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Resumo

Os enormes volumes de dados da era atual tém levado a muitos desafios cientificos. Lidar
com essa quantidade de dados requer que as aplicagoes de software considerem as res-
tricoes de armazenamento e energia de alguns ambientes computacionais. As aplicagoes
de visao computacional (VC) exemplificam bem esse cenario, ji que geralmente proces-
sam séries de imagens uniformes de alta resolucao para produzir os resultados desejados.
Nesse cenario, uma perspectiva nao convencional a ser explorada é o uso de modelos fove-
ais de imagem capazes de reamostrar imagens uniformes em imagens espago-variantes. A
inspiracao para tal provém da retina humana, na qual a févea central possui resolucao ma-
xima, enquanto a periferia caracteriza-se por uma resolugao que diminui gradualmente.
Assim, para reduzir a quantidade de dados processados pelo cérebro, movemos nossos
olhos para focar um ponto de interesse; nesse processo, também mantemos informacoes
periféricas relevantes. Neste trabalho, exploramos o conceito de modelos foveais de ima-
gem em aplicagoes de VC. A motivagao do estudo decorre de desafios derivados (i) da
alta disponibilidade de grandes volumes de dados de imagem, (ii) do aumento do uso de
aplicativos de VC em diferentes plataformas de computagao, (iii) da necessidade de lidar
adequadamente com recursos limitados de armazenamento e energia de alguns ambientes
e (iv) da necessidade de técnicas adequadas de visualiza¢ao de informagoes que auxiliem
a execucao de inspegoes visuais em séries temporais de imagens. Em nossa contribuicao
inicial, propomos um framework para a criacao de modelos retinais de imagem orientados
a aplicagoes. Validamos os modelos em uma aplicacao de biometria, mostrando que boas
taxas de acuracia podem ser mantidas juntamente as redugoes de armazenamento e ener-
gia induzidas pelos modelos. Nossa segunda contribuicao é uma abordagem de foveacao
de imagem orientada a mudancgas para estudos de fenologia de plantas. Validamos a abor-
dagem com uma base de dados de imagens de sensoriamento remoto. Os experimentos
indicam que os modelos fornecem redugoes de armazenamento e resultados interessantes
de correlacao com imagens uniformes, em uma configuracao usualmente adotada em es-
tudos no campo da fenologia. Finalmente, em nossa terceira contribui¢ao, atacamos o
desafio de lidar com séries temporais de imagens de altissima resolu¢ao. Propomos uma
abordagem de visualizacao de informacao baseada em conceitos de foveacao e deteccao
de regioes salientes. Validamos a abordagem por meio de uma base de dados usada em
estudos de fenologia e mostramos que a abordagem pode facilitar inspecoes visuais de
grandes volumes de dados de imagem.



Abstract

The huge volumes of data from the current era have led to several scientific challenges.
Dealing with such amount of data requires that software applications consider the storage
and energy restrictions of some computing environments. Computer vision (CV) appli-
cations exemplify well this scenario, given that they usually process series of uniform
high-resolution images to output the desired results. In this scenario, an unconventional
perspective to explore is the use of foveal image models able to resample uniform im-
ages into space-variant ones. The inspiration comes from the human retina, in which
the central fovea has maximum resolution, whereas the periphery possesses a gradually-
decreasing one. Thus, to reduce the amount of data to be processed by the brain, we
move our eyes to foveate a point of interest; we also keep relevant peripheral information
in the process. In this work, we explore the concept of foveal image models towards CV
applications. The motivation underlying our study arises from a combination of challenges
derived from (i) the high availability of massive volumes of image data, (ii) the increas-
ingly use of CV applications in different computing platforms, (iii) the need of properly
handling the limited storage and energy resources of some computing environments, and
(iv) the need of proper information visualization techniques to aid visual inspections and
decisions regarding image time series. In our first contribution, we propose a framework
for creating application-oriented retinal image models. We validate our models in a CV
application in the biometry field, by showing that good accuracy rates can be retained
alongside storage and energy reductions induced by the models. Our second contribution
is a change-driven image foveation approach toward plant phenology investigations. We
validate our approach with a database of remote sensing images. The experiments indi-
cate that our models provide storage reductions and interesting correlation results with
uniform images, considering a commonly-adopted setting of the phenology field. Finally,
in our third contribution, we target the challenge of dealing with very-high-resolution
image time series. We propose an information visualization approach based on concepts
of foveation and saliency detection, and validate it with a database used for phenological
investigations. We show that the proposed visualization may facilitate visual inspections
of large volumes of image data.
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Chapter 1

Introduction

In this chapter, we introduce the subject of the thesis by first describing the problem and
its underlying challenges. Next, we expose information on a research project that repre-
sents our initial investigation on the subject. Then, we show the formulated hypothesis
and some research questions encompassing relevant topics of investigation. Finally, we
present the thesis’s organization.

1.1 Problem Description

Biological systems are often a source of inspiration and ideas for technological fields. In
particular, the human visual system, given its complexity and extensive possibilities, has
motivated many studies to understand how we perceive the structures or objects from the
real world. Examples of studies permeate the field of computer vision (CV), in which the
goal is to model and interpret the visual world by capturing, processing, and extracting
useful information from digital images. Typical CV tasks range from object detection and
recognition (e.g., vegetation, human faces) to activity recognition (e.g., accidents, human
actions) to 3-d scene reconstruction from multiple images [86].

In several CV applications, a relatively small amount of abstract information is ex-
tracted from digital images. However, the inspected images usually contain much more
data than the necessary for the application to deliver its results. This is a consequence of
the widespread of general-purpose sensors — such as the ones used for digital photography
— in different computing devices and platforms. These sensors capture high-resolution
images and send them for processing. However, in some circumstances, not all captured
information is relevant for the application considered. In this case, the amount of data
to be processed will be huge. As an interesting comparison, while other domains have
their own specifically-designed sensors (e.g., temperature, humidity), CV applications of-
ten need to rely on conventional uniform image sensors. Although these sensors may allow
a broad range of applications to be exploited, some concerns arise with respect to the use
computing resources.

When looking for accuracy and speed, CV applications may employ sophisticated
methods and hardware technologies. However, even in these cases, its necessary to take
into account possible limitations in computing resources. For instance, according to Born-
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holt et al. [22], battery life is a critical factor in mobile devices, since it can prevent users
from having a satisfactory experience. When dealing with uniform high-resolution images,
the amount of data stored is usually very high, and so is the amount of energy spent to
process these data. Thus, careful investigations of the storage and energy issues, aimed
at optimization purposes, may be required. In fact, these are paramount actions when
designing CV applications for restricted computing environments.

Classical approaches for saving energy and storage resources often rely on decreas-
ing the camera’s resolution and frame rates. Space-variant computer vision approaches,
however, take an unconventional avenue by resampling images in a biologically-oriented
manner. This unconventional perspective is the one we explore in this work.

Sampling is a common procedure performed inside a camera to generate a digital
image. The idea is to sample the 3-d real world into a discrete 2-d image that can be
handled by our computer apparatus. Nevertheless, the amount of information generated
might still be huge for the application on hand. Our insight is that a uniform sampling
of images into matrices of regular-sized pixels is neither necessary nor an efficient way to
perform CV. Adapting that process according to the requirements of specific applications
could favour the storage and energy issues at the cost of some acceptable performance
loss.

The conventional uniform image sampling procedure poses a contrast to biological
visual systems. The retina — an area of the eye responsible for capture light information —
has a non-uniform spreading of two types of photoreceptors: rods and cones. Rods exist
in a larger amount and are densely distributed in the peripheral areas of the retina. Rods
are also very sensitive to low levels of illumination, thus being highly efficient at detecting
the presence and direction of motion. In opposition, an overall smaller population of cones
is almost fully concentrated on a central area of the retina known as fovea. Cones are also
very sensitive to color, being divided into three types distinguished by their responsiveness
to short, medium, and long light wavelengths [98|.

Figure 1.1 shows the distribution of rods and cones on the human eye versus the angle
of view. Both types of photoreceptors are non-uniformly distributed: two density peaks
of rods on the periphery and a downhill to zero (the closer to the fovea) oppose to a single
density peak of cones (in the fovea). Interestingly, there is also a “blindspot” area where
no photoreceptor is found [98].

In this study, we investigate the creation and use of foveal image models that define
an image resampling strategy similar to the one performed in the retina. The proposed
approaches have inspiration on the human visual system, which is able to efficiently handle
large volumes of data through a foveation process that is executed in the early steps of the
visual processing chain. This includes inspecting foveal and peripheral regions in different
ways. We use a regular image sensor and perform the sampling procedures by means of a
software layer, thereby simulating the operation of an ideal specific-purpose sensor. With
this, we were able to easily adapt the simulated sensor for different image settings and
CV applications.
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Figure 1.1: The non-uniform distribution of photoreceptors across the human eye. (a)
An illustration of the human eye showing the retina and the angle of view measured from
the fovea. (b) The densities of rods and cones vary non-uniformly with the angle; a blind

spot is a region lacking photoreceptors (redrawn and adapted from [7]).
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1.2 The Low-Power Always on Presence Sensors Project

The Low-Power Visual Always-on-Presence Sensors (LGE-AOP) was a scientific project
funded by LG Electronics from 2015 to 2016. The collaboration involved three professors
from the Institute of Computing, University of Campinas (IC — Unicamp), two doctoral
students, and a postdoctoral fellow. The project can be considered as the starting point
of this Ph.D research. The main objective was to explore novel approaches to deal with
CV applications in terms of AOP imaging sensors, which are sensors that are constantly
capturing and sending image data for processing. Examples of this scenario comprise the
use of photography-oriented sensors in surveillance applications regarding biometry and
traffic analysis. In these, CV algorithms are often applied to extract a relatively small
amount of abstract information (e.g., the ID of an individual, the position of a vehicle)
from large sequences images, which exposes a contrast between the volumes of data cap-
tured /processed, and the amount of information extracted /produced. Since the processed
information is several orders of magnitude larger than the final desired information, en-
ergy and storage consumption become a paramount issue that CV applications must deal
with.

