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Resumo

O desenvolvimento de abordagens para autenticar e indicar a fonte de documentos ques-
tionados tem atraído a atenção da comunidade científica nos últimos anos, atenção esta
causada, principalmente, pela enorme quantidade de informação disponível hoje em dia
para as pessoas comuns, tais como vídeos e imagens, e que podem ser facilmente alteradas
para forjar o seu significado. Além disso, materiais impressos são criados diariamente
para falsificar documentos como dinheiro, cláusulas contratuais e também são usados para
distribuir pornografia infantil. Soluções propostas na literatura frequentemente exploram
diferentes ramos de pesquisa, tais como detecção de manipulação de imagem, atribuição
de origem, esteganálise, detecção de pornografia, entre outros, por meio da investigação
de artefatos característicos nestas imagens chamados de inconsistências estruturais. No
entanto, para investigar um determinado artefato para uma determinada aplicação forense,
normalmente diferentes abordagens são criadas. Nesta tese, propomos novos algoritmos
que realizam análise forense de documentos digitais focados em diferentes aplicações,
mas com base em uma idéia principal, chamada de multi-análise. Esta nova abordagem
para o desenvolvimento de algoritmos de análise forense de documentos digitais leva em
conta a análise de diversos cenários na imagem de entrada, tais como a análise de multi-
direcionalidade, multi-perturbações, múltiplas resoluções entre outros. Esses cenários
investigativos podem ser aplicados em qualquer fase da investigação de uma imagem
questionada como, por exemplo, pré-processamento, descrição e classificação. Mostramos
através de uma série extensa de experimentos que as soluções propostas para atribuição
de impressora a laser, detecção de filtragem de imagens e detecção de manipulação por
cópia e colagem são eficazes quando comparadas com os seus homólogos da literatura e
que a abordagem proposta nesta tese pode ser a base de diversos outros algoritmos de
análise forense de documentos digitais no futuro.



Abstract

The development of approaches to authenticating and pinpointing the source of questioned
documents attracted the attention of the research community in recent years, mostly
because of the huge amount of information available today to ordinary people, such as
videos and images, which can be easily tampered with to in order to produce deceitful
information. Moreover, printed materials are daily created to forge documents such as
currency, contractual clauses, and also are used to distribute child pornography photos.
Solutions proposed in the literature often explore different branches of research, such as
image manipulation detection, source attribution, steganalysis, pornography detection
among others, by investigating characteristic artifacts in these images called structural
inconsistencies. However, to investigate a given artifact for a given digital image forensic
application, normally a very different approach is created. In this thesis, we aim at
proposing new digital image forensic algorithms focused on different applications, but
based on a core idea, called the multi-analysis. This new approach to create digital image
forensic algorithms takes into account the analysis of several scenarios for the input image,
such as the analysis of multi-directionality, multiple perturbations, multiple-resolutions,
among others. These investigative scenarios can be applied in any step of the image
investigation, such as pre-processing, description and classification. We show through an
extensive series of experiments that the proposed solutions for laser printer attribution,
image filtering detection and copy-move detection are efficient when compared with their
literature counterparts and the approach proposed in this thesis can be the root of several
other digital image forensic algorithms in the future.
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Chapter 1

Introduction

The modern press creation and technological revolution of the last century multiplied the

volume of information produced by media companies. Additionally, the cheap access of

ordinary people to document generator devices such as cameras, scanners and printers,

coupled with fast Internet connections, are now making it very easy for anybody to upload

digital documents, such as images and videos, to social networks present in the World

Wide Web. To understand the dimension of this fact, the video social network Youtube

stores 300 hours of video every minute [6], Instagram had 20 billion images uploaded until

2014 [7] and Facebook users send 136,000 photos every minute [8]. Therefore, the term

Information Age of these present days cannot be more appropriate.

However, the high availability of such data has been raising several questions about

misconduct in news companies, science and also in ordinary people’s communications.

Image editing software such as GIMP and Photoshop easily allow users to tamper with

images, changing their semantics and creating false impressions about the facts depicted.

For example, this can be made to defame politicians, change a scientific experiment result

and fool insurance companies.

To show how tampered images can deceive people, an experiment was performed by

Sacchi et al. [9]. They showed pictures of two public gatherings in China and Italy edited

to make the scenes more dramatic and asked a group of volunteers about the facts depicted

in the images. The authors of the study report that most of the volunteers affirmed that

those events were bigger and more violent than they really were. This behavior is now

yielding policies about information in images, which are supposed to be worth a thousand

words. As an example, in France, there are efforts to force advertisements to warn people

if manipulated images are used [10].

Manipulated documents are also commonly found in science, a field in which integrity

should be the paramount. In 2004, the South Korean researcher Hwang Woo Suk published

an article in the renowned scientific journal Science, which included a series of composed

images depicting stem cell colonies [11]. In 2007, the researcher R. Michael from University

of Missouri and his colleagues removed their article from the same journal, after image

tampering was revealed [12]. According to the Office of Research Integrity, an agency that

monitors scientific publications in the United States, in 1996, there were 6% of scientific

publications that involved suspected image tampering; in 2005, this percentage increased

to 44% [13].
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Not only tampered with, but also pristine documents are of ethical interest in the

information age. The users apparent anonymity in the world wide web allows for the

upload of millions of images depicting child pornography, illegal drugs and animal abuse.

According to the British institute Internet Watch Foundation, in 2014, the impressive

number of 31,443 reports of child pornography websites were confirmed, an 136% increase

if compared to the same period of 2013 [14]. Moreover, statistics show that pirated books

led to a loss of 500 million dollars in royalties for book authors [15]. Finally, it is also worth

mentioning that document generators such as printers can be used to print documents for

criminal purposes, such as child pornography photos, fake documents, currency, passports,

drug traffic accounting, additional contractual clauses not present originally, and life

threatening letters. Hence, it is paramount for law enforcement and civilian agencies to

have tools to detect misconducts such as tampered and child pornography photos and also

establish the ownership (source) of questioned documents.

The scientific community has made efforts to identify and recognize the author of

questioned documents. The research field called Digital Image Forensics aims at detecting

the authenticity and integrity of digital content, thereby restoring its trustworthiness.

Digital image forensics is an emerging research area, yet there are still several aspects to

improve upon, as the creativity of forgers, image editors performance and the development

of counter-forensics are limitless.

Digital Image Forensics is usually performed using active [16, 17, 18] or passive methods

[19, 20, 21]. Active methods read the hidden information present in the document to

indicate its owner and/or authenticity, embedded in its creation step. This information is

extracted and compared with the reference data about its authenticity and can be used

to verify whether the image was tampered or not in forensic authentications, although it

cannot show the exact type of tampering the document has undergone. The problem with

this approach is the fact that image editing software and document generator manufacturers

are still reluctant to create a standard for image authentication in documents, as their

clients want privacy when dealing with images and generating documents. In addition, it

is obvious that criminals will not use any kind of digital markings when creating any kind

of document.

In passive methods it is assumed that no embedded information was inserted in the

digital image and its own structure is used in the analysis. These methods are regarded as

the right direction to follow in digital image forensics investigations, as they are more in

line with what we deal with in the real world. Based on which kind of tampering operation

was applied to the image, passive digital image forensics methods are focused on two

scenarios. The first one is related to source attribution [22, 23] in which a document, digital

or digitalized, tampered or not, has its source (type and model) revealed. Specific features

of the image acquisition devices present in the image can be used, such as noise, texture

and geometric distortions. The second scenario largely used in digital image forensics is

image tampering detection [24, 25], which aims at detecting inconsistency in the digital

image creation, pointing whether the image is tampered or not. Figure 1.1 shows the

subdivision of digital image forensics.

According to Figure 1.1, tampering detection focuses on detecting operations involving,

but not limited to, four kinds of image manipulation: retouching, splicing, copy-move and
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problems in Digital Image Forensics with potential of good results. The proposed approach

can be used in all digital image processing steps, such as pre-processing, description and

classification and involves the analysis of results of several operations (scenarios) applied

upon a questioned image, such as:

1. Multiple Perturbations: a suspected artifact is artificially inserted progressively

in the image and the impact of such operation is methodically measured.

2. Multiple Scales: image pyramidal transformations in the image or multi-scale

descriptors are used in the investigation to emphasize different aspects of a suspect

image.

3. Multiple Directions: data are not considered in isolation but in terms of a

given neighborhood. The relationship present in a given neighborhood (e.g., pixels

neighborhood) can pinpoint additional unseen telltale signs.

4. Multiple Representations: several transformations of the same input are analyzed

individually in parallel to search for specific artifacts.

5. Multiple Data: Different regions of interest are extracted from the raw data and

are considered in the analysis.

The multi-analysis scenarios take into account the random behavior of structures from

digital images of forensic interest and are important for designing more robust techniques

in Digital Image Forensics. The multiple perturbation is useful to investigate if a tampering

(structural inconsistency) artifact is present or not in the image; multiple resolution by

pyramidal decomposition of images is useful to have approaches resilient to noise and

resizing issues, as the decomposition removes the noise by using Gaussian filtering and

generate samples with multiple sizes; multiple resolution by multi-scale descriptors is done

to generate descriptors that take into account multiple filters in the image tampering

procedure; Multi-directionality analysis is important to avoid misclassifications and false

hits by classifying artifacts taking into account the neighborhood behavior; Multiple repre-

sentations pre-process images in a way to better highlight the artifacts, investigating them

in parallel and taking into account the complementarity of each individual investigation

by aggregating them at the end. Finally, multiple data representations, also known as

data augmentation, can provide additional clues in a given task, such as unseen patterns

still not present in the analysis, and also contribute with new training examples for a

classification problem in need of additional training samples. These scenarios proposed for

Multi-Analysis can be used together or in isolation for the authenticity investigation or

source attribution of a questioned document.

The scenarios proposed in Multi-Analysis can also be applied to any traditional digital

image processing step. For example, multiple perturbation pre-processes the image by

disturbing it so it can be used as input for any given statistic calculation for artifact

searching. Moreover, Multiple Directions can be considered for the description of a given

artifact and also for a classification of a given pixel and so on. By suggesting the use of these

operations that can be used in any image processing step and in different applications, we

aim at proposing in this thesis a new form of designing Digital Image Forensic algorithms.
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1.1 Hypothesis

Our hypothesis is that, due to the complexity of several digital image forensic problems,

the Multi-Analysis approaches can provide important clues in several applications, such as

tampering detection and source attribution that otherwise would be invisible or non-directly

accessible.

1.2 Objectives

The objectives of this thesis are:

1. To propose digital image forensic approaches for source attribution, in special for

laser printer attribution.

2. To propose digital image forensic approaches for image tampering detection, in

special for image retouching detection and copy-move detection.

1.3 Contributions

The main contributions of this thesis for the Digital Image Forensics field are:

1. A new approach, the multi-analysis, which is composed of several scenarios that can

be combined to generate several digital image forensic techniques, are applied in

three image forensic problems and have potential to be applied in others.

2. Four new digital image forensic approaches applied in laser printer attribution,

median filtering detection and copy-move detection.

3. New datasets of digital image retouching and laser printer attribution. The latter

is the first one in the literature that contains digitalized documents acquired by

different scanners.

1.4 Thesis Roadmap

The remaining of this thesis is organized as follows: In chapter 2, we discuss the literature

solutions for solving the problems we are aiming at with the multi-analysis proposed in

this thesis. In chapter 3, we propose several solutions for laser printer attribution using

handcrafted features based on multi-analysis techniques applied in the pre-processing

and descriptions steps of image classification using multi-directionality and multiple

resolution scenarios. In chapter 4, we propose the first deep learning solution, as far as

we know, for laser printer attribution by multi-analysis approaches in the pre-processing

step, using multiple representations of multiple data. In chapter 5, we propose a solution

for image retouching detection that takes advantage of multi-scale multiple progressive

perturbations done in the pre-processing step of image classification. In chapter 6, we

propose a classification procedure using our multi-analysis rationale in a novel way to fuse
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different copy-move detection algorithms, using multiple directionality and multi-scale

scenarios. Finally, chapter 7 concludes this work, discussing the main findings of this

thesis and their implications as well as pointing to our future investigative directions.
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Chapter 2

Related Work

In this thesis, we aim at using multi-analysis approaches to solve diverse problems in the

Digital Image Forensic Scenario, such as laser printer attribution, image filtering detection

and copy-move detection. In this chapter, we discuss these applications and show what

is proposed in the literature to deal with them. As one of the proposed methods in this

thesis involves fusion of classifiers, we also discuss some existing methods in the literature

for that in this chapter.

2.1 Laser Printer Attribution

Identifying the source of a printed document involves two strategies: the first, known as

finding the extrinsic signatures, is an active procedure and involves embedding a signature

on the printed page. This is done by modifying the document before it is sent to the printer

or by encoding identification information, such as the device’s serial number. The second

and most used way of identifying the source printer is finding a structural inconsistency

called the intrinsic signatures. This is a passive strategy which is used on a scanned version

of the document. It requires an understanding and modeling of the device mechanism to

find clues in the printing pattern that are present on the scanned image. Most techniques

applied to identification of laser printers take into account an artifact commonly caused

by the printer manufacturing process: the banding.

To understand the printer artifacts present in printed material and how it can be

detectable for laser printer attribution, the Laser Printer (LP) process must be known first.

We discuss this in section 2.1.1 and then in section 2.1.2 we discuss literature solutions for

identifying the source of a laser printed document.

2.1.1 How Laser Printers Work

Laser printers basically use the attraction of opposite electrical charges in the printing

process. The main component of the LP system is a revolving drum or cylinder. This

assembly is made of photo-conductive material, which is discharged by light photons of a

laser beam. As described by Chiang et al [55], Laser Printers works in six steps:

1. Charge: the revolving drum that rotates at a constant angular velocity is positively
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these devices. The banding [58, 59] is an artifact detectable on scanned printed images

that can be used to identify the source printer. It is defined as nonuniform light and dark

lines perpendicular to direction in which the paper moves through the printer.

Different printing devices have almost unique banding frequencies, depending on

model and brand. To recognize this property, several techniques proposed in the printer

attribution literature analyze the frequency domain of one dimensional signal of large

halftone regions of the document. Studying the Fourier transform of the printed material

can be useful to identify the frequencies at which printers work. But those features are

only detected at higher resolutions, where variations on distances of halftones can be

measured properly. In text documents, whereby only the black color is visible, the absence

of halftone areas makes it difficult to perform the Fourier analysis of a signal. In this

case, the banding can be seen as textures in specific characters and happens because of

toner variations in the development stage of the LPs process. This variation is caused by

electromechanical imperfections in LPs.

We discuss in the next subsection techniques in the literature which aims at identifying

the source printer of documents, using these intrinsic signatures or by extrinsic signatures,

which can be understood as visible or invisible watermarks on the printed paper.

2.1.2 Existing Solutions for Laser Printer Attribution

Although our focus here is on discussing Computer Vision approaches for investigating

intrinsic or extrinsic signatures for laser printer attribution, they are not the only way

to identify the laser printer source of a document. Investigation methods of questioned

documents also include physical, microscopical and chemical techniques [60]. Physical

marks due to traction mechanisms, traces of toner spread on the paper and electrostatic

drum defects create patterns, which can identify specific laser printer devices. On the

other hand, chemical components of toner, analyzed by chemical methods such as spec-

troscopy [61, 62] and x-ray [63] provide information about toner manufacturer and also

can be used for comparison with seized evidence materials. Microscopy can also show

some patterns on the toner fusion and letter borders.

Some of these methods are destructive, as they require the use of samples extracted

from documents on destructive experiments. Another aspect of those methods is that

they normally require special laboratory devices, equipment, and also experts to prepare,

manipulate and analyze the samples. This does not happen with the same extent with

Computer Vision-based techniques, which require only a scanned version of the document

and little supervision.

The Computer Vision-based approaches are focused on finding two kinds of signatures

in the printed paper, the first one, the extrinsic signatures, is already embedded on the

printed page and shows identification information, such as the device’s serial number.

Although it is not the focus of this thesis discussing the search of extrinsic artifacts,

examples of such approaches are present in the works of Gaubatz and Simske [64] and

Simske et al. [65] on recognizing security deterrents.

The second signature to be found in laser printer attribution are the intrinsic signatures,

which can be searched in a scanned version of the document. Several computer vision
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techniques focused on finding these signatures use similar approaches. Some of them are

halftone-based [48, 49] and are applied only in color documents, which often contain images.

Other techniques are texture-based and are applied on text documents [66, 67, 68, 53, 69, 70],

in which halftones are not present. There are other techniques which aim at identifying

the printer noise [50, 71, 72], among others. Most of approaches can be divided in laser

printer attribution of color documents (containing images) and text-only-documents. We

discuss both of them in the following subsections. Although this section gives a guided

tour on solutions available in the literature for forensic printer attribution, the reader may

also want to refer to [55, 58, 73, 74] to find other methodologies and review works.

Solutions for Color Documents

In the literature, the approaches focused on identifying the source printer of color docu-

ments (i.e., documents containing images) commonly involve the investigation of intrinsic

signatures in the noise, statistics of the transformed image, geometric distortions or in the

textures of halftones.

Ryu et al. [75] proposed the analysis of very high-resolution scanned images through

histograms of Hough Transform angles in CMYK color channels, generating a feature

vector of printing patterns for each document printed by a given printer. The detection

occurs by correlating this pattern with a reference created for each printer.

Lee et al. [50, 71] also used the CMYK color space to detect the source of the printer,

but in this case the noise was analyzed and the band K was discarded. The Wiener filter

was applied over the CMY image and the subtraction between the image and the filtered

image yields the noise. Then, five gray-level co-occurence matrix statistics [2] calculations

are performed over this noisy image and are used as feature vectors used to feed a machine

learning classifier. The analysis of specific color channels was also performed by Choi et

al. [76] with Wavelet Transforms on RGB and CMYK color channels and Tsai et al. [77],

with Wavelet Transforms and feature selection on RGB images.

Elkasrawi and Shafait [72] also used the noise pattern to identify the printer even

with common-resolution scans (400dpi), but their feature vector is based on the work of

Khanna et al. [78], in which statistics in the row and column directions of the image are

calculated. The filtering of the area is also done differently, with the aid of the Otsu’s

threshold [79].

Wu et al. [49] used geometric distortions to identify the laser printer source of

documents. They first model a projective transformation using the center of characters

and the whole scanned image in TIFF version. Then, by solving this model with least

squares and singular value decomposition outliers removal, pieces of the model parameters

are used as geometric signatures used to feed a machine learning classifier. Bulan et al. [48]

also used geometric distortions, but in a different manner. Firstly, geometric signatures

are extracted by estimating where the dots in halftone are in training scanned documents

of a given set of printers. Then, by correlation, the halftone points in a test document are

linked to their source.

Kim and Lee [80] use the halftone patterns for laser printer identification, acquiring

images by photography, instead of scanning. First, the image is preprocessed to eliminate
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illumination variability, using for that each channel in the CMY domain. Then, a set of

15 halftone texture features are extracted in the discrete Fourier transform (DFT) and

are used to feed a Machine learning classifier. This work was extended in [81] using the

Curvelet Transform and correlation-based attribution. Finally, Wu et al. [82] create printer

models, composed of distance and angles of halftone dots. Euclidean distances allied with

K-means clustering help in the final printer identification.

Literature Solutions for Text Documents

For text documents, most of the approaches for printer attribution uses the texture and

noise in the printed letters to find the extrinsic signatures of the banding, common to

different printers.

Ali et al. [66] used the one dimension pixel values of letters “i” as features after it suffers

dimensionality reduction by Principal Component Analysis. Then a Gaussian mixture

model machine learning classifier is used for the source attribution.

