
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Juan Jesús Salamanca Guillén

Thread-Level Speculation on Hardware Transactional

Memory Architectures

Especulação de Threads usando Arquiteturas de

Memória Transacional em Hardware

CAMPINAS

2016

Juan Jesús Salamanca Guillén

Thread-Level Speculation on Hardware Transactional Memory

Architectures

Especulação de Threads usando Arquiteturas de Memória

Transacional em Hardware

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Guido Costa Souza de Araújo
Co-supervisor/Coorientador: Prof. Dr. José Nelson Amaral

Este exemplar corresponde à versão final da
Tese defendida por Juan Jesús Salamanca
Guillén e orientada pelo Prof. Dr. Guido
Costa Souza de Araújo.

CAMPINAS

2016

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Juan Jesús Salamanca Guillén

Thread-Level Speculation on Hardware Transactional Memory

Architectures

Especulação de Threads usando Arquiteturas de Memória

Transacional em Hardware

Banca Examinadora:

• Prof. Dr. Guido Costa Souza de Araújo
IC/UNICAMP

• Prof. Dr. Alexandro José Baldassin
IGCE/UNESP

• Prof. Dr. Márcio Bastos Castro
INE/UFSC

• Prof. Dr. Sandro Rigo
IC/UNICAMP

• Dr. Emilio de Camargo Francesquini
IC/UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 21 de dezembro de 2016

Dedication

This work is dedicated to my dear mother, Flavia Guillén.

Acknowledgements

First and foremost, I would like to thank God and my beloved son Juan Pablo Matías for
their love. I would also like to thank my mother, Flavia, for encouraging me to pursue
my dreams and for her tremendous support in each step of my life. I would like to thank
my brother Jesús and my sisters Ana Flavia and Jennifer for their friendship, affection,
and confidence. I would like to thank all my family, especially my father Jesús, my
grandmother Elsa, and my aunt Yemile, who were always supporting me and encouraging
me with their best wishes.

I will always be grateful to my supervisor, Guido Araújo, for believing in me and for
all the incentive, support, and patience throughout our project. You became more than
a supervisor, you became a friend and a second father. Through a number of difficult
times, you were very supportive and understanding. Thank you, Guido. I thank my co-
supervisor Nelson Amaral for his support, for always helping me think outside the box,
and for welcoming me in Canada. Nelson, meeting you and working with you proved to
be an invaluable experience. I am very grateful to both for their guidance to learn about
a research career.

I thank all my dear friends, especially Renzo, Luis, Edmanuel, Pepe, José Manuel,
Lucas, Laura, Ticiana, and Martin, for being always there. Also, I want to thank all
my friends of the Institute of Computing at UNICAMP as well as of the Department
of Computing Science at the University of Alberta, whose friendship have made both
incredible places to study, to learn, and to have a good time.

Finally, I would like to thank CNPq, Samsung, CAPES, LGE, and FAPESP (grants
15/04285-5 and 15/12077-3) for their financial support to this work.

Resumo

Especulação no nível de threads (TLS) é uma técnica em hardware/software que possibilita
a execução paralela de múltiplas iterações de um laço, inclusive na presença de algumas
dependências loop-carried. TLS exige mecanismos em hardware para auxiliar a detec-
ção de conflitos, o armazenamento especulativo, os commits das transações em ordem, e
o roll-back das transações. Trabalhos anteriores exploraram enfoques para implementar
TLS, tanto em hardware dedicado como puramente em software, e tentaram predizer o de-
sempenho de futuras implementações de TLS em hardware. Contudo, não existe nenhum
processador comercial que forneça suporte direto para TLS. Entretanto, execução especu-
lativa é suportada na forma de Memória Transacional em Hardware (HTM) — disponível
em processadores modernos como Intel Core e IBM POWER8. HTM implementa três
características essenciais para TLS: detecção de conflitos, armazenamento especulativo, e
roll-back de transações.

Antes de aplicar TLS a um laço quente, é necessário determinar se o laço tem potencial
para ser especulado. Um laço pode ser adequado para TLS se a probabilidade de depen-
dências loop-carried em tempo de execução for baixa; para estimar esta probabilidade um
perfilamento de dependências do laço deve ser usado. Este trabalho apresenta um veri-
ficador das dependências loop-carried integrado como uma nova extensão de OpenMP,
a diretiva parallel for check, a qual pode ser usada para ajudar desenvolvedores a
identificarem a existência destas dependências em construções parallel for.

Este trabalho também apresenta uma análise detalhada da aplicação de HTM para a
paralelização de laços com TLS e descreve uma avaliação cuidadosa da implementação de
TLS usando HTMs disponíveis em processadores modernos. Como resultado, esta tese
proporciona evidências para validar várias afirmações importantes sobre o desempenho de
TLS nestas arquiteturas. Os resultados experimentais mostram que TLS usando HTM
produz speedups de até 3.8× para alguns laços.

Finalmente, este trabalho descreve uma nova técnica de especulação para a otimi-
zação, e execução simultânea, de múltiplos traços de regiões de código quente. Esta
técnica, chamada Speculative Trace Optimization (STO), enumera, otimiza, e executa
especulativamente traços de laços quentes. Isto requer o suporte em hardware disponí-
vel em sistemas HTM. Este trabalho discute as características necessárias para suportar
STO: multi-versão, resolução de conflitos tardia, detecção de conflitos prematura, e sin-
cronização das transações. Uma revisão das arquiteturas HTM existentes — Intel TSX,
IBM BG/Q, e IBM POWER8 — mostra que nenhuma delas tem todas as características
requeridas para implementar STO. Entretanto, este trabalho mostra que STO pode ser
implementado nas arquiteturas HTM existentes através da adição de privatização e código
para esperar/retomar.

Abstract

Thread-Level Speculation (TLS) is a hardware/software technique that enables the ex-
ecution of multiple loop iterations in parallel, even in the presence of some loop-carried
dependences. TLS requires hardware mechanisms to support conflict detection, specula-
tive storage, in-order commit of transactions, and transaction roll-back. Prior research
has investigated approaches to implement TLS, either on dedicated hardware or purely in
software, and has attempted to predict the performance of future TLS hardware imple-
mentations. Nevertheless, there is no off-the-shelf processor that provides direct support
for TLS. Speculative execution is supported, however, in the form of Hardware Transac-
tional Memory (HTM) — available in recent processors such as the Intel Core and the
IBM POWER8. HTM implements three key features required by TLS: conflict detection,
speculative storage, and transaction roll-back.

Before applying TLS to a hot loop, it is necessary to determine if the loop has potential
to be amenable. A loop could be amenable if the probability of loop-carried dependences at
runtime is low; to measure this probability loop dependence profiling is used. This project
presents a novel dynamic loop-carried dependence checker integrated as a new extension
to OpenMP, the parallel for check construct, which can be used to help programmers
identify the existence of loop-carried dependences in parallel for constructs.

This work also presents a detailed analysis of the application of HTM support for
loop parallelization with TLS and describes a careful evaluation of the implementation of
TLS on the HTM extensions available in such machines. As a result, it provides evidence
to support several important claims about the performance of TLS over HTM in the
Intel Core and the IBM POWER8 architectures. Experimental results reveal that by
implementing TLS on top of HTM, speed-ups of up to 3.8× can be obtained for some
loops.

Finally, this work describes a novel speculation technique for the optimization, and
simultaneous execution, of multiple alternative traces of hot code regions. This technique,
called Speculative Trace Optimization (STO), enumerates, optimizes, and speculatively
executes traces of hot loops. It requires hardware support that can be provided in a similar
fashion as that available in HTM systems. This work discusses the necessary features to
support STO, namely multi-versioning, lazy conflict resolution, eager conflict detection,
and transaction synchronization. A review of existing HTM architectures — Intel TSX,
IBM BG/Q, and IBM POWER8 — shows that none of them has all the features required
to implement STO. However, this work demonstrates that STO can be implemented on
top of existing HTM architectures through the addition of privatization and wait/resume
code.

List of Figures

2.1 A loop with two may loop-carried dependences. Adapted from [40]. 22
2.2 Code of each thread to parallelize Figure 2.1’s loop with TLS on ideal HTM

system. 23
2.3 Execution flow of Figure 2.2’s code with STRIP_SIZE=1 and NUM_THREADS=4. 23

3.1 HELIX Execution flow of Figure 2.1. Sequential segments are synchronized. 27
3.2 Dependence in pass_flag in 179.art. 31

4.1 Figure 2.1. A loop with two may loop-carried dependences. 35
4.2 Parallelization of Figure 4.1 with four threads. 36
4.3 False sharing in the loop of Figure 4.1. 36
4.4 Loop of Figure 4.1 after applying strip mining. 37
4.5 Strip-mining (STRIP_SIZE=8) the loop of Figure 4.1. 37
4.6 Code of each thread to parallelize Figure 4.1’s loop with TLS on POWER8

and TSX HTM systems. 39
4.7 Execution flow of Figure 4.6’s code with STRIP_SIZE=1 and NUM_THREADS=4. 40
4.8 lbm hot loop. 40
4.9 False sharing due to non-consecutive writes in the array dstGrid. 41
4.10 False sharing due to prefetching in TSX. 42
4.11 mcf’s hottest loop. 44
4.12 Speed-ups for TLS execution on TSX, POWER8, POWER8 with ordering

(tsuspend/tresume), and TSX-NI. 45
4.13 Abort/Commit ratio by TLS execution with 4 threads on TSX, POWER8,

POWER8 with ordering (tsuspend/tresume), and TSX-NI. Abort reasons
are shown. 45

4.14 Speed-ups for sphinx3 and h264ref by TLS execution on TSX with prefetcher
enabled/disabled. 46

4.15 h264ref’s hottest loop. 46
4.16 sphinx3’s hottest loop. 47
4.17 Speed-ups for h264ref by TLS execution on POWER8 with and without

privatization. 48
4.18 Abort/Commit ratio for h264ref by TLS execution with 4 threads on

POWER8 with and without privatization. 49
4.19 Speed-ups for lbm by TLS execution on TSX, POWER8, and POWER8

with ordering, with and without privatization. 49
4.20 Abort/Commit ratio for lbm by TLS execution with 4 threads on TSX,

POWER8, and POWER8 with ordering, with and without privatization. . 50
4.21 Speed-ups for sphinx3 by TLS execution on TSX and POWER8 for dif-

ferent strip sizes with 2 and 4 threads respectively. 50

5.1 loopA and loopF. 55
5.2 loopF after applying strip mining and dividing into two components. . . . 56
5.3 Class I. Speed-ups and Abort ratios for coarse-grained TLS execution on

TSX and POWER8. 57
5.4 loopE, loopJ, and loopR. 58
5.5 Class II. Speed-ups and Abort ratios for coarse-grained TLS execution on

TSX and POWER8. 59
5.6 Class III and Others. Speed-ups and abort ratios for coarse-grained TLS

execution on TSX and POWER8. 60
5.7 loopQ and loopV. 61
5.8 loopP and loopS. 61
5.9 loopT and loopU. 62
5.10 SPEC2006 Loops. Speed-ups and abort ratios for coarse-grained TLS exe-

cution on TSX and POWER8. 66
5.11 Figure 2.1. A loop with two may loop-carried dependences. 66
5.12 Fine-grained Speculation Execution flow of Figure 5.11. 67
5.13 mcf’s hottest loop. 67
5.14 Fine-grained TLS without strip mining for mcf’s hottest loop. 68
5.15 DDG of mcf’s hottest loop. 68
5.16 SCCs of the DDG of Figure 5.15. 69
5.17 Fine-grained TLS with strip mining in restructured mcf’s hottest loop.

Privatization in basket_size is shown. 70
5.18 Speed-ups in mcf’s hottest loop and loopV using fine-grained TLS on Intel

Core. 70
5.19 Speed-ups and Abort ratios for fine-grained TLS execution on Intel Core. . 71

6.1 Example of code to optimize. 73
6.2 Possible traces of execution. 74
6.3 Traces as transactions. 75
6.4 Optimized traces of execution. 75
6.5 Possible execution flow of STO Traces shown in Figure 6.4 on ideal HTM. 76
6.6 Modified Source Code of Trace A. 78
6.7 Possible execution flow of STO Traces shown in Figure 6.4 on Intel TSX. . 81
6.8 Speed-ups of benchmarks with respect to serial execution. 84
6.9 Abort Ratio (%) of the benchmarks. 84
6.10 Factor for each trace in the benchmarks. 85

7.1 Loop-carried dependence example. 86
7.2 Possible execution flow of the loop of Figure 7.1. 87
7.3 Usage of check construct in the program of Figure 7.1. 87
7.4 Multilevel Hash Table mapping to a memory reference in address a stored

by thread Y. 89
7.5 OpenMP checker exploits pipeline level parallelism (3 stages). 90
7.6 Imaginary source file with the check construct. 91
7.7 Flow overview of the OpenMP checker with GCC/Pin. 92
7.8 Memory footprint of three Parboil Benchmarks (Cutcp, Histo and Lbm)

executed serially, with OpenMP, and with check modifying different hottest
loops. 93

7.9 Memory footprint of five Parboil Benchmarks (Mri-gridding, Mri-q, Spmv,
Stencil and Tpacf) executed serially, with OpenMP, and with check mod-
ifying different hottest loops. 93

7.10 Execution time of loops of three Parboil benchmarks. 94
7.11 Execution time of loops of five Parboil benchmarks. 95
7.12 Slowdowns of loops of Parboil benchmarks using check respect to OpenMP

execution. 95

List of Tables

2.1 HTM implementations of Intel Core and IBM POWER [41]. 20
2.2 HTM Architectural Features. 20

4.1 Impact of false sharing on sphinx3. 37
4.2 Loop Characterization in Benchmarks. 43
4.3 Privatization Results. 48

5.1 Loops extracted from cBench applications. 53
5.2 Characterization and TLS Execution of Classes. 54
5.3 Characterization of 6 loops from SPEC CPU 2006. 64
5.4 TLS Execution for 6 loops from SPEC CPU 2006. 65

6.1 HTM Architectures. 79
6.2 Amenable loops to STO. 83
6.3 Conflict aborts and commits of Lbm traces. 84

7.1 Verification of 8 Parboil executed with check modifying different hottest
loops. 94

Contents

1 Introduction 15

2 Background 19
2.1 Transactional Memory . 19
2.2 Intel Core and IBM POWER8 . 20
2.3 Thread-Level Speculation . 21
2.4 Strip Mining . 23
2.5 Loop Peeling . 24
2.6 Traces . 24
2.7 Optimizations using Traces . 24

3 Related Work 25
3.1 Thread-Level Speculation . 25
3.2 Speculative Execution of Loops with Transient Dependences 26
3.3 Speculative Trace Optimization . 28
3.4 Data-Dependence Profilers . 30

3.4.1 Pairwise Method . 31
3.4.2 Stride-based Method . 32

4 Evaluating and Improving TLS in HTMs 34
4.1 Loop-Carried Dependences and False Sharing 34
4.2 TLS on top of HTM . 37
4.3 False Sharing Effects on TLS . 40

4.3.1 Capacity Overflow of Transactions 40
4.3.2 Non-consecutive Writes Within Transactions 41
4.3.3 TSX Cache-line-prefetcher Issues 41

4.4 Experiments . 42
4.4.1 Benchmarks and Settings . 42
4.4.2 Results . 44

5 In-depth Evaluation of TLS in off-the-shelf HTMs 52
5.1 Benchmarks, Methodology and Experimental Setup 52
5.2 Classification of Loops Based on TLS Performance 55

5.2.1 Class I: Low speculative demand and better performance in POWER8 56
5.2.2 Class II: High speculative demand and better performance in Intel

Core . 58
5.2.3 Class III: Not enough work to be parallelized with TLS 59
5.2.4 Others . 63
5.2.5 Predicting the TLS Performance for Other Loops 65

5.3 Fine-grained TLS on top of HTM . 65

6 Using HTM to Enable STO 72
6.1 Speculative Trace Optimization Supported by HTM 72

6.1.1 STO on Ideal HTM . 73
6.1.2 STO Prototype on Real-world HTM 77
6.1.3 Running STO on Intel TSX . 80

6.2 Performance Assessment of Proof-of-Concept Prototype 81
6.2.1 Benchmarks, Implementation, Settings, and Environment 82
6.2.2 Benchmark Results . 82

7 parallel for check Directive 86
7.1 Check Construct in OpenMP . 87

7.1.1 Overview of the Algorithm . 87
7.1.2 Parallelization of the Algorithm . 89

7.2 Implementation . 90
7.2.1 Basic Structure . 90
7.2.2 GCC/Pin . 91
7.2.3 LLVM . 92

7.3 Experimental Results . 92

8 Conclusions 96

Bibliography 98

Chapter 1

Introduction

Loops account for most of the execution time in programs and thus extensive research

has been dedicated to parallelize loop iterations [1, 26, 45]. Unfortunately, in many cases

these efforts are hindered when the compiler cannot prove that a loop is free of loop-carried
dependences. However, sometimes when static analysis concludes that a loop has a may
dependence — for example when the analysis cannot resolve a potential alias relation

— the dependence may actually not exist or it may occur in very few executions of the

program [5, 62]. Thread-Level Speculation (TLS) is a promising technique that can be

used to enable the parallel execution of loop iterations in the presence of may loop-carried

dependences.

Recently hardware support for speculation has been implemented in commodity off-

the-shelf microprocessors [28, 29]. However, the speculation support in these architectures

was designed with Hardware Transactional Memory (HTM) in mind and not TLS. The

only implementation of hardware support for TLS to date is in the IBM Blue Gene/Q

(BG/Q), but BG/Q is not a commodity machine and thus not readily available for experi-

mentation or usage. HTM extensions, available in the Intel Core and in the IBM POWER8

architectures, allow for the speculative execution of atomic program regions [29, 67, 28, 36].

Such HTM extensions enable the implementation of three key features required by TLS:

(a) conflict detection; (b) speculative storage; and (c) transaction roll-back.

Similar to HTM, TLS employs an optimistic approach to parallelism. TLS assumes

that the iterations of a loop can be executed in parallel — even in the presence of potential

dependences — and then relies on a mechanism to detect dependence violations and

correct them. The main distinction between TLS and HTM is that in TLS speculative

transactions must commit in order, a required feature when parallelizing the execution

of a loop so that loop-carried dependences from one iteration transaction to another are

respected. However, among all hardware implementations that support speculation, only

the IBM BG/Q supports in-order transaction commit, as it was initially designed to

enable TLS [23].

Until now, the majority of the attempts to estimate the performance benefits of TLS

were based on simulation studies [54, 56, 55, 47]. Unfortunately, studies of TLS execution

based on simulation have serious limitations. Some interesting research questions are:

(1) can the existing speculation support in commodity processors, originally designed for

HTM, be used to support TLS and reduce its overhead to execute loop code? and (2) if it

15

CHAPTER 1. INTRODUCTION 16

can, what performance effects would be observed from such implementations? This thesis

has a cautiously positive answer to the first question, i.e. supporting TLS on top of HTM

hardware is possible. To address the second question, this work presents an in-depth

evaluation of the implementation of TLS on top of the HTM extensions available in the

Intel Core and in the IBM POWER8 that leads to new techniques to support TLS over

HTM and to some surprising discoveries about the interaction between prefetching, false

sharing, and the relevance of loop characterization to predict the potential performance

of TLS. The experimental results indicate that: (1) false sharing is a very important

performance-hindering effect in both architectures; (2) strip mining is an effective trans-

formation to eliminate false sharing; (3) the selected size of the strip can be critical; (4)

in some cases the strip size needed to eliminate false sharing may lead to aborts because

the speculative capacity of the HTM is exceeded; (5) small loops are not amenable to be

parallelized with TLS on the existing HTM hardware because of the expensive overhead

of: (a) starting and finishing transactions, (b) aborting a transaction, and (c) setting up

loop for TLS execution; (6) loops with potential to be successfully parallelized in both

Intel Core and IBM POWER8 architectures have better performance on the POWER8

because TLS can take advantage of the ability of this architecture to suspend and re-

sume transactions to implement ordered transactions; (7) the larger storage capacity for

speculative state in Intel TSX can be crucial for loops that execute many read and write

operations; and (8) the ability to suspend/resume a transaction is important for loops

that execute for a longer time because their transactions may abort due to OS context

switching.

This work also proposes Speculative Trace Optimization (STO) to speculatively opti-

mize and execute multiple alternative traces of a single iteration of a hot loop. The goal is

to simultaneously execute speculative traces in hot loops to uncover hidden optimizations

that could not be carried out at compile time because of program-flow indeterminism.

STO is not a loop parallelization technique, rather it is a technique that speeds up both

sequential and parallelizable loops. The discussion in this work focuses on the exhaustive

execution of inner-loop traces, but STO can be used in other code regions and it can also

be used to selectively execute a subset of speculative traces. Contrary to whole-procedure

traces, the number of inner-loop traces is reasonably small, making them good candidates

for speculation in current HTM architectures that have limited capacity to store specula-

tive state [29, 30, 28, 23]. In an initial exploration that applied STO to the hot inner-loops

from a set of programs, we found that at most four traces were present.

The use of STO described in this work enumerates all possible traces, optimizes them,

and executes each trace speculatively in a transaction, using a fork/join paradigm. All

conditionals that select a specific trace are evaluated at the end of each transaction to

determine if the trace should commit or abort. For each loop iteration, a single trace

commits while the others miss-speculate and thus should be aborted.The initial assess-

ment of STO presented in this work uses the prototype based on TSX and applies it to

benchmarks from Mediabench, Parboil and SPEC2006 benchmarks. The results reveal

speed-ups of up to 9% for four cores. This initial result is encouraging given that TSX

lacks multi-versioning and lazy-conflict resolution, and it has a significant abort over-

head [50]. To compensate for the missing features, extra code is inserted into the original

CHAPTER 1. INTRODUCTION 17

program leading to additional overhead. Achieving speed-ups even in the presence of

such overheads suggests that if an HTM architecture were to incorporate such features,

significant speed-ups could emerge.

On the other hand, tools to support programming correctness are central in any pro-

gramming model, particularly in parallel programming, in which bugs are typically very

hard to detect and reproduce [66]. A fairly common source of bugs in OpenMP and many

other parallel programming models shows up when programmers need to evaluate if loops

can have their iterations parallelized. In order to do so, programmers have to perform a

careful and complex evaluation of the dependence of the loop-body variables across itera-

tions. If such dependences are not present, loops are called DOALL, and its iterations can

be easily parallelized. Otherwise, they are called DOACROSS loops, which are harder to

parallelize and to extract good speed-ups [66]. Given that loop-bodies can have complex

nested function calls, and pointer aliasing, dynamic cross-iteration dependences can occur

at runtime, making the work of the programmer much harder and error prone. Complex

loop-bodies can easily produce intricate runtime dependences which cannot be easily de-

tected by the typical programmer at compile time. For this reason, effectively detecting

dynamic loop cross-iteration violations is a relevant tool to support parallel programming.