We tackled the challenge of handling the limitations in computing resources from
the image sampling perspective. We hypothesized that a uniform sampling of images
into matrices of regular-sized pixels is neither necessary nor an efficient way to perform
CV. When looking into biological systems, for example, we see that the human retina
presents a non-uniform configuration of photoreceptors. Thus, investigating non-uniform
image sampling procedures was seen as a promising approach. In particular, the energy
consumption investigation was split into two fronts: the sensor operation itself and the
data processing/analysis. The research on both fronts required a search for industrial
patents and literature works proposing methods similar to the one we were proposing.

The hardware front has been investigated by means of an intermediate layer that
collects only a sparse subset of the available pixels. Such a layer could be built on top of a
re-configurable sparse sensor that would be adaptable for different situations. We believed
this could reduce the amount of memory required to store the image inside the sensor, as
well as the overall energy consumption of the embedded application. This research front
is still being examined by some project members.

In turn, the software front, which has been evolved into this thesis, relied on simulating
the use of a specific-purpose sensor toward a CV biometry application. We employed a
conventional imaging sensor as the underlying data capture mechanism, and performed
the non-uniform sampling of pixels by means of a software layer. We have developed (i)
a method to devise image models to resample images according to the characteristics of
the biometry scenario considered, (ii) the biometry application itself, and (iii) a proper
dataset for evaluating the models. Figure 1.2 shows some frames of the dataset created,
which was only used in the early investigations of the LGE-AOP project. The adopted
protocol required that individuals crossed a door, thus nearly centralizing their faces at
some point. This could allow a more effective face detection and recognition for biometry
purposes. However, the dataset was only used to confirm our initial expectations that the
use of a non-uniform resampling procedure (according to some predefined image models)
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could induce memory storage and energy savings in a CV application.

[

Figure 1.2: Exemplary frames of a video from the dataset created in the context of the
LGE-AOP project. The adopted protocol required that individuals crossed a door. In
this procedure, faces would be nearly centralized at some point, thus allowing a more
effective detection and recognition for biometry purposes. The dataset was only used in
the early stages of our research.

The project’s findings suggested that the use of non-uniform image models is a viable
strategy. We obtained good reductions in memory storage and energy, thus improving the
efficiency of the biometry application. However, we also faced very low face recognition
accuracy results, which ended up compromising the effectiveness of the application. With
these findings and difficulties on hand, we decided to “reshape” our research by using a
more consolidated dataset, a modern face recognition algorithm, and by providing a more
detailed analysis of the complete approach. Such actions have been crucial for improving
our comprehension of the literature on image foveation, and to the gradual evolution of
the conducted study.

1.3 Hypothesis and Research Questions

In this work, we aim at proposing approaches to develop foveal image models and inves-
tigating their use in computer vision applications. The motivation underlying our study
arises from a combination of challenges derived from (i) the high availability of massive
volumes of image data, (ii) the increasing use of computer vision applications in different
computing platforms, (iii) the need of properly handling the limited storage and energy
resources of some computing environments, and (iv) the need of proper information visu-
alization techniques to aid visual inspections and decisions regarding image time series.
In this light, our main hypothesis can be stated as follows:

The use of foveal tmage models might induce a reduction in storage usage
and energy consumption of computer vision applications, while also keeping
satisfactory accuracy rates, and possibly allowing easier visual inspections of

series of tmage data.

Given this hypothesis, we work on the following research questions (RQ). We provide
initial thoughts right after each RQ.

e RQ1: Would the use of foveal image models lead to savings in computational
resources, such as memory storage and energy?

By this RQ, we aim at exploring foveal models to verify whether their adoption
in CV applications might favour savings in energy and memory storage. For such,
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we work at the convergence point of (i) the insights obtained from the LGE-AOP
project’s execution, and (ii) the idea of space-filling curves (in the sampling process)
to potentially reduce memory usage.

e RQ2: Does the use of foveal image models heavily impact in the accuracy rates of
the application?

By this RQ, we aim at examining in detail the efficiency of the CV application after
the use of foveal models. The analysis may be in terms of 2-d reconstructed images
— which can be seen as compressed images —, and 1-d sequences of points coming
from a space-filling curve employed to resample the image space.

e RQ3: How to adapt the proposed framework to different application scenarios?

By this RQ, we aim at discussing and exploring the flexibility of the proposed
frameworks (to devise foveal image models) toward different CV applications. This
is of much relevance, because it allows the results of study to be extended and applied
in several ways. Initially, we aim at investigating the biometry and plant phenology
application domains. The biometry scenario is well-established in the CV literature,
comprising a plethora of studies, techniques, and available datasets. In turn, plant
phenology is a field that has received a growing attention from researchers, because
it may take advantage of modern CV techniques, mobile platforms, and large-scale
storage devices. This field is concerned with the study of the life-cycle events of
plant species in a certain area over time. In this light, the amount of data (images
and videos) to be processed and analyzed calls for novel approaches of managing
these data. We believe foveal models may be a promising answer to these needs.

e RQ4: How to devise foveal image models by taking into account relevant image
regions found automatically?

By this RQ, we aim at creating image models via algorithmic processes that take
fewer and less-specific input parameters from the considered application’s domain.
This might represent a big step from the previous LGE-AOP study, since foveal and
peripheral areas would be found automatically by taking into account the dynamics
of the image’s content, instead of being fixed and defined beforehand.

e RQ5: How to combine foveal image models with information visualization tech-
niques?

By this RQ, we aim at investigating other benefits of foveal models in the information
visualization field. In this light, combining foveal models with techniques from that
field may lead to interesting strategies to reduce the amount of information to be
visually inspected during some technical and scientific tasks.

1.4 Thesis Outline

This thesis is organized into six chapters, as the workflow of Figure 1.3 shows. In Chap-
ter 2, we review the literature on space-variant computer vision, with a focus on works
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Figure 1.3: A diagram representing the organization of this thesis. Strong arrows repre-
sent the chapter sequence, whereas dashed lines represent connections between ideas and
chapters. The LGE-AOP project is directly related to the first contribution, while the
concept of space-filling curves has been employed in the second and third contributions.

proposing different foveal image models and applications that exploit the benefits of such
models. We also present a background on space-filling curves, which are employed in one
of our scientific contributions as an alternative scheme to generate foveal models.

In Chapter 3, we present our first contribution regarding the generation and use of
foveal image models in the context of a face authentication application. We propose a
framework for generating application-oriented retinal image models. The foveal models
are validated in terms of memory storage and energy consumption, and their impact on
the accuracy of the application.

In Chapter 4, we present our second contribution regarding a change-driven image
foveation approach for dealing with plant phenology investigations. We devise foveal
models for a target application of the phenology field by considering the phenological
behaviors of plant species depicted in time series of near-remote remote sensing images.
In contrast to our first contribution, the foveal and peripheral regions of the models are
found via an automatic process that takes as input a phenological metric and a binary
behavior pattern representing a phenological change of interest. We validate these foveal
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models in terms of the correlation rates and memory storage consumption they induce.

In Chapter 5, we present our third contribution regarding the use of foveal image
models. We extend our second contribution to the scenario where investigations are
performed over very-high-resolution image time series. Such huge volumes of image data
may hamper detailed scientific investigations. Again, we target the plant phenology field,
which is the one we have previously examined. In this sense, we propose a new information
visualization approach based on two concepts of the human visual system: foveation and
saliency estimation. We validate our approach qualitatively by means of visual inspections
related to the plant phenology context.

In Chapter 6, we conclude our work by summarizing our main contributions, reviewing
the hypothesis and research questions, and pointing out future work possibilities.

We provide further information regarding first contribution in Appendices A, B, C, and
D, in which we show the algorithm for creating retinal models, some log-polar images for
visual comparison with the proposed models, the motion analysis algorithm, and technical
information of the CV application, respectively. Furthermore, in Appendix E, we detail
the algorithm for generating our foveal models from our second contribution.
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Chapter 2

Background and Related Work

In this chapter, we provide a theoretical background and a literature review. First, we
overview image compression techniques in Section 2.1. Next, we provide a literature review
on space-variant computer vision in Section 2.2. After that, we present a background on
space-filling curves in Section 2.3. We expose our final considerations in Section 2.4.

2.1 Image Compression

To store or transmit images in and through digital media, it is sometimes necessary to
reduce the images’ sizes. The need for compact image representations led to the study of
compression algorithms able to exploit data redundancy in 2-d intensity arrays. According
to Gonzalez and Woods [36], three main types of data redundancy can be exploited:
(i) coding redundancy, when the number of bits to represent an information is greater
than the necessary; (ii) spatial and temporal redundancy, understood as the similarity or
dependence between neighboring pixels from spatial (and temporal, in videos) correlation
present in 2-d arrays; and (iii) irrelevant information, when information is not essential
for the application or when it is ignored by the human visual system.

