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Aos meus pais, com carinho.
E mais facil enfrentar aguas turbulentas,
quando hé a certeza de um porto seguro.



I shall not today attempt further to define
the kinds of material I understand to be
embraced within that shorthand description
“hardcore pornography” (...). But I know it
when [ see it...

(Potter Stewart)
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Resumo

Video sensivel pode ser definido como qualquer filme capaz de oferecer ameacas a sua
audiéncia. Representantes tipicos incluem — mas nao estao limitados a — pornografia,
violéncia, abuso infantil, crueldade contra animais, etc. Hoje em dia, com o papel cada vez
mais pervasivo dos dados digitais em nossa vidas, a analise de contetido sensivel representa
uma grande preocupacgao para representantes da lei, empresas, professores, e pais, devido
aos potenciais danos que este tipo de conteido pode infligir a menores, estudantes, tra-
balhadores, etc. Nao obstante, o emprego de mediadores humanos, para constantemente
analisar grandes quantidades de dados sensiveis, muitas vezes leva a ocorréncias de es-
tresse e trauma, o que justifica a busca por anélises assistidas por computador. Neste
trabalho, n6s abordamos este problema em duas frentes. Na primeira, almejamos deci-
dir se um fluxo de video apresenta ou nao contetido sensivel, & qual nos referimos como
classificagao de video sensivel. Na segunda, temos como objetivo encontrar os momentos
exatos em que um fluxo comeca e termina a exibicao de contetudo sensivel, em nivel de
quadros de video, a qual nos referimos como localizacao de contetdo sensivel. Para ambos
0s casos, projetamos e desenvolvemos métodos eficazes e eficientes, com baixo consumo de
memoria, e adequacao a implantacao em dispositivos méveis. Neste contexto, nos forne-
cemos quatro principais contribui¢oes. A primeira é uma nova solu¢ao baseada em sacolas
de palavras visuais, para a classificacao eficiente de videos sensiveis, apoiada na analise
de fenémenos temporais. A segunda é uma nova solucao de fusao multimodal em alto
nivel semantico, para a localizacao de contetido sensivel. A terceira, por sua vez, é um
novo detector espaco-temporal de pontos de interesse, e descritor de contetdo de video.
Finalmente, a quarta contribuicao diz respeito a uma base de videos anotados em nivel de
quadro, que possui 140 horas de contetido pornografico, e que é a primeira da literatura a
ser adequada para a localizagao de pornografia. Um aspecto relevante das trés primeiras
contribuicoes é a sua natureza de generalizacao, no sentido de poderem ser empregadas
— sem modificacbes no passo a passo — para a deteccao de tipos diversos de contei-
dos sensiveis, tais como os mencionados anteriormente. Para validagao, nés escolhemos
pornografia e violéncia — dois dos tipos mais comuns de material impréprio — como
representantes de interesse, de contetdo sensivel. Nestes termos, realizamos experimentos
de classificacao e de localizacao, e reportamos resultados para ambos os tipos de contetudo.
As solugoes propostas apresentam uma acuracia de 93% em classificagdo de pornografia,
e permitem a correta localizacao de 91% de conteido pornografico em fluxo de video. Os
resultados para violéncia também sao interessantes: com as abordagens apresentadas, nos
obtivemos o segundo lugar em uma competicao internacional de detecgao de cenas vio-
lentas. Colocando ambas em perspectiva, nés aprendemos que a detecgao de pornografia
¢ mais fécil que a de violéncia, abrindo varias oportunidades de pesquisa para a comuni-
dade cientifica. A principal razao para tal diferenca esta relacionada aos niveis distintos
de subjetividade que sao inerentes a cada conceito. Enquanto pornografia é em geral mais
explicita, violéncia apresenta um espectro mais amplo de possiveis manifestagoes.



Abstract

Sensitive video can be defined as any motion picture that may pose threats to its audience.
Typical representatives include — but are not limited to — pornography, violence, child
abuse, cruelty to animals, etc. Nowadays, with the ever more pervasive role of digital data
in our lives, sensitive-content analysis represents a major concern to law enforcers, compa-
nies, tutors, and parents, due to the potential harm of such contents over minors, students,
workers, etc. Notwithstanding, the employment of human mediators for constantly ana-
lyzing huge troves of sensitive data often leads to stress and trauma, justifying the search
for computer-aided analysis. In this work, we tackle this problem in two ways. In the first
one, we aim at deciding whether or not a video stream presents sensitive content, which
we refer to as sensitive-video classification. In the second one, we aim at finding the exact
moments a stream starts and ends displaying sensitive content, at frame level, which we
refer to as sensitive-content localization. For both cases, we aim at designing and develop-
ing effective and efficient methods, with low memory footprint and suitable for deployment
on mobile devices. In this vein, we provide four major contributions. The first one is a
novel Bag-of-Visual-Words-based pipeline for efficient time-aware sensitive-video classifi-
cation. The second is a novel high-level multimodal fusion pipeline for sensitive-content
localization. The third, in turn, is a novel space-temporal video interest point detector
and video content descriptor. Finally, the fourth contribution comprises a frame-level
annotated 140-hour pornographic video dataset, which is the first one in the literature
that is appropriate for pornography localization. An important aspect of the first three
contributions is their generalization nature, in the sense that they can be employed —
without step modifications — to the detection of diverse sensitive content types, such as
the previously mentioned ones. For validation, we choose pornography and violence —
two of the commonest types of inappropriate material — as target representatives of sensi-
tive content. We therefore perform classification and localization experiments, and report
results for both types of content. The proposed solutions present an accuracy of 93%
in pornography classification, and allow the correct localization of 91% of pornographic
content within a video stream. The results for violence are also compelling: with the
proposed approaches, we reached second place in an international competition of violent
scenes detection. Putting both in perspective, we learned that pornography detection is
easier than its violence counterpart, opening several opportunities for additional investi-
gations by the research community. The main reason for such difference is related to the
distinct levels of subjectivity that are inherent to each concept. While pornography is
usually more explicit, violence presents a broader spectrum of possible manifestations.
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Chapter 1

Introduction

We define sensitive video as any motion picture that may pose threats to its audience.
Typical representatives include — but are not limited to — video pornography and scenes
depicting violence.

Taking into account the easiness and the multitude of ways to produce, share, and send
video streams over the Internet, it becomes clear that the diversity of content is untold.
Within such diversity, it is not hard to imagine that some streams may be sensitive, due
to inadequate audience, sex appeal, religious or cultural offensiveness. The reasons for the
diffusion of such material may be related to negligence (e.g., people who are not aware of
sharing their personal files), protest (e.g., the topless-based activism of Femen'), or even
malice (e.g., pedophiles).

Sensitive content is alarming because it may be really harmful (e.g., violent media
contribute to aggressive behavior in children, and desensitization to brutality [26]), and
even illegal (e.g., child pornography [50]). Hence, there is a need for regulating its use
over the Internet. However, the employment of human operators for constantly analyzing
tons of sensitive streams often leads to stress and trauma [9], justifying the search for
computer-aided analysis, for alleviating the job of moderators.

Notwithstanding, the automatic detection of sensitive video is a challenging and still
open problem, mainly due to the following aspects:

Big-data nature The biggest video-sharing website on the Internet states that 300 hours
of video are uploaded to its servers every minute?. From such number, we can have
a vague yet remarkable notion of the big-data nature of the provided service. How
to design more efficient solutions, for meeting such high demand?

Pervasiveness The same website estimates that hundreds of millions of hours are watched
every day on its platform. From this total, more than 50% happens on mobile
devices, attesting an increasingly high video pervasiveness. How to design more
ubiquitous solutions, that can operate on the consumer side, even on devices with
limited hardware?

1Cf. http://www.femen.org, accessed May 3rd, 2016
2Cf. http://www.youtube.com/yt/press/statistics.html, accessed May 3rd, 2016

15
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Subjectivity The sensitiveness of some contents depends on complex cultural and social
issues. For instance, while female topless is not offensive to South American in-
digenous societies, for some Muslims, the entire female body is considered intimate,
except for the hands and the face. How to design more general solutions, that can
be easily suited to a specific population, or sensitive concept?

Urgency The fast analysis of sensitive content is important in many scenarios. For in-
stance, in forensic situations, the fast identification of inappropriate content among
millions of files shall aid law enforcement by letting officers catch red-handed crim-
inals. How to design faster yet effective solutions?

This work approaches computer-aided sensitive-video analysis, by considering the
aforementioned open issues. In addition, we aim at investigating different forms of incor-
porating video temporal information, in a quest for more effective solutions to sensitive
analysis.

1.1 Hypotheses and Goal

Given our interest in using temporal information for sensitive-video analysis, we state the
following hypotheses to guide and justify the directions of this research:

H1 It is possible to efficiently use video temporal information for effective sensitive-
content classification, regarding low-memory footprint® and small processing time?,
by combining simplified space-temporal video interest-point detection and descrip-

tion, with entire-footage representation through a single feature vector.

H2 It is possible to localize sensitive content within the video timeline by means of the
classification and fusion of time-overlapping video snippets®.

As one might observe, for the sake of research scope definition, we tackle the problem
of sensitive-video analysis as either (i) a problem of classifying sensitive video content, or
(ii) a problem of localizing sensitive content within the video timeline.

That helps us to define the goal of this research:

Goal Design and develop effective and efficient methods for sensitive-video classification,
and for sensitive-content localization within the video timeline.

Furthermore, we choose pornography and violence — two of the commonest types of
inappropriate material, specially for their relevance and negative impact on minors [81,
50, 95, 26] — as target representatives of sensitive content.

3Nowadays, we consider that a solution has low-memory footprint, if it, at least, is amenable to direct
implementation on mobile devices, such as smartphones and tablets.

4Preferably close to real time.

5A snippet is any video excerpt.
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Figure 1.1: Application example of sensitive-video classification. In (a), the user activates
a scanning app of sensitive content, and in (b), the app enlists the sensitive (e.g., violent)
videos, with a progress bar depicting the scanning progress.