In this work, we also present parallel for check (check), a new construct to OpenMP,

which enables the seamless integration of loop dynamic data dependence verification in

OpenMP. This construct makes possible the detection of loop-carried dependences at

runtime in OpenMP programs, thus helping programmers to identify potential viola-

tions resulting from hard to detect loop-carried dependences. check was implemented in

Pin/GCC-OpenMP and LLVM/Clang-OpenMP.

This thesis makes four main contributions. First, it shows that false sharing is an

important cause of performance loss in TLS on commercial HTMs and it improves the

implementation of TLS using HTM through code transformations. Second, it proposes

a classification of loops based on TLS performance and doing so provides guidance to

developers as to what loop characteristics make them amenable to the use of TLS on the

Intel Core or on the IBM POWER8 architectures. Third, it presents a novel technique

to optimize and speculate exhaustive traces, called STO, that uses HTM (specifically

TSX in the prototype) to execute these traces in transactions using a fork/join paradigm.

STO does not parallelize loops, rather it accelerates the sequential execution of loops;

and it identifies the main features that an HTM mechanism should have to enable STO.

Fourth, it presents a novel OpenMP parallel for check construct, also named check or

checker, which enables the dynamic detection of loop-carried dependences. It does on-

the-fly dynamic loop-carried dependence analysis of multithreaded applications, making

it possible to measure the probability of loop-carried dependences (%lc) and to detect

patterns of loop-carried dependences which can not be detected by means of serial or

per-thread analysis, as in [69, 33, 32, 31].

The remainder of this thesis is organized as follows. Chapter 2 describes the relevant

aspects of our work. Chapter 3 details the related work. Chapter 4 explains the limitations

of HTM to support TLS and discusses performance limitations caused by false sharing,

capacity limitations and non-consecutive array accesses. Chapter 5 describes an in-depth

evaluation of TLS on HTM. Chapter 6 presents Speculative Trace Optimization (STO)

CHAPTER 1. INTRODUCTION 18

and describes a prototype implemented on HTM. Chapter 7 motivates and describes the

implementation of checker. Finally, Chapter 8 concludes the work.

Some of the material used in this thesis has been published or submitted for publication

in the following papers:

• Juan Salamanca, José Nelson Amaral, and Guido Araújo. Using Hardware-Transactional-

Memory Support to Implement Thread-Level Speculation. Paper submitted to IEEE
Transactions on Parallel and Distributed Systems (TPDS)

• Juan Salamanca, José Nelson Amaral, and Guido Araújo. Performance Evalua-

tion of Thread-Level Speculation in Off-the-Shelf Hardware Transactional Memories.

Paper submitted to International European Conference on Parallel and Distributed
Computing (EURO-PAR) 2017

• Juan Salamanca, José Nelson Amaral, and Guido Araújo. Evaluating and Improving

Thread-Level Speculation in Hardware Transactional Memories. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS) 2016, May 23-27,

2016, Chicago, IL, USA

• Juan Salamanca, José Nelson Amaral, and Guido Araújo. Using Hardware Transac-

tional Memory to Enable Speculative Trace Optimization. In International Sympo-
sium on Computer Architecture and High Performance Computing Workshop (SBAC-
PADW) 2015, October 18-21, 2015, Florianopolis, Brazil

• Juan Salamanca, Luis Mattos, and Guido Araújo. Loop-Carried Dependence Verifi-

cation in OpenMP. In International Workshop on OpenMP (IWOMP) 2014, Septem-

ber 28-30, 2014, Salvador, Brazil

Chapter 2

Background

This chapter describes the background to introduce our work. It describes the main

concepts used in Transactional Memory, Thread-Level Speculation, and Speculative Trace

Optimization.

2.1 Transactional Memory

Transactional memory (TM) was proposed as architectural support to make lock-free

synchronization as efficient as conventional parallelization approaches based on mutual

exclusion [25]. TM simplifies parallel programming by enabling a mechanism to ensure

the consistency of shared data. Transactional memory systems must provide transaction

atomicity and isolation, which require the implementation of the following mechanisms:

data versioning management, conflict detection, and conflict resolution [37, 59].

In Transactional Memory, version management decides where new (speculative) and

old data are stored. Conflict detection determines whether two operations executed in

separate transactions cause a conflict, i.e. if they access a common memory location and

at least one of the operations is a write. Conflict detection can be eager (detection is

done immediately when the conflict occurs) or lazy (detection is done when transactions

attempt to commit) [37]. A conflict causes at least one of the transactions involved in the

conflict to abort and it may re-execute. Other actions could also be carried out to support

a conflict-resolution policy. Resolution can happen eagerly when the conflict occurs or

lazily when the transaction attempts to commit.

TMs can be supported in hardware (HTM) [25] and software (STM) [52]. HTM

systems have lower overheads because conflict detection is done in hardware but they have

lower speculative-state storage capacity and may support fewer active transactions [41].

HTMs are also easier to use because programmers only need to specify the start and

the end of a transaction [65]. STM systems can have a large overhead because conflict

detection is performed in software. On the other hand STMs have the advantage that

they can be executed on any available hardware, and in principle have no limit on the

amount of speculative state that a transaction may use.

Hybrid Transactional Memory (HyTM) is a approach to implement TM in software

so that it can use best-effort HTM to boost performance but it does not depend on

19

CHAPTER 2. BACKGROUND 20

Table 2.1: HTM implementations of Intel Core and IBM POWER [41].

Processor type Intel Core i7-4770 IBM POWER8
Conflict-detection

granularity (cache line)
64 B 128 B

Tx Load Capacity 4 MB 8 KB
Tx Store Capacity 22 KB 8 KB

L1 Data Cache 32 KB, 8-way 64 KB
L2 Data Cache 256 KB 512 KB, 8-way

SMT level 2 8

Table 2.2: HTM Architectural Features.

Features TLS Intel Core P8
Eager Conflict Detection

Speculative Storage
Ordered Transactions
Rollback Transactions
Multi-versioned caches

Resolution Conflict Policy
Suspend/Resume

Lazy Conflict Detection
Data Forwarding

Word Conflict Detection

HTM. This approach exploits HTM if it is available to achieve hardware performance for

transactions that do not exceed the HTM’s limitations [17].

2.2 Intel Core and IBM POWER8

This section reviews HTM extensions, such as those found in Intel Core and IBM POWER8,

and and the features to enable TLS.

Intel’s Transactional Synchronization Extensions (TSX) provides an instruction-set in-

terface to specify transactional execution [29] with two software interfaces: Hardware Lock
Elision (HLE) and Restricted Transactional Memory (RTM). The RTM is an instruction-

set extension that includes the instructions xbegin, xend, and xabort. When a trans-

action aborts, the state of the program immediately before the xbegin instruction is

recovered, all speculatively written data are dismissed, and the values stored in registers

are rolled back to their values prior to the transaction. The execution restarts at a pro-

gram point specified by the address given as argument to the xbegin instruction. Data

written transactionally are not visible to other transactions until the transaction commits

by executing the xend instruction.

POWER8 provides the first implementation of HTM that is supported directly by the

POWER ISA. The main difference from POWER8 with respect to Intel TSX is its ability

of pausing transactions. In POWER8, through the use of suspend regions, transactions

can survive interrupts and can access memory non-transactionally while the transaction is

still active. Suspended regions were designed to support debugging. While in a suspended

state the thread can load memory locations accessed within the transaction and store their

value into memory locations that are not included in the transaction footprint.

CHAPTER 2. BACKGROUND 21

POWER8’s Rollback-Only Transactions (ROTs) allow store buffering without the de-

tection of data conflicts. ROTs support single-thread speculative optimization techniques

such as Trace Scheduling [36, 41].

Both Intel and IBM architectures provide instructions to begin and end a transaction,

and to force a transaction to abort. To perform such operations Intel Core’s Transactional
Synchronization Extensions (TSX) implements RTM that includes xbegin, xend, and

xabort. The corresponding instructions in the POWER8 are tbegin, tend, and tabort.

All data conflicts are detected at the granularity of the cache line size because both

processors use cache mechanisms — based on physical addresses — and the cache coher-

ence protocol to track transactional states. Aborts may be caused by: memory access

conflicts, capacity issues due to excessively large transactional read/write sets or overflow,

conflicts due to false sharing, and OS and micro-architecture events that cause aborts (e.g.
system calls, interrupts or traps) [41, 67].

In both architectures, when a transaction aborts, the execution of the thread is rolled

back to the point immediately before the transaction’s begin instruction. An abort handler

then determines if the transaction should retry or if a fall-back code should be executed.

Data written transactionally are not visible to other transactions until the transaction

commits by executing the end instruction. Table 2.1 summarizes the features of both

architectures.

The main differences between POWER8 and the Intel Core HTMs are: (1) transaction

capacity; (2) conflict granularity; and (3) ability to suspend/resume a transaction. The

maximum amount of data that can be accessed by a transaction in the Intel Core is much

larger than in the POWER8. This speculative storage capacity is limited by the resources

needed both to store read and write sets, and to buffer transactional stores.

In POWER8 the execution of a transaction can be paused through the use of suspended

regions — implemented with two new instructions: tsuspend and tresume. Using this

mechanism, a transaction can survive interrupts and the thread can access memory non-

transactionally while the transaction is suspended. The tsuspend instruction causes the

thread to enter a suspended state where all memory accesses are non-transactional but are

monitored. If any such access conflicts with the suspended-transaction working set, that

transaction will abort due to a conflict after resuming (tresume). While in a suspended

state the thread can load memory locations accessed within the transaction and store their

values into memory locations that are not included in the transaction footprint. Thus,

suspended regions also allow transactions to communicate with global flags without failing

due to conflicts. This mechanism enables the implementation of an ordered-transaction
feature in TLS [36].

2.3 Thread-Level Speculation

Torrellas defines Thread-Level Speculation (TLS) as an environment where execution

threads operate speculatively, performing potentially unsafe operations, and temporarily

buffering the state that they generate in a buffer [60]. Then, the operations of a thread

are declared to be correct or incorrect. If they are correct, the thread commits; if they are

CHAPTER 2. BACKGROUND 22

1 for (i = 0; i < N; i++){

2 /* Start sequential segment 1 */ /* Global scalar, glob */

3 if (cond)

4 glob++;

5 else

6 glob=i;

7 /* End sequential segment 1 */

8 A[i]= glob*i;

9 /* Start sequential segment 2 */

10 for(j = 0; j < factor; j++){

11 /* Global array, B */

12 int tmp = B[factor*(i%4) + j];

13 tmp += i*5;

14 if(tmp%2 == 0){

15 B[factor*(i%4) + j] = tmp;

16 }

17 }

18 /* End sequential segment 2 */

19 }

Figure 2.1: A loop with two may loop-carried dependences. Adapted from [40].

incorrect, the thread is rolled back and typically restarted from its beginning. The term

TLS is most often associated to a scenario where the goal is to parallelize a sequential ap-

plication. However, in general, TLS can be applied to any environment where speculative

threads are executed and can be squashed and restarted [60].

TLS has been widely studied [54, 56, 55]. Proposed TLS hardware systems must

support four primary features: (a) data conflict detection; (b) speculative storage; (c)

ordered transactions; and (d) rollback when a conflict is detected. Some of these features

are also supported by the HTM systems found in the Intel Core and the POWER8, and

thus these architectures have the potential to be used to implement TLS. Table 2.2 shows

the necessary and advanced features required to enable TLS on top of an HTM-supporting

mechanism, and its availability in some modern architectures. Neither Intel TSX nor the

IBM POWER8 provide all the hardware features necessary to carry out TLS effectively.

Lets examine how TLS can be applied to a simplified version of the loop example

of Figure 2.1 (statement in line 8 and the inner loop are omitted) when it runs on top

of an ideal HTM system containing: (a) ordered transactions in hardware; (b) multi-

versioning cache; (c) eager-conflict detection; and (d) conflict-resolution policy. Figure 2.2

shows the loop after it was strip-mined and parallelized for TLS using NUM_THREADS

threads. Assume that the END instruction implements: (a) ordered transactions, i.e., a

transaction executing an iteration of the loop has to wait until all transactions executing

older iterations have committed, and (b) a conflict-resolution policy that gives preference

to the transaction that is executing the earliest iteration of the loop while rolling back

later iterations. Multi-versioning allows for the removal of Write-After-Write (WAW)

and Write-After-Read (WAR) loop-carried dependences on the glob variable. As shown

in Figure 2.3, in the first four iterations cond evaluates false and write variable glob

without aborts. Then, at iteration 4, the eager-conflict detection mechanism detects the

RAW loop-carried dependence violation on variable glob between iterations 4 and 5, thus

CHAPTER 2. BACKGROUND 23

1 d= STRIP_SIZE;

2 inc=(NUM_THREADS-1)*STRIP_SIZE;

3 i=param->i; // initial value of i for this thread

4

5 for(; i < N; i += inc){

6 prev_i=i;

7 Retry:

8 if (!BEGIN()){

9 for (; i-prev_i < d && i < N; i++){

10 if(cond) glob++; else glob=i;

11 }

12 END();

13 }

14 else goto Retry;

15 }

Figure 2.2: Code of each thread to parallelize Figure 2.1’s loop with TLS on ideal HTM
system.

Figure 2.3: Execution flow of Figure 2.2’s code with STRIP_SIZE=1 and NUM_THREADS=4.

rolling back iteration 5 because it should occur after iteration 4. Subsequent iterations

wait for the previous iterations to commit.

2.4 Strip Mining

Strip Mining divides a single loop into a pair of loops (doubly-nested loop), thus the

original loop is divided into strips of some size, the strip size. The outer loop steps

between the strips and the inner loop steps through each strip. The maximum trip count

of the inner loop is equal to the strip size [66].

CHAPTER 2. BACKGROUND 24

2.5 Loop Peeling

Loop Peeling removes the first or last few iterations from a loop and performs them outside

of the loop [66]. If the trip count of the loop is not constant the peeled code has to be

protected with additional runtime tests.

2.6 Traces

A trace is formed by basic blocks and corresponds to a cycle-free path in a control flow

graph. Part of this work focuses on generating traces for hot code regions. Such regions

consist of relatively few instructions that are responsible for a large share of the program

execution time. Traces are good candidates for optimization [20]. In this work, hot code

regions are identified using program profilers (e.g. VTune [49]) and then appropriate

traces for STO are found within the regions.

2.7 Optimizations using Traces

Generating larger traces creates more optimization opportunities because traces:

• Simplify the control-flow graph of a hot region of code such as a loop body. In

STO control-flow statements are evaluated at the end of the execution of a trace

and thus longer sections of control-flow free code are exposed to the compiler. The

resulting control-flow graph is simpler and therefore more amenable to optimiza-

tions (dead-code elimination, code motion, constant propagation, etc.). This idea

of optimization is used in this work.

• May contain function calls, thus incrementing the possibilities of optimization.

Therefore inlining can be used to reduce the overhead of invoking and returning

from methods [8].This idea of optimization is also used in this work.

• Typically contain the most frequently executed portions of a program and therefore

can be used to optimize frequently executed instructions [9].

• Can be used to eliminate the cost of infrequently executed instructions from the

execution of hot traces [9].

Chapter 3

Related Work

This chapter presents several works that have been proposed in the literature related to

Thread-Level Speculation, Speculative Trace Optimization, and Data Dependence Profil-

ing.

3.1 Thread-Level Speculation

Steffan et al. explored the potential of using Thread-Level Data Speculation (TLDS).
TLDS is a technique that allows the compiler to safely parallelize codes in cases it can-

not statically prove that dependences do not exist [55]. TLDS can offer performance

improvements for applications where automatic parallelization would otherwise appear

infeasible.

Steffan et al. presented a cache coherence that supports thread-level speculation (TLS)

on a wide range of different parallel architectures because it is a straightforward extension

of write-back invalidation-based cache coherence [56, 57].

The absence of hardware support for TLS led to the development of software-based

implementations of TLS [43, 48]. While these implementations attempt to make the best

use of existing hardware resources, the large overhead of buffering, validation, and in-

order commits results in degradation of performance. Thus, hardware support appears to

be essential to deliver effective performance improvement with TLS.

Although much previous research work on hardware support for TLS exists, up to now

(circa 2016) most attempts to estimate the performance benefits of TLS were based on

simulation studies [54, 56, 55, 47]. For example, Packirisamy et al. show that some of

the SPEC CPU 2006 benchmarks have potentially parallel loops that can be successfully

parallelized with TLS to achieve up to 78% of speed-up [47]. They also predict that

parallelizing loops with infrequent RAW loop-carried dependences with TLS can result

in speed-ups of up to 60%. Their performance predictions are based on a trace-driven

simulator based on SimpleScalar that supports multiple cores, speculative execution, and

advanced TLS features. In contrast, this work describes an evaluation of TLS running

on existing HTMs from both the Intel Core and the IBM POWER8. While their study

assumed the absence of false sharing and the availability of multi-version caches, ordered

transactions and forwarding, this work targets actual off-the-shelf HTM hardware where

25

CHAPTER 3. RELATED WORK 26

none of these assumptions are true. Moreover, this work also proposes code transforma-

tions to overcome limitations of actual commercial hardware, making them amenable for

efficient TLS execution.

Odaira and Nakaike study Thread-Level Speculation in the Intel TSX [44] by manu-

ally modifying parallel benchmarks from the SPEC CPU 2006 suite. Their performance

evaluation indicated that up to 11% of speed-up can be achieved even without using the

advanced features of HTM. However, for many benchmarks they find that TLS results in

degraded performance. Their research suggests that the main reason for the performance

degradation are transaction aborts due to memory conflicts. Therefore, they suggest that

future HTM hardware should support not only ordered transactions but also data forward-

ing, multi-versioning cache, and word-level conflict detection. However, the comparison of

TLS performance on Intel Core and IBM POWER8 presented in this work demonstrates

that speed-ups can be achieved for some loops even on off-the-shelf hardware that does

not implement their recommendations.

Nakaike et al. compare four HTM systems: Blue Gene/Q, zEC12, Intel TSX, and

POWER8 [41]. Their experimental results indicate that the four HTM systems have im-

plementation issues, and none has the best performance in all of the benchmarks. They

claim that Intel TSX has extra transaction aborts due to adjacent cache-line prefetcher —

which is corroborated by the results in this study, and that POWER8 has more capacity

aborts than the other HTM systems because of its small transaction capacity — another

result that is confirmed by this study. They also claim that tsuspend/tresume instruc-

tions improve TLS performance and support this claim with evaluation of two benchmarks:

milc and sphinx3. They do not show the abort ratios for these two cases. In contrast,

this study claims that false sharing is considerably exacerbated in TLS parallelization on

top of HTM, and that although HTM features (e.g. suspend/resume instructions) can

provide support for TLS, they do not provide all the support that is required for TLS to

deliver on its promised performance.

3.2 Speculative Execution of Loops with Transient De-

pendences

HELIX is a compiler that has previously delivered good speed-ups for irregular programs

on a six-core Intel i7 [29] machine [11]. HELIX parallelizes loops in sequential programs,

distributing the iterations to available cores in a round-robin fashion. To preserve de-

pendences between iterations or (may) loop-carried dependences, HELIX creates sequen-
tial segments that are subsets of iterations whose execution on cores must respect the

loop-iteration order of the sequential program. These sequential segments correspond to

Strongly Connected Components (SCCs) in a Data-Dependence Graph (DDG) that have

at least one loop-carried dependence. An SCC formed by a single node with no loop-

carried dependences is considered a parallel segment that does not need synchronization.

A sequential segment implements the necessary synchronization to wait for the produc-

tion of a loop-carried dependence variable value from a previous iteration, and to signal

when the value is ready to use in a future iteration.

CHAPTER 3. RELATED WORK 27

Figure 3.1: HELIX Execution flow of Figure 2.1. Sequential segments are synchronized.

To understand the HELIX approach, consider the code shown in Figure 2.1. This

code contains a loop where the increment of a global scalar variable glob is controlled by

the condition cond. The inner loop for in lines 10- 17 reads and conditionally updates

a position from array B. HELIX creates three sequential segments: Sequential Segment

0 (SS0), also called prologue, is always created to control the end of the loop; Sequential

Segment 1 (SS1) preserves dependences in global variable glob because HELIX pessimisti-

cally assumes that cond always evaluates true; and Sequential segment 2 (SS2) surrounds

the inner loop to preserve a possible dependence in some index in the array A. Figure 3.1

shows the execution of sequential segments of the loop in Figure 2.1 using synchronization,

blue portions represent parallel segments. Static analysis cannot prove that the loop is

free of loop-carried dependences, thus it must be conservative and create these sequential

segments. If these dependences actually occur at runtime but they are transient, HELIX

could use TLS to avoid synchronization in those sequential segments as proposed in [40].

For instance, assume an execution of the loop of Figure 2.1 that uses an input that leads

to the following dependences: SS0 never has a loop-carried dependence (the value of N is

known at compile time); SS1 always contains a dependence because cond always evaluates

true; and SS2 contains a transient dependence. Due to this transient dependence, HELIX

must synchronize SS2 and thus will not exploit parallelism in it. However, the index

factor*(i%4) + j evaluates to different values at each iteration of the outer loop if the

number of cores is less than or equal to four — assuming that the distribution of iterations

to cores follows a round-robin fashion.

Murphy et al. [40] propose a technique to speculatively parallelize loops that exhibit

transient loop-carried dependences — a loop where only a small subset of loop iterations

have actual loop-carried dependences. The code produced by their technique uses a TM

hardware (TCC hardware) and software (Tiny STM) model running on top of the HELIX

time emulator. They developed three approaches to predict the performance of imple-

menting TLS on the HELIX time emulator: coarse-grained, fine-grained, and judicious.

The coarse-grained approach speculates a whole iteration while the fine-grained approach

CHAPTER 3. RELATED WORK 28

speculates sequential segments and executes parallel segments without speculation. The

judicious approach uses profile data at compile time to choose which sequential segment

to speculate or synchronize so as to satisfy (may) loop-carried dependences. They con-

clude that TLS is not only advantageous to overcome limitations of the compiler static

data-dependence analysis, but that performance might also be improved by focusing on

the transient nature of dependences.

Murphy et al. evaluated TLS on emulated HTM hardware using cBench programs [15]

and, surprisingly, predicted up to 15 times performance improvements with 16 cores [40].

They arose at these predictions even though they did not use strip mining to decrease

the overhead of starting and finishing transactions as we suggest in this work. Particu-

larly, fine-grained speculation without strip mining can result in large overheads due to

multiple transactions (sequential segments) per iteration, even larger than coarse-grained

speculation. They parallelized loops in a round-robin fashion which can result in small

transactions, large number of transactions, high abort ratio, bad use of memory locality,

and false sharing.

Their over-optimistic predictions are explained by the fact that their emulation study

does not take into account the overhead of setting TLS up — which is specially high with-

out strip mining. For instance, their emulation study predicted speed-ups even for small

loops. However, when executing such loops in real hardware, the TLS overhead — setup,

begin/end transactions, and aborts — would nullify any gain from parallel execution.

