
UNIVERSIDADE DE CAMPINAS

INSTITUTO DE FILOSOFIA E CIÊCIAS HUMANAS

BRUNO COSTA COSCARELLI

MODEL THEORY IN A PARACONSISTENT ENVIRONMENT

TEORIA DE MODELOS NUM AMBIENTE

PARACONSISTENTE

CAMPINAS

2020

BRUNO COSTA COSCARELLI

MODEL THEORY IN A PARACONSISTENT

ENVIRONMENT

TEORIA DE MODELOS NUM AMBIENTE

PARACONSISTENTE

Tese apresentada ao Instituto de Filosofia e

Ciências Humanas da Universidade Estadual

de Campinas como parte dos requisitos

exigidos para a obtenção do t́ıtulo de Doutor

em Filosofia.

Thesis presented to the Institute of Philoso-

phy and Human Sciences of the University of

Campinas in partial fulfillment of the require-

ments for the degree of Doctor, in the area of

Philosophy.

Supervisor/Orientador: Marcelo Esteban Coniglio

ESTE TRABALHO CORRESPONDE À
VERSÃO FINAL DA TESE DEFENDIDA
PELO ALUNO BRUNO COSTA COSCARELLI,
E ORIENTADA PELO PROF. DR. MARCELO
ESTEBAN CONIGLIO.

CAMPINAS

2020

UNIVERSIDADE DE CAMPINAS

INSTITUTO DE FILOSOFIA E CIÊCIAS HUMANAS

A Comissão Julgadora dos trabalhos de Defesa de Tese de Doutorado, composta
pelos Professores Doutores a seguir descritos, em sessão pública realizada em
30/11/2020, considerou o candidato Bruno Costa Coscarelli aprovado.

Prof. Dr. Marcelo Esteban Coniglio
Prof. Dr. Ricardo Bianconi
Prof. Dr. Hugo Luiz Mariano
Profa. Dra. Ana Cláudia de Jesus Golzio
Prof. Dr. Bruno Ramos Mendonça

A Ata de Defesa com as respectivas assinaturas dos membros encontra-se no
SIGA/Sistema de Fluxo de Teses e na Secretaria do Programa de Pós-Graduação
em Filosofia do Instituto de Filosofia e Ciências Humanas.

Acknowledgements

I would like to express my sincere gratitude:
To my wife Helena, for the patience and dedication along all this long time.
To my daughter Alba Bruna, to my stepsons Luiz and Paulo and their other halves
Carol and Wivian, to my dear friends Dudu, Lili and Rogério, for the encourage-
ment in the most demanding moments.
To my parents Tania and Hilton, for a lifetime support.
To my brother Leonardo, to my sisters Roberta and Rebeka and to my family as a
whole for always wishing my success.
To my advisor Marcelo Esteban Coniglio, for the support along the whole process
of developing this thesis.
To professors Itala M. L. D’Ottaviano, Walter A. Carnielli, Fábio M. Bertato,
Śılvio S. Chibeni and again to professor Marcelo E. Coniglio, for the lectures in the
courses previous to the development of this work.
To professor Ana Cláudia de Jesus Golzio, for reading this work with so much care
and for making important suggestions for improving its final version.
To professors Abilio Azambuja Rodrigues Filho, Ricardo Bianconi, Hugo Luiz Mar-
iano and Bruno Ramos Mendonça, for pointing directions for further developments.
To my fellows Glaucia Maria Bressan and Matheus Pimenta for the partnership in
searching for further applications to the tools developed in this work.
To the colleagues of Centre for Logic, Epistemology and History of Science (CLE),
for the exchange of ideas.
To employees of CLE, particularly to Daniela Paula Grigolletto, for the operational
support.
To the Universidade Tecnógica Federal do Paraná, for granting me a two-year paid
leave to work on this thesis.

Abstract

The purpose of this thesis is to develop a paraconsistent Model Theory from the
basis launched by Walter Carnielli, Marcelo Esteban Coniglio, Rodrigo Podiack
and Tarćısio Rodrigues in the article ‘On the Way to a Wider Model Theory:
Completeness Theorems for First-Order Logics of Formal Inconsistency’ of 2014.
The pursuit of a deeper understanding of the phenomenon of paraconsistency from
an epistemological point of view leads to a reasoning system based on the Logics of
Formal Inconsistency. Models are regarded as states of knowledge and the concept
of isomorphism is reformulated so as to give raise to a new concept that preserves a
portion of the whole knowledge of each state. Based on this, a notion of refinement
is created which may occur from inside or from outside the state. In the sequel,
two important classical results, namely the Omitting Types Theorem and Craig’s
Interpolation Theorem are shown to hold in the new system and it is also shown
that, if classical results in general are to hold in a paraconsistent system, then such
a system should be in essence how it was developed here. Finally, an essay of what a
paraconsistent PROLOG should be is made in the light of the ideas developed so far.

Keywords: paraconsistency, model theory, logic programming, reasoning system.

Resumo

O propósito desta tese é desenvolver uma Teoria de Modelos paraconsistente a
partir das bases lançadas por Walter Carnielli, Marcelo Esteban Coniglio, Rodrigo
Podiack e Tarćısio Rodrigues no artigo ‘On the Way to a Wider Model Theory:
Completeness Theorems for First-Order Logics of Formal Inconsistency’ de 2014.
A busca por uma compreensão mais profunda do fenômeno da paraconsistência
de um ponto de vista epistemológico leva a um sistema de racioćınio baseado nas
“Lógicas de Inconsistência Formal” (LFI’s). Os modelos são tratados como estados
de conhecimento e o conceito de isomorfismo é reformulado de modo a gerar outro
que preserva uma porção da totalidade do conhecimento de cada estado. Com base
nisso, é criada uma noção de refinamento que pode acontecer de dentro ou de fora
do estado. Na sequência, mostra-se que dois importantes resultados clássicos, a
saber o Teorema da Omissão de Tipos e o Teorema da Interpolação de Craig, valem
no novo sistema e se mostra ainda que, caso se queira que os resultados clássicos
em geral valham em um sistema paraconsistente, é necessário que tal sistema seja
essencialmente como o que foi desenvolvido aqui. Finalmente, é feito um ensaio
sobre como deveria ser um PROLOG paraconsistente à luz das ideias que foram
desenvolvidas até então.

Contents

Introduction 10

1 Basic Concepts 16

1.1 Background to the Research . 16
1.2 Basic Concepts of Logics of Formal Inconsistency 18
1.3 Basic Concepts of Classical Model Theory 25
1.4 Basic Concepts of QmbC Model Theory 30
1.5 Basic Concepts of Logic Programming 32

2 A Suitable System for Paraconsistent Reasoning 36

2.1 A Paraconsistent Account of Isomorphism 36
2.2 Paraconsistent Reasoning Models 47

2.2.1 Construction . 47
2.2.2 Definition . 49

2.3 Refinement . 53
2.4 Ultrafilters . 61
2.5 Refinement through an Untrafilter 70
2.6 Elementary Extensions . 73
2.7 Axiomatization . 80

3 The Power of Classical Negation 89

3.1 QmbC without a Consistency Operator 89
3.2 Omitting Types . 95
3.3 Craig’s Interpolation Theorem . 103
3.4 Elementary Extensions . 106
3.5 Chains of Models . 116
3.6 Axiomatization and Elementary Equivalence 120

4 Toward a Paraconsistent Reasoning Prolog 128

4.1 An Essay on Paraconsistent Programming 129
4.2 Paraconsistency from a Procedural Point of View 137
*

Introduction

In 1963, Newton da Costa opened the promising branch of Paraconsistent Logic
by presenting a hierarchy of such logics. For this new field to effectively blossom,
however, an essential tool was lacking: the consistency operator, which provides
a way for delimiting a portion of the logic that shall behave classically. In [15],
Walter Carnielli, Marcelo Esteban Coniglio and João Marcos brought new breath
to the new field of study by presenting the Logics of Formal Inconsistency (LFIs).
In classical logic, a contradiction, that is, the assumption of an assertion and its
negation at the same time, yields a theory where every assertion holds. Such
a theory is said to be a trivial one. Paraconsistent logics are those that do not
‘explode’ into triviality when exposed to a contradiction. LFIs are those that not
only can be exposed to contradictions but also have the necessary apparatus to
accomplish the task of recovering classical behavior.

As the development of a new area progresses, links to other areas naturally arise.
One of the most beautiful and prominent areas of classical logic is certainly that of
Model Theory. The time to the inspiring adventure of plowing through this field
came about in 2014, when Walter Carnielli, Marcelo Esteban Coniglio, Rodrigo
Podiack and Tarćısio Rodrigues published the article ‘On the Way to a Wider Model
Theory: Completeness Theorems for First-Order Logics of Formal Inconsistency’,
cited as [13] in the references, launching the grounds to the development of a
paraconsistent model theory.

In [15], a system named mbC is proposed as the paraconsistent propositional
calculus. In [13], a system named QmbC is proposed as the predicate calculus
derived from mbC. There, syntax and semantics were proposed and subtle technical
difficulties had to be overcome in order to prove completeness, compactness and
the Lowenhëim-Skolem Theorems. The purpose of the present work is to start from
the point where that work stopped and go ahead.

This thesis is composed of four chapters. The first one presents the background
to the research and introduces the propaedeutics for the sake of completeness
whereas the last three ones present the original material. The contents of those
chapters are correlate but have different aims. As a branch of Logic, Model Theory

10

11

is a three-fold subject, having either philosophical, mathematical and computational
interest. Keeping in mind that the aim of this work is Model Theory as a whole,
each of the three first chapters aims one of the three fields of interest. A brief
description of each chapter follows below.

Chapter 2 is dedicated to philosophical issues. The pursuit of a deeper un-
derstanding of the phenomenon of paraconsistency is based on the fundamental
premise that the natural environment for the LFI’s is that of epistemology, for this
is the realm where contradictions inexorably impose their presence and do make
sense as soundly instituted ‘living beings’.

The plan for this chapter is to construct a reasoning system that shall com-
ply with contradictory information. The idea is to consider models as states of
knowledge. As expected, the consistency operator shall provide the means to split
states in safe and unsafe -although maybe plausible- knowledge. In the sequel,
there starts a search for ways of gaining new safe knowledge without compromising
the previously safe portion.

In the struggle to get along with doubt, QmbC is doubtlessly the suitable tool
for the task. However, the concept of isomorphism, which is perhaps the most
essencial and ubiquitous one in Model Theory, fails to perform the task for which
is was designed. For this reason, QmbC will be the starting point, but the result
will be an enriched version of it.

The first two sections gradually delimit the safe portion of the whole, developing,
at the same time, an extended QmbC that is intended to be a reasoning system.
In the first section, the concept of isomorphism is reformulated into the concept
of quasi-isomorphism, which plays a central role in the rest of the chapter. The
second section concludes the job of developing a paraconsistent reasoning system.
It is important to stress that the final result is just one among infinitely many
possibilities and that choices have been made in order to make it fit into finitely
many pages.

The third and the fourth sections present two distinct suggestions of ways to
refine models in the search for new knowledge within a fixed universe of objects.
They are horizontal refinements in some sense.

The fifth section does not suggest any new way of refinement. Instead, it treats
the idea of a refinement that enlarges the universe of objects. This would be a
vertical refinement in the same sense.

Finally, the sixth section draws on the results and methods from [13] in order to
establish an axiomatization to the so far semantically developed reasoning system.

Chapter 3 is dedicated to mathematical issues. The aim now is to show that it
is possible to transpose the main classical concepts and results to a paraconsistent
environment. Basically, this chapter tackles three core problems. The first one is

12

to determine what must be required from a logical paraconsistent system in order
to render it possible to recover the classical concepts and results. The second one
is to present such concepts and results. The third one is to give a sense to working
with a mathematical paraconsistent system.

A great deal of work toward that task was done in Chapter 2. In fact, the
problem of quasi-isomorphisms was treated there and so was the important concept
of ultrafilter.

This chapter starts with the first problem. Section 1 determines what a system
without a classical auxiliar negation should be like. Sections 2 and 3 present two
important classical results, respectively, the Omitting Types Theorem and Craig’s
Interpolation Theorem. In both cases, the theorems are shown not only to hold
in a theory based on QmbC, but also to be manageable in such a theory, in the
sense that the results that follow from those theorems in the classical context also
follow in the new context. In the case of Omitting Types, the theorem is shown to
hold in a theory based on a weaker system that does not count with an auxiliar
classical negation, or, what is the same, that does not count with a consistency
operator, or, what is still the same, that is not an LFI. However, it turns out that
the theorem is not manageable without a classical negation. In the case of Craig’s
Interpolation Theorem, severe technical difficulties arise when a classical negation
is not available. The hindrances that loom are discussed.

The results from Sections 2 and 3 strongly suggest that QmbC is in fact a
good starting point and that a system without a consistency operator is too weak
for the task. Section 4 returns to the problem of elementary extensions in a
different fashion as that of Chapter 2. Section 5 of Chapter 2 is concerned with the
existence of an extension of a model that preserves all its knowledge. This time,
the concern is on what extensions preserve from the models they extend. Once
again, the standard form of QmbC turns out to be insufficient to support good
results involving quasi-isomorphism. Nevertheless, good results are obtained when
the structure of QmbC is enriched. The system proposed in Chapter 2 turns out
to be suitable for the task.

The discussion developed in the first four sections proves that a paraconsistent
model theory is plainly possible and that an enriched version of QmbC -not
necessarily the one proposed in Chapter 2- shall be the bedrock for such a theory.
At this point, the chapter’s aim has been achieved.

Working with unsafe knowledge in Mathematics shall be the same as in science,
that is, split what is supposedly known into safe and unsafe knowledge and treat
the second part carefully. The most obvious concern of mathematical model theory
is that of describing the class of models that satisfy a given theory and describing
the set of sentences that are satisfied by a given class of models. In order to give a
sense to working with a mathematical paraconsistent system, this point is analyzed

13

carefully. This is what Section 5 is about.
Chapter 4 is dedicated to computational issues. It explores the links between

paraconsistency and Prolog. Section 1 presents some preliminary definitions.
Section 2 makes an essay on what a Paraconsistent Reasonig Prolog should be in
the light of the ideas developed in Chapter 2. Section 3 identifies different kinds of
paraconsistent negation that may be useful in Prolog from a procedural point of
view. Section 4 briefly discusses normal programs.

How to Follow this Thesis

As mentioned in the Introduction, the last three chapters of this thesis contain the
original results of the work and each of them treats the subject under consideration
within a particular point of view. Being so, it is likely that some readers may be
interested in some specific part of the work and not in some other. The purpose of
these few lines is to serve as a guide for those readers.

Chapter 1 contains no original material and shortly covers the propaedeutics
of what comes after. Being so, it can be skipped by the reader who is acquainted
with those subjects.

Chapter 2 contains the philosophical material. Section 2.1 poses the problem
to be tackled and points to the direction to be followed, settling the starting point
to the construction of a system that shall account to the questions raised along the
section. Section 2.2 actually constructs the system. Sections 2.1 and 2.2 contain the
material that is necessary to the comprehention of the other parts of the text. Being
so, a reader who is particularly interested in the mathematical or computational
aspects treated in Chapters 3 and 4 can skip the rest of Chapter 2. A reader who
wants to go still faster to the chapter of interest can also skip Section 2.1 at the
cost of losing the intuition behind the construction. Section 2.2 is divided into
two parts. In the first one, the construction is performed. In the second one, the
definitions are presented. The reason for such a division is to concentrate in a
single place the definitions that are necessary for a reader to understand any part
of the work separately. Being so, the reader who wants to go directly to the point
can skip even Subsection 2.2.1 at the cost of losing the process of constructing the
system. Subsection 2.2.2 is the only part of the text that cannot be skipped at all.

Chapter 3 contains the mathematical material. Sections 3.1, 3.2 and 3.3 are
independent of Chapter 2. Sections 3.4, 3.5 and 3.6 depend on Sections 2.1 and 2.2
as explained above.

Chapter 4 contains the computational material. It depends on Sections 2.1 and
2.2 and is independent of Chapter 3.

14

Chapter 1

Basic Concepts

1.1 Background to the Research

The proposal of this thesis is to create a system for reasoning in real life. What is
intended as a result is a system that shall be able to accommodate theories in the
process of construction. Indeed, every theory in real life practice is in the process
of construction.

Model theory is the classical tool that have been designed to study theories. The
perspective of this work is that this is in fact the most suitable tool to perform the
task. However, classical model theory is based on classical logic and classical logic
is not able to comply with the existence of contradictions, which is an unavoidable
reality in theories that are in the process of construction. In fact, classical logic
trivializes in the presence of a contradiction, in the sense that, assuming two
contradictory premises, every conclusion follows. This is the logical principle
dubbed ‘Ex contradictione sequitor quodlibet’. Such a behavior is a serious problem
for the real life practice and it seems to be an unsurmountable one within the
classical theory. The consequence of this feature in model theory is that classical
models determine every aspect of reality. This is a good approach when models are
intended to capture the reality as a whole. Such models, however, are not reachable
from an epistemological point of view, that is, such an approach presupposes that
the agents are omniscient. This is clearly not the case when scientists are exploring
the world or when a detective is trying to elucidate a crime. In real life situations,
it would be more appropriate to treat models as states of knowledge about the
reality rather then as the reality itself.

In order to accomodate contradictions, some kind of non-classical logic is
demanded. The classical feature the new logic must get rid of is not the principle of
non-contradiction, but rather the principle of ex contradictione sequitor quodlibet.

15

1.1. BACKGROUND TO THE RESEARCH 16

In other words, what is desired in not a logic that deduces contradictions. On
the contrary, it is highly desirable that it does not deduce contradictions. What
is required is that it does not trivialize when exposed to a contradiction. In this
sense, it is intended to be a careful logic that does not hastily take clonclusions
from two pieces of contradictory information. Moreover, it would be desirable to
have a way of separating consistent and inconsistent information.

The discussion above establishes the tool that will be used and the environment
where this tool will be developed. The tool is model theory. The environment
is the class of paraconsistent logics, which are the logics that do not trivilize
when exposed to a contradiction. More specifically, the environment will be a
class of paraconsistent logics that have a separate operator to split consistent and
inconsistent information. Those are the Logics of Formal Inconsistency, from now
on just LFI’s.

After developing a system for reasoning, the natural step in the sequence is to
look for applications of the system just developed. This is the task for the last
chapter. The field where this application is made is logic programming. Logic is
traditionally applied in computer science as the study of the underlying rules that
base program construction. The idea behind logic programming is that logic may
work as the program itself. The logic programming system that will be studied is
PROLOG.

At this point, it is clear what the background to this work is: Model theory,
paraconsistent logic, more specically the LFI’s, and logic programming, more
specifically PROLOG. The next sections of this chapter will be dedicated to present
the notation and the basic concepts and results that will be directly used along
the development of the work. This presentation shall be sufficient to render the
exposition self-contained.

As already exposed in the Introduction, the starting point to this thesis is the
article ‘On the Way to a Wider Model Theory: Completeness Theorems for First-
Order Logics of Formal Inconsistency’, cited as [13]. It is clearly the main reference
for this work. In order to guide the reader who wants a complete presentation of
the subjects that compose the backgroung to the research or who wants to have a
deep comprehention of some related topic, the rest of this section will be dedicated
to provide references.

Model Theory: As a textbook to the subject, [18], [34], [30], [40], [29] are good
references. For a historical view on the subject, [7] and [6]. For a philosophical
treatment, [12] and [8]. In [31], the subject is presented with an emphasis in
computer science.

Paraconsistent Logic: The most complete reference for the subject is [14],
but [15] and [16] also contain the necessary content. In [20], a study on mbC is

made. The works that gave born to the paraconsistent logics are [21] and [22]. For
an essay on those seminal works, see [1]. For a historical view, see [25], [2], [3],
[4], [26] or [28]. For a philolophical view, see [23], [24] or [17]. As exposed above,
the view of this thesis is that paraconsistency is an epistemical phenomenon. The
opposite view is that there are real contradictions in the world. A discussion on
this view, which is called dialetheism can be found in [5] and [35]. Relevant logic is
an example of a naturally non-explosive logic. For a study on this subject, see [33].

Logic Programming: The main reference for this subject is [32]. Alternative
references are [10], [11] and [19]. For a general presentation of logic for computer
science including PROLOG, see [39].

1.2 Basic Concepts of Logics of Formal Incon-

sistency

As the universe of the Logics of Formal Inconsistency (LFI’s) is the environment
where the whole work will be developed, it is natural that LFI’s be the first topic
to be presented. As discussed in the previous section, LFI’s are the paraconsistent
logics that are able to recover classical behavior through a paraconsistency operator.
The possibility of recovering classical behavior opens the possibility of defining
a classical auxiliar negation. As being able to recover classical behavior is the
core feature of this class of logics and an auxiliar negation is a powerful tool, this
section will be dedicated to discussing what a classical negation is, how non-classical
negations should behave and how the existence of a consistency operator is linked
to the existence of a classical auxiliar negation.

First of all, a negation is a unary connective. But this is not enough. There
are two patterns of behavior that the negation of classical logic performs and that
guarantee the core features of that system. Those patterns will be described bellow
and negations satisfing one and the other will be distinguished. Finally, a negation
will be called classical if it satisfies both of them.

Along the whole text, the symbol ⊢ will be systematically used to designate
syntactical conclusion, � for semantical conclusion and if it is not being specified
whether the reference is to a syntactical or to a semantical conclusion.

In the sequel, the negations characterized by the two mentioned patterns:

Definition 1.2.1 (Complementing Negation). A unary connective ¬ is a comple-
menting negation iff, for every sentence φ ∈ LΣ and for every theory T , if T 1 φ
and T ∪ {¬φ} is nontrivial, then (T ∪ {¬φ}) 1 φ and, if T 1 ¬φ and T ∪ {φ} is
nontrivial, then (T ∪ {φ}) 1 ¬φ.

1.2. BASIC CONCEPTS OF LFI's 17

An equivalently formulation is: If (T ∪{¬φ}) φ, then T φ and if (T ∪{φ})
¬φ, then T 1 ¬φ.

Definition 1.2.2 (Supplementing Negation). A unary connective � is a supple-
menting negation iff, given two arbitrary sentences φ and ψ in L, {φ, � φ} ψ.

Definition 1.2.3 (Classical Negation). A unary connective ∼ is a classical negation
iff it is both a complementing and a supplementing negation.

When a logical system is semantically determined, a stronger definition of com-
plementing negation allows for an alternative characterization: A unary connective
¬ is a complementing negation iff, for every sentence φ ∈ LΣ, for every theory T
and for every model A, if (A, T ∪{¬φ}) � φ, then A, T � φ and if (A, T ∪{φ}) � ¬φ,
then A, T 2 ¬φ. It is clear that a complementing negation in this sense is also a
complementing negation in the original sense. In this case, the following proposition
provides an alternative characterization for complementing negation.

Proposition 1.2.4. Let ¬ be a negation in a semantically determined logical
system. Then, ¬ is a complementing negation iff, for every sentence φ and for
every model A, A � φ or A � ¬φ.

Proof. (⇒) Suppose ¬ is a complementing negation. Suppose, for the sake of
contradiction, that there exists a model A with valuation v such that A 2 φ and
A 2 ¬φ. As v(φ) = 0, the condition v(ψ) = 1 for every ψ ∈ {φ} is not fulfilled.
Thus, it is true that, if v(ψ) = 1 for every ψ ∈ {φ}, then v(¬φ) = 1. Hence, it is
the case that A 2 ¬φ while A, φ ⊢ ¬φ. That is a contradiction against the fact that
¬ is complementing. Therefore, A � φ or A � ¬φ must hold.
(⇐) Suppose that, for every sentence φ and for every model A, it holds that A � φ
or A � ¬φ. Now, let φ be an arbitrary sentence and A an arbitrary model. Suppose
that A 2 ¬φ. Then, there is some ~a ∈ Ā such that v(¬φ(~a)) = 0. Moreover, A � φ,
by hypothesis. In particular, v(φ(~a)) = 1. Hence, for such ~a, v(ψ(~a)) = 1, while
v(¬φ(~a)) = 0. Therefore, A, φ 2 ¬φ. In the same way, if A 2 φ, then A,¬φ 2 φ.
Summing up, ¬ is in fact a complementing negation.

An alternative characterization of supplementing negation is also available.

Proposition 1.2.5. Let � be a negation in a semantically determined logical
system. Then, � is a supplementing negation iff, for every sentence φ and for every
nontrivial model A, at most A � φ or A �� φ, that is, A 2 φ or A 2� φ.

Proof. (⇒) Suppose � is a supplementing negation. Suppose, for the sake of
contradiction, that there exist a model A and a sentence φ such that A � φ and
A � ¬φ. Then, A � ψ for every sentence ψ. Hence, A is a trivial model.

1.2. BASIC CONCEPTS OF LFI's 18

(⇐) Suppose that, for every nontrivial model A and for every sentence φ, A 2 φ
or A 2� φ. Let φ and ψ be two arbitrary sentences. It is the case that whatever
model that satisfies both φ and � φ satisfies also ψ, for no nontrivial model satisfies
φ and � φ. Hence, A, φ, � φ � ψ. As φ and ψ are arbitrary, � is a supplementing
negation.

The corollary below is immediate from Proposition 1.2.4 and Proposition 1.2.5.

Corollary 1.2.6. Let ∼ be a negation in a semantically determined logical system.
Then, ∼ is a classical negation iff, for every sentence φ and for every nontrivial
model A, exactly one of the following holds: A � φ or A �∼ φ.

In the previous section, the concept of a trivial theory was introduced on the
fly. The following definition will formally present it together with a list of related
concepts.

Definition 1.2.7. Trivial Theory A theory T in a language L is trivial iff, for
every φ ∈ L, T φ;

Nontrivial Theory A theory T in a language L is nontrivial iff, for some φ ∈ L,
T 1 φ;

Maximal Nontrivial Theory A theory T in a language L is maximal nontrivial
iff, for every φ, ψ ∈ L, if T 1 φ, then T ∪ {φ} ψ;

Consistent Theory A theory T in a language L is consistent iff, for every φ ∈ L,
T φ implies T 1 ¬φ and T ¬φ implies T 1 φ;

Inconsistent Theory A theory T in a language L is inconsistent iff, for some
φ ∈ L, T φ and T ¬φ;

Maximal Consistent Theory A theory T in a language L is maximal consistent
iff it is consistent and, for every φ ∈ L, if T 1 φ, then there is ψ ∈ L such
that T ∪ {φ} ψ and T ∪ {φ} ¬ψ;

One of the most important techniques in classical model theory is that of
enlarging a theory until a maximal consistent extension of it is reached. In the
context of LFI’s, the concept of maximal nontriviality does duty for that of maximal
noninconsistency. For this reason, it is in order to explore how each kind of negation
behaves with respect to that very concept.

Proposition 1.2.8. Let ¬ be a complementing negation. If T is a maximal
nontrivial theory, then, for every sentence φ ∈ LΣ, T φ or T ¬φ.

1.2. BASIC CONCEPTS OF LFI's 19

Proof. Let T be a maximal nontrivial theory. Suppose that, for some sentence φ,
T 1 φ and T 1 ¬φ. As T is a maximal nontrivial theory, it contains all the formulae
it derives, whence T is properly contained in T ∪ {φ}. As ¬ is a complementing
negation, T ∪ {φ} 1 ¬φ. Hence, T ∪ {φ} contains T properly and is not trivial,
which is a contradiction against the fact that T is maximal nontrivial.

On the other hand, there are maximal nontrivial theories that contain some
sentence together with its negation. In fact, if ¬ is a complementing negation but
not a supplementing one, then there are two sentences φ and ψ such that φ,¬φ 1 ψ,
which means that T0 = {φ,¬φ} is a nontrivial theory. Taking an enumeration of
the sentences in LΣ and defining Tn+1 = Tn ∪ {θn+1} if Tn ∪ {θn+1} is nontrivial
and Tn+1 = Tn otherwise, a chain of nontrivial theories is constructed and their
union T = ∪n∈NTn is a maximal nontrivial theory that contains the sentence φ and
its negation ¬φ simultaneously.

The converse of Proposition 1.2.8 does not hold. That is, a theory T may
contain φ or ¬φ for every sentence in LΣ without being maximal nontrivial. Firstly,
a result will be presented as a lemma, for it is interesting for its own.

Lemma 1.2.9. Let ¬ be a complementing negation, T a nontrivial theory and ψ
an arbitrary sentence. Then, T ∪ {ψ} or T ∪ {¬ψ} is nontrivial.

Proof. If T ψ, then T ∪ {ψ} and T derive the same sentences (all the logical
systems considered in this work are tarskian). As T is nontrivial, so is T ∪ {ψ}.
Analogously, if T ¬ψ, then T ∪ {¬ψ} is nontrivial.

If neither T ψ nor T ¬ψ, then both T ∪ {ψ} and T ∪ {¬ψ} are nontrivial.
In fact, T ∪ {ψ} 1 ¬ψ and T ∪ {¬ψ} 1 ψ.

Returning to the converse of Proposition 1.2.8, if ¬ is a complementing negation
but not a supplementing one, then there is a sentence φ such that T0 = {φ,¬φ}
is a nontrivial theory. Taking again an enumeration of the sentences in LΣ and
defining Tn+1 = Tn ∪{ψn+1} if Tn ∪{ψn+1} is nontrivial and Tn+1 = Tn ∪{¬ψn+1}
otherwise, a chain of theories is constructed. Each Tn is nontrivial, by Lemma 1.2.9.
The union T = ∪n∈NTn is a nontrivial theory that contains, for each sentence ψ,
ψ or its negation ¬ψ. This may be a maximal theory, but T ′ = T\{φ} is still a
nontrivial theory that contains, for each sentence ψ, ψ or its negation ¬ψ. Also, T ′

is not maximal, for T is a nontrivial theory that contains it properly.
The next proposition explores the relation between supplementing negations

and maximal nontrivial theories.

Proposition 1.2.10. Let � be a supplementing negation. Let T be a nontrivial
theory such that, for every sentence φ ∈ L, T φ or T � φ (obviously, not both).
Then, T is a maximal nontrivial theory.

1.2. BASIC CONCEPTS OF LFI's 20

Proof. Let T be a theory as in the enunciation. Let φ /∈ T be an arbitrary sentence
not belonging to T .

By hypothesis, � φ ∈ T . Thus, both φ and � φ belong to T ∪ {φ}, which turns
out to be a trivial theory, for � is a supplementing negation. As φ is an arbitrary
sentence, T is maximal nontrivial.

The converse does not hold. Suppose � is a supplementing negation but not a
complementing one. In addition, suppose that there are a theory T and a sentence
φ such that T 1 φ, T 1� φ, (T ∪ {φ}) � φ and (T ∪ {� φ}) φ. Take once again
an enumeration of the sentences in LΣ, defining:

❼ T0 = ∅

❼ Tn+1 = Tn ∪ {ψn+1} if Tn ∪ {ψn+1} 1 φ and Tn ∪ {ψn+1} 1� φ and

❼ Tn+1 = Tn, otherwise.

The union T ′ = ∪n∈NTn is maximal with respect to the property of not deriving
either φ or � φ (T ′ 1 φ and T ′ 1� φ). It is also maximal with respect to the
property of being nontrivial. In fact, let θ be an arbitrary sentence. If θ /∈ T ′, then
T ′ ∪ {θ} φ or T ′ ∪ {θ} � φ. In any case, T ′ ∪ {θ} {φ, � φ}, for T ′ ∪ {φ} � φ
and T ′ ∪ {� φ} φ. As � is a supplementing negation, it follows that T ′ ∪ {θ} is
trivial. Therefore, T ′ is a maximal nontrivial theory that does not contain φ nor
� φ.

Looking carefully at the proof of Lemma 1.2.9, a finer result can be obtained:
If T ∪ {ψ} 1 ¬ψ, then T ∪ {ψ} is nontrivial and if T ∪ {¬ψ} 0 ψ, then T ∪ {¬ψ} is
nontrivial. Hence, it is not necessary that ¬ be a complementing negation in order
to guarantee that maximal theories contain ψ or ¬ψ for every ψ. It is enough that
¬ be so that, for every ψ, T ∪ {ψ} 1 ¬ψ or T ∪ {¬ψ} 1 ψ.

So much hairsplitting is to be avoided. Anyway, the observation above shows
that it would not be possible to relax the requirement that (T ∪ {φ}) � φ and
(T ∪ {� φ}) φ in the search for a counterexample to the converse of Proposition
1.2.10. The following corollary follows immediately from Proposition 1.2.8 and
Proposition 1.2.10.

Corollary 1.2.11. Let ∼ be a classical negation. A theory T is maximal nontrivial
iff, for each sentence φ ∈ L, it holds one and no more than one of the following:

❼ T φ;

❼ T ∼ φ.

1.2. BASIC CONCEPTS OF LFI's 21

In QmbC, besides the original negation ¬, at least two interesting negations can
be defined. Let � α be an abbreviation of ¬α ∧ ◦α and let ∼ α be an abbreviation
of α→� α. In [15], it is proven that ¬ is a complementing but not a supplementing
negation, that the auxiliar negation � is a supplementing but not a complementing
negation and that ∼ is a classical negation.

The existence of both a supplementing negation and a complementing one
does not happen by accident. If, in a given logic, Modus Ponens is respected, the
disjunction ‘∧’ behaves classically and a supplementing negation � is available, then
a classical negation is available as well.

In fact, fix an arbitrary sentence θ. If T is a theory such that T (θ∧ � θ),
then T is obviously trivial. Let the symbol ⊥θ be an abbreviation of the formula
θ∧ � θ. If a formula ⊥ is such that a theory T is trivial whenever it derives ⊥,
then it is called a bottom particle. It is clear that in a logic with a supplementing
negation each sentence in the language provides a bottom particle. Hence, there
are at least as many bottom particles as there are sentences.

Finally, if a bottom particle is available, then a classical negation is available
as well. Define ∼ α = α→⊥. To prove that ∼ is a supplementing negation, just
see that {α,∼ α} ⊥. To prove that ∼ is a complementing negation, let T be an
arbitrary theory and φ an arbitrary sentence such that T 1∼ φ and T ∪ {φ} is
not trivial. If T ∪ {φ} ∼ φ, then T ∪ {φ} ⊥. Hence, T ∪ {φ} would be trivial,
which is a contradiction. Therefore, T ∪ {φ} 1∼ φ. Analogously, if T 1 φ and
T ∪ {∼ φ} is not trivial, then T ∪ {∼ φ} 1 φ. As T and φ are arbitrary, ∼ is in
fact a complementing negation.

Summing up, if a supplementing negation � is available, then a bottom particle
⊥ is available too; If a bottom particle is available, then a classical negation ∼ is
available too; If a classical negation is available, then a supplementing negation is
available too, for a classical negation is itself a supplementing negation. That is,
having a supplementing negation, having a classical negation and having a bottom
particle are equivalent conditions.

Naturally, classical negations are stronger than supplementing ones, in the
sense that the former provide recourses to mimic classical logic in a broader way
than the latter. For this reason, the fact that the availability of a supplementing
negation avails the logic with a classical one suggests that it is not actually worth
exploring supplementing negations’ behavior so much deeper.

It must be stressed that supplementing negations are always extra entities,
rather than basic ones, that they play an auxiliary role in whatever paraconsistent
logic that happens to count with them. In fact, they respect the principle of
explosion, whence the original paraconsistent negation cannot be a supplementing
one.

On the other hand, paraconsistent negations must be complemeting. In fact,

1.2. BASIC CONCEPTS OF LFI's 22

for a unary connective to deserve the name ‘negation’, it is supposed to behave
somehow as a negation. As being complementing and supplementing are the basic
features of a negation an paraconsistent negations cannot be supplementing, it is
left for them to be complementing. From now on, a paraconsistent negation will
be a one that is complementing but not supplementing.

Having presented a link between bottom particles and classical negations, this
section will be concluded with the presentation of a link between consistency and
bottom particles.

Proposition 1.2.12. Consider a logic in a language LΣ endowed with a classical
conjunction and with a classical implication for which Modus Ponens and the
Deduction Metatheorem (DMT) hold. Then, there exists a consistency connective ◦
(defined or basic in the signature) satisfying the schema (◦α→ (α→ (¬α→ β)))
iff there exists a bottom particle (defined or basic in the signature).

Proof. (⇒) Suppose there is a consistency connective ◦ satisfying the schema in the
enunciation. Choose a sentence α in LΣ and define the sentence ⊥= ◦α ∧ (α ∧¬α).
It will be proven that ⊥ is a bottom particle, that is, ⊥ β for every arbitrary
formula β. In fact,

1. ⊥ ◦α, α,¬α (for ‘∧’ is a classical conjunction);

2. ◦α→ (α→ (¬α→ β))

3. ⊥ β (applying Modus Ponens three times in (1) and (2).

(⇐) Suppose there exists a bottom particle ⊥ and, for each formula α, let ◦α stand
for the the formula α→ (¬α→⊥). Let α and β be arbitrary formulae. Then,

1. ◦α, α,¬α ⊥ (applying Modus Ponens twice);

2. ⊥ β (for ⊥ is a bottom particle);

3. ◦α, α,¬α β (by (1) and (2), for the logic under consideration is a tarskian
one);

4. ◦α→ (α→ (¬α→ β)) (applying DMT three times).

The next corollary joins Proposition 1.2.12 and the discussion that precedes it.

Corollary 1.2.13. If SY S is a paraconsistent logical system that behaves classically
with respect to the positive connectives, then the following are equivalent:

1.2. BASIC CONCEPTS OF LFI's 23

1.3. BASIC CONCEPTS OF CLASSICAL MODEL THEORY

1. SY S has an auxiliar supplementing negation;

2. SY S has an auxiliar classical negation;

3. SY S has a bottom particle;

4. SY S has a consistency operator.

1.3 Basic Concepts of Classical Model Theory

The task of this work is to develop model theory in a paraconsistent environment.
The main notions regarding the environment have just been discussed. Now it is
time to discuss the main notions of the object to be studied in that envirionment,
that is, model theory.

This section presents the basic concepts of classical model theory and introduces
the notation that will be used along the text.

The first concept to be presented is that of signature. Constructing a theory
about some physical or abstract world consists in determining three aspects: First,
what the objects of that theory are. Second, what can be stated about those objects.
Third, what assertions are true. A signature is an uninterpreted abstract object
that serves as the basic framework to theorize about a class of possible realities.
A signature fixes a set of objects (without giving any interpretation) that must
be present in any theory of the class of theories it determines, symbols that gain
new objects from already available objects and symbols that create basic assertions
about the objects.

Definition 1.3.1 (Signature). A signature Σ is a triple 〈C, F̄ , P̄ , V 〉, where C is a
set of symbols, F̄ = ∪∞i=1Fi is a union of sets of symbols Fi (which may be void),
P̄ = ∪∞i=1Pi is a union of sets of symbols Pi (which may be void) and V is a set of
symbols with cardinality ℵ0. A symbol c ∈ C is called a constant, a symbol f ∈ Fn
is called a function symbol of arity n, a symbol P ∈ Pn is called a predicate symbol
of arity n and a symbol in V is called a variable.

Each signature determines a set of terms, which are the entities that become
the objects of a theory when interpreted. In other words, terms are uninterpretd
objects.

Definition 1.3.2 (Term). Given a signature Σ, the terms based on Σ are those
recursively described as follows:

❼ A constant c is a closed term;

24

1.3. BASIC CONCEPTS OF CLASSICAL MODEL THEORY 25

❼ A variable x is an open term that depends on x;

❼ If f ∈ Fn is a function symbol of arity n and τ1, . . . , τn are terms that depend
respectively on the variables in the sets V1, . . . , Vn, then f(τ1, . . . , τn) is a
term that depends on the variable in the set V0 = V1 ∪ · · · ∪ Vn;

❼ There are no other terms.

The notation τ [xi1 , . . . , xim] indicates that the term τ does not depend on any
variable out of the set {xi1 , . . . , xim}. If the set of varibles of which the term τ
depends is void, then it is said to be a closed term. Otherwise, it is said to be an
open term.

Obs.: It shall be clear from Definition 1.3.2 that the notation τ [xi1 , . . . , xim]
does not mean that τ depends on the variables xi1 , . . . , xim . It may be the case
that τ does not depend on any of those variables.

Each signature determines a set of formulae from the set of terms. Those are the
entities that become the assertions about the objects of a theory when interpreted.
In other words, formulae are uninterpreted assertions about uninterpreted objects.
The definition of formula recurs to the definition of term.

Definition 1.3.3 (Formula). Given a signature Σ, the formulae based on Σ are
those recursively described as follows:

❼ If P ∈ Pn is a function symbol of arity n and τ1, . . . , τn are terms that
depend respectively on the variables in the sets V1, . . . , Vn, then P (τ1, . . . , τn)
is a formula of complexity 0 that depends on the variables in the set V0 =
V1 ∪ · · · ∪ Vn;

❼ If φ is a formula of complexity m that depends on the variables in the set
Vφ, then ¬φ is a formula of complexity m+ 1 that depends on the variables
in Vφ;

❼ If φ is a formula of complexity m that depends on the variables in the set Vφ
and ψ is a formula of complexity n that depends on the variables in the set
Vψ, then φ ∨ ψ, φ ∧ ψ and φ→ ψ are formulae of complexity m+ n+ 1 that
depend on the variables in Vφ ∪ Vψ;

❼ If φ is a formula of complexity m that depends on the variables in the set
Vφ, then ∃xφ and ∀xφ are formulae of complexity m+ 1 that depend on the
variables in Vφ\{x};

❼ There are no other formulae.

1.3. BASIC CONCEPTS OF CLASSICAL MODEL THEORY 26

The notation φ(xi1 , . . . , xim) indicates that the formula φ does not depend on any
variable out of the set {xi1 , . . . , xim}. If the set of varibles on which the formula φ
depends is void, then it is said to be a closed formula. Otherwise, it is said to be
an open formula.

The complexity of a formula φ is designated by comp(φ).
A formula of complexity 0 is also called a basic formula or an atom.

Obs.: It shall be clear from Definition 1.3.3 that the notation φ(xi1 , . . . , xim)
does not mean that φ depends on the variables xi1 , . . . , xim . It may be the case
that φ does not depend on any of those variables.

A set of terms together with a set of formulae constitute a language. When
interpreted, a language is a universe of objects together with what can be asserted
about those objects.

Definition 1.3.4 (Language). The language based on a given signature Σ is the
pair 〈TΣ, FΣ〉, denoted by LΣ, where TΣ is the set of terms based on Σ and FΣ is
the set of formulae based on Σ. If τ is a term, the fact that τ ∈ TΣ is also expressed
by saying that τ belongs to LΣ and designated by τ ∈ LΣ. If φ is a formula, the
fact that τ ∈ TΣ is also expressed by saying that φ belongs to LΣ and designated
by φ ∈ LΣ.

A structure on (over, based on) a signature (or language) is a schema that
allows the interpretation of the terms and formulae in the language based on that
signature.

Definition 1.3.5 (Structure). A structure on a signature Σ (or on the language
based on a signature Σ) is a pair A = 〈A, IA〉, where A is a nonempty set, which
is the domain of interpretation, and IA is a function whose domain is Σ, called
interpretation function of A, such that:

❼ IA(c) ∈ A

❼ IA(f) ∈ En, if f ∈ Fn, where

– En is the space of functions from An to A.

❼ IA(P) = AA
P is a subset of An, if P ∈ Pn.

This is how a structure works.

