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Resumo

Neste trabalho, examinamos a famosa definição fregeana da Relação Ancestral em seus

aspectos lógicos e filosóficos. O logicismo de Frege é o tema central: demonstrar as bases

lógicas da aritmética. Isto é feito ao mostrar-se a natureza lógica dos números e a natureza

lógica do raciocínio matemático. Ao fazê-lo, faz-se importante mostrar como os números nat-

urais constituem uma série ordenada. Esta é a tarefa da definição do Ancestral. Com isso em

mente, focaremos nos seguintes tópicos. Na introdução, o problema sobre séries será discu-

tido, seguido de uma introdução do oponente mais famoso de Frege sobre isso: Kant. Isto será

feito no Capítulo 1. Entender a filosofia de Kant é o passo inicial para as motivações filosófi-

cas de Frege. Elas serão então discutidas no Capítulo 2, juntamente às suas reinterpretações

da terminologia kantiana. Terminaremos este capítulo discutindo a lógica conceitográfica

de Frege. No capítulo 3, introduzimos um sistema simples para lógica de segunda ordem,

necessário para avaliar a definição de Frege e fiel o bastante às suas motivações filosóficas.

Então, o Ancestral será finalmente e detalhadamente introduzido e discutido. Além disso,

provamos os teoremas necessários para o logicismo de Frege, similarmente ao modo como

o próprio antecipou na Begriffsschrift e Die Grundlagen der Arithmetik. Isso culminará no

que hoje é conhecido como o Teorema de Frege. Finalmente, no capítulo 4, discutimos um

dos problemas da definição de Frege: sua suposta circularidade. Mais precisamente, ar-

gumentamos contra essa conclusão, acrescentando que o Ancestral, embora impredicativo,

não é prejudicial como esperado, dadas as motivações filosóficas e lógicas de Frege perante ela.

Palavras-chave: Frege, Definição Ancestral, Logicismo, Kant, Teorema de Frege.



Abstract

In this work, we examine Frege’s famous definition of the Ancestral Relation both in its

philosophical and logical aspects. Frege’s logicism is the main theme on both: to show the

logical grounds of arithmetic. This is done by showing the logical nature of numbers and

the logical nature of mathematical reasoning. In doing so, it’s important to show how the

natural numbers constitute an ordered series. This is the task of the Ancestral. With that

in mind, we focus on the following topics. In the Introduction, the problem about series is

discussed, followed by an assessment of Frege’s most famous opponent regarding it: Kant.

This is done in chapter 1. Understanding Kant’s philosophy is the starting point for Frege’s

own philosophical motivations. In Chapter 2, we avaluate them, alongside Frege’s own inter-

pretations of the kantian notions. We finish the chapter by introducing Frege’s concept-script

logic. In Chapter 3 we introduce a simple system for second-order logic, necessary to evaluate

Frege’s definition and faithful enough to his philosophical motivations. Then, the Ancestral

is finally and thoroughly introduced and discussed. Most importantly, we prove the theorems

necessary for Frege’s logicism, similarly as himself envisaged in the Begriffsschrift and Die

Grundlagen der Arithmetik. This culminates in what is nowadays known as Frege’s Theo-

rem. Finally, in chapter 4, we discuss one of the problems of Frege’s definition: its alleged

circularity. More precisely, we argue against this conclusion, adding that the Ancestral, al-

though impredicative, is not as harmful as supposed, given Frege’s philosophical and logical

motivations for it.

Keywords: Frege, Ancestral definition, Logicism, Kant, Frege’s Theorem.
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Introduction

This work have one major theme: Frege’s famous definition of the Ancestral of a Relation.

But the approach here taken is twofold: to discuss such definition in the philosophical per-

spective, and to show its accomplishments logicwise. Both perspectives are mutually related.

The quest for the foundations of arithmetic is the starting point for both, and the problem of

series is one of the main fields of discussion. It’s inevitable in discussing Frege’s philosophy

to introduce some kantian terminology, and this is certainly the case regarding the Ancestral

definition. This is included in the philosophical discussion. As a renowned logician, the main

place for Frege’s philosophy to be held is in logic, and so, we take the discussion in logical

terms as well. We start, then, with series.

The notion of a Series

The capacity for establishing order in a finite set of objects can be seen as a basic human

capability. An order may be seen as a series or sequence < x1, ..., xn > of n objects such that

a path is given from one element to another through a finite number of steps. Such a path is

said to be reversible, that is, for every reached step, one could go back to the starting point

with the same number of steps. Simply put, a series is a collection of objects in which one

come after the other.

Such an elementary notion has many intuitive or empirical applications: the arrangement

of books in a shelf, the final order of pilots in a race, or even the order of births in a group

of siblings. In all these cases, a specific criteria for ordering is given: the author’s name, the

arrival time and date of birth, respectivelly. In fact, we can formulate an order even without

a specific ordering rule: given a finite set of elements, we can choose a first element, a second,

12
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third and so on randomly.

The variety of ways in which a series can emerge is also noteworthy. It can be linear,

circular, contain nodes, branches, or even be endless. It can also have one especific member

in two different positions. They are, for that matter, something different than sets, or simple

groupings of things, since the order of apperance of its elements are also an important factor.

To give more examples: the hours in a day, the victory conditions for the rock-paper-scissors

game, a family-tree, the digits in the decimal expansion of the number π, the series of winners

of the world cup of football, all show how general such notion is.

As we stated above, an order can be arbitrarily given following any criteria or even with a

random selection. But, in such cases, a connection with the series of natural numbers, taken

as an ordered set, is immediately suggested. From a given set of elements, we can establish

an order through a bijection between such set and a subset of natural numbers: for each

element of the set, we associate a unique natural number n:

a b c

1 2 3

...

Another way to understand this is by given an index to each element of a set, therefore giving

it an order. Most ordered series are, in fact, ordered due to such indexing, or bijection on the

natural numbers. Take the examples above: the alphabetic order of the set of letters, which

can be stated using ordinals, used to determine the series of books in a shelf. The duration of

time intervals determines the sequence of hours in a day, or the final order of pilots in a race.

The series of consecutive years determines the age difference between persons. Even if we

pick randomly, it is this association with the natural number series that allows the ordering

of each element picked. This is akin to the process of counting: if we want to know the size or

the quantity of a finite set of objects, we can associate each element with a natural number.

If all objects are associated, the size or cardinality of such set is the number associated with

the last object that we pick in such process. But for that to be successful, it is required the

set of natural numbers to be ordered prior, or, that to any successive selection of numbers,

the greater number to be the last selected.

All these seems to be dependent on the series of natural numbers. For Russell (1901),
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these are considered series by correlation, that we can generate by correlating each element

to an element of another ordered series. They are dependent on what he calls intrinsic or

independent series, like the natural numbers. The question, then, is how the series of natural

numbers acquire such order in the first place. One might answer this by the way numbers

are constructed, since their size, or magnitude, are ordered through the relation of ‘being

greater than’. But this still demands an account on what such relation is.

These questions are something taken very seriously by philosophers of mathematics through-

out the history. Two classical problems in the philosophy of mathematics can be stated

through them. On the intrinsic order, or the independent order of the natural number series,

lies a foundational problem: that of giving foundations for the number series; on correlational

series lies an applicability problem: that of giving an account on the fact that the number

series is applicable to any set of objects in the world, empirical or not. For that reason, start-

ing in the nineteenth century, works on formal logic start treating series and the notion of

order from the perspective of logical relations. The examples above also shows how relations

can order objects.

Formal Treatment

There are many ways in which we can generate a series or an order from a given set of

elements. But from a formal point of view, this is done basically with relations. A relation

R can be seen a binary property or concept connecting two elements in the form R(x, y). It

can even be extended for any n ≥ 2 in the general form Rn(x1, ..., xn), where R is said to be

an n-ary relation, even though only binary relations are used in orderings. In modern set-

theoretic approaches, a relation R is a set of ordered pairs < x, y >, e.g., {< x, y >,< y, z >}
is a relation R in which R(x, y) and R(y, z) holds1. Either way, an usual reading for R(x, y)

is that “x is related with y through R”.

For a relation R in a domain D, and for every x, y, z in D, a common set of properties of

relations is the following:

• If R(x, x), then R is said to be reflexive;

1Take Enderton (1977) as a good example.
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• If R(x, y) holds and can be inferred that R(y, x) also holds, then R is said to be

symmetric;

• If R(x, y) and R(y, z) holds, and it can be inferred that R(x, z) also holds, then R is

said to be transitive.

Any R that fails such conditions are said to be not reflexive, not symmetric and not

transitive, respectively. Moreover, if this holds for every x, y, z in D, then we have the

following set of opposite properties:

• If, for every x in D, R(x, x) does not hold, then R is said to be irreflexive;

• If, for every x and y in D, R(x, y) holds and R(y, x) doesn’t, then R is said to be

assymmetric;

• If for any x and y in D, both R(x, y) and R(y, x) holds, and it can be inferred that

x = y, then R is said to be antisymmetric.

• If, for every x, y and z in D, R(x, y) and R(y, z) holds, but R(x, z) does not, then R

is said to be antitransitive.

The most basic condition for any order is to the relation in question be transitive. This

provides a basic path that connects the objects correlated by the relation. Russell (1901,

1996), for example, states that any ordering requires a relation that is both transitive and

asymmetrical. This is a stronger condition. For a given set A = {a, b, c} of three elements, a

simple example would yield something like:

a b c
R R

In which, clearly, there is a path from one given element of the set to another2. The reverse

path would result a different order, and we can provide one assuming the inverse of R, R−1:

2More precisely, there is a path from a to c through b. But since R is taken to be transitive, there should be
a line connecting a to c directly, as is normally depicted. Nevertheless, the important point is the existence
of a path connecting both elements (a and c), which the above drawing clearly shows. An antitransitive
relation R, such that R(a, b) and R(b, c), would require a distinct representation, and for that reason, we
opt to represent transitive relations visually even without a direct line between every element, as long as the
connection is given.
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c b a
R−1 R−1

Such inverse relation is what Russell takes to be different senses of a relation, something

that we could restate as different directions for R. The requirement is that R and R−1 must

not be simultaniously true for the same pair of arguments, viz. R(a, b) and R−1(a, b) cannot

be both true. Series could also be considered open or closed, depending on the existence of a

path from the last to the first element. But in such cases, Russell’s restriction for order fails,

if the transitivity is assumed: take R(a, b), R(b, c) and R(c, a) (i.e. the series is closed) and

assume that R is transitive. Then R is also symmetric, against the restriction. This exclude

cases such as:

a

b

c

R R

R

and

a b
R

Provided that R is transitive in the first case. From R(a, b) and R(b, c), then R(a, c) (from

transitivity), but since R(c, a), R is then not assymmetric. The same holds for the second

case, since R(a, b) and R(b, a) holds3.

The usual relation described by such restrictions is the < relation on natural numbers.

Such relation is transitive, but not symmetric. It cannot be the case that n < m and

m < n. It cannot be reflexive either, since this would contradicts the asymmetry, given that

R(x, x) → R(x, x) trivially. Also, if a relation is both transitive and irreflexive, it cannot be

symmetric, otherwise it would be reflexive. Therefore, the relation < and Russell’s definition

of order describes the following:

Definition (Partial Ordering). A relation R is a partial ordering on a domain D if R is both

transitive and irreflexive on D.

3For that reason, Russell assumes only with antitransitive relations that such orders are possible in closed
series.
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Partial orders can also be used to generate trees or series with branches, not only simple

linear series, allowing a greater variety of cases. Particulary, consider the following:

a b

d

c

R
R

R

From that, we have that R(a, b), R(b, c) and R(b, d). R is a partial order: it’s irreflexive,

meaning that there is no path from each element back to itself, and it’s transitive, meaning

that there is a path that goes from a to c and to d. But c and d are not connected through

R. Such connectedness can be provided if we add the following condition:

• If exactly one of the following holds: R(x, y), R(y, x) or x = y, then R is said to satisfy

trichotomy.

When R satisfies trichotomy, then all objects correlated by R are in fact connected. This

is the expected case for the natural numbers. If a relation is a partial order and satisfies this,

then such relation is called a linear or total ordering:

Definition (Linear Ordering). A relation R is a linear ordering on a domain D if R is a

partial order and satisfies trichotomy on D.

Linear orderings are more restricted. They are the ones that matter for natural numbers,

since they form a line with only one direction, without branches. If one is concerned with the

order of them from a foundational point of view, the series must be linear. With numbers in

mind, the relations < and ≤ are usually what is used to describe orderings, but with some

minor differences. For what we have exposed, < is a partial order but also linear, or total,

order. It is also described as a strict total order. By contrast, the relation ≤ is a weak total

order. The major difference is that the irreflexive condition must be dropped, since x ≤ x

must hold. To overcome this, ≤ describes a partial order if is (1) transitive, (2) antisymmetric

and (3) reflexive. If trichotomy is added, then ≤ is a weak total order as well.

Summary of the chapters

From all the variety of series, linear or total orders are what properly describe the series of

natural numbers. For that reason, the search for the foundations of mathematics, mainly the
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arithmetic, usually involves inquiries about series in such terms. Our focus here is to evaluate

a classic dispute in philosophy of mathematics that takes place in this context: between Frege

and Kant.

Frege held the famous logicist thesis, that arithmetic has logical foundations, being an

analytic and ampliative science. His main declared opponent was Kant, who defended that

arithmetic, as an ampliative science, cannot be purely logical, having to borrow its founda-

tions from human cognitive capabilities, above all, intuitions. As it is well known, they differ

on the ontological and epistemological status of numbers, but this also includes a difference

between the way ordered series are conceived. So our task is to address this main difference.

The main theme is Frege’s philosophy and logic. The focus on such dispute is not just a

matter of choice. Frege describes his own goals in kantian terms, and from the beginning, in

1879, logicism already emerged as an anti-kantian approach to logic and mathematics, where

the important Ancestral Definition is introduced. So, understanding Kant’s position is crucial

to better understand Frege’s. Moreover, there is a great number of important topics to be

considered: the analytic-synthetic distinction, the views on logic, the role of intuitions, the

ampliative/informative character of mathematics and logic, all figure as important themes.

Frege’s importance for modern logic is undisputable, but his philosophical motivations were

also notable. Then, both aspects of his work should be considered.

Keeping that in mind, in the first chapter, we’ll assess Kant’s critical philosophy in order

to understand his positions about mathematics, numbers and ordered series. It’s Kant’s

critical philosophy, mainly the one exposed in the Critique of Pure Reason4 and subsequent

logical texts, mostly in the Jäsche Logic5, that will be analysed. Kant’s famous conclusion

that mathematical knowledge is synthetic a priori was the focal point of criticisms in the

nineteenth and twentieth century philosophy of mathematics6. Starting with a theory of logic

that regards it as fruitless, with no subject matter of his own serving only as a set of rules

for reasoning, Kant saw in intuitions, in its pure form, the best explanation for mathematics

success in science. In doing so, he saw a connection between the way human thought is

organized in time with the way arithmetic is constructed: both being linearly ordered, in

4Henceforth CPR.
5Henceforth JL.
6See, e.g. (COFFA, 1982) and the first chapters in (POTTER, 2000).
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accordance to what is necessary to describe the series of natural numbers properly. For that,

we start with Kant’s terminology and important notions (1.1). Next, the role of intuitions,

and especially, time, is discussed (1.2). This is then contrasted with Kant’s two notions on

logic (1.3). Finally, the importance of time in human thinking (1.4) and for the arithmetic

(1.5) is addressed.

But the cost for such solution was considered high, and Frege was one of the dissatisfied

customers. Already in his Begriffsschrift7, this rejection can be found. In his Die Grund-

lagen der Arithmetik8, his most philosophical book, Kant’s thesis is constantly quoted as

something to be overcome9. His motto was to show that arithmetical knowledge is analytic

and a priori, while keeping its ampliative character. This is a philosophical thesis, one with

mathematical purposes. The demands to accomplish this are what we now regard as Frege’s

major achievement: his logical calculus. But from a more modern standpoint, Frege’s early

logic must be seen with caution. All these topics are discussed in chapter 2. Precisely, Frege’s

philosophical motivations will be discussed (2.1), including his denial of kantian intuitions

(2.1.1), his notion of analyticity (2.1.2), definitions (2.1.3) and his thesis that logic can be

informative (2.1.4). Finally, the logic of BS is described (2.2), since it’s in logic that Frege’s

thesis are to be proved.

It’s in GLA that most of this philosophical discussion appears. But to prove his claims

much had to be done, and the first step was already taken in the BS : in section III of the

book, Frege derives important theorems that follows from a few definitions, all regarding

series. It’s here that we found the important Ancestral definition. The theorems are the ones

expected to describe linear-orderings. From this, Frege’s argument is simple: to show that

such ordering principles can be stated without appeal to intuitions, as Kant did. Added to

7Published in 1879. Henceforth quoted as BS . In english, the term received multiple translations: Stefan
Bauer-Mengelberg uses “ideography” in (FREGE, 1967), since this was the term addopted by Phillip Jourdain
assessments of Frege’s logic, which was readed and accepted by Frege. In Austin’s translation of GLA in
(FREGE, 1953), “concept writing” is the opted translation of the term, while in William Bynum’s translation
in (FREGE, 1992) it’s “conceptual notation”. In the new GGA translation by Philip Ebert and Marcus
Rossberg, (FREGE, 2013), the more usual “concept-script” is used. We opt to use “concept-script” as well,
when reffering to Frege’s logic, keeping the german term, or the abbreviation BS , when reffering to the 1879
book.

8Published in 1884. Henceforth GLA.
9As Coffa lightly put it: “There are many ways of looking at Frege’s marvelous book; I prefer to think of

it as a gigantic fly-swatter, ominously surveying the whole filed of arithmetic, ready to squash pure intuitions
as soon as it comes in” (COFFA, 1982, p.38).
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that, such principles can also derive important mathematical modes of inference, and they

are then used to prove the basic laws of arithmetic. This is what Frege hinted in GLA, and

finally showed in Grundgesetze der Arithmetik10. In chapter 3, this accomplishments will

be addressed. First, we will restate Frege’s logic into a more modern correlate (3.1). Then,

all important definitions of section III, including the Ancestral definition, will be presented

and discussed (3.2). To show the importance of such definitions, important theorems will be

derived in (3.2). They show how Frege’s definition derives linear-orderings, suitable enough

for arithmetical considerations. This is done, finally, in (3.3), as Frege’s Theorem will be

discussed. A complete proof of all theorems declared is available in Appendix A.

Finally, Frege’s definition was subject of many criticisms. Specially, given his unrestricted

second-order quantification, it was quickly recognized as impredicative already in 1887 by

Benno Kerry, and latter by Ignacio Angelelli in 2012. They both accused Frege’s Ancestral as

circular. In chapter 4 we discuss this problem and evaluate their arguments. First, in (4.1),

we restate them. Then, we offer objections to their conclusions in (4.2). More precisely, we

argue that given Frege’s philosophical motivation, showed in (4.2.1), the alleged circularity

is a confusion about Frege’s logical system. This is discussed in (4.2.2). We also offer some

additional problems regarding their premises in (4.2.3), to finally conclude in (4.3) that

Frege’s definition of the Ancestral, although impredicative, is not circular as they declared.

10Published in two volumes in 1893 and 1903. Henceforth GGA.



Chapter 1

Kant’s Proposal

In this chapter, our goal is to address Kant’s thesis that arithmetical judgements are

synthetic a priori. We aim to restate Kant’s thesis that the notion of an ordered series is

dependent on pure intuitions, since this is Frege’s main opponent in his logical definition for

the same notion. The notion of an ordered series plays a similar role in arithmetic for Kant

as it for Frege. Since for Kant intuitions are necessary for ordered series, the foundations

of arithmetic must rely on it as well. Kant’s thesis is better exposed in the Critique of

Pure Reason, a product of his mature critical philosophy. We shall first restate the kantian

taxonomy of notions and terminology in CPR in order to better address his main thesis about

arithmetic. For such, the difference between concepts and intuitions, and the role of logic

will be discussed. Then, we shall see how time is important for human thinking, and for

numbers and arithmetic as well. As a brief conclusion, we shall see how Kant also offers a

solution for the applicability and foundational problems.

1.1 Kant’s Critical Philosophy

Most of the kantian distinctions and terminology comes in a dual form: intuitions and

concepts, a priori and a posteriori, and so on. One of the reasons for this binary division

of notions is that the Kantian mature philosophy is a treatise of a conciliation between two

faculties: understanding and sensibility. No knowledge is possible without sensible experi-

ence. But no sensible object can be known without our own cognitive capabilities. As he

21
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puts it, “there are two stems of human cognition, [...] namely sensibility and understanding,

through the first of which objects are given to us, but through the second of which they are

thought” (CPR, B29). There should be, and that’s the business of the Critique, a science that

determines the conditions under which a object is given to us, and a science that determines

the conditions under which a object is thought by us. The transcendental aesthetic and logic

are such sciences.

The main notion in Kantian terminology is that of representations: “[...] inner determi-

nations of our mind in this or that temporal relation” (CPR, B242). Moreover, there are two

kinds of representations, with our without consciousness. Only the former is what matters to

Kant. In (CPR, B376) he offers a taxonomy, such that under the notion of a representation:

stands the representation with consciousness (perceptio). A perception that refers

to the subject as a modification of its state is a sensation (sensatio); an objective

perception is a cognition (cognitio). The latter is either an intuition or a concept

(intuitus vel conceptus).

Therefore, a conscious representation is a perception, and those objective representations are

intuitions or concepts. The same distinction is made in (JL, p.589): “All cognitions, that is,

all representations related with consciousness to an object, are either intuitions or concepts”.

Their main difference is the way each representation can refer to an object: intuitions are said

to refer immediately i.e., they designate a singular object and relate immediately to it, as a

concept refers only mediately and can relate to many objects through marks [merkmals’ ]. As

Kant puts it, “An intuition is a singular representation (repraesentatio singularis), a concept

a universal (repraesentatio per notas communes) or reflected representation (repraesentatio

discursiva)” (JL, p.589).

It’s no secret that intuitions and concepts are the two main elements of Kant’s philosophy.

The relation between reason and sensibility is then explicable through the relation between

them. Since, for Kant, human intuitions are only of the sensible kind, aesthetic is the science

of intuitions. Logic, as the science on how we think an object given through an intuition, is

the science of concepts, of how they can relate to an intuition. This conection should explain

the most crucial question in the Critique, on how synthetic a priori judgements are possible.
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Figure 1.1: Kant’s Taxonomy

Kant has, then, two major distinctions that need to be addressed: between pure (a priori)

and empirical (a posteriori) cognitions and between analytic and synthetic judgements. A

cognition is said to be a priori if it is “independent of all experience and even of all impressions

of the senses” (CPR,B2), and a cognition is said to be a posteriori if it has its sources in

experience, viz. it is empirical. Kant defines a judgement to be a priori if its justification is

independent of experience. Hence, this distinction is not a matter of origin, but justification.

However, if a cognition is a priori also in its origin, then it’s said do be a pure cognition.

The core of Kant’s critical philosophy is to unveil such pure parts: pure intuitions and pure

concepts (see Figure 1.1).

The relation between the aesthetic and logic is central for explaining the possibility of

synthetic a priori judgements. A judgement is, for Kant, a relation between concepts. Fur-

thermore, judgements are “[...] functions of unity among our representations” (CPR,B94).

Concepts relate only indirectly to an object, being “the unity of the action of ordering differ-

ent representations under a common one” (CPR,B93)1. They are the basis for our discursive

reasoning and “the understanding can make no other use of these concepts than that of judg-

1In (JL,p.597), Kant likewise defines judgements to be “the representation of the unity of the consciousness
of various representations, or the representation of their relation”.
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ing by means of them” (CPR,B93), that is, forming judgements. Like concepts, they do not

refer imediately to an object. In fact, a concept refers only to other representations, either

to other concepts or an intuition. Thus, the question whether a judgement is analytic or

synthetic rests upon what kind of relation exists between the concepts (the representations)

being judged.

The main kind of a judgement that Kant is dealing with is that of the subject-predicate

relation, like “A is B”. To say that “A is B” is the same as saying that the complex repre-

sentation A has the representation B as subcomponent. Hence, this is a sort of membership

relation applied to representations: “B ∈R A”. The relation between the subject and the

predicate can be of two kinds, according to Kant in (CPR, B10):

1. Either the predicate B is contained in the subject A: B ∈R A, or

2. The predicate B is not contained in the subject A. B 6∈R A.

Since a judgement is the representation of a unity, the two previous conditions above

determines what kind of unity is being performed. The unity is trivial, if case (1) holds, or

ampliative, if (2) holds prior to the unity. We would be saying something like A ∩ B ⊆R A

and B ∈R A as analogous for each case. Analysis is what it takes to justify judgements of

the first kind, since in performing it, we discover that A and A ∩ {B} are names for the

same representation. They are, then, analytic. For the second kind, since the predicate

representation is not a previous subcomponent of the subject representation, their unity is

something ampliative and synthetis is what it takes to justify it. They are, then, called

synthetic judgements2. We can now offer more simple definitions:

1. A cognition is a priori if it is experience independent;

2. A cognition is a posteriori if it is experience dependent;

3. A judgement is analytic if the representation of its unity is trivial;

4. A judgement is synthetic if the representation of its unity is not trivial.

2Kant states that “One could also call the former judgements of clarification, and the latter judge-
ments of amplification since through the predicate the former do not add anything to the concept of the
subject [...] while the latter, on the contrary, add to the concept of the subject a predicate that was not
thought in it at all” (CPR, B11).
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Since judgements are cognitions as well, the first distinction is also applicable to them.

Therefore, every a posteriori judgement is synthetic and every analytic judgement is a priori.

But the converse is not true, since not every synthetic judgement is a posteriori and not every

a priori judgement is analytic. The existence and posibility of a third kind, the synthetic

a priori judgements, is the main theme in the Critique. How are they possible? How

ampliative reasoning independent of all experience is possible? Kant’s answer depends on

how our intuitions are structured.

1.2 Aesthetic and Intuitions

Kant is emphatic in saying that all our cognitions must have an intuition to relate to:

that “[...] which all thought as a means is directed as an end, is intuition”, and “all thought

[...] must ultimately be related to intuitions” (CPR, B33). To our human case, sensibility

is the only source for intuitions, being the “capacity (receptivity) to acquire representations

through the way in which we are affected by objects”. Those representations that results from

a sensible object are called sensations, and the intuitions it provides are always empirical.

The important point is that Kant distinguishes the matter from the form of an intuition:

while the former is what corresponds to the sensation related to the intuition, the latter is

“that which allows the manifold of appearance to be intuited as ordered in certain relations”

(CPR, B34). The form of an intuition is a pure intuition, since it is not itself a sensation.

Moreover, pure intuitions are the conditions under which every empirical object can be re-

ceived, and hence, are the form of the sensibility as well. The study of such pure forms of

the sensibility is what Kant designates by Transcendental Aesthetic3.

This distinction is one of the foundations for the kantian philosophy of mathematics. Pure

intuitions, not being sensations themselves, are always a priori, since they are a “mere form

of sensibility in the mind” (CPR, B35). Since mathematics is a a priori science as well, and

since mathematical propositions are about mathematical objects (and not mere concepts),

3‘Transcendental’, in the kantian sense, means the conditions of a possible experience, or the “the possi-
bility of cognition or its use a priori” (CPR,B81). The Transcendental Aesthetic studies the conditions under
an object is intuitable. The Trasncendental Logic, likewise, studies the conditions under which an object is
thinkable, or applicable to concepts.
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pure intuitions must provide, somehow, their basis. There are two kinds of pure intuitions:

space and time. Kant considers Geometry as the science of space, and Arithmetic as the

science of time4. But he takes both geometry and arithmetic for granted as informative

disciplines, that is, where synthetic a priori judgements are possible. They must be the key

to explain how such reasoning is possible. Therefore, space and time are the central points

for mathematics.

From the two forms of intuitions, two properties of the mind are then determined: outer

sense, in which we “represent to ourselves objects as outside us, and all as in space” and

the inner sense, “by means of which the mind intuits itself, or its inner state, [...] so

that everything that belongs to the inner determinations is represented in relations of time”

(CPR,B37). Space then “is nothing other than merely the form of all appearances of outer

sense” (CPR,B42), and time “nothing other than the form of inner sense” [CPR,B49]. It

follows that the inner sense is more inclusive, since every possible intuition, either in space

or not, must be perceived in time. Kant’s argument5 shows that both space and time are (1)

pure a priori, i.e. non-empirical, intuitions; (2) the conditions under which every external and

internal objects of our sensibility must be received and (3) non-discursive or non-conceptual

representations. Specifically, every representation of a series must take time as its founda-

tion, and this explains not just the possibility of the ordenation of representations, but the

synthetic a priori character of arithmetic judgements. Therefore, time is our main focus.

Time

Kant’s argument, exposed in the Metaphysical Exposition in (CPR,§4), shows that only

taking time as a pure a priori intuition we can explain its unidimensionality and infinitude.

The unidimensionality of time states that “different times are not simultaneous, but successive

(just as different spaces are not successive, but simultaneous)” (CPR,B47), that is, different

points or intervals in time are successive and are points in the same countinuouss time line6.

Time is, in fact, represented in this exact way:

4Even though in CPR it’s the Kinematics that is assumed as the science of time.
5Namely, the metaphysical exposition of such concepts.
6This is described as apodictic principles, or axioms, about time, namely, that time has only one dimension

and that different times are successive.
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time, although is not itself an object of outer intuition at all, cannot be made

representable to us except under the image of a line, insofar as we draw it, without

which sort of presentation we could not know the unity of its measure at all

(CPR,B156).

The unity of such measure is the realization that the successive points in time form a series.

Kant argues that time

determines the relation of representations in our inner state. And just because

this inner intuition yields no shape we also attempt to remedy this lack through

analogies, and represent the temporal sequence through a line progressing to

infinity, in which the manifold constitutes a series that is of only one dimension,

and infer from the properties of this line to all the properties of time, with the sole

difference that the parts of the former are simultaneous but those of the latter

always exist successively (CPR, B50).

That is, points in time are successive, but in order to represent it we draw a series of points

through a line that is simultaneous in space. This line represents the passage of time through

a series of successive intervals. But drawing such line takes time, and hence, time is still the

condition for grasping such series.

The passage of time, that we recognize from the three main points of past, present and

future, happens through intervals where each one is the successor of another, and no interval

have more than one successor, as the following:

...t1 t2 t3 t4 t5 tn

The infinitude of time is the possibility to expand as long as we want the line above, or

putting differently, the fact that every time interval represented in the line has a successor

also in the line. Hence, for Kant, “the original representation time must therefore be given

as unlimited” (CPR,B48). In order to maintain that time is unidimensional and unlimited,

Kant argues that time must be an a priori intuition. He provides five arguments that we

summarize as the following two points:
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1. We cannot extract simultaneity or succession from experience. If we could, they would

not be necessary principles. Moreover, the fact that “one cannot remove time, though

one can very well take the appearances away from time” (CPR,B46) indicates that time

precedes experience. Therefore, Time must be a priori.

2. Since time is unidimensional, different intervals are said to be part of the same time line

and thus time must be a singular representation7. Also, for time to be unlimited, its

representation must be originally unlimited as well, something that we cannot achieve

from concepts8. Therefore, Time must be an intuition.

Kant’s conclusion is that time is a pure a priori intuition, the condition for our represen-

tation of objects in the inner sense, and the condition for the possibilitity of every (empirical)

intuition. This fact about time should explain how synthetic a priori judgements are possible

in the field of kinematics and arithmetic as well: “Our concept of time therefore explains the

possibility of as much synthetic a priori cognition as is presented by the general theory of

motion, which is no less fruitful” (CPR,B49).

The way Kant depicts time as a line in space is consistent with our initial considerations

about series. As stated in the introduction, a partial ordered series is any series that is

both transitive and asymmetric, and a linear order is any that is both partial and satisfies

trichotomy. Since, for Kant, time is unidimensional, it can only be represented with a line

segment that has only one direction. Define, then, a successor relation on time intervals as

<t, meaning by x <t y that x is a time interval the appears before y in the time line. Suppose

that <t is symmetric. Then, t <t t
′ means that t′ <t t as well. In that scenario, after reaching

t, we reach t′ and t again. Since no time interval occupies two places in the segment, that

means that time is not represented with a straight line, since there is a path that leads from

t back to t again. Hence, the successor relation must be asymmetric if time is taken to be

unidimensional. Likewise, if t1 <t t2 and t2 <t t3, it’s safe to say that there is a finite amout

of time intervals separating t1 from t3, i.e., t3 is reachable from t1. This is possible because

time, taken as unidimensional, must be transitive as well. Therefore, the relation <t is both

7Where Kant says that “[...] every determinate magnitude of time is only possible through limitations of
a single time grounding it” (CPR,B48).

