N
»

Universidade Estadual de Campinas &
. . i~
.\’ Instituto de Computacao
- INSTITUTO DE
UNICAMP COMPUTACAO

0

Vitor Monte Afonso

Improving Android Security with Malware Detection
and Automatic Security Policy Generation

Aprimorando a Seguranca do Android Através de
Deteccao de Malware e Geracao Automatica de
Politicas

CAMPINAS
2016



Vitor Monte Afonso

Improving Android Security with Malware Detection and
Automatic Security Policy Generation

Aprimorando a Seguranca do Android Através de Detecgao de
Malware e Geracao Automatica de Politicas

Tese apresentada ao Instituto de Computagao
da Universidade Estadual de Campinas como
parte dos requisitos para a obtencao do titulo
de Doutor em Ciéncia da Computacao.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Paulo Licio de Geus
Co-supervisor/Coorientador: Prof. Dr. André Ricardo Abed Grégio

Este exemplar corresponde a versao final da
Tese defendida por Vitor Monte Afonso e
orientada pelo Prof. Dr. Paulo Licio de
Geus.

CAMPINAS
2016



Agéncia(s) de fomento e n%(s) de processo(s): CAPES, 23038.007604/2014-69; CAPES,
12269/13-1

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computagao Cientifica
Ana Regina Machado - CRB 8/5467

Afonso, Vitor Monte, 1987-
Af66i Improving Android security with malware detection and automatic security
policy generation / Vitor Monte Afonso. — Campinas, SP : [s.n.], 2016.

Orientador: Paulo Licio de Geus.

Coorientador: André Ricardo Abed Grégio.

Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Computagéo.

1. Android (Recurso eletrdnico) - Medidas de segurancga. 2. Dispositivos
moveis - Medidas de seguranca. |. Geus, Paulo Licio de,1956-. Il. Grégio,
André Ricardo Abed. IIl. Universidade Estadual de Campinas. Instituto de
Computacdo. IV. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Aprimorando a seguranca do Android através de deteccao de
malware e geragdo automatica de politicas
Palavras-chave em inglés:

Android (Electronic resource) - Security measures
Mobile devices - Security measures

Area de concentragéo: Ciéncia da Computacéo
Titulacao: Doutor em Ciéncia da Computagéo

Banca examinadora:

Paulo Licio de Geus [Orientador]

Julio César Lépez Hernandez

Eduardo James Pereira Souto

Luiz Carlos Pessoa Albini

Ricardo Dahab

Data de defesa: 19-12-2016

Programa de Pés-Graduacao: Ciéncia da Computacéo



N
»

Universidade Estadual de Campinas %
. . i~
.\’ Instituto de Computacao
- INSTITUTO DE
UNICAMP COMPUTACAO

0

Vitor Monte Afonso

Improving Android Security with Malware Detection and
Automatic Security Policy Generation

Aprimorando a Seguranca do Android Através de Detecgao de
Malware e Geracao Automatica de Politicas

Banca Examinadora:

e Prof. Dr. Paulo Licio de Geus
Universidade Estadual de Campinas

e Prof. Dr. Ricardo Dahab
Universidade Estadual de Campinas

e Prof. Dr. Julio César Lopez Hernandez
Universidade Estadual de Campinas

e Prof. Dr. Eduardo James Pereira Souto
Universidade Federal do Amazonas

e Prof. Dr. Luiz Carlos Pessoa Albini
Universidade Federal do Parana

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida académica do aluno.

Campinas, 19 de dezembro de 2016



Acknowledgements

I would like to begin thanking University of Campinas, Samsung and CAPES for the
financial support I received during these years.

I also thank my advisor Paulo Licio de Geus, who has been advising me since 2008,
even before I became a Master’s student. His recommendations and ideas were very
important for my development as a researcher and for my work.

I thank all friends and colleagues that helped me during this journey, specially André,
Dario and Furuse, who worked with me for many years. All the chit-chatting and laughter
certainly made this time very pleasant.

I would also like to thank Giovanni Vigna and Christopher Kruegel, for advising me
while I was in Santa Barbara, and also Antonio and Yanick, for the many discussions that
resulted in our NDSS paper.

Last but not least, I thank my family, my sister, mom and dad, and my girlfriend Mai
for the love and support I have always received.



Resumo

Dispositivos moveis tém evoluido constantemente, recebendo novas funcionalidades e se
tornando cada vez mais ubiquos. Assim, eles se tornaram alvos lucrativos para criminosos.
Como Android é a plataforma lider em dispositivos moveis, ele se tornou o alvo principal de
desenvolvedores de malware. Além disso, a quantidade de apps maliciosas encontradas por
empresas de seguranca que tém esse sistema operacional como alvo cresceu rapidamente
nos ultimos anos.

Esta tese aborda o problema da seguranca de tais dispositivos por dois lados: (i) ana-
lisando e identificando apps maliciosas e (ii) desenvolvendo uma politica de seguranca que
pode restringir a superficie de ataque disponivel para cédigo nativo. Para tanto, foi de-
senvolvido um sistema para analisar apps dinamicamente, monitorando chamadas de API
e chamadas de sistema. Destes tracos de comportamento extraiu-se atributos, que sao
utilizados por um algoritmo de aprendizado de méquina para classificar apps como mali-
ciosas ou benignas. Um dos problemas principais de sistemas de andlise dinamica é que
eles possuem muitas diferencas em relacao a dispositivos reais, e exemplares de malware
podem usar essas caracteristicas para identificar se estao sendo analisados, impedindo
assim que as agoes maliciosas sejam observadas. Para identificar apps maliciosas de An-
droid que evadem anélises, desenvolveu-se uma técnica que compara o comportamento de
uma app em um dispositivo real e em um emulador. Identificou-se as agoes que foram
executadas apenas no sistema real e se a divergéncia foi causada por caminhos de codigo
diferentes serem explorados ou por algum erro nao relacionado. Por fim, realizou-se uma
analise em larga escala de apps que utilizam co6digo nativo, a fim de se identificar como
este é usado por apps legitimas e também para se criar uma politica de seguranga que
restrinja as acoes de malware que usam este tipo de codigo.



Abstract

Mobile devices have been constantly evolving, receiving new functionalities and becom-
ing increasingly ubiquitous. Thus, they became lucrative targets for miscreants. Since
Android is the leading platform for mobile devices, it became the most popular choice for
malware developers. Moreover, the amount of malicious apps, found by security compa-
nies, that target this platform rapidly increased in the last few years.

This thesis approaches the security problem of such devices in two ways: (i) by ana-
lyzing and identifying malicious apps, and (ii) by developing a sandboxing policy that can
restrict the attack surface available to native code. A system was developed to dynam-
ically analyze apps, monitoring API calls and system calls. From these behavior traces
attributes were extracted, which are used by a machine learning algorithm to classify
apps as malicious or benign. One of the main problems of dynamic analysis systems
is that they have many differences compared to real devices, and malware can leverage
these characteristics to identify whether they are being analyzed or not, thus being able
to prevent the malicious actions from being observed. To identify Android malware that
evades analyses, a technique was developed to compare the behavior of an app on a real
device and on an emulator. Actions that were only executed in the bare metal system
were identified, recognizing whether the divergence was caused by different code paths
being explored or by some unrelated error. Finally, a large-scale analysis of apps that use
native code was performed, in order to identify how native code is used by benign apps
and also to generate a sandboxing policy to restrict malware that use such code.



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

Possible transitions between native code and Java. . . . . . . . .. .. ... 28
Popularity of apps that would be blocked by enforcing our policy. . . . . . 40
Per library coverage of executed functions. . . . . . .. .. ... ... ... 43
System overview . . . .. ... 56
Algorithm to determine if a sample is evasive. . . . . ... .. .. ... .. 71
Algorithm to compare a call sequence obtained in baremetal to its equiva-

lent obtained from the emulated system. . . . .. ... ... ... .. ... 74



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26

2.27

Results of the static analysis. . . . . . ... . ... ... ... ....... 27
JNI methods that cause a transition from native to Java. . . . . . . . . .. 29
The number of apps that executed each type of native code. . . . . . . .. 30
Overview of actions performed by custom shared libraries in native code. . 31
Top five most common actions performed by apps in native code. . . . . . 31
Top five most common actions performed by apps that called standard

binaries in the system. . . . . . .. ... Lo oo 32
The five most common actions in native code that require Android permission. 32

Top five most common types of command passed with the “-¢” argument

TO SW. . . e e 33
Groups of JNIT calls used from native code. . . . . . . . . ... ... .... 35
Top 10 groups of Java methods from the Android framework called from
native code. . . . ... L Lo 35
Top five most common classes of the methods invoked through Binder
transactions. . . . . . . ... L. e e 35
Top 10 most used standard libraries. . . . . ... ... ... ... ..... 36
Top 10 most used custom libraries. . . . . . . .. .. ... .. ... .... 36
Allowed system calls automatically generated using a threshold of 99% apps
unaffected by the policy (part 1). . . . .. .. . ... ... .. ... .. 47
Allowed system calls automatically generated using a threshold of 99% apps
unaffected by the policy (part 2). . . . .. . ... .. 48
Allowed system calls automatically generated using a threshold of 99% apps
unaffected by the policy (part 3). . . . .. ... .. ... ... 49
Symbols used to replace the arguments of system calls. . . . . .. ... .. 49
List of considered exploits. . . . . . . . . . ..o 50
List of allowed methods (Java methods called from native code). . . . . . . 50
The amount of malicious and benign samples in the training and testing
datasets . . . . .. L 60
The algorithms and configurations used in the evaluation to select the al-
gorithm to be used by our classifier . . . . ... ... ... ... ... ... 60
Comparison of the detection using several classification algorithms. . . . . 60
Confusion matrix with the detection results using RandomForest. . . . . . 61
Values of FP, FN, TP, TN, A, R, P, F-measure and correctly classified
samples. . . .. L e 61
Comparison of the results obtained by our system with the results presented
in related work. . . . . .. ... 62
Comparison of the features used by our system with the features used by
Suetal [T6] . . . . . .. 63
Comparison with other approaches to identify evasive malware . . . . . . . 81



Contents

1 Introduction 12
1.1 Motivation . . . . . . . . . e 12
1.2 Objectives . . . . . . . . 14
1.3 Contributions . . . . . . . .. 14
1.4 Related Work . . . . . . . . o 15

1.4.1 Android . . . . . ... 15
1.4.2  Malicious Android Apps . . . . . . . . ..o 16
1.4.3  Analysis and Detection of Android Malware . . . . .. .. .. ... 17
1.4.4 Protection mechanisms . . . . . .. .. ... 18
1.4.5 Large Measurement Studies . . . . .. .. ... ... ... ..... 19
1.5 Thesis outline . . . . . . . . .. 19

2 Published Documents 20

2.1 Analysis of Native Code and Policy Generation . . . ... ... ... ... 20
2.1.1 Introduction . . . . . . . . . ... 22
2.1.2 Background . . .. .. ... 24
2.1.3  Analysis Infrastructure . . . . . .. ... Lo 26
2.1.4 Evaluation and Insights . . . . .. .. .. ... ... ... ... 29
2.1.5 Native Code Behavior—An Overview . . . . . . ... .. .. .... 30
2.1.6  Security Policy Generation . . . . . . .. .. .. ... ... 37
2.1.7 Impact of Security Policies . . . . . .. ... .. ... .. 39
2.1.8 Dynamic Coverage . . . . . . . . . . 41
2.1.9 Threats to Validity . . . .. .. .. ... ... L. 42
2.1.10 Related Work . . . . . . . . . . ... 44
2.1.11 Conclusion . . . . . . . . . . . 45

2.2 Malware Analysis and Identification . . . . . . .. ... ... ... ... .. 46
2.2.1 Introduction . . . . . .. ..o 52
2.2.2  Background and Related Work . . . . .. ... ... ... ... .. 53
2.2.3  System Overview . . . . . . . . . .. 56
2.2.4 Evaluation . . . . . ... 59
2.2.5 Limitations . . . . . . . ..o 62
2.2.6  Conclusions and Future Work . . . . . ... .. .. ... ... ... 63
2.2.7 Acknowledgment . . . . .. ... ... Lo 63

2.3 Dynamically Identifying Evasive Android Malware . . . . . . . . .. .. .. 64
2.3.1 Introduction . . . . . . . . . ... 66
2.3.2  Motivation and approach . . . . .. .. ... Lo oL 67
2.3.3 Behavior representation . . . . ... ... ... L. 68

2.3.4 Evasive behavior identification . . . . . . . . . .. ... ... 70



2.3.5 Monitoring system . . . .. ... Lo

2.3.6 Experiments . . . . . . ...
2.3.7 Limitations . . . . . . . . . ...
2.3.8 Related work . . . . . . . ... ...
2.3.9 Conclusions . . . . . . . . e

3 Discussion
4 Conclusions

Bibliography

85

87

88



Chapter 1

Introduction

1.1 Motivation

Since their creation, mobile devices have been evolving steadily, acquiring new features and
more resources. This led to them being used in many different activities, including areas
involving critical information, such as banking credentials and credit card information.
Because of that, mobile devices became very attractive targets. A study by Unucheck
and Chebyshev [79] shows that Kaspersky Lab detected 884,774 new malicious mobile
programs in 2015.

As Android is the mobile platform that has the highest number of users (87.6% of
market share in the second quarter of 2016, according to IDC [43]), it is also the main
target of attacks. According to PulseSecure [65], in 2014 97% of all mobile malware was
developed for the Android platform.

Malicious apps are disseminated mainly through phishing, drive-by attacks, and app
stores. Phishing messages may contain links to malicious apps and are sent over SMS or
via some messaging app, such as WhatsApp. Drive-by attacks are carried out by exploits
deployed in Web pages. When a vulnerable browser accesses it, the exploit is able to
execute code in the victim’s system. To infect users through app stores, malware are
submitted to them disguising as some legitimate app, such as a game. In fact, in many
cases miscreants modify some popular app to include malicious actions while keeping the
app’s main functionalities, in a process known as repackaging [97].

To protect users from these threats, there are mechanisms employed in devices and in
app stores. On the device side, users can install anti-malware software, which will search
for insecure configurations and also inspect other apps installed on the system to check for
known malicious patterns. Furthermore, there is a series of security mechanisms employed
by the Android operating system to restrict what apps can do. These mechanisms include,
for instance, the permission enforcement, which forces apps to declare the use of certain
functionalities in the manifest to be able to use them, and the app sandboxing, which
restricts the access of apps to the filesystem and to the memory of other apps.

On the app store side, static and dynamic analysis is used to identify if apps contain
malicious behavior or not. Malicious apps are then removed from the store, preventing
them from infecting users. These types of analyses are also performed by security com-
panies that produce signatures for anti-malware software, in order to identify whether

12



CHAPTER 1. INTRODUCTION 13

unknown apps are malicious or not.

Static analysis techniques work by inspecting apps without the need to execute them.
Several techniques of this type have been proposed by researchers to analyze Android
apps [9,10,14,33,35,39,40,54,56,85,88,92,94,98,99]. They obtain information about the
app by inspecting the dalvik code, the manifest and other files deployed within apps. One
of the main weaknesses of static analysis techniques for Android apps is only being able
to handle the Java part of them. Android apps can also contain native code components
developed in C or C++, which are able to modify the Java code at runtime and may also
directly perform malicious actions. Thus, static analysis systems that only look at Java
code may miss malicious behavior of apps.

To address this issue, researchers [11,72,77] have proposed isolating native code from
Java code and applying restrictions to native code, preventing malicious actions. However,
the lack of data regarding the use of native code by benign apps makes designing security
policies that do not affect many benign apps a difficult challenge. One of the contributions
of this thesis is a study on the use of native code by benign apps and the proposal of a
methodology to create a sandboxing policy to restrict this type of code, reducing the
attack surface available. To accomplish this we developed a dynamic analysis system to
analyze native code components of apps and performed a large-scale analysis of benign
Android apps. More precisely, we statically inspected 1,208,476 Android apps to see
if they use native code, then we dynamically analyzed the 446,562 that were found to
use it. We provide insights into how native code is used by real-world Android apps.
Moreover, our system can be used to create a native code sandboxing policy that allows
for normal execution of the native code behaviors observed during the dynamic analysis of
a predefined threshold of apps, while reducing the attack surface and thus limiting many
malicious behaviors (e.g. root exploits).

Differently from its static counterpart, dynamic analysis is carried out by executing
apps in a controlled environment and monitoring its behavior 18,26, 28, 53, 75, 76, 91].
One of the main issues of this type of approach is related to malware that employ anti-
analysis features. Analysis environments have several differences in relation to devices
of real users, and some malware, sometimes referred to as evasive malware, exploit these
differences to identify if they are being analyzed. When this happens, they can simply
stop executing or perform only harmless actions, preventing the analysis system from
observing the malicious behavior.

Another contribution of this thesis is a novel technique to identify evasive Android
malware using dynamic analysis. We analyze apps in a baremetal and in an emulated
environment, identifying the actions that are only executed in baremetal. For each action
identified, we identify why it was not performed in the emulated environment, differenti-
ating when there was an evasion and when there was an analysis problem that prevented
the app from executing all its actions. We compare our approach to existing approaches
that identify evasive Windows malware and demonstrate that ours is more appropriate to
the Android context.

Researchers have proposed several approaches to use information obtained from dy-
namic analysis, static analysis or a combination of both to identify malicious apps [9, 70,
76,88,96,98]. Improving these techniques is an important area of research to make devices



CHAPTER 1. INTRODUCTION 14

more secure. Another contribution of this thesis is a system that analyses Android apps
dynamically and classifies them as malicious or not, improving on known techniques.
Our system monitors the use of Android APIs and system calls, extract features from
these traces and uses machine learning for the classification. We trained it with 3,780
applications and tested it using 3,740 samples, obtaining an accuracy of 96.82%.

The aforementioned contributions were included in papers published or submitted for
publication during the development of this research. Moreover, this thesis is organized as
a collection of these papers.

1.2 Objectives

The main goal of this thesis is to contribute to improving Android security. We do
this by focusing on two aspects: dynamic analysis and classification of malware, and
restriction of native code. To improve the dynamic analysis and classification aspect we
developed a system that obtained better results than similar systems by using different
attributes in the classification. We also developed a novel technique to identify if an
Android malware sample has anti-analysis features. To improve on the restriction of
native code, we performed a large-scale analysis of apps to study how they use native
code. We provide several insights on the use of native code by benign apps and we also
create a security policy to restrict it, reducing the attack surface available to malicious
code.

1.3 Contributions

The contributions of this thesis are the contributions included in the papers that comprise
it. To make this information more easily identifiable, we present all the contributions
summarized in this section.

The contributions related to the dynamic analysis and classification of Android mal-
ware were presented in the paper published in 2015 in the Journal of Computer Virology
and Hacking Techniques and are the following [6]:

e We develop a dynamic analysis system to monitor Android API function calls and
system calls, in order to gather information about apps. Currently available systems
are tied to Android OS versions or to the SDK-provided emulator, whereas our

approach is independent of the emulator and more portable, as it does not modify
the Android OS;

e Our system is also able to classify apps as benign or malicious. We tested it with
thousands of apps, correctly classifying 96.66% of them. To accomplish better results
than similar systems we extract novel features, showing that those based on API
function calls greatly increase the detection rate.

The contributions related to the study and restriction of native code in Android apps
were published in 2016 at the Network and Distributed System Security Symposium and
are the following [5]:



CHAPTER 1. INTRODUCTION 15

e We develop a tool to monitor the execution of native components in Android apps
and we use this tool to perform the largest (in terms of number of apps and detail
of information acquired) study of native code usage in Android,;

e We systematically analyze the collected data, providing actionable insights into how
benign apps use native code;

e Our results show that completely eliminating permissions of native code is not ideal,
as this policy would break, as a lower bound, 3,669 of the apps in our dataset.
However, we propose that our dynamic analysis system can be used to derive a
native code sandboxing policy that limits many malicious behaviors, while allowing
the normal execution of the native code behaviors observed during the dynamic
analysis of a predefined threshold of apps (99.77% in our experiment).

The contributions related to the identification of Android malware with anti-analysis
features were included in a paper submitted to the 2017 International Conference on
Dependable Systems and Networks and are the following:

e We present a novel technique to identify evasive Android malware by comparing
traces obtained in a baremetal environment with traces obtained in an emulated
environment. Our technique identifies the cause of each action performed only in
baremetal, filtering out those that were not executed due to some problem during
analysis;

e We compared our approach to the detection techniques that focus on Windows
malware, demonstrating that our technique is more appropriate for the Android
context;

e We tested our technique with 1,470 samples, identifying 192 that employ evasive
techniques, and discuss the techniques used by a subset of them to evade analysis.

1.4 Related Work

For ease of reading, we summarize in this chapter all background and related work of the
articles included in this thesis, and we also include new research published after them.

1.4.1 Android

Android is an operating system for mobile devices that uses a customized version of the
Linux kernel. To every app is assigned a unique user identifier (uid), at installation
time, and group identifiers (gids), according to the requested permissions. Every app is
executed in a separate Linux process, which is a child of Zygote, a process started when
the system is initialized.

Apps are written mainly in Java, then compiled to Dalvik bytecode, but they can also
contain native code components, developed in C/C++ and compiled to executable files



CHAPTER 1. INTRODUCTION 16

or shared libraries. The interaction between native code components and Java code is
defined by the Java Native Interface (JNI) specification.

Besides code, apps can contain resources, such as images, information related to the
apps’ certificates and the file AndroidManifest.xml. The manifest defines several in-
formation related to the app, such as permissions needed, activities, services, broadcast
receivers, content providers, the minimum system version necessary for the app to run
properly and the shared libraries referenced by the app.

Interactions between apps are performed through Intents, which are messages defining
one or more receptors and possibly some data. This type of communication can also
be used intra-application. Moreover, all Intents flow through an Android system-level
process called Binder [22].

On Android, some operations and resources are protected by permissions. Apps must
declare the permissions needed in the manifest. Before version 6, permissions had to
be authorized by the user at install time and the user only had the option to continue
with all permissions or cancel the installation. Starting on version 6, the user can revoke
specific groups of permissions for apps installed. Permissions are enforced app-wise using
Linux access-control mechanisms and by system services that check if the app is allowed
to access certain resources or perform some requested operation [30].

1.4.2 Malicious Android Apps

Researchers have described the key behavior characteristics of Android malware found
in the wild [31,74,97], which are the following: user information stealing; premium calls
and SMS messages, which generate costs to the user; SPAM SMS messages; search engine
optimization; ransom; privilege escalation; remote control of the device. Furthermore,
they identified the following vectors of infection: repackaging—modifying a legitimate app
to include malicious code and redistribution of the modified app to app stores; update—an
app seemingly legitimate downloads and executes malicious code; drive-by-download—
malicious Web pages can exploit the Web browser to infect the system.

To prevent analysis systems from obtaining information about them, many malicious
apps employ evasion techniques. Several works in the literature describe such tech-
niques [|45,58,62,74,80|. Spreitzenbarth |74 details the analysis of two Android malware
families, namely Bmaster and FakeRegSMS, that use several anti-analysis techniques,
such as waiting for a long period before executing the malicious actions. Matenaar and
Schulz [58] present a method for an app to identify if it is executing inside Qemu, which is
the basis of the Android emulator. Vidas and Christin [80] present anti-analysis techniques
based on Android APIs, system properties, network information, Qemu characteristics,
performance, hardware components, and software components. Another similar work is
presented by Petsas et al. [62]; they demonstrate anti-analysis techniques based on An-
droid APIs, system properties, sensors, and Qemu characteristics.

Instead of manually identifying differences between real and emulated devices, Jing
et al. [45] developed Morpheus, a framework that automatically generates heuristics that
can identify, based on files, system properties and Android APIs, whether a sample is
running on an emulated environment or not.



