model and applying the force to speciĄc groups of neurons. Stimuli were applied
to three topological modules, two ganglia, speciĄed by their anatomical localization, and to the
functional groups composed of all sensory and motoneurons. We found that topological modules do
not contain purely anamotical groups or functional classes, and that stimulating different classes of
neurons lead to very different responses, measured in terms of synchronization and phase velocity
correlations. In all cases the modular structure hindered full synchronization, protecting the
system from seizures. The responses to stimuli applied to topological and functional modules
showed pronounced patterns of correlation or anti-correlation with other modules that were not
observed when the stimulus was applied to a ganglion with mixed functional neurons. All codes
and data used in this thesis are available in [1].
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Chapter 1

Introduction

Nature is full of oscillatory systems. Many of them exhibit regular behavior, as atoms vibrating
around their equilibrium positions and planets orbiting around a center of gravity, while others
show chaotic dynamics, as temperature and atmospheric pressure variations, electrical currents
in speciĄc circuits and Ćuctuations in stock exchanges. In biological sciences, oscillatory systems
are also abundant and often need to work in synchrony to regulate physical activities, such as
pacemaker cells in the heart [2] and ĄreĆies Ćashing collectively to help females Ąnd suitable mates
[3, 4]. There are evidences that synchronization also plays a key role in information processing
in areas on the cerebral cortex [5, 6, 7, 8, 9]. Even the brain rest state activity is characterized
by local rhythmic synchrony that induces spatiotemporally organized spontaneous activity at the
level of the entire brain [10]. ArtiĄcial systems, such as electrochemical oscillators [11] and cou-
pled metronomes [12], have also been studied. Another very common collective behavior is the
incoherent claps of an audience starting to become a single pulse, where everyone applauds in the
same time. All these examples are universal and emerge naturally, because the elements of the
system produce rhythms by interacting with each other [7].

One of the Ąrst observations of the synchronization phenomenon was reported by the Dutch
scientist Christiaan Huygens in the middle of the 17th century when he noticed that a pair of
pendulum clocks had their oscillations exactly out-of-phase when they were suspended in the same
support. Three centuries later, radio engineers observed that two electrical coupled devices with
initial different frequencies vibrate together after some time. In 1967, the biologist A. T. Winfree
was the Ąrst to propose a mathematical model to describe synchronization [13], but his equations
were too difficut to solve. It was in 1974 that the Japanese physicist Y. Kuramoto proposed a
useful simpliĄcation of the math [14].

KuramotoŠs model has become a paradigm in the study of synchronization and has been ex-
plored in connection with biological systems, neural networks and the social sciences [15, 16]. It
describes a set of coupled harmonic oscillators with independent natural frequencies. Kuramoto
demonstrated that for small values of the coupling the oscillators continued to move as if they were
independent, but as the coupling increased beyond a critical value, a Ąnite fraction of oscillators
started to move together as if they were a single unit. The transition between the non-synchronized
and the synchronized states characterizes a second order phase transition in the thermodynamic
limit, where the system has inĄnite elements. This phenomenon can be seen in analogy to a
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ferromagnetic phase transition, where the magnetization increases continuously from zero as the
temperature is lowered below a critical value, known as the Curie temperature.

Until recently all systems that had spontaneous synchronization exhibited a second-order phase
transition. However, under speciĄc conditions the Kuramoto system has an abrupt change on
order parameter, which is a Ąrst order phase transition. This behavior is termed explosive syn-
chronization and it has been studied in several works [17, 18, 19, 20, 21, 22], where the dynamic is
dependent on the systemŠs topology. This phenomenon is observed in real-world systems, occur-
ring from electronic devices in the Ąeld of engineering, to neuroscience, as reported in [17, 18] the
conscious-unconscious transition when the brain is awaking from anesthesia.

Synchronization in many biological systems, however, is not spontaneous, but frequently de-
pends on external stimuli. Information processing in the brain, for example, might be triggered
by visual, auditory or olfactory inputs [7]. Different patterns of synchronized neuronal Ąring are
observed in the mammalian visual cortex when subjected to stimuli [8]. In the sensomotor cor-
tex synchronized oscillations appear with amplitude and spatial patterns that depend on the task
being performed [8, 9]. Synchronization of brain regions that are not directly related to the task
in question can be associated to disorders like epilepsy, autism, schizophrenia and Alzheimer [23,
24]. In the heart, cardiac synchronization is induced by specialized cells in the sinoatrial node or
by an artiĄcial pacemaker that controls the rhythmic contractions of the whole heart [25]. The
periodic electrical impulses generated by pacemakers can be seen as an external periodic force
that synchronizes the heart cells. Another example of driven system is the daily light-dark cy-
cle on the organisms [26]. In mammalians, cells specialized on the sleep control exhibit intrinsic
oscillatory behavior whose connectivity is still unknown [27]. The change in the light-dark cycle
leads to a response in the circadian cycle mediated by these cells, which synchronize via exter-
nal stimulus. Although the biological dynamics are quite complex, it is possible to map, under
some circumstances, simpliĄed models as the Kuramoto system, using known models of complex
networks.

The phenomenon of induced synchronization has been studied by many authors since the late
80Šs [28, 29, 30, 31, 32], where is natural to extend the Kuramoto model by including the inĆuence
of an external periodic force acting on the system. In these works the force is applied to all
oscillators in a structure equivalent to a fully connected network. The motivation for this thesis,
therefore, is to understand the response of synthetic and real complex networks to a localized
stimuli using the forced Kuramoto model. In particular, we are interested in the conditions for
global synchronization when the force acts only on a fraction of the oscillators and in applications
of this theory to neural networks.

Understanding the network of neuronal connections in the brain is key to unravel the way it
works and processes information. The complexity of these networks has been emphasized by many
authors [33], and characterized with different measures, such as degree distribution, transitivity
and betweenness centrality [34]. An important feature of neural networks is their high degree of
heterogeneity, in the sense that the number of connections per neuron varies considerably and typ-
ically displays some sort of power law distribution. Moreover, neurons tend to form communities,
where the density of connections is higher within than among communities. Because connec-
tions are constrained by anatomical features, neurons are also organized into physically arranged
clusters, such as lobes or ganglia, where neurons with different functional roles coexist [35, 36, 37].
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Communities are often related to specialized areas of the brain and their number and structure
are an indication of how many different tasks it can perform [38]. The integration of communities,
on the other hand, measures how well the outcomes of these different processes can combined to
build a global view of the inputs [35]. When triggered by external stimuli, such as visual or olfactory
inputs, the information processing occurs by the synchronized Ąring of neurons responsible to
process those speciĄc tasks [24, 8]. Synchronization of larger sets of neurons, or even global
synchronization, indicates cerebral disorders [23] such as epilepsy [39] and AlzheimerŠs disease [40],
causing a general breakdown in the neuronal network. Lack of synchronization, on the other hand,
suggests difficulty to respond to the stimulus or to function properly, as reported in unsuccessful
overnight memory consolidation in old people [41], deĄciency in the auditory-motor connections
[42] or brain disorders in autistic individuals [43, 44]. In this context, the knowledge of the
organization of different types of neurons in the network and their segregation into modules or
communities is fundamental to understand how stimuli affect the target module and under what
conditions it propagates to other regions leading to global or poor responses. In this sense, it is
possible to use the forced Kuramoto model and apply the external stimuli only on a speciĄc group
of the neural network, which can be functional or anatomical. In this work we analyse this issue
using synthetic networks and applying the generalized results to the C. elegans neural network.

Outline of the Thesis The Kuramoto model is considered the simplest mathematical model
of synchronization phenomena. In Chapter 2 we review the analytical derivation made by Ku-
ramoto and show an extension on complex networks followed by a brief discussion of explosive
synchronization. In Chapter 3 we analyse the Kuramoto model subjected to an external periodic
force acting in all oscillators based on the work of Childs and Strogatz [31] using the techniques
of Chapter 2.

The study of the forced Kuramoto model on complex networks is explored in Chapter 4, where
we consider the force acting only on a fraction of oscillators. In this context, we show the conditions
for global synchronization as a function of the fraction of nodes being forced and how it depends
on network structure. We present analytical and numerical calculations on synthetic networks,
exploring the fully connected, random and scale-free topologies. In Chapter 5 we use a real
complex network and study the response of the C. elegansŠ neural electrical junction network to
external localized stimuli using the partially forced Kuramoto model developed in Chapter 4. We
also analyse the networkŠs topology and use a modularization procedure in order to understand how
the system is organized. We show that the modular structure hinders the global synchronization,
revealing the complexity of the brainŠs wiring and function. Finally, in Chapter 6 we summarize
our main results and discuss further extensions of this work.
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Chapter 2

The Kuramoto Model

In this chapter we review the synchronization model proposed by Y. Kuramoto in 1975 [14],
which is considered the simplest model of synchronization phenomena. Kuramoto considered a
system composed of identical oscillators interacting with each other via a coupling parameter.
He showed that for small values of the coupling the oscillators continued to move as if they
were independent. However, as the coupling increased beyond a critical value, a Ąnite fraction of
oscillators started to move together, a behavior termed spontaneous synchronization. This fraction
increases smoothly with the coupling, characterizing a second order phase transition in the limit of
inĄnite oscillators. For large enough coupling the whole system oscillates with the same frequency,
as if it were a single element. In the Ąrst section of this chapter, we will introduce the mathematical
model and reproduce the analytical calculations made by Kuramoto.

In the subsequent sections we will also show that the original model can be extended to complex
networks with a slightly change of mathematical parameters and will brieĆy discuss the phenomena
of explosive synchronization on networks using the Kuramoto model.

2.1 The Kuramoto Model

The model of coupled oscillators introduced by Kuramoto consists of 𝑁 identical oscillators
described by internal phases 𝜃i which rotate with natural frequencies æi typically selected from a
symmetric distribution 𝑔(æ). In the original model all oscillators interact with each other according
to the equations

𝜃i = æi +
Ú

𝑁

N
∑︁

j=1

sin(𝜃j ⊗ 𝜃i), (2.1.1)

where Ú is the coupling strength and 𝑖 = 1, ..., 𝑁 . The division by 𝑁 is necessary to avoid
divergences on total interaction if the number of elements is too large. Although this problem does
not involve a physical space, we can imagine the distribution of elements along a unitary circle, as
depicted in Ągure 2.1.

The frequency distribution 𝑔(æ) is responsible for the system disorder. If its mean value is ǣ
and its variance à2, we can infer that, the larger the variance, the larger the dispersion of natural
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frequencies and, therefore, it will be more difficult to synchronize the oscillators. The coupling
parameter Ú, on the other hand, has the role of bringing order to the system. For instance, if the
oscillator 𝑗 is a little ahead of oscillator 𝑖, then sin(𝜃j ⊗ 𝜃i) > 0 and æi increases, so that 𝑖 can
catch up with 𝑗. If 𝑗 is a little behind of 𝑖, then sin(𝜃j ⊗ 𝜃i) < 0 and æi decreases, so that 𝑖 can
wait for 𝑗. It is worth noting that here the value Ú is constant for all oscillators and it determines
the intensity of the coupling. Recent generalizations have also considered distributions of ÚŠs for
each coupled pair [45].

An example: two oscillators In order to understand the behavior of the system, we consider
a simple case of two coupled oscillators. In this example, equations (2.1.1) become

𝜃1 = æ1 +
Ú

2
sin(𝜃2 ⊗ 𝜃1), (2.1.2)

𝜃2 = æ2 +
Ú

2
sin(𝜃1 ⊗ 𝜃2). (2.1.3)

Adding (2.1.2) and (2.1.3) we have

𝜃1 + 𝜃2 = æ1 + æ2. (2.1.4)

Synchronization occurs when 𝜃1 = 𝜃2. In this case, we obtain

𝜃1 = 𝜃2 =
æ1 + æ2

2
⊕ ǣ, (2.1.5)

which means that the synchronized state happens with average frequency.
General case For any number 𝑁 of oscillators we can procedure as previously adding up all

equations to obtain

N
∑︁

i=1

𝜃i =
N
∑︁

i=1

æi +
Ú

𝑁

N
∑︁

i=1

N
∑︁

j=1

sin(𝜃j ⊗ 𝜃i). (2.1.6)

Since the sine function is odd, the double sum on the right is zero. It is simple to check for 𝑁 = 3:

3
∑︁

i=1

3
∑︁

j=1

sin(𝜃j ⊗ 𝜃i) = sin(𝜃1 ⊗ 𝜃1) + sin(𝜃1 ⊗ 𝜃2) + sin(𝜃1 ⊗ 𝜃3)

+ sin(𝜃2 ⊗ 𝜃1) + sin(𝜃2 ⊗ 𝜃2) + sin(𝜃2 ⊗ 𝜃3)

+ sin(𝜃3 ⊗ 𝜃1) + sin(𝜃3 ⊗ 𝜃2) + sin(𝜃3 ⊗ 𝜃3).

(2.1.7)

The terms where 𝑖 = 𝑗 are null. The remaining cancel each other, since sin(𝜃j⊗𝜃i) = ⊗ sin(𝜃i⊗
𝜃j). The same occurs for any value of 𝑁 .

If all oscillators synchronize, which characterizes a global synchronization state, all phase ve-
locities are equal 𝜃1 = 𝜃2 = ... = ˙𝜃N , and then we have

N
∑︁

i=1

𝜃i = 𝑁𝜃1 =
N
∑︁

i=1

æi. (2.1.8)





17

We start by reorganizing equation (2.1.10) by multiplying both sides by 𝑒⊗iθj :

𝑟𝑒iψ(t)𝑒⊗iθj =
1

𝑁

N
∑︁

k=1

𝑒i(θk(t)⊗θj(t)). (2.1.11)

If we equal the imaginary parts of equation (2.1.11) we obtain

𝑟 sin(å ⊗ 𝜃j) =
1

𝑁

N
∑︁

k=1

sin(𝜃k ⊗ 𝜃j). (2.1.12)

Comparing equations (2.1.1) and (2.1.12) we eliminate the sum and we can write the dynamical
equation as

𝜃j = æj + Ú𝑟 sin(å ⊗ 𝜃j). (2.1.13)

The interaction is deĄned by parameters 𝑟 and å. Besides, Ú appears multiplied by 𝑟, which gives
a relationship between coupling and synchronization.

In order to take the limit of 𝑁 ⊃ ∞, we have to deĄne a probability density, since we have
to pass from discrete to continuous case. Then, we have to eliminate the index 𝑗 in the phase
𝜃j of each oscillator and develop a function that describes the phase 𝜃 of a group of oscillators
in a given interval of unitary circle. Since each oscillator is in a position given by the phase 𝜃j,
we can imagine a phase distribution and, therefore, we are able to write it as a delta function:
Ó(𝜃 ⊗ 𝜃1) + Ó(𝜃 ⊗ 𝜃2) + ...+ Ó(𝜃 ⊗ 𝜃N). If the probability density 𝜌 gives the fraction of oscillators
with phase between 𝜃 and 𝜃 + 𝑑𝜃 in a time 𝑡, then 𝜌 = 𝜌(𝜃, 𝑡) must be normalized, that is,

∫︁

𝜌(𝜃, 𝑡)𝑑𝜃 = 1. (2.1.14)

In terms of delta function, we obtain

1

𝑁

∫︁ N
∑︁

j=1

Ó(𝜃 ⊗ 𝜃j)𝑑𝜃 = 1. (2.1.15)

However, the construction of 𝜌 is still not complete. Each oscillator 𝜃 has a natural frequency that
depends on distribution 𝑔(æ), and the position of oscillators in unitary circle depends on its natural
frequency. Thus, the probability density must be rewrite as 𝜌(𝜃, 𝑔(æ), 𝑡), or simply 𝜌(𝜃, æ, 𝑡). This
quantity gives the fraction of oscillators with phase in the interval [𝜃, 𝜃+𝑑𝜃] with natural frequency
æ in time 𝑡, which is valid in the limit of 𝑁 ⊃ ∞.

As the number of oscillators is constant during dynamics, we can assert that 𝜌 must satisfy the
equation with 𝐽 = 𝜌𝑣, where 𝐽 is the current, or Ćow, and 𝑣 is the angular velocity. In Ągure 2.2
we depicted the unitary circle divided in regions of size Δ𝜃 each of them labeled by an index. The
Ćow 𝐽(𝑘) is given by the number of oscillators, by per unit time, that leaves region indexed by 𝑘
and goes to region indexed by 𝑘 + 1. Let 𝑁(𝑘) be the number of oscillators in region 𝑘. Then, we
can write the density of oscillators in 𝑘 as the ratio between the number of oscillators and the size
of 𝑘, that is

𝜌(𝑘) =
𝑁(𝑘)

Δ𝜃
. (2.1.16)
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If the number of elements which enter and leave the region 𝑘 is constant, then the density does
not change. In the limit where the size of region goes to zero, Δ𝜃 ⊃ 0, equation (2.1.19) becomes

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣)

𝜕𝜃
= 0. (2.1.21)

Equation (2.1.21) is the continuity equation.
Now, we must Ąnd a relationship between equation (2.1.21) and the order parameter 𝑟. Noting

that 𝑣 is equal to 𝜃 of equation (2.1.13), the angular velocity of the continuity equation can be
written in terms of 𝜃, æ and 𝑡, that is

𝜃 = 𝑣 = æ + Ú𝑟 sin(å ⊗ 𝜃), (2.1.22)

where we took off the index 𝑖, since the system is now continuous. Thus, 𝑣 = 𝑣(𝜃, æ, 𝑡) is the
angular velocity of an oscillator at coordinate 𝜃 with natural frequency æ in the time 𝑡. In terms
of dynamical parameters, the continuity equation is rewritten as

𝜕𝜌

𝜕𝑡
+
𝜕[𝜌æ + 𝜌Ú𝑟 sin(å ⊗ 𝜃)]

𝜕𝜃
= 0. (2.1.23)

Finally, equation (2.1.10) in the limit of 𝑁 ⊃ ∞ as a function of density probability is given
by

𝑟𝑒iψ =
∫︁ π

⊗π

∫︁ +∞

⊗∞
𝑒iθ𝜌(𝜃, æ, 𝑡)𝑑æ𝑑𝜃. (2.1.24)

In equation (2.1.24) we integrate over all phases and frequencies. It is worth noting that, by
deĄnition of 𝑔(æ) we have

∫︁ π

⊗π
𝜌(𝜃, æ, 𝑡)𝑑𝜃 = 𝑔(æ). (2.1.25)

As a consequence, the normalization of 𝜌 is written as

∫︁ +∞

⊗∞
𝑑æ

∫︁ π

⊗π
𝜌(𝜃, æ, 𝑡)𝑑𝜃 = 1. (2.1.26)

In what follows, we will study the dynamical behavior when the system is non-synchronized
and partially synchronized, analysing the form of 𝜌(𝜃, æ, 𝑡). Then, we will be able to calculate the
order parameter 𝑟.

2.1.1 Incoherent behavior - non-synchronized state

In the non-synchronized state, the oscillators are distributed randomly on unitary circle. In
this case, the density is uniform, 𝜌 = 𝑔(æ)/2Þ, and equation (2.1.24) becomes

𝑟𝑒iψ =
∫︁ π

⊗π
𝑒iθ𝑑𝜃

∫︁ +∞

⊗∞

1

2Þ
𝑔(æ)𝑑æ. (2.1.27)



20

The integral on variable 𝜃 results in zero and, therefore, 𝑟 = 0. Besides, since 𝜕𝜌/𝜕𝑡 = 0, we can
verify that equation (2.1.21) is satisĄed,

𝜕

𝜕𝜃
(𝜌æ) ⊗ 𝜌Ú𝑟 sin(å ⊗ 𝜃) ⊃ 𝜕

𝜕𝜃
(𝜌æ) = 0, (2.1.28)

since 𝜌 is constant and æ does not depend on 𝜃.

2.1.2 Partial synchronization

We now assume that the system reached the steady state, 𝜕𝜌/𝜕𝑡 = 0, and that a fraction of
oscillators is synchronized with 𝑣 = 0, while the remaining are moving incoherently. In the case of
𝑣 = 0, equation (2.1.22) becomes

æ = ⊗Ú𝑟 sin(å ⊗ 𝜃) ⊃ æ = Ú𝑟 sin(𝜃 ⊗ å) for ⊗ Þ

2
⊘ 𝜃 ⊗ å ⊘ Þ

2
. (2.1.29)

Because ♣sin(𝜃 ⊗ å)♣ < 1, the synchronization only occurs for ♣æ♣ < Ú𝑟. We can write expression
(2.1.29) as

𝜃 = å + arcsin
⎤

æ

Ú𝑟

⎣

. (2.1.30)

Equation (2.1.30) provides the position where the oscillators with natural frequency æ stopped.
As a consequence, oscillators with ♣æ♣ > Ú𝑟 do not synchronize, since Ú is not strong enough to
ŞholdŤ them together. To Ąnd the expression for density 𝜌 in the equilibrium, we have to divide
our analysis in two cases: the synchronized and the non-synchronized parts.

