® INSTITUTO DE
UNICAMP COMPUTAGAO

UNIVERSIDADE ESTADUAL DE CAMPINAS
Instituto de Computagao

RAFAEL AULER

OPENISA, A HYBRID ISA

OPENISA, UM CONJUNTO DE INSTRUCOES HIBRIDO

CAMPINAS
2016

Rafael Auler

OpenlSA, a hybrid ISA

OpenlISA, um conjunto de instrugoes hibrido

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Tese apresentada ao Instituto de Computagao
da Universidade Estadual de Campinas como
parte dos requisitos para a obtencao do titulo
de Doutor em Ciéncia da Computagao.

Supervisor /Orientador: Prof. Dr. Edson Borin

Este exemplar corresponde & versao final da
Tese defendida por Rafael Auler e orientada
pelo Prof. Dr. Edson Borin.

CAMPINAS
2016

Agéncia(s) de fomento e n%(s) de processo(s): FAPESP, 2011/09630-1

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Auler, Rafael, 1986-
Au51o OpenlSA, a hybrid ISA / Rafael Auler. — Campinas, SP : [s.n.], 2016.

Orientador: Edson Borin.
Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Maquinas virtuais. 2. Interpretadores (Programas de computador). 3.
Computadores com conjunto de instru¢des reduzido. 4. Microprocessadores -
Projetos e construcao. 5. Compiladores (Programas de computador). I. Borin,
Edson,1979-. Il. Universidade Estadual de Campinas. Instituto de Computacao.
[1l. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: OpenISA, um conjunto de instrugdes hibrido
Palavras-chave em inglés:

Virtual machines

Interpreters (Computer programs)

Reduced instruction set computers

Microprocessors - Design and construction

Compilers (Computer programs)

Area de concentracéo: Ciéncia da Computagéo
Titulacao: Doutor em Ciéncia da Computagéao

Banca examinadora:

Edson Borin [Orientador]

Philippe Olivier Alexandre Navaux

Fernando Magno Quintao Pereira

Rodolfo Jardim de Azevedo

Sandro Rigo

Data de defesa: 23-09-2016

Programa de Pés-Graduacao: Ciéncia da Computacao

http://www.tcpdf.org

W
.0\ INSTITUTO DE
UNICAMP COMPUTACAO

UNIVERSIDADE ESTADUAL DE CAMPINAS
Instituto de Computagao

Rafael Auler

OpenlISA, a hybrid ISA

OpenlISA, um conjunto de instrugoes hibrido

Banca Examinadora:

e Prof. Dr. Edson Borin
IC - UNICAMP

e Prof. Dr. Philippe Olivier Alexandre Navaux
INF - UFRGS

e Prof. Dr. Fernando Magno Quintao Pereira
DCC - UFMG

e Prof. Dr. Rodolfo Jardim de Azevedo
IC - UNICAMP

e Prof. Dr. Sandro Rigo
IC - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida académica do aluno.

Campinas, 23 de setembro de 2016

Acknowledgements

I would like to thank my invaluable colleagues during the development of this PhD thesis:
Bruno Cardoso, with whom I shared the happiness of publishing the first book in English
about LLVM; Raoni Fassina, for the many interesting discussions and podcasts recom-
mendations; Tiago Falcao, for being a friend since my first year at UNICAMP when I
was an undergrad; Maxiwell, for the insightful discussions about spirituality, chess, en-
trepeneurship and music; Joao Moreira, for everything we shared, including a house in the
summer of 2013 in Seattle; Leonardo Piga, for showing me that hard work, endurance and
persistence pays off; Thiago Abdnur, for the excellent reading recommendations; Daniel
Nicacio, for always being in touch with us despite living far away in the Scandinavian
Peninsula; Leonardo Ecco, for your companionship during the early years; Alexandro
Baldassin, for presenting me to grad school; and Gabriel Ferreira, for showing me the
importance of curiosity, diligence and the taste for writing.

I thank Microsoft Research for the fellowship and internship in 2013 and the people
there that helped me develop a good project, including Peli de Halleux, Michal Moskal
and Nikolai Tillmann. I thank Sony Computing Entertainment America for the internship
in 2014, in special Alex Rosenberg, Rafael Espindola and Sean Silva. I thank Facebook for
the internship in late 2015, in special Guilherme Ottoni, Maxim Panchenko and Surupa
Biswas.

Above all, T thank my partner Raysa for the love and patience that was essential to
make my life during the PhD such a great time I will remember dearly.

Finally, I thank my advisor, Edson, for all the support, guidance, meetings and con-
versations that lead to this thesis.

Resumo

OpenlSA é concebido como a interface de processadores que pretendem ser altamente
flexiveis. Isto é conseguido por meio de trés estratégias: em primeiro lugar, o ISA é empi-
ricamente escolhido para ser facilmente traduzido para outros, possibilitando flexibilidade
do software no caso de um processador OpenISA fisico nao estar disponivel. Neste caso,
nao ha nenhuma necessidade de aplicar um processador virtual OpenISA em software. O
ISA esté preparado para ser estaticamente traduzido para outros ISAs. Segundo, o ISA
nao é um ISA concreto nem um ISA virtual, mas um hibrido com a capacidade de ad-
mitir modificagoes nos opcodes sem afetar a compatibilidade retroativa. Este mecanismo
permite que as futuras versoes do ISA possam sofrer modificagcoes em vez de extensoes
simples das versoes anteriores, um problema comum com ISA concretos, como o x86. Em
terceiro lugar, a utilizagdo de uma licenca permissiva permite o ISA ser usado livremente
por qualquer parte interessada no projeto. Nesta tese de doutorado, concentramo-nos
nas instrugoes de nivel de usuario do OpenISA. A tese discute (1) alternativas para ISAs,
alternativas para distribui¢do de programas e o impacto de cada op¢ao, (2) caracteristicas
importantes de OpenISA para atingir seus objetivos e (3) fornece uma completa avaliagao
do ISA escolhido com respeito a emulagao de desempenho em duas CPUs populares, uma
projetada pela Intel e outra pela ARM. Concluimos que a versao do OpenlISA apresen-
tada aqui pode preservar desempenho proximo do nativo quando traduzida para outros
hospedeiros, funcionando como um modelo promissor para ISAs flexiveis da proxima gera-
¢ao que podem ser facilmente estendidos preservando a compatibilidade. Ainda, também
mostramos como isso pode ser usado como um formato de distribui¢ao de programas no
nivel de usuario.

Abstract

OpenlSA is designed as the interface of processors that aim to be highly flexible. This
is achieved by means of three strategies: first, the ISA is empirically chosen to be easily
translated to others, providing software flexibility in case a physical OpenISA processor is
not available. Second, the ISA is not a concrete ISA nor a virtual ISA, but a hybrid one
with the capability of admitting modifications to opcodes without impacting backwards
compatibility. This mechanism allows future versions of the ISA to have real changes
instead of simple extensions of previous versions, a common problem with concrete ISAs
such as the x86. Third, the use of a permissive license allows the ISA to be freely used
by any party interested in the project. In this PhD. thesis, we focus on the user-level
instructions of OpenISA. The thesis discusses (1) ISA alternatives, program distribution
alternatives and the impact of each choice, (2) important features of OpenISA to achieve
its goals and (3) provides a thorough evaluation of the chosen ISA with respect to emula-
tion performance on two popular host CPUs, one from Intel and another from ARM. We
conclude that the version of OpenlSA presented here can preserve close-to-native perfor-
mance when translated to other hosts, working as a promising model for next-generation,
flexible ISAs that can be easily extended while preserving backwards compatibility. Fur-
thermore, we show how this can also be a program distribution format at user-level.

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1

5.2
5.3
5.4
2.5
2.6

6.1

6.2
6.3
6.4

7.1
7.2
7.3
7.4

7.5
7.6

7.7

Virtual machine stack comparison diagram 22
OpenlSA process virtual machine versus system virtual machine 36
Diagram showing the usage of LLVM as the starting point for OpenISA . . 37
Diagram showing the relationship of OpenISA and LLVM 38
Diagram showing the complete OpenISA framework 39
Load instruction encoding diagram L. 43
Mul instruction encoding diagram 44
UR and PR evolution in the lifetime of an ISA 46
Format of the Intel IA-32e page table entry extended with SR 47
OpenlSA versioning timeline for embrace scenario 48
OpenlSA versioning timeline for merge scenario 49
The life cycle of the minimal program particle, an instruction, traversing

the LLVM backend 52
Example LLVM IR code that calls an external function and print its results 52
“Hello, World!” example in OpenlSA part 1 54
“Hello, World!” example in OpenlSA part 2 55
“Hello, World!” example in OpenlSA part 3 56

Experimental workflow used to test the performance of the ISA translation 60

Pseudo-code that determines whether a single ARM instruction should

proceed to the execution stage 64
Local/global register synchronization overhead example 75
Whole program binary translation fibonacci example in a C-based pseudocode 76
OpenlSA binaries deployment diagram in the COISA Virtual Platform . . 78
Ordered slowdows for OpenISA to x86 and ARM translations, relative to

native performance - Shootout Programs (simple kernels) 81
Comparison of three versions of matrix at the hottest basic block 84
Comparison of three versions of sieve at the hottest basic block 86
Ordered slowdows for OpenISA to x86 and ARM translations, relative to

native performance - Mibench Programs (Complex programs) 87

Comparison of MIPS and OpenlISA translation performance in Mibench . . 88
Instruction and cycle count of native and translated SUSAN using different
sizes for the register bank of the guest ISA 89
Ordered slowdows for OpenISA to x86 translation, relative to native per-
formance, comparing F-BT augmented with ABI information - Mibench
Programs (Complex programs) 92

7.8 Ordered slowdows for OpenlISA to x86 translation, relative to native per-
formance - SPEC CPU2006

List of Tables

2.1
4.1
5.1

6.1
6.2

7.1
7.2
7.3
7.4

Comparison table with the performance of different translation systems . . 28
OpenlSA opcode space utilization by payload size 44
Description of the selected benchmark programs 59
Mibench results for different ISAs simulations with ArchC 64
Simulation performance comparison table extracted from the OVP website 65
Comparison of native and translated versions of the matrix benchmark . . 84
Comparison of native and translated versions of the ackermann benchmark 85

Comparison of native and translated versions of the SUSAN-edges benchmark 89
Comparison of native and translated versions of the rijndael benchmark . . 90

Contents

1 Introduction
1.1 Challenges in the design of classic [SAs
1.2 Virtual machines to ease software deployment
1.3 Introducing the hybrid ISA solution
1.4 Contributions and thesis organization

2 Related work
2.1 Basicconcepts
2.2 Well-known virtual machines 0oL
2.2.1 Low-level ISA vs bytecode guest architecture
2.2.2 Comparison with recently developed ISAs
2.3 ThelSAlevel
2.4 ISA translation
2.5 Performance supported by current technologies
2.5.1 Intepreted performance L.
2.5.2 Compiled simulation,
2.5.3 Retargetable dynamic binary translation (DBT)
2.5.4 High-performing retargetable DBTs
2.5.5 Other approaches
2.5.6 Specialized DBTs
2.6 Dynamic binary instrumentationo
2.7 SUummary .. o.o. .o

3 OpenlSA overview
3.1 OpenlSA objectives
3.2 Design trade-offs
3.2.1 Explicit functions
3.2.2 Explicit stack
3.2.3 Abstract memory locations
3.3 OpenlSA virtual machine
3.3.1 Using the LLVM L.R. as the starting point
3.3.2 Using LLVM indirectly
3.3.3 The Complete Framework
34 Summary ...

4 OpenlSA encoding and recycling mechanism
4.1 Word size and endianness
4.2 Encoding
4.2.1 Instructionsizes

17
17
18
19
20

22
22
23
24
25
26
27
28
29
29
29
30
30
31
31
31

33
33
34
35
35
36
36
37
38
38
39

4.2.2 Instruction formats

4.2.3 Opcode space utilization
4.3 The recycling mechanism oL
4.3.1 Overview
4.3.2 Mechanism descriptiono
4.3.3 OpenlSA formats philosophy
4.3.4 OpenlSA versioning scenarios
4.4 SUMMATY o oo e

Experimental framework

5.1 Opening remarks

5.1.1 A byproduct of the experimental framework
5.2 LLVM to OpenlSA compiler backend
5.3 OpenlSA ArchC-based simulator
5.4 OpenlSA static binary translator
5.5 Runtime library
5.6 OpenlSA toolchain
5.7 OpenlSA evaluation workflow
5.8 Summary . .o ...

OpenlISA design for easy emulation

6.1 ISAs with faster emulation
6.2 OpenlSA design choices in favor of emulation
6.2.1 Primary design choiceso L.
6.2.2 Rejected design choice
6.2.3 Secondary design choices L.
6.2.4 Metadata designo
6.3 Register mapping techniques L.
6.3.1 Whole program binary translation
6.4 A practical application of the static translation prototype
6.5 Summary

Experimental Results

7.1 Host Platform
7.2 Simple benchmarks00
7.2.1 The Fibonacci Case
7.2.2 Whole program translation beating native performance
7.2.3 The Matrix Case
7.2.4 The Ackermann Case
7.2.5 The Sieve Case
7.2.6 The Array Case
7.3 Complex Benchmarks
7.3.1 The SUSAN Case s
7.3.2 The Rijndael Case
7.3.3 The LAME Case
7.4 A closer look on WP-BT
7.5 SPEC CPU2006 programs v v v v i i

7.6 SUMMATY e

8 Other exploratory work and contributions 95

8.1 The Clanguage level 95
8.2 The browser level 96
8.3 List of published papers, contributions and acknowledgements 97
9 Conclusion 100
Bibliography 102
A OpenlSA instruction set reference 112
Al abs.d . .. 113
A2 abs.s . .o 114
A3 add 115
A4 add.d. 116
AL add.s 117
A6 addi 118
AT andi ... 119
AR and 120
A ast ... 121
ATOasrr o 122
A1l belf . . 123
Ad12belfl ... 124
A13belt . .. 125
Addbelt . .. 126
Adbbreak 127
Ad6ceqd 128
AT ceq.s . o o o o e 129
A8 c.oled 130
A19cooless . . 131
A20colt.d ..o 132
A2l coolt.s . .. 133
A22cueq.d 134
A23cueq.s 135
A2dculed 136
A25culess . .. 137
A26cult.d 138
A27cults . . . 139
A28 cun.d 140
A29cun.s. . ..o 141
A30call . . . o 142
A3lcallr 143
A32ceilw.d. 144
A33cell.w.s . . . Lo 145
A3dclz . . 146
A3bcevtdss . . 147
A36cevt.dow . . . 148
A37cvtsd ..o 149
A3BBevt.SoW . . L 150

A39divedd . . 151

AALdIv . . 153
AA2 diva . .. 154
Ad3ext . . . 155
Addfloor.w.d 156
Adb floor.w.s 157
AABHMPHL © o o o 158
AATIMD . . . o e 159
Ad8jeq 160
AAd9jgez . . . L 161
ABOIEEZ o oo 162
ABLIOZ o o 163
AB23lz o o 164
AB3jne . ..o 165
ADBdjumpo 166
ADBSjumpr . ..o 167
ASB61dbu ..o 168
ASBTIdb . . 169
ABRIdel ... 170
ADB91dh . .. 171
A601dhu . .. 172
AGLIdL . . . 173
A621dihi . . . 174
AG31dwl .. 175
AGAldwr . .. 176
AGSIAdw . . o 177
A66Idxcl . . . 178
AGTIL . 179
AGBIwel . . 180
AGIIwxcel . . . L 181
A70madd.d 182
ATl madd.s 183
AT2micl ... 184
A 73 mfhel . .. 185
AT4dmflel . . . L 186
AT5mov.d ... 187
ATOMOV.S 188
ATTmovE . . . 189
AT78movid . . . 190
AT9movEs . . . 191
A80movin.d 192
ABLMOVILS 193
AR2movi e 194
AR3Imovt . . . 195
AR4dmovt.d 196
ABSmOVE.S 197
A86movz.d 198

ABTMOVZ.S . . . o s, 199

A B8 MOVZ . . . s, 200

ARImsub.d 201
A90 msub.s . ..o 202
A9l mtel . ..o 203
A.92mthel L 204
A93mtlel 205
A9 muld. 206
A9Smuls . . . 207
A96mulu 208
A97mul . . . 209
A98meg.d 210
A99mneg.s 211
AT00nor . ..o 212
A10L or . . . L 213
AT020r1 . . . L 214
A103rcall 215
ATO4rorr e 216
AT05ror . .o 217
A106round.w.d 218
A107round.w.so 219
ATORSC . . o 220
A109sdel . . Lo 221
A 110 sdxclo 222
A 11l seb . . 223
A112seh . . . 224
A113shlr 225
A 114 shl. . . . 226
A 115shr . . . 227
A 116 shrr 228
ALTITSI6E . . 229
ATI8SIt . o 230
A119sltiu 231
A120sltu . . L L 232
A T2 sqrt.d . . o o 233
AL228qrt.s . . o 234
A123stb . 235
Ad124 sth . . . 236
A125Stw . . 237
A 126 stwl . . L L 238
AL27 StWr . . . L 239
A 128 sub.d 240
A.129sub.s ... 241
A 130sub . .o 242
A 131 swel . Lo 243
A132swxel . .. 244
Ad33Sync o e 245
Al34syscall . . . 246

AL35teq . . . o 247

A 136 trunc.w.d 248
AL3THErunc.w.s 249
AT38XOr . . . 250
A139X0rT .« . L. 251

Chapter 1

Introduction

The ISA, Instruction Set Architecture, is the interface that allows applications and the
processor to be developed independently. It is a contract. As long as the application code
and the processor microarchitecture comply with the ISA, the processor should be able
to properly execute applications. There are currently several different ISAs that software
can use to leverage a circuit to do useful work, ranging from complex general purpose
instruction sets to simpler ones, dedicated to graphics processing.

This chapter discusses challenges brought by this classic ISA definition, then proceeds
to present the solution virtual machines provide and concludes with the hybrid ISA ap-
proach championed by this thesis. This chapter also shows how this thesis is organized
and summarizes its contributions.

1.1 Challenges in the design of classic ISAs

Coping with the strict requirements of the ISA interface raises at least three big technical
challenges:

1. Hardware challenge: Each ISA decision affects all future generations. In effect,
changing features of an ISA that was already shipped to the market deems the
previous generation incompatible. In practice, to keep backwards compatiblity, the
hardware typically is limited to be only extended. This implies [SAs will always
become larger, more cluttered and more inefficient as each new generation is intro-

duced [92].

2. Software challenge: The software, once compiled to a specific ISA, demands a non-
trivial effort to be ported to run on other ISAs.

3. Market challenge: Past ISAs accumulate a legacy of available software. Creating a
brand new ISA is discouraged because of this significant amount of effort to port
software. Since current ISAs are mostly proprietary, new processor manufacturers
are not encouraged to exist in the market if they need to license the rights to repro-
duce the ISA from another company. This strengthens monopoly in the computer
processors market.

17

CHAPTER 1. INTRODUCTION 18

These challenges create a vicious cycle. On one hand, a processor manufacturer is
limited to choose from a handful of established ISAs owing to the size of their software
base. On the other hand, as an ISA becomes old and mature, it accumulates a larger
software base, putting a heavier weight on an ISA from the past rather than on innovative
new technologies.

Hence, old families of ISAs grow stronger while true innovation is inhibited. Consider
the Intel x86 ISAs, the dominant ISA family for desktops and servers: not only does it still
have hardware support for BCD arithmetic, reminiscent of the days when x86 was used
to implement a microcontroller, but also it encodes these old instructions with a single
byte, the most efficient encoding available for x86 instructions. New x86 AVX extensions,
on the other hand, are encoded with at least 5 bytes [92]. This is a consequence of relying
on very old ISA designs.

Up until this point, all ISAs suffered with aging, but only a few accrued enough years
in their lifetime to make evident the hampering effects of supporting old instructions in
recent processors. The best example of such effect is seen in Intel x86 because it is the
ISA with the longest lifespan that is still popular today. The variable-length encoding
format of x86 provides it with the flexibility to support an almost unlimited number of
extensions, but with each new extension, comes a price to pay — the longer encoding. The
ISA invariably becomes inefficient and it is also impossible to fix past design mistakes
without breaking compatibility.

An ISA does not only express a hardware design point [39]. In parallel with the
hardware, software compiled to a specific ISA also suffers with its inflexibility. An ISA
establishes a program distribution format with profound impact on the software deploy-
ment problem. Once a program is distributed in binary form, it is restricted to run
on platforms that have a processor capable of understanding it. Maintaining software
for multiple platforms is not trivial and demands active effort from developers, making
the ISA an important contract with respect to software distribution. The semantic gap
between different machines is expensive to bridge with existing emulation technology.
Therefore, running a software compiled for x86 on ARM, for example, involves accepting
large overheads as ARM tries to mimic the behavior of a virtual implementation of the
Intel processor.

1.2 Virtual machines to ease software deployment

In the last two decades, the computer science industry went through an important de-
velopment. Industry pursued a homogeneous platform for programmers despite the fact
that the hardware platforms were so diverse: with each computing system (desktops,
servers, smartphones, among others), a different processor and operating system. Since it
is counter-productive for developers to support multiple platforms, Java-based virtual ma-
chines quickly gained traction because the virtual machine technology allowed developers
an effective strategy of program deployment to a wide spectrum of different devices.
Java, however, was a partial success in the attempt to simplify software development.
The intermediate language is high-level, rendering it unsuitable to solve the broader soft-

CHAPTER 1. INTRODUCTION 19

ware deployment problem. It only supports a single program paradigm with object-
oriented programming, it has performance implications because it employs expensive
memory usage shepherding, depends on a compiler and its language was not built to
be efficiently implemented as a competitive processor.

Therefore, even in light of the easiness of deployment of the Java era, programmers
still felt compelled to perform a significant fraction of software development in native
mode, which is the classic software development flow that is invariably locked to specific
hardware platforms. Since this was common-practice, when x86 processors entered the
smartphone market dominated by ARM processors, a binary translator was employed to
translate such native code, succeeding with arguable efficiency.

In the dawn of the Internet-of-Things (IoT) era, we are once again faced with the same
deployment problem, but this time with a wider spectrum of different hardware platforms
and some of them with such a scant amount of resources that using virtual machine
technology is barely acceptable. Programmers want their applications to just run, while
chip manufacturers each offer a completely different and incompatible platform.

The deployment problem highlights the issues in classic, concrete [ISAs, but a complete
solution must not limit itself to the processor, but encompass the entire software stack.

The Transmeta team [51] created the Crusoe series of processors and the Code Mor-
phing Software (CMS), their DBT system that translated the x86 ISA to their own VLIW
host ISA. Their system proved to be possible to translate old x86 code to a completely
new system that explored different power tradeoffs and offered a new design option to x86
processors. However, their experience showed that it is tricky to support complex guest
ISAs such as the x86, requiring many custom modifications in the host ISA to efficiently
support x86 quirks [20,37,118]. In this thesis, we do the opposite and provide an analysis
of guest ISA characteristics that offer easy and efficient emulation on popular host ISAs.

1.3 Introducing the hybrid ISA solution

This thesis investigates the guest ISA because it supports the idea that the solution to the
classical ISA issues comes with the design of new, highly flexible ISAs. These ISAs should
present three important properties that are promising to handle the technical challenges
brought by the old, fixed ISA interface. The first and key property is the easiness of
translation, giving freedom to programs that use the ISA instructions to be seamlessly
emulated, via efficient binary translation, on other established architectures. The second,
an innovative extensibility mechanism that allows the ISA itself to recycle its own instruc-
tions, being always as fresh as a newly designed ISA, free from the constraints of binary
compatibility. An OpenISA processor may have part of the instructions implemented in
hardware and part of them implemented in software, which gives its hybrid characteris-
tic that also allows it to recycle part of the instruction set. The third, an open license,
allowing anyone to manufacture processors that run the ISA code.

While the benefits on the hardware side are clear, that is, to enable it to freely evolve
and recycle itself, on the software side, it is also a promising solution. Instead of relying
on the complex and more abstract Java ISA, virtual machines can work with low-level

CHAPTER 1. INTRODUCTION 20

(machine) code and can have an uniform binary (and bug) compatibility across all tar-
gets [124], something Java-based technologies cannot offer by design.

Distributing programs encoded in machine code (at the ISA level) gives more freedom
to the software, which is not tied to a specific programming paradigm. If the ISA is easily
emulated by itself, it eliminates the necessity of elaborate, higher-level virtual machines
that depend on distributing programs at the source-code level or similar. An ISA-level
virtual machine also works for a wide spectrum of hosts: for the IoT use case, for example,
the attractiveness of such virtual machines for resource-constrained devices comes from the
higher simplicity: one does not need the Java Runtime Environment to support the Java
ecosystem, but only a simple interpreter because the guest program is already compiled
and optimized. The VM now only has to focus on how to bridge the differences between
host and guest hardware platforms. Therefore, it is important that the guest ISA be as
easy to be emulated as possible.

Throughout this thesis, we develop and discuss OpenISA [25], a flexible, hybrid ISA
solution as both a guest ISA for virtual machines, highlighting its efficient emulation, as
well as an ISA to shape the implementation of modern processor microarchitectures.

For the specific use case of IoT platforms, to ensure a lean platform in restricted plat-
forms, an OpenISA virtual machine should focus on interpretation of OpenISA code. If
a constrained platform needs performance but lacks the resources to run a multi-gear,
optimizing virtual machine, this thesis introduces the use of CATs, cloud-assisted transla-
tions, a technique that relies on the cloud to perform expensive optimizations and deliver
a completely translated binary back to the host.

Last, this thesis investigates a program-distribution format based on OpenlISA. For
userland programs that do not employ self-modifying code, we show a tool that is able
to statically translate code in this format to two popular host processors, one from Intel
and another from ARM.

1.4 Contributions and thesis organization

Overall, the contributions of this thesis are the following;:

e Demonstrates the feasibility of building virtual machines with intermediate lan-
guages as low level as a RISC ISA and argue in favor of its advantages over tradi-
tional, higher-level VM languages such as Java, highlighting that RISCs allow for
an efficient hardware implementation and are not language-dependent;

e Analyzes the binary translation problem from the perspective of the guest ISA
instead of the host ISA;

e Presents a set of ISA properties that lead to efficient binary translation to both
ARM and x86, illustrating two distinct categories of established ISAs;

e Presents an encoding and recycling mechanism that allows the ISA to evolve without
breaking backwards compatibility;

e Investigates how guest registers mappings impact the ISA translation;

CHAPTER 1. INTRODUCTION 21

e Evaluates the full potential of binary translation using modern open source compiler
technology, LLVM 3.6.

e Presents a mechanism to allow the virtual platform to execute either OpenISA or
native code generated by an OpenISA to host translator executing in the cloud
(assisted translation).

e Investigates a low-level program distribution format based on OpenlISA that enables
a static translation engine to perform offline translation of OpenISA programs to
other hosts while preserving most of native performance.

This thesis is organized as follows. Chapter 2 analyzes what the current literature pro-
vides us on the topics of binary portability and binary translation. Afterwards, Chapter 3
introduces OpenlISA, Chapter 4 explains its encoding and recycling mechanism, Chapter 5
discusses the design of the experimental framework, Chapter 6 presents the choices of ISA
properties that foster better quality in binary translation, Chapter 7 shows experimental
data to back such decisions, Chapter 8 presents other exploratory work developed in the
context of this thesis and Chapter 9 provides the conclusion.

Chapter 2

Related work

The field of study concerned with translating software distributed in binary form from one
processor to run on another is binary translation [123|. A wvirtual machine, on the other
hand, is a broader concept that may or may not rely on binary translation to emulate the
behavior of an existing platform [124]|. This thesis investigates relevant work published in
literature covering all solutions that propose a compelling program distribution format,
a compelling new ISA, solutions that improves binary translation technology or that
improves virtual machines or virtual instruction sets (V-ISAs) in general.

This chapter analyzes how each of these solutions differs from the approach used by
OpenISA. It then builds the motivation and presents a survey of the literature on fast
ISA translation to guide a plan on building an emulation-friendly ISA.

2.1 Basic concepts

Before delving into the details of each level, it is useful to define a few concepts.

User Apps.
User Apps.
Software OS | Libs Software
Guest ISA - - 232 —==—~3
08 Libs
SA-- === = Host ISA - - =
Processor Hardware Processor Hardware

(a) (b)

Figure 2.1: (a) Typical computer systems hardware/software execution stack. (b) Com-
puter system software stack executed on top of a virtual machine (VM).

The oldest and most important concept is that of a virtual machine. Figure 2.1
compares a regular hardware/software stack (a) versus the one using a virtual machine
(b). A virtual machine is a central topic to this work, as it can be defined as the framework
to run a program that was not necessarily built to run on the same hardware platform
that the virtual machine runs [124]. Whenever running a program intended for a platform
A on a hardware platform B by using any virtual machine, we say that A is the guest

22

CHAPTER 2. RELATED WORK 23

platform and B is host platform, while its respective ISAs are the Guest ISA and Host
ISA.

When compiling, or translating a program from a source code to use the instructions
of a specific hardware platform, we call this hardware platform the target.

2.2 Well-known virtual machines

Currently there are three successful systems that were designed with the specific objective
of solving portability issues through a virtual machine:

e The Java Virtual Machine (JVM) [8,102] by Oracle is quite well-known, but has
important constraints that are not a problem in an OpenISA-based virtual machine.
Java does not admit structs, stack objects nor pass by reference of stack values and
programs must obey a strict type hierarchy. As in the JavaScript analysis provided
in this thesis, discussed in Section 8.2, the JVM is interesting to many applications,
but it cannot express arbitrary programs as a solution to the portability problem
without hampering performance;

e The Common Language Runtime (CLR) [84] by Microsoft lacks adequate support for
non-Microsoft platforms, albeit it benefits with a higher flexibility in the generated
code. Moreover, we can expect a shift of strategy in Microsoft in the near future
towards Open-Source Software (OSS) technology, although it is unclear whether
their NET VM technology will receive much attention. On the other hand, the
code still depends on a heavy runtime to support it and on using the base class
library (BCL). An ISA-level approach does not restrict the code to use any specific
library and is transparent to the programmer.

e The Low Level Virtual Machine (LLVM) [45], an OSS project managed by Apple,
Google, SCEA, among others, first appeared in literature in 2003 as a solution to
the portability problem. The paper from MICRO [17| sketched an IR with a much
lower level than that seen in CLR and JVM and described an elaborated system
that not only would support compilation to multiple targets, but also continuous
optimization based on data from actual runs (feedback-based).

The purpose of going a level lower is to provide thorough support for portability of
all software, not just those that obey a specific language, including system software. In
the case of HLL frameworks, such as JVM and CLR, not only do they can never support
system-level code, but programs also avoid them when they need performance, since they
incur either time or memory overheads, sometimes quite unpredictably due to the JIT
technology used [117].

The next subsection presents the case for JVM and CLR, or high-level language (HLL)
VMs in general, as well as the case for LLVM. LLVM works on a different level, but is
still a bytecode-based VM, which is different than an ISA-based VM. The bytecode is not
intended to be read by hardware and it does not impose a fixed memory layout on guest
programs.

CHAPTER 2. RELATED WORK 24

2.2.1 Low-level ISA vs bytecode guest architecture

HLL virtual machines typically execute an intermediate language representation that
reflects important features of a specific class of languages. On one hand, this approach
includes more semantic information from the source program, allowing the system to
perform more aggressive runtime optimizations to improve the system performance. On
the other hand, this approach also makes the virtual machine more dependent on source
languages.

Different from HLL virtual machines, ISA virtual machines are capable of running low-
level binary programs that were compiled for a given instruction set architecture, or ISA.
This solution is typically employed to grant intrinsic compatibility with real processor
implementations, allowing full binary compatibility when running the binary on systems
with different ISAs.

Since processor ISAs are language agnostic, using an ISA VM instead of an HLL VM
allow us to leverage any language that has a compiler compatible with the ISA to produce
portable binary code. GCC [6], for instance, has front ends for C, C++-, Objective C,
Fortran, Java, Ada, and Go. Therefore, it is possible to cover all these languages by
emulating a single GCC target, which can be x86, ARM, MIPS, among others.

When comparing an HLL VM and an ISA VM with respect to bug reproducibility,
the latter can be bug-compatible because the guest program, when compiled to a concrete
ISA, assumes a fixed memory layout and uses instructions with a well-defined behavior.
Since the VM does not change the guest memory layout, it cannot accidentally hide
memory bugs or expose others, increasing the likelihood bugs will remain the same across
different platforms. If the ISA is designed to be easily emulated, we can build VMs with
two striking advantages: superior compatibility and source-language independence.

In the web technology front, there is a similar battle to find a good intermediate lan-
guage that can be reliably used as the language of the web — a role currently filled by
JavaScript. Mozilla proposed asm.js [98] as a subset of JavaScript that makes a good
target for compilers, while Google proposed PNaCl [65] and its API, a new standard that
would allow web applications to reach near-native speeds. More recently, a consortium
of companies including Mozilla, Google, Microsoft and Apple has been working on We-
bAssembly [36], a binary format for the web. Their goals are similar to what an OpenISA
program format would seek regarding the quest to find a good binary format for a wide
range of hardware platforms. They have an explicit goal of compiling arbitrary languages
to WebAssembly, including C and C++ and the whole standard library to be executed in
a browser. Therefore, these projects may share common design decisions with this work.

The most compelling advantage of this work in comparison with WebAssembly, Java
and other intermediate representations, however, is that it focus on the computer archi-
tecture facet of this problem and claims it is important to, instead, make the ISA easier
to emulate while also defining protocols to allow the hardware to evolve without break-
ing backwards compatibility. An ISA that is easily emulated eliminates the necessity to
distribute programs at source-code level, intermediate-language level or bytecode-level in
the first place, since it is possible to run its code on other platforms via emulation.

