N
»

0

Universidade Estadual de Campinas
\" Instituto de Computacao /

— INSTITUTO DE
UNICAMP COMPUTACAO

Thais Harumi Ussami

Incremental Tests in a Model Based Test Driven
Development

Testes Incrementais em um Desenvolvimento Guiado
Por Testes Baseados em Modelo

CAMPINAS
2016

Thais Harumi Ussami

Incremental Tests in a Model Based Test Driven Development

Testes Incrementais em um Desenvolvimento Guiado Por Testes
Baseados em Modelo

Dissertacao apresentada ao Instituto de
Computacao da Universidade Estadual de
Campinas como parte dos requisitos para a
obtencao do titulo de Mestra em Ciéncia da
Computacao.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor /Orientadora: Profa. Dra. Eliane Martins

Este exemplar corresponde a versao final da
Dissertagao defendida por Thais Harumi
Ussami e orientada pela Profa. Dra. Eliane
Martins.

CAMPINAS
2016

Agéncia(s) de fomento e n%(s) de processo(s): CNPq, 151647/2013-5

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Ussami, Thais Harumi, 1990-
Us7i Incremental tests in a model based test driven development / Thais Harumi
Ussami. — Campinas, SP : [s.n.], 2016.

Orientador: Eliane Martins.
Dissertacao (mestrado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Engenharia de software. 2. Software - Testes. 3. Teste baseado em
modelos. 4. Desenvolvimento agil de software. |. Martins, Eliane,1955-. II.
Universidade Estadual de Campinas. Instituto de Computacao. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Testes incrementais em um desenvolvimento guiado por testes
baseados em modelo

Palavras-chave em inglés:

Software engineering

Computer software - Testing

Model-based testing

Agile software development

Area de concentracéo: Ciéncia da Computagéo
Titulacao: Mestra em Ciéncia da Computacao

Banca examinadora:

Eliane Martins [Orientador]

Marcos Lordello Chaim

Cecilia Mary Fischer Rubira

Data de defesa: 29-02-2016

Programa de Pés-Graduagéao: Ciéncia da Computacao

N
»

Universidade Estadual de Campinas %
. . i~
.\’ Instituto de Computacao
- INSTITUTO DE
UNICAMP COMPUTACAO

0

Thais Harumi Ussami

Incremental Tests in a Model Based Test Driven Development

Testes Incrementais em um Desenvolvimento Guiado Por Testes
Baseados em Modelo

Banca Examinadora:

e Profa. Dra. Eliane Martins
IC/UNICAMP

e Prof. Dr. Marcos Lordello Chaim
EACH/USP

e Profa. Dra. Cecilia Mary Fischer Rubira
IC/UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida académica do aluno.

Campinas, 29 de fevereiro de 2016

Acknowledgements

I would like to firstly thank God for blessing me during this journey, providing me with
faith, courage and strength, and mainly for illuminating my path.

Thank you Elza, Kazuo and Vitor for living with me the true meaning of family.
Thank you for being my safe harbour, for supporting me during all circumstances, for
having faith on me, for encouraging me during the hardest moments, for all your advice,
and for your comprehension. Thank you very much for all your love and support, Mom,
Dad, Brother.

Thank you Janito for being at my side since university, and for always being ready
to help me no matter what. Thank you for calming me down, for giving me strength to
carry on, for your patience, and for always listening to me and supporting me. Thank you
very much for being at my side during all this journey with all your kindness and love.

Thank you Professor Eliane Martins for your trust on choosing me to be one of your
advisees, your patience, and specially your dedication in supporting me. Thank you for
sharing with me your knowledge and experience, which provided me with professional
and personal growth. Without your support I wouldn’t have been able to conclude this
journey. It was an honor to meet and work with a brave woman like you.

Thank you all my friends, Maria, Angélica, Leonardo, Sandra, Bruno B., Talita, Jes-
sica, Renan, Lucas, Bruno S., Victor, Joao Paulo, for always encouraging me and cheering
for me, and for your brotherhood. Without your support it wouldn’t have been the same.

Thank you my new friends from Unicamp, Wallace, Anderson, Juliana, Rosana, Sheila,
Rodrigo, Leydi and Lucas, for all the laughs and all your help.

Thank you all the members from the DEVASSES project for all the support, and
for the opportunity to be part of this project which provided me the opportunity to
grow professionally. A special thank you for all UniFI colleagues, Andrea Bondavalli,
Andrea Ceccarelli, Paolo, Leonardo, Andréia, Tommaso, Marco, Enrico, Nicola, Martina,
Valentina, Lucia, who kindly welcomed me in Florence, and who eased my stay so far
from home; I will never forget all the memorable moments that I lived with all of you. I
also would like to give a special thank you for Leonardo Montechhi, who helped me very
much with this work. Thank you for your dedication, insights, and support, Leo.

Thank you all professors and employees from the Computer Institute of Unicamp,
for all the infrastructure and professionalism. A special thank you for Professor Cecilia
Rubira and Professora Ariadne Carvalho for sharing your experience with me and for
your support. I would like to also thank the grant 151647,/2013-5, CNPq, for the financial
support.

Resumo

O desenvolvimento de sistemas pode ser realizado seguindo diversos modelos de processo.
Os métodos ageis propoem realizar implementacoes iterativas e incrementais e testes an-
tecipados, buscando uma validacao antecipada do sistema. Algumas técnicas ageis adicio-
nam a caracteristica de um desenvolvimento de sistema baseado em testes, como as técni-
cas de Desenvolvimento Baseado em Teste (do inglés Test-Driven Development (TDD)) e
Desenvolvimento Baseado em Comportamento (do inglés Behaviour Driven Development
(BDD)). Recentemente algumas técnicas propoem a unido de técnicas ageis de desenvol-
vimento baseado em testes com técnicas consolidadas da area de testes, com o objetivo
principal de auxiliar na etapa de criacao de testes, que serao utilizados para guiar o desen-
volvimento do sistema. Um exemplo é a técnica de Desenvolvimento Guiado por Testes
Baseados em Modelo (do inglés Model-Based Test-Driven Development (MBTDD)) que
une os conceitos de Testes Baseados em Modelo (do inglés Model-Based Testing (MBT))
e Desenvolvimento Baseado em Teste (TDD). Portanto em MBTDD, testes sao derivados
de modelos que representam os comportamentos esperados do sistema, e baseado nesses
testes, o desenvolvimento iterativo e incremental ocorre. Entretanto quando lidamos com
processos iterativos e incrementais, surgem problemas decorrente da evolugao do sistema,
como por exemplo: como reutilizar os artefatos de testes, e como selecionar os testes
relevantes para a codificagao da nova versao do sistema. Nesse contexto, este trabalho
explora um processo no qual o desenvolvimento 4gil de sistema ¢ guiado por testes base-
ados em modelos, com o enfoque no auxilio do retso dos artefatos de testes e no processo
de identificacao de testes relevantes para o desenvolvimento de uma nova versao do sis-
tema. Para tanto, caracteristicas do processo de MBTDD sao unidas com caracteristicas
de uma técnica que busca o retso de artefatos de testes baseado em principios de testes
de regressao, denominada Testes de Regressao SPL Baseados em Modelo Delta (do inglés
Delta-Oriented Model-Based SPL Regression Testing). Para realizar a avaliacdo da solu-
¢ao proposta, ela foi aplicada em exemplos existentes e comparada com a abordagem no
qual nenhum caso de teste é reutilizado.

Abstract

Systems can be developed following different process models. Agile methods propose
iterative and incremental implementations and anticipating tests, in order to anticipate
system validation. Some agile techniques add the characteristic of development based
on tests, like in Test-Driven Development (TDD) and Behaviour Driven Development
(BDD). Recently some techniques proposed joining the agile techniques of development
based on tests with techniques consolidated in the field of testing, with the main purpose
of aiding in the test creation stage, which are used to guide the development of the
system. An example is Model-Based Test-Driven Development (MBTDD) which joins the
concepts of Model-Based Testing (MBT) and Test-Driven Development (TDD). Therefore
in MBTDD, tests are derived from models that represent the expected behaviour of the
system, and based on those tests, iterative and incremental development is performed.
However, when iterative and incremental processes are used, problems appear as the
consequence of the evolution of the system, such as: how to reuse the test artefacts,
and how to select the relevant tests for implementing the new version of the system. In
this context, this work proposes a process in which the agile development of a system is
guided by model-based tests, focusing on helping with the reuse of test artefacts and on
the process of identifying tests relevant to development. To achieve this goal, MBTDD
process characteristics are joined with characteristics from a technique that aims to find
reusability of test artefacts based on principles of regression tests, called Delta-Oriented
Model-Based SPL Regression Testing. To evaluate the proposed solution, it was applied
to existing examples and compared to the approach that does not reuse any test cases.

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1

5.1
5.2
2.3
5.4
2.9
5.6
5.7
2.8
2.9

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8

TDD Cycle e 20
Model-Based Testing Process 23
Model-Based Testing Artefacts (extracted from [36]) 24
Finite State Machine Example 25
Model-Based Test-Driven Development Process (adapted from [47]) 26
Execution Graph of the Model-Based Testing Driven Development Steps . 27
Incremental Evolution of SPL Test Artefacts (extracted from [36]) 32
D-MBTDD process for the first iteration 39
Core State Machine Example 40
D-MBTDD process for when the test model evolves 41
Regression delta exampleo oL 41
New test model version example 42
Process of updating the test suite during the iterations that follow 43
Development cycle of a new feature 0. 45
Scrum process (Adapted from [1])o 46
Process of D-MBTDD with Scrum 46
M2 Automatic Power Window core test model (extracted from |34]) . .. 53
Automatic Power Window with Central Locking system test model version

(M2_D1) (extracted from [34]) 55
M2_Delta_ 1 of M2: DAddAutoPWCLS delta model (extracted from [34]) 56
CoFI core test model 57
S04 Delta_ 1 deltamodel oL 58
S04 D1 test model version L 59
Bar Graph with StateMutest results 72

Bar Graph with Condado results 72

List of Tables

4.1

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8

6.9

B.1
B.2
B.3
B.4

Comparison of Existing Solutions 36
Core test model information of delta case study 53
Delta model information of delta case study 54
Information of test model versions of delta case study 54
Delta models information of CoF'I 58
Information of test model versions of CoFI 58
Number of valid, new, reusable and obsolete test cases in StateMutest

eXperiments Lo e e 63
Value of metrics in StateMutest experiments 64
Number of valid, new, reusable and obsolete test cases in Condado experi-

MENTS . . . L e e e e e e 68
Value of metrics in Condado experiments 69
Transitions added or removed of each delta model 89
StateMutest examples information 90
Quantity of generated test cases for tau values 91

Condado examples information 92

List of Abbreviations and Acronyms

e BDD Behaviour Driven Development

e CASE Computer Aided Software Engineering

e D-MBTDD Delta Model-Based Test-Driven Development
e EFSM FEztended Finite State Machines

e FSM Finite State Machines

e INPE Brazilian Institute for Space Research

e MIBCF Model-Based Control Flow

e MDD Model Driven Development

e MDPE Model Driven Performance Engineering

e MBT Model-Based Testing

e MBTDD Model-Based Test-Driven Development
e SPL Software Product Line

e SWPDC Software for a Data Collection Platform
o SXM Stream X-Machines

e TDD Test-Driven Development

e UML Unified Modelling Language

Contents

Introduction

1.1 ContexXt e e e e
1.2 Problem Identification,
1.3 Proposed Solution and Objectives
1.4 Research Questions
1.5 Contributions
1.6 Document Organization

Test First Development

2.1 Test-Driven Development

2.2 Behaviour Driven Development

2.3 Model-Based Testing
2.3.1 Finite State Machine

2.4 Model-Based Test-Driven Development

Regression Testing Techniques

3.1 Regression Testing
3.1.1 Test Cases Classification

3.2 Delta-Oriented Model-Based SPL Regression Testing

Related Work

4.1 Model-Based Testing in an Agile Context
4.2 Model-Based Regression Testing
4.3 Reuse of Test Models
4.4 Summary of the Studyo o

Proposed Solution: D-MBTDD method

5.1 Assumptions

5.2 D-MBTDD Process e e
5.2.1 Process for the First Iteration
5.2.2 Process for the Next Iterations

5.3 D-MBTDD with Scrum e

Evaluation of the Proposed Solution

6.1 Definition of the Experiment
6.1.1 Metrics

6.2 Planning of the Experiment
6.2.1 Delta Case Study
6.2.2 SWPDC - Software for a Data Collection Platform

13
13
15
16
16
16
17

19
19
21
22
25
25

28
28
29
31

33
33
34
35
36

6.3 Workflow of the Experiments,
6.3.1 Workflow for core model experiments
6.3.2 Workflow for test model version experiments

6.4 Controlled Experiment 1. StateMutest Experiments
6.4.1 State Mutest
6.4.2 Preparationo
6.4.3 Results.
6.4.4 Results Analyses L

6.5 Controlled Experiments 2: Condado Experiments
6.5.1 Condado
6.5.2 Preparation
6.5.3 Results.
6.5.4 Results Analyses L

6.6 Discussion
6.6.1 Results Common to both MBT tools
6.6.2 Cost comparison between Regenerate-All and D-MBTDD

6.7 Threats to the Validity of the Experiments

Conclusions and Future Work

7.1 Conclusions e
7.2 Limitations e
7.3 Answers to the Research Questions
7.4 Future Work

A Delta Information for Section 6.1.1

B Complementary Tables for Chapter 6

77
77
78
79
80

87

89

Chapter 1

Introduction

In a context of Model-Based Test-Driven Development, detailed in Section 1.1, Delta
Model-Based Test-Driven Development (D-MBTDD) was proposed during this work to
support the incremental test creation and maintenance. Section 1.2 describes how the
problem was identified during this master graduate program. The proposed solution and
its objectives are described in Section 1.3, and the research questions that this work
evaluates are described in Section 1.4. The contributions of the proposed solution are
described in Section 1.5. The document organization is detailed in Section 1.6.

1.1 Context

During traditional software development used in the 80’s until the beginning of the 90’s,
tests were executed after the end of the system implementation, and possible problems
were discovered only when the client started using the system. Therefore, disagreements
between what was expected by the client and what was delivered by the developers could
happen, resulting in a higher cost of maintainability and in a longer development. Analy-
ses executed in the industry field concluded that less than 50% of the clients were satisfied
with the quality of the delivered software, and only 33% were satisfied with the delivery
time. The possible causes for this dissatisfaction can be the lack of interaction between
the client and the developers, lack of details in the requirements definitions, management
problems and/or lack of tests. Emphasizing the last one, an aggravating factor can be the
lack of interaction between the clients and testers, so that testers are not updated about
requirements changes [12].

Based on the problems that happen when traditional development is used, developers
from the software engineering field started to propose agile approaches in the 90’s. In
these approaches, the software development phases (Planning, Analysis, Project, Imple-
mentation, Tests and Deliver) are executed iteratively and incrementally, with the aim of
quickly delivering the system in order to include any requirements modifications in the
next iterations [52].

Seventeen specialists in software development met in 2001, and motivated by these
new agile approaches that aim to deliver software in time and with easier maintainability

13

CHAPTER 1. INTRODUCTION 14

when requirements change, created the Agile Alliance' and proposed the Manifesto for
Agile Software Development [5], also known as Agile Manifesto.

The authors also proposed the "Twelve Principles of Agile Software" [6] that should
be followed by developers in order to deliver a functional software. One of these principles
proposes functional software delivery within small iterations, each lasting a few weeks.
For each set of predefined feature implementations, the system is shown to the client
in order to plan for modifications and new features for the next iteration. With these
demonstrations, the client works together with the developers during the development
cycle. This development based on features requires continuous code integration, therefore,
tests are continually executed aiming to minimize defects in the final version of the system.

Agile development, based on iterative and incremental development, in which the tests
are continuously executed, can be a solution to improve the client satisfaction with the
final version of the system. Therefore, some agile approaches were created to empha-
size tests. One of these techniques, proposed by Kent Beck, is Test-Driven Development
(TDD) [4]. In TDD the module integrations and the tests are performed after the imple-
mentation; TDD proposes that unit tests are iteratively created before the Implementation
phase. Thus, the Implementation Phase aims to execute successfully the test cases created
previously.

Based on TDD, Dan North proposed Behaviour Driven Development (BDD) [41].
Differently from TDD, which focuses on system code, BDD focuses on system behaviour
and on the collaboration among the people who are involved with the system. BDD
proposes that business-oriented and technology-oriented people work together from the
beginning of the system development, in order to anticipate the validation of the system.

However, in TDD and BDD there are difficulties with test case creation, which is
usually done manually. There are no artefacts or guides to support it, therefore testers
and developers report difficulties on defining which and how many test cases have to be
created [41]. Moreover, during the life cycle of the system the test cases evolve and there
is the need of reusability and the challenge of maintainability of the tests [42].

It is a common practice to create tests manually, in a non-systematic way. However,
this practice is subject to human errors because of the repetitive process and the lack
of guarantees that the system has a good test coverage, a measure that represents how
complete the test set is. In order to support test case creation, the idea of generating test
cases from models that represent the expected system behaviour can be used. This idea
comes from Model-Based Testing (MBT) |54], in which formal test models that represent
the system’s behaviour are created and validated in order to automatically generate test
cases from them.

Following this idea, Model-Based Test-Driven Development (MBTDD) [47] joins the
concepts of MBT and TDD. Therefore, MBTDD proposes that test models are iteratively
created in order to represent enough information for the current iteration, and from these
models and using concepts and techniques of MBT, test cases are automatically generated.
These tests guide the development of the system by using concepts and techniques of TDD.

However, in an incremental development that is model-based, first the model is changed
to specify new behaviour and, then, new test cases should be derived to guide the devel-

'http://www.agilealliance.org/

CHAPTER 1. INTRODUCTION 15

opment of the new feature. Therefore, there is the problem of how to reuse test artefacts
during the iterative and incremental development process. There are also the problems of
identifying which test cases are reusable, which ones should be removed, which ones have
to be created and which ones support the new feature development.

Regression Testing supports the analysis of how adequate the test suite is, which test
cases are still valid, which ones are not, and which ones have to be created [45]. In the
context of Software Product Line (SPL), Delta-Oriented Model-Based SPL. Regression
Testing joins concepts of Regression Testing with Model-Based Testing of SPLs and pro-
poses an approach in which delta modelling concepts are used to express the variability
between the product variants. It aims for test artefact reusability and with the support of
regression deltas, that explicitly represent differences among variants, it determines which
existing test cases are valid for a product variant and which ones have to be created.

There are some works that propose model-based test-driven development [11, 55, 57],
however they deal only with test model reuse, they do not deal with test case reuse and
with the identification of test cases that support the new feature development.

1.2 Problem Identification

This section describes how the problem was identified and a suitable solution was envis-
aged. During the period of this master graduate program, besides the related work, some
activities supported the definition of the D-MBTDD process:

e Informal interviews with employees who use BDD in practice were performed in
order to better understand the practical use of BDD and its challenges. With these
interviews it was possible to confirm that there are difficulties with test case creation
and maintenance.

e A six month exchange and mobility program at Resilient Computing Lab (RCL)?
research group at the Department of Mathematics and Informatics of the Univer-
sity of Florence (UniFT)3 was realized as part of DEVASSES* project. During this
period, Professor Andrea Bondavalli and the post-doc Leonardo Montecchi collabo-
rated on the definition of the process of D-MBTDD. Furthermore, after the return
to Brazil they continued to support with the process definition.

e During a course ministered by Professor Eliane Martins, some groups of students
reused test cases derived from state machines during a Model-Based test-driven de-
velopment. In order to reuse the test cases, they followed a preliminary version of
D-MBTDD process. With this, it was possible to identify some necessary improve-
ments on D-MBTDD process.

http:/ /rcl.dsi.unifi.it /home

3www.unifi.it
4http:/ /www.devasses.eu/

CHAPTER 1. INTRODUCTION 16

1.3 Proposed Solution and Objectives

This work proposes a solution based on MBTDD and Delta-Oriented Model-Based SPL
Regression Testing, which supports the development of new features by means of test case
reusability. Finite State Machines (FSM) are used to represent the system behaviour, and
test cases are derived from them. When the system evolves, there is the reuse of the test
model and the test cases. Therefore, test cases from the previous version are analysed in
order to identify which ones are still valid and consequently can be reused. After that,
new test cases are created from the new test model version in order to update the new
test suite. The new test cases support the development of new features, while the reusable
test cases are used as regression tests.
Therefore, the objectives of this work are to:

e Help with the test case creation, by using Model-Based Testing tools and techniques,
and finite state machines as the behavioural model of the system.

e Help with the incremental development, by using ideas from TDD, BDD and MBTDD.

e Help with the reuse of test artefacts when the system and consequently the test
model evolves, and with the identification of the test cases that will support the
development of new features, by using ideas from Delta Model-Based SPL Regression
Testing.

1.4 Research Questions

In order to evaluate the proposed method D-MBTDD, the following research questions
were defined:

1. RQ1: When the system and consequently the test model evolves in an iterative
and incremental development based on tests, does D-MBTDD require less effort for
test case creation, when compared to an approach in which there is no test artefact
reuse?

2. RQ2: When the system and consequently the test model evolves in an iterative
and incremental development based on tests, does D-MBTDD require less effort for
the identification of which test cases should guide the development of new features,
when compared to an approach in which there is no test artefact reuse?

3. RQ3: When the system and consequently the test model evolves in an iterative
and incremental development based on tests, does D-MBTDD require a total effort
smaller than when compared to an approach in which there is no test artefact reuse?

