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Resumo

Disturbios cerebrais sao caracterizados por deformagoes morfoldgicas na forma e tama-
nho de estruturas (sub)corticais em um ou ambos hemisférios. Estas deformagoes causam
desvios do padrao de normal das assimetrias cerebrais, resultando em lesoes assimétri-
cas que diretamente afetam a condicdo do paciente. E clinicamente crucial, portanto,
definir assimetrias cerebrais normais para a identificacao e deteccao precoce destas defor-
magoes (anomalias cerebrais) para um diagnostico e tratamento adequados. A maioria
dos métodos computacionais presentes na literatura confiam em aprendizado de maquina
supervisionado para detectar ou segmentar anomalias em imagens de cérebro. Entretanto,
estes métodos requerem um grande conjunto de imagens de treinamento de alta qualidade
anotadas, que é escasso para a maioria dos problemas de anélise de imagens médicas. Além
disso, eles sao projetados para as lesoes encontradas no conjunto de treinamento, sendo que
alguns métodos ainda requerem refinamento dos pesos do modelo (retreinamento) quando
usados por um novo conjunto de imagens. Em contraste, métodos nao-supervisionados
visam aprender um modelo a partir de imagens saudaveis nao-rotuladas, de maneira que
uma imagem inédita que quebre condicoes prévias deste modelo, i.e., um outlier, ¢ con-
siderada uma anomalia. A medida que estes métodos nao usam imagens rotuladas, eles
sao menos efetivos em detectar lesdes de uma doencga especifica, quando comparados com
abordagens supervisionadas treinadas a partir de imagens rotuladas para a mesma do-
enga. Esta tese endereca o desenvolvimento de solucoes para alavancar o aprendizado de
méquina nao-supervisionado para a detecgdo/analise de assimetrias cerebrais anormais
relacionadas a anomalias em imagens de ressonincia magnética (RM). Primeiramente,
nés propomos uma abordagem automética baseada em atlas probabilistico para a seg-
mentacao de cérebros anormais. Seu objeto é definir nossas macrorregioes de interesse —
i.e., hemisfério esquerdo e direito, cerebelo e tronco cerebral — para, assim, melhorar o
pré-processamento, restringir a analise e computar assimetrias cerebrais em alguns casos.
Em segundo lugar, nés exploramos um método automéatico para a deteccao de hipocampos
anormais a partir de assimetrias anormais. Nossa solu¢ao usa redes neurais generativas
e classificadores de classe tinica para modelar assimetrias hipocampais normais dentro de
pares de janelas 3D de pessoas saudaveis, e entao detectar hipocampos anormais. Em
terceiro lugar, nés apresentamos um arcabougo mais genérico para detectar assimetrias
anormais em todas as regioes dos hemisférios. Nossa abordagem extrai pares de regioes
simétricas — chamadas supervozels — em ambos os hemisférios de uma imagem de teste
sob analise. Classificadores de classe tinica entao analisam as assimetrias presentes em
cada par. A detecc@ao deste método limita-se a lesOes assimétricas encontradas nos he-
misférios. Finalmente, nos generalizamos a solucao anterior para a deteccao de lesoes
(as)simétricas baseadas em erros de registro. Os resultados experimentais em imagens de
RM 3D de pessoas saudaveis e pacientes com uma variedade de lesoes mostram a efetivi-
dade e robustez das abordagens nao-supervisionadas propostas nesta tese para a deteccao
de anomalias cerebrais.



Abstract

Brain disorders are characterized by morphological deformations in shape and size of
(sub)cortical structures in one or both hemispheres. These deformations cause deviations
from the normal pattern of brain asymmetries, resulting in asymmetric lesions that di-
rectly affect the patient’s condition. It is hence clinically crucial to define normal brain
asymmetries for the identification and detection of these deformations (brain anomalies)
early for proper diagnosis and treatment. Most automatic computational methods in the
literature rely on supervised machine learning to detect or segment anomalies in brain
images. However, these methods require a large number of high-quality annotated train-
ing images, which is absent for most medical image analysis problems. Besides, they are
only designed for the lesions found in the training set, and some methods still require
weight fine-tuning (retraining) when used for a new set of images. In contrast, unsuper-
vised methods aim to learn a model from unlabeled healthy images, so that an unseen
image that breaks priors of this model, i.e., an outlier, is considered an anomaly. As these
methods do not use labeled images, they are less effective in detecting lesions from a spe-
cific disease when compared to supervised approaches trained from labeled images for the
same disease. For the same reason, however, unsupervised methods are generic in detect-
ing any lesions, e.g., coming from multiple diseases, as long as these notably differ from
healthy training images. This thesis addresses the development of solutions to leverage
unsupervised machine learning for the detection/analysis of abnormal brain asymmetries
related to anomalies in magnetic resonance (MR) images. First, we propose an automatic
probabilistic-atlas-based approach for anomalous brain image segmentation. Its goal is
to define our target macro-regions of interest — i.e., right and left hemispheres, cerebel-
lum, and brainstem — to improve the preprocessing, restrict the analysis, and compute
hemispheric asymmetries in some cases. Second, we explore an automatic method for the
detection of abnormal hippocampi from abnormal asymmetries. Our solution uses deep
generative networks and a one-class classifier to model normal hippocampal asymmetries
inside pairs of 3D patches from healthy subjects and detect abnormal hippocampi. Third,
we present a more generic framework to detect abnormal asymmetries in the entire brain
hemispheres. Our approach extracts pairs of symmetric regions — called supervozels —
in both hemispheres of a test image under study. One-class classifiers then analyze the
asymmetries present in each pair. This method is limited to detect asymmetric lesions
only in the hemispheres. Finally, we generalize the previous solution for the detection
of (a)symmetric lesions based on registration errors. Experimental results on 3D MR-T1
images from healthy subjects and patients with a variety of lesions show the effectiveness
and robustness of the proposed unsupervised approaches for brain anomaly detection.
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Chapter 1

Introduction

The brain is the most complex organ in a vertebrate’s body and serves the central nervous
system (CNS) — a complex collection of billions of specialized nerves and cells known as
neurons that transmit signals between different parts of the body [1, 2|. CNS represents
a communication network of the organism that detects and responds to changes in its
internal and external environment. Any dysfunctionality can severely impact a person’s
health and quality of life, resulting in problems as memory loss, motor skills, and mobility.

A brain disorder consists of any condition that affects one’s brain. These conditions are
mainly caused by genetic abnormalities, illness, and traumatic injuries [3]. Brain disorders
are a major public health problem in the world [4]. According to reports presented in
2010 by the FEuropean Brain Council — an alliance of all major European organizations
interested in brain diseases — about one-third of all European citizens had at least one
brain disorder [5, 4]. Most cases consist of minor disorders such as migraine, whereas
neuromuscular disorders and brain tumors are less prevalent. However, the diagnoses and
treatments for the latter are more complex and very expensive. For example, the cost of
the treatment of brain tumors per subject is 33,900 euros on average, whereas the one for
migraine is about 662 euros [4].

Following the above, it is hence clinically crucial to detect brain lesions early for proper
diagnosis and treatment. There is a variety of possible treatments, such as chemotherapy
and surgical resection. The choice of treatment usually depends on the type of brain lesion,
its anatomy, and location [6, 7]. This information is obtained from medical imaging.

1.1 Medical Imaging

Medical images are visual representations of physical features measured from the inte-
rior of a body for clinical analysis, medical diagnoses, and intervention [8]. They show
attributes from such body structures in a noninvasive manner.!

The first medical image dates the late 19" century from the discovery of X-rays by the
German Wilhelm Rontgen. For the first time in history, an image — created by marked

X-ray absorption — allowed noninvasive insights in the human body [9]. This imaging

! Noninvasive denotes a medical procedure that does not involve the introduction of instruments into
the patient’s body.
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technique was called radiography. The more X-rays a tissue absorbs, the whiter it is in
the X-ray image (Fig. 1.1a). Thus, dense tissues (e.g., bones) appear white, whereas fat
and other soft tissues look gray or even black (e.g., the air inside the lungs). Soon after
its introduction, radiography quickly became essential for medical diagnosis. Currently,
digital X-ray images are widely used to examine bone fractures and detect certain diseases,
e.g., pneumonia and pulmonary edema, in soft tissues [§].

New medical imaging techniques and technologies have emerged in the last 60 years,
in particular, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). A
CT scanner takes a series of X-rays emitted at different angles to generate a detailed
volumetric image (3D image) of a particular section of the body. Elements of a 3D image
are called vozels, by analogy to the pizel elements of a 2D image. Voxels are defined
by their 3D coordinates and their corresponding values. CT images are more expensive
to acquire than conventional X-ray images but yield a better way to separate between
various types of tissues, atop the ability to reason about spatial structures in the body.
Some common uses of CT images consist of diagnosing injuries from trauma, determining
the location of a tumor, and detecting the location of blood clots.

MRI scanners do not use radiation during imaging. Instead, they produce a powerful
fixed magnetic field around the patient so that radiofrequency waves excite protons within
the body. As the excited protons relax back to their normal position, they emit signals
that are captured and mapped into a 3D image[10, 9]. MRIs provide more detailed
information about inner organs with superior soft-tissue contrast and anatomic detail
compared to X-ray and CT images (Fig. 1.1). However, they are more expensive and
take considerably more time to generate.?. MRI is usually the commonly chosen image
modality for structural brain analysis[11].

Different types of MR images can be obtained during the examination. The most
common types are T1 and T2. Both types accentuate different characteristics of tissues
resulting in images with distinct appearances. Water-rich structures — e.g., the cere-
brospinal fluid (CSF) found in the brain and spinal cord — are dark in T1 and very
bright in T2. Conversely, structures containing fat are considerably brighter in T1 than
T2. For brain images, gray matter is darker than white matter in T1. The opposite is
true for T2 — compare the pair of brain slices in Fig. 1.1c. Therefore, T1 images are more
effective for analyzing anatomical structures, whereas T2 images are typically used when
looking for areas of inflammation [12, 13]. This thesis focuses on the analysis of MR-T'1
images of the brain for anomaly detection.

1.2 Brain Asymmetries

The brain hemispheres can be distinguished visually by the longitudinal fissure (Fig. 2.3)
— a membrane between both hemispheres filled with cerebrospinal fluid (CSF). Although
they are, at a coarse scale, almost symmetrical in structure, subtle (finer-scale) anatom-
ical differences between them exist [2, 14, 15]. These differences are called hemispheric

2A CT image takes 10 minutes on average depending on the body part being examined whereas an
MR image takes between 45 minutes to 1 hour.
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(¢) Magnetic Resonance Imaging (MRI)

Figure 1.1: Brain images from different modalities. (a) X-ray image. (b) Axial, sagittal,
and coronal slices of a CT brain volumetric image. (c) Axial, sagittal, and coronal slices of
MR T1 and T2 brain volumetric images of the same subject. CT and MR images provide
superior soft-tissue contrast and anatomic detail compared to X-ray images. Water-rich
structures are dark in T1 and very bright in T2, whereas structures containing fat are
considerably brighter in T1 than T2.
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asymmetries or simply brain asymmetries and can be defined at functional and structural
levels [16].

Functional differences between the hemispheres — so-called hemispheric lateral-
ization — have been observed for several cognitive functions[17]. Both hemispheres are
indeed specialized for separate tasks. The left hemisphere is more dominant for hand-
edness and language than the right one. For instance, most humans are right-handed?,
whose motor coordination is performed by the left hemisphere [17, 18|. Conversely, the
right hemisphere is dominant, for example, for visuospatial processing, face recognition,
music, and visual imagery [19, 20].

The realization of the functional differences between the brain hemispheres raises ques-
tions regarding the structural correlation of such lateralization [21]. Structural differ-
ences include changes in volume, shape, and size of (sub)cortical structures (e.g., sulci,
cerebral lobes, and hippocampus) as well as a different amount of white and gray matter
in the hemispheres [21, 22|. This thesis only focus on the analysis of structural differences.

Deviations from the normal pattern of brain asymmetries are useful insights about
neurological pathologies [23]. Studies have shown that some neurological diseases — such
as Alzheimer’s [24], schizophrenia |25, 26|, epilepsy [27, 28, 29|, and autism [30] — are
indeed associated to abnormal brain asymmetries. Morphological changes in (sub)cortical
in one or both hemispheres characterize these structural abnormalities, as illustrated
in Fig. 1.2. Therefore, it becomes crucial to define normal brain asymmetries for the
identification and detection of many abnormalities in the brain. We widely explore lesions
associated with abnormal asymmetries throughout this thesis.

Figure 1.2: MR images and their corresponding asymmetry maps for (a) a healthy subject
and (b) a stroke patient. Green borders indicate examples of pairs of regions with normal
asymmetries, whereas red borders indicate abnormal asymmetries resulted from a stroke.
The dashed yellow lines show mid-sagittal planes. Normal asymmetries are accentuated
on the brain cortex (regions close to the borders). Both cases omit other regions with
normal asymmetries.

3 Approximately 90% of the world population are right-handed [17, 18].
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1.3 Analysis of Brain Disorders

Quantitative analysis of MR brain images has been used extensively for the characteri-
zation of brain disorders, such as stroke, tumors, and multiple sclerosis. Such methods
rely on delineating objects of interest — (sub)cortical structures or lesions — trying to
solve detection and segmentation simultaneously. Results are usually used for tasks such
as quantitative lesion assessment (e.g., volume), surgical planning, and overall anatomic
understanding [31, 32, 6]. Note that segmentation corresponds to the exact delineation
of the object of interest, whereas detection consists of finding the rough location of such
objects (e.g., by a bounding box around the object), in case they are present in the image.

The simplest strategy to detect brain anomalies consists of a visual slice-by-slice in-
spection by one or multiple specialists. This process is very time-consuming, error-prone,
and even impracticable when a large amount of data needs to be processed.

The analysis of brain asymmetries commonly follows a similar strategy. First, the
approach interactively segments structures of interest in the image, such as hippocampi,
amygdala, and putamen. Then, it computes morphometric measures from the segmented
structures (e.g., volume), and performs statistical analysis of these measures [33]. How-
ever, this strategy is also problematic since the interactive segmentation of brain structures
may be very complicated, extremely susceptible to errors, and that demands much time
from the expert. Thus, segmentation errors may severely impact the analysis.

Continuous efforts have been made for automatic anomaly detection that delineates
anomalies with accuracy close to that of human experts. However, this goal is very
challenging and complex due to the large variability in shape, size, and location present
in different anomalies, even when the same disease causes these (see, e.g., Fig. 1.3). All
these difficulties have motivated the research and development of automatic brain anomaly
detection methods based on machine learning algorithms, as discussed next.

1.3.1 Machine Learning

Machine learning (ML) can aid experts in detecting and classifying lesions from a brain
image [35]. ML is based on algorithms that can learn from a dataset without being ex-
plicitly programmed to perform a task[36]. Each example from the dataset is called
sample, and it is described by a set of features, called feature vector. For medical image
analysis, a sample can be defined, for example, as a voxel, the image of a segmented
object, or the shape attributes (descriptors) computed on this object. Feature extraction
algorithms, in turn, are chosen according to the targeted problem and sample type. Tex-
ture |6, 37, 38, 39, 40|, shape features |41, 42, 43], and, more recently, deep-learning-based
features [35, 44, 45, 46| are common feature examples adopted in medical image analysis
problems.

Overall, machine learning can be either supervised or unsupervised. In supervised
learning, the dataset is labeled, i.e., each of its samples has an assigned class.* For
example, a dataset of MR brain images (samples) that is used in a classification task that
aims to discriminate between normal and abnormal tissue will use two classes: normal

4Some classification problems might consider a sample with more than one label.
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lesion frequency distributed across the brain

medium high

Figure 1.3: The different appearance of brain anomalies. Top: axial slices of three stroke
patients with lesions (gold-standard borders in pink) that significantly differ in location,
shape, and size. Bottom: slices of a 3D heatmap show the location frequency of stroke
lesions across the brain. Although caused by the same disease, the lesions are sparsely
distributed in the brain resulting in low-concentrated regions. The 3D heatmap was built
from aligned manual lesion segmentation of stroke patients from the ATLAS dataset [34]
after registration to a standard template.

and abnormal. A classification algorithm learns a decision model from labeled samples
of a given training set by associating features to classes [47]. More generally, when the
algorithm predicts a continuous value rather than a categorical class value, one says that
it learns a regression model. In our work, we will mainly focus on decision models. New
unseen samples are then classified according to the learned decision model. Fig. 1.4a shows
a toy example of two easy separable classes with a linear classifier, i.e., a classifier that
assumes that the boundary between samples of the two existing classes is linear. Typically,
linear classifiers are not sufficient to predict the correct classes of more complex sample
distributions in real-world data, as shown by the example in Fig. 1.4b. In such cases,
nonlinear classifiers are used to properly split the feature space into areas corresponding
to the two classes (Fig. 1.4c).