There are several projects implementing real ISA virtual machines [2-5]. Most of them

CHAPTER 2. RELATED WORK 25

are native system machines that emulate other computer hardware, including the entire
instruction set. However, these projects do not propose to change the ISA with emulation
performance in mind.

2.2.2 Comparison with recently developed ISAs

Other similar projects arose with the goal of redesigning ISAs, but not necessarily with
ease of emulation as a goal. The dominance of proprietary and poorly designed ISAs
spurred a few recent projects to change this prospect:

e The most notorious of all new ISA projects is RISC-V [24], championed by Asanovic
and Patterson at Berkeley, which started roughly in the same years of OpenlSA, with
similar ideas. However, while RISC-V do share some aspects with this PhD thesis,
more specifically, the case for open instruction sets, they do not focus their studies
on emulation efficiency of the ISA nor do they propose any recycling mechanism
to cope with ISA evolution. Therefore, OpenISA has not only a different design to
achieve a shared goal with RISC-V| but also a different goal that RISC-V does not
tackle, being a fundamentally different project.

e Another attempt at the redesign of ISAs, more recent than RISC-V, comes from
Agner Fog with his essay “Proposal for an ideal extensible instruction set” [60]|. While
his work is non-academic, it has a lot of credit by being built with the comments
and considerations of several experts that are also users of his well-known blog. Fog
has been himself an x86 expert for many years who hosted a thorough extra-official
guide for the Intel architecture at his website. He later discussed and decided to
sketch the specifications for an ideal instruction set, according to his views, with
respect to extensibility. He also does not discuss emulation performance. With
regard to ISA extensibility, the main difference of this thesis is that it relies on a
recycling mechanism to enable seamless evolution of the ISA. We do not endorse
the view that it is possible to design the perfect ISA from scratch, but rather that
design errors are unavoidable. Thus, the OpenISA approach relies on instruction
recycling instead of an extensible design, a theme in which both works, RISC-V and
Fog’s, revolves around.

e Heterogeneous System Architecture (HSA) [116] is a project backed by a consor-
tium of companies working together to build a single virtual ISA that will allow a
programmer to use only one interface to parallel programming while the HSA com-
pilation framework converts this program to a CPU or GPU underlying processor.
In this case, HSA defines itself as a virtual ISA, which is not designed to be im-
plemented by a real processor, while OpenISA defines itself as a hybrid ISA, which
has all the characteristics of real ISAs, but is enabled with a recycling mechanism
to support its evolution, sharing with virtual ISAs the idea of not implementing in
hardware (selected) instructions.

CHAPTER 2. RELATED WORK 26

2.3 The ISA level

OpenISA approach to the portability problem lies at the ISA level, the hardware interface
with software. This section starts with a discussion of the original LLVM system [17] that
is, to the best of our knowledge, the most similar work to the ISA level approach of this
thesis. However, unlike OpenISA, LLVM IR cannot be implemented in hardware, which
is a key distinction between this proposal and LLVM’s.

Since the early days of the LLVM project until its most recent incarnations in the
Clang compiler replacing GCC in the Software Development Kit (SDK) shipped by Apple,
there has been much confusion about the goal of the project because it gradually changed
from a purely research and speculative project to an industry-embraced project used in
production. In this process, LLVM lost some of its original intents.

Chris Lattner, the LLVM original author, along with other project contributors such
as Dan Gohman, Talin Viridia and Kenneth Uildriks, help us to understand and demystify
the idea that LLVM is a virtual machine framework. Despite its acronym, it is not. Their
discussion in the LLVM developer’s mailing list is entitled “LLVM IR is a compiler IR”
—and not a VM IR, as the name implies [91]. Their argument observed that the LLVM
infrastructure has important limitations that precludes it from being suitable for hosting a
complete virtual platform that seamlessly translates to any machine. There are differences
in the LLVM IR design from both real virtual platforms, e.g. JVM, and real hardware
platforms, e.g. ARM.

It is consensus that the acronym LLVM remains for historical reasons: the original
LLVM paper presented it as a virtual machine that was able to run the virtual ISA LLVA
(low-level virtual architecture). Now, the LLVM IR has the following characteristics that
do not conform with portability, extracted from the original Dan Gohman’s letter:

1. Target-specific features, like the x86 fp80 type;
2. Target-specific ABI code;
3. Implicit target-specific features (linkage types);

4. Target-specific limitations for seemingly portable LLVM features (each backend in-
terprets information in its own way);

5. No undefined behavior defined - if you break an LLVM rule, the behavior will be
unpredictable, unlike high-level VM that has precise exceptions defined or hardware
platforms that has detailed behaviors specification;

6. The IR is intentionally vague and not formal;

7. Floating-point arithmetic is not always consistent.

The point that Gohman makes is that the LLVM IR contains many target-dependent
annotations, besides being conceptually designed to be target-independent. Therefore,
it is not possible to translate a generic LLVM IR fragment to an arbitrary target, but
only for the target that the frontend was aware of when it generated the IR fragment.

CHAPTER 2. RELATED WORK 27

In fact, currently, even the frontend Clang has target-specific optimizations, such as the
early expansion of the va_arg C function that varies according to each target ABI.
Other points raised by other developers are as follows:

1. The LLVM bitcode, the representation in disk, is big when compared to the bytecode
of other VMs (CLR and JVM);

2. The LLVM IR is not stable across versions;

These two points alone are sufficient to question whether the LLVM IR is an adequate
representation for programs that demand portability. In fact, Gohman argues that it is
not. LLVM IR has instead evolved to be strictly a compiler IR that can be stored on disk.

Other projects addressed the portability problem at a similar level as well. The Ar-
chitecture Neutral Distribution Format (ANDF) [53], by the Open Software Foundation,
started in 1994 with a goal to enable portable binaries to be distributed and run on
conforming UNIX systems, independent of the underlying hardware platform, but it was
never put in practice. The ANDF language was similar to a compiler IR with no target
dependence at all, different from the LLVM IR, operating at a higher level.

2.4 ISA translation

We discuss translation technology by starting with the approach used in the ArchC
project [115]. ArchC is an Architecture Description Language (ADL) [57,58,67,72,96,104]
framework that notoriously eases the building process of Instruction Set Simulators (ISS).
It also helps as an ISA modeling tool. This kind of simulation is especially important
for OpenISA because it mimics only the high-level behavior of the program and its in-
structions, while ignoring microarchitectural details. This technology is straightforward
to apply in binary translation since the high-level behavior of each instruction is enough
information to build a translation tool.

A typical processor model in ArchC has 3 main files. In MIPS [82], for example, you
would structure your project as follows: mips.ac describes high-level hardware structures,
including the number of registers, word size in bits and cache hierarchy; mips_isa.ac
contains instruction formats, definitions and encodings; and mips_isa.cpp has C++
program snippets to implement the simulation of MIPS instructions when running a
MIPS program.

However, standard ArchC simulators will not provide the best translation performance
because they rely on interpretation to emulate the ISA. We call this interpreted simulation,
an instruction-wise emulation where the overhead is typically high in comparison with
native execution.

An alternative to interpreted simulation is Dynamic Binary Translation (DBT) [32,51,
75,100,109,124,130|. Aiming at reducing the decoding overhead, DBT techniques identify
regions of instructions and translate them as a whole. Once the simulator reaches the
address of a sequence of instructions, called region, it computes the change of state caused
by an entire region instead of a single instruction. While this translation is more complex
and slower to accomplish, once done, its result is cached and, if the region is executed

CHAPTER 2. RELATED WORK 28
’ Name Guest ‘ Host Benchmark Performance ‘
ArchC [31] (interpreted) | Mips x86 Mibench 36 to 56 MIPS
ArchC [31] (interpreted) | PowerPC | x86 Mibench 28 to 43 MIPS
ArchC [31] (interpreted) | ARM x86 Mibench 17 to 24 MIPS
ArchC [31] (interpreted) | SPARC x86 Mibench 27 to 37 MIPS
Bochs [87] (interpreted) x86 (all) | x86 (all) | SPEC CPU2006 (int) | 31 to 95 cyc/ins
Bochs [87] (interpreted) x86 (all) | x86 (all) | SPEC CPU2006 (fp) | 64 to 213 cyc/ins
ArchC + LLVM |[64] Mips x86 Mibench 2.8x to 169x
ArchC + LLVM [129] ARM x86 64 | SPEC CPU2006 (int) 510 MIPS
Valgrind [99] x86_64 | x86_64 SPEC CPU2000 43x s.tai
Pin [93] x86 x86 SPEC CPU2000 (int) 1.54x s.t.n.
DynamoRIO [126] x86 x86 SPEC CPU2000 (int) 1.42x s.t.n.
Pin [93] (counting BBs) x86 x86 SPEC CPU2000 (int) 2.51x s.t.n.
DynamoRIO [126] (ditto) | x86 x86 SPEC CPU2000 (int) 5.08x s.t.n.
QEMU [38] 86 x86_64 | SPEC CPU2006 (int) 5.0x s.t.1n.
QEMU |38] ARM x86_64 | SPEC CPU2006 (int) 8.2x s.t.n.
LNQ [77] x86 x86_64 | SPEC CPU2006 (int) 4x s.t.n.
LNQ [77] 86 x86_64 | SPEC CPU2006 (fp) 6.76x s.t.n.
HQEMU [74] ARM x86_64 | SPEC CPU2006 (int) 3.4x s.t.n.
HQEMU [74] x86 x86_64 | SPEC CPU2006 (int) 2.5% .40
LLBT [120] (static) ARM x86_64 EEMBC 1.66x s.t.n.
HERMES [133] x86 MIPS SPEC CPU2000 2.66x s.t.n.
IA-32 EL [33] x86 Itanium | SPEC CPU2000 (int) 1.53x s.t.n.
StartDBT [41] 86 86 SPEC CPU2000 1.09% s.t.n.
T stn. = slower than native

Table 2.1: Comparison table with the performance of different translation systems

multiple times, DBT techniques surpass the performance of interpreted simulators [48,
108].

There are different techniques and trade-offs regarding the region identification [55,78,
80,81,125] and the quality of the region translation [23,28,46,50,68,105|, providing a rich
set of choices when enhancing a simulator with DBT. However, interpreted simulation
can be important. If blocks that do not have frequent execution appear, DBT efforts to
reduce the decoder overhead and its expensive compilation algorithms become harmful and
unnecessary [41,48,49]. To mitigate the overhead in these cases, DBT can be combined
with interpretation as in the CMS by Transmeta [51].

2.5 Performance supported by current technologies

Before discussing the goals in emulation performance of a new ISA, we must evaluate the
performance achieved by translating regular ISAs with current technologies. We will first
discuss the performance of interpreted simulators and then show how DBT techniques
may enhance them.

Table 2.1 presents each ISA emulation technology along with the benchmark used to
measure the slowdown relative to the native execution. Some papers do not report the

CHAPTER 2. RELATED WORK 29

slowdown relative to the native execution, but use other metrics, which can be either
millions instructions per second (MIPS), the number of guest instructions executed per
second on the host machine, or cycles per instruction, the number of host cycles spent to
emulate a single guest instruction. For example, line 6 shows that the Bochs emulator is
able to run x86 programs on x86 machines by using interpretation at the speed ranging
from 64 to 213 host cycles per emulated guest instruction in the floating point programs
of SPEC CPU2006.

2.5.1 Intepreted performance

Table 2.1 shows that interpreted simulations suffer a big impact on performance, as ex-
pected. While the table reports ArchC performance in MIPS, we performed a simple
experiment to detect ArchC simulators slowdown, which figured around 50x when emu-
lating MIPS on an Intel Q6600 at 2.4GHz. Bochs [87] is an x86 interpreted simulator able
to emulate the entire system and boot operating systems. We partnered with Cesar et. al.
and evaluated Bochs performance in detail in the paper [48] we published in the 2013 IEEE
International Symposium on Workload Characterization (IISWC 2013), showing that the
simulator is able to emulate integer instructions at a rate of one guest instruction every
45 host cycles, on average. However, the host machine is capable of executing more than
one host instruction per cycle, hence, we conclude that even high-performance interpreted
simulators such as Bochs are not good enough in comparison with native execution.

2.5.2 Compiled simulation

Seeking to improve ArchC simulators, Garcia et al. [64] worked on enhancing the ArchC
2.1 simulation engine to support static translation in a technology coined compiled simu-
lator [52,103,114,131], building on top of the work of Bartholomeu [34]. In this technique,
a tool converts guest binary code into C++ source code and leverages the native com-
piler to translate the code. After compiling this source code, the simulator runs with a
much higher speed because the compiler statically optimizes the execution path of the
guest program. It is thus a compiled program instead of an interpreted one. They use
their own region formation technique with gee 4.4, achieving slowdowns as low as 2.8x
for the sha program and as high as 169x for the fast fourier transform (FEFT). Pvrikryl et
al. [107,108| uses a similar region formation technique to enhance the ADL ISAC simula-
tor engine and show it in a mathematical formal framework, using a different term called
translated simulation to name the same technique. Their technique achieves up to 110
MIPS in bitcount, from Mibench, when simulating the MIPS architecture. Since they
ran their experiments on an Intel Core 2 Quad at 2.8GHz that runs native x86 programs
at a far greater rate of instructions per second, this translation arguably still suffers a
considerable overhead in comparison with native execution.

2.5.3 Retargetable dynamic binary translation (DBT)

A known issue with compiled simulators is the long time required to statically compile
the entire binary and the need to redo this process every time a new guest program

CHAPTER 2. RELATED WORK 30

needs to be simulated. Moreover, similar to static binary translation, they cannot handle
programs with self-modifying code (SMC). To overcome these problems, Garcia et al. [63]
presented a retargetable DBT approach for ArchC 2.2. They stick with the same region
formation technique, but change the compiler to LLVM 2.8 to allow the dynamic just-
in-time code generation, achieving up to 139 MIPS, on average. Wagstaff et al. [129]
further enhanced their own variant of ArchC with LLVM 2.9, similarly to Garcia et al.,
building a retargetable DBT engine. They were able to achieve, on average, 510 MIPS
for an ARM target with EEMBC and SPEC benchmarks. Their technique surpassed the
performance of SimIt-ARM [111], a fast ARM ISS, by 1.7 times. They performed their
experiments on an Intel Xeon X5650 at 2.67GHz and, thus, 510 MIPS compared to the
regular 2670 MIPS that this host processor is able to execute using an underestimated
IPC rate of 1 suggests that the translation overhead is still large, if we compare it with
native execution.

2.5.4 High-performing retargetable DBTs

The compiled simulator and just-in-time compilation techniques presented so far show a
performance far from native. Hong et al. [74]| created HQEMU in an effort to enhance
QEMU |[35,38] with LLVM and try to achieve near-native performance. For fast trans-
lation of cold regions, the framework employs the standard QEMU tiny code generator
(TCG) [10], while LLVM runs on another core to aggressively optimize traces of hot re-
gions. The geometric mean of the overhead compared to native execution is 2.5x for x86
emulation on x86-64 (almost same-ISA emulation) and 3.5x for ARM emulation on x86-64
(cross-ISA setup), with an i7 3.3ghz as a host machine. This same work also evaluates the
performance of QEMU as a base line, reporting 5.9x on the same-ISA emulation setup
and 8.2x on the cross-ISA setup. Prior to HQEMU, LNQ [77] was the first attempt to
integrate LLVM and QEMU, but achieved more modest results ranging from 4x to 6.42x
slowdown ratios. In a more recent work, HERMES [133| proposes to drop the architec-
ture of QEMU in favor of a host-specific data dependency graph, which allows to explore
optimizations at a representation that is closer to the host instead of the generic IR of
QEMU. HERMES achieves the performance of, on average, 2.66x slower than native for
SPEC CPU2000 programs, which is excellent for a cross-ISA translation.

2.5.5 Other approaches

In a completely different approach, Kaufmann et. al. [83] tried to implement a widely
portable ISS that generated Java bytecode to be just-in-time compiled by a Java Virtual
Machine (JVM), leveraging the established Java architecture that runs on many platforms.
This technique is similar to compiled simulation or just-in-time compiled simulation, ex-
cept that it used Java instead of LLVM. They reported, on average, to achieve 78% of
QEMU performance on EEMBC AutoBench 1.1 [106].

CHAPTER 2. RELATED WORK 31

2.5.6 Specialized DBTs

Finally, one of the best performances we see in literature is due to IA32-EL by Baraz et
al. [33], an ISA translator that runs x86 guest programs on the discontinued Itanium [119]
architecture. They built a specialized DBT engine that runs x86 programs, on average,
1.53x slower than native Itanium programs, albeit their DBT is focused on only a specific
guest and host machine pair. Similarly, DynamoRIO [43, 44, 126] performs same-ISA
dynamic binary translation to achieve slowdowns as low as 1.42x, even though they are
restricted to x86 emulation on x86 hosts. An Intel counterpart called StarDBT [41]
performs x86 same-ISA translation with only 9% of overhead, on average, for SPEC
CPU2000. In the category of static cross-ISA translators, LLBT [120], a static binary
translator based on LLVM, achieves cross-ISA translation (ARM to an Intel Atom) with
66% of overhead, on average, for the EEMBC benchmark.

2.6 Dynamic binary instrumentation

ISA emulation, despite providing portability, is also performed to provide a virtual ma-
chine environment where a program is carefully analyzed at the architecture level. Since
designing custom companion hardware circuits that collect statistics about program exe-
cution has a prohibitive cost, the emulation, the software counterpart, provides a flexible
framework at the cost of performance. For example, Qin et al. [110] and Moreira et al. [97]
both study a framework for real-time taint analysis that checks for security attacks by
augmenting a virtual machine framework. Valgrind [99] is a memory check tool that pro-
vides helpful information to the programmer to identify memory leaks in C code. For
Valgrind, there is an extensible framework for dynamic program analysis. Nethercote et
al. [99] report the performance overhead of Valgrind to be 4.3x, on average, using the
nullgrind extension. This extension does not perform any analysis and was created to
allow the measurement of the Valgrind virtual machine overhead in isolation.

Simulators are also used to study architectural statistics about program execution,
e.g. ArchC simulators. ESESC [21] is a multicore systems simulator (shared or non-
uniform memory) that uses sample-based information retrieval to estimate energy and
chip temperature. To speed up this simulator, Ardestani et al. [21] used QEMU to run
the code that is not instrumented. On the other hand, simulators that aim at collecting
detailed architectural information typically share a poor performance when compared
to the fastest virtual machines. ESESC achieves 9 MIPS, which is slower than ArchC
interpreted simulators.

2.7 Summary

On one hand, HLL frameworks such as Java can achieve good performance, but constrain
programs. On the other hand, binary translation translates any machine language pro-
gram, but may struggle to achieve a good performance. Now that we have a solid overview
of the state-of-the-art performances of ISA translation, we know that despite the advan-
tages of binary translation, there is a typical overhead when comparing the translated

CHAPTER 2. RELATED WORK 32

program performance with native performance.

Previous work have shown that is is possible to emulate guest code at near-native
performance with DBT when the guest and the host ISA are the same [41]. However,
previous results also indicate that when the guest and host ISA are different the emulation
overhead is typically high [35,38,74,77,111,129,133]. In this thesis, we argue that the
problem lies in the fact that there are ISA features that are hard to emulate when the
guest and host ISA are not compatible and we show that key ISA decisions can change
this.

Chapter 3

OpenlSA overview

OpenlSA is a free, well-defined, emulation friendly and low-level language, an ISA, de-
signed to free users from processor vendors and foster development of current and new
processor architectures. It has two parallel goals for software and hardware, (1) to foster
simplicity in software deployment by providing a common ISA whose programs compiled
to it can be executed on OpenlISA processors or easily translated to other hardware plat-
forms and (2) to provide a flexible model for processor interfaces that allow them to evolve
without a strong commitment with past versions and backwards-compatibility.

This chapter explores the first goal, while the latter will be explored in the next
chapter, which discusses the OpenlISA encoding.

3.1 OpenlISA objectives
The defining characteristics of OpenISA are detailed below:

e Emulation friendliness: the ISA must be emulation friendly to allow its efficient
emulation on current off-the-shelf microprocessors, such as x86 and ARM, without
any hardware specialization requirements.

e Low-level: a low-level language uses operations that represent direct functions sup-
ported by a processor. While it is implicit that an ISA must operate at a level lower
than other languages, there are some ISAs, so called wvirtual ISAs, that were not
designed to be implemented by real hardware. The OpenlISA goal, instead, is to
limit itself to hardware-synthesizable features just like a regular processor. It also
introduces the concept of hybrid ISA, since some instructions may be left out of the
processor implementation as well.

e Well-defined: a well-defined and concise ISA is important to prevent different behav-
iors when implemented by different hardware and virtual machines. This ensure the
utmost level of compatibility between platforms, that of bug-compatibility, essential
to ease the task of deployment in a write once, run everywhere paradigm.

e Free: OpenlSA makes use of a permissive license to allow its free use.

33

CHAPTER 3. OPENISA OVERVIEW 34

OpenISA makes it possible for users to seamlessly switch their software subsystems
to run on different virtual machines and/or different processors. Current processor man-
ufacturers can support it by designing new OpenISA based microprocessors or OpenlSA
virtual machines tailored to run on their proprietary ISAs. OpenlISA enables new players
to compete in the processor industry, fostering innovation and competition.

3.2 Design trade-offs

In this section, we analyze language elements that are available at other forms of program
representation but are not present at the typical ISA layer. Some of them are important
to enable high-quality translation to other architectures. It is also discussed why they
were or were not adopted in OpenISA, stressing the tradeoff of fair translation and ISA
complexity.

Let’s discuss two distinct approaches to program translation from a guest platform to
a host: recompilation and binary translation. Recompilation handles the translation from
an abstract model such as a compiler Intermediate Representation (IR). In many ways, it
proceeds just like a regular compilation, with the difference that it is recurring a second
time. For example, a user compiles a program to Java bytecode, and the bytecode is
recompiled to a host. Since the bytecode is high-level, there is no need to perform binary
translation and the result of recompilation exclusively uses native host mechanisms. In
binary translation, the hardware platform for which the program was originally compiled
for may use low-level features that are unavailable in the host, forcing software emulation.
Most noticeably, binary translation needs to emulate the memory layout established by
the guest program.

OpenlISA relies on binary translation of a low-level model, but to first understand the
differences of the competing, abstract, high-level language model, the list below provides
an overview of basic entities used in an abstract model that supports the translation of
programs to run in real hardware:

e Explicit functions: this entity is partially supported in hardware via special instruc-
tions such as calls and returns, therefore, if it is exposed in the program represen-
tation, the translation to the machine level can be made more efficient;

e Explicit stack, activation record or local variables symbol table: any structure that
helps the identification of locals and memory locations that can be promoted to
registers — important information to manage what lives in registers and what must
be escaped to memory;

e Abstract memory layout: both stack and heap layout will be rewritten to conform
with the host platform. If the language does not expose raw memory elements,
it allows the compiler or binary translation system to reformat data in the most
suitable way to a particular host;

e Data types: the perfect high-level, high-performing language will either stick to
types that are directly supported by most processors or be vague enough to allow

CHAPTER 3. OPENISA OVERVIEW 35

the underlying system to implement them with the most suitable native type. There
is often a high cost associated with emulating the behavior of a non-native type. For
example, Intel x86 may use a non-standard 80-bit floating-point type to represent
doubles in C, but the language is vague enough to allow this. The long data type
in C may be either a 64-bit number or a 32-bit number, depending on the host.

Next subsections details the role of each of the high-level entities discussed so far.

3.2.1 Explicit functions

High-level languages provide a method to isolate code into different functions, which is not
available at the ISA level. However, there is support for functions in hardware: call and
return instructions, as well as instructions to support the implementation of the program
stack, which provides efficient allocation and deallocation of limited-scope data. At the
microarchitectural level, some processors also use a buffer of return addresses to ensure
that the code flow change caused by returns does not stall the pipeline [122].

The most important aspect of functions is that it is the fundamental granularity at
which compilers operate and at which programmers write code. Programmers are used to
inline a performance critical function. They make the assumption that it will run faster
if it avoids the creation of the stack frame associated with a call to a different function.
Optimizing compilers focus on improving the code at a function body and may not be
capable of doing a good job optimizing code that is scattered at different functions.

Since the function scope is lost at the ISA level, it is tricky to define a good region
of code to operate on and perform local optimizations that will enhance the translation
from guest to host. For instance, Garcia et al. [64] study region formation techniques that
does not work with functions, but with traces. Hong et al. [74] report that augmenting
traces to form larger regions with a more complex control flow graph (CFG) is an integral
technique to guarantee good performance in their translator.

For the experiments in this thesis, it is enough to know function boundaries to ensure
translation quality. In fact, as discussed by Zinsly [134], it may be possible to dynamically
identify regions of code equivalent to functions by looking for instructions that support
the execution of functions, such as calls and returns.

3.2.2 Explicit stack

The program stack is tightly associated with the execution of functions. However, knowl-
edge about the latter is not enough to identify the former. The stack is responsible for
storing the local variables that will be manipulated by different basic blocks of the func-
tion and that are crucial to perform data-flow optimizations. If this information is lost
during the translation process, it will not be possible to further apply such optimizations.

A second implication of not knowing the stack is that, in the compilation process, the
compiler may have spilled variables and transfered them from registers to stack positions
because of the limited number of registers in a given processor. On the other hand, the host
processor may have enough registers to promote some of these variables to registers. The
translation to the host machine, therefore, could be forever bound to a poor performance

CHAPTER 3. OPENISA OVERVIEW 36

because the source ISA lacked enough registers, a crucial variable was spilled and the
translator does not have enough information to promote the memory position to a register.

3.2.3 Abstract memory locations

If the exact memory positions associated with each datum is not yet assigned, the trans-
lator is free to rearrange data and build the best memory layout to any target. However,
this is not the case at the ISA level, where the memory layout was already built and the
translator system is constrained to access data at specific memory addresses.

This distinction is important enough to be used as the main aspect to distinguish
between recompilation and binary translation in this thesis: if the system works with
abstract memory positions and is allowed to modify the final memory layout, we say it is
recompiling, otherwise, performing binary translation.

In this work, we stick with binary translation because a predefined memory layout
is mandatory to allow the highest level of compatibility: bug compatibility. The memory
layout specially affects whether or not existing silent bugs can be exposed when translating
a program. This is the case when you have a buffer overflow |73]. If the variable allocated
right after the buffer is not used, the bug (changing the variable value) may not affect
the execution, hence it is silent. But if one allocates an important variable right after the
buffer, overflowing it may change the behavior or break the program.

3.3 OpenlSA virtual machine

The OpenISA virtual machine is the core technology that enables portability of OpenISA
programs to other architectures. Figure 3.1 shows different options for the level at which
the virtual machine may be inserted: user or system level. This work focuses on the user
level virtual machine.

User Apps. User Apps.
OpenlSA - -|- - ===
VM Software /QS/ Libs Software
0S -~ OpenlSA - -2~ =<32-=
HostISA——’/—“_’//II Host ISA - - - -
Processor Hardware Processor Hardware

(a) (b)

Figure 3.1: (a) OpenlSA user level applications running on top of a process virtual ma-
chine. The OS and supporting libraries are running directly on the host ISA. (b) OpenISA
user and system level applications running on top of a low level system virtual machine.
In this case, the whole software stack is running on top of the VM.

The virtual machine translates guest OpenlISA instructions to host instructions, and
the associated overheads of such system have different causes. Below we present a list of

CHAPTER 3. OPENISA OVERVIEW 37

overheads identified by Borin and Wu [41] in StarDBT, a virtual machine that operates
with x86 over x86 (same ISA).

1. Initialization overhead, usually negligible;
2. Cold code emulation overhead, which can be reduced with fast interpretation;
3. Profiling and hot code building;

4. Hot code emulation overhead, which can be separated into overhead due to code
cache control transfer overhead [71] and code quality.

The code quality factor is not a problem for same-ISA virtual machines because the
code is usually the same, except for privileged instructions that require emulation. In
the case of OpenISA, however, its translation occurs to different ISAs. In this scenario,
code quality can easily become the prevalent overhead because a naive translation of
instructions from a different ISA can introduce bad quality code that performs poorly.

Since Borin and Wu already point out promising techniques to address the slowdowns
of a same-ISA DBT, but does not look at the code quality factor that is of prime impor-
tance to the problem analyzed in this PhD thesis, we focus our attention on building an
ISA that improves this code quality, aiming at achieving the same slowdowns of same-ISA
virtual machines. To study how to improve code quality by design of the ISA, we built
a prototype virtual machine on top of an existing compiler, the LLVM compiler. This
existing infrastructure allows us to check, with existing compiler technologies, whether it
is possible to emulate OpenlISA programs on other ISAs with minimal overhead.

Next, we present different design possibilities of the translation prototype and discuss
why we picked one of them.

3.3.1 Using the LLVM I.R. as the starting point

A good starting point for OpenISA would be to define its first ISA version to be exactly
the same as the LLVM L.R. Since it is a well-documented static compiler I.R., OpenISA
would start with all of these benefits. Future versions advancements through incremental
development would remove features down to the point where OpenlSA becomes a well-

defined low-level ISA.

Optimizer

Program O

C code F\,Clang~\vIR f\(
o JIT’\V

Machine Code

Figure 3.2: Diagram showing the usage of LLVM as the starting point for OpenISA

The problem lies in directly changing LLVM code and its tools to comply with removed
features as part of the incremental development plan. Each time some aspect of the LLVM

CHAPTER 3. OPENISA OVERVIEW 38

I.R., at this point OpenISA ISA, needs to be changed, all tools that rely on reading the
LLVM IL.R. would break and could need maintenance to comply with the newest changes.
Since LLVM is a big project, it is an impractical approach. Moreover, the original LLVM
project continues to evolve and this particular OpenISA fork would soon become outdated.

3.3.2 Using LLVM indirectly

LLVM Optimizer | | Machine Code

)/

—~| Clang ~_| LLVM I.R.4| LLVM Backend

Program
C code

LLVM to OpenlSA
OpenlISA to LLVM

compiler compiler
backend frontend

OpenlSA L.R.

Figure 3.3: Diagram showing the relationship of OpenISA and LLVM

In order to tackle the previous problem, it is possible to develop two new components
that interacts with the LLVM infrastructure and link a separate OpenlISA project to the
LLVM project, which is free to evolve independently in this manner.

Figure 3.3 illustrates this principle. The two rounded boxes show the components that
link OpenISA to LLVM. In this new design, OpenISA starts as a RISC clone in its first
version. As the OpenISA changes to embrace new features or to remove characteristics
to allow easier translation, only the LLVM OpenISA Backend and the LLVM OpenlISA
Frontend needs to be updated in order to OpenISA to take benefit from all LLVM features.

Even though, in this design, OpenISA does not have tools that directly operates on
it, any OpenISA fragment may be translated to the LLVM L.R. at the cost of the LLVM
frontend execution. This brings the benefits of LLVM static compilation to OpenISA:

e High-quality code generator;
e Targets any machine whose backend is available in LLVM;

e May use any optimization implemented for LLVM.

3.3.3 The Complete Framework

The complete framework! implemented to design OpenISA is depicted in Figure 3.4. The
nodes show system components, including the ones borrowed from the LLVM framework

! Available at http://github.com/rafaelauler/openisa

CHAPTER 3. OPENISA OVERVIEW 39

LLVM Optimizer | [Machine Code

)/

—— Clang —~={ LLVM LR.j LLVM Backend

Program
C code

LLVM to OpenISA
OpenlISA to LLVM

compiler compiler
backend frontend

—Standard compilation flow | OpenISA LR.

- Static translation

LLVM Library
1
— Execute on software

— Execute on hardware OpenISA
sitmulator

OpenlSA (inter-
hardware preter/DB
processor

Figure 3.4: Diagram showing the complete OpenISA framework

to provide both the compiler from C code to OpenISA code and the static compilation
framework to translate from OpenISA to any other machine language (red and blue paths
shown on the diagram). Once the user program is translated to the OpenISA language,
she can either run it on an OpenlISA processor (green path) or run it on any other host
machine using the OpenlSA virtual machine (brown path). Alternatively, the user may
statically translate it to another machine language (blue path).

The real OpenISA processor implementation is a long-term goal. The primary goal
of the OpenlISA project is to develop the OpenlISA virtual machine, which employs inter-
pretation and dynamic binary translation techniques to run OpenlISA programs on any
platform. However, it is essential to first develop the LLVM backend and frontend to
support the design of OpenISA with a careful study enabled with the help of LLVM. The
final virtual machine may, but is not required to, use LLVM libraries to aid in the task
of translating OpenlISA fragments to host machine code. The virtual machine may also
borrow code and techniques from the LLVM OpenISA to LLVM frontend component. As
an example, the blue path (static compilation) could be adapted to support the virtual
machine dynamic binary translation process.

3.4 Summary

This chapter outlined goals and design constraints of OpenISA: it is a free, well-defined
and low-level language that supports its execution on a real processor, can be translated to
other platforms, and has a flexible interface such that a sequence of processor generations
can evolve without a strong commitment with backwards compatibility. The latter will
be detailed in the next chapter. This chapter also identified useful components of a high-

CHAPTER 3. OPENISA OVERVIEW 40

level language that makes the translation to any machine language effective, analyzed
how this may affect OpenISA by lacking some of this information and finally presented
the framework developed to explore the design of the OpenISA ISA.

Chapter 4

OpenlSA encoding and recycling
mechanism

Perhaps the most well-known aspect of an ISA is its encoding. Is it fixed-length or
variable-length? How many instructions can be encoded” How many registers can ALU
instructions refer to? Which addressing modes are available? Is it inspired by a RISC
design or is it inspired by a CISC design?

