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Resumo

Dado um inteiro fixo k > 2, o problema da k-parti¢ao conexa balanceada (BCPy) con-
siste em particionar um grafo em k subgrafos conexos mutuamente disjuntos e com pesos
similares. Formalmente, dado um grafo conexo GG com pesos nao-negativos nos vérti-
ces, desejamos encontrar uma particao {V;}_, de V(G) tal que cada classe V; induz um
subgrafo conexo em G, e 0 peso da classe com menor peso é o maior possivel. FEsse
problema, conhecido por ser N -dificil, foi muito investigado por diversas abordagens e
perspectivas: algoritmos exatos, algoritmos de aproximacao para alguns valores de k ou
classes de grafos, variantes proximas do problema e resultados de inaproximabilidade. Do
ponto de vista pratico, o BCP,, é utilizado para modelar problemas em processamento de
imagens, analise de clusters, sistemas operacionais e robdtica. Nesse trabalho, propomos
duas formulacoes baseadas em Programacao Linear Mista e uma formulacao baseada em
Programacao Linear Inteira para o BCPy. As primeiras duas formulagoes sao baseadas
em fluxos e possuem um nimero polinomial de variaveis e restricoes. A tltima formulacao
contém somente varidveis bindrias e um ntmero potencialmente grande de desigualdades
que podem ser separadas em tempo polinomial. Introduzimos novas desigualdades validas
para esse Ultimo modelo e projetamos algoritmos de separa¢ao polinomial correspondentes.
Além disso, apresentamos resultados poliédricos associados a essa formulagao. Pelo que
sabemos, nao existem resultados dessa natureza para o BCPy na literatura. Utilizando a
plataforma OpenStreetMap e os dados piblicos sobre a criminalidade em certas regioes,
geramos novas instancias baseadas na aplicacao de patrulhamento policial. Experimentos
computacionais mostram que os algoritmos exatos baseados nas nossas formulagoes sao
superiores aos melhores métodos exatos presentes na literatura.



Abstract

Given a fixed integer k > 2, the balanced connected k-partition problem (BCPy) consists
of partitioning a graph into k£ mutually vertex-disjoint subgraphs of similar weight. More
formally, given a connected graph G with non-negative weights on the vertices, we want
to find a partition {V;}%_, of V(G) such that each class V; induces a connected subgraph
of G, and the weight of a class with the minimum weight is as large as possible. This
problem, known to be NZ-hard, has been largely investigated under different approaches
and perspectives: exact algorithms, approximation algorithms for some values of k or
special classes of graphs, close variants of the problem, and inapproximability results. On
the practical side, BCP}, is used to model many applications arising in image processing,
cluster analysis, operating systems and robotics. We propose two MILP formulations and
one ILP formulation for BCP,. The first two are based on flows and have a polynomial
number of constraints and variables. The last formulation contains only binary variables
and a potentially large number of constraints that can be separated in polynomial time
in the corresponding linear relaxation. We introduce new valid inequalities for this last
model and design corresponding polynomial-time separation routines. Furthermore, we
present polyhedral results based on this ILP formulation. To our knowledge, this is the
first polyhedral study for BCPy in the literature. Using the OpenStreetMap platform and
public crime data, we generated new instances based on a police patrolling application.
Our computational experiments show that the exact algorithms based on the proposed
formulations outperform the other exact methods presented in the literature.
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Chapter 1

Introduction

Let G be a connected undirected graph with vertex set V(G) and edge set E(G). When
the graph G is clear from the context, we use the notation V and F, instead. For an
integer ¢, the symbol [t] denotes the set {1,2,...,t} if ¢t > 1 and () otherwise. Let k be
a fixed positive integer. A k-partition of G is a collection {V;}ic of nonempty subsets
of V such that Ule Vi =V(G),and V;NV; =0, for all ¢, j € [k], i # j. We say that each
set V; is a class of the partition. Moreover, when the classes are indexed, we sometimes
refer to V; as the i-th class. From now on, we assume that |V| > k, otherwise G does
not admit a k-partition. We say that a k-partition {V;};ci of G is connected if, for every
i € [k], the subgraph of G induced by V; is connected.

For any set of numbers S, we denote by S> (resp. S~) the set of non-negative (resp.
positive) elements of S. Let w: V' — Q> be a function that assigns weights to the vertices
of G. For every subset V' C V, we define w(V') = > _,, w(v). For the sake of simplicity,
for any subgraph H of G, we use w(H) meaning w(V(H)). In the balanced connected
k-partition problem (BCPy), we are given a vertex-weighted connected graph, and we
seek a connected k-partition that maximizes the weight of the lightest class.

Problem 1 BALANCED CONNECTED k-PARTITION (BCPy)

INSTANCE: a connected graph G and a vertez-weight function w: V — Q.
FIND: a connected k-partition {V;}ic of V(G).

GOAL: mazrimize min;e{w(V;)}.

Based on the work of Assunc¢ao and Furtado [4], we now illustrate an application of
this problem in the context of police patrolling. Suppose we are given a map of a city
that is divided into patrolling areas. Moreover, this map contains points representing
crime occurrences. We can easily create a graph G, for such a map. The set of vertices
V(G,) corresponds to the patrolling areas, and an edge {p1,p2} is in E(G,) if and only
if patrolling area p; is adjacent to p,. Next, we define a function w,: V(G,) = Q> that
indicates the criminality in an area. Solving BCPy in (G, w,) is equivalent to attributing
contiguous patrolling areas to k police teams, in a way that the criminality is balanced
between the teams (see Figure 1.1).

Besides police patrolling, there are several other problems in image processing, data
base, operating systems, cluster analysis, education, robotics and metabolic networks that
can be modeled as a balanced connected partition problem |7,30, 31, 34-36,50]. These
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(a) A toy example of a map. The black lines delimit the patrolling areas and the red dots
represent crime occurrences.

2 1 3

~_ 1 3 _— UI5 — @
V3 ——— Uy I

L~ 4 2

(b) A corresponding instance (G, w,) and a solution for BCP».

U1

U9

Figure 1.1: BCP} application to police patrolling.

different real-world applications indicate the importance of designing algorithms for BCPy,
and reporting on the computational experiments with their implementations. Not less
important are the theoretical studies of the rich and diverse mathematical formulations
and the polyhedral investigations BCP,, leads to.

1.1 Contributions and Outline

Chapter 2 presents briefly common concepts and notations from the areas of graph theory,
integer programming and polyhedral combinatorics. This chapter establishes a common
ground for the rest of the thesis. Chapter 3 discusses known results in the literature
for BCP,. We give special attention to the mixed integer linear programming formulations
proposed by Mati¢ [37] and Zhou et al. [50].

The subsequent chapters present novel results that advance the state of the art on
exact algorithms for BCP,. Chapter 4 introduces novel flow and multicommodity flow
based formulations for the problem. Both formulations are compact, that is, they have a
polynomial amount (on the size of the input graph) of variables and constraints.

Chapter 5 presents a novel cut-based ILP formulation. We also show two strong valid
inequalities for this formulation. One of these inequalities is shown to be easily separable
in polynomial-time. For the other inequality, we design an algorithm that separates it in
polynomial time when the input graph is planar — a property that is common among
graphs that arise from real world applications. We combine these separation routines in a
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branch-and-cut algorithm for BCPy. A further polyhedral study based on this formulation
is presented in Section 5.4. To the best of our knowledge, these are the first polyhedral
results for BCP,, described in the literature.

Lastly, we report on computational experiments in Chapter 6. In the same chapter,
we also propose new benchmark instances, based on police patrolling applications. These
instances were generated using OpenStreetMap [43| and real-world crime data available
for the public. Our computational results show that the exact algorithms based on the
proposed formulations outperform significantly the previous solving methods due to Matié
and Zhou et al. Particularly, we solve grid instances with sizes over 400 times larger than
the sizes of the largest instances solved by the previous state-of-the-art exact algorithms.

This work gave rise to two papers. One of them is a short version of this thesis
and was published in the proceedings of the International Symposium on Combinatorial
Optimization (ISCO 2020) [39]. The other paper is more complete and was published in
the European Journal of Operational Research (EJOR) [40].
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Chapter 2

Preliminaries

In this chapter, we give a brief overview of concepts and notations from the areas of Graph
Theory, Linear Programming and Polyhedral Combinatorics. The reader familiar with
these areas can safely skip it. The definitions here follows the terminology presented by
Wakabayashi and Ferreira [17] and Nemhauser and Wolsey [42].

2.1 Graph Theory

A graph G is a tuple (V(G), E(G)) where V(G) denotes its vertex set and E(G) its edge
set. When the graph G is clear from the context, we use the simplified notation V and F
instead of V(G) and E(G). Unless otherwise stated, we assume that n = |V| and m = |E|.
Throughout this text, GG is always a graph.

We denote each edge in our graph by {u,v}, where u,v € V are the endpoints of the
edge. Two vertices u and v in G are said to be adjacent or neighbors if the graph contains
an edge e = {u,v}; moreover, we say that e is incident to both u and v. Sometimes,
we may simply write e = uwv to refer to an edge with endpoints v and v. For any set of
vertices W C V| we define the neighborhood of W as being the set of vertices adjacent
to W, formally N(W) = {v € V\W : {u,v} € E,u € W}. When W contains exactly
one vertex v, we use N(v) instead of N({v}). In order to refer to the set of edges
that connect vertices in W with vertices in N (W), we use the notation §(W). In other
words, (W) = {{u,v} e E:ueW,oeV\W}

When H is a graph such that V(H) C V(G) and E(H) C E(G), we say that H is
a subgraph of G and denote this relationship by H C G. Let W C V| we use G[W] to
designate the subgraph of G with vertex set W and edge set {{u,v} € E : u,v € W}.
The notation G — W is used to refer to the subgraph G[V \ W]. Similarly, we use
G — H, for any H C G, to refer to the subgraph with vertex set V' \ V(H) and edge
set {{u,v} € E\ E(H):u,v e V(G- H)}.

Let p € Z>, a path P is a non-empty graph such that p <n, V(P) = {v1,va,...,0,},
|[V(P)| = p and E(P) = {{vi,v2},{va,v3},...,{vp_1,v,}}. We say that P connects v
and v, or that P is a (vq,v,)-path. The graph G is said to be connected if and only if for
any pair of distinct vertices u,v € V, there exists a path in GG that connects v and v, that
is, there exists P C G such that P is a (u,v)-path. Let P be a path, the graph C' with
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vertex set V(C) = V(P) and edge set E(C) = E(P)U {{v1,v,}} is called a cycle. A tree
is a connected graph without cycles; a subtree is a tree that is a subgraph of a tree. We
say that a tree T' spans the set of vertices V(T'). Moreover, a tree T' C G is a spanning
tree of G if it spans V(G).

In this dissertation we also work with digraphs. A digraph D is a tuple (V(D), A(D)),
where V(D) is its vertex set and A(D) its arc set. An arc a = (u,v) € A(D), is similar
to an edge, but it also has an orientation according to the pair order. Therefore, all the
definitions presented for (undirected) graphs, that do not depend on the notion of an
orientation, also applies for digraphs. For any arc (u,v) € A(D), we say that vertex w is
the source while v is the target of the arc.

Let W C V(D), we denote by §— (W) = {(u,v) € A(D) : uw ¢ W,v € W} the incoming
arcs of W. Similarly, 67 (W) = {(u,v) € A(D) : u € W,v ¢ W} represents the outcoming
arcs of W.

Let p < n, a directed path P is a non-empty digraph such that V(P) = {vy,vq,...,0,},
|[V(P)| = pand A(P) = {(v1,v2), (v2,v3), ..., (Vp—1,vp)}. An arborescence T can be seen
as a directed tree; it is a digraph in which there exists a root r € V(?) such that, for any
(NS V(?) \ {r}, there is exactly one directed path in 7' that connects r and v.

2.2 Integer Linear Programming

A linear program (LP) is a mathematical tool to formulate optimization problems with
linear objective function and linear constraints. All linear programs can be written as

[ILP] maxc'z
s.t. Ax < b,
x>0,

where ¢ € R™ and b € R™ are vector of coefficients, x € R” is a vector of variables, and
A € R™™ is a matrix of coefficients. In the forthcoming discussion, the vectors mentioned
are always column vectors. Moreover, we denote by x; the value of the i-th coordinate of
vector . When a vector has all coordinates equals to 1, we denote it by 1, and when it
has all coordinates as zeroes by 0. In this section, we use brackets | | to indicate that we
are referring to formulations (as in [LP]).

Let P ={x € R": Az < b,z > 0}. For reasons that will be clear in Section 2.3.1, P is
said to be the polyhedron associated with formulation [LP]|. We sometimes refer to [LP)]
as maximizing ¢’z over P. A linear program is infeasible if its associated polyhedron
P is empty. In the context of linear programs, we might say that a vector x € R" is a
solution. A solution is feasible for P if x € P. Likewise, z is infeasible for P if x ¢ P.
An optimal solution z* is a feasible solution such that ¢’z* = max{c’z : x € P}.

Many methods have been proposed to solve linear programs, like the interior point
and the ellipsoid method, but in this thesis we assume we solve linear programs with the
simplex method. Although its time complexity is exponential, the simplex method is still
used on many linear programming applications, due to its efficiency in solving practical
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problems. In addition, Spielman and Teng [45] derived a theoretical explanation for the
excellent practical performance of the simplex method. Using probability theory, they
showed that the smoothed time complexity of the method is polynomial on the size of the
input.

Frequently, combinatorial optimization problems seek integer solutions. In this case,
the formulation have additional integrality constraints; that is, constraints of the type x; €
Z, for some i € [n]. When all of the variables in the formulation have to assume integer
values, the formulation is said to be an integer linear program (ILP); when only some of
the variables have to be integer, it is called a mized integer linear program (MILP). Below
we give a generic formulation for an ILP.

[ILP] maxc'z
s.t. Az <b,
x>0,
x € Z".

Usually solving ILP’s or MILP’s is N%-hard. In order to handle this difficulty, we
might consider the linear relaxation of the formulations. A linear relazation of a problem
can be obtained by dropping off the integrality constraints (notice that the previous
formulation [LP] is a linear relaxation of [ILP]). Linear relaxations are important tools
that appear frequently in solving methods for ILP’s (or MILP’s).
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(a) Linear program. (b) Integer linear program. The black dots and

red dots are the integer points in P.

Figure 2.1: Graphical representation of a linear program in R2. The shaded area corre-
sponds to P and the dashed lines indicate the linear constraints. The red arrow indicates
the direction of growth of vector ¢ and the red dots denote optimal solutions.

2.2.1 Branch-and-bound

The branch-and-bound method is a generic fundamental scheme, and it is based on apply-
ing a systematic enumeration of all the candidate solutions. To do so, it has a routine that
partitions the solution set into smaller sets (branch), and a second routine, that prunes
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branches by verifying the upper and lower bounds (bound). In this section, we illustrate
how the branch-and-bound method can be applied to solve integer linear programs.

Suppose we want to solve the previous [ILP| formulation. Let z* be an optimal
solution for the linear relaxation [LP]| and assume that z* is not integer. In other words,
there exists ¢ € [n] such that x} € (z,z+1) for some z € Z. Aiming to avoid the fractional
vector z*, we create two subproblems (|[LP;| and [LP5|) that partitions (branch) the set
of solutions of the original linear relaxation (see Figure 2.2(a)).

