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Resumo

Os enormes volumes de dados da era atual têm levado a muitos desafios científicos. Lidar
com essa quantidade de dados requer que as aplicações de software considerem as res-
trições de armazenamento e energia de alguns ambientes computacionais. As aplicações
de visão computacional (VC) exemplificam bem esse cenário, já que geralmente proces-
sam séries de imagens uniformes de alta resolução para produzir os resultados desejados.
Nesse cenário, uma perspectiva não convencional a ser explorada é o uso de modelos fove-
ais de imagem capazes de reamostrar imagens uniformes em imagens espaço-variantes. A
inspiração para tal provém da retina humana, na qual a fóvea central possui resolução má-
xima, enquanto a periferia caracteriza-se por uma resolução que diminui gradualmente.
Assim, para reduzir a quantidade de dados processados pelo cérebro, movemos nossos
olhos para focar um ponto de interesse; nesse processo, também mantemos informações
periféricas relevantes. Neste trabalho, exploramos o conceito de modelos foveais de ima-
gem em aplicações de VC. A motivação do estudo decorre de desafios derivados (i) da
alta disponibilidade de grandes volumes de dados de imagem, (ii) do aumento do uso de
aplicativos de VC em diferentes plataformas de computação, (iii) da necessidade de lidar
adequadamente com recursos limitados de armazenamento e energia de alguns ambientes
e (iv) da necessidade de técnicas adequadas de visualização de informações que auxiliem
a execução de inspeções visuais em séries temporais de imagens. Em nossa contribuição
inicial, propomos um framework para a criação de modelos retinais de imagem orientados
a aplicações. Validamos os modelos em uma aplicação de biometria, mostrando que boas
taxas de acurácia podem ser mantidas juntamente às reduções de armazenamento e ener-
gia induzidas pelos modelos. Nossa segunda contribuição é uma abordagem de foveação
de imagem orientada a mudanças para estudos de fenologia de plantas. Validamos a abor-
dagem com uma base de dados de imagens de sensoriamento remoto. Os experimentos
indicam que os modelos fornecem reduções de armazenamento e resultados interessantes
de correlação com imagens uniformes, em uma configuração usualmente adotada em es-
tudos no campo da fenologia. Finalmente, em nossa terceira contribuição, atacamos o
desafio de lidar com séries temporais de imagens de altíssima resolução. Propomos uma
abordagem de visualização de informação baseada em conceitos de foveação e detecção
de regiões salientes. Validamos a abordagem por meio de uma base de dados usada em
estudos de fenologia e mostramos que a abordagem pode facilitar inspeções visuais de
grandes volumes de dados de imagem.



Abstract

The huge volumes of data from the current era have led to several scientific challenges.
Dealing with such amount of data requires that software applications consider the storage
and energy restrictions of some computing environments. Computer vision (CV) appli-
cations exemplify well this scenario, given that they usually process series of uniform
high-resolution images to output the desired results. In this scenario, an unconventional
perspective to explore is the use of foveal image models able to resample uniform im-
ages into space-variant ones. The inspiration comes from the human retina, in which
the central fovea has maximum resolution, whereas the periphery possesses a gradually-
decreasing one. Thus, to reduce the amount of data to be processed by the brain, we
move our eyes to foveate a point of interest; we also keep relevant peripheral information
in the process. In this work, we explore the concept of foveal image models towards CV
applications. The motivation underlying our study arises from a combination of challenges
derived from (i) the high availability of massive volumes of image data, (ii) the increas-
ingly use of CV applications in different computing platforms, (iii) the need of properly
handling the limited storage and energy resources of some computing environments, and
(iv) the need of proper information visualization techniques to aid visual inspections and
decisions regarding image time series. In our first contribution, we propose a framework
for creating application-oriented retinal image models. We validate our models in a CV
application in the biometry field, by showing that good accuracy rates can be retained
alongside storage and energy reductions induced by the models. Our second contribution
is a change-driven image foveation approach toward plant phenology investigations. We
validate our approach with a database of remote sensing images. The experiments indi-
cate that our models provide storage reductions and interesting correlation results with
uniform images, considering a commonly-adopted setting of the phenology field. Finally,
in our third contribution, we target the challenge of dealing with very-high-resolution
image time series. We propose an information visualization approach based on concepts
of foveation and saliency detection, and validate it with a database used for phenological
investigations. We show that the proposed visualization may facilitate visual inspections
of large volumes of image data.
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Chapter 1

Introduction

In this chapter, we introduce the subject of the thesis by first describing the problem and
its underlying challenges. Next, we expose information on a research project that repre-
sents our initial investigation on the subject. Then, we show the formulated hypothesis
and some research questions encompassing relevant topics of investigation. Finally, we
present the thesis’s organization.

1.1 Problem Description

Biological systems are often a source of inspiration and ideas for technological fields. In
particular, the human visual system, given its complexity and extensive possibilities, has
motivated many studies to understand how we perceive the structures or objects from the
real world. Examples of studies permeate the field of computer vision (CV), in which the
goal is to model and interpret the visual world by capturing, processing, and extracting
useful information from digital images. Typical CV tasks range from object detection and
recognition (e.g., vegetation, human faces) to activity recognition (e.g., accidents, human
actions) to 3-d scene reconstruction from multiple images [86].

In several CV applications, a relatively small amount of abstract information is ex-
tracted from digital images. However, the inspected images usually contain much more
data than the necessary for the application to deliver its results. This is a consequence of
the widespread of general-purpose sensors – such as the ones used for digital photography
– in different computing devices and platforms. These sensors capture high-resolution
images and send them for processing. However, in some circumstances, not all captured
information is relevant for the application considered. In this case, the amount of data
to be processed will be huge. As an interesting comparison, while other domains have
their own specifically-designed sensors (e.g., temperature, humidity), CV applications of-
ten need to rely on conventional uniform image sensors. Although these sensors may allow
a broad range of applications to be exploited, some concerns arise with respect to the use
computing resources.

When looking for accuracy and speed, CV applications may employ sophisticated
methods and hardware technologies. However, even in these cases, its necessary to take
into account possible limitations in computing resources. For instance, according to Born-
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holt et al. [22], battery life is a critical factor in mobile devices, since it can prevent users
from having a satisfactory experience. When dealing with uniform high-resolution images,
the amount of data stored is usually very high, and so is the amount of energy spent to
process these data. Thus, careful investigations of the storage and energy issues, aimed
at optimization purposes, may be required. In fact, these are paramount actions when
designing CV applications for restricted computing environments.

Classical approaches for saving energy and storage resources often rely on decreas-
ing the camera’s resolution and frame rates. Space-variant computer vision approaches,
however, take an unconventional avenue by resampling images in a biologically-oriented
manner. This unconventional perspective is the one we explore in this work.

Sampling is a common procedure performed inside a camera to generate a digital
image. The idea is to sample the 3-d real world into a discrete 2-d image that can be
handled by our computer apparatus. Nevertheless, the amount of information generated
might still be huge for the application on hand. Our insight is that a uniform sampling
of images into matrices of regular-sized pixels is neither necessary nor an efficient way to
perform CV. Adapting that process according to the requirements of specific applications
could favour the storage and energy issues at the cost of some acceptable performance
loss.

The conventional uniform image sampling procedure poses a contrast to biological
visual systems. The retina – an area of the eye responsible for capture light information –
has a non-uniform spreading of two types of photoreceptors: rods and cones. Rods exist
in a larger amount and are densely distributed in the peripheral areas of the retina. Rods
are also very sensitive to low levels of illumination, thus being highly efficient at detecting
the presence and direction of motion. In opposition, an overall smaller population of cones
is almost fully concentrated on a central area of the retina known as fovea. Cones are also
very sensitive to color, being divided into three types distinguished by their responsiveness
to short, medium, and long light wavelengths [98].

Figure 1.1 shows the distribution of rods and cones on the human eye versus the angle
of view. Both types of photoreceptors are non-uniformly distributed: two density peaks
of rods on the periphery and a downhill to zero (the closer to the fovea) oppose to a single
density peak of cones (in the fovea). Interestingly, there is also a “blindspot” area where
no photoreceptor is found [98].

In this study, we investigate the creation and use of foveal image models that define
an image resampling strategy similar to the one performed in the retina. The proposed
approaches have inspiration on the human visual system, which is able to efficiently handle
large volumes of data through a foveation process that is executed in the early steps of the
visual processing chain. This includes inspecting foveal and peripheral regions in different
ways. We use a regular image sensor and perform the sampling procedures by means of a
software layer, thereby simulating the operation of an ideal specific-purpose sensor. With
this, we were able to easily adapt the simulated sensor for different image settings and
CV applications.
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1.2 The Low-Power Always on Presence Sensors Project

The Low-Power Visual Always-on-Presence Sensors (LGE-AOP) was a scientific project
funded by LG Electronics from 2015 to 2016. The collaboration involved three professors
from the Institute of Computing, University of Campinas (IC – Unicamp), two doctoral
students, and a postdoctoral fellow. The project can be considered as the starting point
of this Ph.D research. The main objective was to explore novel approaches to deal with
CV applications in terms of AOP imaging sensors, which are sensors that are constantly
capturing and sending image data for processing. Examples of this scenario comprise the
use of photography-oriented sensors in surveillance applications regarding biometry and
traffic analysis. In these, CV algorithms are often applied to extract a relatively small
amount of abstract information (e.g., the ID of an individual, the position of a vehicle)
from large sequences images, which exposes a contrast between the volumes of data cap-
tured/processed, and the amount of information extracted/produced. Since the processed
information is several orders of magnitude larger than the final desired information, en-
ergy and storage consumption become a paramount issue that CV applications must deal
with.

We tackled the challenge of handling the limitations in computing resources from
the image sampling perspective. We hypothesized that a uniform sampling of images
into matrices of regular-sized pixels is neither necessary nor an efficient way to perform
CV. When looking into biological systems, for example, we see that the human retina
presents a non-uniform configuration of photoreceptors. Thus, investigating non-uniform
image sampling procedures was seen as a promising approach. In particular, the energy
consumption investigation was split into two fronts: the sensor operation itself and the
data processing/analysis. The research on both fronts required a search for industrial
patents and literature works proposing methods similar to the one we were proposing.

The hardware front has been investigated by means of an intermediate layer that
collects only a sparse subset of the available pixels. Such a layer could be built on top of a
re-configurable sparse sensor that would be adaptable for different situations. We believed
this could reduce the amount of memory required to store the image inside the sensor, as
well as the overall energy consumption of the embedded application. This research front
is still being examined by some project members.

In turn, the software front, which has been evolved into this thesis, relied on simulating
the use of a specific-purpose sensor toward a CV biometry application. We employed a
conventional imaging sensor as the underlying data capture mechanism, and performed
the non-uniform sampling of pixels by means of a software layer. We have developed (i)
a method to devise image models to resample images according to the characteristics of
the biometry scenario considered, (ii) the biometry application itself, and (iii) a proper
dataset for evaluating the models. Figure 1.2 shows some frames of the dataset created,
which was only used in the early investigations of the LGE-AOP project. The adopted
protocol required that individuals crossed a door, thus nearly centralizing their faces at
some point. This could allow a more effective face detection and recognition for biometry
purposes. However, the dataset was only used to confirm our initial expectations that the
use of a non-uniform resampling procedure (according to some predefined image models)
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could induce memory storage and energy savings in a CV application.

Figure 1.2: Exemplary frames of a video from the dataset created in the context of the
LGE-AOP project. The adopted protocol required that individuals crossed a door. In
this procedure, faces would be nearly centralized at some point, thus allowing a more
effective detection and recognition for biometry purposes. The dataset was only used in
the early stages of our research.

The project’s findings suggested that the use of non-uniform image models is a viable
strategy. We obtained good reductions in memory storage and energy, thus improving the
efficiency of the biometry application. However, we also faced very low face recognition
accuracy results, which ended up compromising the effectiveness of the application. With
these findings and difficulties on hand, we decided to “reshape” our research by using a
more consolidated dataset, a modern face recognition algorithm, and by providing a more
detailed analysis of the complete approach. Such actions have been crucial for improving
our comprehension of the literature on image foveation, and to the gradual evolution of
the conducted study.

1.3 Hypothesis and Research Questions

In this work, we aim at proposing approaches to develop foveal image models and inves-
tigating their use in computer vision applications. The motivation underlying our study
arises from a combination of challenges derived from (i) the high availability of massive
volumes of image data, (ii) the increasing use of computer vision applications in different
computing platforms, (iii) the need of properly handling the limited storage and energy
resources of some computing environments, and (iv) the need of proper information visu-
alization techniques to aid visual inspections and decisions regarding image time series.
In this light, our main hypothesis can be stated as follows:

The use of foveal image models might induce a reduction in storage usage

and energy consumption of computer vision applications, while also keeping

satisfactory accuracy rates, and possibly allowing easier visual inspections of

series of image data.

Given this hypothesis, we work on the following research questions (RQ). We provide
initial thoughts right after each RQ.

• RQ1: Would the use of foveal image models lead to savings in computational
resources, such as memory storage and energy?