(A) The synchronized part

From equation (2.1.30) we write the density of the synchronized part as a delta function

𝜌 = Ó
⎦

𝜃 ⊗ å + arcsin
⎤

æ

Ú𝑟

⎣⎢

𝑔(æ), (2.1.31)

indicating that the oscillators are centered close to å with deviation given by arcsin(æ/Ú𝑟). In
order to rewrite the density conveniently, we can use the following property of the delta function,

Ó[𝜃 ⊗ 𝜃0] = ♣𝑓 ′(𝜃0)♣Ó[𝑓(𝜃) ⊗ 𝑓(𝜃0)], (2.1.32)

We can deĄne properly the function 𝑓(𝜃) as

𝑓(𝜃) = æ ⊗ Ú𝑟 sin(𝜃 ⊗ å). (2.1.33)

If we impose 𝑓(𝜃0) = 0 the condition for 𝜃0 becomes

sin(𝜃0 ⊗ å) =
æ

Ú𝑟
. (2.1.34)



21

Thus

𝑓 ′(𝜃0) = ⊗Ú𝑟 cos(𝜃0 ⊗ å). (2.1.35)

Using (2.1.34), we obtain
𝑓 ′(𝜃0) = ⊗

√
Ú2𝑟2 ⊗ æ2. (2.1.36)

Finally, we can use (2.1.32) to rewrite the density as

𝜌 =
√
Ú2𝑟2 ⊗ æ2Ó[æ ⊗ Ú𝑟 sin(𝜃 ⊗ å)]𝑔(æ), (2.1.37)

where ⊗π
2

⊘ 𝜃 ⊗ å ⊘ π
2
. Equation (2.1.37) gives the density 𝜌 of the synchronized part.

(B) The non-synchronized part

In the steady state we must have 𝜕(𝜌𝑣)/𝜕𝜃 = 0. This condition implies that 𝜌𝑣 is constant,
independent of 𝜃. Thus, since ♣æ♣ > Ú𝑟 on the non-synchronized part, we write the density as

𝜌 =
𝐶𝑔(æ)

♣æ ⊗ Ú𝑟 sin(𝜃 ⊗ å)♣ , (2.1.38)

where 𝐶 is a normalization constant and we used 𝑣 from equation (2.1.22). To calculate 𝐶, we use
the normalization condition of equation (2.1.25), that is

∫︁ π

⊗π

𝐶𝑔(æ)

♣æ ⊗ Ú𝑟 sin(𝜃 ⊗ å)♣𝑑𝜃 = 𝑔(æ). (2.1.39)

We cancel 𝑔(æ) and can take off the modulus in the case of æ > 0 and æ > Ú𝑟. Performing a
change of variables ã = 𝜃 ⊗ å, we obtain

𝐶
∫︁ π⊗ψ

⊗π⊗ψ

𝑑ã

æ ⊗ Ú𝑟 sinã
= 1. (2.1.40)

We can verify that the integral above does not depend on å and then we are able to integrate on
the interval [⊗Þ, Þ]. Let 𝑓(sinã) be a function integrated on [⊗Þ ⊗ å, Þ ⊗ å]. We can rewrite as

∫︁ π⊗ψ

⊗π⊗ψ
𝑓(sinã)𝑑ã =

∫︁ ⊗π

⊗π⊗ψ
𝑓(sinã)𝑑ã+

∫︁ π⊗ψ

⊗π
𝑓(sinã)𝑑ã. (2.1.41)

Now, let Ý = ã+2Þ. It is simple to check that the Ąrst integral on the right hand side is integrated
on [Þ ⊗ å, Þ]. Adding the two integrals we Ąnd

∫︀ π
⊗π 𝑓(sinã)𝑑ã, that is independent of å.

The result of integration is, then

𝐶
∫︁ π

⊗π

𝑑ã

æ ⊗ Ú𝑟 sinã
= 1

2𝐶√
æ2 ⊗ Ú2𝑟2

arctan

[︃

æ tanã/2 ⊗ Ú𝑟√
æ2 ⊗ Ú2𝑟2

⟨π

⊗π
= 1.

(2.1.42)
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For ã = ∘Þ, tanã/2 ⊃ ∘∞ and then, arctan(∘∞) ⊃ ∘Þ/2 that add up to Þ. Isolating the
normalization constant we obtain 𝐶 =

√
æ2 ⊗ Ú2𝑟2/2Þ. The density 𝜌 for the non-synchronized

part can be written as

𝜌 =
𝑔(æ)

2Þ

√
æ2 ⊗ Ú2𝑟2

♣æ ⊗ Ú𝑟 sin(𝜃 ⊗ å)♣ . (2.1.43)

(C) The order parameter

We developed the expressions of 𝜌(𝜃, æ) for synchronized and non-synchronized oscillators. The
Ąnal distribution is written using equations (2.1.37) and (2.1.43)

𝜌(𝜃, æ) = 𝑔(æ)

∏︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋃︁

√
Ú2𝑟2 ⊗ æ2Ó[æ ⊗ Ú𝑟 sin(𝜃 ⊗ å)], ♣æ♣ < Ú𝑟

1
2π

√
ω2⊗λ2r2

♣ω⊗λr sin(θ⊗ψ)♣ , ♣æ♣ > Ú𝑟.

(2.1.44)

Now, we are able to calculate the order parameter 𝑟. From equation (2.1.24)

𝑟 =
∫︁ π

⊗π

∫︁ +∞

⊗∞
𝑒i(θ⊗ψ)𝜌(𝜃, æ, 𝑡)𝑑æ𝑑𝜃 ⊕ 𝑟s + 𝑟ns, (2.1.45)

where we divided equation (2.1.24) by 𝑒iψ and we separated the integral over æ into two cases, 𝑟s
and 𝑟ns which refers to the synchronize part, where ♣æ♣ < Ú𝑟, and to the non-synchronized part,
where ♣æ♣ > Ú𝑟, respectively.

Since we assumed that 𝑔(æ) is symmetric, the non-synchronized integral is zero, 𝑟ns = 0. We
can verify this result by dividing the æ integral into two parts and performing a change of variables
𝜃′ = 𝜃 ⊗ å,

𝑟ns =
∫︁ π

⊗π
𝑑𝜃′

[︃

∫︁ ⊗λr

⊗∞
𝑒iθ

′

𝜌(𝜃′, æ, 𝑡)𝑑æ +
∫︁ +∞

+λr
𝑒iθ

′

𝜌(𝜃′, æ, 𝑡)𝑑æ

⟨

. (2.1.46)

We manipulate the Ąrst integral by changing æ ⊃ ⊗æ and 𝜃′ ⊃ 𝜃′ + Þ, whithout altering 𝜌, and
we obtain

𝑟ns =
∫︁ π

⊗π
𝑑𝜃′

[︃

∫︁ ⊗λr

⊗∞
𝑒i(θ

′+π)𝜌(𝜃′ + Þ,⊗æ, 𝑡)(⊗𝑑æ) +
∫︁ +∞

+λr
𝑒iθ

′

𝜌(𝜃′, æ, 𝑡)𝑑æ

⟨

. (2.1.47)

Since 𝑒iπ = ⊗1, if we exchange the integration limits, we can see that the remaining term cancels
the second integral, which leads to 𝑟ns = 0.

In the synchronized integral we write 𝑒iθ
′

= cos 𝜃′ + 𝑖 sin 𝜃′. We note that the imaginary part is
zero, because the sine function is odd. We need to perform the integration over the real part,

𝑟 =
∫︁ +π/2

⊗π/2
𝑑𝜃′

∫︁ +λr

⊗λr
𝑑æ𝑔(æ) cos 𝜃′√Ú2𝑟2 ⊗ æ2Ó[æ ⊗ Ú𝑟 sin 𝜃′]. (2.1.48)

The æ integral is done using the delta function, which reduces to
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𝑟 =
∫︁ +π/2

⊗π/2
𝑑𝜃′𝑔(Ú𝑟 sin 𝜃′) cos 𝜃′

√︁

Ú2𝑟2 ⊗ Ú2𝑟2 sin2 𝜃′ (2.1.49)

= Ú𝑟
∫︁ +π/2

⊗π/2
𝑑𝜃′𝑔(Ú𝑟 sin 𝜃′) cos2 𝜃′. (2.1.50)

This integral has two solutions: either 𝑟 = 0, which is trivial, or 𝑟 is given implicitly by

1 = Ú
∫︁ +π/2

⊗π/2
𝑑𝜃′𝑔(Ú𝑟 sin 𝜃′) cos2 𝜃′. (2.1.51)

For 𝑟 = 0 we can Ąnd the analytical expression of Ú for which the phase transition occurs, that is,
the value that divides the synchronize and the non-synchronized states. This minimum value of
coupling is denominated as critical parameter and can be obtained by solving

1 = Ú
∫︁ π/2

⊗π/2
𝑑𝜃′ cos2 𝜃′𝑔(0) ⊃ 1 =

Þ

2
Ú𝑔(0), (2.1.52)

isolanting Ú = Úc, we obtain

Úc =
2

Þ𝑔(0)
. (2.1.53)

The second solution occurs close to the phase transition for 𝑟 ≡ 0. We have to expand 𝑔(Ú𝑟 sin 𝜃′)
in second order and calculate the behavior of the function for Ú > Úc,

𝑔(Ú𝑟 sin 𝜃′) ≡ 𝑔(0) + Ú𝑟 sin 𝜃′𝑔′(0) +
1

2
Ú2𝑟2 sin2 𝜃′𝑔′′(0).

Substituting the expansion on the integral (2.1.51), we have

1 = Ú
∫︁ π/2

⊗π/2
𝑑𝜃′ cos2 𝜃′

⎦

𝑔(0) + Ú𝑟 sin 𝜃′𝑔′(0) +
1

2
Ú2𝑟2 sin2 𝜃′𝑔′′(0)

⎢

. (2.1.54)

The Ąrst term inside the integral results in Ú⊗1
c , and the second is zero, because of the sine function.

The expression reduces to

1 =
Ú

Úc
+
Ú3𝑟2

2
𝑔′′(0)

∫︁ π/2

⊗π/2
cos2 𝜃′ sin2 𝜃′𝑑𝜃′. (2.1.55)

If we write cos2 𝜃′ sin2 𝜃′ as (cos 𝜃′ sin 𝜃′)2 = (1
2

sin 2𝜃′)2, we can perform a change of variables
𝑢 = 2𝜃, and (2.1.54) reduces to

1 =
Ú

Úc
+
Ú3𝑟2

2
𝑔′′(0)

Þ

8
. (2.1.56)

Isolating 𝑟, we obtain

𝑟2 =
16(Úc ⊗ Ú)

Ú4𝑔′′(0)Þ
. (2.1.57)
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scale-free topology, where the degree distribution follows a power law function, the effect of the
ŞhubsŤ (nodes with high degree) is considerably different from the remaining nodes. The same
approach was develop in [46]. We also note that the fully connected network is equivalent to the
Kuramoto original model since each node (or oscillator) interacts with all the other nodes.

In order to verify the effect of network structure, we used the dynamical equations (2.2.1) on
three different topologies: (i) fully connected with 𝑁 = 200 nodes (FC200); (ii) fully connected
with 𝑁 = 1000 (FC1000) nodes; (iii) random Erdos-Renyi network with 𝑁 = 200 nodes (ER200)
and average degree ⟨𝑘⟩ = 10.51; (iv) random Erdos-Renyi network with 𝑁 = 1000 nodes (FC1000)
and average degree ⟨𝑘⟩ = 19.87; (v) scale-free Barabasi-Albert network with 𝑁 = 200 (BA200)
computed starting with 𝑚0 = 11 fully connected nodes and adding nodes with 𝑚 = 10 links
with preferential attachment, so that ⟨𝑘⟩ = 9.83, and (vi) scale-free Barabasi-Albert network with
𝑁 = 1000 (BA1000) computed starting with 𝑚0 = 21 fully connected nodes and adding nodes
with 𝑚 = 20 links with preferential attachment, so that ⟨𝑘⟩ = 39.56. In all simulations we have
considered a Gaussian distribution of natural frequencies 𝑔(æ)

𝑔(æ) =
1√
2Þ𝑎

𝑒(ω⊗ω̄)2/2a2

, (2.2.2)

with null mean ǣ = 0 and standard deviation 𝑎 = 1.0. Using equation (2.1.53) we can estimate

the critical value Úc. In this case, it is simple to verify that 𝑔(0) = 1/
√

2Þ and Úc =
√︁

8/Þ, that is,
Úc ≡ 1.6.

Figure 2.4 computes the order parameter 𝑟 versus coupling Ú for all network conĄgurations. In
all cases we can verify that the theoretical curve behavior depicted on Ągure 2.3 is satisĄed and
that the larger the number of nodes, the better is the result. This is expected once the theoretical
development was made on the limit of 𝑁 ⊃ ∞.
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Figure 2.4: Order parameter 𝑟 versus coupling Ú for three network topologies: fully connected
(left), random (middle) and scale-free (right), for 𝑁 = 200 and 𝑁 = 1000 nodes. The critical
coupling is independent of 𝑁 . For a Gaussian distribution 𝑔(æ) the transition occurs at Úc = 1.6,
delimited by the dashed line on each panel.



26

2.3 Explosive Synchronization

So far we showed the original model proposed by Kuramoto and their applications on systems
whose elements interact by a complex network structure. In all cases the transition from the non-
synchronized to global synchronized states occurs smoothly, characterizing a second order phase
transition with critical exponent 1/2, as derived in equation (2.1.58). However, recent works have
shown that the Kuramoto system, under speciĄc conditions, has an abrupt change on order pa-
rameter, which is a Ąrst order phase transition. This behavior is termed explosive synchronization.
In this section we will brieĆy present a review regarding Ąrst-order phase transitions using the
Kuramoto model in complex networks.

The explosive synchronization phenomenon has been studied in several works [17, 18, 19, 20,
21, 22, 47, 48] which demonstrate a relation between the natural frequency distribution 𝑔(æ) and
the complex network structure. The applications range from waking from anesthesia (abrupt
transition to conscious-unconscious states) [17, 18] to epileptic seizures [19].

One of the Ąrst works of explosive synchronization was reported in [49]. In this paper, the au-
thors showed the abrupt onset to global synchronization in scale-free networks using the Kuramoto
model with the dynamical equations,

𝜃i = æi + Ú
N
∑︁

j=1

𝐴ij sin(𝜃j ⊗ 𝜃i). (2.3.1)

The main difference between equation (2.3.1) and our system, (2.2.1), is the lack of division by
𝑘i. In order to study the behavior of phase transition, the internal frequency of each node is set
as a function of its own degree, that is, æi = 𝑓(𝑘i). The correlation between degree and frequency
introduces a relation between the network structure and the system dynamics. In particular, the
authors used 𝑘i = æi. As a consequence, the frequency and the degree distributions are identical,
𝑔(æ) = 𝑃 (𝑘). In this situation, it is worth noting that in heterogeneous networks, as the scale-free
topology, the hubs can synchronize more easily because of their large degree.

To analyze the role of network topology and the degree distribution 𝑔(æ) the equations (2.3.1)
were applied on random (Erdos-Renyi) and scale-free (Barabasi-Albert) networks. In both cases
the adjacency matrix used is undirected, unweighted and the networks have the same number of
nodes, 𝑁 = 103, and average degree, ⟨𝑘⟩ = 6. Figure 2.5 summarizes the results. Each panel
shows two transition diagrams, labeled as forward, where Ú is gradually increased, and backward,
where Ú is gradually decreased. We can see that, for the random network (panel 2.5 (a)), the 𝑟(Ú)
curves are equal and smooth, indicating a second order phase transition, as usual. The opposite
occurs for the scale-free network, (panel 2.5 (c)), where the forward and backward curves do not
coincide and the phase transition is Ąrst order. By looking at both diagrams, the phase transition
to synchronized state in each case occurs for different values of 𝑟, showing a strong hysteresis.

The authors also computed the effective frequency of each oscillator, deĄned as

æeffi =
1

𝑇

∫︁ t+T

t
𝜃i(á)𝑑á, (2.3.2)
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with 𝑇 >> 1, as well as the average effective frequency of nodes with the same degree,

⟨æ⟩k =
1

𝑁k

∑︁

[i♣ki=k]

æeffi , (2.3.3)

where 𝑁k = 𝑁𝑃 (𝑘) is the total number of nodes with degree 𝑘.

Figure 2.5: Forward and backward curves 𝑟(Ú) for (a) random network and (c) scale-free network
with 𝑁 = 103 nodes and average degree ⟨𝑘⟩ = 6. Panels (b) and (d) exhibit the results of equations
(2.3.2) and (2.3.3) depicted as dots and lines, respectively, as a function of coupling Ú in the forward
continuation case for (b) random network and (d) scale-free network. Taken from [49].

Panels (b) and (d) exhibit the results of equations (2.3.2) and (2.3.3) for the random and
scale-free network, respectively. From panel (b) we can see that the oscillators with the largest
degree converge Ąrstly to the average frequency, Ω = ⟨𝑘⟩ = 6, contrary to what happens for nodes
with small values of 𝑘. On the other hand, the explosive synchronization showed on diagrams 𝑟(Ú)
of scale-free network is conĄrmed by the behavior of the effective frequencies on panel (d), since
almost all nodes keep locked to their natural frequencies, æi = 𝑘i, until they reach the criticality
at Ú ≡ 1.42, where they abruptly converge into one single value of average frequency, Ω = ⟨𝑘⟩ = 6.
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There are other mechanisms leading to explosive synchronization. A great description of these
variety can be seen in reference [50]. The theoretical approach can be validate by constructing
experimental setups that allows the observation of this phenomenon in real-world systems. As
an example, in the work [21], the authors demonstrated numerical and experimental evidence of
the Ąrst-order synchronization transition in a network of phase coherent Rössler units (chaotic
oscillators). The numerical results showed that these elements interacting in a scale-free topology
on a chaotic regime exhibit explosive synchronization when there is a positive correlation between
the network structure and the natural frequencies of oscillators. By constructing an electronic net-
work device operating in the same regime of the theoretical system, the authors reported that the
experimental diagram of synchronization have the same behavior of the numerical data, validating
the appearance of explosive synchronization in real systems. Many other interesting experimental
set up can be found in [50].

The phenomenon of abrupt synchronization is also observed in neuroscience. As reported in [17,
18] the conscious-unconscious transition appears when the brain is awaking from anesthesia. The
authors hypothesized that, in human brain networks, the conditions for explosive synchronization
occur in the anesthetized brain just over the threshold of unconsciousness. In [22] the authors
reported that the unconsciousness and resting states are apparently related to a bifurcation point
on the phase space where the dynamical system may lead to spontaneous synchrony. Another
examples include the epileptic seizures, where the brain shows an abrupt dynamical behavior
activity during an epileptic event [20], and the sensitive frequency detection of the cochlea [19],
where the hair cells present in the structure are modeled as oscillators close to a Hopf bifurcation.
In this paper, the authors studied a system composed of globally coupled units of the cochlea (the
hair cells) which exhibits explosive synchronization in the absence of an external stimulus.
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Chapter 3

The Forced Kuramoto Model

The original Kuramoto model studied on the last chapter exhibits spontaneous synchronization
when the coupling strength is larger than a threshold, termed critical parameter. Synchronization
in many biological systems, however, is not spontaneous, but frequently depends on external
stimuli. A natural extension of the Kuramoto model, therefore, is to include the inĆuence of an
external periodic force acting on the system [28, 29, 31, 32]. In this chapter we review the dynamics
of the forced Kuramoto model as studied in detail by Childs and Strogatz [31].

3.1 Introduction

The forced Kuramoto model is deĄned by the addition of a periodic external drive to the
original equations (2.1.1),

𝜃i = æi +
Ú

𝑁

N
∑︁

j=1

sin(𝜃j ⊗ 𝜃i) + 𝐹 sin(à𝑡⊗ 𝜃i), (3.1.1)

where 𝐹 is the amplitude of forcing and à is the forcing frequency. As we have seen, the dis-
tribution 𝑔(æ) of natural frequencies tends to desynchronize the oscillators, while the coupling Ú
is responsible for the spontaneous synchronization of the units. On the other hand, the role of
external forcing is to drive the oscillators to the forcing frequency à. The competition between
these regimes (desynchronization, spontaneous and forced synchronization) can be analysed by
varying the parameter space.

In order to get rid of the explicit time dependence in equation (3.1.1) we can perfom a change
of coordinates to analyse the dynamics in a reference frame corotating with the driving force:

ãi = 𝜃i ⊗ à𝑡 (3.1.2)

which leads to

ã̇i = (æi ⊗ à) +
Ú

𝑁

N
∑︁

j=1

sin(ãj ⊗ ãi) ⊗ 𝐹 sinãi. (3.1.3)

One of the Ąrst studies of the periodically forced Kuramoto model was made by Sakaguchi
[28], where he analysed the dynamical behavior of equations (3.1.3). The simulations showed that
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when 𝐹 or à are large, a fraction of oscillators synchronize with external force, a phenomenon
called Şforced entrainmentŤ, while the rest remained desynchronized. On the other hand, when 𝐹
and à are small enough, a fraction of oscillators becomes self-synchronized at a different frequency
of external driving. This characterizes the Şmutual entrainmentŤ state. The competition between
these two different regimes seems to meet on the phase diagram and could be a signature of a
transition between them. The curves of the phase diagram correspond to different bifurcations,
although Sakaguchi did not go any further in these analysis.

The work of Antonsen et al. [30] showed an improvement in the analytical development made
by Sakaguchi. Their numerical and linear stability analysis exhibit a set of bifurcation curves in a
reduced dimensionality. In this sense, they described the transitions between the different regimes
of synchronization in low dimensional picture, but the details of the parameter space were still
unclear. However, using [30] Ott and Antonsen [29] made an important discovery. They showed
that the forced Kuramoto model has an invariant manifold under the dynamics, using a speciĄc
family of states satisfying a set of conditions. In this sense, they found an exact closed form
solution for the complex order parameter 𝑧 in a two-dimensional dynamical system in a particular
case where the frequency distribution 𝑔(æ) is Lorentzian.