1.3. BASIC CONCEPTS OF CLASSICAL MODEL THEORY 27

Definition 1.3.6 (Interpretation of a Term). Let A = 〈A, IA〉 be a structure
based on a signature Σ and let τ(xi1 , . . . , xim) be a term. The interpretation of
τ in the sequence (ai1 , . . . , aim) of elements in the domain of interpretation A
is designated by τA(xi1 , . . . , xim)[ai1 , . . . , aim] or simply by τA[ai1 , . . . , aim] and is
defined as follows:

❼ If τ is a constant c, then τA[ai1 , . . . , aim] = IA(c);

❼ If τ is the variable xik , then τ
A[ai1 , . . . , aim] = aik ;

❼ If f ∈ Fn is a function sysmbol of arity n, τ1, . . . , τn are terms and
τ = f(τ1, . . . , τn), then τA[ai1 , . . . , aim] = IA(f)(τA1 [ai1 , . . . , aim], . . .
. . . , τAn [ai1 , . . . , aim]).

When a string of variables (xi1 , . . . , xim) is substituted by a string of (ai1 , . . . , aim)
from the domain of interpretation in a term τ(xi1 , . . . , xim), the result is the intert-
preted term τ(ai1 , . . . , aim). Likewise, when a string of variables (xi1 , . . . , xim) is
substituted by a strings (ai1 , . . . , aim) of elements from the domain of interpretation
in a formula φ(xi1 , . . . , xim), the result is the intertpreted formula φ(ai1 , . . . , aim).
Philosophically speaking, uninterpreted terms are undetermined objects and un-
interpreted formulae talk about those objects. In this line, it makes no sense to
attribute a truth value to a formula that does not talk about real objects. For this
reason, the function that atributes truth value to formulae is defined for interpreted
formulae. Such a function is named ‘valuation’. Before presenting this important
concept, however, some notation will be introduced.

❼ ~x is used to designate a sequence of variables and ~a is used to designate a
sequence of elements in the domain of interpretation.

❼ The lenth of a sequence ~x or ~a is the number of elements it possesses.

❼ The notation A, v � φ(~a) is used to mean that the model A is the structure
A endowed with the valuation v and that v(φ) = 1. However, if confusion
may not rise, the shorter notation A � φ(~a) can be used;

❼ The term ‘sentence’ is used as a synonym for closed formula. As a sentence
does not depend on any variable, it holds that, if φ is a sentence, then,
for every valuation v, given two sequences of elements is the doimain of
interpretation ~a1 and ~a1, v(φ[~a1]) = v(φ[~a1]). For this reason, it can be
written v(φ) and A, v � φ instead of v(φ[~a]) and A, v � φ[~a]

❼ Let A = 〈A, IA〉 be a model over the signature Σ, whose set of constants is C.
Let X ⊂ A be a subset of A and CX = {cx|x ∈ X} a set of new constants

1.3. BASIC CONCEPTS OF CLASSICAL MODEL THEORY 28

(with the same cardinality of X, of course). Then, ΣX is the signature with
the same symbols of function and predicate and whose set of constants is
C ∪ CX ;

❼ In accordance with the item above, I〈A,X〉 is the interpretation function for
the language LΣX

, defined so that I〈A,X〉(P) = IA(P), for every P ∈ P̄ ;
I〈A,X〉(f) = IA(f), for every f ∈ F̄ ; I〈A,X〉(c) = IA(c), for every c ∈ C and
I〈A,X〉(cx) = x, for every x ∈ X;

❼ The extended model 〈A, X〉 (or AX) is the model over the language LΣX
with

interpretation function I〈A,X〉 and whose valuation is the natural extension
of vA to ΣX ;

❼ An interpreted formula φ(~x)[~a] (or just φ[~a]) is a formula φ(~x) where each
variable in ~x is interpreted by the correspondent element in ~a.

❼ The set of all interpreted formulae in a model A is denoted by IF (A).

❼ It will be written θ[x/τ] or θxτ to denote the formula obtained by uniformly
substituting x by τ . If it is clear by the context what variable is being
substituted, it may be written θ(τ);

❼ A variant of a formula is a renaming of its variables.

❼ L(A)~x,z and T (A)~x,z stand for the set of formulae and terms, respectively, in
the variables {~x, z} that belong to the language where A is based;

❼ An equality is a predicate symbol ≈ of arity 2 so that (I(≈) = {(a, a)|a∈ A}).
Given two terms τ1 and τ2, it is written τ1 ≈ τ2 instead of ≈ (τ1, τ2) to
designate generated by ≈ from τ1 and τ2. It shall be clear that, given a
structure A, v(τ1 ≈ τ2) = 1 iff τA1 = τA2 for whatever valuation A may be
endowed with.

❼ The symbol ‘=’ always stands for equality in the metalanguage. The symbol
≈ stands for the equality in the language, when the referred language is
endowed with an equality.

Finally, valuations can be defined. In the definition that follows, it is tacitly
assumed that the lenths of the sequences cohere.

Definition 1.3.7 (Valuation). Let A be a structure over the signature Σ with
domain A. Let LΣ, as usual, be the language constructed over Σ. The valuation
over A is the mapping v : IF (A) → {0, 1} recursively defined by the following
clauses:

1.4. BASIC CONCEPTS OF QMBC MODEL THEORY 29

vPred v(P (t1 . . . , tn)[~a]) = 1 iff (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, for P ∈ Pn.

vOr v((α ∨ β)[~a]) = 1 iff v(α[~a]) = 1 or v(β[~a]) = 1.

vAnd v((α ∧ β)[~a]) = 1 iff v(α[~a]) = 1 and v(β[~a]) = 1.

vImp v((α→ β)[~a]) = 1 iff v(α[~a]) = 0 or v(β[~a]) = 1.

vNegClass v(¬α[~a]) = 1 iff v(α[~a]) = 0.

vEx v(∃xα[~a]) = 1 iff v(α(x, ~x)[a,~a]) = 1 for some a ∈ A.

vUni v((∀xα)[~a]) = 1 iff v(α(x, ~x)[a,~a]) = 1 for every a ∈ A.

This section will be closed with the concept of model, which joins the concepts
of structure and valuation.

Definition 1.3.8. The model based on a signature Σ (or on a language LΣ) is the
structure based on Σ together with the valuation based on the same signature (or
language).

As a model can be identified with its structure, the same notation can be used
for the two objects.

1.4 Basic Concepts of QmbC Model Theory

Along Chapter 2, a paraconsistent system for resoning will be constructed and the
starting point for this construction is the system QmbC.

In this section, the versions for QmbC of the classical concepts in Section 1.3
will be presented.

The notation in Section 1.3 remains valid not only for QmbC but also for
the systems that will be constructed from it, although some concepts will be
reformulated. When the context is clear, it may be written just ‘model’ to denote
‘QmbC-model’ or ‘reasoning model’, for instance. This section focus on what
changes from classical to QmbC models.

The concepts of signature and term are the classical ones. The concept of
formula is also the classical one augmented by the addition of a clause that
introduces the consistency connective.

❼ If φ is a formula of complexity m that depends on the variables in the set
Vφ, then ◦φ is a formula of complexity m+ 2 that depends on the variables
in Vφ.

1.4. BASIC CONCEPTS OF QMBC MODEL THEORY 30

Note that the consistency connective adds 2 points to the complexity of a formula,
whereas the other connectives add 1 point. The convenience of such a definition
will become clear as the proofs of the reults progress. In [13], complexity is defined
so that the negation connective that adds 2 points and the consistency connective
only 1.

The definition of structure is also the classical one. A small change in the
notation will be introduced, namely, AA

P1 will be written instead of AA
P . The

convenience of doing so will become clear as the text progresses.

Definition 1.4.1 (QmbC-Structure). A QmbC-structure over a signature Σ is a
pair A = 〈A, IA〉, where A is a nonempty set, which is the domain of interpretation,
and IA is a function whose domain is Σ, called interpretation function of A, such
that:

❼ IA(c) ∈ A

❼ IA(f) ∈ En, if f ∈ Fn, where

– En is the space of functions from An to A.

❼ IA(P) = AA
P1 is a subset of An, if P ∈ Pn.

The concept of interpretation of terms is the classical one. The concept of
valuation, on its turn, must be reformulated. It shall be clear that the classical
clause vNegClass must be substituted by a paraconsistent clause and that a new
clause will be needed in order to rule the behavior of the consistency operator.
Less obvious is the fact that the clauses for the paraconsistent negation and for the
consistency operator do not respect uniform substitution and this calls for extra
clauses that rule terms substitution in negated and paraconsistency formulae. The
definition that follows is presented in [13].

Definition 1.4.2 (QmbC-Valuation). Let A be a structure over the signature Σ
with domain A. Let LΣ, as usual, be the language constructed over Σ. A mapping
v : IF (A)→ {0, 1} is a QmbC-valuation over A iff it satisfies the following clauses:

vPred v(P (t1 . . . , tn)[~a]) = 1 iff (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, for P ∈ Pn.

vOr v((α ∨ β)[~a]) = 1 iff v(α[~a]) = 1 or v(β[~a]) = 1.

vAnd v((α ∧ β)[~a]) = 1 iff v(α[~a]) = 1 and v(β[~a]) = 1.

vImp v((α→ β)[~a]) = 1 iff v(α[~a]) = 0 or v(β[~a]) = 1.

vNeg If v(α[~a]) = 0, then v(¬α[~a]) = 1.

1.5. BASIC CONCEPTS OF LOGIC PROGRAMMING 31

vCon If v(◦α[~a]) = 1, then v(α[~a]) = 0 or v(¬α[~a]) = 0.

vVar v(α[~a]) = v(β[~a]) whenever α is a variant of β.

vEx v(∃xα[~a]) = 1 iff v(α(x, ~x)[a,~a]) = 1 for some a ∈ A.

vUni v((∀xα)[~a]) = 1 iff v(α(x, ~x)[a,~a]) = 1 for every a ∈ A.

sNeg For every context (~x, z) and (~x, ~y), for every sequence (~a,~b) in A interpreting
(~x, ~y), for every φ ∈ L(A)~x,z and for every t ∈ T (A)~x,~y such that t is free for z

in φ, if φ[z/t] ∈ L(A)~x,~y and b = (t[~x, ~y/~a,~b])Â, then v((φ[z/t])[~x, ~y/~a,~b]) =

v(φ[~x, z/~a, b]) implies v((¬φ[z/t][~x, ~y/~a,~b])) = v(¬φ[~x, z/~a, b]).

sCon For every context (~x, z) and (~x, ~y), for every sequence (~a,~b) in A interpreting
(~x, ~y), for every φ ∈ L(A)~x,z and for every t ∈ T (A)~x,~y such that t is free for z

in φ, if φ[z/t] ∈ L(A)~x,~y and b = (t[~x, ~y/~a,~b])Â, then v((φ[z/t])[~x, ~y/~a,~b]) =

v(φ[~x, z/~a, b]) implies v((◦φ[z/t][~x, ~y/~a,~b])) = v(◦φ[~x, z/~a, b]).

In classical model theory, there is only one possible valuation for each structure.
On the other hand, there are multiple possible valuations for a QmbC-structure.
For this reason, there are multiple possible models as well.

Finally, the section will be closed with the concept of QmbC-model.

Definition 1.4.3. A QmbC-model based on a signature Σ (or on a language LΣ)
is a QmbC-structure endowed with a QmbC-valuation.

1.5 Basic Concepts of Logic Programming

Chapter 4 works out the system developed in Chapter 2 by developing the basis for
a paraconsistent logic programming (PROLOG). This section presents some basic
concepts of Logical Programming and introduces the notation and some results
that will be used.

The first concept to be presented is that of substitution of variables.

Definition 1.5.1 (Substitution of Variables). A substitution of variables or just
substitution in a language is a function from the set of variables to the set of terms.
Given a substitution θ and a term τ , τθ is the term recursively defined as follows:

❼ If τ is a constant, then τθ = τ ;

❼ If τ is a variable x, then τθ = θ(x);

❼ If τ = f(τ1, . . . , τn), then τθ = f(τ1θ, . . . , τnθ).

1.5. BASIC CONCEPTS OF LOGIC PROGRAMMING 32

Given a substitution θ and a formula φ, φθ is the formula recursively defined as
follows:

❼ If φ = P (τ1, . . . , τn), then φθ = P (τ1θ, . . . , τnθ);

❼ If φ = ¬α, then φθ = ¬(αθ);

❼ If φ = ◦α, then φθ = ◦(αθ);

❼ If φ = α ∨ β, then φθ = (αθ) ∨ (βθ);

❼ If φ = α ∧ β, then φθ = (αθ) ∧ (βθ);

❼ If φ = α→ β, then φθ = (αθ)→ (βθ).

If S is a set of expressions (where an expression may be a term of a formula), then
Sθ = {Eθ|E ∈ S}.

The convention for composition of substitutions is to use the inverse order as
that of composition of functions.

Definition 1.5.2 (Composition of Substitutions). The composition of two substi-
tutions θ and σ is the substitution θσ = σ ◦ θ.

The concept below plays an important role in the theory of Logic Programming.

Definition 1.5.3. A substitution θ is said to unify a set of expressions S or to be
a unifier for S if Sθ is a singleton. The unifier θ is said to be a most general unifier
for S if, for each unifier σ for S, there is a substitution γ such that σ = θγ.

The next concept to be introduced is that of program, which is a set of clauses.

Definition 1.5.4 (Clause). A clause is an arrangement of the form B ← A1, . . . , An,
where B,A1, . . . , An are atoms.

❼ B is called the head and A1, . . . , An the body of the clause;

❼ The clause B ← A1, . . . , An is logically equivalent to the implication B ←
A1 ∧ · · · ∧An.

Definition 1.5.5 (Program). A program is a finite set of clauses.

❼ If P is a program, BP is the set of atoms in the language of P ;

❼ A bodyless clause B ← in a program P determines that B is a consequence
of P .

1.5. BASIC CONCEPTS OF LOGIC PROGRAMMING 33

A few extra definitions will be also needed.

❼ An atom A ∈ BP is a consequence of the program P iff A is a logical
consequence of the clauses of P ;

❼ A predicate is said to be defined by a program P is it is the head of some
clause in P ;

❼ An arrangement of the form ← A1, . . . , An is called a goal;

– A goal is said to be satisfied if there is a variable substitution θ such
that A1θ ∧ · · · ∧Anθ is a consequence of P .

The paraconsistent negations that will be defined in Chapter 4 are based on SLD-
resolutions, which is a special case of SLD-derivation. This is the next concept to
be introduced.

Definition 1.5.6 (SLD-derivation). Let G be the goal← A1, . . . , An. If G′ is a goal
← A1θ, . . . , Ak−1θ,B1θ, . . . , Bmθ,Ak+1θ, . . . , Anθ, C is the clause A← B1, . . . , Bm
of the program P and θ is a mgu such that Aθ = Akθ, then G

′ is the goal derived
from G using C and θ.

Let P be a program and G a goal. An SLD-Derivation of P ∪G consists of a
(finite or infinite) sequence G0 = G1, . . . , Gn (or G0 = G1, . . .) of goals, a (finite
or infinite) sequence C0 = C1, . . . , Cn (or C0 = C1, . . .) of variants of clauses in P
and a (finite or infinite) sequence θ0 = θ1, . . . , θn (or θ0 = θ1, . . .) of mgu’s.

Definition 1.5.7 (SLD-Resolution). An SLD-resolution of P ∪G is a finite SLD-
derivation such that the last goal has an empty body.

This section will be ended with a brief presentation of some definitions and
results concerning fixpoints.

Definition 1.5.8. Let S be a set with a partial order ≤. Then, a ∈ S is an upper
bound of a subset X of S if x ≤ a, for every x ∈ X. Similarly, b is a lower bound
of a subset X of S if b ≤ x, for every x ∈ X.

Definition 1.5.9. Let S be a set with a partial order ≤. Then, a ∈ S is the least
upper bound of a subset X of S if a is an upper bound of X and, for every upper
bound a′ of X, it is the case that a ≤ a′. Similarly, b ∈ S is the greatest lower
bound of a subset X of S if b is an upper bound of X and, for every upper bound b′

of X, it is the case that b′ ≤ b.

When there exists an upper bound, it is unique and is denoted by lub(X).
When there exists a lower bound, it is unique and is denoted by glb(X).

1.5. BASIC CONCEPTS OF LOGIC PROGRAMMING 34

Definition 1.5.10. A partially ordered set L is a complete lattice if lub(X) and
glb(X) for every subset X of L.

The lower upper bound of L (if it exists) is called the top element and is denoted
by ⊤. The greatest lower bound of L (if it exists) is called the bottom element and
is denoted by ⊥.

Definition 1.5.11. Let L be a complete lattice and T : L→ L be a mapping. Then,
T is said to be monotonic if T (x) ≤ T (y), whenever x ≤ y.

Definition 1.5.12. Let L be a complete lattice and X ⊆ L. Then, X is said to be
directed if every finite subset of X has an upper bound in X.

Definition 1.5.13. Let L be a complete lattice and T : L→ L be a mapping. Then,
T is said to be continuos if T (lub(X)) = lub(t(X)), for every directed subset X of
L.

Definition 1.5.14. Let L be a complete lattice and X ⊆ L be a mapping. Then,
a ∈ L is said to be the least fixpoint of T a is a fixpoint (that is, T (a) = a) and
a ≤ b, if b is a fixpoint. The greatest fixpoint is defined similarly.

Proposition 1.5.15. Let L be a complete lattice and let T : L→ L be monotonic.
Then, T has a least fixpoint lfp(T) and a greatest fixpoint gfp(T). Furthermore,
lfp(T)=glb({x|T (x) = x})=glb({x|T (x) ≤ x}) and
gfp(T)=lub({x|T (x) = x})=lub({x|x ≤ T (x)}).

Definition 1.5.16. Let L be a complete lattice and let T : L→ L be monotonic.
Define

T ↑ 0 = ⊥

T ↑ α = T (T ↑ (α− 1)), if α is a successor ordinal

T ↑ α =lub({T ↑ β|β ≤ α}), if α is a limit ordinal

T ↓ ⊤

T ↓= T (T ↓ (α− 1)), if α is a successor ordinal

T ↓ α =glb({T ↓ β|β ≤ α}), if α is a limit ordinal

Proposition 1.5.17. Let L ba a complete lattice and let
T : L→ L be continuous. Then, lfp(T)= T ↑ ω.

Chapter 2

A Suitable System for

Paraconsistent Reasoning

2.1 A Paraconsistent Account of Isomorphism

The notion of isomorphism is designed in each branch of mathematics as a tool
for matching objects that are likely to be viewed as being the ‘same thing’, in the
sense that they behave in the same manner with respect to some desired aspect. In
classical theory of models, the concept of isomorphism is designed so as to preserve
validity of sentences, that is, so as to match models that satisfy the same sentences.

Of course, isomorphism (or homomorphism) can be defined for QmbC just in the
same way as for classical logic. The problem is that the classical-like definition does
not preserve validity of sentences in QmbC, for it does not control the ‘propagation’
of negation and consistency. The goal of this section is to provide an account of
isomorphism for QmbC which shall be able to preserve validity of sentences at least
to some extent. It turns out that the concept of isomorphism is so much limited in
QmbC, but it may be fruitful in some slight enrichments of it.

An important case of extension of a model AX is the one where X = A. In
that regard, it holds the very useful result below. Its proof is straightfoward and
identical to the proof for the classical case.

Lemma 2.1.1. For every θ(x) ∈ LΣ and a ∈ A, A � θ[a] iff AA � θ(ca).

Obs.: In view of Lemma 2.1.1, working with sentences instead of interpreted
formulae is not actually a loss of generality. In fact, if every element in the domain
interprets some constant, then what is true about sentences is true about inter-
preted formulae. The developments in this section will be performed in terms of

35

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 36

sentences because this is the usual way in the literature. However, the proofs are
performed for extended models AA. For this reason, they are valid for interpreted
formulae as well. Further in the text, it will be convenient to work in terms of
interpreted formulae.

The result below plays an important role in the proofs by induction.

Proposition 2.1.2. Given a formula θ and a term τ in a language LΣ, comp(θxτ) =
comp(θ).

Proof. The proof is performed by induction on the complexity of θ.
If comp(θ) = 0, then θ = P (τ1, . . . , τn), for some P ∈ P̄ and some sequence of
terms (τ1, . . . , τn). Then, θxτ = P ((τ1)

x
τ , . . . , (τn)xτ), which has complexity 0.

Suppose the property holds for k ≤ n. If θ has complexity n+ 1, then

❼ If θ = #φ, for # ∈ {¬, ∃, ∀}, then comp(φ) = n. By the inductive hypothesis,
comp(φ) = comp(φxτ) = n. Hence, comp(θxτ) = comp(φxτ) + 1 = n+ 1.

❼ If θ = φ#ψ, for # ∈ {∨,∧,→}, then comp(φ) + comp(ψ) = n, whence
comp(φ), comp(ψ) ≤ n. By the inductive hypothesis,
comp(φ) = comp(φxτ) and comp(ψ) = comp(ψxτ).
Hence, comp(θxτ) = comp(φxτ) + comp(ψxτ) + 1 = n+ 1.

❼ If θ = ◦φ, then comp(φ) = n− 1. By the inductive hypothesis, comp(φ) =
comp(φxτ) = n− 1. Hence, comp(θxτ) = comp(φxτ) + 2 = n+ 1.

Finally, the introduction of really new concepts can begin. The first one will be
that of quasi-isomorphism.

As the difference between classical and QmbC models lies in the level of
valuation, rather than in the level of structures, the difference between isomorphism
for classical and for QmbC models is likely to lie in the way they ‘propagate’ validity
in the level of valuation. This consideration leads to a concept of isomorphism
in QmbC that is to be set exactly in the same way as in the classical case. This
concept, however, is to be enriched as the concept of structure gets enriched. The
result is a kind of isomorphism that preserves validity for part of the formulae.
Two isomorphic models in this sense are not structurally the same. A concept
with such a behavior would hardly capture the spirit that mathematical tradition
bestowed to the idea of isomorphism. For this reason, the new concept will be
named quasi-isomorphism instead of isomorphism.
Here follows the concept:

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 37

Definition 2.1.3 (QmbC Quasi-Isomorphism). Let A = 〈A, IA〉 and B = 〈B, IB〉
be two QmbC-structures for the language LΣ over the signature Σ. A QmbC
quasi-homomorphism h : A→ B from A to B is a function h : A→ B such that:

1. (a1, a2, . . . , an) ∈ AA
P1 implies (h(a1), h(a2), . . . , h(an)) ∈ BB

P1;

2. h(fA(a1, a2, . . . , an)) = fB(h(a1), h(a2), . . . , h(an)) for every f ∈ Fn and
(a1, a2, . . . , an) ∈ An;

3. h(cA) = cB for every c ∈ C.

If h is a bijection and it holds ‘iff’ instead of ‘implies’ in (1), then h is a QmbC
quasi-isomorphims from A to B. If there exists a QmbC quasi-isomorphism from
A to B or a QmbC quasi-isomorphism from B to A, then A and B are said to be
quasi-isomorphic. This fact is denoted by A ≃ B or B ≃ A.

In the pursuit of the goal of this section, which is to explore the possibilities of
quasi-isomorphisms in preserving validity of sentences, a definition is in order:

Definition 2.1.4 (Preservation Kernel of a QmbC-structure). Let A be a QmbC-
structure. The preservation kernel of A is the set Pk(A) = {θ|∀B, (A ≃ B) ⇒
[(A � θ) ⇔ (B � θ)], that is, the set of all sentences from A whose validity is
preserved under whatever quasi-isomorphism. The preservation kernel of a family
of quasi-isomorphic models is the preservation kernel of any of its models. This is
well defined, for being quasi-isomorphic is an equivalence relation.

A humble result can be stated here:

Proposition 2.1.5. Let A be a model and θ a sentence. If θ involves no connectives
¬ or ◦, then θ ∈ Pk(A).

Proof. Let A and B be two models and h a quasi-isomorphism from A to B.
It must be proven that, for a given sentence θ involving no connectives ¬ and
◦, it happens that A � θ iff B � θ. It will be proven the equivalent result that
AA � θ iff BB � θ. The equivalence of this result to the desired one follows from
Lemma 2.1.1 and from the fact that the quasi-isomorphism h from A to B is also
a quasi-isomorphism from AA to BB.
Firstly, it must be proven that if τ is a closed term, then h(τAA) = τBB . The proof
is identical to that for classical models and will be omitted.
Having this fact as a lemma, the proof of the proposition can be performed by
induction on the complexity of θ:
For atomic sentences:
AA � P (τ1, τ2, . . . , τn) iff (τAA

1 , τAA
2 , . . . , τAA

n) ∈ PAA iff (h(τAA
1), h(τAA

2), . . . , h(τAA
n)) ∈

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 38

PBB iff (τBB
1 , τBB

2 , . . . , τBB
n) ∈ PBB iff BB |= P (τ1, τ2, . . . , τn).

Suppose the proposition is proven for sentences with complexity up to n and let θ
be a sentence with complexity n+ 1.

❼ If θ = φ ∧ ψ, then AA � θ iff (AA � φ and AA � ψ) iff (BB � φ and BB � ψ)
iff BB � θ.

❼ If θ = φ ∨ ψ, then AA � θ iff (AA � φ or AA � ψ) iff (BB � φ or BB � ψ) iff
B � θ.

❼ If θ = φ→ ψ, then AA � θ iff (AA 2 φ or A � ψ) iff (BB 2 φ or BB � ψ) iff
BB � θ.

❼ If θ = ∃xφ(x), then AA � θ iff there is a ∈ A such that AA � φ[a]. But
AA � φ[a] iff AA � φ(ca) iff (by the inductive hypothesis)* BB � φ(ca) iff
BB � φ[cBB

a] iff BB � φ[h(a)]. Therefore, there is a ∈ A such that AA � φ[a]
iff there is h(a) ∈ B such that BB � φ[h(a)]. Hence, AA � ∃xφ(x) iff
BB � ∃xφ(x).

❼ If θ = ∀xφ(x), then AA � θ iff, for all a ∈ A, AA � φ[a]. As just proven
above, AA � φ[a] iff BB � φ[h(a)]. As h : A→ B is a bijection, AA � φ[a] for
all a ∈ A iff BB � φ[b] for all b ∈ B. Hence, AA � ∀xφ(x) iff BB � ∀xφ(x).

*Note that Proposition 2.1.2 is being used at this point.

In the search for some set of sentences to which some stronger result can be
stated, it follows one more definition:

Definition 2.1.6 (Handable Sentence). Given a model A over the language LΣ,
a handable sentence in A is a formula in LΣ recursively formed by the following
rules:

❼ If P is a predicate symbol of arity n and τ1, τ2, . . . , τn are closed terms, then
P (τ1, τ2, . . . , τn) is a handable sentence.

❼ If φ and ψ are handable sentences, then φ ∧ ψ is a handable sentence.

❼ If φ and ψ are handable sentences, then φ ∨ ψ is a handable sentence.

❼ If φ and ψ are handable sentences, then φ→ ψ is a handable sentence.

❼ If θ is a handable sentnece and A � ◦θ, then ¬θ is a handable sentence.

❼ If θ is a handable sentence, then ◦θ is a handable sentence.

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 39

❼ If, for every a ∈ A, θ(ca) is a handable sentence, then ∃xθ(x) is a handable
sentence.

❼ If, for every a ∈ A, θ(ca) is a handable sentence, then ∀xθ(x) is a handable
sentence.

❼ If, for some a ∈ A, θ(ca) is a handable sentence and A � θ(ca), then ∃xθ is
a handable sentence.

Obs.: There is no problem in making recourse to the validity of formulae in
A, for the set of formulae being defined is a subset of a previously defined set of
formulae.

Now, a slightly stronger result can be stated for mbC-models.

Proposition 2.1.7. Let A and B be two quasi-isomorphic models and θ a handable
sentence (with respect to both A and B) which involves no connective ◦. Then,
A � θ iff B � θ. Equivalently, given a model A, θ ∈ Pk(A).

Proof. The proof is made by induction on the complexity of the sentence and is
identical to that of Proposition 2.1.5, just with an extra step of induction:

❼ If θ = ¬φ, then AA � ¬φ iff AA 2 φ (for A � ◦φ, as θ is a handable sentence)
iff BB 2 φ (by the inductive hypothesis) iff BB � ¬φ (for BB � ◦φ).

At this point, the possibilities for QmbC have been fully explored and some
enrichment turns out to be necessary in order to gain some stronger result. A way
of doing so is to assume the converse of vCon.

vConverseCon If v(α[~a]) = 0 or v(¬α[~a]) = 0, then v(◦α[~a]) = 1.

An equivalent form of vConverseCon was studied in under the name Ciw.

Ciw ◦α ∨ (α ∧ ¬α)

Adding Ciw as a clause leads to the following definition:

Definition 2.1.8 (QmbCCiw-Valuation). A QmbCCiw-valuation v is a
QmbC-valuation in which the extra clause below holds: If Ciw holds in a
QmbC-valuation v restricted to a set of formulae K, then v is called a
KQmbCCiw-valuation.

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 40

Naturally, a QmbC-model based on an QmbCCiw-valuation will be called a
QmbCCiw-model.

Fianally, it is possible to state a result for sentences involving also the connective
◦.

Proposition 2.1.9. Let A and B be two quasi-isomorphic QmbCCiw-models and
θ a handable in sentence both A and B. Then, A � θ iff B � θ.

Proof. Again, by induction on the complexity of θ.
The proof is performed by the same steps of the proof of Proposition 2.1.5 with the
additional step of the proof of Proposition 2.1.7 and yet with the additional step

❼ If θ = ◦φ and A � θ, then AA 2 φ or AA 2 ¬φ (for vCon) and at most
AA 2 φ or AA 2 ¬φ (for vNeg), which means that even AA � φ and AA 2 ¬φ
or AA 2 φ and AA � ¬φ.
Hence, by the inductive hypothesis (remember that if ◦φ has complexity
n+ 1, then φ has complexity n− 1 and ¬φ has complexity n), even BB � φ
and BB 2 ¬φ or BB 2 φ and BB � ¬φ.
In any case, BB � θ, by Ciw.

This is an interesting result, for it does not exclude any connective and the set
of handable sentences is not so restrictive.

As already mentioned, models endowed with Ciw have been actually studied
in the literature and have turned out ot be a good solution for many purposes. In
Chapter 4 of the present work, a situation in which Ciw appears naturally will be
presented. However, the assumption of Ciw will not be always convenient and for
the purposes that are being pursued here it will be not. The next lines show why.

There are three flaws that must be mended:

1. Sentences that should desirably be handable may not be so, for inconsistent
sentences can derive from consistent ones.

2. The concept of handable sentence depends on the model under consideration,
not on the notion of structure itself. This means that, in order to link
the validity of a sentence in one model to its validy in another via quasi-
isomorphism, it is necessary to make sure that it is handable in both models.
So, little work has been done until now on behalf of the preservation kernel.
As an illustration of the inconvenience of this fact, see that Proposition 2.1.9
does not allow one to conclude that if θ is a handable sentence for a model
A, then θ ∈ Pk(A).

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 41

3. There is a high philosophical price in assuming Ciw. Assuming Ciw is
to assume that if an assertion has not been found to be inconsistent, then
it is consistent. That may not be a problem in a dialeteistic approach,
where inconsistency dwells in the world. But it is a great problem in a
non-dialeteistic approach, where inconsistency is an epistemic phenomenon
rather than an ontological one and knowledge is to be revised. In such a
context, an inconsistent sentence is a one whose temporally epistemological
inconsistency does not compromise the entire system of reasoning. Being so,
assuming Ciw would be to assume that if a sentence has not been exposed
to any contradiction so far, then it cannot be exposed to contradictions at
all.

Regarding the first flaw, it would be desirable to find a set that should be closed
under formation of more complex sentences by the use of connectives.

In this respect, not only does not Ciw solve the problem, but it also creates
the odd situation where every false sentence is consistent. In fact, if v(φ) = 0, then
v(¬φ) = 1, by vNeg. By Ciw, v(◦φ) = 1.

A convenient solution may be to introduce clauses that shall be able to ‘propa-
gate’ consistency. The eight clauses bellow will be called Propagation Clauses :

vPropOr If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α ∨ β))[~a]) = 1.

vPropAnd If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α ∧ β))[~a]) = 1.

vPropImp If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α→ β))[~a]) = 1.

vPropNeg If v((◦α)[~a]) = 1, then v((◦(¬α))[~a]) = 1.

vPropCon For every α, v((◦(◦α))[~a]) = 1 and v((◦(¬ ◦ α))[~a]) = 1.

vPropUni If, for all a ∈ A, v(◦α[a,~a]) = 1, then v(◦(∀xα(x, ~x))[~a]) = 1.

vPropEx If, for all a ∈ A, v(◦α[a,~a]) = 1, then v(◦(∃xα(x, ~x))[~a]) = 1.

vPropEx’ If, for some a ∈ A, v(α[a,~a]) = 1 and v(◦α[a,~a]) = 1, then
v(◦(∃xα(x, ~x))[~a]) = 1.

With the clauses above, it is possible to delimit a less blur set.

Proposition 2.1.10. Let v be a QmbC-valuation for which the Propagation Clauses
hold and let K be a handable set of consistent formulae. The set K ′ of formulae
that are recursively formed from K is a handable set. Moreover, if the formulae
in K have complexity 0, then it is closed under subformulae and its formulae are
consistent.

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 42

Proof. The proof follows by induction on the complexity of formualae and is
straightforward.

In view of Proposition 2.1.10, assuming the Propagation Clauses seems to be an
effective solution to the first flaw. In fact, let KA and KB be the sets of consistent
sentences with complexity 0 in A and B, respectively. Let KA,B = KA ∩KB be the
intersection of those sets and let K ′

A,B be the set that is recursively generated by
KA,B in the canonical way with respect to the propagation clauses. That is, if α
and β can be formed, then α∨ β can be formed; if α(x) is a formula and α(ca) can
be formed for every a ∈ A, then ∃xα(x) and ∀xα(x) can be formed (if necessary,
define the sentences in AA and then take the restriction to the original signature);
and so on.

Obviously, the sentences in KA,B are consistent both in A and B, and so are the
sentences in the set K ′

A,B. Thus, a Ciw-valuation satisfying also the Propagation
Clauses is able to preserve validity in K ′

A,B, which is a set that includes at least
the main sentences that should be naturally expected to be preserved.

The focus now changes to the third flaw (there is a high price in assuming Ciw)
and to the odd situation pointed out in the discussion that follows (all non-valid
sentences would be consistent). The first flaw is mended. Nevertheless, for the
reasons just exposed, it would be highly desirable a solution not involving Ciw,
which is essencial in the induction step involving ◦.

The solution, however, is provided once again by the Propagation Clauses. The
point is that, if a valuation v satisfies the Propagation Clauses, then it is true that,
for every sentence θ ∈ K ′

A,B, if v(θ) = 0 or v(¬θ) = 0, then v(◦θ) = 1. In fact,
it is true that v(◦θ) = 1 for every sentence θ ∈ K ′

A,B. Summing up, Ciw can be
discarded if the interest is driven to K ′

A,B.
The discussion above leads to the following definition:

Definition 2.1.11 (Propagating QmbC-Valuation). A propagating QmbC-valuation
is a QmbC-valuation satisfying the Propagation Clauses.
A model with a propagating QmbC-valuation is a propagating QmbC-model, or
just a propagating model.

Proposition 2.1.12. Let A and B be two quasi-isomorphic propagating models.
Then, θ ∈ K ′

A,B implies A � θ iff B � θ.

The proof of the proposition above is the same as that of Proposition 2.1.9,
with the difference that the induction step for ◦ is provided by the fact that the
sentences in K ′

A,B are consistent.

Proposition 2.1.12 provides a good way of disposing of Ciw and, consequently,
getting rid of the third flaw and of the odd situation of non-valid sentences being

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 43

consistent. The cost is to assume the Propagation Clauses. This assumption is
quite acceptable, not to say natural, in a system designed for reasoning. In fact, the
‘consistent portion’ of a model shall behave classically. The ‘syntactical matches’
of vPropOr, vPropAnd and vPropImp (respectively, (◦α ∧ ◦β) → ◦(α ∨ β),
(◦α ∧ ◦β)→ ◦(α ∧ β) and (◦α ∧ ◦β)→ ◦(α→ β)) actually hold in the logic C1 of
Da Costa. Clause vPropNeg would not be a problem, unless in an intuitionist
context. For vPropCon, a discussion akin to the discussion in modal logic around
axiom 4 (�α → ��α) should take place. It is worth noticing that it appears in
the literature in the logic mCi, described in [15]. Its assumption is harmless in the
context aimed here, anyway.

There still remains the second flaw (The concept of handable sentence depends
on the model under consideration). There is control of validity of basic sentences
(with complexity 0) in the level of structure but there is only partial control of
validity of complex sentences. For that reason, quasi-isomorphisms control the
equivalence of basic sentences, but not the equivalence of complex sentences. So,
the set of complex sentences that are valid for every model that is quasi-isomorphic
to a given model is too small. In other words, very little can be said about the
preservation kernel. In order to mend this flaw, it will be necessary to control
somehow the validity of the consistency of complex sentences in the level of structure
in the same fashion as this control occurs for basic sentences, at least to some
extent. That can be done by enriching the concept.

Definition 2.1.13 (◦-Structure). A ◦-structure over a signature Σ is a pair
A = 〈A, IA〉, where A is a nonempty set, which is the domain of interpretation,
and IA is a function, whose domain is Σ, which is the interpretation function, such
that:

❼ IA(c) ∈ A

❼ IA(f) ∈ En, if f ∈ Fn, where

1. En is the space of functions from An to A.

❼ IA(P) = (AA
P1, A

A
P2), if P ∈ Pn, where

1. AA
P1 ⊆ A

n

2. AA
P2 ⊆ A

n

It is necessary to enrich the concept of valuation as well.

Definition 2.1.14 (◦-Propagating QmbC-Valuation). A ◦-propagating mbC-
valuation is a propagating mbC-valuation that satisfies

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 44

vConPred v(◦P (t1 . . . , tn)) = 1 iff (tA1 , . . . , t
A
n) ∈ AA

P2, for P ∈ Pn.

A model based on a ◦-structure and on a ◦-propagating QmbC-valuation is
called a ◦-propagating QmbC-model, or just a ◦-propagating model.

As something has been added to the concept of structures, something alike
must be added to the concept of quasi-(iso)homomorphism.

Definition 2.1.15 (◦-Propagating Quasi-Isomorphism). Let A = 〈A, IA〉 and
B = 〈B, IB〉 be two ◦-structures for the language LΣ over the signature Σ. A
quasi-homomorphism h : A→ B from A to B is a function h : A→ B such that:

1. (a1, a2, . . . , an) ∈ AA
P1 implies (h(a1), h(a2), . . . , h(an)) ∈ BB

P1;

2. h(fA(a1, a2, . . . , an)) = fB(h(a1), h(a2), . . . , h(an)) for every f ∈ Fn and
(a1, a2, . . . , an) ∈ An;

3. h(cA) = cB for every c ∈ C.

4. (a1, a2, . . . , an) ∈ AA
P2 implies (h(a1), h(a2), . . . , h(an)) ∈ BB

P2;

If h is a bijection and it holds ‘iff’ instead of ‘implies’ in (1) and in (4), then h is
a ◦-propagating quasi-isomorphism from A to B.

Obs.: Again, it holds that if τ is a closed term, then h(τA) = τB and the proof
of this fact is identical to that for classical models, for it involves only clauses
(2) and (3). The definition of ◦-propagating model has been designed so that the
following result holds.

Proposition 2.1.16. Let K ′ be the set of formulae recursively formed from a
handable set K and let A and B be two quasi-isomorphic ◦-propagating models.
Then, K ′

A = K ′
B.

Proof. If θ has complexity 0, then θ = P (τ1, τ2, . . . , τn) for some predicate func-
tion P and for some n-tuple of terms (τ1, τ2, . . . , τn). Therefore, θ ∈ K ′

A iff A �

◦P (τ1, τ2, . . . , τn) iff (τA1 , τ
A
2 , . . . , τ

A
n) ∈ AA

P2 (by vConPred) iff (h(τA1), h(τA2), . . . , h(τAn)) ∈
AA
P2 (by (3) of Proposition 2.1.15) iff (τB1 , τ

B
2 , . . . , τ

B
n) ∈ AB

P2 (by the observation
just after the definition of quasi-isomorphism) iff B � ◦P (τ1, τ2, . . . , τn) (by vCon-

Pred) iff θ ∈ K ′
A.

That is, KA = KB. As K ′
A is the set of sentences that are recursively formed from

KA and K ′
B is the set of sentences that are recursively formed from KB, it follows

that K ′
A = K ′

B.

Propositions 2.1.16 and 2.1.12 immediately yield

Proposition 2.1.17. Let A be a ◦-propagating model. Then, K ′
A ⊂ Pk(A).

2.1. A PARACONSISTENT ACCOUNT OF ISOMORPHISM 45

Proposition 2.1.17 gives life to the concept of quasi-isomorphism, which is finally
able to control equivalence in a discernible portion of the language.

The set K ′
A does not contain all the sentences in Pk(A).

As shown in Proposition 2.1.5, the set S of sentences that are free of ¬ and ◦
belong to Pk(A); Obviously, the sets T and F , respectively of sentences equivalent
to ⊤ and ⊥ in ◦-propagating models, are contained in Pk(A) too. So is the set
U = K ′

A ∪ S ∪ T ∪ F .
Some results of partial closeness hold. If D ⊂ Pk(A), then θ ∈ Pk(A) if one of

the following conditions hold:

1. θ = φ ∧ ψ and φ, ψ ∈ D;

2. θ = φ ∧ ψ and φ ∈ D and vA(φ) = 0. (likewise replacing φ by ψ);

3. θ = φ ∨ ψ and φ, ψ ∈ D;

4. θ = φ ∨ ψ and φ ∈ D and vA(φ) = 1. (likewise replacing φ by ψ);

5. θ = φ→ ψ and φ, ψ ∈ D;

6. θ = φ→ ψ and φ ∈ D and vA(φ) = 0;

7. θ = φ→ ψ and ψ ∈ D and vA(ψ) = 1;

8. θ = ¬φ and φ ∈ D and vA(φ) = 0;

9. θ = ¬φ and (φ, ◦φ ∈ D) and vA(◦φ) = 1;

Let {Un} be the chain of sets recursively defined as follows:

❼ U0 = U

❼ Un+1 is such that θ ∈ Un+1 iff θ ∈ Un or θ satisfies some of the nine items
above (where D = Un).

It is straightforward to prove by induction that, for every n, Un ⊂ Pk(A). Also, it
is straightforward to prove that Uω = ∪Un ⊂ Pk(A).

The set Uω is not exhaustive yet. Completely delimiting Pk(A) is not a simple
task at all. Nevertheless, it is possible to delimit, in the various contexts that may
happen to present themselves, portions of Pk(A) that can be controlled and may
be of great interest.

An analog search can be made for QmbCCiw-models or any other family of
models.

The whole discussion in this section settles ◦-propagating QmbC-models as the
starting point to the developments to be proposed in what follows.

2.2. PARACONSISTENT REASONING MODELS 46

2.2 Paraconsistent Reasoning Models

2.2.1 Construction

The point of view championed in this work is that of inconsistency as an epistemic
phenomemon. In accordance with that line, this section will be dedicated for
building paraconsistent models for reasoning. The consistent portion of models
shall be the domain of safe knowledge and quasi-isomorphisms are expected to
preserve validity within that domain.

In the previous section, the discussion on validity was made with the focus on
sentences. For that, sometimes it was necessary to work with the extension AA

instead of the model A itself. This choice was made for the philosophical approach
being adopted was that of regarding sentences as the cells that convey knowledge.
This approach seems to have an epistemological flavor. The proposal for the rest of
this chapter is to regard the domain of interpretation as the universe of objects in
a given theory, which may be physical objects, for instance. Within this approach,
predicate symbols predicate what can be stated about the objects of the universe
and interpreted formulae are the cells that convey knowledge par excellence. In this
sense, interpreted formulae are the statements that can be made in a model. For
this reason, ‘statement’ will be used as a synomym for ‘interpreted formula’. Both
terms will be used along the text according to convenience. The term ‘statement’
will be preferred along the text and the term ‘interpreted formula’ will be preferred
in the proofs. The terms ‘basic (interpreted) formula’ and ‘basic statement’ will
denote a (interpreted) formula or a statement of complexity 0. Naturally, sentences
are interpreted formulae as well.

