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Resumo

A segmentação de tumores do fígado é o processo de classificação de voxels entre tumor
e tecido saudável realizada a partir de um volume de tomografia computadorizada. A
crescente qualidade dos métodos de aquisição de imagens médicas tem permitido a iden-
tificação, a localização e o diagnóstico de doenças, evitando-se métodos mais invasivos.
Essa análise é vital para decidir sobre o tratamento mais adequado para o paciente. Em
especial, a segmentação dos tumores é usada na decisão da viabilidade da extração do
tumor e auxilia a especificação do plano operatório. O processo de segmentação das re-
giões atingidas pelos tumores, quando realizado manualmente, requer tempo e experiência
dos especialistas médicos, pois envolve criar uma máscara do tumor para cada uma das
fatias da tomografia. Esta tarefa é particularmente desafiadora quando os pacientes estão
localizados em regiões carentes e distantes de serviços médicos especializados. Dois tipos
de abordagens têm sido tradicionalmente propostas para agilizar e facilitar a segmenta-
ção de tomografias, uma completamente automática e outra que se baseia na intervenção
humana. Neste trabalho, focamos em técnicas completamente automáticas para a seg-
mentação de tumores do fígado. Apesar das redes neurais convolucionais alcançarem re-
sultados significativos nas áreas de segmentação e classificação de imagens, a segmentação
de volumes tomográficos apresenta novos desafios, como a introdução de artefatos oriun-
dos da extração das imagens e número limitado de exemplos para treinamento. Em nossa
pesquisa, investigamos o balanceamento entre os recursos computacionais e a qualidade
da segmentação. Inicialmente, analisamos o desempenho de várias redes convolucionais
e testamos camadas de diferentes redes seguindo o modelo de balanceamento da Effici-
entNet. A seguir, expandimos as camadas para convoluções tridimensionais e testamos
camadas que tratavam as dimensões do volume separadamente. Finalmente, avaliamos o
tempo de execução dos nossos modelos em equipamentos com processamento e memória
limitados. Embora nossos modelos tenham obtido resultados inferiores em termos de efi-
cácia com relação a outros métodos da literatura, sua execução se mostrou viável em um
ambiente computacional restritivo. Os experimentos foram realizados na base de dados
Liver Tumor Segmentation Challenge (LiTS).



Abstract

Segmentation of liver tumors is the process of voxel classification between tumor and
healthy tissue performed from a volume of computed tomography. The increasing quality
of medical image acquisition methods has allowed the identification, location and diagno-
sis of diseases, avoiding very intrusive surgeries. This analysis is vital to decide the most
appropriate treatment for the patient. In particular, the segmentation of the tumors is
used to decide the feasibility of extracting the tumor and helps to specify the operative
plan. The segmentation process of regions affected by tumors, when performed manually,
requires time and experience from medical specialists, as it involves creating a tumor
mask for each of the slices of the tomography. This task is particularly challenging when
patients are located in underserved regions and away from specialized medical services.
Two types of approaches have traditionally been proposed to speed up and facilitate the
segmentation of CT scans, one completely automatic and the other based on human in-
tervention. In this work, we focus on fully automatic techniques for segmenting liver
tumors. Despite the convolutional neural networks achieving significant results in the
areas of image segmentation and classification, the segmentation of tomographic volumes
presents new challenges, such as the introduction of a dimension of spatial relationships,
artifacts from the extraction of images and a limited number of examples for training. In
our research, we investigated the trade-off between computational resources and segmen-
tation quality. Initially, we analyzed the performance of several convolutional networks
and tested layers of different networks following the EfficientNet balancing model. Next,
we expanded the layers for three-dimensional convolutions and tested layers that handled
the dimensions of the volume separately. Finally, we evaluated the execution time of our
models in equipment with limited processing and memory. Although our models have
obtained inferior results in terms of effectiveness when compared to other methods in the
literature, their execution proved to be viable in a restrictive computational environment.
The experiments were performed on the Liver Tumor Segmentation Challenge (LiTS)
database.
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Chapter 1

Introduction

In this chapter, we describe the automatic liver segmentation problem and provide the
motivation that lead us to investigate it. Then, we provide the main questions, objectives
and contributions associated with this work. Finally, we provide the text structure.

1.1 Problem Motivation

The technology for medical image acquisition has advanced significantly over the last
few decades, transitioning from film images to digital images, which allows for higher
image resolution and three-dimensional (3D) visualization. A number of methods that
allow visualization of internal tissues have been developed over the years. Some of these
medical modalities include computed tomography (CT), chest X-Ray (CXR), magnetic
resonance imaging (MRI) and ultrasonography (US).

Medical image acquisition techniques have achieved sufficient resolution and reliability,
so that it is possible to detect and classify abnormal tissues from the images. Specialists
can identify a malignant tumor nodule in a vital organ by means of CT or CXR images
without the need to extract the tissue for analysis.

An example of a tumor nodule found in the liver is shown in Figure 1.1. On the left
image, we have the CT slice corresponding to the segmentation mask, where the circle
highlights the location of the tumor. On the right image, we have a segmentation mask
of the liver and tumor, where the gray area illustrates the liver segmentation, whereas the
white area illustrates the tumor segmentation.

As of 2018, cancer was the second leading cause of death in the world, with approxi-
mately 9.6 million deaths [62]. Although liver cancer is not among the five most common
types of cancer, it is the fourth most deadly, with an estimated 782,000 deaths yearly.

A substantial amount of investment has been directed towards the treatment, diagnosis
and detection of this type of disease. However, there is a disparity between the resources
available in wealthy and poor countries, that is, while 90% of the high-income countries
reported availability of treatment services, less than 30% of low-income countries have
these services. In addition, approximately 70% of cancer deaths occur in low- and middle-
income countries.
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unbalanced class distribution that can bias the model to a certain classification.
Some other challenges arise due to the method used to obtain the CT volumes. Mod-

ern CT scanners have achieved resolutions ten times larger than previous models, which
increases the heterogeneity of the database. In addition to the difference in technologies
used to collect the images, some artifacts can occur due to materials present during the
image extraction, which can obscure important tissues or confuse less robust methods for
these exceptions.

1.3 Objectives and Contributions

This work aims to develop an automatic method for liver tumor segmentation from 3D
CT images using Deep Neural Networks (DNNs). Promising results were already achieved
with DNNs in skin lesion segmentation [53, 57, 64], brain tumor segmentation [58, 9, 6],
and also liver tumor segmentation [60, 36, 19]. We use the architecture proposed by
Han [19] as a baseline, then investigate and extend the applicability of new methods, such
as depth and width balance [52], 3D-convolutional layers [44], separable convolutions
layers [25], and cascade architecture [35].

In order to achieve our general objective, some specific objectives have to be fulfilled:

• investigation of recent approaches on the subject.

• dataset preparation.

• reproduction of the baseline results.

• extension of the baseline architecture based on approaches that have achieved suc-
cessful results on related problems.

• performance evaluation of the new model.

• comparison of results with the state of the art.

As a main contribution, we proposed and analyzed an automatic method for liver
tumor segmentation based on convolutional neural networks. The approach is based on
2D and 3D convolutions, as well as efficient parameter scaling.

1.4 Research Questions

In this section, we present some research questions that motivate our dissertation proposal:

• Can we develop a model that balances efficiency and effectiveness for the liver tumor
segmentation problem?

• How optimized the EfficientNet is for the tumor liver segmentation problem?

• Does our model improve with the use of 3D convolutions?

• Can our model viably run on machines without high-end hardware?
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1.5 Text Structure

This text is organized into five chapters and one appendix. In Chapter 2, we introduce
some key concepts and briefly describe relevant work available in the literature in the
investigated field. In Chapter 3, we describe our deep learning model, along with the
reasoning behind each architectural decision. In Chapter 4, we report our experimental
setup and analyze our results, along with a comparison with the state of the art in the
field. In Chapter 5, we present some concluding remarks and directions for future work.
In Appendix A, we provide complementary implementation details.
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Chapter 2

Background

In this chapter, we briefly describe basic concepts related to computed tomographic vol-
ume acquisition, image preprocessing and segmentation, data augmentation, and neural
networks, which are necessary to understand the subsequent sections of the research work.
Then, we provide a brief explanation of deep neural network architectures, some relevant
results found in the literature and how they are related to our work.

2.1 Concepts and Techniques

In this section, we describe some relevant concepts and techniques related to the topic
under investigation.

2.1.1 Segmentation

Image segmentation is the process of delimiting object boundaries in an image [16]. The
segmentation problem is an expansion of the localization and detection problems, since
their responses can be extracted directly from the segmentation solution.

Segmentation typically combines different image features to achieve a successful solu-
tion. Many segmentation algorithms search for pattern discontinuations and pixel similar-
ities to find object boundaries. However, most of them are dependent on the image type
and characteristics, which makes it difficult to reuse solutions from different problems.

The concept of image segmentation can be extended to volume segmentation, where
the object delimitation is not defined by the boundaries of pixels, but by the boundaries
of voxels.

2.1.2 Computed Tomography

Hounsfield [23] developed the Computed Tomography (CT) scanning technology. The
process generates a faithful 3D distribution of X-Ray attenuation values per volume unit,
which generates the inverse Radon transform from projections in an axial slice. Modern
scanners that use multi-slice technology can achieve less than 1 mm per slice depending
on the level of detail needed for the region of interest [55], which is far better than the
slice granularity achieved in the early days of CT when the thickness was normally above
5 mm.
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The attenuation values from the CT volume are normalized to the Hounsfield Unit
(HU) scale to make them independent from the X-ray energy output. The normalization
is expressed in Equation (2.1).

HU(µ) = 1000
µ− µwater

µwater − µair

(2.1)

where µair and µwater are the linear attenuation coefficients of air and water, respectively.
The values of HU usually range from −1000 to 3000, which can be represented in two

bytes. The attenuation values of air, fat, and water are considerably different, whereas
the difference between distinct soft tissues is minimal, which makes their classification
more difficult. Table 2.1 shows the HU values for different materials and body tissues.

Air Fat Water Blood Muscle White Matter Gray Matter Bone

-1000 -100 0 30-45 40 20-30 37-45 >150

Table 2.1: Values of Hounsfield Unit (HU) for different materials and body tissues. Values
extracted from [55].

2.1.3 Filters

The most common filters used in image segmentation are median, mean and Gaussian
filters [16]. These filters aim to attenuate the occurrence of noise while maintaining sharp
features, such as corners and edges, that can be blurred from the image.

When working with computer tomography, it is common to ignore HU values outside
a certain band, as they do not correspond to the type of material that causes the problem
under investigation.

2.1.4 Deep Neural Networks

Deep Neural Network is a subset of machine learning methods, which approximates com-
plex feature relations through multiple layers of non-linear units. Each unit combines
the output of many units from previous layers to compute an activation function. This
structure was vaguely inspired by how neurons work. The layered structure allows com-
puters to create a hierarchical representation of features using examples and accumulate
knowledge of the problem.

