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Resumo

O rosto é a janela da alma. É o que pensava o médico francês do século XIX, Duchenne
de Boulogne. Usando choques elétricos para estimular contrações musculares e induzir ex-
pressões de aparência assustadora e bizarra, ele queria entender como os músculos produ-
zem expressões faciais e, assim, revelar as emoções mais ocultas do ser humano. Passados
dois séculos, esse campo de pesquisa continua muito ativo, despertando o interesse de di-
versos segmentos da indústria. Vemos sistemas automáticos de reconhecimento de emoção
e expressão facial sendo aplicados na medicina, em sistemas de segurança e vigilância, em
propaganda e marketing, entre outros. Mas, apesar de sua ampla adoção, ainda existem
questões fundamentais que os cientistas estão tentando responder quando analisamos o
estado emocional de uma pessoa a partir de suas expressões faciais. É posśıvel inferir,
com segurança, o estado interno de alguém baseando-se apenas nos movimentos de seus
músculos faciais? Existe uma configuração facial universal para expressar raiva, repulsa,
medo, felicidade, tristeza e surpresa, comumente chamadas de emoções básicas? Nesta
pesquisa, tentamos responder a essas questões explorando redes neurais convolucionais.
Diferentemente da maioria dos estudos dispońıveis na literatura, estamos particularmente
interessados em examinar se as caracteŕısticas aprendidas em um grupo de pessoas podem
ser empregadas para prever, com sucesso, as emoções de outro. Nesse sentido, adotamos
um protocolo de avaliação em conjunto de dados cruzados para mensurar o desempenho
dos métodos propostos. Nosso método de base foi constrúıdo a partir do ajuste fino de um
modelo originalmente empregado no problema de reconhecimento facial para o problema
de categorização de emoções. Em seguida, aplicamos técnicas de visualização de dados
para entender o que nossa rede de base havia aprendido para, então, derivarmos três ou-
tros métodos. O primeiro método visa direcionar a atenção da rede para regiões da face
consideradas importantes na literatura, mas ignoradas pelo nosso modelo inicial, usando
uma arquitetura multi-ramificada para uma abordagem baseada em partes. No segundo
método, simplificamos essa arquitetura e trabalhamos nos dados de entrada, ocultando
partes aleatórias da imagem facial, de modo que a rede pudesse aprender caracteŕısticas
discriminativas em diferentes regiões. No terceiro método, exploramos uma função de
perda que gera representações de dados em espaços de alta dimensão, de forma que exem-
plos de uma mesma classe de emoção fiquem próximos e exemplos de classes diferentes
fiquem distantes. Finalmente, investigamos a complementaridade entre dois de nossos
métodos, propondo uma técnica de fusão tardia que combina seus resultados por meio da
multiplicação de probabilidades. Para efeito de comparação de nossos resultados, compi-
lamos uma extensa lista de trabalhos avaliados nos mesmos conjuntos de dados escolhidos.
Em todos eles, quando comparados a trabalhos que seguiram um protocolo de avaliação
em um único conjunto de dados, nossos métodos apresentam números competitivos. Já
sob um protocolo de conjunto de dados cruzados, obtivemos resultados do estado da arte,
superando até mesmo aplicações comerciais de grande empresas de tecnologia.



Abstract

The face is the window to the soul. This is what the 19th-century French doctor, Duchenne
de Boulogne, thought. Using electric shocks to stimulate muscular contractions and induce
creepy and bizarre-looking expressions, he wanted to understand how muscles produce fa-
cial expressions and, thus, reveal the most hidden human emotions. Two centuries later,
this research field remains very active, arousing the interest of several segments of the
industry. We see automatic systems for recognizing emotion and facial expression being
applied in medicine, in security and surveillance systems, in advertising and marketing,
among others. But despite its widespread adoption, there are still fundamental questions
that scientists are trying to answer when analyzing a person’s emotional state from their
facial expressions. Is it possible to reliably infer someone’s internal state based only on
the movements of their facial muscles? Is there a universal facial setting to express anger,
disgust, fear, happiness, sadness, and surprise, commonly referred to as basic emotions?
In this research, we seek to address some of these questions through convolutional neural
networks. Unlike most studies in prior art, we are particularly interested in examining
whether characteristics learned in one group of people can be generalized to successfully
predict the emotions of another. In this sense, we adopted a cross-dataset evaluation
protocol to assess the performance of the proposed methods. Our baseline method was
created by custom-tailoring a model originally used in the problem of face recognition to
the problem of emotion categorization. Next, we applied data visualization techniques
to account for what our baseline model had learned in order to, then, derive three other
methods. The first method aims to direct the network’s attention to regions of the face
considered important in the literature but ignored by our baseline model, using a multi-
branched network architecture for a parts-based approach. In the second method, we
simplified this architecture and worked on the input data, hiding random parts of the
facial image, so that the network could learn discriminative characteristics in different re-
gions. In the third method, we explored a loss function that generates representations of
data in high-dimensional spaces, so that examples of the same emotion class are close and
examples of different classes are distant. Finally, we investigated the complementarity be-
tween two of our methods, proposing a late-fusion technique that combines their outputs
through the multiplication of probabilities. To compare our results, we have compiled
an extensive list of works evaluated in the same adopted datasets. In all of them, when
compared to works that followed an intra-dataset protocol, our methods present com-
petitive numbers. Under a cross-dataset protocol, we achieved state-of-the-art results,
outperforming even commercial off-the-shelf solutions from well-known tech companies.
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Chapter 1

Introduction

Emotion and facial expression recognition has gained increased attention lately. In the last

decade, we have seen many companies focused on solving problems in the area popping

up in the media. Emotient, FacioMetrics, Affectiva, Imotions, Face++, Eyeris, Sightcorp,

Noldus, Kairos, and Nviso are some of the leading companies in the segment. This growing

interest has also caught up the attention of some giants from Silicon Valley. Recent

moves made by Apple [72], which acquired Emotient, and Facebook [73], which acquired

FacioMetrics, expose the importance of understanding emotion and facial expressions to

build systems that can effectively perceive and predict human needs.

Forecasts estimate that the emotion recognition market will grow from USD 21.6

Billion in 2019 to USD 56.0 Billion by 2024 [45]. This boost will be mainly due to the

rising demands in sectors like marketing and advertising, healthcare, banking, defense,

and commercial security, in which people have been trying to accomplish tasks such as

(a) testing the impact and acceptance of content, product or service by analyzing facial

responses of customers; (b) monitoring facial stress levels of individuals for security and

safety purposes (e.g., the automotive industry using emotion recognition to improve car

safety [1]); (c) detecting pain and recognizing depression in patients undergoing clinical

treatments; and (d) measuring satisfaction levels of users while viewing a website, playing

a game or using a software.

Despite all the progress in the field, some topics remain as open issues yet to be

addressed. Head-pose variations, illumination changes, and the distinction between facial

expressions of emotion and facial expressions caused by speech are some of the challenges of

the overall pipeline in facial expression and emotion recognition systems. More specifically,

these issues come into view when working in real-world environments, in which expressions

occur in a spontaneous way and their intensities are typically low to moderate [56, 5]. In

a world in which everything is mobile, connected and interactive, emotions and facial

expressions analyses are expected to perform under daily uncontrolled situations in order

to meet the current and future needs of people.

But if we take our attention only to these said practical challenges, we might miss the

big picture. Take one step back and we will see that there are some fundamental questions

whose answers scientists are still grasping with and seeking a consensus [4, 23]. Can we

reliably judge how someone feels from their facial expressions? Do different cultures

display facial expressions in the same manner to express the same emotions? In spite
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of these open questions, we have seen a growing interest in artificial intelligence-based

systems to automatically detect emotions from facial expressions. But, should we rely on

such systems to solve a problem of this complexity?

With this backdrop, in this work, we rely upon deep learning techniques to analyze

emotions from facial expressions, with a special interest in cross-dataset scenarios. As

opposed to most existing solutions, which claim to have solved the problem by only eval-

uating their methods under an intra-dataset protocol, we want to know if characteristics

learned from one group of people can be employed to successfully predict emotions in

another one. By looking at a person’s portrait, our method should be able to decipher

the presented facial expressions and reveal which of the seven basic emotions – anger,

disgust, fear, happiness, neutral, sadness, and surprise – the person is more likely to be

communicating. Particularly, it is desirable that our model shows an appropriate level

of generalization, by adapting to new, previously unseen data (i.e. portraits of different

people, collected under different conditions), as opposed to one used to create it.

Recent studies in the field [36], especially the ones from the winners of the Facial Ex-

pression Recognition and Analysis Challenge (FERA) [19] and the Emotion Recognition

in the Wild Challenge (EmotiW) [17], show that deep features for automated facial ex-

pression and emotion recognition offer state-of-the-art results. Hence, in this work, rather

than using handcrafted features (c.f., Section 3.1) to represent the captured information,

we learn them directly from data through deep neural networks. First, we derive our

baseline method from a network pre-trained for the face recognition task. Then, after

applying accountable machine-learning techniques to interpret initial results, we intro-

duced two methods that employ attention mechanisms in an attempt to learn alternative

discriminative regions of the face, being the second method a simplification of the first

in terms of computational costs. Finally, we proposed a third method, complementary

to the first two, which learns data embeddings in a high dimensional vector space by the

notion of similarity and dissimilarity.

1.1 Research questions

In order to guide our research, we formulate some investigative questions regarding emo-

tion recognition from facial expressions and the quest to find a robust automated solution

to accomplish the task in a cross-dataset scenario.

• Can characteristics learned from one group of people be employed to successfully

predict emotions in another one?

• Is it possible to improve model generalization and reduce dataset bias while main-

taining the same base solution?
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1.2 Contributions

In summary, our research introduces the following contributions:

• We propose three data-driven methods, based on a convolutional neural network

(CNN), for emotion recognition from facial expressions:

– In the first method, we define the four most important regions of interest

present in the face and, using a multi-branched CNN, drive the network’s

attention to extract and combine features from these regions.

– In the second method, we force a CNN to learn features from less obvious

regions of the face by iteratively occluding some parts of the input images

during the network training process.

– The third method employs a metric learning approach which maps distances in

a high dimensional space to emotion similarities, inducing proximity between

examples from the same class of emotion while distancing examples with dis-

tinct emotion classes.

• We also propose to combine two of our methods, which seem to be complementary

to each other, under a late-fusion approach.

• Differently from most of the works present in the literature, all proposed methods are

evaluated in a cross-dataset fashion, a more challenging scenario than using the

same dataset for both training and testing. The assembled collection of datasets

used in this research provides multi-cultural data from individuals in a wide age

range, captured in varied conditions of illumination and background information.

• Finally, we perform an extensive evaluation of the methods available in the literature

in comparison to our own. Even though most of them achieve state-of-the-art results

in the intra-dataset scenario, they often lack generalization when analyzing images

with different conditions than those seen in training.

1.3 Text organization

We start by presenting a theoretical overview of emotion and facial expression from the

perspective of neuroscience, psychology, and cognitive science in Chapter 2. There, we

describe the differences between emotion and other affective phenomena and detail how

facial expressions can relate to the perception of emotion. In Chapter 3, we compile a

list of related works on automatic emotion recognition from facial expressions, giving par-

ticular attention to the different feature extraction methods and classification algorithms

employed.