There are two types of compression systems: lossless systems, in which information is
preserved such that the decoded image is a replica of the original encoded one; and lossy
systems, in which the reconstructed image is “distorted”, i.e., it presents distinct pixel
information compared to the original image. One of the most used compression standards
was proposed by the The Joint Photographic Experts Group (JPEG). This standard is a
lossy compression method that works on 8 x 8 image blocks for coding and subsequent
quantization. The underlying process consists in traversing the image collecting blocks of
pixels in a raster-scan fashion and further processing these with the block transform, run-
length, and/or Huffman [43] coding strategies. Other coding approaches encompass the
Golomb [35], arithmetic [2], LZW [101], symbol-based [12], bit-plane, predictive |14, 51],
and wavelet-based [45] ones. For a detailed explanation on these approaches, refer to [36].
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2.2 Space-Variant Computer Vision

Over the years, properties and mechanisms of many biological systems have been repli-
cated in different domains of science. A good example is in CV, where the paradigm
of capturing and processing uniform images shows an interesting contrast to our visual
system. In the human retina, cones and rods (the photo-receptors) present a non-uniform
spatial configuration that induce variable visual acuity levels across the retina [98]. Cones
and rods are responsible for detecting color and luminance, respectively. The area with the
highest density of cones is the fovea, the central area of the retina. When moving to the
periphery (i.e., apart from the fovea), the density of cones and the visual acuity decrease,
whereas the density of rods increases. This configuration provides a wide peripheral field
of view, along with a high resolution region that is used to “foveate” (i.e., focus on) a point
in a real scene, which implies data processing reduction [19,98|. Foveation is the biological
action of moving the eyes to focus objects/regions on the fovea, so as to have a detailed
view of these. This action might be the result of a decision taken after obtaining and
processing peripheral information. For instance, when crossing a street, a person might
notice an object moving towards her by means of the peripheral vision. After detecting
the object’s presence, she foveates and recognizes it as a car, thereby deciding on stop
walking.

One of the first studies investigating the space-variant mechanisms of biological vision
dates back to late 70’s, when Schwartz [78] reported that the transmission of information
from the retina (where sensing occurs) to the visual cortex (where processing takes place
in the brain) of primates could be approximated by a log-polar mapping. In such a
mapping, radial lines from the center of the uniform (cartesian) image are converted
to straight horizontal lines in the cortical (log-polar) image, whereas circular lines are
mapped to straight vertical lines. Figure 2.1 illustrates the log-polar transformation on a
cartesian image.

Bio-inspired computing has become a hotspot in many areas of computer science and
engineering [26]. The human visual system (HVS) stands as a proper biology-related topic
from which many computing approaches have borrowed concepts. Although the HVS is
vast in terms insights it may provide, two of its concepts have been deeply explored in
the computer science literature. The first one, related to visual attention, is in charge of
selecting /estimating salient (relevant) regions from a scene to trigger saccadic eye move-
ments towards these regions. The motivation revolves around the limited capacity of our
brain to process the entire scene in detail [106]. The second concept refers to the foveation
process. When performing saccadic movements, our eyes seek to foveate a small region of
the field of view to process this region at high resolution in the brain. Conversely, a wider
peripheral region keeps being processed at coarser resolutions, lowering the “computing
cost” in the brain and saving body resources [3|. Thus, saliency estimation and foveation
combine forces to provide our brains less relevant information to be quickly understood.

Foveation has also been explored from the hardware and software perspectives. The
first one contemplates hardware implementations of retina-like sensors able to capture
images following specific space-variant schemes. The second avenue refers to retinal image
models (RIMs) able to map uniform images to space-variant domains. The latter approach
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is suitable for simulations and studies, since it works with conventional uniform image
sensors and different RIMs can be experimented, but it might decrease the applications’
efficiency in on-line scenarios due to the additional mapping procedure. A more complete
review on space-variant imaging from the hardware and software perspectives using log-
polar mappings is detailed in [88|.

2.2.1 Hardware-based foveation approaches

The hardware side comprises two types of approaches. The first one deals with the man-
ufacturing of image sensors with specific non-uniform spatial configurations [18|, which
allow the capture of topology-fixed foveated images at sensing time. The second type is
related to the use of an intermediary hardware layer to resample uniform images, tak-
ing these to a space-variant space. This latter type of approach provides more flex-
ibility to change the mapping without relying on software routines. In this context,
Bailey and Bouganis [15] exploited the versatility of Field Programmable Gate Arrays
(FPGA) to implement, at logical level, different space-variant image mappings. The
authors also considered a moving fovea that is dynamically adjusted according to the
application’s requirements.

Gonzalez et al. [37] integrated attention and segmentation mechanisms into a foveal
vision system. The architecture of the solution comprised a hardware layer (responsible for
mapping uniform cartesian images to space-variant ones) and software layer (responsible
for performing segmentation and saliency estimation). The overall idea is that salient
regions from a frame might trigger a foveal shift. Such shift is performed by hardware
when the next frame arrives, thereby adjusting the resolution of certain image regions
accordingly.

Niu et al. [67] proposed a novel foveal imaging system. The authors combined a set
of lenses and a scanning microlens to produce images having a local magnification effect
in some (foveal) regions, while other regions (periphery) remain unchanged. The authors
claim that the system is suitable for tasks such as object tracking and monitoring, due to
the dynamic nature of implemented foveation mechanism. However, peripheral resolution
cannot be degraded, and the proposed system’s architecture requires the use of different
microlenses to vary the structural foveal arrangement.

2.2.2 Software-based foveation approaches

Software-based approaches offer more flexibility to simulations, albeit with higher com-
putational costs, in comparison to their hardware counterparts. Smeraldi and Bigun [84]
present a saccadic search strategy based on foveation for facial landmark detection and
authentication. First, the authors apply a log-polar mapping to some image points. Then,
they extract Gabor filter responses at the locations of these points, a process that imi-
tates the characteristics of the human retina. For training, the authors use Support Vector
Machine (SVM) classifiers to discriminate between positive and negative classes of facial
landmarks (eyes and mouth) represented by the Gabor responses. During the test stages,
the saccadic search procedure evaluates several image points to find candidate landmarks
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that are used to authenticate the depicted individual.

Ekbas and Eckstein [3| proposed a foveated object detector that operates on variable-
resolution images obtained by a resampling procedure with a simplified model of the
human visual cortex. According to the authors, the detector was capable of approximating
the accuracy of a uniform-resolution-oriented one. The results of the study could also
provide a satisfactory insight and understanding about evolutionary biology processes.

Phillips et al. [71]| exploited the concept of image foveation in a single-pixel camera
architecture to promote a compromise between resolution and frame rate. The input
images were resampled by a dynamic space-variant model. Such model is constantly
reshaped to match the regions of interest detected by a motion tracking procedure. This
process simulates a moving fovea that increasingly gathers high-resolution data across
frames and finds relevant regions to be foveated.

To facilitate comparisons among different sensor arrangements, Wen et al. [102] de-
scribe a method able to provide a common space for creating lattices of any kind. The
authors demonstrate the viability of the idea by resampling images according to the
rectangular and hexagonal lattices, and further compare the images on these different
arrangements.

To exploit the benefits of a log-polar representation, such as data reduction and the
possibility to deal with different resolutions across a single image, the common task is
to perform a RIM-based image re-sampling (also called as retino-cortical mappping) to
simulate the retina’s space-varying property in the cartesian domain (see Figure 2.1).
A RIM specifies how pixels are arranged into receptive field structures [9,19], which are
analogous to super-pixels. Different image models have been proposed in the literature [19,
66,76, 103| to re-sample the uniform image (or reconstruct, for the cortical image) into a
new one where the processing takes place. Data reduction is accomplished with a trade-off
between a high resolution in the central region and a coarse wide-field resolution in the
periphery. Bolduc and Levine [19] describe representative image models for re-sampling
images following an inverse log-polar mapping. Figure 2.2 presents several RIMs that
could be applied to a cartesian uniform image to reduce data, and to provide a space-
variant image representation. Each cell of a models is called a receptive field, gathering
information from the region they circumvent in the uniform image (e.g., the color of the
central pixel, and the average color from all pixels inside the region could be used).

A challenge of using RIMs is how to properly handle space-variant images. This is
due to the distinct pixel sizes and shapes, and the non-uniform lattice topologies (i.e., the
pixels do not relate to each other by a fully 4- or 8-connected neighborhood, as usual).
In this scenario, image processing algorithms for different spatial configurations of pixels
must be created. Wallace et al. [97| proposed to represent images as connectivity graphs
(CG). The graphs generalize the lattices’ topologies, thus reducing the image process-
ing problem to a graph-theoretical one. The authors illustrate their idea by providing
graph-based algorithms for local image operators, pyramid operations, geometric trans-
formations, connected components, and template matching. Although it was claimed that
the CG idea is independent of RIMs or sensor geometries, only log-polar mappings were
contemplated.

Grady [38] also investigated image processing in odd topology domains defined by
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Figure 2.1: The log-polar transformation of a cartesian image and a model-based re-
sampling (adapted from [89]).

arbitrary graphs. Besides a human retina-based model, the author shows visual models
from several animals (e.g., cat, rabbit, and bird), representing those as graphs with non-
uniform densities useful for re-sampling images in a variety of spatial configurations.
The fact that convolution (or correlation) algorithms presume shift-invariant topology
schemes, which is not the case in space-variant images, led the author to formulate graph-
based versions of image processing algorithms like interpolation, filtering, pyramid-based
segmentation, and edge finding. The re-sampled images are displayed by colouring Voronoi
cells or by interpolating across a Delaunay triangulation. Still, no implementation of a
CV algorithm was reported.