1.5 Contributions

In this work a method which aims for reusability of test artefacts in an iterative and
incremental model-based test-driven development, entitled Delta MBTDD (D-MBTDD),

CHAPTER 1. INTRODUCTION 17

was proposed. In an environment in which the test models are created iteratively and
incrementally in order to represent the versions of the system, D-MBTDD contributes with
not only the reuse of the test models, but also of the test cases. D-MBTDD contributes
with the testers in different aspects by:

e Reusing the test model: the tester reuses the previous version of the test model,
and only model the necessary modifications of the new version of the system.

e Reducing the effort on the selection of test cases that guide the devel-
opment of new features: the set of new test cases guides the development of
new features, and they are already identified. Therefore, effort for this task is not
required from the tester.

e Reducing the effort on transformation of abstract test cases: because test
cases from the previous version that are still valid for the new version are reused,
the tester only has to transform the new abstract test cases into concrete test cases.

In addition, D-MBTDD contributes with the development of the new version by using
the reusable test cases as regression tests.

1.6 Document Organization

This chapter introduced the motivations, objectives and research questions of this work.
The rest of this document is organized as follows:

e Chapter 2 - Test First Development: presents some agile methods that propose
a development based on tests: Test-Driven Development (TDD), Behaviour Driven
Development (BDD) and Model-Based Test-Driven Development (MBTDD). More-
over, the concepts of Model-Based Testing (MBT) are also presented.

e Chapter 3 - Regression Testing Techniques: presents the fundamental con-
cepts of Regression Testing, the test case classification and introduces Delta-Oriented
Model-Based SPL Regression Testing, a Model-Based Regression Testing in the soft-
ware product line context.

e Chapter 4 - Related Work: presents some related work that deal with model-
based testing in an agile context, with model-based regression testing, and with test
artefact reuse.

e Chapter 5 - Delta MBTDD method: presents the proposed method of this
work, with its steps and processes used during the iterations of the system. More-
over, a process which joins Delta MBTDD with Scrum is presented.

e Chapter 6 - Experiments: presents the executed controlled experiments, in which
Delta MBTDD was compared to the approach in which test cases are not reused
when the system evolves. The Examples and the MBT tools used during the con-
trolled experiments are described, as well as the results and their analyses.

CHAPTER 1. INTRODUCTION 18

e Chapter 7 - Conclusions and Future Works: presents the conclusions about
Delta MBTDD, the answers to the research questions and the future works.

Chapter 2

Test First Development

The Test First Programming concept emerged with Extreme Programming (XP) [3], which
proposed that unit tests were created before the code. With that, the developers could
know what was necessary to be implemented. After the Agile Manifesto some techniques
proceeded with the idea from XP and proposed software development processes based
on tests. A test case succeeds when the outputs generated from the system meet the
expected outputs, otherwise it fails. Some of these techniques are explained in this Chap-
ter. Test-Driven Development(TDD) is explained in Section 2.1 and Behaviour Driven
Development(BDD) is explained in Section 2.2. In Section 2.3 some concepts about
Model-Based Testing(MBT) are explained, and finally in Section 2.4 a technique that
combines MBT and TDD, entitled Model-Based Testing Driven Development (MBTDD),
is explained.

2.1 Test-Driven Development

During the development of a software there is the concern about the quality of the devel-
opment process and of the product that will be delivered to the customers. Because of
that, the software has to be tested in order to guarantee that the implementation fulfils
all the requirements. A general software testing process involves the creation of a test
suite, the execution of this test suite on the system under test (SUT) and the analysis
of the outputs of the test cases. A test suite is a finite set of test cases, and a test
case is composed by inputs and expected outputs|54|. Besides assisting with the system
verification, the test cases can also be used to guide the development of the system, as
proposed in Test-Driven Development(TDD) [4]. This technique aims to produce a "clean
code", which in other words is code that is easier to be maintained. To obtain that, TDD
has its main characteristic of writing tests before the implementation phase. The idea is
that the tests guarantee that the requirements are implemented according to the specifi-
cations provided by the customers. And further, the tests are now part of the software
development process, and they are not only executed after the code is done.

TDD is known by its cycle (Figure 2.1), composed of three phases: Red, Green and
Refactor. During the Red phase a test case has to be written and executed before the
implementation of the software starts, thus the test will fail because there is no imple-

19

CHAPTER 2. TEST FIRST DEVELOPMENT 20

Clean
code

&

Refactor

Figure 2.1: TDD Cycle

mentation yet. In the Green phase code is written that will make the test be successfully
executed, not mattering if good programming practices are used. In the Refactor phase
the logical duplications that may have been written during the Green phase are removed.
These logical duplications can be responsible for dependencies between the tests and the
code. These removals have the purpose of allowing to change both the tests and the code
without affecting each other. Finally, at the end of the Refactor phase a code that is more
legible and that is easier to be maintained is created [4].

The goal of TDD is to incrementally write test cases for each function, repeating the
process until the software implementation is completed, or in other words until all the
test cases are successfully performed [50].

Besides producing a "clean code", TDD also allows using the test cases as regression
tests, encouraging the developers to confidently apply changes in the code and therefore
allowing more reliable and flexible software. Because the test cases guide the development,
the test cases can be used as a documentation synchronized with the code, helping with
the comprehension of the code. Despite having advantages, TDD has some disadvantages
that limit its use. One of them is that TDD focuses on unit tests, which focus on low level
software code and do not deal with more abstract structures. But the main disadvantage
of TDD is the effort to create the test cases. Because the process of test case creation
is manual, writing test cases for each piece of code is time consuming and decreases the
productivity of the development team [47].

Some works analysed the product quality and the productivity of the development
team when applying TDD in academic or industrial projects. Maximilien and Williams
performed a case study at IBM in which the use of TDD reduced 40% of the defects
when compared with an ad-hoc process, and had minimum impact on the productivity
of the development team [37]. Similar conclusions are presented in Saiedian and Jalote,
that applied TDD to academic projects |28, 30]. However, there are some works that
demonstrated the opposite. George and Williams performed a case study at AT&T in
which even though the use of TDD assisted with fault detection, the programming time
increased 16% when compared with traditional development [25]. Similar conclusions
are presented in academic case studies performed in Nagappan et al. and Canfora et al
[13, 38].

CHAPTER 2. TEST FIRST DEVELOPMENT 21

2.2 Behaviour Driven Development

When using Test-Driven Development (TDD), some developers reported some misunder-
standings and a confusing experience. According to some of them, TDD does not provide
the information about where to start testing, what to test, what not to test, how much
to test and the reasons why the tests fail [41]. With the attempt to improve TDD, Dan
North introduced a new agile software development technique entitled Behaviour Driven
Development (BDD), in which instead of writing the tests in a code format like in TDD,
the tests are now written with a natural language allowing an easier validation of the
system by the customers [20]. The use of a natural language eases the communication
between business-oriented and technology-oriented people by creating a representation in
a ubiquitous language, or in other words, a common language that provides communica-
tion with no ambiguities among the analysts, the testers, the developers and the business
people and that helps to specify correctly the system behaviour. Therefore, BDD provides
a collaboration between the project members [51].

BDD has the characteristic of having the development guided by the expected resulting
behaviour, thus the expected behaviour is considered during all the development phases
of the system. Firstly, user stories are used to represent a feature of the system that was
derived from the expected business outcomes [15, 51|. Using the ubiquitous language, the
user stories are written following a template:

As a [role]
I want to [feature|
So that [benefit/value]

This template presents the required feature, its benefit or value for the system, and
who will benefit from it. Therefore, before defining a user story it is necessary to think
about the benefit or the value that the feature will produce on the system[15, 51].

There are many different contexts and expected behaviours for each feature, so for
each user story some scenarios are derived to represent the expected system behaviours
in specific contexts. Differently from TDD that uses unit tests to guide the development,
BDD now uses acceptance tests for it, which are represented by the scenarios. The unit
tests are used to test low-level SUT parts, such as classes or functions. The acceptance
tests, instead, use high level SUT details and are used to check if the system require-
ments were correctly implemented. Therefore, the set of scenarios must facilitate the
understanding of the feature and the verification that the system meets the requirements
[15, 51]. Just like the user stories, the scenarios also have a template:

Given [context|
When |event]
Then [outcome|

The Given-When-Then structure of the scenarios, similar to the human concept of
cause and effect, facilitates an intuitive thinking of input-process-output of the system,
therefore facilitating the validation of the system by the customer [20]. Moreover, as
explored by Carvalho et al., the BDD scenario structure is very similar to a description

CHAPTER 2. TEST FIRST DEVELOPMENT 22

of state transitions and therefore, the scenarios could be represented by Finite State
Machines (FSM) [17, 18].

Chiavegatto et al. performed a case study to identify the benefits and disadvantages
with the use of BDD. Some conclusions were that BDD eased the understanding of what
had been developed, supported an easier communication between business-oriented and
technology-oriented people, and eased the execution of the tests. The case study indicated
that the scenarios supported a better comprehension of what is necessary to implement for
all the stakeholders, since the use of a natural language helped to understand the system
and the communication between the stakeholders. However, the case study affirms that
there is a necessary effort with the definition of scenarios, in order to define scenarios with
sufficient information to support the development process and the quality of the system
[16].

Rahman and Gao indicated some requirements and challenges with the use of BDD.
The system is implemented incrementally and the requirements change frequently, so in
order to reflect these changes the scenarios have to be updated. Moreover, during the life
cycle of the system some scenarios can be reusable and refactored, therefore there is the
need of reusability and the challenge of maintainability of the scenarios. Furthermore,
because testers and developers do not always work together, there is the necessity of
controlling the versions of the scenarios that the testers and the developers have [42].

2.3 Model-Based Testing

Software testing is the process of analysing a system manually or automatically in order
to verify if the actual behaviour meets the intended one, and to detect the differences
between them. Model-Based Testing is a variant of testing that uses explicit behaviour
models that represent the intended behaviours of the system [54].

Conventional test methods, such as hands-on testing, are subject to human error
because of the repetitive process and the lack of guarantees that the system has a good
test coverage, a measure that represents how complete the test set is and that assists with
the generation of the test cases. The behaviour of the system under test is constantly
changing, hence the handcrafted test cases have to be adapted to meet the new behaviour,
which can be a costly process. Also, a hands-on testing produces a limited number of test
cases [43]. Model-Based Testing solves these problems by using the behaviour models to
represent the behaviour of the system and to assist with the test case generation [54].

The models also have to be validated in order to check if the system behaviour is
correctly represented. In order to do so, the models have to be simpler than the SUT
and ease the process of checking, modifying and maintenance. Otherwise, the effort of
validating the model would be equal to or greater than the effort of validating the SUT. On
the other hand, the models must have a sufficient level of abstraction in order to guarantee
the generation of relevant test cases, which are those capable of detecting faults in the
system implementation [54].

A generic model-based testing process is illustrated in Figure 2.2 and is composed of
seven steps [10][54][53, p. 27-30].

CHAPTER 2. TEST FIRST DEVELOPMENT 23

Requirements j

Transform
Create the into
Model Executable
Test Cases
Validate Execute fhe
the Model st Lases
onthe SUT
Define Test Analyse the
Criteria Results
J Abstract
Generate f Test Cases
Abstract
Test Cases
c
(V=7

Figure 2.2: Model-Based Testing Process

Firstly a model of the SUT, which represents the intended behaviour, is built based on
the system requirements. After writing the model, the second step is to validate the model
in order to check if the model is consistent and if it represents the desired behaviours.

The third step is to define a test selection criterion that will indicate which test cases
should be created from the model and that consequently will assist with the creation of
the test suite. There are different test selection criteria, such as those that focus on a
particular part of the model or those related to a particular model coverage criterion, such
as all-transitions coverage or all-states coverage.

From the model and considering the test selection criterion, the abstract test cases are
generated, which is the fourth step. Abstract test cases consist of a sequence of operations
from the model, but they are not executable so they can not be directly executed on the
SUT without a transformation. A coverage report is a possible additional output of this
step. This report helps to analyse how well the generated test set exercises the complete
behaviour of the model and helps to identify parts of the model that may not be well
tested.

The fifth step is to transform the abstract test cases into executable test cases. After
this concretion, the executable test cases are ready to be executed against the SUT. There-
fore, the sixth step is to execute the executable test cases on the SUT and consequently
to generate the results, which consist of the association of the executable test cases, their
generated outputs and their expected outputs. These results are analysed during the
seventh step, when the amount of test cases that succeed and that fail is analysed. A test
case succeeds when the outputs generated from the system meet the expected outputs,
otherwise it fails. Another possibility is to have an inconclusive result, which means that
it is not possible to conclude something based on the available information.

CHAPTER 2. TEST FIRST DEVELOPMENT 24

When considering test case generation and test execution, a model-based testing tech-
nique can be classified as online or offline. With offline testing the test generation is
performed before their execution, while with on-line testing the test generation algo-
rithms can execute the test cases dynamically. Because offline testing generates the test
cases before their execution, if the test generation process is slower than test execution,
the set of test cases can be generated once and then executed many times on the system
under test. It can be useful, for example, for regression testing purpose when the set of
test cases is executed any time a modification is performed into the system. Besides the
fact that test generation and test execution can be performed at different times, they can
also be performed on different environments |54].

The fundamental test artefacts involved in model-based testing techniques are sum-
marized in Figure 2.3. As explained before, a test model (tm) specifies the intended
behaviours of the SUT. Based on a coverage criteria (C'C) a finite set of test goals (T'G) is
selected from the test model, i.e., structural elements of tm. A test suite (7'S) contains a
finite set of valid test cases, which are those whose executions conform to the behaviours
specified by the test model. For a test suite T'S to satisfy a coverage criteria, each se-
lected test goal tg € T'G has to be covered, i.e., traversed by at least one test case tc € T'S
[33, 36].

COUETS

TS

Figure 2.3: Model-Based Testing Artefacts (extracted from [36])

Software testing can be carried out at any time during the development process. How-
ever, when the tests are created based on the system code, most of the test effort occurs
after the implementation phase has been completed. Instead, model-based testing ap-
proach has the advantage of allowing the models to be created in the beginning of the
development cycle. With the model available sooner, the testing process can be applied in
parallel with the development phase [19]. The use of models also eases the understanding
of the system, helping with the requirements validation, leading to the discovery of incon-
sistencies in the specification and therefore avoiding errors in the system. Furthermore,
the use of models to generate the test cases introduces variability in the tested behaviours
and a larger number of test cases, improving the test coverage and therefore the final
quality of the system [43, 46].

Another advantage is that a model-based testing approach is more efficient for systems
that constantly evolve, because the model maintenance is easier than the manual test case
maintenance. When the system evolves, with model-based testing it is possible to simply
update the models and then generate the test cases that meet the new requirements.

CHAPTER 2. TEST FIRST DEVELOPMENT 25

However, if the test cases are transformed into executable ones manually, test cases from
the previous iteration can be reused in order to reduce the effort of transforming the test
cases of the current iteration. Therefore, it is possible to reuse some test artefacts during
the development cycle, such as the test cases and the test models [40, 43, 46]. However,
when test cases are reused there is the problem of how to identify which test cases could
be reused, as well as which ones have to be deleted, or generated [19].

2.3.1 Finite State Machine

Model-Based Testing can use different test models like state machine diagrams, class
diagrams, sequence diagrams, activity diagrams and other UML (Unified Modelling Lan-
guage) models. During this work only finite state machines (FSM) were used. In the rest
of this document, in order to simplify, finite state machines are also referenced as FSM
or simply state machines.

Finite state machines have been widely used to model systems in different areas, such
as communication protocols, real time systems and sequential circuits. A finite state
machine M is a quadruple M = (1,0, S,T), where [is the finite set of input actions, O
is the finite set of output symbols, S is the finite set of states, and T : S x [— S x O is
the finite set of transitions. Each transition ¢ € T is a 4-tuple t = (s7,1, 0, sk) consisting
of start state sj € .S, input symbol i € I, output symbol o € O and next state sk € S.

An FSM can be represented by a directed graph whose vertices are labelled as the
states of the state machine and whose edges correspond to the transitions. Each edge
is labelled with the input action and the output associated with the transition, and the
initial state is identified with a pointer arrow, as Figure 2.4 illustrates.

action3/out3

action2/out2
Statel >

action1/outl

Initial

State State2

Figure 2.4: Finite State Machine Example

2.4 Model-Based Test-Driven Development

As presented in Section 2.1, a development guided by the test cases as proposed in Test-
Driven Development grants a better comprehension of what should be developed, and
consequently an earlier validation of the system. On the other hand, TDD has some
limitations such as the focus on the low level software programming and coding details, and
the time consuming task of manually creating the test cases, decreasing the productivity
of the development team. As presented in Section 2.3, Model-Based Testing is a technique
that aims to use behaviour models to assist with the generation of the test cases. With

CHAPTER 2. TEST FIRST DEVELOPMENT 26

the aim of improving the development guided by test cases, Sadeghi and Hosseinabadi
proposed Model-Based Test-Driven Development (MBTDD), a technique that combines
MBT and TDD techniques. MBTDD takes advantage of the benefits of TDD and MBT
and tries to overcome the limitations of TDD [47].

In the MBTDD process, the TDD cycle is extended with MBT steps. Differently from
techniques that focus on the system implementation phase, MBTDD relies on creating
models that assist the generation of the test cases. Furthermore, like TDD, MBTDD
aims to guarantee the possibility of earlier verification and validation of the system, so
the test cases are created before the implementation phase and they are used to guide
the development. The MBTDD process is composed of three main steps, as illustrated in
Figure 2.5:

1. Modelling Step: the model that will assist the automatic generation of test cases
is created.

2. Model-Based Testing Step: using the MBT technique, the model assists in
the generation of abstract test cases and subsequently they are transformed into
executable test cases.

3. Test-Driven Programming Step: using the TDD technique, the development is
guided by the test cases. Code is written to successfully execute the test cases and
consequently to satisfy the intended requirements.

D
r—-\ Test /—-\ Code

Model Based Testing | €ase Test Driven
Development

Figure 2.5: Model-Based Test-Driven Development Process (adapted from [47])

MBTDD proposes that the process is used during each abstraction level, so for example
in a three-tier architecture the process should be used in the User Interface, Business
Logic and Persistence layer. However, as illustrated in Figure 2.6, the order in which the
MBTDD steps are executed differs. The first two steps of MBTDD (Modelling Step and
Model-Based Testing Step) are executed in a top-down approach, therefore first the high
level model and test cases are created and the process continues until the low level model
and test cases are created. Conversely, the order of the Test-Driven Programming step
execution is the opposite, a bottom-up approach. Therefore, first the necessary code to
make the execution of the low level tests succeed is written and the development process
continues until the corresponding code to make the high level tests succeed is written.
Using the previous three-tier architecture example, the modelling step and the test case
creation step start in the user interface level, pass trough the business logic level and end

CHAPTER 2. TEST FIRST DEVELOPMENT 27

in the persistence layer. However the codification is executed in the opposite order, so
firstly the persistence code is written, then the business logic code and finally the user

interface code.

HIGHS
c
o] A
= ’
8]
©
| -
)
n
0
<
LOW TIME TIME
Modelling and Test Test Driven
Case Creation Steps Programming Step

Figure 2.6: Execution Graph of the Model-Based Testing Driven Development Steps

MBTDD was evaluated in an industrial environment, in which a Human Resource
Management (HRM) web application was implemented. The system was configured in
a three-tier architecture and therefore user interface, business logic and persistence tests
were created from their models to assist the development phases. The quality of the
product and the efficiency of the production process were evaluated. The quality of the
process was measured by the number of faults per kilo lines of code (KLOC), and the
efficiency was evaluated by the development time, or in other words the total effort of
human resources to accomplish the system. It was concluded that the quality of the
product improved, while the efficiency decreased a little. This reduction was due to the
extra effort of creating the models and transforming the abstract test cases into executable
ones, in order to achieve the quality improvement. Nevertheless, the authors justified this
extra cost with less future maintenance efforts, because of the higher quality of the product

and the fewer number of faults.

Chapter 3

Regression Testing Techniques

In an iterative and incremental environment the system constantly evolves and there
are frequent modifications to be made and new features to be added. In this context
of evolution, regression testing is used to support the maintainance process. Regression
testing is performed on a modified program to provide confidence that the changes are
correct and have not adversely affected unchanged portions of the program. In Section 3.1
some basic concepts of Regression Testing are explained. Then in Section 3.2 an approach
of model-based regression testing is explained.

3.1 Regression Testing

Estimates indicate that software maintenance activities account for as much as two-thirds
of the cost of software production ' (apud [45]). One necessary but sometimes expensive
maintenance task is regression testing. It is a testing activity that is performed between
two different versions of the same software in order to provide confidence that the modi-
fications did not affect the unmodified parts of the system |61].

In agile methodologies, the software development life cycle is usually short and this
imposes limitations on performing regression testing within limited resources and time
[61]. Also, the development is iterative and incremental, so there are frequent changes
and new features to be developed along the software life cycle. Therefore, in this context
of constant modifications, it is important to try to find the limitations of the test suite
for testing a modified system, and find out whether new tests might be created [45].

Most of regression testing techniques address the problem of how to guarantee confi-
dence in a modified version of a system. Considering a program P, its modified version
P’, the original test set T that was used previously to test P, and the test set 7" that tests
the new version of the system, usually regression testing techniques have the following
steps [44, 45]:

1. Select T" C T, the test cases to be executed on P’.

2. Apply T" on P, establishing the correctness of P’ with respect to T".

1S. Schach. Software Engineering. Aksen Associates, Boston, MA, 1992.