In Chapter 4, we detail the datasets used in this research, pointing out their main

properties. Moving on to Chapter 5, we propose three methods based on convolutional

neural networks towards an automated emotion recognition solution and explain the pro-

cess that led us to them. The results of the three proposed methods, evaluated in a
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cross-dataset setup, are reported and discussed in Chapter 6. There, we also compare our

methods to existing approaches present in the literature. Concluding, in Chapter 7, we

present our final remarks about the findings of this research and outline new directions

to guide future work.
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Chapter 2

Theoretical overview

In this chapter, we present an overview of emotions and facial expressions through the

lens of neuroscience, psychology, and cognitive science. We introduce a formal definition

of the term “emotion” so that we can differentiate it from other affective phenomena.

Additionally, we discuss how facial expressions and emotions can be organized and how

they relate to one another.

2.1 Emotion and other affective phenomena

There is a wide diversity of definitions for the concept of emotion. Kleinginna and

Kleinginna [32] compiled an extensive list of 92 definitions and 9 skeptical statements

from a variety of sources in the literature, evincing the lack of consensus in the scientific

community. On the basis of this study, they proposed a broad definition of the term:

“Emotion is a complex set of interactions among subjective and objective fac-

tors, mediated by neural/hormonal systems, which can (a) give rise to affective

experiences such as feelings of arousal, pleasure/displeasure; (b) generate cog-

nitive processes such as emotionally relevant perceptual effects, appraisals,

labeling processes; (c) activate widespread physiological adjustments to the

arousing conditions; and (d) lead to behavior that is often, but not always,

expressive, goal-directed, and adaptive”.

Scherer [60, 61] stated that emotions are normally triggered by events that are relevant

to the organism. These events can be external, such as the behavior of others, a change

in a current situation or an encounter with novel stimuli, or internal, such as thoughts,

memories, or sensations. Emotion episodes are intertwined, synchronized changes in the

states of all or most of the five organismic subsystems, that last for a certain duration and

then fade away with decreasing intensity. The state of each subsystem is a component of

the emotion episode. Table 2.1 shows the suggested correspondence between organismic

subsystems, functions, and components of emotion.

Dolan [10] argues that emotions, as psychological experiences, have unique qualities,

when distinguishing it from other affective phenomena. He affirms that, unlike other psy-

chological states, emotions are manifested after stereotyped patterns of facial expressions
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in a uniquely recognizable way, that they are less susceptible to our intentions, and that

they are more capable of influencing other aspects of cognition. In recent years, however,

these assumptions were put into question by the scientific community.

Barrett et al. [4] state that there seems to be a more common facial configuration to

express some emotions, but it is not forcibly a rigid one-to-one mapping between facial

expressions and emotion categories. In fact, facial configurations can vary substantially

across cultures and situations and are more context-dependent than previously thought.

Furthermore, similar facial configurations can possibly express instances of different emo-

tion categories.

Organismic subsystem Emotion component Emotion function

Information processing Cognitive component
(appraisal)

Evaluation of objects and
events

Support Neurophysiological component
(bodily symptoms)

System regulation

Executive Motivational component
(action tendencies)

Preparation and direction of
action

Action Motor expression component
(facial and vocal expression)

Communication of reaction and
behavioral intention

Monitor Subjective feeling component
(emotional experience)

Monitoring of internal state
and organism–environment
interaction

Table 2.1: Relationship between organismic subsystems, functions, and components of
emotion. Extracted from [61].

Treating emotion and feeling as synonyms is a frequent source of confusion, says

Scherer [61]. As shown in Table 2.1, extracted from his work, while emotion is the whole

phenomenon, consisting of a multi-modal component process, feeling is the subjective

emotional experience component of emotion. Damasio [9] affirms that emotional events

lead to rapid and automatic responses that contrast with more long-term modulatory be-

havioral influences mediated by feeling states. He even suggests that humans have distinct

brain systems to support emotional perception and feeling states. Sentiment, as proposed

by Gordon [22], on the other hand, “is a socially constructed pattern of sensations, expres-

sive gestures and cultural meanings, organized around a relationship to a social object,

usually another person”. Grief, love, envy, and hatred, for instance, persist beyond the

duration of bodily changes. They are social rather than organic states.
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2.2 Facial expressions and emotion

As pointed out in the previous section, facial expressions are one of the possible physio-

logical responses to emotion. Ekman and Friesen, in their study [15], hypothesized that

the relationship between distinctive patterns of facial muscles and particular emotions are

universal, although cultural differences would be seen in some of the stimuli due to social

settings influence. They conducted an experiment in which they showed still photographs

of faces to people from different cultures (Brazil, United States, Argentina, Chile, and

Japan) and asked them to identify the emotion conveyed on each photography. To over-

come the probable bias created by the exposure of these aforementioned cultures to mass

media presentations of facial expressions, they also extended the study to members of

isolated communities in New Guinea.

Despite the failure of New Guinean people to discriminate fear from surprise, the

results corroborate the proposed hypothesis. Ekman [13, 14] believes that it is reasonable

to say that the connection between particular facial configurations and specific emotions

are universal. Nevertheless, that does not mean that expressions will always occur when

emotions are experienced, nor does it mean that emotions will always occur when a facial

expression is shown (we are capable of inhibiting and fabricating expressions). Anger,

contempt, disgust, fear, happiness, sadness, and surprise are believed to have a universal

facial configuration and are known as basic emotions. This discrete perception of facial

expressions of emotion, in which there is a finite set of predefined classes, is known as the

categorical model.

Apart from studies on emotion characterization, authors have also targeted on the

examination of facial expressions in a more physiological way. Facial expressions can

be described in terms of coding schemes, in which each facial configuration receives a

unique parametrization. The most explored coding scheme is the Facial Action Code

System (FACS), a framework for measuring visibly different facial movements, developed

by Ekman and Friesen [16]. FACS can be used to describe any facial movement in terms

of anatomically based Action Units (AU). The authors developed a comprehensive system

by associating how each muscle of the face acts to change visible appearance and defined

Action Units that all facial expressions could be broken down into. Table 2.2 shows some

examples of Action Units in the Facial Action Code. Figure 2.1 depicts the relationship

between facial muscles and Action Units.

According to Ekman [12], facial expressions are considered to be organized in families.

He argues that a variety of related but visually different expressions can occur as a response

to an emotion. Variations within a family of facial expressions reflect the intensity of the

emotion, whether the emotion is controlled, simulated, or spontaneous. The Emotion

FACS (EMFACS), developed Friesen and Ekman [20], scores facial actions in terms of

the latent emotions or affects that are believed to generate them. EMFACS is a selective

application of FACS scoring in which only certain combinations of AUs, that is, the

combinations that have found to suggest emotions, are coded. Appendix A contains a

detailed table showing the combination of Action Units present in each basic emotion.

Although the literature may provide other emotion characterization models, in this

reasearch, we assume the categorical model. As we are interested in pointing out which of
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AU FAC Name Muscular Basis

1 Inner Brow Raiser Frontalis, Pars Medialis

2 Outer Brow Raiser Frontalis, Pars Medialis

4 Brow Lowerer Depressor Glabellae; Depressor Supercilli; Corrugator

5 Upper Lid Raiser Levator Palpebrae Superioris

6 Cheek Raiser Orbicularis Oculi, Pars Orbitalis

7 Lid Tightener Orbicularis Oculi, Pars Palebralis

Table 2.2: Examples of Action Units in the Facial Action Code. Extracted from [16].

Figure 2.1: Examples of Action Units in the Facial Action Code. Extracted from [37].

the seven basic emotions – anger, disgust, fear, happiness, neutral, sadness, and surprise

– the person is more likely to be communicating, the categorical model can provide us an

easy way to map facial expressions into emotion classes through the aid of the EMFACS

frameworks.
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Chapter 3

Related work

Over the last 20 years, an extensive body of work on facial expression and emotion recogni-

tion has been proposed. Considering the categorical model and the EMFACS framework,

while some studies focus on detecting Action Units (AUs) to, subsequently, find the cor-

responding emotion, others attempt to recognize the basic emotion directly. But, despite

the differences, there exists a consensus in the literature on a pipeline for automatic

emotion recognition from facial expressions, as suggested by Sariyanidi et al. [56] and

Corneanu et al. [5] in their surveys. This pipeline can be decomposed into four funda-

mental components: face localization, face registration, feature extraction and emotion

recognition.

Face localization and registration have been vastly explored by the scientific commu-

nity, as they serve as foundation to a myriad of face-related problems. Therefore, in this

study, we will focus on the last two steps of the pipeline: the feature extraction and the

emotion recognition components. Hence, in this chapter, we will discuss in more depth

common approaches that address these problems within the context of the categorical

model, in which emotions are discretely classified into one of the seven basic categories –

anger, disgust, fear, happiness, neutral, sadness, and surprise.

3.1 Handcrafted features

Handcrafted features are manually engineered data representations whose creation in-

volves a human design through the use of domain knowledge. These features are then

fed to a machine-learning algorithm to perform typical classification or regression tasks.

Handcrafted features, in the context of emotion recognition, is generally divided into two

groups: shape and appearance features. However, it is also possible to combine both and

benefit from their positive aspects concurrently.

3.1.1 Shape features

Shape features are obtained by transforming face information into geometric properties,

such as point coordinates, distances and angles. To accomplish that, distinctive regions of

the face, such as eyes, mouth, nose and chin, are located and their positions are registered
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as landmarks. From these registered points, we extract the desired descriptors to train a

machine-learning model.

Zhang et al. [85], for instance, benefited from a Microsoft Kinect sensor to track 121

fiducial points and construct a mesh representation. Features are generated from facial

points displacements between expressive and neutral faces and only the most informa-

tive ones are selected. The selection process employed is both manual, using domain

knowledge, and automatic, based on minimal-redundancy–maximal-relevance criterion

(mRMR). Finally, a Neural Network (NN) and a Support Vector Regressor (SVR) esti-

mate the intensity of targeted AUs.

Ahmed et al. [2], in turn, divided the face into three regions of interest (eyes region,

mouth regions and a variable auxiliary region) and tracked fiducial points from these

regions to generate shape features based on the Euclidean distance between each pair of

points. Emotion recognition was carried out by an SVM classifier. Similarly, Zheng et al.

[86], in their study about adopting existing methods tuned for adults to recognize facial

expressions in children, extracted 68 facial landmarks and used an SVM to categorize the

facial expressions based on their positions.

Though vastly explored, mainly in the past, shape features are known for their limita-

tions. Their performance is highly sensitive to errors in the registration phase, especially

if there are variations in head tilt, and is subject to identity bias due to subjects’ unique

facial structure [56, 5]. Common approaches to mitigate these issues include data normal-

ization and the use of the face in a neutral state to reduce user specificities.

3.1.2 Appearance features

Appearance features, on the other hand, use texture information by considering the in-

tensity values of pixels. Over the years, a series of different algorithms that use pixel

intensity levels to extract visual descriptors have been proposed in the literature. Among

them, it is possible to find methods using histogram representations to encode informa-

tion, methods based on kernel convolution that look for specific frequency content in the

image, and methods based on the detection of robust local features.

Silva and Pedrini [6], for example, employed Local Binary Patterns (LBP), Histogram

of Oriented Gradients (HOG) and Gabor filters as features to describe the facial expres-

sions for six different basic emotions. For comparison’s sake, they applied the Principal

Component Analysis (PCA) to the LBP and the Gabor filters feature vectors in order to

reduce their dimensionality to the same size of the HOG feature vector. The evaluation

procedure was carried out by three classification algorithms: SVM, NN and K-Nearest

Neighbors (KNN).