Mikkilineni et al. [53] proposed the use of texture descriptors based on statistics of gray

level co-occurrence matrices to identify the source of text documents. A set of letters “e”,

which is the most used letter in English texts [83], is chosen to be the data extracted from

the documents for classification. Then, 22 statistics of gray-level co-occurrence matrices

are extracted and used as input to a previously trained 5-nearest neighbors classifier, with

the majority voting of the classified letters of a document defining the final source of the

document. In future papers of the same authors a Support Vector Machines classifier was

used [69] and in another future work [70], clustering and Euclidean distance were used to

identify unknown sources of documents. Jiang et al. [84] proposed the extraction of feature

vectors based on Benford’s law. The features extracted were the first digit probability

distribution of Discrete Cosine Transform coefficients from multi-size blocks.

Kee and Farid [85] proposed to use reference characters and reconstruction error to

identify the source of text documents. Firstly, with a reference “e” character of each

printer, the search of similar ones from the same printer are done in a training step by

template matching. These letters are then used to build the printer profile, useful for

printer attribution later on. This profile is firstly built by preprocessing the letters with

histogram normalization and registration with the reference letter of the printer. Then

the mean character is calculated and the top p eigenvectors from Principal Component

Analysis [86] are calculated on the aligned characters, yielding the printer profile. Given a

test document, its letters “e” are extracted and each available printer’s profile is used to

calculate a reconstruction error. The smallest mean error identifies the source.

Schreyer [87] used statistical features in the noise image, in the discrete cosine trans-

formed image and in the multi-resolution wavelet transformed image, using them as

feature vectors of machine learning classifiers. Mazzela and Marquis [88] studied text and

dot-quality objective measurements to differentiate printed outputs.

Finally, other authors have focused on analyzing the attribution problem for other

languages. Tsai et al. [89, 67] combined features from statistics of gray level co-occurrence

matrices and sub-bands of wavelet transform for laser printer source of Chinese printed

documents. As with English language, a specific symbol of Chinese language is chosen for
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classification. Tsai et al. [90] extended upon this method by using important statistical

features from Gray Level Co-occurrence Matrix, Discrete Wavelet Transform (DWT),

Spatial filter, Wiener filter and Gabor filter to identify the source of Japanese printed

documents.

Most of the literature methods presented thus far are limited in several ways. First,

they are application-focused. In other words, they are applied on documents with text

or documents with images. The second limitation is that they are applied only on text

databases with the same font style and size. These particularities are not always useful

when real-world documents, such as contractual clauses, are investigated. These documents

usually have letters with different sizes, configurations (italic, bold, etc.), styles and also

can contain figures. Another limitation of most of these techniques is the lack of a public

benchmark for comparison. In this thesis we show how to properly deal with these problems

using our multi-analysis solutions. This will be discussed in Chapters 3 and 4.

2.2 Image Filtering Detection

The smoothing is a common operation made by image forgers to eliminate some visual

artifacts in the tampered image. It can be used to make people younger than they really

are, for example, and also to eliminate some tampering artifacts detectable to other digital

image forensic approaches. In this thesis, we focus on multi-analysis solutions for median

filtering detection. In subsection 2.2.1, we discuss how the median filtering is useful for

image tampering and the structural inconsistency it generates in the tampered image.

Finally, in subsection 2.2.2, we report some works in the literature aimed at detecting this

filtering operation.

2.2.1 Median Filtering and Streaking Artifacts

The median filtering is a basic low-pass filter aimed at removing some undesirable high-

frequency artifacts, such as noise. Extracting the noise from images is useful for image

processing applications that are focused on detecting edges, for example. One particular

problem with most of the low-pass filters is the fact that they remove most of high-frequency

artifacts, including the edges, which is undesirable for some applications. However, the

median filter was proven to be the best to this task [91] because, for some levels of Gaussian

noise, the median filter is better than other kinds of filters (such as the Gaussian filter)

at removing noise and preserving edges at the same time for a given fixed window size.

The median filter is a non-linear filter and does not rely on a convolution in the filtering

process (a given window just slides and changes pixel values) [92].

The operation of median filtering in digital images is done by sliding an M mask with

size n × n over the two-dimensional input signal I. This mask defines the size of the

neighborhood around each pixel of the image used to perform the filtering. Then, for

each image pixel, its value and the ones from the neighborhood (defined by the mask) are

sorted. If n is odd, the median value of pixels in the mask is used to change the pixel value

located in the center of the mask. If n is even, the median can be the mean of the two

center values. For multi-channel images (such as RGB images), each channel is filtered



CHAPTER 2. RELATED WORK 32

separately. Problems of lack of values in the boundaries can be solved by padding the

image with zeros, using values from the opposite horizontal or vertical or simply avoiding

the boundaries in the filtering process.

Because of its inherent property of removing noise while preserving edges, the median

filtering can be used to tamper with images in several ways. For example, it can be used

for image smoothing [93]. The low pass characteristic of the median filtering removes

noise and some other undesirable high-frequency imperfections in faces such as nonuniform

light distribution, scratches, blackheads and pimples etc., giving the visual impression of

smooth faces.

Another use of image median filtering is hiding traces of image tampering investigated

by forensic techniques, working as an anti-forensic approach. This technique can be used

to fool forensic techniques such as the one from Johnson and Farid [94] and its extension

by Saboia et al. [95]. These techniques detect image manipulation by means of the eye

specular highlights in images containing people. In a composite image with two or more

people that came from different photos, these techniques identify the forgery by estimating,

for each eye in the image, the direction of the light source, viewer (camera) and the normal

surface based on specular highlights present on the eye. Inconsistencies of light directions

are detected by these techniques. One way to fool this technique is blurring one eye with

median filtering and replacing all eyes in the image with the tampered eye.

The median filtering is also used in others anti-forensic techniques such as the one

proposed by Stamm et al [39]. This approach can remove blocking artifacts from a

previously JPEG-compressed image. The authors found that, by lightly smoothing the

image followed by adding low-power white Gaussian noise, it is possible to remove statistical

traces of JPEG blocking artifacts. The smoothing is performed by median filtering.

Finally, the median filtering can also be used to hide traces of re-sampling in images

detected by the forensic approach proposed by Popescu and Farid [96]. They proposed

an Expectation Maximization technique which detects, in an interpolated signal, periodic

samples and relations between them. As re-sampling operations use interpolation to

reduce or increase the image dimensions, the proposed technique finds the re-sampling

by analyzing the unique Fourier signal magnitude of a probability map, generated by

Expectation-Maximization steps. Median filter can play an interesting role here, as noted

by Kirchner and Bohme [97]: as the proposed technique assumes a linear interpolation of

pixels, a non-linear filter (such as the median filter) can destroy these re-sampling artifacts,

making the Fourier signal magnitude of the median blurred image the same as the one

from a non-blurred image.

A previous study of the median filtering effects gives interesting artifacts for forensic

examiners who tries to identify it in digital images. Bovik [98] observed that the median

filtering artifacts are identified as equal or nearly equal neighboring pixels, which create

a visual impression with no correlation. Bovik called this effect streaking artifacts. As

the image changes smoothly pixel-wise, when the n× n filter changes a value and goes to

the horizontal/vertical neighbor pixel, only n new pixel values are considered in the filter

mask and are used in the neighboring area of the next pixel. Hence, the probability of the

previously changed pixel being the median value of the neighboring area of its neighbor

pixel is high. This yields horizontal and vertical streaks in the image, and this effect is
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referred to streaking artifacts.

Given the high use of median filtering operations for image tampering and to anti-

forensic applications, several filtering detection techniques were proposed in the literature.

We shall discuss each of them in the next subsection.

2.2.2 Existing Solutions for Median Filtering Detection

Kirchner and Fridrich [99] proposed the first method targeting the identification of median

filtering in digital images. For uncompressed images such as PNG and TIFF images, they

proposed a method based on a histogram of differences between an image and its version

translated one pixel. In median filtered images, the streaking artifacts refer to pixels with

the same value. The ratio of bin related to zero value and the adjacent bins are higher in

median filtered images than this same ratio in pristine (non-filtered) images. To detect

the median filtering, the authors proposed the use of an ad-hoc threshold. For compressed

images, such as JPEG, the authors proposed the classification, by a machine learning

classifier, of feature vectors based on Subtractive Pixel Adjacency Matrix (SPAM). The

problem with the proposed approaches is the fact that SPAM is vulnerable when JPEG

compression is applied to images before compression. Also, cross-dataset experiments were

not considered.

Cao et al [100] investigated the streaking artifacts in uncompressed images by analyzing

pixel neighborhoods. The proposed method firstly computes pixel differences with neighbors

in the top and in the right, resulting two matrices of differences. These matrices are

then binarized and create the binarized neighboring differences row-wise and another

with neighboring differences column-wise. As the pixels in median filtered images have

similar values in a given neighborhood (due to the streaking artifacts), the variance in a

squared region around each pixel is low. A map of pixel variances in a neighborhood is

then built and also binarized. These three matrices are used to calculate features that,

when summarized, yields a measure that is used to identify the median filtered images.

The drawback of this approach is the fact that it has difficulties to discriminate between

median filtering and other kinds of smoothing operators. Also, cross-dataset experiments

were not considered.

Yuan [101] noticed dependencies in overlapped neighboring blocks of pixels in median

filtered images. The author states that these dependencies identify the median filtering

and proposed a set of five metrics to be calculated per pixel in each s× s non-overlapped

blocks, yielding s× s five dimensional vectors per block, one five dimensional vector per

pixel in this block. The mean of the five metrics per corresponding pixel is calculated in

all blocks, yielding s× s five final dimensional vectors. These vectors can be combined as

a feature vector to train a machine learning classifier to identify the median filtering. The

limitation of this approach happens when looking for local median filtering on images with

low quality factors JPEG compression. Cross dataset experiments were not considered..

Chen and Ni [102] noticed that, compared with images not blurred by median filter-

ing, the median filtered images exhibit characteristic traces around edges (neighborhood

correlation, noise suppression and good edge preservation). These fingerprints are char-

acterized through an Edge Based Prediction Matrix (EBPM) containing the estimated



CHAPTER 2. RELATED WORK 34

prediction coefficients of neighborhood among different edge regions in images. Firstly, the

image is divided in B × B overlapped blocks. For each block, the horizontal and vertical

gradient features are calculated and the blocks are classified according to these gradient

values. Then EBPMs are calculated on the three kinds of blocks separately, yielding

3× (B2 − 1) prediction coefficients that are concatenated to yield a feature vector used in

a machine learning classifier. The results reported are promising but were done only in

one uncompressed dataset. Cross dataset experiments were not considered.

Chen et al. [103, 104] stated that median filtered images inevitably exhibit distinctive

statistical artifacts in the difference domain. They explored the cumulative distribution

function of the first and second order pixels differences of non-filtered, median filtered

and linear filtered images as fingerprints to construct the global probability feature set

(GPF). They also used the local correlations between different adjacent image difference

pairs to construct the local correlation feature set (LCF) and proposed an approach, which

yields 56 features used by an SVM classifier (44 based on GPF and 12 based on LCF).

Limitations of this approach happen on images with decreasing JPEG quality factor and

cross-dataset experiments were not considered.

Kang et al. [105, 106] used a novel approach to identify the median filtering based on

the difference between a disturbed (median filtered) image and the input image, instead of

just analyzing the input image. This artifact is investigated because the authors want to

remove the interference from the image content, such as edge and texture. The median

filter used to disturb the image uses a 3 × 3 mask and this image is called the Median

Filtered Residual (MFR). This image is used as input to an autoregressive model in row

and column-wise, yielding 10 coefficients used to feed an SVM classifier. The authors

report good results but cross-dataset experiments were not considered.

Zhang et al [107] proposed a novel local texture descriptor to detect median filtered

images: the second-order local ternary pattern (LTP). The nth order LTP operator is a set

of matrices (one per direction) which encode the n-order pixel differences using a 3-valued

code (-1,0 and 1). They extract a feature vector based on the LTP matrices in the following

steps: firstly, the LTPs are calculated for each pixel in four neighboring directions by coding

the difference between eight pairs of central and neighbor pixels in a 3× 3 area and their

neighbors in that direction. Each pixel has four matrices with eight binary values, coding

its neighborhood in a 3×3 area. The LTP is then divided in two LTP matrices, considering

the positive and negative pixel difference halves. The binary values in each direction are

converted to decimal and histograms per positive/negative matrices are then concatenated

to form the final feature vector with 2,048 dimensions (256 bins and 4 directions for

positive values, 256 bins and 4 directions for negative values are 1, 024 + 1, 024 = 2, 048

dimensions). The results are promising but the proposed approach was compared only

against two approaches from the literature. Also, cross-dataset experiments were not

considered.

Other limitation of most of the proposed approaches for this task is the fact that they

don’t know a priori the size of window used to propagate the streaking in the filtered image.

In this thesis we show how to properly deal with these problems using our multi-analysis

solutions. This will be discussed in chapter 5.
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extended later in [116], with a better block matching procedure. However, resizing was

not treated by this method. Bravo-Solorio and Nandi [117] took the correlation coefficient

of the Fourier Transform to find similar blocks of pixels in log-polar form. A filtering

approach was used later to discard blocks which the entropy is lower than a threshold.

The experiments showed robustness to deal with flipping and simple copy-move operations,

but there are problems when dealing with resizing and rotation.

Bashar [118] used the block representation by Discrete Wavelet Transform or by Kernel

Principal Component Analysis. Features extracted from blocks are organized into a matrix

and the lexicographical sorting and thresholds are used to detect possibly tampered regions.

This approach cannot handle geometric operations (e.g., resizing and shearing), as reported

by the authors. Bayram [119] proposed to employ Fourier-Mellin Transform (FMT) to

describe the blocks and Counting Bloom Filters to sort them. The method was able to

identify clonings under JPEG compression with great quality factors, resizing and rotation

only in limited conditions.

Wang [120] proposed the use of circular sliding windows with Gaussian Pyramid

Decomposition [121] to describe image blocks. The method showed good results for rotation,

blurring, JPEG compression and horizontal flipping transformations, but was intolerant to

resizing operations. Later, Wang [122] applied the same Gaussian Pyramid Decomposition

and proposed to calculate the Hu moments for the block of pixels. Experiment results

showed robustness to Gaussian noise, JPEG compression and blurrings. However, other

operations were not detected by the proposed method, such as a 90◦ rotation, and

a horizontal flipping case. Lin [123] used a 9-dimensional feature vector containing

information in some specific regions of the block to represent them. Also, the author used

the Radix-Sort algorithm, which offers a linear time sorting. The experiments showed

robustness to JPEG compression and Gaussian noise only.

Ardizzone and Mazzola [124] used spatial domain approach called Bit-Plane Analysis

to detect copy-move forgeries. This method is based on the decomposition of bit-plane

slices and the encoding of the bit blocks with respective ASCII values. This process

produces high accuracy in reasonable time, however it was not robust to post-processing

operations. Barnes [125] developed a randomized approach to detect similar blocks of

pixels in an image, based on the PatchMatch Algorithm [126]. The authors showed only a

couple of simple experiments in their paper.

2.3.2 Keypoint-Based Copy Move Detection

The advantage of using keypoints to detect copy-move is its reasonable invariance to

geometric transformations such as rotations and resizing and also to noise and lighting

adjustments. Basically this set of approaches work by firstly detecting keypoints in the

image, and then finding similarities on the representing vectors of these keypoints. Figure

2.4 shows an example of this branch of copy-move detection techniques.

With that in mind, Huang [127] proposed an approach based on similarity search of

Scale-Invariant Features Transform (SIFT) keypoints descriptors. This method does not

work well for finding small duplicated regions. Pan and Lyu [128, 129] also employed these

descriptors in an almost similar manner and the experiments results show effectiveness
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separately and are considered as good cloning candidates. These correspondent regions

are delimited by the spatial distribution of their keypoints and rectangular windows are

used to bound them. Then the image suffers the Gaussian Pyramidal Decomposition and

the sets of source and destination areas are analyzed individually in each scale. To do

this, a circular sliding window such as the one used by Wang [120] is applied only on

correspondent regions found previously, then a binary detection map is generated per scale.

Finally, a voting Scheme is used on the multiscale binary maps to generate a final output

image. This approach was validated on two complex datasets, but the results were only

promising when uncompressed images are used.

2.4 Fusion of Classifiers

With all the pros and cons of each method discussed previously, one could wonder

how to combine some of them in order to obtain a more resilient forgery detector or

printer attribution algorithm. Using the example of copy-move detection, patch-based

approaches are good at detecting slight illumination changes, but are unable to detect

image transformations such as rotation and resizing of copied portions of an image.

The keypoint-based approaches, on the other hand, are good at detecting some scaling

and orientation changes and are partially invariant to illumination changes and affine

transformations, while having problems with both small tampered and homogeneous

regions. In this vein, the ideal strategy would be exploring the best of both worlds. In

the remaining of this section, we discuss some common fusion approaches proposed in the

literature for performing fusion of classifiers.

2.4.1 Majority Voting

This scheme considers only the most likely class provided by each classifier and chooses

the most frequent class label within the output set. A variant of majority voting is the

weighted majority voting, which multiplies each vote by a weight before the actual voting.

2.4.2 Threshold voting

This voting technique considers a threshold to decide whether the example belongs to

the positive class, according to the sum of positive outputs of the combined classifiers.

For example, while majority voting considers three out of five votes for deciding upon an

outcome of a 2-class problem, threshold voting may arbitrarily choose two as the minimum

necessary number of votes for a given class of interest.

2.4.3 Bayesian fusion

Another form of combining different classifiers was proposed by Xu et al.. [133] and aims

at combining K multi-class classifiers with a Bayesian approach, assuming each classifier

is independent of the other ones. Firstly, for each k binary pixel-based forgery detectors, a



CHAPTER 2. RELATED WORK 40

confusion matrix is constructed

Mk =

(

F
(k)
00 F

(k)
01

F
(k)
10 F

(k)
11

)

, (2.1)

where Fij is the number of pixels where the detector k misclassified a pixel belonging to

class i as belonging to class j. The diagonal contains the correctly classified cases. These

confusion matrices are used to calculate the conditional probability that a pixel x belongs

to class i, provided that there is an observation on the output of the forgery detector k,

predicting that it belongs to class j in Equation 2.2.

P (x ∈ ci|ǫk(x) = j) =
M

(k)
ij

∑1
i=0 M

(k)
ij

, i ∈ {0, 1}. (2.2)

Finally, we approximate the probability that a pixel is actually a forgery given K

observations on the classifiers we are combining:

P (x ∈ c1) =

∏K

k=1 P (x ∈ c1|ǫk(x) = jk)
∑1

i=0

∏K

k=1 P (x ∈ ci|ǫk(x) = jk)
. (2.3)

The probability of a pixel belonging to the forgery class is calculated by Equation 2.3,

using both the conditional probability derived from the confusion matrices in Equation

2.2 and the K-dimensional vector of observations of the detectors outputs for this pixel.

2.4.4 Behavior Knowledge Space

An issue with the Bayesian combination is that it assumes that the decisions of the

classifiers are independent. Behavior-Knowledege Space (BKS) [134] was developed to

avoid this assumption and derives the information from a knowledge space, which records

the decision of all classifiers on each learned sample.

The BKS method is a trainable combination scheme that seeks to estimate the a

posteriori probabilities by computing the frequency of each class for every possible set

of classifier decisions, based on a given training set. BKS builds a lookup table that

matches the final classification result with each combination of classifier outputs. For each

combination of outputs in the lookup table, it associates the most often class label to it,

giving a specific classifier decision D1, ..., DK from K individual classifiers. The posterior

probability P (ci|D1, ..., DK) of class ci is computed as follows:

P (ci|D1, ..., DK) =
N(ci, D1, ..., DK)

∑|C|
i=1 N(ci, D1, ..., DK)

, (2.4)

where |C| is the number os classes and N(ci, D1, ..., DK) counts the frequency of class

ci for the classifier combination output {D1, ..., DK}. If K is the number of combined

classifiers, then BKS requires estimates of |C|K a posteriori probabilities.