Models will be regarded as states of knowledge and two different states shall
agree with respect to safe knowledge. So, structures should control which statements
are to be considered safe. Basic statements are thought of as the basic facts that
can be stated about the world and it is not acceptable that every basic statement
be controlled by the structure, unless the agent is omniscient. For this reason, it is
convenient to adopt the clause vPredPos instead of vPred as described below:

vPredPos v(P (t1 . . . , tn)[~a]) = 1 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, for P ∈ Pn

vPred v(P (t1 . . . , tn)[~a]) = 1 iff (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, for P ∈ Pn.

At first sight, it seems mandatory that the consistency of statements be determined
from the beginning. In fact, it is reasonable to suppose that the agent knows what
statements can be exposed to a contradiction and what statements cannot. However,
the next section will treat of refining a state of knowledge and two different models
will be seen as quasi-isomorphic if one can be a refinement of the other. In other

2.2. PARACONSISTENT REASONING MODELS 47

words, a statement that is determined from the beginning is to be regarded as a
non-revisable statement. In this line, it is reasonable that the consistency of some
statements shall be revisable. For this reason, it is convenient to adopt the clause
vConPredPart instead of vConPred as described below:

vConPredPart v(◦P (t1 . . . , tn)[~a]) = 1 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P2, for P ∈ Pn.

vConPred v(◦P (t1 . . . , tn)[~a]) = 1 iff (tA1 [~a], . . . , tAn [~a]) ∈ AA
P2, for P ∈ Pn.

In QmbC or in ◦-propagation QmbC, vPred is able to delimit all basic statements
with valuation 1 from the beginning and all basic statements with valuation 0
as well, for all statements are to have valuation 1 or 0 from the beginning. The
assertion that a statement is delimited from the beginning is intended to mean that
quasi-isomorphic models necessarily agree with respect to its valuation. Clause
vPredPos, however, is only able to delimit the set of basic statements which are
to have valuation 1 from the beginning. Thus, some clause is needed in order to
delimit the set of basic statements with valuation 0. For that, an extra set AP3 will
be added to the concept of structure together with a new clause vPredNeg in the
valuation. In this new context, there are three kinds of basic statements: Those
which have valuation 1 from the beginning, those which have valuation 0 from the
beginning and those which have no valuation determined from the beginning.

As already advanced, models are states of knowledge, quasi-isomorphic models
are compatible states of knowledge and statements that are preserved by quasi-
isomorphism are non-revisable ones. If a statement is non-revisable, then it must be
safe knowledge. So, in the search for an account of quasi-isomorphism in a reasoning
context, it is a natural desideratum that if θ ∈ Pk(A), then A � ◦θ and ◦θ ∈ Pk(A).
For this desideratum to be fulfilled, it is necessary that AP1∪AP3 ⊂ AP2. Obviously,
AP1 ∩AP3 = ∅.

In a reasoning context, it makes sense to know that some statement implies
some other even without knowing about the validity or about the consistency of
them. In order to control this phenomenom, two sets AP4 and AP5 will be added to
the structure together with the correspondent clause in the valuation rules. It also
makes sense to know that at least one of two (or more) statement is true or that
two (or more) staements cannot be true at the same time even without knowing
anything about those statements. The same recourse will be used to deal with
conjunction and disjunction. Separate sets and clauses will be needed in order to
deal with conjunction and disjunction, for De Morgan does not hold here.

Once exposed the elements above, a kind of reasoning QmbC can be stated.
Naturally, the first step is the definition of structure. Firstly, an enrichment of the
concept of language is in order and also some notation is needed:

The sets AP4 to AP9 are designed with the purpose of linking predicate symbols.
In order to render possible this linking, a way of referring to a predicate symbol

2.2. PARACONSISTENT REASONING MODELS 48

without using its name is necessary, for a quasi-homomorphism is a function
from one domain of interpretation to another. For that purpose, a codification
of predicate symbols will be added to the concept of language. The next section
will begin with the definition of En, which will serve as a codification of predicate
symbols written in binary base.

2.2.2 Definition

A reasoning language Σ is a language endowed with a codification function En :
P̄ → Bin, where Bin is the set of tuples of any finite length whose entries are 1
or 0. Moreover, for every P , En(P) ends in 111 and the sequence 111 appears
nowhere else in En(P). These requirements make it possible to identify where
the representation of P ends and the sequence ā begins in a sequence of the form
P ×An. Without that, the notation would be ambiguous.
En′(P, a, b) denotes the tuple obtained by the substituition of every occurrence of
1 in En(P) by a and of every occurrence of 0 by b.

Yet some additional notation: (P ×A)i(a, b) denotes the set of pairs of the

form En′(P, a, b)×Ai, where P ∈ Pi and P ×A(a, b) denotes ∪(P ×A)i(a, b).
Now, reasoning structures can be defined. In the definition, it is presupposed

that A contains at least two elements.

Definition 2.2.1 (Reasoning Structure). A reasoning structure over a signature
Σ is a pair A = 〈A, IA〉, where A is a nonempty set, which is the domain of
interpretation, and IA is a function whose domain is Σ, which is the interpretation
function, such that:

❼ IA(c) ∈ A, if c is a constant.

❼ IA(f) ∈ En, if f ∈ Fn, where

– En is the space of functions from An to A.

❼ IA(P) = (AA
P1, A

A
P2, A

A
P3, A

A
P4, A

A
P5, A

A
P6, A

A
P7, A

A
P8, A

A
P9, a

A
1 , a

A
2), if P ∈ Pn,

where

– aA1 , a
A
2 ∈ A and aA1 6= aA2 .

– AA
Pi ⊆ A

n, for 1 ≤ i ≤ 3

– AA
Pj ⊆ (P ×A)n(aA1 , a

A
2), for 4 ≤ i ≤ 9

– aA1 , a
A
2 ∈ A and aA1 6= aA2 .

2.2. PARACONSISTENT REASONING MODELS 49

As usual, the interpretation function IA induces an interpretation mapping
(·)A : CTΣ → A from the set CTΣ of terms in Σ to the domain of interpretation.
This map interprets each sentence recursively as follows:

❼ cA = IA(c) if c is a constant.

❼ f(τ1, τ2, . . . , τn)A = IA(f)(τA1 , τ
A
2 , . . . τ

A
n) if f ∈ Fn.

The next step is to define valuation in the new logic. It will be an extension of
◦-propagating valuations. In fact, propagating consistency is convenient for the
reasons already discussed. This time, something else will be assured, that is, that
every sentence of the kind ◦φ or of the kind ¬ ◦ φ be consistent. Also, it will be
assured that every statement which has valuation 1 or 0 from the beginning be
consistent. This requirement is fair in a context where knowledge stated from the
beginning is safe knowledge, for safe knowledge shall be consistent. It is not a novel
clause in the literature, for it holds in mCi (see again [15]).

Although some of the clauses were presented in the definition of mbC-valuation
and in the discussion along the text, it is worth to present all of them in an
organized way. For a better comprehension, they will be separated in four groups:
The one of basic control, which comprises the clauses that state valuation for some
basic statements and for some statements of complexity 1 ‘from the beginning’;
The one of classical behavior, which comprises the clauses that control connectives
that behave classically; The one of QmbC control, which comprises the clauses that
rule paraconsistent behavior in QmbC; and the one of propagation control, which
comprises the clauses that control propagation of consistency.

In the definition that follows (P, tA1 , . . . , t
A
n) will be used as a shorthand for

(En′(P, aA1 , a
A
2), tA1 , . . . , t

A
n).

Definition 2.2.2 (Reasoning Valuation). Let A be a structure over the signature Σ
with domain A and let IF (A) be the set of interpreted formulae over A. A mapping
v : IF (A) → {0, 1} is a reasoning valuation over A if it satisfies the following
clauses:

Basic Control Clauses:

vPredPos v(P (t1, . . . , tn)[~a]) = 1 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, for P ∈ Pn.

vPredNeg v(P (t1, . . . , tn)[~a]) = 0 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P3, for P ∈ Pn.

vConPredPart v((◦(P (t1, . . . , tn)))[~a]) = 1 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P2, for P ∈

Pn.

2.2. PARACONSISTENT REASONING MODELS 50

vConImpPred v((P (t1 . . . , tn))→ P ′(t1, . . . , tm))[~a]) = 1 and
v((◦(P (t1, . . . , tn) → P ′(t1, . . . , tm)))[~a]) = 1 if (P ′, tA1 [~a], . . . , tAn [~a]) ∈ AA

P4

and (P, tA1 [~a], . . . , tAm[~a]) ∈ AA
P ′5, for P ∈ Pn and P ′ ∈ Pm.

vConOrPred v((P (t1, . . . , tm) ∨ P ′(t1, . . . , tn))[~a]) = 1 and
v((◦(P (t1, . . . , tm)∨P ′(t1, . . . , tn)))[~a]) = 1 if (P ′, tA1 [~a], . . . , tAn [~a]) ∈ AA

P6 and
(P, tA1 [~a], . . . , tAm[~a]) ∈ AA

P ′7, for P ∈ Pn and P ′ ∈ Pm.

vConAndPred v((P (t1, . . . , tm) ∧ P ′(t1, . . . , tn))[~a]) = 0 and
v((◦(P (t1, . . . , tm)∧P ′(t1, . . . , tn)))[~a]) = 1 if (P ′, tA1 [~a], . . . , tAn [~a]) ∈ AA

P8 and
(P, tA1 [~a], . . . , tAm[~a]) ∈ AA

P ′9, for P ∈ Pn and P ′ ∈ Pm.

Classical Behavior Clauses:

vOr v((α ∨ β)[~a]) = 1 iff v(α[~a]) = 1 or v(β[~a]) = 1.

vAnd v((α ∧ β)[~a]) = 1 iff v(α[~a]) = 1 and v(β[~a]) = 1.

vImp v((α→ β)[~a]) = 1 iff v(α[~a]) = 0 or v(β[~a]) = 1.

vEx v((∃xα(x))[~a]) = 1 iff v(α[a,~a]) = 1 for some a ∈ A.

vUni v((∀xα(x))[~a]) = 1 iff v(α[a,~a]) = 1 for every a ∈ A.

QmbC Clauses

vNeg If v(α[~a]) = 0, then v((¬α)[~a]) = 1.

vCon If v((◦α)[~a]) = 1, then v(α[~a]) = 0 or v((¬α)[~a]) = 0.

vVar v(α[~a]) = v(β[~a]) whenever α[~a] is a variant of β[~a].

sNeg For every context (~x, z) and (~x, ~y), for every sequence (~a,~b) in A interpreting
(~x, ~y), for every φ ∈ L(A)~x,z and for every t ∈ T (A)~x,~y such that t is free for z

in φ, if φ[z/t] ∈ L(A)~x,~y and b = (t[~x, ~y/~a,~b])Â, then v((φ[z/t])[~x, ~y/~a,~b]) =

v(φ[~x, z/~a, b]) implies v((¬φ[z/t][~x, ~y/~a,~b])) = v(¬φ[~x, z/~a, b]).

sCon For every context (~x, z) and (~x, ~y), for every sequence (~a,~b) in A interpreting
(~x, ~y), for every φ ∈ L(A)~x,z and for every t ∈ T (A)~x,~y such that t is free for z

in φ, if φ[z/t] ∈ L(A)~x,~y and b = (t[~x, ~y/~a,~b])Â, then v((φ[z/t])[~x, ~y/~a,~b]) =

v(φ[~x, z/~a, b]) implies v((◦φ[z/t][~x, ~y/~a,~b])) = v(◦φ[~x, z/~a, b]).

Propagation Clauses

vPropOr If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α ∨ β))[~a]) = 1.

2.2. PARACONSISTENT REASONING MODELS 51

vPropAnd If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α ∧ β))[~a]) = 1.

vPropImp If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α→ β))[~a]) = 1.

vPropNeg If v((◦α)[~a]) = 1, then v((◦(¬α))[~a]) = 1.

vPropCon For every α, v((◦(◦α))[~a]) = 1 and v((◦(¬(◦α)))[~a]) = 1.

vPropUni If, for all a ∈ A, v(◦α[a,~a]) = 1, then v(◦(∀xα(x, ~x))[~a]) = 1.

vPropEx If, for all a ∈ A, v(◦α[a,~a]) = 1, then v(◦(∃xα(x, ~x))[~a]) = 1.

vPropEx’ If, for some a ∈ A, v(α[a,~a]) = 1 and v(◦α[a,~a]) = 1, then v(◦(∃xα(x, ~x))[~a]) =
1.

Definition 2.2.3. Let A =< A, IA > be a reasoning structure. Then, A satisfies a
sentence φ if v(φ) = 1 for every reasoning valuation v over A.

Not every reasoning structure is compatible with a reasoning valuation, for the
basic control clauses determine validity of some statements, that is, they determine
part of the valuation function and this partial valuation function may fail to fulfill
some of the classical behavior or QmbC clauses. So, in order to define a reasoning
model, it is necessary to start from a compatible reasoning structure, that is,
a reasoning structure whose partially determined valuation fulfills the classical
behavior and the QmbC-valuation clauses. The logical system defined from the
definitions of reasoning structures, reasoning valuations and reasoning models just
given will be called Paraconsistent Reasoning System and will also be referred as
PRS.

The concept of quasi-isomorphism will be the same as usual with the appropriate
clauses added for matching the extra apparatus in the structure.

Definition 2.2.4 (Reasoning Quasi-Isomorphism). Let A = 〈A, IA〉 and B =
〈B, IB〉 be two reasoning structures for the language LΣ over the signature Σ. A
reasoning quasi-homomorphism h : A→ B from A to B is a function h : A→ B
such that:

Clause i (a1, a2, . . . , an) ∈ AA
Pi implies (h(a1), h(a2), . . . , h(an)) ∈ BB

Pi; (for each
i, 1 ≤ i ≤ 3)

Clause j (P, a1, . . . , an) ∈ AA
Pj implies (h(P), h(a1), . . . , h(an)) ∈ BB

Pj; (for each
j, 4 ≤ j ≤ 9)

Clause 10 h(cA) = cB for every c ∈ C;

Clause 11 h(aA1) = bB1 and h(aA2) = bA2 ;

2.3. REFINEMENT 52

Clause 12 h(fA(a1, a2, . . . , an)) = fB(h(a1), h(an), . . . , h(an)) for every
(a1, a2, . . . , an) ∈ An and f ∈ Fn.

If h is a bijection and it holds ‘iff’ instead of ‘implies’ in clauses 1 to 9, then h is
a reasoning quasi-isomorphim from A to B.

If there is a reasoning quasi-isomorphis from A to B or from B to A, then A

and A are said to be quasi-isomorphic. This fact is denoted by A ≅ B or A ≅ B.

The same definition of preservation kernel given to QmbC-structures can be
given for reasoning models.

Definition 2.2.5 (Preservation Kernel of a Reasoning Model). Let A be a QmbC-
structure. The preservation kernel of A is the set Pk(A) = {θ|∀B,
(A ≅ B)⇒ [(A � θ)⇔ (B � θ)]}.

Once defined reasoning quasi-(iso)homomorphism, the next step is to delimit, at
least partially, the preservation kernel of a model, that is, the set of statements that
it preserves. Unlike in the case of ◦-quasi-isomorphism, not every basic statement of
a model belongs to its preservation kernel. This is not indeed a handicap. Rather,
it is an advantage, for this is the feature that allows knowledge revision.

The only clauses that rule interpretation of terms are still the classical ones,
that is, (10) and (12). For this reason, there remains valid that h(τA) = τB. Clause
(11) guarantees that h matches the representation of a propositional function P in
A to its representation in B. Clauses (1) and (3) guarantee that if (τA1 , τ

A
2 , . . . , τ

A
n)

belongs to AA
P1 or to AA

P3, then P (τ1, τ2, . . . , τn) belongs to Pk(A) and so does
◦P (τ1, τ2, . . . , τn), by clause (2), for AA

P1 ∪A
A
P3 ⊂ A

A
P2. This all means that there is

a set of basic interpreted formulae that belong to the preservation kernel together
with their consistency. Likewise, clauses (4) and (5) determine a set of interpreted
formuale of the form φ→ ψ, where φ and ψ are basic statements, that is contained
in the preservation kernel as well. Clauses (6) and (7) determine statements of the
form φ ∨ ψ and clauses (8) and (9), statements of the form φ ∧ ψ.

Moreover, the propagation clauses of reasoning valuation guarantee that the
set of statements derived from this basic set are consistent and, in the same way as
in the case of ◦-models, this set is contained in the preservation kernel.

Summing up, the set of statements that are expected to constitute ‘safe knowl-
edge’ is preserved by quasi-isomorphisms.

2.3 Refinement

The very purpose of a paraconsistent environment for reasoning is the possibility of
dealing with unsafe knowledge while seeking new safe knowledge. This is where the

2.3. REFINEMENT 53

convenience of regarding models as states lies. Being states of knowledge, models
must be refinable. Following such a track, this section looks for possible ways of
obtaining new and reasonable knowledge from what is already known.

There are two ways of gaining knowledge: The first one is from the world by
some external source, like an experiment or whatever. The second one is from
inside, that is, from what is already available.

There are two ways of gaining knowledge from inside: The first one is by
deduction. The second one is by reasonability criteria, such as the existence of ‘so
much evidence’ in favor of some fact.

The focus now will be in gaining knowledge from inside by reasonability criteria.
Regarding a model as a state, a refinement of it is expected to be a new model
which keeps what is safe in the original one and gains something else. The next
definition makes this idea precise.

Definition 2.3.1. Let LΣ be a language over a signature Σ, A a set, MA the set
of reasoning models over LΣ with domain A and S(LΣ) the power set of the set of
interpreted formulae in LΣ. A function Ref : S(LΣ)×MA →MA is a refinement
in MA iff, for every reasoning model A and for every set Θ ∈ S(LΣ),

1. Ref(Θ,A) ≅ A;

2. For every θ ∈ Θ, vRef(Θ,A)(θ) = 1 iff vA(θ) = 1;

3. If vRef(Θ,A)(φ) 6= vA(φ), then vRef(Θ,A)(◦φ) = 1.

As refinements are intended to gain new knowledge in a given state, it is natural
that the domain of interpretation be fixed. This requirement means that the
refinement of a model ‘talks’ about the same objects. It also guarantees that MA,
as stated in the definition above, be indeed a set.

Requirement (3) enforces the desirable property that knowledge gained through
refinement be consistent.

As Ref(Θ,A) is quasi-isomorphic to A, validity is preserved in the set SA
1 =

Pk(A)∪Θ. This is the set of statements intended to be safe in the model to be refined.
Two other sets are to be considered: The first one is SA

2 = {φ|vRef(Θ,A)(φ) 6= vA(φ)},
that is, the set of statements whose validity has been altered through refinement,
which is to be the set of statements that are to be considered safe in the refinement.
The second one is SA

3 = S(LΣ)\(SA
1 ∪ S

A
2), which is intended to be the set of still

unsafe interpreted formulae. The three sets are disjoint and cover S(LΣ).
As the refinement of a model has extra safe statements, it makes sense to

reiterate the process in order to obtain new safe statements.

2.3. REFINEMENT 54

Definition 2.3.2 (n-Iterated Refinement). The n-iterated refinement
Refn(A) of a model A is defined recursively. It is necessary to define a set Θn

simultaneously:

❼ Θ1 = Pk(A)

❼ Ref1(A) = Ref(Θ1,A)

❼ Θn+1 = Θn ∪ S
Refn(A)
2

❼ Refn+1(A) = Ref(Θn+1, Refn(A))

If, for some i, Θi+1 = Θi, then Refi+1(A) = Refi(A). In this case, there exists
a fixed point, which can be stated as a maximum refinement, and Θi would be the
higher amount of safe knowledge that can be gathered. However, it may happen
that there is no fixed point. In this case, the natural candidate to higher safe set
is Θω = ∪∞i=1Θi. Nevertheless, the process can be restarted taking Θ1 = Θω and
Θα can be defined for higher ordinals. As languages are denumerable, the process
ends until Θω1

. A limit to the chain of refinements can eventually be stated for
convenience. So, the maximum refinement of a model A, denoted by MRef(A),
can be defined as Ref(Θω1

,A) or as the refinement of A up to some established
limit.

Provided that Ref fulfills an extra condition, the assertion that the process
ends until Θω1

can be strenthened. Some definitions and results regarding fixpoints
will be needed in the next few lines. For the reader that is not familiar with the
theory of fixpoints, a brief presentation of it is located in Section 1.5. A detailed
presentation can be found in [32].

Taking the power set of S(LΣ) as the ‘Universe’ U and inclusion (⊆) as the
equivalence relation, it is straightforward that U is a complete lattice, where, for
each subset X of U , lub(X) = {∪C|C ∈ X} and glb(X) = {∩C|C ∈ X}. Moreover,
⊤ = S(LΣ) and ⊥ = ∅.

Let Ref be a refinement and A a fixed model. Consider the function RefA(Θ) =
Ref(Θ,A). By the design of Ref , RefA is a monotonic function from U to U ,
which may be continuous or not.

If Ref is such that RefA is continuous, then Θω, as described above, is a
fixpoint, which that the process iterating the refinement ends until Θω.

The idea of refining models can be joint to the idea of creating the family
of quasi-isomorphic models to a given model to set a strong criterion to delimit
safe knowledge. The proposal is to look at the set of quasi-isomorphic models
(preserving domain of interpretation) and ‘ask’ each one about each interpreted
formula. Such a criterion leads naturally to a modal approach. The traditional

2.3. REFINEMENT 55

modal connectives can be defined. As they are supposed to look not at a single
model, but at a set of models, they must be, actually, metaconnectives.

Definition 2.3.3 (Modal Metaconnectives). Given a statement θ and a model A,
then

❼ The metastatement ⋄θ is valid in A iff there exists a model B such that
B ≅ A and θ ∈ MRef(B). In this case, θ is said to be possible in A and
the notation A� ⋄ θ is used to designate this fact.

❼ The metastatement �θ is valid in A iff for every model B ≅ A, θ ∈
MRef(B). In this case, θ is said to be necessary in A and the notation
A��θ is used to designate this fact.

The choice for using the symbol � instead of � was made for the obvious reason
that ⋄ and � are metaconnectives.

Finally, the core concept for this section has been reached. Safe knowledge
is to be identified with necessary knowledge. By design, every statement from
the preservation kernel is necessary. Moreover, as being quasi-isomorphic is an
equivalence relation, two quasi-isomorphic models A and B have the same quasi-
isomorphic models. Consequently, for every statement θ, A� ⋄ θ iff B� ⋄ θ and
A��θ iff B��θ.

The definition of the set of necessary statements rises naturally. It will be
called the Necessitation Kernel. It is clear from the discussion above that the
preservation kernel of a model is contained in its necessitation kernel and that two
quasi-isomorphic models have the same necessitation kernel.

Definition 2.3.4 (Necessitation Kernel). The necessitation kernel of a model A is
the set NKer(A) = {θ|A��θ}.

In the beginning of this section, it was said that there were two ways of gaining
knowledge: The first one from outside and the seconde one from inside. The whole
development after that focused on gaining knowledge from inside. This is time to
ask about gaining knowledge from outside.

In the beginning of last section, it was suggested that basic statements should
be the basic facts that can be stated about the world. In such a reasoning context,
it makes sense to know with security about some basic facts and about some
conjunctions, disjunctions and implications involving basic statements, that is, it
makes sense to know that at least one of two facts must occur or that some basic
fact forces some other basic fact, and so on. Summing up, it makes sense to know
with security about the facts that are controlled by quasi-isomorphisms and about
what can be inferred from those facts. In this line, the knowledge that can be

2.3. REFINEMENT 56

gained from outside by observation, experimentation or whatever method is of the
same kind. Thinking of models as states of knowledge, the discussion above leads
to the conclusion that an enrichment of a state from outside is just a model that is
able to control a higher amount of statements in the level of structure.

In other words, B is a refinement of A from outside iff AA
i ⊂ B

B
i for 1 ≤ i ≤ 9.

So, according to the definition of quasi-homomorphism, B is a refinement of A
from outside iff there is a quasi-homomorphism from A to B. It is obvious that
Pk(A) ⊂ Pk(B) and this implies NKer(A) ⊂ NKer(B), that is, the refinement
from outside possesses a higher amount of safe knowledge.

Regarding a theory about whatever reality as a category, objects are states
of knowledge (identified with models), morphisms are refinements of states of
knowledge from outside (identified with quasi-homomorphisms) and isomorphisms
(identified with quasi-isomorphisms) correlate states that agree about safe knowl-
edge.

The imposition that refinements preserve domain of interpretation was made
for philosophical reasons rather than for technical necessity. In fact, it makes
sense that the search for knowledge be performed within a fixed universe of dis-
course, unless the objects under consideration are changed. Anyway, the same
conclusions would be reached without this imposition under consideration and
the category considered above needs not be restricted to models with a fixed domain.

Closing this section, two suggestions of how a refinement function may work
will be given. They will be based on the classical ways to obtain knowledge in
science: induction and abduction.

Both induction and abduction will be functions preserving both the domain of
interpretation and the function I. In other words, Ref will be so that

1. Ref(A,Θ) has the same domain of interpretation as A;

2. IRef(A,Θ)(c) = IA(c), for every constant c;

3. IRef(A,Θ)(f) = IA(f), for every f ∈ F̄ ;

4. IRef(A,Θ)(P) = IA(P), for every P ∈ P̄ , which means that A
Ref(A,Θ)
Pi = AA

Pi,
for 1 ≤ i ≤ 9;

5. a
Ref(A,Θ)
1 = aA1 and a

Ref(A,Θ)
2 = aA2 .

Induction is a process by which a fact is assumed to be true if it could not be
refused so far and, besides that, it can be verified a sufficiently large number of
times or in a sufficiently large number of situations.

2.3. REFINEMENT 57

Abduction is a process in which a fact is assumed to be true if it could not be
refused so far and, besides that, there is a sufficiently large amount of evidence in
favor of it, that is, it implies a large number of facts that happen to verify.

Basic facts are expressed by predicate functions. That is, P (τ1, . . . , τn) means
that the fact P is verified by the n-tuple of objects (τ1, . . . , τn). Said this, induction
and abduction are methods that look at basic statements.

Following this track, an auxiliar function will be needed in order to delimit
the universe of objects to which each predicate function refers and a ‘parameter of
reliability’. The first coordinate function will delimit the universe of objects and
the second coordinate function will determine the parameter of reliability.

Definition 2.3.5 (Frame Function). A frame function for a signature Σ is a
function Fr : P̄ → (S(LΣ)×N) (S(LΣ) as in Definition 2.3.1) whose first coordinate
function Fr1 each P , Fr1(P) is a set of statements of the form P (τ1, . . . , τn). The
second coordinate function is designated by Fr2.

A predicate symbol P predicts something about sequences of objects ~a. The
first component Fr1 delimits the set of sequences of objects to which that P is
intended to hold after refinement. The idea is that Fr1(P) is the set of statements
that predict P to a set of objects to which that predication makes sense and that
have some similarity, so that such a predication makes sense to that set as a whole.
The second component Fr2 is intended to set a parameter. That is, the set of
predications Fr1(P) is to be considered valid as a whole when some criterion is
fulfilled. Such a criterion shall depend on a parameter that depends on its turn on
P . Such a parameter is determined by Fr2.

Refinements must gain new knowledge without contradicting already existent
safe knowledge. For this reason, it is necessary to guarantee that the revision of
Fr1(P) raises no contradiction against safe knowledge. So, it is necessary to define
revisable predicate symbols.

Definition 2.3.6 (Revisable Predicate Symbol). A predicate P is revisable iff all
the following requirements are fulfilled:

1. There is no n-tuple (τ1, . . . , τn) such that P (τ1, . . . , τn) ∈ Fr1(P) and v(P (τ1, . . . , τn)) =
0 and v(◦P (τ1, . . . , τn)) = 1;

2. There are not some formula θ and some n-tuple (τ1, . . . , τn) such that
P (τ1, . . . , τn) ∈ Fr1(P) and v(θ) = 1 and v(◦θ) = 1 and v(P (τ1, . . . , τn)∧θ) =
0 and v(◦(P (τ1, . . . , τn) ∧ θ)) = 1;

3. There are not some formula θ and some n-tuple (τ1, . . . , τn) such that
P (τ1, . . . , τn) ∈ Fr1(P) and v(θ) = 1 and v(◦θ) = 1 and v((P (τ1, . . . , τn)→
¬θ) = 1 and v(◦(P (τ1, . . . , τn)→ ¬θ)) = 1.

2.3. REFINEMENT 58

The concept of revisable predicate symbol is designed so that revising the set
of basic sentences based on a given predicate symbol does not raise any conflict
against any consistent statement. The next step is to enumerate predicate sym-
bols and revise basic sentences from some criterion. So, given an enumeration of
predicate symbols and a criterion for revision, a chain of revised valuations will be
defined. It is necessary to define such a chain because the revision of a statement
may turn a revisable predicate into a non revisable one. It is also important to
observe that, despite revising basic statements does not raise contradiction against
consistent statements, it may raise contradiction against non-consistent ones. So,
the valuations in the chain may not be reasoning valuations. Said all that, the
chain of revised valuations is recursively defined:

The first valuation in the chain is v0 = v. For i > 0, vi is defined in the following
manner:

If θ is a statement with complexity greater than 0, then, for every i, vi(θ) = v(θ).
If θ has complexity 0, then θ = Pj(τ1, . . . , τn) for some j. Then,

❼ If j < i, then vi(θ) = vj(θ);

❼ If j > i, then vi(θ) = v(θ);

❼ If j = i, then

– If

✯ Pi is a revisable predicate function in vi−1 and

✯ Pi fulfills the revision requirement in vi−1,

then vi(θ) = 1.

– Otherwise, vi(θ) = v(θ).

From the chain of revised valuations, a limit valuation vω is defined:
If θ is a statement with complexity greater than 0, than, for every i, vi(θ) = v(θ).

In this case, vω(θ) = v(θ)
If θ has complexity 0, then θ = Pi(τ1, . . . , τn) for some i. In this case,

vω(θ) = vi(θ).

Now, it is time to fix the contradictions raised in non-consistent statements.
Again, a recursive sequence of valuations will be defined:

❼ v0ω = vω

❼ vn+1
ω is such that

2.3. REFINEMENT 59

– If θ has complexity up to n or greater then n+ 1, then vn+1
ω (θ) = vnω(θ);

– If θ has complexity n+ 1, then vn+1
ω (θ) = vnω(θ) if it is compatible with

the clauses of reasoning valuations and vn+1
ω (θ) 6= vnω(θ) otherwise.

From the chain constructed above, vRef(A) is defined as a limit valuation:
If θ has complexity i, then vRef(A)(θ) = viω(θ).
Finally, Ref(A) is the model having the same domain of interpretation, the

same function I as A and valuation vRef(A) as just described.

Both induction and abduction will be as described above, differing by the
requirement criterion. So, induction and abduction are refinement functions as
described, having as requirement criterion respectively:

Induction Requirement: The set {(τ1, . . . , τn)|P (τ1, . . . , τn) ∈ Fr1(P) and v(P (τ1, . . . , τn)) =
1 and v(◦P (τ1, . . . , τn)) = 1} has cardinality greater than Fr2(P).

Abduction Requirement: The set {(θ, τ1, . . . , τn)|P (τ1, . . . , τn) ∈ Fr1(P) and
v(θ) = 1 and v(◦θ) = 1 and v(P (τ1, . . . , τn)→ θ) = 1 and v(◦(P (τ1, . . . , τn)→
θ)) = 1} has cardinality greater than Fr2(P).

The refinement criteria proposed above do not take non-consistent statements
into account and are very strict in refusing contradictory information. A genuine
reasoning paraconsistent context should not dismiss unsafe (but often reasonable)
information. In order to comply with this kind of information, it is necessary
to decide what to discard. A good way of doing so is to deal with information
stochastically. In this line, a fact shall be accepted if there is much more evidence
in favor of it that against it. This section will be closed with a suggestion of a
stochastic induction requirement for refinement as an example of how to work out
this proposal. Firstly, an extra definition is needed.

Definition 2.3.7 (Stochastic Refinement Schema). A stochastic refinement schema
is a tuple 〈E,S, V, p〉, where E is an enumeration function for the set of statements,
S is a σ-algebra over N, V is a probability function over S and p is a real number
in the closed interval [0, 1].

Finally, the requirement:

Stochastic Induction Refinement
V (Bα1)
V (Bα)

> p, where Bα1 = {n|E−1(n) ∈ Fr1

and v(E−1(n)) = 1} and Bα = {n|E−1(n) ∈ Fr1} are, respectively, the set
of labels of the true statements of the form P (τ1, . . . , τn) and the set of labels
of all statements of the true statements P (τ1, . . . , τn).

2.4. ULTRAFILTERS 60

2.4 Ultrafilters

In the last section, refinements were presented as a way of extracting new safe
knowledge from a family of models, that is to say, the family of states of knowledge
that are compatible with a given state.

In this section, the concept of reduced product of a family of models over a given
ultrafilter will be recovered in order to provide an alternative way of extracting
new knowledge from a given family of states of knowledge. Anyway, the content
to be presented is worthy for its own, no matter how interesting it may be as an
alternative to the refinement schemata suggested in the preceding chapter.

The concept of ultrafilter is the classical one. The concept of reduced product
will be adapted to the context of reasonig models and the core result of this section
is that the reduced product of a family of resoning models is a reasoning model
itself and, moreover, if this family happens to be a one of isomrphic models, then
safe knowledge is preserved.

Before starting the journey, some notation is in order. The models Ai cited
bellow are tacitly taken from a family {Ai}i∈I of reasoning models over the same
language LΣ.

❼ As usual, an ordered n-tuple (a1, . . . , an) is also denoted by the abbreviated
notation ~a. If each ai in the ordered n-tuple is a sequence, the notation
~aj will stand for the n-tuple of the jth entries from each ai, that is, ~aj =
(a1,j , . . . , an,j);

❼ F
AA

Pk

(tA
1
[~a],...,tAn [~a])

= {i ∈ I|(tAi
1 [~ai], . . . , t

Ai
n [~ai]) ∈ A

Ai

P1}, for k ∈ {1, 2, 3};

❼ Pi stands for the sequence that corresponds to the predicate symbol P in Ai.
Within the notation from Section 2.2, Pi stands for En′(P, aAi

1 , a
Ai
2);

❼ F
AA

Pk

(P ′,tA
1
[~a],...,tAn [~a])

= {i∈ I|(P ′
i , t

Ai
1 [~ai], . . . , t

Ai
n [~ai])∈A

Ai

Pk}, for k ∈ {4, . . . , 9};

❼ Fθ[~a] = {i ∈ I|Ai � θ[~ai]};

❼ F̄θ[~a] = {i ∈ I|Ai 2 θ[~ai]}.

❼ If the context is clear, the shorter forms Fθ and F̄θ will be used instead of
Fθ[~a] and F̄θ[~a]. This will largely contribute for visual cleanness.

Now, reduced structures and reduced products can be defined:

Definition 2.4.1 (Reduced Structure). The reduced structure of a family {Ai}i∈I
of reasoning models over an ultrafilter F is the structure AF (or just A, if the context
is clear) such that

2.4. ULTRAFILTERS 61

❼ Each element from the domain of interpretation AF of AF is a sequence of
elements from the domains of interpretation Ai of the models Ai. That is,
for each a ∈ AF, a = {ai}i∈I , with ai ∈ Ai, for every i ∈ I;

❼ For each constant c, IAF
(c) = {IAi

(c)}i∈I ;

❼ For each f ∈ Fn, IAF
(f) = {IAi

(f)}i∈I . That is, if ~a ∈ (AF)n, then
IAF

(f)(~a) = {IAi
(f)(~ai)}i∈I ;

❼ IAF
(P) = (A

AF

P1, A
AF

P2, A
AF

P3, A
AF

P4, A
AF

P5, A
AF

P6, A
AF

P7, A
AF

P8, A
AF

P9, a
AF

1 , a
AF

2), if P ∈
Pn, where

– A
AF

Pk ⊆ (AF)n is such that (t
AF

1 [~a], . . . , t
AF
n [~a]) ∈ A

AF

Pk

iff F
A

AF
Pk

(t
AF
1

[~a],...,t
AF
n [~a])

∈ F, for k ∈ {1, 2, 3};

– A
AF

Pk ⊆ (P ×A)(a
AF

1 , a
AF

2) is such that (P ′, t
AF

1 [~a], . . . , t
AF
m [~a]) ∈ A

AF

P ′k,

iff F
A

AF
Pk

(P ′,t
AF
1

[~a],...,t
AF
m [~a])

∈ F, for k ∈ {4, . . . , 9};

– a
AF

1 , a
AF

2 ∈ AF are the sequences a
AF

1 = {aAi
1 }i∈I and a

AF

2 = {aAi
2 }i∈I ;

Definition 2.4.2 (Reduced Product). The reduced product of a family M =
{Ai}i∈I of reasoning models over an ultrafilter F is the reduced structure of M
endowed with the valuation vF as follows

❼ For each interpreted formula θ[~a], vF(θ[~a]) = 1 iff Fθ[~a] ∈ F.

Two lemmata will be needed for the demonstration of Reduced Product’s
Theorem:

Lemma 2.4.3. Let F be an ultrafilter over a set of indices I. If A,B ⊂ I are such
that A ∪B ∈ F, then A ∈ F or B ∈ F.

Proof. Suppose A /∈ F. Then, A\(A ∩ B) /∈ F. Otherwise, it would be the case
that A ∈ F, for (A\(A∩B)) ⊂ A. Hence, (A∪B)C ∪ (A\(A∩B)) /∈ F. Otherwise,
it would be the case that (A\(A∩B)) = [((A∪B)C ∪ (A\(A∩B)))∩ (A∪B)] ∈ F,
for (A ∪B) ∈ F. Therefore, B ∈ F, for B = [(A ∪B)C ∪ (A\(A ∩B))]C , that is, B
is the complement of that set.

By symmetry, if B /∈ F, then A ∈ F.

Lemma 2.4.4. Let F be an ultrafilter, {Ai}i∈I a family of models satisfying vNeg

and θ[~a] an interpreted formula. Then, (Fθ[~a])
C ⊂ F¬θ[~a].

2.4. ULTRAFILTERS 62

Proof. Let i ∈ (Fθ[~a])
C , that is i /∈ Fθ[~a]. Then, Ai 2 θ[~ai]. By vNeg, Ai � ¬θ[~ai].

Hence, i ∈ F¬θ[~a].

The next theorem is the core result of the section.

Theorem 2.4.5 (Reduced Product’s Theorem). The reduced product AF of a
family of reasoning models {Ai}i over an ultrafilter F is itself a reasoning model.

Proof. The demonstration consists in proving that the reduced product’s valuation
satisfies each clause of reasoning valuations:

Basic Control Clauses:

vPredPos v(P (t1, . . . , tn)[~a]) = 1 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, for P ∈ Pn.

If (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, then F

AA
P1

(tA
1
[~a],...,tAn [~a])

∈ F. For each i ∈ F
AA

P1

(tA
1
[~a],...,tAn [~a])

,

(tAi
1 [~ai], . . . , t

Ai
n [~ai]) ∈ A

Ai

P1. By vPredPos, Ai � (P (t1, . . . , tn)[~ai]). Hence, F
AA

P1

(tA
1
[~a],...,tAn [~a])

⊂

F(P (t1,...,tn)[~a]). As F
AA

P1

(tA
1
[~a],...,tAn [~a])

∈ F, it holds that F(P (t1,...,tn)[~a]) ∈ F. Therefore,

v(P (t1, . . . , tn)[~a]) = 1, as desired.

vPredNeg v(P (t1, . . . , tn)[~a]) = 0 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P3, for P ∈ Pn.

If (tA1 [~a], . . . , tAn [~a]) ∈ AA
P3, then F

AA
P3

(tA
1
[~a],...,tAn [~a])

∈ F. For each i ∈ F
AA

P3

(tA
1
[~a],...,tAn [~a])

,

(tAi
1 [~ai], . . . , t

Ai
n [~ai]) ∈ AAi

P3. By vPredNeg, Ai 2 (P (t1, . . . , tn)[~ai]). Hence,

F
AA

P3

(tA
1
[~a],...,tAn [~a])

⊂ F̄(P (t1,...,tn)[~a]). As F
AA

P3

(tA
1
[~a],...,tAn [~a])

∈ F, it holds that F̄(P (t1...,tn)[~a]) ∈F.

This implies that F(P (t1,...,tn)[~a]) = (F̄(P (t1,...,tn)[~a]))
C /∈ F. Therefore, v(P (t1, . . . , tn)[~a]) =

0, as desired.

vConPredPart v((◦(P (t1, . . . , tn)))[~a]) = 1 if (tA1 [~a], . . . , tAn [~a]) ∈ AA
P2, for P ∈

Pn.

The proof of vConPredPart is the same as that of vPredPos, mutatis mutandis.

vConImpPred v((P (t1, . . . , tn)→ P ′(t1, . . . , tm))[~a]) = 1 and
v(◦(P (t1, . . . , tn)→ P ′(t1, . . . , tm))[~a]) = 1 if (P ′, tA1 [~a], . . . , tAn [~a]) ∈ AA

P4 and
(P, tA1 [~a], . . . , tAm[~a])∈ AA

P ′5, for P ∈ Pn and P ′ ∈ Pm.

If (P ′, tA1 [~a], . . . , tAn [~a]) ∈ AA
P4 and (P, tA1 [~a], . . . , tAm[~a]) ∈ AA

P ′5, then

F
AA

P4

(P ′,tA
1
[~a],...,tAn [~a])

∈ F and F
AA

P ′5

(P,tA
1
[~a],...,tAm[~a])

∈ F.

2.4. ULTRAFILTERS 63

So, (F
AA

P4

(P ′,tA
1
[~a],...,tAn [~a])

∩ F
AA

P ′5

(P,tA
1
[~a],...,tAm[~a])

) ∈ F.

For each i ∈ (F
AA

P4

(P ′,tA
1
[~a],...,tAn [~a])

∩ F
AA

P ′5

(P,tA
1
[~a],...,tAm[~a])

), (P ′
i , t

Ai

1 [~ai], . . . , t
Ai
n [~ai]) ∈ AAi

P4

and (Pi, t
Ai
1 [~ai], . . . , t

Ai
m [~ai]) ∈ AAi

P ′5. By vConImpPred, Ai � (P (t1, . . . , tn) →
P ′(t1, . . . , tm))[~ai] and Ai � ◦(P (t1, . . . , tn)→ P ′(t1, . . . , tm))[~ai].

Hence, (F
AA

P4

(P ′,tA
1
[~a],...,tAn [~a])

∩ F
AA

P ′5

(P,tA
1
[~a],...,tAm[~a])

) ⊂ F(P (t1,...,tn)→P ′(t1,...,tm))[~a] and

(F
AA

P4

(P ′,tA
1
[~a],...,tAn [~a])

∩ F
AA

P ′5

(P,tA
1
[~a],...,tAm[~a])

) ⊂ F◦(P (t1,...,tn)→P ′(t1...,tm))[~a].