By this RQ, we aim at exploring foveal models to verify whether their adoption
in CV applications might favour savings in energy and memory storage. For such,
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we work at the convergence point of (i) the insights obtained from the LGE-AOP
project’s execution, and (ii) the idea of space-filling curves (in the sampling process)
to potentially reduce memory usage.

• RQ2: Does the use of foveal image models heavily impact in the accuracy rates of
the application?

By this RQ, we aim at examining in detail the efficiency of the CV application after
the use of foveal models. The analysis may be in terms of 2-d reconstructed images
– which can be seen as compressed images –, and 1-d sequences of points coming
from a space-filling curve employed to resample the image space.

• RQ3: How to adapt the proposed framework to different application scenarios?

By this RQ, we aim at discussing and exploring the flexibility of the proposed
frameworks (to devise foveal image models) toward different CV applications. This
is of much relevance, because it allows the results of study to be extended and applied
in several ways. Initially, we aim at investigating the biometry and plant phenology
application domains. The biometry scenario is well-established in the CV literature,
comprising a plethora of studies, techniques, and available datasets. In turn, plant
phenology is a field that has received a growing attention from researchers, because
it may take advantage of modern CV techniques, mobile platforms, and large-scale
storage devices. This field is concerned with the study of the life-cycle events of
plant species in a certain area over time. In this light, the amount of data (images
and videos) to be processed and analyzed calls for novel approaches of managing
these data. We believe foveal models may be a promising answer to these needs.

• RQ4: How to devise foveal image models by taking into account relevant image
regions found automatically?

By this RQ, we aim at creating image models via algorithmic processes that take
fewer and less-specific input parameters from the considered application’s domain.
This might represent a big step from the previous LGE-AOP study, since foveal and
peripheral areas would be found automatically by taking into account the dynamics
of the image’s content, instead of being fixed and defined beforehand.

• RQ5: How to combine foveal image models with information visualization tech-
niques?

By this RQ, we aim at investigating other benefits of foveal models in the information
visualization field. In this light, combining foveal models with techniques from that
field may lead to interesting strategies to reduce the amount of information to be
visually inspected during some technical and scientific tasks.

1.4 Thesis Outline

This thesis is organized into six chapters, as the workflow of Figure 1.3 shows. In Chap-
ter 2, we review the literature on space-variant computer vision, with a focus on works
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models in terms of the correlation rates and memory storage consumption they induce.
In Chapter 5, we present our third contribution regarding the use of foveal image

models. We extend our second contribution to the scenario where investigations are
performed over very-high-resolution image time series. Such huge volumes of image data
may hamper detailed scientific investigations. Again, we target the plant phenology field,
which is the one we have previously examined. In this sense, we propose a new information
visualization approach based on two concepts of the human visual system: foveation and
saliency estimation. We validate our approach qualitatively by means of visual inspections
related to the plant phenology context.

In Chapter 6, we conclude our work by summarizing our main contributions, reviewing
the hypothesis and research questions, and pointing out future work possibilities.

We provide further information regarding first contribution in Appendices A, B, C, and
D, in which we show the algorithm for creating retinal models, some log-polar images for
visual comparison with the proposed models, the motion analysis algorithm, and technical
information of the CV application, respectively. Furthermore, in Appendix E, we detail
the algorithm for generating our foveal models from our second contribution.
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Chapter 2

Background and Related Work

In this chapter, we provide a theoretical background and a literature review. First, we
overview image compression techniques in Section 2.1. Next, we provide a literature review
on space-variant computer vision in Section 2.2. After that, we present a background on
space-filling curves in Section 2.3. We expose our final considerations in Section 2.4.

2.1 Image Compression

To store or transmit images in and through digital media, it is sometimes necessary to
reduce the images’ sizes. The need for compact image representations led to the study of
compression algorithms able to exploit data redundancy in 2-d intensity arrays. According
to Gonzalez and Woods [36], three main types of data redundancy can be exploited:
(i) coding redundancy, when the number of bits to represent an information is greater
than the necessary; (ii) spatial and temporal redundancy, understood as the similarity or
dependence between neighboring pixels from spatial (and temporal, in videos) correlation
present in 2-d arrays; and (iii) irrelevant information, when information is not essential
for the application or when it is ignored by the human visual system.

There are two types of compression systems: lossless systems, in which information is
preserved such that the decoded image is a replica of the original encoded one; and lossy
systems, in which the reconstructed image is “distorted”, i.e., it presents distinct pixel
information compared to the original image. One of the most used compression standards
was proposed by the The Joint Photographic Experts Group (JPEG). This standard is a
lossy compression method that works on 8 × 8 image blocks for coding and subsequent
quantization. The underlying process consists in traversing the image collecting blocks of
pixels in a raster-scan fashion and further processing these with the block transform, run-
length, and/or Huffman [43] coding strategies. Other coding approaches encompass the
Golomb [35], arithmetic [2], LZW [101], symbol-based [12], bit-plane, predictive [14, 51],
and wavelet-based [45] ones. For a detailed explanation on these approaches, refer to [36].
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2.2 Space-Variant Computer Vision

Over the years, properties and mechanisms of many biological systems have been repli-
cated in different domains of science. A good example is in CV, where the paradigm
of capturing and processing uniform images shows an interesting contrast to our visual
system. In the human retina, cones and rods (the photo-receptors) present a non-uniform
spatial configuration that induce variable visual acuity levels across the retina [98]. Cones
and rods are responsible for detecting color and luminance, respectively. The area with the
highest density of cones is the fovea, the central area of the retina. When moving to the
periphery (i.e., apart from the fovea), the density of cones and the visual acuity decrease,
whereas the density of rods increases. This configuration provides a wide peripheral field
of view, along with a high resolution region that is used to “foveate” (i.e., focus on) a point
in a real scene, which implies data processing reduction [19,98]. Foveation is the biological
action of moving the eyes to focus objects/regions on the fovea, so as to have a detailed
view of these. This action might be the result of a decision taken after obtaining and
processing peripheral information. For instance, when crossing a street, a person might
notice an object moving towards her by means of the peripheral vision. After detecting
the object’s presence, she foveates and recognizes it as a car, thereby deciding on stop
walking.

One of the first studies investigating the space-variant mechanisms of biological vision
dates back to late 70’s, when Schwartz [78] reported that the transmission of information
from the retina (where sensing occurs) to the visual cortex (where processing takes place
in the brain) of primates could be approximated by a log-polar mapping. In such a
mapping, radial lines from the center of the uniform (cartesian) image are converted
to straight horizontal lines in the cortical (log-polar) image, whereas circular lines are
mapped to straight vertical lines. Figure 2.1 illustrates the log-polar transformation on a
cartesian image.

Bio-inspired computing has become a hotspot in many areas of computer science and
engineering [26]. The human visual system (HVS) stands as a proper biology-related topic
from which many computing approaches have borrowed concepts. Although the HVS is
vast in terms insights it may provide, two of its concepts have been deeply explored in
the computer science literature. The first one, related to visual attention, is in charge of
selecting/estimating salient (relevant) regions from a scene to trigger saccadic eye move-
ments towards these regions. The motivation revolves around the limited capacity of our
brain to process the entire scene in detail [106]. The second concept refers to the foveation
process. When performing saccadic movements, our eyes seek to foveate a small region of
the field of view to process this region at high resolution in the brain. Conversely, a wider
peripheral region keeps being processed at coarser resolutions, lowering the “computing
cost” in the brain and saving body resources [3]. Thus, saliency estimation and foveation
combine forces to provide our brains less relevant information to be quickly understood.

Foveation has also been explored from the hardware and software perspectives. The
first one contemplates hardware implementations of retina-like sensors able to capture
images following specific space-variant schemes. The second avenue refers to retinal image
models (RIMs) able to map uniform images to space-variant domains. The latter approach
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is suitable for simulations and studies, since it works with conventional uniform image
sensors and different RIMs can be experimented, but it might decrease the applications’
efficiency in on-line scenarios due to the additional mapping procedure. A more complete
review on space-variant imaging from the hardware and software perspectives using log-
polar mappings is detailed in [88].

2.2.1 Hardware-based foveation approaches

The hardware side comprises two types of approaches. The first one deals with the man-
ufacturing of image sensors with specific non-uniform spatial configurations [18], which
allow the capture of topology-fixed foveated images at sensing time. The second type is
related to the use of an intermediary hardware layer to resample uniform images, tak-
ing these to a space-variant space. This latter type of approach provides more flex-
ibility to change the mapping without relying on software routines. In this context,
Bailey and Bouganis [15] exploited the versatility of Field Programmable Gate Arrays
(FPGA) to implement, at logical level, different space-variant image mappings. The
authors also considered a moving fovea that is dynamically adjusted according to the
application’s requirements.

Gonzalez et al. [37] integrated attention and segmentation mechanisms into a foveal
vision system. The architecture of the solution comprised a hardware layer (responsible for
mapping uniform cartesian images to space-variant ones) and software layer (responsible
for performing segmentation and saliency estimation). The overall idea is that salient
regions from a frame might trigger a foveal shift. Such shift is performed by hardware
when the next frame arrives, thereby adjusting the resolution of certain image regions
accordingly.

Niu et al. [67] proposed a novel foveal imaging system. The authors combined a set
of lenses and a scanning microlens to produce images having a local magnification effect
in some (foveal) regions, while other regions (periphery) remain unchanged. The authors
claim that the system is suitable for tasks such as object tracking and monitoring, due to
the dynamic nature of implemented foveation mechanism. However, peripheral resolution
cannot be degraded, and the proposed system’s architecture requires the use of different
microlenses to vary the structural foveal arrangement.

2.2.2 Software-based foveation approaches

Software-based approaches offer more flexibility to simulations, albeit with higher com-
putational costs, in comparison to their hardware counterparts. Smeraldi and Bigun [84]
present a saccadic search strategy based on foveation for facial landmark detection and
authentication. First, the authors apply a log-polar mapping to some image points. Then,
they extract Gabor filter responses at the locations of these points, a process that imi-
tates the characteristics of the human retina. For training, the authors use Support Vector
Machine (SVM) classifiers to discriminate between positive and negative classes of facial
landmarks (eyes and mouth) represented by the Gabor responses. During the test stages,
the saccadic search procedure evaluates several image points to find candidate landmarks
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that are used to authenticate the depicted individual.
Ekbas and Eckstein [3] proposed a foveated object detector that operates on variable-

resolution images obtained by a resampling procedure with a simplified model of the
human visual cortex. According to the authors, the detector was capable of approximating
the accuracy of a uniform-resolution-oriented one. The results of the study could also
provide a satisfactory insight and understanding about evolutionary biology processes.

Phillips et al. [71] exploited the concept of image foveation in a single-pixel camera
architecture to promote a compromise between resolution and frame rate. The input
images were resampled by a dynamic space-variant model. Such model is constantly
reshaped to match the regions of interest detected by a motion tracking procedure. This
process simulates a moving fovea that increasingly gathers high-resolution data across
frames and finds relevant regions to be foveated.

To facilitate comparisons among different sensor arrangements, Wen et al. [102] de-
scribe a method able to provide a common space for creating lattices of any kind. The
authors demonstrate the viability of the idea by resampling images according to the
rectangular and hexagonal lattices, and further compare the images on these different
arrangements.

To exploit the benefits of a log-polar representation, such as data reduction and the
possibility to deal with different resolutions across a single image, the common task is
to perform a RIM-based image re-sampling (also called as retino-cortical mappping) to
simulate the retina’s space-varying property in the cartesian domain (see Figure 2.1).
A RIM specifies how pixels are arranged into receptive field structures [9, 19], which are
analogous to super-pixels. Different image models have been proposed in the literature [19,
66,76,103] to re-sample the uniform image (or reconstruct, for the cortical image) into a
new one where the processing takes place. Data reduction is accomplished with a trade-off
between a high resolution in the central region and a coarse wide-field resolution in the
periphery. Bolduc and Levine [19] describe representative image models for re-sampling
images following an inverse log-polar mapping. Figure 2.2 presents several RIMs that
could be applied to a cartesian uniform image to reduce data, and to provide a space-
variant image representation. Each cell of a models is called a receptive field, gathering
information from the region they circumvent in the uniform image (e.g., the color of the
central pixel, and the average color from all pixels inside the region could be used).

A challenge of using RIMs is how to properly handle space-variant images. This is
due to the distinct pixel sizes and shapes, and the non-uniform lattice topologies (i.e., the
pixels do not relate to each other by a fully 4- or 8-connected neighborhood, as usual).
In this scenario, image processing algorithms for different spatial configurations of pixels
must be created. Wallace et al. [97] proposed to represent images as connectivity graphs
(CG). The graphs generalize the lattices’ topologies, thus reducing the image process-
ing problem to a graph-theoretical one. The authors illustrate their idea by providing
graph-based algorithms for local image operators, pyramid operations, geometric trans-
formations, connected components, and template matching. Although it was claimed that
the CG idea is independent of RIMs or sensor geometries, only log-polar mappings were
contemplated.