28

CHAPTER 3. REGRESSION TESTING TECHNIQUES 29

3. If necessary, create T”, a set of test cases that cover new functionalities of P’.
4. Apply T” on P’, establishing the correctness of P’ with respect to T”.

5. Create T, the new test suite and test history for P/, from 7', 7" and T".

A regression testing technique addresses four problems when performing the steps
above. Step 1 addresses the problem of regression test selection, that consists on how to
select a subset T" from T', which will test P’. Step 3 addresses the problem of coverage
identification, that consists on how to identify the parts of P’ that require new tests. Steps
2 and 4 address the problem of test suite execution, that consists on how to efficiently
execute tests and check the results for correctness. And finally, Step 5 addresses the
problem of test suite maintenance, that consists on how to update and store the test
information [45].

The simplest approach of regression testing is the retest-all, in which all the existing
test cases in the original test suite are executed (7" = T'). However as software evolves,
the test suite tends to become larger and consequently the cost to execute the entire test
suite increases. Thus, the retest-all approach may consume excessive amounts of time and
resources. Some techniques seek to reduce the resources required for regression testing in
different ways. The three major branches are: minimisation, selection and prioritisation
[61].

Test suite minimisation techniques aim to reduce the size of the test suite by identifying
and eliminating redundant test cases from the test suite, in order to reduce the number
of tests to run. The redundant test cases are those that have the same input and output
for a specific context. The minimisation process is also called ‘test suite reduction’.
However, the reduction process produces a temporary subset of the test set whereas the
minimisation process permanently eliminates test cases [61].

Test case selection aims to identify and select test cases relevant to the modified parts
of the software. The test case selection problem is similar to the test suite minimisation
one, because both of them seek to identify a subset of test cases from the test suite.
However, the difference between them is whether the focus is on a version of a system or
the changes in the system. Test suite minimisation frequently is based on metrics such as
coverage measured from a single version of the system. By contrast, test case selection
selects the test cases relevant to the modifications between the previous and the current
version of the system [61].

Test case prioritisation aims to identify the optimum ordering of test cases that max-
imises desirable properties, such as fault detection. It does not involve selection of test
cases, and assumes that all the test cases may be executed in a specified order affected
by the fact that the test execution may be terminated at any arbitrary moment [61].

3.1.1 Test Cases Classification

According to Leung and White, the test cases can be categorised. After a modification is
made to the software, the test cases from the previous test suite can be classified as:

CHAPTER 3. REGRESSION TESTING TECHNIQUES 30

e Reusable: reusable test cases execute the parts of the software that remain unmod-
ified between two versions, in other words, those parts that are common to the two
versions. The reusable test cases are executed in the new version in order to verify
if they will provide the same results as in the previous version. Furthermore, these
test cases are classified as reusable because they may be reused for the regression
testing of the future versions of P.

e Retestable: retestable test cases execute the parts of the software that have been
modified in the new version. Thus, the retestable test cases should be executed in
the new version of the system in order to test the behavior of the modified parts.

e Obsolete: obsolete test cases should not be executed in the new version of the
system. A test case may become obsolete for different reasons, such as 1) their in-
put /output relationships are incorrect due to a modification in the system specifica-
tions, or 2) they no longer test what they were designed to test due to modifications
to the program.

After a software modification, some test cases also have to be generated in order to
cover the new specifications. These test cases are classified as new.

It is important to note that the identification of obsolete test cases is necessary if
any test case reuse is desired, independently if the test case selection approach or the
retest-all approach is used. Therefore, when a modification is made on the system, it is
necessary to identify the obsolete test cases in T' for P’ prior to performing any test case
reuse approach. After identifying the obsolete test cases and removing them from 7T, the
evaluation of the test case reuse can be performed on the remaining ones [27].

Regression testing can be categorised into progressive or corrective, based on the type
of the modifications. Progressive regression testing involves modified specifications and is
performed whenever new requirements are incorporated in the system. In these cases, the
specification will be modified to reflect the additions, thus the new version of the system
should be tested in order to verify if the new specifications are correctly implemented.

Corrective regression testing does not involve changes in the specifications, but only
in design decisions and instructions of the system. In this case, most of the existing test
cases can be reused, because they correctly specify the input/output relationships. Usually
corrective regression testing is performed after some corrective action on the software, i.e.
correction of a bug.

During regression testing, a set of test cases may be available for reuse. Regression
testing reduces the cost of testing a modified system by reusing these existing tests,
identifying the parts of the modified system that should be tested and creating test cases
for the new parts of the system. Therefore, the use of its concepts in an iterative and
incremental environment improves the maintainability process.

CHAPTER 3. REGRESSION TESTING TECHNIQUES 31

3.2 Delta-Oriented Model-Based SPL Regression Test-
ing

In traditional regression testing techniques, source code is modified directly, thus their
activities are supported by the code modifications analysis. On the other hand, in model-
based regression testing the modifications are first done to models, rather than to source
code. Therefore, regression testing is supported by model modification analysis and can
be performed without source code analysis [32].

In an environment in which the test model is created iteratively and incrementally in
order to represent the behaviour of the system, the reuse of test artefacts are the key in the
development of different versions of the system. Software Product Lines (SPL) propose
techniques for developing variant-rich software systems by means of design artefacts reuse
throughout all development phases |33, 35, 36]. Each version of the system can be seem
as a product variant and consequently techniques of model-based testing of SPLs can be
adapted in order to be used in an iterative and incremental development of a system.

Lochau,M., et al. proposed Delta-Oriented Model-Based SPL Regression Testing,
an approach for incremental model-based testing of SPLs based on principles of re-
gression testing. The collection of test artefacts for a product variant p; is a 4-tuple
ta; = (tmy,tg;, ts;, tp;), in which tm; consists of a test model, tg; consists of a finite set of
test goals in tm,; for a coverage criteria C'C, ts; consists of a test suite and ¢p; consists of
a test plan. A test plan consists of a subset of a test suite (tp; C ts;) containing the test
cases to be (re-)tested during regression testing [33, 35, 36].

The test model ¢m is a state machine represented by a 4-tuple tm = (5, so, L, T'), in
which S is a finite set of states, sy € S is the initial state, L is a set of transition labels,
and T C S x L x S is the set of transition relationships. A test case tc = (to, t1,...,tx) € T*
of a state machine test model (¢tm) is a finite sequence of k transitions from tm. A test
case is walid if its alternating sequence of states and transitions conforms to tm, i.e., the
observable behaviour under the sequence of inputs conforms to the expected behaviour
specified in test model [33, 35, 36].

To express the variability they use the concepts of delta modelling, which is used in
SPL to explicitly specify the changes between variants, and to incrementally evolve test
artefacts for product variants. In delta modelling, similar products are represented by a
designated core product and a set of deltas that specify changes with respect to the core
product. Considering state machines as the test models, a state machine delta specifies
added and removed states and transitions from the core state machine. A modification in
the label of a transition can be represented by a removal of the transition followed by the
addition of a new one with the new label. In order to generate the variants of the test
model, delta operations are applied to the core test model (tmor). Therefore, differently
from techniques that compare the previous and current version of a test model to detect
the differences between them, in delta modelling the differences are explicitly specified by
means of deltas [33, 35, 36].

The product test artefacts incrementally evolve via the following steps:

1. Generate an initial collection of product test artefacts ta; using MBT techniques,

CHAPTER 3. REGRESSION TESTING TECHNIQUES 32

and apply the resulting test suite ts; to the implementation of p;. It is suggested
to use Peore aS P1-

2. Incrementally evolve ta; to ta;i1, for 1 < i < n, and apply the new (re-)test plan

Ipiy1 € Sip1 O Pita.

As shown in Figure 3.1 the principle of delta modelling is applied to reason about the
incremental changes between two sets of test artefacts ta to ta’ by a set of sub deltas:

5ta,ta’ = (5tm,tm’7 (Stg,tg’a 6ts,ts’7 6tp,tp’)

étmi Amigg
tm; tmi4+1
\ 3tg,.t0,, \
tg; t9i+1
8
1P, tp 4
tp; = i1
\ 5 \
ts;,ts;
tsz- o t81'+1

Figure 3.1: Incremental Evolution of SPL Test Artefacts (extracted from [36])

A test model delta 6, 1,y makes the differences between ¢tm and a subsequent variant
tm' explicit. Consequently, it is also called regression delta. A test goal delta 4y, defines
the evolution of the set of test goals that covers a coverage criteria in the tm’.

Sets of test cases are partitioned into subsets of reusable tsp € ts;, obsolete tsp =
ts; \ tsg, and new test cases tsy = ts;11 \ tsg. The test suite is composed of the valid and
obsolete set of test cases: ts = tsy Utso. The obsolete test cases are not discarded in the
next test suite ts’ because they could be reused in subsequent products.

In order to execute step 2, when the test set evolves to ts’, first the reusable test cases
are identified ts, = tsy Nts),. It contains the test cases that are valid for p and for p'. In
order to cover all test goals tg’, other test cases may be required. A test goal g € tg' is
not covered by ts if either a test goal is new in p/, or all test cases of p that cover g are
obsolete for p’. Therefore, firstly obsolete test cases tc € tso(tsy, that cover some test
goals may be identified and added to ts%. Otherwise, new test cases are generated and
compose the set T'Sy. The set ts evolves to ts’ = ts|, Utsy, via 0545, to cover all the
test goals t¢’, in which ts|, = tsgUts’y and tsy, contains the test cases from p that cover
removed transitions in p’.

The test plan ¢, C tsy is used to define which valid test cases from a test suite are
actually executed on the product under test, where ¢, = tsyUtsrr. New test cases
tc € tsy are applied to verify that new features are correctly implemented. From the set
of reusable test cases tsg, a retest set tsgT € tsp is selected to verify that the changes do
not erroneously affect common behaviour covered by tsr. For the selection of tsgr, any
technique can be chosen.

Chapter 4

Related Work

Works that propose approaches that deal with Model-Based Testing in an agile context,
those that deal with Model-Based Regression Testing, and those that deal with test arte-
fact reuse were analysed in order to support the definition of the proposed Delta MBTDD
method. During the search for the related works, those that propose algorithms or tools
were not analysed. Moreover, an attempt was made to select approaches that use any
kind of state machine as the test model. However, some of them use other models such
as control flow graphs. The works are separated according to their main objectives and
are described in the sections bellow.

4.1 Model-Based Testing in an Agile Context

Wieczorek et al. propose a software process which joins MBT, TDD, Model Driven Devel-
opment (MDD) and Model Driven Performance Engineering (MDPE). Firstly, following
MDD, some models are created: structural models which identify business components,
and behavioural models which describe messages between the components. Simultane-
ously, the models are analysed from the performance point of view. As a result, estima-
tions are created, based on the models and consequently on the final system, minimizing
possible code refactoring. From the models code stubs are automatically generated which
serve as input for the unit test case generator that guide the development during the TDD
cycle. MBT is used in order to generate integration tests from the models. However, even
though MBT is used during the process, the main idea is to use TDD to develop busi-
ness components while MBT supports the integration test generation in order to support
inter-component integration and not to support the development of the system. More-
over, there is no analysis about the evolution of the system and consequently about the
reuse of test artefacts.

Hametner et al. propose a method which adapts TDD for the context of the devel-
opment of an automation system, in which models are used to generate the test cases.
UML models are created to describe statistic and dynamic activities of the system, such
as use cases, class diagrams, state machines and sequence diagrams. Even though this
work proposes a method which focuses on using models to support test case creation,
only the design of the models are described and the generation of test cases from these

33

CHAPTER 4. RELATED WORK 34

are left as future work. Moreover, it is not explained how the test cases could support
the development of the system, and there is no analysis about the evolution of the system
and consequently about the reuse of test artefacts.

With the aim to improve the maintainability of regression test cases in a Scrum en-
vironment, Entin et al. propose the union of MBT and agile development, and validated
it on a case study. During the process, firstly use cases are defined and, from them, user
stories. After the definition of which user stories will be implemented during a specific
sprint, each one of them is represented in a UML statechart. From these statecharts,
regression tests are generated using MBT methods. During the next sprints an analysis
is performed in order to reuse the statechart and create new ones. As results of the case
study, it was observed that the modifications were represented faster when models were
used, the time required for state machine creation reduces in each sprint, and many stat-
echarts were reused. Even though this work deals with MBT in an agile development,
the tests do not guide the development. Moreover, the reuse is focused on state machine
reuse and not on test case reuse.

4.2 Model-Based Regression Testing

Korel et al. propose a model-based regression testing approach to reduce regression test
suites, that uses an EFSM (Extended Finite State Machines) as the test model and
EFSM dependence analysis in order to reduce the test suite. When a modification is
performed on the EFSM, only the additions and deletions of transitions are identified
between the two versions, because an addition or a deletion of a state is always associated
with an addition or a deletion of a transition, respectively. For each modification, EFSM
dependency analysis is performed and based on it, the regression test suite is reduced.
Even though the approach is a model-based regression testing technique, it is not in an
agile context and does not aim for test artefact reuse.

Farooq et al. propose a Model-Based regression testing approach which aims to classify
test cases from previous versions in a context of evolving software. UML class diagrams
and state machines are used, and based on the modifications on both models the test cases
are classified as obsolete, reusable or retestable. The obsolete test cases cover removed
transitions, the retestable ones cover changed transitions, and the reusable ones cover
unchanged parts of the system. The approach is inserted in a context of an evolving
software system, and consequently is suitable for an agile context. However, it aims to
classify the test cases and not to generate new test cases. Moreover, the test cases do not
guide the development of the system and they use only UML test models.

With the aim to support the selection of retestable test cases, i.e. test cases that
traverse modified elements and have to be re-executed on the system, a selective regression
testing approach based on model modifications is proposed by Naslavsky et al.. They
propose creating a traceability between model elements and the corresponding test cases
that traverse those elements while test cases are created from models. Firstly UML
sequence diagrams are transformed into Model-Based control flow graph (MBCFG), which
are an alternative view to the sequence diagrams that are used to support abstract test

CHAPTER 4. RELATED WORK 35

case generation. During this transformation, the traceability information is stored in the
traceability model. From MBCFG, a test hierarchy is generated and another traceability
model is created. When a second version of the sequence diagram is created, both versions
are compared and a UML model of the differences is created. The new sequence diagram
is transformed into a MBCFG, and based on it and on the traceability models it is possible
to perform an analysis in the test hierarchy. The analysis supports the classification of the
test cases from the previous version and consequently the selection of retestable test cases.
The approach is inserted in a context of an evolving software system, and consequently
is suitable for an agile context. However, even though it aims for test case reuse, the
selected test cases are those that have to be re-executed on the system and do not guide
the system development.

Motivated by the effort required for the MBT step of transforming abstract test cases
into executable ones in order to test an embedded system, Blech et al. propose to reuse
test cases on different levels of abstraction. However, the approach of test case reuse
is limited to a specific environment, and consequently it uses a specific model for this
context. Moreover, the approach is not in an agile context and the test cases do not guide
the development.

4.3 Reuse of Test Models

Weikleder et al. propose an approach for automatic test suite derivation based on reusable
UML (Unified Modelling Language) state machine test models. In the context of software
product lines (SPL), state machines can be used to model the behaviour of product vari-
ants and based on them test suites can be automatically generated using MBT techniques.
The context of a UML state machine is described in a context class. Therefore, instead
of creating one state machine per product variant, in this work it is proposed to create
one state machine that contain all features, which is associated with a context class. This
context class is the superclass of all product variants. Since specialized classes contain
the same operations, attributes and associations of the general class, but their behaviour
change depending on the value of the pre and/or postconditions or attributes, each prod-
uct variant is expressed by using different values of pre and /or postconditions or attributes
of the context class. In this work there is the reuse of test artefacts, as the behaviour
model is inherited by the subclasses. However, only the test model is reused, the test
cases are not reused. Moreover, the approach is not intended to guide agile testing.
Dranidis et al. propose a just-in-time on-line Model-Based regression testing approach
focusing on the reuse of test models, in which Stream X-machines (SXM) are used as
test models. SXM extend finite state machines by including a memory structure, and
from them the test cases are derived with the support of an MBT method and tool.
When the test model evolves through compositions, it is proposed to reduce the SXM for
the composition context and generate test cases only for the reduced SXM. Therefore, a
reduced test set is created in order to improve the execution of on-line tests. The approach
is inserted in a context of an evolving software system, and consequently is suitable for an
agile context. Since their goal is online testing, an important concern is the performance

CHAPTER 4. RELATED WORK 36

of test execution, and as such, it is essential to reduce the number of irrelevant test cases,
that is, test cases that do not cover modified parts. In this sense, the authors propose to
reduce the test model, so that it contains only the parts that are relevant for the applied
modification. However, from the reduced test model all test cases are generated without
any test case reuse and they do not guide the development of the system.

4.4 Summary of the Study

Table 4.1 summarizes the existing solutions according to some characteristics: which
kind of test model is used; if the approach was proposed in an agile context; if the tests
generated from test model guide the development of the system, like in MBTDD; if a
Model-Based regression testing method was used or proposed; if there was test artefact
reuse; and if test cases were reused. The last line contains Delta MBTDD, the approach
proposed in this work.

Table 4.1: Comparison of Existing Solutions

Solution Model MBT MBTDD| Model- | Test Test
in Agile Based Model | Case
Con- Regres- | Reuse | Reuse
text sion
Testing
Wieczorek et al. || Not spec- | X - - - -
(2008) ified
Hametner et al. || UML X - - - -
(2010) models
Entin et al. || UML X - - X -
(2012) state-
chart
Korel et al. || EFSM - - X - -
(2002)
Farooq et al. || UML X - X X X
(2007) state
machine
Naslavsky et al. || MBCFG | X - X X X
(2010)
Blech et al. || Specific - - X X X
(2012) Model
Weikleder et al. || UML - - - X X
(2008) state
machine
Dranidis et al. || SXM X - X X -
(2010)
D-MBTDD FSM X X X X X

Chapter 5

Proposed Solution: D-MBTDD method

In order to support the incremental test creation and maintenance in a Model-Based
Test-Driven Development, the Delta Model-Based Test-Driven Development (D-MBTDD)
method was proposed during this work. D-MBTDD supports the development of new
features by means of test case and test model reusability. Test cases from previous versions
that are valid for a current iteration are reused and new test cases that cover new features
are created. The development of new features is guided by the new test cases, while the
reusable test cases are used as regression tests. In order to use the D-MBTDD methods,
there are some assumptions described in Section 5.1. The D-MBTDD process is described
in Section 5.2, and in Section 5.3 a process which joins D-MBTDD and Scrum is presented.

5.1 Assumptions
D-MBTDD method relies on certain assumptions to guarantee its use and results:

e Even though any kind of behavioural test model could be used with D-MBTDD,
during this work only Finite State Machines (FSM) are used as test models.

e Before starting the test case generation, the finite state machines were already
created and validated by specialists. Furthermore, when the system evolves,
the regression deltas with the modifications necessary to obtain a new version of
the state machine were also created and validated by specialists. Therefore, the
representation of the system behaviour as a state machine is not in the scope of
D-MBTDD.

e The MBT tool used to support the offline test case creation is based on a test
purpose, i.e., it is possible to generate test cases that cover a specific coverage set.

e When the system evolves, the system implementation of the unmodified elements
of the test model have not been changed in order to guarantee that no accidental
or intentional changes were introduced.

37

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD 38

5.2 D-MBTDD Process

With the same motivation as Blech et al., D-MBTDD aims to reduce the effort required
for the transformation of abstract test cases into executable ones by reusing test cases
from previous versions. Moreover D-MBTDD proposes an approach in an agile context of
iterative and incremental development, based on Model-Based Test-Driven Development
(Section 2.4). Because the test cases generated from test models guide the development
of the system, D-MBTDD uses an offline MBT approach in order to generate and execute
the test cases.

D-MBTDD proposes some modifications in Model-Based Test-Driven Development
by adding some characteristics of Delta-Oriented Model-Based SPL Regression Testing
(Section 3.2) in order to support incremental tests in MBTDD. This technique was chosen
since it aims to reuse test artefacts by means of analyses of differences between different
versions of a test model. Even though it was proposed for a SPL context, each product
can be seen as one version of the system. When the system evolves, the modifications are
discussed with the client and consequently the differences are already known before the
beginning of the development cycle. Therefore, like in Delta-Oriented Model-Based SPL
Regression Testing, these differences are represented in regression deltas.

The same collection of artefacts is used, but because D-MBTDD is not in the context
of product lines, instead of having one collection per product variant, in D-MBTDD each
system version has a collection. Therefore, each test model represents one version of the
system behaviour.

Differently from Delta-Oriented Model-Based SPL Regression Testing, D-MBTDD
assumes a sequential evolution of the test models in which the regression deltas are applied
to the previous version of the test model and not just to the core test model.

When the system evolves, D-MBTDD proposes a process based on Delta-Oriented
Model-Based SPL Regression Testing process in order to support the incremental tests.
D-MBTDD classifies test cases from the previous version in order to identify the reusable
test cases, and generates new test cases in order to complete the new test suite. D-
MBTDD also does not discard the obsolete test cases in the next test suite because they
could be reused in subsequent versions.

D-MBTDD performs these tasks in order to support the development of new features,
in which new test cases guide the development and the reusable test cases are used as
regression tests after the implementation. Therefore, besides the classification of test
cases from the previous version, D-MBTDD aims for the selection of test cases that guide
the development of new features. Even though Naslavsky et al. and Farooq et al. propose
Model-Based regression testing approaches for evolving systems, they do not focus on the
generation of new test cases that cover new features and they do not deal with development
guided by test cases.