In this context, the work of Childs and Strogatz [31] used the two-dimensional system derived
in [29]. Their work gives a complete analysis of the bifurcation structure for the forced Kuramoto
model. The authors considered a system composed of inĄnitely many phase oscillators with ran-
dom intrinsic natural frequencies, global sinusoidal coupling and external sinusoidal forcing, using
equation (3.1.3). In this chapter we will brieĆy rewiew the paper of Childs and Strogatz [31].
We will derive the reduced equations by carrying out the continuum limit 𝑁 ⊃ ∞ in (3.1.3),
using similar techniques of Chapter 2. In the next chapter we will extend this work for partially
forced Kuramoto oscillators. Although our analysis is not so general, it will allow the possibility
of complex networks, not just the fully connected cases considered before.

3.2 Derivation of the reduced equations

As we already did in the last chapter, to take the continuum limit we need to deĄne the density
function 𝜌(ã, æ, 𝑡) which express the fraction of oscillators with phases in the interval [ã, ã+𝑑ã] and
natural frequencies between æ and æ + 𝑑æ in time 𝑡. This quantity must obey the normalization
condition

∫︁ ∞

⊗∞

∫︁ 2π

0
𝜌(æ, ã, 𝑡)𝑑ã𝑑æ = 1, (3.2.1)

and by deĄnition of 𝑔(æ) we have

∫︁ 2π

0
𝜌(æ, ã, 𝑡)𝑑ã = 𝑔(æ). (3.2.2)

Following the derivation in Chapter 2 (see equation (2.1.21)), the continuity equation is simply

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣)

𝜕ã
= 0. (3.2.3)
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In this equation 𝑣 = 𝑣(ã, æ, 𝑡) corresponds to ã̇i in the limit of 𝑁 ⊃ ∞, that is,

𝑣(ã, æ, 𝑡) = lim
N⊃∞

ã̇i = æ ⊗ à + Ú
∫︁ ∞

⊗∞

∫︁ 2π

0
sin(ã′ ⊗ ã)𝜌(æ′, ã′, 𝑡)𝑑ã′𝑑æ′ ⊗ 𝐹 sinã. (3.2.4)

By using the complex number deĄned in equation (2.1.10) we can write the expression above in
terms of 𝑧(𝑡) in the continuum limit,

𝑧(𝑡) =
∫︁ ∞

⊗∞

∫︁ 2π

0
𝑒iφ

′

𝜌(æ′, ã′, 𝑡)𝑑ã′𝑑æ′, (3.2.5)

which is equivalent to equation (2.1.24). Now, multiplying (3.2.5) by 𝑒⊗iφ in both sides, we obtain

𝑧(𝑡)𝑒⊗iφ =
∫︁ ∞

⊗∞

∫︁ 2π

0
𝑒i(φ

′⊗φ)𝜌(æ′, ã′, 𝑡)𝑑ã′𝑑æ′. (3.2.6)

The imaginary part of (3.2.6) is

Im(𝑧𝑒⊗iφ) =
∫︁ ∞

⊗∞

∫︁ 2π

0
sin(ã′ ⊗ ã)𝜌(æ′, ã′, 𝑡)𝑑ã′𝑑æ′. (3.2.7)

If we use sinã = Im(𝑒⊗iφ) in the expression (3.2.4) we obtain

𝑣 = æ ⊗ à + ÚIm(𝑧𝑒⊗iφ) + 𝐹 Im(𝑒⊗iφ) ⊃ 𝑣 = æ ⊗ à + Im[(Ú𝑧 + 𝐹 )𝑒⊗iφ]. (3.2.8)

Using the relation Im(Ý) = 1
2i

(Ý ⊗ Ý*), the equation above becomes

𝑣 = æ ⊗ à +
1

2𝑖
[(Ú𝑧 + 𝐹 )𝑒⊗iφ ⊗ (Ú𝑧 + 𝐹 )*𝑒iφ] (3.2.9)

where * denotes complex conjugation. Now, we are able to rewrite the continuity equation by
using (3.2.9), that is

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕ã

⎤

𝜌
⎭

æ ⊗ à +
1

2𝑖
[(Ú𝑧 + 𝐹 )𝑒⊗iφ ⊗ (Ú𝑧 + 𝐹 )*𝑒iφ]

}︂⎣

= 0. (3.2.10)

In order to solve the continuity equation we can expand 𝜌 as a Fourier series in ã,

𝜌(æ, ã, 𝑡) =
1

2Þ

+∞
∑︁

n=⊗∞
𝜌n(æ, 𝑡)𝑒inφ =

1

2Þ
𝜌0(æ, 𝑡) +

1

2Þ

+∞
∑︁

n=1

𝜌n(æ, 𝑡)𝑒inφ + c.c. (3.2.11)

=
𝑔(æ)

2Þ

[︃

1 +
+∞
∑︁

n=1

𝜌n(æ, 𝑡)𝑒inφ + c.c.

⟨

, (3.2.12)

where c.c. denotes complex conjugate. We can verify that 𝜌0 ⊕ 𝑔(æ) by integrating 𝜌 in ã (see
equation (3.2.2)). As pointed by [31], if we substitute equation (3.2.12) into (3.2.5) and (3.2.10)
we would have an inĄnite set of coupled nonlinear ordinary differential equations, difficulting the
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analysis. However, using the Ott and Antonsen ansatz, we can restrict 𝜌 to a special family of
densities, such that

𝜌n(æ, 𝑡) = [Ð(æ, 𝑡)]n, (3.2.13)

for all 𝑛 ⊙ 1 and ♣Ð(æ, 𝑡)♣⊘ 1 to avoid divergence of the series [29]. Thereby, equation (3.2.12) is
rewritten as

𝜌(æ, ã, 𝑡) =
𝑔(æ)

2Þ

[︃

1 +
+∞
∑︁

n=1

[Ð(æ, 𝑡)]n𝑒inφ + c.c.

⟨

. (3.2.14)

Now, we have to perform the derivatives 𝜕𝜌/𝜕𝑡 and 𝜕(𝜌𝑣)/𝜕ã in order to rewrite the continuity
equation. These calculations give

𝜕𝜌

𝜕𝑡
=
𝑔(æ)

2ÞÐ

[︃ ∞
∑︁

n=1

𝑛Ðn𝑒inφ
𝜕Ð

𝜕𝑡
+ 𝑐.𝑐.

⟨

, (3.2.15)

𝜕(𝜌𝑣)

𝜕ã
=

(︃

𝜕𝜌

𝜕ã

)︃

𝑣 +

(︃

𝜕𝑣

𝜕ã

)︃

𝜌, (3.2.16)

where

(︃

𝜕𝜌

𝜕ã

)︃

=
𝑔(æ)

2Þ

[︃ ∞
∑︁

n=1

Ðn(𝑖𝑛)𝑒inφ + c.c.

⟨

and
𝜕𝑣

𝜕ã
= ⊗1

2
[(Ú𝑧 + 𝐹 )𝑒⊗iφ + c.c]. (3.2.17)

Substituting (3.2.15) and (3.2.17) in equation (3.2.10) and Ąltering the terms of 𝑒inφ we obtain

𝑑Ð

𝑑𝑡
=

1

2
(Ú𝑧 + 𝐹 )* ⊗ 𝑖(æ ⊗ à)Ð⊗ 1

2
(Ú𝑧 + 𝐹 )Ð2. (3.2.18)

Since we need to evaluate the complex order parameter 𝑧(𝑡), we can rewrite expression (3.2.5) in
terms of Ð:

𝑧(𝑡) =
∫︁ ∞

⊗∞
𝑑æ

[︃

∫︁ 2π

0

𝑔(æ)𝑒iφ

2Þ

(︃

1 +
+∞
∑︁

n=1

[Ð(æ, 𝑡)]n𝑒inφ + c.c.

)︃

𝑑ã

⟨

.

By perfoming the integral over ã we obtain

𝑔(æ)

2Þ

∫︁ 2π

0

(︃

𝑒iφ +
+∞
∑︁

n=1

[Ð(æ, 𝑡)]n𝑒i(n+1)φ +
+∞
∑︁

n=2

[Ð*(æ, 𝑡)]n𝑒⊗i(n⊗1)φ + Ð*(æ, 𝑡)

)︃

𝑑ã = Ð*(æ, 𝑡)𝑔(æ),

which reduces to

𝑧(𝑡) =
∫︁ ∞

⊗∞
Ð*(æ, 𝑡)𝑔(æ)𝑑æ. (3.2.19)
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Now we can choose the frequency distribution 𝑔(æ) to be a Lorentzian,

𝑔(æ) =
Δ

Þ[(æ ⊗ æ0)2 + Δ2]
, (3.2.20)

and the equation for 𝑧(𝑡) becomes

𝑧(𝑡) =
Δ

Þ

∫︁ ∞

⊗∞

Ð*(æ, 𝑡)𝑑æ

(æ ⊗ æ0)2 + Δ2
⊃ 𝑧(𝑡) =

Δ

Þ

∫︁ ∞

⊗∞

Ð*(æ, 𝑡)𝑑æ

[æ ⊗ (æ0 + 𝑖Δ)][æ ⊗ (æ0 ⊗ 𝑖Δ)]
. (3.2.21)

In order to perform the integration on the complex plane, the function Ð(æ, 𝑡) has to obey some
conditions, as noted in [29]. First, Ð(æ, 𝑡) must be analytically continued from real æ-axis into the
lower half æ⊗plane for all 𝑡 ⊙ 0 and, second, ♣Ð(æ, 𝑡)♣⊃ 0 as Im(æ) ⊃ ⊗∞. The integral (3.2.21)
diverges in two points: æ1 = æ0 + 𝑖Δ and æ2 = æ0 ⊗ 𝑖Δ. To perform the calculation, letŠs deĄne
the contour 𝐶 that lies on the real axis from ⊗𝑅 to 𝑅 and then goes counterclockwise along a
semicircle from 𝑅 to ⊗𝑅. This curve encloses the pole 𝑧0 = æ0 + 𝑖Δ and the contour integral along
𝐶 is

∫︁

C
𝑓(𝑧)𝑑𝑧 =

Δ

Þ

∫︁

C

Ð*(𝑧, 𝑡)𝑑𝑧

[𝑧 ⊗ (æ0 + 𝑖Δ)][𝑧 ⊗ (æ0 ⊗ 𝑖Δ)]
. (3.2.22)

Using the residue theorem,
∫︁

C
𝑓(𝑧)𝑑𝑧 = 2Þ𝑖

∑︁

𝑅𝑒𝑠(𝑓, 𝑧0), (3.2.23)

we have

∫︁

C
𝑓(𝑧)𝑑𝑧 = 2Þ𝑖 lim

z⊃z0

(𝑧 ⊗ 𝑧0)𝑓(𝑧0) ⊃ 2Þ𝑖
Δ

Þ
lim
z⊃z0

(𝑧 ⊗ æ0 ⊗ 𝑖Δ)Ð*(æ0 + 𝑖Δ)

(𝑧 ⊗ æ0 ⊗ 𝑖Δ)(𝑧 ⊗ æ0 + 𝑖Δ)
,

that is,
∫︁

C
𝑓(𝑧)𝑑𝑧 = Ð*(æ0 + 𝑖Δ). (3.2.24)

We can split the contour 𝐶 in a curved arc 𝐶1 and a straight part 𝐶2, as depicted in Ągure 3.1.
Then, we have

∫︁

C1

𝑓(𝑧)𝑑𝑧 +
∫︁

C2

𝑓(𝑧)𝑑𝑧 = Ð*(æ0 + 𝑖Δ).
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Figure 3.1: Path integration for (3.2.21). The path 𝐶 is the concatenation of the paths 𝐶1 and 𝐶2.

Since 𝐶2 is contained on real axis, the integral over 𝐶2 is real, that is,

∫︁

C2

𝑓(𝑧)𝑑𝑧 =
∫︁ R

⊗R
𝑓(𝑧)𝑑𝑧

If 𝑓(𝑧) is continuous on the semicircular contour 𝐶1 for all large 𝑅, then by JordanŠs lemma we
have limR⊃∞

∫︀

C1
𝑓(𝑧)𝑑𝑧 = 0, which means that the improper integral (3.2.21) is just the equation

(3.2.24).
Finally, the result is 𝑧(𝑡) = Ð*(æ0 + 𝑖Δ) and using the complex conjugate of equation (3.2.18)

we can compute the time evolution of 𝑧,

𝑑𝑧

𝑑𝑡
=
𝜕Ð*

𝜕𝑡

⧹︃

⧹︃

⧹︃

⧹︃

ω=ω0+i∆
⊃ 𝑑𝑧

𝑑𝑡
=
⎦

1

2
(Ú𝑧 + 𝐹 ) + 𝑖(æ ⊗ à)Ð* ⊗ 1

2
(Ú𝑧 + 𝐹 )*(Ð*)2

⎢⧹︃

⧹︃

⧹︃

⧹︃

ω=ω0+i∆
,

then
𝑑𝑧

𝑑𝑡
=

1

2
[(Ú𝑧 + 𝐹 ) ⊗ 𝑧2(Ú𝑧 + 𝐹 )*] ⊗ [Δ + 𝑖(à ⊗ æ0)]𝑧. (3.2.25)

3.3 Analysis of the reduced equations

In this section we will analyse the reduced equations of the two-dimensional system of (3.2.25).

First we reduce the number of parameters by reescaling 𝑡 = Δ𝑡, 𝐹 = 𝐹/Δ, Ú̂ = Ú/Δ, à̂ = à/Δ
and æ̂0 = æ0/Δ. We also let Ω = à ⊗ æ0. In what follows, we will use Δ = 1 and we will drop the
hats for ease notation.

By introducing the polar coordinates, 𝑧 = 𝑟𝑒iψ, we can rewrite equation (3.2.25) as

𝑑𝑟

𝑑𝑡
𝑒iψ + 𝑖𝑟𝑒iψ

𝑑å

𝑑𝑡
=

1

2
[(Ú𝑟𝑒iψ + 𝐹 ) ⊗ 𝑟2𝑒2iψ(Ú𝑟𝑒iψ + 𝐹 )*] ⊗ (1 + 𝑖Ω)𝑟𝑒iψ. (3.3.1)

Separating the expression above into real and imaginary parts we obtain the dimensionless evolu-
tion equations for 𝑟 and å,

�̇� ⊕ 𝑑𝑟

𝑑𝑡
=
Ú

2
𝑟(1 ⊗ 𝑟2) ⊗ 𝑟 +

𝐹

2
(1 ⊗ 𝑟2) coså, (3.3.2)
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å̇ ⊕ 𝑑å

𝑑𝑡
= ⊗

⎦

Ω +
𝐹

2

⎤

𝑟 +
1

𝑟

⎣

sinå
⎢

. (3.3.3)

Before we reproduce the analytical results obtained in [31], we will Ąrst describe the resulting
stability diagram, as depicted in Ągure 3.2 extracted from [31]. The rich dynamics exhibited
by the system is essentially divided into two big regions: the one labeled ŞAŤ represents the
forced entrainment, which means that a fraction of oscillators is moving in synchrony with the
same frequency as the drive signal (induced synchronization). The other region, labeled ŞEŤ,
represents the mutual entrainment, where a fraction of the system is spontaneously synchronized.
The remaining regions, ŞB,Ť, ŞCŤ and ŞDŤ, represent partial forced synchronization. We will brieĆy
discuss each of them on the next section.

As we can see in Ągure 3.2 the stability diagram is divided into 5 regions, each of them rep-
resenting qualitatively different phase portraits. The systemŠs rich dynamics shows the occurence
of four types of bifurcation curves, namely saddle-node, Hopf, homoclinic and SNIPER (saddle-
node inĄnite-periodic). Panels (b) and (c) are enlargements of the results of panel (a), in order to
explore the details of the bifurcation curves. As pointed in [31], because all these Ągures are very
hard to interpret, panel (d) proposes a schematic version of the stability diagram. In what follows,
we will derive the analytical approach to Ąnd the parametric curves of the stability diagram and
we will further discuss the results.

3.3.1 Saddle-node bifurcations

In bifurcation theory it is usual to Ąnd the Ąxed points in terms of the parameters of the
problem and then study their stability. However, it is algebraically complicated to solve equations
(3.3.2) and (3.3.3) in terms of them. Because we are concerned with the bifurcation curves we
can impose an appropriate condition for the bifurcation we want to analyse and solve for the
parameters in terms of the Ąxed ponts. This technique will allow us to derive the bifurcation curve
in closed form, either explicitly or parametrically.

We can start by using equations (3.3.2) and (3.3.3) and deĄning the functions �̇� = 𝑓(𝑟, å),
å̇ = 𝑔(𝑟, å) and (𝑟0, å0) as the Ąxed points. The Jacobian matrix is then written as

𝒥 =

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

∂f
∂r

⧹︃

⧹︃

⧹︃

⧹︃

r0,ψ0

∂f
∂ψ

⧹︃

⧹︃

⧹︃

⧹︃

r0,ψ0

∂g
∂r

⧹︃

⧹︃

⧹︃

⧹︃

r0,ψ0

∂g
∂ψ

⧹︃

⧹︃

⧹︃

⧹︃

r0,ψ0

⎞

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

(3.3.4)

By using equations (3.3.2) and (3.3.3), 𝒥 becomes

𝒥 =

∏︀

̂︁

̂︁

̂︁

̂︁

∐︁

λ
2
(1 ⊗ 3𝑟2

0) ⊗ 𝐹𝑟0 coså0 ⊗ 1 ⊗F
2

sinå0(1 ⊗ 𝑟2
0)

⊗F
2

sinå0

(︁

1 ⊗ 1
r2

0

⎡

⊗F
2

coså0

(︁

𝑟0 + 1
r0

⎡

⎞

̂︂

̂︂

̂︂

̂︂

̂︀

(3.3.5)
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Figure 3.2: Stability diagram for the forced Kuramoto model obtained from equations (3.3.2) and
(3.3.3). The bifurcation curves are represented as a function of intensity 𝐹 and frequency Ω of
the external force. The coupling strenght is Ąxed at Ú = 5. The system rich dynamics shows four
types of bifurcations (panel (a)): the supercritical Hopf bifurcation, the homoclinic bifurcation,
and two types of saddle-node bifurcations. The stability diagram is divided into 5 regions, each
of them representing qualitatively different phase portraits. Panels (b) and (c) are enlargements
of panel (a) (detailed explanation is on the text). Panel (d) represents a schematic version of the
stability diagram in order to clarify the truncated crossover region. Figure taken from [31].
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To ease notation we will omit the index of the Ąxed points. The equilibrium condition imposes
that �̇� = 0 and å̇ = 0. At a saddle-node bifurcation, one of the eigenvalues of 𝒥 has to be 0, which
means that the determinant of the Jacobian vanishes, det 𝒥 = 0. These three conditions must be
satisĄed simultaneously:

�̇� = 0 ⊃ Ú =
2

1 ⊗ 𝑟2
⊗ 𝐹 coså

𝑟
, å̇ = 0 ⊃ Ω = ⊗ 𝐹

2𝑟
(1 + 𝑟2) sinå, (3.3.6)

det 𝒥 = 0 ⊃
[︃

Ú

2
(1 ⊗ 3𝑟2) ⊗ 𝐹𝑟 coså ⊗ 1

⟨ [︃

⊗𝐹

2
coså

(︃

1 + 𝑟2

𝑟

)︃⟨

=
⎤

𝐹

2

⎣2

sin2 å(1 ⊗ 𝑟2)

(︃

𝑟2 ⊗ 1

𝑟2

)︃

.

(3.3.7)
Now we can substitute the expression of Ú (3.3.6) in equation (3.3.7) and after some manipulations
we obtain

𝐹 = ⊗ 4𝑟3(1 + 𝑟2) coså

(1 ⊗ 𝑟2)2(1 + 𝑟2 cos 2å)
. (3.3.8)

If we substitute (3.3.8) into equations (3.3.6) we can write Ú and Ω in terms of 𝑟 and å, that is

Ú =
2(𝑟4 + 2𝑟2 cos 2å + 1)

(1 ⊗ 𝑟2)2(1 + 𝑟2 cos 2å)
, 0 ⊘ 𝑟 ⊘ 1, (3.3.9)

Ω =
(𝑟3 + 𝑟)2 sin 2å

(1 ⊗ 𝑟2)2(1 + 𝑟2 cos 2å)
, ⊗Þ ⊘ å ⊘ Þ. (3.3.10)

The resulting set of equations (3.3.8, 3.3.9, 3.3.10) gives the saddle-node surface and it is one
of the various parametrizations possible. These results provide very important information. For
instance, when 𝑟 = 0 there is no external forcing (𝐹 = 0). In this case, equation (3.3.9) gives
the minimum value of the coupling strenght, Ú = 2, which is exactly the value of critical coupling
in the original Kuramoto model with a Lorentzian 𝑔(æ), expression (3.2.20). We can conĄrm by
using equation (2.1.53) where 𝑔(0) = (ÞΔ)⊗1 which gives Úc = 2Δ, or just Úc = 2, since we are
using Δ = 1. Hence Ú ⊙ 2 increases monotonically with 𝑟 for Ąxed å.

In order to reduce the number of unknown parameters we can consider a slice through the
saddle-node surface at a constant value of coupling strenght for Ú > 2 and then plot the respective
saddle-node curves in the (Ω, 𝐹 )⊗ plane. To get this parametrization, we can eliminate the å
dependence by isolating sin 2å in equation (3.3.10) and cos 2å in equation (3.3.9). The result is

sin 2å = Ý +
Ý(1 + 𝑟4 ⊗ Ö)

Ö ⊗ 2
, Ý ⊕ Ω(1 ⊗ 𝑟2)2

(𝑟3 + 𝑟)2
, cos 2å =

1 + 𝑟4 ⊗ Ö

𝑟2(Ö ⊗ 2)
, Ö ⊕ Ú(1 ⊗ 𝑟2)2

2
.