In [40] the authors conclude that fine-grained speculation coupled with static depen-

dence analysis is possibly the best way to exploit all the parallelism in loops. However,

static dependence analysis can be very imprecise and report a large number of sequential

segments that would prevent good speed-ups.

Odaira and Nakaike and Murphy et al. use coarse-grained TLS to speculate a (strip-

mined) whole iteration and perform conflict detection and resolution at the end of the

iteration to detect RAW dependence violations [44, 40]. To illustrate, assume an execution

of the example of Figure 2.1 where cond always evaluates true, and thus the glob variable

is increased at each iteration of the outer loop. With coarse-grained TLS the execution

of this outer loop would be serialized for such execution. The advantages of coarse-

grained TLS are: (a) it is simple to implement because it does not need an accurate

data dependence analyzer. (b) the number of transactions is smaller than or equal to the

fine-grained or judicious approaches; and (c) there is no synchronization in the middle of

an iteration. The downside is that even a single frequent actual loop-carried dependence

will cause transactions to abort and re-execute the whole iteration, thus serializing the

execution.

3.3 Speculative Trace Optimization

Traces have been used for traditional optimizations. Fisher was the first to introduce the

concept of traces and to use it for instruction scheduling [20]. Trace Scheduling is a global

compaction technique in contrast with local compaction techniques whose domain is a

basic block of code. The idea is to schedule the most frequently executed traces (defined

CHAPTER 3. RELATED WORK 29

by a feedback) quickly. Extra instructions, referred as compensation code, must be added

so that other paths not optimized by the technique become valid. This work has been

extended by Ellis in the Bulldog Compiler [19], Chang et al. [12], and Hwu et al. [27].

Hwu et al. developed a set of techniques for exploiting ILP across basic block bound-

aries [27]. These techniques are based on a structure called the superblock. A superblock

is a trace that has no side entrances, thus the control may only enter from the top but

may leave at one or more exit points. A copy of a portion of a trace is made from the

first side entrance to the end, and all side entrances into the trace are moved to the cor-

responding copy. The superblock enables the optimizer and scheduler to extract more

ILP along important execution paths by removing constraints due to other unimportant

execution paths.

Chang et al. used profiling information in the Trace Selection Algorithm (the first pass

of Trace Scheduling) [12]. They examined the predictability of branches within traces,

concluding the use profiling information in Trace Scheduling can guide global code motion

effectively with very small off-trace overhead.

Hank et al. introduced a technique called region-based compilation where the compiler

is allowed to divide the program into regions of code (instead of methods) as a desirable

unit of work [22]. Region-based compilation allows the compiler to control the problem

size while exposing inter-procedural optimization and code motion opportunities.

Static Trace Scheduling involves selecting traces and scheduling instructions on these

traces trying to increase ILP, and improving the performance on a single processor. STO

differs from these approaches because it collects all traces and speculatively optimizes

and executes them on an HTM system trying to improve the performance on multiple

processors.

Profile information is used to identify heavily executed paths in a program (or traces).

Ball and Larus described an algorithm for path profiling that determines how many times

each acyclic path in a routine executes [4]. The algorithm selects and places profile

instrumentation to minimize run-time overhead, and it accurately determines dynamic

execution frequency of control-flow paths in a routine. This type of profiling subsumes

the basic block and edge profiling that do not always correctly predict frequencies of

overlapping paths. They select a number of paths and encode them so that each path has

an index that can be used to access the counter of the corresponding path.

Young developed a technique to collect path profiles efficiently, and then applies the

path profile to two optimizations: static correlated branch and path-based superblock

scheduling [68]. The potential next paths for a given path are kept track. At runtime, the

program uses this information to find what path is being followed by at a given instruction.

Data-flow analysis computes its solution over all paths of the program; however, pro-

grams execute a small fraction of all possible paths, this subset is called hot paths. Am-

mons et al. described an approach to analyzing and optimizing programs, which improves

the precision of data-flow analysis throughout hot paths [2]. Their technique detects hot

paths, creating a hot path graph (HPG) where these paths are isolated. They then perform

flow analysis in the original CFG and the HPG, taking a subset of the HPG that contains

hot paths for which the analysis differed in a favorable way from that in the CFG. This

final subset is used to perform constant propagation.

CHAPTER 3. RELATED WORK 30

Our work differs from these approaches on path profiling as they developed techniques

to improve the performance of profiling, thus to use this more accurate profile information

in optimizations. We profile the entire program to find the frequently executed sections

of a program and then collect the traces of these sections to be speculatively executed.

Bradel et al. proposed and evaluated an approach for automatic parallelization based

on traces as units of parallel work [7]. They described an execution model that uses

traces to extract parallelism from programs. They implemented a system that shows

the benefits and addresses the challenges of using traces for data-parallel programs in an

off-line feedback-directed system. The results of performance compares favorably to the

performance of these programs manually parallelized. Bradel et al. propose and evaluate

an approach for automatic parallelization based on traces as units of parallel work [7].

They implement a system that takes a sequential program (binary file), identifies the

traces on it, and groups them into coarse-grain units of computation (tasks). STO differs

from this approach in that it uses a real HTM to speculatively optimize traces of loop

iterations and we are not automatically parallelizing traces of the binary file.

Neelakantam et al. proposed that microprocessors provide hardware primitives for

atomic execution to increase the effectiveness of speculative compiler optimizations [42].

Thus, the compiler may speculatively optimize a program’s hot path in isolation as a

superblock. Atomic execution guarantees that if a miss-speculation is produced, the

control is transferred to a non-speculative version of the code, relieving the compiler from

generating compensation code. They considered that the implementation of the proposed

hardware atomicity has significant differences from TM. These optimizations result in 10-

15% average speed-up. STO differs from this in that, to carry out the speculative compiler

optimizations, it speculates in parallel all possible traces within a hot-loop iteration using

a real HTM.

3.4 Data-Dependence Profilers

This section analyzes two techniques used to detect loop-carried dependences. The first

one is the Pairwise method, which was used in [35]; the second technique is the Stride-
based method, which was implemented in the SD3 profiler [33, 32].

Static dependence analysis techniques have been extensively studied in the literature.

Approaches like the GCD Test [39] and Banerjee’s equality test [34] have been used, for a

long time, in the design of parallelizing compilers. These techniques analyze data depen-

dences in array-based memory accesses, and thus are not effective when used in languages

which allow pointers and dynamic allocation. Besides, static analysis can become complex

in situations when: (a) the bounds of the loop are not known, (b) dynamically created

arrays are passed through deep procedure call chains, or (c) the loop-body has a compli-

cated control-flow. In such cases, dynamic loop dependence analysis is an alternative as

all memory addresses are resolved at runtime.

CHAPTER 3. RELATED WORK 31

3.4.1 Pairwise Method

The Pairwise Method is still considered the state-of-the-art for loop-carried dependence

testing. The basic idea of this method is to store, into a hash table (pending table), all

memory references (pending references) occurring during the current iteration of a loop.

When an iteration finishes, the pending table is compared against the history table, which

stores all memory references (history references) of all previous iterations. This method

solves nested loops dependences, by having a pending and a history table for each loop.

The Pairwise algorithm works as follows. First, memory references are stored into the

pending table during an iteration. After of finishing the iteration, the pending table is

checked against the history table to discover loop-carried dependences. Before of con-

tinuing with the next iteration, the pending references are copied to the history. This

process is repeated until the end of all iterations for this loop. If this loop is nested within

another loop, the history table of the inner loop is propagated to the pending table of

the outer loop. Afterwards, this pending table is checked against the history table of the

outer loop (that is initialized empty) to discover loop-carried dependences. This process

for the outer loop continues until the end of all its iterations.

Loop-independent dependence does not prevent parallelization; thus, any dependence

analyzer must distinguish if a dependence is loop-carried or loop-independent. The Pair-

wise algorithm, as described in [33, 69], detects loop-independent dependence by imple-

menting kill addresses (a technique similar to the notion of kill sets in data-flow analysis),
which marks a memory address as killed once it is written in an iteration. Then all mem-

ory references within the same iteration to the killed address are ignored. However, this

technique could lead to incorrect results in multithreaded program executions not report-

ing existing violations of loop-carried dependences between threads as it only works in

serial executions or per-thread analysis.

To demonstrate kill addresses effectiveness, SD3 authors analyze the following code

from SPEC 179.art [33].

1 void match() {

2 if (condition)

3 pass_flag=1;

4 }

5 void scan_recognize(...) {

6 for (j = starty; j < endy; j += stride)

7 for (i = startx; i < endx; i += stride){

8 ...

9 pass_flag = 0;

10 match();

11 if (pass_flag == 1)

12 do_something();

13 ...

14 }

15

16 }

Figure 3.2: Dependence in pass_flag in 179.art.

CHAPTER 3. RELATED WORK 32

Assuming that pass_flag is a global variable, they argue that a loop-independent

flow dependence exists on pass_flag as this variable is always initialized at line 9 before

any use on every iteration, which should not prevent parallelization, and it is true in

a serial execution context. However, in a multithreaded execution this code could have

the following problem. Lets assume that thread X executes line 9 after the same thread

executes line 3. Before this thread executes line 11, another thread Y executes line 9.

Thus, when thread X reads variable pass_flag at line 11, it will be incorrect as the

execution does not respect the loop-carried WAR dependence between the write reference

at line 9 (executed by thread Y) and the read reference at line 11 (executed by thread

X). Thread X will not execute do_something when it had to do so.

This problem can be solved with privatization as SD3 authors argue in [33]. On the

other hand, according to our approach, all violations of loop-carried dependences must

be informed to force not omitting corrections of renaming of variables that avoid WAR

and WAW loop-carried dependences.

Killed addresses technique is also used by SD3 [33, 32] so it could lead to inaccurate

results due to multithreaded program executions. Our OpenMP checker deals with this

problem by storing the thread identifier (thread ID) for each memory event within the

loop body.

Other problems of Pairwise Method are the time and memory overhead it requires

to store all memory references within a loop. These problems can be more complicated

when considering nested loops, as the Pairwise Method propagates history references of

inner loops to pending tables of outer loops. We focused on the functionality of the

new check construct and the integration with GCC and LLVM. On the other hand, we

partially addressed the time overhead using pipeline-parallelization of the stages of our

implementation.

3.4.2 Stride-based Method

This method was proposed in [33] and has the Pairwise Method as a baseline algorithm.

It tries to solve the problem of memory overhead by means of compression, and to solve

the time overhead by using data-level parallelism.

The compression is achieved by using stride formats. For example, array reference

A[d ∗ i + b] generates an address stream that has a stride composed by a base (b), a

distance (d), and an induction variable (i). SD3 [33] discovers strides dynamically and

uses them directly to check loop-carried dependences. Strides are detected by a detector

assigned to each PC. If a memory reference is not part of a stride, it is called a point.
Stride-based method is implemented using an extension of the Pairwise algorithm

defining pending and history stride tables. To detect dependences in strides they first do

an interval test employing interval trees based on red-black trees [14]. They then perform

Dynamic-GCD test, as described in [32]. Notice that SD3 focuses on reducing the memory

overhead due to deep nested loops, contrary to this work, which considers an inner loop

as serial code within the loop body as it is more focused on the integration with OpenMP,

and to solve the problems with multithreaded executions.

SD3 solves the problem of time overhead by exploiting data-level parallelism contrary

CHAPTER 3. RELATED WORK 33

to the task-level parallelism approaches adopted in previous works [38]. It distributes

memory references into tasks that perform data-dependence checking with a subset of the

entire input. The address space is divided at every 2k bytes and the subsets are mapped

to M tasks on N cores.

As in the previous Pairwise algorithm, this method maintains killed addresses to dis-

tinguish between loop-carried and independent dependences. However, as discussed in

the previous Section 3.4.1, this technique could lead to incorrect results for multithreaded

application executions. Therefore, SD3 method can ignore some violations of loop-carried

dependences for multithreaded executions as SD3 analysis is performed sequentially or on

a per-thread basis. As explained before, checker deals with this problem.

Another problem with SD3 is that it is more effective for profiling inner loops than

outer loops. As data-dependence analysis proceeds to outer loops, irregular strides are

more frequent (the compression method will not work), making the cost of detecting

dependences extremely expensive. Also, this method requires additional static analysis to

recover control flows and loop structures from a binary executable, which is complicated

to implement [33]; thus, the selection of loops to analyze is also complicated.

Our solution to these problems is to limit the analyzed loops according to the pro-

grammer instructions, while storing memory references in a memory/time efficient data

structure as Multilevel Hash Table [10].

Chapter 4

Evaluating and Improving TLS in

HTMs

This chapter presents a detailed analysis of the application of Hardware Transactional

Memory (HTM) support for loop parallelization with Thread-Level Speculation (TLS).

4.1 Loop-Carried Dependences and False Sharing

Consider the simple for loop in Figure 4.1 (ommiting the inner loop in lines 10-17)

that has two alternative paths of execution. Executing line 4 in iteration i creates a loop-

carried dependence with iteration i-1. The alternative path does not create a dependence.

When the condition evaluated by the if statement is unknown at compilation time, this

loop cannot be parallelized. However, if the loop-carried dependence is rare for a given

execution of the program, the loop could profitably be executed in parallel speculatively

using TLS.

TLS works best when the compiler has some information about the likelihood of

dependences occurring at runtime. For instance, assume that a compiler has information

— perhaps through profiling — that there is a high probability that the condition in line 3

of the code in Figure 4.1 is false when the loop index is a multiple of N/4 and that it is true

for all other iterations. When the condition is false, the write to glob at line 6 kills the

value written into the previous iteration and therefore there is no loop-carried dependence.

Figure 4.2a shows a possible parallelization for this loop with the arrows indicating loop-

carried dependences. Applying TLS in this fashion would not be productive because

in three out of four speculative executions the loop-carried dependence would cause an

access conflict leading to an abort followed by a retry. An alternative parallelization is

shown in Figure 4.2b. Here the compiler has grouped the likely dependent iterations into

a single thread using strip mining and privatizing variable glob for each thread, thus the

expectation is that there will be no aborts and retries due to dependence when executing

the loop in this fashion. However, if the compiler is using probabilities rather than proofs

of independence, DOALL parallelization cannot be applied [26]. The performance of TLS

will depend on the amount of computation that is successfully speculated at runtime and

on the probability of loop-carried dependence occurring [47].

34

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 35

1 for (i = 0; i < N; i++){

2 /* Start sequential segment 1 */ /* Global scalar, glob */

3 if (cond)

4 glob++;

5 else

6 glob=i;

7 /* End sequential segment 1 */

8 A[i]= glob*i;

9 /* Start sequential segment 2 */

10 for(j = 0; j < factor; j++){

11 /* Global array, B */

12 int tmp = B[factor*(i%4) + j];

13 tmp += i*5;

14 if(tmp%2 == 0){

15 B[factor*(i%4) + j] = tmp;

16 }

17 }

18 /* End sequential segment 2 */

19 }

Figure 4.1: Figure 2.1. A loop with two may loop-carried dependences.

False sharing due to the cache coherence protocol also limits the performance of TLS.

Figure 4.3 revisits the round-robin parallel execution of the example loop into four threads,

which appeared in Figure 4.2a, but now also showing the accesses to the array A. Assume

that thread T0 accesses (line 8) the position A[i] of the vector and thread T1 accesses

position A[i+1] of the vector. Also assume that positions A[i] and A[i+1] map to the

same cache line. The flow of execution could be as follows: (1) T0 writes A[0] to its cache

line; (2) T1 reads the cache line; (3) T1 writes A[1] to its cache line and thus issues a

write-invalidate command; (4) T0 reads the cache line; (5) T0 writes A[4] to its cache line

issuing a write-invalidate command. As illustrated in Figure 4.3, multiple threads will

be accessing the same cache line, thus producing a large number of write-invalidates and

cache misses and reducing the parallelization performance.

It is well known that false-sharing can have a considerable impact in loop performance

even for embarrassingly parallel DOALL loops [61]. Techniques, such as loop strip mining,

have been used to eliminate such overhead [13] by forcing writes to the same cache line

to occur within the same thread. For example, the code of Figure 4.1 could be re-written

(Figure 4.4) in such a way that all positions of the vector A that map to the same cache

line are accessed by the same thread, thus eliminating false-sharing (Figure 4.5). Given

that A[i] is a vector of doubles, in an architecture with cache line that stores eight

doubles (64 bytes), setting STRIP_SIZE to eight eliminates false sharing. When targeting

a specific architecture, a compiler has access to the size of the cache line and thus can set

an appropriate STRIP_SIZE to optimize performance.

The effect of false sharing on the performance of TLS has not been thoroughly eval-

uated. Also, no research has been conducted aiming at understanding how false sharing

impacts program performance when HTM is used to support speculative techniques such

as TLS.

The experimental results in this work indicate that false sharing can considerably

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 36

(a) Round-robin fashion parallelization.

(b) Strip mining parallelization.

Figure 4.2: Parallelization of Figure 4.1 with four threads.

Figure 4.3: False sharing in the loop of Figure 4.1.

downgrade loop performance in the presence of HTM and TLS — much more so than in

a regular DOALL parallelization. For instance, Table 4.1 shows the times (in seconds) for

the execution of the hottest loop in the sphinx3 benchmark program [24] when: (a) its

serial version is executed; (b) the loop is parallelized using OpenMP parallel for; and

(c) the loop is parallelized using TLS on HTM. In this loop the compiler reports a may
dependence, but this dependence never occurs during runtime with the input provided

for the benchmark. Therefore, while it is safe to parallelize the loop with OpenMP for

the benchmark, for correctness TLS must be used for an execution of the program with

an unknown input. Table 4.1 provides the execution time with four threads with and

without strip-mining on the Haswell processor described in Section 2.2. Applying strip

mining to eliminate false sharing in the parallel for version yields a fairly small speed-

up in comparison with the parallelization without strip mining (2%). However, for the

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 37

1 d = STRIP_SIZE;

2

3 for(is = 0 ; is < N; is += d){

4 for (i=is ; i - is < d && i < N; i + =1){

5 if(...)

6 glob++;

7 else

8 glob=i;

9 A[i] = glob * i;

10 }

11 }

Figure 4.4: Loop of Figure 4.1 after applying strip mining.

Figure 4.5: Strip-mining (STRIP_SIZE=8) the loop of Figure 4.1.

HTM-TLS version the whole-program speed-up is 11%. This suggests that, although

HTM support reduces the overhead of maintaining speculative storage, it suffers from a

large number of false-sharing induced aborts. Understanding this impact is one of the

main goals of the remaining of this chapter.

4.2 TLS on top of HTM

Hardware support for Thread-Level Speculation (TLS) must have four features: (a) data

conflict detection; (b) speculative storage; (c) ordered transactions; and (d) rollback when

a conflict is detected [54, 56, 55]. Three of these features are also supported by the HTM

Table 4.1: Impact of false sharing on sphinx3.

Without
strip mining

With
strip mining

% Improvement

Serial 390 390
OpenMP 353 347 2%
TLS-HTM 409 370 11%

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 38

systems found in the Intel Core and POWER8, and thus these architectures could be

used to support TLS. Odaira et al. evaluates TLS on Intel TSX; their work yielded some

speed-ups but poor performance in most cases [44]. They claim that their performance

result is explained by Intel TSX lacking some advanced TLS features such as ordered

transactions, multi-versioning caches, data forwarding, or word-level conflict detection.

Table 2.2 shows the necessary features required to enable TLS on top of an HTM-

supporting mechanism, and its availability in some modern architectures. Neither Intel

TSX nor the IBM POWER8 provide all the features necessary to support TLS effectively.

Blue Gene/Q is the architecture that implements almost all the features required for

TLS. For this study we did not have access to a Blue Gene/Q machine and therefore we

have not evaluated TLS in that machine. Bhattacharyya et al. found that the cost of

starting a TLS region in BG/Q is high and observed only modest speed improvements

due to TLS [5]. Given an architecture with HTM support that misses features required to

implement TLS, one might ask if it could be used to implement TLS. The experimental

results in this work indicate that such an implementation is possible provided that software

emulate the required behaviour.

Implementing coarse-grained TLS on top of the POWER8 TM requires the software

to emulate multi-versioning, a conflict-resolution policy, and ordered transactions. The

code shown in Figure 4.6 is a TLS version of the loop example of Figure 4.1 (statement

at line 8 and inner loop are omitted) with versions for TSX and POWER8 managed by

a switch-case statement. In POWER8 the tsuspend/tresume instructions are used to

non-speculatively wait for the iteration commit counter next to reach the value of the

index variable for the current transaction before committing (while loop in line 26). The

Intel TSX does not provide the ability to suspend transactions and to execute instructions

non-speculatively and therefore a transaction cannot wait for its turn to commit as in the

POWER8. The solution is to roll back a transaction that completes execution out of

order using an explicit abort instruction (xabort) as shown in line 29 of Figure 4.6. This

kind of abort is called an order-inversion abort.

To emulate multi-versioning the software privatizes all global variables written within

a transaction by creating local copies. For example, globL in Figure 4.6 is a private local

version of glob in the code of Figure 4.1. Besides eliminating WAW and WAR loop-carried

conflicts, the privatization of global variables also simulates a conflict-resolution policy.

For instance, in the data conflict between iterations 4 and 5 shown in Figure 4.7 iteration

4 could be aborted and rolled back. By privatizing variable glob, through its replacement

with globL within the transaction, iteration 4 will not be aborted by data conflicts in

glob; when it commits, it non-speculatively writes variable glob as shown in line 32 of

Figure 4.6. This non-speculative write causes the abortion of any other iterations that

read variable glob thus enforcing Read-After-Write (RAW) dependences.

The code in Figure 4.6 omits some details for clarity. If the transaction aborts, the

program control jumps back to the tbegin instruction. We assume that each software

thread is bounded to one hardware thread and executes a determined number of pre-

assigned iterations. Strip mining is used to enable a single transaction to execute multiple

iterations, however, the STRIP_SIZE must be limited to avoid exceeding the speculative

storage capacity of the HTM system. False sharing can be exacerbated on a HTM as

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 39

1 d= STRIP_SIZE;

2 inc=(NUM_THREADS-1)*STRIP_SIZE;

3 i=param->i; // initial value of i for this thread

4

5 for(; i < N; i += inc){

6 prev_i=i;

7 flag=0;

8 Retry:

9 if (next!=i){

10 if (!tbegin()){

11 for (; i-prev_i < d && i < N; i++){

12 if(cond){

13 if (!flag) {

14 flag=1

15 globL=glob;

16 }

17 globL++;

18 }

19 else

20 globL=i;

21 }

22

23 switch(ARCHITECTURE){

24 case IBM_POWER8:

25 tsuspend();

26 while(next!=prev_i);

27 tresume();

28 case INTEL_CORE:

29 if (next!=prev_i) tabort();

30 }

31 tend();

32 glob=globL;

33 }

34 else goto Retry;

35 }

36 else{

37 if (cond)

38 glob++;

39 else

40 glob=i;

41 }

42 next=prev_i+d;

43 }

Figure 4.6: Code of each thread to parallelize Figure 4.1’s loop with TLS on POWER8
and TSX HTM systems.

explained in 4.1 thus our implementation uses code transformation techniques as strip

mining and/or privatization. Moreover, if at the start of a retry the value of the iteration

counter i is equal to the value of the commit counter next (see line 9) then that iteration

executes non-speculatively.

