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Resumo

A infraestrutura dos provedores de serviços de redes 5G receberá requisições para im-
plementação de fatias de rede (do Inglês, network slices) solicitadas por usuários com
diferentes requisitos de qualidade de serviço (QoS ). Considerando que os recursos no
substrato da rede são finitos e os casos de uso de 5G têm requisitos de QoS heterogêneos,
bem como custos de implantação específicos, os provedores de serviço precisam gerenciar
a admissão dessas requisições, bem como alocar recursos para que a utilização destes seja
eficiente.

Diferentes abordagens lidam com o controle de admissão e alocação de recursos em
redes 5G utilizando diferentes referenciais teóricos tais como Teoria de Filas, Teoria de
Redes Complexas, e Otimização. No entanto, essas abordagens propõem a tomada de
decisões de admissão considerando requisições individuais, o que pode levar a decisões
sub-ótimas, uma vez que as requisições mais lucrativas que chegam em futuro breve após
a admissão de uma requisição podem ser rejeitadas devido à indisponibilidade de recursos
recentemente alocados. Além disso, a maioria dessas abordagens não considera os requi-
sitos específicos de QoS de cada caso de uso da especificação de redes 5G, nem a alocação
de recursos em nós do núcleo e da borda da rede. Diversas outras soluções consideram
apenas a alocação de recursos sem considerar o controle de admissão, ignorando, assim,
interesses múltiplos dos provedores.

Nesta tese, são propostas duas soluções para realização conjunta do controle de ad-
missão e da alocação de recursos para o fatiamento de redes 5G. A primeira solução é
baseada em Aprendizado por Reforço, que permite o aprendizagem da admissão de requi-
sições de fatia de rede visando o lucro dos provedores. A segunda solução, baseada em
Aprendizado por Reforço Profundo, almeja aperfeiçoar ainda mais o alcance dos objetivos
dos provedores. A alocação de recursos nessas soluções é realizada por um mapeamento
de nós virtuais nos nós físicos da rede seguido de um mapeamento dos enlaces virtuais em
enlaces físicos. Consideram-se, nesses mapeamentos, os requisitos de QoS das classes de
serviço eMBB, URLLC e MIoT da tecnologia 5G. As soluções propostas foram avaliadas
para diferentes condições de tráfego e topologias de redes. Os resultados da avaliação
corroboram que as propostas produzem melhores resultados do que as heurísticas Always
Admit Requests e Node Ranking tendo como parâmetro de comparação o lucro e a utiliza-
ção de recursos. Resultados evidenciam a efetividade do uso de técnicas de Aprendizado
por Reforço e Aprendizado por Reforço Profundo para o gerenciamento de requisições de
fatia de rede em redes 5G.



Abstract

5G Network Service Providers will receive myriads of network slice requests generated
by multiple tenants. Considering that the resources in the network substrate are finite
and 5G use cases have particular QoS requirements as well as different deployment costs,
providers need to control the admission and allocate resources efficiently for such slice
requests.

Several approaches have addressed admission control and resource allocations in 5G
by different techniques such as Queuing Theory, Complex Network Theory, Big Data,
Heuristics, Integer Linear Programming, Reinforcement Learning, and recently, Deep Re-
inforcement Learning. Nevertheless, the approaches mentioned above propose making
admission decisions considering individual requests, which can lead to sub-optimal deci-
sions since more profitable requests arriving in the short term can be rejected due to the
unavailability of resources recently allocated. Moreover, most of these proposals neither
consider the particularities of the QoS requirements of different service types (use cases)
nor the allocation of resources in 5G core and edge nodes. Several other solutions based
on heuristics, Queuing Theory, and Complex Network Theory have considered only re-
source allocation and neglected admission control, which prevents the achievement of the
provider’s goals.

In this thesis, we propose two solutions to jointly perform admission control and re-
source allocation in 5G Network Slicing. The first solution is based on Reinforcement
Learning, which allows learning to admit 5G network slice requests in such a way that
optimizes the profit to service providers. The second solution is based on Deep Reinforce-
ment Learning aimed at further optimizing the proposed objective. Resource allocation
in both solutions is carried out by node mapping and link mapping steps that assign
substrate network resources to requests while accomplishing their QoS requirements ac-
cording to the 5G use case (i.e., eMBB, URLLC, and MIoT) to which they belong. Our
solutions are assessed for different requests arrival rates and on topologies of distinct sizes.
The evaluation results corroborate that we outperform the heuristics Always Admit Re-
quests and Node Ranking regarding mean profit and overall resource utilization, and
demonstrate the convenience of using Reinforcement Learning and Deep Reinforcement
Learning to manage the admission of network slice requests in 5G.
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Chapter 1

Introduction

The Fifth Generation of Cellular Mobile Communications (5G) is envisioned to be the
key enabler technology that will support the provisioning of myriads of future specific
services reaching a large number of devices. These on-demand services will be provided to
several customers simultaneously [2], each having different high Quality of Service (QoS)
requirements in terms of bandwidth, latency, and coverage [54]. 5G opens opportunities
for different vertical industries (e.g., automotive, healthcare, entertainment, energy, etc.)
to offer innovative and specialized services with a broader range of requirements than the
current ones. To meet these new requirements and hence, accomplish the provisioning
of such specialized services, 5G demands important characteristics like flexibility and
modularity. Such characteristics may be exploited when using Network Slicing.

Network Slicing can be related to the concept of network softwarization, which in-
volves Software-defined Networking (SDN) and Network Function Virtualization (NFV).
Network softwarization provides programmability, flexibility, and modularity to build and
run several Network Slices (NSLs) over a single network infrastructure, each of them cus-
tomized to accomplish particular needs (i.e., Service Level Agreements (SLAs) require-
ments) [46]. An NSL is a set of Virtual Network Functions (VNF) created on-demand
following different principles like isolation, automation, customization, elasticity, pro-
grammability, end-to-end service delivery, and hierarchical abstraction [2].

The slicing process starts when Network Slice Providers (NSPs) receives several NSL
requests (NSLRs) from multiple tenants. These NSLRs may belong to one of three
types: Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communica-
tion (URLLC), or Massive IoT (MIoT). As each NSLR has particular QoS requirements
and the substrate resources are finite, NSPs face the challenge of controlling the admission
of NSLRs to increase its overall profit and improve network resource utilization. Coping
with NSLRs is a twofold challenge that involves both admission control and resource al-
location. The former is a verifying and decision process intended to permit the access
or restrict the admission to a system (e.g., substrate network) considering one or more
criteria like profit [48]. The latter can be faced as a Virtual Network Embedding (VNE)
problem that maps virtual networks onto a physical network [35, 57].

Performing admission control and resource allocation jointly and intelligently in 5G
core network slicing is critical to optimize resource utilization and maximize the NSP
profit. In recent years, Machine Learning (ML) techniques have been remarkably useful
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in several fields through Supervised Learning, Unsupervised Learning, and Reinforcement
Learning (RL). RL and the recent Deep Reinforcement Learning (DRL) are efficient tools
for solving decision-making problems modeled as Markov Decision Processes. Since no
data is available a priori about the 5G Network Slicing dynamic, RL and DRL arise as
the appropriate tools to learn from the instantaneous information generated in the slicing
process. Network Slicing involves repetitive decisions meaning it produces a large quantity
of data that can be used to train RL/DRL-algorithms [43, 40].

In this thesis, we propose two solutions that leverage ML techniques, in particular
RL and DRL, to perform admission control and resource allocation jointly for 5G NSLRs.
First, we introduce SARA (network Slice requests Admission and Resource Allocation), a
mechanism that manages the admission of 5G NSLRs and allocates substrate resources to
them, aiming at optimizing the NSP profit. SARA processes NSLRs on batches collected
on time windows, which favors profit maximization. The admission control algorithm of
SARA uses an RL-agent to learn the NSLRs that increases the NSP profit. The RL-agent
learns from the rewards produced by its iterative interactions with the environment (the
substrate network). The resource allocation algorithm of SARA includes node mapping
and link mapping steps to allocate resources in the substrate network to VNFs and virtual
links composing an NSLR. Substrate resources are allocated by considering the service
type (i.e., eMBB, URLLC, and MIoT) to which NSLRs belong and differentiating core
nodes from edge nodes for accomplishing QoS requirements.

Second, we propose DSARA, an implementation of SARA based on DRL. The use
of DRL is motivated by the need for enhancing and extending SARA to cope with large
scenarios in which its convergence time is longer. In DSARA, the DRL-agent approximates
the admission policy function, which enables learning the most profitable NSLRs from a
reduced number of interactions with the environment. This is known as generalization;
the knowledge learned from past interactions is applied to similar situations. As a result,
DSARA increases further the profit of NSPs while achieving fast convergence.

We assessed SARA and DSARA extensively in terms of profit, resource utilization,
and acceptance ratio for different arrival rates of NSLRs. The evaluation of our solutions
includes experiments on three topologies of different sizes: 16, 32, and 64 nodes. Eval-
uations results corroborate that SARA and DSARA outperform two heuristics, Always
Admit Requests and Node Ranking, which demonstrates the convenience of leveraging
RL and DRL for network management tasks such as admission control of NSLRs.

The remainder of this chapter summarizes the main contributions of this work (Sec-
tion 1.1), the publication of results (Section 1.2), and the structure of this document
(Section1.3).

1.1 Contributions

The main contributions of this thesis are:

• A solution that uses ML techniques to perform admission control and resource al-
location jointly for 5G slice requests while guaranteeing the QoS of each request
type.
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• An RL-based algorithm for admission control of 5G NSLRs that increases the profit
of service providers and network resource utilization.

• A DRL-based algorithm for admission control of 5G NSLRs to further improve the
profit of providers in large scenarios while obtaining a fast convergence.

• An extensive performance evaluation of the proposed solutions in terms of profit, re-
source utilization, and acceptance ratio. The evaluation includes results for network
topologies of 16, 32, and 64 nodes under different loads.

1.2 Publications

• Villota-Jácome W. F., Caicedo O. M., Fonseca, N.L.S. Admission Control for 5G
Network Slicing based on Reinforcement Learning. Submitted to IEEE Transactions
on Network and Service Management (TNSM).

1.3 Thesis Structure

This document is organized as follows. Chapter 2 reviews the main concepts of 5G,
Network Slicing, and ML. Chapter 3 introduces the proposed RL-based admission control
and resource allocation solution for 5G network slices. Chapter 4 presents the DRL-based
approach to further improve the performance of our RL-based solution. Finally, chapter
5 provides conclusions and research directions.
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Chapter 2

Background

In this chapter, we overview the concepts related to this thesis as follows. Section 2.1
presents the 5G, its features, use case families, and architecture. Section 2.2 introduces
the notion of Network Slicing as well as its characteristics and components. Section 2.3
explores the main concepts in Machine Learning.

2.1 5G

5G is considered to be the generation of mobile networks that can support a wide range of
devices and specific types of services to satisfy various customer demands simultaneously
[2]. The services offered by 5G have different requirements, such as high data traffic
volumes and a large number of devices. 5G provides such services by leveraging important
advantages in terms of enhanced bandwidth, reduced latency, and extended coverage [54].
In order to support 5G specialized services and enable collaboration between industries
and academia, eight major requirements are identified [4]:

• 1 - 10 Gbps data rates in real networks, which means a 10 times increment from
LTE’s data rate.

• 1 ms end-to-end round trip latency.

• Large number of connected devices with higher bandwidth for longer duration in a
specific area.

• Provide connectivity to an enormous number (i.e., thousands) of devices to realize
the vision of IoT.

• Perceived network availability of 99.999%, this is practically always available.

• Almost 100% coverage. 5G need to ensure complete coverage independently of user’s
location.

• Almost 90% of reduction in energy usage. This is a remarkable reduction considering
high data rates and massive connectivity.

• High battery life.
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2.1.1 Use Cases

Several use cases are emerging for 5G, aiming at providing an end-to-end ecosystem with
a fully mobile experience [2]. The Next Generation Mobile Networks (NGMN) describes
eight use case families that can be used to define the requirements and building blocks of
the 5G architecture [7]:

• Massive Internet of Things: provisioning of broadband for a massive number of de-
vices (e.g., sensors, actuators) with different characteristics and therefore demands.
For example, myriads of ultra-light and/or low power sensors measuring different
attributes, concerning environmental or health contexts. The overall management
of this big quantity of devices and its associated applications is challenging.

• High user mobility: supporting broadband for mobile users in fast moving vehicles
such as high speed trains. These trains are currently used for inter-city transport
and it is anticipated they will further evolve after 2020, reaching speeds greater than
500 Km/h.

• Broadband access in dense areas: provisioning of service availability in densely-
populated areas (i.e., thousands of people per square kilometre) with up to 10Gbps
bandwidth, for instance, ultra high definition video streaming.

• Broadband access everywhere: a minimum bandwidth of 50Mbps with ultra-low
cost networks for digital inclusion of people living in low population areas.

• Extreme real-time communications: supporting of real-time interaction use cases
such as tactile internet where ultra-low latency connectivity is essential. In the
tactile internet system, humans control real and virtual objects in a wireless way.
Examples of scenarios for Robotic control and interaction are manufacturing, medi-
cal care, and autonomous cars where reaction time must be within sub-millisecond.

• Lifeline communications: the mobile network as a lifeline enabling traffic peaks and
high availability support in natural disaster and emergency cases.

• Ultra-reliable communications: low-latency, reliability, and availability for providing
use cases such as automated traffic control and driving.

• Broadcast-like services: efficient distribution of information from one source to many
destinations enabling a feedback channel for interactive services.

2.1.2 5G System Architecture

The 5G system architecture includes the 5G New Radio and the new 5G Core (5GC)
[16]. The 3GPP has defined a service-based architecture (SBA) for the 5GC in [1]. The
objective of SBA is to enable 5GC to be deployed in the cloud and leverage technologies
like SDN and NFV as well as service-based interactions of network functions (NFs). SBA
is depicted in Figure 2.1.

SBA design is guided by the next principles [16]:
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Figure 2.1 5G Service-based Architecture - adapted from [1]

• Control plane and user plane separation (CUPS). SBA distinguishes between control
plane (CP) and user plane (UP) network functions to allow flexible deployments at
centralized and edge locations, independent technical evolution, and scalability.

• A modular function design to enable implementing network slices with different
requirements.

• Minimize dependencies between the access and the core networks aimed to permit
operators to build a multi-access core network with common access-core interfaces.

• A unified authentication framework for the multi-access core to offer services inde-
pendently of the access method.

• Support capability exposure.

• Concurrent access to local and centralized services. UP functions can be deployed
close to the access to support low latency services.

5GC consists of various NFs. CP functions connect to each other over service-based
interfaces (SBIs) with authorization to access each other’s services. NFs are self-contained,
independent, and reusable. Each NF service exposes its functionality through an SBI,
which employs a well-defined REST interface using HTTP/2. NFs composing the SBA
are:

• User Plane Function (UPF) performs packet routing and forwarding.

• Access and Mobility Management Function (AMF) handles connections and mobil-
ity tasks.

• Session Management Function (SMF) establishes, modifies, and releases PDU ses-
sions.
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• Policy Control Function (PCF) provides a policy framework for network slicing,
roaming and mobility management.