(3.3.11)
Now, using cos2 2å+ sin2 2å = 1, we obtain the parametrization of the saddle-node (SN) curve as
a function of Ú and 𝑟:

ΩSN(Ú, 𝑟) =
(1 + 𝑟2)3/2

√︁

Ú(𝑟2 ⊗ 1)[Ú(𝑟2 ⊗ 1)2 ⊗ 4] ⊗ 4(𝑟2 + 1)

2(𝑟2 ⊗ 1)2
, (3.3.12)
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𝐹SN(Ú, 𝑟) =

√
2𝑟2

√︁

Ú2(1 ⊗ 𝑟2)3 + 2Ú(𝑟4 ⊗ 4𝑟2 + 3) ⊗ 8

(𝑟2 ⊗ 1)2
. (3.3.13)

Figure 3.2 shows the parametric plot for Ú = 5 Ąxed in the range 0 < 𝑟 < 1. ItŠs worth noting that
the two branches of the saddle-node curve intersect tangentially at a point named codimension-2
cusp and marked by the solid square in Ągure 3.2(d). The coordinates of the cusp can be found
numerically by calculating 𝑑𝐹SN/𝑑𝑟♣λ=5,r=r′ = 0, which gives 𝑟′ ≡ 0.7267. Then, substituting this
value on equations (3.3.12) and (3.3.13) we obtain (Ωcusp, 𝐹cusp) ≡ (3.5445, 3.4164). At the lower
branch of the saddle-node curve, where 𝐹 ≡ Ω, there is a large section of SNIPER bifurcations,
which are responsible to create or destroy limit cycles in the phase portrait.

3.3.2 Hopf bifurcation

In order to Ąnd the Hopf bifurcation curve, we need to impose simultaneously that �̇� = 0 and
å̇ = 0 (condition to equilibrium points) and tr 𝒥 = 0 and det 𝒥 > 0 (condition to Hopf bifurcation,
equivalent to require that the eigenvalues are pure imaginary), where ŞtrŤ denotes the trace of the
Jacobian. We can start by isolating 𝐹 coså and 𝐹 sinå of equations (3.3.6),

𝐹 coså =
2𝑟 ⊗ Ú𝑟(1 ⊗ 𝑟2)

1 ⊗ 𝑟2
, 𝐹 sinå = ⊗ 2Ω𝑟

1 + 𝑟2
. (3.3.14)

The condition tr 𝒥 = 0 gives,

tr𝒥 = 0 ⊃ Ú(1 ⊗ 3𝑟2)

2
⊗ 𝐹𝑟 coså ⊗ 1 =

𝐹 coså

2

⎤

𝑟 +
1

𝑟

⎣

. (3.3.15)

Substituting 𝐹 coså of (3.3.14) in (3.3.15) and multiplying both sides by 𝑟(1⊗ 𝑟2) we obtain, after
some manipulations,

(2𝑟 ⊗ Ú𝑟 + Ú𝑟3)(𝑟2 + 1) = 𝑟(1 ⊗ 𝑟2)(Ú⊗ 3Ú𝑟2 ⊗ 2) ⊗ 2𝑟2(2𝑟 ⊗ Ú𝑟 + Ú𝑟3) (3.3.16)

Now, isolating 𝑟 we have

𝑟 =

√︃

Ú⊗ 2

Ú+ 2
. (3.3.17)

Since the parameter 𝑟 depends only on Ú, we can write an expression for 𝐹 (Ú,Ω) if we calcu-
late cos2 å + sin2 å = 1 by using equations (3.3.14) and then substituting into (3.3.17). These
manipulations lead to

𝐹Hopf =
1

2Ú

√︃

(Ú⊗ 2)[Ú4 ⊗ 4Ú3 + 4(Ω2 + 1)Ú2 + 16Ω2Ú+ 16Ω2]

Ú+ 2
, (3.3.18)

which reduces to

𝐹Hopf =

√
3

10
√

7

√
225 + 196Ω2, (3.3.19)
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for Ú = 5. The curve 𝐹Hopf (Ω) is depicted in Ągure 3.2.
To plot equation (3.3.19) on the phase portrait with the saddle-node bifurcation, we still need

to evaluate det 𝒥 > 0, which is the remaining condition for the Hopf bifurcation to occur. The co-
ordinates of this limit point can be found when we impose the conditions for the Takens-Bogdanov
point, obtained when we calculate simultaneously �̇� = 0, å̇ = 0, tr 𝒥 = 0 and det 𝒥 = 0. We can
get the coordinates of the Takens-Bogdanov point analytically by substituting equation (3.3.17)
in expressions (3.3.12) and (3.3.13), that is,

ΩTB =
(Ú⊗ 2)Ú2

4(Ú+ 2)
, 𝐹TB =

Ú⊗ 2

4

√︃

Ú3 ⊗ 2Ú2 + 4Ú⊗ 8

Ú+ 2
. (3.3.20)

For Ú = 5, we have ΩTB =≡ 2.6786 and 𝐹TB ≡ 2.6441. The Takens-Bogdanov (TB) point is
represented by the Ąlled circle on panels (a) and (d) of Ągure 3.2. As regards the dynamical
behavior, the Takens-Bogdanov point separates the upper branch of the saddle-node bifurcation
into two regions with distinct characteristics. Below the TB point, an unstable node collides with
a saddle along the saddle-node curve, as can be seen by comparing regions D and A depicted on
the phase portrais of Ągures 3.3, panels (d) and (a), respectively. On the other hand, above the TB
point, a stable node collides with a saddle along the saddle-node curve, representing the transition
between regions B and A, as shown in panels (b) and (a) in Ągure 3.3.

3.3.3 Homoclinic bifurcation

The homoclinic bifurcation occurs when a periodic orbit collides with a saddle-node. As a
consequence, the limit cycle disappears after the collision. The theory of the Takens-Bogdanov
bifurcation predicts that a curve of homoclinic bifurcation must occur from the codimension-2
point (black square on Ągures 3.2(c) and (d)), tangentially to the saddle-node and to the Hopf
curves. The homoclinic curve can be computed numerically. As we can see on Ągure 3.2 (b),
the region where the homoclinic appears on the diagram is very narrow, which makes it almost
indistinguishable from the Hopf curve. This produces a very small area between them. It is
interesting to note that the homoclinic curve moves paralllel to the Hopf curve and then goes back
until it ends on the codimension-2 Şsaddle-node-loopŤ point, marked as a black diamond on Ągures
3.2(b) and (d), where it meets at the lower branch of the saddle-node and SNIPER curves.

3.4 Phase portraits and bifurcation scenarios

So far we reproduced all the bifurcation curves analytically (saddle-node, SNIPER and Hopf)
and numerically (homoclinic). Figure 3.2 shows that these curves divide the phase diagram into
Ąve regions. We can now discuss the dynamical behavior and the transitions associated in each
region, with the support of the phase portraits of Ągure 3.3. These Ągures can be computed by
integrating numerically equations (3.3.2) and (3.3.3) by varying the parameter space (𝐹 , Ω and Ú)
for different initial conditions (𝑟0, å0).
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Figure 3.3: Phase portraits for the variables 𝑟 and å for the two-dimensional dynamics of 𝑧 written
in polar coordinates representing the Ąve existing regions. The Ąxed nodes are represented as red
(stable) and blue (unstable) dots. The set of initial conditions to obtain all these curves can be
found in appendix A.

1. Region A: forced entrainment.

In region A the order parameter 𝑧 converges to the stable Ąxed point for all initial conditions,
as depicted on the phase diagram of Ągure 3.3(a). In the frame corotating with the drive,
𝑧 is phase-locked to the drive and moves periodically, which is represented by the Ąxed
point. If we change to the original frame, a signiĄcant fraction of oscillators is moving in
rigid synchrony with the same frequency of the external driving. In the case where 𝑔(æ) is
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centered in zero, that is æ0 = 0, the velocity of the oscillators in forced entrainment is å̇ = 0
on the corotating frame and å̇ = ⊗Ω in the original frame.

2. Region B: bistability between two states of forced entrainment

As we can see on Ągure 3.2(b) the region B is very narrow. To understand the transition
between regions A and B we can Ąx Ω and then decrease 𝐹 . When we pass from A to B,
a bifurcation occurs creating a pair of stable and unstable Ąxed nodes, coexisting with the
stable node of the region A, as represented in the lower right part of Ągure 3.3(b). Region
B depicts a bistability regime: for different initial conditions, the system goes to one of the
two possible states, differing in the magnitude or in the argument of 𝑧.

3. Region C: bistability between forced entrainment and phase trapping

We can continue to analyse Ągure 3.2(b) for Ąxed Ω and decreasing 𝐹 until we reach region C,
Ągure 3.2(c). In this case we pass through the curve of the Hopf bifurcation, where the stable
Ąxed point created in region B loses stability and creates a small attracting limit cycle. On
this cycle, 𝑧 remains running with the same average frequency of 𝐹 , but now its amplitude
and relative phase oscillate slightly, characterizing a phase trapping, that is, 𝑧 is frequency
locking without phase locking. This behavior exists simultaneously with that seen on regions
A and B, thus region C exhibits a bistability regime between forced entrainment and phase
trapping.

4. Region D: forced entrainment

The transition between regions C and D occurs when we cross the homoclinic bifurcation
curve. As we approximate from this curve, the limit cycle expands until it touches the
saddle-node and forms a homoclinic orbit. Beyond the bifurcation, the limit cycle completly
disappears, as depicted in Ągure 3.3(d). The consequence is a creation of an invariant loop,
where the saddle and the original stable node of region A are connected by the branches of
the saddleŠs unstable manifold. In region D, the stable node is the only attractor and the
system converges into a state of forced entrainment.

5. Region E: mutual entrainment

In the region E the forced entrainment is completly lost. The transition to region E can
occur in many ways. For example, we can pass from region D to E crossing the lower branch
of the saddle-node curve, below and to the left of the saddle-node-loop point (black diamond
of Ągure 3.2(b). In this case, as the bifurcation parameter is varied, the saddle and the stable
node in region D of Ągure 3.3(d) collapse into a single stationary point on a closed orbit. In
other words, the stable limit cycle is born with inĄnite period at the bifurcation point. This
characterizes a SNIPER (saddle-node inĄnite-period) bifurcation, represented as the dashed
line in Ągure 3.2. The result is a globally attracting limit cycle where the order parameter
oscillates at a different frequency of the external driving, which means that a fraction of
oscillators is dropped from the drive signal.

The other scenario possible to reach region E is to cross directly from C. In this case, we
pass through the saddle-node bifurcation, where two Ąxed points collide and annihilate each
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other. We can imagine this phenomenon if we look at Ągure 3.3(c): the saddle-node in the
middle and the stable node collides, and the limit cycle grows. After the bifurcation, the
result is the phase portrait represented in Ągure 3.3(e).

The simpler case possible is to pass from region A to E. We can take, for example, a portion
in the stability diagram where 𝐹 > 𝐹cusp and Ω > Ωcusp. For Ąxed Ω and decreasing 𝐹 we
move directly from A to E crossing the Hopf bifurcation, leading to the birth of a periodic
orbit. In all these cases the system has spontaneously synchronized or, in other words, has
entered in a mutual entrainment state.

3.5 Discussion

In this chapter we studied the forced Kuramoto model by reviewing the Childs and StrogatzŠs
work [31]. We reproduced the analytical results showing the details of the main equations derived
in their paper and we analysed the systemŠs rich dynamics by plotting the stability diagram and
the phase portrait with all bifurcation curves. To conclude this chapter, we will recapitulate the
major ideas and results.

Inspired by several physical and biological systems, such as electrochemical oscillators, coupled
metronomes, neutrino Ćavor oscillations, circadian rhythms and cardiac synchronization induced
by heart cells, the Kuramoto model can be easily extended to allow the inĆuence of external
forcing. Mathematically, we introduced a periodic driving term on the Kuramoto original system,
equation (3.1.3).

Previous works on the forced Kuramoto model [28, 29] analysed the competition between two
regimes: the induced synchronization, also called forced entrainment, where the systemŠs average
frequency is equal to the external driving, and the spontaneous synchronization, or mutual en-
trainment, where the external drive is not enough to drag the oscillators, recovering the Kuramoto
original dynamics. Although these works present very relevant improvements on the analytical
treatment of the model, they were not able to Ąnd the details of the bifurcation between these
regimes.

In this sense, Childs and Strogatz, based on [29], derived a complete analysis of the forced
Kuramoto model. They used equations (3.1.3) and explored the reduced dimensionality of a
inĄnite coupled differential equations into a two-dimensional system for a special family of functions
proposed in [29], leading to a complete bifurcation analysis, where it was possible to derive exact
results for the Hopf, saddle-node and Takens-Bogdanov bifurcations.

The stability diagram of Ągure 3.2 (a) is the main result of the paper and it is substantially
divided into two big regions, one concerning to the forced entrainment (region A), and the other to
the mutual entrainment (region E). ItŠs hard to see macroscopically the division between regions A
and E, but when we zoom in in the parameter space it is possible to access the narrow bifurcation
curves, 3.2 (b).

In a zoom out scale, the stability diagram is essentially divided by the straight line 𝐹 ≡ Ω. If
we take the Ú ⊃ ∞ limit, equation (3.3.3) reduces to

å̇ = ⊗Ω ⊗ 𝐹 sinå, (3.5.1)
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which is the Adler equation, used to model systems like ĄreĆies, lasers, and so forth. In the
strong coupling Ú regime, 𝑟 ⊃ 1 is faster than å and the oscillators behave as if they were a
single giant element, with a very intensive attracting limit cycle. Analytically, we can study the
Takens-Bogdanov point, which lies on the vicinity if the two big regions. Taking the Ú-large limit
on equations (3.3.20), we obtain

lim
λ⊃∞

𝐹TB
ΩTB

≡ 1 ⊗ 8

Ú4
⊃ 𝐹 ≡ Ω. (3.5.2)

In the next chapter we will study the forced Kuramoto model on networks, where the topology
deĄnes the interactions between the elements. We are going to consider the work of Childs and
Strogatz in the regime where 𝐹 ≡ Ω. We will also apply the external forcing only on a fraction of
the oscillators. In this context, we are interested in the conditions for global synchronization with
external force, if it exists.
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Chapter 4

Global synchronization of partially
forced Kuramoto oscillators on networks

In the last chapter we described a version of the forced Kuramoto model where an external
stimulus, represented by a periodic force, was applied to all oscillators of the system. We reviewed
the analytical and numerical results of the work [31] and we showed the rich bifurcation structure
of the system.

In this chapter we consider systems where the oscillatorsŠ interconnections form a network and
where the force acts only on a fraction of the oscillators. We are interested in the conditions for
global synchronization as a function of the fraction of nodes being forced and how it depends
on network topology. The motivation for this study is to understand the response of a neural
complex network to localized stimuli. We show that the minimum force 𝐹crit needed for global
synchronization scales as 1/𝑓 , where 𝑓 is the fraction of forced oscillators, and it is independent
of the internal coupling strength Ú. However, in order to reach synchronization with fraction 𝑓 a
minimum internal strength is needed. The degree distribution of the network and the set of forced
nodes modify the 1/𝑓 behavior in heterogeneous networks. We develop analytical approximations
for 𝐹crit as a function of the fraction 𝑓 of forced oscillators and for the minimum fraction 𝑓crit for
which synchronization occurs as a function of Ú.

This chapter was published in [51]. We will follow its structure: in section 4.1 we describe the
partially forced Kuramoto model and present the results of numerical simulations in section 4.2.
In section 4.3 we discuss the analytical calculations for 𝐹crit(𝑓) and 𝑓crit(Ú) that take into account
network topology and explain most of the simulations. We summarize our conclusions in section
4.4.

4.1 The Forced Kuramoto Model on Networks

In order to study the forced Kuramoto model on networks we need to consider two modiĄcations
on the system of equations (3.1.3): Ąrst, to include the possibility that each oscillator interacts
only with a subset of the other oscillators, the system will be placed on a network whose topology
deĄnes the interactions [52] and second we allow the external force to act only on a subset of the
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oscillators, representing the ŞinterfaceŤ of the system that interacts with the ŞoutsideŤ world, like
the photo-receptor cells in the eye [8].

The system is described by the equations

ã̇i = æi ⊗ à ⊗ 𝐹 Ói,C sinãi +
Ú

𝑘i

N
∑︁

j=1

𝐴ij sin(ãj ⊗ ãi), (4.1.1)

where 𝐴ij is the adjacency matrix deĄned by 𝐴ij = 1 if oscillators 𝑖 and 𝑗 interact and zero if they
do not; 𝑘i is the degree of node 𝑖, namely 𝑘i =

∑︀

j 𝐴ij; 𝐹 and à are respectively the amplitude
and frequency of the external force; and 𝐶 is the subgroup of oscillators subjected to the external
force. We have also deĄned Ói,C = 1 if 𝑖 ∈ 𝐶 and zero otherwise and we shall call 𝑁C the number
of nodes in the set 𝐶. In the next chapter we will consider cases where the network is weighted,
i.e., where 𝐴ij can assume real values associated with the intensity of the coupling.

The behavior of the system depends now not only on the distribution of natural frequencies
and coupling intensity Ú, but also on the network properties, on the intensity and frequency of
the external force and on the size and properties of the set 𝐶. The role of network characteristics
in the absence of external forcing has been extensively studied in terms of clustering [53, 54, 55],
assortativity [56] and modularity [46, 57, 58].

The behavior of the system under an external force has also been considered for very large
and fully connected networks when the force acts on all nodes equally, as we have seen on the
last chapter [31]. The system exhibits a rich behavior as a function of the intensity and frequency
of the external force. In particular, it has been shown that if the force intensity is larger than
a critical value 𝐹crit the system may fully synchronize with the external frequency. Among the
questions we want to answer here are how synchronization with the external force changes as we
make 𝑁C < 𝑁 and how does that depend on the topology of the network and on the properties
of the nodes in 𝐶. In particular we are interested in studying how the critical intensity 𝐹crit of
the external force increases as 𝑁C decreases and if there is a minimum number of nodes that
need to be excited by 𝐹 in order to trigger synchronization. In the next section we show the
results of numerical simulations considering three network topologies (random, scale-free and fully
connected). Analytical calculations that describe these results will be presented next.

4.2 Numerical Results

In order to get insight into the general behavior of the system we present a set of simulations
for the following networks: (i) fully connected with 𝑁 = 200 nodes (FC200), (ii) fully connected
with 𝑁 = 500 (FC500); (iii) random Erdos-Renyi network with 𝑁 = 200 and average degree ⟨𝑘⟩ =
10.51 (ER200) and (iv) scale-free Barabasi-Albert network with 𝑁 = 200 (BA200) computed
starting with 𝑚0 = 11 fully connected nodes and adding nodes with 𝑚 = 10 links with preferential
attachment, so that ⟨𝑘⟩ = 9.83. In all simulations we have considered a Gaussian distribution
(equation (2.2.2)) of natural frequencies 𝑔(æ) with mean æ0 = 0 and standard deviation 𝑎 = 1.0
for the oscillators. In chapter 3, Ω = à ⊗ æ0, thus Ω = à. In what follows, we will use à for the
driving frequency.
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For the fully connected networks the critical value Úc for the onset of synchronization can be

estimated when 𝑁 ⊃ ∞ as Úc = 2𝑎
√︁

2/Þ ≡ 1.6 (see equation (2.2.2)). For Ąnite networks the

calculation of Úc can be performed numerically (see, for example, [59]) and we have checked that
Úc = 1.6 is a good approximation even for 𝑁 = 100 and for the other topologies we used. Full
synchronization occurs only for larger values of Ú and we deĄne Úf as the value where 𝑟 = 0.95 and
å̇ < 10⊗2. Here we are interested in scenarios where the system synchronizes spontaneously when
𝐹 = 0 and, therefore, we set Ú above Úf to assure full spontaneous synchronization. The coupling
strength Ú has an important role in the synchronization process, as we discuss below. For each
network type and fraction 𝑓 = 𝑁C/𝑁 of nodes interacting with the external force we calculate the
minimum (critical) force necessary for synchronization with the external frequency.

In order to characterize the dynamics we use the usual order parameter

𝑧 = 𝑟𝑒iψ =
1

𝑁

N
∑︁

i=1

𝑒iφi , (4.2.1)

where 𝑟 = 1 indicates full synchronization and å̇ the frequency of the collective motion. We note
that, since we are working on a rotating frame, synchronization with à will imply å̇ = 0 whereas
spontaneous synchronization å̇ = ⊗à.

−4

−3

−2

−1

0

1

2

0 1 2 3 4 5 6

(a)

F

〈

ψ̇
〉

r

−4

−3

−2

−1

0

1

2

0 1 2 3 4 5 6 7

(b)

F

〈

ψ̇
〉

r

Figure 4.1: Order parameter 𝑟 (blue) and the average of å̇, ⟨å̇⟩ (red), as a function of 𝐹 for a fully
connected network with 𝑁 = 200, Ú = 20.0 and à = 3.0 for (a) 𝑓 = 1 and (b) 𝑓 = 0.5. Red dots
correspond to time averaged values calculated between 𝑡 = 25 to 𝑡 = 50. Error bars correspond to
one standard deviation. The dashed lines indicate the critical force.