The test artefacts of D-MBTDD follow the definitions used in Delta-Oriented Model-
Based SPL Regression Testing, however in D-MBTDD the test plan artefact is not com-
posed of new and retestable test cases. In D-MBTDD no technique is used to select the
set of retestable test cases from the reusable set tsgT € tsgr, and the entire reusable set is
included in the test plan. Therefore, in D-MBTDD the test plan is composed of the new

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD 39

and reusable test cases. Moreover, in Delta-Oriented Model-Based SPL Regression Test-
ing the regression deltas contain information about additions and deletions of transitions
and states. However, because D-MBTDD deals with FSMs, like in Korel et al. regression
deltas contain only the additions and deletions of transitions.

The proposed development cycle is iterative and incremental, so the test artefacts
and the system are iteratively and incrementally created. Each iteration involves all the
phases: design, coding and testing. At the end of the iteration a working product is
demonstrated to the stakeholders. During the first iteration process, described in Subsec-
tion 5.2.1, the initial test artefacts and the first version of the system are created. And
then during the process for the iterations that follow, described in Subsection 5.2.2, the
test artefacts evolve in order to include new functionalities and changes.

5.2.1 Process for the First Iteration

During the first iteration, the initial collection of test artefacts and the first version of
the system are created following the flowchart illustrated in Figure 5.1. Each step of the
process is explained below.

Coverage
Criterion
Test Model Validated Test
;F _—
™ ™ Goals

Generate Test Suite
L Test ———* TS==TP ———» Devce:lfgzwent
Cases Test Plan

Figure 5.1: D-MBTDD process for the first iteration

1. Create the Test Model: First the test model (TM) is created by specialists in
order to represent the system behaviour.

2. Validate Test Model: The test model (TM) is validated with a specialist. This
validation is not formal, it is a validation in which the goal is to check if the behaviour
represented in the state machine is in accordance to his needs.

3. Test Goals Definition: To generate the test cases from the state machine, first a
coverage criterion that the test suite has to reach is agreed upon between the client, the
testers and the developers, in other words, the stakeholders. Based on this criterion, the
test goals that the test suite has to cover are derived.

For example, considering the core state machine illustrated in Figure 5.2 and a coverage
criterion of 100% transition coverage, the test goals are: tg = {¢0...t15}.

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD 40

Ti2

Figure 5.2: Core State Machine Example

4. Generate Test Cases: Based on the test goals, the test cases that cover all of
them are generated. In order to support this task, an MBT tool is used.

For example, for the core state machine of Figure 5.2, 25 test cases are created using
Condado tool, which is described in Subsection 6.5.1, in order to cover all test goals.

5. Test Suite and Test Plan Definition: Because in the first iteration there are
no test cases to be reused, the test plan is equal to the test suite.

6. Development Cycle: The test plan guides the development, during the develop-
ment cycle. The Development Cycle is based on the principle of Test-Driven Development
and follows the same cycle explained in Subsection 2.1 and illustrated in Figure 2.1.

5.2.2 Process for the Next Iterations

Because the environment is iterative and incremental, in the iterations that follow, we will
have new requirements and some changes to do. The steps of the iterations that follow
are illustrated in a flowchart (Figure 5.3) and they are described below.

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD

41

Old Resuable Old Obsolete
Test Cases Test Cases ———
TSreu Tsobs
Old Test Suite
Old .
Classify the
Test Model Delta Tt
™
|] T
1 {
New New Resuable New Obsolete
Test Madel Coverage Test Cases Test Cases
™ Criterion TSreu’ Tsobs’
Validated | Test Update the
™' Goals Test Suite
J
{
New New Test Plan New Feature
Test Suite ——— TP'=TSreu' U ——— Development
TS' TSnew'

Cycle

Figure 5.3: D-MBTDD process for when the test model evolves

1. New Test Model Creation and Validation: First, the modifications discussed
with the client in order to obtain a new version of the system are represented in a regression
delta. This regression delta with the modifications is applied to the previous test model
version (TM) in order to obtain the new test model version (TM’). Like in the first
iteration process, this new version is validated in order to verify it.

For example, the regression delta illustrated in Figure 5.4 removes transition ¢5, illus-
trated with dashed lines, and adds transitions ¢16 and ¢17, illustrated with double lines.
When the regression delta is applied to the test model previously illustrated in Figure
5.2, the new test model illustrated in Figure 5.5 is obtained.

Figure 5.4: Regression delta example

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD 42

Figure 5.5: New test model version example

2. Update Test Goals: Based on a coverage criterion, which can optionally be the
same from the previous iteration, and based on the new test model, the test goals are
updated.

For example, for the new test model of Figure 5.5 and using the same coverage criterion,
the test goals are updated to: tg = {t0...t4,¢6...t17}.

3. Revalidation of the Test Suite: The set of reusable test cases from the previous
test suite (7'Sreu) are analysed in order to revalidate the test suite. As stated in Section
3.1, a test case might be valid according to the core model, but becomes invalid for the
new version as the transition has been removed in the path exercised by the test case.
Therefore, with this analysis the test cases from the previous version are classified as
reusable if they remain valid, or obsolete if not. After that, the set of reusable (T'Sreu’)
and obsolete (T'Sobs’) test cases of the new version is created. In this step the states
and transitions covered by each test case are identified, in order to have the traceability
between the state machine, the test cases and the test goals.

In our example, because the old test model (Figure 5.2) was the first version, there
were no obsolete test cases (T'Sobs = ()) and therefore all test cases are part of T'Sreu.
T'Sreu had the 25 test cases and when analysed, 22 remained valid in the new version and
3 became obsolete. Therefore after the classification of the test cases from the previous
test suite, T'Sreu’ has 22 test cases and T'Sobs’ 3 test cases.

4. Update the Test Suite: Using the sets of classified test cases (7'Sreu’ and
T'Sobs") and the set of obsolete test cases from the previous test suite (7'Sobs), the test
suite is updated in order to cover all the test goals. D-MBTDD also does not discard
the obsolete test cases in the next test suite because they could be reused in subsequent
versions. In order to execute this task, some steps illustrated in the flowchart represented
in Figure 5.6 are performed, and they are described below.

4.1. Update the New Test Suite: Firstly, the new test suite T'S’ is updated in order to

New Reusab
Test Cases
TSreu'

Old Obsolete
Test Cases
TSobs

Test

le
—>

—

Update the
New Test Suite
TSreu' » Tobsc TS’

Goals

A 4

Check the
New Test Suite
TS

NO

v

Check the
Obsolete
Test Cases
TSobs

/ New
—» Test Suite
TS’

S

NO

Figure 5.6:

YES
Update the Obsolete Check the
Test Cases L :
TSobs = TSobs - New Tesf Suite
Obs' L
Update the
BT ObsgLesi:sTesi
Reusable Test '=
Cases TSOb?S-O.lI;s?bS .
Obs'c TSreu' l‘f S
YES Generate Update the
New Test New Test
Cases Suite
TSnew' TSnew' c TS'

Process of updating the test suite during the iterations that follow

(AOHLANW ddLdN-d -NOLLATOS d450d0O4dd "¢ H4LAdVHD

197

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD 44

include the new test set of reusable test cases (T'Sreus’) and the test set of obsolete test
cases from the previous version (7'Sobs).

In our example, after the execution of step 4.1. T'S’ has only the 22 reusable test cases
from T'Sreus’, because T'Sobs = ().

4.2. Check the New Test Suite: After that, it is verified if the new test suite covers
all test goals. In the positive case, the next step is 4.6 Update the Obsolete Test Cases,
otherwise it is 4.3. Check the Obsolete Test Cases.

In our example, T'S” does not cover all test goals, therefore step 4.3. has to be executed.

4.3. Check the Obsolete Test Cases: In case the test suite does not cover all test goals,
the set of obsolete test cases from the previous version (7'Sobs) is verified in order to
check if some of them become valid for the new version. It can happen for example if
after a few iterations a previously removed behaviour was included again in the system.
In the positive case, the next step is 4.4 Update the Reusable Test Cases, otherwise it is
4.5 Generate New Test Cases.

In our example, there is no obsolete test case from T'Sobs which become valid in the
new version, therefore step 4.5 has to be executed and step 4.4 is not executed.

4.4. Update the Reusable and Obsolete Test Cases: If some test cases (Obs’) from
the previous version becomes valid for the new version, they are included in the reusable
test set T'Sreu’ and removed from the obsolete test set T'Sobs. After that, it is verified if
the new test suite covers all test goals. In the positive case, the next step is 4.6 Updale
Obsolete Test Cases, otherwise it is 4.5. Generate New Test Cases.

4.5. Generate New Test Cases: In order to cover all test goals, new test cases are
generated with the support of an MBT tool. The set of new test cases (T'Snew’) is
included in the new test suite T7°S’.

In our example, 10 new test cases are generated in order to cover all test goals and
make up the test suite T'Snew’. The new test suite TS’ now contains the 33 test cases:
22 from T'Sreus’ and the 10 generated in T'Snew’.

4.6. Update the Obsolete Test Cases: After the new test suite T'S’ covers all test
goals, the obsolete test cases are updated in order to include the set of obsolete test cases
from the previous version (7'Sobs) with the set of obsolete test cases from the new version
(T'Sobs’). Finally the process of Updating the Test Suite is finished with the new test
suite containing three sets of test cases: reusable (T'Sreus’), new (T'Snew’) and obsolete
(T'Sobs').

In our example, T'Sobs’ continues with the 3 obsolete test cases classified as such in
step 3, because T'Sobs = (). Therefore, the new test suite is updated resulting in 36 test
cases: 22 from T'Sreus’, 10 from T'Snew’ and 3 from T'Sobs’.

5. New Test Plan: After the New Test Suite is updated in order to cover all test
goals of the new version, the new test plan (TP’) is created with only the valid test cases.
Therefore, TP includes the sets of reusable (T'Sreus’) and new test cases (T'Snew’) of
the new version.

In our example, TP’ is created with 36 test cases: 22 from T'Sreus’ and 10 from
TSnew'.

6. New Feature Development Cycle: The test plan guides the development.
Because now only the new features have to be developed, a new development cycle is

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD 45

proposed based on the TDD cycle and it is illustrated in Figure 5.7.

The test plan is composed of the set of reusable test cases (Treu’) and new test cases
(Tnew'). The classification into new and reusable test cases will assist development so that
it is focused on the new features. Firstly, the new test cases will assist the development
of new features in order to obtain the new version of the system (S’). After that, the
reusable test cases are applied to the new version of the system in order to guarantee
confidence in the modified version of the system, so they are used as regression tests. If
some test cases fail, the fixes are performed and the test cases are again applied. These
steps are repeated until all the test case executions succeed and, therefore, the new version
of the system is successfully implemented.

New Test Develop New version
Cases ——» thenew ————» of the System
TSnew' features s

|

New Test Plan Reusable 4 New version
TP' = TSreu' U —>| Test Cases — Apipnlys:l's YES—> of the System
TSnew' TSreu’ S
v

Figure 5.7: Development cycle of a new feature

5.3 D-MBTDD with Scrum

Scrum is a management framework for incremental software development, which uses a
few artefacts and a self-adaptive team. Scrum uses fixed-length iterations, called Sprints,
which typically last two to four weeks, during which the system is planned, developed, and
demonstrated to the client. Scrum uses a Product Backlog to represent a list of desired
functionalities ranked by their priorities, which are defined between the stakeholders. At
the beginning of each Sprint, the Product Owner and the team hold a Sprint Planning
Meeting to negotiate which Product Backlog Items will be worked on during the Sprint.
These negotiated items compose the Sprint Backlog. During the Sprint, a Daily Scrum
Meeting is realized every day in which all members of the team report their activities
and impediments. At the end of the Sprint, a deliverable of the system is created and
demonstrated to the client during the demo [48, 49]. Figure 5.8 presents a simplified
version of Scrum process.

CHAPTER 5. PROPOSED SOLUTION: D-MBTDD METHOD 46

Daily Serum
Meeting

b, i

Product Owner
The Team

¥
Sprint Demo and
. Backlog Deliverable

Sprint

{-ﬂmvnnwud

Sprint
Product Planning
Backlog Meeting

Figure 5.8: Scrum process (Adapted from [1])

Because Scrum is widely used nowadays, a process of how to use D-MBTDD with
Scrum was proposed and is illustrated in Figure 5.9. Because now the development is
guided by test cases derived from test model, the process adds a D-MBTDD cycle
before the development cycle during a Sprint. During the D-MBTDD cycle the steps of
the test model design and all the necessary steps to generate the test suite are performed.
The generated test cases are used in the development cycle in which the new test cases
guide the development of new features and the reusable test cases are used as regression
tests. After the execution of the development cycle, a deliverable is created and it is
presented to the client during the demo.

Furthermore, a test specialist role is proposed in the Scrum team. This new role
is responsible for supporting all the steps of D-MBTDD. Therefore, the test specialist
creates a representation of the desired behaviour in the test models, supports the test
suite generation, and supports the team to solve possible test problems during the Sprint.

Daily Serum

® @ Meeting
m ® o
Product Owner Test @ @
Specialist The Team
1
3 ﬁ
4
Sprint Sprint Demo and
5 l Backlog Deliverable
Product Plsa ‘:::i:g
Backlo:
9 Meeting

Figure 5.9: Process of D-MBTDD with Scrum

Chapter 6

Evaluation of the Proposed Solution

In software engineering, controlled experiments are used in situations where the simulation
is manipulated directly and systematically. It can be used to simulate the real-world
behaviour of different approaches applied to objects, in order to compare them. Variables
are used to support this evaluation and their outcomes are analysed [58]. Therefore, in
order to evaluate the applicability of the proposed solution, two controlled experiments
were performed during this work, each one with the support of a different MBT tool.
Section 6.1 describes the approach Regenerate-All, used for comparison with D-MBTDD,
as well as the metrics used to support the analyses of the results. The objects used during
the experiments are described in Section 6.2. The experiments were performed in both
MBT tools following a process described in Section 6.3. The first controlled experiment
used StateMutest as the MBT tool. The StateMutest tool, the preparation for conducting
the experiment with it, the results and the analyses are described in Section 6.4. The
second controlled experiment used Condado as the MBT tool. The details about the
second controlled experiments are described in Section 6.5, similarly to how the details of
the first experement were described. The discussion about all the results of the controlled
experiments and a comparison between Regenerate-All and D-MBTDD are described in
Section 6.6. The threats to the validity of the experiments are described in Section 6.7.

6.1 Definition of the Experiment

In an iterative and incremental environment, when the system evolves and so does the test
model, in order to update the test suite for the new version, it is possible to perform two
different approaches: regenerate all test cases, or reuse some test cases from the previous
version. The Regenerate-All method follows the first approach, while D-MBTDD follows
the second one.

In Regenerate-All, the test model is updated and from this new version all executable
test cases are generated without using any information from test cases created for the
previous version. Regenerate-All aims to reuse and maintain only the test model, and it
regenerates the test suite any time the test model evolves, discarding previously generate
test cases. Binder justifies this approach by affirming that updating a test model requires
less effort than maintaining a test suite, since the size and complexity of test models grows

47

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 48

more slowly than the test suite |7, 8|.

Usually MBT tools do not generate platform specific test cases. Therefore, even
though Regenerate-All assumes the regeneration of executable test cases, they still have
to be adapted in order to be executable for a specific platform. If the system is executed
in different platforms, e.g. web and mobile, the test cases have to be adapted for each
platform. Thus, even though executable test cases are generated from the MBT tool,
effort is still required to adapt them for the specific platform.

In order to generate test cases, the same coverage criterion is used with Regenerate-
All and D-MBTDD. Regenerate-All generates all test cases based on the complete model.
Consequently depending on the coverage criterion, the test suite will be composed of test
cases that traverse modified elements, but also of test cases that traverse only unmodified
elements. Therefore, in order to support the development of new features, it will be
necessary to identify those that cover modified elements. Differently from Regenerate-
All, D-MBTDD generates test cases based on the missing test goals and consequently
based on the modified elements of the state machine. Ideally, when D-MBTDD is used all
generated test cases traverse at least one modified element, so that all test cases traverse
modified elements.

During this work two controlled experiments were performed with the main objective
of comparing D-MBTDD with the Regenerate-All approach, in order to verify the gain
of reusing test cases in an iterative and incremental environment, in which the test cases
guide the development. Each controlled experiment used a different MBT tool to support
the test case generation: StateMutest and Condado. These tools were chosen because
during test case generation it is possible to define test purposes that have to be reached,
which according to Grabowski et. al. [26], could be a sequence of events, or a set of states
or transitions. The choice of the test purpose is made by the test specialist together with
the client, as it indicates which part of the specification is interesting to exercise. This
characteristic is necessary in order to execute the creation of new test cases that cover
missing test goals, a step of the D-MBTDD methodology.

Even though Regenerate-All proposes to regenerate executable test cases, during this
work the scenario in which abstract test cases are regenerated and transformed into
executable test cases was analysed. Whenever the system was evolved to create a new
version, the two approaches were performed in the resulting version. The gain was anal-
ysed from the perspective of the testers, who have to select and transform the test cases
that guide the development.

6.1.1 Metrics

The evaluation focuses on comparing the gains in reusing the test cases. For that purpose,
some research questions were defined and previously described in Section 1.4. In order
to support the analyses required to obtain the answers to these questions, some metrics
were defined for Regenerate-All and D-MBTDD.

The metrics were defined considering:

e T'SO: the size of the Old Test Suite;

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 49

TSN: the size of the New Test Suite;
N: number of new test cases generated by D-MBTDD;

c(re): cost to revalidate the old test suite;

)
c(ge): cost to generate the test cases;

cost to identify the test cases that guide the development of new features;

c(tr): cost to transform the abstract test cases into executable ones

(

(
c(id)

(tr)

In order to support the analyses of Research Question RQ1, the following metrics

were defined:

Generated Test Cases (GenTC): represents the number of generated test cases
by each approach.

When Regenerate-All is used, the new test suite is composed only of the generated

test cases, therefore:
GenTC(RA) = TSN (6.1)

When D-MBTDD is used, only new test cases are generated per iteration, therefore:

GenTC(DMBTDD) = N (6.2)

Effort for test case creation per iteration (E_ Cr): represents the effort for
creating test cases per iteration.

In Regenerate-All, the effort for creating test cases is equal to the effort to generate
the test cases, therefore:

E _Cr(RA)= GenTC*c(ge)
Considering equation 6.1:

E Cr(RA) = TSN*c(ge) (6.3)

In D-MBTDD, before generating the test cases it is necessary to revalidate the test
cases from the old test suite, therefore:

E_Cr(DMBTDD) = TSO*c(re) + GenTC*c(ge)

Considering equation 6.2:

E Cr(DMBTDD) = TS0%*c(re) + N*c(ge) (6.4)

In order to support the analyses of Research Question RQ2, the following metrics

were defined:

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 50

e Not Modification Test Cases (NotModTC): represents the number of test
cases that do not traverse any modified element of the state machine, i.e., that
traverse only the unmodified parts.

e Modification Test Cases (ModTC): represents the number of test cases that
traverse at least one modified element of the sate machine. This value is calculated

as:
ModTC = GenTC - NotModTC (6.5)

e Focus: measures how focused the generated test cases are on the modified elements.
This metric measures the ability of the technique to generate more modification
traversal test cases than not modification traversal test cases in each resulting set
of generated test cases, thus it is calculated as:

_ ModTC

Focus = W (66)

e Effort for identifying modification traversal test cases (E_Id): represents

the effort for identifying test cases that guide the development of new features, i.e.,
the modification traversal test cases.

In Regenerate-All, it is necessary to identify the modification traversal test cases
from all the generate test cases, therefore:

E Id(RA) = GenTC*c(id)
Considering the equation 6.1:

E_Id(RA) = TSN*c(id) (6.7)

In D-MBTDD, the modification traversal test cases are already identified in the set
of new test cases, therefore no effort is required for this task:

E_Id(DMBTDD) = 0 (6.8)

During the controlled experiments, in order to calculate the metric Not Modification
Test Cases (NotModTC) for each experiment, a shell script was created and is available
on https://goo.gl/MXywuW.

In order to support the analyses of Research Question RQ3, the following metrics
were defined:

e Total effort to use the approach (E_Total): represents the effort for using
the approach. It is composed of the effort to generate the test cases, to identify the
modification traversal test cases, and to transform abstract test cases into executable
test cases.

Considering equations 6.3 and 6.7, and that all generated test cases have to be
transformed into executable test cases in Regenerate-All, the total effort is:

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 51

E_Total(RA) = TSN*c(ge) + TSN*c(id) + GenTC*c(tr)
Considering equation 6.1:

E Total(RA) = TSN*c(ge) + TSN*c(id) + TSN*c(tr) (6.9)

Considering equations 6.4 and 6.8, and that only the new test cases have to be
transformed into executable test cases in D-MBTDD, the total effort is:

E_ Total(DMBTDD) = TSO*c(re) + N*c(ge) + N*c(ir) (6.10)

6.2 Planning of the Experiment

The controlled experiments were conducted by the author of this work, and the objects
were selected according to their characteristics. During the controlled experiments an
agile environment was simulated in which test models were created iteratively and incre-
mentally, moreover only finite state machines were used as test models. Therefore, the
selected objects were finite state machines which had at least two versions that repre-
sented test models created incrementally, and whose differences were represented as state
machines, i.e. regression deltas.

The objects used during the controlled experiments were extracted from two different
sources. The first one, described in Subsection 6.2.1, is a case study used by the authors of
the Delta-Oriented Model-Based SPL Regression Testing (Subsection 3.2) method, which
inspired this proposal. The other, described in Subsection 6.2.2, is a real-world space
application developed by an industrial partner. In total there were 9 test models with 20
different versions.