8“[...] for they contain only partial representations” (CPR,B48).
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asymmetric and transitive, being in this case a partial order. But we can added the other

desired condition as well. We already saw that t <t t
′ and t′ <t t cannot both be the case.

Now, suppose that t <t t
′ and t = t′. Then we have that t <t t, which is the same problem

stated above: the existence of a path from t back to t again. This is against Kant’s notion

of time, hence the supposition is false. Finally, from the same reasoning, t′ <t t and t = t′

cannot both hold as well. Therefore, exactly one of them, that is t <t t
′, t′ <t t or t = t′,

holds. Hence, <t also satisfies trichotomy, and for that reason, describes a linear, or total,

order as well.

This is so because time is a condition for all possible experience, one that ordenates the

representation of objects aprehended in intuition. But as a pure intuition itself, time is a

form of our sensibility, so the fact that we can ordenate our sensible experience and derive

the cognition of a series is not solely determined by intuition, and requires the act of the

understanding. More precisely, it requires a synthesis. As Kant puts it:

inner sense [...] contains the mere form of intuition, but without combination of

the manifold in it, and thus it does not yet contain any determinate intuition at

all, which is possible only through the consciousness of the determination of the

manifold through the transcendental action of the imagination (synthetic influ-

ence of the understanding on the inner sense), which I have named the figurative

synthesis. (CPR, B154)

Intuition provides a manifold, one that is given successively in time but that requires a

synthesis of the understanding in order to be thinkable. Both the object being perceived

and the notion of succession itself, as Kant also explains, are products of understanding by

means on how our sensibility is affected by objects:

We cannot think of a line without drawing it in thought, [...] and we cannot even

represent time without, in drawing a straight line (which is to be the external

figurative representation of time), attending merely to the action of the synthesis

of the manifold through which we successively determine the inner sense, and

thereby attending to the succession of this determination in inner sense. [...] the

synthesis of the manifold in space, if we abstract from this manifold in space and
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attend solely to the action in accordance with which we determine the form of

inner sense, first produces the concept of succession at all. The understanding

therefore does not find some sort of combination of the manifold already in inner

sense, but produces it, by affecting inner sense. (CPR, B154-155)

First of all, the only way time is representable to us is through a straight line since that’s

the way our understanding synthesize the manifold of an intuition: successively. That’s also

how we manage to think about succession as well: by abstracting the content of a synthesis

and focusing only on how we combine the manifold into a single representation. But that is

according to the form of inner sense, time itself. Kant’s argument, then, is something like

the following:

1. When we synthesize the manifold of an intuition, we do so successively, according to

the determinations of inner sense;

2. To have a representation of time, we must then abstract from the content of such

synthesis and focus on the act;

3. We do that by drawing a figure that represents such act. And that figure is a straight

line.

But why it is not possible to represent time as a circle or a triangle, or any other shape?

Because our inner sense, the way we are affected internally by objects, is only possible if time

is unidimensional, moving forward like a straight line being stretched indefinitely. Arithmetic

would be affected if time weren’t like that as well. But the role of time, although necessary,

is not suficient. The same goes for ordered series. Only with the combination, or synthesis,

of the manifold given by an intuition, we can determinate what a number or a series in fact

is. To grasp such a series, that represent the manifold, a synthesis is required. Just as a line

is representative of the passage of time, an ordered series would also be so. Not just because

such series is a image of the passage of time, but because time itself is the condition under

which a series is grasped, by the successive synthesis of the manifold given in intuition. But

we should define what it is to synthesize a manifold for Kant, and this is the task for logic.
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1.3 Logic and Concepts

Kant’s aesthetic is conceived as the science of sensibility, about our receptivity of objects.

Following the division that we already stated, Kant also takes that the science of our thinking,

the active and spontaneous counterpart of the sensibility, is Logic. More precisely, logic is

the science of rules of the understanding9. In Kant’s time, logic was usually divided into

three branches: a theory of concepts (of general representations), a theory of judgements

(the relation between concepts) and a theory of inferences (the relation between judgements,

i.e. that of derivability). His JL follows this schema. But the logic in JL is mainly a formal

theory. Kant in fact recognizes two distinct logics: general and transcendental.

General Logic

In (JL, p.531), Kant defines general logic as follows:

Logic is [...] a science a priori of the necessary laws of thought, not in regard

to particular objects, however, but to all objects in general; hence a science of

the correct use of the understanding and of reason in general, [...] according to

principles a priori for how it ought to think.

It follows that general logic is a formal science on the laws of thought. For that matter, two

points are important: (1) general logic has no relation to empirical or psychological conditions

under which we first learn how to thought: its purpose is not to describe how humans happen

to think, but how they ought to think. Therefore, its principles must be a priori. (2) For

that reason, logic is regarded as formal because it abstracts entirelly from contents of the

understanding, either empirical or not10. Another way to put it is that Kant’s general logic

has no interest in epistemology or metaphysics. It’s only a canon, a method for examine

the right use of reason, one that is not suitable for discoveries11. Furthermore, general logic

9The understanding is, as Kant defines it, “[...] the faculty for bringing forth representations itself, or the
spontaneity of cognition” (CPR, B51).

10As Kant puts it in (CPR, B78), logic “abstracts from all contents of the cognition of the understanding
and of the difference of its objects, and has to do with nothing but the mere form of thinking”.

11Its actual counterpart is the applied logic, that Kant recognizes as a science that “[...] contains the rules
for correctly thinking about a certain kind of objects” (CPR,B76), and for that reason, does not abstract
entirely from the empirical conditions of our knowledge.
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has nothing to say about the analytic-synthetic judgements or even the recognition of a true

judgement. In fact, Kant considers that, as far as general logic is concerned, only a negative

criteria of truth is possible: that the form of our thinking does not contradicts itself12.

But how general (formal) logic ought to describe the mere form of thinking? It does so

by studying the relation of its basic branches: the relation between concepts (whatever they

may be) and the relation between judgements, that is, inferences, from a formal standpoint.

Judgements are divided in respect to their form: quantity, quality, relation and modality.

Inferences are organized according to the relation of such judgements, either immediate, also

called inferences of the understanding, or mediate inferences, (inferences of reason for Kant),

basically the aristotelic syllogistic suplemented with hipothetic and disjunctive inferences. In

nowhere general logic is concerned with the content of concepts or judgements13.

In sum, “Logic, having no specific subject matter, is general. Having nothing to do with

human psychology, it is pure. Concerning only the form of thought, it is merely formal”

(CAPOZZI; RONCAGLIA, 2009, p.144). This thesis about general logic yields some impor-

tant conclusions from Kant’s philosophy that puts him in the opposite side of the metaphysics

of its time, like the Leibniz-Wolff fusion between logic and metaphysics, or even the later

fregean position, something that we’ll address later14. From the kantian perspective, no

knowledge is possible through concepts alone: “[Logic] is far from sufficing to constitute the

material (objective) truth of the cognition, [and] nobody can dare to judge of objects and to

assert anything about them merely with logic” (CPR, B84). This conclusion also posits that

logic and mathematics are two distinct disciplines. Kant is not a mathematical formalist, as

he maintains that mathematical judgements are contentful. But, mathematics is a proper

organon of reason, he declares: “[...] an organon presupposes exact acquaintance with the

12“But this criteria concerns only the form of truth, i.e., of thinking in general, and are to that extent
entirely correct but not sufficient. For although a cognition may be in complete accord with logical form,
i.e., not contradict itself, yet it can still always contradict the object” (CPR, B84).

13On concepts: “universal logic does not have to investigate the source of concepts, not how concepts
arise as representations, but merely how given representations become concepts in thought” (JL,p.592). On
judgements: “Since logic abstracts from all real or objective difference of cognition, it can occupy itself as
little with the matter of judgements as with the content of concepts. Thus it has only the difference among
judgements in regard to their mere form to take into consideration” (JL,p.598).

14MacFarlane (2002, p.28) argues that this isn’t just about Kant changing the subject: accepting the
generality of logic with the principles of his transcendental philosophy, yields the formality thesis as conclusion,
viz. that logic is “completely indifferent to the semantic contents of concepts and judgements”.
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sciences, their objects and sources. Thus mathematics, for example, is an excellent organon”

(JL,p.529), something that logic is not, since it has no objects or contents of its own15.

Transcendental Logic

While the general logic is only concerned with the formal relation between concepts, the

Transcendental Logic is the science where the relation between concepts and intuitions is

properly investigated. This relation is central for a proper knowledge aquisition: “It is thus

just as necessary to make the mind’s concepts sensible (i.e., to add an object to them in

intuition) as it is to make its intuitions understandable (i.e., to bring them under concepts).

[...] Only from their unification can cognition arise.” (CPR,B75). Kant maintains that

concepts can only have content through the mediation of an object given from an intuition,

and this is the only proper knowledge that we can obtain/produce. His hypothesis is that,

just like the aesthetics shows the pure a priori conditions for our receptivity of objects, there

must be pure a priori conditions for our thinking of such objects, or likewise, pure concepts

of the understanding. General logic is not the science of such concepts, and for that reason,

transcendental logic does not abstract entirely from the content of our cognitions.

Therefore, Kant postulates the existence of pure a priori parts of our understanding

that mirror the pure a priori parts of our intuitions: the pure concepts. These concepts

are the necessary conditions for our thinking, that are “[...] related to objects a priori,

not as pure or sensible intuitions but rather merely as acts of pure thinking” (CPR,B81).

Hence, the existence of such pure concepts determines the existence of a logic that is capable

of determining the applicability of such pure concepts into objects, or “a science of pure

understanding and of the pure cognition of reason, by means of which we think objects

completely a priori” (CPR,B81), as Kant himself defines the transcendental logic.

As we discussed earlier, concepts and judgements are representations of the unity of other

representations. They are functions of the understanding: the unity of different representa-

tions into one. This is what Kant designates by synthesis: “By synthesis [...] I understand

15The distinction between Canon and Organon is better clarified by Kemp Smith: “By a canon Kant means
a system of a priori principles for the correct employment of a certain faculty of knowledge. By an organon
Kant means instruction as to how knowledge may be extended, how new knowledge may be acquired. [... ]
A canon is therefore a discipline based on positive principles of correct use” (SMITH, 2003, p.170).
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the action of putting different representations together with each other and comprehending

their manifoldness in one cognition” (CPR,B103). Knowledge is the connection between

concepts and intuitions: our understanding receives, by means of our intuitions, a manifold

that must be synthetized and unified by some rules. The pure concepts are such rules. They

provide the ways in which a synthesis can be brought upon, and this is so because “[...] the

spontaneity of our thought requires that this manifold first be gone through, taken up, and

combined in a certain way in order for a cognition to be made out of it” (CPR,B103).

The path to discover the pure concepts is given by general logic16: “The functions of

the understanding can therefore all be found together if one can exhaustively exhibit the

functions of unity in judgements” (CPR,B94). For that reason, Kant’s discovery of the pure

concepts, also known as categories, starts with the different forms of judgements of the general

logic, and likewise, derives a table of categories similar to that17. Those are the “Clue to the

Discovery of all Pure Concepts of the Understanding”, as the title of the section alerts us18.

Hence, Kant’s table of categories is the following:

1. Of Quantity 2. Of Quality

Unity Reality

Plurality Negation

Totality Limitation

3. Of Relation 4. Of Modality

Of Inherence and Subsistence Possibility - Impossibility

Of Causality and Dependence Existence - Non-existence

Of Community Necessity - Contingency

Such categories are the functions under which our understanding can think and concep-

16It is not a mere enumeration.
17Although he assumes that this is a secure path for deriving the categories, Kant takes for granted that

the table of judgements is suficient as given. More than that, Kant still believes that the classic form of
judgements, the aristotelian subject-predicate form, is enough to express all the possible relations between
concepts in a judgement. This point, among other problems in Kant’s derivation, can be found in (YOUNG,
1992).

18As Kant declares in (CPR,B105): “The same understanding, therefore, and indeed by means of the very
same actions through which it brings the logical form of a judgement into concepts by means of the analytical
unity, also brings a transcendental content into its representations by means of the synthetic unity of the
manifold in intuition in general, on account of which they are called pure concepts of the understanding that
pertain to objects a priori; this can never be accomplished by universal logic”.
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tualize (viz. understand) an object given through an intuition and its manifold. This is how

a concept obtain its content: by means of a synthesis19.

Kant’s transcendental logic, as so far presented, can be summarized as the following:

1. A judgement is the representation of the unity of other representations: a representation

of the relation between concepts. General logic shows that there are four classes of

judgements, that is, four classes of such unity.

2. Likewise, a concept is the representation of the unity of representations, more precisely,

of other concepts or intuitions. This unity is what Kant calls synthesis.

3. There are different ways to synthesize diferent representations: the categories. They

resembles the different forms of judgements, as logic teach us. It is in transcendental

logic, the science of such pure concepts/categories, that the synthesis is performed.

4. Since Kant states that all concepts must have an intuition corresponding to it (either

empirical or pure), at some level, the concept at hand, or its subcomponents, must

relate to the synthesis of a manifold given by an intuition. That’s how a concept can

have an object.

In conclusion, Kant’s transcendental philosophy postulates a twofold process in order for

us to cognize a given object: (1) the perception of such object, given through the pure a priori

forms of our sensations, space and time; (2) the tought of such object, given through the pure

a priori concepts of the understanding. Those concepts are the main structure in forming

both empirical concepts and judgements. Kant’s next step is arguing how such connection is

possible and how the categories are the necessary condition for all possible experience, that

is, every possible cognition about objects. This is the main theme in the The Deduction of

the Pure Concepts of the Understanding. As it turns out, time is one of the foundations for

the process under which we acquire knowledge of an object through synthesis.

19Kant states that “[...] no concepts can arise analytically as far as the content is concerned. The synthesis
of a manifold, however, (whether it be given empirically or a priori) first brings forth a cognition, which to be
sure may initially still be raw and confused, and thus in need of analysis; yet the synthesis alone is that which
properly collects the elements for cognitions and unifies them into a certain content; it is therefore the first
thing to which we have to attend if we wish to judge about the first origin of our cognition.” (CPR,B103).
That’s why any judgement in which the relation between the concepts are grounded in the synthesized
manifold of an intuition must be synthetic. That doesn’t mean that in analytic judgements the concepts
involved have no sensible content. It’s the justification of the judgement that determines it’s classification.
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1.4 The place of Time in human thinking

In the transcendental deduction of the categories Kant argues how the categories are the

conditions for every possible experience. The basic tenet is that synthesis is what gives unity

to our knowledge, and the categories must be the forms of such synthesis, the rules that

prescribe how a unity can be acchieved. However, in this process we also learn that time, as

the pure form of our intuitions, is a necessary condition as well. Likewise, every successive

aprehension of objects, in which series can emerge, is subject of not only time, but a synthesis

in order to us completely recognize it as an ordered whole. Therefore, the explanation

provided by Kant on how categories works in putting together our representations is also an

explanation on how series are products of our human understanding, since it’s in ordering

the manifold of our intuitions, viz., putting them into concepts, that they are produced.

As Kant describes in the Deduction, there are three main synthesis to be performed:

“that, namely, of the apprehension of the representations, as modifications of the mind in

intuition; of the reproduction of them in the imagination; and of their recognition in the

concept.” (CPR, A97). For that matter, imagination, as a mixed faculty, plays the role of

putting intuitions and concepts together in a cognition. This threefold process is, roughly,

the following20:

1. Every representation, either pure or empirical, belongs to our inner sense (time), since

it is a modification of the mind. It is required that every intuition in which a manifold

is given be unified, through synthesis, into a new whole. But, as Kant says, they “would

not be represented as such if the mind did not distinguish the time in the succession

of impressions on one another” (CPR,A99). Moreover, “[...] we can become conscious

of only one new item at a time. [...] Thus, to distinguish one impression from another,

we must give them separate locations” (BROOK, 2016). That is, separate locations in

time. This is the task of the synthesis of the aprehension.

2. The second synthesis is inseparably combined with the first. The synthesis of the

aprehension is what transforms the raw material of the intuition, its manifold, into a

20The Transcedental Deduction is one of the most discussed and problematic sections of the Critique.
Needless to say, I assume the brevity of my exposition here, that must avoid such problems and focus only
in what sense time is a crucial factor for our human understanding.
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whole perception. But since we can only perceive one representation at a time, we would

not have a continuous perception if not synthesizing different successive representations

into one. This is the role of the Synthesis of the reproduction in the imagination.

Kant defines that “Imagination is the faculty for representing an object even with-

out its presence in intuition” (CPR,B151), and it does so producing images of such

representations. This ability to reproduce and access again our representations, is

what enables the mind to perceive the same object in different moments21.

3. Finally, what it’s left is the application of concepts into the representations in question.

What the synthesis of aprehension and of reproduction provides is an ordered whole,

one that understanding must now cognize. The condition for that to happen is con-

sciousness22. Without it, “all reproduction in the series of representations would be in

vain”, since “it is this one consciousness that unifies the manifold that has been suc-

cessively intuited, and then also reproduced, into one representation” (CPR,A103)23.

Hence, consciousness is what properly applies the categories to the objects provided by

intuitions. It does so by relating such representations into different aspects in which

they can be unified: the categories24.

To sum up, each synthesis is related to three sources of cognitions: sense, imagination

and apperception25, and it’s through them that we can have a proper cognition of an object.

21Otherwise, we would have, at each time interval, representations with total disconnection with each other.
This seems to suggest that the synthesis of reproduction works similarly as memory, altought is just a way
to associate different representations according to their position in the time line. As Brook (2016) argues,
this synthesis provides a transition from one perception to another, where “Such transitions are the result
of the setting up of associations (which, moreover, need not be conscious) and do not require memory”. To
give a simple example, if we are to perceive a sunset, the perception of the position of the sun in a time t1
must be associated with the perception at t2, otherwise, we would not be able to unify both perceptions into
a whole, and conclude that it’s the same sun in both.

22Kant considers it as apperception, i.e., perception of the self. Kant’s argument states the existence of a
a priori condition for our apperception in its empirical use: the transcendental unity of apperception. Kant
dedicates a great deal of the transcendental deduction discussing its importance, something that we avoid
here.

23Guyer (2010, p.130) succintly explains it: “Kant argues that since the data for any cognition of an object
are given over a period of time, the data must be severally and serially apprehended [...], earlier data in
such a series of apprehensions must be able to be recalled when later data are experienced [...], and finally a
connection among the data that constitutes them into representations of a single object must be recognized
by means of a concept that links them as representations of states or properties of such an object”.

24We shall exemplify this point later, in explaining how arithmetic produces its object in understanding.
25More precisely, as Kant explains: “Sense represents the appearances empirically in perception, the imag-

ination in association (and reproduction), and apperception in the empirical consciousness of the identity of



CHAPTER 1. KANT’S PROPOSAL 38

This schema shows also how can knowledge of a series be achieved. In every aprehension of

an object, time is presented as condition. As Kant himself assumes, “Time is in itself a series

(and the formal condition of all series)” [CPR,B438], and “the synthesis of the manifold parts

of space, through which we apprehend it, is nevertheless successive, and thus occurs in time

and contains a series” [CPR,B439]. This is because, as we pointed out above, the synthesis

of aprehension is subject of time.

We distinguished then two kinds of series, according to Kant’s philosophy: the natural

order of time as a pure form of our intuitions, and a empirical series of a given set of objects

intuited26. The former is the condition of the latter, but it is itself only knowable to us

through the latter. This is because, without the threefold process of synthesis, we cannot

properly think or even be aware of an ordered series of objects whatsoever. That’s why Kant

assumes, as we showed earlier, that the straight line is the proper representation of time, since

it’s the figure that better represents its properties: unidimensionality and infinitude. Kant’s

argument goes beyond in saying that this is the only way we can represent time because this

is the exact way, and the only way, that objects are presented and conceptualized in us, that

is, successively.

Later, in the section On the schematism of the pure concepts of the understanding, Kant’s

gives details on how imagination intervenes in connecting concepts with intuitions and form-

ing judgements through them27. The connection is only possible if something homogeneous

to both concepts and intuitions is found, something that has both intelectual and sensible

parts. This is what Kant designates by schema. An schema is a formal condition that deter-

minates the applicability of a concept and differs from an image, which is only a particular

representation of a singular intuition28. Both are products of the imagination, i.e. con-

structions of the mind. Schemas are central in arguing the possibility of synthetic a priori

judgements, since they are responsible in connecting, synthetically and a priori, a concept

with its corresponding object of intuition in a judgement. Once again, time is fundamental

these reproductive representations with the appearances through which they were given, hence in recognition”
[CPR,A115].

26Kant gives a similar distintion at [CPR,B238].
27In other words, on how the synthesis of reproduction works to each particular category.
28While we can have an image of a particular triangle, a schema of a triangle is a rule to construct it in

intuition. The difference, then, is that the latter is more general than the former.
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to these schemas, since it’s “the formal condition of the manifold of inner sense, thus of the

connection of all representations” (CPR,B178). Hence, for each category, a correlate schema

is produced according to each of the following corresponding relations in time:

The schemata are therefore nothing but a priori time-determinations in accor-

dance with rules, and these concern, according to the order of the categories, the

time-series, the content of time, the order of time, and finally the sum total of

time in regard to all possible objects. (CPR, B185)

In other words, the time-series defines quantity, the content of time defines quality, the order

of time defines relations and the sum of times defines modality. It is in this perspective that

numbers, and arithmetic, becomes a product of the time-series determinations. This is the

root for the famous kantian thesis that arithmetic is synthetic a priori, something that finally

we are in position to address.

1.5 Time, Numbers and Arithmetic

In a famous passage in the Introduction to CPR, Kant states his thesis about mathematics:

that all mathematical judgements are synthetic a priori. In what matters to arithmetic, his

example is that the proposition 7 + 5 = 12 is synthetic, illustrating that, in order for us to

proceede to such calculation, we have to construct the number by means of the numbers to be

added. It’s not a simple matter of analysing the concepts and discovering that the concept of

12 is a subcomponent of the concept of a sum between 7 and 5. Kant argues that, if we take

larger numbers into the scene, it becomes obvious that the concept of a sum does not entails

the concept of its result, since “[...] for it is then clear that, twist and turn our concepts as

we will, without getting help from intuition we could never find the sum by means of the

mere analysis of our concepts” (CPR,B16). Putting it differently, a sum takes time to be

performed, and hence, takes time to be completed, that is, to get its result.

Numbers are, for that regard, constructions. In the preceding sum, one constructs the first

number, using time and schemas, and then constructs the other, adding the first number as a

starting point, just to finally reach the resulting number. Very late in the CPR, Kant states
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that “Philosophical cognition is rational cognition from concepts, mathematical cognition

that from the construction of concepts. But to construct a concept means to exhibit a priori

the intuition corresponding to it” (CPR,B741). In empirical situations, the ideia is that the

manifold of intuition provides a whole, that is synthetized (according to the threefold process

that we unveiled before) and where a schema is provided, according to the time-series, which

in application to the category of quantity, provides a number to the phenomena in question.

But the pure notion of a number must be empirically independent. In fact, Kant states that:

The pure schema of magnitude (quantitatis), however, as a concept of the

understanding, is number, which is a representation that summarizes the suc-

cessive addition of one (homogeneous) unit to another. Thus number is nothing

other than the unity of the synthesis of the manifold of a homogeneous intuition

in general, because I generate time itself in the apprehension of the intuition

(CPR,B182).

What Kant seems to suggest is this: in counting, we choose an homogeneous intuition, the

things being counted, which we present repeatedly in apprehension (as synthesis of appre-

hension): fingers, strokes or even ideas29. After counting the first stroke, and successively the

second, the time-series used in such apprehension determines that the first precedes the sec-

ond, and so on for other strokes that are presented in the time-series. Then, the pure schema

of quantity connects the manifold with the corresponding category, in which a discrete mag-

nitude is produced30. As Kant states, “I think therein only the successive progress from

one moment to another, where through all parts of time and their addition a determinate

magnitude of time is finally generated” (CPR,B203). Therefore, in counting an empirical

manifold, numbers are the schemas in which we apply the category of quantity in order to

determine the answer to questions of the “how many?” type, that is, a cardinal number. If

we take the succession of time as providing the ordinal numbers, we can state that Kant’s

29As internal aprehensions of the mind.
30Friedman (1998, p.116) offers the same interpretation: “Lying at the basis of all operations with the

concept of magnitude is the number series: the series of what we now call the natural numbers. And this
series, for Kant, can in turn itself only be represented by means of a progression in time: the successive
addition of unit to unit. In particular, it is only the necessarily temporal activity of progressive enumeration
that allows us to find or determine the result of any calculation”.



CHAPTER 1. KANT’S PROPOSAL 41

strategy is deriving the cardinals from the ordinals, from the order of the time-series to a

schema for each interval.

The threefold process in perceiving, synthetizing and determining the quantity of a man-

ifold, either pure or empirical, in such derivation can be analysed as the following31.

1. Consider that one is to count a series of n strokes: |||||. To determine it’s number, or

magnitude, we cannot apprehend them simultaneously, otherwise all quantities would

have the same size, i.e. 1. We have to apprehend them successively, according to

the time-series that we are subject to. Without any synthesis, intuition provides a

time-series such as the following (where each ∗ is an interval):

...∗ ∗ ∗ ∗ ∗

2. The first step is to synthetize the manifold presented in each interval, through the

synthesis of apprehension: we apprehend the units being counted, as they are exhibited

at each interval. Since they are positioned successively in the time-series, denote s(∗)

as the time-interval that is successive of ∗, then the representation of the time-series is:

...∗ s(∗) ss(∗) sss(∗) ssss(∗) s1, ..., sn(∗)

3. We still don’t know the quantities that each s1, ...si(∗)32 represents, but we can derive

the ordinals from the successor in each interval:

...∗ s(∗) ss(∗) sss(∗) ssss(∗) s1, ..., sn(∗)

1st 2nd 3rd 4th 5th nth

4. Since we desire to find the quantity, or the cardinal number of the strokes, we first

associate each stroke with the corresponding interval in the time-series, i.e. for each

time interval s1, ..., si(∗), we associate each of the strokes to be counted, that is, we

count them one by one:

31Much of the following presentation is based on Wong’s (1999) exposition about Kant’s argument.
32Wheres if i = 0, the interval is ∗ itself. The notation s1, ..., sn(∗) denotes a series of n-applycations of

the successor, that is:

n-times

︷ ︸︸ ︷

s, ..., s(∗). For that reason, the index of each s can be discarded.
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...∗ s(∗) ss(∗) sss(∗) ssss(∗) s1, ..., sn(∗)

1st 2nd 3rd 4th 5th nth

| | | | |

5. Numbers are schemas of quantity and hence, each duration of the time-series in the

counting procedure determines a singular schema, or a singular number. In that sce-

nario, each s1, ..., si(∗) in the series is associated with a unique schema, that determines

the procedure to construct a magnitude of that size. Accordingly, schemas can be re-

garded as iterations of the construction procedure, which follows the succesive structure

of the time-series.

6. Denote by c(s1, ..., si≤n(∗)) the construction performed at s1, ..., si≤n(∗), as regulated

by a unique schema. If this construction procedure is just the addition of one more

stroke, or one more unit to the counting being performed, then c(s1, ..., si≤n(∗)) can be

equally iterated in a way that cc(s1, ..., si≤n(∗)) is the stroke, or the unit, being added

to c(s1, ..., si≤n(∗)). Likewise, it follows that cc(∗) = c(s(∗)) or that c(ss(∗)) = ccc(∗),

and so on. One simple way of reading something like cc(∗) is: add one more stroke to

what c(∗) had originally yielded. Constructability is what licenses the transition from

ordinals to cardinals. At this stage, what garantees the iteration of the constructability

is the synthesis of reproduction. Accordingly we have:

...∗ s(∗) ss(∗) sss(∗) ssss(∗) s1, ..., sn(∗)

c(∗) cc(∗) ccc(∗) cccc(∗) ccccc(∗) c1, ...cn(∗)...

1st 2nd 3rd 4th 5th nth...

7. Finally, each c1, ..., ci≤n(∗) correspond to an individual number, since they are the link to

the application of the category of quantity: taking each construction as a whole, we take

the plurality expressed by it as a totality, reaching the final synthesis in the process,

the synthesis of recognition. Adding the cardinal notation, we have that c(∗) = 1,

cc(∗) = 2, ccc(∗) = 3 and so on33. Needless to say, each c1, ..., ci≤n(∗) correspond to

33We start with 1 because 0 denotes the number where no construction is performed. This can signify two
things: either 0 is not a number at all, or it’s a number where no intuition is required to be constructed.
Avoiding the discussion, I take zero to be the number with an ‘empty’ construction.
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an unique interval s1, ..., si≤n(∗), and for each of the strokes being counted, there’ll be

a unique construction that determines the actual number corresponding to it. Adding

all together, the counting of the strokes in question can now be fully appreciated:

...∗ s(∗) ss(∗) sss(∗) ssss(∗) s1, ..., sn(∗)

c(∗) cc(∗) ccc(∗) cccc(∗) cccccc(∗) c1, ...cn(∗)...

1 2 3 4 5 n...

1st 2nd 3rd 4th 5th nth...

| | | | |

The upper side of the time-line represents the position of each interval, and the corre-

spondent ordinal number, since this original order, which is inherent of our inner sense,

has foundational priority over the cardinal numbers, represented in the bottom side of

the line. As Wong (1999, p.363) also suggests, the time-series provides, from it’s own,

the structure for representing the ordinals, and hence, the order of time determines the

order of numbers. Hence, “In order to determine how many times we need to apply

the idea of how many to an ordinal sequence”. In conclusion, the number of strokes

enumerated is determined by the corresponding number of the last stroke counted.

Following this, we can define a recursive procedure for the addition operation, assuming

such constructability as basic procedure (instead of the usual successor function). First, any

number n is constructible if n = c1, ..., cm(∗), where m = nth ordinal. This generates a list

of cardinals as showed above, using the usual notation. We can abbreviate it as:

0 = ∗ (C1)

n+ 1 = c(n) (C2)

We’re adding zero (0) as a number, even though it does not involve a construction. Nonethe-

less, this fits our purposes, since from this definition, 1 = c(0) = c(∗), 2 = c(1) = cc(∗) and
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so on. Then, recursive addition is:

n+ 0 = n (A1)

n+ c(m) = c(n+m) (A2)

Assuming that 0 is the number with an ‘empty’ construction. Using that, we can see how

Kant’s initial example fits our explanations, providing a complete proof of the proposition

7 + 5 = 12:

7 + 5 = 7 + c(4) (C2)

= c(7 + 4) (A2)

= c(7 + c(3)) (C2)

= cc(7 + 3) (A2)

= cc(7 + c(2)) (C2)

= ccc(7 + 2) (A2)

= ccc(7 + c(1)) (C2)

= cccc(7 + 1) (A2)

= cccc(7 + c(0)) (C2)

= ccccc(7 + 0) (A2)

= ccccc(7) (A1)

= cccc(8) (C2)

= ccc(9) (C2)

= cc(10) (C2)

= c(11) (C2)

= 12 (C2)
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Now, this procedure tells us that, to perform the sum 7 + 5, we have to construct 7 in the

corresponding intuition, and procede to construct 5 on top of it. And we know that 7 is

constructible, since 7 = c(6), from (C2). At the point where we get that 7 + 5 = ccccc(7)

we could equally descend from (C2) to derive cccccc(6) and so on, until we reach the base

case and the answer: cccccccccccc(∗), i.e., 12. This shows that to perform the sum, we have

to successively add units to each other to reach the right answer, and this is only possible

through time. The constructibility of 12 is a time-ordered procedure, which is synthetic by

essence. Of course, one need not to start from c(∗) for every computation, otherwise, larger

numbers would take an enormous ammount of time to be computed even for the most daily

and mundane matter. The important thing, as far as Kant’s philosophy is concerned, is that

numbers must be constructible. As Wong (1999, p.370) points out, the empirical realization

of the computation is not a necessary matter: “In order to stablish the representability of an

arbitrarily large number, it suffices to construct an algorith that determines all the successive

stages of its construction”, just as we have showed above34.

