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Resumo

Diversos sistemas computacionais usam informações sobre seres vivos, tais como chaves
de identificação – artefatos criados por biólogos para identificar espécimes de seres vivos
seguindo uma cadeia de questões acerca das suas características observáveis (fenótipos).
Tais questões estão em formato de texto livre, por exemplo, “Possui olhos grandes e pre-
tos”. Contudo, texto livre dificulta a interpretação de informação por máquinas, limitando
sua capacidade de realização de tarefas de busca, integração e comparação de termos. Esta
dissertação propõe um método para extrair informação a respeito de fenótipos a partir
de textos escritos em linguagem natural, colocando-os no formato de Entidade-Qualidade
– um formato de dados biológicos para representar estruturas anatômicas (Entidade) e
o seu modificador (Qualidade). A proposta permite que Entidades e Qualidades, reco-
nhecidas automaticamente a partir de informação do nível textual, sejam relacionadas
com conceitos presentes em ontologias de domínio. Ela adota ferramentas de Proces-
samento de Linguagem Natural existentes, bem como contribui com novas técnicas que
exploram as características de escrita e estruturação implícitas em textos presentes nas
chaves de identificação. A abordagem foi validada utilizando os dados da base FishBase,
sobre a qual foram conduzidos experimentos explorando um conjunto de testes anotado
manualmente para avaliar a precisão e aplicabilidade do método de extração proposto.
Os resultados obtidos mostram os benefícios da técnica e as possibilidades de estudos
científicos utilizando a rede de conhecimento extraída.



Abstract

Several computing systems rely on information about living beings, such as identification
keys – artifacts created by biologists to identify specimens following a flow of questions
about their observable characters (phenotype). These questions are described in a free-
text format, e.g., “big and black eye”. Free-texts hamper the automatic information
interpretation by machines, limiting their ability to perform search and comparison of
terms, as well as integration tasks. This thesis proposes a method to extract phenotypic
information from natural language texts from biology legacy information systems, trans-
forming them in an Entity-Quality formalism – a format to represent each phenotype
character (Entity) and its state (Quality). Our approach aligns automatically recognized
Entities and Qualities with domain concepts described in ontologies. It adopts existing
Natural Language Processing techniques, adding an extra original step, which exploits
intrinsic characteristics of phenotypic descriptions and of the organizational structure of
identification keys. The approach was validated over the FishBase data. We conducted
extensive experiments based on a manually annotated Gold Standard set to assess the
precision and applicability of the proposed extraction method. The obtained results re-
veal the feasibility of our technique, its benefits and possibilities of scientific studies using
the extracted knowledge network.
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Chapter 1

Introduction

Nowadays, several knowledge bases contain information about living beings, including

descriptive information to support the work of biologists. Phenotype descriptions play a

key role in this context denoting the visible properties of an organism, which are conse-

quence of the interaction of a genotype and the environment [28]. The increasing amount

of available phenotype descriptions, on one hand, expands the possibilities of analysis;

on the other hand, the consequent complexity requires more involvement and assistance

of computers automating tasks. The interpretation of semantics by computers regarding

phenotype descriptions in Biology implies in several benefits to the analyses of biological

knowledge. Since most of the available descriptions rely on textual descriptions in natural

language, lacking explicit semantics apt to be interpreted by machines, it is necessary to

convert the information carried by them into a format that enables to automate analysis

tasks. Our work contributes to this challenge through a system that interprets phenotype

descriptions in free text format and automatically translates them to Semantic Web open

standards.

In the following sections, we describe the scenario of our project, define our research

problem and introduce our methodology.

1.1 Research Scenario

This work departed from a previous project [7] involving FishBase1, which is a global

information system that records a vast amount of information about fishes known to

science. It currently contains data about 33,000 registered species encompassing several

aspects of fishes – e.g., taxonomic classification and ecosystems – with more than 2 million

records [19]. Scientists, fisheries managers, zoologists, and others explore information from

FishBase to support their activities.

Among several types of data managed by FishBase, Identification Keys (IKs) con-

sist in artifacts created by biologists to identify species or any other taxonomic group

(called taxon) of an observed specimen [38]. An IK denotes a structured set of phenotype

descriptions of organisms.

To identify a living being using an IK, users might navigate through a series of multiple

1www.fishbase.org

14
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choice questions about the specimen characteristics. According to the picked answers, the

path leads to the respective taxon. Currently, FishBase has 1,668 IKs of fishes containing

25,542 phenotype description sentences. They are one of the most relevant artifacts to

support biological research involving fishes.

As an example of IK usage, Figure 1.1 presents an IK to identify the Teleostean

families, from East Africa (sub-order Trachinoidei). The identification process begins

with question 1, which has the pair of options 1a and 1b, with their descriptive texts in

the Character column. According to the picked answer, the user might navigate to either

question 2 or 4, indicated in the Next column. Each descriptive text inside the Character

column is called Key Question (KQ). This process is repeated until the biologist reaches

a row that does not lead to another question. At this stage, the specimen is identified

and its respective taxon appears at the Link column.

Figure 1.1: Fragment of the Identification Key to the Teleostean families from East
Africa (sub-order Trachinoidei). Source: http://fishbase.org/keys/allkeys.php

IKs can be organized as trees, where each root establishes the taxa to be identified

and the internal nodes are the KQs containing descriptive texts. The edges conduct to

alternative choices. The leaves specify the identified taxa, which are part or specializations

of the taxa represented in the root. Figure 1.2 shows the same IK of the Teleostean families

(sub-order Trachinoidei) in a tree-format representation.

Data in FishBase are stored in a set of relational tables. Handling all these data

manually is a huge challenge for scientists, who face difficulties to analyse some scenarios

involving the network of relations (links) among taxa and their characteristics. The

overwhelming amount of phenotype descriptions is in free-text format. This format is

more flexible and easier to produce, having advantages in the narrative structure and

providing better expressiveness. However, this free-text format is inappropriate for some

computational tasks, mainly when it involves the interpretation and comparison of the

content by machines. It hampers tasks involving information retrieval and integration

with other sources, since the description components are “locked” within the text.
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qualifiers, e.g., “big”. Many problems arise when descriptions are written in free-text

format, as follows:

• Lack of a common and formal language: the absence of a standardized termi-

nology opens the possibility of writing the same description in different ways. For

instance, “median fin skeleton” can be written as “unpaired fin skeleton” and “axial

fin skeleton”. In these cases, textual comparisons are insufficient. It is necessary

to compare them on a semantic level, using the concepts behind them. This is a

hard task without a language to formalize concepts, able to relate the syntactical

structures with their respective explicit semantics, as ontology-based descriptions

[8]. The subsequent problems are consequences of this one;

• Consumable only by humans: the lack of a mechanism to support a formal

conceptualization hampers computer agents of interpreting the information carried

by textual sentences and limits the scope of their role in operations like data aggre-

gation, information retrieval, and reasoning;

• Lack of interoperability with other systems: there is a vast amount of sys-

tems relying on phenotype descriptions. The current Linked Data scenario makes

it possible to share information among them [6]. However, their free-text format

limits the capacity of exchanging data in a semantic level among different systems,

resources, and applications.

In summary, the IKs usefulness does not depend only on the availability and accuracy

of data, but also on a common and formal language (ontology) used to specify a set of core

concepts, fostering the fully semantic interpretation of data by computers and expanding

their capacity of performing more accurate and richer analyses over the information.