Grady [38] also investigated image processing in odd topology domains defined by
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maps are not the result of any machine learning method, but are rather created from the
spatial analysis of sequences of images and according to some criteria related to the appli-
cation’s domain. Finally, there is also a modern approach for dealing with the attentional
vision challenge by means of event-based cameras. Whereas traditional cameras stream
data according to a fixed frame-rate, event-based ones are oriented to asynchronously
processing and streaming events taking place in the scene. Thus, instead of capturing
entire image frames, these cameras work by sending data – such as time, spatial location,
and sign – from salient regions measured in terms of image-pixels brightness changes.
Gallego et al. [31] show a detailed survey on event-based vision, an emergent field where
event cameras are investigated in applications, such as computer vision and robotics.

2.2.4 Applications of saliency estimation and foveation

The need to jointly optimize resources’ usage and performance requirements is a strong
motivation for exploiting the idea of space-variant images. In the literature, applications of
foveation comprise image transmission/communication [16,32,74] and CV tasks [47,87,89]
integrated into robotic systems [69, 77]. This alliance is able to simulate the foveation
mechanism well by coupling cameras in mobile robots’ arms. Such systems, known as
active computer vision systems (ACVS), oppose to their passive (PCVS) counterpart
that do not rely on camera movements and are application-dependent (e.g., subjects must
foveate themselves).

In ACVS, the peripheral and fovea regions usually work in a collaborative fashion:

1. The periphery provides general information about the wide-field scene, such as pres-
ence of motion or the position of potential objects of interest;

2. The system moves its camera (foveates) to the informed positions;

3. The fovea investigates the suspect regions in high resolution.

A good example of an ACVS is presented in [47], where Jurie applies a log-polar
mapping to face detection and tracking applications. The system comprises a camera
integrated into a mobile robot arm with foveation purposes. To detect faces, the camera
first has to foveate the image at some fixation points selected by a histogram comparison
algorithm. These points can be situated in the periphery. Then, foveated regions are
examined with the aid of an eigenfaces algorithm. If a face is found, tracking proceeds
by restarting these same steps. Although periphery information is useful for determining
areas where a face might be located, the detection itself requires foveation, and so it might
not be suitable for a PCVS.

Traver et al. [87] emphasize the usefulness of peripheral information at detecting ob-
jects or events. According to the authors, most works rely on foveal information to do such
tasks, but to exploit the data reduction at its best, both regions should be used properly.
A multi-model approach for detecting objects in the periphery of log-polar re-sampled im-
ages is then proposed. In the periphery, depicted objects get distorted non-uniformly by
the varying spatial resolution of retinal images. Hence, it is plausible to consider multiple
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spatial models to contemplate the distortions at different image positions. A face detec-
tion application was chosen to validate the multi-model approach. The authors extracted
features from faces and non-faces at different positions of the retinal images and used a
linear regression-based technique for classification. The reported average face detection
rates were greater than 80%, indicating that just like in the human peripheral vision,
it is possible to discriminate face features even at coarse resolutions. However, further
analysis would be necessary to evaluate the classification in specific peripheral regions,
and to verify the application’s efficiency in off- and on-line scenarios. The idea can also
be adapted to a PCVS.

The interplay between saliency and foveation has also shown an interesting applica-
tion in image and video compression. Shi et al. [81] proposed a HSV-based adaptive
compression scheme that is suitable for remote sensing images. The process depends on
calculating (i) a weighting mask for modeling visual sensitivity, and (ii) the energy of
each sub-band from a wavelet decomposition to determine the scanning order among and
within all weighted sub-bands. The aim was to encode higher-energy sub-bands and high-
valued coefficients first, thereby improving the quality of the reconstructed image. The
authors showed promising qualitative and quantitative results, but did not explore the
effect of different fixation points to compress the images. Lu and Zhang. [55] combined
top-down and bottom-up saliency models to find relevant regions within a scene. Such
regions are used to adjust the image’s fidelity before performing its compression with
standard algorithms. Essentially, the authors foveate video frames by means of a bilateral
filtering operator that smooths peripheral visual content while preserving salient (foveal)
regions. As a result, further compression actions were more effective due to the prior
resolution degradation of perceptually irrelevant regions.

Bektas et al. [17] described a method – based on HSV concepts – to compress geo-
graphical images in a perceptually lossless manner, thereby reducing the amount of visual
information presented to the eye, and favoring user experience in tasks involving visual
interpretation of images. In the experimental evaluation, real users – which had their eyes
tracked – were required to perform searching tasks in a sequence of images. The results
showed that few participants noticed the degradation artifacts caused by processing the
images with the models. Thus, the removal of perceptually irrelevant 2-d data did not
considerably impact the efficiency of the visualization task. However, since the evaluated
task comprised looking for a circular map symbol in each image, other specific activities,
such as identifying and recognizing places, structures, and other contextual elements, were
not investigated.

2.3 Space-Filling Curves

Computing 1-d sequential orders for multidimensional data is a recurrent task in scientific
computing. This is evidenced, for instance, in the field of computer graphics, where
models to describe the geometry of 3-d objects are generated by computing their vertices,
edges, and faces. One approach for such generation works by first fulfilling the objects
with spatial cells (e.g., small cubes) and then gradually refining (detailing) some areas
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by inserting more cells. This process can be performed by means of quadtrees (in 2-d)
or octrees (in 3-d). Next, finding a sequential order of cells is paramount to further
process and update the model. The efficiency of these procedures can be influenced by
the computed order. For example, a sequential order that preserves spatial relationships
could benefit a search procedure, as neighboring positions corresponding to similar data
would remain close to each other in the sequence [13].

Space-filling curves (SFC) map a 1-d parameter space to a higher-dimensional space.
The simplest SFCs visit each point in a square at least once. These curves differ, in general,
in two ways: (i) in the number of subdivisions required for their gradual expansion and
(ii) in the visiting order determined by their elementary patterns, both of which lead to
different data sequences. Examples of SFCs comprise the Hilbert, Peano, Sierpinsky, and
Gosper curves.

Some SFCs are particularly appealing in data transformations, as the sequential orders
they induce favor the preservation of locality properties inherent in multidimensional data.
A satisfactory example is in traversing digital images to generate more spatially-coherent
sequences of pixels than the ones produced by the traditional raster-scan approach (left
to right, line by line). The coherency property implies that every pixel of a neighboring
region will be traversed before moving to others in more distant positions. This property
is a consequence of the recursive nature of SFCs. Futhermore, different curves provide
variable degrees of autocorrelation between traversed pixels [25].

Several domains of scientific computing are contemplated by SFCs, including dimen-
sionality reduction [25, 91], digital halftoning [10, 46, 93–95, 104, 107, 108], visual criptog-
raphy [54, 80], image compression [40, 41, 53, 75], and data structures and databases [1, 6,
11,23,63]. In the following, we present a theoretical basis on the construction of SFCs.

2.3.1 The construction of SFCs

A sequential order procedure generates a mapping from a 1-d array of elements of the
form {1, .., nd} into a d-dimensional array of indices of the form {1, .., n}d, where n stands
for the number entries of the latter. In most problems, however, continuous data need to
be dealt with, and a continuous mapping, say from a higher-dimensional unit space [0, 1]n

to the 1-d unit interval [0, 1] should be established [13].
A continuous mapping should be, preferably, bijective and continuous. The former

property defines a one-to-one correspondence between elements of a 1-d and a higher-
dimensional array, whereas the latter prevents “holes” to appear in the final sequence by
avoiding “jumps” in the parameter (1-d) space. Still, one could ask how such mapping
is possible, given that both intervals supposedly have different lengths. In 1878, Georg
Cantor showed that, if such a mapping exists, both intervals (he used the general concept
of sets) must contain the same number of elements. Later, he proved that the 1-D unit
interval has as many points as the 2-d unit square, and that there is a bijective mapping
function between these sets [13].

In 1879, a step forward was given by Eugen Netto, who proved that a continuous
bijective mapping could not exist for smooth manifolds codomains (e.g., the target square).
The proof motivated mathematicians to search for surjective continuous mappings, as
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the property of one-to-one correspondences towards ideal continuous mappings had been
dropped. The pioneer discoveries in this field comprise the Peano curve, by Giuseppe
Peano in 1890, and the Hilbert curve, by David Hilbert in 1891. Later, other curves were
found, such as the Moore (1900), Lebesgue (1904), Sierpinsky (1912), and Polya (1913)
curves [13,70].

The Hilbert Curve

Hilbert was the pioneer to provide a geometrical principle for generating a SFC. The
Hilbert curve is now considered a prominent one, in that its generation method derived a
class of SFCs, and also due to its real-world applications [70]. According to Valgaerts [92],
Hilbert’s method to create a 2-d SFC can be summarized by three general rules based on
a recursive point-of-view:

1. A continuous mapping from the unit interval I to the unit square Ω is assumed.
From that, we first partition I into four congruent subintervals of equal size, and Ω

into four congruent sub-squares. Next, we continuously map each subinterval to a
sub-square. This process is then recursively repeated for each sub-interval and their
correspondent sub-squares.

2. We need to preserve the continuity of the mapping along the repetitions by assuring
that adjacent sub-squares from Ω will be mapped to adjacent subintervals from I

at each stage of the recursive process.

3. Consider an interval Ii that is mapped to a square Ωi at some iteration of the process.
A new iteration begins after all squares of the same size as Ωi have been broken.
At a certain point of the subsequent iteration, Ii will be divided into four congruent
subintervals, each of which will necessarily correspond to a sub-square from the
likewise partitioned Ωi. By doing so, the mapping from the previous iteration gets
preserved.

This procedure can be visualized by connecting the midpoints of each sub-square in
the order defined by the sub-interval mapping sequence, as depicted in Figure 2.3. The
red path presented in Figure 2.3-a can be understood as the elementary (initial) pattern
used to refine the path of the next iterations.

In the n-th iteration, the pattern from the (n − 1)-th iteration is first replicated 2n

times, the replicas are downscaled, and some of them undergo a 90o clock- or anticlockwise
rotation throughout the image. The replicas are then placed such that the new path
preserves the overall direction of the path from the (n − 1)-th iteration. Each t ∈ I is
taken as the limit of a unique sequence of nested closed intervals. Analogously, every point
in Ω belongs to a unique sequence of nested closed squares. As the number of iterations
increases, the convergence of the Hilbert curve improves [70,92].

The Peano Curve

The Peano curve is created by a process analogous to that of the Hilbert curve. In
summary, recursive partitions of both the unit interval I and the unit square Ω are done. In
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Chapter 3

Application-Oriented Retinal Image

Models for Computer Vision

This chapter refers to the paper [82] published in the MDPI Sensors journal under the title
Application-Oriented Retinal Image Models for Computer Vision. The chapter contains
only a few additional content and other minor differences that do not conflict in any
means with the results and discussions shown in the original paper.1

In this chapter, we present our first contribution regarding the use of foveal image
models in CV applications. The chapter is organized as follows. Section 3.1 introduces
the subject. Section 3.2 describes our approach for creating application-oriented retinal
image models in detail. Section 3.3 describes the target application we chose to validate
our approach and the adopted dataset. Section 3.4 presents experimental details regarding
the validation steps, shows the results, and discusses them. Section 3.5 presents the final
considerations. The study presented in this chapter is derived from a collaborative project
entitled Low-Power Always on Presence Sensors, which has been the initial research point
of this thesis.

3.1 Introduction

By means of a conventional sensor, one can easily capture uniform high-resolution im-
ages and describe what is depicted. However, for computers, interpreting images is not
trivial, demanding complex CV algorithms along with a proper management of the avail-
able resources, to allow the software applications to run efficiently in different hardware
platforms. As a matter of fact, a computational burden might come into play due to real-
time restrictions often imposed by the available hardware to process these high-resolution
data [15]. In the mobile environment, for example, managing energy (i.e., battery life)
is mandatory, as its negligence might prevent users from enjoying a satisfactory experi-
ence [22]. Instead of decreasing uniform-images’ resolution or cameras’ frame-rate, foveal
image models can be used to mimic the space-variant configuration of the human eye. Ac-

1Reprinted from Sensors, 20, Ewerton Silva, Ricardo da S. Torres, Allan Pinto, Lin Tzy Li, José Ed-
uardo S. Vianna, Rodolfo Azevedo, and Siome Goldenstein, “Application-Oriented Retinal Image Models
for Computer Vision,” 3746, 2020. The work was published under the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/ – As of Oct. 2020).
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cording to [15], since some tasks, such as tracking and pattern recognition, do not demand
high resolution data across the whole image, it is reasonable to work with space-variant
images.

Despite the progress in CV research fields in exploiting space-varying models, there
is a lack of a single generic framework for handling seamlessly images generated by het-
erogeneous pixel sampling strategies. We address this issue by proposing a framework
for designing Application-Oriented Retinal Image Models (ARIM) that establish a non-
uniform sampling configuration of uniform images. We propose to define the appropriate
model for an application on-demand, taking into account specific requirements of the
target application. By exploiting such models, we hypothesize it might be possible to
decrease the energy spent in computer vision tasks. We show how to create the models
and validate their use in a face detection/recognition application, considering the com-
promise among storage rates, energy, and accuracy. We use a regular image sensor and
perform the sampling procedures by means of a software layer, thus simulating the oper-
ation of a specific-purpose space-variant sensor and providing some flexibility. Our main
contributions are the following:

• we provide a framework for designing ARIMs towards CV applications;

• we evaluate the use of ARIMs in a CV application of the biometry field in terms of
memory storage and energy reductions;

• we discuss the trade-offs between the application’s accuracy and the reductions in
the computing resources induced by the ARIMs;

• we compare our results to other common setups (original and downsized uniform-
resolution images) and show that the obtained storage and energy savings are rele-
vant; and

• we briefly discuss the use of ARIMs in real-life application scenarios and the nuances
of having an ideal hardware layer that resamples images according to ARIMs.