This constructions are called symbolic by Kant in (CPR,B745), and they are differentiated

by the ostensive constructions of geometry, where’s a particular object is constructed. The

iteration of some procedure is present in both cases. But, following Friedman (1998), in

geometry, that Kant held to be euclidian by nature, we take postulates as the starting

points, such as to draw a lign segment from two given points, or to draw a circle from a fixed

point as a center and a line as its radius, etc. A geometrical object is any object that we can

construct in an iterative way using the postulates as rules. Since they are space-dependent,

they are synthetic. This means that geometry, as far as constructions is concerned, is a

temporal activity as well (even though its objects are spatial by nature). But arithmetic and

algebra, as Kant states, “[...] entirely abstracts from the constitution of the object that is to

be thought” (CPR,B745). This is because numbers are to be taken as rules, and not proper

objects. Differently, geometry has objects (lines, circles, triangles, etc), while arithmetic

has only schemas, which we use to define the discrete quantity of agregates, whatever they

34If this is right, Frege’s criticism in (GLA,§89) is misleading in pointing out that a number like 10001000
1000

would not be intuitable. Although, in Frege’s defense, it’s the foundational, and not the grasping of such
number, that is the main problem with Kant’s argument for such large quantities.
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may be35. Arithmetic has no starting points as geometry has (the postulates): arithmetic is

concerned solely with the notion of progressive iteration, i.e. time, and it’s because of this,

that the pure intuition of time is the a priori condition for the possibility of arithmetic.

1.6 Conclusion of Kant’s proposal

It’s hard to exaggerate the importance of time in Kant’s philosophy, as well his consider-

ations on arithmetic and numbers. Arithmetical judgements are necessarily synthetic, since

the structure of numbers 36 is based in the structure of our pure intuition of time. Moreover,

arithmetic is also a priori, because this structure is found in the pure part of our intuition.

This explains why Kant rules out analysis as a sufficient procedure to derive arithmetical

truths. The assumption, which defines his transcendental philosophy, is that only sensible

objects are accessible for us, and hence, the a priori parts of our experience must be a prod-

uct of our own minds, not an independent object that we only grasp. This is the case both

for numbers as for series: we can only grasp an ordered series of objects insofar we “produce”

such order in apprehending them, one by one, in time.

In that context, Kant’s philosophy of mathematics is an attempt to solve both the ap-

plicability and foundational problems at once. Shabel (2005) describes it similarly as the

problem of applicability and the problem of apriority of mathematics. Those were the main

agenda for philosophers of mathematics in the modern period, spaning from Descartes to

Kant: the apriority demand requires an explanation on the fact that mathematical features

like universality, certainty and necessity are possible in an ontology that includes empirical

objects. In the other hand, the applicability demand requires an explanation on the fact

that, being universal, mathematics is applicable to empirical data.

This is the case for the applicability and apriority of the natural number series: how can

such series be at the same time independent and applicable to experience. Kant’s solution

was a response against what he called the mathematical investigators of nature (especially

Descartes and Newton) and the metaphysicians of nature (especially Leibniz). While the for-

35Algebra has, however, quantities that are not discrete, as the
√

2. In such cases, we can define
√

2
constructing the diagonal of a square, in geometry.

36And the operations defined on them.
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mer, who assume space and time to be eternal and infinite subsisting real entities, fails on the

applicability demand, the latter, who takes space to be relations of confused representations

of real entities, fails on the apriority demand, according to Kant37. The superiority of Kant’s

proposal was the ability to solve both problems at once. That is, Kant’s philosophy explains

both (1) our ability to generate both series and numbers independent of all experience, that

is, its foundational priority, and (2) our ability to apply such construction in the experience

without loss of generality. Kant’s argument, then, is “[...] about the connection between our

way of intuiting, representing, and knowing the structure of space [and time] and our way of

intuiting, representing, and knowing the features of the objects we experience to be in space

[and time]: the former determines the latter” (SHABEL, 2005, p.48).

Finally, one could question the whole idea that numbers and series are time-dependent. As

Friedman (1998, p.121) asks, even accepting that arithmetic involves progressive iterations,

“[...] why should this idea, in turn, essentially involve time? Is not progressive iteration in

fact a much more abstract concept than any temporal concept?”. As it turns out, Frege was

asking these exact questions.

37About the former, Kant argues that: “[...] they must assume two eternal and infinite self-subsisting non-
entities (space and time), which exist (yet without there being anything real) only in order to comprehend
everything real within themselves” (CPR,B56). Since in this account space and time are not appearances,
their apriority is guaranteed. But their applicability fails because, by assuming such eternal and self-subsisting
non-entities, they extend the realm of application to beyond possible experience. About the latter, Kant states
that “[...] on this view the a priori concepts of space and time are only creatures of the imagination, the
origin of which must really be sought in experience” (CPR,B56-57), which would fail in giving the a priori

validity of mathematical knowledge, since such origin is only empirical.



Chapter 2

Frege’s Proposal

Frege’s proposal of a logical definition of an ordered series is based on his 1879 definition of

the Ancestral of a relation, perhaps one of the most important achievements of his philosophy.

In the BS , the ancestral of a relation is defined as an example of the capabilities of his

logical notation. Moreover, such a definition has both logical and philosophical implications

in Frege’s program: it provides an example of the informativeness of his logic, which he

believed to be absent from any form of intuition, and in the philosophy of mathematics, it

aims to provide a logical derivation for a general principle of induction. It is also used in

the definition of natural number and used extensively in proofs for the so-called basic laws

of arithmetic. This was his first step toward his logicist program: the claim that arithmetic

could be derived solely from logical principles. From a general principle of induction, one can

derive the important principle of mathematical induction, provided that a logical definition

for number is given, something he gave later in GLA. This results are also important in

showing that Kant was wrong both in his notion of general logic and in his claim that

arithmetic is synthetic a priori as a time-related procedure, precisely because no intuition is

allegedly needed in Frege’s proofs.

Our aim is to appreciate Frege’s definition of the ancestral relation. For logicism to

succeed, not only numbers has to be derived as logical objects, but it is important to also

derive rules of reasoning in a logical matter as well. This is the case for the principle of

mathematical induction. Since the Ancestral is the logical path for such, it must be possible

to prove important facts about the desired relation. Furthermore, of much importance is

48
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to prove that the ancestral provides enough resources for linear-orderings. Proving those

facts are also Frege’s major point against intuition in his early philosophy. Frege takes the

ancestral to be a logical notion, one that has maximum generality. Hence, the purpose was to

provide a logical foundation for the ordinary understanding of the ancestral, and with that,

a logical foundation for the notion of an linear-ordered series.

This chapter starts with Frege’s philosophical background and motivations, specially his

reinterpretation of the kantian terminology and disagreements. We also introduce Frege’s

conceptual-script logic, and discuss the philosophical topics regarding it. With that setup,

the Ancestral definition will be postponed until the next chapter, alongside the important

theorems that Frege proves about it.

2.1 Philosophical Motivations

Frege’s philosophical influence is, today, undeniable. But since he was initially trained as

a mathematician, this could be regarded as an accident of his more mathematical endeavour.

But Frege’s motivation was not only mathematical, but also philosophical. His interest in the

foundational problem put him in the field of philosophy. This is the case for his three major

works: BS , GLA and GGA. GLA is by far his most philosophical work and it shows that

his motivations was highly philosophical1. His major interest is nowadays called logicism.

In Fregean terms, logicism is the thesis that arithmetic has solely logical foundations. The

details of such endeaveur was sugested in philosophical terms: to show the analyticity of

arithmetical propositions. The first steps toward this thesis was already present in BS , in

the definitions and proofs of part III regarding the ancestral of a relation. In GLA, the thesis

1It’s regarded that Frege wrote GLA after Carl Stumpf suggested that he should write his proposals in
ordinary language first, in order to be more accessible than BS . In a letter to Frege, dated from 1882, he wrote
“I ask you whether it would not be appropriate to explain your line of thought first in ordinary language and
then - perhaps separately on another occasion or in the very same book - in conceptual notation: I should
think that this would make for a more favourable reception of both accounts” (PMC, p.172). I take that GLA

is not more philosophical because Stumpf’s suggestion, but because in it Frege is taking more time to elaborate
the philosophical importance of his project. Benacerraf (1981) suggests differently that Frege’s main purpose
in GLA about analiticity is to give an account suitable enough for a mathematician’s needs, which renders
the conclusion that GLA is mainly mathematically motivated, and just acidentaly philosophical. As we see
it, this doesn’t take away the philosophical importance of Frege’s book, neither the philosophical context of
his endeaveurs.
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is the main topic informally discussed and in GGA it is finally formally tested2.

In BS , Frege raises the question about what should be the most secure foundation for

a given proposition, answering that “The firmest method of proof is obviously the purely

logical one [...] based solely upon the laws on which all knowledge rests” (BS , p.103). He also

discusses his motivations: “to reduce the concept of ordering-in-a-sequence to the notion of

logical ordering, in order to advance from here to the concept of number” (BS , p.104). Mainly,

a secure foundation for arithmetic was already his goal. Two important philosophical topics

are also present in BS : the rejection that intuitions have a foundational part in arithmetic,

although in an obscure way, the analytic-synthetic distinction. There is no doubt that, in

casting such terminology, Kant’s philosophy was in Frege’s mind.

This is further confirmed in GLA, where’s logicism is then identified with the analyticity

of arithmetic. This is Frege’s philosophical motivation: “Philosophical motives too have

prompted me to enquiries of this kind. The answers to the questions raised about the

nature of arithmetical truths—are they a priori or a posteriori? synthetic or analytic?—must

lie in this same direction” (GLA, §3). Latter, in the concluding remarks, Frege states his

hypothesis:

I hope I may claim in the present work to have made it probable that the laws

of arithmetic are analytic judgements and consequently a priori. Arithmetic thus

becomes simply a development of logic, and every proposition of arithmetic a law

of logic, albeit a derivative one. (GLA, §87)

In GGA, the most formal work and the epitome of Frege’s career, this same pretension

is in place, although not in the same extension as in GLA. There is no explicit discussion

on philosophical topics in regard to the analyticity of the proofs. But Frege declares to be

carrying out the project started in BS and GLA, namely, to “[...] make it plausible that

arithmetic is a branch of logic and needs to rely neither on experience nor intuition as a basis

for its proofs” (GGA, p.1). Moreover, Frege’s purposes in logicism is also addressed in the

letter to Anton Marty in 1882, where he declares to

[...] demonstrate that the first principles of computation which up to now have

2With an unfortunate negative ending, following Russell’s paradox.
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generally been regarded as unprovable axioms can be proved from definitions by

means of logical laws alone, so that they may have to be regarded as analytic

judgements in Kant’s sense. (PMC , pp.99-100)

Also, in the 1885 paper On Formal Theories of Arithmetic, he more strongly suggest that

“[...] there is no such thing as a peculiarly arithmetical mode of inference that cannot be

reduced to the general inference-modes of logic” (CP, p.113), and that

if arithmetic is to be independent of all particular properties of things, this must

also hold true of its building blocks: they must be of a purely logical nature.

From this there follows the requirement that everything arithmetical be reducible

to logic by means of definitions. (CP, p. 114).

Hence, based in Frege’s pretensions, we have the following assertions:

• The logical method of proofs does not rely on intuitions or experience, i.e. sensible

data.

• This relates to kantian terminology: proofs that rely on intuitions are synthetic; proofs

that rely on experience are a posteriori. Hence, a proof that does not rely on any of

both is analytic and a priori.

• Arithmetic cannot rest his foundations in intuitions or experience, hence, a logical

foundation must be found, viz. that arithmetic is analytic a priori.

• The way to show that arithmetic has logical grounds is:

1. showing that arithmetical modes of inference are logical modes of inference;

2. showing that definitions of important arithmetical concepts (the building blocks)

can be reducible into a purely logical terminology.

Although Frege’s project comes in kantian terms, there are major differences between the

two. Frege’s conception of logic differs from Kant’s conception. As a consequence, Frege’s

intensions to prove the analytic a priori character of arithmetic deviates from Kant’s famous

thesis that arithmetical judgements are synthetic a priori. But despite such differences, they
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both agree that such judgements are contentful and that arithmetic is an informative science.

We shall deal with these differences now.

2.1.1 The denial of Kantian Intuitions

According to our interest here, Frege’s major philosophical motivation against the kantian

thesis about mathematical judgements can be summarized in what may be called the Content

Principle and the Informativity Principle:

Content Principle (CP): Logic has content of his own regardless of the subject

matter (the domain that we assign to variables).

Since (CP) states that logic have a proper subject, it is to be regarded as a science. Therefore,

logic can be informative about objects of its own:

Informativity Principle (IP): Logic is an ampliative science, that is, it can

add content to our knowledge.

Fregean logicism, viz. the thesis that arithmetic has only logical grounds, can be regarded

as a consequence of (CP) and (IP). The kantian thesis, as we already exposed, states that

there is no proper logical domain regardless of the domain of sensible data (including both

empirical and pure intuitions). For that reason, Kant denies (CP), and consequently, (IP).

Such principles are the heart of the fregean-kantian dispute about arithmetic. But for the

fregean argument to be sound, he has to give an account for the truth of both principles. As

we shall see latter, the purpose of part III of BS , where the Ancestral relation appears, has

this exact motivation.

Fregean defense of (CP) is completely in the domain of arithmetic. In GLA, the logical

basis of arithmetic is closely tied with (CP), and Frege argues for the former also in terms

of the second. The following summarizes the situation:

1. Concepts and objects are the most basic entities in Frege’s Ontology3, something that

he might have borrowed from Kant’s philosophy (that equaly devides all mental repre-

sentations in General and Particular)

3The last of the three principles declared in GLA’s Introduction asserts: “never to lose sight of the
distinction between concept and object”.
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2. Also following Kant, there would be only two ways in which an object can be given to

us: through sensible intuition or logical intuition.

3. Kant denies the second, while Frege asserts the existence of objects which can be given

whitout intuitions, viz. numbers.

4. Hence, for Frege, since numbers are not given through sensible intuition, they must be

given to us through some kind of logical basis.

Therefore, numbers are the main case for Frege to assume the truth of (CP). This was, at

least, Frege’s belief. His appeal to extensions was central to maintain the thesis that numbers

were logical objects. If it were not for the inconsistency of Basic Law V4, (CP) would be

true since numbers would be such logical contents. Hence, the above argument is only a hint:

numerical words behave in such a way that numbers are to be regarded as objects.

Remember that Frege’s position in GLA is built up in two parts: one pars destruens and

one subsequent pars construens. The former is set up to stablished what numbers cannot

be, where the latter to support what numbers in fact are, according to Frege’s position. In

(GLA, §45) he summarizes it:

Number is not abstracted from things [...] nor is it a property of things [...].

Number is not anything physical, but nor is it anything subjective (an idea).

Number does not result from the annexing of thing to thing. It makes no difference

even if we assign a fresh name after each act of annexation.

What we see is Frege concluding his arguments against (1) some kind of abstractionism, (2)

empiricism, (3) psychologism and (4) an extensional account of numbers as sets. Moreover,

some features about the way we refer to numbers are taken as clues to the thesis that numbers

are objects, e.g., the use of definite article ‘the’ in number expressions like ‘the number of

cards is n’. In addition to that, numbers do not admit plurals: “When we speak of "the

number one", we indicate by means of the definite article a definite and unique object of

scientific study. There are not divers numbers one, but only one” (GLA, §38). We can

4Frege’s axiom regarding extensions, or more precisely value-ranges, in GGA.
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easily perceive the absurdities of any expression of the type ‘The twos’ or ‘Some fives’, Frege

maintains.

All of these are indicatives that numbers behave like objects, since they cannot be proper-

ties (or concepts), cannot assume plural forms and always demands a definite article. But at

the same time, they cannot be sensible entities. It is the kantian thesis about pure intuitions

that remains as an option, which Frege promptly rejects as well. His rejection is based on the

assumption that arithmetical claims has the most inclusive domain possible, i.e., the domain

of everything that is thinkable:

Empirical propositions hold good of what is physically or psychologically actual,

the truths of geometry govern all that is spatially intuitable, whether actual or

product of our fancy. [...] The truths of arithmetic govern all that is numerable.

This is the widest domain of all; for to it belongs not only the actual, not only

the intuitable, but everything thinkable. (GLA, §14)

There are two main topics that Frege is concerned here. First, it is to be taken as an

evidence of the non-intuitional aspect of numbers that we can, according to him, enumerate

or count anything. This is an applicability feature of arithmetic that we already pointed out

earlier: every given set of elements, either empirical, imaginable, mental or intuitable can be

enumerated, i.e. can be associated with a number. Second, this all-inclusive applicability

relates to the fact that the denial of any arithmetical judgement is not imaginable. Not

just a plain contradiction is derivable, but with a false arithmetical claim we could not even

be able to think properly5. This is not the case with geometry, where intuition plays the

foundational role:

For purposes of conceptual thought we can always assume the contrary of some

one or other of the geometrical axioms, without involving ourselves in any self-

5We could prove that a statement like 1 = 0 ensues a contradiction in a Fregean way. Since numerical
statements are ascriptions about concepts, let 1 be the number of the concept F . Hence, there is one, and
only one, object which falls under it (call it a). But since 1 = 0, 0 is also the number of F ’s, hence, no object
falls under it. From that, a is and is not an F . Contradiction. This is found in MacFarlane (2002), where he
add that, since F is schematic, we could intanciate it to be ‘circle’ and derive an object that is and is not a
circle, and hence, a contradiction in the field of geometry as well. Therefore, from an arithmetical falsehood,
thinking becomes a confusion in all fields.
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contradictions when we proceed to our deductions, despite the conflict between

our assumptions and our intuition [...] Can the same be said of the fundamental

propositions of the science of number? Here, we have only to try denying any

one of them, and complete confusion ensues. Even to think at all seems no longer

possible. (GLA, §13)

The characteristics on how number-statements behave shows its logical grounds. Fregean

pars construens starts with the observation that, following such numerical behavior, “[...] the

content of a statement of number is an assertion about a concept” (GLA, §46). This is a

fact that explains the aforementioned range of applicability of arithmetic, given that “[...]

numbers are assigned only to the concepts, under which are brought both the physical and

mental alike, both the spatial and temporal and the non-spatial and non-temporal” (GLA,

§48). Conceptual words are often accompanied by indefinite articles or without articles in a

plural form, like ‘houses’ or ‘a house’, and should not be mistakenly taken as proper names.

The difference between conceptual words and proper names related to the prior distinction

between concepts and objects. Anyhow, the applicability of a number to a given set of

elements depends upon the concept choosen for it, and what Frege takes from such features

is that numbers are regarded as objects, applycable to concepts: e.g. we can associate to a

set of soldiers different numbers (as totality) depending on which concept we count, either a

regiment, a platoon or soldiers.

But Frege takes such features for granted, and although this is not enough for a proper

foundation, it shows Frege’s position in contrast with Kant. MacFarlane (2002) gives an

account of such distinctions6, arguing that such features lead Frege to reject some basic

kantian principles. According to him, in deducing the formality of logic from its generality,

Kant made use of two principles which Frege would easily reject:

(JO) Judgement is the mediate cognition of an object. (MACFARLANE, 2002,

p.50)

(OS) Objects can be given to us only in sensibility. That is, the only intuitions

6Our main descriptions of Frege’s intensions in terms of (CP) and (IP) are mostly based in Macfarlane’s
paper.
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(singular representations) we are capable of having are sensible. (MACFAR-

LANE, 2002, p.51)

Kant’s thesis in (JO) asserts that in every judgement, there is a connection between a concept

and an object. Where no object could be given, there is no possible judgement. Kant insists

on the necessity of sensible intuitions in order for a judgement to grasp some content, but

Frege rejects that in terms of the preceding assumption that statements of numbers are

ascriptions about concepts: those are about concepts and not the objects numbered by the

concept. From this possibility, as MacFarlane (2002, p.58), Frege can deny another kantian

principle:

(CO) For a concept to have content is for it to be applicable to some object that

could be given in an intuition (singular representation). (MACFARLANE, 2002,

p.52).

The denial of (CO) is what leads Frege to assert (CP)7, and likewise, the acceptance of (CO)

is what would make Kant reject (CP). Lastly, Frege’s rejection of (OS) above is given in terms

of the fact that numbers behave like objects, added with the thesis that numbers cannot be

empirical or psychological entities. This was, nonetheless, a fregean leap of faith, since he

maintains in GLA the belief that he could properly derive numbers as logical objects. As

he declares in the (GLA, §89): “I must also protest against the generality of Kant’s dictum:

without sensibility no object would be given to us. Nought and one are objects which cannot

be given to us in sensation”. But since they can be given to us through ascriptions about

concepts, Kant’s dictum must be false.

This is Frege’s defense of (CP). The truth of (CP) leads to the truth of (IP): since logic

has its own objects, it is a science, and like any science, can be ampliative and informative in

his proofs. And since we’re dealing solely with logic, the analyticity of such proofs are also

preserved. But Frege’s position on the matter takes kantian terms into new interpretations.

To better understand why Frege held (IP), we shall deal with this distinction first.

7As long as logic is properly taked to be formal, i.e. in disregard to sensible data, (CO) is the opposing
principle of (CP).
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2.1.2 Fregean Analyticity

Recall that Kant’s division into two logics (general and transcendental) are brought up

to deal with (CO), as intuitions are concerned. A transcendental logic is built up as “[...]

a science of pure understanding and of the pure cognition of reason, by means of which we

think objects completely a priori”, and that “[...] determine the origin, the domain, and the

objective validity of such cognitions” (CPR, B81), viz, of pure a priori objects. Since Kant

did not regard general logic capable of dealing with contents, it is incapable of explaining

(JO), (OS) or (CO). Frege’s rejection of such principles is, therefore, embedded in different

considerations about what general logic is.

Frege wasn’t kantian with regard to arithmetic mainly because his notion of general logic

deviates from Kant’s. With that, Frege held that Arithmetic is analytic, since he believed

that no intuition was required to establish the truth of arithmetical statements. This involves

at least three important topics: 1) although Frege states that he is assuming the notion in

kantian terms, his definition for the analyticity of judgements are not quite the same; 2)

his notion of definition has an important different aspect from Kant’s notion, resulting from

his logical inovations; 3) Frege held that arithmetic has maximum generality, being about

everything thinkable. Since logic must hold the same generality, arithmetical truths must

have a logical basis.

But there’s some common ground between both, since Frege suggests that a truth is

analytic if there is no need for special principles (i.e., non-logical) for justifying its truth. In

(GLA, §3) he asserts that “Now these distinctions between a priori and a posteriori, synthetic

and analytic, concern, as I see it, not the content of the judgement but the justification for

making the judgement”. Now, the way Frege regards such distinctions is specified in the

following section:

If, in carrying out this process, we come only on general logical laws and on

definitions, then the truth is an analytic one, bearing in mind that we must

take account also of all propositions upon which the admissibility of any of the

definitions depends. If, however, it is impossible to give the proof without making

use of truths which are not of a general logical nature, but belong to the sphere
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of some special science, then the proposition is a synthetic one. For a truth to be

a posteriori, it must be impossible to construct a proof of it without including an

appeal to facts, i.e., to truths which cannot be proved and are not general, since

they contain assertions about particular objects. But if, on the contrary, its proof

can be derived exclusively from general laws, which themselves neither need nor

admit of proof, then the truth is a priori. (GLA, §3)

Frege is talking about truths and hence worried about how a truth can be achieved, that

is, its proofs. Thus, we have the following conditions:

1. A truth is analytic if its proof uses only logical principles;

2. A truth is synthetic if its proof uses, alongside logical, also non-logical or special prin-

ciples, e.g. geometry requires principles that can be given only through some intuition,

according both to Kant and Frege;

3. A truth is a posteriori if its proof use appeal to particular facts;

4. A truth is a priori if its proof is carried out without appeal to particular facts.

Following this, Frege and Kant agree that a judgement is analytic if its justification is

based solely in logical principles. For Kant, the principle of non-contradiction is such a

principle8: “we must also allow the principle of contradiction to count as the universal and

completely sufficient principle of all analytic cognition” (CPR, B191). Then, if one is to

analyze the concepts of mathematics in a judgement, according to Kant, one cannot realize

its truth only by means of them: no analysis would be sufficient since mathematical objects

are constructions (synthesis) of reason, and therefore, the principle of non-contradiction fails

in those cases. As Kants puts it, in disregard of his objects, non-contradiction is a negative

criterion for the truth of a judgement: if its negation is absurd, it must be regard as analytic.

But whitout such a contradiction, “[...] it can still be either false or groundless” (CPR, B190).

Although the principle of non-contradiction plays an important role (given that whitout it,

one cannot reason at all), in regard of mathematical judgements, it’s not a sufficient one. As

8His famous justification for the analytic/synthetic distinction as a matter of conceptual containment is
based in such principle.
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a consequence, a judgement like 7 + 5 6= 12 would not be a nonsense, even though it cannot

be true, because to realize that, one must construct such objects and verify its falsehood,

and by no means this envolves only analysis.

As it seems, Frege’s definition of analyticity is not that different from the kantian. What

changes is the way one can regard a truth to be analytic. First of all, Frege didn’t agree with

this kantian conclusion: one of the key features of arithmetic is that denying any arithmetical

truth leads to contradictions, as exposed earlier. Even thought both regarded the question to

be about the justification of a judgement, Kant seems to suggest that such justification lies

in the content of his concepts, that is, we should look to the content of the concepts involved

in a judgement in order to stablish what principle is involved in defining it to be true. If the

principle of non-contradiction is such principle, the judgement is analytic, and synthetic if

it’s not.

The fregean rejection of such procedure is given in his anti-psychologism dictum: “always

to separate sharply the psychological from the logical, the subjective from the objective”

(GLA, xxii). Frege is rejecting not the kantian criteria for the justification of a judgement,

but the necessity to look over what constitutes the concepts involved in the judgement in

terms of contents (i.e. other concepts, his characteristic marks) in order to achieve such

justification. Hence, the ‘logical principles’ claimed in the criteria for analyticity must be

understood by two factors: (1) logical modes of inference and (2) definitions expressible using

only logical terms. As we shall see, this two points, and how Frege takes them, are responsible

for understanding the fregean acceptance of (IP).

2.1.3 Fregean Definitions, Conceptual-Contents

Definitions are, broadly speaking, concepts formation. In (GLA, §88) Frege states that

Kant has underestimated the value of analytic judgements because his restricted notion of

judgement9 and a restricted notion of definition, where concepts are formed only by the

union of different characteristic notes. Kantian definitions, as simple union of concepts,

cannot extend knowledge whatsoever: if we define A to be a simple union of the concepts

9Where, e.g., existencial judgements are not expressable.
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B and C10, the judgements ‘A is B’ and ‘A is C’ are trivial analytic truths since nothing

new is stated that was not given in the premises. Otherwise, judgements like ‘A is D’, which

are in fact informative, are synthetic since the definition of A does not include D as one of

its characteristic notes. In this sense, Kant’s way of taking definitions perfectly fits with his

notion of analiticity, beying in his case trivial.

Fregean definitions are stipulative signs, where a complex formula (definiens) fix the

content of a simple sign (definiendum), which hasn’t one, and where the complex formula can

be variously analysable into the function-argument distinction. Fregean definitions preserve

analyticity. As he states in BS , a definition is not a judgement, since it’s a stipulation, but

we can derive a judgement from it, one that simply “makes apparent again what was put into

the new signs” (BS , §24), being in this case analytic. Moreover, we could derive the same

theorems with or without the definitions, and this is a reason why definitions must preserve

analyticity. From these considerations, we could easily believe that Frege regard definitions

to be trivial, and hence, non-informative, just like Kant.

But Frege points out the importance of what he called fruitful definitions, from which we

can obtain new concepts by the decomposition of complex judgements in a saturated and

unsaturated part. Taking the example in BS , the proposition “hydrogen is lighter than carbon

dioxide” can be decomposed to form new concepts, such as “being lighter than carbon dioxide”

or “being heavier than hydrogen”. This, of course, is only possible given Frege’s substitution

of the subject-predicate analysis by the function-argument one, another important feature

of Frege’s Logic. For fruitful definitions the matter rests upon what we can properly derive

from them. As Frege points out: “The more fruitful type of definition is a matter of drawing

boundary lines that were not previously given at all. What we shall be able to infer from

it, cannot be inspected in advance” (GLA, §88). This is linked to (IP). The fruitfulness

of a definition depends on which new concepts, or boundaries, could be achieved by means

of the definiendum. As Frege puts it in Boole’s logical calculus and the Concept-Script,

“fruitfulness is the acid test of concepts” (PW , p.33). This means that definitions, albeit

simple stipulations, can extend knowledge.

On the other hand, by taking a concept to be just the union of characteristic notes, which

10Which is actually the intersection between such concepts: B ∩ C.
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are also concepts, a definition for a new concept could be just stated as: A =def B∩C. That’s

just a way to say that something is an A if, and only if, it’s both B and C, or, that the things

defined to be A is all the things that belongs to the intersection between B and C. For

example, the concept of ‘husband’ is just the intersection between ‘maried’ and ‘man’. Not

much could be achieved through such analysis of concepts. In Boole’s logical calculus and the

Concept-script, Frege characterizes such concept formation procedure using something like

Venn diagrams, in which a concept is formed/defined by the intersection11 of the extensions,

represented by circles, of the original concepts (logical multiplication in Boole’s logic). This

is also, in Frege’s mind, the kantian way of forming concepts, as he declares in (GLA,§88):

“He seems to think of concepts as defined by giving a simple list of characteristics in no

special order”, and this is the same as the boolean representation of concepts through their

logical operations12. The limitation of such is that:

In this sort of concept formation, one must, then, assume as given a system of

concepts, or speaking metaphorically, a network of lines. These really already

contain the new concepts: all one has to do is to use the lines that are already

there to demarcate complete surface areas in a new way. It is the fact that

attention is principally given to this sort of formation of new concepts from old

ones, while other more fruitful ones are neglected which surely is responsible for

the impression one easily gets in logic that for all our to-ing and fro-ing we never

really leave the same spot. (PW ,p.34)

To overcome this, Frege’s strategy is to focus on judgements. He declares to “start out from

judgements and their contents, and not from concepts” (PW , p.16). That is, Frege does not

consider concepts as given, to only then form judgements through them. He did not believe

that concept formation was prior to the act of judging. This is how a fruitful definition, as

concept formation, is possible.

11Or likewise with other logical operations, e.g. logical adition.
12Frege says: “If we represent the concepts (or their extensions) by figures or areas in a plane, then the

concept defined by a simple list of characteristics corresponds to the area common to all the areas representing
the defining characteristics; it is enclosed by segments of their boundary lines. With a definition like this,
therefore, what we do — in terms of our illustration — is to use the lines already given in a new way for the
purpose of demarcating an area”. (GLA,§88).
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The question of whether definitions can extend knowledge is akin to the problem Frege

begin his acclaimed Über Sinn und Bedeutung13: how can identity statements be informative?

Frege’s famous distinction between the sense and reference of a sign is given also to address

this question, but things are different when such informativity is a result of some discovery,

which would yield the identity synthetically informative. The question about the informativ-

ity and the analyticity of arithmetic, as present in BS , GLA and texts of this period, assumes

a different aspect: no such sense-reference distinction is present. His earlier semantic notion

is that of the ‘conceptual-content’. The notion is of some considerable obscurity, since Frege

was not clear what they really are, but the notion is nonetheless important in definitions,

since they are performed with a sign for identity of conceptual-contents, and can be regarded

of a relation between them. Albeit there are difficulties in understanding Frege’s notion, we

can recollect some of his thinking and shed some light on it.

Conceptual-Contents

Nowadays, with a model-theoretic approach to logic being the dominant trend, the rela-

tion between syntax and semantics becomes the centerpiece to any logical research. Looking

at Frege’s logic with this modern eyes, the relation between syntax and semantics is one of

complete unity: in no place in Frege’s logic an expression is taken as not interpreted, that

is, every expression (which is well-formed) in the concept-script has a content (a thought,

in the later semantics) associated with. As Shapiro (1991) puts it, Frege’s logic was “fully

interpreted”14. Another discussion relative to this question is the relation between a calcu-

lus and a language, that is, a deductive system and a semantics. This was, in fact, Frege’s

standpoint in regard to his notion of logic in contrast to the boolean algebrists. The dispute

was declared into Leibnizian terms:

Right from the start I had in mind the expression of a content. What I am

striving after is a lingua characterica in the first instance for mathematics, not

[just] a calculus restricted to pure logic. (PW , p.12)

13Translated as “On sense and meaning” in (PMC , p.157). We’re opting for the usual ‘sense and reference’.
14“[...] the logicists, including Frege, did not develop model-theoretic semantics, partly because their

systems were fully interpreted. There was no non-logical terminology whose referents would vary from model
to model” (SHAPIRO, 1991, p.11).
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Frege’s project was an attempt to complete Leibniz’s project: the develpment of a logical

system suitable for scientific purposes. In “Logic as Calculus and Logic as Language”, Van

Heijenoort famously called this feature as the universality of logic. In such, the introduction of

quantifiers in BS features a great change and advance in comparison with boolean algebras15.