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 40

Figure 4.7: Execution flow of Figure 4.6’s code with STRIP_SIZE=1 and NUM_THREADS=4.

4.3 False Sharing Effects on TLS

This section describes the problems due to false sharing and capacity overflow in a TLS

parallelization on top of HTM and provides solutions to reduce or eliminate false sharing.

4.3.1 Capacity Overflow of Transactions

False sharing can be overcome with strip mining in some cases. For instance, in the

example shown in Figure 4.1, setting STRIP_SIZE to eight removes the false sharing in

the TLS parallelization and avoids conflict aborts as shown in Figure 4.5. However, in

loops where each iteration performs transactional writes to multiple locations, there is a

limit to the STRIP_SIZE that can be used before the speculative storage capacity of the

HTM is exhausted.

1 SWEEP_START(0, 0, 0, 0, 0, SIZE_Z) // beginning of the for loop

2 ...

3 DST_C (dstGrid) = (1.0-OMEGA)*SRC_C (srcGrid) + DFL1*OMEGA*rho*(1.0- u2); //

write to dstGrid array

4 DST_N (dstGrid) = (1.0-OMEGA)*SRC_N (srcGrid) + DFL2*OMEGA*rho*(1.0 +

uy*(4.5*uy + 3.0) - u2);

5 ...

6 SWEEP_END

Figure 4.8: lbm hot loop.

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 41

Figure 4.9: False sharing due to non-consecutive writes in the array dstGrid.

4.3.2 Non-consecutive Writes Within Transactions

False sharing cannot be overcome with strip mining in all cases. For instance, consider the

code of Figure 4.8, which is a fragment of the hottest loop in the lbm benchmark. In this

fragment each loop iteration performs transactional writes to the dstGrid array through

macros (e.g. DST_C). However, consecutive iterations perform transactional writes to non-

consecutive elements of the dstGrid array. Therefore, in a naive parallelization of this

loop these non-consecutive accesses lead to false sharing. Figure 4.9 illustrates this case

with a round-robin TLS parallelization running on an HTM system where the transaction

executed by each thread aborts because of data conflicts induced by false sharing. False

sharing cannot be overcome by using strip mining because the writes of consecutive itera-

tions are not adjacent in the array dstGrid. One way to solve this problem is to implement

word-level conflict detection in future architectures [44]. However, we can overcome the

false sharing caused by the non-consecutive writes through the use of thread-local arrays

to perform writes within the transaction and then copying back to the original dstGrid

array. The writing into this array is a small fraction of the execution of this loop. Thus

this TLS solution yields performance improvement even with the additional copy. With

this code transformation, the conflict abort ratio decreases from 95% to 8% in Intel TSX.

In POWER8 the TLS parallelization of this loop yields a speed-up of 30%.

4.3.3 TSX Cache-line-prefetcher Issues

In principle, prefetching should not affect the operation of any transaction because loca-

tions in a prefetched line should not be deemed as read or written by any thread. However,

experimental evaluation clearly indicates that in TSX the cache-line prefetcher can be a

source of conflict aborts due to false sharing. This evaluation confirms a hypothesis by

Odaira et al. and a finding by Nakaike et al. [44, 41]. Figure 4.10 shows the parallelization

of the same loop of Figure 4.1 with strip mining to overcome false sharing. On Intel TSX

with the prefetcher enabled, when thread T0 writes eight consecutive positions of array A

(64 byte cache line), adjacent memory locations are fetched by the cache-line prefetcher

and tracked as reads. Therefore a conflict is generated between the two transactions

executed by the respective threads because the thread T1 is writing to these adjacent

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 42

Figure 4.10: False sharing due to prefetching in TSX.

locations. This conflict causes a transaction to be aborted and rolled back.

4.4 Experiments

This section presents a performance assessment (speed-ups and abort ratios) of the TLS

parallelization of loops from the SPEC CPU2006 benchmark suite running on Intel TSX

and IBM POWER8. For all experiments the ref input is used for the SPEC benchmarks.

The baseline for speed comparisons is the serial execution of the same benchmark program

compiled at the same optimization level (cache-line prefetcher enabled) . Whole-program

times are compared and not only the execution time of the region of the code to which

TLS is applied. Each benchmark was run thirty times and the average time is used.

Runtime variations were negligible and are not presented.

4.4.1 Benchmarks and Settings

Benchmarks were selected because there is potential to improve their performance through

TLS [47, 46]. Table 4.2 shows: the file/line of the target loop in the source code; %Cov,

the fraction of the total execution time ran by the loop; N , the average number of loop

iterations; AIS, the average iteration size measured in bytes [46]; %lc, the percentage of

iterations that have loop-carried dependence for the ref input. TLS makes most sense

when the compiler cannot prove that iterations are independent, but dependences do not

occur at runtime — thus most benchmarks that are amenable for TLS have an %lc of zero

for the SPEC reference inputs. In Table 4.2, ss is the strip size used for the experimental

evaluation in each architecture; and N ′ is the number of iterations after using strip mining

for the respective loop.

This study uses an Intel Core i7-4770 processor with 4 cores with 2-way SMT, running

at 3.4 GHz, with 16 GB of memory on Ubuntu 12.04.3 LTS (GNU/Linux 3.8.0-29-generic

x86_64). Each core has a 32 KB L1 data cache and a 256 KB L2 unified cache. The four

cores share an 8 MB L3 cache. The study also presents results from the same experiments

C
H

A
P

T
E

R
4
.

E
V
A

L
U

A
T

IN
G

A
N

D
IM

P
R

O
V

IN
G

T
L
S

IN
H

T
M

S
43

Table 4.2: Loop Characterization in Benchmarks.

General Intel TSX POWER8

Benchmark
Loop

Location %Cov N
Average
Iteration

Size (AIS)
%lc ss N ′ Speed-up Problems ss N ′ Speed-up Problems

mcf pbeampp.c, 165 40% 300 335 3% 20 15 1.12 RAW dependence and f. sharing 48 6 0.82 RAW, f. sharing and capacity
sphinx3 vector.c, 513 37% 2048 1108 0% 8 256 1.12 – 16 128 1.22 –
h264ref mv-search.c, 394 36% 1089 6837 0% 16 68 1.20 – 32 34 0.93 capacity

lbm lbm.c,186 99% 1300000 525 0% 15 86666 0.63 false sharing 19 68421 0.72 capacity and f. sharing
milc quark_stuff.c, 1523 20% 160000 1972 0% 4 40000 1.07 – 4 40000 1.07 f. sharing

libquantum gates.c, 89 62% 2097152 43 0% 1024 2048 1.07 f. sharing and small AIS 324 5462 0.83 f. sharing and small AIS
astar Way2_.cpp, 100 60% 1234 1548 20% 128 10 0.92 RAW dependence 256 5 0.77 RAW dependence

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 44

1 for(; arc < stop_arcs; arc += nr_group)

2 {

3 if(arc->ident > BASIC)

4 {

5 red_cost = arc->cost - arc->tail->potential + arc->head->potential;

6 if(bea_is_dual_infeasible(arc, red_cost))

7 {

8 basket_size++;

9 perm[basket_size]->a = arc;

10 perm[basket_size]->cost = red_cost;

11 perm[basket_size]->abs_cost = ABS(red_cost);

12 }

13 }

14 }

Figure 4.11: mcf’s hottest loop.

with an Intel Core i7-6700HQ processor with TSX New Instructions (TSX-NI), 4 cores

with 2-way SMT, running at 2.6 GHZ, with 16 GB of memory on Ubuntu 14.04.3 LTS

(GNU/Linux 3.13.0-29-generic x86_64). This version of TSX has fixed the well-known

bug that had led to Intel disabling TSX in the Intel Core i7-4770. The benchmarks are

compiled with GCC 4.9.2 at optimization level -O3 and with the set of flags specified

in the SPEC2006 configuration file. The IBM processor used is a 4-core POWER8 with

8-way SMT running at 3 GHz, with 16 GB of memory on Ubuntu 14.10 (GNU/Linux

3.16.0-44-generic ppc64le). Each core has a 64 KB L1 data cache, a 32 KB L1 instruction

cache, a 512 KB L2 unified cache, and a 8192 KB L3 unified cache. The benchmarks are

compiled with the XL 13.1.1 compiler at optimization level -O2.

4.4.2 Results

This section presents results and analysis.

Trade-off Between Conflicts and Capacity

For some benchmarks, there is a trade-off between the elimination of conflicts through

strip mining and the speculative capacity of the HTM. For instance, the hottest loop

of the mcf benchmark is shown in Figure 4.11. When line 8 is executed this loop has

a RAW loop-carried dependence that causes most of the aborts due to conflicts. For

TLS, the basket_size variable is privatized within the transaction to reduce conflicts

caused by WAW or WAR dependences. For the reference input 3% of the iterations

have loop-carried dependences and there are no speed-ups in POWER8 — even using

tsuspend/tresume instructions — because the ss that is necessary to reduce conflicts

caused by RAW dependences and false sharing (aligning to 128-byte cache line size)

results in capacity aborts.

Figure 4.13 shows the distribution of aborts and commits. In mcf order inversion is

not a major problem in POWER8 but is a significant source of aborts in TSX. In spite

of these aborts, mcf sees speed-ups of up to 12% with four threads on TSX. To achieve

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 45

Figure 4.12: Speed-ups for TLS execution on TSX, POWER8, POWER8 with ordering
(tsuspend/tresume), and TSX-NI.

Figure 4.13: Abort/Commit ratio by TLS execution with 4 threads on TSX, POWER8,
POWER8 with ordering (tsuspend/tresume), and TSX-NI. Abort reasons are shown.

this speed-up, both the false sharing caused by BASKET structures pointed by elements of

the perm array and the occurrence of RAW loop-carried dependence violations must be

mitigated with an appropriate ss.

The hottest loop of h264ref, shown in Figure 4.15, is another example of the tradeoff

between conflicts and capacity. False sharing, caused by writes to the block_sad array

in line 16, can be eliminated by setting ss to 16 in TSX and to 32 in POWER8: in each

iteration of the pos loop four bytes are written into the block_sad array and the cache

line sizes of TSX and POWER8 respectively have 64 and 128 bytes. Loop peeling is used

to align the accesses to the start of cache lines.

In POWER8 an ss = 32 leads to a large amount of writes in each iteration and results

in capacity aborts, see Figure 4.13 (the elimination of false sharing in this loop requires

a strip size of 32 × k, where k is a positive integer). The use of tsuspend/tresume to

ensure ordering leads to worse performance, see Figure 4.12, because these instructions

are only beneficial to eliminate order-inversion aborts.

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 46

Figure 4.14: Speed-ups for sphinx3 and h264ref by TLS execution on TSX with
prefetcher enabled/disabled.

1 for (pos = 0; pos < max_pos; pos++) {

2 ...

3 if (range_partly_outside){

4 if (...)

5 PelYline_11 = FastLine16Y_11;

6 else

7 PelYline_11 = UMVLine16Y_11;

8 }

9 bindex = 0;

10 for (blky = 0; blky < 4; blky++){

11 for (y = 0; y < 4; y++){

12 refptr = PelYline_11 (ref_pic, abs_y++, abs_x, img_height, img_width);

13 LineSadBlk0 += byte_abs [*refptr++ - *orgptr++];

14 ...

15 }

16 block_sad[bindex++][pos] = LineSadBlk0;

17 ...

18 }

19 }

Figure 4.15: h264ref’s hottest loop.

Eliminating False Sharing with Strip Mining

Strip mining with an appropriate strip size can eliminate false sharing. For example, the

hottest loop of the sphinx3 benchmark is shown in Figure 4.16. Although this loop has

no conflicts with the reference input (%lc = 0% in Table 4.2), the writes to the score

array in lines 10 and 11 cause conflict because of false sharing. Eight bytes are written in

each iteration of the loop. Therefore, setting the strip size (ss) to 8 in TSX and to 16 in

POWER8 eliminates the false sharing because the cache line sizes of TSX and POWER8

are, respectively, 64 and 128 bytes. Accesses must be aligned to start of cache lines

through loop peeling. The speed-ups of up to 22% with four threads on POWER8, see

Figure 4.12, require the use of tsuspend/tresume instructions to spin-wait for ordering

outside of the transaction thus eliminating aborts due to ordering as shown in Figure 4.13.

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 47

1 for (r = offset; r < end-1; r += 2)

2 {

3 m1 = gautbl->mean[r];

4 m2 = gautbl->mean[r+1];

5 v1 = gautbl->var[r];

6 v2 = gautbl->var[r+1];

7 dval1 = gautbl->lrd[r];

8 dval2 = gautbl->lrd[r+1];

9 ...

10 score[r] = (int32)(f * dval1);

11 score[r+1] = (int32)(f * dval2);

12 }

Figure 4.16: sphinx3’s hottest loop.

False Sharing Caused by Prefetching

The performance of sphinx3 on TSX with and without the prefetcher enabled, shown in

Figure 4.14, illustrates the occurrence of false sharing due to prefetching [44] (prefetcher

is always enabled in the serial executions). Conflict aborts caused by false sharing, see

Figure 4.13, leads to slowdowns for three and four threads. Disabling the prefetcher hurts

performance because of additional cache misses, but helps performance because of the

elimination of the false sharing. For two threads the benefits of prefetching outweigh the

cost of the additional aborts. Another example of the problem with prefetching is the

hottest loop of the h264ref benchmark. In TSX, this benchmark sees a slowdown with

the prefetcher enabled. Figure 4.14 shows the speed-ups of h264ref after disabling the

prefetcher. It achieves speed-ups of 20% with two, three and four threads.

Variable Privatization to Eliminate False dependences

Aborts caused by Write-After-Write (WAW) and Write-After-Read (WAR) dependences

can be eliminated when private copies of the global variables that cause these dependences

are created for accesses within transactions. For instance, the h264ref’s loop, shown in

Figure 4.15, has WAW and WAR loop-carried dependences on PelYline_11.

If the compiler can prove that the live range of this variable is contained within an

iteration, it can create private copies to eliminate the dependence. A WAR loop-carried

dependence between the read through the refptr pointer (line 13 of Figure 4.15) and a

write to the same memory address inside of the PelYline_11 function call (line 12) is

also removed through privatization.

Even though these transformations improve the performance of h264ref with TLS,

there are no speed-ups with either architecture. POWER8 suffers from limited speculative

storage capacity and TSX from conflicts caused by the prefetcher.

False Sharing due to Non-Consecutive Writes

For some benchmarks the major source of conflict aborts is the false sharing because of

non-consecutive writes. For instance, the hottest loop of the lbm benchmark is shown in

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 48

Table 4.3: Privatization Results.

Benchmark
Loop

Arch ss N ′
Speed-up with

priv
Problems

h264ref POWER8 6 182 1.10 capacity
lbm TSX 33 39394 0.72 order inversion
lbm POWER8 17 76471 1.30 –

Figure 4.8. This loop has no true dependences for the ref input. However the writes to

the dstGrid array (as shown in line 3 of Figure 4.8) cause false sharing, and this issue

results in conflict aborts in the TLS version. In this case, strip mining cannot remove

false sharing because the writes performed are non-consecutive.

The lbm benchmark yields slowdowns in all machines as shown Figure 4.12. The abort

ratio due to capacity on POWER8 is very large as shown in Figure 4.13. There is also

a trade-off between the new trip count (N ′ in Table 4.2) and the speculative capacity of

the transactions because the large value of N(1300000) results in an overhead by HTM

instructions (tbegin/tend). Reducing this overhead requires an increase of ss, but such

increase results in a larger pressure in the HTM speculative capacity thus increasing the

number of aborts due to capacity. In TSX, false sharing leads to a high conflict abort

ratio and prevents it from achieving any speed-up.

Privatization to Remove False Sharing

When array accesses follow a pattern it is possible to use strip mining to remove false

sharing. However, a large strip size can result in many capacity aborts. An alternative

would be a word-level conflict detection mechanism in HTM [44], which is not supported

by current HTMs. Our solution is to privatize arrays within the TLS transaction, and

to write non-speculatively to these arrays after committing. For instance, the TLS par-

allelization of the h264ref’s hot loop on POWER8 with a strip size of 32 results in a

slowdown. However, after removing false sharing with privatization a smaller strip size

(ss = 6) can be used to reduce capacity aborts, see Figure 4.18, leading to a speed-up of

up to 10% on POWER8 as shown in Figure 4.17. Further reducing the capacity aborts

in POWER8 would require a strip size lower than 6, but this results in an increment of

N ′ and thus in a larger overhead due to HTM instructions.

In lbm, a hot loop writes to non-consecutive elements of an array. This benchmark’s

Figure 4.17: Speed-ups for h264ref by TLS execution on POWER8 with and without
privatization.

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 49

Figure 4.18: Abort/Commit ratio for h264ref by TLS execution with 4 threads on
POWER8 with and without privatization.

Figure 4.19: Speed-ups for lbm by TLS execution on TSX, POWER8, and POWER8 with
ordering, with and without privatization.

performance also improves through the removal of false sharing, see Figure 4.20, with

privatization using thread-local arrays. As shown in Figure 4.19, lbm sees speed-ups of up

to 30% using privatization on POWER8 (with and without ordering), but no speed-ups on

TSX. Decreasing the strip size from 19 to 17 in POWER8 is beneficial because it reduces

the iteration size and thus the capacity aborts.

The abort ratio for lbm due to conflicts on POWER8 is reduced as we remove false shar-

ing with privatization. Besides, some aborts due to order inversion appear in POWER8,

but they can be removed by using tsuspend and tresume instructions as shown in Fig-

ure 4.20. In TSX, the conflict-abort ratio decreases; however, aborts due to order inversion

are still present.

Reducing HTM Overhead

A small iteration size and a large trip count leads to overhead due to the instructions

required to start and commit a transaction. For instance, a hot loop in libquantum has a

trip count of 2097152 and a very small average iteration size (AIS) — see Table 4.2. For

TLS to be performant in such cases, it is necessary to use strip mining to decrease the

trip count and increase the AIS. In libquantum, the hot loop also has false sharing that

is not eliminated by neither strip mining nor privatization. This false sharing leads to a

large conflict-abort ratio on both architectures as shown in Figure 4.13. There is limit to

the increase in the strip size to reduce HTM overhead: each strip should not exceed the

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 50

Figure 4.20: Abort/Commit ratio for lbm by TLS execution with 4 threads on TSX,
POWER8, and POWER8 with ordering, with and without privatization.

Figure 4.21: Speed-ups for sphinx3 by TLS execution on TSX and POWER8 for different
strip sizes with 2 and 4 threads respectively.

speculative-state capacity of the HTM system. For instance, in TSX, the large strip size

used results in some capacity aborts. Nonetheless, libquantum still achieves speed-ups of

up to 7% on TSX. On POWER8 there is no TLS speed-up because the abort ratio due

to conflicts is large, see Figure 4.13.

Actual dependences Lead to Poor Performance

Even a small ratio of actual dependences occurring at runtime prevents TLS from deliver-

ing performance improvements. One example is the astar benchmark where 10% of the

loop iterations have actual dependence for the reference input. These true dependences

lead to a large conflict-abort ratio (99%), see Figure 4.13. The consequence is that there

is no speed-up on either architecture. We studied the use of different values of strip sizes

but none resulted in improved performance for this benchmark. This example underscores

the need for a precise dependence-prediction mechanism to be used by a compiler that

incorporates TLS in the code generator[5].

Sensitivity to Strip Size

An interesting question is how sensitive the performance results are to the selection of strip

sizes. Varying the strip size in several benchmarks indicates that it can have some non-

trivial effect in performance. For instance, Figure 4.21 shows the performance variation for

sphinx3 when the strip size is varied in both TSX and POWER8. In this case, strip sizes

CHAPTER 4. EVALUATING AND IMPROVING TLS IN HTMS 51

that are multiples of eight perform best because they mitigate or remove false sharing.

However, when the strip size leads a transaction to exceed speculative storage capacity,

performance is degraded.1

1Two threads are used for this sensitivity study with TSX because with a larger number of threads the
false-sharing issue caused by prefetching would obfuscate the sensitivity to strip size in this benchmark.

Chapter 5

In-depth Evaluation of TLS in

off-the-shelf HTMs

Section 4.2 describes how speculation support designed for HTM can also be used to

implement TLS [51]. It also provides a detailed description of the additional software

support that is necessary in both the Intel Core and the IBM POWER8 architectures to

support TLS. Our work uses software solutions to provide: multi-versioning, a conflict-

resolution policy, and ordered transactions. In our solution, ordered transactions are

supported in the POWER8 using the tsuspend/tresume instructions to non-speculatively

wait for the iteration commit counter to reach the value of the index variable of the current

transaction before committing. The Intel Core does not provide the ability to suspend

transactions and to execute instructions non-speculatively and therefore a transaction

cannot wait for its turn to commit as in the POWER8. Our solution is to roll back

a transaction that completes execution out of order using an explicit abort instruction

(xabort). This kind of abort is called an order-inversion abort [51].

The performance evaluation presented in Section 5.2 uses the method described in

Section 4.2 to implement TLS on top of HTM. However, the previous chapter focused

on the impact of false sharing and the importance of judicious strip mining to achieve

performance. In contrast, this chapter carefully evaluates the performance of TLS on

Intel Core and POWER8 using 22 benchmarks from the cBench suite focusing on the

characterization of the loops. This loop characterization could be used in the future to

decide if TLS should be used for a given loop.

5.1 Benchmarks, Methodology and Experimental Setup

The performance assessment reports speed-ups and abort ratios for the coarse-grained

TLS parallelization of loops from the Collective Benchmark (cBench) benchmark suite [15]

running on Intel Core and IBM POWER8. For all experiments the default input is used

for the cBench benchmarks. The baseline for speed-up comparisons is the serial execution

of the same benchmark program compiled at the same optimization level. Loop times are

compared to calculate speed-ups. Each software thread is bounded to one hardware thread

(core) and executes a determined number of pre-assigned iterations. Each benchmark was

52

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 53

Table 5.1: Loops extracted from cBench applications.