The problem of representing phenotype descriptions on a semantic level has been

addressed by Grand et al. [21]. They synthesized the current scenario related to the

description of organisms (cf. Figure 1.4), organizing the existing approaches in a series of

progressive layers: (1) Textual description; (2) Structured description: splits the sentence

into Character and Character State parts; (3) Semantic description: adopts the Entity-

Quality (EQ) approach [41] to represent the elements (Character and Character State,

from the previous layer) in a more detailed way (Entity and Quality).
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Figure 1.4: From textual and structured descriptions to semantic descriptions with
specialized ontologies. Source: adapted from Grand et al. [21]

In the EQ representation, the Entity refers to the morphological or anatomical struc-

ture (e.g., “ leaf ”) and the Quality stands for a qualifier (e.g., “broad ”) that specifies a given

state of the Entity. Both refer to concepts defined in ontologies. The Entity comes from

anatomical ontologies according to the organism and the Quality comes from a specialized

ontology of Qualities. An EQ element is a relation between these two components.

The EQ model has been widely accepted and adopted by modern systems to make

explicit the semantics of their phenotypic descriptions. In spite of the importance of

this model, there is still a vast amount of legacy descriptions in free-text format – as

in FishBase. Techniques to automatically transform these descriptive sentences into EQ

representations are still an open problem and can play an important role to leverage the

exploitation of existing descriptions, as well as to support the creation of semantically

richer descriptions. This thesis is motivated by this problem proposing algorithms for

automatic EQ recognition. It includes a strategy to distinguish, as automatically as

possible, the anatomical entities and their qualifications inside a text of a phenotype

description, making it possible to:

• Reuse of Entities: if phenotypic Entities are duly unified in a semantic level, it

is possible to identify which IKs refer to the same Entities, making it explicit the

interrelation network among IKs and Entities ;

• No need of previous knowledge: in FishBase, IKs are segmented according

to the taxa that they identify, like the sub-order Trachinoidei (cf. Figure 1.1).

Therefore, users must know beforehand the specimen’s taxon to pick a correct IK.

This process is laborious and error-prone; in addition, it limits the use of the system

only to expert biologists, who could not have previous clues about the specimen

to be identified. An explicit and standard semantic representation might enable to

correlate EQ elements of several IKs and combine them in a unified identification

tree;

• Relation between taxa and keys: unified and semantic-enriched descriptions

will enable to perform analyses to understand facts including: (i) which IKs identify
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similar taxonomic groups; (ii) which EQ elements are determinant to discriminate

a taxon of a specimen; (iii) which EQ elements define a specific taxon.

1.3 Objective and contributions

This thesis aims to provide formal semantic expressiveness over the Identification Keys

of FishBase. The resulting representation has been built over FishGraph [7]. As it is

shown in Figure 1.5, we have improved the FishGraph database – presented in Figure 1.3

– adding new nodes that expand the Key node (which represents an Identification Key)

as follows:

• KeyQuestion: unity that composes the tree of an Identification Key ;

• EQ: Entity-Quality element extracted from a Key Question;

• Entity: part of the EQ representing the morphological structure;

• Quality: part of the EQ that qualifies an Entity.

We have also linked the existing taxonomic classification – species, genus, family, order,

and class – to their respective EQs extracted from the IKs (cf. Figure 1.5).

Figure 1.5: New nodes added in the FishGraph model.

In this work, we propose a method to detect the phenotype descriptions expressed

in Identification Keys. Our proposal transforms the recognized elements into a semantic-

based representation aligned to the EQ approach, going from the textual description layer

to the semantic description layer according to Figure 1.4. It covers the following aspects:



CHAPTER 1. INTRODUCTION 20

• It requires a minimum human effort to recognize phenotypes, being accessible to

users without biological expertise;

• It takes advantage of existing tools and resources;

• It links the recognized EQ elements to concepts of domain ontologies, in order to

integrate FishBase to the Semantic Web scenario;

• It takes advantage of the characteristic way in which phenotype descriptions are

written and structured to improve the automatic recognition.

This investigation defines a two-step method. The first step analyses the sentence using

a Natural Language Processing technique that produces a Dependency Tree, establishing

dependency relations between the sentence terms. It extracts EQ elements computing

matches between ontology concepts and terms of the tree. We assume that the relations

among terms in the Dependency Tree have latent Entity-Quality statements. They re-

flect the biologists approach to write phenotype descriptions: a term (or a set of terms)

representing a given Entity has specific kinds of dependency with a term representing its

Quality.

The second step takes advantage of the way that biologists relate and structure the

phenotype descriptions. This step explores the correlations between sentences inside the

IK. The identified Entities and Qualities are connected to domain ontologies to make

their semantic explicit.

This thesis has the main contribution:

• An approach to extract phenotypic information from texts combining a Natural

Language Processing technique with algorithms that explore the structure behind

the interrelated descriptive texts;

1.4 Thesis outline

This thesis is organized in five chapters. Chapter 2 presents the foundations of our research

and related work. It covers foundations about phenotype descriptions and information

extraction. It also discusses open issues that related work fail to address in the EQ

recognition.

Chapter 3 describes the proposed method for extraction and semantic linking of EQs.

We detail the steps and algorithms that explore the characteristics of phenotypic descrip-

tion texts and the structure of IKs in the automatic recognition task.

Chapter 4 reports our experimental evaluation. We present scenarios of exploratory

analyses, over the graph produced by us, aimed to examine the effectiveness of our pro-

posal. The scenarios include a network analysis over the graph resulting from the integra-

tion of species with the recognized EQs. It discusses the achievements and limitations.

Chapter 5 provides a summary of the results and presents future work.



Chapter 2

Foundations and Related Work

This chapter presents some foundations and related work of our research. Section 2.1

provides an overview of systems to describe phenotypes and shows the importance of

bringing these data to a machine-interpretable format. Section 2.2 presents the back-

ground of Phenotype Extraction. Section 2.3 presents some foundations of Information

Extraction methods focusing in those related to the biology context. Section 2.5 makes a

comparative presentation of the related work to indicate the original aspects explored in

this investigation.

2.1 Phenotype Descriptions

There is a huge amount of biological data available in free-text format. As the process of

producing biological data is expensive and complex, it is necessary to leverage the capabil-

ity of automatically computing existing data. Thus, there is a challenge of migrating such

vast amount of data into machine-interpretable formats, in order to produce semantically

explicit knowledge.

These machine-interpretable data can be used by generic identification systems to

improve their process and results. These systems implement different identification pro-

cesses, such as: by descriptive characteristics, by pictures, by morphological measures,

etc. Besides the generic identification systems, some information systems specialized in

specific kinds of organisms may also offer support to build and publish IKs. For example,

FishBase for fishes and Bird Id (http://www.birdid.co.uk) for birds. In the FishBase

case, the identification process can be conducted in distinct ways, such as by images, by

ecosystems, through descriptive characteristics, etc.

Several systems allow people to digitally create and publish Identification Keys for

organisms [17], for example, Intkey, IdentifyIt, Linnaeus II, Lucid [27], MEKA, NaviKey,

PollyClave, XID, xPer [44], ActKey, eFloras, SLIKS, and KeyToNature [31]. Technical

reviews of some of these tools can be found in Dallwitz et al. [15].

Farnsworth et al. [17] give an overview of technical innovations and trends in the area

and highlight the importance of ontologies and semantics. They also compiled a list of 50

species identification systems and concluded:

• 96% provide detailed data about the described taxa, including range maps, infor-

21
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mation on life histories, and distinguishing characteristics;

• 76% enable users to search or browse for a particular species of interest;

• 43% offer a glossary of technical terms or a dedicated help page with tips for usage;

• 39% allow users either to upload data to a central repository or to select other users

to share data.