[LP;] maxc’z [LPy] maxc’z
s.t. Ax <b, s.t. Az <0,
x>0, x>0,
z; < z. x; > 2+ 1.
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(a) Branching procedure. The blue and green (b) Branch-and-bound tree.

lines represent the branching inequalities. Note
how the branching invalidates the fractional so-
lution z*.

Figure 2.2: Illustration of the branch-and-bound method.

Applying this strategy recursively, we would end up obtaining a tree-like structure for
the generated subproblems, where each node v of the tree corresponds to a linear program
[LP,| (Figure 2.2(b)). We refer to this tree as the branch-and-bound tree. Since it might
have an exponential number of nodes, it is important to avoid exploring unnecessary
nodes. For this reason, there are three conditions in which we do not branch and prune
(bound) a node v. Let z¥ be an optimal solution for [LP,| (here the subscript simply
indicates the corresponding branch-and-bound node and not the coordinate of the vector).
The conditions are the following.

1 - if [LP,] is unfeasible;
2 - if the optimal solution z for [LP,]| is integer;

3 - if the optimal solution for [LP,] is worse (with respect to the objective function)
than the best solution already found.
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Conditions 1 and 2 are easy to justify. Let P, be the set of feasible solutions for
[LP,] and P, be the set of feasible solutions for |[LP,| with some additional integrality
constraints. Since P, C P,, if P, is empty, then so is P,. Therefore, branching would give
no benefits in this case, and the node can be pruned (condition 1). Similarly, the node
can also be pruned if x} is integer, since then z is also optimal for P, (condition 2).

Note that condition 2 follows from the straightforward statement that an optimal
solution for P/ cannot be better than an optimal solution for P,. This observation points
us towards a third pruning condition. During the execution of the method, we store in
a variable y the best integer solution found so far, and use f(y) = ¢’y as a lower bound
on the cost of an optimal solution. If z} is such that f(z}) < f(y), we can safely prune
node v (condition 3).

Finally, in our discussion, we partitioned the solution space imposing the inequalities,
or branching rules, x; < z and x; > z + 1. Naturally, other inequalities that partition
the solution space and invalidate the fractional solution z could also be used in the
branch-and-bound method.

2.2.2 Branch-and-cut

Suppose we have the following ILP:

[B&C] maxc'z
s.t. Ax <b,
Cx <d,
x>0,
x eZ",

where A has a polynomial number of lines, but C' has an exponential number of lines.

The number of constraints encoded in matrix C' can be enormous, and therefore, it
might not be feasible to solve the linear relaxation of this formulation. One way of treating
this difficulty is with the cutting plane method. We remark here that this method can
be used to solve LP’s as well as ILP’s. However, we address here the situation where
the cutting plane method is being used to solve LP’s with an exponential number of
constraints. In Section 2.3.2 we elaborate on the fact that solving ILP’s is equivalent to
solving LP’s with a very large number of (probably unknown) inequalities.

Geometrically, we can think of the cutting plane method in the following way. Let P
be the polyhedron associated with the linear relaxation of [B&C]. Additionally, let Q@ O P
be a relaxation of P, described by all the lines in matrix A and only some of the lines in
matrix C. Let y be an optimal solution for Q obtained by our linear programming solver
(which might use the simplex method), we have then two cases: (i) y € P or (i) y ¢ P.

If y is an optimal solution for @ and y € P (i), then y must be an optimal solution for
P. On the other hand, if y ¢ P (ii), there must exists an inequality 77z < m, such that,
if we add this inequality to Q, obtaining Q', we would have that y does not belong to Q'.
In other words, y ¢ Q' where Q' = {r e R" : 2 € Q, 7'z < my}. Thus, we can update Q
to @', and repeat the process until we arrive at case (i).
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\c/i' Yo

Figure 2.3: Iterations of the cutting plane method. Figure based on Miyazawa [38|.

Since the inequality 77z < 7, separates y from the relaxed polyhedron Q, we say that
such inequality is a cutting plane. Moreover, we refer to the algorithm that finds such a
cutting plane by the name of separation routine.

We should note here that finding a cutting plane that separates a vector that does not
belong to P is polynomially equivalent to solving the separation problem (SEP); on the
other hand, finding an optimal solution for a polyhedron P, is polynomially equivalent to
solving the optimization problem (OPT). An important result from Grotschel, Lovasz and
Schrijver [21] shows that, if all the considered numbers are rational, (SEP) and (OPT)
have the same computational complexity. Hence, if we could solve (SEP) in polynomial
time, we could also create a polynomial-time algorithm for solving (OPT) — although
such an algorithm might not be of practical interest, due to its dependence on the ellipsoid
method [17].

To conclude, when we combine the cutting plane method with the branch-and-bound
procedure — executing the cutting plane method in each node of the branch-and-bound
tree — we obtain an algorithm of type branch-and-cut.

2.3 Polyhedral Combinatorics

2.3.1 Linear Algebra and Polyhedral Theory

Let t be a positive integer. Given a subset S C R", a vector x € R" is a linear combination
of vectors x',... 2" in S if x = 3! N for some (Aj,...,\) € R’ Furthermore, if
besides = being a linear combination, we also have that S2'_ A, = 1 and (\y,...,\,) €
RL, z is said to be a conver combination of x',... x'. The conver hull of S, denoted
by_ conv(S), is the set of all vectors that are a convex combination of finitely many vectors
in S.

The vectors x*

..., " are linearly independent (LI) if and only if 3°;_, Mz’ = 0 implies
that \; = 0, for all i € [t]. In a similar way, the vectors !, 22 ... 2 are called affinely
independent (Al) if and only if >°'_ A\;jz' = 0 and >_'_, A; = 0 implies that \; = 0, for all
i € [t]. Notice that linear independence implies affine independence, but the converse is
not valid. The rank of S, denoted by rank(S), is the maximum number of LI vectors in
S. Similarly, the affine-rank of S or affine-rank(.S), is the maximum number of Al vectors
in S. The dimension of S is given by dim(S) = affine-rank(S) — 1, and we say that S has

full dimension if dim(S) = n.
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A halfspace is a set of the form {z € R" : a2z < b} for a € R" and b € R. A
polyhedron P C R™ is the intersection of m € Z> halfspaces, i.e. P = {x € R" : Ax < b},
where A € R™*™ and b € R™. If there exists a real value o > 0 such that |z;| < «, for all
x € P and i € [n], we say that P is a polytope. A point x € P is said to be a vertex of P
if and only if it cannot be written as a convex combination of points in P\ {x}.

An inequality 772 < 7, also denoted by (m, m), is said to be a wvalid inequality for P
if it is satisfied by all vectors in P. Consider a scalar o € R+, since the inequalities (7, mp)
and (am, am) describe the same set, we say that they are identical. Let (7, my) and (1, o)
be two valid inequalities (for P) that are not identical, we say that (w,m) dominates
(p, o) if {x € R* : 7o < mp} C {x € R": plz < pg}. A valid inequality (7, 7o) is
redundant in the description of P, if there exist k > 2 valid inequalities (7, 7)), for i € [k],
such that (37,cpy cim)"e < (32, cump) dominates 77 < 7o, where o; € R, i € [A].
Observe that, if (7, 1) is redundant, the following inclusion holds

{reR": (Y2 <7,Vic[k]} C{r e R": 77z < m}.

In the context of combinatorial optimization, one of the objectives of studying polyhe-
dral theory is on finding inequalities that are non-redundant to a polyhedron P. If (7, m)
is a valid inequality for P and F' = {x € P : nlx = 7o}, then F is said to be a face of P.
A face F of P is said to be a facet of P, if dim(F) = dim(P) — 1. An important result
from polyhedral theory says that, if P is full dimensional, (7, 7y) defines a facet of P if
and only if every set of inequalities that describe P contains an inequality that is identical
to (m,m). Thus, if dim(P) = n, inequalities that define facets of P are guaranteed to be
non-redundant.

Given the previous definitions, we can now show that an inequality (7, m) # (0,0)
defines a facet I’ of a full dimensional polyhedron P by finding n vectors z!,..., 2" € F
that are Al, since then it follows that dim(F) = n — 1. An equivalent way of establishing
that (m, ) induces a facet of P is by selecting t > n vectors x',... 2" € F and solving
the system of linear equations

> i = po Vi€ [t],
j=1

for the n 4 1 variables p and pg. If the only solution for this system is of the type u = A\r
and pp = Amp for a constant A # 0, then the inequality (7, 7o) defines a facet.

2.3.2 A short example

Up to now, we only defined concepts from linear algebra and polyhedral theory. The
branch of mathematics entitled polyhedral combinatorics applies these concepts to solve
problems in combinatorics. In this section, we illustrate one of these applications.

Many combinatorial optimization problems (including AN -hard ones) can be for-
mulated as an integer linear programming problem max{c’z : z € P N Z}, where
P={reR": Ax < b,z > 0}. Let P; = conv(P UZ), it is not hard to see that,
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if P is a polytope, then
max{c'z:2 € PNZ} = max{c'z: z € P;}.

Hence, given that we can solve a linear programming problem in polynomial time
using the ellipsoid method [28], if we had the defining inequalities for P;, we would be
able to solve efficiently many combinatorial optimization problems, including N % -hard
problems. Therefore, we usually do not expect to be easy or even feasible to obtain a
complete description of P;. On the other hand, we can investigate if the inequalities in
our formulation (represented by the linear system Ax < b) induces facets of P;, since
as we discussed previously, these inequalities are guaranteed to be non-redundant (see
Figure 2.4).

r2| 4 .
a1‘,/" \ v
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Figure 2.4: Example of P and P; with n = 2. The shaded and dashed area correspond
to P and Py, respectively. Note how ag corresponds to a facet of P;, but a; does not.

We now give a classical example (taken from Nemhauser and Wolsey [42]) that illus-
trates how to apply the previous ideas to a famous .N%-complete problem: the maximum
independent set problem. Given an undirected graph G = (V| E), an independent set
is a set of vertices S C V, such that no two vertices in S are adjacent. The mazimum
independent set problem asks for an independent set of maximum cardinality.

Figure 2.5: Example of a maximum independent set. The gray vertices denote vertices in
the independent set.

For any vertex v € V, let x, be a binary variable that is equal to one if and only if v
is in the independent set. Consider the following formulation for this problem.
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max 5 Ty

veV
st xy+x, <1 V{u,v} € E, (2.1)
z, € {0,1} Yo eV. (2.2)

Let n = |V| and let Pg be the convex hull of the feasible solutions for the above
formulation, i.e. Pg = conv({z € B" : x satisfies (2.1)}). We first show that Pg is full-
dimensional (dim(Pg) = n). Next, we derive a valid inequality that has dimension n — 1,
and therefore, defines a facet of Ps.

Proposition 2.3.1 dim(Pg) = n.

Proof. Let V.= {vy,...,v,} and consider the set S; = {v;}, for i € [n]. Clearly S; is
an independent set, since it contains exactly one vertex. Furthermore, it is trivial that
the empty set is also an independent set. For any i € [n], define e; as being a vector
where only its ¢-th coordinate is one and all the other coordinates are zeroes. Because
of our interpretation for variables x, e; corresponds to the solution S;. In this sense, we
say that e; is the incidence vector of S;. Moreover, 0 is the incidence vector of the empty
set. Thus, we found n + 1 vectors in Pg, it remains to show that these vectors are affinely
independent.

Consider the matrix M whose columns are given by eq,...,e,, in this order. We
represent this matrix by M = le,...,e,]. Note that M is an identity matrix with
dimension n. Hence, the vectors {e;};c|n are linearly independent and together with the
null vector we found n + 1 affinely independent vectors that belong to Pg. a

Let us break down the previous proof. In order to enumerate the desired number of
affinely independent vectors, we first constructed feasible combinatorial solutions for the
original problem. These were very simple solutions: an empty set and sets with exactly
one vertex. Next, we transformed the solutions into incidence vectors and analyzed the
geometrical properties of these vectors. In our case, each vector was parallel to a different
axis of the standard coordinate system, so it was easy to argue that they were linearly
independent. This type of reasoning, which explores the relationship between properties
of combinatorial solutions and geometrical aspects of its incidence vectors, is commonly
used in polyhedral combinatorics.

Before we proceed, let us introduce a new concept. A cligue C' C V is a set of vertices
such that each pair of nodes in C' is connected by an edge. We say that a clique C is
mazimal if there is no clique C’ in G such that C' € C’. In the following proposition,
we use the notion of a maximal clique to derive a new facet-defining inequality. Usually,
when one proposes new inequalities, one first has to show that these inequalities are valid.
However, in this case, the validity is trivial and we omit the details.

Proposition 2.3.2 Let C be a mawimal clique of G, then the inequality > .z, < 1
defines a facet of Ps.
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Proof. Let F' be the face associated with the above inequality, hence

F:{xePg:vazl}.

velC

We need to show that the dimension of F'is n — 1.

Without loss of generality we assume that V = {vy,...,v,} and C = {vy,..., v}
First we observe that, for any vertex v,, with p € [n] \ [k], there exists a vertex ¢(v,) € C
such that {{(v,),v,} ¢ E (if there was no such vertex, the clique would not be maximal).
Let ay, be the incidence vector of the independent set {{(v,),v,}, for all p € [n]\ [K].
Notice that ({e1,...,ex} U{ags1,...,a,}) is contained in F. Now we need to show that
these vectors are affinely independent.

Consider matrix M = [ey, ..., €, Qgi1,- .., Q] and observe that M is an upper trian-
gular matrix. Therefore, all of its columns are linearly independent vectors. Since M has
n columns, dim(F') =n — 1. O

Polyhedral studies of combinatorial optimization problems led to major achievements
in the area. The strong inequalities derived for the travelling salesman problem moti-
vated a very efficient branch-and-cut algorithm. This algorithm solved instances with
around dozens of thousands of vertices [3|, while before using polyhedral techniques, the
algorithms were able to solve only up to 120 vertices. Although more convoluted, the
polyhedral study we conduct on Section 5.4 uses arguments that are similar to the ones
presented in this section.
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Chapter 3

Known Results

Problems regarding the partition of vertex-weighted graphs into connected subgraphs with
similar weights have been largely investigated in the literature since the early eighties.
Such partitions are generally called balanced, and several different functions have been
considered to measure this feature; such as minimize the weight of the heaviest class, or
minimize the maximum difference of weights between the classes. The balanced connected
k-partition problem, which is the focus here, is one of those problems. It is closely
related to another problem, referred to as MIN-MAX BCPy, whose objective function is
to minimize the weight of the heaviest class. When k& = 2, for any instance, an optimal
2-partition for BCPy is also an optimal solution for MIN-MAX BCP,. However, when
k > 2 the corresponding optimal connected k-partitions may differ (Figure 3.1).

3.1 Hardness and Approximation

The unweighted BCPy, (to be denoted by 1-BCPy) is the restricted version of BCPy, in
which all the vertices have unit weight. This restricted problem is N % -hard on bipartite
graphs for every fixed k& > 2, as proven by Dyer and Frieze [15]. Chlebikova [12]| showed
that 1-BCP; is N %-hard to approximate within an absolute error guarantee of n'=¢, for
all € > 0, where n = |V/|. For the weighted case, Becker, Lari, Lucertini and Simeone [6]
proved that BCP; is already N % -hard on (nontrivial) grid graphs. Chataigner, Salgado,
and Wakabayashi [10] showed that, for each k£ > 2, BCP} is N%-hard in the strong sense,
even on k-connected graphs, and therefore does not admit an FPTAS, unless % = N9 .
Wu [49] observed that BCP is A% -hard on interval graphs for any fixed & > 2.