The history of neural networks traces back to 1943, when McCulloch and Pitts devel-
oped a neural network using circuits to describe how neurons could work. Later, in 1960,
Widrow solved the phone line noise problem using neural networks. However, the percep-
tron model could only compute weights for a single layer, which restricts its descriptive
power. In 1986, Rumelhart et al. introduced backpropagation as a gradient evaluator to
calculate the magnitude and direction of each step update, which resolved the limited
number of trainable layers.

Lately, neural networks have become popular due to the advance of computational
power and storage space, as well as the expansion of data available for training. Three
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architectures that leverage both aspects are: (i) AlexNet [34], which achieved unprece-
dented accuracy on the ImageNet [12] classification contest in 2012; (ii) ResNet [21],
which achieved higher than human-level accuracy on the ImageNet; and FixEfficient-
Net [56], which is considered the state of the art for image classification on the ImageNet
dataset.

Convolutional Neural Networks (CNNs) are the most prevalent type of DNNs for image
classification, image segmentation and feature extraction [65, 71, 61, 66, 54]. Researchers
devised the concept of CNN from studies of the visual cortex [15]. However, the use of
CNNs is not limited to the image analysis field. For instance, the method achieved great
success in the area of speech recognition [1, 4].

Some crucial drawbacks of DNNs include the computational time required to train the
network, vanishing/exploding gradients and the necessity to use large amounts of training
data. The first one is mitigated by the use of Graphical Processing Units (GPUs) with
highly optimized matrix/vector functions. The second problem is partially addressed with
Rectified Linear Units (ReLU) [45] and batch normalization [28]. Finally, the use of data
augmentation techniques partially solves the third drawback.

The development of ReLU and batch normalization techniques allowed the construc-
tion of deeper architectures, which improved model performance, since representation
depth is beneficial for classification accuracy [51]. The large size of current models made
impractical to start an architecture from scratch because most models that achieve state-
of-the-art results may require a few weeks to train from randomly initialized weights. A
common practice is to use an efficient pre-trained model, modify a few of its layers to
adapt it to a specific problem, and then fine tune (adjust) the model using samples from
the database of the target problem.

2.1.5 3D Convolution

3D convolutions are a natural expansion of 2D convolutions for volumetric data. While
2D-convolution filters have 4 dimensions (height, width, channel input and channel out-
put), 3D convolution filters have 5 dimensions, where an additional depth dimension is
added after the width. This new dimension adds a z-axis to the filter movement. The
added dimension makes it straightforward to capture the relationship between features
on the newly created axis, but it also increases the computational cos of the model.
Therefore, many models opt to use a 2.5D approach that uses volumetric data with 2D
convolutions, where the depth dimension is mapped to the input filters. Figure 2.1 depicts
the differences between 2D convolution and 3D convolution.

2.1.6 Separable Convolution

Separable convolutions are divided into two groups: spatial and depthwise. The first
occurs in the spatial dimension; in the case of images, it separates width and height of the
kernel, as in Figure 2.2. The second type separates the convolution in spatial aggregation
and feature combination; in the case of images, the first filter has its original width and
height, whereas the second filter is a 1×1 filter that transforms the number of features
into the desired output. Figure 2.3 illustrates the convolution process.
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Figure 2.3: Diagram of a depthwise separable convolution. The first convolution separates
the input into D layers, where each layer is convolved with a layer of the kernel. In the
image, this operation is represented by its colors. The value on the left side of the circle
represents how many repetitions of the kernel are used in the pointwise convolution.
Source: Elaborated by the author.

Convolution Number of Parameters

Conventional k2 × ci ∗ co
Spatial Separable 2× k × ci × co
Depthwise Separable k2 × ci + ci × co

Table 2.2: Expressions for the number of parameters from different 2D convolutions,
where k is the size of the kernel, ci is the number of input channels, and co is the number
of output channels.

small values of k, which is the usual.

2.1.7 Residual Layer

Residual Network (ResNet) is considered the state of the art for image classification.
It won the first place on the ImageNet Large Scale Visual Recognition Challenge 2015
(ILSVRC’2015) with an error percentage of 3.57% [21]. The complete architecture is a
CNN composed of 152 layers, with 11.3 billion Floating Point Operations (FLOPs).

ResNet achieved its accuracy improvement by applying the concept of residual learn-
ing. Figure 2.4 shows a diagram of two residual layers. It is worth observing that the
link connection from input x to the combinator ⊕ acts as a shortcut connection. The
shortcut addition comes from the hypothesis that a residual function F (x)−x is easier to
be optimized than the unreferenced function F (x). For example, if the identity function
is the optimal solution, it is easier to simply reduce the weights from the residual layer
than creating a stack of layers that fit the identity function.

2.1.8 Squeeze-and-Excitation

Squeeze-and-Excitation (SE) module aims to improve inter-channel representations by
modeling the relationships between channels explicitly. It achieves that by creating a side
route that acts as a self-attention for each channel.

Figure 2.5 illustrates the diagram for the SE module. The module is composed of a
pooling layer that reduces the image space dimensionality to 1, while maintaining the
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Figure 2.4: Residual layer diagram based on the work developed by He et al. [21].
Source: Elaborated by the author.

same number of channels. The output passes through two Fully Connected (FC) layers
with a ReLU activation function between them. The first FC layer acts as a bottleneck,
reducing the number of channels by an r factor, whereas the second layer expands it back
to its original size. A sigmoid function follows the second layer, which is then combined by
means of a broadcast multiplication with the main flow of the model. The SE module can
be attached at the output of most layers, which allows it to be integrated into standard
architectures.

2.1.9 Depthwise Spatiotemporal Separate

The Depthwise Spatiotemporal Separate (DSTS) module, proposed by Zhang et al. [68],
separates 3D convolutions into two branches: a temporal and a spatial one. Both branches
use depthwise convolutions, but with different filters. The temporal side has filters of size
3×1×1 and the spatial side uses filters of size 1×3×3. A pointwise convolution combines
the features after a concatenation.

Figure 2.6 shows a diagram of the DSTS module. In addition to forcing the network
to learn different relationships at each branch, the separation has the added benefit of re-
ducing the number of parameters and the computational cost. The number of parameters
is reduced from 27c2 with a normal 3D convolution with kernel size 3 to c2 + 12c. The
variable c represents the number of channels in that layer.

2.1.10 U-Net

U-Net is a CNN created to segment biomedical images that uses its architecture and
training strategy to achieve a segmentation performance higher than the sliding-window
convolutional network. It also relies heavily on data augmentation and, therefore, can be
trained on a small dataset [47]. The network also runs very fast, such that it can segment
an image of 512×512 in less than one second using an NVIDIA Titan GPU.
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Figure 2.5: Squeeze-and-Excitation module diagram. The original module is shown on the
left. On the right, the module is shown with a residual connection. Source: Elaborated
by the author.

Spatial Branch Temporal Branch

1x3x3 DW Conv 3x1x1 DW Conv

1x1x1 Conv

BN, ReLU

BNBN

Figure 2.6: Diagram of a Depthwise Spatio-Temporal Separate module. Source: Elabo-
rated by the author.

Figure 2.7 shows a diagram of the U-Net model. The left side of the architecture
shrinks the image dimensions and increases its depth, whereas the right side expands the
image to create the segmentation map. The horizontal blue arrows represent shortcuts
on the model, which combine previous layers from the encoder to the decoder. The layers
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are combined using a concatenation operation. The difference between the dimension of
the original image and the segmentation map is caused by unpadded convolutions that
reduce the output dimension at each step.

1 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 2

copy and crop
conv 1x1
conv 3x3, ReLU
max pool 2x2
up-conv 2x2

Figure 2.7: Diagram of the U-Net segmentation architecture. Source: Elaborated by the
author.

A variant of the U-Net, named dense U-Net, was used by Li et al. [36] for liver tumor
segmentation, achieving a global Dice score of 0.829 on the Liver Tumor Segmentation
Challenge 2017 (LiTS) dataset [37]. The model used the ResNet architecture for feature
extraction, instead of feeding the output to the dense U-Net to perform segmentation.

2.1.11 MobileNet

The MobileNet family of architectures passed by three iterations. The first iteration
created an efficient architecture based on depthwise separable convolutions and introduced
two global hyper-parameters to control the size of the network: the first one controls the
number of channels in each layer and the second controls the input image resolution [25].

The second iteration expanded the work of MobileNet-V1 by proposing reverse residual
structure, and modifying the architecture to solve segmentation problems, where the
previous work focused on object recognition and object detection. Figure 2.8 shows the
diagram of the reverse residual block used as building block for MobileNet-V2 [50].

Reverse residual blocks use shortcut connections for the same reason as classical resid-
ual blocks, as it facilitates gradient propagation between layers. However, the connection
is between bottleneck layers because the bottlenecks should contain all the information
considered important for the model. An additional benefit of connecting bottleneck layers
is memory efficiency, since less information needs to be in memory at the same time.

The third version of the MobileNet added squeeze-and-excitation [26] (explained in
Section 2.1.8) to its building block and introduced the h-swish activation function, an
approximation of the swish function that allows for faster computation (more details in
Section 2.2.5).
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Figure 2.8: Inverted residual block diagrams from MobileNet-V2 [50]. Source: Elaborated
by the author.

2.1.12 ShuffleNet

The ShuffleNet architecture was developed for very small computational constrains and
has two iterations. The first introduced the pointwise group convolution and channel shuf-
fle operation [70], whereas the second version dropped the pointwise group convolution,
introduced a split channel layer, and focused its analysis on performance implementation
gain instead of reducing the number of operations and memory usage [41].

The group pointwise convolution reduces the computation necessary for the pointwise
convolution of the depthwise separable convolution, but it limits the connections of the
input channels and the output channels. To address this limitation, the authors proposed
the use of a shuffle layer that aggregates channels from different groups of the pointwise
operation. The channel shuffle layer interlaces the features to output a homogeneous
distribution. In Figure 2.9, we show an example with three groups.

Channels

Figure 2.9: Channel shuffle example with three groups, where each group is color coded.
The arrows point to the end position of each entry. Source: Elaborated by the author.
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The second iteration of the ShuffleNet was based on the following guidelines: G1- equal
channel width minimizes memory access cost (MAC); G2- excessive group convolution
increases MAC; G3- network fragmentation reduces the degree of parallelism; and G4-
elementwise operation is not negligible. The pointwise group convolution was dropped
from the previous iteration because of G2. In its place, a split channel layer was introduced
that separates the data flow into two branches: one branch remains the same to respect
G3, while the other passes by a depthwise separable convolution. Then, the two branches
are concatenated and passed through a channel shuffle layer. In Figure 2.10, we show a
diagram of the building blocks of both versions of ShuffleNet.

