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Resumo

Neste trabalho, nós estudamos um método de quantização e os efeitos dissipativos de uma

solução topológica em um Condensado de Bose-Einstein. Em particular, nosso trabalho fo-

cou no estudo de um condensado unidimensional na presença de uma solução do tipo bright

soliton. Este tipo de sistema apresenta uma simetria translacional que permite ao sóliton

se mover no espaço. No entanto, o método de quantização das Coordenadas Coletivas não

é suficiente para explicar a dinâmica e dissipação deste tipo de sistema. Nós desenvolvemos

um Método das Coordenadas Coletivas Estendido, com intuito de quantizar o campo de

Schrödinger corretamente, descrevendo um sistema efetivo do tipo partícula acoplada a um

banho térmico. Este método se mostrou adequado para tratar de Lagrangianas lineares na

derivada temporal. O método foi aplicado a um sistema com uma solução do tipo bright soli-

ton. Nós mostramos que tanto a função de decaimento quanto a de difusão, são dependentes

da temperatura e Markovianas. A forma da função de decaimento nos permitiu mostrar que

o processo de dissipação do sóliton se dá por uma força do tipo Abraham-Lorentz.



Abstract

In this work, we studied the quantization and dissipation effects of a topological solution

of a Bose-Einstein Condensate. In particular, we used the one-dimensional condensate with

a bright soliton solution. This system presents a translational symmetry that allows the

soliton to travel in space. However, the quantization method of the Collective Coordinate

is not sufficient to explain either dynamics or dissipation that this soliton may present. We

have developed an Extended Collective Coordinate Method in order to correctly quantize a

Schrödinger field, describing an effective system of a particle coupled with a thermal bath.

This method proved itself adequate to treat Lagrangians that are linear in the time derivative.

We have applied our method in a system with a bright soliton. We found both damping and

dissipative functions to be temperature-dependent and Markovian. The form of the damping

function showed us that the dissipation process of the soliton is due to a Abraham-Lorentz

force.
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Introduction

The beginning of the 20th century was marked by countless works that shaped the foundations

of a new subject of physics that today we know as quantum mechanics. At that time, quantum

mechanics emerged as a mathematical artifact to explain radiation effects that the classical

mechanics was not able to describe. Max Planck himself was reluctant to believe that a real

physical system could present quantized levels of energy, contradicting his findings [1]. Not

long after, physicists from all over the world started to reach an agreement about this new

subject. The rising of quantum mechanics showed that other branches of physics could also

benefit from the richness of this new theory. In fact, the decade of 1920 is abundant in papers

that marked the beginning of quantum electrodynamics, quantum field theory, and quantum

statistics. In the path of field theory, in 1928 W. Heisenberg and W. Pauli published a work [2]

in which they developed a canonical quantization method to study quantum behavior from

classical field theory. The canonical quantization method was the first method presented

to go to a quantum approach from a classical description. Thenceforth, several different

methods of quantization were developed.

The decade of 1920 was also marked with the rising of the Bose-Einstein statistics.

In 1924, the Indian physicist Satyendra N. Bose was studying blackbody radiation, which he

was able to describe with the photon spectrum obtained by the statistics of indistinguishable

particles. At that time, he was unable to publish his findings as quantum mechanics was

still not widely accepted in the scientific community. Convinced by the importance of his

findings, he sent the article for one of that most prestigious physicists at the time – Albert

Einstein. Recognizing the impact of this work, Einstein translated the paper himself and

published in 1925 what is known nowadays as Bose-Einstein statistics [3, 4]. This system

of indistinguishable particles presented a threshold in which the particles were expected to
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condensate in the lowest energy state, given rise to a Bose-Einstein Condensate. Although

this system was predicted at the beginning of the century, the existent technology restricted

its experimental achievement for 70 years [5].

The system predicted by Bose and Einstein presents a very interesting statistics,

but it is quite different from real physical systems. Their description does not take into

account interactions, confinement potential, and other constraints that may arise. In 1961,

Gross [6] and Pitaevskii [7] derived, independently, a field equation to describe the dynamics

of Bose-Einstein Condensates of interacting particles, known as the Gross-Pitaevskii equation.

This equation is a non-linear Schrödinger-like equation that describes a classical mean-field

Ψ(r, t). Although its derivation comes from quantum field theory, the macroscopic occupancy

of the condensate allows us to study the mean-field behavior through the condensate wave

function

One of the main features of an interacting Bose gas lies on its nonlinearity. A non-

linear theory provides a very rich physics in which topological deformations such as solitons

and vortex may arise. These topological effects are a special class of solutions of the non-linear

equation of motion, as the Gross-Pitaevskii equation. Here we will use topological, localized,

and solitonic solutions interchangeably. These solitonic solutions can be defined as a shape

conserved packet of matter that can travel freely in space. For having a fixed shape and

mass, these solitonic solutions resemble the behavior of an extended particle. Nevertheless,

this resemblance is merely qualitative, since classical field theory does not define the concept

of a particle.

To treat this localized solution as a particle, one must use a quantization method

to go beyond the mean-field approximation. The most adequate quantization method to treat

systems with a dynamical behavior is called Collective Coordinate Method [8]. This method

promotes the coordinate of the center of the localized solution to a dynamical variable, called

collective coordinate. A great advantage of using this method is to rewrite a complicated

field system as an effective system of a single particle in a bath of harmonic oscillators. The

particle is described by the center of the solitonic solution and the bath is composed of excited

quasiparticles acting as a thermal reservoir.

Although both particle and bath share the same microscopic origin, this effec-



Introduction 15

tive system resembles the one used within the system-plus-reservoir approach for treating

the quantum Brownian motion. Therefore, it seems reasonable to connect the quantization

method of dynamical systems with the quantum Brownian approach to study the dissipa-

tion and dynamical properties of localized solutions. In fact, a systematic methodology

was developed by Castro Neto and Caldeira in which they unified those two theories for a

one-dimensional scalar field [9].

Since the nonlinearity of the Bose-Einstein Condensation allows the appearance

of topological solutions, in this work we want to see how this theory can be applied in the

Schrödinger field. In particular, we want to apply the quantization method of the Collective

Coordinate and study dissipation effects in the one-dimensional Schrödinger field. Both the

Collective Coordinate Method and the study of quantum dissipation can be found in liter-

ature applied for scalar fields [8, 10]. In this work, we want to investigate the applicability

of those methods for a complex field with a Lagrangian that is linear in the time derivative.

As the experiments suggest, solitons are not stable configurations in Bose-Einstein Conden-

sates [11,12], and they suffer dissipative effects that are not well explained by the mean-field

approximation. In the literature, we can find several approaches to explain dynamical and

dissipative processes, which usually involves phenomenological methods. For instance, one

can make use of the stochastic projected Gross-Pitaevskii equation (SPGPE), in which dissi-

pative terms are added into the original equation [13,14]. Here we want to be able to explain

dissipative behavior via a microscopic theory. We expect to be able to write an effective

system of a particle in a bath of oscillators using the adequate quantization method. Then,

we can study a theory for quantum dissipation in which we expect our dissipation parameters

(as damping and diffusion) to be temperature-dependent.

We begin our discussion, in Chapter 1, by presenting differences and similarities

between classical and quantum theories. The discussion follows the use of quantization

methods, in which we develop a very useful method for quantizing translationally invariant

systems. The method of Collective Coordinate is applied for a one-dimensional scalar field,

which is shown to present an effective behavior of a particle coupled with a bath of non-

interacting quasi-particles.

In Chapter 2, we introduce our object of study, which is a Bose-Einstein Con-
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densate. We begin with a basic analysis for the ideal Bose gas, in which we introduce

the Bose-Einstein distribution function n̄ and show the possibility of high occupancy of its

ground state. Our discussion proceeds to the quantum field approach to understanding non-

ideal Bose gases. Some topological solutions for this system are shown and we close our

literature review with some important results found when we treat these systems beyond the

mean-field approximation.

Chapter 3 is dedicated to the development of our theory. We start defining the

Schrödinger field and proceed to apply the Collective Coordinate Method showed in Chapter

1. After the discussion about the applicability of the method, we propose an Extended

Collective Coordinate Method to treat Lagrangians that are linear in the time derivative of

the fields. Our effective Lagrangian is used in the Feynman-Vernon approach of the influence

functional for the study of quantum dissipation, showing that the effective system can be

treated in the same way as we show in the first chapter.

In Chapter 4, we apply the method developed in the previous chapter to the bright

soliton solution in a Bose-Einstein Condensate. We compare our results with the ones found

in the literature, showing that our theory is suitable to describe quantum dissipation in the

Schrödinger field. In this chapter, we also discuss the mechanism involved in the soliton

dissipation.

We finish the discussion of this dissertation with our conclusions in Chapter 5.

Here we review what we can find in the literature on this subject, the literature gaps we

expect to have filled, our main results, and propose future discussions on subjects that we

may have left behind.
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Chapter 1

Dynamics of Quantum Fields

When we first begin to learn about quantum theory, it becomes clear that quantum and

classical systems present very different approaches and results. In fact, each theory was

developed to deal with different systems. Whilst classical mechanics deals with macroscopic

systems with deterministic physical quantities, quantum theory was designed for treating

small atomic systems at zero (or very low) temperature. The intriguing part begins when a

system composed of many quantum particles (bosons or fermions) presents, among others, a

collective macroscopic behavior at finite temperatures. In this case, quantum and classical

theories coalesce, giving rise to several fascinating effects. In this work, we are particularly

interested in the study of the quantum dissipation of a collective variable in a macroscopic

system, such as a Bose-Einstein Condensate. This chapter is dedicated to the understanding

of how to reconcile classical and quantum theories, so we can reach our goal. We will describe

the method to quantize a scalar field and to study its dissipation properties.

1.1 From Classical to Quantum Theories

Before we discuss the method to investigate quantum properties in a scalar field, let us review

some disparities and similarities between classical and quantum theories.

In classical mechanics, a typical starting point is a system of a non-relativistic

particle in one-dimension. This particle can be described by a general Lagrangian of the
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with both momentum and position cannot be determined with such a precision. A direct

consequence of this principle is that the lowest energy state is no longer V (a) or V (c). In fact,

if the barrier V (b) is large enough, in the sense that tunneling effects could be neglected, the

potential in the neighborhood of q(t) = a and q(t) = c can be approximated by a harmonic

one. In this approximation, the lowest energy level is

E = V (a) +
1

2
~ω, (1.2)

in which ω is the natural frequency of the harmonic oscillator. Another peculiarity is that

even if the particle presents energy lower than V (b), and moves about q = a, it could cross

the potential barrier through a tunneling process.

From the single-particle case, the differences between classical and quantum sys-

tems become clear. However, the similarities between these two theories arise in the context of

many-particle physics where there may be quantum systems with a collective behavior which

act as a classical particle, even though quantum effects are not fully suppressed. There are

several physical systems which lie on the edge between classical and quantum physics. Some

of the quantum systems that may present macroscopic behavior are, for example, superfluids,

superconductors, and laser light.

To understand how quantum properties appear in a macroscopic system, it is

convenient to use the concept of a field to describe a large amount of particles. Suppose we

have N identical particles connected one-by-one by N − 1 massless springs. To understand

this system, we could write the discrete form of the Lagrangian as equation 1.1, describing

the dynamics of each coordinate q1, q2, ..., qN . This system is exactly solvable for harmonic

springs, and many times it is convenient to describe it in the long wavelength or continuous

limit. In this description, our system can be interpreted as a continuous elastic string for

N −→ ∞. This string is now represented by the field φ(x, t), instead of the coordinate q(t).

The Lagrangian that describes a classical field can be written as a functional of the field φ,

L [φ] = T [φ]− V [φ] , (1.3)

where the first term describes the kinetic energy and the second one the potential energy.
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we can expect that some classical localized solutions, such as the kink solution, to have a

quantum analogue. In fact, there are several systems with classical localized solutions that

may exhibit quantum behavior, despite of describing in first approximation a macroscopic

classical behavior of the system. This macroscopic behavior is often described by a mean-

field. If the classical mean-field has a topological solution that resembles a particle, the

system can be quantized so we can explore its genuine characteristic of a quantum particle.

In the next few sections, we will show how to quantize a classical field and study, for example,

quantum dissipation in the effective quantum system.

1.2 Quantization of Localized Solutions

In treating quantum many-body problems, a set of new mathematical tools is necessary. In

this theory, the fields are operators in the Fock space that obey Heisenberg equations of

motion. Although the interpretation of a classical field diverges from that of quantum fields

in many ways, it is possible to neglect this difference at a first sight and make a semi-classical

approximation to obtain the mean-field behavior for the system. In doing so, we neglect

several quantum effects that must be recovered by approximation methods. Thus, the use

of a semi-classical approximation requires a quantization method to reincorporate quantum

fluctuations to the problem. In this section, we will show how to evaluate those quantum

fluctuations around a static localized mean-field.

Suppose that a many-body system can be described by the general Lagrangian

L [φ] =

∫
dx

ñ

1

2

Å

∂φ

∂t

ã2

− 1

2

Å

∂φ

∂x

ã2

− U (φ)

ô

, (1.6)

in which φ = φ(x, t) is a scalar function of space and time. Since we want to study a general

system, we set U (φ) as an arbitrary function of the field. Using the definition

L [φ] = T [φ]− V [φ] , (1.7)
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we can define the kinetic and potential energy functionals, respectively as,

T [φ] =

∫
dx

1

2
φ̇2, (1.8)

and

V [φ] =

∫
dx

ñ

1

2

Å

∂φ

∂x

ã2

+ U (φ)

ô

. (1.9)

From Lagrangian 1.6, we can find the Euler-Lagrange equation of motion for φ(x, t). If

we choose to analyze a particular static solution, it can be obtained as an extreme of the

potential energy. In our case, the static solution is given by a functional derivative of the

potential 1.9,

δV

δφ
= 0. (1.10)

Suppose one of the solutions of this equation is a localized static solution φ0(x). This solution

describes a topological deformation of the field. Since our solution is a static one, the classical

energy is simply given by

E = V [φ0(x)] . (1.11)

Any quantum fluctuation of this system will oscillate around the classical solution.

To find high order corrections for the energy, we need to expand the potential 1.9 around the

static solution. The functional Taylor expansion of the potential reads

V = V [φ0] +
1

2

∫
dxδφ

ñ

−
Å

∂φ

∂x

ã2

+

Å

d2U

dφ2

ã

φ0

ô

δφ. (1.12)

Here we have expanded our field as a mean-field φ0(x) plus fluctuations δφ(x, t) as

φ(x, t) = φ0(x) + δφ(x, t). (1.13)

The first term of equation 1.12 is the potential evaluated at φ0. Terms that are of the first
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order in the fluctuations vanish because our solution is static and obeys the condition 1.10.