Before we proceed with the approximation results for BCP, and its variants, we first
need to establish the used notation. Consider an algorithm A for an optimization problem

I 3 I 50 I 10 | 10 I 10
Figure 3.1: Example adapted from Lucertini, Perl, and Simeone [31]. For k = 3, note

that {{v1}, {va}, {vs,v4,v5}} is an optimal solution for MIN-MAX BCPy, but it is not for
BCP.
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and let I be a feasible instance of such a problem. We denote by A(I) the cost of the
solution returned by A on the instance I. Moreover, we use opt(/) to refer to the cost
of an optimal solution for the instance I. Let o > 1, the algorithm A is said to be
an a-approximation for a minimization problem if, for any feasible instance I, it holds
that A(I) < « opt(I). Similarly, A is an a-approximation for a maximization problem
if A(I) > < opt(I), for every feasible instance 1.

Chlebikova [12]| designed a 4/3-approximation algorithm for BCP,. For BCP3 (resp.
BCP,) on 3-connected (resp. 4-connected) graphs, algorithms with approximation ra-
tio 2 were proposed by Chataigner et al. [10]. The case k = 3 on general graphs was
recently investigated by Chen, Chen, Chen, Lin, Liu, and Zhang [11]. They presented
a b/3-approximation for BCP3 and a 3/2-approximation for MIN-MAX BCP3;. Wu [49]
designed a fully polynomial-time approximation scheme (FPTAS) for BCP, on interval
graphs. When k is part of the input, Borndoérfer, Elijjazyfer and Schwartz [9] designed
A-approximation algorithms for both MAX-MIN and MIN-MAX versions of the balanced
connected partition problem, where A is the maximum degree of an arbitrary spanning
tree of the input graph G. Specifically for the MAX-MIN version, their A-approximation
only holds for instances in which the largest weight is at most w(G)/(Ak).

Both BCP, and MIN-MAX BCPy can be solved in linear time on trees as shown by
Frederickson [18]. Ome may easily check that 1-BCP5 on 2-connected graphs can be
solved in polynomial time. This problem also admits polynomial-time algorithms on
graphs such that each block has at most two articulation vertices [1,12|. In special,
when the input graph is k-connected, polynomial-time algorithms and other interesting
structural results have been obtained for BCPy by Ma and Ma [32|, Gyori [24], and
Lovész [29]. Many other results on the mentioned problems and variants have appeared
in the literature [2,41,44,46].

Mixed integer linear programming formulations for BCP4 were proposed by Mati¢ [37]
and for MIN-MAX BCP, by Zhou, Wang, Ding, Hu, and Shang [50]. Mati¢ also pre-
sented a VNS-based heuristic for BCPy, and Zhou et al. devised a genetic algorithm
for MIN-MAX BCPg. Both works reported on the computational results obtained with
the proposed formulations and heuristics, but presented no polyhedral study.

3.2 A note on Minimum Spanning Trees

Mati¢ and Zhou et al. formulations use flows to guarantee that each class is connected.
Such an idea is very common in the literature and can be easily described in the context
of the minimum spanning tree (MST) problem. In a sense, BCPj, and MST’s are loosely
related, since checking if a subgraph is connected is equivalent to checking if the subgraph
contains a spanning tree. For any V' C V., G[V'] is connected if and only if there is a tree
T C G[V'] such that T spans the set of vertices V’. Therefore, for any solution {V;}icp
for BCPy, there is a corresponding forest {7;};cjx), such that 7; spans V;.

The forthcoming formulations come from the excellent chapter written by Magnanti
and Wolsey [33]. Recall that a spanning tree of G is a subgraph that is a tree and spans
all the vertices in GG. Given a connected graph G = (V, E) with weights on the edges
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given by a function w: E — Q>, the minimum spanning tree problem asks for a spanning
tree 1" such that w(T') = >_ gy w(e) is minimum.

When formulating problems that aim to find a tree, we usually have a binary vari-
able x., for each edge e € E, that indicates if the edge belongs to the tree. Thus, it
is important to consider how to guarantee that the graph induced by the z variables is
connected. In this section, we present two formulations that handle this requirement in
different ways. The first model is more natural, but needs a large number of inequalities;
while the second formulation is compact, but introduces new flow variables.

Below is an ILP formulation with a possibly exponential number of constraints. To
simplify, for any set of edges &' C E, we use the notation z(E") = > . Te.

ecE
st. x(E)=n—1,
z(0(5)) > 1 VS CV,S #0,
z. € {0,1} Vee E.

Constraint (3.1) implies that exactly n — 1 edges are going to be chosen. Inequal-
ities (3.2) guarantee that the graph induced by the z variables is connected. Overall,
the formulation above is very simple, it just states that a spanning tree is a connected
subgraph with n — 1 edges.

Another way of ensuring a solution is connected is to choose a vertex s € V to be
a source, and send flow from s to every other vertex in the graph. Since the flow has a
direction — for any edge {u, v}, it either goes from u to v or from v to u — we create a
digraph D from the original graph GG. The set of vertices of D is the same as GG, and for each
edge in G, we add two anti-parallel arcs to D; that is, A(D) = {(u,v), (v,u): {u,v} € E}.

An arc (u,v) € A(D) will be allowed to have flow passing through it only if the
correspondent edge e = {u, v} € FE was chosen by the x. variable. Moreover, each vertex
in V '\ {s} will not produce any flow and consume exactly one unit of it. Thus, every
vertex must be connected to s, and thereby, the subgraph induced by the x variables must
be connected. Henceforth, we refer to an arc (u,v) simply as uv; and we denote by f(A’)
the sum of variables ) _,, f,, where A" C A(D).

st. x(F)=n-—1, (3.1)
FEH(s) — F6(s) =n—1, (3.4)
f(67(v) = f(07(v)) =1 vo eV {s}, (3.5)
fuw < (n— 1)z, Ve = {u,v} € E, (3.6)
fou < (n— 1)z, Ve = {u,v} € E, (3.7)
fa =0 Va € A(D), (3.8)
z. € {0,1} Ve € E. (3.9)
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Constraint (3.1) is the same as in the previous model. Equality (3.4) guarantees that
the source outputs n— 1 units of flow. Constraints (3.5) ensure that each vertex consumes
exactly one unit of flow. Finally, inequalities (3.6) and (3.7) imply that a positive flow
will pass only through arcs that were selected by the correspondent x variables. This
formulation has a polynomial number of constraints, but it also introduces new variables.

Although both of the formulations presented correctly find an MST; the polytope
associated with their linear relaxations can be quite larger than the convex hull of incidence
vectors of spanning trees. Magnanti and Wolsey [33] present further ideas to strengthen
these formulations. To avoid deviating from the main topic of this thesis, we refer the
reader to their work for more details.

3.3 MILP formulations

We now present the formulations of Mati¢ [37] and Zhou et al. [50]. These models are all
based on the idea of using additional flow variables to guarantee the connectedness of the
classes. To the best of our knowledge, these are the only formulations in the literature
for variants of the BCPj problem. For presentation purposes, we define r; as being the
root (or representative) of class V;.

Formulation of Matié

The formulation proposed by Mati¢ was designed for MIN-MAX BCP,, which, as we stated
earlier, is equivalent to BCP,. The model construct a directed graph D, from the original
graph G in the following (non-standard) way:

(i). V(Dy) =V U{s}, where s is a vertex that represents a source;

(ii). A(Dy) = {(u,v) : {u,v} € E} U{(s,v) : v € V}, note that we arbitrarily fixed an
orientation for each edge in the original graph.

Due to how we are fixing the orientation of the arcs in the digraph D,;, when talking
about Mati¢ formulation, we speak of trees — ignoring the direction of the arcs — instead
of arborescences. Let T; be a tree that spans V;, for ¢ € {1,2}. Let T} = T; U (s,7;). The
formulation variables are as follows:

o 1, if x, =1, vertex v belongs to V;, otherwise, v € V5,
e y,: indicates if a € A(T7),
e 2, indicates if a € A(T}),

e f,: indicates the flow on arc a, if the flow is negative, it is going contrary to the arc
direction.

For any vertex v € V (D)), the flow variables should obey the following equations

v=Ss,

n7
Z o= (Zaeéf(v) fa) — 1, otherwise,

acdt(v)

(3.10)
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which is very similar to how we used the flow variables for obtaining spanning trees. A
source vertex outputs enough flow for every other vertex, and each vertex that is not
a source consumes one unit of it. The following is the formulation proposed by Mati¢.
Again, for A" C A(Dy;), we use shorthand notations of the type f(A’) = > .4 fa- This
notation is also used for the summation of y and z variables.

min — w(G) + 2 Zw(v) Ty

st 2) w(v) z, > w(G), (3.11)
veV
2Yup < Ty + Ty V(u,v) € A(Dy)\0"(s), (3.12)
22up <2 — Ty — Ty V(u,v) € A(Dy)\0T(s), (3.13)
Ysv < Ty V(s,v) € d7(s), (3.14)
Zso < 1 — V(s,v) €67 (s), (3.15)
Ja S Yo+ nzq Va € A(Dy),  (3.16)
Ja = =Ny, — nz, Va € A(Dy),  (3.17)
fO07 () = f(6(v) =1 VeV, (3.18)
f(67(s)) = n, (3.19)
Y(A(Da) \ 07(s)) + 2(A(Du) \ 67 (s)) =n —2, (3.20)
y(6T(s)) + 2(01(s)) = 2, (3.21)
2, € {0,1} YoeV, (3.22)
Ya» za € 10,1} Va € A(Dy), (3.23)
fa €R Va € A(Dy).  (3.24)

Constraint (3.11) guarantees that V; is the heaviest class. Constraints (3.12) indicate
that if @ = (u,v) € A(TY), then vertices u and v are in Vj; similarly, constraints (3.13)
indicate that if a = (u,v) € A(T}), then v and v are not in Vj, and thus, u,v € V.
Constraints (3.14) indicate that if an arc (s,v) € A(TY]), then v € Vi; and constraints
(3.15) similarly do the same when v € V5. Inequalities (3.16) and (3.17) attribute upper
and lower bounds for the flow that passes through an arc a € A(D),), in other words,
if a € T or a € T3, then f, € [—n,n]; otherwise, f, = 0. Constraints (3.18) and (3.19)
attribute the flow according to the equations (3.10). Inequality (3.20) indicates that the
total number of arcs in the graph T3 UT; must be n— 2. Finally, constraints (3.21) impose
that exactly 2 arcs that outgoes s must be selected.

Let m = |E| and n = |V|, the formulation proposed by Mati¢ has 2m + 3n binary
variables, m + n real variables and 4m + 5n + 4 constraints. In his paper [37|, Mati¢
reports that, with a time limit of 2 hours, this formulation could only find provably
optimal solutions in graphs with up to 70 vertices.
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Formulation of Zhou et al.

The formulation proposed by Zhou et al. [51] solves MIN-MAX BCP with k£ > 2. Although
not explicitly stated in their paper, this formulation is also based on a digraph D defined
over the input graph G = (V, E); with the difference that it creates two anti-parallel arcs
for each edge in E (the standard way). Formally,

(i). V(Dz) =V U{s}, where s is a vertex that represents a source,
(ii). A(Dz) = {(u,v), (v,u) : {u,v} € E} U{(s,v) :v eV}

The following variables are used by the model:

e 1, indicates if vertex v € V;,

e 1, indicates if v = 1y,

® Yuoi: if (u,v) € A(Dygz) \ 67 (s), this variable indicates if u,v € V;, otherwise, it
indicates if v € V},

e f,: indicates the flow on arc a, its value is not allowed to be negative.

Below is the formulation for MIN-MAX BCP, proposed by Zhou et al.

min ¢
st. t> Z w(v) Ty, Vi € [k, (3.25)
veV(Q)
k
Y wi=1 Yo eV, (3.26)
T;i S Ty Yo e Vi € [k, (3.27)
nry; <(n+1-— ZU:SUM) Yo e Vi€ [k, (3.28)
f(67(s)) = n, (3.29
P () = £ () = 1 WeV(@),  (330)
k
foo S0 1 V(s,v) € 57 (s), (3.31)
=k1
fuw < nz Yuv i Y(u,v) € A(Dz)\d" (s), (3.32)
yuv,i S xu,i V(u, U) € A(DZ)\6+(S)7 (S [kL (333)
Yuvi < T V(u,v) € A(Dz)\0"(s),i € [K], (3.34)
Yuvi = Tui + Ty — 1 V(u,v) € A(Dz)\0"(s),i € [K], (3.35)
Ty, Toi € {0,1} Yo e Vi€ [k, (3.36)
ya,i S {07 1} Va € A(Dz)\5+(8),l < [k’}, (337)
fa S RZ Ya € A(Dz), (338)
t € Rs. (3.39)
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Just as in Mati¢ formulation, the source s sends n units of flow, and each vertex in
V' consume one unit. Furthermore, we assume the set of vertices in V' are labeled from 1
to n.

Constraints (3.25) force the objective function to minimize the weight of the heaviest
class. Constraint (3.26) means that each vertex must belong to exactly one class. For
each class i € [k] and vertex v € V, inequalities (3.27) indicate that vertex v can be the
root r; for class i only if v belongs to V;. Furthermore, constraints (3.28) imply that r; is
the vertex in V; with minimum label. Constraints (3.29) force the source s to output n
units of flow, while constraints (3.30) impose that each vertex v € V' consumes one unit
of flow. For every arc (s,v) € 67 (s), inequalities (3.31) say that the flow f,, can only be
non-zero if v = r;. Similarly, for every arc a = (u,v) ¢ 67 (s), constraints (3.32) state
that f, > 0 implies that u and v belong to the same class. Finally, constraints (3.33),
(3.34) and (3.35) tie together the x variables with the y variables.

This model has 2nk + 2mk binary variables, 1 + 2m + n real variables and O(mk)
constraints. Computational results by Zhou et al. show that this formulation is consider-
ably faster than the one proposed by Mati¢, and it was able to solve instances for BCP,
with up to 170 vertices within the time limit of 2 hours. Moreover, when k& > 2, they
conducted experiments only in a single graph with 70 vertices. In one hour, they were
able to solve this single instance for k = 2,3, 4,5, but failed when k& = 6.
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Chapter 4

Flow Formulations

Building on the concept of using flow variables for obtaining k& disjoint trees, we designed
two mixed integer linear programming formulations for BCP. Let (G,w) be an input
for BCPy, we denote these formulations by F (G, w) and F, (G, w). Sometimes, we refer
to them simply by F and F, respectively.

4.1 Flow Formulation

In order to define formulation Fi(G,w) we construct a digraph Dz from the input
graph G = (V, E) as follows. First, we add to G a set of k new vertices S = {sy,..., sk}
Each vertex in S represents a source of flow. Second, we replace every edge of G with
two anti-parallel arcs. Finally, we add an arc from each source to each vertex in V' (see
Figure 4.1(a)). More formally, the vertex set of D is V(Dx) =V U S and its arc set is

A(Dr) = {(u,v), (v,u) : {u,v} € E} U{(s4,v) :i € [k],v € V}.