This list indicates the high quality achieved by systems to manage and publish phe-

notype descriptions. However, there is still space for improvements on the usage of these

data, concerning data analysis and the correlation of phenotypes across different taxa and

systems.

Existing investigations consider the use of phenotype descriptions in a machine-interpretable

format. Phenoscape1 addresses this issue adopting the Entity-Quality (EQ) approach to

describe phenotypes and developing a scalable infrastructure that enables linking pheno-

types across different fields of biology by the semantic similarity of their descriptions.

In the context of morphological characters data usage, Grosser et al. [22] proposed

a method to identify taxa, based on K-Nearest-Neighbors. The algorithm consists in

the computation of neighborhoods, based on a dissimilarity function. It handles taxa

and specimen descriptions as complex objects, containing structured descriptions with

characters and values. Although this method enables to identify species by proximity, it

considers that there are beforehand structured descriptions as input to the algorithm, e.g.,

characters following a controlled vocabulary will better perform in a comparison. Then,

our work can be situated as an input to this method, since it will transform free-texts in

structured descriptions – the complex objects treated by [22] – whose characters/states

are more strictly defined by EQs.

2.2 Phenotype Extraction

Concerning how to make explicit the semantics of biological data, Dahdul et al. [13]

investigated techniques for transforming descriptive biology texts into a format that en-

ables large-scale computation. Based on a previous study, they claim that large-scale

computation can benefit from annotating characters with ontology terms. Therefore,

they advocate the need of efficient methods to automatically extract and annotate pheno-

types from descriptions and consider that NLP tools can be used in the process. Natural

Language Processing (NLP) tools can be used in the process.

In the following subsection, we present foundations about some of NLP tasks related

to this work, emphasizing information extraction.

2.3 Natural Language Texts in Information Extraction

Information Extraction (IE) refers to a research area, which addresses the transformation

of natural language texts into a format interpretable by machines. It aims to provide

1http://phenoscape.org/wiki/Main Page
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taggers, having labels for different parts of speech such as adjective phrases (ADJP),

plural nouns (NNP), and so forth [43].

Dependency parsing. Dependency parsers model a sentence as a set of relationships

between words. As illustrates Figure 2.2, they produce a graph, called Dependency Tree,

for each sentence, where each node represents a word and each edge denotes a grammatical

dependency – as the dependency nsubjpass, which relates the verb isolated and its subject

homologues (cf. Figure 2.2). All the dependencies are binary relations. A grammatical

dependency involves a governor (also known as regent or head) and a dependent [16].

Figure 2.2: The dependency graph of the sentence: “Two homologues of the rhombotin
gene have now been isolated”. Source: Clegg and Shepherd [11].

2.3.2 Support of External Resources

As shows Figure 2.1, external resources give support to extraction methods. Common

nouns listed in a dictionary, for instance, are useful in the disambiguation of capitalized

words in ambiguous positions (e.g., sentence beginning). Other examples of external

resources include glossaries, gazetteers, vocabularies, ontologies, etc.

There are also text collections in the biological domain. Some of them are specialized

or annotated corpora. An example is MEDLINE, the primary resource in biomedical text

mining, which contains bibliographic references to journal articles in life sciences, with a

concentration on biomedicine [43].

2.3.3 Named Entity Recognition

Named Entity Recognition (NER) consists of identifying and classifying types of infor-

mation elements, called Named Entities (NE). There are several and different definitions

for Named Entity (NE). In this investigation, we define NE according to its purpose and

application domain, i.e., the goal of the NER task defines what is considered a NE [30].

The most common types of entities are proper names (names of persons, organizations,

locations), numeric expressions (quantities, monetary amounts), and dates. Important
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entities in the biology domain include genes, proteins, diseases, drugs, body parts, etc.

Many entities are expressed as terms (e.g., “polyostotic fibrous dysplasia”) rather than

proper names (e.g., “McCune-Albright”). The notion of named entity is also applied to

them [46].

There are several and different classifications for NER extraction methods. Consid-

ering the scenario of this research, the NER approaches can be classified into three cat-

egories: (1) Dictionary-based, (2) Rule-based, and (3) Statistical Learning approaches.

They are further detailed.

Dictionary Based. Use resources – e.g., a dictionary, an ontology, a list of terms, etc.

– containing known entities in order to identify NE occurrences in a text. Such approaches

determine whether a word or group of words, identified in the text, exactly matches a

term from the resource.

Methods using only the dictionary-based approach generally exhibit reasonable pre-

cision, but suffer from poor recall due to spelling mistakes and morphological variants

[40]. Dictionaries are also seldom complete lacking variants and new names, limiting such

approaches [46]. Another bottleneck is the high rate of false positives, i.e., entities mis-

takenly recognized by the method. They are inherent to the use of short names, which

significantly degrade the overall accuracy. Exclusion of short names from the dictionary

may resolve this issue, but it is not the ultimate solution since it disallows the recognition

of entities with a short name, reducing the recall [42].

Hirschman et al. [24], Ono et al. [36], and Aronson et al. [4] are examples of works

this approach. One way to improve the result involves generating spelling variants for the

listed terms appending them to the word list.

Rule-Based. Rule-based approaches act through rules that describe pattern structures

for certain classes, based on their morphological, orthographic, and syntactic charac-

teristics [34, 23]. Generally, the rule-based approach can be improved using contextual

information and syntactic parsers to determine the NE boundaries. This approach typi-

cally achieves better results than the dictionary based approach. Nevertheless, the manual

generation of the required rules is a time-consuming process. The rules are usually very

specific in order to achieve high precision and must be customized to each domain [40].

Statistical Learning. Such approaches are based on a learning process. Nadeau and

Sekine [33] classify them in three categories:

• Supervised learning (SL): uses only labeled data (feature/label pairs) for train-

ing. The main shortcoming of the SL is the requirement of a large annotated corpus

as input. SL techniques include Hidden Markov Models (HMM), Decision Trees,

Maximum Entropy Models (ME), Support Vector Machines (SVM), and Condi-

tional Random Fields (CRF).

• Semi-supervised learning (SSL): combines a large amount of unlabeled data

with a small amount of labeled data as a set of seeds, to start the learning process.

One of the main techniques for SSL is called Bootstrapping.
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• Unsupervised learning (UL): used when labeled data are not available for train-

ing. Clustering is a typical approach. It looks for hidden patterns grouping the

data. The clusters can be computed using a measure of similarity, which is defined

by metrics such as Euclidean or probabilistic distances.

Machine learning techniques are seen as an alternative to overcome the problems

inherent to dictionary-based approaches [2]. They depend on the existence of either

training data (for SL and SSL) – which is often difficult, expensive or time-consuming to

obtain, as they require the efforts of experienced human annotators – or complementary

resources, such as lexical resources (for UL).

2.3.4 Relation Extraction

Consists in identifying relationships among NEs, going beyond the NER task. Relation

Extraction is defined as a task that copes only with associations between two entities

[46, 40], i.e., binary relations. When the association involves three or more NEs, called

complex associations, it is treated as an Event Extraction, another kind of NLP task.

Relation extraction faces many challenges according to the chosen approach, such as

the generation of rules or the creation of annotated corpora for training and evaluating

relation extraction systems. These tasks are considerably more complicated in a Relation

Extraction task than in a NER task [40].

There are many Relation Extraction approaches. We further present one possible

classification to them [40].

