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Resumo

Distúrbios cerebrais são caracterizados por deformações morfológicas na forma e tama-
nho de estruturas (sub)corticais em um ou ambos hemisférios. Estas deformações causam
desvios do padrão de normal das assimetrias cerebrais, resultando em lesões assimétri-
cas que diretamente afetam a condição do paciente. É clinicamente crucial, portanto,
definir assimetrias cerebrais normais para a identificação e detecção precoce destas defor-
mações (anomalias cerebrais) para um diagnóstico e tratamento adequados. A maioria
dos métodos computacionais presentes na literatura confiam em aprendizado de máquina
supervisionado para detectar ou segmentar anomalias em imagens de cérebro. Entretanto,
estes métodos requerem um grande conjunto de imagens de treinamento de alta qualidade
anotadas, que é escasso para a maioria dos problemas de análise de imagens médicas. Além
disso, eles são projetados para as lesões encontradas no conjunto de treinamento, sendo que
alguns métodos ainda requerem refinamento dos pesos do modelo (retreinamento) quando
usados por um novo conjunto de imagens. Em contraste, métodos não-supervisionados
visam aprender um modelo a partir de imagens saudáveis não-rotuladas, de maneira que
uma imagem inédita que quebre condições prévias deste modelo, i.e., um outlier, é con-
siderada uma anomalia. À medida que estes métodos não usam imagens rotuladas, eles
são menos efetivos em detectar lesões de uma doença específica, quando comparados com
abordagens supervisionadas treinadas a partir de imagens rotuladas para a mesma do-
ença. Esta tese endereça o desenvolvimento de soluções para alavancar o aprendizado de
máquina não-supervisionado para a detecção/análise de assimetrias cerebrais anormais
relacionadas a anomalias em imagens de ressonância magnética (RM). Primeiramente,
nós propomos uma abordagem automática baseada em atlas probabilístico para a seg-
mentação de cérebros anormais. Seu objeto é definir nossas macrorregiões de interesse —
i.e., hemisfério esquerdo e direito, cerebelo e tronco cerebral — para, assim, melhorar o
pré-processamento, restringir a análise e computar assimetrias cerebrais em alguns casos.
Em segundo lugar, nós exploramos um método automático para a detecção de hipocampos
anormais a partir de assimetrias anormais. Nossa solução usa redes neurais generativas
e classificadores de classe única para modelar assimetrias hipocampais normais dentro de
pares de janelas 3D de pessoas saudáveis, e então detectar hipocampos anormais. Em
terceiro lugar, nós apresentamos um arcabouço mais genérico para detectar assimetrias
anormais em todas as regiões dos hemisférios. Nossa abordagem extrai pares de regiões
simétricas — chamadas supervoxels — em ambos os hemisférios de uma imagem de teste
sob análise. Classificadores de classe única então analisam as assimetrias presentes em
cada par. A detecção deste método limita-se a lesões assimétricas encontradas nos he-
misférios. Finalmente, nós generalizamos a solução anterior para a detecção de lesões
(as)simétricas baseadas em erros de registro. Os resultados experimentais em imagens de
RM 3D de pessoas saudáveis e pacientes com uma variedade de lesões mostram a efetivi-
dade e robustez das abordagens não-supervisionadas propostas nesta tese para a detecção
de anomalias cerebrais.



Abstract

Brain disorders are characterized by morphological deformations in shape and size of
(sub)cortical structures in one or both hemispheres. These deformations cause deviations
from the normal pattern of brain asymmetries, resulting in asymmetric lesions that di-
rectly affect the patient’s condition. It is hence clinically crucial to define normal brain
asymmetries for the identification and detection of these deformations (brain anomalies)
early for proper diagnosis and treatment. Most automatic computational methods in the
literature rely on supervised machine learning to detect or segment anomalies in brain
images. However, these methods require a large number of high-quality annotated train-
ing images, which is absent for most medical image analysis problems. Besides, they are
only designed for the lesions found in the training set, and some methods still require
weight fine-tuning (retraining) when used for a new set of images. In contrast, unsuper-
vised methods aim to learn a model from unlabeled healthy images, so that an unseen
image that breaks priors of this model, i.e., an outlier, is considered an anomaly. As these
methods do not use labeled images, they are less effective in detecting lesions from a spe-
cific disease when compared to supervised approaches trained from labeled images for the
same disease. For the same reason, however, unsupervised methods are generic in detect-
ing any lesions, e.g., coming from multiple diseases, as long as these notably differ from
healthy training images. This thesis addresses the development of solutions to leverage
unsupervised machine learning for the detection/analysis of abnormal brain asymmetries
related to anomalies in magnetic resonance (MR) images. First, we propose an automatic
probabilistic-atlas-based approach for anomalous brain image segmentation. Its goal is
to define our target macro-regions of interest — i.e., right and left hemispheres, cerebel-
lum, and brainstem — to improve the preprocessing, restrict the analysis, and compute
hemispheric asymmetries in some cases. Second, we explore an automatic method for the
detection of abnormal hippocampi from abnormal asymmetries. Our solution uses deep
generative networks and a one-class classifier to model normal hippocampal asymmetries
inside pairs of 3D patches from healthy subjects and detect abnormal hippocampi. Third,
we present a more generic framework to detect abnormal asymmetries in the entire brain
hemispheres. Our approach extracts pairs of symmetric regions — called supervoxels —
in both hemispheres of a test image under study. One-class classifiers then analyze the
asymmetries present in each pair. This method is limited to detect asymmetric lesions
only in the hemispheres. Finally, we generalize the previous solution for the detection
of (a)symmetric lesions based on registration errors. Experimental results on 3D MR-T1
images from healthy subjects and patients with a variety of lesions show the effectiveness
and robustness of the proposed unsupervised approaches for brain anomaly detection.
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Chapter 1

Introduction

The brain is the most complex organ in a vertebrate’s body and serves the central nervous
system (CNS) — a complex collection of billions of specialized nerves and cells known as
neurons that transmit signals between different parts of the body [1, 2]. CNS represents
a communication network of the organism that detects and responds to changes in its
internal and external environment. Any dysfunctionality can severely impact a person’s
health and quality of life, resulting in problems as memory loss, motor skills, and mobility.

A brain disorder consists of any condition that affects one’s brain. These conditions are
mainly caused by genetic abnormalities, illness, and traumatic injuries [3]. Brain disorders
are a major public health problem in the world [4]. According to reports presented in
2010 by the European Brain Council — an alliance of all major European organizations
interested in brain diseases — about one-third of all European citizens had at least one
brain disorder [5, 4]. Most cases consist of minor disorders such as migraine, whereas
neuromuscular disorders and brain tumors are less prevalent. However, the diagnoses and
treatments for the latter are more complex and very expensive. For example, the cost of
the treatment of brain tumors per subject is 33,900 euros on average, whereas the one for
migraine is about 662 euros [4].

Following the above, it is hence clinically crucial to detect brain lesions early for proper
diagnosis and treatment. There is a variety of possible treatments, such as chemotherapy
and surgical resection. The choice of treatment usually depends on the type of brain lesion,
its anatomy, and location [6, 7]. This information is obtained from medical imaging.

1.1 Medical Imaging

Medical images are visual representations of physical features measured from the inte-
rior of a body for clinical analysis, medical diagnoses, and intervention [8]. They show
attributes from such body structures in a noninvasive manner.1

The first medical image dates the late 19th century from the discovery of X-rays by the
German Wilhelm Röntgen. For the first time in history, an image — created by marked
X-ray absorption — allowed noninvasive insights in the human body [9]. This imaging

1Noninvasive denotes a medical procedure that does not involve the introduction of instruments into
the patient’s body.
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technique was called radiography. The more X-rays a tissue absorbs, the whiter it is in
the X-ray image (Fig. 1.1a). Thus, dense tissues (e.g., bones) appear white, whereas fat
and other soft tissues look gray or even black (e.g., the air inside the lungs). Soon after
its introduction, radiography quickly became essential for medical diagnosis. Currently,
digital X-ray images are widely used to examine bone fractures and detect certain diseases,
e.g., pneumonia and pulmonary edema, in soft tissues [8].

New medical imaging techniques and technologies have emerged in the last 60 years,
in particular, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). A
CT scanner takes a series of X-rays emitted at different angles to generate a detailed
volumetric image (3D image) of a particular section of the body. Elements of a 3D image
are called voxels, by analogy to the pixel elements of a 2D image. Voxels are defined
by their 3D coordinates and their corresponding values. CT images are more expensive
to acquire than conventional X-ray images but yield a better way to separate between
various types of tissues, atop the ability to reason about spatial structures in the body.
Some common uses of CT images consist of diagnosing injuries from trauma, determining
the location of a tumor, and detecting the location of blood clots.

MRI scanners do not use radiation during imaging. Instead, they produce a powerful
fixed magnetic field around the patient so that radiofrequency waves excite protons within
the body. As the excited protons relax back to their normal position, they emit signals
that are captured and mapped into a 3D image [10, 9]. MRIs provide more detailed
information about inner organs with superior soft-tissue contrast and anatomic detail
compared to X-ray and CT images (Fig. 1.1). However, they are more expensive and
take considerably more time to generate.2 MRI is usually the commonly chosen image
modality for structural brain analysis [11].

Different types of MR images can be obtained during the examination. The most
common types are T1 and T2. Both types accentuate different characteristics of tissues
resulting in images with distinct appearances. Water-rich structures — e.g., the cere-
brospinal fluid (CSF) found in the brain and spinal cord — are dark in T1 and very
bright in T2. Conversely, structures containing fat are considerably brighter in T1 than
T2. For brain images, gray matter is darker than white matter in T1. The opposite is
true for T2 — compare the pair of brain slices in Fig. 1.1c. Therefore, T1 images are more
effective for analyzing anatomical structures, whereas T2 images are typically used when
looking for areas of inflammation [12, 13]. This thesis focuses on the analysis of MR-T1
images of the brain for anomaly detection.

1.2 Brain Asymmetries

The brain hemispheres can be distinguished visually by the longitudinal fissure (Fig. 2.3)
— a membrane between both hemispheres filled with cerebrospinal fluid (CSF). Although
they are, at a coarse scale, almost symmetrical in structure, subtle (finer-scale) anatom-
ical differences between them exist [2, 14, 15]. These differences are called hemispheric

2A CT image takes 10 minutes on average depending on the body part being examined whereas an
MR image takes between 45 minutes to 1 hour.
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asymmetries or simply brain asymmetries and can be defined at functional and structural
levels [16].

Functional differences between the hemispheres — so-called hemispheric lateral-

ization — have been observed for several cognitive functions [17]. Both hemispheres are
indeed specialized for separate tasks. The left hemisphere is more dominant for hand-
edness and language than the right one. For instance, most humans are right-handed3,
whose motor coordination is performed by the left hemisphere [17, 18]. Conversely, the
right hemisphere is dominant, for example, for visuospatial processing, face recognition,
music, and visual imagery [19, 20].

The realization of the functional differences between the brain hemispheres raises ques-
tions regarding the structural correlation of such lateralization [21]. Structural differ-

ences include changes in volume, shape, and size of (sub)cortical structures (e.g., sulci,
cerebral lobes, and hippocampus) as well as a different amount of white and gray matter
in the hemispheres [21, 22]. This thesis only focus on the analysis of structural differences.

Deviations from the normal pattern of brain asymmetries are useful insights about
neurological pathologies [23]. Studies have shown that some neurological diseases — such
as Alzheimer’s [24], schizophrenia [25, 26], epilepsy [27, 28, 29], and autism [30] — are
indeed associated to abnormal brain asymmetries. Morphological changes in (sub)cortical
in one or both hemispheres characterize these structural abnormalities, as illustrated
in Fig. 1.2. Therefore, it becomes crucial to define normal brain asymmetries for the
identification and detection of many abnormalities in the brain. We widely explore lesions
associated with abnormal asymmetries throughout this thesis.

(a) (b)

Figure 1.2: MR images and their corresponding asymmetry maps for (a) a healthy subject
and (b) a stroke patient. Green borders indicate examples of pairs of regions with normal
asymmetries, whereas red borders indicate abnormal asymmetries resulted from a stroke.
The dashed yellow lines show mid-sagittal planes. Normal asymmetries are accentuated
on the brain cortex (regions close to the borders). Both cases omit other regions with
normal asymmetries.

3Approximately 90% of the world population are right-handed [17, 18].
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1.3 Analysis of Brain Disorders

Quantitative analysis of MR brain images has been used extensively for the characteri-
zation of brain disorders, such as stroke, tumors, and multiple sclerosis. Such methods
rely on delineating objects of interest — (sub)cortical structures or lesions — trying to
solve detection and segmentation simultaneously. Results are usually used for tasks such
as quantitative lesion assessment (e.g., volume), surgical planning, and overall anatomic
understanding [31, 32, 6]. Note that segmentation corresponds to the exact delineation
of the object of interest, whereas detection consists of finding the rough location of such
objects (e.g., by a bounding box around the object), in case they are present in the image.

The simplest strategy to detect brain anomalies consists of a visual slice-by-slice in-
spection by one or multiple specialists. This process is very time-consuming, error-prone,
and even impracticable when a large amount of data needs to be processed.

The analysis of brain asymmetries commonly follows a similar strategy. First, the
approach interactively segments structures of interest in the image, such as hippocampi,
amygdala, and putamen. Then, it computes morphometric measures from the segmented
structures (e.g., volume), and performs statistical analysis of these measures [33]. How-
ever, this strategy is also problematic since the interactive segmentation of brain structures
may be very complicated, extremely susceptible to errors, and that demands much time
from the expert. Thus, segmentation errors may severely impact the analysis.

Continuous efforts have been made for automatic anomaly detection that delineates
anomalies with accuracy close to that of human experts. However, this goal is very
challenging and complex due to the large variability in shape, size, and location present
in different anomalies, even when the same disease causes these (see, e.g., Fig. 1.3). All
these difficulties have motivated the research and development of automatic brain anomaly
detection methods based on machine learning algorithms, as discussed next.

1.3.1 Machine Learning

Machine learning (ML) can aid experts in detecting and classifying lesions from a brain
image [35]. ML is based on algorithms that can learn from a dataset without being ex-
plicitly programmed to perform a task [36]. Each example from the dataset is called
sample, and it is described by a set of features, called feature vector. For medical image
analysis, a sample can be defined, for example, as a voxel, the image of a segmented
object, or the shape attributes (descriptors) computed on this object. Feature extraction

algorithms, in turn, are chosen according to the targeted problem and sample type. Tex-
ture [6, 37, 38, 39, 40], shape features [41, 42, 43], and, more recently, deep-learning-based
features [35, 44, 45, 46] are common feature examples adopted in medical image analysis
problems.

Overall, machine learning can be either supervised or unsupervised. In supervised

learning, the dataset is labeled, i.e., each of its samples has an assigned class.4 For
example, a dataset of MR brain images (samples) that is used in a classification task that
aims to discriminate between normal and abnormal tissue will use two classes: normal

4Some classification problems might consider a sample with more than one label.
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low medium high

lesion frequency distributed across the brain

Figure 1.3: The different appearance of brain anomalies. Top: axial slices of three stroke
patients with lesions (gold-standard borders in pink) that significantly differ in location,
shape, and size. Bottom: slices of a 3D heatmap show the location frequency of stroke
lesions across the brain. Although caused by the same disease, the lesions are sparsely
distributed in the brain resulting in low-concentrated regions. The 3D heatmap was built
from aligned manual lesion segmentation of stroke patients from the ATLAS dataset [34]
after registration to a standard template.

and abnormal. A classification algorithm learns a decision model from labeled samples
of a given training set by associating features to classes [47]. More generally, when the
algorithm predicts a continuous value rather than a categorical class value, one says that
it learns a regression model. In our work, we will mainly focus on decision models. New
unseen samples are then classified according to the learned decision model. Fig. 1.4a shows
a toy example of two easy separable classes with a linear classifier, i.e., a classifier that
assumes that the boundary between samples of the two existing classes is linear. Typically,
linear classifiers are not sufficient to predict the correct classes of more complex sample
distributions in real-world data, as shown by the example in Fig. 1.4b. In such cases,
nonlinear classifiers are used to properly split the feature space into areas corresponding
to the two classes (Fig. 1.4c).

Unsupervised machine learning algorithms aim at finding intrinsic structures in an
unlabeled/uncategorized dataset [48]. The key added value of unsupervised methods as
compared to supervised ones is that one does not need an expert to have created an an-
notated (labeled) training set. This is particularly essential in situations where labeling is
expensive and requires specialist expertise, such as in the case of medical imaging datasets
to be manually labeled by delineation by trained medical professionals. A potential draw-
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refer to outliers as anomalies, exceptions, noise, and novelties. Several applications use
outlier detection, such as bank fraud detection, loan application processing, and medical
condition monitoring [49]. Fig. 1.5c shows an example of outlier detection.

Medical image analysis commonly uses outlier detection mainly for detecting anomalies
(lesions). One-class classification (OCC) — also called unary classification — is a class of
techniques commonly used for this purpose [50, 40, 51, 52, 53]. Consider a training dataset
with only medical images of healthy subjects — also known as control images. All training
samples have the same single class: healthy. The OCC learns a classification boundary
for the healthy class to classify new unseen images as healthy or outlier. Detected outliers
are considered as anomalies, e.g., tumors, stroke, and cancer. OCC is different from and
more challenging than the traditional classification problem, which tries to differentiate
two or more classes from a labeled training set. In this thesis, we focus on unsupervised
algorithms in particular one-class classification.

1.3.2 Automatic Brain Anomaly Detection

Most automatic methods in the literature rely on supervised machine learning to detect
or segment brain anomalies. They train a classifier from training images — which must be
previously labeled (e.g., lesion segmentation masks) by experts — to delineate anomalies
by classifying voxels or regions of the target image. Traditional image features (e.g.,
edge detectors and texture features) and deep feature representations (e.g., convolutional
features) are commonly used [6, 37, 38, 39, 54, 46, 55, 56].

However, these supervised methods commonly have three main limitations. First,
they require a large number of high-quality annotated training images, which is absent
for most medical image analysis problems [11, 57, 35]. Second, they are only designed for
the lesions found in the training set. Third, some methods still require weight fine-tuning
(retraining) when used for a new set of images due to image variability across scanners
and acquisition protocols, limiting its application into clinical routine.

All the above limitations of supervised methods motivate research on unsupervised

anomaly detection approaches [40, 58, 53, 13, 59]. From a training set with images of
healthy subjects only, these methods perform an outlier detection technique to identify
anomalies in new images. Some of these methods can detect enormous lesions [58, 59],
but show poor results with small lesions, which are the most challenging cases.

1.4 Thesis Problems and Approach

As unsupervised brain anomaly detection methods do not use labeled samples, they are
less effective in detecting lesions from a specific disease when compared to supervised
approaches trained from labeled samples for the same disease. For the same reason,
however, unsupervised methods are generic in detecting any lesions, e.g., coming from
multiple diseases, as long as these notably differ from healthy training samples.

Combining the pros and cons of unsupervised methods listed above, as well as the
importance of identifying abnormal brain asymmetries associated to brain anomalies, we
can now state the key research questions of this thesis:
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RQ1: Can we model normal brain asymmetries?

RQ2: Can we use the normal brain asymmetry model to detect brain anomalies?

To illustrate how we approach answering these questions, let us consider the typical
pipeline for brain image processing and analysis (Fig. 1.6). Given a 3D MR-T1 image, we
first perform several preprocessing tasks (e.g., noise filtering and intensity normalization)
to overcome inherent acquisition issues, such as noise and inhomogeneity field. Next,
we define the volumes of interest (VOI) to be analyzed: either the entire brain or some
specific region. Features related to brain asymmetries are extracted from these VOIs
and subsequently classified as normal or abnormal from the knowledge about normal
asymmetries present in a training set of control images. We evaluate our approaches on
MR-T1 images, mainly due to the greater availability of public datasets of healthy and
abnormal brain volumetric images for this imaging modality. Public datasets of different
imaging modalities exist. However, some only provide a subset of 2D slices for each image
or interpolate slices to build a volume.

Preprocessing

analysis

3D MR image

Result

Chapter 2
Chapter 3

Labeled 3D Mask with

detected abnormal asymmetries

Are asymmetries

inside the VOI
normal or abnormal?

Or

VOI

Estimation

Feature

Extraction
Classification

Chapter 5
Chapter 6

Chapter 4 Chapter 4

Figure 1.6: General pipeline considered in this thesis to explore novel unsupervised brain
anomaly detection approaches.

The structure of this thesis follows the considered steps of the pipeline in Fig. 1.6 in a
bottom-up approach — starting with simpler, more specific problems, towards the more
complex and general ones, as follows.
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Chapter 2 presents background information on concepts explored in this work, such
as brain anatomy concepts, imaging physics, and typical MRI preprocessing operations.
Finally, the chapter also introduces the Image Forest Transform framework [60], as well
as two algorithms derived from it, which serves as a basis for the design of some image
operators used by the proposed solutions of this thesis.

Chapter 3 presents our solution for brain image segmentation. Its goal is to define
our target macro-regions of interest — i.e., right and left hemispheres, cerebellum, and
brainstem — to improve the preprocessing, restrict the analysis, and compute hemispheric
asymmetries in some cases. We start by exploring lesions associated with abnormal hemi-

spheric asymmetries as detailed next in Chapters 4 and 5, as follows.
Chapter 4 proposes an automatic method for the detection of abnormal hippocampi

from abnormal asymmetries. Our solution uses deep generative networks and a one-class
classifier to model normal hippocampal asymmetries from healthy subjects and detect
abnormal hippocampi. This is the first example of the usage of one-class classifiers for
addressing the research questions of the thesis.

Chapter 5 presents a more generic solution that refines the proposal in Chapter 4
to detect abnormal asymmetries in the entire brain hemispheres. Our approach extracts
pairs of symmetric regions — called supervoxels — in both hemispheres of a test image
under study. One-class classifiers then analyze the asymmetries present in each pair. This
method is limited to detect asymmetric lesions only in the hemispheres.

In Chapter 6, we extend the previous solution from Chapter 5 to detect lesions (sym-
metric or asymmetric) in the hemispheres, cerebellum, and brainstem. This new approach
replaces asymmetries with any other saliency map that emphasizes brain anomalies. As
proof of concept, we instantiated this solution with image registration errors to detect
anomalies.

Finally, Chapter 7 presents a compilation of our contributions and experimental
findings, along with future research perspectives.
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Chapter 2

Background

This chapter provides an overview of the basic concepts and techniques used in the next
chapters. The chapter is targeted to a non-expert audience since it presents many basic
and well-established topics on medical image analysis. Also, as the coming chapters detail
the related work regarding their proposed methods, experienced readers are encouraged
to skip this one and refer back whenever needed.

In Section 2.1, we detail basic concepts about brain anatomy. Section 2.2 provides
an overview of medical imaging physics as well as which standards we adopted in this
thesis. Section 2.3 details the main preprocessing techniques used in MR image analysis.

Section 2.4 introduces Image Foresting Transform (IFT) [60], a powerful methodology
for the design of image operators based on optimum connectivity. IFT serves as the
basis for the development of several algorithms used by the proposed solutions of this
thesis, such as object delineation (Section 3.2.2), one-class classification (Section 4.2.4),
and supervoxel segmentation (Sections 5.2.3 and 6.1.3). For better understanding the
fundamentals of such algorithms, Section 2.5 presents a clustering method derived from
IFT, whereas Section 2.6 details the Iterative Spanning Forest [61], a framework for
superpixel segmentation also based on IFT. Section 2.7 presents concluding remarks.

Appendices provide supplementary information to the main thesis as follows. Ap-

pendix A presents a quick reference about notations and definitions of terms used in
this thesis.

To answer our research questions, we need datasets with isotropic 3D MR-T1 brain
images from (i) healthy subjects, and (ii) with asymmetric anomalies of different sizes (es-
pecially small ones) and their gold-standard segmentation masks. As such, Appendix B

presents a full description of all datasets used in the next chapters.
Finally, Appendix C describes all quantitative metrics adopted in this thesis to

measure the accuracy and quality of our proposed solutions.

2.1 Basic Anatomical Concepts

This section summarizes the main concepts related to brain anatomy. For a complete
reference of the former, we recommend the books of Tortora and Derrickson [2], and
Saladin [3]. More details about the latter can be found in the works of Hugdahl and
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comprehension systems are located [62]. It is also involved with memory and emotion
associations [63]. A deep lateral fissure called Sylvian fissure separates the temporal lobe
from the parietal and frontal lobes (see the purple region in Fig. 2.2b). The parietal lobe

is associated with linguistic and visuospatial functions. It helps to process the sense of
touch and pain [14]. Finally, the occipital lobe is responsible for vision since the primary
visual cortex is located within it.

The cerebellum is the second largest structure of the brain, located behind the tem-
poral and occipital lobes [2]. It has an irregular and highly folded surface similar to the
cerebrum. It plays a significant role in movement and acts in cognition and language
processing [14]. Lastly, the brainstem connects the brain to the spinal cord and the rest of
the body [14]. It receives and controls certain functions related to attention, temperature,
heart rate, and breathing.

In this thesis, we focus on detecting lesions in structures inside the brain hemispheres,
cerebellum, and brainstem. Chapter 3 details our approach for brain image segmentation.

2.1.2 Anatomical Planes of Body

To understand and describe the spatial organization of the body, we define positions
and directions relative to standard anatomical planes and axes [64]. These planes are
hypothetical geometric planes that divide the human body into sections. In human and
animal anatomy, the body (or an organ) is sliced up using three planes: axial, coronal,
and sagittal. In medical image analysis, a slice is a 2D image extracted from a 3D image
along with one of these planes. Fig. 2.3 shows these planes for a brain.

For the sake of simplicity, suppose an upright subject. An axial plane divides the body
into superior (upper) and inferior (lower) portions [2]. Such a plane is parallel to the floor
and perpendicular to the long axis of the body. Slices are extracted from the feet to the
head. When slicing the brain in this direction, we can see the left and right hemispheres
(Fig. 2.3). This plane is also known as transverse or horizontal plane.

A coronal plane (also called frontal plane) divides the body into anterior (front) and
posterior (back) portions [2]. Slices are extracted from the back to the front of the body.
A coronal slice will show both brain hemispheres, like the axial slice.

Finally, a sagittal plane is a vertical plane that divides the body into right and left
sides [2]. Indeed, slices are extracted from the right to the left side of the body. The
mid-sagittal plane (MSP) is a plane that passes through the center of the body dividing
it into approximately two symmetric parts [65] — see the coronal and axial MR slices
in Fig. 2.3. Most structures on one side have a corresponding counterpart on the other
side with similar shapes and relative locations [66]. Several applications, such as brain
image registration [67, 68, 65] and, more importantly, brain asymmetry analysis [65, 66, 69]
uses MSP. Likewise, some of our proposed methods will extensively use MSP as well.
Section 2.3.2 provides a summary of automatic MSP extraction methods.