It is worth noting that the ShuffleNet-V2 blocks maintain the same number of chan-
nels in the depthwise convolution to follow G1, and the channel increment comes from
the absence of a channel split layer in the downsampling block. The last elementwise
activation function was moved to before the concatenation operation to comply with G4.

2.1.13 EfficientNet

Tan and Le [52] observed that models that balanced their depth, width and resolution
reached a higher accuracy for the same computational cost than models that favored only
one of these coefficients. With that in mind, they proposed a compound scaling method
that balances these three coefficients, given a target computational constraint. In their
experiments, they chose the number of FLOPs to determine the model size and used the
accuracy on ImageNet to measure its performance.

The baseline coefficients were discovered through a grid search with a target FLOPs of
400M. Notably, the scaling factor of the network depth is linear, while the scaling factor
of width and resolution is quadratic. In other words, doubling the network depth doubles
the number of FLOPs, while doubling either the width or the resolution quadruples the
number of FLOPs. The base model uses the mobile inverted bottleneck from [25] coupled
with squeeze-and-excitation module from [26] as a building block. With the baseline model
and the compounding scaling, they created a family of network architectures, named
EfficientNet-BX, ranging from B0 to B7, increasing with the target FLOPs.

2.2 Model Cascade

Model Cascade (MC) implements multiple stages, each one with different classifiers. This
approach increases speed and accuracy, because earlier stages can classify voxels easier,
while the later stages focus on the hardest voxels (boundary voxels). Each stage is trained
separately, where previous stage’s weights are frozen, while the next stage is trained, so
that it does not interfere with the current stage’s training.

2.2.1 Deep Layer Cascade

Li et al. [35] proposed a model that benefits from the multi-stage focus from the model
cascade. However, this approach discards the need to train each stage separately. This
was achieved by creating a mask at each stage that blocks the features passed to the next.
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Figure 2.10: 2.10a shows the diagram of the basic ShuffleNet-V1 block, 2.10b shows the
downsampling variant of 2.10a from [70], 2.10c is the basic block diagram of ShuffleNet-V2
block, and 2.10d is its downsampling variant from [41]. Source: Elaborated by the author.

Figure 2.11 shows a cascade architecture diagram. The first stage creates a probability





32

of transfer learning is particularly common in medical image recognition tasks, since the
number of images is typically small compared to the number of samples in other categories
of images.

2.2.4 Model Compression

The continuous development of architectures leads to accuracy improvements; however,
the resources needed to train the model are largely increased. Due to that, efforts have
been directed to simplifying the models by scaling down the number of variables or de-
creasing variable representation.

In 2014, Denton et al. [13] applied a singular value decomposition (SVD) to a CNN
model to achieve model compression with minimal accuracy degradation. One year later,
Han et al. [18] used thresholds to prune the weights of their architecture and improve the
data compression with sparse matrix representation. In the same year, they used Huffman
encoding to extend their work.

The search for smaller models with similar representation power has also generated
promising results. SqueezeNet [27] is one of the most notorious models, which achieved
accuracy comparable with AlexNet [34], while using 50 times fewer parameters. Following
this result, MobileNet [25], ShuffleNet [70] and EfficientNet [52] further improved the field
with smaller architectures with impressive results.

2.2.5 Activation Function

The capacity of model description depends on the non-linearities provided by its activation
functions. The ReLU function is the most common activation function due to its simplicity
and speed. The ReLU function has the additional benefit of mitigating vanishing and
exploding gradient, since its gradients are either zero or one. However, the ReLU function
can suffer from inactive neurons (dead neurons) [11], which occur when the ReLU function
outputs the same result for any input in the dataset space. This can only happen in the
negative portion of the function where all values are set to zero, thus cutting off the
gradient flow.

Many activation functions have been proposed to improve the performance of the
ReLU, such as ELU [11], LeakyReLU [42], PReLU [20], ReLU6 [33], swish [46] and h-
swish [24]. The most significant for our work are ReLU, ReLU6, swish and h-swish.

ReLU6 limits the positive value of the ReLU to six, which the authors believe that
forced the model to distribute the knowledge to features that are close to the activation
limit. The swish function showed improved or equal results compared to the ReLU func-
tion in a wide range of tests that none of the other activation functions had achieved so
far. However, the swish functions use sigmoid, a very costly function, especially when
compared to the simple ReLU. The h-swish function is an approximation of the swish
function that replaces the sigmoid with a ReLU6 and a division.

We compare all three functions and the ReLU in Figure 2.12. It is possible to notice
that both swish and h-swish functions allow a small portion of the negative values of x to
pass, while maintaining zero for large negative values. We show the formulas of all four
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complementary loss to a supervised training. The most common loss functions used for
image segmentation architectures are WCE (Weighted Cross Entropy), Dice distance and
Jaccard Distance.

The WCE function treats each voxel as a classification problem and penalizes each
error according to the correct class weight, these weights are hyperparameters that mit-
igate the effect of class imbalance present in the data. Since the weights are extracted
from the class distribution present in the trainig set, they are specifically optimized for
the training examples. In Equation (2.6), N is the number of voxels, C is the number
of classes wc

i is the weight related to that voxel, yci is the correct voxel classification in
one-hot encoding and ŷci is the predicted probability for that voxel.

WCE = −
1

N

N
∑

i=1

C
∑

c=1

wc
iy

c
i log ŷ

c
i (2.6)

The Dice distance and Jaccard distance are very similar, as both originate from metrics
used to measure the segmentation quality. The Dice distance is based on the Sorensen-
Dice Coefficient, whereas the Jaccard distance is based on the Jaccard index. The Dice
coefficient is equal to twice the size of the intersection between two sets divided by the
sum of the elements in both sets. Equation (2.7) shows the Dice equation with Y as one
set and Ŷ as the other set.

Dice =
2|Y ∩ Ŷ |

|Y |+ |Ŷ |
(2.7)

In order to use the Dice equation as a loss function for supervised training of a neural
network, it is necessary to adapt its formula, since the function was proposed to work with
discrete data. Equation (2.8) shows the Dice loss function adapted for a minimization
problem that allows gradient backpropagation.

Dice distance = 1−

2×
N
∑

i=1

yi × ŷi

N
∑

i=1

y2i + ŷ2i

(2.8)

As in Equation (2.8), N is the number of voxels, yi is a voxel from the ground-truth
mask, where yi is equal to 1 when the voxel belongs to the object and 0 otherwise, and
ŷi is a voxel with the predicted probability of belonging to the object. The intersection
operand was replaced by a multiplication that allows derivation. The size operator was
replaced by the sum of the values of all voxels.

The Jaccard function replaces the divisor of the Dice function by a union of the sets
Y and Ŷ .

Jaccard =
|Y ∩ Ŷ |

|Y ∪ Ŷ |
(2.9)

The Jaccard index, similar to the Dice coefficient, has to be adapted in order to fit as
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a loss function. Equation (2.10) shows the adapted function.

Jaccard distance = 1−

N
∑

i=1

yi × ŷi

N
∑

i=1

y2i +
N
∑

i=1

ŷ2i −

N
∑

i=1

yi × ŷi

(2.10)

The new adaptation necessary for the Jaccard distance is the substitution of the union
operator that is used in the divisor part of the fraction. The union is separated in two
parts: the first one calculates the sum of the sizes of both sets and the second part
subtracts the two sets.

The Dice coefficient can also be adapted to work with multi-class segmentation, by
calculating the mean dice value for each class using one-hot encoding, which results in
Equation (2.11).

Multi-Dice = 1−
1

|C|

∑

c∈C

2
N
∑

i=1

yci × ŷci

N
∑

i=1

y2ci + ŷ2ci

(2.11)

2.3 Related Work

In this section, we describe some relevant machine learning methods used to address the
liver tumor segmentation problem.

Han [19] won the LiTS challenge at the 2017 Institute of Electrical and Electronics
Engineers (IEEE) International Symposium on Biomedical Imaging (ISBI). The proposed
solution uses two FCNNs with long-range shortcut connections from U-Net [47] and short-
residual connections from ResNet [21]. The first network creates a coarse segmentation
of the liver, which is used to limit the number of slices employed in the second network
to the slices within the liver segmentation. The second network then creates a refined
segmentation of the liver and the lesion segmentation.

The authors decided to use 2D convolution to reduce computational and memory re-
sources to leverage the z-axis relation between voxels. Five slices are used to predict the
middle slice. This method is called 2.5D convolution network, since it still considers vol-
ume relations, but uses 2D filters. The authors addressed the difference in spacing between
slices by undersampling slices so that each volume had a spacing of 1mm×1mm×2.5mm.
The undersampling method was only used in the first network, whereas the second net-
work receives the input with the original spacing, since crucial information could be lost
with the undersampling.

The networks were trained using stochastic gradient descent through 50 epochs and
took 4 days for each network on a single NVIDIA TitanX GPU. Each prediction slice
required 0.2s to be processed. The code was implemented in Caffe package. The model
had 24M parameters. The solution obtained a global Dice coefficient of 0.67, volume
overlap error (VOE) score of 0.45, average symmetric surface distance (ASSD) of 6.660
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and maximum symmetric surface distance (MSSD) of 57.930 on the LiTS benchmark for
lesion tumor segmentation.

Yuan [67] achieved the fifth place in different metrics at 2017 International Confer-
ence on Medical Image Computing and Computer Assisted Intervention (MICCAI) on
the LiTS’2017 benchmark. The proposed solution has three steps: liver localization, liver
segmentation and tumor segmentation. The liver localization uses a small fully convolu-
tional neural network (FCNN) with 19 layers and 230,129K parameters. The localization
step uses slices of 128×128 pixels and undersamples the slices to 3mm thickness to create
a coarse segmentation that is used in the next step. A post-processing applies a threshold
of 0.5 with connected components that finds and selects the large components.

The liver segmentation step creates a volume of interest (VOI) by expanding 10 voxels
in each direction of the coarse segmentation of the previous step. The sampling frequency
is increased, so that the space inter-slices is 2mm. Moreover, the resolution is expanded to
256×256×256. The network used in this step is more sophisticated with 5M parameters
and 29 layers.

The tumor segmentation step uses the same network as the liver segmentation stage;
however, the original slice spacing is used to avoid missing small lesions due to image
blurring. During training, only the slice with tumors were used for training in order to
reduce computational time. As post-processing, a filter was used to discard any tumor
outside the predicted liver mask. The final liver tumor mask is the result of a bagging-like
ensemble of six models. The loss function used was the Jaccard distance.

The networks were trained using Adam optimizer and required 1.57 days for liver
localization and segmentation, whereas required 8.518 days for tumor segmentation on a
single NVIDIA GTX 1060 GPU. Each test case took 33s for prediction on average. The
model was implemented in Theano and used 36M parameters. The solution obtained a
global Dice coefficient of 0.82, a Dice per case of 0.657, a VOE score of 0.378, an ASSD of
1.151 and an MSSD of 6.269 on the LiTS’2017 benchmark for lesion tumor segmentation.

