
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Fabíola Martins Campos de Oliveira

Partitioning Convolutional Neural Networks for

Inference on Constrained Internet-of-Things Devices

Particionamento de Redes Neurais de Convolução para

Inferência em Dispositivos Restritos da Internet das

Coisas

CAMPINAS

2020

Fabíola Martins Campos de Oliveira

Partitioning Convolutional Neural Networks for Inference on

Constrained Internet-of-Things Devices

Particionamento de Redes Neurais de Convolução para Inferência

em Dispositivos Restritos da Internet das Coisas

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutora em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Edson Borin

Este exemplar corresponde à versão final da
Tese defendida por Fabíola Martins Campos
de Oliveira e orientada pelo Prof. Dr. Edson
Borin.

CAMPINAS

2020

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

Oliveira, Fabíola Martins Campos de, 1988-

OL4p OliPartitioning convolutional neural networks for inference on constrained

Internet-of-things devices / Fabíola Martins Campos de Oliveira. – Campinas,

SP : [s.n.], 2020.

OliOrientador: Edson Borin.

OliTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

Oli1. Internet das coisas. 2. Redes neurais convolucionais. 3. Particionamento.

4. Computação distribuída. 5. Computação em névoa. 6. Inferência. I. Borin,

Edson, 1979-. II. Universidade Estadual de Campinas. Instituto de

Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Particionamento de redes neurais de convolução para inferência

em dispositivos restritos da Internet das coisas

Palavras-chave em inglês:
Internet of things

Convolutional neural networks

Partitioning

Distributed computing

Fog computing

Inference

Área de concentração: Ciência da Computação

Titulação: Doutora em Ciência da Computação

Banca examinadora:
Edson Borin [Orientador]

Kalinka Regina Lucas Jaquie Castelo Branco

Jó Ueyama

Edmundo Roberto Mauro Madeira

Sandra Eliza Fontes de Avila

Data de defesa: 17-07-2020

Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-8531-4559

- Currículo Lattes do autor: http://lattes.cnpq.br/4049323565071061

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Fabíola Martins Campos de Oliveira

Partitioning Convolutional Neural Networks for Inference on
Constrained Internet-of-Things Devices

Particionamento de Redes Neurais de Convolução para Inferência

em Dispositivos Restritos da Internet das Coisas

Banca Examinadora:

• Prof. Dr. Edson Borin
IC/UNICAMP

• Profa. Dra. Kalinka Regina Lucas Jaquie Castelo Branco
ICMC/USP

• Prof. Dr. Jó Ueyama
ICMC/USP

• Prof. Dr. Edmundo Roberto Mauro Madeira
IC/UNICAMP

• Profa. Dra. Sandra Eliza Fontes de Avila
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 17 de julho de 2020

Dedicated to my grandparents, Celso, Miriam, Francisco, and Laura, my parents, Eliel
and Raquel, my brother Lucas, and my boyfriend, Helói.

“Computer Science is no more about comput-
ers than astronomy is about telescopes.”

(Edsger W. Dijkstra)

Acknowledgments

First, I would like to express my gratitude to Prof. Dr. Edson Borin for his supervision,
friendly guidance, support, and encouragement throughout this work.

I am forever indebted to my family and my boyfriend for their endless love, care, and
encouragement in this journey and life.

I wish to acknowledge the High-Performance Computing Multidisciplinary Laboratory
(LMCAD) and the Institute of Computing at the University of Campinas (IC - Unicamp)
for providing the necessary infrastructure for my research.

I would also like to thank Prof. Dr. Maurício Breternitz Jr., Prof. Dr. João Paulo
Papa, Prof. Dr. Luiz Fernando Bittencourt, Prof. Dr. Roberto Lotufo, Prof. Dr. Sandro
Rigo, and Prof. Dr. Edmundo Madeira for their help and suggestions for my research.

I wish to acknowledge Prof. Dr. Kalinka Regina Lucas Jaquie Castelo Branco, Prof.
Dr. Jó Ueyama, Prof. Dr. Edmundo Roberto Mauro Madeira, and Prof. Dr. Sandra
Eliza Fontes de Avila to participate in the jury.

I also wish to acknowledge the professors and staff of the Institute of Computing for
their help.

I would also like to thank all my friends at Unicamp for their understanding, help,
and motivations throughout this work.

I wish to acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior - Brasil (CAPES) - Finance Code 001 and PROCAD (2966/2014), the Con-
selho Nacional de Desenvolvimento Científico e Tecnológico - CNPq - 142235/2017-2 and
313012/2017-2, the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP -
Centro de Pesquisa, Inovação e Difusão - CEPID - Center for Computing in Engineering
& Sciences - CCES - grant 2013/08293-7, Microsoft, and Petrobras for their financial
support.

Resumo

Bilhões de dispositivos comporão a Internet das Coisas (do inglês, Internet of Things
(IoT)) nos próximos anos, gerando uma vasta quantidade de dados que necessitarão ser
processados e interpretados eficientemente. A maioria dos dados é atualmente processada
na nuvem, contudo, esse paradigma não pode ser adotado para processar a vasta quanti-
dade de dados gerados pela IoT, principalmente devido a limites de largura de banda e
requisitos de latência de muitas aplicações. Assim, pode-se usar a computação na borda
para processar esses dados usando os próprios dispositivos. Neste contexto, técnicas de
aprendizado profundo são adequadas para extrair informações desses dados, mas os requi-
sitos de memória de redes neurais profundas podem impedir que até mesmo a inferência
seja executada em um único dispositivo restrito em recursos. Além disso, os requisitos
computacionais de redes neurais profundas podem produzir um tempo de execução in-
viável. Para habilitar a execução de modelos de redes neurais em dispositivos de IoT
restritos em recursos, o código pode ser particionado e distribuído entre múltiplos dis-
positivos. Abordagens diferentes de particionamento são possíveis, no entanto, algumas
delas reduzem a taxa de inferência à qual o sistema pode executar ou aumentam a quan-
tidade de comunicação entre múltiplos dispositivos. Nesta tese, o objetivo é distribuir
a execução da inferência de Redes Neurais de Convolução entre diversos dispositivos da
IoT restritos. Três algoritmos de particionamento automático que modelam a rede neural
profunda como um grafo de fluxo de dados e focam nas características de IoT foram pro-
postos, usando funções-objetivo como maximização da taxa de inferências ou minimização
de comunicação e considerando limites de memória como restrição. O primeiro algoritmo
é o Particionamento baseado em Kernighan e Lin, cuja função-objetivo é minimizar a
comunicação, respeitando as restrições de memória de cada dispositivo. O segundo algo-
ritmo é o Particionamento de Redes Neurais Profundas para Dispositivos Restritos da IoT,
que, adicionalmente ao primeiro algoritmo, pode maximizar a taxa de inferências da rede
neural e também pode contabilizar apropriadamente a quantidade de memória requerida
pelos parâmetros compartilhados e biases de Redes Neurais de Convolução. Finalmente,
o terceiro algoritmo é o Particionamento Multinível de Redes Neurais Profundas para
Dispositivos Restritos da IoT, um algoritmo que emprega a abordagem multinível para
reduzir o tamanho do grafo e aproveitar as capacidades do algoritmo anterior. A principal
contribuição desta tese é mostrar que se deve considerar o particionamento por neurônios
ao particionar redes neurais profundas em dispositivos restritos da IoT. Comparada aos
algoritmos na literatura, a redução de comunicação é geralmente a única função-objetivo
oferecida e não há consideração de restrições de memória, permitindo que esses algoritmos
produzam particionamentos inválidos. Além disso, os algoritmos propostos nesta tese, na
maioria das vezes, produzem resultados melhores do que as abordagens na literatura.
Finalmente, outra contribuição é que se podem utilizar os algoritmos propostos para par-
ticionar entre quaisquer dispositivos qualquer computação que possa ser expressa como
um grafo de fluxo de dados.

Abstract

Billions of devices will compose the Internet of Things (IoT) in the next few years, gener-
ating a vast amount of data that will have to be processed and interpreted efficiently. Most
data are currently processed on the cloud, however, this paradigm cannot be adopted to
process the vast amount of data generated by the IoT, mainly due to bandwidth limits
and latency requirements of many applications. Thus, we can use edge computing to
process these data using the devices themselves. In this context, deep learning techniques
are generally suitable to extract information from these data, but the memory require-
ments of deep neural networks may prevent even the inference from being executed on
a single resource-constrained device. Furthermore, the computational requirements of
deep neural networks may yield an unfeasible execution time. To enable the execution of
neural network models on resource-constrained IoT devices, the code may be partitioned
and distributed among multiple devices. Different partitioning approaches are possible,
nonetheless, some of them reduce the inference rate at which the system can execute
or increase the amount of communication that needs to be performed between the IoT
devices. In this thesis, the objective is to distribute the inference execution of Convolu-
tional Neural Networks to several constrained IoT devices. We proposed three automatic
partitioning algorithms, which model the deep neural network as a dataflow graph and
focus on the IoT features, using objective functions such as inference rate maximization
or communication minimization and considering memory limitations as restrictions. The
first algorithm is the Kernighan-and-Lin-based Partitioning, whose objective function is
to minimize communication, respecting the memory restrictions of each device. The sec-
ond algorithm is the Deep Neural Networks Partitioning for Constrained IoT Devices,
which, additionally to the first algorithm, can maximize the neural network inference rate
and can also account appropriately for the amount of memory required by the shared pa-
rameters and biases of Convolutional Neural Networks. Finally, the third algorithm is the
Multilevel Deep Neural Networks Partitioning for Constrained IoT Devices, an algorithm
that employs the multilevel approach to reduce the graph size and take advantage of the
previous algorithm capabilities. The major contribution of this thesis is to show that we
should consider the partitioning per neurons when partitioning deep neural networks into
constrained IoT devices. When compared to the literature algorithms, communication
reduction is usually the only offered objective function and there is no consideration of
memory restrictions, allowing these algorithms to produce invalid partitionings. Addition-
ally, our algorithms mostly produce better results than the approaches in the literature.
Finally, another contribution is that we can use the proposed algorithms to partition into
any kind of device any computation that can be expressed as a dataflow graph.

List of Figures

1.1 Example of how a Deep Neural Network (DNN) can be distributed to
execute its inference in multiple devices in the context of smart cities. A
camera may be collecting images that need to be processed. Cameras may
have some amount of extra resources such as memory and computational
performance and, thus, can calculate a part of the inference of DNNs.
Nearby devices can calculate the rest of the inference of this DNN while they
also perform their primary tasks, which may be the inference calculations of
other neural networks. Thus, the devices communicate the necessary data
to the other devices so that the inference can be performed. [98] (modified). 26

2.1 Evolution of technologies that form the IoT basis. The year represents
when the respective technology started being used. Different from the
IoT, Wireless Sensor Networks (WSNs) usually have homogeneous sensors
with short-range communication, low bandwidth, low energy, low process-
ing power, and small memory. Both Radio-Frequency Identification (RFID)
and WSN technologies help to improve the IoT, combined with barcodes,
smartphones, near-field communication, and cloud computing. 30

2.2 Sensor communication in smart structures in the context of smart cities.
Smart buildings and smart structures contain sensors connected in a net-
work, which communicate the building state at relevant intervals and may
provide information about the building’s movement in response to strong
winds or earthquakes and about the structural health, temperature, vibra-
tion, and displacement. If any problem is encountered by the processing of
these data, actuators in the building can absorb shocks or reduce its move-
ments and a warning can be sent to other buildings or structures so that
the people responsible for them take the necessary actions [98] (modified). 31

2.3 IoT key characteristics. These characteristics can be considered solely or
combined, since a problem may have design requirements that involve one
or more of these aspects. 32

2.4 Classes of constrained devices concerning the amount of available memory
(lower = more constrained). 1 kibibyte = 1024 bytes (KiB) [88] (modified). 34

2.5 Examples of real-world devices for each class of constrained devices con-
cerning the amount of available memory. The bold and red numbers in-
dicate devices that were used in this work. 1 mebibyte = 1024 kibibytes
(MiB) [88] (modified). 35

2.6 Basic structure of a neural network: an input layer, one or more hidden
layers, and an output layer. This fully connected neural network is the
Multilayer Perceptron (MLP) [100] (modified). 38

2.7 Sparse interactions between neurons from different layers. These interac-
tions indirectly connect neurons from distant layers to a larger portion of
previous layers and the input [34] (modified). 42

2.8 An example of a Convolutional Neural Network (CNN) architecture with
four layers: an input layer with depth three, two hidden layers, and the
output layer with size 1 wide x 1 high and the depth corresponding to the
number of output classes [100] (modified). 43

2.9 An example of a Two-Dimensional (2D) convolution without kernel-flipping
for an input of size 3× 4 and a kernel of size 2× 2, resulting in an output
with size 2 × 3. The painted boxes represent the regions involved in the
convolution calculation of the first output position [34] (modified). 44

2.10 The receptive field of each neuron, which comprises only a portion of the full
width and height of the input layer but its complete depth. Furthermore,
each depth slice (a 2D matrix) consists of a feature map and the output
neurons in the same position in width and height form a depth column,
also known as depth fiber [100] (modified). 45

2.11 (a) Example of how a fully connected neural network may be represented
as a dataflow graph. (b) Example of how the dataflow graph represented
in item (a) can be partitioned to produce an optimal partitioning; (c) a
suboptimal partitioning; and (d) an invalid partitioning. 48

2.12 (a) The fully connected neural network for the second example. (b) The
hidden-layer neuron modeled as nine vertices, one for each neuron opera-
tion. (c) A random partitioning may be suboptimal. (d) The application
of a partitioning algorithm may lead to an optimal or near-optimal parti-
tioning. (e) An invalid partitioning. 52

3.1 A distributed DNN basic architecture for training using data parallelism
and parameter servers. 56

4.1 Flowchart of Algorithm 1 [76]. 71
4.2 LeNet architecture and vertex granularity used in our algorithm. Each

cube stands for a CNN neuron while each circle or ellipse is a vertex in
the source graph. Edges represent data transfers and are labeled with the
number of bytes per inference that each edge must transfer [28] (modified). 73

4.3 LeNet manual partitionings and their communication costs in bytes trans-
ferred between partitions per inference: (a) four partitions, per layers: 50.2
KiB; (b) four partitions, per lines: 31.5 KiB; (c) four partitions, per quad-
rants: 30.8 KiB; (d) four partitions, hybrid: 23.8 KiB; and (e) six partitions,
hybrid: 30.8 KiB [28] (modified). 77

4.4 Amount of communication for the manual partitionings. The worst result
is when LeNet is partitioned across its layers, which is the same approach
adopted by popular machine learning frameworks such as Distributed Ar-
tificial Neural Networks for the Internet of Things (DIANNE), DeepX, and
TensorFlow. The hybrid partitioning leads to the best result without the
use of any partitioning tool. 78

4.5 Amount of communication for the homogeneous partitionings using KLP
compared to the best manual partitionings of Subsection 4.3.1 [28] (modified). 79

4.6 Best partitioning achieved by Kernighan-and-Lin-based Partitioning (KLP)
using four partitions without considering IoT device memory restrictions.
© 2018 IEEE. 80

4.7 Best partitioning achieved by KLP with STM32F469xx memory restric-
tions when four devices were available and the input layer was free. © 2018
IEEE. 81

4.8 Best partitioning achieved by KLP with STM32F469xx memory restric-
tions when six devices were available and the input layer was free. © 2018
IEEE. 81

4.9 Best partitioning achieved by KLP with STM32F469xx memory restric-
tions when four devices were available and the input layer was locked to
stay in the same partition. © 2018 IEEE. 82

4.10 Best partitioning achieved by KLP with STM32F469xx memory restric-
tions when six devices were available and the input layer was locked to
stay in the same partition. © 2018 IEEE. 82

4.11 Amount of communication for the heterogeneous partitionings using KLP
compared to a manual partitioning [28] (modified). 84

5.1 LeNet architecture and vertex granularity used in our experiments. Each
cube stands for a CNN neuron while each circle or ellipse is a vertex in
the source dataflow graph. Edges represent data transfers and are labeled
with the number of bytes per inference that each edge must transfer. (a)
LeNet 1:1: the original LeNet with 2343 vertices with the neurons in
depth grouped to form only one vertex. (b) LeNet 2:1: LeNet with 604
vertices, in which the width and height of each convolution and pooling
layer were divided by two, except for the last pooling layer, and the depth
of the fully connected layers was divided by four [76]. 89

5.2 LeNet 2:1 user-made per-layer partitioning [76]. 92
5.3 Partitionings using the greedy algorithm: (a) LeNet 2:1 for the two-device

experiments; (b) LeNet 2:1 for the four-device experiments; (c) LeNet 2:1
for the 11-device experiments (used nine devices); (d) LeNet 2:1 for the 56-
and 63-device experiments (used 44 devices); and (e) LeNet 1:1 for the
56- and 63-device experiments (used 38 devices) [76]. 94

5.4 Partitionings using the inference rate greedy approach: (a) LeNet 2:1 for
the 11-device experiments; (b) LeNet 2:1 for the 56-device experiments;
(c) LeNet 1:1 for the 56-device experiments; and (d) LeNet 2:1 for the
63-device experiments [76]. 95

5.5 (a) Legend for all graphs and (b) inference rate and communication values
for the two-device experiments [76] (modified). 103

5.5 (Continued) Inference rate and communication values for the: (c) four-
device experiments; and (d) 11-device experiments [76] (modified). 104

5.5 (Continued) Inference rate and communication values for the: (e) 56-device
experiments; and (f) 63-device experiments [76] (modified). 105

6.1 The three phases of the multilevel approach: coarsening, coarse partition-
ing, and uncoarsening. Gn represents the graphs used in the algorithm: G0

is the source graph, G1 to G3 are increasingly coarser graphs generated by
the approach, and G4 is the coarsest graph, also generated by the multilevel
approach. This figure is present in the METIS manual [48] (modified). . . 111

6.2 An example of (a) a heavy-edge matching and (b) a two-hop matching. We
do not sum the edge weights to form only one edge between the grouped
vertices Sab and Scd. Our proposal includes data about the vertex sources
so that, for instance, when the algorithm groups vertices c and d, it removes
the repeated vertices with repeated sources. These modifications also work
for the heavy-edge matching. 112

6.3 AlexNet architecture. Edges represent data transfers and are labeled with
the number of bytes per inference that each edge must transfer. 114

6.4 Normalized results for the LeNet 2:1 and LeNet 1:1 models with the com-
munication reduction objective function. 117

6.5 Normalized results for the AlexNet model with the communication reduc-
tion objective function. The numbers in bytes indicate the communication
cost for the smallest result in each setup. 118

6.6 Inference rate results for the AlexNet model with the inference rate maxi-
mization objective function. 120

6.7 Communication cost applying the Best Fit algorithm to each subgraph
produced in the coarsening phase. 121

6.8 LeNet 2:1 grouping in the first step of the coarsening phase. 122

List of Tables

2.1 Constrained device models used as examples of real-world devices in Figure
2.5. The bold names and numbers and the red numbers indicate devices
that were used in this work [88] (modified). 36

3.1 Main features of general frameworks for machine learning and our approach. 59
3.2 Summary of machine learning and IoT frameworks discussed in the related

work and our approach. 62
3.3 Summary of the partitioning algorithms discussed in the related work and

our approach. 66

4.1 Characteristics of the LeNet model used in this chapter. 74
4.2 Setups and experiments. 75

5.1 Characteristics of each LeNet model used in this chapter [76]. 89
5.2 Device data and the maximum number of devices allowed to be used in the

experiments [76]. 90
5.3 Normalized results for the naive approaches. The minimum and maximum

consider Tables 5.3 and Table 5.4 [76]. 99
5.4 Normalized results for Deep Neural Networks Partitioning for Constrained

IoT Devices (DN2PCIoT) 30R and DN2PCIoT after approaches [76]. . . . 99
5.5 Pipeline parallelism factor for each setup [76] (modified). 100

6.1 Characteristics of the AlexNet model used in this chapter. 115
6.2 Device data and the maximum number of devices allowed to be used in the

AlexNet experiments. 116
6.3 Coarsest graph data for METIS and Multilevel Deep Neural Networks Par-

titioning for Constrained IoT Devices (MDN2PCIoT) for each AlexNet setup.119

A.1 METIS parameters used to achieve the METIS results in Table 5.3. 145
A.2 METIS parameters used to achieve the METIS results in Figure 5.5. 146
A.3 METIS parameters used to achieve the METIS results in Figure 6.5. 147
A.4 METIS parameters used to achieve the METIS results in Figure 6.6. 147

Abbreviations and Acronyms

2D Two-Dimensional 11, 42, 44, 45, 80, 82, 92, 93

3D Three-Dimensional 41

A Attribute 62

ACM Association for Computing Machinery 55

API Application Programming Interface 129

ARM Advanced Reduced Instruction Set Computer (RISC) Machine 36, 73, 78

B bytes 11, 13, 47–50, 52, 53, 73, 77, 88, 113, 114, 116, 118

CEML Complex Event Machine Learning 60, 62

CNN Convolutional Neural Network 9, 11, 12, 21, 22, 24, 26–29, 33, 39–43, 46, 47, 50,
51, 53, 55, 57, 60, 64, 65, 67, 68, 70, 73, 76, 85–87, 89, 98, 100, 101, 107, 109, 110,
113–115, 120–126, 128, 129

CoAP Constrained Application Protocol 34

CPU Central Processing Unit 55, 60, 61

D0 Class 0 33–35

D1 Class 1 33–35, 90

D2 Class 2 34, 35, 74, 90, 115

DAG Directed Acyclic Graph 39, 40, 47, 114, 126, 129

DIANNE Distributed Artificial Neural Networks for the Internet of Things 11, 25, 28,
60, 67, 75, 76, 78, 79, 83, 85, 87, 91, 97, 98, 100, 107, 124, 125

DN2PCIoT Deep Neural Networks Partitioning for Constrained IoT Devices 9, 14, 22,
28, 83, 86–88, 95–100, 102, 103, 106, 107, 109, 110, 112–114, 116, 117, 119, 122,
125–129, 137

DNN Deep Neural Network 10, 11, 24–27, 39, 46, 49–51, 55–63, 70, 73, 83, 85–87, 89,
98, 107, 124–126, 128, 129

DSP Digital Signal Processor 24, 60

FLOP FLoating-point OPerations 34, 35, 47–50, 52, 87, 89, 114–116

FNN Feedforward Neural Network 29, 39, 40, 47

FPU Floating-Point Unit 36, 78

GPS Global Positioning System 29

GPU Graphics Processing Unit 24, 55, 59, 61

HTTP Hyper Transfer Protocol 34

IBM International Business Machines 30

IEEE Institute of Electrical and Electronics Engineers 55

ILSVRC ImageNet Large Scale Visual Recognition Challenge 40, 135

IoT Internet of Things 8–10, 12, 14, 21, 23–30, 32, 36, 37, 47, 51, 53–56, 58–62, 64, 65,
67, 68, 70, 73, 79, 80, 83, 85–87, 100, 107, 120, 121, 124–126, 128, 129

iRgreedy Inference-rate greedy approach 22, 93, 96

KiB 1 kibibyte = 1024 bytes 10, 34, 35, 64, 73, 75, 79, 90, 92, 118, 120, 121

KLP Kernighan-and-Lin-based Partitioning 9, 11, 12, 21, 28, 67–70, 74–76, 78–87, 125,
126, 137

LoRa Long-Range spread spectrum modulation technique 31, 129

LTE Long-Term Evolution 31, 129

MCU Microcontroller Unit 25, 36, 78

MDN2PCIoT Multilevel Deep Neural Networks Partitioning for Constrained IoT De-
vices 9, 14, 22, 28, 109–120, 122, 123, 126–129, 137

MFLOP 1 mega floating-point operation = 106 floating-point operations 90

MiB 1 mebibyte = 1024 kibibytes 10, 35, 115, 116, 118

MLP Multilayer Perceptron 10, 38–42

O Operator 62

OAP Operator-Attribute-Parameter 57–59, 62

RAM Random Access Memory 33–35, 64, 73, 75, 90

RBM Restricted Boltzmann Machine 55

ResNet Residual Network 41, 107

RFID Radio-Frequency Identification 10, 29, 30, 32

RGB Red, Green, and Blue 43

RISC Reduced Instruction Set Computer 15, 36, 78

RNN Recurrent Neural Network 39, 55, 60

S Sample 58, 59, 62

SA Sample-Attribute 58, 59

SO Sample-Operator 58, 59

SOA Sample-Operator-Attribute 58, 59

SOAP Sample-Operator-Attribute-Parameter 57–59

SOP Sample-Operator-Parameter 58, 59

SVM Support Vector Machine 39

TLS Transport Layer Security 34

TPU Tensor Processing Unit 59

UDP User Datagram Protocol 34

VGGNet Visual Geometry Group Network 40, 107

WLAN Wireless Local Area Network 31

WSN Wireless Sensor Network 10, 29, 30

XML Extensible-Markup-Language 34

ZFNet Zeiler and Fergus Network 40

Symbols

∗ Convolution operation 43, 44

∞ Infinity 43, 49

∀ Universal quantification 49, 51, 53

∈ Set membership 49, 51, 53
∑

Summation 51

a Neuron activation value 38, 42, 48, 52

b Bias associated with a neuron 35, 38

CC Cross-Correlation function 44

C Device C 48–50, 52

Cn Convolution layer n 73

c Kernel function to the convolution operation 43

Di Depth of the input layer of a convolution or pooling layer 45, 46

Dc Depth of a convolution layer 45

Dp Depth of a pooling layer 46

D Device D 48–50, 52

d Derivative function 43

diff Function that returns 1 if two elements are assigned to different partitions and 0
otherwise 51, 53

dev Device 48, 49, 53

E Number of edges 83, 106

e Element e 51

F Number of filters for one convolution layer 44–46

FCn Fully connected layer n 73

f Neuron activation function 38, 52

Gn Graph in the level n of the multilevel approach coarsening phase 12, 111

G 1 giga = 109 35, 116

g An arbitrary function 42

Hi Height of the input layer of a convolution or pooling layer 45, 46

Hc Height of the output layer of a convolution layer 45

Hp Height of the output layer of a pooling layer 46

h Element h 51

I Input image to the cross-correlation operation 44

i Neuron at layer l 38

J Number of neurons at layer l − 1 38

j Neuron of layer l − 1 38

K Input kernel to the cross-correlation operation 44

k 1 kilo = 103 115

kw Kernel width 44

L Number of layers in a neural network 38, 51, 92

l Neural network layer 38, 51

M Number of blocks that consist in a pooling layer after a convolution layer 46

M 1 mega = 106 34, 35, 90, 116

m An arbitrary function 42

min Minimum function 48, 49, 53

mn Memory required by neuron n 51

mp Memory that partition p can provide 51

msbpl
Memory required by the shared parameters and biases of layer l 51

N Number of neurons in the neural network 51, 53

n Neuron 51, 53

O Asymptotic upper bound 83, 92, 106, 115

o Shift related to the convolution domain variable 43

P Number of partitions 51, 92

Pn Pooling layer n 73

partition Function that returns 1 if an element e is assigned to partition p and 0 otherwise
51, 53

p Number of devices in the partitioning 49, 51, 53

Q Number of fully connected layers before the last fully connected layer 46

q Column index of matrix CC 44

Rh Receptive field height 45, 46

Rw Receptive field width 45, 46

R Receptive field size 44–46

r Row index of matrix CC 44

s Convolution operation output 43

T Stride 45, 46

t Convolution operation domain 43

U Number of convolution layers 46

u Kernel height 44

V Number of vertices 83, 106, 115

Wi Width of the input layer of a convolution or pooling layer 45, 46

Wc Width of the output layer of a convolution layer 45

Wp Width of the output layer of a pooling layer 46

w Neuron weight 52

wij Weight of the connection between neuron i at layer l and neuron j at layer l − 1 38

x Input layer data 38, 42, 48, 52

y Input function to the convolution operation 43

Z Zero padding 45, 46

z Neuron 53

Contents

1 Introduction 23
1.1 Challenges, Objectives, and Contributions 26
1.2 Thesis Organization . 28

2 Background 29
2.1 Internet of Things . 29
2.2 Resource-Constrained Devices . 33
2.3 Fog and Edge Computing . 36
2.4 Machine Learning . 37

2.4.1 Multilayer Perceptron . 38
2.5 Deep Learning . 39

2.5.1 Convolutional Neural Networks . 40
2.6 Neural Network Models as Dataflow Graphs and Partitioned Neural Networks 47
2.7 Synchronization . 51
2.8 Problem Definition . 51
2.9 Final Remarks . 53

3 Related Work 55
3.1 General Frameworks for Machine Learning 55
3.2 Approaches and Frameworks for Machine Learning on IoT 58
3.3 Partitioning Algorithms . 62
3.4 Final Remarks . 65

4 Partitioning the LeNet Convolutional Neural Network for Communica-
tion Minimization 67
4.1 Proposed Kernighan-and-Lin-based Partitioning 67
4.2 Methods and Materials . 70

4.2.1 LeNet Neural Network Model . 70
4.2.2 Setups and Experiments . 73
4.2.3 Types of Input Layers in the Experiments 74

4.3 Experimental Results . 75
4.3.1 Manual Partitionings . 75
4.3.2 Automatic Partitionings with Homogeneous Setups 76
4.3.3 Visual Analysis for the Homogeneous Partitionings 80
4.3.4 Automatic Partitionings with Heterogeneous Setups 83

4.4 Discussion . 83
4.5 Final Remarks . 85

5 Partitioning the LeNet Convolutional Neural Network for Inference
Rate Maximization 86
5.1 Proposed Deep Neural Networks Partitioning for Constrained IoT Devices

(DN2PCIoT) . 87
5.2 Methods and Materials . 88

5.2.1 LeNet Neural Network Model . 88
5.2.2 Setups and Experiments . 89
5.2.3 Types of Input Layers in the Experiments 91
5.2.4 Per Layers: User-Made Per-Layer Partitioning (Equivalent to Pop-

ular Machine Learning Frameworks) 91
5.2.5 Greedy: A Greedy Algorithm for Communication Reduction 92
5.2.6 iRgreedy: User-Made Partitioning Aiming for Inference Rate Max-

imization . 93
5.2.7 METIS . 96
5.2.8 DN2PCIoT 30R . 96
5.2.9 DN2PCIoT after Approaches . 97

5.3 Experimental Results . 97
5.3.1 Inference Rate Maximization . 97
5.3.2 Pipeline Parallelism Factor . 100
5.3.3 Inference Rate versus Communication 101

5.4 Discussion . 106
5.5 Final Remarks . 107

6 Multilevel Deep Neural Networks Partitioning for Constrained IoT De-
vices 109
6.1 Proposed MDN2PCIoT . 110
6.2 Methods and Materials . 113

6.2.1 Convolutional Neural Network Models 113
6.2.2 Device Characteristics . 115
6.2.3 Algorithms . 115

6.3 Experimental Results . 116
6.3.1 Communication Reduction . 116
6.3.2 Inference Rate Maximization . 119

6.4 Discussion . 120
6.5 Final Remarks . 122

7 General Conclusions and Future Perspectives 124
7.1 Contributions . 124
7.2 Publications Arisen from this Thesis . 126
7.3 Limitations and Difficulties . 127
7.4 Future Perspectives . 129

Bibliography 129

A METIS parameters 144

23

Chapter 1

Introduction

The Internet of Things (IoT) is a research and industrial paradigm in which physical
devices are connected to the Internet [32], wired or wireless, and should automatically
detect and react to the environment [121]. Smart cities, health care, transportation,
tracking of environmental conditions, user activity monitoring and user tracking such as
speech, movements, physical activities, fall detection, heart conditions, cognitive support,
and life logging are some of the application domains which IoT may revolutionize by
improving environmental knowledge and user experiences [32, 70, 121].

The number of works about the IoT is growing, causing the IoT to become popular in
the research field [25, 26, 69, 131, 132]. At the same time, an increasing demand for more
applications motivates the deployment of IoT solutions in industries [11, 110, 121, 132].
In the next few years, a burst in the number of IoT devices is expected [19, 77, 111]. To
achieve the estimated billions of devices in the IoT, many of them will have to be con-
strained, for instance, in size and cost [88]. A constrained device presents limited hardware
in comparison to the current devices connected to the Internet. Recently, a classification
of constrained devices has been proposed, showing the increasing importance of them in
the IoT [15]. These devices are constrained due to their embedded nature, size, cost,
weight, power, and energy. Considering that these constraints impact on the amount
of memory, computational and communication performance, and battery life, these re-
sources must be properly employed to satisfy applications’ requirements. The proposed
classification not only differentiates more powerful IoT devices such as smartphones and
single-board computers such as Raspberry Pi from constrained devices but also delimits
the IoT scope, which neither includes servers nor desktop or notebook computers. We
consider devices that belong to this classification of constrained devices in this work.

In the IoT scenario, an environment may have several IoT devices, some of which may
spend most of the time idle or executing little work [121]. We can use these devices to
help with the task processing of other devices. On the other hand, other devices may
need to execute heavy applications to process their sensor data, for instance, cameras
that may need to continuously record and analyze images in real time [25, 60]. The IoT
devices may also be heterogeneous, raising the challenge of how to use the IoT resources
intelligently.

IoT devices may contain many sensors and can generate a large amount of data per
second. This amount may prevent the data from being sent to the cloud for processing

24

due to the high and variable latency and limited bandwidth of current networks [80, 111].
Some devices do not even allow Internet connection all the time, for example, battery-
operated devices with a low amount of energy, which prevents the continuous transmission
of IoT-generated data [69]. Furthermore, some applications require real-time or near real-
time responses, which preclude this remote dispatch and open the challenge of how to
process these data to achieve (near) real-time actions. Finally, another question related
to remote dispatching is privacy because a vast amount of sensitive data can be sent to
the Internet.

These challenges entail the data to be completely or at least partially processed on
the Internet edge such as routing switches, multiplexers, and gateways (routers and fire-
walls), in a paradigm called fog computing [17], or even on the devices themselves, in a
paradigm called edge computing [73, 78]. These scenarios can be seen as a cloud that runs
closer to the end devices or on the devices themselves [13]. By running the virtualization
infrastructure on any of those devices, the connected devices of an environment may com-
municate in a peer-to-peer fashion in order to potentially cooperate among themselves
to support services and applications independently [111]. Therefore, fog computing and
edge computing may be a solution to the vast amount of IoT sensor data that must be
processed but may not be sent to the cloud and to efficiently use the IoT resources.

As the data generated by IoT sensors are usually multimedia data such as images,
videos, and audio data, to obtain valuable information from this vast amount of data,
an application class that has been gaining the attention of both academia and industry
is machine learning, specifically the branch of deep learning [10, 54, 59]. Deep learning
techniques have already been successfully applied to analyze data generated by the sensors
of IoT devices such as smartphones, Graphics Processing Units (GPUs), and smartphone
Digital Signal Processors (DSPs) [58, 59, 61]. Some of the deep learning advantages related
to IoT are that it can automatically extract features from the data and strongly benefits
from large amounts of data [81]. Deep Neural Networks (DNNs) are one of the most
popular techniques in deep learning and their application occurs in two phases: training
and inference. In the training phase, data are used to find the most suitable parameters
for the neural network while, in the inference phase, the trained parameters are used to
analyze new input data. We focus on the inference phase execution in this work.

Deep learning techniques often present a high computational cost, especially the
Convolutional Neural Network (CNN), which is one of the most successful neural net-
works [34, 41, 54, 63, 97, 100, 106]. Since the DNN training is more computationally
intensive than the inference, previous works have employed more effort to optimize the
training [85, 117, 124]. Even though the inference is less computationally intensive, it may
still require a lot of memory and computations to be deployed on resource-constrained IoT
devices. With a limited configuration and network infrastructure restrictions, the infer-
ence performance becomes important as well, due to real-time responses or inference-rate
requirements that an application may have. Additionally, the size of the DNNs may not
fit into constrained IoT devices, causing the inference execution on a single IoT device to
be impossible.

Two approaches are commonly adopted to enable the execution of DNNs on resource-
constrained devices. The first approach prunes the neural network model so that it

25

requires fewer resources. The second approach partitions the neural network model and
executes its calculations in a distributed way on multiple devices. In some works that
employ the first approach, pruning a neural network results in accuracy loss [26, 35,
66]. On the other hand, several works can apply the first approach to reduce DNN
requirements and enable its execution on limited devices without any accuracy loss [38, 39,
125]. It is important to notice that, even after pruning a DNN, its size and computational
requirements may still prevent the DNN from being executed on a single constrained
device. Therefore, our focus is on the second approach. In this scenario, the challenge
of how to partition the neural network for distributed execution aiming to satisfy one or
more requirements arises since this is an NP-complete problem [49].

The rationale behind the DNN partitioning is to assign as many calculations as one
device can handle and, then, transfer the partially computed data to other devices, which
perform the remaining calculations. We can partition a DNN according to the network
capabilities, computational performance, and/or the amount of energy of the devices.
Thus, the result is a distributed system in which each device performs part of the inference
computation of a DNN [2, 25, 131]. The understanding of how a neural network can be
partitioned is essential to this thesis. Figure 1.1 shows how a DNN can be distributed to
execute its inference using multiple devices in the context of smart cities, which can be
one application to our work. For instance, in smart cities, there may be lots of cameras
collecting images that need to be processed. The cameras may have some amount of extra
resources such as memory and computational performance and, thus, can calculate a part
of the inference of DNNs. Nearby devices can calculate the rest of the inference of this
DNN while they also perform their primary tasks, which may be the inference calculations
of other neural networks. Thus, the devices communicate the necessary data to the other
devices so that the inference can be performed.

We are concerned with scenarios in which constrained devices produce data and only
constrained devices such as the ones containing Microcontroller Units (MCUs) and sensors,
e.g., microphones and cameras, are available to process these data. Although devices
equipped with cameras might not be constrained in some of their resources, we have to
consider that only part of these resources is available for extra processing. After all, the
devices have to execute their primary task in the first place. Additionally, in this work,
we considered Wi-Fi wireless connections, i.e., the medium is shared and can benefit from
reduced data transmission, however, we did not consider intermittence either mobility.

Some techniques have been employed to bring more efficiency to deep learning exe-
cution on IoT, optimizing DNNs for distributed execution [25, 26, 59]. However, these
works are still limited as they do not partition the DNN appropriately. Additionally, these
works do not offer subsidies to help programmers to distribute computation so that they
respect conditions such as the amount of device memory and optimize objectives such
as the inference rate or energy consumption. There are some machine learning and IoT
frameworks such as TensorFlow [1], Distributed Artificial Neural Networks for the Internet
of Things (DIANNE) [25], and DeepX [59] that offer the infrastructure to distribute the
neural network execution to multiple devices. However, they require the user to manually
partition the neural network and they limit the partitioning into a per-layer approach.
The per-layer partitioning may prevent neural networks from being executed on devices

26

...

camera result

Figure 1.1: Example of how a DNN can be distributed to execute its inference in multiple
devices in the context of smart cities. A camera may be collecting images that need to be
processed. Cameras may have some amount of extra resources such as memory and com-
putational performance and, thus, can calculate a part of the inference of DNNs. Nearby
devices can calculate the rest of the inference of this DNN while they also perform their
primary tasks, which may be the inference calculations of other neural networks. Thus,
the devices communicate the necessary data to the other devices so that the inference can
be performed. [98] (modified).

with more severe constraint conditions, for instance, some devices from the STM32 32-bit
microcontroller family [102]. This may happen because there may be a single DNN layer
whose memory requirements do not fit into the available memory of these constrained
devices. On the other hand, although general-purpose frameworks such as SCOTCH [21]
and METIS [49] present an automatic partitioning, they do not take into account the
characteristics of neural networks and constrained devices. For this reason, they provide
a suboptimal result or, in some cases, they cannot provide any valid partitioning, which
are partitionings that have all the partitions respecting the amount of memory of each
device.

1.1 Challenges, Objectives, and Contributions

The main challenges identified throughout the literature review are a proper consideration
of the heterogeneous IoT devices’ limited resources such as memory and computational
performance; a proper consideration of the IoT networks’ characteristics such as band-
width, latency, and congestion; and an automatic partitioning of the CNNs execution into
constrained devices.

The objective of this work is to treat the vast amount of data generated by the IoT de-
vices by executing CNNs on the devices themselves, removing completely the dependency

27

on the cloud. We consider these data as any kind of data that can be processed with CNNs
such as images or audio data. For this purpose, we propose algorithms to automatically
partition CNNs for efficient distributed execution of the inference on resource-constrained
IoT devices, considering the network bandwidth and the devices’ computational perfor-
mance and memory. As we do not change the neural network architecture nor inference
calculations, we maintain the quality of the result, i.e., we do not affect the neural net-
work result. Thus, we propose approaches to obtain efficiency in communication and in
the inference rate. Different from the partitioning strategies proposed on current machine
learning frameworks, our algorithms can assign neural network neurons that belong to
the same layer to different devices.

First, to address some of the challenges in the network infrastructure, we propose a new
algorithm to partition CNNs among constrained IoT devices with the objective function of
communication minimization. This algorithm always produces partitionings that respect
the amount of memory of the devices. Furthermore, we consider the amount of memory of
each device independently, allowing the algorithm to use devices with different amounts
of memory.

To address the vast amount of data that can be generated by sensors, we are also
concerned with the CNN inference rate. Based on the first algorithm and its results,
we propose another algorithm that maximizes the inference rate or minimizes commu-
nication, according to the application. Additionally, for both objective functions, this
new algorithm accounts more precisely for the amount of memory required by the shared
parameters and biases of CNNs in each partition. This feature allows the algorithm to
provide valid partitionings even when more constrained setups are employed in the appli-
cations. Other contributions resulting from the work with the second algorithm are case
studies and the proposal of a simple greedy algorithm for communication reduction.