Frege’s ontology takes quantifiers as ranging over the whole universe of discourse, or as

Heijenoort (1967, 325) says, “Frege’s universe consists of all that there is, and it is fixed”. In

this universal conception of logic, sentences must have content and the formal system must

be able to show its relation.

In Frege’s conceptual-script, a judgement, which has logical priority in concept formation,

expresses a content, i.e. something that is affirmed. In (BS ,§2), this is regarded as “a

mere combination of ideas”, which in turn is composed of the logical relations between its

components (functions and arguments). It’s out of this that Frege defines the conceptual-

content of an expression that is judgeable, and he does it in terms of logical consequence:

“the only thing considered in a judgement is that which influences its possible consequences”

(BS , §3). Moreover, he states that:

I note that the contents of two judgements can differ in two ways: first, it may

be the case that [all] consequences which can be derived from the first judge-

ment combined with certain others can always be derived also from the second

judgement combined with the same others; secondly, this may not be the case.

[...] Now I call the part of the content which is the same in both the conceptual

content (BS,§3).

More formally, this implies that the contents of two expressions ϕ and ψ are the same if, for

Γ a set of sentences and S any individual sentence, the following holds16:

Γ, ϕ ⊢F S ⇔ Γ, ψ ⊢F S17

15In Van Heijenoort’s mind, boolean algebras represents only the propositional part of a logical calculus.
This was, in fact, Frege’s own criticism of Boole’s logic, but this hardly fits into its later developments. For
a good revision of Van Heijenoort’s seminal distinction, see Peckhaus (2004).

16Taking ⊢F to be Frege’s obscure consequence relation in BS .
17To give a simple example, consider the two judgements ‘every single man is unmaried’ and ‘every maried

man is not single’, which we could express by the two different expressions ∀x[S(x) → ¬∃yM(x, y)] and
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This yields that the content of two judgeable sentences are the same just in case both are

mutually inferable: since Γ, ϕ ⊢F ϕ and Γ, ψ ⊢F ψ, and since ϕ and ψ have the same

consequences, it follows that Γ, ϕ ⊢F ψ and Γ, ψ ⊢F ϕ (given that ϕ ⊢F ϕ and ψ ⊢F ψ).

Dropping Γ, we then have that ϕ and ψ have the same conceptual content just in case

ϕ ⊢F ψ and ψ ⊢F ϕ. But this can derive the undesired consequence that all theorems have

the same conceptual content, as Kremer (2010) argues. This is actually the other direction

of the consequence of the definition of conceptual content above. The argument (and the

argument just showed above), however, pressuposes some logical tools that are unknown to

Frege, specifically the weakening and cut rule for sequent-calculus18. The argument then

runs as the following:

1. Assume that ϕ ⊢F ψ and ψ ⊢F ϕ.

2. Assume that Γ, ϕ ⊢F S. This yields, by weakening, Γ, ϕ, ψ ⊢F S.

3. Using the same rule, ψ ⊢F ϕ yields Γ, ψ ⊢F ϕ.

4. But then, using the cut rule, we derive from (2) and (3) Γ, ψ ⊢F S.

5. Using the same reasoning, assuming Γ, ψ ⊢F S yields that Γ, ϕ ⊢F S.

6. This satisfies the definition and hence, ϕ and ψ have the same conceptual contents.

Moreover, if this sequent-calculus notion of derivability is assumed, every logical truth is

derivable from an empty set of premises, which implies that they are mutually inferable and

hence, all logical truths would have the same conceptual content. This would be devastating

for Frege’s logicism and his thesis that analytic proofs can be nonetheless informative. How-

ever, as Kremer adverts correctly, Frege would not accept such notion of logical consequence:

“For Frege, consequence, following from, is a relation between judgeable contents which en-

ables one judgement to be justified on the basis of others” (KREMER, 2010, p.226). Frege’s

∀x[∃yM(x, y) → ¬S(x)] respectively. Now, assuming as premise that ‘x is single’, we could derive that ‘x is
unmaried’ from both judgements. Likewise, if we take that ‘x is unmaried’, both will derive that ‘x is single’.
Hence, they have the same conceptual content, even though expressed in different sentences.

18The weakening rule states that superfluous premises can be added to a proof without invalidating it. The
cut rule states that, if ϕ ⊢F ψ and if ϕ,ψ ⊢F S, that is, if a premise is an implication of the other, we might
cut it and assume ϕ ⊢F S.
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system of logic is strange to the notion of logical laws as derivable from an empty set of

premises, as it is to conditional (hypothetical) and reductio ad absurdum proofs. In Frege’s

view, logical laws express contents, and it’s from them that new laws are derivable. In BS ,

theorems are proved from a set of axioms and rules, and so they’re said to be “contained”

in them. To a theorem to be “contained” solely in axioms and definitions means that it’s

analytic. The discovery of such relation yields information as well. As Kremer puts it,

‘Consequence’ is already for Frege a notion with epistemological import. Deducing

consequences from basic logical laws is a process which generates content, insofar

as the conclusions we deduce are contained in the basic laws collectively, but not

individually. (KREMER, 2010, p.229)

This implies that in Frege’s proofs of BS , there is an order of logical laws such that one is

a result of the other, and this is made possible because the relation between the conceptual

contents of them.

The notion of conceptual content is latter changed by the well-known distinction between

sense and reference of sentences, and this is significant to understand what Frege thought

conceptual contents suppose to be in the first place. He declares in a letter to Husserl

that “What I used to call judgeable content is now divided into thought and truth value”

(PMC,p.63). In GGA, Frege also notes the following:

What was formerly the content-stroke reappears as the horizontal. These are

consequences of a deep-reaching development in my logical views. Previously I

distinguished two components in that whose external form is a declarative sen-

tence: 1) acknowledgement of truth, 2) the content, which is acknoledged as true.

The content I called judgleable content. This now splits for me into what I call

thought and what I call truth-value. This is a consequence of the distinction

between the sense and the reference of a sign. (GGA, foreword X)

So according to Frege himself, we should take the notion of conceptual-content19 as a kind

of combination of both sense and reference of a sign. To acknowledge a truth is to perform

19Frege actually talks about judgeable contents, but in the context of BS this are conceptual-contents that
are of possible judgement. Their difference will be latter addressed.
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a judgement over a conceptual (judgeable) content. For the mature distinction, a judgement

“[...] in the narrower sense could be characterized as a transition from a thought [sense] to a

truth value. [reference]” (PMC,p.63), that is, the sense of a expression somehow determines

it’s reference (or lack of). The same should be expected from conceptual-contents.

In BS , while speaking about what makes two distinct sentences have the same conse-

quences, Frege uses the term ‘sense’ [sinn]. In explaining the need for a sign for identity of

contents, he adds that a content can have “[...] two different modes of determination [bes-

timmungsweisen]” (BS , §8), that is, two different expressions can name the same content, or

likewise, have the same logical consequences. This is very close to what he latter will call a

“mode of designation [Art des Gegebenseins]” (PMC,p.157) of a sign in Über Sinn und Bedeu-

tung, that is, it’s sense. An expression has a ‘mode of determination‘ or ‘mode of designation’

associated with, which in turns determines the object designated by the expression. Hence,

we can conclude that in BS , the notion of conceptual-content includes an obscure notion of

sense which is what determines the possible consequences of the thing being designated by

the original expression. Accordingly, there should be a correlate part for the notion of refer-

ence of an expression as well. But in BS Frege had not yet identified the Truth and the False

as references for expressions. He uses expressions like “the circunstance of [der Umstand]”,

“the case of [der Fall]” and “the proposition that [der Satz, dass]” (BS ,§3), and he also often

reads “is a fact [ist eine Thatsache]” when a judgement is confered to such content. This

seems to suggest that, if there was a referent component in the conceptual-content notion, it

plays a much closer role to something like russelian propositions than the latter identification

of truth-values as objects20.

Despite the differences, conceptual-contents are something like (but not exactly as) the

latter distinction Frege has made in his logic. It was its imprecisions and problems especially

with the identity of conceptual-contents signs that made Frege rethink this semantic notion.

20In a letter to Frege, Russell states against Frege’s position about the designation of a proposition: “I
believe that in spite of all its snowfields Mont Blanc itself is a component part of what is actually asserted
in the proposition ’Mont Blanc is more than 4000 metres high’. We do not assert the thought, for this is a
private psychological matter: we assert the object of the thought, and this is, to my mind, a certain complex
(an objective proposition, one might say) in which Mont Blanc is itself a component part. If we do not admit
this, then we get the conclusion that we know nothing at all about Mont Blanc. This is why for me the
meaning of a proposition is not the true, but a certain complex which (in the given case) is true” (PMC ,
p.169). This is similar to what Frege once held in BS .
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But such sign is crucial for definitions. Since the conceptual-content is not a syntatical

notion, Frege’s sign for identity of contents is introduced as a relation between sentences:

it asserts that two expressions has the same conceptual-content, that is, have the same

possible consequences21. With that in mind, definitions in BS are stipulations that fix a

certain conceptual-content to a new introduced sign, through the sign for the identity of

(conceptual) contents (≡). Definitions are also preceded by a double vertical stroke, in the

form:

Γ ≡ ∆

Where Γ is the definiens and ∆ is the definiendum, the defined sign. All expressions preceded

by are not judgements. Otherwise, all definitions would be automatically synthetic. They

are just conventions. We should, still, give an account for how fregean definitions, provided

by the sign for identity of conceptual-contents, support (IP).

2.1.4 Logic and Informativity

There is a great deal of interpretations on how fregean account on definitions can support

(IP)22. Gregory Landini (1996, 2012), offers one that regards such feature as an outcome of (1)

21The usage and problems of such sign will be addressed later.
22Here we just name a few.

• Danielle Macbeth (2005, 2012), argues that Frege’s logical notation functions like an euclidian diagram:
it shows the inferentially articulated contents of concepts as they matter to mathematical reasoning.
She argues that Frege’s concavity notation for generality is a sign for marking the subordination under
higher-level functions. This, togheter with definitions, help articulating deductions about the defined
concept, revealing diagramatically the subordination of such concepts under higher level concepts (or
functions). This is what, in Macbeth’s thesis, makes a fregean deduction informative.

• Ruffino (1991) explains such feature in terms of Frege’s contextual principle in its epistemic role, that
is, in concept-formation. In Ruffino’s account, the construction of concepts through decomposition of
judgeable contents (i.e. the Apriority Principle) is something governed by the context principle, where
new and unexpected concepts are acquired. Hence, informativeness results.

As I take it, much of both accounts can be better explained taking as basis Frege’s undeclared rule of
substitution. In Macbeths account, Frege’s proofs “[...] reveals logical relations among concepts and does so by
combining, in joining inferences, parts of different wholes into new wholes” (MACBETH, 2012, p.307), which
in turn yields the informativeness of logic. This is Frege’s rule of substitution at work. In Ruffino’s account,
the Priority Principle is crucial, and this is something that Frege’s certainly does in applying such rule. But
there is no need for the context principle: definitions, together with such tool, helps Frege in instantiating
new conceptual relations in which higher-order properties of the defined concepts are proved. Those are
not components of the original defined expressions, hence, they are informative. Despite the differences, the
common ground which I shall pursue is the Priority thesis and the decomposition of judgements into the
function/argument analysis.
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the sense/reference distinction added to (2) axioms schemas for comprehension in second-

order logic. As we declared above, Frege’s earlier semantic notion is that of conceptual-

contents. Therefore, we shall assume Landini’s interpretation in the context of this notion,

applying a few amendments.

One of the key features of Frege’s logic is the function-argument analysis. This inovation,

added to the fregean principle that judgements precede concepts, made it possible to regard

concept formation as an act of decomposition of expressions of the language. In the letter to

Anton Marty, Frege asserts that:

I do not believe that concept formation can precede judgement because this would

presuppose the independent existence of concepts, but I think of a concept as

having arisen by decomposition from a judgeable content. (PMC , p.101)

This is the Priority Thesis, that is, the thesis that “[...] complete judgements are undiffer-

entiated into parts until precisified by concepts” (LANDINI, 1996, p.122). Moreover, it’s

the decomposition of expressions, which yields new functional expressions, that is the proper

concept formation for Frege. This is a key feature for (IP):

The power and importance of the priority thesis-understood as the possibility

of alternative decompositions lies in its providing the philosophical justification

for the comprehension of functions in Frege’s formal system. (LANDINI, 1996,

p.136)

Frege’s logic extensively use one non-stated rule of inference nowadays called the rule of

substitution. It allows Frege to, given a sentence, say P → (Q → P ), substitute uniformly

any variable letter, e.g. P , for another simple or complex expression, say (P → P ), deriving

(P → P ) → (Q → (P → P )). This is used both in the propositional level, such as this

example23, and for functional expressions. In this case, we use a parametric letter to fix the

unsaturated part of the function to be substituted. From the sentence ∀x(f(x) → f(a)),

we could substitute f(Γ) for g(Γ) → h(Γ), deriving ∀x((g(x) → h(x)) → (g(a) → h(a))24,

using Γ as a parametric letter to fix the variable position. It’s this rule of substitution that,

23This is a reason why Frege’s logic did not have schematic axioms, nor did it need to.
24Frege makes this exact substitution to prove theorem 59 of BS .
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following Boolos (1985), is equivalent to comprehension principles for second-order logic. In

Landini’s mind, this is what Frege needs to assert (IP):

Looking back with the lenses of modern logic involving comprehension, it is quite

clear that what Frege called “fruitful definitions” involves comprehension. Frege

understands that definitions are stipulative conveniences of notation that are

non-creative and wholly eliminiable. At the same time, the comprehension of

new functions was effected in his systems by adopting principles for “defining”

(or better forming) well-formed complex function terms of the language, and then

using special parametric letters (not part of his object-language) which facilitate

the rules for substituting complex function terms for primitive function terms

such as fx, in the axioms of the formal system. (LANDINI, 2012, p.23)

This way of looking into Frege’s logic pressuposes two kinds of “definitions”: one stipulative

and another decompositional. The first one is a convenience for manipulating proofs, but

added to the decompositional one, it could help achieve new functions (or to form new

concepts). Hence, a defined relation like R(x, y) could be decomposed in the second variable

R(x,Γ), and using the substitution rule to derive a new complex judgement regarding the

definition.

Landini’s interpretation depends on another assumption, that the parametric letters used

are not parts of the formal language, but used only to facilitate the decomposition and

manipulation of the function newly acquired (LANDINI, 2012, pp.137-138). It’s crucial

in the sense/reference semantics that, for (IP) to be true, the sense of the new function

decomposed is not part of the sense of the original expression. Otherwise, there would be no

informativity. Therefore, he maintains the sense of a relation such as R(x, y) is dependent

solely on the senses of his basic components, viz. the sense of the binary relation R(Γ,∆)

and the senses of the two arguments x and y. Basically, the same usage of parametric letters

is present in BS . Hence, when Frege decomposes from a judgeable content like R(x, y) to

acquire R(x,Γ), this is not an original component of the first expression.

Landini’s account applies better to Frege’s mature semantics, but it can be extended

to the conceptual-content semantics of BS and GLA as well. In that case, decomposition

is applyed to judgements (judgeable contents), deriving new functional expressions using



CHAPTER 2. FREGE’S PROPOSAL 70

parametric letters. Since such decompositions are taken in the syntactic part of the language,

one acquires new conceptual-contents, as long as they are judgeable contents as well. In

that sense, the fruitful definitions and proofs are combined to express relations between

contents. The informativity is due to the fact that certain contents are consequences of

others, something that we could not trivially find out by just looking for the components of

the judgeable content in hand. Hence, when Frege assumes (IP) to be true, he is answering

Kant’s thesis that analytic judgements are never ampliative. To Frege’s mind, this is a

deficiency of Kant’s too narrow notions of judgement and definitions.

This is the case with the Fregean definition of the Ancestral of a Relation, a definition

that was forged both to show Kant’s limitation on logic and the capabilities of his own

concept-script logic in terms of (IP), in showing that some important mathematical modes

of inferences could be derived solely on logical grounds. Frege’s Ancestral definition is a

formalization of the basic notion of a series. In that sense, proving that such notion is logical

in his essence is also a witness of (CP), as long as his definition is suitable to prove important

theorems about it, which we could as well consider as properties of the definitions.

2.2 The Logic of the Concept-script

The importance of Frege’s BS is well stablished in the history of logic as one of the firsts

axiomatizations for propositional and quantificational logic. As we stated earlier, although

Frege’s logic is a ‘concept-script’, the basic starting point are judgements. The main task of

the symbolism is to describe and exhibit the logical relations concerning such judgements,

its contents. Precisely, what constitutes such contents are functions associated with the

corresponding arguments.

The tradition before Frege takes judgements to be the classic aristotelic form of subject-

predicate. Aware of the limitations of such form, Frege’s way of dealing with judgements

goes well beyond this. All features of judgements in the classical analysis are taken as

features of the contents of judgements (not of judgements themselves), as exposed in (BS ,

§4): properties like universal, particular, negative, disjunctive, and others alike, are actually

parts of contents of judgements. Now, the part of such content of judgements which are
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objective25, Frege considers to be the aforementioned conceptual-content. To express this

conceptual-content in the language, Frege introduces the content-stroke:

ϕ

But not every conceptual-content is expressible. Those which can are called judgeable con-

tents26. The content-stroke is only applycable to judgeable-contents. These are, simply put,

contents from which a judgement can be made27. Frege is not clear in this matter, but as

we take it, individual variables or constants alone and function variables without an argu-

ment are those contents regarded as unjudgeable. This might be a sign for specifying those

formulas which are well-formed from those which are not, viz., it is a syntactic notion28 . In

(BS ,§2) Frege writes that “the idea ‘house’ cannot” be flanked with the content-stroke, but

“the circunstance that there are houses would be an assertible [judgeable] content. (see §12)

But the ideia ‘house’ is just a part of this”. Here, §12 is where Frege explains existential

judgements. Using modern symbolism, this is ¬∀x¬H(x). There is evidence that concepts

without sharp boundaries also are regarded as unjudgeable. In providing an example for

theorem (81), Frege uses the concept ‘heap’, affirming that “there are certains z’s for which,

because of the indeterminateness of the concept ‘heap’, F (z) is not an assertible [or deni-

able] content” [BS , §27]. In sum, the set of conceptual-contents is not the same as the set

of judgeable contents, but in the concept-script language, only the overlap between them is

considered.

Following a conteptual-content (that is also judgeable), the judgement of such content is

expressible through the famous judgement-stroke:

ϕ

25That is, the part which does not rely on psychological grounds, or as Frege asserts, on “all aspects of
ordinary language which result only from the intereaction of speaker and listener” (BS , §3).

26This distinction is substituted in GGA by the horizontal function, which designates a truth-value to every
term in the system.

27This is very much like contents that can have truth-values, but this was not already recognized in BS .
28There is no place in BS where Frege specifys the notion of well formed-formulas. For example, he’s not

clear if sentences like ‘P →’ are to be regarded as non-judgeable contents, but it’s seems pretty clear that
they are.
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This asserts that ‘ϕ is a fact’, in fregean terms. The role and meaning of this sign is well

discussed in the literature, something that we bypass here, only assuming that this asserts a

judgement or the recognition of a formula as a fact29. In the context of BS , this is given in

two ways: either the given sentence is an axiom, or it’s provable from axioms, theorems and

definitions.

The BS notation is two-dimensional. In it, the logical operators considered are the con-

ditional:

ψ

ϕ

The negation:

ϕ

And the universal quantifier:

a Φ(a)

Note that for every operator, we have content-strokes for every part to which it’s applicable

and the operator itself. Hence, for the conditional, we have the following constituents:

ψ

ϕ

That is, from left to right, the judgement-stroke, a content-stroke for the conditional, the

conditional-stroke, and the content-strokes of each subcomponent and the subcomponents

themselves. The same form of compositionality holds for the negation, the universal quanti-

fier, and every complex formula that can be composed through them.

Frege’s sign for identity is the already mentioned identity of conceptual-contents:

(ϕ ≡ ψ)

From this sign, according to Frege, “a bifurcation is necessarily introduced into the meaning

29Once again, we could say that this is a sign for the truth of a formula, but this was not the case already
in BS .
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of every symbol” (BS , §8), given that it relates to names and not to contents. This sign is,

however, the source of much trouble in Frege’s early logic. They are the following:

1. The bifurcation is problematic, since in (ϕ ≡ ψ), the names ϕ and ψ are being

mentioned, and not used. Consider the axiom (52):

f(d)

f(c)

(c ≡ d)

The bifurcation implies that in (c ≡ d) we have names being mentioned and in f(c)

and f(d) the same names are being used.

2. Is not clear if the identity of conceptual-contents must be applicable only to judgeable

contents or not. In fact, Frege seems to use it in both senses. A name in BS can be

either of a judgeable expression, i.e. a well-formed formula in the system, or could

denote an object, in which case it is an individual constant or variable. But Frege uses

the identity sign without discrimination. In theorem (68):

f(c)

b

[( a f(a)) ≡ b]

the variable b, flanking the identity, cannot denote an object, otherwise, the second

antecedent, b, would not be a judgeable content. Also, Frege often speaks about

names as standing for objects, which is the case e.g. in definitions (99) and (115), where

the terms flanking the identity seems to denote objects, and not judgeable contents30

30To make it more clear, very often Frege’s rule of substitution allows him to substitute one function for
its argument, that is, from f(Γ), where Γ is used only to demarcate the argument place, get only Γ. From

this, and from axiom (52) above, one could simply change f(Γ) for Γ, to obtain d

c

(c ≡ d)

But in

this case, c and d must denote judgeable contents, otherwise this would be an ill-formed expression: just let
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Nowhere after BS Frege use this sign again. Even in the unpublished paper Boole’s logical

Calculus and the Concept-script of 1881, Frege already adopted the usual identity sign =.

Following Landini (2012, p.44), this seems to suggests that after BS , Frege first starts to

adopt both signs in order to avoid the bifurcation of its meaning31. In fact, Frege writes:

I too have an identity sign, but I use it between contents of possible judgement

almost exclusively to stipulate the sense of a new designation. Furthermore I now

no longer regard it as a primitive sign but would define it by means of others.

(PW ,p.35-36).

It’s not at all clear why Frege regarded his identity sign as definable from others32, but what

is noteworthy is his already present discontent with it. From that perspective, both signs

could be assumed, taking the usual identity sign for identity between objects, as a = b, and

the identity of conceptual-contents for only when the terms flanking the sign are judgeable

contents, as ϕ ≡ ψ33. We’ll adopt this alternative latter.

In sum, Frege’s primitives of the concept-script logic already come with an implicit com-

positionality principle. The rules binding the formation of judgeable contents, together with

their interpretations34, can be expressed as the following:

1. Content-Stroke: If ϕ is a judgeable content, then ϕ denotes the conceptual content

of ϕ.

c to be 1 + 1 and d to be 2, we then get 2

1 + 1

(1 + 1 ≡ 2)

which is clearly ill-formed, since 1 + 1

or 2 are not judgeable contents.
31Until the complete abandonment of the ≡ sign in the 1890’s.
32He could have expected to define it as a biconditional, since this is basically the role it assumes in

definitions.
33This is very similar to Frege’s latter distinction between sense and reference, since a = b seems to

relate references and ϕ ≡ ψ seems to relate to senses. I’ve already discussed this above, but once again, in
introducing the horizontal function in GGA, Frege states that “Earlier I called it the content-stroke, when I
combined under the expression ‘judgeable content’ that which I now have learnt to distinguish as truth-value
and thought” (GGA, p.9, fn.2). The fact is that Frege’s sign for identity of conceptual-contents is clearly
problematic. To more problems on Frege’s ≡ sign, see Mendelsohn (1982).

34Once again, Frege’s logic does not pressuposes a metatheory. There can be no ‘outside’ logic rather
than the formal system of BS . This was one of the points made by Van Heijenoort: “Another important
consequence of the universality of logic is that nothing can be, or has to be, said outside of the system. And,
in fact, Frege never raises any metasystematic question (consistency, independence of axioms, completeness).
Frege is indeed fully aware that any formal system requires rules that are not expressed in the system; but
this rules are void of any intuitive logic’ (HEIJENOORT, 1967, p.326).
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2. Judgement-Stroke: If ϕ is a recognized/provable true35 content, then ϕ denotes

the judgement of ϕ.

3. Negation-Stroke: If ϕ is judgeable, then ϕ denotes the content of the negation of

the content of ϕ. If a judgement stroke is preceded, then the negation denotes the

content of ϕ not being the case.

4. Conditional-Stroke: If ϕ and ψ are judgeable, then ψ

ϕ

denotes the content of ϕ

being denied or ψ being affirmed36.

5. Generality: If Φ is judgeable, then for some free a in Φ, a Φ(a) denotes the content

of Φ(a) being the case whatever a denotes.

6. Identity of Conceptual-contents: For any ϕ and ψ, judgeable or not, (ϕ ≡ ψ)

denotes that the signs ‘ϕ’ and ‘ψ’ have the same conceptual-content37.

This rules specifies the set of possible judgeable expressions in Frege’s logic. Moreover,

Frege’s notation was designed in a two-dimension way for the purpose of better visualizing

deductions and to facilitate manipulations. As he argues against Schröder’s review of BS ,

writing the formulas in different lines helps one to visualize the logical relations in question,

avoiding the clumsy formulas when written in a single line38.

His approach is also an axiomatic one. The axioms of the concept-script for propositional

and quantificational logic are:

• Propositional axioms:

35In BS , Frege always speaks about “being the case” rather than “being true”.
36Frege defines the conditional stroke rather from the condition where ϕ being affirmed and ψ being denied

is denied.
37Here, ϕ and ψ can denote either individuals or complex judgeable contents in BS .
38In “Boole’s logical Calculus and the Concept-script” Frege writes: “In fact I am in complete accord with

usual practice; for in an arithmetical derivation too we put the individual equations in succession one beneath
the other. [...] Now what I set beneath one another are also contents of possible judgement, or judgements.
[...] We thus make use of the advantage that a formal language, laid out in two dimensions on the written
page, has over spoken language, which unfolds in the one dimension of time”. Moreover, the writting of
formulas in a single line “[...] has the consequence that it would be extremely difficult to grasp what was
going on” (PW, p.46).
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a

b

a

(1) a

c

b

c

a

b

c

(2) a

b

d

a

d

b

(8)

b

a

a

b

(28) a

a

(31) a

a

(41)

• Axioms governing the identity of conceptual-contents sign:

f(d)

f(c)

(c ≡ d)

(52) (c ≡ c)(54)

• And an axiom governing universal instantiation:

f(a)

a f(a)

(58)

The only, declared, rule of inference was modus ponens:

A

B

B

A
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But this is clearly not the only one, as we already stated. For some reason, Frege did not

consider the rule of substitution as a rule. Since all variables in the concept-script logic denote

generality, any judgeable formula can be instantiated to other specific judgeable contents as

its variables. This rule is easier to state using comprehension axioms for second-order logic,

but this approach makes use of schemas. This is not the approach followed by Frege. Schemas

are formulated in the metalanguage of a logical system, and no metalanguage is avaiable in

Frege’s universal approach to logic.

Furthermore, the rule of substitution is more intuitive and easy to perform when applied

to the propositional calculus. The difficulty arises with the quantification part of logic39.

Special parametric letters are necessary to demarcate the argument position in every formula

being substituted, and this are not part of the language, and seems not to be part of it in

Frege’s use of them. Both in BS and more precisely in GGA, uppercase greek letters are

only used to fix the place of the argument in the function. Formulas containing them are

not considered to be in the language. In (BS ,§2) Frege calls them “abbreviations” for any

sense that might be the case for them. In (GGA,§1) he then says that for parametric letters

like ‘ξ’, “nothing is meant to be stipulated for the concept-script. Rather, ‘ξ’ itself will never

occur in the concept-script developments”.

To follow Frege, and the complexity of his notation and use of the rule of substitution,

would be costly. The approach here will only assume the minimal system necessary to explain

Frege’s use of such rule, which is the main responsible for (IP), in the context of the theorems

proved in BS40. Since, as it was already mentioned, Frege’s approach to judgeable-contents

could be understood as separating the well-formed expressions to other ill-formed ones, his

logic will be present in the more familiar and usual way, starting with vocabulary, well-formed

formulas, rules of inference and axioms. The more direct and easy, but also strange to Frege,

proof method using hypothesis will be adopted.

We also shall use the modern symbolism for Frege main operators: → for conditionality,

¬ for negation and ∀ for the universal quantifier41. Meanwhile, the judgement-stroke will

39This is pointed out by Landini (2012, pp.19-21)
40Landini himself hints that “[...] hybrid systems are possible for axiomatization. That is, one can have a

system that uses axioms and a rule of uniform substitution for the propositional calculus and then switch to
using axiom schemas for quantification theory” (LANDINI, 2012, p.20)

41Assuming that this ‘translation’ do not make violence to Frege’s perspective. Interpretations like those
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be used for axioms and theorems and the double vertical stroke will be used for definitions.

Also, we’re assuming the bifurcation of the identity sign: the regular identity will be used

as a relation between objects and Frege’s sign ≡ will be used for judgeable contents, only in

definitions. This assumptions should facilitate the exposition of Frege’s acchievements in BS

and GLA without, we hope, altering Frege’s philosophical motivation in (IP) and (CP).

of Macbeth (2005) and Landini (2012) assumes that Frege’s unusual notation has important features that
cannot be translated into modern notation without some loss. But a middle ground is achievable. This
should not alter the relevant philosophical side of Frege’s informativity thesis.



Chapter 3

Frege’s Ancestral

In this chapter, Frege’s Ancestral definition will be finally introduced and properly dis-

cussed, following the philosophical discussion in chapter 2. We start unusually by departing

from Frege’s own logic, by describing the minimal second-order logic enough to appreciate

the desired Ancestral results. For philosophical reasons already discussed, we avoid the se-

mantic part of such calculus, assuming the usual interpretation of them, as pointed out in

(2.2). After discussing Frege’s Ancestral, his importance and logical aspects, we shall prove

some theorems regarding it, and finally, how they may be seen as a anti-kantian argument

regarding ordered-series. We’ll close the chapter by discussing the intended proofs given in

GLA for the basic laws of arithmetic, in which the ancestral plays a significant role.

3.1 Concept-script logic reconsidered

The following is the usual second-order logic with identity. But we assume functions to

have foundational priority over concepts. In what follows, the vocabulary, formulas, rules

and axioms are described1.
1A note on the interpretation of Frege’s own logic is necessary: (1) A judgeable content without further

specification could be said to denote a propositional content. (2) although in BS Frege’s theory of functions
was not yet fully developed, it’s safe to assume that those have priority over concepts, which are functions
of a specific kind (In BS , Frege had not yet defined a concept as a function that has only truth-value as
values. But, since the function-argument analysis is already present, we shall take, logically, concepts as unary
functions). (3) In this reading, ‘properties’ or ‘concepts’ are unary functions yielding judgeable contents when
saturated (this is the same as saying that they have truth-values), ‘relations’ are binary functions which are
also judgeable. (4) First-order functions take objects in its domains and judgeable contents in its range (Save
for the case when functions don’t describe concepts, for in this case they have unjudgeable contents in its

79
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1. The vocabulary:

We shall use,

(a) Lowercase roman letters for objects: variables x1, ..., xn and constants: a1, ..., an

for some denumerable n. (informally, x, y, z for variables and a, b, c for constants).

(b) Lowercase roman letters fn
1 , ..., f

n
m for first-order functions, for some denumerable

m,n (informally, f, g, h).

(c) Uppercase greek letters Mn
1 , ...M

n
m for higher-order functions, for some denumer-

able m,n (informally M,Ω).

(d) Logical constants →, ¬ and ∀.

(e) Round and square brackets ‘(’,‘)’,‘[’,‘]’ for disambiguation.

Definition (First-order Concepts). For x1, ..., xn terms and fn a function, if fn(x1, ..., xn)

is a judgeable formula, that is, has a truth-value when saturated, then fn is said to de-

note a Concept.

Observation 1 : If n = 1, f 1 is a regular concept. We’ll use F,G,H informally for such.

Observation 2 : For any n ≥ 2, fn is a n-ary relation. We’ll use R, S, T informally for

such.

Definition (Second-order Concepts). For fn
1 , ..., f

n
m first-order n-functions and Mm a

second-order function, if Mm
β (fn

1 (β), ..., fn
m(β)) is a judgeable content, that is, has a

truth-value when saturated, then Mm is said to denote a second-order Concept.

