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Resumo

Ataques de sequestro de controle de fluxo são uma ameaça aos sistemas computacionais
conhecida desde os anos 80. Estes ataques tipicamente acontecem através de operações de
memória erroneamente implementadas e que permitem a corrupção arbitrária de valores
utilizados para apontar destinos em saltos indiretos. Ao modificar estes valores, atacantes
podem redirecionar o fluxo de controle de um software, forçando a execução de rotinas
maliciosas. Apesar de muitas propostas terem surgido propostas para solucionar este
problema, os atacantes se mostraram capazes de desenvolver novas técnicas para disparar
os ataques e comprometer os sistemas com sucesso, contornando as proteções. Dentre estas
técnicas, ataques baseados em Return-Oriented Programming (ROP), aparecem como os
mais relevantes, visto que estes possibilitam a execução de computação Turing-completa
sem a necessidade de injetar código no espaço de memória do software atacado.

O kernel de sistemas operacionais também pode ser alvo de ataques ROP. Desde a
introdução de políticas que impedem a execução da memória de dados W^X e a posterior
mitigação de ataques return-to-user, ROP se tornou a forma mais eficiente para realizar a
corrupção do controle de fluxo do kernel. Como o kernel executa com privilégios de sistema
que permitem o comprometimento completo do sistema quando explorado, proteger este
componente de software contra estas formas de ataque se tornou imprescindível. Nesta
tese, nós propomos, analisamos e otimizamos soluções para validação do controle de fluxo
no contexto do kernel.

Primeiro nós propomos kCFI, uma solução de Integridade de Controle de Fluxo ba-
seada em compiladores, de fina granularidade. Nesta solução, computa-se um grafo de
controle de fluxo que é utilizado para instrumentar o binário do kernel com verificações
de controle de fluxo, garantindo que todos os saltos indiretos tenham um destino previ-
amente marcado como válido. De acordo com nosso conhecimento, kCFI é a primeira
implementação de fina granularidade capaz de suportar o kernel do Linux, apresentando
custos de desempenho de 8% em micro-benchmarks e 2% em macro-benchmarks. Estes
valores são os menores já observados para uma solução de Integridade de Controle de
Fluxo para o kernel.

Sabe-se que soluções de Integridade de Controle de Fluxo podem se beneficiar de
informações dinâmicas do contexto de execução de um software para criar políticas ainda
mais restritivas. Por isso, terminamos nosso trabalho apresentando uma análise a respeito
da implementação de uma pilha auxiliar, a ser utilizada na validação de retornos de
funções, dentro do kernel. Neste estudo, propõe-se um projeto de arquitetura de uma
pilha auxiliar que é compatível com os requerimentos do kernel e que pode ser acoplada
junto com o kCFI. Exploram-se também duas diferentes extensões da arquitetura x86-64
para avaliar suas eficiências na proteção seletiva das regiões de memória utilizadas pela
pilha auxiliar.



Abstract

Control-flow hijacking attacks have been a known threat to computer systems since the
80s. These attacks typically take place through wrongly implemented memory operations
that allow arbitrary corruption of values used to point targets in indirect branches. By
modifying these values, attackers redirect control-flow as desired, forcing the execution of
malicious routines. Although many solutions have been proposed to disable these threats,
attackers have been able to bypass these mechanisms, developing new techniques to launch
exploits and compromise systems successfully. From these techniques, Return-Oriented
Programming (ROP) attacks stand as the most relevant, as they manage to perform
arbitrary Turing-complete computation without the need of code injection in the memory
space of the attacked software.

Kernel software is also targetable by ROP attacks. Since the introduction of W^X poli-
cies and the later mitigation of return-to-user attacks, ROP became the most prominent
form of kernel control-flow corruption. As kernel runs with higher privileges that allow
full system compromise upon exploitation, hardening this software component against
these forms of attack became a valuable asset. In this thesis, we propose, analyze and
optimize solutions for control-flow assertion in kernel software.

First, we propose kCFI, a fine-grained compiler-based Control-Flow Integrity solution
for operating system kernels. This protection computes a kernel control-flow graph and
instruments its binary with control-flow assertions to ensure that all indirect branches
happen through paths foreseen in the graph. To the best of our knowledge, kCFI is
the first fine-grained implementation capable of supporting the Linux kernel, presenting
an average performance cost of 8% on micro-benchmarks and 2% on macro-benchmarks,
which are the smaller observed overheads for a kernel Control-Flow Integrity solution.

Given that Control-Flow Integrity solutions can benefit from dynamic context infor-
mation to create even more restrictive policies, we finish our work presenting a feasibility
analysis for a shadow stack implementation to be used on function return validation, in
the kernel. In this study, we first propose a shadow stack architecture design that is com-
pliant with kernel requirements and that can be built on top of kCFI. We also explore two
different x86-64 architecture extensions to assess their efficiency on selectively protecting
the memory regions used by the shadow stack.
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Chapter 1

Introduction

Everybody’s talking about the stormy weather

And what’s a man to do but work out whether it’s true?

Looking for a man with a focus and a temper

Who can open up a map and see between one and two

Sonic Youth

Your money became a number stored in a 64 bit variable sinked in a data-center
computer somewhere below ground. Missiles are now launched from computerized flying
non-tripulated slingshots. Even your heart now talks to your watch and tells your robot
doctor that you did not go for a run last night. The world is no longer a fully analog
place and, as a significant part of our lives became resident inside computer realms, the
requirement for security in these systems became critical.

Computer systems need to be safe, as a lot of our modern life depends on them. With
so much at stake, a race between hackers drove the computer security field wildly in the
last decades. Attackers, those trying to exploit the systems, and defenders, those trying
to protect them, have been working fiercely to develop new techniques. This race pushed
the research on security towards a plethora of new methods and strategies that covers all
areas of computer science and engineering.

Due to their complexity, modern computer systems needed to be divided into different
components, which are normally layered to provide functionality abstractions. These ab-
stractions are crucial to the evolution of the computer systems, as they allow scientists and
engineers to improve specific computational components without the requirement of fully
understanding or reimplementing the entire system. Amongst the system’s components,
the operating system (OS) kernel stands as a corner stone responsible for controlling
hardware and software, providing resources and services to other components.

From a security perspective, the OS kernel is a high-value asset, as it operates under a
privileged mode that allows ambient access to every system resource. The exploitation of
kernel-level software vulnerabilities has thus been a major goal of attackers for achieving
privileged full system access. In the past few years, kernel exploits have seen renowned
interest, as the exploitation of user space client and server applications is becoming more
challenging due to the deployment of sandboxing and container technologies, along with
numerous other exploit mitigations. Once confined within a sandbox, it is often easier for
an attacker to exploit a kernel vulnerability to gain full system access, instead of finding
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CHAPTER 1. INTRODUCTION 15

a sandbox-specific vulnerability. The former is typically easier due to the abundance of
exploitable kernel bugs, and the relative lack of kernel-level exploit mitigations compared
to user space programs. Indicatively, already before the end of 2016 there have been
427 reported kernel vulnerabilities according to the National Vulnerability Database, 172
more than in 2015 [115].

Due to the complexity and unique characteristics of the kernel, the deployment of
exploit mitigations is often lacking or is not existent at all compared to user space. For
instance, although address space layout randomization (ASLR) [172] has started being
employed by major OS kernels [51], it still suffers from limited entropy issues compared
to user space implementations. In addition, even when there are no entropy issues, kernel
memory leakage or side channel vulnerabilities can be leveraged by attackers to pinpoint
module addresses and bypass ASLR [165,167]. Given that Return-Oriented Programming

(ROP) [15] is becoming the most prevalent exploitation technique at the kernel setting,
this is a crucial issue, as ASLR is currently the main deployed mitigation against kernel-
level code reuse attacks in modern OS kernels.

Control-Flow Integrity [4] is an additional, orthogonal defense against ROP attacks
that, after many refinements in academic research [10, 22, 44, 110, 123, 124, 131, 135, 136,
176, 235, 236], is finally getting traction in user space with compiler, OS, and hardware
support [1,2,38,177]. By confining program execution within the bounds of a precomputed
profile of allowed control flow paths, CFI can prevent most of the irregular control flow
transfers that take place during the execution of ROP code.

In contrast to the large body of works on CFI for the protection of user space programs,
only a few efforts have focused on the application of CFI at the kernel setting [41, 65,
101]. Due to the complexity of kernel code and its unpredictable execution behavior
caused by interrupts and exceptions, existing implementations either apply an overly
permissible coarse-grained policy, to avoid the complexity of extracting a complete control
flow graph [41], or are not compatible with dynamically loadable kernel modules, to
facilitate the extraction of the control flow graph (CFG) needed for deriving a more
fine-grained policy [65]. Coarse-grained CFI offers only limited protection, as it still
permits plenty of valid code paths for the construction of functional ROP exploits [18,45,
67, 68, 161], while lack of support for dynamically loadable modules limits the practical
applicability of the protection, especially for Linux, which heavily relies on them. It is
indicative that previous proposals focus exclusively on FreeBSD and MINIX, which pose
fewer complexities compared to Linux.

1.1 Hypothesis

Fine-grained Control-Flow Integrity (CFI) stands as a prominent defense against modern
control-flow hijacking attacks. The effectiveness, however, of such CFI schemes depends
on how precisely they can approximate the CFG of the protected application. Relaxed
CFGs result in weaker protection, while over-approximated ones may break functionality.
Despite the need for extracting source code semantics from the application to be pro-
tected, previous CFI schemes, and particularly those used on OS kernel settings, require
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hazardous policy (enforcement) relaxations or impose limitations to the resulting scheme.
Considering the above, we hypothesize that by leveraging multi-level program analyses

it is possible to construct a performant fine-grained CFI scheme, for the kernel setting,
which is not limited in terms of (protection) coverage and does not preclude functionalities
found in commodity OSes.

1.2 Thesis Statement

This thesis argues that by coupling novel binary- and source-level static analyses with
runtime information it is possible to construct a fine-grained CFI scheme for the kernel
setting that (a) provides full coverage to low-level OS code (including assembler code),
(b) is compatible with indispensable functionalities of commodity kernels (e.g., support
for dynamically loadable modules), and (c) incurs a moderate performance overhead.

1.3 Contributions

• We present the design and implementation of kCFI, a kernel-level fine-grained CFI
mechanism that fully supports dynamically loadable modules and hand-written as-
sembly code. kCFI does not depend on incomplete pointer analysis, nor restricts
language features, as done in previous works. kCFI is the first solution of its kind
to support the Linux kernel, and it is orthogonal to other widely deployed exploit
mitigations.

• We present a novel technique called Call Graph Detaching, which enhances the
offered protection by enabling the construction of more precise CFGs and, conse-
quently, enforcing a more restrictive CFI policy, with negligible additional perfor-
mance cost.

• We assess the use of kCFI on the Linux kernel, leveraging features of the x86-64
architecture to optimize performance.

• We have experimentally evaluated kCFI in terms of performance and security using
standard benchmarks and state-of-the-art attack techniques. Our results demon-
strate that kCFI offers effective protection while incurring a low overhead comparing
to previous proposals.

• We propose the design for a kernel shadow stack implementation which leverages the
use of hardware features and memory management capabilities to efficiently protect
this data structure against corruption attacks.

• We present a first study on the performance of different hardware features employed
for memory protection on the kernel shadow stack context.
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1.4 Thesis Roadmap

Chapter 2 provides background information regarding computational security, especially
on what concerns control-flow hijacking attacks. Chapter 3 presents the design and im-
plementation of kCFI, our proposed CFI solution. Chapter 4 presents the experimental
evaluation of kCFI regarding the introduced performance and code size overheads, plus a
security efficiency analysis and a discussion regarding limitations of the approach. Chap-
ter 5 brings the design of a shadow stack implementation for the kernel context, providing
a first study about different strategies for the scheme’s self-protection and the overheads
introduced by them. Chapter 6 compares our work with relevant state-of-the-art kernel
protections. Finally, Chapter 7 draws the conclusions of our work.



Chapter 2

Background

Empty your mind. Be formless, shapeless, like

water. Put water into a cup, it becomes the cup.

Put water into a teapot, it becomes the teapot.

Water can flow or creep or drip or crash.

Be water, my friend.

Bruce Lee

In this Chapter, we present the key concepts for understanding this thesis. First, we
introduce the components relevant to the system platform employed in our implementa-
tions, giving a general overview about each one of them. We also consider relevant those
components not directly related, but employed in implementations that are tangent to
our work, providing means for later comparison. Afterward, we present a chronologically
organized explanation on the evolution of the control-flow hijacking attacks, leveraging
threats and mitigations in a way to make clear the motivation behind each idea that
influenced our work.

2.1 System Platform

Linux [60, 128] is an open-source commodity OS that supports different hardware archi-
tectures. Its kernel source code is mostly written in C with architecture-dependent parts
written in the respective Assembly language. Linux separates running software by mem-
ory areas, most notably known as kernel space, that comprises data and code respective
to the Linux kernel, and user space, where ordinary programs reside. As Linux groups
different functionalities such as device drivers, file system services, process scheduling
and memory allocation in the kernel space, it is considered a monolithic [171] system.
The Linux kernel supports dynamically loadable kernel modules (LKM), which can be
compiled individually and loaded in a different time than the system core.

The Low-Level Virtual Machine (LLVM) [99] is a modular open-source compiler infras-
tructure that supports different programming languages and target architectures. LLVM
first translates high-level source code into an intermediate representation (IR) that follows
the Static Single Assignment (SSA) [24] form. For code written in C or C++, this work
is done through a front-end component called Clang [144], which has an extensive set
of built-in analysis tools. The IR code, illustrated in Figure 2.1, is then optimized and
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submitted to the back-end portion of the compiler, that translates it into assembly code
for the targeted architecture. The architecture behind LLVM and its IR was designed
to favor plugging new optimizations and analysis to the compilation pipeline. LLVM
also implements different offline tools, such as the Clang Static Analyzer [145], which is
capable of highlighting bugs in source code files.

int f1(){

int foo, bar;

foo = f2();

bar = foo * 3;

return bar; }

IN C Code

; Function Attrs: nounwind uwtable

define i32 @f1() #0 {

%foo = alloca i32, align 4

%bar = alloca i32, align 4

%1 = call i32 @f2()

store i32 %1, i32* %foo, align 4

%2 = load i32* %foo, align 4

%3 = mul nsw i32 %2, 3

store i32 %3, i32* %bar, align 4

%4 = load i32* %bar, align 4

ret i32 %4

I.R.

<f1>:

push %rbp

mov %rsp,%rbp

sub $0x10,%rsp

callq 400560 <f2>

mov %eax,-0x4(%rbp)

imul $0x3,-0x4(%rbp),%eax

mov %eax,-0x8(%rbp)

mov -0x8(%rbp),%eax

add $0x10,%rsp

pop %rbp

retq

OUT x86 ASM

Figure 2.1: LLVM compilation stages

The GNU Compiler Collection (GCC) [59] is the official Linux OS compiler. Although
GCC also has its perks, its internal IR management differs from LLVM’s, especially on
what concerns offline accessibility: LLVM supports optimizing binary IR representations
through a tool called opt [146]. Besides, the documentation existent for both compilers
is wider for LLVM’s internals. The quality of the code generated by both compilers is
comparable.

LLVMLinux [103] is a project that provides support for building the Linux kernel with
LLVM. The project consists of a patch set that must be applied to the kernel source code
to make it compatible with language standards accepted by Clang. The project also brings
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Makefile rules and tools for testing the compiled kernel under virtualized environments.

2.1.1 Virtual Machines

Virtual Machines (VMs) are systems that emulate real computers. It is possible to define
a VM as a combination between hardware resources and the software responsible for per-
forming its virtualization [166]. The virtualization process consists in mapping the real
resources into virtual resources, creating emulated devices to the virtualized machine, and
in the use of instructions on the actual machine to execute tasks of the virtualized ma-
chine. VMs enable more portability and flexibility of the virtualized software, allowing the
execution of software in non-native system architectures. VMs can be classified as process
VMs, which run a single virtualized process, and system VMs, that emulate full execution
environments and enable the virtualization of entire OSs. VM capabilities are also sup-
ported by hardware extensions [47, 179], what avoids requirements of para-virtualization
support [227]. Some of the most prominent VM implementations are VMware [183–185],
QEMU [8,150], KVM [94], and Xen [7,48].

Dynamic Binary Modification (DBM) tools enable access and control over user-level
instructions during runtime [74]. These tools are mostly used for runtime analysis and
modification of a particular program, providing ways to perform context-driven instru-
mentation. DBMs are implemented as a software layer between the OS and the running
program, allowing the management of its execution and ensuring control over the execu-
tion flow. A widely used class of DBMs are the Dynamic Binary Instrumentation (DBI)
platforms, which are specialized in inserting new instructions in the executed binary.
Amongst the most well known DBI tools [74] are DynamoRIO [6,13,14,50], Pin [106] and
Valgrind [117–119].

2.2 Early Control-Flow Hijacking Attack and Defense

Control-Flow Hijacking attacks are a class of software attacks in which the program’s
legitimate control-flow is forcibly subverted in a way to run unexpected (and possibly
malicious) computations. These attacks are typically launched through bugs in mem-
ory handling functions that end up allowing users to overwrite memory, permitting the
corruption of code pointers that are later used to diverge the application’s control-flow.

Since the discovery of these attacks, different mechanisms to prevent them were de-
veloped, requiring attackers to develop new techniques to bypass these defenses and suc-
cessfully subvert the control of applications. The evolution of these attacks and defenses,
driven by both hardware and software strategies, create a myriad of concepts that can
be better understood together with each motivation. For this reason, we organized the
following sections as a general timeline that shows how and why different techniques were
developed until culminating in the state-of-the-art Control-Flow Hijacking attacks and
prevention mechanisms.
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2.2.1 First Methods for Control-Flow Hijacking

A buffer overflow [58,76] consists in a program error in which a memory operation over a
buffer exceeds its limits, possibly overwriting adjacent data. Normally, a buffer overflow
occurs due to the use of functions that perform memory operations without verifying
the correctness of its operated addresses regarding the target buffer limits. These bugs
are usually seen in programs implemented with languages that do not have sophisticated
memory management mechanisms, such as C and C++. Despite that, as unsafe languages
are used to implement their underlying sandboxes, safe languages, like Java or Ruby, end
up being indirectly affected [193, 204, 209, 213]. When these bugs are present, users may
be able to craft malicious inputs, larger than the buffers meant to hold them, and, by
overwriting adjacent memory, corrupt code pointers.

In 1988, a student called Robert Morris wrote what would become the first widely
known attack based on buffer overflows [52]. This attack was incorporated into a com-
puter worm later referred to as the Morris Worm. In the same year, the malicious program
was spread throughout the Internet, contaminating more than six thousand UNIX servers.
In 1996, a description of how to use buffer overflows as a vector for system corruption
was published on the virtual magazine Phrack [139]. This paper, entitled Smashing the

Stack for Fun and Profit [127], shows that unbounded memory operations on stack vari-
ables allow an attacker to overwrite the return address stored in the respective function
stack-frame, enabling control-flow hijacking towards different parts of the program. The
exposed technique also describes how code can be written in a binary form known as
shellcode and injected on the stack to be later reused in the launched attack.

Attacks on buffers allocated in the heap region are also possible [82]. Similarly to
the stack case, a buffer overflow while managing heap memory allows overwriting adja-
cent data. Heap management uses connected lists to handle its non-contiguous allocated
blocks. While deallocating elements on the list, information present in its header is used
to reorganize the pointers in the data structure. This way, overflowing a heap buffer
allows overwriting headers of the next node on the list and consequently corrupting the
data which will be used by a deallocation (free()) operation on that node. By corrupting
this data, specifically addresses that must be updated to keep the blocks list consistent,
it is possible to turn free() operations into arbitrary memory writes that can be used to
overwrite function pointers or return addresses [5, 9, 81].

Control-flow hijacking is also possible through attacks which are not based on buffer
overflows, as it happens on format strings [163] attacks. These attacks focus on C func-
tions, such as printf() or fprintf(), that receive a parameter which is a string used to
convert variable values into human readable messages. If a user is capable of manipulating
the contents of the string to be printed making the program understand it as a format
string, he can force arbitrary reads and writes in the program memory, again enabling
function pointer or return address corruption. Format Strings were also seen in Kernel
code [205–207].
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2.2.2 Protections Against Control-Flow Hijacking

Although the attacks described in Section 2.2.1 remain a threat, these were mitigated in
many different ways by security researchers and software developers. The solutions de-
scribed in this subsection are a important for understanding the motivations and concepts
behind the evasion techniques used in modern exploitation strategies.

StackGuard [40, 225] is a solution developed with the goal of protecting return ad-
dresses stored on the stack. This solution consists of placing particular values, namely
canaries, between memory buffers and stack variables in a way that memory operations
across buffer boundaries will cause canary destruction. By checking the canary before
dereferencing values on the stack, it is possible to identify a pointer corruption and pre-
vent a possible exploitation. Similar approaches were also developed to protect heap
variables [121].

StackShield [182] is a solution that separates the stack used to store return addresses
from the stack used to hold data, avoiding that overflowed data buffers overwrite ad-
jacently saved addresses. StackShield also implements checks for valid ranges whenever
dereferencing return addresses and function pointers, allowing the identification of targets
out of code memory regions.