In order to simplify the state machines, the input and output of all transitions were
omitted and the transitions were labelled with an identifier (ID). Following the idea from
Delta-Oriented Model-Based SPL Regression Testing (Subsection 3.2), a modification of
an input or output was represented as a removal of the transition followed by the addition
of a new one with a new identifier (ID) label.

The objects followed the idea of Delta-Oriented Model-Based SPL Regression Testing
and was composed of: a core state machine test model, which will be referred to from now
on as core model; different state machine test model versions, which will be referred to
from now on as test model versions; and state machine delta models, which will be
referred to from now on as delta models.

6.2.1 Delta Case Study

The case study is from the automotive domain, a simplified Body Comfort System (BCS)
including the following functionalities [34, 36]:

e Power Window with Finger Protection

e Flectric and heatable Exterior Mirror

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 52

o Alarm System with Interior Monitoring
e Central Locking System with Automatic Locking

e Remote Control Key with Safety Function, Alarm System Control, and Power Win-
dow Control

Automatic Locking allows the Central Locking System to provide the automated lock-
ing of the doors when the car is driving. Safety Function allows the Remote Control
Key to provide the automated locking of the car after a specific timeout, i.e., the car is
unintentionally unlocked. The Power Window has two alternatives: the Manual Power
Window, which moves up/down when pressing and holding the button for the window
movement, and the Automatic Power Window, which moves up/down when pressing the
button for the window movement once.

Although the authors applied Delta-Oriented Model-Based SPL regression testing to
different UML models, we only use the state machine ones [34, p. 103-148|. There
are some core test models that specify the complete behaviour, i.e., there is no version
changing the behaviour of the core, and therefore there is no correspondent delta model.
From the 21 core test models, just those which have at least one delta model were selected.
Thus, 8 core test models were selected:

o Manual Power Window, which specifies the behaviour of the manual power window
movement;

o Automatic Power Window, which specifies the behaviour of the automatic power
window movement;

e Remote Control Key, which specifies the behaviour of the remote control key con-
troller reacting to remote signals;

e Central Locking System, which specifies the activation/deactivation of the central
locking system:;

e Human Interface Component,which specifies the behaviour of the human machine
interface reacting to the interaction with the driver;

e LED Automatic Power Window, which specifies the turning on/off of the LED if
the automatic power window moves down /up;

e Alarm System, which specifies the behaviour of the activation/deactivation of the
alarm system as well as the enabling/disabling of the alarm monitoring;

e FExterior Mirror, which specifies the behaviour of the exterior mirror position ad-
justment.

Table 6.1 summarizes the number of states, transitions and delta models for each core
test model selected; the name of each delta model was extracted from the original source.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 53

Furthermore, there is an identifier (ID) for each model that will be used to reference each
one of them from here.

Table 6.1: Core test model information of delta case study

‘ 1D | Model States | Transitions | Deltas
M1 | Manual Power Window 8 13 1
M2 | Automatic Power Window 15 19 1
M3 | Remote Control Key 3 4 3
M4 | Central Locking System 4 4 2
M5 | Human Interface Component 7 12 3
M6 | LED Automatic Power Window 7 8 1
M7 | Alarm System 10 13 2
MS8 | Exterior Mirror 21 48 2

As an example, Figure 6.1 illustrates the core test model M2 (Automatic Power Win-
dow). All the selected models are available on https://goo.gl/I3T9Sf.

2 3 14)
PW_move_dn PW_pend_auto_dn PW_moved_dn

1 "
PW_pend_auto_dn_stop PW_pend_auto_stop_dn
N () 10 : :
PW_up PW_pend u3 PW dn

PW_pend_auto_up_stop PW_pend_auto_stop_up 5
8

9

17 16
PW_moved_up PW_pend_auto_up PW_move_up
118
a7 PW_fp_stop PW_fp_pend

Figure 6.1: M2 Automatic Power Window core test model (extracted from [34])

In total, there are 15 delta models, which applied to the correspondent core test model
result in test model versions. The description of each delta model is on Appendix A.

Table 6.2 describes for each delta model: the number of states and transitions added
(labelled with a + (plus)) and/or removed (labelled with a — (minus), and an identifier
(ID) that will be used to reference it from here. Table B.1 in Appendix B presents which
transitions were added or removed for each delta model.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 54

Table 6.2: Delta model information of delta case study

ID Delta States | Transitions

M1 Delta 1 DAddManPWCLS +5 +14
M2 Delta 1 DAddAutoPWCLS +8 +16
M3 _Delta 2 DAddRCKSF +2 +4
M3 _ Delta 1 DAddRCKCAP +4 +7

-1 -2
M3 _ Delta 3 DAddRCKCAPSF +4 +8
M4 Delta 1 DAddCLSAL +3 +4
M4 Delta 2 DAddCLSRCK 0 +2
M5 _ Delta 1 DAddHMIAS +2 +4
Mb5_ Delta 2 DAddHMILEDAS +1 +2
M5 Delta 3 | DAddHMILEDManPW +1 +3
M6 Delta 1 | DAddLEDAutoPWCLS +6 +9
M7 _ Delta 1 DAddASCAS 0 +3
M7 _ Delta 2 DAddASIM +3 +6

0 -2
M8 Delta 1 DAddEMHeating +18 +36
M8 Delta 2 DAddEMLEDEM +24 +48

0 —24

Table 6.3 describes how the test model versions were obtained. For each test model
version, the table shows which test model version was used as the base, acting as a previous
version, and what delta model was applied to that base test model in order to obtain the
new version. Moreover, the table shows the number of states and transitions for each test
model version, and an identifier (ID) that will be used to reference it from here.

Table 6.3: Information of test model versions of delta

case study
ID Previous Delta ID States | Transitions
test model
ID
M1 D1 M1 M1 Delta 1 13 27
M2 D1 M2 M2 Delta 1 23 35
M3 D2 M3 M3 _ Delta 2 5 8
M3 D2 D1 M3 D2 M3 Delta 1 8 13
M3 D2 D1 D3| M3 D2 D1 | M3 Delta 3 12 21
M4 D1 M4 M4 Delta 1 7 8
Continued on next page

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 59

Table 6.3 — continued from previous page

ID Previous Delta ID States | Transitions
test model
ID

M4 D1 D2 M4 D1 M4 Delta 2 7 10
M5 D1 M5 M5 Delta 1 9 16
M5 D1 D2 M5 D1 M5 Delta 2 10 18
M5 D1 D2 D3| M5 D1 _D2 | M5 Delta 3 11 21
M6 D1 M6 M6 Delta 1 13 17
M7 D1 M7 M7 Delta 1 10 16
M7 D1 D2 M7 D1 M7 _ Delta 2 13 20
M8 D1 M8 M8 Delta 1 39 84
M8 D1 D2 M8 D1 M8 Delta 2 63 108

As an example, we obtain the test model version M2 D1 for the component Automatic
Power Window with Central Locking system, illustrated in Figure 6.2, after applying
M2_Delta_ 1 to the core M2 model, illustrated in Figure 6.3. All the delta models
follow the notation of a + (plus) to represent addition of an element, and a — (minus)
for removals. Furthermore, the elements from the previous model are represented by
dashed borderlines. All the delta models and the test model versions are available on
https://goo.gl/I3TISE.

Figure 6.2: Automatic Power Window with Central Locking system test model version
(M2_D1) (extracted from [34])

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 56

Name: DAddAutoPWCLS
After:
When: Automatic Power Window AND Central Locking System

- <, - ~, - ~ o mmeeeeee——

N
\

PW_pend_auto_dn } | PW_pend
J \,

N

! Ay Ay
| PW_up H PW_fp_pend H
\, ,/ = '~ i
A =} A
B

al
132 128 29
B]

t20:

34

A4 A £l

]
21
i1 I \
| PW_pend_auto_up } e ™
PW_cls_up \ S PW_fp_cls_pend [PW_dn)
[AN A
K
B :

[3] l
] B

25

127

30

-

22
PW_cls_moved_up }e =
23

PW_cls_pend_mv_up PW_fp_cls_stop

PW_cls_dn_mv_up

Figure 6.3: M2_Delta_ 1 of M2: DAddAutoPWCLS delta model (extracted from [34])

6.2.2 SWPDC - Software for a Data Collection Platform

The other object was a space application, the Software for a Data Collection Platform
(SWPDC), from INPE!, the Brazilian Institute for Space Research. The state machine
test models were modelled together with an industrial partner and follow the CoFI (Con-
formance and Fault Injection) methodology. CoFi is a Model-Based testing methodology
that addresses, among others, conformance and fault injection testing systematization of
embedded software in space missions, with the aim of having automatic test case genera-
tion. To fulfill this aim, CoFI uses a set of Finite State Machines (FSM). For each service
provided by the system under test, its behaviour is modelled in different viewpoints: Nor-
mal, Specified Exception, Fault Tolerance and Sneak Path (correct inputs occurring at
the wrong moments). For each viewpoint one or more FSM are created [24].

Because each state machine represents a viewpoint of the application, when comparing
the different state machines, it is noticed that they have few elements in common. That
is explained because the state machines were not modelled incrementally. Therefore, each
state machine do not represent neither a variant of a test model nor a version of a test
model.

Even though state machines from different viewpoint were not created incrementally, it
was possible to simulate an incremental development using the provided artefacts. There-
fore, some adaptations were performed in order to use them in the controlled experiments.
The first FSM in the Normal viewpoint was considered as the core test model, and new
versions were created by adding states and transitions from the other state machines.

The set of services was modelled as FSM test models. However, in order to use them
as an example of incremental development, only the services that had at least three FSMs,
counting those of the Normal viewpoint and of the Specified Exception viewpoint, were
analysed. In total 8 services were analysed. From these services, only one was used in the
controlled experiments due to time restrictions.

The core test model of the selected example was composed of 16 states and 20

lwww.inpe.br

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 57

t0 t 2
& - B2 £3
Standg Init - Secure Tum-0n
¥ EPP OFF EPPs

6

=]
Secure
Loading Data
t5

E7
Secure with
Test Data

E4
Waiting Secure

t4

ES
Secure
EPPsOn

tiz

E8
11| Secure with
Test Data t0
C5R1 E10

Ha Diagnostic

A
o

8

113

EQ Ell

Secure without Diagnogic
Test Data Loading

Data

o E15 114
Diagnostic
for
£s Secure

E12

(58|
)

A
)

El6 Diagnostic
Tum-Off with
Secure Test Data

t7

115

tie

E1l4 E13
Diagnostic Diagnostic
without Test Data

Test Data CSR1

Figure 6.4: CoFT core test model

transitions and it is illustrated in Figure 6.4. There was another FSM of the Normal
type and 4 FSM of the Specified Exception, composing 5 deltas to be applied to the core
test model. This core test model will be referenced with an identifier (ID) of S04.

Table 6.4 describes for each delta model: the number of states and transitions added
(labelled with a + (plus)), and an identifier (ID) that will be used to reference it from here.
Table B.1 in Appendix B presents which transitions were added for each delta model.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 58

Table 6.4: Delta models information of CoF1

ID Delta \ States \ Transitions
S04 Delta 1 Normal 2 +2 +4
S04 Delta 2 | Specified Exception 1 +4 +13
S04 Delta 3 | Specified Exception 2 0 +6
S04 Delta 4 | Specified Exception 3 +1 +8
S04 Delta 5 | Specified Exception 4 +1 +4

Table 6.5 describes for each test model version: the relationship between the core test
model and which delta(s) model(s) are applied in order to obtain the test model version,
the number of states and transitions, and an identifier (ID) that will be used to reference
it from here.

Table 6.5: Information of test model versions of CoF1

1D Model ID Delta ID | States | Transitions
S04 D1 S04 S04 Delta 1 18 24
S04 D1_D2 S04 D1 S04 Delta_2 22 37
S04 D1 _D2 D3 S04 D1 _D2 S04 Delta_3 22 43
S04 D1 _D2 D3 D4 S04 D1 _D2 D3 S04 Delta_ 4 23 51
S04 D1 D2 D3 D4 D5 | S04 D1 D2 D3 D4 | S04 Delta 5 24 55

As example, the test model version S04 D1, illustrated in Figure 6.6, is obtained
after applying S0/ Deltal, illustrated in Figure 6.5, to the core test model. The added
elements are represented with dashed lines. All the delta models and the test model
versions are available on https://goo.gl/WRhMs6.

Diagnostic

tie
El4
Diagnogtic | .
o without | Test Data
Test Data CSR1
8 EL7 A
- Secure without
Data
Retransmit
122
123 E18
-------------------------------------- Diagnogtic without [
ES 121 Data Retransmit
Secure with s
Test Data

Figure 6.5: S04 Delta_ 1 delta model

E8
Securewith |
Test Data o
CSR1 it

E13

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 59

t0 t 2
& - B2 £3
Standg Init - Secure Tum-0n
¥ EPP OFF EPPs

6

=]
Secure
Loading Data
t5

E7
Secure with
Test Data

t4 E4
Waiting Secure

ES
Secure
EPPsOn

tiz

E8
11| Secure with oo
Test Data ©
C5R1 E10
Diagl

Ha nogic

o

B E17 113

Secure witout
Data
Retransmit

E9 Ell
Secure without DLBUSJaﬂd?r]gig\c
Test Data i

k1o 114
Diagnostic
for
o Secure
El2
Diagnostic
with
Test Data

115

!

ti6
E1l4 El
Diagnostic Diagnostic
without Test Data
Test Data CSR1

122

)

El6
Tum-Off
Secure

)

t7

w

123

El8
Diagnostic without
Test Data Retransmit

Figure 6.6: S04 D1 test model version

6.3 Workflow of the Experiments

During the controlled experiments, the workflow described in Subsection 6.3.1 was followed
in order to execute the experiments with the first version of each state machine. For each
test model version, the process described in Subsection 6.3.2 was followed in order to
update the test suite.

Even though D-MBTDD uses a test plan and a development cycle in order to support
the development of the system, these steps were not performed because the objectives
are related to the test suite update. Therefore, the system was not implemented and the
experiments stopped on the test suite creation/update.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 60

6.3.1 Workflow for core model experiments

Following the process specified in Subsection 5.2.1, for each core test model of each project
of both MB'T tools, the following steps were performed:

1. Create the state machine.

2. Define the Test Goals based on a coverage criterion of 100% transition cov-
erage.

3. Configure the parameters of the MBT tool.

4. Generate the test suite that covers all the test goals.

6.3.2 Workflow for test model version experiments

After the test suite creation for the core test model, its versions were created. During
the controlled experiment, D-MBTDD and Regenerate-All processes were performed for
each test model version. In order to generate test cases, the same criterion of 100% of
transition coverage was used with Regenerate-All and D-MBTDD.

In the Regenerate-All process, when the system evolves only the test model is reused
and new test cases are created from scratch. Therefore, the steps performed to create a
new version are the same as described in Subsection 6.3.1.

Differently from Regenerate-All, D-MBTDD aims to reuse test cases from the pre-
vious test suite, besides the test model reuse. Thus, according to the process specified
in Subsection 5.2.2, for each version of each core test model, the following steps were
performed:

1. Create the new version of the state machine.

2. Update the Test Goals based on a coverage criterion of 100% transition cov-
erage.

3. Revalidate the test cases from the previous test suite based on the delta model.
4. Configure the parameters of the MBT tool.
5. Update the Test Suite.

5.1. Check if any obsolete test cases from the old test suite become valid.

5.2. Generate new test cases to cover all test goals, based on the modified elements.

In order to automate the execution of steps 2. and 3. a shell script was created and
it is available on https://goo.gl/MXywuW.

The examples used during the controlled experiments did not have a situation in which
an obsolete test case becomes valid. Therefore, the step 5.1. was not executed in any

experiment.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 61

6.4 Controlled Experiment 1: StateMutest Experiments

All the objects described in Section 6.2 were created in the StateMutest tool. A description
of the tool is present in Subsection 6.4.1. A setup process was necessary in order to
generate the test cases and it is described in Subsection 6.4.2. The results obtained from
the core test model M2 of the delta case study, illustrated in Figure 6.1, was t8. with
the experiments, and the results of some metrics defined in 6.1.1 are shown in Subsection
6.4.3. The analyses of the results valid only for StateMutest experiments are described in
Subsection 6.4.4.

6.4.1 State Mutest

StateMutest [14] is an MBT tool developed by a partnership between researchers from the
University of Campinas (UNICAMP) and the Federal University of Sao Carlos (UFSCar),
and it uses FSM or Extended Finite State Machines (EFSM) as its models. Besides
other features, StateMutest automates the offline test case generation based on models
by means of the MOST (Multi-Objective Search-based Testing) algorithm, proposed in
Yano. MOST uses the concepts of Model-Based testing and search based testing, thus
it generates sequences of multi-objective tests by means of a meta-heuristic algorithm.
It uses a multi-objective optimization approach, which searches for a balance between
two objective functions: the minimum length of the input sequence and the test purpose
coverage.

To generate the test cases, some parameters have to be configured, and three of them
are the most relevant for the controlled experiment:

e The value of Tau is related to the determinism of the search algorithm. The
determinism tends to increase with greater values. According to Yano [59], the
range of values that maximizes the algorithm efficiency is between 1 and 5.

e MOST evaluates a configured Maximum Number of Evaluations (maxNu-
mEval) of the objective functions. However, the algorithm resets its search after
(max NumFEval /numRes) evaluations, in which numRes represents the number
of reinitialization of the algorithm.

MOST uses a set of transitions to be covered as the test purpose, which is called the
coverage set. It is also necessary to define a target transition that all test cases must
cover. As output StateMutest generates abstract test cases, which contain, among other
information, a sequence of reached transitions [14, 59, 60].

6.4.2 Preparation

As explained in 6.4.1, StateMutest has an option for selecting the coverage set and which
target transition has to be covered during test case creation. For this study, a transition
that leads back to the initial state was chosen as the target transition. The reason for
that was to generate test cases that represent a cycle which starts and finishes in the

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 62

same state. For example, the target transition of the core test model M2 of the delta case
study, illustrated in Figure 6.1 was ¢8.

In order to perform step 3 of the workflow for the core model experiments (Subsection
6.3.1), the target transition was defined and the coverage set was configured as all tran-
sitions minus the target transition. Because the coverage criterion was 100% transition
coverage, the coverage set for all core test models included all the transitions of the state
machine minus the target transition; for example, for the core test model M2 the coverage
set was all transitions minus £8.

In order to perform step 4. of the workflow for the test model versions experiments
(Subsection 6.3.2), D-MBTDD and Regenerate-All had different configurations. In order
to obtain a 100% transition coverage when D-MBTDD was used, the coverage set was
composed of missing transitions, because part of the transitions were already covered with
the reusable test cases. However, when Regenerate-All was used, in order to obtain the
same coverage criterion the coverage set was composed of all the transitions of the state
machine minus the target transition. For example, for the test model version M2 D1
(Figure 6.2) the target transition was t21 and the coverage set was t20..t35 when using
D-MBTDD, and all transitions minus 21 when using Regenerate-All.

The relationships among all the state machines, their tau value, their target transition,
and their coverage set in the StateMutest projects are shown in Table B.2 in B.

As explained in Section 6.4.1, there are some parameters that have to be configured
in order to generate the test cases in StateMutest: the tau value, the mazimum number
of evaluations (maxNumFEval) and the number of reinitialization (numRes). There are
no standard parameter values that work well on every problem, therefore it is required
to find suitable values for the parameters of the search algorithm. Specifically, the tau
value must be tuned for each model, otherwise, the algorithm performance will suffer. For
that reason, it is necessary to perform some experiments to fine tune the tau value. The
performance here is measured in terms of the number of test cases generated: the greater
this number, the better.

To search for a suitable tau value, for each state machine the test case generation
process was executed five times varying the tau value from 1 to 5. The value that generated
the largest quantity of test cases was selected. If after the preliminary executions there
were two or more values of tau which generated the largest quantity of test cases, an
analysis of the generated test cases was performed in order to define the most adequate
value. For each state machine, the relationship between the value of tau and the quantity
of generated test cases is represented in Table B.3 in Appendix B. The greater the value
of maxNum&Fwval is, the more accurate is the result, but the slower the execution is.
Therefore, during the preliminary executions, the value of mazNumEval was set to 10°
and the value of numRes was set to 10, and after the definition of the tau value, the value
of mazNumFEval was increased to 10° and the value of numRes to 100.

6.4.3 Results

Table 6.6 shows the number of valid test cases for each model and each approach in the
experiments that used the StateMutest tool. Furthermore, when applicable, i.e. when D-

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 63

MBTDD was used, it also shows the number of reusable, obsolete and new test cases. In
these cases, the number of valid test cases was the sum of the value of new and reusable test
cases, while in the Regenerate-All experiments the number of valid test cases was equal
to the value of generated test cases. When a determined information was not applicable,
a minus (—) signal is displayed.