CHAPTER 1. INTRODUCTION 17

1.4.3 Analysis and Detection of Android Malware

Researchers have proposed several systems to analyze Android malware and obtain infor-
mation about them. Enck et al. [28] propose TaintDroid, a dynamic taint analysis system,
which tracks sensitive data flow to detect when it is sent over the network. Sun et al. [78]
propose TaintART, an approach similar to TaintDroid that works with the most recent
Android runtime, ART. DroidBox [26] builds upon TaintDroid and monitors APT calls,
network data, and data leaks. Spreitzenbarth et al. presented Mobile-Sandbox, a system
that uses DroidBox and Taintdroid to track the behavior of apps, and includes the use of
ltrace tool to monitor native code [75]. Yan and Yin propose DroidScope [91], a virtual
machine introspection-based analysis system that bridges the semantic gap reconstruct-
ing OS-level and Java-level semantic views from outside the emulator. AASandbox [18]
monitors system calls using a kernel module. Harvester [67] combines program slicing
with code generation and dynamic execution to extract runtime values, such as URLs
and destination numbers of SMS messages, from obfuscated malware. Bichsel et al. [16]
present an approach for deobfuscating apps based on probabilistic learning of large code
bases. It learns a probabilistic model over thousands of non-obfuscated apps and use it
to deobfuscate new ones. TriggerScope [32]| uses static analysis to detect logic bombs,
i.e., application logic that is only executed under certain (often narrow) circumstances.
TriggerScope is capable of identifying time-, location-, and SMS-related triggers.

One of the main drawbacks of dynamic analysis is only being able to observe behavior
that is actually executed. This means that the analysis system needs to provide the
correct inputs so that the malicious behavior is triggered. Researchers have proposed
systems that inspect the analyzed app in order to identify the inputs and paths that lead
to the execution of suspicious code and then provide these at runtime [15,87,95].

Other systems leverage information obtained from dynamic or static analysis to classify
apps as malicious or benign. Zhou et al. propose DroidRanger, a two-scheme system based
on signatures and heuristics [98]. The signature-based scheme relies on common permis-
sions and behavioral footprints to identify samples from known families. the heuristics-
based filtering scheme identifies suspicious behaviors (e.g., downloading and executing
code from the Web and dynamic loading of native code). Zheng et al. propose DroidAna-
lytics, a system to automatically collect, analyze and detect Android malware that makes
use of repackaging, code obfuscation, or dynamic payloads [96]. It disassembles apps to
obtain Android API calls. These are used within a three-level signature generation pro-
cess, which extracts malware features at the opcode level to identify variants. Elish et al.
propose a tool to determine whether unknown applications are malicious or not based on
static data dependence analysis [27], which correlates user inputs with critical function
calls. Malisa et al. [55| presents an approach to detect app impersonation attacks by
extracting user interfaces from apps and analyzing the extracted screenshots.

Researchers have proposed several systems to identify Android malware using machine
learning and different feature sets. PUMA [70] uses information obtained from apps’
permissions [70]. DroidMat [88] uses clustering techniques applied to features statically
extracted from apps’ manifest file (permission, component, and intent information) and
permission-related Android API calls from apps’ bytecode. Another system that uses



CHAPTER 1. INTRODUCTION 18

features obtained statically is DREBIN [9]. It extracts features from the manifest and
dex code. Su et al. [76] present a framework that dynamically analyzes new apps to
collect two sets of features: one related to tracing 15 system calls and the other related
to network traffic statistics. StormDroid [21] also uses dynamic analysis and combines
features related to permissions and sensitive API calls in a framework that can process
large sets of apps. Zhu and Dumitras [100] present FeatureSmith, a system that generates
a feature set by analyzing the contents of papers published in security conferences.
Since evasive malware is one of the main problems of analysis systems, independently
of the target operating system, the automatic identification of this type of threat is an
important research topic. Although this topic has not been explored in the Android con-
text, systems to identify evasive Windows malware have been proposed [13,47,48, 50, 52].
Balzarotti et al. [13] propose a system that records the system calls executed by a sample
on a reference environment and replay the monitored system calls on an emulator to iden-
tify if the observed behavior is different. Lindorfer et al. [52] analyze malware samples
in different environments and identify differences on the observed actions, recognizing
techniques that malware apply to detect the analysis environment or analysis system.
BareCloud [48] dynamically analyzes malware in four different environments, including a
baremetal one, and detects evasive samples by comparing the reports provided by these
systems in a hierarchical approach. Kolbitsch et al. [50] detects and mitigates malicious
programs that wait for some time (stall) before executing their malicious behavior. Mal-
gene [47] analyzes evasive malware and uses sequence alignment on the system call traces
obtained from a baremetal and an emulated environment to identify evasion signatures.

1.4.4 Protection mechanisms

Several approaches have been proposed to increase the security of Android, focusing on
different issues. Dietz et al. |25] presents modifications to the Android system that allow an
app to know the complete path taken by Intents received and to encrypt data transmitted
trough Intents. To prevent apps from having to request more permissions than necessary,
just to be able to use ad libraries, Yagemann and Du [90] propose changing the logic
of access control of Intents to an app, which will work as an Intent firewall, allowing,
blocking, or even modifying Intents. Shekhar et al. |71] present a technique to execute
libraries in a separate process, with its own set of permissions.

Portokalidis et al. [64] present a security model in which a synchronized replica of the
user’s phone is executed in a server, which has much more resources and can use several
attack identification techniques that would consume too much resources to be executed on
a mobile device. Batyuk et al. [14] introduce a system that looks for malicious patterns in
apps and patch them according to some policies. Rewriting bytecodes is also the approach
used by the framework presented by Davis and Chen [23]. In this case, calls to certain
methods are replaced by calls to methods inserted in the app by the framework; these
methods use security policies to restrict the behavior of apps. Xu et al. [89] present a
system that applies security policies by intercepting calls to libc.

Focused on preventing root exploits, Fedler et al. [29] propose a protection system
that prevents apps from giving execution permission for custom executable files and by



CHAPTER 1. INTRODUCTION 19

introducing a permission related to the use of the System class. PREC [42] tries to prevent
root exploits by learning the normal behavior of apps during an analysis phase and then
preventing deviations from the normal behavior.

Another way to protect the system is by isolating native code. The challenge of
isolating native code components used by managed languages has been studied before.
Klinkoff et al. [49] focus on the isolation of .NET applications, whereas Robusta [72]
focuses on the isolation of native code used by Java applications. NativeGuard [77] and
NaClDroid [11] are security frameworks for Android that places native code components
in a separate app, and therefore a separate process as well.

Marforio et al. [57| propose a scheme to securely setup security indicators in the pres-
ence of malware on the users’ devices. These indicators can help users identify malicious
apps that pose as legitimate ones to perform phishing attacks. Ying et al. [93| study
attacks using free floating windows and propose a priority framework to protect users
against these threats.

1.4.5 Large Measurement Studies

Some researchers have analyzed large datasets of Android apps. Viennot et al. [81] did
a large measurement study on 1,100,000 applications crawled from the Google Play app
store. In particular, they collected meta-data and statistics taken from the Google Play
store itself. Another important measurement study has been performed by Lindorfer et
al. [53]. In their work, they analyzed over one million apps, of which 40% are malware,
and discuss the trends of Android malware behavior observed.

1.5 Thesis outline

This thesis is organized as a collection of three papers, which are presented as they
were published. The only modifications made to them are related to adjusting them
to the thesis format. The remainder of this thesis is organized as follows. Chapter 2
contains three sections, one for each paper. Chapter 3 summarizes the results of all
papers, facilitating their identification by the reader. Finally, Chapter 4 presents the
conclusions and future work.



Chapter 2

Published Documents

2.1 Going Native: Using a Large-Scale Analysis of An-
droid Apps to Create a Practical Native-Code Sand-
boxing Policy

Publication: This paper was published in the Proceedings of the Symposium on
Network and Distributed System Security (NDSS) 2016

Vitor Afonso!, Antonio Bianchi?, Yanick Fratantonio?, Adam Doupé?,
Mario Polino*, Paulo de Geus®, Christopher Kruegel?, and Giovanni Vigna?
(1) University of Campinas
Email: vitor@lasca.ic.unicamp.br
(2) UC Santa Barbara
Email: {antoniob, yanick, chris, vigna}@cs.ucsb.edu
(3) Arizona State University
Email: doupe@asu.edu
(4) Politecnico di Milano
Email: mario.polino@polimi.it
(5) University of Campinas
Email: paulo@lasca.ic.unicamp.br

20



Abstract

Current static analysis techniques for Android applications operate at the Java level—that
is, they analyze either the Java source code or the Dalvik bytecode. However, Android
allows developers to write code in C or C++ that is cross-compiled to multiple binary
architectures. Furthermore, the Java-written components and the native code components
(C or C++) can interact.

Native code can access all of the Android APIs that the Java code can access, as
well as alter the Dalvik Virtual Machine, thus rendering static analysis techniques for
Java unsound or misleading. In addition, malicious apps frequently hide their malicious
functionality in native code or use native code to launch kernel exploits.

It is because of these security concerns that previous research has proposed native code
sandboxing, as well as mechanisms to enforce security policies in the sandbox. However,
it is not clear whether the large-scale adoption of these mechanisms is practical: is it
possible to define a meaningful security policy that can be imposed by a native code
sandbox without breaking app functionality?

In this paper, we perform an extensive analysis of the native code usage in 1.2 million
Android apps. We first used static analysis to identify a set of 446k apps potentially using
native code, and we then analyzed this set using dynamic analysis. This analysis demon-
strates that sandboxing native code with no permissions is not ideal, as apps’ native code
components perform activities that require Android permissions. However, our analysis
provided very encouraging insights that make us believe that sandboxing native code can
be feasible and useful in practice. In fact, it was possible to automatically generate a
native code sandboxing policy, which is derived from our analysis, that limits many mali-
cious behaviors while still allowing the correct execution of the behavior witnessed during
dynamic analysis for 99.77% of the benign apps in our dataset. The usage of our system
to generate policies would reduce the attack surface available to native code and, as a
further benefit, it would also enable more reliable static analysis of Java code.



CHAPTER 2. PUBLISHED DOCUMENTS 22

2.1.1 Introduction

Mobile operating systems allow third-party developers to create applications (hereafter
referred to as apps) that extend the functionality of the mobile device. Apps span across
all categories of use: banking, socializing, entertainment, news, health, sports, and travel.

Google’s Android operating system currently enjoys the largest market share, currently
at 84.7%, of all current smartphone operating systems [44|. The official app market for
Android, the Google Play Store, has around 1.4 million available apps [7] (according
to AppBrain, a third-party Google Play Store tracking site) with over 50 billion app
downloads [84].

Android apps are typically written in Java, and then compiled to bytecode that runs
on an Android-specific Java virtual machine, called the Dalvik Virtual Machine (DVM).!
These apps can interact with the filesystem, the Android APIs (to access phone features
such as GPS location, call history, microphone, or SMS messages), and even other apps.

The wealth of information stored on smartphones attracts miscreants who want to
steal the user’s information, send out premium SMS messages, or even have the user’s
device join a botnet [20].

Static analysis of Android applications has been proposed by various researchers to
check the security properties of the apps that the user installs [10, 14, 33, 35,39, 40,54, 56,
85,92, 94,98,99|.

All the proposed static analysis techniques for Android apps have operated at the
Java level—that is, these techniques process either the Java source code or the Dalvik
bytecode. However, Android apps can also contain components written in native code (C
or C-++) using the Android NDK [36]. Some of the reasons why developers might use
this feature, as stated by the NDK documentation 36|, are:

For certain types of apps, [native code| can be helpful so you can reuse existing
code libraries written in these languages, but most apps do not need the
Android NDK.

Typical good candidates for the NDK are CPU-intensive workloads such as
game engines, signal processing, physics simulation, and so on.

Using the NDK, the C or C++ code will be compiled and packaged with the app.
Android provides an interface (JNI) for Java code to call functions of native code and
vice versa.

While attempting to allow native code in Android apps is noble, there are serious
security implications of allowing apps to execute code outside the Java ecosystem.

The existence of native code severely complicates static analysis of Android apps.
First, to our knowledge, no static analysis of Android apps attempts to statically analyze
the native code included in the app. Thus, malware authors can include the malicious
payload /behavior in a native code component to evade detection. Furthermore, the native

'In recent versions, the bytecode is instead compiled and executed by a new runtime, called ART.
For simplicity, in the rest of the paper we will only refer to the DVM. However, everything we describe
conceptually applies to ART as well.



CHAPTER 2. PUBLISHED DOCUMENTS 23

code in an Android app has more capabilities than the Java code. This is because the
native code has direct access to the memory of the running process, and, because of this
access, can read and modify the Dalvik Virtual Machine and its data.? Effectively, this
means that the native code can completely modify and change the behavior of the Java
code—rendering all static analysis of the Java code unsound.

In light of these security problems with native code usage in Android applications,
researchers have turned to sandboxing mechanisms, which limit the interaction between
the native code and the Java code [17,72,77|. This follows the least-privilege principle:
The native code does not need full access to the Java code and thus should be sandboxed.

A native code sandbox should be security-relevant and usable with benign, real-world
apps. These requirements result in the following properties:

e Least-Privilege: The native code of the app should have access only to what is
strictly required, thus reducing the chances the native component could extensively
damage the system.

e Compartmentalization: The native code of the app should communicate with the
Java part only using specific, limited channels, so that the native component cannot
modify, interact with, or otherwise alter the Java runtime and code in unexpected
ways.

e Usability: The restrictions enforced by the sandbox must not prevent a significant
portion of benign apps from functioning.

e Performance: The sandbox implementation must not impose a substantial perfor-
mance overhead on apps.

Even though previous research has focused on the mechanism of native code sandbox
enforcement |72, 77|, to this point no research has focused on how to generate a security
policy that a sandbox can enforce so that the policy is both practical (i.e., it would not
break benign apps) and useful (i.e., it would limit malicious behaviors).

Sun and Tan |77], in their paper presenting the native code sandboxing mechanism
NativeGuard, state:

We decide to follow a heuristic approach and by default grant no permission
to the [sandboxed native code| in NativeGuard. The approach is motivated
by the observation that it is rare for legal native code to perform privileged
operations, as it is a “bad practice” according to the NDK.

Sun and Tan are correct that the NDK considers native code performing privileged
operations to be bad practice, however, we need data to confirm this intuition. We must
know: what is the native code in real-world apps doing? How do real-world apps use native
code? For instance, what if native code is used to perform exactly the same actions as
Java code? In this case, it would not be possible to meaningfully constrain the permission

2Even if the Dalvik Virtual Machine memory is initially mapped as read-only, a native code component
can change the memory permission by using the mprotect syscall.



CHAPTER 2. PUBLISHED DOCUMENTS 24

of native code components, and enforcing the least-privilege principle would not grant any
security benefits. We also need clarification as to how tightly coupled the communication
is between the native code and the Java code. Enforcing compartmentalization might
break or negatively affect tightly-coupled apps.

To answer these questions, we perform a large-scale analysis of real-world Android
apps. Specifically, we look at how apps use native code, both statically and dynamically.
We statically analyze 1,208,476 Android apps to see if they use native code, then we
dynamically analyze the 446,562 that were determined to use native code. Our system is
able to monitor the dynamic execution of an app, while recording activities performed by
its native code components (e.g., invoked system calls, interactions between native and
Java components). From this analysis, we shed light on how real-world Android apps use
native code.

In addition, our dynamic analysis system can be used to generate a native code sand-
boxing policy that allows for normal execution of the native code behaviors observed
during the dynamic analysis of a set threshold of apps, while reducing the attack surface
and thus limiting many malicious behaviors (e.g., root exploits) of malicious apps.

The main contributions of this paper are the following:

e We develop a tool to monitor the execution of native components in Android appli-
cations and we use this tool to perform the largest (in terms of number of apps and
detail of information acquired) study of native code usage in Android.

o We systematically analyze the collected data, providing actionable insights into how
benign apps use native code. Moreover, we release the full raw data and we make
it available to the community [4].

e Our results show that completely eliminating permissions of native code is not ideal,
as this policy would break, as a lower bound, 3,669 of the apps in our dataset.
However, we propose that our dynamic analysis system can be used to derive a
native code sandboxing policy that limits many malicious behaviors, while allowing
the normal execution of the native code behaviors observed during the dynamic
analysis of a set threshold of apps (99.77% in our experiment).

2.1.2 Background

To understand the analysis that we perform on Android applications and our proposed
policy, it is necessary to review the Android security mechanisms, how native code is
used in Android, the damage that malicious native code can cause, and the previously
proposed native code sandboxing mechanisms.

Android Security Mechanisms

When apps are installed on an Android phone, they are assigned a new user (UID) and
groups (GIDs) based on the permissions requested by the app in its manifest. Every app
is executed in a separate process, which is a child of Zygote, a process started when the



CHAPTER 2. PUBLISHED DOCUMENTS 25

system is initialized. Moreover, inter-process communication is done using intents which
all flow through an Android system-level process called Binder [22].

On Android, some operations and resources are protected by permissions. Apps must
declare the permissions needed in the manifest, and at installation time the requested
permissions are presented to the user, who decides to continue or cancel the installation.
Permissions are enforced app-wise using Linux access-control mechanisms and by system
services that check if the app is allowed to access certain resources or perform the requested
operation [30].

Native Code

Native code in Android apps is deployed in the app as ELF files, either executable files
or shared libraries. There are four ways in which the Java code of an Android app can
execute native code: Exec methods, Load methods, Native methods, and Native activity.
Exec methods. Executable files can be called from Java by two methods, namely
Runtime.exec and ProcessBuilder.start. Hereinafter we refer to these methods as
Ezxec methods.

Load methods. Native code in shared libraries can be loaded by the framework when
a NativeActivity is declared in the manifest, along with its library name, or by the app
through the following Java methods, which are hereinafter referred to as Load methods:
System.load, System.loadLibrary, Runtime.load, and Runtime.loadLibrary. Native
code in shared libraries can be invoked at loading time, through calls to native meth-
ods and through callbacks in native activities. When a library is loaded, its _init and
JNI_OnLoad functions are called.

Native methods. Native methods are implemented in shared libraries and declared in
Java. When the Java method is called, the framework executes the corresponding function
in the native component. This mapping is done by the Java Native Interface (JNI) [38|.
JNI also allows native code to interact with the Java part to perform actions such as
calling Java methods and modifying Java fields.

Native activity. Native code is invoked in native activities using activities’ callback
functions, (e.g., onCreate and onResume), if defined in a native library.

Malicious Native Code

Malicious apps can use native code to hide malicious actions from static analysis of the
Java portion of the app. These actions can be calls to methods in Java libraries, such as
sending SMS messages, or complex attacks that involve exploiting the kernel or privileged
processes to compromise the entire OS. These root exploits are possible because native
code is allowed to directly call system calls. Another possible way that attackers can
directly call system calls to execute root exploits is by exploiting vulnerabilities in native
code used by benign apps.

As previous research has shown [77], because native code shares the same memory
address space as the Dalvik Virtual Machine, it can completely modify the behavior of
the Java code, rendering static analysis of the Java code fundamentally unsound. For
instance, malicious code can use functions exported by libDVM.so to identify where the



CHAPTER 2. PUBLISHED DOCUMENTS 26

bytecode implementing a specific Java method is placed in memory. At this point, the
native code can dynamically replace the method at run time.

Native Code Sandboxing Mechanisms

Several approaches have been proposed to sandbox native code execution. For instance,
NativeGuard [77] and Robusta [72] move the execution of native code to a separate pro-
cess. Two complementary goals are obtained: (1) the native code cannot tamper with
the execution of the Java code and (2) different security constraints can be applied to the
execution of the native code.

Communication between the Java code and the native code is then ensured by modi-
fying the JNI interface to make the two processes communicate through an OS-provided
communication channel (e.g., network sockets).

While moving native code to a separate process is a natural mechanism to achieve
the aforementioned goals (because it relies on OS-provided security mechanisms, such
as process memory separation or process permissions), other solutions are possible. For
instance, thread-level memory protection (as proposed in Wedge [17]). However, applying
this solution in Android would require significant modifications to the underlying Linux
kernel.

2.1.3 Analysis Infrastructure

We designed and implemented a system that dynamically analyzes Android applications
to study how native code is used and to automatically generate a native code sandboxing
policy. Our analysis consists of an instrumented emulator, and it records all events and
operations executed from within native code, such as invoked syscalls and native-to-Java
communication. The dynamic instrumentation is completely generic, and it allows the
usage of any manual or automatic instrumentation tool. The version of the Android
system used was 4.3.

Since our goal was to obtain a comprehensive characterization of native code usage in
real world applications, we used a corpus of 1,208,476 distinct—different package names
and APK hashes—free Android apps that we have continuously downloaded from the
Google Play store from May 2012-August 2014. The age of the apps varies throughout
the time-frame, as we currently do not download new versions of apps.

Static Prefiltering

Performing dynamic analysis of all 1,208,476 apps by running each app would take a
considerable amount of time; therefore, by using static analysis, we filtered the apps that
had some indication of using native code. The characteristics we looked for in the apps
are the following: having a native method, having a native activity, having a call to an
Exec method, having a call to a Load method, or having an ELF file inside the APK.
We used the Androguard tool [24] as a basis for the static analysis. To identify native
methods we searched for methods declared in the Dalvik bytecode with the modifier

3Modifier here is an attribute of a method, similar to public. An example Dalvik method signature



CHAPTER 2. PUBLISHED DOCUMENTS 27

Table 2.1: Results of the static analysis.

Apps Type
267,158 Native method
42,086 Native activity
288,493 Exec methods
242,380 Load methods
221,515 ELF file

446,562 At least one of the above

“native.” Native activities were identified by two means: (1) looking for a NativeActivity
in the manifest and (2) looking for classes declared in the Dalvik bytecode that extend
NativeActivity. Finally, calls to Exec and Load methods were identified by investigating
method invocations in the bytecode.

Of the 1,208,476 apps statically analyzed, 446,562 apps (37.0%) used at least one of
the previously mentioned ways of executing native code. Table 2.1 presents the number
of apps that use each of these characteristics.

Dynamic Analysis System

Now that we have identified which Android apps use native code, we now want to under-
stand how apps use native code. During the dynamic analysis we monitor several types of
actions performed by the analyzed apps, including system calls, JNI calls, Binder trans-
actions, calls to Exec methods, loading of third-party libraries, calls to native activities’
native callbacks, and calls to native methods. The system calls were captured using the
strace tool, and the other information we obtained through instrumentation.

To monitor JNT calls, calls to native methods, and library loading, we modified 1ibdvm.
However, we do not want to monitor all JNI calls, just JNI calls to the app’s native code,
rather than calls to native code in the standard libraries that Android includes. To avoid
monitoring JNI calls in standard libraries and calls to native methods in standard libraries,
we modified the “Method” structure to include a property indicating whether it belongs
to a third-party library or not. When a third-party library is loaded, this property is set
accordingly.

We modified 1libbinder to track and monitor Binder transactions. We record the
class of the remote function being called and the number that identifies the function.
To map the identifiers to function names, we parse the AIDL (Android Interface Defi-
nition Language) files and source files that define Binder interfaces. To find files that
have such definitions, we search for uses of the macros DECLARE_META_INTERFACE and
IMPLEMENT_META_INTERFACE and classes that extend “IInterface.” Furthermore, to match
identification numbers to names, we search in “.cpp” files for enumerations that use
IBinder: :FIRST_CALL_TRANSACTION and, in “.java” files, for variables defined using
IBinder.FIRST_CALL_TRANSACTION. We use the names assigned FIRST_CALL_TRANSACTION
as the functions with identifier 1, the ones assigned FIRST_CALL_TRANSACTION -+ NUM as

would be: .method public native example().



CHAPTER 2. PUBLISHED DOCUMENTS 28

the functions with identifier 1+NUM and, for the enumerations that only use FIRST_-
CALL_TRANSACTION to define the first element, we consider they are increasing the iden-
tifier one by one.

Calls to Exec methods are identified by instrumenting libjavacore. Finally, to mon-
itor the use of native callbacks in native activities, we modified 1ibandroid_runtime.

We determine which actions were performed by native code and which by Java code
after the dynamic analysis. To make this determination, we observe when threads change
execution context from Java to native and from native to Java. Thus, we process all
system calls, keeping a list of threads that are executing native code. We add a thread
to this list when one of the following happens: Exec method is executed—we add the
child process, which is then used to call execve, a custom (third-party) shared library is
loaded, a native method is executed, or a callback in the native component of a native
activity is executed. When these actions are completed and the execution control changes
back to Java, the thread is removed from the list.

Loads libra
< ry
Calls native method
-
< Uses native activity
Shared libra Java part of A
Y Calls Java method i .
.
Calls class constructor
P
Static class initializer
P

Executes file

Executable ELF <
file

Figure 2.1: Possible transitions between native code and Java.

We also remove a thread from the list when one of the JNI methods in Table 2.2 is ex-
ecuted. The Call*<TYPE> functions are used to call Java methods, and the NewObjectx
functions are used to create instances of classes, which results in the execution of Java
constructors. When these methods return, the thread is placed back on the list. Addi-
tionally, we remove a thread from the list when the clinit method, which is the static
initialization block of a class, is executed. Figure 2.1 presents all mentioned transitions.