Finally, we propose an algorithm to decrease the second algorithm execution time.
This algorithm employs techniques such as the multilevel approach, which automatically
groups the CNN neurons, resulting in a smaller graph [49]. Other approaches include the
smaller number of combinations that the algorithm tests and the smaller number of epochs
that the algorithm executes for each subgraph of the multilevel approach. This algorithm
contributes with 1) a different coarsening phase, 2) an always-valid initial partitioning for
the smallest, most coarsen graph, which satisfies memory constraints since the algorithm
beginning, and 3) a more flexible uncoarsening phase that executes either one epoch or
all the epochs of the partitioning algorithm depending on the number of vertices of the
subgraphs and the number of devices in the partitioning.

The main contribution of this thesis is to show that, when partitioning CNNs into
constrained IoT devices to execute the inference, we should be able to assign neurons
of the same layer to different partitions, instead of partitioning the CNN into its layers,
which is a common approach for training. Other contributions of this thesis include the
generalization of our algorithms, which can partition into any kind of devices any compu-
tation that can be expressed as a dataflow graph and the enabling of DNN developers to
easily choose how to assign the CNNs neurons to IoT devices, expanding and, thus, facil-
itating the spread of intelligent sensors in the world. It is worth noting that we published
the source code of all the algorithm implementations, the graphs for the CNNs and the

28

setups, and the initial partitionings used in this research [74, 75].

1.2 Thesis Organization

This thesis is organized as follows.

• In Chapter 2, we present the main concepts related to this work: Internet of Things,
resource-constrained devices, fog and edge computing, machine learning, deep learn-
ing, neural network models represented as dataflow graphs, partitioned neural net-
works, synchronization, and our problem definition.

• In Chapter 3, we discuss the related work in general frameworks for machine learn-
ing, frameworks for machine learning on IoT, and partitioning algorithms.

• In Chapter 4, we present the Kernighan-and-Lin-based Partitioning (KLP), our
first algorithm to automatically partition neural networks for distributed execution
among hardware-constrained IoT devices. We employ KLP to reduce communica-
tion among constrained IoT devices in the partitioning of the LeNet neural network
model. We show that the partitionings provided by KLP require up to 4.5 times less
communication than the partitionings offered by popular machine learning frame-
works such as TensorFlow, DIANNE, and DeepX.

• In Chapter 5, we extend KLP and propose the Deep Neural Networks Partitioning
for Constrained IoT Devices (DN2PCIoT), an algorithm that not only reduces com-
munication but also maximizes the inference rate of neural networks partitioned
among constrained IoT devices. Additionally, this new algorithm accounts more
precisely for the amount of memory required by the shared parameters and biases
of CNNs in each partition. We compare DN2PCIoT to several approaches and show
that our algorithm can always produce valid partitionings and results that require
less communication and/or more inferences per second than the other approaches.

• In Chapter 6, we propose the Multilevel Deep Neural Networks Partitioning for
Constrained IoT Devices (MDN2PCIoT), an algorithm that employs the multilevel
approach to reduce the graph size and take advantage of the DN2PCIoT capabilities.
We also apply some techniques so that DN2PCIoT executes faster in the multilevel
approach. We validated this algorithm with the LeNet model for the communica-
tion reduction objective function and performed experiments with the AlexNet [54]
model for the inference rate maximization and communication reduction objective
functions.

• Finally, Chapter 7 summarizes the thesis work, states the main contributions of this
research, discusses some limitations and difficulties, and presents recommendations
for further research.

29

Chapter 2

Background

This chapter introduces the main concepts used in this research. First, we introduce the
Internet of Things (IoT), constrained devices, and fog and edge computing. Next, we
present some important concepts in machine learning and deep learning, including Feed-
forward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs), indicating
the state-of-the-art results and their suitability for processing sensor data. Then, we ex-
plain how a neural network can be represented as a dataflow graph and how this graph
can be partitioned through two examples. Finally, we discuss synchronization and state
the definition of our partitioning problem when considering communication reduction and
inference rate maximization objective functions.

2.1 Internet of Things

The Internet of Things is a paradigm to connect different devices over networks and in-
volves technologies such as Radio-Frequency Identification (RFID) to uniquely identify
the devices in the network [9, 70]. The devices can be sensors, actuators, Global Position-
ing Systems (GPSs), smartphones, and any device that can directly or indirectly connect
to the Internet, desktop computers and servers not included. These technologies, together
with communication protocols, should be integrated into the IoT paradigm, causing de-
vices from different vendors and with different communication protocols to interact with
each other seamlessly. The network that connects them must be dynamic in order to
allow, recognize, and process the connection and disconnection of devices [121].

Since the 1980s, the RFID technology has been used to provide device identification
through a wireless medium, and, after 1990, Wireless Sensor Networks (WSNs) started
being used to connect intelligent sensors, which acquire and process data [121]. Fig-
ure 2.1 shows this evolution of technologies which are the basis for the IoT. WSN ap-
plications include some types of monitoring such as animal monitoring [23] and traffic
monitoring [121]. Different from the IoT, WSNs usually have homogeneous sensors with
short-range communication, low bandwidth, low energy, low processing power, and small
memory. These sensors should communicate their data to other sensors until reaching a
gateway or router to transmit data forward. Both RFID and WSN technologies help to
improve the IoT, combined with barcodes, smartphones, near-field communication, and

30

cloud computing [121].

RFID (1980)

Automatic identification

and tracking

IoT (2009)

Interconnectivity of things

Fog computing

WSN (1990)

Intelligent sensor

networks

Figure 2.1: Evolution of technologies that form the IoT basis. The year represents when
the respective technology started being used. Different from the IoT, WSNs usually
have homogeneous sensors with short-range communication, low bandwidth, low energy,
low processing power, and small memory. Both RFID and WSN technologies help to
improve the IoT, combined with barcodes, smartphones, near-field communication, and
cloud computing.

The IoT devices have physical attributes, which may form a distributed system con-
nected to the Internet that performs cooperative computation to achieve the same objec-
tive [14]. Examples of areas that are increasingly incorporating IoT in their solutions are
security surveillance, agriculture, environmental monitoring, smart cities, health care, and
transportation [32, 121]. Figure 2.2 shows how smart structures can work in the context
of smart cities. In this figure, smart buildings and smart structures contain sensors con-
nected in a network. These sensors communicate the building state at relevant intervals
and provide information about the building’s movement in response to strong winds or
earthquakes and about the structural health, temperature, vibration, and displacement.
If any problem is encountered by the processing of these data, actuators in the building
can absorb shocks or reduce its movements and a warning can be sent to other buildings
or structures so that the people responsible for them take the necessary actions.

As more and more devices enter the Internet, their technology advancements - in wire-
less communication, smartphones, and sensors - are incorporated into the IoT, too. The
reports from the International Business Machines (IBM) and the Information Technology
and Innovation Foundation in 2009 advocate for IoT increasing productivity and innova-
tion and improving information technology infrastructure [121]. With the ubiquity and
the vast amount of IoT sensors, some design characteristics should be taken into account
when considering cooperation among IoT devices to solve a problem:

• latency - time needed to send a message and process it;

• throughput - the maximum amount of data that can be sent through the network
during some period;

31

IoT sensors

Figure 2.2: Sensor communication in smart structures in the context of smart cities.
Smart buildings and smart structures contain sensors connected in a network, which com-
municate the building state at relevant intervals and may provide information about the
building’s movement in response to strong winds or earthquakes and about the struc-
tural health, temperature, vibration, and displacement. If any problem is encountered by
the processing of these data, actuators in the building can absorb shocks or reduce its
movements and a warning can be sent to other buildings or structures so that the people
responsible for them take the necessary actions [98] (modified).

• scalability - the number of supported devices in the system;

• topology - a subset of the available devices that each device are allowed to com-
municate;

• energy - battery life of battery-powered devices; and

• safety - possible points of failure.

Latency arises for applications that require (near) real-time responses. While we
usually need low latency and high throughput, we need to determine the scalability of
a system to estimate the number of supported devices in the system with reliability, as
well as the runtime complexity and the necessity of buffering. The network type, which,
in the case of Wireless Local Area Networks (WLANs), may have a transmission limit
that is shared, also can be taken into account. Different communication technologies
can be used such as 5G, Long-Range spread spectrum modulation technique (LoRa),
ZigBee, Long-Term Evolution (LTE), or others. The network topology defines to which
devices each device can communicate, considering that the devices may send and receive
information to/from any other device or a subset of devices. Energy consumption may

32

be a restriction for IoT devices that operate with batteries or that harvest limited amounts
of energy from the environment such as solar, thermal, or kinetic energy or from passive
RFID systems. For these devices, an execution that consumes low power is required so
that it does not saturate the device’s power supply. Finally, safety includes connection
and disconnection of the devices and any other failures such as power or hardware failures.

Several IoT resources can be considered when designing an IoT solution to improve the
quality of service. The main IoT issues include the challenges in the network infrastruc-
ture and the vast amount of data generated by the IoT devices, but other requirements
such as security, dependability, and energy consumption are equally important [112]. Ad-
ditionally, minimizing communication is important to reduce interference in the wireless
medium and to reduce the power consumed by radio operations [114]. These issues and
requirements usually demand a trade-off among the amount of memory, computational
and communication performance, and battery life of the IoT devices. For instance, by
raising the levels of security and dependability, offloading processing to the cloud, and/or
processing data on the IoT devices, energy consumption is raised as well, impacting the
device battery life.

In this thesis, we focus on three main characteristics of the IoT: communication net-
work, device memory, and device processing power. These characteristics can be consid-
ered solely or combined, since a problem may have design requirements that involve one
or more of these aspects. The communication network limits the data transfer rate and
becomes a restriction when it limits the inference rate of a neural network, for example,
when there is a data stream that needs to be processed. This problem may be aggravated
when the transmission medium is shared, as is the case with wireless media, and may be
a problem to latency as well. Device memory is a limitation to the problem size while
the processing power may harm the execution time or result throughput requirement.
Additionally, the processing power of each device may be heterogeneous and limited. We
list the discussed IoT characteristics in Figure 2.3.

IoT key
characteristics

network
bandwidth

energy
consumption

scalability

processing
power

topology

memory

runtime

buffering

latency

Figure 2.3: IoT key characteristics. These characteristics can be considered solely or
combined, since a problem may have design requirements that involve one or more of
these aspects.

33

2.2 Resource-Constrained Devices

Resource-constrained devices present one or more characteristics that are limited. As
there is no consensus on the value that each characteristic should have so that the device
is considered constrained, in this thesis, we employ the definition presented in the “Ter-
minology for Constrained-Node Networks” report [15]. In this report, the authors define
a constrained device as a device that does not present some of the characteristics that are
common to other Internet nodes. These characteristics may be limited hardware, cost,
electrical power, energy, and physical constraints such as size and weight. These lim-
ited characteristics impose a tight bound on the state, code space, and processing cycles,
making energy optimization and network bandwidth usage fundamental in any design
requirements. This definition is not rigorous, however, it separates resource-constrained
devices from more powerful nodes such as server systems, desktop and laptop computers,
smartphones, and single-board computers such as Raspberry Pi.

In this thesis, we focus on the size of available memory and the computational per-
formance of the constrained devices. Thus, we employ the memory classification to ex-
periment with devices from different classes. Figure 2.4 shows this classification for con-
strained devices, which may indicate the device capabilities. Even though the thresholds
for each class reflect current technology and can change over time, Moore’s law tends to
be weaker for embedded devices when compared to personal computing devices. This is
due to the fact that the increase in the transistor count and density are more likely to be
invested in cost and power reduction than in computational performance increase. Addi-
tionally, we can combine devices from different classes and perhaps also nonconstrained
devices to achieve the requirements of an application.

In Figure 2.4, we show the approximate magnitude order for data size, which may be
the amount of Random Access Memory (RAM), for instance, and for code size, which
may be the flash memory size, that each constrained device class can support. These
constraints not only limit application and data sizes but also the communication protocols
that each device can use. First, we detail each class of constrained devices and, after that,
we show some examples of real-world devices that are categorized in each class, including
the devices whose characteristics we used in this work.

Class 0 (D0) represents very constrained sensor devices, which include constraints
in memory and computational performance. Due to these constraints, devices in D0
usually cannot securely connect to the Internet directly, depending on larger devices that
act as proxies, gateways, or servers. These devices are usually preconfigured and rarely
reconfigured, using a very small data set. Additionally, they can usually answer keepalive
signals and send on/off or health indicators. It is worth noting that this class may contain
constrained devices with different capabilities, i.e., the supported set of functions for
each device may be different, according to the application types, protocols, and intended
operation that the device can execute. We did not employ any characteristic of devices
that belong to D0 because the smallest CNN that we used (LeNet) presents memory
requirements that are not satisfied by the devices in this class. We show the required
memory limits for partitioning CNNs in Section 2.6.

Class 1 (D1) devices are still quite a lot constrained in memory and computational per-

34

A
m

ou
n
t

of
m

em
or

y
[K

iB
]

Classes of constrained devices

Code size (e.g., Flash)
Data size (e.g., RAM)

≪ 100

∼ 100

∼ 250

≫ 250

≪ 10

10

10

10

10

10

∼ 10

∼ 50

≫ 50

Class 0 (D0) Class 1 (D1) Class 2 (D2) Others
0

1

2

3

4

Figure 2.4: Classes of constrained devices concerning the amount of available memory
(lower = more constrained). 1 kibibyte = 1024 bytes (KiB) [88] (modified).

formance, causing them to communicate to other Internet nodes with difficulty if they use
a full protocol stack such as Hyper Transfer Protocol (HTTP), Transport Layer Security
(TLS), and Extensible-Markup-Language (XML)-based data representations. Neverthe-
less, D1 devices can securely communicate without using gateways if they use proto-
col stacks for constrained devices such as the Constrained Application Protocol (CoAP)
over User Datagram Protocol (UDP). Thus, although D1 devices can communicate with
other Internet nodes, they need to save resources such as memory and energy. In this
thesis, we used the characteristics of the Nest Learning Thermostat, which contains an
STM32L151VB microprocessor that belongs to D1. The characteristics of this device
were the most constrained characteristics that we used in this work, considering both the
amount of memory that the device provides (16 KiB) and its estimated computational
performance (1.6× 106 FLoating-point OPerations (FLOP)/s).

Devices in Class 2 (D2) represents less constrained devices that can support most of
the protocol stacks used by notebooks and servers. Despite that, these devices can employ
fewer resources for communication if they use lightweight and/or energy-efficient protocols
for more constrained devices. Additionally, D2 devices can optimize communication and
use less bandwidth, saving more resources that can be spent on applications. If devices
from D2 adopt the same protocols for D1 devices, interoperability may be increased and
development costs may be reduced as well. In this class, we used the characteristics of
the FitBit smartwatch, which contains an STM32L133VB microprocessor that provides
64 KiB of RAM and presents an estimated computational performance of 80 MFLOP/s.

Devices with fewer constraints than D2 are categorized as others because almost all
of them can use existing protocols for communication without any changes. Devices in

35

this category may still be constrained in memory, computational performance, and/or
energy, limiting the applications that they can execute. Thus, in this thesis, we consider
devices categorized as others also another class of constrained devices since its constrained
resources are far from more powerful devices such as smartphones. In this class, mem-
ory use, computation, communication, and/or energy consumption should be optimized
so that application requirements are satisfied. We used the characteristics of the Ama-
zon Dash Button in this class, which contains a SAM G55J Atmel microprocessor that
provides 176 KiB of RAM and presents an estimated computational performance of 120
MFLOP/s. We also used the characteristics of other devices that would be categorized as
others, with the maximum amount of memory being 183 MiB and the maximum estimated
computational performance, 312 GFLOP/s.

Figure 2.5 shows some examples of real-world devices for each category described
in Figure 2.4. Table 2.1 shows each constrained device model’s name according to the
respective numbers in Figure 2.5. In each class of constrained devices, there is at least one
device that is directly sold to end users, for instance, the development board Arduino Uno
Rev3 in D0, Nest Learning Thermostat in D1, the FitBit smart bracelet in D2, and the
TP-Link nano router in Others. The letters that are bold and red both in Figure 2.5 and
in Table 2.1 correspond to some devices whose configuration was used in the experiments
of this thesis.

A
m

ou
n
t

of
m

em
or

y
[K

iB
]

Classes of constrained devices

Code size (e.g., Flash)
Data size (e.g., RAM)

Class 0 (D0) Class 1 (D1) Class 2 (D2) Others

0

1

2

3

4

5

6

-1

10

10

10

10

10

10

10

10

4

4

3232

64

64
128128

256256256
512

2048
(2 MiB)

131072

(128 MiB)

0.5
(512)

0.25
(256)

2

8
161616

176
388

8192

(8 MiB)
1

2 3

4

5 6
7 8 9

10
11

12

Figure 2.5: Examples of real-world devices for each class of constrained devices concerning
the amount of available memory. The bold and red numbers indicate devices that were
used in this work. 1 mebibyte = 1024 kibibytes (MiB) [88] (modified).

36

Table 2.1: Constrained device models used as examples of real-world devices in Figure
2.5. The bold names and numbers and the red numbers indicate devices that were used
in this work [88] (modified).

Constrained device model

1 ATmega48 8-bit AVR RISC-based microcontroller

2 AT89C51AC2 Atmel Enhanced 8-bit microcontroller

3 Atmega328P 8-bit microcontroller (Arduino Uno Rev3)

4 ATmega64A Microchip 8-bit AVR RISC-based microcontroller

5 ATmega1281 8-bit microcontroller (Waspmote)

6
ST Microelectronics STM32L151VB 32-MHz ARM Cortex-M3 MCU

(2nd-generation Nest Learning Thermostat)

7 Microchip PIC24FJ256GA705

8 NXP 60-MHz ARM7TDMI-S Processors LPC221x

9 STM32L433 ARM Cortex-M4 32-bit MCU+FPU (FitBit)

10
STM G55G / SAM G55J Atmel | SMART ARM-based Flash MCU

(Amazon dash button)

11 STM32F469xx ARM Cortex-M4 32-bit MCU+FPU

12 Atheros 560-MHz AR9344 (TP-Link nano router)

2.3 Fog and Edge Computing

The new IoT applications require a platform with characteristics that are different from
the cloud. Fog computing can be defined as a cloud that operates closer to the end
devices, extending the cloud computing paradigm to the network edge [13]. In fog com-
puting, the virtualization infrastructure executes on the Internet edge, in devices such
as routing switches, multiplexers, and gateways (routers and firewalls) [111]. Another
paradigm related to fog computing is edge computing [73, 89, 127]. In edge computing,
the virtualization infrastructure executes on the end devices, which usually generate data.

Applications executing on the fog and the edge are expected to present low latency,
fulfilling requirements such as the ability to process streaming and send real-time re-
sponses [17, 73]. Fog and edge nodes are aware of their location, are widely and geo-
graphically distributed, and have support to communicate directly with mobile devices
through mobility techniques. In the fog and the edge, there is a huge number of heteroge-
neous nodes, which mainly present wireless connections to the Internet or to other devices.
With these characteristics, the fog and the edge become suitable for IoT applications such
as smart vehicles, health care, and smart cities.

The fog and edge computing paradigms do not intend to substitute cloud computing
but complement it instead, proposing intermediate computing levels between the cloud
and the end user [17, 73]. The fog and the edge also enable new applications and services,
contributing to the fields of data management and analytics. Although the fog, the edge,

37

and the cloud employ the same resources such as network, computation, and storage, the
same mechanisms such as virtualization, and are both multi-tenant approaches, the fog
and the edge computing paradigms focus on applications and services in which the cloud
presents difficulties in satisfying their requirements [14].

Applications that can most take advantage of the fog and edge computing paradigms
require very low and predictable latency such as gaming and video conferences. Addition-
ally, applications that employ sensor networks to monitor the environment such as smart
vehicles can take advantage of the geo-distributed fog and edge characteristic, fast mobile
applications, and mobility support. Large-scale distributed control systems such as smart
traffic light systems are another application type that can benefit from the fog and edge
paradigms due to its location awareness and geo-distributed nodes.

As sending data to the cloud for the neural network processing may increase latency
and/or decrease the inference rate, in this work, we do not consider cloud processing.
Instead, we employ end devices at the edge because we want to take advantage of the
remaining resources present in IoT devices within an environment [73, 96]. Thus, we only
consider IoT devices for the neural network partitioning.

2.4 Machine Learning

Machine learning applies statistics to estimate functions using computers [34, 82]. A
machine learning algorithm is an algorithm that learns from data. Machine learning can
be divided into supervised learning, when data are labeled, or unsupervised learning, when
there is not such a label for each sample [34, 82]. A machine learning system is composed
of a dataset, a model that tries to generalize some function based on the dataset, a cost
function that the model tries to minimize, and an optimization algorithm that tries to
reduce the cost function value, i.e., the learning procedure. The model has parameters
whose values are learned by the optimization algorithm and that correspond to features,
which are relevant information that can be obtained from the dataset.

The main challenge in machine learning is how to adequately predict the result of
previously unobserved inputs, an ability called generalization [34]. During the learning
procedure, the objective is to reduce the training error, which is the error measure for a
machine learning algorithm when trying to predict the result of inputs from the training
set. The learning corresponds to an optimization problem. In machine learning, it is
also necessary to reduce the generalization error, or test error, which can be estimated by
measuring the algorithm performance on a test set of inputs with different samples from
the training set.

Neural networks are one of the most powerful techniques in machine learning and
consist of layers, which, in turn, are formed by many simple, connected neurons. These
neurons calculate real-valued activations, starting with input neurons that may represent
data captured by sensors in the environment, passing through the layers of trainable
neurons, which have weighted connections to neurons from their previous layer, until the
output neurons, which calculate the final result. Figure 2.6 illustrates the basic structure
of a neural network with connections to all neurons from the previous layer. This is a

38

fully connected neural network, which is known as Multilayer Perceptron (MLP) [72, 104].
The final result may be a classification probability or even actions in the environment,
performed by actuators.

Input layer Hidden layer Output layer

x1

x2

x3

x4

a11

a12

a13

a14

a15

aL1

aL2

aL3

...

Figure 2.6: Basic structure of a neural network: an input layer, one or more hidden layers,
and an output layer. This fully connected neural network is the MLP [100] (modified).

2.4.1 Multilayer Perceptron

Several deep learning methods use Multilayer Perceptron (MLP) layers, which contain
neurons that have connections to every neuron from the previous layer. Figure 2.6 exem-
plifies this type of connection between layers. The first layer comprises the input, which
receives data that may have been captured by a sensor, for example, then the hidden
layers transform these data to achieve a classification output with the inference or class
of the input values. Each neuron of the output layer corresponds to a class.

After the training procedure, the optimal values for the parameters of such a neural
network are set and the inference can be performed to predict values for new inputs. In the
case of MLPs, the inference is simply the step of feedforward evaluation from the training
step. This step comprises a matrix multiplication followed by an addition and, after that,
a function is applied to the final result. Furthermore, this operation is performed between
each neural network layer and the previous layer to calculate the activation of neuron i

ai, starting with the input layer:

ai = f



bi +
J
∑

j=1

wij × aj



 , (2.1)

in which wij is the weight of the connection between neuron i at layer l and neuron j at
layer l−1, bi is the bias term associated with neuron i, f is the usually nonlinear activation
function that is applied to every neuron, often sigmoid or rectified linear functions, and
J is the number of neurons at layer l− 1. The parameters found in the learning step are
the weights and bias. The inference process continues until the output layer calculates
the prediction value, which may be a classification or a real value.

39

2.5 Deep Learning

In recent years, deep learning techniques have achieved the state of the art in many
pattern-recognition contests, in machine learning, finance forecast, driving assistance,
among other areas [33, 52, 54, 93]. Deep learning started with unsupervised learning in
2006 but achieved notoriety when it outperformed important machine learning algorithms
such as Support Vector Machines (SVMs) in many applications and pattern recognition
competitions [93]. Another field in which deep learning outperformed was Reinforcement
Learning.

Three main aspects helped deep learning to become notorious: the increase in the
available training data made them more useful; improvements in hardware and software
infrastructure enabled bigger and more complex models; and these more complex models
were executed with increasing accuracy over time, besides allowing the solution of more
complicated applications [34]. Interpreting sensor data is one of these complex problems,
and deep learning is an adequate approach to handle it [60]. Examples of applications in
which deep learning has shown promising results are speech recognition [4, 5], emotion
recognition in videos [30], and face recognition [108].

In deep learning, we have the Deep Neural Network (DNN), which is a neural network
with lots of layers that learn their features. A system is said to have learned from data
when its weights or parameters are balanced so that the neural network produces in the
output the desired behavior [34]. Each neural network layer learns increasing abstrac-
tion levels of the input data [116], usually transforming the aggregate activations of the
previous layer by applying nonlinear functions. It is precisely this chained process along
the layers that makes the neural network learn increasingly complex functions of the in-
put. To train a supervised DNN, the most common algorithm is called Backpropagation,
which is an efficient gradient descent method developed in the 1960s and applied to neural
networks in 1981 [93].

There are three main DNN types: Feedforward Neural Networks (FNNs), Recurrent
Neural Networks (RNNs) [116], and Undirected Neural Networks. FNNs calculate the
composition of many functions and its model can be associated with a Directed Acyclic
Graph (DAG) describing data flow [34]. In an FNN, data flow from the input and pass
through the intermediate connections that define the mapping function until the output,
i.e., there are no feedback connections. When there are many layers in an MLP, it becomes
a DNN. RNNs have this type of feedback connection, so they are the deepest neural
network, being more general than FNNs and processing any arbitrary input sequences.
RNNs can efficiently learn using both sequential (temporal) and parallel (data features)
information, are capable of fully making use of parallel processors, and are adequate for
processing temporal data with dependence on each other [34] such as natural language
modeling [79]. In Undirected neural networks, there are undirected connections between
the layers, which means that data flow in both directions [34, 116]. In this work, we
focused on Convolutional Neural Networks (CNNs), an FNN that has been the state of
the art in many applications [54, 84, 106, 115]. Nonetheless, the proposed algorithms work
for any neural network that can be represented as a DAG when considering the inference
rate maximization objective function and for any neural network when considering the

40

communication reduction objective function. In general, our algorithms work for any
DAGs for the inference rate maximization and for any graphs for the communication
reduction.

2.5.1 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) were loosely inspired by the visual cortex
of animal brains [34]. In a convolution layer, every entry in its output volume may
be viewed as the output of a neuron that is connected to only a small region of the
input [100]. Like the MLP, CNNs have layers with learnable neurons and biases. These
layers take data as input, perform a dot product between them and the filter weights,
and, in most cases, apply a nonlinear function to the result [100]. This kind of neural
network uses a convolution mathematical operation, which is a linear operation, in place
of the general matrix multiplication of FNNs, in at least one layer. Fundamentally, CNNs
learn simple representations from the input data at a high resolution, then convert these
simple representations into increasingly complex representations at coarser resolutions
along the layers. CNNs are composed of a sequence of one or more convolution and
rectifier layers, pooling or subsampling layers, and fully connected layers, being this last
type the same as the MLP explained in Subsection 2.4.1 [60]. The convolution layers
apply convolution filters with a small kernel size to capture local data properties, then
maximum or minimum pooling layers make the representations invariant to translations
and also reduce their dimensionality. At last, fully connected layers indeed classify the
sample.

CNNs started with the successful work of Lecun, Bottou, Bengio, and Haffner [63] in
recognizing handwritten digits in images, known as the LeNet architecture [100]. In the
field of computer vision, AlexNet was the first work that became famous: it did not only
win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [55] in 2012 but
also outperformed the second place with a difference of 10% in the top five error, with an
error of 16% [54]. Its architecture is deeper and bigger than LeNet’s one with more than
one convolution layer before a pooling layer. In 2013, the winner was the Zeiler and Fergus
Network (ZFNet), which is a hyperparameter improvement of AlexNet: it increased the
size of the middle convolution layers and decreased the filter and the stride sizes in the
first layer [129]. Hyperparameters, in contrast to the model parameters or weights learned
during the learning procedure, are the parameters that define the model architecture: the
kernel size for the convolution, number of features learned by the layer, and the size of
the output volume. The hyperparameters are detailed later in this section. GoogLeNet
won the ILSVRC contest in 2014, presenting the Inception Module, which significantly
reduced the number of required parameters from 60 millions in the AlexNet architecture
to 4 millions and substituted the fully connected layers for average pooling layers [106].
Still in 2014, another relevant neural network was the Visual Geometry Group Network
(VGGNet), which came in second place in the ILSVRC [97]. It is deep: there are 16
layers, considering convolution and fully connected ones, and it uses the same convolution
(3 × 3) and pooling (2 × 2) filter sizes in every layer [100]. The main disadvantage of
this model is that it is expensive to train and to classify and uses lots of parameters (140

41

millions) and memory, which are mostly in the first fully connected layer. The pretrain
of this model is available to use with the Caffe framework [36]. The Residual Network
(ResNet) was the winner in 2015 [41]. It uses skip connections and batch normalization,
but, in the neural network end, there are not any fully connected layers [100]. This model
is also available, for use with the Torch framework [40]. In 2016, the Trimps-Soushen
team won the challenge, reaching a classification error of 2.991% [56, 94]. They employed
an ensemble of models such as Inception, Inception-ResNet, ResNet [107], and a Wide
Residual Network [128] to predict image class labels, merging the results from each model
by using each model accuracy as weights. WMW won the contest in 2017 with a classifica-
tion error of only 2.251% [43, 57]. They designed a new architecture building block called
Squeeze-and-Excitation, which embeds information from global receptive fields with the
squeeze operation and selectively improves the result with the excitation operation. Re-
ceptive fields are a property of convolution and pooling layers and we explain them ahead
in this subsection. As in 2017 76% of the competitors had an accuracy that was over 95%,
surpassing the human performance in image detection, the ImageNet group decided to
propose another challenge in visual recognition, the classification of Three-Dimensional
(3D) objects with a description using natural language [91].

One of the problems that act as a motivation or advantage of CNNs is that MLPs do
not scale to images [100]. For example, for input images with a size of only 32 × 32 × 3

(32 wide pixels, 32 high pixels, and 3 color channels), a single layer with a single fully
connected neuron requires 32 × 32 × 3 = 3072 weights. For images with a size of 200 ×
200×3, the nuumber of required weights for only a single neuron grows to 120,000 weights,
being this image size far from the video size captured by high-definition cameras of simple
smartphones (1920×1080 = 2, 073, 600 pixels). With this vast number of parameters, the
neural network is prone to overfitting or may require a vast amount of data. Overfitting
may happen when the model is too sophisticated to represent the input data, i.e., the
model presents too many parameters, or when the number of samples in the training set
is too small.

Another advantage of CNNs that improves machine learning is the sparse interactions,
or sparse connectivity or weights. In the convolution layers, a kernel matrix is convolved
with some neurons from the previous layer. As the kernel size is usually smaller than
the input size, only a small region of the input is involved in each calculation, leading to
a more efficient process because of the fewer number of operations. The kernel is used
to detect small but important features, such as edges, using fewer parameters. The use
of a small kernel also reduces the required amount of memory and improves the model’s
statistical efficiency. These efficiency improvements bring high performance to many
practical applications [34]. A consequence of these sparse interactions is that neurons
in deeper layers may indirectly learn from a larger portion of the original input. Thus,
CNNs can efficiently learn complex interactions between many variables by employing
simple building blocks that only describe sparse interactions, as shown in Figure 2.7. In
this figure, neurons from more distant layers, for instance, a23, despite having a small
receptive field related to its previous layer, are indirectly connected to a larger portion
of the input through the receptive fields of the neurons of previous layers to which they
are connected. In this example, each neuron has a receptive field of size three. Receptive

42

fields correspond to the portion of the input volume that is connected to a neuron in the
output volume.

x1

x2

x3

x4

x5

a11

a12

a13

a14

a15

a21

a22

a23

a24

a25

Figure 2.7: Sparse interactions between neurons from different layers. These interactions
indirectly connect neurons from distant layers to a larger portion of previous layers and
the input [34] (modified).

There is another characteristic that further reduces memory and computation require-
ments for CNNs: parameter sharing [34]. In MLPs, there is one parameter for each
element of the matrix multiplication, which is used only once in the computation. In the
convolution layers, instead, the parameters are only defined by the kernel size used in the
convolution operation and, as the kernel size is usually much smaller than the input size,
memory and computation requirements are greatly reduced. In the convolution opera-
tion, each parameter of the kernel is convolved with every input elements, except for the
boundary elements in some cases.

The last advantage of CNNs that acts as motivation is the equivariance property re-
lated to translation [34]. It occurs in convolution layers due to the convolution operation
and the way the parameters are shared. Some function m(x) is equivariant to another
function g(x) if m(g(x)) = g(m(x)), e.g., the application of a translation operation fol-
lowed by a convolution results in the same output as if the convolution were applied before
the translation. This property can be used to detect small patterns in images by using
the neighboring pixels of a pixel in multiple locations. For images, it is useful to be able
to find edges everywhere in the image during the CNN first layer. However, for cropped
images that are centered in some specific part of the images, e.g., faces, this feature may
not be so useful as, in this case, it is usually interesting to detect different patterns de-
pending on the image location. It is worth noting that not all transformations, such as
rotation and scaling, are equivariant to convolution; in these cases, other approaches are
necessary.

CNNs assume that the input data have a known grid-like topology [34], so their archi-
tecture can use some specific properties to implement a more efficient feedforward function
and to allow an aggressive reduction in the number of the neural network parameters [100].
Usually applied to image data, which is a Two-Dimensional (2D) grid of pixels, CNNs can
also be applied to time-series data, in which one axis is time and the other is the feature
being sampled.

43

The architecture of a CNN is based on specific characteristics of images: the CNN
layers are organized in three dimensions, which are width, height, and depth. The layer
depth should not be confused with the neural network depth, which is the neural network
number of layers. Figure 2.8 shows an example of a CNN architecture with four layers.
The first layer is the input, which usually has depth three for color images, the second
and third layers are hidden layers, and the last layer is the output, which is a 1 wide x 1
high layer, and the depth corresponds to the possible output classes.

height

widthdepth

Figure 2.8: An example of a CNN architecture with four layers: an input layer with depth
three, two hidden layers, and the output layer with size 1 wide x 1 high and the depth
corresponding to the number of output classes [100] (modified).

To explain the CNN, it is necessary to detail each layer type and the CNN possible
architectures. A simple CNN architecture may have an input layer, a convolution layer,
a rectifier layer, a pooling layer, and a fully connected layer [100]. The convolution and
fully connected layers contain trainable parameters, while the rectifier and the pooling
layers usually do not have any trainable parameters.

The input layer contains one image, composed by a volume of pixels: the height and
width of the image, and, in the case of color images, three color channels, for instance,
Red, Green, and Blue (RGB), form the image depth [100].

The convolution layer applies the convolution, which is an operation on two functions
y and c of a real-valued input t [34]:

s(t) =

∫ ∞

−∞
y(o)c(t− o)do,

or
s(t) = (y∗c)(t),

in which, in a CNN, y is the input, c is the kernel function, s is the output volume, t

is the domain, which may be time, and o is a shift related to t. In the case of the time
domain, since the input data are processed by a computer, time is discretized, meaning
that the sensors provide data at regular time intervals. Using a linear transformation, the
time index t can be represented only by integer values, so it is possible to define a discrete
convolution operation defined for integer values of t in both functions y and c:

s(t) =

∞
∑

o=−∞
y(o)c(t− o).

44

For machine learning, the input is often a multidimensional array of data as well as
the kernel is often a multidimensional array of parameters, or tensors. As an array is
defined only for its indexes, i.e., an array is a finite set of elements, it is possible to
calculate the discrete convolution as a summation over only this finite number of elements.
Furthermore, convolution is usually applied to 2D data:

CC(r, q) = (I∗K)(r, q) =
∑

kw

∑

u
I(r + kw, q + u)K(kw, u), (2.2)

in which r is the row index of matrix CC, q is the column index of matrix CC, I is
a 2D image (the input), K is a 2D kernel, kw is the kernel width, and u is the kernel
height. Equation (2.2) is called cross-correlation, a related function that is the same as
the convolution but without flipping the kernel [34]. Figure 2.9 exemplifies a convolution
operation on a 2D tensor. Because the kernel is usually much smaller than the input,
convolution may be considered a matrix multiplication in which the kernel has many
entries equal to zero so that its size is equivalent to the input size.

a b c d

e f g h

i j k l

m n

o p

am + bn+

eo+ fp

bm+ cn+

fo+ gp

cm+ dn+

go+ hp

em+ fn+

io+ jp

fm + gn+

jo+ kp

gm+ hn+

ko+ lp

∗ =

Figure 2.9: An example of a 2D convolution without kernel-flipping for an input of size
3 × 4 and a kernel of size 2 × 2, resulting in an output with size 2 × 3. The painted
boxes represent the regions involved in the convolution calculation of the first output
position [34] (modified).

The convolution layer parameters are a set of learnable filters, which are small along
width and height but extends through the entire depth of the previous layer volume
data [34]. During the inference, each filter is convolved with the input, across its width
and height, generating a 2D activation map. Then, these maps are stacked along the depth
to produce the output volume of the layer. Figure 2.10 exemplifies these connections and
the feature maps.

The convolution layer has four hyperparameters, which define the output volume
size [100]. The first hyperparameter is the receptive field size (R), which is equivalent to
the filter size. The receptive field corresponds to the portion of the input volume that
is connected to a neuron in the output volume. For the depth axis, an output neuron is
connected to every neuron in the input volume depth. Thus, the connections are local
along width and height and global along the input volume depth. The receptive field size
is given by a vector of dimension 1 × 2 because its depth is equal to the input depth.
Figure 2.10 shows the receptive field connections.

The second hyperparameter is the output volume depth, which corresponds to the
number of filters (F) for one convolution layer [100]. Each filter can learn a different
feature from its input volume. The set of neurons that is connected to the same region

45

feature map

depth column

Figure 2.10: The receptive field of each neuron, which comprises only a portion of the full
width and height of the input layer but its complete depth. Furthermore, each depth slice
(a 2D matrix) consists of a feature map and the output neurons in the same position in
width and height form a depth column, also known as depth fiber [100] (modified).

of the input forms a depth column or a fiber, as shown in Figure 2.10.
The third hyperparameter is the stride (T), which is the distance in pixels between

each convolution. For instance, when the stride is one, the filter is moved one pixel after
each convolution operation. For strides of two or three, which are uncommon, or more,
which are rare, the convolution is applied and then two, three, or more pixels are skipped
until the next convolution operation. Clearly, in these cases, the output volume gets
increasingly smaller.

Finally, the last hyperparameter is the zero padding (Z), which allows for better control
of the output volume. Zero padding is usually applied to maintain the input width and
height and consists in filling the input volume borders with zeros before applying the
convolution.

Considering the four hyperparameters explained above and that the convolution layer
receives an input volume of size Wi×Hi×Di, it is possible to calculate the output volume
of a convolution layer:

Wc =
Wi − Rw + 2Z

T
+ 1,

Hc =
Hi −Rh + 2Z

T
+ 1,

Dc = F,

(2.3)

with Rw×Rh×Di weights per filter for a total of (Rw×Rh×Di)×F weights and F biases
in the layer. With Equation (2.3), some hyperparameter settings may be invalid and the
choice should be careful to meet a valid configuration. Common recommendations include
small filters (3× 3 mainly, or 5× 5), T = 1 (leaving the subsampling only to the pooling
layers and causing the convolutional layers to be responsible for changing only the depth),
and a zero padding that maintains the input size (Z = R−1

2
), which helps to keep the

border information during more layers than without any padding [100].
Before the pooling layer, the rectifier layer applies an element-wise activation function,

such as max(0, x), which does not change the input size. The pooling layer subsamples

46

along the height and width of its input data volume, resulting in a smaller volume. This
layer usually stays between convolution layers to increasingly reduce the representation
spatial size [100]. Therefore, the pooling layer reduces the number of parameters, com-
putation, and, thus, the probability of overfitting and the number of samples needed for
training.

The pooling operation is applied to each depth slice independently, resizing the width
and height of the input volume according to the filter and stride sizes. The most common
pooling operation is the maximum function, but others such as arithmetic mean or L2
norm are also used. The most used configuration, R = 2 × 2 and T = 2, takes the
maximum value over four numbers and discards 75% of the activations, without any
changes to the depth dimension. Another configuration, with R = 3×3 and T = 2, called
overlapping pooling, is also used in practice, but larger filters are rarely seen because there
is too much information loss in this process. A general pooling layer receives as input a
volume Wi × Hi × Di and, with the parameters R and T , produces an output volume
Wp ×Hp ×Dp:

Wp =
Wi − Rw

T
+ 1,

Hp =
Hi −Rh

T
+ 1,

Dp = Di.

Finally, the fully connected layer at the CNN end calculates the class probabilities,
usually resulting in a volume of size 1 × 1 × the number of classes. It is possible to
convert a fully connected layer into a convolution layer, gaining efficiency for larger input
sizes [100]. In this conversion, the convolution layer would have as hyperparameters
Rw = Wi, Rh = Hi, Z = 0, T = 1, the hyperparameter F would be the number of
neurons in the fully connected layer depth, and the output volume would be 1 × 1 × F ,
with results identical to the fully connected layer.