Fig. 4.1 shows 𝑟 and the average of å̇, ⟨å̇⟩, for FC200 as a function of 𝐹 for Ú = 20 and 𝑓 = 1
and 𝑓 = 0.5. The system has been evolved up to 𝑡 = 50 starting with random phases, which was
enough to overcome the transient period (see Fig.4.6). Because the system is Ąnite and there are
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Ćuctuations we computed time averages and standard deviations of 𝑟 and å in the interval from
time 25 to 50. The system remained fully synchronized for all values of 𝐹 , Ąrst spontaneously
(𝐹 = 0) and later with the external frequency for 𝐹 > 3 (𝑓 = 1) and for 𝐹 > 6 (𝑓 = 0.5). For
intermediate values of the external force, å̇ oscillates and the average and standard deviations
are shown. In this regime the oscillators move together (𝑟 = 1) but change directions constantly
due to the competition between the couplings Ú and 𝐹 . The critical force 𝐹crit was numerically
computed as the value of 𝐹 where å̇ < 10⊗2 and 𝑟 > 0.95.
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Figure 4.2: (a) Critical force 𝐹crit versus fraction 𝑓 of forced nodes for the fully connected network
FC200. The continuous red curve shows the analytical calculation and the symbols are the results
of numerical simulations for different values of the coupling constant Ú. The point with smallest
𝑓 for each Ú is deĄned as 𝑓crit. (b) 𝑓crit(Ú) from numerical simulations (stars) and according to
Eq. (4.3.10) (red curve). The dashed (blue) line was obtained from the parametric curve of Eq.
(4.3.13).

Fig. 4.2(a) shows 𝐹crit as a function of the fraction 𝑓 of excited nodes for FC200. It also shows
that for a Ąxed value of the internal coupling Ú synchronization can only be achieved for 𝑓 larger
than a critical value 𝑓crit(Ú). For example, for Ú = 20 (orange circles) synchronization is obtained
only for 𝑓 > 0.22. For 𝑓 < 0.22 no synchronization is achieved for Ú = 20, no matter how large
is the external force. The value of 𝑓crit is shown as the last point of the corresponding symbol on
the plot. Notice that the minimum value of 𝐹 for synchronization does not itself depend on Ú,
since the same value is obtained as long as Ú is large enough. Fig. 4.2(b) shows 𝑓crit as a function
of Ú. We have performed the same analysis for FC500 and both curves 𝐹crit(𝑓) and 𝑓crit(Ú) were
essentially identical to the ones obtained for FC200, showing that these are independent of network
size.
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Fig. 4.3 shows similar results for the ER200 random network. In this case the nodes have
different degrees and it matters which nodes are selected to interact with the external force. For
the results in panel (a) the nodes have been ordered from high to low degree and the 𝑓𝑁 Ąrst
(highly connected) nodes have been selected to interact with the force. In panel (b) the nodes
were chosen at random. The dependence of 𝑓crit on Ú is similar to the fully connected case and
different values of Ú are shown with different symbols.
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Figure 4.3: Critical force 𝐹crit versus fraction 𝑓 of forced nodes for the random network ER200. The
continuous red curve shows the analytical calculation and the symbols are the results of numerical
simulations for different values of the coupling constant Ú. The point with smallest 𝑓 for each Ú
is deĄned as 𝑓crit. Force is connected with nodes of (a) highest degrees; (b) random. For the red
line on panel (b) we have computed the average degree ⟨𝑘⟩C of forced set over 10 simulations to
eliminate Ćuctuations.

For the random network the differences between the two cases are not striking, since the
distribution of nodes is quite homogeneous. This is not the case for the BA200 network, as shown
in Fig. 4.4. When the external source connects with nodes of highest degree, panel (a), the critical
force for synchronization is smaller than when connected randomly, panel (b), or with nodes of
lowest degrees, panel (c), as expected. The analytical (red) curve for random connections shows
an average over 10 simulations using the same network but different random choices of nodes.
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Figure 4.4: Critical force 𝐹crit versus fraction 𝑓 of forced nodes for the scale free network BA200.
The continuous red curve shows the analytical calculation and the symbols are the results of
numerical simulations for different values of the coupling constant Ú. The point with smallest 𝑓
for each Ú is deĄned as 𝑓crit. Force is connected with nodes of (a) highest degrees; (b) random
and (c) lowest degree. For the red line on panel (b) we have computed the average degree ⟨𝑘⟩C of
forced set over 10 simulations to eliminate Ćuctuations.
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4.3 Analytical results

The numerical simulations show that: (i) 𝐹crit depends of 𝑓 ; (ii) for heterogeneous networks
it depends on the properties of the set 𝐶; (iii) there is a critical fraction 𝑓crit, that depends on
the network type, on 𝐶 and on Ú, below which no synchronization is possible. In this section we
derive a theory for 𝐹crit(𝑓) and an approximation for 𝑓crit(Ú).

4.3.1 Critical Force

In order to derive an expression for 𝐹crit(𝑓) we use the fact that nodes directly affect all
their neighbors and, therefore, their importance should be proportional to their degree. DeĄning
𝐹 = 𝑓𝐹 , we start by multiplying all terms of Eq.(4.1.1) by 𝑘i/⟨𝑘⟩, sum over 𝑖 and divide by 𝑁 to
obtain

𝑑⟨ã⟩
𝑑𝑡

= ⟨æ⟩ ⊗ à ⊗ 𝐹 ⟨sinã⟩C (4.3.1)

where

⟨ã⟩ =
1

𝑁

N
∑︁

i=1

𝑘i
⟨𝑘⟩ãi, (4.3.2)

⟨æ⟩ =
1

𝑁

N
∑︁

i=1

𝑘i
⟨𝑘⟩æi (4.3.3)

and

⟨sinã⟩C =
1

𝑁c

∑︁

i∈Nc

𝑘i
⟨𝑘⟩ sinãi. (4.3.4)

The term proportional to Ú, containing the coupling between the oscillators, cancel out exactly.
When the oscillators synchronize with the external force Eq.(4.3.4) becomes

⟨sinã⟩C = sin⟨ã⟩⟨𝑘⟩C
⟨𝑘⟩ , (4.3.5)

where ⟨𝑘⟩C = 1/𝑁c
∑︀

i∈Nc
𝑘i is the average degree of the set C.

Since ⟨ã⟩ is constant in the synchronized state Eq.(4.3.1) implies

sin⟨ã⟩ =
⟨æ⟩ ⊗ à

𝐹k
(4.3.6)

where we have deĄned

𝐹k = 𝑓
⟨𝑘⟩C
⟨𝑘⟩ 𝐹. (4.3.7)

Because the æi are randomly distributed with zero average, ⟨æ⟩ is generally small for large net-
works (although not zero in a single realization of the frequency distribution). Since ♣sin⟨ã⟩♣⊘ 1,
Eq.(4.3.6) holds only if 𝐹k ⊙ ♣à ⊗ ⟨æ⟩♣ so that the critical force can be estimated as 𝐹c = à ⊗ ⟨æ⟩,
or

𝐹crit =
à ⊗ ⟨æ⟩

𝑓

⟨𝑘⟩
⟨𝑘⟩C

≡ à

𝑓

⟨𝑘⟩
⟨𝑘⟩C

. (4.3.8)
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For regular networks, in particular, where all nodes have the same degree, ⟨𝑘⟩ = ⟨𝑘⟩C , the critical
force is reduced to

𝐹crit =
à

𝑓
. (4.3.9)

Eq. (4.3.8) shows that when nodes with high degree are being forced, ⟨𝑘⟩C > ⟨𝑘⟩, the critical
force for synchronization is smaller than the value obtained by equation (4.3.9), since the external
force is directly transmitted to a large number of neighbors. On the other hand, if ⟨𝑘⟩C < ⟨𝑘⟩
(nodes with low degree are being forced) the critical force must be higher than that estimated by
(4.3.9), since these nodes have few neighbors. This agrees with the results shown in Figs. 4.2-4.4
where the continuous (red) line shows the approximation Eq (4.3.8). For the scalefree network,
in particular, when the force acts on nodes of highest degree, Fig. 4.4(a), 𝐹crit ≡ 5 for 𝑓 = 0.4,
whereas 𝐹crit ≡ 15 for the same value of 𝑓 when the force acts on the nodes with smallest degree
Fig. 4.4(c).

4.3.2 The critical fraction

Eq.(4.3.1) is exact and it might appear to be completely independent of Ú. This, however, is
not true, since the dynamics of the angles ã are implicitly coupled by Ú and synchronization is
only possible if Ú is large enough. As 𝑓 decreases the amplitude of the external force needed for
synchronization increases and if it gets too much larger than Ú the oscillators start to move almost
independently and synchronization is hindered.

An approximation for minimum value of 𝑓 that can lead to synchronization for a given Ú can be
obtained by setting the internal coupling strength per node to the intensity of the external force,
i.e., Ú ♠ 𝐹 . Along the curve 𝐹 = 𝐹crit this becomes Ú ♠ à⟨𝑘⟩/(𝑓⟨𝑘⟩C) (see Eq.(4.3.8)). However,
since complete spontaneous synchronization only happens for Ú sufficiently large (of the order of
Úf ) we propose that 𝑓crit can be estimated from the relation Ú⊗ Ú0 = 𝐹crit, or

𝑓crit(Ú) =
à

Ú⊗ Ú0

⟨𝑘⟩
⟨𝑘⟩C

, (4.3.10)

where Ú0 is a Ąt parameter, whose value has to be at least Úc. For fully connected networks
⟨𝑘⟩ = ⟨𝑘⟩C and Eq. (4.3.10) reduces to 𝑓crit(Ú) = à/(Ú ⊗ Ú0). For the red curve in Fig.4.2(b) we
obtained Ú0 = 4.48 ∘ 0.12 which Ąts very well the numerical results (black stars). Note that the
value of Ú for 𝑓 = 1 is Ú0 + à = 7.48 for which we Ąnd 𝑟 = 0.99 for 𝐹 = 0 although å̇ is still
Ćuctuating. Full spontaneous synchronization (𝑟 > 0.95 and å̇ < 10⊗2) only occurs for Úf = 11.3.

The heuristic approximation given by Eq.(4.3.10) can be made more precise using the bifurca-
tion surfaces derived by Childs and Strogatz [31] for the case where the external force acts on all
nodes. The derivation assumed a Lorentzian distribution for the oscillatorŠs natural frequencies,
but is believed to be valid for a larger class of such distributions. The full bifurcation diagram is
divided into Ąve regions but is dominated by only two: one where the oscillators are locked to the
same frequency as the external force and one with mutual, spontaneous, synchronization. These
two main regions are separated by saddle-node bifurcations given in the 𝐹 versus à plane, for Ú
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Ąxed, by the parametric equations

à(Ú, 𝑟) =
(1 + 𝑟2)3/2

2(1 ⊗ 𝑟2)2

√︁

Ú(𝑟2 ⊗ 1)[Ú(𝑟2 ⊗ 1)2 ⊗ 4] ⊗ 4(𝑟2 + 1), (4.3.11)

𝐹 (Ú, 𝑟) =

√
2𝑟2

(1 ⊗ 𝑟2)2

√︁

Ú2(1 ⊗ 𝑟2)3 + 2Ú(𝑟4 ⊗ 4𝑟2 + 3) ⊗ 8, (4.3.12)

where 𝑟 varies from approximately 0.66 to 1.0. These expressions were derived on the last chapter;
see equations (3.3.12) and (3.3.13), respectively. The resulting curve 𝐹 = 𝐹 (à) can be approxi-
mated by the simple relation 𝐹 = à, as predicted by eq.(4.3.9). This approximation becomes exact
as Ú goes to inĄnity, or when 𝑟 = 1 and å̇ = 0.

Solving these equations for 𝐹 and Ú we obtain

Ú(à, 𝑟) =
2

(𝑟2 ⊗ 1)2
+ 2

⎯

⎸

⎸

⎷

𝑟4

(𝑟2 ⊗ 1)4
+
à2(𝑟2 ⊗ 1)

(𝑟2 + 1)3
(4.3.13)

and 𝐹 (à, 𝑟) = 𝐹 (Ú(à, 𝑟), 𝑟). This new set of parametric equations results in the critical curve
𝐹 = 𝐹 (Ú), for Ąxed à. Finally, using eq.(4.3.9) 𝐹 = à/𝑓 we can compute 𝑓 = 𝑓(Ú) with the
parametric functions (Ú(à, 𝑟), à/𝐹 (à, 𝑟))). This curve is shown as dashed (blue) line in Fig. 4.2(b)
and differs from the heuristic approximation only for small values of Ú.

4.3.3 Transition from forced to mixed dynamics

Synchronization with the external force is possible only if 𝐹 > 𝐹crit, estimated by Eq. (4.3.8).
If 𝐹 < 𝐹crit the systemŠs behavior is determined by the competition between spontaneous and
forced motion. The transition between these two regimes was studied in detail in ref. [31] for the
case of inĄnitely many oscillators, all of which coupled to the external drive. Here we present a
simpliĄed description of the transition using the analytical approach developed above.

Making the approximations ⟨æ⟩k = 0 and ⟨sinã⟩k,C = sin⟨ã⟩, Eq. (4.3.1) simpliĄes to the Adler
equation [60]

𝑑ã

𝑑𝑡
= ⊗à ⊗ 𝐹 sinã (4.3.14)

where we are omitting the average symbol and considering regular networks to simplify the nota-
tion. For general networks we only need to make 𝐹 ⊃ 𝐹k. This equation, which has been used to
model ĄreĆies [61] among other systems [31], can be solved exactly to give

à tanã/2 = 𝐹 +
√︁

𝐹 2 ⊗ à2 tanh
⎦

1

2

√︁

𝐹 2 ⊗ à2(𝑡⊗ 𝑡0)
⎢

(4.3.15)

for 𝐹 > à. In this case ã converges to a constant value and the system stops (synchronizes with
𝐹 ). For 𝐹 < à, on the other hand, the solution is oscillatory,

à tanã/2 = 𝐹 ⊗
√︁

à2 ⊗ 𝐹 2 tan
⎦

1

2

√︁

à2 ⊗ 𝐹 2(𝑡⊗ 𝑡0)
⎢

(4.3.16)
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with period [62]

á =
2Þ

√︁

à2 ⊗ 𝐹 2
. (4.3.17)
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Figure 4.5: Frequency of oscillations for the fully connected network with 200 nodes for 𝐹 = 2.5
Ąxed and fraction (a) 𝑓 = 100%; (b) 𝑓 = 90%; (c) 𝑓 = 80% and (d) 𝑓 = 70%. The points show 𝑟
(blue triangles) and å̇ (orange circles). The periods estimated from Eq. (4.3.17) are (a) á = 3.8;
(b) á = 3.4; (c) á = 3.1 and (d) á = 2.9.

Figure 4.5 illustrates the frequency of oscillations for 𝐹 < 𝐹crit = 3 Ąxed and different number
of nodes that receive the external drive, showing 𝑟 and å̇ as a function of 𝑡, for a fully connected
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network. Although 𝑟 approaches 1 quickly (i.e., the system does synchronize), å̇ oscillates with
growing periods as the number of nodes on 𝐶 increases, remaining always negative. This means
that å decreases monotonically and the order parameter 𝑧(𝑡) oscillates, implying that a Ąnite
fraction of the oscillators has synchronized spontaneously, due to their mutual interactions and
not to the drive. The approximation (4.3.17) for the periods of oscillation matches very well the
results of the simulations.

4.3.4 Time to equilibrium

The time scale of dynamical processes also changes with the fraction of forced nodes. The time
to equilibrium should increase when 𝑓 decreases, but no simple relation seems to exist. When 𝐹
is large, we can approximate Eq.(4.3.1) by

𝑑⟨ã⟩k
𝑑𝑡

= ⊗𝐹𝑓 ⟨𝑘⟩C
⟨𝑘⟩ sin⟨ã⟩k. (4.3.18)
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Figure 4.6: Contour plot of time to equilibration for different values of 𝐹 and 𝑓 and Ąxed Ú = 40.
Thick lines correspond to constant times according to the approximation 𝐹 = 𝐹0/𝑓 for 𝐹0 = 3, 5,
7 and 9.
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DeĄning 𝑡′ = 𝑡𝐹𝑓⟨𝑘⟩C/⟨𝑘⟩ this equation becomes identical to that of a system where the force
acts on all nodes. Therefore, within this crude approximation we expect that: (i) for Ąxed 𝐹 ,
the time to equilibration should scale as á(𝑓) = á0 ⟨𝑘⟩/[𝑓⟨𝑘⟩C ], where á0 is the equilibration time
at 𝑓 = 1 and; (ii) along the curve 𝐹crit(𝑓) = 𝐹 ⟨𝑘⟩/[𝑓⟨𝑘⟩C ] the time to equilibration remains
constant, since the factors multiplying 𝐹 in Eq.(4.3.18) cancel out. Fig.(4.6) shows contour levels
of numerically computed equilibration times in the 𝐹 ×𝑓 plane. Thick white lines shows predicted
curves of constant times, which indeed provide a somewhat poor approximation to the computed
values.

4.4 Conclusions

In this chapter we considered the problem of periodically forced oscillators where the external
drive acts only on a fraction of them [31]. When the periodic drive acts on all oscillators, the
system always synchronize with the forced period if the force intensity is sufficiently large [31].
Using numerical simulations and analytical calculations we have shown that the force required to
synchronize the entire set of oscillators increases roughly as the inverse of the fraction of forced
nodes. The degree distribution of the complete network of interactions and of the set of forced
nodes also affect the critical force for synchronization. Forcing oscillators with large number of
links facilitates global synchronization in proportion to the average degree of the forced set to the
total network.

We have also shown that below a critical fraction, that depends on Ú, no synchronization occurs,
no matter how large the force. We believe this is an interesting result of this study that might
have consequences for adaptive systems relying on synchronization. The set of 𝑁C = 𝑓𝑁 nodes
that directly receives the external drive can be interpreted as the interface of a system where the
remaining (1 ⊗ 𝑓)𝑁 nodes are the Şprocessing unitŤ, that needs to synchronize with the external
signal 𝐹 to perform a function. In this case it would be desirable to have 𝑁C as small as possible
to increase the processing power. However, synchronization with small 𝑓 requires large couplings
between the units, which can be costly. An example is neural network of C. elegans where multiple
links can connect the same two nodes and the cost of a connection is proportional to the number
of such links (synaptic connections) that make it [63]. In these cases it is expected that a balance
between interface size and network cost is attained, and natural systems should evolve toward this
condition. The Ąnal balance will, of course, depend on the cost. If the cost is zero the system
should evolve to the minimum possible interface size, given by 𝑓 = à/𝐹 and Ú = Úc+à/𝑓 = Ú0 +𝐹
(for a fully connected network). If there is a cost it might be advantageous to work with a smaller
processing unit (and larger interface) that requires smaller values of Ú.

The theory developed here for 𝐹crit(𝑓) considered only constant values of the coupling strength
Ú. In this case the term containing Ú in Eq.(4.1.1) disappears from the averaged Eq.(4.3.1). This
equation, however, remains valid for arbitrary symmetric couplings Úij = Úji, as can be easily
veriĄed by inspection. For asymmetric couplings, Úij ̸= Úji, this is not true and an extra term has
to be included in Eq. (4.3.1). However, since this term is proportional to sin(𝜃j ⊗ 𝜃i) it vanishes
when the system synchronizes and Eq.(4.3.8) still holds, being, therefore, a very robust result.

As a Ąnal comment we note that here we have picked nodes for the set 𝐶 at random or based on
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their degree. Another interesting choice would be to pick them according to their natural frequen-
cies æi. For Ąnite systems the oscillator with the largest frequency determines the spontaneous
synchronization of the system [59] and forcing the fastest nodes might also result in interesting
dynamics.
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Chapter 5

Modular structure in C. elegans neural
network and its response to external
localized stimuli

In this chapter we probe the community structure of the neural electrical junction network
of the C. elegans using the partially forced Kuramoto model of synchronization [51]. We aim to
understand how the network responds to external localized stimuli and which modules are more
affected when a speciĄc group of neurons, that can be a functional group or a physically arranged
module, is stimulated. We use two different metrics to characterize the overall behavior of the
network under a localized stimulus: the synchronization of neurons within and between modules, as
measured by the usual Kuramoto order parameter, and the phase-velocity inter-neuron correlation.
We want to investigate the behavior of the system as a function of parameters such as stimulus
intensity and inter-neuron connection strength. In particular we are interested in cases leading
to global induced synchronization and highly correlated behavior, where the network responds as
a whole, or to uncorrelated states, where neurons do not react to each other. Our simulations
are guided by the results of chapter 4 where we studied the partially forced Kuramoto model on
synthetic networks, using the external force to simulate a localized stimulus.

C. elegans is a nematode animal, unsegmented and with bilateral symmetry, exhibiting physi-
ological similarity to mammals as regards the nerves and neurotransmitters morphologies. The C.
elegans is considered a model organism in studies of disorders related to human nervous system,
such as epilepsy [64, 65] and ParkinsonŠs disease [66, 67]. It was the Ąrst multicelular animal to
have its whole nervous system mapped, containing only 302 neurons. Its neural network is avail-
able in open source data centers, such as the WormAtlas [68] and the OpenWorm [69]. Here we
extracted all necessary data from WormAtlas.