3Figure adapted from https://www.wikiwand.com/en/Sagittal_plane.
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voxel size of 1× 1× 1 mm3).
Voxel size is strongly related to spatial image resolution, which is an essential com-

ponent of image quality. Spatial image resolution refers to the number of voxels in an
image, or equivalently the number of pixels in a slice. The higher the number of voxels,
the greater the resolution, and, consequently, the more detailed it is the image. Together
with image contrast, spatial resolution determines the expert’s ability to distinguish one
structure from others [72].

Altering voxel size impacts the spatial image resolution directly, as demonstrated in
Fig. 2.4 that shows the same axial slice of an MR-T1 image from the same subject but
acquired with different spatial resolution. For example, suppose an MRI scanner acquired
a brain image by using a voxel size of 2× 2× 2 mm3 and a given protocol. The resulting
spatial resolution obtained was 128× 128× 128 voxels. By appearance alone, the image
is pixelated, grainy, and has jagged edges that make its analysis harder (Fig. 2.4a). In
contrast, the same image was acquired with a smaller voxel size of 1× 1× 1 mm3 in order
to improve its quality. All other scanner parameters were the same. By halving the voxel
size, the resulting image resolution doubled: 256× 256× 256. Consequently, the image is
sharper with improved anatomic details that considerably leverage its analysis (Fig. 2.4b).
To achieve this higher quality, however, the imaging time approximately doubled.

(a) 2× 2× 2 mm3. (b) 1× 1× 1 mm3.

Figure 2.4: Comparison between the same axial slice of an MR-T1 brain image with
different spatial resolution. (a) Lower resolution: voxel size of 2× 2× 2 mm3. (b) Higher
resolution: voxel size of 1 × 1 × 1 mm3. Highlighted regions indicate a lesion. The low-
resolution slice is pixelated, grainy, and has jagged edges, whereas the high-resolution
slice is sharper with improved anatomic details.

A common practice in clinical routine to avoid long imaging times in MRI is to guar-
antee high-resolution for slices of a given direction (e.g., 1 × 1 mm2) but increase their
thickness (e.g., 5 mm) [10]. The resulting number of slices can be considerably less de-
pending on the chosen thickness. Such a practice results in two shortcomings: (i) small
structures or lesions can be partially or even totally lost; and (ii) morphological measure-
ments (e.g., volume) cannot be precisely computed. One might still interpolate slices to
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consists of the three planes that describe the standard anatomical position of a human
(Section 2.1.2). The image coordinate system details how a medical image was acquired
concerning the subject’s anatomy and defines the voxels’ coordinates. The conversion
between the world and image coordinate systems commonly involves an affine transfor-
mation between both spaces.5

Suppose a subject is lying for a brain scan with his/her face up (Fig. 2.6). In this thesis,
we consider that the world and image coordinate systems follow the LPS+ orientation,
that means:

• x-axis: from subject’s right to Left;

• y-axis: from subject’s anterior to Posterior; and

• z-axis: from subject’s inferior to Superior.

Anterior

Left

Right

Inferior

Superior

Posterior origin
(0,0,0)

Y

Z

X

LPS+ Orientation

Figure 2.6: Coordinate system with the LPS+ orientation.

LPS+ is the usual convention for radiological visualization. The direction of the axes
are given relative to the subject (e.g., “left” refers to the subject’s left). Each letter of
the orientation reference is an abbreviation for the subject’s direction. The + symbol is
a convention that defines which is the increasing direction along the corresponding axis.
The considered origin for the image coordinate system — i.e., the position of the voxel
(0,0,0) — is the upper-left corner toward the subject’s feet (Fig. 2.6).

Regardless of how medical images are stored on disk, all images processed together
must share the same coordinate system. Some medical image file formats,6 such as DI-
COM and Nifti, store the direction information that describes how the voxel data should
be interpreted [10]. Consequently, one can reorient the images to be analyzed together to
follow the same orientation. We reoriented all images used in this thesis to LPS+.

2.3 MRI Preprocessing

Automatic analysis of MR images is challenging due to typical acquisition artifacts —
e.g., noise, inhomogeneities, and variability of intensity and contrast — which negatively

5For more details, we refer to the manual of the NiBabel library [71] at https://nipy.org/nibabel/
coordinate_systems.html.

6For a complete reference of medical image file formats, we refer to the work of Larobina and
Murino [70].
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impact both medical diagnosis and automatic analysis. MRI preprocessing steps, in turn,
aim to reduce these artifacts and, consequently, improve the image quality for subsequent
analysis (Fig. 1.6).

Image 

Registration

Standard Image Space

Noise

Reduction

Bias Field 

Correction

Skull Stripping

Native Image Space

Raw 3D Image

Preprocessed

3D Image

Preprocessed

Registered 3D Image

Image Alignment

by MSP

Intensity

Normalization

Intensity

Normalization

Figure 2.7: General preprocessing steps for MR brain images. Native and Standard Image
Space refer to, respectively, the coordinate space of the image being preprocessed and a
given template.

In this section, we describe typical preprocessing steps applied to raw MR images [11,
78, 40, 79, 51, 80, 78, 81, 82] with a focus on the techniques used throughout this the-
sis. The combination of these steps is problem dependent and empirically estimated [82].
Fig. 2.7 presents the combination used in the next chapters. For a more detailed reference
on MRI preprocessing, we refer to the book of Martí-Bonmatí and Alberich-Bayarri [81].

2.3.1 Noise Reduction

Even though significant improvements in imaging technology have been made in the past
years, MR images are still prone to noise during acquisition [82, 83, 84, 85]. Noise directly
affects the accuracy of many automatic methods, such as segmentation, classification, and
registration [83].









36

(a) Moving image. (b) Fixed image. (c) Affine. (d) Non-rigid.

Figure 2.11: Example of affine and non-rigid registrations. (a) Moving image. (b) Fixed
image. (c) Registered images by affine registration. (d) Registered images by non-rigid
registration.

case is rigid registration that only uses rotations and translations [106]. Affine registra-

tion extends the degrees of freedom of the rigid approach by also considering scaling and
shearing transformations. Finally, non-rigid registration, also known as deformable reg-

istration, relies on non-linear operations to align images where correspondences cannot
be achieved without localized deformations. The choice of the registration approach is
problem-dependent and usually considers constraints as alignment accuracy and process-
ing time. Fig. 2.11 exemplifies the different types of image registration.

In this thesis, we consider affine and, most importantly, non-rigid registration for the
development of the proposed image analysis methods. We use Elastix [107] — an open-
source software widely used in the literature — to perform all registrations. Lastly, we
consider the popular ICBM 2009c Non-linear Symmetric template [108] for our methods.

2.3.5 Skull Stripping

Most automatic MR brain image applications aim to analyze patterns in only brain tissues,
i.e., the ones in the hemispheres, cerebellum, and brainstem. In contrast, the inclusion
of non-brain tissues (e.g., skull, eyes, and neck) during analysis makes the processing
time considerably slower, especially for 3D images. Besides, it can impair the resulting
accuracies since these tissues have similar intensities to brain ones [109]. To circumvent
these problems, most preprocessing pipelines rely on skull-stripping methods to extract
the brain for subsequent analysis. The result can be either a new image with only brain
voxels or a binary mask, which defines label 1 for brain voxels and label 0 for the remaining
tissues [110].

A large number of methods proposed over the past years confirms the importance
of skull-stripping [109, 110, 111, 112, 113, 114]. However, these methods are not able
to separate the right and left hemispheres, cerebellum, and brainstem — so-called brain

segmentation — that allows a more specific analysis. For example, one can use segmented
hemispheres to assess brain asymmetries [18], or as the first step for the segmentation
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of subcortical structures (e.g., hippocampus) [80], or to compare morphological measures
between the hemispheres [80]. Brain segmentation is more challenging than skull-stripping
as the boundaries between the objects of interest are not well-defined on MR images,
especially those between the hemispheres and cerebellum [41].

In this thesis, we propose a novel probabilistic-atlas-based method for the automatic
segmentation of (ab)normal MR-T1 brain images (Chapter 3). Our method, named
AdaPro, provides a labeled image (segmentation mask) that assigns a different label for
each object of interest — i.e., the right hemisphere, left hemisphere, cerebellum, and
brainstem. Different prior steps of the proposed anomaly detection methods use this
segmentation mask: (i) for intensity normalization (Section 2.3.6); (ii) to warp both
hemispheres for abnormal asymmetry detection on the native image space (Section 5.5);
and (iii) to perform anomaly detection in each object of interest individually (Chapter 6).
Chapter 3 provides a detailed review of brain image segmentation and presents AdaPro.

2.3.6 Intensity Normalization

In contrast with other medical imaging modalities, MR images even acquired with the
same protocol and scanner typically do not share similar intensities [82]. This inter-
image variability is problematic for automatic quantitative analysis because most methods
expect that the intensity distribution of all considered images is the same. The previous
methods for bias-field correction (Section 2.3.3) do not solve this problem, since they focus
on correcting intra-image variability, i.e., the unbalanced distribution of intensities, e.g.,

from a given tissue across the image.
Intensity-normalization methods aim to correct the scanner-dependent variation by

mapping intensities of all images into a standard reference [11]. Most traditional ap-
proaches rely on the use of the histogram-matching technique, which transforms the his-
togram from a source image to match a reference image’s histogram [82, 115]. Recent
methods incorporate a priori anatomical information by restricting the histogram match-
ing to only some segmented brain tissues [109, 11, 42]. Consequently, non-brain tissues
does not influence the quality of the final intensity normalization.

Inspired by the anatomical-based methods, we propose a novel intensity-normalization
approach, as follows. Assume a source brain image I, a reference image R, and their
corresponding brain segmentation masks after skull stripping (Section 2.3.5). First, we
apply a linear intensity normalization into I by mapping all its intensities within [0, 4095]

(12-bits). We chose this intensity range since all priority (in-house) datasets were acquired
within it. Finally, we apply a histogram matching between I and R by only considering the
object brain voxels defined in their segmentation masks. We use our proposed automatic
segmentation method, AdaPro, to obtain the brain segmentation masks from the source
images (Chapter 3). Fig. 2.12 illustrates the proposed intensity-normalization approach.

2.4 Image Foresting Transform

The Image Foresting Transform (IFT) is a methodology for the design of image opera-
tors based on optimum connectivity [60]. For a given connectivity function and a graph
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Aγ : {(p, q) ∈ DI ×DI , ‖q − p‖ ≤ γ}. (2.1)

The image operators considered in this thesis use two types of adjacency relations: A1

(6-neighborhood) and A√
3 (26-neighborhood), as illustrated in Fig. 2.13.

p

(a) A1: 6-neighborhood.

p

(b) A√

3
: 26-neighborhood.

Figure 2.13: Examples of adjacency relation for a given voxel p (red).

Paths: For a given image graph GI = (DI ,A), a path πq with terminus q is a sequence
of distinct nodes 〈p1, p2, · · · pk〉 with 〈pi, pi+1〉 ∈ A, 1 ≤ i ≤ k − 1, and pk = q. The path
πq = 〈q〉 is called trivial path. The concatenation of a path πp and an arc 〈p, q〉 is denoted
by πp · 〈p, q〉.

Connectivity Function: A connectivity function (path-cost function) assigns a value
f(πq) to any path πq in the image graph GI = (DI ,A). A path π∗

q ending at q is optimum
if f(π∗

q ) ≤ f(τq) for every other path τq. In other words, a path ending at q is optimum if
no other path ending at q has lower cost.

Connectivity functions may be defined in different ways. In some cases, they do not
guarantee the optimum cost mapping conditions [131], but, in turn, can produce effective
object delineation [132]. In this thesis, we explore the max-arc path-cost function fmax,
defined by

fmax(〈q〉) =

{

0 if q ∈ S,
+∞ otherwise.

fmax(πp · 〈p, q〉) = max{fmax(πp), w(p, q)}

(2.2)

where w(p, q) is the arc weight of 〈p, q〉, usually estimated from Î, and S is the labeled
seed set.

2.4.2 The General IFT Algorithm

For multi-object image segmentation, IFT requires a labeled seed set S = S0 ∪ S1 ∪ · · · SM
with seeds for object i in each set Si and background seeds in S0 (Fig. 2.14a). The al-
gorithm then promotes an optimum seed competition so that each seed in S conquers





41

Algorithm 1: The General IFT Algorithm

Input: Image Î = (DI , I), adjacency relation A connectivity function f , and
seed set S ⊂ DI labeled by λ.

Output: Optimum-path forest P , root map R, path-cost map C, and label map
L.

Aux: Priority queue Q, state map U , and variable tmp.

1 foreach q ∈ DI do
2 P (q)← ∅, R(q)← q

3 C(q)← f(〈q〉), L(q)← 0
4 U(q)← White

5 if q ∈ S then
6 insert q into Q

7 L(q)← λ(q), U(q)← Gray

8 while Q 6= ∅ do
9 Remove p from Q such that C(p) is minimum

10 U(p)← Black

11 foreach q ∈ A(p) such that U(q) 6= Black do
12 tmp← f(π∗

p · 〈p, q〉)

13 if tmp < C(q) then
14 P (q)← p, R(q)← R(p)
15 C(q)← tmp, L(q)← L(p)
16 if U(q) = Gray then
17 update position of q in Q

18 else
19 insert q into Q

20 U(q)← Gray

21 return (P,R,C, L)

2.5 Clustering by Optimum-Path Forest

This section presents OPF-clustering [129], a data-clustering algorithm based on optimum-
path forests. OPF-clustering extends the IFT framework (Section 2.4) from the image
domain to the feature space by interpreting a training set as a graph whose nodes are
the samples, and their arcs are defined by an adjacency relation. The nodes are weighted
by their probability density values (pdf), and a connectivity function is maximized, such
that each local maximum of the pdf becomes the root of an optimum-path tree (cluster),
composed by samples “more strongly connected” to that local maximum than to any other
root. We use OPF-clustering for the development of our proposed one-class classifier, as
presented in Section 4.2.4. The theoretical background and algorithm of OPF-clustering
are presented next.

Let Z be a training set, and s ∈ Z a given training sample. A random choice of samples
to compose Z makes the observations x = v(s) ∈ R

n a random field, whose probability
density function (pdf) ρ(x) can be estimated as
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(g) Iteration 20.
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Figure 2.15: Example of the IFT seed competition with fmax. (a) A 4-adjacent im-
age graph with numbers indicating arc weights based on image gradient, and squares
representing the seeds for two objects (red and yellow). (b)–(h) Iteration steps of IFT.
Numbers inside circles and squares indicate path-cost values. The resulting optimum-path
forest (OPF) is shown in (h).

ρ(x) =

∑

∀(s,t)∈A|v(s)=x exp
[

−d2(s,t)
2σ2

]

∑

∀s∈Z|v(s)=y ρ(y)
, (2.4)

where σ > 0, d(s, t) = ‖v(t)− v(s)‖, and A is an adjacency relation defined in the feature
space by

A : {(s, t) ∈ Z × Z|s 6= t,

t is k ≥ 1 nearest neighbor of s in R
n}.

(2.5)

A clustering in Z can be obtained by separating the domes of the pdf, such that the
samples in each dome compose one cluster. The authors in [129] formulated this problem
as an optimum-path forest problem in a graph. Their method selects one root sample per
local maximum of the pdf such that each remaining sample is assigned to the cluster of
the root that connects to it by an optimum path. A path is optimum in the sense that the
minimum density value along it is maximum concerning the values of other paths to the
same node. In order to guarantee that the roots will reach the remaining samples in the
same dome, they first consider the extended adjacency relation Ae, which is symmetric
on the plateaus of the pdf.
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Ae : {(s, t) ∈ A ∪ {(t, s)}|(t, s) 6∈ A

and ρ(s) = ρ(t)},
(2.6)

where ρ(s) = ρ(v(s)) = ρ(x). The parameter σ = max∀(s,t)∈Ae
{d(s, t)} is fixed and the

graph (Z,Ae) is weighted on the nodes s ∈ Z by ρ(s) and on the arcs (s, t) ∈ Ae by
d(s, t). A path πt with terminus t is a sequence 〈s1, s2, . . . , sm = t〉 of nodes, such that
(si, si+1) ∈ Ae, i ∈ [1,m], πt = 〈t〉 is said a trivial path, and πt = πs · 〈s, t〉 is the concate-
nation of πs and 〈s, t〉 with the two joining instances of s merged into one. The path-value
function f of minimum density is defined as

f(〈t〉) =

{

ρ(t) if t ∈ R,
ρ(t)− δ otherwise,

f(πs · 〈s, t〉) = min{f(πs), ρ(t)},

(2.7)

where δ = min∀(s,t)∈Ae
{|ρ(t)−ρ(s)|} and R is a root set with one sample per maximum of

the pdf, as selected during the algorithm. The optimum-path forest algorithm has been
first presented in [60] (Section 2.4), and the sufficient conditions for its correctness are
established with proof in [131]. It can maximize a path-value map V (t) = max∀πt∈Π{f(πt},
where Π is the set of all paths in the graph, by partitioning the graph into an optimum-
path forest P — an acyclic map that assigns to each node t ∈ Z its predecessor P (t) =

s ∈ Z in the optimum path with terminus t or a marker P (t) = nil 6∈ Z, when the node
t ∈ R is a root of the map. Once the optimum-path forest is defined, new samples t 6∈ Z

can be assigned to one of the obtained clusters by evaluating the values of the extended
paths πs ·〈s, t〉, ∀s ∈ Z. In [134], the authors simplify this process for the sake of efficiency
by considering an adjacency radius Ω(s) = max∀t∈A(s){d(s, t)}, where A(s) is the set of
the k nearest neighbors of s, and giving a sample priority for s ∈ Z, to conquer new
samples t, proportional to its optimum path value V (s). That is, t is assigned to the
cluster of the root R(s∗) of s∗ whose

ρ(s∗) = max
∀s∈L|d(s,t)≤Ω(s)

{ρ(s)}, (2.8)

where L is that priority list. When t does not satisfy the condition d(s, t) ≤ Ω(s) for any
s ∈ L, t is assigned to the cluster of its closest sample in L.

Algorithm 2 presents the clustering by Optimum Path Forest. The process starts by
defining all nodes as trivial paths 〈s〉 with values f(〈s〉) = ρ(s)− δ (Lines 1–4, Eq. 2.7).
In the main loop (Lines 5–14), the nodes are removed from Q in their non-increasing order
of path value. When the first node of a pdf maximum is removed from Q, Line 9 updates
its root value according to Equation 2.7. In the internal loop (Lines 10–14), the roots
R(s) conquer the remaining nodes t of the same plateau and dome of the pdf whenever
the value f(πs · 〈s, t〉) (Line 11, Eq. 2.7) is higher than the value V (t) (Line 12) of the
current path πt, assigning t to the same cluster of s (Lines 13–14). In the end, only the
roots of the forest have R(s) = s.

A last point for discussion is the choice of the parameter k. As suggested in [129], we
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Algorithm 2: Clustering by Optimum Path Forest
Input: Graph (Z,Ae) and the pdf ρ.
Output: Root map R and sorted list L.
Aux: Path-value map V , a binary heap Q, and variable tmp.

1 foreach s ∈ Z do
2 R(s)← s

3 V (s)← ρ(s)− δ

4 insert s in Q

5 while Q is not empty do
6 Remove s from Q such that s = argmax∀t∈Q{V (t)}
7 Insert s in L
8 if R(s) = s then
9 V (s)← ρ(s)

10 foreach t ∈ Ae(s) and V (t) < V (s) do
11 Compute tmp← min{V (s), ρ(t)}
12 if tmp > V (t) then
13 R(t)← R(s)
14 V (t)← tmp

find k ∈ [1, kmax] as the one that produces a minimum normalized cut cut(k) in (Z,Ae).

cut(k) =
∑

∀r∈R

W ′
r

Wr +W ′
r

,

Wr =
∑

(s,t)∈Ae|R(s)=R(t)=r

1

d(s, t)
,

W ′
r =

∑

(s,t)∈Ae|R(s)=r 6=R(t)

1

d(s, t)
.

(2.9)

The upper limit kmax is an application-dependent parameter — larger it is, fewer clusters
are obtained. Therefore, the only parameters are the size of the removed trees and kmax.
In this thesis, we fixed kmax equal to 15% of the number of training samples and eliminated
trees with less than five nodes from the training set.

Section 4.2.4 presents our proposed one-class classifier that extends OPF-clustering
for anomaly detection.

2.6 Iterative Spanning Forest (ISF)

A crucial step of the considered pipeline towards answering our research questions (Fig. 1.6)
consists of selecting volumes of interest (VOIs) for the subsequent analysis. A strategy for
VOI selection, which we explore throughout this thesis (Chapters 5 and 6), is supervoxel

segmentation.
Supervoxels are groups of connected voxels with similar characteristics resulting from
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an oversegmentation of a 3D image or region of interest. Similarly, the term superpixels is
used for 2D images. They preserve essential image information (e.g., the borders of tissues
and lesions) and are used as an alternative to patches to define more meaningful VOIs
for computer-vision problems [135, 136] and some medical image applications [6, 137]. For
example, one can oversegment the hemispheres in multiple supervoxels for brain anomaly
detection.

In this thesis, we consider the Iterative Spanning Forest (ISF) framework [61] for su-
pervoxel segmentation. ISF is a recent approach for both superpixel and supervoxel seg-
mentation that has shown higher effectiveness than several state-of-the-art counterparts,
especially when used for 3D MR image segmentation of the brain [61]. ISF consists of
three key steps: (i) seed sampling followed by multiple iterations of (ii) connected super-
voxel delineation based on IFT [60] (Section 2.4), and (iii) seed recomputation to improve
delineation. We next present the theoretical background for ISF as well as its algorithm.
For the sake of clarity, we use the same nomenclature presented in Section 2.4.

2.6.1 Theoretical Background

Recall the pair Î = (DI , ~I) be a d-dimensional multi-band image, where DI ⊂ Zd is the
image domain, and ~I : DI → R

c is a mapping function that assigns a vector of c real-
valued intensities ~I(p) — one value for each band (channel) of the image — to each element
p ∈ DI . For simplicity, assume that the term voxels represents the d-dimensional-image
elements.

As outlined in Section 2.4, an image can be interpreted as a graph GI = (DI ,A), whose
nodes are the voxels, and the arcs are defined by an adjacency relation A ⊂ DI ×DI , with
A(p) being the adjacent set of a voxel p. In this work, we consider the 6-neighborhood
adjacency for ISF (Fig. 2.13a).

For a given initial seed set S, labeled with consecutive integer numbers {1, 2, · · · , |S|},
and a connectivity function f , ISF computes each supervoxel as a spanning tree rooted
at a single seed, such that the seeds compete among themselves by offering lower-cost
paths to conquer their most strongly connected voxels. We use the following connectivity
function f given by

f(〈q〉) =

{

0, if q ∈ S,
+∞, otherwise,

f(πp · 〈p, q〉) = f(πp) +
[

α · ‖~I(q)− ~I(R(p))‖
]β

+ ‖q − p‖,

(2.10)

where ‖~I(t)− ~I(R(p))‖ is the Euclidean distance between the intensity vectors at voxels
R(p) and q, ‖q − p‖ the Euclidean distance between the voxels p and q, 〈q〉 is a trivial
path, πp · 〈p, q〉 the extension of a path πp with terminus q by an arc 〈p, q〉, and R(p) the
starting node (seed) of πp. The factors α and β serve to control a compromise between
supervoxel boundary adherence and shape regularity. Although the authors of ISF have
fixed α = 0.5 and β = 12 during the experiments [61], such factors are problem-dependent
and should be optimized to yield more accurate supervoxels. Fig. 2.16 shows the impact
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of α and β for the superpixel segmentation of a 2D brain image.

α=0.01, β=12 α=0.1, β=12 α=0.5, β=12 α=1.0, β=12

(a) Different values of α and β = 12.

α=0.5, β=1 α=0.5, β=5 α=0.5, β=8 α=0.5, β=12

(b) α = 0.5 and different values of β.

Figure 2.16: The impact of the factors α and β for superpixel segmentation by ISF. Each
superpixel is represented by a different color. For all cases, we performed ISF on the same
2D brain image with 10 iterations and identical 30 initial seeds selected by grid sampling.

2.6.2 The ISF Algorithm

Algorithm 3 presents a pseudo code for the Iterative Spanning Forest framework. At each
iteration (Lines 2–4), ISF performs connected supervoxel delineation on the image I based
on IFT (Line 3) — as described by Algorithm 1 — from a given seed set S ′, adjacency
relation A, and the connectivity function f described by Equation 2.10. The seed set
at Iteration 1 is the initial seed set S (Line 1). Next, the seed set is recomputed by
the function SeedRecomputation to improve delineation (Line 4). This process continues
until reaching N iterations. The algorithm returns the optimum-path forest (predecessor
map), root map, path-cost map, and the supervoxel label map. Fig. 2.17 illustrates the
execution of ISF.

In this work, we adopted a seed-recomputation strategy proposed by Vargas-Muñoz et

al. [61], as detailed next. At each iteration, we promote the centroids from the obtained
supervoxels — i.e., their geometric centers — to be the seeds of the next iteration. If a
given centroid ci is out of its supervoxel Li — due to the non-convex shape of Li — we
select the voxel of Li that is the closest to ci. We refer to Vargas-Muñoz et al. [61] for
more specific details.
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Algorithm 3: Iterative Spanning Forest

Input: Image Î = (DI , ~I), adjacency relation A, connectivity function f , initial
seed set S ⊂ DI , and the maximum number of iterations N ≥ 1.

Output: Optimum-path forest P , root map R, path-cost map C, and supervoxel
label map L.

Aux: Seed set S ′, and the variable i.

1 S ′ ← S
2 for i← 0 to N − 1 do

3 (P,R,C, L)← IFT (Î ,A, f,S ′)

4 S ′ ← SeedRecomputation(Î ,S ′, P, R, C)

5 return (P,R,C, L)

(a) Iteration 0. (b) Iteration 3.

(c) Iteration 6. (d) Iteration 9.

Figure 2.17: Example of the ISF execution (10 iterations with α = 0.5 and β = 12) on
a 2D brain image. (a)–(d) For iterations of ISF. For each iteration, we show its input
seeds (red points) and the resulting obtained superpixels (each color represents a different
superpixel). Iteration 0 shows the initial seed set obtained by grid sampling; the other
seed sets are obtained by seed recomputation. As the insets show, most seeds do not
change positions over iterations.



48

A crucial step for the success of ISF consists of performing a robust initial seed esti-

mation. This step, however, is problem-dependent, so that simple and general strategies
— e.g., a grid sampling in the input image — can provide unsatisfactory results (e.g.,
undersegmentating a lesion). Chapters 5 and 6 introduce two ISF-based algorithms for
supervoxel segmentation tailored to specific constraints. Both algorithms present different
strategies to build a 2-band volumetric image from a 3D MR image, as well as robust ini-
tial seed estimations that lead to better final supervoxels (e.g., a supervoxel that correctly
fits a lesion).