Co-occurrence. It is the simplest approach. The basic principle is: if a given NE

frequently occurs together with another NE, then it is likely that they are related. This

approach does not determine the type and direction of the extracted relation. Commonly,

it exhibits high recall and low precision.

Rule-Based. Performs the extraction using linguistic patterns previously defined for

particular relations. The rules can be manually inferred by domain experts or they can

be derived from an annotated corpora. For example, the pattern modal verb + participle

+ preposition is likely to express a relation, such as “is composed by”, “is generated with”

[18]. Typically, this approach results in high precision and low recall.

Statistical Learning. Approaches under this category use statistical learning methods,

which can be supervised, unsupervised or semi-supervised, similar to those in NER. They

can be trained on a tagged corpus to learn which combinations of cues are the most

effective in detecting relations.

Sentence Structure Based. In this category, approaches use syntactic parsers in order

to take advantage of the sentence structure. The syntactic parser outputs dependency

trees or graphs, which encode grammatical relations between phrases or words [11].
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2.4 NER, Relation Extraction, and Hybrid Approaches

NER and Relation Extraction can be seen in this work as complementary tasks since to

identify the relations it is necessary previously to recognize the involved entities. Each

presented method for NER and Relation Extraction has limitations and advantages. The

decision for a method will consider the research scenario and requires to take into consid-

eration the trade-off among performance in terms of precision and recall, availability of

external resources (such as ontologies), the cost of annotating data, and so on.

An alternative is to combine approaches in order to balance their shortcomings. Several

systems rely on multiple (hybrid) techniques plus several resources, such as the combi-

nation of dictionary matching with either rule-based or statistical methods to reduce the

number of false positives [40].

2.5 Related Work

This subsection presents related work of NER and Relation Extraction in the biology

context. Table 2.1 summarizes the related work presented in this subsection, emphasizing

three aspects:

• Extraction: kind of extraction preformed: NER, Relation Extraction, or both;

• Context: focus of the extraction;

• Approach: specifies which approach each related work explores, as previously de-

scribed.

Related work concerning phenotype extraction are mostly concentrated in interactions

among genes, proteins, drugs, and diseases, as it is shown in the first five investigations in

Table 2.1. Although the domains are similar to our work, we exploit specific peculiarities

on organisms morphological descriptions to improve the results of our extraction.

Ciaramita et al. [10] present an unsupervised model for learning to recognize relations

between concepts of a molecular biology ontology, inside an input text. Relations are ex-

tracted and learned from the GENIA corpus – an annotated corpus coming from research

abstracts of the MEDLINE databases [35]. They do not propose a NER method, so they

manually tagged the entities that are used in the RE process. While Ciaramita et al. [10]

depart from existing entities in ontologies to learn their relations, our approach recognizes

and extracts Entities and look for their relations with Qualities. Our NER approach ap-

plies a similar process of existing methods (e.g., Song et al. [42], Pyysalo and Ananiadou

[38], and Ramakrishnan et al. [39]) to identify entities representing anatomical structures

in the biomedical domain, as further detailed.

Song et al. [42] present a hybrid dictionary-based extraction technique. The entities

are recognized by matching the sentences against the Medical Subject Headings (MeSH)2

tree and PubMed records. In order to overcome the problems related to short names and

spelling variations (issues mentioned in Section 2.3.3), they use an edit-distance algorithm

2A hierarchically-organized terminology concerning biomedical information
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Table 2.1: Related Work

Reference Extraction Context Approach

Ciaramita et al. [10] RE Interactions in molec-
ular biology

Unsupervised Statis-
tical Learning and
Rules over Depen-
dency Trees

Song et al. [42] NER Biomedical anatomic
entities

Dictionary-based

Pyysalo and Anani-
adou [38]

NER Biomedical Anatomic
entities

Supervised statistical
learning

Ramakrishnan et al.
[39]

NER, RE Biomedical Anatomi-
cal entities

Dictionary-based,
Rules over Depen-
dencies Trees and
Statistical Learning

Fundel et al. [20] NER, RE Gene and Protein In-
teraction

Rules over Depen-
dency Trees

Cui [12] NER, RE Morphological struc-
tures of organisms

Statistical Learning -
Unsupervised

called Shortest Path Edit Distance (SPED). To address similar concepts, they use rules

acting in the lexical and syntactic levels. Our approach also exploits the syntactic relations

between words, but they are used to drive our process to discover entities, which are

connected and confirmed as concepts in ontologies.

Pyysalo and Ananiadou [38] propose a statistical learning method, called Anatomy-

Tagger, to extract anatomical entities from a corpus of scientific papers. It identifies all

contiguous non-overlapping sequences of characters that refer to anatomical entities in

an unstructured text. The approach assigns each entity to exactly one type of a given

set of ontological categories. Figure 2.3 presents their proposed workflow. After applying

classical processes such as Segmentation and preprocessing, as well as Morphosyntactic

analysis, the ontologies aid in the generation of features (Lexical resources boxes) to be

used in the NER statistical learning phase starting in 1st stage box. The 2nd stage incor-

porates non-local features coming from the 1st stage. Like Pyysalo and Ananiadou [38],

our investigation also matches the entity mentions against ontology concepts, but it is not

limited to contiguous sequences of characters, once the entities may not be constituted

by continuous words in the sentence.



CHAPTER 2. FOUNDATIONS AND RELATED WORK 29

Figure 2.3: AnatomyTagger Architecture. Source: Pyysalo and Ananiadou [38].

In order to handle non-adjacent tokens, our work explores the Dependency Trees in

an approach inspired in Ramakrishnan et al. [39]. It departs from the grammatical de-

pendency tree of the sentence. The method iterates over each dependency relation and

decides whether it is either part of given entity or is part of a relation between enti-

ties, based on a set of rules. Figure 2.4 shows the tree of the sentence “Anti-Ro(SSA)

autoantibodies are associated with T cell receptor beta genes in systemic lupus erythemato-

sus patients”. The dependency nsubjpass (passive nominal subject) is considered a cut

point since it bridges the term autoantibodies, marked as the head of a subject (a possible

entity), and the term associated, marked as the head of a predicate (the sentence part

modifying the subject). The application of the rule set to the dependencies prep_with

and prep_in combined with their upper term associated – result in the relational roles

associated_with and associated_in, between associated and their dependents genes and

patients. The method recursively expands, looking for candidate entities in the other side

of the relation collecting modifiers to compose a token sequence that could reveal a com-

pound entity. The recursive expansion procedure results in the sentence candidates for

entities “Anti-Ro(SSA) autoantibodies” “T cell receptor beta genes”, and “systemic lupus

erythematosus patients”.

Figure 2.4: Dependency parse tree of a given sentence. Source: Ramakrishnam et al. [39].

The second phase of the Ramakrishnan’ algorithm matches the head term of each

candidate sentence with single-word MeSH terms and further with classes in the Unified

Medical Language System (UMLS) – a language that systematizes terms in biomedicine

and health. Our work analyses the relations in the dependency tree following an approach

similar to Ramakrishnan et al. [39], adapted to our scenario – phenotypes. In particular,

we have extended the analysis to identify relations between Entities and Qualities.

Furthermore, this investigation is similar to ours as it looks for terms in a knowledge

base, but we differ in the match process, considering all possible combinations of terms
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to form an Entity, not only the head.

Fundel et al. [20] also use dependency tree. Their method combines dictionaries,

dependency parse trees, and rules in a process showed in Figure 2.5.

Figure 2.5: RelEx work-flow, subdivided into pre-processing, relation extraction, and
relation filtering. Source: Fundel et al. [20].