Li et al. [36] improved the segmentation performance after the end of the 2017 MICCAI
challenge on the LiTS’2017 benchmark. The proposed method used traditional 2D and
3D convolutions with a hybrid feature fusion layer to leverage both intra- and inter- slice
features. The basic building blocks of the network used densely connected convolutions to
gradually expand the number of channels and improve information flow between all closely
connected layers. The model created a coarse liver segmentation using a 2D ResNet, which
is used as input to the 2D DenseUNet and 3D DenseUNet. Both DenseUNets created
feature maps that were combined and fed to the hybrid feature fusion that generates the
final liver and tumor segmentation. The adopted loss function was weighted cross entropy
as loss function; the class weights were determined through an empirical test.

The networks were trained using stochastic gradient descent and took 21 hours for the
2D DenseUNet and 9 hours for the 3D DenseUNet on 2 NVIDIA Xp GPUs. Each test
case took between 30 and 200 seconds. The code was implemented in TensorFlow and
the model has 114M parameters, achieving a global Dice coefficient of 0.82.4 and a Dice
per case of 0.72.2 on the LiTS’2017 benchmark.

Zhang et al. [68] proposed an efficient hybrid convolutional model based on depthwise
separable convolutions and spatial separable convolutions. Initially, they introduced a
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spatial and temporal factorization module to replace the traditional 3D convolutions.
This module is explained in Section 2.1.9. The model was labeled hybrid since it uses
2D convolutions to extract low-level features, then uses 3D convolutions at deeper levels
to reduce computation, while retaining the spatial connections from the 3D convolutions.
The output block from the encoder is a depth spatio-temporal atrous pyramid polling
(DST-ASPP) adapted from [7] and [8]. The DST-ASPP structure is used to combine
multi-range features to calculate the segmentation output. The loss function used was a
combination of cross entropy and multi-label Dice.

The network was trained with Adam optimizer and took 24 hours to train on an
NVIDIA Tesla P100. Each test case run in 10 to 80 seconds. The model has 3.6M
parameters and achieved a per case Dice of 0.730 and a global Dice of 0.820 on the
LiTS’2017 benchmark.

The model proposed by Wang et al. [60] is based on the Mask R-CNN [22] archi-
tecture. This model generates bounding boxes around objects of interest in the image,
then performs classification and segmentation in these patches. The main contribution
of the work developed by [60] was the introduction of an attention module to generate
the feature maps. The attention module was separated into spatial attention and channel
attention. The channel attention is similar to the SE module of Hu et al. [26], whereas
the spatial attention is inspired by the work of Wang et al. [59]. The model achieved a
per case Dice score of 0.741 and a global Dice score of 0.813 on the LiTS’2017 benchmark.
The hardware specification and the time spent to train the model were not mentioned by
the work authors.
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Chapter 3

Materials and Methods

In this chapter, we describe each stage of our model, the evaluation metrics, the dataset,
and the computational resources used in our experiments to assess the efficiency and
effectiveness of the proposed approaches.

3.1 Proposed Solution

Figure 3.1 shows a high-level diagram of our solution. The method is separated into liver
segmentation and tumor segmentation. In the second stage, the mask generated in the
first stage is used to focus the model on the important areas of the volume. We present
a detailed explanation of each stage in Subsections 3.1.1 to 3.1.8.

3.1.1 Data Compression

We clamp the HU values of the CT volumes to the [−200, 200] range to eliminate noise
from materials that are not relevant to lesion or liver segmentation. The clamping oper-
ation eliminates all metals, bones and air from the volume.

We convert the values to 32-bit floating point numbers and apply a min-max normal-
ization to limit the values to the range of 0 and 1, which generally improves the model
convergence time and avoids floating-point precision errors.

Then, we compress the CT volume and the ground-truth together in an NpzFile to
improve access speed and reduce disk space consumption. We also add voxel spacing and
volume dimensions to the compressed file as metadata.

3.1.2 Batch Sampling

We adopted two different methods to generate samples, one for models assembled with 2D
convolutions and the other for models assembled with 3D convolutions. Each sample has
two components: axial slices from the CT volume and axial slices from the ground-truth
mask.

A sample from a slice sk ∈ CT volume is created using the first method. The axial
slices sampled from the CT volume are sk − w : sk + w and the slice extracted from the
ground-truth mask is sk, where w ∈ N

+ and the operator : is the concatenation operator
of all slices between and including the two indices.
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Figure 3.1: Overview diagram of the liver tumor segmentation. Source: Elaborated by
the author.

A block of slices sk : si ∈ CT volume is extracted using the second method, since
the model works with 3D filters. The axial slices from the CT volume are sk −w : si +w

and the slices from the ground-truth mask are sk : si, where w =
i− k

2
and the : is the

same as in the first sampling method. The edge cases are dealt with zero padding for the
unavailable slices.

A batch generator samples every slice designated for training once per epoch during
training. The sampling method includes the following steps: a random volume is chosen;
each slice is used in that volume in a random order; another volume is chosen that was not
elected at the current epoch. This method allows proper disk access without compromising
the random sampling aspect of the batch generator.

3.1.3 Data Augmentation

The data augmentation process is only used at the training stage. We perform data
augmentation using geometric and intensity transformations. The types of geometric
transformations applied are: rotation, flipping, scaling, translation, shearing and elas-
tic transformation. We use small random intensity perturbation as our only method of
intensity transformation.

We limit the magnitude of the geometric transformations, because the model benefits
from positional and structural information. We maintained small intensity disturbances
to prevent the voxels from being perceived as different materials. Table 3.1 shows the





41

Input

Encoder

Head

Decoder

Output

CT volume Probability Map

Figure 3.3: Diagram of the network architecture, where gray arrows show the main data
flow and the blue arrows represent shortcut connections similar to the liver tumor seg-
mentation. Source: Elaborated by the author.

the segmentation mask. Our encoder block is based on the EfficientNet architecture,
explained in Subsection 2.1.13. We added shortcuts between downsampling layers of the
encoder and the upsampling layers on the decoder block to facilitate information flow
between different levels of representation, which help to mitigate any spatial information
loss by dimensional reduction [47].

The head block typically maps the encoder output to the desired output space. In
our model, the head block connects the encoder block to the decoder. The decoder block
expands the feature map to the original volume size. The output block transforms the
feature map into a probability map using the softmax function to create the segmentation
probabilities for each voxel.

3.1.5 EfficientNet Modifications

The EfficientNet was developed to achieve a balance between performance and resource
usage in the image classification problem for the ImageNet dataset. The liver segmen-
tation task shares many characteristics with the image classification problem. However,
there are many peculiarities for each problem; with that in mind, we proposed different
modifications to the EfficientNet architecture to optimize it to our problem.

The first modification was our input method that receives a sequence of 9 slices from
the CT volume. Instead of an RGB image as in the original architecture, the input
conversion is done by the stem block at the beginning of the network. The network
generates a single probability map from the input that corresponds to the segmentation
of the middle slice.

The EfficientNet uses inverted residual layers of the MobileNet-V2 as its main building
block because, at the time, MobileNet-V2 was the state of the art in terms of accuracy per
trainable variables. However, since then, different models have been proposed that reduce
resource usage while maintaining the same level of accuracy, including a new version of
the MobileNet. We selected the blocks proposed in the ShuffleNet-V2 [41] and MobileNet-
V3 [24] as possible substitutes for the inverted residual layers in our encoder architecture.

A natural way to improve the spatial feature connectivity for volumetric data is to
use 3D convolutions. Köpüklü et al. [32] already followed this idea with 3D convolutional
versions of MobileNet-V1, MobileNet-V2, ShuffleNet-V1, ShuffleNet-V2 and SqueezeNet,
achieving satisfactory results, although their research was focused on motion recognition.

To adapt our model for 3D convolutions, we resized our input to receive 8 slices and
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3.1.6 Liver Post-processing

We concatenate all the output slices to generate a volume probability map, which allows
us to determine the voxel classification through a simple thresholding method. This
generates a volumetric mask of our liver prediction that can be used in conjunction with
an algorithm to find connected components, which allows us to find the largest connected
component and classify it as the liver, thus eliminating most of the small false positives
that may occur.

3.1.7 Combination Mask

We use the liver mask found in the previous stage to narrow the volume of interest for
tumor segmentation. There are many ways to combine the input volume and the liver
mask. We consider two methods in this work, described as follows.

The first approach is to mask the CT volume with the liver mask, effectively removing
any tissue that is not considered liver. The second approach is to add the liver mask to the
CT volume intensities, which would create a highlight in the voxels that are considered
inside the liver. Both methods were chosen due to their simplicity and do not increase
the input size of the model.

3.1.8 Tumor Post-processing

We use the same methods to create the probability map volume and connected compo-
nents as in the liver post-processing step. However, instead of choosing only the largest
component, we eliminate all components whose highest probability that a voxel presented
in that component of being a tumor is below a threshold.

3.1.9 Network Training

Training a network is typically a very time consuming and sensitive process, which can
decrease the model performance. With that in mind, we adopted modern techniques to
reduce training time, improve model stability and reduce over-fitting.

Our choice of optimizer was RAdam [38], a stochastic adaptive algorithm based on
the commonly used Adam [31] optimizer. RAdam rectifies its adaptive learning rate
to stabilize its variance, which prevents the model from converging to biased/bad local
optimal. The RAdam authors based their ideas on the improvement observed in high
performance networks that gradually increased their learning rate for a few iterations,
before reaching the desired learning rate and resuming their default training schedule.
This technique is called linear warmup [17] and aims to stabilize the adaptive learning
rate without skewing the network. We chose to use linear warmup in conjunction with
RAdam, since the authors [38] who developed RAdam do not explicitly say that the
optimizer eliminates the warmup necessity.

For the learning rate scheduler, we use a plateau reduction and lookahead mecha-
nism [69]. The plateau reduction simply decreases the learning rate by a multiplicative
factor when the network has not improved in the last couple of epochs.
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The lookahead algorithm uses two sets of weights: a fast one that updates each it-
eration and the slow one that updates after k iterations. The slow set is updated with
a linear interpolation of its current location and the position of the fast set of weights.
Then, the fast set of weights starts the next iteration from the position of the slow set.
Figure 3.5 shows a one-step representation of this process.

(a) fast weight path

a

(b) slow weight update (c) beginning of a new iteration

Figure 3.5: 3.5a shows the algorithm after the fast weight updated k times. The black dot
shows the fast weight position and the red dot shows the slow weight position. In 3.5b,
we have the new position (in red) for the slow weights. In 3.5c, we have the first iteration
of the fast weight in a new cycle of the algorithm. Source: Elaborated by the author.

We use the weights that achieved the best results in our validation set to avoid over-
fitting the training samples. In addition, we use early stopping. We also apply Stochastic
Weight Average (SWA) to the weights with the best loss value for the training data.