2.7 Conclusion

In this chapter, we have summarized the main background information on concepts ex-
plored in this work, which involves basic brain anatomy, imaging physics, and typical
MRI preprocessing operations. Besides, we introduced image foresting transform, a ro-
bust framework widely used for the development of several image operators throughout
this thesis.

From the reviewed material, we can conclude that the pipeline of medical image anal-
ysis for brain data is complex, having many steps of various natures, and primarily de-
manding concepts on anatomy and imaging physics. Each of these steps is crucial, in
its own way, to provide a good-quality final result, i.e., a good anomaly detection, to-
wards our research questions. In particular, we highlight the importance of the presented
MRI preprocessing operations (Section 2.3) for the success of such a pipeline since MRI
data typically presents acquisition artifacts of different characteristics — e.g., noise, in-
homogeneities, and variability of intensity and contrast — which negatively impact both
medical diagnosis and automatic analysis.

The rest of this thesis is dedicated to improving the various steps of the considered
medical image analysis pipeline.
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Chapter 3

Automatic Brain Image Segmentation

The precise delineation of 3D objects (e.g., organs and lesions) in 3D MR brain images
has been an active research topic over the last decades [138, 139]. A common example is
brain segmentation that aims to separate the so-called macro brain structures : the right
and left hemispheres, cerebellum, and brainstem. Brain segmentation is typically used for
a better understanding of neurological diseases, the study of brain asymmetries [18], mor-
phological analysis of the hemispheres [80], surgical planning [29], and the development
of computer-aided diagnosis systems [140]. Regarding our research questions, brain seg-
mentation supports the proposed unsupervised anomaly detection approaches in different
steps: (i) for intensity normalization (Section 2.3.6); (ii) to warp both hemispheres for
anomaly detection on the native image space (Section 5.5); and (iii) to perform anomaly
detection in each object of interest individually (Chapter 6).

The absence of well-defined boundaries between the macro brain structures in MR
images makes brain segmentation challenging. Fully interactive segmentation methods
require a high number of user intervention, becoming a tedious, time-consuming, and
error-prone task, especially for studies involving large datasets [141]. Moreover, such
methods require specialists with considerable experience in manual delineation. The use
of prior anatomical information (shape constraints) can either mitigate the problem or
eliminate the need for user interaction.

Atlases: Probabilistic atlases (PAs), also known as statistical object shape models, are
popular and well-succeeded examples of shape constraints for automatic brain segmenta-
tion [142, 143, 120, 144, 141, 41]. Methods based on PAs estimate the probability of a voxel
to be part of a given object regardless of its intensity in the original image [143, 120, 41].
Some techniques, such as SOSM-S [120], combine these probabilities with a delineation

This chapter is based on the following publications:
(i) A. X. Falcão, T. V. Spina, S. B. Martins, and R. Phellan, “Medical image segmentation using object
shape models: A critical review on recent trends, and alternative directions,” VipIMAGE, pp. 9–15, 2015;
(ii) S. B. Martins, T. V. Spina, C. L. Yasuda, and A. X. Falcão, “A multi-object statistical atlas adaptive
for deformable registration errors in anomalous medical image segmentation,” in SPIE Medical Imaging,
vol. 10133, pp. 691–698, 2017. Honorable mention;
(iii) S. B. Martins, J. Bragantini, C. L. Yasuda, and A. X. Falcão, “An adaptive probabilistic atlas for
anomalous brain segmentation in MR images,” Medical Physics, vol. 46, no. 11, pp. 4940–4950, 2019.
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algorithm to obtain better-refined object boundaries. However, the existing models do
not adapt to possible object anomalies caused by the presence of a disease or a surgical
procedure (Fig. 3.1). Such anomalies often alter the shape and texture of the brain struc-
tures, making them different from the appearance of the model. One might post-process
the resulting segmentation masks, for example, by removing cerebrospinal fluid (CSF)
voxels obtained by tissue classification (Fig. 3.1f). However, post-processing does not fix
existing segmentation errors of the model on gray matter (GM) and white matter (WM)
voxels – e.g., voxels between the hemispheres in Figs. 3.1e–f. Post-processing can still
increase those segmentation errors (Fig. 3.1f).
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Figure 3.1: Automatic brain segmentation by the probabilistic-atlas-based method SOSM-
S [120]. (a) Coronal slice of a 3D brain image after left temporal lobe resection (arrow).
(b) The corresponding slice of a prior probability map for the left hemisphere (blue and
yellow voxels indicate the certainty and uncertainty regions, respectively). (c) Overlap-
ping between (a) and (b). (d) Estimated seeds for object delineation. (e) Coronal slice of
the resulting 3D object mask (blue) and the gold-standard border (red). Arrows indicate
segmentation errors. (f) Post-processed object mask after removing voxels classified as
CSF by expectation maximization algorithm [145].

Deep learning methods: Recent work proposes deep neural networks for segmenting
GM, WM, and CSF [11, 32]; hippocampus [57]; brain lesions [35, 146]; and skull [114].
These approaches usually (i) take high processing times, (ii) depend on a large number
of training images, which must be previously annotated by experts; and (iii) may require
weight fine-tuning (retraining) when used in each new distinct set of images [11]. The
latter is certainly a significant limitation, due to the difficulty of annotating medical image
training sets with 3D objects [147], the image variability across scanners and acquisition
protocols, and differences between healthy and pathological brain tissues. In this sense,
methods that rely on object-shape-based models and texture classifiers, which can be
created from a few labeled voxels, are more attractive. Our proposed research falls into
this category.
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In this chapter, we present an effective and efficient adaptive probabilistic atlas, named
AdaPro, to circumvent the above limitation. Our method adapts shape constraints on-
the-fly according to the presence of detected anomalies in the target image. The adaptive
model uses a binary texture classifier trained from a few background and object voxels on
a template (reference 3D image). It relies only on voxel feature representation and texture
classification to adapt its probabilistic atlas. Finally, AdaPro performs a new object-based
delineation algorithm based on combinatorial optimization and diffusion filtering [148, 149]
for shape smoothing.

We structure this chapter as follows. Section 3.1 presents related work on object-
shape-based models for automatic brain image segmentation and details the baselines
considered during experiments. Section 3.2 introduces AdaPro. Section 3.3 describes
the experimental setup, while Section 3.4 presents and discusses the results. Finally,
Section 3.5 concludes this chapter.

3.1 Related Work

Image segmentation involves two tightly coupled tasks: object recognition and object
delineation [150]. Recognition indicates the whereabouts of the desired object, while de-

lineation precisely defines its spatial extent in the image.1 Some approaches can present
different levels of automation for each task, varying from purely manual to fully automatic.
This thesis only focuses on fully automatic approaches.

Atlas-based segmentation, also called object-shape-based segmentation, is one of the
most widely-used and successful approaches for automatic brain image segmentation.
These methods use the a priori knowledge about objects’ shapes from a training set
X = {A1, · · · , An} with n atlases. Each atlas Ai = (Ii,Mi) consists of a source 3D image
Ii (e.g., MR image) and its corresponding 3D label image Mi with the segmentation
mask of each 3D object of interest. These segmentation masks, called gold standards,
are obtained from manual or semi-automatic interactive segmentation by one or multiple
experts. This process typically requires outlining the structures in a slice-by-slice fashion,
resulting in a time-consuming, tedious, and error-prone task [11].

The simplest atlas-based methods [151, 152, 153] rely on a single atlas Ar = (Ir,Mr)

and segment a 3D test image I by propagating the labels from Mr to I after image
registration between I and Ir (template). However, since registration does not perfectly
align the borders of the registered image and the template (Section 2.3.4), a single atlas is
insufficient to capture wide anatomical variations, especially when anomalies are present
in I. This strategy evolved to probabilistic atlases (PAs) and then to Multi-Atlas Label

Fusion (MALF), as discussed next.

3.1.1 Probabilistic Atlas

Methods based on PAs estimate the probability of a voxel is part of a given object regard-
less of its intensity in the original image [143, 120, 41]. Fig. 3.2 shows the general pipeline

1Some authors commonly use the term segmentation to refer to delineation so that recognition is
implicitly assumed [150].
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of these methods. The construction of a PA initially requires the selection of a standard
template Ir (Fig. 3.2, Step 1). One can select the most similar atlas to the others in
the training set [120] or use a well-established coordinate space, such as the popular MNI
template [108]. The training source images are then registered to Ir by non-rigid registra-
tion, and their segmentation masks are also mapped to Ir by applying the corresponding
transformations (Fig. 3.2, Step 2). Once the training atlases are on the same coordinate
space, one computes a prior probabilistic map P (Fig. 3.2, Step 3), where each voxel v has
a prior probability of belonging to a given object of interest [144] — i.e., the frequency in
which v assumes the label of such object in all training masks (see the resulting map for
AdaPro posteriorly illustrated in Fig. 3.6). All voxels with probability within (0, 1) form
the uncertainty region, where the object’s boundaries are likely to fall. For segmentation,
the unseen test image It is mapped on to the coordinate system of P (recognition), and
delineation (Fig. 3.2, Steps 4–5) typically involves thresholding the prior probabilities
associated to the voxels [154, 104], or estimating and thresholding a posterior probabili-
ties [120, 155], or by using other image processing operators [156, 120, 147].
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Figure 3.2: General steps for the construction and use of probabilistic atlases for automatic
image segmentation.

PA-based methods have been actively investigated in the past decades [154, 157, 144,
158, 156, 120, 141, 41, 155, 147]. For example, the well-known FreeSurfer [144] automat-
ically segments several brain anatomical structures by combining the use of a Markov
random field and probabilistic atlases into a Bayesian framework [144, 157]. Despite be-
ing widely accepted as the de facto standard of brain segmentation in many anatomical
studies [159, 144], FreeSurfer demands a considerably high processing-time to segment an
image (∼ 15h), which makes it impracticable for clinical routine and studies involving
large datasets.

Some strategies combine registration and delineation into a probabilistic framework [147].
Pohl et al. [155] proposed using the expectation-maximization (EM) algorithm [160] to
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find the optimum parameters for registration while labeling each voxel to a brain tis-
sue. Ashburner and Friston [158] proposed a unified objective function to segment brain
tissues (CSF, WM, and GM) while correcting the bias field and refining registration,
whose parameters are derived from a mixture of Gaussians. Since this approach uses only
healthy-shape priors, it fails to segment images with some anomalies.

The accuracy of PA-based approaches is very sensitive to registration errors, mainly
caused by the inter-subject variability in anatomical patterns [147]. Some methods then
use image processing operators to attenuate the impact of such errors while refining the fi-
nal delineations of the brain structures. Grau et al. [156] use the watershed algorithm [133]
from seeds corresponding to each brain-tissue class. Such seeds are estimated as the skele-
tons calculated from the probabilistic atlas.

Recently, Phellan et al. [120] have demonstrated that if we acknowledge registration
errors, the accuracy of probabilistic atlases may be significantly improved as long as a local
search for the object is performed with the model. For this purpose, their probabilistic
atlas, named SOSM-S, uses a triple {P,D, F} composed of the traditional prior probability

map P (Fig. 3.6), a delineation algorithm D, and a criterion function F . The goal of P
is to impose the object’s shape learned from the training atlases, which aims to constrain
the delineation with D to occur only for uncertain voxels. The delineation algorithm
D, in turn, aims to adapt the shape constraints to the test image, rather than merely
thresholding P after registration. SOSM-S uses the watershed transform by the Image
Foresting Transform (IFT) algorithm [60] for object delineation (Section 2.4). Criterion
F is used for the local object search to mitigate registration errors. The search requires
the translation of P over the registered test image, delineating a candidate object with D

at every position. Then, it evaluates the resulting mask with F , which is expected to be
maximum when the candidate mask corresponds to the target object. Such synergistic
operation between object localization and delineation constitutes the task of segmentation
and stems from Fuzzy Object Shape Models [161].

Despite the success of SOSM-S for brain segmentation in control images, the method
fails in the presence of anomalies since the model imposes the shape of healthy organs
(Fig. 3.1). Moreover, only MR-T1 brain images of 2T were used for evaluation, ignor-
ing inherent problems of higher quality 3T images (e.g., field inhomogeneity and noise).
SOSM-S’ local search, in turn, may require considerable processing time for performing
IFT delineation for each candidate in the search region.

In this thesis, we revisited SOSM-S to present a faster adaptive model, named AdaPro,
for anomalous brain segmentation with the following contributions:

1. We incorporate a texture classifier based on convex optimization that indicates on-

the-fly the regions of the target 3D image where the shape constraints should be
further adapted on the probabilistic atlases (i.e., disregarded during object delin-
eation). This strategy avoids the problems of applying the classifier as a post-
processing operation (Fig. 3.1f);

2. We increase the uncertainty region of the statistical shape model (by erosion and
dilation) to avoid local object search, as adopted by SOSM-S. This strategy makes
the segmentation considerably faster;
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3. We added the object relaxation procedure from Moya and Falcão [149] to improve
segmentation accuracy and make the objects’ appearances more pleasant (without
jagged edges);

4. We extended the brain segmentation to the native coordinate space of the test im-
ages.

Section 3.2 introduces AdaPro and details the above contributions.

3.1.2 Multi-Atlas Label Fusion (MALF)

Methods based on Multi-Atlas Label Fusion (MALF) aim to suppress registration errors
by considering that each training atlas Ai = (Ii,Mi) produces one candidate segmentation
per test image It. Each training atlas is registered on to It so that the fusion of all mapped
segmentation masks generates the final segmentation [104, 162, 80, 163, 164, 165, 166].
MALF can be performed either in the native or template space. Fig. 3.3 presents the
general steps of MALF.

Atlas 
Selection

segmentation 
mask
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Fusion

test image
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atlases

Figure 3.3: General steps of Multi-Atlas Label Fusion for image segmentation.

Challenges: The computational bottleneck of MALF consists of registering the entire
training atlas set to It, which demands the most significant processing time during segmen-
tation [104]. Some MALF methods then select the subset of the k most similar training
atlases to It (atlas selection) to make the segmentation faster, which is particularly im-
portant in scenarios where time is a significant constraint [104]. Moreover, when removing
training atlases that are anatomically unrepresentative to It, one might expect to improve
the segmentation accuracy [167].

Pipeline: Most atlas-selection methods rank the relevance of the training atlas set X by
employing a given metric based on image-similarity [167, 168, 169]. Aljabar et al. [167], for
example, proposed the use of normalized mutual information (NMI) to rank X — see more
details of NMI in Appendix C.1. Initially, the method chooses a reference image Ir from X

and maps all training atlases to Ir. A test image It is then registered on to the space of Ir
and the NMI between It and each image in X is computed. Finally, the method selects the
k top-ranked training atlases for subsequent segmentation. This approach considerably
reduces the number of registrations during atlas selection. Asman et al. [170] replace NMI
with principal components analysis to define atlas similarity metrics. More recently, other
works rely on clustering to select the most similar training atlases [171, 172] to It. For



55

instance, Nouranian et al. [171] partition the set It ∪ X into k clusters by using the K-
means algorithm [173] and select a subset of training atlases belonging to the same cluster
of It.

Once the k most relevant training atlases are selected, their source images are regis-
tered on to the coordinate space of It, and their masks are also mapped to by applying their
corresponding deformation fields. Although non-rigid registration is time-consuming, it
is preferable in MALF applications for better capturing anatomical variation between dif-
ferent subjects [147], resulting in higher segmentation accuracies [104]. Typical non-rigid
registration techniques are based on mathematic transformations, such as cosine-based
functions [174], B-spline curves [107], and level set partial different equations [175].

Finally, the propagated labels from the registered segmentation masks are combined
(label fusion) to generate the final segmentation. The simplest solution is majority vot-

ing, which selects the most frequent label at each voxel [176]. Other works assign a
local or global weight for each registered training atlas during label fusion, which reflects
the similarity between the test image and the atlas [177, 163, 112, 162]. For instance,
Artaechevarria et al. [177] compute global weights from the NMI between the training
atlases and the test image. One of the most popular techniques is STAPLE [164], which
weights each training atlas using the expectation-maximization algorithm. Alternative
strategies estimate local weights by computing local cross-correlation [178], local mutual
information [179], and local registration accuracy [180]. Recent label-fusion techniques in-
volve the use of patches to compute weights at each voxel [181, 182].

Implementations: In the context of brain image segmentation, we highlight the recent
software called volBrain [80], a solution that provides segmentation and structure asym-
metry ratios at different scales for intracranial cavity (skull stripping), tissue volumes
(GM, WM, and CSF), brain segmentation, lateral ventricles, and subcortical GM struc-
tures. volBrain has reached superior segmentation results as compared to well-established
and publically available solutions, such as FreeSurfer [144] and FIRST [183], serving as a
starting point for works regarding brain image analysis.

volBrain uses NABS (Non-local Automatic Brain hemisphere Segmentation) [162] for
brain segmentation. This method randomly selects 30 atlases from a training set of
healthy subjects (with ∼ 600 atlases), which are then preprocessed using the following
operations: noise reduction, registration on to linear MNI space [108], skull stripping, in-
homogeneity correction, and intensity normalization. After preprocessing the test image,
NABS performs a tissue classification that only considers WM, GM, and CSF. Finally, the
non-local label-fusion technique proposed by Coupe et al. [181] segments the hemispheres,
cerebellum, and brainstem. This label fusion estimates the influence of each atlas for each
voxel v by computing the Euclidean distance of a 3D patch around v in the test image
and the source images from the chosen atlases. We considered volBrain as a baseline in
our experiments (Section 3.3).
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3.2 Adaptive Probabilistic atlas (AdaPro)

We propose an Adaptive Probabilistic atlas (AdaPro) for anomalous brain image seg-
mentation that incorporates a texture classifier during object delineation. This classifier
indicates on-the-fly the regions of the target 3D image where the shape constraints should
be further adapted (i.e., regions disregarded during segmentation) due to the presence
of abnormalities (Fig. 3.1a). Fig. 3.4 presents the steps for the construction and use of
AdaPro, whereas Fig. 3.5 shows resulting images of these steps for the segmentation of
both hemispheres and cerebellum. Although some figures presented in this section show
examples with MR slices, AdaPro uses 3D MR images.
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Figure 3.4: Pipeline for the construction and use of AdaPro.

3.2.1 Construction

Recall a training set X = {A1, · · · , An} with n atlases of healthy subjects, where each
atlas Ai = (Ii,Mi) consists of a source 3D image Ii and its corresponding label image Mi

with the mask of each 3D object of interest.

Template Selection

Since our method is based on registration, the first step is to select a standard refer-
ence coordinate space (template) where the probabilistic atlas will be constructed. This
template might be a popular atlas, such as MNI [108], or the most similar training atlas
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Preprocessing and Registration

As outlined in Section 2.3, automated MR image segmentation is challenging due to
inherent problems of image acquisition, such as noise, field inhomogeneity, and variability
of the intensity ranges, mainly in high-resolution images from 3T scanners, for example.
We then perform some image processing operations, as detailed in Section 2.3, to improve
the quality of the images.

We first apply noise reduction by median filtering, followed by MSP alignment, and
an inhomogeneity correction with N4 [102]. The resulting images are then registered to
the template Ir by non-rigid registration (Section 2.3.4), and their masks are also mapped
to by applying their corresponding deformation fields (Figs. 3.5a–b).

Probabilistic Atlas Creation

For each object m, we build a probabilistic atlas Pm by counting the frequency of
the label assignment from all training registered atlases Ai ∈ X and keeping the mostly
assigned label to each voxel. Label assignment only takes into account the object m and
the background (label 0). This frequency corresponds to the prior probability of the voxel
to belong to object m. Fig. 3.6 depicts the probabilistic atlases for the cerebellum and
brain hemispheres.

One might also build a single multi-object probabilistic atlas with all objects under
study. However, a previous study showed that the use of a probabilistic atlas for each ob-
ject results in more accurate segmentation as compared to the multi-object strategy [141].

1

0

R L

Figure 3.6: Axial, coronal, and sagittal slices of the combination (only for visualization)
of probabilistic atlases for the cerebellum (red), right hemisphere (green), and left hemi-
sphere (blue). The brighter the object’s color, the greater its prior probability value.

Model Adaptation

We design a binary classifier C based on a linear Support Vector Machine [184] by
interactively selecting training voxels on the 3D template Ir. SVM is fast and robust
to classify high-dimensional data (like ours). Brain tissue voxels are considered positive
samples and voxels with typically different intensities (CSF and image background) are
considered negative samples. Each training voxel is represented by its intensity and the
intensities of all neighbors inside a sphere of radius 5.0, resulting in a 515-dimensional
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feature vector. Fig. 3.7 shows an example of chosen voxels on a given Ir.

Figure 3.7: Slices of the chosen template (reference 3D image) with the selected voxels
to design the texture binary classifier. The brain tissue voxels (orange scribbles) are the
positive samples, whereas the voxels with different intensities (magenta scribbles) are the
negative samples.

3.2.2 Segmentation

Let It represent a target 3D brain image after preprocessing and non-rigid registration on
to Ir (Fig. 3.5b). Each object of interest m is independently segmented by following the
steps, as detailed below. Then, all delineated objects are combined to result in the final
3D label image Mt.

Object Localization and Histogram Matching

As AdaPro relies on a texture classifier to detect anomalous regions, the wide differ-
ences in intensity and contrast among the 3D images, mainly when considering images
provided by different scanners, must be attenuated to guarantee a similar range of inten-
sities for the same tissue. One could then apply a histogram matching between It and Ir,
but voxels from irrelevant tissues/organs for the addressed problem (e.g., neck and bones)
can negatively impact this operation. AdaPro circumvents this problem by binarizing the
probabilistic atlas Pm of each object m, followed by morphological closing to fill small
holes (e.g., small gaps inside sulci; maximum volume of 8 × 8 × 8 mm3), and merging
them into a single 3D binary mask B (object localization mask). B can still be dilated if
the user provides a dilation radius > 1 for seed estimation. Note that B contains all voxels
from the certainty and uncertainty regions for all target objects (localization) that indeed
define the regions for object delineation (Fig. 3.5b). Finally, AdaPro performs a histogram
matching between It and Ir only inside the object voxels defined by B (Fig. 3.5c).

Texture Classification and Seed Estimation

We aim at estimating a seed set S = S0 ∪ Sm, where Sm, m > 0, contains seed voxels
selected inside the object m, and S0 contains seed voxels selected in the background. The
borders of the dilated and eroded certainty region of Pm form S0 and Sm, respectively. The
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dilation and erosion slightly increase the uncertain region of Pm. Thus, seed estimation
is simpler and faster as compared to SOSM-S (Section 3.1.1), for example, since it avoids
performing several delineations as it is done during SOSM-S’ local object search.

To identify regions on It where shape constraints should be adapted, AdaPro classi-
fies It with the texture binary classifier C (Fig. 3.5d). Then, the residual image of B vs

the classification forms a forbidden region F (magenta voxels in Figs. 3.5e–g) that elim-
inates its voxels from the competition between internal and external seeds during object
delineation. This strategy will not work as a post-processing operation, because object
delineation without the forbidden region might mislabel voxels from distinct objects.

Object Delineation

For the delineation of each object m, AdaPro uses a fast implementation [149] of
the Relaxed Image Foresting Transform (RIFT) algorithm [148], an IFT-based algorithm
(Section 2.4) that smooths the delineated object borders. This algorithm first computes
a watershed transform from labeled seeds defined by S = S0 ∪Sm, exactly as in SOSM-S.
The seed competition takes into account the gradient image of It (Fig. 3.5h), whose voxels
are expected to be brighter along the objects’ boundaries than elsewhere. Therefore, the
voxels are conquered by the seed, which offers the path whose maximum intensity along
it is minimum as compared to any other path from the remaining seeds. A fast diffusion
filter [149] then smoothes the resulting mask. Since the segmentation of each object m is
performed independently, when a voxel is assigned to multiple labels, its final label is the
one with higher probability value in the probabilistic atlas (Figs. 3.5i–j).

Segmentation on Native Image Space

AdaPro can segment It on its own native image space (NIS). The only change for this
is to map the probabilistic atlases to It by applying the transformations (deformation
fields) resulting from the non-rigid registration between the template Ir on to It. AdaPro
then performs the remaining steps as previously presented.

One might use AdaPro to segment It on the template coordinate space and then in-
versely mapping it to NIS. However, this approach cannot tackle segmentation errors
resulting from the inverse mapping. This strategy proposed by AdaPro is different, as it
relies on object delineation to circumvent those registration errors.

3.3 Experimental Setup

To assess the performance of AdaPro, we conducted a set of experiments. This section
describes the MR-T1 image datasets, compared methods, and the evaluation protocol
considered for the experiments. All computations were performed on the same Intel Core
i7-7700 CPU 3.60GHz with 64GB of RAM.
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3.3.1 Datasets

We used six in-house datasets of 3D MR-T1 brain images of healthy subjects and patients
before and after temporal lobe resections, as presented in Appendix B.1. All images
were provided by the Neuroimaging Laboratory (LNI) at the University of Campinas
(UNICAMP), Brazil. The datasets were divided into two groups according to their field
strengths.

Group A has three datasets of 2T images acquired with a 2T Elscint scanner and voxel
size 0.98 × 0.98 × 0.98 mm3: (HEALTHY-2T) 19 images from healthy subjects, (PRE-
2T) 20 pre-operative images from epilepsy patients, and (POST-2T) 20 post-operative
images from epilepsy patients. This group has 20 epilepsy patients with a pair of pre-
and post-operative images for each one.

Group B has three datasets of 3T images acquired with a 3T Siemens scanner and
voxel size 1 × 1 × 1 mm3: (HEALTHY-3T) 20 images from healthy subjects, (PRE-3T)
30 pre-operative images from epilepsy patients, and (POST-3T) 60 post-operative images
from epilepsy patients. This group has 30 epilepsy patients to which there are one pre-
and two post-operative images.

A template obtained from HEALTHY-2T, with 165×255×255 voxels, was considered
for group A, whereas a template obtained from HEALTHY-3T, with 180×240×240, was
used for group B. Therefore, our study involved a total of 169 images.

A neurologist from LNI has carefully delineated the cerebellum (C), right hemisphere
(RH), and left hemisphere (LH) to build the gold-standard segmentation of all datasets.
Consequently, brainstem is not considered in the experiments. Resulting segmentation
masks consider that background voxels have label 0 and each object has label m =

1, 2, . . . , L, where L is the total number of objects. Fig. 3.8 presents examples of the
considered datasets.

3.3.2 Evaluation Protocol

We compared AdaPro2 with three atlas-based methods: SOSM-S [120], volBrain [80],
and a MALF technique instantiated with the popular atlas selection of Aljabar et al. [167]
and STAPLE label fusion [164]. All these methods are detailed in Section 3.1.