Second order terms in the fluctuations obey an eigenvalue problem that can be solved by

expanding δφ(x, t) as

δφ(x, t) =
∑

k

ck(t)δφk(x), (1.14)

where {ck(t)} are the set of new coordinates of our problem and δφk(x) describe the normal

modes of the fluctuations, which are solutions of

ñ

−
Å

∂

∂x

ã2

+

Å

d2U

dφ2

ã

φ0

ô

δφk(x) = ω2
kδφk(x). (1.15)

Solving the eigenvalue problem 1.15, the effective potential can be written as

V = V [φ0] +
∑

k=0

1

2
c2kω

2
k. (1.16)

To write an effective Lagrangian for this system, we must write the kinetic energy 1.8 in the

new set of coordinates 1.14. In order to accomplish it, we first write

φ̇ =
∂

∂t

(
φ0(x) +

∑

k

ck(t)δφk(x)

)
,

=
∑

k

ċk(t)δφk(x). (1.17)

Substituing 1.17 in the kinetic energy 1.8, we can write an effective Lagrangian of the form

L =
∞∑

k=0

ï

1

2
ċ2k −

1

2
c2kω

2
k

ò

− V [φ0] . (1.18)

To summarize, our starting point was a quantum field theory in which we used a classical

approximation to find a static mean-field φ0(x). To reincorporate the quantum fluctuations

neglected by the classical approximation, we expanded our scalar field around the mean-

field solution φ0 as done in 1.13. If we rewrite the Lagrangian using 1.13 and 1.14, we can

show that the classical field has a behavior described by the effective Lagrangian 1.18. This
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Lagrangian describes a set of infinite harmonic oscillators built upon the classical value V [φ0].

The quanta of these oscillators can be interpreted as the quasiparticles of the system with

"wave functions" δφk(x) that are related to a wavenumber k and frequency ωk.

Since the effective Lagrangian 1.18 describes a set of harmonic oscillators, the

coordinates ck can be quantized to rewrite the energy of the system with quantum corrections

as

E = V [φ0(x)] +
1

2

∑

k

~ωk. (1.19)

This means that, when we include quantum fluctuations into the problem, the energy 1.11 is

corrected by a term that is a summation of the zero point energies of harmonic oscillators.

The quantization procedure described above is valid if, and only if, the second

derivative of the potential 1.9 is different from zero for all values of φ. The reason is that

higher orders corrections to the energy 1.19 require the use of a perturbation method, in

which the eigenvalues ωk appear in the denominator to the perturbation theory. If the

denominator is zero at any point, the correction for the energy diverges. Therefore, the zero

eigenfrequency shows that the quantization method is not appropriate. In the case that

the eigenvalue problem 1.15 allows a solution with zero eigenvalue, we must use another

quantization procedure. The eigenvalue ω0 = 0 is known as a translational mode or zero-

mode. In the next section, we will explore the conditions under which the translational

mode appears, its physical meaning, and why the described procedure in this section is not

appropriated to treat the zero-mode.

1.3 Translational Modes

In the evaluation of the quantum corrections of a classical static solution, we have seen that

the procedure is highly dependent on the form of the potential V [φ]. If the functional V [φ]

has its second derivative equal to zero in any configuration, this means that our eigenvalue
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problem 1.15 allows a solution with eigenfrequency ω0 = 0,

ñ

−
Å

∂

∂x

ã2

+

Å

d2U

dφ2

ã

φ0

ô

δφ0(x) = 0. (1.20)

The zero-mode is also called the translational mode. That is because it occurs in the quan-

tization of any static field φ0(x) that is a solution of a translationally invariant potential

V [φ].

Suppose φ0(x) is a solution associated with the potential energy V [φ0(x)]. In a

translationally invariant theory, a shifted solution φ0(x− x0) has the same energy V [φ0(x)],

independently of x0. That is, in the space of functions φ, every point φ0(x − x0) for any

value of x0 has the same energy, creating an equipotential curve. In the equipotential curve,

we can always move from one point to another without changing the energy of the system.

This is called neutral stability. Therefore, although φ0(x) was found to be an extreme of the

potential V [φ0(x)], it is not a point of minimum in the field space, even locally.

To find the eigenfunction related to the zero-mode, we can write the equation of

motion 1.10 in the form

−∂
2φ(x)

∂x2
+
∂U(φ)

∂φ
= 0. (1.21)

Taking the derivative with respect to x, we obtain

Å

− ∂2

∂x2
+
∂2U(φ)

∂φ2

ã

∂φ0

∂x
= 0. (1.22)

Comparing this equation to the eigenvalue problem 1.20, we can see that the zero-mode

eigenfunction is the local tangent in the field space, δφ0 = δx(∂φ0/∂x), connecting all shifted

functions along the equipotential curve.

Now that we have seen when the zero-mode appears, we can understand why

the quantization procedure from the last section was not suitable. The reason is that when

one of the modes has zero energy, the Lagrangian 1.18 misses one degree of freedom. The

summation over the k modes
∑

k=0 becomes
∑

k=1 if the first term of the summation is the

zero-mode ω0 = 0. As it was shown, x0 can change freely along the equipotential curve, and
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therefore, we expect the effective Lagrangian to have a kinetic term related to the motion

of x0. Therefore, the absent degree of freedom is related to the translational motion of the

coordinate x0.

Evidently, one could easily extend the presented approach for systems with more

than one dimension. In one dimension, there is one zero-mode corresponding to the transla-

tion along the x axes. Generalizing, in an N -dimensional problem, we should expect N zero

modes, one for each coordinate. Furthermore, there are other sources of zero modes, all re-

lated to symmetries that the system may present, but here we will focus on the translational

symmetry only.

To treat the zero-mode without losing any degree of freedom of the system, we

can make use of a quantization method called Collective Coordinate Method that was first

presented by Christ and Lee [15] and is deeply discussed in [8].

1.4 Collective Coordinate Method

When the system presents some sort of symmetry that gives rise to zero modes, one needs

a proper way to quantize this system. The literature shows several ways to treat the zero-

mode [15–19], and many of them involve the use of collective coordinates. In this section,

we will present the Collective Coordinate Method introduced by Christ and Lee [15]. This

method can be used as a quantization method to write an effective Lagrangian and an effective

Hamiltonian for translationally invariant theories.

Our starting point is a system described by a scalar field in 1 + 1 dimensions (1

spatial and 1 temporal), containing one zero-mode due to the translational invariance. This

system can be described by the general Lagrangian 1.6, written in terms of the scalar field

φ(x, t), with a localized solution φ0 that obeys

−∂
2φ0(x− x0)

∂x2
+
∂U(φ0)

∂φ0

= 0. (1.23)

To find quantum corrections to the the classical solution we follow the discussion, in the
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section 1.2 and expand our field as

φ(x, t) = φ0(x− x0) +
∑

k=0

ck(t)δφk(x− x0). (1.24)

This expansion leads to the eigenvalue problem

ñ

− ∂2

∂x2
+

Å

d2U

dφ2

ã

φ0

ô

δφk(x− x0) = ω2
kδφk(x− x0), (1.25)

that has a zero mode for k = 0. Since we have already seen that the zero modes are

related to the translational freedom of the coordinate x0, and the summation over k in the

Lagrangian 1.18 misses one degree of freedom if ω0 = 0, we must assume that the coordinate

x0 is a dynamical one. Therefore, a system with a zero-mode must have the center of the

solution dependent of time, x0 = x0(t). This dynamical coordinate is the so-called collective

coordinate. Accordingly, the proper expansion 1.24 of the field φ(x, t) becomes

φ(x, t) = φ0(x− x0(t)) +
∑

k=1

ck(t)δφk(x− x0(t)). (1.26)

Note that the zero mode, k = 0, was replaced by making x0 −→ x0(t) and now the summation

begins at k = 1. This replacement is the key feature of the Collective Coordinate Method.

Since a translationally invariant theory means that the potential V [φ0] is independent of x0,

the effective potential 1.16 remains the same

V [{ck}] = V [φ0] +
∑

k=1

1

2
c2kω

2
k. (1.27)

On the other hand, the kinetic energy depends on the time derivative of the field 1.26,

φ̇(x, t) = −
[
∂

∂x
φ0 +

∑

k=1

ck
∂

∂x
δφk

]
ẋ0 +

∑

k=1

ċkδφk, (1.28)

and, therefore, we should expect a different result for the effective kinetic energy.

Here it is convenient to make a change of variables and define q0(t) = x0(t) and
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qk(t) = ck(t) for k > 0, which allows us to write the effective Lagrangian as

L =
1

2

∞∑

jk=0

q̇jMjkq̇k − V [{qk}], (1.29)

where Mjk is a matrix with elements

M00 =

∫
dx

(
∂φ0

∂x
φ0 +

∑

k=0

qk
∂δφk
∂x

)2

, (1.30a)

M0k = −
∑

j=0

∫
dxqjδφj

∂δφk
∂x

, k 6= 0, (1.30b)

Mjk = δjk, j, k 6= 0. (1.30c)

To write the matrix elements, we have used the orthogonality between the normal modes

of the fluctuations δφk. It is also worth remembering that the eigenfunction related to the

zero-mode is δφ0 = δx(∂φ0/∂x). Comparing the effective Lagrangian 1.29 with equation 1.18,

it is already possible to perceive what difference the introduction of a collective coordinate

makes.

It is also possible to write the effective Hamiltonian from the Legendre transfor-

mation

H =
∑

k

πkq̇k − L, (1.31)

in which we have defined the canonical momenta as

πk =
∂L

∂q̇k
. (1.32)

Substituting the Lagrangian 1.29 in the Legendre transformation 1.31, a straightforward

calculation leads us to the effective Hamiltonian

H =
P 2

2M
− P

M

∑

k=1

M0kπk +
1

2

∑

j,k=1

Å

δjk +
M0kM0j

M
πkπj

ã

+ V [{ck}], (1.33)
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where M is a number with unit of mass, calculated by M = DetMjk =M00−
∑
M2

0k. P refers

to the conjugate momentum of the coordinate q0 = x0(t), that is P = π0. This Hamiltonian

describes a particle with momentum P and mass M interacting with a bath of harmonic

oscillators, with the particularity that, in our case, it is the center of the static solution x0(t)

which behaves as a particle. This particle (center of the solution), has an effective mass M ,

that refers to the mass of the topological excitation.

So far our discussion of the Collective Coordinate Method has been purely clas-

sical. The entire procedure of the method can be resumed in two steps: acknowledge the

symmetries that produce the zero-modes and change the variables from φ to {qk} using the

center of the classical solution as a dynamical variable. Although the Collective Coordinate

Method can be easily found in the literature, it is limited to Lagrangians of the form 1.6

which are Lagrangians with a second-order time derivative for the kinetic energy. The liter-

ature fails to explain a systematic way to apply the method for Lagrangians with first-order

time derivatives, such as the Schrödinger’s field Lagrangian. Systems that are described by

the Schrödinger equation can also present a collective coordinate relative to the center of

a localized classical solution. The present method, as we are going to see, is not entirely

suitable for dealing with these systems. Therefore, our work lies in the extension of the

Collective Coordinate Method for Schrödinger fields.

The Hamiltonian 1.33 resembles the one of a Brownian particle, in which an

external particle interacts with the particles of a given medium. The main difference between

the Brownian motion described by the Hamiltonian 1.33 and the ordinary one is that the

environment, responsible for making the particle with momentum P to lose energy, have the

same nature and microscopic origin as the Brownian particle itself. We will dedicate the rest

of this chapter to review important features of quantum dissipation in this kind of system.

1.5 Quantum Dissipation

So far we have seen both differences and similarities between classical and quantum systems.

In order to treat a quantum system with a semiclassical approximation, a quantization pro-

cedure is required to reincorporate quantum fluctuations into the system. Furthermore, we
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have seen that, in the process of quantization, classical fields with topological solutions can be

described by an effective Hamiltonian of a particle coupled to a bath of oscillators, equation

1.33. Physically, these oscillators can be interpreted as quasiparticles, which collide with the

quantum particle, thus behaving as a thermal bath to the latter. In other words, a paradigm

of quantum Brownian motion.

Important features of the quantum Brownian motion were developed by Caldeira

and Leggett [10]. In their work, they studied a system of a single particle coupled with a

reservoir using the Feynman-Vernon formalism of the influence functional [20]. Among several

important results, their work showed that the mobility properties of a quantum system can

be described by damping and diffusion coefficients, in the same way as classical systems.

Although their work was not directly related to topological excitations in field theory, we

have seen that a field Lagrangian with localized solutions resembles an effective behavior of

a particle-plus-reservoir system, in which both particle and bath share the same microscopic

origin. A work done by Castro Neto and Caldeira [21] unified the quantization of a localized

solution with the dissipative aspects of the quantum Brownian motion. In their work, the

damping and diffusion functions of a scalar field in 1D were calculated successfully, showing

that the dissipation properties of a scalar field are temperature dependent. Later, a similar

approach was implemented for a scalar field in 2D [22]. Since we aim to investigate dissipative

aspects of a localized solution in the Schrödinger picture, we will highlight important features

and steps to understand quantum dissipation in these systems.

For the purpose of this dissertation, we will only focus on the main results of their

approach, since the whole discussion of quantum dissipation involves extensive mathematical

work. In appendices A and B, we develop the intermediate steps to obtain the main results

we will show in this section. For further details, an elucidative review of this subject can be

found in Ref. [23].