As (F
AA

P4

(P ′,tA
1
[~a],...,tAn [~a])

∩ F
AA

P ′5

(P,tA
1
[~a],...,tAm[~a])

) ∈ F, it holds that

F(P (t1,...,tn)→P ′(t1,...,tm))[~a] ∈ F and F◦(P (t1,...,tn)→P ′(t1,...,tm))[~a] ∈ F.
Therefore, v((P (t1, . . . , tn) → P ′(t1, . . . , tm))[~a]) = 1 and v(◦(P (t1, . . . , tn) →
P ′(t1, . . . , tm))[~a]) = 1, as desired.

vConOrPred v((P (t1, . . . , tm) ∨ P ′(t1, . . . , tn))[~a]) = 1 and
v(◦(P (t1, . . . , tm) ∨ P ′(t1, . . . , tn))[~a]) = 1 if (P ′, tA1 [~a], . . . , tAn [~a]) ∈ AA

P6 and
(P, tA1 [~a], . . . , tAm[~a])∈ AA

P ′7, for P ∈ Pn and P ′ ∈ Pm.

vConAndPred v((P (t1, . . . , tm) ∧ P ′(t1, . . . , tn))[~a]) = 1 and
v(◦(P (t1, . . . , tm) ∧ P ′(t1, . . . , tn))[~a]) = 1 if (P ′, tA1 [~a], . . . , tAn [~a], P ′) ∈ AA

P8

and
(P, tA1 [~a], . . . , tAn [~a]) ∈ AA

P ′9, for P, P ′ ∈ Pn and P ′ ∈ Pm.

The proofs of vConOrPred and vConAndPred are the same as that of vCon-

ImpPred, mutatis mutandis.

Classical Behavior Clauses

vOr v((α ∨ β)[~a]) = 1 iff v(α[~a]) = 1 or v(β[~a]) = 1.

(⇒) If v((α ∨ β)[~a]) = 1, then Fα∨β ∈ F. For each i ∈ I, i ∈ Fα∨β iff Ai � (α ∨ β).
By vOr, that holds iff (Ai � α or Ai � β) iff (i ∈ Fα or i ∈ Fβ) iff i ∈ (Fα ∪ Fβ).
So, Fα∨β = (Fα ∪ Fβ). This means that (Fα ∪ Fβ) ∈ F. By Lemma 2.4.3, Fα ∈ F or
Fβ ∈ F. Hence, v(α[~a]) = 1 or v(β[~a]) = 1.
(⇐) If v(α[~a]) = 1, then Fα ∈ F. For every i ∈ Fα, Ai � α, which yields, by vOr,
that Ai � (α ∨ β). Hence, if i ∈ Fα, then i ∈ Fα∨β , that is, Fα ⊂ Fα∨β . As Fα ∈ F,
it holds that Fα∨β ∈ F. Therefore, v((α ∨ β)[~a]) = 1.
By symmetry, if v((β)[~a]) = 1, then v((α∨β)[~a]) = 1. Summing up, if v((α)[~a]) = 1
or v((β)[~a]) = 1, then v((α ∨ β)[~a]) = 1, as desired.

vAnd v((α ∧ β)[~a]) = 1 iff v(α[~a]) = 1 and v(β[~a]) = 1.

2.4. ULTRAFILTERS 64

(⇒) If v((α ∧ β)[~a]) = 1, then Fα∧β ∈ F. For every i ∈ Fα∧β, Ai � (α ∧ β), which
yelds, by vAnd, that Ai � α and Ai � β. Hence, i ∈ Fα and i ∈ Fβ, that is,
Fα∧β ⊂ Fα and Fα∧β ⊂ Fβ. As Fα∧β ∈ F, it holds that Fα ∈ F and Fβ ∈ F.
Therefore, v((α)[~a]) = 1 and v((β)[~a]) = 1.
(⇐) If v((α)[~a]) = 1 and v((β)[~a]) = 1, then Fα ∈ F and Fβ ∈ F, whence (Fα∩Fβ) ∈
F. By vAnd, for every i ∈ (Fα ∩ Fβ), Ai � (α ∧ β). Hence, if i ∈ Fα and i ∈ Fβ,
then i ∈ Fα∧β , that is, (Fα ∩Fβ) ⊂ Fα∧β . As (Fα ∩Fβ) ∈ F, it holds that Fα∧β ∈ F.
Therefore, v((α ∧ β)[~a]) = 1, as desired.

vImp v((α→ β)[~a]) = 1 iff v(α[~a]) = 0 or v(β[~a]) = 1.

⇒ If v((α→ β)[~a]) = 1, then Fα→β ∈ F. By vImp, for every i ∈ I, Ai � (α→ β)
iff Ai 2 α or Ai � β. Hence, Fα→β = F̄α ∪ Fβ . As Fα→β ∈ F, it follows, by Lemma
2.4.3, that F̄α ∈ F or Fβ ∈ F. If F̄α ∈ F, then Fα = (F̄α)C /∈ F, which implies
that v((α)[~a]) = 0. If Fβ ∈ F, then v((β)[~a]) = 1. Therefore, v((α)[~a]) = 0 or
v((β)[~a]) = 1.
(⇐) Suppose that v((α)[~a]) = 0 or v((β)[~a]) = 1. For every i ∈ F̄α, Ai 2 α,
which implies, by vImp, that Ai � (α → β). For every i ∈ Fβ, Ai � β, which
implies, again by vImp, that Ai � (α → β). So, F̄α ⊂ Fα→β and Fβ ⊂ Fα→β. If
v((α)[~a]) = 0, then F̄α ∈ F. If v((β)[~a]) = 1, then Fβ ∈ F. In any case, Fα→β ∈ F.
Therefore, v((α→ β)[~a]) = 1.

vEx v((∃xα(x))[~a]) = 1 iff v(α[b,~a]) = 1 for some b ∈ AF.

⇒ Let v((∃xα(x))[~a]) = 1. Then, F∃xα[~a] ∈ F. For every i ∈ F∃xα[~a], Ai � ∃xα[~ai].
By vEx, there is some e ∈ Ai such that Ai � α[e, ~ai]. So, for every i ∈ F∃xα[~a],
choose bi ∈ Ai such that Ai � α[bi, ~ai] (at this point, Axiom of Choice is being
used). Take b = (bi)i∈I to be the sequence such that, for each i ∈ F∃xα[~a], bi is the
chosen bi above and, for each i /∈ F∃xα[~a], bi is any fixed element of Ai. For the so
constructed b, Ai � α[bi, ~ai] if i ∈ F∃xα[~a] and Ai 2 α[bi, ~ai] if i /∈ F∃xα[~a]. Hence,
Fα[b,~a] = F∃xα[~a]. As F∃xα[~a] ∈ F, it holds that v(α[b,~a]) = 1, Therefore, there is a
b ∈ AF such that v(α[b,~a]) = 1, as desired.
(⇐) If v(α[b,~a]) = 1 for some b ∈ A, then Fα[b,~a] ∈ F. For every i ∈ Fα[b,~a], it holds
that Ai � α[bi, ~ai]. By vEx, Ai � ∃xα[~a]. Hence, Fα[b,~a] ⊂ F∃xα[~a]. As Fα[b,~a] ∈ F,
it holds that F∃xα[~a] ∈ F. Therefore, v(∃xα[~a]) = 1, as desired.

vUni v((∀xα)[~a]) = 1 iff v(α[b,~a]) = 1 for every b ∈ AF.

⇒ If v(∀xα(x)) = 1, then F∀xα[~a] ∈ F. Let b = (bi)i∈I be an arbitrary element in
AF. For every i ∈ F∀xα[~a], it holds that Ai � ∀xα[~ai]. By vUni, for every e ∈ Ai,
it holds that Ai � α[e, ~ai]. In particular, Ai � α[bi, ~ai]. Hence, i ∈ Fα[b,~a]. So,

2.4. ULTRAFILTERS 65

F∀xα[~a] ⊂ Fα[b,~a]. As F∀xα[~a] ∈ F, it holds that Fα[b,~a] ∈ F. Therefore, v(α[b, ~̄a]) = 1.
As b is arbitrary, the desired result follows.
⇐ Let v(α[b,~a]) = 1 for every b ∈ AF. Suppose, for the sake of contradiction, that
v((∀xα)[~a]) = 0. Then, F∀xα[~a] /∈ F. For every i /∈ F∀xα[~a], it holds, by vUni, that
Ai 2 ∀xα[~ai]. So, for every i /∈ F∀xα[~a], choose bi ∈ Ai such that Ai 2 α[bi, ~ai] (at
this point, Axiom of Choice is being used). Take b = (bi)i∈I to be the sequence
such that, for each i /∈ F∀xα[~a], bi is the chosen bi above and, for each i ∈ F∀xα[~a],
bi is any fixed element of A. For the so constructed b, Ai � α[bi, ~ai] if i ∈ F∀xα[~a]

and Ai 2 α[bi, ~ai] if i /∈ F∀xα[~a]. Hence, Fα[b,~a] = F∀xα[~a]. As F∀xα[~a] /∈ F, it holds
that v(α[b,~a]) = 0, which is a contradiction against that fact that v(α[b,~a]) = 1 for
every b ∈ AF.

QmbC Clauses

vNeg If v(α[~a]) = 0, then v(¬α[~a]) = 1.

If v(α[~a]) = 0, then Fα /∈ F, which implies that (Fα)C ∈ F. By Lemma 2.4.4,
(Fα)C ⊂ F¬α. Hence, F¬α ∈ F, which implies that v(¬α[~a]) = 1, as desired.

vCon If v((◦α)[~a]) = 1, then v(α[~a]) = 0 or v((¬α)[~a]) = 0.

If v((◦α)[~a]) = 1, then F◦α ∈ F. For each i ∈ F◦α, Ai � ◦α. By vCon, Ai 2 α
or Ai 2 ¬α. Then, F◦α ∩ (Fα ∩ F¬α) = ∅. So, (Fα ∩ F¬α) ⊂ (F◦α)C . Hence,
(Fα ∩ F¬α) /∈ F, for, otherwise, it would be the case that (F◦α)C ∈ F. But this is
not the case, for F◦α ∈ F. Finally, it is not the case that both Fα ∈ F and F¬α ∈ F,
for, otherwise, it would be the case that (Fα ∩ F¬α) ∈ F. Therefore, it holds that
v(α[~a]) = 0 or v((¬α)[~a]) = 0, as desired.

vVar v(α[~a]) = v(β[~a]) whenever α[~a] is a variant of β[~a].

If α[~a] is a variant of β[~a], then, for every i ∈ I, Ai � α iff Ai � β. Hence, Fα = Fβ .
Therefore, v(α[~a]) = v(β[~a]), as desired.

sNeg For every context (~x, z) and (~x, ~y), for every sequence (~a,~b) in A interpreting
(~x, ~y), for every φ ∈ L(A)~x,z and for every t ∈ T (A)~x,~y such that t is free for

z in φ, if φ[z/t] ∈ L(A)~x,~y and b = (t[~x, ~y/~a,~b])Â, then v((φ[z/t])[~x, ~y/~a,~b]) =

v(φ[~x, z/~a, b]) implies v((¬φ[z/t][~x, ~y/~a,~b])) = v(¬φ[~x, z/~a, b]).

If v((φ[z/t])[~x, ~y/~a,~b]) = v(φ[~x, z/~a, b]), then even v((φ[z/t])[~x, ~y/~a,~b]) = v(φ[~x, z/~a, b]) =
1 or v((φ[z/t])[~x, ~y/~a,~b]) = v(φ[~x, z/~a, b]) = 0.
If v((φ[z/t])[~x, ~y/~a,~b]) = v(φ[~x, z/~a, b]) = 1, then both F

(φ[z/t])[~x,~y/~a,~b]
∈ F and

Fφ[~x,z/~a,b] ∈ F. So, (F
(φ[z/t])[~x,~y/~a,~b]

∩Fφ[~x,z/~a,b]) ∈ F. For every i ∈ (F
(φ[z/t])[~x,~y/~a,~b]

∩

2.4. ULTRAFILTERS 66

Fφ[~x,z/~a,b]), it holds that Ai � (φ[zi/ti])[~xi, ~yi/~ai, ~bi] and Ai � φ[~xi, zi/~ai, bi]. By

sNeg, even (Ai � ¬φ[zi/ti])[~xi, ~yi/~ai, ~bi] and
Ai � ¬φ[~xi, zi/~ai, bi]) or (Ai 2 ¬φ[zi/ti])[~xi, ~yi/~ai, ~bi] and Ai 2 ¬φ[~xi, zi/~ai, bi]).
Therefore, (F

(φ[z/t])[~x,~y/~a,~b]
∩ Fφ[~x,z/~a,b]) ⊂ [(F

(¬φ[z/t])[~x,~y/~a,~b]
∩ F¬φ[~x,z/~a,b])∪

(F̄
(¬φ[z/t])[~x,~y/~a,~b]

∩ F̄¬φ[~x,z/~a,b])]. As (F
(φ[z/t])[~x,~y/~a,~b]

∩ Fφ[~x,z/~a,b]) ∈ F, it holds that

(F
(¬φ[z/t])[~x,~y/~a,~b]

∩F¬φ[~x,z/~a,b])∪(F̄
(¬φ[z/t])[~x,~y/~a,~b]

∩ F̄¬φ[~x,z/~a,b]) ∈ F. By Lemma 2.4.3,

even F
(¬φ[z/t])[~x,~y/~a,~b]

∩ F¬φ[~x,z/~a,b] ∈ F or F̄
(¬φ[z/t])[~x,~y/~a,~b]

∩ F̄¬φ[~x,z/~a,b] ∈ F.

In the first case, F
(¬φ[z/t])[~x,~y/~a,~b]

, F¬φ[~x,z/~a,b] ∈ F, which yields

v((¬φ[z/t])[~x, ~y/~a,~b]) = v(¬φ[~x, z/~a, b]) = 1, In the second case,
F
(¬φ[z/t])[~x,~y/~a,~b]

= (F̄
(¬φ[z/t])[~x,~y/~a,~b]

)C /∈ F and F¬φ[~x,z/~a,b] = (F̄φ[~x,z/~a,b])
C /∈ F,

which yelds v((φ[z/t])[~x, ~y/~a,~b]) = v(φ[~x, z/~a, b]) = 0.

If v((φ[z/t])[~x, ~y/~a,~b]) = v(φ[~x, z/~a, b]) = 0, then both F
(φ[z/t])[~x,~y/~a,~b]

/∈ F and

Fφ[~x,z/~a,b] /∈ F, which implies that both F̄
(φ[z/t])[~x,~y/~a,~b]

∈ F and F̄φ[~x,z/~a,b] ∈ F. So,

(F̄
(φ[z/t])[~x,~y/~a,~b]

∩ F̄φ[~x,z/~a,b]) ∈ F. For every i ∈ (F̄
(φ[z/t])[~x,~y/~a,~b]

∩ F̄φ[~x,z/~a,b]), it holds

that Ai 2 (φ[zi/ti])[~xi, ~yi/~ai, ~bi] and Ai 2 φ[~xi, zi/~ai, bi]. By sNeg, even Ai �

(¬φ[zi/ti])[~xi, ~yi/~ai, ~bi] and Ai � ¬φ[~xi, zi/~ai, bi] or Ai 2 (¬φ[zi/ti])[~xi, ~yi/~ai, ~bi] and
Ai 2 ¬φ[~xi, zi/~ai, bi]. The rest of the proof follows as in the first part.

sCon For every context (~x, z) and (~x, ~y), for every sequence (~a,~b) in A interpreting
(~x, ~y), for every φ ∈ L(A)~x,z and for every t ∈ T (A)~x,~y such that t is free for

z in φ, if φ[z/t] ∈ L(A)~x,~y and b = (t[~x, ~y/~a,~b])Â, then v((φ[z/t])[~x, ~y/~a,~b]) =

v(φ[~x, z/~a, b]) implies v(◦φ[z/t][~x, ~y/~a,~b]) =
v(◦φ[~x, z/~a, b]).

The proof is identical to that of sNeg.

Propagation Clauses

vPropOr If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α ∨ β))[~a]) = 1.

vPropAnd If v((◦α)[~a]) = 1 and v(◦β) = 1, then v((◦(α ∧ β))[~a]) = 1.

vPropImp If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then v((◦(α→ β))[~a]) = 1.

If v((◦α)[~a]) = 1 and v((◦β)[~a]) = 1, then F◦α ∈ F and F◦β ∈ F. So, F◦α ∩ F◦β ∈ F.
For every i ∈ F◦α ∩ F◦β, it holds that Ai � ◦α and Ai � ◦β. By vPropOr,
Ai � ◦(α ∨ β); By vPropAnd, Ai � ◦(α ∧ β); By vPropImp, Ai � ◦(α → β).
Hence, (F◦α∩F◦β) ⊂ F◦(α∨β), (F◦α∩F◦β) ⊂ F◦(α∧β) and (F◦α∩F◦β) ⊂ F◦(α→β). As
F◦α ∩ F◦β ∈ F, it holds that F◦(α∨β) ∈ F, F◦(α∧β) ∈ F and F◦(α→β) ∈ F. Therefore,

2.4. ULTRAFILTERS 67

v((◦(α ∨ β))[~a]) = 1, v((◦(α ∧ β))[~a]) = 1 and v((◦(α → β))[~a]) = 1. In this way,
vPropOr, vPropAnd and vPropImp are proven.

vPropNeg If v((◦α)[~a]) = 1, then v((◦(¬α))[~a]) = 1.

If v((◦α)[~a]) = 1, then F◦α ∈ F. For every i ∈ F◦α, Ai � ◦α. By vPropNeg,
Ai � ◦(¬α). Hence, F◦α ⊂ F◦(¬α). As F◦α ∈ F, it holds that F◦(¬α) ∈ F. Therefore,
v((◦(¬α))[~a]) = 1, as desired.

vPropCon For every α, v((◦(◦α))[~a]) = 1 and v((◦(¬ ◦ α))[~a]) = 1.

For every i ∈ I, Ai � ◦(◦α) and Ai � ◦(¬ ◦ α). Hence, F◦(◦α) = F◦(¬◦α) = I.
Therefore, v((◦(◦α))[~a]) = 1 and v((◦(¬ ◦ α))[~a]) = 1, as desired.

vPropUni If, for all b ∈ AF, v(◦α[b,~a]) = 1, then v(◦(∀xα(x, ~x))[~a]) = 1.

vPropEx If, for all b ∈ AF, v(◦α[b,~a]) = 1, then v(◦(∃xα(x, ~x))[~a]) = 1.

Suppose that, for all b ∈ AF, v(◦α[b,~a]) = 1. In the proof of vUni part ⇐, it has
been proven that, in this case, the set of indices labeling models that satisfy ◦α[e, ~ai]
for every e ∈ A belongs to F. That is, J = {i ∈ I|for all e ∈ A,Ai � ◦α[e, ~ai]} ∈ F.
By vPropUni, J ⊂ F◦(∀xα(x,~x))[~a]. By vPropEx, J ⊂ F◦(∃xα(x,~x))[~a]. As J ∈ F,
F◦(∀xα(x,~x))[~a] and F◦(∃xα(x,~x))[~a]. Being so, if, for all b ∈ AF, v(◦α[b,~a]) = 1, then
v(◦(∀xα(x, ~x))[~a]) = 1 and v(◦(∃xα(x, ~x))[~a]) = 1, as desired.

vPropEx’ If, for some b ∈ A, v(α[b,~a]) = 1 and v(◦α[b,~a]) = 1, then v(◦(∃xα(x, ~x))[~a]) =
1.

Suppose there is a b ∈ AF such that v(α[b,~a]) = 1 and v(◦α[b,~a]) = 1. Now fix
such a b. By the definition of validity in A, v(α[b,~a]) = 1 and v(◦α[b,~a]) = 1
imply that J ′ = {i ∈ I|Ai � α[bi, ~ai]} ∈ F and J ′′ = {i ∈ I|Ai � α[bi, ~ai]} ∈ F. So,
J = (J ′ ∩ J ′′) ∈ F. For each i ∈ J , Ai � α[bi, ~ai] and Ai � ◦α[bi, ~ai]. By vEx,
Ai � ◦(∃xα)[~a]. Hence, J ⊂ F◦(∃xα)[~a]. As J ∈ F, it holds that F◦(∃xα)[~a] ∈ F.
Therefore, v(◦(∃xα)[~a]) = 1, as desired.

What has been proven is in fact a broader result.

Corollary 2.4.6. Let AF be the reduced product over an ultrafilter F of a family of
models {Ai}i∈I satisfying a given subset of the set of clauses satisfied by reasoning
models denoted by SC. Then, AF is itself a model satisfying SC.

Proof. This is rather a corollary of the proof of the theorem. In fact, the track was
to prove, for each clause, individually and indepentently from the other clauses,
that if the models from the family satisfy that clause, then the reduced product
satisfies that clause as well.

2.4. ULTRAFILTERS 68

Reduced Product’s Theorem holds also for QmbC-models.

Corollary 2.4.7. The reduced product AF of a family of QmbC-models {Ai}i∈I
over an ultrafilter F is itself a QmbC-model.

Proof. It is enough to prove independently that reduced products preserve vPred

and then use Corollary 2.4.6.

vPred v(P (t1, . . . , tn)[~a]) = 1 iff (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, for P ∈ Pn.

⇒ If v(P (t1, . . . , tn)[~a]) = 1, then FP (t1,...,tn)[~a] ∈ F. For every i ∈ FP (t1,...,tn)[~a], it

holds that Ai � P (t1, . . . , tn)[~ai]. By vPred, (tAi
1 [~ai], . . . , t

Ai
n [~ai]) ∈ A

Ai

P1. Therefore,

FP (t1,...,tn)[~a] ⊂ F
AA

P1

(tA
1
[~a],...,tAn [~a])

. As FP (t1,...,tn)[~a] ∈ F, it holds that

F
AA

P1

(tA
1
[~a],...,tAn [~a])

∈ F. Therefore, (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1.

⇐ If (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1, then F

AA
P1

(tA
1
[~a],...,tAn [~a])

∈ F. For each i ∈ F
AA

P1

(tA
1
[~a],...,tAn [~a])

,

(tAi
1 [~ai], . . . , t

Ai
n [~ai]) ∈ A

Ai

P1. By vPred, Ai � (P (t1, . . . , tn)[~ai]). Hence, F
AA

P1

(tA
1
[~a],...,tAn [~a])

⊂

F(P (t1,...,tn)[~a]). As F
AA

P1

(tA
1
[~a],...,tAn [~a])

∈ F, it holds that F(P (t1,...,tn)[~a]) ∈ F. Therefore,

v(P (t1, . . . , tn)[~a]) = 1.

The next corollary allows the use of reduced products as an alternative tool for
refining models and renders that concept a great bit more interesting.

Corollary 2.4.8. Let the family of models {Ai}i∈I be the equivalence class of a
given reasoning model A0 by the relation of quasi-isomorphism. Then, the reduced
product of {Ai}i∈I over an ultrafilter F is a reasoning model AF that satisfies the
preservation kernel of A0. That is, if θ ∈ Pk(A0), then AF � θ.

Proof. If θ ∈ Pk(A0), then, for every i ∈ I, Ai � θ. Hence, Fθ = I ∈ F. Therefore,
AF � θ.

In classical model theory, the interpretation function of a model completely
defines its valuation. The interpretation function of the reduced product of a family
of models with respect to an ultrafilter is defined in the same fashion of Definition
2.4.1 and the definition of a valuation is not necessary, for the defined interpretation
function determines a valuation. What Loś Theorem states is that the valuation
determined by the interpretation function is exactly the one defined in Defintion
2.4.2, that is: For each interpreted formula θ[~a], vF(θ[~a]) = 1 iff Fθ[~a] ∈ F, where
Fθ[~a] = {i ∈ I|Ai � θ[~ai]}.

On the other hand, the interpretation function of a reasoning model does
not define a valuation. Rather, it enforces the truth values of the interpreted

2.5. REFINEMENT THROUGH AN UNTRAFILTER 69

formulae that belong to its preservation kernel. Summing up, it determines part
of a valuation. Reduced Product Theorem states that the valuation defined in
Definition 2.4.2 coincides with the part of valuation determined by the reduced
structure. This discussion leads to a reformulation of Loś Theorem that is an
immediate corollary of Reduced Product Theorem (Theorem 2.4.5).

Theorem 2.4.9 (Loś Theorem for Reasoning Models). Let AF be the reduced
structure of a family {Ai}i∈I of reasoning models with respect to an ultrafilter
F. Then, if a model A′

F based on AF is endowed with a valuation v and φ(~a) ∈
Pker(AF), then A′

F � φ iff Fφ(~a) = {i|Ai � φ(ai)} ∈ F.

2.5 Refinement through an Untrafilter

The use of reduced products as a tool for gaining new safe knowledge from a family
of states makes sense within the light of the concept of ‘relevant set of states’.

In a physical investigation, for instance, it is necessary to control variables or
circumstances in order to decide about the validity of some property. So let Φ
be a set of facts that depend on a set Ψ of circumstances and {Ai}i∈I a family
of quasi-isomorphic states that preserve some kernel of safe knowledge. The way
to come to conclusions about the facts in Φ is to compare states that agree with
respect to some subset of circumstances in Ψ. If J ⊂ I is the set of indices of states
that control a determined subset of circumstances from Ψ, then J is likely to be
relevant with respect to Φ, in the sense that, if the states delimited by J agree
that a specific fact holds, then it actually holds. If J ′ is the set of indices of states
that control another subset of circumstances, then it is likely to be relevant with
respect to Φ too. If the sets of indices that delimit relevant states are gathered up,
then the ultrafilter generated by them is a relevant one and the reduced product
must lead to safe knowledge about facts in Φ.

An ultrafilter F over a set of indices I is a subset of the power set of I satisfying
three conditions:

1. If J ′ ⊂ J ′′ and J ′ ∈ F, then J ′′ ∈ F;

2. If J ′, J ′′ ∈ F, then (J ′ ∩ J ′′) ∈ F;

3. If J ′ ∈ F, then (J ′)C /∈ F.

Thinking in terms of sets of states of knowledge, condition 1 means that, if the
agreement of a set of states if enough to guarantee some given fact, then the
agreement of a larger set of states is enough to guarantee that fact. This sounds as
a mandatory condition from any philosophical point of view.

2.5. REFINEMENT THROUGH AN UNTRAFILTER 70

Condition 3 means that, if a given set of states is relevant with respect to a
given set of facts, then its complement is not. This is not a mandatory condition,
but still a very defendable one. In fact, if a set of states is relevant on regard of
some given aspect, there remains outside this set what does not talk about that
aspect in a relevant way.

Condition 2 means that, if each of two sets of states are individually able
to guarantee some given fact, then their intersection is able to guarantee that
fact. This sounds a little bit strange, but not really odd. On the one hand, the
intersection of two sets of states is smaller then both sets. So, it is necessary to
concede that a smaller set provides the same guarantee as a bigger one. On the
other hand, the intersection is a more powerful set, for it fulfills two conditions,
that is to say, the one that enables the first set to guarantee knowledge and the
one that enables the second set to guarantee the same knowledge.

Another point to be discussed is that it is not acceptable that an ultrafilter
be relevant with respect to the whole universe of discourse. In order to rely on
the use of ultrafilters as a sound tool for gaining knowledge, it is necessary to
delimit the range of relevance of each ultrafilter. This necessity calls for a schema
of refinement that shall be able to enrich each state of a family with the new safe
knowledge gained by a filtration and maintain the non-refined knowledge available
for a further refinement through another ultrafilter that shall talk in a relevant
manner about other aspects of the theory. A concept that is suitable to perform
the task will be presented. Firstly, it will be necessary to introduce some elements:

❼ Let {Ai}i∈I be a family of quasi-isomorphic models, Φ a set of interpreted
formulae closed under all the connectives (∨,∧,→,¬ and ◦) and F an ultra-
filter.

❼ Let AF be the reduced product of {Ai}i∈I over F.

❼ Let Ψ be the set for interpreted formulae recursively generated by Φ ∪
Pk({Ai}i∈I), that is, its closure under all the connectives (∨,∧,→,¬ and ◦).

❼ Let Ω be the set of interpreted formulae that have no formula in Ψ as a
subformula.

❼ If Λ and Λ′ are two sets of interpreted formulae, then Γ(Λ,Λ′) is defined so
that, for every θ ∈ IF (A), θ ∈ Γ(Λ,Λ′) iff:

– θ ∈ Λ or

– There is a φ ∈ Λ such that

✯ θ = ¬φ or

2.5. REFINEMENT THROUGH AN UNTRAFILTER 71

✯ θ = ◦φ or

– There are φ, ψ ∈ (Λ ∪ Λ′), not both in Λ′ such that

✯ θ = φ ∨ ψ or

✯ θ = φ ∧ ψ or

✯ θ = φ→ ψ or

❼ Let Ψj be the set of interpreted formulae recursively defined as follows:

– Ψ0 = Ψ

– Ψj+1 = Γ(Ψj ,Ω)

❼ Let Ψω = ∪j∈NΨj

❼ For each index i ∈ I, let Āi be the model whose interpretation function is
the same as that of Ai and whose valuation v̄i is defined from the valuation
vi of Ai so that, for each interpreted formula θ:

– If θ ∈ Ω, let v̄i(θ) = vi(θ);

– If θ ∈ Ψ, let v̄i(θ) = vF(θ);

– If θ ∈ (Ψω\Ψ), then there is a j ∈ N such that θ ∈ Ψj+1 and θ /∈ Ψj .
In this case, let

✯ v̄i(θ) = vi(θ), if vi(θ) is compatible with v̄i restricted to Ψi;

✯ v̄i(θ) = vF(θ), otherwise.

Finally, the promised concept:

Definition 2.5.1 (Refinement through an Ultrafilter). The refinement of the
family {Ai}i∈I of models through the ultrafilter F restricted to the set of interpreted
formulae Ψ is the family of models {̄Ai}i∈I .

The refinement of a family of models through an ultrafilter restricted to its
range of relevance preserves the kernel of safe knowledge, refines the knowledge
within the range of relevance of that ultrafilter and changes nothing more than the
strictly necessary out of that range in order to keep a family of reasoning models.
The knowledge out of the range of relevance is not changed, which allows a further
process of refinement through some other ultrafilter with a different range.

This section will be closed with a result involving quasi-isomorphisms:

2.6. ELEMENTARY EXTENSIONS 72

Proposition 2.5.2. Let {Ai}i∈I and {Bi}i∈I be two families of reasoning models
with the same set of indices I such that, for every i ∈ I, there is a bijection from
the domain Ai of Ai to the domain Bi of Bi. Let AF and BF be the ultraproducts
of these families over the same ultrafilter F and let J = {j ∈ I|Aj ≅hi Bj}. Being
so, if J ∈ F, then AF ≅h BF, where h takes an element {ai}i∈I ∈ AF to the element
{hi(ai)}i∈I ∈ BF.

Proof. The function h is a bijection by design. The work to be done is to prove each
clause in Definition 2.2.4 from 1 to 9. Only clause 1 will be proven, for the other
clauses follow analogously. For that, let AF, BF and J be as in the enunciation.
Let P ∈ Pn, J ′ = {i|(tAi

1 [~ai], . . . , t
Ai
n [~ai]) ∈ AAi

P1} and J ′′ = {i|(tBi
1 [hi(~ai)], . . . ,

tBi
n [hi(~ai)]) ∈ B

Bi

P1}.

Suppose that F
AA

Pi

(tA
1
[~a],...,tAn [~a])

∈ AF
P1. Thus, J ′ ∈ F. If i ∈ J∩J ′, then (tAi

1 [~ai], . . . , t
Ai
n [~ai]) ∈

AAi

P1, whence (tBi
1 [hi(~ai)], . . . , t

Bi
n [hi(~ai)]) ∈ BBi

P1, for Aj ≅ Bj . Therefore, J ∩
J ′ ⊆ J ′′. As J, J ′ ∈ F, J ∩ J ′ ∈ F, which yields J ′′ ∈ F, which finally yields

F
AB

Pi

(tA
1
[h(~a)],...,tAn [h(~a)])

∈ BF
P1, as desired. The converse is symmetric.

2.6 Elementary Extensions

The concept of refinement proposed in the previous sections preserves the domain
of interpretation. Regarding models as states of knowledge, this means that re-
finements gain new knowledge about a fixed universe of objects. However, the
development of science is made by discovering new objects as well. The goal of
this section is to present the extension of a state as a state that deals with a
larger universe of objects. Naturally, extensions are expected to preserve what is
already known about the objects dealt with by the original state. The task in this
section is to capture this idea by the concepts of extension and elementary extension.

Definition 2.6.1 (Extension of a Model). A reasoning structure B = 〈B, IB〉 is
an extension of a reasoning structure A = 〈A, IA〉 if

1. A ⊆ B;

2. IA(f) = IB(f)|An, for f ∈ Fn and

3. IA(P) = IB(P) ∩An, for P ∈ Pn, which means

(a) (a1, . . . , an) ∈ AA
Pi iff (a1, . . . , an) ∈ (AB

Pi ∩A
n), for 1 ≤ i ≤ 3.

(b) (P, a1, . . . , an) ∈ AA
Pi iff (P, a1, . . . , an) ∈ AB

Pi and (a1, . . . , an) ∈ An,
for 4 ≤ i ≤ 9.

2.6. ELEMENTARY EXTENSIONS 73

A model B = 〈B, IB, vB〉 is an extension of a given model A = 〈A, IA, vA〉 if
B = 〈B, IB〉 is an extension of A = 〈A, IA〉 and vA = vB|IF (A).

It is quite natural to demand that extensions preserve knowledge not only about
how the previous objects behave but also about the way in which those objects
interact. In fact, they do preserve. So, in what sense are elementary extensions
different? What kind of knowledge about previous objects may not be preserved by
ordinary extensions? The only answer that makes sense is that ordinary extensions
may not preserve the truth about the existence of objects that interact with the
previous objects in some way. It may be the case that, among the universe of
objects dealt with, there is no object that interacts with some given set of objects
in some way but there is such an object in a larger universe of objects. In this line,
it is expected that elementary extensions be those extensions that do not bring
objects that interact with the previous ones in different ways. Refrasing the idea,
if a new object interacts with a set of old ones in some way, then there is an old
object that interacts with that set of objects in that same way.

The goal to be pursued from now on is to prove that things are as they are
expected to be. This is the content of the Theorem of Elementary Extensions,
which is the core result of this section. Before reaching the desired result, some
work is required.

Lemma 2.6.2. Let B be an elementary extension of A (vA = vB|IF (A)). Then,
for every formula θ(x, ~x) and for every sequence ~a ∈ An (where n is the length of
~x), it holds that, if vB(∃xθ(x,~a)) = 1, then there is a ∈ A such that vA(θ(a,~a)) =
vB(θ(a,~a)) = 1.

Proof. Let ~a ∈ An be an arbitrary sequence. Then, vB(∃xθ(x,~a)) = 1 iff vA(∃xθ(x,~a)) =
1 iff vA(θ(a,~a)) = 1 for some a ∈ A iff vB(θ(a,~a)) = 1 for such a.

A list of definitions will be given in order to reach the definition of a sequence of
sets Sn, which will be used in the proof of the Theorem of Elementary Extensions.
So, let A ⊂ B. Then,

❼ Ā is the set of sequences ~d = (di)1≤i≤n of whatever length n where, for every
1 ≤ i ≤ n, di ∈ A.

❼ ĀB is the set of sequences ~d = (di)1≤i≤n of whatever length n where, for
some 1 ≤ i ≤ n (at least one index), di ∈ B\A;

❼
¯̄AB is the set of sequences ~d = (di)1≤i≤n of whatever length n where, for

some 1 ≤ i ≤ n (at least one indice), di ∈ A and, for some 1 ≤ i ≤ n (at
least one index), di ∈ B\A;

2.6. ELEMENTARY EXTENSIONS 74

❼ F 0
AB (F 0

A) is the set of formulae with complexity 0 of the form θ(~x, ~cd) with
~d ∈ ĀB (~d ∈ Ā). That is, basic formulae of the form θ(~x, ~y), where each
variable yi in ~y actually appears free in θ and is substituted by the constant
cdi ∈ ΣB;

❼ FAB (FA) is the set that is recursively generated from F 0
AB (F 0

A) by using
the connectives from the signature in the canonical way;

❼ Given a set of formulae S, S′ is the set of formulae formed from the formulae
in S by using one connective.

❼ A sequence of sets of formulae in LΣB
is recursively defined as follows:

– F0 = FAB ∪ FA;

– Fn+1 = Fn ∪ F
′
n.

❼ For each n, S∗
n is the subset of Fn formed by the closed formulae in Fn.

❼ For each formula θ ∈ S∗
n, θ′ = θ(~y)[~d] is the interpreted formula in LΣ

obtained by substituting each new constant cb in ΣB by a variable not
occurring in θ and then interpreting this variable by b.

❼ For each n, Sn = {θ′|θ ∈ S∗
n}.

Reached the definition of Sn = {θ′|θ ∈ S∗
n}, some extra definitions will be presented:

❼ IF |AB is the set of interpreted formulae formed from FAB in the same way
as Sn is formed from Fn.

❼ ∼ α is an abbreviation for α→ (α ∧ (¬α ∧ ◦α)).

❼ An interpreted subformula of an interpreted formula θ(~y)[~d] is an interpreted
formula φ(~x, ~y)[~e, ~d], where φ(~x, ~y) is a subformula of θ(~y). When the context
is clear, interpreted formulae and interpreted subformulae may be referred
to just as formulae and subformulae, respectively.

❼ A partial valuation for a set of interpreted formulae S is a function v : S →
{0, 1}. It will be said that a partial valuation v is coherent for a set S or
that a set S is coherent for a valuation v or that a valuation v with domain
S is a reasoning partial valuation if no reasoning clause is violated by v for
the interpreted formulae in S.

Some basic formulae and some formulae of the form α ∧ β, α ∨ β, α→ β and ◦α
are ruled by the Basic Control Clauses. The other ones are recursively defined.
In this sense, the other clauses can be dubbed ‘recursive clauses’. The following
lemma is straightforward and refrases this idea in more precise words.

2.6. ELEMENTARY EXTENSIONS 75

Lemma 2.6.3. Let S be a set of interpreted formulae, v a partial valuation that is
coherent for S and θ an interpreted formula not contained in S. Suppose also that
S contains every interpreted formula whose validity is ruled by the Basic Control
Clauses. If S contains every interpreted subformula of θ and θ is not a subformula
of any subformula in S that is not of the form ◦ ◦ α or ◦¬α, then there is a truth
value x ∈ {0, 1} such that the extension v′ : S ∪ {θ} → {0, 1} of v defined so that,
for every φ ∈ S ∪ {θ}, v′(φ) = v(φ) if φ ∈ S and v(θ) = x is a reasoning partial
valuation.

Finally, the core result of this section:

Theorem 2.6.4 (Elementary Extension Theorem). Let A = 〈A, IA, vA〉 be a
reasoning model, B an extension of the domain A (A ⊂ B) and vĀB : IF |ĀB(LΣ)→
{0, 1} a function that valuates formulae interpreted by sequences in ĀB. Then,
there exists a valuation vB : B → {0, 1} such that, for every sequence ~a ∈ An and
for every formula θ(~x), vB(θ(~a)) = vA(θ(~a)) and, for every sequence ~c ∈ ĀB and for
every formula θ(~x), vB(θ(~c)) = vĀB(θ(~c)) iff, for every sequence (b,~a) ∈ (B × Ā)
and for every formula θ(x, ~x), if vĀB(b,~a) = 1, then there is a ∈ A such that
vA(a,~a) = 1.

Proof. (⇒) It follows from Lemma 2.6.2. Suppose there is a valuation vB as
described in the enunciation. If vĀB(θ(b,~a)) = 1, then vB(θ(b,~a)) = 1. As vB is a
reasoning valuation, vB(∃xθ(x,~a)) = 1. By Lemma 2.6.2, there is a ∈ A such that
vB(θ(a,~a)) = 1, which implies that vA(θ(a,~a)) = 1, as desired.
(⇐) Suppose that, for every sequence (b,~a) ∈ (B × An) and for every formula
θ(x, ~x), if vĀB(b,~a) = 1, then there is a ∈ A such that vA(a,~a) = 1. It must be
proven that there exists a valuation as described in the enunciation.
A sequence of valuations vn will be recursively constructed. Each vn has domain
Sn.

❼ v0

– v0(θ(~d)) = vA(θ(~d)), if θ(~d) ∈ S0 and ~d ∈ Ā;

– v0(θ(~d)) = vĀB(θ(~d)), if θ(~d) ∈ S0 and ~d ∈ ĀB.

v0(θ(~d)) is not defined, otherwise.

❼ vn+1

– vn+1(θ(~d)) = vn(θ(~d)), if θ(~d) ∈ Sn;

– Let (θi)i∈N be an enumeration of the interpreted formulae in Sn+1\Sn.
Then, vn+1(θi) assumes some value that coheres with the truth values
settled for Sn (if i = 0) or for Sn ∪ {θj}j<i (if i > 0).

2.6. ELEMENTARY EXTENSIONS 76

❼ vn+1(θ(~d)) is not defined if θ /∈ Sn+1.

Each partial valuation vn is coherent. The proof of this fact will be performed
by induction.

First part (n = 0): Let Sm0 be the set of interpreted formulae with complexity
m from S0. This first part will be proven by induction on m. Observe that if an
interpreted formula belongs to S0, then all of its interpreted subformulae belong to
S0 as well.

It is immediate that v0 is coherent for sets of formulae involving no quantifiers,
for the domains of vA and vĀB (which are reasoning valuations) are disjoint and
each one is closed for interpreted subformulae. If all the formulae in a given set
have complexity 0, then all of them involve no connectives. In particular, they
involve no quantifiers. Therefore, the result holds for S0

0 .
Suppose the result holds for Sm0 . To prove that Sm+1

0 is coherent is the same
as to prove that no reasoning clause is violated.

The fact follows easily for the clauses that do not involve quantifiers. In fact,
if a clause that does not involve quantifiers is violated by a given set of formulae
F , then there is a subset F ′ ⊂ F with two or three formulae (according to the
clause in question) that violates that clause. This is so because the connectives
have arity 1 or 2, whence the recursive definition of valuation for formulae formed
by connectives other than the quantifiers refer to at most two formulae already
valuated and the one to be valuated. Moreover, one of the formulae (the one to
be valuated) is of higher complexity than the other(s), by design of the clauses,
which means that there can be at most one formula with complexity m+ 1 in F ′.
Also, there must be a formula θ[~d] with complexity m+ 1, for otherwise F ′ would
be a subset of Sm0 , which is coherent, by the inductive hypothesis. Summing up,
F ′ has exactly one formula of complexity m + 1. Now suppose, for the sake of
contradiction, that there is such a set violating some clause not involving quantifiers
and let θ[~d] be the only formula of complexity m+ 1. The whole of possibilities for
θ[~d] are analyzed below:

If θ[~d] is formed by a connective # ∈ {∨,∧,→}, then θ[~d] = φ[~k]#ψ[~l] for some
φ[~k] and ψ[~l], were ~k and ~l are segments of ~d. If ~k,~l ∈ Ā, then all the formulae in
F ′ are valuated by vA, which is a contradiction against the fact that vA is coherent.
Likewise, if ~k,~l ∈ ĀB, then all the formulae in F ′ are valuated by vĀB, which
is a contradiction against the fact that vĀB is coherent. If ~k ∈ Ā and ~l ∈ ĀB
(or ~k ∈ ĀB and ~l ∈ Ā), then θ[~d] /∈ S0, which contradicts the assumption that
F ′ ⊂ Sm+1

0 .

If θ[~d] = #φ[~d] for #{¬, ◦}, then all the formulae in F ′ are valuated by vA, if
~d ∈ Ā or by vĀB, if ~d ∈ ĀB. In any case, there is a contradiction against the fact
that vA and vĀB are coherent.

2.6. ELEMENTARY EXTENSIONS 77

For the clauses involving quantifiers, things are a little bit delicate, for the
truth value of an interpreted quantified formula may depend on the valuations of
interpreted formulae valuated both by vA and vĀB . Here, the condition imposed to
vĀB and vA in the enunciation plays its role. The clauses involving quantifiers will
be treated separately.