1.2 Application Examples

In this section, we define the problems of (i) sensitive-video classification, and of (ii)
sensitive-content localization. Moreover, we present one application example for each
problem type, in order to illustrate the utility of solving them. It is worth to mention
that the application possibilities are far from being limited to the given examples.

1.2.1 Sensitive-Video Classification

Sensitive-video classification is the decision problem of defining whether or not a given
video stream has any occurrence of a particular target sensitive content. In other words,
the related solution shall label a target stream as being representative of one of two classes:
sensitive or non-sensitive.

Figure 1.1 depicts a possible application of a sensitive-video classifier. The action starts
in (a), when a person (e.g., a forensic expert) activates a scanning app on a smartphone.
The app finds all the video files — stored in the device — that present sensitive content
(e.g., violence). In (b), the scanning progress can be checked by means of a progress bar,
and the sensitive videos are iteratively enlisted. Please verify that the smartphone may
stay offline during the entire process (what is shown through the offline icon, depicted
in the top right corner of the device screen). It means that the classification process
is performed locally, with no need of additional processing steps in external or remote
machines, despite eventual memory and processing restrictions of the smartphone.

1.2.2 Sensitive-Content Localization

Sensitive-content localization is the search problem of finding sensitive scenes within a
video timeline. In other words, the related system shall return the instants a video stream
starts and ends displaying sensitive content.
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Figure 1.2: Application example of sensitive-content localization. In (a), the user starts to
play a chosen video, within a tablet, through a safe video player. In (b), the video that is
being played is about to show sensitive content (pornographic). In (c), the pornographic

scenes are properly censored.

Figure 1.2 depicts a possible application of a sensitive-content locator. The action

starts in (a), with a person (e.g., a child) playing a chosen video, through a safe video

player, which was installed in a personal tablet. In (b), the video content is about to

depict sensitive (pornographic) scenes, which are properly prevented in (c), when the

pornographic scenes are properly censored, according to a sensitive-scene localization

process that works in the background.
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1.3 Contributions

By verifying the stated hypotheses, and pursuing the aforementioned goal, this work
contributes to the areas of Digital Forensics (e.g., Video Surveillance), Computer Vision
(e.g., Video Content Description and Video Content Classification), and Content-Based
Visual Information Retrieval (e.g., Video Content Filtering), with the following novelties:

End-to-end pipeline for efficient time-aware sensitive-video classification

Such pipeline consists of a three-level Bag-of-Visual-Words (BoVW) -inspired solu-
tion, which efficiently employs temporal information as an effective discriminative
clue for the task of sensitive-content classification. It incorporates temporal in-
formation in the low and mid levels, by means of efficient local space-temporal
descriptors (in terms of small processing time and low-memory footprint), and
entire-footage mid-level feature pooling, respectively. It relies on Gaussian-Mixture-
Models (GMM)-based codebooks, Fisher Vectors, and a linear Support Vector Ma-
chine (SVM), one of the most effective combinations that were ever reported in
the BoVW-related literature. It is of general purpose, in the sense that it can be
used — without step modifications — for the detection of diverse sensitive content
types (e.g., gore scenes, child abuse, cruelty to animals, etc.), including our desired
pornographic and violent ones. We validate the proposed pipeline for both porno-
graphic and violent content classification. The pipeline and its results are under
an ongoing process of scientific community’s appreciation, regarding pornography
classification [66], and violence classification [67].

Space-temporal video interest point detector and video content descriptor
Referred to as Temporal Robust Features (TRoF), such interest point detector and
video descriptor constitute a lightweight space-temporal alternative, when compared
to the more computationally intensive space-temporal solutions from the literature.
It is fast and presents low-memory footprint, what makes it possible to run on
limited hardware, such as mobile devices. To reach such efficiency, TRoF relies on
a sparse strategy, which detects an optimized amount of space-temporal interest
points within the video timeline. The detection process is Hessian-based, and relies
on integral video and box filters for fast computation. The description process,
in turn, is optimized by selecting only a small amount of video voxels around the
previously detected space-temporal interest points. We validate TRoF for sensitive-
video classification, and for sensitive-content localization. TRoF is also currently
under an ongoing process of scientific community’s appreciation, by means of the
papers [66, 67].

High-level multimodal fusion pipeline for sensitive-content localization
Such pipeline is based on the combination of different and independent sensitive-
snippet classifiers. Given that each snippet classifier can rely on a particular data
modality (e.g., video frames, audio stream, video space-time, etc.), the pipeline has
an important multimodal capability. Besides that, we recommend analyzing the
content of different time-overlapping snippets, in order to provide a dense sampling
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and a dense classification of the video timeline. The combination of classifiers is
done by means of a late fusion of the sensitiveness classification scores that are
returned by each snippet classifier. Scores that refer to the same video instant of
interest are used to generate a single time-localized fusion feature vector. For deduc-
ing the fusion-vector configurations that better indicate sensitive and non-sensitive
video moments, we employ machine-learning techniques. Similar to the pipeline for
sensitive-video classification, the present sensitive-content localization pipeline is of
general purpose; it can be used — without step modifications — for the detection of
diverse sensitive content types (e.g., gore scenes, child abuse, pornography, violence,
etc.). We validate it for both pornographic and violent content localization. The
pipeline is subject to the deposit of two patents, one in the Brazilian National In-
stitute of Industrial Property (INPI) [5], and the other in the United States Patent
and Trademark Office (USPTO) [6]. In addition, it led us to reach second place in
an international competition of violent scenes localization [4]. Finally, we intend to
submit the solution to the scientific community’s appreciation by means of a regular
paper [65].

Large frame-level-annotated pornographic video dataset

Referred to as Pornography-2k dataset, it is a challenging set of 2,000 webvideos,
which comprises 140 hours of video footage. Such dataset is useful for pornographic
video classification, in the sense that it comprises 1,000 pornographic samples, and
1,000 non-pornographic samples, which vary from six seconds to 33 minutes. In
addition, it is also useful for pornographic content localization, since we provide
frame-level annotation for the 140 hours of video footage, of which 91.5 hours depict
pornographic scenes, and 48.5 hours depict non-pornographic scenes. To the best
of our knowledge, Pornography-2k is the first pornographic dataset in the literature
that provides binary annotation (i.e., pornographic vs. non-pornographic) for every
one of its frames. The dataset is available free of charge to the scientific community,
upon request and the sign of a proper responsibility agreement, due to its sensitive
content.

1.4 Accomplishments
In summary, the main results of this research are:

e Two patents, one in the Brazilian National Institute of Industrial Property (INPI) [5],
and the other in the United States Patent and Trademark Office (USPTO) [6].

e Two journal publications, one under minor revisions [66|, and the other in the final
stages of preparation [65].

e Three conference papers, two already published [4, 64|, and one under revision [67].

e Second-place award in an international competition of video violence localization [4].
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1.5 Sponsorship

This research was 65% sponsored by Samsung Eletronica da Amazonia Ltda., through
the Sensitive Media Project under coordination of Prof. Anderson Rocha, and 35% spon-
sored by the Brazilian Coordination for the Improvement of Higher Education Personnel
(CAPES). The two resulting patents are fully and exclusively licensed to Samsung Elec-
tronics. We herewith thank our sponsors for all the support during the research.

1.6 Thesis Roadmap

For a better understanding of the remaining parts of this thesis, we organized it as follows.
In Chapter 2, we review the literature, regarding the foundations of this work. In the
sequence, we divide the text into two major parts.

In Part I, we focus on the problem of sensitive-video classification, and on the verifica-
tion of hypothesis H1. It comprises three chapters. In Chapter 3, we present the solutions
that we are proposing for performing sensitive-video classification. In Chapter 4, we ex-
plain the experimental setup, and we report results for the classification of pornographic
video, while in Chapter 5, we do so for the classification of violent videos.

In Part II, we focus on the problem of sensitive-content localization, and on the ver-
ification of hypothesis H2. Similarly to the previous part, Part II also comprises three
chapters. In Chapter 6, we present the solutions that we are proposing for performing
sensitive-content localization. In Chapter 7, we explain the experimental setup, and we
report results for the localization of pornographic scenes, while in Chapter 8, we do so for
the localization of violent scenes.

Finally, in Chapter 9, we present the conclusions of the research, and we elaborate on
possible future work.






Chapter 2

Literature Review

In this chapter, we establish the foundations of this research. For that, we divide the state
of the art of sensitive-video analysis in three sections. In Section 2.1, we elaborate on the
problem of incorporating temporal information to the task of video content analysis, and
how researchers have been tackling it. In Section 2.2, we survey the works that deal with
pornographic content detection!, while in Section 2.3, we review the literature that is
related to the detection of violent content.

2.1 Temporal-Information Incorporation

This research is mainly founded upon Bag-of-Visual-Words (BoVW) approaches, to per-
form video content analysis. By doing so, we join the investigations of several other re-
searchers — in the field of Content-Based Visual Information Retrieval — that have been
betting on the BoVW model to reduce the semantic gap between the low-level visual data
representation (e.g., pixels), and the high-level concepts one may want to recognize (e.g.,
violence and pornography).

The typical BoVW video analysis pipeline can have its operation properly framed in a
three-layered representation. Within it, the (i) low-level layer refers to the video descrip-
tion, a process that commonly employs local descriptors to extract perceptual features
directly from the pixel values. One level up, the (ii) mid-level layer aims at combining
the low-level features into global video representations, with intermediate complexity. On
top of that, the (iii) high-level layer deals with the challenge of learning and predicting
the classes of the mid-level features.