The 248 neurons of the electrical junction network are anatomically classiĄed as belonging
to head, body or tail, and neuron types are divided into motoneurons, interneurons and sensory
neurons. We have also performed a classiĄcation into 10 ganglia (A: anterior ganglion, B: dorsal
ganglion, C: lateral ganglion, D: ventral ganglion, E: retrovesicular ganglion, F: posterolateral
ganglion, G: ventral cord neuron group, H: pre-anal ganglion, J: dorsorectal ganglion, K: lumbar
ganglion [68]) which is a Ąner division of the anatomical classiĄcation into head, body and tail.
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We also decomposed the network into three modules based on topological properties and num-
bered by 𝑀1, 𝑀2 and 𝑀3 from largest to smallest. This modularization procedure was made with
the software Cytoscape using the app ModuLand [70, 71]. Each module contains neurons from the
three anatomical parts, and consequently the 10 ganglia, and of the three types. We applied the
stimulus to the largest module 𝑀1, then to the ganglion C and Ąnally to the sensory neurons and
we observed the response of other neurons. We will show that no single partition of the brain into
communities can account for its behavior under stimuli. All partitions analyzed here, topological,
anatomical and functional, play a role in the response to external localized stimuli, revealing the
complexity of the brainŠs wiring and function.

This chapter was published in [72]. We will follow its structure: in section 5.1 we describe
the materials and methods, showing the partially forced Kuramoto model, the C. elegans neural
connectome and the order parameters used to measure the state of the network. The results of
numerical calculations and its analysis are in section 5.2. Finally, we summarize our discussion in
section 5.3. The supplementary material is in section 5.4.

5.1 Materials and Methods

5.1.1 Partially forced Kuramoto model

The Kuramoto model of coupled oscillators [14] is a paradigm in the study of synchronization
and has been explored in connection with biological systems, neural networks and the social sciences
[15, 16]. Here we consider a modiĄed version of the original Kuramoto model where each oscillator
interacts only with a subset of the other oscillators, as speciĄed by a network of connections [52].
Moreover, part of the oscillators also interacts with an external periodic force [28, 29, 31, 51]. The
oscillators are described by their phase 𝜃 and system is governed by the equations

ã̇i = æi ⊗ à ⊗ 𝐹 Ói,C sinãi +
1

𝑠i

N
∑︁

j=1

Úij sin(ãj ⊗ ãi), (5.1.1)

where Úij = Ú𝐴ij. The adjacency matrix 𝐴ij gives the strength of interaction between oscillators
𝑖 and 𝑗. For unweighted networks 𝐴ij assumed the value 1 if they interact and 0 otherwise, but
weighted networks like that of the C. elegans, might have very inhomogeneous distributions of
weights. To distinguish this case from the unweighted networks we deĄne 𝑠i =

∑︀

j 𝐴ij as the
weighted degree of neuron 𝑖. For networks that can be divided into anatomical or functional
communities, the external force can be applied to one of the communities as a way to probe its
inĆuence on the others. Thus, we will investigate how the control parameters, Ú and 𝐹 , affect the
spontaneous and induced synchronization of the focal community (where the force is applied) and
how it spreads to the other communities of the system.

As we already discussed on Chapter 4 if there is no external force and if the internal cou-
pling constant Ú is sufficiently large the oscillators synchronize spontaneously with frequency
ǣ =

∑︀

æi/𝑁 in the original coordinates 𝜃 or with frequency ǣ⊗à in the rotating frame ã. On the
other hand, if both Ú and 𝐹 are large the system synchronizes with the external frequency à in
the original frame or 0 in the rotating frame. In our simulations, since the Gaussian distribution is
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symmetric, ǣ = 0, the spontaneous synchronization corresponds to global frequency å̇ = ⊗à and
forced synchronization to frequency å̇ = 0 [51].

We can estimate the minimum intensity of the external force, 𝐹c, required to induce global
synchronization using equation (4.3.8)

𝐹c =
à

𝑓

⟨𝑘⟩
⟨𝑘⟩C

. (5.1.2)

In the context of this work, 𝑓 = 𝑁C/𝑁 is the fraction of forced neurons; ⟨𝑘⟩ and ⟨𝑘⟩C are the
average degree of the network and the forced module, respectively.

5.1.2 Modularization

Understanding how connections are arranged in neural networks is key to understand how the
brain functions and transmits information [73, 74, 75]. Neurons can be grouped by their location
in the brain, by their function and also by their connectivity with other neurons, independently of
their position or function. Networks can generally be decomposed into these topological modules,
also called clusters or communities, where a large number of links join nodes of the same module
and comparatively few links join nodes belonging to different modules. Several methods have been
recently proposed to detect modules, each providing a different decomposition, and no optimal
algorithm has yet been devised [76]. The strength of each decomposition, however, can be measure
by the modularity coefficient [77, 78]

𝑄w =
1

2𝑚

∑︁

i,j

⎤

𝐴ij ⊗ 𝑠i𝑠j
2𝑚

⎣

Ó(𝑐i, 𝑐j), (5.1.3)

where 𝐴ij is the (weighted) adjacency matrix, 𝑠i is the sum of the weights of all links attached
to node 𝑖, 𝑐i is the module of node 𝑖, Ó(𝑐i, 𝑐j) = 1 if nodes 𝑖 and 𝑗 belong the same module and
2𝑚 is the sum of all of the link weights in the network. Eq. (5.1.3) gives 𝑄w = [⊗0.5, 1.0], where
positive values indicate that there exist a larger number of connections between nodes of the same
community than if connections were made randomly, and negative values mean less intra-module
connections. For real complex networks, 0.3 < 𝑄w < 0.7 [77, 78]. For unweighted networks the
same formula can be used, replacing 𝑠i by the degree 𝑘i of node 𝑖 and 𝑚 by the total number of
links in the network.

Previous analysis of neural networks have shown that they do exhibit modular organization [76,
78]. The most common algorithms for module detection in biological network analysis are the so
called hierarchical clustering [76]. This technique is classiĄed in two types: in the Ąrst, individual
neurons are initially grouped if they have high similarity; then these groups are further clustered
together and so on until the desired number of modules is formed (bottom up, agglomerative
algorithm). In the second type of algorithm the network is divided in groups by the removing links
that connect nodes with low similarity (top down, divisive algorithm).

In this work we used the ModuLand plug-in [70, 71] of the software Cytoscape [79] to study the
modularization of the C. elegans network. This tool uses a hierarchical algorithm which detects
multiple layers of communities, where nodes of the higher hierarchical step are modules of the
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lower step. ModuLand was tested in biological systems, such as protein structure and metabolic
networks, providing modules which correspond to relevant biological communities [70, 71]. For
the present case of the C. elegans electric junction network ModuLand divided the network into 3
modules with 𝑄w = 0.47. Other procedures result in different partitions; for example [37] obtained
6 modules with 𝑄w = 0.375, [80] found 5 modules with 𝑄w = 0.49 and [81] divided the network
into 11 and 15 modules with 𝑄 = 0.63 and 𝑄w = 0.66, respectively. They all used slightly different
versions of the C. elegans network, including or excluding some neurons. Here we focused on the
case of 3 modules to compare with the 3 functional categories (motor, sensory, interneurons) and
3 major anatomical classes (head, midbody, tail). Further information is summarized in table
5.3 of section 5.4. We have also considered two other partitions, containing 5 and 10 modules
respectively. The details are described on section 5.4.2.

5.1.3 C. elegans neural connectome

Based on structural and functional properties of the neural network of C. elegans, Varshney et
al [82] and Yan et al [83] presented a division of neuronal classes, totalizing 118, in three categories:
sensory neurons (SN), which respond to environmental variations, motoneurons (MN), recognized
by the presence of neuromuscular junctions and responsible by locomotion, and the interneurons
(IN), which cover all of other classes. The adjacency weighted matrix is deĄned as follows: the
element 𝑤ij represents the total number of synapses interchange between the pair of neurons 𝑖𝑗.
In [82] the authors also divide the set into the gap junction network, which refers to the electrical
synapses, and the chemical synapses network.

Gap junctions are a medium for electrical coupling between neurons and, since the electric
signal can be made in both directions, the electrical junction network is considered undirected
and, consequently, its adjacency matrix symmetric. On the other hand, the chemical synapses
network is a directed and weighted network, whose adjacency matrix is assymetric. Here we will
concentrate on the electrical junction network only.

We analyzed the gap junctions neural network of nematode C. elegans extracting the data from
WormAtlas [68]. The full connectome has 279 neurons (nodes) and 514 gap junctions (connections)
divided into a giant component with 248 neurons plus 31 neurons not connected with it. Here
we will study the dynamics on the giant component. Thereby, we built the weighted electrical
junction (EJ) network of the C. elegans with 248 neurons and 511 gap junctions. We also used a
hierarchical algorithm to detect communities on the EJ network. For that, we used the package
ModuLand [70, 71] available on the free software Cytoscape [79]. The algorithm provided three
modules (𝑀1, 𝑀2, 𝑀3) with modularity 𝑄w = 0.47.
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Figure 5.1: Histograms representing the fraction of (left) neuronal class (SN: sensory neuron, MN:
motorneuron and IN: interneuron) and (right) of ganglia (A: anterior ganglion, B: dorsal ganglion,
C: lateral ganglion, D: ventral ganglion, E: retrovesicular ganglion, F: posterolateral ganglion, G:
ventral cord neuron group, H: pre-anal ganglion, J: dorsorectal ganglion, K: lumbar ganglion) for
each module (𝑀1: module 1, 𝑀2: module 2 and 𝑀3: module 3).

Each neuron were further classiĄed as belonging to one of three functional categories (sensory,
motor and interneurons) and one of the 10 ganglia (A: anterior ganglion, B: dorsal ganglion,
C: lateral ganglion, D: ventral ganglion, E: retrovesicular ganglion, F: posterolateral ganglion,
G: ventral cord neuron group, H: pre-anal ganglion, J: dorsorectal ganglion, K: lumbar ganglion
[68]). The compositions of neuronal categories and ganglionic classiĄcation in each module are
shown in Figure 5.1. The ganglia are a Ąner division of the anatomical classiĄcation into head
(H), body (B) and tail (T). The histograms in Figure 5.2 summarize the information extracted
from the WormAtlas showing how ganglia are distributed physically (left panel) and how neuronal
functions are represented in each ganglion (right panel). Note that ganglia A, B, C and D belong
to the head, G is entirely localized in the body and J and K belong to the tail.

This set of divisions of the neural network into communities can be classiĄed as (i) topological
(𝑀1, 𝑀2, 𝑀3); (ii) anatomical (by ganglion A-K) and; (iii) functional (SN, MN, IN). They are all
different and intertwined, showing the complexity of the EJ network.

In the next section we will apply the stimulus to 𝑀1 (the largest of the topological modules),
to ganglion C (completely located in the head and with mixed types of functional neurons) and
to the sensory neurons. Results for modules 𝑀2, 𝑀3, ganglion G and motoneurons are shown
in section 5.4. Previous works [81] have shown that ganglion C is important in the transmission
of information between neurons that receive sensory stimulus and those responsible for motor
processing. We also performed simulations on ganglion G (see section 5.4), which is localized
completely in the midbody (Ągure 5.2 left) and is composed only by motoneurons (Ągure 5.2
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Figure 5.2: Histograms representing the fraction of (left) different ganglia distributed by phys-
ical localization (head, midbody and tail) and (right) the fraction of classes (SN, MN and IN)
component in each ganglion.

right). Finally we note that the sensory neurons are responsible for collecting information from
external environment and react to stimuli inside the organism, acting as a input channel. In this
sense, C. elegans uses these neuronal functions to explore the ambient, navigating over thermal,
chemical and oxygen variations, in addition to avoid hostile behavior [68].

5.1.4 Order parameters and correlations

The partially forced Kuramoto dynamics will be applied to the C. elegans as a way to probe its
modular structure. Forcing a particular module may or may not induce synchronization with the
external frequency on other modules of the system. In order to monitor the behavior of separate
modules we deĄne

𝑧n =
1

𝑁n

∑︁

i∈Mn

𝑒iφi ⊕ 𝑟n𝑒
iψn (5.1.4)

where the subscript 𝑛 speciĄes the module 𝑀n of size 𝑁n. Therefore, 𝑟n is a local order parameter
that measures how much the oscillators in the module are synchronized among themselves. The
angular velocity å̇n provides information about the motion of the set: å̇n = 0 implies sync with
the external force, å̇n = ⊗à refers to spontaneous sync whereas nonconstant values indicate more
complex behavior.

Intermodule behavior will also be monitored by the quantities

𝑧nm =
1

𝑁n +𝑁m

∑︁

i∈Mn∪Mm

𝑒iφi ⊕ 𝑟nm𝑒
iψnm (5.1.5)
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with similar interpretations. Finally we compute the usual order parameter

𝑧 =
1

𝑁

N
∑︁

i=1

𝑒iφi ⊕ 𝑟t𝑒
iψt (5.1.6)

that provides information on the global network synchrony.
Velocity-velocity correlations between all pairs of oscillators are deĄned by

𝑐(𝑖, 𝑗) =
1

𝑇

∫︁ t0+T

t0
(ã̇i(𝑡) ⊗ ⟨ã̇i⟩)(ã̇j(𝑡) ⊗ ⟨ã̇j⟩) 𝑑𝑡 (5.1.7)

where

⟨ã̇i⟩ =
1

𝑇

∫︁ t0+T

t0
ã̇i(𝑡) 𝑑𝑡 (5.1.8)

and 𝑡0 is a sufficiently long time so that the transient dynamics has passed.
The normalized velocity-velocity correlation function is then deĄned as:

𝑐(𝑖, 𝑗) =
𝑐(𝑖, 𝑗)

√︁

𝑐(𝑖, 𝑖) 𝑐(𝑗, 𝑗)
, (5.1.9)

where ♣𝑐(𝑖, 𝑗)♣⊘ 1. We note that the correlation is computed in terms of the Ćuctuations of the
average velocity, that was subtracted out in Eq. (5.1.7). The 248 × 248 correlation matrix gives
direct information about the effect of one neuron over another, irrespective of their synchronization
state. If an increase in the velocity of 𝑖 leads to the average increase in the velocity of 𝑗 then nodes
𝑖 and 𝑗 are positively correlated and 𝑐(𝑖, 𝑗) > 0. If, on the other hand the velocity of 𝑗 decreases,
they are negatively correlated and 𝑐(𝑖, 𝑗) < 0. Finally, if they are uncorrelated 𝑐(𝑖, 𝑗) ≡ 0. In the
simulations we used 𝑡0 = 𝑇/2 and 𝑇 = 20 which was enough for the equilibration of the system.

The parameters 𝑧n provide information about the synchronization of each module, whereas
the average value of the phase velocity å̇n tells whether the module follows the external force or
spontaneous collective motion. This information is complemented by the velocity-velocity correla-
tion, which measures the effect of one node over the other even if they synchronize with different
frequencies or are not synchronized at all.

5.2 Results

Figure 5.3 shows the weighted adjacency matrix ordered according to the topological modules
𝑀1, 𝑀2 and 𝑀3 (left panel). Modules are separated by thick black lines and subdivided into
motoneurons (black), sensory neurons (green) and interneurons (red) by dashed black lines. The
size of the dot is proportional to the intensity 𝐴ij and intermodule connections are represented
in yellow. The right panel shows the adjacency matrix ordered by ganglion, from head to tail.
The thick black lines highlight 5 groups of ganglia: {A, B}; {C}; {D, E, F}; {G} and {H, J,
K}. These groupings were deĄned to facilitate the visualization of the plots and to emphasize the
forced ganglia (ganglion C in Ągure 5.5 and ganglion G in Ągures 5.13 and 5.14). Subdivisions
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Table 5.1: Basic properties of forced modules: number of neurons, fraction of nodes, average degree
and theoretical critical force for full synchronization.

Module 1 Ganglion C Sensory Neurons Network
Number of neurons 𝑁M1

= 130 𝑁C = 56 𝑁SN = 65 𝑁 = 248
Fraction of nodes 𝑓M1

= 52.42 % 𝑓C = 22.58 % 𝑓SN =26.21 % 𝑓 = 100 %
Average degree ⟨𝑠M1

⟩ = 7,96 ⟨𝑠C⟩ = 10,16 ⟨𝑠SN⟩ = 5,27 ⟨𝑠⟩ = 7,13

Critical force (eq. (5.1.2)) 𝐹M1

c,theo = 5,12 𝐹C
c,theo = 9,32 𝐹 SN

c,theo = 22,96 𝐹c,theo = 3,00

Stimulating the 𝑀1: the role of topology

Figure 5.4 shows the results of simulations when only the neurons of 𝑀1 are forced (indexes 1 to
130 in the left panel of Ągure 5.3.) As 𝐹 increases, the neurons go through a region of asynchrony
around 𝐹 = 5, which is close to theoretical value for full synchrony 𝐹M1

c,theo = 5.12 calculated with

eq. (5.1.2), and then they synchronize with the external force (å̇M1
= 0, Fig. 5.7 on section 5.4)

for 𝐹 larger than about 10, where 𝑟M1
⊃ 1. For large internal coupling Ú, all modules appear

to synchronize with external force (see panel (d) of Fig. 5.4 and panel (l) of Fig. 5.7 on section
5.4), but 𝑀3 has large Ćuctuations in å̇M3

(panel (p), Fig. 5.7 on section 5.4). The global order
parameter reaches its maximum value at 𝑟t ≡ 0.9 with å̇t ≡ 0.0 for Ú = 100 (tables 5.2 and 5.5 of
section 5.4).

The most striking feature of these simulations is the strong anti-correlation patterns developed
between 𝑀1 and 𝑀2 for Ú ⊘ 20. From the top panels we notice that, in these cases, 𝑀1 is in
synchrony with the external force whereas 𝑀2 is still synchronized spontaneously. Nevertheless
the effects of 𝑀1 over 𝑀2 are very clearly shown by the purple areas of the correlation plots. This
indicates a lower value of the inter-modules order parameter 𝑟nm, as can be seen between 𝑀1-𝑀2

and 𝑀2-𝑀3 (panel (k) on Fig. 5.4 and Fig. 5.7 on section 5.4). On the other hand, the presence
of positive correlations between 𝑀1 and 𝑀3 (panel (q) on Fig. 5.4), is accompanied by an increase
of 𝑟13.

Stimulating ganglion C: the role of anatomy

Figures 5.5 shows the results of simulations when ganglion C is forced. The behavior of the
order parameters 𝑟t and 𝑟n as a function of 𝐹 is similar to that observed when forcing the neurons
of 𝑀1, exhibiting a region of asynchrony between 𝐹 = 5 and 𝐹 = 10, which contains the theoretical
value, 𝐹C

c,theo = 9.32, followed by stabilization for larger 𝐹 . The forced neurons are clearly seen as
a bright yellow blocks in panels (e) to (h).

For sufficiently large 𝐹 ganglion C synchronizes with the external force (𝑟2 ⊃ 1, panels (a) to
(d), and å̇2 = 0, Fig. 5.10 on section 5.4) for all values of Ú considered. However, the velocity-
velocity correlation matrices show much simpler patterns, displaying either nearly complete cor-
relation (yellow areas in panels (g), (h), (k), (l) and (p)), or almost no correlation at all (large
red areas in panels (i), (m), (n), (q) and (r)) with ganglion C itself showing reduced internal
correlations. Even for 𝐹 > 12, where 𝑟2 indicate that C is nearly fully synchronized for all ÚŠs,
the correlation matrices show regions of mixed behavior, especially for small Ú, which means that
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part of neurons of C are non-correlated with each other or even anti-correlated (see also Fig. 5.10,
panels (a), (b), (i) and (j) on section 5.4). Although all ganglia seem to synchronize with the
external force for Ú ⊙ 40 and 𝐹 > 12, their dynamics are uncorrelated with other ganglia. The
only exception is ganglion G, that shows up as a yellow square in the plots (see also Figs. 5.13
and 5.14 of section 5.4).

We also note that for Ú = 40 the motor part of ganglion C (small yellow squares indexed by 37
to 46) correlates separately from the rest of C for 𝐹 = 12, panel (o), and 𝐹 = 17, panel (s), which
means that motoneurons respond differently to external stimuli. For 𝐹 = 17, panels (q), (r), (s)
and (t), the number of correlated neurons increases from Ú = 10 to Ú = 40 but for Ú = 100 the
entire network goes out of phase, with the exception of ganglion G: it keeps its internal correlation
at all times, maybe because it is entirely a motor ganglion type. Note that 𝑟4 ≡ 1 only for Ú = 100,
panel (d), which means that full sync requires large internal coupling. We also note that the global
order parameters for Ú = 100 are 𝑟t = 0.98 and å̇t = 0.0 (tables 5.2 and 5.8 of section 5.4), which
means that the network is fully synchronized.

Table 5.2: Global order parameters for each forced subset of neurons. The network is considered
to be partially synchronized if 0.8 < 𝑟t ⊘ 0.95 and fully synchronized if 𝑟t > 0.95 and å̇t < 10⊗2.
GS refers to Global synchronization.

Ú 𝑟t⊗M1
å̇t⊗M1

GS (𝑀1) 𝑟t⊗C å̇t⊗C GS (C) 𝑟t⊗SN å̇t⊗SN GS (SN)
10 0.55 0.07 No 0.52 0.03 No 0.59 -2.84 No
20 0.54 -0.01 No 0.67 0.00 No 0.63 -2.46 No
40 0.65 0.05 No 0.87 0.00 Partial 0.54 -2.70 No
100 0.91 0.02 Partial 0.98 0.00 Yes 0.81 0.00 Partial

Stimulating the sensory neurons: the role of function

Figure 5.6 shows the numerical results when all sensory neurons (SN) receive the external
stimuli. Panels (a) to (d) show that the behavior of the network is more complex in this case. The
SN synchronize with the external force for: 𝑖) Ú = 10 and 𝐹 > 10 (panels (a), (i) and Fig. 5.15),
𝑖𝑖) Ú = 20 and 𝐹 > 15 (panels (b), (j) and Fig. 5.15), 𝑖𝑖𝑖) Ú = 40 and 𝐹 > 20 (panels (c), (k)
and Fig. 5.15) and 𝑖𝑣) Ú = 100 and 𝐹 > 30 (panels (d), (l) and Fig. 5.15). In 𝑖𝑖𝑖) and 𝑖𝑣) the
values of 𝐹 are close to the theoretical value 𝐹 SN

c,theo = 22.96. Contrary to all other cases, larger
values of Ú hinders the synchronization of the forced group, since 𝑟SN decreases from Ú = 10 to
Ú = 100, although ˙åSN = 0 (Fig. 5.15). For Ú = 100, the global order parameters are 𝑟t ≡ 0.81
and å̇t = 0.0 (table 5.2 and 5.10), thus the system synchronizes only partially.