3.2 Proposed Approach

In this section, we describe our methodology to generate ARIMs. Figure 3.1 shows the
steps of the proposed framework, which are detailed ahead. The models represent the
expected configuration of space-variant images, as defined by a prior analysis of the CV
application’s domain. An image resampled by using an ARIM presents variable resolutions
across its space. These areas may be exploited in different ways in order to save computing
resources and still allow for satisfactory accuracy rates for the desired application. The
components of the proposed methodology will be presented in the context of a biometric
application.
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• Location of foveas: The foveas should be spatially organized adhering to the
specific requirements of the application. In ours, the fovea is centralized in the
image.

• Density of foveas: The foveas can be downsampled to simulate a uniform image
resolution reduction. We tested different densities (grids) for our fovea.

• Density of periphery: The periphery is an important region that encompasses
few sparse data in a non-uniform sampling configuration. As discussed previously,
by retaining and wisely handling sparse peripheral information (e.g., detecting mo-
tion and coarse objects in such an area), the application’s resource usage might be
optimized.

3.2.4 Model Generation

There are several ways to achieve a non-uniform point distribution. Our approach is
inspired by the computer graphics literature and previous works [27, 34]. Besides the
implicit function, the number of peripheral (non-uniform) points and the aspect ratio
of the sensor must be provided. We generate a point distribution via a local non-linear
optimization procedure that, from an initial distribution, tries to minimize a global energy
function defined in Equation 3.1, where ~x is a point in image space.

En ({~xi}) =
∑

i

∑

~xj↔~xi

(||~xi − ~xj|| − (f(~xi) + f(~xj))) (3.1)

The optimum solution for Equation 3.1, i.e., when En = 0, would be a placement of
every ~xi such that the distance to its “neighbors” is the sum of the values of the implicit
function at their locations. However, there is neither a closed-solution for this problem
(the implicit function can be anything), nor any guarantees of a perfect solution for a
scenario with an arbitrary number of points and implicit functions. Thus, we propose an
approximation by means of a non-linear optimization procedure based on Mass-Spring

Models. When doing so, each pair of points tries to attract each other if they are too far,
and tries to repel each other when they are too close. We do not use Newton’s physical
model of forces from springs. Instead, we have a mass-free system, so springs generate
“velocity forces.” Figures 3.3 and 3.4 show the behavior of the global energy optimization
for models with different configurations, implicit functions, and number of points. In
Appendix A, we present the algorithmic steps for the generation ARIMs.

The optimization process is very sensitive to its initial conditions. A uniform dis-
tribution of the initial positions over the valid domain coupled with a careful choice of
the implicit function allows the system to converge under 2000 iterations. Figure 3.5
illustrates the generation of an ARIM where the optimization of uniform point distribu-
tion is carried out using the l∞ implicit function. Upon convergence, we obtain the full
neighborhood map (Voronoi diagram) of the model.
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• Step 3: next, we defined the spatial configuration of foveal and peripheral regions by
knowing, for instance, that individuals often move to the central part of the image
to allow a better authentication. In this case, we defined a single central fovea;

• Step 4: finally, we created ARIMs encompassing and consolidating the expected
properties of the images defined in the previous steps.

On the Application Implementation

The face recognition process is based on the classical nearest neighbor strategy. First, we
trained our classifier with some face samples from a training dataset containing different
individuals. This process required a face recognition model to extract feature vectors
from all samples. Then, in the test stage, we extracted the feature vector from an un-
known detected face and compared such vector to all the others from the training dataset
(previously extracted) using the Euclidean distance metric. The label of the closest face
was considered as the label for the unknown face, thus resembling a 1-Nearest Neighbor
(1-NN) strategy. Section 3.3.1 presents more details on the face recognition model used.

Simulation Details

We simulated the operation of a specific-purpose sensor by re-sampling images according
to our ARIMs. The idea was to generate images containing two regions: (i) the fovea, en-
compassing a small area where resolution is uniform, and (ii) the periphery, where pixels
are arranged non-uniformly over a wider area. With such a configuration, we were able to
perform experiments when considering different foveal resolutions, while also taking ad-
vantage of the periphery according to the specific requirements of the application. In this
sense, we adopted an optical flow representation (orientation and magnitude) for periph-
eral pixels. The motivation around that representation is that the detection/recognition
in the fovea could only be triggered when there is movement towards it coming from the
periphery. Additionally, both the detection and recognition procedures turn off when no
face is found under a predefined time interval. Therefore, in this scenario, more energy
can be saved.

Figure 3.6 shows an example of a simulation using one of our ARIMs and a sample
sequence from the employed dataset [105]. The first and third rows show the original
frames, while the second and fourth rows show images reconstructed with a model that
considers an optical flow peripheral representation. Green and yellow arrows indicate
motion direction to the right and left sides, respectively, whereas the ON and OFF labels
refer to the operational status of the foveal (face detection/recognition) and peripheral
(optical flow) regions. Besides triggering foveal analysis, the motion analysis is also able
to restart conveniently, as long as faces are not detected in the fovea during a time interval
of frames (see Figure 3.6(p)). Additionally, for a visual comparison with log-polar images
(which are not considered in our experimental evaluation), see Appendix B.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 3.6: Example of a simulation using one of our ARIMs and a sample sequence from
the employed dataset [105]. Images (a–e) and (k–o) are the original frames; images (f–j)
and (p–t) are the reconstructions with a model that considers an optical flow peripheral
representation. Green and yellow arrows indicate motion direction to the right and left
sides, respectively, whereas the ON and OFF labels refer to the operational status of the
foveal (face detection/recognition) and peripheral (optical flow) regions. Note that the
motion analysis, besides triggering foveal analysis, is also able to restart conveniently, as
long as faces are not detected in the fovea during a time interval of frames (left-most
frame in the fourth row).
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3.3.2 Dataset

In our evaluations, we employed the ChokePoint dataset [105] aimed at person identi-
fication/verification. The dataset comprises 48 sequences of images of 800 × 600 pixels
resolution and is publicly available. Each sequence depicts several individuals entering or
leaving a portal, one at a time. There are 25 and 29 individuals walking through portals
1 and 2, respectively. Moreover, each sequence is registered by three cameras that are
placed above the portals to provide diverse sets of faces in different illumination and pose
conditions. Due to the adopted settings, one of the cameras is able to capture image
sequences of near-frontal faces. Figure 3.6 shows a sample sequence from the employed
dataset in the first and third rows.

Justification for the Selected Dataset

The dataset was chosen because it represents a satisfactory scenario where a CV biometry
application may take place via a detailed investigation of its characteristics and require-
ments. When an individual is about to cross the portal, his/her face gets well centered
in the image, providing the application with the necessary data to perform the biometry
procedures. Furthermore, individuals do not suddenly appear in the center of the images;
they slowly move towards the portal. This peripheral movement data could be exploited
to activate the authentication in the central region of the image (where a face is supposed
to be).

Dataset Organization

The dataset is partitioned into the following four subsets:

• P1E and P1L: the subsets of frame sequences of people entering and leaving portal
1, respectively;

• P2E and P2L: the subsets of frame sequences of people entering and leaving portal
2, respectively.

A subset is comprised of four (4) frame sequences (S1, S2, S3, and S4), each of
which is registered by three cameras (C1, C2, and C3). For instance, the frame se-
quence P1E_S2_C3 refers to the second sequence (S2) of people entering portal 1 (P1E)
and captured by camera 3 (C3).

We used 34 image sequences (out of 48) from the dataset during our evaluations due
to the following reasons:

1. One (1) of the sequences of individuals entering a portal (P1E_S1_C1) was used to
train the face recognizer. Such sequence comes from camera 1, which obtains near
frontal-face images. That sequence is also captured by cameras 2 and 3 at different
angles, hence, to avoid biased evaluations, we ignored such sequences (P1E_S1_C2
and P1E_S1_C3), as both of these contain, essentially, the same faces of the former
up to slight angle variations.
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3.4 Results and Discussion

In this section, we present the experimental results regarding storage allocated, face recog-
nition accuracy, and energy consumption induced by different ARIMs. We also discuss
these results and their implications for real-time applications.

3.4.1 Storage reduction

Quantifying reductions in numbers of pixels and image data sizes are essential for assess-
ing the benefits of using different ARIMs in practical situations. Table 3.1 shows these
measurements for the original (full-size) images, images uniformly resized, and the three
evaluated models. Compared to original images, ARIMs showed a reduction of more than
91% in the number of pixels and bytes, whereas a uniform resize of the images to 25% of
their original sizes provided a reduction of 75% in both quantities.

Table 3.1: Number of pixels and data size reduction results for the evaluated models
relative to the original and uniformly resized images (to 25% of their original sizes).

Num. of

pixels

Num. of pixels

reduction

Bytes per region Total

bytes

Data size

reductionFOV PER

Original 480000 - - - 1440000 -

Resized (25%) 120000 75.00% - - 360000 75.00%

Model_1 10384 97.83% 30000 768 30768 97.86%

Model_2 22884 95.23% 67500 768 68268 95.25%

Model_3 40384 91.58% 120000 768 120768 91.61%

3.4.2 Face recognition accuracy

We defined accuracy as the number of true positives (i.e., correctly labeled faces) in the
foveal region of a frame sequence, each of which has a benchmark for comparison. The
employed dataset informs all faces appearing in each image frame. However, for a fair
accuracy comparison among the uniform images and the ones re-sampled by our models,
we take into account only available information regarding the foveal region, meaning that
faces in the periphery are not considered. Thus, for the present analysis, the reference
benchmark of each frame sequence can be understood as the accuracy of the recognizer
considering all of those full-resolution images in which a face is placed on the fovea.

First, our face recognizer alone has satisfactory accuracy. Figure 3.9 shows receiving
operating characteristic (ROC) curves regarding the face recognition task considering six
image sequences from all cameras. Each figure comprises a mean ROC (blue) curve from
all 25 (light blue) class-specific curves, i.e., for each face class in the dataset. These
class-specific ROC curves were calculated via a one-versus-all classification procedure and
evaluate the accuracy of our classifier in the experimented dataset (i.e., full-size images).
We did not consider any models to generate the curves. For example, the area under the
curve (AUC) is greater for the P1E_S2 dataset (89.4%) in comparison to the P1L_S2
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Figures 3.10 and 3.11 show, for each dataset, an expected face recognition accuracy de-
creasing of our ARIM-resampled frame sequences compared to their correspondent bench-
marks and to images uniformly resized to 25% of their original sizes. ARIMs rely on
movement analysis to authenticate users, which creates a dependency between peripheral
and the analysis of foveal information, some faces can be lost. Another variable influenc-
ing the accuracy rates is the foveal resolution of each tested ARIM. In fact, the accuracy
rates increase with foveal resolution, and are not too low even under the 50% sampling
degradation induced by Model_1, for example. In the case of Model_3, where foveal
resolution matches that of the benchmark, the small loss in accuracy is justified by the
quality of optical flow analysis, which seems to be acceptable for the tested application.
Table 3.2 presents the minimum, mean, and maximum accuracy loss rates induced by
each model in comparison to the benchmarks. Whereas the maximum obtained loss was
50% for Model_1 and the P2E dataset, very small loss rates (close to 0%) were regis-
tered in more than one scenario. Another interesting phenomenon is the high loss rates
observed for the P2E and P2L datasets, possibly due to slight divergent lighting and pose
conditions relative to the P1E and P1L datasets.

The accuracy results on resized images are often lower than those of models, showing
a constant behavior on the P1L, P2E, and P2L datasets. In the P1E dataset, however,
the accuracy for resized images were unexpectedly high in some cases. We believe this
behavior may be justified by the fact that the evaluated sequences and the face training
sequence share similar conditions (e.g., lighting). Additionally, the superior accuracy
results of the P1E_S2_C2 and P1E_S3_C3, compared to the benchmark, may be due
to a removal of noise as a consequence of the huge resizing operation. Nevertheless, we
believe these rare cases do not conflict with our general results and conclusions.

The accuracy results for the P1L, P2E, and P2L datasets follow an expected tendency
that the values increase with the resolution of the foveal region. In addition, the results
for the downsized images were also very low compared to those of the tested models (being
zero in some cases), possibibly due to (i) difficulties in finding faces, and to (ii) wrong
classifications of the face recognizer, as in the P2E_S4_C1, and P2L_S3_C2 sequences.
Another interesting observation is that Model_1 shows much higher accuracy results than
the downsized images, thereby indicating that even a model with 50% foveal resolution
can be effective in the considered scenario.
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Table 3.2: Minimum, mean, and maximum accuracy loss rates induced by our ARIMs
compared to the provided benchmarks. For example, the minimum accuracy loss induced
by Model 1 on the P1E dataset was 0.032 (i.e., 3.2%), whereas the mean and maximum
accuracy loss in that same scenario were 0.123 (12.3%) and 0.264 (26.4%), respectively.