To understand how isolating the native code from the Java code would impact the
performance of the apps, we also monitor the amount of data exchanged between native
and Java code. We measured the amount of data passed in parameters of calls from native



CHAPTER 2. PUBLISHED DOCUMENTS 29

Table 2.2: JNI methods that cause a transition from native to Java. <TYPE> can be the
following: Object; Boolean; Byte; Char; Short; Int; Long; Float; Double; Void.

Call<TYPE>Method
CallNonVirtual<TYPE>Method
Call<TYPE>MethodA
CallNonVirtual< TYPE>Method A
Call<TYPE>MethodV
CallNonVirtual<TYPE>MethodV
CallStatic< TYPE>Method
CallStatic< TYPE>MethodA
CallStatic< TYPE>MethodV
NewObject
NewObjectV
NewObjectA

code to Java methods and vice versa, as well as the size of the returned value. We also
capture the size of data used to set fields in Java objects. The results of this analysis are
presented in Section 2.1.5.

2.1.4 Evaluation and Insights

We ran both the static pre-filter and dynamic analysis across numerous physical machines
and private-cloud virtual machines. In total, we used 100 cores and 444 GB of memory.
Moreover, the analysis was run in parallel.

The dynamic analysis was performed using an instrumented Android emulator (as
described in the previous section), and to keep the analysis time feasible we limited
the analysis to two minutes for each app. To dynamically exercise each application, we
followed an approach similar to what is used in Andrubis [86]: we used the Google Mon-
key [37] to stimulate the app with random events, and we then automatically generated
a series of targeted events (by means of sending properly-crafted intents) to stimulate all
activities, services, and broadcast receivers defined in the application.

Ideally, it would have been possible to use more sophisticated dynamic instrumentation
systems. However, the large scale of our analysis motivated our choice to use a simpler
approach, as it would have required a prohibitive amount of resources to run on hundreds
of thousand of apps. While our dynamic instrumentation system is acceptable for the
purposes of understanding the lower bound on what behaviors native code performs, the
incompleteness inherent in dynamic analysis can affect the native code policies generated
by our system. However, if Google or another large company were to adopt the idea of
using a dynamic analysis system to automatically generate a native code security policy,
they could use substantial resources to run the applications for longer periods of time, use
sophisticated dynamic analysis approaches [68], or even introduce the instrumentation
into the Android operating system and sample the behaviors from real-world devices.

During dynamic analysis, 33.6% (149,949) of the apps identified by static analysis as
potentially having native code actually executed the native code. Table 2.3 presents the



CHAPTER 2. PUBLISHED DOCUMENTS 30

number of apps that executed each type of native code. These numbers constitute a lower
bound of the apps that could actually execute native code.

In order to understand, for our study, why the native code was not reached during
dynamic analysis, we manually analyzed, statically and dynamically, 20 random apps
that were statically determined to have native code. For 40% (8) of them, we established
through analysis of the decompiled code that the native code was unreachable from Java
code (also known as deadcode). The remaining applications were too complex to be
manually inspected, and we were not able to ascertain whether the native code components
were not reached due to deadcode. For this reason, we dynamically analyzed and manually
interacted with them and we did not find any path that led to the execution of the native
code. Thus, we believe that also in this case the native code component was not reached
due to deadcode, even if we were not able to be completely certain, due to the incomplete
nature of manual analysis.

We further investigated why there was deadcode in these apps. In each case, the native
code was deadcode in third-party libraries. In fact, in our experience, it often happens
that an app includes a third-party library, to then actively use only a (sometimes very
limited) subset of its functionality, thus leading to deadcode. Hence, we expect this to be
the case for many apps where our analysis did not reach native code. As an additional
experiment, we also manually and extensively dynamically exercised another 20 random
apps. We observed no cases of significant changes in the results compared to the Google
Monkey automated analysis (neither additional native code components were reached nor
more syscalls were called).

To further understand the coverage of our dynamic analysis system we performed two
additional experiments, one measuring the Java method coverage and one measuring the
native code coverage. Section 2.1.8 discusses these experiments in depth.

Table 2.3: The number of apps that executed each type of native code.

Apps Type
72,768 Native method
19,164 Native activity
132,843 Load library
97 701 Call executable file (27,599 standard,
’ 148 custom and 46 both)
149,949 At least one of the above

2.1.5 Native Code Behavior—An Overview

We present in this section an overview of the actions performed by native code on Android.
We split the actions into those performed by shared libraries (including those performed
during library loading, native methods, and native activities) and those that are the result
of invoking custom, executable, and binaries through Exec methods. We also present the
actions performed using standard binaries (i.e., not created by the app), but in this case
based on their names and parameters, instead of looking at the system calls.



CHAPTER 2. PUBLISHED DOCUMENTS 31

Table 2.4: Overview of actions performed by custom shared libraries in native code.

Writing log messages

Performing memory management system calls, such as mmap
and mprotect

Reading files in the application directory

Calling JNI functions

Performing general multiprocess and multithread related
system calls, such as fork, clone, setpriority, and futex
Reading common files, such as system libraries, font files,
and “/dev/random”

Performing other operations on files or file descriptors, such
as lseek, dup, and readlink

Performing operations to read information about the system,
such as uname, getrlimit, and reading special files (e.g.,
“/proc/cpuinfo” and “/sys/devices/system/cpu/possible”)
Performing system calls to read information about the pro-
cess or the user, such as getuid32, getppid, and gettid
Performing system calls related to signal handling
Performing cacheflush or set_tls system calls or perform-
ing nanosleep system call

Reading files under “/proc/self/” or “/proc/<PID> /7 where
PID is the process’ pid

Creating directories

94.2% (125,192) of the apps that used custom shared libraries executed only a set of
common actions in native code, and Table 2.4 contains the common actions.

Table 2.5: Top five most common actions performed by apps in native code, through
shared libraries (SL) and custom binaries (CB). For the interested reader, we report the
full version of this table in [4].

S  CB Description
3,261 72 ioctl system call
1,929 39 Write file in the app’s directory
1,814 35 Operations on sockets
1,594 b5 Create network socket

1,242 144 Terminate process or thread group

The top five most common actions performed by apps in native methods, native ac-
tivities, and custom binaries called through Exec are presented in Table 2.5. Table 2.6
presents the top five most common actions performed by the apps that used Exec to call
standard (system) binaries.

By analyzing the system calls and the Java methods called from native code, we
identified 3,669 apps that perform an action requiring Android permissions from native
code. Table 2.7 presents the top five most popular permissions used, how many apps use
them, and how we detected its use. We used PScout [12] to compute the permissions



CHAPTER 2. PUBLISHED DOCUMENTS 32

Table 2.6: Top five most common actions performed by apps that called standard binaries
in the system. For the interested reader, we report the full version of this table in [4].

Apps Description
19,749 Read system information
3,384  Write file in the app’s directory or in the sdcard
3,362 Read logcat
1,041 List running processes
861 Read system property

Table 2.7: The five most common (by number of apps) actions in native code that require
Android permission. For the interested reader, we report the full version of this table
in [4].

Apps Permission Description

1,818 INTERNET Open network socket or call method

java.net.URL.openConnection
1,211 WRITE EXTERNAL STORAGE Write files to the sdcard
1,211 READ EXTERNAL STORAGE Read files from the sdcard

132 READ PHONE STATE Call methods getSubscriberId,
getDeviceSoftwareVersion,
getSimSerialNumber or
getDeviceld from class
android.telephony.TelephonyManager
or Binder transaction to call

com.android.internal.telephony.
IPhoneSubInfo.getDeviceld

79 ACCESS NETWORK STATE Call method android.net.
ConnectivityManager.getNetworkInfo

required by each Java method. Comparing the permissions used in native code with the
permissions requested by the app, we found that only 81 apps use, in native code, all the
permissions requested by the app.

In addition to this being the first concrete look into how many apps use native code
and what that native code does, we can draw two important conclusions: (1) if the native
code is separated in a different process, it is necessary to give some permissions to the
native code and (2) the permissions of the native code can be more strict (less permissive)
than the permissions of the Java code.

It is interesting to note how conclusion (1) shows that the drastic measure adopted in
NativeGuard [77], which does not grant any permissions to the native code, would break
3,669 of apps. This observation reinforces even more our belief that security policies
should be generated following a data-driven approach. For instance, a reasonable tradeoff
would be to allow to the native code only the INTERNET, WRITE_EXTERNAL_STORAGE, and
READ_EXTERNAL_STORAGE permissions (the three most commonly used in native code),
thus blocking only 152 applications.



CHAPTER 2. PUBLISHED DOCUMENTS 33

Java—Native Code Interactions

To better understand the performance implications of separating the native code from the
Java code of the apps, we measured the number of interactions per millisecond between
Java and native code, i.e., the number of calls to JNI functions, calls to native methods,
and Binder transactions.

The mean of interactions per millisecond is 0.00142, whereas the variance is 0.00003
and the maximum value is 0.22. NativeGuard’s [77] performance evaluation with the
Zlib benchmark shows a 34.36% runtime overhead for 9.81 interactions per millisecond
and 26.64% for 3.96 interactions per millisecond. Therefore, our experiment shows that
isolating native code in a different process should not have a substantial performance
impact on average.

Additionally, we measure the number of bytes exchanged between the Java code and
native code per second. The mean of bytes exchanged per second is 1,956.55 (1.91 KB/s)
and the maximum value is 6,561,053.27 (6.26 MB/s). Only 11 apps exchanged more than
1 MB/s. We believe the amount of data exchanged between Java and native code would
not incur a significant overhead, although it could vary greatly depending on the specific

app.

Usage of the su Binary

Unlike common Linux distributions, in Android, users do not have access to a super user
account and, therefore, are prevented from performing certain actions, such as uninstalling
pre-installed apps. Thus, to have greater control over the system, many users perform
a process known as “rooting,” to be able to perform actions as the “root” user. Usually,
during this process, a suid executable file called su is installed, as well as a manager
app that restricts which apps can use this binary to perform actions as root. Because
this process is so common among users, there are many apps that provide functionality
that can only be performed by the root user, such as changing the fonts of the system or
changing the DNS configuration.

o

Table 2.8: Top five most common types of command passed with the “-¢” argument to su,
separated between the apps that mention they need root privileges in their description or
name and the ones that do not mention it. For the interested reader, we report the full
version of this table in [4].

Does not Does
Mention Mention Description

Root Root
12 10 Custom executable (e.g.,
su -c sh /data/data/com.test.etd062.ct/ﬁles/occt.sh)
1 13 Reboot
2 12 Read system information
1 8 Change permission of file in app’s directory
1 7 Remove file in app’s directory




CHAPTER 2. PUBLISHED DOCUMENTS 34

Our analysis identified 1,137 apps that try to run su. Surprisingly, 28.23% (321)
of these apps do not mention in their description or in their name that they need root
privileges.

Some of these apps use the “-¢” argument of su to specify a command to be executed as
root. Table 2.8 presents the top five most common types of actions that these apps tried to
execute using su, along with the number of apps that attempt to execute that command,
and if the app mentioned that it requires root or not. This table gives insights into what
the app is trying to accomplish as root. The table shows that the most common action
used with the “-¢” argument of su is calling a custom executable. Because apps cannot
use su in the emulator, these actions did not work properly during dynamic analysis, so
we cannot obtain more information on their behavior.

JNTI Calls Statistics

Understanding the JNI functions called by native code can reveal how the native com-
ponents of apps interact with the app and the Android framework. Table 2.9 presents
the types of JNI functions that were used by the apps and how many apps used them.
The most relevant actions for security considerations in this table are: (1) calling Java
methods and (2) modifying fields of objects. Calling methods in Java libraries from native
code can be used to avoid detection by static analysis. Moreover, modifying fields of Java
objects can change the execution of the Java code in ways that static analysis cannot
foresee.

Calling Java methods, both from the Android framework and from the app can be
performed by some of the methods presented in Table 2.2, more precisely the ones whose
name starts with “Call.” As Table 2.9 shows, we identified 35,231 apps that have native
code which calls Java methods. More specifically, 24,386 apps used these functions to call
Java methods from the app and 25,618 apps used them to call Java methods from the
framework. Table 2.10 presents what groups of methods from the framework were called,
along with the amount of apps that called methods in each group.

Binder Transactions

1.64% (2,457) of the apps that reached native code during dynamic analysis performed
Binder transactions. Table 2.11 presents the top five most commonly invoked classes
of the remote methods. The most common class remotely invoked by this process is
IServiceManager, which can be used to list services, add a service, and get an object to
a Binder interface. All apps that used this class obtained an object to a Binder interface
and two apps also used it to list services. This data shows that using Binder transactions
from native code is not common. From a security perspective this is good as the use
of Binder transactions represent a way in which native code can perform critical actions
while staying undetected by static analysis.



CHAPTER 2. PUBLISHED DOCUMENTS 35

Table 2.9: Groups of JNT calls used from native code.

Apps Description
94,543 Get class or method identifier and class reference
71,470 Get or destroy JavaVM, and Get JNIEnv
53,219 Manipulation of String objects
49,321 Register native method
45,773 Manipulate object reference
41,892 Thread manipulation
35,231 Call Java method
19,372 Manipulate arrays
18,601 Manipulate exceptions
14,330 Create object instance
6,918 Modify field of an object
2,203 Manipulate direct buffers

47 Memory allocation

37 Enter or exit monitor

Table 2.10: Top 10 groups of Java methods from the Android framework called from

native code.

Apps Description
7493 Get path to the Android
’ package associated with the context of the caller
6,896 Get class name
5,499 Manipulate data structures
4,082 Methods related to cryptography
3,817 Manipulate native types
3,769 Read system information
3,018 Audio related methods
2,070 Read app information
1,192 String manipulation and encoding
575 Input/output related methods
483 Reflection

Table 2.11: Top five most common classes of the methods invoked through Binder trans-
actions. For the interested reader, we report the full version of this table in [4].

Apps Class
2,427 android.os.IServiceManager
740 android.media.lAudioFlinger

725  android.media.TAudioPolicyService
327  android.gui.lGraphicBufferProducer
303 android.gui.SensorServer

Usage of External Libraries

Understanding the libraries used by the apps in native code can help us comprehend

their purpose. Table 2.12 presents the top 10 most used system libraries and Table 2.13



CHAPTER 2. PUBLISHED DOCUMENTS

presents the top 10 must used custom libraries by apps in native code. It demonstrates
that apart from the bitmap manipulation library, which was used by 16.6% (24,942) of
the apps that reached native code, no standard library was used by a great number of
apps. On the other hand, several custom libraries were used by more than 7.5% of the

apps that executed native code.

Table 2.12: Top 10 most used standard libraries.

Apps

Name

Description

924,942
2,646
2,645

349
347

183
183
182
182

181

libjnigraphics.so
libOpenSLES.so
libwilhelm.so

libpixelflinger.so
libGLES _android.so

libGLESv1 enc.so

gralloc.goldfish.so

libOpenglSystem Common.so

libGLESv2 enc.so

lib_renderControl enc.so

Manipulate Java
bitmap objects

Audio input and output

Multimedia output
and audio input
Graphics rendering
Graphics rendering
Encoder for GLES 1.1
commands
Memory allocation
for graphics
Common functions
used by OpenGL
Encoder for GLES 2.0
commands
Encoder for rendering
control commands

Table 2.13: Top 10 most used custom libraries.

Apps Name Description

19,158 libopenal.so Rendering audio

17,343 libCore.so Used by Adobe AIR

16,450 libmain.so Common name

13,556 libstlport shared.so C++ standard libraries

11,486 libcorona.so Part of the Corona SDK,
a development platform
for mobile apps

11,480 libalmixer.so Audio API of the Corona
SDK

11,458 libmpgl23.s0 Audio library

11,090 libmono.so Mono library, used to run
NET on Android

10,857 liblua.so Lua interpreter

10,408 libjnluab.1.s0 Lua interpreter




CHAPTER 2. PUBLISHED DOCUMENTS 37

2.1.6 Security Policy Generation

One step to limit the possible damage that native code can do is to isolate it from the
Java code using the native code sandboxing mechanisms discussed in Section 2.1.2. These
mechanisms prevent native code from modifying Java code, which allows static analysis of
the Java part to produce more reliable results. However, this is not enough, considering
that the app can still perform dangerous actions—that is, by interacting with the Android
framework /libraries and by using system calls to execute root exploits.

Our goal here is to reduce the attack surface available to native code, by restricting the
system calls and Java methods that native code can access. In particular, we propose to
use our dynamic analysis system to generate security policies. A security policy represents
the normal behavior, which can be seen as a sort of whitelist that represents the syscalls
and Java methods that are normally executed from within native code components of
benign applications. These policies also implicitly identify which syscalls and Java meth-
ods should be considered as unusual or suspicious (as they do not belong to the common
syscalls), such as the ones used to mount root exploits.

One aspect to be considered is what action is taken when an unusual syscall is executed.
Similar to the design choice adopted by SELinux, we envision two modes: permissive and
enforcing. In permissive mode, the system would log and report the usage of unusual
behavior, while in enforcing mode the system would block the execution of such unusual
behavior and stop the application. Depending on the context, it might make sense to
use permissive or the more aggressive enforcing mode. As an alternative, one could
selectively pick permissive or enforcing mode depending on whether the unusual syscall
is well-known to be used by root exploits. The policy generation process for syscalls is
described in Section 2.1.6, while the one for Java methods is described in Section 2.1.6.
We discuss the possibilities and the implications of this choice in Section 2.1.7.

It is worth noting that while this will not guarantee perfect protection from attacks,
by applying the security principle of least privilege to the native code, we gain the dual
security benefits of (1) increasing the precision of Java static analysis and (2) reducing
the impact of malicious native code.

System Calls

Based on the system calls performed by the apps in native methods, in native activities,
during libraries loading, and by programs executed by Exec methods, our system can
automatically generate a security policy of allowed system calls. To compile this list, we
first normalize the parameters of the system calls and later iterate over them, selecting
the ones performed by most apps, until the list of selected system calls is comprehensive
enough to allow at least a (variable threshold) percentage of the apps that executed native
code to run properly. In Android, inter-process communication is done through Binder.
Native code can directly use Binder transactions to call methods implemented by system
services. At the system call level, these calls are performed by the ioctl system call. To
consider these actions in our automatically generated whitelist, we substitute ioctl calls
to Binder with the Binder transactions performed by the apps.

To understand the possible policies that could be generated, we performed this process



CHAPTER 2. PUBLISHED DOCUMENTS 38

using a threshold (the percentage of apps that use native code whose dynamically-executed
behavior would function properly when enforcing this policy) of 99%. Tables 2.14, 2.15
and 2.16 present the actions obtained by this procedure. The system call arguments that
were normalized were replaced by symbols in the form <*> and * (meaning anything).
Some of the arguments that are file descriptors were changed to a file path representation
of it. All arguments that were not normalized represent a numeric value or a constant
value that was converted by strace to a string representation. For the system calls that
do not have the arguments next to it in the policies, the policy accepts calls with any
arguments. Table 2.17 presents more details about the symbols used.

To better understand which types of apps would be blocked by our example policy
(when in enforcing mode), we studied them and manually analyzed a subset of them. The
findings of this analysis are presented in Section 2.1.7.

The policies restrict the possible actions of native code, thus following the principle of
least privilege and making it harder for malicious apps to function. Previously, malicious
code could easily hide in native code to evade static analysis. With our example policies
enforced by a sandboxing mechanism, the native code does not (depending on the exact
threshold) have the ability to perform any malicious actions in native code, and therefore
attackers will have to move the malicious behavior to the Java code, where it can be
found by existing Java static analysis tools. Furthermore, the policies do not prevent
the correct execution of the dynamically-executed behavior of many benign apps. Using
the rules generated with the 99% threshold, only 1,483 apps (0.12% of the total apps
in our dataset) would be affected. Of course, as the dynamic analysis performed by our
system is incomplete (in that it can not execute all possible app code), this number is
a lower bound. This can be alleviated by an organization wishing to use our system in
one of two ways: (1) increase the completeness of the dynamic analysis or (2) deploying
the sandboxing enforcement mechanism in reporting mode. Both choices will reveal more
app behaviors.

Another benefit of enforcing a native code sandboxing policy is that it would prevent
the correct execution of several root exploits. For this work, we considered the 13 root
exploits reported in Table 2.18. These exploits require native code to be successful. Our
example security policy would hinder the execution of 10 of them. This follows because the
policies attempt to reduce the attack surface of the OS for native code, while at the same
time maintaining backward compatibility. Table 2.18 presents which of the considered
exploits are successfully blocked, along with which entry of the policy they violate.

The root exploits that are prevented by our example security policy are blocked due
to rules related to four system calls, namely socket, perf_event_open, symlink, and
ioctl. More precisely, two exploits need to create sockets with PF_NETLINK domain
and NETLINK_KOBJECT_UEVENT (15) protocol, however, the rules only allow PF_NETLINK
sockets with protocol 0. One of the exploits needs the perf_event_open system call,
which is not allowed by the policy. Two exploits need to create symbolic links that target
system files or directories, but the policy only allows symbolic links to target “USER-
PATH,” which means files or directories in the app’s directory or in the SD Card. Finally,
five exploits use ioctl to communicate with a device. One of the rules allows ioctl
calls to any device, namely ioct1(<NON STD FD>,SNDCTL_TMR_TIMEBASE or TCGETS,*).



CHAPTER 2. PUBLISHED DOCUMENTS 39

However, this rule specifies the valid request value (the second parameter), whereas the
exploits use different values, therefore they would be blocked.

The table also reports the details about the three exploits that would not be currently
blocked. In one case (CVE-2011-1149), the exploit would still work because our example
policy allows the invocation of the mprotect syscall, since it is used by benign applications.
In the two remaining cases (RATC and Zimperlinch), the exploits rely on repeatedly
invoking the fork syscall to exhaust the number of available processes. The fork syscall
is allowed by our policy as some benign applications do use it. However, note that this
kind of exploit could be blocked by a security policy that would take into account the
frequency of invocations of a given syscall: In fact, no benign application would ever
invoke the fork syscall so frequently. We believe that considering this additional aspect
of native code behavior is a very interesting direction for future work.

Although our example security policy does not block all exploits, we believe the adop-
tion of native sandboxing to be useful. In fact, it does sensibly reduce the attack surface
available to native code components, and it is able to successfully block a number of
root exploits. Similarly, we believe that useful policies can be generated by our dynamic
analysis system that will be able to block future exploits.

Java Methods

Even with the system call restrictions, native code can still perform dangerous actions
by invoking Java methods. This can be accomplished by using certain JNI functions, as
discussed in Section 2.1.3. Static analysis of the Java component of apps cannot identify
these calls, therefore, the possibility of apps calling methods in Java libraries poses a
threat to the system and can be abused by malicious apps.

We performed the same process presented in Section 2.1.6 to automatically generate
policies that restrict the use of methods in Java libraries. Table 2.19 presents these
policies, using different values as the minimum percentage of allowed apps that reached
native code during dynamic analysis. We used 97%, 98%, and 99% as the values for the
minimum. The methods authorized for each threshold include the ones associated with
lower thresholds.

Using the list of apps associated with a minimum of allowed apps of 99% (the most
permissive of our thresholds), we would block 1,414 apps (0.12%). The method
java.lang.ClassLoader.loadClass, which is allowed when using 99% as a threshold,
causes the invocation of the static initialization block (<clinit>) of a class. Therefore,
it could be used to execute the static initialization block of classes in Java libraries.
However, as far as we know, these blocks do not contain important operations that need
to be contained.

2.1.7 Impact of Security Policies

Considering both our policies—Java methods and system calls—, and the 99% threshold,
we would block 0.23% (2,730) of all the apps in our dataset. To understand what the
impact of implementing (and enforcing with the strictest enforcement mechanism) these
policies would be on users, we analyzed the popularity (lower number of installations) of



CHAPTER 2. PUBLISHED DOCUMENTS 40

Q
—

0.6

0.4

0.2

1.87 % —> 1M+

I I I I
1e+00 1e+02 1e+04 1e+06 1e+08

Number of installs

Figure 2.2: Popularity of apps that would be blocked by enforcing our policy. X-axis is
in logarithmic scale, and the Y-axis is the percentage of apps that would be blocked.

the apps whose behavior seen during the dynamic analysis would be blocked. Figure 2.2
presents the cumulative distribution of the popularity of the apps that would be blocked.
As the figure shows, among the applications for which our policy would block at least one
behavior that has been executed at runtime, 1.87% (51) of them have more than 1 million
installations.