At the Pre-Processing step, the NEs are recognized by a matching process involving

the terms of the input sentence and a synonym dictionary of gene and protein names. The

Relation Extraction and the Relation Filtering steps follow a rule-based approach similar

to the previous work of Pyysalo and Ananiadou [38]. A set of rules establishes as input

patterns to be recognized in the dependency tree and as output inferred relations. We

further show some examples of rules to illustrate the approach. The Relation Extraction

step defines three rules, Where the terms effector and effectee are NEs found in the

previous step:

1. effector-relation-effectee (e.g., A activates B);

2. relation-of-effectee-by-effector (e.g., Activation of A by B);

3. relation-between-effector-and-effectee (e.g., Interaction between A and B).
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The Relation Filtering step treats specific relations, like negations and enumerations.

The rule set of both steps is manually generated, i.e., in the scenario of the study con-

ducted in [20], it requires a deep study of all kinds of interactions between proteins and

genes. In our approach, we still address simple forms of relationships between Entity and

Quality. They are usually an ‘is’ relationship (e.g., in the sentence big eye the relationship

is eye-is-big). Therefore, we focused our attention on this kind of relation, but we consider

that rules could expand our spectrum of analysis and we are considering it in future work.

The literature presented so far address the biomedical domain. There is a smaller

set of contributions related to the domain of our research – recognition of phenotypic

descriptions of organisms – as show the two last rows of Table 2.1.

Cui [12] presents a method to extract phenotypes that describe leaves, fruits, and nuts

of plants. He uses two key techniques: (a) an unsupervised learning algorithm to annotate

descriptions at the sentence level, to build a lexicon (step 1 on Figure 2.6); (b) the learned

lexicon, enhanced by a human user, feeds a parser that recognizes biological characters in

descriptive sentences and annotates them (step 2 on Figure 2.6). Our work differs since it

does not require human intervention during the process, in such a way that a non-expert

can use the system.

Figure 2.6: CharaParse System Architecture. Source: Cui [12].

Alnazzawi et al. [1] compare several statistical learning methods against a curated

corpus made by experts, called PhenoCHF. This corpus contains annotations about phe-

notypic information related to Congestive Heart Failure (CHF). One of their objectives

is to demonstrate how the well-known methods perform better when a curated corpus is

available. However, the creation of a corpus is a hard and expensive task. Our approach

was developed to serve in contexts in which such corpus are unavailable.
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2.6 Summary

This chapter provided a literature review concerning phenotype description and extrac-

tion. We reported relevant techniques of information extraction useful to this research

context. In particular, we focused on the task of Named Entity Recognition and Rela-

tion Extraction. For both tasks, we described a categorization of solution approaches.

We explained the NLP basic tools and background resources, which support the existing

approaches. We presented the related work with their advantages and drawbacks. This

chapter demonstrated how our proposal differs from existing ones and to which extent we

rely on defined techniques.

The literature on phenotype extraction presents a concentration in the Biomedical

field, looking for interactions between genes, proteins, drugs, diseases and so on. These

phenotype descriptions are typically written in the standard English syntax (due to the

nature of papers and other documents containing them), as opposed to the syntax of

the language seen in phenotype description in Identification Keys (as will be further

detailed), e.g., they usually omit function words. Although they are similar domains,

there are peculiarities on the latter to be considered in order to improve the results on

such scenario.

Our approach extracts texts of Identification Keys (IK), which enabled us to consider

an extra factor to improve the extraction not addressed by related work: the character-

istics structure of the IK. It is aligned with Wong et al. [45], which states that multiple

noncontent cues, such as fonts and layout information, may be used to assist extraction.

Next chapter presents the description of our solution for EQ recognition from phenotype

description texts.





















CHAPTER 3. ENTITY-QUALITY RECOGNITION METHOD 42

3.2 Step 2: Exploring the Structure of Identification

Keys

This step explores the structure of IKs to enrich the output graph from Step 1. We assume

that the correlation between distinct descriptions might be useful in the extraction of

additional EQs. Such correlation is an intrinsic characteristic of IKs, as a result of their

organizational structure. This step is based on the previously mentioned Assumption 2:

The way in which a set of phenotype descriptions is organized and structured

holds implicit relations that can be exploited to improve the extraction of EQ

statements.

We believe that the principles behind this work could be generalized to other fields in

the future. An organizational structure, as we exploit in the IKs, could also be the sessions

of a technical report, the structure of legal documents with juridical rules, the layout of

a Web site, etc. Wong et al. [45] indicate that such noncontent cues may be used to

support information extraction tasks. This perspective opens a future wider application

scenario for our technique.

IKs are structured in a tree format, in which the alternatives of a given KQ are its

sibling nodes containing complementary alternative sentences. This structure offers clues

about its content, from which we consider the following characteristics:

(a) Alternatives of a KQ frequently refer to the same Entities. In our previous example,

both sibling sentences S1[No dorsal fin] and S2[Dorsal fin present] refer to the same

anatomical character E[dorsal fin];

(b) Alternatives of a KQ are frequently complementary, in the sense that they assign

complementary states to the described Entity. In the same previous example, the

Qualities Q1[absent] and Q2[present], assigned to the Entity E[dorsal fin], are op-

posites, encompassing its possible state values.

In summary, we assume that if an EQ pair is identified in a KQ, it is very likely

that the sibling KQs must refer to the same Entity, but potentially using complementary

Quality terms to modify the Entities. The challenge here is to verify if the sibling nodes

hold this property

Therefore, we developed an algorithm that measures the similarity between two sen-

tence pieces. It is based on the general principle of Paraphrase Recognition, which is a

process to judge if two different sentences convey the same aspect or the same information.

Androutsopoulos and Malakasiotis [3] present a survey regarding Paraphrase Recognition

techniques. There are techniques that exploit the dependency tree to measure the sim-

ilarity between the sentences. In general, they assume that if there is a value above a

given threshold, the involved sentences are considered paraphrases.

Usually, Paraphrases Recognition algorithms compare the whole trees [3]. We have

adapted the principle of Paraphrases Recognition to the problem of recognizing comple-

mentary sentences in an IK.







CHAPTER 3. ENTITY-QUALITY RECOGNITION METHOD 45

(got at Line 9). At each iteration (Line 11), the algorithm computes the similarity between

the current edgesibling_eq with the edgemain_eq through the method simFunction(). The

similarity computation between the edges takes into account the following parameters:

(a) Directions of the dependency relations edgesibling_n and edgemain_2;

(b) Grammatical class of Q1 and Q2;

(c) Types of the dependency relations of edgesibling_eq and edgemain_eq;

(d) Antonymy between Q1 and Q2 (the algorithm explores the WordNet lexical database

[32] to check if two words are antonyms).

These parameters represent to which extent one edge is similar to another. To calculate

the degree of similarity, each parameter contributes with a pre-defined value: va = 0.25;

vb = 0.50; vc = 0.75; vd = 1.

We have chose these parameters and estimated their corresponding values based on

empirical observations regarding their relevance in Dependency Tree elements (edges and

vertexes) concerning phenotype description sentences. For example, we noted that a pair

of edges having the same direction is important, but it is less important than the fact that

the Qualities have antonyms terms since the algorithm is looking for opposite Qualities.

These parameters and their values can be adapted to the execution of the algorithm in

other scenarios.

The similarity between each pair of edges is calculated through a summation of those

parameters. At Line 11, the algorithm adds this similarity to the similarSubTreeslist.