This chapter elaborates on the design of the OpenlISA 32-bit encoding and summarizes
our experience and views reported in two previously published papers: one discussing the
recycling mechanism along with a discussion about encodings presented in ACM ISCA
2015 [92], written in collaboration with Bruno Cardoso, Luiz Ramos and Rodolfo Azevedo,
and another about an OpenISA virtual machine for resource-constrained devices, includ-
ing an 8-bit microcontroller, published in the computer architecture workshop WSCAD
2015 [95], written in collaboration with Carlos Millani and Alisson Linhares.

4.1 Word size and endianness

There are two ISA parameters with strong impact on the ISA emulation performance on
different hosts: word size and endianness. These special guest ISA parameters control
characteristics responsible for changing instructions semantics in such a way that may
demand a large effort from the host to emulate the guest ISA.

Word size is problematic for emulation because the address size is often tied to it,
requiring all memory operations to work with arithmetic operations of this size. Once
the word size of the guest ISA is larger than that of the host ISA, emulation performance
is significantly affected. The number of host instructions required to emulate each guest
instruction will suffer with a large penalty as the host employs extra instructions to
increase its datapath bitwidth.

The host overhead when simulating a larger datapath is the result of mismatching
abstractions used in the guest ISA and host ISA. The necessity of a specific address space
size, as in a 64-bit flat memory addressing, is a consequence of the size of the program and
the size of its maximum memory working set. The OpenISA ArchC-based interpreter, for
example, simulates a system with 512MB of primary memory and allocates this space in a

41

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 42

contiguous pool of addresses — this program cannot be compiled to a 16-bit ISA with flat
addressing model (non-segmented) because it uses too much memory. Even though it is a
demand of the program, word and pointer sizes are specified in the ISA, rendering some
programs impossible to be encoded in small-word-size ISAs, except when some tricks are
used to expand the address space such as in the old x86 segmentation mechanism.

Similarly, endianness is another property with high impact on emulation performance.
Once there is a mismatch between host and guest regarding this property, emulation will
suffer a high degree of overhead to compensate for it.

Both word size and endianness are orthogonal to all other characteristics of the ISA,
but they have a high impact on emulation performance. The most reasonable approach
is to define multiple versions of OpenlISA, one for each tuple word-size - endianness.

Throughout this work, we assume OpenISA is a 32-bit little-endian architecture. The
reader may assume other versions are available to better fit other host architectures,
or accept a larger overhead when running on big-endian hosts or hosts with a smaller
datapath width.

Both aspects are exclusive of programs represented in levels as low as the ISA. This is a
trade-off between representing the program in a low-level format, specifically one in which
the memory layout is already defined, and representing it in a high-level format in which
it is not possible to derive anything about the memory layout, such as in Java. OpenISA
chooses the low-level approach in order to avoid leaving undefined aspects in the program
representation, which undermines bug-compatibility and makes debugging harder across
different platforms. This happens because the same bug may manifest differently in two
platforms, since in high-level representations, the final memory layout is decided based
on the platform. OpenlISA also chooses this level to be language-independent. In order to
code in C, for example, the underlying program representation must expose the memory
layout and pointer sizes. If we choose to hide these parameters from the programmer, we
are leaving one of the most popular programming languages out of the scope of supported
platforms, diminishing an important goal of OpenlISA that is to be platform-independent.

Finally, as different designs increasingly converges to the little-endian organization
with 64-bit word size, one should expect this issue to be less relevant with time.

4.2 Encoding

4.2.1 Instruction sizes

OpenISA uses a fixed instruction size of 32 bits in order to allow the efficient implementa-
tion of the decoder in a multi-issue microarchitecture, in which more than one instruction
is decoded per cycle. If the instruction uses variable-length, it is harder for the decod-
ing unit to figure out when the next instruction begins, increasing the complexity of the
pipeline stage that is responsible for decoding more than one instruction per cycle. Even
though the fixed instruction length became a requirement of OpenlISA, the binary trans-
lation experiments completed in the scope of this thesis showed that long immediates can
be a problem.

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 43

Long immediates in fixed-length architectures are encoded either with a load instruc-
tion addressing a constant pool or with multiple shift-add instructions that support a
smaller immediate. To make emulation of the programs as easy as possible, the load al-
ternative was ruled out because it promotes a constant to a mutable variable in a memory
position, reducing the scope of optimizations that can be applied. Therefore, in OpenISA
the immediate is encoded in the instruction.

In immediates encoded in multiple instructions, it is common for the compiler to (1)
schedule the two instructions far apart or (2) apply common subexpression elimination and
share one of the instructions in more than one immediate-loading combo of instructions.
Both actions contribute to make it harder for the translation engine to recover the original
immediate. While the ideal case would be to encode the entire immediate in a single
instruction, this is not possible if the immediate is 32-bits wide. Therefore, OpenISA uses
two 32-bit instructions that only have a valid semantic when scheduled together, and part
of the immediate is encoded in one instruction and the rest in the second instruction.
This is one of the exceptions to the 32-bit size of instructions, since this instruction has
an effective size of 64 bits. The other exception is the indirect jump instruction that also
has 64 bits to encode extra information about the jump.

4.2.2 Instruction formats

OpenISA instruction formats are split into opcode and payload. Figure 4.1 shows an
example: the encoding of a load instruction. The opcode comprehends the necessary
bits to uniquely identify an operation, while the payload is used to encode operands.
The opcode can be an arbitrary number, as long as it is unique, while operands encode
information used as input to the operation. The line between opcode and operands
in other ISAs can be blurry. For example, in ARM, andeq can be interpreted as the
and opcode while eq is an operand that tells the processor to conditionally execute this
instruction only when CPSR! (ARM status register) stored the result of a comparison that
concluded two numbers to be equal. It can also be interpreted as a single opcode andeq,
in which eq is not an operand but part of the opcode. In OpenISA, each opcode has a
unique mnemonic in assembly language as well and is not just a didactic separation of
concerns. The opcode division from operands is important because it delimits the unit of
recycling in case this instruction is ever removed from the ISA. We will further elaborate
on this idea in the recycling section.

6 bits 14 bits 6 bits 6 bits
opcode imm regl reg2
Opcode Payload

Figure 4.1: Load instruction encoding diagram

Similar to the load example, all formats begin with the opcode and end with the
payload. For example, if an instruction needs a payload of 12 bits to encode two register

!Current program status register

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 44

operands, its opcode will be encoded in the higher 20 bits while the payload will be
encoded in the lower 12 bits. Thus, the smaller the payload, the larger the opcode space.
In the two-registers example, it would be possible to encode 22° different instructions with
12 bits of payload if the entire OpenISA opcode space is used to encode only this type
of instruction. In reality, the total number of opcodes given the payload is slightly more
complicated to calculate.

6 bits 2 bits 6 bits 6 bits 6 bits 6 bits

opcode | opext regl reg2 reg3 reg4d

Opcode Payload

Figure 4.2: Mul instruction encoding diagram

Consider now that we need to encode the mul instruction, shown in Figure 4.2, which
multiplies the contents of two registers and puts the higher 32 bits in a register and
the lower 32 bits of the result in another register. This uses a total of 4 registers, or a
payload of 24 bits, leaving 8 bits for instruction identification. However, we do not have
the entire opcode space of 8 bits (or 256 instructions) to encode instructions that use a
payload of 24 bits because, as we learned in Figure 4.1, the first 6 bits may be used to
encode instructions with 26 bits of payload as well. Therefore, in the diagram of the mul
instruction, a second gray box named an “opcode extension” was drawn to make it clear
how the opcode space is fragmented.

Opcode and opcode extension fields are called opcode fields, for brevity. Any given
format may use one or more opcode fields until the desired payload size is achieved. In
the decoder perspective, any given opcode field may either identify a unique instruction
or specify that the next opcode field specifies the instruction. In the latter case, we call
this opcode field prefiz bits.

4.2.3 Opcode space utilization

Payload size Usage rate Used encodings Possible encodings

26 bits 59.37% 38 64
24 bits 44.44% 16 36
20 bits 16.96% 19 112
18 bits 76.92% 40 52
16 bits 55.00% 11 20
12 bits 55.21% 53 96
6 bits 1.56% 2 128
0 bits 4.69% 3 64

Table 4.1: OpenISA opcode space utilization by payload size

Table 4.1 shows the opcode space utilization? for OpenISA according to the encoding
scheme discussed in the previous subsection. The total number of instructions is 139
and most of the core instructions semantics were based on MIPS, with the exception of
operand sizes. It is important to first analyze the most spacious payloads first. If there is

2 We made available the tool that calculates this information for any ArchC model at
http://github.com/rafaelauler/ISAStatistics under GPLv3.

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 45

no room for new instructions with a payload of 24 bits, for example, it is always possible
to mutate an opcode of a 26-bit-payload instruction into prefix bits to four 24-bit-payload
instructions.

According to this reasoning, the first line of the table says that there are 26 available
26-bit-payload opcodes, or 104 24-bit-payload opcodes, or 1664 20-bit-payload opcodes,
and so on. Notice that we cannot state that we have a fixed number of free opcodes until
we know exactly which payload size must be encoded.

The most important opcode space is that of the 26-bit-payload instructions, which is
59.37% occupied. It is the most important because it has more payload bits that we can
mutate into opcode fields to encode more smaller-payload instructions.

4.3 The recycling mechanism

4.3.1 Overview

The recycling mechanism is thoroughly described in the fourth section of the paper
SHRINK: Reducing the ISA complexity via instruction recycling [92] and in the patent
application BR 10 2015 005838 (pending). The conference paper focus on the use case of
increasing the efficiency of the variable-length encoding of Intel x86 by discarding old op-
codes. However, this mechanism is fully incorporated into OpenlSA as well, despite being
an ISA with a fixed-length encoding, in order to avoid ever running out of opcode space
to encode newer instructions, to avoid being stuck with a mistaken design, to allow for
ISA extensions and to make it more flexible as a true hybrid ISA that can be both virtual
and concrete. The recycling mechanism was extended to fit the use cases of OpenISA and
is slightly different from the description used for x86.

The extended recycling mechanism works by assigning an ISA version to the software,
called SR (software revision), specifying which ISA specification the software was compiled
for, and ISA versions to the processor, called PRs (processor revisions), specifying which
ISA specifications the processor implements. A single processor may implement multiple
PRs if it supports more than one ISA specification. Different ISA versions are similar,
except for unused or mistakenly designed instructions. Two consecutive ISA versions will
never differ by a large amount of replaced opcodes and will never replace opcodes that
are heavily used.

A regular execution occurs if SR matches one of the implemented PRs in the processor.
If not, it means that hardware and software may disagree with respect to the semantics of
a specific opcode. This opcode may have been recycled to be used by another instruction
in a different version of the ISA. In this case, the hardware traps if the software ever uses
an opcode for which processor and software disagrees about its current semantics. The
exception handler then emulates the semantics of the instruction according to what the
software expects.

The set of all ISA versions comprise the complete OpenlISA virtual ISA, whereas the
subset implemented by a given processor implementation is the concrete ISA. An OpenISA
virtual machine is able to emulate the entire virtual ISA.

This mechanism does not apply only to fix mistakes with backwards-compatibility.

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 46

It also applies to gracefully enable forwards-compatibility to older processors when new
extensions are released. If the processor does not implement any extension, it will emulate
it in software.

Moreover, the version history does not need to be linear. Extensions may fork and
merge in the future, similar to software version control. As long as the version numbers
are different, the processor will correctly trap and emulate mismatching opcodes.

4.3.2 Mechanism description

The recycling mechanism is the process that allows a given operation to be dissociated
from an opcode, be no longer supported and open the possibility to associate a new oper-
ation to this opcode. In this way, different than standard ISAs, an operation, for example,
ADD, is no longer forever tied to a specific opcode, for example, 0x30, but instead is as-
sociated with this opcode for a possibly limited time frame. Most instructions, however,
will likely remain implemented and associated with an opcode throughout the entire ISA
lifetime.

In this mechanism, each opcode has a revision number called UR (unique identifier
revision). When this opcode is associated with a new operation or when it is dissociated
from an operation, the UR is increased. When any UR in the ISA is changed, the ISA
version is increased as well.

MSUB MSUB Vacant
UR: 0 UR: 0 UR: 1
UIS 0x00
ADD ADD ADD
UR: 0 UR: 0 UR: 0
UIS 0x01
CLO CLZ CLZ
UR: 0 UR: 1 UR: 1
UIS 0x02
| | |
| | |
4 "l L PRs
A B C

Figure 4.3: UR and PR evolution in the lifetime of an ISA

Figure 4.3 illustrates this process. In PR A, the first version of the ISA, the opcode
0x02 refers to the operation CLO, count leading ones. In PR B, the second version of the
ISA, this opcode was recycled and is now associated with the operation CLZ, count leading
zeros. The UR of the opcode 0x02 is now bumped by one to indicate that this opcode
now encodes a different operation. Similarly, PR C, the third version of the ISA, removed
the MSUB instruction from the ISA. Its old opcode 0x00 has its UR now increased by one.

The set of all URs at any time will uniquely identify the current ISA version. The set
of all URs of the ISA version implemented by the processor is then memberwise compared
to the set of all URs of the ISA version used by the software. Any differing URs will signal
that a trap needs to be generated to emulate the correct behavior of the corresponding
opcode. This is called the trap mask.

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 47

Extensions of the mechanism described in the original conference paper

1. The original conference paper suggests that the trap mask should be implemented
in hardware. For the purposes of OpenlISA, the trap mask should be able to be up-
dated via software, allowing new ISA versions to be inserted and enabling forwards-
compatibility for older processors to easily support emulating new extensions to the
ISA.

2. The second modification of the original conference paper for the purposes of OpenISA
is an extension to make it possible for a processor implementation to support in hard-
ware two or more ISA versions, instead of just one. In this way, the trap mask is
built by evaluating whether the URs for each opcode in the ISA version implemented
by the software is different than the URs of this opcode in all hardware supported
ISA wversions. Furthermore, to correctly decode the instructions, the SR (software
revision), that is the ISA version that the software was compiled for, is also an in-
put to the instruction decoder instead of being an input just to the trap-generating
hardware.

3. The third modification expands the number of bits that encode the SR. In the
original paper, since it is an extension of the x86 instruction set, only 4 bits are
dedicated to store different ISA revisions the running software may implement (see
Figure 4.4). This decision takes into account the limited space in the x86 page table
entry, where the SR is stored. While OpenISA processors should still use the page
table entry to encode this information, it must use 6 instead of 4 bits, since it is
intended that OpenISA uses the recycling mechanism more heavily than an ISA
that can be implemented by only two processor manufacturers. Since OpenISA is
free, it is expected that a larger number of forks can appear.

63 62 59 58 52 51 M M-1 32

A ISA

<Nersion Ignored |Reserved| Physical Address

31 12 119 876543210
A

Physical Address (cont.) Ignd G;DAO& E

o | sk

T M is an abbreviation for MAXPHYSADDR

P

Figure 4.4: Format of the Intel [A-32e page table entry extended with SR

4.3.3 OpenlSA formats philosophy

Notice that OpenlISA formats are intentionally designed to be vaguely descriptive. The
formats are referred by the number of payload bits instead of their functionality, such as
in Format of 26-bit payload instead of Format for jump instructions. The motivation is
to comply with the recycling ISA versioning philosophy: it is nicer to recycle an opcode
whose format is limited to state the number of bits used for operands. Otherwise, we
would end up in the future with an incongruent ISA where some unrelated instructions
are encoded using, for example, Format for jump instructions. OpenlSA specifically does

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 48

not imply there is any semantic relationship between two instructions sharing the same
format other than both use the same payload width.

4.3.4 OpenlSA versioning scenarios

This subsection presents three scenarios to illustrate real use cases where the OpenISA
versioning scheme and the associated recycling mechanism shows themselves to be a robust
solution in comparison with traditional ISAs.

Embracing multiple versions

7\

h 4
— Changes OpenISA |_——_|

. OpenlSA version 1
version 0
A

- Implements

7N
~ A Y

~ o ~

~ N

Figure 4.5: OpenlSA versioning timeline for embrace scenario

Suppose vendor A and vendor B both want minimalistic cores. Vendor A uses instruc-
tion CLO (count leading ones, payload size of 24-bit), present in OpenlISA core (version
0) since it is important for its cryptographic applications. Vendor B decides it will not
implement this instruction, forks OpenISA and creates version 1, in which the opcode for
CLO is recycled. It then implements 64 SIMD instructions (using 18 bits as payload to
encode 3 registers) using the opcode previously used by CLO as prefix bits.

Vendor C creates a big-die implementation of OpenISA implementing both versions 0
and 1 in hardware. Figure 4.5 illustrates this.

Resulting scenario: all processor implementations run all versions via trap-based emu-
lation. The processor marketed by vendor C runs all versions with maximum performance.

Merging two versions

Suppose again that vendor A and vendor B both want minimalistic cores. Vendor A uses
instruction CLO (count leading ones, payload size of 24-bit), present in OpenISA core
(version 0) since it is important for its criptographic applications. Vendor B decides it
will not implement this instruction, forks OpenISA and creates version 1, in which the
opcode for CLO is left unused. It then implements 64 SIMD instructions (using 18 bits
as payload to encode 3 registers) using, this time, a vacant opcode previously unused by
version 0 instead of the CLO opcode.

Vendor C creates a big-die implementation of OpenlISA by merging version 0 and 1
into a new version 2, which incorporates both versions. Figure 4.6 illustrates this.

Resulting scenario: all processor implementations run all versions via trap-based em-
ulation. The processor marketed by vendor C runs the latest version, which supports all
instructions in hardware.

CHAPTER 4. OPENISA ENCODING AND RECYCLING MECHANISM 49

— Changes OpenISA OpenISA
Merges version 0 version 2
A

- Implements \ .
version 1
A

~
~ <

~

Figure 4.6: OpenlISA versioning timeline for merge scenario

A

Phasing out past mistakes

For this scenario, suppose OpenlISA has been established for 15 years. However, its SIMD
instructions are now quite outdated as the community converged towards conditional ex-
ecution for all SIMD instructions. Vendor A releases version 1 implementing new SIMD
instructions with conditional execution in vacant opcodes, coexisting with the old instruc-
tions. After 10 years, the software industry has mostly converged towards the new way
of doing SIMD in OpenISA. Vendor A now releases version 2 of the ISA, in which the
opcodes used by the older SIMD instructions are now vacant. It now ships a leaner version
of the processor that implements only the newer way of performing SIMD computation
(version 2).

Resulting scenario: Full backwards-compatibility at all times. Processors successfully
phased out a hardware extension that was short-sighted when created. ISA was redundant
for a period of 10 years during the software adaptation period.

4.4 Summary

OpenlSA encoding formats were co-designed with its versioning and recycling mechanism.
It is a fixed-length format that eases the implementation of a multi-issue decoding unit,
but also allows larger instructions, with sizes multiples of 4 bytes, in case more information
needs to be encoded in a single instruction. However, each 32-bit part is handled as a
separate instruction and its complete semantics may only make sense when all parts are
read, such as in the load 32-bit immediate instruction.

The versioning and recycling mechanism make OpenlISA, to the best of our knowledge,
the first hybrid ISA, in which part of the specification may be emulated in software if
needed. It also allows it to evolve while maintaining backwards and forwards compatibility
at all times.

Chapter 5

Experimental framework

A general guideline used in the design of OpenISA is that it needs to be guided by
experimental results and refined by iterative processes. Therefore, as important as the
findings of this thesis is the methodology workflow used to arrive at them.

This chapter discusses the implementation details of the experimentation infrastruc-
ture!, which was based on LLVM version 3.6 and on the original LLVM MIPS backend.
Our public repository also features a Docker [40,94| recipe to easily install, build and re-
produce all experiments described here. We first published a version of this infrastructure
in a paper [25] presented in the 2015 AMAS-BT workshop, co-located with CGO, HPCA
and PPoPP 2015. This chapter, however, significantly extends and updates the contents
of this paper.

5.1 Opening remarks

In general, it is not a good idea to translate a program all the way down to typical ISAs if
you want to later run this binary on another ISA. For example, Table 2.1 from Chapter 2
shows that the best ARM-to-X86 static binary translator system, LLBT [120], will incur
1.66x of overhead, on average, to the translated binary.

An important goal of OpenISA is to change this scenario. The first question the
experimental apparatus was designed to answer was whether it is possible to compile a
program to an ISA while preserving its semantics in such a way that a later recompilation
of it to another ISA would yield no performance losses.

The idea of this experiment design is to factor out any virtual machine overhead
that is not attributed to the quality of the translated code (in which the guest ISA has
impact). For example, the virtual machine initialization overhead as well as the hot code
identification overhead, in a DBT system, will both exist whether the guest ISA is the
same as the host (enabling a perfect translation) or not.

To this end, a static binary translator prototype, such as LLBT [120], was created.
This is the most suitable design for our research because it uses an offline translation orga-
nization that provides us a virtually unlimited amount of time to perform optimizations.

! Available at http://github.com/rafaelauler/openisa and http://github.com/rafaelauler/
1lvm-openisa

20

CHAPTER 5. EXPERIMENTAL FRAMEWORK 51

The workflow this prototype provides us has the ability to answer which architectural fea-
ture loses semantic information. What was later found out is that it is not only possible
to perform OpenlISA translation with good performance, but also doable with a regular
static compiler optimization pipeline, which means the user would typically have to wait
no longer than the time a compiler takes to compile a program with optimizations.

5.1.1 A byproduct of the experimental framework

This static translator serves two purposes. It’s not only a research apparatus to improve
OpenlSA, but its static translation capabilities have a direct application on another in-
teresting problem: how a program distribution format based on OpenISA should look
like. OpenISA’s main goal is to have easy emulation on a virtual machine, such as a DBT
system. Thus, although OpenISA is not primarily focused on static translation of its bi-
naries, this thesis also covered all aspects of it. This is illustrated in the static translation
path of Figure 3.4 of Chapter 3.

Our conclusion is that, despite the lack of ability to handle self-modifying code (SMC),
the only major disadvantage of such approach to program distribution is that the program
needed to preserve its full original image in the data section of the translated binary,
increasing the static data in the binary. However, this is a restriction we cannot overcome
if we want to reproduce memory layout bugs, since those bugs depend on the data memory
being formatted in the same layout in all platforms. This is called a low-level distribution
format in this thesis.

Subsequent versions of this prototype evolved to the status of a full static binary
translator. For this format, we rely on an ELF binary envelope augmented with selected
metadata information. We will further present the metadata by the end of Chapter 6, in
Section 6.2.4. A real-world application and case study of the static translator is presented
in Section 6.4 of the same chapter.

In the remaining of this chapter, we dive into the technical aspects of this experimental
apparatus.

5.2 LLVM to OpenISA compiler backend

The LLVM library has enough components to allow the programmer to build a complete
static compiler. It has several data structures to aid the entire compilation process. In
this component, the OpenlISA backend, we started with a regular MIPS backend and
iteratively changed it to emit OpenlISA code. At this step of the compilation, the input
program is already converted to LLVM IR and the backend is responsible for converting
LLVM IR to OpenISA code.

The Module, Function, BasicBlock, Instruction and Value classes are the basic in-
memory representation of LLVM IR instructions in static single assignment (SSA) form. A
module is the LLVM basic compilation unit that holds variables and functions definitions,
similar to a .c file for the C language. Figure 5.2 shows an example of an LLVM module
in textual form: line 1 assigns a name to the module (stored in memory in the Module
class), lines 2-3 configures target-dependent data, line 5 defines a global string literal and

15
16
17
18
19

CHAPTER 5. EXPERIMENTAL FRAMEWORK 52

Program

C code /\, Clang ,\,

Inst t1
NSTUCHON N1 1SelDAGToDAG ~_

SDNode \'

“\| ScheduleDAGSDNodes N

Machinelnstr ’\'

AsmPri . .
smbrinter F\, Textual assembly instruction ’\v

AsmParser '\(

F\' MClnst ,\xMCStreamer’\'

ELF machine code

Figure 5.1: The life cycle of the minimal program particle, an instruction, traversing the
LLVM backend

lines 7-16 defines a function “main” (stored in memory in the Function class) with a single
basic block “entry” (line 9, stored in memory in the BasicBlock class). “alloca” (line 10)
and “call” (line 11) are examples of LLVM instructions, stored in memory as subclasses
of the Instruction class. Each instruction has a name and other instructions that use the
value (Value class) generated by this instructions refer to it by its name. For example,
line 12 stores the result of the value “call” calculated on line 11. Names uniquely identify
a computation in LLVM because the IR obeys the SSA form. Line 18-19 shows examples
of external function declarations, indicating that the final executable needs the help of a
linker to include missing code.

; ModuleID = ’'fib.c’
target datalayout = "e—p:32:32:32—-11:8:8 —...
target triple = "i386—pc—linux—gnu"

@.str = private unnamed_addr constant [21 x i8] c"myfunction(44) = %d\0A
\00", align 1

; Function Attrs: nounwind
define i32 @main()
entry:
%d = alloca i32, align 4
%call = call i32 @myfunction(i32 44)
store i32 %call, i32% %d, align 4
%0 = load i32* %d, align 4
%calll = call i32 (i8#*, ...)* @printf(i8% getelementptr inbounds ([14 x
i8]+ @.str, i32 0, i32 0), i32 %0)
ret i32 0

}

declare i32 @printf (i8x, ...)
declare i32 @myfunction(i32)

Figure 5.2: Example LLVM IR code that calls an external function and print its results

When there is the need to convert LLVM IR to a lower level, machine dialect, a
backend uses the common library CodeGen to help in this process. The basic blocks

CHAPTER 5. EXPERIMENTAL FRAMEWORK 53

that originally contains Instruction instances then changes to use the SelectionDAG and
SDNode classes to represent instructions in a directed acyclic graph (DAG) form, suitable
for pattern matching and scheduling. SDNode instances that represent LLVM instruc-
tions are gradually converted to SDNode instances that represent machine instructions.
Afterwards, the scheduler determines the order of instructions and converts the DAG to
a quadruple format, and the register allocator assigns registers. The output of the sched-
uler algorithm changes again the program representation from SelectionDAG and SDNode
to MachineFunction, MachineBasicBlock and Machinelnstr. The backend implements a
subclass of AsmPrinter that reads instances of Machinelnst and writes the equivalent
assembly language code with translation results.

At this point, the compilation process finishes with either an external assembler and
linker, used in the past, or with LLVM’s own assembler and linker, a recent addition to
the LLVM project. We chose to create an LLVM-based assembler, but use an external
GNU binutils linker. The linker is, again, a MIPS linker modified to fit OpenlISA’s own
relocation needs. To represent program at this stage, LLVM uses a fourth program rep-
resentation: the MachineCode library and the MCModule, MCFunction, MCBasicBlock
and MClnst classes. The backend must implement a subclass of AsmParser that parses
the program in assembly language textual form and converts the instructions to MClInst
instances. Then, a subclass of MCStreamer converts MClnst instances to an object file
format. We use the executable and linkable format (ELF) used in Linux. Figure 5.1 sum-
marizes the life cycle of an instruction throughout the compilation process, showing in
dark gray boxes the name of the data structures used to hold this instruction in memory
and in white boxes the main classes responsible for converting from one format to another.

5.3 OpenlSA ArchC-based simulator

ArchC is an open-source project developed at IC-UNICAMP that allows the user to easily
generate instruction-set simulators (ISS) based on architecture description files.

The ArchC architecture description files can also be used as a readable documentation
of the ISA because it contains formats and instructions specified in a clear and concise
way. For the purposes of this thesis, an OpenISA ArchC model was created? as both
documentation for the OpenISA encoding as well as an easy way to generate a working
OpenlSA (interpreted) virtual machine. This ISS can be used as a reference model for the
implementation of other virtual machines and the experimental apparatus of this chapter.

We developed an ISA reference generator that reads an ArchC model and outputs the
documentation of the ISA in order to generate the documentation of OpenISA, which is
available for reference in the first Appendix of this thesis. The idea is to maintain the
ArchC model as the central repository of truth about the OpenISA specification.

2 Available at https://github.com/rafaelauler/mips/tree/openisa

1

2
3
4
5
6

7
8

© 0 N O A W N

=
(=]

CHAPTER 5. EXPERIMENTAL FRAMEWORK 54

5.4 OpenlSA static binary translator

The OpenlISA Static Binary Translator (SBT) was designed as a subclass of MClnst-
Printer. MClnstPrinter is an LLVM class that reads MClnsts, instructions in the lowest
level in-memory representation of LLVM, and prints them to an assembly-language file.
The OpenlISA SBT also uses a disassembler class that reads the OpenISA ELF file con-
tents and creates the appropriate MClnst instances to represent program instructions,
and then feeds them to the MClInstPrinter specialization. The MClnstPrinter traverses
all MClnst instances, but instead of printing them to the standard output, it is modi-
fied to create LLVM IR fragments to represent equivalent LLVM code. Therefore, this
component is a one-pass job. To translate from OpenlISA to LLVM IR in one pass, the
OllnstTranslate class stores references to an LLVM module, function and basic block,
filling each basic block with the translated instructions. It is also responsible for creating
additional basic blocks or functions upon reaching a control flow change instruction.

@.str = private unnamed_addr constant [13 x i8] c"Hello world!\00",
align 1

; Function Attrs: nounwind
define i32 @main() #0 {

entry:
%call = call i32 (i8%, ...)* Oprintf (i8* getelementptr inbounds
([13 x i8] @.str, i32 0, i32 0))
ret i32 0
}
(a) LLVM IR
1 Address: Encoding

main: 2

addi $sp, $sp, -24 3 0: 5d 87 fe 3b

stw $ra, 20($sp) 4 4: 5f 47 01 2c

1di $4, %lo($.str) 5 8: 04 00 40 7c

1dihi %hi($.str) 6 C: 00 00 04 80

call printf, 1 7 10: 00 00 10 04

ldw $ra, 20($sp) g 14: 5f 47 01 18

add $2, $zero, O 9 18: 02 00 00 38

addiu $sp, $sp, 24 10 1c 54 87 01 38

jumpr $ra 11 20 1f 00 00 8c
$tmpO : 12

.size main, ($tmp0)-main 13

.type $.str,Q@object 14

.section .rodata.strl1.1,"aMS" 15
$.str: 16

.asciz "Hello world!" 17 9c: 48 65 6¢c 6¢c 6f 20 77 6f

.size $.str, 13 18 a4: 72 6¢c 64 21 00

(b) OpenISA equivalent assembly (¢) OpenISA equivalent encoding

Figure 5.3: “Hello, World!” example in OpenISA part 1

CHAPTER 5. EXPERIMENTAL FRAMEWORK 55

; ModuleID = ’simple-o0i.bc’
@ShadowMemory = global [4832 x i8] c"\FO\E3QBh\F8\0F\0A\00\00\00. ..
@regl = global i32 O
Qreg?2 global i32 0
O@reg3 = global i32 O
C...)
define void @main(i32, i32) {
C...)
loopexit: ; preds = %loopbody
%11 = load i32* Qreg29
%12 = add i32 %11, -24
store 132 %12, i32* Qreg29
%13 = load i32* @reg31
%14 = add i32 %11, -4
%15 = getelementptr [4832 x i8]* @ShadowMemory, i32 0, i32 %14
%16 bitcast i8%* %15 to i32%*
store 132 %13, i32x* %16
%17 = load 132% Q@reg30
%18 = add i32 %11, -8
%19 getelementptr [4832 x i8]* @ShadowMemory, i32 0, i32 718
%20 bitcast i8* %19 to i32%*
store 132 %17, i32x* %20
store 132 %12, i32* Qreg30
store i32 0, i32* Qregl
store i32 156, i32* Q@regé
%21 = load i32* Q@regh
%22 = load 1i32* Qreg6b
%23 = load 1i32* Qreg7
%24 call i32 (i32, ...)* Oprintf(i32 ptrtoint (i8% getelementptr
inbounds ([4832 x i8]* @ShadowMemory, i32 0, i32 156) to i32), i32
%21, 132 %22, i32 %23)
30 store i32 0, 1i32% Qreg2
31 %25 = load 1i32* Q@reg30
32 %26 = add i32 %25, 16
33 %27 = getelementptr [4832 x i8]* @ShadowMemory, i32 0, i32 ¥%26
34 %28 bitcast i8%* %27 to 1i32%
35 %29 load i32x* %28
36 store 132 %29, i32* Qreg30
37 %30 = add i32 %25, 20
38 %31 = getelementptr [4832 x i8]* @ShadowMemory, i32 0, i32 %30
39 %32 bitcast i8* %31 to i32%
40 %33 load i32x% %32
41 store 132 733, i32% @reg31
42 %34 = add 132 %25, 24
43 store 132 %34, i32* Qreg29
44 ret void
45 }
46
47 declare 132 Q@printf (i32, ...)

© 00 N O Uk W N

Y S O
© 0 94 & U & W N = O
Il

NN NN NN NN
o I S q R W N = O
Il

M
©

Figure 5.4: “Hello, World!” example in OpenISA part 2: OpenlISA to LLVM IR translation

1
2
3

© 0 N O O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

CHAPTER 5. EXPERIMENTAL FRAMEWORK

main: # @main

(...) 1
BB#2: # % 2
loopexit 3
movl reg29, Yeax 4
leal -24(%eax), %hecx 5
movl ‘Yecx, reg29 6
movl reg3l, Yedx 7
movl %edx, ShadowMemory-4(%eax) s
movl reg30, %edx 9
movl Y%edx, ShadowMemory -8(%eax) 10
movl ‘Yecx, reg30 11
movl $0, regl 12
movl $156, regéd 13
movl regh, %eax 14
movl regb, %ecx 15
movl reg7, %edx 16
movl ‘%edx, 12(%esp) 17
movl ‘%ecx, 8(lesp) 18
movl ‘Y%eax, 4(lesp) 19
movl $ShadowMemory+156, (%esp) 20
calll printf 21
movl $0, reg2 22
movl reg30, %eax 23
movl ShadowMemory+16(jeax), %hecxa
movl Y%ecx, reg30 25
movl ShadowMemory+20(jeax), %hecxs
movl ‘Yecx, reg3l 27
addl $24, Y%eax 28
movl Yeax, reg29 29
addl $24, Yesp 30
popl ‘“esi 31
ret 32

(a) OpenlSA to x86 translation results

56

.file "hello.c"
.text
.globl main
.align 16, 0x90
.type main,@function
main:
BB#0:
subl $12, Yesp
movl $7, 8(lhesp)
movl $.L.str, 4(}esp)
movl $1, (hesp)
calll write
xorl fheax, heax
addl $12, Yesp
ret
.LtmpO:
.size main, .LtmpO0-main
.type .L.str,Qobject
.section .rodata.strl1.1,"aMS"
.L.str:
.asciz "hello.\n"
.size .L.str, 8
.section ".note.GNU-stack"

(b) Native x86 compilation results

Figure 5.5: “Hello, World!” example in OpenISA part 3: comparison of the x86 code
generated by the OpenlSA static binary translator with no optimizations, to the left, and
of the x86 code generated by a native x86 compiler, to the right.