We begin with a Hamiltonian of a system-plus-reservoir in the form

H = HS +HI +HR, (1.34)

in which HS, HI and HR refers to the Hamiltonian of the system, interaction and reservoir,
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respectively. To find average values of any observable Ô at time t (Heisenberg picture), the

operation

¨

Ô(t)
∂

= 〈ψ(0)| Ô(t) |ψ(0)〉 , (1.35)

must be performed for the system at an initially pure state |ψ(0)〉. Usually, for a system-

plus-reservoir, the choice of a pure state is not the most appropriate one. Since the bath

acts as a thermal reservoir for the system, and, as we know, a system at finite temperature

is better described by a mixed state, we should represent it by the density operator

ρ̂(0) =
∑

ψ

pψ |ψ(0)〉 〈ψ(0)| , (1.36)

where pψ is the probability associated with the state |ψ(0)〉. The average of any observable

is now given by

¨

Ô(t)
∂

= TrRS
¶

ρ̂(t)Ô(0)
©

, (1.37)

where RS refers to the basis of the composite system formed by the reservoir (R) and the

system (S). Since we are usually interested in the system S, we can use the properties of the

trace (A.6) and write 1.37 as

¨

Ô
∂

= TrRS
¶

ρ̂(t)Ô
©

= TrS
¶

[TrRρ̂(t)] Ô
©

= TrS
¶

ρ̃(t)Ô
©

, (1.38)

where we have defined

ρ̃(t) = TrRρ̂(t), (1.39)

as the reduced density operator for the system. When we trace out the coordinates of the

reservoir R, the only subspace remaining is that of the system of interest S. In the coordinate

representation, it can be shown (in the appendix A) that the reduced density operator of a
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system-plus-reservoir can be written using the Feynman-Vernon formalism as

ρ̃(x, y, t) =

∫ ∫
dx′dy′ ρ̃(x′, y′, 0) J (x, y, t; x′, y′, 0), (1.40)

in which J is the well-known superpropagator of the system, defined as

J (x, y, t; x′, y′, 0) =

∫ x

x′

∫ y

y′
DxDy exp

ß

i

~
(SS[x]− SS[y])

™

F [x, y]. (1.41)

Here, SS is the action corresponding to the Hamiltonian HS and F is the so-called influence

functional, defined in equation A.17.

Summarizing, a system in contact with a thermal reservoir cannot be represented

by a pure state, because the reservoir itself mediates a coupling between the forward and

backward time evolutions required to describe the dynamics of the density operator. There-

fore, to understand the behavior of the subsystem S (by evaluating ρ̃(t)) one must firstly

understand how the system S acts on the reservoir R, and then how the latter reacts on

the former. This sort of feedback effect represents the influence of the reservoir R upon the

system S, and can be understood by evaluating the influence functional F .

Until now, our discussion was entirely general and could be applied to any system

written as 1.34. However, the influence functional can only be analytically solvable for some

specific systems. Therefore, we are going to show how this formalism can be applied for a

Hamiltonian similar to 1.33 in order to obtain the damping and diffusion functions. Our

model Hamiltonian in second quantization form reads

H =
1

2M

(
P −

∑

jk

~gjka
†
jak

)2

+
∑

k

(~ωk − µ)a†kak, (1.42)

in which gjk = 〈j| p̂ |k〉 is the coupling matrix between the quantum particle with momentum

P and the set of quasiparticles with eigenstates |k〉, now represented by the creation a†k

and annihilation ak operators. The operator p̂ is the one-body momentum operator that

in one dimension reads p̂ = (−i~)∂/∂x, ωk are the eigenfrequencies of the k state and µ

is the chemical potential. This Hamiltonian represents a particle with total momentum P

surrounded by a set of indistinguishable particles that could be fermions or bosons. Since we
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want to apply this method for a Bose-Einstein Condensate later, the next results are for the

particular bosonic case.

To evaluate the influence functional, that is, the influence the bath produces on

the particle, one must define the appropriate set of coordinates for the bath. In dealing with

creation and annihilation operators, it is convenient to evaluate the influence functional in the

coherent state representation. A coherent state is defined as an eigenstate of the annihilation

operator [23]

a |α〉 = α |α〉 . (1.43)

In this representation, it can be shown (appendix B) that the influence functional can be

written as

F [x, y] =

∫
dµ(α)dµ(α′)dµ(γ′)ρR(α

′∗, γ′)

∫ α∗

α′

Dµ(α)
∫ α

γ′∗
Dµ(γ) e i

~
(SRI [x,α]−S

∗

RI
[y,γ∗]), (1.44)

where dµ and Dµ are defined in B.16 and B.13, respectively. Here, SRI is the action associated

with the reservoir R and the particle-reservoir interaction that can be obtained from HI , and

is written as

SRI [x, α] =
∫
dt′

[
∑

k

(α∗
kα̇k − αkα̇

∗
k) + ẋ

∑

jk

~gjkα
∗
jαk −

∑

k

(~ωk − µ)α∗
kαk

]
. (1.45)

The influence functional is the average of the product of two time evolutions over the initial

state of the bath. As we have mentioned above, one of the time evolutions refers to the

evolution of the reservoir under the action of the system S, whereas the other is its time-

reversed partner. In this model, in which the bath is a harmonic one, the influence functional

can be exactly solved because the integrand of 1.44 is a Gaussian. The integral 1.44 has been

evaluated elsewhere in the context of polaron [21] and skyrmion dynamics [22], resulting in

F = e−
i

~
ΦI [x,y]−

1

~
ΦR[x,y], (1.46)
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where the functions ΦI and ΦR are defined as

ΦI =

∫ t

0

∫ τ

0

dt′dτ ′ [x(τ ′)− y(t′)]Mγ(τ ′ − t′) [ẋ(τ ′)− ẏ(t′)] , (1.47a)

ΦR =

∫ t

0

∫ τ

0

dt′dτ ′ [x(τ ′)− y(t′)]D(τ ′ − t′) [x(τ ′)− y(t′)] . (1.47b)

Here γ(τ ′ − t′) and D(τ ′ − t′) are known as the damping and diffusion functions respectively,

being defined as

γ(t) ≡ − ~

M

∑

jk

|gjk|2(n̄k − n̄j)(ωk − ωj) cos(ωk − ωj)t

= − ~

2M
θ(t)

∫
dω

∫
dω′ S(ω, ω′) [n(ω)− n(ω′)] (ω − ω′) cos(ω − ω′)t, (1.48)

and

D(t) ≡ ~
2
∑

jk

|gjk|2(n̄k + n̄j + 2n̄jn̄k)(ωk − ωj)
2 cos(ωk − ωj)t

=
~
2

2
θ(t)

∫
dω

∫
dω′ S(ω, ω′) [n(ω) + n(ω′) + 2n(ω)n(ω′)] (ω − ω′)2 cos(ω − ω′)t.

(1.49)

respectively. Here n̄ is the bosonic distribution function, and θ(t) is the Heaviside function.

In the damping 1.48 and diffusion functions 1.49 we have introduced the scattering function

S(ω, ω′), that is defined as

S(ω, ω′) =
∑

jk

|gjk|2δ(ω − ωj)δ(ω
′ − ωk), (1.50)

in the sense that all the transport coefficients (damping and diffusion) depend on the scat-

tering of the quasiparticles by the particle. This means that, when the whole system is

described by a Hamiltonian of the type 1.42 or an action written as 1.45, the only thing

needed to understand the dissipative behavior of the particle is the coupling matrix gjk and

the eigenfrequencies ωk.

With the influence functional calculated, we can proceed to understand the evo-
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lution of the system S. Substituting 1.46 in 1.41, the corresponding superpropagator can be

written as

J (x, y, t; x′, y′, 0) =

∫ x

x′

∫ y

y′
DxDy e i

~
(SS [x]−SS [y]−ΦI [x,y]) e−

1

~
ΦR . (1.51)

This expression show us that the quantum particle has its dynamics described by the effective

action

S̄[x, y] = SS[x]− SS[y]− ΦI [x, y] , (1.52)

where SS is the action of the system S. We can make a change of variables to

R =
x+ y

2

r = x− y, (1.53)

and derive equations of motion from 1.52 as

R̈ + 2

∫ t

0

γ(t− t′)Ṙdt′ = 0, (1.54a)

r̈ − 2

∫ t

0

γ(t− t′)ṙdt′ = 0, (1.54b)

in which the function γ is the damping function defined in 1.48. These equations are the

equations of motion for the "center of mass" (equation 1.54a) and "relative" coordinate

(equation 1.54b), associated to the coordinate representation of the reduced density operator

of the system. Whereas the first equation can be intuitively interpreted as describing the

dissipative motion of the particle represented by the density operator 1.40, the interpretation

of the second equation is not so straightforward. In reality, it is related to the diffusion process

the particle suffers, which can only be seen analyzing 1.54b in the Wigner representation of

that equation.

Summarizing, we have started from a quantum field theory in which a set of bosons

(or fermions) presented an organized behavior that could be described by a classical mean-
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field. The semiclassical quantization procedure showed that a localized mean-field solution

presents an effective behavior that can be interpreted as that of an extended-particle (a

soliton-like solution of the classical field equation) surrounded by a set of harmonic oscillators

(quasiparticles). If the system was composed only by the extended particle, it would move

with no resistance due to the translation invariance of the field equation. But, due to the

collective coordinate quantization method, particle and normal modes become coupled, and

the latter act as a thermal bath for the former. The particle’s dissipation and diffusion

coefficients are completely described by the action of the bath upon the particle, which can

be quantified by the influence functional F , and uniquely expressed in terms of the coupling

matrix gjk.

Therefore, our job in the next few chapters is to define the system of interest and

apply the method presented here to find the coupling matrix and, consequently, the damping

and diffusion functions.
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Chapter 2

Bose-Einstein Condensate

The Bose-Einstein Condensate was first predicted theoretically at the beginning of the twen-

tieth century and first achieved experimentally at its end. The complexity of both theory and

experiment reflects the intriguing features that a Bose gas can present. This is a many-particle

system that lies on the edge between quantum and classical mechanics. The Bose-Einstein

Condensate is defined by a macroscopic occupation of its ground state, which provides a

classically collective aspect for this system. However, at low temperatures, its properties are

described by a single particle Schrödinger equation.

In this chapter, we will show the most important features of the Bose-Einstein

Condensation, from the ideal gas to interacting and nonuniform systems. Our main goal is

to provide the tools to understand our object of study, since this system will be used later

to develop a theory similar to the one developed in the last chapter.

2.1 Ideal Bose gas

An ideal Bose gas is defined by a set of N bosons at very low temperature without inter-

particle interactions or external potential. Although this ideal system differs considerably

from condensates produced experimentally, its statistics provides the main basic concepts

that appear in more realistic systems. Here we will briefly review the description of an ideal

Bose gas and highlight the main concepts and results that arise in bosonic systems.

A gas of N indistinguishable non-interacting bosonic particles has its thermody-
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namics quantities originated by the partition function

Z =
∑

Ek

e−β(Ek−µ), (2.1)

in the grand-canonical ensemble. The parameter β is defined as β = 1/kBT , in which kB is the

Boltzmann constant and T the temperature of the gas. In order to describe this bosonic gas,

we must find the eigenenergies Ek of the system. For a system of non-interacting particles,

the total Hamiltonian can be written as a sum of single-particle Hamiltonians

Ĥ =
∑

i

Ĥ
(1)
i , (2.2)

since each particle behaves independently. This separable Hamiltonian, allow us to write the

energy Ek as

Ek =
∑

i

n̄iǫi, (2.3)

in which, n̄i is the occupation number of the ith single-particle energy state ǫi, i.e, the number

of bosons with the same set of quantum numbers i. If our particles were fermions, n̄i could

only assume the values 0 or 1, due to Pauli exclusion principle. But since we are interested

in Bose systems, n̄i can assume any integer value in the interval [0, N ]. For such a system,

the grand canonical potential reads

Ω = − 1

β
lnZ,

=
1

β

∑

i

ln (1− eβ(µ−ǫi)). (2.4)

With equation 2.4, we can evaluate the thermodynamic behavior of the system. For instance,

the number of particles is given by

N = −∂Ω
∂µ

=
∑

i

1

eβ(ǫi−µ) − 1
=
∑

i

n̄i. (2.5)

It is convenient to make a distinction between the number of particles in the lowest
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energy state, i = 0, and those in the excited states, i 6= 0,

N =
1

eβ(ǫ0−µ) − 1
+
∑

i 6=0

1

eβ(ǫi−µ) − 1
,

= N0 +N ′. (2.6)

Besides the definition of the number of particles in each state, this quantity determines that

the chemical potential must be µ < ǫ0 in order to have only positive values of N0. The

thermal component of the gas, N ′, accounts for every particle that is not in the condensate.

It is a summation over the excited states. For a given temperature and chemical potential,

the number of particles in the excited states increases smoothly with the size of the system,

as expected. However, the behavior of the condensate N0 is quite intriguing. When the

eigenenergy ǫ0 approximates the chemical potential µ, the portion N0 increases drastically

and displays a divergence for µ = ǫ0. This is the main mechanism for the Bose-Einstein

condensation. In fact, N0 is usually called the condensate component of the gas, since it

shows the macroscopic occupation of the lowest level of energy as ǫ0 −→ µ.

For a bosonic gas obeying the condensation conditions, we have most of the parti-

cles found to be in the ground state, behaving as a whole. So, the many-body field operator

Ψ̂(r) =
∑

i=0

ϕiâi, (2.7)

that represents the set of all particles in the system, can be simplified for condensates. Here,

âi is the annihilation operator for bosons. The macroscopic nature of the particles in the

ground state, allows us to neglect the commutation relations between the annihilation â0

and creation â†0 operators. Therefore, the condensate term ϕ0â0 can be approximated by a

classical function

Ψ̂(r) = Ψ0(r) +
∑

i=1

ϕiâi,

= Ψ0(r) + δΨ̂(r). (2.8)

This is known as the Bogoliubov approximation. Thus, in diluted Bose gases at very low
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temperature, it is possible to treat the particles in the ground state as a macroscopic classical

field. This result will become extremely useful in dealing with non-ideal Bose gas.

2.2 Non-ideal Bose gas

The difference between an ideal Bose gas and a non-ideal one begins with the nature of the

Hamiltonian that describes the system. For the ideal case, it was possible to find a separable

Hamiltonian, as equation 2.2, due to the absence of interparticle interactions. However, in a

real Bose gas, particles do interact with each other. A general Hamiltonian for interacting

systems can be written as

Ĥ =
∑

i

Ĥ
(1)
i +

1

2

∑

i 6=j

Ĥ
(2)
ij + ... . (2.9)

Even if we consider only two-body interactions, this non-separable Hamiltonian makes the

process of writing the grand canonical potential and finding thermodynamic quantities of

the system an excessively hard task. So, for non-ideal Bose gas, it is convenient to find an

alternative approach to study the system.

Since the majority of the particles are found to be in the ground state, we can make

use of a microscopic theory developed by Bogoliubov to describe an interacting Bose gas [24].