Stochastic Weight Average

The Stochastic Weight Average (SWA) [29] method was developed based on two obser-
vations: (i) the loss surface observed on the training set does not necessarily matches
the surface loss on the validation dataset and (ii) the stopping point of the optimization
algorithm tends to remain on the boundary of the minimum surface, because the gradient
within the minimum surface is too small to updated the weights.

SWA addresses these problems by averaging different weights. These weights are
calculated by running the optimization method with a higher learning rate after the model
has stabilized. The high learning rate will move the weights around the minimum surface
border, which provides multiple points on the minimum surface that can be averaged to
achieve a combination of weights that best generalizes to different datasets.

3.2 Evaluation Metrics

The evaluation metrics are divided into four groups: (i) detection metrics responsible for
measuring the number of objects correctly detected, (ii) overlapping metrics that measure
the number of voxels of the object correctly classified, (iii) size metrics that compare the
predicted object volume with the ground truth and (iv) surface distance metrics that
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measure the distance between the borders of the predicted object and the border of the
ground-truth.

3.2.1 Detection Metrics

The correct detection of an object is determined by the intersection over union ratio of the
predicted mask and the ground-truth. The detection is considered in two values, greater
than zero and greater or equal to 0.5, the first being more strict.

From the previous detection classification, it is possible to count occurrences of true
positive (TP), false positive (FP) and false negative (FN), from which we can compute
recall and precision metrics using Equations (3.1) and (3.2), respectively. Value TP
corresponds to tumors found correctly, TF to tumors not found by the model and FN to
the predictions that do not correspond to tumors.

Recall =
TP

TP + FN
(3.1)

Precision =
TP

TP + TF
(3.2)

The tumor prediction mask is not created for a specific lesion instance. Therefore, it
is necessary to establish the correlation between the predicted tumor and a ground-truth
tumor.

First, each lesion in the prediction and references is labeled using connected compo-
nents. Then, any two reference lesions where there is a predicted lesion connecting them
are given the same label, which transforms the lesion correspondence from many-to-many
to a many-to-one problem. The last step is to combine any predicted lesion that overlaps
the same reference lesion to generate a one-to-one mapping. To maintain the number of
reference lesions invariant, the number of detection of a reference component is the same
as the number of lesions merged in that component.

3.2.2 Overlapping Metrics

Overlapping-based methods can determine whether voxels from the predicted segmenta-
tion appear in the ground-truth segmentation.On the other hand, they cannot calculate
the distance between the voxels that are present in one set and not in the other.

Dice Similarity Coefficient

Dice [14] proposed a metric to quantify the matches between two sets. Many other
researchers have adopted the metric to evaluate the performance of medical segmentation.
The Dice metric compares the overlapping ratio between the predicted mask and a manual
segmentation done by a specialist.

Given two sets of voxels A and B, where A denotes a predicted segmentation of
liver tumors and B denotes the ground-truth of liver tumors, we can calculate the Dice
similarity coefficient through Equation (3.3), where |A∩B| is the intersection size between
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the two sets, and |A| and |B| are the sizes of the respective sets.

DICE(A,B) =
2× |A ∩B|

|A|+ |B|
(3.3)

Jaccard Volume Overlap Error

The Jaccard similarity coefficient [30] of two sets is defined as their intersection size
over their union size. The Jaccard Volume Overlap Error (VOE) is the complement of
the Jaccard coefficient. Using A and B as the same pair of sets of the Dice similarity
coefficient, VOE can be written in terms of A and B, as shown in Equation (3.4).

VOE = 1−
|A ∩B|

|A ∪B|
(3.4)

It is possible to observe that VOE measures the difference between two sets, so that
similar sets have low VOE values, which is the opposite of the Dice similarity coefficient.

3.2.3 Size Metrics

Size-based metrics discard any information about voxel position and focus only on mea-
suring the size difference between the segmentation results.

Relative Volume Difference

The Relative Volume Difference (RVD) metric is a dissimilarity metric that measures the
relative difference between the number of voxels in the predicted segmentation set A and
the ground-truth segmentation set B.

The RVD metric is expressed in Equation (3.5), where |A| is the predicted segmenta-
tion set size and |B| is the ground-truth segmentation set size.

RVD = ±
|A| − |B|

|B|
(3.5)

3.2.4 Surface Distance Metrics

Before describing a number of surface distance-based metrics, it is important to introduce
some important concepts. Let x be the distance between a voxel and a set of voxels Y ,
defined as

distance(x, Y ) = min
∀y∈Y

distance(x, y) (3.6)

The function distance in Equation (3.6) is the Euclidean distance between the coor-
dinates of voxel x and y. Let BA be the set of all voxels in A’s border and BB denote the
set of all voxels in the B’s border.

Metrics based on surface distance consider only voxels that belong to the segmenta-
tion surface. This characteristic can mask large volume errors that do not deform the
segmentation surface.
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Average Symmetric Surface Distance

The Average Symmetric Surface Distance (ASSD) metric averages the distance between
all voxels in BA to BB and all voxels in BB to BA. This metric gives a general idea of how
close the borders are in their entire extension. However, due to its robustness to outliers,
it masks any isolated mistakes. Since a variation δ over a single distance has the same
effect as a variation of δ

|BA|+|BB |
spread over all distances, consequently, a large surface

has a smaller variation in ASSD value.

ASSD =
1

|BA|+ |BB|
×

(

∑

x∈BA

distance(x,BB) +
∑

y∈BB

distance(y, BA)

)

(3.7)

Maximum Symmetric Surface Distance

As the ASSD metric cannot detect rare segmentation errors, the Maximum Symmetric
Surface Distance (MSSD) is sensitive to them, which makes them complementary metrics.

MSSD = max
∀x∈BA

(distance(x,BB)) (3.8)

3.3 Dataset

The dataset used to evaluate the performance of our method is the LiTS’2017 bench-
mark, organized with 2017 IEEE International Symposium on Biomedical Imaging (ISBI)
and 2017 International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI).

The dataset is composed of 201 CT volumes, from which 194 contain liver lesion. The
volumes were collected from seven different institutions around the world. In particular,
the LiTS benchmark includes the public 3D-IRCADb dataset in the training-set. Patients
suffered from primary and secondary liver tumor and metastases.

The data contain liver and tumor labels created manually by trained radiologists
and oncologists. The quality of labels correlated to the test set was verified by three
experienced radiologists in a blind review [5]. The dataset was divided into 131 samples
for training and 70 samples for testing. The testing samples were published without the
label annotation.

In Figure 3.6, we show four examples of axial slices that represent some of the chal-
lenges that occur in the liver tumor segmentation problem. Figure 3.6a illustrates artifacts
created due to the volume extraction method, where the artifact can obscure important
information about the tomographic volume; the artifacts are similar to bright rays around
the patient column. Figures 3.6b, 3.6c and 3.6d show examples of tumors with different
shapes, sizes, positions and contrast in the LiTS training dataset. Figure 3.6b shows a
small tumor with high contrast, but tangled with healthy tissue. Figure 3.6c shows a
cluster of large and small tumors covering a large part of the liver. Finally, Figure 3.6d
illustrates a tumor that is small and barely distinguishable from the liver.

As briefly mentioned about class imbalance in Section 1.2, Figure 3.7 shows the voxel
count on a logarithmic scale for each of our three classes, background, liver and tumor.
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(a) volume 35 (b) volume 39 (c) volume 89 (d) volume 5

Figure 3.6: Axial slice examples from volumes of the LiTS dataset, with their respective
liver and tumor ground truth masks. Source: LiTS database [37].

The graph on the left considers the entire volume, whereas the graph on the right focuses
only on slices with liver.

It is possible to notice that the number of background voxels is close to 100 times
larger than the number of liver voxels; and close to 1000 times larger than the number
of tumor voxels. The variance across the volumes is considerably higher for tumors than
the other two classes. The number of background voxels reduce to about a third without
the slices with no liver tissue, but it is enough to affect the training process.

3.4 Computational Resources

The proposed method was implemented in Python programming language (version 3.x)
due to the great availability of packages for machine learning, image manipulation, data
analysis, numerical processing and data visualization. The main packages used in the
implementation were NumPy, OpenCV, PyTorch, Pandas, SciPy, Seaborn, Matplotlib,
SciPy, Scikit-Learn Scikit-Image, MedPy and TensorBoardX.

The experiments were conducted at the Laboratory of Visual Informatics (LIV) of
the Institute of Computing (IC) at University of Campinas (UNICAMP). The computers
are equipped with 3.5 Ghz Intel i7-3770 processors, 32 GB of RAM memory, an NVIDIA
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with 12 GB and 16 GB of memory, respectively. The storage space used was provided by
mounting a Google drive node on the server with the PyDrive library.
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Chapter 4

Results

In this chapter, we describe and discuss the details of our experimental setup, present the
results of our experiments and compare our solution with other approaches available in
the literature.

4.1 Experimental Setup

We used two experimental setups: one that is performed locally and the other that is
executed on the LiTS Challenge server. We opted to carry out local experiments because
it allows us to visualize and compare the segmentation results on a case-by-case basis,
which in turn helps us to identify the model’s shortcomings.

Moreover, the comparison would be very hard to be made with only performance
metrics, even with the diversity of metrics that the LiTS benchmark reports. When using
a validation set, we also avoid overfitting our segmentation model to the test set, which
could cause our model to perform better than a real use-case test would.

4.1.1 Local Evaluation

We divided the LiTS training set into two groups: the training group has 85% of the
volumes and the validation group has 15%. The list of both sets are described in detail
in Appendix A.1.

We downsampled the inputs used for training and prediction from 512×512 to 256×256
pixels. Then, we upsampled the predicted masks to the original size for evaluation. We
opted to work with smaller image dimensions because it allows for faster experimental
iterations. We also limited the experiments to the second stage of our model since several
neural networks have already achieved liver segmentation with high Dice scores, while the
tumor segmentation still poses a challenging problem.

In our preliminary test using an architecture similar to that proposed by Han [19], we
observed a high variation of the segmentation quality across the volumes. In Figures 4.1
and 4.2, we show the Dice scores per CT volume, where the x-axis is ordered by the
average number of voxels per tumor. It is clear that the network performed worse on
volumes that presented smaller average tumor sizes.
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(a) CT slice (b) Mask

Figure 4.3: Example of a hard to segment large tumor; the mask (right) shows the
segmentation for the liver in gray and the tumor in white.

We examined volume 39 because the basic model performed poorly in this example,
regardless of its average tumor size. Figure 4.3 shows a slice that exemplifies why we
believe the basic model had difficulty identifying the tumor on volume 39. The tumor
grew as an appendix of the liver that modified the neighboring information needed to
perform the segmentation. The tumor also had an intensity value very similar to the
healthy liver tissue.

In order to study the influence of tumor size on the performance of our models, we
divided each tumor instance into three groups based on their number of voxels. The value
range of each group is shown in Table 4.1, where v stands for the tumor volume.