2.2.3 Saliency estimation

Several approaches for estimating salient regions in an image have been reported. Top-
down schemes seek task-dependent cognitive cues (e.g., faces, objects, and text) that vary
according to individual’s experience in the task. In contrast, bottom-up schemes rely on
basic perceptual cues (e.g., color, shape, and size) that vary little between individuals
and induce involuntary attentional shifts [3,106,109]. The final artifact is a saliency map
spotting out regions our eyes are likely to fixate in an image. Attentional models for
still images may also incorporate the mechanism of inhibition of return, which prevents
recently-visited locations from being revisited in a short time window [3,100]. However,
such mechanism is not effective at handling dynamic settings where objects or the visual
system itself are in motion, because the regions to be avoided may change their location
over time. To overcome this limitation, object positions might be tracked and updated
at each frame to allow an effective inhibition [58]. Borji and Itti [20] review attentional
models applied to computer vision tasks and other computing domains.

More recent literature on this subject has focused on calculating saliency maps visu-
ally highlighting the features, objects, and regions encoded by deep convolutional neural
networks in each of their deep layers. In two relevant works, Wang et al. [99] present
an in-depth overview of saliency estimation approaches for object detection using deep
neural networks, whereas Borji [21] provides a survey on deep visual saliency models.
In this thesis, we take a different perspective regarding saliency estimation, because our
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Figure 2.2: Examples of retinal image models that may provide data reduction and a
space-variant image representation through a retino-cortical mapping procedure. Each
cell of a model is called a receptive field, gathering information from the region they
circumvent in the uniform image. The central region of each model (i.e., the fovea, not
shown here) is usually uniform, but the non-uniform representation provided by the model
may be used as well. (a) Traditional log-polar grid, (b—d) models redrawn from [19], (e-f)
models redrawn from [29] and [66], respectively.
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maps are not the result of any machine learning method, but are rather created from the
spatial analysis of sequences of images and according to some criteria related to the appli-
cation’s domain. Finally, there is also a modern approach for dealing with the attentional
vision challenge by means of event-based cameras. Whereas traditional cameras stream
data according to a fixed frame-rate, event-based ones are oriented to asynchronously
processing and streaming events taking place in the scene. Thus, instead of capturing
entire image frames, these cameras work by sending data — such as time, spatial location,
and sign — from salient regions measured in terms of image-pixels brightness changes.
Gallego et al. [31] show a detailed survey on event-based vision, an emergent field where
event cameras are investigated in applications, such as computer vision and robotics.

2.2.4 Applications of saliency estimation and foveation

The need to jointly optimize resources’ usage and performance requirements is a strong
motivation for exploiting the idea of space-variant images. In the literature, applications of
foveation comprise image transmission/communication [16,32,74] and CV tasks [47,87,89]
integrated into robotic systems [69,77|. This alliance is able to simulate the foveation
mechanism well by coupling cameras in mobile robots’ arms. Such systems, known as
active computer vision systems (ACVS), oppose to their passive (PCVS) counterpart
that do not rely on camera movements and are application-dependent (e.g., subjects must
foveate themselves).
In ACVS, the peripheral and fovea regions usually work in a collaborative fashion:

1. The periphery provides general information about the wide-field scene, such as pres-
ence of motion or the position of potential objects of interest;

2. The system moves its camera (foveates) to the informed positions;

3. The fovea investigates the suspect regions in high resolution.

A good example of an ACVS is presented in [47], where Jurie applies a log-polar
mapping to face detection and tracking applications. The system comprises a camera
integrated into a mobile robot arm with foveation purposes. To detect faces, the camera
first has to foveate the image at some fixation points selected by a histogram comparison
algorithm. These points can be situated in the periphery. Then, foveated regions are
examined with the aid of an eigenfaces algorithm. If a face is found, tracking proceeds
by restarting these same steps. Although periphery information is useful for determining
areas where a face might be located, the detection itself requires foveation, and so it might
not be suitable for a PCVS.

Traver et al. [87] emphasize the usefulness of peripheral information at detecting ob-
jects or events. According to the authors, most works rely on foveal information to do such
tasks, but to exploit the data reduction at its best, both regions should be used properly.
A multi-model approach for detecting objects in the periphery of log-polar re-sampled im-
ages is then proposed. In the periphery, depicted objects get distorted non-uniformly by
the varying spatial resolution of retinal images. Hence, it is plausible to consider multiple
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spatial models to contemplate the distortions at different image positions. A face detec-
tion application was chosen to validate the multi-model approach. The authors extracted
features from faces and non-faces at different positions of the retinal images and used a
linear regression-based technique for classification. The reported average face detection
rates were greater than 80%, indicating that just like in the human peripheral vision,
it is possible to discriminate face features even at coarse resolutions. However, further
analysis would be necessary to evaluate the classification in specific peripheral regions,
and to verify the application’s efficiency in off- and on-line scenarios. The idea can also
be adapted to a PCVS.

The interplay between saliency and foveation has also shown an interesting applica-
tion in image and video compression. Shi et al. [81] proposed a HSV-based adaptive
compression scheme that is suitable for remote sensing images. The process depends on
calculating (i) a weighting mask for modeling visual sensitivity, and (ii) the energy of
each sub-band from a wavelet decomposition to determine the scanning order among and
within all weighted sub-bands. The aim was to encode higher-energy sub-bands and high-
valued coefficients first, thereby improving the quality of the reconstructed image. The
authors showed promising qualitative and quantitative results, but did not explore the
effect of different fixation points to compress the images. Lu and Zhang. [55] combined
top-down and bottom-up saliency models to find relevant regions within a scene. Such
regions are used to adjust the image’s fidelity before performing its compression with
standard algorithms. Essentially, the authors foveate video frames by means of a bilateral
filtering operator that smooths peripheral visual content while preserving salient (foveal)
regions. As a result, further compression actions were more effective due to the prior
resolution degradation of perceptually irrelevant regions.

Bektas et al. [17] described a method — based on HSV concepts — to compress geo-
graphical images in a perceptually lossless manner, thereby reducing the amount of visual
information presented to the eye, and favoring user experience in tasks involving visual
interpretation of images. In the experimental evaluation, real users — which had their eyes
tracked — were required to perform searching tasks in a sequence of images. The results
showed that few participants noticed the degradation artifacts caused by processing the
images with the models. Thus, the removal of perceptually irrelevant 2-d data did not
considerably impact the efficiency of the visualization task. However, since the evaluated
task comprised looking for a circular map symbol in each image, other specific activities,
such as identifying and recognizing places, structures, and other contextual elements, were
not investigated.

2.3 Space-Filling Curves

Computing 1-d sequential orders for multidimensional data is a recurrent task in scientific
computing. This is evidenced, for instance, in the field of computer graphics, where
models to describe the geometry of 3-d objects are generated by computing their vertices,
edges, and faces. One approach for such generation works by first fulfilling the objects
with spatial cells (e.g., small cubes) and then gradually refining (detailing) some areas
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by inserting more cells. This process can be performed by means of quadtrees (in 2-d)
or octrees (in 3-d). Next, finding a sequential order of cells is paramount to further
process and update the model. The efficiency of these procedures can be influenced by
the computed order. For example, a sequential order that preserves spatial relationships
could benefit a search procedure, as neighboring positions corresponding to similar data
would remain close to each other in the sequence [13].

Space-filling curves (SFC) map a 1-d parameter space to a higher-dimensional space.
The simplest SFCs visit each point in a square at least once. These curves differ, in general,
in two ways: (i) in the number of subdivisions required for their gradual expansion and
(ii) in the visiting order determined by their elementary patterns, both of which lead to
different data sequences. Examples of SFCs comprise the Hilbert, Peano, Sierpinsky, and
Gosper curves.

Some SFCs are particularly appealing in data transformations, as the sequential orders
they induce favor the preservation of locality properties inherent in multidimensional data.
A satisfactory example is in traversing digital images to generate more spatially-coherent
sequences of pixels than the ones produced by the traditional raster-scan approach (left
to right, line by line). The coherency property implies that every pixel of a neighboring
region will be traversed before moving to others in more distant positions. This property
is a consequence of the recursive nature of SFCs. Futhermore, different curves provide
variable degrees of autocorrelation between traversed pixels [25].

Several domains of scientific computing are contemplated by SFCs, including dimen-
sionality reduction [25,91], digital halftoning [10,46,93-95,104, 107, 108], visual criptog-
raphy [54, 80|, image compression [40,41,53, 75|, and data structures and databases [1,6,
11,23,63]. In the following, we present a theoretical basis on the construction of SFCs.

2.3.1 The construction of SFCs

A sequential order procedure generates a mapping from a 1-d array of elements of the
form {1,..,n%} into a d-dimensional array of indices of the form {1, ..,n}¢, where n stands
for the number entries of the latter. In most problems, however, continuous data need to
be dealt with, and a continuous mapping, say from a higher-dimensional unit space [0, 1]"
to the 1-d unit interval [0, 1] should be established [13].

A continuous mapping should be, preferably, bijective and continuous. The former
property defines a one-to-one correspondence between elements of a 1-d and a higher-
dimensional array, whereas the latter prevents “holes” to appear in the final sequence by
avoiding “jumps” in the parameter (1-d) space. Still, one could ask how such mapping
is possible, given that both intervals supposedly have different lengths. In 1878, Georg
Cantor showed that, if such a mapping exists, both intervals (he used the general concept
of sets) must contain the same number of elements. Later, he proved that the 1-D unit
interval has as many points as the 2-d unit square, and that there is a bijective mapping
function between these sets [13].