His theory was based on a principle that a system with a large number of atoms in the same

quantum state can be approximated by a classical function. This classical approximation

provides the correct macroscopic properties of the quantum system, if the right parameters

are chosen. To show how nonuniform Bose-Einstein condensate can be studied, we will apply

the Bogoliubov approximation, as in equation 2.8, for the system of interest. In terms of the

field operator Ψ̂, our many-body system can be described by the Hamiltonian

Ĥ =

∫
drΨ̂†(r)

Å

− ~
2

2m
∇2 + V (r)

ã

Ψ̂(r) +
1

2

∫ ∫
drdr′Ψ̂†(r)Ψ̂†(r′)U(|r− r′|)Ψ̂(r)Ψ̂(r′),

(2.10)
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where the field operators, Ψ̂(r) and Ψ̂†(r), obey the commutation relations

î

Ψ̂(r), Ψ̂†(r′)
ó

= δ(r− r′), (2.11a)

î

Ψ̂(r), Ψ̂(r′)
ó

= 0. (2.11b)

The first and second terms of 2.10 are the one-body operators. The third term is the two-

body operator that describes the interaction between the particles. In a dilute Bose gas, we

can neglect higher orders of interactions, as three-body operators.

Considering that this Hamiltonian describes a bosonic system at very low temper-

ature and most of the particles are found to be in the lowest energy state, we can proceed to

apply the Bogoliubov approach. It would be careless to replace the field operator Ψ̂(r) for a

classical function Ψ(r) directly into the Hamiltonian 2.10 for a realistic potential. However,

the dilute condition allows us to admit that the interparticle distance is large enough, so

that the Born approximation can be applied. Our realistic potential U can be replaced by a

short-range pseudopotential gδ(r− r′), where g is a coupling constant [25]

g =
4π~2a

m
, (2.12)

with a fixed s-wave scattering length a. The approximation of the potential by a delta

function means that the bosons only interact by contact.

Now that we have replaced the interparticle interaction U by an effective potential

that reproduces the correct scattering properties of the system, we can replace the field

operator 2.8 into the Hamiltonian 2.10. Considering only first order terms in the fluctuations,

the field equation of motion can be obtained in the Heisenberg picture by

i~
∂

∂t
Ψ̂(r, t) =

î

Ψ̂(r, t), Ĥ
ó

. (2.13)

Thus, the time dependent equation of motion for the condensate wave function can be written
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as

i~
∂

∂t
Ψ(r, t) =

Å

− ~
2

2m
∇2 + V (r) + g |Ψ(r, t)|2

ã

Ψ(r, t). (2.14)

This equation is known as the Gross-Pitaevskii equation (GPE) [25]. This equation is very

similar to the Schrödinger equation. The main difference here is that the Gross-Pitaevskii

equation describes a field, not a single particle. Besides, GPE usually has a non-linear term

that is originated by the interparticle interaction.

For a field Ψ to be well described by the GPE 2.14, there are some requirements

that the system may obey. For instance, the number of bosons must be large enough to

allow us to use the concept of Bose-Einstein Condensation, the temperature must be close

enough to zero and our gas must be diluted. Under these conditions, we can assume that the

interparticle interactions are given only by direct contact and that our field can be approx-

imated by a macroscopic classical function. Moreover, the mean-field must be normalized

to the total number of particles
∫
|Ψ|2 dr = N . Therefore, non-ideal dilute Bose gas at low

temperature can be described by a mean-field equation that comes from the second quantized

Hamiltonian 2.10.

For a stationary field, the solution of the equation 2.14 can be separated in two

parts, a spatial and a temporal one,

Ψ(r, t) = Ψ0(r) e
− i

~
µt =

»

n(r) e−
i

~
µt, (2.15)

where µ is the chemical potential and n(r) is the density of the Bose-gas. With the separation

2.15, the time-independent GPE can be written as

Å

− ~
2

2m
∇2 + V (r) + g |Ψ0(r)|2 − µ

ã

Ψ0(r) = 0. (2.16)

This non-linear differential equation has a variety of interesting solutions. A simple solution

of the GPE equation is when we consider the Thomas-Fermi limit. This limit occurs when

the density of the condensate n(r) changes very slowly in space. The first term in 2.16, which

depends on position, is proportional to ~
2, and is known as quantum pressure. Therefore,
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the limit in which the quantum pressure can be neglected is called the Thomas-Fermi limit.

If the spatial derivative can be neglected, equation 2.16 is no longer a differential equation,

and its solution can be simplified. The configuration of the field for the Thomas-Fermi limit

takes a particularly simple form [25],

n(r) =
µ− V (r)

g
. (2.17)

Further developments on the form of the function Ψ0(r) =
√
n(r) requires the

definition of the external potential V (r). The simplest case is the uniform gas, which occurs

in the absence of an external potential. In this case the uniform gas presents a density

n0 = µ/g. Both uniform gas and Thomas-Fermi limit results are very important solutions

for the Gross-Pitaevskii equation. However, neither of them are localized solutions, in the

sense of presenting a non-trivial topological deformation. As we have seen in the previous

chapter, localized solutions present very interesting physics, in which the solution could

behave as an extended-particle. The Gross-Pitaevskii equation allows numerous different

localized solutions which are widely discussed both theoretically and experimentally in the

literature. In the next few sections, we will present some important localized solutions

for the time-independent Gross-Pitaevskii equation 2.16. These solutions are topological

deformations of the particle density and they describe the mean-field behavior of a superfluid.

2.3 Soliton Solution

Starting with the one-dimensional case, the class of topological solutions is called soliton

solutions [26]. The soliton solution is defined by a shape conserved wave-packet moving with

a constant velocity. The one-dimensional time independent Gross-Pitaevskii equation (GPE)

2.16 can be written as

Å

− ~
2

2m

∂2

∂x2
+ V (x) + g |Ψ0(x)|2 − µ

ã

Ψ0(x) = 0. (2.18)

The GPE 2.18 allows three different types of solitonic solutions. The type of solution depends

on the nature of the interaction between the bosons. For a system with repulsive interaction,
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the constant g is positive, g > 0. In this case, a localized suppression of the density appears

in the density distribution of the superfluid. This density pattern is called a grey soliton. In

the particular case in which the density completely vanishes at one point, this solution can

be called a dark soliton. However, if the system has an attractive interaction between the

bosons, g < 0, then the solution is called a bright soliton. The bright soliton is characterized

by a localized wave-packet in the condensate. Particularly, the bright soliton has a solution

of the form

Ψ(x, t) = |Ψ(0)| sech

Å

x

ξ

ã

e−iµt/~, (2.19)

where the parameter ξ is the healing length, defined as

ξ =
~√

2mgn0

. (2.20)

This quantity determines the minimum distance in which the superfluid order parameter can

change and naturally appears in spatially deformed solutions [27].

Both grey soliton and bright soliton solutions arise from a translationally invariant

theory, so the center of the solution can move freely in the space, acting as an ordinary

particle. However, in realistic environments, they can also collide with thermal fluctuations

as they move. These collisions are responsible for the soliton to lose energy and cease its

motion. The bright soliton solution will be used in Chapter 4 to study these dissipation

properties microscopically.

2.4 Vortex Solution

For a two-dimensional system, an important localized solution is a vortex. This type of

solution is a topological deformation in which the superfluid revolves around an axis. To

describe this system properly, let us define the polar coordinates r and φ. In these coordinates,

the vortex solution has the form

Ψ(r, t) = |Ψ0(r)| eiqφ e−iµt/~, (2.21)
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where the parameter q is a integer to ensure that the GPE is single valued. The density can

be defined as
√
n = |Ψ0(r)|. Note that due to the symmetry of the problem, the density

depends only on the radial coordinate r. Substituting 2.21 in the equation 2.16, the GPE

can be written as

ï

− ~
2

2m

1

r

Å

r
d

dr

ã

+
~
2

2m

q2

r2
+ V (r) + g|Ψ0|2 − µ

ò

|Ψ0| = 0. (2.22)

The exact solution of this equation, considering the quantum pressure term, confinement

potential, and interparticle interaction requires a numerical method [28]. To find an analytical

solution for the equation 2.22, we can take the Thomas Fermi limit and consider that the

first term of 2.22 vanishes. In this limit, the superfluid density can be written as

nq(r) = n0

Å

1− q2ξ2

r2
− V (r)

µ

ã

, (2.23)

where ξ is the healing length defined as in equation 2.20.

The main difference between the density profile of a superfluid with a single vortex

2.23 and the vortex-free condensate in the TF limit 2.17 is the presence of the term q2ξ2/r2.

This term act as a centrifugal barrier, forcing the density to vanish at the center of the

solution. In fact, note that for a single quantized vortex, q = 1. As the coordinate r

approximates the healing length ξ, the density tends to zero. This behavior characterizes a

singularity at the core region of a quantized vortex.

2.5 Beyond the Mean-Field Approximation

Although the Bose-Einstein Condensate presents a macroscopic behavior described by a

classical mean-field solution, some important quantum features have been neglected until

now. To fully understand the behavior of this system, we must take into account quantum

fluctuations. These fluctuations are responsible for describing any emergent, dissipative or

dynamical phenomena the system may present. However, there is a variety of ways to include

those quantum fluctuations into the problem.

One of the possible procedures to include these fluctuations is via numerical cal-
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culations. Numerical methods can provide comprehensive results of the system of interest,

being a convenient choice to deal with non-linear theories [29, 30]. This is a very useful

approach, but it has some limitations. An important constraint of this method is the com-

putational cost of the application of an algorithm in a system with many degrees of freedom.

Another aspect to take into account is that these methods are very sensitive to the specific

values of the parameters of the system. Therefore, not all dynamical or transient systems can

be fully understood by numerical methods alone. Still, there are several ways in which nu-

merical calculations can help to understand quantum fluctuations of a Bose gas with specific

configurations.

An alternative method to study these fluctuations emerge from systems in which

the experimental behavior is well known, but the microscopic theory is not exactly solvable.

This is the phenomenological approach, in which a theory is proposed to explain an exper-

imental result that an ab initio theory was not capable to describe so far. This method is

widely used in the literature to explain the behavior of a number of complex systems. For

instance, we could mention the work done by Rooney, Bradley, and Blakie [14] in which

the dynamics of a vortex is studied phenomenologically. In their work, the authors separate

the condensate dynamics in three components: a movement without loss of energy, a decay

by damping, and a decay by diffusion. The damping and diffusion functions appear in the

theory by the argument that the experiments show this behavior that is not well explained

by the mean-field solution itself.

Although the phenomenological approach can provide us with some good results,

it would be desirable to have a first-principle theory to explain these systems. The more

accurate way to go beyond the mean-field is by a microscopic theory. This is, to solve an

equation of motion that describes the excited particles interacting with the mean-field. In

1972, Alexander L. Fetter proposed a microscopic theory to include quantum fluctuations in a

static condensate [31]. In his work, the Bogoliubov approximation 2.8 was used to expand the

second quantized Hamiltonian 2.10 without an external potential, V (r) = 0. Then, quantum

fluctuations were written in terms of a sum of quasiparticle creation α†
k and annihilation αk

operators

δΨ̂(r) =
∑

k

î

uk(r)αk − v∗k(r)α
†
k

ó

, (2.24a)
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δΨ̂∗(r) =
∑

k

î

u∗k(r)α
†
k − vk(r)αk

ó

, (2.24b)

where the c-numbers uk(r) and vk(r) are amplitudes of the quasiparticles. This expansion

of the fields δΨ was essential to write the coupled differential equations that describe the

behavior of the amplitudes

Å−~
2

2m
∇2 − µ+ 2g|Ψ0|2

ã

uk − (Ψ0)
2vk = Ekuk, (2.25a)

Å−~
2

2m
∇2 − µ+ 2g|Ψ0|2

ã

vk − (Ψ∗
0)

2uk = −Ekvk. (2.25b)

These equations are known as Bogoliubov equations. The solutions of these equations de-

scribe the spectrum of excited quasiparticles of the system. In his work, the author shows

the application of these equations to the uniform condensate and a condensate with a vor-

tex. Although such an analysis provides comprehensive results for the energy spectrum and

behavior of the quasiparticles, it does not explain the dynamics of some systems. To study

dissipation properties and dynamics, a more accurate theory must be used.

In Chapter 1, we have shown a method to describe the dynamics of a localized

solution in a scalar field. In 2016, Efimkin, Hofmann, and Galitski showed a similar appli-

cation of this method to study a particular Schrödinger field in one-dimension [32]. In their

work, they studied a condensate with a dynamical bright soliton with solution 2.19. They

proposed that a Schrödinger field with this localized solution should have the form

Ψ(x, t) = ψ0(x− x0(t)) + i
ξπ0
~
ux(x− x0(t)) +

∑

k

[uk(x− x0(t))αk − v∗k(x− x0(t))α
∗
k] ,

(2.26)

in which the first term is the bright soliton solution, the second term they introduce for

later convenience and the last term describes the modified Bogoliubov excitations 2.24. The

parameter π0 is the momentum of the condensate without the Bogoliubov excitations and ux

is an arbitrary function that was not defined explicitly. This type of solution, 2.26, made it

possible to write the corresponding Bogoliubov equations 2.25 and an effective Lagrangian
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for the moving center x0,

L =
Mẋ0
2

+ πkk′ ẋ0 +
∑

k

α∗
k

Å

i~
∂

∂t
− Ek

ã

αk, (2.27)

where M is the effective mass of the topological solution and Ek are the eigenvalues found in

the Bogoliubov equations 2.25. From the effective Lagrangian 2.27, they proceed to define a

coupling parameter πkk′ of the form

πkk′ =
1

2

∑

kk′

(
α∗
k αk

)
Ñ

〈k| σz p̂ |k′〉 − 〈k| σz p̂|k′〉
−〈k|σz p̂ |k′〉 〈k|σz p̂|k′〉

éÑ

αk′

α∗
k′

é

, (2.28)

where p̂ = −i~∂/∂x is the momentum operator, σz is the Pauli matrix in the z direction and

the vectors |k〉 and |k〉 are defined as

|k〉 =

Ñ

uk

−vk

é

, |k〉 =

Ñ

−v∗k
u∗k

é

. (2.29)

This coupling parameter accounts for every interaction between quasiparticles and the moving

center x0(t).