Figure 2.1 depicts the typical BoVW framework, with the three levels properly chained
in a low-to-mid and mid-to-high fashion, from left to right. The existence of a visual
codebook, and a supervised learning classification model, implies that every system con-
structed under the guidance of such framework can operate in two modes. Firstly, in the
so-called training phase, the visual codebook is constructed (or updated) for posterior
reference, and the desired behavior of the system is learned from labeled video examples.
Secondly, in the test phase, unknown videos are presented to the system; in this case,
it must determine the video labels based on the codebook and classification model that

'Herein, we employ content detection and content analysis interchangeably.
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Figure 2.1: A typical three-level BoOVW framework for video content analysis. On the top,
the darker box depicts the training system operation, in which video labels are known in
advance. On the bottom, the lighter box depicts the test operation, in which the codebook
and classification model — previously learned in the training operation — are used by
the system. Please notice that, in this case, the video labels are predicted only in the late
stages.

were formerly learned.

As a result of such characteristic, Figure 2.1 depicts the workflow with two paths: the
one related to the training system operation, depicted by the darker horizontal box, and
the one related to the test operation, depicted by the lighter one.

In the particular case of still-image analysis, several researches have been conducted
in the direction of finding better strategies to implement each one of the aforementioned
layers, as well as better methods to combine them [2, 21, 71, 16, 70]. However, in the case
of analyzing motion pictures, to the best of our knowledge, it remains unclear what are
the best ways to benefit from the time dimension that is inherent to videos.

Therefore, in the following sections, we delve into the alternatives we find in the
literature, for each one of the BoVW levels, regarding the incorporation of temporal
information.

2.1.1 Time-Aware Local Descriptors

In spite of the operation mode, the first step of a typical video-related BoVW framework is
always connected to the task of video description (steps A:1 and B:1, in Figure 2.1), which
we call low-level stages. At this point, we must consider that each frame — delivered by a
digital camera to a computer — corresponds to a collection of numbers that measure the
amount of light that was incident on particular locations (pixels), within a photosensitive
surface, at the very moment of capture. Thus, the inherent challenge is to extract useful
information from such numbers.

Concerning such challenge, Tuytelaars and Mikolajczyk [87] early attested the suc-
cess of the employment of local descriptors to the development of good computer vision
systems. One can find in the literature several alternatives of local descriptors, with Scale-
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(a) original (b) interest points (¢) dense sampling

Figure 2.2: Illustration of interest points and dense sampling. Interest points provide
focus on relevant visual phenomena (e.g., edges, corners, blobs, etc.), while dense sampling
provides a systematic coverage of the image content.

Invariant Feature Transform (SIFT) [61] and Speeded-Up Robust Features (SURF) [11]
being probably the most referenced ones. These descriptors differ mostly in the type of
visual phenomenon they rely on to extract features, and in the methods engineered to
combine these features.

Keeping in mind the video nature as a sequence of frames in time, the conventional
descriptors rely solely on the space domain of the frames, thus analyzing the pixel values
strictly in the frame they occur. Such descriptors can be considered static, in the sense
that they do not consider the video time dimension, neither the order in which the frames
occur inside the video. SIFT and SURF are examples of these descriptors: they describe
the content of the frames, but they do not say a thing about how that content changes
along the video duration.

In contrast with the static features, there are descriptors that interpret the frame
pixels more like voxels. Pixel values are thus analyzed considering a third dimension, that
is their position in video time. Such descriptors can be considered time-aware, in the sense
that the feature vectors they deliver somehow encode the space-temporal information that
is inherent to the video stream. For instance, Space-Time Interest Points (STIP) [56] and
Dense Trajectories [93] are representatives of such type of descriptors.

Nevertheless, as a result of the addition of that third dimension in the description
process, more data becomes available to be analyzed in each description step. Hence,
that usually leads to a higher computational cost, both in terms of processing time and
memory consumption. Anyway, here, one can easily perceive an excellent opportunity
for incorporating temporal information. By using time-aware descriptors, it becomes
possible to push temporal information early on in the low-level stages of the framework.
Researchers in [83, 14, 90, 84| report to follow this path.

Regardless of being static or space-temporal, local descriptors can operate on im-
age/video content in one of two ways. On the one hand, they may count on strategies for
selecting interest points, according to the detection of relevant visual phenomena (e.g.,
edges, corners, blobs, etc.), to describe sparsely-localized feature vectors. That is the case
of the works in [37, 60, 14, 90]. On the other hand, they may admit a dense sampling of
the image/video space, in which the target content is systematically divided into patches
of fixed size, which are placed on a regular grid (possibly repeated over multiple scales);
all patches must then be described. Such strategy is employed in [89, 51, 8, 18]. Please
refer to Figure 2.2 for an illustration.
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2.1.2 A Single Bag for the Entire Segment

At the mid-level stages of the system operation, the main goal is to transform the previ-
ously extracted local descriptions into a global and richer video representation.

In the particular case of training operation, prior to the feature extraction itself, there
is the necessity to construct the visual codebook, for posterior reference. Step A:2 of
Figure 2.1 is related to such task. There, the basic idea is to somehow split the space of
low-level descriptions into multiple regions, being each region associated to a visual word.
Thus, by the storage of these visual words, we have a representative codebook.

Strategies to construct the visual codebook may vary a lot. Most of researchers tend
to follow the original solution of Sivic and Zisserman [82]. Therefore, they apply k-means
clustering on the description space, in order to pick k prototypes (commonly the centers
of the clusters) to represent the visual words [96, 100, 85, 14].

In a different fashion, other investigators manage to use simpler strategies, such as
randomly sampling the description space, in order to raffle k representatives. That is the
case of the works in [90, 84, 83|. Indeed, Nowak et al. [70] reported results produced by
such type of random construction, with no significant loss of performance when compared
to the systematic clustering approach.

Additionally, more sophisticated strategies can also be used, such as the application
of an Expectation-Maximization (EM) algorithm to establish a Gaussian Mixture Model
(GMM) on the low-level description space. In such cases, the centers of the GMM can be
understood as the visual words. Deselaers et al. [37] report to follow this path.

Another possibility is the use of Random Forests (RF) [47], a combination of decision
trees, which are individually built from the set of training descriptions. The inherent idea
is that each tree node splits the description space in two, and that each tree leaf represents
an actual cluster. Hence, the visual codebook corresponds to the set of all leaves, from
all trees. Mironica et al. [63] report to use this strategy.

Regardless of the task of codebook construction, and common to both training and
test phases (please see Figure 2.1), the main process of the mid-level feature extraction
can be broken into two steps: coding and pooling (steps A:3 and B:2 in Figure 2.1). The
coding step quantifies each low-level description with respect to its similarity to the words
that compose the visual codebook?. The pooling step, in turn, aggregates the quantization
obtained in the coding stage, by summarizing, usually in a single feature vector per video
frame, how often the visual words are being manifested.

There are many ways to code and to pool the low-level descriptions [16, 71, 52, 7, §|.
Boureau et al. [16] surveyed on the traditional methods (e.g., hard- and soft-coding, and
sum- and max-pooling). Perronnin et al. [71], in turn, experimented with the application
of Fisher Vectors, to encode the average first and second order differences between the
low-level descriptions, and the centers of a GMM-based codebook. Similarly, Jégou et
al. [52] proposed a simplification of the Fisher Vectors, by relying only upon the first order
differences, what they referred to as Vectors of Locally Aggregated Descriptors (VLAD).
Finally, Avila et al. introduced Bags Of Statistical Sampling Analysis (BOSSA) |7] and

2In the case of a RF-based codebook, the coding step represents each low-level description through the
leaves that are visited, when walking on the decision trees according to the low-level description content.
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BossaNova [8], as peculiar pooling strategies.

Notwithstanding, the pooling step offers an interesting chance to incorporate temporal
information into the mid level of the typical BoOVW framework. The basic idea relies on
answering the following question: instead of pooling the codes — obtained in the former
coding step — per video frame, why not pooling and normalizing them per group of
consecutive frames (a.k.a., video segment)? As a result, it becomes possible to gather a
single feature vector for an entire video segment (i.e., a single bag), instead of gathering
various, one for every described frame.

Depending on the intent of the video analysis (e.g., content localization, or classifica-
tion), each segment may comprise only a single shot (in the case of Hollywood productions,
in which there are many camera angles and scene cuts), a full scene (with all the con-
secutive events that happen in the same environment), fixed-length snippets, or even the
entire video (useful for video clip classification). For instance, the authors of [99] estab-
lished a single bag for each video shot, aiming at content localization. In [55, 29|, the
researchers established bags for fixed-length snippets, also focusing on localizing content,
and in [18, 90|, the authors reported to follow the strategy of entire video pooling, as their
objective was to classify entire video clips.

2.1.3 Video-label Polling

Last but not least, at the high-level stages of the system operation, one finally has the
video content properly coded as feature vectors. Thus, in training operation, the next
step is to apply a method of supervised learning to deduce a good classification model,
which is able to support the labeling of the input data. That is related to step A:4, in
Figure 2.1. Once the classification model is defined, it becomes possible to predict the
label of every given feature vector. Step B:3 of Figure 2.1 refers to this moment.

Many machine learning solutions can be applied to this last classification process.
However, Support Vector Machines (SVM) [91]| are the most widely used technique in
the BoVW literature, for both classification model learning, and label prediction. The
difference among the publications rely mainly on the type of the kernel that is used to learn
the separation hyperplane. For example, options may vary from Histogram Intersection
(HI) kernels, to Gaussian Radial Basis Function (RBF), to Chi-Square (x?), and to Linear
ones.

In the particular case of video content classification, in the commonest pipeline, a
typical protocol of still-image classification is applied to predict the label of the video
frames individually [19, 8, 7, 51, 60]. Therefore, a natural question is how to rely on
such process, to label the entire video. The answer relies on ultimately incorporating the
temporal information into the high level. For that, a voting scheme is adopted, in order
to decide the label of the entire video. The class is thus assumed as being equal to the
most voted label across the described frames. Please notice that such strategy exists as
an alternative to the technique of establishing a single bag for the entire video.
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2.2 Pornography Detection

Pornography consumption over the Internet has systematically increased in recent years [81].
However, contrary to the pervasiveness and availability of its hosting web, pornographic
content cannot be disclosed to every audience, specially to minors, due to its highly sen-
sitive nature. Moreover, some categories of porn are illegal, with child pornography being
the obvious case [50]. Hence, pornography detection receives growing attention from law
enforcement, and from the scientific community.