Dataset

Accuracy Loss

Model 1 Model 2 Model 3

Min. Mean Max. Min. Mean Max. Min. Mean Max.

P1E 0.032 0.123 0.264 0 0.050 0.108 0 0.006 0.021

P1L 0.060 0.248 0.613 0 0.094 0.255 0 0.023 0.103

P2E 0.174 0.353 0.500 0.032 0.172 0.318 0 0.006 0.037

P2L 0.143 0.300 0.529 0.033 0.086 0.265 0 0.063 0.206

3.4.3 Energy consumption evaluation

Figures 3.12 and 3.13 present, for each dataset, a comparison among the total energy spent
by the processing of original images (benchmark), images uniformly resized to 25% of their
original sizes, and the three tested models. Here, the benchmark can be understood as the
full-resolution image frames. Thus, in the energy comparison benchmark, the biometry
procedures are executed over the whole full-resolution images. The experiments show
lower energy consumption values for scenarios involving our models. The difference in
energy values among our models and the benchmark comes directly from the data amount
reduction caused by the combination of peripheral optical flow and the sampled foveal
face detection/recognition. The robust and timely activation/deactivation of these latter
algorithms, therefore, reduce the total energy spent in the whole authentication process,
while keeping accuracy rates acceptable, as previously discussed. Table 3.3 presents the
minimum, mean, and maximum energy reduction rates induced by each model relative
to the benchmark, i.e., the obtained energy savings. As expected, the reduction rates
decrease with the increase in foveal resolution, because there is more data to process. This
is verifiable by a quick comparison between the mean rates of Model_1 (half density) and
Model_3 (full density), for example. For resized images, the energy values are often
higher than the ones produced by ARIMs, the exception being the P2L dataset where
similar values were found. This result strengthens our hypothesis that the use of ARIMs
might lead to energy savings.

3.4.4 Implications in real-time applications

Real-life imaging applications have a broad spectrum of possibilities, associated technolo-
gies, and challenges. These applications often need to capture and process high volumes
of data – materialized in uniform images – in real-time to provide their users with the
desired outputs. However, the users’ experience may be affected by these high processing
demands in some degree, and should be considered during the application’s conception.
On one hand, in visual entertainment applications, users want the most possible amount
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Table 3.3: Minimum, mean, and maximum energy reduction rates induced by our ARIMs
compared to the provided benchmarks. For example, the minimum energy reduction
induced by Model 1 on the P1E dataset was 0.505 (i.e., 50.5%), whereas the mean and
maximum energy reductions in that same scenario were 0.551 (55.1%) and 0.598 (59.8%),
respectively.

Dataset

Energy Reduction

Model 1 Model 2 Model 3

Min. Mean Max. Min. Mean Max. Min. Mean Max.

P1E 0.505 0.551 0.598 0.463 0.508 0.550 0.414 0.456 0.489

P1L 0.612 0.667 0.711 0.582 0.619 0.710 0.490 0.548 0.657

P2E 0.536 0.610 0.672 0.439 0.549 0.619 0.381 0.454 0.551

P2L 0.533 0.571 0.618 0.406 0.516 0.620 0.332 0.464 0.603

may be balanced, maintained, or even reduced, if necessary. In this scenario, the time
to process frames, data volumes, energy, and computational processing power could be
relieved, because many operations would be performed previously by hardware routines.

3.5 Final Considerations

In this chapter, we presented our first research avenue towards the use of foveal image
models in CV applications. A crucial observation is that image data captured by uniform
sensors are often dense and redundant, leading to computationally expensive solutions in
terms of storage, processing, and energy consumption. We addressed this issue by exploit-
ing a space-variant scheme that was inspired by mechanisms of biological vision related
to the way that humans sense through the retina. We introduced a generic framework
for designing application-oriented retinal image models (ARIM), which is how we repre-
sent the foveal image models created for specific CV applications. The models should be
used to re-sample the input images prior to executing a specific CV task. We selected a
biometric application to illustrate the conception and usefulness of appropriate models.

The experiments with three ARIMs having different point configurations demonstrate
the flexibility of the proposed framework in devising models with different properties
regarding storage requirements, energy consumption, and accuracy performance. We
could observe, for example, that the use of different space-variant strategies may lead to a
big reduction in terms of storage resources and energy consumption, whereas the accuracy
loss rates were low in most cases. Such a trade-off evidences the viability of the proposed
models and the conformity to our initial expectations regarding saving computational
resources.

In summary, we have shown that the concept of foveal image models may be employed
in CV applications aiming at decreasing the consumption of storage and energy. For such,
we have proposed a framework to devise ARIMs. The results of this primary study have
led us to explore novel ideas on the creation of foveal models to other application contexts.
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Chapter 4

A Change-Driven Image Foveation

Approach for Tracking Plant Phenology

This chapter refers to the paper [83] published in the MDPI Remote Sensing journal under
the title A Change-Driven Image Foveation Approach for Tracking Plant Phenology. The
chapter contains only a few additional content and other minor differences that do not
conflict in any means with the results and discussions shown in the original paper.1

In this chapter, we present our second contribution regarding the use of foveal image
models in CV applications. The chapter is organized as follows. Section 4.1 introduces
the subject. Section 4.2 describes our approach for devising image models based on a
change-driven strategy and on foveation concepts. Section 4.3 shows the adopted dataset,
as well as the steps needed to create the models and to reconstruct images on top of these
models. Section 4.4 presents experimental details regarding the validation steps, shows
the results, and discusses them. Section 4.5 presents the final considerations.

4.1 Introduction

As a rich source of data, digital images have triggered scientific advances in several areas.
In plant phenology, where life cycle events are investigated along with their relationships
to climate [64, 79], knowledge of plant and vegetation dynamics over time is essential to
understand ecosystem processes such as carbon and water exchange [73]. Manual on-the-
ground data sampling and investigation can be coupled with hardware/software appara-
tuses to better capture, manage, and process multimedia data (e.g., images and videos),
thus supporting phenological studies in several ways [5]. For the past decades, image-based
phenological studies have been successfully developed using satellite-based imaging [72],
near-surface cameras [5, 73], and, more recently, unmanned aerial vehicles [50].

A technical challenge imposed by phenological imaging is related to the memory space
occupied, given the need for frequent and extensive imaging. Although hardware technol-
ogy is continuously advancing in terms of storage capacity, some computing environments

1Reprinted from Remote Sensing, 12, Ewerton Silva, Ricardo da S. Torres, Bruna Alberton, Leonor
Patricia C. Morellato, and Thiago S. F. Silva, “A Change-Driven Image Foveation Approach for Tracking
Plant Phenology,” 1409, 2020. The work was published under the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/ – As of Oct. 2020).
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1. Binary Map (MHH): This step creates a binary map encoding a phenological
event, and segments the image space into foveal and peripheral regions. For such,
we employ motion history histograms (MHH) [62] to create a frequency map repre-
senting the spatial occurrence of binary behavior patterns over a sequence of binary
change maps (CM). A CM encodes a desired change, which is determined by a phe-
nological metric, between two RGB images. For instance, the metric of Increase

(Equation (4.1)) can be used to encode a Green Up event, which we define here
as the increase in the amount of leaves of plant individuals. Such event is of high
interest for phenological studies. It may be captured by analyzing increases in the
green-channel pixel values of a certain image regions over time.

CMInc(x, y, t) =

{

1, if It+1(x, y) > It(x, y),

0, otherwise
(4.1)

In Equation (4.1), CMInc(x, y, t) stands for the change map of two consecutive
images from the sequence (the first one at timestamp t), and It(x, y) refers to the
(x, y)-pixel value in the t-th image. Note that a sequence of N images yields N − 1

CMs.

The successful use of CMs to depict changes on plant phenology was developed
and tested using data derived from ground-based direct visual observation, and
relying on MHHs to detect and represent temporal changes in arbitrary temporal
multivariate numerical data [59]. Here, we applied the proposed binary encoding
approach to characterize phenological events. The MHH stores the frequency each
pixel featured a specific behavior in the CM sequence. For instance, a “short”
Increase behavior can be modeled as 0110, which refers to an increase of the values
of a specific pixel in two consecutive images. Figure 4.2 exemplifies the idea of
detecting binary patterns in a series of typical phenological images. However, we
use a binary version of MHH as we are only interested in pixel positions where a
pattern was detected with a frequency greater than the threshold σ. Figure 4.3
illustrates the complete process.

2. Gaussian KDE (Kernel Density Estimation): After delineating foveal and
peripheral regions, the next step estimates a 2-d non-parametric probability density
function from the binary map using a KDE. The final artifact of this process is a
2-d real-valued matrix representing the corresponding function and matching the
size of the map. However, as an inverse analogy to the distribution of cones in the
retina, we adjusted the function such that its values increase with the distance to the
fovea(s), thus resembling an upside down 2-d mixture of Gaussians. In Figure 4.1,
the red and blue regions indicate high and low values, respectively.
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3. Foveal Model: We used the non-parametric function and a Hilbert curve in a
pixel-sampling procedure to create a foveal model. The Hilbert curve maps a 1-d
parameter space to a higher-dimensional space (i.e., 2-d), thus creating a sequential
order by visiting each midpoint of a square once. Unlike a usual raster-scan ap-
proach, the Hilbert curve favors the preservation of locality properties inherent in
multidimensional data, as it traverses neighboring regions prior to visiting distant
ones [13].

The proposed method initially divides the image space into four squares around its
center. Given that the Euclidean distances of the square’s midpoint to its two closest
neighbors are greater than the value of the non-parametric function at midpoint,
each square is then recursively divided into four equal-sized squares. This can
be envisioned as a gradual refinement process in which more pixels are sampled
the closer these are to a fovea. The stop condition occurs when trying to reach
subpixel positions, when a square is not refined any further. The final curve is
not homogeneous (see Figure 4.1), with its vertices constituting the non-uniform
sampling scheme. We present a more detailed explanation of this procedure in
Appendix E (see Algorithm 4), where we describe this idea.

4. Space-Variant Region of Interest (sROI): Although the foveal model may
contain regions of variable interest, one might choose only a subset of them. Having
a gradually-decreasing resolution from the foveal centers towards peripheral regions
could be helpful in specific circumstances. Instead of using a delimiting rectangular
window or a binary mask over a uniform image, a space-variant model allows us to
deal with a non-uniformly constrained region of interest, which we refer hereafter as
sROI, that may represent a phenological behavior of a given plant individual over
time.

After a “training” step, in which a set of images is processed to obtain one or more
foveal models, a new set of images from the same area and different time periods can
be used to test (i.e., evaluate) these models and their extracted sROIs. Images can be
represented as a set of sparse points, or be reconstructed by several methods (e.g., Voronoi
diagrams, quad-trees) that provide a 2-d space-variant representation. From the chosen
representation, data can be extracted and processed (e.g., phenological visual rhythms
and interest-point/statistical descriptors). By using space-variant images, memory storage
may be reduced given that some images are represented at different resolutions and contain
less data.

4.3 Materials and Methods

In this section, we detail the experimental procedure adopted, including the dataset used,
how foveal models are generated, and the image reconstruction (or resampling) step.
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4.3.1 Dataset

The dataset employed contains daily sequences of RGB images (in JPEG format) with
1280× 960 pixels. The sequence covers the years from 2012 to 2015: where, everyday,
an average of six images were captured for every hour (between 6am to 6pm). Binary
masks of field-identified individual plants are also available. The images were produced
with a digital hemispherical lens camera (Mobotix Q 24, Mobotix AG – Germany), which
was placed on a monitoring tower far above the canopy and recorded the phenology of
a Cerrado (neotropical savanna) area at Itirapina, São Paulo, Brazil [4, 5]. Our study
occurred during the transition between the dry and the wet season, a period when most
of the plant species are producing new leaves. According to [4], in which a dataset from
the same area was used, leaf flush periods occur from the end of August to the beginning
of October. Thus, for most experiments, we considered the day of the year (DOY) ranging
between 241 and 273, when available. The sunrise, sunset, and solar elevation angle were
6:23 h, 18:01 h, 47.2◦ (DOY 241), and 05:52 h, 18:10 h, 59◦ (DOY 273), respectively.

4.3.2 Foveal Models

To generate the models, we used the 2012 image dataset, which was preprocessed as fol-
lows. First, we removed unwanted elements, such as the camera tower and the information
inserted by the camera’s software. Then, images were down-scaled to 25% of their original
size (320 × 240 pixels) to favor the creation of well-structured models (i.e., with a few,
smooth foveal regions). Using scale-space inspections, allowed by gaussian pyramid de-
compositions, we noticed that images at lower scale levels (i.e., with reduced sizes) provide
more satisfactory models, because noise-like data and other irrelevant details are removed.
Each image was then converted into its green chromatic coordinate (GCC) representation.
The GCC is a common index used for near-surface phenology that reflects a measurement
of the proportion of green color signal on an RGB image pixel or region [4,5,85]. Finally,
we calculated the 90th percentile of each day to encapsulate relevant daily data into a
single image and, possibly, minimize the impact of lighting changes (e.g., intensity, angles)
on the time series [85].