Group Volume (voxels)

Small v < 1000

Medium 1000 ≤ v ≤ 10000

Large v > 10000

Table 4.1: Classification limits used to separate each tumor instance by its size.

Figure 4.4a shows the distribution of the number of tumors for each group. Figure 4.4b
shows the sum of voxels per group. As we can observe, the number of small tumors is
responsible for more than 40% of all tumors; on the other hand, the number of voxels that
they represent is less than 1% of the total tumor volume. The vast majority of the tumor
volume in the dataset is composed of large tumors. Even medium-sized tumors represent
a small portion of the total volume.
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Operation. Our target value was the same as the EfficientNet-B0. Table 4.2 shows the
number of parameters and FLOPs for all the 2D models we tested.

Model Layer Configuration FLOPs Parameters

MobileNet-V2
top 107.14M 4.64M

default 123.89M 3.76M
bottom 104.80M 6.37M

MobileNet-V3
top 103.01M 4.47M

default 113.72M 3.64M
bottom 103.06M 7.80M

ShuffleNet-V2
top 118.93M 1.44M

default 122.31M 1.29M
bottom 122.13M 1.47M

Table 4.2: Number of parameters and FLOPs for each 2D model, calculated for inputs
of size 9×256×256. The values were measured using https://github.com/sovrasov/

flops-counter.pytorch.

3D Models

In order to reduce memory consumption and computational time introduced by replacing
2D convolutions with 3D convolutions, we reduced the number of channels in each layer
by half. Table 4.3 shows the number of parameters and FLOPs for each tested 3D archi-
tecture. The number of parameters is much smaller when compared to 2D models, which
is expected since the number of channels in the filters was reduced by half.

We tested the same three-layer architectures from the 2D models. We also added the
DSTS from Section 2.1.9 and tested three sets of different hyperparameters. They follow
the same idea as those used in the 2D model tests, but the default set has its width
reduced by half. Appendix A.2 provides more details for all hyperparameters values used
in each model.

4.1.2 Training Times

In Tables 4.4 and 4.5, we show the average time to generate a slice of the probability map
for each tumor segmentation. For 2D models, the time to create one slice is t/b, where
t is the run time of one iteration and b the batch size. For 3D models, the time for one
slice is t/(bz), where t and b are the same as before and z is the z-axis size, whose value
is 4 in our case.

The 3D models had an increase in training and prediction time of about 4 times in
each model. The DSTS took the largest time, although it has a comparable number of
FLOPS and parameters. We suspect that the network fragmentation [41], generated by
the branching of each layer in spatial and temporal convolution, caused a decrease in
computational performance.
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Model Layer Configuration FLOPs Parameters

MobileNet-V2
top 64.28M 1.26M

default 61.69M 1.59
bottom 64.03M 2.93M

MobileNet-V3
top 67.25M 0.99M

default 62.44M 1.95M
bottom 64.78M 3.29M

ShuffleNet-V2
top 68.84M 1.33M

default 61.53M 1.59M
bottom 56.37M 1.95M

DSTS
top 66.99M 1.68M

default 61.22M 2.52M
bottom 55.19M 2.88M

Table 4.3: Number of parameters and FLOPs for each 3D model, calculated for input of
size 8×256×256. These values were obtained using the module from https://github.

com/sovrasov/flops-counter.pytorch.

Model Layer Configuration
Training Prediction

Mean (s) StDev Mean (s) StDev

MobileNet-V2
top 0.345 0.047 0.114 0.039

default 0.237 0.014 0.072 0.001
bottom 0.292 0.038 0.086 0.009

MobileNet-V3
top 0.242 0.024 0.079 0.007

default 0.227 0.001 0.068 0.001
bottom 0.303 0.004 0.090 0.002

ShuffleNet-V2
top 0.362 0.076 0.099 0.005

default 0.295 0.031 0.083 0.009
bottom 0.355 0.037 0.105 0.021

Table 4.4: Training and prediction times for each combination of block and hyperparam-
eters of the 2D models.

4.2 Results and Discussion

This section is divided into two parts. The first presents and compares local evaluation
results. The second compares our best models against the state of the art on the LiTS
test dataset.

4.2.1 Local Evaluation

Table 4.6 shows the Dice value for each 2D model separated by tumor size. The results
indicate that concentrating the number of parameters in the shallower layers helps in
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Model Layer Configuration
Training Prediction

Mean (s) StDev Mean (s) StDev

MobileNet-V2
top 1.15 0.039 0.428 0.0194

default 1.14 0.0016 0.411 0.001
bottom 1.24 0.013 0.428 0.008

MobileNet-V3
top 1.19 0.001 0.400 0.001

default 1.065 0.001 0.381 0.008
bottom 1.13 0.241 0.397 0.002

ShuffleNet-V2
top 1.31 0.001 0.447 0.001

default 1.274 0.001 0.425 0.008
bottom 1.270 0.002 0.417 0.001

DSTS
top 1.55 0.001 0.422 0.001

default NA NA NA NA
bottom 1.713 0.002 0.454 0.001

Table 4.5: Training and prediction times for each combination of block and hyperparam-
eters of the 3D models.

the detection of smaller tumors, while concentrating the parameters in the deeper layers
improves large tumor segmentation accuracy.

Model Layer Configuration Small Medium Large

MobileNet-V2
top 0.233 0.470 0.615

default 0.079 0.182 0.631

bottom 0.065 0.293 0.608

MobileNet-V3
top 0.134 0.405 0.548

default 0.140 0.418 0.597
bottom 0.104 0.337 0.671

ShuffleNet-V2
top 0.163 0.385 0.581

default 0.058 0.339 0.617

bottom 0.143 0.381 0.529

Table 4.6: Dice scores for each 2D model separated by tumor sizes. The numbers in bold
highlight the best results.

On Figure 4.5, the left column model (parameters focused on shallow layers) presented
problems with larger tumors (top row example), but was able to detect smaller tumors
in the second example (middle row). This occurred because more of the shallower layers
were able to use the detailed spatial information before the dimensionality reduction. The
default EfficientNet model (middle column) did not detect as many small tumors as the
left column model, but performed much better than the deeper model (right column). In
the third example (bottom row), both the right and middle models performed better than
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Top Default Bottom

Figure 4.5: Examples of segmentation for different hyperparameters with the EfficientNet
using MobileNet-V2 block. The blue overlay represents the ground-truth segmentation
and the red overlay represents the predicted segmentation. The left column represents
the top set, the middle column represents the default set and the right column represents
the bottom set. The examples were extracted from volume 4 (slice 444), volume 109 (slice
418) and volume 129 (slice 142). All examples are part of our validation set.

the left model, however, the right model presented insufficient precise spacial information
to generate a smoother segmentation, as shown by the straight segmentation lines, which
indicates that the model was unable to distinguish these pixels.

Table 4.7 shows the Dice scores for each 3D model separated by tumor size. The
results of the 3D models do not clearly indicate how the parameter distribution influences
the model performance. Based on the results, the best performing models are based on
the DSTS layer.

In Figure 4.6, we show segmentation examples for three different models. The best 2D
model (MobileNet-V2 - top left), its 3D counterpart (middle), and the best 3D architecture
(DSTS - bottom right). The first example shows a slice where the 2D model failed
to segment a large tumor, the middle model created a worse segmentation, which was
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Model Layer Configuration Small Medium Large

MobileNet-V2
top 0.195 0.455 0.646

default 0.125 0.359 0.577
bottom 0.104 0.388 0.624

MobileNet-V3
top 0.196 0.415 0.646

default 0.181 0.392 0.619
bottom 0.200 0.472 0.631

ShuffleNet-V2
top 0.151 0.405 0.535

default 0.243 0.454 0.611

bottom 0.122 0.406 0.582

DSTS
top 0.192 0.483 0.631

default 0.151 0.447 0.617
bottom 0.289 0.572 0.668

Table 4.7: Dice scores of each 3D model separated by tumor sizes. The numbers in bold
highlight the best results.

improved by the right model when compared to the previous ones, but that was much
worse than the best 2D models shown in Figure 4.5. The jittering artifact can be explained
by an underfitting of the model, caused by the lack of parameters.

In the second example, we have a group of small tumors. All models performed well
in this example, but the left segmentation was the best followed by the right and, finally,
the middle one. However, the right and middle models detected some tumors better than
the left model, which indicates that some tumors are easier to segment by 3D models.

In the third example, the left and middle model generated an inferior segmentation
in the large tumor than the right model, but the left model had a better segmentation in
the small tumor at the bottom.

The fourth example shows a tumor that the left model failed to detect, but to which
the middle and right models generated a good segmentation. The last example shows a
small false positive from the left model that is not present in the middle and right model.

In Figure 4.7, we compare the average prediction time per slice for our best performing
models. All models have average prediction time of less than one second per slice. The
3D models took approximately ten times longer than their 2D counterparts.

4.2.2 LiTS Challenge Evaluation

We submitted three predictions to the LiTS challenge: the first was based on the
MobileNet-V2 with 2D convolutions, the second was based on the MobileNet-V2 with
3D convolutions and the last used the DSTS layers. We trained the models using the
same splits as the local evaluation.

The evaluation of the LiTS challenge is done on their servers. The submission is
composed of the mask for each volume, where the value 0 represents background, 1 rep-
resents liver, and 2 represents the tumor. The number of submissions is limited to 3 per
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day to avoid model bias. The metadata from the submitted Neuroimaging Informatics
Technology Initiative (NIfTI) files must be appropriate to the corresponding CT volume.
Table 4.8 lists the LiTS challenge entries alongside their segmentation evaluation metrics
and parameter count.

Model
Dice per Global VOE RVD ASSD Parameters

Case Dice
(↑) (↑) (↓) (→ 0) (↓) (↓)

Volumetric Attention [60] 0.741 0.813 0.389 -0.177 1.1224 25M+
LW_HCN [68] 0.730 0.820 NA NA NA 3.6M
H-DenseUNet [36] 0.722 0.824 0.366 4.272 1.102 80M
DeepX [67] 0.657 0.820 0.378 0.288 1.151 30M
3D-UNet [10] 0.55 NA NA NA NA 19M
X.Han [19] NA 0.670 0.450 0.040 6.660 24M

DSTS-3D (ours) 0.548 0.768 0.400 -0.120 1.187 2.88M
2D MobileNet-V2 (ours) 0.536 0.678 0.429 -0.162 1.4232 4.64M
3D MobileNet-V2 (ours) 0.524 0.746 0.393 -0.041 1.1298 1.26M

Table 4.8: Segmentation metrics of the best performing published works on top, our model
results separated by rule at the bottom. The ↑ indicates results with higher values are
better; ↓ indicates results with lower values are better and → 0 indicates results closer to
0 are better. Our models are at the bottom separated by a rule.