• Unified Data Management (UDM) stores subscriber data and profiles.

• NF Repository Function (NRF), a database offering NF registration to allow NFs
to discover each other.

• Network Exposure Function (NEF), an API for external users, such as enterprises
or partner operators, to monitor, provision and enforce application policies.

• Authentication Server Function (AUSF) to manage security tasks.

• Network Slice Selection Function (NSSF) redirects traffic to the appropriate network
slice according to the service type.

• Application Function (AF), an application that influences on traffic routing and
accesses the NEF.

2.2 5G Network Slicing

Network Slicing is a concept strongly related to network softwarization, an emerging trend
involving technologies like SDN and NFV [46]. Through the use of these technologies,
network softwarization can provide programmability, flexibility, and modularity to build
multiple logical networks (known as network slices) deployed over a single network infras-
tructure and each customized to accomplish particular needs. A network slice (NSL) is
composed of virtual resources (e.g., Virtual Machines) containing a set of Virtual Network
Functions (VNFs), which may vary depending on the service requirements. For example,
an NSL offering a real-time communication service will receive the appropriate resources
to accomplish ultra-low latency constraints. NSLs are created on-demand according to
the following principles [2]:

• Isolation. NSLs need independent control and management to reach performance
and security guarantees. Isolation can be reached by using different physical re-
source, separating a shared resource through virtualization, and sharing a resource
according to a policy that delineates the access rights.

• Automation. This principle enables the configuration of NSLs on-demand with low
or no manual intervention. Automation can be accomplished by signaling-based
mechanisms.

• Customization. NSL customization can be performed on the data plane by forward-
ing mechanisms, and on the control plane by programmable policies and protocols.

• Elasticity. This principle allows reshaping the allocated resource (i.e., scaling
up/down or relocating VNFs) in order to assure the required SLAs.
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• Programmability. It denotes to the capability to control the allocated resources to
NSLs by using open APIs.

• End-to-end. It refers to the service delivery throughout all the network (i.e., RAN,
core network, and transport) from the service providers to the end-users also known
as customers.

• Hierarchical abstraction. Resources of an NSL allocated to a tenant can be further
sliced to create new NSLs.

Figure 2.2 Network Slicing Layers [8]

As stated in [8], the network slicing concept is composed of three layers (see Figure
2.2): (i) Service Instance Layer, (ii) Network Slice Instance Layer, and (iii) Resource
Layer. Service Instance Layer is composed of several service instances. Each of those
instances represents a service provided by a network operator, an application provider or
a vertical segment.

Network Slice Instance Layer consists of NSL instances. Each of them includes a
set of customized resources (i.e., physical and logical resources) aiming at meeting the
performance requirements of specific services. None or several isolated or shared sub-
network instances may compound an NSL instance. A network operator uses an NSL
blueprint to create an NSL instance with specific characteristics, for example, ultra-low
latency, ultra reliability, or value-added services for enterprises. This NSL instance may
also be shared across multiple service instances generally belonging to the same type of
service [2]. An NSL blueprint is a detailed description of the structure, configuration and
the plan/work flows to control the life cycle of NSL instances [8].

The Resource Layer is the physical network topology that includes the Radio Access
Network (RAN), transport network, and core network. This layer provides the physical
network resources for NSLs.
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Figure 2.3 5G Network Slices sharing the same infrastructure - adapted from [46]

According to the The International Telecommunication Union, 5G use cases can be
grouped into three general use case families: eMBB, URLLC, and MIoT [27]. Figure 2.3
shows an example of three 5G NSLs, each belonging to a different use case. Those NSLs
are operated on the same physical infrastructure.

Each 5G use case has particular requirements. In eMBB, a wide range of VNFs
are activated and distributed across the network (i.e, core and edge nodes) and high-
capacity virtual links are instantiated. In URLLC, a very low end-to-end latency and
high reliability are required. The former implies that some of the VNFs have to be
deployed closer to the access nodes (i.e., at the edge cloud nodes) while the latter means
that some of the VNFs have to be instantiated multiple times on different physical servers
to serve as backup. In MIoT, the set of VNFs are limited compared to the previous use
cases. MIoT fits a simplified slice without support for “always-on” connection, mobility
handling, and low latency requirements [18, 7].

2.3 Machine Learning

Network Slicing tasks such as admission control and resource allocation require to cope
intelligently with diverse and complex decisions for providing 5G NSLs to tenants. The
application of ML, a subfield of Artificial Intelligence, has experienced considerable growth
in carrying out such kind of tasks. ML’s growing application is a consequence of an ever-
increasing data availability and improvements in ML techniques as well as computing
capabilities [15].

ML aims at extracting, utilizing, and improving knowledge over time with the help
of experience. ML allows a computer software to learn on the basis of using previous
experiences obtained from similar situations. The learning process begins when the system
expected to learn takes a sample and learns certain information from it. Subsequently,
it looks for a second sample to get more information [17]. This process helps to make
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generalizations for the situation to be learned. With this aim, ML identifies and exploits
hidden patterns in a set of data called training data [15]. These training data are used to
construct the ML model.

Four paradigms are identified in ML: Supervised, Unsupervised, Semi-supervised, and
Reinforcement Learning [15] [62]. Each of these paradigms differ from the others in the
way of: (i) performing data collection, (ii) carrying out feature engineering intended to
both pre-processing data, aiming at cleaning of noisy or incomplete instances, and feature
extraction/selection; and (iii) determining ground truth which is about giving a formal
description (i.e., labels) to the classes [15].

Supervised Learning uses labeled training datasets (i.e., data for which the output is
already known) to create models. This approach is used in classification and regression
problems. Classification problems intend to predict discrete valued outcomes while re-
gression problems are for continuous outcomes. Semi-supervised techniques are applied
when the training dataset has incomplete or missing labels [15]. Unsupervised Learning
uses datasets without labels (i.e., no outputs are given [42]) in the creation of models able
to find patterns. Clustering problems belong to this approach [39].

RL is about learning by trial-and-error inspired by the behaviorist psychology [58].
This paradigm is appropriate for making cognitive choices such as decision making, plan-
ning, and scheduling problems [15]. RL differs from the other ML paradigms in that it
does not use sample data from which to learn. Instead, RL is based on an agent that
learns how to behave by iteratively interacting with an environment and observing the
consequences of its actions [15] [42].

There are different classes of RL algorithms, such as value-based, policy-based, and
actor-critic [10]. Value-based algorithms, useful for a finite set of actions, estimate the
expected reward for different actions, i.e., they learn a value function approximation
from which the policy is inferred. Policy-based algorithms, appropriate for a continuous
or stochastic action space, directly learn the policy function that maps state to action.
Actor-critic algorithms are hybrid; they combine an actor (policy-based) that controls the
algorithm behavior and a critic (value-based) that evaluates the actor’s actions.

Q-learning is an example of value-based algorithms [58]. In Q-learning, the agent takes
an action (at) under a state (st). After such an action is applied to the environment, the
agent receives a reward (rt) for its action and observes the next state (st+1) to repeat the
cycle. The agent uses a lookup table, known as Q-table, to store the quality value (i.e.,
the Q-value) of each action for a given state. The Q-table guides the agent to take the
optimum action in every state.

Recently, Deep Reinforcement Learning (DRL), a technique that leverages both RL
and Deep Learning (DL), has been widely used in several domains [40]. RL enables a self-
learning agent to maximize long-term performance by interacting with the environment
and receiving feedback from it. DL allows RL to manage problems with large state
and action spaces by generalizing knowledge [25, 10]. Generalization allows to apply
the knowledge learned from some already visited states to other similar states. Deep
Q-learning (DQN) is an example of DRL algorithm. In DQN, the behavior of the agent
is not guided by a table as in Q-earning. Instead, the agent uses a function approximator
that estimates the Q-values for each action [10].
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The solutions we introduce in this work are based on Q-learning and DQN. These
techniques are discussed deeper in Chapter 3 and Chapter 4, respectively.
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Chapter 3

Admission Control and Resource

Allocation for 5G Network Slices based

on Reinforcement Learning

5G networks support a myriad of services accessible on-demand by numerous customers
and devices [2, 54]. The International Telecommunications Union defined several use
cases with different QoS requirements for 5G services [18, 20]. Network Slicing, a 5G
component, is crucial for enabling support of diverse QoS requirements since it provides
flexibility, modularity, and programmability to the management of NSLs, customized and
isolated logical networks [49]. The employment of SDN [38] and NFV technologies [32]
allows to customize NSLs for accomplishing SLAs [46].

NSPs receive NSLRs to implement network slices of distinct types such as eMBB,
URLLC, and MIoT, each possessing its own QoS requirements. NSPs need to implement
an admission control mechanism to decide on the acceptance of NSLRs, considering the
support of QoS requirements as well as the availability of physical resources. A resource
allocation mechanism should guarantee the resources needed by an NSL. Resource allo-
cation can be carried out as a Virtual Network Embedding problem that maps virtual
networks onto a physical network [35, 57, 51, 6]. In virtualized 5G networks, physical
resources are allocated to VNFs and virtual links. The acceptance of NSLRs depends
not only on the availability of resources but also on the criteria used by NSPs such as
maximization of monetary profit [48, 53, 14].

Several approaches have addressed admission control by employing different theoretical
frameworks such as Queuing Theory [33], Big Data [50], Heuristics [37, 55], and RL
[12, 49]. Such approaches propose making admission decisions considering individual
NSLRs, which can lead to sub-optimal decisions since more profitable requests arriving
in the short term can be rejected due to the unavailability of resources recently allocated
[24]. Moreover, most of these proposals neither consider the QoS requirements of different
service types (use cases) nor the allocation of resources in 5G core network nodes.

Furthermore, several other solutions based on heuristics [64, 41], Queuing Theory
[3], and Complex Network Theory [27] have considered only resource allocation and ne-
glected admission control, which prevents the achievement of NSP goals. On the other
hand, performing admission control and resource allocation jointly and intelligently can
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considerably improve the achievement of target objectives.
This chapter introduces a novel approach for admission control resource allocation of

NSLRs in 5G networks, named SARA (network Slice requests Admission and Resource
Allocation), which employs an RL-based algorithm to explore, exploit, and learn to pri-
oritize NSLRs collected in time windows.

The organization of this chapter is as follows: Section 3.1 presents related work. Sec-
tion 3.2 introduces the architecture of SARA. Sections 3.3 and 3.4 describe the pro-
posed mechanisms for admission control and resource allocation, respectively. Section 3.5
presents an evaluation of SARA. Lastly, section 3.6 concludes this chapter.

3.1 Related Work

In this section, we present research about Admission Control in 5G Network Slicing. Also,
we introduce works addressing Resource Allocation in 5G Network Slicing.

3.1.1 Admission Control in 5G Network Slicing

Several investigations [33, 50, 55, 37, 12, 49] have addressed the admission control problem
in 5G networks. Han et al. [33] proposed a utility-driven and multi-service based solution
for network slicing based on Queuing Theory to maximize the network utility. This
solution considers different queues for two types of requests and accounts for impatient
customers. Raza et al. [50] propose an AC mechanism using Big Data Analytics for traffic
prediction to increase the profit of infrastructure providers. This mechanism admits slice
requests only when no service degradation is expected.

Jiang et al. [37] introduce a heuristic-based admission control mechanism to maximize
users’ Quality of Experience to meet the QoS requirements of NSLs. This mechanism de-
cides about the acceptance of slice requests based on the solicited minimum and maximum
data rates and available resources in the Radio Access Network. Furthermore, it dynam-
ically changes the allocation of radio resources to different NSLs according to the traffic
load.

Sciancalepore et al. [55] introduce a 5G network slice broker for radio resources based
on RL that includes three modules: forecasting, admission control, and scheduling. The
forecasting module predicts the network traffic used to dimension NSLs. The admission
control module selects the NSLs by using a heuristic algorithm based on the Knapsack
problem [9]. The scheduling module serves the tenant traffic of the granted radio NSLs.
The broker uses RL to provide feedback to the forecasting module for resizing the slices,
but RL is not used to make admission decisions of requested slices.

Bega et al. [12] introduce an analytical model based on Semi-Markov Decision Pro-
cess, and a Q-learning based algorithm to perform admission control for individual slicing
requests. Raza et al. [49] propose an admission control mechanism based on RL for
maximizing the provider’s profit. This solution considers a 5G flexible RAN and priori-
tized requests with different latency requirements and expected revenues. The proposed
approach uses a Q-learning agent to decide on slice acceptance to maximize revenue.
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The mechanisms in the aforecited papers [33, 50, 55, 37, 12, 49] make an admission
decision for each request arrival, which prevents the selection of the NSLRs that poten-
tially optimize an objective. These papers do not consider different types of requests
according to 5G use cases, neglecting the diversity of QoS requirements of 5G service
types. Moreover, they focus on edge nodes and neglects 5G core network nodes (see Table
3.1).

3.1.2 Resource Allocation in 5G Network Slicing

Several papers have addressed the resource allocation problem in NFV [22, 23, 61]. Solu-
tions to RA in 5G adopt different techniques, such as heuristics [64, 41], Queuing Theory
[3], and Complex Network Theory [27]. Zhang et al. [64] introduce a heuristic-based
approach for placing VNFs on the core network for optimizing the acceptance ratio, the
execution time, and throughput. When throughput degradation occurs, this heuristic
changes the placement of VNFs.

Li et al. [41] propose a two-stage heuristic algorithm for slice provisioning that im-
proves the revenue-to-cost ratio. The first stage performs node provisioning by consider-
ing the local and the global resource capacities and the topological attributes of physical
nodes. The second stage performs link provisioning by using the k-shortest path algorithm
[28].

Agarwal et al. [3] propose MaxZ, a solution to perform VNF placement, resource
assignment, and traffic routing based on Queuing Theory to reduce service delay. MaxZ
decouples the decision of VNF placement (i.e., the physical hosts on which VNFs run)
from CPU assignment (i.e., how the VNFs share the computational capabilities). This
solution makes placement and assignment decisions for each VNF.

Guan et al. [27] present a mapping algorithm for 5G network slices based on Complex
Network (CN) theory [13] to analyze the topological characteristics of the network. The
mapping process has two steps: VNF placement and VNF chaining. VNF placement
selects the physical nodes to host VNFs by ranking them according to their topologi-
cal properties (i.e., degree and betweenness centrality), while VNF chaining chooses the
physical paths by using the k-shortest path algorithm for the VNFs placed on the nodes.

The aforecited papers [64][41][3][27] focus on mapping NSLs. They map the arriving
NSLRs without performing admission control. Performing admission control and resource
allocation jointly in 5G core network slicing is critical to optimize resource usage and
maximize NSP profit. RL is a well-suited candidate for such kind of problem. RL employs
a Markov decision process (MDP), an efficient tool to solve decision-making problems.
Furthermore, the Network Slicing process involves repetitive decisions and produces a
large quantity of data that can be used to train RL-algorithms [43, 40].