Line 13 tests if the subtree inside similarSubTreeslist with the highest similarity value is

equal or higher than a determined threshold. In the conducted experiments, we assigned

the threshold = 0.75 to avoid retrieving edges with low similarity values.

The threshold value can be modified and it affects the behaviour of the algorithm. A

high threshold value enables to recognize more Qualities, but it can increase the rate of

false positives. On the other hand, a low value can decrease the number of recognized

Qualities, but it increases the rate of correct elements. The values of each parameter and

threshold have been empirically determined by experimental analyses.

If the algorithm is able to select an edge with the highest similarity value, then

Line 14 attributes this subtree to the Qsibling_subtree. Afterward, Line 15 calls the function

matchByExpansion defined in Algorithm 2 to recursively discover the subgraph inside

the selected subtree which matches a Quality in PATO ontology. If the match is success-

ful (Line 17), the Quality is attached to the sibling KQ (Line 18), i.e., the Q2 illustrated

in Figure 3.12.

Figure 3.14 illustrates an example in which Step 2 will act. It goes back to

Figure 3.10 showing the output of Step 1 executed over two sibling KQs, in which

Q1[absent] from KQ2 was recognized, while Q[present] from KQ4 was not, i.e., the Step

1 failed to recognize it. In the following, we use this example to illustrate the execution

of the Algorithm 3.
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This investigation resulted in the development of a software prototype implementing

the proposed approach. The next chapter describes experiments to evaluate the quality

of the EQ recognition applying our proposal.



Chapter 4

Experiments and Evaluation

This chapter reports experimental results of this investigation. We rely on the FishBase

database to conduct the proposed assessments. Section 4.1 presents an evaluation to assess

the viability of our extraction method. The objective is to investigate the effectiveness of

the approach considering a gold standard dataset and traditional metrics.

The initial motivation for this research was to obtain a knowledge network correlating

and integrating several elements of phenotype description. To this purpose, Section 4.2

presents a knowledge network evaluation that generated and integrated species data with

the recognized EQs from FishBase. The objective is to conduct practical applications and

analysis over the generated network.

4.1 Empirical Assessments

The first assessment (Section 4.1.1) analyses the results regarding basic metrics, to provide

an overview of the recognition performance and its viability. The Gold Standard-based

assessments (Section 4.1.2) aim to examine the accuracy of the recognition method against

a set of expected outcomes. Section 4.1.3 discusses the obtained findings.

4.1.1 First Approach Assessment

We applied the proposed method to all Identification Keys (IKs) of FishBase to observe

its viability when extracting phenotypes in Entity-Quality (EQ) format. This experiment

was performed over the total of 1,659 IKs, containing 25,542 Key Questions (KQs). We

considered the following metrics:

• Amount: calculates how many Entities and Qualities were recognized;

• Ratio: presents the average of extracted EQs from each KQ;

• Coverage: shows the rate of KQs containing at least one element extracted, varying

from 0 to 1.

These metrics were computed separately for Step 1 and Step 2. Therefore, it is possible

to observe the differences and the impact of the assumptions underlying the Observations

49
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1 and 2. Table 4.1 presents the obtained results for extraction of Entities (alone) and

EQs.

Table 4.1: Results concerning Amount, Ratio, and Coverage.

Amount Ratio Coverage

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

Entity 30,747 41,611 1.2 1.62 0.61 0.7

EQ 15,239 17,267 0.6 0.67 0.36 0.4

Results reveal that the method allows extracting the phenotypes. The amount of

extracted elements increases with Step 2, as expected. It keeps consistent with the metrics

of Ratio and Coverage, with better results in Step 2.

There is still space for further improvements. Several research efforts can be devoted

to refine Steps 1 and 2. In Step 1, improvements can involve refining the match algorithm,

considering not only the structure of the Dependency Tree, but also the semantic of the

relations among the terms. It is possible to explore other types of relations returned by the

NLP parser. Furthermore, Step 2 can be improved by exploring additional characteristics

of the IK’s structure. For instance, Algorithm 3 can take advantage of other branches of

the tree beyond the siblings.

Although the results of this evaluation show the initial viability of our approach, they

do not consider its correctness, i.e., how precise is the method. Such evaluation is showed

in the following subsection.

4.1.2 Gold Standard-based Assessment

The quality of the recognition and extraction of elements in natural language texts, i.e.,

entities or relations, can be evaluated by several mechanisms. The most common considers

a standard evaluation set generated by either a group of specialists in the domain, or an

organizing committee of a competition. A standard evaluation set contains fragments

of texts highlighting the elements that are supposed to be recognized. Such kind of

evaluation is suitable when there is a mature developed community acting in the area of

interest.

However, there is still no standard evaluation set of morphological descriptions in the

context that we are working: Entity and Quality linked in an EQ pair. Therefore, this

investigation involved the creation of an evaluation dataset to assess the performance of

our method. This dataset has the original sentence descriptions where the EQ elements

are annotated.

Unlike the previous evaluation (4.1.1), this one shall not be performed over the total

dataset, since it is necessary to manually annotate the sentences. A set of 100 KQs

were manually annotated to act as a Gold Standard, from the total of 25,542 KQs from

FishBase.
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Figure 4.1 shows five examples of sentences in our evaluation dataset. The words in

bold compose Entities, and words in italic compose Qualities, while the boxes represent

EQ pairs.

1. Lips not fringed ; mouth horizontal .

2. No dark longitudinal stripes on head and body.

3. The two light organs near the tail; clearly separated from the rest of
the light organs.

4. Total vertebrae 119 to 132 .

5. Scattered breast melanophores (Fuiman et al., 1983). Pteronotropis
hubbsi can also be distinguished from Notropis chalybaeus by the pres-
ence of two caudal spots , one large spot centered at the base of the

caudal fin below the flexed notochord and a smaller spot located

dorsally above it, and by the presence of 9 dorsal rays in late meta-

larvae. Notropis chalybaeus has a single caudal spot in which no part

extends above the notochord and 8 dorsal rays (Marshall, 1947).

Figure 4.1: Examples of Standard Gold sentences.

Several criteria were explored to create the Gold Standard. First, we considered only

Simple EQs, i.e., those composed strictly by one Entity and one Quality, such as in the sec-

ond sentence in Figure 4.1: E[stripes ]Q[no], E[stripes ]Q[dark ] and E[stripes ]Q[longitudinal ].

To save space, we group them as follows: E[stripes ]Q[no]Q[dark ]Q[longitudinal ].

We ignored complex EQs, i.e., those composed by complex Qualities, which recursively

contain Qualities linked to other Entities. For example, Sentence 4 in Figure 4.1 has a

complex EQ formed by E[spot] Q[centered at the base of ] E[caudal fin]. This kind of

phenotype construction requires further efforts and expertise to produce annotation. In

particular, complex EQs are not treated by our approach and to avoid misinterpretations

in the numerical evaluation, they are not computed.

We report the results considering exact matches (more precise) (cf. Section 4.1.2.1)

and also partial matches (cf. Section 4.1.2.2).

4.1.2.1 Exact Matches Recognition Analysis

We applied our method to each annotated KQ. We compared the EQs recognized by

our method with the annotations of the Gold Standard. The comparison considers four

indicators:

• True Positive (TP): elements correctly identified. For Example: our method iden-

tified in Sentence 1 the following EQs: E[lips]Q[not fringed];E[mouth]Q[horizontal].