Unsupervised machine learning algorithms aim at finding intrinsic structures in an
unlabeled /uncategorized dataset [48]. The key added value of unsupervised methods as
compared to supervised ones is that one does not need an expert to have created an an-
notated (labeled) training set. This is particularly essential in situations where labeling is
expensive and requires specialist expertise, such as in the case of medical imaging datasets
to be manually labeled by delineation by trained medical professionals. A potential draw-
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Figure 1.4: Toy example displaying the relation between feature 1 and feature 2 and
two classes.® (a) A linear classifier that can separate the given samples. (b) A linear
classifier unable to separate other given samples. (¢) A nonlinear classifier that separates
the samples of (b).
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Figure 1.5: (a) A hypothetical unlabeled dataset. (b) Resulting groups after performing
a given clustering algorithm. Each color represents a different group. (c¢) Example of
outlier detection. If an unseen test sample is far from the training set of normal samples
(the yellow region with dashed borders), it is classified as an outlier.

back of unsupervised learning is that the structures extracted from an (image) dataset
may not always be relevant to the expert [48]. Clustering is arguably the best known
unsupervised strategy. It finds patterns in the feature space and uses these to divide the
dataset into groups that exhibit high internal coherence and low similarity with other
groups. Figs. 1.5a—b illustrate results produced by clustering for hypothetical data.
QOutlier detection — also called anomaly detection — is another common problem
in unsupervised machine learning.® Techniques aim to detect outliers in an unlabeled
dataset under the assumption that the majority of its samples are normal [49]. An outlier
is a sample that differs significantly from the remainder of the dataset. Some authors also

SFigure inspired by the Ph.D. thesis of Jansen (2019) [36].
6Some authors consider the term supervised anomaly detection when the training set has only two
classes: normal and outlier [49]. A binary classifier is then trained for outlier detection.
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refer to outliers as anomalies, exceptions, noise, and novelties. Several applications use
outlier detection, such as bank fraud detection, loan application processing, and medical
condition monitoring [49]. Fig. 1.5¢ shows an example of outlier detection.

Medical image analysis commonly uses outlier detection mainly for detecting anomalies
(lesions). One-class classification (OCC) — also called unary classification — is a class of
techniques commonly used for this purpose [50, 40, 51, 52, 53]. Consider a training dataset
with only medical images of healthy subjects — also known as control images. All training
samples have the same single class: healthy. The OCC learns a classification boundary
for the healthy class to classify new unseen images as healthy or outlier. Detected outliers
are considered as anomalies, e.g., tumors, stroke, and cancer. OCC is different from and
more challenging than the traditional classification problem, which tries to differentiate
two or more classes from a labeled training set. In this thesis, we focus on unsupervised
algorithms in particular one-class classification.

1.3.2 Automatic Brain Anomaly Detection

Most automatic methods in the literature rely on supervised machine learning to detect
or segment brain anomalies. They train a classifier from training images — which must be
previously labeled (e.g., lesion segmentation masks) by experts — to delineate anomalies
by classifying voxels or regions of the target image. Traditional image features (e.g.,
edge detectors and texture features) and deep feature representations (e.g., convolutional
features) are commonly used |6, 37, 38, 39, 54, 46, 55, 56].

However, these supervised methods commonly have three main limitations. First,
they require a large number of high-quality annotated training images, which is absent
for most medical image analysis problems [11, 57, 35]. Second, they are only designed for
the lesions found in the training set. Third, some methods still require weight fine-tuning
(retraining) when used for a new set of images due to image variability across scanners
and acquisition protocols, limiting its application into clinical routine.

All the above limitations of supervised methods motivate research on unsupervised
anomaly detection approaches |40, 58, 53, 13, 59]. From a training set with images of
healthy subjects only, these methods perform an outlier detection technique to identify
anomalies in new images. Some of these methods can detect enormous lesions [58, 59],
but show poor results with small lesions, which are the most challenging cases.

1.4 Thesis Problems and Approach

As unsupervised brain anomaly detection methods do not use labeled samples, they are
less effective in detecting lesions from a specific disease when compared to supervised
approaches trained from labeled samples for the same disease. For the same reason,
however, unsupervised methods are generic in detecting any lesions, e.g., coming from
multiple diseases, as long as these notably differ from healthy training samples.

Combining the pros and cons of unsupervised methods listed above, as well as the
importance of identifying abnormal brain asymmetries associated to brain anomalies, we
can now state the key research questions of this thesis:
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RQ1: Can we model normal brain asymmetries?

RQ2: Can we use the normal brain asymmetry model to detect brain anomalies?

To illustrate how we approach answering these questions, let us consider the typical
pipeline for brain image processing and analysis (Fig. 1.6). Given a 3D MR-T1 image, we
first perform several preprocessing tasks (e.g., noise filtering and intensity normalization)
to overcome inherent acquisition issues, such as noise and inhomogeneity field. Next,
we define the volumes of interest (VOI) to be analyzed: either the entire brain or some
specific region. Features related to brain asymmetries are extracted from these VOIs
and subsequently classified as normal or abnormal from the knowledge about normal
asymmetries present in a training set of control images. We evaluate our approaches on
MR-T1 images, mainly due to the greater availability of public datasets of healthy and
abnormal brain volumetric images for this imaging modality. Public datasets of different
imaging modalities exist. However, some only provide a subset of 2D slices for each image
or interpolate slices to build a volume.

y ! Chapter 2 i
Chapter 3
e d Preprocessing
3D MR image
analysis
.VOI. — Feat“fe = | Classification
Estimation Extraction
i Chapter 5 i  Chapter 4 |  Chapter 4 |
Chapter 6 O, H O, H
v
Result

Are asymmetries
inside the VOI Or
normal or abnormal?

Labeled 3D Mask with
detected abnormal asymmetries

Figure 1.6: General pipeline considered in this thesis to explore novel unsupervised brain
anomaly detection approaches.

The structure of this thesis follows the considered steps of the pipeline in Fig. 1.6 in a
bottom-up approach — starting with simpler, more specific problems, towards the more
complex and general ones, as follows.
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Chapter 2 presents background information on concepts explored in this work, such
as brain anatomy concepts, imaging physics, and typical MRI preprocessing operations.
Finally, the chapter also introduces the Image Forest Transform framework [60], as well
as two algorithms derived from it, which serves as a basis for the design of some image
operators used by the proposed solutions of this thesis.

Chapter 3 presents our solution for brain image segmentation. Its goal is to define
our target macro-regions of interest — i.e., right and left hemispheres, cerebellum, and
brainstem — to improve the preprocessing, restrict the analysis, and compute hemispheric
asymmetries in some cases. We start by exploring lesions associated with abnormal hemi-
spheric asymmetries as detailed next in Chapters 4 and 5, as follows.

Chapter 4 proposes an automatic method for the detection of abnormal hippocampi
from abnormal asymmetries. Our solution uses deep generative networks and a one-class
classifier to model normal hippocampal asymmetries from healthy subjects and detect
abnormal hippocampi. This is the first example of the usage of one-class classifiers for
addressing the research questions of the thesis.

Chapter 5 presents a more generic solution that refines the proposal in Chapter 4
to detect abnormal asymmetries in the entire brain hemispheres. Our approach extracts
pairs of symmetric regions — called supervozrels — in both hemispheres of a test image
under study. One-class classifiers then analyze the asymmetries present in each pair. This
method is limited to detect asymmetric lesions only in the hemispheres.

In Chapter 6, we extend the previous solution from Chapter 5 to detect lesions (sym-
metric or asymmetric) in the hemispheres, cerebellum, and brainstem. This new approach
replaces asymmetries with any other saliency map that emphasizes brain anomalies. As
proof of concept, we instantiated this solution with image registration errors to detect
anomalies.

Finally, Chapter 7 presents a compilation of our contributions and experimental
findings, along with future research perspectives.
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Chapter 2

Background

This chapter provides an overview of the basic concepts and techniques used in the next
chapters. The chapter is targeted to a non-expert audience since it presents many basic
and well-established topics on medical image analysis. Also, as the coming chapters detail
the related work regarding their proposed methods, experienced readers are encouraged
to skip this one and refer back whenever needed.

In Section 2.1, we detail basic concepts about brain anatomy. Section 2.2 provides
an overview of medical imaging physics as well as which standards we adopted in this
thesis. Section 2.3 details the main preprocessing techniques used in MR image analysis.

Section 2.4 introduces Image Foresting Transform (IFT) [60], a powerful methodology
for the design of image operators based on optimum connectivity. IFT serves as the
basis for the development of several algorithms used by the proposed solutions of this
thesis, such as object delineation (Section 3.2.2), one-class classification (Section 4.2.4),
and supervoxel segmentation (Sections 5.2.3 and 6.1.3). For better understanding the
fundamentals of such algorithms, Section 2.5 presents a clustering method derived from
IFT, whereas Section 2.6 details the Iterative Spanning Forest [61], a framework for
superpixel segmentation also based on IFT. Section 2.7 presents concluding remarks.

Appendices provide supplementary information to the main thesis as follows. Ap-
pendix A presents a quick reference about notations and definitions of terms used in
this thesis.

To answer our research questions, we need datasets with isotropic 3D MR-T1 brain
images from (i) healthy subjects, and (ii) with asymmetric anomalies of different sizes (es-
pecially small ones) and their gold-standard segmentation masks. As such, Appendix B
presents a full description of all datasets used in the next chapters.

Finally, Appendix C describes all quantitative metrics adopted in this thesis to
measure the accuracy and quality of our proposed solutions.

2.1 Basic Anatomical Concepts

This section summarizes the main concepts related to brain anatomy. For a complete
reference of the former, we recommend the books of Tortora and Derrickson [2], and
Saladin [3]. More details about the latter can be found in the works of Hugdahl and
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Westerhausen [21], and Ocklenburg and Guntiirkiin [16].

2.1.1 Brain Anatomy

The nervous system is one of the most complex parts of the human body, yet its weight is
equivalent to only 3% of the total body weight on average [2]. It is formed by a collection
of specialized nerves and cells (neurons) that transmit signals to and from different parts
of the body[3, 2, 1]. It acts as a communication network of the body that captures
and interprets environmental stimuli, elaborating responses which may be converted, for
example, in movements, sensations, and findings.

Structurally, the nervous system is organized in two main subdivisions: the central
nervous system (CNS) and the peripheral nervous system (PNS), as shown in Fig. 2.1.
The CNS consists of the brain and spinal cord. It processes different kinds of incoming
sensory information, being responsible for all cognitive and affective capacities of humans.
PNS, in turn, contains all the nerves that lie outside the CNS. Its leading role is to connect
CNS to the organs, limbs, and skin so that CNS can receive and send information to these
areas of the body [2, 1].

Central Nervous System

Brain

Spinal Cord @

Peripheral Nervous
System

Ganglia

Figure 2.1: A simple diagram of the nervous system.

The brain is the interpreter of internal and external stimuli, containing about 85 billion
neurons in an adult human [2]. Analogously, it is like the central processing unit (CPU)
of a computer: it first receives and interprets different input information from our senses
and internal organs and then provides appropriated responses. Thus, the brain provides
control over body movement and regulates the operation of internal organs [2, 1, 14].
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The spinal cord, in turn, is a long and fragile tube-like structure that is connected to
the brain and extends down to the bottom of the spine. With about 100 million neurons,
it is like a highway that carries incoming and outgoing messages between the brain and
the rest of the body.

The brain consists of the cerebrum, cerebellum, and brainstem (Fig. 2.2). The cere-
brum is the largest and uppermost portion of the brain. It contains two anatomically
symmetrical hemispheres with several subcortical structures (e.g., hippocampus) [2]. The
hemispheres are connected by a white matter structure called the corpus callosum. The
cerebrum has an irregular appearance primarily due to gyri (elevations or ridges) and
sulci (grooves or depressions).

Parietal Lobe

Frontal Lobe language, touch

cognitive functions,

memory, movement Occipital Lobe

vision

Temporal Lobe

hearing, memory Cerebellum

balance and coordination
Brainstem
breathing,

heart rate, temperature

B Frontal lobe B Parietal lobe B Temporal lobe Occipital lobe

B Cerebellum Brainstem B Sylvian fissure

(b)

Figure 2.2: (a) Brain regions and some of their corresponding responsibilities.! The four
lobes from the hemispheres form the cerebrum. (b) Different axial slices of an MR-T1
image with the brain regions.?

The brain hemispheres consist of an inner core of nerve fibers called white matter
and an outer cortex of gray matter. Each hemisphere can be divided into four lobes, as
presented in Fig. 2.2. The frontal lobe is responsible for cognitive functions and the control
of voluntary movements [14]. The temporal lobe is the location of the primary auditory
cortex. It is the region where the sound is processed and where language and speech

'Figure adapted from http://picassowrites.blogspot.com/2019/03/
any-exercise-great-for-aging-brain.html.
2Figure adapted from https://commons.wikimedia.org/wiki/File:Brain_regions_on_T1_MRI.

png.
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comprehension systems are located [62]. It is also involved with memory and emotion
associations [63]. A deep lateral fissure called Sylvian fissure separates the temporal lobe
from the parietal and frontal lobes (see the purple region in Fig. 2.2b). The parietal lobe
is associated with linguistic and visuospatial functions. It helps to process the sense of
touch and pain [14]. Finally, the occipital lobe is responsible for vision since the primary
visual cortex is located within it.

The cerebellum is the second largest structure of the brain, located behind the tem-
poral and occipital lobes [2]. It has an irregular and highly folded surface similar to the
cerebrum. It plays a significant role in movement and acts in cognition and language
processing [14]. Lastly, the brainstem connects the brain to the spinal cord and the rest of
the body [14]. It receives and controls certain functions related to attention, temperature,
heart rate, and breathing.

In this thesis, we focus on detecting lesions in structures inside the brain hemispheres,
cerebellum, and brainstem. Chapter 3 details our approach for brain image segmentation.

2.1.2 Anatomical Planes of Body

To understand and describe the spatial organization of the body, we define positions
and directions relative to standard anatomical planes and axes|[64]. These planes are
hypothetical geometric planes that divide the human body into sections. In human and
animal anatomy, the body (or an organ) is sliced up using three planes: axial, coronal,
and sagittal. In medical image analysis, a slice is a 2D image extracted from a 3D image
along with one of these planes. Fig. 2.3 shows these planes for a brain.

For the sake of simplicity, suppose an upright subject. An axial plane divides the body
into superior (upper) and inferior (lower) portions [2|. Such a plane is parallel to the floor
and perpendicular to the long axis of the body. Slices are extracted from the feet to the
head. When slicing the brain in this direction, we can see the left and right hemispheres
(Fig. 2.3). This plane is also known as transverse or horizontal plane.

A coronal plane (also called frontal plane) divides the body into anterior (front) and
posterior (back) portions [2]. Slices are extracted from the back to the front of the body.
A coronal slice will show both brain hemispheres, like the axial slice.

Finally, a sagittal plane is a vertical plane that divides the body into right and left
sides [2]. Indeed, slices are extracted from the right to the left side of the body. The
mid-sagittal plane (MSP) is a plane that passes through the center of the body dividing
it into approximately two symmetric parts|[65] — see the coronal and axial MR slices
in Fig. 2.3. Most structures on one side have a corresponding counterpart on the other
side with similar shapes and relative locations [66]. Several applications, such as brain
image registration [67, 68, 65| and, more importantly, brain asymmetry analysis [65, 66, 69|
uses MSP. Likewise, some of our proposed methods will extensively use MSP as well.
Section 2.3.2 provides a summary of automatic MSP extraction methods.

3Figure adapted from https://www.wikiwand.com/en/Sagittal_plane.
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Figure 2.3: Anatomical planes of the brain.® The dashed red line on the coronal and axial
MR slice show their mid-sagittal planes.

2.2 Basic Imaging Physics

In this section, we present the main concepts of imaging physics and the standards used in
this thesis. For a complete reference, we refer to the works of Runge et al. [10], Toennies [8],
Larobina and Murino [70], and Brett et al. [71].

2.2.1 Medical Image Resolution

A medical image is a representation of some internal anatomical structures, or their func-
tions, in the form of an array of picture elements called pixels for 2D and voxels for 3D.
A 3D image typically consists of a series of 2D images representing thin slices that form
a volume (Section 1.1).* Tt results from a sampling/reconstruction process that maps
numerical values to voxels[8, 70]. For the sake of simplicity, let the term image be a 3D
image and slice be a 2D image henceforth.

The smallest element of a slice is a pizel. It is defined by one or more values (also called
intensities) and a position (2D coordinates; width and height) on the image domain [10].
It has dimensions along two axes in mm (e.g., a pixel size of 1 x 1 mm?). A wvozel, in turn,
is the volume element of an image. Its dimensions are given by the pixel and the thickness
of the slice — i.e., the spacing/distance between two slices — which is measured along
the third axis[10]. An image is isotropic when all its voxel dimensions are equal (e.g., a

4Tt could also be a set of projections of an organ onto an image plane. Multiple acquisitions of the
same volumetric image over time form a 4D medical image.
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voxel size of 1 x 1 x 1 mm?).

Voxel size is strongly related to spatial image resolution, which is an essential com-
ponent of image quality. Spatial image resolution refers to the number of voxels in an
image, or equivalently the number of pixels in a slice. The higher the number of voxels,
the greater the resolution, and, consequently, the more detailed it is the image. Together
with image contrast, spatial resolution determines the expert’s ability to distinguish one
structure from others|72].

Altering voxel size impacts the spatial image resolution directly, as demonstrated in
Fig. 2.4 that shows the same axial slice of an MR-T1 image from the same subject but
acquired with different spatial resolution. For example, suppose an MRI scanner acquired
a brain image by using a voxel size of 2 x 2 x 2 mm?® and a given protocol. The resulting
spatial resolution obtained was 128 x 128 x 128 voxels. By appearance alone, the image
is pixelated, grainy, and has jagged edges that make its analysis harder (Fig. 2.4a). In

3 in order

contrast, the same image was acquired with a smaller voxel size of 1 X 1 x 1 mm
to improve its quality. All other scanner parameters were the same. By halving the voxel
size, the resulting image resolution doubled: 256 x 256 x 256. Consequently, the image is
sharper with improved anatomic details that considerably leverage its analysis (Fig. 2.4b).

To achieve this higher quality, however, the imaging time approximately doubled.

(a) 2 x 2 x 2 mm?. (b) 1 x 1 x 1 mm?3.

Figure 2.4: Comparison between the same axial slice of an MR-T1 brain image with
different spatial resolution. (a) Lower resolution: voxel size of 2 x 2 x 2 mm?®. (b) Higher
resolution: voxel size of 1 x 1 x 1 mm?. Highlighted regions indicate a lesion. The low-
resolution slice is pixelated, grainy, and has jagged edges, whereas the high-resolution
slice is sharper with improved anatomic details.