Savran et al. [58] used Gabor wavelets to analyze faces for an automatic AU recog-

nition. Feature selection is performed by the AdaBoost algorithm, based on Gabor mag-

nitude responses for each AU. Then, an SVM classifier was trained on top of the most

discriminative features to automatically detect AUs. Nagpal et al. [47] compared the use

of Dense Scale-Invariant Feature Transform (DSIFT) feature detection algorithm along

with a Random Forest (RF) classifier to categorize emotions against several other meth-

ods. One of them, which also employed an RF as a classifier, used a PCA as a feature
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extractor, applying it directly to the holistic representation of the face.

While appearance features are usually robust against registration errors and geometric

transformations, identity bias remains a major issue for this kind of descriptor [56]. Fur-

thermore, as the list of possible appearance features is quite extensive, finding the most

adapted descriptor for our problem is nearly an impractical challenge.

3.1.3 Shape and appearance features combined

To take advantage of the best of both worlds, some studies combine shape and appearance

features when extracting information from facial expressions.

Benitez-Quiroz et al. [18] explored distances between landmarks and angles defined

by Delaunay triangles emanating from these landmarks in conjunction with Gabor filters.

The combined feature vector was then used in a Kernel Subclass Discriminant Analysis

(KSDA) to recognize AUs and their intensities. Du et al. [11] also combined shape

and appearance features, but for the categorization of the six basic emotions. Features

generated by Gabor filters and pairwise distance between facial landmarks were merged

into a single vector to train a KSDA and an SVM classifiers.

Lucey et al. [41] extracted Similarity Normalized Shape Features (SPTS), which refers

to the 68 facial landmarks tracked by an Active Appearance Model (AAM), resulting in a

feature vector of size 136. They also extracted Canonical Normalized Appearance Features

(CAPP) by applying a piece-wise affine warp on each Delaunay triangle so that the source

image aligns with the base face shape. These combined features were then used to train

an SVM to detect AUs.

In this research, however, due to the intrinsic limitation of both shape and appearance

features, we opted to learn descriptors directly from data. Our choice is backed up by

recent results in emotion recognition competitions, such as FERA [19] and EmotiW [17],

whose winners use deep features in their solutions.

3.2 Data-driven features

Unlike its handcrafted counterpart, data-driven features are generated by algorithms in an

automated fashion, following an optimization process to best suit the task we are trying

to accomplish. According to Li and Deng [36], for a variety of applications, including

emotion recognition, features learned through deep learning techniques have been shown

to achieve state-of-the-art performances.

Inspired by the hierarchical architecture of the human biological neural system, deep

learning architectures attempt to capture high-level abstractions through multiple stacked

layers of learning nodes. As data flows through the network, each layer transforms the

output of the previous level into a slightly more abstract representation and before passing

it to the next level.

In computer vision problems, such as emotion recognition from facial images, a partic-

ular class of deep architecture called convolutional neural networks has been extensively

used with great success [64]. In its core building blocks lies the convolutional layer, which

consists of a set of learnable filters that convolves across the whole input image, computing
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a dot product to produce 2-dimensional activation feature maps. These convolutional op-

erations learn correlations among neighboring pixels in such a way the filters get activated

when some specific type of feature is detected.

3.2.1 CNN-derived features

There is a series of considerations one can make when building a CNN based solution. To

begin with, it is necessary to decide upon the network architecture, the types of layers it

should have, their quantities and how they connect to each other. Also, another frequent

concern has to do with how data is inputted to the network. We must choose the kind of

image to use and determine if some sort of preprocessing is required.

Shin et al. [65] proposed a baseline CNN structure for facial expression recognition by

analyzing four different architectures. These networks were trained with five types of input

data: raw, histogram equalization, isotropic smoothing, diffusion-based normalization and

difference of Gaussian. Comparing the results, the best accuracy was obtained by a three-

level structure, each level consisting of a convolutional and a max-pooling layer, fed with

the histogram equalized image.

Yet, in this research, instead of assessing the performance of different network architec-

tures for emotion categorization, we picked just a single model and explored different ways

to adapt it to our problem. Our selection is quite popular and known for its competitive

results in face recognition.

One of the paths we explored was to analyze how input data can be manipulated

to help us improve results. We took the same direction of Ruiz-Garcia et al. [53], who

compared two different approaches to classify images into seven emotions using CNNs.

In the first one, they examined an architecture with a reduced number of convolutional

layers, while in the second approach, they horizontally split the input image into two parts

based on eyes and mouth positions.

Li et al. [35] presented a Deep Fusion Convolution Neural Network (DF-CNN) for

multimodal 2D and 3D facial expression recognition. DF-CNN is composed by a feature

extraction subnet, a feature fusion subnet, and a softmax layer. Textured 3D face scans

are decomposed into six 2D maps (geometry, normal-x, normal-y, normal-z, curvature

and texture maps) which are then fed to the DF-CNN for feature extraction and fusion,

generating a 32-dimensional feature vector. Predictions for one of the six base emotions

are made by both a softmax layer and a linear SVM.

The choice for CNN-derived features, however, brings us some substantial challenges.

Training a CNN from scratch, for instance, is not always possible or desirable, especially

if we do not have sufficient data. In fact, the optimization process, in which the weights

of a deep architecture are learned, is slow and cumbersome, involving a multitude of

mathematical operations. Having good initial values for the network weights can help us

speed up that process and achieve better results.

Ruiz-Garcia et al. [54] analyzed the effects of different weight initializations of a CNN

for emotion recognition using facial expression images. They compared the performance

of a CNN when its weights are randomly initialized to the performance when pre-training

each layer of the network as an Auto-Encoder in an unsupervised fashion as a Stacked



24

Convolutional Auto-Encoder (SCAE).

An alternative approach regarding weight initialization would be to explore pre-trained

models. In this technique, we transfer the knowledge acquired in one domain to another

one by either using the pre-model as a feature extractor or by fine-tuning it. The closer

the source task is to the target task, the better the results [81]. In our case, the pre-trained

model we selected was trained on face images, the same kind of images used to recognize

emotions from facial expressions.

Zhou and Shi [87] used the first five convolutional layers of a network pre-trained on

a visual object recognition dataset as a feature extractor. It generates 256 feature maps

that are forwarded to three different subsystems. The first uses all 256 feature maps.

The second uses a deconvolutional neural network to filter out feature maps responding

primarily to patterns in the background. The third determines the extent to which each

feature map is selective for AUs. All three subsystems have fully-connected and softmax

layers on their ends and were fine-tuned to recognize facial expression. Zavares et al. [82]

investigated the influence of fine-tuning a CNN in a cross-dataset approach to recognize

facial expressions. Using a total of seven datasets, the authors employed the leave-one-out

approach when fine-tuning a model pre-trained for the face recognition problem.

Mavani et al. [46] fine-tuned an existing CNN model pre-trained for the object recog-

nition problem to predict seven basic emotions from facial expressions. The fined-tuned

model was used to compute visual saliency maps for each dataset image. The network

was then trained again using the product between the original images and their saliency

maps. Visual saliency maps are intensity maps that highlight areas of an image that most

attracted the attention of the network [66]. We explored saliency maps with the intent

of understanding what our model has learned during training. This valuable information

helped us to find alternative approaches and to improve our results.

3.2.2 Other data-driven derived features

Although CNN-based models are the most commonly used to extract features in computer

vision problems, the literature also provides other data-driven methods. Here we cite a

couple of them used to classify emotions from facial expressions.

Nagpal et al. [47] propose a Mean Supervised Deep Boltzmann Machine (msDBM) as a

feature extractor for the seven basic emotions recognition problem. The supervised phase

is incorporated in the loss function, by maximizing inter-class and minimizing intra-class

variations through the use of the distances between learned features and mean features of

a particular class. Learned features are used to train a Random Forest classifier.

Sun et al. [68] employ Multi-scale Dense LBP (MDLBP) to extract descriptors in

different resolutions. These descriptors are concatenated into a single vector and sent to

a Stacked Binarized Auto-encoder for feature learning in an unsupervised fashion. Then

a Binarized Neural Network (BNN) is trained on the learned features to predict emotions

labels.
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Chapter 4

Datasets

In deep neural networks, as with all supervised learning algorithms, data plays a key role.

Often, a huge quantity of data is required to capture variability and generate models

less prone to bias. A representative training data set should include subjects of different

ethnic groups, pictured under different conditions: illumination, pose, image quality, etc.

Here, we describe the details of the datasets used in this research. We underline infor-

mation about their subjects, the data acquisition process, the captured media and their

properties, and the annotation procedure that attributed class labels to each example.

All datasets were made available to the scientific community by their authors. We have

not collected any new data nor built any new dataset during this research.

We organized this chapter by reserving one section for each dataset. In Section 4.10,

we present a summary of the datasets and explains how they were split into training,

validation and test sets.

4.1 Bosphorus

The Bosphorus dataset1 [57, 59], a 3D/2D database of FACS annotated facial expressions,

consists of 105 subjects (61 men and 44 women) and 4666 faces in various poses and

occlusion conditions. The majority of the subjects are Caucasian, aged between 25 and

35. There are 29 professional actors/actresses subjects incorporated in the database. The

images have variable dimensions but are in high resolution.

In this study, we used only 2D images annotated with one of the seven basic emotions

(anger, disgust, fear, happiness, neutral, sadness and surprise). The selected images do

not contain occlusions of any type and head pose does not vary, as faces are always in

frontal position. Figure 4.1 reproduces some examples from the dataset.

1Following the Bosphorus dataset license agreement, only images from subjects marked as publishable
were used in this document.
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Figure 4.1: Examples from subject 11 of the Bosphorus dataset (anger, disgust, fear,
happiness, sadness and surprise).

4.2 CAFE

The Child Affective Facial Expression dataset2 [38, 39] comprises photographs of a racially

and ethnically diverse group of 2 to 8-year-old children posing for six emotional facial

expressions – anger, disgust, fear, happiness, sadness and surprise – and a neutral face.

The full set features 90 female models and 64 male models with no prior training on

how to pose to the photos. A professional photographer elicited naturalistic expressions

by engaging each child in unscripted play based on each emotion. The photographer

attempted to obtain all FACS codes related to them, although not all children were able

to successfully pose for all seven basic emotions. Images have 2530×2530 pixels resolution.

To conform to the EMFACS framework, images captured when children were deliber-

ately prompted to pose for the expression with their mouths open were not considered.

The only exception is the surprise emotion, which naturally occurs with an open mouth.

We also discarded the disgust emotion examples performed with a tongue protrusion.

4.3 CFEE

The Ohio State University Compound Facial Expressions of Emotion database3 [11] com-

prehends images of facial expressions of emotion of 230 subjects in 22 different categories.

All images have 1000× 750 pixels resolution and were annotated following the EMFACS

protocol.

Besides the neutral state and the six basic emotions (anger, disgust, fear, happiness,

sadness and surprise), the dataset also contains posed compound emotions, that means,

emotions that can be constructed by combining basic component categories to create new

ones. For instance, happily surprised and angrily surprised are two distinct compound

emotion categories. For this work, however, these compound emotions were not taken

into consideration. Figure 4.2 shows some examples from the dataset.

2Images from the CAFE dataset are copyright protected and cannot be reproduced.
3The CFEE dataset terms of use do not restrict the use of its images in scientific publications.
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Figure 4.2: Examples from subject 24 of the CFEE dataset (anger, disgust, fear, happi-
ness, sadness and surprise).