CHAPTER 5. EXPERIMENTAL FRAMEWORK 57

OpenlISA binaries have a predefined memory layout that we cannot change in order
to provide binary compatibility. This memory layout is the position and sizes of data in
memory. If the string “Hello, World!”, for example, is compiled in the OpenISA binary
to occupy the address 0x10000, right after the last instruction of the .text section,
then the translated binary will need to layout this data as is, while allowing load/store
instructions to access this information at the exact same address. To address the memory
issue, we load the binary image in a global byte array named ShadowMemory, declared in
the LLVM module. Every load/store instruction is redirected to index ShadowMemory.
Each OpenlSA register operand, on the other hand, is mapped to a global variable that
represents a specific register number.

The “Hello, World!” program is an easy-to-understand example that illustrates the en-
tire framework, departing from LLVM IR to x86 assembly code, being translated through
OpenISA. Figure 5.3 shows the first part: the LLVM IR code and the results of the
OpenlSA backend, which generates OpenISA instructions contained in an ELF binary.
The LLVM IR code was generated by clang frontend that reads C code and generates
LLVM IR code. The resulting OpenISA assembly contains a few different features from
the original MIPS that inspired the first OpenISA version. Our preference for MIPS as
the starting point and these additional modifications will be discussed later, allowing us
to focus this section on the translation process.

Figure 5.4 shows the OpenlSA translation to LLVM IR in practice. Line 2 shows the
ShadowMemory global array with 4832 positions (the full initialization was omitted due
to space restrictions). ShadowMemory contains the original OpenlSA binary image, as
well as space for the stack. The translation does not use the host stack, but maintains
its own stack in ShadowMemory — this is not only a consequence of not having enough
information to rebuild the stack using the host dialect, discussed in Section 3.2.2, but also
important to preserve the original stack layout for compatibility.

Lines 3-6 declare the global variables that stores the contents of OpenlSA registers.
The full initialization of all integer and double registers was omitted due to space restric-
tions. The first lines of the sole function was also omitted because it is a template code
that converts the main argv string array to use ShadowMemory-indexed strings. The
translator will use as many functions as the original OpenISA binary has. This region
formation is discussed in Section 3.2.1: we extract function boundaries from markers.

Lines 10-44 contains the result of the OpenISA translation to LLVM instructions. The
number of instructions increased because each OpenlISA instruction was broken down into
simpler fragments, which will be matched by the LLVM SelectionDAG when compiling to
run the code on another host machine. For example, Figure 5.5 shows the results of using
an x86 backend in this code, which yields 29 x86 instructions if the initial template loop is
discarded. It also shows the result of a native x86 compilation of the hello world example,
which is considerably smaller. This difference suggests that emulating OpenISA programs
on x86 would incur large overheads, however, we used a simple translation technique to
easily work out an example. We will discuss later how we can enhance the quality of the
translator to achieve native-execution performance.

Jun

Jun

=

=

CHAPTER 5. EXPERIMENTAL FRAMEWORK 58

5.5 Runtime library

OpenISA SBT, different from the OpenISA interpreter, identify function calls to the C
library and adapts the necessary parameters to perform the call to the host C library,
which means the C library is not translated and is subsequently not accounted for in
benchmarking. This is for experimental purposes.

The OpenlISA interpreter, built with ArchC, on the other hand, executes fully linked
binaries. The OpenISA toolchain links user programs against a version of the RedHat
newlib that is modified for OpenISA. The OpenISA toolchain will be exposed in the next
section.

5.6 OpenlISA toolchain

A toolchain is a set of tools that allows a developer to compile programs to a specific
host platform. The OpenlISA toolchain is built on top of Clang and LLVM, featuring the
following tools:

e Compiler based on Clang 3.6 with integrated assembler
e Linker based on Binutils 2.24
e RedHat newlib version 2.1.0 and Linux headers version 3.10.14

e Disassembler based on LLVM 3.6 (llvm-objdump)

To compile a program to assembly, for example, the user can issue the following
command:

$ echo ’int main() { printf ("Hello, world!\n"); 1}’ | clang -x c \
-S -0 test.s - && cat test.s

In order to create an ELF relocatable object, the following command accomplishes the
task:

$ echo ’int main() { printf ("Hello, world!\n"); 1}’ | clang -x c \
-S -0 test.s - && cat test.s

If one wishes to use a disassembler to read the recently created object, she can issue
the following command:

$ 1llvm-objdump -disassemble test.o

Finally, in the simplest case where the user wants to fully compile the C source code
to a final ELF executable, the command would be the following;:
$ clang input.c -o output

The compiler driver is a crucial component of a toolchain because it is responsible for
locating all the tools, header files and library files of the target platform and building the

command line (or command lines) to serve the task the user requested via command-line
interface.

CHAPTER 5. EXPERIMENTAL FRAMEWORK 59

In order to customize a new toolchain, OpenISA implements a new instance of the
Clang classes Toolchain and Tool. The OpenlISA Clang implementation is programmed
to find newlib and the Binutils linker in a relative path and to launch the compiler,
the integrated assembler, which is an LLVM-based assembler that is built on top of MC
classes, and finally the linker with appropriate libraries.

5.7 OpenlSA evaluation workflow

’ Program \ Description
ackermann Calculates the Ackermann function [1] (recursive)
array Repeatedly accesses and updates array elements
fibonacci Calculates the Fibnoacci function (recursive)
heapsort Sorts several random values (deterministic)
lists Performs several operations on a doubly linked list
matrix Calculates the result of a matrix multiplication
random Repeatedly computes a modular equation typical in random value calculation
basicmath Performs mathematical calculations, e.g., cubic function solving, integer square
root and angle conversions from degrees to radians
susan Recognizes corners and edges in MRI brain scans
dijkstra Graph shortest path calculation
patricia Exercises the Patricia trie [85] data structure for sparse trees
rijndael A block cipher algorithm chosen as the Advanced Encryption Standard(AES)
ftt Computes the fast fourier transform and its inverse transform
adpcm Computes the Adapative Differential Pulse Code Modulation
cre Performs a 32-bit cyclic redundancy check on a file
stringsearch Searches for words in a text file
sha Computes the SHA 160-bit digest of an input
blowfish Ciphers a block with a symmetric key of variable size
lame Encodes a WAV input file into an MP3 file
bitcount Counts number of bits with different algorithms
jpeg Encodes or decodes between the uncompressed PGM file and JPEG
401.bzip2 Compression and decompression algorithm
429.mcf Combinatorial optimization / Single-depot vehicle scheduling
433.milc Physics / Quantum Chromodynamics (QCD)
458.sjeng Artifical intelligence (chess playing)
462.libquantum | Physics / Quantum computing
464.h264ref Video compression
470.1bm Computational Fluid Dynamics, Lattice Boltzmann Method
482.sphinx3 Speech recognition

Table 5.1: Description of the selected benchmark programs

This section presents the evaluation methodology that will be used throughout this
thesis to assess whether OpenlSA is close to the goal of being easily emulated on other
hosts or not. It is central to the development of the emulation friendliness argument
and also has an important role by shaping the design of OpenISA. There is no set of
benchmark programs that can ever represent all the programs used in a general purpose
computer — we make a best effort of selecting a diverse set of programs to test the proposed
framework. The theme of the selected programs covers many areas such as math, image
processing, graph processing, network-related, signal processing and cryptography — but

CHAPTER 5. EXPERIMENTAL FRAMEWORK 60

it is important to limit the study to a fixed number of programs in order to have a target
to focus on.

This methodology relies on three sets of benchmarks to assess OpenlISA translation
capabilities and performance. The first set has programs from the shootout [12| bench-
mark, which are small and simple programs that perform a repetitive computation. The
second set has programs from the Mibench benchmark. We excluded from this analysis
Mibench programs that failed to compile (mad, tiff, ghostscript, ispell and rsynth), that
uses signal handlers (GSM and PGP), that spends most of its time in a libc function
(gsort) and that triggers a bug in the LLVM infrastructure during translation. The last
set are programs from SPEC CPU2006 |70] written in C, excluding 400.perlbench and
403.gce, which are too large to fit in our evaluation flow®. Table 5.1 provides a brief
description of each benchmark program.

(A
4 A
e OpenlSA to
e clang 3.6 LLVM transla-
tion tool
e LLVM opt
Benchmark (IR opti- OpenlSA .o re- e LLVM opt
source code) mizer) -O3 1 locatable binary 1 (IR opti-
mizer) -O3
e 11c -03
OpenlSA e 11lc -O3 x86
backend and backend, as-
(N L assembler) sembler and
linker

e clang 3.6

e LLVM opt (IR Reference com- Rt Compare Teot
Optirr}izer) -03 piled user pro- Setrense o :S .
two times gram for x86 utpu utpu

e 11c x86 -O3 back-
end, assembler
and linker

(. J

Figure 5.6: Experimental workflow used to test the performance of the ISA translation

The experimental workflow is depicted in Figure 5.6. The first box shows the bench-
mark source code, which can be a SPEC CPU2006, Mibench or shootout application.
Afterwards, the clang frontend is used to convert the C source code to LLVM IR and
optimize it with -03 (second box in the first row), the most complete LLVM target-
independent optimization option. Then the OpenlISA backend and assembler kicks in to
translate the benchmark to an OpenlISA relocatable file, which can be considered as the
final executable file for the purposes of this experiment that was not built to evaluate the
C library.

The next steps, in the 4th box of the first row, are responsible for running the actual
static translation tool, the OpenISA to LLVM component, which produces an unopti-
mized LLVM IR, then the opt target-independent optimizer with -03 again, and finally

3We use LTO (link-time optimization) in our evaluation flow to produce the most optimized version of
each benchmark program, but together with the static translator, the flow for 400.perlbench and 403.gcc
takes several hours to complete. In the interest of time to build, debug and run the experiments several
times, we removed them from our evaluation.

CHAPTER 5. EXPERIMENTAL FRAMEWORK 61

the translation to x86 by feeding it to the LLVM x86 backend, assembler and linker. Fig-
ures 5.3, 5.4 and 5.5 previously showed input examples to each major component of this
framework.

In a separate compilation flow (second row in Figure 5.6), it is built the native pro-
gram that will generate the correct reference output and allow the experimenter to mea-
sure the native performance, i.e., x86 without translation. The same LLVM compiler
version must be used to avoid introducing a different optimization pipeline. Notice that
it is used opt -03 once to optimize the clang output and another time to optimize the
OpenlSA to LLVM translation. If the experimenter optimizes the native counterpart
only once, some OpenlSA-translated programs will get faster than native in an unfair
result because -O3 is used twice in the OpenlSA workflow. Therefore, to reproduce the
exact target-independent optimization pipeline that is used in the OpenlISA translation
workflow, it is important to use LLVM opt -03 two times in the native workflow as well.
The remaining boxes illustrate the output validation activity, which confirms that the
OpenlISA-translated binary did not change the program behavior.

When assessing these benchmarks for translation performance, this workflow assumes
that the developer already applied target-independent optimizations if she is interested
in maximum performance. Therefore, when generating the OpenISA binary, the experi-
menter must compile it with -O3 to garner all optimization potential available at the C
language level. OpenlSA, as a low-level ISA, cannot aim at recovering all high-level opti-
mizations that are available at the language level and depends on the OpenlISA binaries
being generated with optimizations enabled to avoid missing optimization opportunities,
although it is able to recover and apply many optimizations. For example, the matrix
benchmark gets two times faster if the user applies a second round of -O3 optimizations,
and even if this second round is applied in the LLVM IR after the OpenISA to LLVM
translation pass, the optimization is successful, showing that OpenlISA preserves enough
information to enable some target-independent optimizations.

5.8 Summary

This chapter presented the design of the experimental apparatus used to validate OpenlISA’s
emulation friendliness aspects. There are other tools that were also crafted to create the
OpenlSA ecosystem. This involves a complete toolchain featuring a C compiler, C library,
assembler, linker, disassembler and simulator.

The bulk of our experiments, however, relies on the static translator. Even though
OpenlISA is geared towards emulation in a DBT system, we developed a static translation
framework to focus on code quality. However, as an static translator, this framework can
be used to study another scenario: distributing binaries in OpenlISA to be translated to
the host ISA at install-time. This will be further explored in the next chapter.

Chapter 6

OpenlSA design for easy emulation

In this chapter, we first present a simple discussion about why OpenISA started with MIPS
and then we adopt an empirical approach to enhance the initial, MIPS-based OpenISA,
allowing it to be easier to translate to other architectures. We also assess the performance
of the static translation apparatus to show an upper bound of the OpenlISA translation
performance, in which there are no time constraints to apply optimizations to enhance the
translation quality. The key idea in our experiments are based on the observation that if
OpenlSA do lose performance-critical information, the static translation and associated
compiler would not be able to achieve the original program performance. We carefully
show each corner case and discuss how to remove limitations by modifying the ISA design.

6.1 ISAs with faster emulation

An important tool to build one of the main arguments of this thesis is the ability to
answer whether an ISA is fast or easy to be emulated. This emulation may refer to
different techniques, for example, interpretation or binary translation. Since the latter
provides us the best performance, we focus this thesis on showing good binary translation
performance. However, this section discusses how we can provide evidence of which ISA
has the best performing interpretation-based emulation, although it is not possible to
formally prove it. This is used to show why OpenISA was initially based on MIPS.

Being the most straightforward approach to emulation, interpretation exposes an in-
herent aspect that is fundamental to any kind of translation: the semantics of each in-
dividual instruction. Regardless of the level and quality of the translation, the system
must know how each target instruction changes the emulated processor state. The target-
dependent component of the translation system is entirely dependent on which ISA is
being emulated, which prompts the question “can an ISA make a difference in perfor-
mance and be easier to emulate?”

A simple answer to this question is thoroughly discussed in the Smith and Nair Vir-
tual Machines book [124] and states that a host machine with more registers than the
target machine, as well as with hardware support for most of its mechanisms, will benefit
with higher performance. The extreme case is the same-ISA emulation, where a program
compiled for the same platform of the host is emulated to isolate it from the host oper-

62

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 63

ating system. Since the hardware directly supports the behavior of the instructions, the
emulation speed will be high. On the other hand, we are not interested in finding an ISA
that is easy to be translated to a specific host, but an ISA that is easier to be emulated
on most of the popular architectures.

The value of ArchC in this research, therefore, is its clean separation of concerns and
ability to model different ISAs, allowing us to focus on the ISA aspect of a simulator
instead of specific translation techniques. In this sense, ArchC is particularly useful to
craft an experiment that tackles this question. It is as simple as running ArchC simulators
for different ISAs, compile the same program to different ISAs, run the program on these
ArchC simulators and the fastest execution indicates the ISA that is the easiest to emulate
among those tested.

However, the answer this experiment provides is not perfect because of the implemen-
tation quality of each ArchC model, which may vary, and the quality of each compiler.
In ArchC, the designer must write C code to indicate the change of state that a single
instruction in the ISA performs. This C code may be suboptimal. More importantly, the
compiler toolchain may miss optimizations that makes the input program much better
represented by a given ISA.

In theory, the problem of generating, for a given input program, the shortest equivalent
program in a given ISA, that is, to use the best compiler for a given program and ISA; is
undecidable — if the input program is an instance of the halting problem, for example, the
compiler would need to solve the halting problem to generate a single-instruction program
that reports whether the program halts or not.

In practice, it is not reasonable to expect that the best compiler exists and there will
always be a missed optimization. Therefore, we do not attempt to answer with formal
rigor which ISA is the most suitable for emulation. This experiment works with possibly
faulty tools, but to overcome this, we build our argument on a qualitative examination of
the ISA, not only based on the result of experiments.

First, to understand how an ISA may be a bad guest option for emulation, consider the
ARMv7 ISA, the latest release of the 32-bit version of the ISA that dominated the mobile
devices market. The first 4 bits of every ARM instruction but a few special ones indicate
a predicate that must be evaluated together with the condition register to determine
whether the instruction will be executed. While predicated execution is a valuable tool for
VLIW [51,69] or GPU [101] architectures, it has a much smaller impact on general purpose
CPUs, and this feature was removed from the 64-bit remake of the ARM architecture.
Regardless of the usefulness of some features, the ISA made a remarkable success and,
with it, came an entire ecosystem of 32-bit ARM applications.

When emulating predicated execution in a machine that lacks this support (as most
do), the resulting code will have instructions that potentially change the control flow for
every emulated guest instruction. Figure 6.1 shows an example code extracted from the
ARM ArchC model, intended to run ARM instructions on any platform. The switch
statement is implemented with an indirect jump, while the if statement as a conditional
jump in the target architecture.

This expensive mechanism hints that some ISA are, in general, harder to emulate, i.e.,
inflict a larger performance penalty than others. ArchC simulators are simple interpreted

N o g W NN =

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 64

execute = false;

switch(cond) {
case 0: if (flags.Z) execute = true; break;
case 1: if (!'flags.Z) execute = false; break;
case 2: if (flags.C) execute = true; break;
// ... more 13 cases

}

Figure 6.1: Pseudo-code that determines whether a single ARM instruction should pro-
ceed to the execution stage

’ | ARM (s) | Speed | MIPS (s) | Speed | SPARC (s) | Speed | PowerPC (s) [Speed

basicmath 300.79 5386 76.17 | 17871 100.91 12933 111.46 13382
bitcount 6.77 6335 2.5 18237 3.57 | 13967 3.46 15128
gsort 2.67 5633 0.83 17364 0.97 | 14575 1.07 | 13945
susan 4.77 5908 2.22 15910 1.99 15117 1.57 | 17800
adpcm 4.92 5223 - - - - -

cre32 72.38 5915 36.03 17070 38.71 15182 37.70 | 14915
ftt 168.23 5464 48.89 15556 49.86 14355 51.86 15867
gsm 4.39 6012 1.98 | 16496 1.63 14384 1.67 | 13916
dijkstra 9.17 5915 3.21 18510 3.86 13193 3.59 14161
patricia 59.08 5201 16.53 17495 21.98 12651 25.81 12268
rijndael - - 2.21 15255 2.33 13974 2.61 11336
sha 2.12 6619 0.85 15336 0.91 14565 0.77 | 15637
jpeg 4.33 5656 1.73 | 17037 1.63 15253 1.44 | 16695
lame 1870.42 5336 448.03 17931 528.52 14458 532.26 16293

The speed metric used is thousands of instructions per second (KIPS)
Table 6.1: Mibench results for different ISAs simulations with ArchC

machines, whose performance depend almost exclusively on the C code implementation
of each alien instruction. Based on this observation, we conducted a simple experiment
to give an overview of the complexity of each ISA, similar to what was discussed.

The ISA comparison experiment involves running 4 different ArchC simulators, each
one emulating a different ISA, with Mibench programs [66]. Table 6.1 presents the total
time required to run each program on each platform. Total time is a valuable metric that
undeniably reflects the translation quality of each program from the guest architecture
to the host. For example, the first line of Table 6.1 shows that the basicmath program
was executed on 4 different ISAs by means of ArchC simulators, and took 300.79s to run
using the interpreted ARM simulator, 76.18s for MIPS, 100.91s for SPARC and 111.46s
for PowerPC.

This gives evidence that the MIPS ISA may offer the easiest translation: it presents
the lowest run time to complete 9 out of 13 Mibench benchmarks. However, the total
time takes into account other effects that we do not want to measure, e.g., the quality of
the compiler used to translate from C code to the target machine. Nevertheless, the speed
metric confirms that the MIPS simulator is running faster: it runs 10 out of 13 Mibench
benchmarks with the highest number of thousands of instructions per second among the
simulators.

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 65
Altera Nios IT ARM 32 Imagination MIPS32
Benchmark Simulated Run Simulated | Simulated Run Simulated | Simulated Run Simulated
Instructions time MIPS Instructions time MIPS Instructions time MIPS
linpack 3,075,857,171 1.8s 1718 6,105,766,856 4.32s 1413 9,814,621,392 4.83s 2032
Dhrystone 1,810,082,387 1.08s 1676 2,250,079,359 2.08s 1083 1,795,088,667 1.05s 1710
Whetstone 5,850,887,389 2.67s 2200 1,185,959,501 0.96s 1238 1,890,420,892 0.8s 2368
peakSpeed2 22,000,013,458 3s 7335 22,400,008,766 4.6s 4872 22,800,009,853 3.07s 7427
Xilinx MicroBlaze ARM AARCHG64 Imagination MIPS64
Benchmark Simulated Run Simulated | Simulated Run Simulated | Simulated Run Simulated
Instructions time MIPS Instructions time MIPS Instructions time MIPS
linpack 6,386,275,159 3.2s 2002 2,403,904,724 3.7s 650 1 1,558,856,686 0.75s 2079
Dhrystone 3,770,115,740 2.42s 1564 11,510,061,362 11.36s 1013 1,590,094,345 1.05s 1516
Whetstone 27,108,532,655 11.49s 2359 2,623,931,374 3.01s 872 1 2,133,926,552 0.88s 2453
peakSpeed2 22,000,023,433 4.38s 5034 44,800,003,885 6.7s 6687 17,100,018,075 3.26s 5249
PowerPC Renesas v850 Synopsis ARC
Benchmark Simulated Run Simulated | Simulated Run Simulated | Simulated Run Simulated
Instructions time MIPS Instructions time MIPS Instructions time MIPS
linpack 3,163,966,113 2.24s 1419 4,991,344,159 3.66s 1368 4,184,162,664 3.15s 1328
Dhrystone 2,205,068,239 1.53s 1441 6,410,133,101 3.63s 1766 3,155,082,476 2.23s 1412
Whetstone 6,424,865,755 3.34s 1929 10,296,940,591 6.16s 1674 7,883,567,047 3.77s 2091
peakSpeed2 22,400,002,937 4.37s 5126 22,400,007,569 3.29s 6809 22,000,002,100 3.83s 5744

All measurements on 3.50GHz Intel i7-4770K, Linux FC20, OVPsim 20140731.0

7 Hardware Floating Point Instructions

Table 6.2: Table extracted from the OVP website [89] reporting their experiments on
simulation speed of their own tool — this is not original material from this thesis.

While the performance of ArchC interpreted simulators are prone to other effects that
do not reflect easiness of the ISA translation, these preliminary results indicate that MIPS
is a reasonable candidate owing to the following characteristics:

e MIPS does not have a program status register, which is a hardware aspect that is
hard to emulate on architectures with incompatible behavior [124];

e MIPS instructions do not have complex behaviors as the ARM conditional execution
— the instructions are straightforward to implement;

e MIPS has fewer instructions, which leads to less emulation code, light cache require-
ments and higher probability of being easily supported by any other architecture
owing to its simplicity.

It is also possible to garner evidence from other experimenters that MIPS indeed
offers a fast emulation. One of the best performing and commercially available simulators
is OVP (Open Virtual Platforms) [89], which, despite its name, is closed-source binary
translation system and does not reveal which optimizations it uses. Table 6.2 is reproduced
verbatim from the OVP website and reports the simulation speed and simulation run time
for a variety of architectures — similar to the experiment presented here, but now for a
DBT system instead of an interpretation-based simulator.

Upon a detailed examination of this table, both MIPS32 and MIPS64 appear as fea-
turing the fastest simulation speed of all tested architectures, and they are also among
the fastest overall run time for most of the benchmarks. One exception is for linpack,
where MIPS32 performs badly with 4.83s but MIPS64 has the best run time with 0.75s,
which suggests this benchmark depends heavily on 64-bit arithmetic support. The other
exception is for peakSpeed2, in which Altera Nios II completes in 3s, being the fastest sim-
ulation for this benchmark, while MIPS32 completes in 3.07s, slightly worse than Altera
Nios II, but still close.

This supports the conclusion that MIPS is among the fastest ISAs to be emulated on
x86, which is the common host used in all experiments. Later, when testing OpenISA,

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 66

we will also present results for ARM as a host and provide a close examination of it in
Chapter 7.

6.2 OpenlSA design choices in favor of emulation

The establishment of the experimental framework enabled a thorough examination of the
performance implications of each OpenlISA different design option. The design options
were not randomly chosen and tested, but instead were the result of the analysis of the
root cause of poor performance on some benchmarks. About 8 of 17 programs, however,
presented good translation performance on x86 since the beginning of this iterative process
by using the bare MIPS ISA along with our choice of metadata information. This will be
further discussed in Chapter 7.

An important insight of this thesis is that the crucial modifications to allow easier
translation are all focused on how an ISA access data rather than how to process them.
The experiments revealed that, for example, encoding conditional control flows to use
the limited MIPS branching scheme does not impose difficulties when translating to a
different ISA, but significant overheads arise if it is not trivial to understand how data is
used in the program. This is a consequence of data aliasing problems that occur when
converting a program in binary form back to a high level representation.

6.2.1 Primary design choices

The primary design choices are made as the result of direct investigation of the ISA
necessities in order to facilitate emulation. Those are discussed next. The secondary
design choices are compromise decisions in order to make it possible for the primary
design choices to be implemented and are discussed afterwards.

Expansion of the register bank

The classic MIPS ISA already features plenty of integer registers: 32 of them, exceeding
both ARM and x86. This is enough to encode in registers most intermediate values that
are being calculated during most hot loop bodies. However, if there is even a small number
of registers that were spilled to memory in a hot loop body in OpenlISA code, there is
significant impact on performance.

The concept of stack frame gives unlimited local memory capacity to hold any in-
termediate values that do not fit in the register bank at a given point during program
execution. Similarly, the LLVM IR allows an infinite number of local variables to live in
the context of a function call. The LLVM IR easily maps to the hardware because when
the limited register bank is fully allocated, exceeding variables are spilled to the program
stack, which resides in memory. After spilling, information about local variables has been
lost and it is not possible to do the reverse operation, promoting memory operations back
to registers after the binary has been generated.

Promoting memory operations to registers may break data layout and binary com-
patibility, which in turn may alter program behavior in significant ways, such as masking

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 67

memory bugs and creating coherence problems between the cached value in a register and
the value in the memory position. Such problems may arise if the translator engine fails
to correctly identify when a memory address has been saved and will be used to load a
value and also in multi-threaded applications that may wish to intentionally share this
value across different threads of execution.

Similarly, if a value has been spilled to memory, it precludes many dataflow optimiza-
tions from propagating information through this variable, which has the effect of limiting
the scope of optimizations. It will also be difficult for this value to be promoted to live
in a host register.

The best option at the ISA level to make the translation easier in face of the register
problem is to expand the register bank, allowing the compiler to keep all local values on
registers when compiling for the guest ISA. The experiments made in the scope of this
thesis suggest that 64 registers make the cases of spilling rare and restricted to heavily
unrolled loops that are aggressively seeking instruction level parallelism.

In 2011, Alipour et al. [19] concluded that the optimal register bank size for the
Out-of-Order backend in Mibench and PacketBench [112] benchmarks is 80, which shows
that after dynamic scheduling, 32 registers is certainly suboptimal to represent dataflow
dependencies. For OpenISA, since this is the design of the user-visible register bank with
a high-impact on the encoding (every instruction must address) this register bank, it is
limited to 64 registers.

Design choice 1: To expand the integer register bank to 64 registers.

Accessing immediates

To understand why accessing immediates ought to be different in OpenISA, we will start
with a practical example. In Mibench, dijkstra is the benchmark that tests the famous
algorithm of the same name to calculate the shortest path from a given starting node
in an input graph. The dijkstra function, where the dijkstra benchmark spends most of
its time, has three nested loops. In the OpenlISA translated version, the innermost loop
unnecessarily loads values from memory even though they are known to be zero. Since it
is the innermost loop, any unnecessary computation is high-impact. This load immediate
instruction could be replaced by the constant zero and be eliminated — it corresponds to
the high part of a 32-bit immediate that was split into the originally MIPS instructions
LUI and ORI, a common MIPS combo used to load 32-bit immediates. It is expected
that 32-bit immediates are split into upper and lower part to be encoded into 32-bit
MIPS instructions, and this strategy is employed to load addresses of symbols as well,
which are just another class of possible constants in a program. However, symbols are
a special type of constant because it is only known at link time — the compiler does not
know whether the address will fit into the immediate field of a single instruction and
conservatively emits separate instructions to load the upper and lower parts. At link
time, no optimizations can remove instructions and re-do function layout!. In order to

I The so-called “link-time optimizations” of Clang and GCC are a misnomer and are unable to perform
this kind of optimization. There are, indeed, programs that are able to read a binary, perform microar-
chitectural optimizations such as improving cache utilization and rewrite the binary. However, they are

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 68

avoid the potentially harmful confusion involved in recovering immediates from OpenlISA
machine code, OpenISA adopts the following design decision:

Design choice 2: To always encode the full literal in a single instruction
without splitting it.

In dijkstra or in programs that abuse global variables, the upper part of the address is
often zero and is responsible for making the OpenISA version of dijkstra to be 60% slower
than native in LLVM 3.3, although the problem is mitigated in LLVM 3.6. Since this
depends on the compiler competence, OpenISA encodes this in the ISA to avoid relying
on expensive compiler algorithms to recover this information.

The key insight of this design choice comes from observing that compiler optimizations
such as loop invariant code motion (LICM) can move instructions far apart from each
other, preventing them from being easily fused back and hampering the performance for
programs that abuse globals whose 32-bits address need to be encoded on constants larger
than 16 bits. Even though it is not impossible to recover this information, the experiments
revealed it to be surprisingly hard to fuse these back to a full immediate once a handful
of optimizations on the OpenISA machine code move these values around separately.
Therefore, this design decision is a straightforward solution to improve recognition of
immediates.

The function call interface

A classical problem in compilers is to conciliate the data allocations happening at different
regions processed as separate inputs to the register allocator. For example, consider a
programmer wants to design a register allocation algorithm that operates on a basic block
at a time. If the algorithm chooses to allocate variable foo into register R1 in a basic block
By and to allocate foo into register R2 in another basic block B, that may succeed B; in
any given path, the compiler will need to insert compensation code somewhere between By
and B, moving R1 to R2. This move instruction could be removed by a register allocation
algorithm working with a broader view, with knowledge about data-flow dependencies
across the entire function and cleverly allocating foo to a common register shared by both
B; and Bs.

The region at which compilers typically operate is a function, which means that, for
register allocation purposes, no registers are shared between different functions, except
those explicitly stated in the ABI. The ABI specifies parameter passing registers and
return value registers acting as a “data transfer zone” between caller and callee. The
practical approach is, in presence of two functions that are closely intertwined, to inline
callee into caller, allowing the compiler to emit better code by removing the function call
interface at the cost of code duplication.

In the case of a translation engine that uses a full-blown compiler backend to emit
code, such as the static binary translator studied in this thesis, the region at which the
translator operates also has a high impact on translation quality. The translator, which
is at the core of a virtual machine, needs to completely decode data dependency relations

special purpose and not part of regular compilers.

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 69

among instructions (its data-flow graph) and to allocate intermediate values into host
registers. If there are few spills, it is possible to perform a decent job of pairing virtual
to host registers.

The problem happens in a similar way to the analogy of the basic blocks register
allocation: in the function call interface, when caller calls the callee, there is a mapping
clash between two different translation regions. This will always happen if the translator
operates on a function at a time, which is the case for the OpenlISA static binary translator.
Since different functions may have allocated different guest registers on different host
registers, to synchronize both functions the translator emits an expensive sequence of
instructions to push to memory a potentially large set of registers, and then, at the callee,
pull all those saved registers from memory to the correct host registers according to the
allocation performed at the callee.

When calling a function, the translator may proceed in two ways, depending on the
compatibility mode. (1) To provide utmost compatibility, the translator will push all
registers touched by the caller to the memory, providing to the callee the complete current
state of the register bank. However, if the callee obeys the ABI rules, it is illegal to depend
on the value of a register other than the specified by the ABI as register-passing. In
those cases, it is unnecessary overhead to synchronize the full register bank upon calling
a function. If the translator has no way to know that the callee is ABI-compliant, it
needs to perform this expensive approach. (2) To increase performance, however, if the
translator knows the callee will never depend on the value of a register that is not an ABI
parameter-passing register, it can speculatively avoid updating such register.

In the case of approach (2), it is important to always know beforehand how many
parameters need to be transmitted to the other region, or function. An interprocedural
analysis is able to discover which registers are effectively used by the other function,
helping us to find the correct number of parameters, however, we do not always know all
functions at compile or translation time. Parameters often live in register, and registers are
shared, in time, across several computations. The problem of conservatively assuming that
a nonexistent parameter is valid is the same of assuming that a dead register is alive, and
affects the performance of the translated code. For example, in dijkstra it is assumed that
a call to the printf function would always use 4 parameters, in registers, thus simplifying
the interface with the underlying libc. However, at the end of the loop computation, the
program calls printf with 3 parameters. The nonexistent fourth parameter is listed as
used, which lives in a register whose value happens to be calculated inside a hot loop. In
this way, in the native compilation, this calculation is discarded as soon as the compiler
infers that it is not used anymore — for instance, it is not used after the loop. In the
OpenISA translation, the compiler can no longer discard this value because there is not
enough information to realize that the value in the register is not used as a parameter,
forcing the hot loop to calculate the value for this register in all paths because its use in
printf dominates the loop and significantly affecting performance.