A common practice in clinical routine to avoid long imaging times in MRI is to guar-
antee high-resolution for slices of a given direction (e.g., 1 x 1 mm?) but increase their
thickness (e.g., 5 mm) [10]. The resulting number of slices can be considerably less de-
pending on the chosen thickness. Such a practice results in two shortcomings: (i) small
structures or lesions can be partially or even totally lost; and (ii) morphological measure-
ments (e.g., volume) cannot be precisely computed. One might still interpolate slices to
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build a volume — as performed, for example, for the brain images from the popular BraTS
dataset [73]. Nevertheless, this can create artifacts or textures that do not exist in the
original image, impairing analysis. In this thesis, we only consider isotropic brain images
for the development and evaluation of our methods. Appendix B details the considered
brain image datasets.

2.2.2 Magnetic Field Strength

Field strength refers to the magnetic field strength used in the MRI scanner during im-
age acquisition. Field strength is measured in teslas (T) and correlates image-quality
factors [74], such as spatial-image resolution and artifacts. In general, a stronger field
strength produces less noisy images with higher spatial resolution. Consequently, small
and complex structures (e.g., hippocampus) are sharper, which makes their analysis more
precise. However, some artifacts, like field inhomogeneity (Section 2.3.3), are more intense
in high field strength.

Fig. 2.5 shows axial slices of MR-T'1 brain images of 2T and 3T from different patients.
Note that 2T images are noisier than 3T images, whereas field inhomogeneity is higher in
3T than 2T images. Brain structures are also sharper in 3T.

Figure 2.5: Comparison between axial slices from MR-T1 brain images of (a) 2T and (b)
3T.

In this thesis, we consider 3D MR-T1 brain images of 3T for the development and
evaluation of most of the proposed methods. We only consider images of 2T during the
evaluation of the automatic brain segmentation methods (Chapter 3).

2.2.3 Medical Image Orientation

MRI scanners can acquire thin slices at any angle or orientation within the body [10]. Tt
is crucial to know the chosen orientation and coordinate system to interpret the voxels’
positions in the image correctly. Although there is no single convention, some common
concepts and terminologies are used to this end by popular medical image libraries [71, 75]
and visualization tools [76, 77|, as described below.

There are three conventional coordinate systems. The world coordinate system is the
Cartesian coordinate system in which the subject is positioned. The anatomical space
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consists of the three planes that describe the standard anatomical position of a human
(Section 2.1.2). The image coordinate system details how a medical image was acquired
concerning the subject’s anatomy and defines the voxels’ coordinates. The conversion
between the world and image coordinate systems commonly involves an affine transfor-
mation between both spaces.?

Suppose a subject is lying for a brain scan with his/her face up (Fig. 2.6). In this thesis,
we consider that the world and image coordinate systems follow the LPS+ orientation,

that means:
e x-axis: from subject’s right to Left;

e y-axis: from subject’s anterior to Posterior; and

e z-axis: from subject’s inferior to Superior.

Anterior LPS+ Orientation

Right Superior

Inferior Left

Posterior origin
(0,0,0)

Figure 2.6: Coordinate system with the LPS+ orientation.

LPS+ is the usual convention for radiological visualization. The direction of the axes
are given relative to the subject (e.g., “left” refers to the subject’s left). Each letter of
the orientation reference is an abbreviation for the subject’s direction. The + symbol is
a convention that defines which is the increasing direction along the corresponding axis.
The considered origin for the image coordinate system — i.e., the position of the voxel
(0,0,0) — is the upper-left corner toward the subject’s feet (Fig. 2.6).

Regardless of how medical images are stored on disk, all images processed together
must share the same coordinate system. Some medical image file formats,® such as DI-
COM and Nifti, store the direction information that describes how the voxel data should
be interpreted [10]. Consequently, one can reorient the images to be analyzed together to
follow the same orientation. We reoriented all images used in this thesis to LPS—+.

2.3 MRI Preprocessing

Automatic analysis of MR images is challenging due to typical acquisition artifacts —
e.g., noise, inhomogeneities, and variability of intensity and contrast — which negatively

For more details, we refer to the manual of the NiBabel library [71] at https://nipy.org/nibabel/
coordinate_systems.html.

SFor a complete reference of medical image file formats, we refer to the work of Larobina and
Murino [70].



32

impact both medical diagnosis and automatic analysis. MRI preprocessing steps, in turn,
aim to reduce these artifacts and, consequently, improve the image quality for subsequent
analysis (Fig. 1.6).

A Native Image Space Standard Image Space
- Noise
"|  Reduction
Raw 3D Image Image Alignment
by MSP :
......... mage
v : g Registration
Bias Field : I
Correction :
‘ : Intensity
: Normalization
Skull Stripping
Intensity | ]
Normalization

|
Preprocessed Preprocessed
3D Image Registered 3D Image

Figure 2.7: General preprocessing steps for MR brain images. Native and Standard Image
Space refer to, respectively, the coordinate space of the image being preprocessed and a
given template.

In this section, we describe typical preprocessing steps applied to raw MR images [11,
78, 40, 79, 51, 80, 78, 81, 82| with a focus on the techniques used throughout this the-
sis. The combination of these steps is problem dependent and empirically estimated [82].
Fig. 2.7 presents the combination used in the next chapters. For a more detailed reference
on MRI preprocessing, we refer to the book of Marti-Bonmati and Alberich-Bayarri [81].

2.3.1 Noise Reduction

Even though significant improvements in imaging technology have been made in the past
years, MR images are still prone to noise during acquisition [82, 83, 84, 85]. Noise directly
affects the accuracy of many automatic methods, such as segmentation, classification, and
registration [83].
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One strategy for noise reduction, also called denoising, consists of acquiring redundant
images and averaging the outputs directly in the scanner. However, this option is uncom-
mon in clinical routine since it increases the acquisition time significantly, which impacts
the patient’s comfort [83, 85]. Instead, filtering methods are the preferable alternatives in
preprocessing pipelines [82, 78, 85].

Traditional denoising methods rely on low-pass filters to attenuate high-frequency sig-
nals in the image [83, 86]. One popular example is median filtering, which is effective at
removing salt-and-pepper noise while preserving edges [87]. The filtered image is obtained
by replacing each voxel with the median of all its neighboring voxels defined by an adja-
cency relation (e.g., 26-neighborhood). Fig. 2.8 shows a noisy brain image and its filtered
result by median filtering.

(a) Noisy axial slice. (b) Filtered axial slice.

Figure 2.8: (a) An axial slice of a noisy MR-T1 brain image and (b) its filtered result by
median filtering.

Although median filtering is less effective for high levels of noise than modern and
more complex denoising methods [88, 89, 90|, it is suitable for the majority of the images
used throughout this thesis. For simplicity, we do not consider the few extremely noisy
images present in the datasets for the development and evaluation of our methods.

2.3.2 MSP Estimation

MRI scanners may produce tilted and misaligned brain images during acquisition due to
factors as technicians’ inexperience, immobility of patients, and imprecise scanner cali-
bration [65]. Tilt and misalignment may mislead visual inspection and affect the analysis
of brain asymmetries since axial and coronal slices are no longer representing homologous
structures [91].

Correcting the tilt of the head involves realigning the mid-sagittal plane (MSP) of the
brain (Section 2.1.2) with the center of the image. A typical automatic approach for MSP
estimation returns the plane that maximizes a given similarity measure between the two
brain hemispheres [66, 65, 92, 93].

Ruppert et al. [66] propose a fast and accurate method that maximizes the symmetry
between edges of the hemispheres in a multiscale-optimization scheme. The method starts
by enhancing edges with the Sobel operator (Figs. 2.9a-b) followed by a thresholding
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step that selects the brightest edge voxels (Fig. 2.9¢). The method then evaluates how
symmetric the selected edges are with respect to each candidate plane. This measure is
used to steer the position and orientation of the candidate MSP. This process is performed
in a multiscale-optimization search to evaluate a high number of planes in interactive time.
Each stage works on a different image scale, refining the solution of the previous stage.
Fig. 2.9 presents some steps of this algorithm.

Figure 2.9: Steps for MSP definition by Ruppert et al. [66]. (a) An axial slice of a tilted
MR-T1 brain image. (b) Enhanced edges by the Sobel operator. (c¢) Binary mask with

the selected edge voxels for symmetry computation. (d) Resulting aligned image by its
MSP (central white line).

We use the method of Ruppert et al. [66] to estimate the MSPs of the brain images
considered in this thesis. We use MSPs to realign images before registration, and as a step
to compute brain asymmetries for anomaly detection, as further detailed in Chapter 5.

2.3.3 Bias Field Correction

MR images are typically affected by intensity inhomogeneities, so-called bias field, which
results from imperfections in the radio-frequency coils during image acquisition (Figs. 2.10a—
b). This phenomenon makes the intensities of the same tissue vary in different locations
within the image[94, 95| — e.g., the intensity range of the white matter in one hemi-
sphere is considerably different from the other hemisphere — or, more generally, there
is a spatially-varying bias over the extent of the scanned brain. For instance, Fig. 2.10a
shows such a case where the central brain area is overall brighter than the areas close to
the cortex.

Most automatic analysis methods, such as segmentation and registration, assume that
a given tissue presents similar voxel intensities throughout the image [95]. Thus, cor-
recting inhomogeneities is crucial and must be performed before any quantitative MR
analysis [94]. Fig. 2.10 presents an example of bias field correction.

Several methods have been proposed for bias field correction, typically for the analysis
of MR brain images [96, 97, 98, 99].” Many approaches assume a priori knowledge about
the image characteristics, such as the number of tissues or location, which make them
limited to images from certain anatomical regions[100]. In contrast, the well-known and

"We refer to the work of Vovk et al.[94] for a complete reference on bias field correction methods.
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(a) Corrupted image. (b) Estimated bias (c) Corrected image.
field.

Figure 2.10: Example of bias field correction.

fully automatic N3 bias field correction [101] does not require any prior information about
the MR data. Consequently, N3 is flexible and robust as it can accurately correct MR
images of various anatomical structures from healthy subjects and patients. N3 interac-
tively estimates the bias field by maximizing the high-frequency component of the image
intensity distribution by using B-spline fitting [82, 94].

An optimized variant of N3, so-called N4 [102], proposes a faster B-spline approxima-
tion in a modified hierarchical optimization scheme. This variant is faster than N3 with
similar accuracies. N4 is widely used in the literature and publicly available on the open-
source ITK library [103]. We use N4 to correct intensity inhomogeneities in all images
considered in this thesis.

2.3.4 Image Registration

Image registration is the task of establishing a spatial correspondence between images
from the same context (e.g., MR images of the brain) by mapping them into the same
coordinate system [104]. As such, the same anatomical structures present in these images
will share an identical location in all images after registration. Typical MRI preprocessing
pipelines use registration (i) to combine anatomical information from different imaging
modalities — e.g., T1 and T2 images from the same patient — or (ii) to locate the images
in a specific standard space to perform a population analysis [82].

The way image registration typically works is to deform an image, the moving image
(Fig.2.11a), to align with another one, the fized image (Fig.2.11b), also called template
or reference image. A cost function — e.g., mutual information [105] (Appendix C.1) —
assesses the quality of alignment, 7.e., the similarity between the deformed moving image
and the fixed image [36]. This cost function is iteratively optimized so that its best score
results in the final registered image.®

Image registration can rely on linear and non-linear transformations to deform a mov-
ing image. Linear registration applies the same transformation to every voxel in the
moving image, whereas non-linear registration can apply a distinct transformation — so-
called deformation fields — to different voxels [82]. The simplest example of the linear

8We recommend the surveys of Litjens et al. [44], and Mani and Arivazhagan [106] for more details on
medical image registration methods.
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(a) Moving image.  (b) Fixed image. (c) Affine. (d) Non-rigid.

Figure 2.11: Example of affine and non-rigid registrations. (a) Moving image. (b) Fixed
image. (c) Registered images by affine registration. (d) Registered images by non-rigid
registration.

case is rigid registration that only uses rotations and translations [106]. Affine registra-
tion extends the degrees of freedom of the rigid approach by also considering scaling and
shearing transformations. Finally, non-rigid registration, also known as deformable reg-
istration, relies on non-linear operations to align images where correspondences cannot
be achieved without localized deformations. The choice of the registration approach is
problem-dependent and usually considers constraints as alignment accuracy and process-
ing time. Fig. 2.11 exemplifies the different types of image registration.

In this thesis, we consider affine and, most importantly, non-rigid registration for the
development of the proposed image analysis methods. We use Elastix [107] — an open-
source software widely used in the literature — to perform all registrations. Lastly, we
consider the popular ICBM 2009¢ Non-linear Symmetric template [108| for our methods.

2.3.5 Skull Stripping

Most automatic MR brain image applications aim to analyze patterns in only brain tissues,

e., the ones in the hemispheres, cerebellum, and brainstem. In contrast, the inclusion
of non-brain tissues (e.g., skull, eyes, and neck) during analysis makes the processing
time considerably slower, especially for 3D images. Besides, it can impair the resulting
accuracies since these tissues have similar intensities to brain ones[109]. To circumvent
these problems, most preprocessing pipelines rely on skull-stripping methods to extract
the brain for subsequent analysis. The result can be either a new image with only brain
voxels or a binary mask, which defines label 1 for brain voxels and label 0 for the remaining
tissues [110].

A large number of methods proposed over the past years confirms the importance
of skull-stripping [109, 110, 111, 112, 113, 114]. However, these methods are not able
to separate the right and left hemispheres, cerebellum, and brainstem — so-called brain
segmentation — that allows a more specific analysis. For example, one can use segmented
hemispheres to assess brain asymmetries[18], or as the first step for the segmentation



37

of subcortical structures (e.g., hippocampus) [80], or to compare morphological measures
between the hemispheres [80]. Brain segmentation is more challenging than skull-stripping
as the boundaries between the objects of interest are not well-defined on MR images,
especially those between the hemispheres and cerebellum [41].

In this thesis, we propose a novel probabilistic-atlas-based method for the automatic
segmentation of (ab)normal MR-T1 brain images (Chapter 3). Our method, named
AdaPro, provides a labeled image (segmentation mask) that assigns a different label for
each object of interest — 14.e., the right hemisphere, left hemisphere, cerebellum, and
brainstem. Different prior steps of the proposed anomaly detection methods use this
segmentation mask: (i) for intensity normalization (Section 2.3.6); (ii) to warp both
hemispheres for abnormal asymmetry detection on the native image space (Section 5.5);
and (iii) to perform anomaly detection in each object of interest individually (Chapter 6).
Chapter 3 provides a detailed review of brain image segmentation and presents AdaPro.

2.3.6 Intensity Normalization

In contrast with other medical imaging modalities, MR images even acquired with the
same protocol and scanner typically do not share similar intensities[82]. This inter-
image variability is problematic for automatic quantitative analysis because most methods
expect that the intensity distribution of all considered images is the same. The previous
methods for bias-field correction (Section 2.3.3) do not solve this problem, since they focus
on correcting intra-image variability, i.e., the unbalanced distribution of intensities, e.g.,
from a given tissue across the image.

Intensity-normalization methods aim to correct the scanner-dependent variation by
mapping intensities of all images into a standard reference[11]. Most traditional ap-
proaches rely on the use of the histogram-matching technique, which transforms the his-
togram from a source image to match a reference image’s histogram [82, 115]. Recent
methods incorporate a priori anatomical information by restricting the histogram match-
ing to only some segmented brain tissues [109, 11, 42|. Consequently, non-brain tissues
does not influence the quality of the final intensity normalization.

Inspired by the anatomical-based methods, we propose a novel intensity-normalization
approach, as follows. Assume a source brain image I, a reference image R, and their
corresponding brain segmentation masks after skull stripping (Section 2.3.5). First, we
apply a linear intensity normalization into I by mapping all its intensities within [0, 4095]
(12-bits). We chose this intensity range since all priority (in-house) datasets were acquired
within it. Finally, we apply a histogram matching between I and R by only considering the
object brain voxels defined in their segmentation masks. We use our proposed automatic
segmentation method, AdaPro, to obtain the brain segmentation masks from the source
images (Chapter 3). Fig. 2.12 illustrates the proposed intensity-normalization approach.

2.4 Image Foresting Transform

The Image Foresting Transform (IFT) is a methodology for the design of image opera-
tors based on optimum connectivity [60]. For a given connectivity function and a graph
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(a) Source image. (b) Reference image. (¢) Normalized source
image.

Figure 2.12: The proposed intensity normalization. (a) Segmented brain source image of
a stroke patient. (b) Segmented reference image. (c) Resulting preprocessed image after
intensity normalization.

derived from an image, the IFT algorithm minimizes (maximizes) a connectivity map
to partition the graph into an optimum-path forest rooted at the minima (maxima) of
the resulting connectivity map. The image operation resumes to a post-processing of
the forest attributes, such as the root labels, optimum paths, and connectivity values.
IFT has been successfully applied in different domains, such as image filtering [116], im-
age descriptor [117, 118], segmentation [119, 120, 121, 41, 122, 123], superpixel segmenta-
tion [61, 124, 40], representation [125], (semi) supervised classification [126, 127, 128], and
data clustering [129, 130].

In this thesis, we widely use IFT-based methods for brain image segmentation (Chap-
ter 3), one-class classification (Chapter 4), and supervoxel segmentation (Chapters 5-6).
This section presents preliminary concepts and introduces the IFT algorithm.

2.4.1 Preliminary Concepts

Image Graphs: A d-dimensional multi-band image is defined as the pair [ = (Dl,f ),
where D; C Z4 is the image domain — i.e., a set of elements (pixels/voxels) in Z¢ — and
I:D; > Reisa mapping function that assigns a vector of ¢ real-valued intensities I (p) —
one value for each band (channel) of the image — to each element p € D;. For example,
for 2D RGB-color images: d = 2, ¢ = 3; for 3D grayscale images (e.g., MR images):
d =3, c = 1. We represent a segmentation of I by a label image L= (Dy, L), wherein the
function L : D; — {0,1,--- , M} maps every voxel of I to either the background (label
0) or one of the M objects of interest.