We selected four binary patterns typifying different behaviors of a phenological change
of Increase (see Section 4.2) encoded in MHHs. The 010, 0110, 01110, and 011110 pat-
terns (ordered from the shortest to the longest) indicate how pixels behave in terms of
frequencies of continuous changes (sequences of “1”s) bounded by steady states (bordering
“0”s) throughout the image series. Although other temporal patterns could be contem-
plated, we have chosen these because, along with the Increase metric, they are capable
of encoding the Green Up change. For each pattern, we used different values of sigma
(σ; found empirically) to threshold MHHs into their binary version. Finally, the mod-
els generated (i.e., their points) were re-scaled back to the original, high-resolution size.
Figure 4.4 shows the MHHs, KDE implicit functions, and foveal models generated for
each pattern. The “spreading” aspect of MHHs also allows us to identify all regions that
respond to a particular event.
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(a) (b) (c) (d)

Figure 4.4: MHHs (top), KDE implicit functions (middle), and foveal models (bottom)
generated for the (a) 010, (b) 0110, (c) 01110, and (d) 011110 patterns considering the
2012 images.

4.3.3 Image Reconstruction

A plausible approach consists in returning to the 2-d space by means of a reconstruction
step. When doing this, the image is essentially uniform, but its contents get represented
in a space-variant domain. Figure 4.5 illustrates the procedure we adopted in this thesis,
which relies on calculating a Voronoi diagram for the set of points comprising each model,
then reconstructing the image by drawing Voronoi cells filled with the same RGB color of
the cell’s central pixel in the captured scene. This creates a foveal image that has greater
content heterogeneity in foveal regions, as these carry higher resolutions compared to
peripheral ones.

Figure 4.5: Example of image reconstruction. The original image (left) is reconstructed
(right) using a Voronoi diagram (middle) obtained from a model. Each Voronoi cell is
filled, in the right image, with the same RGB color of the cell’s central pixel in the left
image.
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4.4 Results and Discussion

In this section, we present a validation for the proposed workflow. We assess the effective-
ness of foveal models in terms of time series’ correlation rates of an appropriate vegetation
index and memory storage usage induced by models.

4.4.1 Evaluation for Reconstructed Images and ROIs

In plant phenology, monitoring variations in plant individual features, such as those re-
lated to color and shape, are paramount to understand the phenophases that these in-
dividuals undergo, and, consequently, the associated ecosystem processes [5]. A suitable
measure to determine these variations in digital images over time is the mean GCC of
image pixels or regions. Thus, we validated the foveal models from Section 4.3.2 by com-
paring regions from original and reconstructed images having plant individuals known to
undergo the same phenological change (i.e., Increase) encoded in the models. We used
individuals of the Aspidosperma tomentosum and Caryocar brasiliensis species (for details
see [4]).

We tested the models with high-resolution images from the years of 2013, 2014, and
2015. The top panels of Figure 4.7-top show the mean GCC time series regarding the
tested years for original and foveal images with each model. To measure the similarity
between the original and foveal time series, we calculated the Pearson-Correlation value
between series (Figure 4.7-bottom panels). The high positive correlation results suggest
that the reconstructed visual information is still significant even under varying resolution
and degradation levels caused by the space-variant representation. Additionally, models
encoding the 010 and 0110 patterns seem more effective at incorporating visual infor-
mation from Aspidosperma tomentosum individuals, whereas the 011110 pattern is more
effective for Caryocar brasiliensis . Figure 4.8 presents examples of the phenological im-
ages used in the experiments, and their masked, reconstructed, and mask-reconstructed
versions for a visual inspection. Figure 4.6 illustrates image reconstructions with an in-
verse log-polar mapping for a visual comparison with the ones obtained with our foveal
models. We do not consider log-polar reconstructions in our quantitative tests.

We also conducted image quality evaluations. Table 4.1 shows root mean squared
error (RMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak
signal-to-noise ratio (PSNR) results for reconstructed images using each model (binary
pattern). PSNR and SSIM are two image quality metrics commonly used in the literature
to compare different image compression/reconstruction schemes. The PSNR is calculated
as the signal peak divided by the strength of the noise, whereas the SSIM quantifies (in
the [0, 1] range) the similarity between two images by considering perceptual differences,
which include the structural divergences between the depicted objects (e.g., along their
edges) caused by image degradation [110]. As expected, SSIM and PSNR values are low,
due to the large Voronoi cells in peripheral areas. However, RMSE and MAE values were
acceptable, indicating that the degradation, although severe in some regions, does not
shift the error rates too much, thereby suggesting that foveal images may still be accurate
for some analyses, such as plant phenology tracking (as shown in the present study).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Examples of phenological images reconstructed with a log-polar mapping. Im-
ages (a, c, and e) are the original ones, and images (b, d, and f) are their reconstructions
using an inverse log-polar mapping on the cartesian domain. We do not consider log-polar
images in our quantitative tests.
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DOY 248

(a)

DOY 255

(b)

DOY 260

(c)

DOY 263

(d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 4.8: Examples of phenological images from 2013. The DOYs 248, 255, 260, and
263 are column-wise organized. Each row depicts the following: (a–d) original images;
masked images containing only the (e–h) Aspidosperma tomentosum and (i–l) Caryocar
brasiliensis individuals; (m–p) images reconstructed with the model for the 0110 pattern;
and masked-reconstructed images containing only the (q–t) Aspidosperma tomentosum
and (u–x) Caryocar brasiliensis individuals.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Examples of phenological JPEG-compressed images with the quality factors
(a) 90, (b) 70, (c) 50, (d) 30, and (e) 10. Image (f) is the original, uncompressed one.
Although visually similar, images (d) and (e) present several compression artifacts (zoom
in to check in detail).
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4.5 Final Considerations

In this chapter, we described our second contribution regarding the use of foveal image
models in CV applications. We introduced a change-driven image foveation approach to
deal with large volumes of data from phenological images. Several phenology applications
must be aware of storage limitations, such as real-time expert processing systems, very-
high resolution imaging sensors, and low-bandwidth remote data transmission. As global
long-term and widespread databases of phenological imaging become available, efficient
storage with minimal loss will be necessary. To solve these problems, we proposed the
creation of foveal models that are able to encode phenological metrics and a behavior
pattern. MHHs and a Hilbert curve provided the fixation points/regions and the varying-
resolution aspect of the models, respectively. We then proposed that these models be
applied to create foveal images having less, but also most of the relevant data.

We evaluated model correlation rates for mean GCC time series (2-d and 1-d scenarios),
visual quality, and memory storage. Our results show a reduction in the amount of stored
data and a viable new image representation, both in terms of quality and relevant-data
preservation. In the image compression spectrum, our approach is also valuable as it
reaches similar image storage sizes to those obtained with a simple JPEG compression
technique using low quality factors. Although the compressed images show visual artifacts,
our compression proceeds in a semantics-wise manner as determined and encoded by the
foveal models.

Data variability may represent a challenge to any remote sensing approach targeting
vegetation tracking, and we have employed foveation precisely to account for such varia-
tion. Although our foveal models may be static and built on top of the behavior seen in a
specific year, their resolution-degrading configuration still correlates well with those from
subsequent years. For very long time series, however, our approach might have some nat-
ural drawbacks, as climate and anthropogenic issues contribute to amplify uncertainties
over time.

In summary, our solution may be considered as more flexible alternative, when com-
pared to our first one (from Chapter 3), to handle huge volumes of image data. As a
matter of fact, the process of devising foveal models does not require the prior definition
of spatial properties. Instead, we took into account more abstract and general informa-
tion from the application’s domain. In our study, such information has been related to
the phenological behaviour of plant species over time. Finally, we analyzed two types of
representation for the foveal images: a 2-d representation, which resembles a compressed
scheme, and a 1-d representation based on a Hilbert curve.
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Chapter 5

A Foveation-based Framework to

Support the Visualization of

Very-High-Resolution Image Time

Series

In this chapter, we present our third contribution regarding the use of foveal image models
in CV applications. The chapter is organized as follows. Section 5.1 introduces the sub-
ject. Section 5.2 describes a framework to support the visualization of very-high-resolution
(VHR) image time series and the information visualization approach; the framework relies
on mechanisms of the human visual system (HVS). Section 5.3 presents usage scenarios
and discussions on them. Section 5.4 presents the final considerations.

5.1 Introduction

If one had to characterize the current era in a sentence, the word “data” would appear
somewhere. Along with proper technology, this keyword has been opening doors for
scientific discoveries and new research opportunities. Large collections of digital images
are no exception to this fact, undergoing continuous expansion and exploration by experts
and researchers in their technical or academic investigations. In face of such big volumes
of data, appropriate hardware and software are required to store, process, and extract
useful information [24, 42, 57]. In this context, saving resources is an important issue to
be concerned with [57], be them computing or human ones.

High-resolution imagery is used in a variety of remote sensing tasks, such as urban
planning [28], crop monitoring [42], geographical damage assessment [90], and plant phe-
nology [5]. Different types of sensors and infrastructure setups can be employed in the data
acquisition process. For instance, image-based phenological studies have used near-surface
cameras [5, 73], satellite-based imaging [72], and unmanned aerial vehicles (UAV) [50] to
monitor life cycle events over time. Human inspections and spatial analyzes of such images
are time- and energy-demanding, often being supported by data visualization techniques
– such as those from geographical information systems (GIS) software – able to pro-
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vide meaningful, less complex, and reduced data representations [33]. Furthermore, these
studies may also rely on the inspection of VHR images obtained by means of modern tech-
nological apparatuses, such as drones. Nevertheless, given the ascending curve of spatial
and temporal scales of data, image time series usually come into play, thus magnifying
the need for more sophisticated and effective information visualization techniques [24].

The plant phenology field, in particular, is open to different information visualization
ideas that may facilitate the analysis of long series of high-resolution vegetation images.
These images usually contain several plant individuals (from diverse species) undergoing
phenological changes that may be hard to spot out visually, due to the nature of the
remote-sensing images, climate conditions, shadows, lighting, and other factors of uncer-
tainty. Morellato et al. [65], in the context of the e-Phenology Project, highlighted the
relevance of developing novel models, algorithms, and data analytic tools to support the
analysis, integration, and visual interpretation of phenological images. The challenge of
conducting phenological studies by means of long-term image series is also evidenced in
terms of the many types of variables that may be considered. To deal with this challenge,
Mariano et al. [61] proposed an information visualization approach that combines visual
rhythms and a radial structure. The approach, which was validated with experts on the
phenology field, demonstrated not only the suitability of the visualization tool, but also
that the use of different perspectives and visual schemes could benefit phenological stud-
ies. Thus, providing meaningful and concise visualization tools to handle phenological
image data is paramount, and several other studies have contributed to this scientific
demand [8, 52,59,60].

In some circumstances, coping with VHR images may turn into a very demanding
and challenging task. To deal with these issues, in this chapter we combine insights
gleaned from previous works on foveation, visual attention, and information visualization.
We extend upon our previous work (Chapter 4) by proposing a framework extension
that allows the processing of VHR image time series based on HVS properties. We also
develop a perceptual and less complex information visualization approach to support
more palpable human inspections of such huge volumes of data. The framework relies on
a mechanism of foveation guided by top-down “cues,” which are spatio-temporal regions
potentially relevant (salient) in a task-dependent context. To our knowledge, this is one
of the first initiatives to apply foveation and visual attention strategies to VHR image
time series.

5.2 Proposed Approach

Figure 5.1 illustrates the main steps of our framework to handle VHR image time series
based on concepts of the HVS, namely, visual attention and foveation. In the following,
we dissect all steps of the proposed framework.

5.2.1 Visual attention for estimating salient regions

The visual attention mechanism requires the analysis of images in the search for salient
regions, i.e., regions that might be of interest for a task. We proceed similarly to what was
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detailed in Section 4.2. First, to make the process more feasible, each image in the time
series is cropped according to a predefined grid of M × N size, thus generating several
smaller images. Then, all cropped images at a specific grid position p in the time series
are examined in the search for saliency points and regions. This procedure, which requires
the definition of a phenological metric and a behaviour pattern, generates a binary map
that is used to build a saliency map spotting out the estimated salient regions (the darker
the region, the more important it is). Thus, instead of obtaining a single saliency map for
the whole VHR image, we generate several M × N saliency maps. This has similarities
with a top-down visual attention process, because we look for image points having plant
individuals undergoing phenological changes over time. The next step consists of creating
a foveal model - based on a Hilbert curve - that is able to represent the set of examined
cropped images in the time series. The foveation process consists of applying the curve
to sample points according to the degree of importance of the regions in the saliency
map. In this case, for example, dark regions will have higher point density than white
ones. Finally, each cropped image at position p will be represented as a sequence of points
extracted by means of the model’s curve. Such sequence can be further used as input to
different information visualization strategies, such as visual rhythms, graphs, and charts.