To study the quantum dissipation of this system, in [32], they used the Keldysh

formalism to write a general form of the damping function and a scattering function in the

same form as we showed for a scalar field. Therefore, they showed that a Schrödinger field

with a localized solution can be described by a particle in a bath of oscillators. Although

their work also covers the main topics of our object of study, their discussion had a focus

quite different from ours, leaving some important features open for future analysis. For

instance, the second term in 2.26 was not well explored in their work. The usual application

of the Collective Coordinate Method does not provide this type of term in the process of

writing the effective Lagrangian. Thus, we must explore the application of the method and

the existence of the second term in 2.26. Another topic that was left for future discussions

was the exact calculation of the damping function. The method used to study quantum

dissipation in their work was equivalent to the Feynman-Vernon formalism showed in Chapter

1. Therefore we could show the equivalence between these methods and calculate the damping
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and diffusion functions exactly. Lastly, it would be desirable for prospective applications to

have a microscopic theory for a general localized solution of a Schrödinger field. A general

development would allow us to understand the uses and limitations of the method. In the

next chapter, we are going to show how to study quantum dissipation in a general Schrödinger

field, following the method developed in Chapter 1 and the microscopic theory showed in this

section.
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Chapter 3

A General Analysis of the Schrödinger

Field

So far we have seen that several many-particle systems require both quantum and classical

theories to understand its physical behavior. In the first chapter, we have developed a method

to study quantum dissipation in a one-dimensional scalar field. In particular, the quantization

method uses the collective behavior of the system to write an effective Lagrangian of a

particle coupled with a bath of harmonic oscillators. The properties of quantum dissipation

were based on the quantum Brownian motion, in which the behavior of the particle can be

completely understood by tracing out the coordinates of the reservoir. In the second chapter,

we presented tools to understand our system of interest. Our field is defined by a diluted set of

bosons at very low temperature. This system is known as Bose-Einstein Condensate, and it is

described by a field equation known as the Gross-Pitaeviskii equation. Some solutions of this

equation are localized ones, such as the soliton 2.19 and vortex solution 2.23. In this chapter,

we will apply the quantization method developed in Chapter 1 to the Schrödinger field. As

we are going to see, the direct application of the Collective Coordinate Method for this field

will show some complications. After a discussion about the applicability of the method, we

are going to develop an extended Collective Coordinate Method for the Schrödinger field and

study quantum dissipation in this system.
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3.1 Defining the System of Interest

The system of interest is a set of N bosons that can be described by the Schrödinger La-

grangian

L =

∫
dr

ß

i~

2

Ä

Ψ∗Ψ̇−ΨΨ̇∗
ä

−
ï

~
2

2m
(∇Ψ∗) · (∇Ψ) + U(Ψ∗,Ψ)

ò™

, (3.1)

in which L is a functional of the field Ψ = Ψ(r, t) and its complex conjugate Ψ∗ = Ψ∗(r, t).

Here we have assumed that the bosons only interact by contact, in the same way as in

section 2.2. The function U(Ψ∗,Ψ) is an arbitrary function of the fields, that can describe

the external potential, chemical potential, or any other constraint on the system. From the

Lagrangian 3.1, we can define a kinetic energy functional

T [Ψ∗,Ψ] =

∫
dr
i~

2

Ä

Ψ∗Ψ̇−ΨΨ̇∗
ä

, (3.2)

and a potential energy functional

V [Ψ∗,Ψ] =

∫
dr

ï

~
2

2m
(∇Ψ∗) · (∇Ψ) + U(Ψ∗,Ψ)

ò

. (3.3)

Here it is important to compare both functionals of the Schrödinger field with the ones

associated with the scalar field, studied in Chapter 1. Both potential energy functionals, 1.9

for the scalar field and 3.3 for the Schrödinger field, have a ∇2 term and an arbitrary function

U . Although the potential energy functional from both theories are very similar, the kinetic

term changes considerably. For a scalar field, the kinetic energy functional has a second-order

time derivative of the field φ, whereas the Schrödinger field presents the important feature

of being proportional to a first-order time derivative of its fields.

From the Lagrangian 3.1, we can find equations of motion for the fields by evalu-

ating

∂L

∂Ψ
− d

dt

∂L

∂Ψ̇
−∇ · ∂L

∂∇Ψ
= 0, (3.4a)
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∂L

∂Ψ∗
− d

dt

∂L

∂Ψ̇∗
−∇ · ∂L

∂∇Ψ∗
= 0. (3.4b)

As we have seen, the Schrödinger field is described by the Gross-Pitaeviskii equation. Thus,

the equations of motion can be written in the same way as equation 2.14 for the field Ψ.

Consider that the system in question allows for static localized solutions Ψ0 and Ψ∗
0, such

that Ψ̇0 = Ψ̇∗
0 = 0. In this case, the equations of motion can be written as,

∂U

∂Ψ

∣∣∣∣
Ψ∗

0
,Ψ

0

− ~
2

2m
∇2Ψ∗

0 = 0, (3.5a)

∂U

∂Ψ∗

∣∣∣∣
Ψ∗

0
,Ψ

0

− ~
2

2m
∇2Ψ0 = 0. (3.5b)

A localized solution of these equations of motion describes the collective behavior of the Bose

gas. To find the fluctuation corrections for this system, we can apply the same procedure

used for the scalar field. Therefore, it is convenient to make a harmonic approximation in

the neighborhood of this static solution. A functional Taylor expansion of the potential

functional 3.3, up to second order around Ψ0 and Ψ∗
0, reads

V [Ψ∗,Ψ] =V [Ψ∗
0,Ψ0] +

∫
dr

ï

~
2

2m
(∇δΨ∗) · (∇δΨ)

+
1

2

Ç

∂2U

∂Ψ∗∂Ψ
δΨ∗δΨ+

∂2U

∂Ψ∂Ψ∗
δΨδΨ∗ +

∂2U

∂Ψ2
δΨδΨ+

∂2U

∂Ψ∗2
δΨ∗δΨ∗

∣∣∣∣
Ψ∗

0
,Ψ

0

åô

.

(3.6)

The first term is the potential 3.3 evaluated at the static solutions, so it is a constant.

Terms that are of first-order in the fluctuations vanish because we are considering only static

solutions that obey the equations 3.5. The only remaining terms are the ones quadratic in

the fluctuations. We will call these quadratic terms as V (2) [Ψ∗,Ψ].

The usual procedure to diagonalize V (2) [Ψ∗,Ψ] is by expanding the fluctuations
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as a set of quasiparticles [31]

δΨ(r, t) =
∑

k

[uk(r)αk(t)− v∗k(r)α
∗
k(t)] , (3.7a)

δΨ∗(r, t) =
∑

k

[u∗k(r)α
∗
k(t)− vk(r)αk(t)] , (3.7b)

with amplitudes uk(r) and vk(r) (u∗k(r) and v∗k(r)). These amplitudes must obey orthogonality

relations defined as ∫
dr
(
u∗juk − v∗j vk

)
= δjk, (3.8a)

∫
dr
(
ujvk − vjuk

)
= 0. (3.8b)

The set of c-numbers αk(t) and α∗
k(t) are analogous to annihilation and creation operators

of the harmonic oscillator problem. In this case, they are the c-number representation of

operators responsible for the annihilation or the creation of excited bosonic particles around

the localized solution (distorted vacuum). The expansion 3.7 establishes these functions as

a new set of coordinates of our system.

Substituting the expansion 3.7 in the quadratic terms of the potential, the second

variation V (2) of the potential reads

V (2) =

∫
dr
∑

jk

ß

α∗
jαk

ï

u∗jLuk −
1

2

Å

∂2U

∂Ψ∗2
u∗jvk +

∂2U

∂Ψ2
v∗juk

ãò

+ αjα
∗
k

ï

vjLv∗k −
1

2

Å

∂2U

∂Ψ∗2
vju

∗
k +

∂2U

∂Ψ2
ujv

∗
k

ãò

− αjαk

ï

vjLuk −
1

2

Å

∂2U

∂Ψ∗2
vjvk +

∂2U

∂Ψ2
ujuk

ãò

− α∗
jα

∗
k

ï

u∗jLv∗k −
1

2

Å

∂2U

∂Ψ∗2
u∗ju

∗
k +

∂2U

∂Ψ2
v∗j v

∗
k

ãò™

, (3.9)

where we defined the Hermitian operator

L =
−~

2

2m
∇2 +

1

2

∂2U

∂Ψ∂Ψ∗
+

1

2

∂2U

∂Ψ∗∂Ψ
. (3.10)

With the substitution of the expansion 3.7 in the equations of motion 3.4, it is possible to
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show that the quasiparticle amplitudes uj and vj obey the following equations

Luj −
∂2U

∂Ψ∗2
vj = Ejuj, (3.11a)

Lvj −
∂2U

∂Ψ2
uj = −Ejvj. (3.11b)

These two coupled eingenvalue equations 3.11 are the Bogoliubov equations showed in the

previous chapter. They diagonalize correctly the second variation of the potential.

A straightforward calculation shows that the substitution of 3.11 in the potential

3.9 gives us

V = V [Ψ∗
0,Ψ0] +

∑

k

Ekα
∗
kαk. (3.12)

Therefore, in the same way as for the scalar field, the Schrödinger field presents a classical

collective behavior with energy V [Ψ∗
0,Ψ0] and fluctuations with energy Ek. The exact value

of the quasiparticle energy Ek can be found by solving the equations 3.11. The Bogoliubov

equations allow for both positive and negative eigenvalues. However, the spectrum of energy

corrections must be bounded from below, thus we must choose only values of Ek > 0. An-

other important feature of the Bogoliubov equations is the existence of a zero-mode E0 = 0

corresponding to the condensate without thermal fluctuations. As we have seen, the ap-

pearance of the zero-mode implies that our system presents a translational symmetry, which

allows the solutions Ψ∗
0 and Ψ0 to have a degree of freedom related to it.

Therefore, in order to solve the problem analytically, we have made the approxi-

mation that our field was a static mean-field. Although this approximation was necessary to

find a localized solution, we have missed the translational degree of freedom. To deal with

this extra degree of freedom, we will use the so-called Collective Coordinate Method for the

Schrödinger field.
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3.2 Collective Coordinate Method

In principle, in the procedure to quantize a classical field theory, we can assume that the

solution of the field equation of motion is a static one. However, as we have seen above, the

evaluation of the fluctuation energy spectrum shows that some systems may present a zero

frequency mode. This mode provides us with the information that the classical solution has

a collective behavior of a moving particle. Therefore, in the quantization process, we expect

our effective Lagrangian to have a kinetic energy term for the dynamics of the center of the

classical solution. The Collective Coordinate Method reincorporates the dynamics of this

coordinate into the system by regarding it as a dynamical variable. Here we will apply the

method for a unidimensional Schrödinger field, in the same way as it was done in Chapter 1

for the scalar field.

The Lagrangian of the last section, equation 3.1, can be written as

L = T −
(
V [Ψ∗

0,Ψ0] +
∑

k

Ekα
∗
kαk

)
, (3.13)

where the third term describes the amplitude of the fluctuations about the classical solution

of its equation of motion. Because of the existence of a the zero-mode for this system, the

kinetic term cannot be suppressed. In order to include its dynamics into the system, the

center of the solution is considered as a dynamical variable, which means x0 = x0(t). In this

way, our field decomposition becomes

Ψ(x, t) = Ψ0(x− x0(t)) + δΨ(x− x0(t), t). (3.14)

Note that the potential energy term in the Lagrangian 3.1 does not change by making this

assumption. The reason is that the potential energy functional depends only on the field

itself and its partial derivatives on space, not on time. The kinetic functional, on the other

hand, has a first order time derivative dependence, that using the definition 3.7 reads

Ψ̇ = −
[
∂

∂x
Ψ0 +

∑

k

Å

αk
∂

∂x
uk − α∗

k

∂

∂x
v∗k

ã

]
ẋ0 +

∑

k

(ukα̇k − v∗kα̇
∗
k) . (3.15)
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Substituting 3.15 in the kinetic energy functional 3.2, we can write the kinetic energy as

T =

∫
dx
i~

2

ßÅ

Ψ0

∂

∂x
Ψ∗

0 −Ψ∗
0

∂

∂x
Ψ0

ã

ẋ0

+
∑

jk

ï

αjαk

Å

uj
∂

∂x
vk + vj

∂

∂x
uk

ã

+ α∗
jα

∗
k

Å

v∗j
∂

∂x
u∗k + u∗j

∂

∂x
v∗k

ã

−α∗
jαk

Å

v∗j
∂

∂x
vk + u∗j

∂

∂x
uk

ã

− αjα
∗
k

Å

uj
∂

∂x
u∗k + vj

∂

∂x
v∗k

ãò

ẋ0

+
∑

jk

ï

α̇∗
jαk

(
v∗j vk + u∗juk

)
+ α̇jα

∗
k

(
vjv

∗
k + uju

∗
k

)

− α̇jαk
(
ujvk + vjuk

)
− α̇∗

jα
∗
k

(
v∗ju

∗
k + u∗jv

∗
k

) ò™
. (3.16)

Considering the center of the solution as a dynamical variable, some new terms arise in the

kinetic energy functional.

Pursuing the quantization procedure, we must regard the new set of coordinates,

αk(t) and α∗
k(t), as bosonic annihilation and creation operators, respectively. Given this

definition, we can interpret physically each new term. Terms that are proportional to αjαk

and α∗
jα

∗
k are responsible for producing Cherenkov radiation. This means that these terms

are responsible for the absorption and emission of quasiparticles due to the movement of the

center x0. If the center of the solution moves very slowly compared to the characteristic speed

of excitations of the medium, ẋ0 ≪ cs, these radiation terms can be neglected. Terms that

are proportional to α∗
jαk and αjα

∗
k are related to scattering processes of the quasiparticles.

Lastly, terms with α̇∗
jα

∗
k and α̇jαk vanish because of the orthogonality relations 3.8. Therefore,

within this set of approximations, the kinetic energy 3.16 can be written as

T =
κ

2
ẋ0 + ẋ0

∑

jk

~gjkα
∗
jαk +

i~

2

∑

k

(α̇kα
∗
k − α̇∗

kαk) , (3.17)

where we have defined the constant

κ =

∫
dx i~

Å

Ψ0

∂

∂x
Ψ∗

0 −Ψ∗
0

∂

∂x
Ψ0

ã

, (3.18)
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and the coupling matrix as

gjk =
1

2

∫
dx i

Å

v∗j
∂

∂x
vk − u∗j

∂

∂x
uk − vj

∂

∂x
v∗k + uj

∂

∂x
u∗k

ã

. (3.19)

Comparing the kinetic energy 3.17 found by the direct use of the Collective Coordinate

Method to the Schrödinger field with equation 1.29 found for the scalar field, we can see

some disparities. The first and most important difference from both developments is that,

in the Schrödinger field, the kinetic energy does not have a quadratic term in the velocities,

as in 1.29. The reason for this is related to the fact that the initial Lagrangian 3.1 was only

first-order in the time derivative. Since we already know that the localized solution can move

in space, the effective Lagrangian of the center of the solution is expected to have a kinetic

energy of the form Mẋ20/2. So, from the effective Lagrangian found by the direct application

of the method for a Schrödinger field, it is possible to conclude that the method was not

appropriate to reincorporate the translational mode into the problem. Therefore, we must

develop an extended Collective Coordinate Method to apply to a Schrödinger field.