Most images, like the ones used in this thesis, typically represent their intensity values
by natural numbers instead of real numbers. More specifically, I[:D;— [0,2° — 1], where
b is the number of bits (pixel/voxel depth) used to encode an intensity value.

An image can be interpreted as a graph G; = (Dy, . A), whose nodes are the voxels and
the arcs are defined by an adjacency relation A C Dy x Dy, with A(p) being the adjacent
set of a voxel p. A spherical adjacency relation of radius v > 1 is given by
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Ay :{(p,q) € Dy x Dy, llg — pll <~} (2.1)

The image operators considered in this thesis use two types of adjacency relations: A;
(6-neighborhood) and A 5 (26-neighborhood), as illustrated in Fig. 2.13.
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(a) Aj: 6-neighborhood. (b) A 3t 26-neighborhood.

Figure 2.13: Examples of adjacency relation for a given voxel p (red).

Paths: For a given image graph G; = (Dy,.A), a path m, with terminus ¢ is a sequence
of distinct nodes (py, pa, -+ pr) with (p;,pir1) € A, 1 <i <k —1, and pr = q. The path

7, = (q) is called trivial path. The concatenation of a path m, and an arc (p, ¢) is denoted

by - (P, q).

Connectivity Function: A connectivity function (path-cost function) assigns a value
f(mg) to any path 7, in the image graph G; = (Dr, A). A path 7 ending at ¢ is optimum
if f(m;) < f(7y) for every other path 7,. In other words, a path ending at ¢ is optimum if
no other path ending at ¢ has lower cost.

Connectivity functions may be defined in different ways. In some cases, they do not
guarantee the optimum cost mapping conditions [131], but, in turn, can produce effective
object delineation [132]. In this thesis, we explore the maz-arc path-cost function fq.,

defined by

Fran () ={ 0 ifacs,

+00 otherwise. (2.2)
fmaz(ﬂ-p ' <p7 Q>) = max{fmam<7rp)7 U)(p, q)}

where w(p, q) is the arc weight of (p, q), usually estimated from I, and S is the labeled
seed set.

2.4.2 The General IFT Algorithm

For multi-object image segmentation, IFT requires a labeled seed set S = Sy US1 U --- Sy
with seeds for object 7 in each set S; and background seeds in Sy (Fig. 2.14a). The al-
gorithm then promotes an optimum seed competition so that each seed in S conquers
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its most closely connected voxels in the image domain. This competition considers a
connectivity function f applied to any path m,. In the case of a seeded watershed trans-
form [133], as also adopted in this thesis, arc weights correspond to gradient image values
of I (Fig. 2.14b).

T

(a)

Figure 2.14: Multi-object image segmentation by IFT. (a) Axial slice of a brain image
with seeds Sy for the background (orange), &) for the right ventricle (red), and S, for the
left ventricle (green). (b) Gradient image for (a) that defines the arc weights for seed
competition. Arcs have high weights on object boundaries. (c¢) Resulting segmentation
mask for the given seeds and arc weights. Red and green voxels represent object voxels,
whereas the remaining ones are background.

Defining II, as the set of all possible paths with terminus ¢ in the image graph, the
IFT algorithm minimizes a path cost map

Cla) = min {f(mq)}. (2.3)
by partitioning the graph into an optimum-path forest P rooted at S. That is, the
algorithm assigns to ¢ the path 7 of minimum cost, such that each object 7 is defined by
the union between the seed voxels of §; and the voxels of D; that are rooted in S;, i.e.,
conquered by such object seeds (Fig. 2.14c¢).

Algorithm 1 presents the general IFT approach. Lines 1-7 initialize maps, and insert
seeds into the priority queue (). The state map U indicates by U(q) = White that the
voxel ¢ was never visited (never inserted into @), by U(q) = Gray that ¢ has been visited
and is still in @, and by U(q) = Black that ¢ has been processed (removed from Q).

The main loop (Lines 8-20) performs the propagation process. First, it removes the
voxel p that has minimum path cost in @ (Line 9). Ties are broken in @) using the first-
in-first-out (FIFO) policy. The loop in Lines 11-20 then evaluates if a path with terminus
p extended to its adjacent ¢ is cheaper than the current path with terminus ¢ and cost
C(q) (Line 13). If that is the case, p is assigned as the predecessor of ¢, and the root
of p is assigned to the root of ¢ (Line 14), whereas the path cost and the label of ¢ are
updated (Line 15). If ¢ is in @), its position is updated; otherwise, ¢ is inserted into Q.
The algorithm returns the optimum-path forest (predecessor map), root map, path-cost
map, and the label map (object delineation mask). Fig. 2.15 illustrates the execution of
the IFT algorithm with f,,q..



41

Algorithm 1: The General I[FT Algorithm

Input: Image | = (Dy, I), adjacency relation A connectivity function f, and
seed set S C Dy labeled by A.
Output: Optimum-path forest P, root map R, path-cost map C', and label map
L.

Aux: Priority queue @), state map U, and variable tmp.

1 foreach ¢ € D; do

2 | Pg) <9, R(q) < q

s | Clg) < f({a), L(q) < 0

4 U(q) < White

5 if ¢ € S then

6 L insert ¢ into Q)

7 L(q) < M\q), U(q) < Gray
8 while ) # @ do

9 Remove p from @ such that C'(p) is minimum
10 U(p) < Black
11 | foreach q € A(p) such that U(q) # Black do

12 tmp < f(my - (p,q))

13 if tmp < C(q) then

14 P(q) < p, R(q) < R(p)

15 C(q) + tmp, L(q) < L(p)

16 if U(q) = Gray then

17 L update position of ¢ in )
18 else

19 insert ¢ into ()

20 U(q) < Gray

21 return (P, R,C, L)

2.5 Clustering by Optimum-Path Forest

This section presents OPF-clustering [129], a data-clustering algorithm based on optimum-
path forests. OPF-clustering extends the IFT framework (Section 2.4) from the image
domain to the feature space by interpreting a training set as a graph whose nodes are
the samples, and their arcs are defined by an adjacency relation. The nodes are weighted
by their probability density values (pdf), and a connectivity function is maximized, such
that each local maximum of the pdf becomes the root of an optimum-path tree (cluster),
composed by samples “more strongly connected” to that local maximum than to any other
root. We use OPF-clustering for the development of our proposed one-class classifier, as
presented in Section 4.2.4. The theoretical background and algorithm of OPF-clustering
are presented next.

Let Z be a training set, and s € Z a given training sample. A random choice of samples
to compose Z makes the observations x = v(s) € R™ a random field, whose probability
density function (pdf) p(x) can be estimated as
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Figure 2.15: Example of the IFT seed competition with f,... (a) A 4-adjacent im-
age graph with numbers indicating arc weights based on image gradient, and squares
representing the seeds for two objects (red and yellow). (b)—(h) Iteration steps of IFT.
Numbers inside circles and squares indicate path-cost values. The resulting optimum-path
forest (OPF) is shown in (h).

—d?(s,
ZV(s,t)eA\v(s):x exp [ 20(2 t)]

ZVS€Z|V(5):y p<y) ’ (24)

p(x) =

where o > 0, d(s,t) = ||v(t) — v(s)]||, and A is an adjacency relation defined in the feature
space by

A:{(s,t) € Z x Z|s #t,

2.5
t is k > 1 nearest neighbor of s in R"}. (25)

A clustering in Z can be obtained by separating the domes of the pdf, such that the
samples in each dome compose one cluster. The authors in [129] formulated this problem
as an optimum-path forest problem in a graph. Their method selects one root sample per
local maximum of the pdf such that each remaining sample is assigned to the cluster of
the root that connects to it by an optimum path. A path is optimum in the sense that the
minimum density value along it is maximum concerning the values of other paths to the
same node. In order to guarantee that the roots will reach the remaining samples in the
same dome, they first consider the extended adjacency relation A., which is symmetric
on the plateaus of the pdf.



43

Ao {(s,t) € AU{(t,s)}|(t,s) € A

and p(s) = p(®)} 28)

where p(s) = p(v(s)) = p(x). The parameter o = maxy(syeca {d(s,t)} is fixed and the
graph (Z,A.) is weighted on the nodes s € Z by p(s) and on the arcs (s,t) € A, by
d(s,t). A path m; with terminus ¢ is a sequence (s1, Sa, ..., S, = t) of nodes, such that
(Si,Siv1) € Ae, i € [1,m], m, = (t) is said a trivial path, and m, = 74 - (s, ) is the concate-
nation of 75 and (s, t) with the two joining instances of s merged into one. The path-value
function f of minimum density is defined as

) ifteR,
f((t) = { p(t) — 9 otherwise, (2.7)

(s - (s, 1)) = min{f(m), p(t)},

where § = miny( ea. {|p(t) — p(s)|} and R is a root set with one sample per maximum of
the pdf, as selected during the algorithm. The optimum-path forest algorithm has been
first presented in [60] (Section 2.4), and the sufficient conditions for its correctness are
established with proof in [131]. It can maximize a path-value map V' (t) = maxy,en{ f(m},
where II is the set of all paths in the graph, by partitioning the graph into an optimum-
path forest P — an acyclic map that assigns to each node ¢ € Z its predecessor P(t) =
s € Z in the optimum path with terminus ¢ or a marker P(t) = nil ¢ Z, when the node
t € R is a root of the map. Once the optimum-path forest is defined, new samples t ¢ Z
can be assigned to one of the obtained clusters by evaluating the values of the extended
paths 7, (s,t), Vs € Z. In[134], the authors simplify this process for the sake of efficiency
by considering an adjacency radius €2(s) = maxyica(s){d(s,t)}, where A(s) is the set of
the k nearest neighbors of s, and giving a sample priority for s € Z, to conquer new
samples t, proportional to its optimum path value V(s). That is, ¢ is assigned to the
cluster of the root R(s*) of s* whose

o) = max (o)) 28)
where £ is that priority list. When ¢ does not satisfy the condition d(s,t) < €Q(s) for any
s € L, t is assigned to the cluster of its closest sample in L.

Algorithm 2 presents the clustering by Optimum Path Forest. The process starts by
defining all nodes as trivial paths (s) with values f((s)) = p(s) —d (Lines 1-4, Eq. 2.7).
In the main loop (Lines 5-14), the nodes are removed from @ in their non-increasing order
of path value. When the first node of a pdf maximum is removed from @, Line 9 updates
its root value according to Equation 2.7. In the internal loop (Lines 10-14), the roots
R(s) conquer the remaining nodes t of the same plateau and dome of the pdf whenever
the value f(7s - (s,t)) (Line 11, Eq. 2.7) is higher than the value V(¢) (Line 12) of the
current path m;, assigning ¢ to the same cluster of s (Lines 13-14). In the end, only the
roots of the forest have R(s) = s.

A last point for discussion is the choice of the parameter k. As suggested in [129], we
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Algorithm 2: Clustering by Optimum Path Forest
Input: Graph (Z,.A.) and the pdf p.
Output: Root map R and sorted list L.
Aux: Path-value map V', a binary heap @), and variable tmp.

1 foreach s € Z do
2 R(s) + s

3 V(s) < p(s) = ¢
4

insert s in )

5 while Q) s not empty do

6 Remove s from () such that s = argmazyicq{V ()}
7 Insert s in £

8 | if R(s) =s then

o | [ V(s) ¢ p(s)

10 | foreacht e A.(s) and V(t) < V(s) do

11 Compute tmp < min{V(s), p(t) }
12 if tmp > V(t) then

13 R(t) < R(s)

14 V(t) < tmp

find k € [1, kpax] as the one that produces a minimum normalized cut cut(k) in (Z, A,).

;o 1
W= Z d(s,t)

(s,t)EAe|R(s)=r#R(t)

The upper limit k., is an application-dependent parameter — larger it is, fewer clusters
are obtained. Therefore, the only parameters are the size of the removed trees and k..
In this thesis, we fixed k., equal to 15% of the number of training samples and eliminated
trees with less than five nodes from the training set.

Section 4.2.4 presents our proposed one-class classifier that extends OPF-clustering
for anomaly detection.

2.6 Iterative Spanning Forest (ISF)

A crucial step of the considered pipeline towards answering our research questions (Fig. 1.6)
consists of selecting volumes of interest (VOIs) for the subsequent analysis. A strategy for
VOI selection, which we explore throughout this thesis (Chapters 5 and 6), is supervozel
segmentation.

Supervozels are groups of connected voxels with similar characteristics resulting from
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an oversegmentation of a 3D image or region of interest. Similarly, the term superpizels is
used for 2D images. They preserve essential image information (e.g., the borders of tissues
and lesions) and are used as an alternative to patches to define more meaningful VOIs
for computer-vision problems [135, 136] and some medical image applications [6, 137|. For
example, one can oversegment the hemispheres in multiple supervoxels for brain anomaly
detection.

In this thesis, we consider the Iterative Spanning Forest (ISF) framework [61] for su-
pervoxel segmentation. ISF is a recent approach for both superpixel and supervoxel seg-
mentation that has shown higher effectiveness than several state-of-the-art counterparts,
especially when used for 3D MR image segmentation of the brain[61]. ISF consists of
three key steps: (i) seed sampling followed by multiple iterations of (ii) connected super-
voxel delineation based on IFT [60] (Section 2.4), and (iii) seed recomputation to improve
delineation. We next present the theoretical background for ISF as well as its algorithm.
For the sake of clarity, we use the same nomenclature presented in Section 2.4.

2.6.1 Theoretical Background

Recall the pair I = (Dy, I ) be a d-dimensional multi-band image, where D; C Z% is the
image domain, and I:D; - Risa mapping function that assigns a vector of ¢ real-
valued intensities I(p) — one value for each band (channel) of the image — to each element
p € D;. For simplicity, assume that the term wvozels represents the d-dimensional-image
elements.

As outlined in Section 2.4, an image can be interpreted as a graph G; = (Dy, . A), whose
nodes are the voxels, and the arcs are defined by an adjacency relation A C D; x Dj, with
A(p) being the adjacent set of a voxel p. In this work, we consider the 6-neighborhood
adjacency for ISF (Fig. 2.13a).

For a given initial seed set S, labeled with consecutive integer numbers {1,2,--- ,|S|},
and a connectivity function f, ISF computes each supervoxel as a spanning tree rooted
at a single seed, such that the seeds compete among themselves by offering lower-cost
paths to conquer their most strongly connected voxels. We use the following connectivity
function f given by

0, ifges,
fla) = { +00, otherwise
’ 7 (2.10)

L 8
|

[y (9, @) = F(m) + |- 1 (@) = TR+ lla = pl

where ||I(t) — I(R(p))]| is the Euclidean distance between the intensity vectors at voxels
R(p) and ¢, ||¢ — p|| the Euclidean distance between the voxels p and ¢, (¢) is a trivial
path, 7, - (p, q) the extension of a path 7, with terminus ¢ by an arc (p, ¢), and R(p) the
starting node (seed) of m,. The factors o and /3 serve to control a compromise between
supervoxel boundary adherence and shape regularity. Although the authors of ISF have
fixed @ = 0.5 and 5 = 12 during the experiments [61], such factors are problem-dependent
and should be optimized to yield more accurate supervoxels. Fig. 2.16 shows the impact
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of a and  for the superpixel segmentation of a 2D brain image.

«=0.01, B=12 «=0.1, B=12 «=0.5, B=12
(a) Different values of o and g = 12.

«=0.5, B=5 «=0.5, B=8
(b) @ = 0.5 and different values of j.

Figure 2.16: The impact of the factors a and 3 for superpixel segmentation by ISF. Each
superpixel is represented by a different color. For all cases, we performed ISF on the same
2D brain image with 10 iterations and identical 30 initial seeds selected by grid sampling.

2.6.2 The ISF Algorithm

Algorithm 3 presents a pseudo code for the Iterative Spanning Forest framework. At each
iteration (Lines 2-4), ISF performs connected supervoxel delineation on the image I based
on IFT (Line 3) — as described by Algorithm 1 — from a given seed set &', adjacency
relation 4, and the connectivity function f described by Equation 2.10. The seed set
at Iteration 1 is the initial seed set S (Line 1). Next, the seed set is recomputed by
the function Seed Recomputation to improve delineation (Line 4). This process continues
until reaching NV iterations. The algorithm returns the optimum-path forest (predecessor
map), root map, path-cost map, and the supervoxel label map. Fig. 2.17 illustrates the
execution of ISF.

In this work, we adopted a seed-recomputation strategy proposed by Vargas-Munoz et
al. [61], as detailed next. At each iteration, we promote the centroids from the obtained
supervoxels — i.e., their geometric centers — to be the seeds of the next iteration. If a
given centroid ¢; is out of its supervoxel L; — due to the non-convex shape of L; — we
select the voxel of L; that is the closest to ¢;. We refer to Vargas-Munoz et al.[61] for
more specific details.
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Algorithm 3: Iterative Spanning Forest

Input: Image | = (Dy, D ), adjacency relation A, connectivity function f, initial
seed set S C Dy, and the maximum number of iterations N > 1.
Output: Optimum-path forest P, root map R, path-cost map C, and supervoxel

label map L.
Aux: Seed set §’, and the variable 7.

18« S
2 fori< 0to N—1do
s | (PR C,L)« IFT(I, A f S
L S+ SeedRecomputatz’on(f,S’,P, R,C)
5 return (P, R,C, L)

4

(c) Tteration 6. (d) Tteration 9.