In order to perform the combination of classifiers using the BKS method, we need to

build a lookup table based on observations on the training dataset. We should be aware
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that the amount of possible entries for a set of K binary detectors is 2K , making it difficult

that all possible cases are covered when K is large. This poses a serious problem, given

that the set of points in the testing environment can include some of those that lack of an

entry in the Behaviour Knowledge Space. Also, to classify the pixel, the neighborhood

behavior in BKS fusion is not taken into account. Our multi-analysis solutions to apply

BKS classifiers fusion aimed at copy-move forgery detection are discussed in chapter 6.



Part II

Multi-Analysis Solutions for

Source Attribution
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Chapter 3

Handcrafted Solutions for Printer

Source Attribution

In this chapter, we deal with the source attribution of printed documents by proposing a

family of handcrafted multi-analysis approaches. These approaches use multi-directional

and multiscale procedures and act in the pre-processing and description steps of the

input data. These techniques were created by feature engineering after a microscopic

investigation of the structural inconsistency called banding present in printed materials.

3.1 Motivation

The massive use of printers is now giving rise to questions about authenticity of printed

documents. Today, unknown contractual terms can be added easily and a forged cor-

respondence can be linked to an innocent. Also, documents related to crimes such as

child pornography photos, fake travel tickets, terrorist plots, fake money, pirated copies of

books and illegal drug selling accounting are constantly printed everywhere. Identifying

the source printer of these documents is an important clue to pinpoint their owner.

In this chapter, we propose three solutions based on multi-analysis aimed at the

identification of the source printer of a document that explore these intrinsic signatures.

The proposed solutions do not need very high resolution digital versions of documents

and take into account that this problem requires multidirectional and multiscale analysis,

because of different printing patterns yielded by different manufacturing processes. The

proposed solutions described in this chapter are:

1. Two descriptors based on multidirectional and multiscale properties of texture micro

patterns. These descriptors are applied in text letters or regions of interest. These

descriptors are focused on the inner part of printed letters.

2. Another descriptor, here described as the Convolution Texture Gradient Filter

(CTGF). The CTGF is built as a histogram of low-level gradient filtered textures.

We use filters of one or more scales, which are focused on filtering inner and outer

parts of printed letters and figures.

43
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3. The application of descriptors on segments of a document, called frames. With this

approach, we can identify the printing source of a document even if parts of it are

unavailable or with problems. If the whole document is available, we can use this

approach allied with fusion strategies, which provides even more reliable results.

We perform experiments in a well documented printed document benchmark, which is

a very difficult one containing different letter sizes, styles and figures. The dataset was

created within the scope of this work and is freely available though FigShare1 along with

the source code of the proposed methods available on GitHub2. Finally, we show that the

presented techniques are very competitive and have important properties when compared

to others in the literature.

We organize the remaining of this chapter in four sections. Section 3.2 discusses our

approaches for laser printer attribution; Section 3.3 shows the setup we use in this chapter

for validating the proposed methods and the existing counterparts in the literature, while

Section 3.4 shows the performed experiments and results. Finally, Section 3.5 concludes

this chapter with our final considerations and proposals for future work.

3.2 Proposed Approaches for Laser Printer Attribution

The techniques proposed in this chapter were originated by a series of microscope analyses

of printed documents. We investigated pictures (of same position on original document)

of three letters from three documents, printed by different printers (they can be seen

in Figure 3.1). Although borders are more irregular and show more differences between

printed characters, even on characters of the same printer, it is noticeable that inside the

letters there are micro textures with different sizes and directions.

This investigation enforces our hypothesis that multidirectional and multiscale texture

analyses are useful to identify the source printer. In documents with different font

configurations, sizes, styles, and figures, the printing patterns are spread over different

directions. Hence, the contributions of this chapter for laser printer attribution are:

1. The analysis of multidirectional texture patterns captured through Gray-level Co-

occurrence matrices, which is a set of statistics calculated over eight gray-level

Co-occurrence matrices, each one representing one texture direction

2. The multidirectional and multiscale approach, applied again over gray-level co-

occurrence matrices. These two first approaches are applied inside the printing

material (e.g., letters), which is the area where the micro texture pattern is spread.

3. The Convolution Texture Gradient Filter (CTGF). This descriptor is created as

histograms of filtered printing patterns over low-gradient areas. These areas are

located commonly inside the printing material and close to the borders. We also

extend this proposed approach to take advantage of multiscale filters, which increases

the printing pattern investigated area. We use these low-gradient areas because they

1http://dx.doi.org/10.6084/m9.figshare.1263501
2https://github.com/anselmoferreira/printer_forensics_source_code
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Negative As a pre-processing step, the image pixels in S are inverted. Thus, values

close to zero will mean white pixels and 255, black pixels. This is made for convenience in

the algorithm operations and yields a negative image N .

Crop borders In order to eliminate scanning noise at the image borders generated by

external light, folding, among others, the negative image N is cropped, eliminating 6%

of pixels in each border. This percentage in a letter paper document (216 × 279 mm),

for example, corresponds to 12.96 mm × 16.74 mm margins, which covers areas with no

printed information in typical documents. The negative cropped image is now denoted as

matrix R. We still consider the dimensions of matrix R as r × c for convenience.

Micro Texture Patterns Matrix Textures with n× n neighbor pixels contained in

R are then represented by two properties, which can be computed in parallel: their sum

and maximum gradient between the central pixel and its neighbors. Although those two

properties do not identify specific textures, they group textures of interest and allow

filtering printer signatures. The convolution of R with an n × n matrix full of ones O

results in the micro texture patterns matrix C

C = R ∗ O (3.1)

where ∗ is the discrete convolution operator and, for the case where n = 3

O =







1 . . . 1
...

. . .
...

1 . . . 1







3×3

(3.2)

Therefore,

C(i, j) =

{

0 if i = 1 or i = r or j = 1 or j = c,

R(i− 1 : i+ 1, j − 1 : j + 1) ∗ O, otherwise
(3.3)

where 0 ≤ C(i, j) ≤ 255× 32.

Gradient (R) In this step, we calculate the gradient of each pixel in R in a 3× 3 area

centered at the pixel to create the matrix of gradients G. The difference of two pixels x

and y is calculated as

dx,y = |x− y|. (3.4)

Given the matrix R calculated previously, the gradient matrix G is calculated as

G(i, j) =



















0 if i = 1 or i = r

or j = 1 or j = c

max
i−1≤p≤i+1
j−1≤q≤j+1

(dR(i,j),R(p,q)) otherwise
(3.5)

where 0 ≤ G(i, j) ≤ 255.
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Gradient filter With gradients (G) and pixel sums (C), we filter the textures with

gradients of interest. Two parameters (glow and ghigh) define the range of gradient range

of textures that identify discriminant features for printer signature. Such parameters are

selected from a training set of documents per suspected printer (which we will discuss

in section 6.3.4) for maximum results on the learning process. The matrix T of texture

codes (sums) is then created by filtering textures that are not in the defined range. Those

textures are the discriminant positions in the printed document. T is calculated according

to Equation 3.6.

T (i, j) =

{

C(i, j) if glow ≤ G(i, j) ≤ gmax

0 otherwise
. (3.6)

Histogram Counting the number of positions for each texture in T from one (zero

represents a position with no considered texture and is not used in the histogram) to

255× n2 generates the histogram vector with 255×n2 bins, as shown in Equation 3.7.

H = Histogram(T, 1 : 255× n2). (3.7)

MinMax the final feature vector V, which represents the histogram of low-level gradient

textures that a printer prints in the document is generated by applying a MinMax

normalization on the histogram H, scaling the components to the interval [0, 1], as

Equation 3.8 shows.

u = MinH(j)(H),

v = MaxH(j)(H),

V(j) =
H(j)− u

v − u
.

(3.8)

As the final feature vectors are histograms of sums of pixels, they have 255 × n2

dimensions, where n is the dimension of a squared sliding window used to calculate the

texture.

This new method is based on n × n neighboring textures working with two basic

properties: (1) sum of pixels; and (2) gradient filtering. The sum of pixels, obtained by

a convolution with an n × n kernel of ones, measures the grayscale tone related to the

visual impression of this region. The gradient is used to separate flat areas on text and

images from the borders, as edge pixels have larger gradient than the interior of letters and

background areas. Although those two properties cannot uniquely identify textures, they

group textures of interest when used together, and also allow filtering printer signatures.

Figure 3.6 depicts how texture values vary for the same text and picture printed on different

printers.

The multi-analysis procedure performed herein considers several directions (multidi-

rectionality) in the filtering (textures used in the histogram are created by filters that

consider all neighbors in the filtering procedure) and, if several filter sizes are used, there

are several scales (multi-scale) filters. The reason for that is that the multidirectional
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where the original document is not available to be scanned in very high resolution. This

can possibly affect these approaches performance. In addition, for the works we surveyed,

the used datasets are not readily available for download hardening comparisons using the

same setups.

The aforementioned issues do not happen in the proposed dataset. We printed all or

some of the 120 documents on ten LPs (showed on Table 3.1) in standard resolutions with

Chamex white letter paper on 75g/m2 granularity, yielding 1,184 TIFF images. These

images are printable versions of Wikipedia documents converted to pdf with one, two or

three pages and contain different letter sizes, fonts and figures. These documents were

later scanned by a reference scanner (Plustek SO PL2546) at 600 dpi resolution and

are separated by two factors: Language (English or Portuguese) and Figures (With or

Without).

# Printer ID Manufacturer Laser Printer Model Number of Printed Documents

1 B4070 Brother HL-4070CDW 120
2 C1150 Canon D1150 116
3 C3240 Canon MF3240 120
4 C4370 Canon MF4370DN 120
5 H1518 Hewlett Packard CP1518 120
6 H225A Hewlett Packard CP2025A 119
7 H225B Hewlett Packard CP2025B 110
8 LE260 Lexmark E260DN 119
9 OC330 OKI Data C330DN 120
10 SC315 Samsung CLP315 120

Total 1,184

Table 3.1: Printers and number of documents per printer used in the experiments.

3.3.2 Methodology

In this section, we discuss the background of the experimental methodology outlining the

used regions of interest considered in each document, the metrics used, and implementation

details about each method.

The techniques used in the experiments follow the pipeline presented in Figure 3.7.

Classifiers are trained with feature vectors yielded by different description techniques after

the documents are printed and scanned at 600 dpi. Given one scanned printed document

for testing, the classifier predicts its class. We have used the Support Vector Machines

Classifier [136] with linear kernel in this process.

We used the one against one implementation of Support Vector Machines for multiclass

problems. This approach works by building a set of c(c−1)
2

binary classifiers, where c is

the number of available classes. Each of these classifiers will use data from each unique

pair of classes. Then, at the end of the classification step, a voting strategy is performed.

Each result of each binary classifier is considered a vote and the class with the maximum

number of votes will be the classification of the given sample.
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To classify the source of a given investigated printed document using this approach,

the letters “e” are firstly extracted. Then, each letter is classified by a printer attribution

method (e.g., the ones discussed in this chapter), and a majority voting is applied in the

end. The occurrence of each labeled class is counted on these letters and the most voted

class will define the class of a document.

Frames A letter paper, scanned in grayscale at 600dpi without compression, produces

a very large file with approximately 31 MB of size, corresponding to about 5K by 6.6K

pixels, even after discarding 6% on each border of the document corresponding to blank

margins carrying external light scanning noise. After cropping, the remaining number

of pixels is still very large (about 4.4K by 5.8K pixels). There are also areas inside

the document that are completely blank (without printed ink). As those areas do not

contribute with information about the printer, it is useful to split the large document in

smaller samples, which maintain printer characteristics and can generate more feature

vectors for the training and testing learning process.

In previous works [85, 68, 53, 69], character samplings were proposed to capture texture

behavior on printed documents. Letters “e”, which is the most used letter in English

texts, are extracted in each document. A mask of a template letter “e” is used to scan,

compare and cut its copies from the document, capturing its pixels. The typical letter “e”

in documents are inside an area of 40× 50 pixels. This process is normally time consuming

and not very accurate.

In this chapter, we propose to use chunks of letters in regions of interest from a

document, which we call frames. Frames are rectangular areas inside the document that

have sufficient printed material to keep the characteristics of a printed document. The

process used to obtain frames from the cropped images with 4.4K by 5.8k pixels consists

of dividing them in five columns by six rows of frames, resulting in about 900 by 980 pixels

corresponding to 37 mm (1.5”) by 43 mm (1.6”).

In order to avoid frames that do not contain enough printed areas, we state that the

minimum accepted ratio between dark pixels (black and dark gray) and blank ones (blank

and light gray) should be 0.02. This process eliminates frames that are completely blank or

have only a few printed symbols on it. For reference, Figure 3.8 shows the same document

sampled by frame and character.

Document To consider the scenario with just one frame and to evaluate the methods

when not using any kind of voting scheme, we have also proposed an approach based on

the whole document. Although there are several ways of describing a document using only

one feature vector (e.g., each character GLCM can be accumulated to yield a single GLCM,

from which one single feature vector can be extracted), we decided to apply the texture

descriptors on the whole document, similar to some state-of-the-art techniques [87, 84, 72].

3.3.4 Metrics and Statistics

We adopt 5 × 2 cross validation protocol. Using this approach, five replications of the

two-fold cross-validation protocol are performed. In each one, a set X is randomly
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best value at 1 and worst score at 0

f(i) = 2 ·
Precision(i) ·Recall(i)

Precision(i) +Recall(i)
(3.12)

We perform a series of statistical tests to define if the results are statistically significant.

First, we confirm if all techniques are statistically different (also known as pre-test). If

they are, we check the techniques pairwise to define which ones are statistically different

when compared to other (also known as post-test). Each of these steps usually involves a

statistical test and a confidence level for the test. Here we consider a confidence level of

95% for each test. As pre-test, we consider the Friedmann test. This test is non-parametric

and is used to determine if subjects change significantly across occasions and conditions.

To compare the techniques pairwise (also known as multi-compare approach), we use the

Tukey-Kramer approach (also known as Honestly Significant Difference (HSD).

3.3.5 Baselines

We compare our proposed techniques against four state-of-the-art methods (presented

in section 2.1.2) and also against two well-known texture descriptors widely used in

content-based image retrieval applications.

The first state-of-the-art technique uses Gray-Level-Co-Occurrence Matrices (which we

call GLCM) applied to laser printer attribution, proposed by Mikkilineni et al. [68, 53]. This

technique describes the neighborhood behavior of pixels in a two-dimensional histogram

given an offset, yielding one GLCM in which 22 statistics are calculated. The original

GLCM of Mikkilineni et al. [68, 53] uses an offset of dr = 2 and dc = 0 (dr stands for the

offset in the rows while dc stands for the offset in the columns). In our implementation,

we used dr in the interval 1 ≤ dr ≤ 3 and we found the best as dr = 1. This is explainable

because the Regions of Interest in our database are smaller than the ones in [68, 53]

approach. Although this technique was originally proposed to operate on characters,

we also evaluate its performance on documents and frames directly. The 22 statistics

extracted from the GLCM are discussed individually on Appendix A and are also used in

our proposed GLCM variations.

The second considered method is based on statistics of Discrete Wavelet Transform

(which we call DWT_STATS) from color bands applied to laser printer attribution,

proposed by Choi et al. [76]. In this implementation, 39 statistical features are extracted

from the HH Discrete Wavelet Transform sub-band per image. This approach is also

applied document-, character-, and frame-wise.

The third method evaluated was the statistics of printer noise (which we call

NOISE_STATS) in the row and column direction by Elkasrawi and Shafait [72]. This

technique, based on a previous work of Khanna et al. [78] on scanners, works by first

filtering the printed area with Otsu’s threshold [79]. By binarizing the image with this

threshold, the authors compute the median gray-level for the foreground as well as the

median gray-level for the background pixels. Hence, a clean image is generated by only

having gray-level values of all foreground and background pixels set to the median fore-

ground and background calculated. The noise image is then obtained by subtracting the
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original image from the clean image. The mean of rows and columns of this noise reference

image is calculated, yielding two vectors: the correlation between each row of the noise

image and the average of all columns, as well as the correlation between each column and

the average of all rows. Finally, a set of 15 statistics are calculated over these vectors.

This approach is evaluated document-, character-, and frame-wise.

The last state-of-the-art method implemented was the technique proposed by Kee

and Farid [85] (which we call RECONST_ERROR). This technique has three steps:

pre-processing, printer profiling and source identification. In the pre-processing step, the

authors first choose a reference character (they chose the letter ‘e’). Then, same letters are

searched by template matching, preprocessed by histogram normalization and registered

with the reference letter. In the printer profiling step, the mean character c̄ per printer is

calculated and Principal Component Analysis (PCA) [86] is performed on these aligned

characters per printer. The printer profile are the PCA top p eigenvectors ei, i ∈ [1, p] and

the mean character. In the source identification step, a test document is given, its letters

‘e’ are extracted and preprocessed the same way. These letters are used with the top p

eigenvectors and mean character per printer to calculate a reconstruction error of each

printer. The smallest mean error will identify the source of a printed document. This is

the only method in the literature that does not use a known machine learning classifier.

Therefore, we consider, in the 5 × 2 cross validation, the printer profiling phase as the

training and the source identification as the testing step. This approach is only applied on

characters.

In addition to the state-of-the-art methods considered herein, we also assess two

well-known texture descriptors widely used in the literature. The first one is the Local

Binary Patterns (LBP) [137] and the Histogram of Gradients [139] (HOG). The LBP is a

histogram of eight-neighboring pixel relations. HOG consists in histograms of gradient

orientations in localized regions (rectangular or circular) of an image. We chose these

descriptors because they can be regarded as multidirectional descriptors.

3.3.6 Implementation Aspects of the Proposed Methods

We first consider the two proposed GLCM variations: the multidirectional and multidi-

rectional and multiscale ones. We also implement four CTGF variations, three exploring

3× 3, 5× 5, and 7× 7 filter sizes and a multiscale one exploring all the previous filter sizes.

The multidirectional GLCM hereinafter referred to as GLCM_MD consists of 22

statistics calculated on each GLCM built using one neighboring pixel offset over eight

directions, as described in section 3.2.1. The final feature vector has 22 × 8 = 176

dimensions. The multidirectional/multiscale (GLCM_MDMS), in turn, consider four

scales of the image Gaussian pyramidal decomposition: the original scale, two down-scales

and one up-scale. The final feature vector lies in the 176× 4 = 704− d space.

CTGF is built as described on section 3.2.3 and yields feature vectors with 32 × 255 =

2, 295 (n = 3), 52 × 255 = 6, 375 (n = 5) and 72 × 255 = 12, 495 (n = 7) dimensions.

We also evaluate a combined approach, in which we consider the different scales in a

combined form creating what we call the Multiscale CTGF (hereinafter referred to as

CTGF_MDMS), with 2, 295+6, 375+12, 495 = 21, 165 dimensions. These feature vectors
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undergo dimensionality reduction on each filter window size as we shall discuss later in

this chapter.

Finally, we test the complementarity of the proposed methods by fusing the feature

vectors from the CTGF using the 3× 3 mask and GLCM_MDMS, creating what we call

the CTGF_GLCM_MDMS.

3.4 Results and Discussion

We now turn our attention to the actual experiments and results. We start with a study

on dimensionality reduction for the CTGF method as one could wonder if all its features

are really necessary for attribution. Then, we present the experiments for all methods

considered herein followed by a proper statistical analysis of the results.

3.4.1 Convolution Texture Gradient Filter Parameters and Di-

mensionality Reduction

The main parameters of CTGF method are (glow, ghigh), which are defined during training.

For that we consider the 5×2 cross validation protocol discussed in section 4.4.2.

We performed two experiment configurations: keeping glow=1 and varying ghigh from

1 to 128 and varying glow from 1 to 128 and keeping ghigh=254. This way, in the first

interval, we consider intervals with low and medium gradient values (from glow=1 to ghigh,

where 1 ≥ ghigh ≥ 128), and in the second interval we will consider intervals with low,

medium and big gradient values (from 1 ≥ glow ≥ 128 to ghigh=254). This configuration

was also done to verify what happens in one gradient interval and also in the rest of the

interval, as can be seen in the results shown on Figure 3.9. For this experiment, we used

the one-against one multiclass SVM with linear kernel and the CTGF filter window size

was set to 3×3. The experiments were performed frame-wise.