4.4 CK+

The Extended Cohn-Kanade dataset4 [29, 41] contains 123 different subjects in 593 se-

quences of images, with variable duration (i.e. 10 to 60 frames), which goes from the

neutral state to peak formation of the facial expressions. Most of the expressions are

posed, but a few are spontaneous. The majority of the sequences were recorded in 8-bit

gray-scale in 640× 490 pixels resolution. Only 327 of the 593 sequences fit the prototypic

definition given by EMFACS for one of the basic emotions: anger, contempt, disgust, fear,

happiness, sadness and surprise.

We manually looked through each of the 327 sequences of images and selected the

first frame to the neutral emotion set and every other frame with a clear manifestation of

the facial expression to the correspondent emotion set, except for the contempt emotion,

which is not used. Figure 4.3 depicts an example of this procedure.

Figure 4.3: Surprise emotion sequence from subject 55 of the CK+ dataset. The first
frame was selected to the neutral emotion set while all frames from the bottom row were
selected to the surprise emotion set.

4.5 KDEF

The Karolinska Directed Emotional Faces dataset5 [42] encompasses 4900 pictures of hu-

man facial expressions. The set contains 70 amateur actors (35 females and 35 males)

displaying 7 different emotional expressions (anger, disgust, fear, happiness, neutral, sad-

ness and surprise). Each expression was photographed twice from 5 different angles,

although in this research we have only used images with frontal face position. Images

have a resolution of 562× 762 pixels.

4Following the CK+ dataset guidelines, only images from subjects with consent for publication were
reproduced in this document.

5We followed the KDEF dataset guidelines when reproducing its images in this document.



28

All subjects received written instructions in advance about the seven different expres-

sions that they were to pose during the photo session. It was emphasized that they should

evoke the emotion in a way that felt natural to them while, at the same time, trying to

make the expression strong and clear. Although the dataset authors do not mention the

protocol used to annotate images, they seem to follow the prototypic definition given

by EMFACS, if we refer to Appendix A. Figure 4.4 illustrates some examples from the

dataset.

Figure 4.4: Examples from subject 1 of the KDEF dataset (anger, disgust, fear, happiness,
sadness and surprise). Files: AF01ANS, AF01DIS, AF01AFS, AF01HAS, AF01SAS and
AF01SUS, respectively.

4.6 MUG

The MUG facial expression database6 [3] consists of image sequences of 52 subjects per-

forming posed facial expressions. They were captured in a controlled laboratory envi-

ronment with a resolution of 896 × 896 pixels and no occlusions. Each image sequence

contains 50 to 160 images. Six basic emotions (anger, disgust, fear, happiness, sadness

and surprise) plus the neutral state were captured. The number of sequences for each

emotion and subject is variable.

The subjects were given a tutorial on how to perform the six facial expressions accord-

ing to the emotion prototypes defined in EMFACS. The image sequences start and end

at the neutral state and follow the onset, apex, offset temporal pattern.

We manually looked through each of the 986 sequences of images and selected the first

and last frames to the neutral emotion set and every other frame with a clear manifestation

of the facial expression to the correspondent emotion set. The neutral emotion set is also

composed of images from neutral emotion sequences.

4.7 NVIE

The Natural Visible and Infrared facial expression database7 [43, 74, 75, 76] contains

both spontaneous and posed expressions, recorded simultaneously by a regular and an

infrared thermal camera. Here, we are only interested in the posed dataset captured by

6The use of MUG images in publications is only permitted upon explicit grant from subjects.
7The NVIE dataset release agreement does not restrict the use of subject images in scientific publica-

tions.
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the regular camera, which includes the apex expressional images of 107 subjects, both

with and without glasses. Each emotion (anger, disgust, fear, happiness, neutral, sadness

and surprise) was recorded under three different illumination conditions: left, front and

right illumination. Images have a resolution of 704× 480 pixels.

It is worth noting that, even though images were annotated with one of the basic

emotions, there is no information about how this process was conducted. Put in other

words, we do not know if the facial expressions were evaluated according to the FAC

system. Figure 4.5 depicts some examples from the dataset.

Figure 4.5: Examples from subject 4 of the NVIE dataset (anger, disgust, fear, happiness,
sadness and surprise).

4.8 Oulu-CASIA

The Oulu-CASIA NIR&VIS facial expression database8 contains videos with the six typ-

ical expressions: anger, disgust, fear, happiness, sadness and surprise, from 80 subjects

captured with two imaging systems, NIR (Near Infrared) and VIS (Visible light), un-

der three different illumination conditions: normal indoor illumination, weak illumination

(only computer display is on) and dark illumination (all lights are off). The database in-

cludes two parts, one was taken by the Machine Vision Group of the University of Oulu,

consisting of 50 subjects and most of them are Finnish people. The other was taken by

the National Laboratory of Pattern Recognition, Chinese Academy of Sciences, consisting

of 30 subjects and all of them are Chinese people.

Subjects were asked to make a facial expression according to an expression example

shown in picture sequences. The videos were recorded at 25 frames per second with an

image resolution of 320 × 240 pixels. There is no information about how images were

annotated, although they seem to conform to the EMFACS prototypic definition present

in Appendix A. Only images captured with visible light in normal indoor illumination

were used in this study.

We manually looked through each of the 480 sequences of images and selected the first

frame to the neutral emotion set and every other frame with a clear manifestation of the

facial expression to the correspondent emotion set. Figure 4.6 shows an example of this

procedure.

8The Oulu-CASIA dataset guidelines do not restrict the use of subject images in scientific publications.
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Figure 4.6: Anger emotion sequence from subject 1 of the Oulu-CASIA dataset. The first
frame was selected to the neutral emotion set while the last 4 frames from the bottom
row were selected to the anger emotion set.

4.9 RaFD

The Radboud Faces Database9 [34] is a set of pictures of 67 models (including Caucasian

males and females, Caucasian children, both boys and girls, and Moroccan Dutch males)

displaying 8 emotional expressions (anger, contempt, disgust, fear, happiness, neutral,

sadness and surprise) according to the FAC system. Each emotion was shown with three

different gaze directions and all pictures were taken from five camera angles simultane-

ously. Images have 681× 1024 pixels resolution.

Here, we used images of all basic emotions but contempt. We selected only images

with frontal face position and all three gaze directions: looking left, looking frontal and

looking right. Figure 4.7 reproduces some examples from the dataset.

Figure 4.7: Examples from subject 69 of the RaFD dataset (anger, disgust, fear, happiness,
sadness and surprise).

4.10 Datasets summary

For a better visualization of the datasets and their properties, in this section, we sum-

marize all relevant information related to them. For each dataset, Table 4.1 specifies the

number of subjects, the number of samples, the image resolution, how the facial expres-

sion was elicitated, the available classes of emotion, if the number of samples is balanced

among these classes and which protocol was used when annotating images. Table 4.2 gives

9The RaFD dataset guidelines state that there is no restriction on using its images in scientific publi-
cations.
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more information on the subjects who participated in the composition of the datasets. It

provides details such as age, gender and ethnicity.

Subj. Samples
Image

resolution
Elicitation

Classes of

emotion
Bal. Ann.

Bosphorus 105 4,666 images
Variable
(HI-RES)

Posed 6 basic + neutral No FACS

CAFE 154 1,192 images
2530× 2530

pixels
Posed 6 basic + neutral No FACS

CFEE 230 5,060 images
1000× 750

pixels
Posed

6 basic + neutral
+ 15 compound

Yes FACS

CK+ 123
593 image
sequences

640× 490
pixels

Posed +
Spontaneous

6 basic + neutral
+ contempt

No FACS

KDEF 70 4,900 images
562× 762
pixels

Posed 6 basic + neutral Yes N/D

MUG 52
986 image
sequences

896× 896
pixels

Posed 6 basic + neutral No FACS

NVIE 107 3,960 images
704× 480
pixels

Posed 6 basic + neutral No N/D

Oulu-CASIA 80
2,880 image
sequences

320× 240
pixels

Posed 6 basic + neutral No N/D

RaFD 67 1,608 images
681× 1024

pixels
Posed

6 basic + neutral
+ contempt

Yes FACS

Table 4.1: Datasets summary: Number of subjects (Subj.), Number of samples (Samples),
Image resolution, Facial expression elicitation (Elicitation), Classes of emotion, Balanced
classes (Bal.) and Annotation method (Ann.).

Age Gender Ethnicity

Bosphorus Adults 58% male, 42% female Majority Caucasian

CAFE Children 42% male, 58% female
African-american, Asian, Caucasian,
Hispanic, South-asian

CFEE Adults 43% male, 57% female African-american, Asian, Caucasian, Hispanic

CK+ Adults 31% male, 69% female African-american, Caucasian, others

KDEF Adults 50% male, 50% female Majority Caucasian

MUG Adults 59% male, 41% female Majority Caucasian

NVIE Adults N/A Asian

Oulu-CASIA Adults 74% male, 26% female Asian, Caucasian

RaFD
Adults +
Children

63% male, 37% female Caucasian, Moroccan

Table 4.2: Datasets breakdown by Age, Gender, and Ethnicity.

Given that CK+, MUG and Oulu-CASIA datasets were manually prepared by looking

through each sequence of images and selecting only samples with a clear manifestation of

the emotion, they were picked for training and validation steps. The remaining datasets
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(Bosphorus, CAFE, CFEE, KDEF, NVIE and RaFD), as they have a ground-truth label

for every single image, were used in the test phase. Thereby, we will be able to compare

our methods to the literature in a more honest and reliable way.

Table 4.3 and Table 4.4 show the number of examples for each of the seven basic

emotions (anger, disgust, fear, happiness, neutral, sadness and surprise) in training and

validation datasets and in test datasets, respectively. These values correspond to the num-

ber of samples available after filtering out undesired images. Data preparation processes,

including data augmentation operations used to increase the diversity of training data,

are discussed in Chapter 6.

Emotion

Ang Dis Fea Hap Neu Sad Sur Total

CK+ 463 419 285 644 593 270 534 3,208

MUG 5,582 4,833 4,442 6,032 5,100 5,467 5,713 37,169

Oulu-CASIA 638 613 626 614 480 608 622 4,201

Total 6,683 5,865 5,353 7,290 6,173 6,345 6,869 44,578

CK+∗ 18,520 16,760 11,400 25,760 23,720 10,800 21,360 128,320

MUG∗ 22,328 19,332 17,768 24,128 20,400 21,868 22,852 148,676

Oulu-CASIA∗ 25,520 24,520 25,040 24,560 19,200 24,320 24,880 168,040

Total∗ 66,368 60,612 54,208 74,448 63,320 56,988 69,092 445,036

∗ After data augmentation. For details about data augmentation, we refer the reader to Subsection
6.1.1.

Table 4.3: The number of examples for each emotion (Anger, Disgust, Fear, Happiness,
Neutral, Sadness and Surprise), berofe and after data agumentation, in datasets used for
both training and validation.

Emotion

Ang Dis Fea Hap Neu Sad Sur Total

Bosphorus 71 69 70 106 299 66 71 752

CAFE 121 96 79 120 129 62 103 710

CFEE 230 230 230 230 230 230 230 1,610

KDEF 140 140 140 140 140 140 140 980

NVIE 628 619 629 633 208 618 625 3,960

RaFD 201 201 201 201 201 201 201 1,407

Total 1,391 1,355 1,349 1,430 1,207 1,317 1,370 9,419

Table 4.4: The number of examples for each emotion (Anger, Disgust, Fear, Happiness,
Neutral, Sadness and Surprise) in datasets used for testing.
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Chapter 5

Proposed methods

In this chapter, we present our approaches towards an automated method for emotion

recognition from facial expressions. All methods described here use a convolutional neural

network (CNN) and are based on the VGG-Face model from the Visual Geometry Group

at the University of Oxford [50]. Here, we report the process that led us to the proposed

methods and explain the rationale behind our choices in view of a cross-dataset scenario.