Figure 2.17: Example of the ISF execution (10 iterations with & = 0.5 and § = 12) on
a 2D brain image. (a)—(d) For iterations of ISF. For each iteration, we show its input
seeds (red points) and the resulting obtained superpixels (each color represents a different
superpixel). Iteration 0 shows the initial seed set obtained by grid sampling; the other
seed sets are obtained by seed recomputation. As the insets show, most seeds do not
change positions over iterations.
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A crucial step for the success of ISF consists of performing a robust initial seed esti-
mation. This step, however, is problem-dependent, so that simple and general strategies
— e.g., a grid sampling in the input image — can provide unsatisfactory results (e.g.,
undersegmentating a lesion). Chapters 5 and 6 introduce two ISF-based algorithms for
supervoxel segmentation tailored to specific constraints. Both algorithms present different
strategies to build a 2-band volumetric image from a 3D MR image, as well as robust ini-
tial seed estimations that lead to better final supervoxels (e.g., a supervoxel that correctly
fits a lesion).

2.7 Conclusion

In this chapter, we have summarized the main background information on concepts ex-
plored in this work, which involves basic brain anatomy, imaging physics, and typical
MRI preprocessing operations. Besides, we introduced image foresting transform, a ro-
bust framework widely used for the development of several image operators throughout
this thesis.

From the reviewed material, we can conclude that the pipeline of medical image anal-
ysis for brain data is complex, having many steps of various natures, and primarily de-
manding concepts on anatomy and imaging physics. Each of these steps is crucial, in
its own way, to provide a good-quality final result, i.e., a good anomaly detection, to-
wards our research questions. In particular, we highlight the importance of the presented
MRI preprocessing operations (Section 2.3) for the success of such a pipeline since MRI
data typically presents acquisition artifacts of different characteristics — e.g., noise, in-
homogeneities, and variability of intensity and contrast — which negatively impact both
medical diagnosis and automatic analysis.

The rest of this thesis is dedicated to improving the various steps of the considered
medical image analysis pipeline.
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Chapter 3

Automatic Brain Image Segmentation

The precise delineation of 3D objects (e.g., organs and lesions) in 3D MR brain images
has been an active research topic over the last decades[138, 139]. A common example is
brain segmentation that aims to separate the so-called macro brain structures: the right
and left hemispheres, cerebellum, and brainstem. Brain segmentation is typically used for
a better understanding of neurological diseases, the study of brain asymmetries [18|, mor-
phological analysis of the hemispheres [80], surgical planning[29]|, and the development
of computer-aided diagnosis systems [140]. Regarding our research questions, brain seg-
mentation supports the proposed unsupervised anomaly detection approaches in different
steps: (i) for intensity normalization (Section 2.3.6); (ii) to warp both hemispheres for
anomaly detection on the native image space (Section 5.5); and (iii) to perform anomaly
detection in each object of interest individually (Chapter 6).

The absence of well-defined boundaries between the macro brain structures in MR
images makes brain segmentation challenging. Fully interactive segmentation methods
require a high number of user intervention, becoming a tedious, time-consuming, and
error-prone task, especially for studies involving large datasets|[141]. Moreover, such
methods require specialists with considerable experience in manual delineation. The use
of prior anatomical information (shape constraints) can either mitigate the problem or
eliminate the need for user interaction.

Atlases: Probabilistic atlases (PAs), also known as statistical object shape models, are
popular and well-succeeded examples of shape constraints for automatic brain segmenta-
tion [142, 143, 120, 144, 141, 41]. Methods based on PAs estimate the probability of a voxel
to be part of a given object regardless of its intensity in the original image [143, 120, 41].
Some techniques, such as SOSM-S [120], combine these probabilities with a delineation

This chapter is based on the following publications:

(i) A. X. Falcao, T. V. Spina, S. B. Martins, and R. Phellan, “Medical image segmentation using object
shape models: A critical review on recent trends, and alternative directions,” VipIMAGE, pp. 9-15, 2015;
(ii) S. B. Martins, T. V. Spina, C. L. Yasuda, and A. X. Falcdo, “A multi-object statistical atlas adaptive
for deformable registration errors in anomalous medical image segmentation,” in SPIE Medical Imaging,
vol. 10133, pp. 691-698, 2017. Honorable mention,;

(iii) S. B. Martins, J. Bragantini, C. L. Yasuda, and A. X. Falcdo, “An adaptive probabilistic atlas for
anomalous brain segmentation in MR images,” Medical Physics, vol. 46, no. 11, pp. 4940-4950, 2019.
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algorithm to obtain better-refined object boundaries. However, the existing models do
not adapt to possible object anomalies caused by the presence of a disease or a surgical
procedure (Fig. 3.1). Such anomalies often alter the shape and texture of the brain struc-
tures, making them different from the appearance of the model. One might post-process
the resulting segmentation masks, for example, by removing cerebrospinal fluid (CSF)
voxels obtained by tissue classification (Fig. 3.1f). However, post-processing does not fix
existing segmentation errors of the model on gray matter (GM) and white matter (WM)
voxels — e.g., voxels between the hemispheres in Figs. 3.1e-f. Post-processing can still
increase those segmentation errors (Fig. 3.1f).

Figure 3.1: Automatic brain segmentation by the probabilistic-atlas-based method SOSM-
S [120]. (a) Coronal slice of a 3D brain image after left temporal lobe resection (arrow).
(b) The corresponding slice of a prior probability map for the left hemisphere (blue and
yellow voxels indicate the certainty and uncertainty regions, respectively). (c) Overlap-
ping between (a) and (b). (d) Estimated seeds for object delineation. (e) Coronal slice of
the resulting 3D object mask (blue) and the gold-standard border (red). Arrows indicate
segmentation errors. (f) Post-processed object mask after removing voxels classified as
CSF by expectation maximization algorithm [145].

Deep learning methods: Recent work proposes deep neural networks for segmenting
GM, WM, and CSF |11, 32|; hippocampus [57]; brain lesions [35, 146]; and skull [114].
These approaches usually (i) take high processing times, (ii) depend on a large number
of training images, which must be previously annotated by experts; and (iii) may require
weight fine-tuning (retraining) when used in each new distinct set of images|11]. The
latter is certainly a significant limitation, due to the difficulty of annotating medical image
training sets with 3D objects [147], the image variability across scanners and acquisition
protocols, and differences between healthy and pathological brain tissues. In this sense,
methods that rely on object-shape-based models and texture classifiers, which can be
created from a few labeled voxels, are more attractive. Our proposed research falls into
this category.
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In this chapter, we present an effective and efficient adaptive probabilistic atlas, named
AdaPro, to circumvent the above limitation. Our method adapts shape constraints on-
the-fly according to the presence of detected anomalies in the target image. The adaptive
model uses a binary texture classifier trained from a few background and object voxels on
a template (reference 3D image). It relies only on voxel feature representation and texture
classification to adapt its probabilistic atlas. Finally, AdaPro performs a new object-based
delineation algorithm based on combinatorial optimization and diffusion filtering [148, 149]
for shape smoothing.

We structure this chapter as follows. Section 3.1 presents related work on object-
shape-based models for automatic brain image segmentation and details the baselines
considered during experiments. Section 3.2 introduces AdaPro. Section 3.3 describes
the experimental setup, while Section 3.4 presents and discusses the results. Finally,
Section 3.5 concludes this chapter.

3.1 Related Work

Image segmentation involves two tightly coupled tasks: object recognition and object
delineation [150]. Recognition indicates the whereabouts of the desired object, while de-
lineation precisely defines its spatial extent in the image.! Some approaches can present
different levels of automation for each task, varying from purely manual to fully automatic.
This thesis only focuses on fully automatic approaches.

Atlas-based segmentation, also called object-shape-based segmentation, is one of the
most widely-used and successful approaches for automatic brain image segmentation.
These methods use the a priori knowledge about objects’ shapes from a training set
X ={Ay, -+, A,} with n atlases. Each atlas A; = (I;, M;) consists of a source 3D image
I; (e.g., MR image) and its corresponding 3D label image M; with the segmentation
mask of each 3D object of interest. These segmentation masks, called gold standards,
are obtained from manual or semi-automatic interactive segmentation by one or multiple
experts. This process typically requires outlining the structures in a slice-by-slice fashion,
resulting in a time-consuming, tedious, and error-prone task [11].

The simplest atlas-based methods [151, 152, 153| rely on a single atlas A, = (I, M,)
and segment a 3D test image I by propagating the labels from M, to I after image
registration between I and I, (template). However, since registration does not perfectly
align the borders of the registered image and the template (Section 2.3.4), a single atlas is
insufficient to capture wide anatomical variations, especially when anomalies are present
in I. This strategy evolved to probabilistic atlases (PAs) and then to Multi-Atlas Label
Fusion (MALF), as discussed next.

3.1.1 Probabilistic Atlas

Methods based on PAs estimate the probability of a voxel is part of a given object regard-
less of its intensity in the original image [143, 120, 41]|. Fig. 3.2 shows the general pipeline

!Some authors commonly use the term segmentation to refer to delineation so that recognition is
implicitly assumed [150].
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of these methods. The construction of a PA initially requires the selection of a standard
template I, (Fig. 3.2, Step 1). One can select the most similar atlas to the others in
the training set [120] or use a well-established coordinate space, such as the popular MNT
template [108]. The training source images are then registered to I, by non-rigid registra-
tion, and their segmentation masks are also mapped to I, by applying the corresponding
transformations (Fig. 3.2, Step 2). Once the training atlases are on the same coordinate
space, one computes a prior probabilistic map P (Fig. 3.2, Step 3), where each voxel v has
a prior probability of belonging to a given object of interest [144] — i.e., the frequency in
which v assumes the label of such object in all training masks (see the resulting map for
AdaPro posteriorly illustrated in Fig. 3.6). All voxels with probability within (0, 1) form
the uncertainty region, where the object’s boundaries are likely to fall. For segmentation,
the unseen test image I; is mapped on to the coordinate system of P (recognition), and
delineation (Fig. 3.2, Steps 4-5) typically involves thresholding the prior probabilities
associated to the voxels [154, 104], or estimating and thresholding a posterior probabili-
ties [120, 155|, or by using other image processing operators [156, 120, 147].

train atlases train registered atlases
source images @ registered registered

object masks

. . . |:| images

iy Registration > E
SRS ; &

object masks

\ 4

template ,
................................. .| Template ©
Selection
construction probJatlas
segmentation
@) G)
; . Object
| |—> > ——» i
3 Registration Delineation
test image segmentation
template mask

Figure 3.2: General steps for the construction and use of probabilistic atlases for automatic
image segmentation.

PA-based methods have been actively investigated in the past decades [154, 157, 144,
158, 156, 120, 141, 41, 155, 147]. For example, the well-known FreeSurfer [144] automat-
ically segments several brain anatomical structures by combining the use of a Markov
random field and probabilistic atlases into a Bayesian framework [144, 157]. Despite be-
ing widely accepted as the de facto standard of brain segmentation in many anatomical
studies [159, 144], FreeSurfer demands a considerably high processing-time to segment an
image (~ 15h), which makes it impracticable for clinical routine and studies involving
large datasets.

Some strategies combine registration and delineation into a probabilistic framework [147].
Pohl et al.[155] proposed using the expectation-maximization (EM) algorithm [160] to
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find the optimum parameters for registration while labeling each voxel to a brain tis-
sue. Ashburner and Friston [158] proposed a unified objective function to segment brain
tissues (CSF, WM, and GM) while correcting the bias field and refining registration,
whose parameters are derived from a mixture of Gaussians. Since this approach uses only
healthy-shape priors, it fails to segment images with some anomalies.

The accuracy of PA-based approaches is very sensitive to registration errors, mainly
caused by the inter-subject variability in anatomical patterns[147]. Some methods then
use image processing operators to attenuate the impact of such errors while refining the fi-
nal delineations of the brain structures. Grau et al. [156] use the watershed algorithm [133|
from seeds corresponding to each brain-tissue class. Such seeds are estimated as the skele-
tons calculated from the probabilistic atlas.

Recently, Phellan et al. [120] have demonstrated that if we acknowledge registration
errors, the accuracy of probabilistic atlases may be significantly improved as long as a local
search for the object is performed with the model. For this purpose, their probabilistic
atlas, named SOSM-S, uses a triple { P, D, F'} composed of the traditional prior probability
map P (Fig. 3.6), a delineation algorithm D, and a criterion function F. The goal of P
is to impose the object’s shape learned from the training atlases, which aims to constrain
the delineation with D to occur only for uncertain vozels. The delineation algorithm
D, in turn, aims to adapt the shape constraints to the test image, rather than merely
thresholding P after registration. SOSM-S uses the watershed transform by the Image
Foresting Transform (IFT) algorithm [60] for object delineation (Section 2.4). Criterion
F is used for the local object search to mitigate registration errors. The search requires
the translation of P over the registered test image, delineating a candidate object with D
at every position. Then, it evaluates the resulting mask with F', which is expected to be
maximum when the candidate mask corresponds to the target object. Such synergistic
operation between object localization and delineation constitutes the task of segmentation
and stems from Fuzzy Object Shape Models [161].

Despite the success of SOSM-S for brain segmentation in control images, the method
fails in the presence of anomalies since the model imposes the shape of healthy organs
(Fig. 3.1). Moreover, only MR-T1 brain images of 2T were used for evaluation, ignor-
ing inherent problems of higher quality 3T images (e.g., field inhomogeneity and noise).
SOSM-S’ local search, in turn, may require considerable processing time for performing
IFT delineation for each candidate in the search region.

In this thesis, we revisited SOSM-S to present a faster adaptive model, named AdaPro,
for anomalous brain segmentation with the following contributions:

1. We incorporate a texture classifier based on convex optimization that indicates on-
the-fly the regions of the target 3D image where the shape constraints should be
further adapted on the probabilistic atlases (i.e., disregarded during object delin-
eation). This strategy avoids the problems of applying the classifier as a post-
processing operation (Fig. 3.1f);

2. We increase the uncertainty region of the statistical shape model (by erosion and
dilation) to avoid local object search, as adopted by SOSM-S. This strategy makes
the segmentation considerably faster;
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3. We added the object relaxation procedure from Moya and Falcao [149] to improve
segmentation accuracy and make the objects’ appearances more pleasant (without
jagged edges);

4. We extended the brain segmentation to the native coordinate space of the test im-
ages.

Section 3.2 introduces AdaPro and details the above contributions.

3.1.2 Multi-Atlas Label Fusion (MALF)

Methods based on Multi-Atlas Label Fusion (MALF) aim to suppress registration errors
by considering that each training atlas A; = (I;, M;) produces one candidate segmentation
per test image [;. Each training atlas is registered on to I; so that the fusion of all mapped
segmentation masks generates the final segmentation [104, 162, 80, 163, 164, 165, 166].
MALF can be performed either in the native or template space. Fig. 3.3 presents the
general steps of MALF.

Atlas
Selection

Registration

segmentation
mask

[

test image

Figure 3.3: General steps of Multi-Atlas Label Fusion for image segmentation.

Challenges: The computational bottleneck of MALF consists of registering the entire
training atlas set to I;, which demands the most significant processing time during segmen-
tation [104]. Some MALF methods then select the subset of the & most similar training
atlases to I; (atlas selection) to make the segmentation faster, which is particularly im-
portant in scenarios where time is a significant constraint [104]. Moreover, when removing
training atlases that are anatomically unrepresentative to I;, one might expect to improve
the segmentation accuracy [167].

Pipeline: Most atlas-selection methods rank the relevance of the training atlas set X by
employing a given metric based on image-similarity [167, 168, 169]. Aljabar et al. [167|, for
example, proposed the use of normalized mutual information (NMI) to rank X — see more
details of NMI in Appendix C.1. Initially, the method chooses a reference image I, from X
and maps all training atlases to I,.. A test image I; is then registered on to the space of I,
and the NMI between I; and each image in X is computed. Finally, the method selects the
k top-ranked training atlases for subsequent segmentation. This approach considerably
reduces the number of registrations during atlas selection. Asman et al. [170] replace NMI
with principal components analysis to define atlas similarity metrics. More recently, other
works rely on clustering to select the most similar training atlases [171, 172] to I;. For
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instance, Nouranian et al. [171] partition the set [, U X into k clusters by using the K-
means algorithm [173] and select a subset of training atlases belonging to the same cluster
of I;.

Once the k most relevant training atlases are selected, their source images are regis-
tered on to the coordinate space of I;, and their masks are also mapped to by applying their
corresponding deformation fields. Although non-rigid registration is time-consuming, it
is preferable in MALF applications for better capturing anatomical variation between dif-
ferent subjects [147], resulting in higher segmentation accuracies[104]. Typical non-rigid
registration techniques are based on mathematic transformations, such as cosine-based
functions [174], B-spline curves[107], and level set partial different equations [175].

Finally, the propagated labels from the registered segmentation masks are combined
(label fusion) to generate the final segmentation. The simplest solution is majority vot-
ing, which selects the most frequent label at each voxel[176]. Other works assign a
local or global weight for each registered training atlas during label fusion, which reflects
the similarity between the test image and the atlas|[177, 163, 112, 162]. For instance,
Artaechevarria et al. [177] compute global weights from the NMI between the training
atlases and the test image. One of the most popular techniques is STAPLE [164], which
weights each training atlas using the expectation-maximization algorithm. Alternative
strategies estimate local weights by computing local cross-correlation [178|, local mutual
information [179], and local registration accuracy [180]. Recent label-fusion techniques in-
volve the use of patches to compute weights at each voxel [181, 182].