Figure 3.9 shows that keeping glow as 1 and reducing ghigh from 128 to 16 (solid blue

line) produced very close results on the 5 × 2 cross-folding validations. In addition, in

such situations, the classification differences are not statistically significant according to

Friedman statistical tests. The best results of the experiments performed are in the interval

which included gradient values over the interval (1,32), and this confirms the suspicion

of relevant printing information in low level gradient areas. This is because of grayscale

jitters (i.e., grayscale noise) on flat black and white areas of printed document due to

printing variations (positioning, backslash, toner development, etc.). It is also important

to understand that variations of gradient in the range (1,32) on grayscale neighbor pixels

are practically undetectable at normal resolution (600 dpi) for the human eye. Filtering

texture values by a convolution window in this gradient interval around flat color areas

creates a highly discriminative noise signature.

The result of (glow, ghigh) filtering by the proposed technique may result in some

components that are not significant for the attribution process and a dimensionality

reduction approach can be applied. We use a simple dimensionality reduction method

that discards dimensions where the distance between its maximum and minimum values
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The LBP [137] and HOG [139] approaches are general-purpose texture descriptors

but they also showed decent classification results. HOG yielded a 95.79% accuracy for

characters, 74.35% for frames and 79.66% for documents. LBP yielded 90.20% classification

accuracy for characters, 95.20% for frames and 88.07% accuracy for documents. These good

results have a reason: HOG uses a histogram of gradients, hence it identifies the printing

process artifacts between the text and background (borders). LBP uses a histogram of

relations between a pixel and its neighbors that also enables the identification of printer

patterns in a muldirectional way.

In this chapter, we propose to look beyond these simple texture approaches and analyze

the multidirectional and multiscale properties of textures from printed documents. As

Figure 3.1 depicts (section 3.2.3), by investigating printed letters in a microscope, we can

see that the texture is spread over multiple directions. Hence, as expected, the GLCM_MD

showed good classification results, 96.99% for characters, 97.15% for frames and 89.30% for

documents. In addition, when considering the multidirectional and multiscale properties

of texture patterns at the same time, GLCM_MDMS, the method yields the best result

for characters: 97.60%. For frames, it also yielded a very good classification accuracy:

98.38%. For documents, it yielded an accuracy of 88.58%.

The proposed CTGF approaches were used here with filter sizes of 3× 3, 5× 5 and

7× 7. These filters, when used individually, analyze the histograms of textures of low-level

gradients. These textures are calculated on a neighborhood given by the filter size. These

descriptors can be regarded as multidirectional filters. The CTGF with 3× 3 filter size

yielded accuracies of 94.44% for frames and 83.78% for documents. The 5 × 5 CTGF

filter size yielded accuracies of 87.77% for frames and 80.28% for documents. Finally, the

7× 7 CTGF filter size yielded accuracies of 83.80% for frames and 76.90% for documents.

The multidirectional and multiscale approach in CTGF results in accuracies of 94.19% for

frames and 88.45% for documents.

The fusion of CTGF with the GLCM uses the complementarity of both techniques. We

combined the best proposed CTGF technique (CTGF_3x3) and the best multidirectional

and multiscale technique (GLCM_MDMS). This last technique better explores the printing

patterns more apparent between the printed material and background while CTGF explores

micro-textures in regions of low gradient. This fusion yielded the best result of the

experiment: a remarkable 98.47% classification accuracy for Frames. This means a 69%

reduction of error from the best state of the art considered: LBP on frames (LBP_F). We

also tried this fusion considering the entire document other than on frames and it was not

as effective: 91.81%.

Our second discussion on the experiments results is about how the techniques behave

on the classification for each printer. For that, we show on Table 3.4 the f-measure as

percentages.

As Table 3.4 shows, the multidirectional approach used by LBP is useful to identify the

texture patterns of printer B4070 in frames, showing an f-measure of 100%. The voting

approach and high presence of texture in the printed material explain the high f-measure

for this technique for that printer. The f-measure from the proposed multidirectional

and multiscale approaches (GLCM_MDMS and GLCM_MD) and the fusion of CTGF

and GLCM_MDMS (CTGF_GLCM_MDMS) also present a high f-measure for this
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a pyramidal Gaussian image decomposition. This can be helpful when texture spreads

over multiple directions and scales. Our second contribution is the Convolution Gradient

Texture Filter, which considers low-gradient micro-texture patterns. This descriptor is

also multidirectional as it calculates textures over a neighborhood with different kernel

sizes. It analyzes the frequency of how a pixel relates to its neighbors on areas of low-level

gradients (i.e., inside printing area) in texts and figures printed by different printers. We

also proposed a fusion between the analyses made by both of them.

Our last contribution refers to the best place to look at on printed documents to

better investigate printing patterns. By analyzing areas of text with enough printing

material, we can identify the laser source printer in a better way than just looking at

characters and documents as more printing textures and less background are available.

This technique has the same advantage of the characters analysis, that is representing

a document with multiple feature vectors, classifying them individually and fusing the

individual classifications in the end. An additional advantage when compared to a full-

document analysis is that this method can be applied if just parts of the document are

available.

We compared the proposed approaches against some state-of-the-art and some general

purpose texture descriptors in Wikipedia scanned documents and showed their effectiveness

when the characterization occurs in characters, frames and documents. The techniques

proposed herein yielded the first and second best classification accuracies when applied

on the proposed frames. They were the best to identify 90% of the printers and results

are statistically different when compared with the state-of-the-art counterparts. The

take-home lesson is that the multidirectional analysis is crucial for laser printer attribution,

specially when combined with multiscale image decomposition.

From our experience, it is important to highlight that laser printer attribution is a

very difficult problem in which many variables play a role. First of all, the reference

scanner used in the scanning process when defining the training samples and analyzing an

investigated document must be the same as we do not want intrinsic scanning features

to play a key role in the printer attribution problem. When using the same scanner for

training and investigated documents, we rule out this effect. The scanning process inserts

intrinsic features in the documents, which can be used to identify the scanning device.

This is known as Scanner Attribution in the literature and there are very good work on

this as references [140, 141] show.

This is not a major problem for the forensic expert because our application here is to

identify the printer source of a document. So, the scanner variable can be fixed. There

are some situations where different scanners have very similar variables (resolution and

noise), but we cannot guarantee that in all practical scenarios. Therefore, we recommend

that the scanner used for acquiring the investigated documents should be the same as the

one used for training the classifier. As just a few documents are necessary for training the

classifiers, this is straightforward. This procedure is also used in other devices attribution

(cameras and scanners). When a suspect camera is investigated, the classifier must be

retrained with data acquired with that camera [142, 143, 144].

Second, it is advisable to use, as much as possible, similar paper to the one collected

for investigation. If the investigated document for printer attribution is a white office
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Letter with 75g/m2, it is recommended to use a similar paper in the training (acquisition

of training documents from the suspect printers). If we use training data considering

photographic reflective paper, for instance, which are very different from the investigated

printed document, it is likely the proposed methods and their counterparts in the literature

using vision-based approaches will fail.

In addition, the good results presented in this chapter must come with a salt of grain as

well. We are not claiming to have solved the printer attribution problem. The almost 99%

classification accuracy is an important and unrivaled result. However, each real case will

have its specificities. For example, the result shown in this paper was in a given dataset

and in closed set scenarios. The behavior of the proposed approach in another dataset of

other printing sources and in open set scenarios is unknown. So, the forensic expert must

be aware that vision-based approaches are an initial, non-destructive and cheap analysis.

It must be used, whenever possible, with other techniques in order to provide the most

accurate results as possible. The vision-based techniques can also be combined to improve

the quality of the attribution.

Finally, we envision at least three research paths for extending this research. First, an

in-depth study of the analyzed techniques on color documents with proper adaption of

the methods for this scenario is worth exploring. Second, a deeper investigation on the

complementarity of the proposed methods is paramount for dealing with open-set setups

and more classes of interest would be interesting to check if classifier and decision-level

fusion could push the classification results even further. Finally, domain adaptation

procedures can be studied to adapt features in our training dataset to new testing datasets.



Chapter 4

Data-Driven Solutions for Laser Printer

Attribution

In this chapter, we discuss data-driven approaches for laser printer attribution that learn

features to be used for classification of sources directly from the data, without feature

engineering such as used in Chapter 3. For that, we propose the first deep learning solution

for laser printer attribution, which uses our multi-analysis scenarios. These approaches

use multiple representations of multiple data and act in the pre-processing analysis of an

input questioned image. Thus, the printing patterns are represented differently and the

banding can be better described in letter areas through the networks using the information

of our several deep learning networks together.

4.1 Motivation

Printed documents are found everywhere: in offices, public agencies, schools and also

residences. From single documents available today as homeworks and warnings to serious

ones as contractual clauses and scientific articles there is a printer involved, being it a

dot matrix, dye-sublimation, thermal, ink-jet or laser. The last one has been the choice

of ordinary people and offices in this last decade [145] because of its speed, quality of

printing and low price.

However, with this massive access to printing devices a new treat has emerged: the use

of laser printer for criminal intentions. Additional contractual clauses inexistent before,

child pornography and animal abuse photos, life treat letters, illegal correspondence,

terrorist plots, fake currency and fake documents are printed everyday. Hence, providing

ways of pinpointing printing ownership of documents is paramount, mainly to link them to

criminals. Also, linking a document to a printer is another way of authenticating official

documents.

In this chapter, we aim at designing and developing a multi-analysis data-driven

approach to automatically extract meaningful discriminative patterns straight from the

analyzed documents, instead of using ordinary feature engineering. For that, we propose the

first deep learning solutions for laser printer attribution that use several deep Convolutional

Neural Networks (CNN). Our approaches are based on late and early fusion of these deep

69
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networks, both of them are based on different representations (image transformations)

of image patches containing different letters of text. The differential of the method, if

compared with state-of-the-art counterparts is the CNN recognition of printing patterns

of each printer by only running the printer letter samples through the network. In other

words, the patterns of interest are learned directly from the data of interest from the

forensic investigator. In summary, the main contributions of this chapter are:

1. Design of a unified deep-learning-based architecture comprising different, and

lightweight deep networks operating in parallel for laser printer attribution, aimed at

detecting features that identify the intrinsic artifacts over different situations (raw

image pixels, median filtering residuals, among others) of different data (different

extracted patches of printed material).

2. Consideration of multiple representations of the data in the analysis, which are image

operations that can better highlight the printing patterns of different printers (e.g.,

raw image pixels, median filtering residuals, among others).

3. Analysis of the natural complementarity present in different printing patterns of

different printed regions (patches), such as letters and shapes, instead of the common

’e’ letter used before by virtually all works in the literature.

We organize the remaining of this chapter in five sections. Section 4.2 shows a short tutorial

on Convolutional Neural Networks and the necessary concepts for understanding this

chapter; Section 4.3 presents our approach, which is, as far as we know, the first approach

based on deep learning applied on multiple representations of multiple data for laser printer

attribution; Section 4.4 shows the setup we use in this chapter for validating the proposed

methods and compare them to the existing counterparts in the literature, while Section 4.5

shows the performed experiments and results. Finally, Section 4.6 concludes this chapter

with our final considerations and proposals for future work.

4.2 Convolutional Neural Networks

Before we discuss our proposed method to perform laser printer attribution based on Deep

Learning, it is worth discussing some basic Deep Learning (DL) concepts. DL networks

are, basically, a Neural-based network with many layers. The benefits of using a Neural

Network for classification tasks are basically two: (i) in the earlier layers, complex patterns

are broken into simpler patterns, helpful in the image classification and (ii) in the training

phase, the classification error is back propagated to the previous layers, which helps the

network to adjust its weights and then, within a number of training epochs, the network

can finally find the features that will best represent the input data. The most important

advantage of this representation form is that it is learned directly from the data and is

not custom-engineered.

In this chapter, we are particularly interested in deep Convolutional Neural Networks

(CNNs) for solving the printer attribution problem. Pioneered by Lecunn et al. [146], they

are a family of Deep Learning methods aimed at image recognition and object detection
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tasks. CNNs are dominating the space of Computer Vision in the last years and, in early

2015, a Microsoft-designed CNN outscored humans in the task of image recognition [147].

In its core, a CNN is similar to a Neural Network, with some particularities, using the

following layers:

1. Input Layers: where the data enters the network. Raw pixels of images or transfor-

mations in the data that can better emphasize some specific aspects searched by the

network can be used.

2. Convolutional Layers: contains a series of filters with fixed size used to perform

convolution on the image data, generating what is called feature maps, treated by

the subsequent layers. These filters can highlight some patterns helpful to do the

image understanding, such as edges in human faces, for example.

3. Rectified Linear Unit (RELU): RELU layers normally follow convolution operation

and are responsible for applying a non-linear function to the output x of the previous

Layer, such as f(x) = max(0, x). According to Krizhevsky et al. [148], they can be

used for fast convergence in the training of CNNs, speeding-up the training as they

deal with vanishing gradient problem by keeping the gradient more or less constant

in all network layers.

4. Pooling Layers: These layers ensure that the network focuses only on the most im-

portant patterns yielded by convolution and the RELU. A Pooling Layer summarizes

the data by sliding a window through the feature map and applying some non-linear

operations on the data within the window, such as mean, reducing the dimensionality

of the feature maps used by the following layers.

5. Fully-connected Layer: Used for the understanding of patterns yielded by the previous

layers. It is located at the end of the network and is commonly a classifier such as

soft-max.

Figure 4.1 depicts one possible CNNs architecture. However, the layer arrangement

(number) of each type of layer and localization can change depending on the network used

for a given application.

Although very powerful at representing patterns present in the data, the main drawback

of such deep networks is the fact that common CNNs normally need thousands or even

millions of labeled data for the training, which can be challenging and time-consuming

for real-world applications. In this chapter, we present an alternative approach that deals

with this requirement by considering several lightweight Deep CNNs running in parallel

for the problem of laser printer attribution, as we shall discuss in section 4.3.

4.3 Proposed Method

In our work, we aim at solving the requirement of several input training images for deep

networks, applying this solution for laser printer attribution. Our proposed methods

use several deep networks with very few layers, combining the output at the end. Our
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Figure 4.2: Same letter “e” printed by different printers. In some cases, some printers print
physically bigger letters than others for the same document.

Figure 4.3: Median Filter residual representation of the same letters “e” showed in Figure
4.2. Here, some minimal borders are highlighted. The pixel values are inverted in this
Figure for better visualization.

used in our deep networks. One important thing to note from these figures is the fact that

some printers used in this chapter (printers C3240 from Canon and H1518 from HP) print

the same letter from the same document with different sizes in the physical paper, with

consequently different banding patterns.

The used network architecture is the same in spirit to the MNIST network for digit

recognition [150]

To identify the source using such tiny images from the documents, we use a simple

deep network. The used network is basically the same as the MNIST network for digit

recognition [150], with proper custom-tailoring. For a better representation of the data of

interest herein, we trained the network from scratch, yielding new filter weights able to

recognize letter areas containing banding characteristics of laser printers. As far as we

know, this is the first deep network custom-taylored for the printer attribution problem. It

differs from traditional deep learning-based solutions in the vision community by focusing

the feature learning on the printer source of an input rather than on what the input

actually is (e.g., its class). Our core CNN architecture, which is also the basis of the

several networks proposed in this chapter has the following layers.

1. One Input Layer, where the raw image or a different representation (median filter

residual or average filter residual) is used. It requires 28× 28 images as input.
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Figure 4.4: Average Filter Residual representation of the same letters “e” showed in Figure
4.2. Here, natural borders are highlighted. The pixel values are inverted in this Figure for
better visualization.

2. The first Convolutional Layer comprises 20 5× 5 filters and is followed by a pooling

layer.

3. After the first pooling layer there is a second Convolutional Layer, with 50 filters of

dimensions 5× 5× 20, followed by another pooling layer.

4. After the second pooling layer there is a third Convolutional Layer, with 500 filters

of dimensions 4× 4× 50

5. One RELU layer.

6. After the RELU layer there is another Convolutional layer, with 10 filters of dimen-

sions 1× 1× 500, yielding 500d feature vectors.

7. A fully-connected layer, which is a soft-max classifier.

In our proposed approach, we train the network using a given number of epochs using

this architecture and then feed the training images again to network, extracting the feature

vectors in the last but one layer, using 500-dimensional feature vectors to train a linear

SVM with an One-vs-One class binarization policy [151]. For testing, we apply the test

images in the already trained network and extract the feature vectors in the last but one

layer, using them as input to the already trained SVM classifier, which will predict their

classes.

The proposed networks extract the features from letter areas containing banding

without feature engineering, as the backpropagation propagates the error through the

training epochs and updates the filters to minimize the classification error using only the

information present in the images to identify the printing patterns. As discussed before,

the earlier layers can detect minimal and relevant characteristics from the letter areas

containing banding that can be used together in the posterior layers for better classification.

Figures 4.5 and 4.6 show the 20 filters of the first layer in a grid and also the characteristics

they highlight from a letter printed by a given printer. These figures show that different
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filters enhance different areas of letters, such as texture and borders detectable only by

hand-crafted features in the literature such as the approach proposed by Ferreira et al.

[152] (approach discussed previously on Chapter 3) originated by microscopical analysis

on letters.

Figure 4.5: Final filters weights of the first convolutional layer operating on the raw input
image pixels. The weight values are represented by grayscale values.

Figure 4.6: Convolutional output of the first layer of the trained network, given an input
letter from an investigated printer. For each filter, different areas inside or outside the
borders are highlighted.

Although this network is not as deep and complex as some recent ones in the Vision

community [153], it still needs several samples in the training for better classification. We

aim at minimizing this problem by using several deep networks in parallel and test the

complementarity of them by aggregating the output. For that we use several CNNs, each

one using a different representation (image operation) of different data (different extracted

characters). We hypothesize that it is important to analyze the banding features in

different kinds of extracted letters, instead of only the letter ’e’. In this vein, our proposed

approach uses CNNs in the following configurations, which are depicted in Figures 4.7 e

4.8:
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4.4.2 Experimental Methodology, Evaluation Metrics and Statis-

tical Tests

For validation, we consider a 5 × 2 cross validation protocol. In this protocol, we replicate

the traditional 2-fold cross-validation protocol five times (thus 5 × 2). In each of these

2-fold cross validations, a set of data D is randomly divided into D1 and D2. Then, a

classifier is trained with D1 and tested on D2, and then we train the classifier with D2

and test it on D1. After that, we report the statistics and perform the statistical tests

after 10 rounds of experiments. According to a study conducted by Dietterich et al. [138],

this is considered an optimal experimental protocol for learning algorithms.

In a multi-class problem with n classes, the classification results may be represented

in an n× n confusion matrix. In this case, the main diagonal contains the true positives

while the other entries contain either false positives or false negatives. In the 5× 2 cross

validation protocol, one confusion matrix is yielded per experiment. All the metrics showed

in the remaining of this section will be applied over the average of such matrices.

Accuracy

For a multi-class problem, the accuracy is the sum of the main diagonal values divided by

the total elements in the matrix. As the correct classifications are in the main diagonal,

we can define the classification accuracy as:

accuracy =

∑n

i=1 M(i, i)
∑n

i=1

∑n

j=1 M(i, j)
. (4.1)

The accuracy considered in the experiments always takes into account the correct

classifications of documents. The classification of documents happens by majority voting

on the classification of extracted letters of that document. The classification of each

extracted letter casts one vote to be used for the majority voting at the end.

Precision

The precision of a classifier for a printer i measures how many documents attributed to

such a printer are actually correct.