For Ú ⊘ 40, the motoneurons and almost half of interneurons were in spontaneous sync (panels
(a), (b), (i) and (j) on Fig. 5.15), while for Ú > 40 and 𝐹 > 30 most neurons were synchronized
with external stimuli. The velocity-velocity matrices also show regions of anti and non-correlation,
as can be seen on purple and red areas of Fig. 5.6, respectively, particularly for weak internal
coupling, Ú < 40. In these cases, the lack of correlation seems to indicate a lower value of inter-
modules order parameter 𝑟nm, as can be seen in panels (e) to (h) of Fig. 5.15.
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Figure 5.4: Panels (a)-(d): the global and local order parameters as a function of the external force
𝐹 acting on neurons of 𝑀1 for Ú Ąxed. The dashed lines indicate the critical force, 𝐹M1

c,theo = 5.12.
Panels (e)-(t): the velocity-velocity correlation matrix 248 × 248 obtained using Eq. (5.1.9). In
each panel, the Ąxed parameters Ú and 𝐹 are indicated. The 𝑀1 neurons are indexed by 1 to 130,
the 𝑀2 neurons by 131 to 207 and the 𝑀3 neurons are indexed by 208 to 248.
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Figure 5.5: Panels (a)-(d): the global and local order parameters as a function of the external
force 𝐹 acting on ganglion C for Ú Ąxed. The dashed lines indicate the critical force, 𝐹C

c,theo = 9.32.
Panels (e)-(t): the velocity-velocity correlation matrix 248 × 248 obtained using Eq. (5.1.9). In
each panel, the Ąxed parameters Ú and 𝐹 are indicated. The group 1 ({A,B}) are indexed by 1
to 36, group 2 ({C}) by 37 to 92, group 3 ({D, E, F}) by 93 to 159, group 4 ({G}) by 160 to 215
and group 5 ({H, J, K}) are indexed by 216 to 248.
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Figure 5.6: Panels (a)-(d): the global and local order parameters as a function of the external force
𝐹 acting on sensory neurons for Ú Ąxed. The dashed lines indicate the critical force, 𝐹 SN

c,theo = 22.96.
Panels (e)-(t): the velocity-velocity correlation matrix 248 × 248 obtained using Eq. (5.1.9). In
each panel, the Ąxed parameters Ú and 𝐹 are indicated. The sensory neurons (SN) are indexed by
1 to 65, the interneurons (IN) by 66 to 147 and the motoneurons (MN) are indexed by 148 to 248.
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5.3 Discussion

Groups of neurons can be deĄned in many ways, taking into account their anatomical location,
their functional role or their topological properties in the network. In this chapter we investigated
the importance of these divisions as targets to stimuli, as well as their roles in spreading the inputs
to other parts of the brain. Here we used a much simpliĄed model of synchronization given by
the Kuramoto system of phase oscillators subjected to a single stimulus, described by the external
force, applied only to a subset of neurons representing a topological module (Fig. 5.4), a ganglion
composed of different functional neurons (Fig. 5.5) or the sensory neurons (Fig. 5.6). Because the
stimulus is permanently turned on in the model, the system behavior converges to an oscillatory
state corresponding to an inĄnite sequence of spikes, which is clearly a simpliĄcation. However,
the model does provide interesting information about the ability of the group of neurons receiving
the input to synchronize among themselves or with other groups, or to develop correlations.

The modularization procedure applied to EJ network reveals that topological modules do not
contain purely anatomical groups or functional classes, but mixes neurons belonging to different
ganglia and functional classes. This is illustrated in Fig. 5.1, where we have analyzed the distri-
bution of neuronal classes and ganglia membership in each module. This corroborates previous
studies that employed different modularization techniques [37, 81, 80, 82, 84] and highlights the
complexity of the neuronal wiring regarding their location and function. The response of the
electrical neural network to the stimulus was different for each type of neuron grouping, as we
summarized in Table 5.2 in terms of synchronization and below in terms of cross correlations with
other modules.

Stimulation of the neurons of the largest topological module 𝑀1 induced strong anti-correlation
in the velocity Ćuctuations of the neurons in 𝑀2 and 𝑀3 (purple areas of panels (i), (j) and (m) on
Fig. 5.4 or between 𝑀2 and 𝑀3 (panel (k) on the same Ągure), which kept their original state of
spontaneous synchronization for moderate values of the internal coupling constant Ú. The smallest
topological module 𝑀3 remained oblivious to the stimulus even for large values of Ú. Interestingly,
for intermediate values of the forcing (panel (j) on Fig. 5.4), the neurons of 𝑀1 became mostly
uncorrelated (red areas on Fig. 5.4), indicating a parameter region of poor response to the stimulus.
It is possible, however, to identify the modular structure by the presence of three blocks, each of
one corresponding to 𝑀1, 𝑀2 and 𝑀3. A very similar behavior is observed when 𝑀2 is stimulated
(Figs. 5.8, 5.10 and table 5.6). When the stimulus is applied to 𝑀3, however, it never spreads to the
other modules, which remain in spontaneous synchrony but develop a pattern of anti-correlation
inter-modules for sufficiently large values of Ú and 𝐹 (Figs. 5.10, 5.11 and table 5.7).

The response of the network to stimulation of ganglion C was quite different from that of 𝑀1

displaying essentially two distinct regions with (I) large parameter intervals of almost complete
uncorrelated behavior, which occurs for Ú ⊘ 20 (red areas on panels (i), (m), (n), (q), (r) and (t) on
Fig. 5.5) and (II) complete correlated behavior, with Ú ⊙ 40 (yellow areas on Fig. 5.5). Effective
synchronization of ganglion C with the external force required large values of the coupling constant.
Contrary to what occurs when forcing the topological module, the blocks of the correlation matrix
corresponding to ganglia groups cannot be clearly distinguished, except for ganglion G (Figs. 5.10
and 5.11), which seems to hold high correlation between its neurons, possibly because it is the only
group entirely composed by one class (motoneurons). Stimulation of ganglion G is presented in the
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section 5.4, Figs. 5.13, 5.14 and table 5.9. The patterns of anti-synchronization between modules
are again observed in this case, reinforcing the idea that functionality, not spatial location, is the
relevant structure in this case.

Finally, stimulation of the sensory neurons leads to synchronization with the external driving
for Ú ⊘ 40, while the other two functional classes remained in spontaneous sync. It was only with
strong internal coupling, Ú > 40, and force larger than the theoretical value, 𝐹 > 30, that most
of neurons were induced to the forced sync. The results also show many regions of anti and non-
correlation (purple and red areas on Fig. 5.6, respectively). Matrix blocks of similar correlations
identify the three classes reasonably well, although displaying visible internal structure, which
indicates a more complex relationship between them. When motoneurons are stimulated (Figs.
5.16, 5.17 and table 5.11) partial synchronization is only possible for very large values of Ú and
𝐹 , but patterns of anti-correlation do appear for small values of Ú, similar to what is observed for
ganglion G.

In most cases, the order parameters 𝑟 and å̇ exhibited a jump near critical force (dashed lines in
the plots), which is closer to 𝐹c,theo as Ú increases. Global and partial synchronization, however, is
only observed in some cases and at much larger values of 𝐹 and Ú than predicted by the mean Ąeld
theory [51]. When the stimulus was applied to ganglion C, in particular, global synchronization
happened for Ú = 100 and 𝐹 ≡ 17, which is larger than theoretical value found, 𝐹C

c,theo = 9.32.
Previous studies [51] have shown that the Kuramoto model with external localized stimuli leads

to global synchronization on synthetic networks with simple topologies, such as random and scale-
free, if Ú and 𝐹 are sufficiently large. Here we considered the real neural network of the nematode
C. elegans and observed full and partial synchronization in very few cases and for higher values
of Ú and 𝐹 than predicted. This indicates that the particular modular structure of the network
protects the system from ŚseizuresŠ. We found that the response of the network is highly complex
and depends strongly not only on the stimulated group but also on the intensity 𝐹 and coupling
strength Ú. We hypothesize that this complexity reĆects the system Ćexibility to process and dif-
ferentiate several types of inputs. The group divisions considered here (topological, functional and
anatomical) are natural but not exhaustive and Ąner subdivisions might be important to under-
stand the system response in more detail. Different types of stimuli, such as non-sinusoidal periodic
trains or localized pulses, could also bring up interesting responses that might help distinguish the
behavior of the different modules.

5.4 Supplementary Material

This supplementary material contains more detailed data from numerical simulations analyzed
on main text and also has additional results of the stimulus application on different subsets of
neurons. The material is organized as follows: Ągures 5.7, 5.9 and 5.11 provide the curves of
order parameters 𝑟 and å̇ for intra and inter-modules and for the whole network when the driving
force is applied to modules 𝑀1, 𝑀2 and 𝑀3, respectively; Ągures 5.12 and 5.14 contains the same
parameters when ganglia C and G are forced, respectively, and Ągures 5.15 and 5.17 provide
information of forcing the SN and MN, respectively. Figures 5.8, 5.10, 5.13 and 5.16 show the
velocity correlation matrix for subsets 𝑀2, 𝑀3, ganglion G and MN, respectively.
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The appendix B contains a list of the 248 neurons we considered in the electric junction net-
work. Neurons are classiĄed according to each class used in the paper: anatomical, functional and
topological with 3, 5 and 10 modules.

We also show the values of modularity calculated for each subset (table 5.3) considering the
unweighted and weighted networks. We note that the largest value is 𝑄w = 0.47 which was found
by the modularization procedure. Table 5.4 contains all values of fraction, average degree and
critical force calculated by equation (5.1.2) for each subset of each division and for the whole
network. The values of critical force are highlighted as dashed lines on Ągures.

Tables 5.5, 5.6 and 5.7 provide more detailed data of order parameters when forcing the topo-
logical modules, 𝑀1, 𝑀2 and 𝑀3, respectively, when 𝐹 = 50. Analysing these values together with
Ągures 5.7, 5.9 and 5.11 we can see that none of them exhibit global synchronization, although
each forced module has 𝑟 ≡ 1.0 and å̇ ≡ 0.0.

A similar behavior occurs when ganglia C and G receive the driving force. On tables 5.8 and
5.9 (and Ągures 5.12 and 5.14) we can see that intra-module order parameters of forced modules
are 𝑟2⊗2 = 𝑟4⊗4 ≡ 1.0 and å̇2⊗2 = å̇4⊗4 ≡ 0.0, although the global order parameters are not, except
for the case Ú = 100 when forcing ganglion C, which is the only case where global synchronization
occurs, probably because of the relevance of C on receiving external input.

Finally, tables 5.10 and 5.11 bring the same parameters when sensory neurons and motoneurons
receive the external force, respectively. Together with Ągures 5.15 and 5.17, we do not observe
global synchronization, although partial synchronization occurs only for larger internal coupling
(Ú = 100). Forcing all motoneurons have a similar effect when applying the stimulus on ganglion
G, which is composed entirely of motoneurons.

We also provide more detailed information about the modularization procedure. In section
5.4.2 we described the steps used on ModuLand to generate three different modular networks and
then we compare these structures with each other.
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5.4.1 Results
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Figure 5.7: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on 𝑀1. Panels (a) to (d) are the same as in the main text and indicate the
order parameter 𝑟 for intra-modules. Panels (e) to (h) indicate 𝑟 for inter-module. The results for
å̇ are exhibited in panels (i) to (p), with respective error bars, panels (m) to (p), for intra-module
case. The coupling Ú is Ąxed and its value is indicated in each panel. We also compute 𝑟total and
å̇total for whole network. The dashed lines indicate the critical force, 𝐹M1

c,theo = 5.12.
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Figure 5.8: Panels (a)-(d): the global and local order parameters as a function of the external force
𝐹 acting on neurons of 𝑀2 for Ú Ąxed. The dashed lines indicate the critical force, 𝐹M2

c,theo = 10.26.
Panels (e)-(t): the velocity-velocity correlation matrix 248 × 248 obtained using Eq. (5.1.2). In
each panel, the Ąxed parameters Ú and 𝐹 are indicated. The 𝑀1 neurons are indexed by 1 to 130,
the 𝑀2 neurons by 131 to 207 and the 𝑀3 neurons are indexed by 208 to 248.
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Figure 5.9: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on 𝑀2. Panels (a) to (d) are the same as in the main text and indicate the
order parameter 𝑟 for intra-modules. Panels (e) to (h) indicate 𝑟 for inter-module. The results for
å̇ are exhibited in panels (i) to (p), with respective error bars, panels (m) to (p), for intra-module
case. The coupling Ú is Ąxed and its value is indicated in each panel. We also compute 𝑟total and
å̇total for whole network. The dashed lines indicate the critical force, 𝐹M2

c,theo = 10.26.
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Figure 5.10: Panels (a)-(d): the global and local order parameters as a function of the external
force 𝐹 acting on neurons of 𝑀3 for Ú Ąxed. The dashed lines indicate the critical force, 𝐹M3

c,theo =
24.56. Panels (e)-(t): the velocity-velocity correlation matrix 248 × 248 obtained using Eq. (5.1.2).
In each panel, the Ąxed parameters Ú and 𝐹 are indicated. The 𝑀1 neurons are indexed by 1 to
130, the 𝑀2 neurons by 131 to 207 and the 𝑀3 neurons are indexed by 208 to 248.
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Figure 5.11: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on 𝑀3. Panels (a) to (d) are the same as in the main text and indicate the
order parameter 𝑟 for intra-modules. Panels (e) to (h) indicate 𝑟 for inter-module. The results for
å̇ are exhibited in panels (i) to (p), with respective error bars, panels (m) to (p), for intra-module
case. The coupling Ú is Ąxed and its value is indicated in each panel. We also compute 𝑟total and
å̇total for whole network. The dashed lines indicate the critical force, 𝐹M3

c,theo = 24.56.
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Figure 5.12: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on ganglion C. Panels (a) to (d) are the same as in the main text and
indicate the order parameter 𝑟 for intra-modules. Panels (e) to (h) indicate 𝑟 for inter-module.
The results for å̇ are exhibited in panels (i) to (p), with respective error bars, panels (m) to (p), for
intra-module case. The coupling Ú is Ąxed and its value is indicated in each panel. We also compute
𝑟total and å̇total for whole network. The dashed lines indicate the critical force, 𝐹C

c,theo = 9.32. The
indexes refer to grouping, 1 for ({A,B}), 2 for ({C}), 3 for ({D, E, F}), 4 for ({G}) and 5 for ({H,
J, K}).
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Figure 5.13: Panels (a)-(d): the local order parameters as a function of the external force 𝐹 acting
on ganglion G for Ú Ąxed. We also compute 𝑟total for whole network. The dashed lines indicate
the critical force, 𝐹G

c,theo = 13.67. Panels (e)-(t): the velocity-velocity correlation matrix 248 × 248
obtained using Eq. (5.1.9). In each panel, the Ąxed parameters Ú and 𝐹 are indicated. The group
1 ({A,B}) are indexed by 1 to 36, group 2 ({C}) by 37 to 92, group 3 ({D, E, F}) by 93 to 159,
group 4 ({G}, only MN) by 160 to 215 and group 5 ({H, J, K}) are indexed by 216 to 248.
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Figure 5.14: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on ganglion G. Panels (a) to (d) are the same as in the main text and
indicate the order parameter 𝑟 for intra-modules. Panels (e) to (h) indicate 𝑟 for inter-module.
The results for å̇ are exhibited in panels (i) to (p), with respective error bars, panels (m) to (p), for
intra-module case. The coupling Ú is Ąxed and its value is indicated in each panel. We also compute
𝑟total and å̇total for whole network. The dashed lines indicate the critical force, 𝐹G

c,theo = 13.67. The
indexes refer to grouping, 1 for ({A,B}), 2 for ({C}), 3 for ({D, E, F}), 4 for ({G}) and 5 for ({H,
J, K}).
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Figure 5.15: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on sensory neurons. Panels (a) to (d) are the same as in the main text and
indicate the order parameter 𝑟 for intra-modules. Panels (e) to (h) indicate 𝑟 for inter-module.
The results for å̇ are exhibited in panels (i) to (p), with respective error bars, panels (m) to (p), for
intra-module case. The coupling Ú is Ąxed and its value is indicated in each panel. We also compute
𝑟total and å̇total for whole network. The dashed lines indicate the critical force, 𝐹 SN

c,theo = 22.96.
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Figure 5.16: Panels (a)-(d): the local order parameters as a function of the external force 𝐹
acting on motoneurons for Ú Ąxed. We also compute 𝑟total for whole network. The dashed lines
indicate the critical force, 𝐹MN

c,theo = 7.87. Panels (e)-(t): the velocity-velocity correlation matrix
248 × 248 obtained using Eq. (5.1.9). In each panel, the Ąxed parameters Ú and 𝐹 are indicated.
The sensory neurons (SN) are indexed by 1 to 65, the interneurons (IN) by 66 to 147 and the
motoneurons (MN) are indexed by 148 to 248.
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Figure 5.17: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on motoneurons. Panels (a) to (d) are the same as in the main text and
indicate the order parameter 𝑟 for intra-modules. Panels (e) to (h) indicate 𝑟 for inter-module.
The results for å̇ are exhibited in panels (i) to (p), with respective error bars, panels (m) to (p), for
intra-module case. The coupling Ú is Ąxed and its value is indicated in each panel. We also compute
𝑟total and å̇total for whole network. The dashed lines indicate the critical force, 𝐹MN

c,theo = 7.87.
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Table 5.3: Number of modules and modularity coefficient for unweighted and weighted adjacency
matrices for each division of the network.

Division
Topology

(𝑀1, 𝑀2, 𝑀3)
Anatomy

(H, MB, T)
Ganglion (A, B, C, D,

E, F, G, H, J, K)
Ganglion
(grouped)

Functional
(SN, IN, MN)

# of modules 3 3 10 5 3
𝑄 0.44 0.20 0.20 0.21 0.08
𝑄w 0.47 0.15 0.17 0.18 0.04

Table 5.4: Fraction, average degree and critical force, calculated by equation (5.1.2) for each subset
of each division and for the whole network. The values of critical force are highlighted as dashed
lines on Ągures.

Subset Fraction Average degree Critical force
M1 0.52 7.96 5.12
M2 0.31 6.71 10.26
M3 0.17 5.27 24.56

{A, B} 0.14 3.14 46.94
{C} 0.23 10.16 9.32

{D, E, F} 0.27 6.82 11.61
{G} 0.23 6.93 13.67

{H, J, K} 0.13 7.30 22.01

SN 0.26 3.55 22.96
IN 0.33 10.52 6.15
MN 0.41 6.67 7.87

Whole network 1.00 7.13 3.00

Table 5.5: Order parameters 𝑟 and å̇ for intra-module and for the whole network for each Ú when
𝑀1 is stimulated. The values of 𝑟total and å̇total indicate if occurs global synchronization. All values
were taken for 𝐹 = 50.
Ú 𝑟M1⊗M1

å̇M1⊗M1
𝑟M2⊗M2

å̇M2⊗M2
𝑟M3⊗M3

å̇M3⊗M3
𝑟total å̇total Global sync

10 1.00 0.01 0.86 -3.06 0.67 -2.92 0.55 0.07 no
20 1.00 0.00 0.60 -2.59 0.80 -2.35 0.54 -0.01 no
40 1.00 0.00 0.93 0.00 0.66 -0.95 0.65 0.05 no
100 1.00 0.00 0.99 0.00 0.83 0.21 0.91 0.02 partial
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Table 5.6: Order parameters 𝑟 and å̇ for intra-module and for the whole network for each Ú when
𝑀2 is stimulated. The values of 𝑟total and å̇total indicate if occurs global synchronization. All values
were taken for 𝐹 = 50.
Ú 𝑟M1⊗M1

å̇M1⊗M1
𝑟M2⊗M2

å̇M2⊗M2
𝑟M3⊗M3

å̇M3⊗M3
𝑟total å̇total Global sync

10 0.82 -3.23 1.00 0.00 0.58 -3.22 0.59 -2.99 no
20 0.82 -3.33 1.00 0.00 0.92 -3.25 0.65 -3.04 no
40 0.83 -3.11 1.00 0.10 0.89 -2.99 0.63 -3.09 no
100 0.94 0.01 1.00 0.00 0.81 -0.03 0.79 0.00 no

Table 5.7: Order parameters 𝑟 and å̇ for intra-module and for the whole network for each Ú when
𝑀3 is stimulated. The values of 𝑟total and å̇total indicate if occurs global synchronization. All values
were taken for 𝐹 = 50.
Ú 𝑟M1⊗M1

å̇M1⊗M1
𝑟M2⊗M2

å̇M2⊗M2
𝑟M3⊗M3

å̇M3⊗M3
𝑟total å̇total Global sync

10 0.95 -2.95 0.95 -2.94 1.00 0.00 0.80 -2.96 no
20 0.97 -2.96 0.98 -2.95 1.00 0.01 0.81 -2.99 no
40 0.96 -3.01 0.98 -2.99 1.00 0.03 0.82 -3.00 no
100 0.95 -2.92 0.98 -2.90 0.99 0.13 0.79 -2.99 no

Table 5.8: Order parameters 𝑟 and å̇ for intra-module and for the whole network for each Ú when
ganglion C is stimulated. The values of 𝑟total and å̇total indicate if occurs global synchronization.
All values were taken for 𝐹 = 50. The indexes refer to grouping, 1 for ({A,B}), 2 for ({C}), 3 for
({D, E, F}), 4 for ({G}) and 5 for ({H, J, K}). GS refers to global sync.