These elements were actually annotated in Sentence 1 of the Gold Standard;
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• False Positive (FP): An expression recognized by the method as a phenotype,

which does not appear as such in the Gold Standard. Example: in Sentence 4,

our approach recognized E[vertebrae]Q[132], which is a Quality that slightly differs

from the expected one;

• False Negative (FN): those phenotypes annotated in the Gold standard that were

not detected by the method. Example: E[breast melanophores]Q[Scattered] should

be identified in Sentence 5 and we failed in recognizing it.

The computation of TP, FP and FN allows calculating the following traditional mea-

sures:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

F -measure =
2 ∗ Precision ∗Recall

Precision+Recall
(4.3)

Precision stands for the percentage of elements detected by the algorithms that are

correct. Recall refers to the percentage of elements present in the Standard Gold Set

found by the algorithms. These measures are complementary indicating false alarms and

miss errors, respectively. F-measure refers to a harmonic mean of precision and recall.

Our first analysis considered exact matches in the computation of the measures. In

this sense, a EQ recognized by our method should be strictly equal to the correspondent

in the Gold Standard Set to be computed as a TP. For instance, E[mouth]Q[horizontal]

in the example of Sentence 1.

Table 4.2 presents the obtained results of Precision, Recall and F-measure. The col-

umn “EQ pair” compute the recognition of complete Entity-Quality pairs and the column

“Entity” computes the recognition of Entities alone without related Qualities.

Table 4.2: Results concerning only Perfect Matches.

❵
❵
❵
❵
❵
❵
❵
❵
❵

❵
❵

❵
❵
❵❵

Measures
Elements

EQ pair Entity

Recall 0,39 0,69

Precision 0,75 0,85

F-measure 0,51 0,76

Results indicate better performance with the recognition of isolated Entities, was ex-

pected. While the Precision of the “EQ pair” is slightly worst when compared to “Entity”,

the Recall further decreases. This result is impacted by EQs containing ranges of values

in the Quality part. For example, the S[total vertebrae 119 to 132 ] has the expected

result EQ[E[vertebrae] Q[119 to 132]] in the Gold Standard. Our method is only able to
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recognize part of the Quality, yielding Q[132]. This might not be considered a totally

wrong result, but the exact match analysis is unable to consider it. The next section

presents a more flexible partial match analysis to take such cases into account.

4.1.2.2 Partial Matches Recognition Analysis

Partial matches occur when a recognized element intersects with an expected element,

but their boundaries do not perfectly match. For instance, E[vertebrae]Q[132] is a partial

match with E[vertebrae]Q[119 to 132]. Partial matches are significant pieces of informa-

tion, although they are not exactly the expected results. Atdag and Labatut [5] propose

a set of additional counts to consider in the measures:

• Partial Matches (PM): when the recognized element contains only a part of the

expected one;

• Complete Miss (CM): expected elements not detected by the phenotype recog-

nition;

• Wrong Hit (WH): recognized elements that do not correspond to any expected

element;

• Full Match (FM): equivalent to the True Positive.

These indicators allow redefining in a smoothly way the False Negative as Partial Match+

Complete Miss and False Positive as Partial Match+Wrong Hit. Atdag and Labatut [5]

propose an adaptation of Precision and Recall :

Partial Precision =
Partial Match

Full Match + Partial Match + Wrong Hit
(4.4)

Full Precision =
Full Match

Full Match + Partial Match + Wrong Hit
(4.5)

Partial Recall =
PartialMatch

Full Match + Partial Match + Complete Miss
(4.6)

Full Recall =
FullMatch

Full Match + Partial Match + Complete Miss
(4.7)

Total Precision and Total Recall can be stated as Partial Precision + Full Precision

and Partial Recall + Full Recall, respectively.

Tables 4.3 and 4.4 present these measures applied to our results. As expected, in an

overall analysis, results reached with the partial matches overcome the results of the exact

matches recognition analysis. We note that better results yield mostly by the Recall.
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Table 4.3: Results concerning Perfect and also Partial Matches.

❵
❵
❵
❵
❵
❵
❵
❵
❵

❵
❵

❵
❵
❵❵

Measures
Elements

EQ pair Entity

Partial-Recall 0.05 0.08

Full-Recall 0.39 0.67

Partial-Precision 0.11 0.1

Full-Precision 0.75 0.84

Table 4.4: Total Results.

❵
❵
❵
❵
❵
❵
❵
❵
❵

❵
❵

❵
❵
❵❵

Measures
Elements

EQ pair Entity

Total Recall 0,45 0,76

Total Precision 0,87 0,94

Total F-measure 0,59 0,84

4.1.3 Discussion

The obtained findings indicate the consistence of the defined techniques. Nevertheless,

our approach demands further refinements to identify more EQ elements. Among the

already mentioned details required to improve the results, the key findings about the

approach rely on the necessity of extending the EQ formalism to handle complex EQs

with compound Entities and Qualities.

By the conducted evaluation, we observe an improvement of obtained results when

comparing the analysis considering only the perfect matches. Nevertheless, we can refine

our proposal in some directions. For example, to embed a method to perform a Entity

Linking task to handle complex cases, e.g., S[first four dorsal spines prolonged, the second

and third longest ]. This sentence requires identifying that the words second and third

implicitly mention the Entity E[dorsal spine].

The obtained results are affected by the coverage of explored ontologies. The Recall

related to Entities is high which indicates that the TAO ontology is relatively complete.

Whereas the Recall of Qualities remains relatively low. It is close related to the low

coverage of the PATO ontology. This is due to the fact that the universe of Quality terms

is more vast than those available in PATO. Moreover, PATO is also a generic ontology,

supporting a wide range of organisms, unlike the specialized anatomical ontologies. Our

approach can serve as a tool to enrich the ontology, suggesting terms to be added.

A study comparing our results with related work is hampered by the unavailability

of a Gold Standard Set used by them. However, it is possible to compare the proposals

conceptually. Among the existing approaches, the most related is the CharaParser –

part of the Phenoscape project – which has a good acceptance in the community. Our
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work presents, a more independence of human work in identifying the EQ elements, since

CharaParser requires some steps of validation, by the user, over the information extracted,

to feed the next steps.

4.2 Application Experiments

In this section, we present practical applications, which are possible due to the extraction

of phenotypes. The objective is demonstrating the usefulness of explicitly recognizing

EQs.

Section 4.2.1 describes possible relevant analyses on a knowledge network generated

from FishBase data, exploring the recognized EQs. The knowledge network was created

by correlating the detected EQs with other information elements available in FishBase.

In particular, we correlated EQ pairs with data concerning taxonomic groups of fishes.

Afterwards, we generated different information visualizations/perspectives to evaluate the

obtained correlations. We selected specific cases to highlight the relevance of considering

EQ statements.

Section 4.2.2 presents relevant features that can improve the system usage thanks to

the recognized EQs.

4.2.1 Knowledge Network Analysis

From the analysis of the network graph generated in this evaluation, we highlight possible

scientific studies to understand facts about living beings. The key subject investigated in

this subsection concerns the ability of changing the focus of the analysis when the Entities

that describe organisms are unified. It enables to focus in the descriptive characteristics

of the organisms and analyse/compare them departing from such characteristics.

Phenotypes distinguishing taxa: Figure 4.2.a shows a fragment of the obtained

knowledge network highlighting 3 classes of fishes and the EQ elements concerning the

tooth structure. As can be seen, our approach enabled to unify the Entities and it is

possible to verify that all 3 classes share the same EQ elements. However, if we drill

down to the level of family, it is possible to verify which EQ elements distinguish the two

families Aulopiformes and Cetomimiformes – the size of the tooth: the first one (Figure

4.2.b) is large and the second (Figure 4.2.c) is small.
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Question that is not a leaf on the tree representing the Identification Key).