Let {ﬁ-}ie[k] be a set of arborescences such that {V(ﬁ)}ie[k} is a connected k-partition
of G. We are now ready to present the formulation variables:

e y,: indicates if an arc a € A(D) belongs to A(ﬁ) U {(s4,7:)}, for some i € [k];
e f,: represents the flow on arc a, each vertex v will consume w(v) units of flow.

The corresponding formulation is shown below.

Fi(G,w) max f (07" (s1))
st f(6F(s:) < FO0F(5001)) Vi€ [k — 1],
f(67(v)) = f(67(v)) = w(v) Vv eV,

(4.1)
(4.2)
fo S w(@)ya Va € A(Dx), (4.3)
<1 Vielk],  (4.4)
<1 Yo eV, (4.5)
v, € {0,1} Va € A(Dg), (4.6)
fa €Rs Va € A(Dy). (4.7)
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Constraints (4.2) imply that each vertex v € V' consumes w(v) flow units. Inequali-
ties (4.3) impose that a strictly positive flow can only pass through an arc that was selected
by the y variables. By constraints (4.4), at most one arc leaving a source transports pos-
itive flow. Inequalities (4.5) require that every non-source vertex receives a positive flow
from at most one vertex of Dx. Lastly, inequalities (4.1) impose that the flows sent by
the sources are in a non-decreasing order. This explains the objective function.

(a) The digraph Dx obtained from the graph G shown (b) A feasible solution: the arcs represent non-
in Figure 1.1. Vertices s; and s dominates all vertices zero y-variables, and the flow in each of them
in the dashed circle. The numbers inside the vertices 1is indicated on their side.

are the weights.

Figure 4.1: Digraph D and a feasile solution for formulation 7.

Since the flow sent by a source needs to be totally consumed, it follows that the
flow sent through an arc (s;,r;) corresponds exactly to the weight of the i-th class (see
Figure 4.1(b)).

In a feasible solution, vertices with weight zero may not receive any flow, and thus
they may not belong to any of the k arborescences. If this happens, each such a vertex
can be added to one of the classes found by the formulation (including first those at
distance 1 to one of the classes, then the remaining ones with the same procedure w.r.t.
the connected classes that are obtained). This inclusion leads to a solution that defines
a connected k-partition as desired, without increasing the weight of each class. It follows
from these remarks that a solution obtained with formulation F (G, w) leads to a solution

The proposed formulation Fj(G,w) has a total of 2nk + 4m variables (half of them
binary), and only O(n + m + k) constraints, where n = |V| and m = |E|. The possible
drawbacks of this formulation are the large number of symmetric solutions and the de-
pendency of inequalities (4.3) on the weights assigned to the vertices. To overcome such
disadvantages, we propose in the next section another model based on multicommodity
flows; it considers a total order of the vertices to avoid symmetries and uncouple the
weights assigned to the vertices from the flow circulating in the digraph.
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4.2 Asymmetric Flow Formulation

Our second formulation for BCP,, denoted by (G, w), is also based on a digraph, which
we denote by Dz. This digraph has vertex set V(Dz) = V U {s} and arc set

A(Dz) = {(u,v), (v,u): {u,v} € E}U{(s,v): v e V}.

As we mentioned, we assume there is a total ordering > defined on the vertices of G.

In this formulation, we consider flows of type i corresponding to the classes i € [k]
that they will define. For each a € A(D#) and i € [k], we create a real variable f,; that
corresponds to the amount of flow of type ¢ that passes through arc a. Furthermore, we
use binary variables y,; to indicate if arc a € A(D#) belongs to A(i) U{(s,r:)}. The
flow variable f,; can only assume positive values if y,; = 1. The root r; will receive |V}|
units of flow and each vertex in V' will consume a single unit of flow. The ordering of the
vertices imposes that, among the vertices of each arborescence, the root is the smallest
one (this helps breaking symmetries).

For simplicity, for any A" C A(Dz) and integer ¢ € [k], we use the short nota-
tion y(A’,7) to replace the sum ) _, yai- We use similar notation for the summation of
flow variables.

Fi(G,w) max Z w(v) y(0~(v), 1)

veV(Dxr)

sty w)y(6(v),) <Y ww)y(6 (v),i+1) Vie[k—1], (4.8)
y(67(s),9) < 1 Vie k], (4.9)
> Y6 (v),i) <1 Yo eV, (4.10)
1€[k]
Ysvi T Y(6 (u),1) <1 Yu,v € Vv = u, i € [k], (4.11)
Jai <N Y Ya € A(D), i€ [k], (4.12)
F(0F (), 1) < f(0~(v),4) Yo eV, iclk], (413)
> 0 i) = > f(0F(v),i) =1 Yo eV, (4.14)
i€[k] i€ (k]
Yai € 10,1} Ya € A(D), i € [k], (4.15)
fai € R> Va € A(D), i € [k]. (4.16)

To show that the above formulation indeed models BCP,, correctly, let us consider
the following polytope.

Qi(G,w) = conv({(y, f) € Btk » RUH2mE . (4, £) satisfies ineq. (4.8) — (4.16)}).

Let V = {Vi}iciy be a connected k-subpartition of G such that w(V;) < w(Vjyq) for

all i € [k — 1]. Then, for each integer i € [k|, there exists in Dz an arborescence T;
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rooted at 7; such that V(i) = V;and v > r; for all v € V; \ {r;}. Now, let g; be the
function g;: A(f) U{(s,7;)} — R> defined as follows:

L, if v is a leaf of f-,
1+ Z(y,z)eA(ﬁ-) 9i((v, 2)), otherwise.

g:((u,v)) = {

It follows from this definition that g;((s,7;)) = |Vil.
We now define vectors p(V) € B2k and 7(V) € R™2™k such that, for every arc
a € A(D#) and i € [k], we have

PV)ai = { 1, ifae A(f) U{(s,mi)}, T(V)ai = { gi(a), ifac A(f) U{(s,r)},

0, otherwise, 0, otherwise.

We are now ready to prove the claimed statement on Qx(G,w).

Proposition 4.2.1 The polytope Qr(G,w) is precisely the polytope
conv({(p(V),7(V)) € B2k 5 ROH2ME .Y 45 4 connected k-partition of G}).

Proof. Let (y, f) be an extreme point of Qk(G,w). For every ¢ € [k]|, define the set
U ={veV:y (v),i) = 1}. It follows from inequalities (4.10) that, for every vertex
v € V, at most one of the arcs entering it is chosen. Observe that inequalities (4.12)
force that a flow of type ¢ can only pass through an arc of type ¢ if this arc is chosen.
Hence, every vertex receives at most one type of flow from its in-neighbors. Furthermore,
inequalities (4.13) and (4.14) guarantee that the flow that enters a vertex and leaves
it are of the same type, and that each vertex consumes exactly one unit of such flow.
Inequalities (4.9) imply that all flow of a given type passes through at most one arc that
has a tail at the source s. Therefore, we have that {Ui}ie[k] is a connected k-partition
of G.

To prove the converse, let V = {Vi};cy) be a connected k-partition of G. We assume
without loss of generality that w(V;) < w(Viy) for all i € [k — 1]. Let (y, f) be a vector
such that y = p(V) and f = 7(V). For each i € [k], every vertex in i has in-degree
at most one, and r; is the smallest vertex in V(7;) with respect to the order >. Thus,
inequalities (4.10) and (4.11) hold for (y, f). From the definition of p(V), the entry of y
indexed by (s,7;) and i equals one, for all ¢ € [k]. Consequently, (y, f) also satisfies
inequalities (4.9). Recall that g;((s,r;)) = |V;| for every i € [k]. This clearly implies that
inequalities (4.12) are satisfied by (y, f).

Note that, for every ¢ € [k], the function g; assigns to each arc (u,v) € A(ﬁ)u{(s, i)}
the value one plus the sum of the sizes of the sub-arborescences of TZ rooted at the
out-neighbors of v in ﬁ Hence, inequalities (4.13) and (4.14) hold for (y, f). Finally,
inequalities (4.8) are satisfied, as we assumed that the elements of partition V are in a
non-decreasing order of weights. Therefore, we conclude that (y, f) belongs to Q(G, w).
a
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4.3 Relaxed formulations

Formulations F and F order the classes of a solution by their weights and then the
objective function maximizes the weight of the first class. Quite trivially, we can create
similar formulations 7’ and F’ in a way that they do not impose such an ordering. In
these new formulations, we change the objective function to maximize a variable z > 0.
For F’ we remove constraints (4.1) and add constraints z < f(07(s;)), for every i € [k].
Similarly, we construct formulation F’ by removing inequalities (4.8) and adding the
inequalities z < ), w(v) y(d~(v), 1), for i € [k].

These modifications are clearly valid; however these new z-versions of the formulations
may have a significant amount of symmetric solutions. For example, take any connected k-
partition {V;},cp induced by a solution for F, we could easily create an “equivalent”
solution {V}'};c simply by relabeling the classes, that is, by assigning V;' =V}, i # j,
such that {V;}icy = {V/}iey. Thus, each feasible solution for F have k! symmetric
feasible solutions in F.

Avoiding symmetries reduces the space of feasible solutions without compromising the
correctness of the formulation. Therefore, it is a very common practice among the integer
linear programming community. However, a formulation with fewer symmetries will not
always have a better practical performance. In fact, on some classes of instances, such a
phenomenon was observed in our computational experiments (see Chapter 6).
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Chapter 5

Cut Formulation

In this Chapter, we introduce a cut-based ILP formulation for BCP,. This Cut formula-
tion — denoted by Ci(G,w), or simply C — is defined directly on the input graph and it
has a large number of inequalities. We derive valid inequalities, design polynomial-time
separation routines and implement a branch-and-cut algorithm. Furthermore, we conduct
a polyhedral study based on this Cut formulation.

5.1 Definitions and valid inequalities

Let (G, w) be an input for BCPy, the ILP formulation we propose for BCPy, called Cx (G, w),
is based on the following central concept. Let u and v be two non-adjacent vertices in
a graph G. We say that a set S C V' \ {u,v} is a (u,v)-separator if v and v belong
to different components of G — 5. We denote by I'(u,v) the collection of all minimal
(u, v)-separators in G.

In the formulation, we use a binary variable z,;, for every v € V and ¢ € [k], that is
set to one if and only if v belongs to the i-th class.

Cr(G,w) max Z w(v) Ty

veV

s.t. Zw(v) Ty, < Zw(v) Ty it Vielk—1], (5.1)
veV veV
D wi <1 Yo eV, (5.2)
1€[k]
T + Toi — wa— <1 Vuv ¢ E, S € I'(u,v),i € [k], (5.3)

z€8

z,; € {0,1} Vo eV andie€ [k]. (5.4)

Inequalities (5.1) impose a non-decreasing weight ordering of the classes. Inequali-
ties (5.2) require that every vertex is assigned to at most one class. Inequalities (5.3)
guarantee that every class induces a connected subgraph (see Figure 5.1). The objective
function maximizes the weight of the first class. Observe that, just like we did for the flow
based formulations, we could easily create a formulation C’ that do not require ordering
the classes by their weights. More details on this formulation in Section 5.4.2.
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Figure 5.1: Illustration for a (u,v)-separator S. The dotted line represents a (u, v)-path.

In Section 5.2 we show that the separation problem for inequalities (5.3) can be solved
in polynomial time. Thus, in view of the equivalence of separation and optimization
problems [22], the linear relaxation of C can be solved in polynomial time.

Since feasible solutions of formulation C(G,w) may have empty classes and nodes
not assigned to any class, to refer to these solutions we introduce the following concept.
We say that V = {Vi}f_ | is a connected k-subpartition of G, if it is a connected k-
partition of a subgraph (not necessarily proper) of G, and additionally, w(V;) < w(Visq)
for all i € [k — 1]. For such a connected k-subpartition V), we denote by £(V) € B
the binary vector such that its non-null entries are precisely £(V),; = 1 for all i € [k]
and v € V; (that is, (V) denotes the incidence vector of V). To show our next results,
let us define the polytope

Pie(G,w) = conv({z € B"™": x satisfies inequalities (5.1) — (5.3) of Cx(G,w)}).

We first prove that formulation Ci(G, w) correctly models BCPy. Then, we present classes
of valid inequalities that strengthen the formulation.

Proposition 5.1.1
Pe(G,w) = conv({£(V) € B™: V is a connected k-subpartition of G}).

Proof. Consider first an extreme point z € Py(G,w). For each ¢ € [k], we define the
set of vertices U; = {v € V:x,; = 1}. It follows from inequalities (5.1) and (5.2)
that U := {U;}}_, is a k-partition of a subgraph of G such that w(U;) < w(U,) for
all i € [k — 1]. To prove that U is a connected k-subpartition, we suppose to the contrary
that there exists i € [k] such that G[U;] is not connected. Hence, there exist vertices u
and v belonging to two different components of G[U;|. Moreover, there is a minimal set
of vertices S that separates v and v and such that S N U; = (). Thus, vector = violates
inequalities (5.3), a contradiction.

To show the converse, consider now a connected k-subpartition V = {V;}}_; of G.
Clearly £(V), satisfies inequalities (5.1) and (5.2). Take a fixed i € [k]. For every pair u,v
of non-adjacent vertices in V;, and every (u, v)-separator S in G, it holds that SNV, # (),
because G[V;] is connected. Therefore, £(V) satisfies inequalities (5.3). O

Before showing the next results, we state the claim below.
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Claim 5.1.2 The inequalities

gw a:w_% Vi e [k, (5.5)

are valid for Py(G,w).

Proof. Because of the weight ordering imposed by inequality (5.1), the following inequal-
ities are valid for any j € [k] (Figure 5.2):

veV i€[k]\[j—1] veV

s

Vi Vit

<

k

Figure 5.2: Illustration for claim 5.1.2. Each bar has unit width and a height that
corresponds to the weight of a class. The claim follows from computing the dashed area.

Because of the structure of inequalities (5.5), we can take advantage of the extensive
work regarding strong inequalities for the 0-1 knapsack polytope. We elaborate more on
this matter in Section 5.3.1. In addition, this derived upper bound can also be used to
perform a lifting of inequalities (5.3).

Proposition 5.1.3 Let u and v be two non-adjacent vertices of G, and let S be a minimal
(u,v)-separator. Let i € [k], and let L ={z € S: w(P,) > w(G)/(k—i+ 1)}, where P,
15 a minimum-weight path between w and v in G that contains z. The following inequality
is valid for Py(G,w):

Tui+Ti— Y i< L (5.6)

Proof. Consider an extreme point = of P(G,w), and define V; = {v € V: z,,; = 1} for
each i € [k]. Since inequalities (5.5) are valid, if u and v belong to V;, then there exists a
vertex z € S\ L such that z also belongs to V;. Therefore, z satisfies inequality (5.6). O

While the result above shows a class of inequalities that dominates the inequali-
ties (5.3), the next class is of a different nature. It was inspired by a result proposed
by de Aragao and Uchoa [13] for a connected assignment problem.