Typically, a CNN architecture is composed of some convolution and rectifier layers,
optionally followed by pooling layers, then more convolution and rectifier layers may be
present, optionally followed by pooling layers again, until the image has an appropriately
small size. In the end, the architecture has fully connected layers followed by rectifier
layers, with the last layer being the output of a fully connected layer, which may be the
probabilities of each class. For a general architecture type:

input→ [(convolution→rectifier)× U → pooling?]×M →

(fully connected→ rectifier)×Q→ fully connected,

with 0 6 U 6 3, the question mark indicating that the pooling layer is optional, M > 0,
and 0 6 Q < 3, usually. With U = M = Q = 0, the classifier is linear. For U > 1, it means
that there are two or more convolution layers before a pooling layer. This configuration
is useful for DNNs because it allows the development of more complex features before the
destructive pooling operation [100].

The last concern is about computation and memory. The first convolution layers are

47

the ones that require most of the computation and memory since the data are large in the
first layer and get shrunk during the subsequent layers. However, most of the parameters
come from the last fully connected layers, since each neuron in this layer is connected to
every neuron in the previous layer. Memory is the main concern in CNNs, nevertheless,
for the inference process, it is necessary to store the activations only for the current layer.
Therefore, the activations of the previous layers may be discarded to save memory.

2.6 Neural Network Models as Dataflow Graphs and

Partitioned Neural Networks

One of the challenges that are addressed in this work is the automatic partitioning of
CNNs. Some important concepts need to be defined before proceeding with the related
work in machine learning, IoT, and partitioning frameworks. The understanding of how
a neural network can be represented as a dataflow graph and how this graph can be
partitioned is essential to this thesis.

Neural networks can be modeled as a dataflow graph. Dataflow graphs are composed
of a DAG that models the computation of a program through its data flow [120]. In a
dataflow graph, vertices represent computations and may send/receive data to/from other
vertices in the graph. In our approach, a vertex represents one or more neural network
neurons and may also require an amount of memory to store the intermediate (layer)
results and the neural network parameters and biases required by the respective neu-
rons that this vertex represents. Dataflow graph edges may contain weights to represent
different amounts of data that are sent to other vertices.

In this section, two simple theoretical examples are outlined. The first example is
depicted in Figure 2.11a, in which there is a simple fully connected neural network rep-
resented as a dataflow graph. In this graph, each dataflow vertex represents one neural
network neuron. The first layer is the input layer with two vertices; each vertex requires
4 bytes (B) to store the neuron input value, if we use data represented with 4 B. In this
layer, the vertices do not perform any computation. The second layer is the hidden fully
connected layer; each vertex requires 12 B, being 4 B to store the neuron intermediate
result and the other 8 B to store the neuron parameters, which are the edge weights that
are multiplied by each input value. It is worth noting that, in this example, no bias is
used, so the bias weight is not needed. Furthermore, in the case of CNNs, there is only
one set of parameters per layer in the case of convolution layers and not parameters per
neurons as in FNNs. Each vertex in this layer performs 4 FLOP per inference, which
correspond to the multiplication of the input values by the parameters, to the sum of
both multiplied values, and the application of a function to this result. We presented
all these calculations in Equation (2.1). The last layer is a fully connected output layer
that contains one vertex; this vertex requires 16 B, being 4 B to store the final result
and the other 12 B to store the neuron parameters. This vertex performs 6 FLOP, which
correspond to the three multiplications of the parameters by the layer input values, to the
two sums of the multiplied values, and the application of a function to this result. Again,
Equation (2.1) presents all these calculations.

48

x1

x2

a11

a12

a13

a21

8 B 16 B

12 FLOP

36 B

6 FLOP

(a)

x1

x2

a11

a12

a13

a21

8 B

0 FLOP

52 B

18 FLOP

transfer of
8 B

device C
18 FLOP/s18 FLOP/s

20 B 52 B

device D

(b)

x1

x2

a11

a12

a13

a21

20 B
4 FLOP

40 Btransfer of
12 B 14 FLOP

device C device D
18 FLOP18 FLOP

20 B 52 B

(c)

x1

x2

a11

a12

a13

a21

28 B
8 FLOP

32 B transfer of
16 B 10 FLOP

device C device D
18 FLOP18 FLOP

20 B 52 B

(d)

Figure 2.11: (a) Example of how a fully connected neural network may be represented as
a dataflow graph. (b) Example of how the dataflow graph represented in item (a) can be
partitioned to produce an optimal partitioning; (c) a suboptimal partitioning; and (d) an
invalid partitioning.

Figure 2.11b shows the same dataflow graph partitioned for distributed execution
on two fictional devices: device C, which can perform 18 FLOP/second (FLOP/s) and
provide 20 B of memory, and device D, which can also perform 18 FLOP/s and provide
52 B of memory. Additionally, the communication link between these devices can transfer
up to 4 B per second. The amount of transferred data per inference in this partitioning
is 8 B because, although six edges cross the partitions, they represent the data transfer
of only 8 B.

We define the cost of a partitioning as the calculation of the objective (or cost) function
for that partitioning. If we want to optimize the neural network for the inference rate, then
this cost is the inference rate calculation for the partitioning that we have at hand. Since
all devices and communication links can work in parallel, we can calculate the inference
rate of a partitioned neural network as the minimum value between the inference rate
of the devices and the inference rate of the communication links between each pair of
devices, according to

inference rate = min(inference ratedevices, inference ratelinks). (2.4)

The inference rate of the devices, expressed in inferences per second, is calculated as
the minimum value between the computational performance of each device dev, expressed
in FLOP/s, divided by the total computational requirement of the vertices that compose

49

the partition assigned to that device, expressed in FLOP/inference:

inference ratedevices = min

[(

computational performance
computational load

)

dev

]

, ∀ dev ∈ 1, ..., p, (2.5)

in which p is the number of devices in the system. The inference rate of the communication
links between each pair of devices, also expressed in inferences per second, is calculated as
the minimum value between the transfer performance of each link, expressed in bytes per
second, divided by the total communication requirement of the two partitions involved in
this link, expressed in bytes per inference:

inference ratelinks = min

[

(

link performance
communication load

)

dev1dev2

]

, ∀ dev1, dev2 ∈ 1, ..., p,

(2.6)
in which dev1dev2 represents the communication link between devices dev1 and dev2.
Thus, the device or connection between devices that most limit the result is the maximum
inference rate that some partitioning can provide.

When there is a data stream that must be processed as fast as possible, for instance,
the inference rate maximization can be the objective function for the partitionings. Thus,
taking into account Equation (2.4), Equation (2.5), Equation (2.6), and using the scenar-
ios of Figure 2.11, in the partitioning of Figure 2.11b, device C can perform 18/0 = ∞

inferences/s, which means that device C does not limit the inference rate. The communi-
cation link between device C and device D can perform 4/8 = 0.5 inference/s. Device D
can perform 18/18 = 1 inference/s. Therefore, the inference rate of this partitioning is

∞
inferences

s
(C)

1

2

inference
s

(transmission)
18

18

inference
s

(D) = 0.5
inference

s
,

which is the minimum value among the inference rate of the devices and the communi-
cation links. The partitioning of Figure 2.11b is valid because both partitions respect
the memory limit of the devices and is optimal since, in the scheme of Figure 2.11c, the
system can only perform

18

4

inferences
s

(C)
1

3

inference
s

(transmission)
18

10

inference
s

(D) = 0.33
inference

s

and, thus, is suboptimal. The partitioning of Figure 2.11c is also valid because both
partitions respect the memory limit of the devices. The last partition scheme in Figure
2.11d is invalid because it needs more memory than device C can provide.

As the inference rate was limited by the communication link in this case, the optimal
partitioning was the one that transferred a smaller amount of memory per second. Thus,
if we wanted to change the objective function so that we chose a partitioning with the
minimum amount of communication, the same partitioning of Figure 2.11b would be the
optimal partitioning. However, for complex systems with more devices and more commu-
nication links, we may have different partitionings when we optimize a DNN for inference
rate maximization or communication reduction. As this thesis shows in the next chap-
ters, it is important to consider the trade-off between computation and communication

50

in a distributed DNN, even though, intuitively, communication reduction may improve
the inference rate. Furthermore, the example indicates that not all the neural network
connections result in data transfer among the devices because some of them represent the
transfer of the same data.

The second example consists in a fully connected neural network with five input neu-
rons that need 20 B, being 4 B for each neuron to store its input value, one neuron in the
hidden layer that needs 24 B, being 4 B so that the neuron stores its result and 20 B to
store the parameters, and one neuron in the output layer requiring 4 B, as shown in Fig-
ure 2.12a. Furthermore, the nine operations in the single neuron of the hidden layer were
modeled as nine vertices of weight one in the graph, i.e., each vertex calculates 1 FLOP
per inference. This modeling rendered the graph bigger, however, with finer granularity
and allowed the partitioning of the operations inside a neuron. This model can be seen
in Figure 2.12b. It is worth noting that every vertex needs at least 4 B to store its result
and vertices that represent a multiplication require 4 B more to store their parameters.

As this example is simple, it is possible to visualize an acceptable partitioning. Con-
sidering that device C can now provide 48 B, device D, 32 B, and the objective function is
to maximize the inference rate, with a random partition scheme, it is possible to achieve
a suboptimal result like the one in Figure 2.12c for simple neural networks such as the
one in this example:

18

4

inferences
s

(C)
1

4

inference
s

(transmission)
18

5

inference
s

(D) = 0.25
inference

s
.

By applying an automatic partitioning algorithm, it is possible to reach an optimal or
near-optimal partitioning, as shown in Figure 2.12d:

18

6

inferences
s

(C)
1

2

inference
s

(transmission)
18

3

inference
s

(D) = 0.5
inference

s
.

Nevertheless, if the restrictions are not properly considered, it is possible to remain in a
suboptimal partitioning or even reach an invalid partitioning, as in Figure 2.12e, in which
the partition in device D needs more 16 B.

The second example shows the importance of employing an automatic partitioning
algorithm to reach partitionings that are better optimized for certain objective functions.
This algorithm should also properly take into account all the restrictions. The example
indicates how increasing size graphs add further complications to the problem, rendering
it more difficult to visualize an optimal partitioning or even an acceptable result without
using any partitioning algorithm.

Finally, when partitioning CNNs, we have to consider the minimum amount of memory
required by each device, besides the total amount of memory provided by all the devices
in the partitioning. Each device in the partitioning should contain an amount of memory
that is at least equal to the memory required by the vertex and its corresponding set of
parameters and bias that, summed, equals to the largest amount of memory among all
neural network vertices.

51

2.7 Synchronization

When transferring information from one partition to another, synchronization may be
necessary to ensure correctness. The synchronization guarantees that all the data that a
vertex needs to calculate its computation arrive in its inputs. However, it may require
extra time and reduce the inference performance. It is worth pointing out that techniques
such as retiming [64] can be employed to the partitionings provided by our algorithms
to enforce synchronization. Such a technique would increase the amount of memory re-
quired to execute the CNN in a distributed form. If we do not employ devices with a
larger amount of memory, we may need to use more devices and, then, the amount of
transferred data may be increased. This increased amount of transferred data may impact
the inference rate in the case that it becomes the execution bottleneck. Although this is
an important issue for the deployment of distributed CNNs on constrained IoT devices,
in this thesis, we are not concerned by it because one of our aims is to show how better
our algorithms can be in partitioning CNNs for constrained IoT devices when compar-
ing to state-of-the-art partitioning algorithms, which do not include the synchronization
overhead as well.

2.8 Problem Definition

In this section, we formally define the partitioning problem as an objective-function op-
timization problem subject to constraints [76]. First, we define a function that returns 1
if an element e is assigned to partition p and 0 otherwise:

partition(p, e) =

{

1, if e is assigned to p;
0, otherwise.

We can define the partitioning problem as an optimization problem with an objective
function subject to memory constraints:

optimize cost

subject to
∑N

n=1mn × partition(p, n) +
∑L

l=1
msbpl

× partition(p, l) ≤ mp, ∀ p ∈ [1...P],

in which cost is the objective function (detailed below), N represents the number of
neurons in the DNN, mn equals the memory required by neuron n, L is the number of
layers of the DNN, msbpl

represents the memory required by the shared parameters and
biases of layer l, mp equals the memory that partition p can provide, and P is the number
of partitions in the system. It is worth noting that partition(p, l) returns 1 if any neuron
of layer l is assigned to partition p.

If we want to reduce communication, we can define a function that returns 1 if two
elements are assigned to different partitions and 0 otherwise:

diff(e, h) =
{

1, if e and h are assigned to different partitions;
0, otherwise.

52

Bias unit x0

x1

x2

x3

x4

a1 a2

(a)

Bias unit x0

x1

x2

x3

x4

a2

1 neuron of the hidden layer

×w1

×w2

×w3

×w4

+1

+2

+3

+4 f

(b)

x0

x1

x2

x3

x4

a2

×w1

×w2

×w3

×w4

+1

+2

+3

+4 f

device C device D

28 B
4 FLOP
48 B

5 FLOP

(c)

x0

x1

x2

x3

x4

a2

×w1

×w2

×w3

×w4

+1

+2

+3

+4 f

device C

device D

44 B

3 FLOP

32 B

6 FLOP

(d)

x0

x1

x2

x3

x4

a2

×w1

×w2

×w3

×w4

+1

+2

+3

+4 f

device C

device D

28 B
6 FLOP

48 B

3 FLOP

(e)

Figure 2.12: (a) The fully connected neural network for the second example. (b) The
hidden-layer neuron modeled as nine vertices, one for each neuron operation. (c) A
random partitioning may be suboptimal. (d) The application of a partitioning algorithm
may lead to an optimal or near-optimal partitioning. (e) An invalid partitioning.

53

Then, we can define the communication cost, expressed in bytes per inference, as

communication cost =
N
∑

n=1

adj(n)
∑

z=1

edge weightnz × diff(n, z),

in which adj(n) are the adjacent neurons of neuron n and edge weightnz is the weight of
the edge between neurons n and z, which is also expressed in bytes per inference.

If we want to maximize the inference rate, then Equation (2.4) represents the cost
function and we rewrite it here:

inference rate = min(inference ratedevices, inference ratelinks). (2.4)

To formally define the optimization problem, we can rewrite the computational load of
device dev of Equation (2.5):

inference ratedevices = min

[(

computational performance
computational load

)

dev

]

, ∀ dev ∈ 1, ..., p, (2.5)

as

computational loaddev =
N
∑

n=1

computational loadn × partition(dev, n),

and the communication load between devices dev1 and dev2 of Equation (2.6):

inference ratelinks = min

[

(

link performance
communication load

)

dev1dev2

]

, ∀ dev1, dev2 ∈ 1, ..., p,

(2.6)
as

communication loaddev1dev2

=

N
∑

n=1

adj(n)
∑

z=1

edge weightnz × diff(n, z)× partition(dev1, n)×

partition(dev2, z).

2.9 Final Remarks

With the concepts presented in this chapter, we bounded the scenarios considered in
this thesis: we have several IoT devices within an environment, some of them may be
constrained in memory and computational performance, thus, we can use them to execute
the inference of a CNN in a distributed way. For this purpose, we can model the CNN
as a dataflow graph and we can partition it for the distributed execution, considering
the amount of memory and the computational performance provided by the devices and
the communication performance of the links between each device. The partitioning can
be performed such that the communication between each device is minimized or the
partitioning inference rate is maximized. As this problem belongs to the NP-complete
class of problems [49], we can execute heuristic algorithms to find partitionings with

54

reduced communication or increased inference rate. Thus, the next chapter presents the
related work in general frameworks for machine learning, approaches and frameworks for
machine learning on IoT, and partitioning algorithms.

55

Chapter 3

Related Work

This chapter discusses the state of the art in three topics. First, we present general
frameworks for machine learning. Then, we introduce the related work in specific frame-
works and approaches for IoT and machine learning. Finally, we present general-purpose
partitioning algorithms. We performed a systematic review by the application of the snow-
balling and reverse snowballing techniques to find the most relevant papers for each topic
and we used the Association for Computing Machinery (ACM), Institute of Electrical and
Electronics Engineers (IEEE), and Web Of Science databases.

3.1 General Frameworks for Machine Learning

Many frameworks have been designed for training neural networks on computing nodes
with multiple GPUs [12, 22, 45, 126] and for training DNNs on systems with multiple
computing nodes [2, 18, 29, 68, 116, 118]. Traditionally, the works on the distribution of
neural networks focused much more on the training phase than on the inference phase,
considering that the training is more expensive to compute than the inference. Further-
more, most of the works also focus on the distribution to homogeneous systems.

For instance, Yan et al. [124] developed performance models to estimate the training
time and to build a scalability optimizer to choose the best partitioning scheme to min-
imize the training time. Although they proposed an efficient algorithm, the focus is on
the training time on homogeneous hardware.

Also for training, Ooi et al. [85] proposed a distributed deep learning system called
SINGA to train large models with large datasets, which supports CNNs, Restricted Boltz-
mann Machines (RBMs), and RNNs. Though SINGA is a platform for training, it parti-
tions the neural network at the neuron level.

TensorFlow is the current Google’s machine learning framework that distributes neural
networks for both training and inference on heterogeneous systems, ranging from mobile
devices to large servers [1]. The user can partition the neural network at the level of
neuron operations, presenting a static partitioning and scheduling. If not specifically
assigned, TensorFlow performs the training phase of convolution layers in GPUs and the
other layers in Central Processing Units (CPUs). The partitioning must be defined by the
user, which is limited to a per-layer fashion to enable the use of TensorFlow’s implemented

56

functions, i.e., partitioning gets limited to operations in a whole layer, for instance, the
whole convolution layer would be assigned to one device. The per-layer partitioning not
only produces suboptimal results [28] but also cannot be deployed on very constrained
devices [76]. Although this tool fills gaps in several features, it focuses on speeding up
the training of neural networks on large clusters and puts aside challenges in deploying
such a system for constrained IoT devices: its runtime may be too heavy to run on small,
embedded devices and it does not consider the challenges of constrained IoT devices, for
instance, memory and energy requirements [131].

PyTorch is a framework for deep learning that provides usability and speed [87]. It
gives the user full control of all its aspects while its programming style makes debugging
easy and is consistent with other popular scientific computing libraries. PyTorch focuses
on distributing the training using data parallelism.

The strategies used by the deep learning frameworks cited until now focus on par-
allelizing the training phase. The most common partitioning strategy to parallelize the
training phase is data parallelism. In this strategy, the whole neural network is deployed
on every device and the neural network of each device is called a replica of the model.
Each device trains its parameters locally for a subset of the training set, which can be
viewed as a batch dimension parallelization. Data parallelism is not the most suitable
approach to train very large models due to memory constraints. Additionally, it shows
high latency and is inefficient for small batch sizes and layers with a large number of pa-
rameters, for instance, densely-connected layers like the fully-connected layer, becoming
the bottleneck in large scale distributed training [47].

The works that employ data parallelism must use some technique to keep the pa-
rameters updated. One of these techniques is the use of parameter servers, which are
processes that maintain the updated version of the model parameters, and workers, which
are processes that are responsible for performing the computation needed to train the
model. A basic architecture of a distributed DNN for training using data parallelism
and parameter servers is shown in Figure 3.1. TensorFlow allows more flexibility making
the use of parameter servers not mandatory and Watcharapichat et al. [117] proposed a
decentralized distribution that does not need any parameter server. In their paper, the
workers themselves communicate their updates to the others in a partitioned way to use
the network constantly and without affecting convergency.

parameter servers

workers

Figure 3.1: A distributed DNN basic architecture for training using data parallelism and
parameter servers.

To overcome the limitations of data parallelism, another partitioning strategy is model
parallelism [29], which partitions the neural network model to be executed in a distributed

57

fashion on the devices. In this approach, there is no need for parameter synchronization,
but there may be a lot of communication between devices. Krizhevsky [53] employed a
hybrid approach to train DNNs [53]. In the convolutional and pooling layers, he applied
data parallelism while, in the fully-connected layers, he applied model parallelism [47].
This approach improved performance on previous works and indicated that different layer
types may benefit from different partitioning approaches. We also reached the same
conclusion in one of our works [28].

Sze et al. [105] presented a comprehensive review of the efficient execution of DNNs.
They focus on the inference phase, showing hardware platforms and architecture that
support DNNs. Additionally, they discuss the trends towards the computational cost
reduction of DNNs by hardware design changes and/or algorithm changes. They also
provide metrics and design considerations to analyze new DNN hardware and algorithmic
designs. Finally, they summarize key design considerations for DNNs, the trade-offs be-
tween several hardware architectures and platforms, and the techniques for DNN efficient
processing.

The Google Brain team has recently published a paper with a study on deep learning
with the data parallelism and the model parallelism approaches [95]. The authors also
proposed a language to specify a general class of distributed computations called Mesh-
TensorFlow. With this language, a user can define both types of parallelism.

Huang et al. [44] proposed a pipeline parallelism library to provide efficient, task-
independent model parallelism in the neural network training. This approach can scale
any neural network that is composed of layers. To avoid device under-utilization, they
divided the training set into smaller sets and train the neural network using them, which
enables different devices to work on different subsets of the training set simultaneously.
After some interval, they update the parameters on each device. Thus, they employed a
sort of data parallelism by creating a pipeline execution and also partitioned the neural
network model into layers.

Jia et al. [47] proposed Sample-Operator-Attribute-Parameter (SOAP), a search space
of parallelization strategies for DNNs that tries to generalize and overcome previous ap-
proaches. They argued that previous approaches only consider a subset of the SOAP
search space. They also proposed FlexFlow, a deep learning engine that uses SOAP to
automatically find an optimized parallelization strategy for a specific parallel setup. Ad-
ditionally, FlexFlow is composed of an incremental execution simulator that evaluates
different partitionings and a Markov Chain Monte Carlo search algorithm that uses the
information from the execution simulator to rapidly explore the search space. Before this
work, Jia et al. [46] proposed OptCNN, an algorithm that parallelizes linear CNNs in a
per-layer approach using dynamic programming in the operator dimension. In the execu-
tion simulator, they used the task graph proposed in OptCNN: a graph that models both
the DNN architecture and the cluster network topology. Then, the performance of some
partitioning is estimated through the task graph execution simulation. The incremental
execution uses a delta simulation algorithm that updates previous simulations and further
improves performance.

Our work proposes model parallelism by partitioning DNNs in the Operator-Attribute–
Parameter (OAP) dimensions. We do not use data parallelism because our scenarios

58

present only constrained devices that do not provide the necessary memory for a com-
plete DNN model. Namely, in our work, the operator dimension is equivalent to the
per-layer approach, the attribute dimension is partitioning in the height and width of
each layer, and the parameter dimension is partitioning the depth of each layer in the
DNN. For convolution and pooling layers, we make replicas of the trained parameters
when necessary and, for fully connected layers, we partition the parameter set together
with the corresponding neurons. It is worth noting that our partitioning strategy keeps
the inference result by design. Compared to our approach, FlexFlow does not consider
memory restrictions, optimizes only for one objective function, which is the execution
time, and considers only homogeneous hardware in the experiments.

We list the main characteristics of the works referenced here in Table 3.1 together with
our approach. The partitioning approaches may be in the Sample (S), Sample-Operator
(SO), Sample-Attribute (SA), Sample-Operator-Attribute (SOA), Sample-Operator-Pa-
rameter (SOP), OAP, and SOAP. Summing up, most distributed systems for DNNs focus
on the computationally expensive training phase, consider a homogeneous distributed
system, and target the neural network execution distribution at servers. In the IoT, the
system should be able to adequately distribute the work to heterogeneous devices. Fur-
thermore, the inference execution of neural networks also becomes challenging when we
consider constrained devices. DNN models may need to be partitioned for distributed
execution due to resource constraints, however, most of the frameworks presented in this
subsection employ data parallelism, when the neural network model is replicated to the
several devices, or partition the neural network at coarser grains, i.e., at the layer level.
While data parallelism requires that the memory needed by a neural network fits into
a single device memory, when we partition the neural network at finer grains, we may
produce partitionings with a reduced amount of communication or a large inference rate,
as we show in this thesis. The frameworks may offer an automatic partitioning or the user
must choose where each partition will be executed. Our algorithms offer an automatic
partitioning so that the user does not need to have knowledge about computing systems
to choose where to assign each part of the neural network inference execution. The tar-
get platform listed in Table 3.1 shows to which platform the frameworks were deployed.
While servers may be limited by the network bandwidth, embedded or IoT devices may
be limited by their memory, for instance, and the frameworks reflect the platform char-
acteristics in their design. As most of these frameworks were designed for large servers,
they do not take into account characteristics that should be considered for constrained
IoT devices such as memory, communication, computation, and energy.

3.2 Approaches and Frameworks for Machine Learning

on IoT

When dealing with the problem of deploying deep learning models on IoT devices, both
for training and inference, two approaches are commonly used. Either the number of neu-
rons and/or parameters of the neural network is reduced so that it fits into the memory
of constrained devices and lowers resource requirements, or the neural network execu-

59

tion is distributed among more than one device, which is an approach that may present
performance issues.

Table 3.1: Main features of general frameworks for machine learning and our approach.

Work
Training or

Inference?

Distributed

system

Partitioning

approaches

Automatic

partitioning?

Target

platform

DistBelief [29]
Focus on

training
Homogeneous SOA Yes Servers

Adam [18] Training Homogeneous SA Yes Servers

Parameter

Server [68]
Both Homogeneous S Yes Servers

Bösen [118] Training Homogeneous S Yes Servers

TensorFlow [2]
Focus on

training
Heterogeneous SO Yes

From mobile

devices to servers

SINGA [85] Training Homogeneous SOP Yes Servers

Ako [117] Training Homogeneous S Yes Servers

GPipe [44] Training Homogeneous SO Yes
Accelerators

(GPU, TPU)

Mesh-

TensorFlow [95]
Training Homogeneous SO No Servers

SOAP and

FlexFlow [47]
Training Heterogeneous SOAP Yes Servers

PyTorch [87] Training Homogeneous S Yes GPU

Our approach Inference Heterogeneous OAP Yes IoT devices

One approach to reducing the neural network size to enable its execution on IoT
devices is the Big-Little approach [26]. In this approach, a small, critical neural network
is obtained from the original DNN to classify the most important classes that should be
identified in real time such as the occurrence of fire in a room. For other noncritical
classes, data are sent to the cloud for inference in the complete neural network. This
approach depends on the cloud for the complete inference and presents some accuracy
loss.

Some accuracy loss also happens in the work proposed by Leroux et al. [66], which
build several neural networks with an increasing number of parameters. Their approach is
called Multi-fidelity DNNs. The neurons of these neural networks are designed to match
different IoT devices according to their computational resources. This design aims to
satisfy the heterogeneity in the IoT. However, there is some accuracy loss for each version
of the original neural network that they used. This loss may not be acceptable under
some circumstances such as fault detection in critical structures of Industry 4.0 [7].

Leroux et al. [65] used a cascade of neural networks and also divided the inference into
two types: the simpler neural network executes on embedded devices and the complete

60

neural network runs on the cloud. The simpler neural network comes from an extension
of the original neural network structure to get intermediate outputs. Then, if the output
quality is high enough, the remaining layers do not need to be calculated, otherwise, the
complete neural network executes on the cloud. The authors trade off accuracy for speed,
thus, the accuracy loss is controlled in this work.

DeepIoT proposed a unified approach to compress DNNs that works for CNNs, fully
connected neural networks, and RNNs [125]. The compression makes smaller dense ma-
trices by extracting redundant neurons from the DNN. It can greatly reduce the DNN
size, which also greatly reduces the execution time and energy consumption without loss
of accuracy. However, as discussed in Chapter 1, even after pruning a DNN, its require-
ments may still prevent it from being executed on a single constrained device. Thus, this
approach may not be sufficient and we focus on distributing the execution of DNNs to
multiple constrained devices.

Regarding the distributed execution of neural networks to IoT devices, de Coninck
et al. [25] proposed Distributed Artificial Neural Networks for the Internet of Things (DI-
ANNE), which is an IoT-specific framework to model, train, and evaluate neural networks
distributed among multiple devices. Although this platform is IoT-specific and even op-
timizes the inference execution of a single sample at a time for inference streaming on
IoT devices, it does not provide any means for automatic partitioning of the neural net-
work. The platform leaves this burden to the user, who needs to decide how to partition
the neural network. Furthermore, the neural network architecture may be too complex
for manual partitionings. The partitioning also only divides the neural network at the
level of layers, in which we can assign only entire layers to a specified device. Again,
this partitioning type may limit the performance and may not work for very constrained
scenarios [28, 76].

Lane and Georgiev [58] proposed a mobile DNN classification engine for several sensor
inference tasks. This engine executes most inference operations on the low-power DSP of
smartphones, which increases resource efficiency when compared to a CPU-only approach.
The low-power DSP allows for a high level of energy saving, saving up to 14 times more
energy than a CPU approach. They showed that it is possible to execute DNNs in real
time on DSPs, presenting a low energy and runtime overhead. Additionally, they found
out that DNNs are significantly more scalable as the number of classes increases, i.e., as
the number of neurons in the last layer increases.

Soto et al. [99] proposed the Complex Event Machine Learning (CEML) framework
to distribute machine learning algorithms automatically for (near-)real-time, automatic,
continuous evaluation at the network edge. This framework combines complex-event
processing and machine learning applied to IoT. The authors acquire data from different
sensors, from the same devices that process them or from local networks, pre-process
data for attribute extraction, perform the training phase on IoT devices as well, analyze
the learning result, and, when the training finishes, deploy the model. This process can
repeat whenever the environment changes, i.e., whenever there are new data. They also
implemented this framework and called it IoT Learning Agent. This implementation
executes on the cloud or on embedded devices at the network edge.

When it is not possible to run an application on a single IoT device, another approach

61

is to offload some parts of the code onto the cloud. DeepX is a hybrid approach that
not only reduces the neural network size but also offloads the execution of some neural
network layers onto the cloud, dynamically deciding between its local CPU, GPU, or
the cloud itself [59]. However, its runtime algorithms may be too computationally heavy
to be executed on more constrained devices than those used in their work, which were
smartphones and GPUs, every time that the system requests an inference. Furthermore,
DeepX partitions the neural network at the layer level only again and may not be able to
distribute the neural network to other local devices.

Benedetto et al. [11] also used the code offloading approach in a framework that
decides if some general computation should be executed locally or should be offloaded
onto the cloud. The authors did not design this approach for machine learning specifically.
Although the approach is interesting, as well as the fact that constrained IoT devices may
prevent their runtime program to execute on such a small device, in this work, we consider
a scenario in which it is not possible to send data to the cloud all the time and we have
only constrained devices to perform the inference of DNNs.

Li et al. [67] proposed the opposite situation: a tool to offload deep learning executing
on cloud computing onto edge computing, i.e., deep learning processing that would be first
executed on the cloud can also be offloaded onto IoT gateways and other edge devices.
This offload aims to improve learning performance while reducing network traffic, however,
it also employs a per-layer approach.

Zhao et al. [131] proposed DeepThings, a framework for the inference distribution to
resource-constrained IoT edge devices with a partitioning along the neural network data
flow. They used a few devices and a high amount of memory, avoiding the use of more
constrained devices such as the ones used in this thesis.

Finally, Xu et al. [122] proposed a heuristic offloading method to minimize the total
transmission delay when offloading deep learning tasks to the cloud or the edge. Addition-
ally, the authors did not want to overload edge computing nodes but want to reduce the
renting cost of cloud services. They also proposed a framework to offload deep learning
tasks in 5G networks. However, in their work, each task is a complete inference process-
ing, thus, they do not perform any deep learning partitioning. As an evolution of this
work, Xu et al. [123] proposed a computation offloading method for IoT on cloud-edge
computing. They employed a genetic algorithm to solve the multi-objective optimization
problem considering execution time and energy consumption for mobile devices.

Table 3.2 summarizes the related work in specific frameworks and approaches for IoT
and machine learning. We identified the main characteristics of these frameworks related
to our work and show them in the table. First, the works that prune the DNN have the
disadvantage that the user needs to have experience in deep learning to obtain a simple
neural network that is effective in classifying data with acceptable quality. Furthermore,
even after pruning a neural network, the computational requirements of this neural net-
work may prevent it from being executed on constrained devices. This pruning may or
may not impact the DNN result accuracy, which we show in the third column of Table 3.2.
Our algorithms do not prune the DNN and do not impact the result accuracy. Some works
offload the execution to the cloud (fourth column of Table 3.2), however, our scenario does
not allow an Internet connection all the time and, thus, we need to execute the DNN only

62

on the IoT devices. When the framework offers a distributed execution, it is important
to know how the DNN is distributed, which is shown in the fifth column of Table 3.2.
The partitioning approaches may be in the Sample, Operator (O), Attribute (A), and
OAP. Our algorithms can partition DNNs using the OAP strategy, which allows both
per-layer partitionings and partitionings into the height, width, and depth of each layer,
i.e., per neurons. Finally, the frameworks may offer an automatic partitioning or the user
must choose where each partition will be executed. Our algorithms offer an automatic
partitioning so that the user does not need to have knowledge about computing systems
to choose where to assign each part of the neural network inference execution.

Table 3.2: Summary of machine learning and IoT frameworks discussed in the related
work and our approach.

Prune
Loss of

Offload
Partitioning Automatic

Approach neural
accuracy?

to the
type approach?

network? cloud?

Big-Little [26] Yes Yes Yes O No

Cascade [65] Yes Trade-off Yes O No

DIANNE [25] No No No O No
Lane and

Georgiev [58] No No Yes
along the
layers (A) No

CEML [99] No No No S Yes

DeepX [59] Yes Yes Yes O Yes

DeepIoT [125] Yes No No N/a* Yes

Li, Ota,
No No Yes O Yes

and Dong [67]

DeepThings [131] No No No
along the
layers (A) Yes

Multifidelity [66] Yes Yes No N/a No
Benedetto
et al. [11] No No Yes OAP Yes

Heuristic
Offloading

Method [122, 123]
No No

Yes, and
the edge N/a Yes

Our approach No No No OAP Yes

* Not applicable.

3.3 Partitioning Algorithms

The computation distribution may affect the inference performance. One solution to avoid
this issue is to use automatic, general-purpose partitioning algorithms to define a prof-

63

itable partitioning for the DNN inference. One of the frameworks to do that is SCOTCH,
which is a project and software package designed mainly for graph partitioning and static
mapping [21]. It implements the Dual Recursive Bipartitioning mapping algorithm and
other graph bipartitioning heuristics such as Fiduccia-Mattheyses [31]. The goal of this
framework is to balance the computational load while minimizing communication costs.
SCOTCH uses two graphs to perform mapping: one is the source graph, which represents
the computation that SCOTCH will map, and a target graph, i.e., a graph that contains
information about the devices’ computational performance (vertices) and communication
configuration (edges). In the source graph, vertices represent computation while edges are
data transfers; it works like a dataflow graph. However, as SCOTCH was not designed for
constrained devices, there is no memory constraint treatment and it may produce invalid
partitionings. Additionally, this framework cannot factor redundant edges out, which are
edges that represent the same data transfer to the same partition, a situation that often
happens in partitioned neural networks.

Kernighan and Lin originally proposed an algorithm [51] to partition graphs that has
a large application in distributed systems [6, 16, 119]. First, their heuristic randomly
partitions a graph that may represent the computation of some application. Then, the
algorithm calculates the communication cost for this random initial partitioning and tries
to improve it by swapping vertices from different partitions and calculating the gain or
loss in performing this swap. The best swap operation in each iteration is chosen and its
respective vertices are locked for the next iterations and cannot be selected anymore until
every pair is selected. When every pair is selected, the whole process may be repeated
while improvements are made so that it is possible to achieve a near-optimal partitioning,
according to the authors. This algorithm also accounts for partition balance in the hope
of achieving an adequate performance while minimizing communication.

Another framework is METIS, an open-source library and software from the University
of Minnesota that partitions large graphs and meshes and also computes orderings of
sparse matrices [49]. This framework employs an algorithm that partitions graphs in
a multilevel way, i.e., first, the algorithm gradually groups the graph vertices based on
their adjacency until the graph presents only hundreds of vertices. Then, the algorithm
applies a partitioning algorithm such as Kernighan and Lin [51] to the small graph and,
finally, returns to the original graph also in a multilevel way, performing refinements with
the vertices that present communication to other vertices in different partitions during
this return. METIS also reduces communication while balances all the other constraints,
which may be memory and computational load, for instance. However, METIS does not
present an appropriate treatment of memory constraints either and, thus, may produce
invalid partitionings. Additionally, METIS cannot factor redundant edges out either.

A multilevel Kernighan and Lin approach was developed to partition software compo-
nents in mobile cloud computing aiming to achieve the near-optimal solutions of Kernighan
and Lin and the fast execution time of METIS [113]. This solution does not require the
partitions to be balanced and takes into account the system heterogeneity and local de-
vices. However, it does not consider memory constraints or redundant edges. Further-
more, the aim is to minimize communication, which may not yield the best result for
other objective functions such as inference rate.

64

All the general-purpose approaches discussed so far in this subsection are edge-cut
partitionings, i.e., the algorithms partition the graph vertices into disjoint subsets [37].
Another strategy to general-purpose graph partitioning is vertex-cut partitioning, which
partitions the graph edges into disjoint subsets, while the vertices may be replicated among
the partitions. Rahimian et al. [90] proposed JA-BE-JA-VC, an algorithm that performs
vertex-cut partitioning. Their approach attempts to balance the partitioning aiming to
satisfy memory constraints. The main disadvantage of this approach is that it needs
vertex replicas, that is, computation replicas, and synchronization, which may involve
more communication. When we consider constrained IoT devices and their computational
performance, the computation replicas may decrease the inference rate of neural networks
to a value that does not comply with the application requirements.

LeBeane et al. [62] considered the heterogeneity in the processing nodes of modern data
centers to modify five online data ingress strategies. They aimed to optimize the execution
in heterogeneous data centers, improving the runtime of popular machine learning and
data mining applications. They also considered partitioning algorithms that perform edge
cuts and vertex cuts. When an application needs to have barriers for synchronization
between different nodes, the authors provide data proportionally to the computational
performance of the nodes so that they have similar execution times when processing
them. They also use proportions to define the amount of memory that each partition
requires, which does not impose a strict limit on the amount of memory of the partitions
and may lead to invalid partitionings. Additionally, they do not factor redundant edges
out of the cost computation.

The general-purpose partitioning algorithms are present in Table 3.3. The memory
treatment is important in constrained IoT devices because the memory that they usually
provide is small. In this thesis, the RAM of the devices started at 16 KiB. Thus, our pro-
posed algorithms treat memory restrictions, unlike most partitioning algorithms in this
table. Therefore, these algorithms may produce invalid partitionings and we showed that
in the results. Partition balance causes all the partitions to have similar sizes, usually
resulting in good performance through load balancing. Our algorithms allow unbalanced
partitionings and our results show that unbalanced partitionings may lead not only to
reduced communication but also a larger inference rate. Additionally, our algorithms are
the only ones that can factor redundant edges out of the cost computation during the
whole algorithm execution. This feature allows for a precise amount of communication
and also may reduce the final amount of communication because our algorithms try to
reduce the real amount of communication without any redundant data transfer. While
the algorithms in Table 3.3 reduce communication or balance partitions as their objective
function, our algorithms can reduce communication or maximize the inference rate. The
inference rate maximization objective function allows our algorithms to produce parti-
tionings that optimize throughput performance directly, producing partitionings with a
better performance when compared to the state-of-the-art algorithm, which we showed
in the results. Finally, our algorithms are the only ones that account for the memory
required by shared parameters and biases of CNNs adequately because we considered
CNNs in their design. This feature allows the algorithms to indicate a precise amount of
memory for each partition and, thus, allows us to use devices with a smaller amount of

65

memory. Nonetheless, our proposed algorithms can partition any dataflow graph and not
only CNNs.

3.4 Final Remarks

In this chapter, we presented the literature review in the three topics that are relevant
to our research. Most general frameworks for machine learning focus on the training
phase of neural networks, homogeneous distributed systems, data parallelism, and larger
servers. However, when we consider constrained IoT devices, we need to focus on the
inference phase of neural networks because these devices may not even be able to execute
the training phase. Additionally, IoT devices are usually heterogeneous, thus, we have
to consider heterogeneous devices when distributing the execution of a neural network.
Data parallelism is used for training, however, constrained IoT devices may benefit from
model parallelism that partitions the neural network at finer grains, as we show in this
thesis. Finally, as these frameworks focus on larger servers, they do not consider memory
constraints, however, constrained IoT devices must consider memory limitations so that
we enable the distributed execution of neural networks on these devices.

When we considered approaches and frameworks for machine learning on IoT, there
are several approaches. Some frameworks prune the neural network so that it requires
fewer resources, losing some accuracy or not. Most frameworks for machine learning on
IoT offload part of the neural network execution to the cloud and partition the neural
network using the operator dimension, which corresponds to the per-layer partitioning.
However, when we offload the execution to the cloud, we may increase the latency or
reduce the inference rate of the neural network execution. Thus, this approach may not
be the most adequate for the distributed execution of neural networks on IoT devices.
Additionally, using only the per-layer partitioning may limit the memory constraint of
the devices employed in the partitioning, i.e., we may not use devices that are more
memory-constrained than the amount of memory of the layer that most requires memory.
Furthermore, this approach leads to suboptimal partitionings when the objective function
is to reduce communication or increase the inference rate. We show these two situations
in this work. Finally, some frameworks do not offer an automatic approach, requiring
the user to set the parameters for the execution. For instance, the user must choose how
the neural network is pruned or which layer is executed on the cloud. However, the user
may not be experienced enough to make these decisions, thus, we should offer automatic
frameworks so that the user gets the most profitable execution that the framework can
provide.