Class Loop ID Previous ID Benchmark Location Function %Cov Invocations

I

A 14 automotive_bitcount bitcnts.c,65 main1 100% 560
B 18 automotive_susan_c susan.c,1458 susan_corners 83% 344080
C 22 automotive_susan_e susan.c,1118 susan_edges 18% 165308
D 24 automotive_susan_e susan.c,1057 susan_edges 56% 166056
E 28 automotive_susan_s susan.c,725 susan_smoothing 100% 22050
F 15 automotive_bitcount bitcnts.c,59 main1 100% 80

II

G 19 automotive_susan_c susan.c,1457 susan_corners 83% 782
H 23 automotive_susan_e susan.c,1117 susan_edges 18% 374
I 25 automotive_susan_e susan.c,1056 susan_edges 56% 374
J 29 automotive_susan_s susan.c,723 susan_smoothing 100% 49

III

K 1 consumer_jpeg_c jfdcint.c,154 jpeg_fdct_islow 5% 1758848
L 2 consumer_jpeg_c jfdcint.c,219 jpeg_fdct_islow 5% 1758848
M 4 consumer_jpeg_c jcphuff.c,488 encode_mcu_AC_first 10% 5826184
N 6 consumer_jpeg_d jidcint.c,171 jpeg_idct_islow 14% 7280000
O 7 consumer_jpeg_d jidcint.c,276 jpeg_idct_islow 15% 7280000
P 13 automotive_bitcount bitcnts.c,96 bit_shifter 35% 90000000
Q 16 automotive_susan_c susan.c,1615 susan_corners 7% 344080
R 26 automotive_susan_s susan.c,735 susan_smoothing 96% 198450000
S 34 security_rijndael_d aesxam.c,209 decfile 7% 31864729
T 3 consumer_jpeg_c jccolor.c,148 rgb_ycc_convert 10% 439712
U 5 consumer_jpeg_c jcphuff.c,662 encode_mcu_AC_refine 17% 5826184

Others V 17 automotive_susan_c susan.c,1614 susan_corners 7% 782

run twenty times and the average time is used. Runtime variations were negligible and

are not presented.

Loops from cBench were instrumented with the necessary code to implement TLS,

following the techniques described in Section 4.2. They were then executed using an

Intel Core i7-4770 and the IBM POWER8 machines, and their speed-ups measured with

respect to sequential execution. Based on the experimental results, the loops studied are

placed in four classes that will be explained later. Table 5.1 lists the twenty two loops

from cBench used in the study. The table shows (1) the loop class (explained later); (2)

the ID of the loop in this study; (3) the ID of the loop in the previous study [40]; (4)

the benchmark of the loop; (5) the file/line of the target loop in the source code; (6) the

function where the loop is located; (7) %Cov, the fraction of the total execution time

spent in this loop; and (8) the number of invocations of the loop in the whole program.

This study uses an Intel Core i7-4770 processor with 4 cores with 2-way SMT, running

at 3.4 GHz, with 16 GB of memory on Ubuntu 14.04.3 LTS (GNU/Linux 3.8.0-29-generic

x86_64). The cache-line prefetcher is enabled (by default). Each core has a 32 KB L1

data cache and a 256 KB L2 unified cache. The four cores share an 8 MB L3 cache. The

benchmarks are compiled with GCC 4.9.2 at optimization level -O3 and with the set of

flags specified in each benchmark program.

The IBM processor used is a 4-core POWER8 with 8-way SMT running at 3 GHz,

with 16 GB of memory on Ubuntu 14.04.5 (GNU/Linux 3.16.0-77-generic ppc64le). Each

core has a 64 KB L1 data cache, a 32 KB L1 instruction cache, a 512 KB L2 unified

cache, and a 8192 KB L3 unified cache. The benchmarks are compiled with the XL 13.1.1

compiler at optimization level -O2.

C
H

A
P

T
E

R
5
.

IN
-D

E
P

T
H

E
V
A

L
U

A
T

IO
N

O
F

T
L
S

IN
O

F
F
-T

H
E

-S
H

E
L
F

H
T

M
S

54

Table 5.2: Characterization and TLS Execution of Classes.

Class
Loop Loop Characterization TLS Execution
ID N Intel’s Tbody Intel’s Tloop %lc Read Size Write Size Privatization Intel Core IBM POWER8 Speed-ups in [40]

(ns) (ns) avg max avg max ss Duration (ns) Speed-up ss Speed-up C F J

I

A 1125000 5.0 5680000 0% 12 B 24 B 0 B 20 B Reduction 502 2600.0 2.20 502 3.80 14.0 14.3 14.3
B 590 12.7 7500 0% 48 B 176 B 0 B 36 B No 59 749.0 1.20 59 1.59 10.2 12.0 12.0
C 592 8.1 4810 0% 14 B 192 B 0 B 32 B Array 72 584.0 1.20 68 1.21 7.5 8.0 8.0
D 594 14.1 8420 0% 76 B 176 B 0 B 28 B Array 88 1240.0 1.28 72 2.22 13.0 15.0 15.0
E 600 198.0 118000 0% 14 B 192 B 0 B 32 B Array 15 2970.0 1.60 15 3.18 14.0 15.0 15.0
F 7 5840000.0 40800000 0% 48 B 268 B 155 B 604 B Array 1 5840000.0 0.98 2 2.40 1.0 2.5 2.5

II

G 440 7710.0 3390000 0% 2 KB 3 KB 29 B 328 B No 1 7710.0 1.23 1 1.15 13.0 15.0 15.0
H 442 4790.0 2120000 0% 3 KB 8 KB 37 B 260 B Array 1 4790.0 2.09 2 0.84 12.0 13.8 13.8
I 444 8680.0 3850000 0% 4 KB 4 KB 206 B 1 KB Array 2 17300.0 1.76 1 1.05 13.0 15.0 15.0
J 450 117000.0 52900000 0% 3 KB 8 KB 37 B 260 B Array 1 117000.0 1.89 1 0.73 0.5 1.0 1.0

III

K 8 8.7 69 0% 16 B 32 B 16 B 32 B Array 1 8.7 0.07 1 0.03 5.5 6.0 6.0
L 8 8.5 68 0% 16 B 32 B 16 B 32 B Array 1 8.5 0.06 1 0.03 5.5 6.0 6.0
M 38 5.4 205 100% 12 B 68 B 4 B 36 B Scalar 1 5.4 0.07 1 0.02 0.5 1.0 0.5
N 8 8.1 65 0% 23 B 64 B 16 B 32 B Array 1 8.1 0.05 1 0.05 4.0 4.2 4.2
O 8 9.4 75 0% 24 B 68 B 5 B 16 B Array 1 9.4 0.07 1 0.05 5.8 6.0 6.0
P 23 1.1 26 0% 4 B 12 B 4 B 16 B Reduction 3 3.4 0.02 3 0.02 1.0 2.3 2.3
Q 590 1.0 567 0.14% 4 B 212 B 0 B 36 B Scalar 118 113.0 0.46 95 0.49 9.0 8.5 8.5
R 15 1.8 27 0% 12 B 68 B 4 B 56 B Reduction 10 18.2 0.05 10 0.04 4.0 4.0 4.0
S 16 1.3 21 0% 7 B 8 B 4 B 16 B Array 2 2.6 0.02 2 0.01 1.0 3.0 3.0
T 162 2.5 404 0% 40 B 44 B 12 B 24 B Array & Scalar 8 19.9 0.15 30 0.33 11.0 11.0 2.0
U 63 4.6 289 30% 7 B 8 B 4 B 20 B Scalar 9 41.4 0.20 10 0.16 10.0 11.0 11.0

Others V 440 511.0 225000 34% 1 KB 4 KB 20 B 196 B Scalar 1 511.0 1.25 1 1.34 2.5 2.5 1.0

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 55

1 for (i = 0; i < FUNCS; i++) { ///loopF

2 for (j = n = 0, seed = 1; j < iterations; j++, seed += 13) //loopA

3 n += pBitCntFunc[i](seed);

4 if (print)

5 printf("%-38s> Bits: %ld\n", text[i], n);

6 }

Figure 5.1: loopA and loopF.

5.2 Classification of Loops Based on TLS Performance

To understand and explain the experimental results, the cbench loops are separated into

four classes according to their performance when executing TLS on top of HTM in the

POWER8 and in the Intel Core architectures. Loops in each class were then scrutinized

to identify common features that may explain their performance characteristics.

The features used to characterize the loops are shown in the first part of Table 5.2: (1)

N , the average number of loop iterations; (2) Tbody, the average time in nanoseconds of a

single iteration of the loop on Intel Core; (3) Tloop, Tbody×N ; (4) %lc, the percentage of

iterations that have loop-carried dependences for the default input; (5) the average (and

maximum) size in bytes read/written by an iteration.

TLS has been applied to the loops in each class. The parameters in the right side

of Table 5.2 describe TLS execution: (1) the type of privatization within the transaction

used in TLS implementation;1 (2) ss, the strip size used for the experimental evaluation

in Intel Core; (3) Transaction Duration in the Intel Core, which is the product ss×Tbody ;

(4) the average speed-ups with four threads for Intel Core after applying TLS; (5) the

ss for POWER8; (6) the speed-ups for POWER8; and (7) the predicted speed-up from

TLS emulation reported in [40] for coarse-grained (C), fine-grained (F), and judicious (J)

speculation using 16 cores.

For all the loops included in this study N > 4, thus they all have enough iterations to

be distributed to the four cores in each architecture. When the duration of a loop, Tloop,

is too short there is not enough work to parallelize and the performance of TLS is low —

in the worst case, LoopS, TLS can be 100 times slower than the sequential version. Even

a small percentage of loop-carried dependences, %lc, materializing at runtime may have

a significant effect on performance depending on the distribution of the loop-carried de-

pendences throughout loop iterations at runtime; thus TLS performance for those loops

is difficult to predict. The size of the read/write set in each transaction can also lead

to performance degradation because of capacity aborts. For the Intel Core the duration

of each transaction is important: rapidly executing many small transactions leads to an

increase of order-inversion aborts. The number of such aborts is lowest for medium-sized

transactions that have balanced transactions — when the duration of different iterations

of the loop varies the number of order-inversion aborts also increases. Finally, long trans-

actions in both architectures may cause aborts due to traps caused by the end of the OS

quantum.

1A Reduction privatization is a scalar privatization of a reduction operation.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 56

1 for (is = 0; is < FUNCS; is+=STRIP_SIZE) { //loopF

2 for (i=is; i-is < STRIP_SIZE && i< FUNCS; i++)

3 for (j = n_arr[i] = 0, seed = 1; j < iterations; j++, seed += 13) //loopA

4 n_arr[i] += pBitCntFunc[i](seed);

5

6 if (print)

7 for (i=is; i-is < STRIP_SIZE && i< FUNCS; i++)

8 printf("%-38s> Bits: %ld\n", text[i], n_arr[i]);

9

10 }

Figure 5.2: loopF after applying strip mining and dividing into two components.

5.2.1 Class I: Low speculative demand and better performance

in POWER8

The speculative storage requirement of loops in this class is below 2 KB and thus they

are amenable for TLS, and see speed-ups, in both architectures. A sufficiently small

speculative-storage requirement is more relevant for POWER8 which has smaller speculative-

storage capacity (see Table 2.1). These loops also result in better scaling in POWER8,

when compared to Intel Core, because they can take advantage of the suspend and resume

instructions of POWER8 to implement ordered transactions in software. They do not scale

much beyond two threads on Intel Core due to the lack of ordered transactions support.

Table 5.2 shows the characterization of Class I. These loops typically provide a suf-

ficient number of iterations to enable their distribution among the threads. They also

have a relatively moderate duration, as shown by the Tloop values, and thus they have

enough work to be parallelized. TLS makes most sense when the compiler cannot prove

that iterations are independent, but dependences do not occur at runtime, therefore most

loops that are amenable for TLS (loops in Class I and II) have %lc of zero.

A typical example of a loop in Class I is loopA, shown in Figure 5.1. This loop achieves

speed-ups of up to 3.8× with four threads. This loop calls the same bit-counting function

with different inputs for each iteration j. The loopA is the inner j loop, which calls

the same pBitCntFunc[i], with different input, in every iteration. Even though loopA

has may loop-carried dependences inside the functions called, none of these dependences

materialize at runtime. Thus, a successful technique to parallelize this loop consists in

privatizing variable n within the transaction and adding the partial result to a global

variable after the transaction commits. The successful parallelization of loopA stems

from a moderate duration (Tloop), no actual runtime dependences, and a read/write set

size that is supported by the HTM speculative-storage capacity. The large number of

iterations of this loop allows increasing the strip size (ss), and thus the new Tbody (after

strip mining) — ss×Tbody — is longer; after that, order-inversion aborts decrease (loopB

has more order-inversion aborts than loopA, although its Tbody is longer).

For most of the loops in this class — LoopF is an exception discussed later — the

performance is directly related to the effective work to be parallelized, represented by

Tloop. In the Intel Core the proportion of order-inversion aborts is inversely related to

the transaction duration because very short transactions may reach the commit point even

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 57

Figure 5.3: Class I. Speed-ups and Abort ratios for coarse-grained TLS execution on TSX
and POWER8.

before previous iterations could commit. Another issue is that very long transactions may

abort due to traps caused by the end of OS quantum.

The performance of loopC from one to three threads is higher on Intel Core than on

POWER8 because the larger speculative store capacity in the Intel Core allows for the

use of a larger strip size. With four threads, there is a small improvement in POWER8

due to the reduction of order-inversion aborts. The increment in the number of threads

intensifies the effect of order inversion in performance. Therefore, for machines with a

higher number of cores, better speed-ups should be achieved in POWER8 than in Intel

Core.

In loopC, loopD, and loopE consecutive iterations write to consecutive memory po-

sitions leading to false sharing when these iterations are executed in parallel in a round-

robin fashion. For instance, loopE, shown in Figure 5.4, writes to *out++ (consecutive

memory positions) in consecutive iterations generating false sharing in a round-robin par-

allelization. The solution is privatization: write instead into local arrays during all the

transaction and copy the values back to the original arrays after commit [51].

Each iteration i of loopF (shown in Figure 5.1) executes loopA invoking a different

bit-counting function for each i with various inputs. The sum of the return values is

accumulated in n. No loop-carried dependences materialize for the standard input (%lc =

0), there is enough work in all iterations of the loop (Tloop > 4µs) and its read/write size

does not exceed the speculative storage capacity of POWER8. The inner loop of loopF,

loopA, executes 1125000 iterations. Hence, loopF has the longest ss × Tbody among

all loops evaluated and thus many transactions abort due to traps caused by the end of

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 58

1 for (i=mask_size;i<y_size-mask_size;i++){ //loopJ

2 for (j=mask_size;j<x_size-mask_size;j++){ //loopE

3 area = 0;

4 total = 0;

5 dpt = dp;

6 ip = in + ((i-mask_size)*x_size) + j - mask_size;

7 centre = in[i*x_size+j];

8 cp = bp + centre;

9 for(y=-mask_size; y<=mask_size; y++){

10 for(x=-mask_size; x<=mask_size; x++){ //loopR

11 brightness = *ip++;

12 tmp = *dpt++ * *(cp-brightness);

13 area += tmp;

14 total += tmp * brightness;

15 }

16 ip += increment;

17 }

18 tmp = area-10000;

19 if (tmp==0)

20 *out++=median(in,i,j,x_size);

21 else

22 *out++=((total-(centre*10000))/tmp);

23 }

24 }

Figure 5.4: loopE, loopJ, and loopR.

the OS quantum, which explains this loop showing a high abort ratio by other causes in

Figure 5.3.

Whole Coarse-grained TLS parallelization of loopF is not possible because each iter-

ation has a printf statement that is not allowed within a transaction in either architec-

ture. Therefore, each iteration of loopF must be divided into two components: loopA and

the printf (as shown in Figure 5.2), before applying TLS only to the first component.

The second component is always executed non-speculatively. Only POWER8 can deliver

speed-ups for this loop because aborts by order inversion are eliminated through the use

of suspend/resume.

5.2.2 Class II: High speculative demand and better performance

in Intel Core

These loops can scale better in the Intel Core compared to the POWER8 because of the

larger transaction capacity of the Intel Core: the read/write sizes of these loops overflow

the transaction capacity of the POWER8 (see Table 2.1) leading to a high number of

capacity aborts.

Table 5.2 shows the characterization of loops in Class II. With more than 400 iterations

and a loop execution time Tloop larger than 2 ms these loops have enough work to be

parallelized. Also, no dependences materialize at runtime for the default inputs (%lc = 0).

The smaller write size in loopG means that 50% of its transactions do not overflow

the POWER8 speculative-storage capacity resulting in this loop showing speed-ups of

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 59

Figure 5.5: Class II. Speed-ups and Abort ratios for coarse-grained TLS execution on
TSX and POWER8.

up to 15% with four threads on POWER8. With ss = 1, this loop’s transaction takes

7.7 µs (medium-duration) in the Intel Core. However, it has an elevated proportion of

order-inversion aborts. As explained in [40], loopG has significant imbalance between

its iterations and this aggravates order inversion in the Intel Core. A contrast is loopH

that has better performance in the Intel Core, as shown in Table 5.2, even though its

transactions are even shorter, lasting almost 5 µs. loopH results in much fewer order-

inversion aborts because the durations of its transactions are moderate and balanced

across the iterations.

In class II, loops loopJ and loopH suffer from false sharing and require array priva-

tization. For instance, in loopJ, shown in Figure 5.4, the auto-increment of the pointer

out in lines 20 and 22 leads to false sharing. This loop has the second longest transaction

duration between all loops evaluated, thus some aborts due to OS traps appear. False

sharing can also be removed from loopI through privatization. With many aborts due

to capacity overflow, loopI speed-up in POWER8 is limited to 1.05×. In the Intel Core

this loop achieves speed-ups of up to 1.76× because, spending less than 20 µs executing

each transaction (medium transaction duration), loopI suffers fewer aborts due to order

inversion.

5.2.3 Class III: Not enough work to be parallelized with TLS

These are loops where TLS implementation does not have enough work to be distributed

among the available threads resulting in poor performance in any architecture. The

overhead of setting up TLS for these loops is too high in comparison to the benefits

of parallelization. Murphy et al. [40] reported speed-ups in these loops because their

emulation of TLS hardware did not take into consideration these costs. The experiments

in this section reveal that their emulated numbers overestimate the potential benefit of

TLS for these loops. As shown in Table 5.2 the available work to be parallelized, Tloop in

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 60

Figure 5.6: Class III and Others. Speed-ups and abort ratios for coarse-grained TLS
execution on TSX and POWER8.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 61

1 n=0;

2 for (i=5;i<y_size-5;i++){ /* Loop V */

3 for (j=5;j<x_size-5;j++) { /* Loop Q */

4 x = r[i][j];

5 if (x>0) {

6 if (/* Abbreviated: compare x to each pixel in window*/){

7 corner_list[n].info=0;

8 corner_list[n].x=j;

9 corner_list[n].y=i;

10 corner_list[n].dx=cgx[i][j];

11 corner_list[n].dy=cgy[i][j];

12 corner_list[n].I=in[i][j];

13 n++;

14 if(n==MAX_CORNERS){

15 fprintf(stderr,"Too many corners.\n");

16 exit(1);

17 }

18 }

19 }

20 }

21 }

Figure 5.7: loopQ and loopV.

1 for (i = n = 0; x && (i < (sizeof(long) * CHAR_BIT)); ++i, x >>= 1)

2 n += (int)(x & 1L);

1 for(i = 0; i < 16; ++i) /*xor it with previous input block */

2 outbuf[i] ^= bp2[i];

Figure 5.8: loopP and loopS.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 62

1 for (col = 0; col < num_cols; col++) {

2 r = GETJSAMPLE(inptr[RGB_RED]);

3 g = GETJSAMPLE(inptr[RGB_GREEN]);

4 b = GETJSAMPLE(inptr[RGB_BLUE]);

5 inptr += RGB_PIXELSIZE;

6 outptr0[col] = ... ;

7 outptr1[col] = ... ;

8 outptr2[col] = ... ;

9 }

1 for (k = cinfo->Ss; k <= Se; k++) {

2 if ((temp = absvalues[k]) == 0) {

3 r++;

4 continue;

5 }

6 while (r > 15 && k <= EOB) {

7 ...

8 emit_buffered_bits(entropy, BR_buffer, BR);

9 BR_buffer = entropy->bit_buffer;

10 BR = 0;

11 }

12

13 if (temp > 1) {

14 BR_buffer[BR++] = (char) (temp & 1);

15 continue;

16 }

17 ...

18 emit_buffered_bits(entropy, BR_buffer, BR);

19 BR_buffer = entropy->bit_buffer;

20 BR = 0;

21 r = 0;

22 }

Figure 5.9: loopT and loopU.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 63

all the loops in this class is below 0.6 µs, which is too small to benefit from parallelization.

For instance, loopP, shown in Figure 5.8, has a loop-carried dependence in variable n

thus coarse-grained TLS implementation would lead to a high conflict abort ratio. The

privatization of variable n and its initialization to zero for each transaction decreases

conflicts. A similar situation occurs for variables area and tmp in loopR. Both loops and

loopO have no aborts in POWER8, but their performance is poor because of the overhead

of setting TLS up. Conflicts due to actual loop-carried dependences in loopQ and loopM

cannot be removed by privatization.

Most of the loops in this category have many order-inversion aborts in Intel Core

because their transaction duration is below 120 ns leading to a fast end of the transac-

tions/iterations probably even before previous iterations could commit.

Use of TLS in some of the small loops in cBench is constrained by several factors.

For instance, Figure 5.8 shows loopS, which presents false sharing in an array of chars

(outbuf). This false sharing cannot be overcome with strip mining because the loop

executes only 16 iterations and it would be necessary to group 64 consecutive iterations

in the same thread to avoid false sharing in TSX. The position i of array outbuf is

read at each iteration; thus privatization is not a solution because there will always be

conflicts between the transactional reads and non-transactional writes located in the same

cache line; besides, its short Tbody increases the conflict ratio and the small number of

iterations does not permit ss to be larger. Conflict abort ratio is higher in POWER8 due

to its cache-line size. loopK and loopL present the same issues.

Figure 5.9 shows loopT which dereferences three pointers to arrays (outptr0, outptr1,

and outptr2). These pointers always point to different parts of a dynamically-allocated

memory region. The false sharing in the access to these three arrays can be removed with

privatization to reduce conflict aborts. The scalar variable intptr also must be privatized

to avoid conflict aborts. This loop presents a high order-inversion abort rate in Intel Core

because its transactions last less than 20 ns. In POWER8, this kind of abort disappears;

however, the strip size needed to increase the loop body and the privatization of three

arrays lead to aborts because the speculative capacity of the HTM is exceeded.

In loopU (shown in Figure 5.9), privatization is used to mitigate the impact of loop-

carried dependences in variables BR, r, and BR_buffer; however, the performance is still

poor due to false sharing. Privatization of the array BR_buffer would be impractical

because it would require the creation of a local copy of the array for each thread and for

each transaction. The high percentage of conflict abortions shown in Figure 5.6 is due to

this false sharing.

5.2.4 Others

loopV could belong to Class I due to its Tloop and read/write size, but it has a substantial

%lc. This loop is a special case because although it has 34% of probability of loop-carried

dependences, TLS can still deliver some performance improvement. As explained in [40],

this loop finds local maxima in a sliding window, with each maximum being added to a

list of corners, each iteration of loopQ processes a single pixel whereas a complete row

is processed by each iteration of loopV. The input of this loop is a sparse image with

C
H

A
P

T
E

R
5
.

IN
-D

E
P

T
H

E
V
A

L
U

A
T

IO
N

O
F

T
L
S

IN
O

F
F
-T

H
E

-S
H

E
L
F

H
T

M
S

64

Table 5.3: Characterization of 6 loops from SPEC CPU 2006.