In this section, we survey the state of the art of pornography detection, by grouping
the related work according to the features that they have in common.

2.2.1 Skin Detectors

The first efforts in the literature to automatically detect pornographic content, in digital
images or videos, conservatively associated pornography with nudity. Hence, plenty of
solutions were proposed, aimed at identifying naked bodies |73, 58, 43, 42]. In such works,
the detection of human skin played a major role, commonly enhanced by the identification
of human-body structures. A comprehensive survey on skin detection techniques can be
found in [53].

Notwithstanding, it has long been reported that skin-detection-based pornography
filters suffer from high rates of false positives, specially in situations of capturing activ-
ities with intense body exposure (e.g., swimming, sunbathing, boxing, etc.) [37]. That
motivated the research for more effective solutions.

2.2.2 BoVW-Based Detectors

Here, we survey the works that applied BoVW-based techniques to perform pornography
detection. Such solutions are close to the contributions of this research.

Multi-Categorical Porn

Aware of the advances promoted by BoVW approaches in the field of image recognition,
Deselaers et al. [37] were the first to pose the pornography detection problem as an
object classification one, rather than a skin detection or skin segmentation one. Thus, by
the application of a task-specific visual vocabulary, they were able to conceive a BoVW
model good at classifying images into five different categories of pornographic content:
(i) inoffensive, (ii) with lightly dressed people, (iii) with partly nude people, (iv) with
nude people, and (v) porn.

Nonetheless, a quick check on any pornographic website reveals an untold amount of
image/video categories. If on the one hand it exposes the naiveté of designing solutions
that rely solely on the detection of body and skin exposure (for example, one may easily
find many sexual activities concerning people dressed with fetishist clothes), on the other
hand, it reveals the complexity of any effort trying to establish reasonable and fully
embracing multi-categorical approaches.
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Nudity

In opposition to the multi-categorical strategy adopted in [37], some BoVW-field re-
searchers insisted in viewing pornography as a matter of finding nude people.

This was the case of Lopes et al. [59], who employed a color descriptor (HueSIFT) in
the low-level stages of their nudity classifier. Furthermore, they extended their solution
to work with video content, by proposing a late voting scheme based on the classification
of the individual video frames [60].

In the same direction of BoVW-based nudity classifiers, but this time betting on
explicit skin detection to improve results, Steel [85] implemented a Gaussian skin masking
for the isolation of image regions of interest (ROIs), before applying SIFT [61] as the low-
level part of their method (what they called mask-SIFT).

Notwithstanding, nudity is a much simpler concept than pornography. It depends
solely on the presence of naked people, whichever action they are taking. Pornography,
on the contrary, is more subjective, and heavily dependent on socio-cultural aspects.
Hence, it is not possible to guarantee that these nudity-detection-based works are enough
for the effective detection of pornographic content in real scenarios.

Porn vs. Non-Porn

Still in opposition to the multi-categorical approach, but as a third distinct BoVW-based
strategy, some researchers opted for tackling the problem as a matter of finding porn and
non-porn material. Comprehensively, most of them did not delve into defining or adopting
a clear concept for pornography, due to the difficulty of such task: it may involve cultural
aspects and even personal value judgments. In spite of such complication, many of these
researchers left, to the task of visual codebook construction, the opportunity for choosing
the particular types of pornography one would want to classify.

For instance, Ulges and Stahl [89] adopted a forensic setup, aimed at the classification
of child pornography in images. They densely described the target images in patches,
properly submitting them to a Discrete Cosine Transformation (DCT) in the YUV color
space, before constructing their visual codebooks.

In the same sense of porn vs. non-porn, but yet influenced by the idea of combining
skin detection with BoVW approaches, Zhang et al. [100] employed a skin-color-aware
visual attention model to identify image ROIs, prior to the low-level description process.
As such model relied on the detection of faceless skin-toned patches in the compressed
domain of the target images, the authors were able to select the yet-to-decompress ROIs
that should be effectively described, thus reducing the total time spent with pornographic
content filtering. To describe such ROIs, they applied a combination of color-, intensity-,
texture-, and skin-based descriptors.

Yan et al. [96] also used a color-aware visual attention model, which relied on the
identification of salient and skin-colored faceless image ROIs. For a fast description, the
researchers proposed the use of the SURF [11] descriptor.

Similarly, Zhuo et al. [102| proposed a BoVW approach that also focused on the fast
description of formerly detected skin-colored regions, by employing the Oriented fast and
Rotated BRIEF (ORB) descriptor |77].
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On the occasion of using binary-classification strategies to tackle the problem of
pornography detection, each one of the mentioned works adopted a particular interpreta-
tion of the pornography concept, besides reporting results on unrelated datasets, prevent-
ing direct and fair comparisons amongst different works. Moreover, with the exception
of Zhang et al. [100], all these works still inherited the drawbacks of skin-detection-based
filters. For instance, they are not useful for recognizing pornographic cartoons (which are
very common in pornographic websites, and do not contain live-action® human skin).

Adopting a Porn Definition

Attained to the importance and complexity of defining pornography, a series of works [7,
90, 84, 8, 19, 18] were inspired by the publication of Short et al. [81], and jointly adopted
the concept of pornography as being any explicit sexual matter with the purpose of elic-
iting arousal. On top of that, as they tackled the classification of pornographic videos,
they provided an interesting database composed of 800 webvideos (the Pornography-800
dataset [7], containing 400 pornographic, and 400 non-pornographic videos), which facil-
itated the efforts of comparing video pornography classifiers.

From such trend, by the occasions of proposing BOSSA |7] and BossaNova [8] (both
extensions to the BoVW formalism), Avila et al. managed to solve the problem of clas-
sifying video pornography in the Pornography-800 dataset. They focused on enhancing
the BoVW mid-level data representation, by enriching the expression of the HueSIFT
descriptors extracted from the target images, with respect to the ones selected from the
visual codebook. In both works, they incorporated the video time dimension in the last
stages of their pipeline, by applying a voting scheme based on the classification of the
individual video frames.

Valle et al. [90], in turn, were pioneers at classifying pornography on the Pornography-
800 dataset with the use of bags of space-temporal (STIP) features. Souza et al. [84]
improved the results on the same database, by applying ColorSTIP — a color-aware
version of the STIP detector [56] — and HueSTIP, a color-aware version of the STIP
descriptor [56]. More than that, they innovated by keeping a single bag for the entire
target video, instead of keeping a bag for each described video frame, prior to late voting
schemes.

More recently, Caetano et al. [19, 18] also tackled the pornography classification prob-
lem related to the Pornography-800 dataset. In [19], as they maintained the BossaNova
technique within their solution, their innovation relied on the use of fast-to-compare binary
low-level image descriptors. Moreover, in [18], they improved the classification results by
also establishing a single bag for the entire target video, instead of a bag for each extracted
video frame.

Except for the works of Valle et al. [90] and Souza et al. [84], all the aforementioned
BoVW-based solutions used bags of static features, which ignore significant and cogent
information brought by video motion. However, motion information can be very revealing
about the presence of pornographic content. That motivated the following works, as well

31n videographic jargon, live action refers to the motion pictures that do not depict animated cartoons,
but “real” actors.
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as ours.

2.2.3 Time-Aware Detectors

Regardless of the BoVW model, and having in mind the issue of employing descriptors
more suitable to the non-static nature of video, publications other than [90, 84| were
proposed in the literature, aiming at incorporating temporal information early on in the
low-level description of video content.

For instance, Behrad et al. [12] tried to measure motion by analyzing the positions of
skin-toned patches along the video frames. Aided by tree-based data structures that were
used to register the temporal relation between distinct patches, they sought to pay atten-
tion to relevant volumes of skin, along the time dimension. Additionally, they extracted
feature vectors that relied on the frequency domain of the frames, seeking to, somehow,
code interesting skin motion.

Other publications relied on the content of the motion vectors intrinsically coded in the
Moving Picture Ezperts Group (MPEG) video compression format [88, 51, 101, 39, 76].
Particularly in the cases of Ulges et al. [88], and Jansohn et al. [51], BoVW approaches
were used to describe only the static visual features: the researchers, unfortunately, did
not consider to apply BoVW to the motion-aware data.

Although effective in diverse tasks, space-temporal video detection approaches nor-
mally demand high computational power, thus impairing the final system performance,
specially in terms of memory footprint, and spent processing time. In spite of that, none
of the mentioned publications assessed performance, or observed efficiency, an important
issue that we take into account in this work.

2.2.4 Third-Party Detectors

It is possible to purchase content-filter and crawler programs to inspect digital media for
pornographic hints [15, 28, 86, 25, 97, 49, 74]. Some of these solutions indeed deal with
visual content (image or video). For instance, MediaDetective [86] and Snitch Plus [49]
are off-the-shelf products, which rely on the detection of human skin to find potential
pictures or movies that may contain nude people.

Similarly, PornSeer Pro [97] is a free pornography classification system, which relies
upon the identification of specific features (e.g., nipples, breasts, anuses, vaginas, lips,
eyes, etc.) on individual video frames. Likewise, the work of Polastro and Eleuterio |74]
(a.k.a., NuDetective) also adopts skin detection, and is supposed to be used by the Federal
Police of Brazil, in forensic setups.

2.2.5 Summary

The comparison of pornography detectors from the literature is hardened by the absence
of standardized datasets, groundtruths, and metrics. A myriad of publications present
limited validation, except for the pornography classification methods that are proposed
in [19, 18, 8, 84, 90|, which report results on the two-class Pornography-800 dataset [§].
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Indeed, very recently, Moustafa |68] reported results of fresh deep learning techniques on
such dataset as well. Please refer to Table 2.1 for details concerning these results.

In addition, given our interest in BoVW, in Table 2.1, we summarize the works in the
literature that applied BoVW-based solutions to classify pornography. From these works,
Table 2.2 selects the ones that specifically tackled video classification. It summarizes
in which level of the typical BoVW pipeline such strategies managed to incorporate the
temporal information.