Implementations: In the context of brain image segmentation, we highlight the recent
software called volBrain [80], a solution that provides segmentation and structure asym-
metry ratios at different scales for intracranial cavity (skull stripping), tissue volumes
(GM, WM, and CSF), brain segmentation, lateral ventricles, and subcortical GM struc-
tures. volBrain has reached superior segmentation results as compared to well-established
and publically available solutions, such as FreeSurfer [144| and FIRST [183], serving as a
starting point for works regarding brain image analysis.

volBrain uses NABS (Non-local Automatic Brain hemisphere Segmentation) [162] for
brain segmentation. This method randomly selects 30 atlases from a training set of
healthy subjects (with ~ 600 atlases), which are then preprocessed using the following
operations: noise reduction, registration on to linear MNI space [108], skull stripping, in-
homogeneity correction, and intensity normalization. After preprocessing the test image,
NABS performs a tissue classification that only considers WM, GM, and CSF. Finally, the
non-local label-fusion technique proposed by Coupe et al. [181] segments the hemispheres,
cerebellum, and brainstem. This label fusion estimates the influence of each atlas for each
voxel v by computing the FEuclidean distance of a 3D patch around v in the test image
and the source images from the chosen atlases. We considered volBrain as a baseline in
our experiments (Section 3.3).
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3.2 Adaptive Probabilistic atlas (AdaPro)

We propose an Adaptive Probabilistic atlas (AdaPro) for anomalous brain image seg-
mentation that incorporates a texture classifier during object delineation. This classifier
indicates on-the-fly the regions of the target 3D image where the shape constraints should
be further adapted (i.e., regions disregarded during segmentation) due to the presence
of abnormalities (Fig. 3.1a). Fig. 3.4 presents the steps for the construction and use of
AdaPro, whereas Fig. 3.5 shows resulting images of these steps for the segmentation of
both hemispheres and cerebellum. Although some figures presented in this section show
examples with MR slices, AdaPro uses 3D MR images.
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Figure 3.4: Pipeline for the construction and use of AdaPro.

3.2.1 Construction

Recall a training set X = {4y, -, A,} with n atlases of healthy subjects, where each
atlas A; = (I;, M;) consists of a source 3D image I; and its corresponding label image M,
with the mask of each 3D object of interest.

Template Selection

Since our method is based on registration, the first step is to select a standard refer-
ence coordinate space (template) where the probabilistic atlas will be constructed. This
template might be a popular atlas, such as MNI [108|, or the most similar training atlas
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Figure 3.5: AdaPro segmentation. (a) Axial slice of a post-surgery 3D MR-T1 image
(the arrow indicates an anomaly). (b) Object localization mask on the preprocessed and
registered image. (c) Histogram matching of (b). (d) Positive voxels (orange) after tex-
ture classification. (e)—(g) Estimated seeds from the adaptive models for the background
and target objects. Magenta voxels indicate the forbidden regions imposed by (d). (h)
Gradient of (c). (i1)—(j) Delineated objects in 2D (axial slice) and 3D.

to the entire training set. We apply the same procedure employed by Phellan et al. [120]
that selects the training atlas A, = (I, M,) whose union of the object masks in M, has
the least mean Average Symmetric Surface Distance (ASSD; Appendix C.2) to all others
from X. The idea is to reduce the amount of deformation each image must undergo for
model construction.
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Preprocessing and Registration

As outlined in Section 2.3, automated MR image segmentation is challenging due to
inherent problems of image acquisition, such as noise, field inhomogeneity, and variability
of the intensity ranges, mainly in high-resolution images from 3T scanners, for example.
We then perform some image processing operations, as detailed in Section 2.3, to improve
the quality of the images.

We first apply noise reduction by median filtering, followed by MSP alignment, and
an inhomogeneity correction with N4[102]. The resulting images are then registered to
the template I, by non-rigid registration (Section 2.3.4), and their masks are also mapped
to by applying their corresponding deformation fields (Figs. 3.5a-b).

Probabilistic Atlas Creation

For each object m, we build a probabilistic atlas P,, by counting the frequency of
the label assignment from all training registered atlases A; € X and keeping the mostly
assigned label to each voxel. Label assignment only takes into account the object m and
the background (label 0). This frequency corresponds to the prior probability of the voxel
to belong to object m. Fig. 3.6 depicts the probabilistic atlases for the cerebellum and
brain hemispheres.

One might also build a single multi-object probabilistic atlas with all objects under
study. However, a previous study showed that the use of a probabilistic atlas for each ob-
ject results in more accurate segmentation as compared to the multi-object strategy [141].

i

Figure 3.6: Axial, coronal, and sagittal slices of the combination (only for visualization)
of probabilistic atlases for the cerebellum (red), right hemisphere (green), and left hemi-
sphere (blue). The brighter the object’s color, the greater its prior probability value.

Model Adaptation

We design a binary classifier C' based on a linear Support Vector Machine [184] by
interactively selecting training voxels on the 3D template .. SVM is fast and robust
to classify high-dimensional data (like ours). Brain tissue voxels are considered positive
samples and voxels with typically different intensities (CSF and image background) are
considered negative samples. Each training voxel is represented by its intensity and the
intensities of all neighbors inside a sphere of radius 5.0, resulting in a 515-dimensional
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feature vector. Fig. 3.7 shows an example of chosen voxels on a given I,.

Figure 3.7: Slices of the chosen template (reference 3D image) with the selected voxels
to design the texture binary classifier. The brain tissue voxels (orange scribbles) are the
positive samples, whereas the voxels with different intensities (magenta scribbles) are the
negative samples.

3.2.2 Segmentation

Let I; represent a target 3D brain image after preprocessing and non-rigid registration on
to I, (Fig. 3.5b). Each object of interest m is independently segmented by following the
steps, as detailed below. Then, all delineated objects are combined to result in the final
3D label image M;.

Object Localization and Histogram Matching

As AdaPro relies on a texture classifier to detect anomalous regions, the wide differ-
ences in intensity and contrast among the 3D images, mainly when considering images
provided by different scanners, must be attenuated to guarantee a similar range of inten-
sities for the same tissue. One could then apply a histogram matching between I; and I,
but voxels from irrelevant tissues/organs for the addressed problem (e.g., neck and bones)
can negatively impact this operation. AdaPro circumvents this problem by binarizing the
probabilistic atlas P,, of each object m, followed by morphological closing to fill small
holes (e.g., small gaps inside sulci; maximum volume of 8 x 8 x 8 mm?), and merging
them into a single 3D binary mask B (object localization mask). B can still be dilated if
the user provides a dilation radius > 1 for seed estimation. Note that B contains all voxels
from the certainty and uncertainty regions for all target objects (localization) that indeed
define the regions for object delineation (Fig. 3.5b). Finally, AdaPro performs a histogram
matching between I; and I, only inside the object voxels defined by B (Fig. 3.5¢).

Texture Classification and Seed Estimation

We aim at estimating a seed set S = Sy U S,,,, where S,,,, m > 0, contains seed voxels
selected inside the object m, and Sy contains seed voxels selected in the background. The
borders of the dilated and eroded certainty region of P,, form Sy and S,,,, respectively. The
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dilation and erosion slightly increase the uncertain region of P,,. Thus, seed estimation
is simpler and faster as compared to SOSM-S (Section 3.1.1), for example, since it avoids
performing several delineations as it is done during SOSM-S’ local object search.

To identify regions on I; where shape constraints should be adapted, AdaPro classi-
fies I; with the texture binary classifier C' (Fig. 3.5d). Then, the residual image of B wvs
the classification forms a forbidden region F' (magenta voxels in Figs. 3.5e—g) that elim-
inates its voxels from the competition between internal and external seeds during object
delineation. This strategy will not work as a post-processing operation, because object
delineation without the forbidden region might mislabel voxels from distinct objects.

Object Delineation

For the delineation of each object m, AdaPro uses a fast implementation [149] of
the Relaxed Image Foresting Transform (RIFT) algorithm [148], an IFT-based algorithm
(Section 2.4) that smooths the delineated object borders. This algorithm first computes
a watershed transform from labeled seeds defined by § = Sy U S,,,, exactly as in SOSM-S.
The seed competition takes into account the gradient image of I; (Fig. 3.5h), whose voxels
are expected to be brighter along the objects’ boundaries than elsewhere. Therefore, the
voxels are conquered by the seed, which offers the path whose maximum intensity along
it is minimum as compared to any other path from the remaining seeds. A fast diffusion
filter [149] then smoothes the resulting mask. Since the segmentation of each object m is
performed independently, when a voxel is assigned to multiple labels, its final label is the
one with higher probability value in the probabilistic atlas (Figs. 3.5i-j).

Segmentation on Native Image Space

AdaPro can segment [; on its own native image space (NIS). The only change for this
is to map the probabilistic atlases to I; by applying the transformations (deformation
fields) resulting from the non-rigid registration between the template I, on to ;. AdaPro
then performs the remaining steps as previously presented.

One might use AdaPro to segment I; on the template coordinate space and then in-
versely mapping it to NIS. However, this approach cannot tackle segmentation errors
resulting from the inverse mapping. This strategy proposed by AdaPro is different, as it
relies on object delineation to circumvent those registration errors.

3.3 Experimental Setup

To assess the performance of AdaPro, we conducted a set of experiments. This section
describes the MR-T1 image datasets, compared methods, and the evaluation protocol

considered for the experiments. All computations were performed on the same Intel Core
i7-7700 CPU 3.60GHz with 64GB of RAM.
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3.3.1 Datasets

We used six in-house datasets of 3D MR-T1 brain images of healthy subjects and patients
before and after temporal lobe resections, as presented in Appendix B.1. All images
were provided by the Neuroimaging Laboratory (LNI) at the University of Campinas
(UNICAMP), Brazil. The datasets were divided into two groups according to their field
strengths.

Group A has three datasets of 2T images acquired with a 2T Elscint scanner and voxel
size 0.98 x 0.98 x 0.98 mm?: (HEALTHY-2T) 19 images from healthy subjects, (PRE-
2T) 20 pre-operative images from epilepsy patients, and (POST-2T) 20 post-operative
images from epilepsy patients. This group has 20 epilepsy patients with a pair of pre-
and post-operative images for each one.

Group B has three datasets of 3T images acquired with a 3T Siemens scanner and
voxel size 1 x 1 x 1 mm?: (HEALTHY-3T) 20 images from healthy subjects, (PRE-3T)
30 pre-operative images from epilepsy patients, and (POST-3T) 60 post-operative images
from epilepsy patients. This group has 30 epilepsy patients to which there are one pre-
and two post-operative images.

A template obtained from HEALTHY-2T, with 165 x 255 x 255 voxels, was considered
for group A, whereas a template obtained from HEALTHY-3T, with 180 x 240 x 240, was
used for group B. Therefore, our study involved a total of 169 images.

A neurologist from LNT has carefully delineated the cerebellum (C), right hemisphere
(RH), and left hemisphere (LH) to build the gold-standard segmentation of all datasets.
Consequently, brainstem is not considered in the experiments. Resulting segmentation
masks consider that background voxels have label 0 and each object has label m =
1,2,...,L, where L is the total number of objects. Fig. 3.8 presents examples of the
considered datasets.

3.3.2 Evaluation Protocol

We compared AdaPro? with three atlas-based methods: SOSM-S [120], volBrain [80],
and a MALF technique instantiated with the popular atlas selection of Aljabar et al. [167|
and STAPLE label fusion [164]. All these methods are detailed in Section 3.1.

The quality, resolution, and brain tissues’ intensities are quite different in 2T and
3T MR-T1 images (Section 2.2.2), even after applying the same preprocessing operations
detailed in Section 3.2.1. For example, 2T images are noisier than 3T images, whereas field
inhomogeneity is higher in 3T than 2T images — compare the examples in Fig. 3.8. Thus,
a single texture classifier — designed from voxels selected in a template acquired with a
given field strength — may not be accurate when classifying anomalies in images acquired
with different field strength. Therefore, we evaluated Groups A and B independently
(Section 3.3.1). For each one, we considered its dataset of healthy subjects as the training
set, which is used for SOSM-S, MALF, and AdaPro. volBrain uses its own training atlas
set since we do not have access to it.

2All binaries of AdaPro can be found on https://github.com/lidsunicamp/MedicalPhysics19_
AdaPro
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(d) HEALTHY-3T (e) PRE-3T (f) POST-3T

Figure 3.8: Examples of the considered datasets for brain segmentation. Each example
shows an axial slice of the 3D MR-T1 image after preprocessing, and its gold-standard
segmentation. Arrows indicate removed tissues after lobe resection.

We considered the entire training set to construct the probabilistic map of SOSM-S
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and AdaPro. Due to processing-time constraints, MALF used all images of HEALTHY-
2T for evaluation in group A, and it selected the 20 top-ranked training atlases from
HEALTHY-3T for each test image during validation in group B. All methods used the
same 3D template (reference image) which consists of the most similar atlas to the others
in the training set. We performed all registrations by the Elastix® software [107].

The linear SVM texture classifier from AdaPro was trained from positive and nega-
tive voxels chosen on the template of each group (Fig. 3.7). We set the SVM penalty
parameter C' to 107°. For each object m, AdaPro requires the choice of the radii d and
e for dilation and erosion of the probabilistic atlas, respectively. We used the train-
ing set of each group to determine the best choice for these parameters by grid search.
The values (d¢, dry,drr), (éc, erp, erg) found respectively for the cerebellum (C), right
hemisphere (RH), and left hemisphere (RH) are: group A (0,0,0),(1,2,2) and group B
(0,0,0),(1,2,2). These values were then fixed for all experiments.

Since not all baselines work in both template and native image spaces, we made some
adaptations. The software volBrain outputs brain segmentation masks in native and
MNT linear space (after mapping the input image by affine registration). To obtain the
segmentation masks in the coordinate space of the chosen templates for the groups, we
used the registered test images as input for volBrain. Conversely, SOSM-S only performs
the segmentation in the template space. Then, for each test image, we applied the inverse
transformation on its segmentation masks in order to have them in the native space of
each test image.

3.4 Results

This section presents and discusses the results of the quantitative evaluation of the meth-
ods on the two datasets of epilepsy patients from each group. In our evaluation, we will
rely more on the Average Symmetric Surface Distance (ASSD; Appendix C.2) score (in
millimeters) as segmentation accuracy measure than on global measures such as Dice (Ap-
pendix C.2). ASSD better captures segmentation errors along the segmented boundaries
than Dice, especially in the case of post-operative images with removed portions of the
brain (Fig. 3.8). However, we also include Dice in the results due to its wide popularity
in the literature. Finally, we performed an analysis of variance (ANOVA) to compare the
resulting mean scores between the considered methods.

Tables 3.1 and 3.2 present the ASSD score (lower is better) for the epilepsy datasets
of 2T images and 3T images, respectively. Tables 3.3 and 3.4, in turn, present the Dice
score (higher is better) for the same datasets. The numbers correspond to the mean and
standard deviation values of all instances of each object of interest. Resulting p-values
from the ANOVA test are shown in parenthesis for each evaluation scenario. Fig. 3.9
shows the mean segmentation errors in the template space for the considered baselines.

SOSM-S and MALF perform worse on post-operative images because they cannot
capture abnormalities, as evidenced in Fig. 3.9. Note that errors occur mainly in the

3We use the par0000 files available on http://elastix.bigr.nl/wiki/index.php/Parameter_file_
database
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Table 3.1: Comparison of ASSD (mm) for the Cerebellum (C), Right Hemisphere (RH),
and Left Hemisphere (LH) of the pre- and post-operative images of 2T. Lower ASSD
means better accuracy (bold scores are the best with statistical significance). Resulting
p-values from ANOVA test are in parenthesis.

Epilepsy Datasets (Group A) - ASSD

PRE-2T POST-2T
C RH LH C RH LH

8| SOSM-S 0.90+0.08 0.99+0.12 1.07+0.14 0.79 +0.15 1.41+020 1.32+0.39
2| MALF 088+0.18 093+008 091+011 1.15+037 1.36=022 1.38+0.39
£| volBrain  0.97 £0.18 1.52+0.32 1.47+0.30 0.98+0.19 1.32+0.17 1.27+0.21
2| AdaPro 0.86+0.11 0.92=0.11 0.90+0.12 0.96+0.19 1.17+0.19 1.13+0.30
9 (p = 0.098) (v <0.001) (p < 0.001) (v < 0.001) (v < 0.001) (v =0.013)
o| SOSM-S 097+0.10 1.07+0.11 1.14+0.12 0.96+0.13 1.24+0.20 1.22 +0.22
§| MALF 0.79+0.25 0.87+0.09 0.86+0.11 0.86=0.30 1.01=0.11 1.04+0.19
o | volBrain 1.00+021 1.46+0.33 1.40+0.30 1.01+023 1.43+024 1.41+0.28
‘% AdaPro 0.83+0.15 0.86+0.12 0.85+0.11 0.86+0.16 0.90 + 0.13 0.90 + 0.20
€ (0 =0001) (p<0.001) (p<0.001) (p=0.070) (p<0.001) (p<0.001)

Table 3.2: Comparison of ASSD (mm) for the Cerebellum (C), Right Hemisphere (RH),
and Left Hemisphere (LH) of the pre- and post-operative images of 3T. Lower ASSD
means better accuracy (bold scores are the best with statistical significance). Resulting
p-values from ANOVA test are in parenthesis.

Epilepsy Datasets (Group B) - ASSD

PRE-3T POST-3T
C RH LH C RH LH
Y| SOSM-S 0.91+0.22 1.04+0.14 1.02+0.13 090+0.19 1.28+0.20 1.25+0.18
§ MALF 1.02+0.31 1.074+0.18 1.06+0.17 1.00£0.28 1.30+0.16 1.2540.20
% volBrain 1.02+0.08 1.42+0.11 1.36+0.10 1.01 £0.09 1.51+0.14 1.47 +0.13
g' AdaPro 0.75 +0.07 1.03 +0.18 1.01 +£0.14 0.75+0.09 1.08 +£0.18 1.10 + 0.18
8 (p<0.001) (p<0001) (p<0.001) (p<0.001) (p<0.001) (p<0.001)
o| SOSM-S 097+0.26 1.16+0.17 1.15+0.16 0.94+0.19 1.29+0.29 1.26+0.24
§ MALF 1.05+040 1.14+£0.23 1.12+0.23 1.01 +£0.38 1.24+0.26 1.18 +0.26
3 volBrain 1.06+0.09 144 +0.16 1.42+0.16 1.05+0.11 156+0.16 1.55+0.17
’% AdaPro 0.68 +0.09 0.94 +0.16 0.94 + 0.13 0.67 + 0.10 0.99 + 0.19 1.02 + 0.17
c (p<0.001) (p<0001) (p<0.001) (p<0.001) (p<0.001) (p<0.001)

temporal lobes, where a portion has been removed. Their ASSD scores in the cerebellum
are similar for pre- and post-operative images because it is the only object that remains
intact after resection surgery.