Address Space Layout Randomization (ASLR) [172, 229] consists in randomizing the
position of objects in memory. This technique raises the bar on system exploitation by
preventing memory objects from being placed on the same memory address in different
execution instances, thus, making it much harder for an attacker to craft an exploit since
she does not have consistent knowledge regarding the position of the data structures or
code. ASLR also works on Kernel space [51].

Write XOR Execute (W^X) policies enforce every memory page to be exclusively
executable or writable [98, 102, 112, 129]. By forbidding the contents of writable memory
regions to be interpreted as instructions, this feature prevents attackers from injecting
malicious functions as data inputs and later diverting control-flow to execute them. To
enable this policy, some processor architectures offer a Non-eXecutable (NX) bit that
allows efficient flagging of memory page permissions.

Shadow stacks [23, 43, 61, 116, 143] are data structures used to replicate return ad-
dresses stored in the program stack, allowing its assertion before its use. Shadow stacks
present noticeable computational costs, being expensive even in its light-weight implemen-
tations [43]. Ideally, as a shadow stack is also a memory region, it needs to be protected
against all writes except its legitimate updates. Switching the memory write permissions
repeatedly for every shadow stack operation introduces more overhead, and this motivated
developers to trade off security for efficiency. As an example, RAD [23] applies fixed write
protection to the shadow stack boundaries, deflecting attacks through contiguous memory
writes meant to reach the data structure. Although better regarding performance, this
solution does not protect against arbitrary memory writes [5, 9, 81,82].

Shadow stack implementations also have to deal with binary constraints and language
features that break synchronization between the application’s stack and the shadow stack.
For example, to fix parity issues caused by setjmp/longjmp functionalities, some imple-
mentations relax the shadow stack policy allowing returns to any stacked address, irre-
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spectively to its order. This approach opens a window for techniques like loop injection,
used in Control-Flow Bending attacks [17].

2.2.3 Defense Evasion

From the defenses described in Section 2.2.2, StackGuard, ASLR and W^X were widely
adopted into distributed software. As these impose hard limitations to the attacks exposed
on Section 2.2.1, attackers developed defense evasion techniques, allowing successful at-
tacks even when under protected environments. These techniques, later, culminated into
the state-of-the-art attack techniques.

Systems protected with StackGuard and StackShield are still vulnerable to attack
methodologies that can overwrite return addresses without corrupting canaries, as it hap-
pens while exploiting bugs that allow arbitrary memory writes. Both protections also
remain vulnerable to attacks focused on function pointer corruption, including entries in
the Global Offset Table (GOT) [16, 153]. Brute-force techniques to enable the construc-
tion of exploits capable of overwriting memory without destroying the canary were also
developed [107].

A class of bugs known as memory disclosure bugs allows attackers to retrieve in-
formation about the memory layout that may be used to derive addresses needed for
exploitation. These attacks happen either through wrongly implemented memory read
operations, that disclose the position of memory objects [49, 170], or through brute-force
attacks [165], exploiting child processes that are recreated after crashes caused due to
invalid memory accesses, and that always inherit the parent’s randomization character-
istics. Even very fine-grained ASLR implementations are susceptible to attacks through
memory disclosure [167] since an attacker can repeatedly exploit memory disclosure bugs
and use just-in-time compilation methods to generate attack payloads dynamically.

As modern OSes adopted W^X policies [98, 102, 112, 129], attackers had to evolve
their exploitation strategies to reuse instructions present in code memory pages, which
are inherently flagged as executable. Return-into-libc [46] attacks, the first known form
of code-reuse attack, consisted in overwriting code pointers to divert control-flow towards
functions contained in libraries mapped into the process memory space. Although pow-
erful, these attacks are limited to the functionalities already existent in the program.

To expand the computational capacity of code-reuse attacks, techniques based on
ROP [15,142] were developed, initiating a plethora of new exploitation methods. Due to
its capacity of overcoming the limitations imposed by widely adopted defenses, employing
ROP-based attacks became a prominent offensive strategy both in user and kernel spaces.
Given its relevance, and the broad set of derivative attack and defense approaches, we re-
serve Section 2.3 to do an in-depth analysis of ROP-based and subsequent methodologies.

2.3 Control-Flow Hijacking State-of-the-Art

The previously described defenses pushed attackers to develop new methodologies for
exploiting computer systems, leading to control-flow hijacking attacks that efficiently
employ code-reuse. Although these attacks remain not fully addressed, relevant efforts
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0x0000000000400720

0x00000000004005c1

0x00000000004005c1

...

0x00000000004005c1

0x00000000004008d1

0xdeadbeef ❆

0xdeadbeef ❆

0x0000000000401922

STACK

f1():

...

0x0000000000400720: xor %eax,%eax

0x0000000000400722: retq

f2():

...

0x00000000004005c1: inc %eax

0x00000000004005c2: retq

f3():

...

0x00000000004008d1: pop %ebx

0x00000000004008d2: pop %ecx

0x00000000004008d3: retq

f4():

...

0x0000000000401922: int 0x80

GADGETS

eax = 0

eax++

...

eax++

(eax = 11)

ebx = 0xdeadbeef

ecx = 0xdeadbeef

sys_execve
params pointed by

ebx and ecx

EFFECT

Figure 2.2: ROP example: sys_execve

were done to prevent their feasibility, accounting both software and hardware strategies.
In this Section, a more detailed explanation regarding these attacks is provided, followed
by the mechanisms meant to protect against them and a description on how all these
pieces come together in the kernel context.

2.3.1 Return-Oriented Programming

ROP is a technique that allows an attacker to overcome restrictions that prevent the
execution of injected code by reusing snippets from legitimate functions, which are allowed
to be executed. These code snippets, called gadgets, are sequences of instructions ended by
a ret1. When executed, gadgets run a small piece of the intended computation and then
redirect control-flow through the closing return instruction. To properly chain gadgets
in a ROP attack, an attacker must control the process stack and populate it with return
addresses that will redirect the code throughout the desired snippets. Hence, as each small
operation executes and returns, the address of the subsequent gadget is popped out of the
stack. By combining multiple gadgets, an attacker can perform arbitrary Turing-complete
computation.

Figure 2.2 shows an ROP attack example where an attacker was capable of exploiting
a memory related bug to write arbitrarily on the program’s stack. The exemplified attack
targets an x86 machine running Linux, from which the system call sys_execve is invoked.

1ret-ended gadgets are the most basic kind of gadget, but there exist gadgets which are ended with
different kinds of indirect branches.
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On the left side of the figure, it is possible to see the corrupted stack containing the
addresses of the gadgets. In the center, the figure displays four different gadgets that will
be used during the attack. On the right side, it is possible to see a pseudo-code that
represents the effective actions executed during the attack.

In Figure 2.2 when the exploited function returns, it pops the first address out of
the stack and redirects the flow towards the gadget in f1() that will xor the register
eax with itself, resulting in a zero value assignment. The next 11 stacked addresses will
redirect the flow towards a gadget that increments the register eax by one, leaving the
register with the value 11 after all of them are popped. The next address redirects the
flow towards two pop instructions that will copy values from the stack into the registers
ebx and ecx. As the attacker controls the stack, she is capable of controlling whatever
value may be loaded into these registers. Finally, the last stacked address redirects the
flow towards an int instruction, which will invoke the syscall sys_execve that will use
ebx and ecx, which are controlled by the attacker, to dereference its parameters, resulting
in an arbitrary execution of code.

By exploiting memory disclosure bugs, it is possible for attackers to leak source code
of target programs, including information that may neutralize randomization based pro-
tections. By using ROP compilers [130,158], attackers can then build their attack payload
dynamically, fitting specific attack requirements.

A commonly used strategy to employ ROP is pivoting the stack [238] to a different
memory region. When applying this methodology, the attacker creates the chain of return
addresses in a different memory area, such as the heap, and then manages to overwrite
a stack pointer saved on the stack frame with the address of her return address chain,
moving the stack frame of the process entirely to a different place. This technique is
useful for bypassing stack protections or when the system exploitation happens through
vulnerabilities apart from stack buffer overflows.

Although ROP became notorious for exploiting the branch respective to return in-
structions, derivations based on other kinds of branches exist [19]. Jump-Oriented Pro-

gramming (JOP) [11] exploits indirect jumps to chain gadgets. These attacks do not rely
on the stack to control flow. Instead, they make use of a particular kind of gadget, called
dispatcher gadget which is responsible for chaining the functional gadgets through using a
dispatch table. Call-Oriented Programming (COP) [18] is also a variant which is based on
indirect calls. As these instructions frequently have memory operands, dispatcher gadgets

are not required and the attack can be launched through corruptible pointers in memory.

2.3.2 Control-Flow Integrity

Control-Flow Integrity (CFI) [4] is a technique meant to ensure the correctness of control-
transfers during software execution. The general idea behind CFI consists in instrument-
ing the program with assertions that will validate the targets of indirect control flow
transfers right before its execution takes place. By doing that, these mechanisms are
capable of identifying and deflecting attacks such as ROP and variants [11, 142, 164].
Different techniques for verifying the validity of a target exist, but the most generic one
consists in dereferencing the pointer used in the indirect control transfer and checking if it
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is pointing towards pre-defined values (tags). In this sense, enhancing software with CFI
consists in correctly calculating the set of valid targets for every indirect control-transfer
instruction, instrumenting these instructions with assertions and the destinations with
the respective tags.

A CFI mechanism is said to be coarse-grained [110, 236] if its control-flow target
validation is loose, allowing returns to any instruction after a call instruction and indirect
calls to the first instruction of any function. These mechanisms were proven vulnerable
as malicious flows could be traced inside the protected applications even though the CFI
restrictions were applied [18,45,67]. Motivated by that, fine-grained CFI mechanisms were
developed [108,111,177]. On what concerns protecting return addresses, these techniques
enforce that returns must only be allowed to instructions after a call to the respective
returning function. For protecting indirect calls, they enforce that only the first instruction
of a subset of functions, built through a pre-defined rule, are considered a valid target.

One of the biggest challenges of implementing fine-grained approaches for CFI is build-
ing its CFG with valid destinations for branches. As known, complete and sound pointer
analysis is an undecidable problem [152], which prevents the creation of precise target sets
for indirect branches and creates the need for heuristics to solve the problem. Besides,
some language features and optimizations, such as setjmp/longjmp, frequently break as-
sumptions on regular control-flow of programs, requiring these schemes to find ways of
being compliant or limiting its use [43,57].

Conti et al. [32] showed that the approach used in the implementation of CFI schemes is
very relevant. In this paper, the authors exploit the CFI mechanism known as IFCC [176],
which is based on restricted pointer indexing, a different approach for validating indirect
call targets. This technique consists in converting indirect branches into jump tables,
restricting execution to only branch through its compromised addresses. Conti et al.

exploit this mechanism by overwriting registers at the moment that they are saved on the
stack, in between function invocations. As these registers are later used to dereference
the jump tables, the author is capable of subverting the mechanism by replacing the used
tables with malicious ones. The paper also shows a methodology for attacking user space
CFI-instrumented software by corrupting the return address which is later used by the
OS kernel for returning from interrupts. As the OS is not instrumented with CFI checks,
returning to any address is considered valid.

Attacks on Fine-grained CFI

Two attacks on user space fine-grained CFI [17,53] demonstrated that these mechanisms
may also be vulnerable under very particular circumstances. Both attacks are specializa-
tions of non-control-data attacks [3] that exploit function arguments and employ control-
flow hijacking accordingly to the CFI enforced CFG, thus, not triggering violations.

Carlini et al. [17] shown that it is possible to achieve arbitrary computation through the
corruption of function arguments. The attack, named Control-Flow Bending, is demon-
strated through a technique called printf-oriented programming2 which is based on the

2Despite the use-case, the concepts exposed are not limited to printf().
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corruption of printf() arguments similarly as done in format-strings attacks3. Yet, Car-
lini et al. also show that shadow stacks stand as meaningful defenses against control-flow
hijacking attacks, effectively preventing certain attacks.

Evans et al. [53] describe Control Jujutsu, an attack over a hypothetical fine-grained
CFI mechanism whose indirect-call targets were gathered through the Data-Structure
Analysis (DSA) [100] algorithm. The attack consists in corrupting the arguments of
a specific function in a way to achieve the arbitrary computation and later forcing its
invocation through retargeting an indirect branch without diverting the enforced CFG.
As these attacks focus indirect forward-edges, it can be limited by more restrict CFG
computation algorithms, but can’t be tackled through shadow stacks.

2.3.3 Branch-ratio Based Defenses

Willing to prevent ROP attacks, researchers proposed defense mechanisms based on the
analysis of branch ratios. The concept behind these mechanisms consists in dynamically
checking the length of instruction sequences in between indirect branches, searching pat-
terns which are composed by chains of small instruction sequences and are intrinsic to
gadget chaining in ROP attacks. An advantage of using such scheme is that source code
and debugging symbols are not required.

kBouncer [131] is a system that implements branch-ratio analysis to prevent ROP.
kBouncer exploits a branch-tracing mechanism called Last Branch Recording (LBR) [36]
which is supported by recent Intel CPUs to monitor the frequencies of branch instructions.
The analysis is made whenever an invocation to the system’s API happens, ensuring
that privileged code only runs after the system integrity is validated. kBouncer was
implemented on the Windows OS platform.

ROPecker [22] implements a similar mechanism that also detects ROP by using LBR.
Instead of trapping system’s API entries, ROPecker uses a sliding window that ensures
verifications by setting most recent visited code regions of the protected application as
executable, leaving the rest of the application outside this window. Attempts to execute
code which is out of the window triggers an exception that invokes the ROP checker.

Researchers demonstrated attacks to defenses based on branch-ratio analysis [18, 45,
67,68]. As both rely on a pattern which is matched when a threshold of small instruction
sequences between branches are chained, attackers decoyed the pattern by placing long
but innocuous sequences of instructions amongst their gadgets. By ensuring that these
long sequences are executed before the invocation of the ROP checker, i.e., before invoking
the system API or before invoking code outside ROPecker’s sliding window, the pattern
is broken and the attack is missed.

Trying to improve these systems, Tymburibá et al. [155, 178] proposed the use of
gadget length thresholds which are application specific. By doing that, the size of the
gadgets considered harmful is increased, and it becomes harder for attackers to decoy their
exploits. Finally, the work by Botacin et al. [12] shows the use of a different hardware
resource called Branch Trace Store (BTS) to store branches on memory pages instead of

3The attack does not depend on the existence of format-strings bugs, as by controlling the arguments
the attacker is capable of modifying the referenced strings in a way to create the needed conditions.



CHAPTER 2. BACKGROUND 28

registers, as done in LBR implementations. By doing such, this implementation is capable
of analyzing longer traces, being more resilient to evasion techniques.

2.3.4 Hypervisor-based Defenses

Different solutions have been proposed for cases where it is not possible to recompile the
program. Most of these solutions are based on the insertion of an extra layer between the
application and the system, what enables monitoring of the binary activities and detection
of possible behavior corruptions.

The use of VMs as a security enabler came together with the concept of Virtual

Machine Introspection (VMI). This idea consists in the ability to observe and analyze
the internal state of a VM [63, 114, 137, 138]. Through VMI, a system developed to
detect and prevent attacks is capable of observing the protected target from an external
perspective that is protected against attacks through the extra isolation provided by
VM abstraction. Intrusion Detection Systems (IDS) [159] based on VMI (VMI-IDS) were
proposed by researchers [63,80,93,95,186] as a more robust solution for monitoring systems
in opposition to previously proposed network-based or host-based IDSs [160]. Also, VMs
were used [62] as enablers for Trusted Computing [69,157].

Native Client [230] tries to enable high-performance native execution of applications
running inside a web browser. NaCl works as a sandbox, fencing and monitoring non-
trustable applications that may have been downloaded from the Internet and ensuring its
execution without causing system compromise.

DBM has been used as the enabling platforms for techniques focused on the prevention
of software attacks, such as Data Flow Analysis (DFA) [21, 79, 120, 231], program-flow
verification [91, 92, 143], instruction set randomization [83, 140] and system call filtering
[162]. This is a prominent set of new techniques to defeat software attacks but, since they
rely on the use of a DBM tool, they inherently introduce high overheads.

Due to the high overheads generated by the use of DBM tools, techniques to reduce its
adverse effects have been developed, especially through the exploitation of the inherent
parallelism in executing an application and simultaneously analyzing it [71, 237]. This
approach, with different perks and drawbacks on each implementation, was also applied
while using DBM tools as a security enhancer [79].

ShadowReplica [79] is a DBM-based mechanism developed on top of Pin that tries
to accelerate memory analysis of programs through the use of parallel execution. This
solution relies on offline static and dynamic analysis to generate optimized code that
will run in parallel and collect information from the application with low communica-
tion overhead, decoupling execution and verification in different threads. ShadowReplica
was mainly used for dynamic correctness verification of programs. Even though it also
implements a CFI-based security feature, its primary goal is accelerating a DFA based
analyses, proposing new optimizations to decrease communication costs imposed by the
parallel architecture of the tool.

It is worth mentioning that extra layers have also been used as an enhancement for
attacks. BluePill [156] is a hypervisor-based rootkit that hides itself by not changing the
system it infects. Instead of that, BluePill virtualizes the target and acts as an extra layer



CHAPTER 2. BACKGROUND 29

between it and the hardware. Although it is possible to detect the rootkit by verifying
side-effects due to the virtualization process, there is no direct evidence of infection on
the attacked OS, what makes its detection harder.

2.3.5 Hardware Extensions

As security became a critical issue, hardware developers started to incorporate new ex-
tensions to its CPUs in order to assist developers in the task of implementing system
security with low overhead.

Supervisor Mode Execute Protection (SMEP) and Supervisor Mode Access Prevention

(SMAP) [34,36,66,232] are features implemented by Intel processors4 to improve user and
kernel address space isolation. These extensions prevent direct access to addresses whose
page table entry is marked with a supervisor bit, raising a page fault. By doing this,
SMEP and SMAP prevent control transfers and pointer dereferences from kernel to user
space in a more efficient way than PaX. The ARM architecture has similar features under
the names Privileged Execute-Never (PXN) and Privileged Access-Never (PAN) [113,168].

Memory Protection Extensions (MPX) [73,151] is another hardware feature developed
by Intel5. These extensions include new registers and instructions that allow defining and
verifying access boundaries for a pointer dereference prior to its use. Therefore, whenever
a pointer is meant to operate in a memory array, its boundaries can be set to the array’s
first and last positions and the pointer dereference can be checked to be targeting an
address in between these boundaries. By introducing this new technology, Intel provides
means for developers to protect systems against attacks that happen through bugs such
as buffer overflows .

A hardware extension which is currently under development by Intel is Memory Pro-

tection Keys (MPK) [35]. This extension uses 4 available bits on the page tables entries
to assign the page one of the sixteen possible key values. Another 32 bit register, which
is thread individual, is used to map access and write permissions on each group of pages
that has a specific key. By doing that, MPK allows partitioning the whole system memory
into 16 regions, which can have its access permissions selectively set.

Recently Intel released an extension specification for Control-Flow Enforcement Tech-

nology (CET) [38]. CET is meant to provide means for developers to defeat ROP attacks
by enabling hardware supported CFI. CET will implement a hardware shadow stack to
validate parity between return and call instructions, assuring the correctness of back-edges
in the control-flow. For forward-edge control-flow, CET incorporates a new instruction,
which is used to mark valid destinations for indirect calls. The verification feature is
incorporated into the functionalities of call and ret instruction, while marking the code
requires instrumentation with the new provided instruction. Although the shadow stack
feature might be a game-changer on what concerns defending against ROP attacks, the
coarse-grained forward-edge policy proposed was already proven insufficient to defeat such
threat [18, 45,67,175].

4SMEP and SMAP were introduced respectively in the Ivy-bridge and Broadwell architectures
5MPX was introduced in the Skylake architecture
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2.3.6 Kernel Control-Flow Hijacking

Kernel software is subject to exploitable programming bugs as much as regular user-land
programs. Kernel’s inherent privileges give attackers advantages while exploiting it, as it
provides more accesses and visibility over the system. Indicatively, before the end of 2016
there have been 427 reported kernel vulnerabilities according to the National Vulnerabil-
ity Database, 172 more than in 2015 [115]. A study on OS vulnerabilities [20] shown that,
from January 2010 to March 2011, 141 Linux kernel vulnerabilities were published in the
Common Vulnerabilities and Exposures (CVE) [39] list. These vulnerabilities, catalogued
into 10 different categories of programming bugs, ultimately lead to different classes of
attacks that can be classified as memory corruption [187, 192, 194, 195, 197, 198, 210–212,
214,216,217], policy violation [188–191,201], Denial of Service (DoS) [221–224] and Infor-

mation Disclosure [196, 199, 200, 202, 203, 208, 215, 218–220], illustrating that kernel code
is not only prone to attacks, but also that it can be exploited in many different ways.

If no security measures for address space isolation are applied, pointers present in the
kernel can dereference addresses in user space. Attackers can exploit this characteristic
by employing a technique called return-to-user (ret2usr) [85], which consists in injecting
a malicious payload into user space through a regular process, and then using memory
corruption bugs to overwrite control-flow pointers and divert execution to the payload’s
address. By applying this technique, attackers don’t have to defeat protections such as
kernel address space layout randomization (KASLR) [51] and W^X policies [98,102,112,
129].