Finally, most general-purpose partitioning algorithms do not treat memory constraints,
thus, they can provide invalid partitionings for constrained IoT devices. Additionally,
most partitioning algorithms balance the partitions, however, in this work, we show that,
if we do not enforce partition balance, the partitionings can achieve a larger inference rate
or a reduced amount of communication when compared to approaches and algorithms that
balance partitions. Most partitioning algorithms reduce communication as their objec-
tive function and balance partitionings aiming at better execution performance, however,

66

this approach does not lead to the partitioning that achieves the smallest amount of
communication neither the largest inference rate. In this thesis, we use communication
minimization and inference rate maximization as objective functions, directly optimizing
partitionings for better execution performance, and we show that our algorithms achieve
better results than the literature algorithms. The last two characteristics that we consid-
ered when partitioning neural networks are the elimination of the redundant edges out of
the cost computation and the adequate count of shared parameters and biases. Although
redundant edges often occur in the neural network partitioning, they may be present
in any dataflow graph partitioning. Finally, the adequate count of shared parameters
and biases of neural networks allow for the use of more constrained devices because the
memory required by them is counted only once per partition that requires them. The
next chapters present our proposals to deal with the issues encountered in this literature
review.

Table 3.3: Summary of the partitioning algorithms discussed in the related work and our
approach.

Approach

Factor Adequate

Memory Partition redundant Objective account

constraints? balance? edges function of shared

out? parameters?

SCOTCH [21] No

With some

load

unbalancing

No
Minimize

communication
No

KL [51] Yes
With some

No
Minimize

No
unbalancing communication

METIS [49] No

With some

unbalancing

in the

constraints

No
Minimize

communication
No

Multilevel KL

[113]
Yes No No

Minimize

communication
No

JA-BE-JA-VC

[90]
No Yes No

Balance

partitions
No

Our approach Yes No Yes

Maximize

inference rate

or minimize

communication

Yes

67

Chapter 4

Partitioning the LeNet Convolutional

Neural Network for Communication

Minimization

In this chapter, we explore the Kernighan-and-Lin-based Partitioning (KLP), an algorithm
that we recently proposed [28] to automatically partition neural networks for distributed
execution on hardware-constrained IoT devices. When partitioning the neural network,
reducing communication is important because it reduces the amount of power consumed
on radio operations and the amount of interference on the wireless medium. Thus, in this
chapter, we use KLP to minimize the amount of communication among IoT devices when
partitioning the LeNet model and show that the partitioning found by KLP requires up to
4.5 times less communication than the partitionings offered by other approaches such as
the one adopted by popular machine learning frameworks such as TensorFlow, DIANNE,
and DeepX.

4.1 Proposed Kernighan-and-Lin-based Partitioning

This section is based on both one of our conference papers [28] and one of our journal
papers [76] for a complete view of KLP. The KLP algorithm is inspired by the Kernighan
and Lin’s heuristic, which attempts to find a better solution than its initial partitioning by
swapping vertices from different partitions. Kernighan and Lin’s algorithm avoids some
local minimum solutions by allowing swaps that produce a partitioning that is worse than
the previous one. This situation can happen if such a swap is the best valid operation at
some point in the algorithm [76].

Our initial goal was to use the original Kernighan and Lin algorithm to partition
neural networks [28]. To this end, the neural network was modeled as a dataflow graph
in which vertices represent input data, operations, or output data while edges represent
data transfers between vertices. This same approach is used in SCOTCH and METIS [76].
KLP also receives a target graph, which contains information about the devices (the num-
ber of them in the system, computational and communication performance, and system
topology) in a way similar to SCOTCH.

To work with more than two partitions, the original Kernighan and Lin’s heuristic
repeatedly applies its two-partition algorithm to pairs of subsets of the partitions to try
to achieve a pairwise optimal result. This approach may fall into local minima, thus,

68

we avoid some of these local minima by allowing the algorithm to work with multiple
partitions by considering swaps between any partitions during the whole algorithm.

The swap operation in the original Kernighan and Lin’s algorithm also led to other
local minima because it was limited to produce partitions with the same number of vertices
of the initial partitioning. This limitation caused the final solution to be heavily dependent
on the initial partitioning configuration [28]. To solve this limitation, we introduced
a “move” operation, in which the algorithm considers moving a single vertex from one
partition to another, without requiring another vertex from the destination partition to
move back to the source partition of the first vertex.

In the case of the communication reduction objective (or cost) function, this move
operation allows all vertices to be moved to a single partition and, thus, the communica-
tion would be zero, which is the best result for this objective function [76]. However, the
dataflow graph containing the neural network model may not fit into a single memory-
constrained IoT device due to memory limitations. Hence, we added memory requirements
for each vertex in the dataflow graph and modified the graph header to contain informa-
tion about the shared parameters and biases for CNNs. Furthermore, we designed the
KLP algorithm to consider the amount of memory of the devices as a restriction for the
algorithm, i.e., the operations cannot be performed if there is not sufficient memory in
the partitions. This feature allowed the initial partitioning and any partitioning in the
middle and at the end of the algorithm to be unbalanced. At this point, unlike SCOTCH
and METIS, our algorithm KLP could always produce valid partitionings. Additionally,
KLP shows the amount of memory that each partition requires, which can help memory
and partitioning analyses.

We also propose a feature to factor redundant edges out of the cost computation in
the KLP algorithm. Redundant edges represent the transfer of the same data between
partitions, which happens when there are multiple edges from one vertex to vertices that
are assigned to the same partition. Neither SCOTCH nor METIS considers redundant
edges, i.e., they show and partition the graph using information about communications
that leads to a much larger value than the real value that must be indeed transferred.

The pseudocode of KLP is listed in Algorithm 1. The first step of the algorithm is to
initialize bestP, which contains the best partitioning found so far, with the desired initial
partitioning. After that, the algorithm runs in epochs, which are the iterations of the outer
loop (Lines 3–26). This outer loop runs some epochs until the best partitioning found so
far is no longer improved after the execution of a full epoch. For each epoch, the algorithm
first unlocks all the vertices (Line 5) and initializes the current partitioning with the best
partitioning found so far (Line 6). After that, the inner loop, which is a step of the epoch,
searches for a better partitioning and updates the current and best partitionings (Lines
7–25). In each step, KLP performs a local search to identify which operation (swap or
move) according to the objective function is better for the current partitioning (Line 8).
This function is further detailed in Algorithm 2. Then, the best operation chosen in this
function is applied to the current partitioning and the corresponding vertices are locked
(Lines 10–15), i.e., they are not eligible to be chosen until the current epoch finishes. The
best operation in each step may worsen the current partitioning because, if there are no
operations that improve the partitioning, then the best operation is the one that increases
the cost minimally. If there are no valid operations, the current step and the epoch finish
(Lines 16–18). This happens when all vertices are locked or when there are unlocked
vertices, but they cannot be moved or swapped due to memory constraints, i.e., if they
are moved or swapped, then the partitioning becomes invalid. Whenever the current

69

partitioning is updated, its cost is compared to the best partitioning cost (Line 21) and,
if the current partitioning cost is better, then the best partitioning is updated and the
bestImproved flag is set to true so that the algorithm runs another epoch to attempt a
better partitioning. Figure 4.1 shows the flowchart related to Algorithm 1 and represents
a general view of our proposal (KLP).

Algorithm 1 KLP algorithm [76].

1: function KLP(initialPartitioning, sourceGraph)
2: bestP ← initialPartitioning;
3: repeat

4: bestImproved← false;
5: unlockAllNodes();
6: currentP ← bestP ;
7: while there are unlocked nodes do

8: op← findBestV alidOperation(currentP);
9: /* Perform the operation */

10: if op.type = SWAP then

11: currentP.swap(op.v1, op.v2);
12: lockV ertex(op.v1); lockV ertex(op.v2);
13: else if op.type = MOV E then

14: currentP.move(op.v, op.targetPartition);
15: lockV ertex(op.v);
16: else if op.type = INV ALID then

17: /* No valid operations */
18: break;
19: end if

20: /* Update the best partitioning */
21: if currentP.cost() < bestP.cost() then

22: bestP ← currentP ;
23: bestImproved← true;
24: end if

25: end while

26: until bestImproved = false

27: return bestP ;
28: end function

Algorithm 2 shows the pseudocode for the findBestValidOperation() function. First,
the algorithm initializes the op type with “invalid” (Line 2). If this function returns this
value, then there are no operations that maintain the partitioning valid. After that, a loop
runs through all the unlocked vertices searching for the best valid operation for each vertex
in this set (Lines 3–32). For each vertex, the algorithm searches for the best move for it
(Lines 4–15) and the best swap using this vertex (Lines 16–31). In the best move search, a

70

loop runs through all the partitions (Lines 5–15). In this loop, the algorithm changes the
current partition of the vertex being analyzed (Line 6), checks if the partitioning remains
valid (Line 7), calculates the new cost of this partitioning according to the objective
function (Line 8), checks if this new partitioning has a better cost than the current one
(larger inference rate or fewer communications) or if no valid operation was found so far
(Line 9), and updates, if necessary, bestCost with the better value and op with the move
operation and the corresponding vertex and partition (Lines 10–12). In the best swap
search, another loop runs through all the unlocked vertices (Lines 16–31). In this loop, the
algorithm changes the current partition of both vertices that are being analyzed (Lines
17–19), checks if the partitioning remains valid (Line 20), calculates the new cost of this
partitioning according to the objective function (Line 21), checks if this new partitioning
has a better cost than the current one (larger inference rate or fewer communications)
or if no valid operation was found so far (Line 22), and updates, if necessary, bestCost
with the better value and op with the swap operation and the corresponding vertices and
partitions (Lines 23–25). At the end of the loop, the original partitions of the vertices
being analyzed are restored to proceed with the swap search (Lines 28–29). After the
outer loop finishes, the best operation found in this function is returned to KLP (or the
“invalid” operation, if no valid operations were found).

4.2 Methods and Materials

In this section, we present the LeNet model, the device characteristics that we used in
the experiments, and the experimental setup.

4.2.1 LeNet Neural Network Model

In this thesis, we used the original LeNet-5 DNN architecture [63] as a case study. This
DNN was first applied to recognize handwritten digits in images, however, it can be
applied to other kinds of recognition as well [27, 83, 109]. Although LeNet is the first
successful CNN, its lightweight model is suitable for constrained IoT devices. In this
and the next chapter, we show that even a lightweight model such as LeNet requires
partitioning to execute on constrained IoT devices. Furthermore, several works have been
recently published using LeNet [3, 27, 71, 83, 109], causing this CNN to be still relevant
nowadays.

To validate KLP, we modeled the LeNet architecture with 765 vertices [28]. The
LeNet neurons were grouped into vertices. The neurons in the same position of width and
height but different positions in the depth of the LeNet convolution and pooling layers
were grouped into one vertex because two neurons in these layers in the same position
of width and height but different positions in depth present the same communication
pattern. Thus, a partitioning algorithm would tend to assign these vertices to the same
partition. For the input layer, every four neurons (width and height of size two) were
grouped to form one vertex. The reason to group these adjacent vertices is that they
present communication to adjacent neurons in the next layer and the algorithm tends to
assign these vertices to the same partition anyway. This grouping of the first layer was
used until the fourth layer (convolution layer), also grouping all neurons in depth to form
only one vertex (depth of size one, as explained above). In the fifth layer, only the depth
vertices were grouped and, after this layer, there was no grouping at all. This grouping

71

Initialize bestP with initial partitioning

Unlock all vertices

Initialize currentP with bestP

Store the result of findBestValidOperation(currentP) on op

op.type

SWAP

MOV E

INV ALID

swap op.v1 and op.v2 of currentP

lock vertices v1 and v2

move op.v to op.targetPartition

lock vertex v

Yes

Yes

Yes

No

No

No

currentP .cost < bestP .cost?

Update bestP with currentP

Is there

any unlocked

vertex?

Partitioning

improved?

Return bestP

Figure 4.1: Flowchart of Algorithm 1 [76].

72

Algorithm 2 findBestValidOperation function [76].

1: function findBestValidOperation(currentP)
2: op.type← INV ALID;
3: for i← unlocked.first to unlocked.last do

4: originalP i← currentP [i];
5: for p← 1 to numberOfPartitions do

6: currentP [i]← p;
7: if validPartitioning(currentP) = true then

8: cost← computeCost(currentP);
9: if cost < currentP.cost or op.type = INV ALID then

10: bestCost← cost;
11: op← moveOp(i, p);
12: op.type←MOV E;
13: end if

14: end if

15: end for

16: for j ← unlocked.first to unlocked.last do

17: originalP j ← currentP [j];
18: currentP [i]← originalP j;
19: currentP [j]← originalP i;
20: if validPartitioning(currentP) = true then

21: cost← computeCost(currentP);
22: if cost < currentP.cost or op.type = INV ALID then

23: bestCost← cost;
24: op← swapOp(i, originalP i, j, originalP j);
25: op.type← SWAP ;
26: end if

27: /* Restore current partitioning */
28: currentP [i]← originalP i;
29: currentP [j]← originalP j;
30: end if

31: end for

32: end for

33: return op;
34: end function

73

led to 256 vertices in the input layer, 196 vertices in the second layer (convolution layer),
49 vertices in the third layer (pooling), 25 vertices in the fourth (convolution) and fifth
(pooling) layers, and 120, 84, and 10 vertices in the fully connected layers.

Figure 4.2 shows how the LeNet neurons were grouped to form the dataflow graph
with the following per-layer data: the number of vertices in height, width, and depth, the
layer type, the amount of transferred data in bytes required by each edge in each layer,
and the number of vertices in each layer. In this figure, the cubes represent the original
LeNet neurons and the circles and ellipses represent the dataflow graph vertices.

..
. ..
. ..

.

..
.

...

...

...
...

...

..
. ..
. ..
. ..

.

...

...

...
...

...

..
. ..
. ..
. ..

.

...

...

...
...

...

1
1

1
1

1
1

11
1

1
1

16

16

input
256 vertices

eacheacheacheacheacheacheach
edge:edge:edge:edge:edge:edge:edge:

32B
convolutionconvolution

196 vertices

192B192B

14

14

7

7

poolingpooling
49 vertices

5

5

5

5

25 vertices25 vertices

512B512B

120

fully connectedfully connectedfully connected
120 vertices

84

8B8B

84 vertices

10

10 vertices

Figure 4.2: LeNet architecture and vertex granularity used in our algorithm. Each cube
stands for a CNN neuron while each circle or ellipse is a vertex in the source graph. Edges
represent data transfers and are labeled with the number of bytes per inference that each
edge must transfer [28] (modified).

We grouped the LeNet neurons to reduce the dataflow graph size and, thus, to reduce
the partitioning execution time and allow us to perform several experiments in a short
time frame. This strategy constrains the partitioning algorithm since it cannot place
some of the original neurons (the ones that were grouped into the same vertex) in different
partitions. Nonetheless, our automatic partitioning algorithm could still find partitionings
that were superior to the ones offered by state-of-the-art neural network partitioning
frameworks.

In the convolution layers, there is a set of shared parameters and biases for each layer,
which is shared among all the neurons of that layer. For the pooling layers, in the LeNet
version that we used in this thesis, there is a set of biases and trainable coefficients for
each layer, which is also shared among all the neurons of that layer [63]. In the fully
connected layers, each neuron has its own set of parameters and bias. Table 4.1 shows
the amount of memory required by each vertex in each layer, the amount of memory
required by the shared parameters and biases for each layer, the filter size and stride
at each convolution and pooling layers, and the depth size of each layer. While the
first characteristic depends on how we grouped the neurons, the other characteristics
are inherent to the original LeNet-5 DNN architecture [63] used in this and the other
chapters. In this table and hereafter, the convolution layers are represented by Cn, the
pooling layers are represented by Pn, and the fully connected layers, by FCn, in which
n is the position of each layer in the neural network.

4.2.2 Setups and Experiments

Table 4.2 summarizes the IoT setups used in the experiments presented in this chapter.
The manual partitionings in Subsection 4.3.1 balance the number of vertices and, thus, do
not consider memory restrictions either employ any device setup for the algorithm. These
approaches partitioned the LeNet model into four and six equally sized partitions. The
homogeneous partitionings employed the ARM-based STM32F469xx processor, which
can provide 388 KiB of RAM [102]. This device is in class others of constrained devices

74

Table 4.1: Characteristics of the LeNet model used in this chapter.

Characteristic input C1 P2 C3 P4 FC5 FC6 FC7

Memory per vertex (B) 32 192 192 512 128 12864 3904 3440

Memory of shared
0 1248 96 12128 256 0 0 0parameters and biases

per layer (B)

Filter size N/a* 5x5 2x2 5x5 2x2 N/a N/a N/a

Stride N/a 1 2 1 2 N/a N/a N/a

Depth size 1 6 6 16 16 120 84 10

* Not applicable.

that we showed in Chapter 2. These experiments partitioned the LeNet model into four
and six partitions. The heterogeneous experiments employed setups that were inspired
by the configuration of the STM32F469xx processor. For instance, in the four-partition
experiment, we set two devices with the same amount of memory of the STM32F469xx
and two devices with half of this amount of memory. Both devices are in class D2 of
constrained devices. In the three-partition experiment, we set one device with the same
amount of memory of the STM32F469xx, one device with half of this amount of memory,
and one device with 1.5 times this amount of memory. In this setup, the device with
1.5 times the amount of memory of the STM32F469xx is in class others of constrained
devices, which contains the least constrained devices, and the other devices are in class D2.
Our automatic partitioning tool (KLP) was executed 30 times for each experiment, each
one starting with a different random-generated partitioning. It is worth noting that we
assume a homogeneous communication performance between all the devices, a constant
communication performance during the whole algorithm, and no limits for the amount of
transferred data per second between each device.

4.2.3 Types of Input Layers in the Experiments

For each setup in Table 4.2, except for the manual partitionings, we performed two types
of experiments with the input layers:

• the free-input-layer experiments, in which all the LeNet model vertices were free
to be swapped or moved; and

• the locked-input-layer experiments, in which the LeNet input layer vertices were
initially assigned to the same device and, then, they were locked, i.e., the input layer
vertices could not be swapped or moved during the whole algorithm.

The free-input-layer experiments allow all the vertices to freely move from one partition
to the others, including the input layer vertices. These experiments represent situations
in which the device that produces the input data cannot process any part of the neural
network and, thus, must send its data to nearby devices. In this case, we would have
to add more communication to send the input data (the LeNet input layer) from the

75

Table 4.2: Setups and experiments.

Type of
experiment

Number of devices
allowed to be used
in the experiments

Device model
Device amount

of RAM
(KiB)

Manual
4
6 N/a* N/a

Homogeneous
4
6 STM32F469xx [102] 388

Heterogeneous
3

1
1
1

STM32F469xx
0.5× STM32F469xx
1.5× STM32F469xx

388
194
582

4
2
2

STM32F469xx
0.5× STM32F469xx

388
194

* Not applicable.

device that contains these data to the devices chosen by our algorithms. However, as the
increased amount of transferred data involved in sending the input data to nearby devices
is fixed, it does not need to be shown here. On the other hand, the locked-input-layer
experiments represent situations in which the device that produces the input data can
also perform some processing, therefore, no additional cost is involved in this case.

4.3 Experimental Results

This section presents the results for the manual partitionings and the automatic partition-
ings produced by the proposed KLP. First, the cost of four manual partitionings consid-
ering four and six partitions are discussed. Then, five automatic partitioning experiments
using homogeneous hardware and KLP are shown. After that, two heterogeneous configu-
rations were employed to perform the other four automatic partitioning experiments with
KLP. We implemented KLP1 using C++ and executed the experiments on Linux-based
operating systems.

4.3.1 Manual Partitionings

We considered four manual partitionings:

• per layers: the model is sliced vertically and vertices belonging to the same layer
are assigned to the same partition. This approach is equivalent to the approach of
popular machine learning frameworks such as TensorFlow, DIANNE, and DeepX;

• per lines: the model is sliced horizontally and vertices belonging to the same slice
in each layer are assigned to the same partition;

1https://bitbucket.org/FabiolaOliveira/mdn2pciot

76

• per quadrants or niches: the model layers are divided into quadrants or niches
and vertices belonging to the same quadrant/niche in each layer are assigned to the
same partition; and

• hybrid partitioning mixing layers and lines or niches: for four partitions, all
the layers are divided into two lines; the first four layers of LeNet were assigned to
two devices and the last four layers were assigned to the other two devices. For six
partitions, the first four layers were divided into four niches and assigned to four
partitions, the fifth layer was assigned to partition four, and the last layers were
divided into lines and assigned to partitions four and five.

The manual partitionings balance the number of vertices and, thus, do not consider
memory restrictions either employ any device setup. These approaches partitioned the
LeNet model into four and six equally sized partitions. Figure 4.3 illustrates how the
LeNet vertices were assigned to the partitions for each approach: per layers, per lines,
per quadrants, and hybrid approach for four partitions and hybrid approach for six par-
titions, as it was slightly different from the hybrid approach with four partitions, and
their respective communication costs. We can visualize the neural network partitioning
in two dimensions because, in each layer, we modeled at least one dimension as size one.
In the convolution and pooling layers, we grouped neurons in the same position of height
and width but different positions in the depth into one vertex so that the depth had size
one and, in the fully connected layers, both the width and height had size one. Thus,
we modeled the convolution and pooling layers as squares and the fully connected layers
as column vectors but broke them into a smaller size so that their height has the same
dimension of the squares, when necessary.

Figure 4.4 presents the results for all the approaches and the different number of
partitions. The worst result is when LeNet is partitioned across its layers, which is
the same approach adopted by DIANNE, DeepX, and TensorFlow. To partition the first
CNN layers into lines, quadrants, or niches reduces the communication cost as some of the
communication in the first layers (convolution and pooling) is suppressed by the use of the
same partition in the same layer portion. By analyzing these patterns, the last performed
partitioning was a mix of the per-line partitioning with the per-layer partitioning. In
the hybrid approach, the first half of the LeNet layers is partitioned with the per-line
approach and the other half is partitioned using the per-layer approach. This partitioning
leads to the best result without the use of any partitioning tool for both partitionings into
four and six partitions: it achieved a result 2.10 times better for four partitions while it
improved 2.03 times for six partitions, showing that a hybrid approach may be necessary
to result in partitionings with less communication. With the manual approaches, we can
see that even simple strategies such as the per-line and per-quadrant partitionings lead
to better results than the approach of popular machine learning frameworks, which is the
per-layer approach.

4.3.2 Automatic Partitionings with Homogeneous Setups

In this subsection, we show the results of five experiments that used our KLP algorithm.
First, LeNet was partitioned into four partitions without considering any memory restric-
tions and, thus, performing only pair swaps so that all vertices would not end up in a
single partition, as explained in Section 4.1. The second and third experiments partitioned
LeNet with the free input layer among four and six homogeneous devices using KLP as

77

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 3 3 3 3 3 3

0 2 2 2 2 2 2 2 2 3 3 3 3 3 3

0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

0 2 2 2 2 2 2 2 2 3 3 3 3 3 3

0 2 2 2 2 2 2 2 2 3 3 3 3 3 3

0 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

input C1 P2 C3 P4 FC5 FC6 FC7

output

(a)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 0 0 1 2 2 3

0 1 1 2 2 3 3 0 0 1 2 2 3

0 1 1 2 2 3 3 0 0 1 2 2 3 0

0 1 1 2 2 3 3 0 0 1 2 2 3 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 0 0 1 2 2 3 1

1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 0 0 1 2 2 3 1

1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3 2

1 2 2 2 2 1 1 1 2 2 1 1 1 2 2 0 0 1 1 2 2 3 3 0 1 1 2 3 3 2

2 3 2 2 2 2 3 0 0 1 1 2 2 3 3 0 1 1 2 3 3 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 1 1 2 3 3 3 0 1 1 2 3 3 3

2 3 3 3 3 3 3 3 0 0 1 1 2 3 3 3 0 1 1 2 3 3 3

2 3 3 3 3 3 3 3 0 0 1 2 2 3 3 3 0 1 1 2 3 3 3

3 0 0 1 2 2 3 3 3 0 1 1 2 3 3

3 0 1 1 2 2 3 3 3 0 1 1 2 3 3

3 0 1 1 2 2 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(b)
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 2 2 3 3 0 0 1 2 2 3 2

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 3 1 1 1 2 2 3 1 1 2 2 3 1 1 0 0 1 1 2 2 3 3 0 1 1 2 3 3 2

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 2 2 3 3 3 2 2 3 3 3 0 0 1 1 2 2 3 3 0 1 1 2 3 3 3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 2 2 3 3 3 2 2 3 3 3 0 0 1 1 2 3 3 3 0 1 1 2 3 3 3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 0 0 1 1 2 3 3 3 0 1 1 2 3 3 3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 0 0 1 2 2 3 3 3 0 1 1 2 3 3 3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 0 0 1 2 2 3 3 3 0 1 1 2 3 3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 0 1 1 2 2 3 3 3 0 1 1 2 3 3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 0 1 1 2 2 3 3 3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

(c)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 3 3 3 3 2 2 2 3 3 3

0 2 2 2 2 3 3 3 3 2 2 2 3 3 3

0 2 2 2 2 3 3 3 3 2 2 2 3 3 3 2

0 2 2 2 2 3 3 3 3 2 2 2 3 3 3 2

0 2 2 2 2 3 3 3 3 2 2 2 3 3 3 2

0 2 2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 3 3 3 2

0 2 2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 3 3 3 2

0 1 1 1 0 0 0 1 1 2 2 2 3 3 2 2 2 2 3 3 3 3 2 2 2 3 3 3 3

1 3 3 3 3 3 2 2 2 2 3 3 3 3 2 2 2 3 3 3 3

1 3 3 3 3 3 2 2 2 2 3 3 3 3 2 2 2 3 3 3 3

1 2 2 2 2 3 3 3 3 2 2 2 3 3 3 3

1 2 2 2 2 3 3 3 3 2 2 2 3 3 3 3

1 2 2 2 2 3 3 3 3 2 2 2 3 3 3

1 2 2 2 2 3 3 3 3 2 2 2 3 3 3

1 2 2 2 2 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(d)
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 4 4 4 4 5 5 5 5 4 4 4 5 5 5

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 4 4 4 4 5 5 5 5 4 4 4 5 5 5

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 4 4 4 4 5 5 5 5 4 4 4 5 5 5 4

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 4 4 4 4 5 5 5 5 4 4 4 5 5 5 4

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 4 4 4 4 5 5 5 5 4 4 4 5 5 5 4

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 5 5 5 4

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 5 5 5 4

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 3 1 1 1 2 2 3 1 1 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 5 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 2 2 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 5 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 2 2 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 5 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 4 4 4 5 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 4 4 4 5 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 4 4 4 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 4 4 4 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

(e)

Figure 4.3: LeNet manual partitionings and their communication costs in bytes trans-
ferred between partitions per inference: (a) four partitions, per layers: 50.2 KiB; (b) four
partitions, per lines: 31.5 KiB; (c) four partitions, per quadrants: 30.8 KiB; (d) four
partitions, hybrid: 23.8 KiB; and (e) six partitions, hybrid: 30.8 KiB [28] (modified).

78

A
m

ou
n
t

of
co

m
m

u
n
ic

at
io

n
(K

iB
)

Manual partitionings

Four partitions
Six partitions

Per layers Per lines Per quadrants Hybrid
0

10

20

30

40

50

60

70

Figure 4.4: Amount of communication for the manual partitionings. The worst result
is when LeNet is partitioned across its layers, which is the same approach adopted by
popular machine learning frameworks such as DIANNE, DeepX, and TensorFlow. The
hybrid partitioning leads to the best result without the use of any partitioning tool.

explained in Section 4.2. After that, the input layer of LeNet was forced to stay in the
same partition during the whole algorithm execution to simulate the situation in which
the input image is collected by a camera in a single device, for instance. Thus, the fourth
and fifth experiments partitioned LeNet with the locked input layer among four and six
homogeneous devices using our KLP algorithm. The configuration of the homogeneous
devices was based on the STM32F469xx Advanced Reduced Instruction Set Computer
(RISC) Machine (ARM) Cortex-M4 32-bit MCU+FPU.

Figure 4.5 shows the minimum, median, and maximum values achieved by KLP for
each experiment and the respective best manual partitioning communication cost achieved
in Subsection 4.3.1. In this figure, STM32 stands for the STM32F469xx device model. For
the free-input-layer experiments, the best manual partitioning was the hybrid approach,
which led to the lowest amount of communication in the previous subsection. For the
locked-input-layer experiments, we have to compare the results of our KLP algorithm to
some partitioning that also has its input layer entirely assigned to only one device. In
the manual partitionings proposed in the previous subsection, the only approach that
respects this condition is the per-layer partitioning, which assigns entire layers to devices.
Thus, we can see that, for all the experiments, the median of all KLP executions start-
ing from a random-generated partitioning was lower than the best manual partitioning
method for each input-layer experiment type. Only in the first experiment, which did not
consider any memory restrictions and, thus, the experiment balanced the partitions so
that they contained the same number of vertices, the maximum amount of communica-
tion in 30 executions of KLP was 1.27 times higher than the hybrid manual partitioning.
On the other hand, the minimum amount of communication in 30 executions for all the
three experiments with four partitions was 1.60, 1.78, and 3.37 times lower than the hy-
brid manual partitioning communication cost, respectively for the experiment without
memory restrictions, which balances the number of vertices among the partitions, the

79

free-input-layer experiment, and the locked-input-layer experiment. These experiments
show that balancing the number of vertices may not be the best approach to reduce com-
munication between devices because the experiments that perform this approach, which
are all the manual partitionings and the first experiment with KLP, did not achieve the
lowest amount of communication.

A
m

ou
n
t

of
co

m
m

u
n
ic

at
io

n
(K

iB
)

KLP minimum and maximum
KLP median

Best manual: hybrid

Best manual: per layers

free inputfree input

4 partitions 4 partitions4 partitions

locked inputlocked input

6 partitions6 partitions

no memory restric.
7.8

16.1

23.4

31.2

39.1

46.9

54.7

62.5

Figure 4.5: Amount of communication for the homogeneous partitionings using KLP
compared to the best manual partitionings of Subsection 4.3.1 [28] (modified).

In the six-partition experiments, even the maximum amount of communication achieved
by KLP in 30 executions was lower than the manual partitioning result. The minimum
amount of communication achieved by KLP in 30 executions was 2.80 times and 4.50 times
lower than the best manual partitioning for the free-input-layer and the locked-input-layer
experiments, respectively. The same approach of the four-partition experiments was ap-
plied here: the best manual partitioning when the input was free is the hybrid partitioning
while, when the input was locked, the per-layer partitioning is the best manual partition-
ing. The better results for the six-partition experiments are due to the larger number of
partitions used: the algorithm had a larger search space, i.e., more pairs were considered
to reduce communication at each epoch. The results for the six-partition experiments
show that KLP can achieve a lower amount of communication, in fact, the lowest amount
of communication among all the experiments in this subsection, even when more devices
are provided. Providing more devices when the approach is to balance the size of the
partitions increases the communication cost as we can see by the communication cost of
the manual partitionings for the six-partition experiments.

The results in this subsection show that applying a partitioning algorithm to find
lower costs than the ones found by manual partitionings is effective in achieving an execu-
tion with less communication in the neural network inference on constrained IoT devices.
Furthermore, these manual partitionings include the per-layer partitioning, which cor-
responds to the approach of popular machine learning frameworks such as TensorFlow,
DIANNE, and DeepX.

80

4.3.3 Visual Analysis for the Homogeneous Partitionings

Figure 4.6 shows the best partitioning achieved by KLP for the four-partition experiment
without considering memory restrictions. In this and the next figures, partition zero is
represented by the white color, one is represented by dark grey, two, by red, three, by
blue, four, by orange, and five, by green. KLP used all the four partitions and did not
divide the niches used in the first layers homogeneously because the last three layers used
almost only partitions one and two and, when memory is not considered, KLP attempts
to maintain partition balance. Between the convolution layer C1 and the pooling layer
P2, communication is zero because the algorithm assigns the vertices perfectly, i.e., KLP
assigns the vertices of C1 and P2 that present communication to each other to the same
device. The same situation happens between the convolution layer C3 and the pooling
layer P4. KLP employed only three partitions in the last (FC) layers. From the FC5
layer on, there are only fully connected layers and KLP tends to use the least number
of partitions possible in layers of this type and to repeat these partitions in subsequent
FC layers to reduce communication. Thus, KLP assigned most of the vertices belonging
to the layers FC5 and FC6 to only two partitions while it assigned the vertices of the
last layer totally to partition two. This experiment indicates that the best partitioning
approach strongly depends on the layer type and its connections.

0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 2 2

0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 0 0 0 0 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 2 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 0 0 0 0 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 2 2 1 2 2 2 2 2 2

0 0 0 0 0 0 3 0 3 3 3 3 3 3 3 3 0 0 0 0 0 0 3 3 3 3 3 3 3 3 1 1 1 1 2 1 2 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 3 3 3 3 1 1 1 1 0 0 0 0 0 0 3 3 3 3 3 3 3 3 0 0 3 3 3 3 3 1 1 1 1 1 2 2 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 3 3 3 3 1 1 0 0 0 3 3 3 3 0 0 3 3 3 0 0 3 3 3 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 3 3 3 3 1 1 0 0 0 0 3 3 1 0 0 3 3 3 0 0 3 3 3 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 3 3 3 3 1 1 0 0 0 0 3 3 1 0 0 3 3 3 0 0 3 3 3 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 3 3 3 3 1 1 0 0 0 0 3 3 1 2 2 2 3 3 2 2 2 3 3 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 3 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 3 3 3 3 1 1 2 2 2 3 3 3 1 2 2 2 3 3 2 2 2 3 3 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 2 2 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 3 3 3 3 1 1 1 2 2 3 3 3 1 1 1 1 1 2 2 2 2 2 2 2 2 2 0 2

0 0 0 0 0 0 3 3 0 0 3 3 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 0 2

1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 0 2

1 1 1 1 2 2 3 3 3 3 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0

1 1 1 1 2 2 3 3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1

input C1 P2 C3 P4 FC5 FC6 FC7
output

Figure 4.6: Best partitioning achieved by KLP using four partitions without considering
IoT device memory restrictions. © 2018 IEEE.

More interesting results arise when we consider the memory limits of the devices. Fig-
ure 4.7 shows the best partitioning achieved by KLP for four devices considering memory
restrictions and free input layer. When KLP considers memory restrictions, the input,
convolution, and pooling layers present 2D niches, but they are less homogeneously than
when KLP did not consider memory restrictions. This happens because the algorithm
tends to fill all the available memory of the devices due to the possibility of single-vertex
moves. Here again, from convolution to pooling layers, there is no communication cost
among the partitions. In the first fully connected layer, KLP used only two partitions
again, mostly partition two (red), while, in this experiment, the last two layers repeated
partition two and only used it. This result confirms that the best partitioning approach
strongly depends on the layer type and its connections. Additionally, it is worth not-
ing that KLP could have assigned the vertices in partition three (blue) to partition zero
(white) or partition one (dark grey), which would not change the communication cost.
KLP does not move these vertices because its objective function is to reduce communi-
cation and nothing is constrained about the number of partitions used. However, and as
KLP shows the amount of memory used by each partition at the end of the algorithm,
the user can easily verify this possibility and apply it to the final partitioning.

For the six-partition, free-input-layer experiment, KLP virtually only employed two

81

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 0

1 2 2 2 0 0 0 2 0 2 2 2 2 2 2

1 2 2 2 2 0 0 2 2 2 2 2 2 2 2

1 2 2 2 0 0 0 0 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 2 2 2 2 0 2 0 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 0 0 2 0 0 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 0 2 0 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 0 2 2 2 0 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 0 0 0 0 2 2 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 2 0 0 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 0 0 0 2 0 0 1 1 1 1 1 1 1 1 0 0 2 2 0 0 3 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 2 2 2 0 2 2 2 2 2 2 2

3 3 1 1 2 2 1 1 2 0 0 0 2 2 0 0 1 1 1 1 1 1 1 1 0 0 2 2 0 0 0 0 2 2 2 2 0 2 2 2 0 0 0 2 2 2 2 2 2 2 2 2

3 3 1 1 0 0 1 2 0 1 0 2 2 0 0 0 3 3 0 0 2 2 2 2 2 2 2 2 0 0 2 2 2 0 0 0 2 0 2 2 2 2 2 2 2

3 3 3 3 0 0 2 2 2 2 2 2 2 0 0 0 3 3 0 0 2 2 2 2 2 2 2 2 0 0 2 2 2 0 0 0 0 0 2 2 2 2 2 2 2

0 3 3 3 2 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 2 2 2 0 2 2 2 0 2 2 2 2 2 2

0 0 0 0 0 0 2 2 2 2 2 2 0 2 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 0 2 0 2 2 2 2 2 2

0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0

input C1 P2 C3 P4 FC5 FC6 FC7
output

Figure 4.7: Best partitioning achieved by KLP with STM32F469xx memory restrictions
when four devices were available and the input layer was free. © 2018 IEEE.

partitions in the first layers, as shown in Figure 4.8. The algorithm could discard one de-
vice and employed five devices altogether. KLP assigned the first fully connected layer to
partition four (orange) only and the last two layers to only partition three (blue). In this
experiment, KLP could have assigned the vertices in partition two (red) to partition one
(dark grey) or partition three (blue), discarding one device and using four devices alto-
gether without any changes in the communication cost. Comparing to the four-partition
experiment, we can see that now the user would have to move only two vertices to discard
one device. In other words, KLP itself could almost discard this device, missing only
two vertices. This partitioning that almost used four devices is again due to the larger
search space for KLP in the six-partition experiment: the algorithm could consider more
operations to attempt communication reduction at each epoch. Another consequence of
the larger search space for KLP in the six-partition experiment is the fact that KLP as-
signed each fully connected layer to one device only and the vertices in the convolution
and pooling layers to fewer partitions than in the four-partition experiment. The larger
search space allowed KLP to organize the partitioning better.

1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 4 4 4 4 4 4 4 4

1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3

1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3

1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

1 1 1 1 1 1 0 2 0 0 0 0 2 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

0 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

0 4 4 4 4 4 4 4 4 3 3 3 3 3 3

0 4 4 4 4 4 4 4 4 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

input C1 P2 C3 P4 FC5 FC6 FC7
output

Figure 4.8: Best partitioning achieved by KLP with STM32F469xx memory restrictions
when six devices were available and the input layer was free. © 2018 IEEE.

Figure 4.9 shows the best partitioning found by KLP when four devices were available
and the input layer was locked to stay in the same partition during the whole partitioning
algorithm. With a result slightly worse than that executed with the free input layer, as
shown in Subsection 4.3.2, only two partitions were used in the convolution and pooling
layers, being one of them the same as the input layer partition so that communication
was reduced. In the fully connected layers, two partitions were also used, the same as the
input layer partition and partition two (red), meaning that the algorithm could discard
one device and used only three devices altogether. Although the communication cost was
larger for this locked-input-layer experiment, KLP used fewer devices than the respective
free-input-layer experiment.

Finally, Figure 4.10 shows the best partitioning when six devices were available and

82

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0

0 2 2 2 2 0 2 0 2 2 2 0 2 2 2

0 2 2 2 0 2 2 0 0 2 0 0 0 0

0 2 2 2 2 2 2 2 0 0 2 2 2 2 2 0

0 2 2 2 2 2 2 0 0 0 0 0 2 0 0 0

0 1 1 0 2 2 2 2 2 2 2 0 0 2 2 2 2 2 2

0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 2 2 2 2 2 2 0 2 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 0 2 0 0 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 0 2 0 0 0 0 2 2 2 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 0 0 2 2 0 2 2 2 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 0 0 0 2 0 0 0 2 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0 0 2 2 0 0 2 2 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0 0 2 0 0 0 2 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0 0 0 0 2 0 2 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0 2 2 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

input C1 P2 C3 P4 FC5 FC6 FC7
output

Figure 4.9: Best partitioning achieved by KLP with STM32F469xx memory restrictions
when four devices were available and the input layer was locked to stay in the same
partition. © 2018 IEEE.

the input layer was locked to stay in the same partition during the whole partitioning
algorithm. KLP ended the partitioning algorithm using only four of the six devices avail-
able, keeping the first convolution and pooling layers virtually in the same partition as
the input layer. KLP also assigned only two devices to the first layers and three devices
to the fully connected layers: layer FC5 was completely assigned to partition five (green)
while the last two layers were assigned to partitions four (orange, ∼60%) and zero (white,
∼40%). In this case, the user can also easily discard partition four because it uses an
amount of memory that is available in partition one (dark grey). This would maintain
the communication cost while reducing the total number of devices that KLP employed
to three.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5

0 5 5 5 5 5 5 5 5 4 4 4 0 0 0

0 5 5 5 5 5 5 5 5 4 4 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 4 4 4 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 4 4 4 4 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 5 5 5 5 5 5 5 5 4 0 4 4 0 4 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 5 5 5 5 5 5 5 5 4 0 4 0 4 4 4

0 1 1 1 0 0 1 1 1 0 0 5 5 5 5 5 5 5 5 4 0 4 4 0 0 4

0 1 1 1 1 0 1 1 1 1 0 5 5 5 5 5 5 5 5 4 0 0 0 0 0 4

0 1 1 1 1 0 1 1 1 1 0 5 5 5 5 5 5 5 5 4 0 0 0 4 4 0

0 5 5 5 5 5 5 5 5 4 0 0 4 4 4 4

0 5 5 5 5 5 5 5 5 4 4 4 0 0 4 0

0 5 5 5 5 5 5 5 5 4 0 4 4 0 4 0

0 5 5 5 5 5 5 5 5 4 0 0 4 4 0

0 5 5 5 5 5 5 5 5 4 4 4 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

input C1 P2 C3 P4 FC5 FC6 FC7
output

Figure 4.10: Best partitioning achieved by KLP with STM32F469xx memory restrictions
when six devices were available and the input layer was locked to stay in the same parti-
tion. © 2018 IEEE.