Because manual analysis is very time-consuming, we did not perform it on all blocked
apps. However, we did a general investigation of the blocked apps and manually analyzed
the ones that showed traces of suspicious behavior. We identified three types of suspicious
activities among these apps, and we discuss them here.

Ptrace. Overall, 280 apps used ptrace. 276 of these only call ptrace to trace itself
without checking the result. We assume that the developers do this as a defensive measure
to prevent the analysis of the app, because an app cannot be traced by another process



CHAPTER 2. PUBLISHED DOCUMENTS 41

if there is already a process tracing it. Therefore, for these 276 apps we believe that the
app’s functionality would remain intact with our policy. Four apps, on the other hand,
create a child process, which try to attach ptrace to the parent, checking the result of
the call and changing behavior if the call failed.

Modifying Java code. We identified 7 apps that modify the Java section of the app from
native code. All these apps perform this action from the library 1ibAPKProtect.so [§].
This library is provided by an obfuscation service, thus making it harder for reverse
engineering tools to decompile the app. This functionality can also be used by malicious
apps and illustrates the importance of isolating native code.

Fork and inotify. We identified 57 apps that create a child process in native code and
use inotify to monitor the apps’ directory, in order to identify when they are uninstalled.
In fact, the spawned child process uses inotify to detect when the app is uninstalled and,
when this happens, it opens a survey in the browser. This behavior is not a malicious
action; however, executing code after being uninstalled is suspicious, as the user does not
expect the app to be running after being uninstalled.

2.1.8 Dynamic Coverage

Dynamic analysis is inherently incomplete, and in this section we attempt to measure the
code coverage of the dynamic analysis that we used, using function coverage of the Java
code and function coverage of the native code. Both code coverage methods have large
overhead, so we were only able to analyze a subset of the apps.

Java Method Code Coverage

To measure the code coverage based on the Java methods executed, we instrumented the
DVM. The instrumented code records the execution of every method of the app under
analysis. Since this instrumentation introduces more overhead and slows the emulator, we
did the experiment with 25,000 apps randomly selected and used a kernel driver, instead
of strace, to record the system calls executed. The code coverage obtained was 8.31%

Native Code Coverage

While code coverage of the Java methods allows us to gain insight into the high level
code coverage of our dynamic analysis system, it does not shed light on the core issue
we are interested in: how much of an app’s native code is the dynamic analysis able
to execute? To answer this question, we modified both the Android emulator and the
Android framework to support measuring function coverage of the native code.

One technical challenge here is that the native code coverage must understand not
only which native libraries are loaded by an app, but also which part of the native library
is actually executed. Thus we need to: (1) trace the executed native functions and (2)
statically determine the total number of native functions. This will allow us to calculate
the function coverage of the native code.

To the best of our knowledge, there is no previously released tool to trace the execution
of the native code of an app. Android Open Source Project implements a tracing mech-



CHAPTER 2. PUBLISHED DOCUMENTS 42

anism since version 4.4. This tracing mechanism is implemented using a kernel device
called gemutrace that is part of the goldfish kernel. The kernel send information to assist
the emulator to trace correctly the execution, e.g., the PID of the running process each
time there is a context switch, a message that notifies that a fork or an execve is executed,
etc. The whole tracing system significantly slows down the performance of the emulator.
However, this tracing system is too general: we are interested only in the execution of the
native code of a specific app. We need to trace only functions of loaded libraries of the
app under analysis.

For this reason, we created two ways to limit the tracing to the interesting part only.
First, we only want to trace processes with a specific UID because each app in Android is
executed with it own UID. In addition, we are interested only in portions of the executable
memory where the native libraries have been loaded.

To inform the emulator about the UID of the currently executing process we leverage
the existing qemutrace device. We added the UID into the message sent for each context
switch. To send the information about the map of the memory to the emulator we cannot
use the gemutrace device, since it can only pass 32 bit integers as messages. Moreover,
we also need a mechanism to extract the libraries from the emulated system. To solve
both problems we instrumented the Android framework. We found that the function
java.lang.Runtime.doLoad is able to intercept all the loading operations. Our hook
inside the doLoad function blocks the loading (and the app) while syncing all the gathered
data to the external emulator. The mapping of the memory and the PID are read from
/proc/self/. The path of the loaded library is one of the parameters of the doLoad
function. Hence, when doLoad returns, the emulator knows the address space reserved
for the new library, and the content of the native library.

After the dynamic execution, we compute the code coverage using all the data gathered
during the execution. We use IDA Pro to find all functions boundaries of libraries. Then,
we use the map of the memory to translate the virtual addresses traced by the emulator.
Next, we flag all the functions whose boundaries include at least one address of the trace.
The code coverage is then calculated.

Our tracing system slows down the execution of the apps by around 10 times. There-
fore, we only ran it on a small subset of the apps, more specifically, we analyzed 177. The
code coverage of most libraries is less that 1%. Some small libraries, on the other hand,
were covered by 100%. Furthermore, the average coverage was 7%. More details about
executed libraries and coverage can be seen in Figure 2.3.

2.1.9 Threats to Validity

Our study is affected by a few limitations, which we discuss in this section. An intrinsic
limitation of the automatically-generated security policies is that we base their automatic
generation on data and insights obtained by means of dynamic analysis, which is well-
known to be incomplete and affected by code coverage issues. In fact, dynamic analysis
does not ensure that all native code is exercised in the apps that actually use it, and
for those apps that used native code, dynamic analysis may not have exercised all code
paths in the native code. Consequently, the policies that our tool generated might not



CHAPTER 2. PUBLISHED DOCUMENTS 43

libstarwisp-core.so 1 b
libnarumiengine.so | 1 R
libjnimain.so 1 b
libHealthGuide.so 1 -
libgl2jni.so |- 1 R
libmamed4all-jni.so 1 7
libprivateProperty.so 1 b
libdevicescape-jni.so
libobjc.so

libgideros.so

libopenal.so

libgame.so
libsoundpool.so
libjnlua5.1.so0

libSFT.so
libadvanced_memory_booster _ii.so
librompecabezashyorin.so
libvi_voslib.so
libCocoonJSLib.so
libcocos2dcpp.so

libcabs.so 1
> libmain.so 1
© libDevStudio.so E
— .
Q libfelpay.so B
—

liblocSDK3.so
libSimplePlayer.so
librompecabezascallofduty.so
libyoyo.so

libeasy3d_utils.so
libstlport_shared.so
liblingsAudio.so
libBMapApiEngine_v1_3_5.so
libDahuaEncrypt.so
libkeygen.so

libCore.so

libdictdroid.so

libgzAudio.so
libaacdecoder.so
libBaiduMapSDK _v2_3 1.so
librhodes.so
libapp_BaiduMapApplib_v2_1_2.so
libUtils.so 1 7
libOpenAL_android.so } 1 h
libmonodroid.so 11 b
libgsengine.so 2 B
libnobexjni.so § 3 h

16

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Coverage

Figure 2.3: Per library coverage of executed functions. Horizontal axis contains libraries
name, vertical, instead contains the function coverage. For each bar we also show the
number of libraries that has been found in all executed applications

be complete, they might block more applications when adopted at large-scale, and the
performance overhead of isolating native code could be higher. However, using a more-



CHAPTER 2. PUBLISHED DOCUMENTS 44

sophisticated instrumentation tool could possibly improve the amount of native code
behavior that our system observes, or deploying the automatically generated policies in a
native sandbox with reporting mode would help to observe the behaviors that the policies
would block.

Nonetheless, we believe this work to be a significant first step in a very important
direction. In fact, to the best of our knowledge, this work is the first, largest, and most
comprehensive study on how real-world applications use native code. Our results demon-
strate that it is infeasible to adopt a completely restrictive sandboxing policy. In addition,
we propose a system to automatically generate a native code sandboxing policy following
a data-driven approach. This system could be used by large organizations that are in-
terested in automatically generating a native code sandboxing policy. Furthermore, the
completeness issues could possibly be addressed by increasing the fidelity of the dynamic
analysis, either through more sophisticated analysis techniques or increased resources, or
by obtaining the actual behavior of native code in the wild, by instrumenting real-world
Android devices.

Another limitation is that our approach restricts access to permissions from native
code, but it still allows the native code to invoke (some) Java methods. This aspect would
make, in principle, Java-only analysis more precise, but still not completely sound, as a
malicious application could introduce hidden execution paths by invoking a native method,
which, in turn, could invoke a Java method. However, we note that our automatically-
generated policy only allows native code to invoke a very narrow subset of Java methods
defined in the Android framework (Table 2.19), through which it is virtually impossible
to perform any security-sensitive operation. Thus, our policy, although not perfect, would
drastically reduce the possibility of introducing malicious behaviors.

Lastly, we consider all the apps we obtained from Google Play as benign, but we
cannot be completely certain that there are no malicious apps among them. The effects
of having malicious apps in our dataset vary depending on how the malware works. In
the worst case it could cause our policies to allow some malicious actions.

2.1.10 Related Work

In this section we relate our work to the vast amount of research published in the field of
Android security.

Large Measurement Studies. Several works have analyzed large datasets of Android
apps, but with goals that differ from ours. Viennot et al. [81] did a large measurement
study on 1,100,000 applications crawled from the Google Play app store. In particular,
they collected meta-data and statistics taken from the Google Play store itself. As part
of their study, they measured the frequency with which Android applications make use
of native code components. Another important measurement study has been performed
by Lindorfer et al. [53]. In their work, they analyzed 1,000,000 apps, of which 40% are
malware. To perform the analysis, the authors used Andrubis, a publicly-available analysis
system for Android apps that combines static and dynamic analysis. When focusing on
native code, our work significantly extends their study.

Application Analysis Systems. Several systems have been proposed to perform be-



CHAPTER 2. PUBLISHED DOCUMENTS 45

havioral analysis of Android applications based on dynamic analysis |26, 28,64, 66,69, 91].
Moreover, several other works have been proposed to identify malicious Android apps |9,
19,40]. Our analysis complements all these research efforts by performing a large scale
study, based on dynamic analysis, specifically focused on native code usage.
Protection Systems. Fedler et al. [29] proposes a protection system from root exploits
by preventing apps from giving execution permission for custom executable files and by
introducing a permission related to the use of the System class. PREC [42] is a framework
intended to protect Android systems from root exploits. PREC uses two steps, learning
and enforcement. During the learning phase, the analysis generates a model of the normal
behavior for a given app. Then, during the enforcement phase, the system makes sure
that the app does not deviate from the normal behavior. Our work has the advantage
that the generated policies can be applied to all apps, whereas PREC generates per-app
models. Hence, our results are more general. Moreover, our analysis also monitors, in
addition to system calls, JNI function calls, Binder transactions and calls from Java to
native methods.

Native Code Isolation. Another way to protect the system is by isolating native code.
The challenge of isolating native code components used by managed languages has been
extensively studied. For instance, Klinkoff et al. [49] focus on the isolation of .NET ap-
plications, whereas Robusta [72]| focuses on the isolation of native code used by Java
applications. Recently, NativeGuard [77]| proposed a similar mechanism to isolate native
code in the context of Android. Our work is complementary to these sandboxing mech-
anisms and fills the knowledge gap necessary to define security policies on the execution
of native code in Android that are both usable in real-world applications and effective in
blocking malicious behavior of native components.

2.1.11 Conclusion

While allowing developers to mix Java code and native code enables developers to fully
harness the computing power of mobile devices, we believe that, in the current state,
this feature does more harm than good and that native code sandboxing is the correct
approach to properly limit its potentially malicious side-effects. However, a native code
sandboxing mechanism without a proper policy will never be feasible. We hope that, in
addition to shedding light on the previously unknown native code usage of Android apps,
this paper demonstrates an approach to automatically generate an effective and practical
native code sandboxing policy.

Acknowledgment

This material is based upon work supported by CAPES Foundation under Award No.
BEX 12269/13-1, by NSF under Award No. CNS-1408632, by DHS under Award No.
2009-ST-061-CI0001, and by Secure Business Austria. Any opinions, findings, and con-
clusions or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of CAPES Foundation, NSF, DHS, or Secure Business
Austria.



CHAPTER 2. PUBLISHED DOCUMENTS 46

This material is also based on research sponsored by DARPA under agreement num-
ber FA8750-12-2-0101. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government.

2.2 Identifying Android malware using dynamically ob-
tained features

Publication: This paper was published in the Journal of Computer Virology and
Hacking Techniques, volume 11, 2015

Vitor Monte Afonso!, Matheus Favero de Amorim!, André Ricardo Abed Grégio!, Paulo
Licio de Geus', Glauco Barroso Junquera?
(1) University of Campinas
Email: {vitor,matheus,gregio,paulo}@lasca.ic.unicamp.br
(2) Samsung Institute for Informatics Development (SIDI)
Email: glauco.b@samsung.com



CHAPTER 2. PUBLISHED DOCUMENTS 47

Table 2.14: Allowed system calls automatically generated using a threshold of 99% apps
unaffected by the policy (part 1).

‘ N i access(
accept(*,*,*) access(<SYS-PATH>, F OK) <SYS-PATH>R_OK)
access(
access(<SYS-PATH>, W_OK) access(<SYS-PATH> X OK) <USER-PATH>, F_OK)
access(<USER-PATH>, .
access(<USER-PATH> R _OK) R_OK|W OK[X OK) bind
BINDER(

android.os.IServiceManager. k% %

CHECK SERVICE brk cacheflush(* *,0,* *)

TRANSACTION)

cacheflush(* *,0,0,*) chdir chmod(<USER-PATH> *)

clone(child _stack—* flags—CLONE_VM|CLONE _FS|
CLONE_FILES|CLONE SIGHAND|CLONE THREAD|CLONE SYSVSEM)

connect (¥, connect (¥, connect(* {sa_family=
{sa_family—AF UNIX, {sa_family— AF UNIX, path=
path=@"jdwp-control" },*) AF INET **}*) @"android:debuggerd" },*)
connect (*,

{sa_family=AF UNIX, dup dup2
path=<SYS-PATH>} *)
epoll create(*) epoll _ctl(** **) epoll _wait
execve exit(<NEG INT>) exit(0)
exit_group(<POS INT>) exit_group(0) fcnt164F(jg8§FS];l:]>(<)) FD>,
fcnt164’(F<_NGOE1\Er§‘E])) FD> fentl6A(*,F_GETFL) fcnt164P(‘i1§}é)Tl\‘TFSDT"E) FD>,
fentl64(<NON STD FD> fentl64(<NON STD FD>, fdatasync(*)

F_SETFL,*) F_SETLK,*) Y
fork fstat64 fsyne(*)
ftruncate(*,*) futex getewd
getegid32 geteuid32 getgid32
getpeername getpgid(0) getpid
getppid getpriority(PRIO _PROCESS,*) RLIB%IQF?EISXSFA,*)
getrlimit(RLIMIT_NOFILE)  getrlimit(RLIMIT_STACK*)  p..g AG%eig;ﬁeéREN,*)

getsockopt(*,
getrusage(RUSAGE _SELF *) getsockname SOL SOCKET,
SO_ERROR,**)
« getsockopt(*,

getsockopt(*,SOL_SOCKET, SOL SOCKET, gettid

SO_PEERCRED,* *) SO_RCVBUF * *)

getuid32 ioctl(<ASHMEM-DEV > * *) ioctl(*, FIONBIO,*)
i - * * ; * * ioctl(*,
ioctl(<LOG-DEV> * *) ioctl(*, SIOCGIFADDR,*) SIOCGIFBRDADDR %)
1 *
ioctl(*,SIOCGIFCONF,*) ioctl(*, SIOCGIFFLAGS,*) ioctl(*,

SIOCGIFHWADDR,*)




CHAPTER 2. PUBLISHED DOCUMENTS 48

Table 2.15: Allowed system calls automatically generated using a threshold of 99% apps
unaffected by the policy (part 2).

ioctl(*,SIOCGIFINDEX,*)

ioctl(* SIOCGIFNETMASK,*)

ioctl(<STD IN/OUT/ERR>,
SNDCTL_TMR_TIMEBASE
or TCGETS, *)

ioct](*,
SNDCTL_ TMR_TIMEBASE
or TCGETS,*)

ioctl(<URANDOM-DEV >,
SNDCTL_TMR_TIMEBASE
or TCGETS,*)

listen

Iseek(*,* SEEK_CUR)

Iseek(*,* SEEK END)

Iseek(*,* SEEK SET)

Istat64

madvise(*,*,

MADV_DONTNEED)

madvise(**,

MADV_NORMAL)

madvise(* *,

MADV_RANDOM)

mkdir(<SYS-PATH> *)

mkdir(<USER-PATH> *)

ap2 otect mremap(*,*%,
tmap Pt MREMAP _MAYMOVE)
munmap nanosleep open(<SYS-PATH> * *)

open(<SYS-PATH> *)

open(<USER-PATH> * *)

open(<USER-PATH> *)

prctl(PR_GET NAME,

pipe poll 0,0,0)
prctl(PR_SET NAME, pretl( prctl(PR_SET NAME,
KEE) PR_SET NAME* * *0) ,0,0,0)

ptrace(PTRﬁCOEO_)TRACEME, readlink(<USER-PATH> **)  recvfrom
recvmsg rename(<USER-PATH>, rmdir(<USER-PATH>)

<USER-PATH>)

rt_sigprocmask(
SIG_ BLOCK,* *¥)

rt_sigprocmask(
SIG SETMASK,* * *)

rt_sigreturn(*)

rt_sigtimedwait(|QUITUSR1],
NULL, NULL, 8)

sched getparam

sched getscheduler

sched yield

select

sendmsg

sendto

setitimer(ITIMER_ REAL,* *)

setpriority(PRIO _PROCESS
*,<POS INT>)




CHAPTER 2. PUBLISHED DOCUMENTS 49

Table 2.16: Allowed system calls automatically generated using a threshold of 99% apps
unaffected by the policy (part 3).

setpriority( - « « * s
PRIO_PROCESS, * 0) setrlimit(RLIMIT NOFILE*)  setsockopt(*,SOL 1P * * *)
setsockopt(*, * ok ok K % ¥ ok () % %
SOL_SOCKET,* **) set _tls(*, %%, %,) set_tls(*,%,0,%,%)
. : . % sigprocmask(
sigaction sigprocmask(SIG _ BLOCK,* *) SIG SETMASK * %)
sigprocmask( . .
SIG_UNBLOCK * ) sigreturn sigsuspend([])
socket(PF _INET, socket(PF _INET, socket(PF _INET,
SOCK_ DGRAM, SOCK_DGRAM, SOCK_DGRAM,
IPPROTO_ICMP) IPPROTO_IP) IPPROTO_UDP)
socket(PF _INET, socket(PF _INET,
SOCK_ STREAM, SOCK STREAM, socket(PF_ NETLINK,
IPPROTO_IP) [PPROTO_TCP)
SOCK_RAW, 0)
socket(PF_UNIX, stat64 statfs64(<SYS-PATH> *)

SOCK_STREAM, 0)
] w  symlink(<USER-PATH>, 1k %
statfs64(<USER-PATH> *) <USER-PATH>) tgkill(*,*,SIGTRAP)

umask uname unlink(<USER-PATH>)
utimes vfork wait4

Table 2.17: Symbols used to replace the arguments of system calls.
<USER-PATH> A file path in the apps’ directory or in the sdcard
A file path different than the
<SYS-PATH> ones represented by <USER-PATH>
<URANDOM-DEV>  “/dev/random” or “/dev/urandom”

<ASHMEM-DEV> “/dev /ashmem”

“/dev /log/system”; “/dev /log/main”,
<LOG-DEV> “/dev/log/events” or “/dev/log/radio”
<NEG INT> A negative number
<STD IN/OUT/ERR> A file descriptor equal 0, 1, or 2
<NON STD FD> A file descriptor different than 0, 1, or 2

<POS INT> An integer greater than 0




CHAPTER 2. PUBLISHED DOCUMENTS

50

Table 2.18: This table shows the list of considered root exploits, on which syscall-level

behavior they rely, and which exploits are successfully blocked by our policy.

Name / CVE Description Blocked

. Needs a NETLINK socket with
Exploid (CVE-2009-1185) NETLINK_KOBJECT_UEVENT protocol Yes

. Needs a NETLINK socket with
GingerBreak (CVE-2011-1823) NETLINK_KOBJECT_UEVENT protocol Yes
CVE-2013-2094 Uses perf_event_open system call Yes
Vold/ASEC |73] Creates symbolic link to a system directory Yes
RATC (CVE-2010-EASY) Relies on invoking many times the fork syscall No
CVE-2013-6124 Creates symbolic links to system files Yes
CVE-2011-1350 ioctl call used violates our rules Yes
Zimperlinch Relies on invoking many times the fork syscall No
CVE-2011-1352 ioctl call used violates our rules Yes
CVE-2011-1149 It relies on the mprotect syscall No
CVE-2012-4220 ioctl call used violates our rules Yes
CVE-2012-4221 ioctl call used violates our rules Yes
CVE-2012-4222 ioctl call used violates our rules Yes

Table 2.19: List of allowed methods (Java methods called from native code) automatically
generated for allowing a minimum of 97%, 98% and 99% of apps that reached native code.

Allowed
apps (%)

Method

97
97
97
98
98
98
98
98
98
98
98
98
98
98
98
98
98
99
99
99
99
99
99
99
99
99
99

java.lang.Integer.doubleValue
android.content.Context Wrapper.getPackageName
java.lang.String.get Bytes
java.lang.Double.doubleValue
android.content.Context Wrapper.getClassLoader
android.content.Context Wrapper.getFilesDir
java.io.File.getPath
android.content.Context Wrapper.getExternalFilesDir
android.view.WindowManagerImpl.get DefaultDisplay
java.lang.String.toLowerCase
android.app.Activity.getWindowManager
java.util.ArrayList.add
android.view.Display.getMetrics
android.app.Activity.getWindow
android.view.View.get Window VisibleDisplayFrame
java.util.Calendar.getInstance
android.view.View.getDrawingRect
java.util.Calendar.get
android.os.Bundle.getByteArray
android.content.Context Wrapper.getPackageManager
android.content.res. AssetManager$AssetInputStream.read
java.lang.Long.doubleValue
java.lang.ClassLoader.loadClass
android.app.ApplicationPackageManager.getPackagelnfo
android.content.res. AssetManager$ AssetInputStream.close
java.lang.Float.doubleValue
java.lang.Class.getClassLoader




Abstract

The constant evolution of mobile devices’ resources and features turned ordinary phones
into powerful and portable computers, leading their users to perform payments, store
sensitive information and even to access other accounts on remote machines. This scenario
has contributed to the rapid rise of new malware samples targeting mobile platforms.
Given that Android is the most widespread mobile operating system and that it provides
more options regarding application markets (official and alternative stores), it has been
the main target for mobile malware. As such, markets that publish Android applications
have been used as a point of infection for many users, who unknowingly download some
popular applications that are in fact disguised malware. Hence, there is an urge for
techniques to analyze and identify malicious applications before they are published and
able to harm users. In this article, we present a system to dynamically identify whether an
Android application is malicious or not, based on machine learning and features extracted
from Android API calls and system call traces. We evaluated our system with 7,520 apps,
3,780 for training and 3,740 for testing, and obtained a detection rate of 96.66%.



CHAPTER 2. PUBLISHED DOCUMENTS 52

2.2.1 Introduction

Mobile devices have been ubiquitously widespread as personal and professional tools whose
computing power is approaching that of ordinary desktop computers. Consequently,
smartphone users are able to do more complex tasks with their devices, such as produc-
ing documents and spreadsheets, making video conferences and managing their Internet
Banking accounts. These users are now storing all sorts of sensitive information on their
devices (e.g., bank credentials, corporate documents), effectively creating an interesting
and potentially lucrative scenario for cybercriminals. To take advantage of this situation,
attackers are ramping up the creation of malicious applications that affect mobile devices.

Since Android is the most widespread operating system for mobile devices [34], it is
the main target of mobile malware. According to Juniper [46], the amount of malicious
applications discovered between March 2012 and March 2013 has increased 614%, consid-
ering all mobile platforms. In addition, the same report states that 92% of every malware
that affects mobile devices targets the Android operating system. Users obtain Android
applications mostly from markets, including Google Play—Google’s official market—and
others known as “alternatives”. In order to infect users’ devices, attackers submit to
markets malware that look like legitimate applications, such as games. In fact, many of
the available malware are repackaged versions of legitimate applications, i.e., applications
modified to include malicious code and republished in the markets.