2. Terms and Formulas:

(a) Individual variables and constants are terms;

(b) If α1, ..., αn are terms, for any denumerable n, and if fn is a function that is not

a concept, then fn(x1, ..., xn) is a term.

(c) If α1 is a term and F 1 is a concept, F 1(α1) is an atomic formula;

range). Second-order functions can be taken to be from judgeable-contents to other judgeable-contents.
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(d) If α1, ..., αn are terms andRn a n-ary relation, for any denumerable n, Rn(α1, ..., αn)

is an atomic formula;

(e) if fn
1 , ..., f

n
m are first-order functions, and Mm a second-order function, then

Mm
β (fn

1 (β), ..., fn
m(β)) is a formula.

(f) If ϕ and ψ are formulas, then ϕ → ψ, ¬ϕ and ∀xϕ (for a free term x in ϕ) are

formulas.

(g) There are no other formulas.

Definition (Derived operators). We add the following defined operators, for simplifying

the derivations:

(a) Conjunction: ϕ ∧ ψ holds if, and only if, ¬(ϕ → ¬ψ) holds;

(b) Disjuntion: ϕ ∨ ψ holds if, and only if, ¬ϕ → ψ holds;

(c) Existencial quantifier: ∃x1, ..., xnϕ holds if, and only if, ¬∀x1, ...xn¬ϕ holds, for

x1, ..., xn free in ϕ.

(d) Biconditional: ϕ ↔ ψ holds if, and only if, (ϕ → ψ) ∧ (ψ → ϕ) holds.

We then define the relations = and ≡:

Definition (Identity). Let R2 be a binary relation, and x1, x2 terms. If

R2(x1, x2) ⇔ ∀f 1(f 1(x1) ↔ f 1(x2))

We say that R2 is the identity relation = (x1, x2) or informally x1 = x2.

Definition (Equivalency). Let M2 be a binary second-order function, and F1, F2 con-

cepts. If

M2

β(F1(β), F2(β)) ⇒ [(F1(β) → F2(β)) ∧ (F2(β) → F1(β))]

holds for M2, then M2 describes an equivalency relation between concepts. In this case,

we say ≡ (F1, F2) or informally F1 ≡ F2.
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Observation: Since in Frege’s original system of BS, the sign of identity ≡ is not

equivalent with ↔, we omit the right-to-left direction in the condition above, keeping

the left-to-right direction, which better describes Frege’s original identity sign. This will

be used only in the context of definitions. Furthermore, this should also encode Frege’s

definition of conceptual-content, which identity is described as mutual-inferentiability2.

Observation: Definitions for higher-orders equivalency relation could be equally derived,

but will be omited.

3. Rules of inference:

(a) Modus Ponens (MP): From ϕ and ϕ → ψ, we may infer ψ.

(b) Universal Generalization (GEN): From ϕ we can infer ∀xϕ, for a free x in ϕ.

(c) Universal Generalization - Second-Order (GEN2): From Mm
β (F (β)) we can infer

∀F [Mβ(F (β))] provided that F (β) is free in Mm
β .

(d) Existential Instantiation (∃E): From ∃xφ(x) we can infer φ(a), provided that a

does not occur in φ or any previous step in a proof in which φ is used.

(e) Existential Generalization (∃GEN): From ϕ, one can infer ∃xϕ, provided that x

does not occur in ϕ.

Observation: Earlier, we mention the very important Fregean rule of substitution. Frege

uses it applying for judgeable contents, either in the propositional or quantificational

level, using parametric letters as a tool for fixing the argument places. Boolos (1985)

showed that the rule of substitution is equivalent to axiom schemas for comprehension

in second-order logic, in the form ∃F∀x(F (x) ↔ ϕ(x)), that garantees the existence of

a formula F if and only if ϕ(x) holds, provided that F does not occurs free in ϕ.

But such axiom is a schema, one that have an infinite set of axioms (one for each

formula) as instances. This is strange to Frege’s approach. His axioms are not schemas,

but real propositions of the object-language3. It is the rule of substitution that allows

2But, from mutual-inferentiability, one does not get an identity of conceptual-contents. That is, ((ϕ →
ψ) → (ψ → ϕ)) → (ϕ ≡ ψ) is not a theorem of BS . About this, see appendix in (DUARTE, 2009).

3Even though this distinction is not present in BS.
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him to get multiple instances of an axiom in the object-language. Both approaches have

a very important role in second-order logic: they provide the existence of a infinite set of

concepts/properties/functions (depending which one has foundational priority in one’s

system) at hand.

Instead of using Frege’s rule of substitution, it’s simpler to use comprehension axioms.

For example, the following instance states that the property being self-identical exists:

∃I∀x(I(x) ↔ (x = x))

Which is read: I(x) holds if, and only if, x is self-identical. One way to make reference to

such concepts is keeping track with the open variables naming it [x : x = x], similarly as

in lambda-calculus4, and thus forming a term for such concepts or relations. Therefore,

the name [x : x = x] should be distinguished from the open formula x = x. This is a

convenience for manipulating formulas such that comprehension provides the existence.

What matters, from Frege’s perspective, is that comprehension axioms can be used to

first get a new concept/function and then instatiate such formula in axioms or theo-

rems. Frege does this with the rule of substitution and the decomposition of judgeable

expressions, what is also called the Priority Thesis: that judgement precedes concepts

formation5. What he does, indeed, is to take a possible judgement like 24 = 16 and

abstract/decompose one of his parts to achieve ξ4 = 16, holding the argument place

with ξ. Frege then can instantiate any axiom or theorem using such newly acquaired

concept. Similarly, in the comprehension approach, such is possible giving the axiom

instance

∃F∀x(F (x) ↔ (x4 = 16))

Both are equivalent, and both can provide the name [x : x4 = 16] for such concept.

From this perspective, the role of definitions in Frege’s logic is not merely the one

provided by the stipulation of the form ∆ ≡ Γ, but is the condition under one is

abble to, starting from it, decompose and instantiate such definition and acquire new

4We are assuming, then, a more informal version of such procedure, avoiding rules for conversion.
5“I only allow the formation of concepts to proceed from judgements” (PW , p.16).
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contents (that is, judgements) about it6. This is an important point regarding the

informativity of Frege’s logic. Recalling Landini’s interpretation:

The power and importance of the priority thesis lies in its providing the philo-

sophical justification for the comprehension of functions in Frege’s formal

system. [...] Accordingly, decomposition provides comprehension principles

as rich as those of a standard second-order calculus. As is well-known, a

second- order calculus is not decidable and not even semantically complete.

There can be no question as to the semantic informativeness of its theses.

Decomposition is, therefore, all that is required for informativity (LANDINI,

1996, p.136).

For that matter, comprehension is a easier and quicker way to represent Frege’s achieve-

ments in second-order logic, without a full commitment to Frege’s own notation.

4. The axioms: We take Frege’s own axioms in BS , with a slightly modification:

(a) ϕ → (ψ → ϕ)

(b) (ϕ → (ψ → γ)) → ((ϕ → ψ) → (ϕ → γ))

(c) (ϕ → ψ) → (¬ψ → ¬ϕ)

(d) ϕ → ¬¬ϕ

(e) ¬¬ϕ → ϕ

(f) ∀x1, ..., xnf
n(x1, ..., xn) → f 1(y1, ..., yn), for any y1, ..., yn free for f 1

(g) ∀fn(Mm
β (fn(β)) → Mm

β (gn(β)), for any gn free in Mm.

(h) (x1 = x2) → (f 1(x1) → f 1(x2))

(i) (x1 = x1)

Observation: Here, (f) and (g) are axioms for universal intantiation in first and second-

order versions. In (h) and (i), we substitute Frege’s original axioms, using the identity

6Hence, I agree partially with Macbeth’s (2005, 2012) thesis, although what she considers a feature of
Frege’s notation, taking diagramatically, I take it to be Frege’s rule of substitution with decomposition, or
comprehension schemas for second-order logic, as the main responsible for informativity.
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sign for objects instead. The role of ≡ in definitions is already supported by the

definition provided above.

Finally, we add the important axiom schema for comprehension, both for first and

second-order:

(j) ∃fn∀x1, ..., xn(fn(x1, ..., xn) ↔ ϕ(x1, ..., xn)), where fn is not free for ϕ.

(k) ∃Mm∀fn
1 , ..., f

n
m(Mm

β (fn
m(β), ..., fn

m(β)) ↔ ϕ(fn
m(β), ..., fn

m(β))), where Mm is not

free for ϕ.

Observation: Axioms (j) and (k) are schemas, and hence, there will be one axiom for

each ϕ, either first or second-order.

Finally, we take the following abbreviations: index and arity of variables and functions will

be discarded when not resulting in ambiguity. Concepts and relations will be described with

usual symbols. Functions signs will be used only when resulting in terms of the language.

This is a minimal description necessary for proving some results that Frege does in BS .

The next step is to describe Frege’s definitions. We’ll take some time in them before proving

facts and theorems. The aim is to show that Frege’s Ancestral is an important step not only

towards logicism, but also into Frege’s account of (IP) and (CP).

3.2 The Ancestral of a relation

Frege’s Begriffsschrift have three main parts: the presentation of the formal calculus of

concepts, the derivation of theorems for propositional and quantificational calculus directly

from the axioms of the system, and finally the derivation of theorems regarding some defini-

tions. These definitions have a sole purpose: to represent, through logical terminology, the

basic notions underlying ordered series. This is the task of the so-called Ancestral definition.

Frege’s Ancestral was his first step towards a logicist account of arithmetic. The name

‘ancestral’ is commonly used today due to Russell’s and Whitehead’s treatment of the same

relation in their Principia Mathematica. The reason is that, if we take the parent relation P ,

and apply Frege’s definition, the resulting relation P ∗ is the usual ancestral relation. Frege’s
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name for the same definition was ‘following in a series’. The definition, and the results that

follows from it, play an important role in Frege’s project of showing that important notions

can be logically defined and that arithmetical inferece-modes are logical by nature. This is

a way of showing that (CP) holds, and consequently, (IP). Moreover, Frege’s Ancestral has

an important part in proving the Dedekind-Peano Axioms for arithmetic from second-order

logic, and for that reason, is a central part in Frege’s logicism.

In Frege’s introduction for part III of BS , he states that:

we see in this example how pure thought (regardless of any content given through

the senses or even given a priori through an intuition) is able, all by itself, to

produce from the content which arises from its own nature, judgements which at

first glance seem to be possible only on the grounds of some intuition. (BS, §23)

This is a testimony for both (CP) and (IP): the results that the ancestral definition provides

can be regarded as contents of the ‘pure thought’, confirming (CP), as the title of BS al-

ready anunciate. And since they are logical by nature and preserve analyticity, are also an

affirmative case for (IP). This is also declared in the following section:

I have, without borrowing any axiom from intuition, given a proof of a proposition

which might at first sight be taken for synthetic [...]. From this proof it can be

seen that propositions which extend our knowledge can have analytic judgements

for their content. (GLA, §91)

The proposition in question is theorem BS133 of BS concerning trichotomy, one that we

shall present latter. Moreover, the same point is declared in the unpublished paper Boole’s

logical Calculus and the Concept-script:

If we compare what we have here with the definitions contained in our examples,

[...] that of following a series which I gave in §26 of my Begriffsschrift, we see that

there’s no question there of using the boundary lines of concepts we already have

to form the boundaries of the new ones. Rather, totally new boundary lines are

drawn by such definitions and these are the scientifically fruitful ones. Here too,

we use old concepts to construct new ones, but in so doing we combine the old
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ones together in a variety of ways by means of the signs for generality, negation

and the conditional. (PW , p.34)

Hence, the definition of the ancestral (the ‘following in a series’) is central to show how

decomposition is crucial for (IP). The definition is also aimed to give a logical account for

the notion of a series, in accordance with (CP). Recall that, the notion of a linear ordering

discussed in the introdution, requires a relation R that is both transitive and that satisfies

trichotomy. This is what Frege’s definition suppose to prove. Given any relation R, what we

call the ‘ancestral of R’ is the series of objects that are connected through R. This is, then,

a second order concept in which falls first order relations. Frege’s ancestral is given through

four definitions.

First, Frege defines what he calls the condition where a given property F is hereditary in

a given relation R (BS , §24)7:

Her(F,R) ≡ ∀x∀y(F (x) ∧R(x, y) → F (y))

This means that F is a property that, if any given object x has it, x will pass it along R. In

that case, ‘Her(F,R)’ can be read as ‘F is hereditary in the R-relation’. Properties like ‘x is

a human’ or ‘x is greater or equal to 0’ are said to be hereditary in respect of some R in which

they can relate, viz. the parent relation8 or the successor relation on numbers. Frege reads

this definition as the following: “If from the proposition that x has the property F , whatever

x may be, it can always be inferred that each result of an application of the procedure R

to x has the property F” (BS ,§24)9. This defines a second-order relation: that of being an

hereditary property in respect to a relation, in which first-order concepts and relations fall.

We can visualize how this definition works in the following steps:

a b c

F

R R

(1)

7Here we’re using conjunctions ∧ to simplify the definitions.
8Frege gives this exact example in (BS ,§24).
9Here we transcribe Frege’s own notation into ours: Frege’s german letter for generality d is the quantified

x, and Frege’s procedure f is the relation R.
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a b c

F F

R R

(2)

a b c

F F F

R R

(3)

The above examples shows how an hereditary property F is passed along R: in (1), F (a)

holds, but since R(a, b), F (b) also must hold, as in (2). But, since R(b, c), F (c) holds as

well, as in (3). In conclusion, F is a carried out through R, since, starting from a, every

object that is related through R to some object that is itself related to a, also has F . Hence,

Her(F,R) holds. In Frege’s own example, if some individual a is an human, and if b is son

of a, then b is also an human. Hence, being an human is hereditary in respect to the parent

relation10.

The above definition, however, is not suficient for defining properly a series. It can be

the case where Her(F,R), R(a, b) and R(b, c) holds, even if there is no connection between

them all. Consider the same example above: the parent relation. P (x, y) states that “x is

the father of y”, or “y is a son of x”. Consider the cases where P (a, b) and P (b, c). Even

though b has the hereditary properties of a and c has the hereditary properties of b (like “x

is an human”, denoted by H(x)), is not the case that P (a, c) holds, since clearly a is not the

father of c. P is not a transitive relation. Since it is demanded that a series must contain a

path from each element to another, we can visualize why the parent relation is not sufficient,

as the following case:

a b b c

H H H H

P P

Clearly, there’s no path from a to c in this case, i.e., the objects a, b and c are not

connected. In order to overcome this, Frege offers the important Ancestral Definition. In his

terms, this is the definition for the general notion of ‘following in a series’ (BS , §26):

R∗(x, y) ≡ ∀F [Her(F,R) ∧ ∀z(R(x, z) → F (z)) → F (y)]

10But not, of course, in respect to every relation that a and b stands on.
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It renders the following condition: R∗(x, y) holds in the case where y has all the hereditary

properties that x has and which x pass through R11. This is to signify, according to Frege,

that ‘y follows x in the R-series’, or ‘x precedes y in the R-series’. This is a second-order

concept or property in which first order relations falls.

The purpose of the definition is to provide a way to depict logically the conection between

objects. We have stated that the hereditary property is not a sufficient condition for such

task. Consider then that in R∗(x, y), x is called the ancestral and y is the descendent. In

order for R∗ to hold, it is required to the descendent to have every hereditary property that

the ancestral has and pass along through R. This is the clause ∀z(R(x, z) → F (z)). The

consequent of the definition completes the case, that F (y) holds for every F that satisfies the

clause. Frege considers that this definition is general enough to cover a variety of cases. In

a footnote, he states that

To make clearer the generality of the concept of ordering-in-a-sequence given in

this way, I remind the reader of some possibilities. Among these are not only a

sequence such as beads on a string exhibit, but also branching like a family tree,

a merging of several branches, as well as ringlike self-linking. (BS ,§26).

Thus, the definition is inclusive enough to be instantiated into a variety of cases. The

examples above can be visualized as:

• A linear order:

a b c

• A branching tree:

a b

d

c

e

f

• A tree with closed branches:
11Frege’s reading is: “If from the two propositions, that every result of an application of the procedure f to

x has the property F , and that the property F is hereditary in the f -sequence, it can be inferred, whatever
F may be, that y has the property F” (BS,§26). Where Frege writes f -sequence, we should read R-sequence.
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a b

d

c

e

• A cyclic order:

a

b

c

This examples can be better grasped considering the difference between many-to-one and

one-to-many relations. A relation R is said to be one-to-many if it allows an object x to bear

R to multiple objects, such that R(x, y) and R(x, z). A relation R is said to be many-to-one

if it allows an object x to be reached by multiple objects, such as R(x, y) and R(z, y). A

relation that is both many-to-one and one-to-many can be described as many-to-many. A

relation R that is neither many-to-one nor one-to-many is said to be one-to-one. In such

case each object can reach, or be reached, by a single object through R. In this case, a linear

order like the above is such that the original relation R is one-to-one. A branching tree is

one-to-many, while a tree with closed branches is many-to-many. A cyclic order, like the

depicted above, is one-to-one, even though other cases could not be so12.

We can still provide more intuitive examples. For the first case, consider the parent

relation P as the starting point. If we consider it to be one-to-one i.e., each parent can have

only a single child, then P ∗, Frege’s definition applied to P , yields a linear-type series. If P

is one-to-many, then P ∗ describes a series like a branching tree. For the third case, with the

relation ‘x is older than y’, denoted by O(x, y), O∗ is a branching tree with closed branches.

For the fourth case, consider the game of rock(r)-paper(p)-scissors(s), applyed to the relation

‘x wins y’ as W (x, y). In this case, W (p, r), W (r, s) and W (s, p) holds. Then, W ∗ describes

a cyclic series. Frege’s ancestral definition is general enough to include all such cases. What

is required is that each object is somehow connected: that for every pair of objects < x, y >,

a path from one to another must exist. This is the reason why Frege states that his definition

“far surpass in generality all similar propositions which can be derived from any intuition

of sequences” (BS ,§23). This is in contrast to the kantian notion of a time-ordered series,

which is more restrict.
12A branching tree with a cyclic closed branch, for example.
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In all such examples, what is required is that R∗ must be transitive. Considering again

the parent relation P . If P (a, b) and P (b, c), it cannot be the case that P (a, c), since the

parent relation is not itself transitive, but P ∗(a, c) must hold. To visualize that, P (a, b)

implies P ∗(a, b), since a father is also the ancestral of his childs. Likewise, R(b, c) implies

R∗(b, c). From that, transitivity must be the case in deriving R∗(a, c), and so the connection

between a, b and c is completed through the ancestral relation. Transitivity is an important

theorem that Frege proves about his definition13.

For arithmetical interests, only linear orderings are important, since that’s what it takes

to describe the natural numbers series. That’s the case for Kant’s approach for series as

based in intuition. Since Frege’s ancestral is more general, more restrictions are necessary for

describing properties of linear orderings. Frege’s definition of R∗ is also known as Strict or

Strong order, i.e. a relation that is both transitive and irreflexive14. For that reason, Frege’s

definition of “following in a series” is also called the Strong Ancestral.

The irreflexive and transitive properties implies that R∗ is also asymmetric, since if it were,

R∗(x, y) and R∗(y, x) would imply, using transitivity, R∗(x, x), denying the irreflexivity. This

is enough to describe a strict partial order. It is partial because not every two elements can

be compared, like the examples showed ealier. Nonetheless, for linear orders like the required

for arithmetic, more definitions are required. Frege’s strategy is to convert the strict partial

into what is called Weak Partial Orders. For that, he then defines what is called the Weak

Ancestral of R (BS , §29):

R+(x, y) ≡ R∗(x, y) ∨ (x = y)

That is, y is the weak ancestral of x in R just in case either x is the ancestral of y or x and y

are equal. Frege did not have the disjunction sign ‘∨’ as a primitive. He used the equivalent

form (¬P → Q). This definition is called the weak ancestral simply because is a weakened

version of the ancestral, where it follows that R+(x, x) holds. Frege reads it as ‘y belongs to

the R-series beginning with x’. Since R+ is also reflexive, it is also antisymmetric. The weak

13We’ll give this proof, among others, in the next section.
14Frege’s definition is actually transitive and not necessarily reflexive, depending on the case of each R

that we apply the definition on. The problematic case is the last example considered before: If R is cylic, R∗

is reflexive, and hence, does not describes a strict order in this case.
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ancestral is then a weak partial order15.

The addition of such condition is clearly an antecipation of the less-or-equal-to relation.

Providing the relation “m precedes n” for natural numbers, P+(m,n) is supposed to be a

suitable definition for m ≤ n, in the same sense as P ∗(m,n) is for m < n. But Frege still

has to prove that the ancestral has the properties expected for those cases. For foundational

purposes, given the necessary restrictions, R∗ should necessarily describes a linear-ordering,

that is, a total order. Hence, alongside the already known property of being transitive, the

relation in question must satisfies trichotomy, wheres either R∗(x, y), R∗(y, x) or x = y must

hold exclusively.

For Kant, those properties are something easily derivable from series because time, as the a

priori condition of our intuitions, is linear by essence. It’s from this condition that numbers

are not entities, but rules governing our description of quantities, that is only possible,

according to Kant, from the pure intuition of time. Frege’s argument is anti-kantian in a

twofold manner: series are logically organized entities and do not required time to be ordered,

and numbers are sui generis entities, which does not requires its position in a series in order

to be about something16.

Ultimately, as the examples showed earlier, the type of the series in question will depend

on which relation R we assume. To derive the natural number series properly, the relation

of predecession on numbers must be functional, that is, it cannot be the case for a number

to be the predecessor of two distinct numbers, and according to the fregean foundational

reasons, this cannot be a feature of our intuitions about numbers or series. Likewise, to

derive a linear-ordered series from a relation, a functional condition is also required, and for

that reason, the final definition that Frege gives in part III (BS , §31) is:

Fun(R) ≡ ∀x∀y∀z(R(x, y) ∧R(x, z) → y = z)

15From a foundational perspective, it has no great difference on which relation to start. We could easily
define a weak partial ordering first and acchieve a strict order by adding the condition R∗(x, y) =def R

′(x, y)∧
x 6= y, providing that R′ is a weak partial order. As we have seen, Frege opts to define a strict order
first. Enderton (1977), for example, chooses the same approach, adding that the choice is just a matter of
convenience. Frege’s option is then treats the relation < as more basic for its foundational purposes.

16This is just a way of saying that Frege does not derive numbers, or its cardinal character, from their
ordinal position. Nonetheless, the ancestral plays a fundamental role in proving the existence of an infinite
series of numbers.
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This definition gives the notion of a relation being many-one. It’s important to remind that

the Fregean notion of a function is broader than what we nowadays take a function to be, since

he assumes both properties and relations to be unary and binary functions. Nevertheless,

this definition could be readed as ‘R is a function’, or, as Frege puts it, ‘R is a many-one

procedure’.

With those definitions at hand, Frege was able to define logically and generally how

series or sequences works, and which kinds are properly ordered for arithmetical purposes,

that is, what is minimally required to have a transitive and trichotomous relation. Another

important topic is that of the principle of mathematical induction. The principle, a common

proof method in mathematics, states that if a property holds for a given number n, and from

that it could be derived that it holds for n + 1, then such property must holds for every n.

In second-order logic, this is expressed as: ∀F [F (n) ∧ ∀m(F (m) → F (s(m))) → ∀nF (n)],

assuming that s(n) is the successor function for numbers and n is a natural number. But this

principle is dependent upon the well-ordering of the natural numbers, that is, that the series

of natural numbers is a total order in which every subset has a least element17. Likewise,

Frege’s treatment of the ancestral should derive general principles for inductions.

To summarize, Frege’s ancestral has a philosophical and a logical side. Philosophically, it

provides an example on how analytic proofs can be informative, against the kantian argument

of the syntheticity of arithmetic. Logically, by providing the logical analysis of ordered series

and proving its basic properties, it’s the starting point for Fregean logicism, something that

Frege carried on in GLA.

3.3 Important Theorems

The definitions provided above are used to obtain important theorems regarding series,

as Frege did in BS . As we stated already, logicism is clearly tied up with these definitions,

since we can instatiate the relation R as the predecessor relation P on natural numbers, and

define x < y as P ∗(x, y) and x ≤ y as P+(x, y). But this identification would only appear in

1884 with GLA. Nonetheless, Frege’s aim with these definitions is threefold, since there are

17Both are equivalent, meaning that from the well-ordering principle one can derive the principle of math-
ematical induction, and vice-versa.
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three major theorems in BS :

BS81 [F (x) ∧Her(F,R) ∧R∗(x, y) → F (y)]

BS98 [R∗(x, y) ∧R∗(y, z) → R∗(x, z)]

BS133 [Fun(R) ∧R∗(x, y) ∧R∗(x, z) → (R∗(y, z) ∨R+(z, y))]

Theorem BS8118 is a form of the principle of induction. Theorems BS98 and BS133

are the important theorems for which a linear ordered series is defined: transitivity and

trichotomy for R∗. Hence, if Frege’s definition of the Ancestral is to be successful in expressing

such notion into logical terms, these results are the most fundamental. Frege’s axiomatic

system does not use hypothetical proofs19. Hence, he requires proofs for every proposition,

starting with axioms, rules of inferences and definitions. Many of the theorems are actually

provable without the rule of substitution (or comprehension axioms) when using hypothesis,

but the major theorem BS133 still requires such tool.

3.3.1 Induction

Theorem BS81 is a theorem for a general principle for induction. Frege declares that the

Bernoullian induction, who is considered to be the first to explicitly uses such proof method,

is based upon this theorem. This is not enough to derive the principle of mathematical

induction per se, since no definition of natural number was given by Frege in BS . But Frege

certainly believed that this was not a method peculiar to mathematics, having itself logical

grounds, as he makes clear in [PW , p.31)]: “It follows from §§ 24 and 26 of my Begriffsschrift

that this mode of inference is not, as one might suppose, one peculiar to mathematics, but

rests on general laws of logic” and in (GLA, §79): “Only by means of this definition of

following in a series is it possible to reduce the argument from n to (n+ 1) which on the face

of it is peculiar to mathematics, to the general laws of logic”. The proof is the following:

Theorem BS81. [F (x) ∧Her(F,R) ∧R∗(x, y) → F (y)]
18The numeration is the same that Frege uses in BS . We’ll keep them in order to follow his strategy in de-

riving such theorems. Moreover, theorems presented in BS will be only referenced, without the corresponding
proof or logical description.

19Something that would be better undestood only in the 1930’s with the work of Gentzen.
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Proof. We assume as premises F (x), Her(F,R) and R∗(x, y). Now, assume that R(x,w)

holds for any given w. From that, and since Her(F,R) and F (x), we get F (w) from (MP).

Applying (GEN) from R(x,w) and F (w), we derive ∀w(R(x,w) → F (w)). Now, from the

definition of R∗(x, y), we get ∀F [Her(F,R) ∧ ∀z(R(x, z) → F (z)) → F (y)]. Given that we

already have both premises, using (MP) we conclude F (y) as desired.

Frege’s proof is far more complicated and uses the rule of substitution in several steps. Is

not a surprising that both the definitions of the hereditary property and the Ancestral are

used as important tools. Frege proves it from both definitions, applying theorem (68) and

uniformly replacing parts of the judgeable contents by new terms and formulas. This is akin

to comprehension axioms. The main path to theorem BS81 is: (a) from (68) and (69) Frege

gets (70), which with (19) he derives (71). (71) with (58) yeilds (72), which with axiom (8)

derives (74). (b) from the definition of the ancestral (formula (76)) together with (68), Frege

gets (77), and with (17) derives (78). Using axiom (2), Frege derive theorem (79) and with

(5) gets (80). Theorems (80) and (74) finally results in the desired theorem BS81. This of

course, demands proofs to all the theorems one by one without hypothesis.

Later, a principle for mathematical induction will be derived, but first the following similar

principle is necessary from BS8120: since R∗(x, y) implies R+(x, y), from the definition of

the weak ancestral, we can get the equivalent formula [F (x) ∧Her(F,R) ∧R+(x, y) → F (y)]

and then [F (x) ∧ Her(F,R) → (R+(x, y) → F (y))]. Finally, from (GEN) and changing

Her(F,R) by its definiens:

[F (x) ∧ ∀x∀y(F (x) ∧R(x, y) → F (y)) → ∀z(R+(x, z) → F (z))]

Frege didn’t prove this theorem in BS , but it follows easily from BS81. It can be proved

more directly as follows:

Theorem BS81a. [F (x) ∧ ∀x∀y(F (x) ∧R(x, y) → F (y)) → ∀z(R+(x, z) → F (z))]

Proof. Assume F (x), ∀x∀y(F (x) ∧R(x, y) → F (y)) and for a fixed z, R+(x, z). It suffices to

show that F (z) holds to then get the theorem by (GEN). From this, either x = z is true, in

20This is pointed out and proved by Landini (2012, p.70). The proof that follows is basically the same as
his.
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which F (z) follows directly, or x 6= z. In this case, R∗(x, z) holds. Applying the definition of

the strong ancestral, and fixing a given F , we get ∀z(R(x, z) → F (z)) ∧Her(F,R) → F (z).

Is sufficient then to show both antecedents. First, fix any y and assume R(x, y). Then, from

definiens of Her above, F (y), and from (GEN) we get the first antecedent. The other one

is just Her(F,R), which is ∀x∀y(F (x) ∧ R(x, y) → F (y)) by definition. Hence, F (z) holds,

and using (GEN) again, we derive the theorem.

3.3.2 Transitivity

Theorem BS98 is an important theorem for arithmetic and the notion of an ordered

series. It states the conditions under which a given relation is transitive. With such theorem

Frege shows an important fact about his definition of the ancestral: the ancestral of any

given relation R is transitive, i.e., if x is the ancestral of y and y is ancestral of z, certainly,

x is ancestral of z. Once again, we give a simpler proof:

Theorem BS98. [R∗(x, y) ∧R∗(y, z) → R∗(x, z)]

Proof. We assume as premises R∗(x, y) and R∗(y, z). We want to prove R∗(x, z), i.e.,

that ∀F [∀w(R(x,w) → F (w)) ∧ Her(F,R) → F (z))]. We assume that Her(F,R) and

∀w(R(x,w) → F (z)). Since R∗(x, y), F (y) holds. We must show that ∀z(R(y, z) → F (z)).

For that, assume R(y, t), for any given t. Since Her(F,R), F (y) and this assumption, we

get F (t). From (GEN), we derive ∀z(R(y, z) → F (z)). This is enough to get F (z) from

R∗(y, z). Finally, from (GEN2), we derive the definition, and hence, R∗(x, z) holds.

Frege’s own proof of BS98 is, as one might suspect, longer and more complicated. And

once again, multiple uses of the rule of substitution are made throughout the derivations.

It follows from two basic points: the definition of the ancestral relation, which is numbered

as formula 76 in BS , and theorem BS81 above. From BS81 Frege derive (84), which is an

induction theorem just like BS81, but with switched subcomponents. The path from (76)

to BS98 is then the following:

(76)+(52)→(90)+(5)→(93)+(60)→(94)+(7)→(95)+(8)→(96)+(75)→(97).
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Finally, (97) in addition to (84) gives the desired BS98. It is worth to take a closer look

at the final step. (97) states the case where the ‘the property of following x in the R-

sequence is hereditary in the R-sequence’. Hence, we can use the original formula to express

it: ∀w∀z(R∗(x,w) ∧R(w, z) → R∗(x, z)). Let’s denote this specific formula as Her(R∗
x, R)21.

Taking theorem (84):

Her(F,R) ∧ F (x) ∧R∗(x, y) → F (y)

Frege applies the following substitutions: F(Γ) for R∗(x,Γ), x for y and y for z. This results

in the following formula:

Her(R∗
x, R) → [R∗(x, y) ∧R∗(y, z) → R∗(x, z)]

Then, from (97) and (MP) he can derive BS98. The parametric letter Γ is used to demarcate

the open variable in the formula R∗(x,Γ). This is akin to the comprehension axioms stated

earlier, since the following is an instance of it:

∃F∀z[F (z) ↔ R∗(x, z)]

Which allows us to use [z : R∗(x, z)] as an open formula for z. This is analogous to Frege’s

procedure and his rule of substitution. Again, if we take the relation of predecession for

natural numbers, then BS98 results in an important theorem for arithmetic: (x < y ∧ y <

z) → x < z.

One could wonder that BS98 was one of the two desired results that Frege was targeting

with BS , since BS98 is, togheter with BS133, the only theorem not used as a premise

for other proofs. His intentions to provide a logical definition for ordered series, without

intuitions, is clear enough.