The visual analysis of the partitionings generated by KLP shows that different layer
types induce different partitioning patterns. For instance, input, convolution, and pooling
layers induce the partitioning into 2D niches while fully connected layers induce the use
of the smallest number of partitions to them. Additionally, the user can easily move the
vertices of entire partitions to other partitions and discard the first partitions, in the case
that the other partitions can provide the amount of memory required by the first ones. As
KLP shows the amount of memory required by each partition at the end of the algorithm,
the user does not need to perform the visual analysis to check if she/he can discard some
partition. With the visual analysis of the partitionings generated by KLP, we could see
that, by providing a larger number of partitions to KLP, the algorithm could achieve more
organized partitionings with a smaller amount of communication and a smaller number
of used devices than when we provided fewer devices to KLP. Finally, the visual analysis
showed that experiments with the locked input layer could employ fewer devices.

83

4.3.4 Automatic Partitionings with Heterogeneous Setups

For the heterogeneous experiments, we performed four experiments using KLP with hypo-
thetical heterogeneous devices inspired by the STM32F469xx device configuration. Two
experiments employed three devices, being one a device with the same amount of memory
of the STM32F469xx, another a device that presents half of the STM32F469xx memory,
and the other provides 1.5 times the STM32F469xx memory. The other two experiments
employed four devices: two devices with the same amount of memory of the STM32F469xx
and two devices that provide half of the STM32F469xx memory. In each set of devices,
the first experiment allowed all the vertices to be moved or swapped in KLP (free input
layer) while the second experiment locked the input layer vertices, forcing them to stay
in the same partition during the entire partitioning algorithm.

We compared each set of experiments to a different manual partitioning in which we
attempted to assign each entire layer to the same partition. However, when it was not
possible, we assigned the maximum possible number of vertices of one layer to the same
partition and the remaining vertices to the next partition. Since this case happened to
all the manual partitionings in this subsection, we show that approaches that limit the
partitioning into layers such as the ones adopted by DIANNE, DeepX, and TensorFlow
may not work for this set of constrained devices.

Figure 4.11 shows the amount of communication required for the manual partitionings
and the minimum, median, and maximum communication costs that KLP achieved in
each experiment. In the three-device experiments, KLP achieved a better result than the
manual partitioning with 1.80 times less communication in the free-input-layer experi-
ment and 1.65 times less communication in the locked-input-layer experiment. In these
experiments, both the minimum and median amounts of communication achieved by KLP
were smaller than the manual partitioning communication cost.

In the four-device, free-input-layer experiment, KLP found a partitioning with a com-
munication cost of 1.21 times less than the manual partitioning communication cost. In
the four-device, locked-input-layer experiment, KLP found a partitioning with a communi-
cation cost of 1.04 times less than the manual partitioning communication cost. Compared
to the three-device experiments, KLP produced a smaller improvement over the manual
partitioning, with only the minimum amount of communication of each experiment being
smaller than the manual partitioning communication cost. Despite the same total amount
of memory available in both three- and four-device experiments, the lower improvements
in the four-device experiments are due to its lower flexibility: two devices that provide
a lower amount of memory while, in the three-device experiments, one device makes up
with its larger amount of memory for the fact that there are fewer devices.

The results in this subsection show that KLP can also provide superior partitionings
for DNNs and heterogeneous constrained IoT devices. We also showed in this subsection
that machine learning frameworks that employ a per-layer approach such as TensorFlow,
DIANNE, and DeepX may not execute DNNs for constrained IoT devices.

4.4 Discussion

The KLP algorithm presents a computational complexity of O(V4E), in which V is the
number of vertices and E is the number of edges of the dataflow graph. If E ∼ V,
then the algorithm computational complexity is O(V5). Since KLP presents the same
computational complexity as our second algorithm, DN2PCIoT, we discuss its implications

84

A
m

ou
n
t

of
co

m
m

u
n
ic

at
io

n
(K

iB
) KLP median

KLP minimum and maximum

Manual partitionings

free input free input

4 partitions4 partitions

locked input locked input

3 partitions3 partitions

7.8

11.7

15.6

19.5

23.4

27.3

Figure 4.11: Amount of communication for the heterogeneous partitionings using KLP
compared to a manual partitioning [28] (modified).

in the next chapter.
Summing up the results in this section, KLP achieved better results than partitionings

that did not use any tool in all the nine experiments. To have the possibility of moving
only one vertex per step also resulted in better partitionings because the final partitions
were not limited to have the same number of vertices of the initial partitioning. We also
achieved refined results when we provided more devices for KLP and the input layer was
free: when we provided six devices, the result was 2.8 times smaller than the respective
best manual partitioning and the partitioning used the same number of partitions of
the four-device free-input-layer experiment since the algorithm discarded two devices.
When the input was locked to stay in the same partition during the whole algorithm,
KLP achieved worse results in comparison to when the input layer was free but used
fewer devices. The partitioning patterns also changed, causing KLP to try to use fewer
partitions in the first layers.

With the visualization of the partitionings provided by KLP and the analysis of par-
titionings that did not use any tool, we could infer that each layer type induces different
partitioning patterns. For instance, for input, convolution, and pooling layers, the al-
gorithm tends to group vertices into 2D niches within a layer and use the same niches
assigned to the same devices along the neural network layers, which may explain the worse
results when the input was locked to stay in the same partition during all the algorithm.
For pooling layers, KLP can eliminate the communication cost. When there is a fully
connected layer, KLP tends to use only one partition in this layer. Even if there are other
adjacent fully connected layers, KLP tries to assign the same partition to all these layers
but, if this is not possible, KLP will use the least number of partitions possible.

We performed four experiments with three and four heterogeneous devices and com-
pared them to a manual partitioning that attempted to assign entire layers to partitions.
This attempt was not successful and the manual partitionings had to use more than one

85

partition per layer in some layers. This situation unveils that approaches adopted by com-
mon machine learning frameworks, such as DIANNE, DeepX, and TensorFlow, may not
work with resource-constrained IoT devices. Moreover, KLP achieved a partitioning with
a communication cost up to 1.80 times better than the manual partitioning, indicating
the algorithm suitability for heterogeneous devices as well. Finally, all the experiments
showed that it is essential to use an automatic partitioning tool to achieve an efficient
DNN inference execution on constrained IoT devices and that KLP can perform this role
well.

4.5 Final Remarks

In this chapter, we investigated how Convolutional Neural Networks can be partitioned
for distributed inference on constrained IoT devices and proposed KLP, a Kernighan-
and-Lin-based partitioning algorithm that partitions DNN models for efficient distributed
execution on multiple IoT devices.

We first investigated how existing machine learning frameworks such as DIANNE,
DeepX, and TensorFlow enable the users to partition neural networks for distributed
execution and show that they usually require the user to manually partition the neural
network in a per-layer fashion. We then partitioned the CNN called LeNet into four
and six balanced partitions using manual approaches, including the per-layer approach
of the existing frameworks, and showed that the KLP algorithm can find partitionings
that are up to 1.47 times better than the manual approaches when memory restrictions
are not considered. We also investigated how KLP compare to the manual partitioning
approaches when partitioning for a set of homogeneous and heterogeneous memory-limited
IoT devices. For the homogeneous setups, the KLP tool provides partitionings that are up
to 2.8 times better than the ones found by the manual approaches. For the heterogeneous
setups, we verified that some of the manual approaches, e.g., the per-layer approach, and
the existing machine learning frameworks may not produce partitionings that are valid
on memory-constrained devices. Moreover, we also showed that the KLP algorithm finds
partitionings that are up to 1.8 times better than the manual ones. Finally, we run KLP
maintaining the input layer within the same partition. For the homogeneous setups, KLP
provides partitionings that are up to 4.5 times better than the per-layer approach while,
for the heterogeneous setups, the partitionings found by KLP are up to 1.65 times better
than the ones found by the manual approaches.

Although communication reduction is important because it reduces the amount of
power consumed on radio operations and the amount of interference on the wireless
medium, partitionings that aim at communication reduction may not lead to a better
performance in the execution time or inference rate. Thus, in the next chapter, we pro-
pose another algorithm, which can use communication minimization or inference rate
maximization as objective functions. Additionally, we proposed an adequate count of the
memory required by the shared parameters and biases of CNNs so that we can employ
the characteristics of devices that are more constrained in memory. We also compared
the results of our algorithm to a state-of-the-art algorithm and other approaches that we
proposed.

86

Chapter 5

Partitioning the LeNet Convolutional

Neural Network for Inference Rate

Maximization

In the previous chapter, we proposed Kernighan-and-Lin-based Partitioning (KLP) [28],
an algorithm to automatically partition DNNs into constrained IoT devices, which aimed
to reduce the number of communications among partitions. Communication reduction
is important so that the network does not become overloaded, a situation that can be
aggravated in a wireless connection shared with several devices. Even though reducing
communication may help any system, in several contexts, one of the main objectives
is to increase the inference rate, especially in applications that need to process a data
stream [24, 70, 86, 130].

In this chapter, we extend our proposed KLP algorithm to create the Deep Neural
Networks Partitioning for Constrained IoT Devices (DN2PCIoT), an algorithm to auto-
matically partition DNNs among constrained IoT devices that maximizes the inference
rate or minimizes communication [76]. Additionally, for both of these objective functions,
this new algorithm accounts more precisely for the amount of memory required by the
shared parameters and biases of CNNs in each partition. This feature allows us to employ
more constrained setups in the applications.

We use the inference rate maximization objective function to partition the LeNet CNN
model using several approaches such as the per-layer partitioning provided by popular
machine learning frameworks, partitionings provided by the general-purpose partitioning
framework METIS, and by our algorithm DN2PCIoT. We show that DN2PCIoT starting
from random-generated partitionings or DN2PCIoT starting from partitionings generated
by the other approaches results in partitionings that achieve up to 38% more inferences
per second than METIS. Additionally, we also show that DN2PCIoT can produce valid
partitionings even when the other approaches cannot. We summarize the main contribu-
tions of the work described in this chapter as follows:

• the DN2PCIoT algorithm that optimizes partitionings aiming for inference rate max-
imization or communication reduction while properly accounting for the memory
required by the CNNs’ shared parameters and biases;

• the DN2PCIoT feature of starting from a partitioning obtained by another approach
and trying to improve the solution based on this initial partitioning;

87

• a case study whose results show that the DN2PCIoT algorithm can produce parti-
tionings that achieve higher inference rates and that can produce valid partitionings
for very constrained IoT setups;

• a case study that shows that popular machine learning frameworks such as Ten-
sorFlow, DIANNE, and DeepX may not be able to execute DNN models on very
constrained devices due to their per-layer partitioning approach;

• a study of the METIS framework, which indicates that it is not an appropriate
framework to partition DNNs for constrained IoT setups because it may not provide
valid partitionings under these conditions;

• an analysis of the DNN model granularity results to show that our DNN with a
larger grouping minimally affects the partitioning result;

• an analysis of how profitable it is to distribute the inference rate execution among
multiple constrained devices; and

• a greedy algorithm to reduce the number of communications based on the available
amount of memory of the devices.

5.1 Proposed Deep Neural Networks Partitioning for

Constrained IoT Devices (DN2PCIoT)

As we based the DN2PCIoT on KLP, we present only the new features included in
DN2PCIoT in this section. For instance, the dataflow graph that represents the DNN
to be partitioned now requires the number of FLoating-point OPerations (FLOP) that
each vertex executes. Additionally, DN2PCIoT can generate a random partitioning for
the initial partitioning as in KLP or the user can define an initial partitioning in an input
file. This file contains, for each vertex, the identifier of the partition assigned to it. It
is worth noting that the defined initial partitioning can be the result of another parti-
tioning framework, for instance. Neither METIS nor SCOTCH can start from a defined
partitioning obtained by another algorithm.

We designed DN2PCIoT to produce partitionings that maximize the neural network
inference rate or minimize the amount of data transferred per inference. DN2PCIoT can
easily employ other objective functions due to its design. For this purpose, it is only
necessary to change the computeCost function so that it calculates the cost of a partition-
ing according to the new objective function. Different from METIS, which reduces the
number of communications while attempting to balance the computational load and mem-
ory requirements in the hope of achieving good computational performance, DN2PCIoT
directly optimizes the partitioning for inference rate maximization, using the equations
explained in Section 2.6 and Section 2.8. In the inference rate maximization, the device
or connection between devices that most limit the result is the maximum inference rate
that some partitioning can provide.

Another feature that we included in DN2PCIoT is the proper count for the amount of
memory required by the shared parameters and biases of CNNs. DN2PCIoT does that by
counting only one set of shared parameters and biases of each layer per partition when
there is one vertex of the corresponding layer assigned to the partition. This feature
produces partitionings with a realistic amount of memory per partition, which is smaller

88

than if the algorithm did not use this feature. Therefore, with this feature, DN2PCIoT
can produce valid partitionings for more constrained setups.

5.2 Methods and Materials

In this section, we show the LeNet models and the device characteristics that we used in
the experiments as well as the experiment details and approaches.

5.2.1 LeNet Neural Network Model

In this chapter, we also grouped the LeNet neurons to form the vertices. We again grouped
the neurons in the same position of width and height but different positions in the depth
dimension of the LeNet input, convolution, and pooling layers into one vertex because two
neurons in these layers in the same position of width and height but different positions
in depth present the same communication pattern. Thus, a partitioning algorithm would
tend to assign these vertices to the same partition. For the inference rate, this modeling
only affects the number of operations that a vertex will need to calculate. In the fully
connected layers, as the width and height have size one, the depth was not modeled as
having size one because this would limit too much the partitioning and the constrained
devices able to execute this partitioning. For instance, a partitioning with this grouping
would fit into only one setup of our experiments, which is the least memory-constrained
setup that we used in the experiments described in this chapter.

We modeled two versions of LeNet:

• LeNet 1:1: the original LeNet with 2343 vertices (except for the depth explained
above); and

• LeNet 2:1: LeNet with 604 vertices, in which, for the input, convolution, and
pooling layers, we grouped every four neurons (width and height of size two) to form
one vertex in the source graph, except for the last pooling layer, and we grouped
every four neurons in the depth of the fully connected layers to form one vertex in
the source graph.

It is worth noting that the two LeNet versions that we used in this chapter are different
from the LeNet version of the previous chapter. While the convolution and pooling
layers of both LeNet 2:1 and the LeNet version of the previous chapter are equal, the
fully connected layers of the LeNet version of the previous chapter are equal to the fully
connected layers of LeNet 1:1, causing the LeNet version of the previous chapter to be
an intermediate version between LeNet 2:1 and LeNet 1:1. Figure 5.1 shows the dataflow
graph of each LeNet version with the following per-layer data: the number of vertices in
height, width, and depth, the layer type, and the amount of transferred data in bytes
required by each edge in each layer. In Figure 5.1, the cubes represent the original LeNet
neurons and the circles and ellipses represent the dataflow graph vertices.

As we saw in Chapter 4, the grouping of the LeNet neurons reduces the dataflow
graph size as we can see by the difference in the number of vertices for each graph.
This reduction decreases the partitioning execution time so that we can perform more
experiments in a shorter time frame. LeNet 1:1 is a finer-grained model, thus, it may
achieve better results than a less fine-grained model such as LeNet 2:1. It is important to
notice that this approach constrains the partitioning algorithm because it cannot assign

89

..
. ..
. ..

.

..
.

...

...

...
...

...

..
. ..
. ..
. ..

.

...

...

...
...

...

..
. ..
. ..
. ..

.

...

...

...
...

...

..
. ..
. ..
.

......

............

...

..
. ..
. ..
.

..
.... 1

1
1

1

1

111
1

1
1

32

32

eacheacheacheacheacheacheach
edge:edge:edge:edge:edge:edge:edge:
8B8B8B

input

28

28
48B48B

convolutionconvolution

14

14

poolingpooling

10

10

10

128B128B

5

5
120

fully connectedfully connectedfully connected

84

(a)

..
. ..
. ..

.

..
.

...

...

...
...

...

..
. ..
. ..
. ..

.

...

...

...
...

...

..
. ..
. ..
. ..

.

...

...

...
...

...

... 1

1
1
1

1
1

11
1

1
1

16

16
32B32B32B

eacheacheacheacheacheacheach
edge:edge:edge:edge:edge:edge:edge:

input

14

14

192B192B
convolutionconvolution

7

7

poolingpooling

5

5

5

5

512B512B

30

fully connectedfully connectedfully connected

21 2

(b)

Figure 5.1: LeNet architecture and vertex granularity used in our experiments. Each cube
stands for a CNN neuron while each circle or ellipse is a vertex in the source dataflow
graph. Edges represent data transfers and are labeled with the number of bytes per
inference that each edge must transfer. (a) LeNet 1:1: the original LeNet with 2343
vertices with the neurons in depth grouped to form only one vertex. (b) LeNet 2:1:
LeNet with 604 vertices, in which the width and height of each convolution and pooling
layer were divided by two, except for the last pooling layer, and the depth of the fully
connected layers was divided by four [76].

neurons that were grouped into the same vertex to different partitions since they are now
grouped. However, in this chapter, we also want to show that a coarser-grained model
such as LeNet 2:1 can achieve comparable results to a finer-grained model such as LeNet
1:1 and, thus, can be employed to reduce the size of the dataflow graph and the time
required to partition it. It is also important to highlight that our approach for grouping
the vertices is different from the METIS multilevel approach [49], producing better results
than METIS.

Table 5.1 shows the amount of memory and computation (the number of FLOP per
inference) required by each vertex in each layer per LeNet model. The other characteristics
that are inherent to the original LeNet-5 DNN architecture [63] that we used in this thesis
can be seen in Table 4.1.

Table 5.1: Characteristics of each LeNet model used in this chapter [76].

Characteristic model input C1 P2 C3 P4 FC5 FC6 FC7

Memory per LeNet 1:1 8 48 48 128 128 3216 976 688

vertex (B) LeNet 2:1 32 192 192 512 128 12864 3904 3440

Computation per LeNet 1:1 0 306 36 765 96 51 240 168

vertex (FLOP) LeNet 2:1 0 1224 144 3060 96 204 960 840

5.2.2 Setups and Experiments

Four different devices inspired the setups that we used in the experiments. These devices
are progressively constrained in memory and computational and communication perfor-

90

mance. These values are shown in Table 5.2. The devices belong to class D1, D2, and
others of constrained devices that we showed in Chapter 2. The first column shows the
maximum number of devices allowed to be used in each experiment. The second column
shows the name of the device model that inspired each experiment. The third column
shows the amount of RAM that each device provides, which is available in the respec-
tive device datasheet [8, 101–103]. The amount of RAM that each device provides varies
from 16 KiB to 388 KiB. The fourth column represents the estimated computational per-
formance of each device, which varies from 1.6 MFLOP/s to 180 MFLOP/s. Finally,
communication is performed through a wireless medium. As this medium is shared with
all the devices, we estimated that the communication performance decreased with the
number of communication links between each device, which, in turn, depends on the
number of devices allowed to be used in the experiments. For instance, for two devices,
we have only one communication link, however, for four devices, we have six communi-
cation links. Therefore, with connections able to transfer up to 300 Mbits/s, we consider
the communication performance for each device to vary from 9.4 KiB/s to 6103.5 KiB/s.
It is worth noting that we assume a homogeneous communication performance between
all the devices and a constant communication performance during the whole algorithm.

Table 5.2: Device data and the maximum number of devices allowed to be used in the
experiments [76].

Number of
devices
allowed

to be used
in the

experiments

Device model

Device
amount
of RAM
(KiB)

Device
estimated

computational
power

(FLOP/s)

Communication
performance
between each

device (KiB/s)

2 STM32F469xx [102] 388 180 × 10
6 6103.5

4 Atmel SAM G55G [8] 176 120 × 10
6 3051.8

11 STM32L433 [103] 64 80× 10
6 332.9

56 STM32L151VB [101] 16 1.6× 10
6 11.9

63 STM32L151VB [101] 16 1.6× 10
6 9.4

The reasoning for the maximum number of devices allowed to participate in the par-
titioning is the following. As the amount of memory provided by each device decreases,
we need to employ more devices to enable a valid partitioning. Furthermore, the memory
of shared parameters and biases should be taken into account when choosing the number
of devices in an experiment because of the experiments that start with random-generated
partitionings. To produce valid random-generated partitionings, each device should be
able to contain at least one vertex of each neural network layer and its respective shared
parameters and bias. This condition, in some cases, may increase the number of needed
devices. For instance, the memory needed for LeNet (to store intermediate results, pa-
rameters, and biases) is 546.625 KiB if each layer is entirely assigned to one device. If
the devices provide up to 64 KiB, it is possible to achieve valid partitionings using nine
devices to fit the LeNet model. However, to start with random-generated partitionings
and, thus, requiring that each device can contain at least one vertex of each layer and its
respective shared parameters and bias, the number of required devices increases to 11 to

91

produce valid random-generated partitionings.
For each experiment, the communication links between each device present the same

performance, which is constant during the whole partitioning algorithm. The difference
in the communication performance for the most constrained setups (with 56 and 63 de-
vices) is due to our estimation based on the number of devices sharing the same wireless
connection. Thus, for the experiment in which the system can employ up to 63 devices
for the partitioning, the communication links perform a little worse than when the system
can employ up to 56 devices, although the same device models with the same available
memory and computational performance are used.

5.2.3 Types of Input Layers in the Experiments

For each setup in Table 5.2, we performed two types of experiments with the input layers:

• the free-input-layer experiment, in which all the LeNet model vertices were free
to be swapped or moved; and

• the locked-input-layer experiment, in which the LeNet input layer vertices were
initially assigned to the same device and, then, they were locked, i.e., the input layer
vertices could not be swapped or moved during the whole algorithm.

These two types of experiments are the same as the types of experiments in the previous
chapter. The free-input-layer experiments allow all the vertices to freely move from one
partition to the others, including the input layer vertices. These experiments represent
situations in which the device that produces the input data cannot process any part of
the neural network and, thus, must send its data to nearby devices. In this case, we would
have to add more communication to send the input data (the LeNet input layer) from
the device that contains these data to the devices chosen by the approaches in this work.
However, as the increased amount of transferred data involved in sending the input data
to nearby devices is fixed, it does not need to be shown here. On the other hand, the
locked-input-layer experiments represent situations in which the device that produces the
input data can also perform some processing, therefore, no additional cost is involved in
this case.

We employed nine partitioning approaches for each experiment listed in this section
(for each setup and free and locked inputs). We explain these approaches in the next
subsections and show the corresponding visual partitionings for the approaches that cause
it to be necessary. It is worth noting that we do not consider these visual partitionings
as the results of this chapter and we show them here for clarification of the approaches.

5.2.4 Per Layers: User-Made Per-Layer Partitioning (Equivalent

to Popular Machine Learning Frameworks)

The first approach to performing the experiments is the per-layer partitioning performed
by the user. In this approach, we perform the partitioning per layers, i.e., we assign
a whole layer to a device. Popular machine learning frameworks such as TensorFlow,
DIANNE, and DeepX offer this type of partitioning. TensorFlow allows a fine-grained
partitioning, but only if the user does not use its implemented functions for each neural
network layer type.

92

Considering the LeNet model [63] used in our experiments, it is possible to calculate the
layer that requires the largest amount of memory. This layer is the second fully connected
layer (the last but one LeNet layer), which requires 376.875 KiB for the parameters, the
biases, and to store the layer final result. Thus, when considering the constrained devices
chosen for our experiments (Table 5.2), it is possible to see that there is only one setup
that can provide the necessary amount of memory that a LeNet per-layer partitioning
requires. This setup is the least constrained in our experiments and allows a maximum
of two devices in the partitioning.

In the per-layer partitioning approach, the user performs the partitioning, so we parti-
tioned LeNet for the first setup and show the resultant partitioning in Figure 5.2. In this
figure, we show only the partitioning for LeNet 2:1 because the partitioning for LeNet 1:1
is equivalent. It is worth noting that each color in this figure and in all the figures that
represent visual partitionings corresponds to a different partition.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a a a a a a a a a a a a a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a a a
a

a a a a a a a a a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

input C1 P2 C3 P4 FC5 FC6 FC7
output

Figure 5.2: LeNet 2:1 user-made per-layer partitioning [76].

5.2.5 Greedy: A Greedy Algorithm for Communication Reduc-

tion

The second approach is a simple algorithm that aims to reduce communication. In this
algorithm, whose pseudocode is listed in Algorithm 3, we assign the layers to the same
device in order until it has no memory to fit some layer. Next, if there is any space left
in the device and the layer type is convolution, pooling, or input, then a 2D matrix of
vertices (width and height) that fits into the rest of the memory of this device is assigned
to it or, if the layer is fully connected, then the algorithm assigns to the device a number
of vertices that fit into the rest of the memory of this device. After that or if there is any
space left in the device, we assign the next layer or the rest of the current layer to the
next device and the process goes on until the algorithm assigns all the vertices to a device.
This greedy algorithm assumes that there is a sufficient amount of memory in the setups
for the neural network model. Furthermore, the algorithm can partition graphs using
fewer devices than the total number of devices provided. This algorithm contains two
loops that depend on the number of layers (L) and the number of devices (or partitions,
P) of the setup, which renders the algorithm complexity equal to O(L+P). However, it is
worth noticing that both L and P are usually much smaller than the number of neurons
in the neural network.

Figure 5.3 shows the visual partitioning using the greedy algorithm for each exper-
iment. This algorithm works both for the free-input-layer and the locked-input-layer
experiments because the input layer could be entirely assigned to the same device for all
setups. Furthermore, as the partitioning scheme is similar for LeNet 2:1 and LeNet 1:1

93

in the experiments with 2, 4, and 11 devices, we show only the partitionings for LeNet
2:1 in Figure 5.3a, 5.3b, and 5.3c for the sake of simplicity. For the experiments with
56 and 63 devices, the greedy algorithm results in the same partitioning because these
setups employ the same device model. However, as LeNet 2:1 uses 44 devices and LeNet
1:1 employs 38 devices, we show both results in Figure 5.3d and 5.3e, respectively.

Algorithm 3 Greedy algorithm for communication reduction [76].

1: function greedyAlgorithm(lenet, setup)
2: for l ← 1 to lenet.numberOfLayers do

3: for device← setup.first to setup.last do

4: if lenet[l].remainingMem 6= 0 then

5: if lenet[l].remainingMem ≤ device.availableMemory then

6: assign l to device;
7: else if lenet[l].type = conv or pooling or input then

8: assign a 2D matrix of vertices that fit into device;
9: else if lenet[l].type = fully connected then

10: assign the number of vertices that fits into device;
11: end if

12: device.availableMemory ← device.availableMemory − assigned;
13: lenet[l].remainingMem ← lenet[l].remainingMem − assigned;
14: else

15: break;
16: end if

17: end for

18: end for

19: end function

5.2.6 iRgreedy: User-Made Partitioning Aiming for Inference

Rate Maximization

The third approach is a partitioning performed by the user that aims for the inference
rate maximization. The rationale behind this greedy approach is to equally distribute
the vertices of each layer to each device since all the experiments present a homogenous
setup. Thus, this approach employs all the devices provided for the partitioning. Besides
that, again, we divide the layers into 2D matrices for the input, convolution, and pooling
layers.

Figure 5.4a shows the visual partitioning for the 11-device free-input LeNet 2:1 exper-
iment. For the two- and four-device free-input experiments, the partitioning follows the
same pattern. For the 2-, 4-, and 11-device locked-input experiments, we changed only
the input layer partitioning and assigned it to only one device. Thus, we do not show
these partitionings here, but we provide all the partitionings produced by the greedy al-
gorithm, Inference-rate greedy approach (iRgreedy) approach, and METIS together with

94

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 1 1 1

0 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1

0 1

0 1

0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P2 C3 P4 FC5 FC6FC7
output

(a)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1

0 1

0 1

0 1 2 2 2

0 1 2 2 2

0 2 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 2 3

0 1 2 2 2 3

0 1 2 2 2 3

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P2 C3 P4 FC5 FC6FC7
output

(b)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4

0 1 4

0 2 5

0 2 5

0 2 5 7 8 8

0 1 1 1 1 1 1 1 1 1 1 2 5 7 8 8

0 1 1 1 1 1 1 1 1 1 1 2 5 7 8 8 8

0 1 1 1 1 1 1 1 1 1 1 3 6 7 8 8 8

0 1 1 1 1 1 1 1 1 1 1 3 6 7 8 8

0 1 1 1 1 1 1 1 1 1 1 3 6 7 8 8

0 3 6 8 8 8

0 3 6

0 4 7

0 4 7

0 4 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P2 C3 P4 FC5 FC6FC7
output

(c)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 23

0 1 1 1 1 1 1 1 1 9 24

0 1 1 1 1 1 1 1 1 10 25

0 1 1 1 1 1 1 1 1 11 26

0 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 12 27 38 39 41

0 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 4 4 4 5 5 7 7 7 7 7 13 28 38 40 41

0 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 4 4 4 5 5 7 7 7 7 7 14 29 38 40 42 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 4 4 5 5 5 7 7 7 7 7 15 30 38 40 42 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 6 6 6 6 5 7 7 7 7 7 16 31 39 40 42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 6 6 6 6 7 7 7 7 7 7 17 32 39 41 42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3 3 3 3 3 18 33 39 41 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 19 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 3 3 21 36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 3 3 22 37

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P2 C3 P4 FC5 FC6FC7
output

(d)
0 0

0 8 14 20 26

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 15 21 27 32 34 36

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 10 16 22 28 32 34 36 37

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 10 16 22 28 32 34 36 37

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 7 7 7 7 7 10 16 22 28 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 7 7 7 7 7 10 16 22 28 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 7 7 7 7 7 10 16 22 28 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 6 6 5 5 5 5 5 7 7 7 7 7 11 17 23 29 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 5 5 5 5 5 7 7 7 7 7 11 17 23 29 32 34 36 37

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 5 5 5 11 17 23 29 33 34 36 37

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 11 17 23 29 33 34 36 37

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 7 11 17 23 29 33 34 36 37

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 12 18 24 30 33 35 36

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 12 18 24 30 33 35 36

0 2 12 18 24 30 33 35 36

0 2 12 18 24 30 33 35 36

0 2 12 18 24 30 33 34 36

0 2 3 13 19 25 31 33 35 37

0 2 3 3 3 13 19 25 31 33 35 37

0 2 3 3 3 13 19 25 31 33 35 37

0 2 3 3 3 13 19 25 31 33 35 37

0 13 19 25 31

0 0

a a

a a

input C1 P2 C3 P4 FC5 FC6FC7
output

(e)

Figure 5.3: Partitionings using the greedy algorithm: (a) LeNet 2:1 for the two-device
experiments; (b) LeNet 2:1 for the four-device experiments; (c) LeNet 2:1 for the 11-device
experiments (used nine devices); (d) LeNet 2:1 for the 56- and 63-device experiments
(used 44 devices); and (e) LeNet 1:1 for the 56- and 63-device experiments (used 38
devices) [76].

95

the source code of all the algorithm implementations [74]. We used these partitionings as
initial partitionings for DN2PCIoT after approaches, as explained in Subsection 5.2.9.

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 5

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 0 0 0 0 1 1 1 1 2 2 2 2 3 0 5

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 0 0 0 1 1 1 1 1 2 2 2 2 3 0 5

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 0 0 0 1 1 1 1 2 2 2 2 2 3 1 6

0 0 0 5 5 1 1 1 4 4 2 2 2 3 3 3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 0 0 1 1 2 2 3 1 6 0 7 10

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 5 5 5 5 4 4 4 4 4 3 3 3 0 0 1 1 2 2 3 0 0 1 1 2 0 0 1 1 2 1 6 1 8 10

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 5 5 5 5 5 4 4 4 4 3 3 3 6 5 5 4 4 3 3 4 4 3 3 2 4 4 3 3 2 2 7 2 10 10 9

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 6 5 5 5 5 4 4 4 4 3 3 3 6 5 5 4 4 1 1 5 5 6 6 7 5 5 6 6 7 2 7 3 10 10 10

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 6 5 5 5 5 4 4 4 4 3 3 3 6 6 7 7 8 8 9 5 9 8 8 7 5 5 8 8 7 2 7 4 10 10

6 6 6 6 7 7 5 7 7 8 8 4 8 8 9 9 6 6 6 6 7 7 7 7 8 8 8 8 8 9 10 10 7 7 8 8 9 5 8 8 8 7 5 8 8 8 7 3 8 5 10 10

6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 6 6 6 7 7 7 7 7 8 8 8 8 9 9 10 10 10 7 9 9 9 3 8 6 10 10

6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 10 10 10 10 7 7 7 7 8 8 8 8 9 9 3 8

6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 10 10 10 10 7 7 7 7 8 8 8 8 9 9 4 9

10 10 10 10 7 7 7 7 8 8 8 8 8 9 9 9 10 10 10 10 7 7 7 7 9 9 9 9 9 9 4 9

10 10 10 10 10 10 10 10 10 10 9 9 9 9 9 9 10 10 10 10 10 10 10 10 9 9 9 9 9 9 4 9

10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 9

a a

a a

input C1 P2 C3 P4 FC5 FC6 FC7
output

(a)
0 0 1 1 16 16 16 16 16 16 16 16 16 16 16 16 0 15

16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 1 16

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 2 17

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 3 18

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 12 12 12 13 13 13 13 4 19 34 41 48

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 13 13 13 13 13 13 13 30 30 30 30 30 15 15 15 15 15 5 20 35 42 49

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 2 2 2 2 2 2 13 13 13 13 13 13 14 30 30 30 31 31 15 16 16 16 16 6 21 36 43 50 0

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 3 3 3 3 3 3 3 3 3 14 14 14 14 14 14 14 31 31 31 31 31 16 16 16 16 16 7 22 37 44 51 1

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 3 3 4 4 4 4 4 4 4 4 4 4 4 5 14 14 14 14 14 14 14 31 32 32 32 32 16 16 16 16 16 8 23 38 45 52

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 5 5 5 5 5 5 5 5 5 5 6 6 6 6 14 14 15 15 15 15 15 32 32 32 32 33 16 16 16 16 16 9 24 39 46 53

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 6 6 6 6 6 6 6 7 7 7 7 7 7 7 15 15 15 15 15 15 15 10 25 40 47 54

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 7 7 7 7 8 8 8 8 8 8 8 8 8 8 11 26

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 8 9 9 9 9 9 9 9 9 9 9 9 10 10 12 27

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 10 10 10 10 10 10 10 10 10 11 11 11 11 11 13 28

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 11 11 11 11 11 11 12 12 12 12 12 12 12 12 14 29

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

a a

a a

input C1 P2 C3 P4 FC5 FC6 FC7
output

(b)
22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23

25 25 25 25 25 25 25 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 23 23 23 23 23 23 3 18 33 48

25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 4 19 34 49 19 47 23

28 28 28 28 28 28 28 28 28 28 28 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 22 22 22 22 22 22 22 22 22 22 22 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 20 20 4 19 34 49 20 48 24

28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 5 20 35 50 21 49 25

32 32 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 26 26 26 26 26 26 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24 24 24 24 24 24 5 20 35 50 22 50 26

32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 6 21 36 51 23 51 27

35 35 35 35 35 35 35 35 35 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 33 33 33 33 30 30 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 28 28 28 28 28 28 28 28 28 28 28 6 21 36 51 24 52 28

35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 7 22 37 52 25 53 29

38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 35 35 35 36 36 36 37 37 37 38 38 7 22 37 52 26 54 30

38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40 40 40 40 35 35 35 35 35 35 35 35 35 35 35 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 33 33 43 42 42 42 41 41 41 40 40 40 39 39 39 38 8 23 38 53 27 55 31

42 42 42 42 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 40 40 40 40 40 40 40 40 40 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 37 37 37 43 43 44 44 44 45 45 45 46 46 46 47 47 47 0 0 0 0 0 0 0 0 0 0 8 23 38 53 28 4 32 51

42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 39 39 39 39 39 39 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 37 37 37 37 37 37 52 52 51 51 51 50 50 50 49 49 49 48 48 48 0 0 0 0 0 0 0 0 0 0 9 24 39 54 29 5 33 52

45 45 45 45 45 45 45 45 45 45 45 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 43 43 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40 40 41 41 41 41 41 52 53 53 53 54 54 54 55 55 55 4 4 4 5 0 0 0 0 0 0 0 0 0 0 9 10 11 12 13 9 24 39 54 30 6 34 53

45 45 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 47 47 47 47 47 43 43 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 41 41 41 41 41 41 41 41 41 41 41 9 9 9 8 8 8 7 7 7 6 6 6 5 5 0 0 0 1 1 1 1 1 1 1 14 15 16 17 18 10 25 40 55 31 7 35 54

48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 47 47 47 47 47 47 43 43 43 43 43 43 43 43 43 43 43 43 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 10 10 10 11 11 11 12 12 12 13 13 13 14 14 1 1 1 1 1 1 1 1 1 1 19 20 21 22 23 10 25 40 55 32 8 36 55

48 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 50 50 50 50 50 50 50 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46 19 18 18 18 17 17 17 16 16 16 15 15 15 14 1 1 1 1 1 1 1 1 1 1 24 25 26 27 28 11 26 41 4 33 9 37 4

52 52 52 52 52 52 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 50 50 50 50 50 50 50 48 48 48 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 46 46 19 19 20 20 20 21 21 21 22 22 22 23 23 23 1 1 1 1 1 1 2 2 2 2 29 30 31 32 33 11 26 41 5 34 10 38 5

52 52 52 52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 50 50 50 50 28 28 27 27 27 26 26 26 25 25 25 24 24 24 2 2 2 2 2 2 2 2 2 2 12 27 42 6 35 11 39 6

55 55 55 55 55 55 55 55 55 55 55 55 55 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 52 52 52 52 52 52 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 50 50 50 50 50 50 28 29 29 29 30 30 30 31 31 31 32 32 32 33 2 2 2 2 2 2 2 2 2 2 12 27 42 7 36 12 40 7

55 55 55 55 55 55 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53 53 54 54 54 54 54 45 44 43 42 41 40 39 38 37 36 35 34 33 33 2 2 2 2 2 2 2 2 2 3 13 28 43 8 37 13 41 8

7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 54 54 54 54 54 54 54 54 54 54 54 46 47 48 49 50 51 52 53 54 55 4 5 6 7 13 28 43 9 38 14 42

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 21 20 19 18 17 16 15 14 13 12 11 10 9 8 14 29 44 10 39 15 43

10 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 14 29 44 11 40 16 44

10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 15 30 45 12 41 17 45

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 15 30 45 13 42 18 46

13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 16 31 46 14 43 19 47

17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 16 31 46 15 44 20 48

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 15 17 32 47 16 45 21 49

20 20 20 20 20 20 20 20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 32 47 17 46 22 50

20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 23 24 25 18 33 48 18

5 4 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26

a a

input C1 P2 C3 P4 FC5 FC6FC7
output

(c)
57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 0 15

57 1 16

57 57 57 57 57 57 57 57 57 57 58 58 58 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57 57 2 17

58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 57 57 57 57 58 58 58 58 58 58 58 58 58 58 3 18

58 57 57 57 57 57 57 57 4 19 34 41 48

58 58 58 58 59 59 59 59 59 59 59 59 59 59 59 59 58 58 58 58 58 58 58 58 59 59 59 59 59 59 57 58 58 58 58 58 58 30 30 30 30 30 57 57 57 57 58 5 20 35 42 49

59 58 58 59 59 59 59 59 30 30 30 31 31 59 59 58 58 58 6 21 36 43 50 55

59 59 59 59 59 59 59 59 59 59 59 59 59 59 60 60 59 59 59 59 59 59 59 59 59 59 59 59 60 60 59 59 59 60 60 60 60 31 31 31 31 31 59 59 60 60 60 7 22 37 44 51 56

60 61 61 61 31 32 32 32 32 61 61 61 61 60 8 23 38 45 52

60 61 61 61 61 61 62 62 32 32 32 32 33 62 62 62 62 62 9 24 39 46 53

60 60 61 61 61 61 61 61 61 61 61 61 61 61 61 61 60 60 61 61 61 61 61 61 61 61 61 61 61 61 62 62 62 62 62 62 61 10 25 40 47 54

61 11 26

61 61 61 61 61 61 62 62 62 62 62 62 62 62 62 62 61 61 61 61 61 61 62 62 62 62 62 62 62 62 12 27

62 13 28

62 62 62 62 62 62 62 62 62 62 57 57 57 58 58 58 62 62 62 62 62 62 62 62 62 62 57 58 59 60 14 29

59 59 59 60 60 60 61 61 61 62 62 62 57 58 59 60

a a

a a

input C1 P2 C3 P4 FC5 FC6 FC7
output

(d)

Figure 5.4: Partitionings using the inference rate greedy approach: (a) LeNet 2:1 for the
11-device experiments; (b) LeNet 2:1 for the 56-device experiments; (c) LeNet 1:1 for
the 56-device experiments; and (d) LeNet 2:1 for the 63-device experiments [76].

For the 56- and 63-device experiments, it was not possible to employ the same rationale
due to memory issues. Thus, for these experiments, the rationale was to start by the layers
that require most memory and assign to the same device the largest number of vertices
possible of that layer. Furthermore, in these experiments, we assigned the vertices in a
per-line way because the layers were not equally distributed to all the available devices.