5.2.2 Foveation for generating foveal models

This step proceeds in the same way as described in Section 4.2. We employ saliency maps
(previously referred to as Gaussian KDEs) in the creation of foveal models based on the
Hilbert curve. Essentially, the model can be understood as a sequence of 2-d points resam-
pled according to the distribution of a specific saliency map, and following the properties
of the Hilbert curve. The variable relevance of regions in the map induces different refine-
ment degrees across the 2-d space and, consequently, a non-linear aspect on the resulting
curve. Thus, a foveal model is able to represent areas in variable resolutions. While foveal
regions have high resolutions due to the dense sampling procedures, peripheral ones have
low resolutions, because they comprise few sampled points. Appendix E provides more
details on this sampling process by means of Algorithm 4.

5.2.3 Proposed information visualization approach

After the saliency estimation and the construction of foveal models, the next step consists
of using such models to summarize the data into a more palpable information visualization
strategy. By “palpable” we mean a visual representation (i) that contains an amount of
information that is considerably lower than the original data, and (ii) that retains relevant
information to provide a proper visual analysis of the image time series.

Our visualization approach is inspired on the work of Leite et al. [52], in which several
color palettes are introduced to encode different phenological changes in remote sensing
images. Here, we use one of the proposed palettes along with a strategy relying on
histograms and stacked bar charts. First, for a cropped image, we collect GCC or BCC
(blue chromatic coordinate) pixel values of the points defined in the respective model’s
curve. These vegetation indexes are found by calculating the percentage of the green and
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In Figures 5.4 to 5.11, we show some examples of the cropped images from the dataset,
the MHHs, the saliency maps, the foveal models, and the information visualization scheme
created. In the following, we examine these usage scenarios.

In Figure 5.4, we show an example of the phenological analysis allowed by the use of
the framework. The selected area undergoes a green up variation over time, due to the
occurrence of a leaf flush phenomenon in certain periods of the year. In addition from the
green up phenological metric, we have searched for pixel data following the 010 pattern
(see Section 4.2 for details of this concept). Figure 5.4-q is the resulting visualization
strategy for the evaluated scenario, showing an increasing on the GCC values in different
periods, as expressed in the green-to-blue variation of the palette values. This can be
visually verified in the image series. A similar analysis considering the same vegetation
area is shown in Figures 5.5, and 5.6 for the 0110, and 01110 patterns, respectively.

By inspecting the provided visualizations, a specialist could conclude, for instance,
that the considered vegetation area has more plant individuals undergoing a leaf flush,
and changing according to a certain phenological behavior, compared to another area.
Another possible information that can be obtained is the period of the year in which the
leaf flush occurs. This latter case would be visually expressed as a “peak” of green and
blue colors in the provided visualization. Moreover, the visualization may also allow a
better comprehension regarding the kind of plant species living on the vegetation area,
and compare their current phenological behaviors with those from past years. Still, since
the visualization relies on a combination of saliency estimation and foveation, it is possible
to obtain a comprehension not only from relevant (foveal) regions, but also from a larger
area of the field of view, by also taking peripheral data into account.

In Figures 5.7, 5.8, and 5.9, we exemplify another phenological analysis allowed by
the framework. In this analysis, we also examine an area undergoing a green up variation
over time, and the 010, 0110, and 01110, respectively. In this example, the leaf flush is
less evident, both by inspecting the images and the provided visualizations, which show
less green variations.

In Figures 5.10, and 5.11, the selected areas undergo a flowering phenomenon that is
characterized by the increase in the levels of blue color (i.e., blue and violet flowers). In
this case, we searched for pixels in the Hue range of the blue color. Moreover, due to
the fact that flowers may appear in one month and quickly disappear in the next one,
the 010 pattern was chosen to characterize the investigated phenomenon. Figures 5.10-
q, and 5.11-q are the resulting visualization strategies for the evaluated scenario. Both
strategies show an increasing on the BCC values in different periods (green and blue
values). This can also be visually verified in the image series.
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5.4 Final Considerations

In this chapter, we have provided our third contribution regarding the use of foveal image
models in CV applications. We have proposed an extension to our previous framework for
creating foveal image models presented in Chapter 4. Our approach takes into account
foveation and visual attention to the development of an information visualization tech-
nique that allows more palpable visual inspections of VHR image time series. This was
made possible due to a reduction in the volumes of data induced by the use of foveal mod-
els in conjunction with the proposed information visualization strategy. We validate our
information visualization approach in the remote sensing field, particularly in phenology
investigations aiming at comprehending the life cycle events of plants. We have employed
a dataset of VHR images (covering a large landscape area) captured with the aid of a
drone. Our approach may provide specialists with a visualization tool that allows easier
visual image inspections related to the phenological events represented in a sequence of
VHR images that, otherwise, would need much more effort to be properly analysed.
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Chapter 6

Conclusions

In this chapter, we summarize this thesis by presenting an overview of the scientific
contributions in the light of the hypothesis and research questions formulated. We also
describe possibilities of future research initiatives derived from our research.

6.1 Scientific Contributions

In the “era of data”, one of the main challenges is how to have these data properly stored
for further processing and analysis. In particular, digital images are a good example of
such data, because they can be quickly and easily obtained, even in high resolutions.
Daily applications available in our smartphones and tablets make intense use of these
uniform images to provide us with the desired outputs. The cost of handling these huge
amounts of data, materialized in image sequences or videos, is closely related to the
limitations in resources of some computing environments and platforms. Given that the
lack of proper approaches to manage storage and energy resources may hinder the user’s
experience, considering alternatives for uniform images, such as the ones induced by our
foveal models, is something that deserves exploration.

In this thesis, we have investigated the use of foveal models in CV applications. We
have introduced some approaches to deal with the huge volumes of image data these
applications usually have to handle. In the following, we summarize our contributions in
terms of each research question previously formulated.

1. RQ1: Would the use of foveal image models lead to savings in computational
resources, such as memory storage and energy?

Yes, they do. First, in Chapter 3, we proposed a framework to generate and handle
application-oriented retinal image models (ARIM). We validated the framework in
a CV application of the biometry domain and showed that the use of ARIMs induce
savings in storage and energy resources, at the cost of some drop in the application’s
accuracy. We also showed that foveal and peripheral regions of ARIMs can be ex-
ploited individually via different pixel representations. This convenience contributed
to the lower energy consumption induced by ARIMs. Second, in Chapter 4, we in-
vestigated the idea of foveal models in the field of plant phenology. The approach
can be seen as an extension of our first contribution in which more abstract and
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general information from the application’s domain is considered, instead of specific
2-d spatial parameters. The devised foveal models contain peripheral (less dense)
and foveal (dense) regions, and can be used to reconstruct the 2-d image or as a
sequence of 1-d points. We evaluated both scenarios and concluded that the models
provide significant storage savings.

2. RQ2: Does the use of foveal image models heavily impact in the accuracy rates of
the application?

No, they do not. In Chapter 3, we showed that the use of ARIMs induce savings in
storage and energy resources, at the cost of some drop in the application’s accuracy.
This is expected, since ARIMs were used to resample images in a space-variant man-
ner, and so there are different degrees of spatial resolution across the image space.
Still, we believe that the accuracy rates of the evaluated biometry application were
satisfactory to allow the application to effectively operate. A similar conclusion was
obtained in Chapter 4, where the foveal models were employed under two perspec-
tives: the 2-d reconstructed image and the 1-d sequence of points provided by the
Hilbert curve. In both avenues, our approach maintained good Pearson-correlation
rates with the original uniform images in an application from the plant phenology
field.

3. RQ3: How to adapt the proposed frameworks to different application scenarios?

In Chapter 3, we described a generic framework that can be adapted to several
kinds of applications. To accomplish this, an early analysis of the inherent aspects
of the application’s domain is paramount to the further steps of the framework.
Thus, we believe that the framework provides flexibility to some degree. Addition-
ally, given that our second contribution is an extension of the first one, the same
flexibility remains. Thus, there are many possibilities to adapt the frameworks to
other application scenarios, some of which we present in Section 6.2.

4. RQ4: How to devise foveal image models by taking into account relevant image
regions found automatically?

As explained in question RQ1, instead of relying on static 2-d spatial parameters,
our second contribution considers more abstract and general information from the
application’s domain. In this sense, we selected two abstract information from the
plant phenology field: a phenological metric and a binary behavior pattern. The
former encodes the phenophase (in our case, a leaf flush) being analyzed, whereas
the latter encodes a phenological change of interest. Our method combines these
elements with motion history histograms (an approach from the object detection
literature) to spot out 2-d foveal regions in a binary change map. The map is thus
produced from the examination of an image time series. Next, we created a foveal
model by sampling the image’s space with a Hilbert curve. In summary, this process
require few spatial (low-level) parameters, allowing us to devise image models in a
more automatic manner by means of high-level parameters.
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5. RQ5: How to combine foveal image models with information visualization tech-
niques?

In Chapter 5, we tackled the challenge of handling VHR image time series. In this
sense, we extended upon our second contribution by conceptualizing the framework
idea in terms of two properties of the HVS: foveation and visual attention (saliency
estimation). The goal of the approach was to provide an information visualization
technique based on these HVS properties to aid visual inspections of huge volumes
of data in VHR image time series. We showed that the proposed technique decreases
the amount of data to be examined, therefore aiding the execution of visual tasks
related to plant phenology. Such reduction in data volumes also lead to huge mem-
ory storage savings, when comparing the proposed visualizations to the full image
time series, a common approach in phenology studies. In summary, we effectively
combined the framework from Chapter 4 with a visualization technique.

The obtained results from the investigations performed in the context of the research
questions have helped us to confirm the following hypothesis underlying this thesis:

The use of foveal image models might induce a reduction in storage usage

and energy consumption of computer vision applications, while also keeping

satisfactory accuracy rates, and possibly allowing easier visual inspections of

series of image data.

The work is associated with the following papers published in international journals:

• Silva, E.; Torres, R.S.; Pinto, A.; Li, L.T.; Vianna, J.E.S.; Azevedo, R.; Golden-
stein, S. Application-Oriented Retinal Image Models for Computer Vision.
Sensors 2020, 20, 3746. [82]

• Silva, E.; Torres, R.S.; Alberton, B.; Morellato, L.P.C.; Silva, T.S.F. A Change-

Driven Image Foveation Approach for Tracking Plant Phenology. Remote

Sens. 2020, 12, 1409. [83]

6.2 Future Work

The work presented herein can be extended in several ways. In the following, we describe
future research opportunities for each one of our contributions.

6.2.1 On the first contribution

With regards to our first contribution (Chapter 3), future work may be concerned with
the evaluation of the framework in other CV applications, such as:

• Remote sensing and surveillance: In this kind of application (Figure 6.1), in-
stead of processing full-size images, an ARIM containing foveas at the locations of
the plant species of interest could be devised. Also, by taking into account the ex-
pected phenological behavior of the species over a year, the periphery could have a
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non-uniform point distribution in which near-foveal areas would present higher point
densities than more distant ones. This layout would favor technical investigations,
because uncertainty plays a big role in phenological variations, as an expression, for
example, of anthropogenic factors. Thus, a non-uniform, but still dense region near
the foveas could be useful to account for these variations. We emphasize that, al-
though we have evaluated a similar scenario in our second contribution (Chapter 4),
we could still evaluate the use of ARIMs in a remote sensing application.

• Industrial applications: In an assembly line (Figure 6.2), inspections may be
conducted to check whether products follow the specifications and requirements
previously established. These tasks are very important to ensure the quality of the
final products. Hence, an automatic analysis of images of these products taken
at some time intervals is a viable CV application. In this light, a retinal model
could be devised to provide more efficiency to the process. For example, a central
fovea with full, uniform resolution could have two other foveas at each side. This
pair of lateral foveas would present lower resolution than the central one, so as to
capture some early details of the object coming from any side. If a more detailed
investigation becomes necessary, the central fovea may be activated. Furthermore,
top and bottom peripheral regions could be used to capture any movement to help in
the foveal analysis (e.g., human or robotic interventions occurring at the moment).

• Action recognition applications: Another relevant CV application able to ex-
ploit the benefits provided by the use of ARIMs refers to automatic systems for
detecting driver’s fatigue and other facial actions (Figure 6.3). This system could
comprise a wide-lens camera to capture both the driver’s and the side passenger’s
faces. Thus, a retinal model to represent such a scenario could have two foveas
located in the left and right sides of the image space, whereas the remaining regions
would constitute the periphery. Since the main idea of the system might be the
analysis of facial actions of the driver, “his fovea” would have full resolution. In
contrast, the passenger’s fovea would have low resolution, be significantly smaller,
or even constitute the periphery, where motion detection may take place. An inte-
grated system could also emit some kind of warning signal based on face expressions,
signs of drowsiness, or hazardous behavior/movement from the driver/passengers,
or even based on the presence of objects inside the vehicle via motion analysis.