It is proven in [15] and in [14] that, for every mbC-model A and for every
formula α, A �∼ α iff A 2 α. The result holds for reasoning models as well.

vEx Let ∃xφ(x)[~d] ∈ Sm+1
0 . If v0(∃xφ(x)[~d]) = 1, then either vA(∃xφ(x)[~d]) = 1 or

vĀB(∃xφ(x)[~d]) = 1. In either case, there is a b ∈ B such that vA(φ[b, ~d]) = 1
(it may be the case that b ∈ A, despite the notation) or vĀB(φ[b, ~d]) = 1,
that is, such that v0(φ[b, ~d]) = 1.
Conversely, if there is a b ∈ B such that v0(φ[b, ~d]), then there is a b ∈ B
such that vA(φ[b, ~d]) = 1 or vĀB(φ[b, ~d]) = 1. The possible cases for b and ~d
will be analyzed separately:

❼ If b ∈ A and ~d ∈ Ā, then (b, ~d) ∈ Ā. So, vA(φ(b, ~d)) = 1. Hence,
vA(∃xφ(x)[~d]) = 1, for vA is a reasoning valuation.

❼ If ~d ∈ ĀB, then (b, ~d) ∈ ĀB (whether b ∈ A or b ∈ B\A). So,
vĀBφ(b, ~d) = 1. Hence, vĀB(∃xφ(x)[~d]) = 1, for vĀB is a reasoning
valuation.

❼ If b ∈ B\A and ~d ∈ Ak, then vĀB(φ[b, ~d]) = 1 and, by hypothesis, there
is a ∈ A such that vA(φ(a, ~d)) = 1. Hence, vA(∃xφ(x)[~d]) = 1, for vA is
a reasoning valuation.

In any case, v0(∃xφ(x)[~d]) = 1.

vUni Let ∀xφ(x)[~d] ∈ Sm+1
0 . If v0(∀xφ(x)[~d]) = 1, then either vA(∀xφ(x)[~d])= 1 or

vĀB(∀xφ(x)[~d]) = 1. In the first case, ~d ∈ Ā and, for all a ∈ A, v0(φ[a, ~d]) =
vA(φ[a, ~d]) = 1. For b ∈ B\A, it holds that v0(φ[b, ~d]) = 1 as well, for
otherwise vĀB(φ[b, ~d]) = 0, which would imply that vĀB(∼ φ[b, ~d]) = 1. By
hypothesis, there would be a ∈ A such that vA(∼ φ[a, ~d]) = 1, which would
imply that vA(φ[a, ~d]) = 0. Contradiction! Therefore, for every b ∈ B,
v0(φ[b, ~d]) = 1.
In the second case, for all b ∈ B (whether b ∈ A of b ∈ B\A), (b, ~d) ∈ ĀB.
Hence, for all b ∈ B, v0(φ[b, ~d]) = vĀB(φ[b, ~d]) = 1. Hence, v0(φ[b, ~d]) = 1, as
desired.
Conversely, suppose that v0(φ[b, ~d]) = 1 for every b ∈ B. If ~d ∈ Ā, then,
for every a ∈ A, vA(φ[a, ~d]) = v0(φ[a, ~d]) = 1. Therefore, vA(∀xφ(x)[~d]) = 1.
If ~d ∈ ĀB, then, for every b ∈ B, vĀB(φ[b, ~d]) = v0(φ[b, ~d]) = 1.Hence,
vĀB(∀xφ(x)[~d]) = 1. In any case, v0(∀xφ(x)[~d]) = 1, as desired.

2.6. ELEMENTARY EXTENSIONS 78

vPropUni and vPropEx Suppose that v0(◦φ[b, ~d]) = 1 for every b ∈ B. If
~d ∈ Ā, then, for every a ∈ A, vA(◦φ[a, ~d]) = v0(◦φ[a, ~d]) = 1. Therefore (as
vA is a reasoning valuation and vPropUni and vPropEx hold in reasoning
valuations), vA(◦(∀xφ(x)[~d])) = 1 and vA(◦(∃xφ(x)[~d])) = 1. Analogously, if
~d ∈ ĀB, then vĀB(◦(∀xφ(x)[~d])) = 1 and
vĀB(◦(∃xφ(x)[~d])) = 1. In any case, v0(◦(∀xφ(x)[~d])) = 1 and
v0(◦(∃xφ(x)[~d])) = 1, as desired.

vPropEx’ Suppose there are a b ∈ B and a ~d ∈ ĀB such that v0(φ[b, ~d]) =
v0(◦(φ[b, ~d])) = 1. If ~d ∈ ĀB, then vĀB(φ[b, ~d]) = vĀB(◦(φ[b, ~d])) = 1.
Therefore, vĀB(◦(∃xφ(x, ~x))[~d]) = 1. If ~d ∈ Ā and b ∈ A, then vA(φ[b, ~d]) =
vA(◦(φ[b, ~d])) = 1. Therefore, vA(◦(∃xφ(x, ~x))[~d]) = 1. If ~d ∈ Ā and b ∈ B\A,
then vĀB(φ[b, ~d]) = vĀB(◦(φ[b, ~d])) = 1. By hypothesis, there is a ∈ A such
that vA(φ[a, ~d]) = vA(◦(φ[a, ~d])) = 1. Therefore, vA(◦(∃xφ(x, ~x))[~d]) = 1. In
any case, v0(◦(∃xφ(x, ~x))[~d]) = 1, as desired.

Second part (Suppose the result holds for Sn and vn): To prove that vn+1 is
coherent is the same as to prove that it respects each of the reasoning clauses. The
recursive definition of vn+1 states that each interpreted formula θi or σi is valuated
so that the new set obtained by its addition is coherent. Being so, vn+1 is coherent
for every set Sn∪{θj}j≤i, which implies that it is coherent for Sn+1 = Sn∪{θj}j∈N.
In fact, if vn+1 were not coherent for Sn ∪ {θj}j∈N, there would be some set of
interpreted formulae violating some clause. As each clause involves finitely many
formulae, there would be a finite set of formulae violating that clause. But every
finite set is contained, for some i, in Sn ∪ {θj}j≤i. So, vn+1 would not be coherent
for this set, leading to a contradiction.

There is a point, however: In the definition of vn+1, it was taken for granted
the existence of a coherent truth value for each θi with respect to the valuations
already defined. This assumption must be proven. By Lemma 2.6.3, it is enough to
prove that, for each i ∈ N, vn+1 respects the Basic Control Clauses in Sn ∪ {θj}j≤i,
that θi+1 is not a subformula of any formula in that set, and that every subformula
of θi+1 belongs to the referred set.

It is clear that vn+1 respects the Basic Control Clauses, for all the interpreted
formulae whose valuation is ruled by thoses clauses belong to S0 and vn+1 is
an extension of v0. As the construction of the sequence {Si} is recursive, the
subformulae of θi+1 must be constructed before θi+1 and the formulae that have θi+1

as a subformula must be constructed after θi+1. In other words, all the subformulae
of θi+1 belong to Sn and all the formulae that have θi+1 as a subformula are
constructed only from Sn+2 on and, therefore, do not belong to Sn ∪ {θj}j≤i.

At first sight, it may seem unnecessary to enumerate the formulae in Sn+1\Sn
and then attribute valuation to one to one sequentially. But in fact it is. This

2.7. AXIOMATIZATION 79

is because vCon, vVar, sNeg and sCon may involve more then one formula in
{θj}j≤i at one time.

The set ∪i∈NSi comprises the formulae in the language interpreted by the
elements of B. The valuation vB is finally defined so that vB(θ[~b]) = vn(θ[~b]), were
n is the first index such that vn valuates θ[~b].

The coherence of vB follows from the fact that the coherence of a set of formulae
with respect to a given clause involves a set of formulae that belong to Sn for some
n and each Sn is coherent for every n.

In [13], some very important results for classical logic are extended to mbC. In
the next section, the extension of some of those results to reasoning logic is briefly
discussed. Compacity and the fact that every consistent set of formulae have a
model are among those results and, as a consequence of the validity of these results,
the following proposition holds and its proof is identical to the proof for classical
logic.

Proposition 2.6.5. If F is a family of elementary extensions of a model A, then
there is a model that is an elementary extension of each model from F.

The proposition above is not a complex result nor a central one, but it has an
interesting meaning: Research can be made independently by several researchers,
who may discover independent groups of objects, which can be lumped together in
a single state of knowledge.

Obs.: In some sense, it would be appropriate to figure the refinements proposed
in Sections 3 and Section 4 as horizontal gaining of knowledge and extensions as
vertical gaining.

At this point, the task of giving an account of models as refinable states of
knowledge is satisfactorily carried out. There remains to the final section the task
of finding an axiomatization for the reasoning system developed along the previous
sections.

2.7 Axiomatization

A QmbC-valuation is a one that satisfies exactly the Classical Behavior Clauses, the
QmbC Clauses and vPred (v(P (t1 . . . , tn)) = 1 iff (tA1 , . . . , t

A
n) ∈ AA

P1, for P ∈ Pn).
That is, reasoning valuations differ from QmbC-valuations for satisfying the Basic
Control Clauses instead of vPred and also for satisfying the Propagation Clauses.
Of course, reasoning models are endowed with the necessary apparatus to give
sense to the Basic Control Clauses. A convenient kind of valuation to consider is

2.7. AXIOMATIZATION 80

QmbC plus Propagation Clauses (for simplicity,PQmbC). Those valuations differ
from reasoning valuations for satisfying vPred instead of the Basic Control Clauses
and differ from QmbC-valuations for satisfying the Propagation Clauses as well as
all the other QmbC Clauses.

In the search for an axiomatization to reasoning logic, it is convenient, before
going on, to compare reasoning logic to PQmbC in what concerns semantical
consequence.

Let A be a reasoning model over a language LΣ with domain of interpretation
A, interpretation function IA and valuation function vA. Let IB be a PQmbC
interpretation function over the same language and with the same domain of
interpretation such that

1. IB(c) = IA(c), for every constant c;

2. IB(f) = IA(f), for every function symbol f ;

3. (a1, . . . , an) ∈ IB(P) iff vA(a1, . . . , an) = 1, for every P ∈ Pn.

It is clear that IA and IB agree in the interpretation of each term. Also, for
whatever valuation v based on IB and satisfying vPred, for every P ∈ Pn, and for
every sequence of terms τ1, . . . , τn, it holds that
v(P (τ1, . . . , τn)) = 1 iff (τB1 , . . . , τ

B
n) ∈ IB(P) iff (τA1 , . . . , τ

A
n) ∈ IB(P) (for IA and

IA agree in interpretations) iff vA(P (τ1, . . . , τn)) = 1.
Conversely, if a valuation v agrees with vA about every basic statement, then v

satisfies vPred according to IB. In fact:
v(P (τ1, . . . , τn)) = 1 iff vA(P (τ1, . . . , τn)) = 1 iff (τA1 , . . . , τ

A
n) ∈ IB(P) iff (τB1 , . . . , τ

B
n) ∈

IB(P).
Now, let vB = vA. As just proven, vB satisfies vPred. It also satisfies the

Calssical Behavior Clauses, the mbC-Clauses and the Propagation Clauses, for vA
satisfies those clauses. Summing up, vB is a PQmbC-valuation with respect to IB.

Therefore, the model B with domain of interpretation B = A, interpretation
function IB as defined above and valuation function vB = vA is a PQmbC model
such that, for every formula θ, B � θ iff A � θ. In other words, for each reasoning
model over a language Σ, that is a PQmbC model over the same language that
satisfies the same statements.

Conversely, let B be a PQmbC model over a language LΣ with domain of
interpretation B, interpretation function IB and valuation function vB. Let IA
be a reasoning interpretation function over the same language and with the same
domain of interpretation such that

1. IA(c) = IB(c), for every constant c;

2. IA(f) = IB(f), for every function symbol f ;

2.7. AXIOMATIZATION 81

3. For every predicate symbol P , IA(P) gives a sequence of void sets, that is,
AA
Pi = ∅, for 1 ≤ i ≤ 9.

Again, it is clear that IB and IA agree about the interpretation of each term. Also,
any valuation v (in particular, vB) satisfies the Basic Control Clauses according to
IA by vacuity. Being a PQmbC-valuation, vB also satisfies the Classical Behavior
Clauses, the mbC-Clauses and the Propagation Clauses. Summing up, vB is also a
reasoning valuation.

Therefore, the model A with domain of interpretation A = B, interpretation
function IA as defined above and valuation function vA = vB is a reasoning model
such that, for every formula θ, A � θ iff B � θ. In other words, for each PQmbC
model over a language Σ, there is a reasoning model over the same language that
satisfies the same statements.

Joining the two parts, for every set of statements Θ, there is a reasoning model
satisfying Θ iff there is a PQmbC model satisfying it too. Also, every reasoning
model satisfies Θ iff every PQmbC model satisfies it too. In fact, if there is a
PQmbC model that does not satisfy θ, then there is a reasoning model that does
not satisfy it either.

This means that reasoning logic and PQmbC logic have the same semantical
consequence relation. Consequently, one is sound or complete with respect to a
given axiomatization iff the other one is respectively sound or complete with respect
to the same axiomatization.

Profiting from the conclusion above, an axiomatization for reasoning logic will
be pursued via PQmbC logic. This recourse facilitates so much the task, for the
work has been carefully done for QmbC logic in [13]. In [13], QmbC has been
proven to be sound and complete with respect to the following axiomatization:

Definition 2.7.1 (Hilbert Caulculus for QmbC). The list of axiom schemata and
inference rules that below constitute the Hilbert Caulculus for QmbC.

Axiom Schemata

Ax1 α→ (β → α)

Ax2 (α→ β)→ ((α→ (β → γ))→ (α→ γ))

Ax3 α→ (β → (α ∧ β))

Ax4 (α ∧ β)→ α

Ax5 (α ∧ β)→ β

Ax6 α→ (α ∨ β)

2.7. AXIOMATIZATION 82

Ax7 β → (α ∨ β)

Ax8 (α→ γ)→ ((β → γ)→ ((α ∨ β)→ γ))

Ax9 α ∨ (α→ β)

Ax10 α ∨ ¬α

Ax11 ◦α→ (α→ (¬α→ β))

Ax12 φ[x/t]→ ∃xφ, if t is a term that is free for x in φ

Ax13 ∀xφ→ φ[x/t], if t is a term that is free for x in φ

Ax14 α→ β, whenever α is a variant of β

Rules of Inference

MP α, α→ β/β

∀-In α→ β/α→ ∀xβ, if x is not free in α

∃-In α→ β/∃xα→ β, if x is not free in β

It will be proven that PQmbC can be syntactically determined by the same
axiom schamata and rules of inference plus some suitable axiom schemata that are
able to rule propagation of consistency.

Definition 2.7.2 (Hilbert Calculus for PQmbC). PQmbC is syntactically de-
termined by the same axiom schemata and rules of inference as QmbC plus the
following axiom schemata:

Ax15 (◦α ∧ ◦β)→ ◦(α ∨ β)

Ax16 (◦α ∧ ◦β)→ ◦(α ∧ β)

Ax17 (◦α ∧ ◦β)→ ◦(α→ β)

Ax18 ◦α→ ◦¬α

Ax19 ◦(◦α)

Ax20 ∀x ◦ α→ ◦∀xα

Ax21 ∀x ◦ α→ ◦∃xα

Ax22 ∃x(α ∧ ◦α)→ ◦∃xα

2.7. AXIOMATIZATION 83

The next step is to prove that PQmbC is sound and complete with respect to
the axiomatization described in Definition 2.7.2.

Proposition 2.7.3 (Soundness of PQmbC). PQmbC is sound with respect to the
axiomatization described in 1.4.2 plus the Propagation Clauses

Proof. A PQmbC-valuation satisfies all clauses satisfied by QmbC plus something
else. So, being a PQmbC model is more restrictive than being a QmbC model,
which means that the class of PQmbC models is contained in the class of QmbC
models. Therefore, every axiom that yields a tautology in the latter also yields a
tautology in the former. Moreover, every rule of inference that preserves tautologies
in the latter also preserves tautologies in the former. As it has been proven in [13]
that QmbC is sound with respect to the axiomatization in Definition 2.7.1, all that
is left to be proven is that axioms Ax15 to Ax22 yield tautologies in the class of
PQmbC models.

Ax15, Ax16 and Ax17 ❼ If v(◦α) = 0 or v(◦β) = 0, then v(◦α ∧ ◦β) = 0,
by vAnd. Hence, v(Ax15) = v(Ax16) = v(Ax17) = 1, by vImp.

❼ If both v(◦α) = 1 and v(◦β) = 1, then

– v(◦(α ∨ β)) = 1, by vPropOr. Hence, v(Ax15) = 1, by vImp.

– v(◦(α ∧ β)) = 1, by vPropAnd. Hence, v(Ax16) = 1, by vImp.

– v(◦(α→ β)) = 1, by vPropImp. Hence, v(Ax17) = 1, by vImp.

Ax18 and Ax19 Immediate from vPropNeg and vPropCon.

Let α(x) be a formula depending at most on x.

Ax20 and Ax21 ❼ If v(◦α[a]) = 0 for some a ∈ A, then v(∀x ◦ α) = 0, by
vUni. Hence, v(Ax20) = v(Ax21) = 1, by vImp.

❼ If v(◦α[a]) = 1 for all a ∈ A, then

– v(◦∀xα) = 1, by vPropUni. Hence, v(Ax20) = 1, by vImp.

– v(◦∃xα) = 1, by vPropEx. Hence, v(Ax21) = 1, by vImp.

Ax22 ❼ If there is no a ∈ A such that v(α[a]) = 1 and v(◦α[a]) = 1, then
there is no a ∈ A such that v((α ∧ ◦α)[a]) = 1, by vAnd. By vEx,
v(∃x(α ∧ ◦α)) = 0. Hence, v(Ax22) = 1, by vImp.

❼ If there is a ∈ A such that v(α[a]) = 1 and v(◦α[a]) = 1, then v(◦∃xα) =
1, by vPropEx’. Hence, v(Ax22) = 1, by vImp.

2.7. AXIOMATIZATION 84

For completeness, differently from soundness, it is not possible to use the result
for QmbC proven in [13], but it is possible to course the very same track.

For the sake of comprehensibility, here follows the step by step of the proof
from [13]:

Theorem of constants: If ∆ is a QmbC theory over a signature Σ and ⊢C is the
consequence relation of QmbC over the signature ΣC obtained by adding the
set C of new constants, then, for every φ in the original language, ∆ ⊢ φ iff
∆ ⊢C φ. That is, adding new constants provide conservative extensions.

Extension to a Henkin theory: Every theory can be conservatively extended
to a theory with a set of witnesses C (a C-Henkin theory).

Extension of a Henkin theory: The extension of a Henking theory (within the
same signature) is still a Henking theory.

Lindenbaum- Loś: Every theory that does not prove a given formula φ can be
extended to a maximally non-trivial theory with respect to φ. Using this
result together with the previous one, the theory can be extended to a Henkin
maximally non-trivial theory with respect to φ.

Canonical interpretations: Given a Henkin maximally non-trivial theory ∆
with respect to a statement φ, a model A for ∆ can be built with a canonical
interpretation function and a canonical valuation v such that, for every
statement θ, A, v � θ iff ∆ ⊢ θ.

Conclusion: The canonical model so constructed is a QmbC model in an enriched
signature that satisfies ∆ and does not satisfy φ. Reducing this model, a
model in the original signature is obtained which satisfies ∆ and does not
satisfy φ. This means that, if ∆ does not syntactically entail φ, then it does
not semantically entail φ, or, equivalently, if ∆ semantically entails φ, then
it syntactically entails φ.

The first four steps can be performed for PQmbC quite in the same way, in
every detail. The fifth step, that is, the construction of a model by canonical
interpretations can be performed in every detail for PQmbC too, but something
else must be proven: That the model so constructed satisfies the propagation
clauses as well. After that, the conclusion follows in the same way. So here follows
the complement of the proof of the Canonical Interpretation’s Theorem:

Proof. In the demonstration in [13], the canonical model A for ∆ is constructed
over an extended signature ΣC , obtained by the addition of a set C of new constants.
The canonical interpretation function is defined so that its domain is the set of

2.7. AXIOMATIZATION 85

terms over the original signature Σ and each term over Σ is interpreted by one and
just one new constant. A mapping ∗ is defined from the set of statements over ΣC

to the set of statements over Σ such that, for each statement φ, φ∗ is exactly φ
with the new constants substituted by the terms which interpret them. Naturally,
if φ is a statement over Σ, then φ∗ = φ.

Then, it is proven that, for each statement φ, v(φ) = 1 iff ∆ ⊢ φ∗. Finally, it is
proven that v satisfies each QmbC clause.

The whole sequence of steps briefly described above is carefully performed in
[13] for QmbC and can be performed for PQmbC exactly in the same way. What
remains to be proven is that the propagation clauses hold for v as well.

vPropOr, vPropAnd and vPropImp If v(◦α) = 1 and v(◦β) = 1, then ∆ ⊢
◦α∗ and ∆ ⊢ ◦β∗. In this case, ∆ ⊢ (◦α∗ ∧ ◦β∗), by Ax3. Then,

❼ ∆ ⊢ ◦(α∗ ∨ β∗), by Ax15 and MP. Hence, v(◦(α ∨ β)) = 1.

❼ ∆ ⊢ ◦(α∗ ∧ β∗), by Ax16 and MP. Hence, v(◦(α ∧ β)) = 1.

❼ ∆ ⊢ ◦(α∗ → β∗), by Ax17 and MP. Hence, v(◦(α→ β)) = 1.

vPropCon ∆ ⊢ ◦(◦α∗), by Ax18 and ∆ ⊢ ◦(¬◦α∗), by Ax19. Hence, v(◦(◦α)) =
1 and v(◦(¬ ◦ α)) = 1.

Let α(x) be a formula depending at most on x. For each a ∈ A, let ca be a constant
whose interpretation is a (which exists, for the proof is performed for a Henkin
theory) and α(ca) the substitution of x by ca, as ususal.

vPropUni and vPropEx If v(α[a]) = 1 fol all a ∈ A, then ∆ ⊢ α∗(ca) for all
a ∈ A. In this case, it is provable in QmbC (and also in PQmbC) that
∆ ⊢ ∀xα∗. Then,

❼ ∆ ⊢ ◦∀xα, by Ax20 and MP. Hence, v(◦∀xα) = 1.

❼ ∆ ⊢ ◦∃xα, by Ax21 and MP. Hence, v(◦∃xα) = 1.

vPropEx’ If, for some a ∈ A, v(α[a]) = 1 and v(◦α[a]) = 1, then, for such a,
∆ ⊢ α∗(ca) and ∆ ⊢ ◦α∗(ca). In this case, ∆ ⊢ (α∗(ca) ∧ ◦α

∗(ca)), by Ax3.
From this and from Ax12, it is provable in QmbC (and also in PQmbC)
that ∆ ⊢ ∃x(α∗ ∧ ◦α∗). Then, ∆ ⊢ ◦∃xα∗, by Ax22. Hence, v(◦∃xα) = 1.

2.7. AXIOMATIZATION 86

Final Considerations

As already commented, PRS is just one possibility of a system for paraconsistent
reasoning among infinitely many, but it is a very suitable one. In PRS, the
conjunction, the disjunction and the implication of a pair of basic statements can
be determined from the beginning. It makes sense to expect that this control be
possible to more complex conjunctions, disjunctions and implications. For that
purpose, a further enrichment of the concept of structure can be made. However,
the more the structure is enriched in order to keep control over larger sets of
statements, the havier it becomes.

Also, some clauses could be added in order to reach a bigger portion of the
preservation kernel. For instance, a clause could be added to work with respect
to the universal quantifier as vPropEx’ works with respect to the existential
quantifier.

vPropUni’: If, for some a ∈ A, v(α[a,~a]) = 0 and v(◦α[a,~a]) = 1, then
v(◦(∀xα(x, ~x))[~a]) = 1.

Again, the more the list of clauses is enlarged in order to keep control over a
bigger portion of the preservation kernel, the havier it becomes. Being so, PRS has
been delimited at this point in order to avoid an unwieldy system.

This thesis has [13] as its basis. At this point, it is in order to cite the other
works that have had the same article as its basis. For far, two papers have been
published from [13].

The first one is ‘Fräıssè’s theorem for logics of formal inconsistency’, by Bruno
Mendonça and Walter Carnielli, cited as [36] in the references.

The second one is ‘The Keisler-Shelah Theorem for QmbC Through Semantical
Atomization’, cited as [27] in the references.

The two papers differ from the present thesis and from one another in pursuit
and method, but all three works had to face the same question: How to work out
the concept of isomorphism in a system that fails to determine truth value from
the structure for a great deal of statements? Each one gave a response of its own
to the challenge:

In the present thesis, the structures are enriched in order to become able to
control a greater deal of statements.

In [36], the concept of isomorphism is reproposed in terms of a reformulated
mechanism of back and forth. This reformulation relies on a new notion of quantifiers
rank, which takes into account the fact that, whenever a statement is of the form
¬φ or ◦φ, its valuation is not determined by the valuation of its subformulae.

In [27], the method that is employed is that of semantical atomization. This
technique allows structures to control every statement at the cost of working with

2.7. AXIOMATIZATION 87

an unwieldy language that possesses a predicate symbol for each formula.

Chapter 3

The Power of Classical Negation

3.1 QmbC without a Consistency Operator

The purposes this chapter is to determine the strength of the classical auxiliar
negation, that is, to verify what can be recovered from classical model theory and
what cannot be recovered without it.

The task for the current section is to delimit the field. The system under con-
sideration is QmbC. In order to study how essencial the classical auxiliar negation
is in recovering classical results, it will be needed a system that shall behave like
QmbC in all aspects except in that of having such a negation. That is what will be
now studied.

By Proposition 1.2.12, this system cannot have a consistency connective. In
view of this fact, the most natural idea is to work with a system obtained from
QmbC by dropping ◦ from the signature and the clause vCon (if v(◦α) = 1, then
v(α) = 0 or v(¬α) = 0) from the list of clauses to be satisfied. Such a system would
be as close to QmbC as possible, for it would only lack the forbidden connective ◦
(by Proposition 1.2.12) and would behave like QmbC with respect to the remaining
connectives. However, it is still left to be answered whether an auxiliar classical
negation can be defined even without the consistency connective or not. The answer
is ‘no’. It will be proven that no bottom particle ⊥ can be defined. According to
Corollary 1.2.13, this is equivalent to proving that no connective ◦ can be defined
and to proving that no classical negation can be defined.

A nonquantified system without a consistency operator is studied by Batens in
[9] under the name PI. It consists in the positive precicate calculus (PC+) with a
paraconsistent negation. The system that will be defined can be regarded as QmbC
minus consistency operator or by PI plus quantifiers. The former formulation will

88

3.1. QMBC WITHOUT A CONSISTENCY OPERATOR 89

be the adopted.
This new system will be called QmbC− and will be presented in more precise

terms below:

❼ A language LΣ is a language for QmbC− iff it is a language for classical logic
(without ◦).

❼ A structure S is a structure for QmbC− iff it is a structure for classical logic.

❼ A valuation v is a valuation for QmbC−, or a QmbC−-valuation, if it satisfies
all the clauses for QmbC-valuations except for vCon (If v(◦α) = 1 then
v(α) = 0 or v(¬α) = 0).

❼ QmbC− is the system semantically defined with basis on QmbC−−
valuations in the canonical manner.

In the previous section, a bottom particle was defined to be a sentence ‘⊥’ such
that any model that derives it is trivial. In semantical terms, this is equivalent to
being such that v(⊥) = 0 for every valuation of whatever model. In fact, a sentence
⊥ that is always false derives whatever formula φ, for it is trivally the case that
φ is true whenever ⊥ is true. This is the characterization to be used in the proof
of the next proposition, that is, it will be proven that there is no sentence that is
always false.

Proposition 3.1.1. Let LΣ be a language for QmbC− and let Φ be an arbitrary
finite and nonempty set of formulae in LΣ. Then, there is a model A with valuation
vA where Φ is valid.

Proof. Let Ψ0 be the set of the formulae of complexity 0 that are subformula
of some formula in Φ. For each formula θ ∈ Ψ0, there are a predicate symbol
P θ, a sequence of constants (cθ1, . . . , c

θ
i) and a sequence of variables (xθi+1, . . . , x

θ
n)

such that φ = P θ(cθ1, . . . , c
θ
i , x

θ
i+1, . . . , x

θ
n) or there are terms τ1(~x), τ2(~x) such that

θ(~x) = τ1(~x) ≈ τ2(~x). Of course, these sequences may have length 0, despite the
notation. In order to obtain a model where each θ ∈ Ψ0 is valid, take A = 〈A, IA〉,
where A is a unary set and IA(P θ) = An for all P that occurs in Ψ0. Obviously,
the valuation vA validates each θ in Ψ0.
Let Ψk+1 be the set of formulae ψ such that ψ = α#β (# ∈ {∨,∧,→}) or ψ = #xα
(# ∈ {∃, ∀}) or ψ = ¬α, where α, β ∈ ∪k0Ψi. If, for every γ(~x) ∈ ∪k0Ψ and for every
a ∈ Al, vA(γ(~a)) = 1, then it must be defined vA(ψ) = 1 if ψ is not ¬α for some α
and it may be defined vA(ψ) = 1 if ψ is ¬α for some α. Thus, v can be defined
so that vA(ψ) = 1 for every ψ ∈ Ψk+1. Defining v in this way until the maximum
complexity among the formulae in Φ is reached and defining vA freely for the rest
of the language, a model that validates all the formulae in Φ will be defined.

3.1. QMBC WITHOUT A CONSISTENCY OPERATOR 90

The corollary below follows immediately:

Corollary 3.1.2. There is no bottom particle in QmbC−.

Corollary 3.1.2 together with the discussion that preceeds it settles that QmbC−

is in fact the desired system, that is, the closest system to QmbC that does not
have a classial negation, the one that does not have a consistency connective while
still behaving like QmbC with respect to all other connectives. The discussion
regarding this sort of question is satisfactorily concluded.

With regard to the proof of Proposition 3.1.1, it is possible to define a nonunary
model that satisfies Φ if no variable that occurs in a subformula of the form
τ1(~x) ≈ τ2(~x) is free or is the scope of a universal quantifier. If the language LΣ

possesses closed terms, then there is at least one constant c. If A is a nonunary
model in LΣ, then ∀x(c ≈ x) is a bottom particle in the theory of A. Thus, the
class of nonunary models with QmbC− valuation possesses a bottom particle.

The task that imposes itself at this point is that of finding an aximatization for
QmbC− and this is what will be pursued through the next lines.

As QmbC− was obtained from QmbC by dropping vCon, it is natural to search
an axiomatization for it by dropping Ax11 from the the axiomatization of QmbC.
This axiomatization will be called AX, for simplicity. The proof of the fact that
AX is sound with respect to QmbC− is a straightforward verification. The question
of whether it is complete or not will not be explored here. If so, the proof of this
fact shall be different. Instead, it will be presented an axiomatization that is sound
(which is a straightforward verification) and that will be proven to be complete
with respect to QmbC−. Summing up, AX will be extended in order to obtain a
sound and complete axiomatization of QmbC− and the question of whether it is
really necessary to extend AX or AX is sufficient to axiomatize QmbC− will not
be explored.

Plowing carefully through the steps of the proof of completeness for QmbC
in [13], one can find that the strong negation was used twice. The first use of it
was made for proving the Deduction Metatheorem. The second one was made for
proving the schema that will be called Ax23.

Ax23 (α→ ∃xβ)→ ∃x(α→ β) if x does not occur free in α.

If one were able to prove DMT and Ax23 prescinding from Ax11 and, consequently,
from using the strong negation (by Proposition 3.1.1), then completeness would
proven. If one assumes DMT and Ax23, then completeness can be proven to an
extension of AX.

The schema presented below, that will be called Ax24, enables one to prove
DMT.

3.1. QMBC WITHOUT A CONSISTENCY OPERATOR 91

Ax24 ∀x(α→ β)→ (α→ ∀xβ) if x does not occur free in α.

The Hilbert calculus obtained from AX by adding Ax23 and Ax24 will be called
AX+. Next, it will be proven that AX+ is an axiomatization for QmbC−. The
first step is to prove DMT for AX+. Firstly, two lemmata are called for:

Lemma 3.1.3. The schema α ⊢ (β → α) holds in any Hilbert calculus that fulfills
Ax1 and MP.

Proof. Hypothesis: α

1. α→ (β → α) [Ax1]

2. α [Hyp.]

3. β → α [1, 2 by MP]

Lemma 3.1.4. The schema (α → β), (β → γ) ⊢ (α → γ) holds in any Hilbert
calculus that fulfills Ax1, Ax2 and MP.

Proof. Hypothesis : (α→ β), (β → γ)

1. (α→ β)→ ((α→ (β → γ))→ (α→ γ)) [Ax2]

2. (α→ β) [Hyp.]

3. (α→ (β → γ))→ (α→ γ) [1 and 2 by MP]

4. β → γ [Hyp.]

5. α→ (β → γ) [4 by Lemma 3.1.3]

6. α→ γ [3 and 5 by MP]

Now, DMT can be proven:

Theorem 3.1.5 (Deduction Metatheorem for AX+). Suppose that there exists in
AX+ a derivation of ψ from Γ ∪ {φ} such that no application of the rules ∃-In
and ∀-In to formulae that depend on φ has as its quantified variables free variables
of φ. Then, Γ ⊢ (φ→ ψ).

3.1. QMBC WITHOUT A CONSISTENCY OPERATOR 92

Proof. The proof is the same as that performed in [13] for QmbC, except for the
part involving ∀-In in the second step of induction. So this is the only part to be
presented here.

Suppose that, for some given n ≥ 2, Γ ⊢ (φ → φi) if φi is derived in i lines,
whenever 1 ≤ i < n. Suppose ψ is derived in n lines.

The case that remains to be analyzed is: ψ = φi = α→ ∀xβ for some α and
some β, with x not free in α and ψ is obtained by the application of ∀-In to
φj = α→ β (j < i).

In this case, there are two possibilities:

1. φj does not depend on φ. In this case, Γ ⊢ φj , that is, Γ ⊢ (α→ β), whence
Γ ⊢ (α → ∀xβ), by ∀-In. By Lemma 3.1.3, Γ ⊢ (φ → (α → ∀xβ)), that is,
Γ ⊢ (φ→ ψ), as desired.

2. x does not occur free in φ. By the inductive hypothesis, Γ ⊢ (φ→ φj), that
is, Γ ⊢ (φ→ (α→ β)). By ∀-In, Γ ⊢ (φ→ ∀x(α→ β)) (x does not appear
free in φ). By Ax24, Γ ⊢ (∀x(α → β) → (α → ∀xβ)). Applying Lemma
3.1.4, Γ ⊢ (φ→ (α→ ∀xβ)), that is, Γ ⊢ (φ→ ψ).

The proof of the next result for AX+ is identical to its proof for QmbC. The
same proof can be performed in AX as well.

Theorem 3.1.6 (Theorem of Constants). Let ∆ ⊆ SLΣ
be a theory in AX+ over

a signature Σ and let ⊢C be the consequence relation of AX+ over the signature
ΣC , which is obtained from Σ by adding a set C of new individual constants. Then,
for every φ ∈ SLΣ

,
∆ ⊢ φ⇐⇒ ∆ ⊢C φ

Again, the proof of the next result for AX+ is identical to its proof for QmbC.
The same proof cannot be performed in AX, for it depends on Ax23 and on DMT,
which depends on Ax24 on its turn.

Theorem 3.1.7. Every theory ∆ ⊆ SLΣ
in AX+ over a signature Σ can be

conservatively extended to a C-Henkin theory ∆H in AX+ over a signature ΣC ,
as in Theorem 3.1.6. That is, ∆ ⊆ ∆H and, for every φ ∈ SLΣ

, then ∆ ⊢ φ iff
∆H ⊢C φ. Additionally, any extension of ∆H by sentences in the signature ΣC is
also a C-Henkin theory.

The next theorem is presented in a stronger version than that presented in [13].
There, it is required that ∆ be maximal nontrivial with respect to some sentence
φ. Here, it is required that ∆ be maximal nontrivial with respect to some set of

3.1. QMBC WITHOUT A CONSISTENCY OPERATOR 93

sentences Φ. Actually, the property that is needed from ∆ is that it be closed, that
is, it must contain every formula that it derives. On the purpose of adapting the
proof, the lemma below comes in help:

Lemma 3.1.8. Let ∆ be maximal nontrivial with respect to a set Φ. Then ∆ is
closed.

Proof. Let ψ /∈ ∆ be an arbitrary formula not belonging to ∆. Suppose, for the
sake of contradiction, that ∆ ψ. As ∆ is maximal nontrivial with respect to
Φ, there is a sentence φ ∈ Φ such that (∆ ∪ {ψ}) φ. Hence, ∆ φ, which is a
contradiction. Therefore, if ψ /∈ ∆, then ∆ 1 ψ, as desired.

Theorem 3.1.9 (Canonical Interpretation). Let ∆ be a set of sentences over a
signature Σ. Assume that ∆ is a C-Henkin theory in AX+ for a nonempty set of
constants C of Σ and that ∆ is also maximal nontrivial with respect to some set of
sentences Φ. Then, ∆ induces a canonical structure A and a canonical QmbC−

valuation v such that, for every sentence ψ,

A � ψ ⇐⇒ ∆ ⊢ ψ

Proof. The proof is identical to that presented in [13] for QmbC, except for the
part concerning the clause referring to the universal quantifier and this is the only
step to be presented here. This time, there is no strong negation to help in the
task.

Before going on, it is important to note that ∆ is closed in view of Lemma
3.1.8 and this allows the steps in the proof for QmbC that depend on the maximal
nontrivaility of ∆ with respect to a sentence.

In order to prove vUni, firstly note that Ax13 and MP yield that ∆ ⊢ ∀xφ
iff, for any term t, ∆ ⊢ φ(x/t). Because of the fact that ∆ is a Henkin theory, it
is the case that ∆ ⊢ ∀xφ iff, for any closed term t, ∆ ⊢ φ(x/t). Consider now a
sentence of the form ∀xψ. Then, v(∀xψ) = 1 iff ∆ ⊢ (∀xψ)∗ iff ∆ ⊢ ∀x(ψ)∗, by the
definition of ∗. From this and by the observation above, one infers that v(∀xψ) = 1
iff v((ψ)∗(x/t)) = 1 for every closed term t ∈ LΣ. On the other hand, it can be
proven by induction on the complexity of ψ that ((ψ)∗)(x/t) = (ψ(x/t̄))∗ for any
closed term in LΣ. Thus, v(∀xψ) = 1 iff v(ψ(x/t̄)) = 1 for every closed term t, that
is, for every element t of CTΣ (maintained the notation from the proof in [13]).

Completeness follows exactly in the same way as in the classical case.

Proposition 3.1.10 (Completeness of QmbC−). For every set of sentences ∆∪{φ}
over a signature Σ, if ∆ � φ, then ∆ ⊢ φ.

3.2. OMITTING TYPES 94

The task of finding the closest paraconsistent system from QmbC without a
classical negation is accomplished. This section will be closed with the exploration
of a few features of QmbC− that make clear that it is significantly different from
QmbC.

Proposition 3.1.1 derives a slightly stronger version of Corollary 3.1.2, namely,
that, given a set of formulae Φ, and a formula φ, the validity of Φ does not entail
the falsity of φ. In other words, not only there is no formula that is always false,
but also there is no formula that is always false provided a certain set of formulae is
valid. Still rephrasing the result, given a Theory T and a formula φ, φ is consistent
with T , which renders the concept of consistency a trivial one. It may be, however,
that every model for Φ ∪ {φ} is trivial. In fact, T may be a maximal nontrivial
theory and φ a sentence not in T . In order to recover the concept of consistency in
QmbC− as an interesting one, a new formulation will be settled:

Definition 3.1.11 (Consistency of a Sentence with a Given Theory). A sentence
φ is consistent with a theory T iff there is a nontrivial model of T that realizes φ.

The definition above fits for QmbC and for classical logic as well, for there are
no trivial models in those logical systems.

In the proof of Proposition 3.1.1, it was shown that, if the formulae of a set Φ
have complexity up to n and ¬φ has complexity n+ 1, then, for every sequence ~a of
elements in the domain of interpretation A, there is a valuation that validates every
formula of Φ and such that v(¬φ(~a)) = 1 and there is a valuation that validates
every formulae of Φ and such that v(¬φ(~a)) = 0. The facts below follow from the
discussion just performed:

❼ If (Φ ∪ {¬φ}) � ψ and ¬φ is not a subformula of ψ, then Φ � ψ;

❼ If ¬φ is not a subformula of any formula in Φ, then Φ 2 ¬φ.

3.2 Omitting Types

In Section 2, QmbC− was established as the closest system to QmbC that does
not have an available auxiliar classical negation. This section starts the work of
searching for results from classical model theory that remain valid in QmbC and/or
in QmbC− in order to find out how powerful the classical auxiliar negation is in
recovering classical results and how far it is possible to go without it.

The first result to be pursued is the very one of omitting types and the answer
is positive. Accordingly, not only is the Omitting Types Theorem valid in QmbC,
but also it can be proven in the same way as the classical result in [18], provided

3.2. OMITTING TYPES 95

that the negation be understood as the auxiliar classical negation whenever it
occurs along the proof. The theorem is valid in QmbC− as well, but this time the
classical proof cannot be transposed to the desired context. Fortunately, it can be
adapted and this is what will be done in what follows.

In line with the developments of the first two sections, a type is to be understood
as a maximal nontrivial theory. The concept of a theory to locally realize a set
of formualae is the same as in classical logic, provided the concept of consistent
formula be understood as in the end of the previous section.

Definition 3.2.1 (Local Realization). Let Γ(~x) be a set of formulae in a language
LΣ. A theory T locally realizes Γ iff there is a formula φ(~x) such that:

1. φ is consistent with T ;

2. For every σ ∈ Γ, T � φ→ σ.

A theory T is said to locally omit Γ if it does not locally realize Γ. It means
that, for every consistent formula φ(~x) ∈ LΣ, there are a formula σ(~x) ∈ Γ, a
model A = 〈A, I, v〉 for T and a string ~a of elements in A such that v(φ(~a)) = 1
and v(σ(~a)) = 0. In QmbC and in classical logic, this is equivalent to state that
(φ ∧ ∼ σ)(~x) is consistent, where ∼ is the classical negation.

In QmbC−, where there is no available classical negation, this formulation
is not possible. Fortunately, a satisfactorily manageable one can be given. Let
A = 〈A, I, v〉 be a model as described above. Suppose there is a string of constants
~c (with the same length as that of ~a) in the signature whose constants do not
occur in T ∪ {φ, σ}. It is straightforward to prove by induction on the complexity
of the formulae that a model A′ = 〈A, I ′, v′〉 can be defined so that, for each
indice i, I ′(ci) = ai where ci is the ith constant in ~c and ai is the ith element in ~a;
I ′(d) = I(d) if d is not in ~c; and v′(ψ(~a)) = v(ψ(~a)) if ψ ∈ (T ∪ {φ, σ}). In view of
this fact, if the language LΣ has infinitely many constants, then a theory T is said
to locally omit Γ if, for each φ(~x) ∈ LΣ, there are a formula σ(~x) ∈ Γ, a string ~c of
constants and a model A = 〈A, I, v〉 for T such that v(φ(~c)) = 1 and v(σ(~c)) = 0.

The proposition below, like the Omitting Types Theorem, can be proven in
QmbC in the same way as in the classical context. The proof above is performed
with the suitable adaptations for making it fit to QmbC− as well.

Proposition 3.2.2. Let T be a maximal nontrivial theory in a language LΣ and
let Γ(~x) be a set of formulae in LΣ. If T has a model that omits Γ, then T locally
omits Γ. That is, if T locally realizes Γ, then every model of T realizes Γ.