Finally, as one might observe, we were not able to find BoVW-based strategies in
the literature that explicitly perform pornographic content localization within the video
timeline. Furthermore, to the best of our knowledge, there is no properly annotated
dataset to support the validation of such task either.



Table 2.1: BoVW-based pornography classifiers from the literature. Most results employed different protocols/datasets and are not
directly comparable, except for the last five rows of the table, which employed the Pornography-800 dataset [8]. Moustafa [68] reported
an accuracy of 94.1% on the same dataset, by using deep learning techniques.

Low level

Mid level

Reference Media Dataset - High level ACC (%)
(#pos/#neg)  Feature detector Feature descriptor Codebook  BoVW method  (SVM kernel)
Lopes et al. [59] Nude  90/90 SIFT blobs Hue-SIFT k-means Traditional Linear 84.6
Steel [85] Nude 1,500/1,500 Skin ROIs Mask-SIFT k-means Traditional RBF *
g Deselaers et al. [37] Porn 1,700/6,800 SIFT-based blobs  Difference of Gaussians ~ GMM Traditional HI oK
g  Ulges and Stahl [89] Porn 4,248 /20,000 Regular grid DCT k-means Traditional x2 Hk
»—<E Zhang et al. [100] Porn 4,000/8,000 Skin ROIs Color, texture, intensity  k-means Traditional Not reported 90.9
Yan et al. [96] Porn 20,000/70,000  Skin ROIs SURF k-means Traditional RBF Horx
Zhuo et al. [102] Porn 8,000/11,000 Skin ROIs ORB k-means Traditional RBF 93.0
Lopes et al. [60] Nude  89/90 SIFT blobs Hue-SIFT k-means Traditional Linear 93.2
Jansohn et al. [51] Porn 932/2,663 Regular grid DCTf k-means Traditional x? oK
Ulges et al. [88] Porn 1,000/2,300 Regular grid DCTT k-means Traditional x? *x
_Gg Avila et al. [7] Porn 400/400 Regular grid Hue-SIFT k-means BOSSA X 87.1
2 Valle et al. [90] Porn 400,/400 STIP blobs STIP Random Traditional Linear 91.9
Souza et al. [84] Porn 400,/400 Color-STIP blobs  STIP Random Traditional Linear 91.0
Avila et al. (8] Porn 400,/400 Regular grid Hue-SIFT k-means BossaNova x? 89.5
Caetano et al. [19, 18]  Porn 400/400 Regular grid Binary descriptors k-medians  BossaNova x2 90.9

Traditional BoVW mid-level representation is obtained with hard coding and average pooling — ACC: accuracy
*It uses False Positive Rate (FPR) as evaluation measure — **It uses Equal Error Rate (EER) as evaluation measure
***Tt uses Receiver Operating Characteristic (ROC) curve as evaluation measure — It uses other low-level features, but not with BoVW

Table 2.2: Level of temporal-information incorporation in BoVW-based video pornography classifiers. A tick on the low level indicates
the use of time-aware local video descriptors. A tick on the mid level indicates feature pooling and normalization for the entire video
footage. Finally, a tick on the high level indicates majority voting on the label of the individual video frames.

Reference Low level

Mid level

High level

Lopes et al. [60]
Jansohn et al. [51]
Ulges et al. [88]
Avila et al. [7]
Valle et al. [90]
Souza et al. [84]
Avila et al. [8]
Caetano et al. [18]
Caetano et al. [19]
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2.3 Violence Detection

We now turn our attention to violence, which is a worldwide public health problem,
constantly demanding efforts from authorities to provide the population with safer public
places [95]. As a part of these efforts, experts have been investigating different forms of
performing computer-aided violence detection on surveillance cameras, with the intent
to support faster and more assertive official reactions, in situations of danger and crime
occurrence, while alleviating the job of human operators.

Regarding the entertainment industry, the exposure to violence in media (including
television, movies, music, etc.) represents a risk to the health of children, contributing
to episodes of aggressive behavior, and desensitization to violence [26]. In this direction,
researchers have been inspecting solutions to provide automated content filtering and
rating, on movies and online video streams, with the aim of preventing the disclosure of
violent material to inappropriate audiences.

In this section, we review the literature that is related to violent content detection,
grouping the publications according to their application purpose, and to the features that
they present in common.

2.3.1 Surveillance Detectors

Video streams from surveillance cameras are often silent and almost stationary, with well-
behaved backgrounds, and people-centered foregrounds. Hence, surveillance-aimed works
usually rely on background subtraction, people segmentation and tracking, and action
recognition of fight-related concepts (e.g., punches, kicks, etc.).

In addition, due to their single-source nature, surveillance video streams do not present
the notion of shots and scene cuts. As a result of that, the majority of works in the
literature have been tackling the problem of violence surveillance as a matter of localizing
events, within the stream timeline.

Nevertheless, just for an exceptional example, Hayashi et al. [46] were able to treat
the problem as a matter of classifying video clips as violent or not. For that, as they
wanted to detect assault-related events inside elevators, they suggested considering the
frames between get-into and get-out events as single clips. To label these clips, they
computed optical flow statistics for further decision making. With such strategy, they
reported violence recall and precision, when testing a video dataset of their own.

Back to the trend of violence localization, for instance, Datta et al. [31] used back-
ground subtraction, people segmentation, estimation of the direction and magnitude of
motion, among other methods, to feed a finite state machine and detect two standing peo-
ple fighting. Mecocci and Micheli [62], in turn, suggested the use of background detection,
and the analysis of the space-temporal complexity of local color conformations, to thresh-
old on the amount of estimated motion. Both works reported only specific situations, in
which their systems were able to localize violent acts along target stream timelines. No
quantitative assessments were reported.

Zajdel et al. |98], in turn, aimed at detecting two to four people fighting, and vandalism
against vending machines, inside train stations. They employed people segmentation and
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interest point tracking to register human activity, which was quantified regarding a five-
degree violent-activity scale. Additionally, moving trains were discarded by an optical-
flow-based detector. In contrast to the previous work, they admitted microphones on
the surveillance cameras, for exploiting complementary auditory features (e.g., pitch and
spectral tilt). For the labeling of the audio data, they reported the use of decision trees. In
the end, dynamic Bayesian Networks were used to implement a time-series model, which
was responsible for ultimately fusing all the feature labels. For reporting the performance
of their system, Zajdel et al. provided a 13-clip test dataset.

Surveillance detectors suffer from the drawback of not being suitable for detecting
violence in broad-category movies, because movies usually present intense film transition,
with variable pace rates. That is the main motivation for the next group of works.

2.3.2 Hollywood Detectors

Aware of the plot- and camera-oriented nature of Hollywood movies, many works in
the literature have been taking advantage of the well-known film grammar of the movie
industry. Although adopting different strategies, they have been similarly making use
of at least one of the following aspects, for inferring scene nature: sound effects, visual
effects, pace rate, and soundtrack.

Some researchers tackled the problem of classifying entire movie segments as violent
or not. For instance, Gong et al. [45] classified movie shots by relying on the detection
of gunshots, explosions, racing cars, screams, etc., through auditory features — such
as bandwidth, pitch, and Mel-Frequency Cepstral Coefficients (MFCC) [32] — and by
analyzing the scene and soundtrack pace rates, as indicators of frantic moments. For the
final labeling of each feature type, they employed SVM classifiers, which were late fused
by boosting techniques. With such strategy, Gong et al. reported violent-shot recall and
precision, when testing four action Hollywood movies.

Giannakopoulos et al. [44] recommended the use of visual (motion vectors on frame
blocks), and auditory features (e.g., Chroma [10] and MFCC). While visual features were
fed to K-Nearest Neighbors (KNN) classifiers, auditory features were fed to a more com-
plex combination of KNN classifiers and Bayesian Networks. In the end, a KNN-based
late fusion method was used for returning the resulting class of each video segment. The
authors reported the system recall and precision of gathering 9,000 violent one-second
movie segments (which were extracted from ten movies).

Chen et al. [22], in turn, aimed at the detection of blood, fights, and injured people,
by relying on visual clues only. For that, they suggested the segmentation of every movie
into shots, which were grouped into scenes. From the scenes, they extracted video motion
intensity (which was fed to an SVM classifier), and applied face and blood detectors. The
authors reported violent-scene recall and precision, when testing four Hollywood movies.

In opposition to the classification of violent segments, some researchers tackled the
problem of localizing violent events within the movie timeline. For example, Nam et
al. [69] turned to the application of thresholds on the values of auditory and visual features.
As auditory features, they explored the audio signal energy for detecting special effects
of gunshots and explosions, while for visual features, they used pixel colors for detecting
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fire and blood, and motion density for detecting frantic scenes. Similar to [31] and [62],
Nam et al. made only qualitative assessments of their system performance, by pinpointing
samples of violence localization, within movie timelines.

Cheng et al. [24], in turn, suggested the employment of only auditory features (e.g.,
bandwidth, volume, MFCC), for localizing gunshots, explosions, engines, helicopters, car
breakings, etc. For that, they trained Hidden Markov Models (HMM), which were used
to recognize the target sound events. To lately combine the used features, the authors
suggested to seek specific combinations of sound events, that represented problem-domain
situations of violence (e.g., gunplay, which was composed of gunshots, explosions, and
engines). For modeling such situations, they adopted the concept of GMM-based semantic
contexts. Besides presenting qualitative assessments of the detected events, Cheng et
al. reported the recall and the precision of gathering semantic contexts, when testing
five-minute segments that were extracted from five Hollywood movies.

In face of the current easiness of recording videos, and considering the growing offer
of online amateur content, some of the aforementioned violence detectors may completely
fail, due to the heterogeneity of material (regarding, for instance, illumination conditions,
video and sound quality, erratic camera movement, and absence of plot or special effects).
Given such situation, how could one automatically detect violent scenes in the broadest
possible way? In this sense, some works in the literature appealed to the BoVW approach
for designing and developing more general solutions.