Since CSF fills the removed portions in the temporal lobes after surgery, volBrain can
correctly identify them during segmentation due to its tissue classification that separates
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Table 3.3: Comparison of Dice for the Cerebellum (C), Right Hemisphere (RH), and Left
Hemisphere (LH) of the pre- and post-operative images of 2T. Higher Dice means better
accuracy (bold scores are the best with statistical significance). Resulting p-values from
ANOVA test are in parenthesis.

Epilepsy Datasets (Group A) - Dice

PRE-2T POST-2T
C RH LH C RH LH
3| SOSM-S 0.944 + 0.006 0.961 + 0.005 0.957 + 0.006 0.949 + 0.013 0.952 + 0.008 0.951 + 0.014
§ MALF 0.953 + 0.011 0.969 + 0.002 0.966 + 0.004 0.930 + 0.025 0.951 = 0.008 0.948 + 0.015
% volBrain 0.943 +£0.014 0.955 + 0.009 0.954 4+ 0.009 0.935 + 0.026 0.949 + 0.010 0.951 + 0.015
g— AdaPro 0.949 £ 0.008 0.967 + 0.004 0.966 = 0.004 0.940 + 0.015 0.954 + 0.008 0.953 + 0.013
9 (p=0.012) (p < 0.001) (p < 0.001) (p = 0.039) (p = 0.452) (p = 0.726)
o SOSM-S 0.933 +£0.014 0.955 +0.004 0.952 + 0.006 0.935 + 0.017 0.949 + 0.009 0.946 + 0.012
§ MALF 0.951 £+ 0.021 0.971 £+ 0.003 0.969 + 0.004 0.950 + 0.027 0.965 £+ 0.008 0.961 + 0.012
3 volBrain 0.941 4+ 0.020 0.960 + 0.009 0.959 £ 0.009 0.940 + 0.022 0.957 + 0.008 0.956 + 0.010
'% AdaPro 0.948 £ 0.015 0.969 + 0.005 0.969 £ 0.004 0.947 + 0.016 0.966 + 0.006 0.963 + 0.010
< (p = 0.015) (p < 0.001) (p < 0.001) (p =0.124) (p < 0.001) (p < 0.001)

Table 3.4: Comparison of Dice for the Cerebellum (C), Right Hemisphere (RH), and Left
Hemisphere (LH) of the pre- and post-operative images of 3T. Higher Dice means better
accuracy (bold scores are the best with statistical significance). Resulting p-values from
ANOVA test are in parenthesis.

Epilepsy Datasets (Group B) - Dice

PRE-3T POST-3T
C RH LH C RH LH

8 SOSM-S 0.941 £0.016 0.953 +£ 0.007 0.952 4+ 0.007 0.942 £+ 0.015 0.947 + 0.013 0.947 + 0.011
§ MALF 0.939 + 0.021 0.956 + 0.007 0.954 + 0.007 0.940 + 0.020 0.949 + 0.011 0.950 + 0.010
% volBrain 0.930 +0.013 0.937 +£ 0.009 0.939 + 0.008 0.932 + 0.012 0.939 + 0.009 0.938 + 0.008
g- AdaPro 0.952 + 0.008 0.955 + 0.007 0.955 £ 0.005 0.952 & 0.008 0.956 + 0.006 0.954 + 0.006
9 (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)
) SOSM-S 0.931 £0.027 0.941 + 0.010 0.941 + 0.009 0.934 + 0.022 0.936 + 0.015 0.937 + 0.013
§ MALF 0.935 + 0.034 0.952 + 0.010 0.951 +0.011 0.938 +0.032 0.946 + 0.013 0.947 + 0.014
3 volBrain 0.928 +0.016 0.936 + 0.008 0.936 + 0.008 0.931 + 0.017 0.936 + 0.009 0.936 + 0.009
’% AdaPro 0.956 + 0.013 0.956 + 0.007 0.954 + 0.007 0.958 + 0.011 0.956 + 0.007 0.954 + 0.008
< (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

voxels of WM, GM, and CSF. However, its ASSD is higher than the other baselines
because it also misclassifies several GM voxels from the hemispheres as CSF, resulting in
more segmentation errors (Fig. 3.9). Its preprocessing probably was not able to guarantee
the same range of values for the tissues of the testing images, resulting in misclassification.

In contrast, AdaPro’s classification can detect the anomalies without missing object
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SOSM-S MALF volBrain AdaPro

POST-2T

PRE-3T

POST-3T

0

Figure 3.9: Axial and coronal slices with the mean segmentation errors from the baselines
(0 means no error, and 1 means errors in all images) on template coordinate space for the
entire datasets.
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voxels in the brain hemispheres and cerebellum. Its preprocessing operations are funda-
mental for that since it is responsible for ensuring that all voxels of the same tissue will
have intensities within the same range. Moreover, the relaxation process on its delineated
objects results in smoother and well-defined object boundaries, thus avoiding an effect of
serrated borders. The texture classification and delineation perform better in 3T images
due to their higher quality when compared to 2T images. Consequently, the segmentation
results are better in images of 3T than 2T.

Regarding the ASSD scores, AdaPro is more accurate than the baselines in the post-
operative images for the hemispheres (Fig. 3.9) — objects affected by surgical procedures
— and for the pre-operative images of 3T. AdaPro is equivalent to MALF for PRE-2T
and the cerebellum in POST-2T. We have evidence, based on the p-values provided by
the ANOVA test, that the mean scores of AdaPro differ from the baselines (see the bold
scores in the Tables 3.1-3.4).

Conversely, all evaluated methods present similar Dice scores in most scenarios, even
for post-operative images. AdaPro presents equivalent results compared to the baselines
for 2T images and the PRE-3T dataset, being superior for 3T images in the native image
space. Dice is not sensitive to capture local segmentation errors, such as the regions
surgically removed in the temporal lobes (Fig. 3.8). It is also sensitive to the size of the
object — differences in Dice values for small objects are less significant than the same
values for large objects. Therefore, we prefer to draw conclusions based on ASSD than
on Dice.

volBrain’s segmentation is performed on its own online platform and takes around
12 minutes. It is also limited to 10 free executions per day. SOSM-S takes around 110
seconds (50 seconds for registration and 60 seconds for object delineation). MALF is the
slowest approach with about 16 minutes for segmentation in native space and 3 minutes
in the template space. AdaPro is the fastest approach with around 90 seconds to complete
its entire pipeline in any coordinate space, which includes 20 seconds for preprocessing,
50 seconds for registration and histogram matching, 15 seconds for texture classification,
and 5 seconds for object delineation, respectively.

3.5 Conclusion

In this chapter, we presented a fast and effective solution, named AdaPro, for the au-
tomated segmentation of brain structures in anomalous 3D MR images. AdaPro was
used to delineate the brain hemispheres and cerebellum in 3D MR-T1 images of 2T and
3T from epilepsy patients before and after temporal lobe resections, being statistically
more accurate and considerably more efficient than three atlas-based methods, SOSM-S,
MALF, and volBrain. Moreover, it can segment new images in the template and native
image spaces.

Future work may extend AdaPro to other organs and imaging modalities, as well as
evaluate other tissue classification for other different anomalies. Another worthwhile goal
is investigating other preprocessing techniques to use a single version of AdaPro on 3D
MR-T1 images regardless of the field strength.



68

We initially designed AdaPro to support collaborating neurologists to estimate mor-
phological metrics for the cerebellum and brain hemispheres. The primary neurologists’
interest was to study how these structures change in volume and shape in epilepsy pa-
tients after temporal lobe resection. Consequently, the brainstem was ignored during the
creation of gold-standard segmentation of the considered in-house datasets, which made
its evaluation impossible. However, we posteriorly obtained a new subset of MR-T1 of
healthy images with gold-standard segmentation that also included the brainstem, which
made it possible to extend AdaPro to segment all macro brain structures, as described in
the next chapters.



69

Chapter 4

Detection of Abnormal Hippocampal
Asymmetries

Although many brain regions present normal brain asymmetries, studies have shown
that some neurological diseases — such as Alzheimer’s[24], schizophrenia [25, 26|, and
epilepsy [27, 28, 29] — are associated to abnormal brain asymmetries (Fig. 1.2). Morpho-
logical changes in (sub)cortical structures in one or both hemispheres characterize such
asymmetries. Detecting these abnormalities in MR brain images is useful, for example, to
support neurologists during medical diagnosis, as well as to investigate structural changes
in brain tissues after surgical procedures[29].

Most image analysis methods rely on the segmentation of target structures of interest
(e.g., hippocampus) to quantify variations in shape, size, and texture [185, 33]. One can
interactively segment these structures — which is error-prone and time-consuming —
or rely on an automated segmentation tool, such as FreeSurfer [144] and volBrain [80]
(Section 3.1). However, segmentation errors may severely affect the reliability of the
computed morphometric measures and, consequently, the asymmetry analysis (Fig. 4.1).

predicted segmentation

ground truth

Figure 4.1: Sagittal slice with an example of segmentation errors in the left hippocampus.
The border (blue) of the object segmented by volBrain [80] is larger than the border (red)
of the ground truth.

Other methods train a discriminative model (supervised learning) to classify the entire

This chapter is based on the publication:
S. B. Martins, B. C. Benato, B. F. Silva, C. L. Yasuda, and A. X. Falcao, “Modeling normal brain
asymmetry in MR images applied to anomaly detection without segmentation and data annotation,” in
SPIE Medical Imaging, vol. 10950, pp. 71-80, 2019.
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image or a volume of interest (VOI), for example, as healthy or abnormal [186, 187, 188,
189, 190]. The VOI analysis is more attractive for anomaly detection due to its flexibility
in defining VOIs in any region of the brain, especially in those where there are no available
segmentation tools. However, these methods typically require a considerable effort from
experts to annotate a reasonable number of examples (images or VOIs), which are then
used to train discriminative models. Moreover, the models are specific for the anomalies
related to the disease(s) present in the training set.

In this chapter, we propose (i) an unsupervised framework to model normal brain
asymmetries from healthy subjects — which explores the MR image analysis of corre-
sponding VOIs in the left and right hemispheres — and (ii) the use of the model to detect
abnormal asymmetries. As proof of concept, we instantiate the framework for the detec-
tion of abnormal hippocampal asymmetries from epilepsy patients. Then, we extend this
framework for the entire hemispheres.

Our approach starts localizing VOIs around structures of interest. These VOIs may be
defined as 3D bounding boxes from segmentation, whenever they are available. However,
we propose a fast and accurate 3D patch-based model for VOI localization in new images.
Next, a generative deep neural network — a convolutional autoencoder (CAE)[191, 192]
— is used to learn the image transformation from the left VOI to the flipped right VOI
and vice-versa. We concatenate the outputs of the intermediate layers from CAE to form
each observation (feature vector) of a normal structural asymmetry. Finally, we train
a one-class classifier (OCC) to detect outliers as abnormal asymmetries. Our method
localizes the corresponding VOIs in both hemispheres of a given a test brain image,
extracts image features by CAE, and uses OCC to determine if the VOI pair represents
normal or abnormal asymmetries.

We organize the chapter as follows. Section 4.1 briefly provides an overview of au-
toencoders. Section 4.2 details our proposed unsupervised approach. Section 4.3 presents
the experiments and results for abnormal hippocampal asymmetry detection. Section 4.4
extends the proposed framework for abnormal asymmetry detection in the entire hemi-
spheres, as well as it presents preliminary qualitative experiments. Section 4.5 summarizes
our findings and suggests future work.

4.1 Autoencoders

Autoencoders (AE)s are unsupervised neural networks (also called generative neural net-
works) designed to reconstruct input data while compressing it in a low-dimensionality
representation (latent space) [193]. AEs are based on the encoder-decoder paradigm [194].
The encoder stage transforms the high-dimensional input data into a latent low-dimensional
representation (code). The decoder stage reconstructs the input data to the original
space from the code. Thereby, the data is represented faithfully, but with removal of
redundancies. Fig. 4.2 presents the general structure of an autoencoder.

To formulate an AE model, let x = {21, 9, - , 2,,} be an unlabeled high-dimensional
training set, where m is the number of samples, and z; € R is the i-th N-dimensional
sample. The simplest autoencoder architecture consists of a fully-connected feedforward
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Figure 4.2: General structure of an autoencoder.

neural network with a single hidden layer. AEs first map x to the latent space z (encoder)
by using the encoding function, given by

z = fp(Xx) = wx + b, (4.1)

where 0 = {w, b}, w are the encoding-layer weights, b is the bias, and z € R? is the
low-dimensional latent representation (code) of x, d < N. This code is then used to
reconstruct the input data (decoder) by a decoding function, given by

X' =g4(z) =w'z+V, (4.2)

where ¢ = {w',V'}, w' are the decoding-layer weights, V' is the bias, and x’ € RY is the
resulting reconstruction of x from decoding z. Putting together both equations:

X' = go(fo(x)). (4.3)

The training of AEs consists of optimizing the parameters (6, ¢) by minimizing the
reconstruction errors of the input data, given by

0%, ¢* = arg min £(x,x’). (4.4)
0,9

where L is a given loss function. Cross entropy and mean squared error (Appendix C.1)
are examples of loss functions widely used to train AEs[193].
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Medical image analysis applications typically use AEs for feature extraction [52, 59,
58, 195|, image denoising [196], image reconstruction [197, 198]. Most of these methods
rely on Convolutional Autoencoders (CAEs) [192], which extends the conventional AEs
by incorporating convolutional layers [193|. CAEs share weights among all locations in
the input images, preserving spatial locality. Consequently, its reconstruction results from
the linear combination of basic image patches based on the latent code [192].

4.2 Proposed Approach

This section presents the steps involved in the creation of a model of normal structural
brain asymmetry and its use for anomaly detection. Fig. 4.3 shows the general pipeline
of our solution. The numbered steps in Fig. 4.3 are henceforth referred to as Step 1, Step
2, and so on, in the remainder of this chapter.
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Figure 4.3: General pipeline of the proposed autoencoder-based approach to model normal
brain asymmetries (left blue block) and to use that model (right pink block).
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4.2.1 3D Image Preprocessing

The pipeline starts preprocessing the training set with only control images (Step 1) by
following the operations described in Section 2.3. We apply noise reduction by median
filtering, followed by MSP alignment, and an inhomogeneity correction with N4 [102].
We perform skull-stripping by AdaPro (Chapter 3), followed by intensity normalization.
We consider the same reference image (template) used by AdaPro (Section 3.2.1), which
has 180 x 240 x 240 voxels and a voxel size of 1 x 1 x 1mm?. We then register all
images on this template by non-rigid registration using Elastix [107]|. Finally, we perform
intensity normalization to standardize the brain tissue intensities from the registered
training images with the template. We apply the same preprocessing tasks to the testing

images (Step 6).

4.2.2 VOI Localization

A volume of interest (VOI) is a sub-image with reduced background-size around a given
structure under study. The simplest and most used case is a 3D patch, 7.e., an axis-
aligned 3D box (parallelepiped). One could first segment the structure by using any
automated segmentation tool, such as FreeSurfer[144|, to define the VOI. However, it
might be essential to analyze VOIs that do not include any specific object segmented by
these available tools [40, 51]. We then propose a patch-based model (PBM) to localize
VOIs without any segmentation, as illustrated in Fig. 4.4.

Firstly, one expert interactively specifies the left and right VOIs for each training
control image in the reference space by selecting their first and last points (Fig. 4.3, Step
2). Left and right localization models are VOIs of equal sizes, which is defined as follows.
For each hemisphere, we compute the minimum bounding box that covers all its specified
VOIs. The largest minimum bounding box defines the size of the localization models
(Fig. 4.3, Step 3). The initial location of each model is the geometric center of its respective
VOIs in the training set. The differences in location among the training VOIs define
possible translations within a small search region around the center of each model (Fig. 4.3,
Step 3). For a new test 3D image in the reference space, the method independently
searches the translation from the center of each model, which maximizes the normalized
mutual information (NMI) between the template and test image (Appendix C.1) inside
the model (Fig. 4.3, Step 7).

4.2.3 Normal VOI Asymmetry Representation

We aim at learning one transformation (reconstruction) from the left VOI to the right
VOI, one for each hemisphere, and vice-versa. We first flip the right VOIs on the mid-
sagittal plane to keep the same orientation between the left and right VOIs (Step 4).
The reconstruction takes into account normal asymmetries that may affect any of the
sides. The mean squared error between reconstructed and reals VOIs expects to be
minimum, given that the training VOI pairs represent normal asymmetries. We propose
one convolutional autoencoder (CAE) for each transformation [192]. From a set of source
3D images, CAE learns to reconstruct a set of target 3D images by applying a set of linear
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Figure 4.4: Scheme for the training and use of the proposed patch-based model (PBM)
for VOI localization in 3D brain images. For simplicity, the figure only considers VOIs in
the right hemisphere.

and non-linear transformations (e.g., convolutions, activation, and pooling) to the source
3D images.

Given a training set with N images, we extract the desired flipped right and left VOIs
(R;, L;) for each training image 7. The considered source set consists of the union between
the N flipped right VOIs and the N left VOIs. The target set, in turn, consists of the
union between the N left VOIs and the N flipped right VOIs, ensuring that each flipped
right VOI will be reconstructed as its corresponding left VOI and vice-versa (output from
Step 5). Since CAE can reconstruct the desired images from the output of the last layer
of their encoders, the concatenation of those intermediate outputs (latent representation)
for the flipped right and left VOIs (output from Step 8) forms a suitable feature vector
(normal VOI asymmetry representation).