Throughout the text, we consider the network in a top-down representation when referring

to its architecture.

In Section 5.1, we describe how we benefit from the pre-trained VGG-Face model to

create our baseline solution. Then, we discuss data visualization and how it can be used to

interpret and improve our results in Section 5.2. Our first method is explained in Section

5.3 and is based on a multi-branch CNN to handle different regions of interest present

in the face. In Section 5.4, we suggest a less resource-demanding approach, compared

to the previous one, that uses patches to occlude random regions of the input image

during training. Finally, in Section 5.5, the third explores the triplet loss function as an

alternative way to achieve model generalization.

5.1 A pre-trained model as a baseline

The VGG-Face [50] is a deep architecture trained on a dataset containing 2,622 subjects

and over 2.6M images for face recognition. The input of the network is a three-channel

image of 224× 224 pixels resolution. Its architecture comprises a long sequence of convo-

lutional layers, each followed by one or more non-linear operators such as rectified linear

unit (ReLU) and max pooling, and three fully-connected layers at the end of the network.

The last fully-connected layer is adjusted to an output of 2,622 values, the number of

classes of the problem. A softmax log loss function is used to predict the subject’s iden-

tity. The model was evaluated on the Labeled Faces in the Wild [25] and the YouTube

Faces [79] datasets, obtaining classification accuracy above 97% in both. Figure 5.1 shows

the network architecture.

To overcome the lack of data to train a convolutional neural network from scratch for

the emotion recognition problem, we leverage the knowledge the pre-trained VGG-Face

model has for face recognition and adapt it to our task, applying a concept called Trans-
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T can be learned from training data consisting of pairs {xi, yi}, where x1 ∈ X and yi ∈ Y,

and consequently f(·) can be used to predict the corresponding label of a new instance x.

Definition 5.3. Given a source domain Ds and a learning task Ts, a target domain Dt

and a learning task Tt, transfer learning aims to help improve the learning of the target

predictive function fT (·) in Dt using the knowledge in Ds and Ts, where Ds 6= Dt and

Ts 6= Tt.

For deep learning based methods, Tan et al. [71] list possible categories of what they

call Deep Transfer Learning. In our case, we are mainly interested in Network-Based

Deep Transfer Learning, in which a part of the network pre-trained in the source domain

is reused in the target domain. This approach is possible owing to the fact that neural

networks tend to learn very similar features in their first layers when trained on images [81].

Their mechanism is an iterative and continuous abstraction process, roughly comparable

to the way the human brain works.

In this work, we experimented with two different Network-Based Deep Transfer Learn-

ing approaches: pre-trained VGG-Face model as a feature extractor and fine-tuning the

pre-trained VGG-Face model.

Pre-trained VGG-Face model as a feature extractor

When training a deep learning model, each layer of its architecture learns a different set

of features that will be passed on as inputs to subsequent layers until the final layer is

reached and the final output yielded. Any of these layers can be used as a fixed feature

extractor. Training data from the target domain are passed through the network until

they reach the selected layer and the extracted features can be then used to train any

classifier for the target task.

Figure 5.2 illustrates the procedure. In this example, we cut the network after a given

layer, e.g. the pool 5 layer, and used its output as features to train a Support Vector

Machine (SVM) classifier for emotion recognition.

Fine-tuning the pre-trained VGG-Face model

It is also possible to selectively retrain some of the layers of the network so that it is

adapted for the target task. In this fine-tuning process, considering a top-down network

representation, we may want to freeze the weights of some top layers, as they capture

generic features, while task-specific bottom layers are updated in an optimization process.

It is also possible to modify or replace some layers to make the network best fit our needs.

One common adjustment is to replace the last fully connected layer with a new one

whose output matches the number of classes of our problem. We carried out this procedure

as shown in 5.3.
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5.2 Data visualization

In the last decade, we have seen the adoption of deep neural networks in many different

areas, including ones with high-stakes decisions. If, on one hand, it is now the state-

of-the-art technique to many different applications, on the other hand, its complex and

non-linear structure, at times seen as a black box, imposes an obstacle to human in-

terpretability. Understanding what a deep neural network has learned during training

not only can increase transparency and accountability in the decision process, but also

provides explanations to helps us improve its accuracy.

For that reason, the scientific community has proposed plenty of methods that try to

connect the dots between data inputs, learned inner parameters, and network outputs.

For image data, for example, one commonly wants to know which regions of the image

are the most significant when the network attributes a certain class to it, in a sort of map

representation.

Zeiler and Fergus [83] propose to monitor the classification confidence while systemati-

cally occluding different parts of the input image. A heatmap can be created by analyzing

the confidence variation for each occluded part of the image. Sundararajan et al. [69]

suggested the Integrated Gradients, a method in which a sequence of images, interpolating

in increasing intensity from a baseline to the actual image, is passed through the network

and the gradients of the outputs with respect to the inputs are integrated to a final map.

Springenberg et al. [67] introduced the Guided Backpropagation method, which computes

the gradient of the output with respect to the input, backpropagating through the ReLU

layers only values that were not negative in both forward and backward passes. The

resulting image shows the most discriminative parts.

We tested these three methods, but, eventually, opted for another for our work: the

Gradient-weighted Class Activation Mapping (Grad-CAM) [63]. The Grad-CAM uses

class-specific gradient information which is passed back through the final convolutional

layer to create a heatmap that highlights important regions in the image for class dis-

crimination. The method is applicable to a variety of CNNs, including the VGG-Face,

without the need of modifying its architecture. Next, we present a formal definition of

the method.

Consider a Grad-CAM heatmap Lc
Grad−CAM ∈ R

u×v of width u and height v with

respect to class c. To generate it, we first compute the gradients of the score yc for class

c with respect to feature maps Ak of the selected convolutional layer. Then we perform

a global-average-pooling operation on these gradients to obtain weights αc
k that capture

the importance of each feature map k for class c:

αc
k =

1

Z

∑

i

∑

j

∂yc

∂Ak
ij

. (5.1)

The heatmap can be then calculated by a linear combination of αc
k weights and Ak

feature maps, following a ReLU function:

Lc
Grad−CAM = ReLU(

∑

k

αc
kA

k) . (5.2)
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Note that the generated heatmap has the same dimensions of the selected feature

map. In our case, we used the conv5 3 layer, which is 14 × 14, as per Figure 5.1. By

upscaling the heatmap, it can be used to confront the input image. Table 5.1 compares the

heatmaps generated from each one of the aforementioned methods: Occlusions, Integrated

Gradients, Guided Backpropagation, and Grad-CAM.

Although the Occlusions method works in a pretty intuitive way, the heatmap gen-

eration process is very expensive once we have to forward pass the input image through

the network several times. Moreover, it is not clear what color and size the patches

used to occlude the parts of the input should have and how such choices may impact

the final heatmaps. The Guided Backpropagation method, in turn, can give fine-grained

visualizations at the pixel level but is not class-discriminative. As we can see from Ta-

ble 5.1, it highlights similar regions for both happiness and sadness classes. Finally, for

Integrated Gradients, which is also a computationally expensive method due to multiple

feed-forwards passes, it is difficult to assess how different baseline image hyperparame-

ter choices affect the resulting heatmaps. For those reasons, we picked the Grad-CAM

method.

5.3 Method 1: Parts-based VGG-Face

When evaluating our baseline model, the fine-tuned VGG-Face for emotion recognition,

we generated Grad-CAM heatmaps for each example in the training dataset to visualize

what the network had learned and to gain insights about how to improve initial results.

For each one of the six basic emotions (anger, disgust, fear, happiness, sadness, and

surprise), we calculated the mean heatmap and applied it to the respective mean image

of that class. This procedure was executed for all three training datasets: CK+, MUG,

and Oulu-CASIA. Table 5.2 presents mean images and heatmaps side by side for each

emotion and each dataset.

Comparing the heatmaps from Table 5.2 with the combination of Action Units required

to convey a basic emotion as suggested in the literature and available in Table A.1, it is

possible to see that there is not a complete correspondence between highlighted regions

and the areas where Action Units occur. We suppose that, once the network has found

enough discriminative regions, it stops looking for new ones, as if it was trapped in local

minima. All observed differences are listed below.

• Anger: frontal, supralabial, and nasolabial fold regions emphasized; eyelids (AU5

and AU7) and lips (AU23) regions possibly minimized.

• Disgust: periorbital, perinasal, and mental regions emphasized; lips (AU16) region

possibly minimized.

• Fear: periorbital, nasal, and supralabial regions emphasized; glabellar (AU4) and

mouth (AU20 and AU26) regions possibly minimized.

• Happiness: nasal and supralabial regions emphasized; infraorbital (AU6) and lip

corners (AU12) regions possibly minimized.
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CK+ MUG Oulu-CASIA

Ang

Dis

Fea

Hap

Sad

Sur

Table 5.2: Mean image and mean heatmap generated from Grad-CAM (Selvaraju et al.
[63]) for each emotion (Anger, Disgust, Fear, Happiness, Sadness, and Surprise) and train
dataset.

discriminative regions of the image. In the case of emotion categorization, we leverage

the Facial Action Code System to propose the positions of such regions of interest.

Regions of interest were created by looking where Action Units occur. We grouped

them into a total of four candidate regions: forehead, eyes, nose, and mouth. For each

region, a correspondent binary mask was applied to the input image in order to hide out

the rest of the face. Figure 5.4 shows the resulting images. They were used to train a

multi-branch CNN in which each branch is responsible for learning attributes for a specific

region of interest.

In the multi-branch CNN architecture, each one of the four branches is formed by all

VGG-Face layers until pool 5. These branches output a feature map of size 7 × 7 × 512

each, which are then concatenated to a 7× 7× 2048 tensor. A new block of convolutional

layers is plugged into its bottom to reduce the number of parameters before we get to
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Chapter 6

Experimental results

In this chapter, we evaluate the efficacy of the proposed methods by carrying out exper-

iments with the datasets described in Chapter 4. As state there, we used CK+, MUG

and Oulu-CASIA datasets in the training and validation phases, while Bosphorus, CAFE,

CFEE, KDEF, NVIE, and RaFD datasets were used in the test phase.

We organized this chapter as follows. In Section 6.1, we explain the data preparation

process, including data augmentation operations performed in training datasets. Section

6.2 lists the evaluation metrics used in this research. For each method proposed in Chapter

5, a section was reserved to present and discuss their results individually. Then, we proceed

to compare our methods in Section 6.7. In Section 6.8, we apply a statistical test to verify

if our methods have led us to significant improvements. Finally, in Section 6.9, we compare

our methods performace with works present in the literature as well as with commercial

applications.

6.1 Data preparation

The first step in data preparation was to detect facial landmarks. We used the Dlib

C++ Library [31] to find 68 points of interest, which include points on the corners of the

mouth, along the eyebrows, on the eyes, and so forth. Dlib face detector was created using

Histogram of Oriented Gradients (HOG) [8], combined with a linear classifier, an image

pyramid, and a sliding window detection scheme. The pose estimator was implemented

following Kazemi and Sullivan paper [30] and the dataset detection model was trained on

the iBUG 300-W face landmark dataset [55].

After finding the landmarks, we used the six points around each eye to calculate its

center. Figure 6.1 shows an example face with 68 landmarks and eyes center points.