21This is a clear deficiency of our way of depicting Frege’s notation. This is because Frege’s abreviation
for the Hereditary property has variables bounded by quantifiers. This is a clear case why Frege chooses to
keep them in the definiens.
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3.3.3 Trichotomy

Theorem BS133 is the last theorem proved by Frege. Its importance for mathematics is

straightforward: if R is a function, and R∗(x, y) and R∗(x, z) hold, we have three possible

cases. Either R∗(y, z), R∗(z, y) or z = y exclusively holds. If the relation of predecession is

such relation, then we have the law of trichotomy for arithmetic: for two given numbers m

and n, either m < n, n < m or m = n. This theorem is, together with BS98, what Frege

needs for proving that the ancestral defines a linear-ordered series properly.

To prove theorem BS133, we need some preliminary results, all proved by Frege:

Theorem BS91. R(x, y) → R∗(x, y)

Proof. Assume R(x, y). We want to prove the definition:

∀F [∀z(R(x, z) → F (z)) ∧Her(F,R) → F (y)]

For the assumption, we only need the first antecedent: ∀z(R(x, z) → F (z)). Since R(x, y),

F (y) holds, and using (GEN), R∗(x, y) holds.

Theorem BS108. R+(x, z) ∧R(z, w) → R+(x,w)

Proof. Assume R+(x, z) and R(z, w). We want to prove R+(x,w), i.e., R∗(x,w) ∨ x = w.

Since R+(x, z), we have two cases: 1) R∗(x, z). Since R(z, w), from theorem (91) above,

R∗(z, w). And from theorem (98) already proved, R∗(x,w) holds. From the definition of

weak ancestral, R+(x,w) as desired. 2) x = z. In this case, since Frege’s sign for identity

of content behave like an identity, we can substitute z for x in R(z, w), and from theorem

BS91 achieve R∗(x,w), which gives us R+(x,w) as desired.

Theorem BS78. [R∗(x, y) ∧ ∀z(R(x, z) → F (z)) ∧Her(F,R)] → F (y)

Proof. This is a straightforward proof: Assume the antecedentes, to show that F (y). Since

R∗(x, y), and since Her(F,R) and (R(x, z) → F (z)), then F (y) as desired.

Theorem BS78 is also an inductive theorem. To prove the next result, we shall use

comprehension in a way very similar to Frege’s rule of substitution, applying in theorem

BS78.
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Theorem BS124. Fun(R) ∧R(x, y) ∧R∗(x, z) → R+(y, z)

Proof. To prove such theorem, take the following instance of comprehension schema

∃H∀w(H(w) ↔ R+(y, w))

Now, lets call the concept H as [w : R+(y, w)]. Our main goal is to prove that [w : R+(y, w)]z

holds true, which is the same as R+(y, z). For that, we use induction, i.e., Frege’s theorem

BS7822. Taking y to be z in BS78 and F to be our concept [w : R+(y, w)], we arrive at:

R∗(x, z) ∧ ∀z(R(x, z) → R+(y, z)) ∧Her → R+(y, z)

Here, Her is an abreviation for ∀x∀y(R+(y, x) ∧ R(x, y) → R+(y, y)). Our assumptions are

Fun(R), R(x, y) and R∗(x, z). Our goal is to prove each antecedent of the instantiated BS78

above. 1) We first prove Her. Assume R+(y, x) and R(x, y). From BS108, clearly, R+(y, y),

hence, Her holds. 2) We want to prove that ∀z(R(x, z) → R+(y, z)). Assume R(x, v) for any

given v. Then, since R(x, y) and Fun(R), v = y, which gives us R+(y, v). From (GEN),

we arrive at the desired ∀z(R(x, z) → R+(y, z)). 3) Since R∗(x, z) is one of our assumptions,

we’re done. This gives us the desired R+(y, z), completing the proof23.

The proof of theorem BS124 is central to prove BS133, which we can finally show:

Theorem BS133. [Fun(R) ∧R∗(x, y) ∧R∗(x, z) → (R∗(y, z) ∨R+(z, y))]

Proof. Our assumptions are Fun(R), R∗(x, y) and R∗(x, z). Next, take the following instance

of comprehension schema:

∃H∀w[H(w) ↔ R∗(y, w) ∨R+(w, y)]

Once again, we could name H as [w : R∗(y, w) ∨ R+(w, y)]. We want to show that H(z)

holds. The proof is once again by induction, this time using theorem BS81. For that, we

22This should be a good example of Frege’s induction theorem in use.
23The same proof, using theorem BS78, can be found in (LANDINI, 2012)
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instantiate F to be [w : R∗(y, w) ∨R+(w, y)], and y to be z. Then, we arrive at:

[R∗(y, x) ∨R+(x, y)] ∧R∗(x, z) ∧Her → [R∗(y, z) ∨R+(z, y)]

Now, Her is a abreviation for:

∀v∀w([R∗(y, v) ∨R+(v, y)] ∧R(v, w) → [R∗(y, w) ∨R+(w, y)])

To prove the theorem, it suffices to prove all three antecedents of the instantiated BS81

above. 1) Since R∗(x, y), we get R+(x, y), hence, R∗(y, x)∨R+(x, y) holds. 2) R∗(x, z) is one

of our assumptions; 3) To prove Her, we assume both R∗(y, v) ∨ R+(v, y) to some fixed v,

and R(v, w). From the first, we have three cases: (a) R∗(y, v) holds. Since R(v, w) also holds,

from BS91 we get R∗(v, w), and from BS98 we get R∗(y, w), and finally, R∗(y, w)∨R+(w, y)

holds; (b) R∗(v, y) holds. In this case, since R(v, w) and Fun(R), from theorem BS124 we

get R+(w, y), and hence, R∗(y, w) ∨ R+(w, y) holds again; (c) v = y, and from R(v, w), we

obtain R(y, w). Again, using BS91 we get R∗(y, w) and R∗(y, w) ∨R+(w, y). This complete

the proof of Her, and in conclusion, we can use (MP) to obtain R∗(y, z)∨R+(z, y) as desired.

This complete the proof of BS133.

3.3.4 (IP) and (CP), once again

The use of comprehension in the proof above is essentially the same as Frege’s rule of

substitution. But this proof is much more direct, since it procedes with hypothesis. In

Frege’s axiomatic approach, since BS133 is the last theorem of BS , the path leading to it is

of considerable complexity. Frege proves it from (132) and (83). (83) can be achieved from

theorem 81, which we already exposed above. The proof of (132) starts from the definition

of the many-one function, which is formula (115). Many of the proofs uses substitution for

functions. The path can be break down as follows:

(115)+(68)→(116)+(9)→(117)+(58)→(118)+(19)→(119)+(58)→(120)

(120)+(20)→(121)+(112)→(122)+(19)→(123)+(110)→(124)+(20)→(125)

(125)+(114)→(126)+(12)→(127)+(51)→(128)+(111)→(129)
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(129)+(9)→(130)+(75)→(131)+(9)→(132)

This long path is necessary in Frege’s unawareness of hypothetical proofs for conditionals.

But such unawareness is not unmotivated. Since every judgeable formulas of the language has

a (conceptual) content, and since such content is what determines the possible consequences

of each formula, the complete proof is a sort of map, that leads a proved proposition, in this

case BS133, into all its foundations. Since everything in such proof is logically justifiable

(propositonal and quantificational axioms and theorems that follows from them), the key for

the information presented by BS133 relies on all four definitions. Together, the propositions

proved from this, form a kind of “proof-tree”. For the simplified proof showed here, this

“proof-tree” is something like:

69 76 99 115

98 91 78 81

108
124

133

CA

Where numbers within circles are definitions, and numbers within boxes are theorems.

The arrows indicate that the theorem made a directly use of a definition or theorem. The

circle with “CA” denotes the use of comprehension axioms. No wonder that, in (GLA,§88),

Frege states that the conclusions are contained in the definitions ‘as plants are contained

in their seeds, not as beams are contained in a house’, a direct metaphor to the difference

between his relation of consequence and the relation of consequence as a mere containment,

something he thought to be the case for the Kantian and Boolean theory of concepts. This

difference is only intelligible if we take into account the use of comprehension, or equivalently,

his rule of substitution together with decomposition of judgeable contents.

If we look at Frege’s definitions, they don’t simply define a concept or relation from a list

of given concepts. What they do is to define a concept through the expression of the logical

relations between concepts. As Frege puts it, “we use old concepts to construct new ones, but
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in so doing we combine the old ones together in a variety of ways by means of the signs for

generality, negation and the conditional” (PW,p.34). This are the fruitful kind of definitions.

From them, decompositions are performed. They can be decomposed in many ways, and

Frege gives this hint every time he introduced a new one. To take an example, right after

the definition the hereditary property, Frege says the following:

The formula f(Γ,∆) can be rendered ‘∆ is a result of applying the procedure f

to Γ’, or ‘Γ is the object of an application, with a result ∆, of the procedure f ,

or ‘∆ bears the f -relation to Γ’, or ‘Γ bears the converse of the f -relation to ∆’.

This expressions are to be taken as equivalent in meaning [gleichbedeutend] (BS ,

§24)

All those are different readings, which in turn yields different places where one can decompose

such function. But still, they are the same function. By equivalent in meaning Frege might

be assuming equal in conceptual-contents, since they all have the same logical consequences24.

The fact that all those readings are possible is a glimpse for the multiple decompositions that

we could get from it. The fact that here Frege uses parametric letters to mark the variable

places is a hint that we can break down the same function in many diferent ways.

The proof of theorem BS98 yields, in Frege’s perspective, a judgeable content which is

“a fact”:

R∗(x, y) ∧R∗(y, z) → R∗(x, z)

By decomposition on R∗ (or equivalently, by a second-order comprehension axiom) we can

derive the following function/concept:

[M : Mβ,γ(f(β, γ)) ∧Mγ,δ(f(γ, δ)) → Mβ,δ(f(β, δ))]

This is actually a third-order unary function, that of being a transitive binary second-order

24Similarly, Bauer-Mengelberg translate this phrase as “[...] these expressions are to be taken as equivalent”
(FREGE, 1967, p.56).
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function25. Frege’s definition of the ancestral made it possible to prove that

[M : Mβ,γ(f(β, γ)) ∧Mγ,δ(f(γ, δ)) → Mβ,δ(f(β, δ))]R∗

holds. This is not a component of the original definition, but is a property that holds for

it. Hence, to say that R∗ satisfies transitivity, for any R, is clearly something informative.

The same can be said about BS133: any R∗ that satisfies the condition of being many-one,

also satisfies trichotomy. This is not a property of the original defined expression of R∗, but

something that R∗ made possible to prove. But all those proofs are only possible in second-

order scenario, one that includes comprehension. In Frege’s mind, and contrary to Quine’s

latter criticisms, this is logic. Such proofs, then, preserves analyticity in Frege’s version of it.

This is what (IP) is about, and this is how Frege thought that the ancestral was an example

of fruitful definitions, one that allows informative proofs that maintains analyticity. Since

the logical domain is all there is, such relation is also a proof of (CP): that the ancestral is a

transitive relation does not depend upon the relation R in consideration. This is a property

of the definition, one that has logical character.

It is for those reasons that the ancestral relation is clearly one of Frege’s argument against

a kantian foundation for arithmetic, since, supposedly, no intuition is present in any part of

the proofs. What the ancestral also generates is, from BS98 and BS133, a linear ordering,

when applied to any many-one first-order relation. As we saw for Kant, numbers are rules to

describe quantities, and the transition from the ordinals to the cardinals is possible because

time, its foundation, is already linear by essence. It comprises both trasitivity and trichotomy

by default, and hence, the series of natural numbers is exactly the series of quantities that

we can construct from progressive time-intervals. In BS , Frege gave the first step to an

alternative argument: to describe linear orderings logically, not intuitively. The second part

is to show how numbers, or the things that describes quantities, are also of a logical character.

This is annouced in GLA and later formally proved in GGA. In both, the ancestral reappears.

25This is so because R∗ is a second-order concept, or function, in which first-order relations fall, with R

being arbitrary.
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3.4 The route to Frege’s Theorem

Frege’s Ancestral is, we saw, a definition in second-order logic for linear-ordered relations.

This has an important application in the foundations of arithmetic. It was in GLA that such

use was hinted, and in GGA that it was carried on more formally. One of them we’ve already

antecipated: to derive a principle for mathematical induction. But this still asks for a formal

definition of cardinal number, and once that is given, Frege’s Ancestral is central in proving

the existence of an infinite number of them. This achievements, present in GLA and GGA,

were substantial. It’s known that Frege provides a proof of Dedekind-Peano Axioms for

arithmetic from second-order logic with comprehension and definitions.

Most of the GLA is devoted to offer a definition of cardinal number. This topic was

already, but not sufficiently, discussed earlier. Recall that, as Frege concludes in (GLA,§46),

“the content of a statement of number is an assertion about a concept”. This is taken as an

important aspect on number-words behavior that should clarify what, in fact, numbers are.

This is the starting point in section §55, the beginning of the constructive part of GLA. And

one of the first conclusions, rendered in (GLA,§57), is that numbers are not properties of

concepts. This is to say that numbers are not something like an attribute26, or higher-order

properties of first-order concepts. In Frege’s account, numbers are self-subsistent objects,

since that is what identity statements provides. But this is not to be taken as signifying that

numbers are independent of the propositions in which they appear, but only that they can

be recognized again in different manners. In the equation 1 + 1 = 2, we have an identity

because both sign ‘1 + 1’ and ‘2’ denote the same number. This allows us to use the definite

article “the number two”. But the very notion of number is something that can be properly

defined by taking into account the context in which they appear, and this context are identity

statements. What the sentence “there are four apples in the basket” really express is an

identity, one that is recognized when the original sentence is recasted as “the number that

26This is what the everyday use of numbers seems to imply. In sentences like “there are four apples in the
basket”, it seems that the number Four is a property, or adjective, that the concept “apples in the basket”
possess, something that can be rephrased as “the number four belongs to the concept ‘apples in the basket’
”. But this assumption does not clarify what “the number Four” stands for. This is what the Julius Caesar
problem in (GLA,§55) tries to show. Heck Jr. (2003) provides a simpler example on the inadequacy of this
account on numbers: to a concept to have a number n, it must be the case that there are n object that falls
into it. But in order to prove that there are infinitely many numbers, infinitely many objects must be likewise
available. An assumption like that can hardly be accepted as logical, if can be shown to be true at all.
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belongs to the concept ‘apples in the basket’ is four”, where the term “is” clearly works as

an identity sign27.

This is Frege’s task through sections §62 − 70: “[Number] is only due to be determined

in the light of our definition of numerical identity. Our aim is to construct the content of a

judgement which can be taken as an identity such that each side of it is a number” (GLA,§63).

The first attempt is what nowadays is called Hume’s Principle: that two numbers are equal

if, and only if, there is an one-one correlation between the objects falling into one and the

other, or putting in other terms, that F and G are equinumerous. Denote #F as the “the

number of F ’s”, and F ≈ G as “F and G are equinumerous”, then Hume’s Principle28 is:

#F = #G ↔ F ≈ G

Now, the condition for two concepts to be equinumerous is twofold: the existence of a relation

R such that R correlates them both and R is a bijection (a one-one correspondence) between

them. Frege delineates both these conditions in §71 and §72:

If now every object which falls under the concept F stands in the relation R to

an object falling under the concept G, and if to every object which falls under G

there stands in the relation R an object falling under F , then the objects falling

under F and under G are correlated with each other by the relation R. (GLA,§71)

1. If d stands in the relation R to a, and if d stands in the relation R to e, then

generally, whatever d, a and e may be, a is the same as e. 2. If d stands in the

relation R to a, and if b stands in the relation R to a, then generally, whatever

d, b and a may be, d is the same as b. (GLA,§72)

Breaking down these conditions formally, the following definition for equinumerosity

holds:
27This is pointed out by Frege in (GLA,§57).
28Henceforth (HP). The name was coined due to Frege’s quotation of Hume’s Treatise in GLA.
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F ≈ G ≡ ∃R[∀x∀y∀z(R(x, y) ∧R(x, z) → y = z)∧

∀x∀y∀z(R(x, y) ∧R(z, y) → x = z)∧

∀x[F (x) → ∃y(R(x, y) ∧G(y))]∧

∀y[G(y) → ∃x(R(x, y) ∧ F (x))]]

But Frege does not consider (HP) sufficient. Although this is an identity condition for

numbers, it does not provide an explicit and necessary definition of them. This is the Julius

Caesar problem: we have no means to decide what #F , or the locution “the number that

belongs to F”, stands for in the left side of (HP), or at least, (HP) does not by itself provides

such means. In fact, it seems to already presuppose that they denote numbers.

For that reason, Frege’s strategy is to provide an explicit definition for numbers, and

then, to derive (HP) from it, keeping the identity condition. In (GLA,§68) he provides the

definition: “the Number which belongs to the concept F is the extension of the concept

‘equinumerous29 to the concept F ’ ”. This is where extensions enters the scene in Frege’s

logic. They can be viewed as sets: the extension of a concept being the set of objects which

has, or satisfies, such concept. In the definition, the extension of the concept “equinumerous

to the concept F” is the set of all concepts that can be correlated with F by a one-one

relation. From that perspective, a number is a set of equinumerous concepts. Extensions are

also objects in Frege’s ontology, and hence, they satisfies the criterion in describing numbers

as self-subsistent objects that can be subject of the identity relation.

In GLA Frege does not bother in explaining what extensions of concepts are30, but in

GGA, they would be identified as an especific case of value-ranges. Since concepts are then

taken as functions with truth-values as values, the value-range of a concept is the set of

objects which, when saturating the concept, denotes the Truth as truth-value. Value-ranges

are governed by Frege’s famous axiom V in GGA:

–εf(ε) = –αg(α)) = ∀x(f(x) = g(x))

29Austin’s translation actually has “equal” instead for the german gleichzahlig.
30“I assume that it is known what the extension of a concept is”, he declares in a footnote in (GLA,§69).
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Where –εΦ(ε) denotes the value-range of the function Φ. Saddly enough, this was an unfor-

tunate move, since axiom V was proved inconsistent by Russell’s Paradox. But although

Frege’s use of value-ranges in GGA is common, they are mostly eliminable but in one place:

the derivation of (HP) as a theorem31. This discovery takes place amidst the revival of Frege’s

logicism started in the 80’s by Wright (1983). The goal was to show that the Dedekind-Peano

axioms for arithmetic follows from second-order logic added with (HP) as an axiom. This

follows very closely what Frege does in GLA, skipping the reference to extensions in §6832.

This is now known as Frege’s Theorem.

After assuming extensions33, and defining (HP) as we already quoted above, Frege starts

to define numbers by choosing a representative concept, and then to obtain the set of equinu-

merous concepts34. First, in (GLA,§72) he defines “n is a (cardinal) number” to be “there

exists a concept such that n is the Number which belongs to it”. This is:

Card(n) ≡ ∃F (n = #F )

With that and suitable concepts, Frege is able to define numbers directly. He starts in

[GLA,§74] with the concept “not identical to itself”, and then defines the number 0:

0 ≡ #[x : x 6= x]

The choice is based on a logical fact about the law of identity: since everything is self-

identical, nothing can be not self-identical. We start from the fact that ∀x(x = x), and then

add double negation (one of Frege’s axioms), to get ¬¬∀x¬¬(x = x). From the definition of

the existential quantifier, this is ¬∃x¬(x = x), which is the same as ¬∃x(x 6= x). This shows

Frege’s strategy in “choosing one [concept] which can be proved to be such on purely logical

31See (HECK JR., 1993) about this.
32This revival started a great debate on whether (HP) can, or cannot, be taken as logical. Frege himself

rejected it. Therefore, this fregeanism, identified as neo-logicism, has differences from Frege’s own project,
given that in Frege’s version, the choice of taking extensions as logical objects plays a great role. See
(RUFFINO, 2003) about this. On the difference between both logicisms, see (RUFFINO, 1998) and (HECK
JR., 2003).

33We can ignore Frege’s use of extensions, since the use of the ancestral is what matters here. The biggest
difference is on how to interpret the numerical operator ‘the number of F ’s’, or #F , since it’s here that
extensions are mentioned.

34Frege’s strategy in GLA is also well summarized by Dummett (1991, pp.119-124).
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grounds” (GLA,§74). That way, it is a logical fact that nothing falls under such concept.

Next is the definition of the Predecessor relation: “there exists a concept F , and an object

falling under it x, such that the Number which belongs to the concept F is n and the Number

which belongs to the concept ‘falling under F but not identical with x’ is m” (GLA,§76).

Formally, this is:

P (m,n) ≡ ∃F∃x[F (x) ∧ n = #F ∧m = #[z : F (z) ∧ z 6= x]]

This definition still demands a proof of the one-one character of the relation, that is,

the uniqueness of the predecessor. But from it, Frege defines the number 1 and proves that

P (0, 1) holds in (GLA,§77). The definion uses the concept “identical with 0”:

1 ≡ #[x : x = 0]

It’s easy to see that P (0, 1) holds as Frege intended: let x be 0 and F be the concept

[x : x = 0], then the three conditions of the definition are met, since [x : x = 0]0 holds trivially,

1 = #[x : x = 0] holds from the definition of 1, and 0 = #[z : [x : x = 0]z ∧ z 6= 0], since

nothing can be equal and not equal to zero. Following this, in (GLA,§78) Frege enumerates

some propositions to be proved about the definitions presented so far:

GLA1: P (0, a) → a = 1

GLA2: 1 = #F → ∃xF (x)

GLA3: 1 = #F → (F (x) ∧ F (y) → x = y)

GLA4: ∃xF (x) ∧ ∀x∀y(F (x) ∧ F (y) → x = y) → 1 = #F

GLA5: P (m,n) ∧ P (m′, n′) → (m = m′ ↔ n = n′)

GLA6: ∀x[∃F (x = #F ) ∧ x 6= 0 → ∃y(∃G(y = #G) ∧ P (y, x))]

The last theorem, in Frege’s words, is “Every number except 0 follows in the series of

natural numbers directly after a number”. This could means that he was regarding it as the
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proposition ¬P (n, 0). But in (GGA,§44), it is clear that is the former theorem that he has

in mind. The proofs of these propositions can be found in Appendix A.

The other important theorem, resembling the last one, is that for every number there is

another that follows it. That is, that there are infinitely many numbers. This is what Frege

sketches starting in [GLA,§79], and it is here that the Ancestral shows its importance for

logicism. To say that after every number there is another one that follows it is to say that

the set of numbers forms an ordered series without a last member. For that reason, the proof

of such proposition depends upon a given concept: “member of the series of natural numbers

ending with n”. The ideia underlying such proof is the following. If we take any number,

say 5, and enumerate all n’s that are less than or equal to 5, we get [0, 1, 2, 3, 4, 5]. As we

can see, there are 6 numbers less than or equal to 5 in the number series. So, for any n, the

number of the concept [x : x ≤ n] must be the successor of n. So, Frege must show that

the number of the concept “member of the series of natural numbers ending with n” is the

successor of n. In the example of the number 5, all objects are proved to already exists, and

so, we only need to consider the set, or the number of them in order to prove the existence

of the successor, and then give a name for it. Other way to put it is that, once we have the

number 0 proved by logical means, we then can name 1 ≡ #[x : x ≤ 0], since only 0 satisfies

0 ≤ 0. Then, having 1 proved also by logical means, we can name 2 ≡ #[x : x ≤ 1]. Both 0

and 1 satisfies this. If we accept, as Frege did, extensions as legitimate objects, all the series

of natural numbers can be so generated taking nothing from intuition or empirical data.

The series of natural numbers mentioned is the series of objects correlated by the pre-

decessor relation35. For that matter, Frege applies the ancestral, both the strong and weak.

The readings are as follows: P ∗(x, y) is “y follows x in the series of natural numbers”, and

P+(x, y) reads “y follows x in the series of natural numbers beginning with x”. Then, the

very notion of natural or finite number is defined in (GLA,§83), where n is said to be a

natural number if “n is a member of the series of natural numbers beginning with 0”, that is

N(n) ≡ P+(0, n)

35Again, Frege believed that the only way those definitions captures the right objects, that is, numbers, is
the inclusion of extensions.
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It follows that N(0) is a natural number, since the weak ancestral is reflexive. What is

noteworthy is that from Frege’s ancestral it becomes easy to prove that any successor of a

natural number is also a natural number. This is:

N(m) ∧ P (m,n) → N(n)

This is the same as saying that the property of being a natural number is hereditary in

the predecessor relation. It follows easily from theorem BS108 of BS , one of the forms of

transitivity of the weak ancestral.

Now that we know the definition of the natural number series, a simple corolary is the

fact that such series is linearly ordered. Transitivity follows easily from BS98. Just let R be

the relation P :

P ∗(x, y) ∧ P ∗(y, z) → P ∗(x, z)

It is also an easy corolary that trichotomy for natural numbers follows from BS133, the

definition of N, and the fact that P is a one-one relation, theorem GLA5:

N(x) ∧ N(y) → (P ∗(x, y) ∨ P ∗(y, x) ∨ x = y)

We can now better understand how P ∗ comprises the meaning of the relation < on natural

numbers, and P+ the sign ≤. This is how Frege had already in BS envisaged the use of the

ancestral, a use that does not require intuitions in proving that the natural number series is

linear-ordered, a clear argument against Kant’s proposal.

Next, Frege’s strategy described in (GLA,§82) to prove that for every natural number

there is one that follows, have the following steps:

1. The task is to show that the number of the concept quoted above, “member of the

series of natural numbers ending with n”, now formally [z : P+(z, n)] , follows n in the

series of natural numbers. That is: P (n,#[z : P+(z, n)]).

2. To prove such theorem, Frege uses induction. Precisely, he alludes to an induction

theorem derived from the ancestral definition: the BS81a that we showed earlier. This

is what he explains in (GLA,§82): it must be proved (1) that P (0,#[z : P+(z, 0)]), (2)
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that the concept [x : P (x, [z : P+(z, x)]} is hereditary in P . (1) is the usual base step,

while (2) is the inductive step.

3. But in order to prove that, Frege enumerate three necessary lemmas in (GLA,§83):

(a) ∀x(N(x) → ¬P ∗(x, x))

(b) P (x, y) → ∀z[P+(z, y) ∧ z 6= y) ↔ P+(z, x)]

(c) n = #[z : P+(z, n) ∧ z 6= n]

That is, (a) no natural number follows after itself in the natural number series; (b) if

x is the predecessor of y, then the concepts “member of the series of natural numbers

ending with y, but not identical with y” and “member of the series of natural numbers

ending with x” are coextensional; and (c) that n is the number of the concept “member

of the series of natural numbers ending with n, but not identical with n”.

4. Finally, from these lemmas and induction, it can be proved that

∀n[N(n) → P (n,#[z : P+(z, n)])]

Which yields that every natural number has a successor, yielding the infinity of the

natural number series.

But things were not that simple as Frege supposed in GLA. In GGA, his proof for the

same proposition does not followed this sketch precisely. The reason for this is showed by

Boolos and Heck in (BOOLOS; HECK JR., 2011): these propositions, and the induction

theorem as well, need a finitude restriction in order to be provable. This is because, taking

lemma (c) as example, if n = ℵ0, then we have ℵ0 = #[z : P+(z,ℵ0) ∧ z 6= ℵ0] which is false,

given that P (ℵ0,ℵ0)36, and from GLA5, z 6= ℵ0 implies that #[z : P+(z,ℵ0) ∧ z 6= ℵ0] = 0.

For that matter, following Boolos’ and Heck’s corrections, those lemmas become:

GLAL1 ∀x(N(x) → ¬P ∗(x, x))

GLAL2 N(y) ∧ P (x, y) → ∀z[P+(z, y) ∧ z 6= y) ↔ P+(z, x)]

36Frege hints a similar result in (GLA,§84). We offer a proof in Appendix A.
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GLAL3 N(y) ∧ P (x, y) ∧ P (x,#[z : P+(z, x)]) → y = #[z : P+(z, y) ∧ z 6= y]37

But this demands also a condition for the induction theorem, the finititude restriction. In ap-

plying it into theorem BS81a, we get one step from the principle of mathematical induction,

yielding:

F (x) ∧ ∀v∀w(R+(x, v) ∧ F (v) ∧R(v, w) → F (w)) → ∀z(R+(x, z) → F (z))

This is still a general form of induction, but is one suitable enough to derive the principle of

mathematical induction in Fregean terms. It’s enough to let x be 0 to get:

F (0) ∧ ∀v∀w(N(v) ∧ F (v) ∧ P (v, w) → F (w)) → ∀z(N(z) → F (z))

This is enough to prove the desired theorem from mathematical induction. We have to just

let F be the concept [x : P (x,#[z : P+(z, x)])} and prove all antecedents. This requires all

lemmas, together with an important lemma about the ancestral:

R∗(x, y) → ∃z(R(z, y) ∧R+(x, z))

Finally, it follows the desired fact:

∀n[N(n) → P (x,#[z : P+(z, x)])]

Which states that for all natural numbers there is another that follows it. From all this, one

can derive easily the Dedekind-Peano Axioms for arithmetic. The complete prove of all facts

mentioned and the so-called Frege’s Theorem are showed in Appendix A.

What is more noteworthy is how important Frege’s Ancestral definition is for such results.

(1) it is the foundation of the notion of natural, or finite, number38; (2) It’s what made possible

37Even though this does not correspond exactly with Frege’s wordings in GLA, this is what, according to
Boolos and Heck, he’s probably intendeed to be proving. Nevertheless, those restrictions are in place when
this lemma is used to prove the desired theorem, so this facilitate the proof of the lemma.

38But some digression is necessary. In (GLA,§84), in contrasting Cantor’s work on infinite cardinals with his
own conclusions, Frege states that “Finite Numbers, certainly, emerge as independent of sequence in series”.
This seem’s odd, given his own definition in (GLA,§83) that “n is a finite number” is to be understood as “n
is a member of the series of natural numbers beginning with 0”. Two facts might help understanding this:
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the derivation of a general principle of induction and then the principle of mathematical

induction, (3) it shows how the series of natural numbers can be proved to be linearly ordered

by pure logical means, and finally, (4) it’s crucial in deriving the important fact that every

natural number has a successor. As corollary, this yields that the natural number series is

endless: there is no last number in such series. That is

¬∃x(N(x) → ∀y(P (y, x))

This also shows that there are infinitely many numbers, something that Frege thought to be

possible to prove by logical means alone, without any appeal to intuition or empirical facts.

In contrast, Russell logicism or even Zermelo-Fraenkel’s axiomatic set-theory requires axioms

stating the existence of infinite objects. Such axioms would hardly be counted as logical by

Frege. The existence of an infinite number of numbers should not be something pressuposed,

but proved in logical terms. But of course, Frege’s proof cannot be taken as fully successful,

given the inconsistency of its logic. And from a neo-logicist standpoint, it’s still uncertaing

whether (HP) is, or isn’t, a logical axiom.

first, Frege’s word is the german endliche Anzahl. An anzahl is primary a number used for counting, one
that answer questions of the “how many?” type. This is a cardinal notion, and this is his primary concern.
Moreover, in the finite case, there is a correspondence between cardinals and ordinals, since one could get
from one to another without any trouble. Only for infinite cases such relation is problematic, something that
Cantor’s work discovered. But Frege still considers the cardinal notion as basic, and he does not consider
them as dependent upon the position in a series, otherwise, and this is the second point, they would not be
self-subsistent objects as he intended. Frege’s ancestral is more general than the series of natural numbers.
It’s only when (HP), or extensions, are brought upon that one is abble to prove the basic theorems necessary
for arithmetic as Frege did. It’s the ancestral definition increased with cardinal notions that results into
the series of natural numbers. Therefore, even though the ancestral is an ordinal notion, Frege’s theory of
numbers is cardinal in essense, and the series of natural numbers is not a series of ordinals in Frege’s sense.



Chapter 4

The impredicativity of Frege’s

Ancestral

The failure of Frege’s axiom V was not just an isolated problem, but something that un-

dermined mostly every attempt into the foundations of mathematics that uses an unrestricted

notion of sets or classes. Russell too was affected by it, and in the years following the discov-

ery of the paradox attempted his own amendment. The root of the problem, something that

unrestricted comprehension axioms pressupose, was that any formula can define a property

or class. This was something accepted by Frege from the beggining, already in 18791. But

Russell’s Paradox shows otherwise. It cannot be the case that expressions like x 6∈ x define

a set or class. Russell (1907) calls such cases as non-predicatives, later called impredicatives.