Our approach, SARA, is based on a model-free RL, and does not make assumptions
about the environment (i.e., substrate network) but it learns while exploring such a envi-
ronment without prior knowledge about it. SARA works on-line, therefore, it continuously
learns from the environment. To the best of our knowledge, no other work has proposed
a solution based on RL that jointly performs admission control and resource allocation,
differentiates core and edge nodes and considers the typical types of 5G services (see Table
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3.1).

Table 3.1 Related Work

Work Technique
Focus Time

Window

Fifth Generation Performance

Metrics
AC RA

Use

Cases

Edge

Nodes

Core

Nodes

[49] RL (Q-learning) X X Provider profit

[33] Queuing theory X X Utility rate, admission
rate, request waiting time

[50] Big Data Analytics X X Provider profit

[37] Heuristic algorithm X X X QoE, resource utilization

[55] Heuristic algorithm X X System resource utiliza-
tion

[12] RL (Q-learning) X X Provider revenue

[64] Heuristic algorithm X X X Acceptance Ratio and Ex-
ecution Time

[41] Heuristic algorithm X X Acceptance ratio, provider
revenue

[3] Queuing Theory X X Running time

[27] Complex Network
Theory

X X X X Resource efficiency, ac-
ceptance ratio, execution
time

SARA RL (Q-learning) X X X X X X Provider profit, resource
utilization, acceptance ra-
tio

3.2 Architecture of SARA

This section describes SARA architecture, which is illustrated in Figure 3.1.

3.2.1 5G Substrate Network

The substrate considered in this paper follows the European Telecommunications Stan-
dards Institute recommendation in [21], which defines that an NFV Infrastructure can
span across several locations where Points of Presence (NFVI-PoPs) are operated. The
network between these locations is part of the NFV Infrastructure and should be con-
sidered as well. NFVI-POPs are nodes that offer processing capacity and can be high
capacity data centers (core nodes) or small data centers close to end users (edge nodes).

Core nodes are appropriate to the 5G Control Plane since it involves VNFs demanding
high processing and bandwidth capacities [26][29]. Edge nodes are adequate to the 5G
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Figure 3.1 Architecture of SARA

User Plane since it may involve VNFs needing to be close to the end-users [18]. Moreover,
edge nodes are adequate to a Fog-RAN involving remote radio heads and a centralized
pool of virtual baseband units [47][30].

Each VNF that composes an NSL can be placed either on an edge node or a core
node. The eMBB service type requires a wide range of VNFs activated and distributed
across core and edge nodes. URLLC instantiations require VNFs deployed at the edge to
support latency requirements. MIoT slices can have their VNFs on core nodes since there
is no strict latency requirement for this type of service [18].

We model the 5G substrate network as a labeled and weighted undirected graph:
SN = {N,L}, where N stands for the set of nodes, N = {n1, n2...nm}, and L stands for
the set of links, L = {(n1, n2), (n1, n3)...(nl, nm)}. Each node ni ∈ N has a processing
capacity represented by CPU(ni). The bandwidth of a link (ni, nj) is given by BW (ni, nj).
Figure 3.2 depicts an example of a substrate network offering processing and bandwidth
resources.

3.2.2 5G Network Slice Requests

An NSLR is described by nslr = {s_type, To, G}. The s_type defines the 5G service:
eMBB, URLLC, or MIoT. To defines the requested operational time (i.e., the time the
NSL will be active). G = {F, V } is a labeled and weighted undirected graph representing
an NSL, where F is the set of VNFs, and V is the set of virtual links connecting them.
The labels on the nodes give the amount and type of resources demanded by a VNF.
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Figure 3.2 Example of a Substrate Network offering processing and bandwidth resources

Figure 3.3 NSL graphs

The weight on the edges is the bandwidth requested by the virtual link. The processing
capacity required is denoted by cpu(vnfi) and the node type a VNF requests by type(vnfi).
Similarly, bw(vnfi, vnfj) is the bandwidth demanded for the link (vnfi, vnfj).

Figure 3.3 depicts graphs for three types of use cases most common in 5G. They
include essential VNFs such as Access and Mobility Management Function (AMF), Session
Management Function (SMF), and User Plane Function (UPF) [16]. The URLLC graph
considers backups for AMF, SMF, and UPF that should be instantiated at different nodes
close to the end-users since URLLC must offer high reliability and low latency [18]. The
eMBB and MIoT graphs do not include backups for SMF or UPF as these service types
do not have ultra-high reliability requirements. The MIoT graph has more AMFs than
the other types, as it must provide access to several type of devices [20]. The eMBB G

has fewer AMFs than the MIoT graph since the former attends fewer devices than the
latter.
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3.2.3 Modules

SARA includes four modules: the Monitoring Module, the Admission Control Module

(ACM), the Resource Allocation Module (RAM), and the Lifecycle Module. SARA pro-
cesses the arriving NSLRs in batches collected in time windows. The Monitoring Module
collects information about resource availability in the network substrate (nodes and links)
and, periodically, delivers it to the ACM and RAM. Information is structured as states
and rewards (see Section 3.3).

ACM performs the admission of NSLRs. It employs an RL-agent and a Prioritizer.
The RL-agent determines a normalized weight value for each type of service. The Priori-
tizer uses these values to sort the NSLRs for establishing the order they should allocate
resources. These weight values lead to the maximum profit, i.e., the RL-agent selects
an action that, if taken, maximizes the profit. The RL-agent learns to select actions
by considering the information on states and rewards got from the interaction with the
environment. A state represents the available resources after the RL-agent executes an
action, and a reward gives the profit generated by taking that action.

The Prioritizer enqueues NSLRs in batches of minimum size, obeying the proportion
given by their weight values and arrival time. For instance, if weight values are 1.0, 0.5,
and 0.5 for the eMBB, URLLC and MIoT, respectively, then batches with 2, 1, and 1
NSLRs of type eMBB, URLLC and MIoT are enqueued. NSLRs per class are enqueued
in chronological order. If all the NSLRs of a particular type have been enqueued, the
weight values of the other service type are used to determine the number of NSLRs in
the subsequent batches. In the example just described, if there are 10 NSLRs per service
type, in the queue, there will be a sequence of 5 batches with 2, 1, and 1 NSLRs of type
eMBB, URLLC, and MIoT, followed by 5 batches composed by one NSLRs of URLLC,
and MIoT type.

After assembling the priority queue, each NSLR is dequeued, and a request for allo-
cation of resources is sent to RAM. If resources are successfully allocated, then the NSLR
is accepted. Otherwise, it is rejected. The dequeuing of an NSLR and the attempt to
allocate resources to it is repeated until the priority queue is empty.

RAM allocates resource on nodes for the VNFs composing an NSLR (node mapping),
and then, allocates bandwidth in selected links (link mapping) connecting the allocated
nodes. Decisions on node mapping consider not only if a node has resources available to
support the demand but also the latency and reliability requirements of the NSLR type.
Control Plane VNFs are mapped onto core nodes. User Plane VNFs of a URLLC NSLR
are mapped onto edge nodes to satisfy strict latency requirements, while the User Plane
VNFs of the other two types are mapped, preferably on core nodes [20, 16]. For complying
with reliability requirements, a backup VNF is not placed onto the same node its primary
VNF is placed on [18].

Link Mapping maps each virtual link onto the shortest substrate path that satisfies the
required bandwidth by the virtual link. If Node Mapping and Link Mapping finish suc-
cessfully, RAM sends a notification of successful allocation (mapped) to ACM. Otherwise,
a non-mapped notification is sent.

Upon accepting an NSLR, the Lifecycle module instantiates its VNFs and virtual links,



34

creating, then, an NSL. When the lifetime of the NSL expires, resources are deallocated.

3.3 Admission Control based on Q-learning

In this section, we first summarize Q-learning. Then, we present the elements that specify
the RL-agent of SARA. Finally, in subsection 3.3.3 we introduce the admission control
algorithm.

3.3.1 Q-learning

ACM runs an admission control algorithm based on Q-learning, an RL technique [58]
[40]. Mathematically, RL algorithms can be described by using Markov Decision Process
(MDP), a framework to model decision-making problems. In MDP, the future state and
reward of the environment depend on the current state and the action taken [40]. MDP
can be represented with the tuple: < S,A, P (s′|s, a), R > [10]. Where, S and A are the
finite state space and action space, respectively. P (s′|s, a) is the probability that action
a under state s at slot t leads to state s′ at slot t+1. R is an immediate reward function.

Figure 3.4 Q-learning operation

In Q-learning, the agent (see figure 3.4) takes an action (at) under a state (st). Such
an action is applied on the environment. Subsequently, the agent receives a reward (rt)
from the environment, and observes the next state (st+1). In Q-learning, the agent uses
a lookup table, known as Q-table, to store the quality value of each action (i.e., the Q-
value) for a given state [58]. The Q-learning agent updates the Q-values on the Q-table
as follows:

Qt+1(st, at)← Qt(st, at) + α · [Rt + γ ·maxQ(st+1, a)−Qt(st, at)] (3.1)
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where:

• Qt+1(st, at) is the new Q-value obtained after the update.

• Qt(st, at) is the old Q-value.

• α is the learning rate, a value between 0 and 1 that defines the Q-values the RL-
agent keeps. If α = 1, the RL-agent discards the old Q-values; if α = 0, it discards
the most recently learned Q-value (i.e., the RL-agent learns nothing new).

• Rt is the reward observed by the RL-agent after taking action at under state st.

• γ is the discount factor used to balance the immediate reward and the maximum
expected future reward maxQ(st+1, a). Its value is in the interval [0, 1]. If the
discount factor is 1, the RL-agent fully considers the expected future reward. A low
discount factor emphasizes more the immediate reward.

Q-learning is classified as a model-free, off-policy, and temporal-difference RL algo-
rithm. Model-free means that it does not use the transition probability distribution (also
called model) related to the MDP, therefore, Q-learning does not know the next state
before taken the action. Off-policy refers to the fact that Q-learning does not follow the
same policy for sampling (i.e., to select an action for the current state) and updating its
value function (Q-values). Instead, for updating the value function, it chooses the ac-
tion corresponding to the best Q-value [40]. Temporal-difference means that Q-learning
updates its value function by comparing estimates at two consecutive steps; the current
estimate, Rt + γ ·maxQ(st+1, a), and the previous one, Qt(st, at).

3.3.2 RL-agent for Admission Control

This subsection introduces the elements that specify our RL-based solution: state space,
action space, reward function, and exploration and exploitation method.

State Space

We model states to represent the amount of available resources in the substrate network.
The State Space S is the set of all states the RL-agent can experience. In this work, a
state s ∈ S is defined by the tuple {cpu(E), cpu(C), bw(L)}, where cpu(E) and cpu(C) are
the available processing capacity in the set of edge (E) and core nodes (C), respectively.
bw(L) is the available bandwidth in the set of links (L).

To exemplify the State Space, let us suppose the following state: si = {80, 50, 60}. si
indicates that 80% and 50% of the total capacity of processing is available in E and C,
respectively, and 60% of the total capacity of bandwidth is available in L.

A large State Space implies that Q-learning may not converge quickly enough because
its RL-agent would need to explore many states in order to learn. Aiming at keeping
the number of states small, the capacity of resources in the substrate is discretized in
ten equal intervals. As our State Space considers three variables, and each can take ten
values, the total number of states the RL-agent has to explore is 103.



36

Action Space

The Action Space A is the set of all actions the RL-agent can take. In every step, the
RL-agent selects the weights for each type of service (i.e., NSLR of eMBB, URLLC, and
MIoT). An action a ∈ A is denoted by a = {wembb, wurllc, wmiot}, where wembb, wurllc, and
wmiot are the weights for each type of service. In every step, the RL-agent chooses the
action a which returns the maximum profit.

To exemplify the Action Space, let us consider the following action: ai = {1, 0.5, 0.5}.
This action indicates that SARA should prioritize NSLRs of eMBB. Specifically, it has to
admit one NSLR of URLLC and one of MIoT every two NSLRs of eMBB.

The weights of each service type enables the RL-agent to learn what is the best ad-
mission proportion of NSLRs that leads to the highest profit for the current state.

Reward Function

The reward guides the RL-agent to accomplish the proposed objective. In this work,
the reward expresses the monetary profit obtained by taking an action on an individual
state. The action taken implies the acceptance of NSLRs of different types and consumes
resources having distinct costs. Typically, resources on core nodes are abundant and
cheaper than on the edge nodes.

The RL-agent uses the reward to maximize the NSP profit while optimizing resource
utilization. In this sense, the reward considers the profit generated after the RL-agent
makes an action. The profit obtained by the acceptance and subsequently instantiation
of an individual NSLR, p(nsli), is the amount of money earned by NSP for selling the
NSL minus the operational cost. p(nsli) is given by:

p(nsli) = (revi − csti)× To (3.2)

csti =
m
∑

j=0

cpu(vnfj)× fcpuj +
n

∑

j=0

bw(vj)× fbw × h (3.3)

where:

• rev - is the income that an NSP receives for instantiating the nsli

• cst - the cost of running nsli on the substrate

• To - is the nsli operational time

• m - gives the number of VNFs in nsli

• n - gives the number of virtual links in nsli

• cpu(vnfj) - is the cpu demand of vnfj in nsli

• fcpuj is the processing cost of VNF vnfj, which depends on the node type
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• fbw is the bandwidth cost

• h is the number of hops composing the path where virtual link vj is allocated.

The reward function, R, is given by:

R =

∑k

i=0 p(nsli)

maxP (SN, T )
(3.4)

where maxP (SN, T ) is the maximum profit that NSP could receive when using all the
resources in the substrate (SN) in a certain period (T ).

Exploration and Exploitation Method

The Q-learning RL-agent uses the epsilon-greedy method (Equation 3.5) to explore and
exploit to choose an action in each step [59]. The epsilon-greedy method allows the
selection of either the current expected optimal action with probability 1− ε or a random
action with probability ε.

To choose an action, first, the RL-agent generates a random number rn ∈ [0, 1]. If
rn > ε, the RL-agent selects the action with the maximum Q-value; otherwise, it chooses
a random action. A high ε value enables the RL-agent to select more random actions
than optimal actions; as a result, it explores new actions more frequently. In contrast, a
low ε value allows the RL-agent to take more optimal actions than random ones; i.e., it
exploits more the current knowledge.

a =







max
a

Qt(st, a), if rn > ε

randomaction, otherwise
(3.5)

3.3.3 Admission Control Algorithm

Algorithm 1 presents the RL-based Algorithm employed by SARA to perform admission
control. The aim is to admit the most profitable NSLRs. Time is discretized. The algo-
rithm receives as input a set of NSLRs arrived in a time window, RS = {nslr1, ....nslrn},
and produces as output weight values for each type of service.

Data employed by the algorithm include the Action Space (A), the State Space (S), the
parameters learning rate (α), the discount factor (γ), the exploration-exploitation factor
(ε), and the number of learning episodes (n). A learning episode comprises a sequence of
m-steps; and each step comprises a state, an action, and a reward received.