Further initiatives evaluating ARIMs in different CV applications may also come across
new challenges regarding the flexibility of models. For example, taking the face authen-
tication application considered in our experiments, there might be circumstances when
faces should be recognized outside the foveal regions. In these cases, two approaches could
be used. First, an ARIM could be built so as to have more foveas conveniently located in
strategic image regions. Another possibility is creating different models to be exchanged
with each other according to some criteria. Thus, when the optical flow analysis suggests
that the individual is near the foveal area or partially inside it, other models having larger
or more foveas could be used to spot out the face. These alternative models would be
applied only in specific cases where the application’s effectiveness could potentially be
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compromised. In a broader perspective, we believe the trade-off between accuracy and
energy/storage consumption induced by the collaborative use of different models, specif-
ically tailored for other CV applications, is a promising line of investigation for future
work. Another possibility is to represent the periphery of ARIMs as super-pixel-like ar-
tifacts (Voronoi cells) that could be filled with the grayscale pixel value at each cell’s
central point in the original image (Figure 6.4). The analysis of degraded peripheral re-
gions represented in grayscale might also be applied to the aforementioned application
domains.

With respect to the hardware side, a promising avenue is the effective integration of
our approach into an FPGA responsible for resampling uniform images according to some
predefined or dynamic space-variant models. The models could be computed at the FPGA
or by software, in which case an efficient communication mechanism between these layers
should be implemented. To provide more flexibility, the collaborative use of different
models and the use of computer graphics techniques to dynamically reshape them (as
with the case of deformable surface models) are relevant investigations for further work.
In these scenarios, a more complex repertoire of variables would need to be considered,
including the costs of computing and adapting the models, resampling uniform images
inside the FPGA, and the trade-off among accuracy, storage, and energy. Even with all of
these variables in the field, we believe that such an infrastructure could still favor savings
in the use of computational resources. Another idea that deserves some study is the
use of our models along with alternative technologies for data storage, such as Network
Attached Storage systems. In this setup, bandwidth resources may benefit from the use
of the space-variant image representation induced by our models.

6.2.2 On the second contribution

Our second contribution (Chapter 4) may be the target of future initiatives both on
the hardware and software sides. First, examining space-variant imaging sensors and
FPGA devices that are able to handle foveation at the hardware layer is a promising
research avenue, as these could boost the autonomy of the image acquisition process,
particularly in remote areas. In this context, evaluating energy consumption levels of
different foveation procedures from the literature, performed on variable hardware and
software platforms, would be invaluable to the field. Second, a mathematical formulation
for directly retrieving a 2-d point from a 1-d sequence point based on the non-linear
Hilbert curve also deserves investigation. This is a challenging approach that could allow
direct evaluations of particular areas in the 1-d sequence. Third, the proposed foveal
models could be based on different SFCs, such as the Peano curve. In this case, a detailed
analysis and comparison of the benefits and drawbacks of these curves and their impact
of the reconstructed images and 1-d sequences would be necessary.

6.2.3 On the third contribution

Our third contribution (Chapter 5) may be extended in some ways. The proposed ap-
proach can be exploited in other domains where sequences of high-resolution images need
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Appendix A

Algorithm for Generating ARIMs

In this appendix, we present the algorithmic steps for the generation of an ARIM, as
described in the context of our first contribution (Chapter 3). The input parameters are:

• num_u: number of uniform points in the foveal region;

• num_nu: number of non-uniform points in the periphery;

• fov_reg: coordinate of the top-left and bottom-right points delimiting the squared
foveal region;

• fov_res: the resolution of the foveal region;

• asp_r: the aspect ratio of the image;

• imp_f : the implicit function;

• max_i: the maximum number of iterations for generating the ARIM.

The process starts with Algorithm 1. It first creates an initial uniform 2-d distribu-
tion of points comprising foveal and peripheral regions. Then, a Delaunay triangulation
is calculated to find the neighborhood relationship between those points. Next, the op-
timization takes place during several iterations. Each iteration calculates the velocities
of all points to their neighbors (as we show in Algorithm 2), and the total energy of the
system. After that, the iteration also updates (i) the arrangement of points by applying
the computed velocities (forces), and (ii) the neighbors of all points by computing another
Delaunay triangulation. The iteration process ends when it reaches the maximum number
of iterations required.
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Algorithm 1 Creates an ARIM (a list of 2-d points).

1: function createARIM(num_u, num_nu, fov_reg, fov_res, asp_r, imp_f, max_it)

2: pts← initialUniformDistribution(num_u, num_nu, fov_reg, asp_r) ⊲ creates an

initial uniform distribution for the foveal and peripheral regions

3: neighs← {} ⊲ initializes a list of neighbors for each initial point

4: delaunayTri(pts, neighs) ⊲ computes the Delaunay triangulation of the initial

points, and stores the neighbors of each point in the list

5: vels← {} ⊲ initializes a list of velocities for each point-neighbor relationship

6: it← 0 ⊲ initializes the iteration counter

7: while (it ≤ max_it) do

8: calculateVelocities(pts, neighs, imp_f, vels) ⊲ calculates the velocities for

each point-neighbor relationship and stores the values in the correspondent list

9: energy← addVelocities(vels) ⊲ adds up all the previously calculated

velocities

10: updatePoints(pts, energy) ⊲ updates the coordinates of all points

11: delaunayTri(pts, neighs) ⊲ updates the Delaunay triangulation

12: it← it+ 1 ⊲ increments the iteration counter

13: end while

14: return pts

15: end function

Algorithm 2 Calculates the velocities of points when creating an ARIM.

1: procedure calculateVelocities(pts, neighs, imp_f, vels)

2: for each p ∈ pts do

3: i_p← pts.indexOf(p) ⊲ the position of p in the points array

4: for each n ∈ neighs[i_p] do

5: i_n← pts.indexOf(n) ⊲ the position of n in the neighbors list

6: delta← euclideanNorm(p− n) ∗ (eval(imp_f, p) + eval(imp_f, n)) ⊲ com-

putes the partial delta value of the energy optimization by calculating the euclidean

norm and evaluating the implicit function

7: vels[i_p][i_n]← vels[i_p][i_n] + delta ⊲ adds the delta to the

current velocity

8: end for

9: end for

10: end procedure
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Appendix B

Log-polar Images for Comparison

In this appendix, we illustrate a log-polar mapping procedure applied over sample images
from the ChokePoint Dataset [105]. In Figure B.1, it is possible to see the visual differences
between the cortical images (smaller images in the log-polar domain), and the retinal
(inverse log-polar) images, which are the cortical images mapped back to the cartesian
domain.
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Original Cortical Retinal

Figure B.1: Examples of images reconstructed with a log-polar mapping. Left-column
images are the original ones. Middle-column images are the cortical versions after a log-
polar mapping procedure. Right-column images are the retinal images after an inverse
log-polar mapping procedure has been performed on their cortical versions. The original
images come from the ChokePoint Dataset [105].
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Appendix C

Motion Analysis Algorithm

In this appendix, we present the optical-flow-based motion analysis algorithm developed
in the context of our first contribution (Chapter 3). The input parameters are:

• pts_pos: fixed position of sampled points provided by the model;

• nu_bstream: the optical flow for points belonging to the non-uniformly sampled
region;

• min_mag: magnitude threshold;

• min_perc: threshold on the percentage of pixels that exceed the magnitude thresh-
old.

Although this approach might not be very efficient in some circumstances, it has proven
itself adequate for our initial tests. Taking the decision based on multiple frames, using
new sets for the top or bottom pixels, and possibly finding the best magnitude/percentage
thresholds according to the requirements of the application may potentially improve the
algorithm.
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Algorithm 3 Detects motion towards the image center.

1: procedure motionDet(pts_pos, nu_bstream,min_mag,min_perc)
2: n_points← pts_pos.size() ⊲ total number of points
3: count_left← 0, count_motion_left← 0
4: count_right← 0, count_motion_right← 0
5: sum_angle_left← 0, sum_angle_right← 0
6: i← 0
7:

8: while (i ≤ n_points) do
9: i← i+ 1

10: if pts_pos[i] ∈ NON-UNIFORM REGION then
11: dx← nu_bstream[i].x− pts_pos[i].x ⊲ x offset
12: dy ← nu_bstream[i].y − pts_pos[i].y ⊲ y offset
13: angle← arctan(dy, dx) ⊲ vector angle in radians
14: mag ←

√
dx2 + dy2 ⊲ vector magnitude

15: if (pts_pos[i] is a LEFT POINT ) then
16: count_left← count_left+ 1
17: if (mag ≥ min_mag) then
18: count_motion_left← count_motion_left+ 1
19: sum_angle_left← sum_angle_left+ angle
20: end if
21: else if (pts_pos[i] is a RIGHT POINT ) then
22: count_right← count_right+ 1
23: if (mag ≥ min_mag) then
24: count_motion_right← count_motion_right+ 1
25: sum_angle_right← sum_angle_right+ angle
26: end if
27: end if
28: end if
29: end while
30:

31: perc_left← count_motion_left

count_left

32: perc_right← count_motion_right

count_right

33: mean_left← sum_angle_left

count_motion
_
left

34: mean_right← sum_angle_right

count_motion_right

35:

36: if (perc_left ≥ min_perc AND mean_left ∈ [−45o, 45o]) then
37: return TRUE ⊲ motion to the center (from the left side)
38: else if (perc_right ≥ min_perc AND mean_right ∈ [135o, 225o]) then
39: return TRUE ⊲ motion to the center (from the right side)
40: else
41: return FALSE ⊲ no motion to the center
42: end if
43: end procedure
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Appendix D

Technical Information and Parameters

In this appendix, we show technical information, such as the methods and parameters,
used in the implementation of the CV application developed in the context of our first
contribution (Chapter 3). Table D.1 displays these information.

Table D.1: Technical information regarding the implemented CV application. Only non-
default parameter values are shown.

Theoretical Reference Library Method Input Parameters

Face Detection Viola-Jones [96] OpenCV 3.0.0 detectMultiScale
scaleFactor = 1.1
minNeighbors = 3

Face Recognition DNN model [39] + 1-NN Dlib 19.16 [49] get_face_chip_details
size = 150
padding = 0.25

Optical Flow Lukas-Kanade [56] OpenCV 3.0.0 cvCalcOpticalFlowPyrLK

winSize = (31, 31)
maxLevel = 3
criteria.maxCount = 20;
criteria.epsilon = 0.03
minEigThreshold = 0.001
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Appendix E

Algorithm for Generating Foveal

Models

In this appendix, we detail the algorithm for sampling a 2-d space according to the
relevance of regions. Here, we call the map that encodes the relevance of regions as a
saliency map (from Chapter 5). However, the Gaussian KDE term (from Chapter 4)
could be used instead without prejudice to the presented ideas, because both terms refer
to the same concept.

Our sampling approach is closely related to quadtrees and a Hilbert curve. Quadtrees
have been used to generate models that describe the geometry of 2-d objects, approximat-
ing their shapes. It consists of recursively breaking a 2-d space in smaller squares to match
the properties of the object in question and the desired level of detail. A convenience of
the approximation via quadtrees is that it can also be realized by means of constructing
a Hilbert curve that fills a 2-d space. Both strategies yield the same sampling, with the
difference that the curve-based offers us an improved ordering for visiting the sampled
points (i.e., the final “trees” diverge).

Algorithm 4 presents our sampling procedure. The process relies on fitting a Hilbert
curve in the image’s domain by taking into account the relevance of the regions encoded
in the saliency map. In summary, we must provide the width and height of a 2-d area in
which the sampling will occur, and its mid position on the cartesian space. We are also
required to inform the saliency map to guide the sampling, as well as the “mode” (the
elementary Hilbert pattern configuration that ensures the continuity of the curve). Next,
we proceed by recursively dividing the 2-d area in four subsquares around the current
square’s midpoint. The division, however, is conditioned on the Euclidean distance of the
current midpoint to its two closest neighbors (in the curve) being both greater than the
value of the saliency map at the midpoint. This is a gradual refinement that continues as
long as the distances between sampled points are greater than one pixel.
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Algorithm 4 Samples a 2-D region using a Hilbert curve.

1: procedure hilbertSampling(width, height, p_m, s_map, mode)

2: width← width/2

3: height← height/2

4: p_1← (p_m.X− width/2, p_m.Y− height/2) ⊲ p_m is the current midpoint

5: p_2← (p_m.X− width/2, p_m.Y+ height/2)

6: p_3← (p_m.X+ width/2, p_m.Y+ height/2)

7: p_4← (p_m.X+ width/2, p_m.Y− height/2)

8: list_pts← {p_1, p_2, p_3, p_4} ⊲ puts the points in a list

9: reorder_list_pts(list_pts, mode) ⊲ reorders the list based the mode

10: next_modes← getNextModes(mode) ⊲ returns the next four modes

11: final_pts← {} ⊲ list to store the final sampled points

12: for each p_i ∈ list_pts do

13: d_1← euclideanDistance(p_i, getFirstNeighbor(p_i))

14: d_2← euclideanDistance(p_i, getSecondNeighbor(p_i))

15: if d_1 ≥ 1 AND d_2 ≥ 1 then

16: if evaluate(s_map, p_i) ≤ d_1 AND eval(s_map, p_i) ≤ d_2 then

17: fin_pts← fin_pts+hilbertSampling(width, height, p_i, s_map, next_modes)

18: else

19: fin_pts← fin_pts+ {p_i}

20: end if

21: else

22: return {}

23: end if

24: end for

25: return fin_pts

26: end procedure
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