Next, we performed an in-plane rotation to have the eyes horizontally aligned and then

computed the bounding box used to crop a squared region of the face. For this last task,

we defined three ratios:

d1 = 0.333, d2 = 0.277 and d3 = 0.446

where d1 is the height fraction of the face corresponding to the distance between the

eyes and upper boundary, d2 the width fraction of the face corresponding to the distance
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Figure 6.1: On the left, the 68 landmarks detected by Dlib. On the right, the calculated
eyes center points. Sample extracted from subject 74 of the CK+ dataset.

between the eye center and the nearest side boundary and d3 the width fraction of the

face corresponding to the distance between the two eyes centers. Figure 6.2 shows the

computed bounding box after face alignment and the cropped region.

Figure 6.2: Face bounding box after alignment and cropped region. Sample extracted
from subject 74 of the CK+ dataset.

Finally, given that some datasets contain images in grayscale, all cropped images were

converted to grayscale and pixel values replicated to form a three-channel image. They

were also resized to 224× 224 pixels to match our model input size, before being used in

both training and evaluation processes.

6.1.1 Data augmentation

The lack of a sufficient amount of training data is a constant problem in machine learning.

The more variable the data to which an algorithm has access during training, the more
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it can learn to generalize and be effective. Data augmentation overcomes (at least par-

tially) this issue by artificially generating new samples through transformations applied

to existing ones. In this work, data augmentation was carried out statically, that is, all

data were generated previous to the training phase, using the following operations:

• Translation: the bounding box was shifted left, right, up, and down by 10% of the

distance value between the eyes centers before cropping the region of interest.

• Mirror: the cropped image was flipped horizontally.

• Contrast Limited Adaptive Histogram Equalization (CLAHE): an image

contrast enhancement algorithm, which divides the images into regions and performs

local adaptative histogram equalization with a limited contrast amplification to

reduce noise [88]. CLAHE was employed with two different kernel sizes (8× 8 and

16× 16) on the cropped images.

• Gaussian Blur: the cropped image was blurred using a Gaussian function with a

random standard deviation value between 0.05 and 2.3.

• Gamma Correction: is used to correct the differences between the way a camera

captures content and the way our visual system processes light, defining the rela-

tionship between a pixel’s numerical value and its actual luminance. It transforms

the cropped image in a pixel-wise manner.

• Multi-Scale Retinex with Color Restoration (MSRCR): is an algorithm that

tries to transform digital images into renditions that approach the realism of direct

scene observation [51]. It is applied to enhance local contrast/lightness and color

constancy, being the former our point of interest, since we use only grayscale images.

Figure 6.3 presents the results of the aforementioned operations applied to a sam-

ple image. In the data augmentation process, we oftentimes combined these operations

intending to generate more data.

6.2 Evaluation metrics

We adopted four different metrics as a means to evaluate our trained models. They were

chosen with a multiclass classification problem in mind and help us compare the efficacy

of the trained models for each class of emotion as well as for each dataset as a whole.

• Recall: computes the fraction of correct predictions for one class over the number of

actual examples of that class. It is given by Equation 6.1, where ŷci is the predicted

value of the i -th sample from class c, yci the corresponding true value for class c,

and n the total number of samples in class c:

recall(yc, ŷc) =
1

n

n
∑

i=1

{

1, if yci = ŷci

0, otherwise
. (6.1)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.3: The operations used to augment data: (a) the original cropped image, (b)
translation left, (c) translation right, (d) translation up, (e) translation down, (f) mirror,
(g) CLAHE, (h) Gaussian Blur, (i) Gamma Correction and (j) MSRCR. Sample extracted
from subject 74 of the CK+ dataset.

.

Recall is also known as True Positive Rate (TPR) in a binary classification setup.

It is described in Equation 6.2, where TP is the number of true positives and FN

is the number of false negatives:

TPR =
TP

TP + FN
. (6.2)

• Normalized accuracy: computes the average recall for all classes of the dataset.

It is given by Equation 6.3, where rc is the recall for the c-th class of the dataset

and n the total number of classes. The normalization gives equal weights for each

class when computing the accuracy if the number of examples is different amidst

classes:

norm acc(r) =
1

n

n
∑

c=1

rc . (6.3)

• Accuracy: computes the fraction of correct predictions for one dataset. It is given

by Equation 6.4, where ŷi is the predicted value of the i -th sample, yi the corre-

sponding true value, and n the total number of samples in the dataset:

acc(y, ŷ) =
1

n

n
∑

i=1

{

1, if yi = ŷi

0, otherwise
. (6.4)

• Number of parameters: is directly linked to the quantity of memory the model

consumes during training and testing, and the amount of disk space it uses when

persisted.
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6.3 A pre-trained model as a baseline

Our baseline method consists of fine-tuning the pre-trained VGG-Face model [50] for the

emotion recognition problem, as described in Section 6.3. Using the Deep Transfer Learn-

ing concept, we depart from the original VGG-Face network with its weights optimized for

the face recognition problem, replace the last fully-connect layer to match the number of

classes of our task, and restart the network optimization process feeding it with examples

from the seven basic emotions. In our experiments, we tried different approaches towards

which layers should have their weights frozen and which should not. The best result was

obtained when all layers were left available for optimization, which means that none of

them were frozen.

We also tried to use the pre-trained VGG-Face model as a feature extractor with a

multiclass SVM classifier on top of it. In these experiments, we extracted features from

different network layers, some of them yielding huge feature vectors (the pool 4 layer,

for instance, generates a vector of size greater than 100K features) that had to have its

dimensions reduced through the use of the Principal Component Analysis (PCA) before

being served as input data to the SVM. None of these tests, however, outperformed the

results we had by fine-tuning the pre-trained VGG model. Also, it is usually preferable,

in terms of simplicity, to have an end-to-end architecture than to cherry-pick the feature

extractor layer and attach an external classifier on top of it.

Table 6.1 and Figure 6.4 show the results obtained with our baseline method. These

results will be used as a basis for comparison with our subsequent methods.

Recall (%)
Acc (%)

Norm.
Acc (%)Ang Dis Fea Hap Neu Sad Sur

Boshorus 81.69 50.72 50.00 99.06 81.94 51.52 73.24 75.00 69.74

CAFE 2.48 84.38 59.49 100.00 86.05 41.94 100.00 69.15 67.76

CFEE 77.39 83.91 71.74 97.83 78.70 73.04 88.26 81.55 81.55

KDEF 72.14 90.00 80.71 99.29 91.43 77.14 77.14 83.98 83.98

NVIE 27.71 25.04 11.29 62.24 88.94 7.28 20.80 29.14 34.76

RaFD 99.00 99.00 89.55 98.51 91.54 88.56 100.00 95.17 95.17

Mean 60.07 72.18 60.46 92.82 86.43 56.58 76.57 72.33 72.16

Mean∗ 66.54 81.60 70.30 98.94 85.93 66.44 87.73 80.97 79.64

∗ Without the NVIE dataset.

Table 6.1: Baseline results obtained by fine-tuning the pre-trained VGG-Face model for
the emotion recognition problem.

By looking at Table 6.1 and Figure 6.4, two points call our attention instantly. The

first is the low accuracy obtained for the anger emotion in the CAFE dataset. To track

down the cause of such low accuracy, we looked through the dataset and generate the

mean image for the emotion in question. Figure 6.5 presents the resulting mean image.
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(a) (b) (c) (d) (e)

Figure 6.6: Mean images from NVIE dataset: (a) anger, (b) disgust, (c) fear, (d) sadness
and (e) surprise.

as neutral. The same occurs with the other mentioned emotions: 30.21% for the disgust

emotion, 50.72% for the fear emotion, 53.24% for the sadness emotion, and 45.92% for

the surprise emotion.

These findings show us that some images may not follow the EMFACS framework.

It does not mean, however, that the emotion is not present nor that it was incorrectly

portrayed. What it suggests is that, at times, facial expressions can be too subtle or

simply do not match the prototypic definition which our model relies on to categorize

emotions.

Particularly, the NVIE dataset does not provide any information about how images

were annotated or which reference system was used. However, it seems that either Asian

people tend to express their emotions in a much more subtle way than Western people, or

that is a particularity of this dataset. For that reason, we calculate two separate means:

one taking into account all datasets and one ignoring the NVIE dataset. We will use the

latter to compare the results reported in this chapter.

Hence, our baseline method achieves a mean accuracy of 80.97% and a normalized

mean accuracy of 79.64%. Its network architecture, which is the original VGG-Face

architecture, has a total of 134,289,223 parameters.

6.4 Method 1: Parts-based VGG-Face

The Parts-based VGG-Face explores the idea of driving the networks attention to specific

regions of the face. That is accomplished by creating a multi-branch network architecture,

in which each branch is responsible for learning features from each region of interest. Each

branch has the exactly same layers of the VGG-Face original architecture, except the last

fully-connected layers. Consequently, the Parts-based VGG-Face model is 43% bigger

than the original architecture, with a total of 192,590,599 parameters.

Our architecture defines four network inputs, one for each face region: forehead, eyes,

nose, and mouth. In our experiments, we tried two different approaches regarding the

input images. In the first one, we cropped the regions of interest and resized them to

match the input size of 224×244 pixels. The second approach, in turn, consisted of using

binary masks to hide out all regions of the face but the ones in which we were interested

in. The former approach deforms the regions of the face to fit them into the network’s

input layers, whereas the latter keeps their original aspect ratio. We believe this could be
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Apart from the NVIE dataset, the Parts-based VGG-Face achieved higher accuracy

in every test dataset when compared to the baseline. We can see gains of 1.73 percentage

points for the Bosphorus dataset, 3.80 for the CAFE dataset, 2.61 for the CFEE dataset,

1.22 for the KDEF dataset, and 2.35 for the RaFD dataset. As a result, the mean classi-

fication accuracy, disregarding the NVIE dataset, went from 80.97% to 83.31%. Looking

at the emotion class level, we observe improvements in the neutral, sadness and surprise

emotions.

6.5 Method 2: Random Patches

The Random Patches method is an attempt to implement the same rationale behind the

Parts-based VGG-Face method, but with a much simpler network architecture. We force

the network to learn less obvious features to draw a distinction between emotions by

occluding some regions of the face during training. In fact, the network architecture used

here is the original VGG-Face architecture, without any modifications. Therefore, the

total number of parameters present in the network is 134,289,223.

During the experiments with this method, we tested whether or not the original face

image should be used alongside the modified face image, with random patches, when

training the network. We found out that, when the original face image is left out of the

training process, the classification accuracy drops consistently. Supposedly, it is important

for the network to be exposed to the whole face representation during training, since the

same whole face will be used in the test phase. We also tested different sizes of patches to

hide out parts of the face. We observed better performances when patches are randomly

created with sizes between 10% and 40% of the input size and equally distributed in this

interval. In our case, patches vary from squares of 24 × 24 pixels to squares of 88 × 88

pixels. Table 6.3 and Figure 6.8 show the results of this second method.

Recall (%)
Acc (%)

Norm.
Acc (%)Ang Dis Fea Hap Neu Sad Sur

Boshorus 70.42 56.52 52.86 100.00 91.64 53.03 76.06 79.12 71.50

CAFE 3.31 84.38 64.56 100.00 93.02 46.77 97.09 71.13 69.87

CFEE 66.96 84.78 71.74 98.70 93.91 82.17 93.48 84.53 84.53

KDEF 60.71 94.29 74.29 100.00 95.00 84.29 80.71 84.18 84.18

NVIE 14.49 13.25 9.54 65.40 94.71 4.85 20.96 25.38 31.89

RaFD 95.52 100.00 89.05 99.50 96.52 96.02 100.00 96.66 96.66

Mean 51.90 72.20 60.34 93.93 94.13 61.19 78.05 73.50 73.11

Mean∗ 59.38 83.99 70.50 99.64 94.02 72.46 89.47 83.13 81.35

∗ Without the NVIE dataset.