Precision(i) =
M(i, i)

∑n

j=1 M(j, i)
. (4.2)

Recall

The recall of a classifier for a printer i, also called the true positive rate, measures how

many documents of the total number of documents from printer i are correctly attributed

to such printer

Recall(i) =
M(i, i)

∑C

j=1 M(i, j)
. (4.3)
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F-Measure

The f-measure of a classifier to classify a printer i is the harmonic mean of precision and

recall for the printer i, as follows:

f(i) = 2 ·
Precision(i) ·Recall(i)

Precision(i) +Recall(i)
. (4.4)

To test the statistical relevance of the obtained experimental results, we consider a

two-level statistical test. In the first level, we use the Friedman test as a pre-test to

point out whether or not there is statistical difference in the obtained results. Then we

refine these results with the Tukey-Kramer post-test, also known as Honestly Significant

Difference (HSD) test to point out statistical differences (if any) pairwise. In all tests, we

set the confidence level to 95%.

4.4.3 Baselines

We compare the proposed approach with several baselines, some of them we propose in

this chapter and others were proposed before in the literature. Firstly we will compare our

approaches against several other deep networks, applied over single representations of the

same data. The single representations used consists on the application of one network over

the median filtering residual of the image (DL_NOISE_IMAGE_MEDIAN_C_CROP),

average filter residual (DL_NOISE_IMAGE_AVERAGE_C_CROP) and in the raw

image pixels (DL_NATURAL_IMAGE_C_CROP). These approaches are applied over

the “e”, “a”, “d” and “o” letters dataset individually. We also tested the filtered image

from the Convolutional Texture Gradient Filter from the work of Ferreira et al. [152]

(approach discussed previously on chapter 3) and also the Wiener Filter Residual [155] as

the input for the network (DL_CTGF_3X3_C_CROP, DL_CTGF_5X5_C_CROP and

DL_NOISE_IMAGE_WIENER_C_CROP, respectively). The latter three approaches

were tested only on letters “e”.

We also compare our proposed techniques against eight state-of-the-art methods (c.f.

section 2.1.2) focused on text documents. The first one is the approach based on Gray-Level-

Co-Occurrence Matrices from Mikkilineni et al. [68, 53], which describes the signature

present in the banding with 22 statistics calculated per matrix. We call this approach in

the experiments as GLCM_C_CROP.

In addition, the next four methods used in the experiments were proposed in the

work of Ferreira et al. [152] (approach discussed previously on chapter 3). The first one

uses Gray-Level-Co-Occurrence Matrices with more directions (GLCM_MD_C_CROP),

while the second uses Gray-Level-Co-Occurrence Matrices with more directions and more

scales in the input data (GLCM_MD_MS_C_CROP). The third uses Convolutional

Texture Gradient Filters with size dim (we use dim = 3 and denote this approach as

CTGF_3X3) and finally the fourth method takes the combination of two last methods

(CTGF_GLCM_MD_MS_C_CROP).

The sixth state-of-the-art method implemented was proposed by Kee and Farid [85]

(RECONST_ERROR_C_CROP). This approach uses reference characters firstly to look

for the same characters of different printers. Then, the mean character and Principal
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Component Analysis (PCA) [86] are performed on the characters per printer to calculate

the printer profile. To detect the source of a printer, the document under investigation has

its letters ‘e’ extracted and are used with each printer profile to calculate a reconstruction

error of each printer, with the smallest mean error identifying the source. Finally, we

also experimented with two well-known texture descriptors widely used in the literature.

The first one is the Local Binary Patterns (LBP_C_CROP) [137] and the Histogram of

Oriented Gradients [139] (HOG_C_CROP).

4.4.4 Implementation Aspects of the Proposed Methods

In this chapter, we propose a deep network composed of several lightweight deep learning

networks running in parallel focused on identifying the banding of letter areas using multiple

representations of multiple input data. This approach, which we call the late fusion, is based

on voting after the classification of combined feature vectors from multiple representations

of different data. We call these approaches DL_LATE_FUSION_C_CROP, specifying

on which data they are applied. This yields 4 approaches tested in the experiments.

We also test the performance of this last approach when compared to what is called

the early fusion. For this, we concatenate the feature vectors from the last but one layer

of deep networks applied on three different representations of the same data, making them

the input to a machine learning classifier. We did this for letters “e”, “a”, “d”, “o” and

28× 28 frames. We call these approaches DL_EARLY_FUSION_C_CROP, specifying

in the experiments results which data they are applied. This yields 5 approaches tested

in the experiments. The source code of the proposed approaches in this chapter can be

found at GitHub1.

We found the number of epochs to train the network after doing an experiment using

validation and training data. We run the network using 25 epochs and decided to use

20 epochs to train the network, as the validation top1 error is small for this number of

epochs. Figure 4.10 depicts this experiment results. We choose 0.001 as the learning rate

used in the backpropagation of error in the proposed networks.

4.5 Results and Discussion

We now turn our attention to the experiments with different methods. We firstly show the

experiments results considering the comparison between the unique representation and

multiple representation (early fusion) of the same data using the proposed CNNs. Secondly,

we show the comparison between the representations of unique data and multiple data

(late fusion). Finally, we discuss an experiment comparing the performance of our approach

against the state of the art discussed in section 4.4.3. All experiments were performed

using the methodology presented in section 4.4.2 on the dataset of 1,184 printings shown

before in section 4.4.1.

1https://github.com/anselmoferreira/deep-learning-printer-attribution





CHAPTER 4. DATA-DRIVEN SOLUTIONS FOR LASER PRINTER ATTRIBUTION83

that better identify the banding on letter areas over the different networks, as well as other

printing artifacts left behind during the physical printing of a document. For example,

banding in the borders contained in the average filter residual are better highlighted in

its CNN and can complement the information found in the two other CNNs that use

information from the raw image data and median filter residual. We also found that the

best data to use the multiple representation are over letters “a”, firstly because they contain

more borders than common letters “e”, and also beause they are the most common letter

in Portuguese texts and one of the most common letters of English texts [156, 83], so more

data are investigated to decide a class of a document.

We also discovered that, for some data (letters), the raw representation in deep

networks is not good enough, also justifying the use of multiple representations. For

instance, letters “a” deep networks applied on average filter residual (DL_NOISE

_AVERAGE_C_CROP_A) yielded an accuracy of 94.89%, against their accuracy

of 93.07% on letters “a” raw image pixels (DL_NATURAL_IMAGE_C_CROP_A).

We also found that the investigation of representation of the input as 28 × 28 frames

(DL_EARLY_FUSION_C_CROP_ FRAMES), instead of standardized letters are not

as effective when deploying a solution using Deep Learning. This happens because the

network is fed with different images containing different printing patterns, instead of only

a specific kind of patch containing the letter “e” with an almost fixed printing pattern.

This way, the network must find traces in different images containing different patterns,

and it is difficult for it to do it with so few different images available.

The good result of 96.13% of the deep applied on letters “e”

(DL_NATURAL_IMAGE_C_CROP_E) shows that the CNNs proposed are

able to cope with letters that do not perfectly fit the 28× 28 window required as input for

the network, as this dataset has different dimensions in the extracted patches (see Figure

4.9 for details). Hence the network should be easily generalizable to different font sizes.

The results using our CNNs on other single characters such as “a”, “o”, etc.

shows that the data-driven proposed approaches work for different input data. The

result of the experiment using the network applied on late fusion of letters “o”

(DL_EARLY_FUSION_C_CROP_O) is less accurate because the character extrac-

tor makes more mistakes (e.g., “q”, “d”, “p” or “b” may be interpreted as “o”). One possible

solution to avoid noisy data in the dataset is applying Optical Character Recognition

(OCRs) in the images and discard non “o” letters, for example, but the dataset contains too

tiny images and all OCR implementations tested failed to recognize the letters. Anyway,

the network is able to cope with different input shapes, or data, and so probably different

input fonts.

The statistical test using the Friedmann pre-test yielded the p-value of 2.32984

×10−68, helping us to state that the performance of the proposed methods have sta-

tistical significant difference. Table 4.2 shows the statistical Tukey HSD tests, showing

that our proposed multi-representation early fusion approaches (namely DL_EARLY

_FUSION_C_CROP_A and DL_EARLY_FUSION_C_CROP_E) are statistically

significant when compared to all the unique representation approaches.

With these findings, we conclude that the multiple representation approach is useful

for laser printer attribution using deep networks, as the different image transformations
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learning classifier and proposing a two-tier deep network, which is a deep network that can

deal with features from different deep networks applied on our different representations of

different data.
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Multi-Analysis Solutions for

Tampering Detection
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Chapter 5

Multi-Analysis Solutions for Median

Filtering Detection

In this chapter, we aim at detecting traces of image tampering through median filtering

by a set of multi-analysis approaches. These approaches apply multiple perturbations to

questioned images using multiscale filters, acting in the pre-processing step of the analysis

pipeline. These approaches seek to highlight a structural inconsistency, called streaking, in

questioned images.

5.1 Motivation

Recently, image doctoring has been made easier by a range of cheap and easy-to-use digital

image editing software packages with effective algorithms aimed at reducing the artifacts

(visible or non-visible) left behind in the manipulated images. Although image adjustments

allow us to properly correct images of familiar members in an innocent party, it also

can be used for negative effects such as defaming politicians (e.g., Sarah Palin’s case1),

showing photographs of non-existent military power to the citizens (e.g., Iranian missiles

case2), deceiving insurance companies by multiplying or creating damages in digital photos

of properties3, among others [157]. Therefore, the development of reliable tools to fight

misinformation is paramount.

A digital image tampering method commonly used is the image re-sampling, which can

be helpful to make copy-and-move forgery operations more convincing. Copy-and-move

operations allied with sophisticated re-sampling operations allow a forger to change the

size of multiple copies of an object, making them closer or farther away. A way of detecting

the presence of resampling is through the analysis of its artifacts left behind. Popescu and

Farid [96] noted that re-sampling operations use interpolation techniques (which results in

one image with pixels correlated in some way) and proposed an Expectation-Maximization

technique for finding periodic samples of the image and detecting re-sampling operations.

A particular problem of this technique is the assumption of a linear correlation of the

1http://www.nytimes.com/2004/03/11/technology/the-camera-never-lies-but-the-software-can.html
2http://thelede.blogs.nytimes.com/2008/07/10/in-an-iranian-image-a-missile-too-many/
3http://www.economist.com/news/technology-quarterly/21572915-digital-imaging-insurers-

publishers-law-enforcement-agencies-and-dating-sites-are

91



CHAPTER 5. MULTI-ANALYSIS SOLUTIONS FOR MEDIAN FILTERING DETECTION92

pixels. As stated by Kirchner and Bohme [97], a non-linear filter such as the median filter

can destroy these re-sampling artifacts by replacing each pixel with the median-valued

pixel within a neighborhood therefore rendering resampling undetectable by Popescu and

Farid [96]’s technique.

Median filtering has several applications in the context of forensics. From hiding traces

of resampling to enhancing image retouching, being useful to remove imperfections on

images in digital editors such as Photoshop [93]. From concealing forgery artifacts to

fooling detection techniques such as the ones proposed by Johnson and Farid [94]’s work

and its extension by Saboia et al. [95] (which detect image manipulation by means of the

eye specular highlights in images containing people) not counting hiding traces of JPEG

blocking as in Stamm et al [39].

In this chapter, we propose multi-scale and multi-directional median filtering detec-

tion algorithms based on multi-perturbations in the input image. These algorithms are

originated by the hypothesis that the median filtering streaking artifacts affect the Image

Quality Metrics (IQMs) of median filtered images in a different way under multi-scale

filterings (filtering with different regions of interest) and over progressive perturbations

(henceforth perturbations are defined as cascade-wise successive image filterings). The

proposed techniques are multi-scale because different filter sizes are used to perform the

perturbations. The techniques proposed in this chapter are also multidirectional because,

for each filter size, a different neighbor pixel can be used to replace the pixel in the center

of the window, so the streaking artifacts are propagated in different ways depending on the

mask size, image content and the region where the sliding window is located. In our novel

approaches, we evaluate several image quality metrics upon each perturbed image and

build a highly discriminative feature space for classification. Experiments with complex

datasets show that the proposed method outperforms state-of-the-art solutions without

assuming anything about the underlying filtering process of the input images.

We organized the rest of this chapter in four sections. In Section 5.2, we introduce our

novel approach, based on multi-scale and multi-directional perturbations to detect median

filtering operations in digital images. In Section 5.3, we discuss about the experimental

setup used to validate the proposed methods. In Section 5.4, we present the experimental

results that validate the proposed methods and also to compare them with state-of-the-art

counterparts. Finally, in Section 5.5, we conclude the chapter and discuss some possible

future work.

5.2 Proposed Method

Our technique is inspired on the observation of what happens in text file compression using,

for example, the Run-Length encoding algorithm [158]. When a text file is compressed for

the first time, its size will decrease because there are redundancies in the text used in the

compression (for example, a text file with AAAABBB will become 4A3B, in other words,

a file with 7 characters is represented by 4 characters in the compressed file). However,

when a second compression is applied to an already compressed file, chances are the file

size will increase if compared to the previous compression (in the same example, 4A3B will
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become 141A131B). This happens because there are much less or no redundant elements

to compress, leading to a file size increase compared to the previous compression.

Our multi-perturbation approach is also inspired by the Rocha and Goldenstein [159]

steganalysis detection technique. In their work, they propose to perform progressive

insertion of hidden messages (this can be also regarded as perturbations) in digital images.

Then, in regions of interest, statistical descriptors are used to feed a classifier able to detect

if hidden messages exist in digital images. The authors realized that pristine and stego

images suffer different behavior when are disturbed (in this case, with hidden messages).

We found that the same happens in median filtered images: they also show different

behavior when they are disturbed. These blurred images suffer different degradation when

compared to pristine images after a series of successive perturbations (median filtering

operations). These perturbations will highlight the streaking artifacts and can be detected

or not by measuring the degradations of the disturbed images when compared to the input

image.

Hence, we propose in this chapter a novel technique based on multi-directional and

multi-scale multiple perturbations in the image, measuring the image degradations by

means of image quality metrics. We propose the use of multi-scale median filtering masks

because, when applying the multiple perturbations on multiple median mask sizes, we are

able to find groups of streaking (redundant) pixels no matter which median filter mask

size was used to originally blur the image. The proposed technique can be regarded as

multi-directional because, for each mask size, a different neighbor pixel can be used to

replace the pixel in the center of the window, so the streaking artifacts are propagated in

different ways, depending on the mask, image content and the region where the sliding

window is located. The multiple perturbations are done to propagate the streaking artifacts

and to make them more detectable to our developed metrics.

To detect image median filtering in our proposed approach, we build a feature vector

to be used by machine learning classifiers that encodes the median and non-median

information present in the image. For that, we perform f progressive filterings with m

median filtering masks with different n× n dimensions in the input image. We consider

median filtering windows (regions of interest) of size 3 × 3, 5 × 5, 7 × 7 and 9 × 9. In

other words, we define n = {3, 5, 7, 9}, 1 ≤ m ≤ 4 and 1 ≤ f ≤ 5. After each filtering, we

measure how the perturbed image was degraded using the input image for comparison.

Fig. 5.1 depicts the workflow of the proposed technique.

As Figure 5.1 shows, the proposed method works by progressively blurring f times a set

of training images using m mask sizes, comparing each filtered image with the input image

by using q = 8 IQMs. All the IQMs calculated are combined to yield a final description

(feature) vector ~F ∈ R
f×m×q. Then, a machine learning classifier learns the behavior of the

median and pristine images and, given a test image, the approach repeats the operation

and the classifier labels the new images based on what it has learned during training.

Algorithm 1 shows how the approach works for a given window size. Basically, for the

first perturbation, the IQMs extraction happens at the first blurring of the image, using

the input image as the reference image. For the second perturbation onwards, the blurred

image from the previous perturbation is blurred again and the IQMs extraction takes place

in a similar way. To apply Algorithm 1 to multiple scales, it is necessary to apply it to
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The multi-analysis procedure performed herein considers several directions (multidi-

rectionality) in the filtering (the filter replaces the central pixel by the median value in

the neighborhood, and the neighbor used to replace the value of the central pixel can

be at any direction), applying multiple and progressive filterings to the image (multiple-

perturbations). If the multiple perturbations use several scale filters the multi-scale

multi-analysis scenario is considered. The reason for the use of these multi-analyses

operations lies in the fact that multiple perturbations simulate the presence of the streak-

ing artifact in the suspected images and, if this artifact already exists in the image, it

is highlighted differently by the perturbation, affecting the image quality differently in

pristine and tampered images. This procedure happens in the pre-processing step of the

analysis pipeline, as the image is changed by the multiple perturbations for the description

(image quality metrics calculation).

IQMs [160, 161, 162] have been successfully employed in the literature and are described

in terms of the visibility of the distortions, such as color shifts, blurriness, Gaussian noise

and blockness [160]. The most common way of creating an image quality metric is

quantifying the visibility of these distortions by comparing a distorted image to a reference

one. They were already used before in digital image forensics. Avcibas et al. [163] used four

different image quality metrics and a classifier to detect traces of image manipulation. The

authors also used such IQMs to detect hidden messages in digital images [164]. Differently

from these approaches, we explore the effects of the proposed perturbations to highlight

streaking artifacts by using IQMs and then build a highly discriminative feature space

suitable for detecting median filtering in digital images.

To measure the streaking artifacts in our proposed technique, we use q = 8 bivariate

image quality metrics per perturbation and window mask: Mean Squared Error, Peak

Signal to Noise Ratio, Structural Content, Average Difference, Maximum Difference,

Normalized Cross Correlation, Normalized Absolute Error and Structural Similarity. We

chose these eight quality measures because they were proven to be efficient in measuring

image degradation in previous works [160, 161, 162].

Mean Squared Error (MSE): this IQM measures the mean of pixel differences (here-

inafter referred to as error) between an ideal image I and its distorted image K.

MSE(I,K) =
1

M ×N

M
∑

i=1

N
∑

j=1

D(I,K), (5.1)

where D(I,K) = [I(i, j)−K(i, j)]2 and M and N are the dimensions of the two images I

and K.

Peak Signal to Noise Ratio (PSNR): this IQM is the ratio between the maximum

possible power of the ideal image I and the power of corrupting noise that affects it in

image K. PSNR is usually expressed in terms of the logarithmic decibel scale and typical

values for JPEG images are between 30 and 50 dB, where higher is better. This metric is



CHAPTER 5. MULTI-ANALYSIS SOLUTIONS FOR MEDIAN FILTERING DETECTION96

calculated as:

PSNR(I,K) = 20× log10

(

max(I)
√

MSE(I,K)

)

. (5.2)

Structural Content (SC): this IQM calculates the ratio of squared sum of pixels in

the original image I and in its distorted version, K,

SC(I,K) =

∑M

i=1

∑N

j=1 I(i, j)
2

∑M

i=1

∑N

j=1 K(i, j)2
. (5.3)

Average Difference (AD): this IQM measures how the pixels change in a distorted

image K when compared to its ideal image I by calculating the mean of errors (the error

is not squared as in MSE) between pixels of the two images:

AD(I,K) =

∑M

i=1

∑N

j=1 I(i, j)−K(i, j)

M ×N
. (5.4)

Maximum Difference (MD): this IQM measures the highest error found in a distorted

image K related to its ideal image I:

MD(I,K) = max(|I(i, j)−K(i, j)|. (5.5)

Normalized Cross Correlation (NCC): this IQM measures the similarity between

two dimensional signals I and K:

NCC(I,K) =

∑M

i=1

∑N

j=1 I(i, j)×K(i, j)
∑M

i=1

∑N

j=1 I(i, j)
2

. (5.6)

Normalized Absolute Error (NAE): this IQM calculates the normalized error be-

tween I and K, defined as the ratio of sum of pixel differences (error) between the ideal

and distorted image and the sum of pixels in the ideal image I.