3.3 Extended Collective Coordinate Method

The Collective Coordinate Method is widely discussed in the literature for theories described

by a Lagrangian of the type 1.6, in which the kinetic term is proportional to φ̇2. However,

as we have just mentioned above, its application to the Schrödinger field cannot account

for the kinetic energy associated to the localized solution. In the direct application of the

method, the field, initially assumed to be static, is rewritten as a mean field plus fluctuations

all centered at a dynamical variable as in 3.14. A direct consequence of this substitution is

the form of the kinetic energy, since it depends on the time derivative of the field. Another

subtle consequence, that is usually overlooked in the discussion of the method, is the effect

of the substitution 3.14 in the equations of motion 3.5. The initial static condition for the

solution Ψ0 allows us to write the equations of motion 3.5 with Ψ̇0 = 0. However, in the

quantization method the solution depends indirectly on time, so the equations of motion
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should be rewritten as

i~
∂

∂x
Ψ∗

0ẋ0 =
∂U

∂Ψ

∣∣∣∣
Ψ∗

0
,Ψ

0

− ~
2

2m

∂2

∂x2
Ψ∗

0, (3.20a)

− i~
∂

∂x
Ψ0ẋ0 =

∂U

∂Ψ∗

∣∣∣∣
Ψ∗

0
,Ψ

0

− ~
2

2m

∂2

∂x2
Ψ0, (3.20b)

where the left hand side of the equations are the time derivatives of Ψ0(x − x0(t)). In the

standard application of the method, we assume that the left hand sides of the equations

3.20a and 3.20b are close enough to zero, Ψ̇0(x − x0(t)) ≈ 0. The physical implication of

this assumption is that the solution Ψ0 is not deformed by the moving center x0(t) since the

equations of motion remain unchanged.

To improve the precision of the method for the Schrödinger field, we will consider

deformations of the solution due to the movement of its center. Therefore, to continue the

quantization procedure, we must solve the new set of equations of motion 3.20. These are

coupled partial differential equations with a forced term. Therefore, we must determine the

homogeneous (ψ0) and the particular (ψP ) solutions

Ψ0(x− x0(t)) = ψ0(x− x0(t)) + ψP (x− x0(t)), (3.21)

separately. The solution of the homogeneous case ψ0 obeys 3.5 as before. To determine the

particular solution, we can make a substitution of 3.21 in the equations 3.20. The equations

of motion for the particular solution can be written as

i~

Å

∂

∂x
ψ∗
0

ã

ẋ0 =
∂2U

∂Ψ∂Ψ∗

∣∣∣∣
ψ∗

0
,ψ

0

ψP +
∂2U

∂Ψ∗∂Ψ

∣∣∣∣
ψ∗

0
,ψ

0

ψ∗
P − ~

2

2m

∂2

∂x2
ψ∗
P , (3.22a)

− i~

Å

∂

∂x
ψ0

ã

ẋ0 =
∂2U

∂Ψ∂Ψ∗

∣∣∣∣
ψ∗

0
,ψ

0

ψ∗
P +

∂2U

∂Ψ∗∂Ψ

∣∣∣∣
ψ∗

0
,ψ

0

ψP − ~
2

2m

∂2

∂x2
ψP . (3.22b)

To solve these equations correctly, the solution ψP must have the form of the forced term.

So, we can write the particular solutions as

ψP = −iϕ(x)ẋ0, (3.23a)
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ψ∗
P = iϕ∗(x)ẋ0, (3.23b)

in which ϕ is a function of space that will define the deformation of the localized solution.

Substituing 3.23 in 3.22, the equations of motion become

~

Å

∂

∂x
ψ∗
0

ã

=
∂2U

∂Ψ∂Ψ∗

∣∣∣∣
ψ∗

0
,ψ

0

ϕ− ∂2U

∂Ψ∗∂Ψ

∣∣∣∣
ψ∗

0
,ψ

0

ϕ∗ +
~
2

2m

∂2

∂x2
ϕ∗, (3.24a)

− ~

Å

∂

∂x
ψ0

ã

=
∂2U

∂Ψ∂Ψ∗

∣∣∣∣
ψ∗

0
,ψ

0

ϕ− ∂2U

∂Ψ∗∂Ψ

∣∣∣∣
ψ∗

0
,ψ

0

ϕ∗ − ~
2

2m

∂2

∂x2
ϕ. (3.24b)

These are the equations of motion that determine the deformation of the solution due to the

movement of the center x0. Further developments on the form of the functions ϕ and ϕ∗

require information about U(Ψ,Ψ∗).

A direct consequence of considering the deformation of the static solution is in the

form of the field. The former field decomposition, written as a mean field plus fluctuations,

now has an additional deformation term

Ψ(x, t) = ψ0(x− x0(t))− iϕ(x)ẋ0 + δΨ(x− x0(t), t), (3.25)

where the first term is the localized solution of the homogeneous equation 3.5, the second

term is the deformation of this solution, and the last one is the fluctuation 3.7. Note that,

when we explicitly include the deformation contribution, the form of the field becomes the

same as that proposed in [32], as we have written in 2.26.

Substituing 3.25 in the kinetic functional 3.2, we can write it as

T =
~

2

∫
dx

Å

ϕ∗ ∂

∂x
ψ0 + ϕ

∂

∂x
ψ∗
0

ã

ẋ20

+
κ

2
ẋ0 + ẋ0

∑

jk

~gjkα
∗
jαk +

i~

2

∑

k

(α̇kα
∗
k − α̇∗

kαk) , (3.26)

in which κ and gjk are a constant and the coupling matrix defined by 3.18 and 3.19, re-

spectively. When we consider the deformation of the mean-field solution, the kinetic energy

functional gains a new term, dependent on ẋ20. This term describes the movement of the
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center x0. Since the kinetic energy is defined by Mv2/2, the soliton mass must be defined as

M = ~

∫
dx

Å

ϕ∗ ∂

∂x
ψ0 + ϕ

∂

∂x
ψ∗
0

ã

, (3.27)

where a dimensional analysis confirms that M has unity of mass. The resulting effective

Lagrangian for the Schrödinger field can be written as

L =
Mẋ20
2

+
κ

2
ẋ0 + ẋ0

∑

jk

~gjkα
∗
jαk +

i~

2

∑

k

(α̇kα
∗
k − α̇∗

kαk)−
∑

k

Ekα
∗
kαk − V [ψ∗

0, ψ0] .

(3.28)

The extended Collective Coordinate Method we have developed is different from

the conventional one described in section 3.2, because it takes into account solitonic defor-

mations. These deformations allow us to write an effective Lagrangian with a kinetic energy

term for the moving coordinate x0. Although we had to adjust the method, the effective

Lagrangian 3.28 is very similar to equation 1.29 found for the scalar field case. This is, the

effective behavior of a Bose gas is of a moving particle x0 in a bath of harmonic oscillators.

The main difference is the presence of an additional term, proportional to κ. In the next

section, we will discuss how to apply the method developed in Chapter 1 to the study of

quantum dissipation in the effective Lagrangian found here.

3.4 Quantum Dissipation for a Bose gas

In the last section, we have showed that a Bose gas with a localized solution has an effective

behavior of a particle in a "bath of oscillators". Physically, the particle is represented by

the center of the topological solution ψ0 in x0, and the reservoir is composed of excited

quasiparticles. To understand quantum dissipation in this system, our starting point is the

effective Lagrangian 3.28 found in the last section.

The total action of this system is defined by

S =

∫
Ldt. (3.29)
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Since our system is composed of two main components, the particle and the bath, the total

action can be broken into two subsystems: a particle action SS plus a bath and interaction

action SRI ,

S [x0, α] = SS [x0] + SRI [x0, α] , (3.30)

in which SS and SRI can be defined by the Lagrangian 3.28 as

SS [x0] =
∫ Å

Mẋ20
2

+
κ

2
ẋ0 − V [ψ∗

0, ψ0]

ã

dt, (3.31a)

SRI [x0, α] =
∫
dt

[
ẋ0
∑

jk

~gjkα
∗
jαk +

i~

2

∑

k

(α̇kα
∗
k − α̇∗

kαk)−
∑

k

Ekα
∗
kαk

]
. (3.31b)

The particle action SS contains the kinetic energy for the dynamics of x0 and an additional

term proportional to ẋ0. This additional term is the main difference between the scalar case

developed in Chapter 1 and the Schrödinger case. Since this new term is linear in the velocity,

the equation of motion for the center of the solution must remain unchanged. Furthermore,

the dynamics and dissipation of the system depend only on the behavior of the reservoir,

thus we must compare the bath action from both theories. Note that the action SRI of the

subsystem R is the same as the one used in section 1.5, and therefore, the procedure for

dealing with both cases must be the same.

To summarize, a Schrödinger field with a localized solution has an effective be-

havior of a particle coupled to a reservoir. To understand the behavior of the particle, we

must evaluate the influence functional 1.44 and write the associated equations of motion for

the system 1.54. This procedure results in two quantities that describe the dissipation of this

particle: the damping and diffusion functions. Fortunately, the description of the Schrödinger

field reflects exactly the results found for a scalar field. Therefore, to study the dissipative

dynamics emerging from a Schrödinger field, we only need to evaluate the expressions for the

damping 1.48 and diffusion 1.49 functions.

Both damping and diffusion functions depend on the form of the coupling constant

gjk, defined in 3.19. This constant is written in terms of the solutions of the Bogoliubov
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equations 3.11. Therefore, in order to calculate those functions, we need the solutions for

the quasiparticles amplitudes. Some problems allow for an exact solution of the Bogoliubov

equations. In this case, we can use the discrete description of the excitations to perform our

calculations, in the same way it was done for the optical polaron case in [9]. However, if we

only have the asymptotic form of the quasiparticle solutions, which usually is the case, we

can use the continuum approximation as above to find both damping and diffusion functions

in terms of the phase shifts of the scattered quasiparticles. This last scenario was used in the

calculations of the acoustical polaron case in [9] and in the study of skyrmions in a quantum

Hall ferromagnet [22].

3.5 Summary of the Method

As we have seen, the method described in Chapter 1 can be adapted to study quantum

dissipation of localized solutions of a Schrödinger field. The Lagrangian that describes this

field is first-order in time derivative. This feature requires an adaptation of the Collective

Coordinate Method to write an effective Lagrangian for a static solution.

In section 3.3, we presented an extended Collective Coordinate Method, suitable

to deal with the Schrödinger field. This method presents an additional term for the effective

Lagrangian, which is not necessary for dealing with the scalar case. In section 3.4, we showed

that the additional term does not interfere with the equations of motion for the moving center

x0. Therefore, the quantum dissipation analysis remains the same for both theories.

Summarizing, in this chapter we developed a general method to study quantum

dissipation in a Schrödinger field. The application of this method for a particular case can

be summarized in the following steps:

1. Define the initial Lagrangian 3.1;

2. Find a localized solution from the equation of motion 3.20;

3. Solve the Bogoliubov equations 3.11;

4. Make the coordinate x0 a dynamical variable;
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5. Solve the equations for the deformation 3.24;

6. Evaluate the damping 1.48 and diffusion 1.49 functions, using the results of steps 2, 3

and 5.

Note that the main difference between the adapted method for the Schrödinger

field and the one developed in Chapter 1 is the step 5. For a scalar field, the deformation due

to the movement of the solution is negligible. However, a system described by the Lagrangian

3.1 showed an effective behavior highly sensitive to the deformation of the localized solution.
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Chapter 4

Bright Soliton Analysis

In the previous chapter, we have developed a one-dimensional theory to study quantum

dissipation in the Schrödinger field. Until this point, our discussion has been entirely general

and could be applied for any topological solution which may present dynamical behavior. In

this chapter, we will apply our theory to the case of a one-dimensional condensate with a

bright soliton solution.

4.1 Static Bright Soliton

Our analysis begins with the discussion of the static mean-field solution and its small ampli-

tude fluctuations. In this section, we will develop the steps 1 to 3 of our method, that is, the

discussion before promoting the center of the solution to a dynamical variable.

Our system is a one-dimensional Bose gas in the absence of an external potential.

The corresponding Lagrangian for this system is a particular case of equation 3.1 and can be

written as

L =

∫
dx

ñ

i~

2

Ä

Ψ∗Ψ̇−ΨΨ̇∗
ä

− ~
2

2m

∣∣∣∣
∂Ψ

∂x

∣∣∣∣
2

+ µ|Ψ|2 − g

2
|Ψ|4
ô

. (4.1)

The parameter µ is the chemical potential and g is the interaction parameter. Assuming the

condensation condition, we set the chemical potential to be negative. For this system, we

will suppose a attractive interaction, which means g < 0.





Chapter 4. Bright Soliton Analysis 67

Å−~
2

2m

∂2

∂x2
− µ+ 2g|Ψ0(x)|2

ã

vk − (Ψ∗
0(x))

2uk = −~ωkvk. (4.4b)

Here the quasiparticle energy was written in terms of the frequencies as Ek = ~ωk. The

corresponding frequency for this fluctuations have the form

ωk =
~k2

2m
, (4.5)

where k is the wave number and [k] = L−1.

The eigenmodes of the Bogoliubov equations 4.4 for the bright soliton solution

4.3 have already been obtained in [33] and they have the form

uk =
eikx

(k2ξ2 + 1)
[kξ + i tanh (x/ξ)]2 , (4.6a)

vk =
eikx

(k2ξ2 + 1)
sech2(x/ξ). (4.6b)

Therefore, we have a static mean-field 4.3 with small amplitude fluctuations with the form

4.6. This completes the first three steps of our method in which it was possible to use the

approximation of a static field.

4.2 Effective Lagrangian

To study the dissipation properties of the solitonic solution we must promote the center of the

solution to a dynamical variable x0 = x0(t). Our aim in this section is to define a dynamical

collective coordinate for the center of the solution and write an effective Lagrangian for the

localized solution.

As it was discussed in the last chapter, the Schrödinger field requires that we

also modify the equations of motion for the moving soliton when defining the collective

coordinate. This modified equation of motion describes the deformation of the solution due

to its movement. Therefore, our field is composed of a mean-field term ψ0, a deformation
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correction −iϕ(x)ẋ0 and fluctuations δΨ:

Ψ(x, t) = ψ0(x− x0(t))− iϕ(x)ẋ0 + δΨ(x− x0(t), t). (4.7)

Substituing the expansion 4.7 in the original Lagrangian 4.1, we can write

L =
Mẋ20
2

+ ẋ0
∑

jk

~gjkα
∗
jαk +

i~

2

∑

k

(α̇kα
∗
k − α̇∗

kαk)

−
∑

k

(~ωk − µ)α∗
kαk − V [ψ∗

0, ψ0] , (4.8)

in which the soliton mass M and coupling constant gjk are defined in 3.27 and 3.19, respec-

tively. For the particular case of the bright soliton, the term of 3.28 dependent of κ does not

appear. The reason for this is that κ is calculated in terms of the mean-field solution and

since the bright soliton is a real solution, it turns out to be zero, by definition.