Fig. 4.5 shows the considered architecture used for normal hippocampal asymmetry
representation. Each VOI is a multivariate volume with 32 x 64 x 32 x 1 values. CAE
contains three 3D convolutional layers with 16, 8, and 8 filters of 3 x 3 x 3 weights each,
respectively, followed by ReLU activation [199] and 3D max-pooling in the encoder, and
the corresponding reconstruction operations in the decoder. Since the input images are
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normalized within [0,1], a sigmoid function is used as activation in the last layer of the
decoder, and the output values are multiplied by 4095 to obtain the reconstructed image.
The mean squared error between reconstructed and expected VOI is minimized by using
the nadam gradient optimizer [200], which is popular in the field of deep learning mainly
because it achieves good results fast. The reconstruction reaches errors around 0.0049 in
the training set after 500 epochs.
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Figure 4.5: Architecture of the convolution autoencoder (CAE) used for normal VOI
asymmetry representation.

4.2.4 VOI Classification

The observations (vectors with 2048 features) from the training set lead to a cloud of
points in R"”, n=2048, each one representing a healthy subject. We must then train a one-
class classifier to detect outliers as abnormal asymmetries. We have evaluated one-class
classifiers based on Support Vector Machine (OC-SVM) [201] — due to its efficiency and
robustness in classifying multidimensional data — and a simple variant of the Optimum-
Path Forest clustering (OPF-clustering) [129], previously presented in Section 2.5. OC-
OPF is detailed next.

One-Class OPF Classifier (OC-OPF)

A typical strategy to design outlier detection methods consists of first clustering a
given training dataset so that if an unseen test data sample is far from the clusters,
from a given defined threshold, it is considered an outlier. In this work, we followed this
strategy to design the one-class OPF (OC-OPF), an outlier detection approach based on
OPF-clustering (Section 2.5). We chose this clustering algorithm primarily due to its
good results in problems related to brain image analysis [134].

Recall Z be a training set interpreted as a graph, where each sample s € Z is a node
and A a given adjacency that defines the arcs between the nodes. Recall a path 7, with
terminus ¢ be a sequence (1, g, ..., S, = t) of nodes, such that (s;,s;,41) € A, 7 € [1,m],
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and m, = 7, - (s,t) be the concatenation of 7s and the arc (s,¢) with the two joining
instances of s merged into one.

OC-OPF starts clustering Z by defining its optimum-path forest, such that each ob-
tained cluster is an optimum-path tree (as performed by OPF-clustering). We then remove
clusters with a few samples (e.g., 5) to avoid noise in the training set, which makes the
unsupervised classification more conservative — OPF-clustering does not originally per-
form this step. Given a new test sample ¢t ¢ Z, the algorithm tries to assign one cluster
to t by evaluating the values of the extended paths 7y - (s,t), Vs € Z. OC-OPF then
extends OPF-clustering for outlier detection by considering that:

e If the cost of the found optimum path 7} = 7%-(s, t) is greater than a given threshold,

t is an outlier; otherwise, it is classified as normal.

Following the formal definition of OPF-clustering, as presented in Section 2.5, this
threshold is defined by Q(s). In this work, we consider that €(s) is the median distance
to the £ nearest neighbors of s. Section 4.3 compares OC-OPF and OC-SVM for detecting
abnormal hippocampal asymmetries.

4.3 Experiments and Results

This section describes the MR-T1 image datasets, experiments, and results obtained for
the evaluation of the automatic abnormal hippocampal asymmetry detection. All com-
putations were performed on the same Intel Core i7-7700 CPU 3.60GHz with 64GB of
RAM, and an NVIDIA Titan Xp 12GB.

4.3.1 Datasets

The experiments considered five in-house datasets from healthy subjects and epilepsy
patients with abnormal hippocampal asymmetries, as detailed in Appendix B.1. All im-
ages were provided by the Neuroimaging Laboratory (LNI) at the University of Campinas
(UNICAMP), Brazil. Fig. 4.6 shows some examples of these datasets.

Figure 4.6: Coronal slices that show: (a) normal hippocampal asymmetries, (b) left
hippocampal atrophy, (c) right hippocampal atrophy, and (d) postoperative hippocampus.
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We separated 575 3D MR-T1 brain images of 3T from healthy subjects with ages
between 25 and 65 years old (CONTROLS). All images have a voxel size of 1 x 1 x 1 mm?
and do not present any structural lesion in any part of the brain.

We also considered 3D MR-T1 brain images of 3T, voxel size of 1 x 1 x 1 mm?3,
from epilepsy patients which are divided into four in-house datasets: (PRE) preoperative
patients with unilateral hippocampal atrophy (47 images); (POST) postoperative patients
(88 images); (RHA) patients with right hippocampal atrophy (34 images); and (LHA)
patients with left hippocampal atrophy (37 images). Therefore, the experiments involved
a total of 781 images.

4.3.2 Localization Model

To validate our patch-based model (PBM) for VOI localization, we separated a subset of 60
control images from CONTROLS and the entire PRE and POST datasets. A neurologist
from LNI has then manually delineated both hippocampi of all these images, generating
the gold-standard segmentation for quantitative validation. This selection was made to
avoid the high user-effort and required time to accurately segment both hippocampi in
all available images (total of 781 images).

We used 50% of the selected control images for training and the remaining images
from all the three datasets for testing, along 5 random splits of training and testing sets.
For each training control image, the same neurologist has interactively specified its left
and right VOIs (3D patches) around the hippocampi (Fig. 4.4). These VOIs are then
used to train PBM.

We used two baselines for comparison. The first one (TEMP) assumes that the VOIs
of the template, as interactively specified, can represent the VOIs of the test images,
since they are all in the standard reference space. The second approach (SSEG) uses
the minimum bounding box around each hippocampus as VOI, after segmentation by
volBrain [80] (Section 3.1).

Table 4.1 presents the percentage of missed foreground — i.e., the percentage of voxels
from the hippocampi that fall outside the detected VOIs — for each baseline. The analysis
of variance (ANOVA), using the post-hoc Tukey honestly significant difference (HSD) test,
indicates that PBM and SSEG are equivalent for most cases, being both superior to TEMP
(the p-value is 0.05). This result makes sense because the segmentation by volBrain tends
to add background voxels around each hippocampus. It also proves that the background-
size in PBM is reduced, with the advantage of not depending on segmentation. PBM also
presents the best scores for control images.

4.3.3 Hippocampal Asymmetry Detection

In this section, we evaluate how accurate is the classification of hippocampal asymmetries
of healthy subjects and epilepsy patients. We combined the convolutional-autoencoder
(CAE) representation (Fig. 4.5) with each one-class classifier (OC-SVM and OC-OPF),
which were trained in the original feature space and the two-dimensional spaces after
non-linear projection by t-SNE [202], a well-popular projection algorithm widely used in
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Table 4.1: Percentage of missed foreground (%) of the considered localization approaches
for the Right (RH) and Left Hippocampus (LH) in the considered datasets in 5 random
splits. Bold values show better scores with statistical significance (Note, for example,
that 0.04 means 0.04% below).

CONTROLS PRE POST

RH TEMP 1.78+0.42 1.254+1.87 1.424+1.63
SSEG 0.11+0.38 0.15£0.32 0.13+0.36
PBM 0.04+0.13 011+0.39 0.10+045

LH TEMP 201+£182 1124135 1944+0.74
SSEG 0.18+0.32 0.07£0.31 0.28£0.38
PBM 0.12+0.25 0.09+0.19 0.14+0.28

several machine-learning problems.

The reason for considering a projection space in the experiments is that, by analogy
with AEs, t-SNE (or, actually, any other projection method) is a similar kind of tool
that reduces dimensionality. The only differences with regards to AEs are that (i) the
latent space is 2D, and (ii) the cost/error functions are quite different — projections aim to
preserve relations between samples, and not the information encoded in each sample (in
the sense of being able to decode the n-D sample from the low-D one). Besides, accord-
ing to Rauber et al.[203], the separation among groups (classes) in the two-dimensional
projection space, as created by the t-SNE, is a strong indication of their separation in the
original feature space.

An important aspect of t-SNE is that every execution of the algorithm creates a distinct
projection. Therefore, it can only make sense when there is a set of testing images to be
classified. As an unsupervised technique, the t-SNE algorithm can project the training
and testing sets with no knowledge of true labels, and then the one-class classifier can be
trained in the projection space and used to classify the testing samples.

Experimental Protocol

Initially, we used PBM (Section 4.2.2) to automatically localize both hippocampi (VOISs)
in all datasets (Section 4.3.1). We then used the resulting VOIs for feature learning,
extraction, and the design of the classifiers. We considered 5 evaluation splits on CON-
TROLS by randomly selecting 240 controls images for training, 60 for wvalidation, and
the remaining 275 images for testing. We also considered all other images from epilepsy
patients for testing. Finally, we compared our CAE-based representation with the simple
absolute difference (ABS-DIFF) between left and flipped right VOIs.

Since our framework is unsupervised, we can only count on the training set of controls
images for parameter optimization. Consequently, we optimized the parameters of each
classifier by grid search aiming at maximizing the detection scores for these images — i.e.,
healthy hippocampi classified as normal hippocampal asymmetries. The best parameters
found for each case were:

e ABS-DIFF/OC-SVM: kernel = rbf, nu = 0.01, and gamma = 0.007;
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e CAE/OC-SVM: kernel = linear, and nu = 0.1;
e ABS-DIFF/OC-OPF: the best k was found within [20, 45];

e CAE/OC-OPF: the best k was found within [15,45].

Results in the Original Feature Space

Table 4.2 presents the average detection scores in the original feature space for hippocam-
pal asymmetries. These scores show the percentage of the classification hits of controls
images as normal hippocampal asymmetries and patient images as abnormal hippocampal
asymmetries.

Table 4.2: Anomaly detection scores (%) in the original feature space for the instances
of the proposed framework. These scores show the percentage of the classification hits
of controls images as normal hippocampal asymmetries and patient images as abnormal
hippocampal asymmetries.

Original Feature Space

CAE ABS-DIFF

OC-SVM OC-OPF OC-SVM OC-OPF
CONTROLS  86.61 =2.30 89.04 +2.55 87.45+1.34 86.35+ 1.13
PRE 100.0 + 0.00 98.40 +2.04 93.62+0.00 61.70 + 9.67
POST 100.0 + 0.00 100.0 + 0.00 22.44 +0.57 100.0 + 0.00
RHA 99.26 + 1.47 97.06 +4.16 94.85+1.47  42.65+ 5.09
LHA 99.32 +1.35 97.30£5.41 9459 +0.00 27.70 + 8.37

Although the difference between the best scores of ABS-DIFF and CAE is small for the
CONTROLS dataset, CAE-based representation is consistently superior to ABS-DIFF in
all cases. These results confirm the efficiency of CAE in providing representative features
for the addressed problem. The combination CAE/OC-SVM provides slightly better
accuracies than CAE/OC-OPF in most datasets, with no errors for PRE and POST.

Results in the Two-dimensional Projection Space

To further improve the accuracy of the CAE-based representation, we repeated the same
experiments in the two-dimensional projection spaces created by the t-SNE algorithm.
Each sample is now represented by two features resulting from this projection. As a
non-linear and unsupervised projection approach, we must project training and testing
sets together to design the classifiers from the training samples and use them to label the
testing set. This approach is indicated whenever there is a set of testing images to be
tagged.

Table 4.3 shows the resulting detection scores for the projection space. This strategy
has a surprisingly positive impact on the results: the detection scores for control images
have considerably increased (99.72% against 89.04% for the original space), and there are
no classification errors for patient images in both classifiers.
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Table 4.3: Anomaly detection scores (%) in the projection space for the instances of the
proposed framework. These scores show the percentage of the classification hits of controls
images as normal hippocampal asymmetries and patient images as abnormal hippocampal
asymmetries.

Projection Space by t-SNE
CAE / OC-SVM  CAE / OC-OPF

CONTROLS 96.22 +£2.72 99.72 + 0.18
PRE 100.0 + 0.00 100.0 + 0.00
POST 100.0 = 0.00 100.0 = 0.00
RHA 100.0 + 0.00 100.0 + 0.00
LHA 100.0 + 0.00 100.0 + 0.00

Since the datasets have different sizes, Table 4.4 presents the mean values of Cohen
Kappa for each feature space taking into account all datasets. Results confirm that the
design of both classifiers for hippocampal asymmetry detection, based on the proposed
unsupervised framework, is more accurate on the projection space. Furthermore, the
proposed OC-OPF classifier outperforms OC-SVM in both spaces.

Table 4.4: Cohen Kappa for the considered framework instances with PbM localization.

CAE / OC-SVM CAE / OC-OPF

Original Space 0.846 +0.03 0.863 + 0.02
Projection Space 0.956 £+ 0.03 0.995 + 0.00

Finally, to better understand these results and their impact on developing intelligent
and interactive virtual environments in neuroscience, Fig. 4.7 presents a t-SNE projection
space from one of the splits. Here, each point consists of hippocampal asymmetries of a
given pair of hippocampi (VOI) as extracted by CAE. By clicking on any sample (point
on the plot), the user can see the corresponding slice across the centers of the VOIs. It is
also possible to navigate in the image around that location for inspection and annotation
of the anomaly type. From that, one can train discriminative neural networks to allow the
detection of abnormal brain asymmetries, followed by the identification of their anomaly
type.

Fig. 4.7 shows a clear visual separation between the projected features from normal hip-
pocampal asymmetries (green circles) and the abnormal cases (orange marks). Rauber et
al. [203] showed that the visual separability of classes in a t-SNE projection is highly
correlated with the ability of a classifier to separate classes in the original feature space.
Hence, we can conclude that both classes are also well-separated in the original space,
which also confirms the high detection scores in this space, as presented in Table 4.2.

Note that Fig. 4.7 also highlights a false-positive case — the bottom-right green cir-
cle associated with the bottom cropped slice — i.e., a sample of normal hippocampal
asymmetries classified as abnormal. Although this test sample did not have much impact
on the final accuracy, its possible use as a training one is problematic for the design of
the one-class classifiers, leading to worse detection scores. This impact may be severe for
OC-OPF since it does not have any treatment for noise in the training set. Therefore,
OC-OPF deserves further investigation to prevent this scenario.
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Figure 4.7: The 2D t-SNE projection from the considered datasets for the CAE-based
representations with PBM localization. The expert can select any observation from the
projection to inspect its image slices (see cropped slices of selected observations).

The computational time to analyze a new image takes in the worst case (with the
slowest methods) around 92 s, which is a proper time for the clinical routine. This time
includes 80 s for preprocessing, 4 s for VOI localization by PBM, 7 s for t-SNE projection,
0.5 s for feature extraction, and 0.5 s for classification.

4.4 Extension for Brain Asymmetry Detection

This section presents our first attempt to detect abnormal brain asymmetries automat-
ically. For that, we have extended the proposed unsupervised abnormal hippocampal
asymmetry detection for the entire hemispheres, as detailed next.

4.4.1 Proposed Extension

Consider a template T" with a pre-defined segmentation mask M for its right hemisphere.
We start automatically selecting pairs of VOIs along the entire hemispheres, as illustrated
in Fig. 4.8. We apply a uniform grid-sampling within M and select the corresponding
symmetric voxels in the left hemisphere according to the mid-sagittal plane of 7. This
forms the set C' = {(CRy,CLy),(CRy,CLs), - ,(CR,,,CL,,)} with m pairs of symmet-
ric voxels, where (CR;, C'L;) is the i-th selected voxel in the right and left hemisphere,
respectively.

We consider the voxels of each pair (CR;,C'L;) € C as the initial geometric centers
of the corresponding VOIs whose asymmetries will be analyzed. We then perform our
previous method (Section 4.2) for each of these pairs, independently, with a simple modi-
fication: all VOIs along the hemispheres have the same size so that the localization model
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Figure 4.8: Uniform grid-sampling used to define the geometric centers of VOIs along the
hemispheres. The dashed red lines in the slices correspond to mid-sagittal planes (MSPs).

now only consists of a local search within a fixed search region of 5 x5 x5. Note that, con-
sequently, this extended methodology analyzes asymmetries along the entire hemispheres
by performing multiple executions of our previous method, according to the number of
pairs selected in C.

4.4.2 Preliminary Experiments

We carried out preliminary experiments to qualitatively evaluate the extended method-
ology for brain anomaly detection. We adopted the same network architecture as illus-
trated in Fig. 4.5 so that we fixed the size of 32 x 64 x 32 for all VOIs extracted along
the hemispheres. We considered the training set of control images and the template used
in Section 4.3, and the one-class classifier with the optimized parameters found for the
hippocampi.

Fig. 4.9 shows axial slices with resulting detected abnormal asymmetries (VOIs) for (a)
a control image from CONTROLS, (b) a postoperative image from POST, and (c) a pa-
tient image from LHA with a small lesion in the left hemisphere. All these detected VOIs
are, in fact, false positives, i.e., normal asymmetries classified as abnormal. Note that all
of them are close to the hemispheres’ borders, which are locations typically asymmetric.
The control image is supposed not to present any abnormal asymmetries, whereas the
method should detect the anomalies (orange circles) in the remaining images. By inspect-
ing other slices from these 3D images, we also found several other false-positive detected
VOlIs.

To better understand the reasons for these false positives, we first inspected the
VOIs that cover the anomaly (removed portion) of the postoperative image of Fig. 4.9b.
Fig. 4.10 shows an axial slice with the pair of undetected VOIs (blue patches) with the
highest intersection with the anomaly (orange circle). Since the anomaly is not entirely
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