NAE(I,K) =

∑M

i=1

∑N

j=1 I(i, j)−K(i, j)
∑M

i=1

∑N

j=1 I(i, j)
. (5.7)

Structural Similarity (SSIM): this IQM measures the change of the structural infor-

mation of the image, which are the inter-dependencies of close pixels. These dependencies

carry important information about the structure of the objects in the visual scene. The

SSIM metric is applied on various windows of the investigated images as:

SSIM(x ∈ I, y ∈ K) =
(2× ux × uy + c1)× (2× σxy + c2)

(u2
x × u2

y + c1)× (σ2
x × σ2

y + c2)
, (5.8)
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where x and y are n×n (typically 8× 8) image patches from I and K respectively, ux and

uy are the mean pixel values of patches x and y, σ2
x and σ2

y are the same for variance, σxy

is the covariance of x and y and c1 and c2 are constants that are calculated depending on

the bits per pixel of the images. The calculation can be done in just one window in both

images or in a subgroup of them. When using the latter approach, the mean of SSIMs is

reported as the final SSIM. The resultant SSIM is a value between -1 and 1, and the value

1 occurs when I and K are the same image.

5.3 Experimental Setup

In this section, we discuss the used benchmarks, the experimental methodology, the

state-of-the art approaches used for comparison and statistics used to compare all studied

methods.

5.3.1 Benchmarks

The experiments considered four benchmarks. The first one comprises 3,996 JPEG images

from the Chinese Academy Image Tampering Database [5]. These images are compressed,

have similar lighting conditions, low resolution and most of them were taken with the

same camera. Here, 1,998 images are pristine and 1,998 are median filtered with a 3× 3

Matlab median filter implementation. We use this dataset, referred to as CASIA_COMP,

for finding the best parameters of the proposed technique, to compare the proposed

methods to the state of the art in a cross-validation scenario and to train the classifier in

a cross-dataset scenario used in the experiments.

The second benchmark contains 800 JPEG images from a personal image dataset. It

comprises 800 JPEG images collected with very different resolutions, camera noise, lighting

conditions and compressing factors. These images were taken from different dedicated

cameras and smartphones. It is used to test the classifier trained with compressed images

from the previous database. Here, 400 images are pristine and 400 are median-blurred

images with different window masks (3× 3, 5× 5, 7× 7, 9× 9). These median blurrings

were performed using four different image processing tools: Matlab, OpenCv, Gimp, and

Photoshop. Table 5.1 shows the devices used to acquire the images of this database, which

is referred to as COMPLEX.

The third benchmark comprises 2,773 uncompressed images from CASIA [5] (we refer

to this benchmark as CASIA_UNCOMP) and the fourth benchmark contains 1,338

uncompressed images from Uncompressed Image Database (we refer to this benchmark as

UCID) [165]. We use the images from CASIA_UNCOMP to find the best parameters of

the proposed technique, to compare the proposed methods against the state of the art in

a cross-validation scenario and to train the classifier in the cross-dataset scenario used in

the experiments. The images from UCID are used to test the classifier in the cross-dataset

scenario. A total of 8,907 images are used for validation. Three out of four benchmarks

are freely available at their original websites but are also freely available at4 and the source

4http://www.recod.ic.unicamp.br/∼anselmo/median-detection-dataset
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Type Brand Model
Camera Olympus C120
Camera Olympus C150
Camera Olympus Style Tough
Camera Canon EOS 50D
Camera Canon Powershot A540
Camera Panasonic DMC-FS3
Smartphone Nokia N8
Smartphone Sony X10A
Smartphone Motorola EXZ

Table 5.1: Cameras and Smartphones used to acquire images of the COMPLEX benchmark.

code of the proposed approaches can be found at GitHub5

5.3.2 Experimental Methodology

To find the best parameters of the proposed technique and also to compare it against the

state of the art, we chose two experimental protocols, one is the 5× 2 cross-validation and

the other is the cross dataset.

In the 5 × 2 cross validation protocol, for each one of the five rounds, the data is

randomly divided, with 50% of the data used as the training set of the classifier and the

other 50% of data used for testing. Then, the process is inverted: the data used for testing

is used for training and the data used for training is used for testing. This process is

repeated five times (five rounds). In the end, 10 experiments of training and testing of

the classifier are performed. This is regarded as an optimal benchmarking protocol for

learning algorithms [138]. We used data from the CASIA_COMP and CASIA_UNCOMP

dataset in this experiment.

The second form of validation considers the cross-dataset protocol, a more real-world

situation, whereby the training data is known and come from one database and the testing

dataset come from a different and unknown dataset collected by different people, with

different acquisition conditions, parameters and settings. In this scenario, we use just one

training (with the known data) and one test (with the unknown data). The training data

here come from CASIA_COMP and CASIA_UNCOMP and the testing data came from

COMPEX and UCID. This setup is close to a real-world situation, whereby the data used

during operation of the method may come from completely different acquisition conditions.

5.3.3 State-of-the Art Methods Considered

We compare the proposed methods to some state-of-the-art approaches presented in

Sec. 2.2.2:

1. Kirchner and Fridrich [99] with T = 3 and second order Markov Chains as described

in their work, yielding a 686-d feature vector (hereinafter referred to as SPAM);

5https://github.com/anselmoferreira/median-filtering-detection
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2. Yuan [101] in 3 × 3 blocks and a 44-d feature vector (hereinafter referred to as MFF);

and

3. Chen et al. [103, 104] with parameters T=10, B=3 and K=2 and 56-dimensional

feature vectors as described in their work (which we hereinafter referred to as GLF).

We use these three approaches because the SPAM and MFF source were available

(in [166] and [167], respectively) and the papers that presents GLF [103, 104] were clear

enough to allow a complete reproduction of the work.

5.3.4 Metrics and Statistical Tests

To compare the proposed method against the state of the art, we choose a set of standard

metrics and conduct tests to identify if there is statistical significance in the reported

results.

The first metric used is the classification accuracy. It measures the ratio of the number

of correct positive (in our case, median filtered images) and negative (pristine images)

classifications and the total set of testing data. It is calculated as

Accuracy =
TP + TN

TP + FN + TN + FP
, (5.9)

where TP, TN, FP and FN are true positives, true negatives, false positives and false

negatives respectively. We don’t use the normalized accuracy here because the positive

and negative examples in our data are always balanced.

The Sensitivity is the ratio of number of samples correctly classified as positive and

the total number of positive samples in the testing data. It is also known as true positive

rate and is calculated as

Sensitivity =
TP

TP + FN
. (5.10)

The Specificity is the ratio of number of samples correctly classified as negative and

the total number of negative samples in the testing data. It is also known as true negative

rate and is calculated as

Specificity =
TN

TN + FP
. (5.11)

The precision tells the percentage of correct positive classifications given all the positive

classifications given by the classifier. It is calculated as

Precision =
TP

TP + FP
. (5.12)

In the statistical significance tests, we first perform a pre-test to confirm if all techniques

are statistically different. If so, a pairwise test compares one technique against another

(also known as post-test). Each of these steps usually involves a statistical test and a

confidence level. We consider a 95% confidence level for each test, which means that a

p-value returned must be less than 0.05. The pre-test is used to determine if subjects
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change significantly across occasions and conditions. We consider the ANOVA test to

investigate the parameters of the proposed technique and the Friedmann test to cross

validation and cross-dataset experiments. To compare the techniques against each other,

we use the Tukey-Kramer approach (also known as Honestly Significant Difference (HSD))

in the investigation of the parameters of the proposed technique and also the McNemar’s

test in the cross-validation and cross-dataset experiments.

5.4 Experiments and Discussion

In this section, we show the experiments performed to validate the proposed technique.

We present the experiments for finding the best parameters of the proposed technique,

study the importance of the features proposed and compare it to the state of the art in a

cross-validation and cross-dataset scenarios, using compressed and uncompressed images.

5.4.1 Tuning of Parameters

The minimal number of perturbations n and number of windows q of the proposed technique

were found after statistical tests in a series of 5× 2 cross-validation experiments in the

CASIA_COMP [5] dataset. Here, we characterize the images as described in Sec. 5.2 and

train an SVM classifier with an RBF kernel, whose parameters are automatically learned

during training, according to the 5× 2 cross-validation protocol used.

In this experiment, we fixed q = 8 image quality measures to be calculated at each

filtering, comparing the output with the input image. The blurring is done progressively f

times, where we vary f in 1 ≤ f ≤ 5. We use m different scales of the median filtering

mask, where 1 ≤ m ≤ 4. With these, the total number of experiments performed to find

the best parameters was 25. Table 5.2 shows the results of the best parameters (f,m).

Table 5.3 shows the ANOVA statistical test results, whereby we investigate the windows

and perturbations factors.

Name Label #Perturbations (f) Windows (m) Accuracy
Three Perturbations, Single Window TPOW 3 3 × 3 98.8% ± 0.22

Four Perturbations, Multiple Windows FPMW 4 3 × 3, 5×5, 7×7, 9×9 98.7% ± 0.29
Three Perturbations, Multiple Windows TPMW 3 3 × 3, 5×5, 7×7, 9×9 98.7% ± 0.28

Table 5.2: Mean classification accuracy after a 5 × 2 cross-validation on CASIA dataset [5].

Factor p-value
Window 2.2e-16

Perturbation 2.2e-16
Window x Perturbation 2.2e-16

Table 5.3: ANOVA p-value results in accuracy values for 25 experiments in the CASIA
dataset [5].

The ANOVA statistical test results in Table 5.3 shows that varying the number of

windows and perturbations are statistically significant (p-value < 0.05) and these factors



CHAPTER 5. MULTI-ANALYSIS SOLUTIONS FOR MEDIAN FILTERING DETECTION101

are correlated. Figure 5.2 depicts the results of Tukey-HSD tests for pairwise comparisons.
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Figure 5.2: (a) Tukey-HSD pairwise test comparison in factor perturbation (b) Tukey-HSD
pairwise test comparison in factor window.

Fig. 5.2 shows that there is no statistical difference when using three and four, three

and five and four and five perturbations. However, there is significant difference when

using more than one perturbation. In addition, varying the window sizes is statistically

significant according to Fig. 5.2. The ANOVA test in the three best algorithms yielded a p-

value of 0.79, which helps us to state that the accuracy difference between these techniques

is not statistically significant. Hence, we chose to use the three last configurations (namely

TPOW, TPMW and FPMW) in the second part of the experiments.

5.4.2 Studying the Importance of Features

To justify the use of multiple scales and perturbations, we used the random forest classifi-

cation technique. We used this classifier to investigate the importance of the used features

after the training. We then show, in Figure 5.3, the features importance after training

the classifier with the proposed TPMW configuration. Figure 5.3 shows that, if training

the classifier with pristine images and 3 × 3 median filtered images (i.e., images from

database CASIA_COMP), the most important dimensions (or peaks) are located in the

area of the first 24 dimensions (the same dimensions from the proposed TPOW) and are

in the first scale of median mask (3 × 3 filter). These 24 features comprise eight image

quality metrics calculated after three perturbations. We find that the three most important

dimensions are the first, sixth and the fourteenth (i.e., the Mean Squared Error of the

first perturbation, the Maximum Difference of the first perturbation and the Maximum

Difference of the second perturbation, respectively). The quality metrics calculated in

other scales are not so important for the classification in this scenario. Hence, the use of

multiple perturbations is justified here.

In another scenario, we investigate the dimensions importance when the training has

pristine and blurred images with different median filtering windows scales (rather than

only 3 × 3). We trained the Random Forest classifier with the proposed TPMW applied
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According to Table 5.4, the best technique considering the cross-dataset scenario is

the proposed FPMW, with an 87.1% mean accuracy. This highlights the use of multiple

and multi-scale perturbations. We find that this better captures the streaking artifacts

already present in median filtering images. Although this technique does not show the best

sensitivity and specificity, it showed the best accuracy because it showed specificity and

sensitivity higher than 80%. Also, it showed the best precision in this experiment (91.2%).

The proposed META uses the three distances to the classifier hyperplanes (TPOW,

TPMW, and FPMW) as a three dimensional vector for classification. It achieves the

second best mean specificity (95%) but it has the worst accuracy in these experiments.

This shows that META fusion as a combination of the three proposed methods is not

necessary or worth, in general.

The proposed method TPOW yields the second worst mean sensitivity of the exper-

iments (73.9%). Hence, the use of just one single filter scale (median filter mask size)

cannot highlight the streaking artifacts and more scales are recommended. The proposed

TPMW on the other hand, shows the second best mean accuracy results of the experiment

(86.6%), showing that the number of perturbations influences the classification result.

The proposed VOTE method combining the three best proposed methods using majority

voting correctly classified 85.7% of the test images. Although not statistically significant

when compared to the best single approach here (FPMW, no fusion) in all experiments

in the cross-validation scenario, VOTE yielded the best accuracy considering the cross-

validation protocol, but it is not the best in this cross-dataset setup. This is explained

because the combined methods used by VOTE (FPMW, TPMW, and TPOW) performed

well enough individually to boost VOTE in the cross-validation scenario in compressed

or in uncompressed scenario. However, the same does not happen in the more strict

cross-dataset evaluation protocol, as the failure happens because one of the classifiers used

in the fusion (TPOW) had worse classification in compressed and uncompressed images

datasets. As we are using both compressed and uncompressed images in this experiment,

the error multiplied and the fusion accuracy decreased. This highlights the high complexity

of the compressed testing dataset, whereby images were taken by different cameras and

smartphones, with different resolutions, noise and light conditions, illustrating what is the

closest to a real-world situation.

Regarding the state of the art, the best mean sensitivity was from MFF (95.2%). This

means that this approach is the best to detect forgeries, although its low mean specificity

(53.3%) render this technique several problems in the forensic scenario as it would blame

several innocents (false detections), which is unacceptable in a criminal scenario. The best

mean specificity is from SPAM: 96%. This means that this last technique is the best to

avoid blaming innocents, although its low mean sensitivity (67.5%) misses about one third

of the forgeries.

In summary, multiple perturbations and multiple windows (FPMW) outperform the

state-of-the-art methods in this complex cross-dataset setup. Also, as FPMW performs

well in nearly all tested scenarios, we further recommend this technique for better median

filtering detection.
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5.5 Final Considerations and Further Developments

In this chapter, we present novel median filtering detection approaches based on multi-

perturbations using one or multiple scales of median filtering. Our technique is different

from others because we describe pristine and blurred images by means of image quality

metrics, calculated after multiple filterings with different window sizes (filtering intensities),

building a discriminative feature space for later decision making. We showed our methods’

reliability considering cross-validation and cross-dataset scenarios, with compressed and

uncompressed images.

The obtained results here further emphasise the importance of taking into account

multiple perturbations in our proposed techniques as they better highlight the median

filtering artifacts, namely the streaking artifacts. The analogy with text compression

is clear: when a series of text compressions are done, if the file is already compressed,

chances are that the file size will increase due to the redundancy already coded in previous

compressions. Therefore, to find if a suspect text is compressed, one needs just to compress

it again and compare the file sizes. In median filtering images, when a series of filterings

are performed, if the image is already filtered, there are chances that the streaking artifacts

are more propagated and highlighted than in pristine (non-filtered) images. To find if

a suspect image is blurred, we can successively blur it and compare the results to the

original image using image quality metrics and analyze the behavior of such measures.

Complementing, the use of multiscale filters are also important because, once the

original mask used for filtering a suspect image is unknown, the multi-scale filters can be

used as some of them can propagate the streaking in a more efficient way than others. A

study of the most important features corroborate our findings, showing the features from

different scales and perturbations are activated during training.

Finally, observe that the fusion of the three proposed approaches is not necessary, in

general, because it works only when all the proposed techniques already perform reasonably

well and when they are complementary in some way. Therefore, the take-home method

here is the FPMW, first, because the best approaches in the cross-validation experiments in

compressed and uncompressed images (VOTE and MFF respectively) are not statistically

significantly better when compared to FPMW. Also, the proposed FPMW is the best in

the cross-dataset scenario, where there is only one chance to detect forgeries (there is only

one test which has different acquisition conditions than the training images). We find

that this situation is better than the cross-validation, because in a real-world setup, the

data acquired often are in this condition. Finally, FPMW is faster than applying three

approaches and combining them (as VOTE does).

For future work, some interesting research branches span out. For instance, one

could focus on studying more image quality metrics to be incorporated in the description

phase; including more median filtering variations in the training sets; and studying the

application of the proposed technique on tiny image patches. Finally, one research branch

worth pursuing would be validating the proposed method and possible enhancements

under median filtering anti-forensic operations such as the one proposed by Fontani and

Barni [168].



Chapter 6

Multi-Analysis Classifier Fusion for

Copy-Move Detection

In this chapter, we propose classifier fusion approaches using our multi-analysis solutions

to take advantage of the natural complementarity present in several copy-move detectors

in the literature. For that we combine such detectors through multi-analysis Behavior

Knowledge Space Representations. These approaches analyze the input data in multiple

scales to generate more samples, more resilient to noise and rescaling, common operations

in image forgery. We also employ a multi-directional post-processing approach to the

neighborhood of a pixel in order to gather more evidence regarding its true class, instead

of the common individual analysis performed by most approaches in the literature. The

multi-analysis methods herein are performed in the classification step because the proposed

approach is applied on existing individual classifiers published in the scientific literature,

acting to define the final classification based on the fusion of outputs from such classifiers.

6.1 Motivation

In the context of fauxtography and digital misleading made possible through image ma-

nipulation, the scientific community has been seriously focused on fighting misinformation

and detecting these activities in the past few years. One of the most common forgeries

consists of selecting, copying and pasting regions from and to an image, multiplying or

hiding objects or parts of interest, a process referred to as copy-move tampering or cloning.

Basically, commonly known copy-move detection approaches are divided into two

branches according to Christlein et al. [1]. The first one uses image patches containing raw

or transformed pixels and, by lexicographical sorting and thresholding, similar patches

are found in the image. The second set of approaches uses similarity of points of interest,

such as those yielded by the Scale-Invariant Feature Transform (SIFT) [169] and also the

Speeded-Up Robust Features (SURF) [170] to find copied and pasted regions. By using

just image patches, however, rotated and resized regions are difficult to detect. In turn,

while points of interest-based approaches can solve this problem as they are invariant

to uniform scaling and orientation, they are only partially invariant to affine distortion

and illumination changes [169]. As a viable and more interesting alternative to solve the

108
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problem, the combination of these approaches seems promising, as the fusion of different

approaches can explore the best of both worlds.

Several methodologies were proposed in the literature in this regard, such as the

Majority Voting, Threshold Voting and the Bayesian Fusion [133]. Notwithstanding, these

classical approaches for classifier fusion in the copy-move forgery detection scenario do not

show groundbreaking effectiveness, as they have strong simplification assumptions on the

data that, oftentimes, cannot capture two important properties of the problem: (i) a pixel

classification is not solely dependent on the actual pixel, it depends also on the pixel’s

neighborhood due to the very nature of the forgery process, which involves combining

different pixels in a given neighborhood and (ii) it is necessary to know, for each method

that is good for classification, the cases in which the others methods are not, which can

decrease the detection accuracy after a voting is performed, for example. Therefore, it

is necessary to know the probability of a fake pixel that has not been detected by most

of the fused approaches. The problem of fusion here must be designed as a conditional

probability estimation problem instead.

A very promising and under explored way of modelling conditional probabilities for

classifier fusion is through the Behaviour Knowledge Space representation (BKS) of the

data [134]. This fusion approach encodes the combination of outputs of the combined

classifiers as a posteriori probabilities in a probability table on a training step. In the

testing step, the combination of outputs from the approaches applied in a suspected

image is queried in the table, which returns the probability of that combination being the

combination of a forged pixel. The final probability map is thresholded to decide to which

class each combination of outputs belongs. The drawbacks of this approach for image

processing applications in general are: (i) it is almost impossible to have all the 2K classifier

output combinations in the training data (considering a binary classification problem) to

fill the table properly (in a digital image forensic scenario, it is very difficult to gather

enough training examples, as each image is forged in a different way and detecting all

details of image forgeries by these classifiers is a daunting task); and (ii) the probabilities

in this table do not take into account the intrinsic dependencies present in the data,

which can yield imprecise classifications. Thus far, these aspects have limited the use of

conditional probabilities for modeling output combinations of classifiers in the copy-move

forensic scenario.