Loop ID Benchmark Location %Cov N Tbody (ns) Tloop (ns) %lc Iteration Size Class
mcf 429.mcf pbeampp.c,165 40% 300 20 6000 3% 300 B Others
milc 433.milc quark_stuff.c,1523 20% 160000 94 15000000 0% 1 KB I
h264ref 464.h264ref mv-search.c,394 36% 1089 156 170000 0% 6 KB II
sphinx3 482.sphinx3 vector.c,513 37% 2048 29 60000 0% 1 KB I
astar 473.astar Way2_.cpp,100 60% 1234 41 50000 20% 1 KB Others
lbm 470.lbm lbm.c,186 99% 1300000 55 71000000 0% 500 B I

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 65

Table 5.4: TLS Execution for 6 loops from SPEC CPU 2006.

Loop ss Intel Speed-up
ID Intel P8 Tx Duration (ns) Intel P8
mcf 20 48 400 1.45 0.60
milc 4 4 375 1.44 1.50

h264ref 16 6 2490 1.74 1.27
sphinx3 8 16 234 1.16 1.95
astar 128 256 5180 0.74 0.49
lbm 33 17 1800 0.69 1.30

most of the pixels set to zero, and the suspected corners (iterations with loop-carried

dependences) are processed close to each other.

5.2.5 Predicting the TLS Performance for Other Loops

Besides providing a detailed analysis for the implementation of TLS over current com-

modity HTM implementations for loops in the cBench suite, the characterization of the

loops given in Table 5.2 and the performance evaluation presented in the various graphs

could also be used to predict the potential benefit of applying TLS for new loops that

were not included in this study. For loops with short Tloop, such as those in class III,

TLS is very unlikely to result in performance improvements in either architecture. For

loops with small read/write sets and no dependences materializing at runtime, such as

those in class I, TLS is likely to result in modest improvement for the Intel Core and

more significant improvements for the POWER8. Loops that have sufficient work to be

parallelized and no actual dependences but have larger read/write sets, such as those

in Class II, are likely to deliver speed improvements in the Intel Core but will result in

little or no performance gains in the POWER8 because of the more limited speculative

capacity in this architecture. Finally, loops that have sufficient work to be parallelized

but whose dependences materialize at runtime are difficult to predict — such as loopV.

The distribution of loop-carried dependences among the iterations of such loops must be

studied.

Six loops from the SPEC CPU 2006 suite are characterized to determine to which class

they belong according to the classification resulting from this experimental evaluation (as

shown in Table 5.3). Loops milc, sphinx3, and lbm are classified as Class I; h264ref as

Class II; and mcf and astar as Others. Based on this classification a prediction can be

made about the relative performance of the loops on TLS over HTM for both architec-

tures. Results of coarse-grained TLS parallelization of these loops shown in Table 5.4 and

Figure 5.10 confirm the predictions.

5.3 Fine-grained TLS on top of HTM

Murphy et al. proposed fine-grained TLS and described an implementation on emulated

hardware for speculative execution [40]. They conclude that the fine-grained approach

is most profitable and close to the limit of thread-level parallelism, and that judicious

speculation can be unpractical because it relies on complex profilers.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 66

Figure 5.10: SPEC2006 Loops. Speed-ups and abort ratios for coarse-grained TLS exe-
cution on TSX and POWER8.

1 for (i = 0; i < N; i++){

2 /* Start sequential segment 1 */ /* Global scalar, glob */

3 if (cond)

4 glob++;

5 else

6 glob=i;

7 /* End sequential segment 1 */

8 A[i]= glob*i;

9 /* Start sequential segment 2 */

10 for(j = 0; j < factor; j++){

11 /* Global array, B */

12 int tmp = B[factor*(i%4) + j];

13 tmp += i*5;

14 if(tmp%2 == 0){

15 B[factor*(i%4) + j] = tmp;

16 }

17 }

18 /* End sequential segment 2 */

19 }

Figure 5.11: Figure 2.1. A loop with two may loop-carried dependences.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 67

Figure 5.12: Fine-grained Speculation Execution flow of Figure 5.11.

arc = arcs + group_pos;

for(; arc < stop_arcs; arc += nr_group)){

1) if(arc->ident > BASIC){

2) red_cost = arc->cost - arc->tail->potential

+ arc->head->potential;

3) if(bea_is_dual_infeasible(arc, red_cost)){

4) basket_size++;

5) perm[basket_size]->a = arc;

6) perm[basket_size]->cost = red_cost;

7) perm[basket_size]->abs_cost = ABS(red_cost);

}

}

}

Figure 5.13: mcf’s hottest loop.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 68

for(...){

A) cond=arc->ident > BASIC

if (cond)

B) red_cost = arc->cost-arc->tail->potential + arc->head->potential;

if (cond)

C) cond2= bea_is_dual_infeasible(arc,red_cost);

tbegin();

if (cond && cond2)

D) basket_size++;

tsuspend(); while (arc!=next_iter_commit); tresume();

tend();

if (cond && cond2){

E) perm[basket_size]->a = arc;

F) perm[basket_size]->cost = red_cost;

G) perm[basket_size]->abs_cost = ABS(red_cost);

}

}

Figure 5.14: Fine-grained TLS without strip mining for mcf’s hottest loop.

Figure 5.15: DDG of mcf’s hottest loop.

The goal of their fine-grained approach is to create transactions that surround only

segments of a loop iteration instead of a whole iteration. To accomplish that they use

sequential segments of HELIX to define the beginning and the end of transactions. Fine-

grained TLS decreases the overhead of speculating a whole iteration in comparison with

coarse-grained speculation and avoids capacity aborts because not all reads and writes of

an iteration are performed within the same transaction. Besides, in the case of a conflict

only a sequential segment is rolled-back and retried (not the whole iteration). However,

the HTM overhead may increase because, with multiple transactions per iteration, more

transactions are started and finished. The flow of execution of the code of Figure 5.11

for fine-grained speculation is shown in Figure 5.12: each transaction commits in order,

and waits for the younger iteration/transaction if that is not ready. SS0 has no conflicts.

Assuming that cond evaluates to true in all iterations, SS1 always conflicts, rolls back

and retries. Finally, SS2 has no conflicts because only four cores are used.

Murphy et al.’s implementation of this approach surrounds sequential segments within

transactions and distributes iterations to cores in a round-robin fashion. Hence they do

not use techniques — such as strip mining or loop-unrolling — to group iterations. This

work shows that strip mining is a code transformation that allows decreasing overhead of

starting/finishing transactions, aborts, and false sharing when coarse-grained TLS is used

with off-the-shelf speculative support. Thus, the implementation of fine-grained TLS on

top of existing HTMs discussed in this section uses strip mining.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 69

Figure 5.16: SCCs of the DDG of Figure 5.15.

Figure 5.13 shows the serial code for the hottest loop of mcf. As explained earlier,

to implement fine-grained TLS, it is necessary to build the Data Dependence Graph

(DDG) of the code and to find the Strongly Connected Components (SCCs) of the graph

(Figure 5.16). Each SCC with (may) loop-carried dependences is considered a sequential

segment, whereas each SCC without loop-carried dependences is considered a parallel

segment. Only sequential segments are speculated using TLS. For example, in the case of

mcf hottest loop, the component D is a sequential segment. Figure 5.14 shows the code

of fine-grained TLS implementation (like in [40]) of the loop in Figure 5.13 (some details

are omitted). Contrary to the result in [40], this loop has a poor performance when is

executed on a commercial architecture with support for HTM. As discussed before, this

poor performance is due to the lack of strip mining.

To compensate for that, we propose using strip mining to implement fine-grained TLS.

If fine-grained TLS is tried in a loop that is not restructured after strip mining, it is not

possible to use TLS in small segments because the whole inner loop, that resulted of

applying strip mining, defines only one sequential segment. To implement fine-grained

TLS with strip mining successfully, it is necessary to restructure the loop using well-known

code-transformation techniques as loop fission and scalar expansion.

Loop fission is used to separate each SCC in a loop iterating STRIP_SIZE times.

Each one of these loops can be considered a stage. If scalar variables need be commu-

nicated between stages, scalar expansion is used. Thus, thread-local buffers are created

to store dependence variables for each iteration of a producer stage. The result of this

implementation is shown in Fig. 5.17. Stages A, B, and C (corresponding to the same

name of SCC respectively) are merged because they are parallel segments and do not

need to be speculated. Stage D is speculated and (may) loop-carried dependences of the

same stage in different threads are detected and resolved by HTM conflict detection and

resolution as explained in Section 4.2. Ordered transactions has to be implemented for

each speculative stage because different sequential segments can be executed at the same

time. Speed-ups achieved by this technique, coarse-grained TLS, DOACROSS paralleliza-

tion [16], and TLP-limit in the mcf’s hottest loop (SPEC 2006 suite) and loopV (cBench

suite) on Intel Core using four cores are shown in Fig. 5.18. TLP-limit is the imple-

mentation of DOACROSS with strip mining but only synchronizing when it is necessary

(perfect synchronization) and not at all iterations.

Fine-grained speculation can have good performance when the number of parallel

segments is large with respect to the number of sequential segments, and there are a few

sequential segments, thus this technique completely depends on the accuracy of static

dependence analyzer of the compiler. For instance, loopE and loopJ have only one

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 70

for(...){

prev_arc=arc;

for(i=0;i<STRIP_SIZE;i++,arc+=nr_group){

A) cond_arr[i]=arc->ident > BASIC

if (cond_arr[i]){

B) red_cost[i] = arc->cost - arc->tail->potential + arc->head->potential;

C) cond2_arr[i]= bea_is_dual_infeasible(arc, red_cost[i]) ;

}

}

tbegin();

for(i=0,arc=prev_arc;i<STRIP_SIZE;i++,arc+=nr_group){

if(cond_arr[i] && cond2_arr[i])

if (!flag){ basket_sizeL=basket_size; flag=1; }

D) basket_arr[i]=++basket_sizeL;

}

tsuspend(); while (arc!=next_iter_commit); tresume();

tend();

if (flag) basket_size=basket_sizeL;

next_iter_commit=prev_arc+nr_group*STRIP_SIZE;

for(i=0,arc=prev_arc;i<STRIP_SIZE;i++,arc++){

if(cond_arr[i] && cond2_arr[i]){

E) perm[basket_arr[i]]->a = arc;

F) perm[basket_arr[i]]->cost = red_cost[i];

G) perm[basket_arr[i]]->abs_cost = ABS(red_cost[i])

}

}

}

Figure 5.17: Fine-grained TLS with strip mining in restructured mcf’s hottest loop. Pri-
vatization in basket_size is shown.

Figure 5.18: Speed-ups in mcf’s hottest loop and loopV using fine-grained TLS on Intel
Core.

CHAPTER 5. IN-DEPTH EVALUATION OF TLS IN OFF-THE-SHELF HTMS 71

Figure 5.19: Speed-ups and Abort ratios for fine-grained TLS execution on Intel Core.

sequential segment induced by non-actual loop-carried dependences, thus both loops are

performant with four threads as shown in Fig. 5.19. The other two loops have actual

loop-carried dependences that are transient, thus some improvements are still achieved

by fine-grained TLS. For all cases the percentage of aborts decreases.

Chapter 6

Using HTM to Enable STO

To explain Speculative Trace Optimization (STO), consider the code of a simple for loop

in Figure 6.1. Figure 6.2 shows the four possible traces that could be executed at each

iteration of the loop, namely A, B, C and D. The loop has two consecutive if statements

with conditional expressions that cannot be resolved until runtime and may depend on

calculations performed earlier in the traces. In that case, it is not possible to select one

amongst multiple traces before executing the traces. The instructions in lines 3-5 are

dead code and can be eliminated when Trace A is executed because of the redefinition

of z without prior use in line 18. Similarly, when Trace B is executed, the instructions

in lines 9-11 are dead code because of the definition of r in line 24. Although some

compilers may attempt to apply partial dead-code elimination [6] to this code, in general

such techniques are not successful or come at high cost. The creation of longer traces

of execution with STO enables many known compiler optimizations [27]. The simple

program in this example is meant as a motivation for the ideas behind STO.

The central idea of this chapter is that hardware support for speculation, created orig-

inally to support HTM and Thread-Level Speculation, can also support STO. One current

implementation of HTM support is provided through Intel Transactional Synchronization
Extensions (TSX). In this prototype implementation of STO, a pool of threads is used,

and each trace is executed by a thread for each loop iteration. To implement STO, the

source code of the benchmarks was modified to insert TSX code, to enable the specula-

tive execution of traces as transactions, and to insert additional features, such as waiting

and variable privatization, that compensate for the absence of multi-versioning and lazy-

conflict resolution (for trace synchronization) in TSX.

6.1 Speculative Trace Optimization Supported by HTM

This section describes the main ideas behind STO and how to implement it on top of an

HTM architecture. The unit of speculation is a trace. When the speculation in STO is

supported by HTM, each trace is executed as a transaction.

72

CHAPTER 6. USING HTM TO ENABLE STO 73

1 for (i=0; i<n; i++) {

2 if (cond1(z,r)){//condition calculated with z and r

3 z=z+y;

4 z=z*2;

5 z=y+z;

6 p=y*2;

7 }

8 else{

9 r=r+q;

10 r=r*2;

11 r=q+r;

12 x=q*2;

13 }

14 if (cond2(x,p)){//condition calculated with x and p

15 q=r-p; //z is not used here

16 p=p*q;

17 p=p+1;

18 z=p;

19 }

20 else {

21 y=z-x; //r is not used here

22 x=x*y;

23 x=x+1;

24 r=x;

25 }

26 }

Figure 6.1: Example of code to optimize.

6.1.1 STO on Ideal HTM

This prototype evaluation focuses on the use of STO to speculate traces found in frequently

executed loops. However, STO can be also applied to other hot code regions such as

frequently executed functions.

Figure 6.2 shows the possible traces of execution in the body of the for loop shown

in Figure 6.1. In this example, if Trace A is executed, lines 3-5 of the code shown in

Figure 6.1 are dead and can be eliminated. Similarly, if Trace B is executed, lines 9-11

are dead and can be also eliminated. However, without executing these traces, the value

of the conditions are unknown and a compiler must preserve the full path in both cases.

The algorithm that leads to STO is described in Algorithm 6.1, using the code in

Figure 6.1 as a guideline.

Figure 6.3 shows each trace of Figure 6.2 as a transaction enclosed by the begin and

end instructions of an ideal HTM system. Figure 6.5 shows an example of an execution

sequence of the loop of Figure 6.1 using STO. In this example, each trace of each loop

iteration is executed in a single transaction by a thread. This ideal system has four hard-

ware threads and an ideal HTM, which has a negligible abort overhead and the following

features: eager conflict detection and lazy conflict resolution (Eager-Lazy HTM [59, 53]),

multi-versioned cache memory addresses, ability to pause a transaction to wait for an-

other commiting one (wait instruction), and large speculative capacity. For the sake of

the this example, assume that there is no false sharing.

CHAPTER 6. USING HTM TO ENABLE STO 74

Figure 6.2: Possible traces of execution.

1. Profile the program to identify the hottest loops.

2. Collect the source code for all traces (when exhaustively

speculating) of the selected loops identified in Pass 1. In the

example, there are four traces --- A, B, C and D --- shown in Figure

6.2.

3. Create a thread pool with sufficient threads to execute all traces.

In the example, four threads will be created.

4. Use the thread pool to dispatch a task for each trace. Each task

executes all iterations of their corresponding trace as shown in

Figure 6.3.

5. In the source code transform each trace into a transaction enclosed

by the begin and end instructions. At each iteration of the loop,

traces must evaluate all their conditions at the end of the

transaction (Figure 6.3). If all conditions are true the trace must

commit (and update the induction variable), otherwise it must wait
for the correct transactional trace to commit.

6. Activate compiler optimizations to be applied to speculative traces.

Figure 6.4 shows the traces of Figure 6.3 optimized by the compiler.

As shown, Trace A and Trace B were optimized using a classic

dead-code elimination. Other traces (C and D) were not optimized.

Algorithm 6.1: STO Algorithm

CHAPTER 6. USING HTM TO ENABLE STO 75

Figure 6.3: Traces as transactions.

Figure 6.4: Optimized traces of execution.

CHAPTER 6. USING HTM TO ENABLE STO 76

Figure 6.5: Possible execution flow of STO Traces shown in Figure 6.4 on ideal HTM.

The conditionals of all if statements in each trace are converted into predicates for the

execution of the trace and are evaluated at the end of the trace. Only one trace evaluates

all its predicates to true and must commit when the end instruction is executed. The

other traces either: (a) wait for the correct trace to commit and abort afterwards, or (b)

will be aborted due to a conflict, by the transaction that commits, without having finished

its execution. Figure 6.5 shows, in blue, the transactions (traces) that commit, in yellow

the time spent by a transaction waiting for another one to commit and, in orange, the

transactions that abort without finishing. Transactions that never complete are shown

with dashed borders.

As shown in Figure 6.5, all threads are created before the execution of loop iterations

starts (Pass 3 of Algorithm 6.1). This preamble is executed by the hardware thread 1. In

Figure 6.5, hardware threads 1, 2, 3, and 4 execute traces A, B, C, and D, respectively.

At the first iteration, suppose that the if-conditions of Lines 2 and 14 of Figure 6.1 are

both true. Thus Trace A evaluates its predicates to true and commits. The other three

traces B, C, and D — which read or write variables p, q, and z written by Trace A —

abort without finishing.

In the second iteration, suppose that the conditions in Lines 2 and 14 of Figure 6.1 are

both false. This way Trace B evaluates all its predicates to true and commits writing to

variables x, y, and r. On the other hand, traces A and C have to abort because they read

or write these variables. Trace A finishes before Trace B commits, and thus it has to wait

and then abort. Trace C, on the other hand, aborts before completion. In some iterations

not all traces are executed. Assume that, when the value of the induction variable is k, the

trace that evaluates all its predicates to true finishes execution and updates the induction

variable to k + 1 before one of the traces with false predicates starts. Then the thread

CHAPTER 6. USING HTM TO ENABLE STO 77

responsible for this later trace will skip the execution of a transaction for iteration k. In

the example, Trace D skips iteration 2 entirely and resume execution in the iteration 3.

Finally, in the third iteration, Trace D evaluates all its conditions to true and commits

writing to variables p, q, r, x, and z. The other three traces A, B, and C read or write

these variables and finish before Trace D, thus they have to wait and then abort due to

the commit of Trace D.

The left side of Figure 6.5 shows the serial execution of the above three iterations.

6.1.2 STO Prototype on Real-world HTM

The previous discussion assumed that STO would be executed using an ideal HTM. This

sections explains how STO works in a real HTM (i.e. Intel TSX) and discusses the main

features, which are lacking in TSX, that need to be addressed to enable speculative trace

optimization.

Privatization to Simulate Multi-versioning and Lazy Conflict Resolution

Eager conflict resolution is a problem for STO because multiple traces write to the same

variable, and thus each of those conflicting writes would cause a conflict abort. The

aborted transaction could be the one that had to commit causing a significant retry

overhead. To overcome this limitation, STO prototype privatizes all variables that have

to be written within a transaction (trace) and the induction variable of the loop. In the

example of Figure 6.6, variable i is the induction variable and variables p, q, and z are

written within Trace A. Variable i is copied at the beginning of the transaction executing

Trace A. Variables that are written are also copied into their thread-local copies (e.g. zL

is a local copy of z). Conflicts are detected and resolved after the commit (_xend), when

the local copies are non-speculatively written back to the original variables by the trace

with all predicates true. Thus, privatization implements multi-versioning and lazy-conflict

resolution, necessary features for speculative trace optimization.

Non-speculative Writes to Simulate Conflict-Resolution Policy

The conflict-resolution policy used by TSX can interfere with the implementation of STO.

Let T be the trace that evaluates all its predicates to true, and let F0, . . ., Fk be the traces

for which at least one of the predicates is false. When T writes to the variables that it

modifies and attempts to commit, it is likely that T has a conflict with a transaction

that is executing one of the other threads. If the conflict-resolution policy were allowed

to abort T and allow the survival of some Fi trace, the intent of STO would be defeated.

To overcome this limitation, once T commits, T non-speculatively writes the modified

variables, including the loop-induction variable. Some Fi may be executing or have fin-

ished. If Fi finishes, STO forces Fi to spin on an infinite loop while only T proceeds to

the commit phase. These non-speculative writes lead to the abortion of all Fi (spinning

or not) because each trace has to read the induction variable. This mechanism is used

to create the effect of a Conflict-Resolution Policy — a necessary feature for speculative

trace optimization — in an HTM that does not have this feature.

CHAPTER 6. USING HTM TO ENABLE STO 78

1 i=&(param->i);

2 while ((*i) < n){

3 status = _xbegin();

4 if (status == _XBEGIN_STARTED){

5 iL=*i;

6 pr=cond1(z,r);

7 zL=z+y;

8 zL=zL*2;

9 zL=y+zL;

10 pL=y*2;

11 pr=pr && cond2(x,pL);

12 qL = r - pL;

13 pL = pL*qL;

14 pL = pL + 1;

15 zL = pL;

16 if (pr && (iL < n)){

17 _xend();

18 param->i= param->i + 1;

19 z=zL;

20 p=pL;

21 q=qL;

22 }

23 else if (iL < n)

24 while(1);

25 }

26 }

Figure 6.6: Modified Source Code of Trace A.

Pausing to Simulate Trace Synchronization

A trace that evaluates any of its predicates to false is a miss-speculation and should

abort. One way to abort such a trace, would be to issue an _xabort instruction when-

ever a predicate fails and to retry. An alternative is to keep the miss-speculation trace

executing an idle loop until it is aborted only once because of a detection of conflict

with the correct trace. A non-speculative write of the value of the induction variable —

which is read at the start of all traces — causes all incorrect traces to abort. These two

approaches have been tested on Intel TSX for the traces of Figure 6.1 and their impact

on performance was measured. The use of the _xabort instruction to interrupt incorrect

traces resulted in a 1.19× slowdown when compared to waiting for the correct trace to

commit. This slowdown is due to the cost of recovery from _xabort in TSX, which is

high (150 cycles) [50], resulting in a large performance penalty for issuing this instruction

many times by retrying. Therefore, with the current implementation of TSX, waiting

at the end of the transaction for the commit of the correct trace is a better approach to

build a STO prototype. Lower-cost aborts in future architecture would change this trade-

off. This prototype implementation of STO on top of TSX uses an infinite loop while

(1); statement, as shown in the Line 24 of Figure 6.6. A trace that evaluates any of

its predicates to false will wait until the thread executing the correct trace commits and

then writes, non-speculatively, the new value of the induction variable (Lines 19 - 18 of

Figure 6.6). This non-speculative write will lead to the intended eager conflict detection

CHAPTER 6. USING HTM TO ENABLE STO 79

Table 6.1: HTM Architectures.