Some works in the literature refer to the presence of malicious applications both in
the official market and in alternative ones [40,98]. They show that the official market
does a better job at filtering out malicious applications, but nonetheless is still used as a
vector to infect users. Addressing this issue requires the development and deployment of
improved techniques to analyze and identify malicious Android applications.

To that effect, several approaches based on static and dynamic analysis have been
proposed to detect malicious Android applications [27, 70, 76, 96, 98], but all of them
present shortcomings regarding their detection scope or ability. Firstly, approaches that
rely on static analysis of the application’s code have a hard time dealing with highly
obfuscated samples [59] and only analyze code packed with the application file, missing
code that can be downloaded and executed at runtime [63]. Secondly, although Android
malware samples do not make use of obfuscation techniques as heavy as those affecting
Windows desktops, the natural evolution of Android malware will inevitably lead to the
improvement of obfuscation techniques currently used [74], turning static analysis into
a difficult proposition. Moreover, dynamic analysis approaches usually suffer from not
being able to observe the malicious behavior of some samples due to their ever growing
awareness of the analysis environment, to the lack of appropriate stimulation under the
analysis environment or else to the inability of the malware sample under analysis to
obtain some required external data.

In general, detection techniques for Android malware use statically extracted data
from the manifest file or from Android API function calls, as well as dynamically obtained
information from network traffic and system call tracing. However, most articles available
in the literature whose focus lies on malware identification either use small datasets or
require manual steps at some stage of the process. In this paper, we present a system



CHAPTER 2. PUBLISHED DOCUMENTS 53

that identifies malicious Android applications based on a machine learning classifier, using
dynamically obtained features. These features are extracted from Android API function
calls and system call traces. We trained our classifier with 3,780 samples and tested it with
3,740 samples (with both datasets including malicious and benign applications), which
was then able to correctly classify 96.66% of those samples. The results obtained were
compared to the ones from other Android malware detection approaches and demonstrate
the relevance of our system. Using a larger dataset, we obtained results similar to the
state-of-the-art, including static and dynamic approaches. Furthermore, we show that
features extracted from API function calls, which, as far as we know, were not used by
other automatic and dynamic approaches, are very good for the identification of malware.
The main contributions of this paper are:

e We developed an analysis system to monitor Android API function calls as well as
system calls, in order to gather information (features) required to detect malicious
behavior. Currently available systems are tied to Android OS versions (some of
them to older versions, such as 2.x) or to the SDK-provided emulator, whereas our
approach is independent of the emulator and much more portable as it does not
modify Android OS;

e Irom that, we developed a system that classifies applications as benign or malicious
and tested it with thousands of apps, correctly classifying 96.66% of them. To
accomplish better training and accuracy, we extract novel features showing that
those based on APIT function calls greatly increase the detection rate.

The remainder of this paper is organized as follows. Section 2.2.2 provides a back-
ground about Android malware and presents related work. The developed system is
introduced in Section 2.3.5, whereas evaluation results and discussion are presented in
Section 2.2.4. Section 2.2.5 discusses some of the limitations and, in Section 2.2.6, we
conclude this paper and discuss some follow-up work.

2.2.2 Background and Related Work

Based on reports from antivirus companies, the authors of [31] describe the behavior
of 46 malware samples collected between January 2009 and June 2011. The malicious
behaviors identified were the following: user information stealing; premium calls and
SMS messages*; SPAM SMS messages; novelty and amusement®; user credential stealing;
search engine optimization; and ransom.

A similar study is presented in [97], but in this case the authors analyzed the samples
manually. They used a dataset of 1,260 Android malware samples, which were collected
between August 2010 and October 2011 and were separated in 49 malware families. The
authors describe the behavior of these samples and show information regarding their
time of discovery in the official market and in alternative ones. For each family, they
specify how the malware is installed, how the malicious behavior is activated and what

4These actions generate costs to the user.
5Some samples performed actions that seemed to be only useful for the amusement of the author.



CHAPTER 2. PUBLISHED DOCUMENTS 54

the malicious payload is. Also, the authors indicate the events monitored by the malware
and the exploits used by them for privilege escalation.

Android malware detection is a critical task towards protecting users of application
markets and improving these markets’ vetting processes. However, detection is intimately
bound to analysis, since features must be extracted so as to generate signatures or behav-
ioral profiles. There are systems proposed in the literature that aim to analyze apps from
markets in order to detect the presence of malware among them, as well as others solely
with the purpose of providing useful information about static and dynamic characteristics
of an unknown application. We discuss some of these systems in the following sections.

Android Malware Analysis

Enck et al. |28] propose TaintDroid, a dynamic taint analysis system, which tracks sen-
sitive data flow to detect when it is sent over the network. TaintDroid instruments
the Android virtual machine interpreter and some APIs to accomplish system-wide taint
tracking, but it does not handle native code. Their results show that seemingly unsupi-
cious applications often disclose sensitive data, such as location, UUID and phone number.
Although based on permissions granted by users, the data exposure monitoring process
requires the application to be dynamically analyzed.

DroidBox [26] is a dynamic analysis system that builds upon TaintDroid and provides
API calls, network data and data leaks, besides other important information.

Andrubis [53], which has a publicly available submission interface, is a system whose
goal is to analyze Android applications using static and dynamic techniques. In the static
analysis step, Andrubis collects information about required permissions, components to
communicate with the operating system, intent-filters and URLs found in the bytecode.
Dynamically-based information collection is accomplished through instrumentation of the
Dalvik VM, taint tracking and network traffic capture. Andrubis is based on TaintDroid,
DroidBox and other related projects. Yan and Yin propose DroidScope [91], a virtual
machine introspection-based analysis system that bridges the semantic gap reconstructing
OS-level and Java-level semantic views from outside. They also developed additional
analysis tools to provide taint tracking and several levels of instruction tracing.

Spreitzenbarth et al. present Mobile-Sandbox, a system that combines static and dy-
namic analysis techniques to obtain Android applications’ behavior [75]. Mobile-Sandbox’s
static analysis includes parsing the manifest file and the extracted bytecode, and aims to
guide the dynamic analysis process, which is based on TaintDroid and DroidBox. In
addition, Mobile-Sandbox monitors native code using the 1trace tool and analyzes net-
work traffic captured during the application’s execution. Another system that uses both
static and dynamic analysis is AASandbox [18]. During static analysis, the system de-
compiles the application to Java code and look for suspicious patterns, such as the use of
Runtime.exec() and functions related to reflection. During the dynamic step, AASand-
box runs the application on a controlled environment and monitors system calls using a
kernel module.



CHAPTER 2. PUBLISHED DOCUMENTS 99

Android Malware Detection

Zhou et al. propose DroidRanger, a two-scheme system based on signatures and heuris-
tics that intends to detect Android malware [98]. On the one hand, the signature-based
scheme relies on common permissions and behavioral footprints to identify samples from
known families. On the other hand, the heuristics-based filtering scheme identifies sus-
picious behaviors (e.g., downloading and executing code from Web and dynamic loading
of native code). Applications identified as suspicious are manually analyzed and if they
are indeed malicious, the information necessary to detect samples from the same family
in the signature-based step are manually extracted.

Zheng et al. propose DroidAnalytics, a system to automatically collect, analyze and
detect Android malware that makes use of repackaging, code obfuscation or dynamic
payloads [96]. Collection is accomplished by an extensible application crawler that receives
marketplaces (official and alternatives) or URLs as input. Collected applications are then
disassembled so as to obtain Android API calls. These API calls are used within a three-
level signature generation process, which extracts malware features at the opcode level
to identify variants. The dynamic analysis step consists of running samples that present
network behavior, inside an emulator, in order to download additional pieces of code.

Sanz et al. introduce PUMA, an Android malware detection method based on machine
learning that uses information obtained from application’s permissions [70|. To evaluate
their method, they collected 1,811 supposedly benign applications of several categories
from Android Market and 249 unique malicious samples from the VirusTotal database.
The features used to represent each sample are based on the set of permissions and the de-
vice’s features required by the application. Using this information, the authors evaluated
eight algorithms available in the WEKA framework and concluded that RandomForest
provided the best results.

Elish et al. propose a tool to determine whether unknown applications are malicious
or not based on static data dependence analysis [27], aiming to identify software execu-
tion patterns related to the correlation of user inputs with critical function calls. They
construct a data dependence graph for each analyzed application, which can then be used
in comparisons to identify stealthy Android malware. Although their results show that
the analyzed malware samples are distinguishable from the legitimate applications, since
the former performed sensitive function calls without any user input.

Wu et al. propose DroidMat, a detection system based on clustering techniques applied
to statically extracted features from the application’s manifest file (permission, component
and intent information) and permission-related Android APT call traces from the applica-
tion’s bytecode [88]. The process for evaluating the system applied four combinations of
clustering and classification algorithms to analyze a dataset of 1,500 benign applications
(downloaded from GooglePlay) and 238 malicious ones, and resulted in 97.87% accuracy.

Another system that performs Android malware detection using features obtained
statically is DREBIN [9]. This system uses machine learning and features extracted from
the manifest and the dex code of applications. The authors performed experiments with
123,453 benign samples and 5,560 malicious samples and the system obtained 93% of
accuracy.



CHAPTER 2. PUBLISHED DOCUMENTS o6

Su et al. present a smartphone dual defense protection framework to perform detection
of malicious applications, using machine learning, as they are submitted for release on
Android markets [76]. Their approach consists of dynamically analyzing a new application
to collect two sets of features: one related to system call tracing and the other related
to network traffic statistics. A system call monitoring process makes use of the Linux’s
strace tool and restricts itself to 15 (of almost 300) of them that are related to process,
memory and I/O activities. The tcpdump tool is used to capture network traffic, from
which TCP/IP flows are extracted. The training of the system calls classifier involved
200 benign and 180 malicious applications, whereas the training of the network classifier
involved 60 benign and 49 malicious applications. Both classifiers are based on WEKA’s
implementation of J.48 and RandomForest algorithms. The authors selected 70 benign
and 50 malicious applications to evaluate their classifiers and obtained an accuracy rate
of 94.2% and 99.2% for J.48 and RandomForest, respectively.

2.2.3 System Overview

Figure 2.4 presents the system overview. To identify malicious applications, the developed
system obtains information about the application’s behavior using dynamic analysis. This
process is explained in Section 2.2.3. The obtained information is comprised by Android
API function calls and system calls, and is fed to a processor, which extracts features from
the information. These features are composed by the frequency of use of API functions
and system calls, and are used by a classifier to categorize the application as malicious or
benign. The feature extraction and classification processes are explained in Section 2.2.3.

Freq. of API
function calls

API
Trace

Detection
Results

Dynamic
Analysis

Processing Classification 3

Freq. of
Syscall system calls

Trace

Altributes

Figure 2.4: System overview

Data Extraction

To obtain its behavior, the application is first instrumented by APIMonitor®, a tool that
modifies the application so that calls to certain functions are registered, along with the
parameters passed and the return value. We modified the default_api_collection’
file, used by APIMonitor, to include methods related to network access, process execu-
tion, string manipulation, file manipulation and information reading. The instrumented
version of the application is executed for five minutes in the standard Android emulator—
distributed with the Android SDK.

Shttps://code.google.com/p/droidbox/wiki/APIMonitor.
"This file defines the functions that are monitored.




CHAPTER 2. PUBLISHED DOCUMENTS 57

The analysis of Android APT function calls is important because it allows the extraction
of high-level information about the behavior of applications. However, some applications
use native code instead of Android API functions. Thus, through the strace tool, we also
monitor the system calls executed by the application. Section 2.2.3 presents examples of
registered API function calls and system calls.

The advantages of our monitoring process are not needing to modify the Android
code and also being independent of the virtualization platform. Analysis systems that
use a modified version of Android, such as TaintDroid [28]|, Andrubis [53] and Mobile-
Sandbox [75], need to be constantly updated to the newest version of the Android system,
a task that is quite time-consuming, so that they are able to analyze samples that target
that particular version of the operating system. Moreover, systems that use virtual ma-
chine introspection, such as Droidscope [91], are dependent on the virtualization platform
(e.g., Qemu) and cannot be used on a different virtualization platform or on a bare-metal
one.

On the negative side, the disadvantages of our monitoring system are the use of a
monitoring tool inside the analysis environment and the modification of the analyzed
sample. These actions make the system more detectable by malware, which can stop the
execution or execute benign actions when it becomes aware of the analysis. The previously
mentioned systems that use virtual machine introspection or a modified version of Android
do not suffer from that. Although in these cases the monitoring tool cannot be detected,
the malware sample can still detect the virtual or emulated environment, if it is not a
bare-metal platform.

Log Examples.

Listings 2.1 and 2.2 present examples of API function calls registered by the in-
strumented application. Listing 2.1 presents a call to a function that sends an SMS
message. In this case the destination number is “7132” and the message is “846978".
Listing 2.2 presents a call to a function the executes a process. The executed pro-
cess is /data/data/org.zenth.oughtflashrec/cache/asroot and the parameters are
/data/data/org.zenthought. flashrec/cache/explXXXXXX, /data/data/org.
zenthought.flashrec/cache/dump_image, recovery and
/mnt/sdcard/recovery-backup.img.

Listing 2.1: Call to send an SMS message

Landroid/telephony /SmsManager;—>sendTextMessage (Ljava/lang /String;=7132
| Ljava/lang/String;=null

| Ljava/lang/String;=846978

| Landroid/app/Pendinglntent;=null

| Landroid/app/PendingIntent;=null)V

Listing 2.2: Call to execute a process

Ljava/lang /Runtime;—>exec ([ Ljava/lang/String;={
/data/data/org.zenthought . flashrec/cache/asroot ,
/data/data/org.zenthought . flashrec /cache /expl XXXXXX,
/data/data/org.zenthought . flashrec /cache /dump image,

recovery ,

/mnt/sdcard /recovery —backup.img})Ljava/lang/Process;=Process [id =541]




CHAPTER 2. PUBLISHED DOCUMENTS o8

Listing 2.3 presents two calls to the execve system call. They were both used to
obtain information about the device, one focusing on CPU information and the other on
memory information.

Listing 2.3: Examples of registered system calls

execve (‘‘/system/bin/cat’’, [‘‘/system/bin/cat’’, ‘‘/proc/cpuinfo’’],
[ ¢ “ANDROID_SOCKET _zygote—9’’, ¢‘ANDROID BOOTLOGO—1"",
¢ ‘EXTERNAL STORAGE—=/mnt/sdcard’’, ¢‘ANDROID ASSETS=/system /app’’,
¢ ‘PATH=/sbin:/vendor/bin:/system /s’ ...,
‘*‘ASEC_MOUNTPOINT=/mnt /asec ’’, ¢ ‘LOOP_MOUNTPOINT=/mnt/obb’’,
¢ ‘BOOTCLASSPATH=/system /framework / ’ ’..., ‘‘ANDROID DATA=/data’’,
“‘LD_LIBRARY_ PATH=/vendor/lib:/sys’’..., ‘‘ANDROID_ROOT=/system ’’,
‘ ‘ANDROID_PROPERTY WORKSPACE=8 ,327"’...]) = 0

execve (‘¢/system/bin/cat’’, [‘‘/system/bin/cat’’, ‘‘/proc/meminfo’’],
[ ¢ “ANDROID SOCKET _zygote=9’’, ‘‘ANDROID BOOTLOGO=1"",
¢ ‘EXTERNAL STORAGE—/mnt/sdcard’’, ¢‘ANDROID_ ASSETS—/system /app’’,
¢ ‘PATH=/sbin:/vendor/bin:/system /s’ ...,
¢ ‘ASEC_MOUNTPOINT=/mnt /asec ’’, ‘‘LOOP_MOUNIPOINT=/mnt/obb’’,
¢ ‘BOOTCLASSPATH=/system /framework / ’’..., ‘‘ANDROID DATA=/data’’,
‘‘LD_LIBRARY PATH=/vendor/lib:/sys’’..., ‘‘ANDROID ROOT=/system’’,
¢ ‘ANDROID _PROPERTY WORKSPACE=8,327’’...]) = 0

Analysis Stimulation

Some actions of the malware are only carried out if certain events are observed or
if certain interactions with the graphic interface are performed. To stimulate these ac-
tions we automatically generate random events with the MonkeyRunner tool, which is
distributed with the Android SDK, and create some events related to phone calls, SMS
messages, geographic location and battery state, using the emulator.

As the events that interact with the graphic interface are generated randomly, they
may not lead the application to execute the malicious code. One way to solve that is
manually interacting with the applications during the analyzes, but when analyzing a
large number of applications, it becomes too time-consuming. Another way to do this is
by statically identifying which interactions are necessary to reach the relevant portions
of the code and provide these interactions during the analysis. This approach is used
by [95], but their system requires a modified version of the Android OS, which may be a
problem, as discussed earlier. Another way to do this would be to identify the necessary
interactions as done by [95], but generate them without needing a modified version of the
OS. We leave this as a future work.

To make the analysis system more similar to the system of a real user, making it harder
for malware to identify it is being analyzed, we changed the IMEI and phone number of
the device [83]. Moreover, we added some contact information.

Malware Identification

The attributes used to classify the applications as malicious or benign are extracted from
the data obtained during dynamic analysis. More precisely, we extract the amount of




CHAPTER 2. PUBLISHED DOCUMENTS 99

calls to each one of the 74 monitored Android API functions and the amount of calls to
each one of 90 system calls®.

For example, after an analysis, if the API function calls log produced the results il-
lustrated in Listings 2.1 and 2.2, and the system call trace produced Listing 2.3, the
attributes of the evaluated sample would be the following array:
1,1,0,...,0,2,0,...,0, in which the first two “1” refer to the android/telephony/
SmsManager;-> sendTextMessage and the java/lang/Runtime;->exec API function
calls, and the following “zeroes” refer to the frequency of the other API function calls,
whereas the “2” refer to the execve system call, followed by a sequence of “zeroes” related
to the remaining system calls’ frequencies.

To create the classifier we first evaluated several algorithms, using the Weka [41]
framework, and the one that performed best was RandomForest (with 100 trees). This
experiment is detailed in Section 2.2.4.

2.2.4 Evaluation

This section describes the datasets used in the evaluations, the comparison of algorithms
performed to select which one would compose the classifier and the test carried out to
evaluate the classification system, including a comparison with other systems.

Datasets

The malicious application dataset is composed by samples from the “Malgenome Project” [97]
and from a torrent file acquired from VirusShare
(http://tracker.virusshare.com:6969/), totalling 4,552 samples. To compose the be-
nign dataset we developed a crawler to collect applications from the AndroidPIT market
(http://www.androidpit.com/). Through it, we gathered 3,831 applications to compose
the benign dataset. These applications were submitted to VirusTotal, a system that uses
more than 40 antivirus systems to scan the submitted file, and the ones that were de-
tected by at least one antivirus were removed. Hence, the benign dataset contains 2,968
applications. In order to compose the training and testing datasets, we randomly split
the malicious and benign datasets. Table 2.20 shows the amount of malicious and benign
samples in the training and testing datasets’.

Evaluation of classification algorithms

In order to identify which algorithm to use in the classifier, we compared the results
obtained using several machine learning algorithms (the same ones used in [70]). For this
test we used the training dataset mentioned before. Table 2.21 presents the algorithms
and configurations used in the comparison. Furthermore, Table 2.22 presents the accuracy
yielded by the 10-fold validation performed using each algorithm. The accuracy was

8The lists of API functions and system calls used are presented in http://pastebin.com/T7Yfbksq
and http://pastebin.com/5Xyjh8GS.

9The lists with the SHA-1 hash values of the samples used can be found at http://pastebin.com/
OK9Xxj7U (training/malicious), http://pastebin.com/FCp9pCsK (training/benign), http://pastebin.
com/ZwLnDPJd (testing/malicious) and http://pastebin.com/apV32ywX (testing/benign)



CHAPTER 2. PUBLISHED DOCUMENTS 60

Table 2.20: The amount of malicious and benign samples in the training and testing
datasets

Training | Testing | Total

Malicious 2,295 2,257 4,552

Benign 1,485 1,483 2,968

Total 3,780 3,740 7,520
(T'P+TN)

calculated as Accuracy = ( with FP being false-positive, FN being false-

TP+TN+FP+FN)’
negative, TP being true-positive and TN being true-negative. The algorithm that achieved
th best results was RandomForest with 100 trees. The RandomForest algorithm generates

several decision trees and chooses the one with the best results.

Table 2.21: The algorithms and configurations used in the evaluation to select the algo-
rithm to be used by our classifier

Algorithm Configurations
RandomForest | Number of trees {10, 50, 100}
J.48 Default
SimpleLogistic Default
NaiveBayes Default

BayesNet Search algorithm {K2, TAN}
Kernel {PolyKernel,

SMO NormalizedPolyKernel }

IBk Value of k {1, 3, 5, 10}

Table 2.22: Comparison of the detection using several classification algorithms over the
training dataset with 10-fold validation

Algorithm Accuracy (%)
RandomForest 10 93.20
RandomForest 50 95.65
RandomForest 100 95.96

J.48 93.04
NaiveBayes 82.39
SimpleLogistic 67.92
BayesNet TAN 74.53

BayesNet K2 89.92
SMO PolyKernel 75.03
SMO NPolyKernel 85.45

IBk 1 89.92
IBk 3 87.60
IBk 5 86.85
IBk 10 83.70




CHAPTER 2. PUBLISHED DOCUMENTS 61

Detection evaluation

As the RandomForest algorithm (with 100 trees) yielded the best results in the previous
experiment, we used it to evaluate our detection system. We trained the classifier us-
ing the training dataset and used it to classify the testing dataset. Table 2.23 presents
the confusion matrix with the results of this test. From the 2,257 malicious applications
used for testing, 2,168 were correctly classified and 89 were false-negatives, i.e., malicious
applications classified as benign. From the 1,483 benign applications, 1,447 were classi-
fied as such, whereas 36 were considered malicious, comprising the false-positives. The
values of false-positive, false-negative, true-positive, true-negative, accuracy (A), recall
(R), precision (P), harmonic mean (F-measure) and the amount of correctly classified

samples are shown in Table 2.27. The recall was calculated as Recall = %, the
precision was calculated as Precision = % and the harmonic mean was calculated

(2xRxP)
(R+P)

as F' — measure =

Table 2.23: Confusion matrix with the detection results using the RandomForest (100)

algorithm
Correct class

Malicious | Benign | Total

Results Malicious 2,168 36 2,204
Benign 89 1,447 1,536

Total 2,257 1,483 3,740

Table 2.24: Values of false-positive (FP), false-negative (FN), true-positive (TP), true-
negative (TN), accuracy (A), recall (R), precision (P), harmonic mean (F-measure) and
correctly classified samples (CC) obtained in the system evaluation

FP FN TP TN A R P F-measure CC
2.43% | 3.94% | 96.06% | 97.57% | 96.82% | 96.06% | 97.53% 96.79% 96.66%
Discussion

Table 2.25 presents the comparison of the results obtained by our system with the results
presented in [70], [76], [9] and [88]. The PUMA [70], DREBIN [9] and DroidMat [8§]
systems statically extract features, whereas our system and the one presented in [76] do
it dynamically. Though the results obtained by DroidMat are a little better than ours,
systems that rely on static analysis to obtain information from the code may fail when
dealing with highly obfuscated samples and samples that download and execute code at
runtime, as mentioned before. Moreover, our evaluation used a significantly larger number
of malicious samples than PUMA and DroidMat.

The features used by our system and the one presented by Su et al. [76] have some
elements in common. Their system uses the frequency of use of 15 system calls and 9
features from network traffic, whereas our system uses the frequency of use of 90 system



CHAPTER 2. PUBLISHED DOCUMENTS 62

calls and also the frequency of use of 74 Android API functions. We argue that the API
calls provide important information for the classification. To corroborate that assertion,
we performed another experiment, using the same datasets presented before, for training
and testing, but this time we used three additional sets of features: the frequency of the
15 syscalls used by Su et al.; the frequency of the 15 syscalls used by Su et al. plus the
frequency of APT calls; the frequency of API calls. The results of this test along with the
detection rate obtained by the previous test (the evaluation of our system) are presented
in Table 2.26 and show that using the features related to API calls greatly improved the
detection rate.