Design choice 3: Change the call instruction to include one extra operand,
the number of parameters passed to the callee.

This design choice allows the translator to infer important liveness information and

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 70

prevent unused values to be stored on memory at translation boundaries, allowing for
higher precision translations.

In the next sections, this thesis will also explore the case where all functions in a
program are translated into the same translation region. It is an expensive approach that
may require a large amount of time to translate the program, but works for all tested
programs and serves the purpose of measuring the overheads imposed by the register
synchronization problem tackled by this design choice.

Enforcing function granularity

This design choice is necessary to allow the translation engine to easily identify the region
of functions.

Design choice 4: Include begin function and end function marker instruc-
tions that delimit the function region and allows the translator to employ
method-based compilation.

Double and float storage

In order to implement the original MIPS register bank, it is necessary to allocate space
for 32 integers and 32 floating-point numbers. These 32 floating-point numbers share the
same space with 16 aliased doubles, which use, each one, 2 floating-point registers. When
translating code that uses doubles, this register configuration requires casts to store the
lower and the upper part of the double as two different 32-bit floating-point numbers.

A problem arises because aliased registers creates uncertainty about the type stored
at a given memory location. Aliased registers imply that the same memory position can
hold two different types — the exact one which you will only know when an operation uses
the value. Until it is used, you must store it as an unknown type. The unknown type
precludes this memory position from being promoted to use host registers, since the host
machine often requires the type to be known (whether it is double, float or a variant of
integer) to allow efficient use of host registers.

Design choice 5: To segregate double and float register banks.

Therefore, if we assume a fixed type for each register, the translation avoid repetitive
casts and provides an improved translation that compensates the lack of a high-level
typing system.

Jump table identification

An important aspect of a translator is its ability to accurately recover the original CFG
of the program. When programs have indirect jumps, it becomes challenging to recover
the block successors with no hints. The translator may assume that all code pointers?
pointing to addresses in the current function reveal potential successors (or targets of the

2See the discussion on metadata in Section 6.2.4

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 71

indirect jump). However, this conservative approach may create unnecessary edges in the
CFG, hindering optimizations.

Another strategy is to read the operands of an indirect jump to try to figure out the
base address of a jump table, read the jump table scanning for valid code addresses and
assume all of those are block successors. This may not always be possible if the operands
of the indirect jump are not in a canonical form. Even if they are, if the instructions
building the final jump address are scheduled far apart, the translator will have a hard
time finding those.

Design choice 6: To create the [IMP instruction with the following operands:
the jump table base address as an immediate, the index as a register and the
table size as an immediate.

To make jump table identification trivial, the IJMP instruction forces the program
to follow a canonical form of performing indirect jumps, exposing the jump table base
address and index separately. This information can also be useful for security reasons,
since indirect jumps may be used to divert control flow to malicious code. If the hardware
enforces a size in the jump table, it is harder to tamper with the jump target by changing
the index.

6.2.2 Rejected design choice

This subsection discusses a valid design decision that was discarded.

Guest code spills

In a past experiment, a design decision on OpenlISA focused on reducing the overhead due
to spilled values. A spilled value in OpenISA code always impacts the translation quality
because the translated code is bound to use this memory location. If the value lives
in registers, the translator can run dataflow optimizations on them and take allocation
decisions that is on par with the original native compilation. If the value is spilled to
memory, the translator can no longer differentiate between a local and a global value.
Since a memory position can be externally updated, this value will never be promoted
to a register and dataflow analyses will conservatively assume that this position can hold
any value.

If this memory access was generated by a spill of a local variable that did not fit into
the register bank, the backend can annotate it to inform the translator that this is not
a global and this memory position can assume the same rules as a regular local variable.
This motivated the following design choice:

Rejected design choice: Include spill load and spill store as annotated
load /store instructions that access a non-volatile memory position.

When the translator finds a spilllw or spillsw instruction, it may decide whether
it really should be allocated in memory, i.e., if an instruction uses its address, or if it can
be promoted to a register.

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 72

This design decision was later removed (rejected) because this problem is better mit-
igated by the use of an expanded register bank. The semantics of spilllw and spillsw
would be identical to the regular load/store instructions 1dw and stw, except for the im-
plicit metadata stating that this instruction accesses a local value. However, this creates a
difficult problem if loads and stores are not paired to use the same address. The metadata
should tag memory addresses instead of the load /store operations. Since OpenISA avoids
abusing metadata, this solution was discarded in favor of design decision 1.

6.2.3 Secondary design choices

This subsection discusses design choices made as a necessary compromise to allow OpenISA
instructions to be encoded in 32 bits as a result of primary design decisions. For exam-
ple, since OpenISA uses 64 directly addressable registers, the instruction encoding needs
to allocate 6 bits to encode each register operand and consequently reduce the bitwidth
available to some immediates.

Instruction operands using two registers and one immediate

Two common encodings for data processing instructions in RISC architectures is to use (1)
three registers, two sources and one destination, and (2) two registers and one immediate,
where one register and one immediate are source operands and the other register stores
the operation result (destination).

The size of this immediate is different for each ISA and often reflects the compro-
mise between other design decisions. For example, since ARM uses 4 bits in every data
processing instruction to store a conditional code, enabling predicated execution of every
instruction, it must shorten its immediate fields. ARM also allows instructions to encode
the number of bits the user wants to shift left, shift right or rotate one of the operands be-
cause its original microarchitectural design featured a barrel shifter in the datapath [61].
For this reason, the immediate loading mechanism in ARM is quite complicated, involving
8 bits plus a possible shift of these 8 bits to any bit offset. For example, it is possible to
encode the immediate 0xFF000000 in ARM, which is equivalent to the 8-bit immediate
FF shifted left by 24 bits, but it is not possible to encode the immediate 1FF, which re-
quires 9 bits. The MIPS ISA, on the other hand, has plenty of room and encodes 16-bit
immediates together with two other register operands. Sparc uses 13 bits to immediates
and the IBM POWER, 16 bits.

Since OpenlISA expands the register bank to 64 registers, it makes available 14 bits
for such immediates.

Jump and call offset sizes

Since OpenlISA encodes the number of parameters passed in a function call, the call
instruction loses 6 bits of call offset in relation to MIPS. Therefore, OpenISA is open to
call any function in a 22-bit range (encoding uses 20 bits since lower 2 bits are always
zeroed). For unconditional jumps, it is able to jump anywhere in a 28-bit range (encoding
uses 26 bits). For comparison, MIPS is able to call any function in a 28-bit range, SPARC

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 73

any function in the full 32-bit range and POWER, in a 26-bit range. Therefore, in
OpenlISA and other ISAs that do not allow a call to the full 32-bit address space, if two
functions are layout far apart and they have a caller-callee relationship, the linker needs
to insert glue code to connect both functions.

6.2.4 Metadata design

A separate category of information conveyed by the binary is metadata. This is not
necessarily part of the ISA definition, since it does not specify the format of any new
instruction, but it is part of the ABI and offers extra information that piggybacks on
the binary and that is useful to improve the static translation performance. This is
important for the low-level program distribution format and to allow static translation
but it is unnecessary for dynamic binary translation. Therefore, this information may be
absent if the intent is to run OpenlISA on a virtual machine. The metadata, thus, is the
extra information we define in the distribution format based on OpenISA studied in this
thesis.

Certain metadata do not need to be present and they can be inferred. Others are
harder to infer if they are missing and will incur a significant overhead in the statically
translated binary performance.

OpenlISA works with a minimal amount of metadata. Some metadata may be trans-
ferred from the ABI to the ISA. For example, function begin and end instructions are
metadata, acting as markers to guide the translator to easily recognize a translation re-
gion, but are part of the ISA nonetheless.

In this thesis, OpenlISA utilizes the following binary metadata:

e Function canaries, as discussed earlier with begin function instructions in design
choice 4;

e Function call parameter count, as discussed earlier with CALL instructions in design
choice 3;

e Jump table size information, as discussed earlier with IJMP instructions in design
in design choice 6;

e Code pointer markers in the form of linker relocations revealing all data section
addresses that contain pointers to the code region.

The last item is crucial to avoid expensive hashtable lookups to convert target to
host addresses on the fly. It could be replaced by mandatory LCP (load code pointer)
instructions with operands as either immediates or a memory addresses, but relying on
linker annotations to flag code pointers is simpler. By easily identifying code pointers, the
translator can convert such addresses to host addresses, since they will not be the same
after the binary gets translated.

[JMP and code pointers alone are responsible for cutting the runtime of 458.sjeng by
half in x86 and bitcount by half in ARM, just by avoiding hashtable lookups and efficiently
recovering jump tables.

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 74

Future work on metadata design

There are a few metadata possibilities that were not incorporated in this thesis, but may
be subject of further investigation in future work.

Indirect calls could be changed to convey the same information as IJMPs in a new
instruction named ICALL. This would help reduce the translation times of programs that
abuse indirect calls because the translator would know exactly all possible targets of an
indirect call and make more accurate translation decisions.

LCP (load pointer instructions) could replace linker annotations to identify code point-
ers.

Finally, all instructions could carry a KILL bit for input operands stating whether a
given register is dead after this instruction. Liveness analysis can be tricky to calculate
during runtime, but it is readily available during compilation. Although this could help
OpenlSA to eliminate store instructions that save unused values, improving design choice
3, OpenlSA instructions currently lack enough bits to encode this.

6.3 Register mapping techniques

As discussed in the previous section, data access is the source of the largest overhead
when translating OpenlISA or any other ISA with no challenging operations. This thesis
analyzes three different techniques to understand how this overhead can be mitigated or
eliminated.

Figure 5.5 back from Section 5.4 showed a simple example where all guest registers
were mapped to memory on the target architecture. This means whenever a guest register
is used by any guest instruction, the translator issues a load from memory to retrieve such
value, does the computation and then issues a store to memory. The net result is code
with short-lived values, low host register usage and difficulty in extracting the data-flow
graph, which now involves performing alias analysis.

One way to address this problem is to assume that guest registers are mapped to a host
memory array (called global register bank) but their values are loaded to local variables
at the beginning of the function and stored back to the memory array when the function
transfers the execution to other functions. Since the register allocation step tries to map
local variables to host registers, these values are likely to reside on host registers during
the function execution. This approach enables the use of optimized code inside regions,
but suffers with the synchronization overhead when code frequently alternates between
two regions, e.g. functions, as discussed in Section 6.2.1

Figure 6.2 shows a straightforward illustrative example. Here, the guest register bank
is represented by a single value stored in the global my_global_regl (line 1). Whenever
starting a region, it is possible to load this value to a local variable (line 3), allowing
the compiler to assign fast host registers to handle computations involving this value.
However, the original global value must be updated (line 5) before exiting the region to
allow other regions to use it, incurring additional overhead.

The three different design options explored are as follows:

N o g W NN =

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 75

int my_global_regl;

void function() {
int regl = my_global_regl;
// ... do computation
my_global_regl = regl;
return;

Figure 6.2: Local/global register synchronization overhead example

1. All globals: All register accesses are translated to global variables accesses in the
same way as Figure 5.5 shows. This is called Global registers throughout this thesis.

2. Local registers: Some values at the global register file are promoted to local
variables at the LLVM IR. A liveness analysis decide which values must be loaded /-
stored. The region granularity is the function. This is called F-BT throughout this
thesis because it is the function-based binary translation.

3. Whole program binary translation: There is no register synchronization over-
head because the entire program is issued into a single region, which is compiled
as a single host function. All values at the global register file are mapped to lo-
cal variables. This mode not only removes register synchronization issues, but also
exposes more optimization opportunities as all of them are now intraprocedural.
This is called WP-BT throughout this thesis because it is the whole program binary
translation, detailed next.

6.3.1 Whole program binary translation

This technique works by emitting the entire program control flow in a single LLVM func-
tion, which, in turn, gets compiled to a single host function. This does not mean that
the program does not call functions, but instead that we do not use the host machine
capability of calling functions.

Figure 6.3 shows the example of the translation of a fibonacci function using a C-
based pseudocode to be easier to read. In reality, the static translator generates LLVM
IR instead of C. In (a), the code illustrates the result of the fibonacci translation in a
strictly global register configuration where the translator does not cache the registers
in locals. Line 1 shows the OpenlISA register bank declaration, but this example uses
only register 4, which is used as the first argument for functions and to return a value,
register 29, the stack pointer, and register 30, the return address register. Line 3 declares
the fibonacci function but, since the translator does not know its name, it generates it
with the hexadecimal address where the function resides in the binary memory layout,
e.g. 0xA4. Lines 4-18 show the translated fibonacci function: notice that the shadow
memory is constantly accessed to mimic the OpenISA stack operations. If the translator
uses F-BT, the code will also have host stack operations to store the local registers, which
effectively will run code that deals with two stacks, the OpenISA stack and the host stack.
When a call is necessary, the translator encodes it as a call to a host function with the

18
19
20
21
22
23
24
25
26
27

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 76

1 int main() { // only one host function
2 int local_r4, local_r29, local_r30;
3 local_r4 = 21;
4 local_r30 = retladdr;
5 goto a4d;
6 retl:
7 return; // finish execution
int reg4, reg29, reg30; 8 a4d:
9 shadowmemory[10ca1_r29——] = local_r4 —
int a4() { // aka fib 1;
shadowmemory [reg29——| = reg4; 10 shadowmemory [local_r29——| = local_r30;
shadowmemory [reg29——| = reg30; 11 if (local_r4 — 1) {
if (regd — 1 || regd — 2) { 12 local_r4 = 1;
regd = 1; 13 local_r30 — shadowmemory|local_r29|
reg29 += 8; 14 reg29 += 8;
return; 15 if (local_r30 = retladdr)
} 16 goto retl;
—reg4; 17 if (local_r30 = ret2addr)
reg30 = returnaddress; 18 goto ret2;
ad () ; 19 goto ret3;
reg4 = shadowmemory|reg29-+4| — 2; 20 }
reg30 = returnaddress; 21 (...)
a4 (); 22 local_r4 = shadowmemory|[local_r29+4| —
reg29 += §; 1;
return; 23 local_r30 — ret2addr;
} 24 goto a4; // backedge forms an inner loop
25 ret2:
void main () { 26 local_r4 = shadowmemory |local_r29+4| —
(...) 23
regd = 21; 27 local_r30 = ret3addr;
reg30 = returnaddress; 28 goto a4; // backedge forms the outer
a4 () ; loop
return; 29 ret3:
} 30 (...)
(a) Using the Global registers configuration (b) Using WP-BT

Figure 6.3: Whole program binary translation fibonacci example in a C-based pseudocode

name corresponding to its address (line 13, line 16, line 25). Before making the actual
call, notice that register 30 is updated with the return address to mimic the OpenISA
behavior, but this value is never actually used. Instead, the translator relies on the host
machine return mechanism.

In WP-BT, case (b) in Figure 6.3, when calling functions, the translator simply branches
to the function label and save its return address (lines 4-5). At return points, a chain
of if-elses tests for the return address and branches back to one of the possible return
points (lines 15-19). In order to support indirect calls, it must know all targets, which is
obtained from the ELF file by analyzing the code relocations. WP-BT also necessarily uses
local registers instead of global registers, since the function scope is already the entire
program.

The key insight in WP-BT for static translation is that, instead of maintaining two
stacks, one for OpenISA and other for the host machine, it sticks with only one, OpenISA’s.
Consider that in the traditional translation, the host stack is used actively and at each
function call, several load instructions fetch the register bank data from memory and
stores in the host function frame. Simultaneously, OpenISA code is also setting up its
own stack that resides in ShadowMemory, as well as saving the return address that will
never be used. In WP-BT, the host stack is set only once, when the program begin
execution, because there is only one host function. The overhead of calling OpenISA

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 7

functions is considerably smaller because there is no host frame setup and the LLVM
target-independent optimizations may now crunch an entire program as it were a single
function, easily eliminating unnecessary code at a global level.

6.4 A practical application of the static translation pro-
totype

Previous sections presented the static binary translation prototype in the context of an
argument to show that OpenISA conveys enough semantic information to allow transla-
tions, and mentioned metadata are important to use OpenlISA for a secondary goal, the
program distribution aspect of OpenISA. This section elaborates on a practical application
of this secondary goal, illustrating the benefits of OpenlISA in a scenario where program
distribution, or deployment, can be tricky, such as in a heterogeneous cluster of Internet-
of-Things (IoT) devices. The views discussed in this section will also be published® in an
article of the journal Concurrency and Computation: Practice and Experience [26] as
the result of the development of this thesis, in collaboration with Carlos Millani, Alisson
Linhares and Alexandre Brisighello.

In the IoT scenario, the OpenISA virtual machine is called COISA VP, Compact
OpenISA virtual platform. The VM emulation engine, which is responsible for executing
the guest applications via guest ISA emulation, can make use of one of two different
strategies: (1) a compact interpreter that fetches, decodes and executes guest instructions
one by one or (2) directly execute native code downloaded from the cloud. We call the
latter CATs, cloud-assisted translations, because IoT devices frequently do not have the
resources to use the expensive algorithms required to perform static binary translation
and optimization, but they can outsource this work to the cloud.

Figure 6.4.a discusses general deployment of programs to platforms running COISA.
Program distribution happens as OpenISA binaries, but they can be translated to na-
tive binaries if necessary. Figure 6.4.b shows an interface of the virtual platform that
can accept either OpenISA code, which will be executed by the virtual machine using
interpretation, or native code, which will be directly executed.

Interpreters allow us to build compact and portable virtual machines because the code
can be made quite simple and small [124]. However, they provide lower performance than
binary translators or native code. Most IoT applications do not rely on performance
because they are event driven — if events are handled without missing any deadlines, the
application works fine.

If the performance of interpreters is a problem for a particular IoT application, it can
leverage an external host outside the IoT device (either a development workstation or a
cloud service) to translate the OpenISA binary to native code (assisted translation). This
translation employs a static binary translator. In this case, the application cannot have
Self Modifying Code (SMC), which is seldom the case for IoT applications.

Static binary translation is well-suited in the assisted translation scenario where it is
beneficial to minimize the network traffic required to translate the program. While, in the-

3The paper was accepted to appear at the time of this writing

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 78

Cloud services or workstation
a)

OpenlISA

COISA VP COISA VP COISA VP COISA VP
— — — —
ARM x86 ARM x86
Platform Platform Platform Platform

b)
OpenISA Host ISA

v v

OpenlSA
image

Native
Interface

SW stack

COISA VP

/

Host ISA

Host HW stack
Platform

Figure 6.4: Diagram a) shows deployment of OpenISA binaries to simple platforms with
limited resources, happening either directly to targets or assisted by an external compiler
that translates OpenISA to the native ISA of the target. Diagram b) details the interface
of the COISA Virtual Platform that can load and run OpenISA binaries directly or native
code.

ory, it would be possible to perform dynamic translation and request a server to optimize
a program fragment at a time, communication costs would likely be a significant overhead
and the application would suffer with jitter, a sudden interruption of execution for a pe-
riod of time, which conflicts with the real time requirements of some IoT applications. In
static translation, communication costs are paid only once, during deployment.

Additionally, for medium or large platforms that require high performance, it is possi-
ble to replace the current emulation engine that uses interpretation by one that employs
a high performing dynamic binary translator. In this sense, one of the applications of
OpenlISA is to achieve an IoT scenario with different flavors of the COISA virtual plat-
form, ranging from compact to high performing systems, each one requiring different
amounts of hardware resources, but providing transparent software compatibility across
a wide variety of hardware platforms.

CHAPTER 6. OPENISA DESIGN FOR EASY EMULATION 79

6.5 Summary

OpenlISA began with a MIPS-based ISA as a starting point owing to strong evidence
suggesting MIPS is a simple and easy ISA to be emulated. The experimental framework
developed for this thesis was built to answer the question of whether it is possible to design
an ISA that preserves enough semantic information to allow its translation to other ISAs
without losing performance. It also allows the identification of common overhead sources
when translating RISC ISAs, which was used to shape the design of OpenlISA.

The experiments revealed that a common theme among the translation deficiencies
concerns how data is accessed. OpenlISA design decisions, therefore, are geared towards
making data access straightforward or easy to be inferred. As such, an important conse-
quence is that the translator design of how the OpenISA register accesses are translated
has a major influence on performance. This thesis then proceeds to investigate different
guest register access methods in binary translation. The prototype implements three dif-
ferent methods: accessing all registers as global variables, buffering some registers in local
variables and translating the entire program at once, in a single region.

Chapter 7

Experimental Results

This chapter presents experimental results produced by the OpenlISA static binary trans-
lator prototype. Its contents are divided into a brief description of the utilized host
platforms, starting with the presentation and analysis of the results of the simple bench-
marks that compose Shootout to give an overall sense of how a static translator impacts
small kernels, and then proceeds to present and analyze the results of more complex and
real-world benchmarks, part of Mibench and SPEC CPU2006.

7.1 Host Platform

All experiments utilized an Intel Xeon E5-2630v2 (Ivy Bridge-EP) at 2.6GHz as the x86
host, running Debian Jessie on a regular hard drive, but all experimental software running
on a RAM disk to discard disk interference. For ARM, experiments used a stock Samsung
Galaxy SIII, which has an ARM Cortex A9 1.4 GHz platform with a flash disk, running
Android 4.1.2, Linux kernel version 3.0.31. We used the Android Debug Bridge (ADB) to
run ARM native programs in its underlying Linux operating system and used a custom
kernel that enabled hardware performance counters.

7.2 Simple benchmarks

The graph in Figure 7.1 shows the slowdowns relative to native execution when running the
code produced by the static binary translator prototype to translate OpenISA programs
to x86 and ARM hosts, respectively.

Errors: All measurements were repeated 10 times. The error in this graph is below
1% for all cases of x86, except for lists, where it is 3%. For ARM, the difference between
measurements can reach up to 10% because they were made in an Android OS where
interference can be high. There is no error characterization in ARM because of their
nature. The ARM platform exhibited errors that did not obey a known probability density
function. Therefore, this thesis conservatively works with a fixed error rate of 10% for all
ARM measurements. It is also worth mentioning that the time of program runtime spent
in libc is factored out because libc code is not translated, as mentioned in Section 5.5. To
do this, an statistical profiler helps to determine when code is running in libc and when

80

CHAPTER 7. EXPERIMENTAL RESULTS 81

Intel Xeon E5-2630v2 Host

% %
1.Flat area 2.Whole) 2
3 I I Globals (all perform program r: ;j &
g |:||:| F-BT well) translation ~
Q _
2 o |lowp-BT
v—40 HoKox - T it '_; = B %
1 mprc e 8
BT 0 .
2532 2 ; >
pos X\BB“Q a&e{ﬁ\
3.Whole N 6 : :1
3 I I Globals 1. Transla- program e
§ |:| I F-BT tion exceeds GremElE e
native excels
o _ “
,g 9 J0wWP-BT £
=
N

Figure 7.1: Ordered slowdows for OpenISA to x86 and ARM translations, relative to
native performance - Shootout Programs (simple kernels)

it is not. Most part of the errors in the x86 platform comes from the inherent nature of
the statistical profiler, which makes the normal distribution an accurate error model for
x86. Programs that spend a significant amount of time in libc were removed from the
analysis because they lead to large errors. The removed programs are all from Mibench:
basicmath, patricia, blowfish, gsort and crc. Their results also did not show anything
new, which justified their removal from results.

Analysis: The analysis starts with simple programs from the Shootout benchmark to
analyze which effects contribute to a good binary translation. Later, analysis will cover
more complex programs and potential second order effects.

Each bar in the graph of Figure 7.1 represents the translation using a different register
mapping technique: all globals, F-BT and WP-BT. For example, the Fibonacci program,
if translated using Globals, needs 2.3x the time that the same program, compiled directly
to x86, takes to complete its task. This is a significant overhead and represents a poor
translation example. However, the same program, if translated using WP-BT, may be-
come, in fact, faster than the native version by using only 0.69x the time of the native
counterpart. Fibonacci is an example where the translation scope has a large importance
in code quality.

The first insight of this experiment comes from the order of magnitude of the overhead
being discussed in the best approaches of each program. These numbers present low over-
heads for a cross-ISA binary translation, supporting this thesis’ claim that it is possible
to keep native performance even if the program was compiled to an entirely different ISA.
The code quality alone, without discussing other overhead sources from a DBT engine
such as code profiling, can be kept very good, which suggests that compiling a code to

CHAPTER 7. EXPERIMENTAL RESULTS 82

OpenlSA or a RISC-like variant preserves enough semantic information.

Another important observation about the results is that accessing the OpenISA regis-
ters with the Globals configuration does not always affect performance, despite being the
simplest approach of the three. Sometimes it may be even more efficient than the F-BT
configuration because it does not pay the price of synchronization, which is observable in
benchmarks that make many function calls, e.g. fibonacci and ackermann.

Sieve, in x86, and Heapsort, in x86 and ARM, show that caching OpenISA registers
in F-BT plays an important role in achieving near-native performance. The reason is
that even in the absence of cache misses, using load/store instructions to access OpenlISA
registers increases the number of host instructions. Yet, the most infamous effect of using
memory instead of registers is the difficulty of further optimizing the code owing to the
aliasing problem. Since binaries are already optimized, this effect is not apparent in this
experimental evaluation.

The superiority of whole program translation (WP-BT) is evident in this data, which
only loses to other techniques by small differences in few cases. A significant advantage
of WP-BT appears in recursive functions, such as fibonacci and ackermann. Since the
program is compiled as a single function, LLVM optimizes the recursive calls as loops
that gradually updates an array, which is, in reality, the return addresses being saved in
the OpenlSA stack. The result is a fibonacci that runs at almost half the original native
speed, beating even the native x86 compiler with a full O3 optimization pipeline.

7.2.1 The Fibonacci Case

Fibonacci for ARM suffers a larger overhead (4.22x) than fibonacci for x86 (2.66x) for
F-BT. For Globals, this number goes to 3.8x of overhead on ARM platforms against 2.3x
on x86. Both platforms show worse results when using the Locals technique because
frequent function calls force a high number of register bank synchronisation, if using
Locals technique, as opposed to always directly accessing the global register bank in the
Globals technique.

The larger overhead with the F-BT technique is a symptom of a bad boundary for the
translation region, one in which the overhead of exiting and entering the region erodes the
benefits of prefetching OpenlISA registers in the host registers. In the case of excessive
recursive calls such as in the Fibonacci benchmark, the call site and the recursive function
should always be compiled as a single region to avoid the excessive overhead witnessed in
this experiment.

In ARMv7, accessing the global register bank requires 3 instructions: load lower part of
the memory address, load upper part and the load /store instruction per se. In x86, a single
instruction performs this task. Owing to the recursive nature of the fib benchmark, most
of the overhead of the translated version concentrates on OpenlSA registers load/store,
making it a fair benchmark for comparing synchronization overheads faced on ARM versus
x86. Contrary to x86, the strategy seen in ARM code to handle a large number of global
variable accesses (to access OpenISA registers) is to, instead of always loading the high
and low part of the address, to try to load the addresses earlier and to hoist frequently
used addresses, increasing register pressure. These results, in particular, show that x86 is

CHAPTER 7. EXPERIMENTAL RESULTS 83

better than ARM at loading global variables.

Another issue the Fibonacci benchmark faces is lacking proper dead code removal be-
cause of the lack of a thorough liveness analysis pass. In the prototype, if an OpenlSA
register is used at any point in a function, this register is considered live and is synchro-
nized in all checkpoints (function calls and returns) of this region. Even worse than the
extra load/store instruction is the necessity to perform an unused computation. In Fi-
bonacci, this issue appears with the use of the slti instruction in OpenlISA code, which
leverages a general purpose register to store the result of a comparison and then to jump
or not based on the contents of this register. The x86 optimizes the comparison to use its
EFLAGS register without the need to waste a general purpose register on this. However,
the contents of the original OpenISA register used to store the result of the comparison
is still calculated and stored in the global register bank in translated code because it is
wrongly considered to be used.

7.2.2 Whole program translation beating native performance

After translation with WPT, fibonacci gets translated to a pair of loops: the first loop
goes deeper into the stack, decrementing the argument by 1 at each iteration, emulating
the first tail call found in the fibonacci algorithm. The second loop, at each iteration,
unwinds the stack, adds the result of the last recursive call to a running total and, if
necessary (in a given stack frame, if the value of n is greater than 2), goes back to the first
loop to further emulate more calls. Thus, one loop emulates function calls while the other
emulates function returns while updating the running total (the fibonacci calculation per
se).

The translated code can still be improved. The first loop writes the value 248 at each
iteration in the current stack frame, mimicking the return address being written. Later,
this value is checked to see if the recursion should continue (if the return address is 248)
or if it should end (if the return address is not 248). This could be replaced with a more
efficient technique to detect the end of the recursion and increase the performance even
further. This is a consequence of how fundamentally inefficient are recursive algorithms,
despite elegant, and how they abuse the stack. Even suboptimal, this configuration alone
is enough to beat native performance in x86. When rewriting the code as a loop, the
compiler is able to optimize and properly schedule instructions. When running the native
code as a recursion, this is not possible.

In the case of ARM, the code is similar to that of x86, except for the fact that it uses
slightly more instructions when in need of accessing memory relative to the address of a
global variable, as frequently is the case to access guest memory contents.

Other people observed the benefits of converting recursions to loops and this gave rise
to an RFC in the LLVM developers mailing list about whether it would be good to have
an LLVM pass to perform this kind of transformation. It is still unimplemented®.

!See http://lists.llvm.org/pipermail/11vm-dev/2015-February/081747.html

CHAPTER 7. EXPERIMENTAL RESULTS 84

Native ARM | Translated to ARM

Cycles 635,238,444 533,801,950

Instructions 604,180,935 690,311,952

IPC 0.95 1.29

Cache accesses 246,196,048 248,865,483

Cache misses 6,680 6,680

Cache misses per K instructions 0.011 0.010
Branch instructions 81,072,587 81,070,395
Branch misses 2,821,766 2,820,700

Branch misses per K instructions 4.670 4.086

Table 7.1: Comparison of native and translated versions of the matrix benchmark

7.2.3 The Matrix Case

This program is remarkably well translated both for x86 and ARM. In the case of ARM,
the performance differs between native and translated, in favor of the translated version.
Table 7.1 presents the hardware performance counters for both versions and shows that
the translated version, despite executing 14.3% more instructions, has better performance
(uses less cycles). Table 7.1 also shows that the number of cache faults and branch
mispredictions is similar and therefore it should not be the cause of the performance
difference. Figure 7.2 compares the code of each version. The extra instruction of the
translated version is necessary to add the base offset of the guest memory.

Native ARM OpenlSA Translated to ARM
.LBBO_10: $BBO_10: .LBBO_12:
ldr r6, [r5, -r0, 1sl #2] add $1, $17, $10 1dr r4, [r5, -r2]
ldr r1, [r2, -r0, 1sl #2] 1dw $1, 0($1) ldr r12, [r3, -r2]
sub r0, r0, #1 add $11, $6, $10 sub r2, r2, #4
cmn r0, #30 ldw $12, 0($11) add r4, r4, r6
1ldr r6, [r6, r7, 1lsl #2] shl $11, $8, 2 cmn r2, #120
mla r4d, r6, rl, rd add $1, $1, $11 ldr r4, [r7, r4]
bne .LBBO_10 ldw $1, 0($1) mla r0, r4, r12, r0

addi $10, $10, 4 bne .LBBO_12

mul $0, $$1, $1, $12

addu $9, $1, $9

jne $10, $2, $BBO_10

Figure 7.2: Comparison of three versions of matrix at the hottest basic block

In general, the extra instructions generated when translating from OpenlISA are al-
ways related to adding the extra guest memory base offset. Curiously, this sequence of
8 instructions run faster than the original sequence of 7 instructions. The extra shift
used in the operands of LDR in the native version of the code does not impact code
performance [22|. Aside from the shift, since the only difference comes from the extra

CHAPTER 7. EXPERIMENTAL RESULTS 85

Native ARM | Translated to ARM

Cycles 8,721,356,316 13,054,281,502

Instructions 6,450,379,244 7,881,305,755

IPC 0.74 0.60

Cache accesses 833,958,460 1,017,119,071

Cache misses 172,863,164 488,720,524

Cache misses per K instructions 26.799 62.010
Branch instructions 1,074,343,445 1,790,460,187
Branch misses 475,337 716,791

Branch misses per K instructions 0.074 0.091

Table 7.2: Comparison of native and translated versions of the ackermann benchmark

ADD instruction, we conjecture that the root cause is a microarchitecture issue. Since
Cortex A9 is out of order and is capable of dynamic scheduling, the native version may
be suffering with a scheduling problem.

7.2.4 The Ackermann Case

In x86, Ackermann has performance similar to Fibonacci because both are recursive bench-
marks that explore the same difficulties in code translation. In ARM, however, there is
a large discrepancy between Fibonacci with whole program translation and Ackermann
with whole program translation. The Fibonacci version has the same performance of the
native code, whereas Ackermann has almost 50% of overhead. Table 7.2 presents the
hardware performance counters.

What happens in this case is that native Ackermann is a recursive benchmark that
fully occupies the data cache with stack frames, and the native edition uses 16B frames,
while the OpenISA version uses 24B frames, 50% larger. The LLVM Mips backend conser-
vatively allocates 16B in frames of functions that are not leaf, in case it needs to pass extra
parameters via stack. Thus, this is a deficiency of the original MIPS backend modified to
work with OpenISA.

Upon manually changing the translated code to allocate only 16B, the cycle count is
reduced from 13B to 10B, consequently reducing the overhead from 50% to 14%.