Proposition 5.1.4 Let ¢ > 2 be a fized integer, and let S be a subset of vertices of G
containing q distinct pairs of vertices {s;,t;}, i € [q], all mutually disjoint. Let N(S) be
the set of neighbors of S in V'\ S. Moreover, let o: [q| — [k] be an injective function, and
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let I ={o(i): i € [q]}. If there is no collection of q vertez-disjoint (s;,t;)-paths in G[5],
then the following inequality is valid for Py(G,w):

Z (Tsi0() + Tt0() + Z Z Ty < 2¢+|[N(S)| - 1. (5.7)

i€[q] veEN(S) i€[k]\I

Proof. Suppose to the contrary that there exists an extreme point = of Py(G, w) that vio-
lates inequality (5.7). Define A = Zie[q] (:csi’o(i) + :Uti7g(i)) and B = ZWGN(S) Zie[k]\l Ty
From inequalities (5.2), we have that A < 2¢. Since x violates (5.7), it follows that
B > |N(S)| — 1. Thus, since x satisfies inequalities (5.2), it follows that B = |N(S)|.
Hence, every vertex in NV (.S) belongs to a class that is different from those indexed by I.
This implies that every class indexed by I contains precisely one of the ¢ distinct pairs
{si,t;}. Therefore, there exists a collection of ¢ vertex-disjoint (s;,¢;)-paths in G[S], a

contradiction (see Figure 5.3). O
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Figure 5.3: Illustration for Proposition 5.1.4 when ¢ = 2. Assume s; and t; belong to
class V;. Since there is no (so,%2)-path disjoint from a (s1,¢;)-path in G[S], sy and 5
belong to V5 only if N(S) NV, # 0.

Kawarabayashi et al. [27] proved that, given an n-vertex graph G and a set of ¢ pairs
of terminals in G, the problem of deciding whether GG contains ¢ vertex-disjoint paths
linking the given pairs of terminals can be solved in time O(n?), for a fixed value of q.
Hence, inequalities (5.7) can be separated in polynomial time when S = V.

5.2 Separation routines

We implemented a branch-and-cut approach based on the Cut formulation Cy(G,w). In
this section, we describe the separation routines for inequalities (5.3) and (5.7) that are
embedded in this algorithm. We report on the computational results obtained with this
solving method in Chapter 6.

5.2.1 Connectivity inequalities

Let us focus first on the class of inequalities (5.3), henceforth called connectivity inequali-
ties. We address here its corresponding separation problem: given a vector 7 € R™, find
connectivity inequalities that are violated by = or prove that this vector satisfies all such
inequalities.
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We address this problem with a construction that is similar to the one used for proving
the directed version of Menger’s theorem. Given the input graph G = (V| F), for each
i € [k], we define a digraph D; with capacities ¢;: A(D;) — Q> U{oo} assigned to its arcs,
in the following manner. We set V' (D;) = {vy,v: v € V'} and A(D;) = A; U Ay, where
Ay = {(ug,v1), (va,uy): {u,v} € E} and Ay = {(v1,v2): v € V}. We define ¢;(a) = T,
if a = (vy,v2) € Ag; and ¢;(a) = o0, if a € A;. Note that each arc in D; with a finite
capacity (i.e. each arc in Ay) is associated with a vertex of G. Now, for every pair of
non-adjacent vertices u,v € V such that z,,; + Z,; > 1, we find in D; a minimum (uy, vy)-
separating cut. If the weight of such a cut is smaller than 7, ; + 7,; — 1, then it is finite
and the vertices of G associated with the arcs in this cut give an (u,v)-separator S in G
that violates the connectivity inequality Z,,; + Z,; — Y. g T.; < 1 (see Figure 5.4).

Figure 5.4: Separation of connectivity inequalities. Observe that the connectivity inequal-
ity @y + 2y — (Tai + 2o + v.;) < 11is violated in G.

Given an (u,v)-separator S, let H, (resp. H,) be the connected component of G — S
containing u (resp. v). We now describe a procedure for performing the lifting of the
connectivity inequalities by removing iteratively unnecessary vertices from S. First, we
remove every vertex z from S such that the neighborhood of z does not intersect with H,
and H, (lines 2-4). Since removing a vertex from S changes the components of G — S,
we use a Union-Find data structure to update the components. Next, we use Dijkstra’s
algorithm to remove from S the set L, as defined in Proposition 5.1.3 (lines 5-9).
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Algorithm 1 Reduce Separator Algorithm
1: procedure REDUCESEPARATOR(G, w, i, u,v,S)
2 for z € S do

3 if N(z)NH,=0or N(z)"H, =0 then
4 S+ S\ {z}

5: for z € S do
6

7
8

9

ly. < ShortestPath(G,u, z)

y, < ShortestPath(G,v, z)

if Cuz + Lo. — w(2) > 229 then
S« S\ {z}

return S

The time complexity to separate the connectivity inequalities depends on the algorithm
used to find a minimum cut. We use Goldberg’s preflow algorithm [20] for maximum flow,
whose time complexity is O(7%v/m), for a digraph with 72 vertices and 7/ arcs. Thus, in the
worst-case, checking for every ¢ € [k], and candidate pairs u,v in D;, the time complexity
of this separation algorithm is O(kn*\/n +m). Despite the high time complexity, we
note that, in the computational experiments, only a very small portion of the vertices are
fractional. Hence, we can perform arc contractions on all arcs of D; such that both of
its endpoints correspond to vertices associated with variables of integer value. In other
words, an arc (ug,v1) € A; is contracted if 7,; = T,; = 1, and an arc (uj,us) € Ay
is contracted if z,; = 1. After such arc contractions, the graphs usually have a small
number of vertices and arcs, and so the proposed separation algorithm runs quickly in
practice.

5.2.2 Cross inequalities

Now we turn to the separation of inequalities (5.7) on planar graphs G = (V, E), restricted
to the case S = V. Consider a plane embedding of G, and let F' be the boundary of a
face with at least 4 distinct vertices and with no repeated vertices. Take four different
vertices, say si, So, t1,t2, that appear in a clockwise order in F. Since G is planar, it does
not contain vertex-disjoint paths P; and P», with endpoints sq,%; and ss, 5, respectively.
For S =V, inequalities (5.7) simplifies to

Ty 0(1) F Tsy0(2) T Tty ,0(1) T Tty o(2) < 3. (5.8)

We refer to these inequalities as cross inequalities (Figure 5.5 explains the name).

For the separation problem of the cross inequalities induced by the vertices in F', where
|F| = f, we implemented an O(fk?) time complexity algorithm (the same complexity
mentioned by Barboza [5|, without much detail; the algorithms are possibly different).
Next, we give more details on this separation algorithm.

Let 7 € R" be a fractional solution of formulation C. Consider a linear ordering
of the vertices in F' which is obtained by traversing its vertices in clockwise order from
an arbitrary fixed vertex. For every j € [f], we denote by F(j) the jth vertex of F in
such an ordering. Furthermore, define matrices L and R such that, for each j € [f] and
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Figure 5.5: Drawing of the cross inequalities. The dotted lines represent the boundary F
and we drew the graph in a way that the face considered is external. If s; and ¢; belong
to Vi, then sy and ¢y cannot belong to V5 (otherwise, there would be crossing edges).

each i € [k],

L(7,17 max 4 T p(;’ and R(j,i) = max TR, -
(5:8) = e {Zru) G:0) =, s VFroni}

In other words, L(j,7) (resp. R(j,4)) corresponds to the maximum value in an entry
of T indexed by i and by a vertex that appears before (resp. after) F'(j) in the ordering.
Clearly, L and R can be created in O(fk).

For every j € [f] \ {1}, and every 1,15 € [k] with i1 # ia, we define:

Lo(j, i1, i) = TF1)in T TF2),ias if j =2,
2 y U1, 02) — ~ .
max { Ly(j — 1,41,i2); L(j — 1,41) + Tp(, b, otherwise.

Note that, given j > 2 and 4y, € [k], La(J,41,12) is the maximum value of Zp;,, +
Tpm,, for all j', 7" € [j] with j° < j”. Our algorithm works as follows: for every
J€{3,...,f — 1} and every iy, iy € [k] with iy # ia, it checks whether Lo(j — 1,4y,19) +
Tp() + R(j+1,i2) > 3, that is, whether there is a violated cross inequality (w.r.t. F)
such that o(1) = i1, 0(2) = iy and t; = F(j). Clearly, one may also keep track of the
violated inequalities (if any).

Algorithm 2 Cross inequalities separation algorithm.
1: procedure CROSSSEPARATION(F, Ly, R, T)
2 for j € [f —1]\[2] do
3 for i, € [k] do
4: for iy € [k]\ {i1} do
)

6

if Lo(j —1 21722)+9€F])“ + R(j + 1,i3) > 3 then

return True (found violated cross inequality)
return False

Proposition 5.2.1 Let F', Ly, R and T be as defined. Then, Algorithm 2 returns true if
and only if there exists a cross inequality with respect to F that is violated by .

Proof. First we show that if there exists a cross inequality that is violated by z, Algo-
rithm 2 returns true. Let 2, ;1) + Ty, 0(2) + Tty ,0(1) + Tiy,0(2) > 3. Assume, without loss of
generality, that S1, S92, tl,tg € I are such that (81, 827t1, tg) = (F(]l), F(jg), F(jg), F(]4)),
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with 1 < j; < jo < js < js < f. As we stated previously, for any j > 2 and i, iy € [k],
Lo(j,i1,12) = max{Tpp i, + Tryra,: Vi7" € ) g <"}

Hence, the inequality x,, o(1) + Zs,,02) < La(js — 1,0(1),0(2)) holds. Moreover, because
of how we defined matrix R, it is also true that x4, o2y < R(js + 1,0(2)). Consider the
iteration of the algorithm where j = j3, i1 = 0(1) and is = 0(2) — if the algorithm returns
true before this iteration, we are done. It follows from our remarks, that the condition on
line 5 is satisfied, and the algorithm returns true.

Suppose now that there is no violated cross inequality but the algorithm returns true.
Assume this happens at an iteration where j = j3, i1 = a and iy = b. Let j1, j2, js € [f] be
such that Ly(jzs—1,a,b) = Tp[j).0 +Tr(s) e and R(js+1,0) = Tppj, - Then, the algorithm
returning true contradicts the assumption that zp(j,).a + Tr) b + Tr@s) e + TGy < 3. 0

5.3 Enhancing the branch-and-cut algorithm

In this section, we elaborate on further techniques that we used to improve the perfor-
mance of the branch-and-cut algorithm based on the Cut formulation.

5.3.1 Cover inequalities

Consider an input instance (G, w) of BCP;. As we have previously mentioned, the fol-
lowing inequalities are valid for Py (G, w).

w(G) ,
v;w@) niS oy Vielk—1. (5.5)

Note that, for each i € [k — 1], the corresponding inequality (5.5) defines a knapsack
problem with capacity w(G)/(k — i+ 1). Hence, we can take advantage of the extensive
work regarding strong inequalities for the 0/1 knapsack polytope as follows.

For each inequality of class (5.5), we use the heuristics implemented by Wolter [48] to
separate lifted minimal cover inequalities and extended weight inequalities. For complete-
ness, we now shortly discuss some fundamental ideas surrounding lifted cover inequalities.

We begin by defining the knapsack problem. Given a capacity b € R> and ¢ items,
where each item ¢ € [t] has weight a; € Rs and profit ¢; € Rs; the knapsack problem asks
for a set of items that maximize the profit subject to the knapsack capacity. Formally, it
can be written simply as max{cz: ax < b,x € B'}, where x;, for i € [t], indicates if item i
should be selected or not.

A set C C [t] is called a cover if ), . a; > b, in lay terms, it is simply a set of items
that do not fit in the knapsack. Furthermore, a minimal cover C C [t], is a cover such
that, for any i € C, the set C'\ {i} is not a cover. Any (minimal) cover C, defines a
corresponding (minimal) cover inequality

Y m<|Cl-1. (5.9)

ieC
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To obtain lifted cover inequalities we start from a minimal cover inequality (5.9), and
then find coefficients o; > 0, for 7 € [t] \ C, such that the resulting inequality

i+ Y i <IC -1 (5.10)

ieC i€[t\C

is valid. Clearly, if a; > 0, for some i € [t] \ C, inequality (5.10) dominates (5.9).

Now, let p be the weight of a heaviest item in the cover, that is, p = max;cc{a;}. We
define the eztension of C as being the set E(C) = CU{i € [t]\ C: a; > p}. A very
simple lifted cover inequality could be obtained simply by noticing that if (5.9) is valid,
the extended cover inequality Y ;e g o @i < |C|—11is also valid. Naturally, more elaborate
ideas are available in the literature for performing the lifting of cover inequalities. As we
said in the beginning, this was a very brief exposition to some of the concepts surrounding
valid inequalities for the 0/1 knapsack polytope. For more details, the reader is referred
to Wolter’s thesis [48], and the comprehensive survey written by Hojny, Gally, Habeck,
Liithen, Matter, Pfetsch and Schmitt [25].

5.3.2 Domain Propagation

Suppose that our branch-and-cut algorithm is currently exploring a node in the branch-
and-bound tree. Domain propagation refers to techniques that aim to tighten the variable
bounds based on the domain of the other variables in the current node. When a complete
description of the problem formulation is available to the solver, the solver itself can reduce
the domain of the variables. However, when implementing a branch-and-cut algorithm,
for example, the solver may not be able to effectively reduce the domain of the variables,
since only a small part of the inequalities might be available to it. Thus, based on the
work of Hojny et al. [26], we implemented an algorithm to effectively reduce the domains
of the variables in our formulation C.

For any j € [k|, let F; C V be the set of vertices fixed on class j in the current
node of the branch-and-bound tree; in other words, F; contains all vertices v € V such
that variable z, ; was fixed to one. Let us fix ¢ € [k] and assume F; # (). Consider the
graph G; = G[V \ Ui,e[k]:i,# Fy], that is, G; is the graph obtained from G by removing
the vertices that were fixed in classes distinct from . Let C,...,C; be the connected
components of G;, and suppose, without loss of generality, that F; NV (C;) # 0 (see
Figure 5.6). Then, for any vertex v € V(C}), with j € [t — 1], we can fix the variable z,,;
at zero, or if variable z,; was already fixed to one, we can declare the current node as
infeasible and prune it (see Figure 5.6).

5.4 Polyhedral Study

We now present polyhedral results based on the Cut formulation. First, we consider
the 1-BCP,, case, a version of the problem where the weight of a class is the same as its
cardinality. Next, we present formulation C’, the z-version of C, and we derive polyhedral
results for it.
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Figure 5.6: Domain propagation. Suppose in a given node of the branch-and-bound tree
we have the above illustrated configuration, in which Fy = {vs} and Fy = {v,}. Clearly,
for this node, we can fix x,; = 0, for all v € V(C).

5.4.1 Polyhedral Study for 1-BCP,

In this section, we focus on 1-BCPy, the special case of BCP, in which all the vertices
have unit weight. In this case, instead of Py(G, w), we simply write P(G), the polytope
defined as the convex hull of {z € B"* : x satisfies (5.1) - (5.3)}.

We denote by opt(G) the optimal cost of a solution for 1-BCPy, in the input graph G.
Since we assume that G has a feasible solution, it follows that opt(G) > 0. Note that, if G
has no matching of size k, then opt(G) = 1 (contrapositive in Figure 5.7); and thus, it is
easy to find an optimal solution — it is sufficient to do a depth-first search until exactly
k — 1 vertices were still not visited. Moreover, using Edmonds blossom algorithm [16], we
can efficiently check if G has a matching with cardinality k£ or not. Hence, we assume from
now on that G has a matching of size k, since otherwise, the problem would be solvable
in polynomial time.

Figure 5.7: If opt(G) > 1, then G has a matching of size k.