Proof. Let T be a maximal nontrivial theory that locally realizes the set of formulae
Γ(~x) and let φ(~x) be a formula satisfying items (1) and (2) of Definition 3.2.1.

3.2. OMITTING TYPES 96

Suppose, for the sake of contradiction, that T 2 ∃~xφ(~x). Thus, T ∪ {∃~xφ(~x)}
is trivial, for T is maximal nontrivial. Hence, every model for T ∪ {∃~xφ(~x)} is
trival. Therefore, no nontrivial model of T validates ∃~xφ(~x), which means that no
nontrivial model of T realizes φ(~x), which is a contradiction against the fact that
φ(~x) is consistent. This contradiction proves that T � ∃~xφ(~x), which yields that
every model of T satisfies ∃~xφ(~x), which means, on its turn, that every model of T
realizes φ(~x), which finally yields that every model of T realizes Γ, as desired.

The Omitting Types Theorem is the core result of this section. Proposition
3.2.2 is the converse of this celebrated theorem in the particular case that T is a
maximal nontrivial theory. The proof below is performed for QmbC−.

Theorem 3.2.3 (Omitting Types Theorem). Let T be a nontrivial theory in a
denumerable language LΣ and let Γ(~x) be a set of LΣ-formulae. If T locally omits
Γ, then T has a denumerable model that omits Γ.

Proof. The proof will be presented for Γ(x) instead of Γ(~x) just for the sake of
simplicity of notation.

Let C = {ci}i∈N be a denumerable set of new constants and let LΣC
be the

language obtained from LΣ by the addition of those new constants.
Let φ0, φ1, φ2, . . . be an enumeration of the sentences in LΣC

. A chain of
theories T = T0 ⊆ T1 ⊆ T2 ⊆ . . . in LΣC

and a chain of sets of sentences
∅ = S0 ⊆ S1 ⊆ S2 . . . will be built so that

1. Each Tm is nontrivial;

2. For every m, there are a formula σm(x) ∈ Γ(x) and a constant cm ∈ C such
that σm(cm) ∈ Sm+1\Sm;

3. If 1 ≤ i ≤ m, then Tm 0 (σi(ci));

4. If φm = ∃xψ(x) and φm ∈ Tm, then ψ(cp) ∈ Tm+1, where cp is the first
constant that does not occur either in Tm or in φm.

5. If φm = ∀xψ(x) and φm /∈ Tm, then ψ(cp) ∈ Sm+1, where cq is the first
constant that does not occur either in Tm or in φm.

Construction of Tm and Sm: Assume Tm and Sm already defined (with m ≥ 0).
Suppose Tm = T ∪ {θ1, . . . , θr}.

Let n be the lower index such that the set Cn = {ci}0≤i≤n contains all the
constants in θ = θ1 ∧ · · · ∧ θr. Let θ′(x0, . . . , xn) = θc0x0 . . .

cn
xn be the formula (in LΣ)

3.2. OMITTING TYPES 97

obtained by substituting each ci by xi after renaming the eventual occurrences of
xi. Finally, let

θ′′(xm) =

{
∃x1 . . . ∃xm−1∃xm+1 . . . ∃xnθ

′ if m ≤ n
∃x1 . . . ∃xnθ

′ if m > n

It is easy to prove that θ′′(xm) is consistent with T . As T locally omits Γ and cm
does not occur in T ∪ Γ∪ {θ′′}, there exist a formula σ(x) ∈ Γ and a model A with
valuation v such that v(θ′′(cm)) = 1 and v(σ(cm)) = 0. Define

❼ S′
m+1 = Sm ∪ {σ(cm)}.

Once defined S′
m+1, Tm+1 is defined as follows:

❼ If (Tm ∪ {φm}) ⊢ ψ for some ψ ∈ S′
m+1, then Tm+1 = Tm;

❼ If (Tm ∪ {φm}) 0 ψ for all ψ ∈ S′
m+1, then

– If φ is not of the form ∃xψ, then Tm+1 = Tm ∪ {φm};

– If φ = ∃xψ for some ψ, then Tm+1 = Tm ∪ {φm, ψ(cp)}, where cp is the
first constant that does not occur in Tm ∪ {φm}.

Finally, define

❼ If φm = ∀xψ(x) for some formula ψ and φm /∈ Tm+1, then Sm+1 = S′
m+1 ∪

{ψ(cp)}, where cp is the first constant that does not occur in Tm ∪ {φm};

❼ Otherwise, Sm+1 = S′
m+1.

Now let Tω = ∪i∈NTi and Sω = ∪i∈NSi.
If γ ∈ Sω is an arbitrary formula in Sω, then Tω 0 γ. In fact: if Tω ⊢ γ for

some γ ∈ Sω, then Tk ⊢ γ for some k, by compacity, which yields that Tr ⊢ γ for
every r ≥ k. Suppose, for the sake of contradiction, that this is the case. For some
indice l, γ = σl(cl) or γ = ψ(cp) and φl(x) = ∀xψ(x). In any case, γ ∈ Sr for every
r ≥ l + 1, which yields that Tr 0 γ for every r ≥ l + 1. Let m = max{k, l + 1}.
Then, it is the case that Tm ⊢ γ on the one hand and that Tm 0 γ on the other.
That’s a contradiction!

Moreover, if ψ /∈ Tω, then (Tω ∪ {ψ}) ⊢ γ for some γ ∈ Sω. In fact, let ψ /∈ Tω.
For some i, ψ = φi. As ψ /∈ Ti+1 (for, otherwise, it would be the case that ψ ∈ Tω),
it happens that (Ti∪{φi}) ⊢ γ for some γ ∈ Si+1. By monotonicity, (Tω∪{φi}) ⊢ γ.

Summing up, Tω is maximal nontrivial with respect Sω.
By construction, Tω is also a Henkin theory.
By Theorem 3.1.9, there is a denumerable model B′ that satisfies exactly the

same sentences as those derived by Tω, that is, Tω � φ iff B′
� φ for every sentence

3.2. OMITTING TYPES 98

φ. This is a model in an extension for the extended language LΣC
of some model B

in the original language LΣ. For each i ∈ N, let bi = cBi . So, B′ = 〈B, b1, b2, . . . 〉,
where the elements bi interpret the constants ci ∈ C.

Let A′ be the model generated by B∗ = {bi}i∈N, that is, A′ = min{B′′ ⊂
B′|B∗ ⊂ |B′′|}. It will be proven that |A′| = B∗. For that, it is necessary and
sufficient to prove that every function symbol interprets sequences of elements in
B∗ as elements in B∗ (if f ∈ Fn, then Im(f |B∗) ⊂ B∗) and that every constant is
interpreted by some element in B∗.

In fact, let f ∈ Fn and (bi1 , . . . , bin) ∈ (B∗)n and let (ci1 , . . . , cin) be the
n-tuple of constants that are interpreted by the elements bij . The sentence θ =
∃x(f(ci1 , . . . , cin) ≈ x) is a theorem in QmbC−, whence Tω ⊢ θ. As Tω is maximal
nontrivial with relation to Sω, it follows by Lemma 3.1.8 that it is also closed. This
implies that θ ∈ Tω. As Tω is also a Henking theory, for some constant c ∈ ΣC ,
(f(ci1 , . . . , cin) ≈ c) ∈ Tω. This means that (f(ci1 , . . . , cin))B

′

= cB
′

= b, for some
b ∈ B∗, as desired. The proof of the fact that every constant in Σ is interpreted by
some b ∈ B∗ is analogous. It uses the fact that the sentence ∃x(c x) is a theorem
in QmbC− and the rest follows the same track.

The next step is to prove that, for every φ, B′
� φ iff A′

� φ. As a consequence,
it will be proven that Tω � φ iff A′

� φ, that is, that B′ satisfies exactly the same
sentences as those that Tω derives.

The proof will be performed by induction on the complexity of φ. The basic
case is immediate, for each interpretation function IA′(f) is a restriction of IB′(f)
to the domain B∗ and each set of tuples IA′(P) is a restriction of IB′(P) to the
same domain. Now, suppose the result holds for sentences with complexity up to n
and let φ be a sentence with complexity n+ 1. If φ is equal to ¬ψ, ψ ∧ γ, ψ ∨ γ or
ψ → γ, the proof is straightforward. The cases to be analized are φ = ∃xψ and
φ = ∀ψ.

Let φ = ∃xψ(x). If A′
� φ, then there is an element b ∈ B∗ such that A′

� ψ(b).
As each element in B∗ interprets some constant in B′, there is a constant cb
such that cA

′

b = b, whence A′
� ψ(cb). By the inductive hypothesis, B′

� ψ(cb).
Therefore, B′

� ∃xψ(x), as desired.
Conversely, if B′

� φ, then φ ∈ Tω. In the enumeration of the formulae used
in the construction of the sequence {T}i, there is an index m such that φ = φm.
By construction, there is a constant cp such that ψ(cp) ∈ Tm+1, which yields
ψ(cp) ∈ Tω, which yields, on its turn, B′

� ψ(cp). By the inductive hypothesis,
A′

� ψ(cp). Therefore, A′
� ∃xψ(x), as desired.

Now, let φ = ∀xψ(x). If B′
� φ, then B′

� ψ(b) for every b ∈ |B|. In particular,
B′

� ψ(b) for every b ∈ B∗. For each b ∈ B∗, there is a constant cb such that
cB

′

b = cA
′

b = b. As B′
� ψ(b), it holds that B′

� ψ(cb). By the inductive hypothesis,
A′

� ψ(cb), whence A′
� ψ(b) for every b ∈ B∗ = |A′|. Therefore, A′

� ∀xψ(x), as

3.2. OMITTING TYPES 99

desired.
Conversely, if A′

� φ, then A′
� ψ(b) for every b ∈ B∗ = |A′|. For each b ∈ B∗,

there is a constant cb such that cB
′

b = cA
′

b = b. Thus, for every b ∈ B∗, A′
� ψ(cb).

By the inductive hypothesis, B′
� ψ(cb) for every b ∈ B∗. Hence, B′

� ψ(b) for
every b ∈ B∗. Suppose, for the sake of contradiction, that B′ 2 ∀xψ(x). Then,
∀xψ(x) /∈ Tω. For some index k, φk = ∀xψ(x). As ∀xψ(x) /∈ Tω, it is the case that
∀xψ(x) /∈ Tk and that, for some cp, ψ(cp) ∈ Sk+1 ⊆ Sω. Hence, Tω 0 ψ(cp). But
cA

′

p = cB
′

p = bp ∈ B
∗. Therefore, Tω 0 ψ(bp), with bp ∈ B

∗. This is a contradiction
against the fact that B′

� ψ(b) for every b ∈ B∗.
Thus, the induction is concluded and the desired result (Tω � φ iff A′

� φ) is
stated.

Moreover, A′ omits Γ. In fact, let b ∈ B∗ = |A′| be an arbitrary element in the
domain of A′. For some indice m, b interprets the constant cm and, for some σ ∈ Γ,
σ(cm) ∈ Sm+1 ⊂ Sω. Being so, A′ 2 σ(cm), whence A′ 2 σ[b]. Therefore, b does not
realize Γ. As b is an arbitrary element from the domain of A′, it is the case that no
element of |A′| realizes Γ, that is, A′ omits Γ.

Summing up, A′ is a model for Tω (and, consequently, for T) that omits Γ.
The work is not done yet, for A′ is a model in the signature ΣC . So take the

reduct A of A′ to the signature Σ.
The work is finally done, for A is a model in the language LΣ for the restriction

of Tω to LΣ. Thus, A is a model for T in LΣ that omits Γ and the task of
constructing such a model is accomplished.

So far, so good. A very strong and celebrated classical result reveals itself to
be valid in both QmbC and QmbC− and, in fact, it provides an important tool for
gaining other results in QmC as much as in the classical context. Unfortunately, it
turns out that such a powerful result is not plainly handable without the aid of
a classical auxiliar negation. This section will be closed with two examples that
illustrate this fact.

The first example presents the concept of ω-model, which is linked to the very
interesting system of ω-logic.

Definition 3.2.4 (ω-Model). Let LΣ be a language for arithmetic over the signature

Σ = 〈F̄ , P̄ , C〉, where F1 = {S}, F2 = {+, ·} and C = {0}. Let the term

mtimes
︷ ︸︸ ︷

S . . . S(0)
be denoted by m̄ and let the constant 0 be denoted also by 0̄. A model A over Σ
with domain of interpretation A is defined to be an ω-model iff A = {m̄A : m ∈ N}.
A Σ-theory is said to be ω-consistent iff there is no formula φ(x) in LΣ such that

T � φ(0̄), T � φ(1̄), . . . , T � φ(n̄), . . .

3.2. OMITTING TYPES 100

and T � ∃x¬φ(x). Finally, T is said to be ω-complete iff, for every φ(x) ∈ LΣ,

T � φ(0̄), T � φ(1̄), . . . , T � φ(n̄), . . .

implies T � ∀xφ(x).

The definition above is a classical one and fits for QmbC and QmbC− as well.
In QmbC, it can be reformulated by substituting ¬ by ∼ and this reformulation
shall be done. In QmbC−, this very possibility does not exist.

In classical logic, as in QmbC, a Σ-model A is an ω-model iff it omits the set

Γ(x) = {∼ (x ≈ 0̄),∼ (x ≈ 1̄),∼ (x ≈ 2̄), . . . }

In QmbC−, all that can be stated is that if A omits the set

Γ(x) = {¬(x ≈ 0̄),¬(x ≈ 1̄),¬(x ≈ 2̄), . . . }

then it is an ω-model.
The following proposition is valid for classical logic as well as for QmbC with

the same proof presented in [18] (provided ¬ is substituted by ∼, as always). A
consistent theory is understood as a one that is satisfied in some nontrivial model.

Proposition 3.2.5. Let T be a consistent theory in LΣ (Σ as in Definition 3.2.4).
Then,

1. If T is ω-complete, then T has an ω-model.

2. If T has an ω-model, then T is ω-consistent.

In QmbC−, item 2 does not hold. In fact, let A = 〈A, I, v〉 be a Σ-model
where A = {0′, 1′, 2′, . . . } and I works as in classical arithmetic. This means that
I(m̄) = m̄A = m′ for every m ∈ N, I(+)(a′, b′) = (a+ b)′ and I(·)(a′, b′) = (a · b)′,
for every a, b ∈ N. Naturally, A is an ω-model and v works precisely in the same
way as the valuation in a classical arithmetic model for formulae with complexity
0. Let v(¬φ(~a)) = 1 for every φ(~x). Finally, let v be defined as it must be in the
other cases in order for it to be coherent with the mbC− clauses. The model A
just defined is clearly an ω-model for the theory T = {φ|A � φ}. But T is not
ω-consistent. In fact, take a negated formula ¬φ(~x). Then, T � ¬φ(n̄) for every n
and T � ∃x(¬¬φ)(n̄), as T � ¬¬φ(a) for every a in the domain of interpretation.
It is not to be investigated here the question of whether item 1 holds in QmbC−

or not. The point is that the strategy used in the classical/QmbC case does not
work in this context. The strategy consists in proving that, if T is an ω-complete
theory, then T omits Γ(x) = {¬(x ≈ 0̄),¬(x ≈ 1̄),¬(x ≈ 2̄), . . . }. The point is that

3.2. OMITTING TYPES 101

the strategy used to prove that T omits Γ does not work in QmbC−. Just to begin
with, the proof uses that, if θ(x) is consistent, then ∀x¬θ(x) is a valid sentence.
That is not true in QmbC− at all; For the proof to work, it is needed a way of
finding a sentence that has valuation 0 whenever φ(x) has valuation 1 and that is
just what there is not in QmbC−. This is not the only point where the proof does
not work, but it is the most striking one.

The discussion just developed calls for a very interesting definition:

Definition 3.2.6 (ω-Rule). The ω-rule is the infinite inference rule

T � φ(0̄), T � φ(1̄), . . . , T � φ(n̄), . . .

∀xφ(x)

for every LΣ-formula φ(x).
The ω-logic is the one obtained from the classical/QmbC/QmbC− system by

adding the ω-rule and by allowing infinite proofs.

The next proposition closes the first example of a successful application of the
Omitting Types Theorem in the classical/QmbC context that fails in the QmbC−

context. Again, it is valid in QmbC with the same proof as that for the classical
context. Again, the proof cannot be performed in QmbC−. Again, it is not to
be investigated the question of whether it holds for QmbC− or not. Again, the
strategy consists in proving that a given theory T ′ omits Γ(x) = {¬(x ≈ 0̄),¬(x ≈
1̄),¬(x ≈ 2̄), . . . } in order to allow the use of the Omitting Types Theorem in the
sequel.

Proposition 3.2.7 (Completeness in the ω-logic). A theory T in LΣ is consistent
in the ω-logic iff T has an ω-model.

The second example presents similar difficulties.

Definition 3.2.8 (Complete Formula). ❼ A formula φ(x1, . . . , xn) is said to
be complete in a theory T iff, for every formula ψ(x1, . . . , xn), exactly one of

T � φ→ ψ, T � φ→ ¬ψ

holds;

❼ A formula θ(x1, . . . , xn) is said to be completable in a theory T iff there is a
complete formula φ(x1, . . . , xn) such that T � φ→ θ. Otherwise, θ is said to
be incompletable;

❼ A theory T is said to be atomic iff every consistent formula in T is completable
in T ;

3.3. CRAIG’S INTERPOLATION THEOREM 102

❼ A model A is said to be an atomic model iff every n-tuple ~a satisfies a
complete formula in the theory determined by A.

The theorem below is valid in QmbC with the same proof presented in [18]
for the classical case, provided that the natural negation ¬ be substituted by the
classical negation ∼.

Proposition 3.2.9. Let T be a theory in a language LΣ such that, for every
sentence θ, exactly one of T � θ or T � ¬θ holds. Then, T has a countable atomic
model iff T is atomic.

The proof of the second half (⇐) of the proposition above, there is, of the fact
that if T is atomic then T has an atomic model, makes use of a slightly stroger
version of the Omitting Types Theorem. The proof of this stronger result is a
simple adaptation of the original result and will not be treated here. The proof of
the second half of Proposition 3.2.9 will be presented below in order to allow an
analysis of why it does not work in the QmbC− context.

Proof. Assume T is atomic. For each n ∈ N, let Γ(x1, . . . , xn) be the set of
all negations of all complete formulae ψ(x1, . . . , xn) in T . For every formula
φ(x1, . . . , xn) that is consistent with T , there is a complete formula ψ(x1, . . . , xn)
such that ψ → φ, whence there is some model A with valuation v and some
sequence a1, . . . , an of elements in its domain such that v(φ(aa, . . . , an)) = 1 and
v(ψ(a1, . . . , an)) = 1. Being so, v(φ(~a)) = 1 and v(¬ψ(~a)) = 0. As ¬ψ is an
arbitrary formula in Γn, it follows that T locally omits Γn. As this is the case
for every n ∈ N, it is the case that T locally omits Γn for every n ∈ N. By the
Extended Omitting Types Theorem, T has a countable model B that omits each
Γn. Thus, each ~a satisfies a complete formula, whence B is an atomic model.

The problem in this example is basically the same as in the first one: From
v(ψ(~a)) = 1, it cannot be concluded that v(¬ψ(~a)) = 0. For this reason, it cannot
be concluded that ‘T omits each Γn’. Moreover, the concept of complete formulae
itself is hardly likely to be a promising one. Indeed, the fact that exactly one of
T � φ → ψ, T � φ → ¬ψ holds does not imply that, for each model A, exactly
one of A � φ→ ψ,A � φ→ ¬ψ holds and this is the feature that provides a link
between atomic theories and atomic models in the classical case.

3.3 Craig’s Interpolation Theorem

This section presents Craig’s Interpolation Theorem, a result that can be extended
to QmbC with the same proof as that for the classical case. The validity of this

3.3. CRAIG’S INTERPOLATION THEOREM 103

important result for QmbC− is a plausible conjecture. However, the classical proof
does not work in QmbC−, not even with well chosen adaptations.

The theorem will be enunciated below and will be followed by a discussion on
the technical difficulties that rise.

Theorem 3.3.1 (Craig’s Interpolation Theorem). Let 〈φ, ψ〉 be a pair of sentences
such that φ � ψ. Then, there is a sentence θ such that:

1. φ � θ and θ � ψ;

2. every constant, function symbol or predicate symbol (except for the identity
‘≈’) that occurs in θ occurs simultaneously in φ and ψ.

A sketch of the proof in [18] will be presented in order to point the difficulties
that arise in the context of Qmbc−.

The proof consists in taking a pair of sentences 〈φ, ψ〉 that admits no Craig
interpolant and building a model satisfying φ but not ψ.

For that, the concept of inseparable sets of sentences is introduced: Two sets
of sentences Θ and Γ are inseparable iff there is no sentence δ such that Θ � δ and
Γ � ¬δ. In the sequel, it is proven that {φ} and {¬ψ} are inseparable and a pair
of chains {φ} = Φ0 ⊆ Φ1. . . . and {¬ψ} = Ψ0 ⊆ Ψ1. . . . of sets is constructed from
that pair of sets in a richer signature so that Φi and Ψi are inseparable for every i.
The respective unions of these two chains are separable and maximal consistent
(or nontrivial) sets and so are their intersection. At this point, a model of that
intersection can be taken and the reduct of this model to the convenient signature
is the desired model.

The fact that the referred sets are inseparable plays a central role in the proof
of their maximal consistency and this prevents the strategy from being adapted to
QmbC−. The fact that, for two sets of sentences Θ and Γ, Θ � δ and Γ � ¬δ does not
perform the role it should, for Γ � ¬δ does not yield Γ 2 δ. That is the point! The
natural adaptation would be to define that a sentence δ separates Θ and Γ iff Θ � δ
and Γ 2 δ. But this is still not enough; For the argumentation to work properly, it
is needed to define that a sentence δ separates Θ and Γ iff Θ � δ and, for every
model of Γ with valuation v, v(δ) = 0. But this is not possible, by Proposition 3.1.1.

The first classical application of Craig’s Interpolation Theorem is Beth’s The-
orem, which is valid in the QmbC context again with the same proof. In the
context of PRS, things are a little bit more delicate. Craig’s Interpolation Theorem
is valid, again with the same proof. With regard to Beth’s Theorem, there is
a problem. The point is that the structure does not define valuation for every
interpretation of every basic formula. For the sake of clearness, a simpler system
will be considered in order to illustrate the problem and the possible solutions for

3.3. CRAIG’S INTERPOLATION THEOREM 104

it. Consider the system obtained by simplifying PRS, just dropping vPred from
QmbC and assuming vPredPos and vPredNeg in the same fashion as defined in
PRS.

vPredPos If ~a ∈ AP1, then v(P (~a)) = 1;

vPredNeg If ~a ∈ AP2, then v(P (~a)) = 0.

A system so defined does not completely control valuation of basic formulae from
the structures. In other words, given a model A and an interpreted formula P (~a),
it is not necessarily the case that P (~a) ∈ Pk(A).

In the rest of this section, R will stand to the relation of the predicate symbol
P . Moreover, the relation R for P (of arity n) will be said to be complete iff, for
every ~a ∈ Ā (with length n), ~a ∈ AP1 or ~a ∈ AP2.

The definition above is a classical one.

Definition 3.3.2 (Implicit Definition of a Predicate). Let Γ(P) be a set of sentences
in LΣP

and let Γ(P) be the same set of sentences in LΣP ′
(shifting P ′ for P). Then,

Γ(P) is said to implicitly define P if the following condition, that will be referred
to as ID, is fulfilled

Γ(P) ∪ Γ(P ′) � ∀~x(P (~x)↔ P ′(~x))

in LΣP,P ′
.

The validity of the proposition below depends on the completeness of the
relations. In QmbC or in classical logic, it is just the classical proposition, for every
relation is complete in those contexts.

Proposition 3.3.3. A set of sentences Γ(P) implicitly defines P iff: If R and R′

are complete relations and 〈A, R〉 and 〈A, R′〉 are models for Γ(P), then R = R′.

Proof. Let R and R′ be complete relations.
(⇒) Assume ID and let 〈A, R〉 and 〈A, R′〉 be two models for Γ(P). Thus, A′ =
〈A, R,R′〉 is a ΣP,P ′-model for Γ(P)∪Γ(P ′), whence 〈A, R,R′〉 � ∀~x(P (~x)↔ P ′(~x)),
by ID. As R and R′ are complete, for every ~a ∈ Ā, ~a ∈ AB′

P1 or ~a ∈ AB′

P2, whether R
or R′ is the relation considered. Therefore, for every ~a, ~a ∈ AA′

P1 iff* vA′(P (~a)) = 1
iff vA′(P ′(~a)) = 1 iff* ~a ∈ AA′

P ′1 and ~a ∈ AA′

P2 iff* vA′(P (~a)) = 0 iff vA′(P ′(~a)) = 0
iff* ~a ∈ AA′

P ′2, which means that R = R′, as desired.
(⇐) Let A′ = 〈A, R,R′〉 be a ΣP,P ′-model for Γ(P) ∪ Γ(P ′). Then, 〈A, R〉 and
〈A, R′〉 are models for Γ(P), whence R = R′, by hypothesis. As R and R′ are
complete, for every ~a, vA′(P (~a)) = 1 iff* ~a ∈ AA′

P1 iff ~a ∈ AA′

P ′1 iff* vA′(P ′(~a)) = 1
and vA′(P (~a)) = 0 iff* ~a ∈ AA′

P2 iff ~a ∈ AA′

P ′2 iff* vA′(P ′(~a)) = 0. Therefore,
A′

� ∀~x(P (~x)↔ P ′(~x)), as desired.

3.4. ELEMENTARY EXTENSIONS 105

Note that the double-way implications marked with * in the proof would be
just single-way implications if R and R′ were not complete relations.

The definition above is again a classical one.

Definition 3.3.4 (Explicit Definition of a Predicate). A set Γ(P) is said to
explicitly define P if there exists a formula φ(~x) such that

Γ(P) � ∀~x(P (~x)↔ φ(~x))

Note that, like the concept of implicit definition, the concept of explicit definition
does not depend on the notion of complete relation. On the other hand, like
Proposition 3.3.3, Beth’s Theorem does.

Theorem 3.3.5 (Beth’s Theorem). Γ(P) implicitly defines P iff Γ(P) explicitly
defines P .

The ‘if’ half, that is, ‘if Γ(P) explicitly defines P , then Γ(P) implicitly defines
P ’, does not depend on relation completeness and its proof is pretty easy. The
converse, that is, the ‘only if’ half, does. The proof is the same classical one,
provided that Proposition 3.3.3, which is used in the proof, is taken as enunciated
here.

All the discussion that has just been done took place in the system that was
figured for it. Nevertheless, it can be done in PRS as well. Actually, it could
be done even in QmbC−, were Craig’s Interpolation Theorem proven for this system.

This section will be closed with the enunciation of another classical theorem
that is also an application of Craig’s Interpolation Theorem. This result is valid
in QmbC as well as in PRS with the same proof, provided, once again, that the
negation be understood as the auxiliar classical negation. This result does not
depend on the completeness of any relation. Its proof could not be transposed to
QmbC−.

Theorem 3.3.6. Let Σ1 and Σ2 be distinct signatures. Let Σ and Σ′ be their
intersection and their union, respectively. Let L1, L2, L and L′ be the respective
languages. Suppose that T is a complete theory in L and that T1 ⊃ T and T2 ⊃ T
are complete theories in L1 and L2. Then, T1 ∪ T2 is consistent in L′.

3.4 Elementary Extensions

In the last two sections, the attempt to work with QmbC− revealed severe technical
difficulties.

3.4. ELEMENTARY EXTENSIONS 106

The discussion above shows beyond doubt that QmbC− is very intractable a
system from the point of view of model theory, but one can still argue that the
problems presented do not provide enough grounds to disqualify it as a worthy
system. The same discussion suggests that QmbC is a plainly tractable system that
recovers all the classical features with respect to model theory through a defined
classical negation. Indeed, in the previous sections, two among the most celebrated
results from classical model theory were successfully transposed to the QmbC
context, basically with the same proof. Unfortunately, there is a blatant trouble,
namely that quasi-isomorphisms preserve very little in terms of validity from one
model to another one that is quasi-isomorphic to the first. This problem turns out
to be a sensible handicap, for many of the important results in model theory involve
isomorphic models and perhaps the most powerful techniques hinge on the broad
capacity of preservation of validity that isomorphisms have. Fortunately, there
remains a hope: The existence of a consistency operator provides a way of delimiting
some set of sentences whose validities are to be preserved by quasi-isomorphisms, in
the fashion of Chapter 2. This possibility comes to the rescue of QmbC or at least
of some variation of it, but not of QmbC−. This is a serious problem for QmbC−

and may rule it out as a worthy system from the point of view of model theory.
Maybe the loss of QmbC− as a possibility for modeling the world does not call for
so much disappointment. In fact, for a class of models to be deprived of a classical
negation, it is necessary that it admit models with a single element (for otherwise
∀x(c ≈ x) is a bottom particle) and theories that describe whatever aspect of the
world (whether a scientific of mathematical world) must refer to a great plurality
of objects. Being so, hopes turn back to QmbC exclusively.

As the previous sections suggest, QmbC is indeed a worthy system, but maybe
in a somewhat enriched version that shall offer an acceptable range of preserva-
tion through quasi-isomorphisms. Here, the focus will be on the Paraconsistent
Reasoning System (PRS) defined in Chapter 2.

The next steps lead to an alternative version of the Elementary Extension
Theorem presented in Chapter 2. The version presented in Chapter 2 focuses on
the possibility of extending a state of knowledge (a model) while preserving the
whole of the knowledge it possesses. Now, the focus shifts to what knowledge a
given extension preserves and propagates through quasi-isomorphism.

Firstly, some work is required:

Definition 3.4.1 (SA
0). Let A be a paraconsistent reasoning model. Then, SA

0 is
the set of interpreted formulae defined such that θ(~a) belongs to SA

0 iff one of the
following cases takes place:

1. θ(~a) = (τ1(~a) ≈ τ2(~a));

2. θ(~a) = P (τ1 . . . , τn)[~a] and (tA1 [~a], . . . , tAn [~a]) ∈ AA
P1;

3.4. ELEMENTARY EXTENSIONS 107

3. θ(~a) = P (τ1 . . . , τn)[~a] and (tA1 [~a], . . . , tAn [~a]) ∈ AA
P3;

4. θ(~a) = ◦P (τ1 . . . , τn)[~a] and (tA1 [~a], . . . , tAn [~a]) ∈ AA
P2;

5. θ(~a) = P (τ1[~a], . . . , τn[~a])→ P ′(τ1[~a], . . . , τm[~a]), (P ′, τA1 , . . . , τ
A
n) ∈ AA

P4 and
(P, τA1 , . . . , τ

A
m) ∈ AA

P5;

6. θ(~a) = P (τ1[~a], . . . , τn[~a]) ∨ P ′(τ1[~a], . . . , τm[~a]), (P ′, τA1 , . . . , τ
A
n) ∈ AA

P6 and
(P, τA1 , . . . , τ

A
m) ∈ AA

P7;

7. θ(~a) = P (τ1[~a], . . . , τn[~a]) ∧ P ′(τ1[~a], . . . , τm[~a]), (P ′, τA1 , . . . , τ
A
n) ∈ AA

P8 and
(P, τA1 , . . . , τ

A
m) ∈ AA

P9;

8. θ(~a) = ◦(P (τ1[~a], . . . , τn[~a]) → P ′(τ1[~a], . . . , τm[~a])), (P ′, τA1 , . . . , τ
A
n) ∈ AA

P4

and (P, τA1 , . . . , τ
A
m) ∈ AA

P5;

9. θ(~a) = ◦(P (τ1[~a], . . . , τn[~a]) ∨ P ′(τ1[~a], . . . , τm[~a])), (P ′, τA1 , . . . , τ
A
n) ∈ AA

P6

and (P, τA1 , . . . , τ
A
m) ∈ AA

P7;

10. θ(~a) = ◦(P (τ1[~a], . . . , τn[~a]) ∧ P ′(τ1[~a], . . . , τm[~a])), (P ′, τA1 , . . . , τ
A
n) ∈ AA

P8

and (P, τA1 , . . . , τ
A
m) ∈ AA

P9;

11. θ(~a) is valid or logically false in PRS.

Lemma 3.4.2. Let A be a paraconsistent reasoning model. Let B be an extension
of A (let h be the partial quasi-isomorphism). Then, for every θ(~a) ∈ SA

0 , θ(~a) ∈
Pk(A), θ(h(~a)) ∈ Pk(B) and vA(θ(~a)) = vB(θ(h(~a))). For basic formulae, the
converse holds, that is, if θ(~a) has complexity 0 and θ(~a) ∈ Pk(A), then θ(~a) ∈ SA

0 .

Proof. Let A′ and B′ be such that A′ ≅ A and B′ ≅ B. Let µ and ν be the
respective quasi-isomorphism. As B is an extension of A, A and A′ are quasi-
isomorphic and so are B and B′, two facts follow:
Fact 1: For every interpreted term τ(~a), IA′(τ(µ(~a))) = µ(IA(τ(~a))),
IB(τ(h(~a))) = h(IA(τ(~a))) and IB′(τ(ν(h(~a)))) = ν(IB(τ(h(~a)))).
Fact 2: For every sequence ~d of elements in A, µ(~d) ∈ AA′

i iff ~d ∈ AA
i iff h(~d) ∈ AB

i

iff ν(h(~a)) ∈ AB′

i .
Let θ(~a) ∈ SA

0 . One of the cases in Definition 3.4.1 takes place and the possibilities
must be analized separately:
Case 1: Suppose θ(~a) = (τ1(~a) ≈ τ2(~a)). By fact 1, if τ1(~a)A = τ2(~a)A, then
τ1(µ(~a))A

′

= µ(τ1(~a)A) = µ(τ2(~a)A) = τ2(µ(~a))A
′

. Conversely, if τ1(µ(~a))A
′

=
τ2(µ(~a))A

′

, then µ(τ1(~a)A) = τ1(µ(~a)A
′

) = τ2(µ(~a)A
′

) = µ(τ2(~a)A). As µ is an
injective function, τ1(~a)A = τ2(~a)A. Thus, τ1(µ(~a))A

′

= τ2(µ(~a))A
′

iff τ1(~a)A =
τ2(~a)A. Applying this same reasoning twice again, it follows that (τ1(µ(~a))A

′

=
τ2(µ(~a))A

′

) iff (τ1(~a)A = τ2(~a)A) iff (τ1(h(~a))B = τ2(h(~a))B) iff (τ1(ν(h(~a)))B
′

=

3.4. ELEMENTARY EXTENSIONS 108

τ2(ν(h(~a)))B
′

). This yields that θ(~a) ∈ Pk(A), θ(h(~a)) ∈ Pk(B) and vA(θ(~a)) =
vB(θ(h(~a))).
Case 2: Suppose θ(~a) = P (τ1 . . . , τn)[~a] and (tA1 [~a], . . . , tAn [~a]) ∈ AA

P1.
By Fact 1, (τA

′

1 [µ(~a)], . . . , τA
′

n [µ(~a)]) = (µ(τA1 [~a]), . . . , µ(τAn [~a])),
(h(τA1 [~a]), . . . , h(τAn [~a])) = (τB1 [h(~a)], . . . , τBn [h(~a)]) and
(τB

′

1 [ν(h(~a))], . . . , τB
′

n [ν(h(~a))]) = (ν(τB1 [h(~a)]), . . . , ν(τBn [h(~a)])).
Joining this with Fact 2, (τA

′

1 [µ(~a)], . . . , τA
′

n [µ(~a)])∈AA′

P1 iff (τA1 [~a], . . . , τAn [~a])∈ AA
P1

iff (τB1 [h(~a)], . . . , τBn [h(~a)]) ∈ AB
P1 iff (τB

′

1 [ν(h(~a))], . . . , τB
′

n [ν(h(~a))]) ∈ AB′

P1. As
(tA1 [~a], . . . , tAn [~a]) ∈ AA

P1, vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(µ(h(~a))) =
1. Therefore, θ(h(~a)) ∈ Pk(B), θ(~a) ∈ Pk(A) and vA(θ(~a)) = vB(θ(h(~a))), as
desired.
Cases from 2 to 10: Analogous to Case 1.
Case 11: Immediate.
Thus, the first part is proven, that is, for every θ(~a) ∈ S0, θ(~a) ∈ Pk(A), θ(h(~a)) ∈
Pk(B) and vA(θ(~a)) = vB(θ(h(~a))).
Now, suppose θ(~a) has complexity 0 and θ(~a) ∈ Pk(A). It will be proven that
θ(~a) ∈ SA

0 .
In fact, if θ(~a) = (τ1(~a) ≈ τ2(~a)), then θ(~a) ∈ SA

0 . If θ(~a) = P (τ1, . . . , τn)[~a] and
(tA1 [~a], . . . , tAn [~a]) ∈ AA

P1 or (tA1 [~a], . . . , tAn [~a]) ∈ AA
P3, then θ(~a) ∈ SA

0 . If θ(~a) =
P (τ1, . . . , τn)[~a], (tA1 [~a], . . . , tAn [~a]) /∈ AA

P1 and (tA1 [~a], . . . , tAn [~a]) /∈ AA
P3, then θ(~a) /∈

Pk(A). These cases exaust the possibilities for θ(~a) with complexity 0. In any case,
θ(~a) ∈ SA

0 whenever θ(~a) ∈ Pk(A), as desired.

The next definition extends the previous one.

Definition 3.4.3 (SA
k). Let A be a paraconsistent reasoning model. Then, SA

k is
the set of interpreted formulae defined recursively as follows:

❼ SA
0 is set as in Definition 3.4.1;

❼ Sk+1 is so that θ(~a) ∈ Sk+1 iff

1. θ(~a) ∈ SA
k ;

2. θ(~a) = (α ∨ β)(~a) and {α(~a), β(~a)} ⊂ SA
k ;

3. θ(~a) = (α∨β)(~a), α(~a) ∈ SA
k and vA(α(~a)) = 1 (or β(~a) ∈ SA

k and vA(β(~a)) =
1);

4. θ(~a) = (α ∧ β)(~a) and {α(~a), β(~a)} ⊂ SA
k ;

5. θ(~a) = (α∧β)(~a), α(~a) ∈ SA
k and vA(α(~a)) = 0 (or β(~a) ∈ SA

k and vA(β(~a)) =
0);

3.4. ELEMENTARY EXTENSIONS 109

6. θ(~a) = (α→ β)(~a) and {α(~a), β(~a)} ⊂ SA
k ;

7. θ(~a) = (α→ β)(~a), α(~a) ∈ SA
k and vA(α(~a)) = 0;

8. θ(~a) = (α→ β)(~a), β(~a) ∈ SA
k and vA(β(~a)) = 1;

9. θ(~a) = ∃xα(x)[~a] and, for every a ∈ A, α[a,~a] ∈ SA
k ;

10. θ(~a) = ∀xα[~a] and, for every a ∈ A, α[a,~a] ∈ SA
k ;

11. θ(~a) = ◦(α ∧ β)(~a), {◦α(~a), ◦β(~a)} ⊂ SA
k and vA(◦α(~a)) = vA(◦β(~a)) = 1;

12. θ(~a) = ◦(α ∨ β)(~a), {◦α(~a), ◦β(~a)} ⊂ SA
k and vA(◦α(~a)) = vA(◦β(~a)) = 1;

13. θ(~a) = ◦(α→ β)(~a), {◦α(~a), ◦β(~a)} ⊂ SA
k and vA(◦α(~a)) = vA(◦β(~a)) = 1;

14. θ(~a) = ◦(∃xα(x))[~a] and, for every a∈A, ◦α[a,~a]∈ SA
k and v(◦α[a,~a]) = 1;

15. θ(~a) = ◦(∀xα)[~a] and, for every a ∈ A, ◦α[a,~a] ∈ SA
k and v(◦α[a,~a]) = 1;

16. θ(~a) =∼ α(~a) and α(~a) ∈ SA
k .

The union of this sequence of sets is designated by SA (SA = ∪∞i=1S
A
i).

This definition plays an important role in what follows. It allows a reformulation
of the concept of elementary extension.

Definition 3.4.4 (Elementary Extension). Let A be a reasoning model. Then, B
is said to be an elementary extension of A (this is denoted by A ≺ B) iff B � SA

and SA ⊂ Pk(B).

The next definition is linked to the previous one.

Definition 3.4.5 (Witnessing Extension). An extension B of a model A is said to
be a witnessing extension iff, given ∃xφ(x, ~x)[~a] ∈ Pk(A), the following condition
is fulfilled:
If vB′(φ(ν(b), ν(h(~a))) = 1 for some B′ that is quasi-isomorphic to B (B ≅ν B′)
and for some b ∈ B, then vA(φ(a,~a)) = 1 for some a ∈ A.

The next lemma shows the power of the auxiliar negation once again.

Lemma 3.4.6. Let B be a witnessing extension of a model A and let φ(a,~a) ∈ SA

for every a ∈ A. If vB′(φ(ν(b), ν(h(~a))) = 0 for some B′ that is quasi-isomorphic
to B (B ≅ν B′) and for some b ∈ B, then vA(φ(a,~a)) = 0 for some a ∈ A.

3.4. ELEMENTARY EXTENSIONS 110

Proof. If φ(a,~a) ∈ SA for every a ∈ A, then, by the definition of SA, ∼ φ(a,~a) ∈ SA

for every a ∈ A, whence ∃x ∼ φ(x)[~a] ∈ SA.
If vB′(φ(ν(b), ν(h(~a)))) = 0 for some b ∈ B, then vB′(∼ φ(ν(b), ν(h(~a)))) = 1 for
such b. By the definition of witnessing extension, vA(∼ φ(a,~a)) = 1 for some a ∈ A,
which implies that vA(φ(a,~a)) = 0 for such a, as desired.

Finally, the main result:

Theorem 3.4.7 (Elementary Extension Theorem II). Let A = 〈A, IA, vA〉 be a
reasoning model. Then,

❼ SA ∈ Pk(A).

Let still B = 〈B, IB, vB〉 be an extension of A (let h be the partial quasi-isomorphism).
Then,

❼ B is an elementary extension iff it is a witnessing extension.

Proof. Let B be an extension of a given model A, where h is the partial quasi-
isomorphism. The proof will be divided in two parts and the work will start from
the easiest one:
(⇒) Assume that B is an elementary extension. Take ∃xθ(x, ~x)[~a] ∈ SA and
suppose that vB′(θ(ν(b), ν(h(~a)))) = 1 for some B′ such that B ≅ν B′ and for
some b ∈ B. As B is an elementary extension, vA(∃xθ(x, ~x)[~a]) = vB(∃xθ(x, ~x)[~a])
and ∃xθ(x, ~x)[~a] ∈ Pk(B), which implies vB(∃xθ(x, ~x)[~a]) = vB′(∃xθ(x, ~x)[~a]). As
vB′(∃xθ(x, ~x)[~a]) = 1, it holds that vA(∃xθ(x, ~x)[~a]) = 1, whence vA(θ(a,~a)) = 1
for some a ∈ A, as desired.

Now, the difficult part:
(⇐) Assume that B is a witnessing extension. It will be proven that B is an
elementary extension. In addition, it will be proven that SA ⊂ Pk(A). This is the
same as to prove that, for every θ(~a) ∈ SA, θ(~a) ∈ Pk(A), θ(h(~a)) ∈ Pk(B) and
vA(θ(~a)) = vB(θ(h(~a))). The first step is to prove the result by induction for every
SA
k . Lemma 3.4.2 states it for SA

0 . Suppose the result holds for SA
k . In order to

prove it for SA
k+1, let A′ be an arbitrary model that is quasi-isomorphic to A (let µ

be the quasi-isomorphism), let B′ be an arbitrary model that is quasi-isomorphic
to B (let ν be the quasi-isomorphism) and let θ(~a) be an arbitrary interpreted
formula that belongs to SA

k+1. For each possibility for θ(~a), it will be proven
that vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a)))). This yields that
θ(~a) ∈ Pk(A), θ(h(~a)) ∈ Pk(B) and vA(θ(~a)) = vB(θ(h(~a))), as desired.