The quality, resolution, and brain tissues’ intensities are quite different in 2T and
3T MR-T1 images (Section 2.2.2), even after applying the same preprocessing operations
detailed in Section 3.2.1. For example, 2T images are noisier than 3T images, whereas field
inhomogeneity is higher in 3T than 2T images — compare the examples in Fig. 3.8. Thus,
a single texture classifier — designed from voxels selected in a template acquired with a
given field strength — may not be accurate when classifying anomalies in images acquired
with different field strength. Therefore, we evaluated Groups A and B independently
(Section 3.3.1). For each one, we considered its dataset of healthy subjects as the training
set, which is used for SOSM-S, MALF, and AdaPro. volBrain uses its own training atlas
set since we do not have access to it.

2All binaries of AdaPro can be found on https://github.com/lidsunicamp/MedicalPhysics19_

AdaPro
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and AdaPro. Due to processing-time constraints, MALF used all images of HEALTHY-
2T for evaluation in group A, and it selected the 20 top-ranked training atlases from
HEALTHY-3T for each test image during validation in group B. All methods used the
same 3D template (reference image) which consists of the most similar atlas to the others
in the training set. We performed all registrations by the Elastix3 software [107].

The linear SVM texture classifier from AdaPro was trained from positive and nega-
tive voxels chosen on the template of each group (Fig. 3.7). We set the SVM penalty
parameter C to 10−5. For each object m, AdaPro requires the choice of the radii d and
e for dilation and erosion of the probabilistic atlas, respectively. We used the train-
ing set of each group to determine the best choice for these parameters by grid search.
The values (dC , dRH , dLH), (eC , eRH , eLH) found respectively for the cerebellum (C), right
hemisphere (RH), and left hemisphere (RH) are: group A (0, 0, 0), (1, 2, 2) and group B
(0, 0, 0), (1, 2, 2). These values were then fixed for all experiments.

Since not all baselines work in both template and native image spaces, we made some
adaptations. The software volBrain outputs brain segmentation masks in native and
MNI linear space (after mapping the input image by affine registration). To obtain the
segmentation masks in the coordinate space of the chosen templates for the groups, we
used the registered test images as input for volBrain. Conversely, SOSM-S only performs
the segmentation in the template space. Then, for each test image, we applied the inverse
transformation on its segmentation masks in order to have them in the native space of
each test image.

3.4 Results

This section presents and discusses the results of the quantitative evaluation of the meth-
ods on the two datasets of epilepsy patients from each group. In our evaluation, we will
rely more on the Average Symmetric Surface Distance (ASSD; Appendix C.2) score (in
millimeters) as segmentation accuracy measure than on global measures such as Dice (Ap-
pendix C.2). ASSD better captures segmentation errors along the segmented boundaries
than Dice, especially in the case of post-operative images with removed portions of the
brain (Fig. 3.8). However, we also include Dice in the results due to its wide popularity
in the literature. Finally, we performed an analysis of variance (ANOVA) to compare the
resulting mean scores between the considered methods.

Tables 3.1 and 3.2 present the ASSD score (lower is better) for the epilepsy datasets
of 2T images and 3T images, respectively. Tables 3.3 and 3.4, in turn, present the Dice
score (higher is better) for the same datasets. The numbers correspond to the mean and
standard deviation values of all instances of each object of interest. Resulting p-values
from the ANOVA test are shown in parenthesis for each evaluation scenario. Fig. 3.9
shows the mean segmentation errors in the template space for the considered baselines.

SOSM-S and MALF perform worse on post-operative images because they cannot
capture abnormalities, as evidenced in Fig. 3.9. Note that errors occur mainly in the

3We use the par0000 files available on http://elastix.bigr.nl/wiki/index.php/Parameter_file_

database
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Table 3.1: Comparison of ASSD (mm) for the Cerebellum (C), Right Hemisphere (RH),
and Left Hemisphere (LH) of the pre- and post-operative images of 2T. Lower ASSD
means better accuracy (bold scores are the best with statistical significance). Resulting
p-values from ANOVA test are in parenthesis.

Epilepsy Datasets (Group A) - ASSD

PRE-2T POST-2T

C RH LH C RH LH

SOSM-S 0.90 ± 0.08 0.99 ± 0.12 1.07 ± 0.14 0.79 ± 0.15 1.41 ± 0.20 1.32 ± 0.39

MALF 0.88 ± 0.18 0.93 ± 0.08 0.91 ± 0.11 1.15 ± 0.37 1.36 ± 0.22 1.38 ± 0.39

volBrain 0.97 ± 0.18 1.52 ± 0.32 1.47 ± 0.30 0.98 ± 0.19 1.32 ± 0.17 1.27 ± 0.21

AdaPro 0.86 ± 0.11 0.92 ± 0.11 0.90 ± 0.12 0.96 ± 0.19 1.17 ± 0.19 1.13 ± 0.30

(p = 0.098) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p = 0.013)

SOSM-S 0.97 ± 0.10 1.07 ± 0.11 1.14 ± 0.12 0.96 ± 0.13 1.24 ± 0.20 1.22 ± 0.22

MALF 0.79 ± 0.25 0.87 ± 0.09 0.86 ± 0.11 0.86 ± 0.30 1.01 ± 0.11 1.04 ± 0.19

volBrain 1.00 ± 0.21 1.46 ± 0.33 1.40 ± 0.30 1.01 ± 0.23 1.43 ± 0.24 1.41 ± 0.28

AdaPro 0.83 ± 0.15 0.86 ± 0.12 0.85 ± 0.11 0.86 ± 0.16 0.90 ± 0.13 0.90 ± 0.20

(p = 0.001) (p < 0.001) (p < 0.001) (p = 0.070) (p < 0.001) (p < 0.001)n
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Table 3.2: Comparison of ASSD (mm) for the Cerebellum (C), Right Hemisphere (RH),
and Left Hemisphere (LH) of the pre- and post-operative images of 3T. Lower ASSD
means better accuracy (bold scores are the best with statistical significance). Resulting
p-values from ANOVA test are in parenthesis.

Epilepsy Datasets (Group B) - ASSD

PRE-3T POST-3T

C RH LH C RH LH

SOSM-S 0.91 ± 0.22 1.04 ± 0.14 1.02 ± 0.13 0.90 ± 0.19 1.28 ± 0.20 1.25 ± 0.18

MALF 1.02 ± 0.31 1.07 ± 0.18 1.06 ± 0.17 1.00 ± 0.28 1.30 ± 0.16 1.25 ± 0.20

volBrain 1.02 ± 0.08 1.42 ± 0.11 1.36 ± 0.10 1.01 ± 0.09 1.51 ± 0.14 1.47 ± 0.13

AdaPro 0.75 ± 0.07 1.03 ± 0.18 1.01 ± 0.14 0.75 ± 0.09 1.08 ± 0.18 1.10 ± 0.18

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

SOSM-S 0.97 ± 0.26 1.16 ± 0.17 1.15 ± 0.16 0.94 ± 0.19 1.29 ± 0.29 1.26 ± 0.24

MALF 1.05 ± 0.40 1.14 ± 0.23 1.12 ± 0.23 1.01 ± 0.38 1.24 ± 0.26 1.18 ± 0.26

volBrain 1.06 ± 0.09 1.44 ± 0.16 1.42 ± 0.16 1.05 ± 0.11 1.56 ± 0.16 1.55 ± 0.17

AdaPro 0.68 ± 0.09 0.94 ± 0.16 0.94 ± 0.13 0.67 ± 0.10 0.99 ± 0.19 1.02 ± 0.17

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)n
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temporal lobes, where a portion has been removed. Their ASSD scores in the cerebellum
are similar for pre- and post-operative images because it is the only object that remains
intact after resection surgery.

Since CSF fills the removed portions in the temporal lobes after surgery, volBrain can
correctly identify them during segmentation due to its tissue classification that separates
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Table 3.3: Comparison of Dice for the Cerebellum (C), Right Hemisphere (RH), and Left
Hemisphere (LH) of the pre- and post-operative images of 2T. Higher Dice means better
accuracy (bold scores are the best with statistical significance). Resulting p-values from
ANOVA test are in parenthesis.

Epilepsy Datasets (Group A) - Dice

PRE-2T POST-2T

C RH LH C RH LH

SOSM-S 0.944 ± 0.006 0.961 ± 0.005 0.957 ± 0.006 0.949 ± 0.013 0.952 ± 0.008 0.951 ± 0.014

MALF 0.953 ± 0.011 0.969 ± 0.002 0.966 ± 0.004 0.930 ± 0.025 0.951 ± 0.008 0.948 ± 0.015

volBrain 0.943 ± 0.014 0.955 ± 0.009 0.954 ± 0.009 0.935 ± 0.026 0.949 ± 0.010 0.951 ± 0.015

AdaPro 0.949 ± 0.008 0.967 ± 0.004 0.966 ± 0.004 0.940 ± 0.015 0.954 ± 0.008 0.953 ± 0.013

(p = 0.012) (p < 0.001) (p < 0.001) (p = 0.039) (p = 0.452) (p = 0.726)

SOSM-S 0.933 ± 0.014 0.955 ± 0.004 0.952 ± 0.006 0.935 ± 0.017 0.949 ± 0.009 0.946 ± 0.012

MALF 0.951 ± 0.021 0.971 ± 0.003 0.969 ± 0.004 0.950 ± 0.027 0.965 ± 0.008 0.961 ± 0.012

volBrain 0.941 ± 0.020 0.960 ± 0.009 0.959 ± 0.009 0.940 ± 0.022 0.957 ± 0.008 0.956 ± 0.010

AdaPro 0.948 ± 0.015 0.969 ± 0.005 0.969 ± 0.004 0.947 ± 0.016 0.966 ± 0.006 0.963 ± 0.010

(p = 0.015) (p < 0.001) (p < 0.001) (p = 0.124) (p < 0.001) (p < 0.001)n
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Table 3.4: Comparison of Dice for the Cerebellum (C), Right Hemisphere (RH), and Left
Hemisphere (LH) of the pre- and post-operative images of 3T. Higher Dice means better
accuracy (bold scores are the best with statistical significance). Resulting p-values from
ANOVA test are in parenthesis.

Epilepsy Datasets (Group B) - Dice

PRE-3T POST-3T

C RH LH C RH LH

SOSM-S 0.941 ± 0.016 0.953 ± 0.007 0.952 ± 0.007 0.942 ± 0.015 0.947 ± 0.013 0.947 ± 0.011

MALF 0.939 ± 0.021 0.956 ± 0.007 0.954 ± 0.007 0.940 ± 0.020 0.949 ± 0.011 0.950 ± 0.010

volBrain 0.930 ± 0.013 0.937 ± 0.009 0.939 ± 0.008 0.932 ± 0.012 0.939 ± 0.009 0.938 ± 0.008

AdaPro 0.952 ± 0.008 0.955 ± 0.007 0.955 ± 0.005 0.952 ± 0.008 0.956 ± 0.006 0.954 ± 0.006

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

SOSM-S 0.931 ± 0.027 0.941 ± 0.010 0.941 ± 0.009 0.934 ± 0.022 0.936 ± 0.015 0.937 ± 0.013

MALF 0.935 ± 0.034 0.952 ± 0.010 0.951 ± 0.011 0.938 ± 0.032 0.946 ± 0.013 0.947 ± 0.014

volBrain 0.928 ± 0.016 0.936 ± 0.008 0.936 ± 0.008 0.931 ± 0.017 0.936 ± 0.009 0.936 ± 0.009

AdaPro 0.956 ± 0.013 0.956 ± 0.007 0.954 ± 0.007 0.958 ± 0.011 0.956 ± 0.007 0.954 ± 0.008

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)n
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voxels of WM, GM, and CSF. However, its ASSD is higher than the other baselines
because it also misclassifies several GM voxels from the hemispheres as CSF, resulting in
more segmentation errors (Fig. 3.9). Its preprocessing probably was not able to guarantee
the same range of values for the tissues of the testing images, resulting in misclassification.

In contrast, AdaPro’s classification can detect the anomalies without missing object
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PRE-2T

SOSM-S

0

1

POST-2T

PRE-3T

POST-3T

MALF AdaProvolBrain

Figure 3.9: Axial and coronal slices with the mean segmentation errors from the baselines
(0 means no error, and 1 means errors in all images) on template coordinate space for the
entire datasets.



67

voxels in the brain hemispheres and cerebellum. Its preprocessing operations are funda-
mental for that since it is responsible for ensuring that all voxels of the same tissue will
have intensities within the same range. Moreover, the relaxation process on its delineated
objects results in smoother and well-defined object boundaries, thus avoiding an effect of
serrated borders. The texture classification and delineation perform better in 3T images
due to their higher quality when compared to 2T images. Consequently, the segmentation
results are better in images of 3T than 2T.

Regarding the ASSD scores, AdaPro is more accurate than the baselines in the post-
operative images for the hemispheres (Fig. 3.9) – objects affected by surgical procedures
– and for the pre-operative images of 3T. AdaPro is equivalent to MALF for PRE-2T
and the cerebellum in POST-2T. We have evidence, based on the p-values provided by
the ANOVA test, that the mean scores of AdaPro differ from the baselines (see the bold
scores in the Tables 3.1–3.4).

Conversely, all evaluated methods present similar Dice scores in most scenarios, even
for post-operative images. AdaPro presents equivalent results compared to the baselines
for 2T images and the PRE-3T dataset, being superior for 3T images in the native image
space. Dice is not sensitive to capture local segmentation errors, such as the regions
surgically removed in the temporal lobes (Fig. 3.8). It is also sensitive to the size of the
object — differences in Dice values for small objects are less significant than the same
values for large objects. Therefore, we prefer to draw conclusions based on ASSD than
on Dice.

volBrain’s segmentation is performed on its own online platform and takes around
12 minutes. It is also limited to 10 free executions per day. SOSM-S takes around 110
seconds (50 seconds for registration and 60 seconds for object delineation). MALF is the
slowest approach with about 16 minutes for segmentation in native space and 3 minutes
in the template space. AdaPro is the fastest approach with around 90 seconds to complete
its entire pipeline in any coordinate space, which includes 20 seconds for preprocessing,
50 seconds for registration and histogram matching, 15 seconds for texture classification,
and 5 seconds for object delineation, respectively.

3.5 Conclusion

In this chapter, we presented a fast and effective solution, named AdaPro, for the au-
tomated segmentation of brain structures in anomalous 3D MR images. AdaPro was
used to delineate the brain hemispheres and cerebellum in 3D MR-T1 images of 2T and
3T from epilepsy patients before and after temporal lobe resections, being statistically
more accurate and considerably more efficient than three atlas-based methods, SOSM-S,
MALF, and volBrain. Moreover, it can segment new images in the template and native
image spaces.

Future work may extend AdaPro to other organs and imaging modalities, as well as
evaluate other tissue classification for other different anomalies. Another worthwhile goal
is investigating other preprocessing techniques to use a single version of AdaPro on 3D
MR-T1 images regardless of the field strength.
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We initially designed AdaPro to support collaborating neurologists to estimate mor-
phological metrics for the cerebellum and brain hemispheres. The primary neurologists’
interest was to study how these structures change in volume and shape in epilepsy pa-
tients after temporal lobe resection. Consequently, the brainstem was ignored during the
creation of gold-standard segmentation of the considered in-house datasets, which made
its evaluation impossible. However, we posteriorly obtained a new subset of MR-T1 of
healthy images with gold-standard segmentation that also included the brainstem, which
made it possible to extend AdaPro to segment all macro brain structures, as described in
the next chapters.
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image or a volume of interest (VOI), for example, as healthy or abnormal [186, 187, 188,
189, 190]. The VOI analysis is more attractive for anomaly detection due to its flexibility
in defining VOIs in any region of the brain, especially in those where there are no available
segmentation tools. However, these methods typically require a considerable effort from
experts to annotate a reasonable number of examples (images or VOIs), which are then
used to train discriminative models. Moreover, the models are specific for the anomalies
related to the disease(s) present in the training set.

In this chapter, we propose (i) an unsupervised framework to model normal brain
asymmetries from healthy subjects — which explores the MR image analysis of corre-
sponding VOIs in the left and right hemispheres — and (ii) the use of the model to detect
abnormal asymmetries. As proof of concept, we instantiate the framework for the detec-
tion of abnormal hippocampal asymmetries from epilepsy patients. Then, we extend this
framework for the entire hemispheres.

Our approach starts localizing VOIs around structures of interest. These VOIs may be
defined as 3D bounding boxes from segmentation, whenever they are available. However,
we propose a fast and accurate 3D patch-based model for VOI localization in new images.
Next, a generative deep neural network — a convolutional autoencoder (CAE) [191, 192]
— is used to learn the image transformation from the left VOI to the flipped right VOI
and vice-versa. We concatenate the outputs of the intermediate layers from CAE to form
each observation (feature vector) of a normal structural asymmetry. Finally, we train
a one-class classifier (OCC) to detect outliers as abnormal asymmetries. Our method
localizes the corresponding VOIs in both hemispheres of a given a test brain image,
extracts image features by CAE, and uses OCC to determine if the VOI pair represents
normal or abnormal asymmetries.

We organize the chapter as follows. Section 4.1 briefly provides an overview of au-
toencoders. Section 4.2 details our proposed unsupervised approach. Section 4.3 presents
the experiments and results for abnormal hippocampal asymmetry detection. Section 4.4
extends the proposed framework for abnormal asymmetry detection in the entire hemi-
spheres, as well as it presents preliminary qualitative experiments. Section 4.5 summarizes
our findings and suggests future work.

4.1 Autoencoders

Autoencoders (AE)s are unsupervised neural networks (also called generative neural net-
works) designed to reconstruct input data while compressing it in a low-dimensionality
representation (latent space) [193]. AEs are based on the encoder-decoder paradigm [194].
The encoder stage transforms the high-dimensional input data into a latent low-dimensional
representation (code). The decoder stage reconstructs the input data to the original
space from the code. Thereby, the data is represented faithfully, but with removal of
redundancies. Fig. 4.2 presents the general structure of an autoencoder.

To formulate an AE model, let x = {x1, x2, · · · , xm} be an unlabeled high-dimensional
training set, where m is the number of samples, and xi ∈ R

N is the i-th N -dimensional
sample. The simplest autoencoder architecture consists of a fully-connected feedforward
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Medical image analysis applications typically use AEs for feature extraction [52, 59,
58, 195], image denoising [196], image reconstruction [197, 198]. Most of these methods
rely on Convolutional Autoencoders (CAEs) [192], which extends the conventional AEs
by incorporating convolutional layers [193]. CAEs share weights among all locations in
the input images, preserving spatial locality. Consequently, its reconstruction results from
the linear combination of basic image patches based on the latent code [192].

4.2 Proposed Approach

This section presents the steps involved in the creation of a model of normal structural
brain asymmetry and its use for anomaly detection. Fig. 4.3 shows the general pipeline
of our solution. The numbered steps in Fig. 4.3 are henceforth referred to as Step 1, Step
2, and so on, in the remainder of this chapter.
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Figure 4.3: General pipeline of the proposed autoencoder-based approach to model normal
brain asymmetries (left blue block) and to use that model (right pink block).
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4.2.1 3D Image Preprocessing

The pipeline starts preprocessing the training set with only control images (Step 1) by
following the operations described in Section 2.3. We apply noise reduction by median
filtering, followed by MSP alignment, and an inhomogeneity correction with N4 [102].
We perform skull-stripping by AdaPro (Chapter 3), followed by intensity normalization.
We consider the same reference image (template) used by AdaPro (Section 3.2.1), which
has 180 × 240 × 240 voxels and a voxel size of 1 × 1 × 1mm3. We then register all
images on this template by non-rigid registration using Elastix [107]. Finally, we perform
intensity normalization to standardize the brain tissue intensities from the registered
training images with the template. We apply the same preprocessing tasks to the testing
images (Step 6).

4.2.2 VOI Localization

A volume of interest (VOI) is a sub-image with reduced background-size around a given
structure under study. The simplest and most used case is a 3D patch, i.e., an axis-
aligned 3D box (parallelepiped). One could first segment the structure by using any
automated segmentation tool, such as FreeSurfer [144], to define the VOI. However, it
might be essential to analyze VOIs that do not include any specific object segmented by
these available tools [40, 51]. We then propose a patch-based model (PBM) to localize
VOIs without any segmentation, as illustrated in Fig. 4.4.

Firstly, one expert interactively specifies the left and right VOIs for each training
control image in the reference space by selecting their first and last points (Fig. 4.3, Step
2). Left and right localization models are VOIs of equal sizes, which is defined as follows.
For each hemisphere, we compute the minimum bounding box that covers all its specified
VOIs. The largest minimum bounding box defines the size of the localization models
(Fig. 4.3, Step 3). The initial location of each model is the geometric center of its respective
VOIs in the training set. The differences in location among the training VOIs define
possible translations within a small search region around the center of each model (Fig. 4.3,
Step 3). For a new test 3D image in the reference space, the method independently
searches the translation from the center of each model, which maximizes the normalized
mutual information (NMI) between the template and test image (Appendix C.1) inside
the model (Fig. 4.3, Step 7).

4.2.3 Normal VOI Asymmetry Representation

We aim at learning one transformation (reconstruction) from the left VOI to the right
VOI, one for each hemisphere, and vice-versa. We first flip the right VOIs on the mid-
sagittal plane to keep the same orientation between the left and right VOIs (Step 4).
The reconstruction takes into account normal asymmetries that may affect any of the
sides. The mean squared error between reconstructed and reals VOIs expects to be
minimum, given that the training VOI pairs represent normal asymmetries. We propose
one convolutional autoencoder (CAE) for each transformation [192]. From a set of source

3D images, CAE learns to reconstruct a set of target 3D images by applying a set of linear
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We separated 575 3D MR-T1 brain images of 3T from healthy subjects with ages
between 25 and 65 years old (CONTROLS). All images have a voxel size of 1×1×1 mm3

and do not present any structural lesion in any part of the brain.
We also considered 3D MR-T1 brain images of 3T, voxel size of 1 × 1 × 1 mm3,

from epilepsy patients which are divided into four in-house datasets: (PRE) preoperative
patients with unilateral hippocampal atrophy (47 images); (POST) postoperative patients
(88 images); (RHA) patients with right hippocampal atrophy (34 images); and (LHA)
patients with left hippocampal atrophy (37 images). Therefore, the experiments involved
a total of 781 images.

4.3.2 Localization Model

To validate our patch-based model (PBM) for VOI localization, we separated a subset of 60
control images from CONTROLS and the entire PRE and POST datasets. A neurologist
from LNI has then manually delineated both hippocampi of all these images, generating
the gold-standard segmentation for quantitative validation. This selection was made to
avoid the high user-effort and required time to accurately segment both hippocampi in
all available images (total of 781 images).

We used 50% of the selected control images for training and the remaining images
from all the three datasets for testing, along 5 random splits of training and testing sets.
For each training control image, the same neurologist has interactively specified its left
and right VOIs (3D patches) around the hippocampi (Fig. 4.4). These VOIs are then
used to train PBM.

We used two baselines for comparison. The first one (TEMP) assumes that the VOIs
of the template, as interactively specified, can represent the VOIs of the test images,
since they are all in the standard reference space. The second approach (SSEG) uses
the minimum bounding box around each hippocampus as VOI, after segmentation by
volBrain [80] (Section 3.1).

Table 4.1 presents the percentage of missed foreground — i.e., the percentage of voxels
from the hippocampi that fall outside the detected VOIs — for each baseline. The analysis
of variance (ANOVA), using the post-hoc Tukey honestly significant difference (HSD) test,
indicates that PBM and SSEG are equivalent for most cases, being both superior to TEMP
(the p-value is 0.05). This result makes sense because the segmentation by volBrain tends
to add background voxels around each hippocampus. It also proves that the background-
size in PBM is reduced, with the advantage of not depending on segmentation. PBM also
presents the best scores for control images.

4.3.3 Hippocampal Asymmetry Detection

In this section, we evaluate how accurate is the classification of hippocampal asymmetries
of healthy subjects and epilepsy patients. We combined the convolutional-autoencoder
(CAE) representation (Fig. 4.5) with each one-class classifier (OC-SVM and OC-OPF),
which were trained in the original feature space and the two-dimensional spaces after
non-linear projection by t-SNE [202], a well-popular projection algorithm widely used in
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Table 4.1: Percentage of missed foreground (%) of the considered localization approaches
for the Right (RH) and Left Hippocampus (LH) in the considered datasets in 5 random
splits. Bold values show better scores with statistical significance (Note, for example,
that 0.04 means 0.04% below).

CONTROLS PRE POST

RH TEMP 1.78± 0.42 1.25± 1.87 1.42± 1.63
SSEG 0.11± 0.38 0.15± 0.32 0.13± 0.36

PBM 0.04± 0.13 0.11± 0.39 0.10± 0.45

LH TEMP 2.01± 1.82 1.12± 1.35 1.94± 0.74
SSEG 0.18± 0.32 0.07± 0.31 0.28± 0.38
PBM 0.12± 0.25 0.09± 0.19 0.14± 0.28

several machine-learning problems.
The reason for considering a projection space in the experiments is that, by analogy

with AEs, t-SNE (or, actually, any other projection method) is a similar kind of tool
that reduces dimensionality. The only differences with regards to AEs are that (i) the
latent space is 2D, and (ii) the cost/error functions are quite different – projections aim to
preserve relations between samples, and not the information encoded in each sample (in
the sense of being able to decode the n-D sample from the low-D one). Besides, accord-
ing to Rauber et al. [203], the separation among groups (classes) in the two-dimensional
projection space, as created by the t-SNE, is a strong indication of their separation in the
original feature space.

An important aspect of t-SNE is that every execution of the algorithm creates a distinct
projection. Therefore, it can only make sense when there is a set of testing images to be
classified. As an unsupervised technique, the t-SNE algorithm can project the training
and testing sets with no knowledge of true labels, and then the one-class classifier can be
trained in the projection space and used to classify the testing samples.

Experimental Protocol

Initially, we used PBM (Section 4.2.2) to automatically localize both hippocampi (VOIs)
in all datasets (Section 4.3.1). We then used the resulting VOIs for feature learning,
extraction, and the design of the classifiers. We considered 5 evaluation splits on CON-
TROLS by randomly selecting 240 controls images for training, 60 for validation, and
the remaining 275 images for testing. We also considered all other images from epilepsy
patients for testing. Finally, we compared our CAE-based representation with the simple
absolute difference (ABS-DIFF) between left and flipped right VOIs.

Since our framework is unsupervised, we can only count on the training set of controls

images for parameter optimization. Consequently, we optimized the parameters of each
classifier by grid search aiming at maximizing the detection scores for these images — i.e.,

healthy hippocampi classified as normal hippocampal asymmetries. The best parameters
found for each case were:

• ABS-DIFF/OC-SVM: kernel = rbf, nu = 0.01, and gamma = 0.007;



79

• CAE/OC-SVM: kernel = linear, and nu = 0.1;

• ABS-DIFF/OC-OPF: the best k was found within [20, 45];

• CAE/OC-OPF: the best k was found within [15, 45].