In 1879, a step forward was given by Eugen Netto, who proved that a continuous
bijective mapping could not exist for smooth manifolds codomains (e.g., the target square).
The proof motivated mathematicians to search for surjective continuous mappings, as
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the property of one-to-one correspondences towards ideal continuous mappings had been
dropped. The pioneer discoveries in this field comprise the Peano curve, by Giuseppe
Peano in 1890, and the Hilbert curve, by David Hilbert in 1891. Later, other curves were
found, such as the Moore (1900), Lebesgue (1904), Sierpinsky (1912), and Polya (1913)
curves [13,70].

The Hilbert Curve

Hilbert was the pioneer to provide a geometrical principle for generating a SFC. The
Hilbert curve is now considered a prominent one, in that its generation method derived a
class of SFCs, and also due to its real-world applications [70]. According to Valgaerts [92],
Hilbert’s method to create a 2-d SFC can be summarized by three general rules based on
a recursive point-of-view:

1. A continuous mapping from the unit interval I to the unit square 2 is assumed.
From that, we first partition I into four congruent subintervals of equal size, and €2
into four congruent sub-squares. Next, we continuously map each subinterval to a
sub-square. This process is then recursively repeated for each sub-interval and their
correspondent sub-squares.

2. We need to preserve the continuity of the mapping along the repetitions by assuring
that adjacent sub-squares from €2 will be mapped to adjacent subintervals from [
at each stage of the recursive process.

3. Consider an interval I; that is mapped to a square €); at some iteration of the process.
A new iteration begins after all squares of the same size as §2; have been broken.
At a certain point of the subsequent iteration, I; will be divided into four congruent
subintervals, each of which will necessarily correspond to a sub-square from the
likewise partitioned €2;. By doing so, the mapping from the previous iteration gets
preserved.

This procedure can be visualized by connecting the midpoints of each sub-square in
the order defined by the sub-interval mapping sequence, as depicted in Figure 2.3. The
red path presented in Figure 2.3-a can be understood as the elementary (initial) pattern
used to refine the path of the next iterations.

In the n-th iteration, the pattern from the (n — 1)-th iteration is first replicated 2"
times, the replicas are downscaled, and some of them undergo a 90° clock- or anticlockwise
rotation throughout the image. The replicas are then placed such that the new path
preserves the overall direction of the path from the (n — 1)-th iteration. Each t € [ is
taken as the limit of a unique sequence of nested closed intervals. Analogously, every point
in 2 belongs to a unique sequence of nested closed squares. As the number of iterations
increases, the convergence of the Hilbert curve improves [70,92].

The Peano Curve

The Peano curve is created by a process analogous to that of the Hilbert curve. In
summary, recursive partitions of both the unit interval I and the unit square €2 are done. In
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Figure 2.3: The construction of a Hilbert curve in four different levels and the respective
1-d sequences. Figures (a), (b), (¢), and (d) represent the first, second, third, and fourth
levels, respectively, with each square having a correspondent 1-d subinterval.

the n-th iteration, 3" subintervals and 3%" congruent sub-squares of equal sizes are created.
It is mandatory that adjacent sub-squares always map to adjacent sub-intervals, thus
preserving the continuity of the mapping. Figure 2.4 illustrates this process. Similarly
to the Hilbert curve procedure, the generation of the Peano curve can also be seen as
a process in which the pattern from the previous iteration is replicated, resized, and fit
into the unit square. However, such patterns undergo horizontal and vertical reflections
instead of rotations.

2.4 Final Considerations

Space-variant computer vision represents a change of paradigm where image data is
severely reduced by a non-uniform re-sampling scheme. Increasingly smaller, but powerful
mobile computing devices may take advantage of this paradigm, as they operate with lim-
ited energy resources. The field has been explored in the past, mainly in conjunction with
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Figure 2.4: The construction of a Peano SFC in three different levels. Figures (a), (b),
and (c) represent the first, second, and third levels, respectively, with each square having
a correspondent 1-d subinterval (shown for the first level, only).

Active Systems in which cameras can move along their axes to exploit the foveation idea.
Hardware (sensors) and software (retina image models [19]) implementations have been
reported and explored, and we emphasized the latter ones due to the flexibility provided.

Log-polar models to re-sample cartesian images play a big role in simulating how the
information is sensed in the human retina. Some works tackling graph-based represen-
tations [38,97] for space-variant images were described. Such works turn out to be very
important for our research, as they propose image processing algorithms adapted for space-
variant image domains with variable grid topology, and pixel sizes and shapes. However,
many additional investigations are latent, such as those related to CV algorithms.

In this Ph.D. research, we investigated different approaches for creating image models
for different CV applications. We also aimed at combining HVS concepts, such as foveation
and visual attention (saliency estimation), and the idea of SFCs, such as the Hilbert curve.
The motivation of our exploration comes from the possibility of saving critical computing
resources like energy and memory storage, while also keeping satisfactory accuracy rates
for the examined CV applications.
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Chapter 3

Application-Oriented Retinal Image
Models for Computer Vision

This chapter refers to the paper [82] published in the MDPI Sensors journal under the title
Application-Oriented Retinal Image Models for Computer Vision. The chapter contains
only a few additional content and other minor differences that do not conflict in any
means with the results and discussions shown in the original paper.t

In this chapter, we present our first contribution regarding the use of foveal image
models in CV applications. The chapter is organized as follows. Section 3.1 introduces
the subject. Section 3.2 describes our approach for creating application-oriented retinal
image models in detail. Section 3.3 describes the target application we chose to validate
our approach and the adopted dataset. Section 3.4 presents experimental details regarding
the validation steps, shows the results, and discusses them. Section 3.5 presents the final
considerations. The study presented in this chapter is derived from a collaborative project
entitled Low-Power Always on Presence Sensors, which has been the initial research point
of this thesis.

3.1 Introduction

By means of a conventional sensor, one can easily capture uniform high-resolution im-
ages and describe what is depicted. However, for computers, interpreting images is not
trivial, demanding complex CV algorithms along with a proper management of the avail-
able resources, to allow the software applications to run efficiently in different hardware
platforms. As a matter of fact, a computational burden might come into play due to real-
time restrictions often imposed by the available hardware to process these high-resolution
data [15]. In the mobile environment, for example, managing energy (i.e., battery life)
is mandatory, as its negligence might prevent users from enjoying a satisfactory experi-
ence [22]. Instead of decreasing uniform-images’ resolution or cameras’ frame-rate, foveal
image models can be used to mimic the space-variant configuration of the human eye. Ac-

!Reprinted from Sensors, 20, Ewerton Silva, Ricardo da S. Torres, Allan Pinto, Lin Tzy Li, José Ed-
uardo S. Vianna, Rodolfo Azevedo, and Siome Goldenstein, “Application-Oriented Retinal Image Models
for Computer Vision,” 3746, 2020. The work was published under the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/ — As of Oct. 2020).
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cording to [15], since some tasks, such as tracking and pattern recognition, do not demand
high resolution data across the whole image, it is reasonable to work with space-variant
images.

Despite the progress in CV research fields in exploiting space-varying models, there
is a lack of a single generic framework for handling seamlessly images generated by het-
erogeneous pixel sampling strategies. We address this issue by proposing a framework
for designing Application-Oriented Retinal Image Models (ARIM) that establish a non-
uniform sampling configuration of uniform images. We propose to define the appropriate
model for an application on-demand, taking into account specific requirements of the
target application. By exploiting such models, we hypothesize it might be possible to
decrease the energy spent in computer vision tasks. We show how to create the models
and validate their use in a face detection/recognition application, considering the com-
promise among storage rates, energy, and accuracy. We use a regular image sensor and
perform the sampling procedures by means of a software layer, thus simulating the oper-
ation of a specific-purpose space-variant sensor and providing some flexibility. Our main
contributions are the following:

e we provide a framework for designing ARIMs towards CV applications;

e we evaluate the use of ARIMs in a CV application of the biometry field in terms of
memory storage and energy reductions;

e we discuss the trade-offs between the application’s accuracy and the reductions in
the computing resources induced by the ARIMs;

e we compare our results to other common setups (original and downsized uniform-
resolution images) and show that the obtained storage and energy savings are rele-
vant; and

e we briefly discuss the use of ARIMs in real-life application scenarios and the nuances
of having an ideal hardware layer that resamples images according to ARIMs.

3.2 Proposed Approach

In this section, we describe our methodology to generate ARIMs. Figure 3.1 shows the
steps of the proposed framework, which are detailed ahead. The models represent the
expected configuration of space-variant images, as defined by a prior analysis of the CV
application’s domain. An image resampled by using an ARIM presents variable resolutions
across its space. These areas may be exploited in different ways in order to save computing
resources and still allow for satisfactory accuracy rates for the desired application. The
components of the proposed methodology will be presented in the context of a biometric
application.
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Figure 3.1: The proposed framework to generate ARIMs. The workflow begins by defining
the application’s requirements regarding operation (e.g., objects’ position, illumination)
and efficiency (e.g., storage, accuracy). Then, a proper implicit function (e.g., l5) and the
spatial configuration of the retinal image model — comprising foveal and peripheral regions
— are chosen. The next step is the generation of the model by means of an optimization
procedure that considers the implicit function and the spatial configuration to resample
points in the 2-d cartesian space. The final artifact is an ARIM comprised of uniformly-
and non-uniformly-sampled foveal and peripheral regions, respectively. This model is
used to resample uniform images, taking them to a space-variant domain and potentially
contemplating the requirements determined beforehand.