At this point, we have shown that our system behaves as a particle with coordinate

x0 in a thermal bath. We can separate the Lagrangian 4.8 in three main contributions,

L [x0, α] = LS [x0] + LR [α] + LI [x0, α] , (4.9)

where LS is the Lagrangian of the particle, LR the Lagrangian of the reservoir, and LI is the

interaction between the particle and the bath. Each contribution is defined as

LS [x0] =
Mẋ20
2

− V [ψ∗
0, ψ0] , (4.10a)

LR [α] =
i~

2

∑

k

(α̇kα
∗
k − α̇∗

kαk)−
∑

k

(~ωk − µ)α∗
kαk, (4.10b)

LI [x0, α] = ẋ0
∑

jk

~gjkα
∗
jαk. (4.10c)

Now we can proceed to study the quantum dissipation of this effective particle.
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4.3 Coupling Constant

Both damping 1.48 and diffusion 1.49 functions are dependent on the coupling constant. This

constant is responsible for describing the interaction between the particle and the reservoir.

Therefore, in order to understand dissipative properties of this system, we must calculate

exactly the constant defined by 3.19

gjk =
1

2

∫
dx i

Å

v∗j
∂

∂x
vk − u∗j

∂

∂x
uk − vj

∂

∂x
v∗k + uj

∂

∂x
u∗k

ã

. (4.11)

It is important to compare the form of our coupling gjk and the constant πjk

defined in 2.28. The interaction term found in [32] has two main components, the scattering

terms which are proportional to αα∗ and radiation terms proportional to αα and α∗α∗.

In Chapter 3, we have used the approximation that the center of the solution x0 travels

with a small speed v ≪ cs and any interaction with the quasiparticles is by scattering

process. Therefore, if we neglect the radiation terms of πjk, the interaction term we find is in

accordance with the one found in [32]. In fact, the substitution of the fluctuations amplitudes

4.6 in the coupling constant 4.11 gives the same result as the scattered contribution of πjk.

A straightforward calculation of 4.11 gives

gjk =
π

3L

(k2 − j2) (k2 + j2 + kj + 1/ξ2)

sinh
[
π
2
ξ (j − k)

]
(k2 + 1/ξ2) (j2 + 1/ξ2)

. (4.12)

This constant describes a quasiparticle in the jth state interacting with the center of the

solution x0 and being scattered to the kth state. The coupling constant is symmetric in the

interchange of j and k, that is, gjk = gkj. In the limit when j = k the coupling takes the

form

gkk =
4

3Lξ

k (3k2 + 1/ξ2)

(k2 + 1/ξ2)2
. (4.13)

To visualize the behavior of gjk, we can define the dimensionless quantities kξ, jξ and Lgjk

and plot 1 4.12 for j 6= k and 4.13 for j = k. Figure 4.2 shows the behavior of the coupling

1The plot of figure 4.2 was made using the Python libriries pandas [34] and Matplotlib [35].
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ϕ =
ω + ω′

2
, (4.15b)

and rewrite the damping 1.48 as

γ(t) = − ~

2M
θ(t)

∫ ∞

0

dϕ

∫ ∞

−∞

dη S(ϕ, η)
[n(ϕ+ η/2)− n(ϕ− η/2)]

η
η2 cos(ηt). (4.16)

This change of variables allows us to calculate this function in the peak region of the coupling,

since its main contribution occurs when η −→ 0. In the appendix C, we show the calculation

of the scattering function S(ϕ, η) in the limit of η −→ 0,

lim
η−→0

S(ϕ, η) =
4~2

9ξ2π2
f(ϕ), (4.17)

where the function f(ϕ) is defined as

f(ϕ) =
(2~ϕ+ |µ|)2
(~ϕ+ |µ|)4 . (4.18)

Furthermore, the term dependent on the bosonic distribution n̄ can be approximated by a

derivative with respect to the variable ϕ, for η close to zero

lim
η−→0

n(ϕ+ η/2)− n(ϕ− η/2)

η
=
dn̄(ϕ)

dϕ
, (4.19)

which allows us to write the damping function as

γ(t) =
4~3

9Mπ2ξ2
θ(t)

∫ ∞

0

dϕ f(ϕ)

Å

−dn̄(ϕ)
dϕ

ã∫ ∞

0

dηη2 cos(ηt). (4.20)

The term cos(ηt) oscillates rapidly for long periods of time. Thus, we would expect that the

integral in dη to vanish, unless η is so small that it counterbalances large values of t. Since

we have shown that η is in fact close to zero, the integral in dη can be evaluated exactly. For

long periods of time t, we can write the damping function as

γ(t) = −γ̄(T )δ′′(t), (4.21)
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where the temperature dependent γ̄(T ) is defined as

γ̄(T ) =
4~4

9Mπξ2

Å

1

kBT

ã∫ ∞

0

dϕ f(ϕ)
e(~ϕ+|µ|)/kBT

(e(~ϕ+|µ|)/kBT − 1)
2 , (4.22)

and δ′′(t) is the second derivative of the Dirac delta function.

The diffusion function can be handled analogously, and reads

D(t) = D̄(T )δ′′(t), (4.23)

where D̄(T ) is given by

D̄(T ) =
4~4

9πξ2

∫ ∞

0

dϕ f(ϕ)

ñ

1

(e(~ϕ+|µ|)/kBT − 1)
+

1

(e(~ϕ+|µ|)/kBT − 1)
2

ô

. (4.24)

Since the Bose-Einstein Condensation is expected to happen at low temperatures,

we can analyze both γ̄(T ) and D̄(T ) in this temperature limit. Accordingly, our damping

and diffusion coefficients can be written as

γ̄(T ) =
4~4

9Mπξ2

Å

1

kBT

ã∫ ∞

0

dϕ e−(~ϕ+|µ|)/kBTf(ϕ), (4.25a)

D̄(T ) =
4~4

9πξ2

∫ ∞

0

dϕ e−(~ϕ+|µ|)/kBTf(ϕ), for kBT ≪ (~ϕ− µ). (4.25b)

In this limit, as the temperature decreases, both damping and diffusion coefficients go to zero

very rapidly. This is expected since, for T = 0, there are no quasiparticles being scattered.

With this last result, we can also calculate the ratio between D̄(T ) and γ̄(T ) which reads

D̄(T )

γ̄(T )
= 2MkBT. (4.26)

Notice that, even at low temperatures, this ratio is the same as the classical result for the

fluctuation-dissipation theorem for the Brownian motion [36].

Lastly, one of the main reasons to calculate explicitly the form of the damping

function is to write the equation of motion for our particle. The equation of motion for the
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coordinate of the center of the solution is given by

R̈ + 2

∫ t

0

γ(t− t′)Ṙdt′ = 0. (4.27)

Substituing 4.21 in 4.27 and integrating by parts we can write the equation of motion for the

center of the solution as

R̈− 2γ̄(T ) ˙̇Ṙ = 0. (4.28)

This equation is called the Abraham-Lorentz equation which is characterized by the time

derivative in the acceleration. Thus, the equation of motion for the center of the soliton

shows us a dissipative behavior, which we will discuss in more details in the next section.

4.5 Discussion

In this chapter, we have used the theory developed in Chapter 3 for the study of quantum

dissipation in the particular case of a bright soliton solution. As we have shown, a system that

can be described by the effective Lagrangian of the form 3.28 has its dissipative properties

completely described by the evaluation of the coupling constant gjk. The coupling accounts

for any interaction between the excited quasiparticles and the center of the solution x0. Since

we are only interested in solutions that move with speeds much smaller than the characteristic

speed of excitations in the condensate, we can assume that only scattering processes play a

significant role in the dissipative mechanism of the soliton.

For the bright soliton, the coupling constant was found to be a symmetric function

peaked in the neighborhood of the diagonal j ≈ k. The exact form of the coupling allow

us to evaluate both damping 4.21 and diffusion 4.23 functions. They are both temperature-

dependent, showing that the dissipation of the soliton is highly related to the behavior of the

excited bosons. The time dependence is given by the second derivative of the Dirac delta

function. This characterizes a Markovian process, which is described by a delta function or

its derivatives. Physically, this means that our dissipation has no memory. Therefore, the

dynamics of the particle does not depend on its previous history but is local in time. In
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the limit of low temperatures, we have shown that both damping and diffusion coefficients

decrease exponentially as the temperature goes to zero. In fact, for zero temperature, we

expect no excited quasiparticles in our system. Thus, in this limit, the soliton has its mobility

increased, since there is no dissipative process occurring. The particular case of high tem-

peratures was not investigated, since the Bose-Einstein condensation is expected to happen

only for temperatures below a critical value.

Using the exact form of the damping 4.21 in the equation of motion for the center

of the solution 1.54, we were able to write the corresponding equation of motion for the

center of the soliton, as equation 4.28. This equation of motion has a Abraham-Lorentz type

of force, that is proportional to ˙̇Ṙ. In electrodynamics, this kind of force can be interpreted

as a radiation damping, since it is related with the emission of photons by an accelerating

charge. Here, the interpretation of this force is quite different. As discussed in Chapter 3,

our analysis considered the low speed limit, in which the radiation terms αα and α∗α∗ were

neglected. Since our effective Lagrangian 4.8 takes into account only scattering process of the

quasiparticles with the soliton, there is no radiation term involved in the exchange of energy

from the soliton to the excited bosons. Therefore, although our equation of motion gives rise

to an Abraham-Lorentz force, here the correct interpretation is that the soliton will experience

dissipation due to inelastic scattering of the quasiparticles. This result agrees with the one

found in [32], where the authors also find an equation of motion with an Abraham-Lorentz

type of force.

In order to compare our results with [32], we can use their approximation of the

low frequency limit in 4.25a to evaluate the integral exactly. In this limit, the parameter

f(ϕ) in 4.18 can be approximated by

lim
ϕ−→0

f(ϕ) =
1

|µ|2
. (4.29)

Substituting 4.29 in the expression 4.25a, we can perform the integral to rewrite 4.27 as

R̈− 16m~

9Mπ |µ| e
−|µ|/kBT ˙̇Ṙ = 0, (4.30)

which agrees exactly with the equation of motion found in [32].
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Chapter 5

Conclusions

In this work, we have seen the importance of considering quantum effects in macroscopic

systems such as the Bose-Einstein Condensate. A Bose gas has the intriguing feature of

condensing the majority of its particles in a single particle ground state. This is the main

reason that allows us to analyze a quantum gas by a macroscopic wave function Ψ. This

function is a classical mean-field that obeys a non-linear Schrödinger-like equation called the

Gross-Pitaevskii equation. This equation is suitable to understand condensates when the

temperature is close enough to zero. For higher values of the temperature, the system will

present excited bosons that we may call quasiparticles, which result from the quatization

of fluctuations about the classical solution. Those quasiparticles are responsible for any

dissipative effect the condensate may present.

The nonlinearity of the Gross-Pitaevskii equation allows this system to present

topological solutions that are of great experimental interest. To treat this system properly,

our approach considered two main steps: a quantization method and the study of dissipation.

Our idea was to apply a quantization method called Collective Coordinate Method in order to

show that this system is equivalent to the model of a particle coupled to a reservoir, where the

center of the topological solution is represented by the particle and the excited quasiparticles

play the role of the thermal reservoir. This reminds us of a semi-phenomenological approach

to deal with the quantum Brownian motion, in which a quantum particle has its dynamics

determined by its coupling to a properly chosen bath. In our case, both particle and bath

have the same microscopic origin, and therefore, we expected dissipative properties to depend
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on the temperature of the excited quasi-particles.

The Collective Coordinate Method is presented in the literature in several con-

texts, but it usually involves the quantization of scalar fields that obey a Lagrangian of the

type

L [φ] =

∫
dx

ñ

Å

∂φ

∂t

ã2

− V (φ)

ô

, (5.1)

in which the kinetic energy is quadratic in the time derivative of the field φ. As we saw,

the direct application of this method led us to an effective behavior without a kinetic term

Mv2/2 for the center of the solitonic solution. This result contradicts both experiments and

theory, showing that the Collective Coordinate method is not suitable to quantize localized

solutions of the equations of motion resulting from a Lagrangian of the type

L =

∫
dx

ï

i~

2

Ä

Ψ∗Ψ̇−ΨΨ̇∗
ä

− V(Ψ∗,Ψ)

ò

. (5.2)

The Schrödinger Lagrangian presents a kinetic energy that is written in terms of a first-order

time derivative. Since the quantization method is highly dependent on the form of the kinetic

term, in order to quantize a topological solution described by 5.2 we must make adjustments

to the method.

In the usual application of the method, the field is expanded as a mean-field plus

fluctuations as

φ(x, t) = φ0(x− x0(t)) + δφ(x− x0(t), t). (5.3)

The substitution of this expansion in the Lagrangian 5.1, neglecting any changes on the

equations of motion, results in an effective kinetic term for the coordinate x0. We have shown

that, for the Schrödinger field, the effective behavior of the dynamics of the coordinate x0

is highly dependent on the changes in the equations of motion. In other words, in order to

obtain the correct effective behavior, our expansion must include deformations of the static

solution. Therefore, the correct expansion in the Extended Collective Coordinate Method
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has the form

Ψ(x, t) = ψ0(x− x0(t))− iϕ(x)ẋ0 + δΨ(x− x0(t), t), (5.4)

where the first term has the form of the static solution, and the second term describes the

deformation of ψ0 as it moves in the space. The last term describes the excited quasiparticles

of our bosonic field. The substitution of the expansion 5.4 in the Lagrangian 5.2 gives the

expected equivalent system of a particle in a bath of harmonic oscillators. Then, we have

shown that this effective behavior can be described in the same way as it was done in the

case of scalar fields.