For each v € V and i € [k| we shall construct a binary vector x(v,) that belongs
to Px(G). Let us denote by e(v,i) € B"* the unit vector such that its single non-null
entry is indexed by v and i. Now consider any set S C V' \ {v}, |S| = k — i, and a
bijective function v: S U {v} — [k] \ [¢ — 1], such that v(v) = 4. This function indicates
to which class the elements of S U {v} are assigned to. Since G has a matching of size £,
it follows that n > 2k and such a set S exists. Fix a pair (S,v), where S and v are as
previously defined. Let x(v,i) € B"™ be the vector e(v,v(v)) + Y, .5 €e(u,v(u)). Note
that x(v,7) belongs to Pi(G), it is the incidence vector of a connected k-subpartition, say
S; ={S;,..., Sk} of G, in which v belongs to the class S;, and each vertex of S C V' \ {v}
belongs to one of the classes Sit1, ..., Sk, all of which are singletons (Figure 5.8).

To be rigorous, we should write y*"(v,i), as different choices of S and v give rise
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Figure 5.8: Graphical representation of the bijection v: S U {v} — [k] \ [¢ — 1], used to
define the incidence vector x (v, 7).

to different vectors, but we simply write x(v,7) with the understanding that it refers to
some S and bijection v.

For all the forthcoming proofs we assume that V' = {vy,...,v,} and that the coordi-
nates of a vector x € R™ are ordered as © = (g 1y e e s T 1o v e s Ty s - - ,a;vmk)T.

Proposition 5.4.1 Py(G) is full-dimensional, that is, dim(Py(G)) = nk.

Proof. Let X = {x(v,i) € B"*: v € V and i € [k]} be the set of the nk vectors previously
defined. Let M be the matrix whose columns are precisely the vectors in X:

M = [x(vi, 1), ..., x(vn, 1), ..o, x(v1, k), - oo x(0n, )]

Note that for any vector x(v,i), with v = v, € V and i € [k], all of the coordinates of
X(v,17) that come “before” coordinate (v;,7) are set to zero, in other words,

X(Ua Z) - <O7 CI) 07 X(U7 i)vt,ia X(va i)vt+1,i7 cee 7X(va i)vn,k)T'

Thus, matrix M has dimension nk, since it is a lower triangular square matrix with
nonzero diagonal entries. Hence, the vectors in X are linearly independent. Considering
that X and the null vector belongs to Px(G), we conclude that dim(Py(G)) = nk. O

In the forthcoming proofs, we have to refer to some connected k-subpartitions of G,
defined (not uniquely) in terms of distinct vertices u, v of GG, and specific classes i, j,
where ¢ < j. For that, we define a short notation to represent the incidence vectors of these
connected k-subpartitions. Given such u, v, and i, j, choose two sets of vertices S and S
in G, both of cardinality k£ —i+ 1, and bijections 7: S — {i,...,k} and 7: S = {i,..., k}
such that u € SN S, ve S\ S, n(u) = #(u) =i and 7(v) = j (see Figure 5.9).

Let ¢(u,i,v,7) and 1 (u,i,v) be vectors in {0,1}" such that their non-null entries
are precisely: ¢(u,i,v,7).x) = 1 for z € S, and ¥(u,i,v).4) = 1 for z € S. Note
that ¢(u,,v,J)u; = &(u,4,v,7)p; = Y(u,4,v),; = 1 and ¢ (u,i,v),, = 0 for all £ € [k].
Moreover, the vectors ¢(u,i,v,j) and ¥ (u,i,v) clearly belong to Px(G).

Proposition 5.4.2 For every v € V and i € [k], x,; > 0 induces a facet of Pr(G).

Proof. Similarly to the proof of Proposition 5.4.1, let X; = {x(v,7) € B"*: j € [k] \ {i}}.
Additionally, we define Xy = {v(u, j,v) € B"": u eV \ {v} and j € [k]}.
Let v = v,. For every j € [k], let M; € R " be the following matrix

Mj = [w(vlvjav)v s ﬂvb(vt—lajav);X(vaj)7w(vt+lvj7U)a s 7’¢(/Un7j7 U)]
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Figure 5.9: Bijections from sets S and S to {1,...,k}. These functions are used to define
the incidence vectors ¢(u, i, v, j) and ¥ (u,i,v).

Consider the matrix M € R"™*"* obtained by concatenating the previously defined
matrices. In other words, M = [M;|Ms|...|My], where the symbol | denotes matrix
concatenation. One can easily check that M is a lower triangular square matrix with
nonzero elements in the main diagonal. Furthermore, besides x (v, %), all other columns in
M are vectors that belong to X;UX5. Thus, X; U X5 contains nk — 1 linearly independent
vectors.

Since the vectors in {0} U X; U X5 belongs to the face {z € Py(G): z,; = 0} and
they are all affinely independent, we conclude that the inequality z,,; > 0 induces a facet
of Pr(G). O

In what follows, considering that the polytope Py(G) is full-dimensional, to prove
that a face F' = {x € P,(G): Az = Ao} is a facet of Py(G), we show that if a nontrivial
face F = {x € Pi(G): Az = Ao} of P(G) contains F, then there exists a real positive

~

constant ¢ such that A = ¢\ and \g = c)o.

Proposition 5.4.3 For every v € V, Zie[k] Ty < 1 induces a facet of Pr(G).

Proof. Fix a vertex v € V. Let F' = {x € P(G): Az = 1}, where Az < 1 corresponds
80 X e Toa < 1. Let ' = {& € Pp(G): Ax = Ao} be a nontrivial face of Py(G)
such that F C F. Using induction we shall prove that \,; = Ao and \,; = 0 for
every u € V \ {v} and i € [k]. As a base case, we start by showing that A, = Ao
and A\, = 0. Next, let ¢ € [k — 1], assuming the induction hypothesis that \,; = Ao
and \,; =0, fori e {{+1,...,k}, we show that \,, = \p and A\, , = 0.

Base case: since G is nontrivial and connected, it is easy to see that G has a set of n
nested connected subgraphs 7', T, ..., T;, such that T} consists solely of the vertex v, T; C
Tj4q for each j € [n—1], and V(T,,) = V. (Take a spanning tree in G, and starting from v,
define the subsequent subgraphs by adding at each step an appropriate edge and vertex
from this spanning tree. See Figure 5.10.)

Consider the set of vectors A = {e(G},k)}jem), where e(Gj,k) = Zuevgej)e(“v k)
for every j € [n]. Since v € V(Gj) for all j € [n], it follows that A C F. There-
fore, A(e(G1,k)) = A\g and thus A, = Ao. Additionally, since

A(e(Ga, k) = A(e(Ga, k) = ... = Me(Gn, k) = o,
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Figure 5.10: Nested trees used to define the set A = {e(G},k)}jem)-

it follows that A\, = 0 for all w € V' \ {v}.

Induction step: let ¢ € [k — 1] and suppose that \,; = A\g and \,; =0, for v € V'\ {v}
and i € {{+1,...,k}. Now define the set of vectors B = {¢(u,l,v,k): w € V\{v}}. Note
that B C F, since v belongs to exactly one class of the partition corresponding to each
vector in B. Recall that ¢(u,l,v,k) =3 se(v,7(v)) and 7(v') > ¢, for v € S\ {u}.
Using the induction hypothesis, for each u € V'\ {v}, we obtain the following

A(¢(u7£’ v, k)) = A 6<u7€) + Z 6(1)/, W(U/)) - )‘U,E + Ao = >‘07
v'eS\{u}

and thus, \,, = 0. Moreover, observe that x(v, ) belongs to F. Using similar reasoning,
it follows that A(x(v,?)) = Aye = Ao.

We conclude that \,; = Ao and \,; = 0 for every u € V' \ {v} and i € [k]. In other
words, A = Ag\. Since g # 0 (otherwise I would be a trivial face), it follows that Az < \g
is a multiple scalar of Az < 1, and therefore F is a facet of Py(G). 0

Before showing our results regarding the connectivity inequalities, we need to introduce
some concepts and notations. Let u and v be two non-adjacent vertices of G and let S be
a minimal (u,v)-separator in GG. We denote by [u, v, S| such a triple, and denote by H,
and H, the components of G — S that contain u and v, respectively. Since S is minimal,
it follows that every vertex in S has at least one neighbor in H, and one in H,.

For any vertex z in G, we denote by G, (when [u,v,S] is clear from the context) a
minimum size connected subgraph of G' containing z, with the following properties:

(i) G, contains v and is contained in H,, if z € V(H,);
(ii) G, contains u and is contained in H,, if z € V(H,);
(ili) G, contains u and v, otherwise.

Note that, in the latter case, G, contains exactly one vertex of S. Clearly, such a subgraph
always exists (and may not be unique). Moreover, if z € {u, v}, the degree of z is zero.
Likewise, if z € S, the degree of z is two. In all other cases, the degree of z in G, is
exactly one and the subgraph G, — z is connected (see Figure 5.11).
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Figure 5.11: Subgraph G..

Let ¢ € [k] and z € V. We say that a connected (k — i)-subpartition V. is a robust
connected (k — i)-partition of G — G if V. = {V;},cppp» and |V(G.)| < |V;| for all j €
(k] \ [{]. We say that G is (u,v, S,i)-robust if, for every z € V| there is a graph G, such
that G — G, has a robust connected (k — i)-partition.

Theorem 5.4.4 Let u and v be non-adjacent vertices in G, let S be a minimal (u,v)-
separator, and let i € [k]. Then the inequality

xu,i + Iv,i - E xs,z' S 1

seS

induces a facet of Pr(G) if and only if G is (u,v, S, 1)-robust.

Proof. Fix u, v, S and 7 as in the statement of the theorem. We first prove that, if
the graph G is (u, v, S,4)-robust, then the inequality z,; + ,; — >, g2.; < 1 defines a
facet of Py(G). Let Az < 1 denote this inequality and consider the face defined by it:
F={z € PuG): Az =1}. Now let I = {z € Pr(G): Az = X\o} be a nontrivial face of
Pw(G) such that I C F.

We next prove that \ = AoA. For that, we shall refer to entries of A of the form A, ;,
where y € V and j € [k], and analyze separately the cases: j € [i —1] (Case 1), j € [k]\ []
(Case 2) and j =i (Case 3).

For the Case 1 and Case 2, fix a vertex z € S. Since G is (u,v, S, 7)-robust, there is a
graph G such that G — G has a robust connected (k —i)-partition V. = {V;},cpp\- By
definition, (G, contains the vertices u, v, and z; thus, each class in ), has size at least 3.
Let V; = V(G.), and let W = {v;41,..., v}, where v; € Vj, for j € [£] \ [4].

For simplicity, set v = v;. Let v be the vector in {0,1}"* defined as vy = Ef:l e(vj,7)
(the incidence vector of a (k — i 4 1)-subpartition whose classes are the singletons {v;},
for j € {i,...,k}). Clearly, v € F. This vector will be used to construct new vectors in
F.

Case 1. Let j € [ —1].

Consider a vertex y € V. Since |W| = k — i and n > 2k, there exists a set of

vertices {vj11,...,v;_1} that is disjoint from W U {u, v, y}.



54

(1a) If y ¢ W U {v}, then the following vectors belong to F"

i—1
Y=7+ > e(vn,l) and " =7"+e(y,)).
(=j+1

Therefore, \y' = X\g and Ay" = (7' +e(y, j)) = Ao. Hence, A(e(y,5)) = \,; =
0 for y ¢ WU {v}.

(1b) If y € W U {v}, then y = v, for some ¢ € {i,i+ 1,...,k}. Take the
subpartition 7' and construct a new subpartition v, by replacing y with u.
Then, from ~,, construct the subpartition ~; by adding y to class j. These
subpartitions are described by the vectors

Yo =7 —e ) +e(w,l) and 9=, + ey, ).
Note that both vectors 7/, and 4} are in I C F. Thus, \,; = 0 for y € WU{uv}.
Case 2. Let j € [k] \ [7].

(2a) If y = v;, let w,; be a vertex that is a neighbor of v, in G[V}] for ¢ €
[k]\ [ — 1]. Then, it is immediate that the following vectors belong to F":

9:7+Ze(w4,€) and 0=0—-ely,j).

Observe that 6,6’ € F C F and thus \,; = 0.

(2b) If y # v;, consider the vector v, = v — e(v,i) + e(u,i). If y = v,
take f?u = Yu — e(”jaj) + e(ya])7 and if Yy 7&})7 take :)/y =79 €(Uj,j) + e(y7j)
Recall that A, ; = 0. Since 7, Yy, Yu, ¥y € F' C F, it follows that A, ; = 0.

Case 3. We now focus on the entries of A indexed by 1.

For each y € V, let G, be such that G — G, admits a robust connected (k — i)-
subpartition V, (where G, is a subgraph of G as previously defined). Let ¢ denote the
incidence vector of V,, and let ¢, = ¢ + ZwGV(Gy) e(w,1).

(3a) Suppose y ¢ S U {u,v}. In this case, Gy — y is connected. Consider
¢ = ¢y —e(y,i). Clearly, ¢,,¢' € FF C F. Thus, \,; = 0 for every y €
VA (SU{u,v}).

(38b) Let y € SU{u,v}. If y € {u,v} then G, consists of precisely the vertex y.
Since ¢, belong to F' C F', we conclude that

Mo +e(y,i) = Ayi = o

Note that because Case 2 is valid, A¢p = 0.
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If y € S, then {u,v,y} C V(G,) and V(G,) NS = {y}. Since ¢, € F C F
for every y € S, recalling that \,; = 0 for every w € V' \ (S U {u,v}), we
have that A, ; + Ay + Ay = Ao for every y € S. Combining with the previous
equalities, we conclude that \,; = —X¢ for every y € S.

Putting together Cases 1, 2 and 3, we conclude that A\ = )\05\, as we wanted to show.

Let us prove now that if ,; + ,; — > s %s; < 1 induces a facet of Py(G), then G
is (u,v,S,i)-robust. Suppose G is not (u,v,S,i)-robust. Then, there is a vertex z €
V such that for no minimal connected graph G, there is a robust connected (k — i)-
partition {V;};cpp of G — G.. This means that there is no connected (k — i + 1)-
subpartition {V}},cp\p—1) of G such that

(i) zeV,
(i) [Vin{u}|+[Vin{v}| =[Vin S| =1, and
(i) [Vya] < |V for all j € 4] \ 1.

Consider now a vertex z of Pr(G) that belongs to F', and suppose that Z,; = L.
Let W; = {w € V: Z,,; = 1} for each j € [k] \ [i — 1]. Since 7 € F, it clearly holds
that |W; N {u}| + |W;n{v} — [W;NS| =1and |W;_4| < |W;| for every j € [k]\ [i]. Thus,
{W;} e\ i—1) is a connected (k—i+ 1)-subpartition of G that satisfies properties (i)—(iii),
a contradiction. Hence, we have Z,; = 0 for every vertex 7 € F'. But then, F'is contained
in the face {x € Py(G) : 2., = 0}, and so F' is not a facet of Px(G). This concludes the
proof of the theorem. 0

5.4.2 Polyhedral Study of a relaxed formulation

Consider the following formulation C, (G, w), obtained from formulation Cy(G, w) by drop-
ping the ordering of the classes (5.1) and adding a new non-negative variable z which is
smaller than the weight of each class.