Besides the classification using 15 system calls, the system presented by Su et al. has
also a classifier that uses features extracted from network traffic. This classifier is used
to detect malicious samples that were not identified by the first classifier and that match
a certain heuristic. From the 191 malicious samples incorrectly labeled by the classifier
that used 15 system calls, 150 matched the heuristic used in their work. Considering the
best scenario, in which these 150 samples are correctly identified using their classifier that
uses network features, the accuracy would be 93.02%, which is still considerably lower
than the value of 96.82% obtained by our system. This is another evidence of the benefits
obtained using the features related to Android API function calls. A possible reason for
the accuracy obtained by Su et al. being greater in the evaluation test presented in their
work is the use of too few samples.

Table 2.25: Comparison of the results obtained by our system with the results presented
in related work, showing the number of malicious and benign samples used in the evalu-
ation test, the accuracy obtained and whether the system extracts features statically or
dynamically

System (l\isln;ll)fifl) Accuracy | Type
DroidMat [88| 238 / 1,500 97.87% static
PUMA [70] 249 /1,811 86.41% | static
DREBIN [9] | 5,560 / 123,453 “ | 93% static
Su et al. [76] 50 / 70 99,20% | dynamic
Our system 2,257 / 1,483 96,82% | dynamic

®This is the total dataset used by them, including testing and training. They randomly
split the dataset into training (66%) and testing (33%), 10 times, and average the
results.

2.2.5 Limitations

The main limitations of the developed system are related to shortcomings inherent to
dynamic analysis approaches. The analysis system may fail to observe the malicious be-
havior of samples in some situations, due to problems when gathering resources, to the
lack of the necessary stimulation or to the detection of the analysis environment. If, for
example, the malware tries to obtain some piece of code from the Internet or tries to
connect to a command and control server to get instructions, but the connection fails,



CHAPTER 2. PUBLISHED DOCUMENTS 63

Table 2.26: Comparison of the features used by our system with the features used by Su
et al. [76]

Feature set FP | FN | Accuracy
Freq. of API function calls + 36 | 89 06.82Y%
Freq. of system calls
Freq. of API function calls +
Freq. of 15 system calls 39| 93 96.62%
Freq. of 15 system calls 180 | 191 | 89.70%
Freq. of API function calls | 73 | 190 | 93.33%

the sample may stop executing without performing malicious actions. In addition, the
malware sample may execute malicious actions only when certain interactions with the
user interface are performed or when certain events, such as receiving an SMS message,
occur. If the system fails to simulate these events, the malicious behavior will not be
shown. Lastly, malware may detect the analysis environment and stop executing or ex-
ecute innocuous actions, so the system will not obtain information about them. This
detection can be carried out by the identification of virtualized or emulated environment,
or the identification of monitoring tools.

2.2.6 Conclusions and Future Work

In this paper we presented a system that uses machine learning to classify Android appli-
cations as malicious or benign using information about the use of Android APT functions
and system calls. To gather the information needed by the detection system, we imple-
mented a dynamic analysis system. To evaluate the capabilities of the detection system,
we trained it with 3,780 applications and tested it using 3,740 samples, obtaining an accu-
racy of 96.82%. This result was compared to other detection systems, which demonstrated
the relevance of our approach.

Future work includes the following: using attributes obtained from the network traffic
and attributes obtained statically to enhance the detection capabilities of our system:;
detecting the evasion of sensitive information using signatures; making a public submission
interface available to other researchers and common users, so they can check whether a
given application is malicious; developing a non-random way to stimulate the malware
using information obtained from the code without the need to modify the Android OS.

2.2.7 Acknowledgment

Part of the results presented in this paper were obtained through the project “Evalua-
tion and prevention of security vulnerabilities in smartphones and tablets”, sponsored by
Samsung Electronics da Amazonia Ltda., in the framework of law No. 8,248/91.



CHAPTER 2. PUBLISHED DOCUMENTS 64

2.3 Dynamically Identifying Evasive Android Malware

Publication: This paper was submitted to the 47th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) 2017

Vitor Monte Afonso!, André Ricardo Abed Grégio? and Paulo Licio de Geus!
(1) University of Campinas
(2) Federal University of Parana



Abstract

Dynamic analysis of Android malware suffers from anti-analysis techniques that iden-
tify the analysis environment and prevents the malicious behavior from being observed.
Researchers have proposed systems that identify evasive malware that affect Windows.
However, due to differences between Windows and Android, applying these techniques
directly to Android malware does not yield results just as good. In this paper, we present
a novel technique to identify evasive Android malware. Our technique compares the exe-
cution of malware in baremetal and emulated environments, taking into account problems
of dynamic analysis that are more common in Android and leveraging information more
easily obtained in Android. We analyzed 1,470 samples using our approach, detecting 192
as evasive. Furthermore, we compared our results with the existing approaches using a
subset of these samples and obtained better results. We also discuss which information is
used by some of the detected samples to evade analysis.



CHAPTER 2. PUBLISHED DOCUMENTS 66

2.3.1 Introduction

Mobile devices are increasingly becoming prevalent and being used to store several types
of sensitive data, such as banking credentials and corporate information. This scenario
makes attacks against users of such devices more rewarding. Therefore, more malicious
applications (hereafter referred to as apps) that affect mobile devices are created and
spread. Moreover, to overcome defense measures, these threats are constantly being
improved.

Since Android is the most widespread operating system for mobile devices [43], it
became the main target of mobile malware. According to PulseSecure [65], in 2014 97%
of all mobile malware was developed for the Android platform. Furthermore, a study by
Unucheck and Chebyshev [79] shows that Kaspersky Lab detected 884,774 new malicious
mobile programs in 2015.

In order to identify the actions that apps may execute in infected systems, they need
to be analyzed. The results of such analysis can be used to vet apps from app stores, as
input to defense mechanisms or for incident response efforts. Several approaches have been
proposed to analyze Android apps, obtaining information about them ( [40, 53,69, 75|)
and classifying them as malicious or benign ( [9,27,70,76,88,96,98]).

Analysis techniques can be static or dynamic. Approaches that rely on static analysis
of code become less effective when dealing with highly obfuscated samples [59] or samples
that obtain and execute code at run time [63]. Dynamic approaches, on the one hand,
usually do not present problems when analyzing samples with obfuscated code, because
they observe the actions performed during execution, which is not affected by the obfus-
cation. On the other hand, dynamic analysis may fail to observe the malicious actions
of samples that employ anti-analysis techniques. These techniques are used by malware
to identify when they are being analyzed, changing their behavior to prevent analysis
systems from obtaining information about them.

Researchers have identified several anti-analysis techniques that can be employed by
Android apps to differentiate between a real and an emulated environment ( [45, 58,62,
74,80]), which is used by most dynamic analysis systems as its base due to its scalability
advantage. One possible alternative to analyze apps without being evaded by most anti-
analysis techniques is to use a real device instead of the emulator (such technique is
used by BareDroid [60]). However, identifying which apps have evasive features is also
useful: by studying these samples researchers may identify ways to make systems that
use emulation more resilient against evasive malware.

In this paper, we present a technique to identify Android malware that exhibit evasive
behavior. To do so, we compare the behavior of samples in an actual mobile device as
well as in an emulator. Moreover, we use information obtained from the Android runtime,
such as what methods were executed, and information from system call traces. Systems
that identify evasive Windows malware by comparing their behavior in real systems and
in emulated environments have been proposed in the literature [48,52]. To accomplish
this, these systems use information obtained from system call traces. However, differences
between Windows and Android make a simple direct application of these techniques to
the Android context less likely to succeed. To demonstrate this, we created detectors



CHAPTER 2. PUBLISHED DOCUMENTS 67

based on the techniques used by Disarm [52] and Barecloud [48], and compared their
results with our approach. Our technique obtained better results, demonstrating that it
is more appropriate for this context.

We analyzed 1,470 Android malware samples selected from different families and iden-
tified 192 samples with evasive behavior among them. We manually inspected a subset
of the detected ones in order to identify how they evade dynamic analysis systems. The
comparison with other techniques was performed using 50 randomly selected samples, all
from different families. We performed manual analysis of these to validate the results of
our approach.

The main contributions of our work are the following:

e We present a novel technique to identify evasive Android malware by comparing the
results obtained from a baremetal system and an emulated system;

e We compared our approach to the detection techniques that focus on Windows
malware, demonstrating that our technique is more appropriate for the Android
context;

e We tested our technique with 1,470 samples, identifying 192 that employ evasive
techniques, and discuss the techniques used by a subset of them to evade analysis.

The remainder of this paper is organized as follows: Section 2.3.2 presents the mo-
tivation and an overview of our technique.;Section 2.3.3 describes how we represent the
behavior of apps; Section 2.3.4 presents our approach to identify evasive Android malware;
Section 2.3.5 presents the system we developed to dynamically analyze apps and moni-
tor their behavior; Section 2.3.6 presents the experiments we performed to demonstrate
the effectiveness of our technique; Section 2.3.7 explains the limitations of our system
and our technique; Section 2.3.8 presents related work and finally, Section 2.3.9 presents
conclusions and future work.

2.3.2 Motivation and approach

Approaches to detect evasive malware through the comparison of their behavior in em-
ulated and real environments have already been proposed in the literature about “tradi-
tional” systems [52| [48]|. Disarm [52] analyses samples in real and emulated environments,
and compare their behavior profile to calculate an evasion score based on the Jaccard in-
dex. Barecloud [48] is a similar approach, but it organizes the observed behavior in a
hierarchical structure, which is used to compute the similarity of samples in different
levels of abstraction. These systems use as input data obtained from system call traces
and focus on Windows malware. We believe that simply applying the same techniques
for Android apps does not yield just as good results, because of differences between the
operating systems and differences among malware that affect each system.

Android malware in general execute much fewer actions than Windows malware. Dis-
arm [52] uses 150 actions as the minimum to consider a sample executed a normal amount
of actions. In our experiments, however, Android malware executed on average less than
10 actions. Furthermore, many Android malware are repackaged apps, which include



CHAPTER 2. PUBLISHED DOCUMENTS 68

benign behavior. Therefore, depending on the malware family, the actions protected
by anti-analysis features in Android malware can be a very small subset of all possible
behaviors, but might just as well comprise most of the app’s behavior.

Another important difference is that Android is more event-driven, so failure to provide
exactly the same events to both emulated and real environments may result in very
different traces. One possible cause of the difference in event generation is the emulator
being much slower than real devices. For instance, an Intent may take too long to be sent
to its destination and the analysis may end before the Intent can cause its effects. It is
also possible that some unforeseen event affects the real device, such as the Wifi network
getting disconnected and reconnected. Another possible source of divergence is the “App
Not Responding” verification of Android. A sample may execute successfully in a real
device and during its execution on the emulator, Android may kill the sample’s process
and present the “App Not Responding” message, causing the behavior to differ between
the emulated and baremetal environments.

Because of the presented reasons, we believe approaches that work by comparing the
amount of actions executed in the baremetal and in the emulated environments, without
considering that the different behavior may be due to reasons other than anti-analysis
features, are less likely to succeed in identifying Android malware. To verify this, we
compared our technique with the techniques presented by Disarm [52] and Barecloud [48],
and our approach yielded better results. This comparison is presented in Section 2.3.6.

To overcome the aforementioned problems, we try to identify the cause of each of
the different actions observed. This is accomplished by leveraging information that is
easily obtained in Android, but not for Windows programs. More precisely, we track the
methods of the app under analysis that are executed, the methods from the framework
called by them, the system calls used by the app and the interaction of apps with func-
tionalities that create threads or indirectly change their execution flow. We also monitor
information provided by the system regarding events that stop the execution of apps and
information about external stimuli used. With all this information, we can trace back the
call sequence that led to the behavior that was only observed in baremetal, identifying the
entry point that originated this sequence and possibly the external stimulus that caused
it. By comparing the sequence obtained from the baremetal system to the behavior ob-
served in the emulator we can identify if the divergence happened due to some event not
being generated, due to a difference in some method’s execution, due to the analysis time
ending in one of the environments, or due to the system stopping the app.

2.3.3 Behavior representation

We represent the behavior of a sample in a given analysis environment as a set of actions
observed during its execution. Each action is a tuple and is represented as follows.
a = (action_type, operation, argument).
action_ type is one of { Network, File, Intent, Exec, Phone, Dez, Billing, Multimedia}.
Each action type and the associated operations and arguments are presented below.
Network. For network related actions, operation is one of {INET, UNIX, NETLINK,
BLUETOOTH}. INET operations represent TCP and UDP connections and argument is



CHAPTER 2. PUBLISHED DOCUMENTS 69

the destination that the sample connected to. Since multiple resolutions of the same DNS
name may result in different TP addresses, we consider two actions the same if they use
the same [P address or the same DNS name as destination. UNIX operations represent
connections to UNIX sockets and the argument is the filesystem path used by the socket.
BLUETOOTH operations represent the use of the Bluetooth device and the argument,
in this case, is the operation performed with this device. Lastly, NETLINK operations
represent connections using NETLINK sockets and the argument used is the protocol
parameter passed to the socket.

File. The monitored operations on files are WRITFE and DELETE, and the argument
of both operations is the file path.

Intent. The operations related to Intents are ACTIVITY, SERVICE, BROADCAST
and ALARM. The argument for all these operations is the “action” argument of the
Intent or the destination class of the Intent. ALARM operations refer to the use of
AlarmManager to send Intents.

Exec. This action type represent the use of the execve system call, which is used by
the API methods ProcessBuilder.start and Runtime.ezec. The argument used is the name
of the executable file being called.

Phone. This action represents the use of phone capabilities. We currently only
consider one operation of this type, namely sending SMS messages and the argument is
the destination number of the message.

Dex. This action type represents the use of dynamic code loading and its argument
is the path of the file being loaded.

Billing. This action represents the use of the billing functionality; the argument is
the type of action performed.

Multimedia. The operations included in this action type are CAMERA, AUDIO
and WAKELOCK. The argument in these cases is the type of action being performed,
which includes taking pictures, recording videos, recording audio and acquiring wake locks,
which allow the app to keep the CPU running and the screen on.

Behavior normalization

File names written by apps may be randomly generated, making that multiple executions
of the same sample may incorrectly result in different behavior profiles. To overcome this
problem we take the same approach used by Disarm [52]. For each sandbox, which can
be emulated or baremetal, we identify files that were written in only one instance of this
sandbox. We consider these as possibly random files. Possibly random files in multiple
instances of a sandbox that have the same directory and extension are considered as
random. We keep the directory name and extension of these actions but replace the file
name by <RANDOM>. We also normalize file paths related to the sdcard, as it can be
accessed in different ways.

Malware may randomly select contacts registered in the system as destinations of SMS
messages. Therefore, we inspect actions related to sending SMS messages and, if some
destination is a contact registered in the system, we replace it by <CONTACT>. This
also prevents the list of actions from growing as large as the list of contacts if the malware



CHAPTER 2. PUBLISHED DOCUMENTS 70

sends messages to all of them.

We also remove simple actions that are common to most apps, such as writing to the
shared memory device or to the logging device. Another group of actions we filter is
related to Webview. Because of libraries available solely in the baremetal system, when
Webview is used, some actions are only performed in the baremetal system. To avoid this
problem, we trace the source of these actions and, if the Webview library is their source
and they were executed by a specific method used in Webview’s initialization, we filter
them. It is worth to notice that we do not filter every action performed by Webview,
which would also include important actions for understanding the app’s behavior. We
only filter few actions that are always performed when Webview is loaded, and only if the
action was generated from a specific method.

One common problem that systems face when running analyses multiple times is
that unless one runs them all in a small time frame, it is possible that the hosts accessed
through the network are not available for all executions (they may be down due to incident
reporting, for example). This may lead to certain network behavior only being observed
in some of the analyses. To avoid this problem, when some host is accessed in baremetal
and the same DNS name is requested in the emulated context, but this request fails, we
also add it to the emulated analysis.

2.3.4 Evasive behavior identification
Overview

To identify whether an app is evasive or not, we analyze it in a baremetal environment
and in an emulated environment, and then compare the monitored behavior to identify
differences. If they are different, we identify the root cause of the divergence, which can be
a variation in the code path executed or something that prevented the app from continue
executing in the emulated environment. If we identify a divergence in the code path
executed, we consider it as an evasive sample. To increase the amount of code executed
during dynamic analysis, we generate stimuli in the form of GUI interactions and Intents,
which can be used to start activities or receivers. We provide the same stimuli for both
baremetal and emulated environments. Moreover, to identify non-deterministic behavior
we execute each sample three times in each environment.

Let B; and E; be the set of actions monitored in the baremetal environment for the
1th time and in the emulated environment for the jth time, respectively, with 1 <i < 3

3 3
and 1 < j < 3. Also, let B = U B; and = U Ej be the set of all actions executed in
i=1 j=1
baremetal and in emulated environments, respectively. Since we are interested in finding

apps that hide their actions when being analyzed, we first select the set A of actions that
were only executed in a real device. Thus, A=B — BN FE.

For each action ay in A, we construct Ry, a set with the instances of baremetal analysis
that contain this action. We compare each B; in Rj, to every E; to identify why a; was
not executed in the emulated analyses.

Since we track when methods begin and end, we can identify the app’s method that
executed the action we are interested in. We trace back the sequence of method calls that



CHAPTER 2. PUBLISHED DOCUMENTS 71

1 procedure IS EVASIVE (B, E)

2 evasive « false

3 A< B - BNE

4 for each a, in A do

5 R, « all B; so that a, € B;, with 1 < i < 3

6 for each B; in R, do

7 for each E;, with 1 < j < 3 do

8 BareSeq « reconstruct sequence (B;, ay)
9 action time « time of a,

10 reason « compare (BareSeq, E;, action_time)
11 if reason is “different code path” then
12 evasive « true

13 end if

14 end for

15 end for

16 end for

17 return evasive

18 end procedure

Figure 2.5: Algorithm to determine if a sample is evasive.

led to this action, going back until an external stimulus is found, such as calling the main
Activity of the app or until we find an entry point whose origin we cannot determine. We
track the use of Intents and thread related API methods, such as Timer.schedule, so we
can identify indirect calls for the most common entry points of Android classes, such as
onCreate, run and handleMessage. The process to reconstruct call sequences is explained
in more detail in Section 2.3.4.

At this point, we know the main entry point for a baremetal analysis instance B;—
called from now on of M,—that led to the execution of action a;, and possibly the
external stimulus that caused it. We find the occurrences of M, in E;. If we know the
stimulus that originated it, we only consider the M) instances that were also caused by
the same stimulus, otherwise we consider all executions of it. For each M) instance in
E;, we compare it with the B; call sequence that led to a;. With this comparison we
identify where the path that should lead the emulated system to also execute the action
diverged. More precisely, we identify which of the following is the cause of the divergence:
different execution path; app not responding; analysis ended; fatal exception; entry point
not reached. If the reason for the diversion is a different code path being executed, we
consider this as an evasive sample, otherwise we consider the divergence as an execution
problem. Figure 2.5 illustrates the entire process. The algorithm could return after setting
evasive as true for the first time, reducing the time that it takes for the algorithm to run.
However, the comparison also reveals information that is useful for an analyst to identify
where in the app the divergence happens, thus we do not stop the comparisons when the
first sign of evasion is found.

For the samples considered evasive, we are not able to automatically identify precisely
why different code paths were taken in the emulated and baremetal systems. For instance,



CHAPTER 2. PUBLISHED DOCUMENTS 72

the divergence can be caused by a verification of the IMEI value or because of some
information not available in the emulated environment. The identification of the precise
information that caused the divergence can be performed through taint analysis, as done
by TaintDroid [28] and Malgene [47], and we leave it as future work. However, our results
can assist analysts in manually locating the cause of the divergence, because we identify
in which method and after which method calls the divergence happened

Call sequence reconstruction

Since we record when each thread of the analyzed app enters and leaves its methods, we
can identify which method performed a given action. We also log the methods called, so
we can look back in the analysis trace, starting from the method that executed the action,
and identify the sequence of method calls that led to this action.

This is enough to track the execution back to an entry point, but it cannot go fur-
ther. As the Android framework is responsible for calling these methods, we will not be
able to observe any direct calls to them. Android classes may have several entry points,
which may be executed because of several reasons, the most common being related to cre-
ating activities (e.g., onCreate), starting services (e.g., onStart), starting receivers (e.g.,
onReceive), running tasks (e.g., run) and handling received messages (e.g., handleMes-
sage). One possibility would be to compare all executions of the entry point method in
the baremetal and emulated systems, but this could lead to wrong results, due to the
previously mentioned uncertainty. This can happen, for instance, if an activity handles
different functionalities, all executed through the same entry point. Thus, we try to iden-
tify the source methods from which the execution changed to the entry points, in order
to have a more precise comparison of the executions. To accomplish this, we investigate
Intents sent by the app, the use of several methods that cause indirect changes in the
execution flow and the use of external stimuli.

To identify Intents that may have resulted in a specific entry point method being exe-
cuted, we look for Intents sent by the app that match this specific method. For instance,
if the method we are analyzing is ClassA.onStartCommand(Intent, int, int), we assume
ClassA is a service, since onStartCommand(Intent, int, int) is one of the entry points of
the class android.app.Service that can be overwritten. As the Android documentation
states, this method is called by the system when a client explicitly starts the service by
calling startService(Intent). Thus, to find the source that directed the execution to this
method we look for actions that start services using ClassA as an argument. Finding
sources of entry points to activities is similar to services. To find the sources that led to
the execution of receivers, however, we need to inspect the intent filters used by the class
and find out which Intents sent match it. More details about how we monitor Intents are
presented in Section 2.3.5.

Another source of control flow changes that are performed by the framework is the
use of the following groups of methods: methods that schedule a class to be invoked
after some delay or periodically, such as Timer.schedule and Scheduled ThreadPoolEzecu-
tor.schedule, which result in the execution of the method run() or the method call()
of the destination class; methods that send messages to its Ul thread, such as Han-



CHAPTER 2. PUBLISHED DOCUMENTS 73

dler.sendMessageDelayed, which result in the execution of handleMessage(Message); and
methods that start a new thread, such as Thread.start(), which result in the execution
of run() and AsyncTask.ezecute(Params...), which in turn may result in the execution of
different methods, the main one being doInBackground(Params...). In order to be able to
track these control flow changes, we instrument the Android framework to assign labels
to the messages or tasks sent or to the threads created. We log them when the source
method is executed and also when the destination methods are executed. More details on
the implementation of this process are presented in Section 2.3.5. With this information,
we can track the source call of any of these methods. It works even in cases when there are
several destination methods, such as the source methods that invoke a class periodically,
because they have only one source and we are tracking the sequence call backwards.

The last type of interaction that can cause the execution of entry points is external
stimuli. As we mentioned before, these are important to increase the code coverage of
the analyzed apps. To be able to correlate their use with the behavior of the app, we
instrument the tools used to create the stimuli, identifying when Intents are sent, when
keys are pressed and when GUI interactions are performed. These Intents are identified
as the source of some entry point in the same way we do for Intents sent by the app,
which we explained before. Key pressing and GUI interactions are handled in a similar
way, but they are source of different entry points. Some of the entry points executed by
key strokes are onKey(DialogInterface, int, KeyFEvent) and onKeyDown(int, KeyFEvent).
For GUI interactions, some common entry points executed are onClick(DialogInterface,
int), onTouchEvent(MotionEvent) and onltemClick(AdapterView, View, int, long).

When tracing the sequence of calls that led to some action, we create a list of sub-
sequences. The first subsequence goes from an external stimulus or from an entry point
whose source we did not identify, until the call that created the next subsequence. Each
one of the following subsequences represent the call sequence from one entry point until
the call that resulted in the creation of the next one, while the last subsequence ends in
the execution of the action. Along with each subsequence we keep the time of the call
that created the next subsequence or that executed the action.

Comparing sequences

After identifying the list of subsequences of method calls that led to the execution of
some action in the baremetal environment, we need to compare this with the results of
the emulated system to identify the cause of divergence. We hereafter refer to this list of
subsequences as BareSeq and to this instance of results from the emulated environment
as ResEmu.

We iterate over each subsequence SubBare; of BareSeq, comparing it to its counterpart
in ResEmu. For each iteration, suppose action _time is the time when the call that created
the next subsequence was executed or the time when the action was performed. Also, let
EP; be the entry point of SubBare;. We find all occurrences of E'P; in ResEmu that have
the same origin as in BareSeq. We then proceed to compare EP; from BareSeq with each
instance of E'P; identified in the emulated results.