Our method did not achieve the performance necessary to compete with more special-
ized liver tumor segmentation methods. However, unlike most approaches, our method
focused on limited resource environments, instead of maximizing performance.

Our best performing method achieved similar performance to 3D-UNet with 5 times
less parameters. It also achieved proper results in the VOE and ASSD metrics, but its
weakest metric was given by the Dice per case. If we compare the 2D MobileNet-V2 with
3D MobileNet-V2, we notice a drop in Dice per case, but an increase in ASSD, VOE and
Dice global, which indicates that the 3D model created better overall segmentation, but
the 2D model detected tumors correctly in more volumes.

The limited number of FLOPS that we imposed on our 3D models reduced its ability
to detect smaller tumors. The only best performing solution with comparable number of
parameters was the LW_HCN model, but it uses images four times larger than ours to
generate its prediction.
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Mobile-V2(2D) Mobile-V2(3D) LSTS

Figure 4.6: Examples of segmentation for the best performing 2D MobileNet-V2 archi-
tecture (left), its 3D counter part (middle) and the best performing 3D model (right).
The blue overlay represents the ground-truth segmentation and the red overlay repre-
sents the predicted segmentation. The three first examples are the same as in Figure 4.5.
The fourth example was extracted from volume 35 (slice 109) and the last example was
extracted from volume 69 (slice 203), both from the validation set.
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Chapter 5

Conclusions and Future Work

In this work, we studied and analyzed the viability of efficient networks as encoder back-
bones for the liver tumor segmentation problem. We started from a baseline network to
investigate its shortcomings and create a better understanding of the challenges posed by
our problem.

The segmentation quality was correlated with the tumor size present in the volume.
Large tumors presented a high segmentation quality and detection rate, while small tu-
mors were poorly detected or overestimated. Based on our observations, we proposed a
method to evaluate the segmentation quality that distinguishes tumors by their size, which
allows a better understanding of how the model works under different circumstances.

We created two models, one based on 2D convolutions and the other based on 3D con-
volutions. Our 2D model is end-to-end segmentation based on the U-Net architecture with
an adaptation of the EfficientNet-B0 as encoder. We tested two additional efficient layer
architectures for the inverted residual layer (EfficientNet base layer), with three different
layer distributions to determine how optimized the original EfficientNet architecture was
for the tumor liver segmentation problem. Our results demonstrated that focusing on
layers before the dimensionality reduction improved the detection of small tumors, with
some degradation of the large tumor segmentation.

Our 3D-convolution model followed the same architecture as the 2D model. However,
the input and output were adapted to fit the 3D convolutional filters. We repeated the
experiments with the same layers as the 2D model and added another layer architecture,
referred to as DSTS layer, described in Section 2.1.9. The DSTS model had the best
performance, improving in all tumor sizes compared to any 3D model, but it still had
issues that were not present in some 2D models.

Both 2D and 3D models were able to create segmentation predictions in less than 1
second per slice, on a machine without using a GPU. However, 3D models were almost
ten times slower than their 2D counterparts, even with a lower number of parameters and
FLOP count. We attribute this slowdown to the number of dependencies created by the
3D convolutions. Although the 3D models had some advantages over the 2D models, they
were not enough to justify the reduced performance. A better approach could be a hybrid
model, as described by Li et al. [36] and Zhang et al. [68].

Based on the results of our work, we can answer the research questions described in
Section 1.4:
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• Can we develop a model that balances efficiency and effectiveness for the liver tumor
segmentation problem?

Our models were not able to compete with state-of-the-art approaches. However,
they were able to achieve proper results with a fraction of the number of parameters.

• How optimized the EfficientNet is for the tumor liver segmentation problem?

The EfficientNet is not the most adequate architecture for liver tumor segmentation.
The EfficientNet with its default filter sizes had the best segmentation performance
for large tumors. However, it lacks detailed information to detect smaller tumors.
We were able to improve the detection of small tumors by redistributing resources
to the higher layers of the model.

• Does our model improve with the use of 3D convolutions?

It was possible to notice a performance improvement between our 2D model using
MobileNet-V2 layers (EfficientNet as encoder) and our model using the DSTS layer.
However, there are situations in which the 2D model performed better than any
of our 3D models, which suggests that a hybrid model that combines 2D and 3D
convolutions can produce better results.

• Can our model viably run on machines without high-end hardware?

According to our experiments, our largest model was able to segment liver tumors
without using GPUs with an execution time of less than one second per slice.

As directions for future work, we intend to change the framework of our architecture.
For instance, satisfactory results with Mask-RCNN were presented by Wang et al. [60],
where this network uses ResNet-50 as backbone, which could be easily replaced by one
of the encoders that we proposed in this work, reducing the computational cost of the
model.

From Figure 4.6, we can observe that the 2D model has an advantage in locating
smaller tumors. Therefore, an adaptation of the EfficientNet architecture that uses 2D
convolutions for earlier layers and 3D convolutions for deeper layers could improve the
detection of small tumors, while maintaining a low computation cost.

Finally, a great benefit of EfficientNet is its balance between computational resources
and scalability. However, its parameters are better tuned for the image classification
problem. A large study with 3D convolutions can benefit the overall performance of the
model.
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Appendix A

Additional Implementation Details

In this appendix, we present the dataset protocol and model hyperparameters that were
defined in our work in order to allow reproducibility of our experimental results.

A.1 Dataset Protocol

Tables A.1 and A.2 present the training and validation splits, respectively, used in our
experiments.

A.2 Model Hyperparameters

Tables A.3, to A.11 show the hyperparameters used in the 2D models. Tables A.12 to A.23
show the hyperparameters used in 3D models.
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Filename
# #

Filename
# #

Filename
# #

Tumors Voxels Tumors Voxels Tumors Voxels

volume-0 11 2591 volume-1 12 7194 volume-10 6 24310
volume-101 17 378439 volume-102 1 47754 volume-103 2 75787
volume-104 6 275918 volume-105 0 0 volume-106 0 0
volume-107 4 5953 volume-108 66 1455033 volume-11 5 10549
volume-110 17 124406 volume-111 6 7300 volume-113 29 84270
volume-114 0 0 volume-115 0 0 volume-116 1 611132
volume-117 75 1034092 volume-118 10 419119 volume-119 0 0
volume-12 1 790 volume-120 6 5231 volume-122 17 79803
volume-123 5 228251 volume-124 14 72092 volume-126 1 5090
volume-127 1 298 volume-128 11 326553 volume-13 9 23651
volume-130 23 1383692 volume-14 1 2612 volume-15 5 875
volume-16 10 373122 volume-17 5 37676 volume-18 4 10210
volume-19 6 18528 volume-2 1 14131 volume-20 3 1669
volume-21 5 36271 volume-22 1 9424 volume-23 1 42904
volume-26 7 51809 volume-27 11 187743 volume-28 7 214268
volume-29 1 14062 volume-3 1 2793 volume-31 8 6736
volume-33 15 434721 volume-34 0 0 volume-36 2 39484
volume-39 1 348986 volume-40 17 122480 volume-41 0 0
volume-42 2 1638 volume-43 1 7337 volume-44 2 185990
volume-45 1 4539 volume-46 48 41416 volume-47 0 0
volume-48 4 35478 volume-49 22 8015 volume-5 1 540
volume-51 10 124895 volume-52 2 18296 volume-53 2 2261
volume-54 1 513 volume-55 1 2797 volume-57 2 6604
volume-58 5 1443 volume-59 1 697 volume-6 7 31467
volume-60 1 11368 volume-61 2 2916 volume-62 2 3196
volume-63 5 688 volume-64 1 179093 volume-65 1 1670
volume-66 5 2333 volume-67 1 525 volume-68 1 4888
volume-7 6 32422 volume-70 3 120665 volume-72 4 22364
volume-73 1 592 volume-74 2 37144 volume-75 4 2703
volume-76 10 193508 volume-78 14 12265 volume-79 10 9085
volume-8 6 20827 volume-80 2 88269 volume-81 1 5130
volume-82 1 141610 volume-83 1 98 volume-85 2 15544
volume-86 2 6051 volume-87 0 0 volume-88 6 254141
volume-89 0 0 volume-9 6 22179 volume-90 7 250893
volume-91 0 0 volume-92 9 2632 volume-93 30 348088
volume-94 14 62525 volume-95 3 2581 volume-96 23 40533
volume-97 12 725310 volume-98 17 608639 volume-99 13 12253

Table A.1: Volume information of the training dataset.
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Filename
# #

Filename
# #

Filename
# #

Tumors Voxels Tumors Voxels Tumors Voxels

volume-100 11 1569689 volume-109 28 72822 volume-112 4 1181
volume-121 3 2123 volume-125 1 754 volume-129 10 1909785
volume-24 1 1422 volume-25 1 454 volume-30 1 14252
volume-32 0 0 volume-38 0 0 volume-35 3 20318
volume-37 8 14981 volume-4 5 1516253 volume-50 1 3014
volume-56 2 268297 volume-69 1 3113 volume-71 7 142741
volume-77 2 4234 volume-84 11 541305

Table A.2: Volume information of the validation dataset.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1) 1 32 16 0.25
Layer2 2 3 (2, 2) 6 16 24 0.25
Layer3 2 5 (2, 2) 6 24 40 0.25
Layer4 3 3 (2, 2) 6 40 80 0.25
Layer5 3 5 (1, 1) 6 80 112 0.25
Layer6 4 5 (2, 2) 6 112 192 0.25
Layer7 1 3 (1, 1) 6 192 320 0.25

Table A.3: Default hyperparameters used to construct the 2D encoder with the MobileNet-
V2 block. Same hyperparameters as the work described by Tan and Le [52].

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1) 1 32 16 0.25
Layer2 1 3 (2, 2) 6 16 24 0.25
Layer3 1 5 (2, 2) 6 24 40 0.25
Layer4 3 3 (2, 2) 6 40 80 0.25
Layer5 4 5 (1, 1) 6 80 112 0.25
Layer6 4 5 (2, 2) 6 112 192 0.25
Layer7 2 3 (1, 1) 6 192 320 0.25

Table A.4: Hyperparameters used to construct the 2D encoder with the MobileNet-V2
block focusing resources on the deeper layers.
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Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 2 3 (1, 1) 1 32 16 0.25
Layer2 2 3 (2, 2) 6 16 24 0.25
Layer3 2 5 (2, 2) 6 24 40 0.25
Layer4 2 3 (2, 2) 6 40 80 0.25
Layer5 2 5 (1, 1) 6 80 112 0.25
Layer6 3 5 (2, 2) 6 112 192 0.25
Layer7 1 3 (1, 1) 6 192 320 0.25

Table A.5: Hyperparameters used to construct the 2D encoder with the MobileNet-V2
block focusing resources on the shallower layers.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1) 1 32 16 0.00
Layer2 2 3 (2, 2) 4 16 24 0.00
Layer3 2 5 (2, 2) 3 24 40 0.25
Layer4 3 3 (2, 2) 3 40 80 0.00
Layer5 3 5 (1, 1) 6 80 112 0.25
Layer6 4 5 (2, 2) 6 112 192 0.25
Layer7 1 3 (1, 1) 6 192 320 0.25

Table A.6: Default hyperparameters used to construct the 2D encoder with the MobileNet-
V3. Values are based on the work described by Howard et al. [24].