Results in the Original Feature Space

Table 4.2 presents the average detection scores in the original feature space for hippocam-
pal asymmetries. These scores show the percentage of the classification hits of controls
images as normal hippocampal asymmetries and patient images as abnormal hippocampal
asymmetries.

Table 4.2: Anomaly detection scores (%) in the original feature space for the instances
of the proposed framework. These scores show the percentage of the classification hits
of controls images as normal hippocampal asymmetries and patient images as abnormal
hippocampal asymmetries.

Original Feature Space

CAE ABS-DIFF

OC-SVM OC-OPF OC-SVM OC-OPF

CONTROLS 86.61 ± 2.30 89.04 ± 2.55 87.45 ± 1.34 86.35 ± 1.13

PRE 100.0 ± 0.00 98.40 ± 2.04 93.62 ± 0.00 61.70 ± 9.67

POST 100.0 ± 0.00 100.0 ± 0.00 22.44 ± 0.57 100.0 ± 0.00

RHA 99.26 ± 1.47 97.06 ± 4.16 94.85 ± 1.47 42.65 ± 5.09

LHA 99.32 ± 1.35 97.30 ± 5.41 94.59 ± 0.00 27.70 ± 8.37

Although the difference between the best scores of ABS-DIFF and CAE is small for the
CONTROLS dataset, CAE-based representation is consistently superior to ABS-DIFF in
all cases. These results confirm the efficiency of CAE in providing representative features
for the addressed problem. The combination CAE/OC-SVM provides slightly better
accuracies than CAE/OC-OPF in most datasets, with no errors for PRE and POST.

Results in the Two-dimensional Projection Space

To further improve the accuracy of the CAE-based representation, we repeated the same
experiments in the two-dimensional projection spaces created by the t-SNE algorithm.
Each sample is now represented by two features resulting from this projection. As a
non-linear and unsupervised projection approach, we must project training and testing
sets together to design the classifiers from the training samples and use them to label the
testing set. This approach is indicated whenever there is a set of testing images to be
tagged.

Table 4.3 shows the resulting detection scores for the projection space. This strategy
has a surprisingly positive impact on the results: the detection scores for control images
have considerably increased (99.72% against 89.04% for the original space), and there are
no classification errors for patient images in both classifiers.
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Table 4.3: Anomaly detection scores (%) in the projection space for the instances of the
proposed framework. These scores show the percentage of the classification hits of controls
images as normal hippocampal asymmetries and patient images as abnormal hippocampal
asymmetries.

Projection Space by t-SNE

CAE / OC-SVM CAE / OC-OPF

CONTROLS 96.22 ± 2.72 99.72 ± 0.18

PRE 100.0 ± 0.00 100.0 ± 0.00

POST 100.0 ± 0.00 100.0 ± 0.00

RHA 100.0 ± 0.00 100.0 ± 0.00

LHA 100.0 ± 0.00 100.0 ± 0.00

Since the datasets have different sizes, Table 4.4 presents the mean values of Cohen
Kappa for each feature space taking into account all datasets. Results confirm that the
design of both classifiers for hippocampal asymmetry detection, based on the proposed
unsupervised framework, is more accurate on the projection space. Furthermore, the
proposed OC-OPF classifier outperforms OC-SVM in both spaces.

Table 4.4: Cohen Kappa for the considered framework instances with PbM localization.

CAE / OC-SVM CAE / OC-OPF

Original Space 0.846± 0.03 0.863± 0.02

Projection Space 0.956± 0.03 0.995± 0.00

Finally, to better understand these results and their impact on developing intelligent
and interactive virtual environments in neuroscience, Fig. 4.7 presents a t-SNE projection
space from one of the splits. Here, each point consists of hippocampal asymmetries of a
given pair of hippocampi (VOI) as extracted by CAE. By clicking on any sample (point
on the plot), the user can see the corresponding slice across the centers of the VOIs. It is
also possible to navigate in the image around that location for inspection and annotation
of the anomaly type. From that, one can train discriminative neural networks to allow the
detection of abnormal brain asymmetries, followed by the identification of their anomaly
type.

Fig. 4.7 shows a clear visual separation between the projected features from normal hip-
pocampal asymmetries (green circles) and the abnormal cases (orange marks). Rauber et

al. [203] showed that the visual separability of classes in a t-SNE projection is highly
correlated with the ability of a classifier to separate classes in the original feature space.
Hence, we can conclude that both classes are also well-separated in the original space,
which also confirms the high detection scores in this space, as presented in Table 4.2.

Note that Fig. 4.7 also highlights a false-positive case — the bottom-right green cir-
cle associated with the bottom cropped slice — i.e., a sample of normal hippocampal
asymmetries classified as abnormal. Although this test sample did not have much impact
on the final accuracy, its possible use as a training one is problematic for the design of
the one-class classifiers, leading to worse detection scores. This impact may be severe for
OC-OPF since it does not have any treatment for noise in the training set. Therefore,
OC-OPF deserves further investigation to prevent this scenario.
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Figure 4.8: Uniform grid-sampling used to define the geometric centers of VOIs along the
hemispheres. The dashed red lines in the slices correspond to mid-sagittal planes (MSPs).

now only consists of a local search within a fixed search region of 5×5×5. Note that, con-
sequently, this extended methodology analyzes asymmetries along the entire hemispheres
by performing multiple executions of our previous method, according to the number of
pairs selected in C.

4.4.2 Preliminary Experiments

We carried out preliminary experiments to qualitatively evaluate the extended method-
ology for brain anomaly detection. We adopted the same network architecture as illus-
trated in Fig. 4.5 so that we fixed the size of 32 × 64 × 32 for all VOIs extracted along
the hemispheres. We considered the training set of control images and the template used
in Section 4.3, and the one-class classifier with the optimized parameters found for the
hippocampi.

Fig. 4.9 shows axial slices with resulting detected abnormal asymmetries (VOIs) for (a)
a control image from CONTROLS, (b) a postoperative image from POST, and (c) a pa-
tient image from LHA with a small lesion in the left hemisphere. All these detected VOIs
are, in fact, false positives, i.e., normal asymmetries classified as abnormal. Note that all
of them are close to the hemispheres’ borders, which are locations typically asymmetric.
The control image is supposed not to present any abnormal asymmetries, whereas the
method should detect the anomalies (orange circles) in the remaining images. By inspect-
ing other slices from these 3D images, we also found several other false-positive detected
VOIs.

To better understand the reasons for these false positives, we first inspected the
VOIs that cover the anomaly (removed portion) of the postoperative image of Fig. 4.9b.
Fig. 4.10 shows an axial slice with the pair of undetected VOIs (blue patches) with the
highest intersection with the anomaly (orange circle). Since the anomaly is not entirely
inside the VOIs, its asymmetry representation is poor, and, consequently, the method
cannot detect it. Thus, we have a problem: how to estimate VOI positions ade-

quately? This task is indeed hard — since anomalies can be found in different locations
in the brain — and widely investigated in the computer-vision literature [204, 205].

We now inspected the VOIs that cover the small lesion of the epilepsy patient image
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brain asymmetry detection, as detailed in the next chapter.
For future work, we first suggest further investigating the impact of the t-SNE projec-

tion in the design of classifiers and the extension of the framework to other well-defined
brain structures. Second, one should explore faster (and yet robust) projection algorithms
than t-SNE in order to make the asymmetry analysis in the two-dimensional space feasible
for large-scale studies. Third, the proposed approach could also be evaluated for other
organs and/or by using different medical imaging modalities. Finally, one may develop
interactive visual tools to support the detection, inspection, annotation, and identification
of brain anomalies based on abnormal asymmetries.
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Chapter 5

Detection of Abnormal Brain

Asymmetries

In Chapter 4, we have presented our first unsupervised solution for addressing the
research questions of the thesis. This solution models healthy asymmetries between a
pair of 3D patches — volumes of interest (VOIs) — by using a convolutional autoen-
coder [192] and a one-class classifier, detecting outliers as abnormal asymmetries associ-
ated to anomalies. Although this first approach was well-succeed in detecting abnormal
hippocampal asymmetries in epilepsy patients, its result for the remaining regions of the
hemispheres was unsatisfactory (Section 4.4.2). Two main reasons explain these results:
(i) 3D patches did not entirely cover anomalies due to poor localization; (ii) there was a
high amount of background information inside the 3D patches. The effective estimation of
sizes and localization of 3D patches are indeed challenging and widely investigated in the
computer-vision literature [204, 205]. An alternative strategy relies on using supervoxel

segmentation.
Supervoxels are groups of voxels with similar characteristics resulting from an overseg-

mentation of a 3D image or region of interest. They preserve intrinsic image information
(e.g., the borders of tissues and lesions) and are used as an alternative to patches to
define more meaningful VOIs for computer-vision problems [135, 136] and some medical
image applications [6, 137]. For example, one can oversegment the hemispheres in multiple
supervoxels for brain anomaly detection. Supervoxels overcome the two main problems
of 3D patches for our target problem, as (i) they better fit lesions and tissues to VOIs,
and (ii) their voxels contain minimum heterogeneous information. The irregular shapes of
supervoxels, however, prevent the use of recent deep-learning-based techniques that only

This chapter is based on the following publications:
(i) S. B. Martins, G. Ruppert, F. Reis, C. L. Yasuda, and A. X. Falcão, “A supervoxel-based approach
for unsupervised abnormal asymmetry detection in MR images of the brain,” in IEEE International
Symposium on Biomedical Imaging (ISBI), pp. 882–885, 2019;
(ii) S. B. Martins, A. C. Telea, and A. X. Falcão, “Extending supervoxel-based abnormal brain asymmetry
detection to the native image space,” in IEEE Engineering in Medicine and Biology Society (EMBC), pp.
450–453, 2019;
(iii) S. B. Martins, A. C. Telea, and A. X. Falcão, “Investigating the impact of supervoxel segmentation
for unsupervised abnormal brain asymmetry detection,” Computerized Medical Imaging and Graphics,
vol.85, 101770, 2020.
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work with regular 2D/3D patches.
This chapter proposes an automatic unsupervised supervoxel-based framework for de-

tecting abnormal asymmetries associated with anomalies in 3D MR brain images. By
having all images registered to the same symmetric template, the proposed framework,
called Supervoxel-based Abnormal Asymmetry Detection (SAAD), computes asymmetries
between hemispheres by using their mid-sagittal plane as reference. It then extracts pairs
of symmetric supervoxels from the left and right hemispheres for each test image, so that
each pair generates a one-class classifier. This classifier is next trained on control images
of healthy subjects to find supervoxels with abnormal asymmetries. We propose a su-
pervoxel segmentation method, named SymmISF, based on the Iterative Spanning Forest

(ISF) framework [61], to extract symmetrical supervoxels from left and right hemispheres.
We also extend SAAD to perform in the native image space of testing images. Both ver-
sions of SAAD are validated to detect abnormal brain asymmetries in 3D MR-T1 images
of stroke patients.

The remaining of this chapter is organized as follows. Section 5.1 shows the related
work of brain anomaly detection/segmentation. Section 5.2 presents SymmISF and SAAD
for abnormal brain asymmetry detection on standard image space, whereas Section 5.3
details experimental protocols, and Section 5.4 discusses the results. Section 5.5 presents
the extension of SAAD for the native image space, as well as reports experimental results.
Finally, Section 5.6 summarizes our contributions and suggests future work.

5.1 Related Work

From a certain point of view, automatic brain lesion detection/segmentation methods can
be grouped into five classes. From the least to the most versatile, these are as follows.

5.1.1 Atlas-based Methods

These methods use the a priori knowledge about the object’s shapes in a training atlas
set registered on a standard template, where each atlas consists of a source 3D image and
its corresponding 3D label image with the mask of each 3D object of interest [41, 42, 80].
Directly encode anomaly shape-constraints from an atlas set and use these models to
segment anomalies is not effective as they vary greatly in size, shape, and location [147]
(Fig. 1.3). Thus, some atlas-based methods aim to combine these prior shape-constraints
and texture segmentation to precisely delineate anomalies [147, 206, 207, 208, 209, 210].

Some solutions incorporate the prior healthy shape-constraints in a supervised frame-
work [207, 208, 209]. For example, Zijdenbos et al. [207] proposed an automatic technique
for multiple sclerosis segmentation that trained an artificial neural network with images
from healthy subjects and patients. The input features included three MRI modalities
and three spatial-tissue priors from probabilistic atlases. In contrast, Prastawa et al. [210]
use atlases to detect outliers as anomalies by selecting abnormal tissue samples while
estimating healthy ones. They proposed using the Minimum Covariance Determinant to
estimate probability density functions for CSF, WM, and GM using healthy images. Any
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outlier to this estimation is considered an abnormal tissue. The next sections detail more
supervised and unsupervised approaches for anomaly detection/segmentation.

Although atlas methods show impressive segmentation results for healthy tissues [41,
80, 144, 183], their results for anomaly segmentation are still unsatisfactory, especially in
the presence of anomalies with arbitrary shapes and locations.

5.1.2 Supervised Learning with Hand-crafted Features

These methods use different classifiers trained from various hand-crafted image features
(e.g., edge detectors and texture features) to delineate anomalies by classifying voxels
or regions of the target image [6, 37, 38, 39]. Such supervised methods usually do not
generalize well for anomalies from different disorders since their considered features have
limited representation capability considering the significant variation of the anomalies’
appearances. Moreover, these methods work well only for detecting anomalies related to
diseases present in the training set.

For example, Goetz et al. [37] rely on ExtraTrees classifiers [211] to classify voxels
as healthy or tumors. From four different MRI modalities, the method computes 54
hand-crafted features (e.g., local histograms, and first-order statistics) for each voxel.
Soltaninejad et al. [6], in turn, proposed to segment anomalies in FLAIR images by ex-
tracting and classifying superpixels across slices of FLAIR images. The method extracts
several hand-crafted features for each supervoxel, such as intensities, fractal, and curva-
ture features. This solution is accurate to segment medium and large anomalies in FLAIR
images only, where such lesions are considerably highlighted. This thesis, however, aims
to automatically detect lesions (especially the small ones) in 3D MR-T1 images.

5.1.3 Discriminative Deep Learning

These techniques have emerged as a powerful alternative to the previous class of meth-
ods, given their ability to learn highly discriminative features for a particular task. In
particular, Convolutional Neural Networks (CNNs) [212] have become a mainstay of the
computer vision community due to breakthrough performance in several applications [213]
as compared to approaches using hand-crafted features. Deep learning has gained pop-
ularity in medical image analysis as well [45, 54, 35, 46, 214]. Such methods learn deep
feature representations (e.g., convolutional features) in a data-driven way without any
feature engineering being required. Nevertheless, deep-learning-based methods have some
limitations:

(a) they require a large number of training images that must be previously annotated
by specialists (e.g., lesion segmentation masks);

(b) they typically require weight fine-tuning (retraining) when used for a new set of
images due to image variability across scanners and acquisition protocols;

(c) they are only designed for the anomalies found in the training set, just as the
supervised methods outlined before;
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(d) the success of such methods on new images is limited by the absence of large, high-
quality, annotated training sets for most medical image analysis problems [11].

5.1.4 Unsupervised Approaches

All the above limitations of supervised methods motivate research on unsupervised anomaly
detection approaches based on outlier detection [40, 58, 53, 13, 215]. These methods aim
to learn a model from control images of healthy subjects only by encoding general knowl-
edge or assumptions (priors) from healthy tissues. This model is next used to guide brain
segmentation so that outliers who break such general priors are considered anomalies [13].

For example, Shen et al. [215] proved that the voxel-intensity-based segmentation and
the spatial-location-based tissue distribution (based on a probabilistic atlas) in the lesions
are inconsistent with those in healthy tissues. They use the conventional Fuzzy C-Mean
algorithm [216] and probabilistic maps from a template to quantify such inconsistencies,
and then apply a threshold to obtain a binary lesion segmentation. Juan-Albarracin et

al. [78], in turn, propose a more complex method that uses four different MRI modalities of
a given patient to segment the brain tumors of the BraTS dataset [73]. The method groups
all voxels in a few clusters that are classified as normal or outlier, based on probabilistic
maps from a template.

As unsupervised brain anomaly detection methods do not use labeled samples, they
are less effective in detecting lesions from a specific disease when compared to supervised
approaches trained from labeled samples for the same disease. For the same reason,
however, unsupervised methods are generic in detecting any lesions, e.g., coming from
multiple diseases, as long as these notably differ from healthy training samples. Our
proposed methods, presented in the next sections, aim to combine the pros and cons
of unsupervised learning for the detection of anomalies associated with abnormal brain
asymmetries.

5.1.5 Deep Generative Neural Networks

Also known as Encoder-Decoder Neural Networks or autoencoders (AEs; Section 4.1),
these methods have been used for unsupervised anomaly detection by modeling the dis-
tribution of healthy brain tissues and next detecting anomalies as outliers. The underlying
hypothesis is that this model can reconstruct normal brain anatomies while failing to re-
construct anomalies in images with some disorder. AEs learn to reconstruct training
images from healthy individuals only by first compressing (encoding) them into a low-
dimensional representation (latent features) and then decompressing that representation
to minimize the reconstruction error between the input data and its reconstruction.

Some methods [58, 53, 59, 217, 218] delineate anomalies by thresholding the resulting
reconstruction errors, i.e., the residual image between the input image and its reconstruc-
tion. Baur et al. [53] determine as threshold a given percentile of the reconstruction errors
on the training control images. Chen et al. [59] evaluate different AEs for the reconstruc-
tion of MR-T1 and T2 images, but they do not detail how they choose the thresholds.
Other AE-based methods [52] train a one-class classifier from latent features to classify
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with respect to the template’s MSP (Step 2). One might argue on estimating the MSP of
each registered image, separately. However, we confirmed that, when mapping all images
to the same symmetric template by non-rigid registration, each registered image’s MSP
was either exactly or slightly tilted from the template’s MSP, which does not impact the
asymmetry computation.

Next, we create a normal asymmetry map AX (Step 3) by averaging the absolute
difference values of AX (Fig. 5.3a). We use this map to reduce the detection of false-
positive asymmetries in I in commonly asymmetric brain regions (e.g., cortex), as detailed
next in Section 5.3. Finally, we compute voxel-wise absolute differences between the
hemispheres for I (Figs. 5.3b–c) and then subtract AX from them. Resulting positive
values form a final asymmetry map AI (Fig. 5.3d) for the test image I (Step 5).

(a) (b) (c) (d)

Figure 5.3: Asymmetry computation on a standard image space. (a) Axial slice of the
normal asymmetry map for healthy subjects. (b) Axial slice of a 3D test stroke image
after preprocessing and non-rigid registration on a symmetric template. (c) Asymmetries
of (b) by computing voxel-wise absolute differences between the hemispheres with respect
to its MSP. (d) Final attenuated asymmetries: positive values of the subtraction between
(c) and (a).

5.2.3 Symmetric Supervoxel Segmentation

Directly comparing the flipped, segmented, and registered hemispheres is not helpful as
it will not tell us where small-scale asymmetries occur. At the other extreme, comparing
every voxel pair in these hemispheres is risky, since individual voxels contain too little
information to capture asymmetries. These difficulties motivate the use of supervoxels as
the unit of comparison (Step 6).

An ideal supervoxel segmentation should create precisely one supervoxel per anomaly.
This case is, of course, highly unlikely to succeed, given the high variability of size,
shape, and position of anomalies (Fig. 1.3). At any rate, too small supervoxels should be
avoided as they oversegment larger anomalies and thus cannot capture their essence, and
also will confuse the end-users when visually exploring the results. Too large supervoxels,
in contrast, should be avoided as they cannot precisely delineate small-scale anomalies
from the background (undersegmentation).

We propose a new method, named SymmISF, that extracts symmetrical supervoxels
from left and right brain hemispheres simultaneously. SymmISF is based on the recent
Iterative Spanning Forest (ISF) framework [61] (Section 2.6) for superpixel segmentation
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and has three steps: (i) seed sampling followed by multiple iterations of (ii) connected
supervoxel delineation, and (iii) seed recomputation to improve delineation (Fig. 5.4), as
follows.

test volume
(3D image)

symmetrical
supervoxels

ISF

initial seed estimation

flipped
test volume

2-band
stacked volume

uniform seeds asymmetry map

asymmetry-guided
seeds

or

Figure 5.4: The pipeline of SymmISF with two possible initial seed estimation strategies
(red points represent seeds). The method flips the input test 3D image (volume) by
using its MSP and builds a 2-band volume by stacking both volumes. Then, the ISF
framework [61] estimates supervoxels inside the hemisphere mask from the initial seeds.
The resulting label map is flipped to form the final label map with pairs of symmetrical
supervoxels.

As outlined in Section 2.6, initial seed estimation is a crucial step for the success of ISF.
The adopted strategy for that, however, depends on the addressed problem, which, in turn,
may have specific constraints. For the problem of this chapter, the simplest approach to
find initial seeds is to select N seeds uniformly distributed in the right hemisphere defined
by a segmentation mask for the template. We call this strategy Uniform SymmISF next.
However, there are no guarantees that this strategy will place at least one seed within each
asymmetric anomaly, so this can easily lead to undersegmentation. We then propose a
new strategy, called next Asymmetry-guided SymmISF, that is guided by the hemispheric
asymmetries of the image when selecting one seed per local maximum in AI (see the
asymmetry-guided seeds in Fig. 5.4). It computes the local maxima of the foreground of
a binarized AI at γ × τ , where τ is Otsu’s threshold [219]. The higher the factor γ is,
the lower is the number of asymmetric components in the binarized AI . This seed-set is
next extended with a fixed number of seeds (e.g., 100) by uniform grid sampling the low-
asymmetry regions of the binarized image. A detailed comparison of Uniform SymmISF
with Asymmetry-guided SymmISF is presented next in Section 5.4.
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As the cortex is typically very asymmetric, we can still remove seeds placed very close
to the hemisphere borders to reduce the number of false positives in such regions and
also to weigh the normal asymmetry map to attenuate other asymmetries further. Both
strategies are evaluated and discussed in detail in Section 5.4.

By stacking the right hemisphere with the left hemisphere — flipped using the MSP
— as the input 2-band volume (Fig. 5.4), SymmISF applies ISF only inside the right
hemisphere from the initial seeds. ISF relies on a cost function controlled by two parame-
ters: α and β (Section 2.6.1). This process yields a label map in which each supervoxel is
given a distinct label. Finally, SymmISF flips these supervoxels to obtain the symmetrical
supervoxels in the left hemisphere, which yields the final label map L (output of Step 6).
Note that one can proceed conversely, i.e., apply SymmISF on the left hemisphere, and
map the result to the right hemisphere.

5.2.4 Feature Extraction and Classification

SAAD presents a novel approach for outlier detection (Section 1.3.1) — here instantiated
for abnormal asymmetry detection — that designs a set of specialized one-class classifiers
(OCCs) specific for each test 3D image, as shown in Fig. 5.5. For each 3D test image,
each pair of symmetrical supervoxels is used to create a specialized one-class classifier
(OCC) using as feature vector the normalized histogram of the asymmetry values inside
the pair (Step 7). Classifiers are trained from control images only, thus locally modeling
normal asymmetries for the entire hemispheres. Finally, SAAD uses the trained OCCs to
find supervoxels with abnormal asymmetries in the corresponding testing image (Step 8).
Fig. 5.6 illustrates the supervoxel classification.

By default, SAAD yields pairs of symmetric supervoxels corresponding to the detected
abnormal asymmetries. This output is useful for subsequent visual analysis as an expert
can compare such regions in both hemispheres as well as their computed asymmetries. To
output only the supervoxel that covers the detected asymmetric anomaly, one may simply
compute the similarity from the test image with the template inside each supervoxel of
the pair. The less similar supervoxel contains the anomaly.

When dynamically designing specialized one-class per-supervoxel classifiers for each
test image, SAAD implicitly considers the position of the supervoxels in the hemispheres
when deciding upon their asymmetry. The central premise for this is that a single global
classifier cannot separate normal and anomalous tissues by only using texture features.
Experimental results concerning this hypothesis are presented in Section 5.4.3.

Even though the proposed classification scheme demands a higher processing time
compared to using a single global classifier trained offline, this time is not too high (≈ 2

min) and still feasible for clinical purposes as SAAD relies on a simple and fast feature ex-
traction (histogram) and the one-class linear Support Vector Machine [201]. More details
are presented in Section 5.4.
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classifier?

To evaluate SAAD and answer these questions, we performed a detailed evaluation
of different scenarios for supervoxel segmentation and classification for the automatic
detection of abnormal asymmetries in 3D MR-T1 brain images. We chose a public and
challenging dataset with 3D brain images of stroke patients with a variety of strokes in
terms of shape, size, location, and texture. Each image has a segmentation mask with
its stroke. Although different automatic methods for lesion detection/segmentation exist
(Section 5.1), most of them typically capture only specific lesions. They also require
multiple imaging modalities or a considered number of segmented images for training
(especially for MR-T1 brain images), which is particularly rare for most applications on
medical image analysis. Moreover, details, available tools, and trained models for most
of these methods are absent, which makes their comparison difficult. In contrast, our
method aims to detect any kind of (asymmetric) lesion. We then considered as baselines
for SAAD the state-of-the-art unsupervised method (like ours) for the considered stroke
image dataset.

This section describes the setup of the entire experiments. We detail the MR-T1 image
datasets (Section 5.3.1), followed by the evaluation protocol (Section 5.3.2), including the
compared methods and quantitative metrics.

5.3.1 Datasets

To answer our key questions, we need datasets with volumetric MR-T1 brain images
(i) from healthy subjects (for training), and (ii) with hemispheric asymmetric lesions
of different sizes (especially small ones) and their segmentation masks. For this, we
first considered the CamCan dataset [220], which has 653 3D MR-T1 images of 3T from
healthy men and women between 18 and 88 years. For each 3D MR-T1 image, CamCan
also has a corresponding 3D MR-T2 image, which we do not use in the experiments. To
our knowledge, CamCan is the largest public dataset with 3D images of healthy subjects
acquired from different scanners. We visually inspected all MR-T1 images and removed
images with bad acquisition or artifacts, yielding 524 images.

Public datasets with different brain lesions exist. However, some only provide a subset
of 2D slices for each image or interpolate slices to build a volume (e.g., BraTS [73]); others
provide 3D images with only very symmetric lesions (e.g., MSSEG [221]). Given these
limitations, we settled on using the Anatomical Tracings of Lesions After Stroke (ATLAS)
public dataset release 1.2 [34] in our experiments.

ATLAS is a rather challenging dataset with a large variety of manually annotated
lesions and images acquired from different scanners. It contains lesions ranging from very
small to large ones, located in several parts of the brain (see Fig. 1.3 for examples). All
images have a mask with the primary stroke lesion. Some images also have additional
masks with other stroke lesions. Current state-of-the-art segmentation results for ATLAS
are inaccurate yet [59, 214]. We are not affected by this problem since we aim to detect,
and not segment, the lesions.