Table 6.3: Results obtained by employing Method 2: Random Patches.
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loss was four times higher than the triplet loss in magnitude, so we adjusted the weights

of the linear combination accordingly to balance them out.

As triplets are generated in an online manner within each batch of the training process,

we defined our batches to have 12 examples of each class of emotion, totaling 84 images per

batch. This guarantees a sufficient number of examples from each class to form triplets.

The method’s final model maintains the original VGG-Face architecture and adds a

new layer to the bottom of the network to compute the triplet loss function. Nevertheless,

the number of parameters in the network is kept unchanged: 134,289,223 in total. Table

6.4 and Figure 6.9 display the results of Method 3.

Recall (%)
Acc (%)

Norm.
Acc (%)Ang Dis Fea Hap Neu Sad Sur

Boshorus 77.46 59.42 48.57 100.00 89.97 40.91 76.06 77.93 70.34

CAFE 3.31 85.42 82.28 97.50 91.47 46.77 98.06 72.68 72.12

CFEE 78.70 84.35 76.09 95.65 85.65 71.30 89.13 82.98 82.98

KDEF 70.71 91.43 72.86 97.14 93.57 68.57 85.00 82.76 82.76

NVIE 16.56 20.84 8.43 57.98 91.83 3.07 33.92 27.15 33.23

RaFD 97.51 99.00 92.54 98.51 94.03 90.05 100.00 95.95 95.95

Mean 57.38 73.41 63.46 91.13 91.09 53.45 80.36 73.24 72.90

Mean∗ 65.54 83.92 74.47 97.76 90.94 63.52 89.65 82.46 80.83

∗ Without the NVIE dataset.

Table 6.4: Results obtained by employing Method 3: Triplet Loss.

The Triplet Loss method achieves a mean classification accuracy of 82.46% when

the NVIE dataset is left out, compared to the 80.97% of our baseline method. That

indicates an increase of 2.93 percentage points for the Bosphorus dataset, 3.52 for the

CAFE dataset, 1.43 for the CFEE dataset and 0.78 for the RaFD dataset. For the KDEF

dataset, however, the result is 1.22 percentage points worse than the baseline. Also, it is

possible to see improvements for disgust, fear, neutral and surprise emotions.

Just like with the Random Patches method, one can easily replace the backbone

network architecture to another one that best fits their needs. Just plug the triplet loss

layer to the desired architecture before training it to the emotion recognition problem.

6.7 Methods comparison

For each proposed method, we computed the average recall for every class of emotion

with respect to all test datasets, as well as the average accuracy and average normalized

accuracy. The results are shown in Table 6.5 as well as in Figures 6.10 and 6.11.

When comparing all three proposed methods to the baseline, we see improvements
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There are different ways to combine or fuse methods. In an early fusion approach,

feature vectors are combined to create a joint representation of the input data. A single

model is then trained in order to learn the domain characteristics. Particularly, we could

try to combine both Random Patches and Triplet Loss methods into a single model.

In a late fusion, we combine decision values from multiple models to make a final

prediction. It is an easier approach once we already have multiple models trained, though

usually less effective. For simplicity’s sake, in this work, we use late fusion to combine

the results of Methods 2 and 3. We took the probability vectors of both methods and

combined them under three different strategies: max probability, sum of probabilities

and multiplication of probabilities. Table 6.6 and Figure 6.12 show the results for each

combination strategy.

Recall (%)
Acc (%)

Norm.
Acc (%)Ang Dis Fea Hap Neu Sad Sur

Method 2 59.38 83.99 70.50 99.64 94.02 72.46 89.47 83.13 81.35

Method 3 65.54 83.92 74.47 97.76 90.94 63.52 89.65 82.46 80.83

Comb. (MAX) 60.46 83.82 71.82 99.55 93.99 71.59 89.65 83.33 81.55

Comb. (SUM) 60.30 84.11 71.59 99.47 94.36 71.31 89.65 83.38 81.54

Comb. (MUL) 60.64 83.94 72.51 99.47 94.34 70.89 90.12 83.60 81.70

Table 6.6: Results of combining Random Patches (Method 2) and Triplet Loss (Method
3) under different strategies: max probability (MAX), sum of probabilities (SUM) and
multiplication of probabilities (MUL), disregarding the NVIE dataset.

All combination strategies outperformed the results of Methods 2 and 3 alone. Fur-

thermore, they also outperformed Method 1, our best model in terms of accuracy so far.

The data also shows us that the multiplication of probabilities strategy provides the best

result in terms of classification accuracy, which means it is important that both mod-

els have a minimal level of agreement on the predicted class. In other words, very low

probabilities tend to heavily penalize high probabilities when computing the final class

probability. The complete results of the combination of Methods 2 and 3 through the

multiplication of probabilities are shown in Table 6.7.

The combination of Methods 2 and 3 through the multiplication of probabilities

achieves a mean accuracy of 83.60% in contrast to 83.13% of Method 2 and 82.46%

of Method 3. Except for Method 2 performance in the Bosphorus dataset and Method

3 performance in the CAFE dataset, the fusion of methods yields better results when

compared to the ones obtained with each method individually.

In Figure 6.13, we compare the results at the emotion class level. It is possible to

see that, for disgust, happiness, neutral and surprise classes of emotion, the combination

of methods leads to the best of individual values. For anger, fear and sadness classes,

however, its values are placed halfway between individual results of Methods 2 and 3.
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A B B −A Sign |B −A| Signed-rank

Boshorus 79.12 78.86 −0.26 − 0.26 −1

CAFE 71.13 71.69 0.56 + 0.56 3

CFEE 84.53 85.40 0.87 + 0.87 5

KDEF 84.18 84.90 0.72 + 0.72 4

RaFD 96.66 97.16 0.50 + 0.50 2

W = 13

Table 6.9: Wilcoxon signed-rank test: (A) Method 2; (B) The combination of Methods 2
and 3 through the multiplication of probabilities.

When testing the combination of Methods 2 and 3 through the multiplication of prob-

abilities against the Method 2, we obtained W = 13. By looking at Figure 6.14, we can

see that the probability of obtaining W as large as ±13 under the null hypothesis is 0.125.

In the same way, with Method 3, we observe W = 11 and p-value = 0.1875. Hence, for

these two tests, we cannot reject the null hypothesis H0 and, consequently, we can state

that the combination of Methods 2 and 3 through the multiplication of probabilities is

not statistically different from Method 2 or Method 3 in isolation at a significance level

of 0.1.

A B B −A Sign |B −A| Signed-rank

Boshorus 77.93 78.86 0.93 + 0.93 1

CAFE 72.68 71.69 −0.99 − 0.99 −2

CFEE 82.98 85.40 2.42 + 2.42 5

KDEF 82.76 84.90 2.14 + 2.14 4

RaFD 95.95 97.16 1.21 + 1.21 3

W = 11

Table 6.10: Wilcoxon signed-rank test: (A) Method 3; (B) The combination of Methods
2 and 3 through the multiplication of probabilities.

6.9 Performance comparison with prior art

In this section, we benchmark the results obtained with our methods and compare them to

results of existing works and of popular commercial applications for emotion recognition

from facial expressions. This benchmark was developed on a per-dataset basis, as most

methods described in the literature are evaluated on a single dataset.

In the following tables, we detail the methods used, the evaluation protocols, the

number of classes of emotion, and accuracy obtained for the most relevant works found in

the literature. It is worth mentioning that the majority of them follow an intra-dataset

protocol, which means that the same dataset was used in both training and testing

phases. Only a few adopt a cross-dataset evaluation protocol.
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Bosphorus (intra-dataset protocol)

Work Method Protocol Classes Acc (%)

Zhang et al.
[85]

Shape features + mRMR + SVR +
SVM ensemble

5-fold
cross-validation

6 92.20

Taha and
Hatzinakos [70]

CNN
5-fold

cross-validation
6 88.20

Li et al. [35] DF-CNN + SVM
10-fold

cross-validation
6 80.28

Ahmed et al. [2] Shape features + SVM 80/20 holdout 7 78.38

Silva and
Pedrini [6]

Gabor filters + NN 80/20 holdout 6 73.13

Bosphorus (cross-dataset protocol)

Work Method Protocol Classes Acc (%)

Ours Method 2
cross-dataset
(CK+, MUG,
Oulu-CASIA)

7 79.12

Silva and
Pedrini [6]

HOG + SVM
cross-dataset

(MUG)
6 53.80

Silva and
Pedrini [6]

HOG + SVM
cross-dataset

(CK+)
6 43.00

Table 6.11: Performance comparison for Bosphorus dataset.

CAFE (intra-dataset protocol)

Work Method Protocol Classes Acc (%)

Zheng et al.
[86]

Shape features + SVM 70/30 holdout 7 77.40

Witherow et al.
[78]

CNN
10-fold

cross-validation
7 76.03

Nagpal et al.
[47]

msDBM + RF
5 x 30/70

sub-sampling
validation

7 48.00

CAFE (cross-dataset protocol)

Work Method Protocol Classes Acc (%)

Ours Method 1
cross-dataset
(CK+, MUG,
Oulu-CASIA)

7 72.96

Zheng et al.
[86]

Shape features + SVM
cross-dataset
(CK+, CFEE,
Multi-PIE)

7 64.70

Witherow et al.
[78]

CNN
cross-dataset

(CK+)
7 46.50

Table 6.12: Performance comparison for CAFE dataset.
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CFEE (intra-dataset protocol)

Work Method Protocol Classes Acc (%)

Du et al. [11]
Shape features + Gabor filters +

KSDA
10-fold

cross-validation
7 96.86

Koujan et al.
[33]

CNN + SVM
10-fold

cross-validation
7 96.43

Neto et al. [7] CNN
10-fold

cross-validation
7 82.54

Mavani et al.
[46]

CNN 85/15 holdout 7 74.79

CFEE (cross-dataset protocol)

Work Method Protocol Classes Acc (%)

Ours Methods 2 and 3 combined
cross-dataset
(CK+, MUG,
Oulu-CASIA)

7 85.40

Zeng et al. [84] LTNet
cross-dataset

(AffectNet, RAF)
7 76.02

Table 6.13: Performance comparison for CFEE dataset.