The fact that vA′(θ(µ(~a))) = vA(θ(~a)) holds in SA
0 , by Lemma 3.4.2. In the

second part of the induction, that will be presented below, the fact that B is a
witnessing extension is used to prove that vA(θ(~a)) = vB(θ(h(~a))) = vB′(θν(h((~a)))),

3.4. ELEMENTARY EXTENSIONS 111

but it is not used to prove that vA′(θ(µ(~a))) = vA(θ(~a)). Therefore, the conclusion
that SA ⊂ Pk(A) does not depend on the fact that B is a witnessing extension.
Actually, it does not depend even on the fact that there is an extension of A at all.
Now, the second step of induction follows:
Case 1: It is just the inductive hypothesis;
Case 2: Suppose that θ(~a) = (α ∨ β)(~a) and {α(~a), β(~a)} ⊂ SA

k . By the inductive
hypothesis, vA(α(~a)) = vB(α(h(~a))), vA(β(~a)) = vB(β(h(~a))), {α(~a), β(~a)} ⊂
Pk(A) and {α(h(~a)), β(h(~a))} ⊂ Pk(B). Therefore, by vOr, vA′(θ(µ(~a))) =
vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a)))), as desired.
Case 3: Suppose that θ(~a) = (α ∨ β)(~a), α(~a) ∈ SA

k and vA(α(~a)) = 1. By the
inductive hypothesis, vA(α(~a)) = vB(α(h(~a))), α(h(~a)) ∈ Pk(A) and α(h(~a)) ∈
Pk(B), which yields vA′(α(µ(~a))) = vA(α(~a)) = vB(α(h(~a))) = vB′(α(ν(h(~a)))) =
1, which yields, by vOr, vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a)))) =
1, as desired. If β(~a)∈Pk(A) and vA(β(~a)) = 1, the proof is identical.
Cases 4 and 6: Analogous to case 2.
Cases 5, 7 and 8: Analogous to case 3.
Case 9: Suppose that θ(~a) = ∃xα(x)[~a] and, for every a ∈ A, α[a,~a] ∈ SA

k .
If vA(θ(~a)) = 1, then, for some a ∈ A, vA(α[a,~a]) = 1. By the inductive hypothesis,
α[a,~a] ∈ Pk(A), α[h(a), h(~a)] ∈ Pk(B) and vB(α[h(a), h(~a)]) = 1, whence, by
vEx, vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a)))) = 1, as desired.

If vA(θ(~a)) = 0, then suppose, for the sake of contradiction, that
vB′(α[ν(b), ν(h(~a))]) = 1 for some b ∈ B. By hypothesis (B is a witnessing
extension), vA(α[a,~a]) = 1 for some a ∈ A, which is a contradiction against the
fact that vA(∃xα(x, ~x)[~a]) = 0. Hence, vB′(α[ν(b), ν(h(~a))]) = 0 for every b ∈ B.
In the same way, vB(α[b, h(~a)]) = 0 for every b ∈ B, for B ≅ B. Moreover,
vA′(α[µ(a), µ(~a)]) = 0 for every a ∈ A, for α[a,~a] ∈ Pk(A) for every a ∈ A, by the
inductive hypothesis. Therefore, by vEx, vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) =
vB′(θ(ν(h(~a)))) = 0, as desired.
Case 10: Suppose that θ(~a) = ∀xα[~a] and, for every a ∈ A, α[a,~a] ∈ SA

k .
If vA(θ(~a)) = 1, then vA′(θ(µ(~a))) = 1, for, by the inductive hypothesis,

α[a,~a] ∈ Pk(A) for every a ∈ A. Suppose, for the sake of contradiction, that
vB′(α[ν(b), ν(h(~a)]) = 0 for some b ∈ B. By Lemma 3.4.6 (B is a witnessing
extension), vA(α[a,~a]) = 0 for some a ∈ A, which is a contradiction against the
fact that vA(∀xα(x, ~x)[~a]) = 1. Hence, vB′(α[ν(b), ν(h(~a))]) = 1 for every b ∈ B.
In the same way, vB(α[b, h(~a)]) = 1 for every b ∈ B, for B ≅ B. Therefore, by
vUni, vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a)))) = 1, as desired.

If vA(θ(~a)) = 0, then, for some a ∈ A, vA(α[a,~a]) = 0. By the inductive hypoth-
esis, α[a,~a] ∈ Pk(A), α[h(a), h(~a)] ∈ Pk(B) and vB(α[h(a), h(~a)]) = 0, whence, by
vUni, vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a))))= 0, as desired.
Case 11: Suppose that θ(~a) = ◦(α ∧ β)(~a), {◦α(~a), ◦β(~a)} ⊂ SA

k and vA(◦α(~a)) =

3.4. ELEMENTARY EXTENSIONS 112

vA(◦β(~a)) = 1. By the inductive hypothesis, vA(◦α(~a)) = vB(◦α(h(~a))) = 1,
vA(◦β(~a)) = vB(◦β(h(~a))) = 1 and {◦α(h(~a)), ◦β(h(~a))} ⊂ Pk(B).
Hence, vA′(◦α(µ(~a))) = vA(◦α(~a)) = vB(◦α(h(~a))) = vB′(◦α(ν(h(~a)))) = 1 and
vA′(◦β(µ(~a))) = vA(◦β(~a)) = vB(◦β(h(~a))) = vB′(◦β(ν(h(~a)))) = 1. By vPropOr,
vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a)))) = 1, as desired.
Cases 12 and 13: Analogous to case 11.
Case 14: Suppose that θ(~a) = ◦(∃xα(x))[~a] and, for every a ∈ A, ◦α[a,~a] ∈ SA

k and
vA(◦α[a,~a]) = 1. By the inductive hypothesis, for every a ∈ A, ◦α[a,~a] ∈ Pk(A)
and ◦α[h(a), h(~a)] ∈ Pk(B), whence vA′(◦α[h(a), h(~a)]) = 1. Suppose, for the sake
of contradiction, that vB′(◦α[ν(b), ν(h(~a))]) = 0 for some b ∈ B. By Lemma 3.4.6,
vA(◦α[a,~a]) = 0, for some a ∈ A, which is a contradiction against the fact that
vA(◦α[a,~a]) = 1 for every a ∈ A. Hence, vB′(◦α[ν(b), ν(h(~a)]) = 1 for every b ∈ B.
By vPropEx, vA′(θ(µ(~a))) = vA(θ(~a)) = vB(θ(h(~a))) = vB′(θ(ν(h(~a)))) = 1, as
desired.
Case 15: Analogous to case 14.
Case 16: Suppose that θ(~a) =∼ α(~a) and α(~a) ∈ SA

k . By the inductive hy-
pothesis, vA(α(~a)) = vB(α(h(~a))), α(~a) ∈ Pk(A) and α(h(~a)) ∈ Pk(B), whence
vA′(α(µ(~a))) = vA(α(~a)) = vB(α(h(~a))) = vB′(α(ν(h(~a)))). As ∼ behaves like
a classical negation, this implies that vA′(∼ α(µ(~a))) = vA(∼ α(~a)) = vB(∼
α(h(~a))) = vB′(∼ α(ν(h(~a)))), as desired. The induction is complete.

Now, let θ(~a) ∈ SA = ∪∞i=1S
A
i . For some indice k, θ(~a) ∈ SA

k . The result just
proven states that θ(~a) ∈ Pk(A), θ(h(~a)) ∈ Pk(B) and vA(θ(~a)) = vB(θ(h(~a))), as
desired.

Two models A and B are said to be equivalents when A ≺ B and B ≺ A. The
notation A ≡ B denotes that A and B are equivalents.

A very interesting classical result is that a family of equivalent models possesses
a model that is an elementary extension of each model of the family. In view of the
meaning intended for models as states of knowledge, this means that a family of
states admits a state that embraces the whole family. In other words, it is possible
to extend the scientific discourse in a sound way.

The discussion of extensions of models as a tool for enlarging the scientific dis-
course will be closed with the transposition of the classical result to the environment
of PRS. Firstly, some work is required.

Definition 3.4.8 (Elementary Diagram). Let A be a model in the language LΣ with
domain of interpretation A. Let CA = {ca}a∈A. The elementary diagram of A is the
set of sentences ΓA = {φ|AA � φ}. For each φ ∈ AA, there is ψ(x1,xn) ∈ LΣ

such that φ = ψ(ca1 , . . . , can). Let φ′ = ψ(x1, . . . , xn)[a1, . . . , an] be the correspon-
dent interpreted formula. If K is a set of interpreted formulae, the K elementary

3.4. ELEMENTARY EXTENSIONS 113

diagram of A is the set of sentences ΓA(K) = {φ|φ ∈ ΓA and φ′ ∈ K}.

Lemma 3.4.9. Let F be a family of models with disjoint domains and ∆ = ∪ΓA(SA).
Suppose that B � ∆. Then, there exists a model B′ that fulfills the following
property:
Property: If A ∈ F, φ(a1, . . . , an) ∈ SA and D is quasi-isomorphic to B′ (B′ ≅ν

D), then vA(φ(a1, . . . , an)) = vB′(φ(ca1 , . . . , can)) = vD(φ(ca1 , . . . , can)).

Before the proof, two observations are in order:
(1) The property of Lemma 3.4.9 can be rephrased as B′

� ∆ and ∆ ⊂ SB′

.
(2) The family F may be a unary one.

Proof. Define B′ = 〈B′, IB′ , vB′〉 in the following way: B′ = B; vB′ = vB and IB′ is
so that, given a predicate symbol P , a model A ∈ F and a sequence (a1, . . . , an) ∈ Ā,
if (b1, . . . , bn) ∈ B̄′ interprets the sequence of constants (ca1 , . . . , can) in B, then
(b1, . . . , bn) ∈ AB′

Pi iff (a1, . . . , an) ∈ AA
Pi.

So defined, IB′ does not conflict with vB′ . In fact, the sets AA
Pi determine

valuations of interpreted formulae in SA and the sets AB′

Pi determine valuations
of interpreted formulae in SB′

. Thus, the definition of IB′ determines that, if
φ(a1, . . . , an) ∈ SA, then vB′(φ(ca1 , . . . , can)) = vA(φ(a1, . . . , an)), which is in ac-
cordance with the defintion of B′, and that φ(ca1 , . . . , can) ∈ Pk(B′).
Therefore, vA(φ(a1, . . . , an)) = vB(φ(ca1 , . . . , can)) = vD(φ(ca1 , . . . , can)) (for φ(a1, . . . , an)∈
SA and B � SA) and vB′(φ(ca1 , . . . , can)) = vD(φ(ca1 , . . . , can)) (for φ(ca1 , . . . , can) ∈
Pk(B′)), as desired.

Proposition 3.4.10. Let B be an extension of A. Then, A ≺ B iff there is an
extension B′ of B in LΣA

that is a model of ΓA(SA) (B′
� ΓA(SA)).

Proof. (⇒) Assume that h is an elementary immersion of A in B. It will be proven
that B′′ = 〈B;h(a)〉a∈A is a model for ΓA(SA). In fact, let φ(ca1 , . . . , can) be
an arbitrary sentence in ΓA(SA). Then, A � φ(a1, . . . , an), by the definition of
ΓA(SA), which implies that B � φ(h(a1), . . . , h(an)), which, on its turn, implies
that B′′

� φ(ca1 , . . . , can). Therefore, B′′
� ΓA(SA). By Lemma 3.4.9, there is a

model B′ such that B′
� ΓA(SA) and ΓA(SA) ⊂ SB′

⊂ Pk(B′).
(⇐) Let B′ = 〈B;h(a)〉a∈A be an extension of B that is a model for ΓA(SA). By
Lemma 3.4.9, it can be assumed that B is such that

❼ For every predicate symbol P and for every ~a ∈ Ā (with the proper lenth),
~a ∈ AA

Pi ⇔ h(~a) ∈ AB
Pi (1 ≤ i ≤ 9).

This implies that ΓA(SA) ⊂ Pk(B). In order to prove that h : A → B is a
quasi-homomorphism, two points remain to be proven:

3.4. ELEMENTARY EXTENSIONS 114

❼ Let c be an arbritrary constant in the original signature. Then, cA = a for
some a ∈ A. Thus, AA � (c ≈ ca), whence B′

� (c ≈ ca) (for (c ≈ ca) ∈
ΓA(SA)). This means that cB = h(a) = h(cA);

❼ Let f be a function symbol of arity n and let (a1, . . . , an) be a tuple of
elements from A. Then, fA(a1, . . . , an) = a for some a ∈ A. Thus, AA �

(f(ca1 , . . . , can) ≈ ca), whence B′
� (f(ca1 , . . . , can) ≈ ca) (for (f(ca1 , . . . , can)≈

ca)∈ ΓA(SA)). This means that fB(h(a1), . . . , h(an))= h(a) = h(fA(a1, . . . , an)).

It remains to be proven that B is an elementary extension of A. By Theorem 3.4.7,
it is enough to prove that B is an SA-witnessing extension of A.

In fact, let φ(x, ~x), D, b ∈ B and ~a ∈ Ā be such that ∃xφ(x, ~x)[~a] ∈ SA,
B ≅ν D and D � φ(ν(b), ν(h(~a))). Then, D � φ(x, cν(a1), . . . , cν(an))[ν(b)], for
D � φ(ν(b), ν(h(a1)), . . . , ν(h(a1))). This is the same as
D � φ(x, ca1 , . . . , can)[ν(b)], for cν(h(ai)) = cai (1 ≤ i ≤ n). Hence,
D′

� ∃xφ(x, ca1 , . . . , can). By the way how B was taken, as allowed by Lemma
3.4.9, it is the case that A � ∃xφ(x, ca1 , . . . , can). Therefore, A � φ(a,~a) for some
a ∈ A, as desired.

Finally, the promised result.

Proposition 3.4.11. Let F 6= ∅ be a family of equivalent models. Then, there
exists a model B such that every model A ∈ F is elementarily immersed in B.

Proof. For each A ∈ F, let ΓA(SA) be its SA elementary diagram, as in Definition
3.4.8. Assume that, if A 6= A′, then {ca|a ∈ A} ∩ {ca|a ∈ A′} = ∅. Let LF

be the language obtained from the union of the signatures ΣA (A ∈ F) and let
∆ = ∪A∈FΓA(SA). It will be proven that ∆ is a consistent set of sentences in LF.

Let {φ1, . . . , φn} be a finite subset of ∆. It can be supposed that φi ∈ ΓAi
for

each indice i; If fact, if it is not the case, ψi can be defined as the conjunction of
the formulae in ∆ that belong to ΓAi

, for each indice i.
It can be assumed that, for each i ∈ {1, . . . , n}, there is k ∈ N such that

φi = φ′i(ai,1, . . . , ai,k), where ai,j ∈ Ai and φ′i(ai,1, . . . , ai,k) ∈ S
Ai .

As, for each i, A1 ≡ Ai and ∃x1 . . . ∃xkφ
′
i ∈ S

Ai , it holds that

A1 � (∃x1 . . . ∃xkφ
′
1(~x)) ∧ · · · ∧ (∃x1 . . . ∃xkφ

′
n(~x))

Let (b1,1, . . . , b1,k, b2,1, . . . , b2,k, . . . , bn,1, . . . , bn,k) be the sequence of elements of A1

that satisfy the sentence (∃x1 . . . ∃xkφ
′
1(~x)) ∧ · · · ∧ (∃x1 . . . ∃xkφ

′
n(~x)). Then,

〈A1; bi,j〉 � φ1 ∧ · · · ∧ φn.

3.5. CHAINS OF MODELS 115

This shows that {φ1, . . . , φn} has a model.
By the Compacity Theorem, ∆ has a model B′ = 〈B′, IB′ , vB′〉 in LF. Take

the reduct B of B′ to LΣ. Thus, for every A ∈ F, B′ is an extension of B that is a
model for ΓA(SA). By Proposition 3.4.10, B is an elementary extension of each
A ∈ F, as desired.

Of course, the definition of SA is just one possible way of delimiting a set of
sentences whose valuation may be propagated. Anyway, it seems a good choice,
for it captures the whole set of basic interpreted formulae that are preserved and
also the propagation of those formulae through all the connectives. This illustrates
once again the difficulties in delimiting the whole preservation kernel of a model.

3.5 Chains of Models

Having talked about extensions of models, it is quite natural to talk about chains
of models. This section will perform a brief discussion of the subject.

Definition 3.5.1 (Chain of Models). A chain of models of length α is an increasing
sequence

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Aβ ⊆ . . . (β ∈ α)

If each extensions is an elementary one, then the referred chain is an elementary
one.

Taking the union of a chain of models is quite a natural idea.

Definition 3.5.2 (Union of a Chain of Models). The union A = ∪β∈αAβ of a
chain of models

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Aβ ⊆ . . . (β ∈ α)

is the model A = 〈A, IA, vA〉, where

❼ A = ∪β∈αAβ;

❼ For every f ∈ F̄ , fA = ∪β∈αf
Aβ ;

❼ For every P ∈ P̄ , AA
Pi = ∪β∈αA

Aβ

Pi (1 ≤ i ≤ 9);

❼ For every constant c ∈ Σ, IA(c) = IA0
(c).

The union of an elementary chain of models results in a model that is an
elementary extension of each model in the chain.

3.5. CHAINS OF MODELS 116

Theorem 3.5.3. Let (Aβ)β∈α be an elementary chain of models. Then, Aβ ≺
∪η∈αAη for every β ∈ α.

Proof. By the Elementary Extension Theorem II, it must be proven that A =
∪η∈αAη is a witnessing extension of Aβ. It is clear that it is an extension, for

A
Aβ

Pi = AA
Pi∩ Āβ (1 ≤ i ≤ 9) for every P ∈ P̄ , IA(f(~a)) = IAβ

(f(~a)) for every f ∈ F̄
and IA(c) = IAβ

(c) for every constant c. For the same reason, if ~a ∈ Aβ and φ(α)

is a given interpreted formula, then φ(~a) ∈ S
Aβ

0 iff φ(~a) ∈ SA
0 . This will be called

‘fact 0’.
In order to prove that A is indeed a witnessing extension, a fact will come to

the rescue:
Fact: Let ψ(~a) be an interpreted formula. If ψ(~a) ∈ SA, then, for every η ∈ α,
ψ(~a) ∈ SAη and vAη(ψ(~a)) = vA(ψ(~a)), whenever ~a ∈ Aη.

The result will be proven for each SA
k by induction on k. Let ψ(~a) ∈ SA

0 . Fact
0 states the desired result.

Suppose the fact holds for SA
k . Let ψ(~a) ∈ SA

k+1 and ~a ∈ Aη. Like in the proof
of the Elementary Extension Theorem II, each case must be treated separately.
The situation now is not altogether analogous, but it is very similar, anyway. For
this reason, only Case 9 will be treated. Case 10 is analogous to case 9. Those are
the most delicate cases. The non-quantified cases are easier.
Case 9: Suppose that ψ(~a) = ∃xα(x, ~x)[~a] and, for every a ∈ A, α(a,~a) ∈ SA

k .
If vA(ψ(~a)) = 1, then vA(α(b,~a)) = 1, for some b ∈ A. For some η′ ≥ η,

(b,~a) ∈ Aη′ . By the inductive hypothesis, vAη′
(α(b,~a)) = 1, whence vAη′

(ψ(~a)) = 1.

Still by the inductive hypothesis, α(a,~a) ∈ S
Aη′

k for every a ∈ Aη′ . By Case 9 of the

definition of Sk+1, vAη′
(ψ(~a)) = 1 and ψ(~a) ∈ S

Aη′

k+1. By the inductive hypothesis,

α(a,~a) ∈ S
Aη

k for every a ∈ Aη, which yields that ψ(~a) ∈ S
Aη

k+1. As Aη ≺ Aη′ , it is
the case that vAη′

(ψ(~a)) = 1, as desired.
If vA(ψ(~a)) = 0, then vA(α(b,~a)) = 0, for every b ∈ A. In particular,

vA(α(a,~a)) = 0, for every a ∈ Aη. By the inductive hypothesis, for every

a ∈ Aη, α(a,~a) ∈ S
Aη

k and vAη(α(a,~a)) = 0. By Case 9 of the definition of

Sk+1, vAη(ψ(~a)) = 0 and ψ(~a) ∈ S
Aη

k+1.

In any case, ψ(~a) ∈ S
Aη

k+1 and vAη(ψ(~a)) = vA(ψ(~a)), as desired.

Finally, it is time to prove that A is indeed a witnessing extension of Aβ. For
that, suppose A ≅ν B, ~a ∈ Āβ , b ∈ A, ∃xφ(x, ~x)[~a] ∈ SAβ and vA(φ(b,~a)) = 1.

Fact 0 states that S
Aβ

0 ⊂ SA. It is easy to prove by induction that S
Aβ

k ⊂

SA for every k and, in the sequel, to prove that SAβ = ∪k∈NS
Aβ

k ⊂ SA. This
implies that ∃xφ(x, ~x)[~a] ∈ SA ⊂ Pk(A), which implies that vA(∃xφ(x, ~x)[~a]) =

3.5. CHAINS OF MODELS 117

vB(∃xφ(x, ~x)[ν(~a)]) = 1. By the fact, vAβ
(∃xφ(x, ~x)[~a]) = vA(∃xφ(x, ~x)[~a]) = 1,

which implies that vAβ
(φ(a,~a)) = 1, for some a ∈ AAβ

, as desired.

A non-denumerable chain makes little sense in the context of scientific discus-
sion, where even energy is countable. In a mathematical context, however, it does
make a lot of sense. For this reason, such a concept was presented, even though in
the whole of this work the efforts were concentrated in constructing an environment
for scientific discourse.

In classical model theory, there is an alternative kind of chain that is similar
to that of elementary chains. On the one hand, it preserves a smaller set of
formulae. On the other hand, it requires no extra conditions concerning witnesses
for quantified formulae. This interesting alternative concept can be transposed to
the context of PRS. Firstly, the formulae involved will be presented.

Definition 3.5.4 (Σ0
0-formula and Π0

0-formula). A formula φ is a Σ0
0-formula or a

Π0
0-formula iff it has no connectives.

❼ If φ is a Π0
n-formula, then ψ = ∃~xφ is a Σ0

n+1-formula;

❼ If φ is a Σ0
n-formula, then ψ = ∀~xφ is a Π0

n+1-formula.

Now, the new kind of chain can be defined.

Definition 3.5.5 (Σ0
n-extension). An extension B of a model A is said to be a

Σ0
n-extension iff, for every Σ0

n-formula φ(~x) and for every ~a, if φ(~a) ∈ SA and
A � φ(~a), then φ(~a) ∈ SB and B � φ(~a). A chain of models is said to be a Σ0

n-chain
iff the extensions are Σ0

n-extensions.

A theorem that plays the same role with respect to Σ0
n-chains as Theorem 3.5.3

does with respect to elementary chains will be presented. Firstly, a lemma is in
order.

Lemma 3.5.6. Let A be a model in a language LΣ, φ(x1, . . . , xn) a formula in
LΣ and ~a = (a1, . . . , an) a sequence in Ā. Let C = {ca1 , . . . , can} be a set of new
constants and AC as usual. Then, φ(a1, . . . , an) ∈ SA iff φ(a1, . . . , an) ∈ SAC iff
φ(ca1 , . . . , can) ∈ SAC . Moreover, if φ(a1, . . . , an) ∈ SA, then vA(φ(a1, . . . , an)) =
vAC

(φ(a1, . . . , an)) = vAC
(φ(ca1 , . . . , can)).

Proof. Let A, φ, ~a, C and AC be as in the enunciation.
Firstly, for every term τ(~x), (τ(a1, . . . , an))A = (τ(a1, . . . , an))AC =

(τ(ca1 , . . . , can))AC . The proof of this fact is the same as that of the classical case.
Now, the proof can be performed for SA

k and SAC

k by induction on k.

3.5. CHAINS OF MODELS 118

First step of induction: P (x1, . . . , xn)[a1, . . . , an] ∈ SA
0 iff (a1, . . . , an) ∈ AA

P1 or

(a1, . . . , an) ∈ AA
P3 iff (a1, . . . , an) ∈ AAC

P1 or (a1, . . . , an) ∈ AAC

P3 iff P (x1, . . . , xn)[a1, . . . , an] ∈

SAC
0 . Also, P (ca1 , . . . , can) ∈ SAC

0 iff

((ca1)AC , . . . , (can)AC) ∈ AAC

P1 or ((ca1)AC , . . . , (can)AC) ∈ AAC

P3 iff

(a1, . . . , an) ∈ AAC

P1 or (a1, . . . , an) ∈ AAC

P3 . This proves the result in case φ(~a) ∈ SAC
0

is an interpreted formula of the form P (~a). The other cases for which φ(~a) ∈ SAC
0

are analogous.
Finally, the second step of induction is straightforward.
The proof of the second part follows the same line: If P (ca1 , . . . , can) ∈

SAC
0 , then vA(φ(a1, . . . , an)) = 1 iff (a1, . . . , an) ∈ AA

P1 iff (a1, . . . , an) ∈ AAC

P1

iff vAC
(φ(a1, . . . , an)) = 1. Also, vA(φ(ca1 , . . . , can) = 1 iff (a1, . . . , an) ∈ AAC

P1 . And
so on...

Finally, the theorem.

Theorem 3.5.7. Let (Aβ)β∈α be a Σ0
n-chain of models and let A = ∪β∈αAβ. Then,

❼ A is a Σ0
n-extension of each Aβ;

❼ If ψ is a Π0
n+1-sentence such that Aβ � ψ and ψ ∈ SAβ for every β ∈ α, then

A � ψ and ψ ∈ SA.

Proof. The proof will be performed by induction on n. The fact that A is a Σ0
0-

extension of each Aβ follows easily by induction. In fact, Lemma 3.4.2 guarantees

that the interpreted Σ0
0-formulae in S

Aβ

0 that are valid in Aβ are also valid in A and
belong to SA

0 . The rest of the interpreted Σ0
0-formulae in SAβ can be recursively

obtained from that set without using quantifiers. This fact renders the induction
straightforward. Now, let ψ = ∀~xφ(~x) be a Π0

1-sentence such that, for every β ∈ α,
Aβ � ψ and ψ ∈ SAβ . Let ~a ∈ ~A be an arbitrary sequence with the same lenth of ~x.
For some β ∈ α, ~a ∈ Āβ. As Aβ � ψ and ψ ∈ SAβ , it holds that φ(~a) ∈ SAβ and
Aβ � φ(~a). As φ(~x) is a Σ0

0-formula, it follows that A � φ(~a) and φ(~a) ∈ SA. As
~a is arbitrary, it is the case that A � φ(~a) and φ(~a) ∈ SA for every ~a. Therefore,
A � ψ and ψ ∈ SA, as desired. So, the proof is done for n = 0.

Suppose the result holds for every k ≤ n. Let ψ(~y) = ∃~xφ(~x, ~y) be a Σ0
n-formula.

Thus, φ(~x, ~y) is a Π0
n−1-formula. Suppose that Aβ � ψ(~b) and ψ(~b) ∈ SAβ . It must

be proven that A � ψ(~b) and ψ(~b) ∈ SA. It follows from Aβ � ψ(~b) that Aβ � φ(~a,~b)

for some ~a ∈ Āβ and it follows from ψ(~b) ∈ SAβ that φ(~a,~b) ∈ SAβ for every ~a ∈ Āβ .

Let Y = {~a,~b} = {a1, . . . , am, b1, . . . , bp} and consider

(Aβ)Y ⊆ (Aβ+1)Y ⊆ . . . (Aλ)Y ⊆ . . . (∗)

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 119

This is a Σ0
n-chain. If fact, let θ(~x, ca1 , . . . , cam , cb1 , . . . , cbp) be a Σ0

n-formula in LY
such that (Aη)Y � θ(~x, ca1 , . . . , cam , cb1 , . . . , cbp)[~u] and

θ(~x, ca1 , . . . , cam , cb1 . . . , cbp)[~u] ∈ S(Aη)Y (where η ∈ α and β ≤ η). Thus, (Aη)Y �

θ(~x, ~y, ~z)[~u,~a,~b] and θ(~x, ~y, ~z) is a Σ0
n-formula. Moreover, θ(~u,~a,~b) ∈ S(Aη)Y , by

Lemma 3.5.6. Hence, if λ ∈ α and η ≤ λ, then (Aλ)Y � θ(~x, ~y, ~z)[~u,~a,~b] and
θ(~u,~a,~b) ∈ S(Aη)Y , for (Aβ)β∈α is a Σ0

n-chain.
It follows that (Aλ)Y � θ(~x, ca1 , . . . , cam , cb1 , . . . , cbp)[~u] and

θ(~x, ca1 , . . . , cam , cb1 , . . . , cbp)[~u] ∈ S(Aλ)Y . Hence, (*) is a Σ0
n-chain. It is immediate

that AY is the union of (*).
Summing up, φ(ca1 , . . . , cam , cb1 , . . . , cbp) is a Π0

n−1-sentence in LY that valid in

every (Aη)Y and that belongs to every S(Aη)Y . By the inductive hypothesis applied
to (*), (A)Y � φ(ca1 , . . . , cam , cb1 . . . , cbp) and

φ(ca1 , . . . , cam , cb1 , . . . , cbp) ∈ S(A)Y . Therefore, A � ∃~xφ(~x, ~y)[~b] and φ(~a,~b) ∈

S(A)Y (again by Lemma 3.5.6). As ~a is arbitrary, it follows that, for every ~a,
φ(~a,~b) ∈ S(A)Y and, therefore, φ(~a,~b) ∈ S(A)Y . This finally implies that A �

∃~xφ(~x, ~y)[~b] and ∃~xφ(~x,~b) ∈ S(A), that is, A � ψ(~b) and ψ(~b) ∈ S(A)Y . This proves
that A is a Σ0

n-extension of Aβ .
For the second part, let ∀~xθ(~x) be a Π0

n+1-sentence that is valid in every Aβ.
Naturally, θ(~x) is a Σ0

n-formula. Fix ~a ∈ Ā. For some β ∈ α, ~a ∈ Āβ . For such a β,
Aβ � θ(~a) and θ(~a) ∈ SAβ . As θ is a Σ0

n-formula and A is a Σ0
n-extension, A � θ(~a)

and θ(~a) ∈ SA. As ~a is arbitrary, A � ∀~xθ(~x) and ∀~xθ(~x) ∈ SA, as desired.

3.6 Axiomatization and Elementary Equiva-

lence

The idea of working with unsafe knowledge is quite natural in science. In Math-
ematics, it may sound somewhat weird in principle. But it does make sense, at
least for two reasons: First, science does not exist without Mathematics. Second,
Mathematics itself is full of doubts: Gödel’s Incompleteness Theorem states that
it must be so. The idea of some knowledge that is plausible while unsafe appears
naturally in the form of conjectures.

Being so, the answer to the question of what mathematical paraconsistent
reasoning should be is that it should be the same as scientifical paraconsistent
reasoning, that is, the act of splitting what is supposedly known into safe and
unsafe knowledge and treating the second part carefully.

The most obvious concern of mathematical model theory is that of describing
the class of models that satisfy a given theory and describing the set of sentences
that are satisfied by a given class of models. This is what this section is about.

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 120

Again, the concept of preservation kernel plays a crucial role.

Definition 3.6.1. Let Γ be a set of sentences in a language LΣ.

❼ The collection of models of Γ is defined to be the class of models MOD(Γ) =
{A is a model inLΣ|A � Γ}.

❼ The preservation domain of Γ is defined to be the class of models Pd(Γ) =
{A is a model in LΣ|Γ ∈ Pk(A)}.

❼ The collection of preservation models of Γ is denoted by PMOD(Γ) and
is defined to be the intersection of MOD(Γ) and Pd(Γ). In other terms,
PMOD(Γ) = MOD(Γ) ∩ Pd(Γ) = {A is a model inLΣ|A � Γ and Γ ∈
Pk(A)}.

Let M be a collection of models in a language LΣ.

❼ The theory of M is defined to be the set of sentences Th(M) = {φ ∈ LΣ|M �

φ}.

❼ The preservation kernel of M is denoted by Pk(M) and is defined to be the
intersection of the preservation kernels in M , that is, Pk(M) = ∩A∈MPk(A).

❼ The preserved theory of M is denoted by PTh(M) and is defined to be
the intersection of Th(M) and Pk(M). In other terms, PTh(M) = {φ ∈
LΣ|M � φ and φ ∈ Pk(M)}.

The proposition below states some basic but useful facts involving the concepts
presented in the definition above.

Proposition 3.6.2. .

(i) Γ ⊆ Γ′ implies MOD(Γ′) ⊆MOD(Γ);

(ii) M ⊆M ′ implies Th(M ′) ⊆ Th(M);

(iii) Γ ⊆ Th(MOD(Γ)) and MOD(Th(MOD(Γ))) = MOD(Γ);

(iv) M ⊆MOD(Th(M)) and Th(MOD(Th(M))) = Th(M);

(i’) Γ ⊆ Γ′ implies Pd(Γ′) ⊆ Pd(Γ);

(ii’) M ⊆M ′ implies Pk(M ′) ⊆ Pk(M);

(iii’) Γ ⊆ Pk(Pd(Γ)) and Pd(Pk(Pd(Γ))) = Pd(Γ);

(iv’) M ⊆ Pd(Pk(M)) and Pk(Pd(Pk(M))) = Pk(M);

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 121

(i”) Γ ⊆ Γ′ implies PMOD(Γ′) ⊆ PMOD(Γ);

(ii”) M ⊆M ′ implies PTh(M ′) ⊆ PTh(M);

(iii”) Γ ⊆ PTh(PMOD(Γ)) and PMOD(PTh(PMOD(Γ))) = PMOD(Γ);

(iv”) M ⊆ PMOD(PTh(M)) and PTh(PMOD(PTh(M))) = PTh(M).

Proof. Let Γ and Γ′ be two sets of sentences such that Γ ⊆ Γ′. Let A ∈MOD(Γ′)
and φ ∈ Γ. Then, φ ∈ Γ′, for Γ ⊆ Γ′. Hence, A � φ, for A � Γ′. As φ is an
arbitrary sentence in Γ, A � Γ, that is, A ∈MOD(Γ). As A is an arbitrary model
in MOD(Γ′), MOD(Γ′) ⊆MOD(Γ). Therefore, (i) is proven.

The proof of (ii) is analogous to the proof of (i). The proofs of (i′) and (ii′)
are analogous to the proofs of (i) and (ii). Item (i′′) is an immediate conse-
quence of (i) and (i′). In fact, if Γ ⊆ Γ′, then MOD(Γ′) ⊆MOD(Γ), by (i), and
Pd(Γ′) ⊆ Pd(Γ), by (ii). Hence, MOD(Γ′) ∩ Pd(Γ′) ⊆MOD(Γ) ∩ Pd(Γ), that is,
PMOD(Γ′) ⊆ PMOD(Γ). Analogously, (ii′′) follows immediately from (ii) and
(ii′).

Now, let φ ∈ Γ and A ∈MOD(Γ). Then, A � φ. As A is an arbitrary model in
MOD(Γ), φ ∈ Th(MOD(Γ)). As φ is an arbitray sentence in Γ, Γ ⊆ Th(MOD(Γ)).
Applying (i) to the inclusion just proven yields MOD(Th(MOD(Γ))) ⊆MOD(Γ)
(a). Again, let A ∈MOD(Γ). If φ ∈ Th(MOD(Γ)), then A � φ. As φ is an arbitray
sentence in Th(MOD(Γ)), A � Th(MOD(Γ)), whence A ∈MOD(Th(MOD(Γ))).
As A is an arbitrary model in MOD(Γ), MOD(Γ) ⊆ MOD(Th(MOD(Γ))) (b).
Joining (a) and (b) yields MOD(Th(MOD(Γ))) = MOD(Γ). Therefore, (iii) is
proven. The proof of (iii′) is analogous to the proof of (iii). The proofs of (iv) and
(iv′) are analogous to the proofs of (iii) and (iii′).

The proof of (iii′′) does not follow easily from (iii) and (iii′) in the same fashion
as (i′′) and (ii′′) follow, respectively, from (i) and (i′) and (ii) and (ii′). In order to
prove (iii′′), let φ ∈ Γ and A ∈ PMOD(Γ). Then, A � φ and φ ∈ Pk(A). As A is an
arbitrary model in PMOD(Γ), φ ∈ Th(PMOD(Γ)) and φ ∈ Pk(PMOD(Γ)), that
is, φ ∈ Th(PMOD(Γ))∩Pk(PMOD(Γ)) = PTh(PMOD(Γ)). As φ is an arbitrary
sentence in Γ, Γ ⊆ PTh(PMOD(Γ)). Applying (i′′) to the inclusion just proven
yields PMOD(PTh(PMOD(Γ))) ⊆ PMOD(Γ) (a”). Again, let A ∈ PMOD(Γ).
If φ ∈ PTh(PMOD(Γ)), then A � φ and φ ∈ Pk(PMOD(Γ)). As φ is an arbitrary
sentence in Th(MOD(Γ)), A ∈ PMOD(Pk(PMOD(Γ))). As A is an arbitrary
model in MOD(Γ), MOD(Γ) ⊆MOD(Th(MOD(Γ))) (b”). Joining (a”) and (b”)
yields MOD(Th(MOD(Γ))) = MOD(Γ). Therefore, (iii′′) is proven. The proor
of (iv′′) is analogous.

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 122

In classical model theory, a class of models M is said to be axiomatizable when
there exists a set of sentences Γ such that M = MOD(Γ). In the paraconsistent
context, a concept of axiomatization in terms of preservation kernels shall be a
much more promising one.

Definition 3.6.3 (Axiomatizable Class of Models). A class of models M is said
to be axiomatizable iff there exists a set of sentences Γ such that M = PMOD(Γ).
If there is a finite set Γ such that M = PMOD(Γ), then M is said to be finitely
axiomatizable. Finally, a mathematical concept is said to be (finitely) expressable
in the language LΣ iff the class of models that is the reference of that concept is
(finitely) axiomatizable in LΣ.

In classical model theory, a class of models M is axiomatizable iff M =
MOD(Th(M)). This result can be easily transposed to the paraconsistent constext
thanks to Proposition 3.6.2.

Proposition 3.6.4. A class of models M is axiomatizable iff
M = PMOD(PTh(M)).

Proof. (⇐) Immediate.
(⇒) Let M be an axiomatizable class of models. Then, M = PMOD(Γ), for some
set of sentences Γ. ‘Applying’ PMOD(PTh(·)) to both members of the equality
above yields

PMOD(PTh(M)) = PMOD(PTh(PMOD(Γ))) = PMOD(Γ) = M.

The next result is again a straight transposition of a classical result.

Proposition 3.6.5. PMOD(PTh(M)) is the smallest axiomatizable class that
contains M , that is: if M ⊆M ′ and M ′ is axiomatizable, then
PMOD(PTh(M)) ⊆M ′.

Proof. If M ⊆M ′, then PTh(M ′) ⊆ PTh(M), by item (ii′′) of Proposition 3.6.2.
Hence, by item (i′′) of the same proposition, PMOD(PTh(M)) ⊆ PMOD(PTh(M ′)) =
M ′, as desired.

It is in order to point that the discussion above fits for PRS as well as for
QmbC or whatever paraconsistent system where the concept of preservation kernel
is well settled. It is always to be held in mind that PRS is just one possibility
among infinitely many of a system that copes with truth propagation through
quasi-isomorphisms in paraconsistent environments.

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 123

As things are posed, it shall be clear that the classical characterization of
axiomatizable classes of models in terms of MOD and Th would not be convenient.
The problem is that, when the system under consideration is a one that may control
sentences ‘from the beginning’ and may not do this control, like PRS, if there is
a model that satisfies a set of sentences Γ, then there is a model that satisfies Γ
and does not control any sentence ‘from the beginning’, that is, a model whose
preservation kernel contains only sentences that are logically determined. In other
words, Pk(MOD(Γ)) is trivial in a certain sense. This is because ‘belonging to the
preservation kernel’ is a notion of the metalanguage.

There are two main alternatives for one who wants to work out the concept of
axiomatization in terms of MOD and Th. The first one is to give up propagation
through quasi-isomorphisms and concentrate on consistency. The second one is to
bring the notion of ‘belonging to the preservation kernel’ into the language.

The natural way of working out the first alternative is to substitute the concept
of PMOD by an analog concept in terms of consistency. For that, it is needed
a system that shall be able to guarantee the consistency of logically determined
formulae and the closeness of consistency under entailment. In such a context,
a the new concept that suits the task is: CMOD(Γ) = {A|A � Γ ∪ ◦Γ}, where
◦Γ = {◦φ|φ ∈ Γ}. The concept of CMOD shall play the same role as PMOD. In
this context, a class of models M would be said to be axiomatizable when there is
a set of sentences Γ such that M = CMOD(Γ).

In order to work out the second alternative, it would be necessary to count
with new a symbol, say ‘⊡’, that should impose that vA(⊡φ) = 1 iff φ ∈ Pk(A).

A blend of the two alternatives may be a good choice. In fact, if the available
apparatus in the structures guarantees that consistency is closed under entailment
and propagates through quasi-isomorphisms, then the consistency symbol brings
the notion of ‘belonging to the preservation kernel’ into the language, at least to
some extent.

The very promise of this chapter is to work out paraconsistent model theory.
The first practical case to be analyzed is that of the class of models in the standard
signature of arithmetic and the concept of interest is that of being a field. The
interpretation proposed for a paraconsistent model in science is that of a state of
knowledge where some assertions are consistent and some are not. For mathemath-
ical models, the same interpretation fits well. The result that follows is a corollary
of Proposition 3.6.4. Firstly, a lemma is in order.

Lemma 3.6.6. If M = PMOD(Γ) and M is finitely axiomatizable, then M =
PMOD(Γ0) for some finite Γ0 ⊆ Γ.

Proof. Suppose there exists a sentence σ such that M = PMOD(Γ) = PMOD(σ).

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 124

Then, for every model A, A � Γ and Γ ∈ Pk(A) iff A � σ and σ ∈ Pk(A). By
the ‘only if’ part, Γ � σ. By compacity, there is a finite Γ0 ⊆ Γ such that Γ0 � σ.
If A � σ, then A � Γ; in particular, A � Γ0, whence MOD(σ) ⊆ MOD(Γ0).
Conversely, if A � Γ0, then A � σ, whence MOD(Γ0) ⊆ MOD(σ). Joining
the two parts, MOD(Γ0) = MOD(σ). Now, consider an arbitrary A ∈ Pd(Γ0).
Consider an arbitrary A′ ≅ A. Then, A′

� Γ0, whence A′
� σ, for Γ0 � σ.

Thus, σ ∈ Pk(A), which means that A ∈ Pd(σ). Therefore, Pd(Γ0) ⊆ Pd(σ).
Analogously, Pd(σ) ⊆ Pd(Γ0). Joining the two parts, Pd(Γ0) = Pd(σ). Finally,
MOD(Γ0) ∩ Pd(Γ0) = MOD(σ) ∩ Pd(σ), that is, PMOD(Γ0) = PMOD(σ) =
PMOD(Γ), as desired.

Finally, the corollary.

Corollary 3.6.7. The property of being a field of characteristic 0 is axiomatizable,
but not finitely axiomatizable.

Proof. Consider the standard signature Σ and the usual set Γ of axioms of field
theory. Let Γ∗ = Γ ∪ {∼ (p.1 ≈ 0)|p is a prime}. Clearly, M = MOD(Γ∗) is the
class of models of characteristic 0 and M = PMOD(Γ∗) is the class of fields of
characteristic 0 whose quasi-isomorphic models are fields of characteristic 0 as well.