7.2.5 The Sieve Case

Sieve is an array accessing benchmark that achieves a perfect (no overhead) translation
in x86, except for Globals, which entails a memory access for every OpenlSA register and
is expected to impose overhead on CPU-intensive benchmarks. In ARM we observe the
opposite behavior: Globals suffer almost no overhead, while WP-BT suffer 16% overhead.

For ARM, the native version runs in 1.8B cycles and 2B instructions (IPC of 1.11).
The whole program translated version, on the other hand, runs in 2.1B cycles and 3B
instructions (IPC of 1.42). Even though the out-of-order architecture absorbs good part
of the impact of the extra instructions seen in the translated version, it is still a workload

CHAPTER 7. EXPERIMENTAL RESULTS 86

with 50% more instructions. Both versions have almost zero cache misses and identical
branch prediction footprint. Thus, it is possible to attribute the performance discrepancy
to the considerably larger number of instructions seen in the translated version.

Native ARM OpenISA Translated to ARM
.LBBO_5: strb r7, [r5, r2] $BBO_5: add $1, $17, $3 .LBBO_7: add r4, r6, r3
add r2, r2, r0 add $3, $3, $2 add r3, r3, r2
cmp r2, #8192 stb $zero, 0($1) strb r5, [r4, r7]
ble .LBBO_5 slti $1, $3, 8193 add r4, r3, #4
jnez $1, $BBO_5 cmp r4, #8192
ble .LBBO_7
R5 contains the vector address, R2, the in- | $17 contains the vector address, $3, the in- | R6 holds the guest memory base position, R3
duction variable and RO, the step size. duction variable and $2, the step size. the induction variable, R2 the step size and
R7, the address of the vector relative to the
guest memory base.

Figure 7.3: Comparison of three versions of sieve at the hottest basic block

The inner loop for this benchmark is simple. In the native version, it consists of 4
ARM instructions : store byte to zero the array positions that corresponds to non-prime
indexes, add a constant to the index in order to continue the arithmetic progression,
a compare instruction to check if we are out of bounds and a corresponding branch
instruction. Unfortunately, the translated version features 6 ARM instructions (50%
more instructions): the first extra instruction is used to add the guest memory offset,
which is unnecessary in the x86 ISA because it is able to do this with a single instruction.
The second adds a fixed offset to the induction variable before it is compared for loop
bounds in the loop header. This offset could be deducted from the bound value, but then
the immediate would not fit into ARM’s limited immediate encoding mechanism. This
value is a multiple of 2 and fits in ARM’s immediate encoding mechanism, but it was
transformed to an odd number in the OpenlSA backend to avoid the usage of a “less than
or equal” comparison and emit an slt instruction. This could be optimized back to a
comparison against the correct immediate.

The Globals version of this program exposes calculations that are easily hoisted off
the inner loop and results in only 4 ARM instructions, equivalent to the native version,
and this is the reason why Globals outperforms all others.

In the x86 version, the native version uses 4 x86 instruction whereas the translated
version (whole program) uses 5 instructions, but this extra instruction is not on the critical
path and the processor scheduler is able to avoid the latency.

7.2.6 The Array Case

Similarly to sieve, this benchmark iterates over a large array. Different than sieve, it not
only writes to array positions, but reads the contents of two different arrays, adds them
and writes back the result to the same position of one of the input arrays. On ARM,

CHAPTER 7. EXPERIMENTAL RESULTS 87

the translated version outperforms the native version by 20%. This happens because the
translated version uses 6 instructions in the innermost loop, while the native version,
7 instructions. Both versions uses 2 load instructions to load operands and one store
instruction, but the difference occurs on the compare instruction, which is discarded on
the translated version due to a simple ARM induction variable optimization that uses
an arithmetic instruction to set the necessary flags to check loop bounds. It is unclear,
however, why the compiler missed this optimization in native compilation.

The performance difference between the two versions is entirely due to this extra
instruction, since this is a hot loop that gets repeated throughout the entire benchmark
duration. The native version achieves an IPC of 1.8 while the translated one, 1.66, since
it is a more compact version that uses 1 less instruction.

The previous analysis leads to the conclusion that the binary translation of small
kernels is effective. Thus, OpenISA does not lack any information that is important to
allow its retranslation in these cases. Next, larger benchmarks are analyzed.

7.3 Complex Benchmarks

Intel Xeon E5-2630v2 Host

F.18x

‘ Inciobais [IF-BT [JWP-BT } i

w

"
~

&

Y Hh e Vaa

Slowdown
[\

—_

Wb 0B gef
PO SgIPE S of .
SSR R\ g STMIEELE
SO 0T e C ot NCl R
6\)‘5@0 5 @AQO .a,(\)Q ‘5\)‘5 S &“06 ‘“ﬂé

S .
0 o0 A 0 e g B e g o o

ARM Cortex A9 Host

3 ‘IIGlobalsllF-BTDDWP-BT }
= %
z i
S
3
2
5
2
N
B X X, . 2Y S S X
OKX\‘“% &3\5‘5‘“& 660066 & g&v\“‘] ,oode % s ecod Oy \@S“e 0(;0& cogo"ﬁ ,&00\30
w5 o™ ™ B T RS ©*
2 g . R
6\)‘5‘3’ 2 Fan) 0N

Figure 7.4: Ordered slowdows for OpenISA to x86 and ARM translations, relative to
native performance - Mibench Programs (Complex programs)

Figure 7.4 shows the runtimes for more complex programs from Mibench using three
different register mapping strategies again, for ARM and x86. As programs grow larger,
it may become increasingly difficult to apply the WP-BT technique in some cases where
the program uses many indirect calls and has many functions. For cjpeg and djpeg, for

CHAPTER 7. EXPERIMENTAL RESULTS 88

Intel Xeon E5-2630v2 Host

3 ‘IlMIPSDDOpenISA }
=
3
%
g=i) . S S 4
2
— _ =< — — Hi=) SIS = —
wn 1 L 60 — — =) =) - o5 Sls
.nlmlﬂlﬂlﬂiﬁlﬂiﬁiﬁlﬂiﬁim I
A > S . X S (<] (<] \
o ‘“\00%662,1 660066 (\5\66“0@ (;06 E’X\z,coﬁﬁe& %v\o«l i@weé%ee ,660066 on<© -@00"“ _
o9 pas p\ e A\ Qe Q9
052 T a0¢ ad? &° e gt
ARM Cortex A9 Host
3 ‘IlMIPSDDOpenISA }
=] y
g ” % p &
@] & e) —
= ; = =k = E:
2 ’ £y 4z 35 25 g3 oz &E A Hn S g SR T &
— = = s R HEN | — - i e
T iiiﬁﬁﬁ'iﬁiﬁiﬁﬁﬁiﬁ:ﬁ
2Y X oM S S \
0 OC&\\ &“\gs“a decoée gV oY o 6“‘{‘:\ Se’oﬁc \ 660062 O | 600066 co‘“e‘ m00\3“
< 3 ey) (8 W
%\)5@0’6 ‘&6?0 209 308 Q2 N ‘.{S{\dﬁ 052

Figure 7.5: Comparison of MIPS and OpenISA translation performance in Mibench (lower
is better), showing only WP-BT translations

example, there are 985 indirect calls and 181 possible call targets. In this case, WP-BT
will translate each indirect call to an indirect jump with 181 successors accounting for all
potential targets, causing the optimization pipeline for this case to take up to 5 hours to
complete. This is an exceptionally slow outlier, since optimization typically takes a few
minutest at most. We will discuss how to overcome the shortcomings of WP-BT in the
next section.

To understand how OpenlISA design decisions discussed in Chapter 6 affect emulation
performance, Figure 7.5 shows the runtime relative to native execution in each Mibench
program for the WP-BT register mapping technique, comparing the original MIPS and
OpenlISA. The largest gains come from programs that use many registers in hot regions
and may spill registers. Avoiding these spills by increasing the register bank size is im-
portant for translated code performance, but it also leads to a higher overhead in Locals
owing to the larger number of registers to be synchronized. Boosts in performance seen
in lame and bitcount are partly due to the introduction of metadata (see Section 6.2.4) to
aid in indirect calls. The introduction of the IJMP instruction, on the other hand, not only
boosts performance, but is also essential to recover an accurate CFG for programs that
abuse indirect jumps. The absence of such instruction by using the standard MIPS ISA,
for example, may force us to create an overly conservative CFG that blocks optimizations.
Mibench, however, does not have any such program and this case will be presented with
SPEC benchmarks later. Next, we discuss individual cases in Mibench that stand out

from the others.

CHAPTER 7. EXPERIMENTAL RESULTS 89

7.3.1 The SUSAN Case

SUSAN is an image processing algorithm that traverses all pixels, computes convolu-
tions and performs edges detection. It is a single program that can run three different
algorithms, leading to three separate benchmarks: susan-smoothing, susan-edges and
susan-corners. [t suffers with poor branch predictor performance (circa 40% miss ra-
tio), but this happens in both native and translated. The important insight from this
benchmark comes from the high overhead of the translated version when the guest ISA
has a small register bank.

Native ARM

OpenlISA 16 regs

OpenlISA 32 regs

OpenlISA 64 regs

OpenISA 78 regs

Cycles

9,815,980,596

24,063,114,815

17,453,761,518

11,441,313,479

10,893,395,296

Overhead

1.00x

2.45x

1.78x

1.16x

1.11x

Instructions

9,508,655,463

20,993,259,504

15,631,231,041

11,226,165,587

10,633,445,949

IPC

0.97

0.87

0.90

0.98

0.98

Cache accesses

3,755,362,901

13,829,071,252

9,032,216,020

4,827,352,288

4,196,754,312

Cache misses

7,343,401

8,130,340

7,959,849

7,467,843

8,042,481

Cache MPKI

0.772

0.387

0.509

0.665

0.756

Branch instructions

363,447,733

391,265,639

349,081,747

366,633,181

358,033,342

55,213,890
5.192

Branch misses
Branch MPKI

54,267,182
5.707

53,888,027
2.567

55,316,464
3.539

56,223,689
5.008

Table 7.3: Comparison of native and translated versions of the SUSAN-edges benchmark

'1010
2+ \\ |
1r » _ o
—— Cycles
—o— Instructions
O I | | | [
16regs 32regs 64regs T8regs Native

Figure 7.6: Instruction and cycle count of native and translated SUSAN using different
sizes for the register bank of the guest ISA

Table 7.3 contains hardware performance counters for native and the translated code
from different OpenlISA versions, each one with a different size for the general purpose
register bank. As the number of registers goes down, the OpenISA code will have more
spills. When translated to ARM, accesses to the OpenISA stack requires adding the guest
memory base address and, thus, more overhead. As the OpenlISA register bank increases,
spills in OpenISA code suffer a significant reduction. However, the number of host (ARM)
registers is the same, and eventually this higher register pressure is observed as an increase
in the number of spills in the translated ARM code. But in this case concerns native spills,
or spills to the native ARM stack, which can be more easily addressed via the ARM stack
pointer. Therefore, even though the number of required registers for this program is
the same, the performance increases, peaking at 78 registers, which is in line with the
observations made by Alipour et al [19]. Figure 7.6 shows the relationship of instruction
and cycle count of the translated version and the size of the register bank of the guest

ISA.

CHAPTER 7. EXPERIMENTAL RESULTS 90

7.3.2 The Rijndael Case

Rijndael also benefits with improved translation quality owing to a larger register bank
(it can use up to 74 registers, if available). However, the translation to ARM still has
overhead and the remaining performance gap is a consequence of too many memory
accesses that needs to index the guest memory. In the encrypt loop body, Rijndael
performs several loads that will feed a chain of shifts, adds and xors that summarizes the
computation performed in a given iteration. The typical load address in this program
consists of three components: the guest memory base address, one of a range of possible
constant (expressing the address of a global symbol) and a value that is calculated on the
fly in the loop body.

The ARM instruction set can only add two components to form the address of a
single load instruction. The compiler is unable to fuse the two constant values guest
memory base address plus known location of a global variable because the guest memory
base is an unknown value before link time. On the other hand, in the x86, the sum
GuestImage+Global symbol address is attributed to a single mov instruction. When
performing the final link, the linker simply patches the mov instruction with this sum.

The x86 strategy (symbol value added to a known offset) cannot be employed in
ARM when modern ARM code is used to load large immediates. In this situation, the
backend uses a pair of movw/movt instructions to load, respectively, the lower and the
upper parts of a 32-bit immediate. If the immediate is a global symbol, such as the guest
memory array, it emits a relocation [88| against both instructions, telling the linker to
patch those two instructions with the lower and upper parts of the symbol GuestMemory.
The trick used for the x86 of specifying an addend equal to the constant value does not
work here because the two relocations are considered independently, making it impossible
to propagate carry from the lower part to the upper part.

Native ARM | Translated Native ARM
from (using an old
OpenlSA ARM ISA
to an old | version)
ARM ISA
version
Cycles 2,056,055,696 | 2,088,018,020 | 2,226,210,151
Instructions 1,726,135,418 | 1,850,956,091 | 1,786,338,762
IPC 0.84 0.89 0.80
Cache accesses 721,549,318 804,470,358 785,429,691
Cache misses 2,395,956 2,025,802 2,425,601

Cache misses per K instructions | 1.388 1.094 1.358

Branch instructions 78,711,294 83,399,125 80,447,388
Branch misses 9,050,198 12,195,771 10,527,923
Branch misses per K instructions | 5.243 6.589 5.894

Table 7.4: Comparison of native and translated versions of the rijndael benchmark

An alternative would be to create a constant island and issue relocations against
GuestMemory plus a constant offset. Since each relocation covers 32 bits of data, the carry

CHAPTER 7. EXPERIMENTAL RESULTS 91

problem vanishes and the linker works just as it would work for x86. However, loading
immediates from a constant island is costly: it increases the number of data memory
accesses and thus pressure on the data cache. For some applications, however, this may
not be a problem. For Rijndael, for example, when generating the translated code with
an ARM backend for an old ARM version that does not have movw/movt instructions, the
results come much closer to native. See Table 7.4 for the hardware performance counters
of the native version, the translated version used an old ARM backend and the translated
version using the regular ARM backend.

Using the old ARM target, even though the backend could amalgamate GuestImage
plus constant offset, it does not, which is a problem in the ARM backend. However, even
without this feature, it can come much closer to native performance because of exchanging
movw/movt with load values from constant islands.

This explains why, for ARM, even though the translated version may not increase
cache misses or branch mispredictions, it increases the number of instructions executed.
The higher the number of global variable accesses, the higher is the overhead.

7.3.3 The LAME Case

In LAME, the main overhead comes from LLVM failing to eliminate dead code in impor-
tant loops. For example, when converting from floating point numbers to integers, the
code not only stores the integer form, which is used in the program, but also the original
floating point value, unused. While it may make sense to store it to mimic the register
state of the guest machine, it is still dead code because it is not used anywhere in the
program. Therefore, this comes from a compiler deficiency that is unrelated with the
guest ISA, the subject of study of this thesis.

7.4 A closer look on WP-BT

Even though WP-BT frequently exhibits the best possible translation quality results in
these experiments, it may not be an adequate technique if the translator needs to finish the
translation as soon as possible. It requires extra resources because it involves compiling
an entire program in a single host function. Thus, all optimizations that operate at
the intraprocedure level are now also interprocedural, and compilation becomes more
thorough but more expensive. It is clear that the super large region size (encompassing
the whole program) is beneficial, but it is unclear why. One important research question is
whether the difference between F-BT and WP-BT comes from the lack of synchronization
overhead in WP-BT or if the extra optimization opportunities exposed by WP-BT play
a key role in guaranteeing near-native performance.

To clarify this, a new experiment with another register mapping technique is presented
next. Its goal is to reduce the synchronization overhead of F-BT and verify if it achieves
code quality on par with WP-BT, thereby showing that most of the performance seen
in WP-BT comes from the absence of register synchronization. To accomplish this, this
technique restricted the number of registers synchronized between function calls to those
that are predicted by the ABI to pass argument information. It also uses the information

CHAPTER 7. EXPERIMENTAL RESULTS 92

Intel Xeon E5-2630v2 Host %

%
~

lirsrlowe-BTll0ABI }

Slowdown

o a0 e® 28

. 00\)0 0&,‘0\“ ,66% 0{‘\6

o 9‘00 “5@0 5%0,0 (y(&e' 6@6' &,c e
o T e SO o 09

> e e X X X n . .
&5\@“\ eﬁcod 66006 2 'Ooéedecode ¥ %"\?qge@"“c W o gee®
. o

A
S

Figure 7.7: Ordered slowdows for OpenISA to x86 translation, relative to native perfor-
mance, comparing F-BT augmented with ABI information - Mibench Programs (Complex
programs)

of number of parameters passed in a call, an OpenlISA extension, to further increase the
accuracy of exactly which registers must be synchronized and carry useful information
from one region to another. With this approach, the translator loses the capacity to
emulate code that does not strictly follow a specific ABI, but it fits the purposes of this
experiment.

Figure 7.7 presents the results collected along with the ratios over native time for F-
BT and WP-BT, for easier comparison. For example, the graph shows that the runtime
of lame F-BT is 3.18x slower than native and lame WP-BT is 1.11x, but F-BT augmented
with ABI information achieves 1.28x, indeed showing that most of the speedup of WP-
BT comes from solving a register synchronization issue. A similar pattern appears for all
programs that previously had a large gap between F-BT and WP-BT, with the special
case of Bitcount, which had one of the worst performance for F-BT augmented with ABI
information, circa 1.5x slower than native. However, the introduction of design choice 3
(see Section 6.2) increases the information about which registers need to be synchronized,
improving the performance of bitcount to 1.27x slower than native.

The Bitcount benchmark is a tight loop where the bit counting algorithms per-se are
fast, but they depend on an indirect call to select which algorithm to run. Since the
call mechanism is in the critical path for this benchmark, the synchronization overheads
imposed by the function stack frame creation are more pronounced.

7.5 SPEC CPU2006 programs

SPEC CPU2006 benchmarks results are presented by Figure 7.8 for x86. Most SPEC
programs behave in a similar way to Mibench ones, but there are cases demanding a
deeper analysis: 458.sjeng exhibiting bad performance in WP-BT with 42% of overhead
but surprisingly better performance in ABI-augmented F-BT and 464.h264ref showing a
bad performance for ABI-augmented F-BT with 82% overhead. Another difference with
SPEC is that its programs use indirect calls and indirect jumps more frequently, making
it important to have the IJMP instruction to ease the task of translating such programs.
458.sjeng, for instance, has 41 indirect jumps. 401.bzip2, on the other hand, has 69

CHAPTER 7. EXPERIMENTAL RESULTS 93

Intel Xeon E5-2630v2 Host

3 liciovaslor-srllowe-BT 1 ABI ‘

A
|
o

Slowdown
[(\V)

e 5 e
65}0‘6” y1© W K .69“\“
pS

Figure 7.8: Ordered slowdows for OpenISA to x86 translation, relative to native perfor-
mance - SPEC CPU2006

indirect call sites and 464.h264ref, 391 indirect call sites.

In 458.sjeng, ABI-augmented F-BT beating WP-BT is an indication that converting
return instructions to indirect branches, as performed by WP-BT, is quite demanding on
the branch predictor unit, which is failing to predict return addresses. Further evidence
of this hypothesis is the number of branch mispredictions: in the WP-BT version of sjeng
it is 22B versus 18B in ABI-augmented F-BT. This happens if there are many call sites
for the same function, making the indirect jump, which models the return behavior, to
be non-trivial to predict.

The 464.h264ref benchmark shows another noteworthy result. This time, ABI-aug-
mented F-BT does not achieve the same performance as ABI or even globals, the simplest
technique. In programs with few inlined functions and many function calls, the synchro-
nization overhead can play an important role in performance. When the globals technique
outperform others, we have clear evidence that register synchronization issues are dragging
performance. This can be improved if call instructions are changed to carry information
about how many arguments of each register bank, double, float or integer is being used.
To fit the call instruction into a 32-bit encoding, its encoding has the total number of
arguments, making F-BT less precise than it could be. However, by encoding calls into a
64-bit encoding, it is possible to improve this information.

7.6 Summary

The crux of OpenISA is the idea of easy translation to other machines. Our experiments
show that OpenISA preserves enough semantic information to allow it to be emulated
on other hosts with low overhead due to code quality. When collecting data, we de-
veloped a static translation technique to remove the overhead when entering or leaving
the translation region called WP-BT and other technique to mitigate this overhead, the
ABI-augmented F-BT. In these techniques, when targeting x86, the overhead purely due
to the difficulty in translating the guest ISA is no more than 24%, which happens in
458.sjeng, and under 10% for the majority of programs (22 out of 32 program tested).
When targeting ARM, this overhead is no more than 29%, which happens in bitcount,
and under 10% for the majority of programs (16 of 22 programs tested). In contrast, the

CHAPTER 7. EXPERIMENTAL RESULTS 94

best static translation framework we found in literature, LLBT [121]|, which translates
ARM to x86, suffers 66% of overhead on average in the EEMBC benchmark, and can be
up to 4x slower than native.

To achieve this, OpenlSA is based on a simple RISC architecture with 6 important
design changes and, specifically targeting a better static translation framework, preserves
4 metadata categories with information about the binary and was tested with 4 different
translation techniques. The combination of changes in the guest ISA, metadata and the
control of the translation region size or the register synchronization overhead leads to the
best static translation results.

Finally, it is worth remembering that the OpenISA binaries that were translated were
already optimized. This is an important assumption because if a binary that is not
optimized is employed, all values are kept on memory rather than on registers. When
values go to memory, it is difficult to reconstruct dataflow information that is invaluable
to enable optimizations. Therefore, an unoptimized OpenlISA binary forces the translated
OpenISA program to also be unoptimized and it is no longer possible to recover the lost
performance. These experiments assume that if the user is worried with performance, she
works with optimized versions of the binaries and OpenlISA is committed with preserving
this performance during translation.

Chapter 8

Other exploratory work and
contributions

The ISA interface is a specific layer of the software-hardware stack, but studying its
changes requires extensive support of many tools ranging from simulators to compilers.
This thesis is not limited to the ISA, but it also explores other levels and tools before
supporting ISA changes.

This chapter presents other works developed in the context of this thesis, and while are
not directly focused on OpenlISA, they are important to evolve the state of the art in the
areas of computer architecture and compilers, both areas involved in the OpenlISA project.
It finishes with a complete list of all literature published as a result of the investigations
that led to this thesis.

8.1 The C language level

The portability problem may be addressed directly by programmers if, instead of writing
code in a native machine language, they write code in a high-level language such as C.
Programmers should be able to recompile their code to run on another hardware platform
by switching compilers, as long as the compiler understands the same input language. In
this way, the effort to reprogram an entire pool of software is reduced to that of porting
the compiler. The task of porting software involves using a compiler that translates source
code to the machine language of a different platform, by use of the original source code
in a high-level language, and then testing and adapting the software to run on this new
platform if this process introduced new bugs.

However, this classic approach constrains the creation of new ISAs since writing an
efficient compiler that targets a new ISA is a challenging software engineering task. This
is specially true for small research groups with limited access to programmers. Ceng et
al. [47], Brandner et al. [42,56], Dias and Ramsey [54] and Ramsey and Dias [113] all have
worked on easy ways to retarget a compiler. In order to do this, the usual approach is to
start with a retargetable compiler project [18,79], which uses an independent intermediary
representation (IR) to represent the result of the translation down to a certain level. Then,
the retargeting effort is limited to write a component that translates the IR to machine

95

CHAPTER 8. OTHER EXPLORATORY WORK AND CONTRIBUTIONS 96

language, the backend. Since it is still challenging enough, these authors all proposed
ways of automating the generation of compiler backends.

To solve the portability problem with automated compiler generation is quite chal-
lenging because the quality of the compiler is compromised. If the machine language
translation of a program is poor, the program will suffer with poor performance, which
means the new ISA will have an unfair evaluation. Old and deprecated ISAs, owing to
its better-quality compilers, will still have an advantage over new technology, subverting
innovation.

We address these issues by extending the ArchC [31] language, which allows a designer
to easily describe a new ISA as well as the entire processor architecture. By building upon
the work developed in my Master thesis [27]|, we finished the development of an ArchC
compiler generator, which retargets the LLVM [86] compiler infrastructure. The difference
of this compiler generator is that it is targeted at providing high-quality compilers instead
of focusing solely in compiler retargeting. This motivated us to choose LLVM, which is
already recognized as an industrial-strength compiler and adopted by many companies [90]
including Apple, Adobe, Ageia, Electronic Arts, Intel and Nvidia. We published the
results [30] in the Brazilian Symposium of Computer Architecture (SBAC-PAD 2012)
conference, held in New York.

A fundamental issue with enhancing portability at the level of the C compiler is that
C code still has many features that depend on the target machine. This means that the
programmer still has to change the source code to work on other platforms, debug and
check for correct behavior of the program when running on other machines. On the other
hand, there are languages designed to be portable from scratch, whose goal is specific to
run on several different machines. We will discuss this special category of software in the
next section.

8.2 The browser level

As the computing world advanced to be internet-centric, the browser started to play a key
role in the client software environment. By providing the capability to run small scripts,
it created a powerful, easy to program virtual machine that runs in many platforms. The
access to the web cannot be neglected and, as such, every device intended for consumer
direct usage provides a browser with the capability to run JavaScript [59].

Owing to the capacity of running the same code on different machines, it is not sur-
prising that many compilers target JavaScript as an intermediate language, such as the
Google Web Toolkit 7] by Google, TypeScript [14] by Microsoft, Dart [11] by Google or
the Emscripten [132] used in the LLVM [17,86] community.

By using compilers that emit JavaScript, it is possible to provide a solution to the
deployment problem by translating languages to JavaScript. We analyzed a compiler
that translates a general purpose script language to assess how easy it is to port programs
to JavaScript. This compiler is used in the TouchDevelop [76,127,128] platform that
allows users to write cellphone apps that runs on any phone, Google Android [62], Apple
iPhone or Windows Phone, by means of JavaScript.

CHAPTER 8. OTHER EXPLORATORY WORK AND CONTRIBUTIONS 97

However, the ability to run on many different environments also brings new challenges
when it comes to ensure good performance of the scripts. Since clients have different
browsers to choose from and each browser implements its own JavaScript engine (e.g.
SpiderMonkey [9], V8 [16], JavaScriptCore (aka. Nitro) [15] or Chakra [13]), optimizing
the JavaScript code becomes a guessing game because each engine has its own optimiza-
tions and limitations. For example, we show that applying JavaScript code optimizations
in a tablet with Windows 8 and Internet Explorer 11 increased performance by, on average,
5 times, while running in a desktop with Windows 7 and Firefox decreased performance
by 20%.

To overcome these problems, we developed a crowdsourced approach to drive the
JavaScript compiler optimizations. We use a benchmark of scripts to exercise common
performance bottlenecks and compile these scripts with different optimizations in different
clients, storing the results of each client in the cloud. This enabled me to characterize
how each system responds to the optimizations and this information gets uploaded to the
cloud. When another user that uses the same platform compiles the script to JavaScript,
the system queries the cloud to know the best set of flags, or optimizations to apply, that
best suits her system. This work was published [29] in the International Conference of
Compiler Construction (CC 2014).

8.3 List of published papers, contributions and acknowl-
edgements

The list below shows all publications produced during the development of this PhD thesis.

e Rafael Auler, Carlos Eduardo Millani, Alexandre Brisighello, Alisson Linhares, Ed-
son Borin. “Handing IoT platform heterogeneity with COISA, a compact OpenISA
virtual platform”. Concurrency and Computation: Practice and Experience. (To

appear)

e Carlos Eduardo Millani, Alisson Linhares, Rafael Auler, and Edson Borin. “COISA:
A Compact OpenISA virtual platform for IoT devices”. In WSCAD 15, October
2015, Florianopolis, Brazil.

e Bruno Cardoso Lopes, Rafael Auler, Luiz Ramos, Edson Borin, and Rodolfo Azevedo.
“SHRINK: Reducing the ISA Complexity via Instruction Recycling”. In The 42nd
International Symposium on Computer Architecture (ISCA 42), June 2015, Port-
land, OR, USA.

e Rafael Auler, and Edson Borin. “OpenISA, freedom powered by efficient binary
translation”. In The 8th Workshop on Architectural and Microarchitectural Support
for Binary Translation (AMAS-BT 2015, co-located with CGO, HPCA and PPoPP
2015), February 2015, San Francisco, USA.

e Gabriel Bertazi, Rafael Auler and Edson Borin. “Uma plataforma para o ensino de
organizacao de computadores e linguagem de montagem”. International Journal of
Computer Architecture Education, Vol. 3, p.13, 2014 (In Portuguese)

CHAPTER 8. OTHER EXPLORATORY WORK AND CONTRIBUTIONS 98

e Rafael Auler, Edson Borin, Peli de Halleux, Michal Moskal, and Nikolai Tillman.
“Addressing JavaScript JIT engines performance quirks: A crowdsourced adaptive

compiler”. In The 23rd International Conference on Compiler Construction (CC
2014), April 2014, Grenoble, France.

e Divino Cesar, Rafael Auler, Rafael Dalibera, Sandro Rigo, Edson Borin, and Guido
Araujo. “Modeling Virtual Machines Misprediction Overhead”. In The 2013 IEEE
International Symposium on Workload Characterization (IISWC 2013), September
2013, Portland, USA.

e Bruno Lopes, Rafael Auler, Rodolfo Azevedo and Edson Borin. “ISA Aging: A X86
Case Study”. In Seventh Annual Workshop on the Interaction Amongst Virtualiza-
tion, Operating Systems and Computer Architecture (WIVOSCA 2013), July 2013,
Tel Aviv, Israel.

e Rafael Auler and Edson Borin. “A LLVM Just-in-Time Compilation Cost Analysis”.
Technical Report 13(2013) - Institute of Computing, University of Campinas, May
2013.

e Leonardo Piga, Gabriel F. T. Gomes, Rafael Auler, Bruno Rosa, Sandro Rigo,
and Edson Borin. “Assessing Computer Performance with SToCS”. In International
Conference on Performance Engineering: ICPE 2013, April 2013, Prague, Czech
Republic.

e Marcelo Guedes, Rafael Auler, Liana Duenha, Edson Borin, and Rodolfo Azevedo.
“An Automatic Energy Consumption Characterization of Processors Using ArchC”.
Journal of Systems Architecture - Embedded Systems Design 59(8): 603-614(2013).

e Rafael Auler, Paulo Centoducatte, and Edson Borin. “ACCGen: An automatic
ArchC compiler generator”. In SBAC-PAD 12: The 24th International Symposium

on Computer Architecture and High Performance Computing, October 2012, New
York, USA.

e Marcelo Guedes, Rafael Auler, Edson Borin, and Rodolfo Azevedo. “An ArchC
approach for automatic energy consumption characterization of processors”. In The
23rd IEEE International Symposium on Rapid System Prototyping (RSP 2012),
October 2012, Tampere, Finland.

e Divino Lucas, Rafael Dalibera, Rafael Auler, Guido Araujo, Sandro Rigo, and Edson
Borin. “Hotness Misprediction Overhead in Virtual Machines”. WISH 2012, San
Jose, USA.

In the context of this thesis, the following patent application was also submitted:

e Bruno Cardoso Lopes, Rafael Auler, Edson Borin and Rodolfo Azevedo. Patent
BR 10 2015 005838 (pending) for the mechanism described in the paper “SHRINK:
Reducing the ISA Complexity via Instruction Recycling”, ISCA 42.

CHAPTER 8. OTHER EXPLORATORY WORK AND CONTRIBUTIONS 99

And the following book published, helping students and LLVM enthusiasts to use the
LLVM framework:

e Bruno Cardoso and Rafael Auler. Getting Started with LLVM Core Libraries, Aug.
26, 2014, Packt Publishing. Rated 4.7 out of 5 stars on Amazon.

We would like to thank the grant by FAPESP number 2011,/09630-1 for the develop-
ment of this PhD thesis. During the development of this PhD thesis, I was also a recipient
of the Microsoft Research 2013 Graduate Research Fellowship Award and would like to
thank Microsoft.

Chapter 9

Conclusion

This thesis presented the case for OpenlSA, a hybrid ISA that aims to make the inter-
face between the processor and its applications more flexible, bringing benefits to both
hardware and software.

In the hardware aspect, OpenlISA incorporates and extends the recycling mecha-
nism [92|, allowing processor implementations to realize only a subset of the full ISA
while seamlessly supporting programs targeting any version of the ISA. The recycling
mechanism decouples the ISA encoding from the instructions themselves, where any given
ISA version maps encoding to instructions with an injective but non-surjective function.
Subsequent ISA versions need not to map the same encodings to the same instructions,
giving freedom to hardware developers to remove, change or add instructions to a new
chip.

The recycling mechanism works by issuing traps when decoding instruction encodings
for which hardware and software disagrees about its implementation. Since the hardware
does not implement this instruction, its behavior is emulated in software by the exception
handling function in kernel space.

OpenlSA encoding formats were co-designed with its versioning and recycling mecha-
nism. It is a fixed-length format that eases the implementation of a multi-issue decoding
unit, but also allows larger instructions, with sizes multiples of 4 bytes, in case more
information needs to be encoded in a single instruction. The versioning and recycling
mechanism 1is, to the best of our knowledge, the first hybrid ISA, in which part of the
specification may be emulated in software if needed. It also allows it to evolve while
maintaining backwards and forwards compatibility at all times.

In the software aspect, OpenISA is designed to be easy to be emulated in other plat-
forms, effectively acting as a program distribution format. Even though HLL frameworks
such as Java can achieve good performance in this realm, it constrains programs. While
binary translation translates any machine language program, it may struggle to achieve a
good performance. The results presented here show that the problem lies in the fact that
there are ISA features that are hard to emulate and that it is possible to overcome these
problems and design an ISA that can be translated with high efficiency to other hosts.