Table 6.6: Number of valid, new, reusable and obsolete
test cases in StateMutest experiments

Model ID Approach Valid | New | Reusable| Obsolete
TCs | TCs | TCs TCs
M1 - 8 - - -
M1 D1 Regenerate-All | 13 - - -
M1 D1 D-MBTDD 15 7 8 0
M2 - 8 - - -
M2 D1 Regenerate-All | 17 - - -
M2 D1 D-MBTDD 15 7 8 0
M3 - 2 - - -
M3 D2 Regenerate-All | 5 - - -
M3 D2 D-MBTDD | 5 3 2 0
M3 D2 D1 Regenerate-All | 4 - - -
M3 D2 D1 D-MBTDD | 5 2 3 2
M3 D2 D1 D3 Regenerate-All | 8 - - -
M3 D2 D1 D3 D-MBTDD 11 6 5 0
M4 - 1 - - -
M4 D1 Regenerate-All | 5 - - -
M4 D1 D-MBTDD | 2 1 1 0
M4 D1 D2 Regenerate-All | 6 - - -
M4 D1_D2 D-MBTDD | 4 2 2 0
M5 - 8 - - -
M5 D1 Regenerate-All | 7 - - -
M5 D1 D-MBTDD 10 2 8 0
M5 D1 _D2 Regenerate-All | 7 - - -
M5 D1_D2 D-MBTDD 12 2 10 0
M5 D1 _D2 D3 Regenerate-All | 10 - - -
M5 D1 _D2 D3 D-MBTDD 14 2 12 0
M6 - 3 - - -
M6 D1 Regenerate-All | 12 - - -
M6 D1 D-MBTDD 10 7 3 0
M7 - 8 - - -
M7 D1 Regenerate-All | 11 - - -
M7 D1 D-MBTDD 11 3 8 0
Continued on next page

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 64

Table 6.6 — continued from previous page

Model ID Approach Valid | New | Reusable| Obsolete
TCs | TCs | TCs TCs

M7 D1 D2 Regenerate-All | 13 - - -
M7 D1 _D2 D-MBTDD 15 10 5 6
M8 - 12 - - -
M8 D1 Regenerate-All | 10 - - -
M8 D1 D-MBTDD | 20 8 12 0
M8 D1 D2 Regenerate-All | 11 - - -

M8 D1 D2 D-MBTDD 11 9 2 18
S04 - 5 - - -
S04 D1 Regenerate-All | 6 - - -
S04 D1 D-MBTDD | 7 2 5 0
S04 D1 D2 Regenerate-All | 6 - - -
S04 D1 D2 D-MBTDD 13 6 7 0
S04 D1 D2 D3 Regenerate-All | 12 - - -
S04 D1 _D2 D3 D-MBTDD 19 6 13 0
S04 D1 D2 D3 D4 Regenerate-All | 13 - - -
S04 D1 D2 D3 D4 D-MBTDD | 24 5 19 0
S04 D1 D2 D3 D4 D5 | Regenerate-All | 10 - - -
S04 D1 D2 D3 D4 D5| D-MBTDD |27 |3 24 0

For each test model version, the values of Generated Test Cases (GenTC), Not Mod-
ification Test Cases (NotModTC), Modification Test Cases (ModTC) and Focus obtained
with StateMutest are shown in Table 6.7.

Table 6.7: Value of metrics in StateMutest experiments

Model ID Approach | GenTC| NotModTC ModTC| Focus
(%)
M1 D1 Regenerate- | 13 2 11 84.62
All
M1 D1 D-MBTDD | 7 0 7 100
M2 D1 Regenerate- | 17 0 17 100
All
M2 D1 D-MBTDD | 7 0 7 100
M3 D2 Regenerate- | 5 0 5 100
All
M3 D2 D-MBTDD | 3 0 3 100
M3 D2 D1 Regenerate- | 4 0 4 100
All
Continued on next page

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 65

Table 6.7 — continued from previous page

Model ID Approach | GenTC| NotModTC ModTC| Focus
(%)
M3 D2 D1 D-MBTDD | 2 0 2 100
M3 D2 D1 D3 Regenerate- | 8 0 8 100
All
M3 D2 D1 D3 D-MBTDD | 6 1 5 83.33
M4 D1 Regenerate- | 5 5 100
All
M4 D1 D-MBTDD | 1 1 100
M4 D1_D2 Regenerate- | 6 1 5 83.33
All
M4 D1 _D2 D-MBTDD | 2 0 2 100
M5 D1 Regenerate- | 7 0 7 100
All
M5 D1 D-MBTDD | 2 0 2 100
M5 D1 D2 Regenerate- | 7 0 7 100
All
M5 D1 _D2 D-MBTDD | 2 0 2 100
M5 D1 D2 D3 Regenerate- | 10 0 10 100
All
M5 D1 _D2 D3 D-MBTDD | 2 0 2 100
M6 D1 Regenerate- | 12 3 9 75
All
M6 D1 D-MBTDD | 7 1 6 85.71
M7 D1 Regenerate- | 11 2 9 81.82
All
M7 D1 D-MBTDD | 3 0 3 100
M7 D1 D2 Regenerate- | 11 6 5 45.45
All
M7 D1 _D2 D-MBTDD | 10 3 7 70
M8 D1 Regenerate- | 10 2 8 80
All
M8 D1 D-MBTDD | 8 1 7 87.50
M8 D1 D2 Regenerate- | 10 3 7 70
All
M8 D1 D2 D-MBTDD | 9 2 7 77.78
S04 D1 Regenerate- | 6 1 5 83.33
All
S04 D1 D-MBTDD | 2 0 2 100
S04 D1 D2 Regenerate- | 6 0 6 100
All
Continued on next page

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 66

Table 6.7 — continued from previous page

Model ID Approach | GenTC| NotModTC ModTC| Focus
(%)
S04 D1 D2 D-MBTDD | 6 0 6 100
S04 D1 _D2 D3 Regenerate- | 12 2 10 83.33
All
S04 D1 _D2 D3 D-MBTDD | 6 0 6 100
S04 D1 _D2 D3 D4 Regenerate- | 13 4 9 69.23
All
S04 D1 D2 D3 D4 D-MBTDD | 5 1 4 80
S04 D1 _D2 D3 D4 D5 | Regenerate- | 10 7 3 30
All
S04 D1 _D2 D3 D4 D5 | D-MBTDD | 3 1 2 66.67

6.4.4 Results Analyses

StateMutest uses a multi-objective algorithm that is not deterministic, thus it has some
characteristics:

e Each execution of a StateMutest example can generate different test cases. Thus, ex-
ecuting two times the algorithm with the same configuration (model, test purposes,
and so on), the test suite generated will not necessarily be the same.

e When D-MBTDD was used, the missing transitions were specified as the coverage set
during the preparation phase, therefore it was expected that all generated test cases
traversed modified elements. However the multi-objective algorithm searches for a
balance between the minimum length of the input sequence and the test purpose
coverage. Consequently, even though in the coverage set there were only modified
elements, it was possible to generate some test cases that traverse only the un-
modified parts of the state machine when D-MBTDD was used. For example, it
happened with the M3 D2 D1 D3, M6 D1, M7 D1 D2 experiments in Table
6.7. However, these results could be improved if a different coverage set was used.

Therefore, some findings were only identified on StateMutest examples and they are
explained below.

As Table 6.6 shows, the number of valid test cases and, consequently, the size of the
test suite tends to increase as the state machine evolves, when D-MBTDD was used.
When the number of valid test cases generated with D-MBTDD is compared to the
number of Regenerate-All, it can be greater when D-MBTDD is used. For example, while
Regenerate-All had 10 test cases with M5 D1 D2 D3 experiment, D-MBTDD had 14
valid test cases. This happens because with Regenerate-All there is no reuse of previous
test cases, therefore the test suite is composed only of the newly generated test cases.
Differently from Regenerate-All, in D-MBTDD the test suite is composed of reusable and

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 67

new test cases, therefore because the number reusable test cases tends to increase with
the evolution of the model, the same happens with the size of the test suite. Moreover, it
tends to increase because there is no use of a selection testing technique for the reusable
test cases aiming to select the retestable test cases. If a selection testing technique were
used, the size of the test suite could increase more gradually. However, one more step
would be necessary to obtain the test suite.

6.5 Controlled Experiments 2: Condado Experiments

All the objects described in Section 6.2 were created in the Condado tool. A description
of the tool is present in Subsection 6.5.1. A setup process was necessary in order to
generate the test cases and it is described in Subsection 6.5.2. The results obtained with
the experiments, and the results of each metric defined in 6.1.1 are shown in Subsection
6.5.3. The analyses of the results valid only for Condado experiments are described in
Subsection 6.5.4.

6.5.1 Condado

Condado is an MBT tool developed among researchers from the University of Campinas
(UNICAMP) and the Brazilian Institute for Space Research (INPE), and it uses FSM
as its models. Condado automates the offline test case generation based on models by
means of an exhaustive algorithm like depth-first search. Condado implements the all-
transition pairs as test criterion. The all transition-pairs generates test cases that covers all
combinations of pairs of transitions, therefore it is liable to combinatorial explosion. There
is also the possibility to generate test cases that only cover some specified transitions,
instead of covering all transitions. As output Condado generates abstract test cases,
which contain, among other information, a sequence of reached transitions [2].

6.5.2 Preparation

As explained in 6.5.1, Condado exhaustively combines all transitions to derive the test
cases, which starts in the initial state and ends in a specified final state. For the controlled
experiments, the final state was defined as the initial state. For example, for the core test
model M2 (6.1) the final state was pwUp. The relationship between all the state machines
and their final states in the Condado projects are shown in Table B.4 in Appendix B.
Condado generates a test suite that covers all transitions, i.e. has 100% transition
coverage. Therefore, in order to perform step 3 of the workflow for the core model exper-
iments (Subsection 6.3.1), only the final state was configured for the core test models.
In order to perform step 4. of the workflow for the test model versions experiments
(Subsection 6.3.2), D-MBTDD and Regenerate-All had different configurations. In order
to obtain 100% transition coverage when D-MBTDD was used, the coverage set was
composed of missing transitions, because part of the transitions were already covered with
the reusable test cases. As explained in 6.5.1, it is possible to generate test cases that
cover only some specified transitions with Condado. In order to do that, these transitions

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 68

are described in a setup file. Therefore, for the test model versions when D-MBTDD was
used the missing transitions were specified in the setup file. In order to obtain the same
coverage criterion when Regenerate-All was used only the final state was configured.

6.5.3 Results

Table 6.8 shows the number of valid test cases for each model and each approach in the
experiments that used the Condado tool. Furthermore, when applicable, i.e. when D-
MBTDD was used, it shows the number of reusable, obsolete and new test cases. In these
cases, the number of valid test cases was the sum of the value of new and reusable test
cases, while in the Regenerate-All experiments the number of valid test cases was equal
to the value of generated test cases. When a determined information was not applicable,
a minus (—) signal is displayed.

Because Condado uses an exhaustive algorithm that combines all transitions to gen-
erate the test cases, for some models there was an explosion on the number of test cases:
M1 DI1; M8 M8 D1; M8 D1 D2; S04 D1 D2;504 D1 D2 D3; S04 D1 D2
D3 D4; S04 D1 D2 D3 D4 Db5. Therefore, they are not present in the results.

Table 6.8: Number of valid, new, reusable and obsolete
test cases in Condado experiments

Model ID Approach Valid | New | Reusable| Obsolete
TCs | TCs | TCs TCs
M1 - 304 - - -
M2 - 24 - - -
M2 D1 Regenerate-All | 4278 | - - -
M2 D1 D-MBTDD | 4278 | 4254 | 24 0
M3 - 2 - - -
M3 D2 Regenerate-All | 4 - - -
M3 D2 D-MBTDD | 4 2 2 0
M3 D2 D1 Regenerate-All | 6 - - -
M3 D2 D1 D-MBTDD | 6 3 3 1
M3 D2 D1 _ D3 | Regenerate-All | 38 - - -
M3 D2 D1 D3| D-MBTDD |38 32 6 0
M4 - 1 - - -
M4 D1 Regenerate-All | 2 - - -
M4 D1 D-MBTDD 2 1 1 0
M4 D1_D2 Regenerate-All | 5 - - -
M4 D1_D2 D-MBTDD 5 3 2 0
M5 - 6 - - -
M5 D1 Regenerate-All | 8 - - -
M5 D1 D-MBTDD | 8 2 6 0
Continued on next page

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION

Table 6.8 — continued from previous page

69

Model ID Approach Valid | New | Reusable| Obsolete
TCs | TCs | TCs TCs
M5 D1 D2 Regenerate-All | 9 - - -
M5 D1 D2 D-MBTDD |9 1 8 0
M5 D1 _D2 D3 | Regenerate-All | 11 - - -
M5 D1 _D2 D3| D-MBTDD 11 2 9 0
M6 - 2 - - -
M6 D1 Regenerate-All | 9 - - -
M6 D1 D-MBTDD |9 7 2 0
M7 - 5 - - -
M7 D1 Regenerate-All | 17 - - -
M7 D1 D-MBTDD 17 12 5 0
M7 D1_D2 Regenerate-All | 37 - - -
M7 D1_D2 D-MBTDD | 37 32 5 12

S04 - 10 - - -
S04 D1 Regenerate-All | 52 - - -
S04 D1 D-MBTDD 52 42 10 0

For each test model version, the values of Generated Test Cases (GenTC), Not Mod-
ification Test Cases (NotModTC), Modification Test Cases (ModTC) and Focus obtained
with Condado are shown in Table 6.9.

Table 6.9: Value of metrics in Condado experiments

Model ID Approach GenTC | NotModTC ModTC Focus
(%)
M2 D1 Regenerate-All | 4278 24 4254 99.44
M2 D1 D-MBTDD | 4254 0 4254 100
M3 D2 Regenerate-All | 4 2 2 50
M3 D2 D-MBTDD | 2 0 2 100
M3 D2 D1 Regenerate-All | 6 3 3 50
M3 D2 D1 D-MBTDD | 3 0 3 100
M3 D2 D1 D3 | Regenerate-All | 38 6 32 84.21
M3 D2 D1 D3| D-MBTDD | 32 0 32 100
M4 D1 Regenerate-All | 2 1 1 50
M4 D1 D-MBTDD |1 0 1 100
M4 D1_D2 Regenerate-All | 5 2 3 60
M4 D1_D2 D-MBTDD | 3 0 3 100
M5 D1 Regenerate-All | 8 6 2 25
Continued on next page

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION

Table 6.9 — continued from previous page

70

Model ID Approach GenTC | NotModTC ModTC Focus
(%)
M5 D1 D-MBTDD | 2 0 2 100
M5 D1 D2 Regenerate-All | 9 8 1 11.11
M5 D1_D2 D-MBTDD 1 0 1 100
M5 D1 _D2 D3 | Regenerate-All | 11 9 2 18.18
M5 D1 _D2 D3| D-MBTDD |2 0 2 100
M6 D1 Regenerate-All | 9 2 7 77.78
M6 D1 D-MBTDD | 7 0 7 100
M7 D1 Regenerate-All | 17 5 12 70.59
M7 D1 D-MBTDD 12 0 12 100
M7 D1_D2 Regenerate-All | 37 5 32 86.49
M7 D1_D2 D-MBTDD | 32 0 32 100
S04 D1 Regenerate-All | 52 10 42 80.77
S04 D1 D-MBTDD 42 0 42 100

6.5.4 Results Analyses

Condado uses a deterministic algorithm that exhaustively combines all transitions to

derive test cases. In the cases where the number of test cases did not explode, no matter

how many times it was executed, all executions generated the same test cases. In Condado,
when no transitions are specified in the setup file, the test suite of both approaches are
the same. However, for D-MBTDD it is useful to indicate the desired transitions during

setup, in order to filter the generated test set. The following observations were seen only

in the Condado experiments:

1. In Table 6.8, the number of valid test cases when Regenerate-All is used is equal
to the sum of new and reusable test cases when D-MBTDD is used. Therefore,
the value of valid test cases when Regenerate-All was used is the same as the value
when D-MBTDD was used.

2. In Table 6.9, the value of NotModTC when Regenerate-All was used is the same

value of reusable test cases from Table 6.8 when D-MBTDD was used.

3. In Table 6.9, the value of NotModTC when D-MBTDD was used is always 0.

4. In Table 6.9, the value of Modification Test Cases is the same independently of the
usage of either Regenerate-All or D-MBTDD.

5. In Table 6.9, the value of Focus when using D-MBTDD is always 100%, and the

value when Regenerate-All was used is always smaller than 100%.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 71

Items 1, 2 and 4 are explained by the fact that the test cases that traverse the un-
modified parts and the modified parts are the same for both approaches. Moreover, for
D-MBTDD all generated test cases traverse a modified part, which explains item 3. Con-
sequently, the focus when using D-MBTDD was always 100% (item 5). The focus when
Regenerate-All was used was always smaller than 100% (item 5), because at least one Not
Modification Traversal Test Case was genenerated (item 2).

6.6 Discussion

Analyses were conducted in order to compare the Regenerate-All and the D-MBTDD
approach applied to the same test model version. Ideally, it was expected that when
compared to Regenerate-All results, D-MBTDD would provide an equal or greater value
of Focus because it better supports the development of new features. Furthermore, it
was expected that D-MBTDD experiments would provide an equal or smaller value of
Modification Traversal Test Cases than Regenerate-All experiments, so that there would
be less abstract test cases to be transformed into executables in order to support the
development of new features.

The results common to both StateMutest and Condado experiments are present in
Subsection 6.6.1. A comparison between the effort of using Regenerate-All and D-MBTDD
is discussed in Subsection 6.6.2.

6.6.1 Results Common to both MBT tools

When analysing Tables 6.6 to 6.9, some results were common to both tools. The results of
the metrics were plotted in bar charts in order to support the analyses. The results eval-
uated with StateMutest were plotted in Chart 6.7, and the ones evaluated with Condado
were plotted in Chart 6.8. The results of the experiments with M2 D1 were omitted in
Chart 6.8 in order to simplify it, because they were outliers, generating a greater value of
test cases when compared to the other experiments. The total size of each bar represents
the value of Generated Test Cases. Moreover, each bar was split into two parts: a blue
bar filled with little squares, and an orange bar filled with circles. The blue bar
represents the value of Modification Traversal Test Cases, and the orange bar represents
the value of Not Modification Traversal Test Cases.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 72

STATEMUTEST_EXAMPLES

BModification Traversal TCs
B Not Modification Traversal TCs

-
g
:
g
2
&

AR PO I IR X AR

Figure 6.7: Bar Graph with StateMutest results

CONDADO_EXAMPLES

B Modification Traversal TCs
@ Not Modification Traversal TCs

Figure 6.8: Bar Graph with Condado results

These common results are presented below and a brief discussion about them is pre-
sented afterwards.

1. When there are only additions in the delta model, the valid test cases from the
previous version remain reusable in the new test model version when D-MBTDD is
used. However, when the delta model has at least one deletion, part of the valid
test cases from the previous version becomes obsolete in the test model version.

2. In all experiments, the value of Generated Test Cases when D-MBTDD was used is
equal to or smaller than the value when Regenerate-All was used.

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 73

3. In 96.97% of the experiments, the value of ModTC when D-MBTDD was used
is equal to or smaller than the value when Regenerate-All was used. The only
exception was the M7 D1 D2 example using the StateMutest tool, in which the
opposite happened.

4. In 96.97% of the experiments, the value of NotModTC when D-MBTDD was used
is equal to or smaller than the value when Regenerate-All was used. The only
exception was the M3 D2 D1 D3 example using the StateMutest tool, in which
the opposite happened. Remembering that these values could be improved if more
experiments with different coverage sets are used.

5. In 96.97% of the experiments, the value of Focus when D-MBTDD was used is equal
to or greater than the value when Regenerate-All was used. The only exception was
the M3 D2 D1 D3 example using the StateMutest tool, in which the opposite
happened.

Item 1 can be illustrated with two examples present in Table 6.6 and Table 6.8. It can
be seen in Table 6.2 that delta model M7 Deltal only adds elements and M7 Delta2
deletes two transitions. Thus, when M7 Deltal was applied to M7 in order to obtain the
test model version M7 D1, all valid test cases from M7 remained reusable for M7 D1.
And when M7 _Delta2 was applied to M7 D1 in order to obtain the test model version
M7 D1 D2, not all valid test cases from M7 D1 remained reusable for M7 D1 D2,
because some of them became obsolete.

With item 2 it is possible to conclude that, as expected, D-MBTDD generates less
test cases per execution when compared to Regenerate-All. Thus, if all generated test
cases have to be transformed into executable test cases, D-MBTDD requires less effort
with this task when compared to Regenerate-All. This analysis is illustrated by the fact
that the total size of the D-MBTDD bars is smaller than the Regenerate-All bars in both
Charts.

Item 3 supports the previous conclusion with the fact that in the majority of the
examples, D-MBTDD generated an equal or smaller value of modification traversal test
cases than Regenerate-All. It is illustrated by the fact that the blue bars of D-MBTDD are
equal to or smaller than the Regenerate-All bars, except for the M7 D1 D2 StateMutest
example. Moreover, with the Condado experiments the blue bars of both approaches have
the same size, which illustrates analysis 4 of Subsection 6.5.4.

Moreover, item 4 illustrates that even though some not modification traversal test cases
were generated when D-MBTDD was used, this value was smaller than when Regenerate-
All was used. It is illustrated by the fact that the orange bars of D-MBTDD are equal
to or smaller than the Regenerate-All bars, except for the M3 D2 D1 D3 StateMutest
example. Moreover, with Condado experiments the orange bars of D-MBTDD do not
exist, which illustrates analysis 3 of Subsection 6.5.4.

From expression 6.5 and 6.6, the value of Focus is inversely proportional to the value
of Not Modification Traversal Test Cases. Therefore, the value of focus of D-MBTDD is
equal to or greater than the value for Regenerate-All, which illustrates analysis 5.