Features/HTMs TSX BG/Q P8
Multi-version

Eager Detection
Lazy Resolution

Ordered Txs
Suspend/Resume
Lazy Detection

Data Forwarding
ROTs

and conflict resolution mechanisms of TSX to abort all the incorrect traces. In the current

implementation of Intel TSX a transaction may also abort due to other reasons such as

traps when the limit of OS quantum has been reached, interrupts, temporary capacity

overflow, etc. Thus, the STO prototype retries the transaction when such spurious aborts

occur to ensure that the correct trace is eventually executed to completion.

The above analysis suggests that multi-versioning, eager conflict detection, lazy con-

flict resolution, and transaction synchronization are central features to enable trace specu-

lation. Unfortunately, as shown in Table 6.1, none of the current HTM architectures (Intel

TSX, IBM BG/Q and POWER8) have all the features required to implement trace specu-

lation strategies like STO. Intel TSX does not allow for multi-versioning nor lazy-conflict

resolution. On the other hand, although POWER8 has suspend/resume instructions,

which could eventually implement transaction synchronization, it does not allow multi-

versioning nor lazy conflict resolution. Moreover, in the current version of POWER8

the cost of suspend/resume is comparable to the cost of starting a transaction. Blue

Gene/Q [23] is the architecture that is closest to implement all the features required for

trace speculation. BG/Q features multi-versioning cache, ordered transactions in hard-

ware (for transaction synchronization), and lazy conflict resolution; features that are useful

to enable STO. However, the runtime system implemented on top of the best-effort HTM

in BG/Q provides forward-progress guarantees that assume that each started transaction

must eventually commit [64, 65]. This assumption does not fit well with the concept of

speculation in STO, where all but one trace should abort.

Dice et al. described several pitfalls that show that lazy subscription is not safe for

Transactional Lock Elision (TLE) [18]. Those problems are not present for STO because

the Trace T (that evaluates all its predicates to true) writes the induction variable i non-

speculatively. Thus, if another trace F starts its transactional execution, it will read the

value of i. Either it reads that value before trace T commits — and thus have the same

i value as trace T —, or it reads the new value of i after trace T commits. If it reads the

value before Trace T commits, the committing (and update of i) of trace T will cause a

conflict leading Trace F to abort. If it reads i after trace T commits (and updates i),

then Trace F is executing a different iteration than Trace T did.

CHAPTER 6. USING HTM TO ENABLE STO 80

6.1.3 Running STO on Intel TSX

Figure 6.6 shows Trace A, after the code in Figure 6.3 is modified using Intel TSX; the

other traces were modified accordingly. Algorithm 6.2 explains the implementation of the

STO strategy when using TSX, again considering the example of Figure 6.1.

1-5 Same as Passes 1-5 in Algorithm 6.1.

6. At each trace, make a local copy of each variable that is written

within the transaction (for example variables z, p, and q whose

corresponding copies are zL, pL, and qL in Figure 6.6) and replace

the original variable by their private copies in the transaction.

7. At each trace, after committing, write the value of the private

variables to the original ones as in the Lines 19-21 of Figure 6.6.

8. For each trace, read the induction variable at the beginning of the

transaction into a local variable as shown in the Line 5 of Figure

6.6; replace the original induction variable by the private copy in

the whole transaction. After committing, update the induction

variable as shown in the Line 18 of Figure 6.6.

9. At each trace, simulate waiting for the correct trace commit by

putting a while(1) for the case when the predicates of the trace are

false as shown in Line 24 of Figure 6.6.

10. Same as Pass 6 in Algorithm 6.1.

Algorithm 6.2: STO Strategy Using TSX

Figure 6.7 is an example of an execution sequence of the loop in Figure 6.1 using STO

on Intel TSX in a system with four hardware threads. As detailed below, the performance

of this execution is worse than the execution shown in Figure 6.5 because Intel TSX lacks

many features of an ideal HTM for STO, as mentioned in Section 6.1.2.

As before, in Figure 6.7 transactions (traces) that commit are colored in blue, the time

spent by a transaction waiting for another one to commit — in this case in the while(1);

statement — is colored in yellow, and transactions that abort without having finished are

shown in orange. The overhead to update (after commit) the induction variable and the

written variables of the transaction (as in Passes 7 and 8 of Algorithm 6.2) are shown in

red. The overhead to read the induction variable is shown at the beginning of each trace

(transaction). The main differences between the execution of Figure 6.7 and the execution

of Figure 6.5 are: (a) The insertion of the induction variable read in each transaction. (b)

The insertion of the induction variable non-speculative write after committing the correct

trace.

Hardware threads 1, 2, 3, and 4 execute traces A, B, C, and D, respectively. In the

first iteration, suppose that all the predicates of Trace A evaluate to true and thus its

CHAPTER 6. USING HTM TO ENABLE STO 81

Figure 6.7: Possible execution flow of STO Traces shown in Figure 6.4 on Intel TSX.

transaction commits after testing the predicates. Immediately after committing, Trace A

non-speculatively copies the values from the thread-local copies pL, qL, zL, and iL into

variables p, q, z, and i, respectively. The other three traces — B, C, and D — read these

variables in their respective transactions and have to abort due to a conflict. Every trace

has the loop induction variable in its read set. Thus when the correct trace — Trace A in

this example — non-speculatively writes to that variable, the eager-conflict detection and

resolution in TSX forces all other traces to abort. Assume, in this example, that Trace B

finishes before the non-speculative writes by the thread of Trace A. Thus Trace B has to

wait (in the while(1); statement) until it is aborted by the eager conflict mechanism.

Finally, during the third iteration, all predicates of Trace D evaluate to true, it commits

and then writes non speculatively to variables p, q, r, x, z, and the induction variable i.

The other three traces — A, B, and C — read these variables in their transactions, and

finish before Trace D writes non speculatively, they have to wait and then abort due to

the conflict with the non-speculative writes of Trace D.

The left side of Figure 6.7 shows the serial execution of the program.

6.2 Performance Assessment of Proof-of-Concept Pro-

totype

This section presents performance assessment of the prototype of STO using TSX for

benchmarks from Parboil, SPEC CPU2006, and Mediabench-II.

CHAPTER 6. USING HTM TO ENABLE STO 82

6.2.1 Benchmarks, Implementation, Settings, and Environment

To select programs for this initial experimental evaluation we searched for hot regions of

code in the Parboil, SPEC CPU2006, and Mediabench benchmark suites to uncover code

that could have potential to improve performance through STO. Profiling of all bench-

marks from these three suites revealed hot loops that were then analyzed to determine

if these loops are amenable to STO optimization. This analysis evaluates the number of

traces in the loop and measures the trace hotness, execution probability and optimization

potential. Finally, we select hot loops according to our analysis and we modify them using

TSX.

Table 6.2 shows the selected benchmarks that contain loops for which STO is applicable

at the moment. Except for h263dec that contains two STO loops, in all other benchmarks

STO was applied to a single loop. The second column of the Table 6.2 indicates the

Benchmark Suite that the program came from. The fourth column of Table 6.2 shows

the locations/lines of the target regions in the source code. The fifth column shows the

fraction of the total execution time ran by the hot code regions.

This implementation of STO on Intel TSX uses Pthreads. Creating a pthread incurs a

significant overhead in this experimental platform (Linux). Therefore, a pool of Pthreads,

with one Pthread for each hardware thread, is created once, just before the execution of

the hot region of code. This pool of threads is then reused at each iteration.

This initial evaluation of the prototype uses an Intel Core i7-4770 processor, running

at 3.4 GHz, with 16 GB of memory on Ubuntu 12.04.3 LTS (GNU/Linux 3.8.0-29-generic

x86_64). The Intel Core i7-4770 has 4 cores with 2-way SMT. Each core has a 32 KB L1

data cache and a 256 KB L2 unified cache. The four cores share an 8 MB L3 cache. The

benchmarks are compiled with GCC 4.9.2 at optimization level -O3.

The following section discusses the performance evaluation comparing the STO exe-

cution with the serial execution of the same benchmark also compiled at level -O3. STO

accelerates loops that may contain data dependences that prevent parallelization, thus

comparison with the sequential code is appropriate. Whole-program executions are com-

pared and not only the execution time of the region of the code to which STO is applied.

Each benchmark was run 100 times.

6.2.2 Benchmark Results

Figure 6.8 shows the speed-up of the selected benchmarks with respect to the sequential

execution. The average performance improvement over 100 runs due to STO on TSX

varies between 1% (for 458.sjeng) and 9% (for Sad). Performance variability with a 95%

confidence is also shown in Figure 6.8. The modest speed-ups are due to the overhead

of privatization, padding, copying variables after commit (to simulate lazy conflict reso-

lution), and mainly due to the expensive cost of aborts in Intel TSX (an abort costs 150

cycles).

At each iteration only one transaction (trace) should commit and the others must

abort, thereby the number of aborts by conflict at each iteration should be number_of_traces-
1. Moreover, the cause of an abort should be, in most cases memory conflicts. Aborts

C
H

A
P

T
E

R
6
.

U
S
IN

G
H

T
M

T
O

E
N

A
B

L
E

S
T

O
83

Table 6.2: Amenable loops to STO.

Benchmark Origin Description Location in source code % Coverage
Lbm Parboil A fluid dynamics simulation of an enclosed, lid-driven cavity. lbm.c, 186 93%

Mri-g Parboil Computes a regular grid of data representing an Magnteic Resonance scan. CPU_kernels.c, 174 71%
Sad Parboil Sum of absolute differences kernel, used in MPEG video encoders. sad_cpu.c, 81 83%

458.sjeng SPEC CPU 2006 Based on Sjeng 11.2, which is a program that plays chess and several chess variants. neval.c, 493 23%
store.c, 400 45%

h263dec Mediabench-II A video decoder (h263dec) based on the ITU H.263 standard targeting video compression.
store.c, 442 35%

CHAPTER 6. USING HTM TO ENABLE STO 84

Figure 6.8: Speed-ups of benchmarks with respect to serial execution.

Figure 6.9: Abort Ratio (%) of the benchmarks.

due to other reasons, such as capacity and interruptions, occur occasionally. In such cases

the transaction has to retry.

Figure 6.9 shows the abort ratio, computed as the number of aborted transactions

divided by the number of started transactions, for the benchmarks. This ratio fluctuate

between 35% and 68%. It also shows the causes of a abort: conflict, waiting and others.

Aborts due to waiting (while the transaction is executing while(1)) are due to limit of

the OS quantum allocated to the thread and not due to memory conflicts. Almost all

aborts are caused by memory conflicts, the other reasons are almost insignificant.

An interesting question is whether most conflict aborts are due to the commit of a

transaction (lazy conflict resolution) or are they due to other causes (e.g., false sharing).

To provide some insight, Table 6.3 shows the number of commits and the number of

conflict aborts for each trace in Lbm.

Table 6.3: Conflict aborts and commits of Lbm traces.

Conflict
Aborts

Trace A
(commits)

Trace B
(commits)

Trace C
(commits)

Total
Commits

Factor

Trace A
(1806K)

26K 1789K
26K+1789K

=1815K
1806/1815

=0.995
Trace B
(1995K)

343K 1789K 2132K 0.936

Trace C
(258K)

343K 26K 369K 0.700

CHAPTER 6. USING HTM TO ENABLE STO 85

Figure 6.10: Factor for each trace in the benchmarks.

The number of conflict aborts of a given trace should be almost equal to the sum

of commits of the other traces because each time that a trace with all predicates true

commits, all other traces must abort. For example, consider the case of Trace A in Lbm

shown in Table 6.3. It should have aborted 1815K times (sum of commits of traces B

and C) but it aborted 1806K times by conflict, resulting in a (real/expected) ratio of

0.995. This small difference is explained by the fact that some threads occasionally skip

an iteration because they do not start before the correct thread commits and updates

the induction variable, as explained in Section 6.1.1. Table 6.3 shows similar results

when considering the other traces of Lbm. Measurements for the other benchmarks reveal

similar results as in the Lbm case. The ratios for each trace of each benchmark are shown

in Figure 6.10. Most ratios are closer to or less than one, meaning that the number of

conflict aborts for each trace is closer to or less than the number of commits of the other

traces and thus the impact of other conflict abort causes is imperceptible, as expected.

Chapter 7

parallel for check Directive

A loop (as shown in Figure 7.1) has a loop-carried dependence if there is a statement A

dependent on B and both statements are executed in different iterations. As mentioned

before, loop-carried dependences limit loop iteration parallelization.

Figure 7.1: Loop-carried dependence example.

Data-dependence analysis is an important technique to detect loop-carried depen-

dences and to exploit parallelism in programs. It works by detecting if two instructions

access the same memory location, and at least one of them is a write operation. A

loop-carried dependence occurs when these instructions execute in different iterations;

otherwise they are called loop-independent [66]. As discussed previously, if two instruc-

tions are loop-independent, the iterations can be safely executed in parallel without the

need of synchronization. Otherwise, if they define a loop-carried dependence, this can not

be achieved.

For example, Figure 7.2 shows an incorrect execution of the previous loop (Figure 7.1),

as iteration 2 is executed before iteration 1, so it does not respect the loop-carried depen-

dence between instruction A and B. Specifically, the read of variable b in iteration 2 is

incorrect as variable b has a loop-carried dependence to the execution of statement B in

the previous iteration.

One potential source of bugs, while programming in OpenMP, shows up if a program-

mer incorrectly evaluates this as a DOALL loop, and thus parallelizes it using a parallel
for construct. By using the parallel for check construct, proposed herein, this error could

be detected at runtime.

86

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 87

Figure 7.2: Possible execution flow of the loop of Figure 7.1.

7.1 Check Construct in OpenMP

This section presents the new check construct, a novel OpenMP construct which can

detect loop-carried dependences in OpenMP. It capitalizes on some advantages of both,

Pairwise and Stride-based methods; while it tries to minimize their deficiencies.

7.1.1 Overview of the Algorithm

Pairwise and Stride methods use, for each instrumented loop of the program, one pending

table that is flushed at each new iteration of the loop, and one big history table to store

all dynamic memory references seen so far along the loop execution. In the case of Stride

method, it duplicates the number of tables for managing strides and points. By contrast,

our approach uses a memory efficient data structure per-loop.

Figure 7.3: Usage of check construct in the program of Figure 7.1.

To store memory references in check, we use two (read and write) Multilevel Hash
Tables (MHT) [10] which maps references to two int numbers: maxIter and minIter —

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 88

the maximum and minimum number of iteration stored due to a memory reference by the

corresponding thread at that moment — as shown in Figure 7.4. By doing so, the size of

the memory footprint required to store iteration addresses is considerably reduced. MHT

has a two-level key composed by the memory address and the thread ID, mapping two

numbers that indicates the maximum (or minimum) iteration where the corresponding

address was written or read by that thread. On the average case, search time in this kind

of structure is O(k) where k is the number of levels. In our case, k = 2 and thus search

time is O(1) on average.

The detailed algorithm is described in Listing 7.3 as follows.

1. When a loop with check directive, L, starts, the checker is

activated.

2. On a memory address, R, of L’s i-th iteration done by thread X,

store min(i,minIter) and max(i,maxIter) into the corresponding numbers

of the key composed by R and X on the Multilevel Hash Table.

3. If the memory reference in R is a read instruction, the checker

looks for if there is a memory write on this address R, in another

thread different from X. If this memory write exists and its

maxIter > i , the checker reports a violation of WAR loop-carried

dependence. If warning_option is activated, the checker also looks

for if there is a memory write on this address R, in any thread. If

this memory write exists and minIter ≤ i ≤ maxIter, the checker

reports a warning of WAR loop-carried dependence.

4. If the memory reference in R is a write instruction, the checker

looks for if there is a memory write or read on this address R, in

another thread different from X. If a memory write exists and its

maxIter > i, the checker reports a violation of WAW loop-carried

dependence. If a memory read exists and its maxIter > i, it reports a

violation of RAW loop-carried dependence. If warning_option is

activated, the checker also looks for if there is a memory write or

read on this address R, in any thread. If a memory write exists and

minIter ≤ i ≤ maxIter, the checker reports a warning of WAW

loop-carried dependence. If a memory read exists and

minIter ≤ i ≤ maxIter, it reports a warning of RAW loop-carried

dependence.

5. When L finishes, we flush the Multilevel Hash Table.

Algorithm 7.3: OpenMP checker Algorithm

The algorithm focuses on detecting violations of loop-carried dependences. Some loop-

carried dependences do not cause violations, as the order of execution is respected, and

thus checker does not report such errors. Nevertheless, in some specific cases the program-

mer might want to be informed of all existing loop-carried dependences as this information

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 89

Figure 7.4: Multilevel Hash Table mapping to a memory reference in address a stored by
thread Y.

could be useful to understand the causes of violations in future program runs. In order to

enable the detection of all loop-carried dependences in checker, the programmer should

activate an optional parameter called warning_option.

Our approach does not need a sophisticated compression algorithm as described in

[33, 32], given that we perform dependence verification for single loops. By combining this

with the possibility of selecting the specific loop to analyze and the MHT data structure,

we managed to reduce the memory and time overheads of the methods described in

Section 3.4. Moreover, we merge identical dependences to reduce the memory overhead

and the time of the algorithm by using auxiliary structures that store all the (violation

of) dependences found for any two instruction pointers, thus avoiding to detect the same

dependence several times.

As explained in Sections 3.4.1 and 3.4.2, previous solutions could have problems with

multithreaded executions as they mark an address as killed once the memory address is

written in an iteration; besides, they only report dependences per-thread. Thus, they can

omit possible violations of loop-carried dependences. Our approach identifies these ignored

violations given the analysis is not done on a thread basis but for the whole program.

As explained before, we do not use the killed addresses method, as in our approach all

violations of loop-carried dependences must be informed to force not omitting corrections

of renaming of variables (that avoids WAR and WAW loop-carried dependences). These

corrections can generate privatized variables. We inform, in multithreaded executions,

loop-carried patterns by using the thread ID to do the verification of dependences.

7.1.2 Parallelization of the Algorithm

Instrumentation is a very time-consuming task because all memory writes and reads are

instrumented for each loop as proposed by the Pairwise and Stride methods. SD3 [33, 32]

uses data-level parallelism and pipelining to reduce the time overhead. In contrast, our

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 90

approach uses only pipeline-level parallelism. Check is composed by the following stages

as shown in the Figure 7.5:

Figure 7.5: OpenMP checker exploits pipeline level parallelism (3 stages).

• Fetching loop events. This stage provides information about the beginning and

termination of a loop and corresponds to the Pass 1 of the algorithm shown in

Listing 7.3.

• Fetching memory events and storing memory references. At this stage information

about memory addresses, thread ID, number of iteration, and program counter is

collected and stored into the MHT. This stage corresponds to the Pass 2 of the

Listing 7.3.

• Checking loop-carried dependences. Here dependence violations are verified as de-

scribed in Passes 3, 4 and 5 of the Listing 7.3.

With pipeline parallelism, we parallelize a single task by dividing it into a series of

sequential stages as shown in Figure 7.5 [21]. Parallelism is achieved by pushing succeeding

data elements through a consumer-producer pipeline, where stages run simultaneously on

different cores [21]. This approach has considerably reduced latency compared to data-
level parallelism. However, it introduces extra synchronization, because producers and

consumers must be tightly coupled; also, it is limited by inter-stage dependences and the

duration of the longest stage. In our case, the third stage is the most time consuming

stage, and thus it will determine the overall speed-up of the pipeline; however, we can

still hide the latencies of stages 1 and 2 from pipelining.

7.2 Implementation

In this section we describe both implementations of checker using GCC/Pin and LLVM.

First, we present the basic structure of our checker and then we detail each implementa-

tion.

7.2.1 Basic Structure

The basic structure of checker consists of two modules, a tracer (stages 1 and 2 of the

pipeline shown in Figure 7.5) and an analyzer (stage 3 of the pipeline). The first stage

instruments the program, fetches loop and memory events at runtime, and stores memory

references in a shared memory MHT. The second verifies, on-the-fly, the existence of loop-

carried dependences. As checker is an online construct, it cannot afford to have large costs

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 91

Figure 7.6: Imaginary source file with the check construct.

of instrumenting all loads and stores of program thus it is very useful an implementation

where the programmer chooses which loop wants to verify.

7.2.2 GCC/Pin

This section describes how the check construct was integrated into the GCC compiler.

First, we adapted the GCC source code to recognize the parallel for check directive into

the #pragma annotation. This implementation was very challenging as we had to adjust

some very critical source files of GCC compiler (e.g. c-parser.c) to allow it to accept the

new directive and also to delimit which loop will be analyzed.

Basically, when the check directive is inserted, the compiler recognizes it as a token

and as part of a correct grammar expression, then inserts two function calls into the IR

code: (a) iterCount, at the beginning of the chosen loop, which receives the number of

the current iteration as parameter and is responsible for marking the beginning of an

iteration annotation; and (b) iterFinish, at the end of the loop body, which marks the

end of the instrumentation region. Finally, the compiler produces an executable file with

the identified loops to be analyzed.

The Figure 7.6 shows the modifications inserted by the compiler when reflected into

the source code.

Tracer module was implemented on top of Pin [3], which is a dynamic instrumentation

framework that enables the creation of dynamic program analysis tools. The advantage

of using Pin to implement our tracer is that it does not require recompilation for doing

the verification, and could be applied to executable files from different compilers. The

disadvantages of the Pin tracer, as explained in [32], are: (a) the need of the static analysis

to recover control flow graphs and loop structures, and (b) the difficulty of filtering useless

loads and stores. In our case, we discriminate loads and stores within a loop by inserting

function calls (iterCount and iterFinish).

The instrumentation is performed at runtime on the compiled binary files. Pin allows

a tool to insert code in arbitrary places of the executable, the code is added dynamically

while the executable is running. Thus, our tracer walks through the executable files, when

it finds an iterCount function call, it inserts instrumentation code to store the current

iteration. Also, it inserts instrumentation code after every memory reference, be it a read

or write, until finding an iterFinish function call, after which the instrumentation finishes.

At runtime, for every memory reference, the tracer fetches the memory address, the

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 92

Figure 7.7: Flow overview of the OpenMP checker with GCC/Pin.

number of the current iteration, the instruction pointer and the ID of the thread making

the memory reference. Finally, it stores the memory reference (maxIter and minIter)

into the MHT indexed by memory address and thread ID; the instruction pointer and the

source line are also stored in auxiliary maps.

Analyzer module implements the passes 3, 4, and 5 of Listing 7.3 and could be used

by different tracers (e.g. Pin and LLVM). During its implementation, it was necessary to

use many efficient programming techniques and customized data structures to improve

the efficiency of the analysis of checker. Figure 7.7 shows the execution flow of checker
when implemented using Pin and GCC.

7.2.3 LLVM

As in the previous implementation of checker using GCC, we had to adapt the Clang front-

end to accept the new check directive. The main ideas involved in this implementation are

analogous to those used in GCC. We modify the Lexer and Parser files to insert function

calls iterCount and iterFinish. Afterwards, the main issues involved in the LLVM tracer

implementation are similar to those used in the Pin Tracer. The GCC/Pin analyzer can

be used in LLVM as well.