Algorithm 1 starts by creating the Q-table (Line 1 ) with as many rows as the number
of states (|S|) the RL-agent can experience, and as many columns as the number of
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Algorithm 1: RL-based Admission Control Algorithm
Data :

Learning rate α
Discount factor γ
Exploration parameter ε
Number of learning episodes n
State space S
Action space A

Input : Sets of NSLR (RS) collected during time windows
Result: Admitted NSLRs that generates the maximum profit

1 Initialize Q : Q(S,A) = 0, ∀s ∈ S, ∀a ∈ A

2 for episode← 1 to n do

3 The agent observes the initial state si // when 100% of substrate resources are

available;
4 while next state st+1 is not the final state do

5 The agent chooses at using ε-greedy exploration method (equation 3.5) // Selection

of a random or an optimal action that leads to increase the profit;
6 The agent invokes the Prioritizer to sort the NSLRs into a priority queue PR;
7 for each nslr ∈ PR do

8 The agent invokes RAM that runs algorithm 2 to map nslr;
9 if nslr is mapped then

10 The agent admits nslr and sends it to Lifecycle;
11 end

12 else

13 The agent rejects nslr;
14 end

15 end

16 The agent observes the reward Rt that is calculated by using equation 3.4;
17 The agent observes the new state st+1 // The current resource availability;
18 The Q-table is updated according to Equation 3.1;
19 The current state is updated st ← st+1;

20 end

21 end
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actions the RL-agent can take (|A|). This means, Q-table has the dimension |S| × |A|.
Initially, the entries of the Q-table are set to zero. The Q-table is a lookup table where
the RL-agent updates the Q-values for each state-action pair.

The algorithm has an outer loop (Line 2 ) that goes through episodes and an inner loop
that goes through m-steps (Line 4 ). In the inner loop, the RL-agent uses the ε-greedy
method, defined in Equation 3.5, to select either a random action or an optimal action at.
The optimal action allows the RL-agent to exploit the learned knowledge. As Q-values
depend on the past rewards (i.e., the normalized profit), the RL-agent learns to choose
actions that increase the profit.

The optimum solution, at, is passed to the prioritizer (Line 6 ) which will sort all the
NSLRs received in a priority queue according to their arrival time and the weight value
of their type of service. Each NSLR in the priority queue is sent to RAM. If resources are
allocated, the NSLR is mapped (Line 8 ) onto the substrate, i.e. is considered admitted.
Information on the acceptance of an NSLR is passed to the Lifecycle module (Line 10 ).

Then, the RL-agent receives the reward for performing at (i.e., the profit generated
by PR, computed by Equation 3.4). The RL-agent also observes the new state st+1 (i.e.,
new available processing and bandwidth capacities in the substrate after executing at). In
line 18, the RL-agent updates the Q-table by using Equation 3.1 considering the reward
and the new state. Finally, the state st+1 becomes the current state st and the RL-agent
begins a new iteration.

3.4 Service-aware Resource Allocation

RAM aims at finding and allocating the appropriate resources to NSLRs by performing
the mapping (embedding) M : G = {F, V } → SN ′ = {N ′, L′}, while meeting the latency,
bandwidth, processing and reliability requirements of each type of service. In the mapping
M , N ′ is a subset of N and L′ is a subset of L.

Algorithm 2 describes SARA resource allocation which is carried out in two steps,
namely node mapping and link mapping. The input of Algorithm 2 is an nslr =

{s_type, To, G} provided by the ACM. The output is a notification on either success-
ful or unsuccessful allocation of resources.

The allocation information for accepted NSLRs, describing the substrate nodes and
links where VNFs and virtual links must be instantiated, is finally passed to the Life-
cycle module. The following subsections present node and link mapping steps and their
operation.

3.4.1 Node Mapping

The Node Mapping step in Lines 1 to 15 of Algorithm 2, aims at mapping the VNFs of an
NSLR onto nodes in the substrate network (F → N ′), while meeting processing, latency
and reliability requirements. Each element in F represents a VNF and its processing
requirement is given by cpu(vnf). The service type s_type is used to choose the type of
node in SN .
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Algorithm 2: Resource Allocation Algorithm
Input :

An NSLR
Result: Mapped NSLR

1 for each substrate node n ∈ N do

2 Calculate embedding potential (equation 3.6);
3 end

4 Rank the substrate nodes N according to the embedding potential value in descending order

5 for each vnf ∈ F do

6 for each node n in the ranked list do

7 if match(type(n), type(vnf), s_type) == True and isAllowed(n, vnf) == True and
CPU(n)
cpu(vnf) ≥ 1 then

8 Map vnf onto n;
9 Break;

10 end

11 end

12 if vnf is not mapped then

13 Return non-mapped notification;
14 end

15 end

16 for each virtual link v ∈ V do

17 Obtain source src and destination dst from v;
18 Compute all simple paths from src to dst;
19 Sort the simple paths into the list CandidatePaths regarding their number of hops // The

first path in the list has the least number of hops;
20 for each path CP in CandidatePaths do

21 if each link l ∈ CP satisfies
BW (l)
bw(v) ≥ 1 then

22 Map v onto CP ;
23 Break;

24 end

25 end

26 if v is not mapped then

27 Return non-mapped notification;
28 end

29 end

30 Return mapped NSLR;
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VNFs are mapped according to their type(vnf) (Control Plane or User Plane) and
the service type (s_type) it belongs to. A VNF belonging to the Control Plane is always
mapped to a core node. VNFs belonging to the User Plane are mapped depending on the
service type:

• For the URLLC type, VNFs are mapped onto edge nodes to satisfy the strict latency
requirements.

• For MIoT, User Plane VNFs are always mapped to core nodes since this service type
is not latency-sensitive.

• For eMBB, User Plane VNFs are preferentially mapped to core nodes. However,
they may be mapped to edge nodes when core nodes are not available.

To perform the node mapping, substrate nodes, n ∈ SN , are ordered according to their
embedding potential value, EP , ( Lines 1 to 3 ) given by Equation 3.6). The EP metric
determines the capacity of a substrate node ni to embed a VNF considering its available
processing capacity CPU(ni) and available bandwidth on its adjacency BW (adj(ni)).
BW (adj(ni)) is computed as the sum of the available bandwidth in all the links connected
to ni [34] [41].

EP (ni) = CPU(ni)×
∑

l∈adj(ni)

BW (lj) (3.6)

The periodic computation of EP value allows balancing the distribution of VNFs,
which avoids the saturation of a few nodes. RAM sorts the substrate nodes in decreasing
order of EP value (i.e., from highest to lowest EP ). In this way, nodes with a lot of
processing resources available and strongly connected to their neighbors are in the top of
the ranked list.

In the second loop, Lines 5 to 15, an attempt is made to map the VNFs in F onto
the ranked substrate nodes. Three conditions need to be satisfied for a successful map-
ping (Line 7 ): i) the node type (type(n)) needs to match with the service type of the
NSLR (s_type) and the VNF type (type(vnf)) to guarantee the latency requirement, ii)
a backup of a VNF should not be placed on the same node that the primary VNF in
order to satisfy reliability requirements (method isAllowed(n, vnf)); and iii) the avail-
able processing capacity in the node is higher than the processing required by the VNF
( CPU(n)
cpu(vnf)

≥ 1).
If all conditions are satisfied, the vnf is mapped onto n, and the node resources are

allocated. Otherwise, RAM visits the next node in the ranked list to verify if the mapping
conditions hold. If RAM cannot map at least one VNF, it returns to ACM a non-mapped

notification for nslr and deallocate all the nodes that have been allocated so far to the
NSLR. In case all the VNFs are successfully mapped, RAM starts the Link Mapping step
that is described in the following subsection.
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3.4.2 Link Mapping

The Link Mapping step attempts to map virtual links onto paths (composed of substrate
links), V → L′, consuming the least amount of bandwidth. Paths in the substrate network
with available bandwidth satisfying the bandwidth demanded and with the lowest number
of hops is sought to minimize the network bandwidth utilization. If the number of hops
is high, virtual links may occupy a lot of physical links. This situation evidently will run
out bandwidth resources fast and could avoid admitting new incoming NSLRs.

In Lines 16 to 29, the last loop of Algorithm 2, RAM carries out the Link Mapping.
For each virtual link, v ∈ V , an attempt is made to map it onto a substrate path. RAM
starts obtaining the source src and destination dst nodes of v (line 17 ). RAM uses the
depth-first search to compute all the simple paths (loop-free paths) between src and dst

(Line 18 ). In Line 19, RAM sorts the simple paths, in descending order of their number
of hops and put them in the CandidatePaths queue.

Subsequently, RAM takes from CandidatePaths the first path CP (i.e., the shortest
path in terms of number of hops). RAM verifies if the bandwidth availability in all
links along CP satisfies the NSLR bandwidth requirement BW (l)

bw(v)
≥ 1. If all links meet

this condition, RAM maps v onto the links of CP ; otherwise, RAM considers the next
shortest path.

If RAM cannot map at least one virtual link, it returns a non-mapped notification
to ACM, and nodes are deallocated. Otherwise, Node Mapping and Link Mapping steps
finish successfully, and RAM sends a mapped notification to ACM.

3.5 Performance Evaluation

This section describes the evaluation of SARA. First, we introduce the metrics used for
assessing SARA performance. Then, we detail the setup for the experiments conducted,
and finally, results obtained in the experiments are discussed.

3.5.1 Metrics

The profit, resource utilization, and acceptance ratio are considered as the metrics for
SARA evaluation. The profit P is calculated according to Equation 3.2, The resource
utilization is given by:

U =

∑

j cpu(nslj)

CPU(SN)
+

∑

j bw(nslj)

BW (SN)

2
(3.7)

where:

• CPU(SN) - is the total processing capacity in SN ,

•
∑

j cpu(nslj) - is the processing resource utilized by all NSLRs instantiated in SN ,
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Experiments were conducted with different topology sizes. 16-node, 32-node, and
64-node topologies depicted in Figure 3.5 were generated by using the Barabasi-Alberth
algorithm [5]. The 16-node topology composed by 4 core nodes (i.e., yellow nodes) and
12 edge nodes (i.e., blue nodes). The 32-node topology composed by 8 core nodes and
24 edge nodes. The 64-node topology has 16 core and 48 edge nodes. The core and edge
nodes capacity is of 300 and 100 processing units, respectively. All substrate links have a
capacity of 100 bandwidth units.

Parameter Value

Substrate 16, 32, and 64-node topologies

Capacity of nodes (cpu units) core: 300, edge: 100

Capacity of links (bw units) 100

Mean operational time (time units) 12

Total load (requests per time unit) 1, 3, 5, 7, 10, 15, 20, 25, 30, 40, 60, 80, 100

Time window (time units) 2

α (learning rate) 0.9

γ (discount factor) 0.9

ǫ (greedy factor) 0.1

Table 3.2 Simulation Parameters

The computational demand of each VNF is 5 processing units. The virtual links
in the eMBB, URLLC, and MIoT service graphs require 3, 2, and 1 bandwidth units,
respectively. The operational time of arriving NSLRs follows an exponential distribution
with a mean of 12 time units. The arrivals of each of the three types of NSLR follows a
Poisson process and have the same arrival rate [63]. The total arrival rate varied from 1 to
100 requests per time unit to assess SARA performance under different load conditions.
The window duration is 2 time units. We carried out 33 repetitions to obtain results in
95% confidence intervals. Table 3.2 summarizes the simulation parameters.

We trained the RL-agent in an episodic setting. Each episode consists of 15 steps. In
order to define the values for the learning parameters, we conducted preliminary tests.
Figures 3.6a, 3.6b, and 3.6c depict the profit results when we varied α (learning rate),
γ (discount factor), and ǫ (exploration factor), respectively. From Figure 3.6a, we found
that a learning rate of 0.9 makes SARA to converge faster than lower values such as 0.5

or 0.1. Results in Figure 3.6b show that SARA seems to converge a little faster with
low γ values (0.5 and 0.1), however, it gets the highest profit values with γ fixed to 0.9.
Regarding ǫ in Figure 3.6c, when we set it to high values such as 0.5 or 0.9, SARA takes
longer to reach its convergence than when we set it to 0.1. In accordance with the above,
we fixed α and γ to 0.9 and ǫ to 0.1.

SARA performance was compared to those of two heuristics; the Always Admit Re-
quests algorithm (AAR) and the Node Ranking algorithm (NR). NR ranks the substrate
nodes according to the embedding potential defined in [35] and [41], while ARR does not
differentiate nodes for allocation. These heuristics admit NSLRs as they arrive if there is
enough available capacity to do so. Unlike SARA, these heuristics do not use any strategy
to reach target goals.
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Figure 3.6 Profit for different learning parameters

3.5.3 Results for a 16-node topology
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Figure 3.7 Profit comparison on a 16-node topology

Figure 3.7 depicts the profit as a function of time for an arrival rate of 20 requests per
time unit. SARA increased the profit from episodes 1 to 12 when it converged. SARA
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produced the highest profit values even before converging (except for the first episode).
Overall, SARA’s profit is 7% and 11.3% higher than those obtained by NR and AAR,
respectively. These profit values are a consequence of SARA using an RL-algorithm that
quickly learns the most profitable combination of NSLRs.
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Figure 3.8 Profit vs Arrival Rate on a 16-node topology

Figure 3.8 shows the profit as a function of the total arrival rate. Under low loads
(e.g., 1 requests per time unit), SARA obtained lower profit values than those given by the
other two heuristics. If the arrival rate is too low, the number of arrivals of NSLRs is not
enough to provide useful information to the RL-agent. On the other hand, for arrival rates
equal to or greater than 7 requests per time unit, SARA obtained the highest profit. For
example, for 7 requests per time unit, the RL-agent obtained 2.4% higher profit than the
NR profit, and for 60 requests per time unit, the difference raised to 7.9%. Summarizing,
SARA outperforms AAR and NR under medium to high loads because the RL-agent
learns to admit the proper proportion of each NSLR type to increase the profit.
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Figure 3.9 SARA - Profit per NSLR Type on a 16-node topology
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Figure 3.9 presents the contribution of each type of service of admitted NSLR to the
total profit obtained by SARA for a load of 20 requests per time unit. The contribution
of URLLC NSLRs to the total profit grew from episodes 1 to 12 when SARA obtained the
maximum profit. Conversely, the profit of NSLRs of eMBB and MIoT slightly decreased
from episodes 1 to 12. SARA learns to identify the NSLRs that generate high profit.
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Figure 3.10 Acceptance Ratio on a 16-node topology
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Figure 3.11 Acceptance Ratio vs Arrival Rate on a 16-node topology

Figure 3.10 shows the acceptance ratio as a function of time. Before converging, SARA
produced acceptance ratios greater than those produced by AAR and slightly higher than
those given by NR. After converging, SARA produced acceptance ratios 1% and 6% higher
than NR and AAR, respectively. The difference is not significant since SARA prioritizes
NSLRs that increase the profit which may cause the rejection of some of the less profitable
NSLRs.

Figure 3.11 depicts the acceptance ratio as a function of the arrival rate. The three
algorithms produced low acceptance ratios when the arrival rate is high because of the
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Figure 3.12 SARA - Acceptance per NSLR Type on a 16-node topology

limited resources in the substrate. When the arrival rate is higher than 7 requests per time
unit, SARA produced the highest acceptance ratio, but the difference is still negligible.
The reason for such difference is that the primary goal of SARA is to increase the profit
and not the acceptance ratio. Several factors influence the profit: the cost, the quantity
of accepted NSLR, and the operational time of resources consumed by these NSLRs.
If SARA accepts NSLRs that need many resources and have long operational times, the
substrate becomes busy for a long time, which prevents the acceptance of incoming NSRL.
In general, the acceptance ratio results do not negatively impact on the profit since the
RL-agent learns to prioritize the requests that increase the profit (see Figure 3.8).