Since SAAD is designed to detect abnormal hemispheric asymmetries and the consid-
ered training images have a 3T field strength, we selected all 3T images from ATLAS,
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which contain only lesions in the hemispheres (total of 229 images). All images were
registered into the coordinate space of ICBM 2009c Nonlinear Symmetric template [108]
and preprocessed as outlined in Section 5.2.1 (see an example in Fig. 5.2).

5.3.2 Evaluation Protocol

Baselines: In the absence of details, available tools, and trained models for automatic
anomaly detection, we compared SAAD against the convolutional-autoencoder-based ap-
proach (CAE) from Chen et al. [59] (Section 5.1.5), which is, as far as we know, the current
state-of-the-art unsupervised method for the ATLAS dataset. We refer to Section 4.1 for
details about autoencoders.

We considered the 2D axial slices of all preprocessed training images to train CAE,
which has the following architecture: three 2D convolutional layers with 16, 8, and 8 filters
of patch size 3× 3, respectively, followed by ReLU activation and 2D max-pooling in the
encoder, and the corresponding operations in the decoder. The nadam gradient optimizer
minimized the mean squared error between reconstructed and expected 2D axial slices
during training. The method detects anomalies by thresholding the resulting residual
image of between the input image vs its reconstruction to obtain a binary segmentation,
similarly to Baur et al. [53] and Chen et al. [59]. We followed Baur et al. [53] and selected
three thresholds as the 85th, 90th, and 95th percentile from the histogram of reconstruc-
tion errors on the considered training set, resulting in the brightness of 143, 194, and
282, respectively. For simplicity, we call these three versions of the method as CAE-85,
CAE-90, and CAE-95, respectively, based on the chosen percentiles.

Metrics: Although SAAD detects abnormal asymmetries regardless of the type of anoma-
lies, we can compute quantitative scores only over those lesions that are labeled in ATLAS,
which are a subset of what SAAD can detect. For these lesions, we first computed the
detection rate based on at least 15% overlap between lesions labeled in ATLAS with de-
tected volumes of interest (VOIs) with abnormal asymmetries (Tables 5.1–5.3, row 1),
as detected by SAAD (supervoxels) and CAE (segmented regions). We then computed
the true positive rate (recall) that measures the percentage of lesion voxels correctly clas-
sified as abnormal (Tables 5.1–5.3, row 2). Although our focus is on detecting abnormal
asymmetries, we also measured the Dice score (Appendix C.2) between lesions and the
detected VOIs to check SAAD’s potential as a segmentation method (Tables 5.1–5.3, row
3). However, observe that truly abnormal asymmetries detected by our method that
are not annotated as lesions in the ground-truth masks will be incorrectly considered as
false-positive and, thus, underestimating the Dice score. We could then consider only
supervoxels overlapped with the annotated lesions to compute Dice scores, but this would
be unfair to the considered baselines.

Highly accurate detection methods are useful only if their false positive count is quite
low. Otherwise, one needs to manually inspect the many positives to validate them,
which is very costly. To gauge this, we provided false-positive (FP) scores in terms of
both voxels and supervoxels concerning the ground-truth stroke lesions of ATLAS. Hence,
some regions with true abnormal asymmetries but with no labeled masks in ATLAS are
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considered FP (e.g., see the deformed ventricles of Fig. 5.7a). This is the best we can do
in the absence of labeled masks for all kinds of abnormalities in this dataset.

To evaluate the detection quality, we proposed a set of fine-to-coarse metrics, as follows.
At the finest level, we first computed the mean number of FP voxels, i.e., incorrectly
classified as abnormal (Tables 5.1–5.3, row 4). We normalized this count with respect
to all classified voxels (Tables 5.1–5.3, row 5), i.e., the total number of voxels inside the
right hemisphere for SAAD, and both hemispheres for CAE.

At the next level, we estimated FP supervoxels as those whose voxels overlap less than
15% with ground-truth lesion voxels. We computed the mean number of FP supervoxels
and their proportions to the total number of supervoxels (Tables 5.1–5.3, rows 6 and 7).
The first metric gives us an estimation of the visual-inspection user effort. The second
metric checks how imprecise is the detection regarding the total number of regions that
the user has to visually analyze.

When visually analyzing FP supervoxels, it is harder to check many disconnected
supervoxels spread across the brain (Fig. 5.7b) than a few connected ones (Fig. 5.7a).
Hence, at the coarsest level, we gauge visual analysis user-effort by evaluating the two
metrics outlined above on the level of connected FP supervoxel components (Tables 5.1–
5.3, rows 8 and 9).

Finally, we also computed the mean processing times of each method (Tables 5.1–5.3,
row 10) for preprocessed images, thus excluding the mean time of the preprocessing step
(Fig. 5.1, Step 4), which is 90 seconds on average. All experiments were executed on an
Intel i7 3.60GHz PC with 64GB RAM and an NVIDIA Titan XP 12GB GPU.

source image symm. supervoxels

(a)

symmetrical supervoxelssource image

(b)

Figure 5.7: Examples of false-positive supervoxels for two different brain slices.

5.4 Results

We next discuss our results from the perspective of our key questions, stated in Section 5.3.

5.4.1 Impact of Supervoxel Segmentation Quality on Abnormal

Asymmetry Detection

To check the effectiveness of SAAD for abnormal brain asymmetry detection and if the su-
pervoxel segmentation influences this task, we used two variants of the SymmISF method
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to extract pairs of symmetric supervoxels (one for each hemisphere), as follows.

Uniform SymmISF: This method chooses N initial seeds uniformly distributed in a
hemisphere, with N defined by the user (Section 5.2.3). While simple, this strategy
does not guarantee to place at least one seed within each asymmetric anomaly, espe-
cially when N is small. In turn, this leads to undersegmentation — the missed lesions
will be assimilated to background. Conversely, when N is too large, this easily leads to
oversegmentation of larger lesions into many supervoxels, which have too little individual
information to capture asymmetries.

Asymmetry-guided SymmISF: To better fit supervoxels with asymmetric anomalies
of various morphologies, this strategy first seeds the highest-asymmetry-value brain re-
gions (where anomalies are more likely to occur) and then seeds the remaining, more
symmetric, areas with a fixed number of extra seeds (Section 5.2.3). Since asymmetries
vary for each image, the final number of supervoxels is dynamically obtained. For the ex-
periments, we fixed a number of 100 extra seeds uniformly distributed on low asymmetric
regions of the images.

We quantitatively compared the above two seeding strategies by using 5-fold cross-
validation on ATLAS, considering one subset for validation (46 images) and the remain-
ing four subsets for testing (183 images) in each fold. For this initial experiment, we
first used the following parameters for SAAD, empirically obtained by observing a few
training images: α = 0.08, β = 3.0, γ = 2.0, asymmetry histograms of 128 bins. We
considered the one-class Support Vector Machine classifier [201] with the best parameters
found for hippocampal asymmetry detection, as stated in Section 4.3.3: kernel = linear,
and nu = 0.1. For Uniform SymmISF, we considered five different numbers of seeds N :
{100, 250, 400, 550, 700}.

Table 5.1 shows the mean results of SAAD with Uniform SymmISF for the primary
stroke lesions of ATLAS by considering all five folds, as well as selected visual results.
As expected, Uniform SymmISF presents poor detection results for low N values since
anomalies are covered by large supervoxels that mix lesion and background voxels (see
images in Table 5.1). As N increases, the chance of placing at least one seed inside each
lesion is higher, even for smaller lesions, which leads to better results: We see how the
detection rates and mean recall monotonically increase with N in Table 5.1. Likewise, the
number of FP voxels also increases with N , which explains the similar Dice scores from all
methods. Yet, there is no guarantee that increasing N yields increasingly-better fitting
supervoxels to lesions. This is visible in the results for image 2 (insets) in Table 5.1, where
we see that a small lesion was missed for N = 700 but found for N = 550. Moreover, the
number of FP voxels and supervoxels also increase as N increases — compare rows 4, 6,
and 8 of Table 5.1. This results in considerably high FP rates for large N values. Hence,
visual inspection becomes difficult even when the detection rate is high (compare row 1
and rows 4–9 for N = {550, 700}). Also, the more supervoxels we extract, the longer is
the processing time, as shown in Table 5.1, row 10.

We next compare the Uniform and Asymmetry-guided SymmISF versions for SAAD
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Table 5.1: Experimental results for SAAD with Uniform SymmISF for different numbers
of seeds. Top part: higher values mean better accuracies. Bottom part: lower values
mean better accuracies. Each result contains a box (inset) surrounding the lesion whose
border color indicates if the lesion was detected (green) or missed (red). The abbreviation
k denotes thousands.

Uniform SymmISF
N=100 N=250 N=400 N=550 N=700

1 Detection rate 0.389 ± 0.058 0.62 ± 0.052 0.738 ± 0.041 0.808 ± 0.033 0.86 ± 0.028

2
True positive rate

(mean recall)
0.159 ± 0.024 0.293 ± 0.025 0.364 ± 0.022 0.409 ± 0.017 0.447 ± 0.018

3 Dice 0.12 ± 0.022 0.13 ± 0.02 0.127 ± 0.02 0.126 ± 0.019 0.123 ± 0.018

4 # FP voxels 14k ± 1.36k 26k ± 1.69k 32k ± 1.71k 36k ± 1.75k 40k ± 1.77k

5 FP voxel rate 0.018 ± 0.002 0.033 ± 0.002 0.041 ± 0.002 0.045 ± 0.002 0.05 ± 0.002

6 # FP supervoxels 8.83 ± 0.27 30.54 ± 0.84 49.97 ± 1.20 67.12 ± 1.86 90.91 ± 2.19

7 FP supervoxel rate 0.103 ± 0.003 0.122 ± 0.003 0.128 ± 0.003 0.128 ± 0.004 0.13 ± 0.003

8
# FP connected  

supervoxels
6.39 ± 0.17 18.40 ± 0.37 26.11 ± 0.47 32.67 ± 0.68 41.03 ± 0.76

9
FP connected 

supervoxel rate
0.077 ± 0.002 0.078 ± 0.002 0.071 ± 0.001 0.067 ± 0.001 0.063 ± 0.001

10
Mean processing time 

(in secs)
39.35 ± 0.98 59.08 ± 0.90 83.68 ± 1.00 111.77 ± 1.49 162.24 ± 12.59
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against three versions of CAE, as presented in Table 5.2. For simplicity, we considered
only the version of Uniform-SymmISF with the best detection accuracy. Also, note that





102

respectively, than the two versions of SAAD: Uniform SymmISF (0.86) and Asymmetry-
guided SymmISF (0.851). However, these impressive results are misleading as CAE re-
ports drastically (about 20x) more false-positive voxels than SAAD — compare rows 4 and
5 in Table 5.2. For instance, although CAE-85 almost detects all lesions, it misclassifies
40% of the hemispheres as abnormal, which is far from being reasonable and hinders the
visual analysis (we expect just a small portion of the brain, e.g., 1%). These high FP rates
explain the poor Dice scores for CAE in Table 5.2, which in turn are compatible with the
ones reported in [59]. Additionally, CAE is speedy (running time about 2s per image) and
yields very noisy detected regions, especially in regions with transitions between white
and gray matter (e.g., the cortex), that hinder the subsequent visual inspection (see the
results for the considered images in Table 5.2). Even though the FP voxels decrease as
higher thresholds are considered, the detection score can be hugely impacted; for example,
the threshold at the 95th percentile approximately halves both the detection score and FP
voxels rates compared with the results for the 90th percentile in Table 5.2. CAE might
present better results by using a considerable large training set and/or some additional
post-processing, but this is not considered in [59, 53]. CAE presents better results for
other medical imaging modalities, such as CT and T2 [59, 53].

Asymmetry-guided SymmISF has a slightly worse detection rate (0.851) compared to
Uniform SymmISF (0.86). It is also able to find small abnormal asymmetries (Table 5.2,
images 1-2). However, it fails to detect very subtle and/or tiny asymmetries (Table 5.2,
image 3). Also, this seeding strategy has lowest number of FP (connected) supervoxels
and FP voxel scores. However, the expert still has to unnecessarily analyze about 29 FP
connected supervoxels per image, which may take a considerable time. The next section
details our strategy to improve SAAD with Asymmetry-guided SymmISF to yield higher
detection rates and still attenuate FP scores.

5.4.2 Improving the end-to-end method

SAAD with Asymmetry-guided SymmISF is more suitable for our task since the hemi-
spheric asymmetries of each image guide its supervoxel estimation. Moreover, as Ta-
ble 5.2 shows, the asymmetry-guided seeding scales computationally better, being roughly
twice as fast as uniform seeding for a comparable quality. Hence, we decided to improve
Asymmetry-guided SymmISF by (i) optimizing its parameters by grid-search aiming to in-
crease detection accuracy; and (ii) proposing a false-positive-attenuation (FPA) strategy.
We describe these optimizations next.

For parameter optimization, we considered the validation set of each fold (Section 5.3)
and the following search space: α ∈ {0.04, 0.06, 0.08, 0.1, 0.12}, β ∈ {1.0, 3.0, 5.0, 7.0, 9.0},
and γ ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. As cost function, we considered the Intersection over

Union (IoU; Appendix C.2) metric that computes the overlap of a supervoxel with each
lesion. Indeed, when this overlap is maximal, each lesion is accurately covered by precisely
one supervoxel. The best parameters found by the grid search were α = 0.12, β = 5, and
γ = 0.5. Note that we used IoU as cost function, and not the metrics listed in Tables 5.1–
5.2, since it generically looks at how supervoxels fit lesions, whereas those metrics gauge
higher-level, more task-specific, concerns.
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We repeated the same experiment by considering the optimized parameters. Table 5.3
presents the results for this seeding strategy, called next Optimized-SymmISF. We repli-
cated the results of CAE-85 and CAE-90, and Asymmetry-guided SymmISF in Table 5.3
to make the comparison easier. We see that Optimized-SymmISF has a higher detection
rate (0.939) than Asymmetry-guided SymmISF (0.851), being slightly worse than CAE-90
(0.943). Optimized-SymmISF also presents the highest true positive rate (0.4889) among
all compared methods. However, it still has high FP rates and has a considerable increase
for the mean number of FP supervoxels and connected supervoxels (Table 5.3, rows 6 and
8) than Asymmetry-guided SymmISF.

To attenuate FPs, we first performed an analysis of their characteristics. Fig. 5.8
presents two parallel coordinate plots (PCPs) correlating the following three metrics on
each FP supervoxel s: (i) distance d of the centroid of s to the right hemisphere border;
(ii) volume of s; and (iii) the mean asymmetry value inside s. Both PCPs are identical
except by their highlighted examples (in red).

Fig. 5.8a highlights FP supervoxels close to the hemisphere’s border (d < 5 mm),
i.e., in the cortex. These supervoxels are relatively small with high variability of mean
asymmetries inside them and usually cover gyri and sulci (see the brain slices beside the
PCP), which are naturally asymmetric. Conversely, larger FP supervoxels are farther
from the hemisphere border (Fig. 5.8b), although their mean asymmetries have high
variability. By visually inspecting them, we can also find true abnormal regions deformed
by the stroke lesions in the dataset (see the ventricles in the brain slices beside the second
PCP). Hence, it seems reasonable to reduce false-positive supervoxels in the cortex.

To do this, we propose a false-positive-attenuation (FPA) strategy that accentuates
the normal asymmetry map (Section 5.2.2) by adding the standard-deviation asymmetries
from the training set to it. As a result, the asymmetry map of the test image (output
of Step 5 in Fig. 5.1) is more attenuated so that only highly asymmetric supervoxels will
be detected as abnormal. Next, we remove the initial seeds found by Asymmetry-guided
SymmISF, whose distance to the hemisphere border is less or equal to 5 mm, as suggested
in Fig. 5.8a. We repeated the same parameter optimization for SAAD using FPA, finding
the optimal values α = 0.06, β = 5, andγ = 0.5. Then, we repeated the full detection
experiment for the optimal parameter method (called Optimized-SymmISF with FPA).

Table 5.3 (rightmost column) shows the results. Optimized-SymmISF with FPA has
slightly better detection rate (0.862) and TP rate (0.451) to Asymmetry-guided SymmISF.
Also, it can detect subtle and tiny asymmetric lesions (Table 5.3, image 3), which indeed
are well-defined by its supervoxels. Although its detection rate is lower than Optimized-
SymmISF, it attains the lowest FP rates from all considered methods (compare rows 4–9
in Table 5.3). This method yields, on average, only 1.40% of all voxels as FPs, and these
cover only 4.9% of all connected supervoxels. Moreover, Optimized-SymmISF with FPA
yields about from twice to three times less FP connected supervoxels for visual analysis
than the other versions of SAAD, which decreases the user effort. Hence, Optimized-
SymmISF with FPA has the best balance between high detection rates and low FP rates
from all studied methods.

Next, we compared Optimized-SymmISF with FPA, our best method so far, with other
related methods in the literature. Such methods are usually designed for the segmentation
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percentile, respectively. Our method reports drastically fewer FP voxels than CAE. Also,
note that these compared methods yield their above-reported Dice scores by segmenting
quite large lesions; in contrast, we focus on the more challenging problem of finding many
small lesions (see, e.g., image 3 in Table 5.3).

5.4.3 Per-supervoxel vs Global Classifier Design

We now investigate our second key question, i.e., whether a per-supervoxel classifier
design is indeed preferable to a global classifier. Suppose (hypothetically) that supervoxel
segmentation is entirely irrelevant for the final detection accuracy. Thus, the features
we use (normalized histogram of absolute asymmetries for each symmetrical supervoxel)
should be able to yield robust texture features for detection regardless of supervoxel
quality. Hence, only a single classifier — not a (specialized) classifier per supervoxel for
each test image — trained from texture features of training images should be enough to
obtain similar results to those in Tables 5.1–5.2.

To test this hypothesis, we first chose a brain image from ATLAS (Fig. 5.9) with a
large asymmetric stroke lesion, which is not as challenging to detect as a small one. If
our hypothesis were correct, this lesion should be classified easily by global classifier. If
global classification failed, then the situation would be even worse for smaller, harder to
detect, lesions. To investigate this further, we projected the texture feature vectors of
all symmetric supervoxels extracted by Optimized-SymmISF with FPA using t-SNE [202]
(Fig. 5.9). Here, each point represents a symmetric supervoxel, colored by its overlapping
percentage with the ground-truth lesion. We see that there is no clear separation between
the high-overlap supervoxels (warm-colored points) and healthy-tissue supervoxels (cool
colors), even though the considered lesion is very well-defined by a single supervoxel (com-
pare the brain slices in Fig. 5.9). Rauber et al. [203] showed that the visual separability of
classes in a t-SNE projection is highly correlated with the ability of a classifier to separate
classes in the original feature space. Hence, since we do not find good visual separation,
we conclude that a single classifier only based on texture features is not sufficient to detect
lesions, even large ones.

5.5 Extending SAAD for the Native Image Space

This section extends SAAD for brain anomaly detection in the own native image space
(NIS) of each test image. NIS is commonly used in clinical routine to provide diagnosis,
quantification of disease severity, and treatment planning.

The simplest approach consists of performing SAAD in the standard image space (SIS),
as proposed in Section 5.2, and then mapping the results to NIS by applying the inverse
transformation, obtained by the image registration. Even though this strategy presents
reasonable results for most regions in the brain (Fig. 5.10), others are “normalized” due to
image registration, i.e., they seem to be healthier than they are — compare the deformed
left ventricle in NIS in Fig. 5.10a with the one in Fig. 5.10b, after non-rigid registration to a
given template. Consequently, this normalization might attenuate abnormal asymmetries
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5.5.1 Description of N-SAAD

We extend SAAD to perform asymmetry detection in the native image space (NIS) by
basically changing only how we compute brain asymmetries for the test image, its symmet-
rical supervoxel segmentation, and its feature extraction. The remaining pipeline steps
are the same as presented in Section 5.2 and illustrated in Fig. 5.1. We next detail these
proposed changes.

Asymmetry Computation

Let X be the set of preprocessed and registered 3D training images of healthy subjects,
I the 3D test image after preprocessing except registration (Section 5.2.1), and T the
chosen template. We obtain the set of asymmetry maps AX for all X exactly as proposed
in Section 5.2.2, i.e., by computing the voxel-wise absolute differences between left and
right hemispheres with respective to their MSPs. We also create the normal-asymmetry

map AX by averaging the absolute difference values in AX . We map AX to I — by
applying the deformation fields resulting from the registration between T and I — to
attenuate the test asymmetries, as described next.

Since hemispheres in the NIS can be very different in shape, size, and positioning —
compare both hemispheres in Fig. 5.11a — we cannot solely rely on the MSP to com-
pute asymmetries for I, as performed by SAAD (Section 5.2.2). Thus, we first flip the left
segmented hemisphere (Fig. 5.11c) to the right one, by using the MSP, to keep both hemi-
spheres in the same direction. Next, we register the flipped left hemisphere (Fig. 5.11c)
to the right one (Fig. 5.11b) and histogram-match them to guarantee spatial correlation
between them (Fig. 5.11d). Section 5.5.2 evaluates N-SAAD with two different regis-
tration types for this step. Finally, we compute voxel-wise absolute differences between
the correlated hemispheres and subtract the mapped AX from them. Resulting positive
values form a final asymmetry map AI for the test image I (Fig. 5.11e).

(a) (b) (c) (d) (e)

Figure 5.11: Asymmetry computation of a 3D test image in its own native image space.
(a) Axial slice of a 3D test stroke image after preprocessing and segmentation of the right
(red borders) and left hemisphere (green borders). (b) Segmented right hemisphere.
(c) Segmented left hemisphere flipped to the right hemisphere using the mid-sagittal
plane. (d) Resulting left hemisphere after registering (c) to (b), by non-rigid registration,
and histogram-matching them. (e) Asymmetry map resulting from the subtraction (only
positive values) between (d) and (b) and attenuation with a precomputed mapped normal-
asymmetry map.
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Symmetric Supervoxel Segmentation in NIS

Since SymmISF considers that the MSP separates brain hemispheres equally after regis-
tration on a given symmetric template, we proposed a simple change to adapt it to work
in NIS. Given a 3D test image (Fig. 5.12a) and its computed asymmetry map (Fig. 5.12b),
both in NIS, we first perform SymmISF (Section 5.5.1) only inside the right hemisphere
by using its corresponding segmentation mask. The result is a label map in which each
supervoxel is assigned to a distinct label (Fig. 5.12c). Finally, we map these supervox-
els by using the inverse transformation from the corresponding hemisphere registration
— previously performed during asymmetry computation (Section 5.5.1) — to obtain the
symmetrical supervoxels in the left hemisphere (Fig. 5.12d), which yield the final label

map L (Fig. 5.12e). We could proceed conversely, i.e., apply SymmISF on the left hemi-
sphere, and map the result to the right hemisphere. Finally, note that the “symmetrical”
supervoxels of each pair do not have the precise shape and volume — compare the super-
voxels in Fig. 5.12c and their corresponding symmetrical ones in Fig. 5.12d — as obtained
by SymmISF in SIS (Section 5.2.3).

(a) (b) (c) (d) (e)

Figure 5.12: SymmISF in NIS. (a) Axial slice of a 3D test stroke image after prepro-
cessing and segmentation of the right (red borders) and left hemisphere (green borders).
(b) Asymmetry map of (a). (c) Resulting supervoxels for the right hemisphere. (d)
Correspoding symmetrical supervoxels for the left hemisphere. (e) Final label map with
the symmetrical supervoxels: combination of (c) and (d).

Feature Extraction and Classification

In Section 5.5.1, we computed the set of training asymmetries AX — i.e., our adopted
knowledge about healthy brains — on the standard image space of a given template T ,
whereas we computed the asymmetries AI of the 3D test image I in its own native image
space (NIS). As such, we cannot directly use the symmetrical supervoxels L, which is
segmented in NIS, to extract asymmetry features for AX . We need to map L on T to
guarantee spatial correlation between supervoxels in both coordinate spaces. This is the
main difference compared to the feature-extraction step of SAAD (Section 5.2.4), where,
in turn, there is a single coordinate space — and, consequently, a single symmetrical
supervoxel map — to extract features from the training and testing asymmetry maps.

Initially, we register I on to T and map L by using the resulting deformation fields,
resulting in the map LT . Note that L and LT have the same symmetrical supervoxels,
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only mapped in different coordinate spaces. As in Section 5.2.4, we train a one-class
classifier (OCC) for each pair of symmetrical supervoxels in LT , by using as feature vector
the normalized histogram of the training asymmetries of AX inside the pair. Next, we
extract the same features for the testing asymmetries in AI inside each pair of symmetrical
supervoxel in L. Finally, we use the trained OCCs to classify their corresponding pairs in
the test image as normal or abnormal.

One might claim to compute the asymmetries of each training image in its specific
NIS, as performed for the test image. However, this would make the feature extraction
and classifiers’ training considerably slow, since we would have to map L to the coordinate
space of each training image (multiple registrations for each new test image). Instead, our
strategy simplifies this process when considering the coordinate space of T to compute all
training asymmetries, which is drastically faster.

5.5.2 Preliminary Experiments

We conducted preliminary experiments to assess the accuracy of N-SAAD, as follows.

Experimental Protocol

We adopted the same evaluation protocol presented in Section 5.3: 524 MR-T1 control
images from the CamCan dataset [220] for training, and 229 MR-T1 images of stroke
patients from the ATLAS dataset [34] for testing. Although we do not perform any pa-
rameter optimization in these preliminary experiments — as carried out for SAAD in
Section 5.4.2 — we considered the same 5-fold cross-validation on ATLAS, defined in
Section 5.4.1, to simplify comparisons between SAAD and N-SAAD. We also used the
exact evaluation metrics considered in Section 5.3.

We evaluated N-SAAD using both affine and non-rigid registration for the entire
pipeline (Section 5.5.1) — i.e., registration of the training images and test image to the
template, and registration between the test image’s hemispheres. We performed all image
registrations by Elastix [107]. Finally, we instantiated N-SAAD with the same initial
parameters used for SAAD (Section 5.4.1): α = 0.08, β = 3.0, γ = 2.0, asymmetry
histograms of 128 bins, and one-class support vector machine classifiers [201] with linear

kernel and nu = 0.1.
All experiments were executed on an Intel i7 3.60GHz PC with 64GB RAM and an

NVIDIA Titan XP 12GB GPU.

Results

Table 5.4 compares experimental results for N-SAAD against two versions of SAAD,
Asymmetry-guided SymmISF and Optimized SymmISF with FPA, presented in Section 5.4.
Observe that the former is the initial version of SAAD, which uses the same parameters of
N-SAAD, whereas the latter uses optimized parameters and a false-positive-attenuation
scheme. For the sake of simplicity, we call the former as initial-SAAD and the latter as
optimized-SAAD. Lastly, Fig. 5.13 shows some visual results for N-SAAD.
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Table 5.4: Quantitative comparison of N-SAAD, instantiated with affine and non-rigid
registration, and two versions of SAAD. All scores of SAAD were copied from Table 5.3:
initial-SAAD refers to Asymmetry-guided SymmISF, whereas optimized-SAAD refers to
Optimized-SymmISF with FPA. Top part: higher values mean better accuracies. Bot-
tom part: lower values mean better accuracies. The abbreviation k denotes thousands.