Given two entry point methods, we find where they begin and where they end, obtain-



CHAPTER 2. PUBLISHED DOCUMENTS 74

1 procedure COMPARE_SEQUENCES (BareSeq, EmuRes, action_time)
2 for all subsection SubBare in BareSeq do

3 EPBare +« entry point of SubBare

4 EPEmu +« entry point of EmuRes that matches EPBare
5 if did not find EPEmu then

6 return “entry point not reached”

7 end if

8 RawSegBare +« find seq from start to end of EPBare
9 RawSegEmu « find seq from start to end of EPEmu
10 aligned « align RawSegBare and RawSegEmu

11 if subBare is last subsequence of BareSeqg then

12 return compare_aligned(aligned, action_time)
13 else

14 CallNext « action that created next subsequence
15 if not emulated executed cCallNext then

16 return compare aligned(aligned, CallNext)
17 else

18 continue

19 end if

20 end if

21 end for

22 end procedure

Figure 2.6: Algorithm to compare a call sequence obtained in baremetal to its equivalent
obtained from the emulated system.

ing the call sequence in this interval. We align these two sequences, one from BareSeq and
the other from ResEmu, using a global alignment algorithm described in Section 2.3.4.
If SubBare; is the last subsequence of BareSeq, we compare the aligned sequences to
determine the divergence that prevented ResEmu from reaching the call at action time.
Otherwise, let C'allNext be the method call in SubBare; that created the next subse-
quence of BareSeq. If the app did not reach Call Next in ResEmu, we compare the aligned
sequences to determine the divergence that prevented ResEmu from reaching CallNext.
However, if the app did reach CallNext in ResEmu, we get the next subsequence of
BareSeq, with entry point EP;,q, and find this entry point in ResEmu, by checking for
possible destinations of CallNext in ResEmu. If we are not able to find an equivalent
of EP,;; in ResEmu, it is likely that the execution was interrupted before the call per-
formed at Call Next could take effect, so we do not consider that an evasion happened.
This algorithm is presented in Figure 2.6.

When comparing two aligned sequences, we want to identify the reason for their di-
vergence in regards to some action executed at time ¢;. This action is either a behavior
only observed in BareSeq or some call that created the next subsequence of BareSeq and
that was not executed in ResEmu.

We iterate over the calls in the aligned sequences and when we are past t;, considering
the time of the baremetal calls, we check what was the last call in the emulated sequence.
There are three possibilities: i) a tag indicating the analysis process ended; ii) a tag



CHAPTER 2. PUBLISHED DOCUMENTS 75

[78] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ —> ’com.adobe.flashplayer .
AdobeFlashCore.writeConfig(java.lang.String, java.lang.String)’
EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ —> ’com.adobe.flashplayer .
AdobeFlashCore.writeConfig(java.lang.String, java.lang.String)’

[85] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ —> ’java.lang.String.indexOf(java.
lang.String)’
EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ —> ’java.lang.String.indexOf(java.
lang.String)’
[86] BARE: 'None’
EMU: ’com.adobe.flashplayer _.AdobeFlashCore.onCreate()’ —> ’java.lang.System.exit(int)’
[87] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ —> ’com.adobe.flashplayer _.
AdobeFlashCore.isOnline()’
EMU: "None’

[102] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ —> 'com.adobe.flashplayer_.
FlashVars. <init>()’
EMU: 'None’

Listing 2.4: Excerpt of the alignment of an evasive sample.

indicating the system killed the app for not responding or for some other error; iii) a call
to some method of the app or the framework.

If we identify case iii, we consider that there was a divergence in code path taken and,
therefore, that we found an evasive behavior. We print the aligned sequences, in order
to help an analyst that needs to manually identify what caused the executions to follow
different code paths. Conversely, if the last identified call matches cases i or ii, we consider
that there was an execution error and not an evasion. Listing 2.4 presents an excerpt of the
output generated for one sample that is evasive. This example shows that during the ex-
ecution of method AdobeFlashCore.onCreate, the app called AdobeFlashCore.writeConfig
and String.indezOf in both analysis systems. Then, in the emulated system the app
called System.exit, whereas in the baremetal it called AdobeFlashCore.isOnline. An an-
alyst can use this information to locate the exact location in the malware code where
the evasion happens and what information is used. This information is presented in List-
ing 2.5. Invocations in lines 4 and 6 are the ones that were executed by both systems.
The conditional instruction in line 9 is responsible for redirecting the execution flow if an
analysis system is not detected, while the information used for this detection is the result
of calling String.indexOf, which was used to verify if the device id contains the string
“0000000000000007.

Sequence alignment

To perform sequence alignment, we use the global alignment algorithm provided by
the swalign'® library. We chose a global alignment algorithm because we need to have a
global understanding of the sequences, as our analysis depends on the alignment reaching
the point in the baremetal sequence where the target action happened. If the aligned
sequence does not reach this point, we are unable to identify the cause of divergence.

We only modified the code of swalign to work with the same data structure as our
scripts, instead of the default, which is a string where each char is an element. We provide

Ohttps://github.com/mbreese/swalign/




= W

0~ O Ot

11
12
13

CHAPTER 2. PUBLISHED DOCUMENTS 76

invoke—virtual /range {v17 .. v17}, Landroid/telephony/TelephonyManager;—>getDeviceld () Ljava/lang
/String;
move—result—object v7

invoke—direct {v0, v1, v15}, Lcom/adobe/flashplayer /AdobeFlashCore;—>writeConfig(Ljava/lang/
String;Ljava/lang/String;)V

const—string v1, ‘000000000000000”

invoke—virtual {v7, v1}, Ljava/lang/String;— >indexOf(Ljava/lang/String;)I

move—result v1

const /4 v2, —0x1

if—eq v1, v2, :cond 5

const/4 v1, 0x0

invoke—static {v1}, Ljava/lang/System;—>exit(I)V

:cond 5

invoke—virtual /range {p0 .. p0}, Lcom/adobe/flashplayer /AdobeFlashCore;—>isOnline()Z

Listing 2.5: Excerpt of the disassembled app where the evasion happens.

our own scoring method to swalign. The scoring method is responsible for comparing two
elements and identifying if they match or not. Our method matches calls that are equal
but also any call to special tags that represent special events. These events include the
end of the analysis and the app being killed by the system.

Selecting the arguments is an important step in using alignment algorithms. The
arguments we need to define are the following:

e m for matches, with m > 0;

e mi for mismatches, with mi < 0;
e g, for opening gaps, with g, < 0;
e ¢. for extending gaps, with g. < 0.

We do not want any mismatches, as they may mislead the analysis, so we used a high
value for |mismatch|. We also believe that beginnings and endings of methods of the
analyzed app are more important in the alignment than other types of calls, so we assign
2 x m for matches of this type. Furthermore, since we are investigating evasive behavior,
we want to prioritize gap extensions over gap openings, so |g,| > |ge|. In the end, we have
the following inequality to guide the definition of arguments:

|mismatch| > m > [go| > |gel-

2.3.5 Monitoring system
Behavior monitoring

To track the behavior of the analyzed apps, we monitor which apps’ methods were exe-
cuted, which methods were called from them and which system calls were executed.

To monitor system calls, we used a kernel driver that intercepts them. When a system
call is executed, the driver registers its arguments and calls the original system call. In




CHAPTER 2. PUBLISHED DOCUMENTS 77

order to obtain information related to the use of Intents, the driver inspects ioctl calls that
target the Binder device. If the operation performed is a BC_TRANSACTION, we log
the destination class, method id and arguments passed. To identify which actual method
is represented by the method id, we examine the corresponding AIDL file in the Android
source code.

To monitor the executed methods, we leverage the “method trace” functionality of the
Android runtime (ART) and instrument [ibart. Every time the execution goes in and out
of a method, we register it. Also, when some method is called, we log the source and
destination of such action. This allows us to also identify Java methods called from native
code. To avoid registering too much information, we focus on new UIDs, so we do not
track apps that are already installed in the system when it is in a clean state.

When trying to identify the method call that resulted in the execution of some receiver,
we need to identify which intent filters are used by this receiver and look for broadcasts
sent that match them. Parsing the app’s manifest is not enough to obtain all intent filters
that were used, since the app can register others at runtime. To overcome this limitation,
we also track all calls to android.content. Context.register Receiver.

As mentioned in Section 2.3.4, the use of threads, tasks and message passing be-
tween them introduces a level of indirection that prevents us from tracking the execution
flow by just looking at method invocations. To be able to reconstruct the call sequence
even in these cases, we track the use of threads, tasks and messages by assigning (and
logging) a randomly generated number to them when they are created, scheduled or
sent. We also log this identifier when they are actually used or executed, allowing a
parser to match each use or execution of these types to their creation. This matching
allows us to track the call sequence in these cases. So, for instance, when the method
java.util. Timer.schedule( TimerTask task, long delay, long period), which schedules a task
for repeated fixed-delay execution, is executed, the system generates a random number,
logs it and assigns it to the task. Every time this task is executed, the identification
number is logged.

In order to correlate the external stimuli, like clicks and broadcasts, with the behavior
of the app, we need to know the time at which each stimulus was provided. To achieve
this, we instrument both tools used to create these actions, which are am and input.

Analysis environments

When analyzing malware, it is important to make sure that the environment is not infected
before each analysis. Performing an analysis in an infected system may result in wrong
results, as one malware can influence the behavior of others analyzed afterwards. To
analyze samples in the emulator, we take advantage of the snapshot functionality, which
allows us to restore the system to a clean state after every analysis and avoid waiting the
time of booting the system. Analyzing malware in real devices, though, is a rather more
complicated task, as they do not have an easy snapshot functionality in the same way as
the emulator does. One possible way to overcome this problem is to restore the state of
the device’s partitions after every analysis, as in the Baredroid’s approach [60]. However,
this is very time consuming, as the system needs to reboot every time it is restored.



CHAPTER 2. PUBLISHED DOCUMENTS 78

We chose a different approach to maintain the system clean after each analysis. In
Android, apps can only write to a very limited set of directories, which includes mainly
the app’s dir (/data/data/< PACKAGE-NAME> /) and the sdcard. By uninstalling every
app after it is analyzed, its own directory is removed by the framework. Files written to
the sdcard can affect the behavior of other apps that interact with such files. Because of
that, we delete every file from the sdcard after every analysis. To be able to overcome the
system’s restrictions and modify important files, some malware exploit vulnerabilities in
the kernel or privileged processes, obtaining root privileges. However, since the /system
partition is mounted as read only by default, even apps that are able to obtain root
privilege first need to remount this partition. To prevent this from happening, our kernel
driver blocks all system calls that try to remount the /system partition in a mode that
allows writing. This protection can be bypassed if the malware manages to access the
original mount system call. However, we only used the system to test our proposed
technique to identify evasive malware. If one wants to use a similar system to receive
submissions or analyze apps that could potentially target the system, a better protection
or restoration process would be necessary. Furthermore, during our experiments our driver
did not actually have to block any calls to mount, so we believe this was not a problem.

For our experiments we used the standard Android emulator deployed with the sdk
and an LG G2Mini device. Both systems had our modified version of Android 5.1. Each
analysis in the baremetal environment was executed for at most 3 minutes. As for the
emulated environment, since it is much slower, we executed each analysis for at most 10
minutes. In small experiments we found that this time was necessary for the emulator
to execute in a similar way as the baremetal in 3 minutes. Since we can identify when
a divergence in behavior is caused by one analysis system finishing before the other, this
difference in execution time does not negatively affects our technique.

When dynamically analyzing Android apps, it is important to provide GUT interactions
and to cause activities, services and receivers to execute in order to increase code coverage.
However, as we are comparing multiple executions of apps, it is also important that we
provide exactly the same interactions, so the same code paths are exercised, at least until
evasive code is reached or some problem stops the app execution. In order to accomplish
this, we use the Droidbot [51] tool to interact with apps. Droidbot generates random
events, including GUI interactions, broadcasts and specific activities. It also registers
the exact events generated and is able to replay them from a file instead of randomly
generating them. Thus, in our first baremetal execution of each sample, we randomly
generate events and save them to a file. In the following baremetal executions and in the
emulated analyses, we make Droidbot read the events from the saved file.

One way that malware can identify the analysis environment is by checking which apps
are installed on the system. The lack of the Google Play app, for instance, is a strong
indication that it is not a real device. Therefore, we installed in the baremetal environment
Open GAPPS [2], a set of basic apps present in all Android systems. Furthermore, we
also installed a few very popular apps and created fake contact information. These apps
and contact information make the baremetal and emulated systems different, which could,
therefore, cause some apps to behave differently, but not because they intend to evade
analysis systems. This could possibly lead our technique to identify such samples as



CHAPTER 2. PUBLISHED DOCUMENTS 79

evasive, increasing the number of false-positives. However, not doing so may result in
false-negatives since, as we mentioned, the baremetal system could also be detected as
an analysis system. We chose to use these techniques and risk increasing false-positives
instead of risking increasing false-negatives.

2.3.6 Experiments

To evaluate our technique, we used our dynamic analysis system to analyze a subset of the
samples in our malware dataset, which consists of samples obtained from VirusShare [82],
Malgenome [97], contagio mobile [61], AndroMalShare [1| and Drebin [9]. To select this
subset we first obtained their detection by antivirus software, using Virustotal [3]. We
separated them by families, using the results of the ESET-NOD32 antivirus, and selected
at most 5 samples from each family, resulting in a set of 1,470 samples.

We analyzed these samples with our system to obtain their behavior and used our
proposed technique to identify which ones have evasive behavior. Since we do not have a
ground truth with information about all these samples, we randomly selected 50 samples,
all from different families, and manually inspected their results to identify possible false-
negatives and false-positives.

Our technique detected 7 out of 50 samples in the subset as evasive. Using manual anal-
ysis we identified no false-negatives and 3 false-positives. We consider as false-negatives
the samples that did evade analysis but our approach did not identify them as evasive, and
we consider as false-positives the ones that we considered evasive in cases the diverging
behavior is similar to some action performed in the emulated environment and it does
not stem from an identification of the analysis system. Note that we consider evasive
those samples that execute some action only in the baremetal system, without executing
some similar action in the emulated system, even if this divergence is not caused by a
clear identification of the analysis system. For instance, if some sample tries to send SMS
messages to contacts stored in the phone and it only shows this behavior in the baremetal
because there is no contact registered in the emulated environment, we consider it as
evasive. We do this because, despite not being a clear sign of anti-analysis behavior, it is
successful in preventing some action from being observed in the emulator and so could be
employed as an anti-analysis technique.

We discuss below the samples that our technique identified as evasive, explaining why
we consider them as a true-positive or false-positive. For the true-positive ones, we discuss
which extra behavior was observed due to the diversion and what difference between the
baremetal and emulated environments was its cause.

Sample 1. It changes its behavior if /system/zbin/busybozx, /system/bin/busybox or
/bin/busybox is present in the system. This deviation resulted in the malware writing to
the file shared prefs/config.xml and many files in the dir /sdcard/LuckyPatcher/. This
may not have been intended as an anti-analysis technique, since most user systems do
not have these files. However, it does prevent some of the malware behavior from being
observed in the emulated environment, so we consider this as a true-positive.

Sample 2. It Identifies if the phone number starts with “15555”, if the value of IMEI
starts with “00000000” or if the value of IMSI starts with “31026”. Upon detection, this



CHAPTER 2. PUBLISHED DOCUMENTS 80

sample calls System.ezit(0). This is a clear case of evasive malware, so we consider it
as a true-positive. The behavior resulting from the divergence is composed of starting a
service and starting two alarms that send Intents.

Sample 3. It copies the icons of the apps installed in the system to the dir /data/-
data/com.pintudog/files/icons/. Since the list of apps installed in the emulator and in
the baremetal environments is not the same, the monitored actions ended up being dif-
ferent. However, at a higher level it is still the same behavior, so we consider this as a
false-positive.

Sample 4. It verifies if the IMEI contains the string “000000000000000”. If so, the
malware calls System.exit(0). Similarly to Sample 2, this is a clear example of anti-
analysis, so we consider it as a true-positive. The actions resulting from the divergence
are the following: starting a service, creating a wake lock and connecting to the dnsproxyd
device to make a DNS request.

Sample 5. The different actions in the behavior of this sample are related to a file
associated with the graphical interface. This happened because the graphical libraries
used in the baremetal and emulated systems are different. Since this is not actually
related to the behavior of the malware, we considered this sample as a false-positive.

Sample 6. During its execution this sample verifies which Wifi networks are available
to the device. In the emulated system it does not identify any Wifi network, so it takes a
different execution path. The behavior that is executed only in baremetal, as a result of
this difference, is writing a file in the sdcard. Since this behavior is related to the malware
execution and cannot be observed in the emulator unless some update is made to it, we
consider this sample as a true-positive.

Sample 7. This sample randomly chooses the domain name to access from a list of
predefined names. This resulted in one domain used in baremetal not being used in the
emulated analysis. Except for the domain difference, their behavior is the same, so we
consider this as a false-positive.

Comparison

To test our intuition that the existing techniques to identify evasive Windows malware
would not present as good results if applied to Android malware, we implemented detectors
based on the techniques proposed by Disarm [52] and Barecloud [48]. Since the behavior
of Android and Windows malware are different in various aspects, we used our behavior
model when implementing these techniques. To make the comparison fairer, we used the
threshold that would yield the best results to each of these techniques, instead of the
threshold they found for Windows malware. Table 2.27 presents the comparison of our
results with the results obtained from the other approaches. Our technique performed
better than the others, demonstrating that it is more appropriate to this context.

Other evasion techniques

Out of the complete dataset of 1,470 samples, our technique identified 192 as evasive. We
manually inspected the results of some of these samples to understand how they evade



CHAPTER 2. PUBLISHED DOCUMENTS 81

Table 2.27: Comparison with other approaches to identify evasive malware
TP TN FP FN A
Our approach 100% | 93.5% | 6.5% | 0.0% | 96.7%
Disarm (t=0.12) | 100% | 78.3% | 21.7% | 0.0% | 89.1%
Barecloud (t=0.36) | 100% | 67.4% | 32.6% | 0.0% | 83.7%

analysis. Bellow we describe the anti-analysis techniques we identified that are different
from the ones explained before.

GSF package. Malware can verify if the package com.google.android.gsf is installed
in the system. This package provides Google Service Framework and is present in most
Android devices, but not in the emulator.

Location updates. When using the method LocationManager.requestLocationUpdates
in the emulator, an exception is generated, which can change the execution path of the
sample. This type of evasion is harder to recognize statically, because there is not a clear
if-then-else situation.

GCM. Samples can use the Google Cloud Messaging (GCM) service to identify the
emulator. For instance, apps can try to register an id, which will fail because the emulator
does not have a registered Google account.

Build properties. Apps can verify the value of the following properties of the
android.os. Build class: if Build. PRODUCT or Build. MODEL equals “google sdk”; if
Build. BRAND or Build. DEVICE starts with “generic”; if Build. HARDWARFE equals “gold-
fish”.

App store. Apps can try to use Google Play by starting an activity with the category
android.intent.category. APP_ MARKET. Since the Google Play app is not installed in the
emulator, this causes an exception, which can change the app execution path.

su binary. Samples that target rooted devices can try to execute “su”, which allows
for the execution of actions with root privileges. Since the emulator does not have such
file, this action fails and the execution path changes.

2.3.7 Limitations

Our detection approach relies on identifying differences between the execution of samples
in a baremetal and in an emulated environment. Therefore, if we are not able to reach the
code that has anti-analysis functionalities or some sample is able to detect the baremetal
environment as an analysis system, we will not be able to observe the differences. Not
reaching the desired code path is a problem with all dynamic analysis systems, as they
can only observe behavior that is actually executed. To exploit this, malware can wait
for a period of time longer than the analysis is executed for, before activating the ma-
licious behavior, or can only execute it after a series of complex GUI interactions that
automatic interaction tools are unlikely to reach. Some malware may be able to detect
both environments as analysis systems, because despite the baremetal environment being
more similar to a real device, there are still differences that can be exploited, such as
information about the user’s behavior, e.g., browsing history and SMS history.

When tracing back the origin of some behavior executed in baremetal, we may find



CHAPTER 2. PUBLISHED DOCUMENTS 82

some entry point whose source we cannot identify. In these cases we compare it with
all instances of the same entry point in the emulated environment. In some cases this
may lead to wrong conclusions. Furthermore, differences in the systems may lead to the
execution of different actions that are not related to evading analysis or to the execution of
equivalent actions in both systems, but that are considered different in our behavior model.
This is the general problem that resulted in our technique incorrectly detecting Sample 3
and Sample 5 as evasive. Also, sources of non-determinism that we do not currently
handle may lead to the execution of the same high-level behavior, but different actions
according to our model. This is the problem that resulted in our technique misidentifying
Sample 7 as evasive. This malware randomly selects the domain name to access from a
predefined list, so the domain accessed in baremetal and emulator were different, but the
same code path was executed in both cases.

2.3.8 Related work
Android malware analysis

Researchers have proposed several systems to analyze Android malware, obtaining infor-
mation about them. Enck et al. [28] propose TaintDroid, a dynamic taint analysis system,
which tracks sensitive data flow to detect when it is sent over the network. Sun et al. [78]
propose TaintART, an approach similar to TaintDroid that works with the most recent
Android runtime, ART. DroidBox [26] builds upon TaintDroid and adds tracking of API
calls and network data. Spreitzenbarth et al. |75] present Mobile-Sandbox, a system that
uses DroidBox and Taintdroid and also includes the use of the ltrace tool to monitor native
code. Yan and Yin [91] propose DroidScope, a virtual machine introspection-based analy-
sis system that bridges the semantic gap reconstructing OS-level and Java-level semantic
views from outside the emulator. AASandbox [18] monitors system calls using a kernel
module. Harvester [67] combines program slicing with code generation and dynamic exe-
cution to extract runtime values, such as URLs and destination numbers of SMS messages,
from obfuscated malware. Bichsel et al. [16] present an approach for deobfuscating apps
based on probabilistic learning of large code bases. It learns a probabilistic model over
thousands of non-obfuscated apps and use it to deobfuscate new ones. TriggerScope |32]
uses static analysis to detect logic bombs, i.e., application logic that is only executed
under certain (often narrow) circumstances. TriggerScope is capable of identifying time-,
location- and SMS-related triggers.

One of the main drawbacks of dynamic analysis is only being able to observe behavior
that is actually executed. This means that the analysis system needs to provide the
correct inputs so that the malicious behavior is triggered. Researchers have proposed
systems that inspect the analyzed app in order to identify the inputs and paths that lead
to the execution of suspicious code and then provide these at runtime [15,87,95].

Anti-analysis techniques for Android

Researchers [45,58,62,74,80] have presented several techniques that may be used by An-
droid malware to evade detection by making static analysis harder or by evading dynamic



CHAPTER 2. PUBLISHED DOCUMENTS 83

analysis. Spreitzenbarth |74] details the analysis of two Android malware families, namely
Bmaster and FakeRegSMS, that use several anti-analysis techniques, such as waiting some
time before executing the malicious actions. Matenaar and Schulz [58] present a method
for an app to identify if it is executing inside Qemu, which is the basis of the Android em-
ulator. Vidas and Christin [80] present anti-analysis techniques based on Android APIs,
system properties, network information, Qemu characteristics, performance, hardware
and software components. Another similar work is presented by Petsas et al. [62]: they
demonstrate anti-analysis techniques based on Android APIs, system properties, sensors
and Qemu characteristics. Instead of manually identifying differences between real and
emulated devices, Jing et al. [45] developed Morpheus, a framework that automatically
generates heuristics that can identify, based on files, system properties and Android APIs,
whether a sample is running in an emulated environment or not.

Detection of evasive malware

Systems that automatically identify malware samples that employ anti-analysis techniques
have been developed for the Windows context [13,47,48,50,52]. Balzarotti et al. [13]
propose a system that records the system calls executed by a sample on a reference envi-
ronment and replay the monitored system calls on an emulator to identify if the observed
behavior is different. Lindorfer et al. [52] analyze malware samples in different envi-
ronments and identify differences on the observed actions, recognizing techniques that
malware apply to detect the analysis environment or analysis tools. Barecloud [48] is
a system that dynamically analyzes malware in four different environments, including a
baremetal one, and detects evasive malware by comparing the reports provided by these
systems in a hierarchical approach. Kolbitsch et al. [50] detect and mitigate malicious
programs that wait for some time (stall) before executing their malicious behavior. Mal-
gene [47] combines sequence alignment of system call traces, obtained from a baremetal
and an emulated environment, with taint tracking to identify evasion signatures of evasive
malware.