Ú 𝑟1⊗1 å̇1⊗1 𝑟2⊗2 å̇2⊗2 𝑟3⊗3 å̇3⊗3 𝑟4⊗4 å̇4⊗4 𝑟5⊗5 å̇5⊗5 𝑟total å̇total GS
10 0.59 -2.40 1.00 0.00 0.54 -0.06 0.62 0.03 0.51 -0.47 0.52 0.03 no
20 0.65 0.14 1.00 0.00 0.69 -0.04 0.66 0.01 0.76 -0.08 0.67 0.00 no
40 0.93 0.00 1.00 0.00 0.91 0.00 0.77 0.00 0.95 0.00 0.87 0.00 part.
100 0.99 0.00 1.00 0.00 0.98 0.00 0.96 0.00 0.99 0.00 0.98 0.00 yes

Table 5.9: Order parameters 𝑟 and å̇ for intra-module and for the whole network for each Ú when
ganglion G is stimulated. The values of 𝑟total and å̇total indicate if occurs global synchronization.
All values were taken for 𝐹 = 50. The indexes refer to grouping, 1 for ({A,B}), 2 for ({C}), 3 for
({D, E, F}), 4 for ({G}) and 5 for ({H, J, K}). GS refers to global sync.

Ú 𝑟1⊗1 å̇1⊗1 𝑟2⊗2 å̇2⊗2 𝑟3⊗3 å̇3⊗3 𝑟4⊗4 å̇4⊗4 𝑟5⊗5 å̇5⊗5 𝑟total å̇total GS
10 0.86 -3.00 0.81 -2.97 0.74 -3.03 1.00 0.00 0.39 -2.63 0.58 -2.85 no
20 0.86 -2.81 0.80 -2.76 0.71 -2.90 1.00 0.01 0.60 0.21 0.58 -2.71 no
40 0.74 -1.67 0.52 -1.48 0.57 -1.75 1.00 0.00 0.67 0.08 0.47 -0.84 no
100 0.93 0.01 0.79 0.05 0.85 0.02 1.00 0.00 0.86 0.03 0.78 0.02 no
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Table 5.10: Order parameters 𝑟 and å̇ for intra-module and for the whole network for each Ú
when sensory neurons are stimulated. The values of 𝑟total and å̇total indicate if occurs global
synchronization. All values were taken for 𝐹 = 50.

Ú 𝑟SN⊗SN å̇SN⊗SN 𝑟IN⊗IN å̇IN⊗IN 𝑟MN⊗MN å̇MN⊗MN 𝑟total å̇total Global sync
10 1.00 0.00 0.55 -3.37 0.81 -2.97 0.59 -2.84 no
20 1.00 -0.01 0.60 -2.88 0.83 -2.78 0.63 -2.46 no
40 0.99 0.02 0.54 0.14 0.75 -2.36 0.54 -2.70 no
100 0.97 0.00 0.87 0.00 0.94 0.00 0.81 0.00 part.

Table 5.11: Order parameters 𝑟 and å̇ for intra-module and for the whole network for each Ú when
motoneurons are stimulated. The values of 𝑟total and å̇total indicate if occurs global synchronization.
All values were taken for 𝐹 = 50. GS refers to global sync.

Ú 𝑟SN⊗SN å̇SN⊗SN 𝑟IN⊗IN å̇IN⊗IN 𝑟MN⊗MN å̇MN⊗MN 𝑟total å̇total GS
10 0.50 -2.67 0.37 0.49 1.00 0.00 0.51 -0.04 no
20 0.55 0.00 0.65 -0.01 1.00 0.00 0.63 -0.01 no
40 0.64 0.01 0.66 0.03 0.99 0.00 0.70 0.01 no
100 0.89 0.05 0.88 0.04 1.00 0.00 0.91 0.02 part.
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5.4.2 Modularization

The ModuLand plug-in is a tool that uses a hierarchical algorithm to detect multiple layers
of communities in networks, where nodes of the higher hierarchical layer are communities of the
lower one. It consists of a family of algorithms based on the following four common steps:

1. calculation of inĆuence functions, attributing a value for each node or link 1 based on its
inĆuence over the network. For example, a node that belongs to a module has larger inĆuence on
the links within that module than on the links of the entire network;

2. construction of a community landscape by summing, for each link, the inĆuence function
values over all nodes and links and plotting contour lines;

3. determination of the modules of the network, identifying them as the hills of the contour
line plot;

4. determination of a hierarchy of higher level networks, where each module is considered as a
single node on the next step.

The method also allows the merging of some nodes before starting a new run to generate the
next hierarchical level. The choice of initial parameters and the decision to join or not nodes before
the next run changes the sequence of modules created.

We constructed three different modular networks using ModuLand and we found networks with
3, 5 and 10 modules with large values of 𝑄. Table 5.12 summarizes the values of modularity for
unweighted and weighted adjacency matrices of each topological modularization.

To generate the network with 3 modules, we run the algorithm creating 36 modules on the Ąrst
level. Next, we merge them using a threshold of 0.9, as recommended by the authors [71], reducing
the modules to 32. Then, we run the algorithm again, resulting in 3 modules. As recommended
[71], in both runs we used the LinkLand algorithm, since the network is undirected. To construct
the network with 5 modules we slightly changed the initial conditions. We Ąrst run the LinkLand
algorithm on the Ąrst level obtaining 36 modules. Next, we choose the NodeLand algorithm and
we obtained the 5 modules. The case of 10 modules was similar, but we started by running the
algorithm using NodeLand, creating 36 modules, and then we apply the same algorithm again,
without joining nodes, obtaining 10 modules.

Table 5.12: Modularity coefficient for unweighted and weighted adjacency matrices for each topo-
logical modularization of the network.

3 modules 5 modules 10 modules
𝑄 0.44 0.44 0.55
𝑄w 0.47 0.48 0.60

The choice of modular partition is rather arbitrary, as long as the modularity coefficient is
not too low. We performed our analysis on the network with three modules to conform with the
number of functional (SN, MN, IN) and anatomical (head, body, tail) neurons. We found that the
topological modules do not separate these classiĄcations (histograms of main text). We performed

1For undirected networks, the NodeLand and LinkLand algorithms calculate the influence functions for a given

node or link, respectively.
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the same analysis for the other two topological divisions (Ągures 5.18 and 5.19), and we found that
these modular structures also mix the neurons.

Lastly, we have also performed dynamical simulations on the network with 10 modules. We
applied the stimulus on the largest module, which contains 76 neurons. The results in Ągure
5.20 show the total order parameters 𝑟t and å̇t as a function of 𝐹 for different values of Ú. The
expected critical force to reach global synchronization is 𝐹c = 10.76 (dashed lines), but numerical
simulations show that the maximum value of 𝑟t is ≡ 0.77. This corroborates our results obtained
with the 3-modules partition and indicates that global synchronization is hindered by the modular
structure of the network, independent on the speciĄc way the modules are deĄned. The results
are qualitatively similar even using the present modular partition, which has the highest value of
𝑄 we could Ąnd for the C. elegans electric junction network.

Figure 5.18: Histograms representing the fraction of (left) neuronal class (SN: sensory neuron,
MN: motorneuron and IN: interneuron) and (right) of ganglia (A: anterior ganglion, B: dorsal
ganglion, C: lateral ganglion, D: ventral ganglion, E: retrovesicular ganglion, F: posterolateral
ganglion, G: ventral cord neuron group, H: pre-anal ganglion, J: dorsorectal ganglion, K: lumbar
ganglion) for each module (𝑀i: module 𝑖, where 𝑖 = 1, 2, 3, 4, 5).



89

Figure 5.19: Histograms representing the fraction of (left) neuronal class (SN: sensory neuron,
MN: motorneuron and IN: interneuron) and (right) of ganglia (A: anterior ganglion, B: dorsal
ganglion, C: lateral ganglion, D: ventral ganglion, E: retrovesicular ganglion, F: posterolateral
ganglion, G: ventral cord neuron group, H: pre-anal ganglion, J: dorsorectal ganglion, K: lumbar
ganglion) for each module (𝑀i: module 𝑖, where 𝑖 = 1 to 10).
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Figure 5.20: Order parameters as a function of 𝐹 for the C. elegans neural network where the
external force acts only on the largest module of the network divided in 10 communities. Panel (a)
computes 𝑟total and (b) å̇total for Ąxed Ú. The dashed lines indicate the critical force, 𝐹c = 10.76.
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Chapter 6

Conclusions and perspectives

The Kuramoto model is perhaps the simplest dynamical system that allows the study of syn-
chronization and has become a paradigm, being extensively explored in the last years in connection
with biological systems, neural networks and the social sciences. In chapter 2 we reviewed the ana-
lytical calculations made by Kuramoto, where he considered a system composed by identical units
(oscillators) interacting with each other via a coupling parameter. We saw that for small values of
the coupling strength the units move as if they were independent, but as the coupling increased
beyond a critical value, a Ąnite fraction of oscillators started to move together. This fraction in-
creased smoothly until the coupling reached a large enough value, where the whole system oscillates
on the same frequency, leading to global synchronization. The crossover between these two regimes
characterizes a second order phase transition. Kuramoto showed an exact analytical expression
for the minimum value of the coupling strength in a system composed of inĄnite oscillators. The
main idea of the mathematical approach is to deĄne a probability density function in order to pass
from discrete to continuous limit and analyse the cases where the system is desynchronized and
partially synchronized.

The Kuramoto system can be easily extended to complex networks if we allow the oscillators
to interact via an adjacency matrix. We showed in chapter 2 that the theoretical curve behavior
of the original model is satisĄed in fully connected, random and scale-free networks and that the
larger the number of elements, the better is the result. The scenario of the second order phase
transition is, however, abruptly changed under speciĄc conditions. We reviewed some cases where
the system went into a Ąrst order phase transition, a behavior termed explosive synchronization.
This phenomenon appears in many applications ranging from neuroscience, where it is observed
on epileptic seizures and waking from anesthesia, to electronic devices, as the Rössler units.

The original Kuramoto model exhibits spontaneous synchronization. However, in many biolog-
ical systems, we can see that the synchronization phenomena are frequently dependent of external
stimuli. Information processing in the brain requires the synchronous Ąring of speciĄc groups of
neurons to respond to external stimuli [85, 86, 87]. In the retina, neighboring cells synchronize
at a very Ąne timescale to keep up with the constant motion of the eyes and the head [88, 89]
and information about visual stimuli is contained in the relative spike timing [90]. In the audi-
tory system, sound localization is determined by phase locking in the auditory nerve Ąbers [91],
producing correlations in spike timing that encodes the physical location of the sound source [92].
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Although synchronization is ubiquitous in neural systems [85] the speciĄc group of neurons that
synchronize depends on the type of stimulus and the time scale of the synchronization might vary
from milliseconds [90] to rates up to 170 spikes per second [91]. We can use the Kuramoto system
to model all these examples, but it is necessary to include the inĆuence of an external force on the
mathematical equations.

In chapter 3 we studied the forced Kuramoto model. We added a periodic external drive on
the original equations reviewing the work of Childs and Strogatz [31] using similar techniques of
chapter 2. In this sense, we deĄned a density function and took the continuum limit. It was
possible to expand the density function in Fourier series and then we used the Ott and Antonsen
ansatz to restrict the analysis to a special family of densities - which obey analytical conditions
to perform the calculations. This technique allowed us to reduce the inĄnite dimensional system
into a bi-dimensional problem. We saw that the analytical results exhibit rich dynamics: the
stability diagram shows a set of curves composed of saddle-node, SNIPER, Hopf and homoclinic
bifurcations. We also reproduced the phase portraits showing the transitions between the Ąve
regions that appear in the stability diagram. As we discussed in the end of chapter 3, the stability
diagram in a zoom out scale is essentially divided in two regions, concerning the competition
between the regimes where the system is synchronized with the external force and spontaneously.

The idea introduced in chapters 2 and 3 allowed us to study the forced Kuramoto model on
networks. We considered the analytical results of Childs and Strogatz and applied the external
force only on a fraction of the oscillators interacting via an adjacency matrix. The problem was
inspired by artiĄcial heart pacemakers [25] and information processing in the brain induced by
an external stimulus [7]. In both cases the stimulus is perceived by a subset of the system (a
heart chamber or photo-receptor cells in the eye) and propagates to other parts of the network
structure. In chapter 4 we have explored the conditions for global synchronization as a function of
the fraction of nodes being forced and how these conditions depend on network topology, strength
of internal coupling and intensity of external forcing. The numerical calculations showed that the
force required to synchronize the network with the external drive increases as the inverse of the
fraction of forced nodes. However, for a given coupling strength, synchronization did not occur
below a critical fraction, no matter how large was the force. Network topology and properties
of the forced nodes also affected the critical force for synchronization. In scale-free networks, for
example, when the external force is applied to nodes with highest degree, the critical force for
synchronization is smaller than when applied to the same number of randomly nodes or to the
nodes with the lowest degrees. We also developed analytical calculations for the critical force for
synchronization as a function of the fraction of forced oscillators and for the critical fraction as a
function of coupling strength.

The numerical and analytical results of chapter 4 led us to apply the forced Kuramoto model
on a real complex network. We chose the C. elegans electrical junction network because of its small
size, containing only 302 neurons, and because its whole nervous system is mapped and available
online [68, 69]. In this sense, we studied in chapter 5 the response of the nematodeŠs neural network
to external stimuli using the partially forced Kuramoto model. We applied the force to speciĄc
groups of neurons, classiĄed in topological modules, physical distribution and functional classes.
We found that topological modules do not contain purely anatomical groups (ganglia) or functional
classes, corroborating previous results, and that stimulating different classes of neurons led to very
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different responses, measured in terms of synchronization and phase velocity correlations. In all
cases the modular structure hindered full synchronization, protecting the system from seizures. The
responses to stimuli applied to topological and functional modules showed pronounced patterns of
correlation or anti-correlation with other modules that were not observed when the stimulus was
applied to a ganglion with mixed functional neurons.

So far we have seen many examples in real systems that exhibit spontaneous or induced syn-
chronization. In this work we studied the Kuramoto model on synthetic networks and in the C.
elegans electrical junction network, as a simple application on real systems. We want to go further
and test our model on more complex systems such as the cat cerebral cortex and even the human
brain. In the latter case, the comprehension of how the brain stores and processes information
is one of the major scientiĄc challenges of this century. The difficulties of this task are the large
number of neurons in the network, in the order of billions, the complex form with which they
are connected and the dynamics of chemical and electrical impulses that occur continuously. This
highly complex system gives rise to sensory perceptions, coordinates decision making and, at least
in humans, stores consciousness. Many efforts have been made in order to understand these pro-
cesses and one of the paths that has been used is the construction of simpliĄed models to study
speciĄc mechanisms.

In order to study how the synchronization processes take place on neural networks one can
use a more realistic model instead of the Kuramoto system. There are several models on the
literature that describe the dynamics of biological neurons involving a system of nonlinear coupled
differential equations. One of the most known examples is the Hodgkin-Huxley model [93] which
relates the different ionic currents that Ćow through the membrane of the neuron. However, this
model is computationally costly, since it involves four complex differential equations, which makes
the numerical integration very slow, specially for large systems, containing many neurons [94].
In computational terms the model proposed by Rulkov [95, 96] is an excellent alternative to the
neuronal dynamics because it essentially describes the same mechanisms as the Hodgkin-Huxley,
but is simples than its typical dimensionally reduced versions as, for instance, the FitzHugh-
Nagumo system [97]. The model is deĄned by a discrete two-dimensional map describing the
phenomenological aspects of the so called bursting neurons 1. Thus, one of the possible extensions
of this work is to use the Rulkov model on real networks and include the inĆuence of an external
force, such as the periodic term we have introduced in equation (4.1.1). In this sense we could
proceed as we have done in chapters 4 and 5 applying the stimulus on a speciĄc group of neurons
and then test the response of the network on them. If we work with a modular network, we could
also study if its structure protects the systems from ŞfailuresŤ. This could allow us to compare
our results of the C. elegans neural network obtained with the Kuramoto forced model with the
Rulkov neurons applied on the same system.

Another interesting phenomenon in network synchronization appears in the so called Janus
oscillators. This system was studied recently by Nicolaou et al. [98] and exhibits simultaneously
chimera states, where incoherence and synchronization coexists in identically coupled oscillators,
explosive synchronization, where the transition to synchronization is abrupt, and asymmetry-

1“Bursting neurons” are neurons that repeatedly fires discrete groups or burst of spikes. Each burst is charac-

terized by a followed period of quiescence before the next occurs. These neurons are important for motor pattern

generation and synchronization.
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induced synchronization (AIS) [99, 100, 101, 102], characterized by the existence of speciĄc asym-
metries when the oscillators or their couplings are set to be nonidentical. The occurrence of
these phenomena has been observed in other systems independently, which turns the Janus os-
cillators the Ąrst system that concurrently show all these behaviors. The units are set as a pair
of phase oscillators distributed on a ring network topology. We can label each Janus oscillator 𝑖
as a pair of phases (𝜃1

i , 𝜃
2
i ), where 1 and 2 denotes each unit of one oscillator. The dynamic is

deĄned by a pair of differential equations (𝜃1
i , 𝜃

2
i ) where each component has a natural frequency,

(æ1
i , æ

2
i ), an internal coupling (sin(𝜃2

i ⊗ 𝜃1
i ), (sin(𝜃1

i ⊗ 𝜃2
i )) with intensity Ñ and an external coupling

(sin(𝜃2
i⊗1 ⊗ 𝜃1

i ), sin(𝜃1
i+1 ⊗ 𝜃2

i )) with intensity à. The numerical results show that, in the space
deĄned by the Kuramoto order parameter versus the coupling strength à for Ąxed æ and Ñ, there
are several stable solution branches where the dynamic is very sensitive to initial conditions. The
transitions between the chimera states, the explosive synchronization and to the AIS are analysed
in the context of the bifurcation theory.

The Janus oscillators, as pointed by the authors [98], can be used to model the oscillatory
dynamics emerging in driven systems that exhibit anti-ferromagnetic order when subject to an
external magnetic Ąeld, which can lead to applications in spintronics. Another interesting system
is the rotating Ćagella in the cells of speciĄc groups of algae, which have internal cellular and
environmental interactions that can be modeled as the Janus oscillators. The system can be also
applied on complex networks. In this case, it is possible to insert the adjacency matrix in the
external coupling term. The element 𝑎ij of the matrix can be deĄned in many ways: one can
assume, for example, that 𝑎ij = 1 if the Ąrst component of node 𝑖 is connected with the second
oscillator of node 𝑗, and zero otherwise; another possible scenario is to consider that 𝑎ij = 1 if
the Ąrst components of nodes 𝑖 and 𝑗 are connected, and zero otherwise. A feasible extension is
to introduce an external drive forcing, as we did in this work and analyse if the stable solution
branches are modiĄed with the intensity and frequency of the external signal.

Throughout this work we saw several examples of how the original Kuramoto system can be
used to model theoretical and real complex systems. All these examples are described in the context
of two dimensions, where the attribute of each element is a single scalar variable 𝜃i. However, there
are many other applications for which the higher-dimensional space is important. In this sense, the
work of Chandra et al. [103] developed an extension of the Kuramoto model in 𝐷 dimensions. The
motivation is to study three-dimensional systems like the swarm of Ćying drones, Ćock of birds and
school of Ąsh, as examples. Mathematically, the model can be generalized to higher dimensions if
we rewrite equation (2.1.1) for 𝜃i as a function of the evolution of unit vectors. The main result
of the paper is the striking difference between the usual two-dimensional Kuramoto model and its
generalization to three-dimensions: while the Ąrst case exhibits a continuous phase transition to
the synchronized state, the second shows a discontinuous phase transition. For negative values
of the coupling strength, which can be seen as repulsive interactions, the elements are completely
desynchronized, but as we increase the coupling strength through zero, a discontinuous jump to
the synchronized state is measured by the order parameter. This behavior occurs also for large
odd-dimensions, all of them exhibiting the critical coupling at zero.

The work presented here made contributions to the understanding of synchronization processes
in neural networks subjected to external perturbations. We hope this thesis will stimulate the
readers and convince them that there is sill much interesting work to be done in this Ąeld.
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Appendix A

Phase portraits
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Appendix B

Data EJ248

This appendix contains a list of the 248 neurons we considered in the electric junction network.
Neurons are classiĄed according to each class used in the paper [72]: anatomical, (classiĄed as
head, mid body and tail and also organized by ganglia), functional (classiĄed as sensory neurons,
interneurons and motoneurons), and topological with 3, 5 and 10 modules. It is worth noting
that the classiĄcation into anatomical and functional classes were obtained in WormAtlas [104].
We downloaded the Ąle Connectivity Data-download (excel Ąle) and we Ąltered by the Electric
junction (EJ) connection. We performed the classiĄcation into topological modules using the app
ModuLand [70, 71] available in the software Cytoscape [79]. All codes and data used in this thesis
are available in [1].
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