3.2.1 Definition of Application Requirements

Instead of using a traditional image, coming from a general uniform sensor, we argue that
the best approach is to examine the target application and investigate its requirements
and demands. CV applications can comprise a very diverse set of requirements, ranging
from efficiency-related ones, such as storage, speed, energy, and accuracy, to other very
application-specific ones, such as the need for objects to move slowly or be positioned in
specific locations in the scene, be situated in a minimum/maximum distance from the
camera, be illuminated by a close light source, and so further. The application considered
in this thesis is concerned with user authentication based on his/her face: the individual
enters and leaves the scene by any sides, placing himself in front of a camera that captures
the scene in a wide field of view.

Although the authentication across a wide field of view is a good idea, since more
faces are collected throughout the video, the central part of the image is usually the
protagonist of the process. In this vein, it is recommended that the individual stands or
walks near the center of the image to properly position his/her face (e.g., to avoid severe
rotations and perspective changes) for a more accurate authentication process. Thus,
if one intends to reduce energy consumption, collecting faces only in a bounded central
region (e.g., a square window) might be enough. On the other hand, restricting the image
to its central part, albeit effective, might be seen as a very extreme decision, since other
image areas may contribute with useful information for the authentication. In this sense,
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retaining some pixel data in such areas, even in a sparse manner is also appropriate.
Finally, another suitable strategy towards energy reduction is downsampling the image
before performing face detection/recognition. This might reduce the energy spent in the
whole authentication process, but at the cost of a drop in accuracy.

The issues discussed above illustrate examples of requirements to be defined by the
analysis of an application’s domain. In this thesis, they were essential to guide the defi-
nition of a model for the biometric application.

3.2.2 Implicit Function Selection

The design of the model starts with selecting a proper implicit function. The idea is
that the function will act as a control mechanism to spread out the non-uniform sampled
points over a desired image region. Figure 3.2 depicts examples of implicit functions we

L

(b) (@

Figure 3.2: Examples of implicit functions: (a) Iy, (b) l2, and (c¢) lx.

explored (Iy, Iz, and l,).

I | |
I | |

3.2.3 Definition of Spatial Configuration

This step is concerned with the spatial characteristics the model must obey. We developed
hybrid space-variant models inspired by the human retina. In general, the models comprise
two very distinct regions: the fovea and the periphery. The fovea is a fixed-size region
of uniformly sampled pixels according to a predefined grid. For instance, a region of size
26 x 20 pixels can be uniformly sampled by a grid of size 2° x 25 pixels. Given these
characteristics, we can apply conventional CV algorithms in the fovea. In opposition, the
periphery is a fovea-surrounding region with a non-uniform pixel density that decreases
with the distance from the fovea.

The following four parameters should be informed prior to the creation of the hybrid
model:

e Number of foveas: Surely a human eye has only one fovea, but it is perfectly fine
for a model to comprise more than one region of uniform sampling, depending on
the application on hand. In our biometric application, we took into account only
one fovea.
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e Location of foveas: The foveas should be spatially organized adhering to the
specific requirements of the application. In ours, the fovea is centralized in the
image.

e Density of foveas: The foveas can be downsampled to simulate a uniform image
resolution reduction. We tested different densities (grids) for our fovea.

e Density of periphery: The periphery is an important region that encompasses
few sparse data in a non-uniform sampling configuration. As discussed previously,
by retaining and wisely handling sparse peripheral information (e.g., detecting mo-
tion and coarse objects in such an area), the application’s resource usage might be
optimized.

3.2.4 Model Generation

There are several ways to achieve a non-uniform point distribution. Our approach is
inspired by the computer graphics literature and previous works [27,34]. Besides the
implicit function, the number of peripheral (non-uniform) points and the aspect ratio
of the sensor must be provided. We generate a point distribution via a local non-linear
optimization procedure that, from an initial distribution, tries to minimize a global energy
function defined in Equation 3.1, where ¥ is a point in image space.

n({@}) = > (I =l - (f(@) + f(F)))) (3.1)

1T

The optimum solution for Equation 3.1, i.e., when En = 0, would be a placement of
every ; such that the distance to its “neighbors” is the sum of the values of the implicit
function at their locations. However, there is neither a closed-solution for this problem
(the implicit function can be anything), nor any guarantees of a perfect solution for a
scenario with an arbitrary number of points and implicit functions. Thus, we propose an
approximation by means of a non-linear optimization procedure based on Mass-Spring
Models. When doing so, each pair of points tries to attract each other if they are too far,
and tries to repel each other when they are too close. We do not use Newton’s physical
model of forces from springs. Instead, we have a mass-free system, so springs generate
“velocity forces.” Figures 3.3 and 3.4 show the behavior of the global energy optimization
for models with different configurations, implicit functions, and number of points. In
Appendix A, we present the algorithmic steps for the generation ARIMs.

The optimization process is very sensitive to its initial conditions. A uniform dis-
tribution of the initial positions over the valid domain coupled with a careful choice of
the implicit function allows the system to converge under 2000 iterations. Figure 3.5
illustrates the generation of an ARIM where the optimization of uniform point distribu-
tion is carried out using the [, implicit function. Upon convergence, we obtain the full
neighborhood map (Voronoi diagram) of the model.
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Figure 3.3: Convergence analysis for ARIMs with a single fovea and based on the [
implicit function. Examples of ARIMs containing (a) 96, (b) 192, and (c) 384 non-
uniform points in the periphery. For each ARIM, the resulting global energy curve over
1000 iterations of the generation process is shown in the model’s respective column.

3.3 DMaterials and Methods

In this section, we present the experimental setup that is necessary for simulating the
usage of the proposed models. The chosen dataset closely resembles one of a biometric
application.

3.3.1 Target Application: Face Detection / Recognition

In this thesis, we selected a CV application from the biometry domain to evaluate the
proposed framework.

On the Application Selection

Although the framework may be appropriated to many CV applications, such as those
that are related to surveillance and remote sensing, the biometry domain is characterized
by well-consolidated techniques and datasets, due to the several studies in the area over
the years. Moreover, the considered application could fit the complete process that is
described in Section 3.2. In this case, the application’s characteristics and requirements
could be examined by reasoning about each step of the framework (Figure 3.1), as follows:

e Step 1: We analyzed the CV application’s demands and characteristics. In the
considered biometry application, we observed aspects regarding:

1. the use of computational resources, which should be preferably low when run-
ning in environments of strict energy and storage limitations;
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Figure 3.5: The evolution of an example of ARIM with 256 foveal (uniform), and 192
peripheral (non-uniform) pixels. The [, is the implicit function.

2. the intrinsic characteristics of the application’s domain, such as the task to
be executed (face authentication), the expected “behavior” of the input data
(person movement and positioning in the images), camera angles, the most
relevant part of the image to process, etc.;

3. the possibility of balancing the pixel density of different image regions. In
this sense, given the application on hand, we decided that the processed image
would have different resolutions across its space. This will induce a compromise
between energy, storage, and accuracy; and

4. the possibility of adopting distinct pixel representations across the image in or-
der to save computational resources. In the current case, an additional motion
analysis is performed by taking advantage of an optical flow pixel representa-
tion in some image regions.

e Step 2: subsequently, by the previous analysis, we selected an appropriate implicit
function to represent the pixel distribution of the image;
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e Step 3: next, we defined the spatial configuration of foveal and peripheral regions by
knowing, for instance, that individuals often move to the central part of the image
to allow a better authentication. In this case, we defined a single central fovea;

e Step 4: finally, we created ARIMs encompassing and consolidating the expected
properties of the images defined in the previous steps.

On the Application Implementation

The face recognition process is based on the classical nearest neighbor strategy. First, we
trained our classifier with some face samples from a training dataset containing different
individuals. This process required a face recognition model to extract feature vectors
from all samples. Then, in the test stage, we extracted the feature vector from an un-
known detected face and compared such vector to all the others from the training dataset
(previously extracted) using the Euclidean distance metric. The label of the closest face
was considered as the label for the unknown face, thus resembling a 1-Nearest Neighbor
(1-NN) strategy. Section 3.3.1 presents more details on the face recognition model used.

Simulation Details

We simulated the operation of a specific-purpose sensor by re-sampling images according
to our ARIMs. The idea was to generate images containing two regions: (i) the fovea, en-
compassing a small area where resolution is uniform, and (ii) the periphery, where pixels
are arranged non-uniformly over a wider area. With such a configuration, we were able to
perform experiments when considering different foveal resolutions, while also taking ad-
vantage of the periphery according to the specific requirements of the application. In this
sense, we adopted an optical flow representation (orientation and magnitude) for periph-
eral pixels. The motivation around that representation is that the detection/recognition
in the fovea could only be triggered when there is movement towards it coming from the
periphery. Additionally, both the detection and recognition procedures turn off when no
face is found under a predefined time interval. Therefore, in this scenario, more energy
can be saved.

Figure 3.6 shows an example of a simulation using one of our ARIMs and a sample
sequence from the employed dataset [105]. The first and third rows show the original
frames, while the second and fourth rows show images reconstructed with a model that
considers an optical flow peripheral representation. Green and yellow arrows indicate
motion direction to the right and left sides, respectively, whereas the ON and OFF labels
refer to the operational status of the foveal (face detection/recognition) and peripheral
(optical flow) regions. Besides triggering foveal analysis, the motion analysis is also able
to restart conveniently, as long as faces are not detected in the fovea during a time interval
of frames (see Figure 3.6(p)). Additionally, for a visual comparison with log-polar images
(which are not considered in our experimental evaluation), see Appendix B.