Figure 3.12 presents SARA’s acceptance ratio per service type. For URLLC NSLR,
SARA’s acceptance ratio grew from the first episode to the convergence point, achiev-
ing the maximum value. After that, the number of admitted eMBB and MIoT NLSR
decreased over time because the RL-agent learns that these types of requests are less
profitable (mainly the MIoT requests). Figures 3.12 and 3.9 corroborate that SARA ac-
cepts a higher proportion of NSLRs of type URLLC than the other types of service which
give less profitability.

Figure 3.13 presents the network resource utilization as a function of time for an arrival
rate of 20 requests per time unit. The resource utilization produced by NR and AAR did
not evolve because these heuristics make decisions without learning from the environment.
Conversely, the utilization produced by SARA grew up fast from the episode 1 to 12. After
converging, the RL-agent obtained the maximum resource utilization, which is 5% higher
than that achieved by NR.

Figure 3.14 depicts the network resource utilization obtained by SARA for the two
types of nodes, and links. The green, orange, and brown lines correspond to the utilization
of core nodes, edge nodes, and links, respectively. The blue line corresponds to the total
resource utilization.

The utilization of core nodes slightly decreased after convergence. This happened
because the mean utilization of edge nodes increased from 37% on the episode 1 to 49%

after episode 12. The RL-agent accepts more NSLRs of URLLC than NSLRs of type
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Figure 3.13 Resource Utilization on a 16-node topology

0 20 40 60 80
Episodes

0.3

0.4

0.5

0.6

0.7

Re
so

ur
ce

 U
til
iza

tio
n

Total
edge
core
links

Figure 3.14 SARA - Utilization per Node Type on a 16-node topology

MIoT and eMBB. Remember that URLLC requests use many edge resources to meet
latency requirements. As a result, profit increases (Figure 3.7).

3.5.4 Results for a 32-node topology

Figure 3.15 depicts the profit obtained in the 32-node topology as a function of time for
an arrival rate of 20 requests per time unit. SARA increased the profit from episodes 1

to 10 when it converged. SARA produced higher profit values than NR and AAR even
before converging (for most of episodes). Overall, the profit produced by SARA is 4.1%

and 7.4% higher than those obtained by NR and AAR, respectively. Again, these profit
values are due to SARA uses an RL-algorithm that quickly learns the most profitable
combination of NSLRs. It is noteworthy to mention that on the 16-node topology with
20 requests per time unit, SARA reached a higher difference compared to the benchmark
(i.e., 7% respect to NR and 11.3% respect to AAR). This can be explained by the fact
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Figure 3.15 Profit comparison on a 32-node topology

that the topology with 32 nodes has a larger amount of resources than the topology of 16
nodes, thus, the former needs a higher quantity of instantiated NSLs (i.e., triggered by
higher arrival rates) to generate similar profit results than the latter.
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Figure 3.16 Profit vs Arrival Rate on a 32-node topology

Figure 3.16 shows the profit obtained as a function of the total arrival rate on the
32-node topology. Under low loads (e.g., 1 requests per time unit), SARA obtained lower
profit values than those given by the other two heuristics. If the arrival rate is too low,
the number of arrivals of NSLRs is not enough to provide useful information to the RL-
agent. On the other hand, for arrival rates upper than 10 requests per time unit, SARA
obtained the highest profit. For example, for 15 requests per time unit, the profit of SARA
is 1.6% higher than the profit produced by NR and for 100 requests per time unit, the
difference raised to 5.6%. Anew, SARA outperforms AAR and NR under medium to high
loads because it learns to accept the proper proportion of each NSLR type to increase the
profit.
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Figure 3.17 SARA - Profit per NSLR Type on a 32-node topology

Figure 3.17 presents the contribution of each type of admitted NSLR to the total
profit obtained in the 32-node topology by SARA for a load of 20 requests per time unit.
The contribution of URLLC NSLRs to the total profit grew from episodes 1 to 10, when
SARA obtained the maximum profit. Conversely, the profit of NSLRs of eMBB and MIoT
slightly decreased from episodes 1 to 10. These results confirm SARA learns to identify
the NSLRs that generate high profit.
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Figure 3.18 Acceptance Ratio on a 32-node topology

Figure 3.18 shows the acceptance ratio obtained in the 32-node topology as a function
of time for a load of 20 requests per time unit. Before converging, SARA produced
acceptance ratio greater than those produced by AAR and NR. After converging, SARA
produced acceptance ratio 3.2% and 7.1% higher than the obtained by NR and AAR,
respectively. As in the 16-node topology, the difference is low since SARA does not aim
to increase the acceptance ratio but the profit.

Figure 3.19 depicts the acceptance ratio obtained in the 32-node topology as a function
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Figure 3.19 Acceptance Ratio vs Arrival Rate on a 32-node topology

of the arrival rate. The three algorithms produced low acceptance ratios when the arrival
rate is high due to the limited resources in the substrate. When the arrival rate is higher
than 10 requests per time unit, SARA produced the highest acceptance ratio but the
difference is still negligible. As mentioned earlier, this happens because SARA targets to
increase the profit and not the acceptance ratio.

0 20 40 60 80
Episodes

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
ce

pt
an

ce
 ra

tio

eMBB
URLLC
MIoT

Figure 3.20 SARA - Acceptance per NSLR Type on a 32-node topology

Figure 3.20 presents the acceptance ratio per service type obtained by SARA with
a load of 20 requests per time unit. For URLLC NSLRs, this ratio grew from the first
episode to the convergence point, achieving the maximum value. After converging, the
number of admitted eMBB and MIoT NSLRs diminished over time because the RL-agent
learns that these types of requests are less profitable. Figures 3.9, 3.12, 3.17, 3.20 confirm
that SARA accepts a higher proportion of NSLRs of type URLLC than the other types
of service which give less profitability.

Figure 3.21 presents the network resource utilization results obtained in the 32-node
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Figure 3.21 Resource Utilization on a 32-node topology

topology by the three algorithms as a function of time for an arrival rate of 20 requests
per time unit. As expected the resource utilization produced by NR and AAR did not
evolve because these heuristics make decisions without learning from the environment.
Contrarily, the utilization produced by SARA grew up fast from the episode 1 to 10.
After converging, the RL-agent obtained the maximum resource utilization, which is 3%

higher than the achieved by NR.
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Figure 3.22 SARA - Utilization per Node Type on a 32-node topology

Figure 3.22 depicts the network resource utilization obtained by SARA in the 32-node
topology for different types of nodes, and links. The green, orange, and brown lines
correspond to the utilization of core nodes, edge nodes, and links, respectively. The blue
line corresponds to the total resource utilization. The utilization of core nodes slightly
decreased after convergence due to the mean utilization of edge nodes increased from
49% on the episode 1 to 54% after episode 10. The RL-agent prioritizes more NSLRs
of URLLC than NSLRs of type MIoT and eMBB in order to increase the profit (Figure
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3.15).

3.5.5 Results for a 64-node topology
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Figure 3.23 Profit comparison for 20 requests per time unit on a 64-node topology
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Figure 3.24 Profit comparison for 40 requests per time unit on a 64-node topology

Figure 3.23 depicts the profit results on the 64-node topology with an arrival rate of
20 requests per time unit. Here, the profit of SARA does not show evolution along the
episodes and its values are similar to those produced by NR. This can be explained since
a 64-node topology has a larger amount of resources than a 16-node or a 32-node topology
and therefore, 20 requests per time unit are not enough for producing strong rewards that
allow the RL-agent to learn. In this sense, we show in Figure 3.24 the profit obtained by
SARA for an arrival rate of 40 requests per time unit. SARA increased the profit from
episodes 1 to 9 when it converged. It produced higher profit values than NR and AAR
even before converging. Overall, the profit produced by SARA is 4.6% and 8.4% higher
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than those obtained by NR and AAR, respectively. Once again the RL-based algorithm
of SARA quickly learned the most profitable combination of NSLRs.
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Figure 3.25 Profit vs Arrival Rate on a 64-node topology

In figure 3.25, we show the profit obtained by SARA, NR, and AAR on the 64-node
topology when varying the load from 1 to 100 requests per time unit. SARA exhibits
marked higher profit values than the benchmark after 20 requests per time unit where
the difference is 1.8% in relation to NR and 4.2% in relation to AAR. For an arrival rate
of 100 requests per second, such differences raised to 7.1% with respect to NR and 11.2%
compared to AAR.

It is important to highlight that for 16-node and 32-nodes topologies SARA overcomes
the benchmark after 5 and 10 requests per time unit, respectively. This behaviour can
be explained since for the case of topologies with lower number of nodes, and hence, less
amount of resources than larger topologies, low loads allow occupying enough resources
to produce sufficiently strong rewards to favor the learning. In this sense, large topologies
need a higher load to generate profit results similar to those produced by small topologies
with a lower load.

Figure 3.26 presents the evolution, along the episodes, of the profit contributed by
each type of admitted NSLR to the total profit obtained on the 64-node topology with
a load of 40 requests per time unit. Before the convergence point, URLLC profit grows
while the profit of eMBB and MIoT slightly decreases. These results confirm that SARA
learns to identify the type of NSLRs that generate high profit.

In figure 3.27, we show the acceptance ratio obtained in the 64-node topology as a
function of time for a load of 40 requests per time unit. After converging, SARA produced
a higher acceptance ratio than NR and AAR, in specific, 1% and 4%, respectively. As
mentioned in the evaluations for 16-node and 32-node topologies, such a difference is low
since SARA does not aim to increase the acceptance ratio but the profit.

Figure 3.28 depicts the acceptance ratio obtained in the 64-node topology when varying
the arrival rate. The three algorithms produced high acceptance ratios for low loads.
When the arrival rate grows, such ratios decrease. For arrival rates higher than 25 requests
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Figure 3.26 SARA - Profit per NSLR Type on a 64-node topology
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Figure 3.27 Acceptance Ratio on a 64-node topology

per time unit, SARA produced the slightly higher acceptance ratios than the benchmark,
however, the difference is negligible. As mentioned earlier, this is explained since the goal
of SARA is to increase the profit and not the acceptance ratio.

In figure 3.29, we present the acceptance ratio of each service type obtained by SARA
with a load of 40 requests per time unit. Before the convergence, the acceptance ratio
of URLLC NSLRs grows until achieving the maximum value while the ratios of eMBB
and MIoT NSLRs decrease since the RL-agent learns that these types of requests are
less profitable. Figures 3.9, 3.12, 3.17, 3.20, 3.26, and 3.29 confirm that SARA accepts a
higher proportion of NSLRs of type URLLC than the other types which give less profit.

Figure 3.30 presents the network resource utilization results obtained in the 64-node
topology by the three algorithms as a function of time for an arrival rate of 40 requests
per time unit. As expected the resource utilization produced by NR and AAR did not
evolve because these heuristics make decisions without learning from the environment. In
contrast, the utilization produced by SARA grew up fast in the episodes before conver-
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Figure 3.28 Acceptance Ratio vs Arrival Rate on a 64-node topology
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Figure 3.29 SARA - Acceptance per NSLR Type on a 64-node topology

gence. After converging, the SARA obtained a profit 3% higher than the achieved by NR
and 7% greater than AAR.

In figure 3.31, we depict the network resource utilization obtained by SARA in the
64-node topology for each type of node, and links. The green, orange, and brown lines
correspond to the utilization of core nodes, edge nodes, and links, respectively. The blue
line corresponds to the total resource utilization. After convergence, the utilization of core
nodes has decreased while the mean utilization of edge nodes has increased and reaches
54%. SARA prioritizes more NSLRs of URLLC than those of MIoT and eMBB in order
to increase the profit as shown in (Figure 3.15).
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Figure 3.30 Resource Utilization on a 64-node topology
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Figure 3.31 SARA - Utilization per Node Type on a 64-node topology

3.6 Summary

In this chapter, we introduced SARA, an approach that jointly performs admission con-
trol and resource allocation for NSLRs of eMBB, URLLC, and MIoT service types in
5G. The RL-based algorithm of SARA prioritizes the most profitable NSLRs in a set of
them that arrived in a time window. SARA employs Q-learning, a model-free RL algo-
rithm, meaning that SARA does not make assumptions about the substrate network as
do optimization-based approaches. SARA learns while exploring the environment with-
out a prior-knowledge about the substrate. SARA adapts to changes in the environment
since its online operation (i.e., input data is provided sequentially while the algorithm is
running) allows learning continually from the interaction with the environment.

The evaluation results show that SARA outperforms the benchmark when testing on
topologies of different sizes. For the 16-node topology, SARA achieved up to 7% and
11.3% higher profit than the profit given by the NR and AAR algorithms, respectively.
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Moreover, SARA utilized 5% and 10% more resources than did NR and AAR, respectively.
Utilization results are consistent with profit results since SARA learned to admit the
most profitable requests, which are those that use more resources. Results on the 32-
node topology show that SARA reached up to 5.6% and 9% higher profit than the profit
given by the NR and AAR algorithms, respectively. SARA utilized 3.5% and 7.2% more
resources than did NR and AAR, respectively. For tests on the 64-node topology, SARA
obtained up to 7.1% and 11.2% higher profit than the profit generated by the NR and
AAR, respectively. Furthermore, SARA reached 3.2% higher utilization than NR and
6.8% higher than AAR.

Results presented in this chapter corroborate that the RL-based strategy adopted
by SARA, to manage admission and resource allocation for 5G NSLRs, is suitable for
optimizing the profit to NSPs.
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Chapter 4

Admission Control for 5G Network

Slices based on Deep Reinforcement

Learning

5G is conceived to support myriads of specialized services accessible on-demand from a
vast number of devices by multiple customers [2, 54]. Network Slicing is the technology
that allows 5G to build and run several isolated and customized NSLs over a single network
infrastructure to support such specialized services [49]. NSPs will receive several NSLRs
from multiple tenants. Since each NSLR has particular QoS requirements associated to
its service type (eMBB, URLLC, or MIoT) and substrate resources are finite, NSPs face
the challenge of admitting NSLRs and allocating resources to them, aimed at increasing
its overall profit and optimize the network resource utilization.

In the literature, admission control and resource allocation for slicing requests have
been addressed by employing different techniques such as Queuing Theory [33, 3], Big Data
[50], Heuristics [37, 55, 64, 41], Complex Network Theory [27], Reinforcement Learning
[49, 12], and more recently, Deep Reinforcement Learning [11, 40]. However, on the one
hand, some of those proposals have considered only resource allocation and neglected
admission control, which prevents the achievement of NSP goals.

On the other hand, approaches that consider admission control make decisions on
individual NSLRs, which can lead to sub-optimal decisions since more profitable requests
arriving in the short term can be rejected due to the unavailability of resources recently
allocated [24]. Moreover, most of these proposals neither consider the QoS requirements
of different service types (use cases) nor the allocation of resources in 5G core network
nodes. Performing admission control and resource allocation jointly and intelligently can
considerably improve the achievement of target objectives.