PaX [173] is a Linux hardening patch set that protects the system against many
different kinds of attack, including some variants of control-flow hijacks. This patch
incorporates stack randomization features for both kernel and user space, W^X policies
for memory pages and memory isolation mechanisms that restricts dereference of user
space memory from the kernel [132–134], protecting against ret2usr attacks.

More recently, PaX integrated a feature called Return Address Protection (RAP) [174]
to its list of enhancements. RAP is a protection conceptually based on the XOR random
canary approach introduced in a later version of StackGuard [40]. RAP encrypts return
addresses and keeps the decryption key, which is an XOR cookie, in a reserved general-
use register. Return address encryption based mechanisms have been proposed before by
the academia [126] and, while they certainly impose an obstacle to attackers, the whole
scheme relies on the secrecy of the cookie, which compromises the protection if leaked.

PaX has a significant impact as a protection scheme, but the ideas behind it are not
compatible with all kinds of architectures. Address space isolation on PaX uses memory
segmentation features, which are not supported by x86-64 CPUs, creating high overheads
on such architectures. Although applied by default in many Linux distributions, PaX was
never incorporated into the Kernel upstream source code.

kGuard [89] is a multi-platform compiler-based solution to enforce isolation between
kernel and user space. kGuard works by instrumenting indirect branches with assertions
that verify if its destination is compromised inside the kernel address space range. If
this assertion fails, it invokes a violation handler function, as this may mean that the
system is under attack. The paper also describes the insertion of nop instruction sleds



CHAPTER 2. BACKGROUND 31

to prevent attacks through trampolines, in which a first branch is used to jump to the
address between the assertion and a second branch, also inside kernel space, which is then
used to jump to user space.

Kemerlis et al. [87] showed how to bypass memory isolation mechanisms and indirectly
manipulate kernel memory from processes resident in user space by using a technique
called Return-to-direct-mapped-pages (ret2dir). In his attack, Kemerlis et al. exploit the
kernel’s scheme for dynamic memory allocation to create synonyms, which are kernel
mappings of memory pages also mapped is user space. This technique can be used to
launch attacks without dereferencing addresses in user space and, showing that, if an
attacker is capable of manipulating kernel memory, exploitation is feasible.

Kemerlis et al. also introduce a mechanism called eXclusive Page Frame Ownership

(XPFO) [87], ensuring that the same memory page frame cannot be accessible simulta-
neously in kernel and user space. XPFO prevents ret2dir attacks and, together with the
previously mentioned techniques, improves memory space isolation significantly.

Despite their clear enhancements, previously mentioned methods do not fully close
the problem on kernel isolation, as an attacker may still be able to inject attack payloads
in kernel memory through general forms of data sharing between the two spaces, like
user-controlled content being pushed to kernel through I/O buffers, pipes and message
queues.

It has been shown that an attacker can craft ROP attacks only using code present in
kernel space [77]. In this paper, the author describes how to build a rootkit using only
gadgets existent in kernel code, either from its core or its modules, through ROP. Although
the attack applies ret2usr strategies by pivoting the stack to a user space memory region,
the methodology behind the attack is not hardly dependent on such techniques as it can
be replicated fully in kernel space if the attacker has a way of overwriting stack values or
writing on any of its memory regions.

Some implementations of CFI focus on protecting the OS kernel, hardening it against
ROP attacks. HyperSafe [226] implements CFI for indirect branches on hypervisors by
using restricted pointer indexing. HyperSafe also employs a technique named memory
lockdown, which ensures that part of the hypervisor memory, including the page tables,
is permanently write-protected, ensuring that data and code in these pages are protected
even in an occurrence of a memory corruption bug. The jump tables used for the restricted
pointer indexing approach are amongst the lockdown protected structures.

KCoFI [41] is a coarse-grained kernel CFI implementation for OSes, with support to
FreeBSD. Instead of computing the system’s call graph, this system employs a single tag
for validating every executed indirect branch. KCoFI was built on top of a secure execution
layer called Secure Virtual Architecture (SVA) [42] and presents prohibitive overheads
that range from 2x to 3.5x while running microbenchmark operations. KCoFI’s biggest
contribution is on being the first CFI system for OSes but, for using a coarse-grained
policy, this approach has been proved flawed [18,45,67].

The first fine-grained CFI mechanism for OSes was proposed by Ge et al. [65], with
support to FreeBSD and MINIX. Similarly to HyperSafe [226], this implementation also
employs restricted pointer indexing for achieving CFI. The enforced CFG is built through
a pointer analysis which is dependent on code constraints and restricts language features
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such as arithmetic on pointer values. Also, to achieve performance, the implementation
depends on finding indirect calls with a single possible target and transforming them into
direct branches. Although an interesting solution to decrease the introduced overhead,
depending on these transformations is a problem since complex code bases may limit
optimization opportunities. This approach inherently breaks the support for LKMs due
to the fixed jump tables employed in the restricted pointer indexing implementation.

Finally it is important to notice that both address space isolation and CFI mechanisms
are orthogonal and complimentary means for OS protection. While address space isolation
precludes ret2usr attacks, it forbids a user from manipulating user space memory in a way
to create malicious targets that are valid under the CFI policy enforcement. Even though,
through launching ROP attacks confined in kernel space it is possible for an attacker
to flip the proper bits in a way to disable memory isolation features and allow attack
continuity through user memory space [122]. In this sense, CFI is an important security
component as it prevents the execution of such attacks in kernel memory, avoiding any
sort of malicious arbitrary execution through kernel code reuse and ensuring the proper
operation of other security features.



Chapter 3

kCFI: Design and Implementation

Never send a human to do a machine’s job

Agent Smith

As a step towards practical and effective kernel-level CFI for commodity operating
systems, in this chapter we present the concept, design, and implementation of kCFI,
a fine-grained CFI protection for the Linux kernel. The proposed approach combines
the benefits of a tag-based, fine-grained CFI policy enforcement for both forward and
backward-edges—the first of its kind to fully support the Linux kernel—which offers
increased protection compared to coarse-grained CFI, with full support of dynamically
loadable kernel modules, a crucial feature for supporting the Linux kernel that is missing
from previous kernel-level CFI solutions. kCFI is a purely compiler-based approach,
and its CFI enforcement mechanism does not rely on any runtime supervisor module or
routine, avoiding any associated overheads.

3.1 Overview

kCFI extracts the kernel’s CFG by statically analyzing its code at both the source and
binary level. This approach captures a detailed view of the CFG that implicitly deals
with challenges such as aliasing or divergence between final machine code and its high-
level source code representation due to compiler optimizations and hand-written assembly
code. Instead of permitting control flow transfers to any function or call site, the enforced
fine-grained policy is based on confining indirect edges to paths that may lead only to
functions of the same prototype. Only functions with a prototype that matches the
indirect call pointer type are considered valid targets, and this is applied to both forward
and backward-edges.

kCFI introduces Call Graph Detaching (CGD), a novel technique that detaches the
direct call graph from the indirect call graph in the protected code to reduce the over-
approximation of the permitted control flow transfers even further. CGD prevents the
issue of transitively extending the set of return targets of direct function invocations to
the sets of valid return targets of indirectly invoked functions, thus making the enforced
CFG more restrictive and less prone to Control-Flow Bending [17] and other similar CFI
bypass attacks.

33
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Performance overhead is a crucial factor that affects the practical applicability of
exploit mitigation techniques, especially for the kernel setting. To minimize the runtime
overhead introduced by the extra control-flow checks, kCFI leverages architectural traits,
such as cache locality and no-operation instructions, to achieve better performance. This
is demonstrated by the results of our experimental evaluation, discussed in Chapter 4.

3.1.1 Threat Model

Adversarial Capabilities. We assume attackers with the ability to execute (or control
the execution of) user programs on the OS, seeking to elevate privilege by (ab)using
memory corruption vulnerabilities in kernel code [28, 29]. Our model allows overwriting
kernel code pointers (function pointers, return addresses, dispatch tables) with arbitrary

values [54,169], typically through the interaction with the OS via buggy interfaces—e.g.,

generic pseudo-filesystems (procfs [90], debugfs [33]), virtual device files (devfs [96]),
the system call layer. Code pointers may be hijacked directly [54] or controlled indirectly
(e.g., by first corrupting a pointer to a data structure that contains control data and
subsequently tampering with its contents [55], similarly to vtable pointer hijacking [64,
72,78,141,177,234]). Lastly, attackers can control any number of code pointers and trigger
the kernel to dereference them on demand; note that memory disclosure bugs [30,31] are
extraneous to our proposed scheme(s). Our adversarial model is realistic and consistent
with prior work in the field [41,65].
Hardening Assumptions. We assume an OS that fully implements the W^X policy [98,
102, 180] preventing direct code injection in kernel space. In addition, we surmise an OS
kernel hardened against ret2usr attacks; in modern platforms, we presume the existence of
SMEP (Intel CPUs) [232], while for legacy systems we assume protection by kGuard [89] or
KERNEXEC (PaX) [134,168]. Note that the kernel may also support KASLR [51], stack-
smashing protection [181], pointer (symbol) hiding [154], SMAP/PAN/UDEREF [34,113,
132,133], or any other hardening feature. kCFI does not require or preclude such features,
as they are all orthogonal to the proposed scheme(s) and can only increase the security
of the kernel.

3.2 Design

Under our threat model the control flow of the kernel can be freely hijacked: any code
pointer can (potentially) be controlled by the attacker. Our hardening assumptions,
though, guarantee that kernel execution can no longer be redirected to code injected in
kernel space or hosted in user space—W^X hinders direct code-injection in kernel space1,
whereas the deployed ret2usr protection(s) will prevent any attempt to execute user code
in kernel mode. Hence, we anticipate that attackers will be composing their shellcode
by stitching together gadgets from the executable (.text) sections of the kernel in a
ROP/JOP fashion [19,77,164], or utilize state-of-the-art code reuse techniques [18,45,46,
67].

1Researchers recently uncovered that many OS kernels do not properly enforce the W^X policy in
kernel space [87]; major OS vendors have since taken steps to eradicate the problem [98].
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The main concept behind CFI consists in computing the CFG of a given program and
confining all indirect control transfers to its edges. While CFI policy enforcement can
effectively prevent control-flow hijacking attacks, its employment on kernel code demands
specific challenges to be addressed. First, performance overheads must be minimal, pre-
venting the use of intermediary layers between the kernel and the hardware, and requiring
the use of lightweight approaches such as code instrumentation for policy enforcement.
Second, the enforcement must be compatible with kernel intricacies such as self-modifying
code and LKMs. Third, control transfers caused by events such as interrupts or exceptions
may remain valid, even though their occurrence is not predictable in the CFG.

The scheme adopted by kCFI was designed to be compliant with the above challenges.
By employing tag-based assertions, it supports self-modifying code and LKMs, as long as
these portions of code are compiled in a compatible way. kCFI is fully enabled through
compiler instrumentation, not requiring any supervisor module, virtualization support,
or dynamic translation techniques. Although inspired by the original CFI proposal by
Abadi et al. [4], kCFI differs from it as its instrumentation primitives were designed to
take advantage of x86-64 architectural traits, generating close to zero memory contention.
In fact, without harming any feature on the original system, kCFI enforces CFI with
average overheads of 8%, while similar systems [41] incur costs that exceed 100%, or
are only comparable after optimized with code transformations that break the above-
mentioned requirements [65].

While kCFI enforces its policy on control flow transfers that reside in kernel address
space, it relies on other well-known and widely adopted solutions to isolate memory ad-
dress spaces [89, 134, 168, 232]. This complementary approach ensures that all control
transfers from kernel to user space happen through clearly defined exit points that will
drop system execution privileges. Besides simplifying the protection without leaving open
windows for ret2usr attacks, the scheme is compatible with all kernel control transfers,
including those that are unpredictable, like interrupt handlers.

In a coarse-grained CFI system, every branch target is valid for all branches, without
any distinction. Fine-grained CFI schemes offer stronger protection, as they reduce the
number of valid targets for each branch by applying rules to build these sets in a more
restrictive way.

kCFI implements fine-grained CFI by ensuring that all returns target instructions
following a call to the returning function while indirect calls target functions meant to
be reached through that invocation. As complete and sound pointer analysis is impossible
[152], kCFI over-approximates the CFG by considering valid targets for an indirect call
all those functions that have a matching prototype with the pointer used in the indirect
call. In the code base we used for experimentation, the most common function prototype
was void(). When enforcing CFI on indirect calls whose pointers had this prototype,
the approach reduced the set of valid targets to approximately 0.3% of the set that would
have been allowed by a coarse-grained CFI policy.
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(a) Return site(s) instrumentation (tag).
1 ...

2 callq 0xffffff810001eb <func>

3 nopl 0x138395f

4 ...

(b) Epilogue(s) instrumentation (guard).
1 ...

2 mov (%rsp),%rdx

3 cmpl $0x138395f,0x4(%rdx)

4 je <8>

5 push %rdx

6 callq <kcfi_vhndl>

7 pop %rdx

8 retq

Figure 3.1: Examples of a kCFI return guard and tag pair.

3.2.1 Code Instrumentation

kCFI protects the OS kernel from code reuse attacks by ensuring that computed control
transfers adhere to the CFG of the kernel using a label-based control-flow enforcement
approach [4,41]. To this end, kCFI instruments indirect branch instructions (e.g., callq

and retq in x86-64) with control-flow assertions, in a manner similar to kGuard [89]; such
control-flow assertions verify (at runtime) the target of the respective branch instructions,
and authorize the control transfer(s) only if prescribed by the CFG. We refer to the code
sequences used for implementing the control-flow assertions as guards, and to the (inlined)
code labels that are checked by the guards, to validate branch targets, as tags.

Figure 3.1 illustrates a return guard and tag pair for the x86-64 architecture. In
Figure 3.1(a), the routine func is invoked by a direct callq instruction (line 2), which is
followed by a return tag, implemented as a nopl instruction that encodes func’s return
ID (0x138395f; line 3). Representing the tag as a NOP instruction is important, as it
transparently marks the return site(s) of func (i.e., without affecting the semantics of
the code). Figure 3.1(b) shows the corresponding return guard that confines a retq

instruction of func. This snippet loads the intended return address from the stack into
the %rdx register (line 2), dereferences it, and compares the result with the expected ID
(line 3); the 4-byte offset in the dereference skips the nopl opcode, as only the encoded
value (0x138395f) must be compared. If the two IDs match, the control jumps to the
retq instruction and the branch is taken (lines 4 and 8); else, the phony branch address
is pushed onto the stack, and a violation handler (kcfi_vhndl) is invoked (lines 5–7).

Along the same line, Figure 3.2 depicts an entry-point guard and tag pair for the x86-64
architecture. The prologues of routines that can be indirectly invoked are marked with an
entry-point tag, similarly to return sites; Figure 3.2(a) shows the entry-point tag of routine
func, also implemented as a nopl instruction that (transparently) encodes the routine’s
entry-point ID (0xbcbee9). Figure 3.2(b) illustrates the corresponding entry-point guard

that confines an indirect callq instruction to func. Assuming that the address of func is
loaded in register %rax, this snippet dereferences 0x4(%rax) and compares the result with
the expected ID (0xbcbee9; line 2). Again, if the two IDs match, the control jumps to
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(a) Prologue(s) instrumentation (tag).
1 ...

2 <func>:

3 nopl 0xbcbee9

4 ...

(b) Indirect call site(s) instrumentation (guard).
1 ...

2 cmpl $0xbcbee9,0x4(%rax)

3 je <7>

4 push %rax

5 callq <kcfi_vhndl>

6 pop %rax

7 callq *%rax

8 nopl 0x138395f

9 ...

Figure 3.2: Example of a kCFI entry-point guard and tag pair.

the callq instruction and the indirect invocation of func takes place (lines 3 and 7); else,
the bogus branch address is pushed onto the stack and kcfi_vhndl (violation handler)
is invoked (lines 4–6). Note that callq *%rax is followed by a return guard (i.e., func’s
return guard; return site, line 8).

The end result of the above (control-flow) confinement scheme is the following: (a) retq

instructions can only transfer control to the return site(s) of the routine they belong to
(e.g., the retq instruction of func can only transfer control to the return sites of func;
Figure 3.1); and (b) indirect callq instructions, which correspond to function pointers,
are paired with the beginning of the routines that can be indeed invoked through the
respective function pointer (e.g., the callq instruction of Figure 3.2(b) can only transfer
control to the prologue of func or functions with a similar prototype).

kCFI’s guards are designed so that every confined branch instruction is paired with a
call to the violation handler. By using this approach, instead of having a single (global)
call to kcfi_vhndl (to which every guard transfers control upon an assertion failure), it
is possible to precisely trace the violations by combining the pushed parameter and the
violation handler’s own return address. We found that this configuration increases the
overall overhead by ∼2%, making its benefits more appealing than its costs.
Performance Requirements. The proposed tag-based scheme employed by kCFI con-
forms to the hard performance requirements imposed by OS kernels. Specifically, in
the x86-64 architecture, kCFI is significantly more efficient than previous approaches, as
demonstrated by the results presented in Chapter 4. Given the multi-level and inclusive
nature of the cache hierarchy of Intel CPUs, the proposed guards do not generate com-
pulsory cache misses; if a cache miss happens while dereferencing the branch target for
validation, the only consequence is the anticipation of a load that would otherwise occur
while branching.

kCFI also implements tags in a more efficient way than previous tag-based schemes.
The original CFI proposal by Abadi et al. [4] uses prefetch instructions to mark valid
branch targets (e.g., encode return IDs). Although such instructions do not change the
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semantics of a program, they do leave a footprint on cache organization and affect memory
contention [233]. By employing nopl instructions, kCFI is capable of marking valid targets
with close to zero side-effects (see Chapter 4). To the best of our knowledge, kCFI is the
most efficient tag-based CFI scheme for the kernel setting.
Compatibility Requirements. Many of the previously-proposed CFI schemes for low-
level software, like OS kernels, implement CFG validation techniques that rely on con-
verting indirect branches into jump tables based on restricted pointer indexing [65, 226].
The kernel-level CFI scheme proposed by Ge et al. [65] uses this approach, and, to achieve
good performance, has to rely on code optimizations (e.g., function pointer constification)
that heavily depend on the intricacies of certain code bases (i.e., FreeBSD and MINIX).
Restricted pointer indexing does not support dynamically loadable modules, while the
extra indirection introduces additional overheads. In antithesis, kCFI is capable of pro-
tecting OS kernels despite any optimization opportunities, achieving better performance
than the aforementioned implementation and not restricting any OS features.

3.2.2 Fine-grained CFI Policies

To enforce its fine-grained policy, kCFI relies on a CFG used as a reference for valid
branches on the protected program. This CFG is built using two types of analysis.
First, source code analysis provides all high-level information regarding functions, func-
tion pointers, and prototypes. Second, a binary analysis performed on a compiled version
of the program allows fitting the CFG accordingly to back-end optimizations and transfor-
mations that occur during linking. Building the CFG through combining both analyses
provides a precise and reliable CFG, as required for the development of a fine-grained
CFI.

For every function represented on the CFG, kCFI creates an exclusive return tag. For
every unique prototype respective to an indirect invocation pointer, kCFI creates one
return tag and one entry-point tag. Whenever marking the code with return tags, kCFI
gives precedence to those respective to the indirect invocation prototype. Entry-point tags
are used to mark functions as valid targets for indirect calls. This approach guarantees
a fit restrictiveness while ensuring that a function return may be allowed to all its valid
return targets, irrespectively of whether it was invoked directly or indirectly. During
instrumentation, kCFI considers indirectly invocable all those functions whose prototype
has a corresponding function pointer prototype.

kCFI parses all call instructions inside each function while placing tags. If the call

is indirect, then the return tag respective to the indirect invocation pointer prototype
is placed right after it. If the call is direct, then kCFI first verifies if the function
being called is also indirectly invocable. If it is, then the return tag placed is the one
correspondent to the indirect invocation pointer prototype. Otherwise, the return tag
for the function is used. kCFI also checks if each parsed function is indirectly invocable.
If it is, then the entry-tag that corresponds to its prototype is placed in the function’s
prologue.

Next, kCFI places guards in each function. The tags checked by return guards are
picked through a logic similar to the one described above: whenever a return guard for
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an indirectly invocable function is generated, the tag used is the one corresponding to
an indirect invocation pointer’s prototype that matches the function’s prototype. If the
function is not indirectly invocable, the tag used is the one respective to the function.
For generating entry-point guards, kCFI checks the prototype of the indirect invocation
pointer used in the call and picks the entry-tag relative to it. This scheme ensures the
proper bonding of all indirect branches and their relative targets.

As proposed by Abadi et al. [4], CFI can be enhanced by the use of a shadow stack to
refine returns. It is known that such structures have high performance costs [43], which
can be prohibitive to the kernel context. For this reason, the proposed kCFI design does
not include a prompt shadow stack. Instead, In Chapter 5, we propose a kernel shadow
stack as a security enhancement which is orthogonal to kCFI.