48
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Figure 3.6: Example of a simulation using one of our ARIMs and a sample sequence from
the employed dataset [105]. Images (a—e) and (k—o) are the original frames; images (f-j)
and (p-t) are the reconstructions with a model that considers an optical flow peripheral
representation. Green and yellow arrows indicate motion direction to the right and left
sides, respectively, whereas the ON and OFF labels refer to the operational status of the
foveal (face detection/recognition) and peripheral (optical flow) regions. Note that the
motion analysis, besides triggering foveal analysis, is also able to restart conveniently, as
long as faces are not detected in the fovea during a time interval of frames (left-most
frame in the fourth row).
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Ideally, an ARIM should be first computed by software in an offline step. Subsequently,
at the application’s run-time, the computed model should be an input to a reconfigurable
hardware layer that will extract the necessary pixel information from a full-size image
captured by a conventional uniform image sensor. Additionally, optical flow should be
computed only for the peripheral points, thereby further discarding more image data. As
foveal and peripheral pixel configurations do not change often for a specific application,
the computational cost to control this discarding procedure by hardware should be low.
All the steps of this procedure are summarized in Algorithm 3, in Appendix C.

The workflow of the simulation process is depicted in Figure 3.7, where we distinguish
between the software and hardware layers to illustrate a hypothetical case where a specific-
purpose (space-variant) sensor was available. In an ideal scenario, the ARIM, a captured
image frame, and the chosen pixel representations for foveal and periphery areas are
input to an hypothetical specific-purpose sensor that changes its configuration at run-
time. Both layers are connected by a 1-d vector (named as bytestream) that stores the
foveal and peripheral pixel values captured by the sensor (i.e., the sampled image), and
are input to the application. For simulation purposes, however, this architecture is fully
implemented by software. We adopted bytestreams instead of a two-dimensional (2D)
image representation in the software simulation to bring the process closer to the ideal
conceived scenario. The simulator was implemented in C++ using the OpenCV 3.0.0
library.

Pixel
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Figure 3.7: Implemented workflow for simulating the use of ARIMs in a specific Com-
puter Vision (CV) application. In an ideal scenario, the ARIM, a captured image frame,
and the chosen pixel representations for foveal and periphery areas are input to an hypo-
thetical specific-purpose sensor that changes its configuration at run-time. Such a sensor
would yield a stream (bytestream) of pixel data from each region of the captured image.
The stream (not the 2D image) would be forwarded to the CV application. However,
for simulation purposes, this architecture is fully implemented by software.

Technical Information

The biometric application uses the Viola—Jones [96] algorithm, which is a well-consolidated
and widely used face detection method in the literature. As for recognizing faces, we
used a descriptor based on a pretrained Deep Neural Network (DNN) model, which is
essentially a ResNet network with 29 convolutional layers (based on [39]) trained on a
dataset containing approximately 3 million faces. The model is publicly available and
integrates the Dlib C++ Library [49]. These and other technical information, such as the
methods and parameters used, are displayed in Table D.1, in Appendix D.
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3.3.2 Dataset

In our evaluations, we employed the ChokePoint dataset [105] aimed at person identi-
fication /verification. The dataset comprises 48 sequences of images of 800 x 600 pixels
resolution and is publicly available. Each sequence depicts several individuals entering or
leaving a portal, one at a time. There are 25 and 29 individuals walking through portals
1 and 2, respectively. Moreover, each sequence is registered by three cameras that are
placed above the portals to provide diverse sets of faces in different illumination and pose
conditions. Due to the adopted settings, one of the cameras is able to capture image
sequences of near-frontal faces. Figure 3.6 shows a sample sequence from the employed
dataset in the first and third rows.

Justification for the Selected Dataset

The dataset was chosen because it represents a satisfactory scenario where a CV biometry
application may take place via a detailed investigation of its characteristics and require-
ments. When an individual is about to cross the portal, his/her face gets well centered
in the image, providing the application with the necessary data to perform the biometry
procedures. Furthermore, individuals do not suddenly appear in the center of the images;
they slowly move towards the portal. This peripheral movement data could be exploited
to activate the authentication in the central region of the image (where a face is supposed
to be).

Dataset Organization

The dataset is partitioned into the following four subsets:

e P1E and P1L: the subsets of frame sequences of people entering and leaving portal
1, respectively;

e P2E and P2L: the subsets of frame sequences of people entering and leaving portal
2, respectively.

A subset is comprised of four (4) frame sequences (S1, S2, S3, and S4), each of
which is registered by three cameras (C1, C2, and C3). For instance, the frame se-
quence P1E S2 (3 refers to the second sequence (S2) of people entering portal 1 (P1E)
and captured by camera 3 (C3).

We used 34 image sequences (out of 48) from the dataset during our evaluations due
to the following reasons:

1. One (1) of the sequences of individuals entering a portal (P1E_S1 C1) was used to
train the face recognizer. Such sequence comes from camera 1, which obtains near
frontal-face images. That sequence is also captured by cameras 2 and 3 at different
angles, hence, to avoid biased evaluations, we ignored such sequences (P1E_S1 C2
and PIE_S1 (C3), as both of these contain, essentially, the same faces of the former
up to slight angle variations.
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2. Eleven (11) sequences where no face is found in the fovea were ignored. This decision
was taken because no face recognition accuracy evaluations (using our models) would
apply to these sequences.

3.3.3 Evaluated Models

We evaluated three different ARIMs. Each model comprises 384 non-uniform peripheral
points and a central foveal region of size 200 x 200 pixels. The models diverge from
each other in the uniform-sampling configuration sizes adopted for their foveas, which
are 100 x 100 (half density — Model 1), 150 x 150 (75% density — Model _2), and 200 x
200 (full density — Model 3). These settings allow for us to simulate different foveal
resolutions. For all models, optical flow peripheral information is used to trigger the face
detection /recognition in the fovea. Figure 3.8 shows an illustration of the pixel map of
these models and their configurations.
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Figure 3.8: The pixel map of the evaluated ARIM and its configurations. The experi-
mented foveal configurations comprised three uniform sampling setups: 100 x 100 (half
density — Model 1), 150 x 150 (75% density — Model 2), and 200 x 200 (full density —
Model 3) pixels. The pixel representations for the fovea and periphery were based on
the grayscale and optical flow (magnitude and direction) values, respectively.

3.3.4 Evaluation Criteria and Hardware Setup

We compared the storage usage by computing the amount of bytes for storing the video,
measured the energy spent (in Joules) in the biometric application for each evaluated
model, and computed the mean recognition accuracy of each evaluated model when con-
sidering all video frames. To measure energy, we used the Intel RAPL (Running Average
Power Limit) interface [48], which is a set of internal registers from Intel processors, called
model specific registers (MSR). At the code level, we read these registers before and after
a block of instructions, and calculate the difference between these values. More specif-
ically, we read the MSR__RAPL POWER_UNIT register to measure the energy spent
in image readings, face detection/recognition procedures, and optical flow analysis (when
using ARIMs). The hardware setup to perform the experiments comprised an Intel Core

i7-5500U, with 2.04 GHz clock, 4 MB cache, and 16 GB RAM.
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3.4 Results and Discussion

In this section, we present the experimental results regarding storage allocated, face recog-
nition accuracy, and energy consumption induced by different ARIMs. We also discuss
these results and their implications for real-time applications.

3.4.1 Storage reduction

Quantifying reductions in numbers of pixels and image data sizes are essential for assess-
ing the benefits of using different ARIMs in practical situations. Table 3.1 shows these
measurements for the original (full-size) images, images uniformly resized, and the three
evaluated models. Compared to original images, ARIMs showed a reduction of more than
91% in the number of pixels and bytes, whereas a uniform resize of the images to 25% of
their original sizes provided a reduction of 75% in both quantities.

Table 3.1: Number of pixels and data size reduction results for the evaluated models
relative to the original and uniformly resized images (to 25% of their original sizes).