Suppose, for the sake of contradiction, that M is finitely axiomatizable. By
Lemma 3.6.6, M = PMOD(Γ0) for some finite Γ0 ⊆ Γ. As Γ0 is a finite set,
there are finitely many sentences of the form ∼ (p.1 ≈ 0), whence some prime
p0 is greater than any prime in Γ0. Hence, any field of characteristic p0, say Zp,
is a model for Γ∗. But Zp /∈ M , for it does not have characteristic 0. That is a
contradiction!

The perspective of expressing a concept by PMOD is a striking one. In fact, if
a given concept is expressed by a given set of sentences, then the class of models
obtained is that of models that not only satisfy the properties that characterize
that concept, but also preserve that concept through quasi-isomorphisms. Say, for
instance, that Γ expresses the concept of being a field. Then, PMOD(Γ) is the
the class of models that are fields and whose quasi-isomorphic models are fields as
well. The approaches can be meshed if it is convenient to do so. Say, for instance,
that Γ expresses the concept of being a group and Γ ∪ Γ′ expresses the concept of
being an abelian group. Then, MOD(Γ ∪ Γ′) ∩ PMOD(Γ) is the class of abelian
groups whose quasi-isomorphisms are groups, but not necessarily abelian groups.

As already pointed, expressibility can be stated in terms of CMOD, so that the
focus is pinned on consistency. In fact, the whole work that has been carried out
concerning preservation through quasi-isomorphisms can be carried out with the
concern pinned on consistency. This approach tastes like paraconsistent reasoning

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 125

more than an approach concerned rather on preservation through quasi-isomorphims.
It also seems to grasp more properly the philosophical intension of paraconsistent
reasoning. The point is that preservation through quasi-isomorphisms is a vital
feature for developing model theory. Thus, it is highly desirable to reach a compro-
mise between the two approaches. The natural way to do so is to blend PMOD
and CMOD: Define PCMOD(Γ) = PMOD(Γ ∪ ◦Γ). Then, a class of models M
is axiomatizable when there is a set of sentences Γ such that M = PCMOD(Γ).

This definition seems to be the pursued one. If a set Γ axiomatizes a class of
models M in this sense, then not only does Γ hold in every model of M , but it is
also consistent and is preserved through quasi-isomorphisms. That is, if a concept
is axiomatizable in this sense, then it is a consistent concept and is preserved
through quasi-isomorphisms. Moreover, it is surely a manageable one, for it relies
on the concept of PMOD, which means that the developments of this section are
applicable to this point of view.

It shall be clear that, for PCMOD to be a sound definition, it is necessary that
the logical system under consideration be able to propagate consistency through
quasi-isomorphisms, which is the same as to be able to control consistency formulae
‘from the beginning’. The developments of this section do not presuppose any
specific logical system, although PRS has been standing as the reference. Regarding
this system, a great amount of consistency formulae can be controlled from the
beginning. Actually, every formula with complexity 0 can have its consistency
controlled and it also applies to most of the cases where the complexity is 1. Thus,
it may be a suitable system for many situations. For others, some stronger system
(in the sense of controlling consistency) may be required.

The sense of paraconsistency in mathematics shall be the same one as in science:
some facts are safe knowledge and some are not. The meaning of ‘safe’ or ‘unsafe’
dwells in the realm of epistemology. In this line, to say that the set of sentences
Γ axiomatizes a given concept is to say that, if Γ is held in a model A as safe
knowledge, then A consistently fulfills that concept.

The approach proposed so far refers to certainty or doubt about sentences as
a whole, that is, considering the whole domain of each model. There is, however,
another approach for paraconsistency, which was the focus in the first two chapters:
some fact is consistent for some element of a given domain and inconsistent for some
other element of the same domain. It would be the case, for instance, that some
portion of a domain behaves like a field. In other words, it is a modal proposal. In
order to give life to this approach, fix a domain A and consider the class (actually,
the set) of models that have A as their domain. Let B ⊆ A. Consider the signature
Σ′ obtained from Σ (where Σ is the signature under consideration) by substituing
∃ by ∃B and ∀ by ∀B . The new quantifiers work in the following way: A � ∃Bxφ(x)

3.6. AXIOMATIZATION AND ELEMENTARY EQUIVALENCE 126

iff A � φ(b) for some b ∈ B and A � ∀Bxφ(x) iff A � φ(b) for every b ∈ B. Now,
for each φ ∈ LΣ, let φB be the formula in LB obtained by substituting each
occurrence of ∃ in φ by ∃B and each occurrence of ∀ by ∀B. Naturally, if Γ is a
set of formulae, then ΓB = {φB|φ ∈ Γ}. Finally, define B-satisfaction as follows:
A �B φ(~a) iff A � φB(~a), where ∃B and ∀B work as described above. Obviously, if
Γ∪ {φ} ⊆ LΣ, then Γ �B φ iff ΓB � φB . In light of what has just been done, define
MODB(Γ) = {A|A �B Γ}.

Having provided the necessary definitions, the proposed modal concept of
axiomatization can be stated: A set of sentences Γ axiomatizes a class of models M
with respect to B iff M = PCMODB(Γ). This modal concept is able to capture
the idea that doubt may lie on elements of the domain, rather than on sentences
as a whole.

Chapter 4

Toward a Paraconsistent

Reasoning Prolog

The system developed in Chapter 2 under the name Paraconsistent Reasoning
System (PRS) is a proposal of a tool to be used in real life situations where incon-
sistency inexorably bulges. In Chapter 2, the system was developed and was shown
to be philosophically plausible. In Chapter 3, it was shown that no weaker system
would satisfactorily perform the task, that is, PRS is indeed what it should be. In
this chapter, the idea is to look for an application of PRS. Such an application will
be found in computer science; more precisely, a paraconsistent version of PROLOG
will be proposed.

It is in order to remark that other works, previous to this one, have pointed for
what a paraconsistent PROLOG should be and have indeed reached interesting
results (see [37] and [38]). The developments in this chapter go in a quite different
direction.

The whole theory that is needed to understand what follows can be found in
[32]. Section 1.5 makes a brief presentation of the subject.

Before starting the journey, the definition of Herbrand interpretation will be
presented. It is so important as to deserve a distinguished presentation.

Definition 4.0.1 (Herbrand Interpretation). A interpretation I is a Herbrand
interpretation if the domain of interpretation D is the set of terms in the language
and

❼ If c is a constant, then I(c) = c;

127

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 128

❼ If f is a function symbol of arity n and τ1, . . . , τn is a sequence of terms,
then I(f)(τ1, . . . , τn) = f(τ1, . . . , τn)

In other words, a Herbrand interpretation is a one that interprets each term as
itself.

4.1 An Essay on Paraconsistent Programming

In [32], a program that sorts a list of non-negative integers into a list in which the
elements are in increasing order is presented. The base language comprises a single
constant ‘0’, which is intended to work as the zero in the integers, a single function
symbol ‘f ’ (of arity 1), which is intented to work as the successor function and
five predicate symbols, namely, ‘sorted’ (of arity 1), ‘≤’, ‘perm’ and ‘sort’ (of arity
2) and ‘delete’ (of arity 3). Variables designate lists of terms. Those lists must
be unary when applied to ‘f’ and ‘≤’. The symbol ‘nil’ designate the empty list
and two lists with a dot between them designates the concatenation of those lists.
As usual, the pre-interpretation considered is that of Herbrand and the valuation
function is fully determined by the program.

SLOWSORT PROGRAM

sort(x, y)←sorted(y), perm(x, y)

sorted(nil)←

sorted(x.nil)←

sorted(x.y.z)← x ≤ y, sorted(y.z)

perm(nil, nil)←

perm(x.y, u.v)← delete(u, x.y, z), perm(z, v)

delete(x, x.y, y)←

delete(x, y.z, y.w)← delete(x, z, w)

0 ≤ x

f(x) ≤ f(y)← x ≤ y

As defined above, delete(x, y, z) holds if z is the list obtained by deleting the
element x from the list y; perm(x, y) holds if the list y is a permutation of the list
x, sorted(x) holds if the list x is in the increasing order and sort(x, y) holds if the
list y is the permutation of the list x that is in increasing order.

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 129

Now, suppose a group of people is given the task of sorting a list of members
of that group into a list in which people are listed in increasing order of height. In
order to accomplish the task, an observer is asked to compare with the naked eye
each pair of people from that group and say who is the tallest one. It is likely that
the observer will not always be sure about his or her judgement. So, he or she will
also be asked to say whether that was a confident judgement or a doubtful one.
This time, the model to be considered has a constant for each member in the group
of people and no function symbols. Also, the valuation for ‘≤’ is not determined
by a program, but rather is given by a database.

The great novelty with respect to the first case is that there is doubtful
information and some new tool is needed to cope with the problem. In view of the
subject of this work, the natural tool is the notion of consistency, that is, if φ is a
formula, then ◦φ is a formula that is true if the truth value of φ is known as a safe
piece of information. It will be convenient to treat the consistency of an atom as
an atom itself. The consistency of an atom of the form a ≤ b is given by the same
database that gives its truth value. An atom of the form perm(a, b) or delete(a, b, c)
should always be consistent, for an uncertainty about who between two people in a
list is the tallest one does not carry any uncertainty into the question of whether
a list is a permutation of another or of whether a list is obtained by deleting an
element from another. However, it does carry uncertainty into the question of
whether a list is in increasing order of height. So, the consistency of atoms of the
form sorted(a) or sort(a, b) should depend on the consistency of the comparison
of the elements from the lists. A suitable program to treat the situation can be
obtained by eliminating the last two lines (that define ‘≤’ and ‘f ’) and adding the
following extra lines in order to rule consistency.

◦sort(x, y)← ◦sorted(y)

◦sorted(nil)←

◦sorted(x.nil)←

◦sorted(x.y.z)← ◦(x ≤ y), ◦sorted(y.z)

◦perm(x, y)←

◦delete(x, y, z)←

The idea of treating the consistency of atoms as atoms themselves matches the
idea of enriching the structure of LFI models to control consistency ‘from the
beginning’. The idea of controlling implications ‘from the beginning’ is innate in
Prolog and so is the idea of controlling a conjunction by attributing it a positive
value. Controlling a disjunction by attributing it a positive value is only possible
when dealing with disjunctive Prolog and controlling conjunctions and disjunctions

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 130

in general depends on controlling negative information, which may compromise
the monotonicity of the application T ↑ (see section 1.5). Conveying negative
information is a delicate problem to classical Prolog too.

In the light of the considerations above, it is fair to call the program for ordering
people PARACONSISTENT SLOWSORT PROGRAM and the kind of approach
that is being proposed Paraconsistent Prolog. The task now is to pursue some
more features of the Paraconsistent Reasoning System (PRS) defined in Chapter 2.

The first feature to be pursued is the notion of quasi-isomorphism. In classical
model theory, isomorphisms preserve truth value for every formula. In PRS, quasi-
isomorphisms preserve truth value for a preservation kernel. In Classical Prolog,
predicate symbols are defined by a program. In the proposal of a Paraconsistent
Prolog that has been gaining shape through these lines, predicate symbols can
be defined by a program or by a database, which consists of a sequence of sets
A1, . . . , An that rule the truth values of the predicate symbols that are not defined
by the program and of the predicates that indicate their consistency. In order to
give life to the idea of preservation kernel, the concept of kernel will be introduced
together with that of Paraconsistent Reasoning Prolog Base.

Firstly, some auxiliar definitions will be required:

1. A Prolog program Prog′ is a subprogram of another Prolog program Prog if
the set of clauses of Prog′ is a subset of the set of clauses of Prog. This is
denoted by Prog′ ⊆ Prog;

2. An interpretation function I for a language L and a set A is a function whose
domain is the set of constants, function symbols and predicate symbols from
L and

❼ The image of a constant is an element of A;

❼ The image of a function symbol of arity n is a function from An to A;

❼ The image of a predicate symbol of arity n is a set of subsets of An;

3. An interpretation function I ′ for a language L and a set A is a subinterpre-
tation of an interpretation I for the same language and the set B if there is
a function h : A→ B such that,

(a) For each constant c in L, IB(c) = h(IA(c));

(b) For each function symbol f of arity n and for each (a1, . . . , an) ∈ An,
IB(f)(h(a1), . . . , h(an)) = h(IA(f)(a1, . . . , an));

(c) For each predicate symbol P of arity n and for each (a1, . . . , an) ∈ An,
(h(a1), . . . , h(an)) ∈ IB(P) if (a1, . . . , an) ∈ IA(P).

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 131

This is denoted by I ′ ⊆ I and h is called an inclusion function.
If I ′ ⊆ I and I ⊆ I ′, I and I ′ are said to be equal and this is denoted by
I ′ = I.

4. A pair 〈Prog′, I ′〉 of a Prolog program is said to be contained in the pair
< Prog, I > of the same kind if Prog′ ⊆ Prog and I ′ ⊆ I.

Item c in the third definition above may be rephased as I ′(P) ⊆ I(P), for every
predicate symbol P in L. The case where A = B is worth noting. This is the case
for IA and I ′A in the definition below.

Definition 4.1.1 (Paraconsistent Reasoning Prolog Base). A Paraconsistent
Reasoning Prolog Base for a language L is a 4-tuple
A = 〈A,ProgA, IA,KerA〉, where

❼ A is a set, which will be called domain of interpretation;

❼ Prog is a Prolog program;

❼ IA is an interpretation relation for L and A;

❼ KerA =< Prog′A, I
′
A >, where I

′
A is an interpretation function for L and A

such that I ′A ⊆ IA and Prog′A is a Prolog program such that Prog′A ⊆ ProgA.

Obs.: KerA is said to be the kernel of A. If the context is clear, the subscript
A may be omitted, so that Prog, Prog′, I, I ′ and Ker may be written instead of
ProgA, Prog′A, IA, I ′A and KerA. Again, if the context is clear, a paraconsistent
reasoning prolog model will be just called a model.

The notion of interpretation is exactly the same as the one for the classical
case and will not be presented. The notion of valuation of atomic formulae brings
something new and will be presented below.

Definition 4.1.2 (Validity in a Paraconsistent Reasoning Prolog Base). Let
A = 〈A,Prop, I,Ker〉 be a paraconsistent reasoning prolog base for a language L,
P ∈ L a predicate of arity n and τ1(~x), . . . , τn(~x) and ~a a sequence of elements of
A with the same length as ~x.

Then, P (~a) is valid in A if

1. (τ1(~a), . . . , τn(~a)) ∈ I(P) or

2. P (τ1(~a), . . . , τn(~a)) is a consequence of Prop together with the set of atoms
that are valid by item 1.

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 132

As usual, a paraconsistent reasoning prolog base will be just called a base, if
confusion is not to rise.

Note that a base does not fully determine a valuation. This is the reason
why it would not be appropriate to call it a model. In fact, programs do not
validate negative information. Moreover, the definition of base does not require
that every positive atom have its validity defined, neither by the program nor by
the interpretation function. Finally, the term ‘model’ is used with different senses
in Model Theory and Prolog Theory.

Definition 4.1.3 (Valuation). A valuation v for a language L is a function from the
set IF of interpreted formulae in L to the set {V, F} (v : S → {V, F}). A valuation
v is said to be coherent with the base A if, for each predicate symbol P of arity n and
each string of interpreted terms (τ1(~a), . . . , τn(~a)), v(P (τ1(~a), . . . , τn(~a))) = V if
(IA(τ1(~a)), . . . , IA(τn(~a))) ∈ IA(P) and, moreover, the clauses of ProgA are fulfilled.

The definition that follows is the analog to the definition of model in model
theory.

Definition 4.1.4 (Valuated Base). A base A is said to be a valuated base if
it is endowed with a valuation, that is, A = 〈A,ProgA, IA,KerA, vA〉, where
〈A,ProgA, IA,KerA〉 is a base and vA is a valuation that is coherent with it.

The definition below is analog to the definition of model in Prolog theory. Along
this chapter, ‘model’ will signify ‘Prolog model’.

Definition 4.1.5 (Prolog Model). A set of interpreted formulae M is a Prolog
Model for a base A if there exists a valuation v such that v is coherent with A and
v(φ(~a)) = V , for every φ(~a) ∈M .

The proposal of Chapter 2 is to regard models as states of knowledge. Valu-
ated bases are the natural candidates to be regarded as states of knowledge here.
However, it would not match the spirit of Prolog, which is the spirit of considering
to be known only information that is actually available, that is, information that
can be actually obtained by a finite computation through the program, and, in the
case that is in focus here, by a finite verification in the sets of the interpretation
function. In accordance with the spirit of Prolog, bases are the suitable entities to
be regarded as states of knowledge. Each base defines the class of models that can
be originated from it. That class is actually a set and can be regarded as the set of
possible worlds from a state of knowledge.

If bases are to be regarded as states of knowledge, the next step is to compare
them in the same fashion as models were compared in Chapter 2. There, a quasi-
homomorphims between two models exists when the preservation kernel of one is

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 133

contained in the preservation kernel of the other. Here, the kernel of a base was
defined to play that role. In fact, it is clear that the larger are the interpretation
function and the program, the larger is the set of interpreted formulae it validates.
This discussion leads to the following definition:

Definition 4.1.6 (Quasi-Homomorphism and Quasi-Isomorphism). A base A is
quasi-homomorphic to a base B if kerA ⊆ kerB. Any given inclusion function is a
quasi-homomorphism from A to B.
A base A is quasi-isomorphic to a base B if kerA = kerB. Any given inclusion
function is an quasi-isomorphism from A to B. In this case, A and B are said to
be quasi-isomorphic.

Some considerations are in order:
If h is a quasi-isomorphism from A to B, then h is invertible and its inverse is

a quasi-isomorphism from B to A. The proof of this fact is exactly the same as
that for the case of classical isomorphisms.

The concepts of quasi-homomorphism and quasi-isomorphism could have been
defined in a more direct way, without the aid of a kernel. However, introducing
a kernel provides flexibility to the concepts and is a worthy idea. Anyway, the
definition without kernel is equivalent to the particular case where I ′A = IB and
Prog′ = Prog.

Mixing a program and an interpretation function in defining predicate symbols
renders the concept of quasi-homomorphism an even more proficuous one. In
fact, the definition of a predicate symbol through interpretation function can be
extended while some of its feature is enforced by a program. For example, the
clause P (x, z) ← P (x, y), P (y, z) enforces transitivity, that is, the database that
composes the interpretation function can be extended as long as transistivity in P
is preserved.

The kernel of a base gives rise to a kernel in the same sense as it is introduced
in Paraconsistent Reasoning System, there is, an amount of information that is
preserved through quasi-isomorphisms.

The introduction of an interpretation function in Prolog does not introduce
any criterion to validate negative clauses. In this way, the monotonicity of Prolog
is preserved in Paraconsistent Reasoning Prolog. In other words, if there is a
quasi-homorphism from A to B, then B preserves more information through
quasi-isomorphism than A.

The notion of typed variables is the same as that in the classical case and does
not require further explanations.

The developments reached so far are concerned with declarative semantics. In
order to reach procedural semantics, it will be convenient to work with Herbrand

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 134

interpretations, as usual.
One of the most remarkable features that distinguish bases from programs is

that each base is linked to an interpretation domain and, being endowed with
an interpretation function, determines validity of interpreted formulae directly.
Programs, on their turn, determine validity of interpreted formulae only indirectly.
At first sight, this fact seems to prevent one to apply the classical methods of SD-
resolution. However, the difficulty can be overcome provided that each element of
the domain of interpretation that is referred in the interpretation function interprets
some constant in the language. Being so, the condition (a1, . . . , an) ∈ IA(P) can
be substituted by the clause P (c1, . . . , cn) ←, where, for each 1 ≤ i ≤ n, ci is a
constant that is interpreted by the element ai (IA(ci) = ai). Even in this case,
there remains a difference: The set IA(P) may be infinite, so that the solution
proposed of reducing bases to programs may lead to an infinite program. In this
way, bases can be viewed as programs that may have infinitely many clauses of the
form P (~c)←.

Herbrand interpretations fulfill the condition that every element in the domain
interprets some constant. As this is the case that really matters as long as procedural
methods are concerned, bases will be regarded as programs that may have infinitely
many clauses of the form P (~c)←. It is to be noted that bases, as well as programs,
do not convey negative information, which explains the fact that paraconsistency
has not raised any strange behavior so far.

The following classical results remain the same and their proofs are also the
same, even considering possibly infinitely many sets of clauses.

Proposition 4.1.7. Let S be a set of clauses. If S has a model, then S has a
Herbrand model.

Corollary 4.1.8. Let A be a base. Then A is unsatisfiable iff A has no Herbrand
models.

Minimal models will play a central role in the paraconsitent reasoning version
of Prolog as it does in the classical version.

Definition 4.1.9 (Minimal Model). The minimal model MA of a set of clauses S
is the intersection of all Herbrand models for S.

It is straightforward to prove that the minimal model is a model.
The definition of minimal model was designed to satisfy the following result,

whose proof is the same as in the classical case, thanks to the existence of an
auxiliar classical negation. As always, ‘∼’ stands to the auxiliar classical negation,
that is, ‘∼ α’ is an abbreviation for ‘α→ (◦α ∧ (α ∧ ¬α))’.

4.1. AN ESSAY ON PARACONSISTENT PROGRAMMING 135

Proposition 4.1.10. Let A be a Herbrand base and BA the set of all Herbrand
sentences in the language of A. Then MA = {α ∈ BA|α is a logical consequence of
A}

Proof. α is a logical consequence of A
iff α belongs to every model for A

iff ∼ α belongs to no model for A

iff ∼ α belongs to no Herbrand model for A, by Proposition 4.1.7
iff α belongs to every Herbrand model for A

iff α ∈MA.

Now, the focus will return to the case of ordering a group of people from the
guesses of an observer.

As the database generated from the observations is about people height, an order
relation should hold, that is, reflexivity, antisymmetry and transitivity should hold.
This fact may be used in two different directions: If the database is incomplete, it
may be used to complete it; If it is complete, it may be used to verify information.
In the first case, adding the following clauses is a straightforward solution:

x ≤ x←

◦(x ≤ x)←

x = y ← x ≤ y, y ≤ x

◦(x = y)← ◦(x ≤ y), ◦(y ≤ x)

x ≤ z ← x ≤ y, y ≤ z

◦(x ≤ z)← ◦(x ≤ y), ◦(y ≤ z)

Besides the straightforward clauses, new ones may be added in order to gain extra
assertions that are likely to be true. For instance, if the observer guessed that
x ≤ y and y ≤ z and he or she is sure about one of these assertions, it is likely that
x ≤ z even though the other assertion is not safe. In fact, if the observer is sure
that x ≤ y, it is probably the case that there is a considerable difference between
x and y and, in case the guess that y ≤ z is wrong, it would hardly be the case
that the difference between y and z be greater than the former difference. Another
reasonable supposition is that, if x ≤ y, y ≤ z and z ≤ w, then x ≤ w. This is
the same as to consider that the observer does not accumulate mistakes, in the
sense that is not likely that two out of three observations are wrong or that one of
them is wrong and the error is big enough to exceed the margin of the two correct
observations. The clauses that have just been discussed are

◦(x ≤ z)← x ≤ y, y ≤ z, ◦(x ≤ y)

◦(x ≤ z)← x ≤ y, y ≤ z, ◦(y ≤ z)

◦(x ≤ w)← x ≤ y, y ≤ z, z ≤ w

Above, it was said that the fact that the database in question must constitute
an order relation could be used in two directions. The firts one, just explored,
is to complement an incomplete database. The second one, which will be briefly
discussed, is to correct an incorrect database. It is reasonable that, if it is the case
that x ≤ y and y ≤ z but it is not the case that x ≤ z, then neither x ≤ y nor
y ≤ z can be consistent. That would lead to clauses such as

¬ ◦ (x ≤ y)← x ≤ y, y ≤ z,¬(x ≤ z)

¬ ◦ (y ≤ z)← x ≤ y, y ≤ z,¬(x ≤ z)

However, such clauses introduce negative information. For this reason, a deeper
discussion on the subject will not be made.

This section will be closed with two remarks, both of which concerned with
revising assertions and the existence of a kernel:
First: The possibility of correcting the database calls for the existence of a kernel.
In fact, if every assertion could be revised, the idea of safe knowledge would make
little sense.
Second: The interpretation function can be defined with multiple databases for
the same purpose. It may be the case, for instance, that several observers be
asked to guess about the height of a group of people. Then, an assertion can be
considered safely true when most observers agree on it. The existence of a kernel is
an interesting aid when dealing with multiple databases too, for it is reasonable to
require that the databases have a common kernel of agreement.

4.2 Paraconsistency from a Procedural Point

of View

In Section 2, the idea of dealing with uncertainty derived from a database was
explored. There is still another kind of uncertainty that appears naturally in Prolog.
The point is that a program is intended to compute answers in a finite number
of steps. However, some computations may require a large number of steps or

The idea of using clauses to complement a database is in line with the idea of
gaining information from inside explored in Chapter 2. In a certain sense, it can
be said that a base is a kind of paraconsistent reasoning model endowed with a
refinement.

4.2.PARACONSISTENCY FROMA PROCEDURAL POINT OF VIEW 136

even infinitely many steps. For this reason, if a computation has performed a large
number of steps and has not succeeded yet, it remains unclear wether it will ever
succeed or not.

The circumstance that an atom A is a consequence of a program P does not
entail that its negation ∼A be a consequence of P . That is the sense of the assertion
that programs do not convey negative information. One natural way of solving this
problem is to assume the so-called Closed World Assumption (CWA), which rules
that if A is not a consequence of P , then ∼A is true. This criterion does provide a
classical negation. As long as a declarative semantic is concerned, such a solution
is plainly satisfactory. From a procedural point of view, it is necessary to guarantee
that decisions can be made within a finite and assessable number of steps.

The way of finding out wether an atom A is a consequence of a program P or
not is to give it the goal ←A and try to find a successful or a failed SLD-resolution.
The procedural criterion that corresponds to CWA is that A is true iff there is a
successful SLD-resolution and ∼A is true iff there is a failed SLD-resolution to
A. The problem is that there may be only infinite successful or failed resolutions
to A. An alternative criterion would be to consider that A is true iff there is a
finite successful resolution to A and ∼A is true iff there is a failed resolution to
A. This would yield a negation that is not complementar, for it could be the case
that A and ∼A be simultaneously false. From a practical point of view, it would
be completely odd to consider to be false an atom that is valid, in the sense of
being a consequence of P . It would not be problematic however to consider ∼A
to be false without knowing wether there is a failed resolution or not. A solution
could be to propose that A is true iff A is a consequence of P and that ∼A is true
iff there is a finitely failed SLD-resolution for A. Unfortunately, a finitely failed
SLD-resolution may be hugely long. So, it would be convenient to set a limit for
the process. This leads the search for defining that A is true iff A is a consequence
of P and ∼A is true iff there exists a failed SLD-resolution for A of depth ≤ k
for some given k. An SLD-resolution is said to have depth k if each branch has k
nodes at most. Fixed k, this negation will be denoted by ∼k.

An interesting feature of ∼k is that it satisfies a weak form of de Morgan.

Proposition 4.2.1. Let P be a definite program and A1, . . . , An ∈ BP . Then,
P ∪ {← A1, . . . , An} has a refutation of depth ≤ k iff some Ai(1 ≤ i ≤ n) has a
refutation of depth ≤ k.

Proof. (⇒) The proof will be performed by induction on k.
First Part: Suppose P ∪{← A1, . . . , An} has a refutation Ref of depth 1. Let Ai be
the selected atom in the only step of Ref . Then, Ref is a refutation of Ai of length 1.

4.2PARACONSISTENCY FROMA PROCEDURAL POINT OF VIEW 137

Second Part: Suppose that, if P ∪ {← A1, . . . , An} has a refutation of depth
≤ k, then some Ai has a refutation of length ≤ k. Suppose P ∪{← A1, . . . , An} has
a refutation Ref of depth k + 1. It must be proven that some Ai has a refutation
of length ≤ k + 1.
For that, take such a refutation, say Ref and let Ai be the atom selected in the
first step, l the number of branches of that step and θj the unifier of the branch
number j. If, for some p 6= i, Ap has a refutation of length ≤ k, the work is done.
Otherwise, let {← A1θ1, . . . , Ai−1θ1, B

1
1θ1, . . . , B

1
m1
θ1, Ai+1θ1, . . . , Anθ1, . . . ,

← A1θl, . . . , Ai−1θl, B
l
1θl, . . . , B

l
ml
θl, Ai+1θl, . . . , Anθl} be the set of goals for the

branches of the first step of Ref . For each 1 ≤ j ≤ l, mj > 0.
In fact, if mj = 0, the application of the inductive hypothesis to the goal
← A1θj , . . . , Ai−1θj , Ai+1θj , . . . , Anθj yields that some atom among
A1θj , . . . , Ai−1θj , Ai+1θj , . . . , Anθj has a refutation of length ≤ k, which implies
that some atom among A1, . . . , Ai−1, Ai+1, . . . , An has a refutation of length ≤ k,
which is a contradiction against the supposition that this is not the case. Hence,
by the inductive hypothesis, for each 1 ≤ j ≤ l, there is some Bj

qjθj (belonging to

the goal ← A1θj , . . . , Ai−1θj , B
j
1θj , . . . , B

j
mjθj , Ai+1θj , . . . ,

Anθj) that has a refutation Refj of depth ≤ k. A refutation can be built in the
following manner: Take the first step just as in Ref . For each branch j, select
the atom Bj

qjθj and follow as in Refj . This is clearly a refutation of Ai of depth
≤ k + 1, as desired.

(⇐) This is the easy part. If Ref is a refutation of depth ≤ k for Ai, then
Ref ′ obtained from Ref by exchanging each goal ←B1θ1 . . . θm, . . . , Blθ1 . . . θm by
← B1θ1 . . . θm, . . . , Blθ1 . . . θm, A1θ1 . . . θm, . . . , Ai−1θ1 . . . θm, Ai+1θ1
. . . θm, . . . , Anθ1 . . . θm is a refutation of depth ≤ k for ← A1, . . . , An.

Corollary 4.2.2. If A1, . . . , An are atoms, then ∼k (A1 ∧ · · · ∧An) is equivalent
to ∼k A1 ∨ · · · ∨ ∼k An.

Proof. Let A1, . . . , An be atoms. Then ∼k(A1 ∧ · · · ∧An) is valid iff ← A1, . . . , An
has a refutation of length ≤ k iff some Ai(1 ≤ i ≤ n) has a refutation of length ≤ k
iff ∼kAi is valid for some Ai(1 ≤ i ≤ n) iff ∼kA1 ∨ · · · ∨ ∼kAn is valid.

It should not be surprising that ∼k behaves classically in some aspects, for the
truth of ∼kA is always safe information. In fact, ∼kA is true only if it is actually
verifiable that A is not a consequence of P .

So defined, ∼k is a supplementing negation but not a complementing one. In
fact, A and ∼kA may be simultaneously false, although never simultaneously true.

4.2PARACONSISTENCY FROMA PROCEDURAL POINT OF VIEW 138

A kind of ‘mirror definition’ of ∼k is that of a negation �k where �k A is
true when there is no finite SLD-resolution of depth ≤ k for A. This one is a
paraconsistent negation. Unlike ∼k, �k does not respect de Morgan, even in a weak
form. With this regard, it is clear that �kA1∨ · · · ∨ �kAn implies �k (A1∧ · · · ∧An).
In fact, a resolution for A1, . . . , An would be a resolution for each Ai. However, the
converse does not hold. In fact, consider the program

A1 ←

A2 ←.

Clearly, there is a resolution of depth 1 for ← A1 and ← A2, but there is no
resolution of depth 1 for ← A1, A2, which means that �1 (A1 ∧ A2) is valid while
�1A1∨ �1A2 is not.

Joining the ideas behind the proposals above, a negation ¬k can be defined so
that A is true when there exists no failed SLD-resolution for A of depth ≤ k and
¬k is true if there exists no succeeded SLD-resolution of depth ≤ k. The result is a
paraconsistent negation that accommodates the clause vCiw (discussed in Chapter
2) in a very natural way.

Ciw ◦α ∨ (α ∧ ¬α)

A model based on such a negation can well be called a state of knowledge. Better
yet, it can be called a state of computation of depth k. Being so, a whole discussion
akin to that one performed in Section 2 can be made within a procedural point of
view. Moreover, the two kinds of uncertainty presented in these sections can be
mixed in order to cope with both at the same time.

Summing up, paraconsistency is a sound concept and a useful tool in a Prolog
environment.

4.2PARACONSISTENCY FROMA PROCEDURAL POINT OF VIEW 139

Final Considerations

The proposal of this thesis is to develop Model Theory, which is a highly developed
classical theory, in paraconsistent basis. This is a theory that was born in the field
of philosophy and soon became one of the most mathematical branchs of logic. For
this reason, it is mandatory to start giving a philosophical account to the subject
and then treat it in mathematical terms. Treating it in mathematical terms shall
mean to transpose classical results to the new context. For a new theory to be worth
consideration, it is necessary that some application be revealed. Being so, it is also
mandatory to search for applications of the new theory developed. As computing
is the field where the tools provided by logic are usually applied, it is quite natural
to search for applications in this area. Summing up, three tasks impose themselves:
First, to give an account of paraconsistent model theory. Second, to show that
classical results are amenable to be transposed to a paraconsistent environment
and to transpose as many classical results as possible. Third, to find applications.

The answer to the philosophical task of providing an account to paraconsistent
model theory was a proposal of a system for paraconsistent reasoning. Starting
from the premise that paraconsistency is an ubiquitous phenomenon that belongs
to the realm of epistemology, models are proposed as states of knowledge.

At start, it was clear that, although the classical concept of isomorphism would
make perfect sense in the paraconsistent context, it would be completely unfruitful,
for very little would be preserved in terms of truth value. So, the problem of re-
defining isomorphim imposed itself. The solution was to define quasi-isomorphism
in an enriched structure, keeping track of truth preserving by the new concept
of ‘preservation kernel’. The strategy turned out to be a winning one, opening
the door to defining a methold for refining knowledge. The account provided by
this strategy revealed to be sound and promising. The first task was successfully
accomplished.

The solution of defining quasi-isomorphism in enriched structures turned out
to raise good results in mathematical issues too. Good classical results that do

140

not involve isomophism, namely Omitting Types Theorem and Craig’s Theorem
toghether with some consequences, were obtained while a discussion were made
on what a system for paraconsistent model theory should be. Results envolving
isomorphism were possible thanks to the definition of quasi-isomorphism, which
revealed suitable for mathematical besides philosophical purposes. An idea is
worthy when it responds to the needs that are imposed by working practice. The
idea of quasi-isomorphism in enriched structures responds to working practice in
two different fields, which shows that it is the suitable one. The second task was
successfully accomplished.

The area that was chosen for the search for applications was that of Logic
Programming. The system constructed in the first chapter was not designed to
that area, but it fitted so finely to that study that it seems it was. A blend of
program and structure was the basic concept for working out the ideas. The
concepts developed in the first chapters meshed perfectly with the techniques of
Logic Programming. The third task was successfully accomplished.

141

Further Developments

The task accomplished by this thesis was not that of solving a specific problem. It
was rather that of providing a tool for solving problems. For this reason, this is a
work that is destined to be continued.

As philosophical, mathematical and computational problems were raised, it is
to be expected that questions of these three natures call for further investigation.
In the next lines, some of these questions will be posed.

Within a philosophical line of research, questions for investigation pullulate
and an acknowledgement is due to Professor Ab́ılio Azambuja Rodrigues Filho for
having raised a handful of them.

Among the many points that are worth investigation, the one that deserves
the closest attention is how consistency shall propagate. The advantages and
disadvantages of assuming Cwi is a point that merits exploration. In Chapter 2,
its use was considered incovenient for technical reasons; In Chapter 4, it turned
out to be fulfilled by be the negation that presented itself as the most suitable one.

Another point that deserves attention is the possibility or the convenience of
having different negations coexisting in an ecumenical system.

Within a mathematical line of research, the main task shall be obviously the
search for more classical concepts and results that apply to the paraconsistent
system that was proposed and how handable they are in such an environment.

The second task is to give a sense to what paraconsistent mathematics would
be like. The last section of Chapter 3 points in that direction.

Within a computational line of research, the task is to look fo applications. As
the construction of a paraconsistent Prolog was started in Chapter 4, it sounds
sensible to start from the point the developments reached.

The monotonicity of the application T ↑ plays an important role in Logic
Programming. In definite programs, where negated predicates are forbidden in
the body of a clause, monotonicity holds. In normal programs, where negated

142

Being so, exploring the behavior of paraconsistent negation in systems endowed
with a consistency operator with respect to the monotonicity of the operator T ↑
may be a good line of research. Firstly, because it is an essencial point for continuing
the construction of the Paraconsistent Reasoning Prolog; Second, because it may
serve to many other alternative constructions. Thus, this is a research that is
worthy for its own.

Logic Programming is definitely a fertile soil and many other important questions
can be treated. One of those is how paracosnsitency would behave in disjunctive
programs. It is to be expected that new possibilities sprout, for this kind of
program seems to be the most suitble one to accomodate the propagation clauses,
as commented in Chapter 4.

predicates are allowed in the body of a clause, monotonicity does not hold.
The introduction of predicates that are negated by a paraconsitent negation,

on its turn, does not destroy monotonicity. In fact, programs do not determine

the falsity of a predicate, which means that they do not determine the falsity of

a predicate and its negation at the same time. This would be a problem for a
 paraconsistent negation. Monotonicity is lost with a classical negation because a
 normal program may determine the truth of a predicate and its negation at the
 same time. But this is not a problem for a paraconsistent negation at all. However
,when consistency clauses are allowed, problems may rise.

 143

Bibliography

[1] E. H. Alves. Lógica e inconsistência: um estudo dos cálculos Cn, 1 ≤ n ≤ ω.
PhD thesis, State University of São Paulo, 1976.

[2] A. I. Arruda. On the Imaginary Logic of N.A. Vasil’ev. Arruda, da Costa and
Chuaiqui (eds., 1977.

[3] A. I. Arruda. A Survay on Paraconsistent Logic, volume v. 99. Arruda, da
Costa and Chuaiqui (eds.), 1980.

[4] A. I. Arruda. Aspects of the historical Development of Paraconsistent Logic.
Priest, Routley and Norman (eds.), 1989.

[5] C. Asmus. Paraconsistency on the rocks of dialetheism. Logique et Analyse, v.
55:p. 3–21, 2012.

[6] C. Badesa. The Birth of Model Theory: Löwenheim’s Theorem in the Frame
of the Theory of Relatives. Princeton University Press, 2004.

[7] J.T. Baldwin. Finite and infinite model theory. a historical perspective. Logic
Jour-nal of the IGPL, v. 8:p. 605–628, 2000.

[8] T. Baldwin, J. Model Theory and the Philosophy of Mathematical Practice.
Cambridge University Press, 2018.

[9] D. Batens. Paraconsistent extensional propositional logics. Logique et Analyse,
v. 23:p. 195–234, 1980.

[10] M. Bramer. Logic Programming with PROLOG. Springer, 2013.

[11] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley,
2011.

[12] T. Button and S. Walsh. Philosophy and Model Theory. Oxford University
Press, 2018.

144

BIBLIOGRAPHY 145

[13] W. Carnielli, M. Coniglio, R. Podiacki, and T. Rodrigues. On the way to a
wider model theory: Completeness theorems for first-order logics of formal
inconssitency. The Review of Symbolic Logic, v. 7(1):p. 548–578, 2014.

[14] W. A. Carnielli and M. E. Coniglio. Paraconsistent Logic: Consistency,
Contradiction and Negation. Springer, 2016.

[15] W. A. Carnielli, M. E. Coniglio, and J. Marcos. Logics of formal inconsistency.
Handbook of Philosophical Logic, v. 14, 2007.

[16] W. A. Carnielli and J. Marcos. A Taxonomy of C-Systems. eds. Carnielli, W.
A., Coniglio, M. E., and D’Ottaviano, I. M. L., 2002.

[17] W. A. Carnielli and A. Rodrigues. On the philosophy and mathematics of
the logics of formal inconsistency. Springer Proceedings in Mathematics &
Statistics, v. 152:p. 57–88, 2016.

[18] C. C. Chang and H. J. Keisler. Model Theory. Dover Publications, Inc., 1991.

[19] W. Clocksin. Clause and Effect: Prolog Programming for the Working Pro-
grammer. Springer, 1997.

[20] M. E. Coniglio and T. G. Rodrigues. Some investigations on mbC and mCi. In
Tópicos de lógicas não clássicas. ed. by Cézar A. Mortari NEL/UFSC, 2014.

[21] N. C. A. da Costa. Sistemas Formais Inconsistentes. PhD thesis, Universidade
Federal do Paraná, 1963.

[22] N. C. A. da Costa. On the theory of inconsistent formal systems. Notre Dame
Journal of Formal Logic, v. 4:p. 497–510, 1974.

[23] N. C. A. da Costa. The philosophical import of paraconsistent logic. The
journal of non-classical logic, v. 15:p. 497–510, 1982.

[24] N. C. A. da Costa. La Filosofia de la Lógica de Francisco Miró Quesada
Cantuarias. Lógica Razon y Humanismo, 1992.

[25] N. C. A. da Costa, J. Y. Béziau, and O. Bueno. Paraconsistent logic in a
historical perspective. Logique et analyse, v. 3.4:p. 597–614, 1995.

[26] I. M. L. D’Ottaviano. On the development of paraconsistent logic and da
costa’s work. Journal of Non-Classical Logic, v. 7, 1990.

[27] T. M. Ferguson. The keisler-shelah theorem for qmbc through semantical
atomization. The Logic Journal of the IGPL, v. 28:p. 912–935, 2018.

BIBLIOGRAPHY 146

[28] E. L. Gomes. Sobre a história da paraconsistência e a obra de da Costa:
a instauração da lógica paraconsistente. PhD thesis, State University of
Campinas, 2013.

[29] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[30] J. Kirby. An Invitation to Model Theory. Cambridge University Press, 2019.

[31] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[32] J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.

[33] E. D. Mares. Relevant Logic: A Philosophical Interpretation. Victoria Univer-
sity of Wellington, 2004.

[34] D. Marker. Model Theory: An Introduction. Springer, 2002.

[35] B. Martin. Dialetheism and the impossibility of the world. Australasian
Journal of Philosophy, v. 95:p. 61–75, 2015.

[36] B. R. Mendonça and W. A. Carnielli. Fräıssé’s theorem for logics of formal
inconsistency. Oxford University Press, v. 28:p. 1060–1072, 2018.

[37] K. E. C. S. Oliveira. Programação Lógica Paraconsistente em Lógicas Três e
Quatro Valoradas. PhD thesis, Universidade de Campinas, 2017.

[38] T. G. Rodrigues. Sobre os Fundamentos da Programação Paraconcistente.
PhD thesis, Universidade Estadual de Campinas, 2010.

[39] U. Schöning. Logic for Computer Scientists. Springer, 2008.

[40] K. Tent and M. Ziegler. A Course in Model Theory. Cambridge University
Press, 2012.

	Contents
	Introduction
	Basic Concepts
	Background to the Research
	Basic Concepts of Logics of Formal Inconsistency
	Basic Concepts of Classical Model Theory
	Basic Concepts of QmbC Model Theory
	Basic Concepts of Logic Programming

	A Suitable System for Paraconsistent Reasoning
	A Paraconsistent Account of Isomorphism
	Paraconsistent Reasoning Models
	Construction
	Definition

	Refinement
	Ultrafilters
	Refinement through an Untrafilter
	Elementary Extensions
	Axiomatization

	The Power of Classical Negation
	QmbC without a Consistency Operator
	Omitting Types
	Craig's Interpolation Theorem
	Elementary Extensions
	Chains of Models
	Axiomatization and Elementary Equivalence

	Toward a Paraconsistent Reasoning Prolog
	An Essay on Paraconsistent Programming
	Paraconsistency from a Procedural Point of View