Cr(G,w) max 2
s.t. 2z < Zw(v) T Vie k], (5.11)
veV
Y wi<1 YweV, (5.2)
1€[k]
T+ Tyi — me <1 Vuv ¢ E,S € I'(u,v),i € [k], (5.3)
ses

z,; € {0,1} Vv eV and i € [k, (5.4)
2 ER. . (5.12)

Let Pi(G,w) = conv({(z, 2) € B x R> : (z, 2) satisfies (5.11), (5.2) and (5.3)}). For
ease of presentation, we refer to this polytope simply as P. The polyhedral study we
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derive for P is based on the previous results we obtained for P,(G). However, P has one
extra dimension when compared to Py(G), due to the introduction of the real variable z.
To handle this difficulty, we define P, as being the projection of P into the space of the x
variables, i.e., P, = conv({r € B"* : x satisfies (5.2) and (5.3)}). Clearly, Px(G) C P,.

The next results are based on the following strategy. First, we show in Proposition 5.4.5
that, on some cases, it is possible to lift a face F, of P, to obtain a face F of P, such
that dim(F) > dim(F,) + 1. In particular, this proposition allows us to say that some
inequalities that induce facets of P, are also facet-defining for P. Next, we show in
Lemma 5.4.6 that facet-defining inequalities of P,(G) may also define facets of P,. Using
both results, we conclude that some inequalities that induce facets of Py(G) also define
facets of P.

Before we proceed, let us define p as the number of vertices in G with positive weights.
We assume p > k, since otherwise an optimal solution has cost zero and the problem is
solvable in polynomial time.

Proposition 5.4.5 Let 7z < my be a valid inequality for the polytope P. Consider the
faces F = {(x,2) € P:mx =m} and F, = {x € P, : mx = m}. If dim(F,) > nk—p+1,

then dim(F') > dim(F;) + 1.

Proof. Let d be the dimension of F,. Thus, there exists a set {2 z%,... 2%} of d + 1
affinely independent vectors in F,. Let Q = {(2°,0), (z%,0),..., (2%, 0)}, clearly Q C F.
It remains to construct one extra vector that is affinely independent with respect to all
the vectors in Q).

Consider the vector
(2% + 2t + ..+ 27,

since 7 is a convex combination of vectors in Fj, T belongs to F,. Furthermore, 7 has, at
most, nk—d coordinates with zero value. The reason is that, forv € V and i € [k], z,;, =0
if and only if ), = x}, = ... = 2, = 0. Hence, if & had at least nk — d + 1 coordinates
with zero value, then F, would be contained in a space with dimension at most d — 1, a
contradiction. Given that d > nk—p+1, it follows that at most p—1 coordinates of = are
zero valued. Therefore, for any class i € [k], there exists v € V, such that w(v) and 7,
are positive values.

For every i € [k], let w; = > ., w(v) T,;. Observe that w; > 0, for all i € [k].
Define @ = min;e [y w;, then the vector (Z,w) belongs to F and it is affinely independent
with the vectors in @ (see Figure 5.12). O

Lemma 5.4.6 Suppose nx < my is an inequality that is valid for both Pn(G) and P,.
Let F and F, be the faces induced by (7, ) in the polytopes Pi(G) and P,, respectively.

Then dim(F') < dim(F}).

Proof. Since Pi(G) C P,, all the dim(F) + 1 affinely independent vectors that belong
to F also belong to F}. a

Corollary 5.4.7 dim(P) = nk + 1.
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Figure 5.12: Constructing the vector (Z,w) from vectors in F, (or Q).

Proof. Consider applying Lemma 5.4.6 with the trivial inequality Oz < 0. The induced
faces are F' = P,(G) and F, = P,. Thus, dim(P,) = nk. Next, Proposition 5.4.5 gives
us one extra affinely independent vector in P. d

Corollary 5.4.8 For every v € V and i € [k], ,; > 0 induces a facet of P.
Corollary 5.4.9 For every v € V, Zie[k} Ty < 1 induces a facet of P.

Because formulation C;(G,w) is not ordering the classes by their weights, we prove
that the connectivity inequalities induce facets of P, regardless if G is (u,v, S, i)-robust
or not. Moreover, we analyze when the cross inequalities induce facets of P. The overall
idea is similar: we first show that these inequalities induce facets of P,, then we use
Proposition 5.4.5 to claim that they also define facets of P.

Proposition 5.4.10 Let u and v be non-adjacent vertices in G, let S be a minimal (u,v)-
separator, and let i € [k]. Then the inequality

Ly + LTyi — E Lsi S 1
seS

induces a facet of P.

Proof. As usual, let Az < 1 denote the inequality x,; + ¥y; — D, g2 < 1. Consider
the face ' = {x € P,: Az = 1} and let F = {z € P,: Az = A} be a nontrivial face
such that £ C F. To show that each coefficient A.,; has the appropriate value, we first
consider j =4, and then j € [k] \ {i}.

For any z € V, recall the definition for GG, used in the last section. Let e(G,,i) =
> vev(G.) €(v, 1), in other words, e(G., ) is the incidence vector of a solution in which all
the vertices in GG, belong to the i-th class. As a consequence of how GG, was defined, e(G,, 7)
belongs to FCF.

If z € V\(SU/{uv}), note that (e(G.,7) — e(z,1)) also belongs to F. Therefore,
since A(e(G.,1)) = Ao and A(e(G,, i) — e(z,1)) = Ao, it follows that A\.; = 0. Suppose
now that z € S U {u,v}. If z € {u,v}, because both vectors e(u,i) and e(v,i) belong
to FCF , we get that \,; = A\,; = A\o. If 2 € 5, it follows from the previous cases that

)\(E(GZ, Z)) = )\u,i + )\v,i + )\z,i = )\0.
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Hence, A,; = —Ao.

Consider j € [k] \ {i}. Since the vector (e(u, i) + e(z, 7)) belongs to F' C F it follows
that A(e(u,i)+e(z, 7)) = Ao, and thus A, ; = 0. Similarly, when z = u, A(e(v, i) +e(u, j)) =
Ao and A, ; = 0.

So far, we showed that F'is a facet of P,. Since P, is full-dimensional, dim(F) = nk—1.
Using Proposition 5.4.5, we conclude that the inequality x,,; +,; — ZSGS zs; < 1induces
a facet of P. O

Theorem 5.4.11 Let {s;,t;}ic) €V be a set of distinct pairs of vertices such that there
is no collection of vertez-disjoint (s;,t;)-paths in G, fori € [2|. Moreover, let o: [2] — [k]
be an injective function, and let I be its image. Then the cross inequality

Tsy0(1) T Tt10(1) T Tsp0(2) T Ttyo2) < 3
induces a facet of P if and only if the following conditions hold

1. there is no vertex z € V' such that, for every i € 2], z is a (s;,t;)-separator; and

2. {sq,ta} is not a (s1,t1)-separator, and {s1,t1} is not a (sq, ta)-separator.

Proof. Let F' be the face of P, induced by the inequality in the theorem statement. First,
we demonstrate that if either condition (1) or (2) is not satisfied, F' is not a facet of P,.

Suppose there is a vertex z which is a (s;, t;)-separator, for every i € [2]. Let & be an
integer vector that belongs to F. Thus, there must exist j € [2], such that s; and ¢; are
connected in the subgraph induced by the set of vertices {v € V : Z, ; = 1} and z belongs
to this subgraph. Hence, F' C {z € P, D iclk T=i = 1} and F'is not a facet.

Now suppose the set of vertices {ss, 2} is a (s1,t1)-separator, then we shall demon-
strate that £ C {x € P,: Ts 0(1) + Tty 0(1) = Tsg,o(1) — Ttao() = 1}. Again, let T be an
integer vector that belongs to F.Letic 2] be such that Zy, o) = &4, 06) = 1. If i =1,
assume without loss of generality that Z,, ,(1) = 1. Since € F', t, belongs to class o(2)
in 7 and Ty, ;1) = 0. On the other hand, if ¢ = 2, Z,, ,(1) = T4, ,1) = 0 and exactly one
vertex from {sy,¢;} belongs to class o(1) in the solution induced by Z. Therefore, in both
cases it holds that z,, 1) + 74, (1) — Tsy0(1) = Ttpo(1) = 1.

Next, we turn to proving that F' is a facet if (1) and (2) are satisfied. In order to
enumerate the appropriate vectors contained in F, we start with a simple claim about
paths that avoids specific vertices. All paths mentioned henceforth are simple.

Claim 5.4.12 For any vertex y € V' \ {s1,11, S2, t2}, there exists a,b € [2], a # b, such
that there is a (sa,t.)-path Py C G that satisfy the properties: y & V(Py}) and |V (Py}) N
{Sb,tb}| S 1.

Proof. For some i € [2]|, there must exist a (s;,1;)-path Py" that does not contain y,
otherwise, condition (2) would not hold. Let j € [2] \ {i}, if |P} N {s;,t;}| < 1 the claim
holds with @ = ¢ and b = j. Thus, assume that P) contains both s; and ¢;. In this setting
(see Figure 5.13), there is a (s;,t;)-path Pg C sz that does not intersect with {s;,;,y}.
a
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Figure 5.13: The path P if [P} N {s;,t;}| = 2.

As usual, assume F' = {x € P,: Az = Ao} and let F = {z € P,: Az = Ao} be a
face such that F C F. We show that there exists a constant ¢ € R such that \ = e
and Ay = co. In other words, A = (Xo/Ao)A = (Ao/3) .

Once more, we break the analysis into cases. First, we demonstrate that A, ; = 0, for
any vertex y € V' \ {s;,t;i}icpy) and j € [k]. Afterwards, we prove that A, ;) = A, o) =
Xo/3 and Ay, ; = A, ; =0, for i € [2] and j € [k] \ {o(¢)}. In the forthcoming discussion,
we use the notation e(G', i) = 3 (g €(v, 1), for any subgraph G’ C G and i € [k].

Consider the entries A, ;, where y € V' \ {s;,;}icjgy and j € [k] \ I. By Claim 5.4.12,
there is a,b € [k] such that Py is a (s4,ta)-path, [V(P;) N {sy,tp}| < 1 and y ¢ V(Py).
Let u be a vertex in {s;,#,} \ V(P,), we define the vectors

p=e(Py,ola)) +e(u,o) and  p'=p+e(y,j).
Clearly pu, ' € F C F. Hence, solving the equations
AMe=2Xo and A = Ap A+ ey, 5)) = Ao,

we conclude A\, ; = 0. This reasoning — where we obtain the value of a coordinate of A by
the construction of two vectors in ' — will be repeated throughout the proof. Therefore,
we present the next arguments in a more concise manner.

Choose a and b in a way that P satisfy the properties of Claim 5.4.12. Let H, be the
component of G — P which contains y. Furthermore, let H; and H; be the components
of G — PJ that contains s, and t;, respectively. We define H, = () (resp. H, = 0)
if s, € V(Py) (resp. t, € V(Py)). In order to show that \,; = 0 for y € V'\ {s;,%;}icpay
and j € I, we separate the analysis into four cases:

e Cases of type 1.
(a) H, € {Hs, Hi} and j = o(b),
(b) H, ¢ {H;, Hi} and j = o(a),
e Cases of type 2.
(a) Hy, ¢ {H,, H,} and j = o(b),
(b) H, € {H,, H,} and j = o(a).
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Figure 5.14: The four cases in the proof. Red and blue represent class o(a) and o(b),
respectively. The figures give us an idea of how we construct the desired vectors.

Note that, since condition (2) holds, if V(Hy) # 0, N(H,) is not contained in {s,, t,},
that is, the neighborhood of H; contains a vertex that is not one of the endpoints of P
Hence, we define u, (resp. u;) as a vertex in N(Hy) \ {sq,ta} (vesp. N(H;) \ {5q,ta}). On
the other hand, if V/(H,) = ), we define u, = s, (resp. u; = t3).

Cases of type 1.

(1a) Suppose H, = H, and j = o(b). Consider a path P, C H, with endpoints
at vertices y and s,. Define vectors

ps = e(Py,o(a)) +e(Ps,j)  and  pg = ps—e(y,j).

One may easily verify that ji,, 4/, € F C F (see Figure 5.14(a)). The case H, =
H; and j = o(b) can be addressed analogously.

(1b) Suppose H, ¢ {Hs,H;} and j = o(a). Let P, C H, be a path that
connects y to a vertex adjacent to P;'. Now the vectors p + e(P,,j) and p +
e(P,,j) —e(y,7) belong to F' (Figure 5.14(b)).

Cases of type 2.

(2a) If H, ¢ {H;,H,} and j = o(b), we denote by P;; the (us,u;)-path
contained in P¢. Let P} be a (s, t,)-path such that V(P)) NV (Pg) = V(Pyy).
Note that V(P?)N{sq, ta, y} = 0. Let P} be a path that connects y to a vertex



adjacent to P, such that there exists a vertex u’ € {s,,%.} \ V(P)). It follows
from our construction that the vector e(P?, j) + e(P), j) + e(u’,0(a)) belongs
to ' C F (see Figure 5.14), and as a result \,; = 0.

(2b) Our last case is when H, € {H,, H;} and j = o(a). Assume, with no
loss of generality, that H, = H,. If there is a path P, that connects y to
the neighborhood of P and avoid s;, we can apply the same reasoning as in
Case (1b). Hence, we suppose s, is a (y, us)-separator. Let P! be a path that
connects s, to a vertex in N (us)NH. Consider the path P, defined previously
and let P} be a (s, ty)-path such that it contains P, and Pl, and V(P}) N
V(P2) = V(P,y). Tt follows from the construction that P} does not intersect
with {sq, %4, y}. Interchanging the roles of a and b and considering the path P;

instead of P, we reduce Case (2b) to Cases (1a) and (2a) (Figure 5.14(d)).

61

Finally, we now refer to entries Ay ;, ¥ € {s;,t;}ic2)- As a consequence of condition (2),

for any a,b € [2], a # b, there must exist a (s,, t,)-path P* such that V/(P*) N {s,t,} = 0.
Hence, for any j € [k] \ {o(b)}, it holds that the vector e(P? o(a)) + e(ty, o(b)) + e(sp, j)
belongs to F. Therefore, Ay, ; =0, for any ¢ € [2] and j € [k] \ {o(d)}.

Consider now the vectors e(P!,a(1)) + e(s2,0(2)), e(P',a(1)) + e(t2,(2)) and their

Asio(1) T Atro(1) T Asso(2) = Ao,
Asio(1) T Aty o) T Aoo(2) = Ao,

(

(
Aso,o(2) T Ao o(2) + sy 0(1) = Ao, (5.

(

Asz,o(2) T Aty o(2) + Aty o(1) = Ao

Ao
Asio(1) = Ayo(1) = Asy0(2) = Migyo(2) = 3

counterparts e(P?,0(2)) + e(s1,0(1)),e(P? 0(2)) + e(t1,0(1)). Because all these vectors
belong to F' and given our previous analysis for the zero valued entries of A, we end up
with the following system of linear equations.

Subtracting (5.16) from (5.15) we obtain that A, ;1) = A, »1). Equivalently, it also holds
that A, o(2) = Ais,0(2)- Moreover, subtracting (5.13) from (5.15) gives us A\, »(2) = Aty 0(1)-
Therefore, we conclude that
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Chapter 6

Computational Experiments

The computational experiments were carried out on a PC with Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz, 40 cores, 64 GB RAM and Ubuntu 18.04.2 LTS. The code was
written in C+-+ using the graph library Lemon [14]. We implemented a branch-and-cut
algorithm based on the Cut formulation C using SCIP 6.0 [19] and Gurobi 9.0 [23] as
the LP solver. We also implemented branch-and-bound algorithms (using only Gurobi
9.0) based on the Flow formulations F and F and on the models previously proposed by
Mati¢ [37] and Zhou et al. [50]. Each algorithm we implemented had 4 threads available
to it. We used SCIP 6.0 in our branch-and-cut implementation for three reasons. First,
unlike Gurobi 9.0, SCIP allows for multiple rounds of cut generation in non-root nodes
of the branch-and-bound tree. Second, it has built-in routines for separating the lifted
minimal cover inequalities mentioned in Chapter 5. Third, it allows the user to write a
custom domain propagation routine, as the one mentioned in Section 5.3.