In this work, we deal with the limitations of fusing approaches by designing a robust

and efficient Behaviour knowledge Space (BKS) [134] representation more appropriate

for copy-move detection, modeling the problem as a conditional probability estimation

problem instead. The extensions and contributions are threefold.

First, we deal with the problem of missing probability estimations caused by lack of

training data, using generative models to better determine missing entries and remove noise

from the existing probabilities in the representation space adopted. This first contribution

is very important when combining forgery detection algorithms as oftentimes they are

complementary but it is very hard to find enough training examples to cover all cross-effects

of their combinations. Second, we incorporate expert knowledge to the adopted BKS

representation in order to be more robust to some common operations in image tampering

that can lead to confusion in the classification of individual classifiers, such as resizing
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and noise addition. For that, we propose a Multiscale Behavior Knowledge representation,

which takes into account different scales of training data. Finally, we deal with the problem

of individual pixel classification, present in most copy-move detection approaches, which

can decrease the classification accuracy, as the neighborhood plays an important role

in the fate of a pixel’s classification. For that we incorporate a post-processing step to

the detection BKS-based technique, which classifies a pixel based on the outcomes of its

neighborhood.

We show by experiments that these three problems when properly dealt with yield

a better classifier (i.e., forgery detector), which takes into account the benefits of each

individual classifier aggregated and is statistically better than its counterparts in the

literature. These extensions were properly thought of and custom-taylored to the problem

of forgery detection and, we believe, represent a major leap toward the design of more

effective forensic methods that can take advantage of complementary features to solve a

hard problem.

We organized the remainder of this chapter into four sections. In section 6.2, we

introduce the proposed schemes to perform the fusion of classifiers based on BKS modelling.

In section 6.3, we set forth the experimental setup used to validate the proposed methods

while, in section 6.4, we present the experimental results. Finally, in section 6.5, we

conclude the chapter and discuss some possible future work.

6.2 Multi-Scale and Multi-Directional Behavior Knowl-

edge Space Classification for Forgery Detection

In order to better understand the BKS fusion applied in copy-move detection and our

contributions in this chapter, we discuss how the single BKS-based classification workflow

works for copy-move detection. Firstly, given a training set of images, we apply K copy-

move detectors and use their binary detection maps to generate the Behavior Knowledge

Space representation. This is done by analyzing, pixel by pixel, the combination of K

outputs for that pixel and the class of that pixel in the ground-truth used in a training

set. In the testing set, the combination of the K outputs is queried in the table and a

decision threshold in the conditional probability of that combination is used to classify the

pixel in the test image.

In this chapter we propose a series of BKS-based approaches aimed at fighting the

drawbacks presented for BKS fusion, extending it to consider the multi-scale and multi-

directionality nature of the data in the copy-move forgery detection problem. The

multi-scale approaches applies Gaussian pyramidal decomposition of the training images,

filling the remaining conditional probabilities in the BKS representation that could not

be found using only the original scale of training images. They are also used to give

better examples to the BKS, as the pyramidal decomposition eliminates noise that can be

mislabeled as copy-move pixels.

The multidirectionality approaches, on the other hand, aim at improving the classifica-

tion results, by taking into account the dependency nature of the data. We also propose

the use of generative models that can act alone or allied with the multiscale approaches to
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better estimate the probabilities of forgeries when combining different methods. Figure 6.1

depicts the pipeline of our proposed BKS-based approaches aimed at copy-move detection.

Algorithm 2 shows the main steps of the proposed approach.

Algorithm 2: Proposed Method.

1 function CMD_BKS (I, BKS,K, neigh_size, neigh_type)
Input : I: Input image to detect copy move forgery.

BKS: Multiscale BKS Table.
K: Number of underlying forgery detectors to combine.
neigh_size: Size of neighborhood to analyze.
neigh_type: Type of neighborhood analysis.

Output :B: Binary image with the manipulation detection
2 //Apply each detection approach individually per pixel
3 for each pixel i in I do
4 for k=1 to K do
5 output[k]=detect_forgery(k,i)
6 end
7 //Look for outputs probability in the BKS table built as discussed in sections

6.2.1 and 6.2.2
8 prob=search_table(output, BKS);
9 prob_map(i)=prob;

10 end
11 //Perform the neighborhood analysis using approaches discussed in section 6.2.3
12 for each pixel j in prob_map do
13 class=neigh_analysis(prob_map(j), neigh_size, neigh_type);
14 B(j)=class;

15 end
16 return B ;

The multi-analysis procedure performed herein is done in the classification step of input

image analysis, as the proposed approach is applied when combining existing individual

classifiers proposed before, acting to define the final classification based on such classifiers.

The scenarios used to solve this problem are the multi-direction and multi-scale.

We now turn our attention to discussing the main contributions for BKS-based fusion

detection of copy-move forgeries.

6.2.1 Multiscale Behavior Knowledge Space

In this chapter, we propose a novel data fusion approach by using multiscale analysis of

the data to build a more robust BKS representation, invariant to operations such as noise

and resizing. For that, we use the Pyramidal Decomposition [121] from input images. We

use the pyramidal decomposition in two ways in our proposed BKS classification:

1. Multiscale BKS: we use s image scales of training images to generate only one BKS

representation table used for testing. This is performed to complete the BKS table

with more samples robust to common operations used with copy-move tampering,

such as noise addition and resizing.
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6.2.2 Generative Models for Behavior Knowledge Space Comple-

tion

Even using the multiscale approach presented before, some conditional probabilities cannot

be calculated from the training set, as some output combinations of classifiers may never

be present in such data. This can be a problem because, during testing, an unknown entry

could be considered as a false negative. In order to overcome this issue, we propose a

completion procedure based on regression, as it is widely used to predict unknown values

from existing ones.

We propose to train Random Forests and Support Vector Regressions with the entries in

the eventually incomplete Behavior-Knowledge Space representation table. Our hypotheses

is that the regression should eliminate some noises present in the training data and, thus,

generalize better for the testing environment. We detail each of these approaches in the

following.

Random Forests (RFs)

Random Forests is a method composed by a collection of classification or regression trees,

each constructed upon a random resampling of the original training set. In the notation

provided by [171], a training set is denoted by L = {(xi, yi) , i = 1, 2, ..., N} where N is

the number of samples, xi is the vector of attributes and yi ∈ {1, 2, ..., C} is the n-th

example in the training set.

Before describing the Random Forest procedure, let’s first consider the concept of

bootstrap aggregation or tree bagging applied to tree learners. Given a training set L,

bagging repeatedly selects a random sample with replacement of the training set and fits

trees to such samples. This process is repeated B times. In each iteration b, we sample

with replacement, N examples from L, creating Lb, and train a regression tree fb on

Lb. After training, we can predict the outcome of unseen examples xt by averaging the

predictions from all the individual regression trees on xt

f̂ =
1

B

B
∑

b=1

f̂b(xt) (6.1)

The bootstrapping decreases the variance without impacting the bias of the model

thus leading to a better model performance. As the parameter B is free, we can set its

value through cross-validation, or by observing the mean prediction error on each training

sample xi, using only the trees that do not contain xi in their bootstrap sample, a process

referred to as out-of-bag error.

The difference of the process described above and actual random forests is that RFs

use a modified tree learning algorithm that selects a random subset of the features for

each candidate split (tree) in the learning process, an approach oftentimes referred to as

“feature bagging”. This sampling is applied mostly to reduce correlation among different

trees and, therefore, better explore the feature space. More information about Random

Forests and their properties can be found in [171]

In our scenario, Random Forests will be used to fill all the BKS entries. We use as
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x an n− dimensional vector containing the binary output of each copy-move detection

approach that are present in the BKS tables and, as y, we use the probabilities also in

the BKS entries. For training, we use only x and y (binary outputs combinations and

probabilities, respectively) that are already present in the BKS entries (binary outputs

without calculated probabilities are discarded for training). Then, after trained, the

random forests will predict the missing probabilities in the BKS table for each table entry

(outcomes of the detectors). For instance, suppose a BKS in Fig. 6.1. In that case, the

table entry x = {0, 0} is missing. After the RF regression, it is estimated in P (x) = 0.03.

Support Vector Regression (SVR)

Consider again a training data set L = {(xi, yi) | i = 1, 2, . . . ,N} where xi denotes the

input vectors and associated targets yi and N the number of samples. Training an original

SVR means solving the regression problem as a convex optimization [172]:

minimize
1

2
‖w‖2 , subject to

{

yi − (w.x+ b) ≤ ε

(w.x+ b)− yi ≤ ε
(6.2)

The convex optimization problem is feasible if there exists a function that approximates

all pairs (xi, yi) with ε precision. When solving the complex optimization for finding w,

there are points that often violate the restrictions of the problem and cannot guarantee

the feasibility. Then, we adopt a loss function that introduces non-negative slack variables

ξi, ξi
∗ to the problem formulation to cope with infeasible constraints of the optimization

problem in Equation 6.2.

In the nonlinear case, we use a function to map Ψ : χ → ℑ onto a feature space

ℑ [172] and apply the SVM Regression algorithm on the transformed data. As [172],

the Supprt Vector algorithm only depends on dot products between patterns xi. So,

k(x, x′) = Ψ(x, x′) rather than Ψ explicitly. In this case, we operate in this transformed

space. More details about SVR can be found in [172].

In our scenario, SVR will be used the same way as Random Forests were used to fill

all the BKS entries. We use as x an n− dimensional vector containing the binary output

of each copy-move detection approach that are present in the BKS tables and, as y, we

use the probabilities also in the BKS entries. For training, we use only x and y (binary

outputs combinations and probabilities, respectively) that are already present in the BKS

entries (binary outputs without calculated probabilities are discarded for training). Then,

after trained, the random forests will predict the missing probabilities in the BKS table

for each table entry (outcomes of the detectors). For instance, suppose a BKS in Fig. 6.1.

In that case, the table entry x = {0, 0} is missing. After the RF regression, it is estimated

in P (x) = 0.05.

6.2.3 Multidirectional Neighborhood Analysis for BKS Classifi-

cation

In the first formulation of the BKS fusion classification scheme, the testing phase works

as follows: first, the table is queried for the probability given the output combination of
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individual classifiers for a testing pixel. This method will produce a probability of a pixel

being forged, given a combination of the individual classifiers, creating a final probability

map for the image, which is then compared pixel-wise to a threshold to classify its pixels

as forged or not. The probability and threshold are always the same for a particular

combination of classifiers’ output and this can be a problem, as the neighborhood also has

influence on a pixel’s classification. To solve this issue, we propose novel neighborhood-

based classification schemes considering the Behavior Knowledge Space-based classification

fusion. These new approaches are based on multidirectional analysis of the data, classifying

a pixel based on its neighborhood. We discuss each of them in the following subsections.

Neighborhood Agreement (NA)

The Neighborhood Agreement method uses the probability computed with the BKS

method, but taking into account the information present in the pixel neighborhood. The

rationale is that a forged region should have a minimum size and that an observation of

the detectors’ outputs in isolated pixels should be conditioned with the observations of

nearby pixels as well.

In this proposed approach, the probability map used for further classification is

generated after a convolution operation on the original probability map, built after each

image pixel evaluation in our extended BKS model. The kernel we select for this approach

is the mean filter. The new probability of a pixel is the mean probability of its neighbors.

A base threshold of 0.5 can be used to perform the final detection map (conditional

probabilities with higher values can pinpoint a forgery).

Local Variable Threshold (LVT)

The main idea behind this method is using the neighborhood of a pixel to dynamically

adapt the decision threshold to classify it. The rationale is that if the neighbors of a pixel

p are likely forged, then p is also probably a forged pixel. In other words, the more pixels

are forgeries in the neighboord of p, the more likely p is to be forged, dynamically adapting

the decision threshold.

To create the dynamical decision process, we create a local variable threshold that

moves into a fixed interval around a base threshold, hereinafter referred to as the Max

Displacement (MD). If we define MD to be 0.2, for instance, and the base threshold T

to be 0.5, it means that we expect that the threshold can take values in the interval [0.3,

0.7]. The final Local Variable Threshold for a given neighborhood is calculated as

LV T = T − 2× (MC − T )×MD, (6.3)

where MC is the mean classification output of pixels in a dubious pixel’s neighborhood.

As an example, suppose a 3× 3 neighborhood with five pixels classified as copy-move

pixels and our task is to classify the center pixel of this region. For this case, the threshold

for that pixel is V T = 0.5 − 2 × (
5

8
− 0.5) × 0.2 = 0.45. If the BKS table gives the

probability of being forged as, for instance, 0.48 but the pixel is a copy-moved pixel, then
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a false negative would be avoided due to the less strict threshold 0.45 in this proposed

approach.

6.2.4 Complexity Analysis

The complexity of the proposed method depends mostly on the complexity of three elements:

complexity of underlying classifiers used in the fusion, complexity to access the probability

of the combined responses in the BKS representational space and the complexity of the

neighborhood (multi-directional) analysis. The complexity of the underlying classifiers

used in the fusion is clearly dominated by the complexity of the most complex method.

Considering k methods to be combined and assuming that the most complex one is O(N2),

the complexity of the combined classifier is O(kN2) = O(N2).

The complexity of accessing the BKS table can be done in O(1) if we implement the

representation space with a hash. The complexity of the neighborhood analysis is done in a

fixed-neighborhood size times the number of pixels in the image. Hence the neighborhood

analysis complexity is O(N). Summing up, the final complexity of proposed method is

O(N2 + 1 +N) = O(N2). In other words, the complexity of the proposed fusion method

depends on the complexity of the underlying methods used in the fusion scheme.

6.2.5 Known Limitations

As the proposed method works with fusion of classifiers, its weakness happens when there

is no complementarity of the underlying classifiers for a given image. For example, when

combining block-based methods and interest points-based methods, if the first ones fail in

detecting the forgery and the image is too homogeneous to have enough interest points

detected, the fusion can fail.

Finally, as the method consists of running and combining k detection methods, search

the output combination in the multiscale BKS representational space and the neighborhood

should be analyzed for the final classification, the proposed method is slightly slower

when compared to other existing methods, mainly the ones not using any fusion scheme.

However, the obtained effectiveness boost is significant and worth the slight increase in

the computational time, as we show in the experiments.

6.3 Experimental Setup

With all the proposed solutions in place, we start turning our attention to the methodology

used to validate them against counterparts in the literature. In this section, we show the

datasets, the validation setup, the statistics used for comparison, the methods considered

and the variations of the proposed approaches used in the experiments.

6.3.1 Datasets

We have used two datasets for evaluating and comparing the proposed techniques with

the ones from the literature. The first dataset, proposed and used in [4], comprises 108
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examples of copy-move forgeries. Each image is stored in uncompressed PNG format and

in compressed JPEG format, totalling 216 images. The images have different dimensions,

varying from 845× 634 pixels (the smallest) to 1, 296× 972 pixels (the largest). We refer

to this dataset as Copy-Move Hard (CPH) as it comprises forgeries created through mixed

operations such as resizing, rotation, scaling, compression, light matching, among others.

We separate this dataset in two subsets: the one comprising the compressed version of

the images (CPHCOMPRESSED) with 108 images and the uncompressed version of the

images (CPHALL) also with 108 images. Each subset may be further break down as:

• 23 images, in which the cloned area was just copied and moved (simple case);

• 25 images with a rotation of the duplicated area (orientations in the range of -90

and 180 degrees);

• 25 images with cloned area resizing (scaling factors between 80% and 154%);

• 35 images involving rotation and resizing altogether.

The second dataset comprises images from Christlein et al. [1] who compared several

copy-move detection methods. We refer to this dataset as Copy-Move Erlangen-Nuremberg

(CMEN). In total, we considered 212 images stored in PNG format with dimensions varying

from 800×533 pixels (the smallest) to 3, 872×2, 592 pixels (the largest). CMEN datasets

comprise:

• 48 images where the cloned area was only copied and then moved (simple case);

• 78 images with a rotation of the duplicated area (orientations of 2, 4, 6, 8, 10, 20, 60

and 180 degrees);

• 86 images with a resizing of the cloned area (scaling factors of 50%, 80%, 91%, 93%,

95%, 97%, 99%, 101%, 103%, 105%, 107%, 109%, 120%, 200%).

We have chosen exactly these two dataset configurations because they are the same

used in the validation of a recent work [4] and are freely available by the authors at

the project’s website1. Moreover, we use a slightly different validation from [4] when

performing experiments on these two datasets, as there is a training step in our proposed

approaches and some state-of-the-art fusion techniques. In the experiments reported in

this chapter, we randomly choose images from these datasets to be used in training and

test steps in a validation protocol explained in section 6.3.2.

6.3.2 Setup

We adopt a 5 × 2 cross-validation protocol in the experiments, as the proposed approaches

need a training stage. Five replications of the 2-fold cross-validation protocol are performed.

In each one, a set S is randomly divided into S1 and S2 and a classifier is trained on S1

and tested on S2. Thereafter, training/testing sets are switched and the process repeated.

There are 5× 2 = 10 different executions in the end of the process. This is considered an

optimal benchmarking protocol for learning algorithms [138].

1http://dx.doi.org/10.6084/m9.figshare.978736
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6.3.3 Metrics and Statistics

In the experiments, all metrics are calculated in a pixel-level fashion to evaluate the

effectiveness of the detection maps yielded by the methods applied on the benchmarks.

This approach has been chosen mainly because it is the preferred approach used in the IEEE

Image Forensics Challenge (IFC) presented in [173]. It is worth mentioning that recent

trends in the information forensics community have pushed for pixel-wise classification

and localization instead of only image-wise binary metrics. For evaluating all the proposed

methods against the state of the art, we have chosen the following metrics, also used in

the IFC [173]:

• True Positive Rate (TPR): also known as recall, it indicates the percentage of

correctly classified copy-move/cloned (or positive) regions TPR = |TP |
|Rclone|

, where

|TP | (True Positive) represents the number of pixels correctly classified as cloned in

the detection map, and |Rclone| represents the number of real cloned pixels in the

reference map.

• False Positive Rate (FPR): indicates the percentage of incorrectly located cloned

regions FPR = |FP |
|Rnormal|

, where |FP | (False Positive) represents the number of pixels

wrongly classified as cloned in the detection map, and |Rnormal| represents the number

of pixels, in the reference map, that do not belong to the cloned regions.

• Accuracy (ACC): gives the quality of detection based on TPR and TNR (True

Negative Rate), which indicates the percentage of correctly located non-cloned

regions ACC = TPR+(1−FPR)
2

, where (1− FPR) represents the TNR.

• Precision: is the fraction of events in which the classifier correctly classified forged

pixels out of all instances classified as being copy-move pixels Precision = TPR
TPR+FPR

.

• F-Measure: is a measure that can be interpreted as the harmonic mean of precision

and recall (also known as True Positive Rate, or TPR as discussed before). It reaches

its best value at 1 and worst score at 0:

f = 2 ·
Precision × TPR

Precision + TPR
. (6.4)

We also report Standard Deviations (STD) for TPR, FPR and ACC in all experiments

to give an idea of how the results vary across the different cross-validation rounds.

A series of statistical tests are also performed to check if the reported results are

significantly different. First, we confirm if all techniques are statistically different (also

known as pre-test). If so, we check the techniques pairwise to define which ones are

statistically different when compared to each other (also known as post-test). Each of these

steps usually involves a statistical test and a confidence level for the test. We consider a

confidence level of 95% for each test. As pre-test, we considered the Friedmann test [174],

a non-parametric test used to determine if subjects change significantly across occasions

and conditions. For pairwise comparison, also known as multi-comparison approach, we

use the Wilcoxon rank-sum paired test [175] for two reasons: (i) we do not assume that the
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difference between the two variables being compared is interval and normally distributed;

and (ii) the sample sizes are small (10 f-measures per method representing each result

of the 5× 2 cross validation procedure). As there are multiple pairwise comparisons, a

p-adjustment must be done during the tests. We chose the p-value adjustment using the

method by Benjamini and Yekutieli [176] as it controls the false discovery rate in the test,

being more powerful than other p-value adjustments methods, such as Bonferroni [177] or

Holm [178].