96

This approach reduces the number of copies of the shared parameters and biases and, thus,
allows for a valid partitioning. For the locked-input experiments, besides changing the
input layer by assigning it entirely to only one device, we had to perform some adjustments
to produce valid partitionings. Figure 5.4b and 5.4c show the visual partitionings for the
56-device free-input LeNet 2:1 and LeNet 1:1 partitioning, respectively. Additionally, in
the 63-device experiments with LeNet 2:1, we assigned the vertices in the same positions
of the first layers to the same devices to reduce communication. We show the visual
partitioning for this case in Figure 5.4d. As the approach for 63 devices in LeNet 1:1 was
the same for the 56 devices, we do not show the visual partitioning for 63 devices in LeNet
1:1 here either. The two approaches detailed in this subsection are greedy and, therefore,
we call them Inference-rate greedy approach (iRgreedy) in the rest of this chapter.

5.2.7 METIS

In this approach, we used the program gpmetis from METIS to automatically partition
LeNet and compare the results with our approaches. The reason to choose METIS is that
it is considered a widely known state-of-the-art framework used to automatically partition
graphs for general purpose.

METIS offers several parameters that the user can modify like the number of differ-
ent partitionings to compute, the number of iterations for the refinement algorithms at
each stage of the uncoarsening process, the maximum allowed load imbalance among the
partitions, and the algorithm’s objective function. The number of partitions corresponds
to the maximum number of devices in each setup described in Section 5.2.2. Thus, as
METIS attempts to balance all the constraints, it always employs the maximum number
of devices in each experiment. We varied all the other parameters that we listed here
in our tests and, for our inference rate maximization objective function, we replaced the
maximum allowed load imbalance among the partitions parameter for the maximum al-
lowed load imbalance among partitions per constraint, which allows using different values
for memory and computational load. It is important to note that METIS considers the
computational load as a constraint and, thus, attempts to balance it. For the objective
function parameter, we used both functions: edgecut minimization and total communi-
cation volume minimization. We can use these two functions because our source graphs
represent the actual underlying communications, as METIS requires. These parameters
are detailed in the METIS manual [48]. We report the METIS parameters that led to the
METIS results in this chapter in Appendix A.

For the locked-input experiments, we removed the LeNet graph vertices from the input
layer to run METIS with a small difference between the constraints proportion (target
weights in METIS) related to the amount of memory and computational load that the
input layer requires. After METIS performs the partitioning, we plugged the input layer
back into the LeNet graph and calculated the cost (inference rate or amount of transferred
data) and if this partitioning is valid.

5.2.8 DN2PCIoT 30R

The fifth approach that we used for the experiments was the application of DN2PCIoT
starting from random-generated partitionings. This approach executed DN2PCIoT 30
times starting from different random-generated partitionings and we report the best value
achieved in these 30 executions. We executed this approach only for the LeNet 2:1 model

97

due to the more costly execution of the LeNet 1:1 model starting from a random partition-
ing. This was the only approach that did not employ LeNet 1:1. Furthermore, DN2PCIoT
can discard some devices when they are not necessary, i.e., if DN2PCIoT finds a better
partitioning (larger inference rate or smaller amount of communication, depending on the
objective function) with fewer devices.

5.2.9 DN2PCIoT after Approaches

The last approach corresponds to the execution of the proposed DN2PCIoT starting
from partitionings obtained by the other approaches that we considered in this chapter.
Thus, we performed four experiments with this approach: DN2PCIoT after per layers,
DN2PCIoT after greedy, DN2PCIoT after iRgreedy, and DN2PCIoT after METIS. This
approach also allows the partitionings to employ fewer devices than the maximum number
of devices allowed in each experiment. It is worth noting that no other approach in this
thesis can start from a partitioning obtained by another approach and try to improve the
solution based on this initial partitioning.

5.3 Experimental Results

In this section, we show the results for all the experiments performed with the setups
and the approaches discussed in Section 5.2 (varying the number of devices, free and
locked input layer, and all the approaches) for the inference rate maximization objective
function. After that, we show the pipeline parallelism factor for each setup to compare the
performance of a single device to the distribution performance. Finally, we plot the results
of the inference rate maximization along with the results for communication minimization
to see how optimizing for one objective function affects the other. We compared our
approaches (greedy algorithm, iRgreedy approach, DN2PCIoT 30R, and DN2PCIoT after
all the other approaches) to two literature approaches: the per-layer approach (equivalent
to popular machine learning frameworks such as TensorFlow, DIANNE, and DeepX) and
METIS. We implemented DN2PCIoT using C++ and executed the experiments on Linux-
based operating systems.

5.3.1 Inference Rate Maximization

Table 5.3 summarizes the results for the inference rate maximization objective function for
the approaches detailed in Section 5.2. In this subsection, we compare these approaches
to DN2PCIoT. Table 5.4 shows the results for the inference rate maximization objective
function for DN2PCIoT 30R and DN2PCIoT after all the approaches in Table 5.3. It
is worth noting that both Table 5.3 and Table 5.4 present normalized results, i.e., we
normalized these results by the maximum inference rate achieved in each experiment.
For instance, in the free-input two-device experiments, considering both Table 5.3 and
Table 5.4, DN2PCIoT after METIS with LeNet 2:1 achieved the maximum inference rate.
We take this value and divide it by each result of the free-input two-device experiments.
Thus, we have a value of 1.0 for the maximum inference rate in the experiment with
DN2PCIoT after METIS and LeNet 2:1 and the values of the other approaches reflect
how many times the inference rate was worse than the maximum inference rate. We
colored the table so that the red color represents the worst results and the green color

98

represents the best results, i.e., results that are close to 1.0. The yellow color represents
intermediate results.

In the first column of both tables, the number indicates the maximum number of
devices allowed in each experiment, “free” refers to the free-input-layer experiments, and
“locked” refers to the locked-input-layer experiments. As discussed in Section 5.2, some
approaches could not produce valid partitionings and this is represented by an “x”. For
LeNet 1:1, as it is a large graph with 2343 vertices, we had to interrupt some executions
and we report the best value found until the interruption. We marked these executions
with an asterisk (“*”).

As general results, it is possible to see in Table 5.3 and Table 5.4 that DN2PCIoT 30R
and DN2PCIoT after approaches led to the best values for all the experiments. DN2PCIoT
30R produced results that range from intermediate to the best results, with only 20% of
the experiments yielding intermediate results. The DN2PCIoT 30R results show the
robustness of DN2PCIoT, which can achieve reasonable results even when starting from
random partitionings.

There are some important conclusions that we can draw from Table 5.3. The per-layer
partitioning is the most limiting approach when considering constrained devices because
it could only partition the model for the least constrained device setup, which used two
devices. It is worth noting that this approach is the one offered by popular machine
learning frameworks such as TensorFlow, DIANNE, and DeepX. Thus, we show that these
frameworks cannot execute DNNs in very constrained setups. Moreover, the per-layer
partitioning produced suboptimal results for the only setup that it could produce valid
partitionings. The quality of these results was due to the heavy unbalanced partitioning
in the per-layer approach, which overloaded one device while assigned a low load to the
other device, as the least constrained setup offered two devices.

The state-of-the-art framework METIS also led to suboptimal results because it at-
tempts to balance all the constraints, which are memory and computational load. Addi-
tionally, several partitionings provided by METIS were invalid because METIS does not
consider a limit for the amount of memory in each partition. METIS could not produce
any valid partitionings at all for the 56- and 63-device experiments because METIS is
not capable of properly accounting for the memory required by the shared parameters
and biases of CNNs. One way to solve this issue would be to add the memory required
by the shared parameters and biases to every vertex that needs them, even if METIS
assigned the vertices to the same partition. However, this solution would require much
more memory and no partitioning using this solution would be valid for the setups used in
this chapter. Thereby, we gave METIS the LeNet model without the memory information
required by the shared parameters and biases hoping that METIS would produce valid
partitionings. METIS had the conditions to produce valid partitionings in this situation
since our setups provided a sufficient amount of memory for LeNet and one full set of
shared parameters and biases for each device. Unfortunately, METIS did not produce
any valid partitionings in any of the 56- and 63-device constrained setups.

Finally, the greedy algorithm and the iRgreedy approach are simple approaches. Al-
though they produced poor results, they could produce valid partitionings for all the
proposed setups. Thus, considering the ability to produce valid partitionings, these ap-
proaches demonstrated to be better than METIS and the per-layer partitioning offered
by popular machine learning frameworks in the proposed setups.

In Table 5.4, we can see that DN2PCIoT starting from the partitionings produced by
the other approaches achieved results that range from intermediate to the best results,

99

Table 5.3: Normalized results for the naive approaches. The minimum and maximum
consider Tables 5.3 and Table 5.4 [76].

Median Per Per
Greedy Greedy iRgreedy iRgreedy METIS METIS

Setup of 30 layers layers
2:1 1:1 2:1 1:1 2:1 1:1

Random 2:1 1:1

2 free 6.35 1.67 1.67 1.59 1.59 1.61 1.36 1.13 1.23
4 free 4.09 x x 2.06 2.06 1.43 1.21 1.09 1.14
11 free 2.32 x x 4.49 4.49 1.56 1.67 1.40 1.38
56 free 2.12 x x 29.25 29.53 24.00 1.45 x x
63 free 1.92 x x 27.53 27.80 6.59 1.32 x x

2 locked 5.25 1.37 1.37 1.31 1.31 1.73 1.52 1.11 1.12
4 locked 4.83 x x 2.03 2.03 1.90 1.68 1.27 1.33
11 locked 3.25 x x 4.08 4.08 3.33 2.83 1.29 1.34
56 locked 2.74 x x 17.50 17.66 11.25 1.34 x x
63 locked 2.15 x x 14.74 14.88 3.53 1.28 x x

Table 5.4: Normalized results for DN2PCIoT 30R and DN2PCIoT after approaches [76].

DN2PCIoT after

Setup 30R
per per

greedy greedy iRgreedy iRgreedy METIS METIS
2:1

layers layers
2:1 1:1 2:1 1:1 2:1 1:1

2:1 1:1

2 free 1.13 1.20 1.38 1.06 1.37 1.02 1.18 1.00 1.01
4 free 1.38 x x 1.16 1.25 1.16 1.14 1.00 1.01
11 free 1.19 x x 1.34 1.42* 1.18 1.09 1.04 1.00
56 free 1.12 x x 2.62 5.14* 2.12 1.00* x x
63 free 1.00 x x 2.59 5.84* 2.71 1.21* x x

2 locked 1.00 1.09 1.08 1.01 1.12 1.12 1.11 1.02 1.02
4 locked 1.27 x x 1.29 1.25 1.00 1.45 1.25 1.23
11 locked 1.29 x x 1.26 1.18 1.00 1.01 1.10 1.22
56 locked 1.46 x x 2.50 4.07* 1.91 1.00* x x
63 locked 1.17 x x 2.17 3.41* 2.14 1.00* x x

like the DN2PCIoT 30R approach. When comparing to the state-of-the-art framework
METIS, DN2PCIoT after METIS could improve the METIS result by up to 38%. Addi-
tionally, DN2PCIoT after approaches is a better approach when compared to DN2PCIoT
30R because DN2PCIoT after approaches do not need to run 30 times to attempt to find
a better partitioning as in the DN2PCIoT 30R approach. Furthermore, the single exe-
cution required by DN2PCIoT after each approach may run faster than DN2PCIoT 30R
because it starts from the intermediate result achieved by the other approaches instead
of a random partitioning that usually requires several epochs to converge.

The DN2PCIoT after the greedy approach result also shows the DN2PCIoT robustness
because the greedy algorithm produced the worst results mostly. Nevertheless, DN2PCIoT
after the greedy algorithm could improve the poor results of the greedy algorithm up to
11.1 times, yielding at least intermediate results in comparison to the other approaches.

The LeNet 1:1 model runs in a considerably larger time than the LeNet 2:1 model due
to the difference in the number of vertices and edges between the graphs. When comparing
the two LeNet models used in the experiments, it is possible to see that DN2PCIoT
for LeNet 2:1 led to the best result or a result close to the best result in 80% of the

100

experiments. The LeNet 2:1 model became more restrictive only in the scenarios with the
locked input layer and the most constrained devices, i.e., with 56 and 63 devices. Thus,
the results for the proposed setups suggest that it is possible to employ LeNet 2:1 for
faster partitionings with a limited impact on the results.

To conclude, our results show that DN2PCIoT starting from 30 random-generated
partitionings and DN2PCIoT after the other approaches achieved the best results for the
inference rate maximization in all the proposed experiments and should be employed when
partitioning CNNs for execution on multiple constrained IoT devices. On the other hand,
the approach offered by popular machine learning frameworks such as TensorFlow and
DIANNE may not be used for very constrained devices. Additionally, the state-of-the-art
partitioning algorithm METIS cannot produce valid partitionings for very constrained
devices either.

5.3.2 Pipeline Parallelism Factor

After showing the results for the inference rate maximization objective function, it is
interesting to look at the pipeline parallelism factor to check if there is gain or loss when
distributing the neural network execution. In the first column of Table 5.5, we have the
device model and the maximum number of devices allowed in each setup. The second
column shows the inference rate if the entire LeNet model fits into one device’s memory,
i.e., the inference rate based on the computational performance of each device. In this
column, it is possible to see that the diminishing computational performance affects the
inference rate performance, as expected. In the third column, there is the best inference
rate achieved in the corresponding experiments of the previous subsection. Finally, the
fourth column shows the pipeline parallelism factor, which is the best inference rate
achieved in the experiments (third column) divided by the inference rate if the entire
LeNet fit into one device’s memory (second column). It is worth noting that the larger is
the parallelism factor, the better, and the result that is smaller than one indicates that
there is performance loss when executing the neural network inference in a distributed
fashion.

Table 5.5: Pipeline parallelism factor for each setup [76] (modified).

Setups
Single device

inference rate*
(inferences/s)

Best inference
rate in the
experiments

(inferences/s)

Pipeline
parallelism

factor

2x STM32F469xx 507.265 864.22 1.70

4x Atmel SAM G55G 338.177 757.03 2.24

11x STM32L433 225.451 162.65 0.72

56x STM32L151VB 4.509 21.14 4.69

63x STM32L151VB 4.509 17.65 3.91

* If the device fits into the memory required by the whole LeNet model.

The communication performance among the devices limited all the experiments in
Table 5.5. It is possible to note that there is a gain in the inference rate performance in

101

using 2, 4, 56, and 63 devices. For the 11-device experiment, the amount of communication
among the devices surpasses the distribution computational gain and negatively affects
performance. In this case, the distributed execution achieved only 72% of the performance
offered by a single device. However, we have to remember that this device alone cannot
execute this model due to its memory limit.

For the last device model, used in the 56- and 63-device experiments, we have different
values for the best inference rate in the experiments due to the communication links
among them, which are less powerful in the 63-device experiment and, consequently, its
result is worse than for 56 devices. Furthermore, the computational performance of the
most constrained devices used in these experiments (STM32L151VB) is so low that we
have gains of 4.7 and 3.9 when distributing LeNet, even considering the communication
overhead. These results show that, even if we could execute LeNet in a single device, it
would be more profitable to distribute the execution to achieve a higher inference rate,
except for the 11-device setup.

It is important to note that, with this distribution, we enable such a constrained sys-
tem to execute a CNN like LeNet. This would not be possible if we employed only a single
constrained device due to the lack of memory. However, in our most constrained setups,
the inference rate may be low. This can be the case, for instance, in an anomaly detection
application that classifies incoming images from a camera. As most surveillance cameras
generate 6–25 frames per second [42], most of the setups presented in this chapter satisfy
the inference rate requirement for this application. Nonetheless, the most constrained se-
tups do not satisfy the ideal inference rate requirement of a surveillance application, thus,
the system may lose some frames. In the worst case, we still have 71% of the maximum
required inference rate (17.65/25), allowing the system to execute the application, even if
the inference rate is not ideal.

5.3.3 Inference Rate versus Communication

Minimizing communication is important to reduce interference in the wireless medium
and to reduce the power consumed by radio operations. Common real-time applications
that need to process data streams in a small period such as anomaly detection from
camera images, for instance, the detection of vehicle crashes and robberies, may require
a minimum inference rate so that there is no frame loss. In this type of application,
reducing communication or even energy consumption is desirable so that the network is
not overloaded and device energy life is augmented. On the other hand, applications that
may process data at a lower rate such as non-real-time image processing may require a
small amount of communication so that device battery life is extended while desirable
characteristics are the network non-overload and inference rate maximization.

In this subsection, we want to show how optimizing for one of the objective functions,
for instance, inference rate maximization, affects the other, for instance, communication
reduction. For this purpose, Figure 5.5 presents the results of Subsection 5.3.1 for the
inference rate maximization along with their respective values for the amount of trans-
ferred data per inference for each partitioning. We also plotted in these graphs results
for the communication reduction objective function, which allows for a fair comparison in
the amount of transferred data. For instance, when the objective function is the inference
rate, the amount of transferred data may be larger than when the objective function is
communication reduction. The inverse may also occur for the inference rate. We obtained
the results for the communication reduction objective function by executing all the ap-

102

proaches discussed in Section 5.2, including DN2PCIoT 30R and DN2PCIoT after the
other approaches with the communication reduction objective function.

Each graph in Figure 5.5 corresponds to one setup. In Figure 5.5a, “comm” in the
legend parentheses stands for when the approach used the communication reduction ob-
jective function, “inf” stands for when the approach used the inference rate maximization
objective function, “free” stands for the free-input-layer experiment, and “locked” stands
for the locked-input-layer experiment. It is worth noting that each approach in the legend
corresponds to two points in the graphs of Figure 5.5, one for the execution of LeNet 2:1
and one for LeNet 1:1. DN2PCIoT 30R is an exception because we executed it only for
LeNet 2:1, thus, each approach with DN2PCIoT 30R in the legend corresponds to only
one point in the graphs. Another exception is the per-layer partitioning, which yielded
the same result for both LeNet models and, thus, its results correspond to only one point
in the graphs. In this subsection, we do not distinguish the two LeNet versions employed
in this chapter because our focus is on the approaches and so that the charts do not get
polluted.

As we want to maximize the inference rate and minimize the amount of transferred
data, the best trade-offs are the ones on the right and bottom side of the graph, i.e., in
the southeast position. We draw the Pareto curve [50] using the results for the inference
rate maximization and communication reduction achieved by all the approaches listed in
Section 5.2 to show the best trade-offs and we divided the graphs into four quadrants
according to the minimum and maximum values for each objective function. These quad-
rants help the visualization and show within which improvement region each approach
fell.

In Figure 5.5b, for the two-device experiments, the Pareto curve contains two points,
which correspond to the result of the free-input DN2PCIoT after METIS for the inference
rate maximization and most of the results of the locked-input DN2PCIoT after approaches
for communication reduction. The only approach that fell within the southeast quadrant
is the free-input DN2PCIoT after METIS for the inference rate maximization, which is
the best trade-off between the inference rate and the amount of transferred data for this
setup. Although several points fell within the southeast quadrant, it is worth noting that
the three points that are closest to this best trade-off all correspond to the results of
the free-input DN2PCIoT for the inference rate maximization, showing the robustness of
DN2PCIoT.

In Figure 5.5c, for the four-device experiments, the approach that fell both in the
Pareto curve and in the southeast quadrant is the free-input DN2PCIoT after iRgreedy
when reducing communication. Therefore, this approach presents the best trade-off for
the four-device setup. In this setup, all points that fell in the Pareto curve correspond to
DN2PCIoT again.

Six points compose the Pareto curve for the 11-device experiments in Figure 5.5d.
Three of these points fell in the best trade-off quadrant and are the results of the free-input
DN2PCIoT after iRgreedy for communication reduction and free- and locked-input METIS
for inference rate maximization. In this case, the final choice for the best trade-off depends
on which condition is more important: if the application requires a larger inference rate,
then METIS is the appropriate choice. On the other hand, if the application requires
a smaller amount of communication, then DN2PCIoT after iRgreedy for communication
reduction is a better approach.

103

greedy algorithm

iRgreedy for inf rate (free)

iRgreedy for inf rate (locked)

per layers

METIS (comm free)

DN2PCIoT 30R (comm free)

DN2PCIoT after METIS (comm free)

DN2PCIoT after greedy (comm free)

DN2PCIoT after iRgreedy (comm free)

DN2PCIoT after per layers (comm free)

METIS (comm locked)

DN2PCIoT 30R (comm locked)

DN2PCIoT after METIS (comm locked)

DN2PCIoT after greedy (comm locked)

DN2PCIoT after iRgreedy (comm locked)

DN2PCIoT after per layers (comm locked)

METIS (inf free)

DN2PCIoT 30R (inf free)

DN2PCIoT after METIS (inf free)

DN2PCIoT after greedy (inf free)

DN2PCIoT after iRgreedy (inf free)

DN2PCIoT after per layers (inf free)

METIS (inf locked)

DN2PCIoT 30R (inf locked)

DN2PCIoT after METIS (inf locked)

DN2PCIoT after greedy (inf locked)

DN2PCIoT after iRgreedy (inf locked)

DN2PCIoT after per layers (inf locked)

Pareto curve

(a)

d6 d80 0

15.6

14.1

12.5

10.9

9.4

7.8

6.2

4.7

3.1

A
m

ou
n
t

of
tr

an
sf

er
re

d
d
at

a
(K

iB
)

400 450 500 550 600 650 700 750 800 850 900

Inference rate (inferences/s)

(b)

Figure 5.5: (a) Legend for all graphs and (b) inference rate and communication values for
the two-device experiments [76] (modified).

104

5a0 6a0 8a0

15.6

7.8

3.9
400

A
m

ou
n
t

of
tr

an
sf

er
re

d
d
at

a
(K

iB
)

450 500 550 600 650 700 750 800
Inference rate (inferences/s)

350

11.7

19.5

23.4

27.3

31.2

35.2

39.1

(c)

A
m

ou
n
t

of
tr

an
sf

er
re

d
d
at

a
(K

iB
)

Inference rate (inferences/s)

140.6

125.0

109.4

93.8

78.1

62.5

46.9

31.2

15.6
20 40 60 80 100 120 140 160 180

(d)

Figure 5.5: (Continued) Inference rate and communication values for the: (c) four-device
experiments; and (d) 11-device experiments [76] (modified).

105

A
m

ou
n
t

of
tr

an
sf

er
re

d
d
at

a
(K

iB
)

Inference rate (inferences/s)

351.6

312.5

273.4

234.4

195.3

156.2

117.2
0 5 10 15 20 25

(e)

A
m

ou
n
t

of
tr

an
sf

er
re

d
d
at

a
(K

iB
)

Inference rate (inferences/s)

351.6

312.5

273.4

234.4

195.3

156.2

117.2
0 2 4 6 8 10 12 1614 18

(f)

Figure 5.5: (Continued) Inference rate and communication values for the: (e) 56-device
experiments; and (f) 63-device experiments [76] (modified).

106

Six points also compose the Pareto curve for the 56-device experiments in Figure 5.5e.
In this graph, the approach that fell both in the Pareto curve and closest to the southeast
quadrant is the free-input DN2PCIoT 30R when maximizing the inference rate. Therefore,
this approach presents the best trade-off for the 56-device setup. In this setup, all points
that fell in the Pareto curve correspond to the DN2PCIoT results.

Finally, in Figure 5.5f, for the 63-device experiments, the approach that fell both in
the Pareto curve and closest to the southeast quadrant is the free-input DN2PCIoT 30R
when maximizing the inference rate. This approach presents the best trade-off for the
63-device setup. Again, in this setup, all points that fell in the Pareto curve correspond
to the DN2PCIoT results.

Back to the example of anomaly detection in Subsection 5.3.2, in which the applica-
tion requirements involve an ideal inference rate of around 24 inferences per second while
reducing communication is desirable, we can choose the best trade-offs for each setup an-
alyzed in this subsection. In Figure 5.5b, Figure 5.5c, and Figure 5.5d, for the setups with
2, 4, and 11 devices, respectively, all the points in the Pareto curve satisfy the application
requirement of the ideal inference rate. Thus, we can choose the points that provide the
minimum amount of communication so that we do not overload the network. However,
in Figure 5.5e and Figure 5.5f, for the setups with 56 and 63 devices, respectively, the
points in the Pareto curve with the minimum amount of communication do not satisfy the
ideal inference rate application requirement. Hence, we have to choose the points with
the largest inference rate in the Pareto curve of each setup, which requires more commu-
nication. These results evidence the lower computational performance of the devices used
in the 56- and 63-device setup.

Our results suggest that our algorithm also delivers the best trade-offs between the in-
ference rate and communication, with DN2PCIoT providing more than 90% of the results
belonging to the Pareto curve. DN2PCIoT after the approaches or DN2PCIoT starting
from 30 random partitionings achieved the best trade-offs for the proposed setups, even
though these approaches aim at only one objective function. Thus, DN2PCIoT 30R and
DN2PCIoT after approaches are adequate strategies when we need both communication
reduction and inference rate maximization, although it is possible to improve DN2PCIoT
with a multi-objective function containing both objectives.

5.4 Discussion

In this section, we discuss the limitations of our approach. Our algorithm presents a
computational complexity of O(V4E), in which V is the number of vertices and E is the
number of edges of the dataflow graph. If E ∼ V, then the algorithm computational
complexity is O(V5). Thus, the grouping of the neural network neurons may be necessary
so that the algorithm executes in a feasible time. As our results show, in most cases, the
LeNet version that groups more neurons presents a limited impact on the results while
the algorithms may execute faster, as the problem size is smaller. Other algorithms such
as METIS perform an aggressive grouping and, thus, can also execute in a feasible time.
However, it is worth noting that, with 30 executions, our DN2PCIoT algorithm achieves
results that are close to the best result that DN2PCIoT achieved for an experiment, which
includes DN2PCIoT after the other approaches. On the other hand, we had to execute
METIS with many different parameters to achieve valid partitionings and find the best
result that METIS can get, adding up to more than 98,000 executions. Thus, METIS

107

execution time is also not negligible.
More modern and larger CNNs such as VGGNet and ResNet would require more

devices and/or devices with a larger amount of memory so that partitioning algorithms can
produce valid partitionings. However, as these CNNs are also composed of convolution,
pooling, and fully connected layers, the partitioning patterns [28] tend to be similar.
Additionally, as current CNNs present more neurons, strategies that group more neurons
similar to LeNet 2:1 or in multilevel partitioning algorithms such as METIS [49] may also
be required so that the partitioning algorithm executes in a feasible time.

Other strategies that we can use to reduce the algorithm execution time are to start
from partitionings obtained with other frameworks and to interrupt execution as soon as
the partitioning achieves a target value or the improvements are smaller than a specified
threshold. We can also combine our algorithm with other strategies such as the multilevel
approach, which automatically groups graph vertices [49], but without the shortcomings of
METIS such as invalid partitionings. In the next chapter, we apply the multilevel strategy
to solve some of the limitations of our algorithm. It is important to notice that, even with
these limitations, our results suggest that there is a large space for improvements when
we consider constrained devices and compare the results to well-known approaches.

5.5 Final Remarks

In this chapter, we partitioned the LeNet Convolutional Neural Network for distributed in-
ference into constrained Internet-of-Things devices using nine different approaches and we
proposed Deep Neural Networks Partitioning for Constrained IoT Devices (DN2PCIoT),
an algorithm that partitions graphs representing Deep Neural Networks for distributed
execution on multiple constrained IoT devices aiming for inference rate maximization or
communication reduction. This algorithm adequately treats the memory required by the
shared parameters and biases of CNNs so that DN2PCIoT can produce valid partitionings
for very constrained devices. Additionally, we can easily modify DN2PCIoT to use other
objective functions as well.

We partitioned two versions of the LeNet model with different levels of neuron group-
ing using five different setups aiming for inference rate maximization. We employed
several approaches for the partitionings, including the per-layer approach, which is the
approach offered by popular machine learning frameworks such as TensorFlow, DIANNE,
and DeepX, and the widely used framework METIS. We compared the results produced
by these approaches to the results produced by DN2PCIoT and showed that either the ap-
proaches could not produce valid partitionings for more constrained setups or they yielded
suboptimal results, with DN2PCIoT achieving up to 38% more inferences per second than
METIS. We also calculated the inference rate for a single device of each experiment as-
suming that the memory of this device was sufficient to execute the whole LeNet. We
showed that, even if it was possible to execute the inference on a single device, there may
be performance advantages of distributing its execution among multiple devices such as
gains from 1.7 to 4.69 times in the inference rate provided by DN2PCIoT. Finally, we
plotted the results for the inference rate maximization objective function along with the
respective amount of transferred data so that it was possible to see how optimizing for one
objective function affects the other. Our results suggest that our algorithm can also de-
liver the best trade-offs between the inference rate and communication, with DN2PCIoT
providing more than 90% of the results belonging to the Pareto curve. The partitionings

108

for both versions of LeNet achieved comparable results, with the less fine-grained LeNet
model leading to the best results in 80% of the experiments. Thus, we showed that we
can use a less fine-grained model following our grouping strategies in the partitionings
with a limited impact on the results.

In the next chapter, to partition larger graphs in a feasible time, we propose the last
algorithm in this thesis. This algorithm employs the multilevel approach, which gradually
groups the graph vertices, executes a partitioning algorithm in the coarsest graph, and
gradually returns to the original graph, refining the partitioning at each subgraph in this
phase [49].

109

Chapter 6

Multilevel Deep Neural Networks

Partitioning for Constrained IoT

Devices

In this chapter, we propose another algorithm, the Multilevel Deep Neural Networks
Partitioning for Constrained IoT Devices (MDN2PCIoT), which explores techniques to
enhance DN2PCIoT and solve the limitations discussed in the previous chapter. Its main
technique is the multilevel approach, in which we gradually reduce the graph size by
grouping vertices, execute a partitioning algorithm in the smallest graph, and, then,
gradually return to the original graph, refining the partitioning at each subgraph [49]. We
used the DN2PCIoT algorithm to partition the smallest graph and refine the partitioning
at each subgraph. Furthermore, we applied some techniques to DN2PCIoT so that it
executes faster within the MDN2PCIoT, thus, we call this new version of DN2PCIoT
faster-DN2PCIoT. We designed and experimented with new approaches to perform the
initial automatic vertex grouping, coarsest graph partitioning, and uncoarsening phase.
In the experiments, we partition the LeNet and the AlexNet CNN models and compare
our approach to METIS and to a simple approach based on the Best Fit approach [20, 92]
applied to the original graph that represents the CNNs.

We summarize the main contributions of the work described in this chapter as follows:

• a new multilevel algorithm using a modified version of DN2PCIoT as partitioning
algorithm;

• a more flexible heavy-edge matching coarsening phase that, depending on the amount
of memory of the devices in the partitioning, groups the vertices limiting to either
a percentage of the amount of memory provided by the device that provides the
smallest amount of memory or to the total amount of memory required by all the
vertices, excluding the memory required by the shared parameters and biases;

• the DN2PCIoT feature of factoring redundant edges out of the cost computation by
modifying the edge treatment when grouping vertices, which also allows for a larger
reduction in the number of edges in the subgraphs;

• an always-valid coarse partitioning for the smallest, coarsest graph, which satisfies
memory constraints since the algorithm beginning;

110

• a more flexible uncoarsening phase that executes either one epoch of DN2PCIoT
or the whole DN2PCIoT algorithm depending on the number of vertices of the
subgraphs and the number of devices in the partitioning; and

• a study case to validate our algorithm and to experiment with a larger CNN for the
inference rate maximization and communication reduction objective functions.

6.1 Proposed MDN2PCIoT

In the previous chapters, we investigated manual groupings of the LeNet neurons of each
layer. These groupings allowed us to reduce the dataflow graph size and, thus, to perform
more experiments in a shorter time frame since the input was smaller. However, this
process of manually grouping vertices is prone to errors and may consume too much time
as it is not automatic. Thus, another solution is to automatically group the vertices
and apply the multilevel approach. With this grouping, we can generate subgraphs with
decreasing sizes.

The multilevel approach has three phases: the coarsening phase, the coarse partition-
ing phase, and the uncoarsening phase [49]. Initially, the algorithm automatically and
gradually groups the vertices so that it reduces the graph size until it has a few hundred
vertices. This first stage is the coarsening phase. Then, in the coarse partitioning phase,
the algorithm partitions the coarsest graph produced in the previous step using, in our
case, the Best Fit algorithm and the faster-DN2PCIoT algorithm. After this partitioning,
the algorithm gradually ungroups the vertices that it previously grouped, passing through
each subgraph produced in the coarsening phase. During this process, for every subgraph,
the algorithm refines the partitioning obtained in the previous subgraph to improve the
partitioning. In our case, we also apply the faster-DN2PCIoT algorithm to perform these
refinements. This final phase is the uncoarsening phase. Figure 6.1 shows the multilevel
approach steps.

We may explore new approaches to each step separately. In this section, we explain
each algorithm phase detailing the approaches that we employed from METIS and our
new proposals. We used some techniques from METIS, for instance, in the coarsening
phase, we applied the heavy-edge matching technique. In this technique, for each vertex
that is not grouped yet, we choose the edge with the largest weight and group the two
vertices that this edge connects. Thus, we employed the heavy-edge matching because
it tends to produce subgraphs with a reduced amount of communication. We visit the
vertices by their degree order, like METIS, so that every vertex has the chance to be
grouped. After the heavy-edge matching, if any vertices were not grouped, we perform
a two-hop matching in the graph. In the two-hop matching, we can group two vertices
if they were not grouped before in this subgraph and if they both have an edge that
connects a vertex in common. Unlike METIS, we build deterministic subgraphs, which
require only one execution.

When we group vertices, we have to limit the vertex size so that the grouped vertices
do not affect the balance among the vertices in the subgraph and/or memory restrictions.
METIS does not allow grouped vertices whose size is larger than a percentage of the sum
of the size of all vertices. In the case that there is only one constraint, this percentage is
1.5% and, in the case that there is more than one constraint, 7.5%. In our problem, the
sum of the size of all vertices is equivalent to the total amount of memory required by the
vertices, excluding the memory required by the shared parameters and biases. We used

111

Multilevel Partitioning

C
oa

rs
en

in
g

p
h
as

e

U
n
coarsen

in
g

p
h
ase

Coarse partitioning phase

G0

G0

G1
G1

G2G2

G3

G3

G4

Figure 6.1: The three phases of the multilevel approach: coarsening, coarse partitioning,
and uncoarsening. Gn represents the graphs used in the algorithm: G0 is the source
graph, G1 to G3 are increasingly coarser graphs generated by the approach, and G4 is the
coarsest graph, also generated by the multilevel approach. This figure is present in the
METIS manual [48] (modified).

this value to constrain the size of grouped vertices in the setup whose devices provided
the smallest amount of memory. For the other setups, we did not allow that any grouped
vertex had a size larger than 0.25 or 0.03125 times the amount of memory provided by
the device that provides the smallest amount of memory in the setup. We chose these
values based on several tests with different values for the LeNet model.

It is important to note that we build subgraphs differently from METIS. We do that
by maintaining some of the original edges in the subgraphs to factor redundant edges
out of the cost computation. When METIS groups two vertices, if both vertices have
an edge to a vertex in common, METIS sums the weights in these edges and builds a
subgraph with only one edge. We, on the other hand, maintain these edges since they
have different sources. If we group two vertices that have edges with the same source
and weight, then we discard one of these edges. With this process, we can greatly reduce
the number of edges, at a larger rate than METIS, while also factoring redundant edges
out. Figure 6.2a shows an example of a heavy-edge matching, which groups vertices a
and c and vertices b and d according to the edge with the heaviest weight in each vertex.
Figure 6.2b shows an example of a two-hop matching, which groups vertices a and b and
vertices c and d. We use this example to show how we can factor redundant edges out.
We do not sum the edge weights to form only one edge between the grouped vertices
Sab and Scd. Our proposal includes data about the vertex sources so that, for instance,
when the algorithm groups vertices c and d, it removes the repeated edges with repeated
sources. These modifications also work for the heavy-edge matching. In the coarsening
phase, METIS generates a fixed number of subgraphs while MDN2PCIoT can receive the

112

number of subgraphs as a parameter defined by the user for larger graphs. For smaller
graphs, MDN2PCIoT also defines a fixed number of subgraphs. The ability to define the
number of subgraphs influence directly in the amount of time required by the partitioning
algorithm as well as the partitioning result.

a

b

c

d

30
30

30

30

400

(a)

a

b

c

d

SabSab
ScdScd

a:30

a:30

a:30

b:30

b:30

b:30

b:400b:400

(b)

Figure 6.2: An example of (a) a heavy-edge matching and (b) a two-hop matching. We
do not sum the edge weights to form only one edge between the grouped vertices Sab and
Scd. Our proposal includes data about the vertex sources so that, for instance, when the
algorithm groups vertices c and d, it removes the repeated vertices with repeated sources.
These modifications also work for the heavy-edge matching.

In the coarse partitioning phase, METIS uses the graph growing approach. In this
approach, we apply a breadth-first search in the graph until we visit the total number of
vertices divided by the number of partitions. Then, we assign the vertices found by this
search into one partition and repeat this process until we assign all the vertices to the
partitions. This approach helps in producing coarse partitionings with a smaller amount
of communication than random partitionings, for instance. As we want to respect memory
constraints, we used the Best Fit approach [20, 92] in the coarse partitioning phase. In
the Best Fit approach, we assign each vertex to the partition that fits this vertex and
will contain the smallest amount of available memory after the vertex assignment. This
approach assigns as many vertices as possible to the same partition, trying to fill it,
before using another partition. For homogeneous setups, the Best Fit approach helps
in producing partitionings with an amount of communication that is smaller than the
amount of communication produced by the graph growing approach. Additionally, it also
respects memory constraints.

Also in the coarse partitioning phase, we execute faster-DN2PCIoT to improve the
partitioning produced by the Best Fit approach. METIS uses the Kernighan and Lin
algorithm based on the modification of Fiduccia and Mattheyses [31] in this phase but
stops it if the algorithm produces the same result after 50 moves. We use a similar
approach in the faster-DN2PCIoT. For each vertex v, DN2PCIoT searches for the best
vertex u that produces the largest improvement in the cost function when DN2PCIoT
swaps v for u. In this search, if the cost function produces the same result after a defined
number of vertices, then faster-DN2PCIoT stops the search and selects the current best
vertex u. The user can choose this number of vertices for larger graphs and we call it swap
stabilization. Furthermore, for each vertex v, DN2PCIoT also searches for the best move
operation for it. During the search for the best operation and best vertex or vertices that
perform them, if the cost function produces the same result after another defined number
of vertices, then faster-DN2PCIoT stops the search and chooses the current best vertex v
and its respective best operation. The user must choose this number of vertices and we

113

call it step stabilization. With these modifications, the faster-DN2PCIoT executes faster
than the original DN2PCIoT in Chapter 5.

After the algorithm finishes partitioning the smallest subgraph, the uncoarsening phase
takes place. In this phase, the multilevel algorithm reproduces the partitioning obtained
for the smallest subgraph to the subgraph of the next level, making its way back to the
original graph. At each subgraph, the multilevel algorithm performs some refinements in
the partitioning. We can perform refinements in the partitioning because, for the higher
level, larger subgraphs, we have a finer granularity and, in these larger subgraphs, we can
move to different partitions vertices that, in the smaller subgraphs, had to be assigned
to the same partition because they were grouped. Similar to METIS, in the refinements,
we only consider vertices that present communication to vertices at a different partition.
Furthermore, METIS applies another version of the Kernighan and Lin algorithm. In this
version, the algorithm executes only one epoch for each subgraph so that the partitioning
algorithm executes faster. We perform a similar approach in the faster-DN2PCIoT, how-
ever, we execute all epochs if the number of devices is smaller than 12 or if the number
of devices is smaller than 50 and the subgraph size is smaller than 700 vertices. We de-
fined these numbers based on the LeNet validation tests. It is worth noting that, in the
uncoarsening phase, we also used the same modifications listed in the coarse partitioning
phase for the faster-DN2PCIoT. With these modifications, the algorithm only considering
vertices that present communication to vertices at a different partition, and the epochs
that do not execute, the faster-DN2PCIoT algorithm executes even faster than in the
coarse partitioning phase.

Algorithm 4 lists the pseudocode for MDN2PCIoT with the three phases explained in
this section. First, we allocate a list of subgraphs and add a copy of the original CNN
graph into the first position (Line 3). Next, in the coarsening phase, a loop builds the
subgraphs, each one based on the previous subgraph (Lines 5 – 7). After that, in the
coarse partitioning phase, the algorithm applies the Best Fit approach to the coarsest
subgraph and saves the resultant partitioning to bestP (Line 9). Then, the algorithm
executes the faster-DN2PCIoT algorithm to improve the Best Fit partitioning and saves
the result to bestP (Line 10). The last phase is the uncoarsening, in which a loop runs
through the other subgraphs until the original graph, executing the faster-DN2PCIoT
algorithm for each subgraph and the original graph to improve the partitioning (Lines 12
– 14).

6.2 Methods and Materials

In this section, we discuss the CNN models used in this chapter, the setups for each model,
and the algorithms that we executed.

6.2.1 Convolutional Neural Network Models

We employed the two LeNet models from Chapter 5, LeNet 2:1 and LeNet 1:1, for the val-
idation of MDN2PCIoT. As a larger neural network, we also used the AlexNet model [54]
to build a dataflow graph containing 65916 vertices, which we show in Figure 6.3 with
the following per-layer data: the number of vertices in height, width, and depth, the layer
type, and the amount of transferred data in bytes required by each edge in each layer.
We used AlexNet because it is a more powerful CNN than LeNet and requires a lot more

114

Algorithm 4 MDN2PCIoT algorithm.