Call Graph Detaching

If a function is both directly and indirectly invocable, its return guards will be generated
with the return tag respective to its prototype, irrespectively of whether it was directly
or indirectly invoked. This creates a situation where transitively all instructions after
a direct call to a function become valid return points to other functions with a similar
prototype. This problem stretches the CFI policy and makes it more prone to bending
attacks [17].

This problem is illustrated in Figure 3.3. The code snippet in Figure 3.3(a) invokes
foo() both directly and indirectly. The code snippet in Figure 3.3(b) presents the return
guard for the function foo() which checks for the tag placed after both direct and indirect
calls to foo(). This not only allows foo() to return to both call sites, irrespectively of
how it was invoked, but it may also allow any different function with the same prototype
as foo(), as exemplified by function bar() in Figure 3.3(b), to return to the call site of
the direct invocation of foo(), in a clear violation of the valid control flow.

To mitigate this problem, kCFI follows a novel approach by cloning functions instead of
merging all valid return targets. In this way, a function named foo() is cloned into a new
function called foo_direct(), which has the same semantics but checks for a different tag
before returning. All direct calls to foo() are then replaced by calls to foo_direct(), and
the tag placed after the call site is the one that corresponds to foo_direct(). We call this
optimization Call Graph Detaching (CGD), as it detaches the kernel’s direct call graph
from the indirect call graph, preventing the need for merging and the consequent over-
approximation caused by tag transitiveness. When applied to the code of Figure 3.3, CGD
results in the code presented in Figure 3.4. The optimized version brings the replaced
call instruction and the respective tag (3.4(a)) and both original foo() and cloned
foo_direct() functions (3.4(b,c)).

Call graph detaching is applied only on functions that can be invoked both directly
and indirectly. For that, the algorithm checks the existence of pointers with a matching
prototype and direct invocations before cloning a function. As clones are used to replace
the targets of direct calls, pointer operations that may end up targeting the function are
not harmed by the scheme. An analysis of how CGD refines the granularity of the applied
CFI policy is provided in Chapter 4.
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(a) function foo() invocation
1 ...

2 callq 0xffffff810001eb <foo>

3 nopl 0x1383ddd

4 ...

5 movl rcx, 0xffffff810001eb <foo>

6 callq *rcx

7 nopl 0x1383ddd

8 ...

(b) return guard on foo()

1 ...

2 mov (%rsp),%rdx

3 cmpl $0x1383ddd,0x4(%rdx)

4 je <8>

5 push %rdx

6 callq <kcfi_vhndl>

7 pop %rdx

8 retq

(c) return guard on bar()

1 ...

2 mov (%rsp),%rdx

3 cmpl $0x1383ddd,0x4(%rdx)

4 je <8>

5 push %rdx

6 callq <kcfi_vhndl>

7 pop %rdx

8 retq

Figure 3.3: Example of valid return targets merging.

3.2.3 CFI Map

To create its fine-grained CFI policy, kCFI uses a data structure called CFI Map, which
is an augmented CFG built using source code and binary analysis. Besides function
invocation relationships, this structure also holds function prototype information that
enables mapping which functions may be called indirectly, and symbol information that
permits correctly mapping functions hidden behind aliases.

To construct a complete CFI Map, the respective binary to be protected needs to
be analyzed, and this is done through an early compilation. The construction process
compiles the entire kernel while performing source code analysis. This compilation also
instruments the generated code with identification marks that enable disambiguation of
functions when their names collide in the final binary. When the kernel binary is ready,
it is analyzed to fill any information gaps left during the source code analysis phase.

3.3 Implementation

kCFI was implemented in the form of a compiler infrastructure composed of a set of
complementary tools that perform code analysis and CFI instrumentation. The whole set
can be classified into four different groups of tools: (i) source code analysis, (ii) binary
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(a) function foo() invocation
1 ...

2 callq 0xffffff8100033a <foo_direct>

3 nopl 0xaff883

4 ...

5 movl rcx, 0xffffff810001eb <foo>

6 callq *rcx

7 nopl 0x1383ddd

8 ...

(b) return guard on foo()

1 ...

2 mov (%rsp),%rdx

3 cmpl $0x1383ddd,0x4(%rdx)

4 je <8>

5 push %rdx

6 callq <kcfi_vhndl>

7 pop %rdx

8 retq

(c) return guard on foo_direct()

1 ...

2 mov (%rsp),%rdx

3 cmpl $0xaff883,0x4(%rdx)

4 je <8>

5 push %rdx

6 callq <kcfi_vhndl>

7 pop %rdx

8 retq

Figure 3.4: Example of call graph detaching (CGD).

analysis and CFI Map construction, (iii) Assembly patchers, and (iv) CFI instrumenta-
tion. From these groups, (i) and (iv) were implemented as LLVM compilation passes, and
each implies a full compilation of the source code, while (ii) and (iii) are a group of tools
written in C++ and Lua [148]. kCFI can be understood as a pipeline in which each group
of tools is a stage that follows the above order. A detailed illustration of the different
stages is presented in Figure 3.6, and is described in detail in the following. Overall, the
goal of stages (i) and (ii) is to build a CFI Map for the whole kernel code, while (iii) and
(iv) use the resulting CFI Map to instrument the kernel code with tags and guards.

Assembly Language Support

One of the drawbacks of using LLVM-based instrumentation is that assembly sources are
not touched, as this kind of code is directly translated into binaries without having an
IR form. The kernel has a significant part of its code written in assembly, which includes
many indirect branches. While applying CFI, if such code is left unprocessed, two major
problems arise: (i) indirect branches in assembly sources are left unprotected, and (ii)
tags are not placed, breaking compatibility with C functions returning to assembly, or
with assembly functions being called indirectly from C code. kCFI tackles this problem
through the automatic rewriting of the assembly sources assisted by information extracted
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during code and binary analysis, as explained in the following subsections.

CFI Map Data Structure

The CFI Map describes the kernel’s CFG using four entities: (i) Nodes, which represent
single functions; (ii) Clusters, which represent sets of functions with the same prototype;
(iii) Edges, which represent a branch from a node to another node or to a cluster; and
(iv) Aliases, which map symbols that may have different names but are equivalent in the
final binary.
Nodes. These entities represent functions and hold as attributes their identifier, function
name, prototype, and module. Each node also contains a tag which will be later used to
validate allowed return points to the function.
Clusters. These entities represent a group of functions that have the same prototype.
Each cluster has its identifier and information on the prototype it represents. Clusters also
hold two tags, one used to validate allowed return points for the functions in the cluster,
and another to mark the entry-points of these functions as valid targets for indirect calls.
Edges. Edges represent the invocation relationship between nodes and clusters. An edge
has an identifier for itself and holds the identifiers for the node that corresponds to the
edge’s origin and for the node or cluster of the edge’s target. Edges also have a type
attribute that defines them as a direct or indirect call.
Aliases. Aliases represent symbols that can hide another symbol during compilation
time.

Figure 3.5 shows an example of a CFI Map construction. In this figure, the three
functions in the source code (a) are represented in the graph (b) as nodes (circles). The
gray rectangle in the graph represents a cluster, which includes the nodes i32 A(i32)

and i32 B(i32). The solid edge represents the direct call to the function void C(i32)

(See line 9 of Figure 3.5(a)), and the dashed one represents the indirect call to functions
inside the cluster, which has the prototype i32 (i32) (See line 10 of Figure 3.5(a)).

By observing Figure 3.5 it is possible to infer important information for CFG enforce-
ment: (i) there is a direct call from node B to C, implying a return from C to B that must
be allowed; (ii) there is an indirect call from B to the cluster, so the returns of all functions
in the cluster (A and B) to B must be allowed; and (iii) the indirect call from B must also
be allowed to all functions in the cluster. Figure 3.5(c) shows the corresponding CFI Map
file data structure.

kCFI Pipeline Overview

Figure 3.6 shows a diagram that describes how the different stages of kCFI are connected.
In this diagram, squares represent files used or generated by the pipeline stages, dashed
arrow shapes represent a full compilation through LLVM, dashed circles represent an
offline step, and solid arrow edges describe which files are used or generated by each step.

Initially (1), the kernel source code is compiled with LLVM, generating a vmlinux file
and multiple CFI Maps, one for each compiled module. The compiler also performs two
tasks: instruments vmlinux with a unique identifier on the first instruction of every C
function, and stores a catalog of all function declarations seen during compilation. All
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(a) Example source code.
1 #pragma weak A = A_Alias

2

3 int A(int x){

4 return x*x;

5 }

6 int B(int y){

7 int(*f)(int);

8 f = &A;

9 C(30);

10 return 7 * f(y);

11 }

12 void C(int z){

13 while(1){ };

14 }

15 int A_Alias(int x){

16 }

(b) Resulting CFI Map.

x

i32 A(i32) i32 B(i32) void C(i32)

i32 (i32) CFI Cluster

(c) Resulting CFI Map data structure.

Nodes

Identifier Name Prototype Module Return tag

290f2fd5 A i32 (i32) ex.c 1dc2aaf0

7d63f629 B i32 (i32) ex.c 6e28b9d1

6ba8458b C void (i32) ex.c 164e44a8

Clusters

Identifier Prototype Entry-point tag Return tag

6a8597ea i32 (i32) 69e1b040 46068a5c

Edges

Identifier From To Type

7dcdc019 7d63f629 6a8597ea indirect

7728cc01 7d63f629 6ba8458b direct

Aliases

Identifier Alias

290f2fd5 A_alias

Figure 3.5: Example of CFI Map construction.
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CFI Maps are merged (2) into one single CFI Map, which is used together with the kernel
binary to uncover all assembly functions (3). These are the ones not instrumented with a
unique identifier during the previous compilation. The outcome of this stage (4) is then
analyzed by a tool that retrieves all direct call targets and, by checking their unique
identifiers, maps every (5) direct edge. Finally, some fixes to the CFI Map are applied (6)
to support certain kernel corner cases, such as syscalls functions which are called through
a pointer that does not hold a matching prototype.

Once the CFI Map is complete, it is first used as a reference to patch the assembly
files. By combining its information with the catalog of declarations (7) built during the
first compilation (1), the assembly files present in the original kernel source are rewritten
with proper tags and guards. The patched source (8) is then ready to be compiled by
LLVM, a process that instruments C functions using information from the CFI Map and
generates the final protected vmlinux binary.

3.3.1 Source Code Analysis

Source code analysis is the first stage in kCFI’s pipeline and it is implemented as a
compilation pass in LLVM. It is represented in Figure 3.6 by the arrow shape (1). The
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goal of this stage is to begin the construction of the CFI Map by adding source-level
information retrieved from all functions in each compiled module. The kernel binary that
results from this compilation is used by the following binary analysis stage.

During this process, each compiled function is stashed in the CFI Map as a node.
From each function, all indirect calls are parsed and used to create indirect edge entries.
Each edge’s origin is the node that represents the function being parsed and its target is
a cluster that represents the functions with the same prototype as the pointer. A new
cluster is created if such a cluster does not already exist in the CFI Map. This process
also stores all aliases and the respective symbols overridden by them. This is important
to allow further CFI instrumentation to resolve symbols and match a branch’s target
precisely, as it appears in the final binary.

Since every direct call also represents an indirect branch, i.e., the return from the
callee towards the caller, it is also important to map those edges. This pipeline stage
is not appropriate for performing this mapping as it may result in incomplete edges,
because (i) by the time the module is analyzed, some callee functions may have not yet
been compiled, and thus their nodes will not exist in the CFI Map; and (ii) as some
symbols have weak linking properties2, if this is the case for the callee in the analyzed
edge, it cannot be correctly identified prior to the linking process.

To ensure that direct edges are precisely mapped during binary analysis, the compila-
tion process in this stage also instruments the prologue of each function with its respective
node identifier, encoded similarly as done with tags, as described in Section 3.2. This
instrumentation does not concern CFI enforcement, but allows the binary analyzer to di-
rectly correlate functions in the binary with node entries in the CFI Map, independently
of aliases, optimizations, and linking properties.

By the end of the source code analysis, the data structure being built already holds
node entries for all functions written in C, edge entries for all indirect calls present in
C functions, cluster entries for all prototypes used to declare function pointers, and a
map of all aliases with their respective masked symbols. This stage also generates a fully
compiled kernel binary in which every C function is instrumented with a unique identifier.

3.3.2 Binary Analysis and CFI Map Fixes

The binary analysis phase complements the constructed CFI Map with information ex-
tracted from the compiled kernel. This stage comprises three main steps, which are
represented in Figure 3.6 by the edges 4, 5 and 6.

The first step performed during binary analysis is a search for functions which were not
instrumented with an identifier in the previous stage. A function left not instrumented
means that it was not touched by LLVM in kCFI’s first stage, because it was originally
written in assembly, and not in C. Node entries for all these functions are added to the
CFI Map, as part of the assembly nodes list. The address of the first instruction in each
assembly function is also kept as the function’s identifier.

The second step involves parsing all direct call instructions in the binary. By following

2Weak is a symbol property used to inform the linker that this symbol must be discarded if it collides
with another one during the linking process.
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the instruction’s target address, it is possible to reach the call’s destination, retrieve its
identifier, and create a direct edge entry in the CFI Map with both the origin and target
fields filled. If the target does not have an identifier, kCFI assumes that it is an assembly
function and retrieves the identifier from the list of assembly nodes using the address of
its first instruction.

CFI Map Fixes

The third step of the binary analysis stage applies fixes to the CFI Map, making it
compliant with various kernel corner cases.
Alternative Calls. The Linux kernel dynamically replaces the targets of certain
direct call instructions with more efficient implementations of the respective functions,
depending on the presence of specific CPU features. The whole set of functions that
may potentially be a target for a given call must thus be allowed to return to the same
points, similarly to how it is performed for clusters; consequently, their tags must be
merged. This is achieved by setting a unique tag value in the node entries that represent
these functions in the CFI Map.
Syscalls. The functions that integrate the set of syscalls have different prototypes.
Besides, syscalls can be invoked through both regular direct calls or indirectly, through
the syscall dispatcher). As only one tag can be placed after the syscall dispatcher, fixing
its verification requires merging all clusters that hold a prototype that matches a syscall’s
prototype. This solution causes a broad loosening of the call graph, as it results in a
broad merging of different clusters, and also creates clusters for functions which are never
indirectly called from places other than the syscall dispatcher.

Instead of merging these clusters, kCFI handles syscalls in a special way. First, the
syscall table file is parsed, and a catalog of syscalls is built. A generic tag for the syscall

dispatcher is also created. Second, while compiling the kernel’s source code, syscalls are
compiled with a different kind of guard that allows returning upon validation of one among
two different tags. The first tag that is checked is the one that corresponds to the function
(either its node or cluster return tag, and the second is the generic tag created for the
syscall dispatcher. An example of such a “specialized guard” with secondary tag support
is shown in Figure 3.7.

1 mov (%rsp),%rdx

2 cmpl $0x138395,0x4(%rdx)

3 je 9

4 cmpl $0x11deadca,0x4(%rdx)

5 je 9

6 push %rdx

7 callq <kcfi_vhndl>

8 pop %rdx

9 retq

Figure 3.7: An example of a guard with secondary tag support.

By the end of this stage, the CFI Map holds node entries for all functions in the binary,
with prototype information for those written in C; cluster entries for all prototypes used to
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declare function pointers; edge entries for all the indirect calls in C code; and edge entries
for all direct calls present in the final binary, with no ambiguity due to weak linking or
aliasing.

3.3.3 Assembly Code Patching

Once the CFI Map is complete, an Assembly Patcher rewrites the assembly files that exist
in the kernel source tree. Before changing the code, the tool needs to retrieve the tags
that will be used during code instrumentation in three different circumstances.
Direct calls from Assembly code. Assembly code may call functions that check for a
tag before returning. Consequently, calls from assembly code must also be followed by a
tag respective to the called function. The Assembly Patcher collects these tags by parsing
the target of every call instruction in the source code and retrieving its node from the
CFI Map.
Indirect calls to Assembly functions. Assembly functions may be called indirectly.
Consequently, they need to have a tag in their prologue to allow them as indirect call
targets. As no prototype information is available in assembly code, retrieving this tag
requires parsing all function names from the source code and searching for them in the
declarations catalog created during the source code analysis to identify their prototypes.
If a matching declaration with a respective cluster is found, then its cluster entry from
the CFI Map is used. The system has been designed to prompt the user in case the search
returns more than one match, but such cases were not seen during our evaluation.
Return instructions in Assembly code. Assembly functions also must be protected
against control flow hijacking; it is thus important to instrument their indirect branches
with guards. For these cases, all ret instructions are parsed and the name of the function
to which they belong is searched in the declarations catalog. If a match with a respective
cluster exists, the cluster is retrieved from the CFI Map. Otherwise, the function’s node
is retrieved.

After collecting all the tags, the Assembly Patcher is capable of rewriting the source
files by correctly placing the tags after every direct call. Placing tags in the prologue
of assembly functions is achieved by replacing the macro ENTRY with a specially crafted
macro ENTRYcfi. While the first is regularly used in the Linux kernel source code to
mark the beginning of functions and appropriately create their symbols, the later was
crafted to extend ENTRY in taking one extra argument to be placed as a tag when the
macro is expanded. Hence, the Assembly Patcher rewrites the code replacing ENTRY for
ENTRYcfi macros with the corresponding tag, whenever it is required. Assembly return
guards are placed in a similar way. All functions are rewritten with the instructions of
the corresponding guard preceding their ret instructions.

Some assembly functions are generated through the expansion of macros. In these
cases, there exist call instructions whose targets are passed as a macro parameter, making
it impossible to add the tag directly in the macro source, as previously done. For such
cases, kCFI has a crafted macro which is a variation of the original, but with one extra
parameter corresponding to the tag to be placed. The process of rewriting consists of
parsing the original macro invocation, retrieving the symbol which will be expanded as
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a call target, searching the CFI Map for its corresponding tag, and then replacing the
original macro in the source code with the crafted macro, also adding the tag among its
parameters. Placing guards on macro generated functions again follows the same logic.

Assembly code inlined into C functions is not general enough to be tackled in an
entirely automated way, and is handled by directly patching the source code. For these
cases, we prepared a set of patches that already have placed tags and guards accordingly,
but with a generic value. Before applying the patches, kCFI searches the CFI Map for
the particular tags of each case and uses them to replace the general value. Finally, the
file that holds the syscall dispatcher is also rewritten with its tag correctly placed.

As assembly code does not provide information about pointers’ function prototypes,
the methods proposed so far are insufficient to automate the generation of indirect call
guards in such files. For the code base we used during our tests, kCFI protected 139
indirect branches in assembly modules. kCFI missed 6 instructions which involve no
hazard, being part of initialization routines only invoked during boot time, 5 indirect
calls that are inherently protected by being implemented in the form of verified target
tables, and 5 indirect calls whose pointer prototypes cannot be inferred statically, but
were feasible to be patched and moved to read-only data sections. Instructions belonging
to code which is compiled along with the kernel, but which are not linked into the final
binary, such as user space vDSO3, were intentionally skipped as they cannot be hazardous.

3.3.4 CFI Instrumentation

The last stage of the kCFI pipeline compiles the kernel code with CFI protection. As
assembly code was protected in the previous stage, C code is now instrumented with tags
and guards through an LLVM back-end pass. For this process, kCFI relies on the CFI Map
built during the previous steps. As no information is written to the CFI Map, this stage
can be run concurrently with no harm, allowing parallel compilation. Applying or not
the CGD optimization is a configuration option through the use of a special compilation
flag.

To enforce CFI, kCFI parses all instructions in the code being compiled while they are
still in LLVM Machine IR form. This abstraction is much closer to the final binary than
high-level languages, allowing instrumentation to interpose instructions more precisely.
Also, still being an LLVM representation, this allows the use of the compiler’s API to
retrieve high-level information, such as prototypes of pointers used in indirect calls, which
are crucial for CFI enforcement.

The default violation handler function, which is invoked when a CFI assertion fails,
was implemented to display meaningful debug information and then halt the system.
Different violation handlers can be implemented in custom forms, e.g., for debugging
purposes or even to allow fail-safe routines. These functions are written in C, as a regular
kernel module, and are easily replaceable.

If CGD is in use, an extra compilation pass is needed before the CFI instrumentation.
This pass checks all functions to identify the ones that are callable both directly and

3Kernel functions exported to be executed by processes in user space, avoiding the need for context
switch
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indirectly. This is done by checking the CFI Map for the existence of both a cluster
with the matching prototype and at least one direct edge towards the function. If a
function meets both requirements, it is cloned into a new function that is set as never
indirectly invocable. While defining cloning targets, functions that are declared but not
implemented are also considered, ensuring CGD applicability throughout all modules.
Before proceeding, calls whose targets were cloned are replaced by calls to the cloned
function, ensuring that one function is only callable either directly or indirectly, never
both ways. The generated code is then delivered for CFI instrumentation, and this will
place tags considering the branch’s final target.