SAAD

(initial)

SAAD

(optimized)
N-SAAD

(affine registration)

N-SAAD

(non-rigid 

registration)

1 Detection rate 0.851 ± 0.016 0.862 ± 0.013 0.896 ± 0.021 0.856 ± 0.016

2
True positive rate

(mean recall)
0.436 ± 0.009 0.451 ± 0.006 0.579 ± 0.019 0.421 ± 0.018

3 Dice 0.132 ± 0.02 0.19 ± 0.018 0.18 ± 0.021 0.284 ± 0.018

4 # FP voxels 28k ± 0.55k 11k ± 1.17k 35k ± 2.45k 6427 ± 639

5 FP voxel rate 0.035 ± 0.001 0.014 ± 0.002 0.03 ± 0.002 0.001 ± 0.001

6 # FP supervoxels 58.21 ± 1.83 21.19 ± 0.87 29.709 ± 1.271 10.809 ± 0.78

7 FP supervoxel rate 0.194 ± 0.004 0.065 ± 0.005 0.121 ± 0.005 0.047 ± 0.003

8
# FP connected  

supervoxels
29.81 ± 0.88 15.98 ± 0.56 21.804 ± 0.566 9.246 ± 0.56

9
FP connected supervoxel 

rate
0.111 ± 0.002 0.049 ± 0.004 0.093 ± 0.002 0.041 ± 0.002

10
Mean processing time (in 

secs)
63.03 ± 6.73 72.36 ± 9.19 225.5 ± 10.5 380 ± 7.24

N-SAAD with affine registration reports the best detection scores, detecting 89.6% of
the lesions with a considerably higher mean recall (0.579) than the compared methods.
This superiority, however, contrasts with its false-positive (FP) scores: for example, it
presents the highest number of FP voxels (35, 000) regarding all baselines, and it has
worse FP scores compared to optimized-SAAD and N-SAAD with non-rigid registration.
Conversely, when compared with initial-SAAD, the other FP scores are consistently better
(compare rows 5–9 for both methods in Table 5.4).

In contrast, N-SAAD with non-rigid registration presents an equivalent detection rate
(0.856) and mean recall (0.421) with both versions of SAAD, while it yields drastically
lower FP scores (Table 5.4, rows 4–9). For instance, it reports roughly half of FP voxels
(only 0.1% of hemispheric voxels) compared to optimized-SAAD, which, in turn, has a
false-positive-attenuation scheme. These scores explain the higher Dice (0.284) compared
to the baselines. Moreover, the expert will analyze only about 9 FP connected supervoxels
per image, which leads to the least user effort among all baselines.

Both instances of N-SAAD detect well-defined abnormal asymmetries for visual in-
spection, which may be related to anomalies (Fig. 5.13, image 1). They can also find
small abnormal asymmetries (Fig. 5.13, image 2). However, N-SAAD cannot detect tiny
anomalies (Fig. 5.13, image 3) and pairs of similar and symmetric anomalies in the same
region in both hemispheres (Fig. 5.13, image 4), due to the lack of asymmetries (see the
asymmetries for Fig. 5.13, image 4 pointed by the arrows).

The good results of N-SAAD indicate that the registration between the hemispheres to
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Figure 5.13: Results of N-SAAD on the ATLAS dataset. Each row is an axial slice of
a 3D test image. First column: Ground-truth lesion segmentations. Columns 2 and 4:
Results of N-SAAD methods. Columns 3 and 5: N-SAAD asymmetry maps with affine
and non-rigid registration, respectively. Arrows indicate undetected lesions.

spatially correlate them is promising. Non-rigid registration yields less accentuated asym-
metry maps than affine registration (Fig. 5.13, Columns 3 and 5), especially in commonly
asymmetric regions in the brain (e.g., the cortex), since it uses localized deformations to
align hemispheres better. Despite yielding fewer FP anomalies, non-rigid registration is
slower than affine registration and may also suppress real abnormal asymmetries (e.g.,
ventricles of Fig. 5.13, image 1). Fig. 5.11 better illustrates this effect: compare the
ventricles of (c) and (d).

Additional registrations make N-SAAD noticeably slower than SAAD (from 3.5x to
6x), especially for non-rigid registration — Table 5.4, row 10 — which may hinder, for
example, large-scale studies. Thus, some optimization or faster registration methods are
desirable. Besides, as optimized-SAAD has improved both detection and false-positive
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scores from initial-SAAD — by performing a parameter optimization and a false-positive-
attenuation scheme — N-SAAD may follow a similar strategy to further improve its
results.

5.6 Conclusion

In this chapter, we addressed our research questions by presenting a fully unsupervised
approach for abnormal asymmetry detection based on supervoxel segmentation and one-
class classification. We also introduced the SymmISF method that extracts symmetrical
supervoxels in the brain. Our proposed approach, named SAAD, detects abnormal asym-
metric lesions of a given target image — previously registered to the standard image space
of a template — by classifying pairs of symmetric supervoxels by using a model (one-class
classifier) trained for each pair, independently, from normal brain anatomies only.

We used SAAD to detect stroke lesions on 3D MR-T1 brain images from a wide range of
different symmetric supervoxels extracted by two different instances of SymmISF. SAAD
achieved higher detection scores and considerably lower false-positive rates compared
to an autoencoder-based approach (also unsupervised like ours). SAAD can accurately
detect from large to small asymmetric anomalies, which indeed are the most challenging
ones. Experimental results confirmed that the quality of supervoxel segmentation truly

impacts anomaly detection, especially for small anomalies. They also showed that a
single global classifier only based on texture features is not sufficient to detect even large
anomalies, since their textures are similar to some healthy brain tissues. Putting together
our experimental insights, we conclude that (1) a good fit of symmetrical supervoxels to
lesions and (2) using a per-supervoxel classifier are beneficial design decisions for a good
detection of abnormal asymmetries.

Finally, we extended SAAD to perform asymmetry detection in the native image space
(NIS). Instead of working on a single coordinate space defined by a template, the extended
approach, called N-SAAD, estimates asymmetries and symmetric supervoxels for each
test image in its own NIS. We compared N-SAAD instantiated with affine and non-rigid
registration — image registration is mainly crucial during asymmetry computation — on
the stroke images previously considered. No parameter optimization was performed for
N-SAAD. Results show that both instances of N-SAAD have similar or better detection
scores compared to the best version of SAAD, with drastically lower false-positive scores
by using non-rigid registration. These results indicate that the registration between the
hemispheres to correlate them spatially is promising. However, N-SAAD is considerably
slower than SAAD (from 3.5x to 6x) for performing multiple image registration along its
pipeline.

Our both proposed methods, however, have two main shortcomings: (i) for relying
on brain asymmetries for anomaly detection, the analysis is limited only to asymmet-
ric anomalies in the hemispheres; and (ii) they cannot detect similar and “symmetric”
anomalies located roughly in the same region in both hemispheres (lack of accentuated
asymmetries). These limitations motivated us to further explore the proposed supervoxel
classification methodology by replacing asymmetries with registration errors. We address



114

precisely this solution in the next chapter.

Possibilities for future work may include to:

1. Improve asymmetry computation;

2. Refine the symmetric supervoxel segmentation to define supervoxels in subtle lesions;

3. Investigate other feature-extraction techniques;

4. Investigate other one-class classifiers;

5. Explore other false-positive-attenuation strategies (especially for N-SAAD);

6. Evaluate N-SAAD after optimizing its parameters;

7. Evaluate both approaches in other medical imaging modalities.

Another worthwhile goal is using additional visual-analytics techniques to find challenging
cases where both methods fail to detect complex small-scale lesions, and then support im-
proving all the above possibilities for future work. One may also investigate fast projection
to perform our approaches on the 2D feature space, similarly to our solution presented in
Chapter 4.
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Chapter 6

Detection of General Brain Anomalies

In the previous chapter, we proposed a fully unsupervised supervoxel-based framework,
so-called SAAD, designed to automatically detect anomalies associated with abnormal
brain asymmetries, both in the standard and native image spaces. SAAD detects outliers
as abnormal asymmetries by using a supervoxel segmentation, combined with a one-class
per-supervoxel classifier.

SAAD obtains higher detection scores and considerably lower false-positive rates com-
pared to a state-of-the-art unsupervised method. However, its analysis is limited to
asymmetric anomalies in the brain hemispheres (for only relying on brain asymmetries),
ignoring lesions in the cerebellum and brainstem. Also, it cannot detect similar and “sym-
metric” anomalies located roughly in the same region in both hemispheres, because of the
lack of accentuated asymmetries.

Although SAAD uses brain asymmetries in two steps — to guide the symmetrical
supervoxel segmentation and to extract features for the symmetrical supervoxels — its
pipeline is not strongly related to asymmetries. In fact, after establishing a spatial cor-
respondence between training control and test images (e.g., by image registration), the
novelty of this pipeline consists of:

(1) extracting supervoxels as meaningful volumes of interest (VOIs) specialized for each
test image; and

(2) for each VOI, generating a local one-class classifier, trained on control images, to
classify such a VOI as healthy or abnormal on the test image — outliers are con-
sidered anomalies.

Thus, we may generalize such a pipeline by replacing asymmetry maps with any other
distinct saliency map, which must indicate what is more important to analyze in the

This chapter is based on the publications:
(i) S. B. Martins, A. X. Falcão, and A. C. Telea, “BADRESC: Brain anomaly detection based on registra-
tion errors and supervoxel classification,” in International Joint Conference on Biomedical Engineering
Systems and Technologies: BIOIMAGING, pp. 74–81, 2020. Best student paper awards.

(ii) S. B. Martins, A. X. Falcão, and A. C. Telea, “Combining Registration Errors and Supervoxel Clas-
sification for Unsupervised Brain Anomaly Detection,” Accepted for publication in Lecture Notes in
Computer Science. Selected paper.
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images, according to a specific problem; in our target problem, brain anomalies. This map
can then improve (1) and (2), and also extend the detection of (a)symmetric anomalies
for the cerebellum and brainstem, thus overcoming SAAD’s limitations. As such, we may
refine our two research questions to:

Can we detect brain anomalies by modeling healthy brain patterns based on image sim-

ilarity?

Following the above observations, this chapter introduces TUSCA — Towards Un-

supervised Supervoxel Classification for Anomaly detection — a general unsupervised
anomaly detection framework based on supervoxel classification. As proof of concept,
we instantiate TUSCA by considering registration errors as its saliency map. We assume
that registration errors for anomalies are considerably different from the registration errors
for healthy tissues. We originally named this instantiated method in [51] of BADRESC
— Brain Anomaly Detection based on Registration Errors and Supervoxel Classification.

We structure this chapter as follows. Section 6.1 introduces the general pipeline of
TUSCA and details its instance based on registration errors. Section 6.2 presents ex-
perimental results for anomaly detection in the standard image space, while Section 6.3
concludes the chapter.

6.1 Description of TUSCA

This section describes the TUSCA framework, instantiated to use registration errors as
its saliency map (so-called BADRESC method), for the detection of anomalies in the right
and left hemispheres, cerebellum, and brainstem. Note that, for our target problem, one
could use any other saliency map that emphasizes brain anomalies. TUSCA performs
anomaly detection in the standard image space. Fig. 6.1 presents the pipeline of TUSCA.

Since TUSCA is a generalization of SAAD, this section presents a similar structure,
examples, and diagrams as those presented in Section 5.2 that describe SAAD. Conse-
quently, making this section self-contained implies some repetition, but repetition also
serves as a review for people reading the thesis linearly. Therefore, we encourage the
reader to compare both sections whenever needed.

6.1.1 3D Image Preprocessing

TUSCA performs precisely the same preprocessing operations described in Section 5.2.1,
which, in turn, follows the pipeline presented in Section 2.3. Therefore, we refer to
Section 5.2.1 for a complete description of such operations and Fig. 5.2 for a visual example
of the preprocessing results for a given stroke 3D image.

6.1.2 Saliency Computation

TUSCA generalizes SAAD by mainly replacing brain asymmetries with any other kind
of saliency map tailored to brain anomaly detection. In short, a saliency map is an
image whose voxels indicate what is more important (i.e., saliencies) to analyze in a
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high REs due to their complex shapes and very large variability between subjects —
observe the cortex of the template and the registered image in Figs. 6.2a and 6.2d; note
its resulting REs in Fig. 6.2e. As such, we need to apply some attenuation process to
avoid detecting false positives in this region.

(a)

1.0

0.0

(b) (c)

(d) (e) (f) (g)

Figure 6.2: Registration error computation. (a) Axial slice of the brain template. (b)
Euclidean Distance Transform (EDT) normalized within [0, 1] computed for the brain
segmentation mask defined for the template. Brain borders are shown only for illustration
purposes. (c) Common registration errors for control images. (d) Axial slice of a test
stroke image after preprocessing and registration in (a). The arrow indicates the stroke
lesion. (e) Registration errors. (f) Attenuation of (e) for the cortex based on the EDT.
(g) Final registration errors for the test image: positive values of the subtraction between
(f) and (c).

Let T be the template (Fig. 6.2a) and MT its predefined brain segmentation mask
for the right hemisphere, left hemisphere, cerebellum, and brainstem (background voxels
have label 0, and each object has a different label). Let X = {X1, · · · , Xk} be the set
of k registered training images (output of Step 1 in Fig. 6.1) and I the test image after
preprocessing and registration (output of Step 4 in Fig. 6.1; see also Fig. 6.2d).

Firstly, we compute the Euclidean Distance Transform (EDT) for each object of MT

and normalize the distances within [0, 1] to build the map E (Fig. 6.2b). Next, we obtain
the set of registration errors RX for all X by computing the voxel-wise absolute differences
between X and T (Fig. 6.1, Step 2; see also Fig. 6.2e). For each training image Xi ∈ X,
we attenuate REs in its cortex such that for each voxel v ∈ Xi,

f(v) = 1− (E(v)− 1)λ

AXi
(v) = RXi

(v) · f(v),
(6.1)
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where E(v) is the Euclidean distance for the voxel v, f(v) is its attenuation factor within
[0, 1], λ is the exponential factor of the function, and AXi

is the map with the attenuated
REs for Xi. In this work, we considered λ = 4. Thus, REs of voxels close to the brain
borders are extremely attenuated, whereas those from voxels far from the borders are
slightly impacted (Fig. 6.2f). A downside of this approach is that subtle lesions in the
cortex tend to be missed due to the lack of REs.

In order to even ignore REs caused by noises or small intensity differences in re-
gions/tissues far from the cortex, we create a common registration error map AX by
averaging the attenuated REs from AX (output of Step 3 in Fig. 6.1; see also Fig. 6.2c).
Finally, we repeat the same steps to compute the attenuated REs for the test image
I and then subtract AX from them. Resulting positive values form a final attenuated
registration error map AI for I (output of Step 5 in Fig. 6.1; see also Fig. 6.2g).

When comparing the final registration error map of Fig. 6.2g with the corresponding
asymmetry map for the same test image (Fig. 5.3d), we can observe that both emphasize
the anomaly while attenuating saliencies on the cortex. However, the former computes
saliencies for each object of interest independently, which makes it possible to detect
“symmetric” anomalies.

6.1.3 Supervoxel Segmentation

Inspired by the SymmISF method (Section 5.2.3) used in SAAD for symmetrical super-
voxel segmentation, we propose a more general approach that extracts supervoxels in the
entire brain guided by generic saliency maps, as shown in Fig. 6.3. Our supervoxel segmen-
tation is also based on the recent Iterative Spanning Forest (ISF) framework, presented
in Section 2.6. We next detail the proposed approach and its instance to use registration
errors.

Recall a template T , its predefined brain segmentation mask MT (macro-objects of
interest), a preprocessed 3D test image I registered on T , and AI be the saliency map
for I (e.g., the final attenuated registration errors). Equivalently to SymmISF, we find
initial seeds by selecting one seed per local maximum in AI (see the seeds in Fig. 6.3).
We compute the local maxima of the foreground of a binarized AI at γ × τ , where τ is
Otsu’s threshold [219]. The higher the factor γ is, the lower is the number of components
in the binarized AI . We extend the seed set with a fixed number of seeds (e.g., 100) by
uniform grid sampling the regions with low REs of the binarized image, resulting in the
final seed set S.

Next, we could then either perform ISF directly on I or a different input image im-
proved according to specific constraints for the target problem. For instance, when relying
on registration errors as saliency maps, we can even force a matching between regions in
I and T during supervoxel segmentation by stacking them as the input 2-band volume I ′

of ISF (Fig. 6.3). This strategy, however, is optional and problem-dependent.
Finally, we perform ISF inside each macro-object of interest in MT , separately, from

the initial seeds. The results are label maps wherein each supervoxel is assigned to a
distinct number/color. We then combine and relabel the resulting supervoxels to build
the final supervoxel map L (output of Step 6 in Fig. 6.1).
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6.2.1 Evaluation Protocol

Considered Methods: As a proof of concept, we instantiated TUSCA to detect abnor-
mal registration errors as anomalies, henceforth called BADRESC — Brain Anomaly

Detection based on Registration Errors and Supervoxel Classification. We compared
BADRESC against the primary proposed instance of TUSCA: the SAAD method (Sec-
tion 5.2).

We considered two versions of SAAD, Asymmetry-guided SymmISF and Optimized

SymmISF with FPA, as presented in Section 5.4. The former is the initial version of SAAD
that uses parameters empirically obtained, whereas the latter uses optimized parameters
and a false-positive-attenuation scheme. For the sake of simplicity, we call the former as
initial-SAAD and the latter as optimized-SAAD.

For these preliminary experiments, BADRESC uses the identical initial parameters
previously considered for SAAD-initial in Section 5.4.1: α = 0.08, β = 3.0, γ = 2.0,
histograms of 128 bins, and one-class support vector machine classifiers [201] with linear

kernel and nu = 0.1.

Datasets: To train the considered methods, we considered the same subset of 524 MR-
T1 control images from the CamCan dataset [220] used in Section 5.3.1. As far as we
know, CamCan is the largest public dataset with 3D images of healthy subjects acquired
from different scanners. After visually inspecting the entire dataset (653 images), we have
removed some images with artifacts or bad acquisitions, yielding this subset.

For testing, we also chose the Anatomical Tracings of Lesions After Stroke (ATLAS)
public dataset release 1.2 [34] in our experiments. Although we do not perform any pa-
rameter optimization for BADRESC in these preliminary experiments — as carried out
for SAAD in Section 5.4.2 — we considered the same 5-fold cross-validation on ATLAS
(total of 229 images), defined in Section 5.4.1, to simplify comparisons between SAAD
and BADRESC. Such folds consist of 3T images that only contain lesions in the hemi-
spheres. Additionally, we also evaluated BADRESC for all the 3T images from ATLAS
with stroke lesions in the cerebellum and brainstem (total of 41 images). Therefore, our
study involved a total of 794 images.

We performed all non-rigid image registrations by Elastix [107]. All images were reg-
istered into the coordinate space of ICBM 2009c Nonlinear Symmetric template [108] and
preprocessed as outlined in Section 5.2.1 (see an example in Fig. 5.2).

Metrics: We consider the same evaluation metrics defined in Section 5.3.2, which, in
short, measures detection and false-positive (FP) scores. Therefore, we refer to Sec-
tion 5.3.2 for a full description of all adopted evaluation metrics.

6.2.2 Results and Discussion

Table 6.1 summarizes all quantitative results for the considered instances of TUSCA,
whereas Figs. 6.4 and 6.5 present some visual results. Both versions of SAAD present
better detection rates and mean recall for hemispheric lesions compared to BADRESC
(Table 6.1, rows 1 and 2), although the difference between the scores is not high — e.g.,
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SAAD-initial has detection score of 0.851 while BADRESC has 0.824. BADRESC reports
a better Dice score (0.169) than SAAD-initial (0.132), being slightly worse than SAAD-
optimized (0.19). As outlined in Section 5.3.2, however, this score is underestimated
since real unlabeled anomalies detected by the methods are considered false-positive.
Regardless, there is a large room for improvements to make these methods accurate for
segmentation.

Table 6.1: Quantitative results for images from the ATLAS dataset with stroke lesions
in the hemispheres, cerebellum, and brainstem. All scores of SAAD were copied from
Table 5.3: initial-SAAD refers to Asymmetry-guided SymmISF, whereas optimized-SAAD
refers to Optimized-SymmISF with FPA. Since we performed BADRESC on all images
with lesions in the cerebellum and brainstem, its detection rate is the exact rate (not a
mean). Top part: higher values mean better accuracies. Bottom part: lower values
mean better accuracies. The abbreviation k denotes thousands.

Hemispheres
Cerebellum and 

Brainstem

SAAD

(initial)

SAAD

(optimized)
BADRESC BADRESC

1 Detection rate 0.851 ± 0.016 0.862 ± 0.013 0.824 ± 0.017 0.683

2
True positive rate

(mean recall)
0.436 ± 0.009 0.451 ± 0.006 0.4 ± 0.012 0.26 ± 0.26

3 Dice 0.132 ± 0.02 0.19 ± 0.018 0.169 ± 0.014 0.11 ± 0.151

4 # FP voxels 28k ± 0.55k 11k ± 1.17k 8.98k ± 748 8.78k ± 7.94k

5 FP voxel rate 0.035 ± 0.001 0.014 ± 0.002 0.01 ± 0.001 0.01 ± 0.01

6 # FP supervoxels 58.21 ± 1.83 21.19 ± 0.87 21.43 ± 1.114 25.63 ± 15.64

7 FP supervoxel rate 0.194 ± 0.004 0.065 ± 0.005 0.105 ± 0.005 0.0971 ± 0.049

8 # FP connected  supervoxels 29.81 ± 0.88 15.98 ± 0.56 16.58 ± 0.654 18.414 ± 10.2

9 FP connected supervoxel rate 0.111 ± 0.002 0.049 ± 0.004 0.083 ± 0.003 0.079 ± 0.034

10 Mean processing time (in secs) 63.03 ± 6.73 72.36 ± 9.19 54.17 ± 1.3 52.62 ± 2.5

Both BADRESC and SAAD can accurately detect small asymmetric lesions in the
hemispheres (Fig. 6.4, Image 1). Their considered saliency maps — asymmetries for
SAAD and registration errors for BADRESC — can successfully emphasize this kind of
lesion (see the saliency maps for Image 1 in Fig. 6.4). SAAD cannot detect lesions with
low asymmetries, while BADRESC does not have this limitation (compare the results
and saliency maps for Image 2 in Fig. 6.4). However, both methods are ineffective in
detecting tiny anomalies (Fig. 6.4, Image 3) since their saliency maps are not able to
highlight such anomalies. Poor saliencies result in the undersegmentation of supervoxels
covering anomalies, which compromises their detection.

BADRESC is a bit faster and reports fewer false-positive (FP) voxels than SAAD
(Table 6.1, rows 4, 5, and 10), with a considerable difference to SAAD-initial: an average
of 8, 980 FP voxels against ≈ 28, 000. Concerning FP supervoxel scores, BADRESC is
consistently better than SAAD-initial (scores roughly twice higher) — compare rows 6–9
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Figure 6.5: Results of BADRESC for some images with stroke lesions in the cerebellum
or brainstem. Each image contains an inset surrounding the lesion whose border color
indicates if the lesion was detected (green) or missed (red).

in Table 6.1. For instance, SAAD-initial incorrectly classifies 58.21 supervoxels on average
— which consists of 19.4% of all analyzed supervoxels and 3.5% of the analyzed voxels
in the hemisphere, respectively. BADRESC, in turn, reports an average of 21.43 FP
supervoxels, which corresponds to 10.5% of analyzed supervoxels and only 1% of voxels in
the entire brain. When compared with SAAD-optimized, BADRESC yields to a similar
number of FP (connected) supervoxels (Table 6.1, rows 6 and 8), but it proportionally
detects more FP supervoxels to the total number of analyzed supervoxels (Table 6.1,
rows 7 and 9).

BADRESC is less accurate when detecting lesions in the cerebellum and brainstem
(detection rate of 0.6829). Some of these lesions are indeed challenging, especially in the
cerebellum, whose appearances are similar to their surrounding tissues (Fig. 6.5, Image 6).
Although its FP scores are similar to those of hemispheric lesions — compare rows 4-9 for
BADRESC in Table 6.5 — the considered registration-error attenuation (Eq. 6.1) seems
to be very strong for the cerebellum and brainstem, which impairs the representation of
the lesions.

The two evaluated instances of TUSCA show its flexibility and potential for unsuper-
vised brain anomaly detection. Although the preliminary experimental results indicate
that SAAD-optimize is the best option for the detection of asymmetric anomalies in the
hemispheres, its parameters were previously optimized for such a problem. In contrast,
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BADRESC used parameters empirically obtained, which, even so, resulted in competitive
results to SAAD-optimized with the advantage of (i) performing in the cerebellum and
brainstem, and (ii) detecting symmetric lesions.

6.3 Conclusion

This chapter presented TUSCA, a general fully unsupervised framework for anomaly
detection. This framework generalizes the previous SAAD method (Section 5.2) to use
any other distinct saliency maps that emphasizes brain anomalies, instead of only brain

asymmetries. Consequently, we can extend the anomaly detection to the cerebellum
and brainstem, as well as detecting lesions with low asymmetries, in contrast to SAAD.
This generalization refines our research questions, which are focused on abnormal brain
asymmetry detection.

As proof of concept, we instantiated TUSCA to use registration errors (REs) as
saliency maps, so that abnormal REs are considered as anomalies. We compared this
instance, named BADRESC, with two different versions of SAAD on 3T MR-T1 images
of stroke patients. BADRESC reports a bit lower detection scores than SAAD for hemi-
spheric lesions, but it attains similar false-positive scores to the most accurate version of
SAAD, being superior to the other version. BADRESC also detects lesions in the cere-
bellum and brainstem with promising results. Consequently, we have shown it is possible
to model healthy brain patterns, based on image similarity, for the detection of brain
anomalies, thus addressing the question introduced in this chapter.

Future work: The two evaluated instances of TUSCA show its flexibility and po-
tential for unsupervised anomaly detection. As such, future work may address several
extensions to this work. Initially, one could investigate other different maps for our target
problem, since the quality of the saliency maps directly impacts the detection accuracy.
Likewise, one could focus on designing saliency maps for a given specific problem — e.g.,

a map that only highlights tumors — so that detection and segmentation scores will be
maximized for such a problem.

Even though we performed TUSCA on brain images, its applicability is not limited
to brains. Indeed, its only major requirement consists of having all images aligned on

the same coordinate space. A robust image registration guarantees such spatial corre-
spondences among the images. A few other adjustments, such as different preprocessing
operators, can also be necessary according to the application. Therefore, future work in-
clude extending and evaluating TUSCA to detect anomalies in other organs (e.g., lungs).