6.3.4 Implementation Aspects of the Proposed Methods

In this section, we discuss a series of variations of the proposed approaches based on

multi-scale and multi-directional evaluation of the considered BKS representations:

1. Initial BKS proposed methods considering the Support Vector Regression (BKS-

SVR) and Random Forest (BKS-RF) regression taking place for finding missing

probabilities in the training data.

2. Second set of proposed methods using the multidirectional neighborhood analysis

techniques on top of the previous two approaches by Neighbor Agreement (BKS-

SVR-NA and BKS-RF-NA) and by Local Variable Threshold (BKS-SVR-LVT and

BKS-RF-LVT).

3. Third set of proposed methods. In this set, we used Otsu’s threshold [79] on the

probability map representation (BKS-SVR-OTSU and BKS-RF-OTSU) to generate

the final classifications.

Therefore, for a single scale of the image, a total of eight variations of the proposed

approach are applied. For the Local Variable Threshold approach, we define the Max

Displacement parameter (MD) to be 0.2 and base threshold T to be 0.5 in all variations

of the proposed approaches where LVT is used.

For multiple scales, we also use a similar configuration as presented in section 6.2.1

(we only report the Local Variable Threshold approach because it yielded the best results).

We label these approaches as MULTISCALE VOTING BKS-RF-LVT, MULTISCALE

VOTING BKS-SVR-LVT, MULTISCALE BKS-RF-LVT and MULTISCALE BKS-SVR-

LVT respectively), totalling 12 proposed approaches.

For finding the best parameters in the used methods, we considered a simple grid-search

procedure using 80% of the training from one fold of the 5× 2 cross validation for training

and the remaining 20% for validation. The experiments results allowed us to specify a 9×9

window in the proposed Local Variable Threshold approach for all kinds of images as well

as a 9× 9 window for the Neighborhood Agreement in the case of uncompressed images.

For the Neighborhood Agreement in compressed images when used with random forest

regression, it is used a 5× 5 window while the version with SVR uses a 3×3 window. All

the parameters, once again, are automatically calculated based on the training data. For

Random Forests, we varied the parameter number of trees in the forest and the parameter

number of features randomly sampled and found the best ones as being (1, 000; 2) and

(250; 2) for compressed and uncompressed images, respectively. For SVR, we varied the
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Cost and Gamma parameters and found the best ones as being (1; 0.125) and (1; 0.5),

respectively, for compressed and uncompressed images.

All of the proposed methods are based on BKS representation built upon the outcomes

of eight individual detectors: four block-based (Popescu and Farid [109], Ryu et al. [115],

Ryu et al. [116] and Bashar et al. [118]) and four interest-point based (Amerini et al. [130],

Shivakumar and Baboo [3] SIFT, Shivakumar and Baboo [3] SURF and Silva et al. [4]).

We chose this configuration because of the good classification results of these individual

approaches reported in the literature and because we want to take into account the

advantages of block-based and interest point based detections in the fusion of classifiers.

The source code of the proposed approaches in this chapter can be found at GitHub2.

6.3.5 Baselines

We compare the proposed techniques to 16 individual state-of-the-art methods (presented

in section 2.3). These methods have been chosen based on a previous study conducted by

Christlein et al. [1] and based on other works as well. All of these copy-move detectors

and their labels used in this chapter are presented in Table 6.1.

Method Label
Mahdian and Saic [111] Blur

Wang et al. [120] Circle
Fridrich et al. [108] DCT
Bashar et al. [118] DWT
Bayram et al. [119] FMT
Wang et al. [122] Hu
Lin et al. [123] Lin

Bashar et al. [118] KPCA
Popescu and Farid [109] PCA

Shivakumar and Baboo [3] SIFT
Shivakumar and Baboo [3] SURF

Amerini et al. [130] Hierarch-SIFT
Kang and Wei [114] SVD

Ryu et al. [115] Zernike
Ryu et al. [116] Zernike2
Silva et al. [4] Multiscale Voting

Table 6.1: Label associated with each individual state-of-the-art copy-move detector used
in the experiments.

We also compared the proposed methods against all fusion approaches presented in

section 2.4. Basically, we combined the same eight individual state-of-the-art approaches

used in the proposed methods (labeled as DCT, Zernike, Zernike2 and KPCA, Hierarch-

SIFT, SIFT, SURF and Multiscale Voting in Table 6.1). For the threshold voting (which

we label THRESHOLD VOTING), we used two configurations: one with hard voting (we

2https://github.com/anselmoferreira/bks-copy-move-detection



CHAPTER 6. MULTI-ANALYSIS CLASSIFIER FUSION FOR COPY-MOVE DETECTION121

defined six votes as the minimum base threshold to classify a pixel as forged) and other

with soft voting (four positive answers from the fused approaches for a pixel classifies it

as forged). We considered six votes for hard voting because more votes would require a

very high consensus between the combined approaches, missing several detections. We

also use the original Behavior Knowledge Table [134] (labeled simply as BKS) and the

Bayesian Fusion approach [133] (labeled as BAYESIAN FUSION) in the comparison, with

0.5 used as the base threshold. With these four additional fusion approaches, we compare

the proposed methods with a total of 20 state-of-the art copy-move detection techniques,

containing individual and fused classifiers.

6.4 Results and Discussion

We now turn our attention to the experiments and results. We present the experiments

for all methods considering the selected datasets in quantitative forms, along with the

proper statistical analysis of the results. Qualitative results are also shown in this section

to compare the detections maps generated by the proposed approach and the counterparts

in literature.

6.4.1 CPH and CPHCOMPRESSED Datasets

With the datasets presented in section 6.3.1 and methodology described in section 6.3.2

in mind, we now discuss the experimental results, whereby we validate the proposed

approaches comparing them to the state-of-the-art methods presented in section 6.3.5.

Table 6.2 shows results considering the measures presented in section 6.3.3 in a 5 × 2

cross-validation protocol on CPHCOMPRESSED dataset.

Table 6.2 shows results for fusing patch-based and interest-based copy-move approaches

in a probabilistic way as BKS does. The original BKS and the methods proposed in this

chapter outperform all the baselines compared in this experiment. The Local Variable

Threshold was used in the best four approaches, highlighting the importance of studying

the neighborhood before deciding to which class a given pixel belongs, as the proposed

multi-directional thresholding approach does. This approach yielded a 21% reduction of

error if compared to the best state of the art: the common BKS.

The best result is the one which uses the proposed multiscale BKS-based solution

(MULTISCALE BKS-RF-LVT) with an f-measure of 84.14%, higher than the ones achieved

by original BKS (77.69%) and the best individual approach (SURF), with 76.49%. This

shows the benefits of applying the multiscale approach, eliminating noise and updating the

BKS representation with samples robust to resizing and noise additions, using generative

models for missing probabilities estimation and studying the neighborhood before deciding

the class of a given pixel. The fusions by Voting (THRESHOLDING VOTING) and

Bayesian (BAYESIAN FUSION) approaches are far from being acceptable in this scenario.

Varying the base threshold from hard (T = 6) to soft (T = 4) voting does not change the

classification results of THRESHOLDING VOTING, and the assumption of independence

of classifiers (as the Bayesian approach uses) is wrong in this scenario, as the worst results of

this approach shows. The proposed BKS-based methods relying on voting (MULTISCALE
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classifier fusion approaches in the literature failed to completely solve the problem because

they often did not consider important intrinsic properties of the digital image forensic

scenario: conditional and spatial dependence of tampered pixels with respect to their

neighboring pixels.

To address this problem, we explored approaches to combine methods that investigate

the best of two worlds in the copy-move detection problem: block-based and points of

interest detection methods. We proposed three extensions for Behavior Knowledge Space

representation fusion: the multi-scale BKS representations, generative models to complete

missing information in the BKS representation and multi-directional neighborhood analysis

to integrate the neighborhood behavior into the decision-making process of a given pixel.

The proposed approaches proved to perform better than existing ones for fusion and

for individual detectors considering either compressed or uncompressed images. The

main reasons are: (1) the multi-scale approaches act by giving samples to make the

classifier robust to common post-processing operations in tampering, such as noise and

resizing, to feed the Behavior Knowledge Space. This occurs because the Gaussian image

decomposition does Gaussian filtering, making available images without noise to the feeding

of probabilities and it also creates images with multiple dimensions and so, with different

forgery sizes; (2) the generative models aim at completing the remaining conditional

probabilities not present in BKS tables and potentially eliminating noise and outliers in

the existing entries; and (3) the multi-directional approaches perform the classification

of a pixel by investigating also its neighbors, a major difference with respect to previous

fusion methods used in this problem.

However, the method has two main drawbacks: the first one happens when there is

no complementarity of the underlying methods to be combined. This happens when we

combine block- and interest point-based methods and the questioned image has several

homogeneous regions, on which the block-based approaches fail and there are no interest

points enough to be extracted from the image. Finally, the proposed method is slightly less

efficient than its counterparts as it involves combining k detection methods and evaluating

the probability of their outcomes for defining the final detection map.

With our proposed methods, we conclude that the tampering conditional analysis is

essential, and this is done by Behavior Knowledge Space Representation. Besides that, it is

important to consider the pixel spatial dependency. The top best classification results in all

experiments proved that using the Local Variable Threshold multi-directional neighborhood

analysis is suitable to this task. In addition, we solved the inherent BKS representation

problem when dealing with complex issues as the location of image manipulation: lack

of data. To deal with it, we proposed to learn, from just a few examples available in

the training data, the conditional dependence of tampering operations from a set of

used individual detectors. We also have compensated this lack of training data by using

multi-scale decomposition of the input data allied with generative models to calculate

missing probabilities. These decisions make it possible to conclude that generative models

are a key ally to build more robust BKS representation spaces and better tackle the

problem of detecting forgeries in images.

As future work, one promising investigation would be improving the detection methods

to also consider possible counter-forensic techniques. In an adversarial attack scenario, it
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is possible that simple methods and also basic fusion approaches will easily break down.

Robust fusion methods as the ones discussed herein are naturally more resilient to such

attacks especially if we model some possible attacks in the construction of the detection

method itself. This could be done by considering possible attacks in the training images

and some methods to respond to such attacks, which could be incorporated in the low-level

detection step before building the BKS representations. Such new developments and

studies would be paramount for the next stage in digital forensics. Finally, we also aim at

considering other generative models, such as Expectation Maximization, to fill the BKS

tables.
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Conclusion

132



Chapter 7

Conclusions and Future Work

7.1 Final Considerations

Digital Image Forensics procedures normally involve the search for characteristic artifacts

that can represent well defined aspects of a questioned document. To perform source

attribution of a crime-proof document, for example, patterns specific to the device,

intrinsically or extrinsically inserted, may be searched for in the generated data. To

identify an image forgery composed by the splicing of two or more images, several artifacts

can be searched for, such as light inconsistencies in regions of the questioned image, unusual

stitches around a suspected alien region of the image, among others. These artifacts are

regarded as structural inconsistencies and are the cornerstone of several digital image

forensic algorithms. As the clues for image forensic are different, it is only natural that

existing solutions seek different paradigms to solve each problem.

In this thesis, following a slightly different approach toward solving varying forensic

problems, we propose a main idea that can be the basis of several digital image forensic

algorithms: the multi-analysis. This approach considers several scenarios in the investi-

gation of the digital image that can be combined or not, such as multiple directionality,

multiple resolutions, multiple perturbations, multiple representations and multiple data.

All of these take into account the complexity of digital forensic-interest data and can be

used for different applications. One distinguishing aspect of the proposed approach in

this thesis is the fact that it can be used in any step (pre-processing, description and

classification) of the forensic analysis of a questioned image.

Multi-analysis considering multi-perturbation proves to be important in the forensic

analysis of a questioned image as it highlights structural inconsistencies that can be

present in the image, artificially inserting new artifacts where they can already exist. This

can differentiate, for example, images with or without structural inconsistencies, such as

pristine and fake images. We showed in Chapter 5 how the multi-perturbation scenario is

effective for Median Filtering Detection, even in cross-dataset experiments.

The multi-directionality analysis, in turn, is important for the digital image forensic

approach as this scenario considers that the image data is naturally interpolated, so

any pixel is correlated with its neighbors and, in some sense, depends on them. Thus,

multi-directionality is important for finding structural inconsistencies in the data. We

showed that for source attribution, in Chapter 3, the banding should be described using
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all directions of the questioned image and, in Chapter 5, we showed that for classifying a

pixel as pristine or fake all neighbors’ behavior should be considered.

The multi-resolution analysis shows effectiveness as it considers that the structural

inconsistency can happen in multiple scales, as discussed in Chapter 3; this scenario also

inserts artifacts considering filters with non-fixed sizes as discussed in Chapter 5 and

creates additional samples for training a classifier invariant to noisy and resized fake

images, as discussed in Chapter 6.

Finally, multiple representation is important in our multi-analysis because this scenario

can enhance artifacts present in parts of the data by doing different transformations in

such a way that the structural inconsistency can be better represented. If used along

with multiple data, different patches of interest can be extracted from the image data

and all the individual analyses can be aggregated at the end. We show that different

representations (image transforms) of multiple data (regions of interest) are important to

understand printing artifacts with data-driven approaches for laser printer attribution as

we discussed in Chapter 4.

We consider that the main contribution of this thesis for the digital image forensic

area is the introduction of a new idea to be considered when facing an investigation of

questioned documents. Notwithstanding, the proposed approach must be considered also

with a grain of salt. In the case of uncompressed image analysis while detecting median

filtering, for instance, multi-analyses techniques were not useful at pinpointing additional

features for improving the classifications results, as discussed in Chapter 5. Moreover,

if efficiency is an issue, the multi-analyses techniques considered herein must be taken

very carefully. Normally, adding a series of data transformations, neighborhood analyses,

multiple perturbations and inspections at different resolutions of the input data when

seeking for different structural artifacts, can represent a computational burden someone is

not willing to pay.

7.2 Publications Related to the Thesis

As for the publication of the ideas in this thesis we had until this moment three publications

and two submissions to top-tier Journals and Conferences in Forensics, Computer Vision

and Machine Learning. The writing of this thesis was inspired in the following publications:

• Contents in Chapter 3 led to the publication of an article in the Elsevier Forensic

Science International (FSI) journal [152].

• Chapter 4 led to an article (currently under review) submitted to the IEEE Transac-

tions on Image Forensic and Security (T-IFS) journal [180];

• Chapter 5 contents led to two articles; one published in the Iberoamerican Congress

on Pattern Recognition (CIARP) congress [181] and its extension published in the

Journal of Intelligent Data Analysis (J-IDA) [182].

• Chapter 6 led to an article (currently under review) submitted to the IEEE Transac-

tions on Image Processing (T-IP) [183].





Appendix A

Supplementary Information

A.1 Gray-Level Co-Occurrence Matrices Features

The work of Miklineni et al [68] proposed a set of features calculated on top of Gray-Level

Co-Occurrence matrices. We use this same set of features in this work.

Before the features are calculated a set of definitions are extracted from the image: (1)

Number of pixels R in a Region of Interest (ROI), which is the set of all pixels within

the printed area of the character; (2) The gray-level co-occurrence matrices glcm(n,m),

which are two-dimensional histograms per neighborhood direction (dr, dc) showing the

occurrence of pixels n and m in a given distance (dr, dc); (3) The number of neighboring

ROI pixels distant by a (dr, dc) offset Rglcm; (4) GLCM probability estimates pglcm; (5)

marginal probability densities in the row and column directions pr and pc; (6) histograms

of differences D(k); (7) Histograms of sums S(k) and its mean µS; (8) Mean pixel of a

ROI and (9) density of a ROI. Equations A.1 to A.11 formalize these calculations.

R =
∑

(i,j)∈ROI

1 (A.1)

glcm(n,m) =
∑

(i,j),(i+dr,j+dc)∈ROI

1{I(i,j)=n,I(i+dr,j+dc)=m} (A.2)

Rglcm =
∑

(i,j),(i+dr,j+dc)∈ROI

1 (A.3)

pglcm(n,m) =
1

Rglcm

glcm(n,m) (A.4)

pr(n) =
255
∑

m=0

pglcm(n,m) (A.5)

pc(m) =
255
∑

n=0

pglcm(n,m) (A.6)
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D(k) =
∑

0≤n≤255
0≤m≤255
|n−m|=k

pglcm(n,m) (A.7)

S(k) =
∑

0≤n≤255
0≤m≤255
n+m=k

pglcm(n,m) (A.8)

µS =
510
∑

k=0

kS(k) (A.9)

µROI =
1

R

∑

(i,j)∈ROI

I(i, j) (A.10)

pROI(k) =
1

R
1{I(i,j)=k} (A.11)

Eleven features are calculated from the data in Equations A.1 to A.6. The first four

are marginal means and variances defined in Equations A.12 to A.15.

µr =
255
∑

n=0

npr(n) (A.12)

µc =
255
∑

m=0

mpc(m) (A.13)

σ2
r =

255
∑

n=0

n2pr(n)− µ2
r (A.14)

σ2
c =

255
∑

m=0

m2pc(m)− µ2
c (A.15)

The next seven features are the energy of the normalized GLCM, three entropy

measurements, the maximum entry in the GLCM, and two correlation metrics.

E =
255
∑

n=0

255
∑

m=0

p2glcm(n,m) (A.16)

Hrc1 = −

255
∑

n=0

255
∑

m=0

pglcm(n,m) log2(pr(n)pc(m)) (A.17)

Hrc2 = −

255
∑

n=0

255
∑

m=0

pr(n)pc(m) log2(pr(n)pc(m)) (A.18)

Hglcm = −

255
∑

n=0

255
∑

m=0

pglcm(n,m) log2(pglcm(n,m)) (A.19)
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Pmax = max{pglcm(n,m)} (A.20)

ρ1 =
255
∑

n=0

255
∑

m=0

(n− µr)(m− µc)pglcm(n,m)

σrσc

(A.21)

ρ2 =
255
∑

n=0

255
∑

m=0

|n−m|(n+m− µr − µc)pglcm(n,m) (A.22)

Four features, Equations A.23 to A.26, are obtained from the difference histogram D(k)

defined by Equation A.7. They are the energy, entropy, inertia, and local homogeneity of

D(k) respectively.

ED =
255
∑

k=0

D2(k) (A.23)

HD = −
255
∑

k=0

D(k) log2 D(k) (A.24)

ID =
255
∑

k=0

k2D(k) (A.25)

hD =
255
∑

k=0

D(k)

1 + k2
(A.26)

Five features, Equations A.27 to A.31, are obtained from the sum S(k) histogram

defined by Equation A.8 and A.9. They are the energy, entropy, variance, cluster shade,

and cluster prominence of S(k), respectively.

ES =
510
∑

k=0

S2(k) (A.27)

HS = −

510
∑

k=0

S(k) log2 S(k) (A.28)

sigma2S =
510
∑

k=0

(k − µS)
2S(k) (A.29)

A =
510
∑

k=0

(k − µr − µc)
3S(k)

(σ2
r − σ2

c + 2σrσc)
3

2

(A.30)

B =
510
∑

k=0

(k − µr − µc)
4S(k)

(σ2
r − σ2

c + 2σrσc)2
(A.31)

The last two features use data in Equations A.10 and A.11. These are the ROIs
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variance and entropy, as shown in Equations A.32 and A.33.

sigma2ROI =
1

R

∑

(i,j)∈ROI

(I(i, j)− µROI)
2 (A.32)

HROI = −

255
∑

k=0

pROI(k) log2 pROI(k), (A.33)

which completes the the set of 22 GLCM features considered.
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