During instrumentation, indirect branches are preceded with guards and indirect
branch targets are marked as valid with tags, as described in Section 3.2. All values
used to generate tags and guards are retrieved from the CFI Map. Whenever consulting
it, kCFI verifies the alias entries to avoid ambiguities that could lead to wrong instrumen-
tation. No link-time optimization or binary modification is required after the kCFI pass
processes the LLVM IR.
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kCFI: Evaluation
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Deep Thought

kCFI was evaluated across three different perspectives: performance impact, security
protection, and size overhead. To that end, we used as code base the Linux kernel ver-
sion 3.19.0, with the LLVMLinux [103] patches applied. The whole kernel was compiled
with a large number of built-in drivers and functionalities, resulting in a realistic code
base for evaluation purposes — the final binary contained 132,859 functions linked in a
705MB (uncompressed) file. Besides the original files, a CFI-specific module that holds
the violation handler function was also included in the source set and was linked in the
final binary. All tests were performed on a system equipped with a quad-core 3.40GHz
Intel(R) Core(TM) i7-6700 processor, 32GB of RAM, and a 500GB SSD hard drive. The
Debian GNU/Linux 8 (Jessie) was running on top of the tested kernel.

To verify the performance degradation caused by kCFI’s instrumentation, we tested
three different versions of the Linux kernel: (i) Vanilla, the original kernel compiled with
LLVM; (ii) kCFI, the kernel compiled with CFI protection; and (iii) kCFI+CGD, the
kernel compiled with CFI protection using the call graph detaching optimization. Every
program unit inside each benchmark used during the performance evaluation was executed
10 times, and the presented results are averages of the observed numbers.

To assess the security benefits introduced by kCFI, we use the average indirect target

reduction (AIR) metric [110], which measures the program’s restrictiveness according to
the applied CFI policy in terms of call graph pruning. We also use the average indirect

targets allowed (AIA) metric [65], which captures the number of permissible targets for
every indirect target.

4.1 Performance Evaluation

Micro-benchmarks

The micro-benchmark LMbench [109] was used to verify kCFI’s impact on kernel opera-
tions. From the whole benchmark, a subset of applications focusing on OS capabilities was
selected, allowing the measurement of latencies through the execution of null syscall; I/O

50
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Figure 4.1: Performance overhead of kCFI on LMbench.

critical syscalls (read/write, fstat and select); open/close syscalls; signal handler
installation, process creation followed by exit, execve and /bin/sh; context switching
between processes; select syscall on 100 file descriptors; and page fault handling and
inter-process communication with socket and pipe. Communication throughputs through
pipes, unix sockets (AF_UNIX), and TCP sockets were also measured.

Figure 4.1 shows the performance overhead of kCFI and kCFI+CGD over Vanilla. In
the chart, missing bars represent negligible overheads. The micro-benchmark tests are
classified in latency and communication throughput overhead. For latency, kCFI incurs
an average overhead of 8%, while kCFI+CGD 7%. The maximum overhead of both
configurations reaches 33%1. For communication throughput, kCFI incurs an average
overhead of 2%, while kCFI+CGD did not exhibit any discernible overhead.

1Overhead for the test null syscall, which presented the smaller latencies in the whole test-set and,
for that, is more sensitive to overhead introduction.
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Figure 4.2: Performance overhead of kCFI on Phoronix.

Macro-benchmarks

To measure the effects of kCFI on user space applications running on top of an instru-
mented kernel, we used tests from the Phoronix Test Suite [97], which includes many appli-
cations commonly seen on server environments. The set was composed by the benchmarks
IOZone, running 1MB, 4Kb and 64Kb read/write operations on a 512MB File, Linux Ker-

nel Unpacking, PostMark, Timed Linux Kernel Compilation, GnuPG encrypting a 1GB
file, OpenSSL running 4096-bit RSA, PyBench, Apache Benchmark, PHPBench, Dbench

and PostgreSQL running read-only/read-write operations under heavy contention on disk,
cached, and in buffer. Additionally to these tests, we also compared the execution of
SPEC [75] benchmark on Vanilla and kCFI.

Figure 4.2 shows the overhead for each test. In this Figure, missing bars represent
negligible overheads. The average overhead observed for the whole test suite was 2% for
kCFI and 3% for kCFI+CGD, with a maximum of 20% and 19%, respectively, both for
the Apache benchmark. Apart from Apache, all other applications exhibited overheads
below 10%. To assess the reasons for the outlier, we also run the test NGINX (also part
of Phoronix), which is another web server application. This test exhibited an average
overhead of 20%, confirming that the higher observed values are due to their frequent
interactions with kernel capabilities, turning them into applications more sensitive to
such instrumentation. In a final test, we modified the Apache benchmark in a way to
split client and server in two different computers. This test made it possible to identify
which part of Apache benchmark was responsible for generating the large overhead. When
the requests were made from a different machine, the overheads in the server became
negligible, highlighting that the most significant part of the cost came from creating
multiple requests, and not from responding to them.

A performance comparison between the Vanilla kernel and kCFI while running SPEC
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benchmark presented an average overhead below 1%. As the applications in this bench-
mark are very CPU-intensive, they spend most of their execution cycles in user space,
rarely stressing protected kernel code. For this reason, we consider the numbers obtained
with Phoronix more representative.

4.2 Security Evaluation

The threat model considered assumes that both W^X and ret2usr hardening features
are in use, leaving an attacker with no opportunities for code injection neither in kernel
or user space. Successful exploits are then limited to code-reuse strategies over kernel
instructions, commonly executed through ROP-based attacks [142]. These attacks are
built upon chaining small instruction sequences terminated with an indirect branch. These
instruction sequences are called gadgets, and each performs a small operation. Through
chaining many gadgets, attackers achieve Turing-complete computation [15].

The goal of kCFI is to protect the system against control-flow hijacking by preventing
code-reuse attacks through limiting valid targets on each indirect control flow transfer.
Succesfully deploying a ROP attack on a system protected with kCFI requires its gadgets
to be chained compliantly to the enforced fine-grained policies. Such enforcement turns
the attack unfeasible as the gadgets cannot be arbitrarely reached through corrupted
indirect transfers, severely limiting possibilities of recombination to achieve the desired
computation.
Return-Oriented Programming-based Attacks. Gadgets used during return-
oriented programming attacks are small instruction sequences terminated with a ret

instruction, which will redirect the execution towards the next gadget. As kCFI only
allows indirect branches to matching tags, most of these gadgets become unreachable and
unusable. Gadgets that remain useful for fortuitously being preceded by a tag cannot
freely chain others, as its closing ret will only be allowed to redirect control to a reduced
set of valid targets.
Unintended Gadgets. As the x86 architecture does not require executed instruc-
tions to be aligned, it is possible to retarget an indirect branch to unaligned addresses
that may contain unintended gadgets across original kernel instructions [164]. As kCFI
enforces all indirect transfers to target an aligned tag, it requires unintended gadgets to
also be preceded with unintended tags, restriction that significantly reduces available un-
intended gadgets. As the tags are randomly generated, remaining gadgets differ between
compilation instances and can be removed through another recompilation that prevents
this specific tag from being used.
Coarse-grained CFI Attacks. Coarse-grained CFI restricts control-flow based on
loose approximations of the applications CFG [41, 44, 110, 236]. It has been shown that
these policies are yet permissive, and systems protected through such weak CFI schemes
remain exploitable through the use of special gadgets which are compliant with the re-
strictions imposed [18,45,67]. kCFI is not vulnerable to these attacks as it applies a more
restrictive CFG while building its policies, reducing available gadgets and precluding the
remaining from being freely chained.
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Evasion Gadgets. Some CFI systems are based on branch monitoring, detecting
attacks by matching ROP-characteristic execution patterns [22, 131]. Such protections
were shown to be flawed, as attackers can use evasion gadgets that will diverge the exploit’s
control-flow path from what is considered an anomaly, turning the attack indistinguishable
[18, 45, 67, 68, 161]. Such attacks are indifferent to kCFI as it detects attacks through
stateless statical instrumentation instead of dynamic observation of execution patterns.
Call-oriented Programming-based Attacks. Call-oriented programming-based at-
tacks employ gadgets which are terminated with an indirect call instruction instead of a
ret, corrupting its function pointers to chain other gadgets consecutively [18]. As kCFI
requires all indirect calls to target the first instruction in a limited set of functions, it
diminishes the number of available gadgets useful for these attacks.
Jump-oriented Programming-based Attacks. Jump-oriented programming-based
attacks use a particular gadget called dispatcher gadget, that employs an indirect jump
to redirect control-flow through a maliciously crafted list of functional gadgets, chaining
them to achieve Turing-complete computation [11]. Although kCFI does not instrument
jump instructions, we ensured that all indirect jumps present in the kernel are unusable
for Jump-oriented programming purposes. The largest part of these instructions use
verified index registers only allowed to target addresses confined to an unwritable memory
region. A minor portion has its target set through a hard-coded immediate just a few
instructions before being used. Both situations leave no opportunity for indirect jump
target corruption.
Control-Flow Bending and Control Jujutsu. Exploits that employ code-reuse at-
tacks whose flows are confined to the valid CFG paths were shown to be deployable against
systems protected with user-space fine-grained CFI. Both Control-Flow Bending [17] and
Control Jujutsu [53] are specializations of non-control-data attack that corrupts the argu-
ments of a specific function for performing malicious computation and then manages to
divert control-flow through a valid path to invoke it. kCFI does not fully close the matter
against these attacks, but it raises the bar by enforcing more restrictive CFGs through
applying the CGD optimization. This optimization creates obstacles for the attacks, es-
pecially against Control-Flow Bending, as it depends on corrupting returns to inject loops
in the CFG.

Although possible in theory, a better understanding of how these techniques affect
kernel code is required prior to assuming their efficiency in this context. Control-Flow
Bending, for example, is demonstrated through (but not limited to) the employment of a
technique called printf-oriented programming, that exploits a specific format string charac-
ter to create memory write operations. As such character and its respective functionality
are not available in printk, the kernel version of printf, the attack needs to be deployed
through different and less common functions. Similarly, Control Jujutsu depends on the
possibility of indirectly invoking functions whose parameters can be corrupted to cause
arbitrary computation. Both invocation possibility and function existence are uncertain
in the kernel context and require a deeper analysis.
Real-world Exploits. To assess the effectiveness of kCFI against real-world attacks, we
used the ROP exploits for CVE-2010-3301 [26] and CVE-2010-3904 [27] by Kemerlis et

al. [87], targeting Linux v2.6.33.6, as well as their custom exploit for v3.12. We first
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verified that the exploits were successful on the appropriate kernels, and then tested them
on the same kernels armed with kCFI. In all cases, the respective exploits failed, as the
ROP payloads relied on pre-computed gadget addresses, none of which remained a valid
(control-flow) target under kCFI.

CFI Metrics

AIR. As proposed by Zhang and Sekar [110], the AIR metric provides an understanding
on how more restrictive a program becomes regarding allowed indirect branch targets
after the introduction of a CFI policy. Through this metric, it is possible to compare and
estimate the precision of different CFI implementations. The AIR computation is made
using Equation 4.1, in which n corresponds to the number of indirect branches that exist
in the program, S is the total number of valid targets allowed for an unprotected indirect
branch, and |Ti| is the total number of valid targets allowed for the protected indirect
branch i.

AIR =
1
n

n∑

j=1

1 −
|Tj|

S
(4.1)

On the kernel code base we used during this work, the use of a coarse-grained CFI
mechanism similar to KCoFI [41], which allows indirect branches to target the beginning
of any function or any instruction after a call, achieves an AIR of 98.64%. Although such
a high value may give the impression of decent protection, it has been demonstrated that
this level of permissiveness is still not enough to protect against ROP-based attacks [18,
45,67,68,161]

By applying kCFI or kCFI+CGD on the same code base, an AIR of 99.99% is achieved
when comparing it to the unprotected kernel. When comparing kCFI with coarse-grained
CFI, the achieved AIR value is 99.93%, which is a significant improvement on the re-
strictiveness of indirect code paths. kCFI+CGD achieves a slightly better AIR value of
99.94% over the coarse-grained CFI AIR.
AIA. Instead of using an implicit comparison metric, Ge et al. [65] proposed the use
of the average indirect targets allowed (AIA) metric, which captures the overall average
of allowed indirect branch targets. After computing the AIA values for a program with
different CFI policies, it is possible to understand their effectiveness by comparing the
computed values. Equation 4.2, in which n is the number of indirect branches and |Ti| is
the number of valid targets allowed for the protected indirect branch i, is used to calculate
AIA values.

AIA =
1
n

n∑

j=1

|Tj| (4.2)

The AIA values for the unprotected, coarse-grained CFI, kCFI, and kCFI+CGD kernel
versions are presented in Table 4.1. Besides the benefits of fine-grained protection over



CHAPTER 4. KCFI: EVALUATION 56

Kernel Version Unprotected Coarse-grained kCFI kCFI+CGD
AIA (all branches) 69086149 941957 680.5 545.3
AIA (only calls) 69086149 941957 60.7 62.9
AIA (only rets) 69086149 941957 952.9 769.9

Table 4.1: Average Indirect Targets Allowed (AIA) metric comparison.

the less restrictive policies, denoted by the three-orders-of-magnitude lower AIR value,
the benefits of kCFI+CGD over kCFI also become more clear. These benefits, when
analyzed through AIR, end up being hidden by the much larger magnitude of the valid
branch target sets in less restrictive versions.

In kCFI+CGD, all function clones are never indirectly invocable, which positively
affects permissiveness for return edges. The slight increase for calls unveils the limitation
of static methods for computing the level of permissiveness of a CFI implementation.
Because kCFI+CGD selectively clones functions, some indirect call instructions end up
being cloned, while others do not. Cloned calls are not more permissive than those of
the original functions—the set of allowed targets for both is the same. Nevertheless, due
to the uneven duplication of indirect calls caused by cloning, the optimization slightly
increases the AIA value observed for calls. Despite this fact, as the execution of a cloned
indirect call always replaces the execution of its respective original instruction, equivalent
traces of kCFI and kCFI+CGD will result in the same number of executed indirect calls.
As both the original and cloned calls have the same level of permissiveness, there is no
harm to security, even though the metric suggests differently.

Permissiveness Comparison Through CFI Metrics

The notions expressed by AIR and AIA are heavily bound to the code base being pro-
tected. As different programs will be inherently different regarding their indirect call
graphs, using these metrics to compare the effectiveness of protection mechanisms re-
quires confining the evaluation to the same code bases.

The fine-grained CFI implementation by Ge et al. [65] targets mainly FreeBSD, while
kCFI is focused on Linux. Based on the data presented in Ge et al.’s paper, we can observe
that the Linux version we used is 37% larger in terms of source lines of code, and has 3.3x
more functions (132,859) and 4.6x more call instructions (809,098) than the FreeBSD
version they used. While they attest that the function printf has approximately 5,000
possible return points in FreeBSD, printk, which is the corresponding one in our code
base, has around 64,000. These differences imply an indirect call graph which is inherently
more permissive and harder to protect, invalidating AIA and AIR comparisons between
both implementations.

Ge et al.’s implementation incurs performance overheads that are comparable to
kCFI’s. To achieve this performance, it amortizes the costs introduced by instrumen-
tation through analysis and optimizations which are also bound to the code base, such
as converting indirect branches that have only one possible target into direct branches.
On larger code bases, where more functions may have to be indirectly invoked, these
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optimization opportunities become more scarce.

4.3 Code Size Overhead

Due to the extra instrumentation instructions added in the original code, the protected
binary exhibits an overhead in terms of code size. When compared to the unprotected
binary, kCFI incurs a size overhead of 2%. kCFI+CGD incurs a slightly larger overhead
than kCFI due to the introduction of cloned functions in the final binary. In total, 17779
functions were cloned while applying kCFI+CGD to our code base, what, in addition
to the CFI instrumentation, caused an increment of 4% in code size. The observed
absolute binary sizes are 705MB for the Vanilla kernel, 718MB for kCFI and 732MB for
kCFI+CGD.

4.4 Discussion

Void Function Pointer Arguments. C code allows indirect invocation of functions
with mismatching prototypes through generalized arguments declared as void in the
pointer - For example, the function void foo(int a) can be called through a pointer
with prototype void (void). Although not a good programming practice for breaking
data abstractions and harming code legibility, these constructions are used to mimic
polymorphism, which is not a default feature in the language. On kCFI, this issue has
a second side-effect which is a deal breaker: pointers used to call functions which have
mismatching prototypes will trigger a violation.

First, for identifying problematic invocations, we relied on a dynamic profiling method
which was enabled by a custom violation handler capable of logging all the spots where
the problems happened. After booting and stressing the kernel through the execution
of LMbench and Phoronix [97, 109], we used the generated information to fix the kernel
code. In total, 15 prototype mismatches were observed. All of them were either fixed by
changing the function’s prototype or creating a wrapper function. A more conservative
approach would be merging the clusters for the mismatching prototypes, but we rejected
this solution to avoid decreasing CFI restrictiveness.

As not all of the prototype mismatches existent in Linux code are intentional [104,105],
this leverages a good side-capability of kCFI, which is unveiling prototype mismatches in
the instrumented code.
Cache Performance. The guard instrumentation has an effect on cache schemes. This
instrumentation may cause an additional L1 cache miss that certainly will be covered by
an L2 cache hit if other cache levels are inclusive. On the targeted hardware platform,
L1 caches are divided in code and data cache, but the same is not done in lower levels.
In the worst case, when the guard dereferences a value for comparison, if the value is not
on any cache level, the guard memory read is only anticipating a compulsory miss that
would happen by the time the branch executes. Other possible situations are: already
having the value on L1 data cache due to this have been used by a previous guard or
already having it on lower level caches, both being less costly than the first described.
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Tail Call Elimination. Tail call elimination is an optimization used to eliminate the
execution of redundant ret instructions at the end of functions whenever it is preceded
by a call instruction. This call, referred to as a tail call, can be replaced by a jmp

instruction to the same target, promoting stack-frame reuse by the tail-called function.
Because of this, when finished, this function executes a single return directly to the
function underneath the caller, and not two (one to the caller followed by another to the
function underneath it).

Applying tail call elimination to code protected with CFI is problematic because the
tail-called function’s back-edge guard will check for its tag in the return address, but this
address will actually hold the caller’s tag. Figure 4.3 shows how the optimization breaks
chains of tag comparisons between protected functions. When the tail call elimination is
not applied (Figure 4.3)(a)), the verifications occur normally and no violation is triggered.
When the optimization is applied (Figure 4.3(b)), anubis_crypt’s guard will check for
its tag on the return address, but the assertion will fail as the verified tag is respective to
the function anubis_encrypt.

1 ...

2 callq anubis_encrypt

3 tag(anubis_encrypt)

4 ...

1 <anubis_encrypt>:

2 mov 0x5c(%rdi),%ecx

3 add $0x60,%rdi

4 callq <anubis_crypt>

5 tag(anubis_crypt)

6 pop %rax

7 guard(anubis_encrypt)

8 retq

1 <anubis_crypt>:

2 push %rbp

3 ...

4 pop %rbp

5 guard(anubis_crypt)

6 retq

call

call
tag

check

ok

tag

check

ok

(a) Before Optimization

1 ...

2 callq anubis_encrypt

3 tag(anubis_encrypt)

4 ...

1 <anubis_encrypt>:

2 mov 0x5c(%rdi),%ecx

3 add $0x60,%rdi

4 jmp <anubis_crypt>

1 <anubis_crypt>:

2 push %rbp

3 ...

4 pop %rbp

5 guard(anubis_crypt)

6 retq

call

jmp (tail call opt)

tag

check

FAIL

(b) After Optimization

Figure 4.3: Assembly before/after tail call elimination

Trying to tackle tag inequities caused due to tail call elimination in the violation
handler is not a good choice because of performance. This would require at least an
extra pair of push/pop instructions, plus one call and one ret to be executed. These
overheads, plus the computation executed inside the violation handler function to solve
the false-positive, largely exceeds the benefits of the optimization.

Another approach for tackling the problem is through merging the CFI Map nodes
respective to the caller and the tail called functions, so they would hold similar tags.
Although a plausible solution, it would imply in a less fine-grained CFG, only being
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reasonable if the benefits of using tail call eliminations on the Kernel were indispensable.
In order to evaluate if merging the nodes was a reasonable solution, we performed an

experiment to check how much of the Kernel’s performance is degraded by disabling tail
call elimination. The Linux kernel in its Vanilla version was compiled with and without
tail call elimination and the kernel micro-benchmark LMbench [109] was executed on top
of these systems to assess the performance degradation. In this experiment, an average
performance overhead of 5% was observed on the kernel without tail call elimination,
what was considered as a low impact in a kernel micro-benchmark.

Considering the drawbacks on making CFI compatible with tail call elimination and
the low overheads displayed when the optimization was disabled, we decided to follow
kCFI’s implementation with no support to it. As disabling tail call elimination became
a requirement for kCFI, these overheads were incorporated to kCFI’s own overhead. All
previous performance comparisons considered that the protected version was compiled
without tail call elimination, while the unprotected version had it enabled.
Dynamically Loadable Kernel Modules. Although kCFI supports the use of load-
able kernel modules, the analyses done to build the CFI Map are bind to the source files
being compiled. Because of that, compiling modules to be loaded in a system which was
previously built may break assumptions used in CFI policies, such as which functions are
indirectly invocable. In these cases, CFI Map compatibility must be recovered, and this
can be done through full system recompilation.
Improving Granularity. As previously shown, kCFI introduces a significantly more
restrictive policy than other coarse-grained CFI implementations. Yet, it is still possible
to reduce its granularity even further through the use of context information which is
dynamically verified during runtime, such as when a shadow stack is in place, as suggested
by Abadi et al. [4]. Chapter 5 proposes different shadow stack architecures for the kernel,
along with a discussion regarding its viability in terms of performance costs.