1: function MDN2PCIoT(sourceGraph, numberOfCoarsenedGraphs)
2: subgraph[numberOfCoarsenedGraphs+ 1];
3: subgraph[0]← sourceGraph;
4: /* Coarsening phase */
5: for n← 1 to numberOfCoarsenedGraphs do

6: subgraph[n]← CoarsenGraph(subgraph[n− 1]);
7: end for

8: /* Coarse partitioning phase */
9: bestP ← BestF it(subgraph[numberOfCoarsenedGraphs]);

10: bestP ←faster-DN2PCIoT(bestP, subgraph[numberOfCoarsenedGraphs]);
11: /* Uncoarsening phase */
12: for n← numberOfCoarsenedGraphs− 1 to 0 do

13: bestP ←faster-DN2PCIoT(bestP, subgraph[n]);
14: end for

15: return bestP ;
16: end function

resources. Furthermore, it was the first CNN that became famous in the computer vision
field, however, we can use any neural network that can be represented as a DAG when
considering the inference rate maximization and for any neural network when considering
the communication reduction, as explained in Section 2.5 of Chapter 2.

In this AlexNet dataflow graph, we again grouped the neurons of the input layer that
are in the same position of height and width but different positions in the depth into the
same vertex. We performed the same approach in each convolution and pooling layers.
We modeled the other neurons as one vertex each. This grouping in the AlexNet model is
similar to the grouping in the LeNet 1:1 version. Table 6.1 shows the amount of memory
and computation (the number of FLOP per inference) required by each vertex in each
layer, the amount of memory required by the shared parameters and biases for each layer,
the filter size and stride at each convolution and pooling layers, and the depth size of each
layer.

1

227

227

12B

input
11

55

55
384B384B

convolutionconvolution

convolutionconvolutionconvolution

27

27

27

27

pooling

poolingpooling

13

13

13

13

13

13

13

13

11

11

1KiB1KiB

1KiB1KiB

1

1

1.5KiB

1.5KiB

6

6
40964096

fully connectedfully connectedfully connected
1000

1

1

1

1

1

1

4B4B

Figure 6.3: AlexNet architecture. Edges represent data transfers and are labeled with the
number of bytes per inference that each edge must transfer.

115

Table 6.1: Characteristics of the AlexNet model used in this chapter.

Feature input C1 P2 C3 P4 C5 C6 C7 P8 FC9 FC10 FC11

Memory per
vertex (KiB)

0.01 0.38 0.38 1 1 1.5 1.5 1 1 36 16 16

Computation
per vertex
(kFLOP)

0 69.9 0.86 5 2.3 5.1 7.7 7.7 2.3 18.4 8.2 8.2

Memory of
shared

parameters
and

biases per
layer (MiB)

0 0.13 0 2.3 0 3.4 5.1 3.4 0 0 0 0

Filter size N/a* 11x11 3x3 5x5 3x3 3x3 3x3 3x3 3x3 N/a N/a N/a

Stride N/a 4 2 1 2 1 1 1 2 N/a N/a N/a

Depth size 3 96 96 256 256 384 384 256 256 4096 4096 1000

* Not applicable.

6.2.2 Device Characteristics

We used the same setups of Chapter 5 for the LeNet model but executed MDN2PCIoT
only for the communication reduction objective function. Table 6.2 shows the setups for
the AlexNet model with hypothetical devices. All these devices belong to class others of
constrained devices that we showed in Chapter 2. It is worth noting that, for the AlexNet
experiments, no device from class D2 or below could participate in the partitionings. Our
setups offer different amounts of memory than common embedded devices because, in
many cases, these devices perform other tasks that require memory and only a fraction of
the device’s memory is available for the CNN application. In the AlexNet experiments,
we executed the algorithms for both objective functions, communication minimization
and inference rate maximization. We partitioned AlexNet into 2, 4, 8, 16, and 40 devices,
decreasing the amount of memory and the computational performance as the number of
devices allowed to be used in the experiments increased. We used the same communication
performance for all the setups so that the experiments with a smaller number of devices
and higher computational power tend to get limited by the communication performance
while the experiments with a larger number of devices and lower computational power
tend to get limited by the computational performance of the devices. Again, in each
experiment, the communication links between each device present the same performance,
which is constant during the whole partitioning algorithm.

6.2.3 Algorithms

We employed three algorithms in the experiments. The first algorithm is the Best Fit
applied to the original graph representing the CNN. This algorithm presents a complexity
of O(V log V). The second algorithm is gpmetis from METIS, varying the same parameters
that we used in Chapter 5: the number of partitions according to the setups, the number of

116

Table 6.2: Device data and the maximum number of devices allowed to be used in the
AlexNet experiments.

Number of devices
allowed to be used
in the experiments

Device amount
of RAM (MiB)

Device estimated
computational
performance
(GFLOP/s)

Communication
performance
between each

device (Mbit/s)

2 183 312

4 76 156

8 46 78 300

16 31 39

40 8 10

different partitionings to compute, the number of iterations for the refinement algorithms
at each stage of the uncoarsening process, the maximum allowed load imbalance among the
partitions, and the algorithm’s objective function, which can be the edgecut minimization
or the total communication volume minimization. We report the METIS parameters that
led to the METIS results in this chapter in Appendix A. Finally, we employed our new
MDN2PCIoT. We executed it with different numbers of subgraphs and chose the number
of subgraphs that led to the smallest amount of communication or the largest inference
rate after the Best Fit algorithm application in the coarse partitioning phase. Then, we
executed MDN2PCIoT completely with the chosen number of subgraphs.

6.3 Experimental Results

In this section, we show and discuss the results for each algorithm of Subsection 6.2.3 for
both objective functions and both the LeNet and AlexNet models.

6.3.1 Communication Reduction

In this subsection, we show and discuss the results for communication reduction and both
the LeNet and AlexNet models.

LeNet Model

Figure 6.4 shows the communication results for the LeNet 2:1 and LeNet 1:1 models when
the objective function is communication reduction. We also plotted in this figure the best
results reported in Chapter 5, which were achieved by DN2PCIoT, so that we know the
best results achieved in these experiments so far. We normalized the communication cost
for each setup and LeNet model, in which 1 represents the best result and the other values
indicate how many times the result was worse (larger) than the best result. Additionally,
we included, for each setup and LeNet model, the minimum communication cost achieved
in the experiments in bytes, which corresponds to the result equal to 1 in each experiment.
We indicated these experiments with a red arrow. The error bars in the MDN2PCIoT
results show the minimum, median, and maximum values that MDN2PCIoT achieved in

117

30 executions. Finally, we represented the cases in which METIS could not produce any
valid partitionings with an “x”.

We can see that the MDN2PCIoT achieved better results than METIS for all the
setups and LeNet models. Comparing to the best results reported in Chapter 5, achieved
by DN2PCIoT, MDN2PCIoT was better than or equal to those results in 60% of the
experiments. For the other 40% of the experiments, MDN2PCIoT was between 0.6% and
48% worse than DN2PCIoT. Comparing to the Best Fit algorithm applied to the original
LeNet 2:1 and LeNet 1:1 models, MDN2PCIoT was better than it for all the setups,
except for the 4-device setup with the LeNet 1:1 version, which was 16.7% worse than
the Best Fit result. Although MDN2PCIoT did not achieve the best results seen so far,
which are the results achieved by DN2PCIoT in Chapter 5, it was still better than the
state-of-the-art framework METIS and mostly better than the simple Best Fit algorithm.

A
m

o
u
n
t

o
f
tr

a
n
sf

er
re

d
d
a
ta

Setups

2 24 411 1156 5663 63

Best Fit
MDN2PCIoT
METIS
DN2PCIoT Chapter 5

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

xxxx

LeNet 1:1LeNet 2:1

3.34KiB

7.2KiB
7.2KiB

28.5KiB

121.9KiB122.6KiB

3.32KiB

28.2KiB

111KiB 111.8KiB

Figure 6.4: Normalized results for the LeNet 2:1 and LeNet 1:1 models with the commu-
nication reduction objective function.

AlexNet Model

After the results for the LeNet models using the communication reduction, we considered
that MDN2PCIoT was validated and we performed the experiments with the AlexNet
model. As DN2PCIoT partitions large graphs in a considerably large time, we proposed
MDN2PCIoT to partition these graphs faster and, thus, we did not employ DN2PCIoT
in the AlexNet experiments. Figure 6.5 shows the communication results for the AlexNet
model when the objective function is communication reduction. We also normalized
these results considering the smallest value in each setup equal to 1 and the other values
represent how many times the result was larger than the best result. We included, for
each setup, the minimum communication cost achieved in the experiments in bytes, which
corresponds to the result equal to 1 in each experiment. Additionally, we represented the
cases in which METIS could not produce any valid partitionings with an “x”. In this figure,
we can see that, different from the LeNet experiments, the Best Fit algorithm applied to

118

the original graph achieved the lowest results. In three setups, the Best Fit algorithm
used fewer devices than the provided number of devices. The setup that used devices with
46 MiB used only five devices, although it could have used up to eight devices. The setup
that used devices with 31 MiB used only eight devices, although it could have used up to
16 devices, and the setup that used devices with 8 MiB used only 31 devices, although it
could have used up to 40 devices. These results show the trend of the Best Fit algorithm
of attempting at filling entire devices before assigning computation to another device,
using fewer devices than the provided number of devices, if possible.

A
m

ou
n
t

of
tr

an
sf

er
re

d
d
at

a

Setups
2 4 8 16 40

Best Fit
MDN2PCIoT
METIS

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x

21.3 KiB

120 KiB

193.3 KiB

304.9 KiB

1.97 MiB

Figure 6.5: Normalized results for the AlexNet model with the communication reduction
objective function. The numbers in bytes indicate the communication cost for the smallest
result in each setup.

The results achieved by MDN2PCIoT varied from 1.07 to 2.54 times larger than
the Best Fit results. The METIS results varied from 1.05 to 1.85 times larger than
the MDN2PCIoT results. As the number of devices increases, the difference in the
results achieved by METIS and MDN2PCIoT also increases. However, for the most
constrained setup, METIS could not achieve any valid partitioning while MDN2PCIoT
produced a result that is only 1.07 times larger than the Best Fit result. Thus, al-
though the MDN2PCIoT algorithm achieved worse results than the Best Fit algorithm,
the MDN2PCIoT algorithm still achieved partitionings that are always valid for all the
setups and results that are better than the METIS results. Nonetheless, as shown in the
LeNet results, the Best Fit algorithm does not always lead to the best results.

We can analyze data relative to how MDN2PCIoT and METIS work to understand why
MDN2PCIoT is better than METIS. Table 6.3 shows the coarsest graph data for METIS
and MDN2PCIoT for each AlexNet setup. The coarsest graph data are the number of
subgraphs and the number of vertices and edges in each subgraph. We can see that the
number of subgraphs for each algorithm is similar, being equal for three setups, with 2,
8, and 16 devices. However, METIS reduced the number of vertices between 21 and 81
times and the number of edges between 3.5 and 49 times related to the original graph.
MDN2PCIoT further reduced the original graph, between 64 and 455 times for the number

119

of vertices and between 26 and 86 for the number of edges related to the original graph.
We can explain the larger reduction in the number of vertices due to the different limits
for the size of the grouped vertices used by METIS and MDN2PCIoT. For the number of
edges, we can explain the larger reduction due to the MDN2PCIoT feature of factoring
redundant edges out.

With these data, it is possible to see that MDN2PCIoT not only produces a smaller
graph than METIS but also produces a smaller communication cost because it elimi-
nates redundant edges directly in the subgraphs, instead of only in the cost computation.
Additionally, the use of the faster-DN2PCIoT algorithm in the coarse partitioning and
uncoarsening phases can lead to better results than METIS, as suggested by the results
in Chapter 5, which used DN2PCIoT.

Table 6.3: Coarsest graph data for METIS and MDN2PCIoT for each AlexNet setup.

Number of devices
allowed to be used
in the experiments

Algorithm
Number of
subgraphs

Number of
vertices

Number of
edges

2
METIS 7 3,085 6,050,764

MDN2PCIoT 7 519 487,472

4
METIS 8 1,614 842,932

MDN2PCIoT 6 1,036 833,690

8
METIS 9 1,124 469,223

MDN2PCIoT 9 145 250,216

16
METIS 9 818 436,744

MDN2PCIoT 9 520 303,804

40
METIS 9 1,062 817,106

MDN2PCIoT 11 300 417,061

6.3.2 Inference Rate Maximization

Figure 6.6 shows the inference rate results for the AlexNet model when the objective
function is the inference rate maximization. We again represented the METIS invalid
partitionings by an “x”. In this figure, we can see that the results of all algorithms were
similar for all the setups, except for the most constrained setup with 40 devices. The
results were similar because, as we doubled the number of devices in the experiments,
we used half of the computational performance for each device, maintaining the total
computational performance as we can see in Table 6.2. MDN2PCIoT achieved the best
results for most setups, although with a slight improvement. In the 40-device setup,
METIS could not produce any valid partitionings due to the memory required by the
shared parameters and biases as explained in Chapter 5. The Best Fit algorithm produced
a very low inference rate, with the MDN2PCIoT result being 3.09 times better than the
Best Fit algorithm result.

The MDN2PCIoT results in this subsection were better than when the objective func-
tion was the communication reduction, although most improvements were small, except

120

for the most constrained setup. Nonetheless, METIS could not produce any valid parti-
tionings for very constrained devices. In our scenarios, we aim to maximize the inference
rate under very constrained devices. Thus, our results suggest that MDN2PCIoT is an
adequate algorithm to partition CNNs among constrained devices, especially very con-
strained devices.

In
fe

re
n
ce

ra
te

(i
n
fe

re
n
ce

s/
s)

Setups
2 4 8 16 40

Best Fit
MDN2PCIoT
METIS

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

x

Figure 6.6: Inference rate results for the AlexNet model with the inference rate maxi-
mization objective function.

6.4 Discussion

In this section, we analyze data relative to how the MDN2PCIoT algorithm work to under-
stand why the Best Fit algorithm applied to the original graph achieved the best results
in the communication minimization objective function. Figure 6.7 shows the result of the
Best Fit algorithm applied to each subgraph produced by MDN2PCIoT for the AlexNet
model and the two-device setup. This result would be the initial communication value
that MDN2PCIoT would try to improve if we chose the respective number of subgraphs.
When we compare these initial values to the Best Fit algorithm applied to the original
graph (21.3 KiB), we can see that the first subgraphs led to very large communication
values, with the first subgraph producing 81 times more communication than the Best
Fit algorithm applied to the original graph. The coarse partitioning values decrease un-
til we reach the seventh subgraph, after it, the coarse partitioning increases again. The
worsening in the first subgraphs indicates that the grouping in the coarsening phase is
harming our subgraphs, at least in the first subgraphs and when using the Best Fit al-
gorithm as the coarse partitioning. This happens even though the coarsening function
chooses edges that present the largest weight first, which should help the communication
reduction objective function. Thus, the heavy-edge matching may not be the appropriate
approach to group vertices when partitioning CNNs among constrained IoT devices for
communication reduction.

As the AlexNet data in Figure 6.7 indicate that the coarsening phase may harm our
results by increasing the communication cost of the coarse partitioning, we can visually

121

A
m

ou
n
t

of
tr

an
sf

er
re

d
d
at

a
(K

iB
)

Number of subgraphs

111 2 3 4 5 6 7 8 9 10 12 13
0

200

400

600

800

1000

1200

1400

1600

1800

Figure 6.7: Communication cost applying the Best Fit algorithm to each subgraph pro-
duced in the coarsening phase.

analyze the grouping in this phase to see why this happened. We chose to analyze the
grouping of the LeNet 2:1 model because it is a smaller CNN, thus, easier to visualize.
Figure 6.8 shows the LeNet 2:1 grouping in the first step of the coarsening phase. In this
figure, the algorithm groups vertices from left to right and from the top to the bottom
in each layer. However, the algorithm starts with the vertices with the smallest degree
and choose vertices in increasing order of their degree. To show this order, we painted in
shades of green the first grouped vertices. They started by the corner vertices in the third
layer (P2) because these vertices present the smallest degree. The coarsening phase starts
with the heavy-edge matching with modifications. In this step, the algorithm groups
vertices from different layers because CNNs only have connections between vertices from
different layers. For instance, the algorithm groups the first vertex of layer P2 with the
first vertex of layer C3. After the green-colored vertices, we painted in shades of red the
next grouped vertices, comprising vertices near the corner in the first and second layers
and the first vertex of the last and last but one layers. Next, we painted the grouped
vertices in shades of blue, then orange/brown, yellow, grey, and wine. Finally, the two-
hop matching takes place and we painted the grouped vertices in shades of purple. In the
two-hop matching, the algorithm groups vertices from the same layer. The white vertex in
layer FC1 remains ungrouped after the coarsening phase. We also numbered the vertices
so that, in the electronic version of this text, it is possible to zoom in and see which
vertices the algorithm grouped, which are vertices with equal numbers, and the order in
which the algorithm grouped the vertices, starting from zero. We can see, in the first layer,
that some grouped purple vertices are not contiguous. Additionally, after the first step of
the coarsening phase, the algorithm changes the ordering of the vertices concerning the
layers. These two situations harm the communication cost because they increase it. Thus,
we can confirm that the heavy-edge matching may not be the appropriate approach to
group vertices when partitioning CNNs among constrained IoT devices for communication

122

reduction.
0 29 39 40 41 42 43 44 45 46 47 48 245 245 30 1 226 241

31 83 246 132 246 133 247 134 247 135 248 136 248 249 84 32 0 29 39 40 41 42 43 44 45 46 47 48 30 1 227 242

49 250 250 152 251 153 251 154 252 155 252 156 249 253 253 50 31 83 87 132 88 133 89 134 90 135 91 136 84 32 228 243

51 137 157 158 159 160 161 162 163 164 165 166 254 254 138 52 49 92 93 152 94 153 95 154 96 155 97 156 98 50 229 244

53 255 255 167 256 168 256 169 257 170 257 171 258 258 259 54 51 137 157 158 159 160 161 162 163 164 165 166 138 52 4 87 88 89 90 91 5 230 79 37 231 238

55 139 172 173 174 175 176 177 178 179 180 181 259 260 140 56 53 99 100 167 101 168 102 169 103 170 104 171 105 54 92 93 94 95 96 97 98 4 8 9 10 5 79 8 9 10 80 231 80 38 232 239

57 261 261 182 262 183 262 184 263 185 263 186 260 264 264 58 55 139 172 173 174 175 176 177 178 179 180 181 140 56 99 100 101 102 103 104 105 11 12 13 14 15 11 12 13 14 15 232 81 226 233 240 37

59 141 187 188 189 190 191 192 193 194 195 196 265 265 142 60 57 106 107 182 108 183 109 184 110 185 111 186 112 58 106 107 108 109 110 111 112 16 17 18 19 20 16 17 18 19 20 233 82 227 234 241 38

61 266 266 197 267 198 267 199 268 200 268 201 269 269 270 62 59 141 187 188 189 190 191 192 193 194 195 196 142 60 113 114 115 116 117 118 119 21 22 23 24 25 21 22 23 24 25 234 297 228 235 242

63 143 201 202 203 204 205 206 207 208 209 210 270 271 144 64 61 113 114 197 115 198 116 199 117 200 118 201 119 62 120 121 122 123 124 125 126 6 26 27 28 7 81 26 27 28 82 235 297 229 236 243

65 272 272 211 273 212 273 213 274 214 274 215 271 275 275 66 63 143 201 202 203 204 205 206 207 208 209 210 144 64 6 127 128 129 130 131 7 236 298 230 237 244

67 145 216 217 218 219 220 221 222 223 224 225 276 276 146 68 65 120 121 211 122 212 123 213 124 214 125 215 127 66 237 298

277 277 278 278 279 279 280 280 281 281 282 282 283 283 284 284 67 145 216 217 218 219 220 221 222 223 224 225 146 68 238 299

285 285 286 286 287 287 288 288 289 289 290 290 291 291 292 292 33 85 127 147 128 148 129 149 130 150 131 151 86 34 239 299

33 85 293 147 293 148 294 149 294 150 295 151 295 296 86 34 2 35 69 70 71 72 73 74 75 76 77 78 36 3 240 301

2 35 69 70 71 72 73 74 75 76 77 78 296 300 36 3

input C1 P2 C3 P4 FC5 FC6 FC7

output

Figure 6.8: LeNet 2:1 grouping in the first step of the coarsening phase.

To solve the limitation in the coarsening phase, we can perform another automatic
grouping that is similar to the manual approach of the previous chapters, whose results
suggest that it presents a limited impact on the results. As the MDN2PCIoT algorithm
could not produce results equal to or better than the Best Fit approach applied to the
original graph, another possibility is trying other coarse partitionings in the smallest
subgraph so that the algorithm does not fall into local minima, which may also have
happened.

6.5 Final Remarks

In this chapter, we proposed the Multilevel Deep Neural Networks Partitioning for Con-
strained IoT Devices (MDN2PCIoT), a multilevel algorithm that enhances DN2PCIoT,
improving its performance and enabling the partitioning of large graphs. In the multilevel
approach, the algorithm first coarsens the input graph until it has a small size and parti-
tions this small graph. After that, the algorithm refines the solution until it reaches back
the original input graph. We proposed some modifications in relation to METIS in the
coarsening and coarse partitioning phases and in DN2PCIoT for the coarse partitioning
and uncoarsening phases, leading to the faster-DN2PCIoT algorithm.

We performed experiments using the LeNet models from Chapter 5 and the AlexNet
CNN model for five different setups for each CNN. The objective functions were the
communication reduction for all the models and the inference rate maximization for the
AlexNet model. For the LeNet model and the communication reduction, MDN2PCIoT
achieved the best results considering the algorithms used in this chapter, which were the
Best Fit algorithm applied to the original graph, METIS, and MDN2PCIoT. MDN2PCIoT
was better than or equal to the best LeNet results seen so far, which were the results
achieved by DN2PCIoT in Chapter 5, for 60% of the experiments. For the AlexNet model
and the communication reduction objective function, the Best Fit algorithm achieved the
best results for all the setups, followed by MDN2PCIoT and, then, by METIS, which
could not provide any valid partitionings for the most constrained setup. Finally, for the
inference rate maximization, the algorithms produced similar results, with MDN2PCIoT
achieving the best results for most setups and being 3.09 times better than the Best Fit
algorithm. Again, METIS produced only invalid partitionings in the most constrained
setup. Thus, our results suggest that MDN2PCIoT is an adequate algorithm to partition
CNNs among constrained devices, especially very constrained devices.

We also investigated why MDN2PCIoT did not lead to the best results in the experi-
ments. We plotted the communication results of the Best Fit algorithm applied to each

123

subgraph produced in the coarsening phase for the AlexNet model. In the first subgraph,
the communication cost increased 81 times, indicating that either the coarsening phase
may harm our results or the Best Fit algorithm may make MDN2PCIoT fall into local
minima. To understand why this happened, we painted the LeNet 2:1 model with the
grouping after the first step of the coarsening phase and confirmed that the heavy-edge
matching may not be an adequate coarsening algorithm for CNNs.

In the next chapter, we conclude this thesis summarizing our work and highlighting
the proposed algorithms and our contributions. In the end, we list our publications and
present future directions for this research.

124

Chapter 7

General Conclusions and Future

Perspectives

In this chapter, we conclude this thesis with our contributions, publications arisen from
this work, limitations and difficulties we encountered during the project execution, and
the future perspectives.

7.1 Contributions

The Deep Neural Network partitioning is a solution to the problem of executing the infer-
ence of large DNNs on constrained IoT devices. We can execute a partitioning algorithm
to find better distributions of the DNN model computations according to some specific
objective function. This process can enable the inference execution of large DNNs on
constrained IoT devices, which would not be possible if we used only a single constrained
device due to memory limitations. Additionally, we can improve the performance of this
execution with the DNN model computation distribution. This thesis contributes to the
areas of Convolutional Neural Networks, Internet of Things, and partitioning algorithms
by proposing new algorithms to partition CNNs among constrained IoT devices, which
consider CNN specificities and device resource limitations. These algorithms can also be
used for other domains, thus, they are general-purpose partitioning algorithms that take
into account the system resources. We analyzed CNNs within constrained IoT scenarios
and showed that it is viable to execute the inference of CNNs on very constrained devices.

We proposed four algorithms, three of which were inspired by the Kernighan and Lin
algorithm. The other algorithm is a simple greedy algorithm that aims for communication
reduction. The first algorithm aims for communication reduction, takes into account the
memory restriction of each device, always produces a valid partitioning, factor redundant
edges out of the cost computation, and exhibits better performance than the per-layer
distribution approach adopted by popular machine learning and machine learning for IoT
frameworks such as TensorFlow, DIANNE, and DeepX. The second algorithm can parti-
tion CNNs both for communication reduction or inference rate maximization, also takes
into account the memory restriction of each device, always producing a valid partitioning,
and models properly the amount of memory required by the shared parameters and biases
of CNNs so that we can employ devices that are more constrained in memory. It also
performs better than the approaches adopted by popular machine learning frameworks
and by the general-purpose partitioning framework METIS. Finally, the third algorithm

125

wraps the second algorithm in a multilevel approach. In this approach, the algorithm
automatically reduces the graph size so that the partitioning algorithm executes faster
and, after that, the algorithm performs refinements at each subgraph produced in the first
phase until it reaches the original graph and the algorithm finishes its execution. All the
features of the second algorithm are present in the third algorithm, except for initializing
from a defined partitioning. However, the third algorithm did not lead to the best results
for all CNN models and setups, losing to the second algorithm in some cases or to the
Best Fit algorithm in others.

We list the main contributions of this work as follows:

i. We proposed the Kernighan-and-Lin-based Partitioning algorithm, which partitions
CNNs for distributed execution of the inference on constrained IoT devices. This
algorithm aims for communication reduction, always produces partitionings that
respect the amount of memory of the devices, and considers the amount of memory
of each device independently, allowing devices with different amounts of memory.
Additionally, different from current machine learning frameworks, this algorithm
allows the neurons of each layer to be assigned to different devices. We proposed
several manual partitionings, being the per-layer partitioning equivalent to popu-
lar machine learning frameworks such as TensorFlow, DIANNE, and DeepX, and
showed that KLP can achieve better results than all the approaches and that dif-
ferent layers with different communication patterns induce different partitionings.
We also showed experiments using several different homogeneous and heterogeneous
scenarios that support our results.

ii. We extended KLP to propose the Deep Neural Networks Partitioning for Con-
strained IoT Devices algorithm, which optimizes the partitioning for inference rate
maximization or communication reduction. This new algorithm counts more pre-
cisely the amount of memory required by the shared parameters and biases of CNNs
in each partition, which allows valid partitionings even when we employ more con-
strained setups in the applications.

iii. We performed five case studies using DN2PCIoT and several scenarios. In the first
case study, the results show that the DN2PCIoT algorithm can produce partition-
ings that achieve higher inference rates and can produce valid partitionings for
very constrained IoT setups. We also performed another case study by employ-
ing partitioning strategies offered by popular machine learning frameworks such as
TensorFlow, DIANNE, and DeepX and showed that they may not be able to ex-
ecute DNN models on very constrained devices due to their per-layer partitioning
approach. The third study involved the METIS framework and indicated that it
is not an appropriate framework to partition DNNs for constrained IoT setups be-
cause it may not provide valid partitionings under these conditions. We performed
an analysis of the DNN model granularity results to show that our DNN with more
grouping minimally affects the partitioning result. We also performed an analysis of
how profitable it is to distribute the inference execution among multiple constrained
devices for the proposed setups. Finally, we analyzed the trade-off between commu-
nication and inference rate, showing that DN2PCIoT provides the best trade-offs
for all the proposed setups.

iv. We proposed a greedy algorithm to reduce the number of communications based on
the available amount of memory of the devices.

126

v. We proposed the Multilevel Deep Neural Networks Partitioning for Constrained IoT
Devices (MDN2PCIoT), a multilevel algorithm that enhances DN2PCIoT and uses
the faster-DN2PCIoT algorithm as the partitioning algorithm. The multilevel ap-
proach aims at decreasing the DN2PCIoT execution time, allowing the partitioning
of larger graphs. The faster-DN2PCIoT algorithm includes the smaller number of
combinations that the algorithm tests and the smaller number of epochs that the
algorithm executes for each subgraph of the multilevel approach. We proposed a
more flexible heavy-edge matching coarsening phase that, depending on the amount
of memory of the devices in the partitioning, groups the vertices limiting to either a
percentage of the amount of memory provided by the device that provides the small-
est amount of memory in the partitioning or to the total amount of memory required
by the vertices, excluding the memory required by the shared parameters and bi-
ases. Also in the coarsening phase, we allow the DN2PCIoT feature of factoring
redundant edges out by modifying the edge treatment when grouping vertices. We
proposed an always-valid coarse partitioning for the smallest, coarsest graph, which
satisfies memory constraints since the algorithm beginning. Finally, we proposed a
more flexible uncoarsening phase that executes either one epoch of DN2PCIoT or
the whole DN2PCIoT algorithm depending on the number of vertices of the sub-
graphs and the number of devices in the partitioning. We performed experiments
to validate the MDN2PCIoT algorithm and also experiments with a larger CNN for
the inference rate maximization and communication reduction objective functions.

vi. Finally, we conclude that we can generalize our three main algorithms, which are
KLP, DN2PCIoT, and MDN2PCIoT, to produce partitionings to any hardware and
any kind of computation that can be expressed as a DAG for the inference rate
maximization and any graph for the communication reduction. We also enable DNN
developers to easily choose how to assign the CNN computations to IoT devices,
expanding and, thus, facilitating the spread of intelligent sensors in the world.

7.2 Publications Arisen from this Thesis

This work resulted in the following publications (items represented by the star symbol
are directly related to this thesis):

Journal papers:

⋆ Fabíola Martins Campos de Oliveira and Edson Borin. Partitioning Convolutional
Neural Networks to Maximize the Inference Rate on Constrained IoT Devices. Fu-
ture Internet, 11(10), 2019. ISSN 1999-5903. DOI: 10.3390/fi11100209. URL:
https://www.mdpi.com/1999-5903/11/10/209.

• Lucas de Magalhães Araújo, Fabíola Martins Campos de Oliveira, Jorge Henrique
Faccipieri, Tiago Antonio Coimbra, Sandra Avila, Martin Tygel, and Edson Borin.
Detecção de estruturas em dados sísmicos com Deep Learning. Boletim SBGf, 104,
18-21, 2018. ISSN 2177-9090. URL: https://sbgf.org.br/noticias/2018/08/
21/693/

127

Conference papers:

• João Antonio Magri Rodrigues, Fabíola Martins Campos de Oliveira, Renata Spolon
Lobato, Roberta Spolon, Aleardo Manacero, and Edson Borin. Improving Virtual
Machine Consolidation for Heterogeneous Cloud Computing Datacenters. In Pro-
ceedings of the 31st International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Campo Grande, Brazil, pages 176–179, 15–
18 October 2019. DOI: 10.1109/SBAC-PAD.2019.00037. URL: http://doi.org/
10.1109/SBAC-PAD.2019.00037.

⋆ Fabíola Martins Campos de Oliveira and Edson Borin. Partitioning Convolutional
Neural Networks for Inference on Constrained Internet-of-Things Devices. In Pro-
ceedings of the 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Lyon, France, pages 266–273, 24–27 Septem-
ber 2018. DOI: 10.1109/CAHPC.2018.8645927. URL: https://doi.org/10.1109/
CAHPC.2018.8645927.

Book chapter:

⋆ Flávia Pisani, Fabíola Martins Campos de Oliveira, Eduardo de Souza Gama, Roger
Immich, Luiz Fernando Bittencourt, and Edson Borin. Fog Computing on Con-
strained Devices: Paving the Way for the Future IoT. In Series: Advances in Par-
allel Computing, Ebook: Advances in Edge Computing: Massive Parallel Processing
and Applications. Fatos Xhafa and Arun Kumar Sangaiah, Editors, IOS Press,
2020. 35, pages 22–60. ISBN: 978-1-64368-062-0. DOI: 10.3233/APC200003. URL:
https://doi.org/10.3233/APC200003.

7.3 Limitations and Difficulties

In this section, we discuss the limitations and difficulties found in this research work.
For instance, inherent to any experimentation that demands long execution times, both
energy and equipment failures and the budget limit for cloud execution motivated the
implementation of some features in our algorithms. We stored the state of the current
epoch produced by DN2PCIoT through the store of the current epoch partitioning and
the objective function result of this partitioning, i.e., the communication cost or inference
rate. Furthermore, we implemented the DN2PCIoT feature of starting from a defined
partitioning so that DN2PCIoT could start from the stored state in the case of failures.

Also considering the possibility of equipment failures and the large computational
complexity of DN2PCIoT, we parallelized the DN2PCIoT execution using OpenMP to
accelerate it. We parallelized the function findBestValidOperation() so that DN2PCIoT
searches for the best operation for each vertex in parallel.

We implemented other features related to large execution time in MDN2PCIoT such
as the multilevel approach and the faster-DN2PCIoT algorithm. The faster-DN2PCIoT
algorithm can execute only one epoch per subgraph in MDN2PCIoT and can reduce the
search for the best operation in the function findBestValidOperation() using the step
and swap stabilizations. Another possibility is to use an early stop approach so that
the algorithm stops if, after two epochs, the algorithm does not improve the result by a
defined threshold.

128

We intended to use TensorFlow to generate the neural network dataflow graph, how-
ever, TensorFlow does not provide a full expanded graph with each vertex and edge, in-
stead, it provides the dataflow graph at the level of operations, for instance, convolution or
pooling. Thus, we had to write a program to generate a dataflow graph representing the
CNN, which currently always groups the neurons in the depth dimension. This program
needs the complete data of CNNs: number of layers, number of shared parameters and
biases per layer, layer depth, width, and height, filter size, and stride in each operation.

We had to perform several experiments to determine empirically the number of ex-
ecutions that were sufficient to achieve the best result in our algorithm. We varied the
number of executions up to 300 executions but found that 30 executions were a reasonable
number of executions.

We implemented several programs to generate dataflow graphs with increasing granu-
larity. In the case of LeNet, we used graphs that did not group any neurons in the width
and height dimensions (LeNet 1:1), graphs that grouped 2x2 neurons in these dimensions
(LeNet 2:1), graphs that grouped 4x4, 8x8, and 16x16 neurons, and a per-layer graph.
While the LeNet with the 8x8 grouping achieved the best result found with 30 executions
of LeNet 1:1 and LeNet 2:1 once in 100 executions, the LeNet with the 16x16 grouping did
not achieve this result even in 300 executions. Thus, we concluded that these groupings
are too limiting for the partitioning. Finally, with the 4x4 grouping, we had unequal layer
groupings and unequal data transfers of each edge within a layer, therefore, we had to
change our algorithm to consider these cases. However, we could not devise a solution
that managed these unequal data transfers and could not perform any experiment with
this grouping. Fortunately, this granularity level was not essential to our work.

The Kernighan and Lin’s algorithm chooses the best swap through the ordering of
the vertices of each partition according to the gain in the communication cost that each
vertex provides if it is moved to another partition. However, when we added the feature of
factoring redundant edges out of the cost computation, this gain of each vertex is dynamic
and depends on the partition that the vertex is currently assigned and the partition to
where the vertex can be moved. We attempted at a differential solution that computed
the new cost of a partitioning after a vertex move using the current cost, however, we
could not devise such a solution. If this solution exists, it would reduce the computational
complexity of our algorithms.

SCOTCH cannot partition graphs whose vertices do not perform any computation,
i.e., vertices whose size is zero. At first, we followed this condition in the experiments with
DN2PCIoT and METIS, setting the size of the input layer vertices, which do not perform
any computation, as one and the size of vertices that performed some computation as
at least 1000 times larger than the input layer vertices. Then, we realized that both our
algorithms and METIS allowed vertices whose size is zero and reexecuted the experiments.

To partition the coarsest graph in the MDN2PCIoT algorithm, we also attempted
at using the Worst Fit approach [20, 92]. In this approach, as opposed to the Best Fit
approach, we assign each vertex to the partition that will contain the largest amount of
memory after the vertex is assigned. To the best of our knowledge, for homogeneous
setups, this approach distributes the vertices evenly and is a better approach when the
objective function is the inference rate maximization. However, we could not provide
valid partitionings and, thus, used the Best Fit approach for both objective functions.

Our algorithms do not consider the possibility of failures, disconnection, and mobility
of the devices. Although these conditions may happen in an IoT scenario, they were out
of the scope of this work. Nonetheless, an execution framework for DNNs on IoT devices

129

should consider these conditions and we leave such a framework for future work.
Finally, a limitation of our algorithms is execution time. Although we had a large

improvement in the execution time with MDN2PCIoT, this improvement was smaller
than our expectations. In the next section, we discuss future directions to this research
work, including future work related to this section.

7.4 Future Perspectives

There exist many challenges to face in the design of distributed execution of DNNs to
IoT devices. As a consequence of this work, some challenges should be investigated. We
started investigating some of these challenges, however, we consider that they need a
deeper investigation.

From the work with DN2PCIoT, one may employ the iRgreedy approach that we
used in LeNet 1:1 as initial partitioning for any CNN when the objective function is the
inference rate maximization. Additionally, all the proposed algorithms can be explored
with different objective functions such as energy consumption or multi-objective functions
such as reducing communication while achieving a desired value for the inference rate.

Regarding the MDN2PCIoT algorithm, one may perform more analyses for the multi-
level algorithm and improve it so that it achieves results closer to the DN2PCIoT results.
For this purpose, experiments can be performed to evaluate which phase of the multi-
level approach should be improved and why we got results that are worse than the Best
Fit approach. It is possible to investigate the relation between the subgraphs created
by MDN2PCIoT and the Best Fit result in each subgraph. One may also propose an
automatic grouping that is similar to the manual approach of Chapters 4 and 5. An-
other possibility is trying other coarse partitionings in the smallest subgraph. Finally, it
is possible to improve the refinement phase to achieve better results, trading execution
time. One may also improve the method validation with experiments that use different
CNN models and heterogeneous and more constrained setups. Further investigation can
be performed in the experiments for inference rate maximization so that one knows if the
results were limited by the communication performance or by the device computational
performance.

Finally, as general directions, it is possible to execute the proposed algorithms to
partition larger CNNs and other types of DNNs, including any type of DNN when con-
sidering communication reduction and any type of DNN that can be represented as a
DAG when considering the inference rate maximization. The proposed algorithms can
also be executed to partition DNN dataflow graphs that do not group the depth neurons.
This would allow a finer-grained partitioning and allow devices that are even more con-
strained. Additionally, one may analyze how different communication technologies such
as 5G, LoRa, ZigBee, LTE, and others affect the neural network partitioning performance.
Another possibility is to test more scenarios with heterogeneous configurations. One may
develop an Application Programming Interface (API) and a programming model to al-
low automatic code generation and portability. Furthermore, the distributed DNNs can
be experimentally tested to check our model and results. Finally, it is possible to build
or use a framework that can employ the proposed algorithms and allows for a pipelined
execution and an online partitioning and scheduling for fault tolerance. This framework
must consider the possibility of failures, disconnection, and mobility of the devices.

130

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: a System for Large-scale Machine Learning.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16), Savannah, GA, USA, pages 265–283, May 2–4 Novem-
ber 2016. ISBN 978-1-931971-33-1.

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems, 2015. URL http://

tensorflow.org/.

[3] Nurulain Abd Mubin, Eiswary Nadarajoo, Helmi Zulhaidi Mohd Shafri, and
Alireza Hamedianfar. Young and mature oil palm tree detection and counting
using convolutional neural network deep learning method. International Journal
of Remote Sensing, 40(19, SI):7500–7515, OCT 2 2019. ISSN 0143-1161. doi:
10.1080/01431161.2019.1569282.

[4] Ossama Abdel-Hamid, Li Deng, and Dong Yu. Exploring Convolutional Neural Net-
work structures and optimization techniques for speech recognition. In Frédéric Bim-
bot, Christophe Cerisara, Cécile Fougeron, Guillaume Gravier, Lori Lamel, François
Pellegrino, and Pascal Perrier, editors, INTERSPEECH 2013, 14th Annual Confer-
ence of the International Speech Communication Association, Lyon, France, August
25-29, 2013, pages 3366–3370. ISCA, 2013. URL http://www.isca-speech.org/

archive/interspeech_2013/i13_3366.html.

[5] Ossama Abdel-Hamid, Abdel-Rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn,
and Dong Yu. Convolutional Neural Networks for Speech Recognition. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 22(10):1533–1545, Octo-
ber 2014. ISSN 2329-9290. doi: 10.1109/TASLP.2014.2339736. URL http://doi.

org/10.1109/TASLP.2014.2339736.

131

[6] Zakwan Al-Arnaout, Jonathan Hart, Qiang Fu, and Marcus Frean. MP-DNA: a
novel distributed replica placement heuristic for WMNs. In Proceedings of the 37th
Annual IEEE Conference on Local Computer Networks, Clearwater, USA, pages
593–600, Oct. 22–25 October 2012.

[7] Angelos Angelopoulos, Emmanouel T. Michailidis, Nikolaos Nomikos, Panagio-
tis Trakadas, Antonis Hatziefremidis, Stamatis Voliotis, and Theodore Zahariadis.
Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions
and Key Aspects. Sensors, 20(1), 2020. ISSN 1424-8220. doi: 10.3390/s20010109.
URL https://www.mdpi.com/1424-8220/20/1/109.