Some possibilities for future work outlined in Section 5.6 can also be investigated for
TUSCA. In particular, one could explore other feature-extraction techniques, since we
only considered a simple normalized histogram for that.

Concerning BADRESC, one could first optimize its parameters and evaluate the re-
sulting quantitative and qualitative impact. Since brain hemispheres, cerebellum, and
brainstem have different constraints, the use of a different registration-error attenuation
for each of these objects should be further investigated.
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BADRESC depends on the quality of image registration in order to generate high-
quality saliency maps. In this work, we register the entire brain of images (after prepro-
cessing and skull-stripping) to the template. One could then investigate if the registration
of each object, independently, provides more accurate results, i.e., low registration errors,
which yields better detection results.
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Chapter 7

Conclusion

We conclude here our work by revisiting our two research questions stated in Section 1.4:

RQ1: Can we model normal brain asymmetries?

RQ2: Can we use the normal brain asymmetry model to detect brain anomalies?

To answer these questions, this thesis successfully explored different fully unsuper-
vised approaches, as based on the general pipeline presented by Fig. 1.6, to detect ab-
normal brain asymmetries associated to anomalies in 3D MR-T1 images. We successfully
presented solutions that showed how unsupervised machine learning can leverage brain
anomaly detection. Our key contributions include:

(1) A novel automatic brain image segmentation method used in different steps of the
proposed approaches (e.g., image preprocessing);

(2) An autoencoder-based method to model normal brain asymmetries of a given brain
structure and detect outliers as anomalies;

(3) An unsupervised supervoxel-based framework to detect abnormal brain asymmetries

as anomalies.

Although this thesis focused on abnormal brain asymmetry detection, as the last contri-
bution, we still extended the solution (3) — which is only designed for asymmetric lesions
in the hemispheres — for the detection of (a)symmetric brain anomalies in the entire
brain (hemispheres, cerebellum, and brainstem) regardless their asymmetries.

We next summarize such contributions towards our research questions, their results,
limitations, as well as we present plenty of opportunities for future work.

7.1 Brain Image Segmentation

Brain image segmentation is an essential task in many applications, such as the study of
brain asymmetries, morphological analysis of the hemispheres, or for a better understand-
ing of neurological diseases. It consists of the precise segmentation of the right and left
hemispheres, cerebellum, and brainstem. Different prior steps of the proposed anomaly
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detection approaches rely on such segmentation so that a robust segmentation method is
required.

Chapter 3 introduced a fast and effective solution, named AdaPro, for the automated
segmentation of brain structures in control and anomalous MR 3D images. The novelty
of AdaPro is it incorporates a texture classifier based on convex optimization that dynam-

ically indicates the regions of the target 3D image where the probabilistic atlases (shape
constraints) — built from healthy structures/organs — should be further adapted, due
to the presence of anomalies. AdaPro then delineates the objects of interest by a new
algorithm based on combinatorial optimization and diffusion filtering.

Experimental results on 3D MR-T1 images of 2T and 3T from epilepsy patients be-
fore and after temporal lobe resections showed the superiority of AdaPro than three other
atlas-based methods, in terms of accuracy and efficiency. Moreover, AdaPro can segment
new images in the native and reference image spaces.

Future work: One opportunity for future work is employing AdaPro to other organs and
imaging modalities. More robust tissue classification for other different anomalies could
be also evaluated. To further increase the efficiency of AdaPro, one may investigate faster
(and yet accurate) image registration methods.

7.2 Abnormal Asymmetry Detection by Autoencoders

and One-Class Classification

While the human brain presents natural structural asymmetries between both hemi-
spheres, some neurological diseases, such as epilepsy, are associated with abnormal asym-

metries. The simplest strategy to detect such anomalies consists of a visual slice-by-slice
inspection in a 3D brain image by one or multiple specialists. However, this manual anal-
ysis is very time-consuming, error-prone, and even impracticable when a large amount of
data needs to be processed.

Chapter 4 presented our first unsupervised solution regarding the research questions.
The proposed automatic framework exploits convolutional autoencoders (CAEs) and a
one-class classifier to model normal asymmetries from healthy subjects, thus addressing
RQ1. We then addressed RQ2 by using such a model to detect outliers as abnormal
asymmetries. We use the intermediate layers from CAEs (latent features) to represent
asymmetries (feature vector). As proof of concept, we instantiated the framework to
analyze hippocampal asymmetries from 3D patches around the hippocampi in both hemi-
spheres. We also proposed an automatic method to localize these 3D patches, as well as
a novel one-class classifier based on optimum-path forests.

We evaluated the framework using MR-T1 images from healthy subjects and epilepsy
patients with unilateral hippocampal atrophy. We considered two feature spaces to train
the classifiers: the original one and a 2D space created by non-linear projection. The latter
facilitates the understanding of the data distribution, sample inspection, and annotation of
the detected anomaly type. Results reported high detection scores, especially considering
some difficult cases that only a trained expert can visually identify. Regarding our research
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questions, we therefore showed our first well-succeeded unsupervised solution to model
normal brain asymmetries to detect brain anomalies.

When extending the framework for the detection of brain asymmetries along the entire
hemispheres, however, the reported results were unsatisfactory. Experiments showed poor
results with several false-positive asymmetries detected for all considered images. Also,
such an extension did not detect true abnormal asymmetries caused by lesions. All these
limitations are directly related to the poor estimation of 3D patches (size and location).

Putting together our experimental insights, the proposed autoencoder-based frame-
work is a robust solution for the asymmetry analysis of a specific structure of interest,
since one may (automatically or manually) design high-quality 3D patches for it. Multiple
analysis of general structures, with distinct shapes and locations in the brain, should rely
on one more precise volumes of interest, such as supervoxels, which we next explored in
this thesis.

Future work: The simplest possibility for future work involves performing the proposed
framework to other brain structures, organs, or different medical imaging modalities than
MR-T1. The impressive results in the 2D projection space suggest further investigating
the impact of the projection in the design of classifiers. One could also explore fast pro-
jection algorithms to make the asymmetry analysis in the two-dimensional space feasible
for large-scale studies. Finally, one may develop interactive visual tools to support the de-
tection, inspection, annotation, and identification of brain anomalies based on abnormal
asymmetries.

7.3 Unsupervised Supervoxel-based Abnormal Brain

Asymmetry Detection

The limitations of analyzing asymmetries from 3D patches motivated us to explore super-

voxel segmentation to estimate more precise volumes of interests (VOIs). Supervoxels are
groups of voxels with similar characteristics resulting from an oversegmentation of a 3D
image or region of interest, which preserves intrinsic image information (e.g., the borders
of tissues and lesions).

Chapter 5 presented the key contribution of this thesis: a general fully unsupervised
framework for abnormal asymmetry detection based on supervoxel segmentation, and
specialized one-class per-supervoxel classifiers for outlier detection in the standard image
space. Such a framework, called SAAD (Supervoxel-based Abnormal Asymmetry Detec-

tion), uses brain asymmetries to guide the supervoxel segmentation and extract a feature
vector for each supervoxel. SAAD relies on a novel method, so-called SymmISF, that
extracts pairs of symmetric supervoxels in both hemispheres for the subsequent analysis.

Chapter 5 provided an in-depth evaluation of SAAD to detect stroke lesions on 3D MR-
T1 brain images by considering different scenarios for supervoxel segmentation, parameter
optimization, and presenting a false-positive-attenuation strategy for SAAD. Experimen-
tal results showed that SAAD attained higher detection scores and considerably lower
false-positive rates than a state-of-the-art unsupervised method (like ours). They also
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showed the effectivity of using a set of specialized per-supervoxel classifier instead of a
single global one. However, SAAD is limited to detecting asymmetric anomalies in the
hemispheres.

Additionally, Chapter 5 also introduced an extension of SAAD for abnormal asymme-
try detection in the native image space. We evaluated the new approach, named N-SAAD
(‘N’ stands for native), from a set of parameters empirically obtained. N-SAAD presented
competitive detection scores against an optimized version of SAAD, with less false-positive
rates.

Future work: All experimental insights in this thesis open several potential directions for
future work, as follows. One may further investigate other feature-extraction techniques
and one-class classifiers to model better normal asymmetries for (N-)SAAD. Since false
positives are problematic in both methods, one should consider investigating different
attenuation strategies. Besides, an optimization procedure should be performed for N-
SAAD in other to improve its results further. Another worthwhile goal is using additional
visual-analytics techniques to find challenging cases where both methods fail to detect
complex small-scale lesions, and then support improving all the above possibilities for
future work.

Although our unsupervised approach can attain high detection accuracies, supervised

techniques are usually more accurate for specific tasks. However, these methods require
a large number of manually annotated training images, which is absent for most medical
image analysis problems. Thus, one interesting direction is to use SAAD to facilitate data
annotation for supervised problems, as follows.

One can initially perform SAAD on training images from patients with a given anomaly
(e.g., tumor). Next, an expert visually removes the false-positive detected supervoxels
and refines the segmentation of the remaining detected supervoxels if needed. Resulting
supervoxels form the gold-standard segmentation for the training images, which may then
be used to train a supervised model for the target problem. This novel data annotation
process rely on considerably fewer user interactions to yield a high-quality labeled dataset.
One may still use these interactions (expert’s inputs) to improve further the unsupervised
anomaly detection of SAAD via some visual-analytics technique.

7.4 Towards Unsupervised Supervoxel Classification for

Anomaly Detection

SAAD is only designed to detect asymmetric lesions in the brain hemispheres. Although
SAAD uses brain asymmetries to guide the symmetrical supervoxel segmentation and
to extract features for the symmetrical supervoxels, its pipeline is not strongly related
to asymmetries. Thus, Chapter 6 presents a fully unsupervised framework that extends
SAAD to detect lesions (symmetric or asymmetric) in the hemispheres, cerebellum, and
brainstem. This solution relies on any other saliency map that emphasizes brain anoma-
lies, instead of only brain asymmetries.

A saliency map is an image (or a heatmap) that indicates what is more important to
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analyze in a given target image, according to a specific problem; in the context of this
thesis, brain anomalies. The proposed framework, called TUSCA (Towards Unsupervised

Supervoxel Classification for Anomaly detection), uses saliencies to guide the supervoxel
segmentation and extract a feature vector for each supervoxel.

Chapter 6 presented and evaluated an instance of TUSCA, called BADRESC, that
considers registration errors as saliencies. Our premise was that the registration errors
for anomalies are considerably different from those registration errors for healthy tissues.
BADRESC reports slightly lower detection scores than SAAD for hemispheric lesions,
with similar false-positive scores. Nevertheless, BADRESC can detect lesions in the cere-
bellum and brainstem with promising results.

Future work: Since the only major requirement from TUSCA consists of having all

images aligned on the same coordinate space, one opportunity for future work is to extend
TUSCA to detect anomalies in other organs (e.g., lungs). Initially, one could simply
evaluate BADRESC in the other target organ or designing a specific saliency map that
emphasizes its lesions, taking into account specific characteristics of these anomalies.

Like SAAD, one may investigate other feature-extraction techniques and one-class
classifiers to model better registration errors or other saliencies. As estimating high-
quality supervoxels that accurately cover the lesions is crucial for the accuracy of TUSCA,
one may also focus on improving this segmentation, especially for complex small-scale
lesions. Regarding BADRESC, an optimization procedure should be performed to improve
its results further. Finally, one may use some instance of TUSCA to assist data annotation,
as previously suggested for SAAD.
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Appendix A

Notations and Definitions

ADAPRO Adaptive Probabilistic Atlas proposed for anomalous brain im-
age segmentation (Chapter 3).

AE Abbreviation of Autoencoders (Section 4.1).

ASYMMETRY MAP A 3D (volumetric) image with brain asymmetries (Chapter 5).

ATLAS Pair of a source image and its segmentation mask for objects of
interest (Chapter 3).

AUTOENCODER A generative neural network for image reconstruction (Section 4.1).

BRAIN ASYMMETRY Anatomical differences between the two brain hemispheres.

BADRESC An instance of the TUSCA framework for Brain Anomaly Detection
based on Registration Errors and Supervoxel Classification (Chap-
ter 6).

CAE Convolutional Autoencoder (Section 4.1).

CEREBRUM The largest and uppermost of the brain containing the cerebral
cortex of the two hemispheres as well as several subcortical struc-
tures such as the hippocampus (Section 2.1.1).

CONTROL IMAGE An image with no pathologies.

CSF Cerebrospinal fluid: it is a clear, colorless body fluid found in
the brain and spinal cord (Section 2.1.2).

DETECTION A visual indication about the location of an object of interest
(e.g., an organ or lesion). It is commonly defined as a simple
2D or 3D bounding box around the object or a rough object
segmentation mask of it.

ELASTIX A popular software for (non)rigid image registration (Section 2.3.4).

GM Gray Matter tissue present in the brain (Section 2.1.1).
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GOLD-STANDARD Term used to describe segmentation masks resulting from fully
manual or semi-automatic image segmentation by one or multi-
ple experts (Section 3.1).

IFT Image Forest Transform framework commonly used to design
image processing operators (Section 2.4).

ISF An Iterative Spanning Forest framework for superpixel and su-
pervoxel segmentation (Section 2.6).

ISOTROPIC An image is isotropic if its pixel/voxel size is the same in every
dimension (Section 2.2.1).

MR-T1 T1 Magnetic-resonance image modality (Section 1.1).

MRI Magnetic Resonance Imaging (Section 1.1).

MSP Mid-Sagittal Plane — the median vertical longitudinal plane
that approximately divides a bilaterally symmetrical brain into
right and left hemispheres (Section 2.1.2).

N-SAAD Version of the SAAD method for analysis on the native coordi-
nate space of a given image (Section 5.5).

NIS Native Image Space. It corresponds to the coordinate space of a
given image (Section 5.5).

OPF Optimum-Path Forest — A graph-based framework designed for
clustering and classification methods (Section 2.5).

PBM The proposed Patch-Based Model for VOI location (Section 4.2.2).

REFERENCE IMAGE An image — commonly created by averaging several control im-
ages — that is used as standard coordinate space for image visu-
alization and analysis. Also known as template (Section 2.3.4).

ROI Region of Interest. Commonly a 2D bounding box or a segmen-
tation mask of a given object/region.

SAAD Supervoxel-based Abnormal Asymmetry Detection method (Sec-
tion 5.2).

SALIENCY MAP An image (or heatmap) that indicate what is more important to
analyze in a given target image (Chapter 6) — in the context of
this thesis, brain anomalies.

SEGMENTATION Process of partitioning an image into multiple objects (segments)
by precisely delineating their borders.

SIS Standard Image Space. It corresponds to the standard coordi-
nate space commonly defined by a template (Section 5.2).
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SLICE A 2D image extracted from a 3D image along one of its three
orthogonal planes (Section 2.1.2).

SUPERPIXEL A group of pixels of a 2D image that shares common character-
istics.

SUPERVOXEL Equivalent to superpixel but grouping voxels in a 3D image in-
stead.

SYMMISF Symmetric ISF algorithm that extracts pairs of symmetric su-
pervoxels in objects e.g., brain hemispheres (Section 5.2.3).

TEMPLATE Equivalent to Reference Image.

TUSCA Towards Unsupervised Supervoxel Classification for Anomaly
detection — a general anomaly detection framework based on
supervoxel classification (Chapter 6).

VOI Volume of Interest. Equivalent to ROI but for volumes in 3D
images.

WM White Matter tissue present in the brain (Section 2.1.1).
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Appendix B

Data

A key challenge in medical image analysis is the absence of publicly large annotated
datasets for different applications [11, 44, 147]. Annotations are problem-dependent and
typically consist of labels that categorize entire images (e.g., the image is healthy or
abnormal), bounding boxes around objects of interest (e.g., organs and anomalies), or
the precise segmentation of these objects. Providing annotations for 3D images is time-
consuming since they require manually slice-by-slice inspection or labeling by one or
multiple experts. To answer our research questions, we need datasets with isotropic 3D
MR-T1 brain images from (i) healthy subjects, and (ii) with anomalies of different sizes
(especially small ones) and their gold-standard segmentation masks, as detailed next.

B.1 In-house Datasets

This thesis has the collaboration of neurologists from the Neuroimaging Laboratory (LNI)
at the University of Campinas (UNICAMP), Brazil, which are particularly interested in
(i) investigating abnormal asymmetries in epilepsy patients, and (ii) estimating morpho-
metric measures for the hemispheres and cerebellum of those patients. LNI has provided
brain images of healthy subjects and epilepsy patients from the Clinical Hospital at UNI-
CAMP. Table B.1 presents such datasets, grouped according to the task they are used in
this thesis: Brain segmentation (Chapter 3), and Analysis of Hippocampal Asymmetries
(Chapter 4).

B.2 Public Datasets

We next present the public datasets used to train and evaluate our supervoxel-based
approaches for anomaly detection, as detailed in Chapters 5 and 6.

CamCan

CamCan dataset [220] has 653 3D MR-T1 images of 3T from healthy subjects between 18

and 88 years. For each 3D MR-T1 image, it also has a corresponding 3D MR-T2 image,
which we do not use in this thesis. To our knowledge, CamCan is the largest public
dataset with 3D control images acquired from different scanners.
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Table B.1: In-house datasets used in this thesis for Brain Segmentation (top) and Analysis
of Hippocampal Asymmetries (bottom). A neurologist from LNI has carefully delineated
the cerebellum, right and left hemispheres of all brain-segmentation datasets to build the
gold-standard segmentation. There is no intersection among the datasets presented in
this table.

Name Description
No. of 

Images
Voxel Size 

(mm3)
Field 

Strength

B
r
a
in

 S
e
g

m
e
n

ta
ti

o
n

HEALTHY-2T
Control images acquired with a 2T 

Elscint scanner.
19 0.98 × 0.98 × 0.98 2T

PRE-2T
Pre-operative images from epilepsy 

patients took with a 2T Elscint scanner. 
Each patient has one image.

20 0.98 × 0.98 × 0.98 2T

POST-2T
Post-operative images from the same 

patients of PRE-2T, after temporal lobe 
resection. Each patient has one image.

20 0.98 × 0.98 × 0.98 2T

HEALTHY-3T
Control images acquired with a 3T 

Siemens scanner.
20 1 × 1 × 1 3T

PRE-3T
Pre-operative images from epilepsy 

patients took with a 3T Siemens 
scanner. Each patient has one image.

30 1 × 1 × 1 3T

POST-3T
Post-operative images from the same 

patients of PRE-3T, after temporal lobe 
resection. Each patient has two image.

60 1 × 1 × 1 3T

A
n

a
ly

s
is

 o
f 

H
ip

p
o
c
a
m

p
a
l 

A
s
y
m

m
e
tr

ie
s

CONTROLS

Control images (subjects are between 

25 and 65 years old) took with a 3T 
Siemens scanner. A neurologist from 

LNI has delineated the hippocampi of a 
subset of 60 images.

575 1 × 1 × 1 3T

PRE

Pre-operative images from epilepsy 

patients took with a 3T Siemens 
scanner. A neurologist A neurologist 

from LNI has carefully delineated the 
hippocampi of all images.

47 1 × 1 × 1 3T

POST

Post-operative images from epilepsy 

patients after temporal lobe resection 
took with a 3T Siemens scanner. A 

neurologist from LNI has carefully 
delineated the hippocampi of all images.

88 1 × 1 × 1 3T

RHA
Images from epilepsy patients with right
hippocampal atrophy, acquired with a 
3T Siemens scanner.

34 1 × 1 × 1 3T

LHA
Images from epilepsy patients with left 
hippocampal atrophy, acquired with a 
3T Siemens scanner.

37 1 × 1 × 1 3T

ATLAS

Anatomical Tracings of Lesions After Stroke (ATLAS) public dataset release 1.2 [34] is a
rather challenging dataset with a large variety of manually annotated lesions and images
acquired from different scanners. It contains lesions ranging from very small to large ones,
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located in several parts of the brain. All images have a mask with the primary stroke
lesion. Some images also have additional masks with other stroke lesions.
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Appendix C

Metrics

Throughout this thesis, we present several methods for different tasks related to image
analysis. All of these rely on computing some quantitative metric in some step, e.g., for
quantitative evaluation or fine-tuning purposes. For instance, the proposed autoencoder-
based approach in Section 4.2 uses the mean squared error as the loss function in the
training. Moreover, we rely on different metrics to quantitatively compare our proposed
methods against baselines in the experiments. All these metrics are next detailed in this
appendix.

Basic notation: Assume that a 3D grayscale image is defined as Î = (DI , I), where
DI ⊂ Z3 is the image domain — i.e., a set of elements in Z3 denominated voxels —
and I(p) ∈ Z is the gray value assigned to every voxel p ∈ DI . Similarly, a binary mask

B̂ = (DB, B), which describes a given object of interest, considers that background voxels
have label 0 and object voxels have label 1.

C.1 Image Similarity Measures

For the metrics presented in this section, consider that we want to measure the similarity
between two grayscale images, Î = (DI , I) and Ĵ = (DJ , J), where DI = DJ .

C.1.1 Mean Square Error (MSE)

Mean Squared Error (MSE) measures the mean voxel-wise intensity difference (error)
between two images. The higher is MSE, the more different is such images. MSE can be
mathematically defined by

MSE(Î , Ĵ) =
1

|DI |

∑

∀p∈DI

[I(p)− J(p)]2 , (C.1)

where |DI | is the number of voxels of Î, which is identical for Ĵ .
We use MSE as the loss function in the training of our proposed autoencoder-based

solution for abnormal hippocampal asymmetry detection (Section 4.2). In this case, we
use MSE to compute the mean reconstruction errors for the training images.
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C.1.2 Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI) scales the Mutual Information (MI) score between
0 (no mutual information) and 1 (perfect correlation). The definition of NMI involves some
other conceptsas detailed next.

Shannon Entropy (SE): It measures the dispersion of the gray values of an image Î.
For instance, a gray image Î that is entirely filled by a single gray value has SE(Î) = 0.
Mathematically, SE is given by

SE(Î) = −
∑

∀x∈I
(px · log px), (C.2)

where I represents the set of gray values of Î, and px is the probability associated with
the gray value x, i.e., px is the frequency that x appears in Î divided by |DI | (the total
number of voxels of Î). The log function in Eq. C.2 can be a log2 or a ln, having the
entropy units in bits (binary units) or nats (natural units), respectively.

Note that spatial information is not taken into account to compute SE. Consequently,
two different images can have the same SE without conveying the same visual information,
as illustrated in Fig. C.1.

Figure C.1: Example of two different grayscale images with the same Shannon Entropy.

Joint Intensity Histogram (JIH): It is a two-dimensional graphic where the value
assigned to each point (x, y) corresponds to the number of voxels with gray value x in Î,
whose corresponding voxels in Ĵ have gray value y [223].

The frequencies from the joint intensity histogram can be used to calculate the Shan-
non Entropy of that joint distribution of gray values. In this case, the mathematical
expression is defined as

SE(Î , Ĵ) = −
∑

∀(x,y)∈I×J

(px,y · log px,y), (C.3)

where px,y represents the relative frequency of each point from the joint intensity his-
togram between Î and Ĵ .
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Finally, Normalized Mutual Information can be defined by

NMI(Î , Ĵ) =
SE(Î) + SE(Ĵ)

SE(Î , Ĵ)
. (C.4)

We use NMI for image registration (Section 2.3.4), and VOI localization (Section 4.2).
Some of the related work also uses NMI in their methods.

C.2 Segmentation Metrics

For the metrics presented in this section, consider that we want to measure the simi-
larity between a binary mask M̂ = (DM ,M), resulting from a given segmentation, and
its corresponding ground-truth binary mask Ĝ = (DG, G), where DM = DG. For simplic-
ity, consider that M and G are the sets of object voxels for M̂ and Ĝ, respectively. As
such, |M | corresponds to the volume of the object from M̂ , for example. Figs. C.2—C.3
illustrate the considered segmentation metrics.

M M ∩ G G

(a) Two binary images.

M ∩ G

M M ∩ G G

(b) IoU.

M G+

M ∩ G2 ×

(c) Dice.

Figure C.2: Illustration of IoU and Dice.

β(G)
^

β(M)
^

D1
D2

D
N…

D3

Figure C.3: Average Symmetric Surface Distance (ASSD). ASSD is calculated using the
object surfaces, β(M̂) and β(Ĝ), from two binary images, M̂ and Ĝ, respectively. For
each surface voxel from the object surface of M̂ , the Euclidean distance to the closest
surface voxel of Ĝ is calculated. The ASSD is the average of all distances calculated from
M̂ to Ĝ and Ĝ to M̂ .
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C.2.1 Intersection over Union (IoU)

IoU, also known as Jaccard index, is a similarity metric between two regions, e.g., the
objects of two binary images (Fig. C.2b). It is widely used in object detection problems
and ranges from 0 to 1, where a higher value indicates a better matching between the
regions. We use IoU as the cost function of the parameter optimization in Section 5.4.2.
Formally, IoU is given by

IoU(M̂, Ĝ) =
|M ∩G|

|M ∪G|
. (C.5)

C.2.2 Dice

Sørensen–Dice coefficient, or simply Dice score, is one of the evaluation metrics most fre-
quently used in medical image segmentation. It measures the amount of overlap between
the objects of two binary images (Fig. C.2c), with values within [0, 1] with 1 indicating
perfect segmentation (matching). We use Dice in this thesis in the experiments from
Chapters 3, 5, and 6. We can define Dice as

Dice(M̂, Ĝ) =
2 |M ∩G|

|M |+ |G|
. (C.6)

Dice only gives a global similarity impression between the binary images, and can over/underestimate
the real level of matching between them.

C.2.3 Average Symmetric Surface Distance (ASSD)

ASSD is a measure based on the Euclidean distance between the object surfaces of two
binary images. ASSD can better capture local differences (e.g., segmentation errors) along
the segmented boundaries than Dice (Fig. C.4). We rely on ASSD for the evaluation of
the proposed brain image segmentation approach in Chapter 3.

(a) (b)

Figure C.4: Two cases with approximately equal Dice, but different ASSD.

For each surface voxel from the object boundaries of M̂ , the Euclidean distance to
the closest surface voxel of Ĝ is calculated. The ASSD is the average of all distances
calculated from M̂ to Ĝ and Ĝ to M̂ (Fig. C.3). Formally, we define ASSD by
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ASSD(M̂, Ĝ) =
ASD(M̂, Ĝ) + ASD(Ĝ, M̂)

2
, (C.7)

where ASD(M̂, Ĝ) is the Average Surface Distance from M̂ to Ĝ. ASD is defined by

ASD(M̂, Ĝ) =
1

|β(Ĝ)|
·

∑

∀p∈β(Ĝ)

E(p, β(M̂)), (C.8)

where β(Ĝ) is the object surface of Ĝ, |β(Ĝ)| denotes its number of voxels, and E(p, β(M̂))

is the Euclidean distance from the voxel p to β(M̂), measured in the direction of the local
surface normal in β(M̂).
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