Chapter 5

A Study on Kernel Shadow Stacks

We see in order to move

We move in order to see

William Gibson

In this Chapter we present a first feasibility analysis on the implementation of a shadow
stack mechanism in the Linux kernel, highlighting the implementation challenges and
limitations. Through the results observed in these experiments, we propose an approach
that takes advantage of Intel’s SMAP [34] hardware extension to enable a lower-cost
shadow stack protection strategy, alternative to using the regular page table access control
mechanism.

5.1 Overview

A shadow stack mechanism consists of a data structure meant to store replicas of addresses
which are saved in a regular process stack. Whenever a function is called, its respective
return address is copied into the shadow stack and later used to ensure a valid return
either by overwriting the address in the original stack with it or by comparing both.
Through using a shadow stack, it is possible to detect and prevent attacks based on the
corruption of stacked return addresses [23,61,116,143].

Despite the benefits, shadow stacks are not largely employed on real-world systems due
to the significant performance overheads they introduce. As these schemes assume a threat
model where an attacker can exploit a vulnerability to write arbitrarily on unprotected
memory, they must ensure that permission policies preserve values saved on the shadow
stack. Nevertheless, the system itself must write on the data structure to update entries in
the shadow stack, requiring consecutive reversal of memory permissions. Costs inherent
to updates on access permissions are frequently too expensive, leading the system to
infeasibility. Dang et al. [43] showed that even schemes without shadow stack protection
present non-negligible overheads.

Features like setjmp/longjmp may cause many stack frames to be unwinded at once,
causing assertions between values in the regular stack and the shadow stack to fail. Ex-
ceptions and other incongruences between call and ret are frequent on software due
to language features or binary optimizations and they remain as a challenge for shadow

60



CHAPTER 5. A STUDY ON KERNEL SHADOW STACKS 61

stack implementations. A standard approach to solving this problem is through allowing
returns to a given address as long as this address is present in the stack, not necessarily
at its top. This approach introduces more overhead while it is also not as restrictive as
the previous one.

As explained by Abadi et al. [4], shadow stacks can be used to refine the granularity
of CFI schemes. By using these mechanisms, backward-edges are restricted to target
a single destination1, instead of multiple call sites respective to the returning function.
Such raise in the restrictiveness is interesting, particularly since it is known that the level
of granularity provided by fine-grained CFI schemes can be exploited in a way to allow
the invocation of dispatcher functions or the injection of execution loops in a program’s
control-flow without violating the enforced CFG. These resources are particularly inter-
esting as they enable the achievement of Turing-completeness on techniques employed
during Control-Flow Bending attacks [17]. We comment on how a shadow stack would
pair with kCFI while discussing our threat model, in Section 5.1.2.

5.1.1 The need for a Shadow Stack

Some functions provide computational capabilities to attackers just by having their ar-
guments corrupted [3,17,53]. For being non-control-data attacks, these inherently do not
influence control-flow, and are transparent to CFI enforcement. Normally, the computa-
tional capabilities provided by these attacks are limited, requiring the use of control-flow
hijacking techniques to inject loops or trigger dispatcher functions in a way to consec-
utively invoke the attacked function and achieve arbitrary computation. As CFI is in
place, control-flow hijacking attacks are limited to the computed CFG. Unfortunately,
even under a fine-grained CFI, some functions may be invoked from too many places,
creating large sets of valid return targets and causing the resulting CFG to be relatively
loose. This fact creates valid paths that enable attackers to manipulate control-flow as
needed.

When a shadow stack is in use, it enforces backward-edges to follow a context-based
parity policy where each returning function must return to the call site responsible for its
invocation. Such restrictiveness breaks loop injections and dispatcher function triggers,
leaving attackers solely with computation achievable through non-control-data attacks or
CFG-restricted hijacking attacks in forward-edges, as in Control Jujutsu attacks [53]. As
demonstrated by Carlini et al. [17], shadow stacks are a meaningful protection against
this sort of attacks.

5.1.2 Threat Model

Although our current design focuses on the feasibility analysis of a kernel shadow stack,
we target a design that is concise in terms of providing defenses against a realistic threat
model. Hence, we anticipate its use under the following circumstances.

Adversarial Capabilities. For the ahead prototyped shadow stack scheme, we
assume an adversary capable of executing user programs on the OS, seeking to elevate

1Or way fewer destinations, if setjmp/longjmp compatible shadow stacks are in use
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privilege by exploiting a memory corruption vulnerability in kernel code [28, 29]. This
opponent is capable of arbitrarily overwriting return addresses stored in a kernel space
stack [25, 210, 212], being able to trigger a control-flow hijacking attack through the exe-
cution of a return instruction. Adversary’s capabilities are not restricted to precise return
address corruption — the attacker can overwrite the return address through contiguous
memory operations successfully bypassing stack smashing protections. Additionally, we
consider that the adversary knows the kernel memory layout, irrespectively of how it was
achieved.

Hardening Assumptions. We assume that the system is hardened with W^X poli-
cies, preventing the possibility of code injection or replacement in kernel memory space.
Also, we assume that protections against ret2usr attacks are in place. Particularly for one
of the strategies we assessed, we assume that the underlying platform is enhanced with
hardware features for address space isolation, such as Intel’s SMAP [34]. The shadow
stack we propose does not require the use of CFI protections such as kCFI. Although or-
thogonal, the combination of both schemes generates mutual benefits as the shadow stack
refines the backward-edge protection provided by kCFI while kCFI introduces forward-
edge protection which is not covered by a shadow stack.

5.2 Background on Linux Kernel Stacks

The concepts we present ahead are architecture-independent and can be replicated on any
hardware platform that has memory protection or address space isolation features, such
as Intel’s Write Protect (WP) bit [37] and SMAP [34]. Similarly, OSes are only required
to support these hardware features, not demanding any extra functionality. For our
preliminary implementation and further evaluation, we picked Linux running on top of an
x86-64 CPU. Before providing details regarding implementation, we provide clarifications
regarding intricacies on what concerns kernel stacks.

The Linux kernel keeps one kernel stack for every active thread. Whenever a thread
is running in user space, the kernel stack has no frames, only being filled when the exe-
cution enters into privileged mode. Each of these kernel stacks holds a structure called
thread_info which, amongst other data, contains a pointer for the task_struct respec-
tive to the running thread. This task_struct holds information about the process such
as states, scheduling, identification, inter-process communication (IPC), timers, virtual
memory and file system interaction. On x86-64 architectures, the per-thread Linux kernel
stacks have 16KB each.

Besides the per-thread kernel stacks, five specialized stacks with specific purposes exist
in kernel space. These stacks are:

• IRQ Stack: Used by the kernel for handling external hardware interrupts in a sep-
arate memory region than the running kernel stack, avoiding the need of increasing
the size of per-thread stacks. Similarly to the per-thread kernel stacks, this data
structure has 16KB.

• Double Fault Stack: Used for handling cases where handling one exception causes
another exception. In these cases, as the system is possibly running in a faulty state,
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a secondary stack is useful for enabling more accurate crash reports. This stack has
4KB.

• NMI Stack: Used for handling non-maskable interrupts (NMI). This stack has
4KB.

• Debug Stack: Used for handling hardware and software debug interrupts. This
stack has 8KB.

• MCE Stack: Used for handling machine check exceptions2 (MCE). This stack has
4KB.

The x86-64 architecture provides a feature called Interrupt Stack Table (IST) [84],
that can be used to switch stacks efficiently. Whenever an interrupt occurs, its respective
gate descriptor is loaded and verified for the existence of a valid IST code. If this is the
case, this code is used to index IST entries which are held into the Task State Segment

(TSS)3 and contain pointers to the specialized stacks. Once the right entry is loaded,
the hardware is able to set a new stack pointer and proceed with the invocation of the
interrupt handler.

Stack selection through IST can be nested as long as their respective triggering events
have different IST codes. Since nested interrupts are frequent in kernel execution, switch-
ing to the IRQ stack cannot be supported by the IST feature and is done through a
software-based mechanism. Using the IST is limited to DoubleFault, MCE, Debug and
NMI stack switches.

Kernel stacks are allocated in a special kernel space memory region known as physmap

[86]. This region maps part of the computers available physical memory directly, in a way
to allow fast dynamic kernel memory allocation.

Figure 5.1 shows all kernel stacks. On the leftmost side, each active thread has its
respective kernel thread, while the right side displays the specialized stacks. The figure
also shows the thread_info data structure on the bottom of per-thread stacks and the
IST pointing to the specialized stacks.

5.3 Design

Attackers are capable of hijacking the control-flow of an unprotected kernel through cor-
rupting return addresses stored in the stack. In our threat model, W^X and ret2usr

protections are in place, precluding attackers from redirecting kernel control-flow to ma-
liciously crafted execution payloads, requiring them to employ more sophisticated tech-
niques, such as ROP, to successfully exploit the system.

Shadow stacks pose as a meaningful protection against these threats, as they use
context-based information to improve the refinement of the program’s backward-edges in
a way unachievable through static analysis. Despite that, as the OS kernel is a central

2Interrupt 18
3TSS is a data structure that holds information about tasks. Linux design reuses TSSs, using one per

CPU, instead of one per task.
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component that affects all other parts directly in a computer system, incrementing it with
a shadow stack mechanism demands accurate fulfillment of certain requirements4. First,
the overall cost must be minimal, what precludes the use of intermediary layers between
kernel and hardware, requiring light-weight approaches such as code instrumentation.
Second, the shadow stack must be compatible with basic kernel functionalities, such
as self-modifying code and LKMs. Third, events that trigger different control flows,
such as interrupts or exceptions, may compliantly return to the halted execution without
triggering false-positive violations.

Shadow stacks are known to be computationally expensive mechanisms, especially due
to the requirement of protecting its memory pages against malicious write operations [43].
The shadow stack used in our tests consists in a prototype for a feasibility analysis. So,
we add on the top of the OS requirements the need for an architecture that enables perfor-
mance verification of different memory protection management strategies. Our first goal
is to understand these overheads and leverage different forms of tackling them, especially
through the employment of hardware features whenever possible.

The shadow stack solution we propose was designed in consonance with all the clarified
requirements for both OS and feasibility analysis — All OS requirements were considered
strictly, in a way to provide a realistic performance assessment and highlight evidence on
possible optimizations. In this prototype, all information used to determine control-flow
validity is extracted during kernel execution; such dynamic nature turns the compatibility
with LKMs and self-modifying code easy to handle. Also, our approach is inherently
compatible with events like interrupts and exceptions, not requiring any additional effort
for that. Finally, performance costs of shadow stacks are tackled by the use of a fully
compiler-based instrumentation approach that precludes the need for any hypervisor or
monitoring routine. The adopted compiler-based scheme enables easy experimentation
of different strategies for memory protection management, only requiring the addition of
new compilation passes at the back-end portion of the compiler.

4Such requirements are similar to those imposed to CFI implementations, described in Section 3.2 of
this thesis
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Figure 5.1: Kernel stacks organization
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Figure 5.2: Shadow stack access through stack pointer

Some shadow stack implementations tried to improve performance through creating
read-only memory areas around the boundaries of the shadow stack, leaving the data
structure itself writable [23]. This solution decreases overheads by preventing permission
switches prior to adding data to the shadow stack while it still provides protection from
contiguous write operations targeted to reach stack contents. Despite the benefits, this
solution is insufficient as precise memory overwrite attacks can be employed to bypass
the defenses. In our approach, we protect the entire shadow stack structure, as this is
plausibly a safe solution.

5.3.1 Kernel Shadow Stacks

To ensure correct backward-edge flow in the protected kernel, our scheme reserves a
shadow stack for each execution context existent in the kernel space — similarly to regular
stacks, which are not shared amongst different contexts, shadow stacks are also thread-
specific. These shadow stacks are allocated right above the regular stacks on memory
layout and have the same size as the respective stack. By employing this approach, it
is possible to access memory positions inside the shadow stack by adding a fixed offset
(which is the stack size) to the regular stack pointer, avoiding the need of allocating
and protecting another memory pointer. Dang et al. [43] refer to this scheme as Parallel

Shadow Stack. Figure 5.2 illustrates the scheme, in which the regular stack pointer is
incremented by an offset to point to the shadow stack.

By employing this approach, the symmetry between the regular and the shadow stack
is always kept. If the kernel uses any feature that unwinds multiple stack frames at once,
this behavior is also noticeable on the shadow stack, as the reference pointer for both
structures is the same. This design precludes the need of care regarding the equivalence
between compared return addresses on both stacks, avoiding the requirement of a relaxed
policy that is compliant with features like setjmp/longjmp. In comparison with other
shadow stack implementations, this strategy is more efficient both in terms of performance
and restrictiveness [43].
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Another advantage of using this approach, with fixed positions referenced by the reg-
ular stack pointer, is that context switches inherently switch the shadow stack in use with
no extra computational cost, decreasing the performance overheads due to shadow stack
usage. Hence, whenever kernel switches context and starts running a different execution
thread, with a different stack, the shadow stack can already be instantly accessed. The
whole scheme architecture, with the multiple shadow stacks positioned above the regular
per-thread and specialized stacks, can be seen in Figure 5.3.

Despite the benefits, the approach also introduces a challenge – as the offset is bind
to the stack size, different stacks will have different offsets, what requires functions to be
precisely instrumented with the offset respective to their stack size. Unfortunately, it is
not possible to statically identify which stack is operated by each function, as the same
function may be invoked in different contexts. To overcome this difficulty, we redesign the
kernel memory layout so that all stacks are equal, having the size of the largest allocated
stack5.

To prevent running threads from interfering with irrespective shadow stacks, we add
a modification to the kernel’s memory management system. First, we prevent the shadow
stack from being mapped into physmap, ensuring that no thread is capable of accessing
it. To allow shadow stack operations performed by its corresponding thread, we leverage
the use of the processor’s Translation Look-aside Buffer (TLB) — on the occurrence of a
context switch from user to kernel mode, the shadow stack pages are temporarily mapped
and accessed, causing them to be loaded into the TLB. Once all shadow stack pages are
reachable through the TLB, the respective pages are again unmapped.

Although the modifications to the memory page mapping mechanism ensure that only
the respective thread access its own shadow stack, attackers may still be able to corrupt

5On x86-64 Linux, 16KB



CHAPTER 5. A STUDY ON KERNEL SHADOW STACKS 67

the shadow stack through exploiting a memory bug on the running thread. To prevent
this from happening, we employ hardware mechanisms that forbid write operations on
properly marked memory pages. These protections are enabled during most of the sys-
tem’s runtime, only being disabled on demand, whenever a thread needs to save a new
address into the shadow stack. Specific details on each mechanism employed are discussed
in Section 5.4

5.3.2 Code Instrumentation

The proposed shadow stack design ensures valid returns by asserting addresses used as
targets in ret instructions. For that, our scheme employs compiler-based instrumentation
to insert the proper primitives on function prologues and epilogues. We refer to these
instruction sequences as shadow push and shadow assert.

A shadow push saves the return address referenced by the stack pointer on the shadow
stack. For that, this primitive needs to temporarily enable write operations on the shadow
stack data structure by disabling the memory protection mechanism used. Shadow pushes
are placed on function’s prologues, ensuring that every function saves its own return
address into the shadow stack before any other functionality. Figure 5.4 illustrates the
instruction sequence respective to a shadow push — the displayed sequence is generic and
does not specify the memory protection mechanism nor the offset used, leaving these to
be set accordingly to the required needs with no major harm to other components on
the scheme. For being general, this instruction sequence can be adapted to fit different
implementation strategies, what is desired given the analytical goals behind the proposed
scheme. Specific protection management with real underlying technologies is described
ahead, in Section 5.4.

1 <kernel_function>:

2 mov (%rsp),%rax

3 disable_memory_protection

4 mov %rax,-offset(%rsp)

5 enable_memory_protection

6 ...

Figure 5.4: Shadow Push

Function epilogues are instrumented with shadow asserts, which are illustrated in
Figure 5.5. In this Figure, %reg denotes any general purpose register which is dead at the
function’s epilogue. The illustrated primitives precede ret instructions and compare the
address that will be used by them with the respective address on the shadow stack. If the
compared addresses match, then control-flow jumps to the ret instruction. Otherwise,
a shadow stack violation handler function is invoked, halting the system or performing
fail-safe routines. Notice that there is no need to manage memory protections during
shadow asserts because no write operation is carried out on the shadow stack. As these
operations are costly, this is another efficiency trait of our approach.
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1 mov (%rsp),%reg

2 cmp -offset(%rsp),%reg

3 je 5

4 callq <ss_vhndl>

5 retq

Figure 5.5: Shadow Assert

5.4 Implementation

We built our shadow stack instrumentation tool on top of the LLVM compiler, as a back-
end compilation pass — this pass injects shadow pushes and shadow asserts on each
function prologue or epilogue, as described in Section 5.3. Differently from kCFI’s ap-
proach, the shadow stack instrumentation does not require prior analysis and can be
applied straightforwardly during IR translation into machine code.

With the purpose of evaluating different shadow stack protection approaches, we im-
plemented shadow pushes using two different methodologies for memory access manage-
ment. First, we used the WP bit [37] provided on Intel platforms which can be used
to allow kernel code to write on read-only pages. The second approach used the SMAP
extension [34], also available on Intel platforms, which isolates user space memory from
kernel space memory, precluding it to be directly accessible from kernel context.

5.4.1 Write Protect Bit

A straightforward approach for protecting the shadow stack is through using the regular
page table entry-based access control mechanism. In this method, the memory pages
which hold the shadow stack are marked as read-only and, when a shadow push needs to
write on these pages, it first disables the WP bit from the control register CR0. By disabling
this bit, supervisor-level procedures are allowed to write on read-only pages [37]. Right
after writing to the shadow stack, the shadow push re-enables the WP bit in CR0.

CR0 is a special-purpose register, which cannot be directly operated through arithmeti-
cal instructions, requiring its value to be loaded into another general-purpose register,
operated and then stored. Although the value in CR0 can be loaded whenever necessary,
doing it on every function prologue is costly, especially because the value loaded rarely
changes after system boot. Instead, we reserve two registers R10 and R11, to keep the
values of CR0 with WP set and unset so that it can be loaded instantly during the shadow
push. Despite the benefits of reserving these registers, such method precludes them from
general-purpose uses, forcing the compiler to spill variables into memory more frequently
and raising performance overheads.

Figure 5.6 illustrates the shadow push operation which employs the CR0 approach
for protecting shadow stack memory. In the presented instruction sequence, the return
address is loaded into RAX and CR0 is updated with a disabled WP bit. After that, the
return address is stored in an address referenced by the stack pointer plus an offset, which
results in a shadow stack address, and then CR0 is loaded with a value that sets the WP
bit.
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1 <kernel_function>:

2 mov (%rsp),%rax

3 mov %r10,%cr0

4 mov %rax,-offset(%rsp)

5 mov %r11,%cr0

6 ...

Figure 5.6: WP Bit Shadow Push

5.4.2 SMAP

SMAP [34] is an x86-64 architecture extension that enforces isolation between kernel and
user space, precluding user data to be dereferenced from kernel context. Although de-
signed with a different purpose, SMAP can be leveraged to protect kernel data structures.
For that, protected pages must be marked as user-mode pages, what will turn them inac-
cessible from the kernel context whenever the feature is enabled. Our scheme marks the
shadow stack memory pages as such when these are temporarily mapped into physmap,
before priming the TLB with their respective entries.

SMAP includes two new instructions to the processor’s instruction set, which are
clac and stac. Through the clac instruction, it is possible to disable the isolation
mechanism, allowing the kernel to operate user space memory whenever needed. Once
the kernel no longer needs to deal with user space, and the isolation is desirable again,
the stac instruction can be used to re-enable it.

The shadow stack can be written to as illustrated in Figure 5.7. In this figure, the
return address is first loaded from the stack, then the isolation mechanism is disabled, the
address is saved to the shadow stack by using the stack pointer plus an offset, and finally
the isolation is re-enabled. The disadvantage of using SMAP is that this approach also
isolates reads from protected memory, requiring SMAP instructions to also be included
in the shadow asserts, as illustrated in Figure 5.8.

1 <kernel_function>:

2 mov (%rsp),%rax

3 clac

4 mov %rax,-offset(%rsp)

5 stac

6 ...

Figure 5.7: SMAP Shadow Push

1 mov (%rsp),%reg

2 clac

3 cmp -offset(%rsp),%reg

4 stac

5 je 7

6 callq <ss_vhndl>

7 retq

Figure 5.8: SMAP Shadow Assert
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Figure 5.9: Shadow stack layout with read-only mapping

1 mov (%rsp),%reg

2 cmp -(2*offset)(%rsp),%reg

3 je 5

4 callq <ss_vhndl>

5 retq

Figure 5.10: SMAP Shadow Assert with read-only stack

SMAP With Read-Only Shadow Stack Copy

To avoid the overheads of switching the memory permissions during the assert operation,
we propose a third scheme, also based on SMAP. In this scheme, we extend the layout
design proposed in Section 5.3 by adding a read-only mapping of the shadow stack above
the explicitly unmapped pages. This design provides means through which asserts can
perform the required comparisons without exposing the data structure or requiring extra
operations, as the read-only pages can be used safely for this purpose.