Due to small improvements in the preliminary experiments, we replace inequalities
(4.5), (4.10) and (5.2) with equalities. Furthermore, to evaluate strictly the performance
of the mentioned formulations, all standard cuts used by SCIP and Gurobi are deactivated,
except for the lifted minimal cover inequalities.

Finally, for each of the formulations we proposed in this work, we also implemented
their correspondent z-versions. In other words, we implemented a branch-and-cut algo-
rithm for C’ and branch-and-bound algorithms for 7’ and F".

6.1 Benchmark instances

Computational experiments on instances consisting of grid graphs and random connected
graphs are reported in [37,50]. In this work, besides evaluating our algorithms on instances
previously proposed in the literature, we also considered larger graphs, different weight
distributions and real world instances.

The grid instances are named in the format gg height width_[a|b|c] and the random
instances have names in the format rnd_n_m_|a|blc|, where n is the number of vertices
and m is the number of edges in the graph. The letters ‘a’, ‘b’ and ‘c’, indicate that the
weights of that instance are integers obtained uniformly from the intervals [1, 100], [1, 500]
and [1000, 5000], respectively.
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In all of these instances, the weights are integers uniformly distributed in three in-
tervals, named a, b and ¢, indicated in the end of the instance names: a = [1,100],
b = [1,500] and ¢ = [1000, 5000].

In order to generate a random connected graph with n vertices and m edges (with
m > n—1), we first use Wilson’s algorithm [47] to generate a uniformly random spanning
tree T' on n vertices, and then add m —n 4 1 distinct new edges selected randomly from
E(K,) \ E(T) with uniform probability. Wilson’s algorithm returns a spanning tree T
sampled from the set 7,, — of all possible spanning trees of K,, — with probability 1/|7,|.

In the experiments, for each format (considered a graph class) indicated in the tables
and plots, we generated 10 random instances. The randomness of grid instances refer to
their weights, and of random graphs refers to the graphs and the weights.

Finally, we also created instances based on a real-world application, namely demar-
cation of preventive police patrol areas |[4]. This problem consists in subdividing a given
map into k (contiguous) regions such that every region has roughly the same crime rate.
Each of those regions is assigned to a police patrol team. Clearly, this problem can be
modeled as BCPy,.

Using the OSMnx [8] library we transformed maps from OpenStreetMap [43] into
undirected graphs. The edges in the graphs generated by OSMnx correspond to sections
of the streets. As some of these edges may be too “long” (over 200 meters), we subdivide
long edges into smaller edges so that the length of each edge is limited to 200 meters.

Working with the Socrata Open Data API, we downloaded the Public Safety data for
the cities of Chicago, Los Angeles and New York; and using the transparency website of the
Department of Public Safety of Sao Paulo, we downloaded data for the city of Campinas.
The police patrolling instances that we generated have names in the format name_n_m,
where name denotes the name of the corresponding geographic region, n = |V| and
m = |E|.

For each vertex v of a graph generated from a map, we assign a weight that is propor-
tional to the crime rate geographically close to the point in the map associated with v.
More precisely, let G = (V, E) be a graph corresponding to a region of a city and C be a
set of points of this region where crimes have occurred. Let d: C'x V — Q> be a function
that computes the distance (in meters) of a crime to a vertex, and f: R — R be the nor-
mal probability density function with mean © = 0 and standard deviation ¢ = 0.5. We
consider that a crime has influence on the weights of the vertices that are within a radius
of 200 meters from it. So, for each point ¢ € C, we define V. = {v € V: d(c,v) < 200},
and F. =) .. f(d(c,v)/200). Then, for each vertex v € V, we set its weight as

f(d(c,v)/200)
= | 100 e
o) = oo 3 S
c:veV,
Note that the formula used to define the weight of a vertex agrees with the notion that
the influence of a crime over a region is a Gaussian distribution on the distance to the

crime.
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(a) A 7 by 10 grid graph instance.

S . <
b A :
.ﬁ.~ -

‘ .0 - A Lo
. I v,
e . Fi
« ) . ° ~
o * o \ -
* ‘;.. . o L %
% . N L b
? e . ° . 8
. «*
. . - v o 5 .
.. R - . - o . . . ®
. . .. s e "‘i LS *
.
. . :. . ~ . . o :.
LIS b « .
A ° ° x ° e °
L3 * . bt . . © .
b ] . " »
. ® o PR .
o ° ‘e * ad ° o
.
.
S e gye .'.:-.
® Y .
¥ -~
L .
- . -
° y .
%% o
L I
%
L] .

(b) A police patrolling instance, based on the University of
Campinas campus.

Figure 6.1: Instances of BCP3 and optimal solutions. The radius of each vertex is pro-
portional to its weight. The vertices in V) are colored red.
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Figure 6.2: Computational results for BCP5 on grid graphs. Time is in logarithmic scale.

6.2 Computational results

The execution time limit was set to 1800 seconds. In the following tables, we show the
average number of explored nodes in the branch-and-bound tree (column Nodes) and the
average time, in seconds, to solve the instances (column Time), ignoring the unsolved
instances. When the time limit was exceeded for all 10 instances of a graph class, we
set the corresponding table entries with a dash (-). In a row, when all 10 instances of
a graph class were solved, the (average) time that is minimum is indicated in boldface.
Similarly, when the number of nodes that were explored is minimum, we underline the
corresponding value.

Henceforth, when we refer to any of the formulations it should be understood that
we are referring to the corresponding exact algorithms that we have implemented for
them. Thus, CUT corresponds to the branch-and-cut algorithm based on formulation C,
while FLOW corresponds to the branch-and-bound algorithm based on F. The algorithms
based on the z-versions of the formulations have names with suffix “-z”. It goes without
saying that CUT-Z cannot take advantage of the lifting we proposed for the connectivity
inequalities in Proposition 5.1.3. We omit the results for the algorithms based on F
and F' because, in our experiments, they were (on average) over 10 times slower than
FLOW.

We start by showing in Table 6.1 the impact of separating cross inequalities. Column
CUT-CROSS refers to CUT with the cross inequalities. Columns Conn Cuts and Cross
Cuts show the average number of connectivity and cross inequalities separated by the
algorithm. Notice that, on average, CUT-CROSS was much faster than CUT on all grid
instances. Furthermore, only CUT-CROSS was able to solve all the instances with more
than 100 vertices within the time limit.

Instead of showing the complete tables (which can be seen in the appendix), we se-
lected some representative instances with the weight distribution of type a = [1, 100] and
plotted the execution time in a histogram. This way, the reader can easily visualize the
bulk of our results without carefully (and painfully) analyzing each row of the tables.
Figures 6.2 and 6.3 show histograms with the average execution time — note the y-axis
is in logarithmic scale. Unlike the tables, when computing the average for these plots,
we assume that an algorithm took 1800 seconds to solve instances which were not solved



66

CuUT CUT-CROSS
Instance Sol Conn Cuts Time Sol Conn Cuts Cross Cuts Time
gg 05 05 a 10 3,504 0.50 10 449 478 0.15
gg 05 05 b 10 24252 3.32 10 2,817 3841  0.84
gg 05 05 ¢ 10 110,142  16.22 10 9,852 14,505 3.77
gg 05 06 _a 10 6,184 0.80 10 1,056 1,286 0.32
gg 05 _06_b 10 21,125 2.76 10 3,311 4,536 1.02
gg 05 06 c 10 156,230  22.97 10 12,587 19,210 4.94
gg 05 10 _a 10 44.635 5.63 10 2,187 2,147 0.55
gg 05 10 b 10 67,926 9.37 10 3,776 3,884 1.10
ge 05 10 ¢ 10 358226 55.92 10 14,807 93,184  7.80
gg 05 20 a 6 2,821,710 521.39 10 9,578 8,768 2.43
gg 05 20 b 10 1,836,157 325.73 10 23,832 23,613 6.47
gg 05 20 c 8 3,590,827 751.55 10 30,836 34,307 14.43
gg 07 07 _a 10 41279  6.84 10 2,128 2,220  0.78
gg 07 _07_b 10 184,730  30.99 10 3,035 3,647 1.29
gg 07 07 _c 10 896,587 167.58 10 19,739 28,066  10.11
gg 07 10 _a 10 301,289 57.34 10 2,154 1,942 0.81
gg 07 10 b 10 427,441 87.24 10 5,954 6,243  2.69
gg 07 10 ¢ 10 1,715,120 390.97 10 31,894 44412 31.56
gg 10 10 a 10 1,373,429 389.42 10 2,087 2,432 1.20
g 10 10 b 9 1289465 370.06 10 3,652 3,343 2.12
gg 10 10 _c 9 1,373,725 406.28 10 28,492 32,264 28.53
gg 15 15 a 0 - - 10 13,032 7371 8.97
gg 15 15 b 0 _ ~ 10 15,411 10,182 13.88
gg 15 15 ¢ 0 - - 10 70,108 52,280 106.23

Table 6.1: Computational results for BCP5 on grid graphs showing the efficiency of the
cross inequalities.

10° Bl cur
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10? B rLow
@ BN FLOW-Z
< 10' B )Mati¢
F} B Zhou
10°
101

rnd 200 300 rnd 200 600 rnd 200 1500 rmd 300 500 rnd 300 1000 rnd 300 2000
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Figure 6.3: Computational results for BCP5, on random graphs. Time is in logarithmic
scale.
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Figure 6.4: Experiments for BCP; on random graphs with 1000 vertices and different
densities. Time is in linear scale.

within the time limit.

As can be seen, our best algorithms significantly outperform previous exact methods.
Figure 6.2 illustrates that FLOW had better execution times than CUT-CROSS on most of
the grid instances. Moreover, on grids with over 100 vertices, Mati¢ and Zhou formulations
were not able to solve the majority of the instances, while CUT-CROSS and FLOW solved
all of them. Furthermore, Figure 6.3 shows that both of our formulations are also faster
(on average) on random graphs instances. The execution time for CUT was better than
FLOW on some of the random graphs. Looking more closely at the number of vertices and
edges, we noticed that the density of edges on the input graphs was a crucial factor for
the performance of both algorithms.

In order to further explore the influence of the density of edges, we generated random
graphs with a greater number of vertices (n = 500 and n = 1000) and different values
for density (m = n®, where a varies between {1.1,1.2,...,1.5}). The experiments on
instances with 1000 vertices are visually represented in Figure 6.4. Table A.4 (in the
appendix) shows that random graphs with 500 vertices exhibited a similar trend. Observe
that in this histogram, time is in linear scale, since when doing comparisons between our
own algorithms the difference in execution times is less prominent. Our experiments
indicate that algorithms based on Cut formulation perform better than algorithms based
on flow formulation when m > n'2. One fact that might explain this behavior is that
a higher percentage of the vertices are adjacent in graphs with greater density. Thus,
because we do not separate connectivity inequalities for adjacent vertices, the algorithms
might spend less time in the separation routines. Moreover, as we increase the density of
the graphs, it becomes easier to guarantee the connectedness of the classes. Thus, fewer
connectivity inequalities might be violated in the branch-and-cut algorithms. Indeed,
this was observed in our experiments (and shown in Table A.4): increasing the number
of edges reduced drastically the number of separated connectivity inequalities, in a way
that once m gets greater or equal to n'*, no connectivity inequality is separated at all.

Looking at Figures 6.2 and 6.3 we also observe that, on some classes of graphs, ordering
the classes by their weights was not beneficial. In fact, the z-versions of the algorithms
were, on average, slightly faster than their correspondent ordering counterparts. However,
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as the size of the grids grows, the number of symmetric solutions also increases; thus, on
larger grids, ordering the classes might improve the execution times. Such a behavior can
be seen in Table 6.2, where we show instances of grid graphs with many vertices that
could only be solved by FLOW and FLOW-Z. Notice how FLOW was superior on almost
all the rows of the table.

FLOW FLOW-Z
Instance Sol Nodes Time Sol Nodes Time
gg 30 30 a 10 466 2.71 10 333 2.15
gg 30 30 b 10 731 3.14 10 542 2.61
gg 30 30 c 10 2,064 5.09 10 5,259 9.57

gg 60 60 a 10 420 20.06 10 318 12.30
gg 60 60 b 10 751  19.49 10 883  20.30
gg 60 60 c 10 2,810 56.19 10 861  25.17
gg 90 90 a 10 727  89.21 10 483 130.51
gg 90 90 b 10 874  88.78 10 327 203.92
gg 90 90 ¢ 10 1,796 11632 10 596 102.75
gg 120 120 a 10 575 148.93 10 143  626.39
gg 120 120 b 10 736 207.57 10 164 496.14
gg 120 120 ¢ 10 1,077 178.66 10 242  254.92
gg 150 150 a 10 546 302.97 5 230 1281.25
gg 150 150 b 10 1,087 334.19 7 129 997.63
gg 150 150 ¢ 10 1,226 383.69 9 197 643.20
gg 180 180 a 10 305 571.58 10 599 T717.65
gg 180 180 b 10 451 599.53 9 374 1112.19
gg 180 180 ¢ 10 784 716.84 10 1,321 938.36
gg 210 210 a 10 400 1100.32 10 298 1117.10
gg 210 210 b 9 325 1064.07 10 194 1172.61
gg 210 210 ¢ 10 1,199 1232.04 3 1,482 1491.76

Table 6.2: Performance of FLOW to solve BCP, on large grids.

In our experiments, FLOW and FLOW-Z were the only algorithms able to solve the
police patrolling instances within the time limit; with the latter algorithm having a better
overall performance. As Table 6.3 indicates, the problem becomes harder to solve as the
value of k increases.

In this sense, we also carried out experiments for £ > 2 on grid graphs and random
graphs, as shown in Table 6.4. To compare with the formulation proposed by Zhou et al.,
which is intended to MIN-MAX BCPy, we considered cut and flow formulations with min-
max objective (i.e. minimizing the weight of the k-th class). These algorithms are denoted
by the string “(MIN-MAX)” at the end of their names. Since FLOW-Z (MIN-MAX) had
the best performance in these instances, we omit the results for the other algorithms
in Table 6.4 (the interested reader can check the Table A.5 for the expanded results).
We remark that although Zhou et al.’s branch-and-bound solved one specific instance in
508.93 seconds, FLOW-Z (MIN-MAX) solved 5 more instances of the same graph class.
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Instance 2 3 4 5 6
barao 1913 2752 40.171 438.481 1658.954 - -
campinas_centro 579 942 1.998  53.857 - 185.487 -
chicago englewood 1560 2579 29.872  60.041  300.252 1649.001 -
chicago lakeview 1004 1563 2997 32129  146.288  154.851 -
chicago loop 624 971 1772 52.727 57.769  132.141 -
la_hollywood 1368 2030 16.444 194.314  222.594 1108.832 -
la_skidrow 1667 2459 6.956 73.676 1142.841 - -
nyc_chelsea 822<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>