2.3.3 BoVW-Based Detectors

We now turn our attention to some of these BoVW-based detectors, as they are relatively
close (in concept) to the contributions of this research.

First Efforts

Souza et al. [83] proposed a motion-aware BoVW-based solution for classifying video
shots as violent or not. The particularities of their strategy relied on the prior necessity
of segmenting the target video streams into shots, as a very first step. The idea was to
establish — after the hard coding of STIP-detected space-temporal low-level descriptions
— one bag of features for each shot, as well as the further training and use of a linear SVM
shot classifier. Experiments were conducted on a dataset comprising 400 webvideos (200
depicting aggressive behavior, 200 without hostility), and the motion-aware STIP-based
solution was compared to a still-image SIFT-based counterpart, based on classification
accuracy. By doing so, they were able to highlight the importance of using space-temporal
features in violent content detection.

Similarly, Bermejo et al. [14] addressed video violence classification by applying a
BoVW-based approach whose initial stages relied upon either STIP or Motion SIFT
(MoSIFT) [23]. Again, the aim was to employ motion-aware low-level visual descriptors
in the process. Experiments were conducted on a dataset that comprised 1,000 50-frame
clips, which depicted hockey matches. Positive samples comprehended hockey fights, over
which the authors reported violence classification accuracy.
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The aforementioned work presented the limitation of reporting results on different
datasets, with distinct metrics. Even the concept of violence was not the same, thus
preventing direct comparison with other existing works in the literature, and a proper
measure of the progress in the field. Problems such as this one motivated the MediaEval
initiative, about which we shall discuss next.

MediaEval Initiative

By the occasion of proposing the Violent Scenes Detection (VSD) task, the MediaFEval
Benchmarking Initiative for Multimedia Evaluation® provided the scientific community
with a unified violence dataset, with a common groundtruth — which reflected a clear
understanding of the concept of violence — and standardized evaluation protocols. Since
then, plenty of works were proposed in the literature, aiming at attending the VSD task.
In the following, we focus on the researches that relied upon BoVW-related concepts
for doing the job. For more details on the MediaEval initiative, and reviews about all
MediaEval attendants, please refer to the reports in |80, 33, 34].

MediaEval Shot Classification

In its first years, the VSD task challenged participants to classify pre-segmented video
shots as violent or not. In opposition to the works of Souza et al. [83] and Bermejo et
al. [14], which used only visual features, a common trend among the VSD task attendants
was the combination of visual and auditory features.

For instance, Acar et al. [1] calculated motion vectors from the shot frame blocks,
and also extracted MFCC features from the shot audio streams. Curiously, is spite of
training a first SVM shot classifier directly with the low-level motion vectors, in the
case of the auditory features, however, these authors experimented with a bag-of-words
approach. Hence, they applied k-means on the MFCC descriptors, for constructing an
audio codebook, and established a Bag of Auditory Words (BoAW) per shot, prior to
training a second SVM shot classifier. In the end, to provide a late fusion of features,
they suggested to feed a third SVM classifier with the outputs of the previous ones.

In the same direction, Derbas and Quénot [36] proposed the use of Histograms of
Optical Flow (HOF) [57| for describing STIP-detected space-temporal interest points, and
MFCC for describing the audio stream. The most evident particularity of their approach
relied on the early fusion of the low-level features, which were concatenated according to
a randomly selected subset of all possible combinations, within a given video shot. By
interpreting such concatenations as joint audio-visual features, the authors constructed
codebooks with them, and established bags of audio-visual words, per shot, which were
fed to SVM classifiers.

Lastly, aiming at performing fast shot classification, Mironica et al. [63] gave up us-
ing space-temporal features, in the particular case of the MediaEval dataset®. Instead,
they employed fast global still-image frame description (e.g., based on Histograms of Ori-
ented Gradients, HOG [30]), along with plenty of audio descriptors (e.g., MFCC, flux,

4Cf. http://www.multimediaeval.org/, accessed May 3rd, 2016.
®Mironica et al. [63] also applied space-temporal descriptors, but for other smaller datasets.
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rolloff, etc.). In the mid level, codebooks were constructed with the support of Random
Forests, and shots were represented by means of a VLAD-based approach. In the high-
level, for each type of feature, one independent SVM shot classifier was trained. For
ultimately fusing the outputs of these SVM classifiers, the authors recommended the use
of a weighted-sum function.

For the sake of highlighting an open issue, none of the mentioned violent video clas-
sifiers had their efficiency analyzed, in terms of memory footprint and processing time.
Except for Mironica et al. [63], all of them made use of space-temporal video detection
approaches, which normally demand high computational power. In the particular case of
Mironica et al. [63], although they aimed at fast shot classification, they assessed perfor-
mance for the task of video genre classification only, but not for violence detection.

MediaEval Scene Localization

More recently, the VSD task challenged participants to localize violent scenes within the
video timeline. For that, they maintained the two-class frame-level-annotated groundtruth,
but did not provide any shot segmentation to the public.

That led to a major contrast between the previous BoVW-related classification works,
and the further localization ones. Attendants of the past shot-classification task had
often adopted the straightforward strategy of establishing a bag per provided shot, for
further discrete classification. In opposition, attendants of the newly introduced content-
localization task had to reckon with (i) the granularity of mid-level pooling (due to the
absence of shots), and (ii) the method of online bag score fusion, for providing content
classification with temporal continuity (a basic requirement for the localization task).

Regarding the granularity problem, given the many possibilities of video segmentation
(frames, shots, time-overlapping snippets, etc.), in what unity should one pool the mid-
level features, in order to provide bag labels that were more supportive of the task of
content localization? One bag (and thus one label) per frame? One bag per second?
Concerning the online bag score fusion, how should one combine the violence scores of
the many discrete bags, in test execution, for providing a continuous answer?

Reasoning about all these open questions, Zhang et al. [99] kept the idea of segment-
ing the target streams into shots. For that, they employed a third-party shot boundary
detection method. In the mid-level, for each type of feature (e.g., SIF'T on regular grids,
Dense Trajectories, and MFCC), they represented each shot by a proper Fisher Vector
(equivalent to the notion of a bag). In the high-level, each set of feature-related Fisher
Vectors was fed to a particular SVM classifier (i.e., they trained one SVM per feature
type). Then, a weighted sum of classification scores was used for the final shot classifica-
tion. Given that the labeled shots did not present time overlaps, Zhang et al. simplified
the fusion of discrete bag scores. Their system just returned a time-sorted concatenation
of the shot violence scores, when in test execution.

Contrary to [99], Lam et al. [55] opted for dividing the streams into non-overlapping
five-second snippets. In the mid-level, for each type of feature (e.g., SIFT on regular grids,
Dense Trajectories, and MFCC), each snippet was encoded as a Fisher vector, and as a
bag of words. Besides that, the authors fed keyframes to a Deep Neural Network (DNN),
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for obtaining a third alternative of mid-level representation (a further improvement on
their original task attendance [54]). In face of plenty of mid-level representations (Fisher
vectors, bags of words, and DNN outputs), one SVM classifier was trained for each feature
type. To combine everything, a weighted sum of classification scores was performed, for
the final snippet classification. In the end, in the online snippet score fusion, Lam et
al. [55] proceeded as 99|, configuring their solution to return a concatenation of the
adjacent snippet violence scores.

Dai et al. [29], in turn, divided the target streams into non-overlapping fixed-length
three-second snippets. In the mid-level, for some features (e.g., Dense Trajectories), they
represented each snippet by a Fisher Vector. For other features (e.g., STIP and MFCC),
they established conventional bags of words, one for each snippet. In face of such diversity
of representations, they trained one SVM classifier for each feature type. Additionally,
they fed some of the features to a DNN, that worked as a high-level classifier, equivalent
to the SVMs. Once more, a weighted sum of classification scores was performed, for the
final snippet classification. In contrast to the previous solutions, Dai et al. suggested a
more complex strategy for the online bag score fusion. Snippet classification scores were
first smoothed by a proper function. Then, each snippet received a label (violent or non-
violent), according to a threshold on the smoothed scores. In the end, adjacent snippets
with the same label were merged into a single segment, whose final violence score was set
as the average of the merged scores.

The solution for violent-content localization we are proposing in this work is contempo-
raneous to the above-mentioned researches of [99, 55, 29|. With such strategy, we reached
second place in the 2014 MediaEval VSD task competition, regarding the localization
of violent scenes within webvideos. In opposition to [99, 55, 29], we recommend a late
fusion of distinct time-overlapping-snippet classifiers, which shall rely upon different and
complementary data modalities (e.g., video frames, audio stream, and video space-time).
The combination of classifiers is done with machine-learning techniques, which are used
to determine the best way of combining the classification scores that are returned by each
snippet classifier (i.e., through a meta-learning procedure). In addition, the solution is
amenable to the localization of sensitive contents other than just violence; we also validate
it for pornography localization. For a complete description of the method, validation and
experiments, please refer to Part II.

2.3.4 Summary

In Table 2.3, we summarize the works in the literature that applied BoVW-based solu-
tions for detecting violence (regarding both classification and localization challenges). In
contrast to the pornography-related solutions, all these works made use of space-temporal
features, by employing low-level time-aware descriptors (e.g., STIP, MoSIFT, Dense Tra-
jectories, and MFCC), and establishing a single bag per shot (or per interest snippet).



Table 2.3: BoVW-based violence detectors from the literature. Results are directly comparable if they share the same dataset.