They are distinguished from those expressions that can define a set as predicatives. But what

exactly prevents such impredicative expressions from defining sets was better argued latter

by Poincaré2: the presence of a vicious circle, or, the attempt to define an object in terms of

a domain that already contains it. Russell’s Paradox is a prime example where such vicious

circle leads to paradoxical situations. For that reason, Russell’s solution was to ban such

unrestricted quantification, which evolved into his Theory of Types. This was done based on

what he calls the Vicious Circle Principle: that no object (or set) should be defined in terms

of itself, or the aggregate in which it is an element.

1Although not in terms of sets or extensions, but concepts.
2About this, see (FEFERMAN, 2005).
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But are all impredicative definitions harmful? Not everyone of them have paradoxical

consequences, but they are not free from criticisms either. This is the case for Frege’s

Ancestral. Already in 1887, Benno Kerry pointed out that Frege’s definition of the Ancestral

was impredicative, given its circular nature. Since Frege’s strategy was to define natural

numbers in terms of the Ancestral, this definition was doomed to fail according to Kerry.

More recently, Ignacio Angelelli argued the same, adding that such circularity also undermines

Frege’s reduction of the very notion of series in logical terminology. In this chapter, our aim

is to assess Kerry’s and Angelelli’s objections and to argue that, although Frege’s definition

is impredicative, it is not harmful as they considered.

4.1 Kerry and Angelelli

Frege’s definition of the Ancestral relation is, recalling it:

R∗(x, y) ≡ ∀F [Her(F,R) ∧ ∀z(R(x, z) → F (z)) → F (y)]

Textually, this states that ‘x is the ancestor of y’ (i.e., y follows x in the R-series), just in case

y has all F hereditary properties shared by all descendents of x (i.e., all objects that follows

x in the R-sequence). This is a second order definition since it quantifies over the domain of

concepts, which in Frege’s case, is an unrestricted one. In addition to the more famous debate

about Frege’s theory of concepts, Benno Kerry also criticized Frege over this definition. This

was done essentialy in 1887 in Über Anschauung und ihre psychische Verarbeitung (KERRY,

1887, p.295), where he states that:

Now, this criterion is to begin with of dubious value because there is not a cat-

alogue of such properties, hence one is never sure that one has examined the

totality of them. Moreover, there is the crucial fact that, as the author himself

has proved [in a footnote Kerry cites BS , p.71 Theorem 97], of the properties

that are hereditary in the f -series is also the following: to follow x in the f -series.

Thus, the determination of whether y follows x in the f -series, according to the

definition given for this concept, depends on whether, in addition to a lot of other
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things on hereditary properties in general, one knows, in particular, about the

hereditary property “being a descendant of x”, that y has it or not. It is clear

that this circle should totally prevent from saying, in Frege’s sense, that any y

follows x in an f -series3

In justifying if R∗(x, y) holds or not, it is required that, for every hereditary property F , one

can decide whether F is one of the properties that is passed along from x to y or not. Kerry’s

point is that, since Frege’s definition quantifies over all hereditary properties, there could be

one for which this task would be uncertain. The case in question, as Kerry quotes, is Frege’s

theorem (97) of BS :

∀u∀v(R∗(x, u) ∧R(u, v) → R∗(x, v))4

This theorem states that the property [z : R∗(x, z)] is hereditary in R. This is the same as

saying that the property “being x descendent” is something that every descendent of x pass

along the parent relation. Exemplifying it, if Gottlob Frege is Karl’s descendent, then Alfred,

Gottlob’s son, is Karl’s descendent as well. The problem that Kerry is warning is that, to

determine whether Alfred is Karl’s descendent, we have to find such hereditary properties

and check if Alfred have them. But in this process, the above property would require to

determine if Alfred is Karl’s descendent in the first place. Hence the circularity.

This circularity was latter restated by Ignacio Angelelli in Frege’s Ancestral and his Cir-

cularities (ANGELELLI, 2012). He actually presents two circularities, the first one being

Kerry’s, as stated above. The second one is aimed to show how Frege’s intended reduction of

the notion of a series failed as well. As we saw earlier, a series is simply a connection between

elements, one that is at least transitive. This is also the notion that there is a ‘chain’ between

one object to another given a finite number of steps. As we already alerted, Frege does not

speak about the ancestral relation, but such notion is equivalent: a connection, or a path,

between one person (the ancestor) to another (the descendent) that is also transitive. This

is what Angelelli defines as the Ordinary Ancestral, which we now denote as (OA).

Frege’s definition was a reduction of (OA) into logical terminology. This is what he

3The translation is Angelelli’s (2012). Where he translates “being a descendent of x”, Kerry actually
writes simply “to follow x”, since Kerry, as Frege, does not name such relation as Ancestral.

4We avoided here the definiendum of the Hereditary Property, showing only the definiens.
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argues in (BS , p.104): “I sought first to reduce [zurückführen] the concept of ordering-in-

a-sequence to the notion of logical ordering, in order to advance from here to the concept

of number”5. This is also, according to Angelelli’s interpretation, what Frege maintains in

defining the Ancestral, in (GLA,§79), by saying that the definiens “is to mean the same as”

[sei gleichbedeutend] the definiendum. For that reason, he concludes that

It seems natural do interpret the product of the reduction as intended to replace

the initial notion. In alternative terms, it seems natural to construe the Fregean

ancestral as an analysans that replaces, in Frege’s project, the analysandum (the

common ancestral). Such would be the analysis interpretation. (ANGELELLI,

2012, p.478)

Since Frege was also interested in developing a logical system capable of replacing the natural

language, his definition of the Ancestral, henceforth (FA), should be taken as a replacement

of (OA). But is Frege’s intended reduction successful? According to Angelelli, no.

4.1.1 The Circularity of (FA)

Both Kerry’s and Angelelli’s circularities follow the same basic principle: that (FA) is

circular given it’s unrestricted quantification over properties. We focus on Angelelli’s version

of both circularities, with the following fictional situation added by him. A certain Fritz

is trying to convince a jury that he is Karl’s descendent in order to inherit Karl’s money.

Since Fritz doesn’t have the necessary documents, he is tempted to quote Frege’s definition:

that he is Karl’s descendent if, and only if, he has all hereditary properties shared by Karl’s

descendents. The jury asks him to check whether Frege’s definition could help him with

two especific properties: ‘being the fregean-descendent of Karl’ and ‘being the ordinary-

descendent of Karl’. Let us recall that (FA) is R∗(x, y), and consider now that Ro(x, y)

denotes that x is the ordinary ancestor (OA) of y. From that, the properties questioned by

the jury are R∗(a, x) and Ro(a, x) respectively, where a is a name for Karl. Assuming that

Fritz is tempted to check such properties, the first one generate Kerry’s circularity, while the

5The first emphasis is ours, the second is Frege’s. The phrase “logical ordering” is a translation for logische

Folge, which Stefan Bauer-Mengelberg better translates as “logical consequence” in (FREGE, 1967, p.5).
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second exemplifies Angelelli’s argument against Frege’s reduction of the Ancestral, what he

calls the analysis interpretation. More precisely, the first is the following:

1. Kerry’s Circularity

(a) In order to prove that R∗(a, b) holds, one has to show all F properties which are

hereditary in R such that, if ∀z(R(a, z) → F (z)) then F (b);

(b) R∗(a, x) is such property;

(c) Then, one has to show that b has the property R∗(a, x), i.e., that R∗(a, b) holds;

(d) This is circular, hence, R∗(a, b) cannot hold.

Assuming that b is a name for Fritz. The second circularity is an argument against the

Analysis Interpretation. It goes as follows:

1. Angelelli’s Circularity

(a) Assume that (FA) is a reduction of (OA);

(b) From (a), to show that Ro(a, b) holds, one has to show that R∗(a, b) holds;

(c) From (FA), to prove that R∗(a, b), one has to show all F properties which are

hereditary in R such that, if ∀z(R(a, z) → F (z)), then F (b);

(d) Ro(a, x) is such property;

(e) Hence, one has to prove that b has the property Ro(a, x), that is, to prove that

Ro(a, b) holds;

(f) This is circular. Therefore, (FA) is not reduction of (OA).

Assuming again that a and b are names for Karl and Fritz, respectively. Both circularities

can be generalized for any x and y. The first circularity is what we already discussed above.

The second one goes between (b) and (e). It simply states that, if one wants to prove that

someone is his ordinary ancestor in terms of Frege’s definition, at some point, he would have

to prove that he is the ordinary ancestor of that person, hence, the proof would require the

conclusion as one of his premises. The consequence of such circularity is that in order to

(FA) successfully reduce (OA), (OA) could be stated in terms of (FA) and (FA) alone, but
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no such reduction is possible, since everytime we want to show that (OA) holds in terms of

(FA), we are obbligated to prove (OA) in the first place.

Angelelli’s conclusion, then, is that at best (FA) is an enrichment and a generalization of

(OA), not an analysis or reduction. In his words

The enrichment occurs through the “discovery” of the property of being hereditary

that many properties have [and] includes the focusing on, and helps towards the

demonstration of the formal properties of the ordinary ancestral, e.g., transitivity,

which as Frege points out is what leads to the logical understanding of arithmetical

induction. The generalization is accomplished in that the ancestral’s underlying

relation as such is conceived in a most abstract fashion. (ANGELELLI, 2012,

p.498-499).

Since (FA) quantifies unrestrictedly over the domain of properties, the ordinary ancestral still

appears in its scope. For that reason, (FA) cannot properly substitute (OA). The alleged

enrichment of (FA) was already been extensively discussed above. Not just the transitivity,

but given the suitable conditions, (FA) is also trichotomous and fundamental for the natural

number series and the principle of mathematical induction. The generalization is due simply

by the fact that the Ancestral is actually not a first-order relation per se, but a second-order

property that can be applied to any first-order relation. Either way, Frege’s definition is

impredicative, as the first circularity clearly shows.

4.2 The circularity revisited

It’s pretty clear that (FA) is impredicative. But yields the impredicative nature of (FA)

a circular definition? Is it harmful as Kerry and Angelelli supposed? Apparently not. Both

arguments have, at least, one problematic premise. This, added with Frege’s philosophical

motivations, might help understanding both circularities. In what follows, we argue against

their conclusions. First, we recaptulate Frege’s reduction of (OA) into (FA) and his philo-

sophical justification for it. This will guide us into the second point: the fact that the

circularity is due to some confusion about the role of quantification in Frege’s concept-script.

This help us understand why such circularities are not a problem for Frege, and perhaps also
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why he never answered Kerry’s criticisms. Then, we argue that even granting Kerry’s and

Angelelli’s interpretation as valid, the verification of (FA) is not possible as they imagined it

to be. In arguing for such, we conclude that Frege’s Ancestral is not circular, although still

impredicative.

4.2.1 Frege’s Reduction

We have already pointed out much of Frege’s philosophical motivations. Logicism was,

from the beggining, his main motivation, one that could very well be summarized as the at-

tempt of freeing arithmetic from intuitions. This was done essentialy in two fronts: showing

that arithmetical concepts are reducible into logical terminology and showing that arithmeti-

cal modes of inference are reducible to logical modes of inference. Angelelli is well aware of

this motivations. He recalls two important points: 1) that for Frege any consideration about

features of particular cases of (FA) are not essential and 2) that the proof of R∗(x, y) should

not be an enumeration of each point of the chain that starts from x and leads to y. These

are important points that Angelelli rightfully mention, but failed to link to the circularity

problem.

The first thing, argued in BS , is the generality of (FA):

The propositions about sequences developed in what follows far surpass in gener-

ality all similar propositions which can be derived from any intuition of sequences.

Therefore, if one wishes to consider it more appropriate to take as a basis an intu-

itive idea of sequences, then he must not forget that the propositions so obtained,

which might have somewhat the same wording as the ones given here, would not

state nearly so much as these because they would have validity only in the domain

of the particular intuition upon which they were founded. (BS , §23)

From that, it follows that Frege’s definition is one that generalizes the basic notion of a

(transitive) series. Thus, the ordinary ancestral relation holding between human beings, the

relation of one number following another in the natural number series, or any other partially

ordered series is an instance of Frege’s definition. Particular cases of (FA) can be about

objects that are only aprehended from this or that intuition, or none at all. But (FA) does
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not need so, and this is confirmed by the fact that theorems regarding it are proved from “pure

thought” alone (BS ,§23). The generality of the definition is again mentioned in (GLA,§80):

“since the relation R has been left indefinite, the series is not necessarily to be conceived in

the form of a spatial and temporal arrangement, although these cases are not excluded”.

Following this passage, Frege starts arguing against what we might consider a step-by-

step proof procedure for the ancestral. This is: “if starting from x we transfer our attention

continually from one object to another to which it stands in the relation Φ, and if by this

procedure we can finally reach y, then we say that y follows in the Φ-series after x” (GLA,§80).

From this procedure, if Fritz wants to prove that he is Karl’s descendent, he just have to

prove that he is the son of a son of ... a son of Karl. This is something like:

∃x1, ...,∃xn(P (a, x1), ..., P (xn, b))

Where P is the usual parent relation. Hence, a step-by-step proof like this requires that each

link of the chain between Karl and Fritz to be proved. Frege does not rely on this kind of

proofs. He continues by saying that “this describes a way of discovering that y follows, it

does not define what is meant by y’s following”6 (GLA,§80). This discovery is not necessarily

a definition, or at least is not a good one. And this is because Fritz being or not Karl’s

descendent does not depend upon his proof in front of the jury. As Frege argues:

Whether y follows in the Φ-series after x has in general absolutely nothing to do

with our attention and the circumstances in which we transfer it; on the contrary,

it is a question of fact, just as much as it is a fact that a green leaf reflects light

rays of certain wave-lengths whether or not these fall into my eye and give rise

to a sensation, and a fact that a grain of salt is soluble in water whether or not I

drop it into water and observe the result, and a further fact that it remains still

soluble even when it is utterly impossible for me to make any experiment with it.

(GLA,§80).

This is an aspect of Frege’s realism: that there are facts independent of our way of apre-

hending them. This certainly is the case for arithmetic, since numbers are, as Frege regards

6The emphasis is ours.
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them, self-subsisting objects and arithmetical propositions are true independent of our way

of regarding them, which is also Frege’s anti-psychologism. We cannot take the mental rep-

resentation of an object as the object itself. At least as far as arithmetical propositions

are concerned, the genesis of a representation has nothing to do with the justification for

regarding it as true. This is argued in the very beginning of BS :

on the one hand, we can ask by what path a proposition has been gradually estab-

lished; or, on the other hand, in what way it is finally most firmly establishable.

Perhaps the former question must be answered differently for different people.

The latter [question] is more definite, and its answer is connected with the inner

nature of the proposition under consideration. (BS , p.103).

He then concludes that it’s “[...] not the psychological mode of origin, but the most

perfect method of proof underlies the classification” (BS , p.103). The point was also made in

(GLA, introduction) as a dictum: to “Never let us take a description of the origin of an idea

for a definition, or an account of the mental and physical conditions on which we become

conscious of a proposition for a proof of it”. Still in the introduction, he also argues “[...]

that a proposition no more ceases to be true when I cease to think of it than the sun ceases

to exist when I shut my eyes” (GLA, introduction). All this is to reminds us how Frege

distinguished between the discovery that a proposition is true to the justification of it.

Returning to Fritz case, one could, and expect, to prove his heritages by showing each

step of the chain between him and Karl. But Frege’s realism towards truth assumes that this

fact, whether Fritz is or isn’t Karl’s descendent, does not change according to Fritz defense

for it. He is Karl’s descendent or not regardless if the jury is convinced with his speech.

Frege himself is saying that:

What I have provided is a criterion which decides in every case the question Does

it follow after?, wherever it can be put; and however much in particular cases

we may be prevented by extraneous difficulties from actually reaching a decision,

that is irrelevant to the fact itself. (GLA,§80)

Needless to say, Frege’s definition is consistent with his own philosophical recomendations.

R∗(x, y) cannot rely upon a step-by-step proof, by showing each link of the connection be-
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tween x and y. Theorem BS98, about the transitivity of the ancestral, could be equally

proved in this intuitive way. If there is a path between x and y, and one from y and z, we

could prove that there is another from x and z, by starting from x, reaching y and moving

along until we finally reach z. But should the proof depends on such procedure? According

to Frege, certainly not:

We have no need always to run through all the members of a series intervening

between the first member and some given object, in order to ascertain that the

latter does follow after the former. Given, for example, that in the Φ-series b

follows after a and c after b, then we can deduce from our definition that c follows

after a, without even knowing the intervening members of the series. (GLA,§80).

As we saw, Frege is offering a logical definition that made possible to prove important facts

about the ancestral in a pure logical fashion, with maximal generality and no need for intu-

itions in its proofs. This is (FA). (OA) in the other hand, is this exact intuitive notion that

Frege wants to avoid, one that need a step-by-step proof, which is intuition-dependent and

rely upon this or that particular case of application. Thus, and Angelelli is right about this,

(FA) is a reduction of (OA), a generalization and certainly an enrichment, one that seeks to

provide for a common notion, (OA), a formal and precise formulation that is purely logical.

But Angelelli’s and Kerry’s argument for the circularity made use of an assumption that is

very much akin to what Frege is trying to rule out in (FA).

4.2.2 Is there a circularity?

But then, why Fritz is incapable of proving his desired heritage of Karl by simply quoting

(FA)? Because (FA) doesn’t work that way. By asking Fritz to prove whether he has the

property “being Karl’s descendent”, the jury is asking this exact step-by-step proof that

Frege wants to shun, but instead of speaking of a proof of each link of the ancestor to the

descendent, it’s a proof of each hereditary property that is passed along from on to the other.

Moreover, both arguments for the circularity of (FA) uses the assumption that in order

to verify the truth of a quantified sentence like ∀xϕx, one has to show first that ϕ holds for

every object in the domain. That is, a quantified sentence requires a justification for each of
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it’s instances in order to be true. More than that, this requires that the desired sentence is

true only if we could, in principle, verify each instance in advance. This, of course, would get

us into trouble if the quantified domain is not finite. Even in the case of (FA), it’s not clear

whether the domain of properties is finite or not. Either way, sentences as “every single man

is unmarried” or “every natural number is either even or odd” would require more than is

possible as justification in order to be true. This is not what quantification is about. But this

is required if such circularity is to be derived from (FA): only in this scenario, the question

whether b has the property R∗(a, x) can be raised prior to the justification for R∗(a, b) in the

first case.

But this is what at least one premise of each argument pressuposes in order to be valid.

They are premises (a) and (c) from the first and second arguments, respectively. They assert

that:

to prove that R∗(a, b), one has to show all F properties which are hereditary in

R such that, if ∀z(R(a, z) → F (z)), then F (b);

This is precisely the worry that Frege had answered in GLA, but now regarding properties.

One need no checking of each step of the sequence to prove that R∗(a, b). Analogously, one

needs no checking of each hereditary property in order to prove that R∗(a, b). In this case,

both Kerry and Angelelli seems to be confusing a logical justification with an epistemological

one. First, we have a step-by-step proof of the ancestral relation that Frege ruled out, i.e.,

the checking of each link of the series in order to verify the connection between the ancestor

and the descendent. This is an empirical/epistemic proof. In the same way, Angelelli and

Kerry are assuming a epistemic/empirical proof for the application of (FA): the checking of

each hereditary property that the ancestor passes through R and the subsequent checking of

the same properties in the descendent. Is safe to say that Frege would ruled that out too.

Thus, there is a confusion regarding the role of the universal quantifier and his logical

justification. Frege never answered Kerry about the circularity problem, but Russell had in

the appendix to Frege in his Principles of Mathematics:

This argument, to my mind, radically misconceives the nature of deduction. In

deduction a proposition is proved to hold concerning every member of a class,
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and may then be asserted of a particular member: but no proposition concerning

every does not necessarily result from enumeration of the entries in a catalogue.

(RUSSELL, 1996, p.522)

The same can be applied to Angelelli’s argument. He even quote Russell but doesn’t discuss

his response in his paper. He also mention Carnap’s response, but do not discuss it. Carnap

himself argues in favour of Russell and Frege:

[...] in order to demonstrate the truth of a universal sentence, it is not necessary to

prove the sentences which result from it by the substitution of constants; rather,

the truth of the universal sentence is established by a proof of that sentence itself.

The demonstration of all individual cases is impossible from the start, because

of their infinite number, and if such a test were necessary, all universal sentences

and all indefinite predicates (not only the impredicative ones) would be irresoluble

and therefore (by that argument) meaningless. (CARNAP, 1937, §44)

Then, not just this proof procedure is untenable, but is impossible in cases where the domain

in question is infinite, since a proof is a finite operation.

As already mentioned, Angelelli is well aware of Frege’s intentions, but he does not seem to

find a connection between them and his own version of the circularity. In Angelelli’s version,

in contrast to Kerry’s, the focus is on the proof that Ro(a, x) is an hereditary property in

R (premise (d)). But as we see it, this can be answered in the same way. That Fritz, here

denoted by b, has the property Ro(a, x) does not depends upon any checking. Either Ro(a, b)

holds or not. In the fictional story proposed by Angelelli, it’s pretty clear that Fritz goes to

the court to show his heritages, not to determine the truth of it.

Fulugonio (2008) gives an argument in favour of the circularity as well. Her arguments

are very similar to Angelelli’s7, and reiterates that the circularity undermines Frege’s project

completely. She argues that:

The only suposition in Kerry’s criticisms to the Fregean definition of succession

is that Frege’s construction, and the definition of succession in particular, has a

7And in her defense, came first than Angelelli’s paper.
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defined gnosiological motivation, one that Frege certainly explicits in many opo-

tunities throughout his work. From that, if, as part of his project, Frege intends

to clarify the notion of succession, his elucidation is - at least - insatisfactory if it

demands, among other things, that it is known what it attemps to be clarifying.

(FULUGONIO, 2008, p.9)8

As we discussed earlier, this is false. In many oportunities in GLA and already in BS , Frege

argues in the oposite direction, regarding the justification for a proposition in contrast to the

way one can regard it as true. As we take it, as far as the Ancestral is concerned, definitions

and proof methods does not follow any epistemic worries, but only by assuming this that

one can regard both circularity arguments as sound. Furthermore, Fulugonio argues that

Russell’s defence of Frege’s definition of the Ancestral missed one important point, in not

discussing the particular case where the property “[..] ‘to follow x’ is precisely one of the

hereditary properties in which we find ourselves in a vicious circle” (FULUGONIO, 2008,

p.8)9. But Russell’s response goes to the heart of the problem: only by taking an incorret

account on quantification that such property becomes problematic as Kerry’s supposes. In

his short response to Angelelli, Heck Jr. (2016, p.101), adds that “Russell is making an

elementary logical cum epistemological point: a universal generalization does not have to be

derived from the conjunction of its instances, and knowledge of a universal generalization

need not rest upon knowledge of its instances”.

It should also be noted that Fritz’s case is a particular one: a particular application

of (FA) to a particular individual. For that matter, it’s hard to imagine how Fritz could

prove R∗(a, b) without a likely empirical (viz. intuitive) proof. And without some grounds,

he cannot. It seems that (FA) is not suitable for helping his case, but again, this was not

Frege’s interest either. Heck also adds that “the power of Frege’s definition shows itself not

in particular cases but in results like [...] the generalizations that it allows to us to prove”

8In the original: “El único supuesto presente en la crítica de Kerry a la definición fregeana de sucesión es
que toda la construcción fregeana, y la definición de sucesión en particular, tiene una aspiración gnoseológica
definida, aspiración que por cierto Frege explicita en reiteradas oportunidades a lo largo de toda su obra. De
modo que, si como parte de su proyecto lo que pretende Frege es elucidar la noción de sucesión, su elucidación
es –cuanto menos– insatisfactoria si ella exige, entre otras cosas, que sea ya conocido aquello que se quiere
elucidar”. The translation is ours.

9In the original: “[...] que “seguir a x” es precisamente una de tales propiedades hereditarias, con lo cual
nos encontramos ante un círculo vicioso”. The translation is ours.
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(HECK JR., 2016, p.101-102). Frege’s intensions are with his logicism account of arithmetic,

and in this particular case, no “checking” procedure is necessary if numbers are regarded as

logical objects, otherwise, propositions about numbers would be empirical ones. As Russell

(1996, p.522) completes, “Kerry’s argument, therefore, is answered by a correct theory of

deduction; and the logical theory of arithmetic is vindicated against its critics”10, and here

we add that Angelelli’s argument is likewise answered by it.

4.2.3 Some further points

Let us consider for now that the problematic premise in both circularity arguments is

true, thus asserting that (FA) is proved with a checking procedure, or in Kerry’s words, that

we check the catalogue of properties. More precisely, R∗(a, b) holds if, and only if, for each F

that is hereditary, it could be verified that all R-descendent of a have F , then F (b) as well.

It’s important to notice that a property can be hereditary in a given series even though it

does not hold to all objects, that is, it could be the case that one property is hereditary in a

given point of one series but not for the preceding objects of that point. In this case, consider

the property ‘being greater than 10’. This is an hereditary property for all numbers n such

that n > 10, but is not for those n’s such that n ≤ 10. The same holds for the problematic

property “being a’s descendent”, since a is not a descendent of itself, it does not have such

property. But every R-descendent of a have it.

Keeping that in mind, Let R be a relation defined on a domain D = {a, b, c}, and let

R(a, b), R(b, c) holds. We want to ask two questions: 1) whether R∗(a, b) or R∗(b, c) holds,

and 2) if R∗(a, c) holds as well.

1. To verify if R∗(a, b), we must then look for all F -hereditary properties shared by R-

descendents of a, and then look for these same properties on b. But since R(a, b), there

is no R-descendent of a prior to b, only b itself (for convienience, assume that R is

one-to-one). So we must look into b’s properties that are hereditary and check all of

10Russell also points out that this is very similar to Mill’s objection to Barbara inferences, but can be
likewise answered. He concludes that “general proposition can often be established where no means exist
of cataloguing the terms of the class for which they hold; and even, as we have abundantly seen, general
propositions fully stated hold of all terms, or, as in the above case, of all functions, of which no catalogue
can be conceived” (RUSSELL, 1996, p.522).
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them. But in this case, what would we find in such catalogue of b-properties? This is

not clear at all. In fact, since b is the first imediate R-descendent of a, the only option

is look directly over a’s properties and then check if b has them. But this is not what

(FA) states, and even if it was, the property R∗(a, x) is not one of them, since (FA) is

not reflexive.

2. Now, if we want to verify if R∗(a, c), that is, the case where c is not an imediate successor

of a in the R-series, we should check all hereditary properties of the R-descendents of

a as well, in this case b. But again, there could be some property that b does not have

and that c has exaclty because c follows b in the R-series, say, the property “being a’s

descendent that follows after b”. If we consider Frege’s definition of natural number in

terms of the Ancestral, as exposed in chapter 3 above, we could very well ask about

the proposition P+(0, 10). In this case, the number 10 has hereditary properties that

no number before it in the natural number series has, and that 10 has because it is a

natural number that is greater than all preceding numbers. For example, the property

(P+(0, x) ∧ P ∗(9, x)), that is, “being a natural number greater than 9” is one of them.

These situations seems, and are, very confusing if we assume that every single property

should be verified in order to prove any instantiation of (FA). Frege’s response for this would

be the following: one could, and should, reach the conclusion that “being a natural number

greater than 9” is an hereditary property in the natural number series after the number 9

by logical means alone, i.e., whitout any intuition-based faculty, since we could not get this

property by simply checking all preceding members of the series. Of course, this would be

a direct response to Angelelli and Kerry, not for a kantian, since there is no need to check

properties in the kantian sense. The problem is that one should be able to prove that, e.g.

“being a natural number greater than 9” is a property that all numbers greater than 9 has,

even though 9 itself does not have it.

This rather ordinary procedure is not the only way one can prove that R∗(a, b), or to

Fritz prove that he is Karl’s descendent11. Fritz would easily prove that he has this property

if he had grounds to show his heritages in the first place. This grounds, however, must be

11The same point is made by Heck Jr. (2016).
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logical ones. But is hard to believe that this is what matters in Fritz case. If the question

was to decide if P ∗(0, 3), for example, there would be a logical way to check it, provided

Frege’s own results in BS and GLA12. But Fritz is not a logical object, so there would be

no pure logical form to decide whether he is Karl’s descendent or not. Angelelli argues that

(FA) is a reduction to the sense that it’s supposed to substitute (OA), to the extend that

Frege’s intention was to provide a more perfect language than the ordinary one. But Frege’s

intention, as we see it, certainly was a tentative to provide better definitions for ordinary

concepts but only as they are necessary for mathematical purposes. In this sense, there is

no reason to expect from Frege the intensions that Fritz had in the fictious example that

Angelelli provided.

Finally, if we expect Fritz to prove his heritages only in the presence of a full proof of

each instance of the parent relation from him to Karl, Fritz would have problems to show,

for example, that if he is son of someone who is Karl descendent, he is Karl’s descendent as

well. But it is clear that, provided those cases, he would be, even whitout a demonstration of

the complete path from him to Karl. If Fritz had those two premises proved, he could prove

that he is Karl’s descendent with the aid of Theorem (96) of BS :

R∗(x, y) ∧R(y, z) → R∗(x, z)

These are the kind of results that were important in Frege’s point of view, i.e., that of

arithmetic. Likewise, should one prove that R∗(a, x) is an hereditary property by looking

to every member of the R-series for such? Certainly not. It can be easily proved from

the definition alone. And Theorem (97) of BS does exaclty that, not simply offering the

problematic property as Kerry’s argued.

4.3 Conclusion

In what we argued above, (FA) is not circular as Kerry and Angelelli intended. But is

still an impredicative definition. The property R∗(a, x) is still in the scope of the quantifier.

12And ignoring the inconsistency of his theory of extensions.
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But this is not a real problem for Frege. At least not for the Ancestral. Frege’s approach

towards properties, or more precisely functions in his ontology, is a Realist one: the domain

of functions is independent of the definition that one can give for them. There is no real

problem in defining one function in terms of the totality in which is itself a member, since

the function defined does not exists only after the definition.

But this problem is at the heart of logicism, since as we saw, the Ancestral is used to

define the very notion of natural numbers. Recall that n is a natural number just in case

P+(0, n) holds for n. But this is also an hereditary property: a successor of a natural number

is itself a natural number13. But P+(0, x) holds if x has all hereditary properties of 0 that all

P -successors of 0 have, where P+(0, x) is one of them. If we follow what we have discussed

already, this is not itself a circularity, having no problem for a realist like Frege.

Hence, not every impredicative definition is harmful, or at least problematic from a fregean

point of view. For that reason, not everyone was in full agreement with the complete ban

of such definitions, as Russell’s vicious circle principle recommended. As Ramsey (1931,

p.41) famously put it, we can “[...] describe it in a certain way, by reference to a totality

of which it may be itself a member, just as we can refer to a man as the tallest in a group,

thus identifying him by means of a totality of which he is himself a member without there

being any vicious circle”. Likewise, Carnap (1937, p.164) just assume that accepting or not

impredicative definitions was “[...] a question of choosing a form of language — that is, of

the establishment of rules of syntax and of the investigation of the consequences of these”.

The other place where impredicativity affects Frege was in his full comprehension for

functions. This, added to Axiom V regarding value-ranges, yields Russell’s paradox. It was

this problem that motivates Russell in avoiding such impredicative cases. As we saw, most of

the important theorems regarding the Ancestral made use of comprehension axioms as well.

It was for this reason that, in declaring such axioms in the language, is necessary to provide

some restrictions in order to avoid cases like

∃F∀x(F (x) ↔ ¬F (x))

13See theorems BS108 and Her(N) in Appendix A.
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to be derivable. But even with this restriction, Frege’s Ancestral works as intended.

Finally, accepting that Frege’s definition of the Ancestral is not circular as both Kerry

and Angelelli intended, we can restate his main argument of the paper as the following:

P: Frege’s ancestral is a reduction of the ordinary notion into logical terminology

(The Analysis Interpretation);

P: Frege’s Ancestral is circular in regard to the ordinary notion;

C: Therefore, it is not a proper analysis.

But having argued that there is no circularity in Frege’s definition, we can attack Angelelli’s

conclusion by simply denying the second premise, keeping Frege’s reduction safe.



Concluding Remarks

As we have seen, the very notion of an ordered series is crucial for the foundations of

arithmetic. Frege’s project, the reduction of arithmetic into logic, was assumed already in

1879, where the writing and developing of the concept-script logic had this in mind. Such

project had philosophical motivations too, that includes, among others, a rejection of the

kantian thesis about the same notion, a thesis that we saw in chapter 1. Where’s Kant

regarded intuition as necessary, both for explaining ordered series and numbers, Frege was

convinced about the opposite. Numbers, assuming Frege’s definition in terms of extensions,

are not intuitive notions. Likewise, the very notion of ordered series is a logical procedure.