We implemented the tracer in LLVM by creating an LLVM pass, which provides a very

good static-analysis infrastructure. In contrast to Pin, LLVM provided an infrastructure

which simplified the task of building control flow and loop structures. Besides, previous

LLVM static-analysis passes can considerably decrease instrumentation and analysis over-

head by identifying loop-carried dependences, at compile-time, and then ignoring them

in the dynamic loop-carried verification, as is described in [63]. On the other hand, the

main disadvantage of using an LLVM tracer is the recompilation for each analysis.

7.3 Experimental Results

This section evaluates the performance of checker, when compared to serial and OpenMP

executions, using groups of experiments. Our experimental results were obtained on

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 93

machines with Ubuntu 13.10 (64-bit), Intel i7 4-core with hyper-threading technology,

and 8 GB main memory. We use 8 Parboil benchmarks [58] to report time and memory

overheads by running the most executed loops (hottest loops) one at a time with check.
1 2 3

Figure 7.8: Memory footprint of three Parboil Benchmarks (Cutcp, Histo and Lbm)
executed serially, with OpenMP, and with check modifying different hottest loops.

Figure 7.9: Memory footprint of five Parboil Benchmarks (Mri-gridding, Mri-q, Spmv,
Stencil and Tpacf) executed serially, with OpenMP, and with check modifying different
hottest loops.

Figure 7.8 and Figure 7.9 show the memory footprint for serial, OpenMP, and checker
executions of the hottest loops of 8 Parboil benchmarks using the Parboil Datasets. As

shown in Figure 7.8 and Figure 7.9, the memory overhead of checker is considerably

smaller for most selected programs. The OpenMP checker verified all the benchmarks

successfully as shown in Table 7.1, requiring not more than 400 MB of memory. Thus,

selection of loops by the programmer and the data structure used in checker are effective

techniques to avoid large memory overheads.

Table 7.1 shows the verification results of executing 8 Parboil benchmarks with checker.
The checker reports 4 loops with violations of loop-carried dependences, and the column

1Our results are from GCC/Pin, but LLVM shows a similar performance.
2The remaining three benchmarks of Parboil were ignored as they do not have OpenMP parallel for

constructs, or they were not programmed in C.
3The charts shown below are for different loops for each benchmark. For example, lbm1 is the lbm

parboil benchmark but with its loop1 modified to use the checker. Thus, all variants of lbm have the
same serial and OpenMP time/memory overhead.

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 94

Table 7.1: Verification of 8 Parboil executed with check modifying different hottest loops.

Benchmark Program Loop Violation Verified

Cutcp
cutcp.c 1 + is commutative on pg.
excl.c 1 All threads writing the same value on pg.

Histo main.c 1 + is commutative on histo.

Lbm lbm.c

1
2
3
4
5
6

Mri-gridding CPU_kernels.c
1
2

Mri-q
ComputeQ.c 1

main.c 1
Spmv main.c 1

Stencil kernels.c 1
Tpacf model_compute_cpu.c 1 + is commutative on data_bins.

Figure 7.10: Execution time of loops of three Parboil benchmarks.

Verified explains the reasons. Notice that, if the operation involves updating a shared

variable by means of a commutative operation the violation does not correspond to an

error.

The time overhead results are presented in the Figure 7.10 and Figure 7.11. As shown,

some executions with check are still faster than serial, with speed-ups of about 1.6×. This

indicates that, although check adds instrumentation overhead it can, for some cases, still

keep part of the performance resulting to the parallel for parallelization.

The largest slowdowns against OpenMP execution are about 20× and 8× as shown in

Figure 7.12, corresponding respectively to the cutcp1 loop of Cutcp benchmark and the

kernels1 loop of Stencil benchmark. The largest slowdowns against serial execution are

about 56× and 36×, corresponding to the main1 loop of the Histo benchmark and the

model1 loop of the Tpacf benchmark respectively. However, the OpenMP time executions

are larger than the serial executions, as these two benchmarks have been poorly paral-

lelized in the original distribution. Thus, only the slowdowns against OpenMP are valid

(OpenMP execution times would be smaller than serial using methods as privatization).

We can conclude that check offers a reasonably smaller overhead when compared to the

serial and OpenMP executions. This has been achieved due to the pipeline parallelization

and the OpenMP checker algorithm described in Section 7.1.

CHAPTER 7. PARALLEL FOR CHECK DIRECTIVE 95

Figure 7.11: Execution time of loops of five Parboil benchmarks.

Figure 7.12: Slowdowns of loops of Parboil benchmarks using check respect to OpenMP
execution.

Chapter 8

Conclusions

This work described how TLS can be supported on top of HTM support available in

commodity off-the-shelf processors. The performance evaluation of an implementation of

compiler-supported TLS over two existing commodity HTM-enabled processors provided

interesting new insights on the issues that limit performance. The main findings are that

false sharing is an important cause of performance loss and that false sharing may originate

from different aspects of the program execution: too fine a distribution of iterations

per executing thread; non-consecutive accesses to arrays; and the incorrect tracking of

locations prefetched automatically in TSX. The results of this performance evaluation

indicate that a more careful distribution of loop iterations per thread through a criterious

selection of the strip size in strip mining, along with the alignment of accesses to the start

of cache lines, can recover some of the performance lost to false sharing. The results also

indicate that privatization of memory writes within transactions can successfully eliminate

false dependencies and enable performance gains with TLS. Surprisingly, in some cases

even when there is a substantial amount of additional copies introduced by privatization,

TLS can still produce performance improvements. The study showed that even a crude

mechanism for ordering the commit of iterations — such as the one in POWER8 — can

be helpful to improve performance in loops with low speculative demand. On the other

hand, loops with high speculative demand take advantage of the larger storage capacity

in Intel Core. The results indicate that loops with short duration are not amenable to be

parallelized with TLS on the existing HTMs.

Earlier work, based on the emulation of hardware support for TLS, had predicted

surprisingly high performance improvements with this technique [40]. This work presents

a detailed performance study of an implementation of TLS on top of existing commodity

HTM of two architectures. Based on the performance results it classified the studied

cBench loops and provided guidance to developers as to what loop characteristics make

them amenable to the use of TLS on the Intel Core or on the IBM POWER8 architectures.

Future design of hardware support for TLS may also benefit from the observations derived

from this performance study. This work indicates that not all the requirements recom-

mended by previous research [44] are necessary to deliver performance with TLS over

HTM. But it does point out that multi-version speculative storage and ordered commit

of transactions would be desirable in future hardware support for TLS.

This work also introduces STO, a technique to enable speculative optimization and

96

CHAPTER 8. CONCLUSIONS 97

execution of traces from hot loops. It describes the creation of a prototype for an initial

evaluation of STO using Intel TSX. This evaluation uses six benchmarks, which were

modified to enable STO under TSX. The initial performance experiments produced speed

improvements varying from 1% to 9%. Another contribution of this work is a discussion of

the features that would be necessary in hardware to enable STO, such as multi-versioning

cache, eager conflict detection, lazy conflict resolution, and pausing transaction. An HTM

with such features would lead to significantly higher speed gains due to STO. One of the

focus of this thesis is to present the idea of STO. Automatic transformation of code to

use STO is considered future work. Impacts on power consumption, memory traffic, and

chip area will require a detailed architectural simulation of the features required for STO.

Finally, this work proposes the check OpenMP extension (i.e. parallel for check con-

struct), a novel implementation of a dynamic loop-carried dependence checker in OpenMP

which was used in the experimental evaluation of the techniques discussed in this thesis.

It enables on-the-fly dynamic loop-carried dependence analysis of multithreaded applica-

tions, making it possible to detect hidden loop-carried dependences which can result in

hard to detect parallel execution bugs. Some of these bugs can not be detected even by

means of serial analysis or per-thread analysis as in previous works [33] described in Sec-

tion 3.4. In order to reduce memory overhead, OpenMP checker analyzes only the loops

that the programmer wants and uses a memory/time efficient data structure (Multilevel

Hash Table). To reduce the time overhead, we used a three-stage Pipeline: (1) fetching

loop events; (2) fetching memory events and storing memory references; and (3) checking

loop-carried dependences. Furthermore, we showed how to integrate the check construct

into GCC/Pin and LLVM.

Bibliography

[1] Alexander Aiken and Alexandru Nicolau. Perfect pipelining: A new loop paralleliza-

tion technique. In European Symposium on Programming (ESOP), pages 221–235,

Nancy, France, March 1988. Springer.

[2] Glenn Ammons and James R. Larus. Improving data-flow analysis with path pro-

files. In Programming Language Design and Implementation (PLDI), pages 72–84,

Montreal, Quebec, Canada, 1998. ACM.

[3] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A. Jaleel,

C. K. Luk, G. Lyons, H. Patil, and A. Tal. Analyzing parallel programs with PIN.

Computer, 43(3):34–41, March 2010.

[4] Thomas Ball and James R. Larus. Efficient path profiling. In Intern. Symp. on Mi-
croarchitecture (MICRO), pages 46–57, Paris, France, 1996. IEEE Computer Society.

[5] Arnamoy Bhattacharyya, Jose Nelson Amaral, and Hal Finkel. Data-dependence

profiling to enable safe thread level speculation. In Conference of the Center for Ad-
vanced Studies on Collaborative Research, Markham, ON, Canada, November 2015.

[6] Rastislav Bodík and Rajiv Gupta. Partial dead code elimination using slicing trans-

formations. In Programming Language Design and Implementation (PLDI), pages

159–170, Las Vegas, Nevada, USA, 1997.

[7] B.J. Bradel and T.S. Abdelrahman. Automatic trace-based parallelization of Java

programs. In Intern. Conf. on Parallel Processing (ICPP), pages 26–26, XiAn, China,

Sept 2007.

[8] Borys J. Bradel and Tarek S. Abdelrahman. The use of traces for inlining in Java

programs. In Languages and Compilers for High Performance Computing (LCPC),
pages 179–193, West Lafayette, IN, 2005. Springer-Verlag.

[9] Borys Jan Bradel. The use of traces in optimization. Master’s thesis, Univ. of

Toronto, Toronto, Canada, 2004.

[10] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In Proceedings of
the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 43–53, San

Francisco, California, USA, 1990. Society for Industrial and Applied Mathematics.

98

BIBLIOGRAPHY 99

[11] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-Yeon

Wei, and David Brooks. Helix: Automatic parallelization of irregular programs for

chip multiprocessing. In Code Generation and Optimization (CGO), pages 84–93,

San Jose, USA, 2012.

[12] P. P. Chang and W. W. Hwu. Trace selection for compiling large C application

programs to microcode. In Workshop on Microprogramming and Microarchitecture,
pages 21–29, Los Alamitos, CA, USA, 1988.

[13] J.-H. Chow and V. Sarkar. False sharing elimination by selection of runtime schedul-

ing parameters. In Intern. Conf. on Parallel Processing, pages 396–403, Bloomington,

IL, Aug 1997.

[14] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 2009.

[15] cTuning Foundation. cbench: Collective benchmarks, http://ctuning.org/cbench,

2016.

[16] Ron Cytron. Doacross: Beyond vectorization for multiprocessors. In International
Conference on Parallel Processing (ICPP), pages 836–844, 1986.

[17] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and

Daniel Nussbaum. Hybrid transactional memory. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 336–346, San Jose, California, USA, 2006. ACM.

[18] Dave Dice, Timothy L. Harris, Alex Kogan, Yossi Lev, and Mark Moir. Hardware

extensions to make lazy subscription safe. CoRR, abs/1407.6968, 2014.

[19] John R Ellis. Bulldog: A compiler for VLIW architectures. Technical report, Yale

Univ., New Haven, CT (USA), 1985.

[20] Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction.

IEEE Transactions on Computers, 30(7):478–490, 1981.

[21] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-

grained task, data, and pipeline parallelism in stream programs. In International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 151–162, San Jose, California, USA, 2006. ACM.

[22] Richard E. Hank, Wen-Mei W. Hwu, and B. Ramakrishna Rau. Region-based com-

pilation: An introduction and motivation. In Intern. Symp. on Microarchitecture
(MICRO), pages 158–168, Ann Arbor, Michigan, USA, 1995. IEEE Computer Soci-

ety Press.

[23] R.A. Haring, M. Ohmacht, T.W. Fox, M.K. Gschwind, D.L. Satterfield, K. Suga-

vanam, P.W. Coteus, P. Heidelberger, M.A. Blumrich, R.W. Wisniewski, A. Gara,

G.L.-T. Chiu, P.A. Boyle, N.H. Chist, and Changhoan Kim. The IBM Blue Gene/Q

compute chip. IEEE Micro, 32(2):48–60, March-April 2012.

BIBLIOGRAPHY 100

[24] John L Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Com-
puter Architecture News, 34(4):1–17, 2006.

[25] M. Herlihy and J. E. Moss. Transactional memory: Architectural support for lock-free

data structures. In Intern. Conf. on Computer Architecture (ISCA), pages 289–300,

San Diego, CA, USA, May 1993.

[26] Ali R Hurson, Joford T Lim, Krishna M Kavi, and Ben Lee. Parallelization of doall

and doacross loops—a survey. Advances in computers, 45:53–103, 1997.

[27] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J.

Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiy-

ohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. The superblock: An

effective technique for VLIW and superscalar compilation. The Journal of Super-
computing, 7(1-2):229–248, 1993.

[28] IBM. Power ISA Transactional Memory, 2012.

[29] Intel Corporation. Intel architecture instruction set extensions programming refer-
ence. Chapter 8: Intel transactional synchronization extensions, 2012.

[30] Intel Corporation. Intel Xeon Processor E3-1200 v3 Product Family Specification
Update August 2014 Revision 008, 2014.

[31] Alain Ketterlin and Philippe Clauss. Profiling data-dependence to assist paralleliza-

tion: Framework, scope, and optimization. In Intern. Symp. on Microarchitecture
(MICRO), pages 437–448, Vancouver, B.C., CANADA, 2012. IEEE Computer Soci-

ety.

[32] M. Kim, N. B. Lakshminarayana, H. Kim, and C. K. Luk. Sd3: An efficient dy-

namic data-dependence profiling mechanism. IEEE Transactions on Computers,
62(12):2516–2530, Dec 2013.

[33] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. Sd3: A scalable approach to

dynamic data-dependence profiling. In Intern. Symp. on Microarchitecture (MICRO),
pages 535–546, Atlanta, USA, 2010. IEEE Computer Society.

[34] X. Kong, D. Klappholz, and K. Psarris. The I test: an improved dependence test

for automatic parallelization and vectorization. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 2(3):342–349, Jul 1991.

[35] J. R. Larus. Loop-level parallelism in numeric and symbolic programs. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), 4(7):812–826, Jul 1993.

[36] H.Q. Le, G.L. Guthrie, D.E. Williams, M.M. Michael, B.G. Frey, W.J. Starke,

C. May, R. Odaira, and T. Nakaike. Transactional memory support in the IBM

POWER8 processor. IBM Journal of Research and Development, 59(1):8:1–8:14,

Jan 2015.

BIBLIOGRAPHY 101

[37] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.

Wood. LogTM: Log-based transactional memory. In High Performance Computer
Architecture (HPCA), pages 254–265, 2006.

[38] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri. Shadow profiling:

Hiding instrumentation costs with parallelism. In Code Generation and Optimization
(CGO), pages 198–208, San Jose, California, USA, March 2007.

[39] Steven S. Muchnick. Advanced compiler design implementation. Morgan Kaufmann,

1997.

[40] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni. Performance

implications of transient loop-carried data dependences in automatically parallelized

loops. In Intern. Conf. on Compiler Construction (CC), pages 23–33, Barcelona,

Spain, 2016.

[41] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and Hisanobu

Tomari. Quantitative comparison of hardware transactional memory for Blue

Gene/Q, zEnterprise EC12, Intel Core, and POWER8. In Intern. Conf. on Computer
Architecture (ISCA), pages 144–157, Portland, OR, 2015.

[42] Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan, and Craig

Zilles. Hardware atomicity for reliable software speculation. In Intern. Conf. on
Computer Architecture (ISCA), pages 174–185, San Diego, California, USA, 2007.

[43] Cosmin E. Oancea, Alan Mycroft, and Tim Harris. A lightweight in-place imple-

mentation for software thread-level speculation. In Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 223–232, Calgary, AB, Canada, 2009.

[44] R. Odaira and T. Nakaike. Thread-level speculation on off-the-shelf hardware trans-

actional memory. In Intern. Symp. on Workload Characterization (IISWC), pages

212–221, Atlanta, Georgia, USA, Oct 2014.

[45] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I August. Automatic

thread extraction with decoupled software pipelining. In Intern. Symp. on Microar-
chitecture (MICRO), page 12 pp, November 2005.

[46] V. Packirisamy, A. Zhai, and Wei-Chung Hsu. Exploring speculative parallelism in

SPEC2006. Technical report, Department of Computer Science and Engineering,

University of Minnesota, 2008.

[47] V. Packirisamy, A. Zhai, Wei-Chung Hsu, Pen-Chung Yew, and Tin-Fook Ngai. Ex-

ploring speculative parallelism in SPEC2006. In Intern. Symp. on Performance Anal-
ysis of Systems and Software (ISPASS), pages 77–88, Boston, Massachusetts, USA,

April 2009.

[48] Christopher JF Pickett and Clark Verbrugge. Software thread level speculation for

the Java language and virtual machine environment. In International Workshop on

BIBLIOGRAPHY 102

Languages and Compilers for Parallel Computing, pages 304–318, New York, USA,

2005.

[49] James Reinders. VTune performance analyzer essentials. Intel Press, 2005.

[50] Carl G Ritson and Frederick RM Barnes. An evaluation of Intel’s restricted transac-

tional memory for CPAs. Communicating Process Architectures 2013, pages 271–291,

2013.

[51] J. Salamanca, J. N. Amaral, and G. Araujo. Evaluating and improving thread-

level speculation in hardware transactional memories. In IEEE Int. Parallel and
Distributed Processing Symp. (IPDPS), pages 586–595, Chicago, USA, 2016.

[52] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

[53] A. Shriraman, S. Dwarkadas, and M.L. Scott. Flexible decoupled transactional mem-

ory support. In Intern. Conf. on Computer Architecture (ISCA), pages 139–150,

Beijing, China, June 2008.

[54] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors.

In Intern. Conf. on Computer Architecture (ISCA), pages 414–425, S. Margherita

Ligure, Italy, 1995.

[55] J. Steffan and T Mowry. The potential for using thread-level data speculation to facili-

tate automatic parallelization. In High Performance Computer Architecture (HPCA),
pages 2–, Washington, DC, USA, 1998.

[56] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A

scalable approach to thread-level speculation. In Intern. Conf. on Computer Archi-
tecture (ISCA), pages 1–12, Vancouver, BC, Canada, 2000.

[57] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. The

STAMPede approach to thread-level speculation. ACM Transactions on Computer
Systems, 23(3):253–300, August 2005.

[58] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,

Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised bench-

mark suite for scientific and commercial throughput computing. Center for Reliable
and High-Performance Computing, 127, 2012.

[59] S. Tomic, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris,

and M Valero. EazyHTM: EAger-LaZY hardware transactional memory. In Intern.
Symp. on Microarchitecture (MICRO), pages 145–155, New York, NY, USA, 2009.

[60] J. Torrellas. Speculation, Thread-Level, pages 1894–1900. Springer US, Boston, MA,

2011.

BIBLIOGRAPHY 103

[61] J. Torrellas, M.S. Lam, and John L. Hennessy. False sharing and spatial locality in

multiprocessor caches. IEEE Transactions on Computers, 43(6):651–663, Jun 1994.

[62] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. To-

wards a holistic approach to auto-parallelization: Integrating profile-driven paral-

lelism detection and machine-learning based mapping. In Programming Language
Design and Implementation (PLDI), pages 177–187, Dublin, Ireland, 2009. ACM.

[63] Rajeshwar Vanka and James Tuck. Efficient and accurate data dependence profiling

using software signatures. In Code Generation and Optimization (CGO), pages 186–

195, San Jose, California, 2012. ACM.

[64] A. Wang, M. Gaudet, P. Wu, M. Ohmacht, J. N. Amaral, C. Barton, R. Silvera,

and M. M. Michael. Evaluation of Blue Gene/Q hardware support for transactional

memories. In Parallel Architecture and Compilation Techniques (PACT), pages 127–

136, Minneapolis, MN, USA, September 2012.

[65] A. Wang, M. Gaudet, P. Wu, M. Ohmacht, J. N. Amaral, C. Barton, R. Silvera, and

M. M. Michael. Software support and evaluation of hardware transaction memory

on Blue Gene/Q. IEEE Transactions on Computers, 64(1):233–346, January 2015.

[66] Michael Joseph Wolfe. High performance compilers for parallel computing. Addison-

Wesley, 1996.

[67] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. Performance

evaluation of Intel transactional synchronization extensions for high-performance

computing. In Intern. Conf. on High Performance Computing, Networking, Stor-
age and Analysis (SC), pages 19:1–19:11, Denver, CO, USA, 2013.

[68] Reginald Clifford Young. Path-based compilation. PhD thesis, Harvard University,

1998.

[69] Hongtao Yu and Zhiyuan Li. Fast loop-level data dependence profiling. In ACM
Int. Conf. on Supercomputing (ÌSC), pages 37–46, San Servolo Island, Venice, Italy,

2012. ACM.

	Introduction
	Background
	Transactional Memory
	Intel Core and IBM POWER8
	Thread-Level Speculation
	Strip Mining
	Loop Peeling
	Traces
	Optimizations using Traces

	Related Work
	Thread-Level Speculation
	Speculative Execution of Loops with Transient Dependences
	Speculative Trace Optimization
	Data-Dependence Profilers
	Pairwise Method
	Stride-based Method

	Evaluating and Improving TLS in HTMs
	Loop-Carried Dependences and False Sharing
	TLS on top of HTM
	False Sharing Effects on TLS
	Capacity Overflow of Transactions
	Non-consecutive Writes Within Transactions
	TSX Cache-line-prefetcher Issues

	Experiments
	Benchmarks and Settings
	Results

	In-depth Evaluation of TLS in off-the-shelf HTMs
	Benchmarks, Methodology and Experimental Setup
	Classification of Loops Based on TLS Performance
	Class I: Low speculative demand and better performance in POWER8
	Class II: High speculative demand and better performance in Intel Core
	Class III: Not enough work to be parallelized with TLS
	Others
	Predicting the TLS Performance for Other Loops

	Fine-grained TLS on top of HTM

	Using HTM to Enable STO
	Speculative Trace Optimization Supported by HTM
	STO on Ideal HTM
	STO Prototype on Real-world HTM
	Running STO on Intel TSX

	Performance Assessment of Proof-of-Concept Prototype
	Benchmarks, Implementation, Settings, and Environment
	Benchmark Results

	parallel for check Directive
	Check Construct in OpenMP
	Overview of the Algorithm
	Parallelization of the Algorithm

	Implementation
	Basic Structure
	GCC/Pin
	LLVM

	Experimental Results

	Conclusions
	Bibliography