Low level Mid level
High level
Reference Dataset MAP
Feature detector Feature descriptor Codebook Method (SVM kernel)

Souza et al. [83] Violence-400 SIFT blobs; STIP blobs SIFT; STIP Random Traditional BoVW Linear *
£ Bermejo et al. [14] ~ Hockey Fights STIP blobs; MoSIFT STIP; MoSIFT k-means Traditional BoVW HI *
8
§ Acar et al. [1] MediaEval 2012 MFCC MFCCT k-means Traditional BoAW RBF 0.545
‘n
1]
& Derbas and MediaEval 2013 MFCC and STIP MFCC + HOF (early k-means Traditional BoVW RBF 0.690
O Quénot [36] fusion)

Mironica et al. [63] MediaEval 2013 Regular grid; MFCC, etc. ~ HOG; MFCC, etc. Random Forests ~VLAD RBF 0.760

. Regular grid; Dense SIFT; Dense Trajectories; .
MediaEval 2014 gular grid; ; J ’ GMM i L 0.566

g Zhang et al. [99] ediakiva Trajectories; MFCC MFCC Fisher Vectors inear
g
I
X : Regular grid; Dense SIFT; Dense Trajectories; . " . : 1
B MediaEval 2014 ) k- ; GMM . L 0.564
3 Lam et al. [55] ediakiva Trajectories; MECC MFCC means Traditional BoVW; Fisher Vectors inear
<}
— . . . . s

Dai et al. [29] MediaEval 2014 STIP; Dense Trajectories;  STIP; Dense Trajectories; k-means; GMM Traditional BoVW (STIP, MFCC); x2; Linear! 0.630

MFCC

MFCC

Fisher Vectors (Dense Trajectories)
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Traditional BoVW and Traditional BoAW mid-level representations are obtained with hard coding and average pooling
MAP: mean average precision (MediaEval VSD task official metric)
*It reports accuracy as evaluation measure — It uses other low-level features, but not with BoVW — #It also performs DNN-based classification

0¥



CHAPTER 2. LITERATURE REVIEW 41

2.4 Final Remarks

In general, sensitive-content detection techniques are non-generalizable and purpose-
dependent. For instance, most pornography detectors rely upon skin recognition, which
might not be useful for detecting violence. Similarly, a multitude of violence detectors
rely upon blood and special-effects recognition, which might not be useful for pornogra-
phy detection. That hardens the duty of dealing with the high subjectivity of the target
concepts. For example, it might be difficult to adapt skin-recognition-based pornography
detectors to the reality of tropical countries, where body exposure is common and well-
accepted. Under such circumstance, how should one proceed to reduce false negatives?
In this work, we propose broader machine-learning general-purpose pipelines, that can
be adapted to most of the sensitive contents one might want to detect (e.g., violence,
pornography, child abuse, cruelty to animals, etc.). All one needs to do is to provide the
algorithms with a properly annotated dataset, with enough sensitive and non-sensitive
examples. Of course the notion of “enough” here depends on the difficulty of the problem,
but often a few hours of each concept is enough for a good generalization of the designed
detectors.

In the particular case of video pornography detection, the traditional approach extends
the still-image classification process to video, by simply labeling the frames individually,
and then performing majority voting to decide the label of the entire clip. That is a
poor design, that does not take into account video motion, which might be very revealing
about the sensitiveness of the target stream. Indeed, even well-known breakthrough
video representations from the literature, such as Fisher Vectors, were never applied to
the problem of pornography detection, to the best of our knowledge. Moreover, we were
able to find in the literature only works that tackled video pornography classification.
There is a lack of solutions for pornography localization, as well as standardized frame-
level annotated datasets. In this work, we contribute to the scientific community by
tackling these issues, by proposing more effective motion-aware solutions, and by releasing
a large frame-level annotated pornographic dataset, which is fundamental for pornography
localization.

In the particular case of video violence detection, there is already an available stan-
dardized dataset (MediaEval), and the available solutions in the literature have long been
applying video representation techniques, such as space-temporal descriptors, and Fisher
Vectors to the problem. Nevertheless, efficiency is not a commonly investigated matter,
specially in terms of memory footprint, and spent processing time. It is not investigated
also in the case of pornography detection. As a consequence, solutions are probably not
ready to deal with the big-data and urgent nature of the sensitive-content detection task
(given that efficiency is not a major concern), and they might not be amenable to run
on hardware-limited mobile devices, to benefit from their pervasiveness. These are open
issues in the literature that we also consider in this work.

In the following, we introduce and validate the methods we have mentioned thus far.
More specifically, in Part I, we tackle the sensitive-video classification problem, while in
Part II, we deal with sensitive-content localization.






Part 1

Sensitive-Video Classification
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Chapter 3

Getting Clues from Video Space-Time

Sensitive-video classification is the decision problem of defining whether or not a given
video stream has any occurrence of a particular sensitive content. By definition, labeling
a stream as positive means that the target sensitive concept is present within it. In
opposition, labeling as negative indicates that the target concept is absent.

In this chapter, we introduce an end-to-end approach for time-aware sensitive-video
classification, which is designed to be efficient (i.e., to be fast and to present low-memory
footprint). The pipeline efficiency mainly relies upon a novel space-temporal interest point
detector and video descriptor, namely Temporal Robust Features (TRoF), which is also
introduced.

This chapter is related to hypothesis HI (please refer to Section 1.1), which states that
it is possible to efficiently use video temporal information for effective sensitive-content
classification, by combining simplified space-temporal video interest-point detection and
description, with entire-footage representation through a single feature vector. It aims
at the goal of designing and developing effective and efficient methods for sensitive-video
classification. For that, we organized the text as follows. In Section 3.1, we detail the
video classification pipeline, while in Section 3.2, we introduce the TRoF video descriptor.
We then present final remarks related to the proposed solutions in Section 3.3.

3.1 Time-Aware Pipeline for Efficient Sensitive-Video

Classification

Sensitive concepts such as pornography and violence represent high-level semantic cat-
egories, whose translations to visual characteristics are not straightforward. As already
mentioned, to cope with such complexity, we propose to rely on BoVW-based strategies,
for reducing the semantic gap between the low-level visual data representation (e.g., video
frame pixels), and the high-level target sensitive concept.

Moreover, given our interest in performing effective and efficient time-aware sensitive
video classification, we introduce a general-purpose end-to-end BoVW-based pipeline,
which efficiently incorporates temporal information as an effective discriminative clue for
the task of sensitive-video classification. We say that such pipeline is of general purpose, in
the sense that it can be used — without step modifications — for the binary classification
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(positive vs. negative) of diverse sensitive content (e.g., violence, pornography, gore scenes,
child abuse, etc.). For employing the pipeline concerning a specific concept, all one needs
to do is to provide a properly annotated training dataset, with positive and negative
examples.

Figure 3.1 depicts the proposed pipeline, with the inherent three levels. As expected
from a typical machine-learning solution, the pipeline can be executed either in (i) training
mode (represented by the left larger column), or in (ii) test mode (represented by the right
darker column).

In the former mode, the labels of the videos are known in advance, and are used
for training the class-prediction capabilities of the system. For the sake of illustration,
we start the training operation with only two videos (video A, positive, and wvideo B,
negative), but in a real-world application, it would involve much more samples. At this
point, efficiency is not a major concern, since the system shall be trained only a few times
(ideally just once). In the latter operation, in turn, the system shall efficiently predict the
label of arbitrary videos (e.g., video X)), with low-memory footprint, and small processing
time. In the following sections, we detail each pipeline level, from low- to high-level stages.

3.1.1 Low-level Stage

First of all, for the sake of efficiency — and similar to Akata el al. [2] — we resize the
video frame resolution to fr pixels, if larger, keeping the original aspect ratio. That is
related to Steps A:1 and B:1, in Figure 3.1, and considerably reduces the amount of data
to be analyzed.

Given that we want to push temporal information early on in the low-level stage, we
suggest the employment of local space-temporal descriptors, for the video description steps
(Steps A:2 and B:2). These descriptors usually deliver d¢-dimensional feature vectors that
somehow encode the variation of the frame pixel values, regarding not only their spatial
configuration, but also their disposition along the video timeline (i.e., pixels are analyzed
as voxels). STIP [56] and Dense Trajectories [93| are typical representatives of such
descriptors. However, if space-temporal data are not parsimoniously used, they lead to a
high computational cost, in terms of both processing time and memory footprint. That
clashes with our goal of designing efficient solutions, specially regarding the intention of
deploying solutions on mobile devices. Hence, we introduce Temporal Robust Features
(TRoF), a novel time-aware video descriptor, which saves computational resources, yet
maintaining reasonable video description capability. In Section 3.2, we detail the TRoF
detector and descriptor.

3.1.2 Mid-level Stage

In the mid level, the goal is to combine the low-level features into global video represen-
tations, with intermediate complexity, which are closer to the target high-level sensitive
concept (e.g., violence, or pornography).

Firstly, for the sake of using the chosen mid-level representation — which we will
shortly detail as being Fisher Vectors — we reduce the ds-dimensional low-level feature
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Figure 3.1: Three-level pipeline for efficient sensitive-video classification. On the left, the larger column
depicts the training pipeline execution, in which video labels are known in advance, and are used for
calculating the principal component analysis (PCA) transformation matrix (in Step A:3), generating the
GMM codebook (in Step A:4), and training the linear SVM classification model (in Step A:7). On the
right, the darker column depicts the test execution, in which the formerly learned models are used by
the system, for predicting the class of arbitrary videos. This pipeline efficiently incorporates temporal
information in the low and mid levels, by means of (i) local space-temporal descriptors (Steps A:2 and
B:2), and (ii) entire-footage mid-level feature pooling (Steps A:6, and B:5), respectively.
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vectors to py < dy dimensions, with Principal Component Analysis (PCA). As pointed
out by Séanchez et al. [79], the PCA dimensionality reduction is key to make the Fisher
Vectors strategy work. That is related to Steps A:3 and B:3, in the pipeline. More specif-
ically, regarding Step A:3 — in the particular case of training operation — we obtain the
eigenvectors and the eigenvalues of the covariance matrix that is calculated over a random
sampling of the low-level training feature space, for further test use. Notwithstanding, in
order to provide a more content-aware strategy, we randomly select £, low-level descrip-
tions, with half of them coming from the positive training samples, and the other half
coming from the negative ones.