With a general theory developed for Schrödinger fields, we were able to apply

our method for the case of a bright soliton in one-dimension. In Chapter 4, we have recov-

ered some results that were found in the literature by other methods and have obtained

the precise form of the damping and diffusion coefficients. Both of those functions are

temperature-dependent, showing that the soliton mobility highly depends on the temper-

ature of the excited quasiparticles. In the low-temperature limit, we have shown that our

mobility increases drastically, as the damping and diffusion coefficients vanish. The time

dependence of the damping and diffusion functions is given by a second time derivative of

the Dirac delta function, showing that the dissipation is Markovian. This reminds us of

the quantum Brownian motion, although the damping force now depends on the first time

derivative of the acceleration of the particle. This results agrees with the one found in the

literature by a similar formalism. The term with the time derivative of the acceleration re-

sembles the Abraham-Lorentz force responsible for the phenomenon of radiation damping in

electromagnetism. However, in our case, the method we have developed does not take into

account any contribution for emission of excitations (quasi-particles) by the soliton. There-

fore, our Abraham-Lorentz type of force must be interpreted as a dissipative effect due to

inelastic scattering by the quasiparticles of the system. In other words, the coupling between

the soliton and quasiparticles describes a scattering process in which the latter can absorb

energy from the soliton, leading to the eventual dissipation of the topological solution.

We should remark that a viscous force proportional to the velocity of the soliton
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would result from the backscattering of quasiparticles [9,21,22,32], a process (j = −k) which

is absent from the coupling constant 4.12.

In this work, we were able to study the quantum dissipation of a soliton-like

solution of a Schrödinger field by a semi-classical quantization procedure. We have proposed

an appropriate way to apply the quantization method for the dynamical solitonic solutions

and shown that the effective behavior can be studied within a system-plus-reservoir approach.

Although we have applied our method only for a one-dimensional system, the

procedure can be easily extended for other systems. For instance, one could choose a Bose gas

with a external potential in a "pancake" shape, this is a quasi two-dimensional condensate. As

we know, a vortex solution 2.23 can be obtained from the Gross-Pitaevskii equation. Studies

have shown that the center of the vortex obeys an equation of motion with an Ohmic friction

term [37], different from what we have found for the solitonic case. Thus, a Schrödinger field

can present different types of dissipation mechanisms that are worthy investigating. Our

method could also improve the understanding of the dynamics of other topological solutions

such as systems with vortex-antivortex pair in a "pancake" shaped potential and vortex and

current dissipation in a toroidal condensate. Therefore, future work on this subject will

involve the application of the method we have developed in different topological solutions

of the Schrödinger field to study dissipation properties by first-principles theory. It would

also be desirable to apply our Extended Collective Coordinate Method to other types of

Lagrangians that are linear in the field time derivative.
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Appendix A

Feynman-Vernon Formalism

In this appendix our aim is to highlight the main steps to understand how the reduced density

matrix can be written in the Feynman-Vernon Formalism of the influence functional.

As we did in Chapter 1, we begin with a Hamiltonian of a system-plus-reservoir

in the form

H = HS +HI +HR, (A.1)

in which HS, HI and HR refers to the Hamiltonian of the system, interaction and reservoir

respectively. To find average values of any observable Ô at time t (Heisenberg picture), the

choice of a pure state is not the most appropriate one in the system-plus-reservoir approach.

Since the system R act as a thermal reservoir for the system S, and, as we know, a system

at finite temperature is described by a mixed state, we should represent it by the density

operator

ρ̂(0) =
∑

ψ

pψ |ψ(0)〉 〈ψ(0)| , (A.2)

where pψ is the probability associated with the the pure state |ψ(0)〉. Since the time evolution

of the physical state |ψ(0)〉 is given by

|ψ(t)〉 = e−iHt/~ |ψ(0)〉 , (A.3)
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we can write the time evolution of the density operator as

ρ̂(t) =
∑

ψ

pψ |ψ(t)〉 〈ψ(t)| = e−iHt/~ρ̂(0)eiHt/~. (A.4)

In this representation, the average of any observable is now given by

¨

Ô(t)
∂

= TrRS
¶

ρ̂(t)Ô(0)
©

, (A.5)

where RS refers to the basis of the composite system R ⊗ S. One important property of

the trace is that given a linear operator Ô that lives in the space A ⊗ B, the trace of this

operator is equal to the partial traces over each subspace

TrAB
¶

Ô
©

= TrA
¶

TrBÔ
©

= TrB
¶

TrAÔ
©

. (A.6)

Since we are usually interested in the behavior of the system S, we can use this property in

A.5 to write

¨

Ô
∂

= TrRS
¶

ρ̂(t)Ô
©

= TrS
¶

[TrRρ̂(t)] Ô
©

= TrS
¶

ρ̃(t)Ô
©

, (A.7)

where we have defined

ρ̃(t) = TrRρ̂(t), (A.8)

as the reduced density operator of the system. The reduced density operator is the trace of

the full density operator over the coordinates of the reservoir. Therefore, once we have the

knowledge of this operator, we know how the reservoir acts on the subsystem S of interest.

In order to write explicitly the density operator, we will define x(t) as the co-

ordinate of the subsystem S and R(t) as the vector that represents the coordinates of the
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reservoir R. In the coordinate representation, the total density operator is given by

ρ̂(x,R, y,Q, t) =

∫ ∫ ∫ ∫
dx′dy′dR′dQ′ K(x,R, t; x′,R′, 0) K∗(y,Q, t; y′,Q′, 0)

× ρ̂(x′,R′, y′,Q′, 0), (A.9)

where K(x,R, t; x′,R′, 0) and K∗(y,Q, t; y′,Q′, 0) are the Feynman propagators defined as

K(x,R, t; x′,R′, 0) = 〈xR| exp
Å

− i

~
Ĥt

ã

|x′R′〉 ,

K∗(y,Q, t; y′,Q′, 0) = 〈yQ| exp
Å

i

~
Ĥt

ã

|y′Q′〉 . (A.10)

Therefore, to write the reduced density matrix, we must trace out the coordinates of the

bath, that is, to evaluate

ρ̃(x, y, t) =

∫
dR 〈xR| ρ̂(t) |yR〉 , (A.11)

in which ρ̂(t) is defined in A.9. We can make a simplification of A.11 and assume that our

system is initially separable. This means that the composite system RS, at t = 0, can be

written as

ρ̂(x′,R′, y′,Q′, 0) = ρ̂S(x
′, y′, 0)ρ̂R(R

′,Q′,0). (A.12)

Substituting this specific choice in A.9, we can write

ρ̃(x, y, t) =

∫ ∫
dx′dy′ J (x, y, t; x′, y′, 0)ρ̃(x′, y′, 0), (A.13)

in which J is the well-known superpropagator of the system defined as

J (x, y, t; x′, y′, 0) =

∫ ∫ ∫
dR′dQ′dRK(x,R, t; x′,R′, 0) K∗(y,R, t; y′,Q′, 0)

× ρ̂R(R
′,Q′,0). (A.14)

This superpropagator J is responsible for the time evolution of the reduced density operator,



APPENDIX A. Feynman-Vernon Formalism 87

ρS(x
′, y′, 0), describing the system S at time t′ = 0 to a final state ρS(x, y, t) at the time t′ = t.

The time evolution of the system of interest S is related to the behavior of the

bath and the interaction between them. To evaluate the total propagator K(x,R, t; x′,R′, 0)

can be quite laborious, since it involves an enormous number of variables. In order to ease

this procedure, we can make use of the Feynman path integral formulation. In the functional

integral representation, it can be shown [38] that the total propagator can be written as

K(x,R, t; x′,R′, 0) =

∫ x

x′

∫ R

R′

Dx(t′)DR(t′)exp

ß

i

~
S [x(t′),R(t′)]

™

, (A.15)

where S [x,R] is the action of the composite system RS. Substituing A.15 in the superprop-

agator A.14 we can write

J (x, y, t; x′, y′, 0) =

∫ x

x′

∫ y

y′
DxDy exp

ß

i

~
(SS[x]− SS[y])

™

F [x, y], (A.16)

in which SS is the action corresponding to the HamiltonianHS and F is the so-called influence

functional. The influence functional in the coordinate representation is defined as

F [x, y] =

∫
dR′dQ′dRρR(R

′,Q′, 0)

∫ R

R′

DR

∫ R

Q′

DQ exp

ß

i

~
(SRI [x,R]− SRI [y,Q])

™

,

(A.17)

where SRI is the action of the reservoir R and interaction I.

With the superpropagator written in the Feynman-Vernon formalism, we can

finally write the reduced density matrix as

ρ̃(x, y, t) =

∫ ∫
dx′dy′ ρ̃(x′, y′, 0) J (x, y, t; x′, y′, 0)

=

∫ ∫
dx′dy′ ρ̃(x′, y′, 0)

∫ x

x′

∫ y

y′
DxDy e i

~
(SS [x]−SS [y]) F [x, y]. (A.18)
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Appendix B

Influence Functional in the Coherent

State Representation

For a system with a Hamiltonian written in terms of creation and annihilation operators for

the quasiparticles interacting with a particle as equation 1.42, it is convenient to write the

influence functional in the coherent state representation. For the particular case of bosons,

these operators obey the following commutation relations

[ak, ak′ ] =
î

a†k, a
†
k′

ó

= 0 and
î

ak, a
†
k′

ó

= δkk′ . (B.1)

A coherent state is defined as an eigenstate of the annihilation operator

a |α〉 = α |α〉 . (B.2)

In order to write the influence functional in the coherent state representation for

the reservoir, we will rewrite the propagator of expression A.14 as

K(α∗, t;α′, 0) = 〈α| T exp

Å

− i

~

∫ t

0

dt′Ĥ(t′)

ã

|α′〉 , (B.3)

where T is the time ordering operator. We can split our time interval in equally spaced parts
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defined by ǫ = t/(N − 1). Using this definition we can write

K(α∗, t;α′, 0) = 〈α|
ï

exp

Å

− i

~
Ĥǫ

ãò ï

exp

Å

− i

~
Ĥǫ

ãò

...

ï

exp

Å

− i

~
Ĥǫ

ãò

|α′〉 . (B.4)

Using the completeness relation

∫
|α〉 〈α| dα

π
= 1, (B.5)

we can rewrite the propagator as

K(α∗, t;α′, 0) =

(
N−1∏

j=1

∫
d2αj
π

)
N−1∏

j=0

〈αj+1| exp
Å

− i

~
Ĥǫ

ã

|αj〉 . (B.6)

Now, we can expand the exponentials up to first order in the parameter ǫ as

K(α∗, t;α′, 0) =

(
N−1∏

j=1

∫
d2αj
π

)
N−1∏

j=0

〈αj+1|αj〉
ï

1− iǫ

~

〈αj+1|H(tj) |αj〉
〈αj+1|αj〉

ò

. (B.7)

The term of B.7 in parenthesis can be re-exponentiated resulting in

K(α∗, t;α′, 0) =

(
N−1∏

j=1

∫
d2αj
π

)
N−1∏

j=0

〈αj+1|αj〉 exp
(
N−1∑

j=0

i

~
Hj+1,j

)
, (B.8)

where we have defined the matrix element Hj+1,j as

Hj+1,j =
〈αj+1|H(tj) |αj〉

〈αj+1|αj〉
. (B.9)

It can be shown that the scalar product of two coherent states 〈αj+1|αj〉 reads

〈αj+1|αj〉 = exp

ß

−1

2

[
α∗
j (αj − αj−1)−

(
α∗
j − α∗

j−1

)
αj−1

]™
. (B.10)
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Substituing B.10 in B.8, the propagator becomes

K(α∗, t;α′, 0) =

(
N−1∏

j=1

∫
d2αj
π

)
exp

i

~

N−1∑

j=0

ǫ

ß

i~

2
α∗
j+1

(αj − αj−1)

ǫ

− i~

2

(
α∗
j − α∗

j−1

)

ǫ
αj−1 −Hj+1,j

´

. (B.11)

In the limit that ǫ −→ 0, we can further write B.11 as

K(α∗, t;α′, 0) =

∫
Dµ(α(t′)) exp {S [α(t′), α∗(t′)]} , (B.12)

where we have defined

Dµ(α) = lim
N−→∞

{
N−1∏

j=1

∫
dαjdα

∗
j

2πi

}
, (B.13)

and

S [α(t′), α∗(t′)] =

∫ t

0

dt′
ß

i~

2
[α∗(t′)α̇(t′)− α(t′)α̇∗(t′)]−H(α∗, α)

™

. (B.14)

Substituting the propagator B.12 in the superpropagator A.14, the influence functional in

the coherent state representation can be finally written as

F [x, y] =

∫
dµ(α)dµ(α′)dµ(γ′)ρR(α

′∗, γ′)

∫ α∗

α′

Dµ(α)
∫ α

γ′∗
Dµ(γ) e i

~
(SRI [x,α]−S

∗

RI
[y,γ∗]), (B.15)

in which dµ(α) is defined as

dµ(α) =
∏

j=1

dαjdα
∗
j

2πi
. (B.16)
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Appendix C

Scattering Function

For the evaluation of the scattering function

S(ω, ω′) =
∑

jk

|gjk|2δ(ω − ωj)δ(ω
′ − ωk), (C.1)

we will first suppose the wave numbers k and j can be written as

k =
nπ

L
, (C.2)

where n is an integer. Taking the continuum limit of C.1, the scattering function can be

written as

S(ω, ω′) =

Å

L

π

ã2 ∫
dkdj |gjk|2δ(ω − ωj)δ(ω

′ − ωk). (C.3)

In order to take advantage of the integrals of Dirac delta functions, let us remind the rela-

tionship between the wave number k and the eigenfrequencies ωk

ωk =
~k2

2m
. (C.4)

Now, we can make a change of variables and rewrite our integral as

S(ω, ω′) =

Å

L

π

ã2 m

2~

∫
dωkdωj

|gjk|2√
ωkωj

δ(ω − ωj)δ(ω
′ − ωk). (C.5)
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Performing the integrals in dωk and dωj, our scattering function S(ω, ω′) obtain its final form

S(ω, ω′) =

Å

L

π

ã2 m

2~

|g (ω, ω′)|2√
ωω′

. (C.6)

Here we have used the definition C.4 to rewrite the coupling function defined in 4.12 as

g (ω, ω′) =
π

3L

(ω − ω′)
Ä

ω + ω′ +
√
ωω′ + |µ| /~

ä

sinh
î

π
2
ξ
»

2m
~

Ä√
ω′ −√

ω
äó

(ω + |µ| /~) (ω′ + |µ| /~)
. (C.7)

We can now perform the substitution of the variables ω, ω′ for ϕ, η defined in 4.15,

and take the limit when η −→ 0

lim
η−→0

S(ϕ, η) =
4~2

9ξ2π2
f(ϕ). (C.8)

where the function f(ϕ) is defined as

f(ϕ) =
(2~ϕ+ |µ|)2
(~ϕ+ |µ|)4 . (C.9)
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