This was his goal in the beggining with BS , which clearly shows how he was already com-

mitted to logicism. For that matter, his motivations were described in kantian terms: to

prove the analyticity of arithmetical propositions, and to show how analytical proofs can

be nonetheless informative. All this was discussed in chapter 2. We then finally showed, in

chapter 3, the important fregean definition for the Ancestral. The theorems proved also show

how his definition realizes his philophical motivations, and more precisely, its important role

in proving the basic laws of arithmetic, which we described as the Dedekind-Peano axioms.

But despite Frege’s incredible achievements, problems and criticisms arised, and in chapter

4 we argued against one of them.

Frege’s conception of logic as universal, ranging over the totality of objects and concepts,

is brought up into question in much of those criticisms. And more precisely, quantification

over the full domain of properties, or concepts, is what gives Frege’s logic much trouble into

modern eyes. There are other problems, or criticisms, about Frege’s definition that worth

being mentioned. To begin with, with the fact that (FA) is second-order, quantifying over

the domain of properties without restriction, we have Quine’s worries that second-order logic

132
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is “set theory in sheep’s clothing”, and not logic at all. This point is not of Frege’s concern,

since irrestrict second-order logic is logic by default for him. It is also prior to set-theory,

given that extensions are, at least until 1924, logical objects.

Parsons (1995), quotes another problem that Frege’s logical reduction in general is subject

to14. Frege claims to have derived the principle of induction (both general and mathematical)

from the ancestral definition and the definition of natural numbers. But, it can be argued,

much of the work already seems to pressupose the very notion of induction. First, Frege

might need such tool to define basic notions of the system15, and second, to argue that such

definitions captures the intended meanings16.

More recently, Heck Jr. (2016) tackled this problem17. As we argued, Frege’s Ancestral is

his way of defining linear orders for foundational purposes. He does not name his definition

as “Ancestral”, but the question that Heck asks is whether his definition does behave like

intended: as the usual ancestral relation, or equivalently, as a series that is at least transitive.

But the problem is that, if we try to prove the extensional adequacy of Frege’s definition with

the desired behavior, one must proceed by induction. Then, “we have to use arithmetical

induction to convince ourselves of the correctness of the definition we use to prove arithmetical

induction” (HECK JR., 2016, p.102). Even if we skip the problem assuming that Frege was

not at all worried about the ordinary ancestral, the same difficulty reapears in the definition

of natural number. How can we be sure that Frege’s natural numbers are in fact the natural

numbers? We cannot rely on induction, otherwise, Frege’s derivation of such rule of reasoning

from the Ancestral would be utterly circular. Heck himself offers a solution: a different

definition for the ancestral that captures the intensional meaning of the ordinary ancestral

that, although extensionally equivalent to Frege’s, does not use arithmetical induction. But

to enter Heck’s definition and proof would take us too far afield now.

Going back to the Frege-Kant differences, Boolos (1985), also adds the following ques-

tioning. Frege’s proofs uses, as we saw, the rule of substitution, which is equivalent to

14This is actually credited to Seymour Papert’s paper Sur le réducctionnisme logique.
15e.g. in defining what is a theorem, which usually is done by an inductive definitions.
16Parsons writes “Inductive definitions, especially, play an essential role both in setting up a system of set

theory and in establishing the correspondence between it and the system of number theory.” (PARSONS,
1995, p.202).

17It should be noted that much of this criticisms are discussed by Heck’s paper. The notes here own’s
much to it.
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comprehension axioms. In Frege’s logic, this is provided by the fact that variables standing

for concepts range over the domain of all properties. Hence, comprehension ensures us that,

for a given predicative sentence, there exists a property/concept correlated to it. But as

a kantian interlocutor might question, how can we be sure that there is such a property?

The main case, as the interlocutor might argue, is that “[...] we cannot admit substitution

as a logical rule unless we are prepared to admit that all instances of the comprehension

schema ∃X∀x(Xx ↔ A(x)) are logical truths” (BOOLOS, 1985, p.171). But this is hardly

acceptable by a kantian, who concludes that it is intuitions that licenses comprehension, by

showing the existence of such properties. Hence, the most important rule in Frege’s proof

might be argued to be some form of intuition. Boolos solution is actually to find a way to

rephrase the formulas of the BS in order to avoid mentioning special items over which the

second-order variables range. Once again, Boolos solution would take us too far.

Frege also believed that in deriving arithmetic as a “development of logic” (GLA,§87),

the application of arithmetic should be understood as a corolary: since logic has the most

inclusive domain and is applycable to everything18, our use of numbers does not directly

point to the world: “The laws of number are not really applicable to external things; [...]

They are, however, applicable to judgements holding good of things in the external world:

they are laws of the laws of nature” (GLA,§87).

The history of Frege’s logicism is well know: Frege’s axiom V is inconsistent, and the

project was then, at the foundations, a failure. In 1924, Frege retracted from the view that

arithmetic does not rely on intuitions. But this is, at least, the case for Frege’s notion of

cardinals numbers as dependent on extensions. The other part of Frege’s project that long

survived this disastrous faith is the Ancestral Definition. Russell’s and Whitehead’s analysis

of the same notion follows Frege very closely, the same goes for Quine and even the neo-

logicists today. But even this is not free from criticisms, and many problems are still open

to debate, as we saw.

To sum up, in concluding GLA, Frege believed “to have made it probable that the laws

of arithmetic are analytic judgements and consequently a priori” (GLA,§87). His criticisms

18Saving some restrictions: concepts without sharp boundaries cannot be counted, as Frege himself is aware
of.
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against Kant were by far the most common in GLA. But he is also careful, and did recognize

Kant’s merits, as a “genius to whom we must all look up with grateful awe”, and moreover,

declaring that “If Kant was wrong about arithmetic, that does not seriously detract, in my

opinion, from the value of his work.” (GLA,§89). We all know the fate of Frege’s logicism,

and for that matter, we owe him the same conclusion: if Frege was wrong about arithmetic,

that does not detract from the value of his work. His achievements with the ancestral, both

in BS and GLA are nothing but impressive and can still be regarded as successful.



Appendix A

Arithmetic in GLA

Here we prove the propositions in BS and GLA necessary for the proof of what nowadays is

called Frege’s Theorem: the derivation of the Dedekind/Peano axioms for arithmetic whithin

second-order logic and definitions. Important definitions and theorems proved in Chapter

3 are mentioned, and should be considered as part of the general proof. It should also be

mentioned that all the derivation that follows are not original. Not only the general strategy

is taken directly from Frege’s work, but minor details are also found already in the works of

Boolos and Heck Jr. (2011), Boolos (1985) and Zalta (2017). For a complete account on this

results, Almeida (2014) is recommended.

Alongside the definitions in Chapter 3, we add the following:

Definition. Equinumerosity

F ≈ G ≡ ∃R[∀x∀y∀z(R(x, y) ∧R(x, z) → y = z)∧

∀x∀y∀z(R(x, y) ∧R(z, y) → x = z)∧

∀x[F (x) → ∃y(R(x, y) ∧G(y))]∧

∀y[G(y) → ∃x(R(x, y) ∧ F (x))]]

Definition. Hume’s Principle (HP)

#F = #G ≡ F ≈ G

136
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Definition. Cardinal Number

Card(n) ≡ ∃F (n = #F )

Definition. Zero

0 ≡ #[x : x 6= x]

Definition. One

1 ≡ #[x : x = 0]

Definition. Predecessor Relation

P (m,n) ≡ ∃F∃x[F (x) ∧ n = #F ∧m = #[z : F (z) ∧ z 6= x]]

First, we prove some results that Frege announced in (GLA,§78).

Theorem GLA1. P (0, a) → a = 1

Proof. Imediate from the definition.

Theorem GLA2. 1 = #F → ∃xF (x)

Proof. Assume 1 = #F . Then, from the definition of 1, #F = #[x : x = 0]. From (HP),

F ≈ [x : x = 0]. Then, there is a R such that ∀x([x : x = 0]x → ∃y(R(x, y) ∧ F (y))) holds.

Since we know that [x : x = 0]0 is the case, we get that ∃y(R(0, y) ∧F (y)), which yields that

∃yF (y), completing the proof.

Theorem GLA3. 1 = #F → (F (x) ∧ F (y) → x = y)

Proof. Assume 1 = #F , F (x) and F (y). From the definition of 1, #[x : x = 0] = #F . From

(HP), [x : x = 0] ≈ F . Then, there is a R such that ∀y[F (y) → ∃x(R(x, y) ∧ [x : x = 0]x)].

Since both F (x) and F (y) holds, we arrive at ∃z(R(z, x)∧ [x : x = 0]z) and ∃z′(R(z′, y)∧ [x :

x = 0]z′). This shows that there is z, z′ such that both z = 0 and z′ = 0. Hence, z = z′. So,

R(z, x) and R(z, y) holds as well. But from the equinumerosity definition, R also satisfies

∀x∀y∀z(R(x, y) ∧R(x, z) → y = z). Finally, x = y as intended.
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Theorem GLA4. ∃xF (x) ∧ ∀x∀y(F (x) ∧ F (y) → x = y) → 1 = #F

Proof. Following GLA1 above, it suffices to show that P (0,#F ). For that, we have to

show all three conditions for the definition of P . We have as premises that ∃xF (x) and

∀x∀y(F (x) ∧ F (y) → x = y). (a) For the first one, since ∃xF (x), fix x as a, then F (a). (b)

For the second, #F = #F is enough. (c) Now, we must show that 0 = #[z : F (z) ∧ z 6= a].

Suppose there is a y such that [z : F (z) ∧ z 6= a]y, that is, F (y) ∧ y 6= a holds. But from

the premises, F (a) and F (y) yields that a = y, which contradicts the hypothesis. Therefore,

nothing satisfies the concept [z : F (z)∧z 6= a]. Then, any R is sufficient to show that [x : x 6=
x] ≈ [z : F (z) ∧ z 6= a], which yields from (HP) that #[x : x 6= x] = #[z : F (z) ∧ z 6= a], and

from the definition of 0, that 0 = #[z : F (z)∧z 6= a]. Finally, from existencial generalization,

P (0,#F ), and from GLA1, 1 = #F .

Theorem GLA5. P (m,n) ∧ P (m′, n′) → (m = m′ ↔ n = n′)

Proof. To prove such theorem, we need first to prove a lemma. One which states that, if F

and G are equinumerous, and if F (a) and G(b) holds, the concepts ‘being an F other than

a’ and ‘being an G other than b’ are also equinumerous, and vice versa.

Lemma GLA5b. F (a) ∧F (b) ∧ [(#[x : F (x) ∧x 6= a] = #[x : G(x) ∧x 6= b]) ↔ (#F =

#G)]

Proof. The proof has two parts:

1. Assume F (a), F (b) and that #[x : F (x) ∧ x 6= a] = #[x : G(x) ∧ x 6= b]. From (HP),

[x : F (x) ∧ x 6= a] ≈ [x : G(x) ∧ x 6= b], hence, there is a one-one R that correlate both

concepts. We need a R′ such that F ≈ G holds. Let R′ = [x, y : R(x, y) ∨ (x = a∧ y =

b)]. We need to prove that R′ satisfies F ≈ G

(a) Assume R′(x, y) and R′(x, z). Then, we have two possible cases: R(x, y) and

R(x, z) or x = a, y = b and z = b. In both cases, y = z.

(b) Assume R′(x, y) and R′(z, y). Two possible cases follows: R(x, y) and R(z, y) or

x = a, z = a and y = b. Either way, x = z as expected.
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(c) Since F (a) and G(b), R′(a, b) holds easily since a = a and b = b. Then from

existential generalization, F (a) → ∃y(R′(a, y) ∧G(y)).

(d) The same holds for the last part of the definition: G(b) → ∃y(R′(b, y) ∧ F (y)).

Applying (GEN) in both, we get that R′ is one-one between the F ’s and the G’s, and

hence F ≈ G. From (HP), #F = #G.

2. Assume F (a), F (b) and #F = #G. From (HP), F ≈ G. Then, there is a R one-one

between them. Define R′ such that

R′ = [x, y : F (x) ∧ x 6= a ∧G(y) ∧ y 6= b ∧ [R(x, y) ∨ (R(x, b) ∧R(a, y))]]

We must show that R′ is one-one between the concepts [x : F (x) ∧ x 6= a] and [x :

G(x) ∧ x 6= b].

(a) Assume R′(x, y) and R′(x, z), then we have two possible cases to consider: R(x, y)

and R(x, z) holds, or (R(x, b) ∧R(a, y)) and (R(x, b) ∧R(a, z)). Both cases yields

y = z.

(b) Assume R′(x, y) and R′(z, y), then we have two possible cases: R(x, y) and R(z, y),

or (R(x, b) ∧R(a, y)) and (R(z, b) ∧R(a, y)). Either way, x = z.

(c) Now, assuming [x : F (x)∧x 6= a]x, we have to pick a witness such that [x : G(x)∧
x 6= b] holds and bears R′ to x. Since F (x) and x 6= a, there some z such that G(z)

and R(x, z). If z 6= b, than easily R′(x, z) holds as required. If z = b, then R(x, b)

holds. More precisely, ¬R(a, b) holds as well, since x 6= a. Since clearly there is

some y such that G(y) and R(a, y), and since y 6= b, R′(x, y) holds in such case.

Either way, we derive that [x : F (x) ∧x 6= a]x → ∃y(R′(x, y) ∧ [x : G(x) ∧x 6= b]y)

as expected.

(d) The same reasoning above holds for this case, hence, [x : G(x) ∧ x 6= b]x →
∃y(R′(x, y) ∧ [x : F (x) ∧ x 6= a]y)

From that, R′ is one-one, and hence, from (HP): #[x : F (x)∧x 6= a] = #[x : G(x)∧x 6=
b].
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This completes the proof of the lemma.

We can now procede to prove the theorem.

1. Assume P (m,n), P (m′, n′) and m = m′. From that, P (m,n) and P (m,n′) holds. From

the definition of P and fixing F,G, a, b in both cases, we arrive at the following facts:

F (a), G(b), n = #F , n′ = #G, m = #[x : F (x) ∧ x 6= a] = #[x : G(x) ∧ x 6= b].

From the left-to-right direction of the Lemma GLA5b, we conclude that #F = #G

and hence n = n′.

2. Assume P (m,n), P (m′, n′) and n = n′. Then, P (m,n) and P (m′, n) holds. Fixing

F,G, a, b for both, we get the following facts: F (a), G(b), n = #F = #G, m = [x :

F (x) ∧ x 6= a] and m′ = [x : G(x) ∧ x 6= b]. From the right-to-left direction of the

Lemma GLA5b, we get that #[x : F (x) ∧ x 6= a] = #[x : G(x) ∧ x 6= b], and hence,

m = m′.

This concludes the proof of the theorem.

Lemma GLA0a. #F = 0 ↔ ¬∃xF (x)

Proof. 1. Assume #F = 0. Then, #F = #[x : x 6= x]. From (HP), F ≈ [x : x 6= x].

Then, there is a one-one R, where the following holds: ∀x[F (x) → ∃y([x : x 6= x]y ∧
R(x, y))]. Assume that F (a) holds for some a, then ∃y([x : x 6= x]y∧R(x, y)) and more

precisely, ∃y([x : x 6= x]y), and ∃y(y 6= y), which is not possible. Hence, there can be

no a, and hence ¬∃xF (x).

2. Assume ¬∃xF (x). There must be a R, one-one, such that F ≈ [x : x 6= x]. Since

nothing is an F , any one-one R is sufficient, since the correlation conditions holds

trivially. Therefore, #F = 0 as intended.

Corollary GLA0b. #F 6= 0 ↔ ∃xF (x)

Proof. The proof is imediate by contraposition on lemma GLA0a.

Theorem GLA6a. ¬P (n, 0)
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Proof. Assume P (n, 0), viz. that 0 is the successor of n. Then, from the definition of P ,

there is an F and x such that F (x), 0 = #F and n = #[z : F (z) ∧ R(z, y)]. Since 0 = #F ,

we have that #[x : x 6= x], and from (HP), [x : x 6= x] ≈ F . Then, there is a one-one

R such that the following hold: ∀x[F (x) → ∃y([x : x 6= x]y ∧ R(x, y))]. Since F (x) is the

case, ∃y([x : x 6= x]y) holds, that is, ∃y(y 6= y) which is a contradiction. Hence, ¬P (0, n), as

intended.

Theorem GLA6b. ∀x[∃F (x = #F ) ∧ x 6= 0 → ∃y(∃G(y = #G) ∧ P (y, x))]

Proof. Fix an x and assume ∃F (x = #F ) and x 6= 0. Then, from corolary GLA0b, ∃zF (z).

Fix it as a, hence F (a). We must show that there is a concept such that y is the number

if it. From comprehension axiom, let such concept be [z : F (z) ∧ z 6= a]. From that, it

follows trivially that P (#[z : F (z) ∧ z 6= a],#F ). Then, the theorem follows from existential

generalization.

The next theorems are proofs of some facts about the Ancestral, the natural numbers and

the principle of mathematical induction.

Theorem BS108. R+(x, y) ∧R(y, z) → R+(x, z)

Proof. Assume R+(x, y) and R(y, z). From the first premise, we have two cases:

1. R∗(x, y) holds. Then, from R(y, z) we get R∗(y, z) from BS91. Then, from BS98, we

arrive at R∗(x, z). Finally, R+(x, z) holds from the definition of the weak ancestral.

2. x = y holds. In that case, from the second premise, R(x, z). From BS91, R∗(x, z) and

from the definition of the weak ancestral, R+(x, z).

This completes the proof.

Theorem Her(N). N(m) ∧ P (m,n) → N(n)

Proof. Just let R be P and x be 0 in BS108,

Theorem BS81b. F (x) ∧ ∀v∀w(R+(x, v) ∧F (v) ∧R(v, w) → F (w)) → ∀z(R+(x, z) →
F (z))
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Proof. The proof is from BS81a. Assume the antecedents: (a) F (x), (b) ∀v∀w(R+(x, v) ∧
F (v) ∧ R(v, w) → F (w)) and for some fixed z, (c) R+(x, z). The aim is to show F (z). For

that matter, we use BS81a, instantiating F as the concept [x : F (z) ∧ R+(z, x)], which is

obtainable from comprehension axiom. This yields:

[F (x) ∧R+(x, x)] ∧Her → ∀z(R+(x, z) → [F (z) ∧R+(x, z)])]

Where’s Her abreviattes:

∀v∀w([F (v) ∧R+(x, v)] ∧R(v, w) → [(F (w) ∧R+(x,w))])

So we have to show both antecedents.

1. R+(x, x) holds trivially, and F (x) is assumption (a). Hence [F (x) ∧R+(x, x)].

2. We must show Her. Fix v and w, and assume both antecedents. From F (v), R(v, w)

and R+(x, v) and assumption (b), we get F (w). Since R+(x, v) and R(v, w) and from

theorem BS108, R+(x,w). This proves Her.

Having proved all antecedents of the instantiated BS81a, we arrive at [F (z) ∧ R+(x, z)],

which yields F (z) as desired, proving the theorem with assumption (c)1.

Theorem PIM. F (0) ∧ ∀v∀w(N(v) ∧ F (v) ∧ P (v, w) → F (w)) → ∀z(N(z) → F (z))

Proof. Just let x be 0 and R be the predecessor relation P in BS81b and apply the definition

of natural number.

Lemma BSL1. R∗(x, y) → ∃z(R(z, y) ∧R+(x, z))

Proof. Assume R∗(x, y). To prove it, we use the ancestral definition, assuming R∗(x, y) and

taking F to be the concept [w : ∃z[R(z, w) ∧R+(x, z)]], obtaining:

∀w(R(x,w) → ∃z[R(z, w) ∧R+(x, z)]) ∧Her → ∃z[R(z, y) ∧R+(x, z)]

1A shortened version of this proof is originally found in (BOOLOS; HECK JR., 2011, p.79-80)



APPENDIX A. ARITHMETIC IN GLA 143

Where Her is an abbreviation for

∀u∀v(∃z[R(z, u) ∧R+(x, z)] ∧R(u, v) → ∃z[R(z, v) ∧R+(x, z)])

We have to show both antecedents.

1. Fix w and assume R(x,w). Since R+(x, x) holds trivially, we get R(x,w) ∧ R+(x, x),

and from existential generalization ∃z[R(z, w) ∧R+(x, z)]. From (GEN), we prove the

first antecedent.

2. Fix u and v, and assume ∃z[R(z, u) ∧ R+(x, z)] and R(u, v). Fix z as a, then R(a, u)

and R+(x, a). From BS108, R+(x, u). Then, R(u, v) ∧ R+(x, u), we then arrive at

∃z(R(z, v) ∧R+(x, z)). From (GEN) we complete the proof, hence Her holds.

From both antecedents, then ∃z[R(z, y) ∧R+(x, z)], completing the proof.

Finally, we prove three lemmas, announced by Frege in (GLA,§§82 − 83), which are used

in the proof of the Theorem GLA7, that every natural number has a successor.

Lemma GLAL1. ∀x(N(x) → ¬P ∗(x, x))

Proof. Fix x and assume N(x). The proof is by induction, using a modified version of BS812.

Let F be [x : ¬P ∗(x, x)], x be 0, y be x, R be P and avoiding the definiens for the hereditary

property, we get:

¬P ∗(0, 0) ∧ P+(0, x) ∧ ∀v∀w(¬P ∗(v, v) ∧ P (v, w) → ¬P ∗(w,w)) → ¬P ∗(x, x))

We have to show all three antecedents.

1. Assume that P ∗(0, 0). From lemma BSL1, ∃z(P (z, 0) ∧ P+(0, z)). Fixing z as n, we

derive P (n, 0). This is against theorem GLA6b, hence, ¬P ∗(0, 0).

2. Since N(x), we have P+(0, x).

2The difference is in the second conjunct: the former has the strong ancestral, whilst here the weak
ancestral will be used instead. The derivation is easy and we omit it here.
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3. Fix v and w, and assume P ∗(w,w) and P (v, w). From BS91, P ∗(v, w). Using lemma

BSL1, ∃z(P (z, w) ∧ P+(v, z)). Fixing z as a, P+(v, a) has two cases to be considered:

(a) P ∗(v, a) is the case. Then, from P (a, w) and BS91, P ∗(a, w), and from BS98

twice, P ∗(a, v) and then P ∗(a, a). Moreover, since P is one-one (GLA5), from

P (v, w) and P (a, w) get that v = a. Hence, P ∗(v, v) holds.

(b) v = a. Then, since P ∗(w,w), using BSL1, ∃z(P (z, w) ∧ P+(w, z)). Fix z as b,

then P (b, w) and P+(w, b). From the first and GLA5, a = v = b. Now, from

P+(w, b) we have to cases: Case 1) w = b. In that case, a = v = b = w and

hence P ∗(v, v). Case 2) P ∗(w, b). Then, also P ∗(w, v), and with P ∗(v, w) already

acquired, P ∗(v, v) from BS98.

P ∗(v, v) is obtained in both cases. Now, we derived P ∗(w,w) ∧ P (v, w) → P ∗(v, v).

From contraposition, we conclude the desired ¬P ∗(v, v) ∧ P (v, w) → ¬P ∗(w,w)

This proves all antecedents. Hence, ¬P ∗(x, x).

Lemma GLAL2. N(y) ∧ P (x, y) → ∀z[P+(z, y) ∧ z 6= y) ↔ P+(z, x)]

Proof. Assume both N(y) and P (x, y). We prove both directions of the biconditional.

1. Fix any z, and assume P+(z, y) ∧ z 6= y. From the definition, then P ∗(z, y). Using

BSL1, ∃w(P (w, y) ∧ P+(z, w)). Now fix w as a, hence P (a, y) and P+(z, a). From

GLA5, P (x, y) and P (a, y), x = a. Then, from P+(z, x) as intended.

2. Fix z and assume P+(z, x). We have two cases to consider:

(a) x = z is the case. From that, P (z, y). From BS91, P ∗(z, y) and P+(z, y) from

the definition of the weak ancestral. Suppose now that z = y. Then x = z = y,

which yields both P (x, x) and P+(0, x). Now, from BS91, P ∗(x, x), and hence,

P+(0, x) → P ∗(x, x) and N(x) → P ∗(x, x), which is against GLAL1. Hence,

z 6= y, which yields (P+(z, y) ∧ z 6= y).

(b) P ∗(z, x) is the case. From P (x, y) and BS91, P ∗(x, y), and from BS98, we get

P ∗(z, y), and then P+(z, y) from definition of the weak ancestral. Assume z = y,
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then P ∗(y, y) and P+(0, y), which contradicts GLAL1, hence z 6= y, and then

(P+(z, y) ∧ z 6= y).

Finally, from (GEN), we complete the proof.

Lemma GLAL3. N(y) ∧ P (x, y) ∧ P (x,#[z : P+(z, x)]) → y = #[z : P+(z, y) ∧ z 6= y]

Proof. Assume N(y), P (x, y) and P (x,#[z : P+(z, x)]). From GLA5, y = #[z : P+(z, x)].

Now from GLAL2 above, ∀z(P+(z, y) ∧ z 6= y ↔ P+(z, x)). Now, (HP) has as corolary

∀x(F (x) ↔ G(x)) → F ≈ G. From that, we arrive at [z : P+(z, y) ∧ z 6= y] ≈ [z : P+(z, x)],

which from (HP) gives #[z : P+(z, y) ∧ z 6= y] = #[z : P+(z, x)]. Finally, this yields that

y = #[z : P+(z, y) ∧ z 6= y]

Theorem GLA7. ∀n[N(n) → P (x,#[z : P+(z, x)])]

Proof. We assume PIM, taking F to be [x : P (x,#[z : P+(z, x)])} and rearranging the

variables to arrive at:

P (0,#[z : P+(z, 0)])∧

∀x∀y(N(x) ∧ P (x,#[z : P+(z, x)]) ∧ P (x, y) → P (y,#[z : P+(z, y)])) →

∀n(N(n) → P (n,#[z : P+(z, n)]))

So it’s enough to prove both antecedents.

1. To show that P (0,#[z : P+(z, 0)]), we must show a concept F and an object x that

satisfies the definition of P . Let F be [z : P+(z, 0)] and x be 0. Then:

(a) P + (0, 0) holds from reflexivity of P+.

(b) #[z : P+(z, 0)] = #[z : P+(z, 0)] holds trivially.

(c) We must now show that 0 = #[z : [w : P+(w, 0)]z ∧ z 6= 0]. By the definition of 0

and simplyfing a little, we must show that #[z : z 6= z] = #[z : P+(z, 0) ∧ z 6= 0].

For that, suppose that ∃x(P+(x, 0) ∧ x 6= 0). Then, fixing x as a, P+(a, 0) and

a 6= 0 implies that R∗(a, 0). From that, using BSL1, ∃z(R(z, 0)∧R+(a, z)). Fixing

z as b, then P (z, 0). This contradicts GLA6b, hence ¬∃x(P+(x, 0)∧x 6= 0). Then,

from GLA0a, 0 = #[z : P+(z, 0) ∧ z 6= 0].
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This proves that P (0,#[z : P+(z, 0)]).

2. We must now show that the concept [w : P (w,#[z : P+(z, w)]} is hereditary in P . For

that, fix x and y, assume N(x), P (x,#[z : P+(z, x)]) and P (x, y). Then, from GLA5,

y = #[z : P+(z, x)]. From Her(N), N(y), and from GLAL3, y = #[z : P+(z, x) ∧ z 6=
y]. Now, it’s suffice to show that P (#[z : P+(z, y) ∧ z 6= y],#[z : P+(z, y)]). For the

definition P , let F be [z : P+(z, y)] and x be y. Then:

(a) P+(y, y) is true given the reflexivity of P+.

(b) #z : P+(z, y) = #z : P+(z, y) trivially.

(c) Now since [z : P+(z, y) ∧ z 6= y] is the same as [z : [w : P+(w, y)]z ∧ z 6= y], then

trivially #[z : P+(z, y) ∧ z 6= y] = #[z : P+(z, y) ∧ z 6= y].

Hence, P (#[z : P+(z, y)∧z 6= y],#[z : P+(z, y)]), and since y = #[z : P+(z, y)∧z 6= y],

P (y,#[z : P+(z, y)]) as intended.

Since both antecedents are proved, then ∀n(N(n) → P (n,#[z : P+(z, n)])) as desired.

Corollary GLA8. ¬∃x(N(x) → ∀y(P (y, x))

Proof. Assume that there is such x. Name it a and assume N(a). Then, ∀y(P (y, a)). From

GLA7, P (a,#[z : P+(z, a)]). Name #[z : P+(z, a)] as b. From ∀y(P (y, a)), let y be b, and

we derive P (b, a). But then, P (b, a) and P (a, b) implies a = b from GLA5 and then P (a, a)

holds. From BS91, P ∗(a, a). This is against GLAL1. Hence, there are no such x.

The next theorem states that the predecessor relation under natural numbers is trichoto-

mous.

Theorem BS133b. N(x) ∧ N(y) → (P ∗(x, y) ∨ P ∗(y, x) ∨ x = y)

Proof. Assume N(x) and N(y). From definition, P+(0, x) and P+(0, y). From definition of

P+, we have four cases to consider:

1. If both 0 = x and 0 = y, then x = y and the conclusion holds.

2. If P ∗(0, x) and 0 = y, then P ∗(y, x), and the conclusion holds.



APPENDIX A. ARITHMETIC IN GLA 147

3. If 0 = x and P ∗(0, y), then P ∗(x, y), and the conclusion holds.

4. If P ∗(0, x) and P ∗(0, y), then from BS133, (P ∗(x, y) ∨ P ∗(y, x) ∨ x = y) as intended.

In all cases the theorem follows.

From all the facts proved above, we can now show how the Dedekind-Peano axioms are

consequences. They are:

PA1 N(0), that is, zero is a natural number.

PA2 ∀x∀y(N(x) ∧ P (x, y) → N(y)), that is, the successor of any natural number is a

natural number.

PA3 ∀x∀y∀z(P (x, z)∧P (y, z) → y = z), that is, no two numbers have the same successor.

PA4 F (0) ∧ ∀v∀w(N(v) ∧ F (v) ∧ P (v, w) → F (w)) → ∀z(N(z) → F (z)), that is, the

principle of mathematical induction.

PA5 ∀x(N(x) → ∃y(N(y) ∧ P (x, y))), that is, every natural number has a successor.

PA1 follows directly from the definition of 0. PA2 is theorem Her(N). PA3 follows

from GLA5. PA4 is PIM, and finally, PA5 is derivable from GLA7 just proved, adding

the condition that N(y) from Her(N) and ∃GEN.

We offer now a result concerning infinite cardinals, as Frege discuss it in (GLA,§§84−86).

Define ℵ0 as #[z : N(z)], that is, the number of the concept “being a natural number”. Then

the following holds:

Theorem GLA9. P (ℵ0,ℵ0)

Proof. Consider the concept [z : N(z)]. This is by definition [z : P+(0, z)]. Now, the following

three facts holds:

1. P+(0, 0) from reflexivity of P+.

2. #[z : P+(0, z)] = #[z : P+(0, z)] trivially by identity.
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3. Finally, it can be proved that #[z : P+(0, z)] = #[z : P+(0, z) ∧ z 6= 0]. Consider

the relation P . P is one-one as GLA5. Now assume that P+(0, x) for any x. Then,

from GLA7, P (x,#[z : P+(z, x)]). And from GLA6a it can be inferred that #[z :

P+(z, x)]) 6= 0. Now, clearly from Her(N), P+(0,#[z : P+(z, x)]). Hence, P+(0,#[z :

P+(z, x)]) ∧ #[z : P+(z, x)] 6= 0. From (∃GEN), ∃y(P+(0, y) ∧ y 6= 0 ∧P (x, y)). From

the assumption and (GEN), ∀x[P+(0, x) → ∃y((P+(0, y) ∧ y 6= 0)) ∧ P (x, y))]. Now,

from the same reasoning, it can be inferred that ∀x[(P+(0, x)∧x 6= 0) → ∃y(P+(0, y)∧
P (x, y))]. From definition of equinumerosity, [z : P+(0, z)] ≈ [z : P+(0, z) ∧ z 6= 0].

The desired fact follows from (HP).

From those facts, P (ℵ0,ℵ0) follows from the definition of P .

As Frege hints in (GLA,§84), the following holds:

Theorem GLA10. P ∗(ℵ0,ℵ0)

Proof. From GLA9 and BS91.
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