When analysing Tables 6.2, 6.4, 6.7 and 6.9, it was verified that the difference between
the number of generated test cases of a test model version when Regenerate-All was used

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 74

and when D-MBTDD was used, was impacted by the delta model which was applied in
order to obtain this version. Because the experiments used the coverage criterion of 100%
transition coverage, only the modifications of the transitions were analysed in the delta
models. It was verified that when the delta model had many modifications, the difference
between the generated test cases when Regenerate-All was used and when D-MBTDD was
used is smaller than when the applied delta model did not contain many modifications.
For example, in Table 6.2 it is shown that delta M5 Delta 3 adds 3 transitions and
M7 Delta 2 adds 6 transitions and removes 2 transitions. In Table 6.7 it is shown
that when M5 Delta 3 was applied in order to obtain M5 D1 D2 D3, the difference
between the generated test cases when Regenerate-All was used and when D-MBTDD
was used was 8, while when M7 Delta 2 was applied in order to obtain M7 D1 D2,
the difference was 1. Tt is also possible to verify this relationship analysing the differences
between the total size of the bar when Regenerate-All was used and D-MBTDD was used,
with the modifications of the applied delta model.

6.6.2 Cost comparison between Regenerate-All and D-MBTDD

In the context of a Model-Based test-driven development, the total effort to use an ap-
proach is impacted mainly by the following costs: the cost of generating test cases; the
cost of identifying test cases that guide the development of new features; the cost of
transforming abstract test cases into executable test cases. A comparison between the
Regenerate-All and D-MBTDD costs is discussed bellow.

Cost of generating test cases

As equations 6.3 and 6.4 show, Regenerate-All requires less effort to generate test cases per
iteration when compared to D-MBTDD because there is no need to classify test cases from
the previous test suite. However, this is not true if (TSO+ N) < TSN and c(re) < c(ge).

Cost of identifying test cases that guide the development of new features

As present in equation 6.7, in order to support the development of new features, the test
cases that traverse modified elements have to be identified. With D-MBTDD there is
no such cost to identify these test cases, as described in equation 6.8, because they are
already identified in the set of new test cases. With D-MBTDD), the test cases that cover
the modified elements and those that cover only unmodified elements are present in the
set of new and reusable test cases respectively.

Moreover, based on the controlled experiments, D-MBTDD is more focused on gen-
erating test cases that traverse modified elements, when compared to Regenerate-All.
In 96.97% of the experiments, the value of focus was equal to or greater than when
D-MBTDD was used.

Cost of transforming abstract test cases into executable ones

It is not possible to affirm that the generated test cases when D-MBTDD was used is
always smaller than the number when Regenerate-All was used, because it depends on

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 75

the MBT tool and the coverage criterion used. However, in all experiments executed
during this work, Gen(DM BT DD) was equal to or smaller than Gen(RA). Therefore,
if the MBT tool generates abstract test cases and the transformation into executable
test cases is performed manually, the cost of transforming the generated abstract test
cases into executable test cases with D-MBTDD is smaller than with Regenerate-All.
However, if the new version has almost nothing in common with the previous, the numbers
of Gen(DMBTDD) and Gen(RA) will be more similar, and consequently the cost of
transforming the generated abstract test cases into executable test cases with D-MBTDD
will be similar to transforming them with Regenerate-All.

Total Effort

Even though Regenerate-All has a smaller cost to generate test cases, in order to support
the development of new features it is necessary to identify the test cases that traverse
modified elements and transform all generated abstract test cases into executable test
cases. D-MBTDD, instead, has an additional cost of revalidating the previous test suite,
but does not have the cost of identifying the test cases that guide the development of new
features.

As equations 6.3 and 6.4 show, the total effort for using Regenerate-All is impacted
by the value of TSN of Regenerate-All, and by the values of 7SO and N of D-MBTDD.
According to the evolution of the test model, in order to cover an specific criterion, the
number of generated test cases when Regenerate-All is used (Gen(RA)) tends to increase,
and according to equation 6.1 consequently the size of the new test suite (T'SN). With D-
MBTDD, in order to cover the same criterion, the generated test cases (Gen(DM BT DD)),
and according to equation 6.2 the value of N, tends to be smaller than Gen(RA) = TSN
because there are reusable test cases that already cover parts of the criterion.

If we consider:

e T'SO ~ TSN, i.e., the size of the old and new test suites are approximately the
same, and

e N < TSN, the number of generated test cases with D-MBTDD is smaller than with
Regenerate-All as discussed above.

Then two conditions improve the effectiveness of D-MBTDD over Regenerate-All:

e c(tr) > c(re), i.e. the cost of transforming abstract test cases into executable test
cases is greater than the cost of revalidating the old test suite; and

e c(id) > c(re), i.e. the cost of identifying the test cases that guide the development
of new features is greater than the cost of revalidating the old test suite.

6.7 Threats to the Validity of the Experiments

When performing an experiment, there are some threats to the validity to be concerned
about [58]

CHAPTER 6. EVALUATION OF THE PROPOSED SOLUTION 76

e The metrics measured during the controlled experiments may not be the most ade-
quate and they were defined by the author of the experiments, representing a threat
to the construct validity.

e The results were analysed by the same person who performed the controlled exper-
iments, representing a threat to the external validity.

e The models and the number of deltas used during the experiments represent threats
to external validity since their complexity, their size and their domain can affect the
results.

e The MBT tool and the definition of a target to generate test cases represent threats
to internal validity, because they can affect the relationship between the used ap-
proach and the obtained results.

Chapter 7

Conclusions and Future Work

This work proposes the D-MBTDD method, an iterative and incremental method based on
Model-Based Test-Driven Development (MBTDD) which adds concepts of Delta-Oriented
Model-Based SPL Regression Testing to support test artefact reuse along the evolution
of the system. D-MBTDD follows the same main steps of MBTDD, thus test cases are
generated from test models using Model-Based Testing (MBT) techniques, and these test
cases guide the development during the development cycle based on Test-Driven Devel-
opment. The conclusions of this work are described in Section 7.1, and the limitations
of D-MBTDD are described in Section 7.2. The answers to the research questions are
detailed in Section 7.3, and the future work in Section 7.4.

7.1 Conclusions

The main contribution of D-MBTDD concerns the reuse not only of the test model, but
also of the test cases when the system evolves. The motivation of this work was not only
to help testers in generating test cases to guide the development, but also in reducing
the tester’s effort when new increments are developed. This is achieved in two ways:
by reusing the test model, which is modified according to the requirements of the new
increment. And also, by reusing test cases, as the tester only needs to create test cases
to exercise the modified parts. In this way, the effort to transform the abstract test cases
into executable test cases is spent only on new test cases.

After modifying the test model in order to represent the new version of the system,
D-MBTDD revalidates the previous test suite in order to identify which test cases are
still valid and consequently can be reused, and which ones have to be created. During the
development cycle, D-MBTDD proposes that the new test cases support the development
of new features and the reusable ones are used as regression tests.

In addition, this work proposes a process in which D-MBTDD is used together with
Scrum. In this case, a new cycle is included before the development cycle, in which the
test model and the test cases are created in order to guide the development during the
development cycle. Moreover, a test specialist role is included in the Scrum team in order
to support the test activities during all the Sprint.

To assess whether D-MBTDD can be useful, controlled experiments were performed.

7

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 78

The goal was to determine whether it could be a more cost-effective approach from the
point of view of test case generation, w.r.t. the Regenerate-All approach, which does not
reuse test cases. Therefore when the test model evolved both approaches were used in
order to update the test suite. To support test case generation two MBT tools were used:
StateMutest and Condado, and all the experiments were executed with both MBT tools.

Based on the results obtained with the experiments, when the test model of the system
is created iteratively and incrementally, D-MBTDD did not generate inferior results when
compared to Regenerate-All. For the objects of the experiments, D-MBTDD had greater
possibility of generating test cases that traverse at least one modified element and which
support the development of new features. The analyses concluded that even though D-
MBTDD requires a revalidation of the old test suite, it requires less effort to support the
development of new features because the test cases that cover the modified elements are
already identified and present in the set of new test cases. Therefore, when the system
evolves only the set of new test cases have to be transformed into executable test cases.
Moreover, the test cases from the previous version that are still valid, i.e. the reusable
test cases, are applied to the system after the implementation in order to verify that the
changes did not affect the unmodified parts.

The total effort of Regenerate-All and D-MBTDD is impacted mostly by the num-
ber of generated test cases per iteration. According to the evolution of the test model,
Regenerate-All tends to generate more test cases than D-MBTDD in order to cover the
same criterion. Moreover, Regenerate-All has to identify the test cases that will support
the development of new features from the set of generated test cases. Therefore, when
the cost of transforming abstract tests into executable tests is greater than the cost of
revalidating the old test suite, D-MBTDD requires less effort than Regenerate-All. More-
over, when the cost of Regenerate-All test identification is greater than the revalidation
of D-MBTDD, D-MBTDD also requires less effort than Regenerate-All.

7.2 Limitations

D-MBTDD has some limitations and in some cases it is not the best option when compared
to Regenerate-All:

e The benefit of D-MBTDD when compared to Regenerate-All is impacted by the
test model design and how different the new version is from the previous one. If the
test model is created for example, with only one transition that reaches the target
state, when modifications are made in the test model in order to obtain a new
version of the system, all or the majority of the test cases from the previous version
became obsolete. The same scenario happens if the regression delta contains many
modifications and therefore the new version has almost nothing in common with the
previous one. Therefore, if all or the majority of the test cases become obsolete when
a regression delta is applied, D-MBTDD and Regenerate-All will produce similar
quantity of generated test cases.

e If the cost to revalidate the old test suite of D-MBTDD is greater than the cost
of identifying the test cases that guide the development of Regenerate-All, and if

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 79

the cost to transform abstract test cases into executable is not significant, e.g. exe-
cutable test cases are already generated with the MBT tool, the effort of Regenerate-
All could be smaller than of D-MBTDD.

7.3 Answers to the Research Questions

Some research questions were defined and previously described in Section 1.4. Their
answers are described bellow:

1. RQ1: When the system and consequently the test model evolves in an
iterative and incremental development based on tests, does D-MBTDD
require less effort for test case creation, when compared to an approach
in which there is no test artefact reuse?

No, because before creating test cases, D-MBTDD performs a revalidation of the
previous test suite in order to identify the test cases that are still valid and which
ones have to be created. Regenerate-All, instead, generate test cases without
analysing any previous test cases. Therefore, D-MBTDD requires more effort for
test case creation when compared to Regenerate-All.

2. RQ2: When the system and consequently the test model evolves in an
iterative and incremental development based on tests, does D-MBTDD
require less effort for the identification of which test cases should guide
the development of new features, when compared to an approach in which
there is no test artefact reuse?

Yes. When the system and the test model evolve, test cases that traverse modified
elements support the development of new features. With D-MBTDD these test
cases are already identified and present in the set of new test cases. When no test
cases from the previous version are reused, i.e. when Regenerate-All is used, an
analysis in all generated test cases in order to identify those that traverse modified
elements has to be performed before the implementation phase. Moreover, based
on the controlled experiments, D-MBTDD is more focused on generating test cases
that traverse modified elements when compared to Regenerate-All. Therefore, D-
MBTDD requires less effort for the identification of which test cases should guide
the development of new features, when compared to Regenerate-All.

3. RQ3: When the system and consequently the test model evolves in an
iterative and incremental development based on tests, does D-MBTDD
require a total effort smaller than when compared to an approach in
which there is no test artefact reuse?

It depends. The total effort of Regenerate-All and D-MBTDD is impacted mostly
by the number of generated test cases per iteration. According to the evolution
of the test model, in order to cover the same criterion, Regenerate-All tends to
generate more test cases than D-MBTDD. Therefore, when the cost of transforming
abstract tests into executable tests is greater than the cost of revalidating the old test

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 80

suite, D-MBTDD requires less effort than Regenerate-All. Moreover, Regenerate-
All has to identify the test cases that will support the development of new features
from the set of generated test cases. Therefore, when the cost of Regenerate-All
test identification is greater than the revalidation of D-MBTDD, D-MBTDD also
requires less effort than Regenerate-All.

7.4 Future Work

With the conclusions of this work, some points were identified that open up the possi-
bility of future works. These points mainly allow for future improvements of D-MBTDD
method, regarding the current limitations of the method and its validation.

e Use different test models: Any type of behavioural test model can be used
with D-MBTDD, however during this proof of concept only finite state machine
test models were considered. Even though finite state machines are widely used,
the problem of state explosion can happen. Therefore, as a future work the use of
other types of test models such as extended finite state machines (EFSM) should
be analysed.

e Execute the experiments with more examples: The experiments had 9 core
test models and 20 delta models in total, therefore more examples should be used in
order to obtain more results. Furthermore, the examples should have more regres-
sion delta state machines with different types of modifications; more examples with
many removals should be explored, and examples that explore situations in which
obsolete test cases become valid.

e Execute the experiment with different MBT tools: The same experiment
should be executed with different MBT tools in order to verify if the same conclu-
sions can be made. Remembering that the MBT tool should use the test purpose
to generate test cases.

e Execute an experiment with D-MBTDD and Scrum: An experiment should
be performed in a case study in which a real system is implemented in a Scrum
environment. Therefore, it should verify the benefits and limitations of D-MBTDD
in a real development, and it should analyse the proposed process in which D-
MBTDD is used together with Scrum.

e Include traceability models: Usually the context of a state machine’s behaviour
is defined in a class diagram. Therefore, traceability models should be created
between class diagrams and test models, and between test models and test cases.
Consequently, if modifications occur in a class diagram element the corresponding
state machine element is updated, and vice-versa, by using the traceability model
information.

Bibliography

[1]

2]

13]

4]

[5]

6]

[7]

18]

19]

Agile For All. Into to agile. http://www.agileforall.com/intro-to-agile Acc-
cessed January 10,2016.

Ana M. Ambrosio, Maria de Fatima M. Francisco, and Eliane Martins. Atifs: A
testing toolset with software fault injection. In Proceedings of York Computer Science
Yellow Report 2003 - Workshop Softest: UK Testing Research, York, UK, 2003.

Kent Beck. FExtreme Programming Fxplained: Embrance Change. Addison-Wesley
Professional, us edition, 10 1999. ISBN 978-0201616415.

Kent Beck. Test Driven Development: By FErample. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321146530.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Marting Fowler, James Granning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas. Manifesto for agile software development, 2001. http://www.
agilemanifesto.org Acccessed January 10,2016.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Marting Fowler, James Granning, Jim Highsmith, Andrew Hunt, Ron Jef-
fries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, and Dave Thomas. Twelve principles of agile software, 2001.
http://www.agilemanifesto.org/principles.html Acccessed January 10,2016.

Robert Binder. Model-based testing: Taking bdd/atdd to the next level, 2014.
Slides from presentation at the Chicago Quality Assurance Association, February 25,
2014 http://pt.slideshare.net/robertvbinder/taking-bddtothenextlevel?
next_slideshow=1 Acccessed January 10,2016.

Robert V. Binder. How to ice the testing backblog, 2013. http://robertvbinder.
com/how-to-ice-the-testing-backblob/ Accessed January 10,2016.

Jan Olaf Blech, Dongyue Mou, and Daniel Ratiu. Reusing test-cases on different
levels of abstraction in a model based development tool. In Proceedings 7th Workshop
on Model-Based Testing, MBT 2012, Tallinn, Estonia, 25 March 2012., pages 13-27,
2012. doi: 10.4204/EPTCS.80.2.

81

BIBLIOGRAPHY 82

[10]

[11]

[12]

[13]

[14]

[15]

[16]

17]

18]

[19]

Jonas Boberg. Early fault detection with model-based testing. In Proceedings of the
7th ACM SIGPLAN Workshop on ERLANG, ERLANG ’08, pages 9-20, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-065-4. doi: 10.1145/1411273.1411276.

Konstantinos Bratanis, Dimitris Dranidis, and Anthony J. H. Simons. An extensible
architecture for run-time monitoring of conversational web services. In Proceedings
of the 3rd International Workshop on Monitoring, Adaptation and Beyond, MONA
’10, pages 9-16, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0422-1. doi:
10.1145/1929566.1929568.

Campgemine and Sogeti. Maximizing the value of good testing practice in an agile
environment - delivering on time, in scope, on budget and at the right level of
quality. White Paper, 2010. http://www.capgemini.com/resource-file-access/
resource/pdf/Maximizing_the_Value_of_Good_Testing_Practice_in_an_
Agile_Environment.pdf Acessado em 09 de marco de 2014.

Gerardo Canfora, Aniello Cimitile, Felix Garcia, Mario Piattini, and Corrado Aaron
Visaggio. Evaluating advantages of test driven development: A controlled experiment
with professionals. In Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, ISESE "06, pages 364-371, New York, NY, USA,
2006. ACM. ISBN 1-59593-218-6. doi: 10.1145/1159733.1159788.

Wallace Felipe Francisco Cardoso. Statemutest: an extended state model based test
support tool (original title in portuguese: Statemutest: uma ferramenta de apoio ao
teste baseado em modelos de estado estendidos). Master’s thesis, Unicamp, SP, 2015.

Alvaro Carrera, CarlosA. Iglesias, and Mercedes Garijo. Beast methodology: An agile
testing methodology for multi-agent systems based on behaviour driven development.
Information Systems Frontiers, 16(2):169-182, 2014. ISSN 1387-3326. doi: 10.1007/
s10796-013-9438-5.

Rafael B. Chiavegatto, Lidiane V. da Silva, Andréia Vieira, and William R. Malvez-
zani. Behaviour driven development with automated tests with jbehave and selenium
(original title in portuguese: Desenvolvimento orientado a comportamento com testes
automatizados utilizando jbehave e selenium. In Regional Meeting of Information
Computer and System, Aug 2013.

Rogério Atem de Carvalho, Fernando Luis de Carvalho e Silva, and Rodrigo Soares
Manhaes. Mapping business process modeling constructs to behavior driven devel-
opment ubiquitous language. CoRR, abs/1006.4892, 2010.

Rogério Atem de Carvalho, Rodrigo Soares Manhaes, and Fernando Luis de Car-

valho e Silva. Filling the gap between business process modeling and behavior driven
development. CoRR, abs/1005.4975, 2010.

Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travas-
sos. A survey on model-based testing approaches: A systematic review. In Pro-

BIBLIOGRAPHY 83

20]

21

22]

23]

[24]

[25]

26]

27]

28]

ceedings of the 1st ACM International Workshop on Empirical Assessment of Soft-
ware Engineering Languages and Technologies: Held in Conjunction with the 22Nd
IEEE/ACM International Conference on Automated Software Engineering (ASE)
2007, WEASELTech ’07, pages 31-36, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-880-0. doi: 10.1145/1353673.1353681.

Melanie Diepenbeck, Mathias Soeken, Daniel Grose, and Rolf Drechsler. Behavior
driven development for circuit design and verification. In High Level Design Val-
idation and Test Workshop (HLDVT), 2012 IEEE International, pages 9-16, Nov
2012.

Dimitris Dranidis, Andreas Metzger, and Dimitrios Kourtesis. Towards a Service-
Based Internet: Third Furopean Conference, Service Wave 2010, Ghent, Belgium,
December 13-15, 2010. Proceedings, chapter Enabling Proactive Adaptation through
Just-in-Time Testing of Conversational Services, pages 63-75. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-17694-4.

Vladimir Entin, Mathias Winder, Bo Zhang, and Stepahn Christmann. Introducing
model-based testing in an industrial scrum project. In Automation of Software Test
(AST), 2012 7th International Workshop on, pages 43-49, June 2012.

Qurat-ul-ann Farooq, Muhammad Zohaib Z. Igbal, Zafar I Malik, and Aamer
Nadeem. An approach for selective state machine based regression testing. In Pro-
ceedings of the 3rd International Workshop on Advances in Model-based Testing, A-
MOST ’07, pages 44-52, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-850-3.
doi: 10.1145/1291535.1291540.

Fatima Mattiello Francisco, E. Villani, Eliane Martins, and Ana Maria Ambrosio.
An experience on the technology transfer of cofi methodology to automotive domain.
In LADC2013 Sixth Latin-American Symposium on Dependable Computing, Rio de
Janeiro, RJ, BR, 2003.

Boby George and Laurie Williams. A structured experiment of test-driven develop-
ment. Information and Software Technology, 46(5):337 — 342, 2004. ISSN 0950-5849.
doi: http://dx.doi.org/10.1016/j.infsof.2003.09.011. Special Issue on Software Engi-
neering, Applications, Practices and Tools from the {ACM} Symposium on Applied
Computing 2003.

Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test case generation with test
purpose specification by mscs, 1993.

Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. An empirical study of regression test selection techniques. ACM
Trans. Softw. Eng. Methodol., 10(2):184-208, April 2001. ISSN 1049-331X. doi:
10.1145/367008.367020.

Atul Gupta and Pankaj Jalote. An experimental evaluation of the effectiveness and
efficiency of the test driven development. In Empirical Software Engineering and

BIBLIOGRAPHY 84

29]

[30]

31]

32|

33]

[34]

[35]

[36]

37]

38

Measurement, 2007. ESEM 2007. First International Symposium on, pages 285-294,
Sept 2007. doi: 10.1109/ESEM.2007.41.

Reinhard Hametner, Dietmar Winkler, Thomas Ostreicher, Stefan Biffl, and Alois
Zoitl. The adaptation of test-driven software processes to industrial automation engi-
neering. In Industrial Informatics (INDIN), 2010 8th IEEE International Conference
on, pages 921-927, July 2010.

David S. Janzen and Hossein Saiedian. On the influence of test-driven development on

software design. In Software Engineering Education and Training, 2006. Proceedings.
19th Conference on, pages 141-148, April 2006. doi: 10.1109/CSEET.2006.25.

Bogdan Korel, Luay H. Tahat, and Boris Vaysburg. Model based regression test
reduction using dependence analysis. In Software Maintenance, 2002. Proceedings.
International Conference on, pages 214-223, 2002. doi: 10.1109/ICSM.2002.1167768.