In Chapter 3, we proposed SARA, a Q-learning based solution for admission control
of NSLRs and their resource allocation. We demonstrated that SARA outperforms two
heuristics in terms of profit and resource utilization. SARA can produce even higher profit
values if a larger and more accurate scenario is provided, for instance, more features to
represent the states and more actions for the agent to explore. However, such enhancement
is achieved at the cost of a longer convergence time since the agent has to experience more
state-action pairs many times before obtaining a reliable estimation of their Q-values.
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Furthermore, strong memory characteristics are needed for storing a larger amount of Q-
values. These limitations are typical of Q-learning solutions due to the use of the Q-table
to store Q-values [11].

Deep Q-learning (DQN), a Deep Reinforcement Learning (DRL) technique, arises to
deal with Q-learning limitations. DQN uses a function approximator for generalizing
the knowledge learned from some already visited states to other similar states. Such
generalization allows the agent to learn from a reduced number of interactions with the
environment, and therefore, the algorithm converges fast [58].

Aimed at improving further the results achieved by SARA, this chapter introduces
DSARA (DRL-based network Slice requests Admission and Resource Allocation). DSARA
addresses admission control and resource allocation for 5G NSLRs. DSARA employs a
DRL-agent to explore, exploit, and learn to admit NSLRs collected in time windows to
increase the profit of NSPs.

The organization of this chapter is as follows. Section 4.1 presents the related work.
Section 4.2 introduces the architecture of DSARA. Section 4.3 presents and describes in
detail the DRL-based admission control algorithm of DSARA. Section 4.4 presents the
evaluation of DSARA. Finally, section 4.5 summarizes this chapter.

4.1 Related Work

In this section, we present research related to admission control and resource allocation
in 5G Network Slicing. Table 4.1 summarizes approaches and its features.

Multiple works have addressed admission control and resource allocation in 5G network
slicing by different techniques including Queuing Theory [33, 3], Big Data [50], Heuristics
[37, 55, 64, 41], Complex Network Theory [27], and RL [49, 12]. Recently, DRL has also
gained attention in this field [11, 40]. Bega et al. [11] propose a DRL-based algorithm
that performs admission control for individual slicing requests, focused on RAN, aimed
at maximizing the monetization of the infrastructure provider. Li et al. [40] investigate
the application of DRL in 5G network slicing for a radio resource slicing scenario. In
particular, authors propose an algorithm that allocates the bandwidth resource of a slice
to the users within the slice.

Approaches [33], [50], [55], [37], [49], [12] and [11] use mechanisms for admission control
that make decisions on individual requests, which prevents the selection of the NSLRs
that potentially optimizes an objective such as the profit of NSPs. These papers do not
consider different types of requests according to 5G use cases, neglecting the diversity of
QoS requirements of 5G service types. Moreover, they focus on edge nodes and neglects
5G core network nodes (Table 4.1).

In [64], [41], [3], [27], and [40], authors focus only on mapping NSLs. They map the
arriving NSLRs without considering admission control which prevents the achievement
of NSP goals. Performing both admission control and resource allocation jointly in 5G
Network Slicing is critical to optimize resource utilization and maximize NSP profit. This
task is challenging since it involves making highly repetitive decisions [43]. RL algorithms
are well-suited candidates for decision-making problems; RL employs Markov Decision
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Table 4.1 Related Work

Work Technique
Focus Time

Window

Fifth Generation Performance

Metrics
AC RA

Use

Cases

Edge

Nodes

Core

Nodes

[49] RL (Q-learning) X X Provider profit

[33] Queuing theory X X Utility rate, admission
rate, request waiting time

[50] Big Data Analytics X X Provider profit

[37] Heuristic algorithm X X X QoE, resource utilization

[55] Heuristic algorithm X X System resource utiliza-
tion

[12] RL (Q-learning) X X Provider revenue

[11] DRL (Deep Q-
learning)

X X Provider revenue

[64] Heuristic algorithm X X X Acceptance Ratio and Ex-
ecution Time

[41] Heuristic algorithm X X Acceptance ratio, provider
revenue

[3] Queuing Theory X X Running time

[27] Complex Network
Theory

X X X X Resource efficiency, ac-
ceptance ratio, execution
time

[40] DRL (Deep Q-
learning)

X X Spectrum efficiency and
QoE

DSARA DRL (Deep Q-
learning)

X X X X X X Provider profit, resource
utilization, acceptance ra-
tio

Process, an efficient tool to solve such kind of problem [40]. Moreover, such repetitive
decisions produces a large quantity of data that can be used to train RL-agents.

Our approach, DSARA, learns from a set of NSLRs collected during a time window,
the most profitable ones. DSARA is model-free since it does not make assumptions
about the environment but learns while exploring it without a prior-knowledge. DSARA
operates online which allows to learn continually from the environment and therefore
adapt to changes. DSARA enables to generalize knowledge from a few past experiences
to converge fast. To the best of our knowledge, no other work has proposed a solution for
5G Network Slicing based on DRL that jointly performs admission control and resource
allocation, considers typical use cases in 5G, and differentiates core and edge nodes.
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Figure 4.1 Profit of SARA for a large scenario

4.2 Architecture of DSARA

This section first present a brief motivation to use Deep Q-learning, and second, it de-
scribes the architecture of DSARA, illustrated in Figure 4.2.

4.2.1 From Q-learning to Deep Q-learning

In Chapter 3, we proposed SARA, a Q-learning based solution for admission control of
NSLRs and their resource allocation. We demonstrated that SARA outperforms two
heuristics in terms of profit and resource utilization. Nonetheless, the profit of SARA
can be further increased if we consider: additional features to represent states (e.g.,
the number of NSLs of each type in operation) to get a more accurate model of the
environment, and a larger Action Space, i.e., a higher number of actions to encompass
more options that lead the agent to find more optimal solutions.

Figure 4.1 depicts the scenario mentioned above. The dark-blue line shows the profit
results obtained by SARA in Chapter 3, i.e., for a scenario with 103 states and 10 actions
(104 state-action pairs). Results correspond to tests on the 16-node topology with a load
of 20 requests per time unit. The light-blue line presents the profit results achieved by
SARA for a scenario in which we increased the states to 106 and the number of actions to
30 (3 × 107 state-action pairs). Results show that in the new scenario, SARA reaches a
maximum profit that is 3% higher than the obtained with the previous scenario. However,
its convergence takes place at 238 episodes after. NSPs are missing the opportunity to
generate higher profits in such initial episodes.

The performance of SARA can be improved for large scenarios (i.e., scenarios with a
high amount of state-action pairs) by facing Q-learning limitations. In Q-learning, the
agent selects an action (at) under a state (st) and receives from the environment a reward
(Rt) and a new state (st+1) [58, 40]. Q-learning stores the quality (Q-value) of an action,
in a given state, by using a lookup table (Q-table). Q-learning behaves very stably for
moderate amounts of state-action pairs. For large scenarios, Q-learning approaches may
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Figure 4.2 Architecture of DSARA

present serious limitations derived from the use of the Q-table to store the Q-values [11].
Such limitations are: (i) large convergence time since the agent needs to experience many
times the same state-action pairs before obtaining a reliable estimation of their Q-values;
and (ii) strong memory characteristics needed to store such a large amount of Q-values.

In this regard, DQN is a well-known alternative to deal with the limitations of Q-
learning. DQN enables the agent to learn from a reduced number of interactions with
the environment by applying the knowledge learned from some already visited states to
other similar states. This is known as generalization, improves convergence, and can
be performed by Artificial Neural Networks (NN), strong approximators for non-linear
functions [36].

4.2.2 Modules

The environment on which DSARA operates consists of a substrate network and several
incoming 5G NSLRs processed in batches collected in time windows. These elements
follow the same considerations as in SARA described in Chapter 3.

DSARA is composed of: the DRL-based Admission Control Module (ACM) that per-
forms the admission of NSLRs, the Resource Allocation Module (RAM) that assigns sub-
strate resources to VNFs and virtual links of an NSLR, the Monitoring Module in charge
of collecting and delivering information about substrate resources availability to ACM
and RAM, and the Lifecycle Module that creates and terminates NSLs.

ACM consists of a DRL-agent that selects an action indicating a normalized weight
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value for each service type and a Prioritizer that sorts the NSLRs according to the values
provided by the agent. The DRL-agent learns to select the actions that generate the
highest profit to NSPs by looking at previous experiences. Each experience consists of
a past decision (i.e., the action selected) made in a particular situation and its conse-
quence (i.e., the profit resulted by taking the selected action). Experiences are stored
into a database (replay memory) and then revisited to extract knowledge from them to
be applied to similar situations in the future. The operation of ACM and its specificities
are formally discussed in Section 4.3.

The Prioritizer is in charge of enqueueing NSLRs in batches of minimum size obeying
the arrival time and the proportion given by the weight values provided by the agent.
For instance, if weight values are 1.0, 0.5, and 0.5 for the eMBB, URLLC and MIoT,
respectively, then batches with 2, 1, and 1 NSLRS of type eMBB, URLLC and MIoT
are enqueued. NSLRs per class are enqueued in chronological order. If all the NSLRs of
a particular type have been enqueued, the weight values of the other service types are
used to determine the number of NSLRs in the subsequent batches. In the example just
described, if there are 10 NSLRs per service type, in the queue, there will be a sequence
of 5 batches with 2, 1, and 1 NSLRs of type eMBB, URLLC, and MIoT, followed by 5

batches composed by one NSLR of URLLC and one of MIoT type.
Once the priority queue has been assembled, each NSLR is dequeued, and the ACM

sends a request for allocation of resources to RAM. If resources are successfully allocated,
then the NSLR is accepted. Otherwise, it is rejected. The dequeuing of an NSLR and the
attempt to allocate resources to it is repeated until the priority queue is empty.

RAM allocates resources on nodes for the VNFs composing an NSLR (node mapping),
and then, allocates bandwidth in selected links (link mapping) connecting the allocated
nodes. Decisions on node mapping consider not only if a node has resources available to
support the demand but also the latency and reliability requirements of the NSLR type.
Control Plane VNFs are mapped onto core nodes. User Plane VNFs of a URLLC request
are mapped onto edge nodes to satisfy strict latency requirements, while the User Plane
VNFs of the other two types are mapped, preferably on core nodes. For complying with
reliability requirements, a backup VNF is not placed onto the same node on which its
primary VNF is placed.

Link Mapping maps each virtual link onto the shortest substrate path that satisfies
the required bandwidth by the virtual link. If Node Mapping and Link Mapping finish
successfully, RAM sends a notification of successful allocation (mapped) to ACM. Oth-
erwise, a non-mapped notification is sent. RAM in DSARA has no modifications with
respect to its counterpart in SARA.

Upon accepting an NSLR, the Lifecycle module instantiates its VNFs and virtual links,
creating, then, an NSL. When the lifetime of the NSL expires, resources are deallocated.

4.3 Admission Control based on Deep Q-learning

ACM in DSARA is based on DQN. In this section, we firstly review DQN. Then, we
describe our DRL-agent by defining the elements that specify it. Finally, we introduce
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and detail our admission control algorithm. For allocating resources to NSLRs, we use
the algorithm described in Chapter 3.

4.3.1 Deep Q-learning

Figure 4.3 Deep Q-learning operation

DQN is a DRL algorithm, a category of Machine Learning that takes advantage of
both RL and Deep Learning [40] (see Figure 4.3). On the one hand, RL enables a self-
learning agent to maximize long-term performance by interacting with the environment
and receiving feedback from it. On the other hand, inspired by biological neural networks,
Deep Learning allows RL to manage problems with large state and action spaces by
generalizing knowledge [25, 10]. Generalization allows to apply the knowledge learned
from some already visited states to other similar states. Linear function approximation is
the most straightforward generalization technique [44]. However, it could not accurately
model the estimated policy function [40]. In this regard, researches have used NNs, strong
approximators for non-linear functions, to perform generalization [36].

DQN uses an NN to generalize the experience learned. NNs are structures formed by
a set of highly interconnected units known as neurons organized into layers. Each neu-
ron is basically a mathematical operation that applies a weighted sum to the input, and
then, it passes its output to the next neurons. Neurons learn by adjusting their weights
based on a large number of examples containing inputs and desired outputs (i.e., labeled
datasets) [12]. In DQN, the NN estimates the Q-value (Qi) of each action in the action
space A. Then, the action taken will be the one with the best estimated Q-value. One
of the advantages of using DQN is that its NN only needs to store a limited number of
variables, i.e., the weights and biases of the network structure, to accurately estimate
Q-values [11].
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Enhancements in DQN

Two techniques have been proposed for enhancing the learning stability in DQN [10, 45]:

• Experience Replay. The agent stores the past experience (st, at, st+1, Rt) at step t

into a dataset (replay memory) to later take from it a mini-batch of experiences and
train the NN. This allows to reduce the amount of interactions with the environment
needed to learn compared to Q-learning.

• Evaluation and Target Networks. The agent uses two NNs to learn which action
to take at every step. The evaluation NN estimates the Q-values (Q(st, at)) and is
trained at each step. A second network, called fixed target NN (i.e., its weights
are temporarily fixed to enhance learning stability) is used for estimating the target
Q-values (see Equation 4.1) that serves as a label to calculate the loss for training
the evaluation network. Target NN is updated with the weights of the evaluation
NN after a fixed number of steps since the latter is being trained iteratively.

Q+(st, at) = Rt + γ ·maxQ(st+1, a) (4.1)

Gradient Descent and Backpropagation

Training an NN involves reducing the loss by adjusting the NN’s parameters (i.e., weights
and biases). The loss is the difference between the estimated output and the target
output, also called error or cost function. In DQN, the loss (Equation 4.2) is calculated
by the difference between the Q-value estimated by evaluation NN and the target Q-value
obtained by target NN. The adjustment of weights and biases can be performed by using
a gradient descent and backpropagation approach [52].

Loss = (Q+(st, at)−Q(st, at))
2 (4.2)

The Gradient descent algorithm is used to calculate new weights and biases that
reduces the loss by moving it in the direction of the steepest descent. Gradient descent
and backpropagation allow to adjust weights and biases of each layer in the NN by back-
propagating the error calculated at the output layer.

4.3.2 DRL-agent for Admission Control

Figure 4.4 shows the internals of our DRL-agent that includes target and evaluation NNs,
a memory for storing experiences (Replay Memory), and loss calculation and parameters
update operations. This subsection describes the elements that specify our DRL-based
solution: state space, action space, reward function, exploration and exploitation method,
and finally the NNs used by the DRL-agent.

State Space

The State Space S is the set of all states the DRL-agent can observes. Each state describes
the substrate resource availability as well as the amount of NSLs of each type in operation.
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Figure 4.4 DRL-agent of DSARA

Every state s ∈ S is denoted by the tuple: {cpu(E), cpu(C), bw(L), ne, nu, nm}, where
cpu(E) and cpu(C) are the available processing capacity in the set of edge (E) and core
nodes (C), respectively. bw(L) is the available bandwidth in the set of links (L). ne, nu,
and nm indicate the number of NSLs in operation of type eMBB, URLLC, and MIoT,
respectively.