In the sequence, as we want to benefit from breakthrough mid-level representations
in the literature, we recommend the establishment of Fisher Vectors — one of the best
mid-level representations in the literature of Computer Vision problems [21, 79] — for
coding the video content with intermediate complexity (Steps A:5 and B:/, in Figure 3.1).
Roughly speaking, Fisher Vectors encode the average first- and second-order differences
between the low-level descriptions, and the distributions of a GMM-based codebook |71].

Therefore, prior to the encoding step — and exclusive to the training operation — a
GMM with ¢y, distributions is estimated through an EM algorithm, whose execution
starts from random sampling features from the low-level PCA-reduced training feature
space. At this point, similar to the PCA-sampling, we randomly select k. PCA-reduced
descriptions, with half of them coming from the positive training samples, and the other
half coming from the negative ones. Such process is depicted in Step A:4, in which only
some descriptions are used to generate the GMM codebook.

Once the coding step is concluded, each PCA-reduced low-level description is converted
to a Fisher Vector with size 2 X ps X ¢gmm, by definition [71]. For generating the final mid-
level global video representations, we sum — for each video — all the Fisher Vectors along
the time dimension (which is equivalent to establishing a single bag for the entire video,
as explained in Section 2.1.2). As a result, each target video is represented by a single
Fisher Vector, which is normalized by means of a 0.5-power normalization, followed by an
ly-normalization, as recommended in [71]. By working with this reduced representation,
we expect to alleviate computational costs, besides incorporating temporal information
in the mid-level stage of the process. Such pooling step is represented through Steps A:6
and B:5, in Figure 3.1.

3.1.3 High-level Stage

In the high level, many machine-learning algorithms can be used to infer a prediction func-
tion, for assigning labels to arbitrary videos (e.g., porn vs. non-porn, or violent vs. non-
violent content). At this point, depicted by Steps A:7 and B:6 in Figure 3.1, we follow
the literature and apply SVM (as explained in Section 2.1.3). We use a linear SVM, since
it is well known that non-linear kernels do not improve classification performances for
Fisher Vector representations [71]. In addition, a linear classifier is also of interest due to
its recognized faster performance, when compared to non-linear ones.
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Table 3.1: Parameters of the proposed sensitive-video classification pipeline.

Parameter Meaning

fr Resolution, in pixels, to which the video frames are reduced.

Dy Dimensionality of the low-level descriptions, after PCA reduction.

kp Quantity of descriptions sampled for PCA transformation calculation.

ke Quantity of PCA-reduced descriptions sampled for GMM estimation.
Cgmm Quantity of GMM-codebook component Gaussians.

3.1.4 Parametrization Summary

The pipeline depicted in Figure 3.1 suggests the combined use of TRoF, PCA, GMM,
Fisher Vectors, and a linear SVM for the final decision making. Nevertheless, it is note-
worthy that these techniques can be replaced by alternative solutions, depending upon the
application and the target system tradeoff between effectiveness and efficiency. Table 3.1
summarizes the pipeline parameters.

3.2 Temporal Robust Features (TRoF)

Local space-temporal features constitute a successful low-level representation for general
action recognition [56, 93]. Nevertheless, one important factor that prevents their use in
real-time applications is their high computational cost, regarding both processing time
and memory footprint.

To solve this problem, we propose a fast yet-space-temporal alternative that can be
implemented in limited hardware, such as mobile devices, and handheld video players.
To deal with the memory-usage issue, we introduce a sparse strategy, which detects an
optimized amount of space-temporal interest points, while maintaining high accuracy to
the sensitive-content classification task. For that, we investigated what type of hints we
could observe in a video, and we singled out the motion information. To deal with the
processing-time issue, we focus on employing fast image representations and manipula-
tions, such as integral images, and box filters.

Therefore, (i) we custom-tailor a detector for finding relevant motion in videos, and
(ii) we design a novel space-temporal interest point descriptor to represent such motion,
leading to what we call Temporal Robust Features (TRoF). In the following, we give
more details about TRoF. Section 3.2.1 introduces the TRoF detection method, while
Section 3.2.2 explains its description approach. Finally, in Section 3.2.3, we demonstrate
the TRoF detection capabilities, by means of synthetic test videos.
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3.2.1 TRoF Detector

The TRoF detector is directly inspired by the still-image Speeded-Up Robust Features
(SURF) detector [11], which is very fast. It relies on three major extensions of the original
method, to use the video space-time: the employment of four-variable Hessian matrices,
three-dimensional box filters, and the concept of integral video. In the following, we
explain each one of these expansions.

Four-Variable Hessian Matrix

The original SURF detector [11] identifies interesting visual local structures (a.k.a., blobs)
in an image, by means of determinants of Hessian matrices, that are calculated at different
locations onto the image surface, with varied scales.

Every Hessian matrix H(x,y, o) is a function of the location x(x,y) and the scale o.
As pointed out by Bay et. al [11], the Hessian matrices with the highest determinants are
the ones that share a location x(z,y) and present a scale o that fits well to the size of an
occurring blob. Hence, the selection of the location and the scale of interesting blobs is
done by taking the candidate points and scales whose Hessian determinants are above a
given threshold.

To find the candidate locations, the best effort must look at every pixel of the image. To
tackle different scales, Bay et al. [11] suggest dividing the scale space into a list of octaves.
Each octave encompasses a scaling factor that is half the scaling factor of the next octave,
and they are subdivided into a constant number of four inner scale layers. Given that
various Hessian matrices with different scales are calculated at a given candidate location,
a non-maximum suppression is applied both spatially and over the neighboring scales, to
select those with the highest determinants. Each selected Hessian thus leads to a detected
blob.

Willems et al. [94] propose a straightforward extension of such mechanism to the case
of video, by adding the time dimension to the Hessian matrices, and using separated scales
for space (o) and for time (0y), i.e., the original H(x,y, o) becomes H(x,y,t,05,0;). With
that, they expect the Hessian matrices with the highest determinants to coincide with
interesting space-temporal phenomena, within the video space-time. Due to the presence
of five variables, the amount of calculable Hessian values may be large, depending on the
video resolution, quantity of frames, and number of considered scales while inspecting
the scale search space. Moreover, Willems et al. [94] suggest inspecting the spatial-
and the temporal-scale search spaces separately. Hence, they propose the use of o, five-
layered spatial scale octaves, and o, five-layered temporal scale octaves. Even though they
give neither clues on the actual values used for the candidate standard deviations, nor
how these values may be combined!, we can stipulate that they must compute at most
0s X b X 0y X 5 Hessian values, for every voxel.

In a similar fashion, we also extend the Hessian matrices, but with a different for-
mulation, which is fundamental for real-time operation. In Equation 3.1, we express
the content of a four-variable space-temporal Hessian matrix H(z,y,t,04), such as we

1Source codes and executables are no longer available and, due to a lack of details in Willems et al.’s
paper [94], we could not reproduce their method, making direct comparisons impossible.
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Table 3.2: Four initial space-temporal octaves for the TRoF detector. The Increase Factor
(IF) expresses the inter-layer scale increase. Values are measured in pixels.

Octave Scales IF
1 I9x9x9 15 x 15 x 15 21 x 21 x 21 27 x 27 x 27 6
2 15 x 15 x 15 27 x 27 x 27 39 x 39 x 39 51 x 51 x 51 12
3 27 x 27 x 27 51 x 51 x 51 75 % 75 x 75 99 x 99 x 99 24
4 51 x 51 x 51 99 x 99 x 99 147 x 147 x 147 195 x 195 x 195 48

are adopting in this work. Within it, L,.(z,y,t,04) is the convolution of the Gaussian
second-order derivative 0*G(x,y,t,04)/0xx with the voxel x(x,y,t) of the target video.
Similarly, L,,(z,y,t,04) refers to the convolution of 9*G(z,y,t,04)/0xy with the voxel
x(x,y,t), and so forth for L, Ly, Ly,, and Ly.

Lyo(x,y,t,05) Luy(x,y,t,05) Lu(z,y,t,04)
H($7y7t’08t) = Lacy(l‘7yat70-5t> Lyy(xa%tagst) Lyt($7y7t70-st) . (31)
th(xayatvast) Lyt($7yatagst) Ltt(xay7taast)

As one might observe, we propose using a single standard deviation o for both
space and time. At this point, differently from Willems et al. [94], and for a matter of
simplification, we adopt a joint strategy that — as a relaxation — lets us variate the scale
of the detectable blobs faster and closer to the former proposition of Bay et al. [11]. We
thus apply o four-layered space-temporal scale octaves (our first detection parameter), of
increasing Gaussian standard deviations with dual nature (spatial and temporal). As a
result, it becomes necessary to compute only o x 4 Hessian values, for every candidate
voxel (less than the o X 5 x o; x 5 values from Willems et al. [94]).

To support such significant scale search space reduction, we extend the four-layered
octaves that were settled by Bay et al. [11] — by complementing their layers with temporal
standard deviations — and we keep the scale-increasing policies, this time changing spatial
and temporal scales simultaneously. For instance, the first space-temporal octave starts
with a scale of 9 x 9 x 9 voxels, and it presents an inter-layer increase of six voxels, for
both space and for time. The resulting space-temporal octave thus comprises four scales,
with 9 x 9 x 9, 15 x 15 x 15, 21 x 21 x 21, and 27 x 27 x 27 voxels, respectively. Table 3.2
details the proposed scales for four consecutive space-temporal octaves.

At first glance, the employment of a joint scale o, may sound counterintuitive, given
the distinct nature of space and time. However, preliminary experiments revealed that,
besides the advantage of enabling real-time video description, thanks to the scale-space
simplification, such strategy works on par with scale-separated solutions, in the case of
detecting inappropriate content. That happens because of the nature of the problem that
we intend to solve. While Willems et al. [94] aimed at action recognition, a duty that
is fundamentally of specialization nature, we are interested in violence classification, a
generalization task that does not require a precise detection of repeatable interest points.
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Figure 3.2: A visualization of the derivative filters 0*°G(x, ¢)/dzx, and their approxima-
tions. (a) The original two-dimensional filter, with its discretized and cropped versions.
(b) The respective three-dimensional versions. The rightmost cuboid filter is one of the
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