[8] Atmel. Atmel SAM G55G. http://ww1.microchip.com/downloads/en/

devicedoc/Atmel-11289-32-bit-Cortex-M4-Microcontroller-SAM-G55_

Datasheet.pdf, 2016. Accessed: July 24, 2019.

[9] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A
survey. Computer Networks, 54(15):2787 – 2805, 2010. ISSN 1389-1286. doi:
10.1016/j.comnet.2010.05.010. URL http://www.sciencedirect.com/science/

article/pii/S1389128610001568.

[10] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. Deep
Learning for Hate Speech Detection in Tweets. In Proceedings of the 26th Interna-
tional Conference on World Wide Web Companion, WWW ’17 Companion, pages
759–760. International World Wide Web Conferences Steering Committee, April
2017. ISBN 978-1-4503-4914-7. doi: 10.1145/3041021.3054223.

[11] José I. Benedetto, Luis A. González, Pablo Sanabria, Andrés Neyem, and Jaime
Navón. Towards a practical framework for code offloading in the Internet of
Things. Future Generation Computer Systems, 92:424 – 437, 2019. ISSN 0167-
739X. doi: 10.1016/j.future.2018.09.056. URL http://www.sciencedirect.com/

science/article/pii/\S0167739X18302310.

[12] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. Theano: a CPU and GPU Math Expression Compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy), June 2010. Oral Presentation.

[13] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing
and Its Role in the Internet of Things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16. ACM, 2012.
ISBN 978-1-4503-1519-7. doi: 10.1145/2342509.2342513. URL http://doi.acm.

org/10.1145/2342509.2342513.

[14] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog Computing:
A Platform for Internet of Things and Analytics, pages 169–186. Springer Interna-
tional Publishing, 2014. ISBN 978-3-319-05029-4. doi: 10.1007/978-3-319-05029-
4_7. URL http://dx.doi.org/10.1007/978-3-319-05029-4_7.

[15] Carsten Bormann, Mehmet Ersue, and Ari Keranen. Terminology for Constrained-
Node Networks. Technical report, Internet Engineering Task Force, May 2014. URL
http://www.rfc-editor.org/info/rfc7228. Accessed on April 4, 2019.

132

[16] Bo Cao, Xiaofeng Gao, Guihai Chen, and Yaohui Jin. NICE: network-aware VM
Consolidation scheme for Energy Conservation in Data Centers. In Proceedings
of the 20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), Hsinchu, Taiwan, pages 166–173, Dec. 16–19 December 2014.

[17] Mung Chiang and Tao Zhang. Fog and IoT: An Overview of Research Opportunities.
IEEE Internet of Things Journal, 3(6):854–864, December 2016. ISSN 2327-4662.
doi: 10.1109/JIOT.2016.2584538.

[18] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project Adam: Building an Efficient and Scalable Deep Learning Training System.
In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 571–582. USENIX Association, 2014. ISBN 978-1-931971-16-
4. URL https://www.usenix.org/conference/osdi14/technical-sessions/

presentation/chilimbi.

[19] Inc. Cisco Systems. Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update. https://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/white-paper-c11-738429.

html, 2019. Accessed: July 22, 2019.

[20] Edward Grady Coffman, Michael Randolf Garey, and David Stifler Johnson. Ap-
proximation Algorithms for Bin-Packing — An Updated Survey, pages 49–106.
Springer Vienna, Vienna, 1984. ISBN 978-3-7091-4338-4. doi: 10.1007/978-3-7091-
4338-4_3. URL https://doi.org/10.1007/978-3-7091-4338-4_3.

[21] François Pellegrini. Distillating knowledge about SCOTCH. In Uwe Naumann, Olaf
Schenk, Horst D. Simon, and Sivan Toledo, editors, In Combinatorial Scientific
Computing, Proceedings of the Dagstuhl Seminar, Dagstuhl, Germany, 3–8 May
2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany,
2009. 12 pages.

[22] Ronan Collobert, Samy Bengio, and Johnny Marithoz. Torch: A Modular Ma-
chine Learning Software Library. https://infoscience.epfl.ch/record/82802/
files/rr02-46.pdf, 2002.

[23] Juan Colonna, Tanel Peet, Carlos Abreu Ferreira, Alípio M. Jorge, Elsa Ferreira
Gomes, and João Gama. Automatic Classification of Anuran Sounds Using Convo-
lutional Neural Networks. In Proceedings of the Ninth International C* Conference
on Computer Science & Software Engineering, C3S2E ’16, pages 73–78. ACM, 2016.
ISBN 978-1-4503-4075-5. doi: 10.1145/2948992.2949016. URL http://doi.acm.

org/10.1145/2948992.2949016.

[24] Marcos Dias de Assunção, Alexandre Silva Veith, and Rajkumar Buyya. Distributed
Data Stream Processing and Edge Computing. Journal of Network and Computer
Applications, 103(C):1–17, February 2018. ISSN 1084-8045. doi: 10.1016/j.jnca.
2017.12.001. URL https://doi.org/10.1016/j.jnca.2017.12.001.

[25] Elias de Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Sam Leroux, and
Pieter Simoens. DIANNE: Distributed Artificial Neural Networks for the Internet
of Things. In Proceedings of the 2nd Workshop on Middleware for Context-Aware

133

Applications in the IoT (M4IoT 2015), Vancouver, Canada, pages 19–24, Dec. 7–11
December 2015. ISBN 978-1-4503-3731-1.

[26] Elias de Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Pieter Simoens,
Piet Demeester, and Bart Dhoedt. Distributed neural networks for Internet of
Things: the Big-Little approach. In Proceedings of the 2nd EAI International Con-
ference on Software Defined Wireless Networks and Cognitive Technologies for IoT,
pages 1–9, Rome, Italy, 26–27 October 2015.

[27] Lucas de Magalhães Araújo, Fabíola Martins Campos de Oliveira, Jorge Henrique
Faccipieri, Tiago Antonio Coimbra, Sandra Avila, and Martin Tygel. Detecção de
estruturas em dados sísmicos com Deep Learning. Boletim SBGf, 1(104):18–21, Jul
2018. ISSN 2177-9090.

[28] Fabíola Martins Campos de Oliveira and Edson Borin. Partitioning Convolu-
tional Neural Networks for Inference on Constrained Internet-of-Things Devices.
In Proceedings of the 30th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Lyon, France, pages 266–273, 24–27
September 2018. URL https://doi.org/10.1109/CAHPC.2018.8645927. © 2018
IEEE. Reprinted (modified), with permission.

[29] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
and Andrew Y. Ng. Large Scale Distributed Deep Networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems,
NIPS’12, pages 1223–1231. Curran Associates Inc., 2012. URL http://dl.acm.

org/citation.cfm?id=2999134.2999271.

[30] Samira Ebrahimi Kahou, Vincent Michalski, Kishore Konda, Roland Memisevic,
and Christopher Pal. Recurrent Neural Networks for Emotion Recognition in
Video. In Proceedings of the 2015 ACM on International Conference on Multi-
modal Interaction, ICMI ’15, pages 467–474. ACM, 2015. ISBN 978-1-4503-3912-
4. doi: 10.1145/2818346.2830596. URL http://doi.acm.org/10.1145/2818346.

2830596.

[31] Charles M. Fiduccia and Robert M. Mattheyses. A Linear-Time Heuristic for Im-
proving Network Partitions. In 19th Design Automation Conference, pages 175–181,
June 1982. doi: 10.1109/DAC.1982.1585498.

[32] Mouzhi Ge, Hind Bangui, and Barbora Buhnova. Big Data for Internet of Things:
A Survey. Future Generation Computer Systems, 87:601 – 614, 2018. ISSN
0167-739X. doi: https://doi.org/10.1016/j.future.2018.04.053. URL http://www.

sciencedirect.com/science/article/pii/S0167739X17316953.

[33] Elsy Gómez-Ramos and Francisco Venegas-Martínez. A Review of Artificial
Neural Networks: How Well Do They Perform in Forecasting Time Series?
Analítika, 6(2):7–15, December 2013. URL https://ideas.repec.org/a/inp/

inpana/v6y2013i2p7-15.html.

[34] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press:
Cambridge, MA, USA, 2016; ISBN 978-0262035613.

134

[35] Matteo Grimaldi, Valerio Tenace, and Andrea Calimera. Layer-Wise Compressive
Training for Convolutional Neural Networks. Future Internet, 11(1), 2018. ISSN
1999-5903. doi: 10.3390/fi11010007. URL https://www.mdpi.com/1999-5903/11/

1/7.

[36] Visual Geometry Group. VGGNet model. http://www.robots.ox.ac.uk/~vgg/

research/very_deep/, 2014. Accessed: March 15, 2017.

[37] Alessio Guerrieri and Alberto Montresor. Distributed Edge Partitioning for Graph
Processing. Computer Research Repository, abs/1403.6270, 2014. URL http://

arxiv.org/abs/1403.6270.

[38] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic Network Surgery for Ef-
ficient DNNs. In Proceedings of the 30th International Conference on Neural In-
formation Processing Systems (NIPS’16), Barcelona, Spain, pages 1387–1395, 5–10
December 2016. ISBN 978-1-5108-3881-9. URL http://dl.acm.org/citation.

cfm?id=3157096.3157251.

[39] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
Weights and Connections for Efficient Neural Network. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, Proceedings of the 29th Confer-
ence on Neural Information Processing Systems, pages 1135–1143. Curran As-
sociates, Inc.: Red Hook, USA, 2015, Montréal, Canada, 7–12 December
2015. URL http://papers.nips.cc/paper/5784-learning-both-weights-and-

connections-for-efficient-neural-network.pdf.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ResNet model. https://
github.com/gcr/torch-residual-networks, 2015. Accessed: March 15, 2017.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, June 2016. doi: 10.1109/CVPR.2016.90.

[42] John Honovich. Frame Rate Guide for Video Surveillance. https://ipvm.com/

reports/frame-rate-surveillance-guide, 2014. Accessed: July 14, 2019.

[43] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation Networks. Computer
Research Repository, abs/1709.01507, 2017. URL http://arxiv.org/abs/1709.

01507.

[44] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V. Le, and Zhifeng Chen. GPipe: Efficient Training of Giant Neural Networks
using Pipeline Parallelism. Computer Research Repository, abs/1811.06965, 2018.
URL http://arxiv.org/abs/1811.06965.

[45] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Ar-
chitecture for Fast Feature Embedding. In Proceedings of the 22Nd ACM Inter-
national Conference on Multimedia, MM ’14, pages 675–678. ACM, 2014. ISBN
978-1-4503-3063-3. doi: 10.1145/2647868.2654889. URL http://doi.acm.org/10.

1145/2647868.2654889.

135

[46] Zhihao Jia, Sina Lin, Charles Ruizhongtai Qi, and Alex Aiken. Exploring Hid-
den Dimensions in Accelerating Convolutional Neural Networks. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
2274–2283, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/jia18a.html.

[47] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism
for deep neural networks. In Proceedings of the 2nd Conference on Systems and
Machine Learning (SysML), pages 1–13, 31–2 Apr 2019. URL https://mlsys.

org/Conferences/2019/.

[48] George Karypis. METIS A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
Version 5.1.0. http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.

pdf, 2019. Accessed: March 30, 2019.

[49] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):
359–392, December 1998. ISSN 1064-8275. doi: 10.1137/S1064827595287997. URL
http://dx.doi.org/10.1137/S1064827595287997.

[50] Edward M. Kasprzak and Kemper E. Lewis. Pareto analysis in multiobjective
optimization using the collinearity theorem and scaling method. Structural and
Multidisciplinary Optimization, 22(3):208–218, Oct 2001. ISSN 1615-1488. doi:
10.1007/s001580100138. URL https://doi.org/10.1007/s001580100138.

[51] Brian Wilson Kernighan and Shen Lin. An efficient heuristic procedure for parti-
tioning graphs. The Bell System Technical Journal, 49(2):291–307, Feb. 1970. ISSN
0005-8580. doi: 10.1002/j.1538-7305.1970.tb01770.x.

[52] SeungJun Kim, Jaemin Chun, and Anind K. Dey. Sensors Know When to Interrupt
You in the Car: Detecting Driver Interruptibility Through Monitoring of Peripheral
Interactions. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI ’15, pages 487–496. ACM, 2015. ISBN 978-1-4503-3145-
6. doi: 10.1145/2702123.2702409. URL http://doi.acm.org/10.1145/2702123.

2702409.

[53] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.
Computer Research Repository, abs/1404.5997, 2014. URL http://arxiv.org/

abs/1404.5997.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., Dec. 2012.

[55] Stanford Vision Lab. ImageNet Large Scale Visual Recognition Challenge. http://
www.image-net.org/challenges/LSVRC, 2017. Accessed: January 25, 2020.

[56] UNC Vision Lab. Large Scale Visual Recognition Challenge 2016 (ILSVRC2016).
http://image-net.org/challenges/LSVRC/2016/results, 2016. Accessed:
March 15, 2017.

136

[57] UNC Vision Lab. Large Scale Visual Recognition Challenge 2016 (ILSVRC2016).
http://image-net.org/challenges/LSVRC/2017/results, 2017. Accessed: Jan-
uary 25, 2020.

[58] Nicholas D. Lane and Petko Georgiev. Can Deep Learning Revolutionize Mobile
Sensing? In Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, HotMobile ’15, pages 117–122. ACM, 2015. ISBN 978-1-
4503-3391-7. doi: 10.1145/2699343.2699349. URL http://doi.acm.org/10.1145/

2699343.2699349.

[59] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesiand,
Lei Jiao, Lorena Qendro, and Fahim Kawsar. DeepX: a Software Accelerator
for Low-Power Deep Learning Inference on Mobile Devices. In Proceedings of
the 15th ACM/IEEE International Conference on Information Processing in Sen-
sor Networks (IPSN), Vienna, Austria, pages 1–12, April 11–14 April 2016. doi:
10.1109/IPSN.2016.7460664.

[60] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and
Fahim Kawsar. An Early Resource Characterization of Deep Learning on Wear-
ables, Smartphones and Internet-of-Things Devices. In Proceedings of the 2015
International Workshop on Internet of Things Towards Applications, IoT-App ’15,
pages 7–12. ACM, 2015. ISBN 978-1-4503-3838-7. doi: 10.1145/2820975.2820980.

[61] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and
Fahim Kawsar. Demo: Accelerated Deep Learning Inference for Embedded and
Wearable Devices Using DeepX. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services Companion, MobiSys ’16
Companion, pages 109–109. ACM, 2016. ISBN 978-1-4503-4416-6. doi: 10.1145/
2938559.2949718. URL http://doi.acm.org/10.1145/2938559.2949718.

[62] Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, and Lizy K. John. Data
Partitioning Strategies for Graph Workloads on Heterogeneous Clusters. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, pages 1–12, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450337236. doi: 10.1145/2807591.2807632.
URL https://doi.org/10.1145/2807591.2807632.

[63] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proc IEEE, 86(11):2278–2324, Nov. 1998.
ISSN 0018-9219. doi: 10.1109/5.726791.

[64] Charles Eric Leiserson and James Benjamin Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, Jun 1991. ISSN 1432-0541. doi: 10.1007/BF01759032.
URL https://doi.org/10.1007/BF01759032.

[65] Sam Leroux, Steven Bohez, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, and
Bart Dhoedt. Resource-constrained classification using a cascade of neural network
layers. In 2015 International Joint Conference on Neural Networks (IJCNN), pages
1–7, 2015. doi: 10.1109/IJCNN.2015.7280601.

137

[66] Sam Leroux, Steven Bohez, Elias De Coninck, Pieter Van Molle, Bert Vankeirs-
bilck, Tim Verbelen, Pieter Simoens, and Bart Dhoedt. Multi-fidelity deep neural
networks for adaptive inference in the internet of multimedia things. Future Gen-
eration Computer Systems, 97:355 – 360, 2019. ISSN 0167-739X. doi: 10.1016/
j.future.2019.03.001. URL http://www.sciencedirect.com/science/article/

pii/\S0167739X17324664.

[67] He Li, Kaoru Ota, and Mianxiong Dong. Learning IoT in Edge: Deep Learning for
the Internet of Things with Edge Computing. IEEE Network, 32(1):96–101, Jan
2018. ISSN 0890-8044. doi: 10.1109/MNET.2018.1700202.

[68] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14, pages 583–
598. USENIX Association, 2014. ISBN 978-1-931971-16-4. URL http://dl.acm.

org/citation.cfm?id=2685048.2685095.

[69] Shancang Li, Li Da Xu, and Shanshan Zhao. The Internet of Things: a survey.
Information Systems Frontiers, 17(2):243–259, 2015. ISSN 1572-9419. doi: 10.
1007/s10796-014-9492-7. URL http://dx.doi.org/10.1007/s10796-014-9492-

7.

[70] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A Survey
on Internet of Things: Architecture, Enabling Technologies, Security and Privacy,
and Applications. IEEE Internet Things Journal, 4(5):1125–1142, Oct. 2017. doi:
10.1109/JIOT.2017.2683200.

[71] Efren Lopez-Jimenez, Juan Irving Vasquez-Gomez, Miguel Angel Sanchez-Acevedo,
Juan Carlos Herrera-Lozada, and Abril Valeria Uriarte-Arcia. Columnar cactus
recognition in aerial images using a deep learning approach. Ecological Informatics,
52:131–138, JUL 2019. ISSN 1574-9541. doi: 10.1016/j.ecoinf.2019.05.005.

[72] Muhammad Junaid Malik, Thomas Fahringer, and Radu Prodan. Execution Time
Prediction for Grid Infrastructures Based on Runtime Provenance Data. In Proceed-
ings of the 8th Workshop on Workflows in Support of Large-Scale Science, WORKS
’13, pages 48–57. ACM, 2013. ISBN 978-1-4503-2502-8. doi: 10.1145/2534248.
2534253. URL http://doi.acm.org/10.1145/2534248.2534253.

[73] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief.
A Survey on Mobile Edge Computing: The Communication Perspective. IEEE
COMMUNICATIONS SURVEYS AND TUTORIALS, 19(4):2322–2358, 2017. doi:
{10.1109/COMST.2017.2745201}.

[74] Fabíola Martins Campos de Oliveira. Source code for KLP, DN2PCIoT, and
MDN2PCIoT. https://bitbucket.org/FabiolaOliveira/mdn2pciot, 2020. Ac-
cessed: March 23, 2020.

[75] Fabíola Martins Campos de Oliveira. Source code for KLP, DN2PCIoT, and
MDN2PCIoT. https://github.com/lmcad-unicamp/MDN2PCIoT, 2020. Accessed:
March 23, 2020.

138

[76] Fabíola Martins Campos de Oliveira and Edson Borin. Partitioning Convolutional
Neural Networks to Maximize the Inference Rate on Constrained IoT Devices.
Future Internet, 11(10), 2019. ISSN 1999-5903. doi: 10.3390/fi11100209. URL
https://www.mdpi.com/1999-5903/11/10/209.

[77] Yasir Mehmood, Farhan Ahmad, Ibrar Yaqoob, Asma Adnane, Muhammad Imran,
and Sghaier Guizani. Internet-of-Things-Based Smart Cities: Recent Advances and
Challenges. IEEE Communications Magazine, 55(9):16–24, Sep. 2017. ISSN 0163-
6804. doi: 10.1109/MCOM.2017.1600514.

[78] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. Edge machine learning for
ai-enabled iot devices: A review. Sensors, 20(9), 2020. ISSN 1424-8220. doi:
10.3390/s20092533. URL https://www.mdpi.com/1424-8220/20/9/2533.

[79] Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Černocký.
Strategies for training large scale neural network language models. In 2011 IEEE
Workshop on Automatic Speech Recognition Understanding, pages 196–201, Dec
2011. doi: 10.1109/ASRU.2011.6163930.

[80] Mahdi H. Miraz, Maaruf Ali, Peter S. Excell, and Richard Picking. Internet of
Nano-Things, Things and Everything: Future Growth Trends. Future Internet, 10
(8), 2018. ISSN 1999-5903. doi: 10.3390/fi10080068. URL https://www.mdpi.

com/1999-5903/10/8/68.

[81] Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya,
Randall Wald, and Edin Muharemagic. Deep learning applications and challenges
in big data analytics. Journal of Big Data, 2(1):1, Feb 2015. ISSN 2196-1115. doi:
10.1186/s40537-014-0007-7. URL https://doi.org/10.1186/s40537-014-0007-

7.

[82] Andrew Ng. Machine Learning. https://www.coursera.org/learn/machine-

learning, 2020. Accessed: August 17, 2020.

[83] Liu Ningbo, Xu Yanan, Tian Yonghua, Ma Hongwei, and Wen Shuliang. Background
classification method based on deep learning for intelligent automotive radar target
detection. Future Generation Computer Systems, 94:524–535, MAY 2019. ISSN
0167-739X. doi: 10.1016/j.future.2018.11.036.

[84] Rodrigo Frassetto Nogueira, Roberto de Alencar Lotufo, and Rubens Campos
Machado. Fingerprint Liveness Detection Using Convolutional Neural Networks.
IEEE Transactions on Information Forensics and Security, 11(6):1206–1213, June
2016. ISSN 1556-6013. doi: 10.1109/TIFS.2016.2520880.

[85] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang Chen,
Jinyang Gao, Zhaojing Luo, Anthony K.H. Tung, Yuan Wang, Zhongle Xie, Meihui
Zhang, and Kaiping Zheng. SINGA: a Distributed Deep Learning Platform. In
Proceedings of the 23rd ACM International Conference on Multimedia, MM ’15,
pages 685–688. ACM, Oct. 2015. ISBN 978-1-4503-3459-4. doi: 10.1145/2733373.
2807410.

139

[86] Group OpenFog Consortium Architecture Working Group. OpenFog Reference Ar-
chitecture for Fog Computing. https://www.iiconsortium.org/pdf/OpenFog_

Reference_Architecture_2_09_17.pdf, 2017. Accessed: July 22, 2019.

[87] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 8026–8037. Curran Associates,
Inc., 2019. URL http://papers.nips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf.

[88] Flávia Pisani, Fabíola Martins Campos de Oliveira, Eduardo de Souza Gama, Roger
Immich, Luiz Fernando Bittencourt, and Edson Borin. Fog Computing on Con-
strained Devices: Paving the Way for the Future IoT. In Fatos Xhafa and Arun Ku-
mar Sangaiah, editors, Advances in Edge Computing: Massive Parallel Processing
and Applications, volume 35 of Advances in Parallel Computing, pages 22–60. IOS
Press, Amsterdam, Netherlands, 2020. ISBN 978-1-64368-063-7. URL http://doi.

org/10.3233/APC200003.

[89] Gopika Premsankar, Mario Di Francesco, and Tarik Taleb. Edge Computing for
the Internet of Things: A Case Study. IEEE Internet of Things Journal, 5(2):
1275–1284, April 2018. ISSN 2372-2541. doi: 10.1109/JIOT.2018.2805263.

[90] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, and Seif Haridi. Dis-
tributed Vertex-Cut Partitioning. In Kostas Magoutis and Peter Pietzuch, editors,
In Lecture Notes in Computer Science, Proceedings of the Distributed Applications
and Interoperable Systems, Berlin, Germany, June 3-5, 2014, pages 186–200, Berlin,
Heidelberg, Germany, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-43352-2.

[91] Matt Reynolds. New computer vision challenge wants to teach robots to see in
3D. https://www.newscientist.com/article/2127131-new-computer-vision-
challenge-wants-to-teach-robots-to-see-in-3d/, 2017. Accessed: January
25, 2020.

[92] João Antonio Magri Rodrigues, Fabíola Martins Campos de Oliveira, Renata Spolon
Lobato, Roberta Spolon, Aleardo Manacero, and Edson Borin. Improving Virtual
Machine Consolidation for Heterogeneous Cloud Computing Datacenters. In 2019
31st International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pages 176–179, Oct 2019. doi: 10.1109/SBAC-PAD.2019.
00037.

[93] Jürgen Schmidhuber. Deep learning in neural networks: An overview . Neu-
ral Networks, 61:85 – 117, 2015. ISSN 0893-6080. doi: https://doi.org/10.1016/
j.neunet.2014.09.003. URL http://www.sciencedirect.com/science/article/

pii/S0893608014002135.

140

[94] Jie Shao, Xiaoteng Zhang, Zhengyan Ding, Yixin Zhao, Yanjun Chen, Jiany-
ing Zhou, Wenfei Wang, Lin Mei, and Chuanping Hu. Good Practices for
Deep Feature Fusion. http://image-net.org/challenges/talks/2016/Trimps-

Soushen@ILSVRC2016.pdf, 2016. Accessed: March 15, 2017.

[95] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young,
Ryan Sepassi, and Blake Hechtman. Mesh-TensorFlow: Deep Learning for Super-
computers. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 10414–10423. Curran Associates, Inc., 2018. URL http://papers.nips.cc/

paper/8242-mesh-tensorflow-deep-learning-for-supercomputers.pdf.

[96] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[97] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. Technical report, 2014.

[98] SMEVenture. Impending Major Challenges for Smart Cities mission in India
2019. https://www.smeventure.com/major-challenges-smart-cities-india-

2019, 2019. Accessed: August 16, 2020.

[99] José Angel Carvajal Soto, Marc Jentsch, Davy Preuveneers, and Elisabeth Ilie-
Zudor. CEML: Mixing and Moving Complex Event Processing and Machine Learn-
ing to the Edge of the Network for IoT Applications. In Proceedings of the 6th Inter-
national Conference on the Internet of Things, IoT’16, pages 103—-110, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450348140. doi:
10.1145/2991561.2991575. URL https://doi.org/10.1145/2991561.2991575.

[100] Stanford. CS231n: Convolutional Neural Networks for visual recognition. http://
cs231n.github.io/convolutional-networks/, 2018. Accessed: May 20, 2018.

[101] STMicroelectronics. STM32L151x6/8/B. https://www.st.com/resource/en/

datasheet/stm32l151vb.pdf, 2016. Accessed: July 24, 2019.

[102] STMicroelectronics. STM32F469xx. https://www.st.com/resource/en/

datasheet/stm32f469ae.pdf, 2018. Accessed: July 24, 2019.

[103] STMicroelectronics. STM32L433xx. https://www.st.com/resource/en/

datasheet/stm32l433cc.pdf, 2018. Accessed: July 24, 2019.

[104] Kai Sun, Shao-Hsuan Huang, David Shan-Hill Wong, and Shi-Shang Jang. Design
and Application of a Variable Selection Method for Multilayer Perceptron Neural
Network With LASSO. IEEE Transactions on Neural Networks and Learning Sys-
tems, 28(6):1386–1396, 2017. ISSN 2162-237X. doi: 10.1109/TNNLS.2016.2542866.

[105] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient Processing
of Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE, 105
(12):2295–2329, Dec 2017. ISSN 1558-2256. doi: 10.1109/JPROC.2017.2761740.

141

[106] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragom
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andre Rabinovich. Going
deeper with convolutions. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–9, June 2015. doi: 10.1109/CVPR.2015.

7298594.

[107] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
AAAI’17, page 4278–4284. AAAI Press, 2017.

[108] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace:
Closing the Gap to Human-Level Performance in Face Verification. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1701–1708, June
2014. doi: 10.1109/CVPR.2014.220.

[109] Ao Tang, Ke Lu, Yufei Wang, Jie Huang, and Houqiang Li. A Real-Time Hand
Posture Recognition System Using Deep Neural Networks. ACM Transactions on
Intelligent Systems and Technology, 6(2):21:1–21:23, March 2015. ISSN 2157-6904.
doi: 10.1145/2735952. URL http://doi.acm.org/10.1145/2735952.

[110] Antonis Tzounis, Nikolaos Katsoulas, Thomas Bartzanas, and Constantinos Kit-
tas. Internet of things in agriculture, recent advances and future challenges.
Biosystems Engineering, 164:31 – 48, 2017. ISSN 1537-5110. doi: https://doi.
org/10.1016/j.biosystemseng.2017.09.007. URL http://www.sciencedirect.com/

science/article/pii/S1537511017302544.

[111] Luis Miguel Vaquero and Luis Rodero-Merino. Finding Your Way in the Fog: To-
wards a Comprehensive Definition of Fog Computing. ACM SIGCOMM Computer
Communication Review, 44(5):27–32, 2014. ISSN 0146-4833. doi: 10.1145/2677046.
2677052. URL http://doi.acm.org/10.1145/2677046.2677052.

[112] Algimantas Venckauskas, Vytautas Stuikys, Robertas Damaševičius, and Neri-
jus Jusas. Modelling of Internet of Things units for estimating security-energy-
performance relationships for quality of service and environment awareness. Security
Communication Networks, 9(16):3324–3339, 2016. doi: 10.1002/sec.1537.

[113] Tim Verbelen, Tim Stevens, Filip De Turck, and Bart Dhoedt. Graph parti-
tioning algorithms for optimizing software deployment in mobile cloud comput-
ing. Future Generation Computer Systems, 29(2):451 – 459, 2013. ISSN 0167-
739X. doi: 10.1016/j.future.2012.07.003. URL http://www.sciencedirect.com/

science/article/pii/\S0167739X12001513.

[114] Wei W, Xu Xia, Marcin Wozniak, Xunli Fan, Robertas Damaševičius, and Ye Li.
Multi-sink distributed power control algorithm for Cyber-physical-systems in coal
mine tunnels. Computer Networks, 161:210 – 219, 2019. ISSN 1389-1286. doi:
10.1016/j.comnet.2019.04.017. URL http://www.sciencedirect.com/science/

article/pii/S1389128618310673.

[115] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yong-
dong Zhang, and Jintao Li. Deep Learning for Content-Based Image Retrieval:

142

A Comprehensive Study. In Proceedings of the 22nd ACM International Confer-
ence on Multimedia, MM ’14, pages 157–166. ACM, 2014. ISBN 978-1-4503-3063-
3. doi: 10.1145/2647868.2654948. URL http://doi.acm.org/10.1145/2647868.

2654948.

[116] Wei Wang, Gang Chen, Anh Tien Tuan Dinh, Jinyang Gao, Beng Chin Ooi,
Kian-Lee Tan, and Sheng Wang. SINGA: Putting Deep Learning in the Hands
of Multimedia Users. In Proceedings of the 23rd ACM International Confer-
ence on Multimedia, MM ’15, pages 25–34. ACM, 2015. ISBN 978-1-4503-3459-
4. doi: 10.1145/2733373.2806232. URL http://doi.acm.org/10.1145/2733373.

2806232.

[117] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and Peter
Pietzuch. Ako: decentralised Deep Learning with Partial Gradient Exchange. In
Proceedings of the Seventh ACM Symposium on Cloud Computing, SoCC ’16, pages
84–97. ACM, Oct. 2016. ISBN 978-1-4503-4525-5. doi: 10.1145/2987550.2987586.

[118] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R. Ganger,
Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing. Managed Communication
and Consistency for Fast Data-parallel Iterative Analytics. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 381–394. ACM, 2015.
ISBN 978-1-4503-3651-2. doi: 10.1145/2806777.2806778. URL http://doi.acm.

org/10.1145/2806777.2806778.

[119] Xitao Wen, Kai Chen, Yan Chen, Yongqiang Liu, Yong Xia, and Chengchen Hu.
VirtualKnotter: online Virtual Machine Shuffling for Congestion Resolving in Vir-
tualized Datacenter. In Proceedings of the IEEE 32nd International Conference on
Distributed Computing Systems Workshop, Macau, China, pages 12–21, June 18–21
June 2012.

[120] Marilyn Wolf. Chapter 5 - Program Design and Analysis. In Marilyn Wolf, editor,
Computers as Components. 4th ed. edition. ISBN 978-0-12-805387-4. URL http://

www.sciencedirect.com/science/article/pii/\B9780128053874000054. Mor-
gan Kaufmann: Burlington, MA, USA, 2017; pp. 221–319, ISBN 978-0-12-805387-4.

[121] Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: a Survey.
IEEE Transactions on Industrial Informatics, 10(4):2233–2243, Nov. 2014. ISSN
1551-3203. doi: 10.1109/TII.2014.2300753.

[122] Xiaolong Xu, Daoming Li, Zhonghui Dai, Shancang Li, and Xuening Chen. A
Heuristic Offloading Method for Deep Learning Edge Services in 5G Networks. IEEE
Access, 7:67734–67744, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2918585.

[123] Xiaolong Xu, Qingxiang Liu, Yun Luo, Kai Peng, Xuyun Zhang, Shunmei Meng,
and Lianyong Qi. A computation offloading method over big data for IoT-enabled
cloud-edge computing. Future Generation Computer Systems, 95:522 – 533, 2019.
ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2018.12.055. URL http://

www.sciencedirect.com/science/article/pii/S0167739X18319770.

[124] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. Performance Model-
ing and Scalability Optimization of Distributed Deep Learning Systems. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery

143

and Data Mining, KDD ’15, pages 1355–1364. ACM, August 2015. ISBN 978-1-
4503-3664-2. doi: 10.1145/2783258.2783270.

[125] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher.
DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems with
a Compressor-Critic Framework. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems (SenSys ’17), Delft, Netherlands, pages 1–14,
5–8 November 2017; 4. ISBN 978-1-4503-5459-2. URL http://doi.acm.org/10.

1145/3131672.3131675.

[126] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu Zhang,
Frank Seide, Zhiheng Huang, Brian Guenter, Huaming Wang, Jasha Droppo, Ge-
offrey Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey, Malcolm
Slaney, Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac, Alexey
Kamenev, Vladimir Ivanov, Scott Cypher, Hari Parthasarathi, Bhaskar Mitra,
Baolin Peng, and Xuedong Huang. An Introduction to Computational Networks
and the Computational Network Toolkit. Technical report, 2014. URL https://

www.microsoft.com/en-us/research/publication/an-introduction-to-

computational-networks-and-the-computational-network-toolkit/.

[127] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and
Xinyu Yang. A Survey on the Edge Computing for the Internet of Things. IEEE
Access, 6:6900–6919, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2017.2778504.

[128] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In Edwin
R. Hancock Richard C. Wilson and William A. P. Smith, editors, Proceedings of
the British Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA Press,
September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.30.87. URL https://dx.

doi.org/10.5244/C.30.87.

[129] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional
Networks, pages 818–833. Springer International Publishing, 2014. ISBN 978-3-319-
10590-1. doi: 10.1007/978-3-319-10590-1_53. URL http://dx.doi.org/10.1007/

978-3-319-10590-1_53.

[130] Hongwei Zhao, Weishan Zhang, Haoyun Sun, and Bing Xue. Embedded Deep
Learning for Ship Detection and Recognition. Future Internet, 11(2), 2019. ISSN
1999-5903. doi: 10.3390/fi11020053. URL https://www.mdpi.com/1999-5903/11/

2/53.

[131] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. DeepThings:
Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge
Clusters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(11):2348–2359, Nov 2018. ISSN 0278-0070. doi: 10.1109/TCAD.2018.
2858384.

[132] Ivan Zyrianoff, Alexandre Heideker, Dener Silva, João Kleinschmidt, Juha-Pekka
Soininen, Tullio Salmon Cinotti, and Carlos Kamienski. Architecting and Deploying
IoT Smart Applications: A Performance–Oriented Approach. Sensors, 20(1), 2020.
ISSN 1424-8220. doi: 10.3390/s20010084. URL https://www.mdpi.com/1424-

8220/20/1/84.

144

Appendix A

METIS parameters

In this appendix, we report the METIS parameters that led to the METIS results in each
experiment. We show these values for reproducibility. Table A.1 shows these parameters
for the METIS inference rate maximization experiments in Table 5.3 and Table A.2 shows
these parameters for the METIS communication reduction experiments in Figure 5.5.
Cut stands for the edgecut minimization objective function and vol stands for the total
communication volume minimization objective function. Table A.3 shows the METIS
parameters that led to the respective results in Figure 6.5 and Table A.4 shows the
METIS parameters that led to the respective results in Figure 6.6.

145

Table A.1: METIS parameters used to achieve the METIS results in Table 5.3.

Number of
devices
allowed

to be used
in the

experiments

Number of
partitionings

(ncuts)

Number of
iterations

in the
refinements

(niter)

Objective
function
(objtype)

Maximum
allowed

imbalance
among the
partitions
for the
memory

(ubvec[0])

Maximum
allowed

imbalance
among the
partitions
for the

computation
(ubvec[1])

free input LeNet 2:1

2 16 5 vol 1.01 1.1

4 16 1 cut 1.025 1.01

11 64 5 cut 1.01 1.5

56 N/a* N/a N/a N/a

63 N/a N/a N/a N/a

locked input LeNet 2:1

2 2 5 vol 1.25 2.0

4 8 5 cut 1.01 1.5

11 4 1 cut 1.01 2.0

56 N/a N/a N/a N/a

63 N/a N/a N/a N/a

free input LeNet 1:1

2 8 10 vol 1.025 1.1

4 32 1 vol 1.015 1.1

11 128 50 cut 1.015 1.1

56 N/a N/a N/a N/a

63 N/a N/a N/a N/a

locked input LeNet 1:1

2 128 1 vol 1.25 1.5

4 64 5 vol 1.025 1.5

11 32 5 cut 1.025 2.0

56 N/a N/a N/a N/a

63 N/a N/a N/a N/a

* Not applicable.

146

Table A.2: METIS parameters used to achieve the METIS results in Figure 5.5.

Number of
devices
allowed

to be used
in the

experiments

Number of
partitionings

(ncuts)

Number of
iterations

in the
refinements

(niter)

Objective
function
(objtype)

Maximum
allowed

imbalance
among the
partitions
for the
memory
(ufactor)

free input LeNet 2:1

2 1 1 cut 15

4 1 1 cut 25

11 16 1 cut 100

56 N/a* N/a N/a N/a

63 N/a N/a N/a N/a

locked input LeNet 2:1

2 1 1 vol 50

4 64 10 vol 50

11 2 5 vol 1

56 N/a N/a N/a N/a

63 N/a N/a N/a N/a

free input LeNet 1:1

2 8 10 vol 500

4 32 1 vol 25

11 128 50 cut 20

56 N/a N/a N/a N/a

63 N/a N/a N/a N/a

locked input LeNet 1:1

2 1 5 cut 20

4 4 5 vol 100

11 16 10 cut 250

56 N/a N/a N/a N/a

63 N/a N/a N/a N/a

* Not applicable.

147

Table A.3: METIS parameters used to achieve the METIS results in Figure 6.5.

Number of
devices
allowed

to be used
in the

experiments

Number of
partitionings

(ncuts)

Number of
iterations

in the
refinements

(niter)

Objective
function
(objtype)

Maximum
allowed

imbalance
among the
partitions
for the
memory
(ufactor)

2 4/8/16/32 5/10/25/50/100 cut 20

4 8 10 cut 67

8 4/8 10/25 vol 15/20/67/125/250/500

16 16 25 cut 67

40 N/a* N/a N/a N/a

* Not applicable.

Table A.4: METIS parameters used to achieve the METIS results in Figure 6.6.

Number of
devices
allowed

to be used
in the

experiments

Number of
partitionings

(ncuts)

Number of
iterations

in the
refinements

(niter)

Objective
function
(objtype)

Maximum
allowed

imbalance
among the
partitions
for the
memory

(ubvec[0])

Maximum
allowed

imbalance
among the
partitions
for the

computation
(ubvec[1])

2 32/64/128 5 cut 1.15 1.005

4 16 5 vol 1.20 1.001

8 16 7 cut 1.17 1.001

16 32 10 cut 1.17 1.001

40 N/a* N/a N/a N/a N/a

* Not applicable.

	Introduction
	Challenges, Objectives, and Contributions
	Thesis Organization

	Background
	Internet of Things
	Resource-Constrained Devices
	Fog and Edge Computing
	Machine Learning
	Multilayer Perceptron

	Deep Learning
	Convolutional Neural Networks

	Neural Network Models as Dataflow Graphs and Partitioned Neural Networks
	Synchronization
	Problem Definition
	Final Remarks

	Related Work
	General Frameworks for Machine Learning
	Approaches and Frameworks for Machine Learning on iot
	Partitioning Algorithms
	Final Remarks

	Partitioning the LeNet cnn for Communication Minimization
	Proposed klp
	Methods and Materials
	LeNet Neural Network Model
	Setups and Experiments
	Types of Input Layers in the Experiments

	Experimental Results
	Manual Partitionings
	Automatic Partitionings with Homogeneous Setups
	Visual Analysis for the Homogeneous Partitionings
	Automatic Partitionings with Heterogeneous Setups

	Discussion
	Final Remarks

	Partitioning the LeNet cnn for Inference Rate Maximization
	Proposed dn2pciot (DN2PCIoT)
	Methods and Materials
	LeNet Neural Network Model
	Setups and Experiments
	Types of Input Layers in the Experiments
	Per Layers: User-Made Per-Layer Partitioning (Equivalent to Popular Machine Learning Frameworks)
	Greedy: A Greedy Algorithm for Communication Reduction
	irgreedy: User-Made Partitioning Aiming for Inference Rate Maximization
	METIS
	dn2pciot 30R
	dn2pciot after Approaches

	Experimental Results
	Inference Rate Maximization
	Pipeline Parallelism Factor
	Inference Rate versus Communication

	Discussion
	Final Remarks

	mdn2
	Proposed mdn2
	Methods and Materials
	cnn Models
	Device Characteristics
	Algorithms

	Experimental Results
	Communication Reduction
	Inference Rate Maximization

	Discussion
	Final Remarks

	General Conclusions and Future Perspectives
	Contributions
	Publications Arisen from this Thesis
	Limitations and Difficulties
	Future Perspectives

	Bibliography
	METIS parameters