With the aim of keeping tractable the number of states, the capacity of substrate
resources and the number of instantiated NSLs of each type are discretized in ten equal
intervals. As our State Space considers six variables, and each can take ten values, the
total number of states the DRL-agent can explore is 106.

To exemplify the State Space, consider the following state: si = {80, 50, 60, 30, 60, 10}.
si indicates that 80% and 50% of the total capacity of processing is available in E and C,
respectively, and 60% of the total capacity of bandwidth is available in L. Such a state
also indicates that 30% of NSLRs currently running are of eMBB type. Similarly, 60% of
NSLRs are of URLLC and 10% belongs to MIoT type.

Action Space

The Action Space A is the set of all actions the DRL-agent can take. In every step, the
DRL-agent selects the action describing the weights of each type of service (i.e., NSLR of
eMBB, URLLC, and MIoT). Those weights enables the DRL-agent to learn what is the
best admission proportion of NSLRs that leads to the highest profit for the current state.
Every action a ∈ A is denoted by a = {wembb, wurllc, wmiot}, where wembb, wurllc, and wmiot
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are the weights for each type of service. In every step, the DRL-agent chooses the action
a that allows to achieve the maximum profit.

To exemplify the Action Space, let us consider the following action: ai = {1, 0.75, 0.5}.
This action indicates that the DRL-agent of DSARA should prioritize NSLRs of eMBB.
Specifically, it has to admit two NSLRs of MIoT and three of URLLC every four NSLRs
of eMBB. We consider 30 different actions in the Action Space, i.e., 30 different admission
solutions the DRL-agent can explore to determine the optimum one for every state.

Reward

The reward guides the DRL-agent to get proper solutions for the proposed target. As we
target to maximize the NSP profit, our DRL-agent receives a reward that contains the
profit generated after it takes an admission action. Equation 4.3 indicates the profit p

generated by each NSL accepted and instantiated during its operational time To. p(nsl)

is the difference between the revenue revi and the cost csti.

p(nsli) = (revi − csti)× To (4.3)

csti =
m
∑

j=0

cpuj(vnfj)× fcpuj +
n

∑

j=0

bw(vj)× fbw × h (4.4)

where:

rev - is the income that an NSP receives for instantiating the nsli

cst - the cost of running nsli on the substrate

To - is the nsli operational time

m - gives the number of VNFs in nsli

n - gives the number of virtual links in nsli

cpu(vnfj) - is the cpu demand of vnfj ∈ nsli

bw(vj) - is the bandwidth demand of vj ∈ nsli

fcpuj - is the cost of processing cost node j, which depends on the node type

fbw - is the bandwidth cost

h - is the number of hops composing the path where virtual link vj is allocated.

The reward R the DRL-agent receives at each step is given by:

R =

∑k

i=0 p(nsli)

maxP (SN, T )
(4.5)
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where maxP (SN, T ) is the maximum profit that NSP could receive when using all the
resources in the substrate (SN) in a certain period (T ).

Exploration and Exploitation Trade-off

The DRL-agent of DSARA needs a method to choose an action at each step. We use an
epsilon-greedy method that reduces the ε parameter progressively which allows the DRL-
agent to explore less and less as episodes go on. The goal of this progressive reduction
is to move the DRL-agent from a more explorative policy at the beginning to a more
exploitative policy after a certain number of episodes [58].

In epsilon-greedy, the parameter ε determines how much the DRL-agent explores-
exploits [60]. A small ε value enables the DRL-agent to select more optimal actions than
random actions, as a result, it exploits more the current knowledge. In contrast, a large
ε allows the DRL-agent to take more random actions than optimal ones; i.e., it explores
new actions more frequently.

εt = εmax − (nstepst × dr) (4.6)

To choose an action at each step, our DRL-agent first decays ε by Equation 4.6, where
εmax is the maximum probability of exploration at the beginning of training. nstepst is
the number of steps the DRL-agent has experienced so far at step t. dr is the decay rate,
a constant that allows reducing ε linearly over time.

a =







max
a

Qt(st, a), with probability 1−εt

randomaction, with probability εt
(4.7)

After decaying ε, the DRL-agent generates a random number rn ∈ [0, 1], and then,
compares rn against ε. If rn > ε, the DRL-agent selects the action with the maximum
Q-value; otherwise, it chooses a random action (see Equation 4.7).

Neural Networks

The traditional DQN uses a single NN to estimate both Q-values and target Q-values,
which leads to unstable learning caused by the correlations between such values [45]. To
avoid such a learning instability, the DRL-agent of DSARA uses two NNs to learn the
optimal action for every state: an evaluation NN that estimates the Q-value (Q(st, at)),
and a fixed target NN that estimates the target Q-value (Q+(st, at)) which is used as a
label to calculate the loss for training the evaluation NN (see Figure 4.4). The evaluation
NN is trained by using a mini-batch of experiences from the replay memory. Weights and
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One Q-value for 

each action in the 

Action Space

Figure 4.5 Structure of evaluation NN and target NN of DSARA

biases are adjusted by a gradient descent and backpropagation approach [52]. Target NN is
fixed temporarily, for stability reasons as mentioned above, and updated only periodically
with the trained parameters of evaluation NN [10].

The structure of an NN consists of an input layer, one or more hidden layers, and an
output layer. Figure 4.5 depicts the structure of the NNs used by our DRL-agent. There
are 6 neurons in the input layer, i.e., one input neuron per variable in the tuple that
represents an state (i.e., {cpu(E), cpu(C), bw(L), ne, nu, nm}). The output layer has 30

neurons, i.e., one neuron for each of the 30 actions in the Action Space A. Each neuron
in the output layer estimates the Q-value Qi associated with action ai ∈ A. Finally, we
consider a single hidden layer since it is enough to approximate any function. Moreover,
a larger amount of layers may require longer training periods [36].

4.3.3 DRL-based Admission Control Algorithm

The DRL-based procedure of ACM, described in Algorithm 3, uses experience replay,
evaluation and target NNs, and gradient descent and backpropagation. The input of this
algorithm is the set of NSLRs collected in a time window. The output at each step is
a set of granted NSLRs that maximizes the profit for NSPs and optimizes the resource
utilization of the substrate network.

Algorithm 3 starts by initializing evaluation NN, target NN, and replay memory (line

1 ). The algorithm consists of an outer loop that goes through episodes and an inner loop
that goes through steps. A step is every admission decision taken over a set of NSLRs
collected in a time window by the DRL-agent after receiving a new state. An episode
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Algorithm 3: DRL-based Admission Control Algorithm
Data :

Discount factor (γ)
Maximum Exploration (ε)
Decay rate
Training start
Mini-batch size
Target NN update (C)
Hidden layer size
Number of learning episodes (n)
State space (S)
Action space (A)

Input : Sets of NSLR (RS) collected during time windows
Result: Admitted NSLRs that generates the maximum profit

1 Initialize: Evaluation NN Q with weights θ, Target NN Q̂ with weights θ̂, and
Replay Memory D

2 for episode← 1 to n do
3 The agent observes the initial state si;
4 while next state st+1 is not final state do
5 Update exploration probability ε by using equation 4.6;
6 The agent selects action at according to equation 4.7;
7 The agent invokes the Prioritizer to sort the NSLRs into a priority queue

PR;
8 for each nslr ∈ PR do
9 The agent invokes RAM that runs algorithm 2 to map nslr;

10 if nslr is mapped then
11 The agent admits nslr and sends it to Lifecycle;
12 end
13 else
14 The agent rejects nslr;
15 end

16 end
17 The agent receives reward Rt (calculated by equation 4.5) and observes

new state st+1;
18 Store experience et = (st, at, st+1, Rt) into D;
19 Sample random mini-batch of experiences from D;
20 Estimate Q(st, at) and calculate Q+(st, at) = Rt + γ ·maxQ+(st+1, a), if

state is final state, Q+(st, at) = Rt ;
21 Minimize loss (Equation 4.2) by gradient descent and updates the weights

θ of the evaluation network Q;
22 The current state is updated st ← st+1;
23 end
24 Every C episodes, the agent clones the evaluation NN parameters to the

target NN (Q̂ = Q)
25 end
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consists of a set of steps. The outer loop (line 2 ) allows the DRL-agent to start a learning
episode by observing the initial state provided by the environment (i.e., the substrate
network). After C episodes, the DRL-agent replaces the target NN weights and biases
by making a copy of such values from the evaluation NN. Remember, target NN is fixed
only temporarily to enable stable training. After C episodes, it can be updated with the
trained parameters of evaluation NN.

The inner loop (line 4 ) is performed until m steps. In this loop, the DRL-agent
executes the instructions described in the following. First, the DRL-agent decays its
exploration probability ε according to equation 4.6. Second, the DRL-agent uses the
exploration probability and the exploration method described in Equation 4.7 to select
either a random action or an optimal action at for the current state st. The optimal action
allows the DRL-agent to exploit the learned knowledge. Third, selected action at is passed
to the prioritizer that will sort all the NSLRs received in a priority queue according to
their arrival time and the weight value of their type of service. Fourth, each NSLR in
the priority queue is sent to RAM. If resources are allocated, the NSLR is mapped onto
the substrate, i.e. is considered admitted. Information on the acceptance of an NSLR is
passed to the Lifecycle module.

Fifth, the DRL-agent receives a reward Rt for the taken action at, calculated by
Equation 4.5, and observes a new state st+1 provided by the environment. Sixth, the
DRL-agent builds the experience (et = (st, at, st+1, Rt)) and stores it into the replay
memory D.

Seventh, the DRL-agent randomly takes a set of experiences (mini-batch) from the
replay memory aimed to train the evaluation NN. This enables our DRL-agent to learn
from a reduced number of interactions with the environment compared to an RL-agent.
Eighth, by taking the fields st, Rt and st+1 from the experiences, the DRL-agent first
estimates the Q-values Q(st, at) by using the evaluation NN, and then, it calculates the
associated target values Q+(st, at) by using the target NN (see Equation 4.1).

Ninth, the DRL-agent uses gradient descent and backpropagation to back-propagate
the error for adjusting the weights and biases of the evaluation NN. This is an important
step to minimize the loss function presented in Equation 4.2; a low loss means the esti-
mations of the DRL-agent are accurate. Lines 19, 20, and 21 are only executed after the
DRL-agent has stored a certain quantity of experiences. Finally, the new state becomes
the current state, and the DRL-agent begins a new iteration.

4.4 Performance Evaluation

4.4.1 Metrics

We evaluated DSARA regarding the profit, resource utilization, and acceptance ratio.
The profit P is calculated according to Equation 4.3, The resource utilization is given by:
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U =

∑

j cpu(nslj)

CPU(SN)
+

∑

j bw(nslj)

BW (SN)

2
(4.8)

where:

• CPU(SN) - is the total processing capacity in SN ,

•
∑

j cpu(nslj) - is the processing resource utilized by all NSLRs instantiated in SN ,

• BW (SN) is the total network bandwidth,

•
∑

j bw(nslj) is the bandwidth utilized by all NSLR instantiated.

The acceptance ratio is the ratio between the number of admitted NSLRs (reqa) and
the number of NSLRs (reqt) requested.

AR =
reqa
reqt

(4.9)

4.4.2 Experiment Setup

Parameter Value

Substrate 16, 32, 64-node topologies

Capacity of nodes (cpu units) cloud: 300, edge: 100

Capacity of links (bw units) 100

Mean operational time (time units) 12

Total load (requests per time unit) 1, 3, 5, 7, 10, 15, 20, 25, 30, 40, 60, 80, 100

Time window (time units) 2

Table 4.2 Simulation Parameters

The modules of DSARA were developed by using Python3. To test DSARA, we
developed a Python-based discrete event simulator and executed the experiments on an
Ubuntu 16.04 LTS desktop with Intel Core i5-4570 CPU and 15,5 GB RAM. The simulator
uses the NetworkX library [31] to create and manipulate NSLRs graphs, substrate network
topologies, and resources.

The evaluation of DSARA includes experiments with 16, 32, and 64-node topologies
generated randomly by using the Barabasi-Alberth algorithm [5]. The 16-node topology
is composed of 4 core nodes and 12 edge nodes. The 32-node topology includes 8 core
nodes and 24 edge nodes. The 64-node topology has 16 core and 48 edge nodes.
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Aimed to differentiate core and edge nodes, we assume 300 and 100 processing units
the capacities in each core and edge nodes, respectively. We assume 100 bandwidth units
in each substrate link. The computational demand of each VNF is 5 processing units.
The virtual links in the eMBB, URLLC, and MIoT service graphs require 3, 2, and 1

bandwidth units, respectively. The operational time of NSLRs follows an exponential
distribution with a mean of 12 time units. The arrival of each type of NSLR follows
a Poisson process. The three arrivals rates are independent and identically distributed
random variables. Poisson process is proper to model random events as the NSLRs arrivals
[63].

We assess DSARA under different load conditions by varying the total load (i.e., the
sum of the three arrival rates) from 1 to 100 requests per time unit. The time window
duration is 2 time units. We carried out 33 repetitions of the tests to obtain results with
a 95% confidence interval. Table 4.2 summarizes the simulation parameters.

DSARA performance is compared to SARA and the algorithms NR and AAR. AAR
is a simple algorithm that admits NSLRs by verifying if the available resources in the
substrate meet the requests demand. NR extends AAR by ranking the substrate nodes
according to its embedding potential, similar to [35] and [41], which allows to accept more
NSLRs and therefore achieve higher profits. SARA learns to select the most profitable
NSLRs by using an RL-based agent. Unlike DSARA and SARA, NR and AAR do not
leverage any ML technique to make admission decisions.

DRL-agent training and setup

Parameter Value

Neurons in hidden layer 150

γ (discount factor) 0.9

Maximum Exploration εmax 1

Decay rate 1/1000

Training start 300 steps

Mini-batch size 15

Target NN update every 150 steps

Table 4.3 DRL setup

We trained the DRL-agent in an episodic setting. Each episode consists of 15 steps of
2 time units; recall a step corresponds to the action the agent takes over a set of NSLRs
collected in a time window. We conducted several preliminary tests to define the values
of the learning parameters (see Figure 4.6). For the sake of clarity, we depict three results
in each figure.

Evaluation NN and target NN have one hidden layer of 150 neurons. A single hidden
layer is proven to approximate any function [36]. A larger amount requires a longer train-
ing period. A configuration with 150 neurons in the hidden layer seems to approximate
more accurately the policy function than lower or higher values like 20 and 300 neurons
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Figure 4.6 Profit Results when varying DRL parameters

(see Figure 4.6a). Regarding γ (discount factor), DSARA obtained higher and more stable
profit values when we set γ to 0.9 than to lower values (see Figure 4.6b).

We set ǫ (exploration factor) to a maximum of 1, i.e., initially, the agent’s exploration
probability is 100%. Figure 4.6c shows that 1/1000 is the most appropriate value of decay
rate for our approach. With lower decay rates, such as 1/2000 and 1/3000, DSARA takes
longer to reach maximum profit values since it explores for longer periods.