KDEF (intra-dataset protocol)

Work Method Protocol Classes Acc (%)

Ruiz-Garcia et
al. [53]

CNN 70/30 holdout 7 96.93

Ruiz-Garcia et
al. [54]

SCAE 70/30 holdout 7 92.52

Koujan et al.
[33]

CNN + SVM
10-fold cross
validation

7 92.24

Islam et al. [28] Gabor filter + EML
10-fold cross
validation

7 86.84

Lucey et al. [41] SPTS + CAPP + SVM
leave-one-subject-

out
7 82.86

KDEF (cross-dataset protocol)

Work Method Protocol Classes Acc (%)

Ours Method 1
cross-dataset
(CK+, MUG,
Oulu-CASIA)

7 85.20

Magyar et al.
[44]

Face++ (commercial) N/A 7 77.08

Magyar et al.
[44]

Microsoft Face (commercial) N/A 7 75.33

Zavares et al.
[82]

CNN

cross-dataset
(CK+, JAFFE,
MMI, RaFD,

BU3DFE, ARFace)

7 72.55

Magyar et al.
[44]

F.A.C.E. (commercial) N/A 7 63.21

Table 6.14: Performance comparison for KDEF dataset.
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RaFD (intra-dataset protocol)

Work Method Protocol Classes Acc (%)

Koujan et al.
[33]

CNN + SVM
10-fold cross
validation

7 97.65

Yaddaden et al.
[80]

CNN
10-fold cross
validation

7 97.57

Islam et al. [28] Gabor filter + EML
10-fold cross
validation

7 96.94

RaFD (cross-dataset protocol)

Work Method Protocol Classes Acc (%)

Ours Method 1
cross-dataset
(CK+, MUG,
Oulu-CASIA)

7 97.51

Zavares et al.
[82]

CNN

cross-dataset
(CK+, JAFFE,
MMI, RaFD,

BU3DFE, ARFace)

7 85.97

Mavani et al.
[46]

CNN
cross-dataset

(CFEE)
7 77.19

Magyar et al.
[44]

Microsoft Face (commercial) N/A 7 76.24

Magyar et al.
[44]

Sighthound (commercial) N/A 7 72.33

Magyar et al.
[44]

Face++ (commercial) N/A 7 71.33

Table 6.15: Performance comparison for RaFD dataset.

Even though there are few works following a cross-dataset protocol to compare to, our

methods achieve be best results in all datasets in this scenario. In addition to that, it is

possible to say that the performance of our methods are significantly competitive when

compared to works that adopted the intra-class evaluation protocol. From the presented

results, we can conclude that the most challenging datasets are Bosphorus and CAFE.

One curious observation concerns the results obtained by commercial applications.

Magyar et al. [44] tested several of the most popular solutions available in the market,

including the ones from giant tech companies such as Microsoft and Google, using the

KDEF and RaFD datasets. Interestingly, our methods outperformed all of them in both

datasets. Although we are not aware of the methods and datasets used to build such

solutions, we imagine they have access to a much larger amount of data than we do when

training our models.
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Chapter 7

Conclusion and future work

Recognizing emotions from facial expressions, even for humans, is not an easy task. As

discussed in Section 2.1, emotions are complex phenomena, which are comprised of events

in several organismic subsystems, and the manifestation of facial expressions is only one of

possible reactions the body can communicate [32, 61]. Although some authors state that

emotions lead to automatic and stereotyped body responses, including facial expressions

[10, 9], they seem to ignore the fact that it is possible for someone to experience an

emotion without moving their facial muscles and to also fake an emotion by mimicking

the suitable facial expression. In fact, that is the case with all the datasets we used in

this work, as images were captured from subjects in posed, not spontaneous, expressions.

Basic emotions – anger, disgust, fear, happiness, sadness, and surprise – are believed

to have a universal facial configuration among different cultures and populations across

the globe [13, 14]. These configurations can be described in terms of different visibly

facial movements, known as Action Units, and the resulting coding scheme can be used to

map facial expressions into emotion categories, following a prototypic definition. In this

research, however, we found examples that contradict these claims.

In the CAFE dataset, for example, composed exclusively by children subjects, the

mean image for the anger emotion does not match the typical facial expressions suggested

in the literature. Likewise, in the NVIE dataset, formed by only Asiatic people, it is

practically impossible to tell which emotion is being displayed in each mean image as

facial expressions are subtle. Hence, even though there seems to be a more frequent facial

configuration for each basic emotion, we cannot take its universality across different popu-

lations and cultures for granted. Facial expressions may vary in both format and intensity

depending on the subject, even when they are asked to perform posed expressions.

These examples also evince that the EMFACS framework, which we adopted in this

research, has its own limitations. If, on one hand, the framework specifies a precise

prototypic definition for each emotion in terms of facial movements, on the other, it

narrows down the margins for detecting variations such as observed in CAFE and NVIE

datasets.

For all those reasons, we do not believe it is possible to reliably infer someone’s in-

ternal emotional state from their facial expressions, an external easily manipulable tiny

portion of the whole emotion phenomenon. Ideally, a reliable solution should also take

into consideration other organismic subsystems involved in the emotion episode, analyz-
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ing distinct and possibly complementary body information. That being said, the most we

can postulate by simply looking at someone’s facial expressions is which emotion is more

likely to be represented according to the prototypic definitions. We believe this is a fairer

description of what we sought to accomplish in this study.

Throughout our investigation, we proposed three different methods to categorize emo-

tions from facial expressions, all three derived from the same baseline solution. Accom-

panying the winners of the latest competitions in the field, we opted for a CNN-based

approach to accomplish the task. The selected architecture was the VGG-Face, a popular

network for the face recognition problem.

We started by fine-tuning the pre-trained VGG-Face model for our problem, being the

result of this process considered our baseline method. Then, with the help of the Grad-

CAM algorithm, we generated activation maps to visualize what the network had learned

from its initial training process. The heatmaps showed us that some regions of the face

considered important in the literature were not taken into account. Consequently, our

first proposed method is an attempt to drive the network’s attention to specific regions

of the face. It is a parts-based architecture derived from the original VGG-Face model,

with four different convolutional branches, one for each region of interest: forehead, eyes,

nose, and mouth. The second proposed method follows the same rationale, but instead

of using a heavy multi-branched model, we preserved the original VGG-Face architecture

and only modified the images inputted to the network. We applied random patches to

occlude some portions of the face, as a means to force the network to learn alternative

features. Finally, in the third proposed method, we employed a triplet loss function with

the objective of learning good face embeddings for emotion categorization. The idea is

that, when transported to a new hyperspace, the embeddings will place emotions of the

same class close together while keeping emotions of different classes apart.

Our proposed methods were evaluated following a cross-dataset protocol, in which the

datasets used to train and validate our models are different from the datasets used to test

their performance. With this approach, we are interested to know if characteristics learned

from one group of people can be employed to successfully categorize emotions from facial

expressions in another one. While we achieved good results in test datasets annotated

after the EMFACS framework, we saw a drastic performance drop in the NVIE dataset,

which provides no information about how its annotation process took place. Therefore,

we can conclude that model generalization is unlikely to occur unless the targeted dataset

follows a similar prototypic definition of emotion of the training datasets. For that reason,

we advocate for the adoption of a standard annotation protocol based on objective traits,

such as facial muscle movements, as seen in FACS. Additionally, deciding for a more

flexible framework, capable of addressing possible variations of each facial representation

of emotion, can also be of help.

Disregarding the NVIE dataset, we started from a baseline method with a mean clas-

sification accuracy among test datasets of 80.97% to a mean classification accuracy of

83.31% with Method 1. Then, with Method 2 and Method 3, we achieved classification

accuracies of 83.13% and 82.46%, respectively. We also explored a late fusion technique

to verify the complementarity between methods. By combining Methods 2 and 3 through

the multiplication of probabilities, we obtained 83.60% of accuracy.
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Although there is not a standard protocol adopted by the scientific community to

compare results in this area, we compiled an extensive list of related work to assess our

methods. We tried to make the comparison fair by underlining the evaluation protocol

used in each work. From there, it is possible to see that, under a cross-dataset protocol,

our methods achieved state-of-the-art results in all tested datasets, outperforming even

commercial applications from popular tech companies. In addition, they also present

competitive numbers when compared to works that followed an intra-dataset protocol,

arguably an easier validation protocol. While we acknowledge that the use of different

datasets to train a model will probably lead to different results, by examining common

methodologies employed in the literature, we can point out the practices we believe have

contributed the most to provide results superior to prior works.

To begin with, data plays a major role in deep convolutional neural networks. It is

usually required a huge amount of data to achieve specific performance goals. Besides,

data variability is also a critical point when our objective is to generate unbiased models.

If we do not have enough data to train a model from scratch, we can leverage techniques

such as transfer learning and data augmentation. With transfer learning, the closer the

task of the pre-trained model is to our problem, the better the results are expected to

be. In our case, we adapted a model originally trained for face recognition to a problem

of emotion categorization from facial expressions. In both cases, we are dealing with

the same kind of data: facial images. With data augmentation, it is important that

the operations used to increase the sets ensure a correspondent level of diversity that we

expect to see when evaluating the models. Images under different illumination conditions,

blurred, and not totally aligned are some of the examples we employed in this work.

Another key point in this research was the application of activation maps to analyze

what regions of the face the network learned as the most important to categorize emotions.

We noticed a mismatch between the heatmaps generated by the Grad-CAM method and

the prototypic definition of each emotion presented in the literature. This finding gave

us room to explore attention mechanisms with the purpose of making the network aware

of these formerly ignored regions. As a result of this investigation, we developed both

Methods 1 and 2. The data visualization techniques also helped us figure out issues with

the CAFE and the NVIE datasets, as we discussed earlier.

Moving on from the network input to its output, Method 3 evinces that our solution can

benefit from a metric learning approach to achieve better generalization, when combined

to a predictive function. We believe the way clusters are formed by the triplet loss function,

when data embeddings are transported to a high dimensional feature space during the

optimization process, is less biased towards training datasets.

Despite the good results reported in this research, it is clear that the problem is far from

being solved, especially when models are evaluated under a cross-dataset protocol, which

is closer to real-world scenarios. Therefore, as future work, there are some directions we

would like to explore. Firstly, as we have already seen good evidence of complementarity

between Methods 2 and 3, we could explore a more elaborated early fusion approach by

proposing a single end-to-end trainable network. The network would be fed with batches

containing the original face image and its version with occluded regions during the training

phase to an optimization process lead by a combination between a triplet loss function
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and a categorical loss function. Other loss functions other than these two could also be

experimented with.

Additionally, we would like to explore the use of activation maps as a way to guide

the network’s attention during training. As the optimization process progresses, online

generated maps could be used to mask the most discriminative parts of the face, hoping

that the network would look for alternate regions to recognize emotions. As an output, we

expect a more generalizable model. Furthermore, we could also verify how other popular

network architectures, particularly the ones trained for face recognition, would adapt to

our problem.

At last, considering the problem as a whole, it would be great to extend this study

to datasets in which facial expressions are captured spontaneously, under uncontrolled

situations. Since this is a very complex subject, involving different areas of science, we

recommend future studies to be carried out by a multidisciplinary team, composed of

psychologists, neuroscientists, and computer scientists.
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Appendix A

EMFACS

AU FAC Name Neutral Apex

Anger

4 Brow Lowerer

5 Upper Lid Raiser

7 Lid Tightener

23 Lip Tightener

Continues on next page
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Continued from previous page

AU FAC Name Neutral Apex

Disgust

9 Nose Wrinkler

15 Lip Corner Depressor

16 Lower Lip Depressor

Fear

1 Inner Brow Raiser

2 Outer Brow Raiser

4 Brow Lowerer

5 Upper Lid Raiser

7 Lid Tightener

Continues on next page
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Continued from previous page

AU FAC Name Neutral Apex

20 Lip Stretcher

26 Jaw Drop

Hapinness

6 Cheek Raiser

12 Lip Corner Puller

Sadness

1 Inner Brow Raiser

4 Brow Lowerer

15 Lip Corner Depressor

Continues on next page
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Continued from previous page

AU FAC Name Neutral Apex

Surprise

1 Inner Brow Raiser

2 Outer Brow Raiser

5 Upper Lid Raiser

26 Jaw Drop

Table A.1: The combination of Action Units present in each basic emotion - anger, disgust,
fear, happiness, sadness and surprise. Here we exhibit the face in its initial neutral state
and then facial expression in its apex. Extracted from [27].
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