This ISA began with a MIPS-based starting point. The experimental framework
developed for this thesis was built to answer the question of whether it is possible to
design an ISA that preserves enough semantic information to allow its translation to

100

CHAPTER 9. CONCLUSION 101

other ISAs without losing performance. Experimental results showed that this is possible
while testing OpenlISA translation to two different host platforms, x86 and ARM.

It is important that the translation system is able to recover information about how
data is accessed and build an accurate data-flow graph. Therefore, OpenlISA design de-
cisions are geared towards making data access straightforward or easy to be inferred. A
further investigation is performed assessing three different guest register access methods
in binary translation: accessing all registers as global variables, buffering some registers
in local variables and translating the entire program at once, in a single region. A com-
bination of changes in the guest ISA and the careful control of the translation region size
or the register synchronization overhead leads to the best results.

OpenISA binaries tested in these experiments were already optimized. If a binary
that is not optimized is employed, all values are kept on memory rather than on registers,
harming the translator capacity of inferring an accurate dataflow graph. When values go
to memory, it is more difficult to reconstruct dataflow information that is invaluable to
enable optimizations because memory positions depend on an alias analysis.

This thesis focused on user-level programs and we leave as future work the efficient em-
ulation of full systems. We also employed a static binary translation framework to show
our results while factoring out other overheads faced in a dynamic binary translation
virtual machine. Static binary translation cannot handle all classes of programs, specifi-
cally those with self-modifying code, although it can translate the majority of user-level
programs and serves the purposes of this thesis.

Overall, this thesis presented an innovative, new interface for processors with focus on
flexibility in both sides affected by the ISA: (1) flexibility on the hardware side, which is
free to evolve without a hard commitment to past ISA decisions, tackling the ISA aging
problem and (2) flexibility to the software, which is free to be translated to other ISAs,
tackling the software deployment and portability problem.

Bibliography

(1]

2l

3]

[10]

[11]

[12]

[13]

[14]

[15]

Ackermann’s function. http://www-users.cs.york.ac.uk/%7Esusan/cyc/a/
ackermnn.htm. Accessed: May 2016.

Apple IT Emulator. https://courses.cit.cornell.edu/eed476/FinalProjects/
s2007/bcr22/\final%20webpage/final .html. Accessed: May 2016.

AVR NESEMU. https://courses.cit.cornell.edu/ee476/FinalProjects/
s2009/bhp7_teg25/bhp7_teg25/. Accessed: May 2016.

Commodore VIC-20 AVR Emulator. http://www.belanger.pwp.blueyonder.co.
uk/Projects/Vic%20Emu/vicemu.htm. Accessed: May 2016.

Emulating a z80 computer. http://hackaday.com/2010/04/27/
emulating-a-z80-computer-with-an-avr-chip/. Accessed: May 2016.

GCC Front Ends. https://gcc.gnu.org/frontends.html. Accessed: May 2016.
Google Web Toolkit Page. http://www.gwtproject.org/. Accessed: May 2016.
Jikes RVM. http://www.jikesrvm.org. Accessed: May 2016.

Mozilla SpiderMonkey JavaScript Engine. https://developer.mozilla.org/
en-US/docs/Mozilla/Projects/SpiderMonkey. Accessed: May 2016.

QEMU Tiny Code Generator (TCG). http://wiki.qemu.org/Documentation/
TCG. Accessed: May 2016.

The Dart Language Web Page. https://www.dartlang.org/. Accessed: May 2016.

The Great Win32 Computer Language Shootout. http://dada.perl.it/
shootout/. Accessed: May 2016.

The New JavaScript Engine in Internet Explorer 9. http://blogs.msdn.com/b/ie/
archive/2010/03/18/the-new- javascript-engine-in-internet-explorer-9.
aspx. Accessed: May 2016.

The TypeScript Language Web Page. http://www.typescriptlang.org/. Ac-
cessed: May 2016.

The WebKit Open Source Project. http://webkit.org/. Accessed: May 2016.

102

BIBLIOGRAPHY 103

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

27]

28]

29]

V8 JavaScript Engine. https://developers.google.com/v8/. Accessed: May
2016.

V Adve, C Lattner, M Brukman, A Shukla, and B Gaeke. LLVA: a low-level virtual
instruction set architecture. In MICROS36, 2003.

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers: prin-
ciples, techniques, & tools (2nd edition). Addison-Wesley Longman Publishing Co.,
Inc., 2006.

Mehdi Alipour, Mostafa E. Salehi, and Hesamodin shojaei baghini. Design space ex-
ploration to find the optimum cache and register file size for embedded applications.
In The 2011 International Conference on Embedded Systems and Applications, Las
Vegas, Nevada, 2011.

H. Peter Anvin, Alex Klaiber, Guillermo J. Rozas, and Parag Gupta. Method and
apparatus for improving segmented memory addressing. U.S. Patent 6851040, 02
2005.

Ehsan K Ardestani and Jose Renau. ESESC: A fast multicore simulator using
time-based sampling. In (HPCA 2013), pages 448-459. IEEE, 2013.

ARM. Cortex-A9 Technical Reference Manual, Revision r4pl, Appendiz B "In-
struction Cycle Timings", Section B.3 "Load and store instructions”. ~ARM
DDI 0388I, http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388e/
Chdgjcci.html, Accessed: May 2016.

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
Adaptive optimization in the Jalapeno JVM. In OOPSLA ’00, 2000.

Krste Asanovic and David Patterson. The case for open instruction sets. Open ISA
would enable free competition in processor design. In Microprocessor Report, 2014.

R. Auler and E. Borin. OpenlISA, freedom powered by efficient binary translation.
In Proceedings of the 8th AMAS-BT, 2015.

R. Auler, C. Millani, A. Brisighello, A. Linhares, and E. Borin. Handling IoT
platform heterogeneity with COISA, a compact OpenISA virtual platform. In Con-
currency and Computation: Practice and Ezperience (to appear), 2016.

Rafael Auler. ADL-Based Automatic Backend Generation. Master’s thesis, In
Portuguese, Institute of Computing, University of Campinas, Brazil, September
2011.

Rafael Auler and Edson Borin. A LLVM Just-in-Time Compilation Cost Analysis.
Technical Report 13-2013 IC-UNICAMP, May 2013.

Rafael Auler, Edson Borin, Peli de Halleux, Michal Moskal, and Nikolai Tillmann.
Addressing JavaScript JIT engines performance quirks: A crowdsourced adaptive
compiler. In CC 2014.

BIBLIOGRAPHY 104

30]

[31]

32|

33]

[34]

[35]

136]

37|

38]

[39]

[40]

[41]

[42]

[43]

[44]

Rafael Auler, Paulo C. Centoducatte, and Edson Borin. ACCGen: An automatic
ArchC compiler generator. In SBAC-PAD ’2012.

Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano
Araujo, and Edna Barros. The ArchC architecture description language and tools.
International Journal of Parallel Programming, 33(5):453-484, October 2005.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent
dynamic optimization system. PLDI’00, 2000.

Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun
Wang, and Yigel Zemach. [A-32 Execution Layer: a two-phase dynamic translator
designed to support TA-32 applications on Itanium(®)-based systems. In MICROS36.
IEEE Computer Society, 2003.

Marcus Bartholomeu. Compiled simulation for computer architectures described with
ArchC. PhD thesis, University of Campinas, 2005.

Daniel Bartholomew. QEMU a Multihost Multitarget Emulator. Linuz Journal,
2006(145):3, 2006.

J. F. Bastien, Luke Wagner, Michael Holman, Seth Thompson, and Raphael
[semann. Development of webassembly and associated infrastructure. https:
//github.com/webassembly. Accessed: May 2016.

Richard Belgard. Speculative address translation for processor using segmentation
and optional paging. U.S. Patent 6813699, 11 2004.

Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, pages 41-46, 2005.

Emily Blem, Jaikrishnan Menon, Thiruvengadam Vijayaraghavan, and Karthikeyan
Sankaralingam. ISA wars: Understanding the relevance of ISA being RISC or CISC
to performance, power, and energy on modern architectures. ACM Trans. Comput.
Syst., 33(1):3:1-3:34, March 2015.

Carl Boettiger. An introduction to Docker for reproducible research. SIGOPS Oper.
Syst. Rev., 49(1):71-79, January 2015.

E. Borin and Youfeng Wu. Characterization of DBT overhead. IISWC’09, 2009.

Florian Brandner, Dietmar Ebner, and Andreas Krall. Compiler generation from
structural architecture descriptions. In CASES 07, New York, NY, USA, 2007.
ACM.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for
adaptive dynamic optimization. In CGO 2005. IEEE.

Derek Lane Bruening. Efficient, transparent, and comprehensive runtime code ma-
nipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

BIBLIOGRAPHY 105

[45]

|46]

147]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Bruno Cardoso and Rafael Auler. Getting Started with LLVM Core Libraries. Packt
Publishing, 2014.

John Cavazos and Michael F. P. O’Boyle. Method-specific dynamic compilation
using logistic regression. In OOPSLA 06, 2006.

Jianjiang Ceng, Manuel Hohenauer, Rainer Leupers, Gerd Ascheid, Heinrich Meyr,
and Gunnar Braun. C compiler retargeting based on instruction semantics models.
In DATE 05, 2005.

Divino Cesar, Rafael Auler, Rafael Dalibera, Sandro Rigo, Edson Borin, and Guido
Araujo. Modeling virtual machines misprediction overhead. In IISWC 2013.

Wei Chen, Dan Chen, and Zhiying Wang. An approach to minimizing the inter-
pretation overhead in dynamic binary translation. The Journal of Supercomputing,
61(3), 2012.

Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman. ACME: Adaptive Compilation
Made Efficient. In LCTES 05, 2005.

James C Dehnert, Brian K Grant, John P Banning, Richard Johnson, Thomas
Kistler, Alexander Klaiber, and Jim Mattson. The Transmeta Code Morphing

Software: using speculation, recovery, and adaptive retranslation to address real-
life challenges. In CGO 2003.

Joseph D’Errico and Wei Qin. Constructing portable compiled instruction-set sim-
ulators: An ADL-driven approach. In DATE 06, 2006.

Stephen L Diamond and Gianluigi Castelli. Architecture Neutral Distribution For-
mat (ANDF). IEEE Micro, 14(6):73-76, 1994.

Joao Dias and Norman Ramsey. Automatically generating instruction selectors
using declarative machine descriptions. In POPL 10, 2010.

Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path prediction:
Less is more. In ASPLOS 1X, 2000.

Stefan Farfeleder, Andreas Krall, Edwin Steiner, and Florian Brandner. Effective
compiler generation by architecture description. In LCTES 06, New York, NY,
USA, 2006. ACM.

A. Fauth and A. Knoll. Automated generation of DSP program development tools
using a machine description formalism. In ICASSP-93, 1993.

A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set processors using
nML. In Proceedings of the EDTC': The European Design and Test Conference, pages
503-507. IEEE Computer Society, March 1995.

David Flanagan. JavaScript: the definitive guide. O’Reilly Media, Inc., 2002.

BIBLIOGRAPHY 106

[60]

[61]

62|

63]

|64]

|65]

6]

67]

68

[69]

[70]

[71]

[72]

73]

Agner Fog. Proposal for an ideal extensible instruction set. http://agner.org/
optimize/blog/read.php?7i=523#523. Accessed: May 2016.

Steve Furber. ARM System-on-Chip Architecture. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

Nisarg Gandhewar and Rahila Sheikh. Google android: An emerging software plat-
form for mobile devices. International Journal on Computer Science €& Engineering,
2011.

M. Garcia, R. Azevedo, and S. Rigo. Optimizing simulation in multiprocessor plat-
forms using dynamic-compiled simulation. In WSCAD-SSC 2012.

Maxiwell Salvador Garcia, Rodolfo Azevedo, and Sandro Rigo. Optimizing a retar-
getable compiled simulator to achieve near-native performance. In WSCAD-SCC
2010. IEEE.

Google. Welcome to native client. https://developer.chrome.com/
native-client. Accessed: May 2016.

Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. Mibench: A free, commercially representative em-
bedded benchmark suite. In Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on, pages 3—14. IEEE, 2001.

George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: an instruction
set description language for retargetability. In DAC 3/. ACM Press, 1997.

Masayo Haneda, Peter MW Knijnenburg, and Harry AG Wijshoff. Automatic selec-
tion of compiler options using non-parametric inferential statistics. In PACT 2005.
IEEE.

John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2012.

John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput.
Archit. News, 34(4):1-17, September 2006.

Jason D. Hiser, Daniel Williams, Wei Hu, Jack W. Davidson, Jason Mars, and
Bruce R. Childers. Evaluating indirect branch handling mechanisms in software
dynamic translation systems. In CGO 07, 2007.

Andreas Hoffmann, Heinrich Meyr, and Rainer Leupers. Architecture exploration
for embedded processors with LISA. Kluwer Academic Publishers, Norwell, MA,
USA, 2002.

Greg Hoglund and Gary McGraw. Ezploiting software: How to break code. Pearson
Education India, 2004.

BIBLIOGRAPHY 107

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

82|

83

[84]

[85]

[36]

87]

Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-Chung Hsu,
Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung. HQEMU: a multi-threaded
and retargetable dynamic binary translator on multicores. In CGO ’12. ACM, 2012.

Raymond J. Hookway and Mark A. Herdeg. Digital FX!32: Combining emulation
and binary translation. Digital Technical Journal, 9(1), 1997.

Nigel Horspool and Nikolai Tillmann. TouchDevelop: Programming on the Go.
Apress, 2013.

Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-Jan Wu, Ding-Yong Hong,
Pen-Chung Yew, and Wei-Chung Hsu. Lnq: Building high performance dynamic
binary translators with existing compiler backends. In ICPP 2011. IEEE.

Chun-Chen Hsu, Pangfeng Liu, Jan-Jan Wu, Pen-Chung Yew, Ding-Yong Hong,
Wei-Chung Hsu, and Chien-Min Wang. Improving dynamic binary optimization
through early-exit guided code region formation. In VEE ’13, 2013.

Yuan-Shin Hwang, Tzong-Yen Lin, and Rong-Guey Chang. DisIRer: Converting a
retargetable compiler into a multiplatform binary translator. ACM Trans. Archit.
Code Optim., 7(4):18:1-18:36, 2010.

Wen-Mei W Hwu, Scott A Mahlke, William Y Chen, Pohua P Chang, Nancy J
Warter, Roger A Bringmann, Roland G Ouellette, Richard E Hank, Tokuzo Kiy-
ohara, Grant E Haab, et al. The superblock: an effective technique for VLIW and
superscalar compilation. the Journal of Supercomputing, 7(1-2):229-248, 1993.

Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani. A trace-
based java JIT compiler retrofitted from a method-based compiler. In CGO 11,
2011.

Gerry Kane. MIPS RISC architecture. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1988.

Marco Kaufmann, Matthias Hésing, Thomas Preusser, and Rainer Spallek. The
java virtual machine in retargetable, high-performance instruction set simulation.
In PPPJ ’11. ACM, 2011.

Andrew Kennedy and Don Syme. Design and implementation of generics for the
NET Common Language Runtime. In PLDI ’01. ACM, 2001.

DE Knuth. The art of computer programming, vol. III: Sorting and searching. 1973.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO ’04. IEEE Computer Society, 2004.

Kevin P Lawton. Bochs: A portable PC emulator for UNIX/X. Linuz Journal,
1996(29es):7, 1996.

BIBLIOGRAPHY 108

88

[89]

190]

[91]

[92]

93]

[94]

195]

196]

197]

98]

199]

[100]

[101]

[102]

John R. Levine. Linkers and Loaders (The Morgan Kaufmann Series in Software
Engineering and Programming). Morgan Kaufmann, January 2000.

Imperas Software Limited. Open Virtual Platforms website. http://www.
ovpworld.org. Accessed: May 2016.

LLVM-community. List of LLVM Users. http://www.1llvm.org/Users.html. Ac-
cessed: May 2016.

LLVMdev. LLVM IR is a compiler IR. http://lists.llvm.org/pipermail/
11lvm-dev/2011-0ctober/043724 .html. Accessed: May 2016.

B. C. Lopes, R. Auler, L. Ramos, E. Borin, and R. Azevedo. SHRINK: Reducing
the ISA complexity via instruction recycling. ISCA 42. ACM, 2015.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In PLDI 05,
2005.

Dirk Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linuz J., 2014(239), March 2014.

Carlos Millani, Alisson Linhares, Rafael Auler, and Edson Borin. COISA: A compact
OpenlISA virtual platform for [oT devices. In Proceedings of WSCAD’15, 2015.

Prabhat Mishra and Nikil Dutt, editors. Processor Description Languages. Morgan
Kaufmann Publishers Inc., Volume I. San Francisco, CA, USA, 2008.

Joao Batista Correia Gomes Moreira, Divino Lucas, Guido Araujo, Edson Borin,
and Sandro Rigo. Asynchronous program flow verification through binary instru-
mentation in QEMU. In AMASBT 2012. ACM.

Morzilla. Asm.js working draft. http://asmjs.org/spec/latest/. Accessed: May
2016.

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI ’07. ACM, 2007.

Guilherme Ottoni, Thomas Hartin, Christopher Weaver, Jason Brandt, Belliappa
Kuttanna, and Hong Wang. Harmonia: a transparent, efficient, and harmonious
dynamic binary translator targeting the intel architecture. In Proceedings of the 8th
ACM International Conference on Computing Frontiers, CF 11, 2011.

John Owens. GPU architecture overview. In ACM SIGGRAPH, volume 1, pages
5-9, 2007.

Michael Paleczny, Christopher Vick, and Cliff Click. The java hotspot server com-
piler. JVM’01, 2001.

BIBLIOGRAPHY 109

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Stefan Pees, Andreas Hoffmann, and Heinrich Meyr. Retargeting of compiled simu-
lators for digital signal processors using a machine description language. In DATE
'00. ACM, 2000.

Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr. LISA —
machine description language for cycle-accurate models of programmable DSP ar-
chitectures. In DAC 36. ACM Press, 1999.

Gennady Pekhimenko and Angela Demke Brown. Efficient program compilation
through machine learning techniques. Software Automatic Tuning: From Concepts
to State-of-the-Art Results, page 335, 2010.

Jason A Poovey, Markus Levy, Shay Gal-On, and T Conte. A benchmark charac-
terization of the EEMBC benchmark suite. IEEE Micro, 29(5):18-29, September
2009.

Zdenek Prikryl, Jakub Kioustek, Tomas Hruska, and Dusan Kolaf. Fast translated
simulation of ASIPs. In 6th Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, Brno, CZ, MUNI, pages 135-142, 2010.

ZdenEGek Prikryl. Advanced methods of microprocessor simulation. Information
Sciences and Technologies, Bulletin of the ACM Slovakia, 3(3):1-13, 2011.

Mark Probst. Dynamic binary translation. In UKUUG Linuz Developer’s Confer-
ence, 2002.

Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng
Wu. LIFT: A low-overhead practical information flow tracking system for detecting
security attacks. MICRO’39, 2006.

Wei Qin and Sharad Malik. Flexible and formal modeling of microprocessors with
application to retargetable simulation. In DATE 2003. IEEE.

R. Ramaswamy and T. Wolf. PacketBench: a tool for workload characterization
of network processing. In Workload Characterization, 2003. WWC-6. 2003 IEEE
International Workshop on, pages 42-50, Oct 2003.

Norman Ramsey and Joao Dias. Resourceable, retargetable, modular instruction
selection using a machine-independent, type-based tiling of low-level intermediate
code. In POPL ’11. ACM, 2011.

Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt. Hybrid-compiled simulation:
An efficient technique for instruction-set architecture simulation. ACM Transactions
on Embedded Computing Systems (TECS), 8(3):20, 2009.

Sandro Rigo, Rodolfo Azevedo, and Luiz Santos. Flectronic System Level Design:
An Open-Source Approach. Springer, 2011.

Phil Rogers. Heterogeneous system architecture overview. In Hot Chips, 2013.

BIBLIOGRAPHY 110

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Tiark Rompf, Arvind K Sujeeth, Kevin J Brown, HyoukJoong Lee, Hassan Chafi,
and Kunle Olukotun. Surgical precision JI'T compilers. In PLDI’1}, 2014.

Guillermo Rozas, David Dunn, David Dobrikin, Alex Klaiber, and Daniel H. Nelsen.
Method and apparatus for emulating a floating point stack in a translation process.
U.S. Patent 6725361, 03 2004.

Harsh Sharangpani and H Arora. Itanium processor microarchitecture. Micro,
IEEE, 20(5):24-43, 2000.

Bor-Yeh Shen, Wei-Chung Hsu, and Wuu Yang. A retargetable static binary trans-
lator for the ARM architecture. ACM Trans. Archit. Code Optim., 11(2):18:1-18:25,
June 2014.

Bor-Yeh Shen, Wei-Chung Hsu, and Wuu Yang. A retargetable static binary trans-
lator for the arm architecture. ACM Trans. Archit. Code Optim., 11(2):18:1-18:25,
June 2014.

John Paul Shen and Mikko H Lipasti. Modern processor design: fundamentals of
superscalar processors. Waveland Press, 2013.

Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.
Robinson. Binary translation. Commun. ACM, 36(2):69-81, February 1993.

J.E. Smith and R. Nair. Virtual machines: versatile platforms for systems and
processes. Morgan Kaufmann, 2005.

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A region-based compila-
tion technique for a Java Just-in-time Compiler. In PLDI ’05. ACM, 2003.

Gregory T Sullivan, Derek L. Bruening, Iris Baron, Timothy Garnett, and Saman
Amarasinghe. Dynamic native optimization of interpreters. In Proceedings of the
2003 workshop on Interpreters, virtual machines and emulators, pages 50-57. ACM.

Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fahndrich.
TouchDevelop: programming cloud-connected mobile devices via touchscreen. In
ONWARD 2011. ACM.

Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, Manuel Fahndrich, and
Sebastian Burckhardt. Touchdevelop: app development on mobile devices. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 39. ACM, 2012.

Harry Wagstaff, Miles Gould, Bjérn Franke, and Nigel Topham. Early partial eval-
uation in a JIT-compiled, retargetable instruction set simulator generated from a
high-level architecture description. In 50th DAC, New York, NY, USA, 2013. ACM.

BIBLIOGRAPHY 111

[130]

[131]

[132]

133

[134)

Cheng Wang, Shiliang Hu, Ho-Seop Kim, Sreekumar R Nair, Mauricio Breternitz Jr,
Zhiwei Ying, and Youfeng Wu. StarDBT: An efficient multi-platform dynamic bi-
nary translation system. In Advances in Computer Systems Architecture, pages
4-15. Springer, 2007.

Zhonglei Wang and Jorg Henkel. HyCoS: Hybrid compiled simulation of embedded
software with target dependent code. In CODES+ISSS ’12. ACM, 2012.

Alon Zakai. Emscripten: an LLVM-to-JavaScript compiler. In SPLASH 2011. ACM.

Xiaochun Zhang, Qi Guo, Yunji Chen, Tianshi Chen, and Weiwu Hu. Hermes:
A fast cross-ISA binary translator with post-optimization. In Proceedings of the
13th Annual IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO 15, pages 246-256, Washington, DC, USA, 2015. IEEE Computer
Society.

Rafael Zinsly. Técnicas de formagao de regioes para projetos de maquinas virtuais
eficientes. Master’s thesis, In Portuguese, Institute of Computing, University of
Campinas, Brazil, October 2013.

Appendix A

OpenlSA instruction set reference

This appendix presents the ArchC-based, automatically generated OpenISA instruction
set reference. The central repository for information about OpenlSA is its ArchC model
and the corresponding architecture description files. The next pages are the result of our
ISA reference generator available on github!.

! Available at http://github.com /rafaelauler /ISARefGenerator

112

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 113
A.1 abs.d
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op extl ext2 ext3d | ext4 extd s ot
100010 00 0000 00 | 00 0101
6 2 4 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: abs.d %freg, %freg

Operation (C Code):

double res = fabs(load_double(rt));
save_double(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

114

A.2 abs.s
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 00 0110
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: abs.s Y%freg, %freg

Operation (C Code):

float res = fabsf(load_float(rt));
save_float(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

115

A.3 add
31 26 25 24 23 20 19 18 17 12 11 0
op extl ext2 ext3 d s ot
100000 00 | 0000 | 00 g

6 2 4 2 6 6

Encoding Format: PL18

Assembly Language Syntax: add %reg, %reg, %reg

Operation (C Code):

RB[rd] = RB[rs] + RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 116

A.4 add.d
op extl ext2 ext3
100000 00 | 0101 | 00 vd " r

Encoding Format: PL18

Assembly Language Syntax: add.d %freg, %freg, %freg

Operation (C Code):

double res = load_double(rs) + load_double(rt);
save_double(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 117

A.5 add.s
op extl ext2 ext3
100000 | 00 | o101 | 01 rd o it

Encoding Format: PL18

Assembly Language Syntax: add.s %freg, %freg, %freg

Operation (C Code):

float res = load_float(rs) + load_float(rt);
save_float(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.6 addi

31 26 25 12 11

118

op
001110

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: addi Yreg, ’reg, %hexp

Operation (C Code):

RB[rt] = RB[rs] + imm;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.7 andi

31 26 25 12 11

119

op
010010

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: andi %reg, ‘%reg, ’%imm

Operation (C Code):

RB[rt] = RB[rs] & (imm & Ox3FFF);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

120

A.8 and
31 26 25 24 23 20 19 18 17 12 11 0
op extl ext2 ext3 d s ot
100000 00 | 0001 | 10 g

6 2 4 2 6 6

Encoding Format: PL18

Assembly Language Syntax: and %reg, %reg, %reg

Operation (C Code):

RB[rd] = RB[rs] & RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

121

A.9 asr
31 26 25 24 23 20 19 18 17 12 11 0
op extl ext2 ext3
100000 00 | 0011 | 00 rd e e
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: asr %reg, %reg, %imm

Operation (C Code):

RB[rd] = (ac_Sword)RB[rt] >> rs;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

122

A.10 asrr
5 2 25 21 23 0 19 15 17 - 0
op extl ext2 ext3
100000 | 00 | o011 | 11 rd o it
p ; P ; p p p

Encoding Format: PL18

Assembly Language Syntax: asrr Yreg, %reg, ’reg

Operation (C Code):

RB[rd] = (ac_Sword)RB[rt] >> (RB[rs] & 0x1F);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 123

A.11 bclf

31 26 25 24 23 20 19 18 17 16 15 0

op extl ext2 ext3 | ext4

100001 00 | 0000 | 00| 10 halfword

6 2 4 2 2 16

Encoding Format: PL16

Assembly Language Syntax: bclf Yexp(pcrel)

Operation (C Code):

if (cc == 0) {
ac_pc = ac_pc + (halfword << 2);

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 124

A.12 bclfl
31 26 25 24 23 20 19 18 17 16 15 0
op extl ext2 ext3 | ext4 Lalf d
100001 00 | 0000 | 00 | 11 atwor

6 2 4 2 2 16

Encoding Format: PL16

Assembly Language Syntax: bclfl %exp(pcrel)

Operation (C Code):

if (cc == 0) {
ac_pc = ac_pc + (halfword << 2);

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 125

A.13 bclt

31 26 25 24 23 20 19 18 17 16 15 0

op extl ext2 ext3 | ext4

100001 00 | 0000 | 00 | 00 halfword

6 2 4 2 2 16

Encoding Format: PL16

Assembly Language Syntax: bclt Y%exp(pcrel)

Operation (C Code):

if (cc == 1) {
ac_pc = ac_pc + (halfword << 2);

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 126

A.14 bclt

31 26 25 24 23 20 19 18 17 16 15 0

op extl ext2 ext3 | ext4

100001 00 | 0000 | 00 | 01 halfword

6 2 4 2 2 16

Encoding Format: PL16

Assembly Language Syntax: bclt Y%exp(pcrel)

Operation (C Code):

if (cc == 1) {
ac_pc = ac_pc + (halfword << 2);

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

127

A.15 break
31 26 25 24 23 20 19 18 17 16 15 0
op extl ext2 ext3 | ext4 exth exto ext’7
100100 00 0000 00 | 00 0000 000000 000000

6

2

4

Encoding Format: PL0O

2

2

Assembly Language Syntax: break

Operation (C Code):

4

6

6

fprintf (stderr, "instr_break behavior not implemented.\n");
exit (EXIT_FAILURE) ;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.16 c.eq.d

31 26 25 24 23 20 19 18 17 16 15 12 11

128

op extl ext2 extd | extd extd s ot
100010 00 0000 00 | 00 0111

6 2 4 2 2 4 6 6
Encoding Format: PL12
Assembly Language Syntax: c.eq.d %freg, %freg
Operation (C Code):

double a = load_double(rs);

double b = load_double(rt);

cc = a==>b 7 (custom_isnan(a) || custom_isnan(b) ? O : : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.17 c.eq.s

31 26 25 24 23 20 19 18 17 16 15 12 11

129

op extl ext2 extd | extd extd s ot
100010 00 0000 00 | 00 1000

6 2 4 2 2 4 6 6
Encoding Format: PL12
Assembly Language Syntax: c.eq.s %freg, %freg
Operation (C Code):

float a = load_float(rs);

float b = load_float(rt);

cc = a==>b 7 (custom_isnanf(a) || custom_isnanf(b) ? 0 : 1) : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.18 c.ole.d

31 26 25 24 23 20 19 18 17 16 15 12 11

130

op extl ext2 extd | extd extH s ot
100010 00 0000 00 | 00 1001

6 2 4 2 2 4 6 6
Encoding Format: PL12
Assembly Language Syntax: c.ole.d %freg, %freg
Operation (C Code):

double a = load_double(rs);

double b = load_double(rt);

cc = a<=b ? (custom_isnan(a) || custom_isnan(b) 7 0 : : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 131

A.19 c.ole.s

31 26 25 24 23 20 19 18 17 16 15 12 11 6 5 0

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 00 1010
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.ole.s Yfreg, %freg

Operation (C Code):

float a = load_float(rs);
float b = load_float(rt);
cc = a <=Db ? (custom_isnanf(a) || custom_isnanf(b) ? 0 : 1) : O;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.20 c.olt.d

31 26 25 24 23 20 19 18 17 16 15 12 11

132

op extl ext2 extd | extd extd s ot
100010 00 0000 00 | 00 1011

6 2 4 2 2 4 6 6
Encoding Format: PL12
Assembly Language Syntax: c.olt.d %freg, %freg
Operation (C Code):

double a = load_double(rs);

double b = load_double(rt);

cc = a<b ? (custom_isnan(a) || custom_isnan(b) ? 0 : 1) 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 133

A.21 c.olt.s

31 26 25 24 23 20 19 18 17 16 15 12 11 6 5 0

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 00 1100
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.olt.s Yfreg, %freg

Operation (C Code):

float a = load_float(rs);
float b = load_float(rt);
cc =a<b ? (custom_isnanf(a) || custom_isnanf(b) ? 0 : 1) : 0O;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.22 c.ueq.d

31 26 25 24 23 20 19 18 17 16 15 12 11

134

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 00 1101
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.ueq.d %freg, %freg

Operation (C Code):

cc = (load_double(rs) == load_double(rt)) ? 1 : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.23 c.ueq.s

31 26 25 24 23 20 19 18 17 16 15 12 11

135

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 00 1110
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.ueq.s %freg, %freg

Operation (C Code):

cc = (load_float(rs) == load_float(rt)) 7 1 : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.24 c.ule.d

31 26 25 24 23 20 19 18 17 16 15 12 11

136

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 00 1111
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.ule.d %freg, %freg

Operation (C Code):

cc = (load_double(rs) <= load_double(rt)) ? 1 : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.25 c.ule.s

31 26 25 24 23 20 19 18 17 16 15 12 11

137

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0000
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.ule.s Yfreg, %freg

Operation (C Code):

cc = (load_float(rs) <= load_float(rt)) 7 1 : O;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.26 c.ult.d

31 26 25 24 23 20 19 18 17 16 15 12 11

138

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0001
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.ult.d %freg, %freg

Operation (C Code):

cc = (load_double(rs) < load_double(rt)) ? 1 : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.27 c.ult.s

31 26 25 24 23 20 19 18 17 16 15 12 11

139

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0010
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.ult.s %freg, %freg

Operation (C Code):

cc = (load_float(rs) < load_float(rt)) 7?7 1 : O;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.28 c.un.d

31 26 25 24 23 20 19 18 17 16 15 12 11

140

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0011
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.un.d %freg, %freg

Operation (C Code):

cc = (custom_isnan(load_double(rs))
|| custom_isnan(load_double(rt))) ? 1 : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.29 c.un.s

31 26 25 24 23 20 19 18 17 16 15 12 11

141

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0100
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: c.un.s %freg, %freg

Operation (C Code):

cc = (custom_isnanf(load_float(rs))
|| custom_isnanf(load_float(rt))) ? 1 : 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.30 call

31 26 25 20 19

142

op

000001 fm

addr

6 6

Encoding Format: PL26c¢c

20

Assembly Language Syntax: call %exp(align), %imm

Operation (C Code):

RB[Ra] = ac_pc;

addr = addr << 2;
ac_pc = (ac_pc & 0xF0000000) | addr;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

143

A.31 callr
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 00 0000
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: callr %reg, ’%imm

Operation (C Code):

RB[Ra] = ac_pc;
ac_pc = RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.32 ceil.w.d

31 26 25 24 23 20 19 18 17 16 15 12 11

144

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 1101
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: ceil.w.d Y%reg, %freg

Operation (C Code):

int32_t res = (int) ceil(load_double(rt));
RB[rt] = res;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.33 ceil.w.s

31 26 25 24 23 20 19 18 17 16 15 12 11

145

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 1110
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: ceil.w.s Y%reg, %freg

Operation (C Code):

int32_t res = (int) ceilf(load_float(rt));
RB[rt] = res;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.34