In the proposed design, the shadow stack can be accessed through dereferencing the
stack pointer added by a fixed offset, which is equivalent to the stack size. Similarly,
the read-only shadow stack can be accessed for read operation by dereferencing the stack
pointer added by a fixed offset, which is equivalent to twice the size of the stack. The
memory layout for the stacks can be seen in Figure 5.9, and the instruction sequence
respective to the assert, without the memory protection instructions and with the read-
only shadow stack correspondent offset, can be seen in Figure 5.10.
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5.4.3 Shadow Stack Optimizations

Because shadow stack operations happen during prologues and epilogues, the introduced
overhead is bind to the execution of call/ret instructions. Hence, a form of reducing the
general cost of the scheme is through the use of optimizations that preclude the existence
of these instructions, like tail call elimination and inlining.

Tail Call Elimination

Tail call elimination optimizations convert calls that precede ret instructions into direct
jumps, avoiding the execution of consecutive returns and promoting stack-frame reuse
by the top-most function in the calling chain. Although tail call elimination does not
break the shadow stack scheme, the tail-called function redundantly executes a second
shadow push — If the stack pointer points to the return address when the tail-called
function starts, the shadow push will execute a redundant copy of the return address on
the shadow stack. If not, the shadow push will only save values which will never again be
used.

This behavior opens space for an optimization. As this function may be called in a
context where it does not reuse the caller’s stack frame, the shadow push in the tail-called
function cannot be removed. Despite that, it is still possible to avoid its execution by
adding an offset to the jmp instruction generated during the call conversion. As shadow
pushes are injected at the beginning of the prologues, skipping them won’t cause damage
to the execution semantics. Figure 5.11 illustrates tail call elimination applied to code
instrumented with a shadow stack. On Figure 5.11(a) the shadow push is redundantly
called by anubis_crypt while, in Figure 5.11(b), an offset is added to the jmp target,
bypassing the shadow push and branching directly to the function’s original prologue.

1 ...

2 callq anubis_encrypt

3 ...

1 <anubis_encrypt>:

2 shadow_push

3 mov 0x5c(%rdi),%ecx

4 add $0x60,%rdi

5 jmp <anubis_crypt>

1 <anubis_crypt>:

2 shadow_push

3 push %rbp

4 ...

5 pop %rbp

6 shadow_assert

7 retq

call

jmp

(a) Regular Tail Call Elimination

1 ...

2 callq anubis_encrypt

3 ...

1 <anubis_encrypt>:

2 shadow_push

3 mov 0x5c(%rdi),%ecx

4 add $0x60,%rdi

5 jmp <anubis_crypt+2>

1 <anubis_crypt>:

2 shadow_push

3 push %rbp

4 ...

5 pop %rbp

6 shadow_assert

7 retq

call

jmp +

offset

(b) Optimized Tail Call Elimination

Figure 5.11: Assembly before/after tail call elimination
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As explained in Section 4.4, kCFI does not support tail call elimination because it
would undesirably relax the enforced policies. As shadow stack restrictiveness is not
determined by previously computed CFGs, the implications of tail call elimination on
kCFI are not sustained when backward-edges validation is made through this kind of
mechanism. Hence, besides the introduced restrictiveness, incorporating a shadow stack
to kCFI also restores the scheme’s compatibility with tail call elimination.

Inlining

Inline optimizations expand call instructions into the function which are called by them,
embedding the callee into the caller. This kind of optimization precludes the existence of
a call/ret pair, what benefits our shadow stack approach.

Despite the benefits, aggressively applying inline optimizations creates binary size
overheads. As larger binaries normally present less locality, there is also an effect on the
code cache efficiency. Besides, unbounded recursive inlining may result in the explosion
of the binary size. Due to these reasons, the use of such optimization must be done in a
balanced way. Considering that, our current approach employs inlining optimizations as
defined by the compiler’s algorithm.

5.5 Evaluation

Willing to identify which of the proposed designs performs better prior to the implemen-
tation of a proper shadow stack, we did a preliminary evaluation. During this process, the
Linux kernel was instrumented with primitives that mimic the correspondent shadow stack
operations and later tested during the execution of the LMbench [109] micro-benchmark,
enabling the overhead comparison amongst the underlying designs. The system used for
measurement on all tests was an Intel(R) Core(TM) i7-6700 8 core CPU @ 3.40GHz, with
32GB RAM memory, running Debian Linux with GNU kernel v3.19.0. Every program
unit inside the benchmark was executed ten times, and the presented results are averages
of the observed numbers.

The mimic primitives employ the previously mentioned memory protection hardware
features analogously to the cases where the kernel has its memory layout redesigned to
provide space for the shadow stacks. These instruction sequences can be seen in Table
5.1. This resulted in a set with four tested kernel versions: (i) Vanilla, which is not in-
strumented and is used as the comparison baseline; (ii) WP Bit, which is compiled with a
write-protect bit/page table entry-based protection primitives; (iii) SMAP, which is com-
piled with SMAP primitives both on prologues and epilogues; and (iv) SMAP+RO, which
is compiled with SMAP primitives on the prologues and regular primitives on epilogues,
as it would happen with the use of a read-only shadow stack mirror. For the WP Bit case,
we also reserved the register R10 and R11, precluding them from being allocated by the
compiler — by comparing the vanilla kernel with and without this registers reservation,
we noticed an overhead of ≈10% when running LMbench.

Figure 5.12 illustrates the performance overheads for the evaluated kernels. The charts
presented are in logarithmic scale as the costs for the WP Bit version are significantly
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Version Shadow Push Shadow Assert

WP Bit

1 <kernel_function>:

2 mov (%rsp),%rax

3 mov %cr0, %r10

4 mov %r10, %cr0

5 mov %rax,(%rsp)

6 mov %r10, %cr0

7 ...

1 ...

2 mov (%rsp),%reg

3 cmp (%rsp),%reg

4 je 6

5 callq <ss_vhndl>

6 retq

SMAP

1 <kernel_function>:

2 mov (%rsp),%rax

3 clac

4 mov %rax,(%rsp)

5 stac

6 ...

1 ...

2 mov (%rsp),%reg

3 clac

4 cmp (%rsp),%reg

5 stac

6 je 8

7 callq <ss_vhndl>

8 retq

SMAP RO

1 <kernel_function>:

2 mov (%rsp),%rax

3 clac

4 mov %rax,(%rsp)

5 stac

6 ...

1 ...

2 mov (%rsp),%reg

3 cmp (%rsp),%reg

4 je 6

5 callq <ss_vhndl>

6 retq

Table 5.1: Shadow Stack primitives

higher, reaching 24.72x in the Select TCP test, which is the worst case. On average, WP
Bit presented an overhead of 8.6x for latencies and 5.01x for communication throughputs.
The overheads were drastically decreased by employing SMAP instead of using the WP
Bit mechanism — SMAP presented average overheads of 2.31x and 1.8x for latencies and
communication throughput while SMAP+RO reduced these even further, respectively
inducing overheads of 1.69x and 1.49x. The maximum overheads presented by SMAP
and SMAP+RO were of 5.04x and 3.28x, both in the Select TCP test.

5.6 Discussion and Future work

During the development of this work, we noticed some limitations and opportunities
regarding our shadow stack approach. Prior to turning the observed results into a real
implementation, we envision that some topics need to be considered. We highlight the
most relevant amongst these here, in a way to foment discussion and proper solutions to
the matters.
Assembly Support. Our approach does not support Assembly functions yet. Neverthe-
less, developing such support follows the same method used in kCFI— most functions can
be automatically patched through source code rewriters, while a small set of macros that
do not follow a clear pattern will require manual patching. As instrumenting Assembly
functions with shadow stack primitives do not need CFG information for determining tag
values, this process is even more straightforward in this context. Nevertheless, differently
from kCFI, not instrumenting Assembly code won’t trigger false-positive violations.
Better Inlining Strategies. Although we currently only employ inlining optimizations
as defined by the compiler’s algorithm, there is a clear opportunity for improving the
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Figure 5.12: Performance overhead introduced by each memory protection approach
(logarithmic scale)

system’s performance by applying these optimizations more aggressively or by targeting
them with the assistance of profiling information. By employing dynamic analysis in the
identification of the most frequently executed call instructions, it is possible to select the
most beneficial targets for inlining regarding runtime cost. By combining this information
with the callee size, which is already used by the compiler’s algorithm, the equation used
to select inlining candidates can be keenly reformulated, increasing its benefits under the
shadow stack context.
Memory Protection Keys Extension. Intel recently announced MPK [35], a x86-64
architecture extension that enables setting page permissions to an entire group of pages
with a single operation. Unfortunately, by the time we developed this research, MPK was
not yet available in any Intel product and, for this reason, we did not assess its efficiency.
Despite that, future shadow stack implementations following our proposed design can
clearly benefit from this technology.
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User space Shadow Stacks. The presented shadow stack design is strictly applicable
in the kernel context, especially because of the memory protection mechanisms employed.
During the research which culminated in this thesis, we developed a shadow stack imple-
mentation based on DBI methods for user space applications – this implementation relies
on an asynchronous architecture and employs efficient communication methods to achieve
better performance. For not being focused on the kernel domain, we moved the details
regarding this implementation to the Appendix A. Yet, its design and use are orthogonal
to kernel solutions discussed in this thesis.



Chapter 6

Related Work

You must understand that there is more than

one path to the top of the mountain

Miyamoto Musashi

As kernel exploitation through ret2usr methodologies was addressed by different pro-
tection technologies [34, 89, 113, 132–134, 168, 232], attackers were pushed into evolving
control-flow hijacking techniques for reusing code confined to the kernel address space.
From these techniques, ROP and its variants [11,142] were widely employed for enabling
Turing-complete computation even when launched over small code bases [15]. Although
widely adopted to attack user space programs, ROP-based attacks were shown to work
in kernel software [77,122].

Trying to protect the kernel against all sorts of control-flow hijacking attacks, in-
cluding ROP-based variants, researchers proposed different schemes that consist of CFI
implementations or approaches largely based on its idea of CFG enforcement. The CFI
concept was originally introduced by Abadi et al. [4], and has been largely explored for
protecting user space software [10,22,44,108,110,131,235,236].

kCFI is a kernel CFI mechanism designed to support OS features and intricacies,
like system calls, LKMs and mixed Assembly/C source code. Despite being inspired by
the original, user space centered, proposal by Abadi et al. [4], kCFI makes better use
of architectural traits, generating close to zero memory contention. Additionally, kCFI
introduces CGD, as an alternative for increasing CFI restrictiveness for the cases where
shadow stacks are not feasible.

Coarse-grained CFI for OSes

KCoFI [41] was the first solution to fully implement CFI for OS kernels. This solution
employs a tag-based coarse-grained mechanism built on top of the secure execution layer
SVA [42]. Besides being insufficient as a security mechanism for enforcing a weak policy
that was proved incapable of breaking control-flow hijacking attacks [18, 45, 67, 68, 161],
the overheads introduced by the scheme range from 2x to 3.5x, what is considered high
for a central system component as the kernel.

When compared to KCoFI, kCFI is more efficient both in terms of performance and
security — it directly instruments code with fine-grained assembly primitives which are
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more restrictive than coarse-grained approaches and much less costly than approaches
dependent on execution layers. While not susceptible to attacks against coarse-grained
CFI, kCFI can also be considered more robust than KCoFI, as it was implemented and
evaluated over the Linux kernel while KCoFI limits its coverage to the less complex code-
base which is the FreeBSD OS.

Fine-grained CFI for OSes

HyperSafe [226] employs non-bypassable memory lockdown and restricted pointer index-

ing to implement CFI for hypervisors. While memory lockdown protects the hypervisor
code and static data from being compromised, restricted pointer indexing creates a code
structure that enforces all indirect branches to target addresses present in a pre-computed
destination table.

While HyperSafe is restricted to hypervisors, a similar approach is employed by Ge
et al. [65] to implement fine-grained CFI for kernel software. As the restricted pointer
indexing approach requires a pre-computation of valid target addresses, this scheme in-
herently breaks LKM support, which is an important feature of most modern kernels.
Besides, achieving good performance in this implementation requires amortizing the costs
introduced by execution flow indirections, what is done through code optimizations that
may not be applicable in a given context and that are more scarce on larger code bases.
In fact, Ge’s implementation restricts its support to the OSes FreeBSD and MINIX.

kCFI implements fine-grained CFI for kernels, being capable of supporting the Linux
kernel with its basic OS functionalities, such as LKMs. For this reason, kCFI can be
considered more robust and compliant to the OS requirements than Ge’s implementation,
that only supports FreeBSD and MINIX and completely precludes LKMs. On what
concerns the enforced restrictiveness, Ge’s implementation is presented with smaller AIA
values than kCFI. Yet, we argue that the code-base used for computing the metric is much
smaller than the one used in kCFI (Linux), turning unfair the direct comparison through
AIA. Additionally, if extended with a shadow stack as the one describe in Chapter 5,
kCFI becomes more restrictive than Ge’s implementation, even under the unfair criteria
comparison. Performance-wise, kCFI is slightly better than Ge’s implementation and
such efficiency is achieved without the dependency on code optimizations, thus, being less
coupled to the underlying code-base.

Return-Address Protection

The Linux patch set PaX [173] implements a solution called RAP [174] as a way of tackling
control-flow hijacking attacks. This solution reserves a general-use register for keeping an
XOR cookie, which is used as an encryption key during kernel execution. Although the
scheme protects itself against brute-force attacks by using different cookies for different
running kernel threads, this measure is not enough as it may still be exploitable through
memory disclosure attacks that can unveil encrypted values on the stack and enable the
derivation of the cookie.

kCFI does not rely on secrecy in any aspect — it remains a solid defense even in
the presence of memory disclosure bugs. If not compromised, the granularity enforced
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by RAP is equivalent to that respective to shadow stacks, imposing similar protection
to kCFI when it is extended with one. Also, RAP requires a register to be reserved for
its exclusive use, what leads to less efficient code as the compiler’s register allocation
will be required to perform spills more frequently. Performance numbers regarding RAP
are either from protected user space applications or not specific enough when referring to
kernel protection1, precluding a direct performance comparison between both mechanisms.

Hardware-enforced CFI

CET [38] is an architecture extension proposed by Intel to provide hardware enforced
CFI. CET includes a transparent shadow stack structure which is implicit to call and ret

instructions, providing efficient and simple protection for return edges. To enable forward-
edge protection, CET introduces new instructions to be used for marking valid targets
for indirect calls, enabling compiler-supported coarse-grained CFI. As CET was not yet
released in any Intel product, little is known regarding its overheads, OS compatibility
and support for features like setjmp/longjmp or code optimizations.

kCFI imposes finer-granularity on what concerns forward-edge protection, being, over-
all, more restrictive than CET when extended with a shadow stack. In fact, the coarse-
grained model used by CET for protecting forward-edges was already proven flawed
[18, 45, 67, 68, 161]. Additionally, CET is a vendor-specific x86 extension whose func-
tionalities were not announced by any other fabricant – its benefits are limited to specific
CPUs and cannot be used for the protection of legacy systems.

Cryptographic CFI

Cryptographic CFI [108] is a method based on the computation of Message Authentication

Codes (MACs) for each code pointer. Through verifying the MAC prior to using the
pointer it is possible to prevent the use of corrupted values. MAC computation also
uses the memory address in which the pointer is stored, preventing the use of a pointer
copied from a different location along with its MAC. For performance, this method uses
cryptographic hardware instructions.

Despite its efficiency in terms of granularity, this approach presents some limitations.
First, it remains vulnerable to replay attacks that use a pointer which was previously
stored on the attacked address. For using cryptographic hardware extesions, this method
reserves the respective registers to store keys, preventing them from being used along with
cryptographic functionalities in different contexts. Finally, as the MAC computation uses
memory addresses as one of its inputs, pointers copied through functions like memcpy will
have its MAC invalidated. In the kernel context, the last two issues are critical, as the
first breaks compatibility with handwritten Assembly functions that use the mentioned
hardware resources and memcpy-like operations are frequent during kernel execution.

1In the kernel setting, a 25% overhead is reported for when the kernel is fully protected, but information
regarding kernel version and which benchmarks were used during the tests is not provided
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Kernel Shadow Stack

DRK [56] is a security tool that employs DBT for instrumenting kernel entry points
dynamically. Through this instrumentation, DRK builds a shadow memory of kernel
data structures, including the stack, enabling the detection of corrupted return addresses.
Although this method does not require source code recompilation, shadow memory instru-
mentation introduces very high overheads that can reach 10x when compared to native
performance, being unfeasible for real world scenarios.

The kernel shadow stack design presented in Section 5 is followed by a realistic cost
analysis which indicates that the model proposed outperforms DRK significantly. Both
implementations are equivalent in terms of restrictiveness.

The work by Dang et al. [43] describes an approach called parallel shadow stacks in
which the stack pointer respective to the regular stack is incremented by an offset and
reused to access the shadow stack structure, that is in a fixed known position. The
approach is implemented on user space applications and shown to be the most efficient
form for accessing a shadow stack.

The design we propose employs a similar approach, providing a similarly efficient access
to the kernel shadow stacks. Yet, although the mentioned work affirms that shadow stack
performance cannot be substantially improved, we go further and optimize it by taking
advantage from tail call elimination to prevent the execution of unnecessary shadow stack
operations.

Fine-grained CFI Attacks

As previously discussed in Section 2.3.2, Fine-grained CFI may be vulnerable to attacks
under very particular circumstances. Although the described attacks do redirect control-
flow, they perform such redirection in a way that do not diverge the enforced CFG,
thus, not causing policy violations. In Section 4.2 we argue that further understanding
regarding the feasibility of these attacks in the kernel context is required, illustrating that,
for example, the printf-oriented programming technique employed in the Control-Flow
Bending [17] attack is not applicable in the setting due to differences between printf()

and printk().
Even if we assume that the kernel is vulnerable to these attacks, we state that the

solutions we propose raise the bar for successful exploitation. As demonstrated by Carlini
et al. [17], shadow stacks stand as a substantial defense against Control-Flow Bending
attacks, as these mechanisms protect against return address corruption and prevent at-
tackers from backwardly traversing the enforced CFG. In the absence of a shadow stack,
kCFI also makes such task harder, as it creates more restrictive CFGs through the use
of the CGD technique. Although the attack demonstrated by Evans et al. [53] cannot
be prevented through a shadow stack2, the CFG enforced during their attack is different
from ours and the example exposed would not work against code protected through our
heuristics. Whereas this fact does not fully close the problem, it highlights that there ex-
ist room for improvement on what concerns forward-edge restrictiveness, either through

2For being based on a forward-edge corruption
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heuristics, source-code annotation or even through requiring code compliancy in a way
to allow more precise pointer analyses. In fact, kCFI stands as a solid framework for
developing this study in the kernel setting.



Chapter 7

Conclusions

We can only see a short distance ahead, but we

can see plenty there that needs to be done

Alan Turing

In this thesis we investigated the hypothesis that the construction of fine-grained
CFI can be leveraged through multi-level program analyses in a way to enable efficient
implementations for the kernel setting, not precluding code coverage, OS functionalities
and good performance.

To this end, we first presented kCFI, a fine-grained tag-based CFI implementation
capable of supporting the Linux kernel and protecting it against modern control-flow
hijacking techniques, including ROP attacks. kCFI works by instrumenting the kernel
source code with indirect branch assertions that verify the validity of a control-transfer
before its execution. kCFI’s design takes advantage of traits in the x86-64 architecture,
introducing only low-cost memory operations and making use of instructions with negligi-
ble overhead to mark code – kCFI outperforms previously implemented CFI mechanisms
for the kernel setting, presenting overheads of 8% and 2% respectively on micro and macro
benchmarks. Unlike previous approaches, kCFI achieves its goals without using restricted
pointer indexing or converting indirect branches into direct ones. For this reason, kCFI
does not harm system features and is the first kernel CFI approach to support LKMs. On
top of that we also state that kCFI is robust to the point of fully supporting the Linux
kernel, being the first implementation to fully implement and evaluate fine-grained CFI
in this OS.

Additionally, we pave the way for an OS shadow stack implementation through the
presentation of a first study on the design and performance of these mechanisms in the
kernel setting. The proposed design is realistic considering the internals of Linux, only
depending on features that already exist or can be extended to provide the needed re-
sources. In this study we show that the overheads introduced by the shadow stack can
be significantly lowered through the employment of better self-protection strategies — in
fact, we demonstrate that for the shadow stack scenario, where access permissions must
be consecutively reseted, memory pages can be efficiently protected by using a hardware
feature originally developed for address space isolation.
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7.1 List of Publications

Throughout the development of the research that resulted in this Thesis, we have pub-
lished the papers listed below. The first two papers cover an implementation of user
space shadow stacks through the use of DBT tools, which is detailed in the Appendix A.
FLOW, a kernel CFI prototype that later became kCFI, was described in a paper that
was published and awarded as best paper on SBSeg 2016. As FLOW was later extended
with CGD, Assembly support and nopl-based tags, this new version was described in a
paper which is currently under review.