2.3.9 Conclusions

In this paper we presented a novel approach to identify evasive Android malware by
comparing its execution on a baremetal analysis system and on an emulated analysis
system. For each action executed only in baremetal, we identified the reason why it
was not successfully performed in the emulated environment, differentiating the cases
in which there was evasion from the cases in which there was some analysis problem.
Our experiments showed that our approach provides promising results and is more suited
for detecting Android malware with anti-analysis features than trying to directly apply
existing approaches used to detect evasive Windows malware. We analyzed 1,470 malware
samples, from which our technique identified 192 as evasive. We manually analyzed some
of the detected ones and discuss the information used by them to evade analysis.

Future work to reduce the false-positive rate includes improving the identification
of non-deterministic actions, such as the use of randomly selected domain names. In
addition, to automatically identify which information is used to evade analysis, we plan on



CHAPTER 2. PUBLISHED DOCUMENTS 84

applying taint-analysis techniques. Code related to anti-analysis might only be triggered
right before the malicious actions are executed. Being able to reach this code path will
therefore increase our chances of detecting evasive behavior. Finally, we plan on applying
some of the techniques proposed in the literature to force apps to follow code paths that
lead to suspicious actions, further improving the identification of more types of evasive
mobile malware.



Chapter 3

Discussion

The security of Android users is influenced by several layers of protection, which are
employed in devices and in app stores. In this thesis we present three papers that demon-
strate advances to two different aspects of Android security, namely, malware analysis
and native code restriction, contributing to the overall improvement of the users’ security.
In this chapter we summarize the results presented by these papers, making it easier for
the reader to find this information.

In Android, native code components are executed in the same process as the Java part.
As such, they can modify at runtime the code that was developed in Java, rendering the
results of most static analysis tools for Android unsound, as they can only inspect the
original code. Moreover, native code has more capabilities, since it has direct access to
system calls, and can be used to launch privilege escalation attacks against the kernel
or other processes. To address this problem researchers have proposed separating native
code components in a different process and applying restrictions to it. However, the lack
of data on the use of native code by benign apps makes the creation of policies that can
block attacks but not affect many benign apps a difficult challenge.

To overcome this problem we developed a system capable of monitoring the behavior of
native code components deployed in Android apps. We use this system to perform a large-
scale analysis of apps and provide several insights on how real-world apps use native code.
These insights can help other researchers guide their decisions in regards to restricting
native code. For instance, we show that the approach taken by NativeGuard [77]| to
remove all permissions from native code would negatively affect at least 3,669 apps in our
dataset. Furthermore, we provide an approach to automatically generate a native code
sandboxing policy in a way that is effective and practical. The policy generated by our
approach affects at most a predefined threshold of apps (1% in our experiments), while
at the same time blocking actions used by several known root exploits. These results
were published in the Network and Distributed System Security Symposium 2016 and
presented in Section 2.1 of this thesis.

Another important problem that affects Android security is how to effectively analyze
and identify malware. App stores, antivirus companies and security researchers need to
analyze large amounts of apps, extracting information about their behavior and identifying
the malicious ones. This can be used to vet apps submitted to app stores, to create
signatures that can detect malware and to build better analysis tools.

85



CHAPTER 3. DISCUSSION 86

In the paper published in 2015 in the Journal of Computer Virology and Hacking Tech-
niques, Section 2.2 of this thesis, we present a system developed by us that dynamically
analyzes Android apps to obtain API function and system calls. Currently available sys-
tems are tied to a specific Android OS version or to the SDK-provided emulator, whereas
our approach is independent of the emulator and much more portable as it does not
modify the Android OS. By using the information gathered from dynamic analysis, our
system is able to extract features related to the frequency of use of each API function
and each system call, using machine learning to classify apps as malicious or benign. In
our experiments, we obtained an accuracy of 96.82%. By comparing our approach to the
system presented by Su et al. [76], the most similar in the literature, we demonstrate that
the frequency of APT calls are good features to detect malicious Android apps.

Dynamic malware analysis systems are typically developed on top of an emulator,
because it provides scalability and ease in restoring the analysis environment to a clean
state. Consequently, these systems have many differences as compared to real devices;
these discrepancies, in turn, may be leveraged by malware to identify when they are
being analyzed and prevent the malicious behavior from being observed. One of the main
challenges of dynamic analysis is how to create analysis systems transparent to these
malware; one important step in doing so is to identify them and the techniques used for
their evasion.

In the paper submitted to the International Conference on Dependable Systems and
Networks 2017, Section 2.3 of this thesis, we present a novel approach to identify evasive
Android malware. We achieve this by comparing the analysis results of a sample in
a baremetal environment and in an emulated environment. For each action executed
only in the baremetal system, we identify if it was not executed in the emulator due
to evasive behavior or due to some analysis problem. We compare our technique with
existing approaches that identify evasive Windows malware, demonstrating that ours is
more appropriate to the Android context. Moreover, we analyzed 1,470 samples with our
technique, identifying 192 with evasive behavior. We manually inspected a subset of them
and discuss how they identify the analysis environment.



Chapter 4

Conclusions

The security of Android users is influenced by several layers of protection, which are em-
ployed in devices and in app stores. In this thesis we present advances to three different
aspects, which overall contribute to improving Android security. Our study on native code
use, presented in Section 2.1, can help systems that restrict native code to make devices
more robust against malware. Our system to analyze and detect Android malware, pre-
sented in Section 2.2, can aid app stores and antivirus companies in identifying malicious
apps. Finally, our technique to identify evasive malware, presented in Section 2.3, can
help security researchers identify malicious apps that use anti-analysis features.

Future work related to the native code analysis includes expanding the policy to con-
sider the number of calls to certain system calls and providing a way to enforce the policy,
which could be done by constructing a new system or by integrating the policy to an
existing mechanism, such as SELinux. For the identification of malicious apps, an inter-
esting follow up is to include in the classification network related and statically obtained
features. Finally, the identification of evasive malware might benefit from improving
the identification of non-deterministic behavior and using taint analysis to automatically
identify which information is used by malware to identify that they are being analyzed.

87



Bibliography

[1]

2]

3]

4]

5]

(6]

17l

8]

9]

[10]

Andromalshare. [Online] Available: http://sanddroid.xjtu.edu.cn:8080/. Ac-
cessed on January 25 2017.

Open gapps. [Online| Available: http://opengapps.org/. Accessed on January 25
2017.

Virustotal - free online virus, malware and url scanner. [Online| Available: https:
//www.virustotal.com/en/. Accessed on January 25 2017.

Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,
Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. Full version of Tables 5,
6, 7, 8, and 11. |Online| Available: https://github.com/ucsb-seclab/android_
going_native. Accessed on January 25 2017.

Vitor M. Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,
Paulo de Geus, Christopher Krue gel, and Giovanni Vigna. Going Native: Using a
Large-Scale Analysis of Android Apps to Create a Practical Native-Code Sandbox-
ing Policy. In Proceedings of the Symposium on Network and Distributed System
Security (NDSS), February 2016.

Vitor Monte Afonso, Matheus Favero de Amorim, André Ricardo Abed Grégio,
Glauco Barroso Junquera, and Paulo Licio de Geus. Identifying android malware

using dynamically obtained features. Journal of Computer Virology and Hacking
Techniques, 11(1):9-17, 2015.

AppBrain. Number of Available Android Applications. |Online| Available: http:
//www .appbrain.com/stats/number-of-android-apps. Accessed on January 25
2017.

Axelle Apvrille and Ruchna Nigam. Obfuscation in Android Malware, and How to
Fight Back. In Virus Bulletin, 2014.

Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gascon, and Konrad
Rieck. DREBIN: Effective and Explainable Detection of Android Malware in Your
Pocket. In Proceedings of the 21st Annual Network and Distributed System Security
Symposium (NDSS), 2014.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid:

88



BIBLIOGRAPHY 89

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps. In Proceedings of 35th annual ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), 2014.

Elias Athanasopoulos, Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D
Keromytis. Nacldroid: Native code isolation for android applications. In Furopean
Symposium on Research wn Computer Security, pages 422-439. Springer, 2016.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: Analyzing
the Android Permission Specification. In Proceedings of the 2012 ACM conference
on Computer and Communications Security (CCS), 2012.

Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Efficient detection of split personalities in malware. In
Proceedings of the Annual Symposium on Network and Distributed System Security
(NDSS), 2010.

Leonid Batyuk, Markus Herpich, Seyit Ahmet Camtepe, Karsten Raddatz,
A Schmidt, and Sahin Albayrak. Using static analysis for automatic assessment
and mitigation of unwanted and malicious activities within android applications. In
Malicious and Unwanted Software (MALWARE), 2011 6th International Conference
on, pages 66-72. IEEE, 2011.

Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen, Jaeyeon
Jung, Suman Nath, Rui Wang, and David Wetherall. Brahmastra: Driving apps
to test the security of third-party components. In Proceedings of the 23rd USENIX
Security Symposium (USENIX Security 14), pages 1021-1036, 2014.

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical
deobfuscation of android applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 343-355. ACM, 2016.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Split-
ting Applications into Reduced-Privilege Compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2008.

Thomas Blasing, Leonid Batyuk, A-D Schmidt, Seyit A Camtepe, and Sahin Al-
bayrak. An android application sandbox system for suspicious software detection.

In Proceedings of the 5th International Conference on Malicious and Unwanted Soft-

ware (MALWARE), pages 55-62. IEEE, 2010.

[. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based mal-
ware detection system for android. In Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices, pages 15-26. ACM, 2011.

Victor Chebyshev and Roman Unuchek. Mobile Malware Evolution: 2013. [Online]
Available: http://securelist.com/analysis/kaspersky-security-bulletin/



BIBLIOGRAPHY 90

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

58335/mobile-malware-evolution-2013/. Accessed on January 25 2017, Febru-
ary 2014.

Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. Stormdroid:
A streaminglized machine learning-based system for detecting android malware. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communica-
tions Security, pages 377-388. ACM, 2016.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
Inter-Application Communication in Android. In Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services (MobiSys), 2011.

Benjamin Davis and Hao Chen. ‘retroskeleton: Retrofitting android apps”. In
Proceedings of the 11th International Conference on Mobile Systems, Applications
and Services (Mobisys), pages 25-28, 2013.

Anthony Desnos. Androguard: Reverse Engineering, Malware and Goodware Anal-
ysis of Android Applications... and More (Ninja!). [Online| Available: https:
//code.google.com/p/androguard/. Accessed on January 25 2017.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S. Wallach. Quire: Lightweight
provenance for smart phone operating systems. In Proceedings of the 20th USENIX
Security Symposium, San Francisco, CA, 2011.

DroidBox. Android application sandbox. Available at https://code.google.com/
p/droidbox/. Accessed on July 7th 2013.

Karim O Elish, D Yao, and Barbara G Ryder. User-centric dependence analysis for
identifying malicious mobile apps. In Workshop on Mobile Security Technologies,
2012.

W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth.
Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX conference on Operating systems
design and implementation, pages 1-6. USENIX Association, 2010.

Rafael Fedler, Marcel Kulicke, and Julian Schiitte. Native Code Execution Control
for Attack Mitigation on Android. In Proceedings of the Third ACM workshop on
Security and privacy in smartphones & mobile devices (SPSM), 2013.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android Permissions Demystified. In Proceedings of the 18th ACM conference on
Computer and Communications Security (CCS), 2011.

A.P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile
malware in the wild. In Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, pages 3—14. ACM, 2011.



BIBLIOGRAPHY 91

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. TriggerScope: Towards Detecting Logic Bombs in
Android Apps. In Proceedings of the IEEE Symposium on Security and Privacy
(SSP), San Jose, CA, May 2016.

A.P. Fuchs, A. Chaudhuri, and J.S. Foster. Scandroid: Automated security
certification of android applications. Technical report, University of Maryland,
http: //www. cs. umd. edu/ “avik/projects/ scandroidascaa, 2009.

Gartner. Gartner says smartphone sales surpassed one billion units in 2014. Avail-
able at http://www.gartner.com/newsroom/id/2996817. Accessed on August 15
2015., 2015.

Clint Gibler, Jonathan Crussel, Jeremy Erickson, and Hao Chen. AndroidLeaks:
Detecting Privacy Leaks in Android Applications. Technical report, Tech. rep., UC
Davis, 2011.

Google. Android NDK. [Online] Available: https://developer.android.com/
tools/sdk/ndk/index.html.

Google. UI/Application Exerciser Monkey | Android Developers. [Online] Available:
http://developer.android.com/tools/help/monkey.html. Accessed on January
25 2017.

Rob Gordon. FEssential JNI: Java Native Interface. Prentice-Hall, Inc., 1998.

M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic Detection of Capability
Leaks in Stock Android Smartphones. In Proceedings of the 19th Annual Network
and Distributed System Security Symposium (NDSS), 2012.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable and
accurate zero-day android malware detection. In Proceedings of the 10th inter-

national conference on Mobile systems, applications, and services, pages 281-294.

ACM, 2012.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The
weka data mining software: an update. ACM SIGKDD Ezxplorations Newsletter,
11(1):10-18, 2009.

Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. PREC: Practical
Root Exploit Containment for Android Devices. In Proceedings of the 4th ACM
conference on Data and application security and privacy (CODASPY), 2014.

IDC. Smartphone os market share, 2016 q2. [Online| Available: http://www.idc.
com/prodserv/smartphone-os-market-share. jsp. Accessed on January 25 2017.

IDC Corporate. IDC: Smartphone OS Market Share 2014, 2013,
2012, and 2011. [Online|] Available: ~ http://www.idc.com/prodserv/
smartphone-os-market-share. jsp. Accessed on January 25 2017.



BIBLIOGRAPHY 92

[45] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Morpheus: automat-
ically generating heuristics to detect android emulators. In Proceedings of the 30th
Annual Computer Security Applications Conference, pages 216-225. ACM, 2014.

[46] JuniperNetworks. Juniper networks mobile threat center third annual
mobile threats report: March 2012 through march 2013. Available
at http://www.juniper.net/us/en/local/pdf/additional-resources/

3rd- jnpr-mobile-threats-report-exec-summary.pdf. Accessed on 20 Au-
gust 2013., 2013.

[47] Dhilung Kirat and Giovanni Vigna. Malgene: Automatic extraction of malware
analysis evasion signature. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 769-780. ACM, 2015.

[48] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: bare-metal
analysis-based evasive malware detection. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 287-301, 2014.

[49] Patrick Klinkoff, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. Extending
NET Security to Unmanaged Code. International Journal of Information Security,
2007.

[50] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of procrasti-
nation: detection and mitigation of execution-stalling malicious code. In Proceedings

of the 18th ACM conference on Computer and communications security, pages 285—
296. ACM, 2011.

[51] Yuanchun Li. Droidbot. [Ounline] Available: http://honeynet.github.io/
droidbot/. Accessed on January 25 2017.

[52] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. Detecting
Environment-Sensitive Malware. In Recent Advances in Intrusion Detection (RAID)
Symposium, 2011.

[53] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. Andrubis - 1,000,000 Apps
Later: A View on Current Android Malware Behaviors. In Proceedings of the 3rd
International Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS), 2014.

[54] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: Statically
Vetting Android Apps for Component Hijacking Vulnerabilities. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security (CCS),
2012.

[55] Luka Malisa, Kari Kostiainen, Michael Och, and Srdjan Capkun. Mobile applica-
tion impersonation detection using dynamic user interface extraction. In European
Symposium on Research in Computer Security, pages 217-237. Springer, 2016.



BIBLIOGRAPHY 93

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

|65]

|66]

Christopher Mann and Artem Starostin. A Framework for Static Detection of Pri-
vacy Leaks in Android Applications. In Proceedings of the 27th Annual ACM Sym-
posium on Applied Computing (SAC), 2012.

Claudio Marforio, Ramya Jayaram Masti, Claudio Soriente, Kari Kostiainen, and
Srdjan Capkun. Hardened setup of personalized security indicators to counter phish-
ing attacks in mobile banking. In Proceedings of the 6th Workshop on Security and
Privacy in Smartphones and Mobile Devices, pages 83-92. ACM, 2016.

Felix Matenaar and Patrick Schulz. Detecting android sandboxes. Available at
http://www.dexlabs.org/blog/btdetect. Accessed on 20 August 2013., 2012.

Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for
malware detection. In Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-Third Annual, pages 421-430. IEEE, 2007.

Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi, Jacopo Cor-
betta, Dhilung Kirat, Christopher Kruegel, and Giovanni Vigna. Baredroid: Large-
scale analysis of android apps on real devices. In Proceedings of the 31st Annual
Computer Security Applications Conference, pages 71-80. ACM, 2015.

Mila Parkour. Contagio mobile. [Online| Available: http://contagiominidump.
blogspot.com/. Accessed on January 25 2017.

Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,
and Sotiris Ioannidis. Rage against the virtual machine: hindering dynamic analysis
of android malware. In Proceedings of the Seventh European Workshop on System
Security, page 5. ACM, 2014.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and
Giovanni Vigna. Execute This! Analyzing Unsafe and Malicious Dynamic Code
Loading in Android Applications. In Proceedings of the ISOC Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, February 2014.

Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos.
Paranoid Android: Versatile Protection for Smartphones. In Proceedings of the
26th Annual Computer Security Applications Conference (ACSAC), pages 347-356,
2010.

PulseSecure. 2015 mobile threat report. [Online| Available: https://wuw.
pulsesecure.net/lp/mobile-threat-report-2014/. Accessed on January 25
2017.

Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan. On Tracking In-
formation Flows through JNI in Android Applications. In Proceedings of the 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2014.



BIBLIOGRAPHY 94

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

|76]

[77]

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting
runtime values in android applications that feature anti-analysis techniques. In
Proceedings of the Annual Symposium on Network and Distributed System Security
(NDSS), 2016.

Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Automatic Se-
curity Analysis of Smartphone Applications. In Proceedings of the third ACM con-
ference on Data and application security and privacy (CODASPY), 2013.

Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-centric
analysis and stimulation technique to automatically reconstruct android malware
behaviors. In Proceedings of the 6" European Workshop on System Security (EU-
ROSEC), Prague, Czech Republic, April 2013.

Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia

Bringas, and Gonzalo Alvarez. Puma: Permission usage to detect malware in an-
droid. In CISIS/ICEUTE/SOCO Special Sessions, pages 289-298, 2012.

Shashi Shekhar, Michael Dietz, and Dan S. Wallach. Adsplit: separating smartphone
advertising from applications. In Proceedings of the 21st USENIX conference on
Security symposium, Security’12, Berkeley, CA, USA, 2012. USENIX Association.

Joseph Siefers, Gang Tan, and Greg Morrisett. Robusta: Taming the Native Beast
of the JVM. In Proceedings of the 17th ACM conference on Computer and Com-
munications Security (CCS), 2010.

AIRBUS Defense & Space. Local Root Vulnerability in Android 4.4.2. [Online] Avail-
able: http://blog.cassidiancybersecurity.com/post/2014/06/Android-4.4.
3,-or-fixing-an-old-local-root. Accessed on January 25 2017.

Michael Spreitzenbarth. The Evil Inside a Droid - Android Malware: Past, Present
and Future. In Estonian Forensic Science Institute, editor, Proceedings of the 1st
Baltic Conference on Network Security € Forensics, pages 41-59, 2012.

Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Jo-
hannes Hoffmann. Mobile-sandbox: having a deeper look into android applications.

In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages
1808-1815. ACM, 2013.

X. Su, M. Chuah, and G. Tan. Smartphone dual defense protection framework:
Detecting malicious applications in android markets. In Mobile Ad-hoc and Sensor
Networks (MSN), 2012 Eighth International Conference on, pages 153-160, 2012.

Mengtao Sun and Gang Tan. NativeGuard: Protecting Android Applications from
Third-Party Native Libraries. In Proceedings of the 2014 ACM conference on Secu-
rity and privacy in wireless & mobile networks (WiSec), 2014.



BIBLIOGRAPHY 95

78]

[79]

[30]

[81]

[82]

[33]

[84]

[85]

[36]

[87]

[33]

Mingshen Sun, Tao Wei, and John Lui. Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 331—
342. ACM, 2016.

Roman Unuchek and Victor Chebyshev. Mobile malware evolu-
tion 2015. [Online|  Available: https://securelist.com/analysis/
kaspersky-security-bulletin/73839/mobile-malware-evolution-2015/.
Accessed on January 25 2017.

Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM symposium on Information, computer and
communications security, pages 447-458. ACM, 2014.

Nicolas Viennot, Edward Garcia, and Jason Nieh. A Measurement Study of Google
Play. In Proceedings of the 201, ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), 2014.

VirusShare. Virusshare bittorrent client tracker. |Online| Available: http://
tracker.virusshare.com:6969. Accessed on January 25 2017.

VRT. Changing the imei, provider, model, and phone number in
the android emulator.  Available at http://vrt-blog.snort.org/2013/04/
changing-imei-provider-model-and-phone.html. Accessed on July 07 2013.,
2013.

Christina Warren. Google Play Hits 1 Million Apps. [Online|] Available: http:
//mashable.com/2013/07/24/google-play-1-million/. Accessed on January 25
2017, July 2013.

Fengguo Wei, Sankardas Roy, Xinming Ou, et al. Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting of Android
Apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014.

Lukas Weichselbaum, Matthias Neugschwandtner, Martina Lindorfer, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. ANDRUBIS: Android
Malware Under The Magnifying Glass. Technical Report TR-ISECLAB-0414-001,
Vienna University of Technology, 2014.

Michelle Y Wong and David Lie. Intellidroid: A targeted input generator for the
dynamic analysis of android malware. In Proceedings of the Annual Symposium on
Network and Distributed System Security (NDSS), 2016.

Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
Droidmat: Android malware detection through manifest and api calls tracing. In
Seventh Asia Joint Conference on Information Security (Asia JCIS), 2012.



BIBLIOGRAPHY 96

[89]

[90]

[91]

[92]

93]

[94]

[95]

[96]

[97]

98]

[99]

Rubin Xu, Hassen Saidi, and Ross Anderson. Aurasium: Practical policy enforce-
ment for android applications. In Proceedings of the 21st USENIX Security Sympo-
stum, 2012.

Carter Yagemann and Wenliang Du. Intentio ex machina: Android intent access
control via an extensible application hook. In Furopean Symposium on Research in
Computer Security, pages 383-400. Springer, 2016.

Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing the os and
dalvik semantic views for dynamic android malware analysis. In Proceedings of the
21st USENIX conference on Security symposium. USENIX Association, 2012.

Zhemin Yang and Min Yang. Leakminer: Detect Information Leakage on Android
with Static Taint Analysis. In Proceedings of the 2012 Third World Congress on
Software Engineering (WCSE), 2012.

Lingyun Ying, Yao Cheng, Yemian Lu, Yacong Gu, Purui Su, and Dengguo Feng.
Attacks and defence on android free floating windows. In Proceedings of the 11th

ACM on Asia Conference on Computer and Communications Security, pages 759
770. ACM, 2016.

Zhibo Zhao and Fernando C Colon Osono. “TrustDroid™”: Preventing the Use
of SmartPhones for Information Leaking in Corporate Networks Through the Use
of Static Analysis Taint Tracking. In Proceedings of the 2012 7th International
Conference on Malicious and Unwanted Software (MALWARE), 2012.

Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, and
Wei Zou. Smartdroid: an automatic system for revealing ui-based trigger conditions
in android applications. In Proceedings of the second ACM workshop on Security
and privacy in smartphones and mobile devices, pages 93-104. ACM, 2012.

Min Zheng, Mingshen Sun, and John CS Lui. Droidanalytics: A signature based
analytic system to collect, extract, analyze and associate android malware. In Pro-
ceedings of The 12th IEEFE International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom 13), 2013.

Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution.
In Proceedings of the 38rd IEEE Symposium on Security and Privacy, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off of My Market: De-
tecting Malicious Apps in Official and Alternative Android Markets. In Proceedings
of the 19th Annual Network and Distributed System Security Symposium (NDSS),
2012.

Yajin Zhou and Xuxian Jiang. Detecting Passive Content Leaks and Pollution in
Android Applications. In Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS), 2013.



BIBLIOGRAPHY 97

[100] Ziyun Zhu and Tudor Dumitras. Featuresmith: Automatically engineering features
for malware detection by mining the security literature. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 767—
778. ACM, 2016.