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1) 1 32 16 0.00
Layer2 1 3 (2, 2) 4 16 24 0.00
Layer3 2 5 (2, 2) 3 24 40 0.25
Layer4 3 3 (2, 2) 3 40 80 0.00
Layer5 4 5 (1, 1) 6 80 112 0.25
Layer6 4 5 (2, 2) 6 112 192 0.25
Layer7 3 3 (1, 1) 6 192 320 0.25

Table A.7: Hyperparameters used to construct the 2D encoder with the MobileNet-V3
block focusing resources on the deep layers.
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Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 2 3 (1, 1) 1 32 16 0.00
Layer2 2 3 (2, 2) 4 16 24 0.00
Layer3 2 5 (2, 2) 3 24 40 0.25
Layer4 2 3 (2, 2) 3 40 80 0.00
Layer5 2 5 (1, 1) 6 80 112 0.25
Layer6 3 5 (2, 2) 6 112 192 0.25
Layer7 1 3 (1, 1) 6 192 320 0.25

Table A.8: Hyperparameters used to construct the 2D encoder with the MobileNet-V3
block focusing resources on the shallower layers.

Layers Repetitions Filter Stride In Out SE
Size Feature Feature Squeeze

Layer1 1 3 (1, 1) 32 16 0.25
Layer2 2 3 (2, 2) 16 24 0.25
Layer3 2 5 (2, 2) 24 40 0.25
Layer4 3 3 (2, 2) 40 80 0.25
Layer5 3 5 (1, 1) 80 112 0.25
Layer6 4 5 (2, 2) 112 192 0.25
Layer7 1 3 (1, 1) 192 320 0.25

Table A.9: Default hyperparameters used to construct the 2D encoder with the ShuffleNet-
V2. Values based on MobileNet-V2 hyperparameters.

Layers Repetitions Filter Stride In Out SE
Size Feature Feature Squeeze

Layer1 1 3 (1, 1) 32 16 0.25
Layer2 1 3 (2, 2) 16 24 0.25
Layer3 1 5 (2, 2) 24 40 0.25
Layer4 3 3 (2, 2) 40 80 0.25
Layer5 4 5 (1, 1) 80 112 0.25
Layer6 4 5 (2, 2) 112 192 0.25
Layer7 2 3 (1, 1) 192 320 0.25

Table A.10: Hyperparameters used to construct the 2D encoder with the ShuffleNet-V2
block focusing resources on the deeper layers.
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Layers Repetitions Filter Stride In Out SE
Size Feature Feature Squeeze

Layer1 3 3 (1, 1) 32 16 0.25
Layer2 3 3 (2, 2) 16 24 0.25
Layer3 2 5 (2, 2) 24 40 0.25
Layer4 2 3 (2, 2) 40 80 0.25
Layer5 2 5 (1, 1) 80 112 0.25
Layer6 2 5 (2, 2) 112 192 0.25
Layer7 1 3 (1, 1) 192 320 0.25

Table A.11: Hyperparameters used to construct the 2D encoder with the ShuffleNet-V2
block focusing resources on the shallower layers.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1, 1) 1 16 8 0.25
Layer2 2 3 (1, 2, 2) 6 8 12 0.25
Layer3 2 5 (2, 2, 2) 6 12 20 0.25
Layer4 3 3 (2, 2, 2) 6 20 40 0.25
Layer5 3 5 (1, 1, 1) 6 40 56 0.25
Layer6 4 5 (1, 2, 2) 6 56 96 0.25
Layer7 1 3 (1, 1, 1) 6 96 160 0.25

Table A.12: Hyperparameters used to construct the 3D encoder with the MobileNet-V2
block, based on the hyperparameters described by [52], but adapted to 3D convolutions.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1, 1) 1 16 8 0.25
Layer2 2 3 (1, 2, 2) 6 8 12 0.25
Layer3 2 5 (2, 2, 2) 6 12 20 0.25
Layer4 3 3 (2, 2, 2) 6 20 40 0.25
Layer5 4 5 (1, 1, 1) 6 40 56 0.25
Layer6 4 5 (1, 2, 2) 6 56 96 0.25
Layer7 4 3 (1, 1, 1) 6 96 160 0.25

Table A.13: Hyperparameters used to construct the 3D encoder with the MobileNet-V2
block focusing resources on the deeper layers.
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Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 2 3 (1, 1, 1) 1 16 8 0.25
Layer2 2 3 (1, 2, 2) 6 8 12 0.25
Layer3 2 5 (2, 2, 2) 6 12 20 0.25
Layer4 2 3 (2, 2, 2) 6 20 40 0.25
Layer5 2 5 (1, 1, 1) 6 40 56 0.25
Layer6 3 5 (1, 2, 2) 6 56 96 0.25
Layer7 1 3 (1, 1, 1) 6 96 160 0.25

Table A.14: Hyperparameters used to construct the 3D encoder with the MobileNet-V2
block focusing resources on the shallower layers.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1, 1) 1 16 12 0.0
Layer2 2 3 (1, 2, 2) 4 12 12 0.0
Layer3 3 5 (2, 2, 2) 3 12 20 0.25
Layer4 3 3 (2, 2, 2) 3 20 40 0.0
Layer5 3 5 (1, 1, 1) 6 40 56 0.25
Layer6 4 5 (1, 2, 2) 6 56 96 0.25
Layer7 2 3 (1, 1, 1) 6 96 160 0.25

Table A.15: Default hyperparameters used to construct the 3D encoder with the
MobileNet-V3. Values are based on the work described by [24], but adapted to 3D con-
volutions.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 1 3 (1, 1, 1) 1 16 12 0.0
Layer2 2 3 (1, 2, 2) 4 12 12 0.0
Layer3 3 5 (2, 2, 2) 3 12 20 0.25
Layer4 3 3 (2, 2, 2) 3 20 40 0.0
Layer5 4 5 (1, 1, 1) 6 40 56 0.25
Layer6 4 5 (1, 2, 2) 6 56 96 0.25
Layer7 5 3 (1, 1, 1) 6 96 160 0.25

Table A.16: Hyperparameters used to construct the 3D encoder with the MobileNet-V3
block focusing resources on the deep layers.
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Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 2 3 (1, 1, 1) 1 16 12 0.0
Layer2 2 3 (1, 2, 2) 4 12 12 0.0
Layer3 2 5 (2, 2, 2) 3 12 20 0.25
Layer4 2 3 (2, 2, 2) 3 20 40 0.0
Layer5 2 5 (1, 1, 1) 6 40 56 0.25
Layer6 2 5 (1, 2, 2) 6 56 96 0.25
Layer7 1 3 (1, 1, 1) 6 96 160 0.25

Table A.17: Hyperparameters used to construct the 3D encoder with the MobileNet-V3
block focusing resources on the shallower layers.

Layers Repetitions Filter Stride In Out SE
Size Feature Feature Squeeze

Layer1 1 3 (1, 1) 32 16 0.25
Layer2 2 3 (2, 2) 16 24 0.25
Layer3 2 5 (2, 2) 24 40 0.25
Layer4 3 3 (2, 2) 40 80 0.25
Layer5 3 5 (1, 1) 80 112 0.25
Layer6 4 5 (2, 2) 112 192 0.25
Layer7 1 3 (1, 1) 192 320 0.25

Table A.18: Default hyperparameters used to construct the 3D encoder with the
ShuffleNet-V2.

Layers Repetitions Filter Stride In Out SE
Size Feature Feature Squeeze

Layer1 2 3 (1, 1, 1) 16 16 0.25
Layer2 2 3 (1, 2, 2) 16 32 0.25
Layer3 2 5 (2, 2, 2) 32 40 0.25
Layer4 3 3 (2, 2, 2) 40 80 0.25
Layer5 3 5 (1, 1, 1) 80 112 0.25
Layer6 4 5 (1, 2, 2) 112 192 0.25
Layer7 2 3 (1, 1, 1) 192 320 0.25

Table A.19: Hyperparameters used to construct the 3D encoder with the ShuffleNet-V2
block focusing resources on the deeper layers.
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Layers Repetitions Filter Stride In Out SE
Size Feature Feature Squeeze

Layer1 1 3 (1, 1, 1) 16 16 0.25
Layer2 2 3 (1, 2, 2) 16 32 0.25
Layer3 4 5 (2, 2, 2) 32 40 0.25
Layer4 4 3 (2, 2, 2) 40 80 0.25
Layer5 4 5 (1, 1, 1) 80 112 0.25
Layer6 5 5 (1, 2, 2) 112 192 0.25
Layer7 5 3 (1, 1, 1) 192 320 0.25

Table A.20: Hyperparameters used to construct the 3D encoder with the ShuffleNet-V2
block focusing resources on the shallower layers.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 3 3 (1, 1, 1) 16 24 0.25
Layer2 4 3 (1, 2, 2) 24 32 0.25
Layer3 4 5 (2, 2, 2) 32 40 0.25
Layer4 4 3 (2, 2, 2) 40 80 0.25
Layer5 4 5 (1, 1, 1) 80 112 0.25
Layer6 4 5 (1, 2, 2) 112 192 0.25
Layer7 4 3 (1, 1, 1) 192 320 0.25

Table A.21: Default hyperparameters used to construct the 3D encoder with the DSTS
block.

Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 2 3 (1, 1, 1) 16 24 0.25
Layer2 4 3 (1, 2, 2) 24 32 0.25
Layer3 4 5 (2, 2, 2) 32 40 0.25
Layer4 4 3 (2, 2, 2) 40 80 0.25
Layer5 4 5 (1, 1, 1) 80 112 0.25
Layer6 5 5 (1, 2, 2) 112 192 0.25
Layer7 5 3 (1, 1, 1) 192 320 0.25

Table A.22: Hyperparameters used to construct the 3D encoder with the DSTS block
focusing resources on the deeper layers.
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Layers Repetitions Filter Stride Expansion In Out SE
Size Ratio Feature Feature Squeeze

Layer1 4 3 (1, 1, 1) 16 24 0.25
Layer2 3 3 (1, 2, 2) 24 32 0.25
Layer3 2 5 (2, 2, 2) 32 40 0.25
Layer4 2 3 (2, 2, 2) 40 80 0.25
Layer5 2 5 (1, 1, 1) 80 112 0.25
Layer6 2 5 (1, 2, 2) 112 192 0.25
Layer7 2 3 (1, 1, 1) 192 320 0.25

Table A.23: Hyperparameters used to construct the 3D encoder with the DSTS block
focusing resources on the shallower layers.
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