• João Moreira, Divino Lucas, Guido Araujo, Edson Borin, Sandro Rigo. Asyn-
chronous Program Flow Verification Through Binary Instrumentation in QEMU. In
Workshop on Architectural and Microarchitectural Support for Binary Translation
2012. - AMAS-BT 2012.

• João Moreira, Lucas Teixeira, Edson Borin, Sandro Rigo. Leveraging Optimization
Methods for Dynamically Assisted Control-Flow Integrity Mechanisms. In 26th
International Symposium on Computer Architecture and High Performance Com-
puting 2014 - SBAC-PAD 2014.

• João Moreira, Sandro Rigo. Go With the FLOW: Fine-Grained Control-Flow In-
tegrity for the Kernel. In XVI Simpósio Brasileiro em Segurança da Informação e
de Sistemas Computacionais - SBSeg 2016. Best paper award

Under review:

• João Moreira, Sandro Rigo, Michalis Polychronakis, Vasileios Kemerlis. kCFI: Fine-
Grained Control-Flow Integrity for Commodity Operating System Kernels. In El-
sevier Computers & Security Journal.

7.2 Future Directions

Considering statistics from public vulnerability databases [39, 125], it is unrealistic to
think that memory corruption bugs will cease from existing anytime soon, or even in a
distant future. Memory-safe programming languages, like Java or Ruby, aren’t capable
of covering the full set of domains to which software is applied. Especially in low-level
settings, like the OS kernel or embedded systems, the use of languages that do not provide
memory access abstractions is still a constant that occasionally leads to the occurrence
of exploitable programming bugs. Yet, modern methods for identification and prevention
of software bugs in unsafe programming languages [145] remain distant from fully closing
the matter.

Given this context, we believe that methods for software self-protection are a promis-
ing research field, specially on what concerns finding or improving efficient solutions for
accurately defeating attacks without depending on the superposition of new methods. In
this sense, we envision that it is better to look for solid and concise methods, fitted to a
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particular domain and that do not trade effectiveness for generality. We understand that
CFI is an attempt in this direction, as it defends against control-flow hijacking attacks ir-
respectively to the presence of other security augmentations, only depending on execution
environments that respect policies like W^X and address space isolation. This notion is
even stronger when we think about a CFI mechanism that is specific to the kernel setting.
A clear example of what we intend to avoid is the fragile relationship between ASLR and
stack canaries, in which bypassing the first consequently diminishes the effectiveness of
the second.

Control-Flow Integrity

Accordingly to our vision, we intend to pursue efficiency while enforcing control-flow
correctness. Specifically, we plan to improve CFI methods in a way to make them more
accurate and reliable, preventing possible circumventions. The first logical step towards
this direction is finishing a de facto shadow stack implementation for the kernel, providing
the most accurate CFI mechanism in terms of return granularity. This implementation
must take into account the introduction of the CET [38] extension, recently proposed by
Intel and much expected by the security community.

On what concerns forward-edge protection, we envision a few improvements to kCFI.
First, it is possible to combine the already employed heuristics with program analyses to
reach narrower CFGs. To this end, pointer analyses and source code information can be
used to identify indirectly unreachable targets, enabling the reduction of valid target sets.
Simultaneously, we did not explore any dynamic approach for computing or pruning the
used CFGs, what leaves an interesting open topic. Finally, we also consider the possibility
of developing user-assisted identification of valid targets through the introduction of new
function attributes.

Non-Control Data Attacks Mitigation

As previously exposed, non-control-data attacks remain a threat against software. Con-
sidering this fact, an important direction to pursue is the early identification and possible
mitigation of these attacks. We believe that by employing multi-level analyses methods,
as done in kCFI, it may be possible to tackle these problems. To this end, we envision
the addition of relevant dynamic methods like runtime profiling, fuzzing [228] and Data

Flow Tracking-based analyses [88] on top of the already employed analyses.

Operating Systems Security

Considering the central relevance of the kernel as a system component and that critical
security flaws remain submerged in its internals, we understand that this is a meaningful
ground for security improvements. Along our future work we intend to investigate how
new features and hardware extensions may influence the kernel security. In the near future
we expect the release of CET and MPK [35,38] extensions to evaluate how our solutions
stand or can be improved in the respective new systems.
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Appendix A

A DBI-Based Shadow Stack

A.1 Introduction

Many of the solutions proposed to fix security problems are based on recompilation or
source code modification, what is unfeasible under contexts where programs are dis-
tributed in the binary form. Besides, it is not a novelty that applications are frequently
distributed with intentionally hidden flaws. As DBI tools operate programs directly at the
binary level, these tools are seen as an interesting enabler for security enhancement under
these specific contexts. In this Appendix we present a shadow stack implementation for
user space applications built on top of a DBI tool.

The proposed shadow stack implementation, which we call LORD, employs an asyn-
chronous design capable of separating the analysis overheads into different execution
threads without stalling the protected application, decoupling the translation-implicit
and protection costs. LORD was implemented as an experiment on shadow stacks design
and was developed in the early days of the research presented in this thesis. Despite being
implemented in a different domain, these experiments leveraged our knowledge regarding
the costs of DBI strategies employed on the implementation of hardening features, leading
us to adopt more efficient approaches in terms of performance for achieving the require-
ments of a kernel design. As LORD is not a kernel solution, we fit it as an Appendix.

A.2 Design

Prior to designing our shadow stack, we built a DBI platform which supports asyn-
chronous analyses of binaries running on top of it. To enable these analyses, the platform
instruments code during runtime, adding code snippets that will forward information to
externally plugged modules capable of leveraging information about the execution context.

Because communication also introduces overheads, we designed the tool to also support
a hybrid approach — analysis can be performed both online and asynchronously, being
prone to balancing accordingly to the context. Through exploring this architecture, we
could understand better the cases in which the communication costs more than managing
the data inside the platform.

When an application is running on top of our platform, the three main components of
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the scheme are (i) the Main process, which is the application being instrumented and
protected; (ii) the Verifier, which analyses information regarding the main process and
(iii) DBI platform, which is responsible for running, translating and instrumenting the
main process with functionalities that will analyze or forward information to be analyzed
by the verifier process.

A.2.1 Asynchronous Approach vs Online Approach

Both asynchronous and online approaches introduce different difficulties and advantages
to the analyses built on top of the platform. The contrast on the most relevant aspects
of each approach is presented below.
Parallelizable architecture: By using an asynchronous scheme, the whole design is
inherently parallelizable, being suitable for multi-processed and heterogeneous environ-
ments. This characteristic enables features such as (i) the exploitation of resources such
as GPUs or idle processors in different machines on the same data-center; (ii) load bal-
ancing reconfiguration through the modification of the CPU time of the verifier processes
whenever higher priority tasks need to be executed; (iii) capability of plugging new anal-
ysis routines to the verifier process without the need to restart the analyzed process and,
finally, (iv) the possibility of analyzing processes that are executed on geographically
distant machines, even after an extended period of time.
Decoupling analysis overhead from the main process. The asynchronous approach
also decouples the verification costs from the main process execution, opening space for
sophisticated analysis that would be too heavy for online execution.
Delay on reaction mechanisms. For being asynchronous, the identification of anoma-
lies is delayed on this approach. The main process execution won’t be halted until its
validity is verified. This characteristic implies in different reaction mechanisms, focused
on fixing attack consequences, instead of avoiding them.
Additional communication overheads. The communication between the two pro-
cesses introduces additional overhead that is inexistent when using the online approach.
To better understand these costs, we leverage the use of pipes and shared memory as a
communication mechanism, even thought the later poses a slightly more invasive imple-
mentation, requiring additional verification of the communication interfaces to ensure its
safety.
Memory isolation. The distributed design of the asynchronous approach, which em-
ploys different processes on the achievement of its tasks, inherently builds access barriers
between its components. Depending on how the communication between these compo-
nents is done, memory safety comes at no additional cost.

The described characteristics highlight that each approach is better under certain cir-
cumstances. As the DBI-generated code is translated during runtime, the whole scheme
enables the implementation of a platform that can benefit from both, changing the em-
ployed strategy for performing the intended analyses based on context information. These
guidelines led the development towards a hybrid, context-sensitive, platform.
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A.3 mQEMU: Binary Instrumentation with QEMU

QEMU is an open source machine emulator capable of executing cross-platform applica-
tions and operating systems [8,149,150], thus being considered a Dynamic Binary Trans-
lation (DBT) tool. The DBT process in QEMU first translates each instruction of the
original program into corresponding simpler instructions called micro-operations, storing
them in an IR of the original code. After that, a dynamic code generator is invoked to
replace the micro-operations with host instructions. Each micro-operation had its behav-
ior coded in C and was previously compiled to be used by the dynamic code generator.
In this process, that can be seen in Figure A.1, the host instructions are concatenated,
forming translation blocks, which are stored in a code cache.

0x4000801af0: mov %rsp,%rdi

0x4000801af3: callq 0x4000802120

IN x86 ASM

–- 0x4000801af0

mov_i64 tmp0,rsp

mov_i64 rdi,tmp0

–- 0x4000801af3

movi_i64 tmp0,$0x4000801af8

mov_i64 tmp2,rsp

movi_i64 tmp12,$0xfffffffffffffff8

add_i64 tmp2,tmp2,tmp12

qemu_st64 tmp0,tmp2,$0xffffffffffffffff

mov_i64 rsp,tmp2

movi_i64 tmp4,$0x4000802120

st_i64 tmp4,env,$0x80

exit_tb $0x0

I.R.

mov 0x20(%r14),%rbp

mov 0x20(%r14),%rbx

add $0xfffffffffffffff8,%rbx

mov $0x4000801af8,%r12

mov %rbp,0x38(%r14)

mov %r12,(%rbx)

mov $0x4000802120,%rbp

mov %rbp,0x80(%r14)

mov %rbx,0x20(%r14)

xor %eax,%eax

jmpq 0x6225ec16

OUT x86 ASM

Figure A.1: QEMU binary translation

We built our platform on top of QEMU, in a way to extend its DBT capabilities to also
instrument code meant to be protected, turning it into a DBI tool. Whenever translating
code, the tool identifies specific contexts to which it injects instructions which augment
the application’s original capabilities. We call the modified QEMU that supports DBI as
mQEMU.
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switch(OP) {
...
case 0xc3:
GEN POP T0(s);
GEN POP UPDATE(s);
...

a. Originally generated code

switch(OP) {
...
case 0xc3:
GEN POP T0(s);
GEN HELPER TRACE(CPU T[0]);
GEN POP UPDATE(s);
...

b. Instrumented generated code

Figure A.2: Micro-operations generated for instruction 0xc3 before and after QEMU
modification

Instrumentation support on QEMU was enabled through leveraging the use of helper

functions to create interfaces between instrumentation and instrumented code. Due to
the simplicity of the QEMU’s micro-operations, it is hard to implement the behavior of
complex instructions1. Instead of encoding complex instructions in micro-operations and
later translating them into native machine code, QEMU uses helper functions. These
functions are written in C along with QEMU’s source code and are compiled to the host
architecture during the compilation of QEMU itself. When QEMU is translating code and
one of these instructions is found, instead of emitting micro-operations, QEMU generates a
call instruction to the corresponding helper function. Since the helper function is already
compiled into native machine code, the call itself suffices to emulate the instruction’s
behavior without requiring any additional translation.

The first step to enable DBI on QEMU was to write the instrumentation functions in
C, following the standards used to write helper functions. The second step consisted in
modifying the front-end stage of the translation process, introducing call instructions to
the custom helper functions along with instructions that should be instrumented. Figure
A.2 shows how the translation process was modified to emit helper function calls: each
operation has its case inside a switch statement, thus, instrumenting consists in adding
the emission for the helper function in the particular code snippet.

Since the CPU state is visible from the helper function’s scope, it is possible to imple-
ment almost any functionality that depends on processor information. It is also feasible
to modify the CPU state from the helper function, enabling instrumentation that changes
information like register values of even fix erroneous and unexpected behaviors.

A.4 LORD: An Asynchronous Shadow Stack

LORD is a shadow stack implementation based on the mQEMU, which instruments the
code with functions to log and output the target of call and ret instructions, enabling
parity verification. Since the call to the instrumentation function is emitted before the
control-flow instruction itself, its execution will take place first, ensuring that the analysis

1For example, the x86 div is implemented on QEMU in the form of a helper function
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relevant information is always logged. LORD targets the validation of return branches
only, precluding indirect call target analyses.

The verifier process, external to mQEMU execution, is responsible for collecting and
analyzing the information emitted by the instrumentation code. It builds a data struc-
ture of valid returns to executed calls and uses this information to assert every return
operation as it happens. The verifier also implements two different Shadow Stack policies,
one that enforces strict parity between call and ret instructions, and one based on a
hash map validation, which is more relaxed allowing returns to target addresses after any
previously executed call. Subsection A.4.2 goes through both policies in detail.

The communication channel between the two running processes was evaluated using
two different approaches: Linux pipes and shared memory. Both implementations follow
a minimal protocol and rely on very simple data structures that avoid all unnecessary
overhead. This enables easy hardening of the interfaces, making the corresponding source
code unlikely to be a new target for attacks.

A.4.1 Leveraging the Asynchronous Shadow Stack

To enable a better understanding of overheads and bottlenecks in the asynchronous ap-
proach, we conducted an experiment where the efficiency of the same solution with differ-
ent optimizations was compared. These various optimizations consisted mainly in project
decisions about the communication protocol used between the main and the verifier pro-
cesses. All the different versions are described below, the efficiency and benefits of each
one are later explained in Section A.5.2.
Raw communication. In this implementation, a regular pipe is opened between the
main and the verifier processes. Every time a monitored instruction is executed, a message
with an instruction code and its target is sent through the pipe to the verifier process for
analysis.
Call buffer. In this version, every call instruction executed generates a message that is
stored into a local buffer in the main process. Once a ret instruction is executed, all mes-
sages in the buffer are sent to the external process together with a final message containing
information about the ret. When compared to the raw communication method, this im-
plementation replaces a big number of small write operations with fewer but larger write
operations. The total amount of data exchanged is the same in both implementations.
Hybrid verification. Considering the Call buffer implementation, there are two worst
case scenarios where a big number of small messages are generated. In the first one,
many leaf functions are consecutively called, creating a large number of messages with
information about two instructions. In the second one, functions with only one call in its
scope are successively called, generating a first long message with information about all
call instructions when the leaf function returns, but then creating many small messages
with information about single return instructions. These scenarios reduce significantly
the benefits obtained by the Call buffer implementation. In such cases, the full overhead
of sending a message is introduced for messaging a tiny set of data.

To analyze how often the bad scenario may happen we conducted an experiment
in which we counted the number of leaf functions into the same execution instance for
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applications on the Mibench benchmark [70]. We consider as leaf one function that does
not call any function during its execution. Notice that, even if this function has calls to
other functions, it may be considered leaf or non-leaf, depending on its runtime context,
making it possible that the same function is counted as a leaf in certain conditions and
non-leaf in different ones. Table A.1 shows the numbers observed for leaf and non-leaf
functions, unveiling a large percentage of leaf functions for every application.

Due to this huge number of leaf functions on each execution instance, we developed a
hybrid scheme that combines the asynchronous and online Shadow Stack approaches. In
this scheme, parity between a call to a leaf function and its respective return instruc-
tion are locally analyzed, avoiding the need to exchange tiny messages with the external
process.

Application Leaf functions Non-leaf functions Leaf functions %

adpcm-c 39972 39 99.90
adpcm-d 39972 39 99.90

basicmath 20216164 9408100 68.24
crc32 26617774 19549 99.93

dijkstra 192803 178566 51.92
fft -i 1893252 1234169 60.54

fft 3457660 1657267 67.60
gsm-t 1865737 138615 93.08
gsm-u 1666416 102689 94.20
jpeg-c 155183 27334 85.02
jpeg-d 16893 6401 72.52

lame 2266102 405699 84.82
mad 820691 310413 72.56

patricia 4609645 1768438 72.27
qsort 2041625 451996 81.87

sha 51465 1585 97.01
stringsearch 29532 6538 81.87

susan1 1902 826 69.72
susan2 1546 601 72.01
susan3 1546 603 71.94
typeset 2039328 1022059 66.61

Leaf functions average 79.22%

Table A.1: Mibench applications - Number of leaf functions - Number of non-leaf
functions - Percentage of leaf functions

Shared memory. We also implemented a communication scheme in which messages
are exchanged through a shared memory area between both processes, instead of a pipe.
Whenever information about an instruction executed by the main process needs to be
recorded, this data is directly written to a shared buffer and is automatically visible
by the verifier process. In comparison with the pipe-based implementation, this version
avoids the need of a second memory copy from the local main process buffer throughout
the pipe.

Even though this implementation is more straightforward, the access to the buffer
requires synchronization, what was made with the use of Linux IPC semaphores [147].
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The external process was implemented as a polling mechanism that sleeps and checks the
buffer for new data. The goal of this implementation was to analyze if and how a shared
memory based mechanism would outperform the pipe based scheme.

A.4.2 Policy modules

Two policy modules for verifying the parity between call and ret instructions were
implemented on LORD. These modules are implemented as part of the LORD’s verifier
process and operate building data structures and verifying the correctness of the program
flow with information received from mQEMU.

The first policy implements a stack that is incremented whenever a message for a
call instruction is received. When a message for a ret instruction is received, the target
value on the top of the shadow stack is compared with the ret target, validating the
program flow or emitting a warning message in cases of corruption. This approach is
quite restrictive and enforces strict parity between call and ret instructions.

The second policy is based on a hash map implementation. The idea is to implement
program flow verification in a slightly more relaxed way, not enforcing call/ret order.
Once a call is executed, the address of the instruction immediately after it is added to
the hash map, being considered valid. If a return targets this address, even out of parity,
it is considered valid and no warning is emitted. This policy is efficient against attacks
that try to call injected functions or code snippets not previously executed but will not
work against attacks that merely subvert the program flow by changing a return target to
a different address that was added to the hash map previously and wasn’t yet removed.

Both policies worked smoothly on the x86_64 architecture.

A.5 Experimental Evaluation

The proposed implementation was evaluated using two different sets of applications. The
first set consisted in synthetic exploit implementations based on published vulnerabilities
and focused on verifying if the proposed solution was able to correctly detect attack
attempts on the monitored software. The second set consisted in a subset of applications
present in the Mibench benchmark [70] and focused on the analysis of the introduced
overheads, allowing better understanding and leveraging of the techniques used to speed
up the entire solution. All tests were executed on an Intel Core 2 Quad 2.4GHz with 4Gb
RAM memory machine, running Ubuntu Server 10.04.3 LTS.

A.5.1 Attack detection

Figure A.3 shows three different scenarios for a program execution. In Figure A.3a the
program follows its regular course. In Figure A.3b, the program flow was modified to
return from the node D towards F, and not towards C, as it would be expected. The edge
x depicts the corrupted return. In Figure A.3c, the program flow was modified to execute
code that was injected in the program’s memory. The injected code is represented by the
black node H.
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We implemented the described scenarios over two synthetic applications with buffer
manipulation errors that led to stack smashing based exploitations and one implemen-
tation that could be exploited through a format string vulnerability. Launching both
attacks shown in Figures A.3a and A.3b against QEMU was not a significant difficulty,
showing that, even in different execution environments, these attacks still work. The
vulnerable binaries were compiled without stack smashing protection for a more straight-
forward test — As applications built this way remain vulnerable to techniques used for
bypassing [5, 9, 16, 81, 82, 107, 153], its use would only increase the complexity of the test
without adding conclusive results. This test set covered the whole group of attacks that
overwrite return addresses stored on the program’s stack.

LORD correctly detected all attacks with both the shadow stack and the hash map
based policies. Attack detection also worked correctly with all implemented communica-
tion approaches.

A small detail about the attack described in Figure A.3b should be noticed. It is
possible to manage an attack against the hash map based policy, in which the node F is
an already executed node which was not yet returned to. In this case, F corresponds to
an address that was a return target before the x redirection. Since the policy only verifies
if the return destination is inside the hash map without caring about call/ret parity, it
would be considered a valid return and the attack would be successful.

A
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E F

x

(a) Normal program flow
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(b) Corrupted program flow

A

start
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x

(c) Corrupted program flow
towards injected code

Figure A.3: Control-flow examples

A.5.2 Performance

The performance of our solution was evaluated using applications from the Mibench
benchmark suite, covering all communication approaches described in Subsection A.4.1.
Table A.2 shows the execution time for native execution, followed by the respective slow-
down when executed on top of our implementation with the specified communication
approach. In this table, all programs were executed ten times and the arithmetic means
of the execution times for each configuration were used in the slowdown analysis. We show
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A.6 Conclusions

We described LORD, a shadow stack implementation for user space processes that sup-
ports asynchronous analysis and is built on top of QEMU. The proposed system was
tested with different approaches for communication between its components, allowing the
development of optimizations to increase its efficiency.

The experiments show that our mechanism can perform, on average, 1.46x slower than
the execution on QEMU and correctly detected attacks based on the modification of return
addresses stored on the program’s stack. It is also shown that the proposed optimizations
brought an average speedup of 2.73x in comparison to a raw implementation and that,
when particular characteristics are met, the optimized system can reach the significant
speedup of 13.84x.
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