Hadar Ziv Leila Naslavsky and Debra J. Richardson. A model-based regression test
selection technique. In Software Maintenance, 2009. ICSM 2009. IEEFE International
Conference on, pages 515-518, Sept 2009. doi: 10.1109/ICSM.2009.5306338.

Sascha Lity, Malte Lochau, Ina Schaefer, and Ursula Goltz. Delta-oriented model-
based spl regression testing. In Proceedings of the Third International Workshop
on Product LinE Approaches in Software Engineering, PLEASE 12, pages 53-56,
Piscataway, NJ, USA, 2012. TEEE Press. ISBN 978-1-4673-1751-1.

Sascha Lity, Remo Lachmann, Malte Lochau, and Ina Schaefer. Delta-oriented soft-
ware product line test models - the body comfort system case study. Technical Report
2012-07, TU Braunschweig, 2013.

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incremental model-
based testing of delta-oriented software product lines. In Proceedings of the 6th Inter-
national Conference on Tests and Proofs, TAP’12, pages 67-82, Berlin, Heidelberg,
2012. Springer-Verlag. ISBN 978-3-642-30472-9. doi: 10.1007/978-3-642-30473-6 7.

Malte Lochau, Sascha Lity, Remo Lachmann, Ina Schaefer, and Ursula Goltz. Delta-
oriented model-based integration testing of large-scale systems. J. Syst. Softw., 91:
63-84, May 2014. ISSN 0164-1212. doi: 10.1016/j.jss.2013.11.1096.

E. Michael Maximilien and Laurie Williams. Assessing test-driven development at

ibm. In Software Engineering, 2003. Proceedings. 25th International Conference on,
pages 564-569, May 2003. doi: 10.1109/ICSE.2003.1201238.

Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh Bhat, and Laurie
Williams. Realizing quality improvement through test driven development: Results
and experiences of four industrial teams. FEmpirical Softw. Engg., 13(3):289-302,
June 2008. ISSN 1382-3256. doi: 10.1007/s10664-008-9062-z.

BIBLIOGRAPHY 85

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

Leila Naslavsky, Hadar Ziv, and Debra J. Richardson. Mbsrt2: Model-based selective
regression testing with traceability. In Software Testing, Verification and Validation
(ICST), 2010 Third International Conference on, pages 89-98 April 2010.

Arilo C. D. Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travas-
sos. Characterization of model-based software testing approaches. Techni-
cal ReportES-713/07, PESC-COPPE/UFRJ. Awvailable at hittp://www. cos. ufrj.
br/uploadfiles/1188491168. pdf, 2007.

Dan North. Introducing BDD. Better Software Magazine, March 2006. URL http:
//dannorth.net/introducing-bdd/.

Mazedur Rahman and Jerry Gao. A reusable automated acceptance testing architec-
ture for microservices in behavior-driven development. In Service-Oriented System
Engineering (SOSE), 2015 IEEE Symposium on, pages 321-325, March 2015.

Steven Rosaria and Harry Robinson. Applying models in your testing process. In-
formation and Software Technology, 42(12):815 — 824, 2000. ISSN 0950-5849. doi:
http://dx.doi.org/10.1016/S0950-5849(00)00125-7.

Gregg Rothermel and Mary J. Harrold. A framework for evaluating regression test
selection techniques. In Software Engineering, 1994. Proceedings. ICSE-16., 16th
International Conference on, pages 201-210, May 1994. doi: 10.1109/ICSE.1994.
296779.

Gregg Rothermel and Mary J. Harrold. Analyzing regression test selection techniques.
Software Engineering, IEEE Transactions on, 22(8):529-551, Aug 1996. ISSN 0098-
5589. doi: 10.1109/32.536955.

Benhard Rumpe. Agile test-based modeling. In Proceedings of the International
Conference on Software Engineering Research € Practice, SERP’2006, USA, 2006.
CSREA Press.

Alireza Sadeghi and Seyed-Hassan Mirian-Hosseinabadi. Mbtdd: Model based test
driven development. International Journal of Software Engineering and Knowledge
Engineering, 22(08):1085-1102, 2012.

Ken Schwaber. Scrum development process. In Proceedings of the 10th Annual ACM
Conference on Object Oriented Programming Systems, Languages, and Applications
(OOPSLA, pages 117-134, 1995.

Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1Ist edition, 2001. ISBN 0130676349.

Odd P. N. Slyngstad, Jingyue Li, Reidar Conradi, Harald Ronneberg, Einar Landre,
and Harald Wesenberg. The impact of test driven development on the evolution of a
reusable framework of components - an industrial case study. In Software Engineering
Advances, 2008. ICSEA °08. The Third International Conference on, pages 214-223,
Oct 2008.

BIBLIOGRAPHY 86

[51]

[52]

[53]

[54]

[55]

[56]

[57]

58]

[59]

160]

[61]

Carlos Solis and Wang Xiaofeng. A study of the characteristics of behaviour driven
development. In Software Engineering and Advanced Applications (SEAA), 2011
37th EUROMICRO Conference on, pages 383-387, Aug 2011.

Ian Sommerville. Software Engineering (original title in Portuguese: Engenharia de
software), chapter Agile Software Development (original title in Portuguese: Desen-
volvimento rapido de software). Addison Wesley, Sao Paulo, 8 edition, 2007. ISBN
8588639289.

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. ISBN 0123725011,
9780080466484.

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing approaches. Softw. Test. Verif. Reliab., 22(5):297-312, August 2012. ISSN
0960-0833.

Stephan Weifleder and Dehla Sokenou. Parteg - a model-based testing tool. Soft-
waretechnikTrends, 30(2), 2010.

Stephan Weikleder, Dehla Sokenou, and Holger Schlingloff. Reusing state machines
for automatic test generation in product lines. In Thomas Bauer, Hajo Eichler,
Axel Rennoch, editor, MoTiP ’08: Model-Based Testing in Practice. Fraunhofer IRB
Verlag, 2008.

Sebastian Wieczorek, Alin Stefanescu, Mathias Fritzsche, and Joacquim Schnitter.
Enhancing test driven development with model based testing and performance analy-
sis. In Practice and Research Techniques, 2008. TAIC PART ’08. Testing: Academic
Industrial Conference, pages 82-86, Aug 2008.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjoorn Regnell, and
Anders Wesslén. Ezperimentation in Software Engineering: An Introduction. Kluwer

Academic Publishers, Norwell, MA, USA, 2000. ISBN 0-7923-8682-5.

Thaise Yano. A multi-objective evolutive approach for test cases automation from
state machines (original title in Portuguese: Uma abordagem evolutiva multiobjetivo
para geraco automdtica de casos de teste a partir de mdquinas de estados). PhD
thesis, Unicamp, SP, 2011.

Thaise Yano, Eliane Martins, and Fabiano L. de Sousa. Most: A multi-objective
search-based testing from efsm. In Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pages 164
173, March 2011.

S. Yoo and M. Harman. Regression testing minimization, selection and prioritization:
A survey. Softw. Test. Verif. Reliab., 22(2):67-120, March 2012. ISSN 0960-0833.
doi: 10.1002/stv.430.

Appendix A

Delta Information for Section 6.1.1

This Appendix describes the 15 delta models of the Delta Case Study described in Section
6.2.1.

e Delta 1 of M1: DAddManPWCLS applied to M1 results in a test model ver-
sion for the component Manual Power Window with Central Locking system. In
addition to the core model, the window movement of the manual power window is
blocked /unblocked based on an activation/deactivation of the central locking sys-
tem.

e Delta 1 of M2: DAddAutoPWCLS applied to M2 results in a test model version
for the component Automatic Power Window with Central Locking system. The
version specifies a similar behaviour to the previous one, but in this case the power
window is automatic instead of manual.

e Delta 1 of M3: DAddRCKSF applied to M3 results in a test model version for
the component Remote Control Key Controller with Safety Function. In addition
to the core model, the remote control key controller re-locks the car after occurring
a timeout representing the situation that the car was unintentionally unlocked.

e Delta 2 of M3: DAddRCKCAP applied to the previous M3 version results in a
test model version for the component Remote Control Key Controller with Control
Automatic Power Window and Safety Function. In addition to the previous version,
the remote control key controller controls the upwards/downwards movement of the
window via the remote key.

e Delta 3 of M3: DAddRCKCAPSF applied to the previous M3 version results in
a second version of the test model version for the component Remote Control Key
Controller with Control Automatic Power Window and Safety Function.

e Delta 1 of M4: DAddCLSAL applied to M4 results in a test model version for
the component Central Locking System with Automatic Locking. In addition to the
core model, the version specifies that the central locking system locks the doors
without blocking the window when the car is driving.

87

APPENDIX A. DELTA INFORMATION FOR SECTION 6.1.1 38

e Delta 2 of M4: DAddCLSRCK applied to the previous M4 version results in a
test model version for the component Central Locking System with Remote Control
Key and Automatic Locking. In addition to the previous version, the central locking
system gets activated /deactivated via a remote key.

e Delta 1 of M5: DAddHMIAS applied to M5 results in a test model version for
the component Human Interface Component with Alarm System. In addition to
the core model, the version specifies that the human machine interface enables the
activation/deactivation of the alarm system via interaction with the driver.

e Delta 2 of M5: DAddHMILEDAS applied to the previous M5 version results in
a test model version for the component Human Interface Component with Alarm
System and LED Alarm System. In addition to the previous version, the human
machine interface enables the confirmation of the silent alarm.

e Delta 3 of Mb5: DAddHMILEDManPW applied the previous M5 version results
in a test model version for the component Human Interface Component with Alarm
System, LED Alarm System, Manual Power Window and LED Power Window. In
addition to the previous version, the human machine interface provides information
about the release of the window buttons for the corresponding LEDs.

e Delta 1 of M6: DAddLEDAutoPWCLS applied to M6 results in a test model
version for the component LED Automatic Power Window with Automatic Power
Window, LED Power Window and Central Locking System. In addition to the core
model, there is a new LED turning on/off if the automatic power window moves up
while the central locking system is active.

e Delta 1 of M7: DAddASCAS applied to M7 results in a test model version for
the component Alarm System with Control Alarm System. In addition to the core
model, the alarm monitoring of the alarm system is additionally enabled/disabled
by a remote key.

e Delta 2 of M7: DAddASIM applied to the previous M7 version results in a test
model version for the component Alarm System with Control Alarm System and
Interior Monitoring. In addition to the previous version, the alarm of the alarm
system is triggered by the interior monitoring.

e Delta 1 of M8: DAddEMHeating applied to M8 results in a test model version
for the component FExterior Mirror with Heatable. In addition to the core model,
the exterior mirror is heatable if the outside temperature is too low.

e Delta 2 of M8: DAddEMLEDEM applied to the previous M8 version results in
a test model version for the component Fxterior Mirror with Heatable and LED
Exterior Murror. In addition to the previous version, the exterior mirror sends the
information of its current position to the corresponding LEDs.

Appendix B

Complementary Tables for Chapter 6

This Appendix presents some tables with complementary information for Chapter6. Table
B.1 presents which transitions were added or removed for each delta model.

As described in Subsection 6.4.2 and Subsection 6.5.2, there are some setup processes
needed in order to perform the experiments with StateMutest and Condado Tool. For
the StateMutest examples, Table B.2 represents the relationships among all the state
machines, their tau value, their target transition, and their dependency transitions, and
Table B.3 represents the relationship between the value of tau and the quantity of gener-
ated test cases. For the Condado exaples, Table B.4 represents the relationship between
all the state machines and their final states.

Table B.1: Transitions added or removed of each delta

model
ID Transition Added | Transition Removed

M1 Delta 1 t14..427 -

M2 Delta 1 t20..t35 -

M3 _ Delta 2 t5..t8 -

M3 Delta 1 t9..t15 t3,t4

M3 Delta 3 t16..t23 -

M4 Delta 1 t7..t10 -

M4 Delta 2 t5,t6 -

M5 _ Delta 1 t13..t16 -

M5 _ Delta 2 t17,t18 -

Mb5_ Delta 3 t19..t21 -

M6 Delta 1 t9..t17 -

M7 Delta 1 t14..t16 -

M7 _ Delta 2 t17..t22 t10,t13

M8 Delta 1 t49..t84 -

M8 Delta 2 t85..t132 t1..12,£17,t18,
£23,t24,£29,t30,
t35,t36,t45..t48

Continued on next page

89

APPENDIX B. COMPLEMENTARY TABLES FOR CHAPTER 6 90
Table B.1 — continued from previous page
Model ID | Transition Added | Transition Removed
S04 Delta 1 £20..t23 -
S04 Delta_ 2 t24..t36 -
S04 Delta_3 t37..t42 -
S04 Delta 4 t43..t50 -
S04 Delta 5 t51..t54 -
Table B.2: StateMutest examples information
Value E:f_et
Model ID Approach of] Dependence tran-
Tau S}_ sitions
tion
M1 - 3 t9 AllTransitions — t9
M1 D1 Regenerate-All | 2 19 AllTransitions — t9
M1 D1 D-MBTDD | 2 t9 t14..t27
M2 - 3 8 AllTransitions — t8
M2 D1 Regenerate-All | 3 18 AllTransitions — t8
M2 D1 D-MBTDD | 3 t9 t20..t35
M3 - 3 t4 AllTransitions — t4
M3 D2 Regenerate-All | 2 18 AllTransitions — t8
M3 D2 D-MBTDD | 2 t8 t5..t7
M3 D2 D1 Regenerate-All | 4 t15 AllTransitions —t15
M3 D2 D1 D-MBTDD | 4 t15 t2,19..t14
M3 D2 D1 D3 Regenerate-All | 2 t15 AllTransitions —t15
M3 D2 DI D3 D-MBTDD | 2 t15 | t16..423
M4 - 3 t4 AllTransitions — t4
M4 D1 Regenerate-All | 1 t10 AllTransitions —t10
M4 D1 D-MBTDD 1 t10 t7..t10
M4 D1_D2 Regenerate-All | 2 t4 AllTransitions — t4
M4 D1_D2 D-MBTDD | 2 t4 t5,t6
M5 - 2 t12 AllTransitions —t12
M5 D1 Regenerate-All | 1 t16 AllTransitions —t16
M5 D1 D-MBTDD 1 t10 t13..t15
M5 D1 D2 Regenerate-All | 1 t18 AllTransitions —t18
M5 D1_D2 D-MBTDD 1 t18 t17
M5 D1 D2 D3 Regenerate-All | 2 t21 AllTransitions —t21
M5 D1 _D2 D3 D-MBTDD | 2 t21 19,120
M6 - 2 t8 AllTransitions — t8

Continued on next page

APPENDIX B. COMPLEMENTARY TABLES FOR CHAPTER 6

Table B.2 — continued from previous page

91

Value zzriet
Model ID Approach of sic Dependence tran-
Tau . sitions
tion
M6 D1 Regenerate-All | 4 t8 AllTransitions — t8
M6 D1 D-MBTDD | 4 8 t9..t17
M7 - 1 t6 AllTransitions — t6
M7 D1 Regenerate-All | 3 t6 AllTransitions — t6
M7 D1 D-MBTDD | 3 6 t14..t16
M7 D1_D2 Regenerate-All | 3 6 AllTransitions — t6
M7 D1 D2 D-MBTDD | 3 t6 17,49, 11, t12, £16..t22
M8 - 2 t44 AllTransitions —t44
M8 D1 Regenerate-All | 2 t44 AllTransitions —t44
M8 D1 D-MBTDD | 2 t44 t49..t84
M8 D1 D2 Regenerate-All | 2 t44 AllTransitions —t44
t13..416,¢19..t22,
125..t28,t31..t34,
M8 D1_D2 D-MBTDD | 2 t44 137449, £49. 184,
t85..t1132
S04 - 4 t11 AllTransitions —t11
S04 D1 Regenerate-All | 3 t11 AllTransitions —t11
S04 D1 D-MBTDD 3 t11 t20..123
S04 D1 D2 Regenerate-All | 3 t11 AllTransitions —t11
S04 D1 _D2 D-MBTDD | 3 t11 t24..t36
S04 D1 D2 D3 Regenerate-All | 1 t11 AllTransitions —t11
S04 D1 D2 D3 D-MBTDD 1 t11 t37..t42
S04 D1 _D2 D3 D4 Regenerate-All | 1 t11 AllTransitions —t11
S04 D1 _D2 D3 D4 D-MBTDD 1 t11 t43..t50
S04 D1 D2 D3 D4 D5 | Regenerate-All | 4 t11 AllTransitions —t11
S04 D1 _D2 D3 D4 D5 | D-MBTDD |4 t11 t51..t54

Table B.3: Quantity of generated test cases for tau values

Model ID Tau l | Tau 2 | Tau 3 | Tau 4 | Tau 5
M1 7) 8 6 7
M1 D1 8 10 9 8 10
M2 6 6 7 6 4
M2 D1 7 6 10 7 7
M3 1 2 2 2 2
Continued on next page

APPENDIX B. COMPLEMENTARY TABLES FOR CHAPTER 6

Table B.3 — continued from previous page

Model ID Tau l | Tau 2 | Tau 3 | Tau 4 | Tau 5
M3 D2 2 3 1 2 1
M3 D2 D1 2 2 2 3 2
M3 D2 D1 D3 7 7 5 7 5
M4 1 1 1 1 1
M4 D1 4 2 2 1 1
M4 D1 D2 5 7 6 6 5
M5 2 8 4 3 2
M5 D1 6 5 2 4 2
M5 D1 D2 6 3 5 3 4
M5 D1 D2 D3 8 9 4 5 3
M6 1 2 1 1 1
M6 D1 7 7 6 10 9
M7 7 7 5 7 7
M7 D1 6 10 10 8 8
M7 D1 D2 9 9 9 9 8
M8 4 5 1 2 2
M8 D1 9 10 4 6 4
M8 D1 D2 4 10 6 7 5
S04 3 2 1 5 2
S04 D1 4 5 8 6 5
S04 D1 D2 3 4 7 3 2
S04 D1 D2 D3 10 8 5 2 5
S04 D1 D2 D3 D4 9 6 7 6 6
S04 D1 _D2 D3 D4 D5 7 5 6 8 4

Table B.4: Condado examples information

Model ID Approach Final State
M1 pwUp
M1 D1 Regenerate-All pwUp
M1 D1 D-MBTDD pwUp
M2 pwUp
M2 D1 Regenerate-All pwUp
M2 D1 D-MBTDD pwUp
M3 rckldle
M3 D2 Regenerate-All rckldle
M3 D2 D-MBTDD rekldle
M3 D2 D1 Regenerate-All rckldle

Continued on next page

92

APPENDIX B.

COMPLEMENTARY TABLES FOR CHAPTER 6

Table B.4 — continued from previous page

Model ID Approach Final State
M3 D2 D1 D-MBTDD rekldle
M3 D2 D1 D3 | Regenerate-All rckldle
M3 D2 D1 _D3| D-MBTDD rekldle
M4 - clsUnlock
M4 D1 Regenerate-All clsUnlock
M4 D1 D-MBTDD clsUnlock
M4 D1 D2 Regenerate-All clsUnlock
M4 D1 D2 D-MBTDD clsUnlock
M5 - controller
M5 D1 Regenerate-All controller
M5 D1 D-MBTDD controller
M5 D1 D2 Regenerate-All controller
M5 D1 D2 D-MBTDD controller
M5 D1 _D2 D3 | Regenerate-All controller
M5 D1 D2 D3 D-MBTDD controller
M6 - ledAuto PwOff
M6 D1 Regenerate-All | ledAuto PwOff
M6 D1 D-MBTDD ledAutoPwOff
M7 - asActivated Off
M7 D1 Regenerate-All | asActivatedOff
M7 D1 D-MBTDD asActivated Off
M7 D1 D2 Regenerate-All | asActivated Off
M7 D1 D2 D-MBTDD asActivated Off
M8 - emHorPending
S04 - E0
S04 D1 Regenerate-All E0
S04 D1 D-MBTDD E0
S04 D1 D2 Regenerate-All E0
S04 D1 D2 D-MBTDD E0

	Introduction
	Context
	Problem Identification
	Proposed Solution and Objectives
	Research Questions
	Contributions
	Document Organization

	Test First Development
	Test-Driven Development
	Behaviour Driven Development
	Model-Based Testing
	Finite State Machine

	Model-Based Test-Driven Development

	Regression Testing Techniques
	Regression Testing
	Test Cases Classification

	Delta-Oriented Model-Based SPL Regression Testing

	Related Work
	Model-Based Testing in an Agile Context
	Model-Based Regression Testing
	Reuse of Test Models
	Summary of the Study

	Proposed Solution: D-MBTDD method
	Assumptions
	D-MBTDD Process
	Process for the First Iteration
	Process for the Next Iterations

	D-MBTDD with Scrum

	Evaluation of the Proposed Solution
	Definition of the Experiment
	Metrics

	Planning of the Experiment
	Delta Case Study
	SWPDC - Software for a Data Collection Platform

	Workflow of the Experiments
	Workflow for core model experiments
	Workflow for test model version experiments

	Controlled Experiment 1: StateMutest Experiments
	State Mutest
	Preparation
	Results
	Results Analyses

	Controlled Experiments 2: Condado Experiments
	Condado
	Preparation
	Results
	Results Analyses

	Discussion
	Results Common to both MBT tools
	Cost comparison between Regenerate-All and D-MBTDD

	Threats to the Validity of the Experiments

	Conclusions and Future Work
	Conclusions
	Limitations
	Answers to the Research Questions
	Future Work

	Delta Information for Section 6.1.1
	Complementary Tables for Chapter 6