31

clz

26 25 24 23

20 19 18 17 16 15

12 11

146

op
100010

extl
00

ext2
0000

ext3
00

ext4
00

exth
0010

Is

rt

6

Encoding Format: PL12

2

4

2

2

4

Assembly Language Syntax: clz Yreg, %reg

Operation (C Code):

uint32_t x = RB[rt];

X >>

X
X

x |=
X

X x >> 16;
X

>> 1
>> 2
>> 4,

8

= ffs(x + 1);
if (x 1= 0) {
x =32 -x +1;

¥

RB[rs] = x;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.35 cvt.d.s

31 26 25 24 23 20 19 18 17 16 15 12 11

147

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0110
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: cvt.d.s %freg, %freg

Operation (C Code):

double temp = (double)load_float(rt);
save_double(temp, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.36 cvt.d.w

31 26 25 24 23 20 19 18 17 16 15 12 11

148

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0111
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: cvt.d.w %freg, %freg

Operation (C Code):

double temp = (double) (int)RBS[rt];
save_double(temp, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.37 cvt.s.d

31 26 25 24 23 20 19 18 17 16 15 12 11

149

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 0101
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: cvt.s.d %freg, %freg

Operation (C Code):

float temp = (float)load_double(rt);
save_float (temp, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.38 cvt.s.w

31 26 25 24 23 20 19 18 17 16 15 12 11

150

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 1000
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: cvt.s.w %freg, %freg

Operation (C Code):

float temp = (float) (int)RBS[rt];
save_float (temp, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 151

A.39 div.d

31 26 25 24 23 20 19 18 17 12 11 6 5 0

op extl ext2 ext3 d s ot
100000 00 | 0101 | 10 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: div.d %freg, %freg, %freg

Operation (C Code):

double res = load_double(rs) / load_double(rt);
save_double(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 152

A.40 div.s

31 26 25 24 23 20 19 18 17 12 11 6 5 0

op extl ext2 ext3 d s ot
100000 00 | 0101 | 11 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: div.s %freg, %freg, %freg

Operation (C Code):

float res = load_float(rs) / load_float(rt);
save_float(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 153

A.41 div

31 26 25 24 23 18 17 12 11 6 5 0

op extl

011101 01 v rd s rt

6 2 6 6 6 6

Encoding Format: PL24

Assembly Language Syntax: div %reg, %reg, %reg, kreg

Operation (C Code):

if (rd !'= 0)
RB[rd] = (ac_Sword)RB[rs] / (ac_Sword)RB[rt];
if (rv '= 0)

RB[rv] = (ac_Sword)RB[rs] % (ac_Sword)RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.42 divu

31 26 25 24 23 18 17 12 11

154

op extl

011101 10 v rd s

rt

6 2 6 6 6

Encoding Format: PL24

Assembly Language Syntax: divu Yreg, ‘reg, reg, hreg

Operation (C Code):

if (xrd '= 0)
RB[rd] = RB[rs] / RB[rt];
if (rv '= 0)

RB[rv] = RB[rs] % RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 155

A.43 ext

31 26 25 24 23 18 17 12 11 6 5 0

op extl

011101 11 v rd s rt

6 2 6 6 6 6

Encoding Format: PL24

Assembly Language Syntax: ext ‘reg, %reg, %imm, %imm

Operation (C Code):

uint32_t 1lsb = rv;
uint32_t size = rt + 1;
RB[rd] = (RB[rs] << (32 - size - 1lsb)) >> (32 - size);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.44 floor.w.d

31 26 25 24 23 20 19 18 17 16 15 12 11

156

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 1111
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: floor.w.d %reg, %freg

Operation (C Code):

int32_t res = (int) floor(load_double(rt));
RB[rt] = res;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.45 floor.w.s

31 26 25 24 23 20 19 18 17 16 15 12 11

157

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 11 0000
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: floor.w.s %reg, %freg

Operation (C Code):

int32_t res = (int) floorf(load_float(rt));
RB[rt] = res;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.46 ijmphi

31 26 25 24 23 20 19

158

op extl ext2 120
011111 01 0000 P
6 2 4 20

Encoding Format: PL20i

Assembly Language Syntax: ijmphi %imm

Operation (C Code):

ijmpreg = 0;
ijmpreg |= pl20 << 12;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 159

A.47 ijmp

31 26 25 14 13 8 7 0

op

100110 pll2 index count

6 12 6 8

Encoding Format: PL26ij

Assembly Language Syntax: ijmp %imm (%reg), %imm

Operation (C Code):

ijmpreg &= OxFFFFFO00O0;

ijmpreg |= pll2 & OxFFF;

uint32_t Target = DATA_PORT->read(ijmpreg + RB[index]);
ac_pc = Target;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 160

A.48 jeq
" - 2 - 0
01811)01 tmm s e
p " p p

Encoding Format: PL26i

Assembly Language Syntax: jeq %reg, %reg, %exp(pcrel)

Operation (C Code):

if (RB[rs] == RB[rt]) {
ac_pc = ac_pc + (imm << 2);

by

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

161

A.49 jgez
op extl ext2 .
011111 | 00 | 0011 imm r

Encoding Format: PL20

Assembly Language Syntax: jgez Y%reg, %exp(pcrel)

Operation (C Code):

if (' (RB[rt] & 0x80000000)) {
ac_pc = ac_pc + (imm << 2);

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

162

A.50 jgtz
op extl ext2 .
011111 | 00 | 0001 i r

Encoding Format: PL20

Assembly Language Syntax: jgtz Y%reg, %exp(pcrel)

Operation (C Code):

if (' (RB[rt] & 0x80000000) && (RB[rt] !'= 0)) {
ac_pc = ac_pc + (imm << 2);

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

163

A.51 jlez
op extl ext2 .
011111 00 | 0000 H r

Encoding Format: PL20

Assembly Language Syntax: jlez Yreg, ’%exp(pcrel)

Operation (C Code):

if ((RB[rt] == 0) || (RB[rt] & 0x80000000)) {
ac_pc = ac_pc + (imm << 2), 1;

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

164

A.52 jltz
op extl ext2 .
011111 | 00 | 0010 i r

Encoding Format: PL20

Assembly Language Syntax: jltz Yreg, %exp(pcrel)

Operation (C Code):

if (RB[rt] & 0x80000000) {
ac_pc = ac_pc + (imm << 2);

b

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 165

A.53 jne
31 26 25 12 11 6 5 0]
op
010110 imm s rt
6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: jne Yreg, ‘reg, hexp(pcrel)

Operation (C Code):

if (RB[rs] !'= RB[rt]) {
ac_pc = ac_pc + (imm << 2);

by

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.54 jump

31 26 25

166

op
000000 laddr

6 26

Encoding Format: PL26]

Assembly Language Syntax: jump %exp(align)

Operation (C Code):

if (laddr == 0) {
printf ("Jump to address zero\n");
exit(-1);

}

laddr = laddr << 2;

ac_pc = (ac_pc & 0xF0000000) | laddr;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

167

A.55 jumpr
31 26 25 24 23 20 19 18 17 16 15 0
op extl ext2 ext3 | ext4 exth ext6 ot
100011 00 0000 00 | 00 0000 000000
6 2 4 2 2 4 6 6

Encoding Format: PL6

Assembly Language Syntax: jumpr %reg

Operation (C Code):

ac_pc = RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 168

A.56 1dbu

31 26 25 12 11 6 5 0

op
000011

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: 1dbu %reg, \%lo(%exp) (%reg)

Operation (C Code):

unsigned char byte;
byte = DATA_PORT->read_byte(RB[rs] + imm);
RB[rt] = byte;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 169

A.57 1db

31 26 25 12 11 6 5 0

op
000010

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: 1db Yreg, \%lo(%exp) (%reg)

Operation (C Code):

char byte;
byte = DATA_PORT->read_byte(RB[rs] + imm);
RB[rt] = (ac_Sword)byte;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.58 Idcl

31 26 25 12 11

170

op
011010

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: 1ldcl %freg, %imm (%reg)

Operation (C Code):

RBD[rt + 1] = DATA_PORT->read(RB[rs] + imm);
RBD[rt] = DATA_PORT->read(RB[rs] + imm + 4);
double temp = load_double(rt);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 171

A.59 1dh

31 26 25 12 11 6 5 0

op
000100

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: 1dh Yreg, \%lo(%exp) (%reg)

Operation (C Code):

short int half;
half = DATA_PORT->read_half(RB[rs] + imm);
RB[rt] = (ac_Sword)half;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 172

A.60 1dhu

31 26 25 12 11 6 5 0

op
000101

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: 1dhu %reg, \%lo(%exp) (%reg)

Operation (C Code):

unsigned short int half;
half = DATA_PORT->read_half(RB[rs] + imm);
RB[rt] = half;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.61 1di

31 26 25 24 23 20 19

173

op extl ext2
011111 00 0100

rt

6 2 4 14

Encoding Format: PL20

Assembly Language Syntax: 1di %reg, %imm

Operation (C Code):

ldireg = rt;
RB[1ldireg] &= OxFFFFCO000;
RB[ldireg] |= imm & Ox3FFF;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.62 1dihi

31 26 25 24 23 20 19 18 17

174

op extl ext2 ext3

118
100000 00 0000 01 b

6 2 4 2 18

Encoding Format: PL18i

Assembly Language Syntax: 1dihi %imm

Operation (C Code):

RB[ldireg] &= O0x3FFF;
RB[ldireg] |= pl18 << 14;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 175

A.63 1dwl

31 26 25 12 11 6 5 0

op
000111

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: 1dwl %reg, \%lo(%exp) (%reg)

Operation (C Code):

unsigned int addr, offset;
ac_Uword data;

addr = RB[rs] + imm;

offset = (addr & 0x3) * 8;

data = DATA_PORT->read(addr & OxFFFFFFFC) ;
data <<= offset;

data |= RB[rt] & ((1 << offset) - 1);
RB[rt] = data;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 176

A.64 Idwr

31 26 25 12 11 6 5 0

op
001000

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: ldwr %reg, \%lo(%exp) (%reg)

Operation (C Code):

unsigned int addr, offset;
ac_Uword data;

addr = RB[rs] + imm;

offset = (3 - (addr & 0x3)) * 8;

data = DATA_PORT->read(addr & OxFFFFFFFC) ;
data >>= offset;

data |= RB[rt] & (OxFFFFFFFF << (32 - offset));
RB[rt] = data;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 177

A.65 Idw

31 26 25 12 11 6 5 0

op
000110

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: 1dw %reg, \%lo(%exp) (Y%reg)

Operation (C Code):

RB[rt] = DATA_PORT->read(RB[rs] + imm);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

178

A.66 Ildxcl
31 26 25 24 23 20 19 18 17 12 11 0
op extl ext2 ext3 d s ot
100000 00 | 1000 | 00 g

6 2 4 2 6 6

Encoding Format: PL18

Assembly Language Syntax: ldxcl Y%freg, %reg (Vreg)

Operation (C Code):

RBD[rd + 1] = DATA_PORT->read(RB[rt] + RB[rs]);
RBD[rd] = DATA_PORT->read(RB[rt] + RB[rs] + 4);
double temp = load_double(rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.67 1l

31 26 25 12 11

179

op
010111

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: 11 Yreg, %imm (%reg)

Operation (C Code):

RB[rt] = DATA_PORT->read(RB[rs] + imm);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.68 lwcl

31 26 25 12 11

180

op
011100

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: lwcl %freg, %imm (%reg)

Operation (C Code):

RBS[rt] = DATA_PORT->read(RB[rs] + imm);
float temp = load_float(rt);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

181

A.69 lwxcl
op extl ext2 ext3
100000 00 | 1000 | 10 vd " r

Encoding Format: PL18

Assembly Language Syntax: lwxcl Y%freg, %reg (Vreg)

Operation (C Code):

RBS[rd] = DATA_PORT->read(RB[rt] + RB[rs]);
float temp = load_float(rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.70 madd.d

31 26 25 24 23 18 17 12 11

182

op extl

011110 00 v rd s

rt

6 2 6 6 6

Encoding Format: PL24

Assembly Language Syntax: madd.d %reg, %reg, %reg, %reg

Operation (C Code):

double res = load_double(rs) * load_double(rt) + load_double(rv);

save_double(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.71 madd.s

31 26 25 24 23 18 17 12 11

183

op extl

011110 01 v rd s

rt

6 2 6 6 6

Encoding Format: PL24

Assembly Language Syntax: madd.s %reg, %reg, %reg, %hreg

Operation (C Code):

float res = load_float(rs) * load_float(rt) + load_float(rv);

save_float(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

184

A.72 mfcl
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 01 1001
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: mfcl %reg, %freg

Operation (C Code):

RB[rs] = RBS[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

185

A.73 mfhcl
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 10 1001
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: mfhcl Yreg, %freg

Operation (C Code):

uint64_t temp;

double input = load_double(rt);

memcpy (&temp, &input, sizeof (uint64_t));
RB[rs] = temp >> 32;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

186

A.74 mficl
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 11 0001
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: mflcl Yreg, %freg

Operation (C Code):

uint64_t temp;

double input = load_double(rt);

memcpy (&temp, &input, sizeof (uint64_t));
RB[rs] = temp & OxFFFFFFFF;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

187

A.75 mov.d
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 01 1010
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: mov.d %freg, %freg

Operation (C Code):

double res = load_double(rt);
save_double(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

188

A.76 mov.s
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 01 1011
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: mov.s %freg, %freg

Operation (C Code):

float res = load_float(rt);
save_float(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

189

A. 77 movf
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 10 0111
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: movf Yreg, Jreg

Operation (C Code):

if (cc == 0)
RB[rs] = RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.7T8 movf.d

31 26 25 24 23 20 19 18 17 16 15 12 11

190

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 0101
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: movf.d %freg, %freg

Operation (C Code):

if (cc == 0) {

RBD[rs] = RBD[rt];

RBD[rs + 1] = RBD[rt + 1];
}

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.7T9 movf.s

31 26 25 24 23 20 19 18 17 16 15 12 11

191

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 0110
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: movf.s %freg, %freg

Operation (C Code):

if (cc == 0) {
RBS[rs] = RBS[rt];
+

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 192

A.80 movn.d

31 26 25 24 23 20 19 18 17 12 11 6 5 0

op extl ext2 ext3 d s ot
100000 00 | 0111 | 10 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: movn.d %freg, %freg, Jreg

Operation (C Code):

if (RB[rt] !'= 0) {

RBD[rd] = RBD[rs];

RBD[rd + 1] = RBD[rs + 1];
}

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.81 movn.s

31 26 25 24 23 20 19 18 17 12 11

193

op extl ext2 ext3 d s ot
100000 00 | o111 | 11 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: movn.s %freg, Jfreg, Jreg

Operation (C Code):

if (RB[rt] '= 0) {
RBS[rd] = RBS[rs];
+

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

194

A.82 movn
" S 2 10 8 17 - 0
op extl ext2 ext3
100000 | 00 | 0100 | 01 vd " r
.) ; ; . p p

Encoding Format: PL18

Assembly Language Syntax: movn Yreg, %reg, ’reg

Operation (C Code):

if (RB[rt] != 0)
RB[rd] = RB[rs];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

195

A.83 movt
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 10 1000
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: movt Yreg, Jreg

Operation (C Code):

if (cc !'= 0)
RB[rs] = RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.84 movt.d

31 26 25 24 23 20 19 18 17 16 15 12 11

196

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 0011
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: movt.d %freg, %freg

Operation (C Code):

if (cc '= 0) {

RBD[rs] = RBD[rt];

RBD[rs + 1] = RBD[rt + 1];
}

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.85 movt.s

31 26 25 24 23 20 19 18 17 16 15 12 11

197

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 0100
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: movt.s %freg, %freg

Operation (C Code):

if (cc 1= 0) {
RBS[rs] = RBS[rt];
+

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 198

A.86 movz.d

31 26 25 24 23 20 19 18 17 12 11 6 5 0

op extl ext2 ext3 d s ot
100000 00 | 0111 | 00 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: movz.d %freg, Jfreg, Jreg

Operation (C Code):

if (RB[rt] !'= 0) {

RBD[rd] = RBD[rs];

RBD[rd + 1] = RBD[rs + 1];
}

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.87 movz.s

31 26 25 24 23 20 19 18 17 12 11

199

op extl ext2 ext3 d s ot
100000 00 | o111 | o1 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: movz.s %freg, Jfreg, Jreg

Operation (C Code):

if (RB[rt] '= 0) {
RBS[rd] = RBS[rs];
+

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

200

A.88 movz
op extl ext2 ext3
100000 00 | 0100 | 00 vd " r

Encoding Format: PL18

Assembly Language Syntax: movz Yreg, %reg, ’reg

Operation (C Code):

if (RB[rt] == 0)
RB[rd] = RB[rs];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 201

A.89 msub.d

31 26 25 24 23 18 17 12 11 6 5 0

op extl

011110 10 v rd s r

6 2 6 6 6 6

Encoding Format: PL24

Assembly Language Syntax: msub.d %reg, %reg, %reg, %reg

Operation (C Code):

double res = load_double(rs) * load_double(rt) - load_double(rv);
save_double(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.90 msub.s

31 26 25 24 23 18 17 12 11

202

op extl

011110 11 v rd s

rt

6 2 6 6 6

Encoding Format: PL24

Assembly Language Syntax: msub.s %reg, %reg, %reg, %ireg

Operation (C Code):

float res = load_float(rs) * load_float(rt) - load_float(rv);

save_float(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

203

A.91 mtcl
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 01 1100
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: mtcl %reg, %freg

Operation (C Code):

RBS[rt] = RB[rs];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

204

A.92 mthcl
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 1010

6 2 4 2 2 4 6

Encoding Format: PL12

Assembly Language Syntax: mthcl Yreg, %freg

Operation (C Code):

double temp = load_double(rt);
uint64_t to_int;
memcpy (&to_int, &temp, sizeof(uint64_t));

to_int = (to_int & OxFFFFFFFFULL) + (((uint64_t)RB[rs]) << 32);

memcpy (&temp, &to_int, sizeof(uint64_t));
save_double(temp, rt);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 205

A.93 mtlcl
31 26 25 24 23 20 19 18 17 16 15 12 11 6 5 0
op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 11 0010

6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: mtlcl Yreg, %freg

Operation (C Code):

double temp = load_double(rt);

uint64_t to_int;

memcpy (&to_int, &temp, sizeof(uint64_t));

to_int = (to_int & OxFFFFFFFFO00OOOOOULL) + (((uint64_t)RB[rs]));
memcpy (&temp, &to_int, sizeof(uint64_t));

save_double(temp, rt);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 206

A.94 mul.d
op extl ext2 ext3
100000 00 | o110 | 00 vd " r

Encoding Format: PL18

Assembly Language Syntax: mul.d %freg, %freg, %freg

Operation (C Code):

double res = load_double(rs) * load_double(rt);
save_double(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 207

A.95 mul.s
op extl ext2 ext3
100000 | 00 | o110 | 01 vd o it

Encoding Format: PL18

Assembly Language Syntax: mul.s %freg, %freg, %freg

Operation (C Code):

float res = load_float(rs) * load_float(rt);
save_float(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 208

A.96 mulu
31 26 25 24 23 18 17 12 11 6 5 0
op extl
100101 00 v rd s rt

6 2 6 6 6 6

Encoding Format: PL24

Assembly Language Syntax: mulu %reg, ‘%reg, hreg, hreg

Operation (C Code):

unsigned long long result;
int half_result;

result = (ac_Uword)RB[rs];
result *= (ac_Uword)RB[rt];

half_result = (result & OxFFFFFFFF);
if (rd '= 0)
RB[rd] = half_result;

half_result = ((result >> 32) & OxFFFFFFFF);
if (rv '= 0)
RB[rv] = half_result;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 209

A.97 mul

31 26 25 24 23 18 17 12 11 6 5 0

op extl

011101 00 v rd s r

6 2 6 6 6 6

Encoding Format: PL24

Assembly Language Syntax: mul %reg, %reg, %reg, %reg

Operation (C Code):

long long result;

int half_result;

result = (ac_Sword)RB[rs];
result *= (ac_Sword)RB[rt];

half_result = (result & OxFFFFFFFF);
if (rd '= 0)
RB[rd] = half_result;

half_result = ((result >> 32) & OxFFFFFFFF);
if (rv '= 0)
RB[rv] = half_result;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

210

A.98 neg.d
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 1101
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: neg.d %freg, %freg

Operation (C Code):

double res = -load_double(rt);
save_double(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

211

A.99 neg.s
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 1110
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: neg.s %freg, %freg

Operation (C Code):

float res = -load_float(rt);
save_float(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

212

A.100 nor
op extl ext2 ext3
100000 | 00 | 0010 | 01 vd " it

Encoding Format: PL18

Assembly Language Syntax: nor Yreg, %reg, ’reg

Operation (C Code):

RB[rd] = “(RB[rs] | RB[rtl);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

213

A.101 or
op extl ext2 ext3
100000 | 00 | 0001 | 11 rd " rt

Encoding Format: PL18

Assembly Language Syntax: or Yreg, %reg, %reg

Operation (C Code):

RB[rd] = RB[rs] | RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.102 ori

31 26 25 12 11

214

op
010011

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: ori %reg, %reg, %imm

Operation (C Code):

RB[rt] = RB[rs] | (imm & Ox3FFF);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 215

A.103 rcall

31 26 25 24 23 20 19 18 17 16 15 0

op extl ext2 ext3 | ext4

100001 00 | 0000 | 01 | 11 halfword

6 2 4 2 2 16

Encoding Format: PL16

Assembly Language Syntax: rcall %exp(pcrel)

Operation (C Code):

RB[Ral = ac_pc;
ac_pc = ac_pc + (halfword << 2);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

216

A.104 rorr
5 2 25 21 23 0 19 15 17 - 0
op extl ext2 ext3
100000 | 00 | 0100 | 11 rd o it
p ; P ; p p p

Encoding Format: PL18

Assembly Language Syntax: rorr Yreg, %reg, ‘hreg

Operation (C Code):

RB[rd] = rotate_right(RB[rt], RB[rs]);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

217

A.105 ror
" S 2 10 8 17 - 0
op extl ext2 ext3
100000 | 00 | 0100 | 10 vd " r
.) ; ; . p p

Encoding Format: PL18

Assembly Language Syntax: ror %reg, %reg, %imm

Operation (C Code):

RB[rd] = rotate_right(RB[rt], rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 218

A.106 round.w.d

31 26 25 24 23 20 19 18 17 16 15 12 11 6 5 0

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 1011
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: round.w.d %reg, %freg

Operation (C Code):

if (fesetround(FE_TONEAREST) == 0) {
fprintf (stderr, "Failed to set rounding mode.\n");
exit (EXIT_FAILURE);

}
int32_t res = (int) nearbyint(load_double(rt));

RB[rt] = res;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 219

A.107 round.w.s

31 26 25 24 23 20 19 18 17 16 15 12 11 6 5 0

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 1100
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: round.w.s %reg, %freg

Operation (C Code):

if (fesetround(FE_TONEAREST) == 0) {
fprintf (stderr, "Failed to set rounding mode.\n");
exit (EXIT_FAILURE);

}
int32_t res = (int) nearbyintf(load_float(rt));

RB[rt] = res;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.108 sc

31 26 25 12 11

220

op
011000

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: sc Yreg, %imm (%reg)

Operation (C Code):

DATA_PORT->write(RB[rs] + imm, RB[rt]);
RB[rt] = 1;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.109 sdcl

31 26 25 12 11

221

op
011001

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: sdcl %freg, %imm (%reg)

Operation (C Code):

DATA_PORT->write(RB[rs] + imm + 4, RBD[rt]);
DATA_PORT->write(RB[rs] + imm, RBD[rt + 1]);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.110 sdxcl

31 26 25 24 23 20 19 18 17 12 11

222

op extl ext2 ext3

100000 00 | 1000 | 01 rd e

rt

6 2 4 2 6 6

Encoding Format: PL18

Assembly Language Syntax: sdxcl Yfreg, %reg (Vreg)

Operation (C Code):

DATA_PORT->write(RB[rt] + RB[rs] + 4, RBD[rd]);
DATA_PORT->write(RB[rt] + RB[rs], RBD[rd + 1]);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 223

A.111 seb
31 26 25 24 23 20 19 18 17 16 15 12 11 6 5 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 00 0011
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: seb reg, %reg

Operation (C Code):

RB[rs] = sign_extend(RB[rt], 8);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

224

A.112 seh
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op ext1 ext2 extd | ext4 exth s ot
100010 00 0000 00 | 00 0100
6 2 1 2 2 1 6 6

Encoding Format: PL12

Assembly Language Syntax: seh reg, %reg

Operation (C Code):

RB[rs] = sign_extend(RB[rt], 16);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

225

A.113 shir
op extl ext2 ext3
100000 | 00 | 0011 | 01 rd o it

Encoding Format: PL18

Assembly Language Syntax: shlr Yreg, ‘reg, ’reg

Operation (C Code):

RB[rd] = RB[rt] << (RB[rs] & Ox1F);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

226

A.114 shl
op extl ext2 ext3
100000 | 00 | 0010 | 10 vd " 1t

Encoding Format: PL18

Assembly Language Syntax: shl %reg, %reg, %imm

Operation (C Code):

RB[rd] = RB[rt] << rs;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

227

A.115 shr
op extl ext2 ext3
100000 | 00 | 0010 | 11 rd " it

Encoding Format: PL18

Assembly Language Syntax: shr %reg, %reg, %imm

Operation (C Code):

RB[rd] = RB[rt] >> rs;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

228

A.116 shrr
31 26 25 24 23 20 19 18 17 12 11 0
op extl ext2 ext3 d s ot
100000 00 | 0011 | 10 '

6 2 4 2 6 6

Encoding Format: PL18

Assembly Language Syntax: shrr Yreg, ‘reg, ’reg

Operation (C Code):

RB[rd] = RB[rt] >> (RB[rs] & Ox1F);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

229

A. 117 slti
31 26 25 12 11 0
op
010000 1mm s Ty
6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: slti Yreg, reg, hexp

Operation (C Code):

// Set the RD if RS< IMM
if ((ac_Sword)RB[rs] < (ac_Sword)imm)

RB[rt] = 1;
// Else reset RD
else

RB[rt] = 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

230

A.118 st
op extl ext2 ext3
100000 00 | 0001 | 00 vd " r

Encoding Format: PL18

Assembly Language Syntax: slt %reg, %reg, %reg

Operation (C Code):

// Set the RD if RS< RT
if ((ac_Sword)RB[rs] < (ac_Sword)RB[rt])

RB[rd] = 1;
// Else reset RD
else

RB[rd] = 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.119 sltiu

31 26 25 12 11

231

op s t
010001 i !
6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: sltiu %reg, %reg, %exp

Operation (C Code):

// Set the RD if RS< IMM
if ((ac_Uword)RB[rs] < (ac_Uword) (imm & Ox3FFF))

RB[rt] = 1;
// Else reset RD
else

RB[rt] = 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

232

A.120 sltu
op extl ext2 ext3
100000 | 00 | o001 | 01 vd " 1t

Encoding Format: PL18

Assembly Language Syntax: sltu Yreg, %reg, ’reg

Operation (C Code):

// Set the RD if RS < RT
if (RB[rs] < RB[rt])

RB[rd] = 1;
// Else reset RD
else

RB[rd] = 0;

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.121 sqrt.d

31 26 25 24 23 20 19 18 17 16 15 12 11

233

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 0001
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: sqrt.d %freg, %freg

Operation (C Code):

double res = sqrt(load_double(rt));
save_double(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.122 sqrt.s

31 26 25 24 23 20 19 18 17 16 15 12 11

234

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 0010
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: sqrt.s %freg, %freg

Operation (C Code):

float res = sqrtf(load_float(rt));
save_float(res, rs);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 235

A.123 stb

31 26 25 12 11 6 5 0

op
001001

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: stb %reg, \%lo(%exp) (Y%reg)

Operation (C Code):

unsigned char byte;
byte = RB[rt] & OxFF;
DATA_PORT->write_byte(RB[rs] + imm, byte);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 236

A.124 sth

31 26 25 12 11 6 5 0

op
001010

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: sth %reg, \%lo(%exp) (Y%reg)

Operation (C Code):

unsigned short int half;
half = RB[rt] & OxFFFF;
DATA_PORT->write_half(RB[rs] + imm, half);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 237

A.125 stw

31 26 25 12 11 6 5 0

op
001011

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: stw %reg, \%lo(%exp) (Y%reg)

Operation (C Code):

DATA_PORT->write(RB[rs] + imm, RB[rt]);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.126 stwl

31 26 25 12 11

238

op

001100 fmm s

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: stwl %reg, (%reg)

Operation (C Code):

unsigned int addr, offset;
ac_Uword data;

addr = RB[rs] + imm;

offset = (addr & 0x3) * 8;

data = RB[rt];

data >>= offset;

data |= DATA_PORT->read(addr & OxFFFFFFFC)
& (OxFFFFFFFF << (32 - offset));

DATA_PORT->write(addr & OxFFFFFFFC, data);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 239

A.127 stwr

31 26 25 12 11 6 5 0

op

001101 mm s r

6 14 6 6

Encoding Format: PL26i

Assembly Language Syntax: stwr %reg, (Yreg)

Operation (C Code):

unsigned int addr, offset;
ac_Uword data;

addr = RB[rs] + imm;

offset = (3 - (addr & 0x3)) * 8;

data = RB[rt];

data <<= offset;

data |= DATA_PORT->read(addr & OxFFFFFFFC) & ((1 << offset) - 1);
DATA_PORT->write(addr & OxFFFFFFFC, data);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 240

A.128 sub.d

31 26 25 24 23 20 19 18 17 12 11 6 5 0

op extl ext2 ext3 d s ot
100000 00 | 0110 | 10 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: sub.d %freg, %freg, %freg

Operation (C Code):

double res = load_double(rs) - load_double(rt);
save_double(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE 241

A.129 sub.s

31 26 25 24 23 20 19 18 17 12 11 6 5 0

op extl ext2 ext3 d s ot
100000 00 | 0110 | 11 '
6 2 4 2 6 6 6

Encoding Format: PL18

Assembly Language Syntax: sub.s %freg, %freg, %freg

Operation (C Code):

float res = load_float(rs) - load_float(rt);
save_float(res, rd);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

242

A.130 sub
op extl ext2 ext3
100000 00 | 0000 | 10 vd " r

Encoding Format: PL18

Assembly Language Syntax: sub %reg, %reg, %reg

Operation (C Code):

RB[rd] = RB[rs] - RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.131 swcl

31 26 25 12 11

243

op
011011

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: swcl %freg, %imm (%reg)

Operation (C Code):

DATA_PORT->write(RB[rs] + imm, RBS[rt]);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.132 swxcl

31 26 25 24 23 20 19 18 17 12 11

244

op extl ext2 ext3

100000 00 | 1000 | 11 rd e

rt

6 2 4 2 6 6

Encoding Format: PL18

Assembly Language Syntax: swxcl Yfreg, %reg (Vreg)

Operation (C Code):

DATA_PORT->write(RB[rt] + RB[rs], RBS[rd]);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

245

A.133 sync
31 26 25 24 23 20 19 18 17 16 15 0
op extl ext2 ext3 | ext4 exth ext6 ext’?
100100 00 0000 00 | 00 0000 000000 000010

6

2

4

Encoding Format: PL0

2

2

Assembly Language Syntax: sync

Operation (C Code):

// Memory barrier

4

6

6

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

246

A.134 syscall
31 26 25 24 23 20 19 18 17 16 15 12 11 0
op extl ext2 ext3 | ext4 exth ext6 ext’?
100100 00 0000 00 | 00 0000 000000 000001

6

2

4

Encoding Format: PL0

Assembly Language Syntax: syscall

Operation (C Code):

2

uint32_t sysnum = RB[4];
if (sysnum == 0x100C) {

fprintf (stderr, "Warning: fstat unimplemented.\n");

2

4

6

RB[2] = -1;
return;
}
// relocating regs
RB[4] = RB[5];
RB[5] = RB[6];
RB[6] = RB[7];
RB[7] = RB[8];
RB[8] = RB[9];
if (syscall.process_syscall(sysnum) == -1) {

fprintf (stderr, "Warning: Unimplemented syscall.\n");
RB[2] = -1;

3

// Sets a3 to 1 or 0 for error/success

if ((int)RB[2] < 0)
RB[7] = 1;

else

RB[7] = 0;

6

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

247

A.135 teq
31 26 25 24 23 20 19 18 17 16 15 12 11 0]
op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 00 0001
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: teq reg, hreg

Operation (C Code):

if (RB[rs] == RB[rt]) {

fprintf (stderr, "Trap generated at PC=0x%X\n", (uint32_t)ac_pc);

exit (EXIT_FAILURE);
X

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.136 trunc.w.d

31 26 25 24 23 20 19 18 17 16 15 12 11

248

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 01 1111
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: trunc.w.d %freg, %freg

Operation (C Code):

RBS[rs] = (int32_t)load_double(rt);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.137 trunc.w.s

31 26 25 24 23 20 19 18 17 16 15 12 11

249

op extl ext2 ext3 | ext4 exth s ot
100010 00 0000 00 | 10 0000
6 2 4 2 2 4 6 6

Encoding Format: PL12

Assembly Language Syntax: trunc.w.s %freg, %freg

Operation (C Code):

RBS[rs] = (int32_t)load_float(rt);

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

250

A.138 xor
op extl ext2 ext3
100000 00 | 0010 | 00 vd " r

Encoding Format: PL18

Assembly Language Syntax: xor Yreg, %reg, ‘reg

Operation (C Code):

RB[rd] = RB[rs] ~ RB[rt];

APPENDIX A. OPENISA INSTRUCTION SET REFERENCE

A.139 xori

31 26 25 12 11

251

op
010100

rt

6 14 6

Encoding Format: PL26i

Assembly Language Syntax: xori Yreg, ‘reg, ’%imm

Operation (C Code):

RB[rt] = RB[rs] =~ (imm & Ox3FFF);