Num. of Num. of pixels Bytes per region Total Data size

pixels reduction FOV PER bytes reduction
Original 480000 - - - 1440000 -
Resized (25%) 120000 75.00% - - 360000 75.00%
Model 1 10384 97.83% 30000 768 30768 97.86%
Model 2 22884 95.23% 67500 768 68268 95.25%
Model 3 40384 91.58% 120000 768 120768 91.61%

3.4.2 Face recognition accuracy

We defined accuracy as the number of true positives (i.e., correctly labeled faces) in the
foveal region of a frame sequence, each of which has a benchmark for comparison. The
employed dataset informs all faces appearing in each image frame. However, for a fair
accuracy comparison among the uniform images and the ones re-sampled by our models,
we take into account only available information regarding the foveal region, meaning that
faces in the periphery are not considered. Thus, for the present analysis, the reference
benchmark of each frame sequence can be understood as the accuracy of the recognizer
considering all of those full-resolution images in which a face is placed on the fovea.
First, our face recognizer alone has satisfactory accuracy. Figure 3.9 shows receiving
operating characteristic (ROC) curves regarding the face recognition task considering six
image sequences from all cameras. FEach figure comprises a mean ROC (blue) curve from
all 25 (light blue) class-specific curves, i.e., for each face class in the dataset. These
class-specific ROC curves were calculated via a one-versus-all classification procedure and
evaluate the accuracy of our classifier in the experimented dataset (i.e., full-size images).
We did not consider any models to generate the curves. For example, the area under the
curve (AUC) is greater for the P1E S2 dataset (89.4%) in comparison to the P1L_S2
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dataset (79.4%). This is possibly because P1IE _S2 sequences share similar traits to the
P1E S1 C1 sequence used to train the face recognizer.
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Figure 3.9: ROC curves regarding the face recognition task considering the image se-
quences (a) PIE S22, (b) P1L_S2, (c) P1IE_S3, (d) P1L_S3, (e) PIE S4, and (f)
P1L S4 from all four cameras. The figures comprise a mean ROC (blue) curve from
all 25 (light blue) class-specific curves, i.e., for each face class in the dataset. These
class-specific ROC curves were calculated via a one-versus-all classification procedure.
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Figures 3.10 and 3.11 show, for each dataset, an expected face recognition accuracy de-
creasing of our ARIM-resampled frame sequences compared to their correspondent bench-
marks and to images uniformly resized to 25% of their original sizes. ARIMSs rely on
movement analysis to authenticate users, which creates a dependency between peripheral
and the analysis of foveal information, some faces can be lost. Another variable influenc-
ing the accuracy rates is the foveal resolution of each tested ARIM. In fact, the accuracy
rates increase with foveal resolution, and are not too low even under the 50% sampling
degradation induced by Model 1, for example. In the case of Model 3, where foveal
resolution matches that of the benchmark, the small loss in accuracy is justified by the
quality of optical flow analysis, which seems to be acceptable for the tested application.
Table 3.2 presents the minimum, mean, and maximum accuracy loss rates induced by
each model in comparison to the benchmarks. Whereas the maximum obtained loss was
50% for Model 1 and the P2E dataset, very small loss rates (close to 0%) were regis-
tered in more than one scenario. Another interesting phenomenon is the high loss rates
observed for the P2E and P2L datasets, possibly due to slight divergent lighting and pose
conditions relative to the P1E and P1L datasets.

The accuracy results on resized images are often lower than those of models, showing
a constant behavior on the P1L, P2E, and P2L datasets. In the P1E dataset, however,
the accuracy for resized images were unexpectedly high in some cases. We believe this
behavior may be justified by the fact that the evaluated sequences and the face training
sequence share similar conditions (e.g., lighting). Additionally, the superior accuracy
results of the PIE S2 (€2 and P1E S3 C3, compared to the benchmark, may be due
to a removal of noise as a consequence of the huge resizing operation. Nevertheless, we
believe these rare cases do not conflict with our general results and conclusions.

The accuracy results for the P1L, P2E, and P2L datasets follow an expected tendency
that the values increase with the resolution of the foveal region. In addition, the results
for the downsized images were also very low compared to those of the tested models (being
zero in some cases), possibibly due to (i) difficulties in finding faces, and to (ii) wrong
classifications of the face recognizer, as in the P2E_S4 C1, and P2L._S3  C2 sequences.
Another interesting observation is that Model 1 shows much higher accuracy results than
the downsized images, thereby indicating that even a model with 50% foveal resolution
can be effective in the considered scenario.
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Table 3.2: Minimum, mean, and maximum accuracy loss rates induced by our ARIMs
compared to the provided benchmarks. For example, the minimum accuracy loss induced
by Model 1 on the P1E dataset was 0.032 (i.e., 3.2%), whereas the mean and maximum
accuracy loss in that same scenario were 0.123 (12.3%) and 0.264 (26.4%), respectively.

Accuracy Loss
Dataset Model 1 Model 2 Model 3
Min. Mean Max. Min. Mean Max. Min. Mean Max.

P1E 0.032  0.123 0.264 0 0.050  0.108 0 0.006 0.021
P1L 0.060 0.248 0.613 0 0.094 0.255 0 0.023  0.103
P2E 0.174 0.353 0.500 0.032 0.172 0.318 0 0.006  0.037
P2L 0.143 0.300 0.529 0.033 0.086 0.265 0 0.063  0.206

3.4.3 Energy consumption evaluation

Figures 3.12 and 3.13 present, for each dataset, a comparison among the total energy spent
by the processing of original images (benchmark), images uniformly resized to 25% of their
original sizes, and the three tested models. Here, the benchmark can be understood as the
full-resolution image frames. Thus, in the energy comparison benchmark, the biometry
procedures are executed over the whole full-resolution images. The experiments show
lower energy consumption values for scenarios involving our models. The difference in
energy values among our models and the benchmark comes directly from the data amount
reduction caused by the combination of peripheral optical flow and the sampled foveal
face detection/recognition. The robust and timely activation/deactivation of these latter
algorithms, therefore, reduce the total energy spent in the whole authentication process,
while keeping accuracy rates acceptable, as previously discussed. Table 3.3 presents the
minimum, mean, and maximum energy reduction rates induced by each model relative
to the benchmark, i.e., the obtained energy savings. As expected, the reduction rates
decrease with the increase in foveal resolution, because there is more data to process. This
is verifiable by a quick comparison between the mean rates of Model 1 (half density) and
Model 3 (full density), for example. For resized images, the energy values are often
higher than the ones produced by ARIMs, the exception being the P2L dataset where
similar values were found. This result strengthens our hypothesis that the use of ARIMs
might lead to energy savings.

3.4.4 Implications in real-time applications

Real-life imaging applications have a broad spectrum of possibilities, associated technolo-
gies, and challenges. These applications often need to capture and process high volumes
of data — materialized in uniform images — in real-time to provide their users with the
desired outputs. However, the users’ experience may be affected by these high processing
demands in some degree, and should be considered during the application’s conception.
On one hand, in visual entertainment applications, users want the most possible amount
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Figure 3.10: Mean face recognition accuracy regarding each evaluated model, the images
resized to 25% of their original sizes, and the benchmark images from the (a) P1E and
(b) P1L datasets.

of details in pictures and videos; such a requirement can be accomplished by using uniform
images. On the other hand, when the final objective is related to real-time authentication,
movement analysis, and action recognition, for example, non-uniform images might come
into play to provide an interesting balance among accuracy, storage resources, and energy,
thus possibly favoring the users’ experience.

In our simulations, the combination of uniform and non-uniform areas induced by
our ARIMs allowed significantly fewer data to be processed. Besides, we noticed that
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Figure 3.11: Mean face recognition accuracy regarding each evaluated model, the images
resized to 25% of their original sizes, and the benchmark images from the (a) P2E and

(b) P2L datasets.

the use of different pixel representations may be a good strategy in certain situations,
because peripheral data may be inherently related to the application’s domain. These
data may be exploited to decide when to process denser data volumes. This modeling
itself already provided a significant reduction in data processing, thereby contributing to
real-time performance.

Furthermore, if a hardware layer dedicated to extract and resample conventional im-
ages is available (e.g., implemented into an FPGA), real-time pre-processing constraints
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Table 3.3: Minimum, mean, and maximum energy reduction rates induced by our ARIMs
compared to the provided benchmarks. For example, the minimum energy reduction
induced by Model 1 on the P1E dataset was 0.505 (i.e., 50.5%), whereas the mean and
maximum energy reductions in that same scenario were 0.551 (55.1%) and 0.598 (59.8%),
respectively.

Energy Reduction
Dataset Model 1 Model 2 Model 3
Min. Mean Max. Min. Mean Max. Min. Mean Max.
P1E 0.505 0.551 0.598 0.463 0.508 0.550 0.414 0.456 0.489
P1L 0.612 0.667 0.711 0.582 0.619 0.710 0.490 0.548 0.657
P2E 0.536 0.610 0.672 0.439 0.549 0.619 0.381 0.454 0.551
P2L 0.533 0.571 0.618 0.406 0.516 0.620 0.332 0.464 0.603

may be balanced, maintained, or even reduced, if necessary. In this scenario, the time
to process frames, data volumes, energy, and computational processing power could be
relieved, because many operations would be performed previously by hardware routines.

3.5 Final Considerations

In this chapter, we presented our first research avenue towards the use of foveal image
models in CV applications. A crucial observation is that image data captured by uniform
sensors are often dense and redundant, leading to computationally expensive solutions in
terms of storage, processing, and energy consumption. We addressed this issue by exploit-
ing a space-variant scheme that was inspired by mechanisms of biological vision related
to the way that humans sense through the retina. We introduced a generic framework
for designing application-oriented retinal image models (ARIM), which is how we repre-
sent the foveal image models created for specific CV applications. The models should be
used to re-sample the input images prior to executing a specific CV task. We selected a
biometric application to illustrate the conception and usefulness of appropriate models.

The experiments with three ARIMs having different point configurations demonstrate
the flexibility of the proposed framework in devising models with different properties
regarding storage requirements, energy consumption, and accuracy performance. We
could observe, for example, that the use of different space-variant strategies may lead to a
big reduction in terms of storage resources and energy consumption, whereas the accuracy
loss rates were low in most cases. Such a trade-off evidences the viability of the proposed
models and the conformity to our initial expectations regarding saving computational
resources.

In summary, we have shown that the concept of foveal image models may be employed
in CV applications aiming at decreasing the consumption of storage and energy. For such,
we have proposed a framework to devise ARIMs. The results of this primary study have
led us to explore novel ideas on the creation of foveal models to other application contexts.
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Figure 3.12: Total energy consumption regarding each evaluated model, the images resized
to 25% of their original sizes, and the original (full-size) images from the (a) P1E and (b)

P1L datasets.
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