With the generated graph, it is possible to search for specific taxa by applying an

incremental filtering process. The user can thus perform the process of identification

based on the characteristics that (s)he knows, instead of following a flow created by

another people.

4.2.3 Discussion

The results obtained by the analyses conducted over the data resulting of our approach

show the potential of this work. Information Systems about living beings, like FishBase,

can be empowered handling phenotypes in EQ format, generating a vast amount of sys-

tem usage possibilities. Moreover, the knowledge networks provide useful information to

several biology studies about species evolution.

The analyses performed over the network are examples of possible studies. However,

due to the relatively low recall of our extraction approach, they cannot be taken as facts.

Future work aims to improve the results of the extraction method, which can allow to

perform refined analyses over the network with a high rate of confidence.

4.3 Summary

This chapter presented an empirical validation of our proposal by conducting quantita-

tive and qualitative evaluations. The numeric evaluation allowed a initial assessment to

understand the rate and coverage of the EQ recognition from the IKs of FishBase. To ex-

amine the correctness of the results, a gold standard was constructed and both exact and

partial matches recognition analysis were performed. To comprehend the general benefits

of the proposed recognition method for phenotype integration, we departed from our the

knowledge network and conducted a qualitative analysis correlating KQs and species from

FishBase.

The validation showed an overall efficiency of the proposal in the different numeric

evaluations. Results indicated a good accuracy for the technique. This chapter also

demonstrated that our approach remains applicable and useful to network-driven analysis.

Results revealed several advantages of the method to improve reuse, identification facilities

and refined data connections in graph-based analyses. Furthermore, we discussed the

limitations of the investigation and highlighted potential improvements. The next chapter

closes this thesis with the major conclusions and description of future work.



Chapter 5

Conclusion and Future Work

Phenotype descriptions play a key role in biological knowledge bases, but most of the

descriptions remain in a free-textual format, which affects machine interpretation and

their applicability in network-driven analyses.

This thesis proposed an original approach to recognize Entities and Qualities connect-

ing them to concepts in ontologies to make their representation semantically interpretable

by machines. Our key point, not addressed by related work found in literature, consists in

exploring clues of non-textual information: from the writing characteristics of phenotype

descriptions to their organizational structure.

The experimental evaluations revealed encouraging results regarding the assessment

against a gold standard set. The experiments point out the contributions of each step to

improve the results of the recognition process.

The experiments using the EQ elements, extracted from free-text sentences applying

our proposal, showed the advantages of bringing these descriptions to a common and

formal language. It enables machines better consuming and interpreting the available

descriptions.

Phenotype descriptions in EQ format are more suitable to be reused by different

systems and researchers. The demonstrated applications are relevant examples of how

the extracted data can be used in scientific research. Future work involves to validate

the technique with biology researchers. Other kinds of studies could be performed, such

as analyses involving graph theory, complex networks, link prediction, and so on. Even

though the proposed method has been developed and experimented inside the FishBase

context, it was designed to be generalized to a wider spectrum of biological information

systems.

In spite of the relevance of the achieved contributions in this work, the proposed

approach still requires further evaluation in terms of comparison with other investigations

present in literature. Future work involves conducting such additional evaluations to

measure and compare the efficiency with respect to other approaches.

Although precision and recall metrics achieved lower indexes than in approaches found

in literature, our usage of non-content information shows clear improvements in informa-

tion extraction tasks, as an alternative to the strong need of training sets containing a

previously annotated corpus.

Future work aims at addressing issues concerning the limitations of the recognition of

60
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EQ elements. In the Match Expansion Algorithm used by both Step 1 and Step 2, we

plan to create alternative flows to handle special relations beyond number and conj. To

create such alternative flows it is necessary a thoroughly study about such special cases

and how they reflect the writing characteristics of phenotype descriptions.

Improvements on Step 1 demand to consider complex EQs, i.e., Qualities comparing an

Entity to another Entities, e.g., E[Mouth]Q[extending to level of ]E[Eye] in the sentence

S[Mouth extending to eye level ]. To handle such kind of phenotype descriptions it is

necessary to extend the EQ formalism to consider these cases, since their configuration is

not strictly a pair of EQ elements.

Improvements in Step 2 involve to expand the comparison to be performed between

the subtrees representing the Quality parts, instead of only the edges connecting the

subtrees. At this stage, Step 2 is limited to recognize Qualities linked to Entities already

recognized in Step 1. Thus, we plan to refine this step to recognize complete new EQ

pairs, i.e., Entities and Qualities not recognized previously in Step 1.

In our method, the algorithms detected some candidate Entities and Qualities that

do not belong to the employed ontologies, so they are not confirmed as new vertices

representing Entities and Qualities. Such cases negatively affected the obtained results

concerning the Recall metric. Therefore, the our findings are limited by the coverage

of the ontologies. To address this limitation, an extension of our investigation is in the

area of Ontology Engineering, supporting the coverage improvement of these ontologies,

providing suggested concepts to enrich them.

The research developed in this thesis resulted in three scientific papers: the first,

entitled “Semantic Interpretation of Biological Identification Keys” [37], was presented

at the XXX Simpósio Brasileiro de Banco de Dados (SBBD - October 2015, Petrópolis-

RJ). The second, entitled “Knowledge Network Generation from Phenotypic Descriptions”

was accepted in the IEEE 12th International Conference on e-Science, to be presented

at Baltimore, Maryland (EUA) in October 2016. The third, entitled “Progressive Data

Integration and Semantic Enrichment Based on LinkedScales and Trails” has been sub-

mitted and it is waiting for the notification of acceptance to 9th International SWAT4LS

Conference - Semantc Web appplications and tools for life sciences.
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Appendix A

Application Experiments

This appendix details the application experiments showed in Section 4.2. We have con-

ducted these experiments together with Msc. Patrícia Cavoto.

A.1 Improving the System Usage

Figure A.1 shows a graph model derived from FishBase (FishGraph), created by a previous

work of Cavoto et al. [7]. It highlights the node types (class, order, family, species, genus,

country, key, and ecosystem) and relationships among them. We have added new nodes

to FishGraph – keyQuestion, EQ, Entity, and Quality – and linked them to the existing

ones.

Figure A.1: New nodes added in the FishGraph database.
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Figure A.3: Filtering families of species by EQ: a) dorsal fin soft; b) dorsal fin soft and
anal fin soft; and c) dorsal fin soft, anal fin soft, and body scale.

Qualities are collapsed in a single node, in order to simplify the view). Adding a second

filter of the E[anal fin]Q[soft] (Figure A.3.b) means to select those species with edges to

both EQs. The number of families with both characteristics decreases to 8. A third filter

of the E[body scale], results in only 1 family that has the 3 characteristics: Creediidae

(Figure A.3.c).

A.1.0.3 Relation of taxa and IKs

One taxon is referred in many IKs in FishBase but, since they are independent, each IK

has its own set of characteristics. When we analyse IKs referring to the same taxon, there

are two possible cases: (i) keys share partially or totally the characteristics of a given

taxon; (ii) keys that have complementary information about the taxon.

Our unified graph structure links distinct characteristics of the same taxonomic group,

coming from many independent IKs, enriching and facilitating the identification process.

Returning to the previous experiment, the E[body scale] is a characteristic that belongs to

IK 324 but it does not belong to IK 799. Since they refer to the same taxonomic group,

it is possible to combine them to achieve a more complete description of the taxa.
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