Training starts at 300 steps (i.e., 300 experiences stored in replay memory) and is
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perform with mini-batches of 15 samples. Different configurations can lead to suboptimal
solutions as depicted in 4.6d. The weights of evaluation NN are copied to target NN every
100 steps after training starts. Other frequency values result in slightly lower performance
(4.6e). In accordance with the above, Table 4.3 summarizes the setup of our DRL-agent.

4.4.3 Results for a 16-node topology

Figure 4.7 Profit on a 16-node topology

Figure 4.7 depicts the profit achieved by DSARA during 300 episodes for a load of 20
requests per time unit on a topology of 16 nodes. The dark-blue line shows the results
achieved by SARA in Chapter 3 (i.e., for a scenario with 104 state-action pairs). The
light-blue line shows the profit reached by SARA in a larger scenario with 3× 107 state-
action pairs. Remember, this new scenario enables SARA to reach a maximum profit
higher than it achieved in the first scenario; however, the convergence is delayed.

DSARA overcame the convergence problem of light-blue SARA while reaching the
same maximum profit. This earlier convergence implies DSARA gets higher profits than
those obtained by light-blue SARA during almost 200 episodes. Even though DSARA
converges after does dark-blue SARA, its profit values before this convergence (episodes
1 to 55) are already higher in most of the cases. After converging, DSARA maintains a
3% higher profit than the reached by dark-blue SARA. Moreover, DSARA produced 10%

higher profit than did NR and 14.3% than AAR.
We have proven that for a larger scenario, the DRL-agent of DSARA enables a much

faster convergence than SARA. Hereinafter, we compare the performance of DSARA to
the performance showed by SARA in Chapter 3 (i.e., scenario with 104 state-action pairs).

In Figure 4.8, we show the results of resource utilization for a load of 20 requests per
time unit on the topology with 16 nodes. As in 4.7, DSARA outperforms SARA both
before and after convergence. DSARA achieved a maximum resource utilization that is
4% higher than the one obtained by SARA. The acceptance ratio results, depicted in
figure 4.9, show DSARA reached slightly higher values than did SARA. These results are
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Figure 4.9 Acceptance ratio on a 16-node topology

explained since our objective is not the optimization of acceptance but profit. Moreover,
acceptance results do not negatively impact profit results (see Figure 4.7)

In Figures 4.10 (profit) and 4.11 (acceptance ratio), we compare the results obtained
by DSARA, SARA, NR, and AAR when varying the arrival time for tests carried out on
the 16-node topology. Results for SARA and DSARA are the average values calculated
after their respective convergences. From Figure 4.10, we conclude that medium and high
loads favor the performance of DSARA in terms of profit. DSARA starts to overcome
SARA from 10 request per time unit where the difference is 1.14% and it gets a maximum
difference in 25 requests per time unit (3.2%). From this load, the difference begins to
decrease slightly. This could happen due to a possible saturation of substrate resources
which avoids admitting more NSLRs and hence, generating additional profit. For 100

requests per time unit, the difference is 2%.
Acceptance ratio results in Figure 4.11 show DSARA obtained values that are similar

to those SARA reached. This behaviour is normal, as mentioned before, the goal of this
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Figure 4.10 Profit vs Arrival Rate on a 16-node topology
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Figure 4.11 Acceptance Ratio vs Arrival Rate on a 16-node topology

work is to optimize profit and not acceptance ratio. Remember that acceptance is not
the only factor that influences profit, but also the prioritization given in each state since
the distinct types of NSLRs can generate different profits.

4.4.4 Results for a 32-node topology

Figure 4.12 depicts DSARA performance compared to SARA, NR, and AAR in terms of
profit for a load of 20 requests per time unit and tested on the 32-node topology. Before
converging at episode 54, DSARA exhibits similar profit values than the produced by
SARA. After its convergence, DSARA produced 1%, 5.1%, and 8.4% higher profit than
the produced by SARA, NR, and AAR, in the order given. DSARA found a more optimal
action for each state.

Resource utilization results in Figure 4.13 show DSARA used 1.5% more resources than
the achieved by SARA when tested on the 32-node topology and a load of 20 requests
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Figure 4.13 Utilization on a 32-node topology

per time unit. Moreover, DSARA reached 4.5% and 8.5% higher utilization than NR and
AAR, respectively.

Figure 4.14 depicts acceptance ratio obtained by DSARA, SARA, NR, and AAR for the
32-node topology and 20 requests per time unit. DSARA obtained 1% lower acceptance
ratio than the obtained by SARA. These results do not negatively impact profit results,
see 4.12.

Profit and acceptance ratio results obtained by DSARA, SARA, NR, and AAR on
the 32-node topology for different loads are depicted in in Figures 4.15 and 4.16. Results
showed for SARA and DSARA are the average values calculated after their corresponding
convergences.

Profit results, Figure 4.15, show DSARA overcomes SARA from 20 request per time
unit where the difference is just 1%. However, such a difference increases as arrival rate
increases; the highest difference is 3% and is obtained with a load of 30 requests per time
unit. From a load of 40 requests, similar to results in the 16-node topology (Figure 4.7),
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Figure 4.14 Acceptance ratio on a 32-node topology
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Figure 4.15 Profit vs Arrival Rate on a 32-node topology

the profit difference between DSARA and SARA begins to shorten. For 100 requests per
time unit, the difference is 2%. This could be explained since substrate resources are
saturated which avoids admitting more NSLRs and hence, generating additional profit.
Regarding acceptance ratio results in Figure 4.16, DSARA performs similar to SARA. As
explained before, the goal of this work is to optimize only the profit of NSPs.

4.4.5 Results for a 64-node topology

Up to this point, we have showed the performance of DSARA for 16-node and 32-node
topologies with a load of 20 requests per time unit (Figures 4.7 and 4.12). However, since
a 64-node topology has a more considerable amount of resources than 16-node or 32-node
topologies, 20 requests per time unit are not enough to produce strong rewards that allow
the agent to learn. In this sense, the results depicted in this subsection correspond to
tests performed with a load of 40 requests per time unit.
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Figure 4.16 Acceptance Ratio vs Arrival Rate on a 32-node topology

0 50 100 150 200 250 300
Episodes

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Pr
of
it

DSARA
SARA
NR
AAR

Figure 4.17 Profit on a 64-node topology

In Figure 4.17, we depict the profit obtained by DSARA, SARA, NR, and AAR. Before
converging at episode 55 approximately, the profit values of DSARA are higher than the
values of SARA in most of the episodes. This can be explained since our DRL-agent
works with a decreasing exploration configured to start with full exploration that helps
to find optimal actions faster. After converging, DSARA achieved 3% higher profit than
SARA, 7.6% higher than NR and 11.4% higher than AAR.

Figure 4.18 presents the network resource utilization results. The utilization produced
by DSARA grew up fast and it is higher than the achieved by SARA even before con-
vergence (in most of the cases). After converging, DSARA achieved a utilization 2.9%

higher than the achieved by SARA, 5.9% higher than NR, and 9.9% greater than AAR.
In Figure 4.19, we show the acceptance ratio results. DSARA produced a slightly higher
acceptance ratio than the reached by SARA. As mentioned in the evaluations for 16-node
and 32-node topologies, our goal is to optimize profit.

In Figures 4.20 and 4.21, we depict profit and acceptance ratio results obtained by
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Figure 4.18 Utilization on a 64-node topology
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Figure 4.19 Acceptance ratio on a 64-node topology

DSARA, SARA, NR, and AAR on the 64-node topology for different loads from 1 to 100
requests per time unit. Results plotted for SARA and DSARA correspond to the average
values calculated after their respective convergences.

Profit results, Figure 4.20, show DSARA’s profit starts to overcome the achieved by
SARA from 25 requests per time unit where the difference is only 0.5%. However, such
a difference increases as arrival rate increases and it achieves the highest in 80 requests
per time unit, i.e., 3.6%. For 100 requests per time unit, the difference has decreased
to 3.1%. This could be explained by the possible saturation of substrate resources which
avoids admitting more NSLRs and hence, generating additional profit. In relation to the
acceptance ratio in Figure 4.21, the results of DSARA are very close to the values reached
by SARA. This is because we aim to optimize only the profit of NSPs.

Figure 4.22 depicts the profit results obtained by DSARA, SARA, NR, and AAR for
different topology sizes and arrival rates. For the sake of visualization, we show results
for only 7 of the total 13 arrival rates showed in previous tests.
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Figure 4.20 Profit vs Arrival Rate on a 64-node topology

1 3 5 7 10 15 20 25 30 40 60 80100
Arrival Rate

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R
at
io

AAR
NR
SARA
DSARA

Figure 4.21 Acceptance Ratio vs Arrival Rate on a 64-node topology

For the three topologies, both SARA and DSARA performs better as the arrival rate
increases. DSARA results start to be higher than the obtained by SARA from 10, 20,
and 30 requests per time unit for 16, 32, and 64-node topologies, respectively. Similarly,
SARA performance is better than NR from 7, 15, and 25 requests for 16, 32, and 64-node
topologies, respectively. This behavior responds to the fact that DSARA and SARA learn
with a reward provided by the substrate network that is basically the profit normalized
according to its resource capacity. Since large substrate networks have many resources,
they require a larger amount of requests to reach strong profits/rewards useful for the
agents. As a result, for a small topology such as 16-node, a load of 7 requests per time
unit produces rewards strong enough for the agent to learn (Figure 4.10), while for a large
topology such as 64-node, a load of 25 requests per time unit was needed (Figure 4.20).

The most significant gains in profit achieved by DSARA with respect to SARA were
3.2%, for a load of 25 requests per time unit on the 16-node topology, 3% for 30 requests
per time unit on the 32-node topology, and 3.6% for 80 requests on the 64-node topology.



85

Topology size

16
32 64

Ar
riv
al 
Ra

te

1
5
10
20
30
60
100

Pr
of
it

0.0
0.1
0.2
0.3
0.4
0.5
0.6

DSARA SARA NR AAR

Figure 4.22 Profit results for different loads and topology sizes

These gains may not seem significant; however, in terms of money, they can make a
big difference. In all cases, lower loads to those mentioned produce lower differences since
they also produce lower profits. At higher loads, the differences in profit are slightly lower.
This behavior could be explained by the possible saturation of substrate resources that
takes place at higher loads when substrate resources are more abundant. For instance,
it is observed from 30, 40, and 100 requests per time unit on the 16-node, 32-node and
64-node topologies, in the order given.

4.5 Summary

In this chapter, with the aim of increasing further the performance reached by SARA, we
have proposed DSARA that jointly performs admission control and resource allocation
for 5G network slice requests. DSARA uses a DRL-agent that selects the most profitable
requests in a set of them that arrived within a time window. Requests of eMBB, URLLC,
and MIoT service types were considered as well as edge and core nodes in the substrate
network.

DSARA benefits from Deep Q-learning, and in general, from RL. First, DSARA learns
to select from a set of NSLRs collected during a time window, the most profitable ones
by receiving feedback from the environment (i.e., the substrate network). Second, since
DSARA is model-free, it does not make assumptions about the environment; DSARA
learns while exploring the environment without a prior-knowledge about the substrate
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network. Third, DSARA adapts to changes in the environment since it operates online,
meaning that it continually learns from the interaction with the environment. Fourth,
thanks to the generalization provided by its NNs, DSARA learns quickly (see Figure 4.7).
This enables DSARA to cope with larger scenarios than those SARA can face. Moreover,
NNs only need to store a limited number of variables (i.e., the weights and biases of the
network structure) to accurately estimate the policy function.

From a quantitative point of view, DSARA outperforms SARA when evaluating with
different loads and on distinct topology sizes. Tests on the 16-node topology show that
the maximum profit reached by DSARA is 3.2% higher than the profit achieved by SARA.
For 32-node topology, DSARA achieved up to 3% higher profit values than those SARA
achieved. Results on the 64-node topology show DSARA reached up to 3.6% higher profit
than did SARA.

Evaluation results evidence DSARA as a suitable DRL-based approach to overcome
the performance reached by SARA for managing the admission of 5G NSLRs and their
resource allocation.
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Chapter 5

Conclusion and Future Work

NSPs will receive myriads of network slice requests generated by multiple tenants. Consid-
ering that substrate resources are finite and 5G use cases have particular QoS requirements
as well as different deployment costs, NSPs face the challenge of controlling the admission
of such requests and managing their resource allocation. In this thesis, we explored the
use of machine learning techniques, such as Reinforcement Learning and Deep Learning,
to cope with the admission of 5G NSLRs and their resource allocation while improving
the profit of NSPs and network resource utilization.

In Chapter 3, we introduced SARA, an approach that jointly performs admission con-
trol and resource allocation for NSLRs of eMBB, URLLC, and MIoT service types in 5G.
The RL-based algorithm of SARA allows to prioritize the most profitable NSLRs from
a set of them collected in a time window. SARA employs Q-learning, a model-free RL
algorithm, meaning that SARA does not make assumptions about the substrate network
as do optimization-based approaches. SARA learns while exploring the environment with-
out a prior-knowledge about the substrate. SARA is adaptable since it operates online,
which implies it continually learns from the interaction with the environment. The re-
source allocation algorithm of SARA permits to map NSLRs onto the substrate network
by considering their 5G service type and differentiating core nodes from edge nodes in
order to accomplish QoS requirements.

SARA outperforms the benchmark. For the 16-node topology, SARA achieved up
to 7% and 11.3% higher profit than the profit given by the NR and AAR algorithms,
respectively. Results on the 32-node topology show that SARA reached up to 5.6% and
9% higher profit than the profit given by the NR and AAR algorithms, respectively. For
the 64-node topology, SARA obtained up to 7.1% and 11.2% higher profit than the profit
generated by the NR and AAR, respectively. These results corroborate that SARA is
a suitable solution for managing the admission of NSLRs and their resource allocation
aimed at optimizing the profit of NSPs.

In Chapter 4, we introduced DSARA, an implementation of SARA based on DRL
for further improving the performance obtained by SARA. DSARA showed to converge
faster than SARA in a scenario with large state space and action space. The use of a
DRL-agent enables DSARA to face large scenarios since it learns from a reduced number
of interactions with the environment; our DRL-agent generalizes knowledge from past
experiences and applies it to similar states. Such a generalization is achieved thanks to
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the use of NNs that allow to accurately estimate the policy function by storing a limited
number of variables compared to a Q-table.

DSARA overcomes SARA performance on tests with different loads and topology
sizes.In particular, DSARA achieved up to 3.2%, 3%, and 3.6% higher profit values than
SARA did for 16, 32, and 64-node topologies, respectively. Results of this chapter evidence
the DRL-agent of DSARA is a suitable strategy to cope with large scenarios where the
use of typical RL-based approaches as SARA may become impractical.

As future work, we will enrich the admission control mechanism with the latest en-
hancements to RL and DRL. The RA mechanism can be polished with more sophisticated
strategies like the coordinated node and link mapping as proposed in [56] [19]. Further-
more, we will extend our solutions to perform admission control and resource allocation
for end-to-end slices, i.e., involving both 5G radio access and core network. Also, we
plan to provide an adaptive scaling mechanism for instantiated network slices aimed to
support their QoS variations at run time.
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